diff -Nrcpad gcc-4.9.3/ChangeLog gcc-4.9.4/ChangeLog *** gcc-4.9.3/ChangeLog Fri Jun 26 17:57:24 2015 --- gcc-4.9.4/ChangeLog Wed Aug 3 05:04:02 2016 *************** *** 1,3 **** --- 1,22 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2015-12-04 Andreas Tobler + + Backport from mainline + 2015-12-01 Andreas Tobler + + PR libffi/65726 + * Makefile.def (lang_env_dependencies): Make libffi depend + on cxx. + * Makefile.in: Regenerate. + + 2015-11-18 Matthias Klose + + * configure.ac: Permit also ISL 0.15 with CLooG. + * configure: Regenerate. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/INSTALL/binaries.html gcc-4.9.4/INSTALL/binaries.html *** gcc-4.9.3/INSTALL/binaries.html Fri Jun 26 17:59:20 2015 --- gcc-4.9.4/INSTALL/binaries.html Wed Aug 3 05:09:48 2016 *************** *** 1,164 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

We are often asked about pre-compiled versions of GCC. While we cannot ! provide these for all platforms, below you’ll find links to binaries for various platforms where creating them by yourself is not easy due to various reasons. !

!

Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their makers. -

- ! !
!

Return to the GCC Installation page !

! ! ! ! - - --- 1,111 ---- ! ! ! Installing GCC: Binaries ! ! ! ! ! ! ! ! ! !

Installing GCC: Binaries

! ! We are often asked about pre-compiled versions of GCC. While we cannot ! provide these for all platforms, below you'll find links to binaries for various platforms where creating them by yourself is not easy due to various reasons. ! !

Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their makers. !

+


+

Return to the GCC Installation page + + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/build.html gcc-4.9.4/INSTALL/build.html *** gcc-4.9.3/INSTALL/build.html Fri Jun 26 17:59:18 2015 --- gcc-4.9.4/INSTALL/build.html Wed Aug 3 05:09:48 2016 *************** *** 1,457 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Now that GCC is configured, you are ready to build the compiler and runtime libraries. !

!

Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by make. These failures, which are often due to files that were not found, are expected, and can safely be ignored. !

!

It is normal to have compiler warnings when compiling certain files. Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past warnings-as-errors by specifying the configure flag ! --disable-werror. !

!

On certain old systems, defining certain environment variables such as ! CC can interfere with the functioning of make. !

!

If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be because you have previously configured the compiler in the source directory. Make sure you have done all the necessary preparations. !

!

If you build GCC on a BSD system using a directory stored in an old System ! V file system, problems may occur in running fixincludes if the ! System V file system doesn’t support symbolic links. These problems result in a failure to fix the declaration of size_t in ! sys/types.h. If you find that size_t is a signed type and that type mismatches occur, this could be the cause. !

!

The solution is not to use such a directory for building GCC. !

!

Similarly, when building from SVN or snapshots, or if you modify ! *.l files, you need the Flex lexical analyzer generator ! installed. If you do not modify *.l files, releases contain the Flex-generated files and you do not need Flex installed to build them. There is still one Flex-based lexical analyzer (part of the build machinery, not of GCC itself) that is used even if you only build the C front end. !

!

When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you want Info documentation to be regenerated. Releases contain Info documentation pre-built for the unmodified documentation in the release. !

! !

Building a native compiler

For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked. This will build the entire GCC system and ensure that it compiles ! itself correctly. It can be disabled with the --disable-bootstrap ! parameter to ‘configure’, but bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. -

-

The bootstrapping process will complete the following steps: -

-
    -
  • Build tools necessary to build the compiler. !
  • Perform a 3-stage bootstrap of the compiler. This includes building three times the target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld, and opcodes) if they have been individually linked or moved into the top level GCC source tree before configuring. !
  • Perform a comparison test of the stage2 and stage3 compilers. !
  • Build runtime libraries using the stage3 compiler from the previous step. !
!

If you are short on disk space you might consider ‘make ! bootstrap-lean’ instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. !

!

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers, set BOOT_CFLAGS on the command line when ! doing ‘make’. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the bootstrap and the final installation. (Libraries will still contain debugging information.) -

-
-
make BOOT_CFLAGS='-O' bootstrap
- 
!

You can place non-default optimization flags into BOOT_CFLAGS; they ! are less well tested here than the default of ‘-g -O2’, but should still work. In a few cases, you may find that you need to specify special ! flags such as -msoft-float here to complete the bootstrap; or, if the native compiler miscompiles the stage1 compiler, you may need to work around this, by choosing BOOT_CFLAGS to avoid the parts ! of the stage1 compiler that were miscompiled, or by using ‘make ! bootstrap4’ to increase the number of stages of bootstrap. !

!

BOOT_CFLAGS does not apply to bootstrapped target libraries. Since these are always compiled with the compiler currently being bootstrapped, you can use CFLAGS_FOR_TARGET to modify their ! compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. Use STAGE1_TFLAGS to this end. !

!

If you used the flag --enable-languages=… to restrict ! the compilers to be built, only those you’ve actually enabled will be built. This will of course only build those runtime libraries, for which the particular compiler has been built. Please note, ! that re-defining LANGUAGES when calling ‘makedoes not work anymore! !

!

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they always appear “different”. If you encounter this problem, you will ! need to disable comparison in the Makefile.) !

!

If you do not want to bootstrap your compiler, you can configure with ! --disable-bootstrap. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a powerpc-unknown-linux-gnu toolchain on a powerpc64-unknown-linux-gnu host. In this case, pass ! --enable-bootstrap to the configure script. !

!

BUILD_CONFIG can be used to bring in additional customization ! to the build. It can be set to a whitespace-separated list of names. ! For each such NAME, top-level config/NAME.mk will ! be included by the top-level Makefile, bringing in any settings it contains. The default BUILD_CONFIG can be set using the ! configure option --with-build-config=NAME.... Some examples of supported build configurations are: !

!
!
bootstrap-O1
!

Removes any -O-started option from BOOT_CFLAGS, and adds ! -O1 to it. ‘BUILD_CONFIG=bootstrap-O1’ is equivalent to ! ‘BOOT_CFLAGS='-g -O1'’. !

!
!
bootstrap-O3
!

Analogous to bootstrap-O1. !

!
!
bootstrap-lto
!

Enables Link-Time Optimization for host tools during bootstrapping. ! ‘BUILD_CONFIG=bootstrap-lto’ is equivalent to adding ! -flto to ‘BOOT_CFLAGS’. !

!
!
bootstrap-debug
!

Verifies that the compiler generates the same executable code, whether or not it is asked to emit debug information. To this end, this option builds stage2 host programs without debug information, and uses ! contrib/compare-debug to compare them with the stripped stage3 object files. If BOOT_CFLAGS is overridden so as to not enable ! debug information, stage2 will have it, and stage3 won’t. This option is enabled by default when GCC bootstrapping is enabled, if strip can turn object files compiled with and without debug info into identical object files. In addition to better test coverage, this option makes default bootstraps faster and leaner. !

!
!
bootstrap-debug-big
!

Rather than comparing stripped object files, as in bootstrap-debug, this option saves internal compiler dumps during stage2 and stage3 and compares them as well, which helps catch additional potential problems, but at a great cost in terms of disk ! space. It can be specified in addition to ‘bootstrap-debug’. !

!
!
bootstrap-debug-lean
!

This option saves disk space compared with bootstrap-debug-big, but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! -fcompare-debug to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. !

!
!
bootstrap-debug-lib
!

This option tests executable code invariance over debug information generation on target libraries, just like bootstrap-debug-lean tests it on host programs. It builds stage3 libraries with ! -fcompare-debug, and it can be used along with any of the bootstrap-debug options above. !

!

There aren’t -lean or -big counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built ! in stage2 are used in stage3 host programs, so we wouldn’t want to compile stage2 libraries with different options for comparison purposes. !

!
!
bootstrap-debug-ckovw
!

Arranges for error messages to be issued if the compiler built on any ! stage is run without the option -fcompare-debug. This is ! useful to verify the full -fcompare-debug testing coverage. It must be used along with bootstrap-debug-lean and bootstrap-debug-lib. !

!
!
bootstrap-time
!

Arranges for the run time of each program started by the GCC driver, ! built in any stage, to be logged to time.log, in the top level of the build tree. -

-
-
! !

Building a cross compiler

When building a cross compiler, it is not generally possible to do a 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. !

!

To build a cross compiler, we recommend first building and installing a native compiler. You can then use the native GCC compiler to build the cross compiler. The installed native compiler needs to be GCC version 2.95 or later. !

!

If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler needs to be the same GCC version as the cross compiler. In addition the cross compiler needs to be configured with ! --with-ecj-jar=…. !

!

Assuming you have already installed a native copy of GCC and configured ! your cross compiler, issue the command make, which performs the following steps: -

-
    -
  • Build host tools necessary to build the compiler. !
  • Build target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld, and opcodes) if they have been individually linked or moved into the top level GCC source tree before configuring. !
  • Build the compiler (single stage only). !
  • Build runtime libraries using the compiler from the previous step. !
!

Note that if an error occurs in any step the make process will exit. !

!

If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before configuring GCC. Put them in the directory ! prefix/target/bin. Here is a table of the tools you should put in this directory: !

!
!
as
!

This should be the cross-assembler. !

!
!
ld
!

This should be the cross-linker. !

!
!
ar
!

This should be the cross-archiver: a program which can manipulate ! archive files (linker libraries) in the target machine’s format. !

!
!
ranlib
!

This should be a program to construct a symbol table in an archive file. !

!

The installation of GCC will find these programs in that directory, and copy or link them to the proper place to for the cross-compiler to find them when run later. !

!

The easiest way to provide these files is to build the Binutils package. ! Configure it with the same --host and --target options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. !

!

If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before configuring GCC, specifying the directories with ! --with-sysroot or --with-headers and ! --with-libs. Many targets also require “start files” such ! as crt0.o and ! crtn.o which are linked into each executable. There may be several ! alternatives for crt0.o, for use with profiling or other ! compilation options. Check your target’s definition of STARTFILE_SPEC to find out what start files it uses. !

! !

Building in parallel

GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use ‘make -j 2’ ! instead of ‘make’. You can also specify a bigger number, and in most cases using a value greater than the number of processors in your machine will result in fewer and shorter I/O latency hits, thus improving overall throughput; this is especially true for slow drives and network filesystems. !

! !

Building the Ada compiler

In order to build GNAT, the Ada compiler, you need a working GNAT ! compiler (GCC version 4.0 or later). ! This includes GNAT tools such as gnatmake and ! gnatlink, since the Ada front end is written in Ada and uses some GNAT-specific extensions. !

!

In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. !

!

configure does not test whether the GNAT installation works and has a sufficiently recent version; if too old a GNAT version is ! installed, the build will fail unless --enable-languages is used to disable building the Ada front end. !

!

ADA_INCLUDE_PATH and ADA_OBJECT_PATH environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada runtime libraries. You can check that your build environment is clean ! by verifying that ‘gnatls -v’ lists only one explicit path in each section. !

! !

Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7 percent speedup on compiling C programs. To bootstrap the compiler with profile feedback, use make profiledbootstrap. !

!

When ‘make profiledbootstrap’ is run, it will first build a stage1 compiler. This compiler is used to build a stageprofile compiler instrumented to collect execution counts of instruction and branch ! probabilities. Then runtime libraries are compiled with profile collected. Finally a stagefeedback compiler is built using the information collected. -

-

Unlike standard bootstrap, several additional restrictions apply. The - compiler used to build stage1 needs to support a 64-bit integral type. - It is recommended to only use GCC for this. -

-
-

Return to the GCC Installation page -

- - - -
- - - - - --- 1,377 ---- ! ! ! Installing GCC: Building ! ! ! ! ! ! ! ! ! !

Installing GCC: Building

! ! Now that GCC is configured, you are ready to build the compiler and runtime libraries. ! !

Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by make. These failures, which are often due to files that were not found, are expected, and can safely be ignored. ! !

It is normal to have compiler warnings when compiling certain files. Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past warnings-as-errors by specifying the configure flag ! --disable-werror. ! !

On certain old systems, defining certain environment variables such as ! CC can interfere with the functioning of make. ! !

If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be because you have previously configured the compiler in the source directory. Make sure you have done all the necessary preparations. ! !

If you build GCC on a BSD system using a directory stored in an old System ! V file system, problems may occur in running fixincludes if the ! System V file system doesn't support symbolic links. These problems result in a failure to fix the declaration of size_t in ! sys/types.h. If you find that size_t is a signed type and that type mismatches occur, this could be the cause. ! !

The solution is not to use such a directory for building GCC. ! !

Similarly, when building from SVN or snapshots, or if you modify ! *.l files, you need the Flex lexical analyzer generator ! installed. If you do not modify *.l files, releases contain the Flex-generated files and you do not need Flex installed to build them. There is still one Flex-based lexical analyzer (part of the build machinery, not of GCC itself) that is used even if you only build the C front end. ! !

When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you want Info documentation to be regenerated. Releases contain Info documentation pre-built for the unmodified documentation in the release. ! !

Building a native compiler

For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked. This will build the entire GCC system and ensure that it compiles ! itself correctly. It can be disabled with the --disable-bootstrap ! parameter to ‘configure’, but bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. !

The bootstrapping process will complete the following steps: ! !

    !
  • Build tools necessary to build the compiler. ! !
  • Perform a 3-stage bootstrap of the compiler. This includes building three times the target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld, and opcodes) if they have been individually linked or moved into the top level GCC source tree before configuring. !
  • Perform a comparison test of the stage2 and stage3 compilers. !
  • Build runtime libraries using the stage3 compiler from the previous step. !
!

If you are short on disk space you might consider ‘make ! bootstrap-lean’ instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. ! !

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers, set BOOT_CFLAGS on the command line when ! doing ‘make’. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the bootstrap and the final installation. (Libraries will still contain debugging information.) !

     make BOOT_CFLAGS='-O' bootstrap
! 
!

You can place non-default optimization flags into BOOT_CFLAGS; they ! are less well tested here than the default of ‘-g -O2’, but should still work. In a few cases, you may find that you need to specify special ! flags such as -msoft-float here to complete the bootstrap; or, if the native compiler miscompiles the stage1 compiler, you may need to work around this, by choosing BOOT_CFLAGS to avoid the parts ! of the stage1 compiler that were miscompiled, or by using ‘make ! bootstrap4’ to increase the number of stages of bootstrap. ! !

BOOT_CFLAGS does not apply to bootstrapped target libraries. Since these are always compiled with the compiler currently being bootstrapped, you can use CFLAGS_FOR_TARGET to modify their ! compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. Use STAGE1_TFLAGS to this end. ! !

If you used the flag --enable-languages=... to restrict ! the compilers to be built, only those you've actually enabled will be built. This will of course only build those runtime libraries, for which the particular compiler has been built. Please note, ! that re-defining LANGUAGES when calling ‘makedoes not work anymore! ! !

If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they always appear “different”. If you encounter this problem, you will ! need to disable comparison in the Makefile.) ! !

If you do not want to bootstrap your compiler, you can configure with ! --disable-bootstrap. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a powerpc-unknown-linux-gnu toolchain on a powerpc64-unknown-linux-gnu host. In this case, pass ! --enable-bootstrap to the configure script. ! !

BUILD_CONFIG can be used to bring in additional customization ! to the build. It can be set to a whitespace-separated list of names. ! For each such NAME, top-level config/NAME.mk will ! be included by the top-level Makefile, bringing in any settings it contains. The default BUILD_CONFIG can be set using the ! configure option --with-build-config=NAME.... Some examples of supported build configurations are: ! !

!
bootstrap-O1
Removes any -O-started option from BOOT_CFLAGS, and adds ! -O1 to it. ‘BUILD_CONFIG=bootstrap-O1’ is equivalent to ! ‘BOOT_CFLAGS='-g -O1'’. ! !
bootstrap-O3
Analogous to bootstrap-O1. ! !
bootstrap-lto
Enables Link-Time Optimization for host tools during bootstrapping. ! ‘BUILD_CONFIG=bootstrap-lto’ is equivalent to adding ! -flto to ‘BOOT_CFLAGS’. ! !
bootstrap-debug
Verifies that the compiler generates the same executable code, whether or not it is asked to emit debug information. To this end, this option builds stage2 host programs without debug information, and uses ! contrib/compare-debug to compare them with the stripped stage3 object files. If BOOT_CFLAGS is overridden so as to not enable ! debug information, stage2 will have it, and stage3 won't. This option is enabled by default when GCC bootstrapping is enabled, if strip can turn object files compiled with and without debug info into identical object files. In addition to better test coverage, this option makes default bootstraps faster and leaner. ! !
bootstrap-debug-big
Rather than comparing stripped object files, as in bootstrap-debug, this option saves internal compiler dumps during stage2 and stage3 and compares them as well, which helps catch additional potential problems, but at a great cost in terms of disk ! space. It can be specified in addition to ‘bootstrap-debug’. ! !
bootstrap-debug-lean
This option saves disk space compared with bootstrap-debug-big, but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! -fcompare-debug to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. ! !
bootstrap-debug-lib
This option tests executable code invariance over debug information generation on target libraries, just like bootstrap-debug-lean tests it on host programs. It builds stage3 libraries with ! -fcompare-debug, and it can be used along with any of the bootstrap-debug options above. ! !

There aren't -lean or -big counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built ! in stage2 are used in stage3 host programs, so we wouldn't want to compile stage2 libraries with different options for comparison purposes. ! !

bootstrap-debug-ckovw
Arranges for error messages to be issued if the compiler built on any ! stage is run without the option -fcompare-debug. This is ! useful to verify the full -fcompare-debug testing coverage. It must be used along with bootstrap-debug-lean and bootstrap-debug-lib. ! !
bootstrap-time
Arranges for the run time of each program started by the GCC driver, ! built in any stage, to be logged to time.log, in the top level of the build tree. !
! !

Building a cross compiler

When building a cross compiler, it is not generally possible to do a 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. ! !

To build a cross compiler, we recommend first building and installing a native compiler. You can then use the native GCC compiler to build the cross compiler. The installed native compiler needs to be GCC version 2.95 or later. ! !

If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler needs to be the same GCC version as the cross compiler. In addition the cross compiler needs to be configured with ! --with-ecj-jar=.... ! !

Assuming you have already installed a native copy of GCC and configured ! your cross compiler, issue the command make, which performs the following steps: !

    !
  • Build host tools necessary to build the compiler. ! !
  • Build target tools for use by the compiler such as binutils (bfd, binutils, gas, gprof, ld, and opcodes) if they have been individually linked or moved into the top level GCC source tree before configuring. !
  • Build the compiler (single stage only). !
  • Build runtime libraries using the compiler from the previous step. !
!

Note that if an error occurs in any step the make process will exit. ! !

If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before configuring GCC. Put them in the directory ! prefix/target/bin. Here is a table of the tools you should put in this directory: ! !

!
as
This should be the cross-assembler. ! !
ld
This should be the cross-linker. ! !
ar
This should be the cross-archiver: a program which can manipulate ! archive files (linker libraries) in the target machine's format. ! !
ranlib
This should be a program to construct a symbol table in an archive file.
!

The installation of GCC will find these programs in that directory, and copy or link them to the proper place to for the cross-compiler to find them when run later. ! !

The easiest way to provide these files is to build the Binutils package. ! Configure it with the same --host and --target options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. ! !

If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before configuring GCC, specifying the directories with ! --with-sysroot or --with-headers and ! --with-libs. Many targets also require “start files” such ! as crt0.o and ! crtn.o which are linked into each executable. There may be several ! alternatives for crt0.o, for use with profiling or other ! compilation options. Check your target's definition of STARTFILE_SPEC to find out what start files it uses. ! !

Building in parallel

GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use ‘make -j 2’ ! instead of ‘make’. You can also specify a bigger number, and in most cases using a value greater than the number of processors in your machine will result in fewer and shorter I/O latency hits, thus improving overall throughput; this is especially true for slow drives and network filesystems. ! !

Building the Ada compiler

In order to build GNAT, the Ada compiler, you need a working GNAT ! compiler (GCC version 4.0 or later). ! This includes GNAT tools such as gnatmake and ! gnatlink, since the Ada front end is written in Ada and uses some GNAT-specific extensions. ! !

In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. ! !

configure does not test whether the GNAT installation works and has a sufficiently recent version; if too old a GNAT version is ! installed, the build will fail unless --enable-languages is used to disable building the Ada front end. ! !

ADA_INCLUDE_PATH and ADA_OBJECT_PATH environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada runtime libraries. You can check that your build environment is clean ! by verifying that ‘gnatls -v’ lists only one explicit path in each section. ! !

Building with profile feedback

It is possible to use profile feedback to optimize the compiler itself. This should result in a faster compiler binary. Experiments done on x86 using gcc 3.3 showed approximately 7 percent speedup on compiling C programs. To bootstrap the compiler with profile feedback, use make profiledbootstrap. ! !

When ‘make profiledbootstrap’ is run, it will first build a stage1 compiler. This compiler is used to build a stageprofile compiler instrumented to collect execution counts of instruction and branch ! probabilities. Then runtime libraries are compiled with profile collected. Finally a stagefeedback compiler is built using the information collected. +

Unlike standard bootstrap, several additional restrictions apply. The + compiler used to build stage1 needs to support a 64-bit integral type. + It is recommended to only use GCC for this. +


+

Return to the GCC Installation page + + + + + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/configure.html gcc-4.9.4/INSTALL/configure.html *** gcc-4.9.3/INSTALL/configure.html Fri Jun 26 17:59:18 2015 --- gcc-4.9.4/INSTALL/configure.html Wed Aug 3 05:09:48 2016 *************** *** 1,1842 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Like most GNU software, GCC must be configured before it can be built. This document describes the recommended configuration procedure for both native and cross targets. !

!

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer to the toplevel build/object directory. !

!

If you obtained the sources via SVN, srcdir must refer to the top ! gcc directory, the one where the MAINTAINERS file can be ! found, and not its gcc subdirectory, otherwise the build will fail. !

!

If either srcdir or objdir is located on an automounted NFS ! file system, the shell’s built-in pwd command will return temporary pathnames. Using these can lead to various sorts of build ! problems. To avoid this issue, set the PWDCMD environment ! variable to an automounter-aware pwd command, e.g., ! pawd or ‘amq -w’, during the configuration and build phases. !

!

First, we highly recommend that GCC be built into a separate directory from the sources which does not reside within the source tree. This is how we generally build GCC; building ! where srcdir == objdir should still work, but doesn’t get extensive testing; building where objdir is a subdirectory of srcdir is unsupported. !

!

If you have previously built GCC in the same directory for a ! different target machine, do ‘make distclean’ to delete all files ! that might be invalid. One of the files this deletes is Makefile; ! if ‘make distclean’ complains that Makefile does not exist ! or issues a message like “don’t know how to make distclean” it probably means that the directory is already suitably clean. However, with the recommended method of building in a separate objdir, you should simply use a different objdir for each target. !

!

Second, when configuring a native system, either cc or ! gcc must be in your path or you must set CC in your environment before running configure. Otherwise the configuration scripts may fail. -

!

To configure GCC: !

!
!
% mkdir objdir
! % cd objdir
! % srcdir/configure [options] [target]
! 
! !

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code, you should use the options described in this section to make clear that your version contains modifications. !

!
!
--with-pkgversion=version
!

Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of gcc --version. This suffix does ! not replace the default version string, only the ‘GCC’ part. !

!

The default value is ‘GCC’. !

!
!
--with-bugurl=url
!

Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your modifications. -

-

The default value refers to the FSF’s GCC bug tracker. -

-
-
! !

Target specification

!
    !
  • GCC has code to correctly determine the correct value for target for nearly all native systems. Therefore, we highly recommend you do not provide a configure target when configuring a native compiler. !
  • target must be specified as --target=target when configuring a cross compiler; examples of valid targets would be m68k-elf, sh-elf, etc. !
  • Specifying just target instead of --target=target ! implies that the host defaults to target. !
! ! !

Options specification

Use options to override several configure time options for ! GCC. A list of supported options follows; ‘configure ! --help’ may list other options, but those not listed below may not work and should not normally be used. !

!

Note that each --enable option has a corresponding ! --disable option and that each --with option has a ! corresponding --without option. !

!
!
--prefix=dirname
!

Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! /usr/local. !

!

We highly recommend against dirname being the same or a subdirectory of objdir or vice versa. If specifying a directory ! beneath a user’s home directory tree, some shells will not expand ! dirname correctly if it contains the ‘~’ metacharacter; use ! $HOME instead. !

!

The following standard autoconf options are supported. Normally you should not need to use these options. !

!
--exec-prefix=dirname
!

Specify the toplevel installation directory for architecture-dependent files. The default is prefix. !

!
!
--bindir=dirname
!

Specify the installation directory for the executables called by users ! (such as gcc and g++). The default is ! exec-prefix/bin. !

!
!
--libdir=dirname
!

Specify the installation directory for object code libraries and ! internal data files of GCC. The default is exec-prefix/lib. !

!
!
--libexecdir=dirname
!

Specify the installation directory for internal executables of GCC. ! The default is exec-prefix/libexec. !

!
!
--with-slibdir=dirname
!

Specify the installation directory for the shared libgcc library. The default is libdir. !

!
!
--datarootdir=dirname
!

Specify the root of the directory tree for read-only architecture-independent ! data files referenced by GCC. The default is prefix/share. !

!
!
--infodir=dirname
!

Specify the installation directory for documentation in info format. ! The default is datarootdir/info. !

!
!
--datadir=dirname
!

Specify the installation directory for some architecture-independent data files referenced by GCC. The default is datarootdir. !

!
!
--docdir=dirname
!

Specify the installation directory for documentation files (other ! than Info) for GCC. The default is datarootdir/doc. !

!
!
--htmldir=dirname
!

Specify the installation directory for HTML documentation files. The default is docdir. !

!
!
--pdfdir=dirname
!

Specify the installation directory for PDF documentation files. The default is docdir. !

!
!
--mandir=dirname
!

Specify the installation directory for manual pages. The default is ! datarootdir/man. (Note that the manual pages are only extracts from the full GCC manuals, which are provided in Texinfo format. The manpages are derived by an automatic conversion process from parts of the full manual.) !

!
!
--with-gxx-include-dir=dirname
!

Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. !

!
!
--with-specs=specs
!

Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by ! default without modifying the compiler’s source code, for instance ! --with-specs=%{!fcommon:%{!fno-common:-fno-common}}. See “Spec Files” in the main manual -

-
-
!
!
--program-prefix=prefix
!

GCC supports some transformations of the names of its programs when installing them. This option prepends prefix to the names of programs to install in bindir (see above). For example, specifying ! --program-prefix=foo- would result in ‘gcc’ ! being installed as /usr/local/bin/foo-gcc. !

!
!
--program-suffix=suffix
!

Appends suffix to the names of programs to install in bindir ! (see above). For example, specifying --program-suffix=-3.1 ! would result in ‘gcc’ being installed as ! /usr/local/bin/gcc-3.1. !

!
!
--program-transform-name=pattern
!

Applies the ‘sed’ script pattern to be applied to the names of programs to install in bindir (see above). pattern has to ! consist of one or more basic ‘sed’ editing commands, separated by ! semicolons. For example, if you want the ‘gcc’ program name to be ! transformed to the installed program /usr/local/bin/myowngcc and ! the ‘g++’ program name to be transformed to ! /usr/local/bin/gspecial++ without changing other program names, you could use the pattern ! --program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/' to achieve this effect. !

!

All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, prefix (and suffix) are prepended (appended) before further transformations can happen with a special transformation script pattern. !

!

As currently implemented, this option only takes effect for native ! builds; cross compiler binaries’ names are not transformed even when a transformation is explicitly asked for by one of these options. !

!

For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! ‘i686-pc-linux-gnu-gcc’. All of the above transformations happen before the target alias is prepended to the name—so, specifying ! --program-prefix=foo- and program-suffix=-3.1, the resulting binary would be installed as ! /usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1. !

!

As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. !

!
!
--with-local-prefix=dirname
!

Specify the installation directory for local include files. The default is ! /usr/local. Specify this option if you want the compiler to ! search directory dirname/include for locally installed ! header files instead of /usr/local/include. !

!

You should specify --with-local-prefix only if your ! site has a different convention (not /usr/local) for where to put site-specific files. !

!

The default value for --with-local-prefix is /usr/local ! regardless of the value of --prefix. Specifying ! --prefix has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. !

!

The purpose of --prefix is to specify where to install ! GCC. The local header files in /usr/local/include—if you put any in that directory—are not part of GCC. They are part of other programs—perhaps many others. (GCC installs its own header files in ! another directory which is based on the --prefix value.) !

!

Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC’s “system include” directories. Although these two directories are not fixed, they need to be searched in the proper order for the correct processing of the include_next directive. The local-prefix include directory is searched before the GCC-prefix include directory. Another characteristic of system include directories is that pedantic warnings are turned off for headers in these directories. !

!

Some autoconf macros add -I directory options to the compiler command line, to ensure that directories containing installed ! packages’ headers are searched. When directory is one of GCC’s system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. This may result in a search order different from what was specified but the directory will still be searched. !

!

GCC automatically searches for ordinary libraries using ! GCC_EXEC_PREFIX. Thus, when the same installation prefix is used for both GCC and packages, GCC will automatically search for both headers and libraries. This provides a configuration that is easy to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in /usr. !

!

Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! --program-prefix, --program-suffix and ! --program-transform-name options to install multiple versions into a single directory, but it may be simpler to use different prefixes ! and the --with-local-prefix option to specify the location of the site-specific files for each version. It will then be necessary for users to specify explicitly the location of local site libraries ! (e.g., with LIBRARY_PATH). !

!

The same value can be used for both --with-local-prefix and ! --prefix provided it is not /usr. This can be used ! to avoid the default search of /usr/local/include. !

!

Do not specify /usr as the --with-local-prefix! ! The directory you use for --with-local-prefix must not ! contain any of the system’s standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the header ! file corrections made by the fixincludes script. !

!

Indications are that people who use this option use it based on mistaken ideas of what it is for. People use it as if it specified where to install part of GCC. Perhaps they make this assumption because installing GCC creates the directory. !

!
!
--with-native-system-header-dir=dirname
!

Specifies that dirname is the directory that contains native system ! header files, rather than /usr/include. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! --with-sysroot option and will cause GCC to search dirname inside the system root specified by that option. !

!
!
--enable-shared[=package[,…]]
!

Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that support shared libraries. !

!

If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only static libraries will be built. Package names currently recognized in the GCC tree are ! ‘libgcc’ (also known as ‘gcc’), ‘libstdc++’ (not ! ‘libstdc++-v3’), ‘libffi’, ‘zlib’, ‘boehm-gc’, ! ‘ada’, ‘libada’, ‘libjava’, ‘libgo’, and ‘libobjc’. ! Note ‘libiberty’ does not support shared libraries at all. !

!

Use --disable-shared to build only static libraries. Note that ! --disable-shared does not accept a list of package names as ! argument, only --enable-shared does. !

!

Contrast with --enable-host-shared, which affects host code. !

!
!
--enable-host-shared
!

Specify that the host code should be built into position-independent machine code (with -fPIC), allowing it to be used within shared libraries, but yielding a slightly slower compiler. !

!

Currently this option is only of use to people developing GCC itself. !

!

Contrast with --enable-shared, which affects target libraries. !

!
!
--with-gnu-as
!

Specify that the compiler should assume that the assembler it finds is the GNU assembler. However, this does not modify the rules to find an assembler and will result in confusion if the assembler found is not actually the GNU assembler. (Confusion may also result if the compiler finds the GNU assembler but has not been ! configured with --with-gnu-as.) If you have more than one assembler installed on your system, you may want to use this option in ! connection with --with-as=pathname or ! --with-build-time-tools=pathname. !

!

The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! --with-gnu-as has no effect. !

!
    !
  • hppa1.0-any-any’ !
  • hppa1.1-any-any’ !
  • sparc-sun-solaris2.any’ !
  • sparc64-any-solaris2.any’ !
!
!
--with-as=pathname
!

Specify that the compiler should use the assembler pointed to by pathname, rather than the one found by the standard rules to find an assembler, which are: !

    !
  • Unless GCC is being built with a cross compiler, check the ! libexec/gcc/target/version directory. ! libexec defaults to exec-prefix/libexec; exec-prefix defaults to prefix, which ! defaults to /usr/local unless overridden by the ! --prefix=pathname switch described above. target ! is the target system triple, such as ‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as 3.0. !
  • If the target system is the same that you are building on, check ! operating system specific directories (e.g. /usr/ccs/bin on Sun Solaris 2). !
  • Check in the PATH for a tool whose name is prefixed by the target system triple. !
  • Check in the PATH for a tool whose name is not prefixed by the target system triple, if the host and target system triple are the same (in other words, we use a host tool if it can be used for ! the target as well). !
!

You may want to use --with-as if no assembler is installed in the directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. !

!
!
--with-gnu-ld
!

Same as --with-gnu-as but for the linker. !

!
!
--with-ld=pathname
!

Same as --with-as but for the linker. !

!
!
--with-stabs
!

Specify that stabs debugging information should be used instead of whatever format the host normally uses. Normally GCC uses the same debug format as the host system. !

!

On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ECOFF debug format cannot fully handle languages other than C. BSD stabs format can handle other languages, but it only works with the GNU debugger GDB. !

!

Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify --with-stabs when you configure GCC. !

!

No matter which default you choose when you configure GCC, the user ! can use the -gcoff and -gstabs+ options to specify explicitly the debug format for a particular compilation. !

!

--with-stabs is meaningful on the ISC system on the 386, also, if ! --with-gas is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. !

!

--with-stabs is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. !

!
!
--with-tls=dialect
!

Specify the default TLS dialect, for systems were there is a choice. For ARM targets, possible values for dialect are gnu or gnu2, which select between the original GNU dialect and the GNU TLS descriptor-based dialect. !

!
!
--enable-multiarch
!

Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, ! and for cross builds configured with --with-sysroot, and without ! --with-native-system-header-dir. More documentation about multiarch can be found at http://wiki.debian.org/Multiarch. !

!
!
--enable-vtable-verify
!

Specify whether to enable or disable the vtable verification feature. Enabling this feature causes libstdc++ to be built with its virtual calls in verifiable mode. This means that, when linked with libvtv, every virtual call in libstdc++ will verify the vtable pointer through which the call will be made before actually making the call. If not linked with libvtv, ! the verifier will call stub functions (in libstdc++ itself) and do nothing. If vtable verification is disabled, then libstdc++ is not built with its virtual calls in verifiable mode at all. However the libvtv library will ! still be built (see --disable-libvtv to turn off building libvtv). ! --disable-vtable-verify is the default. !

!
!
--disable-multilib
!

Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. !

!

Some targets provide finer-grained control over which multilibs are built ! (e.g., --disable-softfloat): !

!
arm-*-*
!

fpu, 26bit, underscore, interwork, biendian, nofmult. !

!
!
m68*-*-*
!

softfloat, m68881, m68000, m68020. !

!
!
mips*-*-*
!

single-float, biendian, softfloat. !

!
!
powerpc*-*-*, rs6000*-*-*
!

aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. -

-
-
!
!
--with-multilib-list=list
!
--without-multilib-list
!

Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. !

!
!
sh*-*-*
!

list is a comma separated list of CPU names. These must be of the form sh* or m* (in which case they match the compiler option for that processor). The list should not contain any endian options - ! these are handled by --with-endian. !

!

If list is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. !

!

As a special case, if an entry in the list starts with a ! ! (exclamation point), then it is added to the list of excluded multilibs. ! Entries of this sort should be compatible with ‘MULTILIB_EXCLUDES’ (once the leading ! has been stripped). !

!

If --with-multilib-list is not given, then a default set of ! multilibs is selected based on the value of --target. This is usually the complete set of libraries, but some targets imply a more specialized subset. -

-

Example 1: to configure a compiler for SH4A only, but supporting both - endians, with little endian being the default: -

-
--with-cpu=sh4a --with-endian=little,big --with-multilib-list=
- 
!

Example 2: to configure a compiler for both SH4A and SH4AL-DSP, but with only little endian SH4AL: !

!
--with-cpu=sh4a --with-endian=little,big \
! --with-multilib-list=sh4al,!mb/m4al
! 
! !
!
x86-64-*-linux*
!

list is a comma separated list of m32, m64 and mx32 to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If list is empty, then there will be no multilibs and only the default run-time library will be enabled. !

!

If --with-multilib-list is not given, then only 32-bit and ! 64-bit run-time libraries will be enabled. !

!
!
--with-endian=endians
!

Specify what endians to use. Currently only implemented for sh*-*-*. !

!

endians may be one of the following: !

!
big
!

Use big endian exclusively. !

!
little
!

Use little endian exclusively. !

!
big,little
!

Use big endian by default. Provide a multilib for little endian. !

!
little,big
!

Use little endian by default. Provide a multilib for big endian. !

!
!
--enable-threads
!

Specify that the target supports threads. This affects the Objective-C compiler and runtime ! library, and exception handling for other languages like C++ and Java. On some systems, this is the default. !

!

In general, the best (and, in many cases, the only known) threading model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally ! available for the system. In this case, --enable-threads is an ! alias for --enable-threads=single. !

!
!
--disable-threads
!

Specify that threading support should be disabled for the system. ! This is an alias for --enable-threads=single. !

!
!
--enable-threads=lib
!

Specify that lib is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for lib are: !

!
!
aix
!

AIX thread support. !

!
dce
!

DCE thread support. !

!
lynx
!

LynxOS thread support. !

!
mipssde
!

MIPS SDE thread support. !

!
no
!

This is an alias for ‘single’. !

!
posix
!

Generic POSIX/Unix98 thread support. !

!
rtems
!

RTEMS thread support. !

!
single
!

Disable thread support, should work for all platforms. !

!
tpf
!

TPF thread support. !

!
vxworks
!

VxWorks thread support. !

!
win32
!

Microsoft Win32 API thread support. !

!
!
--enable-tls
!

Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled or disabled with ! --enable-tls or --disable-tls. This can happen if the assembler supports TLS but the C library does not, or if the assumptions made by the configure test are incorrect. !

!
!
--disable-tls
!

Specify that the target does not support TLS. ! This is an alias for --enable-tls=no. !

!
!
--with-cpu=cpu
!
--with-cpu-32=cpu
!
--with-cpu-64=cpu
!

Specify which cpu variant the compiler should generate code for by default. ! cpu will be used as the default value of the -mcpu= switch. This option is only supported on some targets, including ARC, ARM, i386, M68k, ! PowerPC, and SPARC. It is mandatory for ARC. The --with-cpu-32 and ! --with-cpu-64 options specify separate default CPUs for 32-bit and 64-bit modes; these options are only supported for i386, x86-64 and PowerPC. !

!
!
--with-schedule=cpu
!
--with-arch=cpu
!
--with-arch-32=cpu
!
--with-arch-64=cpu
!
--with-tune=cpu
!
--with-tune-32=cpu
!
--with-tune-64=cpu
!
--with-abi=abi
!
--with-fpu=type
!
--with-float=type
!

These configure options provide default values for the -mschedule=, ! -march=, -mtune=, -mabi=, and -mfpu= ! options and for -mhard-float or -msoft-float. As with ! --with-cpu, which switches will be accepted and acceptable values of the arguments depend on the target. !

!
!
--with-mode=mode
!

Specify if the compiler should default to -marm or -mthumb. This option is only supported on ARM targets. !

!
!
--with-stack-offset=num
!

This option sets the default for the -mstack-offset=num option, and will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. !

!
!
--with-fpmath=isa
!

This options sets -mfpmath=sse by default and specifies the default ! ISA for floating-point arithmetics. You can select either ‘sse’ which ! enables -msse2 or ‘avx’ which enables -mavx by default. This option is only supported on i386 and x86-64 targets. !

!
!
--with-nan=encoding
!

On MIPS targets, set the default encoding convention to use for the special not-a-number (NaN) IEEE 754 floating-point data. The possibilities for encoding are: !

!
legacy
!

Use the legacy encoding, as with the -mnan=legacy command-line ! option. !

!
2008
!

Use the 754-2008 encoding, as with the -mnan=2008 command-line ! option. !

!

To use this configuration option you must have an assembler version ! installed that supports the -mnan= command-line option too. In the absence of this configuration option the default convention is ! the legacy encoding, as when neither of the -mnan=2008 and ! -mnan=legacy command-line options has been used. !

!
!
--with-divide=type
!

Specify how the compiler should generate code for checking for ! division by zero. This option is only supported on the MIPS target. The possibilities for type are: !

!
traps
!

Division by zero checks use conditional traps (this is the default on ! systems that support conditional traps). !

!
breaks
!

Division by zero checks use the break instruction. !

! !
!
--with-llsc
!

On MIPS targets, make -mllsc the default when no ! -mno-llsc option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. !

!
!
--without-llsc
!

On MIPS targets, make -mno-llsc the default when no ! -mllsc option is passed. !

!
!
--with-synci
!

On MIPS targets, make -msynci the default when no ! -mno-synci option is passed. !

!
!
--without-synci
!

On MIPS targets, make -mno-synci the default when no ! -msynci option is passed. This is the default. !

!
!
--with-mips-plt
!

On MIPS targets, make use of copy relocations and PLTs. These features are extensions to the traditional SVR4-based MIPS ABIs and require support from GNU binutils and the runtime C library. !

!
!
--enable-__cxa_atexit
!

Define if you want to use __cxa_atexit, rather than atexit, to ! register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, this will cause ! -fuse-cxa-atexit to be passed by default. !

!
!
--enable-gnu-indirect-function
!

Define if you want to enable the ifunc attribute. This option is currently only available on systems with GNU libc on certain targets. !

!
!
--enable-target-optspace
!

Specify that target ! libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. !

!
!
--with-cpp-install-dir=dirname
!

Specify that the user visible cpp program should be installed ! in prefix/dirname/cpp, in addition to bindir. !

!
!
--enable-comdat
!

Enable COMDAT group support. This is primarily used to override the automatically detected value. !

!
!
--enable-initfini-array
!

Force the use of sections .init_array and .fini_array (instead of .init and .fini) for constructors and ! destructors. Option --disable-initfini-array has the opposite effect. If neither option is specified, the configure script will try to guess whether the .init_array and .fini_array sections are supported and, if they are, use them. !

!
!
--enable-link-mutex
!

When building GCC, use a mutex to avoid linking the compilers for multiple languages at the same time, to avoid thrashing on build systems with limited free memory. The default is not to use such a mutex. !

!
!
--enable-maintainer-mode
!

The build rules that regenerate the Autoconf and Automake output files as ! well as the GCC master message catalog gcc.pot are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the ! catalog, configuring with --enable-maintainer-mode will enable this. Note that you need a recent version of the gettext tools to do so. !

!
!
--disable-bootstrap
!

For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked, testing that GCC can compile itself correctly. If you want to disable ! this process, you can configure with --disable-bootstrap. !

!
!
--enable-bootstrap
!

In special cases, you may want to perform a 3-stage build ! even if the target and host triplets are different. This is possible when the host can run code compiled for ! the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do this you have to configure explicitly ! with --enable-bootstrap. !

!
!
--enable-generated-files-in-srcdir
!

Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC from that development tree, or from one of our snapshots, those generated files are placed in your build directory, which allows for the source to be in a readonly directory. !

!

If you configure with --enable-generated-files-in-srcdir then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. !

!
!
--enable-version-specific-runtime-libs
!

Specify that runtime libraries should be installed in the compiler specific ! subdirectory (libdir/gcc) rather than the usual places. In ! addition, ‘libstdc++’’s include files will be installed into libdir unless you overruled it by using ! --with-gxx-include-dir=dirname. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by ‘libgfortran’, ! ‘libjava’, ‘libstdc++’, and ‘libobjc’. !

!
!
--enable-languages=lang1,lang2,…
!

Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for langN you can issue the following command in the ! gcc directory of your GCC source tree:
!

!
grep language= */config-lang.in
! 
!

Currently, you can use any of the following: all, ada, c, c++, fortran, ! go, java, objc, obj-c++. ! Building the Ada compiler has special requirements, see below. If you do not pass this flag, or specify the option all, then all ! default languages available in the gcc sub-tree will be configured. Ada, Go and Objective-C++ are not default languages; the rest are. !

!
!
--enable-stage1-languages=lang1,lang2,…
!

Specify that a particular subset of compilers and their runtime libraries should be built with the system C compiler during stage 1 of the bootstrap process, rather than only in later stages with the bootstrapped C compiler. The list of valid values is the same as for ! --enable-languages, and the option all will select all ! of the languages enabled by --enable-languages. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to compiler bugs, or when one is debugging front ends other than the C front end. When this option is used, one can then build the target libraries for the ! specified languages with the stage-1 compiler by using make ! stage1-bubble all-target, or run the testsuite on the stage-1 compiler ! for the specified languages using make stage1-start check-gcc. !

!
!
--disable-libada
!

Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was required to explicitly ! do a ‘make -C gcc gnatlib_and_tools’. !

!
!
--disable-libsanitizer
!

Specify that the run-time libraries for the various sanitizers should not be built. !

!
!
--disable-libssp
!

Specify that the run-time libraries for stack smashing protection should not be built. !

!
!
--disable-libquadmath
!

Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building ! the Fortran front end, unless --disable-libquadmath-support is used. !

!
!
--disable-libquadmath-support
!

Specify that the Fortran front end and libgfortran do not add support for libquadmath on systems supporting it. !

!
!
--disable-libgomp
!

Specify that the run-time libraries used by GOMP should not be built. !

!
!
--disable-libvtv
!

Specify that the run-time libraries used by vtable verification should not be built. !

!
!
--with-dwarf2
!

Specify that the compiler should use DWARF 2 debugging information as the default. !

!
!
--enable-targets=all
!
--enable-targets=target_list
!

Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit ! code. Typically, the corresponding 32-bit target, e.g. powerpc-linux for powerpc64-linux, only generates 32-bit code. This option enables the 32-bit target to be a bi-arch compiler, which is useful when you want a bi-arch compiler that defaults to 32-bit, and ! you are building a bi-arch or multi-arch binutils in a combined tree. On mips-linux, this will build a tri-arch compiler (ABI o32/n32/64), ! defaulted to o32. Currently, this option only affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. !

!
!
--enable-secureplt
!

This option enables -msecure-plt by default for powerpc-linux. See “RS/6000 and PowerPC Options” in the main manual !

!
!
--enable-cld
!

This option enables -mcld by default for 32-bit x86 targets. See “i386 and x86-64 Options” in the main manual !

!
!
--enable-win32-registry
!
--enable-win32-registry=key
!
--disable-win32-registry
!

The --enable-win32-registry option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: -

-
-
HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key
- 
!

key defaults to GCC version number, and can be overridden by the ! --enable-win32-registry=key option. Vendors and distributors who use custom installers are encouraged to provide a different key, perhaps one comprised of vendor name and GCC version number, to avoid conflict with existing installations. This feature is enabled ! by default, and can be disabled by --disable-win32-registry option. This option has no effect on the other hosts. !

!
!
--nfp
!

Specify that the machine does not have a floating point unit. This ! option only applies to ‘m68k-sun-sunosn’. On any other ! system, --nfp has no effect. !

!
!
--enable-werror
!
--disable-werror
!
--enable-werror=yes
!
--enable-werror=no
!

When you specify this option, it controls whether certain files in the ! compiler are built with -Werror in bootstrap stage2 and later. ! If you don’t specify it, -Werror is turned on for the main development trunk. However it defaults to off for release branches and ! final releases. The specific files which get -Werror are controlled by the Makefiles. !

!
!
--enable-checking
!
--enable-checking=list
!

When you specify this option, the compiler is built to perform internal consistency checks of the requested complexity. This does not change the generated code, but adds error checking within the compiler. This will slow down the compiler and may only work properly if you are building ! the compiler with GCC. This is ‘yes’ by default when building ! from SVN or snapshots, but ‘release’ for releases. The default ! for building the stage1 compiler is ‘yes’. More control over the checks may be had by specifying list. The categories of ! checks available are ‘yes’ (most common checks ! ‘assert,misc,tree,gc,rtlflag,runtime’), ‘no’ (no checks at ! all), ‘all’ (all but ‘valgrind’), ‘release’ (cheapest ! checks ‘assert,runtime’) or ‘none’ (same as ‘no’). ! Individual checks can be enabled with these flags ‘assert’, ! ‘df’, ‘fold’, ‘gc’, ‘gcac’ ‘misc’, ‘rtl’, ! ‘rtlflag’, ‘runtime’, ‘tree’, and ‘valgrind’. !

!

The ‘valgrind’ check requires the external valgrind simulator, available from http://valgrind.org/. The ! ‘df’, ‘rtl’, ‘gcac’ and ‘valgrind’ checks are very expensive. ! To disable all checking, ‘--disable-checking’ or ! ‘--enable-checking=none’ must be explicitly requested. Disabling assertions will make the compiler and runtime slightly faster but increase the risk of undetected internal errors causing wrong code to be generated. !

!
!
--disable-stage1-checking
!
--enable-stage1-checking
!
--enable-stage1-checking=list
!

If no --enable-checking option is specified the stage1 ! compiler will be built with ‘yes’ checking enabled, otherwise the stage1 checking flags are the same as specified by ! --enable-checking. To build the stage1 compiler with ! different checking options use --enable-stage1-checking. ! The list of checking options is the same as for --enable-checking. If your system is too slow or too small to bootstrap a released compiler ! with checking for stage1 enabled, you can use ‘--disable-stage1-checking’ to disable checking for the stage1 compiler. !

!
!
--enable-coverage
!
--enable-coverage=level
!

With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The level argument controls whether the compiler is built optimized or ! not, values are ‘opt’ and ‘noopt’. For coverage analysis you want to disable optimization, for performance analysis you want to enable optimization. When coverage is enabled, the default level is without optimization. !

!
!
--enable-gather-detailed-mem-stats
!

When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! -fmem-report. !

!
!
--enable-nls
!
--disable-nls
!

The --enable-nls option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not doing a ! canadian cross build. The --disable-nls option disables NLS. !

!
!
--with-included-gettext
!

If NLS is enabled, the --with-included-gettext option causes the build ! procedure to prefer its copy of GNU gettext. !

!
!
--with-catgets
!

If NLS is enabled, and if the host lacks gettext but has the inferior catgets interface, the GCC build procedure normally ! ignores catgets and instead uses GCC’s copy of the GNU ! gettext library. The --with-catgets option causes the ! build procedure to use the host’s catgets in this situation. !

!
!
--with-libiconv-prefix=dir
!

Search for libiconv header files in dir/include and ! libiconv library files in dir/lib. !

!
!
--enable-obsolete
!

Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. !

!

All support for systems which have been obsoleted in one release of GCC is removed entirely in the next major release, unless someone steps forward to maintain the port. !

!
!
--enable-decimal-float
!
--enable-decimal-float=yes
!
--enable-decimal-float=no
!
--enable-decimal-float=bid
!
--enable-decimal-float=dpd
!
--disable-decimal-float
!

Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal floating point format is used (either ! ‘bid’ or ‘dpd’). The ‘bid’ (binary integer decimal) ! format is default on i386 and x86_64 systems, and the ‘dpd’ (densely packed decimal) format is default on PowerPC systems. !

!
!
--enable-fixed-point
!
--disable-fixed-point
!

Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. !

!
!
--with-long-double-128
!

Specify if long double type should be 128-bit by default on selected GNU/Linux architectures. If using --without-long-double-128, ! long double will be by default 64-bit, the same as double type. When neither of these configure options are used, the default will be 128-bit long double when built against GNU C Library 2.4 and later, 64-bit long double otherwise. !

!
!
--with-gmp=pathname
!
--with-gmp-include=pathname
!
--with-gmp-lib=pathname
!
--with-mpfr=pathname
!
--with-mpfr-include=pathname
!
--with-mpfr-lib=pathname
!
--with-mpc=pathname
!
--with-mpc-include=pathname
!
--with-mpc-lib=pathname
!

If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! (‘--with-gmp=gmpinstalldir’, ! ‘--with-mpfr=mpfrinstalldir’, ! ‘--with-mpc=mpcinstalldir’). The ! --with-gmp=gmpinstalldir option is shorthand for ! --with-gmp-lib=gmpinstalldir/lib and ! --with-gmp-include=gmpinstalldir/include. Likewise the ! --with-mpfr=mpfrinstalldir option is shorthand for ! --with-mpfr-lib=mpfrinstalldir/lib and ! --with-mpfr-include=mpfrinstalldir/include, also the ! --with-mpc=mpcinstalldir option is shorthand for ! --with-mpc-lib=mpcinstalldir/lib and ! --with-mpc-include=mpcinstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable (LD_LIBRARY_PATH on GNU/Linux and Solaris systems). !

!

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. !

!
!
--with-isl=pathname
!
--with-isl-include=pathname
!
--with-isl-lib=pathname
!
--with-cloog=pathname
!
--with-cloog-include=pathname
!
--with-cloog-lib=pathname
!

If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! (‘--with-isl=islinstalldir’, ! ‘--with-cloog=clooginstalldir’). The ! --with-isl=islinstalldir option is shorthand for ! --with-isl-lib=islinstalldir/lib and ! --with-isl-include=islinstalldir/include. Likewise the ! --with-cloog=clooginstalldir option is shorthand for ! --with-cloog-lib=clooginstalldir/lib and ! --with-cloog-include=clooginstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. !

!

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. !

!
!
--with-host-libstdcxx=linker-args
!

If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ library used internally by PPL. Typical values of linker-args might be ! ‘-lstdc++’ or ‘-Wl,-Bstatic,-lstdc++,-Bdynamic -lm’. If you are linking with a shared copy of PPL, you probably do not need this option; shared library dependencies will cause the linker to search for the standard C++ library automatically. !

!
!
--with-stage1-ldflags=flags
!

This option may be used to set linker flags to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. By default no special flags are used. !

!
!
--with-stage1-libs=libs
!

This option may be used to set libraries to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. The default is the argument to ! --with-host-libstdcxx, if specified. !

!
!
--with-boot-ldflags=flags
!

This option may be used to set linker flags to be used when linking stage 2 and later when bootstrapping GCC. If neither –with-boot-libs nor –with-host-libstdcxx is set to a value, then the default is ! ‘-static-libstdc++ -static-libgcc’. !

!
!
--with-boot-libs=libs
!

This option may be used to set libraries to be used when linking stage 2 and later when bootstrapping GCC. The default is the argument to ! --with-host-libstdcxx, if specified. !

!
!
--with-debug-prefix-map=map
!

Convert source directory names using -fdebug-prefix-map when building runtime libraries. ‘map’ is a space-separated ! list of maps of the form ‘old=new’. !

!
!
--enable-linker-build-id
!

Tells GCC to pass --build-id option to the linker for all final ! links (links performed without the -r or --relocatable option), if the linker supports it. If you specify ! --enable-linker-build-id, but your linker does not ! support --build-id option, a warning is issued and the ! --enable-linker-build-id option is ignored. The default is off. !

!
!
--with-linker-hash-style=choice
!

Tells GCC to pass --hash-style=choice option to the linker for all final links. choice can be one of ! ‘sysv’, ‘gnu’, and ‘both’ where ‘sysv’ is the default. !

!
!
--enable-gnu-unique-object
!
--disable-gnu-unique-object
!

Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by default for a toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise disabled. !

!
!
--enable-lto
!
--disable-lto
!

Enable support for link-time optimization (LTO). This is enabled by ! default, and may be disabled using --disable-lto. !

!
!
--with-plugin-ld=pathname
!

Enable an alternate linker to be used at link-time optimization (LTO) ! link time when -fuse-linker-plugin is enabled. This linker should have plugin support such as gold starting with ! version 2.20 or GNU ld starting with version 2.21. ! See -fuse-linker-plugin for details. !

!
!
--enable-canonical-system-headers
!
--disable-canonical-system-headers
!

Enable system header path canonicalization for libcpp. This can produce shorter header file paths in diagnostics and dependency output files, but these changed header paths may conflict with some compilation environments. Enabled by default, and may be disabled using ! --disable-canonical-system-headers. !

!
!
--with-glibc-version=major.minor
!

Tell GCC that when the GNU C Library (glibc) is used on the target it will be version major.minor or later. Normally this can ! be detected from the C library’s header files, but this option may be needed when bootstrapping a cross toolchain without the header files available for building the initial bootstrap compiler. !

!

If GCC is configured with some multilibs that use glibc and some that ! do not, this option applies only to the multilibs that use glibc. However, such configurations may not work well as not all the relevant ! configuration in GCC is on a per-multilib basis. !

! !

Cross-Compiler-Specific Options

The following options only apply to building cross compilers. !

!
!
--with-sysroot
!
--with-sysroot=dir
!

Tells GCC to consider dir as the root of a tree that contains ! (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! --sysroot=dir was added to the default options of the built compiler. The specified directory is not copied into the ! install tree, unlike the options --with-headers and ! --with-libs that this option obsoletes. The default value, ! in case --with-sysroot is not given an argument, is ! ${gcc_tooldir}/sys-root. If the specified directory is a ! subdirectory of ${exec_prefix}, then it will be found relative to the GCC binaries if the installation tree is moved. !

!

This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler newly installed with make install; it does not affect the compiler which is used to build GCC itself. !

!

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. !

!
!
--with-build-sysroot
!
--with-build-sysroot=dir
!

Tells GCC to consider dir as the system root (see ! --with-sysroot) while building target libraries, instead of ! the directory specified with --with-sysroot. This option is ! only useful when you are already using --with-sysroot. You ! can use --with-build-sysroot when you are configuring with ! --prefix set to a directory that is different from the one in which you are installing GCC and your target libraries. !

!

This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. !

!

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. !

!
!
--with-headers
!
--with-headers=dir
!

Deprecated in favor of --with-sysroot. ! Specifies that target headers are available when building a cross compiler. The dir argument specifies a directory which has the target include ! files. These include files will be copied into the gcc install ! directory. This option with the dir argument is required when ! building a cross compiler, if prefix/target/sys-include ! doesn’t pre-exist. If prefix/target/sys-include does ! pre-exist, the dir argument may be omitted. fixincludes will be run on these files to make them compatible with GCC. !

!
!
--without-headers
!

Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. !

!
!
--with-libs
!
--with-libs="dir1 dir2dirN"
!

Deprecated in favor of --with-sysroot. Specifies a list of directories which contain the target runtime ! libraries. These libraries will be copied into the gcc install directory. If the directory list is omitted, this option has no effect. !

!
!
--with-newlib
!

Specifies that ‘newlib’ is being used as the target C library. This causes __eprintf to be ! omitted from libgcc.a on the assumption that it will be provided by ! ‘newlib’. !

!
!
--with-avrlibc
!

Specifies that ‘AVR-Libc’ is being used as the target C library. This causes float support ! functions like __addsf3 to be omitted from libgcc.a on ! the assumption that it will be provided by libm.a. For more ! technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. !

!
!
--with-nds32-lib=library
!

Specifies that library setting is used for building libgcc.a. ! Currently, the valid library is ‘newlib’ or ‘mculib’. This option is only supported for the NDS32 target. !

!
!
--with-build-time-tools=dir
!

Specifies where to find the set of target tools (assembler, linker, etc.) that will be used while building GCC itself. This option can be useful if the directory layouts are different between the system you are building GCC on, and the system where you will deploy it. !

!

For example, on an ‘ia64-hp-hpux’ system, you may have the GNU ! assembler and linker in /usr/bin, and the native tools in a different path, and build a toolchain that expects to find the ! native tools in /usr/bin. !

!

When you use this option, you should ensure that dir includes ! ar, as, ld, nm, ! ranlib and strip if necessary, and possibly ! objdump. Otherwise, GCC may use an inconsistent set of ! tools. !

! !

Java-Specific Options

The following option applies to the build of the Java front end. !

!
!
--disable-libgcj
!

Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend ! to use GCJ with some other run-time, or you’re going to install it separately, or it just happens not to build on your particular machine. In general, if the Java front end is enabled, the GCJ ! libraries will be enabled too, unless they’re known to not work on ! the target platform. If GCJ is enabled but ‘libgcj’ isn’t built, you may need to port it; in this case, before modifying the top-level ! configure.in so that ‘libgcj’ is enabled by default on this platform, ! you may use --enable-libgcj to override the default. !

!
!
!

The following options apply to building ‘libgcj’. !

! !

General Options

!
!
--enable-java-maintainer-mode
!

By default the ‘libjava’ build will not attempt to compile the ! .java source files to .class. Instead, it will use the ! .class files from the source tree. If you use this option you ! must have executables named ecj1 and gjavah in your path for use by the build. You must use this option if you intend to ! modify any .java files in libjava. !

!
!
--with-java-home=dirname
!

This ‘libjava’ option overrides the default value of the ! ‘java.home’ system property. It is also used to set ! ‘sun.boot.class.path’ to dirname/lib/rt.jar. By ! default ‘java.home’ is set to prefix and ! ‘sun.boot.class.path’ to ! datadir/java/libgcj-version.jar. !

!
!
--with-ecj-jar=filename
!

This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by gcj to parse ! .java source files. If this option is given, the ! ‘libjava’ build will create and install an ecj1 executable which uses this jar file at runtime. !

!

If this option is not given, but an ecj.jar file is found in ! the topmost source tree at configure time, then the ‘libgcj’ ! build will create and install ecj1, and will also install the ! discovered ecj.jar into a suitable place in the install tree. !

!

If ecj1 is not installed, then the user will have to supply one ! on his path in order for gcj to properly parse .java source files. A suitable jar is available from ftp://sourceware.org/pub/java/. !

!
!
--disable-getenv-properties
!

Don’t set system properties from GCJ_PROPERTIES. !

!
!
--enable-hash-synchronization
!

Use a global hash table for monitor locks. Ordinarily, ! ‘libgcj’’s ‘configure’ script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. !

!
!
--enable-interpreter
!

Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option is really only useful if you want to disable the interpreter ! (using --disable-interpreter). !

!
!
--disable-java-net
!

Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. !

!
!
--disable-jvmpi
!

Disable JVMPI support. !

!
!
--disable-libgcj-bc
!

Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with -findirect-dispatch ! and -fno-indirect-classes, allowing them to be overridden at run-time. !

!

If --disable-libgcj-bc is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. !

!
!
--enable-reduced-reflection
!

Build most of libgcj with -freduced-reflection. This reduces the size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). !

!
!
--with-ecos
!

Enable runtime eCos target support. !

!
!
--without-libffi
!

Don’t use ‘libffi’. This will disable the interpreter and JNI ! support as well, as these require ‘libffi’ to work. !

!
!
--enable-libgcj-debug
!

Enable runtime debugging code. !

!
!
--enable-libgcj-multifile
!

If specified, causes all .java source files to be ! compiled into .class files in one invocation of ! ‘gcj’. This can speed up build time, but is more resource-intensive. If this option is unspecified or ! disabled, ‘gcj’ is invoked once for each .java ! file to compile into a .class file. !

!
!
--with-libiconv-prefix=DIR
!

Search for libiconv in DIR/include and DIR/lib. !

!
!
--enable-sjlj-exceptions
!

Force use of the setjmp/longjmp-based scheme for exceptions. ! ‘configure’ ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. !

!
!
--with-system-zlib
!

Use installed ‘zlib’ rather than that included with GCC. !

!
!
--with-win32-nlsapi=ansi, unicows or unicode
!

Indicates how MinGW ‘libgcj’ translates between UNICODE characters and the Win32 API. !

!
!
--enable-java-home
!

If enabled, this creates a JPackage compatible SDK environment during install. Note that if –enable-java-home is used, –with-arch-directory=ARCH must also be specified. !

!
!
--with-arch-directory=ARCH
!

Specifies the name to use for the jre/lib/ARCH directory in the SDK environment created when –enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. !

!
!
--with-os-directory=DIR
!

Specifies the OS directory for the SDK include directory. This is set to auto ! detect, and is typically ’linux’. !

!
!
--with-origin-name=NAME
!

Specifies the JPackage origin name. This defaults to the ’gcj’ in java-1.5.0-gcj. !

!
!
--with-arch-suffix=SUFFIX
!

Specifies the suffix for the sdk directory. Defaults to the empty string. ! Examples include ’.x86_64’ in ’java-1.5.0-gcj-1.5.0.0.x86_64’. !

!
!
--with-jvm-root-dir=DIR
!

Specifies where to install the SDK. Default is $(prefix)/lib/jvm. !

!
!
--with-jvm-jar-dir=DIR
!

Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. !

!
!
--with-python-dir=DIR
!

Specifies where to install the Python modules used for aot-compile. DIR should not include the prefix used in installation. For example, if the Python modules are to be installed in /usr/lib/python2.5/site-packages, then –with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. !

!
!
--enable-aot-compile-rpm
!

Adds aot-compile-rpm to the list of installed scripts. !

!
!
--enable-browser-plugin
!

Build the gcjwebplugin web browser plugin. !

!
!
--enable-static-libjava
!

Build static libraries in libjava. The default is to only build shared libraries. !

!
!
ansi
!

Use the single-byte char and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. !

!
!
unicows
!

Use the WCHAR and Win32 W functions natively. Adds ! -lunicows to libgcj.spec to link with ‘libunicows’. ! unicows.dll needs to be deployed on Microsoft Windows 9X machines ! running built executables. libunicows.a, an open-source ! import library around Microsoft’s unicows.dll, is obtained from http://libunicows.sourceforge.net/, which also gives details ! on getting unicows.dll from Microsoft. !

!
!
unicode
!

Use the WCHAR and Win32 W functions natively. Does not ! add -lunicows to libgcj.spec. The built executables will ! only run on Microsoft Windows NT and above. !

!
!
! !

AWT-Specific Options

!
!
--with-x
!

Use the X Window System. !

!
!
--enable-java-awt=PEER(S)
!

Specifies the AWT peer library or libraries to build alongside ! ‘libgcj’. If this option is unspecified or disabled, AWT ! will be non-functional. Current valid values are gtk and ! xlib. Multiple libraries should be separated by a ! comma (i.e. --enable-java-awt=gtk,xlib). !

!
!
--enable-gtk-cairo
!

Build the cairo Graphics2D implementation on GTK. !

!
!
--enable-java-gc=TYPE
!

Choose garbage collector. Defaults to boehm if unspecified. !

!
!
--disable-gtktest
!

Do not try to compile and run a test GTK+ program. !

!
!
--disable-glibtest
!

Do not try to compile and run a test GLIB program. !

!
!
--with-libart-prefix=PFX
!

Prefix where libart is installed (optional). !

!
!
--with-libart-exec-prefix=PFX
!

Exec prefix where libart is installed (optional). !

!
!
--disable-libarttest
!

Do not try to compile and run a test libart program. !

!
!
! !

Overriding configure test results

!

Sometimes, it might be necessary to override the result of some ! configure test, for example in order to ease porting to a new ! system or work around a bug in a test. The toplevel configure ! script provides three variables for this: !

!
!
build_configargs
!
!

The contents of this variable is passed to all build configure ! scripts. !

!
!
host_configargs
!
!

The contents of this variable is passed to all host configure ! scripts. !

!
!
target_configargs
!
!

The contents of this variable is passed to all target configure ! scripts. !

!
!
!

In order to avoid shell and make quoting issues for complex ! overrides, you can pass a setting for CONFIG_SITE and set ! variables in the site file. !

!
!

Return to the GCC Installation page !

- - --- 1,1356 ---- ! ! ! Installing GCC: Configuration ! ! ! ! ! ! ! ! ! !

Installing GCC: Configuration

! ! Like most GNU software, GCC must be configured before it can be built. This document describes the recommended configuration procedure for both native and cross targets. ! !

We use srcdir to refer to the toplevel source directory for GCC; we use objdir to refer to the toplevel build/object directory. ! !

If you obtained the sources via SVN, srcdir must refer to the top ! gcc directory, the one where the MAINTAINERS file can be ! found, and not its gcc subdirectory, otherwise the build will fail. ! !

If either srcdir or objdir is located on an automounted NFS ! file system, the shell's built-in pwd command will return temporary pathnames. Using these can lead to various sorts of build ! problems. To avoid this issue, set the PWDCMD environment ! variable to an automounter-aware pwd command, e.g., ! pawd or ‘amq -w’, during the configuration and build phases. ! !

First, we highly recommend that GCC be built into a separate directory from the sources which does not reside within the source tree. This is how we generally build GCC; building ! where srcdir == objdir should still work, but doesn't get extensive testing; building where objdir is a subdirectory of srcdir is unsupported. ! !

If you have previously built GCC in the same directory for a ! different target machine, do ‘make distclean’ to delete all files ! that might be invalid. One of the files this deletes is Makefile; ! if ‘make distclean’ complains that Makefile does not exist ! or issues a message like “don't know how to make distclean” it probably means that the directory is already suitably clean. However, with the recommended method of building in a separate objdir, you should simply use a different objdir for each target. ! !

Second, when configuring a native system, either cc or ! gcc must be in your path or you must set CC in your environment before running configure. Otherwise the configuration scripts may fail. !

To configure GCC: !

     % mkdir objdir
!      % cd objdir
!      % srcdir/configure [options] [target]
! 
!

Distributor options

If you will be distributing binary versions of GCC, with modifications to the source code, you should use the options described in this section to make clear that your version contains modifications. ! !

!
--with-pkgversion=version
Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of gcc --version. This suffix does ! not replace the default version string, only the ‘GCC’ part. ! !

The default value is ‘GCC’. ! !

--with-bugurl=url
Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your modifications. !

The default value refers to the FSF's GCC bug tracker. ! !

! !

Target specification

! !
    !
  • GCC has code to correctly determine the correct value for target for nearly all native systems. Therefore, we highly recommend you do not provide a configure target when configuring a native compiler. !
  • target must be specified as --target=target when configuring a cross compiler; examples of valid targets would be m68k-elf, sh-elf, etc. !
  • Specifying just target instead of --target=target ! implies that the host defaults to target. !
!

Options specification

Use options to override several configure time options for ! GCC. A list of supported options follows; ‘configure ! --help’ may list other options, but those not listed below may not work and should not normally be used. ! !

Note that each --enable option has a corresponding ! --disable option and that each --with option has a ! corresponding --without option. ! !

!
--prefix=dirname
Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! /usr/local. ! !

We highly recommend against dirname being the same or a subdirectory of objdir or vice versa. If specifying a directory ! beneath a user's home directory tree, some shells will not expand ! dirname correctly if it contains the ‘~’ metacharacter; use ! $HOME instead. ! !

The following standard autoconf options are supported. Normally you should not need to use these options. !

!
--exec-prefix=dirname
Specify the toplevel installation directory for architecture-dependent files. The default is prefix. ! !
--bindir=dirname
Specify the installation directory for the executables called by users ! (such as gcc and g++). The default is ! exec-prefix/bin. ! !
--libdir=dirname
Specify the installation directory for object code libraries and ! internal data files of GCC. The default is exec-prefix/lib. ! !
--libexecdir=dirname
Specify the installation directory for internal executables of GCC. ! The default is exec-prefix/libexec. ! !
--with-slibdir=dirname
Specify the installation directory for the shared libgcc library. The default is libdir. ! !
--datarootdir=dirname
Specify the root of the directory tree for read-only architecture-independent ! data files referenced by GCC. The default is prefix/share. ! !
--infodir=dirname
Specify the installation directory for documentation in info format. ! The default is datarootdir/info. ! !
--datadir=dirname
Specify the installation directory for some architecture-independent data files referenced by GCC. The default is datarootdir. ! !
--docdir=dirname
Specify the installation directory for documentation files (other ! than Info) for GCC. The default is datarootdir/doc. ! !
--htmldir=dirname
Specify the installation directory for HTML documentation files. The default is docdir. ! !
--pdfdir=dirname
Specify the installation directory for PDF documentation files. The default is docdir. ! !
--mandir=dirname
Specify the installation directory for manual pages. The default is ! datarootdir/man. (Note that the manual pages are only extracts from the full GCC manuals, which are provided in Texinfo format. The manpages are derived by an automatic conversion process from parts of the full manual.) ! !
--with-gxx-include-dir=dirname
Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. ! !
--with-specs=specs
Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by ! default without modifying the compiler's source code, for instance ! --with-specs=%{!fcommon:%{!fno-common:-fno-common}}. See “Spec Files” in the main manual !
! !
--program-prefix=prefix
GCC supports some transformations of the names of its programs when installing them. This option prepends prefix to the names of programs to install in bindir (see above). For example, specifying ! --program-prefix=foo- would result in ‘gcc’ ! being installed as /usr/local/bin/foo-gcc. ! !
--program-suffix=suffix
Appends suffix to the names of programs to install in bindir ! (see above). For example, specifying --program-suffix=-3.1 ! would result in ‘gcc’ being installed as ! /usr/local/bin/gcc-3.1. ! !
--program-transform-name=pattern
Applies the ‘sed’ script pattern to be applied to the names of programs to install in bindir (see above). pattern has to ! consist of one or more basic ‘sed’ editing commands, separated by ! semicolons. For example, if you want the ‘gcc’ program name to be ! transformed to the installed program /usr/local/bin/myowngcc and ! the ‘g++’ program name to be transformed to ! /usr/local/bin/gspecial++ without changing other program names, you could use the pattern ! --program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/' to achieve this effect. ! !

All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, prefix (and suffix) are prepended (appended) before further transformations can happen with a special transformation script pattern. ! !

As currently implemented, this option only takes effect for native ! builds; cross compiler binaries' names are not transformed even when a transformation is explicitly asked for by one of these options. ! !

For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! ‘i686-pc-linux-gnu-gcc’. All of the above transformations happen before the target alias is prepended to the name—so, specifying ! --program-prefix=foo- and program-suffix=-3.1, the resulting binary would be installed as ! /usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1. ! !

As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. ! !

--with-local-prefix=dirname
Specify the installation directory for local include files. The default is ! /usr/local. Specify this option if you want the compiler to ! search directory dirname/include for locally installed ! header files instead of /usr/local/include. ! !

You should specify --with-local-prefix only if your ! site has a different convention (not /usr/local) for where to put site-specific files. ! !

The default value for --with-local-prefix is /usr/local ! regardless of the value of --prefix. Specifying ! --prefix has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. ! !

The purpose of --prefix is to specify where to install ! GCC. The local header files in /usr/local/include—if you put any in that directory—are not part of GCC. They are part of other programs—perhaps many others. (GCC installs its own header files in ! another directory which is based on the --prefix value.) ! !

Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC's “system include” directories. Although these two directories are not fixed, they need to be searched in the proper order for the correct processing of the include_next directive. The local-prefix include directory is searched before the GCC-prefix include directory. Another characteristic of system include directories is that pedantic warnings are turned off for headers in these directories. ! !

Some autoconf macros add -I directory options to the compiler command line, to ensure that directories containing installed ! packages' headers are searched. When directory is one of GCC's system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. This may result in a search order different from what was specified but the directory will still be searched. ! !

GCC automatically searches for ordinary libraries using ! GCC_EXEC_PREFIX. Thus, when the same installation prefix is used for both GCC and packages, GCC will automatically search for both headers and libraries. This provides a configuration that is easy to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in /usr. ! !

Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! --program-prefix, --program-suffix and ! --program-transform-name options to install multiple versions into a single directory, but it may be simpler to use different prefixes ! and the --with-local-prefix option to specify the location of the site-specific files for each version. It will then be necessary for users to specify explicitly the location of local site libraries ! (e.g., with LIBRARY_PATH). ! !

The same value can be used for both --with-local-prefix and ! --prefix provided it is not /usr. This can be used ! to avoid the default search of /usr/local/include. ! !

Do not specify /usr as the --with-local-prefix! ! The directory you use for --with-local-prefix must not ! contain any of the system's standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the header ! file corrections made by the fixincludes script. ! !

Indications are that people who use this option use it based on mistaken ideas of what it is for. People use it as if it specified where to install part of GCC. Perhaps they make this assumption because installing GCC creates the directory. ! !

--with-native-system-header-dir=dirname
Specifies that dirname is the directory that contains native system ! header files, rather than /usr/include. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! --with-sysroot option and will cause GCC to search dirname inside the system root specified by that option. ! !
--enable-shared[=package[,...]]
Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that support shared libraries. ! !

If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only static libraries will be built. Package names currently recognized in the GCC tree are ! ‘libgcc’ (also known as ‘gcc’), ‘libstdc++’ (not ! ‘libstdc++-v3’), ‘libffi’, ‘zlib’, ‘boehm-gc’, ! ‘ada’, ‘libada’, ‘libjava’, ‘libgo’, and ‘libobjc’. ! Note ‘libiberty’ does not support shared libraries at all. ! !

Use --disable-shared to build only static libraries. Note that ! --disable-shared does not accept a list of package names as ! argument, only --enable-shared does. ! !

Contrast with --enable-host-shared, which affects host code. ! !

--enable-host-shared
Specify that the host code should be built into position-independent machine code (with -fPIC), allowing it to be used within shared libraries, but yielding a slightly slower compiler. ! !

Currently this option is only of use to people developing GCC itself. ! !

Contrast with --enable-shared, which affects target libraries. ! !

--with-gnu-as
Specify that the compiler should assume that the assembler it finds is the GNU assembler. However, this does not modify the rules to find an assembler and will result in confusion if the assembler found is not actually the GNU assembler. (Confusion may also result if the compiler finds the GNU assembler but has not been ! configured with --with-gnu-as.) If you have more than one assembler installed on your system, you may want to use this option in ! connection with --with-as=pathname or ! --with-build-time-tools=pathname. ! !

The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! --with-gnu-as has no effect. !

    !
  • hppa1.0-any-any’ !
  • hppa1.1-any-any’ !
  • sparc-sun-solaris2.any’ !
  • sparc64-any-solaris2.any’ !
! !
--with-as=pathname
Specify that the compiler should use the assembler pointed to by pathname, rather than the one found by the standard rules to find an assembler, which are: !
    !
  • Unless GCC is being built with a cross compiler, check the ! libexec/gcc/target/version directory. ! libexec defaults to exec-prefix/libexec; exec-prefix defaults to prefix, which ! defaults to /usr/local unless overridden by the ! --prefix=pathname switch described above. target ! is the target system triple, such as ‘sparc-sun-solaris2.7’, and version denotes the GCC version, such as 3.0. !
  • If the target system is the same that you are building on, check ! operating system specific directories (e.g. /usr/ccs/bin on Sun Solaris 2). !
  • Check in the PATH for a tool whose name is prefixed by the target system triple. !
  • Check in the PATH for a tool whose name is not prefixed by the target system triple, if the host and target system triple are the same (in other words, we use a host tool if it can be used for ! the target as well). !
!

You may want to use --with-as if no assembler is installed in the directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. ! !

--with-gnu-ld
Same as --with-gnu-as but for the linker. ! !
--with-ld=pathname
Same as --with-as but for the linker. ! !
--with-stabs
Specify that stabs debugging information should be used instead of whatever format the host normally uses. Normally GCC uses the same debug format as the host system. ! !

On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ECOFF debug format cannot fully handle languages other than C. BSD stabs format can handle other languages, but it only works with the GNU debugger GDB. ! !

Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify --with-stabs when you configure GCC. ! !

No matter which default you choose when you configure GCC, the user ! can use the -gcoff and -gstabs+ options to specify explicitly the debug format for a particular compilation. ! !

--with-stabs is meaningful on the ISC system on the 386, also, if ! --with-gas is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. ! !

--with-stabs is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. ! !

--with-tls=dialect
Specify the default TLS dialect, for systems were there is a choice. For ARM targets, possible values for dialect are gnu or gnu2, which select between the original GNU dialect and the GNU TLS descriptor-based dialect. ! !
--enable-multiarch
Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, ! and for cross builds configured with --with-sysroot, and without ! --with-native-system-header-dir. More documentation about multiarch can be found at http://wiki.debian.org/Multiarch. ! !
--enable-vtable-verify
Specify whether to enable or disable the vtable verification feature. Enabling this feature causes libstdc++ to be built with its virtual calls in verifiable mode. This means that, when linked with libvtv, every virtual call in libstdc++ will verify the vtable pointer through which the call will be made before actually making the call. If not linked with libvtv, ! the verifier will call stub functions (in libstdc++ itself) and do nothing. If vtable verification is disabled, then libstdc++ is not built with its virtual calls in verifiable mode at all. However the libvtv library will ! still be built (see --disable-libvtv to turn off building libvtv). ! --disable-vtable-verify is the default. ! !
--disable-multilib
Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. ! !

Some targets provide finer-grained control over which multilibs are built ! (e.g., --disable-softfloat): !

!
arm-*-*
fpu, 26bit, underscore, interwork, biendian, nofmult. ! !
m68*-*-*
softfloat, m68881, m68000, m68020. ! !
mips*-*-*
single-float, biendian, softfloat. ! !
powerpc*-*-*, rs6000*-*-*
aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. !
! !
--with-multilib-list=list
--without-multilib-list
Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. ! !
!
sh*-*-*
list is a comma separated list of CPU names. These must be of the form sh* or m* (in which case they match the compiler option for that processor). The list should not contain any endian options - ! these are handled by --with-endian. ! !

If list is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. ! !

As a special case, if an entry in the list starts with a ! ! (exclamation point), then it is added to the list of excluded multilibs. ! Entries of this sort should be compatible with ‘MULTILIB_EXCLUDES’ (once the leading ! has been stripped). ! !

If --with-multilib-list is not given, then a default set of ! multilibs is selected based on the value of --target. This is usually the complete set of libraries, but some targets imply a more specialized subset. !

Example 1: to configure a compiler for SH4A only, but supporting both ! endians, with little endian being the default: !

               --with-cpu=sh4a --with-endian=little,big --with-multilib-list=
! 
!

Example 2: to configure a compiler for both SH4A and SH4AL-DSP, but with only little endian SH4AL: !

               --with-cpu=sh4a --with-endian=little,big \
!                --with-multilib-list=sh4al,!mb/m4al
! 
!
x86-64-*-linux*
list is a comma separated list of m32, m64 and mx32 to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If list is empty, then there will be no multilibs and only the default run-time library will be enabled. ! !

If --with-multilib-list is not given, then only 32-bit and ! 64-bit run-time libraries will be enabled.

!
--with-endian=endians
Specify what endians to use. Currently only implemented for sh*-*-*. ! !

endians may be one of the following: !

!
big
Use big endian exclusively. !
little
Use little endian exclusively. !
big,little
Use big endian by default. Provide a multilib for little endian. !
little,big
Use little endian by default. Provide a multilib for big endian.
!
--enable-threads
Specify that the target supports threads. This affects the Objective-C compiler and runtime ! library, and exception handling for other languages like C++ and Java. On some systems, this is the default. ! !

In general, the best (and, in many cases, the only known) threading model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally ! available for the system. In this case, --enable-threads is an ! alias for --enable-threads=single. ! !

--disable-threads
Specify that threading support should be disabled for the system. ! This is an alias for --enable-threads=single. ! !
--enable-threads=lib
Specify that lib is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for lib are: ! !
!
aix
AIX thread support. !
dce
DCE thread support. !
lynx
LynxOS thread support. !
mipssde
MIPS SDE thread support. !
no
This is an alias for ‘single’. !
posix
Generic POSIX/Unix98 thread support. !
rtems
RTEMS thread support. !
single
Disable thread support, should work for all platforms. !
tpf
TPF thread support. !
vxworks
VxWorks thread support. !
win32
Microsoft Win32 API thread support.
!
--enable-tls
Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled or disabled with ! --enable-tls or --disable-tls. This can happen if the assembler supports TLS but the C library does not, or if the assumptions made by the configure test are incorrect. ! !
--disable-tls
Specify that the target does not support TLS. ! This is an alias for --enable-tls=no. ! !
--with-cpu=cpu
--with-cpu-32=cpu
--with-cpu-64=cpu
Specify which cpu variant the compiler should generate code for by default. ! cpu will be used as the default value of the -mcpu= switch. This option is only supported on some targets, including ARC, ARM, i386, M68k, ! PowerPC, and SPARC. It is mandatory for ARC. The --with-cpu-32 and ! --with-cpu-64 options specify separate default CPUs for 32-bit and 64-bit modes; these options are only supported for i386, x86-64 and PowerPC. ! !
--with-schedule=cpu
--with-arch=cpu
--with-arch-32=cpu
--with-arch-64=cpu
--with-tune=cpu
--with-tune-32=cpu
--with-tune-64=cpu
--with-abi=abi
--with-fpu=type
--with-float=type
These configure options provide default values for the -mschedule=, ! -march=, -mtune=, -mabi=, and -mfpu= ! options and for -mhard-float or -msoft-float. As with ! --with-cpu, which switches will be accepted and acceptable values of the arguments depend on the target. ! !
--with-mode=mode
Specify if the compiler should default to -marm or -mthumb. This option is only supported on ARM targets. ! !
--with-stack-offset=num
This option sets the default for the -mstack-offset=num option, and will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. ! !
--with-fpmath=isa
This options sets -mfpmath=sse by default and specifies the default ! ISA for floating-point arithmetics. You can select either ‘sse’ which ! enables -msse2 or ‘avx’ which enables -mavx by default. This option is only supported on i386 and x86-64 targets. ! !
--with-nan=encoding
On MIPS targets, set the default encoding convention to use for the special not-a-number (NaN) IEEE 754 floating-point data. The possibilities for encoding are: !
!
legacy
Use the legacy encoding, as with the -mnan=legacy command-line ! option. !
2008
Use the 754-2008 encoding, as with the -mnan=2008 command-line ! option.
! To use this configuration option you must have an assembler version ! installed that supports the -mnan= command-line option too. In the absence of this configuration option the default convention is ! the legacy encoding, as when neither of the -mnan=2008 and ! -mnan=legacy command-line options has been used. ! !
--with-divide=type
Specify how the compiler should generate code for checking for ! division by zero. This option is only supported on the MIPS target. The possibilities for type are: !
!
traps
Division by zero checks use conditional traps (this is the default on ! systems that support conditional traps). !
breaks
Division by zero checks use the break instruction.
! ! !
--with-llsc
On MIPS targets, make -mllsc the default when no ! -mno-llsc option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. ! !
--without-llsc
On MIPS targets, make -mno-llsc the default when no ! -mllsc option is passed. ! !
--with-synci
On MIPS targets, make -msynci the default when no ! -mno-synci option is passed. ! !
--without-synci
On MIPS targets, make -mno-synci the default when no ! -msynci option is passed. This is the default. ! !
--with-mips-plt
On MIPS targets, make use of copy relocations and PLTs. These features are extensions to the traditional SVR4-based MIPS ABIs and require support from GNU binutils and the runtime C library. ! !
--enable-__cxa_atexit
Define if you want to use __cxa_atexit, rather than atexit, to ! register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, this will cause ! -fuse-cxa-atexit to be passed by default. ! !
--enable-gnu-indirect-function
Define if you want to enable the ifunc attribute. This option is currently only available on systems with GNU libc on certain targets. ! !
--enable-target-optspace
Specify that target ! libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. ! !
--with-cpp-install-dir=dirname
Specify that the user visible cpp program should be installed ! in prefix/dirname/cpp, in addition to bindir. ! !
--enable-comdat
Enable COMDAT group support. This is primarily used to override the automatically detected value. ! !
--enable-initfini-array
Force the use of sections .init_array and .fini_array (instead of .init and .fini) for constructors and ! destructors. Option --disable-initfini-array has the opposite effect. If neither option is specified, the configure script will try to guess whether the .init_array and .fini_array sections are supported and, if they are, use them. ! !
--enable-link-mutex
When building GCC, use a mutex to avoid linking the compilers for multiple languages at the same time, to avoid thrashing on build systems with limited free memory. The default is not to use such a mutex. ! !
--enable-maintainer-mode
The build rules that regenerate the Autoconf and Automake output files as ! well as the GCC master message catalog gcc.pot are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the ! catalog, configuring with --enable-maintainer-mode will enable this. Note that you need a recent version of the gettext tools to do so. ! !
--disable-bootstrap
For a native build, the default configuration is to perform ! a 3-stage bootstrap of the compiler when ‘make’ is invoked, testing that GCC can compile itself correctly. If you want to disable ! this process, you can configure with --disable-bootstrap. ! !
--enable-bootstrap
In special cases, you may want to perform a 3-stage build ! even if the target and host triplets are different. This is possible when the host can run code compiled for ! the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do this you have to configure explicitly ! with --enable-bootstrap. ! !
--enable-generated-files-in-srcdir
Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC from that development tree, or from one of our snapshots, those generated files are placed in your build directory, which allows for the source to be in a readonly directory. ! !

If you configure with --enable-generated-files-in-srcdir then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. ! !

--enable-version-specific-runtime-libs
Specify that runtime libraries should be installed in the compiler specific ! subdirectory (libdir/gcc) rather than the usual places. In ! addition, ‘libstdc++’'s include files will be installed into libdir unless you overruled it by using ! --with-gxx-include-dir=dirname. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by ‘libgfortran’, ! ‘libjava’, ‘libstdc++’, and ‘libobjc’. ! !
--enable-languages=lang1,lang2,...
Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for langN you can issue the following command in the ! gcc directory of your GCC source tree:
!
          grep language= */config-lang.in
! 
!

Currently, you can use any of the following: all, ada, c, c++, fortran, ! go, java, objc, obj-c++. ! Building the Ada compiler has special requirements, see below. If you do not pass this flag, or specify the option all, then all ! default languages available in the gcc sub-tree will be configured. Ada, Go and Objective-C++ are not default languages; the rest are. ! !

--enable-stage1-languages=lang1,lang2,...
Specify that a particular subset of compilers and their runtime libraries should be built with the system C compiler during stage 1 of the bootstrap process, rather than only in later stages with the bootstrapped C compiler. The list of valid values is the same as for ! --enable-languages, and the option all will select all ! of the languages enabled by --enable-languages. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to compiler bugs, or when one is debugging front ends other than the C front end. When this option is used, one can then build the target libraries for the ! specified languages with the stage-1 compiler by using make ! stage1-bubble all-target, or run the testsuite on the stage-1 compiler ! for the specified languages using make stage1-start check-gcc. ! !
--disable-libada
Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was required to explicitly ! do a ‘make -C gcc gnatlib_and_tools’. ! !
--disable-libsanitizer
Specify that the run-time libraries for the various sanitizers should not be built. ! !
--disable-libssp
Specify that the run-time libraries for stack smashing protection should not be built. ! !
--disable-libquadmath
Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building ! the Fortran front end, unless --disable-libquadmath-support is used. ! !
--disable-libquadmath-support
Specify that the Fortran front end and libgfortran do not add support for libquadmath on systems supporting it. ! !
--disable-libgomp
Specify that the run-time libraries used by GOMP should not be built. ! !
--disable-libvtv
Specify that the run-time libraries used by vtable verification should not be built. ! !
--with-dwarf2
Specify that the compiler should use DWARF 2 debugging information as the default. ! !
--enable-targets=all
--enable-targets=target_list
Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit ! code. Typically, the corresponding 32-bit target, e.g. powerpc-linux for powerpc64-linux, only generates 32-bit code. This option enables the 32-bit target to be a bi-arch compiler, which is useful when you want a bi-arch compiler that defaults to 32-bit, and ! you are building a bi-arch or multi-arch binutils in a combined tree. On mips-linux, this will build a tri-arch compiler (ABI o32/n32/64), ! defaulted to o32. Currently, this option only affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. ! !
--enable-secureplt
This option enables -msecure-plt by default for powerpc-linux. See “RS/6000 and PowerPC Options” in the main manual ! !
--enable-cld
This option enables -mcld by default for 32-bit x86 targets. See “i386 and x86-64 Options” in the main manual ! !
--enable-win32-registry
--enable-win32-registry=key
--disable-win32-registry
The --enable-win32-registry option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: !
          HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\key
! 
!

key defaults to GCC version number, and can be overridden by the ! --enable-win32-registry=key option. Vendors and distributors who use custom installers are encouraged to provide a different key, perhaps one comprised of vendor name and GCC version number, to avoid conflict with existing installations. This feature is enabled ! by default, and can be disabled by --disable-win32-registry option. This option has no effect on the other hosts. ! !

--nfp
Specify that the machine does not have a floating point unit. This ! option only applies to ‘m68k-sun-sunosn’. On any other ! system, --nfp has no effect. ! !
--enable-werror
--disable-werror
--enable-werror=yes
--enable-werror=no
When you specify this option, it controls whether certain files in the ! compiler are built with -Werror in bootstrap stage2 and later. ! If you don't specify it, -Werror is turned on for the main development trunk. However it defaults to off for release branches and ! final releases. The specific files which get -Werror are controlled by the Makefiles. ! !
--enable-checking
--enable-checking=list
When you specify this option, the compiler is built to perform internal consistency checks of the requested complexity. This does not change the generated code, but adds error checking within the compiler. This will slow down the compiler and may only work properly if you are building ! the compiler with GCC. This is ‘yes’ by default when building ! from SVN or snapshots, but ‘release’ for releases. The default ! for building the stage1 compiler is ‘yes’. More control over the checks may be had by specifying list. The categories of ! checks available are ‘yes’ (most common checks ! ‘assert,misc,tree,gc,rtlflag,runtime’), ‘no’ (no checks at ! all), ‘all’ (all but ‘valgrind’), ‘release’ (cheapest ! checks ‘assert,runtime’) or ‘none’ (same as ‘no’). ! Individual checks can be enabled with these flags ‘assert’, ! ‘df’, ‘fold’, ‘gc’, ‘gcac’ ‘misc’, ‘rtl’, ! ‘rtlflag’, ‘runtime’, ‘tree’, and ‘valgrind’. ! !

The ‘valgrind’ check requires the external valgrind simulator, available from http://valgrind.org/. The ! ‘df’, ‘rtl’, ‘gcac’ and ‘valgrind’ checks are very expensive. ! To disable all checking, ‘--disable-checking’ or ! ‘--enable-checking=none’ must be explicitly requested. Disabling assertions will make the compiler and runtime slightly faster but increase the risk of undetected internal errors causing wrong code to be generated. ! !

--disable-stage1-checking
--enable-stage1-checking
--enable-stage1-checking=list
If no --enable-checking option is specified the stage1 ! compiler will be built with ‘yes’ checking enabled, otherwise the stage1 checking flags are the same as specified by ! --enable-checking. To build the stage1 compiler with ! different checking options use --enable-stage1-checking. ! The list of checking options is the same as for --enable-checking. If your system is too slow or too small to bootstrap a released compiler ! with checking for stage1 enabled, you can use ‘--disable-stage1-checking’ to disable checking for the stage1 compiler. ! !
--enable-coverage
--enable-coverage=level
With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The level argument controls whether the compiler is built optimized or ! not, values are ‘opt’ and ‘noopt’. For coverage analysis you want to disable optimization, for performance analysis you want to enable optimization. When coverage is enabled, the default level is without optimization. ! !
--enable-gather-detailed-mem-stats
When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! -fmem-report. ! !
--enable-nls
--disable-nls
The --enable-nls option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not doing a ! canadian cross build. The --disable-nls option disables NLS. ! !
--with-included-gettext
If NLS is enabled, the --with-included-gettext option causes the build ! procedure to prefer its copy of GNU gettext. ! !
--with-catgets
If NLS is enabled, and if the host lacks gettext but has the inferior catgets interface, the GCC build procedure normally ! ignores catgets and instead uses GCC's copy of the GNU ! gettext library. The --with-catgets option causes the ! build procedure to use the host's catgets in this situation. ! !
--with-libiconv-prefix=dir
Search for libiconv header files in dir/include and ! libiconv library files in dir/lib. ! !
--enable-obsolete
Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. ! !

All support for systems which have been obsoleted in one release of GCC is removed entirely in the next major release, unless someone steps forward to maintain the port. ! !

--enable-decimal-float
--enable-decimal-float=yes
--enable-decimal-float=no
--enable-decimal-float=bid
--enable-decimal-float=dpd
--disable-decimal-float
Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal floating point format is used (either ! ‘bid’ or ‘dpd’). The ‘bid’ (binary integer decimal) ! format is default on i386 and x86_64 systems, and the ‘dpd’ (densely packed decimal) format is default on PowerPC systems. ! !
--enable-fixed-point
--disable-fixed-point
Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. ! !
--with-long-double-128
Specify if long double type should be 128-bit by default on selected GNU/Linux architectures. If using --without-long-double-128, ! long double will be by default 64-bit, the same as double type. When neither of these configure options are used, the default will be 128-bit long double when built against GNU C Library 2.4 and later, 64-bit long double otherwise. ! !
--with-gmp=pathname
--with-gmp-include=pathname
--with-gmp-lib=pathname
--with-mpfr=pathname
--with-mpfr-include=pathname
--with-mpfr-lib=pathname
--with-mpc=pathname
--with-mpc-include=pathname
--with-mpc-lib=pathname
If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! (‘--with-gmp=gmpinstalldir’, ! ‘--with-mpfr=mpfrinstalldir’, ! ‘--with-mpc=mpcinstalldir’). The ! --with-gmp=gmpinstalldir option is shorthand for ! --with-gmp-lib=gmpinstalldir/lib and ! --with-gmp-include=gmpinstalldir/include. Likewise the ! --with-mpfr=mpfrinstalldir option is shorthand for ! --with-mpfr-lib=mpfrinstalldir/lib and ! --with-mpfr-include=mpfrinstalldir/include, also the ! --with-mpc=mpcinstalldir option is shorthand for ! --with-mpc-lib=mpcinstalldir/lib and ! --with-mpc-include=mpcinstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable (LD_LIBRARY_PATH on GNU/Linux and Solaris systems). ! !

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! !

--with-isl=pathname
--with-isl-include=pathname
--with-isl-lib=pathname
--with-cloog=pathname
--with-cloog-include=pathname
--with-cloog-lib=pathname
If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! (‘--with-isl=islinstalldir’, ! ‘--with-cloog=clooginstalldir’). The ! --with-isl=islinstalldir option is shorthand for ! --with-isl-lib=islinstalldir/lib and ! --with-isl-include=islinstalldir/include. Likewise the ! --with-cloog=clooginstalldir option is shorthand for ! --with-cloog-lib=clooginstalldir/lib and ! --with-cloog-include=clooginstalldir/include. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. ! !

These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! !

--with-host-libstdcxx=linker-args
If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ library used internally by PPL. Typical values of linker-args might be ! ‘-lstdc++’ or ‘-Wl,-Bstatic,-lstdc++,-Bdynamic -lm’. If you are linking with a shared copy of PPL, you probably do not need this option; shared library dependencies will cause the linker to search for the standard C++ library automatically. ! !
--with-stage1-ldflags=flags
This option may be used to set linker flags to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. By default no special flags are used. ! !
--with-stage1-libs=libs
This option may be used to set libraries to be used when linking stage 1 of GCC. These are also used when linking GCC if configured with ! --disable-bootstrap. The default is the argument to ! --with-host-libstdcxx, if specified. ! !
--with-boot-ldflags=flags
This option may be used to set linker flags to be used when linking stage 2 and later when bootstrapping GCC. If neither –with-boot-libs nor –with-host-libstdcxx is set to a value, then the default is ! ‘-static-libstdc++ -static-libgcc’. ! !
--with-boot-libs=libs
This option may be used to set libraries to be used when linking stage 2 and later when bootstrapping GCC. The default is the argument to ! --with-host-libstdcxx, if specified. ! !
--with-debug-prefix-map=map
Convert source directory names using -fdebug-prefix-map when building runtime libraries. ‘map’ is a space-separated ! list of maps of the form ‘old=new’. ! !
--enable-linker-build-id
Tells GCC to pass --build-id option to the linker for all final ! links (links performed without the -r or --relocatable option), if the linker supports it. If you specify ! --enable-linker-build-id, but your linker does not ! support --build-id option, a warning is issued and the ! --enable-linker-build-id option is ignored. The default is off. ! !
--with-linker-hash-style=choice
Tells GCC to pass --hash-style=choice option to the linker for all final links. choice can be one of ! ‘sysv’, ‘gnu’, and ‘both’ where ‘sysv’ is the default. ! !
--enable-gnu-unique-object
--disable-gnu-unique-object
Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by default for a toolchain with an assembler that accepts it and GLIBC 2.11 or above, otherwise disabled. ! !
--enable-lto
--disable-lto
Enable support for link-time optimization (LTO). This is enabled by ! default, and may be disabled using --disable-lto. ! !
--with-plugin-ld=pathname
Enable an alternate linker to be used at link-time optimization (LTO) ! link time when -fuse-linker-plugin is enabled. This linker should have plugin support such as gold starting with ! version 2.20 or GNU ld starting with version 2.21. ! See -fuse-linker-plugin for details. ! !
--enable-canonical-system-headers
--disable-canonical-system-headers
Enable system header path canonicalization for libcpp. This can produce shorter header file paths in diagnostics and dependency output files, but these changed header paths may conflict with some compilation environments. Enabled by default, and may be disabled using ! --disable-canonical-system-headers. ! !
--with-glibc-version=major.minor
Tell GCC that when the GNU C Library (glibc) is used on the target it will be version major.minor or later. Normally this can ! be detected from the C library's header files, but this option may be needed when bootstrapping a cross toolchain without the header files available for building the initial bootstrap compiler. ! !

If GCC is configured with some multilibs that use glibc and some that ! do not, this option applies only to the multilibs that use glibc. However, such configurations may not work well as not all the relevant ! configuration in GCC is on a per-multilib basis.

!

Cross-Compiler-Specific Options

!

The following options only apply to building cross compilers. ! !

!
--with-sysroot
--with-sysroot=dir
Tells GCC to consider dir as the root of a tree that contains ! (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! --sysroot=dir was added to the default options of the built compiler. The specified directory is not copied into the ! install tree, unlike the options --with-headers and ! --with-libs that this option obsoletes. The default value, ! in case --with-sysroot is not given an argument, is ! ${gcc_tooldir}/sys-root. If the specified directory is a ! subdirectory of ${exec_prefix}, then it will be found relative to the GCC binaries if the installation tree is moved. ! !

This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler newly installed with make install; it does not affect the compiler which is used to build GCC itself. ! !

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. ! !

--with-build-sysroot
--with-build-sysroot=dir
Tells GCC to consider dir as the system root (see ! --with-sysroot) while building target libraries, instead of ! the directory specified with --with-sysroot. This option is ! only useful when you are already using --with-sysroot. You ! can use --with-build-sysroot when you are configuring with ! --prefix set to a directory that is different from the one in which you are installing GCC and your target libraries. ! !

This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. ! !

If you specify the --with-native-system-header-dir=dirname option then the compiler will search that directory within dirname for ! native system headers rather than the default /usr/include. ! !

--with-headers
--with-headers=dir
Deprecated in favor of --with-sysroot. ! Specifies that target headers are available when building a cross compiler. The dir argument specifies a directory which has the target include ! files. These include files will be copied into the gcc install ! directory. This option with the dir argument is required when ! building a cross compiler, if prefix/target/sys-include ! doesn't pre-exist. If prefix/target/sys-include does ! pre-exist, the dir argument may be omitted. fixincludes will be run on these files to make them compatible with GCC. ! !
--without-headers
Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. ! !
--with-libs
--with-libs="dir1 dir2 ... dirN"
Deprecated in favor of --with-sysroot. Specifies a list of directories which contain the target runtime ! libraries. These libraries will be copied into the gcc install directory. If the directory list is omitted, this option has no effect. ! !
--with-newlib
Specifies that ‘newlib’ is being used as the target C library. This causes __eprintf to be ! omitted from libgcc.a on the assumption that it will be provided by ! ‘newlib’. ! !
--with-avrlibc
Specifies that ‘AVR-Libc’ is being used as the target C library. This causes float support ! functions like __addsf3 to be omitted from libgcc.a on ! the assumption that it will be provided by libm.a. For more ! technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. ! !
--with-nds32-lib=library
Specifies that library setting is used for building libgcc.a. ! Currently, the valid library is ‘newlib’ or ‘mculib’. This option is only supported for the NDS32 target. ! !
--with-build-time-tools=dir
Specifies where to find the set of target tools (assembler, linker, etc.) that will be used while building GCC itself. This option can be useful if the directory layouts are different between the system you are building GCC on, and the system where you will deploy it. ! !

For example, on an ‘ia64-hp-hpux’ system, you may have the GNU ! assembler and linker in /usr/bin, and the native tools in a different path, and build a toolchain that expects to find the ! native tools in /usr/bin. ! !

When you use this option, you should ensure that dir includes ! ar, as, ld, nm, ! ranlib and strip if necessary, and possibly ! objdump. Otherwise, GCC may use an inconsistent set of ! tools.

!

Java-Specific Options

The following option applies to the build of the Java front end. ! !

!
--disable-libgcj
Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend ! to use GCJ with some other run-time, or you're going to install it separately, or it just happens not to build on your particular machine. In general, if the Java front end is enabled, the GCJ ! libraries will be enabled too, unless they're known to not work on ! the target platform. If GCJ is enabled but ‘libgcj’ isn't built, you may need to port it; in this case, before modifying the top-level ! configure.in so that ‘libgcj’ is enabled by default on this platform, ! you may use --enable-libgcj to override the default. !
!

The following options apply to building ‘libgcj’. ! !

General Options
! !
!
--enable-java-maintainer-mode
By default the ‘libjava’ build will not attempt to compile the ! .java source files to .class. Instead, it will use the ! .class files from the source tree. If you use this option you ! must have executables named ecj1 and gjavah in your path for use by the build. You must use this option if you intend to ! modify any .java files in libjava. ! !
--with-java-home=dirname
This ‘libjava’ option overrides the default value of the ! ‘java.home’ system property. It is also used to set ! ‘sun.boot.class.path’ to dirname/lib/rt.jar. By ! default ‘java.home’ is set to prefix and ! ‘sun.boot.class.path’ to ! datadir/java/libgcj-version.jar. ! !
--with-ecj-jar=filename
This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by gcj to parse ! .java source files. If this option is given, the ! ‘libjava’ build will create and install an ecj1 executable which uses this jar file at runtime. ! !

If this option is not given, but an ecj.jar file is found in ! the topmost source tree at configure time, then the ‘libgcj’ ! build will create and install ecj1, and will also install the ! discovered ecj.jar into a suitable place in the install tree. ! !

If ecj1 is not installed, then the user will have to supply one ! on his path in order for gcj to properly parse .java source files. A suitable jar is available from ftp://sourceware.org/pub/java/. ! !

--disable-getenv-properties
Don't set system properties from GCJ_PROPERTIES. ! !
--enable-hash-synchronization
Use a global hash table for monitor locks. Ordinarily, ! ‘libgcj’'s ‘configure’ script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. ! !
--enable-interpreter
Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option is really only useful if you want to disable the interpreter ! (using --disable-interpreter). ! !
--disable-java-net
Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. ! !
--disable-jvmpi
Disable JVMPI support. ! !
--disable-libgcj-bc
Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with -findirect-dispatch ! and -fno-indirect-classes, allowing them to be overridden at run-time. ! !

If --disable-libgcj-bc is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. ! !

--enable-reduced-reflection
Build most of libgcj with -freduced-reflection. This reduces the size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). ! !
--with-ecos
Enable runtime eCos target support. ! !
--without-libffi
Don't use ‘libffi’. This will disable the interpreter and JNI ! support as well, as these require ‘libffi’ to work. ! !
--enable-libgcj-debug
Enable runtime debugging code. ! !
--enable-libgcj-multifile
If specified, causes all .java source files to be ! compiled into .class files in one invocation of ! ‘gcj’. This can speed up build time, but is more resource-intensive. If this option is unspecified or ! disabled, ‘gcj’ is invoked once for each .java ! file to compile into a .class file. ! !
--with-libiconv-prefix=DIR
Search for libiconv in DIR/include and DIR/lib. ! !
--enable-sjlj-exceptions
Force use of the setjmp/longjmp-based scheme for exceptions. ! ‘configure’ ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. ! !
--with-system-zlib
Use installed ‘zlib’ rather than that included with GCC. ! !
--with-win32-nlsapi=ansi, unicows or unicode
Indicates how MinGW ‘libgcj’ translates between UNICODE characters and the Win32 API. ! !
--enable-java-home
If enabled, this creates a JPackage compatible SDK environment during install. Note that if –enable-java-home is used, –with-arch-directory=ARCH must also be specified. ! !
--with-arch-directory=ARCH
Specifies the name to use for the jre/lib/ARCH directory in the SDK environment created when –enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. ! !
--with-os-directory=DIR
Specifies the OS directory for the SDK include directory. This is set to auto ! detect, and is typically 'linux'. ! !
--with-origin-name=NAME
Specifies the JPackage origin name. This defaults to the 'gcj' in java-1.5.0-gcj. ! !
--with-arch-suffix=SUFFIX
Specifies the suffix for the sdk directory. Defaults to the empty string. ! Examples include '.x86_64' in 'java-1.5.0-gcj-1.5.0.0.x86_64'. ! !
--with-jvm-root-dir=DIR
Specifies where to install the SDK. Default is $(prefix)/lib/jvm. ! !
--with-jvm-jar-dir=DIR
Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. ! !
--with-python-dir=DIR
Specifies where to install the Python modules used for aot-compile. DIR should not include the prefix used in installation. For example, if the Python modules are to be installed in /usr/lib/python2.5/site-packages, then –with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. ! !
--enable-aot-compile-rpm
Adds aot-compile-rpm to the list of installed scripts. ! !
--enable-browser-plugin
Build the gcjwebplugin web browser plugin. ! !
--enable-static-libjava
Build static libraries in libjava. The default is to only build shared libraries. ! !
!
ansi
Use the single-byte char and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. ! !
unicows
Use the WCHAR and Win32 W functions natively. Adds ! -lunicows to libgcj.spec to link with ‘libunicows’. ! unicows.dll needs to be deployed on Microsoft Windows 9X machines ! running built executables. libunicows.a, an open-source ! import library around Microsoft's unicows.dll, is obtained from http://libunicows.sourceforge.net/, which also gives details ! on getting unicows.dll from Microsoft. ! !
unicode
Use the WCHAR and Win32 W functions natively. Does not ! add -lunicows to libgcj.spec. The built executables will ! only run on Microsoft Windows NT and above.
+
!
AWT-Specific Options
!
!
--with-x
Use the X Window System. !
--enable-java-awt=PEER(S)
Specifies the AWT peer library or libraries to build alongside ! ‘libgcj’. If this option is unspecified or disabled, AWT ! will be non-functional. Current valid values are gtk and ! xlib. Multiple libraries should be separated by a ! comma (i.e. --enable-java-awt=gtk,xlib). !
--enable-gtk-cairo
Build the cairo Graphics2D implementation on GTK. !
--enable-java-gc=TYPE
Choose garbage collector. Defaults to boehm if unspecified. +
--disable-gtktest
Do not try to compile and run a test GTK+ program. +
--disable-glibtest
Do not try to compile and run a test GLIB program. +
--with-libart-prefix=PFX
Prefix where libart is installed (optional). +
--with-libart-exec-prefix=PFX
Exec prefix where libart is installed (optional). +
--disable-libarttest
Do not try to compile and run a test libart program. +
+
Overriding configure test results
+ +

Sometimes, it might be necessary to override the result of some + configure test, for example in order to ease porting to a new + system or work around a bug in a test. The toplevel configure + script provides three variables for this: + +

+
build_configargs
The contents of this variable is passed to all build configure + scripts. +
host_configargs
The contents of this variable is passed to all host configure + scripts. +
target_configargs
The contents of this variable is passed to all target configure + scripts. +
+ +

In order to avoid shell and make quoting issues for complex + overrides, you can pass a setting for CONFIG_SITE and set + variables in the site file. + +


+

Return to the GCC Installation page + + + + + + + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/download.html gcc-4.9.4/INSTALL/download.html *** gcc-4.9.3/INSTALL/download.html Fri Jun 26 17:59:17 2015 --- gcc-4.9.4/INSTALL/download.html Wed Aug 3 05:09:48 2016 *************** *** 1,132 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

GCC is distributed via SVN and FTP ! tarballs compressed with gzip or ! bzip2. !

!

Please refer to the releases web page for information on how to obtain GCC. !

!

The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For previous versions these were downloadable as separate components such as the core GCC distribution, which included the C language front end and shared components, and language-specific distributions including the language front end and the language runtime (where appropriate). !

!

If you also intend to build binutils (either to upgrade an existing installation or for use in place of the corresponding tools of your OS), unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components of the binutils you intend to build alongside the compiler ! (bfd, binutils, gas, gprof, ld, ! opcodes, …) to the directory containing the GCC sources. !

!

Likewise the GMP, MPFR and MPC libraries can be automatically built together with GCC. Unpack the GMP, MPFR and/or MPC source distributions in the directory containing the GCC sources and rename ! their directories to gmp, mpfr and mpc, respectively (or use symbolic links with the same name). -

-
-

Return to the GCC Installation page -

- - - - - - - - - - - --- 1,87 ---- ! ! ! Downloading GCC ! ! ! ! ! ! ! ! + +

Downloading GCC

+ + GCC is distributed via SVN and FTP + tarballs compressed with gzip or + bzip2. !

Please refer to the releases web page for information on how to obtain GCC. ! !

The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For previous versions these were downloadable as separate components such as the core GCC distribution, which included the C language front end and shared components, and language-specific distributions including the language front end and the language runtime (where appropriate). ! !

If you also intend to build binutils (either to upgrade an existing installation or for use in place of the corresponding tools of your OS), unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components of the binutils you intend to build alongside the compiler ! (bfd, binutils, gas, gprof, ld, ! opcodes, ...) to the directory containing the GCC sources. ! !

Likewise the GMP, MPFR and MPC libraries can be automatically built together with GCC. Unpack the GMP, MPFR and/or MPC source distributions in the directory containing the GCC sources and rename ! their directories to gmp, mpfr and mpc, respectively (or use symbolic links with the same name). +


+

Return to the GCC Installation page + + + + + + + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/finalinstall.html gcc-4.9.4/INSTALL/finalinstall.html *** gcc-4.9.3/INSTALL/finalinstall.html Fri Jun 26 17:59:19 2015 --- gcc-4.9.4/INSTALL/finalinstall.html Wed Aug 3 05:09:48 2016 *************** *** 1,227 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Now that GCC has been built (and optionally tested), you can install it with !

!
cd objdir && make install
! 
! !

We strongly recommend to install into a target directory where there is no previous version of GCC present. Also, the GNAT runtime should not be stripped, as this would break certain features of the debugger that depend on this debugging information (catching Ada exceptions for instance). !

!

That step completes the installation of GCC; user level binaries can ! be found in prefix/bin where prefix is the value ! you specified with the --prefix to configure (or ! /usr/local by default). (If you specified --bindir, that directory will be used instead; otherwise, if you specified ! --exec-prefix, exec-prefix/bin will be used.) Headers for the C++ and Java libraries are installed in ! prefix/include; libraries in libdir ! (normally prefix/lib); internal parts of the compiler in ! libdir/gcc and libexecdir/gcc; documentation in info format in infodir (normally ! prefix/info). !

!

When installing cross-compilers, GCC’s executables are not only installed into bindir, that ! is, exec-prefix/bin, but additionally into ! exec-prefix/target-alias/bin, if that directory ! exists. Typically, such tooldirs hold target-specific binutils, including assembler and linker. !

!

Installation into a temporary staging area or into a chroot jail can be achieved with the command -

-
-
make DESTDIR=path-to-rootdir install
- 
!

where path-to-rootdir is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet; it will be created if necessary. !

!

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler installation with ! e.g. ‘DESTDIR=rootdir’, then the directory ! rootdir/exec-prefix/target-alias/bin will be filled with duplicated GCC executables only if it already exists, it will not be created otherwise. This is regarded as a feature, not as a bug, because it gives slightly more control to the packagers using the DESTDIR feature. -

-

You can install stripped programs and libraries with -

-
-
make install-strip
- 
!

If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! http://gcc.gnu.org/buildstat.html. If your system is not listed for the version of GCC that you built, send a note to gcc@gcc.gnu.org indicating ! that you successfully built and installed GCC. Include the following information: !

!
    !
  • Output from running srcdir/config.guess. Do not send that file itself, just the one-line output from running it. !
  • The output of ‘gcc -v’ for your newly installed gcc. This tells us which version of GCC you built and the options you passed to configure. !
  • Whether you enabled all languages or a subset of them. If you used a full distribution then this information is part of the configure ! options in the output of ‘gcc -v’, but if you downloaded the ! “core” compiler plus additional front ends then it isn’t apparent which ones you built unless you tell us about it. !
  • If the build was for GNU/Linux, also include: !
      !
    • The distribution name and version (e.g., Red Hat 7.1 or Debian 2.2.3); ! this information should be available from /etc/issue. !
    • The version of the Linux kernel, available from ‘uname --version’ ! or ‘uname -a’. !
    • The version of glibc you used; for RPM-based systems like Red Hat, ! Mandrake, and SuSE type ‘rpm -q glibc’ to get the glibc version, ! and on systems like Debian and Progeny use ‘dpkg -l libc6’. !
    !

    For other systems, you can include similar information if you think it is relevant. !

    !
  • Any other information that you think would be useful to people building GCC on the same configuration. The new entry in the build status list ! will include a link to the archived copy of your message. !
!

We’d also like to know if the host/target specific installation notes ! didn’t include your host/target information or if that information is incomplete or out of date. Send a note to gcc@gcc.gnu.org detailing how the information should be changed. !

!

If you find a bug, please report it following the bug reporting guidelines. !

!

If you want to print the GCC manuals, do ‘cd objdir; make ! dvi’. You will need to have texi2dvi (version at least 4.7) ! and TeX installed. This creates a number of .dvi files in subdirectories of objdir; these may be converted for ! printing with programs such as dvips. Alternately, by using ! ‘make pdf’ in place of ‘make dvi’, you can create documentation ! in the form of .pdf files; this requires texi2pdf, which is included with Texinfo version 4.8 and later. You can also ! buy printed manuals from the ! Free Software Foundation, though such manuals may not be for the most recent version of GCC. -

-

If you would like to generate online HTML documentation, do ‘cd - objdir; make html’ and HTML will be generated for the gcc manuals in - objdir/gcc/HTML. -

-
-

Return to the GCC Installation page -

- - - - - - --- 1,172 ---- ! ! ! Installing GCC: Final installation ! ! ! ! ! ! ! ! ! !

Installing GCC: Final installation

! Now that GCC has been built (and optionally tested), you can install it with !
     cd objdir && make install
! 
!

We strongly recommend to install into a target directory where there is no previous version of GCC present. Also, the GNAT runtime should not be stripped, as this would break certain features of the debugger that depend on this debugging information (catching Ada exceptions for instance). ! !

That step completes the installation of GCC; user level binaries can ! be found in prefix/bin where prefix is the value ! you specified with the --prefix to configure (or ! /usr/local by default). (If you specified --bindir, that directory will be used instead; otherwise, if you specified ! --exec-prefix, exec-prefix/bin will be used.) Headers for the C++ and Java libraries are installed in ! prefix/include; libraries in libdir ! (normally prefix/lib); internal parts of the compiler in ! libdir/gcc and libexecdir/gcc; documentation in info format in infodir (normally ! prefix/info). ! !

When installing cross-compilers, GCC's executables are not only installed into bindir, that ! is, exec-prefix/bin, but additionally into ! exec-prefix/target-alias/bin, if that directory ! exists. Typically, such tooldirs hold target-specific binutils, including assembler and linker. ! !

Installation into a temporary staging area or into a chroot jail can be achieved with the command !

     make DESTDIR=path-to-rootdir install
! 
!

where path-to-rootdir is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the directory specified by DESTDIR need not exist yet; it will be created if necessary. ! !

There is a subtle point with tooldirs and DESTDIR: If you relocate a cross-compiler installation with ! e.g. ‘DESTDIR=rootdir’, then the directory ! rootdir/exec-prefix/target-alias/bin will be filled with duplicated GCC executables only if it already exists, it will not be created otherwise. This is regarded as a feature, not as a bug, because it gives slightly more control to the packagers using the DESTDIR feature. !

You can install stripped programs and libraries with ! !

     make install-strip
! 
!

If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! http://gcc.gnu.org/buildstat.html. If your system is not listed for the version of GCC that you built, send a note to gcc@gcc.gnu.org indicating ! that you successfully built and installed GCC. Include the following information: ! !

    !
  • Output from running srcdir/config.guess. Do not send that file itself, just the one-line output from running it. !
  • The output of ‘gcc -v’ for your newly installed gcc. This tells us which version of GCC you built and the options you passed to configure. !
  • Whether you enabled all languages or a subset of them. If you used a full distribution then this information is part of the configure ! options in the output of ‘gcc -v’, but if you downloaded the ! “core” compiler plus additional front ends then it isn't apparent which ones you built unless you tell us about it. !
  • If the build was for GNU/Linux, also include: !
      !
    • The distribution name and version (e.g., Red Hat 7.1 or Debian 2.2.3); ! this information should be available from /etc/issue. !
    • The version of the Linux kernel, available from ‘uname --version’ ! or ‘uname -a’. !
    • The version of glibc you used; for RPM-based systems like Red Hat, ! Mandrake, and SuSE type ‘rpm -q glibc’ to get the glibc version, ! and on systems like Debian and Progeny use ‘dpkg -l libc6’. !
    ! For other systems, you can include similar information if you think it is relevant. ! !
  • Any other information that you think would be useful to people building GCC on the same configuration. The new entry in the build status list ! will include a link to the archived copy of your message. !
!

We'd also like to know if the host/target specific installation notes ! didn't include your host/target information or if that information is incomplete or out of date. Send a note to gcc@gcc.gnu.org detailing how the information should be changed. ! !

If you find a bug, please report it following the bug reporting guidelines. ! !

If you want to print the GCC manuals, do ‘cd objdir; make ! dvi’. You will need to have texi2dvi (version at least 4.7) ! and TeX installed. This creates a number of .dvi files in subdirectories of objdir; these may be converted for ! printing with programs such as dvips. Alternately, by using ! ‘make pdf’ in place of ‘make dvi’, you can create documentation ! in the form of .pdf files; this requires texi2pdf, which is included with Texinfo version 4.8 and later. You can also ! buy printed manuals from the Free Software Foundation, though such manuals may not be for the most recent version of GCC. +

If you would like to generate online HTML documentation, do ‘cd + objdir; make html’ and HTML will be generated for the gcc manuals in + objdir/gcc/HTML. +


+

Return to the GCC Installation page + + + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/gfdl.html gcc-4.9.4/INSTALL/gfdl.html *** gcc-4.9.3/INSTALL/gfdl.html Fri Jun 26 17:59:20 2015 --- gcc-4.9.4/INSTALL/gfdl.html Wed Aug 3 05:09:48 2016 *************** *** 1,133 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC: GNU Free Documentation License

! !
Version 1.3, 3 November 2008 !
!
!
Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
! http://fsf.org/
! 
! Everyone is permitted to copy and distribute verbatim copies
! of this license document, but changing it is not allowed.
! 
!
    !
  1. PREAMBLE !

    The purpose of this License is to make a manual, textbook, or other ! functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, ! with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. !

    !

    This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. !

    !

    We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. -

    -
  2. APPLICABILITY AND DEFINITIONS !

    This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that --- 1,82 ---- ! ! ! Installing GCC: GNU Free Documentation License ! ! ! ! ! ! ! ! + +

    Installing GCC: GNU Free Documentation License

    +

    Installing GCC: GNU Free Documentation License

    !

    Version 1.3, 3 November 2008
    !
         Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
    !      http://fsf.org/
    !      
    !      Everyone is permitted to copy and distribute verbatim copies
    !      of this license document, but changing it is not allowed.
    ! 
    !
      !
    1. PREAMBLE !

      The purpose of this License is to make a manual, textbook, or other ! functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, ! with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. ! !

      This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. ! !

      We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. !

    2. APPLICABILITY AND DEFINITIONS ! !

      This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that *************** refers to any such manual or work. Any *** 136,149 **** licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. !

      !

      A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. !

      !

      A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the ! publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain --- 85,98 ---- licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law. ! !

      A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. ! !

      A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the ! publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain *************** any mathematics.) The relationship coul *** 151,171 **** connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. !

      !

      The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. !

      !

      The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. !

      !

      A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of --- 100,120 ---- connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. ! !

      The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none. ! !

      The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words. ! !

      A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of *************** drawing editor, and that is suitable for *** 174,185 **** for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart ! or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”. !

      !

      Examples of suitable formats for Transparent copies include plain ! ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples --- 123,134 ---- for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart ! or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”. ! !

      Examples of suitable formats for Transparent copies include plain ! ascii without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples *************** read and edited only by proprietary word *** 190,224 **** not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. !

      !

      The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means ! the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text. !

      !

      The “publisher” means any person or entity that distributes copies of the Document to the public. !

      !

      A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition. !

      !

      The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. -

      -
    3. VERBATIM COPYING !

      You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other --- 139,173 ---- not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only. ! !

      The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means ! the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. ! !

      The “publisher” means any person or entity that distributes copies of the Document to the public. ! !

      A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition. ! !

      The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License. !

    4. VERBATIM COPYING ! !

      You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other *************** technical measures to obstruct or contro *** 227,313 **** copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. !

      !

      You may also lend copies, under the same conditions stated above, and you may publicly display copies. -

      -
    5. COPYING IN QUANTITY !

      If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the ! Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and ! visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. !

      !

      If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. !

      !

      If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols ! a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. !

      !

      It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. -

      -
    6. MODIFICATIONS !

      You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: !

      !
        !
      1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. !
      2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. !
      3. State on the Title page the name of the publisher of the Modified Version, as the publisher. !
      4. Preserve all the copyright notices of the Document. !
      5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. !
      6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. !
      7. Preserve in that license notice the full lists of Invariant Sections ! and required Cover Texts given in the Document’s license notice. !
      8. Include an unaltered copy of this License. !
      9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one --- 176,262 ---- copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. ! !

        You may also lend copies, under the same conditions stated above, and you may publicly display copies. !

      10. COPYING IN QUANTITY ! !

        If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the ! Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and ! visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. ! !

        If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. ! !

        If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols ! a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. ! !

        It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. !

      11. MODIFICATIONS ! !

        You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: ! !

          !
        1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. !
        2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement. !
        3. State on the Title page the name of the publisher of the Modified Version, as the publisher. !
        4. Preserve all the copyright notices of the Document. !
        5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. !
        6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. !
        7. Preserve in that license notice the full lists of Invariant Sections ! and required Cover Texts given in the Document's license notice. !
        8. Include an unaltered copy of this License. !
        9. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one *************** stating the title, year, authors, and pu *** 315,360 **** given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. !
        10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions ! it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. !
        11. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. !
        12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. !
        13. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version. !
        14. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section. !
        15. Preserve any Warranty Disclaimers. !
        !

        If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the ! list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles. !

        !

        You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. !

        !

        You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or --- 264,309 ---- given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. !

      12. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions ! it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. !
      13. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. !
      14. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. !
      15. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version. !
      16. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section. !
      17. Preserve any Warranty Disclaimers. !
      !

      If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the ! list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. ! !

      You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. ! !

      You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or *************** includes a cover text for the same cover *** 363,433 **** by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. !

      !

      The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. -

      -
    7. COMBINING DOCUMENTS !

      You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. !

      !

      The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original ! author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. !

      !

      In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.” -

      -
    8. COLLECTIONS OF DOCUMENTS !

      You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. !

      !

      You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. -

      -
    9. AGGREGATION WITH INDEPENDENT WORKS !

      A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights ! of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. !

      !

      If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of ! the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the ! electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. -

      -
    10. TRANSLATION !

      Translation is considered a kind of modification, so you may ! distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the --- 312,382 ---- by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. ! !

      The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. !

    11. COMBINING DOCUMENTS ! !

      You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. ! !

      The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original ! author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. ! !

      In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.” !

    12. COLLECTIONS OF DOCUMENTS ! !

      You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. ! !

      You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. !

    13. AGGREGATION WITH INDEPENDENT WORKS ! !

      A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights ! of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document. ! !

      If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of ! the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within the aggregate, or the ! electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate. !

    14. TRANSLATION ! !

      Translation is considered a kind of modification, so you may ! distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the *************** the original English version of this Lic *** 438,485 **** of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. !

      !

      If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. -

      -
    15. TERMINATION !

      You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. !

      !

      However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. !

      !

      Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. !

      !

      Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. -

      -
    16. FUTURE REVISIONS OF THIS LICENSE !

      The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. !

      !

      Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or --- 387,434 ---- of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail. ! !

      If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title. !

    17. TERMINATION ! !

      You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License. ! !

      However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. ! !

      Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. ! !

      Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it. !

    18. FUTURE REVISIONS OF THIS LICENSE ! !

      The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. ! !

      Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or *************** Free Software Foundation. If the Docume *** 488,571 **** number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this ! License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document. -

      -
    19. RELICENSING !

      “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site. !

      !

      “CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. !

      !

      “Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document. !

      !

      An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. !

      !

      The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. -

      -
    ! !

    ADDENDUM: How to use this License for your documents

    To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: -

    -
    -
      Copyright (C)  year  your name.
    -   Permission is granted to copy, distribute and/or modify this document
    -   under the terms of the GNU Free Documentation License, Version 1.3
    -   or any later version published by the Free Software Foundation;
    -   with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
    -   Texts.  A copy of the license is included in the section entitled ``GNU
    -   Free Documentation License''.
    - 
    !

    If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this: -

    -
    -
        with the Invariant Sections being list their titles, with
    -     the Front-Cover Texts being list, and with the Back-Cover Texts
    -     being list.
    - 
    !

    If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. !

    !

    If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. -

    - -
    -

    Return to the GCC Installation page -

    - -
    - - --- 437,515 ---- number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this ! License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. !
  3. RELICENSING ! !

    “Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site. ! !

    “CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization. ! !

    “Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document. ! !

    An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008. ! !

    The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. !

! !

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: !

       Copyright (C)  year  your name.
!        Permission is granted to copy, distribute and/or modify this document
!        under the terms of the GNU Free Documentation License, Version 1.3
!        or any later version published by the Free Software Foundation;
!        with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
!        Texts.  A copy of the license is included in the section entitled ``GNU
!        Free Documentation License''.
! 
!

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with...Texts.” line with this: !

         with the Invariant Sections being list their titles, with
!          the Front-Cover Texts being list, and with the Back-Cover Texts
!          being list.
! 
!

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation. ! !

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. + + + + +


+

Return to the GCC Installation page + + + diff -Nrcpad gcc-4.9.3/INSTALL/index.html gcc-4.9.4/INSTALL/index.html *** gcc-4.9.3/INSTALL/index.html Fri Jun 26 17:59:16 2015 --- gcc-4.9.4/INSTALL/index.html Wed Aug 3 05:09:48 2016 *************** *** 1,165 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

The latest version of this document is always available at ! http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. !

!

This document describes the generic installation procedure for GCC as well as detailing some target specific installation instructions. !

!

GCC includes several components that previously were separate distributions with their own installation instructions. This document supersedes all package-specific installation instructions. !

!

Before starting the build/install procedure please check the ! host/target specific installation notes. We recommend you browse the entire generic installation instructions before you proceed. !

!

Lists of successful builds for released versions of GCC are ! available at http://gcc.gnu.org/buildstat.html. These lists are updated as new information becomes available. -

-

The installation procedure itself is broken into five steps. -

-
    -
  1. Prerequisites -
  2. Downloading the source -
  3. Configuration -
  4. Building -
  5. Testing (optional) -
  6. Final install -
!

Please note that GCC does not support ‘make uninstall’ and probably ! won’t do so in the near future as this would open a can of worms. Instead, we suggest that you install GCC into a directory of its own and simply remove that directory when you do not need that specific version of GCC any longer, and, if shared libraries are installed there as well, no more binaries exist that use them. !

!

There are also some old installation instructions, which are mostly obsolete but still contain some information which has not yet been merged into the main part of this manual. !

!
!

Return to the GCC Installation page !

!

Copyright © 1988-2015 Free Software Foundation, Inc. !


!

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the ! license is included in the section entitled “GNU ! Free Documentation License”. !

!

(a) The FSF’s Front-Cover Text is: !

!

A GNU Manual !

!

(b) The FSF’s Back-Cover Text is: !

!

You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. !

! ! ! ! ! ! ! ! ! - - --- 1,123 ---- ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! !

Installing GCC

! The latest version of this document is always available at ! http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. ! !

This document describes the generic installation procedure for GCC as well as detailing some target specific installation instructions. ! !

GCC includes several components that previously were separate distributions with their own installation instructions. This document supersedes all package-specific installation instructions. ! !

Before starting the build/install procedure please check the ! host/target specific installation notes. We recommend you browse the entire generic installation instructions before you proceed. ! !

Lists of successful builds for released versions of GCC are ! available at http://gcc.gnu.org/buildstat.html. These lists are updated as new information becomes available. !

The installation procedure itself is broken into five steps. ! !

    !
  1. Prerequisites !
  2. Downloading the source !
  3. Configuration !
  4. Building !
  5. Testing (optional) !
  6. Final install !
! !

Please note that GCC does not support ‘make uninstall’ and probably ! won't do so in the near future as this would open a can of worms. Instead, we suggest that you install GCC into a directory of its own and simply remove that directory when you do not need that specific version of GCC any longer, and, if shared libraries are installed there as well, no more binaries exist that use them. ! !

There are also some old installation instructions, which are mostly obsolete but still contain some information which has not yet been merged into the main part of this manual. ! !


!

Return to the GCC Installation page ! !

Copyright © 1988-2015 Free Software Foundation, Inc. !

! 
! 
! Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the ! license is included in the section entitled “GNU Free Documentation License”. +

(a) The FSF's Front-Cover Text is: +

A GNU Manual +

(b) The FSF's Back-Cover Text is: +

You have freedom to copy and modify this GNU Manual, like GNU + software. Copies published by the Free Software Foundation raise + funds for GNU development. + + + + + + + + + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/old.html gcc-4.9.4/INSTALL/old.html *** gcc-4.9.3/INSTALL/old.html Fri Jun 26 17:59:20 2015 --- gcc-4.9.4/INSTALL/old.html Wed Aug 3 05:09:48 2016 *************** *** 1,231 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Old installation documentation

!

Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. -

!

Here is the procedure for installing GCC on a GNU or Unix system. !

!
    !
  1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory under the names ! as, ld or whatever is appropriate. !

    Alternatively, you can do subsequent compilation using a value of the PATH environment variable such that the necessary GNU tools come before the standard system tools. -

    -
  2. Specify the host, build and target machine configurations. You do this - when you run the configure script. !

    The build machine is the system which you are using, the ! host machine is the system where you want to run the resulting ! compiler (normally the build machine), and the target machine is the system for which you want the compiler to generate code. !

    !

    If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify any operands ! to configure; it will try to guess the type of machine you are on ! and use that as the build, host and target machines. So you don’t need to specify a configuration when building a native compiler unless ! configure cannot figure out what your configuration is or guesses wrong. !

    !

    In those cases, specify the build machine’s configuration name ! with the --host option; the host and target will default to be the same as the host machine. -

    -

    Here is an example: -

    -
    -
    ./configure --host=sparc-sun-sunos4.1
    - 
    !

    A configuration name may be canonical or it may be more or less abbreviated. !

    !

    A canonical configuration name has three parts, separated by dashes. ! It looks like this: ‘cpu-company-system’. ! (The three parts may themselves contain dashes; configure can figure out which dashes serve which purpose.) For example, ! ‘m68k-sun-sunos4.1’ specifies a Sun 3. !

    !

    You can also replace parts of the configuration by nicknames or aliases. ! For example, ‘sun3’ stands for ‘m68k-sun’, so ! ‘sun3-sunos4.1’ is another way to specify a Sun 3. !

    !

    You can specify a version number after any of the system types, and some of the CPU types. In most cases, the version is irrelevant, and will be ignored. So you might as well specify the version if you know it. !

    !

    See Configurations, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC. -

    -
!

Configurations Supported by GCC

!

Here are the possible CPU types: !

!
!

1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, ! sparclite, sparc64, v850, vax, we32k. !

!

Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. !

!
!

acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, ! sequent, sgi, sony, sun, tti, unicom, wrs. !

!

The company name is meaningful only to disambiguate when the rest of the information supplied is insufficient. You can omit it, writing ! just ‘cpu-system’, if it is not needed. For example, ! ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’. !

!

Here is a list of system types: !

!
!

386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, ! vxworks, winnt, xenix. !

!

You can omit the system type; then configure guesses the operating system from the CPU and company. !

!

You can add a version number to the system type; this may or may not ! make a difference. For example, you can write ‘bsd4.3’ or ! ‘bsd4.4’ to distinguish versions of BSD. In practice, the version ! number is most needed for ‘sysv3’ and ‘sysv4’, which are often treated differently. !

!

linux-gnu’ is the canonical name for the GNU/Linux target; however ! GCC will also accept ‘linux’. The version of the kernel in use is ! not relevant on these systems. A suffix such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the suffixed versions are obsolete. !

!

If you specify an impossible combination such as ‘i860-dg-vms’, ! then you may get an error message from configure, or it may ! ignore part of the information and do the best it can with the rest. ! configure always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. !

!

Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the machine ! name ‘sun3’, mentioned above, is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: !

!
!

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn, crds, decstation-3100, decstation, delta, encore, --- 1,181 ---- ! ! ! Installing GCC: Old documentation ! ! ! ! ! ! ! ! ! !

Installing GCC: Old documentation

Old installation documentation

! !

Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. !

Here is the procedure for installing GCC on a GNU or Unix system. ! !

    !
  1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory under the names ! as, ld or whatever is appropriate. !

    Alternatively, you can do subsequent compilation using a value of the PATH environment variable such that the necessary GNU tools come before the standard system tools. !

  2. Specify the host, build and target machine configurations. You do this ! when you run the configure script. ! !

    The build machine is the system which you are using, the ! host machine is the system where you want to run the resulting ! compiler (normally the build machine), and the target machine is the system for which you want the compiler to generate code. ! !

    If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify any operands ! to configure; it will try to guess the type of machine you are on ! and use that as the build, host and target machines. So you don't need to specify a configuration when building a native compiler unless ! configure cannot figure out what your configuration is or guesses wrong. ! !

    In those cases, specify the build machine's configuration name ! with the --host option; the host and target will default to be the same as the host machine. !

    Here is an example: ! !

              ./configure --host=sparc-sun-sunos4.1
    ! 
    !

    A configuration name may be canonical or it may be more or less abbreviated. ! !

    A canonical configuration name has three parts, separated by dashes. ! It looks like this: ‘cpu-company-system’. ! (The three parts may themselves contain dashes; configure can figure out which dashes serve which purpose.) For example, ! ‘m68k-sun-sunos4.1’ specifies a Sun 3. ! !

    You can also replace parts of the configuration by nicknames or aliases. ! For example, ‘sun3’ stands for ‘m68k-sun’, so ! ‘sun3-sunos4.1’ is another way to specify a Sun 3. ! !

    You can specify a version number after any of the system types, and some of the CPU types. In most cases, the version is irrelevant, and will be ignored. So you might as well specify the version if you know it. ! !

    See Configurations, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC. !

!

Configurations Supported by GCC

! Here are the possible CPU types: ! !
! ! 1750a, a29k, alpha, arm, avr, cn, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, rs6000, sh, sparc, ! sparclite, sparc64, v850, vax, we32k. !
!

Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. ! ! !

! acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, ! sequent, sgi, sony, sun, tti, unicom, wrs. !
!

The company name is meaningful only to disambiguate when the rest of the information supplied is insufficient. You can omit it, writing ! just ‘cpu-system’, if it is not needed. For example, ! ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’. ! !

Here is a list of system types: ! !

! 386bsd, aix, acis, amigaos, aos, aout, aux, bosx, bsd, clix, coff, ctix, cxux, dgux, dynix, ebmon, ecoff, elf, esix, freebsd, hms, genix, gnu, linux, linux-gnu, hiux, hpux, iris, irix, isc, luna, lynxos, mach, minix, msdos, mvs, netbsd, newsos, nindy, ns, osf, osfrose, ptx, riscix, riscos, rtu, sco, sim, solaris, sunos, sym, sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, ! vxworks, winnt, xenix. !
!

You can omit the system type; then configure guesses the operating system from the CPU and company. ! !

You can add a version number to the system type; this may or may not ! make a difference. For example, you can write ‘bsd4.3’ or ! ‘bsd4.4’ to distinguish versions of BSD. In practice, the version ! number is most needed for ‘sysv3’ and ‘sysv4’, which are often treated differently. ! !

linux-gnu’ is the canonical name for the GNU/Linux target; however ! GCC will also accept ‘linux’. The version of the kernel in use is ! not relevant on these systems. A suffix such as ‘libc1’ or ‘aout’ distinguishes major versions of the C library; all of the suffixed versions are obsolete. ! !

If you specify an impossible combination such as ‘i860-dg-vms’, ! then you may get an error message from configure, or it may ! ignore part of the information and do the best it can with the rest. ! configure always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. ! !

Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the machine ! name ‘sun3’, mentioned above, is an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: ! !

! 3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn, crds, decstation-3100, decstation, delta, encore, *************** m3230, magnum, merlin, miniframe, *** 236,253 **** mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, ! sun4, symmetry, tower-32, tower. !

!

Remember that a machine name specifies both the cpu type and the company ! name.


Return to the GCC Installation page -

- - - - - --- 186,201 ---- mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, ! sun4, symmetry, tower-32, tower. !
!

Remember that a machine name specifies both the cpu type and the company ! name.


Return to the GCC Installation page + + + + diff -Nrcpad gcc-4.9.3/INSTALL/prerequisites.html gcc-4.9.4/INSTALL/prerequisites.html *** gcc-4.9.3/INSTALL/prerequisites.html Fri Jun 26 17:59:17 2015 --- gcc-4.9.4/INSTALL/prerequisites.html Wed Aug 3 05:09:48 2016 *************** *** 1,431 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

GCC requires that various tools and packages be available for use in the build procedure. Modifying GCC sources requires additional tools described below. !

! !

Tools/packages necessary for building GCC

!
!
ISO C++98 compiler
!

Necessary to bootstrap GCC, although versions of GCC prior to 4.8 also allow bootstrapping with a ISO C89 compiler and versions of GCC prior to 3.4 also allow bootstrapping with a traditional (K&R) C compiler. !

!

To build all languages in a cross-compiler or other configuration where 3-stage bootstrap is not performed, you need to start with an existing GCC binary (version 3.4 or later) because source code for language frontends other than C might use GCC extensions. !

!

Note that to bootstrap GCC with versions of GCC earlier than 3.4, you ! may need to use --disable-stage1-checking, though bootstrapping the compiler with such earlier compilers is strongly discouraged. !

!
!
C standard library and headers
!
!

In order to build GCC, the C standard library and headers must be present for all target variants for which target libraries will be built (and not only the variant of the host C++ compiler). !

!

This affects the popular ‘x86_64-unknown-linux-gnu’ platform (among ! other multilib targets), for which 64-bit (‘x86_64’) and 32-bit ! (‘i386’) libc headers are usually packaged separately. If you do a ! build of a native compiler on ‘x86_64-unknown-linux-gnu’, make sure you either have the 32-bit libc developer package properly installed (the exact name of the package depends on your distro) or you must build GCC as a 64-bit only compiler by configuring with the option ! --disable-multilib. Otherwise, you may encounter an error such as ! ‘fatal error: gnu/stubs-32.h: No such file’ !

!
!
GNAT
!
!

In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. !

!
!
A “working” POSIX compatible shell, or GNU bash
!
!

Necessary when running configure because some ! /bin/sh shells have bugs and may crash when configuring the ! target libraries. In other cases, /bin/sh or ksh have disastrous corner-case performance problems. This ! can cause target configure runs to literally take days to complete in some cases. !

!

So on some platforms /bin/ksh is sufficient, on others it ! isn’t. See the host/target specific instructions for your platform, or ! use bash to be sure. Then set CONFIG_SHELL in your environment to your “good” shell prior to running ! configure/make. !

!

zsh is not a fully compliant POSIX shell and will not work when configuring GCC. !

!
!
A POSIX or SVR4 awk
!
!

Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. !

!
!
GNU binutils
!
!

Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. !

!
!
gzip version 1.2.4 (or later) or
!
bzip2 version 1.0.2 (or later)
!
!

Necessary to uncompress GCC tar files when source code is obtained via FTP mirror sites. !

!
!
GNU make version 3.80 (or later)
!
!

You must have GNU make installed to build GCC. !

!
!
GNU tar version 1.14 (or later)
!
!

Necessary (only on some platforms) to untar the source code. Many ! systems’ tar programs will also work, only try GNU ! tar if you have problems. !

!
!
Perl version 5.6.1 (or later)
!
!

Necessary when targeting Darwin, building ‘libstdc++’, ! and not using --disable-symvers. ! Necessary when targeting Solaris 2 with Sun ld and not using ! --disable-symvers. The bundled perl in Solaris 8 and up works. !

!

Necessary when regenerating Makefile dependencies in libiberty. ! Necessary when regenerating libiberty/functions.texi. ! Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. !

!
!
jar, or InfoZIP (zip and unzip)
!
!

Necessary to build libgcj, the GCJ runtime. !

!
!

Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer ! versions may work in some cases, but it’s safer to use the exact versions documented. We appreciate bug reports about problems with newer versions, though. If your OS vendor provides packages for the support libraries then using those packages may be the simplest way to install the libraries. !

!
!
GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
!
!

Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named gmp, it will be built together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure with the ! --with-gmp configure option. See also --with-gmp-lib ! and --with-gmp-include. !

!
!
MPFR Library version 2.4.2 (or later)
!
!

Necessary to build GCC. It can be downloaded from http://www.mpfr.org/. If an MPFR source distribution is found ! in a subdirectory of your GCC sources named mpfr, it will be built together with GCC. Alternatively, if MPFR is already installed but it is not in your default library search path, the ! --with-mpfr configure option should be used. See also ! --with-mpfr-lib and --with-mpfr-include. !

!
!
MPC Library version 0.8.1 (or later)
!
!

Necessary to build GCC. It can be downloaded from http://www.multiprecision.org/. If an MPC source distribution ! is found in a subdirectory of your GCC sources named mpc, it will be built together with GCC. Alternatively, if MPC is already installed but it is not in your default library search path, the ! --with-mpc configure option should be used. See also ! --with-mpc-lib and --with-mpc-include. !

!
!
ISL Library version 0.12.2
!
!

Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ ! as isl-0.12.2.tar.bz2. If an ISL source distribution is found ! in a subdirectory of your GCC sources named isl, it will be ! built together with GCC. Alternatively, the --with-isl configure option should be used if ISL is not installed in your default library search path. !

!
!
CLooG 0.18.1
!
!

Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ as ! cloog-0.18.1.tar.gz. If a CLooG source distribution is found ! in a subdirectory of your GCC sources named cloog, it will be ! built together with GCC. Alternatively, the --with-cloog configure option should be used if CLooG is not installed in your default library search path. !

!

If you want to install CLooG separately it needs to be built against ! ISL 0.12.2 by using the --with-isl=system to direct CLooG to pick up an already installed ISL. Using the ISL library as bundled with CLooG is not supported. -

-
-
! !

Tools/packages necessary for modifying GCC

!
!
autoconf version 2.64
!
GNU m4 version 1.4.6 (or later)
!
!

Necessary when modifying configure.ac, aclocal.m4, etc. ! to regenerate configure and config.in files. !

!
!
automake version 1.11.1
!
!

Necessary when modifying a Makefile.am file to regenerate its ! associated Makefile.in. !

!

Much of GCC does not use automake, so directly edit the Makefile.in ! file. Specifically this applies to the gcc, intl, ! libcpp, libiberty, libobjc directories as well as any of their subdirectories. !

!

For directories that use automake, GCC requires the latest release in the 1.11 series, which is currently 1.11.1. When regenerating a directory to a newer version, please update all the directories using an older 1.11 to the latest released version. !

!
!
gettext version 0.14.5 (or later)
!
!

Needed to regenerate gcc.pot. !

!
!
gperf version 2.7.2 (or later)
!
!

Necessary when modifying gperf input files, e.g. ! gcc/cp/cfns.gperf to regenerate its associated header file, e.g. ! gcc/cp/cfns.h. !

!
!
DejaGnu 1.4.4
!
Expect
!
Tcl
!
!

Necessary to run the GCC testsuite; see the section on testing for details. Tcl 8.6 has a known regression in RE pattern handling that make parts of the testsuite fail. See http://core.tcl.tk/tcl/tktview/267b7e2334ee2e9de34c4b00d6e72e2f1997085f for more information. !

!
!
autogen version 5.5.4 (or later) and
!
guile version 1.4.1 (or later)
!
!

Necessary to regenerate fixinc/fixincl.x from ! fixinc/inclhack.def and fixinc/*.tpl. !

!

Necessary to run ‘make check’ for fixinc. !

!

Necessary to regenerate the top level Makefile.in file from ! Makefile.tpl and Makefile.def. !

!
!
Flex version 2.5.4 (or later)
!
!

Necessary when modifying *.l files. !

!

Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. !

!
!
Texinfo version 4.7 (or later)
!
!

Necessary for running makeinfo when modifying *.texi files to test your changes. !

!

Necessary for running make dvi or make pdf to create printable documentation in DVI or PDF format. Texinfo version ! 4.8 or later is required for make pdf. !

!

Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. -

-
-
TeX (any working version)
-
-

Necessary for running texi2dvi and texi2pdf, which - are used when running make dvi or make pdf to create - DVI or PDF files, respectively. -

-
-
SVN (any version)
-
SSH (any version)
-
-

Necessary to access the SVN repository. Public releases and weekly - snapshots of the development sources are also available via FTP. -

-
-
GNU diffutils version 2.7 (or later)
-
-

Useful when submitting patches for the GCC source code. -

-
-
patch version 2.5.4 (or later)
-
-

Necessary when applying patches, created with diff, to one’s - own sources. -

-
-
ecj1
-
gjavah
-
-

If you wish to modify .java files in libjava, you will need to - configure with --enable-java-maintainer-mode, and you will need - to have executables named ecj1 and gjavah in your path. - The ecj1 executable should run the Eclipse Java compiler via - the GCC-specific entry point. You can download a suitable jar from - ftp://sourceware.org/pub/java/, or by running the script - contrib/download_ecj. -

-
-
antlr.jar version 2.7.1 (or later)
-
antlr binary
-
-

If you wish to build the gjdoc binary in libjava, you will - need to have an antlr.jar library available. The library is - searched for in system locations but can be specified with - --with-antlr-jar= instead. When configuring with - --enable-java-maintainer-mode, you will need to have one of - the executables named cantlr, runantlr or - antlr in your path. -

-
-
- -
-

Return to the GCC Installation page -

- - - - - --- 1,320 ---- ! ! ! Prerequisites for GCC ! ! ! ! ! ! ! ! ! !

Prerequisites for GCC

! ! GCC requires that various tools and packages be available for use in the build procedure. Modifying GCC sources requires additional tools described below. ! !

Tools/packages necessary for building GCC

! !
!
ISO C++98 compiler
Necessary to bootstrap GCC, although versions of GCC prior to 4.8 also allow bootstrapping with a ISO C89 compiler and versions of GCC prior to 3.4 also allow bootstrapping with a traditional (K&R) C compiler. ! !

To build all languages in a cross-compiler or other configuration where 3-stage bootstrap is not performed, you need to start with an existing GCC binary (version 3.4 or later) because source code for language frontends other than C might use GCC extensions. ! !

Note that to bootstrap GCC with versions of GCC earlier than 3.4, you ! may need to use --disable-stage1-checking, though bootstrapping the compiler with such earlier compilers is strongly discouraged. ! !

C standard library and headers
! In order to build GCC, the C standard library and headers must be present for all target variants for which target libraries will be built (and not only the variant of the host C++ compiler). ! !

This affects the popular ‘x86_64-unknown-linux-gnu’ platform (among ! other multilib targets), for which 64-bit (‘x86_64’) and 32-bit ! (‘i386’) libc headers are usually packaged separately. If you do a ! build of a native compiler on ‘x86_64-unknown-linux-gnu’, make sure you either have the 32-bit libc developer package properly installed (the exact name of the package depends on your distro) or you must build GCC as a 64-bit only compiler by configuring with the option ! --disable-multilib. Otherwise, you may encounter an error such as ! ‘fatal error: gnu/stubs-32.h: No such file’ ! !

GNAT
! In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. ! !
A “working” POSIX compatible shell, or GNU bash
! Necessary when running configure because some ! /bin/sh shells have bugs and may crash when configuring the ! target libraries. In other cases, /bin/sh or ksh have disastrous corner-case performance problems. This ! can cause target configure runs to literally take days to complete in some cases. ! !

So on some platforms /bin/ksh is sufficient, on others it ! isn't. See the host/target specific instructions for your platform, or ! use bash to be sure. Then set CONFIG_SHELL in your environment to your “good” shell prior to running ! configure/make. ! !

zsh is not a fully compliant POSIX shell and will not work when configuring GCC. ! !

A POSIX or SVR4 awk
! Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. ! !
GNU binutils
! Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. ! !
gzip version 1.2.4 (or later) or
bzip2 version 1.0.2 (or later)
! Necessary to uncompress GCC tar files when source code is obtained via FTP mirror sites. ! !
GNU make version 3.80 (or later)
! You must have GNU make installed to build GCC. ! !
GNU tar version 1.14 (or later)
! Necessary (only on some platforms) to untar the source code. Many ! systems' tar programs will also work, only try GNU ! tar if you have problems. ! !
Perl version 5.6.1 (or later)
! Necessary when targeting Darwin, building ‘libstdc++’, ! and not using --disable-symvers. ! Necessary when targeting Solaris 2 with Sun ld and not using ! --disable-symvers. The bundled perl in Solaris 8 and up works. ! !

Necessary when regenerating Makefile dependencies in libiberty. ! Necessary when regenerating libiberty/functions.texi. ! Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. ! !

jar, or InfoZIP (zip and unzip)
! Necessary to build libgcj, the GCJ runtime. !
!

Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer ! versions may work in some cases, but it's safer to use the exact versions documented. We appreciate bug reports about problems with newer versions, though. If your OS vendor provides packages for the support libraries then using those packages may be the simplest way to install the libraries. ! !

!
GNU Multiple Precision Library (GMP) version 4.3.2 (or later)
! Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named gmp, it will be built together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure with the ! --with-gmp configure option. See also --with-gmp-lib ! and --with-gmp-include. ! !
MPFR Library version 2.4.2 (or later)
! Necessary to build GCC. It can be downloaded from http://www.mpfr.org/. If an MPFR source distribution is found ! in a subdirectory of your GCC sources named mpfr, it will be built together with GCC. Alternatively, if MPFR is already installed but it is not in your default library search path, the ! --with-mpfr configure option should be used. See also ! --with-mpfr-lib and --with-mpfr-include. ! !
MPC Library version 0.8.1 (or later)
! Necessary to build GCC. It can be downloaded from http://www.multiprecision.org/. If an MPC source distribution ! is found in a subdirectory of your GCC sources named mpc, it will be built together with GCC. Alternatively, if MPC is already installed but it is not in your default library search path, the ! --with-mpc configure option should be used. See also ! --with-mpc-lib and --with-mpc-include. ! !
ISL Library version 0.12.2
! Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ ! as isl-0.12.2.tar.bz2. If an ISL source distribution is found ! in a subdirectory of your GCC sources named isl, it will be ! built together with GCC. Alternatively, the --with-isl configure option should be used if ISL is not installed in your default library search path. ! !
CLooG 0.18.1
! Necessary to build GCC with the Graphite loop optimizations. It can be downloaded from ftp://gcc.gnu.org/pub/gcc/infrastructure/ as ! cloog-0.18.1.tar.gz. If a CLooG source distribution is found ! in a subdirectory of your GCC sources named cloog, it will be ! built together with GCC. Alternatively, the --with-cloog configure option should be used if CLooG is not installed in your default library search path. ! !

If you want to install CLooG separately it needs to be built against ! ISL 0.12.2 by using the --with-isl=system to direct CLooG to pick up an already installed ISL. Using the ISL library as bundled with CLooG is not supported. !

! !

Tools/packages necessary for modifying GCC

! !
!
autoconf version 2.64
GNU m4 version 1.4.6 (or later)
! Necessary when modifying configure.ac, aclocal.m4, etc. ! to regenerate configure and config.in files. ! !
automake version 1.11.1
! Necessary when modifying a Makefile.am file to regenerate its ! associated Makefile.in. ! !

Much of GCC does not use automake, so directly edit the Makefile.in ! file. Specifically this applies to the gcc, intl, ! libcpp, libiberty, libobjc directories as well as any of their subdirectories. ! !

For directories that use automake, GCC requires the latest release in the 1.11 series, which is currently 1.11.1. When regenerating a directory to a newer version, please update all the directories using an older 1.11 to the latest released version. ! !

gettext version 0.14.5 (or later)
! Needed to regenerate gcc.pot. ! !
gperf version 2.7.2 (or later)
! Necessary when modifying gperf input files, e.g. ! gcc/cp/cfns.gperf to regenerate its associated header file, e.g. ! gcc/cp/cfns.h. ! !
DejaGnu 1.4.4
Expect
Tcl
! Necessary to run the GCC testsuite; see the section on testing for details. Tcl 8.6 has a known regression in RE pattern handling that make parts of the testsuite fail. See http://core.tcl.tk/tcl/tktview/267b7e2334ee2e9de34c4b00d6e72e2f1997085f for more information. ! !
autogen version 5.5.4 (or later) and
guile version 1.4.1 (or later)
! Necessary to regenerate fixinc/fixincl.x from ! fixinc/inclhack.def and fixinc/*.tpl. ! !

Necessary to run ‘make check’ for fixinc. ! !

Necessary to regenerate the top level Makefile.in file from ! Makefile.tpl and Makefile.def. ! !

Flex version 2.5.4 (or later)
! Necessary when modifying *.l files. ! !

Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. ! !

Texinfo version 4.7 (or later)
! Necessary for running makeinfo when modifying *.texi files to test your changes. ! !

Necessary for running make dvi or make pdf to create printable documentation in DVI or PDF format. Texinfo version ! 4.8 or later is required for make pdf. ! !

Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. +

TeX (any working version)
+ Necessary for running texi2dvi and texi2pdf, which + are used when running make dvi or make pdf to create + DVI or PDF files, respectively. +
SVN (any version)
SSH (any version)
+ Necessary to access the SVN repository. Public releases and weekly + snapshots of the development sources are also available via FTP. +
GNU diffutils version 2.7 (or later)
+ Useful when submitting patches for the GCC source code. +
patch version 2.5.4 (or later)
+ Necessary when applying patches, created with diff, to one's + own sources. +
ecj1
gjavah
+ If you wish to modify .java files in libjava, you will need to + configure with --enable-java-maintainer-mode, and you will need + to have executables named ecj1 and gjavah in your path. + The ecj1 executable should run the Eclipse Java compiler via + the GCC-specific entry point. You can download a suitable jar from + ftp://sourceware.org/pub/java/, or by running the script + contrib/download_ecj. +
antlr.jar version 2.7.1 (or later)
antlr binary
+ If you wish to build the gjdoc binary in libjava, you will + need to have an antlr.jar library available. The library is + searched for in system locations but can be specified with + --with-antlr-jar= instead. When configuring with + --enable-java-maintainer-mode, you will need to have one of + the executables named cantlr, runantlr or + antlr in your path. +
+


+

Return to the GCC Installation page + + + + + + + + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/specific.html gcc-4.9.4/INSTALL/specific.html *** gcc-4.9.3/INSTALL/specific.html Fri Jun 26 17:59:17 2015 --- gcc-4.9.4/INSTALL/specific.html Wed Aug 3 05:09:48 2016 *************** *** 1,705 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! !

Please read this document carefully before installing the ! GNU Compiler Collection on your machine. !

!

Note that this list of install notes is not a list of supported ! hosts or targets. Not all supported hosts and targets are listed ! here, only the ones that require host-specific or target-specific ! information have to. !

! ! ! !
!

alpha*-*-*

!

This section contains general configuration information for all ! alpha-based platforms using ELF (in particular, ignore this section for ! DEC OSF/1, Digital UNIX and Tru64 UNIX). In addition to reading this ! section, please read all other sections that match your target. !

!

We require binutils 2.11.2 or newer. ! Previous binutils releases had a number of problems with DWARF 2 ! debugging information, not the least of which is incorrect linking of ! shared libraries. !

!
!

alpha*-dec-osf5.1

!

Systems using processors that implement the DEC Alpha architecture and ! are running the DEC/Compaq/HP Unix (DEC OSF/1, Digital UNIX, or Compaq/HP ! Tru64 UNIX) operating system, for example the DEC Alpha AXP systems. !

!

Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, ! support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC 3.2, ! versions before alpha*-dec-osf4 are no longer supported. (These ! are the versions which identify themselves as DEC OSF/1.) !

!
!

amd64-*-solaris2.1[0-9]*

!

This is a synonym for ‘x86_64-*-solaris2.1[0-9]*’. !

!
!

arc-*-elf32

!

Use ‘configure --target=arc-elf32 --with-cpu=cpu --enable-languages="c,c++"’ ! to configure GCC, with cpu being one of ‘arc600’, ‘arc601’, ! or ‘arc700’. !

!
!

arc-linux-uclibc

-

Use ‘configure --target=arc-linux-uclibc --with-cpu=arc700 --enable-languages="c,c++"’ to configure GCC. -

-
-

arm-*-eabi

ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: arm-*-netbsdelf, arm-*-*linux-* and arm-*-rtemseabi. !

!
!

avr

ATMEL AVR-family micro controllers. These are used in embedded ! applications. There are no standard Unix configurations. See “AVR Options” in the main manual for the list of supported MCU types. !

!

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC. !

!

Further installation notes and other useful information about AVR tools can also be obtained from: -

- !

We strongly recommend using binutils 2.13 or newer. !

!

The following error: !

!
Error: register required
! 
!

indicates that you should upgrade to a newer version of the binutils. !

!
!

Blackfin

!

The Blackfin processor, an Analog Devices DSP. See “Blackfin Options” in the main manual !

!

More information, and a version of binutils with support for this processor, is available at http://blackfin.uclinux.org !

!
!

CR16

The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. -

!

See “CR16 Options” in the main manual for a list of CR16-specific options. !

!

Use ‘configure --target=cr16-elf --enable-languages=c,c++’ to configure ! GCC for building a CR16 elf cross-compiler. !

!

Use ‘configure --target=cr16-uclinux --enable-languages=c,c++’ to ! configure GCC for building a CR16 uclinux cross-compiler. !

!
!

CRIS

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series. These are used in embedded applications. !

!

See “CRIS Options” in the main manual for a list of CRIS-specific options. !

!

There are a few different CRIS targets: !

!
cris-axis-elf
!

Mainly for monolithic embedded systems. Includes a multilib for the ! ‘v10’ core used in ‘ETRAX 100 LX’. !

!
cris-axis-linux-gnu
!

A GNU/Linux port for the CRIS architecture, currently targeting ! ‘ETRAX 100 LX’ by default. !

!

For cris-axis-elf you need binutils 2.11 or newer. For cris-axis-linux-gnu you need binutils 2.12 or newer. !

!

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/. More information about this platform is available at http://developer.axis.com/. !

!
!

DOS

Please have a look at the binaries page. !

!

You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS compiler except itself. You need to get the complete compilation package DJGPP, which includes binaries as well as sources, and includes all the necessary compilation tools and libraries. !

!
!

epiphany-*-elf

!

Adapteva Epiphany. This configuration is intended for embedded systems. !

!
!

*-*-freebsd*

Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD 2 (and any mutant a.out variants of FreeBSD 3) was discontinued in GCC 4.0. !

!

In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is present on FreeBSD 7 or later) and the use of __cxa_atexit by default (on FreeBSD 6 or later). The use of dl_iterate_phdr inside ! libgcc_s.so.1 and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. !

!

We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use -gstabs instead of ! -g, if you really want the old debugging format. There are no known issues with mixing object files and libraries with different debugging formats. Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of ! GCC. In particular, --enable-threads is now configured by default. However, as a general user, do not attempt to replace the system compiler with this release. Known to bootstrap and check with good results on FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with good results on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT. !

!

The version of binutils installed in /usr/bin probably works with this release of GCC. Bootstrapping against the latest GNU ! binutils and/or the version found in /usr/ports/devel/binutils has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 release with GNU binutils after 2.16.1. !

!
!

h8300-hms

Renesas H8/300 series of processors. !

!

Please have a look at the binaries page. !

!

The calling convention and structure layout has changed in release 2.6. All code must be recompiled. The calling convention now passes the first three arguments in function calls in registers. Structures are no longer a multiple of 2 bytes. !

!
!

hppa*-hp-hpux*

Support for HP-UX version 9 and older was discontinued in GCC 3.4. !

!

We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. !

!

It may be helpful to configure GCC with the ! --with-gnu-as and ! --with-as=… options to ensure that GCC can find GAS. !

!

The HP assembler should not be used with GCC. It is rarely tested and may ! not work. It shouldn’t be used with any languages other than C due to its many limitations. !

!

Specifically, -g does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into each object file it creates, causing the 3-stage comparison test to fail during a bootstrap. You should be able to continue by saying ! ‘make all-host all-target’ after getting the failure from ‘make’. !

!

Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit template instantiations are required when using C++. This makes it difficult if not impossible to build many C++ applications. !

!

There are two default scheduling models for instructions. These are PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc ! architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when ! the target is a ‘hppa1*’ machine. !

!

The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture when configuring if you want a model other than PROCESSOR_8000. The macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. !

!

As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 ! through 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. This namespace change might cause problems when bootstrapping with an earlier version of GCC or the HP compiler as essentially the same namespace is required for an entire build. This problem can be avoided ! in a number of ways. With HP cc, UNIX_STD can be set to ‘95’ ! or ‘98’. Another way is to add an appropriate set of predefines ! to CC. The description for the munix= option contains a list of the predefines used with each standard. !

!

More specific information to ‘hppa*-hp-hpux*’ targets follows. !

!
!

hppa*-hp-hpux10

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from HP. !

!

The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous problems in using C++ on this target. However, the ABI is not compatible with the one implemented under HP-UX 11 using secondary definitions. !

!
!

hppa*-hp-hpux11

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. !

!

The libffi and libjava libraries haven’t been ported to 64-bit HP-UX and don’t build. !

!

Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained ! to build the Ada language as it can’t be bootstrapped using C. Ada is only available for the 32-bit PA-RISC runtime. !

!

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The ! bundled compiler supports only traditional C; you will need either HP’s unbundled compiler, or a binary distribution of GCC. !

!

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the process requires several steps. GCC 3.3 can then be used to build later versions. The fastjar program contains ISO C code and ! can’t be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! --enable-languages="c,c++,f77,objc" option in your configure command. !

!

There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC distribution can be built. The second approach is to build GCC ! first using the HP tools, then build binutils, then rebuild GCC. There have been problems with various binary distributions, so it is best not to start from a binary distribution. !

!

On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on ! the same system. The ‘hppa[1-2]*-hp-hpux11*’ target generates code ! for the 32-bit PA-RISC runtime architecture and uses the HP linker. ! The ‘hppa64-hp-hpux11*’ target generates 64-bit code for the PA-RISC 2.0 architecture. !

!

The script config.guess now selects the target type based on the compiler ! detected during configuration. You must define PATH or CC so ! that configure finds an appropriate compiler for the initial bootstrap. ! When CC is used, the definition should contain the options that are ! needed whenever CC is used. !

!

Specifically, options that determine the runtime architecture must be ! in CC to correctly select the target for the build. It is also ! convenient to place many other compiler options in CC. For example, ! CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in ! 64-bit K&R/bundled mode. The +DA2.0W option will result in ! the automatic selection of the ‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when building with the bundled compiler, or when using the ! -Ac option. These defines aren’t necessary with -Ae. !

!

It is best to explicitly configure the ‘hppa64-hp-hpux11*’ target ! with the --with-ld=… option. This overrides the standard search for ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a ! result, it’s not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. !

!

A recent linker patch must be installed for the correct operation of GCC 3.3 and later. PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to ! PHSS_24304, might be usable but it hasn’t been tested. These patches have been superseded. Consult the HP patch database to obtain the currently recommended linker patch for your system. !

!

The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior ! to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared libraries containing secondary symbols, as well as various other linking issues involving secondary symbols. !

!

GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker +init and +fini options for the same purpose. The patches correct various problems with the +init/+fini options, including program core dumps. Binutils 2.14 corrects a ! problem on the 64-bit port resulting from HP’s non-standard use of the .init and .fini sections for array initializers and finalizers. !

!

Although the HP and GNU linkers are both supported for the ! ‘hppa64-hp-hpux11*’ target, it is strongly recommended that the HP linker be used for link editing on this target. !

!

At this time, the GNU linker does not support the creation of long ! branch stubs. As a result, it can’t successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables ! with -static, and with dwarf2 unwind and exception support. ! It also doesn’t provide stubs for internal calls to global functions ! in shared libraries, so these calls can’t be overloaded. !

!

The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable symbol ! versioning with --disable-symvers when using GNU ld. !

!

POSIX threads are the default. The optional DCE thread library is not ! supported, so --enable-threads=dce does not work. !

!
!

*-*-linux-gnu

Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present in glibc 2.2.5 and later. More information is available in the libstdc++-v3 documentation. !

!
!

i?86-*-linux*

!

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more information. !

!

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have a hardware problem. Further information on this can be found on www.bitwizard.nl. !

!
!

i?86-*-solaris2.9

!

The Sun assembler in Solaris 9 has several bugs and limitations. While GCC works around them, several features are missing, so it is recommended to use the GNU assembler instead. There is no bundled version, but the current version, from GNU binutils 2.22, is known to work. !

!

Solaris 2/x86 doesn’t support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will receive SIGILL if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! -march defaults to ‘pentiumpro’ on Solaris 9. If you have the patch installed, you can configure GCC with an appropriate ! --with-arch option, but need GNU as for SSE2 support. !

!
!

i?86-*-solaris2.10

Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit ‘amd64-*-solaris2.1[0-9]*’ or ! ‘x86_64-*-solaris2.1[0-9]*’ configuration that corresponds to ! ‘sparcv9-sun-solaris2*’. !

!

It is recommended that you configure GCC to use the GNU assembler, in ! /usr/sfw/bin/gas. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, too. Recent versions of the Sun assembler in ! /usr/ccs/bin/as work almost as well, though. !

!

For linking, the Sun linker, is preferred. If you want to use the GNU ! linker instead, which is available in /usr/sfw/bin/gld, note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. !

!

To use GNU as, configure with the options ! --with-gnu-as --with-as=/usr/sfw/bin/gas. It may be necessary ! to configure with --without-gnu-ld --with-ld=/usr/ccs/bin/ld to ! guarantee use of Sun ld. !

!
!

ia64-*-linux

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU/Linux. !

!

If you are using the installed system libunwind library with ! --with-system-libunwind, then you must use libunwind 0.98 or later. !

!

None of the following versions of GCC has an ABI that is compatible with any of the other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are compatible with each other: ! 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. ! This primarily affects C++ programs and programs that create shared libraries. ! GCC 3.1 or later is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be fully ABI compliant, and hence no more major ABI changes are expected. !

!
!

ia64-*-hpux*

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option --with-gnu-as may be necessary. !

!

The GCC libunwind library has not been ported to HPUX. This means that for ! GCC versions 3.2.3 and earlier, --enable-libunwind-exceptions ! is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, --enable-libunwind-exceptions is removed and the system libunwind library will always be used. !

!
!

aarch64*-*-*

!

Binutils pre 2.24 does not have support for selecting -mabi and does not support ILP32. If it is used to build GCC 4.9 or later, GCC will ! not support option -mabi=ilp32. !

!

To enable a workaround for the Cortex-A53 erratum number 835769 by default (for all CPUs regardless of -mcpu option given) at configure time use the ! --enable-fix-cortex-a53-835769 option. This will enable the fix by default and can be explicitly disabled during compilation by passing the ! -mno-fix-cortex-a53-835769 option. Conversely, ! --disable-fix-cortex-a53-835769 will disable the workaround by default. The workaround is disabled by default if neither of ! --enable-fix-cortex-a53-835769 or ! --disable-fix-cortex-a53-835769 is given at configure time. !

!

To enable a workaround for the Cortex-A53 erratum number 843419 by default (for all CPUs regardless of -mcpu option given) at configure time use the ! --enable-fix-cortex-a53-843419 option. This workaround is applied at link time. Enabling the workaround will cause GCC to pass the relevant option to the linker. It can be explicitly disabled during compilation by passing the ! -mno-fix-cortex-a53-843419 option. Conversely, ! --disable-fix-cortex-a53-843419 will disable the workaround by default. The workaround is disabled by default if neither of ! --enable-fix-cortex-a53-843419 or ! --disable-fix-cortex-a53-843419 is given at configure time. !

!
! !

*-ibm-aix*

!

Support for AIX version 3 and older was discontinued in GCC 3.4. Support for AIX version 4.2 and older was discontinued in GCC 4.5. !

!

“out of memory” bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! /etc/security/limits system configuration file. !

!

GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC requires a larger data segment, which can be enabled through the LDR_CNTRL environment variable, e.g., -

-
-
% LDR_CNTRL=MAXDATA=0x50000000
- % export LDR_CNTRL
- 
!

One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC’s “fixed” header files when starting with a version of GCC built for an earlier release of AIX. -

-

To speed up the configuration phases of bootstrapping and installing GCC, - one may use GNU Bash instead of AIX /bin/sh, e.g., -

-
-
% CONFIG_SHELL=/opt/freeware/bin/bash
- % export CONFIG_SHELL
- 
!

and then proceed as described in the build ! instructions, where we strongly recommend specifying an absolute path to invoke srcdir/configure. !

!

Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries required by gfortran must be 32-bit libraries. Building GMP and MPFR as static archive libraries works better than shared libraries. !

!

Errors involving alloca when building GCC generally are due to an incorrect definition of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of ! the build, the native AIX compiler must be invoked as cc ! (not xlc). Once configure has been informed of ! xlc, one needs to use ‘make distclean’ to remove the ! configure cache files and ensure that CC environment variable ! does not provide a definition that will confuse configure. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). !

!

The native as and ld are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on ! AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do interoperate with GCC. !

!

AIX 5.3 TL10, AIX 6.1 TL05 and AIX 7.1 TL00 introduced an AIX assembler change that sometimes produces corrupt assembly files causing AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An --- 1,691 ---- ! ! ! Host/Target specific installation notes for GCC ! ! ! ! ! ! ! ! + +

Host/Target specific installation notes for GCC

+ + Please read this document carefully before installing the + GNU Compiler Collection on your machine. !

Note that this list of install notes is not a list of supported ! hosts or targets. Not all supported hosts and targets are listed ! here, only the ones that require host-specific or target-specific ! information have to. +

+ +

+


+

alpha*-*-*

+

This section contains general configuration information for all + alpha-based platforms using ELF (in particular, ignore this section for + DEC OSF/1, Digital UNIX and Tru64 UNIX). In addition to reading this + section, please read all other sections that match your target. +

We require binutils 2.11.2 or newer. + Previous binutils releases had a number of problems with DWARF 2 + debugging information, not the least of which is incorrect linking of + shared libraries. +


+

alpha*-dec-osf5.1

+

Systems using processors that implement the DEC Alpha architecture and + are running the DEC/Compaq/HP Unix (DEC OSF/1, Digital UNIX, or Compaq/HP + Tru64 UNIX) operating system, for example the DEC Alpha AXP systems. +

Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, + support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC 3.2, + versions before alpha*-dec-osf4 are no longer supported. (These + are the versions which identify themselves as DEC OSF/1.) +


+

amd64-*-solaris2.1[0-9]*

+

This is a synonym for ‘x86_64-*-solaris2.1[0-9]*’. +


+

arc-*-elf32

!

Use ‘configure --target=arc-elf32 --with-cpu=cpu --enable-languages="c,c++"’ ! to configure GCC, with cpu being one of ‘arc600’, ‘arc601’, ! or ‘arc700’. !


!

arc-linux-uclibc

+

Use ‘configure --target=arc-linux-uclibc --with-cpu=arc700 --enable-languages="c,c++"’ to configure GCC. !


!

arm-*-eabi

ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: arm-*-netbsdelf, arm-*-*linux-* and arm-*-rtemseabi. ! !


! !

avr

!

ATMEL AVR-family micro controllers. These are used in embedded ! applications. There are no standard Unix configurations. See “AVR Options” in the main manual for the list of supported MCU types. ! !

Use ‘configure --target=avr --enable-languages="c"’ to configure GCC. ! !

Further installation notes and other useful information about AVR tools can also be obtained from: !

!

We strongly recommend using binutils 2.13 or newer. ! !

The following error: !

     Error: register required
! 
!

indicates that you should upgrade to a newer version of the binutils. ! !


! !

Blackfin

! !

The Blackfin processor, an Analog Devices DSP. See “Blackfin Options” in the main manual ! !

More information, and a version of binutils with support for this processor, is available at http://blackfin.uclinux.org ! !


! !

CR16

!

The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. !

See “CR16 Options” in the main manual for a list of CR16-specific options. ! !

Use ‘configure --target=cr16-elf --enable-languages=c,c++’ to configure ! GCC for building a CR16 elf cross-compiler. ! !

Use ‘configure --target=cr16-uclinux --enable-languages=c,c++’ to ! configure GCC for building a CR16 uclinux cross-compiler. ! !


! !

CRIS

!

CRIS is the CPU architecture in Axis Communications ETRAX system-on-a-chip series. These are used in embedded applications. ! !

See “CRIS Options” in the main manual for a list of CRIS-specific options. ! !

There are a few different CRIS targets: !

!
cris-axis-elf
Mainly for monolithic embedded systems. Includes a multilib for the ! ‘v10’ core used in ‘ETRAX 100 LX’. !
cris-axis-linux-gnu
A GNU/Linux port for the CRIS architecture, currently targeting ! ‘ETRAX 100 LX’ by default.
!

For cris-axis-elf you need binutils 2.11 or newer. For cris-axis-linux-gnu you need binutils 2.12 or newer. ! !

Pre-packaged tools can be obtained from ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/. More information about this platform is available at http://developer.axis.com/. ! !


! !

DOS

!

Please have a look at the binaries page. ! !

You cannot install GCC by itself on MSDOS; it will not compile under any MSDOS compiler except itself. You need to get the complete compilation package DJGPP, which includes binaries as well as sources, and includes all the necessary compilation tools and libraries. ! !


! !

epiphany-*-elf

! !

Adapteva Epiphany. This configuration is intended for embedded systems. ! !


! !

*-*-freebsd*

!

Support for FreeBSD 1 was discontinued in GCC 3.2. Support for FreeBSD 2 (and any mutant a.out variants of FreeBSD 3) was discontinued in GCC 4.0. ! !

In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is present on FreeBSD 7 or later) and the use of __cxa_atexit by default (on FreeBSD 6 or later). The use of dl_iterate_phdr inside ! libgcc_s.so.1 and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. ! !

We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use -gstabs instead of ! -g, if you really want the old debugging format. There are no known issues with mixing object files and libraries with different debugging formats. Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of ! GCC. In particular, --enable-threads is now configured by default. However, as a general user, do not attempt to replace the system compiler with this release. Known to bootstrap and check with good results on FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with good results on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT. ! !

The version of binutils installed in /usr/bin probably works with this release of GCC. Bootstrapping against the latest GNU ! binutils and/or the version found in /usr/ports/devel/binutils has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 release with GNU binutils after 2.16.1. ! !


! !

h8300-hms

!

Renesas H8/300 series of processors. ! !

Please have a look at the binaries page. ! !

The calling convention and structure layout has changed in release 2.6. All code must be recompiled. The calling convention now passes the first three arguments in function calls in registers. Structures are no longer a multiple of 2 bytes. ! !


! !

hppa*-hp-hpux*

!

Support for HP-UX version 9 and older was discontinued in GCC 3.4. ! !

We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. ! !

It may be helpful to configure GCC with the ! --with-gnu-as and ! --with-as=... options to ensure that GCC can find GAS. ! !

The HP assembler should not be used with GCC. It is rarely tested and may ! not work. It shouldn't be used with any languages other than C due to its many limitations. ! !

Specifically, -g does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into each object file it creates, causing the 3-stage comparison test to fail during a bootstrap. You should be able to continue by saying ! ‘make all-host all-target’ after getting the failure from ‘make’. ! !

Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit template instantiations are required when using C++. This makes it difficult if not impossible to build many C++ applications. ! !

There are two default scheduling models for instructions. These are PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc ! architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when ! the target is a ‘hppa1*’ machine. ! !

The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture when configuring if you want a model other than PROCESSOR_8000. The macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. ! !

As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 ! through 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. This namespace change might cause problems when bootstrapping with an earlier version of GCC or the HP compiler as essentially the same namespace is required for an entire build. This problem can be avoided ! in a number of ways. With HP cc, UNIX_STD can be set to ‘95’ ! or ‘98’. Another way is to add an appropriate set of predefines ! to CC. The description for the munix= option contains a list of the predefines used with each standard. ! !

More specific information to ‘hppa*-hp-hpux*’ targets follows. ! !


! !

hppa*-hp-hpux10

!

For hpux10.20, we highly recommend you pick up the latest sed patch PHCO_19798 from HP. ! !

The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous problems in using C++ on this target. However, the ABI is not compatible with the one implemented under HP-UX 11 using secondary definitions. ! !


! !

hppa*-hp-hpux11

!

GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. ! !

The libffi and libjava libraries haven't been ported to 64-bit HP-UX and don't build. ! !

Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained ! to build the Ada language as it can't be bootstrapped using C. Ada is only available for the 32-bit PA-RISC runtime. ! !

Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The ! bundled compiler supports only traditional C; you will need either HP's unbundled compiler, or a binary distribution of GCC. ! !

It is possible to build GCC 3.3 starting with the bundled HP compiler, but the process requires several steps. GCC 3.3 can then be used to build later versions. The fastjar program contains ISO C code and ! can't be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! --enable-languages="c,c++,f77,objc" option in your configure command. ! !

There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC distribution can be built. The second approach is to build GCC ! first using the HP tools, then build binutils, then rebuild GCC. There have been problems with various binary distributions, so it is best not to start from a binary distribution. ! !

On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on ! the same system. The ‘hppa[1-2]*-hp-hpux11*’ target generates code ! for the 32-bit PA-RISC runtime architecture and uses the HP linker. ! The ‘hppa64-hp-hpux11*’ target generates 64-bit code for the PA-RISC 2.0 architecture. ! !

The script config.guess now selects the target type based on the compiler ! detected during configuration. You must define PATH or CC so ! that configure finds an appropriate compiler for the initial bootstrap. ! When CC is used, the definition should contain the options that are ! needed whenever CC is used. ! !

Specifically, options that determine the runtime architecture must be ! in CC to correctly select the target for the build. It is also ! convenient to place many other compiler options in CC. For example, ! CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE" can be used to bootstrap the GCC 3.3 branch with the HP compiler in ! 64-bit K&R/bundled mode. The +DA2.0W option will result in ! the automatic selection of the ‘hppa64-hp-hpux11*’ target. The macro definition table of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when building with the bundled compiler, or when using the ! -Ac option. These defines aren't necessary with -Ae. ! !

It is best to explicitly configure the ‘hppa64-hp-hpux11*’ target ! with the --with-ld=... option. This overrides the standard search for ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a ! result, it's not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. ! !

A recent linker patch must be installed for the correct operation of GCC 3.3 and later. PHSS_26559 and PHSS_24304 are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, respectively. PHSS_24303, the companion to ! PHSS_24304, might be usable but it hasn't been tested. These patches have been superseded. Consult the HP patch database to obtain the currently recommended linker patch for your system. ! !

The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior ! to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared libraries containing secondary symbols, as well as various other linking issues involving secondary symbols. ! !

GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker +init and +fini options for the same purpose. The patches correct various problems with the +init/+fini options, including program core dumps. Binutils 2.14 corrects a ! problem on the 64-bit port resulting from HP's non-standard use of the .init and .fini sections for array initializers and finalizers. ! !

Although the HP and GNU linkers are both supported for the ! ‘hppa64-hp-hpux11*’ target, it is strongly recommended that the HP linker be used for link editing on this target. ! !

At this time, the GNU linker does not support the creation of long ! branch stubs. As a result, it can't successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables ! with -static, and with dwarf2 unwind and exception support. ! It also doesn't provide stubs for internal calls to global functions ! in shared libraries, so these calls can't be overloaded. ! !

The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable symbol ! versioning with --disable-symvers when using GNU ld. ! !

POSIX threads are the default. The optional DCE thread library is not ! supported, so --enable-threads=dce does not work. ! !


! !

*-*-linux-gnu

!

Versions of libstdc++-v3 starting with 3.2.1 require bug fixes present in glibc 2.2.5 and later. More information is available in the libstdc++-v3 documentation. ! !


! !

i?86-*-linux*

! !

As of GCC 3.3, binutils 2.13.1 or later is required for this platform. See bug 10877 for more information. ! !

If you receive Signal 11 errors when building on GNU/Linux, then it is possible you have a hardware problem. Further information on this can be found on www.bitwizard.nl. ! !


! !

i?86-*-solaris2.9

! !

The Sun assembler in Solaris 9 has several bugs and limitations. While GCC works around them, several features are missing, so it is + recommended to use the GNU assembler instead. There is no bundled version, but the current version, from GNU binutils 2.22, is known to work. ! !

Solaris 2/x86 doesn't support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will receive SIGILL if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! -march defaults to ‘pentiumpro’ on Solaris 9. If you have the patch installed, you can configure GCC with an appropriate ! --with-arch option, but need GNU as for SSE2 support. ! !


! !

i?86-*-solaris2.10

!

Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit ‘amd64-*-solaris2.1[0-9]*’ or ! ‘x86_64-*-solaris2.1[0-9]*’ configuration that corresponds to ! ‘sparcv9-sun-solaris2*’. ! !

It is recommended that you configure GCC to use the GNU assembler, in ! /usr/sfw/bin/gas. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, too. Recent versions of the Sun assembler in ! /usr/ccs/bin/as work almost as well, though. ! ! !

For linking, the Sun linker, is preferred. If you want to use the GNU ! linker instead, which is available in /usr/sfw/bin/gld, note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. ! !

To use GNU as, configure with the options ! --with-gnu-as --with-as=/usr/sfw/bin/gas. It may be necessary ! to configure with --without-gnu-ld --with-ld=/usr/ccs/bin/ld to ! guarantee use of Sun ld. ! ! !


! !

ia64-*-linux

!

IA-64 processor (also known as IPF, or Itanium Processor Family) running GNU/Linux. ! !

If you are using the installed system libunwind library with ! --with-system-libunwind, then you must use libunwind 0.98 or later. ! !

None of the following versions of GCC has an ABI that is compatible with any of the other versions in this list, with the exception that Red Hat 2.96 and Trillian 000171 are compatible with each other: ! 3.1, 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. ! This primarily affects C++ programs and programs that create shared libraries. ! GCC 3.1 or later is recommended for compiling linux, the kernel. As of version 3.1 GCC is believed to be fully ABI compliant, and hence no more major ABI changes are expected. ! !


! !

ia64-*-hpux*

!

Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option --with-gnu-as may be necessary. ! !

The GCC libunwind library has not been ported to HPUX. This means that for ! GCC versions 3.2.3 and earlier, --enable-libunwind-exceptions ! is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, --enable-libunwind-exceptions is removed and the system libunwind library will always be used. ! !


! !

aarch64*-*-*

! !

Binutils pre 2.24 does not have support for selecting -mabi and does not support ILP32. If it is used to build GCC 4.9 or later, GCC will ! not support option -mabi=ilp32. ! !

To enable a workaround for the Cortex-A53 erratum number 835769 by default (for all CPUs regardless of -mcpu option given) at configure time use the ! --enable-fix-cortex-a53-835769 option. This will enable the fix by default and can be explicitly disabled during compilation by passing the ! -mno-fix-cortex-a53-835769 option. Conversely, ! --disable-fix-cortex-a53-835769 will disable the workaround by default. The workaround is disabled by default if neither of ! --enable-fix-cortex-a53-835769 or ! --disable-fix-cortex-a53-835769 is given at configure time. ! !

To enable a workaround for the Cortex-A53 erratum number 843419 by default (for all CPUs regardless of -mcpu option given) at configure time use the ! --enable-fix-cortex-a53-843419 option. This workaround is applied at link time. Enabling the workaround will cause GCC to pass the relevant option to the linker. It can be explicitly disabled during compilation by passing the ! -mno-fix-cortex-a53-843419 option. Conversely, ! --disable-fix-cortex-a53-843419 will disable the workaround by default. The workaround is disabled by default if neither of ! --enable-fix-cortex-a53-843419 or ! --disable-fix-cortex-a53-843419 is given at configure time. ! !


! ! !

*-ibm-aix*

! !

Support for AIX version 3 and older was discontinued in GCC 3.4. Support for AIX version 4.2 and older was discontinued in GCC 4.5. ! !

“out of memory” bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! /etc/security/limits system configuration file. ! !

GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC requires a larger data segment, which can be enabled through the LDR_CNTRL environment variable, e.g., !

     % LDR_CNTRL=MAXDATA=0x50000000
!      % export LDR_CNTRL
! 
!

One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC's “fixed” header files when starting with a version of GCC built for an earlier release of AIX. !

To speed up the configuration phases of bootstrapping and installing GCC, ! one may use GNU Bash instead of AIX /bin/sh, e.g., ! !

     % CONFIG_SHELL=/opt/freeware/bin/bash
!      % export CONFIG_SHELL
! 
!

and then proceed as described in the build instructions, where we strongly recommend specifying an absolute path to invoke srcdir/configure. ! !

Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries required by gfortran must be 32-bit libraries. Building GMP and MPFR as static archive libraries works better than shared libraries. ! !

Errors involving alloca when building GCC generally are due to an incorrect definition of CC in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of ! the build, the native AIX compiler must be invoked as cc ! (not xlc). Once configure has been informed of ! xlc, one needs to use ‘make distclean’ to remove the ! configure cache files and ensure that CC environment variable ! does not provide a definition that will confuse configure. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). ! !

The native as and ld are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on ! AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do interoperate with GCC. ! !

AIX 5.3 TL10, AIX 6.1 TL05 and AIX 7.1 TL00 introduced an AIX assembler change that sometimes produces corrupt assembly files causing AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An *************** AIX iFix for AIX 5.3 is available (APAR *** 707,1442 **** IZ98477 for AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1 TL07 and AIX 7.1 TL01 should include the fix. !

!

Building libstdc++.a requires a fix for an AIX Assembler bug APAR IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug and a co-dependent AIX Archiver fix referenced as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) !

!

libstdc++’ in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the libstdc++.a shared library in a common location which will overwrite the and GCC 3.3 version of the shared library. Applications either need to be re-linked against the new shared library or the GCC 3.1 and GCC 3.3 ! versions of the ‘libstdc++’ shared object needs to be available ! to the AIX runtime loader. The GCC 3.1 ‘libstdc++.so.4’, if ! present, and GCC 3.3 ‘libstdc++.so.5’ shared objects can be installed for runtime dynamic loading using the following steps to set ! the ‘F_LOADONLY’ flag in the shared object for each ! multilib libstdc++.a installed: !

!

Extract the shared objects from the currently installed ! libstdc++.a archive: !

!
% ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
!

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime dynamic loading, but not linking: !

!
% strip -e libstdc++.so.4 libstdc++.so.5
! 
! !

Archive the runtime-only shared object in the GCC 3.4 ! libstdc++.a archive: !

!
% ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
! !

Linking executables and shared libraries may produce warnings of duplicate symbols. The assembly files generated by GCC for AIX always have included multiple symbol definitions for certain global variable and function declarations in the original program. The warnings should not prevent the linker from producing a correct library or runnable executable. !

!

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object modules. The routines provided in AIX 4.3.0 and AIX 4.3.1 ! to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as “not a COFF file”. The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The -g option of the archive command may be used to create archives of 32-bit objects using the original “small format”. A correct version of the routines is shipped with AIX 4.3.2 and above. !

!

Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the -bbigtoc option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U455193. !

!

The AIX 4.3.2.1 linker (bos.rte.bind_cmds Level 4.3.2.1) will dump core with a segmentation fault when invoked by any version of GCC. A fix for APAR IX87327 is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U461879. This fix is incorporated in AIX 4.3.3 and above. !

!

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX 4.3.1 and above. !

!

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to support locale-specific representations of various data ! formats including floating-point numbers (e.g., ‘.’ vs ‘,’ for separating decimal fractions). There have been problems reported where GCC does not produce the same floating-point formats that the assembler ! expects. If one encounters this problem, set the LANG ! environment variable to ‘C’ or ‘En_US’. !

!

A default can be specified with the -mcpu=cpu_type ! switch and using the configure option --with-cpu-cpu_type. !

!
!

iq2000-*-elf

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard Unix configurations. !

!
!

lm32-*-elf

!

Lattice Mico32 processor. This configuration is intended for embedded systems. !

!
!

lm32-*-uclinux

!

Lattice Mico32 processor. This configuration is intended for embedded systems running uClinux. !

!
!

m32c-*-elf

!

Renesas M32C processor. This configuration is intended for embedded systems. !

!
!

m32r-*-elf

!

Renesas M32R processor. This configuration is intended for embedded systems. !

!
!

m68k-*-*

By default, ! ‘m68k-*-elf*’, ‘m68k-*-rtems’, ‘m68k-*-uclinux’ and ! ‘m68k-*-linux’ build libraries for both M680x0 and ColdFire processors. If you only need the M680x0 libraries, you can omit the ColdFire ones by passing ! --with-arch=m68k to configure. Alternatively, you ! can omit the M680x0 libraries by passing --with-arch=cf to ! configure. These targets default to 5206 or 5475 code as appropriate for the target system when ! configured with --with-arch=cf and 68020 code otherwise. !

!

The ‘m68k-*-netbsd’ and ! ‘m68k-*-openbsd’ targets also support the --with-arch option. They will generate ColdFire CFV4e code when configured with ! --with-arch=cf and 68020 code otherwise. !

!

You can override the default processors listed above by configuring ! with --with-cpu=target. This target can either ! be a -mcpu argument or one of the following values: ! ‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ! ‘m68040’, ‘m68060’, ‘m68020-40’ and ‘m68020-60’. !

!

GCC requires at least binutils version 2.17 on these targets. !

!
!

m68k-*-uclinux

GCC 4.3 changed the uClinux configuration so that it uses the ! ‘m68k-linux-gnu’ ABI rather than the ‘m68k-elf’ ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. !

!
!

mep-*-elf

!

Toshiba Media embedded Processor. This configuration is intended for embedded systems. !

!
!

microblaze-*-elf

!

Xilinx MicroBlaze processor. This configuration is intended for embedded systems. !

!
!

mips-*-*

If on a MIPS system you get an error message saying “does not have gp ! sections for all it’s [sic] sectons [sic]”, don’t worry about it. This happens whenever you use GAS with the MIPS linker, but there is not really anything wrong, and it is okay to use the output file. You can stop such warnings by installing the GNU linker. !

!

It would be nice to extend GAS to produce the gp tables, but they are optional, and there should not be a warning about their absence. !

!

The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to ! make ‘mips*-*-*’ use the generic implementation instead. You can also ! configure for ‘mipsel-elf’ as a workaround. The ! ‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is expected in future releases. -

!

The built-in __sync_* functions are available on MIPS II and ! later systems and others that support the ‘ll’, ‘sc’ and ! ‘sync’ instructions. This can be overridden by passing ! --with-llsc or --without-llsc when configuring GCC. Since the Linux kernel emulates these instructions if they are ! missing, the default for ‘mips*-*-linux*’ targets is ! --with-llsc. The --with-llsc and ! --without-llsc configure options may be overridden at compile ! time by passing the -mllsc or -mno-llsc options to the compiler. !

!

MIPS systems check for division by zero (unless ! -mno-check-zero-division is passed to the compiler) by generating either a conditional trap or a break instruction. Using trap results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (SIGFPE). To enable ! the use of break, use the --with-divide=breaks ! configure option when configuring GCC. The default is to use traps on systems that support them. !

!

The assembler from GNU binutils 2.17 and earlier has a bug in the way it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the ! runtime linker stubs in very large programs, like libgcj.so, to be incorrectly generated. GNU Binutils 2.18 and later (and snapshots made after Nov. 9, 2006) should be free from both of these problems. !

!
!

mips-sgi-irix5

Support for IRIX 5 has been removed in GCC 4.6. !

!
!

mips-sgi-irix6

Support for IRIX 6.5 has been removed in GCC 4.8. Support for IRIX 6 releases before 6.5 has been removed in GCC 4.6, as well as support for the O32 ABI. !

!
!

moxie-*-elf

The moxie processor. !

!
!

msp430-*-elf

!

TI MSP430 processor. This configuration is intended for embedded systems. !

!
!

nds32le-*-elf

Andes NDS32 target in little endian mode. !

!
!

nds32be-*-elf

Andes NDS32 target in big endian mode. !

!
!

powerpc-*-*

!

You can specify a default version for the -mcpu=cpu_type ! switch by using the configure option --with-cpu-cpu_type. !

!

You will need binutils 2.15 or newer for a working GCC. !

!
!

powerpc-*-darwin*

PowerPC running Darwin (Mac OS X kernel). !

!

Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool binaries are available at http://opensource.apple.com/. !

!

This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html will not work on systems older than 10.3.9 (aka darwin7.9.0). !

!
!

powerpc-*-elf

PowerPC system in big endian mode, running System V.4. !

!
!

powerpc*-*-linux-gnu*

PowerPC system in big endian mode running Linux. !

!
!

powerpc-*-netbsd*

PowerPC system in big endian mode running NetBSD. !

!
!

powerpc-*-eabisim

Embedded PowerPC system in big endian mode for use in running under the PSIM simulator. !

!
!

powerpc-*-eabi

Embedded PowerPC system in big endian mode. !

!
!

powerpcle-*-elf

PowerPC system in little endian mode, running System V.4. !

!
!

powerpcle-*-eabisim

Embedded PowerPC system in little endian mode for use in running under the PSIM simulator. !

!
!

powerpcle-*-eabi

Embedded PowerPC system in little endian mode. !

!
!

rl78-*-elf

!

The Renesas RL78 processor. This configuration is intended for embedded systems. !

!
!

rx-*-elf

The Renesas RX processor. See http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series for more information about this processor. !

!
!

s390-*-linux*

S/390 system running GNU/Linux for S/390. !

!
!

s390x-*-linux*

zSeries system (64-bit) running GNU/Linux for zSeries. !

!
!

s390x-ibm-tpf*

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target only. !

!
!

*-*-solaris2*

Support for Solaris 9 has been obsoleted in GCC 4.9, but can still be ! enabled by configuring with --enable-obsolete. Support will be ! removed in GCC 4.10. Support for Solaris 8 has removed in GCC 4.8. Support for Solaris 7 has been removed in GCC 4.6. !

!

Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris 10 and ! 11, GCC 3.4.3 is available as /usr/sfw/bin/gcc. Solaris 11 ! also provides GCC 4.5.2 as /usr/gcc/4.5/bin/gcc. Alternatively, you can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. !

!

The Solaris 2 /bin/sh will often fail to configure ! ‘libstdc++-v3’, ‘boehm-gc’ or ‘libjava’. We therefore recommend using the following initial sequence of commands -

-
-
% CONFIG_SHELL=/bin/ksh
- % export CONFIG_SHELL
- 
!

and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! srcdir/configure. !

!

Solaris 2 comes with a number of optional OS packages. Some of these are needed to use GCC fully, namely SUNWarc, SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, SUNWsprot, and SUNWtoo. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. !

!

To check whether an optional package is installed, use ! the pkginfo command. To add an optional package, use the ! pkgadd command. For further details, see the Solaris 2 documentation. !

!

Trying to use the linker and other tools in ! /usr/ucb to install GCC has been observed to cause trouble. For example, the linker may hang indefinitely. The fix is to remove ! /usr/ucb from your PATH. !

!

The build process works more smoothly with the legacy Sun tools so, if you ! have /usr/xpg4/bin in your PATH, we recommend that you place ! /usr/bin before /usr/xpg4/bin for the duration of the build. !

!

We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU as versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, are known to work. They can be found in ! /usr/sfw/bin/gas. Current versions of GNU binutils (2.22) are known to work as well. Note that your mileage may vary if you use a combination of the GNU tools and the Sun tools: while the ! combination GNU as + Sun ld should reasonably work, ! the reverse combination Sun as + GNU ld may fail to ! build or cause memory corruption at runtime in some cases for C++ programs. ! GNU ld usually works as well, although the version included in Solaris 10 cannot be used due to several bugs. Again, the current version (2.22) is known to work, but generally lacks platform specific ! features, so better stay with Sun ld. To use the LTO linker ! plugin (-fuse-linker-plugin) with GNU ld, GNU ! binutils must be configured with --enable-largefile. !

!

To enable symbol versioning in ‘libstdc++’ with Sun ld, ! you need to have any version of GNU c++filt, which is part of ! GNU binutils. ‘libstdc++’ symbol versioning will be disabled if no ! appropriate version is found. Sun c++filt from the Sun Studio compilers does not work. !

!

Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: g++ will complain that types are missing. These headers assume that omitting the type means int; this assumption worked for C90 but is wrong for C++, and is now wrong for C99 also. !

!

Sun bug 4927647 sometimes causes random spurious testsuite failures ! related to missing diagnostic output. This bug doesn’t affect GCC ! itself, rather it is a kernel bug triggered by the expect program which is used only by the GCC testsuite driver. When the bug ! causes the expect program to miss anticipated output, extra testsuite failures appear. !

!

There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. !

!

Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The ‘libthread’ patches provide the ! __tls_get_addr (SPARC, 64-bit x86) resp. ___tls_get_addr (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on Solaris 9/x86, patch 113986-02 or newer is ! required for the Sun ld and runtime linker (ld.so.1) support, while Solaris 9/SPARC works since FCS. The linker ! patches must be installed even if GNU ld is used. Sun ! as in Solaris 9 doesn’t support the necessary ! relocations, so GNU as must be used. The configure script checks for those prerequisites and automatically enables TLS support if they are met. Although those minimal patch versions should work, it is recommended to use the latest patch versions which include additional bug fixes. !

!
!

sparc*-*-*

This section contains general configuration information for all SPARC-based platforms. In addition to reading this section, please read all other sections that match your target. !

!

Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier versions of GCC on these platforms. We therefore recommend the use of the exact versions of these libraries listed as minimal versions in the prerequisites. !

!
!

sparc-sun-solaris2*

When GCC is configured to use GNU binutils 2.14 or later, the binaries ! produced are smaller than the ones produced using Sun’s native tools; this difference is quite significant for binaries containing debugging information. !

!

Starting with Solaris 7, the operating system is capable of executing 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports ! this; the -m64 option enables 64-bit code generation. However, if all you want is code tuned for the UltraSPARC CPU, you ! should try the -mtune=ultrasparc option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. !

!

When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! --disable-multilib, since we will not be able to build the 64-bit target libraries. !

!

GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions of the GNU compiler (especially GCC 3.0.x versions), which lead to the miscompilation of the stage1 compiler and the subsequent failure of the bootstrap process. A workaround is to use GCC 3.2.3 as an intermediary stage, i.e. to bootstrap that compiler with the base compiler and then use it to bootstrap the final compiler. !

!

GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes a bootstrap failure in form of a miscompilation of the stage1 compiler by the Sun compiler. This is Sun bug 4974440. This is fixed with patch 112760-07. !

!

GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as ! an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ programs like ! groff 1.19.1 without getting messages similar to the following: !

!
!
ld: warning: relocation error: R_SPARC_UA32: …
!   external symbolic relocation against non-allocatable section
!   .debug_info cannot be processed at runtime: relocation ignored.
! 
!

To work around this problem, compile with -gstabs+ instead of ! plain -g. !

!

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the build parameter on the ! configure line. This target triplet can be obtained by invoking ./config.guess in the toplevel source directory of GCC (and not that of GMP or MPFR or MPC). For example on a Solaris 9 system: -

-
-
% ./configure --build=sparc-sun-solaris2.9 --prefix=xxx
- 
!
!

sparc-sun-solaris2.10

There is a bug in older versions of the Sun assembler which breaks thread-local storage (TLS). A typical error message is -

-
-
ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o:
-   symbol <unknown>: bad symbol type SECT: symbol type must be TLS
- 
!

This bug is fixed in Sun patch 118683-03 or later. !

!
!

sparc-*-linux*

GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases mishandled unaligned relocations on sparc-*-* targets. -

!
!

sparc64-*-solaris2*

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be specified ! as the build parameter on the configure line. For example on a Solaris 9 system: -

-
-
% ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx
- 
!

The following compiler flags must be specified in the configure step in order to bootstrap this target with the Sun compiler: -

-
-
% CC="cc -xarch=v9 -xildoff" srcdir/configure [options] [target]
- 
!

-xarch=v9 specifies the SPARC-V9 architecture to the Sun toolchain ! and -xildoff turns off the incremental linker. !

!
!

sparcv9-*-solaris2*

!

This is a synonym for ‘sparc64-*-solaris2*’. !

!
!

c6x-*-*

The C6X family of processors. This port requires binutils-2.22 or newer. !

!
!

tilegx-*-linux*

The TILE-Gx processor in little endian mode, running GNU/Linux. This port requires binutils-2.22 or newer. !

!
!

tilegxbe-*-linux*

The TILE-Gx processor in big endian mode, running GNU/Linux. This port requires binutils-2.23 or newer. !

!
!

tilepro-*-linux*

The TILEPro processor running GNU/Linux. This port requires binutils-2.22 or newer. !

!
!

*-*-vxworks*

Support for VxWorks is in flux. At present GCC supports only the ! very recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. ! We welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate “configlette” (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. !

!

VxWorks comes with an older version of GCC installed in ! $WIND_BASE/host; we recommend you do not overwrite it. ! Choose an installation prefix entirely outside $WIND_BASE. ! Before running configure, create the directories prefix ! and prefix/bin. Link or copy the appropriate assembler, ! linker, etc. into prefix/bin, and set your PATH to ! include that directory while running both configure and ! make. !

!

You must give configure the ! --with-headers=$WIND_BASE/target/h switch so that it can find the VxWorks system headers. Since VxWorks is a cross compilation ! target only, you must also specify --target=target. ! configure will attempt to create the directory ! prefix/target/sys-include and copy files into it; ! make sure the user running configure has sufficient privilege to do so. !

!

GCC’s exception handling runtime requires a special “configlette” ! module, contrib/gthr_supp_vxw_5x.c. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) !

!
!

x86_64-*-*, amd64-*-*

GCC supports the x86-64 architecture implemented by the AMD64 processor ! (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the -m32 switch). !

!
!

x86_64-*-solaris2.1[0-9]*

GCC also supports the x86-64 architecture implemented by the AMD64 ! processor (‘amd64-*-*’ is an alias for ‘x86_64-*-*’) on Solaris 10 or later. Unlike other systems, without special options a bi-arch compiler is built which generates 32-bit code by default, but ! can generate 64-bit x86-64 code with the -m64 switch. Since GCC 4.7, there is also configuration that defaults to 64-bit code, but ! can generate 32-bit code with -m32. To configure and build ! this way, you have to provide all support libraries like libgmp ! as 64-bit code, configure with --target=x86_64-pc-solaris2.1x ! and ‘CC=gcc -m64’. !

!
!

xtensa*-*-elf

This target is intended for embedded Xtensa systems using the ! ‘newlib’ C library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. !

!

The Xtensa configuration information must be specified prior to ! building GCC. The include/xtensa-config.h header file contains the configuration information. If you created your own Xtensa configuration with the Xtensa Processor Generator, the downloaded files include a customized copy of this header file, which you can use to replace the default header file. !

!
!

xtensa*-*-linux*

This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates position-independent code (PIC) regardless of whether the ! -fpic or -fPIC options are used. In other respects, this target is the same as the ! xtensa*-*-elf target. !

!
!

Microsoft Windows

- -

Intel 16-bit versions

The 16-bit versions of Microsoft Windows, such as Windows 3.1, are not supported. !

!

However, the 32-bit port has limited support for Microsoft Windows 3.11 in the Win32s environment, as a target only. See below. !

! !

Intel 32-bit versions

The 32-bit versions of Windows, including Windows 95, Windows NT, Windows XP, and Windows Vista, are supported by several different target platforms. These targets differ in which Windows subsystem they target and which C libraries are used. -

-
    -
  • Cygwin *-*-cygwin: Cygwin provides a user-space - Linux API emulation layer in the Win32 subsystem. -
  • Interix *-*-interix: The Interix subsystem - provides native support for POSIX. -
  • MinGW *-*-mingw32: MinGW is a native GCC port for - the Win32 subsystem that provides a subset of POSIX. -
  • MKS i386-pc-mks: NuTCracker from MKS. See - http://www.mkssoftware.com/ for more information. -
! !

Intel 64-bit versions

GCC contains support for x86-64 using the mingw-w64 ! runtime library, available from http://mingw-w64.sourceforge.net/. This library should be used with the target triple x86_64-pc-mingw32. !

!

Presently Windows for Itanium is not supported. !

! !

Windows CE

Windows CE is supported as a target only on Hitachi SuperH (sh-wince-pe), and MIPS (mips-wince-pe). !

! !

Other Windows Platforms

GCC no longer supports Windows NT on the Alpha or PowerPC. !

!

GCC no longer supports the Windows POSIX subsystem. However, it does support the Interix subsystem. See above. !

!

Old target names including *-*-winnt and *-*-windowsnt are no longer used. !

!

PW32 (i386-pc-pw32) support was never completed, and the project seems to be inactive. See http://pw32.sourceforge.net/ for more information. !

!

UWIN support has been removed due to a lack of maintenance. !

!
!

*-*-cygwin

Ports of GCC are included with the Cygwin environment. !

!

GCC will build under Cygwin without modification; it does not build ! with Microsoft’s C++ compiler and there are no plans to make it do so. !

!

The Cygwin native compiler can be configured to target any 32-bit x86 cpu architecture desired; the default is i686-pc-cygwin. It should be used with as up-to-date a version of binutils as possible; use either the latest official GNU binutils release in the Cygwin distribution, or version 2.20 or above if building your own. !

!
!

*-*-interix

The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. !

!
!

*-*-mingw32

!

GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default semantics of extern inline in -std=c99 and -std=gnu99 modes. !

!
!

Older systems

GCC contains support files for many older (1980s and early 1990s) Unix variants. For the most part, support for these systems has not been deliberately removed, but it has not been maintained for several years and may suffer from bitrot. !

!

Starting with GCC 3.1, each release has a list of “obsoleted” systems. Support for these systems is still present in that release, but ! configure will fail unless the --enable-obsolete option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. !

!

Support for old systems as hosts for GCC can cause problems if the workarounds for compiler, library and operating system bugs affect the cleanliness or maintainability of the rest of GCC. In some cases, to bring GCC up on such a system, if still possible with current GCC, may require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! old-releases directory on the GCC mirror ! sites. Header bugs may generally be avoided using ! fixincludes, but bugs or deficiencies in libraries and the operating system may still cause problems. !

!

Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of the targets that never worked with GCC 2, starting from the last --- 693,1516 ---- IZ98477 for AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1 TL07 and AIX 7.1 TL01 should include the fix. ! !

Building libstdc++.a requires a fix for an AIX Assembler bug APAR IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for another AIX Assembler bug and a co-dependent AIX Archiver fix referenced as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) ! !

libstdc++’ in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the libstdc++.a shared library in a common location which will overwrite the and GCC 3.3 version of the shared library. Applications either need to be re-linked against the new shared library or the GCC 3.1 and GCC 3.3 ! versions of the ‘libstdc++’ shared object needs to be available ! to the AIX runtime loader. The GCC 3.1 ‘libstdc++.so.4’, if ! present, and GCC 3.3 ‘libstdc++.so.5’ shared objects can be installed for runtime dynamic loading using the following steps to set ! the ‘F_LOADONLY’ flag in the shared object for each ! multilib libstdc++.a installed: !

Extract the shared objects from the currently installed ! libstdc++.a archive: !

     % ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
!

Enable the ‘F_LOADONLY’ flag so that the shared object will be available for runtime dynamic loading, but not linking: !

     % strip -e libstdc++.so.4 libstdc++.so.5
! 
!

Archive the runtime-only shared object in the GCC 3.4 ! libstdc++.a archive: !

     % ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5
! 
!

Linking executables and shared libraries may produce warnings of duplicate symbols. The assembly files generated by GCC for AIX always have included multiple symbol definitions for certain global variable and function declarations in the original program. The warnings should not prevent the linker from producing a correct library or runnable executable. ! !

AIX 4.3 utilizes a “large format” archive to support both 32-bit and 64-bit object modules. The routines provided in AIX 4.3.0 and AIX 4.3.1 ! to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as “not a COFF file”. The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The -g option of the archive command may be used to create archives of 32-bit objects using the original “small format”. A correct version of the routines is shipped with AIX 4.3.2 and above. ! !

Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the -bbigtoc option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U455193. ! !

The AIX 4.3.2.1 linker (bos.rte.bind_cmds Level 4.3.2.1) will dump core with a segmentation fault when invoked by any version of GCC. A fix for APAR IX87327 is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U461879. This fix is incorporated in AIX 4.3.3 and above. ! !

The initial assembler shipped with AIX 4.3.0 generates incorrect object files. A fix for APAR IX74254 (64BIT DISASSEMBLED OUTPUT FROM COMPILER FAILS TO ASSEMBLE/BIND) is available from IBM Customer Support and from its techsupport.services.ibm.com website as PTF U453956. This fix is incorporated in AIX 4.3.1 and above. ! !

AIX provides National Language Support (NLS). Compilers and assemblers use NLS to support locale-specific representations of various data ! formats including floating-point numbers (e.g., ‘.’ vs ‘,’ for separating decimal fractions). There have been problems reported where GCC does not produce the same floating-point formats that the assembler ! expects. If one encounters this problem, set the LANG ! environment variable to ‘C’ or ‘En_US’. ! !

A default can be specified with the -mcpu=cpu_type ! switch and using the configure option --with-cpu-cpu_type. ! !


! !

iq2000-*-elf

!

Vitesse IQ2000 processors. These are used in embedded applications. There are no standard Unix configurations. ! !


! !

lm32-*-elf

! !

Lattice Mico32 processor. This configuration is intended for embedded systems. ! !


! !

lm32-*-uclinux

! !

Lattice Mico32 processor. This configuration is intended for embedded systems running uClinux. ! !


! !

m32c-*-elf

! !

Renesas M32C processor. This configuration is intended for embedded systems. ! !


! !

m32r-*-elf

! !

Renesas M32R processor. This configuration is intended for embedded systems. ! !


! !

m68k-*-*

!

By default, ! ‘m68k-*-elf*’, ‘m68k-*-rtems’, ‘m68k-*-uclinux’ and ! ‘m68k-*-linux’ build libraries for both M680x0 and ColdFire processors. If you only need the M680x0 libraries, you can omit the ColdFire ones by passing ! --with-arch=m68k to configure. Alternatively, you ! can omit the M680x0 libraries by passing --with-arch=cf to ! configure. These targets default to 5206 or 5475 code as appropriate for the target system when ! configured with --with-arch=cf and 68020 code otherwise. ! !

The ‘m68k-*-netbsd’ and ! ‘m68k-*-openbsd’ targets also support the --with-arch option. They will generate ColdFire CFV4e code when configured with ! --with-arch=cf and 68020 code otherwise. ! !

You can override the default processors listed above by configuring ! with --with-cpu=target. This target can either ! be a -mcpu argument or one of the following values: ! ‘m68000’, ‘m68010’, ‘m68020’, ‘m68030’, ! ‘m68040’, ‘m68060’, ‘m68020-40’ and ‘m68020-60’. ! !

GCC requires at least binutils version 2.17 on these targets. ! !


! !

m68k-*-uclinux

!

GCC 4.3 changed the uClinux configuration so that it uses the ! ‘m68k-linux-gnu’ ABI rather than the ‘m68k-elf’ ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. ! !


! !

mep-*-elf

! !

Toshiba Media embedded Processor. This configuration is intended for embedded systems. ! !


! !

microblaze-*-elf

! !

Xilinx MicroBlaze processor. This configuration is intended for embedded systems. ! !


! !

mips-*-*

!

If on a MIPS system you get an error message saying “does not have gp ! sections for all it's [sic] sectons [sic]”, don't worry about it. This happens whenever you use GAS with the MIPS linker, but there is not really anything wrong, and it is okay to use the output file. You can stop such warnings by installing the GNU linker. ! !

It would be nice to extend GAS to produce the gp tables, but they are optional, and there should not be a warning about their absence. ! !

The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to ! make ‘mips*-*-*’ use the generic implementation instead. You can also ! configure for ‘mipsel-elf’ as a workaround. The ! ‘mips*-*-linux*’ target continues to use the MIPS II routines. More work on this is expected in future releases. ! ! !

The built-in __sync_* functions are available on MIPS II and ! later systems and others that support the ‘ll’, ‘sc’ and ! ‘sync’ instructions. This can be overridden by passing ! --with-llsc or --without-llsc when configuring GCC. Since the Linux kernel emulates these instructions if they are ! missing, the default for ‘mips*-*-linux*’ targets is ! --with-llsc. The --with-llsc and ! --without-llsc configure options may be overridden at compile ! time by passing the -mllsc or -mno-llsc options to the compiler. ! !

MIPS systems check for division by zero (unless ! -mno-check-zero-division is passed to the compiler) by generating either a conditional trap or a break instruction. Using trap results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (SIGFPE). To enable ! the use of break, use the --with-divide=breaks ! configure option when configuring GCC. The default is to use traps on systems that support them. ! !

The assembler from GNU binutils 2.17 and earlier has a bug in the way it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the ! runtime linker stubs in very large programs, like libgcj.so, to be incorrectly generated. GNU Binutils 2.18 and later (and snapshots made after Nov. 9, 2006) should be free from both of these problems. ! !


! !

mips-sgi-irix5

!

Support for IRIX 5 has been removed in GCC 4.6. ! !


! !

mips-sgi-irix6

!

Support for IRIX 6.5 has been removed in GCC 4.8. Support for IRIX 6 releases before 6.5 has been removed in GCC 4.6, as well as support for the O32 ABI. ! !


! !

moxie-*-elf

!

The moxie processor. ! !


! !

msp430-*-elf

! !

TI MSP430 processor. This configuration is intended for embedded systems. ! !


! !

nds32le-*-elf

!

Andes NDS32 target in little endian mode. ! !


! !

nds32be-*-elf

!

Andes NDS32 target in big endian mode. ! !


! !

powerpc-*-*

! !

You can specify a default version for the -mcpu=cpu_type ! switch by using the configure option --with-cpu-cpu_type. ! !

You will need binutils 2.15 or newer for a working GCC. ! !


! !

powerpc-*-darwin*

!

PowerPC running Darwin (Mac OS X kernel). ! !

Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool binaries are available at http://opensource.apple.com/. ! !

This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html will not work on systems older than 10.3.9 (aka darwin7.9.0). ! !


! !

powerpc-*-elf

!

PowerPC system in big endian mode, running System V.4. ! !


! !

powerpc*-*-linux-gnu*

!

PowerPC system in big endian mode running Linux. ! !


! !

powerpc-*-netbsd*

!

PowerPC system in big endian mode running NetBSD. ! !


! !

powerpc-*-eabisim

!

Embedded PowerPC system in big endian mode for use in running under the PSIM simulator. ! !


! !

powerpc-*-eabi

!

Embedded PowerPC system in big endian mode. ! !


! !

powerpcle-*-elf

!

PowerPC system in little endian mode, running System V.4. ! !


! !

powerpcle-*-eabisim

!

Embedded PowerPC system in little endian mode for use in running under the PSIM simulator. ! !


! !

powerpcle-*-eabi

!

Embedded PowerPC system in little endian mode. ! !


! !

rl78-*-elf

! !

The Renesas RL78 processor. This configuration is intended for embedded systems. ! !


! !

rx-*-elf

!

The Renesas RX processor. See http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series for more information about this processor. ! !


! !

s390-*-linux*

!

S/390 system running GNU/Linux for S/390. ! !


! !

s390x-*-linux*

!

zSeries system (64-bit) running GNU/Linux for zSeries. ! !


! !

s390x-ibm-tpf*

!

zSeries system (64-bit) running TPF. This platform is supported as cross-compilation target only. ! !


! ! ! ! ! !

*-*-solaris2*

!

Support for Solaris 9 has been obsoleted in GCC 4.9, but can still be ! enabled by configuring with --enable-obsolete. Support will be ! removed in GCC 4.10. Support for Solaris 8 has removed in GCC 4.8. Support for Solaris 7 has been removed in GCC 4.6. ! !

Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris 10 and ! 11, GCC 3.4.3 is available as /usr/sfw/bin/gcc. Solaris 11 ! also provides GCC 4.5.2 as /usr/gcc/4.5/bin/gcc. Alternatively, you can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. ! !

The Solaris 2 /bin/sh will often fail to configure ! ‘libstdc++-v3’, ‘boehm-gc’ or ‘libjava’. We therefore recommend using the following initial sequence of commands !

     % CONFIG_SHELL=/bin/ksh
!      % export CONFIG_SHELL
! 
!

and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! srcdir/configure. ! !

Solaris 2 comes with a number of optional OS packages. Some of these are needed to use GCC fully, namely SUNWarc, SUNWbtool, SUNWesu, SUNWhea, SUNWlibm, SUNWsprot, and SUNWtoo. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. ! !

To check whether an optional package is installed, use ! the pkginfo command. To add an optional package, use the ! pkgadd command. For further details, see the Solaris 2 documentation. ! !

Trying to use the linker and other tools in ! /usr/ucb to install GCC has been observed to cause trouble. For example, the linker may hang indefinitely. The fix is to remove ! /usr/ucb from your PATH. ! !

The build process works more smoothly with the legacy Sun tools so, if you ! have /usr/xpg4/bin in your PATH, we recommend that you place ! /usr/bin before /usr/xpg4/bin for the duration of the build. ! !

We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU as versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, are known to work. They can be found in ! /usr/sfw/bin/gas. Current versions of GNU binutils (2.22) are known to work as well. Note that your mileage may vary if you use a combination of the GNU tools and the Sun tools: while the ! combination GNU as + Sun ld should reasonably work, ! the reverse combination Sun as + GNU ld may fail to ! build or cause memory corruption at runtime in some cases for C++ programs. ! ! GNU ld usually works as well, although the version included in Solaris 10 cannot be used due to several bugs. Again, the current version (2.22) is known to work, but generally lacks platform specific ! features, so better stay with Sun ld. To use the LTO linker ! plugin (-fuse-linker-plugin) with GNU ld, GNU ! binutils must be configured with --enable-largefile. ! !

To enable symbol versioning in ‘libstdc++’ with Sun ld, ! you need to have any version of GNU c++filt, which is part of ! GNU binutils. ‘libstdc++’ symbol versioning will be disabled if no ! appropriate version is found. Sun c++filt from the Sun Studio compilers does not work. ! !

Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: g++ will complain that types are missing. These headers assume that omitting the type means int; this assumption worked for C90 but is wrong for C++, and is now wrong for C99 also. ! !

Sun bug 4927647 sometimes causes random spurious testsuite failures ! related to missing diagnostic output. This bug doesn't affect GCC ! itself, rather it is a kernel bug triggered by the expect program which is used only by the GCC testsuite driver. When the bug ! causes the expect program to miss anticipated output, extra testsuite failures appear. ! !

There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. ! !

Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The ‘libthread’ patches provide the ! __tls_get_addr (SPARC, 64-bit x86) resp. ___tls_get_addr (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on Solaris 9/x86, patch 113986-02 or newer is ! required for the Sun ld and runtime linker (ld.so.1) support, while Solaris 9/SPARC works since FCS. The linker ! patches must be installed even if GNU ld is used. Sun ! as in Solaris 9 doesn't support the necessary ! relocations, so GNU as must be used. The configure script checks for those prerequisites and automatically enables TLS support if they are met. Although those minimal patch versions should work, it is recommended to use the latest patch versions which include additional bug fixes. ! !


! !

sparc*-*-*

!

This section contains general configuration information for all SPARC-based platforms. In addition to reading this section, please read all other sections that match your target. ! !

Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier versions of GCC on these platforms. We therefore recommend the use of the exact versions of these libraries listed as minimal versions in the prerequisites. ! !


! !

sparc-sun-solaris2*

!

When GCC is configured to use GNU binutils 2.14 or later, the binaries ! produced are smaller than the ones produced using Sun's native tools; this difference is quite significant for binaries containing debugging information. ! !

Starting with Solaris 7, the operating system is capable of executing 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports ! this; the -m64 option enables 64-bit code generation. However, if all you want is code tuned for the UltraSPARC CPU, you ! should try the -mtune=ultrasparc option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. ! !

When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! --disable-multilib, since we will not be able to build the 64-bit target libraries. ! !

GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions of the GNU compiler (especially GCC 3.0.x versions), which lead to the miscompilation of the stage1 compiler and the subsequent failure of the bootstrap process. A workaround is to use GCC 3.2.3 as an intermediary stage, i.e. to bootstrap that compiler with the base compiler and then use it to bootstrap the final compiler. ! !

GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes a bootstrap failure in form of a miscompilation of the stage1 compiler by the Sun compiler. This is Sun bug 4974440. This is fixed with patch 112760-07. ! !

GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as ! an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ programs like ! groff 1.19.1 without getting messages similar to the following: !

     ld: warning: relocation error: R_SPARC_UA32: ...
!        external symbolic relocation against non-allocatable section
!        .debug_info cannot be processed at runtime: relocation ignored.
! 
!

To work around this problem, compile with -gstabs+ instead of ! plain -g. ! !

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the build parameter on the ! configure line. This target triplet can be obtained by invoking ./config.guess in the toplevel source directory of GCC (and not that of GMP or MPFR or MPC). For example on a Solaris 9 system: !

     % ./configure --build=sparc-sun-solaris2.9 --prefix=xxx
! 
!


! !

sparc-sun-solaris2.10

!

There is a bug in older versions of the Sun assembler which breaks thread-local storage (TLS). A typical error message is !

     ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o:
!        symbol <unknown>: bad symbol type SECT: symbol type must be TLS
! 
!

This bug is fixed in Sun patch 118683-03 or later. ! !


! !

sparc-*-linux*

GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases mishandled unaligned relocations on sparc-*-* targets. !


! !

sparc64-*-solaris2*

!

When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be specified ! as the build parameter on the configure line. For example on a Solaris 9 system: !

     % ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx
! 
!

The following compiler flags must be specified in the configure step in order to bootstrap this target with the Sun compiler: !

     % CC="cc -xarch=v9 -xildoff" srcdir/configure [options] [target]
! 
!

-xarch=v9 specifies the SPARC-V9 architecture to the Sun toolchain ! and -xildoff turns off the incremental linker. ! !


! !

sparcv9-*-solaris2*

! !

This is a synonym for ‘sparc64-*-solaris2*’. ! !


! !

c6x-*-*

!

The C6X family of processors. This port requires binutils-2.22 or newer. ! !


! !

tilegx-*-linux*

!

The TILE-Gx processor in little endian mode, running GNU/Linux. This port requires binutils-2.22 or newer. ! !


! !

tilegxbe-*-linux*

!

The TILE-Gx processor in big endian mode, running GNU/Linux. This port requires binutils-2.23 or newer. ! !


! !

tilepro-*-linux*

!

The TILEPro processor running GNU/Linux. This port requires binutils-2.22 or newer. ! !


! !

*-*-vxworks*

!

Support for VxWorks is in flux. At present GCC supports only the ! very recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. ! We welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate “configlette” (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. ! !

VxWorks comes with an older version of GCC installed in ! $WIND_BASE/host; we recommend you do not overwrite it. ! Choose an installation prefix entirely outside $WIND_BASE. ! Before running configure, create the directories prefix ! and prefix/bin. Link or copy the appropriate assembler, ! linker, etc. into prefix/bin, and set your PATH to ! include that directory while running both configure and ! make. ! !

You must give configure the ! --with-headers=$WIND_BASE/target/h switch so that it can find the VxWorks system headers. Since VxWorks is a cross compilation ! target only, you must also specify --target=target. ! configure will attempt to create the directory ! prefix/target/sys-include and copy files into it; ! make sure the user running configure has sufficient privilege to do so. ! !

GCC's exception handling runtime requires a special “configlette” ! module, contrib/gthr_supp_vxw_5x.c. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) ! !


! !

x86_64-*-*, amd64-*-*

!

GCC supports the x86-64 architecture implemented by the AMD64 processor ! (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the -m32 switch). ! !


! !

x86_64-*-solaris2.1[0-9]*

!

GCC also supports the x86-64 architecture implemented by the AMD64 ! processor (‘amd64-*-*’ is an alias for ‘x86_64-*-*’) on Solaris 10 or later. Unlike other systems, without special options a bi-arch compiler is built which generates 32-bit code by default, but ! can generate 64-bit x86-64 code with the -m64 switch. Since GCC 4.7, there is also configuration that defaults to 64-bit code, but ! can generate 32-bit code with -m32. To configure and build ! this way, you have to provide all support libraries like libgmp ! as 64-bit code, configure with --target=x86_64-pc-solaris2.1x ! and ‘CC=gcc -m64’. ! !


! !

xtensa*-*-elf

!

This target is intended for embedded Xtensa systems using the ! ‘newlib’ C library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. ! !

The Xtensa configuration information must be specified prior to ! building GCC. The include/xtensa-config.h header file contains the configuration information. If you created your own Xtensa configuration with the Xtensa Processor Generator, the downloaded files include a customized copy of this header file, which you can use to replace the default header file. ! !


! !

xtensa*-*-linux*

!

This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates position-independent code (PIC) regardless of whether the ! -fpic or -fPIC options are used. In other respects, this target is the same as the ! xtensa*-*-elf target. ! !


! !

Microsoft Windows

! !

Intel 16-bit versions

The 16-bit versions of Microsoft Windows, such as Windows 3.1, are not supported. ! !

However, the 32-bit port has limited support for Microsoft Windows 3.11 in the Win32s environment, as a target only. See below. ! !

Intel 32-bit versions

!

The 32-bit versions of Windows, including Windows 95, Windows NT, Windows XP, and Windows Vista, are supported by several different target platforms. These targets differ in which Windows subsystem they target and which C libraries are used. !

    !
  • Cygwin *-*-cygwin: Cygwin provides a user-space ! Linux API emulation layer in the Win32 subsystem. !
  • Interix *-*-interix: The Interix subsystem ! provides native support for POSIX. !
  • MinGW *-*-mingw32: MinGW is a native GCC port for ! the Win32 subsystem that provides a subset of POSIX. !
  • MKS i386-pc-mks: NuTCracker from MKS. See ! http://www.mkssoftware.com/ for more information. !
! !

Intel 64-bit versions

!

GCC contains support for x86-64 using the mingw-w64 ! runtime library, available from http://mingw-w64.sourceforge.net/. This library should be used with the target triple x86_64-pc-mingw32. ! !

Presently Windows for Itanium is not supported. ! !

Windows CE

!

Windows CE is supported as a target only on Hitachi SuperH (sh-wince-pe), and MIPS (mips-wince-pe). ! !

Other Windows Platforms

!

GCC no longer supports Windows NT on the Alpha or PowerPC. ! !

GCC no longer supports the Windows POSIX subsystem. However, it does support the Interix subsystem. See above. ! !

Old target names including *-*-winnt and *-*-windowsnt are no longer used. ! !

PW32 (i386-pc-pw32) support was never completed, and the project seems to be inactive. See http://pw32.sourceforge.net/ for more information. ! !

UWIN support has been removed due to a lack of maintenance. ! !


! !

*-*-cygwin

!

Ports of GCC are included with the Cygwin environment. ! !

GCC will build under Cygwin without modification; it does not build ! with Microsoft's C++ compiler and there are no plans to make it do so. ! !

The Cygwin native compiler can be configured to target any 32-bit x86 cpu architecture desired; the default is i686-pc-cygwin. It should be used with as up-to-date a version of binutils as possible; use either the latest official GNU binutils release in the Cygwin distribution, or version 2.20 or above if building your own. ! !


! !

*-*-interix

!

The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. ! !


! !

*-*-mingw32

! !

GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default semantics of extern inline in -std=c99 and -std=gnu99 modes. ! !


! !

Older systems

!

GCC contains support files for many older (1980s and early 1990s) Unix variants. For the most part, support for these systems has not been deliberately removed, but it has not been maintained for several years and may suffer from bitrot. ! !

Starting with GCC 3.1, each release has a list of “obsoleted” systems. Support for these systems is still present in that release, but ! configure will fail unless the --enable-obsolete option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. ! !

Support for old systems as hosts for GCC can cause problems if the workarounds for compiler, library and operating system bugs affect the cleanliness or maintainability of the rest of GCC. In some cases, to bring GCC up on such a system, if still possible with current GCC, may require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! old-releases directory on the GCC mirror sites. Header bugs may generally be avoided using ! fixincludes, but bugs or deficiencies in libraries and the operating system may still cause problems. ! !

Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of the targets that never worked with GCC 2, starting from the last *************** version before they were removed), patch *** 1444,1475 **** following the usual requirements would be likely to be accepted, since they should not affect the support for more modern targets. !

!

For some systems, old versions of GNU binutils may also be useful, ! and are available from pub/binutils/old-releases on sourceware.org mirror sites. !

!

Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems (which may no longer be applicable to current GCC) is to be found in the GCC texinfo manual. !

!
!

all ELF targets (SVR4, Solaris 2, etc.)

C++ support is significantly better on ELF targets if you use the GNU linker; duplicate copies of inlines, vtables and template instantiations will be discarded automatically. -

- -
-

Return to the GCC Installation page -

- - - - - --- 1518,1548 ---- following the usual requirements would be likely to be accepted, since they should not affect the support for more modern targets. ! !

For some systems, old versions of GNU binutils may also be useful, ! and are available from pub/binutils/old-releases on sourceware.org mirror sites. ! !

Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems (which may no longer be applicable to current GCC) is to be found in the GCC texinfo manual. ! !


! !

all ELF targets (SVR4, Solaris 2, etc.)

!

C++ support is significantly better on ELF targets if you use the GNU linker; duplicate copies of inlines, vtables and template instantiations will be discarded automatically. +


+

Return to the GCC Installation page + + + + + diff -Nrcpad gcc-4.9.3/INSTALL/test.html gcc-4.9.4/INSTALL/test.html *** gcc-4.9.3/INSTALL/test.html Fri Jun 26 17:59:19 2015 --- gcc-4.9.4/INSTALL/test.html Wed Aug 3 05:09:48 2016 *************** *** 1,315 **** ! ! ! ! ! ! Installing GCC ! ! ! ! ! ! ! ! ! ! ! ! !

Installing GCC

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the ! gcc-testresults mailing list. Some of these archived results are linked from the build status lists at http://gcc.gnu.org/buildstat.html, although not everyone who ! reports a successful build runs the testsuites and submits the results. This step is optional and may require you to download additional software, but it can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. !

!

First, you must have downloaded the testsuites. These are part of the full distribution, but if you downloaded the “core” compiler plus any front ends, you must download the testsuites separately. !

!

Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. !

!

If the directories where runtest and expect were ! installed are not in the PATH, you may need to set the following environment variables appropriately, as in the following example (which ! assumes that DejaGnu has been installed under /usr/local): !

!
!
TCL_LIBRARY = /usr/local/share/tcl8.0
! DEJAGNULIBS = /usr/local/share/dejagnu
! 
!

(On systems such as Cygwin, these paths are required to be actual paths, not mounts or links; presumably this is due to some lack of portability in the DejaGnu code.) -

- -

Finally, you can run the testsuite (which may take a long time): -

-
cd objdir; make -k check
- 
!

This will test various components of GCC, such as compiler front ends and runtime libraries. While running the testsuite, DejaGnu might emit some harmless messages resembling ! ‘WARNING: Couldn't find the global config file.’ or ! ‘WARNING: Couldn't find tool init file’ that can be ignored. !

!

If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at http://gcc.gnu.org/simtest-howto.html. !

! !

How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ! ‘make check-gcc’ and language specific ‘make check-c’, ! ‘make check-c++’, ‘make check-fortran’, ‘make check-java’, ! ‘make check-ada’, ‘make check-objc’, ‘make check-obj-c++’, ! ‘make check-lto’ ! in the gcc subdirectory of the object directory. You can also ! just run ‘make check’ in a subdirectory of the object directory. !

!

A more selective way to just run all gcc execute tests in the testsuite is to use -

-
-
make check-gcc RUNTESTFLAGS="execute.exp other-options"
- 
!

Likewise, in order to run only the g++ “old-deja” tests in ! the testsuite with filenames matching ‘9805*’, you would use !

!
!
make check-g++ RUNTESTFLAGS="old-deja.exp=9805* other-options"
! 
!

The *.exp files are located in the testsuite directories of the GCC ! source, the most important ones being compile.exp, ! execute.exp, dg.exp and old-deja.exp. ! To get a list of the possible *.exp files, pipe the ! output of ‘make check’ into a file and look at the ! ‘Running … .exp’ lines. !

! !

Passing options and running multiple testsuites

You can pass multiple options to the testsuite using the ! ‘--target_board’ option of DejaGNU, either passed as part of ! ‘RUNTESTFLAGS’, or directly to runtest if you prefer to work outside the makefiles. For example, -

-
-
make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants"
- 
!

will run the standard g++ testsuites (“unix” is the target name for a standard native testsuite situation), passing ! ‘-O3 -fmerge-constants’ to the compiler on every test, i.e., slashes separate options. !

!

You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: -

-
-
…"--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-O1,-O2,-O3,\}"
- 
!

(Note the empty option caused by the trailing comma in the final group.) ! The following will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all possible combinations yourself: -

-
-
--target_board='arm-sim/-mhard-float/-O1 \
-                 arm-sim/-mhard-float/-O2 \
-                 arm-sim/-mhard-float/-O3 \
-                 arm-sim/-mhard-float \
-                 arm-sim/-msoft-float/-O1 \
-                 arm-sim/-msoft-float/-O2 \
-                 arm-sim/-msoft-float/-O3 \
-                 arm-sim/-msoft-float'
- 
!

They can be combined as many times as you wish, in arbitrary ways. This list: -

-
-
…"--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}"
- 
!

will generate four combinations, all involving ‘-Wextra’. !

!

The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in ! parallel by having the shell perform the combinations and make ! do the parallel runs. Instead of using ‘--target_board’, use a special makefile target: -

-
-
make -jN check-testsuite//test-target/option1/option2/…
- 
!

For example, !

!
!
make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}
! 
!

will run three concurrent “make-gcc” testsuites, eventually testing all ten combinations as described above. Note that this is currently only ! supported in the gcc subdirectory. (To see how this works, try ! typing echo before the example given here.) !

! !

Additional testing for Java Class Libraries

!

The Java runtime tests can be executed via ‘make check’ ! in the target/libjava/testsuite directory in the build tree. !

!

The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava ! testsuite at libjava/testsuite/libjava.mauve/mauve, or by ! specifying the location of that tree when invoking ‘make’, as in ! ‘make MAUVEDIR=~/mauve check’. !

! !

How to interpret test results

!

The result of running the testsuite are various *.sum and *.log ! files in the testsuite subdirectories. The *.log files contain a detailed log of the compiler invocations and the corresponding ! results, the *.sum files summarize the results. These summaries contain status codes for all tests: -

-
    -
  • PASS: the test passed as expected -
  • XPASS: the test unexpectedly passed -
  • FAIL: the test unexpectedly failed -
  • XFAIL: the test failed as expected -
  • UNSUPPORTED: the test is not supported on this platform -
  • ERROR: the testsuite detected an error -
  • WARNING: the testsuite detected a possible problem -
!

It is normal for some tests to report unexpected failures. At the current time the testing harness does not allow fine grained control over whether or not a test is expected to fail. This problem should be fixed in future releases. -

! !

Submitting test results

If you want to report the results to the GCC project, use the ! contrib/test_summary shell script. Start it in the objdir with !

!
!
srcdir/contrib/test_summary -p your_commentary.txt \
!     -m gcc-testresults@gcc.gnu.org |sh
! 
!

This script uses the Mail program to send the results, so ! make sure it is in your PATH. The file your_commentary.txt is prepended to the testsuite summary and should contain any special remarks you have on your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. -

-
-

Return to the GCC Installation page -

- - - - - - -
- - --- 1,234 ---- ! ! ! Installing GCC: Testing ! ! ! ! ! ! ! ! ! !

Installing GCC: Testing

! ! Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the ! gcc-testresults mailing list. Some of these archived results are linked from the build status lists at http://gcc.gnu.org/buildstat.html, although not everyone who ! reports a successful build runs the testsuites and submits the results. This step is optional and may require you to download additional software, but it can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. ! !

First, you must have downloaded the testsuites. These are part of the full distribution, but if you downloaded the “core” compiler plus any front ends, you must download the testsuites separately. ! !

Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. ! !

If the directories where runtest and expect were ! installed are not in the PATH, you may need to set the following environment variables appropriately, as in the following example (which ! assumes that DejaGnu has been installed under /usr/local): !

     TCL_LIBRARY = /usr/local/share/tcl8.0
!      DEJAGNULIBS = /usr/local/share/dejagnu
! 
!

(On systems such as Cygwin, these paths are required to be actual paths, not mounts or links; presumably this is due to some lack of portability in the DejaGnu code.) !

Finally, you can run the testsuite (which may take a long time): !

     cd objdir; make -k check
! 
!

This will test various components of GCC, such as compiler front ends and runtime libraries. While running the testsuite, DejaGnu might emit some harmless messages resembling ! ‘WARNING: Couldn't find the global config file.’ or ! ‘WARNING: Couldn't find tool init file’ that can be ignored. ! !

If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at http://gcc.gnu.org/simtest-howto.html. ! !

How can you run the testsuite on selected tests?

In order to run sets of tests selectively, there are targets ! ‘make check-gcc’ and language specific ‘make check-c’, ! ‘make check-c++’, ‘make check-fortran’, ‘make check-java’, ! ‘make check-ada’, ‘make check-objc’, ‘make check-obj-c++’, ! ‘make check-lto’ ! in the gcc subdirectory of the object directory. You can also ! just run ‘make check’ in a subdirectory of the object directory. !

A more selective way to just run all gcc execute tests in the testsuite is to use !

     make check-gcc RUNTESTFLAGS="execute.exp other-options"
! 
!

Likewise, in order to run only the g++ “old-deja” tests in ! the testsuite with filenames matching ‘9805*’, you would use !

     make check-g++ RUNTESTFLAGS="old-deja.exp=9805* other-options"
! 
!

The *.exp files are located in the testsuite directories of the GCC ! source, the most important ones being compile.exp, ! execute.exp, dg.exp and old-deja.exp. ! To get a list of the possible *.exp files, pipe the ! output of ‘make check’ into a file and look at the ! ‘Running ... .exp’ lines. ! !

Passing options and running multiple testsuites

You can pass multiple options to the testsuite using the ! ‘--target_board’ option of DejaGNU, either passed as part of ! ‘RUNTESTFLAGS’, or directly to runtest if you prefer to work outside the makefiles. For example, !

     make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants"
! 
!

will run the standard g++ testsuites (“unix” is the target name for a standard native testsuite situation), passing ! ‘-O3 -fmerge-constants’ to the compiler on every test, i.e., slashes separate options. ! !

You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: !

     ..."--target_board=arm-sim\{-mhard-float,-msoft-float\}\{-O1,-O2,-O3,\}"
! 
!

(Note the empty option caused by the trailing comma in the final group.) ! The following will run each testsuite eight times using the ‘arm-sim’ target, as if you had specified all possible combinations yourself: !

     --target_board='arm-sim/-mhard-float/-O1 \
!                      arm-sim/-mhard-float/-O2 \
!                      arm-sim/-mhard-float/-O3 \
!                      arm-sim/-mhard-float \
!                      arm-sim/-msoft-float/-O1 \
!                      arm-sim/-msoft-float/-O2 \
!                      arm-sim/-msoft-float/-O3 \
!                      arm-sim/-msoft-float'
! 
!

They can be combined as many times as you wish, in arbitrary ways. This list: !

     ..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}"
! 
!

will generate four combinations, all involving ‘-Wextra’. ! !

The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in ! parallel by having the shell perform the combinations and make ! do the parallel runs. Instead of using ‘--target_board’, use a special makefile target: !

     make -jN check-testsuite//test-target/option1/option2/...
! 
!

For example, !

     make -j3 check-gcc//sh-hms-sim/{-m1,-m2,-m3,-m3e,-m4}/{,-nofpu}
! 
!

will run three concurrent “make-gcc” testsuites, eventually testing all ten combinations as described above. Note that this is currently only ! supported in the gcc subdirectory. (To see how this works, try ! typing echo before the example given here.) !

Additional testing for Java Class Libraries

!

The Java runtime tests can be executed via ‘make check’ ! in the target/libjava/testsuite directory in the build tree. ! !

The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava ! testsuite at libjava/testsuite/libjava.mauve/mauve, or by ! specifying the location of that tree when invoking ‘make’, as in ! ‘make MAUVEDIR=~/mauve check’. !

How to interpret test results

! !

The result of running the testsuite are various *.sum and *.log ! files in the testsuite subdirectories. The *.log files contain a detailed log of the compiler invocations and the corresponding ! results, the *.sum files summarize the results. These summaries contain status codes for all tests: !

    !
  • PASS: the test passed as expected !
  • XPASS: the test unexpectedly passed !
  • FAIL: the test unexpectedly failed !
  • XFAIL: the test failed as expected !
  • UNSUPPORTED: the test is not supported on this platform !
  • ERROR: the testsuite detected an error !
  • WARNING: the testsuite detected a possible problem !
! !

It is normal for some tests to report unexpected failures. At the current time the testing harness does not allow fine grained control over whether or not a test is expected to fail. This problem should be fixed in future releases. !

Submitting test results

If you want to report the results to the GCC project, use the ! contrib/test_summary shell script. Start it in the objdir with !

     srcdir/contrib/test_summary -p your_commentary.txt \
!          -m gcc-testresults@gcc.gnu.org |sh
! 
!

This script uses the Mail program to send the results, so ! make sure it is in your PATH. The file your_commentary.txt is prepended to the testsuite summary and should contain any special remarks you have on your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. +


+

Return to the GCC Installation page + + + + + + + + diff -Nrcpad gcc-4.9.3/LAST_UPDATED gcc-4.9.4/LAST_UPDATED *** gcc-4.9.3/LAST_UPDATED Fri Jun 26 17:59:15 2015 --- gcc-4.9.4/LAST_UPDATED Wed Aug 3 05:09:48 2016 *************** *** 1 **** ! Obtained from SVN: tags/gcc_4_9_3_release revision 225078 --- 1 ---- ! Obtained from SVN: tags/gcc_4_9_4_release revision 239064 diff -Nrcpad gcc-4.9.3/MD5SUMS gcc-4.9.4/MD5SUMS *** gcc-4.9.3/MD5SUMS Fri Jun 26 19:06:08 2015 --- gcc-4.9.4/MD5SUMS Wed Aug 3 06:32:14 2016 *************** *** 1,5 **** # This file contains the MD5 checksums of the files in the ! # gcc-4.9.3.tar.bz2 tarball. # # Besides verifying that all files in the tarball were correctly expanded, # it also can be used to determine if any files have changed since the --- 1,5 ---- # This file contains the MD5 checksums of the files in the ! # gcc-4.9.4.tar.bz2 tarball. # # Besides verifying that all files in the tarball were correctly expanded, # it also can be used to determine if any files have changed since the *************** bda40697a9e2e23c4a52125fc1cc713d .dir-l *** 16,45 **** fe60d87048567d4fe8c8a0ed2448bcc8 COPYING.RUNTIME d32239bcb673463ab874e80d47fae504 COPYING3 6a6a8e020838b23406c81b19c1d46df6 COPYING3.LIB ! dcf8644b7185d8bfc850b996a576f6cf ChangeLog 09538b708302f1735f6fa05b622ecf5e ChangeLog.tree-ssa 79ef16e405f5873970e04cee49091ff8 INSTALL/README ! 0c4b65958eeb60576941b9ac74f107c7 INSTALL/binaries.html ! 55b7dd593f825d1e18f8300dfb6d9135 INSTALL/build.html ! c7f0bcac711b53ec526aa7462ed62e84 INSTALL/configure.html ! d2fd0b75a80bbbc1039adf5905907d92 INSTALL/download.html ! 22470239483dc4a8209ae0e7aedb975a INSTALL/finalinstall.html ! eeca39b775f90e9aba3299ac7ca5226b INSTALL/gfdl.html ! dc724af1087ecfe674057e134fb96f24 INSTALL/index.html ! 1312e5d2d766e7329830119e414c6dc0 INSTALL/old.html ! 18426c8161a0727970e58fae85d7462d INSTALL/prerequisites.html ! b2a5a4d2a4f45a040ee13af01b54cd69 INSTALL/specific.html ! ecf1d0a55509986c460eb99faf99fa15 INSTALL/test.html ! 0f40e81508b9faea87cd500386979481 LAST_UPDATED 5df43eb77ba93510a6adee7bd06bd774 MAINTAINERS ! f16f33768674699c5cf92a8ca06744d5 Makefile.def ! 1e713ad7c4b220e69fd0dc77d8060c6a Makefile.in f3a76b2dae23759df8f4bf5f1088f950 Makefile.tpl ! 316a89552e2010523cfcde0315ad180b NEWS 80d26bc3b1ad4f6969a96a24c9181bf5 README b510a5285eb05298b5f3d9f5ae920588 boehm-gc/AmigaOS.c 2caafacabf758bb76a9dfce1fc544b97 boehm-gc/BCC_MAKEFILE ! b821d6f1d53442abb5183e302cb9bdc6 boehm-gc/ChangeLog c18075e3729cd116028480307a8e845d boehm-gc/EMX_MAKEFILE 3b7cc3be9ed3c2135bbda990e8a69303 boehm-gc/MacOS.c 5cf7764626b7dd7272b2fe11403d1b6a boehm-gc/MacProjects.sit.hqx --- 16,45 ---- fe60d87048567d4fe8c8a0ed2448bcc8 COPYING.RUNTIME d32239bcb673463ab874e80d47fae504 COPYING3 6a6a8e020838b23406c81b19c1d46df6 COPYING3.LIB ! cb1215d6af0c08ef8981990373024205 ChangeLog 09538b708302f1735f6fa05b622ecf5e ChangeLog.tree-ssa 79ef16e405f5873970e04cee49091ff8 INSTALL/README ! 3c47fb6f8e8f7a7dcf0197d643772f00 INSTALL/binaries.html ! e7e2b492b774d03f1ce332c45914d0c6 INSTALL/build.html ! 474365a0fa73825b88ff0c3e3956ef7c INSTALL/configure.html ! 1c35df4887f1a4748bd58d863af32714 INSTALL/download.html ! 182f3ca1425d1ccf637dd048e670c1f6 INSTALL/finalinstall.html ! f24b4999e0b38760db90dbb5acf5a2d4 INSTALL/gfdl.html ! 7bd1f7ee719ca2fc0abb6c5965935367 INSTALL/index.html ! 620f6dbef9699a9bde5d78980fbfaaa0 INSTALL/old.html ! 7ad856e1bb0b805518f4a6ab0ce33cef INSTALL/prerequisites.html ! 1cb47b1be098748cd1c1c3202ad016bb INSTALL/specific.html ! 0d630039c49eda6f5ade37d8aecbf88b INSTALL/test.html ! 0217bca77bf4fb426b11c9694d10e12f LAST_UPDATED 5df43eb77ba93510a6adee7bd06bd774 MAINTAINERS ! fc230d67697000ee98f8a80dc5e7abd7 Makefile.def ! 83d9a5a1efd0ff345894160c20e6125a Makefile.in f3a76b2dae23759df8f4bf5f1088f950 Makefile.tpl ! 498da41d09e58f16734587ba2b61dfd8 NEWS 80d26bc3b1ad4f6969a96a24c9181bf5 README b510a5285eb05298b5f3d9f5ae920588 boehm-gc/AmigaOS.c 2caafacabf758bb76a9dfce1fc544b97 boehm-gc/BCC_MAKEFILE ! 165fde2fdfbd5ef63140bd74ac4df50b boehm-gc/ChangeLog c18075e3729cd116028480307a8e845d boehm-gc/EMX_MAKEFILE 3b7cc3be9ed3c2135bbda990e8a69303 boehm-gc/MacOS.c 5cf7764626b7dd7272b2fe11403d1b6a boehm-gc/MacProjects.sit.hqx *************** b04a1232318128ebd7c630fca10d02e5 boehm- *** 218,224 **** eea34cf893bb060ee20189e256a8065a config.guess 040359150cf11493f973a46d8a25b06b config.rpath 9e38dc3cc2b4e471ea192c8984fb0cd1 config.sub ! 900ae5ac06e2393a3183425057584786 config/ChangeLog 0fcd4badfe2a2191778bdf5ab94aa40c config/acinclude.m4 9238d23c68259d195b332db71892d242 config/acx.m4 6b030f5cf640bdd401ea739f54a667f8 config/asmcfi.m4 --- 218,224 ---- eea34cf893bb060ee20189e256a8065a config.guess 040359150cf11493f973a46d8a25b06b config.rpath 9e38dc3cc2b4e471ea192c8984fb0cd1 config.sub ! 42cdbac8ec035b3bc6d8a6db5a3d84c8 config/ChangeLog 0fcd4badfe2a2191778bdf5ab94aa40c config/acinclude.m4 9238d23c68259d195b332db71892d242 config/acx.m4 6b030f5cf640bdd401ea739f54a667f8 config/asmcfi.m4 *************** b0d2f2e937c16091b330451e6883c4b6 config *** 300,308 **** b6afa5c33fb98edfaf591dd38d198b0d config/warnings.m4 7ef51b0adb98e5c5f7aba46d2c7293f1 config/weakref.m4 e249d18c447a8372fd1ed5f084284d6b config/zlib.m4 ! 63e913e27fbfee8962ff656ebc7b1447 configure ! 93584659b041680f4a3067ca529601f0 configure.ac ! 103400c5efef132fe6ea3718d738f4bd contrib/ChangeLog 7af8d2979bf1a7cfa88e30d05fa22be2 contrib/ChangeLog.tree-ssa e0ea80d7094bf66610f2f60db444f9a1 contrib/analyze_brprob 998f0112578f801ac84646f060e18f89 contrib/check_GNU_style.sh --- 300,308 ---- b6afa5c33fb98edfaf591dd38d198b0d config/warnings.m4 7ef51b0adb98e5c5f7aba46d2c7293f1 config/weakref.m4 e249d18c447a8372fd1ed5f084284d6b config/zlib.m4 ! 47def2ac3dfe6c1441fdbf9365da8ad6 configure ! a9ad66b621e90fba61d4cc9a231bd82e configure.ac ! 9c9df8009b29222ee5d283698648a292 contrib/ChangeLog 7af8d2979bf1a7cfa88e30d05fa22be2 contrib/ChangeLog.tree-ssa e0ea80d7094bf66610f2f60db444f9a1 contrib/analyze_brprob 998f0112578f801ac84646f060e18f89 contrib/check_GNU_style.sh *************** f2ca7b2fcab4618447996996322c174f contri *** 318,324 **** d15395f576c45a45e0272cb440d04f9d contrib/dg-extract-results.sh 87ae17b353cdce921324af084ec6dcb1 contrib/dglib.pm 174a1f43dfb4bc58a4fb430af65fec44 contrib/download_ecj ! d345b64b72d98783a0bebd33857e7ac9 contrib/download_prerequisites 1630984090f8c7ed66e5a977c20664cf contrib/filter_gcc_for_doxygen db03e57377f9eb202b7b783eb81fe40d contrib/filter_knr2ansi.pl 2e831f673656f3052f95930c3203cce9 contrib/filter_params.pl --- 318,324 ---- d15395f576c45a45e0272cb440d04f9d contrib/dg-extract-results.sh 87ae17b353cdce921324af084ec6dcb1 contrib/dglib.pm 174a1f43dfb4bc58a4fb430af65fec44 contrib/download_ecj ! 2a18c4d6c3c423938048a318841f1d04 contrib/download_prerequisites 1630984090f8c7ed66e5a977c20664cf contrib/filter_gcc_for_doxygen db03e57377f9eb202b7b783eb81fe40d contrib/filter_knr2ansi.pl 2e831f673656f3052f95930c3203cce9 contrib/filter_params.pl *************** fa945bac89ee68b410027dcfe1312f4b contri *** 334,340 **** 0fb5c8c3cd465d8bd57b55b2548c683a contrib/paranoia.cc 9083c56c1c89c5bec355a27f78e49807 contrib/patch_tester.sh 87a19b40fbd220938cf6c23c42c255e2 contrib/prepare_patch.sh ! 0a852375c3bfb58f54ee7ce9778fba2b contrib/reghunt/ChangeLog cf247a580e49d212518de409793db0a8 contrib/reghunt/bin/gcc-build-full 724e70ea3e80f87f2a201bbe2f1eef37 contrib/reghunt/bin/gcc-build-simple 3f2318bae7562a4ad1639e686916a545 contrib/reghunt/bin/gcc-cleanup --- 334,340 ---- 0fb5c8c3cd465d8bd57b55b2548c683a contrib/paranoia.cc 9083c56c1c89c5bec355a27f78e49807 contrib/patch_tester.sh 87a19b40fbd220938cf6c23c42c255e2 contrib/prepare_patch.sh ! fac31380c7f110dc59dd8b2f0966b37e contrib/reghunt/ChangeLog cf247a580e49d212518de409793db0a8 contrib/reghunt/bin/gcc-build-full 724e70ea3e80f87f2a201bbe2f1eef37 contrib/reghunt/bin/gcc-build-simple 3f2318bae7562a4ad1639e686916a545 contrib/reghunt/bin/gcc-cleanup *************** f251d49dd87647250fcd74dd50b7835f contri *** 393,399 **** e2829fc4af4f433a6a328a62d5ce8066 contrib/reghunt/examples/reg-watch afd863c2ec84c906e20f9b9787b1f0fe contrib/reghunt/examples/reg-watch.awk 8955535523d4b5f48006bcb851ba9b4b contrib/reghunt/examples/testall ! 1c56943890d7f3bb257c0321c62d1a3b contrib/regression/ChangeLog 30553bfced1b2b46bf7ca01ef6ba69d1 contrib/regression/GCC_Regression_Tester.wdgt/Default.png ad38ddd771df222eb9d413e3c7f6a751 contrib/regression/GCC_Regression_Tester.wdgt/Icon.png 777bd286c147cc02861811f66b9a4440 contrib/regression/GCC_Regression_Tester.wdgt/Info.plist --- 393,399 ---- e2829fc4af4f433a6a328a62d5ce8066 contrib/reghunt/examples/reg-watch afd863c2ec84c906e20f9b9787b1f0fe contrib/reghunt/examples/reg-watch.awk 8955535523d4b5f48006bcb851ba9b4b contrib/reghunt/examples/testall ! f3fd0c0094ab83633c5f72e437aba1ef contrib/regression/ChangeLog 30553bfced1b2b46bf7ca01ef6ba69d1 contrib/regression/GCC_Regression_Tester.wdgt/Default.png ad38ddd771df222eb9d413e3c7f6a751 contrib/regression/GCC_Regression_Tester.wdgt/Icon.png 777bd286c147cc02861811f66b9a4440 contrib/regression/GCC_Regression_Tester.wdgt/Info.plist *************** e00fa8f7dd72b80ca5a64130e85fe4f4 contri *** 417,423 **** 6ed51d5edccbae74c6500732f8a40540 contrib/update-copyright.py 7cb42cbdf8becd280d1e16191416fb62 contrib/warn_summary 21504de31981a67b5b93b265029d1865 depcomp ! 4d00e9f755d470cf3b2b579214bddc51 fixincludes/ChangeLog c23ba4c4f4ca4dfcdd9b4155e4626da7 fixincludes/Makefile.in 4eb8fdda3b3e303c7aa822d341495822 fixincludes/README 455903ad4ff71fa5c5340ef7ae41a0e6 fixincludes/README-fixinc --- 417,423 ---- 6ed51d5edccbae74c6500732f8a40540 contrib/update-copyright.py 7cb42cbdf8becd280d1e16191416fb62 contrib/warn_summary 21504de31981a67b5b93b265029d1865 depcomp ! d7aaa0cc4e452b3243b312f48a37aa72 fixincludes/ChangeLog c23ba4c4f4ca4dfcdd9b4155e4626da7 fixincludes/Makefile.in 4eb8fdda3b3e303c7aa822d341495822 fixincludes/README 455903ad4ff71fa5c5340ef7ae41a0e6 fixincludes/README-fixinc *************** e06760e2aaa65a20f4f201cf50e62a16 fixinc *** 430,442 **** 497da58c4b47627a33f754b61f6eb051 fixincludes/fixinc.in 01aed58f85fe12db3071f34a29e54c9b fixincludes/fixincl.c 33eafc45c2f2fff3597f318ca0dfb5a1 fixincludes/fixincl.tpl ! e17b11099b3f35f44a9b1f4122101f57 fixincludes/fixincl.x 47da6e634225e1667c26a71bcf234bfa fixincludes/fixlib.c 440bb79da40ac194e1c91b5ae2754eb1 fixincludes/fixlib.h 5b2c1fd3ef9d44fb6beb1a0d45ddd533 fixincludes/fixopts.c ed1415e9dbc8f421fd9288bde0d90ad1 fixincludes/fixtests.c 6df145c7cea1e2099cf97a0d83564aca fixincludes/genfixes ! 2981b7a6be065d606badda1ef2d12cdb fixincludes/inclhack.def 6e093a147c4e377aa751d74c82d0bd87 fixincludes/mkfixinc.sh 5f9960cfe65b2e6bef658f770e52dfef fixincludes/mkheaders.in 3aa0563cd682ee61ecd9eb6eea0b0bce fixincludes/procopen.c --- 430,442 ---- 497da58c4b47627a33f754b61f6eb051 fixincludes/fixinc.in 01aed58f85fe12db3071f34a29e54c9b fixincludes/fixincl.c 33eafc45c2f2fff3597f318ca0dfb5a1 fixincludes/fixincl.tpl ! 60638500c904ba4ec56811c5656f6869 fixincludes/fixincl.x 47da6e634225e1667c26a71bcf234bfa fixincludes/fixlib.c 440bb79da40ac194e1c91b5ae2754eb1 fixincludes/fixlib.h 5b2c1fd3ef9d44fb6beb1a0d45ddd533 fixincludes/fixopts.c ed1415e9dbc8f421fd9288bde0d90ad1 fixincludes/fixtests.c 6df145c7cea1e2099cf97a0d83564aca fixincludes/genfixes ! ed738e566fcc80c62466f2c47d99e006 fixincludes/inclhack.def 6e093a147c4e377aa751d74c82d0bd87 fixincludes/mkfixinc.sh 5f9960cfe65b2e6bef658f770e52dfef fixincludes/mkheaders.in 3aa0563cd682ee61ecd9eb6eea0b0bce fixincludes/procopen.c *************** d2f1ddef1ca3edae298e37f7bc892941 fixinc *** 516,522 **** 563eddf934e21ec7f85628e18fb1c641 fixincludes/tests/base/stdint-hpux11.h cc3783f241fa992a305aced8e1195ee9 fixincludes/tests/base/stdint-newlib.h 1ee4e2b61ae5781d35271f3181927037 fixincludes/tests/base/stdint.h ! a023702924578e817fa25256464b7558 fixincludes/tests/base/stdio.h 1887d8bc1711dae9922852cda6027877 fixincludes/tests/base/stdio_tag.h f7553de66508d6d79faafd2724375053 fixincludes/tests/base/stdlib.h 42a7de17fb8f2ac74bc30c7029199637 fixincludes/tests/base/string.h --- 516,522 ---- 563eddf934e21ec7f85628e18fb1c641 fixincludes/tests/base/stdint-hpux11.h cc3783f241fa992a305aced8e1195ee9 fixincludes/tests/base/stdint-newlib.h 1ee4e2b61ae5781d35271f3181927037 fixincludes/tests/base/stdint.h ! 56851945b928073d5e3f774f1efb0721 fixincludes/tests/base/stdio.h 1887d8bc1711dae9922852cda6027877 fixincludes/tests/base/stdio_tag.h f7553de66508d6d79faafd2724375053 fixincludes/tests/base/stdlib.h 42a7de17fb8f2ac74bc30c7029199637 fixincludes/tests/base/string.h *************** a5e817d35ded04a0fb03999b50c0e89e fixinc *** 551,562 **** 955462b555900ecd3934223c64e21fa7 fixincludes/tests/base/types/vxTypesBase.h c78e762f2c91f2af991feda7d3d7f4b2 fixincludes/tests/base/unistd.h f9abccf4b8b7eac82a99bb1f9ef6832f gcc/ABOUT-GCC-NLS ! 8469288315b53a9539ab167633c8e9ab gcc/BASE-VER 59530bdf33659b29e73d4adb9f9f6552 gcc/COPYING a916467b91076e631dd8edb7424769c7 gcc/COPYING.LIB d32239bcb673463ab874e80d47fae504 gcc/COPYING3 6a6a8e020838b23406c81b19c1d46df6 gcc/COPYING3.LIB ! af0ae041a86e80c831594c9cb4e4e38a gcc/ChangeLog a3b63c675afa7a655cc2bfa8a907af79 gcc/ChangeLog-1997 d9a88529352a010253c2e8fb1ed6023b gcc/ChangeLog-1998 240f08f81cb4699e8b49347db38233db gcc/ChangeLog-1999 --- 551,562 ---- 955462b555900ecd3934223c64e21fa7 fixincludes/tests/base/types/vxTypesBase.h c78e762f2c91f2af991feda7d3d7f4b2 fixincludes/tests/base/unistd.h f9abccf4b8b7eac82a99bb1f9ef6832f gcc/ABOUT-GCC-NLS ! 4c75a25275612dd1ce4e57cff9a999e7 gcc/BASE-VER 59530bdf33659b29e73d4adb9f9f6552 gcc/COPYING a916467b91076e631dd8edb7424769c7 gcc/COPYING.LIB d32239bcb673463ab874e80d47fae504 gcc/COPYING3 6a6a8e020838b23406c81b19c1d46df6 gcc/COPYING3.LIB ! 6abe191f5c3c43b5fd71691be6b3db36 gcc/ChangeLog a3b63c675afa7a655cc2bfa8a907af79 gcc/ChangeLog-1997 d9a88529352a010253c2e8fb1ed6023b gcc/ChangeLog-1998 240f08f81cb4699e8b49347db38233db gcc/ChangeLog-1999 *************** fb3fadb88e1d2b3b640cfaaa5ff11780 gcc/Ch *** 580,586 **** 3eb07e0b2e542409bf73d359f7f65609 gcc/ChangeLog.ptr e13638e26743ba41e6011b76cc00d9a9 gcc/ChangeLog.tree-ssa 739ab47f6425bcea1d05e4fc0542de54 gcc/ChangeLog.tuples ! 6049774da9d491a624b3646a7cfa7b9b gcc/DATESTAMP d41d8cd98f00b204e9800998ecf8427e gcc/DEV-PHASE eb92e1ff5e982ca07e173e0eb286d243 gcc/FSFChangeLog 30e1e33411566388b3164558482dc5e6 gcc/FSFChangeLog.10 --- 580,586 ---- 3eb07e0b2e542409bf73d359f7f65609 gcc/ChangeLog.ptr e13638e26743ba41e6011b76cc00d9a9 gcc/ChangeLog.tree-ssa 739ab47f6425bcea1d05e4fc0542de54 gcc/ChangeLog.tuples ! a488d8f104131cbd3ef865b4db6a6df7 gcc/DATESTAMP d41d8cd98f00b204e9800998ecf8427e gcc/DEV-PHASE eb92e1ff5e982ca07e173e0eb286d243 gcc/FSFChangeLog 30e1e33411566388b3164558482dc5e6 gcc/FSFChangeLog.10 *************** ec6799501b2eb2923d5de6a66169dbd2 gcc/ON *** 592,598 **** 65b0958f3e11d2f408011ac52955b811 gcc/acinclude.m4 8dcfee0fc9b019ed7810de9926841795 gcc/aclocal.m4 30995d78221b41ce62c92b2f601b4ebb gcc/ada/9drpc.adb ! 64e376334754800fbdcd0f2cd0e7aecf gcc/ada/ChangeLog 683be0b07dc4f64f118fd5e8ae9cb30d gcc/ada/ChangeLog-2001 7aff25efb203be4136b8776cdc812956 gcc/ada/ChangeLog-2002 cd2379152000f40157d349018fb9364d gcc/ada/ChangeLog-2003 --- 592,598 ---- 65b0958f3e11d2f408011ac52955b811 gcc/acinclude.m4 8dcfee0fc9b019ed7810de9926841795 gcc/aclocal.m4 30995d78221b41ce62c92b2f601b4ebb gcc/ada/9drpc.adb ! cd9a065d894137acb4968430b1359f36 gcc/ada/ChangeLog 683be0b07dc4f64f118fd5e8ae9cb30d gcc/ada/ChangeLog-2001 7aff25efb203be4136b8776cdc812956 gcc/ada/ChangeLog-2002 cd2379152000f40157d349018fb9364d gcc/ada/ChangeLog-2003 *************** a03b138901942ef6b8a662409e6e842d gcc/ad *** 1044,1050 **** 9d3dd8a317fdbdec1a27b44480e76d39 gcc/ada/a-taster.ads 09e5467697bae79fd39e9e40a68afbab gcc/ada/a-teioed.adb 4eb0094120306451664ed73cdafe1d74 gcc/ada/a-teioed.ads ! 1e9390654c0c225c00df58752340cfdc gcc/ada/a-textio.adb 18a11eb25686c5e8692fbf6dc35ae63e gcc/ada/a-textio.ads cb6c13a1bd5a4009dc47cdeac61f5c63 gcc/ada/a-tgdico.ads e52f158e88867c99b27268762d9506b4 gcc/ada/a-tiboio.adb --- 1044,1050 ---- 9d3dd8a317fdbdec1a27b44480e76d39 gcc/ada/a-taster.ads 09e5467697bae79fd39e9e40a68afbab gcc/ada/a-teioed.adb 4eb0094120306451664ed73cdafe1d74 gcc/ada/a-teioed.ads ! 85f33903adc2509f924ec56d84a5085d gcc/ada/a-textio.adb 18a11eb25686c5e8692fbf6dc35ae63e gcc/ada/a-textio.ads cb6c13a1bd5a4009dc47cdeac61f5c63 gcc/ada/a-tgdico.ads e52f158e88867c99b27268762d9506b4 gcc/ada/a-tiboio.adb *************** f459c88852baf5a8d82a6acef1473c32 gcc/ad *** 1558,1565 **** d7eca93022b3adc8f4a61dbe910e95d2 gcc/ada/g-zspche.adb b45654446bc74bb68ae4adef78906e9b gcc/ada/g-zspche.ads 698b837b776abdf33504479af8506a50 gcc/ada/g-zstspl.ads ! ec9434db1d60180addfe46d2744f6380 gcc/ada/gcc-interface/Make-lang.in ! 71b846717da049700d46e08965200a8a gcc/ada/gcc-interface/Makefile.in d47cdfac076a7e474979da4139393b39 gcc/ada/gcc-interface/ada-tree.def a283b124426371820055dc3a8082b6a8 gcc/ada/gcc-interface/ada-tree.h 51c95420b5900990141d2e5705582197 gcc/ada/gcc-interface/ada.h --- 1558,1565 ---- d7eca93022b3adc8f4a61dbe910e95d2 gcc/ada/g-zspche.adb b45654446bc74bb68ae4adef78906e9b gcc/ada/g-zspche.ads 698b837b776abdf33504479af8506a50 gcc/ada/g-zstspl.ads ! 11e71db94d870ce35e79f23cfac3500a gcc/ada/gcc-interface/Make-lang.in ! a72679c5ea14a80ef64caa2ba5e2e16f gcc/ada/gcc-interface/Makefile.in d47cdfac076a7e474979da4139393b39 gcc/ada/gcc-interface/ada-tree.def a283b124426371820055dc3a8082b6a8 gcc/ada/gcc-interface/ada-tree.h 51c95420b5900990141d2e5705582197 gcc/ada/gcc-interface/ada.h *************** f2f009e704358eef01e9cc910cf21f14 gcc/ad *** 2044,2050 **** c4045ad22005510940d70e1a445db431 gcc/ada/s-multip.ads 9403a800176e33306ca96b5b2b8b5c5b gcc/ada/s-os_lib.adb da721f63f954680e720c914fc5b1c9e0 gcc/ada/s-os_lib.ads ! 0ac6b3786374f49f1b441988c0f87298 gcc/ada/s-oscons-tmplt.c f45382176206d1e0b4098d842fbd1790 gcc/ada/s-osinte-aix.adb 3539908c15bc37fc1763ee5ab4d4768a gcc/ada/s-osinte-aix.ads 39c61ac1bebc2cb878e97431624f901b gcc/ada/s-osinte-android.adb --- 2044,2050 ---- c4045ad22005510940d70e1a445db431 gcc/ada/s-multip.ads 9403a800176e33306ca96b5b2b8b5c5b gcc/ada/s-os_lib.adb da721f63f954680e720c914fc5b1c9e0 gcc/ada/s-os_lib.ads ! 01a17ca9968035104efe0254cf0c5e6a gcc/ada/s-oscons-tmplt.c f45382176206d1e0b4098d842fbd1790 gcc/ada/s-osinte-aix.adb 3539908c15bc37fc1763ee5ab4d4768a gcc/ada/s-osinte-aix.ads 39c61ac1bebc2cb878e97431624f901b gcc/ada/s-osinte-android.adb *************** c0c86a23f6e7c29082660aa8e265c1d4 gcc/ad *** 2053,2068 **** 8eb9be01349075439848217caea28840 gcc/ada/s-osinte-darwin.ads b2153a6d0429ecf2d94b05b9d09e6160 gcc/ada/s-osinte-dummy.ads 1f06872d93c69bbab8ffc44d7bb1a6e6 gcc/ada/s-osinte-freebsd.adb ! 22fe8cfebbc50f321bdcf46321c16d7d gcc/ada/s-osinte-freebsd.ads 7f1f83f2b78279e17d374e171c1da3b2 gcc/ada/s-osinte-hpux-dce.adb e0c8077ba5d78f82edb8990863741a5e gcc/ada/s-osinte-hpux-dce.ads d7a90948dd139467401ea238fbf6828c gcc/ada/s-osinte-hpux.ads ! a61877a14692bc80fb90f9c55b339508 gcc/ada/s-osinte-kfreebsd-gnu.ads 9e59ea10b5c96ddb478d2b7b97c913a4 gcc/ada/s-osinte-linux.ads c7a2af0b417168daa486407e6b562409 gcc/ada/s-osinte-mingw.ads e0ccc12265d7031072307fee72e66441 gcc/ada/s-osinte-posix.adb 95d33f38d09b64c6ddbdf6ca9013a19a gcc/ada/s-osinte-rtems.adb ! 3dd5936d5b2ac8711103b898e57f8824 gcc/ada/s-osinte-rtems.ads 60d201ac2cb9230bfb79e898dae488b6 gcc/ada/s-osinte-solaris-posix.ads 4b79cc58a1b73b941681456c8abba9f5 gcc/ada/s-osinte-solaris.adb 5d8bb4d19a51168c31b3c222912bdd69 gcc/ada/s-osinte-solaris.ads --- 2053,2068 ---- 8eb9be01349075439848217caea28840 gcc/ada/s-osinte-darwin.ads b2153a6d0429ecf2d94b05b9d09e6160 gcc/ada/s-osinte-dummy.ads 1f06872d93c69bbab8ffc44d7bb1a6e6 gcc/ada/s-osinte-freebsd.adb ! 460575dee7844394f427bf171b413738 gcc/ada/s-osinte-freebsd.ads 7f1f83f2b78279e17d374e171c1da3b2 gcc/ada/s-osinte-hpux-dce.adb e0c8077ba5d78f82edb8990863741a5e gcc/ada/s-osinte-hpux-dce.ads d7a90948dd139467401ea238fbf6828c gcc/ada/s-osinte-hpux.ads ! 7db31ded89ea5e94817f0e46cdcc32d4 gcc/ada/s-osinte-kfreebsd-gnu.ads 9e59ea10b5c96ddb478d2b7b97c913a4 gcc/ada/s-osinte-linux.ads c7a2af0b417168daa486407e6b562409 gcc/ada/s-osinte-mingw.ads e0ccc12265d7031072307fee72e66441 gcc/ada/s-osinte-posix.adb 95d33f38d09b64c6ddbdf6ca9013a19a gcc/ada/s-osinte-rtems.adb ! fe47c19713c37f489761c788b554d4f0 gcc/ada/s-osinte-rtems.ads 60d201ac2cb9230bfb79e898dae488b6 gcc/ada/s-osinte-solaris-posix.ads 4b79cc58a1b73b941681456c8abba9f5 gcc/ada/s-osinte-solaris.adb 5d8bb4d19a51168c31b3c222912bdd69 gcc/ada/s-osinte-solaris.ads *************** dff6c45dedc5b25498e3b38f561e4cc7 gcc/ad *** 2707,2713 **** 0493a7ed666c4b102be665a8e328be35 gcc/ada/xutil.adb 2c8b2f1975e4e064d3803db6dbd516cb gcc/ada/xutil.ads fdfbd24619483000b7e04929c29feebb gcc/addresses.h ! bc09ee30e57e9f7ab0427b8db7ffe650 gcc/alias.c f806ef31303c8073c9399221837a0cca gcc/alias.h 62460fd310b0c679995a9f3e7a5dd196 gcc/alloc-pool.c 381b28a1bdd5698b2aa6b37bbe7bd591 gcc/alloc-pool.h --- 2707,2713 ---- 0493a7ed666c4b102be665a8e328be35 gcc/ada/xutil.adb 2c8b2f1975e4e064d3803db6dbd516cb gcc/ada/xutil.ads fdfbd24619483000b7e04929c29feebb gcc/addresses.h ! be5e56b27cef6cb9da2eca277a52c897 gcc/alias.c f806ef31303c8073c9399221837a0cca gcc/alias.h 62460fd310b0c679995a9f3e7a5dd196 gcc/alloc-pool.c 381b28a1bdd5698b2aa6b37bbe7bd591 gcc/alloc-pool.h *************** ad3169d3a580696f6480a7d86c8d0e34 gcc/bi *** 2724,2741 **** 0c1f33ae2da3716f67ce61924c81e074 gcc/bt-load.c af0e8c840fa48a6200875c0df80dd7f7 gcc/builtin-attrs.def 4a5945618431b5c84500f7b0e9f69819 gcc/builtin-types.def ! 5bb4e9f0f243e7b64732978ff94a2193 gcc/builtins.c 709447be4b984f09869436e1af94d606 gcc/builtins.def 4b25cb43c45b2775bf3398cad0b2f997 gcc/builtins.h ! 927e5ff8d5141dee866d4063e140c7d3 gcc/c-family/ChangeLog 22037a5d7bda1a2cf1c34a813bad655b gcc/c-family/array-notation-common.c 48d6ed64df57da982f2317402d404124 gcc/c-family/c-ada-spec.c 10157e4802b298ec57f6bbe626694034 gcc/c-family/c-ada-spec.h 005a6e6078a443f37358315735999e75 gcc/c-family/c-cilkplus.c ! bf2aac54335b02e1b34f9cd84cd7917a gcc/c-family/c-common.c 3ce0acd449868895cda4785a578266e2 gcc/c-family/c-common.def 2f64edf02605a36ddcb4643da27c6200 gcc/c-family/c-common.h ! 309d7a6ddfc15b1ae38e85f81163a164 gcc/c-family/c-cppbuiltin.c dbc45b842496652a81ddf71534f085cb gcc/c-family/c-dump.c d903f037f15d1a4333bff696b8b4951a gcc/c-family/c-format.c 3762f6009afbaf0a23480990fa2ad3c4 gcc/c-family/c-format.h --- 2724,2741 ---- 0c1f33ae2da3716f67ce61924c81e074 gcc/bt-load.c af0e8c840fa48a6200875c0df80dd7f7 gcc/builtin-attrs.def 4a5945618431b5c84500f7b0e9f69819 gcc/builtin-types.def ! 502558aceb17fa75d3f035da13056540 gcc/builtins.c 709447be4b984f09869436e1af94d606 gcc/builtins.def 4b25cb43c45b2775bf3398cad0b2f997 gcc/builtins.h ! e27e8d47439dd35c469a82ea2efadccd gcc/c-family/ChangeLog 22037a5d7bda1a2cf1c34a813bad655b gcc/c-family/array-notation-common.c 48d6ed64df57da982f2317402d404124 gcc/c-family/c-ada-spec.c 10157e4802b298ec57f6bbe626694034 gcc/c-family/c-ada-spec.h 005a6e6078a443f37358315735999e75 gcc/c-family/c-cilkplus.c ! 4132d7868a87a4b609bdc0d748308736 gcc/c-family/c-common.c 3ce0acd449868895cda4785a578266e2 gcc/c-family/c-common.def 2f64edf02605a36ddcb4643da27c6200 gcc/c-family/c-common.h ! d26c8589cd2a2bd4d0e97831701370b9 gcc/c-family/c-cppbuiltin.c dbc45b842496652a81ddf71534f085cb gcc/c-family/c-dump.c d903f037f15d1a4333bff696b8b4951a gcc/c-family/c-format.c 3762f6009afbaf0a23480990fa2ad3c4 gcc/c-family/c-format.h *************** a3c101e11d8d2321151be53333283c58 gcc/c- *** 2745,2751 **** 58118b938591ec4ac7e204fa9c8183b5 gcc/c-family/c-omp.c f61beb8b5789078d8f0656cacf166b58 gcc/c-family/c-opts.c 6f8ef838c68a594024f4c12c021f38be gcc/c-family/c-pch.c ! a764fac4f453e4c326786cf0400015da gcc/c-family/c-ppoutput.c dce0ba09fb1c4c409b75ef665ff94efc gcc/c-family/c-pragma.c 61e3aeb23503e1772d1c2c1fdbcea56f gcc/c-family/c-pragma.h 7958151ac6795655d68812f5a45303f9 gcc/c-family/c-pretty-print.c --- 2745,2751 ---- 58118b938591ec4ac7e204fa9c8183b5 gcc/c-family/c-omp.c f61beb8b5789078d8f0656cacf166b58 gcc/c-family/c-opts.c 6f8ef838c68a594024f4c12c021f38be gcc/c-family/c-pch.c ! 50cb86225c83df9a1c700ced6062bd31 gcc/c-family/c-ppoutput.c dce0ba09fb1c4c409b75ef665ff94efc gcc/c-family/c-pragma.c 61e3aeb23503e1772d1c2c1fdbcea56f gcc/c-family/c-pragma.h 7958151ac6795655d68812f5a45303f9 gcc/c-family/c-pretty-print.c *************** dce0ba09fb1c4c409b75ef665ff94efc gcc/c- *** 2760,2766 **** 8041b1cda8919775362c4465096c609b gcc/c-family/cilk.c 85b441a3f28a2bd4e2ca99f03490e65e gcc/c-family/cppspec.c 00be2969ca302d49f76b65173590c942 gcc/c-family/stub-objc.c ! 99ecea74bca9a56f61db0d36f263d1ae gcc/c/ChangeLog 5d46413a194e3bb9b8b12f6e49e911c3 gcc/c/Make-lang.in da8410bebd4f145d0e880682525f4855 gcc/c/c-array-notation.c f8a2e7536c39b4d1e3f4b1d5ee6d62c5 gcc/c/c-aux-info.c --- 2760,2766 ---- 8041b1cda8919775362c4465096c609b gcc/c-family/cilk.c 85b441a3f28a2bd4e2ca99f03490e65e gcc/c-family/cppspec.c 00be2969ca302d49f76b65173590c942 gcc/c-family/stub-objc.c ! f45027895349b65d8bc563cd03c64c67 gcc/c/ChangeLog 5d46413a194e3bb9b8b12f6e49e911c3 gcc/c/Make-lang.in da8410bebd4f145d0e880682525f4855 gcc/c/c-array-notation.c f8a2e7536c39b4d1e3f4b1d5ee6d62c5 gcc/c/c-aux-info.c *************** f8a2e7536c39b4d1e3f4b1d5ee6d62c5 gcc/c/ *** 2771,2790 **** 8b01b74da83bfb4d6dc1127114c72f94 gcc/c/c-lang.h e8fa0ec0164ceb8a90d6ae74f9c7fd1b gcc/c/c-objc-common.c 941499386ac0a23999c942a8986f8e61 gcc/c/c-objc-common.h ! e23135c8c5c5b5403727aa6cfac2e138 gcc/c/c-parser.c ! 66a995603b2cd1394afbfb29b90fe209 gcc/c/c-tree.h ! bbd32bf692648cc452d40d3cd2082082 gcc/c/c-typeck.c 62032db4c55340bd16e7f80d99c0b016 gcc/c/config-lang.in 597ddbe49d6b3528aa5670f785ed61e8 gcc/c/gccspec.c e972cc617a462165838c95421a29ca5e gcc/caller-save.c ! ea7139881d7c530c20092866da4bb4c3 gcc/calls.c ed4373ba18fe8ded768dcb407262f035 gcc/calls.h 57e25f571f9a6c30a6ac019e700a37a7 gcc/cfg-flags.def e136a667dd62eb56a89111c4fcb045eb gcc/cfg.c 02943835098f2e8538a6df30ad37cf85 gcc/cfganal.c 4d8cc1876560628dabb57cefce453d9d gcc/cfgbuild.c c9f2eb2f240e5d5b9a72b7b39d803b1e gcc/cfgcleanup.c ! 567226e4328d5bfff1f1b9746e1e8c2e gcc/cfgexpand.c b3c947b28531afadb81599f4a0d73783 gcc/cfgexpand.h a6a0c9ebc641dfa71f1f2e5188b0da21 gcc/cfghooks.c 17095bd67a8350591e1bd47ec9355698 gcc/cfghooks.h --- 2771,2790 ---- 8b01b74da83bfb4d6dc1127114c72f94 gcc/c/c-lang.h e8fa0ec0164ceb8a90d6ae74f9c7fd1b gcc/c/c-objc-common.c 941499386ac0a23999c942a8986f8e61 gcc/c/c-objc-common.h ! 33edce60cc1284f361717c0959d6bca8 gcc/c/c-parser.c ! 507c85b8f7696a33e88028354c6daad3 gcc/c/c-tree.h ! 6e554b15a3ded5e738d5dded90f67326 gcc/c/c-typeck.c 62032db4c55340bd16e7f80d99c0b016 gcc/c/config-lang.in 597ddbe49d6b3528aa5670f785ed61e8 gcc/c/gccspec.c e972cc617a462165838c95421a29ca5e gcc/caller-save.c ! bd9af695890799c72617dd73a7b218a0 gcc/calls.c ed4373ba18fe8ded768dcb407262f035 gcc/calls.h 57e25f571f9a6c30a6ac019e700a37a7 gcc/cfg-flags.def e136a667dd62eb56a89111c4fcb045eb gcc/cfg.c 02943835098f2e8538a6df30ad37cf85 gcc/cfganal.c 4d8cc1876560628dabb57cefce453d9d gcc/cfgbuild.c c9f2eb2f240e5d5b9a72b7b39d803b1e gcc/cfgcleanup.c ! eb3b38be18e31bda0619abdc804c6bd9 gcc/cfgexpand.c b3c947b28531afadb81599f4a0d73783 gcc/cfgexpand.h a6a0c9ebc641dfa71f1f2e5188b0da21 gcc/cfghooks.c 17095bd67a8350591e1bd47ec9355698 gcc/cfghooks.h *************** a6a0c9ebc641dfa71f1f2e5188b0da21 gcc/cf *** 2792,2802 **** 8c0ea72e2cb82d8984053a8bbb661547 gcc/cfgloop.h 4465b1eb3d111a823235d7e5458b8889 gcc/cfgloopanal.c a7a8e23de07e7514d4e470f630ee8e1e gcc/cfgloopmanip.c ! fbecb7722699922ab7f9db8ea7fd59d5 gcc/cfgrtl.c ! 444bde39f32fb5b9671d26f44171421f gcc/cgraph.c 631fff2536ef3c000bfe0bc23e88b5af gcc/cgraph.h fcb9af5cf8a6d1c7a195ca1c007c9e3f gcc/cgraphbuild.c ! 487d0c828fa6d2d81d7fab7c77af7433 gcc/cgraphclones.c 2793d3e7c375b13c8f3e11fa51c6c317 gcc/cgraphunit.c 554526d022cd2d03e42412e6886c1338 gcc/cif-code.def f264c8d0b8b475e306ad180dadec1a98 gcc/cilk-builtins.def --- 2792,2802 ---- 8c0ea72e2cb82d8984053a8bbb661547 gcc/cfgloop.h 4465b1eb3d111a823235d7e5458b8889 gcc/cfgloopanal.c a7a8e23de07e7514d4e470f630ee8e1e gcc/cfgloopmanip.c ! 00b2d7b100190e6a6ebe0cce24a55b88 gcc/cfgrtl.c ! e03d9b550ec8791092095c80af627c36 gcc/cgraph.c 631fff2536ef3c000bfe0bc23e88b5af gcc/cgraph.h fcb9af5cf8a6d1c7a195ca1c007c9e3f gcc/cgraphbuild.c ! 9fa85d4ed1ca55d9ed7d1ed4fb45588f gcc/cgraphclones.c 2793d3e7c375b13c8f3e11fa51c6c317 gcc/cgraphunit.c 554526d022cd2d03e42412e6886c1338 gcc/cif-code.def f264c8d0b8b475e306ad180dadec1a98 gcc/cilk-builtins.def *************** f0fff0035c48bf460268a3e13ee6af37 gcc/co *** 2808,2814 **** b6773a126733d1fc1b9a30ac20f98889 gcc/collect2.c f925b9d3bc0775367c24b644d8e35002 gcc/collect2.h d37c34609a296ebc9dd4d677348419ea gcc/combine-stack-adj.c ! bd722e7fde32fa874a74ec433e7ee6b5 gcc/combine.c 6fb797249d5246d9ba69af1e20e95b46 gcc/common.opt a0c9b1ade89a8b10502b808eda27512d gcc/common/common-target-def.h 82f688c1c764b568b712d183e502bc24 gcc/common/common-target.def --- 2808,2814 ---- b6773a126733d1fc1b9a30ac20f98889 gcc/collect2.c f925b9d3bc0775367c24b644d8e35002 gcc/collect2.h d37c34609a296ebc9dd4d677348419ea gcc/combine-stack-adj.c ! 934106bdb143b8891606e989d7c05af0 gcc/combine.c 6fb797249d5246d9ba69af1e20e95b46 gcc/common.opt a0c9b1ade89a8b10502b808eda27512d gcc/common/common-target-def.h 82f688c1c764b568b712d183e502bc24 gcc/common/common-target.def *************** ef0ef64208ca9035f93ed6d6e9606df6 gcc/co *** 2863,2888 **** 2ebc5e4eccb7d2c52897dd83a4be28a7 gcc/compare-elim.c e82a81c423eccb73f4e9f04c09a5cae1 gcc/conditions.h a40ac599c845be41c961d15dfd9559b3 gcc/config.build ! 7119c03a6a90516a1af42c54b796dcc3 gcc/config.gcc 9eba81e694fe412bcfa8aafa6743a568 gcc/config.host ! b6cab5295deaaef945420195c91ae548 gcc/config.in 8e697813dc96ca90f5d0f4c196efe2cc gcc/config/README 21a150941d104bd2b16b4b064132b82b gcc/config/aarch64/aarch64-arches.def 526b5bd7fea44716301891aad5581e68 gcc/config/aarch64/aarch64-builtins.c fa8ac6bece011754d6e9cd8fa724af78 gcc/config/aarch64/aarch64-cores.def ! 19f2c3d21617a2826b76e5582962c881 gcc/config/aarch64/aarch64-elf-raw.h 0da8426685ba7860c8cacd8f15a98f78 gcc/config/aarch64/aarch64-elf.h ! 795d01ff5da342725530900d9b344c24 gcc/config/aarch64/aarch64-linux.h 19acc0c5b8eaf2ec35cb01753657f65d gcc/config/aarch64/aarch64-modes.def 719c650d0bf63bbe2a04c38aad30d8ca gcc/config/aarch64/aarch64-option-extensions.def a3008f913374a88b9de4022df0b84d4c gcc/config/aarch64/aarch64-opts.h fed69ad295f02f1fc1d45b7939c6a7ae gcc/config/aarch64/aarch64-protos.h 0a8a4231dd82bedb83a9d89591dfd07f gcc/config/aarch64/aarch64-simd-builtins.def ! c721289c5b875328925bd324e966d9eb gcc/config/aarch64/aarch64-simd.md d0075eefdaf65db63dacef89ea39e1ea gcc/config/aarch64/aarch64-tune.md ! b881b2b0e149381b1b84c9d74ad0074a gcc/config/aarch64/aarch64.c 36e04e0a812dde95d35d39474d669de6 gcc/config/aarch64/aarch64.h ! 6c172d3bf8d67a803be8a72eeb69a95e gcc/config/aarch64/aarch64.md b05f3a81e9d56b3b02e53935d31c5463 gcc/config/aarch64/aarch64.opt 42403bae711918a5d5447659db661bc3 gcc/config/aarch64/arm_neon.h 8022d0dfaefe9140acaafd3005b0334b gcc/config/aarch64/atomics.md --- 2863,2888 ---- 2ebc5e4eccb7d2c52897dd83a4be28a7 gcc/compare-elim.c e82a81c423eccb73f4e9f04c09a5cae1 gcc/conditions.h a40ac599c845be41c961d15dfd9559b3 gcc/config.build ! 5192e603028dedbf612f27eb0addc2a7 gcc/config.gcc 9eba81e694fe412bcfa8aafa6743a568 gcc/config.host ! 76a384416e997e130eed30263009164b gcc/config.in 8e697813dc96ca90f5d0f4c196efe2cc gcc/config/README 21a150941d104bd2b16b4b064132b82b gcc/config/aarch64/aarch64-arches.def 526b5bd7fea44716301891aad5581e68 gcc/config/aarch64/aarch64-builtins.c fa8ac6bece011754d6e9cd8fa724af78 gcc/config/aarch64/aarch64-cores.def ! fe5c482acfecb6b8e7ed44fa4cbe1378 gcc/config/aarch64/aarch64-elf-raw.h 0da8426685ba7860c8cacd8f15a98f78 gcc/config/aarch64/aarch64-elf.h ! d02ef4c50d1620eca58fd446289601ef gcc/config/aarch64/aarch64-linux.h 19acc0c5b8eaf2ec35cb01753657f65d gcc/config/aarch64/aarch64-modes.def 719c650d0bf63bbe2a04c38aad30d8ca gcc/config/aarch64/aarch64-option-extensions.def a3008f913374a88b9de4022df0b84d4c gcc/config/aarch64/aarch64-opts.h fed69ad295f02f1fc1d45b7939c6a7ae gcc/config/aarch64/aarch64-protos.h 0a8a4231dd82bedb83a9d89591dfd07f gcc/config/aarch64/aarch64-simd-builtins.def ! 64f77fa3af5a66f3c8c55771b3a591ef gcc/config/aarch64/aarch64-simd.md d0075eefdaf65db63dacef89ea39e1ea gcc/config/aarch64/aarch64-tune.md ! 24ca29ef95f1163bfcc146582cb16016 gcc/config/aarch64/aarch64.c 36e04e0a812dde95d35d39474d669de6 gcc/config/aarch64/aarch64.h ! 87e37bc75f4b5ac718f7b4ecb372f877 gcc/config/aarch64/aarch64.md b05f3a81e9d56b3b02e53935d31c5463 gcc/config/aarch64/aarch64.opt 42403bae711918a5d5447659db661bc3 gcc/config/aarch64/arm_neon.h 8022d0dfaefe9140acaafd3005b0334b gcc/config/aarch64/atomics.md *************** c5163265d2d83b8fe360d25202a8b342 gcc/co *** 2898,2904 **** b1dbf3309f3744b073c14d10174ad350 gcc/config/alpha/alpha-protos.h 44ec73482b11ce3af274071b08576983 gcc/config/alpha/alpha.c 26d7e3357f7c361c8e6343bd33837415 gcc/config/alpha/alpha.h ! f93bc903e85faf39ad6458e85cf2a348 gcc/config/alpha/alpha.md 0112499d08da07e950408270a411f17b gcc/config/alpha/alpha.opt a4e4522b66118868b69da96248c8c307 gcc/config/alpha/constraints.md 73a886f75a13ec1312100c0b05eddfce gcc/config/alpha/driver-alpha.c --- 2898,2904 ---- b1dbf3309f3744b073c14d10174ad350 gcc/config/alpha/alpha-protos.h 44ec73482b11ce3af274071b08576983 gcc/config/alpha/alpha.c 26d7e3357f7c361c8e6343bd33837415 gcc/config/alpha/alpha.h ! 5732bafd9bea3af66abbfa55f3fdf27a gcc/config/alpha/alpha.md 0112499d08da07e950408270a411f17b gcc/config/alpha/alpha.opt a4e4522b66118868b69da96248c8c307 gcc/config/alpha/constraints.md 73a886f75a13ec1312100c0b05eddfce gcc/config/alpha/driver-alpha.c *************** b8712fbb401b24fa48945dac9bfe367c gcc/co *** 2948,2959 **** a10288b2cb1af625b28612f6454a8386 gcc/config/arm/arm-ldmstm.ml cf094505e37b191ba07edb74fbac88b1 gcc/config/arm/arm-modes.def 050d4ca3b04fd3fc1406a0dcbebfe6d9 gcc/config/arm/arm-opts.h ! 93d123035540f98d03c5f095753a582a gcc/config/arm/arm-protos.h d4141d32e48618aa5ba56b67b3b6f221 gcc/config/arm/arm-tables.opt d5d7db112e25b2d92afea2a696a57ff9 gcc/config/arm/arm-tune.md ! 0f329ddcb2d5d3a8427453fccacf1853 gcc/config/arm/arm.c ! 0e13fae99124bb56183853c266b3c5b0 gcc/config/arm/arm.h ! 5486ecb44311a1019422931b9d104bc1 gcc/config/arm/arm.md 7ec80248e2019885ec3fa78e3d2df3b7 gcc/config/arm/arm.opt 55a87c11458722539f3821c53f4b8c5f gcc/config/arm/arm1020e.md 7c28931b2e524e1b44678ca8334d5d54 gcc/config/arm/arm1026ejs.md --- 2948,2959 ---- a10288b2cb1af625b28612f6454a8386 gcc/config/arm/arm-ldmstm.ml cf094505e37b191ba07edb74fbac88b1 gcc/config/arm/arm-modes.def 050d4ca3b04fd3fc1406a0dcbebfe6d9 gcc/config/arm/arm-opts.h ! 544f99e0acf94154191d8c290b3c4a82 gcc/config/arm/arm-protos.h d4141d32e48618aa5ba56b67b3b6f221 gcc/config/arm/arm-tables.opt d5d7db112e25b2d92afea2a696a57ff9 gcc/config/arm/arm-tune.md ! 9e7a237c4ece46493cc4d4bce9094566 gcc/config/arm/arm.c ! 24a422f3796479a458347fc7f7b8abfc gcc/config/arm/arm.h ! 54598a4a5336aff130159db1c612f597 gcc/config/arm/arm.md 7ec80248e2019885ec3fa78e3d2df3b7 gcc/config/arm/arm.opt 55a87c11458722539f3821c53f4b8c5f gcc/config/arm/arm1020e.md 7c28931b2e524e1b44678ca8334d5d54 gcc/config/arm/arm1026ejs.md *************** dfdf8a4aee915224ee2bc49fae27c588 gcc/co *** 2964,2970 **** 57ea068bd966895991477ffd6e51d2f2 gcc/config/arm/arm_neon_builtins.def ebcb1b558c456101c18d856467a5ffe4 gcc/config/arm/bpabi.h 1d36ffaf951df98052e3f212624f4570 gcc/config/arm/coff.h ! e20466a62908ff0a229a2503c22b1f0a gcc/config/arm/constraints.md 0cb3e2e12b3a38d03abbdeda5baf61cc gcc/config/arm/cortex-a15-neon.md 47e8e91484851d068c687514c9a286e6 gcc/config/arm/cortex-a15.md 1c8d450585d357220cc5c2ebb2943630 gcc/config/arm/cortex-a5.md --- 2964,2970 ---- 57ea068bd966895991477ffd6e51d2f2 gcc/config/arm/arm_neon_builtins.def ebcb1b558c456101c18d856467a5ffe4 gcc/config/arm/bpabi.h 1d36ffaf951df98052e3f212624f4570 gcc/config/arm/coff.h ! bf1467cf621f8a7095478ca941cf40ed gcc/config/arm/constraints.md 0cb3e2e12b3a38d03abbdeda5baf61cc gcc/config/arm/cortex-a15-neon.md 47e8e91484851d068c687514c9a286e6 gcc/config/arm/cortex-a15.md 1c8d450585d357220cc5c2ebb2943630 gcc/config/arm/cortex-a5.md *************** dfebde7b0de12b1fd5557ed2002a6b18 gcc/co *** 2980,2986 **** f1c35fe36074aeb6b86bf3df9b9809cb gcc/config/arm/cortex-r4f.md 1d56e0ea31042b3affc03861cb6a14a2 gcc/config/arm/crypto.def d5c5c3524695653b76c4f2c0f4962135 gcc/config/arm/crypto.md ! 6eee2b8989e806a15ddf1164190ae779 gcc/config/arm/driver-arm.c 8aa2af0f9cf690414116130a59f6ead0 gcc/config/arm/elf.h 68cb8271ca3a2efc000d490e96066dfe gcc/config/arm/fa526.md 091065d093420ecc514c25df889f23fb gcc/config/arm/fa606te.md --- 2980,2986 ---- f1c35fe36074aeb6b86bf3df9b9809cb gcc/config/arm/cortex-r4f.md 1d56e0ea31042b3affc03861cb6a14a2 gcc/config/arm/crypto.def d5c5c3524695653b76c4f2c0f4962135 gcc/config/arm/crypto.md ! cd78267e7ae5557adf791d6e3091bd7a gcc/config/arm/driver-arm.c 8aa2af0f9cf690414116130a59f6ead0 gcc/config/arm/elf.h 68cb8271ca3a2efc000d490e96066dfe gcc/config/arm/fa526.md 091065d093420ecc514c25df889f23fb gcc/config/arm/fa606te.md *************** b1c28c557bd726126ce8dc1cca03d981 gcc/co *** 3004,3014 **** a5bcc027bcaf911067121805327b6407 gcc/config/arm/neon.md d16795d6009d62f44e69fece0b527660 gcc/config/arm/neon.ml a24042b796d08a2cd687392b38423454 gcc/config/arm/netbsd-elf.h ! 24a26d6ba1e6ebf3a9676ee91cd6efb4 gcc/config/arm/predicates.md e062772cc17dc38f590c49d66b7495e5 gcc/config/arm/rtems-eabi.h f1380539ece11e800120f6dd294810c0 gcc/config/arm/semi.h d35fb7d9952e1dc4c5dac14c03fb142a gcc/config/arm/symbian.h ! 7b86c240b684e9b5a159ba532c64befb gcc/config/arm/sync.md 6c2e6da04b9a445110e7e5390dc11b46 gcc/config/arm/t-aprofile 286baa03bff536aaf5a4a60d5b1f03e3 gcc/config/arm/t-arm 3b1396ec75c2a2056e6f63bdb005b7bb gcc/config/arm/t-arm-elf --- 3004,3014 ---- a5bcc027bcaf911067121805327b6407 gcc/config/arm/neon.md d16795d6009d62f44e69fece0b527660 gcc/config/arm/neon.ml a24042b796d08a2cd687392b38423454 gcc/config/arm/netbsd-elf.h ! d5b3b8781466f2311d18acf5d741c778 gcc/config/arm/predicates.md e062772cc17dc38f590c49d66b7495e5 gcc/config/arm/rtems-eabi.h f1380539ece11e800120f6dd294810c0 gcc/config/arm/semi.h d35fb7d9952e1dc4c5dac14c03fb142a gcc/config/arm/symbian.h ! 38284cb0334ad244ca6046462b719283 gcc/config/arm/sync.md 6c2e6da04b9a445110e7e5390dc11b46 gcc/config/arm/t-aprofile 286baa03bff536aaf5a4a60d5b1f03e3 gcc/config/arm/t-arm 3b1396ec75c2a2056e6f63bdb005b7bb gcc/config/arm/t-arm-elf *************** e3950ec6bd159734835f8f8fb143efc6 gcc/co *** 3018,3031 **** ef03e8821b87ae917e75a896f7515a83 gcc/config/arm/t-rtems-eabi 96f34ac517d80a20ada4a4cf6adf1fd4 gcc/config/arm/t-symbian 6a2754e02840c8bafdf59d8df84f5c35 gcc/config/arm/t-vxworks ! bcd5d34153856d124d957f7232436d2c gcc/config/arm/thumb2.md aff5361a35cf3b67875219f0cf3033e8 gcc/config/arm/types.md 1e08e1c9ef0b4ef9afbd7098ed370a30 gcc/config/arm/uclinux-eabi.h 9a1e2a69825c4161470dc22b2622e678 gcc/config/arm/uclinux-elf.h 75e200f7915fb565020d3cb835874ace gcc/config/arm/unknown-elf.h ! c136d87590d20ac3cfb14cbfae13ffea gcc/config/arm/unspecs.md 3d0b0d6a1ba842743ec73559bd4deff8 gcc/config/arm/vec-common.md ! ba9229abdd21b5f6c7ce5a19f34ee06e gcc/config/arm/vfp.md 81b24c3d99f42aaf80b43d705f3f7ea3 gcc/config/arm/vfp11.md 892885b7d4dc935afdd8917fc2d277e6 gcc/config/arm/vxworks.h 7ea704769204d420cbcbb2f114349312 gcc/config/arm/vxworks.opt --- 3018,3031 ---- ef03e8821b87ae917e75a896f7515a83 gcc/config/arm/t-rtems-eabi 96f34ac517d80a20ada4a4cf6adf1fd4 gcc/config/arm/t-symbian 6a2754e02840c8bafdf59d8df84f5c35 gcc/config/arm/t-vxworks ! 26bae829bb0874ec7ecc35c854c7dca8 gcc/config/arm/thumb2.md aff5361a35cf3b67875219f0cf3033e8 gcc/config/arm/types.md 1e08e1c9ef0b4ef9afbd7098ed370a30 gcc/config/arm/uclinux-eabi.h 9a1e2a69825c4161470dc22b2622e678 gcc/config/arm/uclinux-elf.h 75e200f7915fb565020d3cb835874ace gcc/config/arm/unknown-elf.h ! 9af4b823a89c91557a596b3ea69043b9 gcc/config/arm/unspecs.md 3d0b0d6a1ba842743ec73559bd4deff8 gcc/config/arm/vec-common.md ! b0c77980dd2876534122f2ad49ca173c gcc/config/arm/vfp.md 81b24c3d99f42aaf80b43d705f3f7ea3 gcc/config/arm/vfp11.md 892885b7d4dc935afdd8917fc2d277e6 gcc/config/arm/vxworks.h 7ea704769204d420cbcbb2f114349312 gcc/config/arm/vxworks.opt *************** a17a638dc98f3f18b0e13448c69e1e65 gcc/co *** 3033,3039 **** b5a2b09861de6689113db05b64719022 gcc/config/avr/avr-arch.h 2643f8b817df1b5cb3b39737fdb810ad gcc/config/avr/avr-c.c 8b8a7041f9af051e650a9caa8a73e3f7 gcc/config/avr/avr-devices.c ! 33f5b4c5d3b12c120f3c1752faf1e6da gcc/config/avr/avr-dimode.md ca91afc31bfc11f2c36a82781295860a gcc/config/avr/avr-fixed.md 0ea9e1292fa63ad32d73b8c1ea6175e9 gcc/config/avr/avr-log.c 48400c902cb5f518f34efe8178f569b4 gcc/config/avr/avr-mcus.def --- 3033,3039 ---- b5a2b09861de6689113db05b64719022 gcc/config/avr/avr-arch.h 2643f8b817df1b5cb3b39737fdb810ad gcc/config/avr/avr-c.c 8b8a7041f9af051e650a9caa8a73e3f7 gcc/config/avr/avr-devices.c ! f07445136fc44f69ceb063da72d35a81 gcc/config/avr/avr-dimode.md ca91afc31bfc11f2c36a82781295860a gcc/config/avr/avr-fixed.md 0ea9e1292fa63ad32d73b8c1ea6175e9 gcc/config/avr/avr-log.c 48400c902cb5f518f34efe8178f569b4 gcc/config/avr/avr-mcus.def *************** f2654233df6eb02ba173ff479c08e9a5 gcc/co *** 3043,3054 **** 7344d18acafd2951ffbf2c0a9f014f08 gcc/config/avr/avr-tables.opt 6e649f4257b029bbed327bf816123a0f gcc/config/avr/avr.c 9f36e271302a29de37eae1f2ce2b1b0c gcc/config/avr/avr.h ! d81b3790f1378bc30845cbfbe16de2cb gcc/config/avr/avr.md 421709cbe0735ad8406c0430cf5087d8 gcc/config/avr/avr.opt d661391f9cbec6e8f6a68663a2f1eef7 gcc/config/avr/avrlibc.h df7d2059ef5d7a0c8b8680202c92f0c8 gcc/config/avr/builtins.def 1ceb27f32bf3a856d48533894d2b21c8 gcc/config/avr/constraints.md ! 7d2aa14e5ca1680fdfc98aacb11550a7 gcc/config/avr/driver-avr.c 8b609630042b5a0695e37a3c641c07e0 gcc/config/avr/elf.h 559715cfb805104d69c872c30d5b505f gcc/config/avr/gen-avr-mmcu-texi.c a1d8b32faabb2b3faa1ac80645a0a08f gcc/config/avr/genmultilib.awk --- 3043,3054 ---- 7344d18acafd2951ffbf2c0a9f014f08 gcc/config/avr/avr-tables.opt 6e649f4257b029bbed327bf816123a0f gcc/config/avr/avr.c 9f36e271302a29de37eae1f2ce2b1b0c gcc/config/avr/avr.h ! 497fc636821aa24191f1b7bede38d658 gcc/config/avr/avr.md 421709cbe0735ad8406c0430cf5087d8 gcc/config/avr/avr.opt d661391f9cbec6e8f6a68663a2f1eef7 gcc/config/avr/avrlibc.h df7d2059ef5d7a0c8b8680202c92f0c8 gcc/config/avr/builtins.def 1ceb27f32bf3a856d48533894d2b21c8 gcc/config/avr/constraints.md ! b939e96ed07ac8bd6a43b691aa6c4a1c gcc/config/avr/driver-avr.c 8b609630042b5a0695e37a3c641c07e0 gcc/config/avr/elf.h 559715cfb805104d69c872c30d5b505f gcc/config/avr/gen-avr-mmcu-texi.c a1d8b32faabb2b3faa1ac80645a0a08f gcc/config/avr/genmultilib.awk *************** a902953f5bac7aae44f9e96aa1512c85 gcc/co *** 3132,3139 **** 99c3ae0900c068eea90c0cf6ec218cc4 gcc/config/darwin-ppc-ldouble-patch.def 8c5f8b5517c2036a92d1d60b1fd7ff12 gcc/config/darwin-protos.h 3d291f210fdd620fa42fdc9ccbe27d48 gcc/config/darwin-sections.def ! eea361905085274f555faef9fbaf4349 gcc/config/darwin.c ! cab1f31b62c7e70b908f7e965a6986bf gcc/config/darwin.h 08dc860eb57f4234525d5a7c354e6531 gcc/config/darwin.opt a58fdc493363dfcf3d26a22cbacc78d7 gcc/config/darwin10.h 8f2cdbd6cce4cf6cc3b6312c89ab384a gcc/config/darwin9.h --- 3132,3139 ---- 99c3ae0900c068eea90c0cf6ec218cc4 gcc/config/darwin-ppc-ldouble-patch.def 8c5f8b5517c2036a92d1d60b1fd7ff12 gcc/config/darwin-protos.h 3d291f210fdd620fa42fdc9ccbe27d48 gcc/config/darwin-sections.def ! c79d398191d4e6e7c88e959c835bac88 gcc/config/darwin.c ! e84b3c046b8d905978aa1bd971789b42 gcc/config/darwin.h 08dc860eb57f4234525d5a7c354e6531 gcc/config/darwin.opt a58fdc493363dfcf3d26a22cbacc78d7 gcc/config/darwin10.h 8f2cdbd6cce4cf6cc3b6312c89ab384a gcc/config/darwin9.h *************** d5c4dd3df73dda90225f46ca7d64865e gcc/co *** 3164,3170 **** 1738c019a3d540ce98f593126cdbf95a gcc/config/fr30/fr30.opt e00982a4a6b4726b33ff576fcae147bd gcc/config/fr30/predicates.md 3c7c357562d1fcbf89513fac1dfdc1fa gcc/config/freebsd-nthr.h ! 1827759845e125d43d7ab61efce7e1ac gcc/config/freebsd-spec.h 13fc701c61d79804029d66b39b6eaa28 gcc/config/freebsd-stdint.h 9b83f1c24795e33bab5cb6ebf2099d06 gcc/config/freebsd.h 6f6c155805d5bd3f40fc9168de246e25 gcc/config/freebsd.opt --- 3164,3170 ---- 1738c019a3d540ce98f593126cdbf95a gcc/config/fr30/fr30.opt e00982a4a6b4726b33ff576fcae147bd gcc/config/fr30/predicates.md 3c7c357562d1fcbf89513fac1dfdc1fa gcc/config/freebsd-nthr.h ! 5709d6d7cf36a44931c8f829a9ecc402 gcc/config/freebsd-spec.h 13fc701c61d79804029d66b39b6eaa28 gcc/config/freebsd-stdint.h 9b83f1c24795e33bab5cb6ebf2099d06 gcc/config/freebsd.h 6f6c155805d5bd3f40fc9168de246e25 gcc/config/freebsd.opt *************** dae4ed32c1052b06fe3763cb8f006707 gcc/co *** 3230,3236 **** 5ff07ab1ed5fdea970ce9df124a67ec7 gcc/config/i386/bmmintrin.h 35f0172c488138d0178b2c2a5c4ff97a gcc/config/i386/bsd.h a0d4215ea39006a2f6f4f5d470428451 gcc/config/i386/btver2.md ! d7631f9ec07b59392514bf66660b50a1 gcc/config/i386/constraints.md 4d22fa6fcffedce5d496029ac9f6a4ef gcc/config/i386/core2.md 58ba15709d89f011fb75af3ed06ca218 gcc/config/i386/cpuid.h 45c0f72f11808959ca56250ded549f2e gcc/config/i386/cross-stdarg.h --- 3230,3236 ---- 5ff07ab1ed5fdea970ce9df124a67ec7 gcc/config/i386/bmmintrin.h 35f0172c488138d0178b2c2a5c4ff97a gcc/config/i386/bsd.h a0d4215ea39006a2f6f4f5d470428451 gcc/config/i386/btver2.md ! e83b47e1b44adf07c64e5bc4083478bc gcc/config/i386/constraints.md 4d22fa6fcffedce5d496029ac9f6a4ef gcc/config/i386/core2.md 58ba15709d89f011fb75af3ed06ca218 gcc/config/i386/cpuid.h 45c0f72f11808959ca56250ded549f2e gcc/config/i386/cross-stdarg.h *************** a9e1cde30a6ecf9d70e7db1d49a3a8f6 gcc/co *** 3240,3256 **** e21436b3decf985d45fcb3570935958f gcc/config/i386/cygwin-stdint.h b8c56841226d00f3611e76df81bc1c32 gcc/config/i386/cygwin-w64.h 04d0e764f6744c7e9b76a39d0381d053 gcc/config/i386/cygwin.h ! 21dcaf77cc8fb36ae705ee603ce101e7 gcc/config/i386/darwin.h f662aa7a9eab8bad5800512a3187b0c8 gcc/config/i386/darwin64.h e7c8adf4ccaf394835acedd1e77b0be5 gcc/config/i386/djgpp-stdint.h ed2a20210c9db85baa32cfae1070d72a gcc/config/i386/djgpp.h b5c747e37b508b664a1ff09f6e55f235 gcc/config/i386/djgpp.opt ! 10a50b2a386751a4d4d7d26068150817 gcc/config/i386/driver-i386.c e8847ba7f602deea49feaabdc1563292 gcc/config/i386/emmintrin.h c10561ee6fc509ac4572687dc0f67e76 gcc/config/i386/f16cintrin.h 301045a5d299805e520b98e6c019c4eb gcc/config/i386/fma4intrin.h 72fc9354eeb6cafbfc4838ac12aed188 gcc/config/i386/fmaintrin.h ! 0ca674dca2c6c1a948283303b677cf21 gcc/config/i386/freebsd.h 177656a35e947f2f0f2cd401acf59b5b gcc/config/i386/freebsd64.h d9db85fe9d44194baef2e943d7012f74 gcc/config/i386/fxsrintrin.h 2658206659de5e790dbff43fbcc4b73b gcc/config/i386/gas.h --- 3240,3256 ---- e21436b3decf985d45fcb3570935958f gcc/config/i386/cygwin-stdint.h b8c56841226d00f3611e76df81bc1c32 gcc/config/i386/cygwin-w64.h 04d0e764f6744c7e9b76a39d0381d053 gcc/config/i386/cygwin.h ! 055c79fe924c2db9fafc69299c4d1a5c gcc/config/i386/darwin.h f662aa7a9eab8bad5800512a3187b0c8 gcc/config/i386/darwin64.h e7c8adf4ccaf394835acedd1e77b0be5 gcc/config/i386/djgpp-stdint.h ed2a20210c9db85baa32cfae1070d72a gcc/config/i386/djgpp.h b5c747e37b508b664a1ff09f6e55f235 gcc/config/i386/djgpp.opt ! 0775d1111a670126fbe5fa6f3663e1ca gcc/config/i386/driver-i386.c e8847ba7f602deea49feaabdc1563292 gcc/config/i386/emmintrin.h c10561ee6fc509ac4572687dc0f67e76 gcc/config/i386/f16cintrin.h 301045a5d299805e520b98e6c019c4eb gcc/config/i386/fma4intrin.h 72fc9354eeb6cafbfc4838ac12aed188 gcc/config/i386/fmaintrin.h ! 28a1da59926019d200c7a24965254159 gcc/config/i386/freebsd.h 177656a35e947f2f0f2cd401acf59b5b gcc/config/i386/freebsd64.h d9db85fe9d44194baef2e943d7012f74 gcc/config/i386/fxsrintrin.h 2658206659de5e790dbff43fbcc4b73b gcc/config/i386/gas.h *************** a206f895a51dca0acbbd5c40439f43ac gcc/co *** 3271,3279 **** fbc0e51208d80f573c53d5b2172b2750 gcc/config/i386/i386-modes.def 1fc953e4fa5bc7c93802f7952b7dafbc gcc/config/i386/i386-opts.h b2009cc823c7348862f1dd5b62268874 gcc/config/i386/i386-protos.h ! e3f37f437ca746a07ae0e0cea3316b1e gcc/config/i386/i386.c c429bcf230f751ddfb4fb8624b5ae0b3 gcc/config/i386/i386.h ! e762db8dd4baa128ef3c0b1eda20777d gcc/config/i386/i386.md 8ae240f9350420a2a75307b02b20422a gcc/config/i386/i386.opt ddbc3d63f2446262d897ba8f20043c58 gcc/config/i386/i386elf.h f95e6938a9ae3f77651a61e489d957cb gcc/config/i386/ia32intrin.h --- 3271,3279 ---- fbc0e51208d80f573c53d5b2172b2750 gcc/config/i386/i386-modes.def 1fc953e4fa5bc7c93802f7952b7dafbc gcc/config/i386/i386-opts.h b2009cc823c7348862f1dd5b62268874 gcc/config/i386/i386-protos.h ! 2d99e28d2c9da6074b7183d06103cd91 gcc/config/i386/i386.c c429bcf230f751ddfb4fb8624b5ae0b3 gcc/config/i386/i386.h ! 0f3ea10f9dce16b5dceabd86a6e30884 gcc/config/i386/i386.md 8ae240f9350420a2a75307b02b20422a gcc/config/i386/i386.opt ddbc3d63f2446262d897ba8f20043c58 gcc/config/i386/i386elf.h f95e6938a9ae3f77651a61e489d957cb gcc/config/i386/ia32intrin.h *************** c30fb07d33e4b3628288606058bdc14a gcc/co *** 3312,3318 **** 2a6c12c0b5f27bb251eb93b00a41f296 gcc/config/i386/pmmintrin.h fc207a5f3cc468e72fe9dd815d195361 gcc/config/i386/popcntintrin.h ae280ac8454d999d1819d0e5b1fb7952 gcc/config/i386/ppro.md ! 33075561b49baa6a4def29d9be1af3d5 gcc/config/i386/predicates.md 81ad22a959e416d728651869649b3474 gcc/config/i386/prfchwintrin.h 8171eb4392b9cf3c988f8c90d553a5d1 gcc/config/i386/rdos.h 9acc66b92bad5555ca8dea5281b685e6 gcc/config/i386/rdos64.h --- 3312,3318 ---- 2a6c12c0b5f27bb251eb93b00a41f296 gcc/config/i386/pmmintrin.h fc207a5f3cc468e72fe9dd815d195361 gcc/config/i386/popcntintrin.h ae280ac8454d999d1819d0e5b1fb7952 gcc/config/i386/ppro.md ! e494036a21fd2b4dc52bcf6bc22e1dbd gcc/config/i386/predicates.md 81ad22a959e416d728651869649b3474 gcc/config/i386/prfchwintrin.h 8171eb4392b9cf3c988f8c90d553a5d1 gcc/config/i386/rdos.h 9acc66b92bad5555ca8dea5281b685e6 gcc/config/i386/rdos64.h *************** ae280ac8454d999d1819d0e5b1fb7952 gcc/co *** 3322,3331 **** 8655cfbae0b841e96515b6083cb89125 gcc/config/i386/shaintrin.h 358215859ae4ee2adaa4cac7d1608b4c gcc/config/i386/slm.md e2e4278637f3de3d6bbf0a4043dadeae gcc/config/i386/smmintrin.h - ef795df3639f8ff0931f6c2a40a7acfb gcc/config/i386/sol2-9.h 8e3330fa2506c81435317fd9a639a22a gcc/config/i386/sol2-bi.h ! 621820dc7fb9845f1212cc16f4d53d58 gcc/config/i386/sol2.h ! a724b531fc124516bae3bc5258638bb4 gcc/config/i386/sse.md dc052e20181c4044f802280a292afa5b gcc/config/i386/ssemath.h 7957f594f4bd0207d2bd2d4fe422ac13 gcc/config/i386/stringop.def ee73a69f574ee8852ac94cb66b02d4e6 gcc/config/i386/stringop.opt --- 3322,3330 ---- 8655cfbae0b841e96515b6083cb89125 gcc/config/i386/shaintrin.h 358215859ae4ee2adaa4cac7d1608b4c gcc/config/i386/slm.md e2e4278637f3de3d6bbf0a4043dadeae gcc/config/i386/smmintrin.h 8e3330fa2506c81435317fd9a639a22a gcc/config/i386/sol2-bi.h ! 9f0f9017d491c5d419042f4f9ccac89e gcc/config/i386/sol2.h ! 39521aa14dbb5ea64a3efa708c5280fc gcc/config/i386/sse.md dc052e20181c4044f802280a292afa5b gcc/config/i386/ssemath.h 7957f594f4bd0207d2bd2d4fe422ac13 gcc/config/i386/stringop.def ee73a69f574ee8852ac94cb66b02d4e6 gcc/config/i386/stringop.opt *************** db7de9b9c1f65b8d245e530709b4edec gcc/co *** 3386,3392 **** cf665d2b283d1ee10288d79865f8751c gcc/config/ia64/ia64-modes.def 7d0f55f65a67d3de87deb0e9e6493840 gcc/config/ia64/ia64-opts.h a4c4ef91d91c903475d30e79149b384b gcc/config/ia64/ia64-protos.h ! 86eae0f0dc13ca47baa1499a8b076958 gcc/config/ia64/ia64.c 88ade684e86d62c84320f0315351583b gcc/config/ia64/ia64.h fca91ca5acae7d2f9235915e3e110c49 gcc/config/ia64/ia64.md d3bb595b8693168eb537a864fe649c13 gcc/config/ia64/ia64.opt --- 3385,3391 ---- cf665d2b283d1ee10288d79865f8751c gcc/config/ia64/ia64-modes.def 7d0f55f65a67d3de87deb0e9e6493840 gcc/config/ia64/ia64-opts.h a4c4ef91d91c903475d30e79149b384b gcc/config/ia64/ia64-protos.h ! 63eea49953396e9f56ff5f0d12346d78 gcc/config/ia64/ia64.c 88ade684e86d62c84320f0315351583b gcc/config/ia64/ia64.h fca91ca5acae7d2f9235915e3e110c49 gcc/config/ia64/ia64.md d3bb595b8693168eb537a864fe649c13 gcc/config/ia64/ia64.opt *************** dcc77d7023d20b64688bf213c2d327b5 gcc/co *** 3394,3400 **** e90da2310b0e83607033de5caa109b48 gcc/config/ia64/ilp32.opt e81bfb6e581cac088b58bd12aae304ae gcc/config/ia64/itanium2.md 6623a629d7f37548dea890c2cd276385 gcc/config/ia64/linux.h ! be67d053ecca105537aeb8e554b4cfa1 gcc/config/ia64/predicates.md 8c87713fab655925e67935c0146b91dc gcc/config/ia64/sync.md 349f972db231d0eb5c3add5a1abb5d92 gcc/config/ia64/sysv4.h 22c2586c8d6a57e997064d1338a741fe gcc/config/ia64/t-hpux --- 3393,3399 ---- e90da2310b0e83607033de5caa109b48 gcc/config/ia64/ilp32.opt e81bfb6e581cac088b58bd12aae304ae gcc/config/ia64/itanium2.md 6623a629d7f37548dea890c2cd276385 gcc/config/ia64/linux.h ! 371f6cee397db91dd8faed98189d10ea gcc/config/ia64/predicates.md 8c87713fab655925e67935c0146b91dc gcc/config/ia64/sync.md 349f972db231d0eb5c3add5a1abb5d92 gcc/config/ia64/sysv4.h 22c2586c8d6a57e997064d1338a741fe gcc/config/ia64/t-hpux *************** f6ffd791eaf256dfcb55dd75eb59e080 gcc/co *** 3546,3552 **** 096d9523ccb4e40aaec9265324412431 gcc/config/microblaze/microblaze.md 0f2bea33e1b775a6cfe378e80d332f80 gcc/config/microblaze/microblaze.opt 76c6a51c43dbb021d4bcae6a93738c11 gcc/config/microblaze/predicates.md ! 609d0734537c021b478df650b29e0090 gcc/config/microblaze/rtems.h b09865853dfc50fed0dee4e13b067347 gcc/config/microblaze/sync.md 17818a25ae3112098cd91d698e37f0f7 gcc/config/microblaze/t-microblaze 63ccba4e7f745d36609d7c129bac6288 gcc/config/microblaze/t-microblaze-linux --- 3545,3551 ---- 096d9523ccb4e40aaec9265324412431 gcc/config/microblaze/microblaze.md 0f2bea33e1b775a6cfe378e80d332f80 gcc/config/microblaze/microblaze.opt 76c6a51c43dbb021d4bcae6a93738c11 gcc/config/microblaze/predicates.md ! de1cf1df28479dde40c131f4493a526a gcc/config/microblaze/rtems.h b09865853dfc50fed0dee4e13b067347 gcc/config/microblaze/sync.md 17818a25ae3112098cd91d698e37f0f7 gcc/config/microblaze/t-microblaze 63ccba4e7f745d36609d7c129bac6288 gcc/config/microblaze/t-microblaze-linux *************** d835d08884a2846e70bef505767bd3f1 gcc/co *** 3720,3726 **** 3d4a70d0decf61f1fba17df545cea7f5 gcc/config/openbsd-stdint.h f7bb7f7f147625a5b6edfa228e4975d4 gcc/config/openbsd.h c4bc281692620dbdd49314c82f5cd5cb gcc/config/openbsd.opt ! bb599d773497d634a6c1c1ab5abc6836 gcc/config/pa/constraints.md 1103eb7d3db99e522007a69f004901bc gcc/config/pa/elf.h f75b3808e61037470c299999f80ab17d gcc/config/pa/pa-64.h fc680972974a952a67b99d56a406bc35 gcc/config/pa/pa-hpux.h --- 3719,3725 ---- 3d4a70d0decf61f1fba17df545cea7f5 gcc/config/openbsd-stdint.h f7bb7f7f147625a5b6edfa228e4975d4 gcc/config/openbsd.h c4bc281692620dbdd49314c82f5cd5cb gcc/config/openbsd.opt ! 78078310edbafb4829e35df0ed4eee79 gcc/config/pa/constraints.md 1103eb7d3db99e522007a69f004901bc gcc/config/pa/elf.h f75b3808e61037470c299999f80ab17d gcc/config/pa/pa-64.h fc680972974a952a67b99d56a406bc35 gcc/config/pa/pa-hpux.h *************** f825cae6939397978fe066ad5beb8f0f gcc/co *** 3739,3747 **** 5d4ac2f1ba181ac0c4b6801af9908408 gcc/config/pa/pa-openbsd.h ba0b28ec9ca0db449b765f4c41c48610 gcc/config/pa/pa-opts.h a14eb94548fa5fab203ddd082ea498cd gcc/config/pa/pa-protos.h ! 00b4f1cebcc58591af1a281eb0c7cc75 gcc/config/pa/pa.c 57ed354a34c60b3fcbcce5bc957918c1 gcc/config/pa/pa.h ! 199533ce81a25869b5d5250711bf53e2 gcc/config/pa/pa.md 122ca1131c181f7e4004d70c9c72c5fa gcc/config/pa/pa.opt 36ab8c2fadb427355864ae7e5d337240 gcc/config/pa/pa32-linux.h 048af6536d63bf10ff72be604072bbd9 gcc/config/pa/pa32-openbsd.h --- 3738,3746 ---- 5d4ac2f1ba181ac0c4b6801af9908408 gcc/config/pa/pa-openbsd.h ba0b28ec9ca0db449b765f4c41c48610 gcc/config/pa/pa-opts.h a14eb94548fa5fab203ddd082ea498cd gcc/config/pa/pa-protos.h ! 7d623809c8608d68669aedc330fcea36 gcc/config/pa/pa.c 57ed354a34c60b3fcbcce5bc957918c1 gcc/config/pa/pa.h ! d4c49bd6bbeb9a90202e9dd5f79c88c5 gcc/config/pa/pa.md 122ca1131c181f7e4004d70c9c72c5fa gcc/config/pa/pa.opt 36ab8c2fadb427355864ae7e5d337240 gcc/config/pa/pa32-linux.h 048af6536d63bf10ff72be604072bbd9 gcc/config/pa/pa32-openbsd.h *************** f5c309e8bf4fc4e232432e5b2ae00480 gcc/co *** 3751,3757 **** a9854dd0891365f5d24fbe7c0d71dca1 gcc/config/pa/pa64-linux.h dc91e65eeff8fad66e737b0d08c3ac23 gcc/config/pa/pa64-regs.h a9a6afd79b827565ffb8de8330b4cfe6 gcc/config/pa/pa64-start.h ! e8024fc5c8fb2b7a7c440f6c48c46c0c gcc/config/pa/predicates.md 50b7bc8995fefcc459e46bc9a0b021a5 gcc/config/pa/som.h 4104beb84cb7f3a8a5915652c3da66c5 gcc/config/pa/t-dce-thr 6fd25f8c665d2d7390ea94c01dcb8e34 gcc/config/pa/t-linux --- 3750,3756 ---- a9854dd0891365f5d24fbe7c0d71dca1 gcc/config/pa/pa64-linux.h dc91e65eeff8fad66e737b0d08c3ac23 gcc/config/pa/pa64-regs.h a9a6afd79b827565ffb8de8330b4cfe6 gcc/config/pa/pa64-start.h ! 9a96058142f32948cdb599ba2f458226 gcc/config/pa/predicates.md 50b7bc8995fefcc459e46bc9a0b021a5 gcc/config/pa/som.h 4104beb84cb7f3a8a5915652c3da66c5 gcc/config/pa/t-dce-thr 6fd25f8c665d2d7390ea94c01dcb8e34 gcc/config/pa/t-linux *************** e6ce7b8fd7aaeddaa95722dd2257db20 gcc/co *** 3811,3817 **** a126c516a8ecc213c4eae1949e1a2e15 gcc/config/rs6000/aix61.h 7ba56f31fe475125fb79489a951e14c5 gcc/config/rs6000/aix64.opt 14bce5e0c1fb0a41d364b71e916b7b29 gcc/config/rs6000/altivec.h ! 23a5981747e7d48427c5b37d80e40353 gcc/config/rs6000/altivec.md 87ecd670e3f1a8e2186f29d0b3ee3720 gcc/config/rs6000/biarch64.h 07348cec6e9bf39592be4fad5e165f02 gcc/config/rs6000/cell.md 8bb1050e894eebfabd915a2179f7a689 gcc/config/rs6000/constraints.md --- 3810,3816 ---- a126c516a8ecc213c4eae1949e1a2e15 gcc/config/rs6000/aix61.h 7ba56f31fe475125fb79489a951e14c5 gcc/config/rs6000/aix64.opt 14bce5e0c1fb0a41d364b71e916b7b29 gcc/config/rs6000/altivec.h ! 18e7f0a18310ae2aa2835083faf2f04c gcc/config/rs6000/altivec.md 87ecd670e3f1a8e2186f29d0b3ee3720 gcc/config/rs6000/biarch64.h 07348cec6e9bf39592be4fad5e165f02 gcc/config/rs6000/cell.md 8bb1050e894eebfabd915a2179f7a689 gcc/config/rs6000/constraints.md *************** b26b63fb43db9242bcc926a5f5d833f2 gcc/co *** 3836,3846 **** d44bd2790575631b763973cdb9dff3e2 gcc/config/rs6000/eabisim.h 5f2af3000550e725e74d78b603909cb8 gcc/config/rs6000/eabispe.h 75d9d7ddff9519d5ca1711e414d8ab3a gcc/config/rs6000/freebsd.h ! 220094b6171a560d97c21b4a72ef696d gcc/config/rs6000/freebsd64.h f993244bbc210c86997e1f962ce62a05 gcc/config/rs6000/genopt.sh 46cf29a42c9dea21b80a0d2adaf86045 gcc/config/rs6000/host-darwin.c 49e9ca19e3ce57f746c48f645ddb6629 gcc/config/rs6000/host-ppc64-darwin.c ! 256f5dde071c508a5d829eb444aac2e7 gcc/config/rs6000/htm.md fc49e7468c18e626771f399690584b01 gcc/config/rs6000/htmintrin.h f4007546c290f32867fd5c475f8b6e75 gcc/config/rs6000/htmxlintrin.h 94b9c339bd047a988fc31eeb870b056b gcc/config/rs6000/linux.h --- 3835,3845 ---- d44bd2790575631b763973cdb9dff3e2 gcc/config/rs6000/eabisim.h 5f2af3000550e725e74d78b603909cb8 gcc/config/rs6000/eabispe.h 75d9d7ddff9519d5ca1711e414d8ab3a gcc/config/rs6000/freebsd.h ! 97cfb4699138e8a15a3f4c6cec741be1 gcc/config/rs6000/freebsd64.h f993244bbc210c86997e1f962ce62a05 gcc/config/rs6000/genopt.sh 46cf29a42c9dea21b80a0d2adaf86045 gcc/config/rs6000/host-darwin.c 49e9ca19e3ce57f746c48f645ddb6629 gcc/config/rs6000/host-ppc64-darwin.c ! 87de4e85cb66ec2ef882149841449222 gcc/config/rs6000/htm.md fc49e7468c18e626771f399690584b01 gcc/config/rs6000/htmintrin.h f4007546c290f32867fd5c475f8b6e75 gcc/config/rs6000/htmxlintrin.h 94b9c339bd047a988fc31eeb870b056b gcc/config/rs6000/linux.h *************** fa3263af675169a19805527633e55a4c gcc/co *** 3862,3880 **** ecc63691ee399be45afbeb50ef539bb7 gcc/config/rs6000/power8.md 0eca30e0219caa2c3b9107b8a8934167 gcc/config/rs6000/ppc-asm.h a399e486f9d1ec320a662bd4afffd037 gcc/config/rs6000/ppu_intrinsics.h ! 8b4dadf3b5c91d47334f6044cc830715 gcc/config/rs6000/predicates.md ! 65ee134517c17d602994fbd462032f94 gcc/config/rs6000/rs6000-builtin.def ! 3857fffda70e73dd35b2ec8efdc85a3c gcc/config/rs6000/rs6000-c.c ! 3dd9d527f49e0a73733eccc88799feee gcc/config/rs6000/rs6000-cpus.def 2b7ac7ddb1e383347e8684708991a45c gcc/config/rs6000/rs6000-linux.c 7d06c2b54e7e78a9a57c2f9719e0d468 gcc/config/rs6000/rs6000-modes.def 09c1fbf640b3bad5ae3bb2300301eaa8 gcc/config/rs6000/rs6000-opts.h 71bf545b328d48bc9a7bbed163207d52 gcc/config/rs6000/rs6000-protos.h 1ec709f5cdc858145ccb17e8a38497df gcc/config/rs6000/rs6000-tables.opt ! 517ec659ac2cea07de268ec91ffed334 gcc/config/rs6000/rs6000.c ! aa7d58eb039c67e094af888a367e1c51 gcc/config/rs6000/rs6000.h ! 4e54c4e59892147512b9ad1cc0f46978 gcc/config/rs6000/rs6000.md ! ffdc949de33a0bcd882fb620d47d1a55 gcc/config/rs6000/rs6000.opt 4449f37807aeb14832c50529169a3ffe gcc/config/rs6000/rs64.md e245aca686f10465a79c3937804bfc22 gcc/config/rs6000/rtems.h cb02b8ce90d00a87e31299037abf8e7f gcc/config/rs6000/secureplt.h --- 3861,3879 ---- ecc63691ee399be45afbeb50ef539bb7 gcc/config/rs6000/power8.md 0eca30e0219caa2c3b9107b8a8934167 gcc/config/rs6000/ppc-asm.h a399e486f9d1ec320a662bd4afffd037 gcc/config/rs6000/ppu_intrinsics.h ! a6979ffd68468b0e2d0a4459ec1b262e gcc/config/rs6000/predicates.md ! dcb39def401d39872593d7eacc8434e7 gcc/config/rs6000/rs6000-builtin.def ! c81b743e6ffd4cd3f71941422398ba6b gcc/config/rs6000/rs6000-c.c ! 2b7415e89311f43d96a59319950468c1 gcc/config/rs6000/rs6000-cpus.def 2b7ac7ddb1e383347e8684708991a45c gcc/config/rs6000/rs6000-linux.c 7d06c2b54e7e78a9a57c2f9719e0d468 gcc/config/rs6000/rs6000-modes.def 09c1fbf640b3bad5ae3bb2300301eaa8 gcc/config/rs6000/rs6000-opts.h 71bf545b328d48bc9a7bbed163207d52 gcc/config/rs6000/rs6000-protos.h 1ec709f5cdc858145ccb17e8a38497df gcc/config/rs6000/rs6000-tables.opt ! fa7ec596c18ba1f97f65d3e3b051f305 gcc/config/rs6000/rs6000.c ! 6555bfd75f7bca157e55a19b68a82ba1 gcc/config/rs6000/rs6000.h ! 7f5049e01cf50dfe7262d2212bb32eca gcc/config/rs6000/rs6000.md ! fa82e25f23cda1c30e5a1b55639ac96e gcc/config/rs6000/rs6000.opt 4449f37807aeb14832c50529169a3ffe gcc/config/rs6000/rs64.md e245aca686f10465a79c3937804bfc22 gcc/config/rs6000/rtems.h cb02b8ce90d00a87e31299037abf8e7f gcc/config/rs6000/secureplt.h *************** e30e471a82371a08e24c8c1d16cdd4a2 gcc/co *** 3892,3898 **** f3250b9720d1149346f1ef8e21b52ea9 gcc/config/rs6000/t-darwin64 636250eb91fc5dada4804efcd525fc02 gcc/config/rs6000/t-darwin8 cfee179e0072bada3e89cd5a98d60404 gcc/config/rs6000/t-fprules ! 04bc92518cda300be436f5315d1a158a gcc/config/rs6000/t-freebsd64 91ab90cceeb86332e94d0767b0e4d5f7 gcc/config/rs6000/t-linux 9c86c35accdf22b4002bb0b2bc1d0dbd gcc/config/rs6000/t-linux64 71c0a0470047f0171a3bb4c483eb2b72 gcc/config/rs6000/t-linux64bele --- 3891,3897 ---- f3250b9720d1149346f1ef8e21b52ea9 gcc/config/rs6000/t-darwin64 636250eb91fc5dada4804efcd525fc02 gcc/config/rs6000/t-darwin8 cfee179e0072bada3e89cd5a98d60404 gcc/config/rs6000/t-fprules ! b19f05737f3fc609ba4d443a249b64b1 gcc/config/rs6000/t-freebsd64 91ab90cceeb86332e94d0767b0e4d5f7 gcc/config/rs6000/t-linux 9c86c35accdf22b4002bb0b2bc1d0dbd gcc/config/rs6000/t-linux64 71c0a0470047f0171a3bb4c483eb2b72 gcc/config/rs6000/t-linux64bele *************** f11925c88524d2fd457bf77944da1302 gcc/co *** 3912,3919 **** d23864248497f7f5544c2e1916dc402d gcc/config/rs6000/t-xilinx b1f48ff99abc14b3f61842bd2ad8cb9f gcc/config/rs6000/titan.md 0ac3e3c82b12030f8797bf598d14a7df gcc/config/rs6000/vec_types.h ! afa1b08d7889dfa24025d27c5ebcf9d2 gcc/config/rs6000/vector.md ! b7fcbc0042cc51d6659928390b0ebb42 gcc/config/rs6000/vsx.md 0c2404e4c53d11d18595ce802fcd85df gcc/config/rs6000/vxworks.h 5c2f724024335c015d76fe32d3da6de9 gcc/config/rs6000/x-aix af875b9bcb1ec1da1f33d5e34df8ca7b gcc/config/rs6000/x-darwin --- 3911,3918 ---- d23864248497f7f5544c2e1916dc402d gcc/config/rs6000/t-xilinx b1f48ff99abc14b3f61842bd2ad8cb9f gcc/config/rs6000/titan.md 0ac3e3c82b12030f8797bf598d14a7df gcc/config/rs6000/vec_types.h ! 86537a8493940d038a4cd05ec9690efd gcc/config/rs6000/vector.md ! 47bfc99d068bb86b20df1f52335df459 gcc/config/rs6000/vsx.md 0c2404e4c53d11d18595ce802fcd85df gcc/config/rs6000/vxworks.h 5c2f724024335c015d76fe32d3da6de9 gcc/config/rs6000/x-aix af875b9bcb1ec1da1f33d5e34df8ca7b gcc/config/rs6000/x-darwin *************** af875b9bcb1ec1da1f33d5e34df8ca7b gcc/co *** 3925,3931 **** e921244f996542b710957fd7ab4e7c8f gcc/config/rs6000/xfpu.md 1efdbc0666cd2a766427ef67bbb15773 gcc/config/rs6000/xilinx.h e7a35ee01feee949866704b0d05f7375 gcc/config/rs6000/xilinx.opt ! 4ef07d56945965286be56fe634c74660 gcc/config/rtems.h 4a81983fc5767ef847178b1c398fa112 gcc/config/rtems.opt b883ac69b1a233fdf81421da26748b82 gcc/config/rx/constraints.md e32f17005427bb0f246f390e31202982 gcc/config/rx/predicates.md --- 3924,3930 ---- e921244f996542b710957fd7ab4e7c8f gcc/config/rs6000/xfpu.md 1efdbc0666cd2a766427ef67bbb15773 gcc/config/rs6000/xilinx.h e7a35ee01feee949866704b0d05f7375 gcc/config/rs6000/xilinx.opt ! 133e81cd983ea900a4cfdf1115ec08f1 gcc/config/rtems.h 4a81983fc5767ef847178b1c398fa112 gcc/config/rtems.opt b883ac69b1a233fdf81421da26748b82 gcc/config/rx/constraints.md e32f17005427bb0f246f390e31202982 gcc/config/rx/predicates.md *************** cc93df03c784c5a49ca77f01bbbc9733 gcc/co *** 3950,3958 **** 57bad8bcac22bb78df6ecf3b53370469 gcc/config/s390/s390-modes.def 49a2cfdf53188f656d24a8ad697873d2 gcc/config/s390/s390-opts.h 82fd6c34fc03031047a13f5c6d3f228a gcc/config/s390/s390-protos.h ! d3e474c856243aa9b29f79a789b819bc gcc/config/s390/s390.c 0353983af6ca89a9cec67205af7b95db gcc/config/s390/s390.h ! 24c842b4aa11fada3bdaf713337746a4 gcc/config/s390/s390.md bde9c4d8a1f0970d87763c7e9b8a408c gcc/config/s390/s390.opt 207d1b330e72f07842f7f9c60cd2b0ab gcc/config/s390/s390intrin.h 723c7114350973aafbea58aebe38a3b8 gcc/config/s390/s390x.h --- 3949,3957 ---- 57bad8bcac22bb78df6ecf3b53370469 gcc/config/s390/s390-modes.def 49a2cfdf53188f656d24a8ad697873d2 gcc/config/s390/s390-opts.h 82fd6c34fc03031047a13f5c6d3f228a gcc/config/s390/s390-protos.h ! 9d18ab733d8319de2802e828a0b72725 gcc/config/s390/s390.c 0353983af6ca89a9cec67205af7b95db gcc/config/s390/s390.h ! 0994f2195dcda75cba0bc3c0f4b3dc51 gcc/config/s390/s390.md bde9c4d8a1f0970d87763c7e9b8a408c gcc/config/s390/s390.opt 207d1b330e72f07842f7f9c60cd2b0ab gcc/config/s390/s390intrin.h 723c7114350973aafbea58aebe38a3b8 gcc/config/s390/s390x.h *************** fd503e66901381fd4a42832d0d3a26d0 gcc/co *** 3990,3998 **** 7855970e9917c8096dd8a01d2a8d4899 gcc/config/sh/sh-mem.cc ee56adc86b26db0a967855a075947e96 gcc/config/sh/sh-modes.def 5bd6ce2800f0450b5bc5e130b493aa95 gcc/config/sh/sh-protos.h ! bb6537b2c36a980abe322d8e80a0a0f0 gcc/config/sh/sh.c c4e8a30076baf764ee83c7a1427cad1c gcc/config/sh/sh.h ! 64d477853be43e1c0e0f7d9b9221bf2f gcc/config/sh/sh.md 5a4168cadbbaedf655f0be6fc04108b9 gcc/config/sh/sh.opt 44bd005825aeb2b89bc19b3d5faf1be3 gcc/config/sh/sh1.md 0244ba832a19341b6bd43ed51e610544 gcc/config/sh/sh4-300.md --- 3989,3997 ---- 7855970e9917c8096dd8a01d2a8d4899 gcc/config/sh/sh-mem.cc ee56adc86b26db0a967855a075947e96 gcc/config/sh/sh-modes.def 5bd6ce2800f0450b5bc5e130b493aa95 gcc/config/sh/sh-protos.h ! 910842f1205ef14676cbafb5aa02b317 gcc/config/sh/sh.c c4e8a30076baf764ee83c7a1427cad1c gcc/config/sh/sh.h ! 95d5da558b1614929e5dc3e107def2a0 gcc/config/sh/sh.md 5a4168cadbbaedf655f0be6fc04108b9 gcc/config/sh/sh.opt 44bd005825aeb2b89bc19b3d5faf1be3 gcc/config/sh/sh1.md 0244ba832a19341b6bd43ed51e610544 gcc/config/sh/sh4-300.md *************** d376961bc8fba1465e216bf051d953a3 gcc/co *** 4030,4039 **** 62b3b82c1d92b5afde36be050abfcd4f gcc/config/sparc/constraints.md ad6e28a5a103aa7f72a933222bffb3ea gcc/config/sparc/cypress.md dbd1114778d0427aa4d2150155200e4b gcc/config/sparc/default-64.h ! 0117c0e683d058c584d85e353075fd5d gcc/config/sparc/driver-sparc.c 1c98f0f53e81c117490b80cbdbbce258 gcc/config/sparc/freebsd.h 8ff8094f383224e4ad783c303608116c gcc/config/sparc/hypersparc.md ! 539fd9ed5043b07ca7ea9e4492c294d2 gcc/config/sparc/leon.md 21d15dc8f93ba7c648c29c358d43d3fc gcc/config/sparc/linux.h ed5499f93835d6a8f36783627eb13de1 gcc/config/sparc/linux64.h b43a1d58162b2e406a3556338f14abcb gcc/config/sparc/long-double-switch.opt --- 4029,4038 ---- 62b3b82c1d92b5afde36be050abfcd4f gcc/config/sparc/constraints.md ad6e28a5a103aa7f72a933222bffb3ea gcc/config/sparc/cypress.md dbd1114778d0427aa4d2150155200e4b gcc/config/sparc/default-64.h ! a8059246d29c3427830064cd7d4137a2 gcc/config/sparc/driver-sparc.c 1c98f0f53e81c117490b80cbdbbce258 gcc/config/sparc/freebsd.h 8ff8094f383224e4ad783c303608116c gcc/config/sparc/hypersparc.md ! 35c190fdd6fef33c145ebe61e890c350 gcc/config/sparc/leon.md 21d15dc8f93ba7c648c29c358d43d3fc gcc/config/sparc/linux.h ed5499f93835d6a8f36783627eb13de1 gcc/config/sparc/linux64.h b43a1d58162b2e406a3556338f14abcb gcc/config/sparc/long-double-switch.opt *************** d9980227691608602286252c325e4d0a gcc/co *** 4046,4064 **** a7f11fb79691ee2c896b0cf2880ed295 gcc/config/sparc/predicates.md 607304768e7d2f12a6daeeb5a8b46651 gcc/config/sparc/rtemself.h 19b2d0abcb8d4b406f52af4f965097ac gcc/config/sparc/sol2.h ! 3b3df7a0d102f768b0eb9f4254b5b27c gcc/config/sparc/sp-elf.h 32f6597f1f5b263864b6b709ccf8a7f6 gcc/config/sparc/sp64-elf.h 4c9272c156a54169682c4d78519e0574 gcc/config/sparc/sparc-c.c fe11466ca359c98303d1d5a77efc7277 gcc/config/sparc/sparc-modes.def b03b1bbc0afc22361bd6fd67b87bc53d gcc/config/sparc/sparc-opts.h 10784bdb9b36f0c0d8072f1299f9fa9c gcc/config/sparc/sparc-protos.h ! 0677ac87943db1604aafcaf8d148fd68 gcc/config/sparc/sparc.c 768c714c81f6643bca728ce5552c857d gcc/config/sparc/sparc.h ! 1b0eae546e592ed97bbfa3763ae7bc79 gcc/config/sparc/sparc.md ! 171251295cb3e869a92330de54b1b440 gcc/config/sparc/sparc.opt a4e9378ba096bbe768f431e5efe542fe gcc/config/sparc/sparclet.md 23633c532af69df48b8945cd85fa8e89 gcc/config/sparc/supersparc.md ! a676af1bc45577fdda993605eb950a13 gcc/config/sparc/sync.md 06afb5edf97e75d9c98bd0c7feee7ce8 gcc/config/sparc/sysv4.h a833a63e73fa8b2cd6d957a7dba46b80 gcc/config/sparc/t-elf c220a70c033b2f3839f5da1eaf86bd51 gcc/config/sparc/t-leon --- 4045,4063 ---- a7f11fb79691ee2c896b0cf2880ed295 gcc/config/sparc/predicates.md 607304768e7d2f12a6daeeb5a8b46651 gcc/config/sparc/rtemself.h 19b2d0abcb8d4b406f52af4f965097ac gcc/config/sparc/sol2.h ! 6ae973943c0fa12855453cc952c60aef gcc/config/sparc/sp-elf.h 32f6597f1f5b263864b6b709ccf8a7f6 gcc/config/sparc/sp64-elf.h 4c9272c156a54169682c4d78519e0574 gcc/config/sparc/sparc-c.c fe11466ca359c98303d1d5a77efc7277 gcc/config/sparc/sparc-modes.def b03b1bbc0afc22361bd6fd67b87bc53d gcc/config/sparc/sparc-opts.h 10784bdb9b36f0c0d8072f1299f9fa9c gcc/config/sparc/sparc-protos.h ! 2c513b5204ed48f7d9b4140a588dc3a4 gcc/config/sparc/sparc.c 768c714c81f6643bca728ce5552c857d gcc/config/sparc/sparc.h ! 513083c93753340a9fe29c3f9b1a09e9 gcc/config/sparc/sparc.md ! 0e61fbb51a48f9db72c01682ac9528f5 gcc/config/sparc/sparc.opt a4e9378ba096bbe768f431e5efe542fe gcc/config/sparc/sparclet.md 23633c532af69df48b8945cd85fa8e89 gcc/config/sparc/supersparc.md ! 2c97462f0d1103396ae5f0a419a9f253 gcc/config/sparc/sync.md 06afb5edf97e75d9c98bd0c7feee7ce8 gcc/config/sparc/sysv4.h a833a63e73fa8b2cd6d957a7dba46b80 gcc/config/sparc/t-elf c220a70c033b2f3839f5da1eaf86bd51 gcc/config/sparc/t-leon *************** c220a70c033b2f3839f5da1eaf86bd51 gcc/co *** 4066,4072 **** 4a7d3f368a24d549fabaafbe44fcb134 gcc/config/sparc/t-linux 4124f7e1cce8c58e76f68673e6fc3f2f gcc/config/sparc/t-linux64 75987b7fdc6fa9c9ff2108ff1003e6d2 gcc/config/sparc/t-netbsd64 ! b86fb045a91800151ae7c4218efcc3d1 gcc/config/sparc/t-rtems 7b74c4da4250a0680a8a21429c4d9669 gcc/config/sparc/t-rtems-64 511770bb20c2707fabd4f231ce8b83cf gcc/config/sparc/t-sol2-64 036389f35c865b39ada5277d131314c1 gcc/config/sparc/t-sparc --- 4065,4071 ---- 4a7d3f368a24d549fabaafbe44fcb134 gcc/config/sparc/t-linux 4124f7e1cce8c58e76f68673e6fc3f2f gcc/config/sparc/t-linux64 75987b7fdc6fa9c9ff2108ff1003e6d2 gcc/config/sparc/t-netbsd64 ! 3655b172589aace41f3a9c4d8d428e34 gcc/config/sparc/t-rtems 7b74c4da4250a0680a8a21429c4d9669 gcc/config/sparc/t-rtems-64 511770bb20c2707fabd4f231ce8b83cf gcc/config/sparc/t-sol2-64 036389f35c865b39ada5277d131314c1 gcc/config/sparc/t-sparc *************** a4953dec370aeb83aa4c300580989aca gcc/co *** 4223,4230 **** 3403522b62b3afbdee0c6ba1c08dd9b5 gcc/config/xtensa/xtensa.h d0f70581147ddc12bdd0b9b2002099f9 gcc/config/xtensa/xtensa.md 3626e5875265724499b1e0889df223f8 gcc/config/xtensa/xtensa.opt ! b3cb7160b444c7cf91346d16b6d8916e gcc/configure ! 37be92186937a29503c93234871858ef gcc/configure.ac 3f8600d94fa18c9df14202629b15c30a gcc/context.c a105f73fec5a545a02b66e02a5fc9cd1 gcc/context.h f20b823448cf0b7ba77f2294374a1bf4 gcc/convert.c --- 4222,4229 ---- 3403522b62b3afbdee0c6ba1c08dd9b5 gcc/config/xtensa/xtensa.h d0f70581147ddc12bdd0b9b2002099f9 gcc/config/xtensa/xtensa.md 3626e5875265724499b1e0889df223f8 gcc/config/xtensa/xtensa.opt ! dd73e59b430bdcfebc139eb71be1825c gcc/configure ! 29f5d0d09f21fafd6ae79b9eba42af87 gcc/configure.ac 3f8600d94fa18c9df14202629b15c30a gcc/context.c a105f73fec5a545a02b66e02a5fc9cd1 gcc/context.h f20b823448cf0b7ba77f2294374a1bf4 gcc/convert.c *************** f20b823448cf0b7ba77f2294374a1bf4 gcc/co *** 4232,4238 **** 7f281fac897d0a12b476c90692737329 gcc/coretypes.h 77f22f105dfdc4a9829de4737400fdc3 gcc/coverage.c fc0ea61bb4cd0e88fcb974874b454f63 gcc/coverage.h ! 73ac58af4de766eafdb3dc88747b247d gcc/cp/ChangeLog d271e3663538ba1f3281cab3838e92cd gcc/cp/ChangeLog-1993 f5a44adbc05521162350ca409d1d95ce gcc/cp/ChangeLog-1994 ac55db48d964cb5469ff03c1cd3ee04d gcc/cp/ChangeLog-1995 --- 4231,4237 ---- 7f281fac897d0a12b476c90692737329 gcc/coretypes.h 77f22f105dfdc4a9829de4737400fdc3 gcc/coverage.c fc0ea61bb4cd0e88fcb974874b454f63 gcc/coverage.h ! adf843a2d985c9b1d84392889fa841cb gcc/cp/ChangeLog d271e3663538ba1f3281cab3838e92cd gcc/cp/ChangeLog-1993 f5a44adbc05521162350ca409d1d95ce gcc/cp/ChangeLog-1994 ac55db48d964cb5469ff03c1cd3ee04d gcc/cp/ChangeLog-1995 *************** abf2d28a341385ffa71ccdd523c8fb03 gcc/cp *** 4256,4266 **** 345392d9b4fa933b10becc0c92667efb gcc/cp/ChangeLog-2013 c1c7801b9b0f379e702a4f6cb83972e7 gcc/cp/ChangeLog.ptr 9aa3cd9f75c785de9f51446e3f295515 gcc/cp/ChangeLog.tree-ssa ! 455a052c3ba589ded45beac207aae43f gcc/cp/Make-lang.in 2a39a12cc0dff2b94a44e84e818ded9e gcc/cp/NEWS ! a07db9b36778fbaca8e1a3d57ffbb458 gcc/cp/call.c ! e184e53ef1c7ccede7b4257052006bd7 gcc/cp/cfns.gperf ! 66d1092c8be3fffdb7372b46a158ebf6 gcc/cp/cfns.h aa8695d1e706d6121f154d3d5ba0a28c gcc/cp/class.c 47867890c0979e43203ac3b48152e806 gcc/cp/config-lang.in 663722c6281b634e5998d85b3b090889 gcc/cp/cp-array-notation.c --- 4255,4265 ---- 345392d9b4fa933b10becc0c92667efb gcc/cp/ChangeLog-2013 c1c7801b9b0f379e702a4f6cb83972e7 gcc/cp/ChangeLog.ptr 9aa3cd9f75c785de9f51446e3f295515 gcc/cp/ChangeLog.tree-ssa ! bff861a63043ba9ba0bc9e6b15601295 gcc/cp/Make-lang.in 2a39a12cc0dff2b94a44e84e818ded9e gcc/cp/NEWS ! 5e375ce2a1b5a3e848f8881ef153dd2a gcc/cp/call.c ! dcbb0d90b23b4286e2f5b91f4da857b2 gcc/cp/cfns.gperf ! 22a94a17dfd9cf00ac86dbe96145c085 gcc/cp/cfns.h aa8695d1e706d6121f154d3d5ba0a28c gcc/cp/class.c 47867890c0979e43203ac3b48152e806 gcc/cp/config-lang.in 663722c6281b634e5998d85b3b090889 gcc/cp/cp-array-notation.c *************** c0aa2580eac480bebef90fd178f23fce gcc/cp *** 4270,4309 **** ef87c1a033a26e7711907c6b178131b1 gcc/cp/cp-objcp-common.c 9eada522ec909990ce7386714e3c0afa gcc/cp/cp-objcp-common.h d0d99db987a2bd8f0058a1faa5e408e5 gcc/cp/cp-tree.def ! 37b86614b1bd2e32357da48b293ede4c gcc/cp/cp-tree.h ! 0522540987275422136fa53be4047d22 gcc/cp/cvt.c 72aec02508b7947aa57a3fdc7907592e gcc/cp/cxx-pretty-print.c 80ee86746b2127c64ef5c25f24ceb14b gcc/cp/cxx-pretty-print.h ! 7ff4dc09186b7cbfe212030dda9da4e6 gcc/cp/decl.c 42cc7ee1282351aee587814acc597508 gcc/cp/decl.h 148eb7164269f8335740dc1f23eca0ed gcc/cp/decl2.c 3f6c50620d2953d5b412ff4e390eb7ae gcc/cp/dump.c 4f563217e305eef8adde18a3b3d0c547 gcc/cp/error.c ! 615a63805536eb9ffe1b46dd1881582c gcc/cp/except.c d08a0a74a2164b0d5eb954bf1a755825 gcc/cp/expr.c f825a4855a4c9f2390afb1302bb4d8d6 gcc/cp/friend.c 4e1f37f96a3d7f70ba70e24cba59dc3a gcc/cp/g++spec.c ! 9885d35e5007de10cf292db0f5e1b0f3 gcc/cp/init.c 76afad025040c8ed5d265725b47fc867 gcc/cp/lambda.c d505a249800c51140eb8d126b620394f gcc/cp/lang-specs.h a9d9b7c8443dcc78573259632806eb39 gcc/cp/lex.c ! fc4035131b257e6be4f6b1f02a0621ac gcc/cp/mangle.c 9a6b56e31248cf676bc2841750002d6a gcc/cp/method.c 1bade1bcd844632d47fbb557c55ab1cf gcc/cp/name-lookup.c 2fe9fc47b363db0eb4eb053c2b3b5109 gcc/cp/name-lookup.h a4c4160079301223008ae949e923ae09 gcc/cp/operators.def cab3f4d3911d5d98b499168510c420bf gcc/cp/optimize.c ! b1487e88fef92a35079023dfbf664d2f gcc/cp/parser.c 7dad8f7951a41247d36a1491c5ed3333 gcc/cp/parser.h ! 64aa4ea0f839decb1ac1b215ac6ef7d8 gcc/cp/pt.c 1fb212eac0559ba1dcb95d7a26602e06 gcc/cp/ptree.c 0d003a9ae49e636ac7797b2cc6ae1b13 gcc/cp/repo.c ! 42e298dd7b029109771b91c2ed2adaec gcc/cp/rtti.c ! 6fb2431ec9910cb53f58bdbe3bff5f70 gcc/cp/search.c ! c8f7cc899d2be53a39c275a8e47ed287 gcc/cp/semantics.c ! b5d0510e775232d09f903e9b6fbe15a5 gcc/cp/tree.c 1adee27afd0240132800372d13882a94 gcc/cp/type-utils.h ! 5cf35ac469b1d9a468a76d2de8bf0079 gcc/cp/typeck.c 25e903fa1376c6a1bb37d2c65a80da05 gcc/cp/typeck2.c 74dbaaf0e744d50ebddff66290b3dfd4 gcc/cp/vtable-class-hierarchy.c c69f7cfa3152c54d30a4413e74a55584 gcc/cppbuiltin.c --- 4269,4308 ---- ef87c1a033a26e7711907c6b178131b1 gcc/cp/cp-objcp-common.c 9eada522ec909990ce7386714e3c0afa gcc/cp/cp-objcp-common.h d0d99db987a2bd8f0058a1faa5e408e5 gcc/cp/cp-tree.def ! e9785e38817f45d6dce14ae205f74f6a gcc/cp/cp-tree.h ! d0cfd6d13dcf7a7c0d4e7695983758d1 gcc/cp/cvt.c 72aec02508b7947aa57a3fdc7907592e gcc/cp/cxx-pretty-print.c 80ee86746b2127c64ef5c25f24ceb14b gcc/cp/cxx-pretty-print.h ! 21cbde4e6adf2b2733e4a6cc5d32a8a0 gcc/cp/decl.c 42cc7ee1282351aee587814acc597508 gcc/cp/decl.h 148eb7164269f8335740dc1f23eca0ed gcc/cp/decl2.c 3f6c50620d2953d5b412ff4e390eb7ae gcc/cp/dump.c 4f563217e305eef8adde18a3b3d0c547 gcc/cp/error.c ! d39045c415fd615417b4ad17b10157a6 gcc/cp/except.c d08a0a74a2164b0d5eb954bf1a755825 gcc/cp/expr.c f825a4855a4c9f2390afb1302bb4d8d6 gcc/cp/friend.c 4e1f37f96a3d7f70ba70e24cba59dc3a gcc/cp/g++spec.c ! 9ce6c474661f3ab766fd2da384be068a gcc/cp/init.c 76afad025040c8ed5d265725b47fc867 gcc/cp/lambda.c d505a249800c51140eb8d126b620394f gcc/cp/lang-specs.h a9d9b7c8443dcc78573259632806eb39 gcc/cp/lex.c ! 86915c2d44dcdd277babc309d784e91f gcc/cp/mangle.c 9a6b56e31248cf676bc2841750002d6a gcc/cp/method.c 1bade1bcd844632d47fbb557c55ab1cf gcc/cp/name-lookup.c 2fe9fc47b363db0eb4eb053c2b3b5109 gcc/cp/name-lookup.h a4c4160079301223008ae949e923ae09 gcc/cp/operators.def cab3f4d3911d5d98b499168510c420bf gcc/cp/optimize.c ! 55470e40016aa92bc809fbbeb716772a gcc/cp/parser.c 7dad8f7951a41247d36a1491c5ed3333 gcc/cp/parser.h ! b8d85994440ad853151ff7333badce42 gcc/cp/pt.c 1fb212eac0559ba1dcb95d7a26602e06 gcc/cp/ptree.c 0d003a9ae49e636ac7797b2cc6ae1b13 gcc/cp/repo.c ! 41e1eb2f849a2bb7228729a711dc96dd gcc/cp/rtti.c ! 11efc3e3e9aac8f08f82b168195f3c2a gcc/cp/search.c ! 9caea8dc1c81aa010e16894a82b94495 gcc/cp/semantics.c ! 614b388cb72ab5fc595ad43c4a5cf720 gcc/cp/tree.c 1adee27afd0240132800372d13882a94 gcc/cp/type-utils.h ! 5a79c4bdc57cc42a5e2127039d8c1d6d gcc/cp/typeck.c 25e903fa1376c6a1bb37d2c65a80da05 gcc/cp/typeck2.c 74dbaaf0e744d50ebddff66290b3dfd4 gcc/cp/vtable-class-hierarchy.c c69f7cfa3152c54d30a4413e74a55584 gcc/cppbuiltin.c *************** d02c58c6458525cf2e81bece060a0a84 gcc/de *** 4332,4338 **** 5f9e20d36ce9a72d7e612c6c2cacbb9b gcc/debug.h 24653737367cd4c1d08528ddff8b9edb gcc/defaults.h fbb60a80a049439ba06be3b7bb03ba33 gcc/df-core.c ! 194c028bf00737625f2f0c3853477aa8 gcc/df-problems.c f2cf850a3f6a9d95d4034c61245ed441 gcc/df-scan.c 6d7e429ff21e9ae84e720c32f7053420 gcc/df.h 12ee769110c96a5380450de59969b152 gcc/dfp.c --- 4331,4337 ---- 5f9e20d36ce9a72d7e612c6c2cacbb9b gcc/debug.h 24653737367cd4c1d08528ddff8b9edb gcc/defaults.h fbb60a80a049439ba06be3b7bb03ba33 gcc/df-core.c ! 7a9b3becbfeec5d8cdb061aa4064bc47 gcc/df-problems.c f2cf850a3f6a9d95d4034c61245ed441 gcc/df-scan.c 6d7e429ff21e9ae84e720c32f7053420 gcc/df.h 12ee769110c96a5380450de59969b152 gcc/dfp.c *************** dfa2f3caa589d990913f898317c3ba04 gcc/di *** 4343,4349 **** ea862db8f1c974282768561f5c6fd263 gcc/diagnostic.c a82f4c29248edc233f641579ab6e772a gcc/diagnostic.def 439f0d28ab1a85692b11ba394cc4e6f6 gcc/diagnostic.h ! 107911c26d1aee4bcb05e0573470a03c gcc/doc/aot-compile.1 2931c39155bdab807e1af465d937350c gcc/doc/arm-acle-intrinsics.texi 35b6982c7c5b95341a6e28476e4d1daf gcc/doc/arm-neon-intrinsics.texi 9afccee176594b00a1b7a15878bebcd0 gcc/doc/avr-mmcu.texi --- 4342,4348 ---- ea862db8f1c974282768561f5c6fd263 gcc/diagnostic.c a82f4c29248edc233f641579ab6e772a gcc/diagnostic.def 439f0d28ab1a85692b11ba394cc4e6f6 gcc/diagnostic.h ! a02a0890f064c6bbf26b583b22d10711 gcc/doc/aot-compile.1 2931c39155bdab807e1af465d937350c gcc/doc/arm-acle-intrinsics.texi 35b6982c7c5b95341a6e28476e4d1daf gcc/doc/arm-neon-intrinsics.texi 9afccee176594b00a1b7a15878bebcd0 gcc/doc/avr-mmcu.texi *************** f2623c6aeaa1ad4a6474141b9dd5f995 gcc/do *** 4355,4392 **** 429106f28aff7ad80a86d1442fb5003d gcc/doc/configterms.texi 3c64bdb237b5fc38837b9b9bc2fda853 gcc/doc/contrib.texi 6436407c42cecb738124becb9079d978 gcc/doc/contribute.texi ! 4fc7956099be38aa5c434f3c91ae55b7 gcc/doc/cpp.1 ! 6b1171575378d3dffefbf49f8799c852 gcc/doc/cpp.info 8b4d7d3a2e425a52f573f6330d4d5e70 gcc/doc/cpp.texi 4aa9560d9a516a5df4f7429c00ba1fb2 gcc/doc/cppenv.texi ! ea99de0828770f55c6573529b8553399 gcc/doc/cppinternals.info 76eda89efeb575bff228598230bd3c50 gcc/doc/cppinternals.texi 249506473d9c4b6f20554997a9c8946f gcc/doc/cppopts.texi ! 52c0e2025a2e01d077f402dd7d29639c gcc/doc/extend.texi 5ee3105f6fb685feb1259931acfbf79e gcc/doc/fragments.texi de203f1fc34a4d519c489d06bf46b2bf gcc/doc/frontends.texi ! 88460cba365ce67a0a66e431a7befeaa gcc/doc/fsf-funding.7 ! e2d7852408d8a1899a9aa366ec24dbb7 gcc/doc/g++.1 ! 4cc3fecaf79c7ec793b3701b110dccb8 gcc/doc/gc-analyze.1 ! e2d7852408d8a1899a9aa366ec24dbb7 gcc/doc/gcc.1 ! 694b9d618abe0bb714144a607657b286 gcc/doc/gcc.info bef3772e1b7b2c623e0c1859c71522a8 gcc/doc/gcc.texi ! 0a0315be994faa03b8efe9b031dd48a8 gcc/doc/gccinstall.info ! 9cf77dd608f6d2001b3b0c448e8b21f2 gcc/doc/gccint.info 55d5bb148799c0031e223c79962ea104 gcc/doc/gccint.texi ! 93a50a9625ebaead640b46e6faddbc92 gcc/doc/gcj-dbtool.1 ! 665cb30443928f3f205159f277df0cc4 gcc/doc/gcj.1 ! 6aa5c0a428f40373a2d3f7612beeb537 gcc/doc/gcj.info ! d66569472f5681ba775c7b0b52fe1aab gcc/doc/gcov.1 6bd8d77a2f655e81b173f9903dc6daec gcc/doc/gcov.texi 5587ca6c5976c7dffb318cf45f5b7f13 gcc/doc/generic.texi ! 1ded054093de910d9786c62bc4fe8cc6 gcc/doc/gfdl.7 ! 579b1a5283de139ee93dad6c560e145c gcc/doc/gfortran.1 ! 15ef692a066278654e523f21e814e2f8 gcc/doc/gij.1 ac25ba9af042d4f99e0ab97a4f46517a gcc/doc/gimple.texi 290370669f02bef1502ada9273e5261f gcc/doc/gnu.texi ! c2ce8d4b16d3870aff28994fa01b01c7 gcc/doc/gpl.7 ! 66fdeaf602990c34f8142fe0d6b6cd7d gcc/doc/grmic.1 f2dd6df88ca65026d154f628ffbc8f13 gcc/doc/gty.texi 34a1955f331ff1028e09083a178c0418 gcc/doc/headerdirs.texi a56cc8baf1b35fa5c4c43bbfdb35b74b gcc/doc/hostconfig.texi --- 4354,4391 ---- 429106f28aff7ad80a86d1442fb5003d gcc/doc/configterms.texi 3c64bdb237b5fc38837b9b9bc2fda853 gcc/doc/contrib.texi 6436407c42cecb738124becb9079d978 gcc/doc/contribute.texi ! 5e3e0c096509bd07d5c4e58c8f06efc1 gcc/doc/cpp.1 ! 91e891cc8cc97262f370fa1720cab935 gcc/doc/cpp.info 8b4d7d3a2e425a52f573f6330d4d5e70 gcc/doc/cpp.texi 4aa9560d9a516a5df4f7429c00ba1fb2 gcc/doc/cppenv.texi ! c79331b0ad4bd8754587e474083c97fc gcc/doc/cppinternals.info 76eda89efeb575bff228598230bd3c50 gcc/doc/cppinternals.texi 249506473d9c4b6f20554997a9c8946f gcc/doc/cppopts.texi ! ce77d6c093d0e282a9fd574211610f56 gcc/doc/extend.texi 5ee3105f6fb685feb1259931acfbf79e gcc/doc/fragments.texi de203f1fc34a4d519c489d06bf46b2bf gcc/doc/frontends.texi ! 95124f2d3172e606e3923ab358bd3322 gcc/doc/fsf-funding.7 ! d6c63676c1601e2485ec62221f603395 gcc/doc/g++.1 ! 7b3cc9fca7dd312f2fe02db0065e8099 gcc/doc/gc-analyze.1 ! d6c63676c1601e2485ec62221f603395 gcc/doc/gcc.1 ! 87bdd8fe21f87a4659ce1537e2bd5f9e gcc/doc/gcc.info bef3772e1b7b2c623e0c1859c71522a8 gcc/doc/gcc.texi ! 5b5f9cef200be704a7679a1e4ac76826 gcc/doc/gccinstall.info ! 368ddc41f69403e4ac4bd66be4bd20ee gcc/doc/gccint.info 55d5bb148799c0031e223c79962ea104 gcc/doc/gccint.texi ! 6d7f64792dd64c14390cd50d66933d9d gcc/doc/gcj-dbtool.1 ! 176588657288a24f86b06be26987ede2 gcc/doc/gcj.1 ! b4410ece42d6e622ad5855afda203090 gcc/doc/gcj.info ! 77cbd3b1325ed7c23b643277e28ffa39 gcc/doc/gcov.1 6bd8d77a2f655e81b173f9903dc6daec gcc/doc/gcov.texi 5587ca6c5976c7dffb318cf45f5b7f13 gcc/doc/generic.texi ! 04bb6f5db372af37d8a816c7a6124a0e gcc/doc/gfdl.7 ! 1a51d453b0551b93fc12e7e8b2c1f615 gcc/doc/gfortran.1 ! 238e78142430db7327ce5c91b6f6343f gcc/doc/gij.1 ac25ba9af042d4f99e0ab97a4f46517a gcc/doc/gimple.texi 290370669f02bef1502ada9273e5261f gcc/doc/gnu.texi ! 11969faa98648b02b504bca4fb86b38d gcc/doc/gpl.7 ! 2a89429db5c04cabbf369e21a01f4367 gcc/doc/grmic.1 f2dd6df88ca65026d154f628ffbc8f13 gcc/doc/gty.texi 34a1955f331ff1028e09083a178c0418 gcc/doc/headerdirs.texi a56cc8baf1b35fa5c4c43bbfdb35b74b gcc/doc/hostconfig.texi *************** ca81bf9d3358342ef978866b6895f4ca gcc/do *** 4401,4443 **** 7016e79a5fe3bdfa0e3eda3713586189 gcc/doc/install.texi 8851ed69b0a7490fa673efa763d090c7 gcc/doc/install.texi2html f1aaec9eb4571d731a4089d5d5ef97fa gcc/doc/interface.texi ! 0d29184965d447c255116a66c751c3ac gcc/doc/invoke.texi ! ad4bc49d666206dab0080e276509c546 gcc/doc/jcf-dump.1 ! a21bec009e0207e0aa8010019601f292 gcc/doc/jv-convert.1 c36b6709dd343cbcd4b54f0417bcc780 gcc/doc/languages.texi 2ae9a3e90fef1d92ab8196ae773a7673 gcc/doc/libgcc.texi 8b58315c921fc046e0ab6f949ebd5990 gcc/doc/loop.texi ee0a1b01a1a27eee100cc172673b9fe2 gcc/doc/lto.texi 874e34e1340e586f987bc68372bd85c2 gcc/doc/makefile.texi ! 48dc81c158ab0afb5906690947705c49 gcc/doc/md.texi 0d32608762520cb5ec42bdfebde5ce0e gcc/doc/objc.texi 80da07512f4e689513406f7db671ffec gcc/doc/optinfo.texi 6fd0b58692b34513e8b16b996525ac0b gcc/doc/options.texi f9f577785f8eae98a97b29568343be95 gcc/doc/passes.texi 6997cbfce5b82226e56271f7498697f5 gcc/doc/plugins.texi 914a3d181f9c38ac74e424d667026b61 gcc/doc/portability.texi ! a9a2aca16fc696614bff7a56134986ee gcc/doc/rebuild-gcj-db.1 fa0276a6b5d315ae4e036add235d9b26 gcc/doc/rtl.texi 3f5d8a76a7ddd984603fb2f35ee46632 gcc/doc/service.texi ! affb8b02a41ee94557fabcdce8048ce2 gcc/doc/sourcebuild.texi 80f74ac416390bd73b75ae93f1f2f8f8 gcc/doc/standards.texi e701e7a632dd1b5af6097c2bea831d54 gcc/doc/tm.texi de49d7ccb741be08e765d3e94977b49d gcc/doc/tm.texi.in 2a0f462c8ac98826cc19fc71f6f09014 gcc/doc/tree-ssa.texi f173054a88e0b97206d03f926b8bd696 gcc/doc/trouble.texi ! b40aba636e9d9d23b966bc47f50ca0ad gcc/dojump.c 1c73909bd45b22ed2b016ad5fe3afca4 gcc/dominance.c 060582ff73194daaccc8cbe92add257a gcc/domwalk.c 297c055c19cbb073b385bb9443fec98c gcc/domwalk.h 2e57c82dbd0e91dc5b2e7f8b275f7eaa gcc/double-int.c 9d7f6889e84a85a6aea3abb7201f6f04 gcc/double-int.h ! 652eb789bab05cdbf5806ca8e09707c8 gcc/dse.c 1a746ea442089d7bdcdbf56af69a5b3e gcc/dumpfile.c eca799a5ac72d21ac26c0993a7fe198d gcc/dumpfile.h 7aca1d34836c11d9a7af3c4f2e2899e3 gcc/dwarf2asm.c 81e5a5988d94ef1528027be5136860e3 gcc/dwarf2asm.h 42be1d7e96240ac3e4821237d124400c gcc/dwarf2cfi.c ! 5388df65a244fc8b60eebd50e79d7b85 gcc/dwarf2out.c 23181314505e8dc6de6f47f73e34b798 gcc/dwarf2out.h bd4b9506abebe678ad23b32840627c01 gcc/emit-rtl.c 7f412544cdbe46c671bbfc12f5791fee gcc/emit-rtl.h --- 4400,4442 ---- 7016e79a5fe3bdfa0e3eda3713586189 gcc/doc/install.texi 8851ed69b0a7490fa673efa763d090c7 gcc/doc/install.texi2html f1aaec9eb4571d731a4089d5d5ef97fa gcc/doc/interface.texi ! 2f7b2856dd1b63e13555374d6cc14d11 gcc/doc/invoke.texi ! 9634049829eba58105a283a8f2bc3074 gcc/doc/jcf-dump.1 ! ba43693d300bfd07c60ad1b35de6a0c3 gcc/doc/jv-convert.1 c36b6709dd343cbcd4b54f0417bcc780 gcc/doc/languages.texi 2ae9a3e90fef1d92ab8196ae773a7673 gcc/doc/libgcc.texi 8b58315c921fc046e0ab6f949ebd5990 gcc/doc/loop.texi ee0a1b01a1a27eee100cc172673b9fe2 gcc/doc/lto.texi 874e34e1340e586f987bc68372bd85c2 gcc/doc/makefile.texi ! 035aea1538ac56f06e1510501d98e35b gcc/doc/md.texi 0d32608762520cb5ec42bdfebde5ce0e gcc/doc/objc.texi 80da07512f4e689513406f7db671ffec gcc/doc/optinfo.texi 6fd0b58692b34513e8b16b996525ac0b gcc/doc/options.texi f9f577785f8eae98a97b29568343be95 gcc/doc/passes.texi 6997cbfce5b82226e56271f7498697f5 gcc/doc/plugins.texi 914a3d181f9c38ac74e424d667026b61 gcc/doc/portability.texi ! 8e579f64f6b17f0ad1967f687a64b77b gcc/doc/rebuild-gcj-db.1 fa0276a6b5d315ae4e036add235d9b26 gcc/doc/rtl.texi 3f5d8a76a7ddd984603fb2f35ee46632 gcc/doc/service.texi ! 6015bf501021f2cb5f425475bf0f2a0a gcc/doc/sourcebuild.texi 80f74ac416390bd73b75ae93f1f2f8f8 gcc/doc/standards.texi e701e7a632dd1b5af6097c2bea831d54 gcc/doc/tm.texi de49d7ccb741be08e765d3e94977b49d gcc/doc/tm.texi.in 2a0f462c8ac98826cc19fc71f6f09014 gcc/doc/tree-ssa.texi f173054a88e0b97206d03f926b8bd696 gcc/doc/trouble.texi ! 49bde975caf7cc7c94ed4c644d1eb34c gcc/dojump.c 1c73909bd45b22ed2b016ad5fe3afca4 gcc/dominance.c 060582ff73194daaccc8cbe92add257a gcc/domwalk.c 297c055c19cbb073b385bb9443fec98c gcc/domwalk.h 2e57c82dbd0e91dc5b2e7f8b275f7eaa gcc/double-int.c 9d7f6889e84a85a6aea3abb7201f6f04 gcc/double-int.h ! 926bcea961656a2d85b1bd4f4ab4f4c2 gcc/dse.c 1a746ea442089d7bdcdbf56af69a5b3e gcc/dumpfile.c eca799a5ac72d21ac26c0993a7fe198d gcc/dumpfile.h 7aca1d34836c11d9a7af3c4f2e2899e3 gcc/dwarf2asm.c 81e5a5988d94ef1528027be5136860e3 gcc/dwarf2asm.h 42be1d7e96240ac3e4821237d124400c gcc/dwarf2cfi.c ! 68451ac9e71f124e9691b0809fd8aa61 gcc/dwarf2out.c 23181314505e8dc6de6f47f73e34b798 gcc/dwarf2out.h bd4b9506abebe678ad23b32840627c01 gcc/emit-rtl.c 7f412544cdbe46c671bbfc12f5791fee gcc/emit-rtl.h *************** b7f5ef50648269cf32374777e144ac1e gcc/er *** 4445,4451 **** b0556e2034dd821307551d6d74e745d6 gcc/errors.h 6e1128564fbc54da3de9a0a4bef43e76 gcc/et-forest.c 13a2fc005556245ff6d5773cf66b18f4 gcc/et-forest.h ! 7bfb27734c95c9e1a1198b0fcfcdc7a1 gcc/except.c 24bbd090dbec005ad3793cae5f7e4e19 gcc/except.h 589e62819b3e668ae01defc5f5fb9ad5 gcc/exec-tool.in a38616b15259ffd2171e03ecb4249502 gcc/explow.c --- 4444,4450 ---- b0556e2034dd821307551d6d74e745d6 gcc/errors.h 6e1128564fbc54da3de9a0a4bef43e76 gcc/et-forest.c 13a2fc005556245ff6d5773cf66b18f4 gcc/et-forest.h ! 13680b926ad4e1e12e6901ffbf87e27e gcc/except.c 24bbd090dbec005ad3793cae5f7e4e19 gcc/except.h 589e62819b3e668ae01defc5f5fb9ad5 gcc/exec-tool.in a38616b15259ffd2171e03ecb4249502 gcc/explow.c *************** f21b58f2ee4076afbfccecb6f0b20813 gcc/fi *** 4460,4468 **** e273344d3f81a5d94a7296a6f73d4599 gcc/fixed-value.h adaed0cdfe09a72854c2bcbcc96c8225 gcc/flag-types.h 927cde0489c22a941e547faf5ec11e50 gcc/flags.h ! e7d6a9d81928ee0605d2b89b2d0585c3 gcc/fold-const.c 926e7b21d0de960d055e2f98520491fc gcc/fold-const.h ! f2e90467fff29fbff67d7ad06c4d24f7 gcc/fortran/ChangeLog 3330102ad3a0217cba963be6b5eefd58 gcc/fortran/ChangeLog-2002 d000ab985b1eeb1ad5749f98b8fef99f gcc/fortran/ChangeLog-2003 bf42f94f0c51dcc7d8051cc7fda1efdc gcc/fortran/ChangeLog-2004 --- 4459,4467 ---- e273344d3f81a5d94a7296a6f73d4599 gcc/fixed-value.h adaed0cdfe09a72854c2bcbcc96c8225 gcc/flag-types.h 927cde0489c22a941e547faf5ec11e50 gcc/flags.h ! 0b2a4cca8f318430708f2d27e6bc040e gcc/fold-const.c 926e7b21d0de960d055e2f98520491fc gcc/fold-const.h ! 1c95a6003e8200b3c9d9ae4e4a83655e gcc/fortran/ChangeLog 3330102ad3a0217cba963be6b5eefd58 gcc/fortran/ChangeLog-2002 d000ab985b1eeb1ad5749f98b8fef99f gcc/fortran/ChangeLog-2003 bf42f94f0c51dcc7d8051cc7fda1efdc gcc/fortran/ChangeLog-2004 *************** b71a81c732fdf1d678ad15828a60e689 gcc/fo *** 4481,4488 **** 9cd0d426f7d50746fd9b7f7ac4e2424a gcc/fortran/arith.h ccfa4b65ac8982708cce72fc504e63c9 gcc/fortran/array.c 7056af8453f375056ef312cb6376601c gcc/fortran/bbt.c ! 58ee1ee078411703726305d101932fd1 gcc/fortran/check.c ! c6ea95670cf2c47e6ade32e7214191f8 gcc/fortran/class.c 3991df26a1dc9b6ff42d91520c292e50 gcc/fortran/config-lang.in 36047e58fcc2b326025fbf4851f809d4 gcc/fortran/constructor.c ed4dd7bfb8f8c9f4cedd1f0d2943c8ee gcc/fortran/constructor.h --- 4480,4487 ---- 9cd0d426f7d50746fd9b7f7ac4e2424a gcc/fortran/arith.h ccfa4b65ac8982708cce72fc504e63c9 gcc/fortran/array.c 7056af8453f375056ef312cb6376601c gcc/fortran/bbt.c ! e06d32cf485b207ed4c9e3c06bf5693e gcc/fortran/check.c ! 86890df291c1be8069126341d369121f gcc/fortran/class.c 3991df26a1dc9b6ff42d91520c292e50 gcc/fortran/config-lang.in 36047e58fcc2b326025fbf4851f809d4 gcc/fortran/constructor.c ed4dd7bfb8f8c9f4cedd1f0d2943c8ee gcc/fortran/constructor.h *************** c868d6d4a72cb319fabcfc59e4613fe7 gcc/fo *** 4498,4507 **** 9499ec386ee632269bb460fc37b41279 gcc/fortran/error.c d321ca0b46df45c3fbc073dd163d4647 gcc/fortran/expr.c dd44a696cb95e5fca9e2493dd2b52a88 gcc/fortran/f95-lang.c ! 9853ad699e794d420e65e587a98801e2 gcc/fortran/frontend-passes.c 0a038b837897c57a2b48cc83a3475346 gcc/fortran/gfc-internals.texi 5239e5fe6fd01ffb7fd0da56efc19c6d gcc/fortran/gfortran.h ! 6b7340a3038b926e4af217591378859b gcc/fortran/gfortran.info 938a524e09245e10fbef5b331f81fc45 gcc/fortran/gfortran.texi fc8164863960de73fc317e2834ddd96e gcc/fortran/gfortranspec.c 6ca3b8142b47f11b93ca777ebced1fb9 gcc/fortran/interface.c --- 4497,4506 ---- 9499ec386ee632269bb460fc37b41279 gcc/fortran/error.c d321ca0b46df45c3fbc073dd163d4647 gcc/fortran/expr.c dd44a696cb95e5fca9e2493dd2b52a88 gcc/fortran/f95-lang.c ! d264b8823e4c071c704cb51ec2651dec gcc/fortran/frontend-passes.c 0a038b837897c57a2b48cc83a3475346 gcc/fortran/gfc-internals.texi 5239e5fe6fd01ffb7fd0da56efc19c6d gcc/fortran/gfortran.h ! d847e37e6eb1fa5cd424b70db0d035c2 gcc/fortran/gfortran.info 938a524e09245e10fbef5b331f81fc45 gcc/fortran/gfortran.texi fc8164863960de73fc317e2834ddd96e gcc/fortran/gfortranspec.c 6ca3b8142b47f11b93ca777ebced1fb9 gcc/fortran/interface.c *************** e0fb4a1ffcb0343a20358ac7e9e3c259 gcc/fo *** 4525,4557 **** f96d1ba2d55174b956d56fa894624326 gcc/fortran/module.c 6fe6854ba192e896050588811dcfbb37 gcc/fortran/openmp.c f51d0e2eedb4abe7296518a55e09ca88 gcc/fortran/options.c ! fc32c460b6cd9b3d248899bc6b084896 gcc/fortran/parse.c 6d0ad629aed04bdd74a9574a8bf4846e gcc/fortran/parse.h ! fd7c4ac7c689b6a4fb90173f4133229d gcc/fortran/primary.c 9fd27ce32275f0febe3c95656a00326d gcc/fortran/resolve.c ! 9adf6905ca4673ba2fbf9cbbce54892d gcc/fortran/scanner.c 72c90bd863614df8517636fc47ccfc94 gcc/fortran/scanner.h ! 30ace0930b0cbd12683a5a94c027d499 gcc/fortran/simplify.c e45fb97ea95ff4c3d74a0fbead1f06f9 gcc/fortran/st.c 3eff96d1a333aeb6daa262b6afa2a0c7 gcc/fortran/symbol.c 18b66b03bc5d661f80bb81b03f388eb9 gcc/fortran/target-memory.c 2b15769f79ab3546bef45df0d6815e2c gcc/fortran/target-memory.h ! 8c5401738ab604c8f844741de6618610 gcc/fortran/trans-array.c fb993a92547683640f7a49d6dd5d0cfe gcc/fortran/trans-array.h 6f0a3ffc5ef85f6a9f67c1deaed718de gcc/fortran/trans-common.c ad554dd79e97690c9fe5ce1779a7309c gcc/fortran/trans-const.c a3ccaa77809b6dcc6aa42f435c57e3f9 gcc/fortran/trans-const.h ! 08f0d5038bb96562094daa58fa080d26 gcc/fortran/trans-decl.c ! 1960b0c08e3a02aafad9f6467b4f8434 gcc/fortran/trans-expr.c 6ea2f877821771858978645b10ea08fd gcc/fortran/trans-intrinsic.c b47cd6ce04818d16aea2c2442ca82278 gcc/fortran/trans-io.c ! 34d6879f77a3f7dcd1fff21b93aeeefc gcc/fortran/trans-openmp.c ! f5548eadf50221b60625cf2c6f3e505f gcc/fortran/trans-stmt.c 716b10c08519c671b98c6434e2214353 gcc/fortran/trans-stmt.h ! 1e66cf08d4d5e9427f97b23659605cba gcc/fortran/trans-types.c 24e41f2179047fd847c46da3cd1c024c gcc/fortran/trans-types.h 51ee928eabf49de99a0d7e6578e236a2 gcc/fortran/trans.c ! c731fc29c48c6f8e0cda96aaf06a9e6e gcc/fortran/trans.h 95c41d60adaf583210f110d0984098f7 gcc/fortran/types.def 97b3f764fb651e1611194a18dbcbe3d3 gcc/fp-test.c 4d3cba35459b305215574844f80402af gcc/function.c --- 4524,4556 ---- f96d1ba2d55174b956d56fa894624326 gcc/fortran/module.c 6fe6854ba192e896050588811dcfbb37 gcc/fortran/openmp.c f51d0e2eedb4abe7296518a55e09ca88 gcc/fortran/options.c ! f9e80cd3ac52abf1fed4a7166ee2d350 gcc/fortran/parse.c 6d0ad629aed04bdd74a9574a8bf4846e gcc/fortran/parse.h ! f9492474a878a5248d235810f2ba4b68 gcc/fortran/primary.c 9fd27ce32275f0febe3c95656a00326d gcc/fortran/resolve.c ! d028da57f40a54a2311d33aad9d44b81 gcc/fortran/scanner.c 72c90bd863614df8517636fc47ccfc94 gcc/fortran/scanner.h ! c39bd5409b9968be2fa51d71bc7b2641 gcc/fortran/simplify.c e45fb97ea95ff4c3d74a0fbead1f06f9 gcc/fortran/st.c 3eff96d1a333aeb6daa262b6afa2a0c7 gcc/fortran/symbol.c 18b66b03bc5d661f80bb81b03f388eb9 gcc/fortran/target-memory.c 2b15769f79ab3546bef45df0d6815e2c gcc/fortran/target-memory.h ! 7ac8aa40f5067167a753babe0119eb5d gcc/fortran/trans-array.c fb993a92547683640f7a49d6dd5d0cfe gcc/fortran/trans-array.h 6f0a3ffc5ef85f6a9f67c1deaed718de gcc/fortran/trans-common.c ad554dd79e97690c9fe5ce1779a7309c gcc/fortran/trans-const.c a3ccaa77809b6dcc6aa42f435c57e3f9 gcc/fortran/trans-const.h ! 80b8a1b6c655b99bfdff40bb19275921 gcc/fortran/trans-decl.c ! 3c44711d70282e751410d02cb8594822 gcc/fortran/trans-expr.c 6ea2f877821771858978645b10ea08fd gcc/fortran/trans-intrinsic.c b47cd6ce04818d16aea2c2442ca82278 gcc/fortran/trans-io.c ! fb3c39c791969dfea94b0ce02be0c2fb gcc/fortran/trans-openmp.c ! bb5b2adc1ffabb088d07f9d520328333 gcc/fortran/trans-stmt.c 716b10c08519c671b98c6434e2214353 gcc/fortran/trans-stmt.h ! ca383ef2d71cd538179c3f24db3e306c gcc/fortran/trans-types.c 24e41f2179047fd847c46da3cd1c024c gcc/fortran/trans-types.h 51ee928eabf49de99a0d7e6578e236a2 gcc/fortran/trans.c ! 461b0a93919c11392aaef334f1b87022 gcc/fortran/trans.h 95c41d60adaf583210f110d0984098f7 gcc/fortran/types.def 97b3f764fb651e1611194a18dbcbe3d3 gcc/fp-test.c 4d3cba35459b305215574844f80402af gcc/function.c *************** cc34c8d1bad1301955e3b61a8998a2ef gcc/gc *** 4567,4573 **** f61072f7d8a864516dbe98fa23724108 gcc/gcov-io.h 8153efc9661bf69baeab28fec1c37088 gcc/gcov-iov.c 394f6bd415f02b74cff6957d95fcdf2f gcc/gcov.c ! d74fe9fbae4bb6cd623fcdc384f2bb57 gcc/gcse.c 23074fc7f173521ae5b8283331e3342e gcc/gcse.h af83e4b4719ee065872080b713d24c2f gcc/gdbasan.in 13a434ba48aca9d1236426f08211bda1 gcc/gdbhooks.py --- 4566,4572 ---- f61072f7d8a864516dbe98fa23724108 gcc/gcov-io.h 8153efc9661bf69baeab28fec1c37088 gcc/gcov-iov.c 394f6bd415f02b74cff6957d95fcdf2f gcc/gcov.c ! 9fffb1f1a86a9a0829393ed768e8483a gcc/gcse.c 23074fc7f173521ae5b8283331e3342e gcc/gcse.h af83e4b4719ee065872080b713d24c2f gcc/gdbasan.in 13a434ba48aca9d1236426f08211bda1 gcc/gdbhooks.py *************** f494127078ee11832d689cde6cc3659b gcc/ge *** 4588,4594 **** 433eb66f3d010864a76c754d81db24cb gcc/genextract.c fe4697f2b98c57d9478b6bb7a7ae2e88 gcc/genflags.c e041d627ebfb410e6ac9821a3ebb3d42 gcc/gengenrtl.c ! 3c6872e70253d43910ce1cea2719dee8 gcc/gengtype-lex.c 689319748dcd572b0d864e2f427c5ffa gcc/gengtype-lex.l cbbcd3bf3726ae98ca84780142a68208 gcc/gengtype-parse.c 4eaf2d492394ef805a5d5ae40b3405b1 gcc/gengtype-state.c --- 4587,4593 ---- 433eb66f3d010864a76c754d81db24cb gcc/genextract.c fe4697f2b98c57d9478b6bb7a7ae2e88 gcc/genflags.c e041d627ebfb410e6ac9821a3ebb3d42 gcc/gengenrtl.c ! 88a4cc2a18399bbfa381474881b3950e gcc/gengtype-lex.c 689319748dcd572b0d864e2f427c5ffa gcc/gengtype-lex.l cbbcd3bf3726ae98ca84780142a68208 gcc/gengtype-parse.c 4eaf2d492394ef805a5d5ae40b3405b1 gcc/gengtype-state.c *************** f19d98298c7010cc78fb637e720ca64f gcc/gg *** 4613,4619 **** 3680f03d3fed841810dbf18b7d16557b gcc/ggc.h b5352906df07482dae1be977a26802bc gcc/gimple-builder.c 637e56fd173b1c330853407907c40e1e gcc/gimple-builder.h ! 56300f6ed8e7d0a6bd9701ab5b7410a7 gcc/gimple-expr.c fd959eed75ba50c9ce0144de59c6453d gcc/gimple-expr.h 0327e89047d16b7cbe11dd67ddb07312 gcc/gimple-fold.c b2116458d45929978ab35d0063286333 gcc/gimple-fold.h --- 4612,4618 ---- 3680f03d3fed841810dbf18b7d16557b gcc/ggc.h b5352906df07482dae1be977a26802bc gcc/gimple-builder.c 637e56fd173b1c330853407907c40e1e gcc/gimple-builder.h ! 3a65c4868ce8651efce9535ec19e9602 gcc/gimple-expr.c fd959eed75ba50c9ce0144de59c6453d gcc/gimple-expr.h 0327e89047d16b7cbe11dd67ddb07312 gcc/gimple-fold.c b2116458d45929978ab35d0063286333 gcc/gimple-fold.h *************** b2116458d45929978ab35d0063286333 gcc/gi *** 4623,4642 **** 7acad740b79bb8d5813ca5adaed51ea9 gcc/gimple-low.h bce8302c35666fa97812af572784ddb4 gcc/gimple-pretty-print.c fd36993cffdf23f8818cd5ab8119f9ef gcc/gimple-pretty-print.h ! a55e2dba541a5690618f749ab8209b06 gcc/gimple-ssa-isolate-paths.c ! ddfcd12ffaa58e2c4343f8868d646bcc gcc/gimple-ssa-strength-reduction.c 65c5fd48c73569d5d8c6cb61fa000a0f gcc/gimple-ssa.h 05ea5f1994babea73ca748acd5ef37c6 gcc/gimple-streamer-in.c d27ff703db577eb6b990d1d617cfe155 gcc/gimple-streamer-out.c ac5d23c902f85dfe5c16f04e66fea4a9 gcc/gimple-streamer.h 4e615dc6975da15dfabc9e7f68931048 gcc/gimple-walk.c 623d297f817d4dde247a0cd1c5d604db gcc/gimple-walk.h ! 4aebf3321f9a4558ceda4c59d6bcffd8 gcc/gimple.c c5289edd7df36bab34b0a7146643c60a gcc/gimple.def 2002d30c0445e83198ddf2cb828c8313 gcc/gimple.h 79b09968dccc8cd8a7a3bd3b2449b1b7 gcc/gimplify-me.c 0fe03cac0c9e29cc1e32425f09eb2c17 gcc/gimplify-me.h ! 84c3a700242d86616534302420789f0f gcc/gimplify.c 331c48030a046b27a704925015fd1649 gcc/gimplify.h 2ac6b57e8aad060fa48b9a8a039a708a gcc/ginclude/float.h a610d6820fa8bbb9030d13a1dcd4ee52 gcc/ginclude/iso646.h --- 4622,4641 ---- 7acad740b79bb8d5813ca5adaed51ea9 gcc/gimple-low.h bce8302c35666fa97812af572784ddb4 gcc/gimple-pretty-print.c fd36993cffdf23f8818cd5ab8119f9ef gcc/gimple-pretty-print.h ! b6aac5c6a7f7ff57ee64790ff3570a89 gcc/gimple-ssa-isolate-paths.c ! 87108bf7bfd2325edd9d97810e182a47 gcc/gimple-ssa-strength-reduction.c 65c5fd48c73569d5d8c6cb61fa000a0f gcc/gimple-ssa.h 05ea5f1994babea73ca748acd5ef37c6 gcc/gimple-streamer-in.c d27ff703db577eb6b990d1d617cfe155 gcc/gimple-streamer-out.c ac5d23c902f85dfe5c16f04e66fea4a9 gcc/gimple-streamer.h 4e615dc6975da15dfabc9e7f68931048 gcc/gimple-walk.c 623d297f817d4dde247a0cd1c5d604db gcc/gimple-walk.h ! 6cbb4214424bb07927e78a29f345f382 gcc/gimple.c c5289edd7df36bab34b0a7146643c60a gcc/gimple.def 2002d30c0445e83198ddf2cb828c8313 gcc/gimple.h 79b09968dccc8cd8a7a3bd3b2449b1b7 gcc/gimplify-me.c 0fe03cac0c9e29cc1e32425f09eb2c17 gcc/gimplify-me.h ! 2fff5ed653685a26272feb9306afa801 gcc/gimplify.c 331c48030a046b27a704925015fd1649 gcc/gimplify.h 2ac6b57e8aad060fa48b9a8a039a708a gcc/ginclude/float.h a610d6820fa8bbb9030d13a1dcd4ee52 gcc/ginclude/iso646.h *************** b20d2dc1cb683fcd184dd5581c236ba8 gcc/gi *** 4653,4659 **** d699488411097f968823f9f7e77d33fa gcc/ginclude/unwind-arm-common.h 8d9ecf0d6ef93c79623ce1d27a32a2cb gcc/ginclude/varargs.h d0018c8b069fef23a59561ff2f8dc915 gcc/glimits.h ! 570291baa607dcd17da0d456e9296f4c gcc/go/ChangeLog 84d2ef4a6fee7df8a45a370a6b605aae gcc/go/Make-lang.in 60ea054548c83c7f66170073f9f3e74c gcc/go/README.gcc e6bece4f0caf0458c84d9b29ca0de83e gcc/go/config-lang.in --- 4652,4658 ---- d699488411097f968823f9f7e77d33fa gcc/ginclude/unwind-arm-common.h 8d9ecf0d6ef93c79623ce1d27a32a2cb gcc/ginclude/varargs.h d0018c8b069fef23a59561ff2f8dc915 gcc/glimits.h ! 8689e8e634076b12d0e3233c3fe0c18a gcc/go/ChangeLog 84d2ef4a6fee7df8a45a370a6b605aae gcc/go/Make-lang.in 60ea054548c83c7f66170073f9f3e74c gcc/go/README.gcc e6bece4f0caf0458c84d9b29ca0de83e gcc/go/config-lang.in *************** d273f8866602cebf095ed652fe2e7e79 gcc/go *** 4675,4681 **** ac50f288c85f0d8fff72198966a48008 gcc/go/gofrontend/dataflow.h 66b3f309ace1db4ea63f3ab655bb8fda gcc/go/gofrontend/export.cc d1e20b40172e86345693f893aff13c83 gcc/go/gofrontend/export.h ! fb90a5a1535dd22b8c45f3018165a634 gcc/go/gofrontend/expressions.cc 58c163a4c1b69d7476b266ca4a7faf4f gcc/go/gofrontend/expressions.h 19e66447fa803385274b4e1a7501a4d5 gcc/go/gofrontend/go-dump.cc e3f005ccc40000dcaf14ab6eec979f69 gcc/go/gofrontend/go-dump.h --- 4674,4680 ---- ac50f288c85f0d8fff72198966a48008 gcc/go/gofrontend/dataflow.h 66b3f309ace1db4ea63f3ab655bb8fda gcc/go/gofrontend/export.cc d1e20b40172e86345693f893aff13c83 gcc/go/gofrontend/export.h ! 490569f01d1e3ec2eef9a7a8d1e1868a gcc/go/gofrontend/expressions.cc 58c163a4c1b69d7476b266ca4a7faf4f gcc/go/gofrontend/expressions.h 19e66447fa803385274b4e1a7501a4d5 gcc/go/gofrontend/go-dump.cc e3f005ccc40000dcaf14ab6eec979f69 gcc/go/gofrontend/go-dump.h *************** a0ec1aca0799311af987406ca601f942 gcc/go *** 4711,4736 **** d6ed85a4cc675456c0164a52cebf642b gcc/graph.h c5563cd0c2ff9e98445d10189f379680 gcc/graphds.c 9401c2460400ecfe2a692f5b15e4a5e8 gcc/graphds.h ! eb9d90882c9e2d91c8978b3cdc050b4e gcc/graphite-blocking.c e8284c96750e0d92b778fcd27c3d7b2b gcc/graphite-clast-to-gimple.c fa16dedaafdb2228849f12a7ffd2e158 gcc/graphite-clast-to-gimple.h ! 971d8bb7a8ed5d9932822fa9ba125399 gcc/graphite-dependences.c 0d3d73bcd8f4028e9ad18229256e7034 gcc/graphite-htab.h ! a70cb15de94787385770f7ec69f06b24 gcc/graphite-interchange.c ! 7a1eb4f186afaac3697b79104349e543 gcc/graphite-optimize-isl.c ! 474bf85a01f7b5d3de3ffd19024cb025 gcc/graphite-poly.c ! f9c785410cfde9d61c3ffb670dced572 gcc/graphite-poly.h ! 89fcadefa8e3b6c09169e1c840d54860 gcc/graphite-scop-detection.c 2c30c8f2568b1d728f9ba0e3929140d6 gcc/graphite-scop-detection.h ! b872ae197ea404a8e9c2396424bb2fce gcc/graphite-sese-to-poly.c 49ddf476aa0ab3084a087850dbf32c8b gcc/graphite-sese-to-poly.h ! e25ff49d7eaa8a3ed32557987cfb9c9b gcc/graphite.c cf41457f88168d3e8082aa72b80c002f gcc/gsstruct.def edac6e47389a7535b1807a0acd048588 gcc/gstab.h 2cda0126502ff478a7ebcf643c98854e gcc/gsyms.h c32a1d882e7039afe158bb9e59b65223 gcc/gsyslimits.h 627499320e765bbf3b4144e4fe96e27e gcc/gtm-builtins.def ! 4903aae658caa2b0be4b04c6ba870a2f gcc/haifa-sched.c 7be8050b97499911e0f99f19a6ec70be gcc/hard-reg-set.h c850bd90749d6b68819c29769d52ab28 gcc/hash-table.c 213d6d15646545c146fd2478456888f1 gcc/hash-table.h --- 4710,4735 ---- d6ed85a4cc675456c0164a52cebf642b gcc/graph.h c5563cd0c2ff9e98445d10189f379680 gcc/graphds.c 9401c2460400ecfe2a692f5b15e4a5e8 gcc/graphds.h ! 5fb8f4f1c49515486a11e86fda9b540f gcc/graphite-blocking.c e8284c96750e0d92b778fcd27c3d7b2b gcc/graphite-clast-to-gimple.c fa16dedaafdb2228849f12a7ffd2e158 gcc/graphite-clast-to-gimple.h ! 202c3e59bea72a6f883f96129faae3e6 gcc/graphite-dependences.c 0d3d73bcd8f4028e9ad18229256e7034 gcc/graphite-htab.h ! 391d7a168667de3523a445fcf368d8e0 gcc/graphite-interchange.c ! 91c7d7a59d9101439a716e36fcb75a35 gcc/graphite-optimize-isl.c ! 2281fe3cb398c8bb65f7ec9c84167e75 gcc/graphite-poly.c ! 8f81f656ac8acdaf1645444e540c84aa gcc/graphite-poly.h ! 83dd67e0e0a05c48e2a004ca8502b6a9 gcc/graphite-scop-detection.c 2c30c8f2568b1d728f9ba0e3929140d6 gcc/graphite-scop-detection.h ! 802f711e79273adbb99e0918422ad08b gcc/graphite-sese-to-poly.c 49ddf476aa0ab3084a087850dbf32c8b gcc/graphite-sese-to-poly.h ! c810312ecd4c739bdbf747e936b92681 gcc/graphite.c cf41457f88168d3e8082aa72b80c002f gcc/gsstruct.def edac6e47389a7535b1807a0acd048588 gcc/gstab.h 2cda0126502ff478a7ebcf643c98854e gcc/gsyms.h c32a1d882e7039afe158bb9e59b65223 gcc/gsyslimits.h 627499320e765bbf3b4144e4fe96e27e gcc/gtm-builtins.def ! 2467010e798fe0bfeabe0bdf360b4683 gcc/haifa-sched.c 7be8050b97499911e0f99f19a6ec70be gcc/hard-reg-set.h c850bd90749d6b68819c29769d52ab28 gcc/hash-table.c 213d6d15646545c146fd2478456888f1 gcc/hash-table.h *************** b51d88bcdd2efbbab2093ba8e092f717 gcc/ho *** 4740,4750 **** a5df56e506d8207dbc280c08f5862929 gcc/host-default.c 45e005a1553ecb2678776146a676ad7b gcc/hosthooks-def.h 7b90f021efa79472e83e4378baf45546 gcc/hosthooks.h ! ff0bb1df7abd9f92b5b2249f46f24f35 gcc/hw-doloop.c c163a15eb47128cddb46c82fb2263143 gcc/hw-doloop.h e2590b74f886eda7ac7d51f3875e13d7 gcc/hwint.c ab455fd670a57582e5f82cf715e9f227 gcc/hwint.h ! cfbcfab1b070b8552ec7064c28598466 gcc/ifcvt.c 8b7dea985306baee17b8faa21eb88cd1 gcc/incpath.c e2c9de507f0219fbd0ff9702aad2d97f gcc/incpath.h f2d9b4bdc5ad27013548db5a271b5abd gcc/init-regs.c --- 4739,4749 ---- a5df56e506d8207dbc280c08f5862929 gcc/host-default.c 45e005a1553ecb2678776146a676ad7b gcc/hosthooks-def.h 7b90f021efa79472e83e4378baf45546 gcc/hosthooks.h ! d163b3c881581ef49e64d4ea358b3375 gcc/hw-doloop.c c163a15eb47128cddb46c82fb2263143 gcc/hw-doloop.h e2590b74f886eda7ac7d51f3875e13d7 gcc/hwint.c ab455fd670a57582e5f82cf715e9f227 gcc/hwint.h ! b4732aea59819b961f5f00dde5fe12f1 gcc/ifcvt.c 8b7dea985306baee17b8faa21eb88cd1 gcc/incpath.c e2c9de507f0219fbd0ff9702aad2d97f gcc/incpath.h f2d9b4bdc5ad27013548db5a271b5abd gcc/init-regs.c *************** cf1aaab95d16109bdb59347a0d71b218 gcc/in *** 4757,4771 **** 7cd1230149ca41bac59e22852eb43fda gcc/internal-fn.h d9360459f2f4e913687597f9589da5da gcc/intl.c 828d71668221b7c1bd27436bf9a019bc gcc/intl.h ! 6a8b3e043b7566f9abed20b2cd243c2b gcc/ipa-cp.c 9c8f96d84fe76474ecf300b3461ae324 gcc/ipa-devirt.c ! cbad61702bdb5ef2d250955d6daf653a gcc/ipa-inline-analysis.c c8f8b66f5c80f7b58ba0d45701a6422c gcc/ipa-inline-transform.c 07b45af4191a711dea059475f57c1a15 gcc/ipa-inline.c ! ef5aed192294b1ea841838ffe38b6ad0 gcc/ipa-inline.h bc1b3139cd7a986ee918134a0530cff0 gcc/ipa-profile.c ! 44fe8a05d2644cd22ac19740a96f22c1 gcc/ipa-prop.c ! 4cfe52b86527ded18edfae21b3a945cf gcc/ipa-prop.h a82a1226e9634d45486b5a3e19c420fe gcc/ipa-pure-const.c 4d91788577e596f236457cd265942705 gcc/ipa-ref-inline.h 1855589dcb6587a046dcb728192ee425 gcc/ipa-ref.c --- 4756,4770 ---- 7cd1230149ca41bac59e22852eb43fda gcc/internal-fn.h d9360459f2f4e913687597f9589da5da gcc/intl.c 828d71668221b7c1bd27436bf9a019bc gcc/intl.h ! 54e70e39f8c472c2a251b2b99eef9511 gcc/ipa-cp.c 9c8f96d84fe76474ecf300b3461ae324 gcc/ipa-devirt.c ! a5b7489943f542164af60a116b0c2581 gcc/ipa-inline-analysis.c c8f8b66f5c80f7b58ba0d45701a6422c gcc/ipa-inline-transform.c 07b45af4191a711dea059475f57c1a15 gcc/ipa-inline.c ! c59db06868480730038917bc6689ae35 gcc/ipa-inline.h bc1b3139cd7a986ee918134a0530cff0 gcc/ipa-profile.c ! da3e64f06c52053c38aab60216528388 gcc/ipa-prop.c ! a9f2d7bf6b86232b558e78c4fb1449b3 gcc/ipa-prop.h a82a1226e9634d45486b5a3e19c420fe gcc/ipa-pure-const.c 4d91788577e596f236457cd265942705 gcc/ipa-ref-inline.h 1855589dcb6587a046dcb728192ee425 gcc/ipa-ref.c *************** a82a1226e9634d45486b5a3e19c420fe gcc/ip *** 4776,4792 **** 446a574aba27a93de95b2b0c4b4cecbe gcc/ipa-utils.c f1a401a90912552f632b32c77c399c6c gcc/ipa-utils.h 66c7fbbffff5afd60271d125af0b7e33 gcc/ipa.c ! 70106323b726e444846e15be0d43b678 gcc/ira-build.c 43905ebf4d26681958db7403ec946ebc gcc/ira-color.c ea843b242eda121fea593c86fb908fc7 gcc/ira-conflicts.c 860fc86150488ec9dc71e5fa1468c1f2 gcc/ira-costs.c 2bd26b2844144d614e2af6f5617f0c46 gcc/ira-emit.c 452dc27ab7f3093a6f672198aeddb03d gcc/ira-int.h 9c77805567ace1d43ebfaadc852c23c5 gcc/ira-lives.c ! dde091b38cca9b3edce9293a6475a269 gcc/ira.c a143bddc3bc8d88afb0b31089aefe816 gcc/ira.h 843275b56a150408da64a72a1e86fd31 gcc/is-a.h ! e3ef5f686016e56e1447a1f9648cfda2 gcc/java/ChangeLog 3becfaac793f49e1f52cd74e78172b48 gcc/java/ChangeLog.ptr 1c698a5c434720749e71a0ea3eb5a0ea gcc/java/ChangeLog.tree-ssa 3e907c2321d94f9d70c9bfcc63d251c3 gcc/java/Make-lang.in --- 4775,4791 ---- 446a574aba27a93de95b2b0c4b4cecbe gcc/ipa-utils.c f1a401a90912552f632b32c77c399c6c gcc/ipa-utils.h 66c7fbbffff5afd60271d125af0b7e33 gcc/ipa.c ! c7431011cf2fd237b080f85144410fe5 gcc/ira-build.c 43905ebf4d26681958db7403ec946ebc gcc/ira-color.c ea843b242eda121fea593c86fb908fc7 gcc/ira-conflicts.c 860fc86150488ec9dc71e5fa1468c1f2 gcc/ira-costs.c 2bd26b2844144d614e2af6f5617f0c46 gcc/ira-emit.c 452dc27ab7f3093a6f672198aeddb03d gcc/ira-int.h 9c77805567ace1d43ebfaadc852c23c5 gcc/ira-lives.c ! abda2a9dccccc623dfd6b783d02da207 gcc/ira.c a143bddc3bc8d88afb0b31089aefe816 gcc/ira.h 843275b56a150408da64a72a1e86fd31 gcc/is-a.h ! d8a53974bb16d8da568454d9c01031b9 gcc/java/ChangeLog 3becfaac793f49e1f52cd74e78172b48 gcc/java/ChangeLog.ptr 1c698a5c434720749e71a0ea3eb5a0ea gcc/java/ChangeLog.tree-ssa 3e907c2321d94f9d70c9bfcc63d251c3 gcc/java/Make-lang.in *************** b8ec1125f50fd732ec79e25188b65195 gcc/lo *** 4849,4855 **** ea528889eab563f14e1de595d2accbea gcc/lower-subreg.h b9860ff82ef33940e930f64ab0510047 gcc/lra-assigns.c dc1627ac98262eabf9f97f3174ae4d9b gcc/lra-coalesce.c ! 6736fbd4359e7676b43e3d3c85d8b92b gcc/lra-constraints.c 13d0b61525b9064a61d09f25fd0ad388 gcc/lra-eliminations.c 25b88bf534a0196029e70f7953cea62f gcc/lra-int.h ac52e0eaa11de3ffc26b55f5002b3828 gcc/lra-lives.c --- 4848,4854 ---- ea528889eab563f14e1de595d2accbea gcc/lower-subreg.h b9860ff82ef33940e930f64ab0510047 gcc/lra-assigns.c dc1627ac98262eabf9f97f3174ae4d9b gcc/lra-coalesce.c ! e0fc964641aa8cd343ce6de5f62d7925 gcc/lra-constraints.c 13d0b61525b9064a61d09f25fd0ad388 gcc/lra-eliminations.c 25b88bf534a0196029e70f7953cea62f gcc/lra-int.h ac52e0eaa11de3ffc26b55f5002b3828 gcc/lra-lives.c *************** f6df3e8bdd1544526a9063ecaa5262a2 gcc/lt *** 4865,4873 **** 9d90309ed38ceafd2737c415ab3b73b7 gcc/lto-streamer-in.c 9db302c008730a42387844715ebb6119 gcc/lto-streamer-out.c 81d24bca19f31cd5f0e863be0155267b gcc/lto-streamer.c ! b6667b25d54cd3d347edba40e635a6f8 gcc/lto-streamer.h b22d02e83c5f71264232ba966fa80333 gcc/lto-wrapper.c ! 11e0cc63d2ba1a321706b6522674d469 gcc/lto/ChangeLog bd46eeecd1e05c40c9228f70c479cb8b gcc/lto/Make-lang.in 02974c5a3053c08f1c7046c3c00f237e gcc/lto/common.c d2a23372f33fc6333deb5309623e859d gcc/lto/common.h --- 4864,4872 ---- 9d90309ed38ceafd2737c415ab3b73b7 gcc/lto-streamer-in.c 9db302c008730a42387844715ebb6119 gcc/lto-streamer-out.c 81d24bca19f31cd5f0e863be0155267b gcc/lto-streamer.c ! 3f3700335dd11c1cfe788e726c458a92 gcc/lto-streamer.h b22d02e83c5f71264232ba966fa80333 gcc/lto-wrapper.c ! 9cdba47bbe1ebc924370943f6ad4f5ac gcc/lto/ChangeLog bd46eeecd1e05c40c9228f70c479cb8b gcc/lto/Make-lang.in 02974c5a3053c08f1c7046c3c00f237e gcc/lto/common.c d2a23372f33fc6333deb5309623e859d gcc/lto/common.h *************** fcc2286edf21da424cd748f78bab8beb gcc/ma *** 4890,4896 **** c105259690227bdba523ebbdb6785a23 gcc/mode-classes.def 5990f0f03ab20c63f205f98103605d90 gcc/mode-switching.c ea3034ca83cb71b140bd50490e453acb gcc/modulo-sched.c ! 4969054642a1931e21690290572c9057 gcc/objc/ChangeLog f7d80205bd69247c50937b75822d6bd9 gcc/objc/Make-lang.in 9e4f3a7afe892a3c94dacd501fa3b35f gcc/objc/config-lang.in f4d88f51dbafbe757f45be85d78212b3 gcc/objc/lang-specs.h --- 4889,4895 ---- c105259690227bdba523ebbdb6785a23 gcc/mode-classes.def 5990f0f03ab20c63f205f98103605d90 gcc/mode-switching.c ea3034ca83cb71b140bd50490e453acb gcc/modulo-sched.c ! dad4b016b93cf91be3f94972e2bd7717 gcc/objc/ChangeLog f7d80205bd69247c50937b75822d6bd9 gcc/objc/Make-lang.in 9e4f3a7afe892a3c94dacd501fa3b35f gcc/objc/config-lang.in f4d88f51dbafbe757f45be85d78212b3 gcc/objc/lang-specs.h *************** c122edc5c6b17b4d321a60351edeafed gcc/ob *** 4909,4915 **** ef6e827e622bc98f856c61b276dc8c64 gcc/objc/objc-runtime-shared-support.c dab6095a59a77d76a9ffdf45011ed784 gcc/objc/objc-runtime-shared-support.h a20e652c78591a316ce03a188632848f gcc/objc/objc-tree.def ! ccad4d66b11f98c07185d6bb9ec39ea8 gcc/objcp/ChangeLog 79e09c916d955993dc8964962930f661 gcc/objcp/Make-lang.in e75a1a94a911654e611dc33cc33ed861 gcc/objcp/config-lang.in d551c7316da761fc633ce118cc2b5e8e gcc/objcp/lang-specs.h --- 4908,4914 ---- ef6e827e622bc98f856c61b276dc8c64 gcc/objc/objc-runtime-shared-support.c dab6095a59a77d76a9ffdf45011ed784 gcc/objc/objc-runtime-shared-support.h a20e652c78591a316ce03a188632848f gcc/objc/objc-tree.def ! b448c7be53ceba71bc13fd80fcafdf4d gcc/objcp/ChangeLog 79e09c916d955993dc8964962930f661 gcc/objcp/Make-lang.in e75a1a94a911654e611dc33cc33ed861 gcc/objcp/config-lang.in d551c7316da761fc633ce118cc2b5e8e gcc/objcp/lang-specs.h *************** f1fe0e2522617705fd8c3550c0e11716 gcc/ob *** 4919,4931 **** b287f66d35995315cca62a202c60bb74 gcc/omega.c 010649dbdbf5e49817e4ea9f867a7bff gcc/omega.h 21429c2e0fbb11feafa4b0713ffd0458 gcc/omp-builtins.def ! 8e1de1063d2858a43c4310582c99c6ec gcc/omp-low.c 768117c1b005da4325bccda2b1aafbf8 gcc/omp-low.h f1316591a0b9cca13acbe19ecbc3bbc2 gcc/opt-functions.awk dea8fbe4f187428f3ca66daeae92f165 gcc/opt-gather.awk 134a8b6d0dc30fc3b01923f71eef2390 gcc/opt-include.awk af883a9bd16fb274b86c2481c3427c10 gcc/opt-read.awk ! 248beda36dae3c445a1a555c5dc29d11 gcc/optabs.c 6b5453d4bb31ee1c9485f078e14ea9b3 gcc/optabs.def d8f598e58279553567bfa86f218ebae1 gcc/optabs.h 2dc6386967a3b895570ea72e61e26384 gcc/optc-gen.awk --- 4918,4930 ---- b287f66d35995315cca62a202c60bb74 gcc/omega.c 010649dbdbf5e49817e4ea9f867a7bff gcc/omega.h 21429c2e0fbb11feafa4b0713ffd0458 gcc/omp-builtins.def ! 1652476853b27ad1aac0952bcf9a197f gcc/omp-low.c 768117c1b005da4325bccda2b1aafbf8 gcc/omp-low.h f1316591a0b9cca13acbe19ecbc3bbc2 gcc/opt-functions.awk dea8fbe4f187428f3ca66daeae92f165 gcc/opt-gather.awk 134a8b6d0dc30fc3b01923f71eef2390 gcc/opt-include.awk af883a9bd16fb274b86c2481c3427c10 gcc/opt-read.awk ! 16d6c905d1b02cf86e4d8df3ea8d2d86 gcc/optabs.c 6b5453d4bb31ee1c9485f078e14ea9b3 gcc/optabs.def d8f598e58279553567bfa86f218ebae1 gcc/optabs.h 2dc6386967a3b895570ea72e61e26384 gcc/optc-gen.awk *************** aed504b0320caa1fe29201ae90d7696b gcc/ou *** 4941,4952 **** 858154f068e9a73f00b6baccdb38f63d gcc/params.def 4f61cf6efcc68ecf0c4f50e79c440342 gcc/params.h b61dc6bbf55ac62d93ddeaa57e1034d7 gcc/pass_manager.h ! 9072ae9400752c4738ce43bc338e2f54 gcc/passes.c 05e2c2f175685b9549570e51b3dd799a gcc/passes.def 1e36a92344845ad1cb58222eea33d560 gcc/plugin.c e68ff8352334b5b009a28b53fb9284ca gcc/plugin.def c26393f8f5ea723bfcc15bf50ee1cc7d gcc/plugin.h ! 562221ef9f470f41deb09813fc583761 gcc/po/ChangeLog 75ba3ed7c2ea3070333b11ced79b1cc8 gcc/po/EXCLUDES 1da2375d1cb67532f3330921d29cd450 gcc/po/be.gmo ef9de679afafaa38517caa5a594e771a gcc/po/be.po --- 4940,4951 ---- 858154f068e9a73f00b6baccdb38f63d gcc/params.def 4f61cf6efcc68ecf0c4f50e79c440342 gcc/params.h b61dc6bbf55ac62d93ddeaa57e1034d7 gcc/pass_manager.h ! 7a5a6a1578d1208fc1ec3f1ddee9f129 gcc/passes.c 05e2c2f175685b9549570e51b3dd799a gcc/passes.def 1e36a92344845ad1cb58222eea33d560 gcc/plugin.c e68ff8352334b5b009a28b53fb9284ca gcc/plugin.def c26393f8f5ea723bfcc15bf50ee1cc7d gcc/plugin.h ! 72de63b89842bd5afe143fb9960c729f gcc/po/ChangeLog 75ba3ed7c2ea3070333b11ced79b1cc8 gcc/po/EXCLUDES 1da2375d1cb67532f3330921d29cd450 gcc/po/be.gmo ef9de679afafaa38517caa5a594e771a gcc/po/be.po *************** c0a6da01a1a90e55a45d23532046d414 gcc/po *** 4989,4995 **** f6726e62db99c4bd4123f60cde728904 gcc/pointer-set.c 241755c632af229442e2e7106c723411 gcc/pointer-set.h e3c632be65a0832604fb958f8a0ce420 gcc/postreload-gcse.c ! 40035886a7989873f03d77b86bc39bb4 gcc/postreload.c 589985f0514930a2526968712feeae79 gcc/predict.c ebbab0f2502bba4d9d568d0100ce2e2d gcc/predict.def 80a196a53a014f646fd6daee9a116f77 gcc/predict.h --- 4988,4994 ---- f6726e62db99c4bd4123f60cde728904 gcc/pointer-set.c 241755c632af229442e2e7106c723411 gcc/pointer-set.h e3c632be65a0832604fb958f8a0ce420 gcc/postreload-gcse.c ! 338ec850396680cd0e2dc9f446d0a0f7 gcc/postreload.c 589985f0514930a2526968712feeae79 gcc/predict.c ebbab0f2502bba4d9d568d0100ce2e2d gcc/predict.def 80a196a53a014f646fd6daee9a116f77 gcc/predict.h *************** d869921e527aaf5b3eaad357e63dcb90 gcc/re *** 5012,5018 **** 0862d16c511514fc4b9419fe8d2249fb gcc/realmpfr.h 1969e6b3f9606cf59d6803ebdeeea8b7 gcc/recog.c f8e8e735b5e2da8b23f855f10cf967d9 gcc/recog.h ! a7c2d42be508b666cb683ccb2e8e58eb gcc/ree.c 705e5e05416b08906b765349ad349138 gcc/reg-notes.def 72ea708b4dc70ce4438d69d2319a2fde gcc/reg-stack.c 21a40ba85ba3def0fe8214bb1a9ea714 gcc/regcprop.c --- 5011,5017 ---- 0862d16c511514fc4b9419fe8d2249fb gcc/realmpfr.h 1969e6b3f9606cf59d6803ebdeeea8b7 gcc/recog.c f8e8e735b5e2da8b23f855f10cf967d9 gcc/recog.h ! 3c274a47f1dbdc4f59f4efe6c6eb0145 gcc/ree.c 705e5e05416b08906b765349ad349138 gcc/reg-notes.def 72ea708b4dc70ce4438d69d2319a2fde gcc/reg-stack.c 21a40ba85ba3def0fe8214bb1a9ea714 gcc/regcprop.c *************** dd4c661ae261b4240b370a2b06f8f12e gcc/re *** 5032,5045 **** 4e7a24c58230ad1cd55f9f6a30f472e8 gcc/rtl-error.h d0f9d176431b9a2c4d06938ff6b2c83c gcc/rtl.c 9ee213d339a30933e8f316ec93f71c11 gcc/rtl.def ! 0cf29ec103ed74bf39a2dd6c6ad1829e gcc/rtl.h 0493d037d5c30f2152fc80466f49f374 gcc/rtlanal.c 63f7431679d7fc87bfcb2115ca9d419c gcc/rtlhooks-def.h dd994161333506c3850fd306ebcc9ef8 gcc/rtlhooks.c 66ee8acc9125b842ae0a250df2a8515f gcc/sanitizer.def e374bdc26d4e91c4e1ff7a64e21b101d gcc/sbitmap.c 29a10b2afed7b4f1f0bcfb8a3f463832 gcc/sbitmap.h ! f371cf129edd7ea9847f3662c40b0265 gcc/sched-deps.c 65490088ed7a5671ae6bfdeac3874e83 gcc/sched-ebb.c 529a5306aada3fddb11a8e106956a4f1 gcc/sched-int.h a2bfa6c5434e12ef7fa5bb01467e9d04 gcc/sched-rgn.c --- 5031,5044 ---- 4e7a24c58230ad1cd55f9f6a30f472e8 gcc/rtl-error.h d0f9d176431b9a2c4d06938ff6b2c83c gcc/rtl.c 9ee213d339a30933e8f316ec93f71c11 gcc/rtl.def ! 87f89dac6b4125875801e8bac2d416df gcc/rtl.h 0493d037d5c30f2152fc80466f49f374 gcc/rtlanal.c 63f7431679d7fc87bfcb2115ca9d419c gcc/rtlhooks-def.h dd994161333506c3850fd306ebcc9ef8 gcc/rtlhooks.c 66ee8acc9125b842ae0a250df2a8515f gcc/sanitizer.def e374bdc26d4e91c4e1ff7a64e21b101d gcc/sbitmap.c 29a10b2afed7b4f1f0bcfb8a3f463832 gcc/sbitmap.h ! be136cf4984a694a0817f56a6088a683 gcc/sched-deps.c 65490088ed7a5671ae6bfdeac3874e83 gcc/sched-ebb.c 529a5306aada3fddb11a8e106956a4f1 gcc/sched-int.h a2bfa6c5434e12ef7fa5bb01467e9d04 gcc/sched-rgn.c *************** dd5e75577e30df65977e84f24fbfa8f2 gcc/ta *** 5084,5090 **** 5096a6cda7c1340a6843c4eee249eb97 gcc/target.h be5e3bfa678dd16872775c30f8c43ce4 gcc/targhooks.c 8e6bbb74d18a1c0dc21dee6ba057882f gcc/targhooks.h ! 9b459ed87ef7037cd682db7f8493b91c gcc/testsuite/ChangeLog 862f04afbd87da2cc6bc432c3f28430f gcc/testsuite/ChangeLog-1993-2007 029a5d8dacd25eb5d4711452ac448e5b gcc/testsuite/ChangeLog-2008 13ac28c41d51b66b4ec40dba6bd50f39 gcc/testsuite/ChangeLog-2009 --- 5083,5089 ---- 5096a6cda7c1340a6843c4eee249eb97 gcc/target.h be5e3bfa678dd16872775c30f8c43ce4 gcc/targhooks.c 8e6bbb74d18a1c0dc21dee6ba057882f gcc/targhooks.h ! 8d83001c693530f8279d4aaa916c0ca8 gcc/testsuite/ChangeLog 862f04afbd87da2cc6bc432c3f28430f gcc/testsuite/ChangeLog-1993-2007 029a5d8dacd25eb5d4711452ac448e5b gcc/testsuite/ChangeLog-2008 13ac28c41d51b66b4ec40dba6bd50f39 gcc/testsuite/ChangeLog-2009 *************** eb90e4de7085d206078109a77a4d33e1 gcc/te *** 7764,7769 **** --- 7763,7769 ---- 10127067cac44d34f08d701d26036156 gcc/testsuite/c-c++-common/asan/pr62140-1.c 95c8d7268fe5e09ae687af76e9576dcc gcc/testsuite/c-c++-common/asan/pr62140-2.c ae5400233bb23dafe56f543cc5bb1ba6 gcc/testsuite/c-c++-common/asan/pr63638.c + 2a794af8b446f3413fe5b973ea309b7b gcc/testsuite/c-c++-common/asan/pr64820.c 8940936501084c6e4d7f6d110ba612d8 gcc/testsuite/c-c++-common/asan/rlimit-mmap-test-1.c 904923795ca7cbafd32930645fe42cc2 gcc/testsuite/c-c++-common/asan/sanity-check-pure-c-1.c a9fb6d989eff5e97f0875a8f4a6476df gcc/testsuite/c-c++-common/asan/sleep-before-dying-1.c *************** a573e5ba86fa5b9976e75d3d2e51854b gcc/te *** 7884,7889 **** --- 7884,7890 ---- 1ba0ade791f40edbd80fddddb700282b gcc/testsuite/c-c++-common/cpp/openmp-define-2.c 4f5c0a28faf44bc3a35750f2e331df4a gcc/testsuite/c-c++-common/cpp/openmp-define-3.c c85025f0def783f70f9bb6a4ea9a23f3 gcc/testsuite/c-c++-common/cpp/pr45457.c + a3b8fa4b831c844c5a2f6e65f851d9c8 gcc/testsuite/c-c++-common/cpp/pr57580.c eff73d3df17e8342527c47aee668fc90 gcc/testsuite/c-c++-common/cpp/pr58844-1.c cc15eb517954aa29a1c57133705ca83b gcc/testsuite/c-c++-common/cpp/pr58844-2.c 4bb69916f59c91d0c3c7583ed1c0eb97 gcc/testsuite/c-c++-common/cpp/pr60400-1.h *************** e16ef156ad193ef1f3cba60ad16e57ab gcc/te *** 8008,8013 **** --- 8009,8015 ---- 84c977571aeb43c0224137efe7f5b213 gcc/testsuite/c-c++-common/gomp/pr53580.c 28bfd873981083756a16f70fdb0b86db gcc/testsuite/c-c++-common/gomp/pr54017.c 48f64493dfa602c2fef9c13d9dee50d4 gcc/testsuite/c-c++-common/gomp/pr56883.c + 1eca7231411f2b6cb7c39356c68863fd gcc/testsuite/c-c++-common/gomp/pr57580.c 5a19cb17b93920c01f38b82cc3d86bc5 gcc/testsuite/c-c++-common/gomp/pr57824.c a7d789b5091f59130b63c3467560e1e1 gcc/testsuite/c-c++-common/gomp/pr58257.c 03615d3efc8765963aa58accd598497b gcc/testsuite/c-c++-common/gomp/pr58472.c *************** defbe62797ed1363de67a60914b29aa7 gcc/te *** 8028,8033 **** --- 8030,8036 ---- 8e7463bc9420fce6b1a1443c77ad841e gcc/testsuite/c-c++-common/gomp/pr61486-2.c 2b6ae32069c2763c6ff2b173604cf38c gcc/testsuite/c-c++-common/gomp/pr63249.c 8c7b7ac1e0fde7a3111b8d330d0914d2 gcc/testsuite/c-c++-common/gomp/pr63328.c + 8d4187a1bda8777b2ff9ff3a8693ac86 gcc/testsuite/c-c++-common/gomp/pr71758.c 328147f679f9eac26be960bf85acb2e8 gcc/testsuite/c-c++-common/gomp/sections1.c c7cb982e272572b3d42948b23c3c6229 gcc/testsuite/c-c++-common/gomp/simd1.c 3ffb158d7db65691583ca6ff7330457a gcc/testsuite/c-c++-common/gomp/simd2.c *************** f3125845677b94c2dee85b2ae8c05868 gcc/te *** 8094,8099 **** --- 8097,8104 ---- ab61337b42c3bf4f5a41d815a9fcd323 gcc/testsuite/c-c++-common/pr60689.c 3db5d6e67944ed357e5152e1f1d72db0 gcc/testsuite/c-c++-common/pr61553.c d6a020309f3771e59e357ca318d8b648 gcc/testsuite/c-c++-common/pr61741.c + 7399efb952d306383053d5e268f89c04 gcc/testsuite/c-c++-common/pr67653.c + f4386df5fa5c32d56388c75bdf15c9d4 gcc/testsuite/c-c++-common/pr69797.c b0ba836310044e7b419ef679f0b48d6f gcc/testsuite/c-c++-common/raw-string-1.c 554e7071d2525351de28445762633866 gcc/testsuite/c-c++-common/raw-string-10.c 1183cc89c3223291d7813cf8d78ef4d6 gcc/testsuite/c-c++-common/raw-string-11.c *************** e530347ad81371c3d469f2a1d1245735 gcc/te *** 8321,8326 **** --- 8326,8332 ---- 87eb53fddc98d992e4cade29a1852614 gcc/testsuite/g++.dg/README 2773749da937f7293dac36312c108a2c gcc/testsuite/g++.dg/abi/aarch64_guard1.C dadf07953fc49dff2fe36c2a384b6425 gcc/testsuite/g++.dg/abi/abi-tag1.C + ffbb36b85452d9085918e1094055ea6b gcc/testsuite/g++.dg/abi/abi-tag15.C 064eba36c22e1b67e37a8c95a5698520 gcc/testsuite/g++.dg/abi/abi-tag2.C 180f41404374f95826fea78a1e0d3ab2 gcc/testsuite/g++.dg/abi/abi-tag3.C 410434cfa6f4bc7cea5a8ff392cf819a gcc/testsuite/g++.dg/abi/abi-tag4.C *************** ba9b2b011bb6d65e0f78322916048095 gcc/te *** 8719,8725 **** 540c5c4712244b57919a4e690783e793 gcc/testsuite/g++.dg/compat/struct-layout-1_y1.h 7dc3e674ef2752731b6cd90ebd1aeb0a gcc/testsuite/g++.dg/compat/struct-layout-1_y2.h f25f03bef75b49b3242b2b981a26687a gcc/testsuite/g++.dg/constexpr-null1.C ! f0aed431ce3357281e21fdd3e10a7644 gcc/testsuite/g++.dg/conversion/access1.C 99531db549e9b6ddaad27a9e2a55bdd6 gcc/testsuite/g++.dg/conversion/ambig1.C 65bec450f1ba3239f73319431b72958b gcc/testsuite/g++.dg/conversion/ambig2.C 692916f43054879ce077252221b118a2 gcc/testsuite/g++.dg/conversion/base1.C --- 8725,8731 ---- 540c5c4712244b57919a4e690783e793 gcc/testsuite/g++.dg/compat/struct-layout-1_y1.h 7dc3e674ef2752731b6cd90ebd1aeb0a gcc/testsuite/g++.dg/compat/struct-layout-1_y2.h f25f03bef75b49b3242b2b981a26687a gcc/testsuite/g++.dg/constexpr-null1.C ! 028842301f7f8202b33831c16d31cf03 gcc/testsuite/g++.dg/conversion/access1.C 99531db549e9b6ddaad27a9e2a55bdd6 gcc/testsuite/g++.dg/conversion/ambig1.C 65bec450f1ba3239f73319431b72958b gcc/testsuite/g++.dg/conversion/ambig2.C 692916f43054879ce077252221b118a2 gcc/testsuite/g++.dg/conversion/base1.C *************** dbf5ebe6ff1680117cb9bea10ed1598e gcc/te *** 8847,8858 **** 46f21becb34daa94cd3f0a39aae7aaeb gcc/testsuite/g++.dg/cpp0x/alias-decl-40.C 99499efe942d19fb669e10a40ff36723 gcc/testsuite/g++.dg/cpp0x/alias-decl-41.C 3438514f63b7f3fb597fcddca16cd9fc gcc/testsuite/g++.dg/cpp0x/alias-decl-44.C e5fa8115f1c449f56d10e259c799b933 gcc/testsuite/g++.dg/cpp0x/alias-decl-5.C a16b0e12dce894e9bc097e3fbad8787d gcc/testsuite/g++.dg/cpp0x/alias-decl-6.C 816dbf372a71890f9515376534ec312b gcc/testsuite/g++.dg/cpp0x/alias-decl-7.C 77aa48fcd9f9b9ffab08fa7ebc5d52e2 gcc/testsuite/g++.dg/cpp0x/alias-decl-8.C 2b0ac9ee7e77902ee76b92dfbfcc37b3 gcc/testsuite/g++.dg/cpp0x/alias-decl-9.C ! af3a174668c74fe4e8cda5dbe9e149b1 gcc/testsuite/g++.dg/cpp0x/alias-decl-debug-0.C 0c857f35d307877fbdc35abb07bb117c gcc/testsuite/g++.dg/cpp0x/alias-decl-dr1286.C e2071d46036912555df15661828c4105 gcc/testsuite/g++.dg/cpp0x/alias-decl-dr1286a.C ef369c9d8dbd4b3ba5c764f92fc53a46 gcc/testsuite/g++.dg/cpp0x/alias-decl-dr1286b.C --- 8853,8865 ---- 46f21becb34daa94cd3f0a39aae7aaeb gcc/testsuite/g++.dg/cpp0x/alias-decl-40.C 99499efe942d19fb669e10a40ff36723 gcc/testsuite/g++.dg/cpp0x/alias-decl-41.C 3438514f63b7f3fb597fcddca16cd9fc gcc/testsuite/g++.dg/cpp0x/alias-decl-44.C + d3db5b6a32ee454c47b8d7404a06b4a6 gcc/testsuite/g++.dg/cpp0x/alias-decl-45.C e5fa8115f1c449f56d10e259c799b933 gcc/testsuite/g++.dg/cpp0x/alias-decl-5.C a16b0e12dce894e9bc097e3fbad8787d gcc/testsuite/g++.dg/cpp0x/alias-decl-6.C 816dbf372a71890f9515376534ec312b gcc/testsuite/g++.dg/cpp0x/alias-decl-7.C 77aa48fcd9f9b9ffab08fa7ebc5d52e2 gcc/testsuite/g++.dg/cpp0x/alias-decl-8.C 2b0ac9ee7e77902ee76b92dfbfcc37b3 gcc/testsuite/g++.dg/cpp0x/alias-decl-9.C ! c194f48c0c5ddd81f4151d3104e6eaa4 gcc/testsuite/g++.dg/cpp0x/alias-decl-debug-0.C 0c857f35d307877fbdc35abb07bb117c gcc/testsuite/g++.dg/cpp0x/alias-decl-dr1286.C e2071d46036912555df15661828c4105 gcc/testsuite/g++.dg/cpp0x/alias-decl-dr1286a.C ef369c9d8dbd4b3ba5c764f92fc53a46 gcc/testsuite/g++.dg/cpp0x/alias-decl-dr1286b.C *************** fa60ae8f5c88bb601ea454af990383ed gcc/te *** 8944,8949 **** --- 8951,8957 ---- 2802ca42ee9d91cfb21c5e02dcf35ba4 gcc/testsuite/g++.dg/cpp0x/constexpr-array-ptr8.C 285061f8bf48bec65094d1e65f728b9a gcc/testsuite/g++.dg/cpp0x/constexpr-array-tparm.C 38cd934a198d947354c7b7fbba1d2318 gcc/testsuite/g++.dg/cpp0x/constexpr-array.C + a3fe89999694d5e28c05f50283b43674 gcc/testsuite/g++.dg/cpp0x/constexpr-array14.C 687c6e77d4af3cd918c0ff421773a66c gcc/testsuite/g++.dg/cpp0x/constexpr-array2.C 8b7c8e7c1b64cfa0626f7f2311c9fef5 gcc/testsuite/g++.dg/cpp0x/constexpr-array3.C 6451aa5bb5fa736dda3ebad1dc2e8336 gcc/testsuite/g++.dg/cpp0x/constexpr-array4.C *************** e5015fd9f0623f977ee75ae8cbde2169 gcc/te *** 9109,9114 **** --- 9117,9123 ---- a7f4af1fe8847d9c43e0d0d6095088b5 gcc/testsuite/g++.dg/cpp0x/constexpr-targ.C 4b2c8215ad8bda62399e4c6ea49cb25b gcc/testsuite/g++.dg/cpp0x/constexpr-temp1.C c715cc77c59c08b4178c8df94944f49a gcc/testsuite/g++.dg/cpp0x/constexpr-template1.C + 56e1285a24a4fbdb11978e8af54953ca gcc/testsuite/g++.dg/cpp0x/constexpr-template10.C f98c98ebe90dfc39170c4a4f40861306 gcc/testsuite/g++.dg/cpp0x/constexpr-template2.C 0bcbbb5fdaa0906b82119d032554061e gcc/testsuite/g++.dg/cpp0x/constexpr-template3.C a05dfbf634e5313455c47b794057b288 gcc/testsuite/g++.dg/cpp0x/constexpr-template4.C *************** e0fcc12ea86ca07e002f0dd4599d71b4 gcc/te *** 9585,9590 **** --- 9594,9600 ---- 9edc8f5532794fc604ffd377c6d84b82 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce-neg.C 09786f33b21f73e03794802f7bd62377 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce.C 4c785ed910596fbd5f6219990b7e64e7 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce2.C + d6d48de10340b22d46f7610d0d311ac9 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce3.C 94cee0d0acbcad916757be5488072b4e gcc/testsuite/g++.dg/cpp0x/lambda/lambda-defarg.C be7d5784718fa8841e1936204f404bd8 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-defarg2.C 665983bbedede39286c33bef3b65d920 gcc/testsuite/g++.dg/cpp0x/lambda/lambda-defarg3.C *************** c2caeb92016de47392b35fa937c864f8 gcc/te *** 9892,9897 **** --- 9902,9908 ---- 3d0500d1d666af43dc6c0f875f02c205 gcc/testsuite/g++.dg/cpp0x/pr60047.C b183a4e80609d3b7c1a96a71d68c8355 gcc/testsuite/g++.dg/cpp0x/pr60215.C 0ec463c125bf90b0bc2b4ce4298afcc7 gcc/testsuite/g++.dg/cpp0x/pr60249.C + e85408993e6b3f61f5073e187d03547d gcc/testsuite/g++.dg/cpp0x/pr67767.C 53428f69a6d0153074c9b06ee9fbe9e7 gcc/testsuite/g++.dg/cpp0x/ptrmem-cst-arg1.C 6e8e648c26d9bf237cc152180e88c2c2 gcc/testsuite/g++.dg/cpp0x/range-for1.C 5c7a98d8ca2f0f427c081bf6902aa831 gcc/testsuite/g++.dg/cpp0x/range-for10.C *************** c271006c8055b6ab792c26bdb8a60c51 gcc/te *** 10032,10037 **** --- 10043,10049 ---- 07a6e388376959abb699902ddf79cfaa gcc/testsuite/g++.dg/cpp0x/sfinae49.C d5e6c1bb41ba570249eba838c6885b91 gcc/testsuite/g++.dg/cpp0x/sfinae5.C e658abe19e3f9090108ecdee6c7ff751 gcc/testsuite/g++.dg/cpp0x/sfinae50.C + c0fee994e880e6032fe6c1fa1a6efa69 gcc/testsuite/g++.dg/cpp0x/sfinae56.C 7d2a515d9dca41b0e82b2e6ea54bd2d3 gcc/testsuite/g++.dg/cpp0x/sfinae6.C ec1a51ea3fd41e6e61c8f425bde1fd0b gcc/testsuite/g++.dg/cpp0x/sfinae7.C 547894832b1452d5f513938e0cb8a166 gcc/testsuite/g++.dg/cpp0x/sfinae8.C *************** afe605fa6c8dddd33177511b047da1a4 gcc/te *** 10395,10403 **** 9ddfa360e93c7e9a5f4c04e9481ab2be gcc/testsuite/g++.dg/cpp1y/digit-sep-neg.C b0dea4daec54cf2ef06de9ce0a587b17 gcc/testsuite/g++.dg/cpp1y/digit-sep.C 74b379c717b33bc62bb8322b4ca70daf gcc/testsuite/g++.dg/cpp1y/feat-cxx11-neg.C ! c559904dc0e48dffce12fa16737d094d gcc/testsuite/g++.dg/cpp1y/feat-cxx11.C ! 82f6c05f3fd6b751689219e725fff6c9 gcc/testsuite/g++.dg/cpp1y/feat-cxx14.C ! a572ad8467ad38b7ccaef7f3ad797369 gcc/testsuite/g++.dg/cpp1y/feat-cxx98-neg.C f3c2f70c4dfc9118a8072bb62401cfd6 gcc/testsuite/g++.dg/cpp1y/feat-cxx98.C 8dd5cdac9bd67c05163138a3dbfabc9b gcc/testsuite/g++.dg/cpp1y/fn-generic-member-ool.C 4150ac508e4b280c3c8f7097053cfd53 gcc/testsuite/g++.dg/cpp1y/lambda-deduce-mult.C --- 10407,10415 ---- 9ddfa360e93c7e9a5f4c04e9481ab2be gcc/testsuite/g++.dg/cpp1y/digit-sep-neg.C b0dea4daec54cf2ef06de9ce0a587b17 gcc/testsuite/g++.dg/cpp1y/digit-sep.C 74b379c717b33bc62bb8322b4ca70daf gcc/testsuite/g++.dg/cpp1y/feat-cxx11-neg.C ! 45720e571251e0d147597a952be5128a gcc/testsuite/g++.dg/cpp1y/feat-cxx11.C ! 232176c5ae4ea638e461b53515b3b264 gcc/testsuite/g++.dg/cpp1y/feat-cxx14.C ! 1e018b8546a733aa8fbb3ee1d32a9e6c gcc/testsuite/g++.dg/cpp1y/feat-cxx98-neg.C f3c2f70c4dfc9118a8072bb62401cfd6 gcc/testsuite/g++.dg/cpp1y/feat-cxx98.C 8dd5cdac9bd67c05163138a3dbfabc9b gcc/testsuite/g++.dg/cpp1y/fn-generic-member-ool.C 4150ac508e4b280c3c8f7097053cfd53 gcc/testsuite/g++.dg/cpp1y/lambda-deduce-mult.C *************** f006e9fbc60cef8755f4653f8255d665 gcc/te *** 11396,11401 **** --- 11408,11414 ---- 90e2e9a7d8de41b91b36e73f97d2d368 gcc/testsuite/g++.dg/ext/vector26.C da6a6b67e5b0bd14588fbe068ec0af21 gcc/testsuite/g++.dg/ext/vector27.C 06e44a4208434952189cfd9cd55ae2d8 gcc/testsuite/g++.dg/ext/vector3.C + c3b38049951f0b2eddec58e423441ed3 gcc/testsuite/g++.dg/ext/vector31.C 1d6b45dce331a414b31b64c5104ab383 gcc/testsuite/g++.dg/ext/vector4.C 3231264b4b96091ab8a2351e76707e8d gcc/testsuite/g++.dg/ext/vector5.C 9dca9632e59d179ee1b85a181a34cae7 gcc/testsuite/g++.dg/ext/vector6.C *************** ded60cd9c13f96a2bd3542993e913567 gcc/te *** 11660,11665 **** --- 11673,11679 ---- 06fc3b25cfa1d042e8dab15b0a40e4f1 gcc/testsuite/g++.dg/gomp/pr58874.C 8b31485b3d0cdf079bf96e8e8275cdd3 gcc/testsuite/g++.dg/gomp/pr59150.C 2638eeaa7af8cdffb3a98b0f4894d2dc gcc/testsuite/g++.dg/gomp/pr59297.C + 3b0766d4e2c3122c7b5696f407e89eb4 gcc/testsuite/g++.dg/gomp/pr59627.C 29febb5c7f69eaa63c6e6dec815a4eb4 gcc/testsuite/g++.dg/gomp/pr60682.C 3c6a8869a97db440df61fbb5e27bcb62 gcc/testsuite/g++.dg/gomp/pr63249.C d2c2484d4d1236326efc32a01fddaa03 gcc/testsuite/g++.dg/gomp/predetermined-1.C *************** c2411e6f8a0da7e3d67e7b6f69f5a766 gcc/te *** 11725,11730 **** --- 11739,11745 ---- ab58a6a04cf0bf3550d451378c197a00 gcc/testsuite/g++.dg/inherit/access6.C fe96fafc31fdff9fba0f4354102ff1ad gcc/testsuite/g++.dg/inherit/access7.C 5f9785e9d9af32e7da512b85a0db0e76 gcc/testsuite/g++.dg/inherit/access8.C + 10c8625d0d6824600748a24940c2432d gcc/testsuite/g++.dg/inherit/access9.C 6c35057c73488264a919029a2d4ca993 gcc/testsuite/g++.dg/inherit/ambig1.C 953df2b1556d4072e312369e3d7273a1 gcc/testsuite/g++.dg/inherit/base1.C 260417b2989a13a1902a4b8b6ec39008 gcc/testsuite/g++.dg/inherit/base2.C *************** c9b550ead8867586800cdeee63308c31 gcc/te *** 11806,11811 **** --- 11821,11827 ---- 86f5581cd6f6c121d25316a6c0176f89 gcc/testsuite/g++.dg/inherit/using5.C 2a609ed8062419576ed46e3e969999d6 gcc/testsuite/g++.dg/inherit/using6.C 824afb5f78d6295dc194ab9e7d3ef6c1 gcc/testsuite/g++.dg/inherit/using7.C + d6728c160968c11c85593017e8436bec gcc/testsuite/g++.dg/inherit/using8.C 5d675d5e8dcd9e6e6286c004b1e515ee gcc/testsuite/g++.dg/inherit/virtual1.C 36b96ebe70af50681d376a6b671515ea gcc/testsuite/g++.dg/inherit/virtual10.C a7e9d57f0ba4f7ea8ed0340c0dd10f3e gcc/testsuite/g++.dg/inherit/virtual11.C *************** aa6675ad7ca1b7ce6a63c598c59f89a0 gcc/te *** 11927,11932 **** --- 11943,11951 ---- ac285fc50cba27993de1b79c1ca24b82 gcc/testsuite/g++.dg/init/dtor4.C fb8a48266ab2a995a88943828c7a824f gcc/testsuite/g++.dg/init/elide1.C e657849b9797c7df684fd4fafe1341d1 gcc/testsuite/g++.dg/init/elide2.C + 6cdb74bfb12dbada158562b31f755075 gcc/testsuite/g++.dg/init/elide3.C + 074911fc1326d50c75879cb3d5b7a7c7 gcc/testsuite/g++.dg/init/elide4.C + 87992b293631dc953cff1be9a31f09de gcc/testsuite/g++.dg/init/elide5.C d2ea13322f402d3ce506a9a1106ee836 gcc/testsuite/g++.dg/init/empty1.C 0fab5264214dd4964a69af401f3e7e7c gcc/testsuite/g++.dg/init/enum1.C ca9a6dc8d27f3cf82314cfcd92133441 gcc/testsuite/g++.dg/init/enum2.C *************** b4277c2887fdb910bdca2a8dbf0de117 gcc/te *** 12178,12184 **** 231677eaca7afc4bb98a3094c618e3f3 gcc/testsuite/g++.dg/ipa/pr61085.C c906d5398c947bb6aef6e77537c9be6c gcc/testsuite/g++.dg/ipa/pr61160-1.C a4915f296a72bd543457d07dc50cfb77 gcc/testsuite/g++.dg/ipa/pr61160-2.C ! a4862cb5f3f58316adc6e36c7d8eb036 gcc/testsuite/g++.dg/ipa/pr61160-3.C daceb1b2f3cf167fb6e78fc2d34f2778 gcc/testsuite/g++.dg/ipa/pr61540.C 438118cbb7d30bffc810662fe5da5b9c gcc/testsuite/g++.dg/ipa/pr61654.C a64421ae505e08d8f9b8bd14a2b8da21 gcc/testsuite/g++.dg/ipa/pr62015.C --- 12197,12203 ---- 231677eaca7afc4bb98a3094c618e3f3 gcc/testsuite/g++.dg/ipa/pr61085.C c906d5398c947bb6aef6e77537c9be6c gcc/testsuite/g++.dg/ipa/pr61160-1.C a4915f296a72bd543457d07dc50cfb77 gcc/testsuite/g++.dg/ipa/pr61160-2.C ! 76e6fb68d22161d91fe6235763ebde98 gcc/testsuite/g++.dg/ipa/pr61160-3.C daceb1b2f3cf167fb6e78fc2d34f2778 gcc/testsuite/g++.dg/ipa/pr61540.C 438118cbb7d30bffc810662fe5da5b9c gcc/testsuite/g++.dg/ipa/pr61654.C a64421ae505e08d8f9b8bd14a2b8da21 gcc/testsuite/g++.dg/ipa/pr62015.C *************** e24fb768f0a9cba7dfd73632a0e86880 gcc/te *** 12189,12194 **** --- 12208,12215 ---- aaf96a63c712e53d654620b1478b7cc8 gcc/testsuite/g++.dg/ipa/pr63838.C 04f8a0459bce64c0fd523bb0de9c9d28 gcc/testsuite/g++.dg/ipa/pr64068.C 78158fe8f75e60ce14c95135b8b05379 gcc/testsuite/g++.dg/ipa/pr64896.C + 668c39b2286466dcd06ce3221cfcc42a gcc/testsuite/g++.dg/ipa/pr66616.C + c021f783947adb9a54cc7d7fd34e136d gcc/testsuite/g++.dg/ipa/pr68851.C 65b30ac9d2b3a2244e49849aaad7dd78 gcc/testsuite/g++.dg/ipa/remref-1.C d26e3f0899c708e0f4b2ec8427502236 gcc/testsuite/g++.dg/ipa/remref-2.C 8a469d09a1c8b835acf9b3b8f7d8078d gcc/testsuite/g++.dg/ipa/type-inheritance-1.C *************** b1b3a2b530cb188994df8ef142ab9234 gcc/te *** 12837,12842 **** --- 12858,12864 ---- 6cfd7f0d8649e554551af4ecdbfa227e gcc/testsuite/g++.dg/opt/pr61654.C 8aeb5ff713ad724762a1f8ee5d01ab93 gcc/testsuite/g++.dg/opt/pr62146.C ac2356162f00cd5e8804482480f1795a gcc/testsuite/g++.dg/opt/pr6713.C + e29a55caf33aeb69133015d020a5b160 gcc/testsuite/g++.dg/opt/pr69432.C 90bdbfd9313461944756a9e9f01ce788 gcc/testsuite/g++.dg/opt/pr7503-1.C 1451eba24eea82cbd0c1ab87885c0f77 gcc/testsuite/g++.dg/opt/preinc1.C 0841088f825be785d32663d712ecf675 gcc/testsuite/g++.dg/opt/ptrintsum1.C *************** e384e4ea7483339d564580401d2ca3ab gcc/te *** 12892,12898 **** dd3ea979ea6a569776fd230af289e026 gcc/testsuite/g++.dg/opt/vt2.C 52fff29b07362fe5d23c4905a7595e39 gcc/testsuite/g++.dg/opt/vt3.C 95e336e653565b99de2a198e65a6d5c7 gcc/testsuite/g++.dg/opt/vt4.C ! 7decd264fd36128df6634651acc91338 gcc/testsuite/g++.dg/other/PR23205.C 6fee34d8b3b51c74ff33cdfe391ca591 gcc/testsuite/g++.dg/other/abstract1.C f08d1e182d4573cda49da8f5afb8ba41 gcc/testsuite/g++.dg/other/abstract2.C 32f6a4ff28854973168944cb1ac27537 gcc/testsuite/g++.dg/other/abstract3.C --- 12914,12920 ---- dd3ea979ea6a569776fd230af289e026 gcc/testsuite/g++.dg/opt/vt2.C 52fff29b07362fe5d23c4905a7595e39 gcc/testsuite/g++.dg/opt/vt3.C 95e336e653565b99de2a198e65a6d5c7 gcc/testsuite/g++.dg/opt/vt4.C ! 57ab207fa6f8b3558759d13d1a56154e gcc/testsuite/g++.dg/other/PR23205.C 6fee34d8b3b51c74ff33cdfe391ca591 gcc/testsuite/g++.dg/other/abstract1.C f08d1e182d4573cda49da8f5afb8ba41 gcc/testsuite/g++.dg/other/abstract2.C 32f6a4ff28854973168944cb1ac27537 gcc/testsuite/g++.dg/other/abstract3.C *************** b4568481fda7d8fe66f09f6c78ec5fab gcc/te *** 13080,13086 **** f43f96bf3c378817b959c22aee3466c0 gcc/testsuite/g++.dg/other/pr20366.C 45a2be25f7fc440c2cd2fc76af63be51 gcc/testsuite/g++.dg/other/pr22003.C 57901344b69ec7b216bf1128cc5a7242 gcc/testsuite/g++.dg/other/pr22358.C ! 5c341a12ae31a27bda2a7bcaa37b26f8 gcc/testsuite/g++.dg/other/pr23205-2.C cbfc16147cdfd178e38e28c8ffca2385 gcc/testsuite/g++.dg/other/pr24623.C 8ed27916cb5b71de34de304c8c46a014 gcc/testsuite/g++.dg/other/pr25632.C d135b9a72f0f848337f5db8cd4d42ca2 gcc/testsuite/g++.dg/other/pr27495.C --- 13102,13108 ---- f43f96bf3c378817b959c22aee3466c0 gcc/testsuite/g++.dg/other/pr20366.C 45a2be25f7fc440c2cd2fc76af63be51 gcc/testsuite/g++.dg/other/pr22003.C 57901344b69ec7b216bf1128cc5a7242 gcc/testsuite/g++.dg/other/pr22358.C ! 6b6295db303eea90d8c5c94c2cd7e82f gcc/testsuite/g++.dg/other/pr23205-2.C cbfc16147cdfd178e38e28c8ffca2385 gcc/testsuite/g++.dg/other/pr24623.C 8ed27916cb5b71de34de304c8c46a014 gcc/testsuite/g++.dg/other/pr25632.C d135b9a72f0f848337f5db8cd4d42ca2 gcc/testsuite/g++.dg/other/pr27495.C *************** ce05e962357b9e27eb61fcb9e1f0b7ee gcc/te *** 13193,13198 **** --- 13215,13221 ---- 09b00fcc6aab15c0db2a01d10064a093 gcc/testsuite/g++.dg/overload/conv-op1.C 4a5f6626c507c0ad7805e34f3032e376 gcc/testsuite/g++.dg/overload/copy1.C b952933e6f52d065ea331a27b2e7852f gcc/testsuite/g++.dg/overload/defarg1.C + 1fe01cdd569e9efdd1a736f06edff77b gcc/testsuite/g++.dg/overload/defarg10.C ce3155531a697acb7fd04a7264aa57b2 gcc/testsuite/g++.dg/overload/defarg2.C b954eab7456dcde91d0de9d826c7d3aa gcc/testsuite/g++.dg/overload/defarg3.C fe0dbe1f81b80b364b6cd8c9b5d5967e gcc/testsuite/g++.dg/overload/defarg4.C *************** a57434275b0ab07b7a1f918fef7791bc gcc/te *** 13612,13617 **** --- 13635,13641 ---- 59292b594262bedc8968587696596ccd gcc/testsuite/g++.dg/parse/pr56037.C 574617390f082262f81245e0bfb9c224 gcc/testsuite/g++.dg/parse/pr56239.C d2e5ab6ef2b2e82037e93dcbedcca8bc gcc/testsuite/g++.dg/parse/pr58705.C + 5eb3f5d17e121a7a8f7884b589a7a7ce gcc/testsuite/g++.dg/parse/pr71909.C 5a9d33aff7826f90760a0154af35d9f0 gcc/testsuite/g++.dg/parse/pragma1.C b8553036b01aadac9e932e75221336ae gcc/testsuite/g++.dg/parse/pragma2.C d516a5d017b9be02cd665abb61b0fbaf gcc/testsuite/g++.dg/parse/pragma3.C *************** fa5e79b3c98a745c039b5e34186024a2 gcc/te *** 13815,13820 **** --- 13839,13849 ---- 673d6fbc490d70de4eb8279ad884c093 gcc/testsuite/g++.dg/pr64037.C 19486da89030bba1a8dcb18937f021ef gcc/testsuite/g++.dg/pr64688-2.C 2a99023224d23b7b4c2df438196b9877 gcc/testsuite/g++.dg/pr65049.C + c014278b0e7c6cf72bd8834b1b9d6631 gcc/testsuite/g++.dg/pr66866.C + 0a4b1b6ad79c1a571e4743d688bccdea gcc/testsuite/g++.dg/pr67211.C + 0316a6aee06db21c7aa95471b572af5c gcc/testsuite/g++.dg/pr67989.C + 514f19a372e6da2045ad3ac8a01eff0a gcc/testsuite/g++.dg/pr70098.C + dd5b895f9e8e377b3fc861eecf9bdbf7 gcc/testsuite/g++.dg/pr71389.C ae8863cdd596655bd9501c7a7e546fc7 gcc/testsuite/g++.dg/predict-loop-exit-1.C 112161f9cc2e99ed1a64b608b234d230 gcc/testsuite/g++.dg/predict-loop-exit-2.C 9fdf45388f73e8c9a46342cf4ec52cb6 gcc/testsuite/g++.dg/predict-loop-exit-3.C *************** bce635f684a724553abba95d702b1cb8 gcc/te *** 13844,13849 **** --- 13873,13879 ---- daac611a89b8fa8aa874e3b9f2cc9663 gcc/testsuite/g++.dg/rtti/tinfo1.C a4ca49fa3677bf87a27b0e961eab1cee gcc/testsuite/g++.dg/rtti/typeid1.C 4f9657fbf15f19dc450265533a091434 gcc/testsuite/g++.dg/rtti/typeid10.C + abb0a844b41427d721a0b921b5335b24 gcc/testsuite/g++.dg/rtti/typeid11.C f03a5377eca516c74e77fcf76b40f948 gcc/testsuite/g++.dg/rtti/typeid2.C 3e23755748cd7e94d3bc13c5d2f78cc9 gcc/testsuite/g++.dg/rtti/typeid3.C f45226306cb853d7f47a657db3e4f853 gcc/testsuite/g++.dg/rtti/typeid4.C *************** ddd54fa2d302cf8f37c4512b75025445 gcc/te *** 14624,14629 **** --- 14654,14660 ---- 6465acc359cf71ed791739a364127805 gcc/testsuite/g++.dg/template/pr54858.C bf2a6b6f0f8991958562eeb56f4d4738 gcc/testsuite/g++.dg/template/pr58878.C ae27fcfe45fb638bb620109e3d14cecf gcc/testsuite/g++.dg/template/pr61537.C + a28a4941fa94389caaf911a2fcb4d409 gcc/testsuite/g++.dg/template/pr67337.C 04907f98f8eab7c64ced6646f5140346 gcc/testsuite/g++.dg/template/pretty1.C b1805d4b386b8dcd432f41c68e255100 gcc/testsuite/g++.dg/template/pseudodtor1.C 5bbbdc0bd84a1cf86dd283b16e7aa6ba gcc/testsuite/g++.dg/template/pseudodtor2.C *************** d789c4b198aaf983e81643a1d995a8da gcc/te *** 14654,14659 **** --- 14685,14691 ---- d7e997028da5485d49789a1ed367286f gcc/testsuite/g++.dg/template/ptrmem28.C 95f5a6f80287c981e1f0659a69703991 gcc/testsuite/g++.dg/template/ptrmem29.C 171d82f45a76129388539c01e3212ec9 gcc/testsuite/g++.dg/template/ptrmem3.C + 8b3ff42e1ac7c25a72ae099a1bdd30cd gcc/testsuite/g++.dg/template/ptrmem30.C 9a4a21b8504db815b1c727663eff64ff gcc/testsuite/g++.dg/template/ptrmem4.C c1d71028a4f69f5c3fcfd2fd8a35f919 gcc/testsuite/g++.dg/template/ptrmem5.C 0142354fd9237d4486fb0edc36ef39cc gcc/testsuite/g++.dg/template/ptrmem6.C *************** f351d5c844cb8476077b6d37a74faeb7 gcc/te *** 15104,15109 **** --- 15136,15142 ---- 9e8bbd658850a80ba74ec4326abdd8a4 gcc/testsuite/g++.dg/tm/pr58635-1.C 2023e08d493ba5b9b6b027ead9dbcdfb gcc/testsuite/g++.dg/tm/pr58635-2.C c9e5bbfe98ec7fbaa16a15a1f925bb18 gcc/testsuite/g++.dg/tm/pr60004.C + f20200faa0befb0bfc51cc6eb591119c gcc/testsuite/g++.dg/tm/pr71909.C d1d8828bb1842a1f639c2d50c70a554a gcc/testsuite/g++.dg/tm/template-1.C 20616904918cb66e65ad72fb06c6dedc gcc/testsuite/g++.dg/tm/template-2.C c208f2f5baaecb847a30e3c59283f9a6 gcc/testsuite/g++.dg/tm/tm.exp *************** ea51728c5e2ae154940893c6ccb374f8 gcc/te *** 15370,15375 **** --- 15403,15412 ---- af2ab3b9ceedb2dbeb48d6c62a313372 gcc/testsuite/g++.dg/torture/pr62121.C 2dab7d0ec5bd96c1fc2d49137dd14a65 gcc/testsuite/g++.dg/torture/pr62175.C 7d49b0384f2408757a5389f68ff1ff8e gcc/testsuite/g++.dg/torture/pr63632.C + 49712162fe05fd758d9cc5dbade0e13d gcc/testsuite/g++.dg/torture/pr64280.C + 84497353d7c8ef28f9a4787bd1e770de gcc/testsuite/g++.dg/torture/pr65419.C + 411a467861248626a89023d9cd86be57 gcc/testsuite/g++.dg/torture/pr71452.C + 6d87997ae70f613b7ae47faba21523d9 gcc/testsuite/g++.dg/torture/pr71874.C 389892c1f2e87d69449479d1b053c70c gcc/testsuite/g++.dg/torture/predcom-1.C d28910105d9c9253d94d70eacd5e19d4 gcc/testsuite/g++.dg/torture/pushpop_macro.C a1b47b9c3e69d79d1895ebc4fd11032b gcc/testsuite/g++.dg/torture/stackalign/check.h *************** eb9a44bf10d9af818d3d8df7abc434ba gcc/te *** 20596,20601 **** --- 20633,20640 ---- 70b004bb3cc0f4c2df5ad6d49c320d05 gcc/testsuite/gcc.c-torture/compile/pr64269.c c33702c15a33a34f884537b7a2dcd857 gcc/testsuite/gcc.c-torture/compile/pr65163.c 6590c80e151001dd4b5f2f5b1b1d564e gcc/testsuite/gcc.c-torture/compile/pr65680.c + aac9fa1e0a8f32d26d0b91a6ce4f86c0 gcc/testsuite/gcc.c-torture/compile/pr69214.c + 97df20a3b66d4cb718ca2f94a7c64ec5 gcc/testsuite/gcc.c-torture/compile/pr71693.c b9e6ce52b90320c1c3803c25113844c5 gcc/testsuite/gcc.c-torture/compile/pta-1.c ed716c1d1727fc2c748162e0cbc4ee47 gcc/testsuite/gcc.c-torture/compile/ptr-conv-1.c 8d869e3426345f0cf8837c5eaafd43b5 gcc/testsuite/gcc.c-torture/compile/simd-1.c *************** a1b0a5a4a54a0a53c8297599c3fc2a01 gcc/te *** 21494,21499 **** --- 21533,21539 ---- 44fb33d720704bce79c5289fbaadfa38 gcc/testsuite/gcc.c-torture/execute/builtins/memmove.c 6e62dc5216faaa7d416e4e58ab5b46ae gcc/testsuite/gcc.c-torture/execute/builtins/memops-asm-lib.c eff774129914eb95974ca48b4e5d8454 gcc/testsuite/gcc.c-torture/execute/builtins/memops-asm.c + d5b51664c6ca431aadc9eb21024bcb22 gcc/testsuite/gcc.c-torture/execute/builtins/memops-asm.x 1a3ea4e36df441704d8d1b28df3bd7ed gcc/testsuite/gcc.c-torture/execute/builtins/mempcpy-2-lib.c a465aeeb9de47b64d250c6d3491adbf8 gcc/testsuite/gcc.c-torture/execute/builtins/mempcpy-2.c 8e258d2fc5daa60d7007d842cf555b36 gcc/testsuite/gcc.c-torture/execute/builtins/mempcpy-chk-lib.c *************** e944267d000f7c657b52900387a59138 gcc/te *** 21575,21581 **** 91ec8a4c356d94a26b2da4f4d1b79d6d gcc/testsuite/gcc.c-torture/execute/builtins/strspn-lib.c 7604d68698845f4dd5694961d180344d gcc/testsuite/gcc.c-torture/execute/builtins/strspn.c 9c2f280a5c4dd283150146db1aa38511 gcc/testsuite/gcc.c-torture/execute/builtins/strstr-asm-lib.c ! 59bc8c8e4e068f6b93c6a6c0ac912dc8 gcc/testsuite/gcc.c-torture/execute/builtins/strstr-asm.c 2c4aa3d41b1deee5941ae83f5b8a1b8e gcc/testsuite/gcc.c-torture/execute/builtins/strstr-lib.c 0bbef83f84e8387e587a22ccb8ec867f gcc/testsuite/gcc.c-torture/execute/builtins/strstr.c 8e258d2fc5daa60d7007d842cf555b36 gcc/testsuite/gcc.c-torture/execute/builtins/vsnprintf-chk-lib.c --- 21615,21622 ---- 91ec8a4c356d94a26b2da4f4d1b79d6d gcc/testsuite/gcc.c-torture/execute/builtins/strspn-lib.c 7604d68698845f4dd5694961d180344d gcc/testsuite/gcc.c-torture/execute/builtins/strspn.c 9c2f280a5c4dd283150146db1aa38511 gcc/testsuite/gcc.c-torture/execute/builtins/strstr-asm-lib.c ! bb7f149cfe551a03856591be0fdfcef5 gcc/testsuite/gcc.c-torture/execute/builtins/strstr-asm.c ! d5b51664c6ca431aadc9eb21024bcb22 gcc/testsuite/gcc.c-torture/execute/builtins/strstr-asm.x 2c4aa3d41b1deee5941ae83f5b8a1b8e gcc/testsuite/gcc.c-torture/execute/builtins/strstr-lib.c 0bbef83f84e8387e587a22ccb8ec867f gcc/testsuite/gcc.c-torture/execute/builtins/strstr.c 8e258d2fc5daa60d7007d842cf555b36 gcc/testsuite/gcc.c-torture/execute/builtins/vsnprintf-chk-lib.c *************** f6e1d4bf24853fe1fc1e07c40e0315ec gcc/te *** 22134,22139 **** --- 22175,22195 ---- 7d6ee55dde74e53e2c3561bbecb37560 gcc/testsuite/gcc.c-torture/execute/pr64979.c 4b7725d4bc4b11b7a7b1eb3cf608942e gcc/testsuite/gcc.c-torture/execute/pr65427.c cde16ef96523d1e125a7267b5c4fe19c gcc/testsuite/gcc.c-torture/execute/pr66233.c + 3cccc8a5b80b9b4ce09e356395f7d9b3 gcc/testsuite/gcc.c-torture/execute/pr67226.c + ed53e3d0211f54495c95ef4aeab25e54 gcc/testsuite/gcc.c-torture/execute/pr67929_1.c + a541df012288c363cfd7c2758ebe61db gcc/testsuite/gcc.c-torture/execute/pr68185.c + 4c0a9e8628c0e6b0b75abe913a7eccfc gcc/testsuite/gcc.c-torture/execute/pr68328.c + 136f5d965d2da4274b6751d6d1ca11ad gcc/testsuite/gcc.c-torture/execute/pr68376-1.c + 51c67c4e32c12018d279ef080e5d4512 gcc/testsuite/gcc.c-torture/execute/pr68376-2.c + 014d15d1eb4dd2bf07bd8b57292416e0 gcc/testsuite/gcc.c-torture/execute/pr69403.c + 493a919b42c01e638c1c27ed6f69bdf8 gcc/testsuite/gcc.c-torture/execute/pr70222-1.c + 09a24ffb98aea183dbaba50377225152 gcc/testsuite/gcc.c-torture/execute/pr70222-2.c + d980d67f1eb958e90351c3eb7cfd1297 gcc/testsuite/gcc.c-torture/execute/pr70429.c + 60303592b1e72b08743fe18c5007dd64 gcc/testsuite/gcc.c-torture/execute/pr70460.c + 58bb262f9c1fe471c7bd11fc8440aac8 gcc/testsuite/gcc.c-torture/execute/pr70566.c + 0a9fc76972569359d91049d017cdf51e gcc/testsuite/gcc.c-torture/execute/pr71494.c + 1f4a197e0d6f4357f1917d680858eacb gcc/testsuite/gcc.c-torture/execute/pr71626-1.c + 2b843741017aa652b5af0855cf7945c3 gcc/testsuite/gcc.c-torture/execute/pr71626-2.c ecfc31f12ce09d6ccbcced04ff04deba gcc/testsuite/gcc.c-torture/execute/pr7284-1.c 89f3c7ee990221eeb33cb08a0772e024 gcc/testsuite/gcc.c-torture/execute/pr7284-1.x f4610e3bba97324f7005c428fe41e597 gcc/testsuite/gcc.c-torture/execute/printf-1.c *************** cbc66fee494d1a2762b59ab750e035f9 gcc/te *** 22653,22659 **** 2ce46072b682eae12d2bc6f0a58671a9 gcc/testsuite/gcc.dg/20040622-2.c 85b98f905d8489e42756e32724714074 gcc/testsuite/gcc.dg/20040625-1.c 774dcfdec92b7339ed81a07e4eb85ddd gcc/testsuite/gcc.dg/20040627-1.c ! b8b9dc74fc4d6ae5ac0890a9748fd871 gcc/testsuite/gcc.dg/20040813-1.c f6b89935794e56059d42e599dba92ec2 gcc/testsuite/gcc.dg/20040910-1.c e41c70826d2d2e86d16c489f982a0f1a gcc/testsuite/gcc.dg/20040916-1.c b83c307108e223d5dad2856b28ee3386 gcc/testsuite/gcc.dg/20040920-1.c --- 22709,22715 ---- 2ce46072b682eae12d2bc6f0a58671a9 gcc/testsuite/gcc.dg/20040622-2.c 85b98f905d8489e42756e32724714074 gcc/testsuite/gcc.dg/20040625-1.c 774dcfdec92b7339ed81a07e4eb85ddd gcc/testsuite/gcc.dg/20040627-1.c ! af49afeedc35cae5f3006b10cef863fa gcc/testsuite/gcc.dg/20040813-1.c f6b89935794e56059d42e599dba92ec2 gcc/testsuite/gcc.dg/20040910-1.c e41c70826d2d2e86d16c489f982a0f1a gcc/testsuite/gcc.dg/20040916-1.c b83c307108e223d5dad2856b28ee3386 gcc/testsuite/gcc.dg/20040920-1.c *************** ecaba7c928af85c280e63fa96b9b5e1b gcc/te *** 22958,22964 **** 9fe53eed8e505e20c99c628de5963f1b gcc/testsuite/gcc.dg/always_inline.c 9ddf623bf589bec4808612fba806a5de gcc/testsuite/gcc.dg/always_inline2.c e2e0233c848757fa946d6bee46dd32b5 gcc/testsuite/gcc.dg/always_inline3.c ! 11bd8f09277a5b83330c636e7f9a1ca9 gcc/testsuite/gcc.dg/and-1.c 8025bb7e0765732f0d28a027a9225fc6 gcc/testsuite/gcc.dg/anon-struct-1.c 169a57abcdc48109c6aa5c69baf2c0da gcc/testsuite/gcc.dg/anon-struct-10.c b7f25f289ee08a3d1187a6974944e59a gcc/testsuite/gcc.dg/anon-struct-11.c --- 23014,23020 ---- 9fe53eed8e505e20c99c628de5963f1b gcc/testsuite/gcc.dg/always_inline.c 9ddf623bf589bec4808612fba806a5de gcc/testsuite/gcc.dg/always_inline2.c e2e0233c848757fa946d6bee46dd32b5 gcc/testsuite/gcc.dg/always_inline3.c ! bd340672a08e45fcb7273341b34ecd6c gcc/testsuite/gcc.dg/and-1.c 8025bb7e0765732f0d28a027a9225fc6 gcc/testsuite/gcc.dg/anon-struct-1.c 169a57abcdc48109c6aa5c69baf2c0da gcc/testsuite/gcc.dg/anon-struct-10.c b7f25f289ee08a3d1187a6974944e59a gcc/testsuite/gcc.dg/anon-struct-11.c *************** a9347273a4d9dc67770b8f6283f64db8 gcc/te *** 23151,23156 **** --- 23207,23213 ---- b2f8df17cc276a87b2d864e2e6f54f15 gcc/testsuite/gcc.dg/autopar/pr49960.c 19e1847731146a159a6588f862145063 gcc/testsuite/gcc.dg/autopar/pr57103.c 27391de0a65828f2a5e9cbbe81fb90d1 gcc/testsuite/gcc.dg/autopar/pr57185.c + f6cc0076c5be299f8e204c1f669758a3 gcc/testsuite/gcc.dg/autopar/pr69110.c 0cc14d5557cb126d008844b2deee3e3c gcc/testsuite/gcc.dg/autopar/reduc-1.c 46ec865c932a3869326994e5a68ca4bb gcc/testsuite/gcc.dg/autopar/reduc-1char.c a7184a2c39bb4c86b27e240f8f327e4a gcc/testsuite/gcc.dg/autopar/reduc-1short.c *************** bddbf619aa148dc52dba82e2f937b89a gcc/te *** 24379,24385 **** febe83ee27f0e3494e3bd4484d6a7d21 gcc/testsuite/gcc.dg/cpp/widestr1.c a05ddffb36e3e0aae92853881a8ff08a gcc/testsuite/gcc.dg/cproj-fails-with-broken-glibc.c dc6685bcab4cd7ed276483fd8d031507 gcc/testsuite/gcc.dg/ctor1.c ! b138fe2a07b533ba6f7d3f951f2b8885 gcc/testsuite/gcc.dg/darwin-20040809-2.c fb2cff7f2512c80434d59d702b80e754 gcc/testsuite/gcc.dg/darwin-20040812-1.c 3010db4d547a5bce8e8559d5cc724330 gcc/testsuite/gcc.dg/darwin-cfstring-1.c 9c532fb4048053a0466dff7ebd17e67d gcc/testsuite/gcc.dg/darwin-cfstring-2.c --- 24436,24442 ---- febe83ee27f0e3494e3bd4484d6a7d21 gcc/testsuite/gcc.dg/cpp/widestr1.c a05ddffb36e3e0aae92853881a8ff08a gcc/testsuite/gcc.dg/cproj-fails-with-broken-glibc.c dc6685bcab4cd7ed276483fd8d031507 gcc/testsuite/gcc.dg/ctor1.c ! 31f68cda2cf50ca6f7c6c4a9cf4545fd gcc/testsuite/gcc.dg/darwin-20040809-2.c fb2cff7f2512c80434d59d702b80e754 gcc/testsuite/gcc.dg/darwin-20040812-1.c 3010db4d547a5bce8e8559d5cc724330 gcc/testsuite/gcc.dg/darwin-cfstring-1.c 9c532fb4048053a0466dff7ebd17e67d gcc/testsuite/gcc.dg/darwin-cfstring-2.c *************** cbdd3b08ad2ec42ef73b00a2769043d9 gcc/te *** 24537,24542 **** --- 24594,24600 ---- aacec22d8e0dd9805404919ed968df56 gcc/testsuite/gcc.dg/debug/pr49522.c f83af2708ba44addea950f47d1a44c95 gcc/testsuite/gcc.dg/debug/pr55730.c 8025f0406ff53d4c773d94be979209b5 gcc/testsuite/gcc.dg/debug/pr57351.c + f04843ea87c9c55accf161e9ee241f15 gcc/testsuite/gcc.dg/debug/pr66432.c e39702ba4ac8cdf1b4d7895fa15c394f gcc/testsuite/gcc.dg/debug/redecl-1.c 60c3f3165dda429cbc7646a06969d16c gcc/testsuite/gcc.dg/debug/redecl-2.c 175fa916ededdb94d71518eecbe6fa1a gcc/testsuite/gcc.dg/debug/redecl-3.c *************** dffc13d32125301b7ec7446339386e09 gcc/te *** 25224,25230 **** 116f878293fdcf549fd6ef3c07e5a146 gcc/testsuite/gcc.dg/gomp/vla-4.c 0f94556c091c8140a7b69b4b25062fb8 gcc/testsuite/gcc.dg/gomp/vla-5.c 3fd2da2eeebe67f1b78994afa07e3898 gcc/testsuite/gcc.dg/graphite/block-0.c ! c6e819a3a83254308f393f8253f1e6de gcc/testsuite/gcc.dg/graphite/block-1.c f9fdda12b60ab49e2fcd48a569b3ba88 gcc/testsuite/gcc.dg/graphite/block-3.c d4d28cbcaeb8980846d79f3b0e82af17 gcc/testsuite/gcc.dg/graphite/block-4.c f611f2277ad8e2421f0937a6dfc4c224 gcc/testsuite/gcc.dg/graphite/block-5.c --- 25282,25288 ---- 116f878293fdcf549fd6ef3c07e5a146 gcc/testsuite/gcc.dg/gomp/vla-4.c 0f94556c091c8140a7b69b4b25062fb8 gcc/testsuite/gcc.dg/gomp/vla-5.c 3fd2da2eeebe67f1b78994afa07e3898 gcc/testsuite/gcc.dg/graphite/block-0.c ! 4a5064f6c39537dfa1cf5f07211c75a4 gcc/testsuite/gcc.dg/graphite/block-1.c f9fdda12b60ab49e2fcd48a569b3ba88 gcc/testsuite/gcc.dg/graphite/block-3.c d4d28cbcaeb8980846d79f3b0e82af17 gcc/testsuite/gcc.dg/graphite/block-4.c f611f2277ad8e2421f0937a6dfc4c224 gcc/testsuite/gcc.dg/graphite/block-5.c *************** f611f2277ad8e2421f0937a6dfc4c224 gcc/te *** 25232,25238 **** 608b60b37ea4af9731871354d53a15f9 gcc/testsuite/gcc.dg/graphite/block-7.c ced31be670c495e2da23d26eaddbb039 gcc/testsuite/gcc.dg/graphite/block-8.c 069aede81243f8ebf3118484d265b652 gcc/testsuite/gcc.dg/graphite/block-pr47654.c ! e54d8a3d58dc613f482f242694329c89 gcc/testsuite/gcc.dg/graphite/graphite.exp a5bef7f8a4c6aa6ea86ca7ba9c7599d7 gcc/testsuite/gcc.dg/graphite/id-1.c 09f79b77ac016159bcb104dc023d7b07 gcc/testsuite/gcc.dg/graphite/id-10.c 3e96948dcff7f34717278e07eb31443a gcc/testsuite/gcc.dg/graphite/id-11.c --- 25290,25296 ---- 608b60b37ea4af9731871354d53a15f9 gcc/testsuite/gcc.dg/graphite/block-7.c ced31be670c495e2da23d26eaddbb039 gcc/testsuite/gcc.dg/graphite/block-8.c 069aede81243f8ebf3118484d265b652 gcc/testsuite/gcc.dg/graphite/block-pr47654.c ! 04c461579854d64bb8a1e10924db0fca gcc/testsuite/gcc.dg/graphite/graphite.exp a5bef7f8a4c6aa6ea86ca7ba9c7599d7 gcc/testsuite/gcc.dg/graphite/id-1.c 09f79b77ac016159bcb104dc023d7b07 gcc/testsuite/gcc.dg/graphite/id-10.c 3e96948dcff7f34717278e07eb31443a gcc/testsuite/gcc.dg/graphite/id-11.c *************** e1711321aa84a2189ddaef759161bf54 gcc/te *** 25275,25284 **** c51465bf2bc719e08a2acf198c9ca062 gcc/testsuite/gcc.dg/graphite/interchange-1.c a47bb1f17bc4d04271385538184c7d51 gcc/testsuite/gcc.dg/graphite/interchange-10.c 26c1684aed42a444d6a6fb34cb83b07b gcc/testsuite/gcc.dg/graphite/interchange-11.c ! bc3712a9bfd3165403dc93f5cbe9f3ae gcc/testsuite/gcc.dg/graphite/interchange-12.c 71aeb7f3cf6dcbe8408219225a0346ac gcc/testsuite/gcc.dg/graphite/interchange-13.c ! 78716961e10e661f2d6b842580336799 gcc/testsuite/gcc.dg/graphite/interchange-14.c ! 4aea3f1d68e031fe230332dabbbd7a6d gcc/testsuite/gcc.dg/graphite/interchange-15.c 04609d4d2d902c623055178c4d4fc326 gcc/testsuite/gcc.dg/graphite/interchange-16.c 100ef4aa687fc095e3e08a0d5a1f6ac3 gcc/testsuite/gcc.dg/graphite/interchange-2.c 3206cdaecc5fdb3e350215f10ef8beae gcc/testsuite/gcc.dg/graphite/interchange-3.c --- 25333,25342 ---- c51465bf2bc719e08a2acf198c9ca062 gcc/testsuite/gcc.dg/graphite/interchange-1.c a47bb1f17bc4d04271385538184c7d51 gcc/testsuite/gcc.dg/graphite/interchange-10.c 26c1684aed42a444d6a6fb34cb83b07b gcc/testsuite/gcc.dg/graphite/interchange-11.c ! aba2fe0edc357c1ae486c24c5c584232 gcc/testsuite/gcc.dg/graphite/interchange-12.c 71aeb7f3cf6dcbe8408219225a0346ac gcc/testsuite/gcc.dg/graphite/interchange-13.c ! 4c413776ccbf5c87663c3cfcdeb2a662 gcc/testsuite/gcc.dg/graphite/interchange-14.c ! dc673c317e39422fe4d06bca6fcef037 gcc/testsuite/gcc.dg/graphite/interchange-15.c 04609d4d2d902c623055178c4d4fc326 gcc/testsuite/gcc.dg/graphite/interchange-16.c 100ef4aa687fc095e3e08a0d5a1f6ac3 gcc/testsuite/gcc.dg/graphite/interchange-2.c 3206cdaecc5fdb3e350215f10ef8beae gcc/testsuite/gcc.dg/graphite/interchange-3.c *************** bc3712a9bfd3165403dc93f5cbe9f3ae gcc/te *** 25287,25294 **** 4243ae6a3ace75ae6f61fee9b482123e gcc/testsuite/gcc.dg/graphite/interchange-6.c 86e6c9ef0d56bcab29abea04ade68f0d gcc/testsuite/gcc.dg/graphite/interchange-7.c 33aab4f83c832272b8b266b182d5de26 gcc/testsuite/gcc.dg/graphite/interchange-8.c ! 916588fe98fe69905ded2b23a7ef348b gcc/testsuite/gcc.dg/graphite/interchange-9.c ! 3942367149800abc3754520addba7ce4 gcc/testsuite/gcc.dg/graphite/interchange-mvt.c 9b9162822adb571b6b648827778dc56a gcc/testsuite/gcc.dg/graphite/pr18792.c 2247a3a0f30b24cd4f6afb8a99289230 gcc/testsuite/gcc.dg/graphite/pr19910.c 93366da6daaa0436c31dfcb03c746093 gcc/testsuite/gcc.dg/graphite/pr20041110-1.c --- 25345,25352 ---- 4243ae6a3ace75ae6f61fee9b482123e gcc/testsuite/gcc.dg/graphite/interchange-6.c 86e6c9ef0d56bcab29abea04ade68f0d gcc/testsuite/gcc.dg/graphite/interchange-7.c 33aab4f83c832272b8b266b182d5de26 gcc/testsuite/gcc.dg/graphite/interchange-8.c ! fcafbdb00df27db9c9452a1389939776 gcc/testsuite/gcc.dg/graphite/interchange-9.c ! 54dc7c41b7a97bf1afce79dfbf89ef82 gcc/testsuite/gcc.dg/graphite/interchange-mvt.c 9b9162822adb571b6b648827778dc56a gcc/testsuite/gcc.dg/graphite/pr18792.c 2247a3a0f30b24cd4f6afb8a99289230 gcc/testsuite/gcc.dg/graphite/pr19910.c 93366da6daaa0436c31dfcb03c746093 gcc/testsuite/gcc.dg/graphite/pr20041110-1.c *************** a9cdebe1237b6e72d680f59062135a85 gcc/te *** 25412,25417 **** --- 25470,25481 ---- b07e7d834c74d181e52b6465bc5ba6a8 gcc/testsuite/gcc.dg/graphite/scop-matmult.c d6e007dcbb3f025c0c081ceeb8fa2ec1 gcc/testsuite/gcc.dg/graphite/scop-mvt.c 29f4367d0b1ddd83b5c6907acd1b388b gcc/testsuite/gcc.dg/graphite/scop-sor.c + b73109f9a2a416611391b82001eeaa6e gcc/testsuite/gcc.dg/graphite/uns-block-1.c + c751519cc849f584a0c3fa0013a201f8 gcc/testsuite/gcc.dg/graphite/uns-interchange-12.c + 3b54d02c691416b978ca1272ee8e7ae9 gcc/testsuite/gcc.dg/graphite/uns-interchange-14.c + e703fda18fc6ebf0c639374e47df397b gcc/testsuite/gcc.dg/graphite/uns-interchange-15.c + b64110df9b9cb094d6a78dd09208526b gcc/testsuite/gcc.dg/graphite/uns-interchange-9.c + 31b13b22742fdfb611e33e81bf568fc8 gcc/testsuite/gcc.dg/graphite/uns-interchange-mvt.c 50936c4d7d023f34f6e089da791e838f gcc/testsuite/gcc.dg/graphite/vect-pr43423.c d4508ffb070a3137c14b0c9938607ca0 gcc/testsuite/gcc.dg/guality/asm-1.c 6bc403c95913c48afe151fdf7d6e8bb3 gcc/testsuite/gcc.dg/guality/bswaptest.c *************** bec4ffc83da3158d4a27c422db65e871 gcc/te *** 25628,25633 **** --- 25692,25698 ---- a174f70c19f257c6429f70c5c49a0481 gcc/testsuite/gcc.dg/ipa/ipa-pta-8.c 62f8de7dbeb66432037449dc1714dace gcc/testsuite/gcc.dg/ipa/ipa-pta-9.c 5d2203c3af02ba8fc2f3fee6d41b4c57 gcc/testsuite/gcc.dg/ipa/ipa-sra-1.c + 86e110e48ae0f0ecc2142cf4cf06369f gcc/testsuite/gcc.dg/ipa/ipa-sra-10.c 581ee65d091c9c341b084281bb0a3563 gcc/testsuite/gcc.dg/ipa/ipa-sra-2.c 26b99bff7918d292d05b997d2e1ee75d gcc/testsuite/gcc.dg/ipa/ipa-sra-3.c f0f2201c6a7de7e2728bdd974d3a5cf3 gcc/testsuite/gcc.dg/ipa/ipa-sra-4.c *************** ddab0207280e8faaee753555ee01ebff gcc/te *** 25672,25677 **** --- 25737,25743 ---- 0cf6ea693cc06ae024ed2d6806fcfad1 gcc/testsuite/gcc.dg/ipa/pr61986.c 4335b461755f210d5635e53648df221b gcc/testsuite/gcc.dg/ipa/pr63551.c 80020587b67d8a1e23d42bd1208d6a62 gcc/testsuite/gcc.dg/ipa/pr64041.c + 9e20144eec96000223a2e983ffcba9fa gcc/testsuite/gcc.dg/ipa/pr70646.c b58d896a4d97e5f7f8b082f407df9a92 gcc/testsuite/gcc.dg/ipa/pure-const-1.c 96d395d8b51f69b544facb9312923acf gcc/testsuite/gcc.dg/ipa/pure-const-2.c 965b56c2fb92d5ccdd2268100579cb29 gcc/testsuite/gcc.dg/ipa/remref-0.c *************** a64fcd8b9752e9274bf113e4f8c66522 gcc/te *** 25904,25910 **** f4e0b5c5947ea83ba5022f817499ab8b gcc/testsuite/gcc.dg/lto/pr54702_1.c aee521e13905e7f56637f1cb1150dc59 gcc/testsuite/gcc.dg/lto/pr54709_0.c 0a3eff7ce2be8f0f6bba73c266106453 gcc/testsuite/gcc.dg/lto/pr54709_1.c ! 2f7843dc76d21ba069e3406b82fe273c gcc/testsuite/gcc.dg/lto/pr55113_0.c 8b753efd5663a7fe9390baecfc1b4820 gcc/testsuite/gcc.dg/lto/pr55525_0.c b89812631e05725143963f1ff3fbbfc7 gcc/testsuite/gcc.dg/lto/pr55525_1.c 47a8065df4bdece34317dab2da3d4076 gcc/testsuite/gcc.dg/lto/pr55660_0.c --- 25970,25976 ---- f4e0b5c5947ea83ba5022f817499ab8b gcc/testsuite/gcc.dg/lto/pr54702_1.c aee521e13905e7f56637f1cb1150dc59 gcc/testsuite/gcc.dg/lto/pr54709_0.c 0a3eff7ce2be8f0f6bba73c266106453 gcc/testsuite/gcc.dg/lto/pr54709_1.c ! 2b2fce88c0b2b8c1fc4058934dda2ded gcc/testsuite/gcc.dg/lto/pr55113_0.c 8b753efd5663a7fe9390baecfc1b4820 gcc/testsuite/gcc.dg/lto/pr55525_0.c b89812631e05725143963f1ff3fbbfc7 gcc/testsuite/gcc.dg/lto/pr55525_1.c 47a8065df4bdece34317dab2da3d4076 gcc/testsuite/gcc.dg/lto/pr55660_0.c *************** ed72338ed55138cf037314e45f0f7818 gcc/te *** 25932,25937 **** --- 25998,26004 ---- 4f5f94c6ba034d19da65ca8c0e1c5ed9 gcc/testsuite/gcc.dg/lto/pr64373_0.c e36db27b1e4084d326181d15570bf8d4 gcc/testsuite/gcc.dg/lto/resolutions_0.c 1084184a9b11a84eee39ef130211f70b gcc/testsuite/gcc.dg/lto/save-temps_0.c + 9789216c84be63ef866b406d3dc749d8 gcc/testsuite/gcc.dg/lto/simd-function_0.c 69ff2353992f738ce7ea3cb89e9db1e4 gcc/testsuite/gcc.dg/lto/trans-mem-3_0.c bc1b2064fd5bb4de921a2005a03817d7 gcc/testsuite/gcc.dg/lto/trans-mem-3_1.c 3f4f42d8a6ea686d4fc6a621928696a8 gcc/testsuite/gcc.dg/lto/trans-mem.h *************** d509539e43ac4a3bf9c9b01c0503ebdf gcc/te *** 27244,27249 **** --- 27311,27331 ---- 74eef289ed65c13f9161776592f2a5a0 gcc/testsuite/gcc.dg/pr64778.c 200af7e30479176902999ddc6f996f56 gcc/testsuite/gcc.dg/pr65063.c f486fe5cd0c8b1dfaeade4e0c846d705 gcc/testsuite/gcc.dg/pr65228.c + 9b83e97ecb4b549b8c90122cd4fbd1f8 gcc/testsuite/gcc.dg/pr67028.c + ec6fafa240e762cbf9e1bfcbf4d8257d gcc/testsuite/gcc.dg/pr68670-1.c + 64ab8d9be02e0f49ab68cb50079da2f9 gcc/testsuite/gcc.dg/pr68670-2.c + 31d8e02bf032671fe8b3a9f836fa61e3 gcc/testsuite/gcc.dg/pr69015.c + dc1a32d61ffafafb8a73eeb4f9727021 gcc/testsuite/gcc.dg/pr69195.c + e5e75166594899c20207094a984a9f46 gcc/testsuite/gcc.dg/pr69238.c + a27a7dca8454452a4315a5004cde84ca gcc/testsuite/gcc.dg/pr69522.c + 60dba938a2dc392279e9ce683a510a9c gcc/testsuite/gcc.dg/pr69644.c + 78218b638caf9f113c9ac7db2872e4a0 gcc/testsuite/gcc.dg/pr69802.c + 8ee76a9ec44a5be4a938e843353b78f2 gcc/testsuite/gcc.dg/pr70022.c + c32e69e0b15af869a3408b989cf2a673 gcc/testsuite/gcc.dg/pr70152.c + 460d8e73cab3e6784b930f92855788fa gcc/testsuite/gcc.dg/pr70161-2.c + 77f73ea35665a295e485dcaa73964234 gcc/testsuite/gcc.dg/pr70161.c + 5e379016acbc1d2eae8b26f5aa49b810 gcc/testsuite/gcc.dg/pr70169.c + 79f760cb1168bdcad7ceef62cd0034c3 gcc/testsuite/gcc.dg/pr71558.c 8b7d73da2d5d78000716492365a85d5a gcc/testsuite/gcc.dg/pr8715.c 3d08410b2dd57259aa63f0e1c64b376e gcc/testsuite/gcc.dg/pr8788-1.c be04382a35ebb1cfae1b2168f1693a94 gcc/testsuite/gcc.dg/pr8835-1.c *************** aaf2153b841fae71456b1ba41211400b gcc/te *** 27337,27342 **** --- 27419,27425 ---- 24617fd42e8ebdb28c0f887e4ed5f028 gcc/testsuite/gcc.dg/setjmp-3.c 1e68093864d108e79138797cbdbac2c1 gcc/testsuite/gcc.dg/setjmp-4.c 7acd41b198a9eef45ac2a6ca7379b9e6 gcc/testsuite/gcc.dg/setjmp-5.c + 526c630f8bbcd4e7597ddcdb1c8d8ee0 gcc/testsuite/gcc.dg/setjmp-6.c 6f4ffedec35f0de53e9ae24b36462712 gcc/testsuite/gcc.dg/short-compare-1.c e95ac1ec5f25aac9c9389159d09b366c gcc/testsuite/gcc.dg/short-compare-2.c da60b36ecfc93b7381c5940ef869a068 gcc/testsuite/gcc.dg/shrink-wrap-alloca.c *************** afdecf17af13f7482a9ea8034efdb7d5 gcc/te *** 27799,27805 **** fbe642db16b19b53febbbec0c7658be4 gcc/testsuite/gcc.dg/torture/pr28268.c 5773a24ed2f47e71e944d4fe4a940c37 gcc/testsuite/gcc.dg/torture/pr28814.c 17758d320a330406d6d6b9da0e52672e gcc/testsuite/gcc.dg/torture/pr28900.c ! b52fc57c3500f4b1536b97da7205d30b gcc/testsuite/gcc.dg/torture/pr29119.c af880fd7ebbdfbb729ee37825f5025fe gcc/testsuite/gcc.dg/torture/pr29446.c fc61ecfa0c9a3f5a49186533e8dd4e5c gcc/testsuite/gcc.dg/torture/pr29584.c cf1462d0f230a78820384d0496ec2e19 gcc/testsuite/gcc.dg/torture/pr30313.c --- 27882,27888 ---- fbe642db16b19b53febbbec0c7658be4 gcc/testsuite/gcc.dg/torture/pr28268.c 5773a24ed2f47e71e944d4fe4a940c37 gcc/testsuite/gcc.dg/torture/pr28814.c 17758d320a330406d6d6b9da0e52672e gcc/testsuite/gcc.dg/torture/pr28900.c ! 01c896608ef1e0d48c4fabba4d2e5b61 gcc/testsuite/gcc.dg/torture/pr29119.c af880fd7ebbdfbb729ee37825f5025fe gcc/testsuite/gcc.dg/torture/pr29446.c fc61ecfa0c9a3f5a49186533e8dd4e5c gcc/testsuite/gcc.dg/torture/pr29584.c cf1462d0f230a78820384d0496ec2e19 gcc/testsuite/gcc.dg/torture/pr30313.c *************** aa3d4a99808d1f2c872d909445ade1a8 gcc/te *** 28208,28217 **** --- 28291,28317 ---- 9fd4141b37961dba4d5cf78375faecf3 gcc/testsuite/gcc.dg/torture/pr63380-1.c 273f8c55f269210104bb37d5ff1f1ead gcc/testsuite/gcc.dg/torture/pr63380-2.c 5afeeefc10e71cd2e01563ed972f3513 gcc/testsuite/gcc.dg/torture/pr63738.c + 47299ab5757a8d55ff0b180c5967c933 gcc/testsuite/gcc.dg/torture/pr64091.c 48215a3eb001e86dd112cbd5bd96db15 gcc/testsuite/gcc.dg/torture/pr64199.c 16befef8ee8e97f138e4871a50c9d149 gcc/testsuite/gcc.dg/torture/pr64365.c + 1385649c2002bd513f1ef928b46fdcef gcc/testsuite/gcc.dg/torture/pr64882.c bc87826fa9b88277ff41e0e1ad1e432c gcc/testsuite/gcc.dg/torture/pr66123.c 00eb3bf59b75fa9683a54ed307d82a1a gcc/testsuite/gcc.dg/torture/pr66272.c + 75e0baf0a669e199369f86b41f657744 gcc/testsuite/gcc.dg/torture/pr66375.c + c2b3378b69c2b4bcd3ea3a0c9ff0460b gcc/testsuite/gcc.dg/torture/pr66413.c + 181b3e6e8e615538a0d17aa1e6ffb35d gcc/testsuite/gcc.dg/torture/pr66794.c + e7819de621b7e0df5730509c66e498dc gcc/testsuite/gcc.dg/torture/pr67609.c + 08f0a2b83dfb93441266161bc27e6f90 gcc/testsuite/gcc.dg/torture/pr67619.c + acf5c2556973c8f7071ddf9e26be168e gcc/testsuite/gcc.dg/torture/pr67794.c + c3a2444fe125a8a72ad22d3fb00e82d0 gcc/testsuite/gcc.dg/torture/pr68648.c + 15674311a236d345e5ccc22c50bd2032 gcc/testsuite/gcc.dg/torture/pr68955.c + bec958adc64669aae7713bc7b9e9f391 gcc/testsuite/gcc.dg/torture/pr69574.c + 541fba5401e25e613e65e6fcd18f973b gcc/testsuite/gcc.dg/torture/pr69715.c + 975f70c6a18cbc20768fb9ff1c55387b gcc/testsuite/gcc.dg/torture/pr69941.c + 3315958617f871624e05d5daa07cafd7 gcc/testsuite/gcc.dg/torture/pr70457.c + b64fc3513d09279239f96771a7af996c gcc/testsuite/gcc.dg/torture/pr70484.c + 0c398d952cf20fc83aec050f85d8a44b gcc/testsuite/gcc.dg/torture/pr71452.c + b0020481b01ba2fea155b7e666817dc3 gcc/testsuite/gcc.dg/torture/pr71606.c c99c3745eca0ddc81822cc070070a4d3 gcc/testsuite/gcc.dg/torture/pr8081.c b3a9e4f2af6462183da8d6c5cb13bf1f gcc/testsuite/gcc.dg/torture/pta-callused-1.c 98fde0e59e55c1ed923ee9d9f034d7f2 gcc/testsuite/gcc.dg/torture/pta-escape-1.c *************** f5afcba63b5ff2b3b24ba99651f4c789 gcc/te *** 28556,28561 **** --- 28656,28662 ---- a544a355d504a92b0cf85761636bdacf gcc/testsuite/gcc.dg/tree-ssa/cswtch.c aa3aa314538a8e20c7084c2f7e3237f5 gcc/testsuite/gcc.dg/tree-ssa/cunroll-1.c b4518298f90a09a72cbcfa7a5bf61cc6 gcc/testsuite/gcc.dg/tree-ssa/cunroll-10.c + b4018dec81d2b2e15cbc3e09b7aaa455 gcc/testsuite/gcc.dg/tree-ssa/cunroll-11.c d9f16d3f67bf4b1ad061c383e0236b4b gcc/testsuite/gcc.dg/tree-ssa/cunroll-2.c d7e470854cd6b46eadf29b6993efce7d gcc/testsuite/gcc.dg/tree-ssa/cunroll-3.c f69e30d4ae88d9c8be8b356bf14796be gcc/testsuite/gcc.dg/tree-ssa/cunroll-4.c *************** cf3bb9b56533f3ecbca962d2c58a93d8 gcc/te *** 28971,28976 **** --- 29072,29078 ---- 69a389e9a2e15facd76911e35ff3fdd5 gcc/testsuite/gcc.dg/tree-ssa/pr58958.c 78a0c6325f6eeb9a58c77ba973b8b764 gcc/testsuite/gcc.dg/tree-ssa/pr59597.c c79895082e577e2cfa8444b1731d3943 gcc/testsuite/gcc.dg/tree-ssa/pr61144.c + 4c8881edc71005a1d85370d1a8358a54 gcc/testsuite/gcc.dg/tree-ssa/pr69355.c cfcca8eb5b4b49640309e8c296b2f651 gcc/testsuite/gcc.dg/tree-ssa/predcom-1.c e69a11968c8d3bd61d110c2fbc09a63f gcc/testsuite/gcc.dg/tree-ssa/predcom-2.c d2bb80f7dc1eb91f7fc51b7e83fa8b73 gcc/testsuite/gcc.dg/tree-ssa/predcom-3.c *************** f81d9fe062675cf9957639b99f93f779 gcc/te *** 30941,30946 **** --- 31043,31052 ---- c3c69a71f2670cdbe2550868228987d2 gcc/testsuite/gcc.target/aarch64/fmovf.c 5199e2da28420b6f7b0d37f4459c870f gcc/testsuite/gcc.target/aarch64/fmul_intrinsic_1.c b41dba1046447c932cc183fe90f50467 gcc/testsuite/gcc.target/aarch64/fnmadd-fastmath.c + b22aa9cc27c6d5f12963d16ea8b99803 gcc/testsuite/gcc.target/aarch64/fnmul-1.c + b59ae0640b0fcb8cb2b558fc7fa92aac gcc/testsuite/gcc.target/aarch64/fnmul-2.c + a1212235242dd12baac6ac6d3f0f04ad gcc/testsuite/gcc.target/aarch64/fnmul-3.c + 37fb660ad953888e296980c0d2b85a7c gcc/testsuite/gcc.target/aarch64/fnmul-4.c 81d3b6315279d49bd6ff13f1b22d348d gcc/testsuite/gcc.target/aarch64/frint.x 9c2fa782435fadcb543f6b3244f77262 gcc/testsuite/gcc.target/aarch64/frint_double.c ed2b38705092e36a5984e33769be3d5a gcc/testsuite/gcc.target/aarch64/frint_float.c *************** d8cfefc063686118062e9fc3b774907b gcc/te *** 30978,30983 **** --- 31084,31091 ---- 5195785cc7216a9662357829a66aa2c7 gcc/testsuite/gcc.target/aarch64/pr63424.c adf6bf3581f4c742fc0a942152ebc31c gcc/testsuite/gcc.target/aarch64/pr64304.c c8f85510fcedfd5fda7fe58be4530841 gcc/testsuite/gcc.target/aarch64/pr65235_1.c + b8f90423eef94b7a240f40a79251eabf gcc/testsuite/gcc.target/aarch64/pr68363_1.c + 4f8bbe4e1111d7af0ca71cecfa204497 gcc/testsuite/gcc.target/aarch64/pr70809_1.c 1f95766b4ed5bfb5f2cf1f168a607a8d gcc/testsuite/gcc.target/aarch64/predefine_large.c d38e476730748c653068e7cb2d8d6ca6 gcc/testsuite/gcc.target/aarch64/predefine_small.c 29e7dbfba15c0f945488b33400b908b4 gcc/testsuite/gcc.target/aarch64/predefine_tiny.c *************** aa96311658e51b1a8047f23a651755e5 gcc/te *** 31254,31259 **** --- 31362,31380 ---- aa8e6314969635296b924c21de596181 gcc/testsuite/gcc.target/arm/atomic-op-release.c b80315a2e089ca4c3248a4d827eb49ef gcc/testsuite/gcc.target/arm/atomic-op-seq_cst.c d6a110ab8373cfe1039d83e073de1dee gcc/testsuite/gcc.target/arm/atomic-op-short.c + 6888ada4c21cda37da2310c44f94d92a gcc/testsuite/gcc.target/arm/atomic_loaddi_1.c + 748d8b48dbda98ef62ce99a5203312e7 gcc/testsuite/gcc.target/arm/atomic_loaddi_2.c + 3fe801d58f3b70880715055726fee231 gcc/testsuite/gcc.target/arm/atomic_loaddi_3.c + b7ab6cc044af1bed0ca099a7f8685f4e gcc/testsuite/gcc.target/arm/atomic_loaddi_4.c + 41517d1e34a7d19610afdeee5a451bc0 gcc/testsuite/gcc.target/arm/atomic_loaddi_5.c + 76f2bf67e5b482e51bf73bf25aeadfb8 gcc/testsuite/gcc.target/arm/atomic_loaddi_6.c + 8860ba3a3019abd786a63a197a79a428 gcc/testsuite/gcc.target/arm/atomic_loaddi_7.c + c1fccbac442d7831e67090846cd2ddc5 gcc/testsuite/gcc.target/arm/atomic_loaddi_8.c + 203017616899ce51758c288bb5c04e52 gcc/testsuite/gcc.target/arm/atomic_loaddi_9.c + 8d17def26df7a19010542a66ba349674 gcc/testsuite/gcc.target/arm/atomic_loaddi_acquire.x + fc8506cad4c77b4468d913131234b8df gcc/testsuite/gcc.target/arm/atomic_loaddi_relaxed.x + 1ee4ca02314e4955dc6208841d0906dc gcc/testsuite/gcc.target/arm/atomic_loaddi_relaxed_cond.c + 8f6c2a808ec770781684617fb4e92ca4 gcc/testsuite/gcc.target/arm/atomic_loaddi_seq_cst.x ac89910ac872b651dfb4457a1e67951a gcc/testsuite/gcc.target/arm/builtin-bswap-1.c f9074fee3a2786feff25e5a5a998932a gcc/testsuite/gcc.target/arm/builtin-bswap16-1.c 6b4152bae8222e0433ac1b92b0200514 gcc/testsuite/gcc.target/arm/builtin-trap.c *************** bf821309d2cd93b8c0d6b0704742bc45 gcc/te *** 31380,31385 **** --- 31501,31509 ---- 856b2cad766c5a53d737088d9056031b gcc/testsuite/gcc.target/arm/long-calls-4.c 37fc8929c0e544dc7359fee7cd1c61e2 gcc/testsuite/gcc.target/arm/lp1189445.c b187820a998a907d588e824f4e13e823 gcc/testsuite/gcc.target/arm/lp1243022.c + 8ec72530bc6fe702e700e90f67da53df gcc/testsuite/gcc.target/arm/macro_defs0.c + d167874d0fc3e5612515b43694631587 gcc/testsuite/gcc.target/arm/macro_defs1.c + 124b8184e718e7e16799430a99e76983 gcc/testsuite/gcc.target/arm/macro_defs2.c 3876125217234cd017b0326c39884922 gcc/testsuite/gcc.target/arm/minmax_minus.c a806646e365240ac5e4717aadb89dd85 gcc/testsuite/gcc.target/arm/mla-1.c 7a61babf21fe0e2b87f08d86f719bd45 gcc/testsuite/gcc.target/arm/mla-2.c *************** ac2f7687d3e813607c2f1f7be47ec2ec gcc/te *** 33551,33559 **** --- 33675,33685 ---- ab23dd9bd4df72320ab9d55c8b5e52a8 gcc/testsuite/gcc.target/arm/pr60650.c 5d22a67c50f8f42af6e8b3f143560b12 gcc/testsuite/gcc.target/arm/pr60657.c 2a191b079e7834e00a2f71e2f4ef7fab gcc/testsuite/gcc.target/arm/pr60663.c + 090e3a4d2e2fdbab7b1d5b0be5ab12a3 gcc/testsuite/gcc.target/arm/pr63408.c 224b028685bb00477b6281c95ad71ca7 gcc/testsuite/gcc.target/arm/pr64453.c 20d5f766f35a50d1adf5f8ba2af4293f gcc/testsuite/gcc.target/arm/pr65647-2.c 2be0cee0d9fe53e874115f4f9d82a3e2 gcc/testsuite/gcc.target/arm/pr65647.c + a38ba5635fcb15a6a5c3bd66dca37b1c gcc/testsuite/gcc.target/arm/pr67439_1.c 3143560976572191d8bba6ba78a45aa6 gcc/testsuite/gcc.target/arm/register-variables.c 9891ac3dc9739983de683e418f98f801 gcc/testsuite/gcc.target/arm/require-pic-register-loc.c f4b0167ffa11835780a49b6681dae08a gcc/testsuite/gcc.target/arm/sat-1.c *************** b5530a38437ebc4e86afd97bfb8b70a0 gcc/te *** 33569,33574 **** --- 33695,33701 ---- 75b19de937a605ce7ed7e1026e54bbf8 gcc/testsuite/gcc.target/arm/smlatt-1.c 3e7aee3ca3268716b7e56cda15a6ccc3 gcc/testsuite/gcc.target/arm/stack-corruption.c 0c9f2009bdec40ab856be3c46d1a00df gcc/testsuite/gcc.target/arm/stack-red-zone.c + 3b1c50a774066faaee9f9ac38f8da58c gcc/testsuite/gcc.target/arm/stl-cond.c 152321b1bfa07e69c572a0ca8573c015 gcc/testsuite/gcc.target/arm/symbian1.c a2a9b9135252a63f30ae15393ececf8f gcc/testsuite/gcc.target/arm/symbian2.c 7474a850002496a75a3fc07be3a92378 gcc/testsuite/gcc.target/arm/symbian3.c *************** a24d6d8461a1a488a1abd67a481af786 gcc/te *** 33637,33642 **** --- 33764,33773 ---- 8dec4ac072bfa73e2b0c5e888050b7eb gcc/testsuite/gcc.target/arm/vmaxnmsf.c dd8585fa6a69bc874124f5b7d89d3bba gcc/testsuite/gcc.target/arm/vminnmdf.c c259b498f3ce93031d726eead78cbd0d gcc/testsuite/gcc.target/arm/vminnmsf.c + 662a21db19f15720cbc96c3b11773711 gcc/testsuite/gcc.target/arm/vnmul-1.c + 65fd2f17e7d26519c2affe55ce62cec2 gcc/testsuite/gcc.target/arm/vnmul-2.c + 3e946096885b21c5593070d23c69fad1 gcc/testsuite/gcc.target/arm/vnmul-3.c + 8a7c8bb240b6833c46839c411dfaf56c gcc/testsuite/gcc.target/arm/vnmul-4.c ce70e532069dd0735b884ab02a3058da gcc/testsuite/gcc.target/arm/volatile-bitfields-1.c 46773d880c6bda16896a27bdee5424ea gcc/testsuite/gcc.target/arm/volatile-bitfields-2.c 41dcb12d0b32ea9905000973463528bf gcc/testsuite/gcc.target/arm/volatile-bitfields-3.c *************** a6701935d18c8ed062555c8a48454bc9 gcc/te *** 33694,33699 **** --- 33825,33831 ---- 572dc228e08385a1db0fcbab66dbaa4e gcc/testsuite/gcc.target/avr/pr46779-2.c 421d2b9b36fa2496dce05d129d2c352b gcc/testsuite/gcc.target/avr/pr58545.c 9e82df166e8b559cb56d2c4f48cbaf30 gcc/testsuite/gcc.target/avr/pr60991.c + 292bf2dc33b5cfededd107fe1c0ebc88 gcc/testsuite/gcc.target/avr/pr71103.c 881cb1836ddfc3105e0aacacc481aa09 gcc/testsuite/gcc.target/avr/progmem-error-1.c 2eb3f167ae58b534e25afc1b94617746 gcc/testsuite/gcc.target/avr/progmem-error-1.cpp 56de611fd29076ce9da389a853476819 gcc/testsuite/gcc.target/avr/progmem-warning-1.c *************** fea352b16ae79edc9965b1f39680a709 gcc/te *** 33729,33734 **** --- 33861,33867 ---- 7f56c1b750dfe8d7e4128f15aa3eaffe gcc/testsuite/gcc.target/avr/torture/pr63633-ice-mult.c 44584f49cd0975073be7b86102774077 gcc/testsuite/gcc.target/avr/torture/pr64331.c dcabffeb42e88a442661b9e47e43a9c1 gcc/testsuite/gcc.target/avr/torture/pr64452.c + ab53af0eb6dbfe2791a8ac1bbaf0c11f gcc/testsuite/gcc.target/avr/torture/pr71103-2.c 21a45d34960ba9567b9f2483d22c843f gcc/testsuite/gcc.target/avr/torture/progmem-1.c 564c71a894aff68e98d5c4a6db2b47ae gcc/testsuite/gcc.target/avr/torture/progmem-1.cpp e3e1c41865f5287c9ff7e200745758fd gcc/testsuite/gcc.target/avr/torture/sat-hr-plus-minus.c *************** b04f7a12d10f851b8395faea1f5ab501 gcc/te *** 35225,35230 **** --- 35358,35364 ---- 88679aecb941ef98e4955fd53f24d648 gcc/testsuite/gcc.target/i386/avx512f-mask-type.h 20d7791d447e454dc99dd9e328d38933 gcc/testsuite/gcc.target/i386/avx512f-os-support.h b41e564451920ed5e6e2cc790be57646 gcc/testsuite/gcc.target/i386/avx512f-pr57233.c + e97c0c19cafc88b7e3701f64c4ee5e2f gcc/testsuite/gcc.target/i386/avx512f-pr70059.c 5158ac78802e368957a44c0f68b3b5d8 gcc/testsuite/gcc.target/i386/avx512f-rounding.c c5975a79a4ea5a75acc7b38b9e6c0c44 gcc/testsuite/gcc.target/i386/avx512f-set-v16sf-1.c bea9dbd9114c8bb3fcd47ad0281ff5c2 gcc/testsuite/gcc.target/i386/avx512f-set-v16sf-2.c *************** c01a05903164ed251d7228d2c57431ed gcc/te *** 36760,36765 **** --- 36894,36900 ---- b59f77b63e5aca4229cedc361fd5f377 gcc/testsuite/gcc.target/i386/pr57848.c f052bd1ca3829c70ece4f0cbea4f6006 gcc/testsuite/gcc.target/i386/pr57915.c ec5d2698503348980fdb9dcbdf79a96f gcc/testsuite/gcc.target/i386/pr58048.c + 06160587124948c7a0f75fe8d180c719 gcc/testsuite/gcc.target/i386/pr58066.c 5b6c881f720337a7ea82155d974e222a gcc/testsuite/gcc.target/i386/pr58137.c e718e67bc7810d948894cb16a9fac0a6 gcc/testsuite/gcc.target/i386/pr58218.c f487259b97e486f0909f1f5b1ffcab56 gcc/testsuite/gcc.target/i386/pr58418.c *************** ac964f4b563acffae35942f124a29c33 gcc/te *** 36850,36856 **** --- 36985,37009 ---- 0377a72cd6ce11f8f6572ea17dc41a9c gcc/testsuite/gcc.target/i386/pr64513.c 422e502b7fa41f85e1c5ca34b2c01376 gcc/testsuite/gcc.target/i386/pr65990.c eba9fc2cd96c68428c1d78d35c3f7e05 gcc/testsuite/gcc.target/i386/pr66275.c + 7e1d59ce8293eee1a626a8693fdb6e4f gcc/testsuite/gcc.target/i386/pr66412.c 009d49d9d166c04092804db3489068cc gcc/testsuite/gcc.target/i386/pr66470.c + cdbd8403ada6d1fcd5ed815b09826035 gcc/testsuite/gcc.target/i386/pr66648.c + 0214e7f4913311cae678317f95cbfb67 gcc/testsuite/gcc.target/i386/pr66703.c + eca9d4fb2fa674b319efc3b9cc0911d5 gcc/testsuite/gcc.target/i386/pr66814.c + dfbea4e98f52c35cbd0139ab2672c229 gcc/testsuite/gcc.target/i386/pr66891.c + a0d4958712bff25bad27b504a88b752f gcc/testsuite/gcc.target/i386/pr66922.c + 5ce153867d84a2ecd10eefd5c81b3b14 gcc/testsuite/gcc.target/i386/pr67265-2.c + 0ba7398a83e54638e32719b2687ec37e gcc/testsuite/gcc.target/i386/pr67265.c + bea583c8259434a6a826cd2c30638802 gcc/testsuite/gcc.target/i386/pr67770.c + 37cbc35061a580832dbc0ce4a1604d83 gcc/testsuite/gcc.target/i386/pr68680.c + 06703d8291d84483fc384c84a50f9b05 gcc/testsuite/gcc.target/i386/pr68701-1.c + 7da3890a87cc8338fdf354e71497c9d4 gcc/testsuite/gcc.target/i386/pr68701-2.c + 4baed9b88fed94b3bd199c8235745c94 gcc/testsuite/gcc.target/i386/pr69459.c + 51f445507ac4ace5b56d6e38e816cc6d gcc/testsuite/gcc.target/i386/pr69551.c + 18b5257a0bbaecefbf7a16d4882f7943 gcc/testsuite/gcc.target/i386/pr69891.c + 8814ce3cb1c59fd8c0c53db743c9c3b4 gcc/testsuite/gcc.target/i386/pr70007.c + e44800457a70163ec72b2dc33ac17526 gcc/testsuite/gcc.target/i386/pr70327.c + 1003b2af30448864252327bd08ddb57b gcc/testsuite/gcc.target/i386/pr70858.c 849234c7a569c1e86023244bc5561263 gcc/testsuite/gcc.target/i386/pr9771-1.c 24ceb6d5f3f5cde4b9d852839bdb98ae gcc/testsuite/gcc.target/i386/prefetchw-1.c f11f4731c396f099373c033ab016a64f gcc/testsuite/gcc.target/i386/prefetchwt1-1.c *************** fab39819b058898eb7f944381e2ef9b8 gcc/te *** 36865,36871 **** 12405bc30059cdd65821f77c13917288 gcc/testsuite/gcc.target/i386/rdseed16-1.c a3227491a22e8bd3428c5f35d9e9b625 gcc/testsuite/gcc.target/i386/rdseed32-1.c f1d942e689de2f23040c5e669c9dcb1b gcc/testsuite/gcc.target/i386/rdseed64-1.c ! 6e504ae28dea5302da6e5430ddaf6abd gcc/testsuite/gcc.target/i386/readeflags-1.c e2839913fadc6a00676c8f02deb3f59e gcc/testsuite/gcc.target/i386/recip-divf.c 4557dbe9ae51590eba29dc37199cf9e4 gcc/testsuite/gcc.target/i386/recip-sqrtf.c 3e22a439d0d08ad9c95292f2967fbe0d gcc/testsuite/gcc.target/i386/recip-vec-divf-avx.c --- 37018,37024 ---- 12405bc30059cdd65821f77c13917288 gcc/testsuite/gcc.target/i386/rdseed16-1.c a3227491a22e8bd3428c5f35d9e9b625 gcc/testsuite/gcc.target/i386/rdseed32-1.c f1d942e689de2f23040c5e669c9dcb1b gcc/testsuite/gcc.target/i386/rdseed64-1.c ! 906e67f86f812fa4bc8514d455464b46 gcc/testsuite/gcc.target/i386/readeflags-1.c e2839913fadc6a00676c8f02deb3f59e gcc/testsuite/gcc.target/i386/recip-divf.c 4557dbe9ae51590eba29dc37199cf9e4 gcc/testsuite/gcc.target/i386/recip-sqrtf.c 3e22a439d0d08ad9c95292f2967fbe0d gcc/testsuite/gcc.target/i386/recip-vec-divf-avx.c *************** caaaf541c6f7eb87214c11b5dc2b35f0 gcc/te *** 37271,37293 **** 37d8afafe5fa46b83c804e55ef91c05b gcc/testsuite/gcc.target/i386/sse4_1-rintf-vec.c 07d00f3143b13b447836c940abcf96ab gcc/testsuite/gcc.target/i386/sse4_1-round-sfix-vec.c 8e46d7edf72777b5a08d4a47a152ba80 gcc/testsuite/gcc.target/i386/sse4_1-round-vec.c ! 72a39172eb120f531509cc156ceb8457 gcc/testsuite/gcc.target/i386/sse4_1-round.h 0df4f2c69404ec6eb04929209ca0cfb2 gcc/testsuite/gcc.target/i386/sse4_1-roundf-sfix-vec.c f1ea501ff9e121cbb3ef39cbb365f620 gcc/testsuite/gcc.target/i386/sse4_1-roundf-vec.c fcead79c0d1fa57164ab5fe297fd2928 gcc/testsuite/gcc.target/i386/sse4_1-roundpd-1.c 4076ee9a599763de562dca50f5d89d96 gcc/testsuite/gcc.target/i386/sse4_1-roundpd-2.c d6192394700679f0d4728c0dd8d59964 gcc/testsuite/gcc.target/i386/sse4_1-roundpd-3.c ! 567d77e74bc803e6f26dd671bfda76de gcc/testsuite/gcc.target/i386/sse4_1-roundps-1.c ! 3ef46a19fa252f0348a6ab511a79aee8 gcc/testsuite/gcc.target/i386/sse4_1-roundps-2.c ! 95249460b6e7b577fcf2504c278a35f8 gcc/testsuite/gcc.target/i386/sse4_1-roundps-3.c ! d7d81096f7c32439ec0774a55c59b823 gcc/testsuite/gcc.target/i386/sse4_1-roundsd-1.c ! 2259eddddbbdd45c9a1037d20a2976be gcc/testsuite/gcc.target/i386/sse4_1-roundsd-2.c ! 24a13533641f3a65a7eb54150b46e18c gcc/testsuite/gcc.target/i386/sse4_1-roundsd-3.c ! 7c2e23769bd38a695221b8db50ead03b gcc/testsuite/gcc.target/i386/sse4_1-roundsd-4.c ! 8659c869aee00c679c2a9afbcf5b9dee gcc/testsuite/gcc.target/i386/sse4_1-roundss-1.c ! 15a4dfd67eeaf521a657df6780949b33 gcc/testsuite/gcc.target/i386/sse4_1-roundss-2.c ! 6366d38cc8dcc6a1b4a5a626eecb5825 gcc/testsuite/gcc.target/i386/sse4_1-roundss-3.c ! 6a9fd4323614a01f4962c5e77ce619db gcc/testsuite/gcc.target/i386/sse4_1-roundss-4.c 6e941c3fd354157533c50834ea29ee28 gcc/testsuite/gcc.target/i386/sse4_1-set-epi32-1.c cf296bdb39b3da7aef7e3b3de2c9d427 gcc/testsuite/gcc.target/i386/sse4_1-set-epi64x-1.c 8941ddbcddba44759277e25c69917f83 gcc/testsuite/gcc.target/i386/sse4_1-set-ps-1.c --- 37424,37446 ---- 37d8afafe5fa46b83c804e55ef91c05b gcc/testsuite/gcc.target/i386/sse4_1-rintf-vec.c 07d00f3143b13b447836c940abcf96ab gcc/testsuite/gcc.target/i386/sse4_1-round-sfix-vec.c 8e46d7edf72777b5a08d4a47a152ba80 gcc/testsuite/gcc.target/i386/sse4_1-round-vec.c ! b7e2e76a849efbdabf75b060bacef2ec gcc/testsuite/gcc.target/i386/sse4_1-round.h 0df4f2c69404ec6eb04929209ca0cfb2 gcc/testsuite/gcc.target/i386/sse4_1-roundf-sfix-vec.c f1ea501ff9e121cbb3ef39cbb365f620 gcc/testsuite/gcc.target/i386/sse4_1-roundf-vec.c fcead79c0d1fa57164ab5fe297fd2928 gcc/testsuite/gcc.target/i386/sse4_1-roundpd-1.c 4076ee9a599763de562dca50f5d89d96 gcc/testsuite/gcc.target/i386/sse4_1-roundpd-2.c d6192394700679f0d4728c0dd8d59964 gcc/testsuite/gcc.target/i386/sse4_1-roundpd-3.c ! 9465d66b224c299e68e07a9af8fe97d7 gcc/testsuite/gcc.target/i386/sse4_1-roundps-1.c ! 3f3b165a2a8616142d6bebfeceae6d03 gcc/testsuite/gcc.target/i386/sse4_1-roundps-2.c ! 969d44fcc51e5f59e7ac4a15332f569a gcc/testsuite/gcc.target/i386/sse4_1-roundps-3.c ! 1351e5b2864dc1688cb4e4df3c19060b gcc/testsuite/gcc.target/i386/sse4_1-roundsd-1.c ! 3dcc7d7a774d20610e68fdba67448f1b gcc/testsuite/gcc.target/i386/sse4_1-roundsd-2.c ! 79c6231dadc438ed7b4ccd357ca72cdd gcc/testsuite/gcc.target/i386/sse4_1-roundsd-3.c ! 74cfd15e7b6a3ab931a818773a00c0e0 gcc/testsuite/gcc.target/i386/sse4_1-roundsd-4.c ! 548066643ba756e6be73c3322f1e15d6 gcc/testsuite/gcc.target/i386/sse4_1-roundss-1.c ! d8135caf8f43a0de03b8fbb3a2f6b802 gcc/testsuite/gcc.target/i386/sse4_1-roundss-2.c ! caaaf4c14670457ed369a39f6c06e9a9 gcc/testsuite/gcc.target/i386/sse4_1-roundss-3.c ! 8f6ad05dc54729a62d84391cc2bd6c0c gcc/testsuite/gcc.target/i386/sse4_1-roundss-4.c 6e941c3fd354157533c50834ea29ee28 gcc/testsuite/gcc.target/i386/sse4_1-set-epi32-1.c cf296bdb39b3da7aef7e3b3de2c9d427 gcc/testsuite/gcc.target/i386/sse4_1-set-epi64x-1.c 8941ddbcddba44759277e25c69917f83 gcc/testsuite/gcc.target/i386/sse4_1-set-ps-1.c *************** dde3db0a15d92b0439e09e00d4168473 gcc/te *** 37555,37560 **** --- 37708,37715 ---- f9cc2b1777a855112b0b56af74122fde gcc/testsuite/gcc.target/ia64/pr49303.c d514a7b1eb41d331d010eef5aeb610da gcc/testsuite/gcc.target/ia64/pr52657.c b586e5503e2dd6b9a177a8f01bcaf2a2 gcc/testsuite/gcc.target/ia64/pr52731.c + 3dabfc0801342e5b183a2c5fd54fa0e8 gcc/testsuite/gcc.target/ia64/pr60465-gprel64-c37.c + 00fb900027ddc85eb58d99c1ba4e4fba gcc/testsuite/gcc.target/ia64/pr60465-gprel64.c da5fed1c1687d737e6580d89111ea5c7 gcc/testsuite/gcc.target/ia64/sibcall-opt-1.c c6b9120dedb44027555b13a7b3e1db44 gcc/testsuite/gcc.target/ia64/sibcall-opt-2.c 077bd168db3c45990d24d018d5e07d0d gcc/testsuite/gcc.target/ia64/sibcall-unwind-1.c *************** e8b089b1462bd9f7a6742f1f384b1713 gcc/te *** 37584,37589 **** --- 37739,37745 ---- 7c2655a34442f77810f161d4e55f0641 gcc/testsuite/gcc.target/m68k/pr45015.c 2099d89c9104cf925cb489fa772a1d0a gcc/testsuite/gcc.target/m68k/pr52573.c bff7eeb417a8650a559d52c58568d83f gcc/testsuite/gcc.target/m68k/pr54041.c + d72b81f14ba067135669328b0cabed87 gcc/testsuite/gcc.target/m68k/pr63347.c 64801a5d12a7d876eb9fc0407fd9af8f gcc/testsuite/gcc.target/m68k/slp-ice.c cc257cf76aa4248f7bcc5572c7a743d9 gcc/testsuite/gcc.target/m68k/stack-limit-1.c c02dc2f5fea389c5e9ac2f2ccbd9cc9f gcc/testsuite/gcc.target/m68k/tls-gd-xgot.c *************** fbe44e0943c31011fa30a479b0856bc9 gcc/te *** 38361,38366 **** --- 38517,38523 ---- 4109709d89c976bec9d1d05e94004ff2 gcc/testsuite/gcc.target/powerpc/gcse-1.c d4c680a0477ecbe2fd90e52278838082 gcc/testsuite/gcc.target/powerpc/htm-1.c 67e2632f85e32ee32548dd4d16a5f7ca gcc/testsuite/gcc.target/powerpc/htm-builtin-1.c + 8123b7a2e999a75ab130e461fcbfea27 gcc/testsuite/gcc.target/powerpc/htm-tabort-no-r0.c 238571a7588bf04ee725a409029ddaf1 gcc/testsuite/gcc.target/powerpc/htm-ttest.c bd2f03394b7690c22ce1aab465adb75f gcc/testsuite/gcc.target/powerpc/htm-xl-intrin-1.c 8d634b2a7d443f1e5b4b69716e57ac00 gcc/testsuite/gcc.target/powerpc/indexed-addr.c *************** f128ae78c8eb899c06243379c091ac5a gcc/te *** 38555,38560 **** --- 38712,38721 ---- e45bfdaecbde494bbd4f3feed2a6d8ad gcc/testsuite/gcc.target/powerpc/pr64505.c a284d0dacfcd6f771fef90d01d3a6372 gcc/testsuite/gcc.target/powerpc/pr65456.c b62881b057884522f471a0045de91404 gcc/testsuite/gcc.target/powerpc/pr65787.c + 278705d6e5b3c408240534cf645c9d9c gcc/testsuite/gcc.target/powerpc/pr68872.c + 251d7893f2e442fff79871909181e76f gcc/testsuite/gcc.target/powerpc/pr69548.c + a31fef5f59c5f12ea342e66137c45ae7 gcc/testsuite/gcc.target/powerpc/pr70117.c + d3a79432800e585b3905439b686d873b gcc/testsuite/gcc.target/powerpc/pr70963.c 06c624c2b437fc5b9f805dc2231a75b6 gcc/testsuite/gcc.target/powerpc/quad-atomic.c 6e15a41526f5cb59817b7a5541452615 gcc/testsuite/gcc.target/powerpc/recip-1.c 6f035f512a3f0d6917409f569174ccea gcc/testsuite/gcc.target/powerpc/recip-2.c *************** ce6b26ef67ffe555b789e4205dc2e809 gcc/te *** 38604,38609 **** --- 38765,38772 ---- c2edbb1afba546ea3ac8a5efcaca9c38 gcc/testsuite/gcc.target/powerpc/ti_math1.c c3d0d51284479d220a6166a0f362536c gcc/testsuite/gcc.target/powerpc/ti_math2.c e8cdd476c18884428cf136ed2c4548b2 gcc/testsuite/gcc.target/powerpc/timode_off.c + 6359ddccab89d64974aacae92509fc9e gcc/testsuite/gcc.target/powerpc/vec-cg.c + 8ee50015e788404267646adf1ac95972 gcc/testsuite/gcc.target/powerpc/vec-shr.c 2d7ba7687ab5e578e54145507a734e92 gcc/testsuite/gcc.target/powerpc/vsx-builtin-1.c 0126618c8adf18da2ca783d2a0e48645 gcc/testsuite/gcc.target/powerpc/vsx-builtin-2.c e70c4bc36bee17a0de0fe201d678e9a2 gcc/testsuite/gcc.target/powerpc/vsx-builtin-3.c *************** d69a98eeb9d370fcef146a6f7778c59d gcc/te *** 38659,38664 **** --- 38822,38828 ---- 2f2404c29092408bd406cc2e185ee7d4 gcc/testsuite/gcc.target/s390/fp2int1.c 9b770970bea6710409e92c9a84d3a5d3 gcc/testsuite/gcc.target/s390/frame-addr1.c c7958dc9fa4da0d50fe09b45a6790ac0 gcc/testsuite/gcc.target/s390/frame-addr2.c + eea57369a3afa9b43f8fac279b571b19 gcc/testsuite/gcc.target/s390/gpr2fprsavecfi.c da005522254518c441d9989f03b2ffcf gcc/testsuite/gcc.target/s390/hotpatch-1.c b414e2c204b656066ad36a9f6a3d5cb1 gcc/testsuite/gcc.target/s390/hotpatch-10.c 1a40584ce63992193099b6cbfcd42ebd gcc/testsuite/gcc.target/s390/hotpatch-11.c *************** e9e2200b0b1b2ee975a929b593283ffc gcc/te *** 38719,38724 **** --- 38883,38889 ---- 4eacd924b86307098c69750577bcbec7 gcc/testsuite/gcc.target/s390/pr55718.c 6eff422787e3130ffd44a19983d51301 gcc/testsuite/gcc.target/s390/pr57559.c 15e57d65510d631ba11ff1b829743815 gcc/testsuite/gcc.target/s390/pr57960.c + a067974c2b2a9c78ccd257277b876c9b gcc/testsuite/gcc.target/s390/pr70674.c f9de3c4e9d9e8c3a707e1f51e48901b6 gcc/testsuite/gcc.target/s390/return-addr1.c 5368e8759352b798ae1db6bc79919aa2 gcc/testsuite/gcc.target/s390/return-addr2.c 12e1931eda90d450c770c3757cff77db gcc/testsuite/gcc.target/s390/s390.exp *************** ad2ffcce04da9c8d14f127c31cc9f005 gcc/te *** 38884,38889 **** --- 39049,39055 ---- ea51469597a5cfee0e33fc77f92446d0 gcc/testsuite/gcc.target/sh/torture/pr58475.c a2644837d5da1aa36c1bcfeab14bd34b gcc/testsuite/gcc.target/sh/torture/pr63783-1.c 03330289ad0c58d76492947237b4d23e gcc/testsuite/gcc.target/sh/torture/pr63783-2.c + 1153a52e77123a5ba7cb080a1509abc6 gcc/testsuite/gcc.target/sh/torture/pr67260.c 19c3b5115ec395173aaa57dab663dd9a gcc/testsuite/gcc.target/sh/torture/pragma-isr.c cf681a819374faeaf9e59a21af08716c gcc/testsuite/gcc.target/sh/torture/pragma-isr2.c 38769a0165dc79bce72d2cce9c197fcc gcc/testsuite/gcc.target/sh/torture/sh-torture.exp *************** eb9fea9eb3ccdd5fb4d85ac011c10dc5 gcc/te *** 38969,38975 **** 919c260d2df3ae743134a221024569ee gcc/testsuite/gcc.target/sparc/sparc-getcontext-1.c 7b56bd143de0aa8d6fb581f22ab45cb2 gcc/testsuite/gcc.target/sparc/sparc-loop-1.c 632f93e6b0314e25ec1b43c771cb405c gcc/testsuite/gcc.target/sparc/sparc-reg-1.c ! 5cc4ced41c42683f121bb39afd7f3e81 gcc/testsuite/gcc.target/sparc/sparc-ret.c 1943f3e1f1253e644f6fe445637c2dec gcc/testsuite/gcc.target/sparc/sparc-trap-1.c 5f2fdc83b01d16d775ccd3c9c8122db0 gcc/testsuite/gcc.target/sparc/sparc.exp 9d0e2b5fe42dfe4e33a910954d24877b gcc/testsuite/gcc.target/sparc/struct-ret-check.c --- 39135,39142 ---- 919c260d2df3ae743134a221024569ee gcc/testsuite/gcc.target/sparc/sparc-getcontext-1.c 7b56bd143de0aa8d6fb581f22ab45cb2 gcc/testsuite/gcc.target/sparc/sparc-loop-1.c 632f93e6b0314e25ec1b43c771cb405c gcc/testsuite/gcc.target/sparc/sparc-reg-1.c ! 5cc4ced41c42683f121bb39afd7f3e81 gcc/testsuite/gcc.target/sparc/sparc-ret-1.c ! 111c6ff31ffc23f4b402354941b88338 gcc/testsuite/gcc.target/sparc/sparc-ret-2.c 1943f3e1f1253e644f6fe445637c2dec gcc/testsuite/gcc.target/sparc/sparc-trap-1.c 5f2fdc83b01d16d775ccd3c9c8122db0 gcc/testsuite/gcc.target/sparc/sparc.exp 9d0e2b5fe42dfe4e33a910954d24877b gcc/testsuite/gcc.target/sparc/struct-ret-check.c *************** b985d75d4d77d7f24d29efbb0266b7c1 gcc/te *** 39547,39552 **** --- 39714,39720 ---- fb64bc7d356ec60804fbf43d60862c56 gcc/testsuite/gfortran.dg/allocate_scalar_with_shape.f90 85b517b1e2ad96a7d4e84672378d9fc3 gcc/testsuite/gfortran.dg/allocate_stat.f90 253a002731f9a4dd5588b787f6b8b83c gcc/testsuite/gfortran.dg/allocate_stat_2.f90 + ff3f13c9787c4de8c525fed52a7cf077 gcc/testsuite/gfortran.dg/allocate_with_arrayspec_1.f90 8cfa0a49b7ef62139bdd4d2b39009aba gcc/testsuite/gfortran.dg/allocate_with_mold_1.f90 38e31a9c8efb7f50005c46dfb7e1d27e gcc/testsuite/gfortran.dg/allocate_with_source_1.f90 f4a7a7cae5d96eb1020cfcf8e519b49b gcc/testsuite/gfortran.dg/allocate_with_source_2.f90 *************** ed1ea9318f54280f6485eb431266406d gcc/te *** 40318,40323 **** --- 40486,40492 ---- 6175789e444efb38f19a253596e768a5 gcc/testsuite/gfortran.dg/class_allocate_17.f90 9375e43c7c4df51161a432f538bff911 gcc/testsuite/gfortran.dg/class_allocate_18.f90 29fb0e972591bb1c0d18986cfd4000c1 gcc/testsuite/gfortran.dg/class_allocate_2.f03 + f6a460bc285cf4a1329239e4defe5338 gcc/testsuite/gfortran.dg/class_allocate_20.f90 429d52f4933a6ef04052e7b8faa6314a gcc/testsuite/gfortran.dg/class_allocate_3.f03 d40289e198c5b62af940ac46912169f0 gcc/testsuite/gfortran.dg/class_allocate_4.f03 6e9ab24784e1dd81f4c59180c6dd6b09 gcc/testsuite/gfortran.dg/class_allocate_5.f90 *************** c31057abbc67dd1afb06b5b8b376c2dc gcc/te *** 41054,41059 **** --- 41223,41229 ---- e2e9a0e7391b69ea4fc0e112a61388ef gcc/testsuite/gfortran.dg/fmt_missing_period_2.f a6ca22a2951e1f360bef43e2f103a3e5 gcc/testsuite/gfortran.dg/fmt_missing_period_3.f 6c1cc67ce685cd82b7752b403da435c7 gcc/testsuite/gfortran.dg/fmt_p_1.f90 + 3a89904959bf6e4d165a8ba4e483db9c gcc/testsuite/gfortran.dg/fmt_pf.f90 038cbd43ca2c9e8c5b73e40c42b96d18 gcc/testsuite/gfortran.dg/fmt_read.f90 be93d174873e7f12c3cf80e9ec41c14f gcc/testsuite/gfortran.dg/fmt_read_2.f90 7e4b2f7a4d717183ffe6323abb51513f gcc/testsuite/gfortran.dg/fmt_read_bz_bn.f90 *************** f5e676182c3ece6f6ba4e0ce914c5292 gcc/te *** 41081,41086 **** --- 41251,41257 ---- 88ba07228275e9f723d0ff27b19fb77c gcc/testsuite/gfortran.dg/forall_14.f90 c285395065c37858799b8d8ab104b3d1 gcc/testsuite/gfortran.dg/forall_15.f90 674de0e9b0693fe66b62c929b5455f39 gcc/testsuite/gfortran.dg/forall_16.f90 + 8e8eb52d04f70625b3d219d75404ef60 gcc/testsuite/gfortran.dg/forall_17.f90 52a3f13b979b92e74930c12598ca953e gcc/testsuite/gfortran.dg/forall_2.f90 2a37c865afb27d8a80cb1bb50744c3ac gcc/testsuite/gfortran.dg/forall_3.f90 bee539d260330f8ac4ac6e60f403dcc8 gcc/testsuite/gfortran.dg/forall_4.f90 *************** c85923703b837982022aebc967285423 gcc/te *** 41305,41310 **** --- 41476,41483 ---- aac30443117734b3e7052646be882d77 gcc/testsuite/gfortran.dg/generic_27.f90 5df587bf68b379e222fd29da0a71c261 gcc/testsuite/gfortran.dg/generic_28.f90 8903ef8f818c080ee22a33c4093134b8 gcc/testsuite/gfortran.dg/generic_3.f90 + 9f63f9825952be23ec6a3769a960c639 gcc/testsuite/gfortran.dg/generic_30.f90 + 8a51f0c660263f5d592b1689ce1bc829 gcc/testsuite/gfortran.dg/generic_31.f90 d21248018105fd7ccacf9fa869f57e0a gcc/testsuite/gfortran.dg/generic_4.f90 6b638ae392f7e94c1592d0efbc053876 gcc/testsuite/gfortran.dg/generic_5.f90 dc5927a86c1c614c2ff8285c60cf86f9 gcc/testsuite/gfortran.dg/generic_6.f90 *************** bcd9a8c5acf05494271659304f0f0a60 gcc/te *** 41442,41447 **** --- 41615,41624 ---- 0dfdb9a26af74e66d9c4b0ec048f14fe gcc/testsuite/gfortran.dg/gomp/pr59488-1.f90 4d1fe0041df2d61703598d08f40abe2b gcc/testsuite/gfortran.dg/gomp/pr59488-2.f90 624512980f4f3b39deb857cfdd5fdeba gcc/testsuite/gfortran.dg/gomp/pr62131.f90 + 008d934abb38a4acedd9f90092aa4b6d gcc/testsuite/gfortran.dg/gomp/pr69128.f90 + 1724cefc87db9a0a62b6387ee74cffc2 gcc/testsuite/gfortran.dg/gomp/pr71704.f90 + 7d3f1abdbdd106580173760b443a9b40 gcc/testsuite/gfortran.dg/gomp/pr71705.f90 + d07d71ded0663c9dc2e67b06e6231cfc gcc/testsuite/gfortran.dg/gomp/pr71758.f90 b4be3f9de7631846875a711ae9b67293 gcc/testsuite/gfortran.dg/gomp/proc_ptr_1.f90 87885556568e657ef4c936c53e1c7305 gcc/testsuite/gfortran.dg/gomp/proc_ptr_2.f90 59e444df8ec8f5ea9859b5aef4d75865 gcc/testsuite/gfortran.dg/gomp/reduction1.f90 *************** c8912bcfbf5d65ccfb0134b045dd2159 gcc/te *** 41648,41654 **** 90ad5493e143bd7edafa31ff3839d03f gcc/testsuite/gfortran.dg/include_4.f90 c45672a19e66d4e6b11b094d697caeec gcc/testsuite/gfortran.dg/include_4.inc 7ef72fd60d1889b7d25386cbed6a4422 gcc/testsuite/gfortran.dg/include_5.f90 ! 457cb61add7d80e3e7b1d58d4793cc2b gcc/testsuite/gfortran.dg/include_6.f90 57badb82ce45709d956ef2be6050cefa gcc/testsuite/gfortran.dg/include_7.f90 d0fdfb1260988468dbfc57fc49c04ccf gcc/testsuite/gfortran.dg/include_8.f90 c2e6604c8b6154e7ac2d4caaeb333e75 gcc/testsuite/gfortran.dg/index.f90 --- 41825,41831 ---- 90ad5493e143bd7edafa31ff3839d03f gcc/testsuite/gfortran.dg/include_4.f90 c45672a19e66d4e6b11b094d697caeec gcc/testsuite/gfortran.dg/include_4.inc 7ef72fd60d1889b7d25386cbed6a4422 gcc/testsuite/gfortran.dg/include_5.f90 ! e0cd6d7a390a7449aeefbe9e691a25a7 gcc/testsuite/gfortran.dg/include_6.f90 57badb82ce45709d956ef2be6050cefa gcc/testsuite/gfortran.dg/include_7.f90 d0fdfb1260988468dbfc57fc49c04ccf gcc/testsuite/gfortran.dg/include_8.f90 c2e6604c8b6154e7ac2d4caaeb333e75 gcc/testsuite/gfortran.dg/index.f90 *************** fc437ac99c80ded40e13df8066e49a91 gcc/te *** 41967,41972 **** --- 42144,42150 ---- e76e21ee6abb6a701aa6c131c97d9312 gcc/testsuite/gfortran.dg/list_read_11.f90 20aebdb97e7740e2d38992e6981de05a gcc/testsuite/gfortran.dg/list_read_12.f90 a9116f1431f2fcd98ac937aaf225727c gcc/testsuite/gfortran.dg/list_read_13.f + 744f994dd0f1ca1f417c58a92a09d12d gcc/testsuite/gfortran.dg/list_read_14.f90 67997f845ffceb239257b26970956c2d gcc/testsuite/gfortran.dg/list_read_2.f90 799ffeafd700d24bd3e365a8addcfa10 gcc/testsuite/gfortran.dg/list_read_3.f90 36e928b3a5b9a5d89ecebae1c130be22 gcc/testsuite/gfortran.dg/list_read_4.f90 *************** aae873d49ae8dd1936f5abcd8ae16aa6 gcc/te *** 42202,42208 **** ea3c8aeb506b4c30f03aaff80bc6ee7a gcc/testsuite/gfortran.dg/namelist_35.f90 373abe3a1f3a9c3faa08c086af049046 gcc/testsuite/gfortran.dg/namelist_36.f90 878fd51163150eeab6260b0a215fad18 gcc/testsuite/gfortran.dg/namelist_37.f90 ! 0576b814cdff3c043a8d16093eb34abe gcc/testsuite/gfortran.dg/namelist_38.f90 cfc48f3bcb583cc95cbfdcb401f89160 gcc/testsuite/gfortran.dg/namelist_39.f90 3edd2195cb059b134e2507cf9d3a1fd5 gcc/testsuite/gfortran.dg/namelist_4.f90 9a395f888730c26c7d7873543d7ae2b1 gcc/testsuite/gfortran.dg/namelist_40.f90 --- 42380,42386 ---- ea3c8aeb506b4c30f03aaff80bc6ee7a gcc/testsuite/gfortran.dg/namelist_35.f90 373abe3a1f3a9c3faa08c086af049046 gcc/testsuite/gfortran.dg/namelist_36.f90 878fd51163150eeab6260b0a215fad18 gcc/testsuite/gfortran.dg/namelist_37.f90 ! d25bab1a4535c5703bd1905a879459f0 gcc/testsuite/gfortran.dg/namelist_38.f90 cfc48f3bcb583cc95cbfdcb401f89160 gcc/testsuite/gfortran.dg/namelist_39.f90 3edd2195cb059b134e2507cf9d3a1fd5 gcc/testsuite/gfortran.dg/namelist_4.f90 9a395f888730c26c7d7873543d7ae2b1 gcc/testsuite/gfortran.dg/namelist_40.f90 *************** cf4a855736a5f39a3e98895e0a9876ce gcc/te *** 42251,42257 **** d52b7b2d2695adafc207fadebccd6d4a gcc/testsuite/gfortran.dg/namelist_82.f90 7fcd29e2cf1d6789f4849f6a4b70d2d8 gcc/testsuite/gfortran.dg/namelist_83.f90 22266f4109dcc292b6a3c9a8342fffc2 gcc/testsuite/gfortran.dg/namelist_83_2.f90 ! 86a52abea562bc581daf33565fca30ec gcc/testsuite/gfortran.dg/namelist_84.f90 e1d9529615ee393bcd26c894368a6218 gcc/testsuite/gfortran.dg/namelist_86.f90 b8f12d194aa9b2cfb5214297f897456c gcc/testsuite/gfortran.dg/namelist_assumed_char.f90 73de646ecd69b0bf965fecc1ccd64052 gcc/testsuite/gfortran.dg/namelist_blockdata.f --- 42429,42435 ---- d52b7b2d2695adafc207fadebccd6d4a gcc/testsuite/gfortran.dg/namelist_82.f90 7fcd29e2cf1d6789f4849f6a4b70d2d8 gcc/testsuite/gfortran.dg/namelist_83.f90 22266f4109dcc292b6a3c9a8342fffc2 gcc/testsuite/gfortran.dg/namelist_83_2.f90 ! f7a6d95010c982f683429c683e7cf5f0 gcc/testsuite/gfortran.dg/namelist_84.f90 e1d9529615ee393bcd26c894368a6218 gcc/testsuite/gfortran.dg/namelist_86.f90 b8f12d194aa9b2cfb5214297f897456c gcc/testsuite/gfortran.dg/namelist_assumed_char.f90 73de646ecd69b0bf965fecc1ccd64052 gcc/testsuite/gfortran.dg/namelist_blockdata.f *************** c8646ca00d10d23022de604a2af8bdf2 gcc/te *** 42659,42680 **** --- 42837,42865 ---- 9f0f693907d6b2758b64855de54f98f1 gcc/testsuite/gfortran.dg/pr54967.f90 5fa89c66192aaec916b4bbd962f73af9 gcc/testsuite/gfortran.dg/pr55330.f90 d04c732857d272204c2f3b489519a1e2 gcc/testsuite/gfortran.dg/pr56015.f90 + 8aa5b6642e370ed445067158f529c724 gcc/testsuite/gfortran.dg/pr56852.f90 26040f18cc9280975831612c9f67aedf gcc/testsuite/gfortran.dg/pr57393-1.f90 b1bcd10927ea1037a071d0a016eb0dad gcc/testsuite/gfortran.dg/pr57393-2.f90 424a3dd5ff48738905e189b439c7175c gcc/testsuite/gfortran.dg/pr57904.f90 b301ca161f74f84ba43d85658688c799 gcc/testsuite/gfortran.dg/pr57987.f90 1ca63f28ae284979c3b2b1c01dc88abf gcc/testsuite/gfortran.dg/pr58290.f90 d09d9e61d93384cc4510957f1243b371 gcc/testsuite/gfortran.dg/pr58484.f + ef168d64f89feac76b2e6a32df0ca37b gcc/testsuite/gfortran.dg/pr58754.f90 129350cb378300c375a01369309e31b6 gcc/testsuite/gfortran.dg/pr58968.f 54642dc29547df928c052d04531cae6f gcc/testsuite/gfortran.dg/pr59440-1.f90 29517347731146172a1733a27581daa9 gcc/testsuite/gfortran.dg/pr59440-2.f90 f5878abe544570f500d4148c17a74cc4 gcc/testsuite/gfortran.dg/pr59440-3.f90 4d2d4770d539b54391d7391e2ff84899 gcc/testsuite/gfortran.dg/pr59700.f90 896a650820f1e92f30e2b2e4435e6335 gcc/testsuite/gfortran.dg/pr59706.f90 + 649ea9d3e6b33e6ac70422c5becd7c00 gcc/testsuite/gfortran.dg/pr60126.f90 1e9cfb40b3307f2fd2466b7c533b2a10 gcc/testsuite/gfortran.dg/pr64528.f90 65d3c7db0cee9d876a3079342615ac8e gcc/testsuite/gfortran.dg/pr64530.f90 a7d0e45320243070a480eeee13682ca3 gcc/testsuite/gfortran.dg/pr65450.f90 c4a8a09fc45863c77a2a6b80d33772a9 gcc/testsuite/gfortran.dg/pr65504.f90 + 47db6e1bf5af94654f13e645fa846fb1 gcc/testsuite/gfortran.dg/pr66465.f90 + 0e424f05f2fdeb786b877ace2617112d gcc/testsuite/gfortran.dg/pr70931.f90 + dffe49f90e191f0e0d1a1c6f8d53f854 gcc/testsuite/gfortran.dg/pr71688.f90 + ea322d8eb84f224e47f5c54a96e8cd2d gcc/testsuite/gfortran.dg/pr71764.f90 6ff99f4b0021f30bee039a61db7cba9d gcc/testsuite/gfortran.dg/predcom-1.f 20a411a7e5a57891297c4c6a96d92009 gcc/testsuite/gfortran.dg/predcom-2.f 80cf60710448ac2378aecda5fc4a57b6 gcc/testsuite/gfortran.dg/present_1.f90 *************** b56e9f2b05e65e28487a8445ef02657c gcc/te *** 42773,42778 **** --- 42958,42964 ---- 4ac62e187f7206c11f44f881173e8a49 gcc/testsuite/gfortran.dg/proc_ptr_44.f90 3112dbb40c03404d9c8244c53b09b776 gcc/testsuite/gfortran.dg/proc_ptr_45.f90 fbfcfdd0751320bb90e2488052dfe7de gcc/testsuite/gfortran.dg/proc_ptr_46.f90 + 81e72e4ab4eb9b9c94a4c6b8c55d5ea5 gcc/testsuite/gfortran.dg/proc_ptr_47.f90 8315cc72db332168e57edf018a4b8f1f gcc/testsuite/gfortran.dg/proc_ptr_5.f90 2e1358865c3ec02c3c45568f5eebb128 gcc/testsuite/gfortran.dg/proc_ptr_6.f90 3648c097522ae5858550c7d7776afd28 gcc/testsuite/gfortran.dg/proc_ptr_7.c *************** f26d3170bfbbf45a0167b0681c5a9df7 gcc/te *** 42840,42845 **** --- 43026,43033 ---- 6cafac779e307ea3e5eea77636f44059 gcc/testsuite/gfortran.dg/procedure_lvalue.f90 78dc24056b651bdc45bcf776afb61df9 gcc/testsuite/gfortran.dg/product_init_expr.f03 8cfd22f83c53cada6279a70564dbbee0 gcc/testsuite/gfortran.dg/product_sum_bounds_1.f90 + 1df3bb37479b20de5e1cd736cdffade5 gcc/testsuite/gfortran.dg/prof/dynamic_dispatch_6.f03 + ca05bd2af4821be2cbdbe4b5cd6bc09d gcc/testsuite/gfortran.dg/prof/prof.exp ddf26540873573967a534a14385f92dd gcc/testsuite/gfortran.dg/program_name_1.f90 922e064b372c933f5b23e30c55a5fbb5 gcc/testsuite/gfortran.dg/promotion.f90 6b05d18cc7ebb5cc4606766dfc90ab46 gcc/testsuite/gfortran.dg/promotion_2.f90 *************** e4078fcf84bae622e034eda4e4a7bd1b gcc/te *** 43104,43109 **** --- 43292,43298 ---- 0fa3636ab8c629eaf962c9d4116c05fb gcc/testsuite/gfortran.dg/select_type_32.f90 65d1bc4754dda94ab063cc52f230bad4 gcc/testsuite/gfortran.dg/select_type_33.f03 8400e196604f257ef8d8e9269bae6945 gcc/testsuite/gfortran.dg/select_type_34.f90 + d0d3f92f35bb90787623ca24c03d4429 gcc/testsuite/gfortran.dg/select_type_35.f03 402dd7c959e0269e964ee68c701dfb67 gcc/testsuite/gfortran.dg/select_type_4.f90 3ab901522e5a6c2930daa42a08c5a4c3 gcc/testsuite/gfortran.dg/select_type_5.f03 08871f191c3a23bf7de4d00e2c1959a3 gcc/testsuite/gfortran.dg/select_type_6.f03 *************** a9c38f145300eee1aaca2ccee4d418fd gcc/te *** 43433,43438 **** --- 43622,43628 ---- 1623cb39a42976237e7817a8a94f1a4a gcc/testsuite/gfortran.dg/unary_operator.f90 0e692a977ecc4ab86f2eddee444794b4 gcc/testsuite/gfortran.dg/uncommon_block_data_1.f90 2fb717fe29fa528056cd388b7064ce96 gcc/testsuite/gfortran.dg/underflow.f90 + 39050472f0bc284f515f1898b0c79a2e gcc/testsuite/gfortran.dg/unexpected_eof.f 7b6179afe920e46575539bf900b34222 gcc/testsuite/gfortran.dg/unexpected_interface.f90 deb2555ff248a9775b72c008e6de9795 gcc/testsuite/gfortran.dg/unf_io_convert_1.f90 52c34a568acefcf68e800ca5c3b7f7e8 gcc/testsuite/gfortran.dg/unf_io_convert_2.f90 *************** ac02fe807657405592ac1433812cd323 gcc/te *** 46442,46449 **** 2a3718b166fb386fbab15d5f0164347d gcc/testsuite/lib/g++.exp 211268a8eff23d6d17196ed96dc365dc gcc/testsuite/lib/gcc-defs.exp 45908b7ca5aa9e1a84905df8a28ea6cc gcc/testsuite/lib/gcc-dg.exp ! 13934b295209a5582ecc008a05c7d958 gcc/testsuite/lib/gcc-gdb-test.exp ! c53c8d748da8d1e0caf35b3625960d8d gcc/testsuite/lib/gcc-simulate-thread.exp d70d529e20e745201f452db2017351ff gcc/testsuite/lib/gcc.exp c0ea04f9dd273d8cce166ca4959a26d0 gcc/testsuite/lib/gcov.exp d96e52a6f159358361e6b498466f7d5c gcc/testsuite/lib/gfortran-dg.exp --- 46632,46639 ---- 2a3718b166fb386fbab15d5f0164347d gcc/testsuite/lib/g++.exp 211268a8eff23d6d17196ed96dc365dc gcc/testsuite/lib/gcc-defs.exp 45908b7ca5aa9e1a84905df8a28ea6cc gcc/testsuite/lib/gcc-dg.exp ! 37a6f9c4658fdb1dc4828ddc5c6d3cdb gcc/testsuite/lib/gcc-gdb-test.exp ! c3054ca310e305d85df28057d00b5a56 gcc/testsuite/lib/gcc-simulate-thread.exp d70d529e20e745201f452db2017351ff gcc/testsuite/lib/gcc.exp c0ea04f9dd273d8cce166ca4959a26d0 gcc/testsuite/lib/gcov.exp d96e52a6f159358361e6b498466f7d5c gcc/testsuite/lib/gfortran-dg.exp *************** f3784967f82fd982a7b13a211872bdd7 gcc/te *** 46472,46478 **** bd515d57aa30aa3fb51f62e9fc698abc gcc/testsuite/lib/scantree.exp d44c50538cc6d39a3eb1aa063b392626 gcc/testsuite/lib/target-libpath.exp d6e6500432d65180387c39287b536b8a gcc/testsuite/lib/target-supports-dg.exp ! f6f04afe29beecf63ea9c10f98867450 gcc/testsuite/lib/target-supports.exp 11de8489fa53e77ff9be279e855090eb gcc/testsuite/lib/timeout-dg.exp 038a7798c766b7a7466b09f89b875129 gcc/testsuite/lib/timeout.exp 9aba7d93506cf79e6241eb0b27cdbce3 gcc/testsuite/lib/torture-options.exp --- 46662,46668 ---- bd515d57aa30aa3fb51f62e9fc698abc gcc/testsuite/lib/scantree.exp d44c50538cc6d39a3eb1aa063b392626 gcc/testsuite/lib/target-libpath.exp d6e6500432d65180387c39287b536b8a gcc/testsuite/lib/target-supports-dg.exp ! 373849501bd889d86da737738e8cc036 gcc/testsuite/lib/target-supports.exp 11de8489fa53e77ff9be279e855090eb gcc/testsuite/lib/timeout-dg.exp 038a7798c766b7a7466b09f89b875129 gcc/testsuite/lib/timeout.exp 9aba7d93506cf79e6241eb0b27cdbce3 gcc/testsuite/lib/torture-options.exp *************** f2dc49ff1ffe202416387a2b188d21fa gcc/te *** 47208,47214 **** 8f22f33dddabee33212506ee7b2ef346 gcc/testsuite/objc.dg/special/unclaimed-category-1.h 2e84c4ad1f0b28dba08fbd95a108dc46 gcc/testsuite/objc.dg/special/unclaimed-category-1.m fd73b19f16303df474ad98a05e01cd6a gcc/testsuite/objc.dg/special/unclaimed-category-1a.m ! 0becb29c9657519c6e8d7a5e00f0cab8 gcc/testsuite/objc.dg/stabs-1.m 44c850eb724ab694c1eea579910821bd gcc/testsuite/objc.dg/static-1.m 911d824641cc5460f0bb8428edcd155b gcc/testsuite/objc.dg/stret-1.m 581f8e860f7f1e705a6b0235823fa173 gcc/testsuite/objc.dg/stret-2.m --- 47398,47404 ---- 8f22f33dddabee33212506ee7b2ef346 gcc/testsuite/objc.dg/special/unclaimed-category-1.h 2e84c4ad1f0b28dba08fbd95a108dc46 gcc/testsuite/objc.dg/special/unclaimed-category-1.m fd73b19f16303df474ad98a05e01cd6a gcc/testsuite/objc.dg/special/unclaimed-category-1a.m ! e435b5f971ceb7adfd4ad4a826e98257 gcc/testsuite/objc.dg/stabs-1.m 44c850eb724ab694c1eea579910821bd gcc/testsuite/objc.dg/static-1.m 911d824641cc5460f0bb8428edcd155b gcc/testsuite/objc.dg/stret-1.m 581f8e860f7f1e705a6b0235823fa173 gcc/testsuite/objc.dg/stret-2.m *************** ee85cbe5b0057b4e37956b8e5d2094dc gcc/tr *** 47415,47429 **** cb52244d5fd749d208965ca1dfa6563f gcc/tree-browser.c 2481586c13cd9d0fceb186760fedaf99 gcc/tree-browser.def 424bc454d078ea9bc27a2928fa548f8f gcc/tree-call-cdce.c ! 97666849a84bee04a2ff919c745b04a4 gcc/tree-cfg.c 08217529d505ece3967ab111d765f442 gcc/tree-cfg.h b9ecd7d08d8ec6adc5bf01a7f46d51df gcc/tree-cfgcleanup.c 6aaf9d5694c4645a3436a0c90090a5c2 gcc/tree-cfgcleanup.h ! 503ee4098f6eb3e1f6232141559346bc gcc/tree-chrec.c 7bc54df23602d375b2db5b7c4c4d5c6a gcc/tree-chrec.h 30a64a3df6bc881833526501f66db580 gcc/tree-complex.c 914d12bc4c885a84e08969baf18e0d85 gcc/tree-core.h ! e4267bbd39cc4fdefb2518f1c0fde476 gcc/tree-data-ref.c eb5d27926043e6b574073a68ae7a6bbd gcc/tree-data-ref.h e76e8e1efc24553629d2002ee50fe15d gcc/tree-dfa.c 188948b90ecddaf70eef9d404c377bba gcc/tree-dfa.h --- 47605,47619 ---- cb52244d5fd749d208965ca1dfa6563f gcc/tree-browser.c 2481586c13cd9d0fceb186760fedaf99 gcc/tree-browser.def 424bc454d078ea9bc27a2928fa548f8f gcc/tree-call-cdce.c ! 34e36e9d85441534d43c28fc12445e00 gcc/tree-cfg.c 08217529d505ece3967ab111d765f442 gcc/tree-cfg.h b9ecd7d08d8ec6adc5bf01a7f46d51df gcc/tree-cfgcleanup.c 6aaf9d5694c4645a3436a0c90090a5c2 gcc/tree-cfgcleanup.h ! a05febabe487a4aff1519159a3e94dbf gcc/tree-chrec.c 7bc54df23602d375b2db5b7c4c4d5c6a gcc/tree-chrec.h 30a64a3df6bc881833526501f66db580 gcc/tree-complex.c 914d12bc4c885a84e08969baf18e0d85 gcc/tree-core.h ! 837d07c78a37b7c0f3cd18ddd1db8707 gcc/tree-data-ref.c eb5d27926043e6b574073a68ae7a6bbd gcc/tree-data-ref.h e76e8e1efc24553629d2002ee50fe15d gcc/tree-dfa.c 188948b90ecddaf70eef9d404c377bba gcc/tree-dfa.h *************** c1de5be4d7c816691e462f98ebbfb35e gcc/tr *** 47435,47449 **** 6d1d59b7abd2c2ff7cdacc9035b667d5 gcc/tree-eh.h 18f1ee32b871b8e6a91c092dc86652b2 gcc/tree-emutls.c 392b556d7ee2d1f57ef2b4cc6b7566ce gcc/tree-hasher.h ! 09eb6bde07e86a671ea0c0af5a54dcd2 gcc/tree-if-conv.c ! 54c9584f7b2133d8f97ee05f49ce5957 gcc/tree-inline.c 38c9fe3122537a015ee2e63c38dcdb4d gcc/tree-inline.h 9e237b35b42a8d96e2582a9a4b2e17cf gcc/tree-into-ssa.c 391b426d3a83206f44b13a9784fdc4f4 gcc/tree-into-ssa.h a50e871a6391b650cd6682d5c01811e2 gcc/tree-iterator.c f930e7c2f6a3ed536883d847d3b2ccbb gcc/tree-iterator.h 9fd1fe7caf72e8ccedd9855b88eabd9d gcc/tree-loop-distribution.c ! f233be2ac4a0dd55322b4744dbfc6c86 gcc/tree-nested.c fd0be797829a72cc8aa7075c4f014071 gcc/tree-nested.h 6293b6ff59ceed12e9b5f75a5812487f gcc/tree-nrv.c 20b5b1a12f858b7354b153c8ffc9772f gcc/tree-object-size.c --- 47625,47639 ---- 6d1d59b7abd2c2ff7cdacc9035b667d5 gcc/tree-eh.h 18f1ee32b871b8e6a91c092dc86652b2 gcc/tree-emutls.c 392b556d7ee2d1f57ef2b4cc6b7566ce gcc/tree-hasher.h ! c397b6aa541411d1e41e76c82ca4b09f gcc/tree-if-conv.c ! 0d315078a98ef534879c6ba79aab0aba gcc/tree-inline.c 38c9fe3122537a015ee2e63c38dcdb4d gcc/tree-inline.h 9e237b35b42a8d96e2582a9a4b2e17cf gcc/tree-into-ssa.c 391b426d3a83206f44b13a9784fdc4f4 gcc/tree-into-ssa.h a50e871a6391b650cd6682d5c01811e2 gcc/tree-iterator.c f930e7c2f6a3ed536883d847d3b2ccbb gcc/tree-iterator.h 9fd1fe7caf72e8ccedd9855b88eabd9d gcc/tree-loop-distribution.c ! 521897ed8f2d9fd99becacb3ae90bcdc gcc/tree-nested.c fd0be797829a72cc8aa7075c4f014071 gcc/tree-nested.h 6293b6ff59ceed12e9b5f75a5812487f gcc/tree-nrv.c 20b5b1a12f858b7354b153c8ffc9772f gcc/tree-object-size.c *************** e0e4d86e4621901f023b68589848cb34 gcc/tr *** 47459,47467 **** fcf562b10629ef610b52399780252ceb gcc/tree-pretty-print.c 455851cb801e9923d5e78bda86574697 gcc/tree-pretty-print.h 99eb64b4f611fa70c0be1172d2490e61 gcc/tree-profile.c ! f05617fb6ae3aebf72fe8b08dc2c43cd gcc/tree-scalar-evolution.c 47e228986a58113729e5d40e6ac11693 gcc/tree-scalar-evolution.h ! b491c9a99d96a6a9cec0921758214e4d gcc/tree-sra.c 42d4f284771214b78fdc24ed8b8b2aab gcc/tree-ssa-address.c 1b77258ce233f1010fc549f8bc5dc234 gcc/tree-ssa-address.h 3583fb23bee7cd856dd838440b26a19d gcc/tree-ssa-alias.c --- 47649,47657 ---- fcf562b10629ef610b52399780252ceb gcc/tree-pretty-print.c 455851cb801e9923d5e78bda86574697 gcc/tree-pretty-print.h 99eb64b4f611fa70c0be1172d2490e61 gcc/tree-profile.c ! bb3c917535f57f66b3d726f35c44218e gcc/tree-scalar-evolution.c 47e228986a58113729e5d40e6ac11693 gcc/tree-scalar-evolution.h ! 85868036bc2982e9ad8fda12004a5ad1 gcc/tree-sra.c 42d4f284771214b78fdc24ed8b8b2aab gcc/tree-ssa-address.c 1b77258ce233f1010fc549f8bc5dc234 gcc/tree-ssa-address.h 3583fb23bee7cd856dd838440b26a19d gcc/tree-ssa-alias.c *************** b491c9a99d96a6a9cec0921758214e4d gcc/tr *** 47472,47478 **** d4f32c3079fc58b9529e5fd8cd418b5a gcc/tree-ssa-copy.c 29e8cd2457190cfc5ce27f163e27358f gcc/tree-ssa-copyrename.c ade4acc3cdcdc401a8c6b9b07c09a3f2 gcc/tree-ssa-dce.c ! 1ad2f1fc6dae16fadfd7d7dd7e03c56f gcc/tree-ssa-dom.c ab41801eb8e661b97721f2fdfe0af9a4 gcc/tree-ssa-dom.h 287491fa0cac5371bf21b51fa2f9883e gcc/tree-ssa-dse.c abd9a60e94c89049838a93b05283df0f gcc/tree-ssa-forwprop.c --- 47662,47668 ---- d4f32c3079fc58b9529e5fd8cd418b5a gcc/tree-ssa-copy.c 29e8cd2457190cfc5ce27f163e27358f gcc/tree-ssa-copyrename.c ade4acc3cdcdc401a8c6b9b07c09a3f2 gcc/tree-ssa-dce.c ! 1c4f935ea39ea2db7a67959b8ff7dbc4 gcc/tree-ssa-dom.c ab41801eb8e661b97721f2fdfe0af9a4 gcc/tree-ssa-dom.h 287491fa0cac5371bf21b51fa2f9883e gcc/tree-ssa-dse.c abd9a60e94c89049838a93b05283df0f gcc/tree-ssa-forwprop.c *************** abd9a60e94c89049838a93b05283df0f gcc/tr *** 47481,47487 **** 73c40cd97a78b00562f807d65b537704 gcc/tree-ssa-live.h 44623445e0a3c3ef90cbdeca15dc7898 gcc/tree-ssa-loop-ch.c d70235f13b67d1cd315cad0b61a93821 gcc/tree-ssa-loop-im.c ! de0b463530ea41456521090168225afe gcc/tree-ssa-loop-ivcanon.c 0fea284a03b6a17eb90086703ff10b17 gcc/tree-ssa-loop-ivopts.c 02338563356306fac3c2016a7cbb7e18 gcc/tree-ssa-loop-ivopts.h 7a1af19dda994270783b4d029f9ee992 gcc/tree-ssa-loop-manip.c --- 47671,47677 ---- 73c40cd97a78b00562f807d65b537704 gcc/tree-ssa-live.h 44623445e0a3c3ef90cbdeca15dc7898 gcc/tree-ssa-loop-ch.c d70235f13b67d1cd315cad0b61a93821 gcc/tree-ssa-loop-im.c ! 75c6ac25bb254642770f2b4b21bd1918 gcc/tree-ssa-loop-ivcanon.c 0fea284a03b6a17eb90086703ff10b17 gcc/tree-ssa-loop-ivopts.c 02338563356306fac3c2016a7cbb7e18 gcc/tree-ssa-loop-ivopts.h 7a1af19dda994270783b4d029f9ee992 gcc/tree-ssa-loop-manip.c *************** b39e6c8ee07b0d98f60d381276d6b47d gcc/tr *** 47490,47498 **** 1004f0286f699db064792c1ec1972259 gcc/tree-ssa-loop-niter.h a528b0b164e374835b757aa586261d7a gcc/tree-ssa-loop-prefetch.c 437c9aea9639196d89592ec3141fffda gcc/tree-ssa-loop-unswitch.c ! 9ee9e10357d8d79a29baa53d34f769bd gcc/tree-ssa-loop.c 10c5655c0beaa92cd03aebe537042e27 gcc/tree-ssa-loop.h ! 95b5d1b6cce08916845ef6c1046d7c76 gcc/tree-ssa-math-opts.c 21396c834192a86607aed9e904276505 gcc/tree-ssa-operands.c 18da3215ee1eb3bc5e01eba7c52e4760 gcc/tree-ssa-operands.h 863288b76e2e726b542bbbf75b4993a0 gcc/tree-ssa-phiopt.c --- 47680,47688 ---- 1004f0286f699db064792c1ec1972259 gcc/tree-ssa-loop-niter.h a528b0b164e374835b757aa586261d7a gcc/tree-ssa-loop-prefetch.c 437c9aea9639196d89592ec3141fffda gcc/tree-ssa-loop-unswitch.c ! 4a7e400f9aaea63cd0e34053d69f44a6 gcc/tree-ssa-loop.c 10c5655c0beaa92cd03aebe537042e27 gcc/tree-ssa-loop.h ! 265c1d6d2c6f4f82d2233fe00b27ae05 gcc/tree-ssa-math-opts.c 21396c834192a86607aed9e904276505 gcc/tree-ssa-operands.c 18da3215ee1eb3bc5e01eba7c52e4760 gcc/tree-ssa-operands.h 863288b76e2e726b542bbbf75b4993a0 gcc/tree-ssa-phiopt.c *************** a528b0b164e374835b757aa586261d7a gcc/tr *** 47500,47521 **** f3b38ebf82330446d5ba11dc1c4f9999 gcc/tree-ssa-pre.c 9083eec79d74033bf086e4bb48337a5e gcc/tree-ssa-propagate.c 7815765bde42cd1f14f758d5728ff1b8 gcc/tree-ssa-propagate.h ! 46794b100a9b445154c41d474bd376c4 gcc/tree-ssa-reassoc.c 3b4617ab5995aa30b2f8310cc7840329 gcc/tree-ssa-sccvn.c 2b653bc55e7496a67ed55e853541ad46 gcc/tree-ssa-sccvn.h 7e7a1a092345df08ee409928b3982dfe gcc/tree-ssa-sink.c ! 02ab43c00c72b08d9c81e704cf316a75 gcc/tree-ssa-strlen.c 33a13266aadbcb7114132539a3b14dd7 gcc/tree-ssa-structalias.c ! 12047b7b1c827ba46651150cc5297a70 gcc/tree-ssa-tail-merge.c 062609c7341f33356980b58413052721 gcc/tree-ssa-ter.c b58c1f79a5493a196cfa2fe3743f0f1b gcc/tree-ssa-ter.h ! 6b6af3f5b123f1e218c8a404feab5135 gcc/tree-ssa-threadedge.c 516be19b8699fd0711b27443d9c35780 gcc/tree-ssa-threadedge.h 5da1def2ada611ef35889f5f82435404 gcc/tree-ssa-threadupdate.c 51f65d2aae4b00e4f980342a6f3e8f0d gcc/tree-ssa-threadupdate.h 1e5ef8370d2bdc831cc92cf4182a05dd gcc/tree-ssa-uncprop.c e5e0549137d34d0b1143c2fbc8534d7b gcc/tree-ssa-uninit.c ! de4b8ce6372f3483b49b64b81b3d8eb7 gcc/tree-ssa.c a79b6c80ddc8a564c5cd261cb9b3fdd1 gcc/tree-ssa.h 88720d0512c1a5d00ada9c0a3cb711ca gcc/tree-ssanames.c 9e6380ab01320ac60e6629089f9436e1 gcc/tree-ssanames.h --- 47690,47711 ---- f3b38ebf82330446d5ba11dc1c4f9999 gcc/tree-ssa-pre.c 9083eec79d74033bf086e4bb48337a5e gcc/tree-ssa-propagate.c 7815765bde42cd1f14f758d5728ff1b8 gcc/tree-ssa-propagate.h ! 6bb94593fa38c8f951da0f0f66905841 gcc/tree-ssa-reassoc.c 3b4617ab5995aa30b2f8310cc7840329 gcc/tree-ssa-sccvn.c 2b653bc55e7496a67ed55e853541ad46 gcc/tree-ssa-sccvn.h 7e7a1a092345df08ee409928b3982dfe gcc/tree-ssa-sink.c ! 1b5b48ba63e38a9e6171e124160303e6 gcc/tree-ssa-strlen.c 33a13266aadbcb7114132539a3b14dd7 gcc/tree-ssa-structalias.c ! 033b5a220c92fe276acf9418c50dcf5b gcc/tree-ssa-tail-merge.c 062609c7341f33356980b58413052721 gcc/tree-ssa-ter.c b58c1f79a5493a196cfa2fe3743f0f1b gcc/tree-ssa-ter.h ! a662c51fe4972079bb92e59bd59f332d gcc/tree-ssa-threadedge.c 516be19b8699fd0711b27443d9c35780 gcc/tree-ssa-threadedge.h 5da1def2ada611ef35889f5f82435404 gcc/tree-ssa-threadupdate.c 51f65d2aae4b00e4f980342a6f3e8f0d gcc/tree-ssa-threadupdate.h 1e5ef8370d2bdc831cc92cf4182a05dd gcc/tree-ssa-uncprop.c e5e0549137d34d0b1143c2fbc8534d7b gcc/tree-ssa-uninit.c ! 4648178507336b3591a5cd6223f872ff gcc/tree-ssa.c a79b6c80ddc8a564c5cd261cb9b3fdd1 gcc/tree-ssa.h 88720d0512c1a5d00ada9c0a3cb711ca gcc/tree-ssanames.c 9e6380ab01320ac60e6629089f9436e1 gcc/tree-ssanames.h *************** df287b486f934620deb088f2ee0ce7d6 gcc/tr *** 47527,47543 **** 66df870f3a2e434206f12dfca5530651 gcc/tree-streamer.h 59772b6a0b414642ac5a2a048d0f3f3d gcc/tree-switch-conversion.c ba49073bb43840db9e9ff429362ab8b2 gcc/tree-tailcall.c ! ca7b7dc0fcf5e386f8b7671846b37ba9 gcc/tree-vect-data-refs.c 7d4c87d52e7531a3a5bd05026f4a7a06 gcc/tree-vect-generic.c c4830553b5647a24557575bac1731b99 gcc/tree-vect-loop-manip.c ! dc00029fdbd4375e760661c8c8238fa2 gcc/tree-vect-loop.c 20abc700ab1045ac316418ded7857b1d gcc/tree-vect-patterns.c 8ded0682a656c134baf642a969ce4b3e gcc/tree-vect-slp.c 0a7d965b00997a744d32796ce9a6556e gcc/tree-vect-stmts.c 4a58096af76df477534bbb3ab779b591 gcc/tree-vectorizer.c c49b918d92a8b060f354f9b3a058b0d4 gcc/tree-vectorizer.h ! aca3d10d9400ae64953e91b4bd6ce331 gcc/tree-vrp.c ! 12a4cdca68a2355bc1ffa074d6060754 gcc/tree.c 3b971f9d72f052ea9a5fb6c32f6f9e34 gcc/tree.def 9f533ff7502e6b3c8ea114b31a7e9309 gcc/tree.h c1549110ae4675e04b97bd68b4d59a32 gcc/treestruct.def --- 47717,47733 ---- 66df870f3a2e434206f12dfca5530651 gcc/tree-streamer.h 59772b6a0b414642ac5a2a048d0f3f3d gcc/tree-switch-conversion.c ba49073bb43840db9e9ff429362ab8b2 gcc/tree-tailcall.c ! bcd63cdde8a026a2d12c5111d728f3a8 gcc/tree-vect-data-refs.c 7d4c87d52e7531a3a5bd05026f4a7a06 gcc/tree-vect-generic.c c4830553b5647a24557575bac1731b99 gcc/tree-vect-loop-manip.c ! bba0383d0bf9f29827dbc7af4637bc13 gcc/tree-vect-loop.c 20abc700ab1045ac316418ded7857b1d gcc/tree-vect-patterns.c 8ded0682a656c134baf642a969ce4b3e gcc/tree-vect-slp.c 0a7d965b00997a744d32796ce9a6556e gcc/tree-vect-stmts.c 4a58096af76df477534bbb3ab779b591 gcc/tree-vectorizer.c c49b918d92a8b060f354f9b3a058b0d4 gcc/tree-vectorizer.h ! 22d9715f6a022ebe1a6954d4c2711a5f gcc/tree-vrp.c ! 8a3bd68aa3009a03de4cab47c3bd7c78 gcc/tree.c 3b971f9d72f052ea9a5fb6c32f6f9e34 gcc/tree.def 9f533ff7502e6b3c8ea114b31a7e9309 gcc/tree.h c1549110ae4675e04b97bd68b4d59a32 gcc/treestruct.def *************** d4d99a03ca87159b5b87811c4d6a4c0d gcc/vt *** 47567,47582 **** 4dcd1437e2deaaef2853f093217fc063 gcc/xcoff.h 28db814d54aae5436666bc9547b4cf0c gcc/xcoffout.c 95e7984ae2ae01abd915f524df765a2b gcc/xcoffout.h ! 2c2ec5435551a1ebae29c8a8c4694127 gnattools/ChangeLog 692322cbac4dbf19144764e4486b9f54 gnattools/Makefile.in 41b96b7921d11e52b1d8465ea57136ad gnattools/configure a73c18d8f44ab8bc3e71c3d530fa603e gnattools/configure.ac 59530bdf33659b29e73d4adb9f9f6552 include/COPYING d32239bcb673463ab874e80d47fae504 include/COPYING3 ! de2b8eac3dcd2e8340e96da1281d6593 include/ChangeLog 4263432a72ff47ed8bf420208ee7eea5 include/ChangeLog-9103 20f67b536f003da196c4e0e36c829fcf include/ansidecl.h ! 8c1a1603cbd7447bde95d9ae8723f232 include/demangle.h 476370ccdf72d8d25a784987e839c970 include/dwarf2.def 398fdcbb0c95dc90e2898e20960804f9 include/dwarf2.h 7e968442c6c0231dfe2def312758e765 include/dyn-string.h --- 47757,47772 ---- 4dcd1437e2deaaef2853f093217fc063 gcc/xcoff.h 28db814d54aae5436666bc9547b4cf0c gcc/xcoffout.c 95e7984ae2ae01abd915f524df765a2b gcc/xcoffout.h ! 64a4260b1af71f3c910c9fca87cc0faa gnattools/ChangeLog 692322cbac4dbf19144764e4486b9f54 gnattools/Makefile.in 41b96b7921d11e52b1d8465ea57136ad gnattools/configure a73c18d8f44ab8bc3e71c3d530fa603e gnattools/configure.ac 59530bdf33659b29e73d4adb9f9f6552 include/COPYING d32239bcb673463ab874e80d47fae504 include/COPYING3 ! d78df20b0bc952787c8868dccb8b0f69 include/ChangeLog 4263432a72ff47ed8bf420208ee7eea5 include/ChangeLog-9103 20f67b536f003da196c4e0e36c829fcf include/ansidecl.h ! 680205a064b4341d2593342937247af5 include/demangle.h 476370ccdf72d8d25a784987e839c970 include/dwarf2.def 398fdcbb0c95dc90e2898e20960804f9 include/dwarf2.h 7e968442c6c0231dfe2def312758e765 include/dyn-string.h *************** e34d525d7faceda0dd5cb3eae49c1548 includ *** 47608,47614 **** 0294cecbb1f66d640ccba3a5d862d05b include/xregex2.h f648a66ed08e079e26a24c4346a3ba03 include/xtensa-config.h 0afce91a3daa1fdc32ee36370c1129dd install-sh ! 2045e6cf782433936826b9947deac0cd intl/ChangeLog cad1d6fab2274517783de7433c0faa74 intl/Makefile.in 6ec998bb4716c744bf8185e607f69301 intl/README 76ca170a525d5b84d90f0478fe788931 intl/VERSION --- 47798,47804 ---- 0294cecbb1f66d640ccba3a5d862d05b include/xregex2.h f648a66ed08e079e26a24c4346a3ba03 include/xtensa-config.h 0afce91a3daa1fdc32ee36370c1129dd install-sh ! e94f18541e53b77aa5fe05603dc25938 intl/ChangeLog cad1d6fab2274517783de7433c0faa74 intl/Makefile.in 6ec998bb4716c744bf8185e607f69301 intl/README 76ca170a525d5b84d90f0478fe788931 intl/VERSION *************** d50a8c6c5b41089930accbdce767d3c0 intl/p *** 47650,47663 **** b4758a0194e3e41362b939911472ce62 intl/relocatable.c bedade7bcfc3bc5eb09a2c6844f637f3 intl/relocatable.h 43f287d082528203fc85c1d2d81bf30d intl/textdomain.c ! 045805fa223ac22140b51360cece8461 libada/ChangeLog f7965fde5040718ea5d6a2cc4ecb9e63 libada/Makefile.in 8efb9115b70b2aa70c7db10862f7b2f5 libada/configure 6433b3fb1e942dd2597541b21eb8be0f libada/configure.ac 46d3fe6da7a771cc2d5420c4137a6861 libatomic/.gitignore ! ccfa710ca48104081b2608d8494d344e libatomic/ChangeLog ! bf2b737497af89020096e79749ced1a6 libatomic/Makefile.am ! 46bea738c735828c2e94c7f71122785e libatomic/Makefile.in f7853b06953072a9987a45a5b00782d6 libatomic/acinclude.m4 20bec9c79c213c128f8ad84891bdb792 libatomic/aclocal.m4 e143acd5b2c5b05cc850e294c26cb1c6 libatomic/auto-config.h.in --- 47840,47853 ---- b4758a0194e3e41362b939911472ce62 intl/relocatable.c bedade7bcfc3bc5eb09a2c6844f637f3 intl/relocatable.h 43f287d082528203fc85c1d2d81bf30d intl/textdomain.c ! 0c8d223c0bb26bb71e35be826fd88aee libada/ChangeLog f7965fde5040718ea5d6a2cc4ecb9e63 libada/Makefile.in 8efb9115b70b2aa70c7db10862f7b2f5 libada/configure 6433b3fb1e942dd2597541b21eb8be0f libada/configure.ac 46d3fe6da7a771cc2d5420c4137a6861 libatomic/.gitignore ! d5529b894f3427b36028ee8a383533d0 libatomic/ChangeLog ! 1bd05be76236841514ae7e4a675ac933 libatomic/Makefile.am ! a4fddcc373c22721c4b38357510a9483 libatomic/Makefile.in f7853b06953072a9987a45a5b00782d6 libatomic/acinclude.m4 20bec9c79c213c128f8ad84891bdb792 libatomic/aclocal.m4 e143acd5b2c5b05cc850e294c26cb1c6 libatomic/auto-config.h.in *************** a7ec7afdc5be1fdb29558f4fef780643 libato *** 47673,47684 **** 4b493cefc4c2d93cbc49954e399bda54 libatomic/config/posix/host-config.h 66e80574b1956ad973f62cccf61b13ec libatomic/config/posix/lock.c d04f86e742ddfedb71fb4a3d0ceede39 libatomic/config/powerpc/host-config.h e1400e1eb13ccd1b19d700c005cfa9f4 libatomic/config/x86/fenv.c 92111ddb3504fb5cb3bcd1be88f19a92 libatomic/config/x86/host-config.h 6ad1d9312e3d613aaf9b90213bd433d9 libatomic/config/x86/init.c 65a14d080bf8449e04bd4ef621b490b7 libatomic/configure f1939bc4a9f1055a06795e6d88547a48 libatomic/configure.ac ! 9035153c7b004aab1a207e1ea190d3c4 libatomic/configure.tgt 8e145247729a07a2c0672b2d2e88985a libatomic/exch_n.c c365d9348ea1b95735c874b4f066de01 libatomic/fadd_n.c ee6f02fad9bd551a906477f16740578f libatomic/fand_n.c --- 47863,47876 ---- 4b493cefc4c2d93cbc49954e399bda54 libatomic/config/posix/host-config.h 66e80574b1956ad973f62cccf61b13ec libatomic/config/posix/lock.c d04f86e742ddfedb71fb4a3d0ceede39 libatomic/config/powerpc/host-config.h + 9bf3d2dd5ae558a4d9ab5b393b86c96b libatomic/config/rtems/host-config.h + 472ff64130ea77e3d5e080beacca1fa8 libatomic/config/rtems/lock.c e1400e1eb13ccd1b19d700c005cfa9f4 libatomic/config/x86/fenv.c 92111ddb3504fb5cb3bcd1be88f19a92 libatomic/config/x86/host-config.h 6ad1d9312e3d613aaf9b90213bd433d9 libatomic/config/x86/init.c 65a14d080bf8449e04bd4ef621b490b7 libatomic/configure f1939bc4a9f1055a06795e6d88547a48 libatomic/configure.ac ! d4e6c168cc1c2d4cafe54c7f09f4699a libatomic/configure.tgt 8e145247729a07a2c0672b2d2e88985a libatomic/exch_n.c c365d9348ea1b95735c874b4f066de01 libatomic/fadd_n.c ee6f02fad9bd551a906477f16740578f libatomic/fand_n.c *************** c03a072efac9b30f8f8429ac52fd246b libato *** 47733,47739 **** 8a7308fda7ed1543cb9e3be0f8e47bce libatomic/testsuite/libatomic.c/atomic-store-5.c cce610fe1b2413dc6f097cb40816e9e8 libatomic/testsuite/libatomic.c/c.exp 97b0c9cdfcb733664bdf4efe0f5dc449 libatomic/testsuite/libatomic.c/generic-2.c ! 6d40101e31a9e622805f03c1cfa6d11e libbacktrace/ChangeLog 6af6c9838d1737a87529f290a49f863a libbacktrace/Makefile.am 10502b510e3bb652e63f65eab6326c9d libbacktrace/Makefile.in 1987c0495aeee1bc47709f399772173b libbacktrace/README --- 47925,47931 ---- 8a7308fda7ed1543cb9e3be0f8e47bce libatomic/testsuite/libatomic.c/atomic-store-5.c cce610fe1b2413dc6f097cb40816e9e8 libatomic/testsuite/libatomic.c/c.exp 97b0c9cdfcb733664bdf4efe0f5dc449 libatomic/testsuite/libatomic.c/generic-2.c ! e964e0339831a9573fcb76a7a1ea8dd6 libbacktrace/ChangeLog 6af6c9838d1737a87529f290a49f863a libbacktrace/Makefile.am 10502b510e3bb652e63f65eab6326c9d libbacktrace/Makefile.in 1987c0495aeee1bc47709f399772173b libbacktrace/README *************** f53675fc1fc8e10c218232d57a17b688 libbac *** 47748,47754 **** 95aae39d0e549d5d6b2ab231482fa78d libbacktrace/configure 95e0c6b319215aa60660c01011716925 libbacktrace/configure.ac aa0d3848ac3020cb6562c1c923da293c libbacktrace/dwarf.c ! 0a349d79779f2a59d3c3bec26079108f libbacktrace/elf.c 5badd67d5362a883d02092d992e2c605 libbacktrace/fileline.c 4c73c8c2d1aba3b0c421e8b8e163b7ed libbacktrace/filetype.awk 16977003b6cf9fba62ceb490ea19f074 libbacktrace/internal.h --- 47940,47946 ---- 95aae39d0e549d5d6b2ab231482fa78d libbacktrace/configure 95e0c6b319215aa60660c01011716925 libbacktrace/configure.ac aa0d3848ac3020cb6562c1c923da293c libbacktrace/dwarf.c ! dbd07c25658d0cba7c1e5b815604f088 libbacktrace/elf.c 5badd67d5362a883d02092d992e2c605 libbacktrace/fileline.c 4c73c8c2d1aba3b0c421e8b8e163b7ed libbacktrace/filetype.awk 16977003b6cf9fba62ceb490ea19f074 libbacktrace/internal.h *************** d15ef1908e6651517fa16aca5927444f libbac *** 47763,47769 **** 1c31e53190ed9e49127ac9a1b8c9dec9 libbacktrace/state.c 7150f898c2b02b634d0f176a1d322385 libbacktrace/stest.c 41b3b24b264c530417d7b6970d7af429 libbacktrace/unknown.c ! e47a70120fff1139b8e8655c419aded3 libcilkrts/ChangeLog 44e8fbbf5f5fdcf45b8dc268c303f4cc libcilkrts/Makefile.am 9e82ac68701a059f6122da2b42d5be43 libcilkrts/Makefile.in 4a307b1474cad63768b2ae0c183b6259 libcilkrts/README --- 47955,47961 ---- 1c31e53190ed9e49127ac9a1b8c9dec9 libbacktrace/state.c 7150f898c2b02b634d0f176a1d322385 libbacktrace/stest.c 41b3b24b264c530417d7b6970d7af429 libbacktrace/unknown.c ! e3dec6ef061852fe7a25689824ede2b1 libcilkrts/ChangeLog 44e8fbbf5f5fdcf45b8dc268c303f4cc libcilkrts/Makefile.am 9e82ac68701a059f6122da2b42d5be43 libcilkrts/Makefile.in 4a307b1474cad63768b2ae0c183b6259 libcilkrts/README *************** d4a2c447aba3e1afe4e9522d132a2e62 libcil *** 47871,47877 **** 94c538f9a3100a27649a9dc4d63d1677 libcilkrts/runtime/sysdep.h ffd8820979e88b4845e4b6ae604d2fdf libcilkrts/runtime/worker_mutex.c 9af2df6acad19a2001c2b1f68f5f59be libcilkrts/runtime/worker_mutex.h ! 1a6a17594465b5966261f883a1880f25 libcpp/ChangeLog 07c1fdaef120cbf7edafa33ab3e0a20f libcpp/Makefile.in 7307c791a8de641ef6dada9a179ece57 libcpp/aclocal.m4 d19e8274ac720426c1d890feaa695d2b libcpp/charset.c --- 48063,48069 ---- 94c538f9a3100a27649a9dc4d63d1677 libcilkrts/runtime/sysdep.h ffd8820979e88b4845e4b6ae604d2fdf libcilkrts/runtime/worker_mutex.c 9af2df6acad19a2001c2b1f68f5f59be libcilkrts/runtime/worker_mutex.h ! 0d9836966ca423f37139536ec27d0ddc libcpp/ChangeLog 07c1fdaef120cbf7edafa33ab3e0a20f libcpp/Makefile.in 7307c791a8de641ef6dada9a179ece57 libcpp/aclocal.m4 d19e8274ac720426c1d890feaa695d2b libcpp/charset.c *************** c8155cda9a3a69c1dbb4a9a9083886c9 libcpp *** 47880,47903 **** 41d2c7a6c31780e67e9bd180308bd796 libcpp/configure.ac 43f530cca7446a76c37e3a4ba7d33d77 libcpp/directives-only.c 85aef2127a890fb03400ed8fc51d0199 libcpp/directives.c ! 0af0d1dfd337a5b8fd455a33103e7693 libcpp/errors.c ed169e60f52acb15268ded9247c43a03 libcpp/expr.c ! 37534105c854e741f39c6e5d7a9f0c41 libcpp/files.c bb87e09a0a22d6fc60dcb7f91c5db13a libcpp/identifiers.c 46faffcae484e71d73f86b818f0b6417 libcpp/include/cpp-id-data.h ! e2d4b1799bde6a28d3dbf64186814908 libcpp/include/cpplib.h 40e547206d9ad51158cc9f15480ff9f6 libcpp/include/line-map.h b38b6724cd6b6f363a6a43aaf16f31d7 libcpp/include/mkdeps.h 14697b3989b853bc975d8031495a37ff libcpp/include/symtab.h ab1504e880a258c78a15e3a6de24f9a0 libcpp/init.c 8d4e8916c1d901828fc16fb9159ef39a libcpp/internal.h 9788694056f37490e04abd496e1e8582 libcpp/lex.c ! fb037325824ae08aa3c3347d61079532 libcpp/line-map.c a3b42e84107cbc10045e964837492e97 libcpp/macro.c e5e6e60c02d9485ec697dd4f781e5444 libcpp/makeucnid.c 2b26a65df760b88805e260d6da1b8586 libcpp/mkdeps.c f05250f093d3c2cafe3c61a04bc4c998 libcpp/pch.c ! a330077078cb28cfa57d21d1950f4141 libcpp/po/ChangeLog 54906a88ab7fcfdf317421cf7c4303bc libcpp/po/be.gmo ecad891effc5c3a27a61d3faa8aee068 libcpp/po/be.po 5df92306df1918b63b8969719b670bf7 libcpp/po/ca.gmo --- 48072,48095 ---- 41d2c7a6c31780e67e9bd180308bd796 libcpp/configure.ac 43f530cca7446a76c37e3a4ba7d33d77 libcpp/directives-only.c 85aef2127a890fb03400ed8fc51d0199 libcpp/directives.c ! 98afacb1b145e24850b3c224614b679b libcpp/errors.c ed169e60f52acb15268ded9247c43a03 libcpp/expr.c ! 8576936e7dfa4fa3fef0247d82b68d06 libcpp/files.c bb87e09a0a22d6fc60dcb7f91c5db13a libcpp/identifiers.c 46faffcae484e71d73f86b818f0b6417 libcpp/include/cpp-id-data.h ! 401e315dd5b41424e27ee9b6f041a1ad libcpp/include/cpplib.h 40e547206d9ad51158cc9f15480ff9f6 libcpp/include/line-map.h b38b6724cd6b6f363a6a43aaf16f31d7 libcpp/include/mkdeps.h 14697b3989b853bc975d8031495a37ff libcpp/include/symtab.h ab1504e880a258c78a15e3a6de24f9a0 libcpp/init.c 8d4e8916c1d901828fc16fb9159ef39a libcpp/internal.h 9788694056f37490e04abd496e1e8582 libcpp/lex.c ! 62b2151c63f33f5c47b96b3bdad65435 libcpp/line-map.c a3b42e84107cbc10045e964837492e97 libcpp/macro.c e5e6e60c02d9485ec697dd4f781e5444 libcpp/makeucnid.c 2b26a65df760b88805e260d6da1b8586 libcpp/mkdeps.c f05250f093d3c2cafe3c61a04bc4c998 libcpp/pch.c ! 0b8e2a4ba67f7e097b069521e13ecf60 libcpp/po/ChangeLog 54906a88ab7fcfdf317421cf7c4303bc libcpp/po/be.gmo ecad891effc5c3a27a61d3faa8aee068 libcpp/po/be.po 5df92306df1918b63b8969719b670bf7 libcpp/po/ca.gmo *************** f520b0e5c1e680bfe95f1e41e4d47f57 libcpp *** 47947,47953 **** 0852e16675aa93396c6b42956dff1af3 libcpp/ucnid.h c8500dcd582950cb6ed628ffc84e2c09 libcpp/ucnid.tab a6c2b3de06c7424706b16f4c206396a1 libdecnumber/.gitignore ! bab2b8cd29c8fba9013aff7b1a07d264 libdecnumber/ChangeLog 3b84e93d037a889256842da6a8b66418 libdecnumber/Makefile.in 2746a1155d319a2cda823ee5b58921ce libdecnumber/aclocal.m4 3ee16b60b2f53df578443d0a2e076824 libdecnumber/bid/bid-dpd.h --- 48139,48145 ---- 0852e16675aa93396c6b42956dff1af3 libcpp/ucnid.h c8500dcd582950cb6ed628ffc84e2c09 libcpp/ucnid.tab a6c2b3de06c7424706b16f4c206396a1 libdecnumber/.gitignore ! 21d35482668482a1ad8ca4519f602db4 libdecnumber/ChangeLog 3b84e93d037a889256842da6a8b66418 libdecnumber/Makefile.in 2746a1155d319a2cda823ee5b58921ce libdecnumber/aclocal.m4 3ee16b60b2f53df578443d0a2e076824 libdecnumber/bid/bid-dpd.h *************** a97c47969dfc92a7666dfe3c2e1e1448 libdec *** 48009,48015 **** 1d6434525d5b6fae13c2e8a996121a5e libdecnumber/dpd/decimal64.c 6b20f17b6f453b9ee65b87eb01d119d7 libdecnumber/dpd/decimal64.h 0f6db29710e7075c2fd62bc4478b3b8d libdecnumber/dpd/decimal64Symbols.h ! 2f1924f594c9a56dfad1cd60cad3035b libffi/ChangeLog ba66fc19311348d373ec271be939a659 libffi/ChangeLog.libffi fbbc216bc25d759a72ea3e6d734af56b libffi/ChangeLog.libgcj d946d2b97454ad50a1dbfbf48923c5be libffi/ChangeLog.v1 --- 48201,48207 ---- 1d6434525d5b6fae13c2e8a996121a5e libdecnumber/dpd/decimal64.c 6b20f17b6f453b9ee65b87eb01d119d7 libdecnumber/dpd/decimal64.h 0f6db29710e7075c2fd62bc4478b3b8d libdecnumber/dpd/decimal64Symbols.h ! 84bd24a6b8ec20ec3b949b135900aa54 libffi/ChangeLog ba66fc19311348d373ec271be939a659 libffi/ChangeLog.libffi fbbc216bc25d759a72ea3e6d734af56b libffi/ChangeLog.libgcj d946d2b97454ad50a1dbfbf48923c5be libffi/ChangeLog.v1 *************** c9faebdbe02f87b62c091d969dad5a0f libffi *** 48023,48029 **** 57879ac0e3baf03623bea65c77a5aa22 libffi/configure ae845e087dc3d68e728ac8beb670fd3a libffi/configure.ac bec544523f8f7f3d5136f67598cf609a libffi/configure.host ! 2c380b6ed2532715d72ef177e2bc2fa0 libffi/doc/libffi.info 75795db3386811d8c8b54e152937efd4 libffi/doc/libffi.texi d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/stamp-vti d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/version.texi --- 48215,48221 ---- 57879ac0e3baf03623bea65c77a5aa22 libffi/configure ae845e087dc3d68e728ac8beb670fd3a libffi/configure.ac bec544523f8f7f3d5136f67598cf609a libffi/configure.host ! 03c4b17d420f7ef2202f654e0af0ada1 libffi/doc/libffi.info 75795db3386811d8c8b54e152937efd4 libffi/doc/libffi.texi d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/stamp-vti d9de4b04d3550cec2e8e18ebad6434fc libffi/doc/version.texi *************** d47c79b281339983862a8e52d8c73f0f libffi *** 48286,48294 **** 291be426192f460f6a07dfe1c96ab094 libffi/testsuite/libffi.special/special.exp 93fc3ea311b79f64004992807ce75d1e libffi/testsuite/libffi.special/unwindtest.cc 185d0795017fbbe253a13db8e34085f9 libffi/testsuite/libffi.special/unwindtest_ffi_call.cc ! a66191ed2a8cfe8203cf3d8d58d164da libgcc/ChangeLog 7f58014cfac96f94d81457205c18c223 libgcc/Makefile.in ! 4575e60db0c36a906ae99acf805a0550 libgcc/config.host 25a291c353009228fc85e36e91e64c08 libgcc/config.in 45c773889a67162e5721ef7b03bba96e libgcc/config/aarch64/crti.S aeec379a00ca3727d3b865da0d15ba0c libgcc/config/aarch64/crtn.S --- 48478,48486 ---- 291be426192f460f6a07dfe1c96ab094 libffi/testsuite/libffi.special/special.exp 93fc3ea311b79f64004992807ce75d1e libffi/testsuite/libffi.special/unwindtest.cc 185d0795017fbbe253a13db8e34085f9 libffi/testsuite/libffi.special/unwindtest_ffi_call.cc ! 8714c5cac38a20d9a09d7a1c23b70028 libgcc/ChangeLog 7f58014cfac96f94d81457205c18c223 libgcc/Makefile.in ! d7892a16234c840d2f656ceb8c523fb4 libgcc/config.host 25a291c353009228fc85e36e91e64c08 libgcc/config.in 45c773889a67162e5721ef7b03bba96e libgcc/config/aarch64/crti.S aeec379a00ca3727d3b865da0d15ba0c libgcc/config/aarch64/crtn.S *************** a69068beb04e8a98db92cd1d366e5a6f libgcc *** 48511,48517 **** c363a68408b30fe1ae97782cfb8a4ac1 libgcc/config/frv/ulltod.c 8655cce7a18893493cc17391c6ce08d5 libgcc/config/frv/ulltof.c 756aa4a0c6f33a0203e0ea6594c19e38 libgcc/config/frv/umodi.c ! b56bc73e1ba38f13237cdb4dfcf7036b libgcc/config/gmon-sol2.c 01aa49918b81395e1d5abd4d4cc24729 libgcc/config/gthr-lynx.h f2d9d8e777945cc7556e2998002754a5 libgcc/config/gthr-rtems.h 83fd6a0105f3bc47ae12ce2a7ce2205b libgcc/config/gthr-vxworks.h --- 48703,48709 ---- c363a68408b30fe1ae97782cfb8a4ac1 libgcc/config/frv/ulltod.c 8655cce7a18893493cc17391c6ce08d5 libgcc/config/frv/ulltof.c 756aa4a0c6f33a0203e0ea6594c19e38 libgcc/config/frv/umodi.c ! adcc76cf300ae1e461a1c6439ce8cc35 libgcc/config/gmon-sol2.c 01aa49918b81395e1d5abd4d4cc24729 libgcc/config/gthr-lynx.h f2d9d8e777945cc7556e2998002754a5 libgcc/config/gthr-rtems.h 83fd6a0105f3bc47ae12ce2a7ce2205b libgcc/config/gthr-vxworks.h *************** b2bcf8b944f937cb4f3799c02670dcee libgcc *** 48537,48543 **** a92aa384cf96b81c0dbb642826200dd7 libgcc/config/i386/64/letf2.c d1337b28acd8dbde9817492f9027dbc3 libgcc/config/i386/64/sfp-machine.h 498bbaf506a5bbdaa793f66399ece491 libgcc/config/i386/64/t-softfp-compat ! d8b290ae825472b31f68fd28efc82f9e libgcc/config/i386/cpuinfo.c 98921719f5647ebcc267af9712b1f116 libgcc/config/i386/crtfastmath.c 1ad8379325b99afa4e196e92cf5a5aba libgcc/config/i386/crti.S a57fb755601c047971e04689034ff273 libgcc/config/i386/crtn.S --- 48729,48735 ---- a92aa384cf96b81c0dbb642826200dd7 libgcc/config/i386/64/letf2.c d1337b28acd8dbde9817492f9027dbc3 libgcc/config/i386/64/sfp-machine.h 498bbaf506a5bbdaa793f66399ece491 libgcc/config/i386/64/t-softfp-compat ! 9249fd3a96d3bd7865c93a9e48eea344 libgcc/config/i386/cpuinfo.c 98921719f5647ebcc267af9712b1f116 libgcc/config/i386/crtfastmath.c 1ad8379325b99afa4e196e92cf5a5aba libgcc/config/i386/crti.S a57fb755601c047971e04689034ff273 libgcc/config/i386/crtn.S *************** cc6abfc50842e2a704659fc8ca890750 libgcc *** 48622,48628 **** 983913088848c37426464c44ed30f389 libgcc/config/ia64/vms-unwind.h 7a56469ad10b7c48767dcf3b22434e61 libgcc/config/iq2000/lib2funcs.c 102f7dad8ad6b54434a1b8313d1e42c4 libgcc/config/iq2000/t-iq2000 ! 4d1e21f05ebe60f8236bbff9ade282b7 libgcc/config/libbid/ChangeLog bd427e604ec5104368c49c5babee0027 libgcc/config/libbid/_addsub_dd.c e60ac20c51a4ad903984450529a1f0e9 libgcc/config/libbid/_addsub_sd.c 9ce300999fc3b8a8a9a5d57b1d1deb0c libgcc/config/libbid/_addsub_td.c --- 48814,48820 ---- 983913088848c37426464c44ed30f389 libgcc/config/ia64/vms-unwind.h 7a56469ad10b7c48767dcf3b22434e61 libgcc/config/iq2000/lib2funcs.c 102f7dad8ad6b54434a1b8313d1e42c4 libgcc/config/iq2000/t-iq2000 ! ee62c65878cc3553425f457b9659f614 libgcc/config/libbid/ChangeLog bd427e604ec5104368c49c5babee0027 libgcc/config/libbid/_addsub_dd.c e60ac20c51a4ad903984450529a1f0e9 libgcc/config/libbid/_addsub_sd.c 9ce300999fc3b8a8a9a5d57b1d1deb0c libgcc/config/libbid/_addsub_td.c *************** bd405e7248fc335a4a4295df269ec132 libgcc *** 49141,49147 **** 70eb2d68a64f55d9fd8b61cbfe7ba1d7 libgcc/config/nios2/lib2-divtable.c 4c6a1c4f4f4cd6ce76ea1595d1f2eb99 libgcc/config/nios2/lib2-mul.c ffe3995242193a7f77f3874003b8c9d6 libgcc/config/nios2/lib2-nios2.h ! 1136874187371865baec527e3af79248 libgcc/config/nios2/linux-atomic.c 6054f843a8747e3f0693d96885947df1 libgcc/config/nios2/linux-unwind.h 21fba677ec6c35c00b9e5742dfd93e64 libgcc/config/nios2/sfp-machine.h 598bde069aeebadde9b08f8703ab2c77 libgcc/config/nios2/t-linux --- 49333,49339 ---- 70eb2d68a64f55d9fd8b61cbfe7ba1d7 libgcc/config/nios2/lib2-divtable.c 4c6a1c4f4f4cd6ce76ea1595d1f2eb99 libgcc/config/nios2/lib2-mul.c ffe3995242193a7f77f3874003b8c9d6 libgcc/config/nios2/lib2-nios2.h ! 28641002209c7f375a74cdc29ba623a4 libgcc/config/nios2/linux-atomic.c 6054f843a8747e3f0693d96885947df1 libgcc/config/nios2/linux-unwind.h 21fba677ec6c35c00b9e5742dfd93e64 libgcc/config/nios2/sfp-machine.h 598bde069aeebadde9b08f8703ab2c77 libgcc/config/nios2/t-linux *************** ffe3995242193a7f77f3874003b8c9d6 libgcc *** 49149,49159 **** de387fe2287f7c33d98631df3c661beb libgcc/config/nios2/tramp.c d554f3fc7ee3cecc697c448b8c5f61bb libgcc/config/no-sfp-machine.h b70010a8e3a6734ae04ba484992563c5 libgcc/config/no-unwind.h ! 09630eb8148a0a059d568f522255b5c3 libgcc/config/pa/fptr.c fff8e12f77dd008d7587c861335b2299 libgcc/config/pa/gthr-dce.h f504995a8bc9980dc0d61c9177ed1c98 libgcc/config/pa/hpux-unwind.h b14b473169e50807908c2a4d041e8080 libgcc/config/pa/lib2funcs.S ! b6382347c0b4e4ea97395a47f3959d9a libgcc/config/pa/linux-atomic.c 1eaf476887daaac758e1b13c632dc2e1 libgcc/config/pa/linux-unwind.h 9f2dc0000080e88145d62ddd1c6fb992 libgcc/config/pa/milli64.S 4b40d99a1ee6399399faa83a7a7679ac libgcc/config/pa/quadlib.c --- 49341,49351 ---- de387fe2287f7c33d98631df3c661beb libgcc/config/nios2/tramp.c d554f3fc7ee3cecc697c448b8c5f61bb libgcc/config/no-sfp-machine.h b70010a8e3a6734ae04ba484992563c5 libgcc/config/no-unwind.h ! c1edba0b71f6597430b274025dd98326 libgcc/config/pa/fptr.c fff8e12f77dd008d7587c861335b2299 libgcc/config/pa/gthr-dce.h f504995a8bc9980dc0d61c9177ed1c98 libgcc/config/pa/hpux-unwind.h b14b473169e50807908c2a4d041e8080 libgcc/config/pa/lib2funcs.S ! aab99dd86c0d67de5946dfe27fd855d5 libgcc/config/pa/linux-atomic.c 1eaf476887daaac758e1b13c632dc2e1 libgcc/config/pa/linux-unwind.h 9f2dc0000080e88145d62ddd1c6fb992 libgcc/config/pa/milli64.S 4b40d99a1ee6399399faa83a7a7679ac libgcc/config/pa/quadlib.c *************** e32c5653df9e5c5b602b2a6e6ddeaaf1 libgcc *** 49578,49584 **** 7e5de74bf98e12bb4afb927d0c5d69c3 libgcc/vtv_end_preinit.c 1c9bb66910761539ddc5ff002e70c272 libgcc/vtv_start.c 868ca421eb9feaef7af922f89533ec54 libgcc/vtv_start_preinit.c ! 0868bdd0d8346876ace8df4a0913aa0b libgfortran/ChangeLog 9aca36338382e5b4b730e7779170b24d libgfortran/ChangeLog-2002 80d3edc880c2da0b7a2beec2e2c4f774 libgfortran/ChangeLog-2003 9f0239429993a5e64ed793eb6c55a5c1 libgfortran/ChangeLog-2004 --- 49770,49776 ---- 7e5de74bf98e12bb4afb927d0c5d69c3 libgcc/vtv_end_preinit.c 1c9bb66910761539ddc5ff002e70c272 libgcc/vtv_start.c 868ca421eb9feaef7af922f89533ec54 libgcc/vtv_start_preinit.c ! 6c763bb46e05d4611c90882d1f03b014 libgfortran/ChangeLog 9aca36338382e5b4b730e7779170b24d libgfortran/ChangeLog-2002 80d3edc880c2da0b7a2beec2e2c4f774 libgfortran/ChangeLog-2003 9f0239429993a5e64ed793eb6c55a5c1 libgfortran/ChangeLog-2004 *************** ce532cb60034e475668015c7c3f5feaf libgfo *** 49604,49611 **** 489bb75b69885c5a5c88bf483fd6d53b libgfortran/config/fpu-generic.h b3c845424b5af74c6dace0db1b2de8ed libgfortran/config/fpu-glibc.h 4433ef6aa54b62f3ab35e8943e68ad6c libgfortran/config/fpu-sysv.h ! 0d6215790cfdeb3694d0f7bab87fddde libgfortran/configure ! 9409bc4c0e46944786d8b216adea11ca libgfortran/configure.ac 7174f11b9fd3ba5f2571856987be1bd9 libgfortran/configure.host 79438548178ec610e4b0c5975d47f6cb libgfortran/fmain.c f865f9d3d7426d21e1bfe08b11843442 libgfortran/generated/_abs_c10.F90 --- 49796,49803 ---- 489bb75b69885c5a5c88bf483fd6d53b libgfortran/config/fpu-generic.h b3c845424b5af74c6dace0db1b2de8ed libgfortran/config/fpu-glibc.h 4433ef6aa54b62f3ab35e8943e68ad6c libgfortran/config/fpu-sysv.h ! 3f346f71f59590d5a07cc419a123ce00 libgfortran/configure ! 41c5479cf0375723d6ff118ef1780ab2 libgfortran/configure.ac 7174f11b9fd3ba5f2571856987be1bd9 libgfortran/configure.host 79438548178ec610e4b0c5975d47f6cb libgfortran/fmain.c f865f9d3d7426d21e1bfe08b11843442 libgfortran/generated/_abs_c10.F90 *************** c287df298776a437b3a48419c86b4645 libgfo *** 50199,50205 **** 3265147203606b7bad62e5d2908f9869 libgfortran/io/inquire.c 040686ca709c2eb8e86ffe443d3fd8d6 libgfortran/io/intrinsics.c e33ed5e9aa211a377165c37a7ca8e12d libgfortran/io/io.h ! 8f65e0961f91629daeccb422773f9c46 libgfortran/io/list_read.c f0b41e3bb3904d863aec0780e95d876c libgfortran/io/lock.c d7d4ed433bf1c8a869ae50ddb62b42f9 libgfortran/io/open.c 7f0a9a12949149a87ba70a272df7d9db libgfortran/io/read.c --- 50391,50397 ---- 3265147203606b7bad62e5d2908f9869 libgfortran/io/inquire.c 040686ca709c2eb8e86ffe443d3fd8d6 libgfortran/io/intrinsics.c e33ed5e9aa211a377165c37a7ca8e12d libgfortran/io/io.h ! c630cba4faff7cc7a451dc296f271a76 libgfortran/io/list_read.c f0b41e3bb3904d863aec0780e95d876c libgfortran/io/lock.c d7d4ed433bf1c8a869ae50ddb62b42f9 libgfortran/io/open.c 7f0a9a12949149a87ba70a272df7d9db libgfortran/io/read.c *************** d7d4ed433bf1c8a869ae50ddb62b42f9 libgfo *** 50207,50218 **** 329c6637a9c8c742f3960b1d6d488725 libgfortran/io/transfer.c f936c3b00e7e8e0a02a6295e7b0f27c2 libgfortran/io/transfer128.c d4e46541e5060e9cd29458023569052f libgfortran/io/unit.c ! 0bf46fbcca9ef7c6659d267dffbb6406 libgfortran/io/unix.c 77d75641d66ddd858c2323836d22c224 libgfortran/io/unix.h 6837af17188b3eaae34d3d325b82b75b libgfortran/io/write.c ! f6c291d3d0197f2bd00b964dada60450 libgfortran/io/write_float.def 4d0ad4a6640ffe78f79c877d79a3802e libgfortran/kinds-override.h ! 20ec345ae4f7c68397c2621df1163222 libgfortran/libgfortran.h 2527bb19b82f08b34038b07b172d029d libgfortran/libgfortran.spec.in 25a776e70521ce48fb1bfdd7bfa1a646 libgfortran/libtool-version d5aea1a64f452a238a65cd3202b6de67 libgfortran/m4/all.m4 --- 50399,50410 ---- 329c6637a9c8c742f3960b1d6d488725 libgfortran/io/transfer.c f936c3b00e7e8e0a02a6295e7b0f27c2 libgfortran/io/transfer128.c d4e46541e5060e9cd29458023569052f libgfortran/io/unit.c ! f291e321f7f42b8d27bd10772d4d176d libgfortran/io/unix.c 77d75641d66ddd858c2323836d22c224 libgfortran/io/unix.h 6837af17188b3eaae34d3d325b82b75b libgfortran/io/write.c ! c86e6aebfe070ebba4b8316390cd56e7 libgfortran/io/write_float.def 4d0ad4a6640ffe78f79c877d79a3802e libgfortran/kinds-override.h ! 546911798fc780b8dbeab66a9b9e6606 libgfortran/libgfortran.h 2527bb19b82f08b34038b07b172d029d libgfortran/libgfortran.spec.in 25a776e70521ce48fb1bfdd7bfa1a646 libgfortran/libtool-version d5aea1a64f452a238a65cd3202b6de67 libgfortran/m4/all.m4 *************** e22586efc37ba708def40a04ba637604 libgo/ *** 51499,51505 **** b8fdfed2b10d907ebbce6cc897d1f1c5 libgo/go/syscall/exec_unix.go dd24802d634b914579f941c1d3bed730 libgo/go/syscall/exec_windows.go 9b6c3ba061ae00628e2837722268295e libgo/go/syscall/libcall_irix.go ! e951b0bceb88dd19a22ccce3be868888 libgo/go/syscall/libcall_linux.go 08d02e9ba31a2f132b6670d56e5f9a91 libgo/go/syscall/libcall_linux_386.go d0dfa8e45cee5defb536480f056ed447 libgo/go/syscall/libcall_linux_alpha.go 0f110f6b4b28d847963c11d0307ebbfb libgo/go/syscall/libcall_linux_amd64.go --- 51691,51697 ---- b8fdfed2b10d907ebbce6cc897d1f1c5 libgo/go/syscall/exec_unix.go dd24802d634b914579f941c1d3bed730 libgo/go/syscall/exec_windows.go 9b6c3ba061ae00628e2837722268295e libgo/go/syscall/libcall_irix.go ! 850983ef9e2319a76bf883cf83c35cd1 libgo/go/syscall/libcall_linux.go 08d02e9ba31a2f132b6670d56e5f9a91 libgo/go/syscall/libcall_linux_386.go d0dfa8e45cee5defb536480f056ed447 libgo/go/syscall/libcall_linux_alpha.go 0f110f6b4b28d847963c11d0307ebbfb libgo/go/syscall/libcall_linux_amd64.go *************** a0de832de44f42309997031125a3297e libgo/ *** 51724,51730 **** 6b11f53a4b7d331ecd6351fcca3ffe55 libgo/runtime/mem_posix_memalign.c e89e0219aa4c38b5be8fcfe859855033 libgo/runtime/mfinal.c ec646d3074384118062135dba38d8e0c libgo/runtime/mfixalloc.c ! 2ac96a9b070e1c3b5f6bbd07274a6991 libgo/runtime/mgc0.c 8814b7062f80a4c061b106b2c9c7c1bd libgo/runtime/mgc0.h e66170fdb4388b7e18851ec4e3dd0b29 libgo/runtime/mheap.c b97eeb7e3b957b7fb4f671642734023a libgo/runtime/mprof.goc --- 51916,51922 ---- 6b11f53a4b7d331ecd6351fcca3ffe55 libgo/runtime/mem_posix_memalign.c e89e0219aa4c38b5be8fcfe859855033 libgo/runtime/mfinal.c ec646d3074384118062135dba38d8e0c libgo/runtime/mfixalloc.c ! 68d933abba295135e95a90fd840da24f libgo/runtime/mgc0.c 8814b7062f80a4c061b106b2c9c7c1bd libgo/runtime/mgc0.h e66170fdb4388b7e18851ec4e3dd0b29 libgo/runtime/mheap.c b97eeb7e3b957b7fb4f671642734023a libgo/runtime/mprof.goc *************** c95a6cc35511a2183eb5b480fa8ae836 libgo/ *** 51760,51766 **** 207f334413c982763e10e994230fefbf libgo/testsuite/gotest 578a4705035f5cbb8425f2e2eb75a433 libgo/testsuite/lib/libgo.exp 6df485581d2f02246f41b5ca46f5bb5d libgo/testsuite/libgo.testmain/testmain.exp ! f9939088ff2793d8ecdda0e027143ce1 libgomp/ChangeLog 0d55aa862aee66efdc5f8d62c94ff8fb libgomp/ChangeLog.graphite 0b707c40cd3236f294bcd8a5bcead00f libgomp/Makefile.am d538a08bffc033de3bd6ab6000ee2091 libgomp/Makefile.in --- 51952,51958 ---- 207f334413c982763e10e994230fefbf libgo/testsuite/gotest 578a4705035f5cbb8425f2e2eb75a433 libgo/testsuite/lib/libgo.exp 6df485581d2f02246f41b5ca46f5bb5d libgo/testsuite/libgo.testmain/testmain.exp ! aabcc6a420a62ad6fd82e48bbd5f5820 libgomp/ChangeLog 0d55aa862aee66efdc5f8d62c94ff8fb libgomp/ChangeLog.graphite 0b707c40cd3236f294bcd8a5bcead00f libgomp/Makefile.am d538a08bffc033de3bd6ab6000ee2091 libgomp/Makefile.in *************** cd992e3cb72acf469ea9463e733d19fc libgom *** 51819,51825 **** 033ba0d8f9cd68151cebebf17bf33589 libgomp/iter.c 5f2f63229277fb78ee8308c045d7b476 libgomp/iter_ull.c 1e9164995076dbdc6b6bccd417f7d781 libgomp/libgomp.h ! baad7e05869ae00cf0c68614ebb94532 libgomp/libgomp.info 6cbe48d155b1725f5e32de30d5daedb4 libgomp/libgomp.map 8b2aa50aecad82171348a6918309afd6 libgomp/libgomp.spec.in 57242f2ada25ede0584dba75bcb07620 libgomp/libgomp.texi --- 52011,52017 ---- 033ba0d8f9cd68151cebebf17bf33589 libgomp/iter.c 5f2f63229277fb78ee8308c045d7b476 libgomp/iter_ull.c 1e9164995076dbdc6b6bccd417f7d781 libgomp/libgomp.h ! 63c975374ed8aaa57e16092ed2898c85 libgomp/libgomp.info 6cbe48d155b1725f5e32de30d5daedb4 libgomp/libgomp.map 8b2aa50aecad82171348a6918309afd6 libgomp/libgomp.spec.in 57242f2ada25ede0584dba75bcb07620 libgomp/libgomp.texi *************** be881f5cc9989977aeedb5b25a571556 libgom *** 52153,52158 **** --- 52345,52352 ---- 42db44e2c4cc442bab5ff29472d344cf libgomp/testsuite/libgomp.c/pr64824.c e8be82638e67565545124654d8462470 libgomp/testsuite/libgomp.c/pr64868.c b9f3adf54414b3cb98d10f86ee7032dd libgomp/testsuite/libgomp.c/pr66133.c + 37da387849a1a7da3f75e528c47ee2cb libgomp/testsuite/libgomp.c/pr68960.c + 9995ebc7d239ebe751419090068c6f33 libgomp/testsuite/libgomp.c/pr69110.c ea7c9e74bda402b1663a903b26400fab libgomp/testsuite/libgomp.c/private-1.c a594cebdf052900dd0c8792068e14d85 libgomp/testsuite/libgomp.c/reduction-1.c 6a724210e4cb30df7ade4ef7ee0aa83e libgomp/testsuite/libgomp.c/reduction-2.c *************** f34e0c37442a4a7019dadca0b34ac11d libgom *** 52249,52254 **** --- 52443,52449 ---- 6116086a89b906c26bd9afe26e57a07a libgomp/testsuite/libgomp.fortran/appendix-a/a10.1.f90 ba05d0e1b584ec6c750d14a486ac83b2 libgomp/testsuite/libgomp.fortran/associate1.f90 41cd3ed9183e6bc7b20ef8836663fbdd libgomp/testsuite/libgomp.fortran/associate2.f90 + aa03f95280189c0147b6c2ec288164ba libgomp/testsuite/libgomp.fortran/associate3.f90 cb0b79f7bddc47118981784eb7ba6f75 libgomp/testsuite/libgomp.fortran/cancel-do-1.f90 2a5fe3d97ff9f23e08df5e015a45e3bc libgomp/testsuite/libgomp.fortran/cancel-do-2.f90 a110324b7cb72dc5755c1ad39c5230fd libgomp/testsuite/libgomp.fortran/cancel-parallel-1.f90 *************** a80ce4249b45880d8fb3896d2804747e libgom *** 52272,52277 **** --- 52467,52473 ---- f5efb536310d1e6326052b063becef4e libgomp/testsuite/libgomp.fortran/declare-simd-1.f90 c0ebd55529e9baf82532c7b2f51f3fe4 libgomp/testsuite/libgomp.fortran/declare-simd-2.f90 0ffd85be0cdc2738928b8085de5bcffc libgomp/testsuite/libgomp.fortran/declare-simd-3.f90 + fdd9bafbe65a6a3924c07c8a3ebcd66d libgomp/testsuite/libgomp.fortran/declare-simd-4.f90 6e835db912fa2be675117b66187801c7 libgomp/testsuite/libgomp.fortran/depend-1.f90 501e003d6de5432f0ae9aabf28a1785b libgomp/testsuite/libgomp.fortran/depend-2.f90 a569a86614b3eb780060b03cae7470a1 libgomp/testsuite/libgomp.fortran/depend-3.f90 *************** adeb43ecb87dafa9913dd663bab2ffce libgom *** 52420,52426 **** 54f9ab06f446afe0bc8a6e6f07a83d6c libgomp/work.c 99c2e5e712b990ee07be10f53e41f3fb libiberty/.gitignore a916467b91076e631dd8edb7424769c7 libiberty/COPYING.LIB ! 82d5b4febee6c4a790ae02aa594292f5 libiberty/ChangeLog a5d547789d7db4375ced07d9103d520e libiberty/Makefile.in c68dbf7834af4281ebd84caa3fd54680 libiberty/README a23c6974fb1adf6977b5f5454c430bf0 libiberty/_doprnt.c --- 52616,52622 ---- 54f9ab06f446afe0bc8a6e6f07a83d6c libgomp/work.c 99c2e5e712b990ee07be10f53e41f3fb libiberty/.gitignore a916467b91076e631dd8edb7424769c7 libiberty/COPYING.LIB ! 093233e57381c2df51d3d66f09268bab libiberty/ChangeLog a5d547789d7db4375ced07d9103d520e libiberty/Makefile.in c68dbf7834af4281ebd84caa3fd54680 libiberty/README a23c6974fb1adf6977b5f5454c430bf0 libiberty/_doprnt.c *************** bd78a8879688dcecdfb6f7edddbe9c7b libibe *** 52451,52460 **** 5824bd0f9be9f4fa74bb3bdc7fd9431c libiberty/configure.com 32149e9d61d873be9c2950bee2ae7137 libiberty/copying-lib.texi fe053283d3559af3ec5cac45f8ead009 libiberty/copysign.c ! 2b8bd82677c937750935502a8deb5496 libiberty/cp-demangle.c ef31ef103e276b9741c453bba5660e20 libiberty/cp-demangle.h ! 6af921a6efcb5621c06ff9b2a8769b01 libiberty/cp-demint.c ! 37193048466b1b0934121905ff3f534f libiberty/cplus-dem.c 7c69a6c6a36925e0ca6f068473e6d858 libiberty/crc32.c e78ee72146f932cefb435c11b2aa3ee7 libiberty/dwarfnames.c d31a55379aa2dc43eb6858a26c4a6c76 libiberty/dyn-string.c --- 52647,52656 ---- 5824bd0f9be9f4fa74bb3bdc7fd9431c libiberty/configure.com 32149e9d61d873be9c2950bee2ae7137 libiberty/copying-lib.texi fe053283d3559af3ec5cac45f8ead009 libiberty/copysign.c ! d2caa8a5bcd356203e4da04992235f69 libiberty/cp-demangle.c ef31ef103e276b9741c453bba5660e20 libiberty/cp-demangle.h ! 5868438b5b6c384018d526ccee754b8f libiberty/cp-demint.c ! cc6589b6e975dacaa568cb920c6beea0 libiberty/cplus-dem.c 7c69a6c6a36925e0ca6f068473e6d858 libiberty/crc32.c e78ee72146f932cefb435c11b2aa3ee7 libiberty/dwarfnames.c d31a55379aa2dc43eb6858a26c4a6c76 libiberty/dyn-string.c *************** e2f3721273c7ef1ab0194aad78ffa3aa libibe *** 52549,52556 **** c9bd3841bbde6d8ae680f62523f00ab0 libiberty/strtol.c 26196a9a92fae743a06d65f0e081084b libiberty/strtoul.c 9e1bb6fe95ebb6415672ddf1da29ec65 libiberty/strverscmp.c ! 8f24f8939540ed6d58ad0dcdf1132562 libiberty/testsuite/Makefile.in ! 08714de665f89fbe1b6a2f933597872b libiberty/testsuite/demangle-expected 8b476ce26e8583eea8df7d77fe287a5a libiberty/testsuite/test-demangle.c d629c8f2adde10d53657e437416cf27f libiberty/testsuite/test-expandargv.c e9e958dbfc45a08dbbbbe48c83d3987e libiberty/testsuite/test-pexecute.c --- 52745,52753 ---- c9bd3841bbde6d8ae680f62523f00ab0 libiberty/strtol.c 26196a9a92fae743a06d65f0e081084b libiberty/strtoul.c 9e1bb6fe95ebb6415672ddf1da29ec65 libiberty/strverscmp.c ! edf67da954fd15a42fe436d6e3170ad5 libiberty/testsuite/Makefile.in ! b1e55fbe42fdcc0a57720c4208fe3bd1 libiberty/testsuite/demangle-expected ! 10ce55269f247e57d2901ee11e88d8bd libiberty/testsuite/demangler-fuzzer.c 8b476ce26e8583eea8df7d77fe287a5a libiberty/testsuite/test-demangle.c d629c8f2adde10d53657e437416cf27f libiberty/testsuite/test-expandargv.c e9e958dbfc45a08dbbbbe48c83d3987e libiberty/testsuite/test-pexecute.c *************** cdc140ce93944c5bb2ac62cd3dfd86d6 libibe *** 52571,52577 **** 4746095b1b67693ab6e78ed72ead1235 libiberty/xstrdup.c 6f774a92661ca4a067f1691a7925524b libiberty/xstrerror.c c6e7ef53b4ff115a136d917511222656 libiberty/xstrndup.c ! a6c7cc99cb16e6f018e360dd3a2249e0 libitm/ChangeLog 800745ad84882bc445410a58c2fddd51 libitm/Makefile.am 232e2b039eaa7ea7006437397392ae64 libitm/Makefile.in 1529a197c135a0629228fc9d31998589 libitm/aatree.cc --- 52768,52774 ---- 4746095b1b67693ab6e78ed72ead1235 libiberty/xstrdup.c 6f774a92661ca4a067f1691a7925524b libiberty/xstrerror.c c6e7ef53b4ff115a136d917511222656 libiberty/xstrndup.c ! 49ea9d32c889ba2e30e7fd705d1073fd libitm/ChangeLog 800745ad84882bc445410a58c2fddd51 libitm/Makefile.am 232e2b039eaa7ea7006437397392ae64 libitm/Makefile.in 1529a197c135a0629228fc9d31998589 libitm/aatree.cc *************** e9eba5000e70ca47e6913a28348c385a libitm *** 52613,52619 **** 84ad07f6f27ac6975522a9848fb38999 libitm/config/posix/rwlock.cc 1a8a889dc57e0ab7537648dabab537f4 libitm/config/posix/rwlock.h afbe38403396668a260327b67db03ed3 libitm/config/powerpc/cacheline.h ! 9a098ede302958d0c56afb6efa4cf5e0 libitm/config/powerpc/sjlj.S 4c1331f5c6a164351b63880c22af1c54 libitm/config/powerpc/target.h 1dd14654007e4083e80de30f28a69abf libitm/config/s390/sjlj.S ab43ae2403aa5811b300e9fe9de6bc67 libitm/config/s390/target.h --- 52810,52816 ---- 84ad07f6f27ac6975522a9848fb38999 libitm/config/posix/rwlock.cc 1a8a889dc57e0ab7537648dabab537f4 libitm/config/posix/rwlock.h afbe38403396668a260327b67db03ed3 libitm/config/powerpc/cacheline.h ! c3c4df64110ac3ce4924022c15ea3cc8 libitm/config/powerpc/sjlj.S 4c1331f5c6a164351b63880c22af1c54 libitm/config/powerpc/target.h 1dd14654007e4083e80de30f28a69abf libitm/config/s390/sjlj.S ab43ae2403aa5811b300e9fe9de6bc67 libitm/config/s390/target.h *************** acc6a26688cae0fd1d43ca2d36a0e0b4 libitm *** 52634,52640 **** 5dc53060e57627b03382dbd606aa5d59 libitm/dispatch.h fce3c710dce0dcbc25e474baeacc332f libitm/eh_cpp.cc 2c833c5016e0c1a5e6b56afe97118d0d libitm/libitm.h ! 827790ae1e113267eb392dc742002de7 libitm/libitm.info 8d44f8cc119e5c7cbc20c558b551475b libitm/libitm.map ea467d7117853d139bb288ab75261139 libitm/libitm.spec.in ad66eb66e3d3354b743c68be8404be4b libitm/libitm.texi --- 52831,52837 ---- 5dc53060e57627b03382dbd606aa5d59 libitm/dispatch.h fce3c710dce0dcbc25e474baeacc332f libitm/eh_cpp.cc 2c833c5016e0c1a5e6b56afe97118d0d libitm/libitm.h ! e34d99a6a83454c23cd18fe81166e635 libitm/libitm.info 8d44f8cc119e5c7cbc20c558b551475b libitm/libitm.map ea467d7117853d139bb288ab75261139 libitm/libitm.spec.in ad66eb66e3d3354b743c68be8404be4b libitm/libitm.texi *************** ef24198422c19f99b0c41be6a16f7081 libitm *** 52674,52680 **** d482ef5219faa907ff83393d6628de60 libitm/useraction.cc b18e667b8febff13520856a6c985a788 libitm/util.cc 94d55d512a9ba36caa9b7df079bae19f libjava/COPYING ! c0f29ba3b51ef51d759348babcffeec4 libjava/ChangeLog 03e1f38b916604fdf1470238201325f3 libjava/ChangeLog-1998 691acb61fbd6a2235826ff55db5578be libjava/ChangeLog-1999 b58c6701706771a02bf00a77666941ef libjava/ChangeLog-2000 --- 52871,52877 ---- d482ef5219faa907ff83393d6628de60 libitm/useraction.cc b18e667b8febff13520856a6c985a788 libitm/util.cc 94d55d512a9ba36caa9b7df079bae19f libjava/COPYING ! 4aeceb0dc97da400a55b0b46cc92be41 libjava/ChangeLog 03e1f38b916604fdf1470238201325f3 libjava/ChangeLog-1998 691acb61fbd6a2235826ff55db5578be libjava/ChangeLog-1999 b58c6701706771a02bf00a77666941ef libjava/ChangeLog-2000 *************** de54f80484e640306e109e785e4611c8 libjav *** 52715,52721 **** 880a25226e4e4e4c241663041d24f8dd libjava/classpath/AUTHORS efd97e0bb913655e0c8b16fa78bdded4 libjava/classpath/BUGS af0004801732bc4b20d90f351cf80510 libjava/classpath/COPYING ! 21ab9e0adf345332240437eb59a9fd29 libjava/classpath/ChangeLog 3418fae58de967afe26d915a4b18d82c libjava/classpath/ChangeLog-2003 a5b72adb94a3c362738b0f52e57a82af libjava/classpath/ChangeLog-2004 61159c6e0802d0d2a92b3051003db5c5 libjava/classpath/ChangeLog-2005 --- 52912,52918 ---- 880a25226e4e4e4c241663041d24f8dd libjava/classpath/AUTHORS efd97e0bb913655e0c8b16fa78bdded4 libjava/classpath/BUGS af0004801732bc4b20d90f351cf80510 libjava/classpath/COPYING ! 31eea08862675bab517ed66b31a69b50 libjava/classpath/ChangeLog 3418fae58de967afe26d915a4b18d82c libjava/classpath/ChangeLog-2003 a5b72adb94a3c362738b0f52e57a82af libjava/classpath/ChangeLog-2004 61159c6e0802d0d2a92b3051003db5c5 libjava/classpath/ChangeLog-2005 *************** a6cedb4991503f803e9f0870daf59c13 libjav *** 52753,52773 **** b343eec566430e85d1f95c21438aa4ee libjava/classpath/doc/api/Makefile.am 8f716e277c4626f1f81544c6291101b3 libjava/classpath/doc/api/Makefile.in 5ddd829b35fc94b0cdb119084089edb8 libjava/classpath/doc/cp-hacking.texinfo ! 862e32ddcce3928c53d25ceb1608b8f1 libjava/classpath/doc/cp-tools.info 0349e5c38c548584225423ef4bafd20b libjava/classpath/doc/cp-tools.texinfo 3155d9bd9a7bf4aff2ff0dfe4a2cb878 libjava/classpath/doc/cp-vmintegration.texinfo ! d0735d267c830cde0376640120a3d50e libjava/classpath/doc/gappletviewer.1 ! 1b09e192622641f0681f1da9bc8e258e libjava/classpath/doc/gjar.1 ! 6c1f9b6dbdcc491bdf1f0d55ed34b270 libjava/classpath/doc/gjarsigner.1 ! 3b80d591ebf9058598e89e23d64f7b1d libjava/classpath/doc/gjavah.1 ! 6567c6547c1f8779d794b5b5a996ce43 libjava/classpath/doc/gjdoc.1 ! 01772f760f5d46544497cc83eb80b27d libjava/classpath/doc/gkeytool.1 ! b367c8ad7d1a3b82c97a484bdc12078a libjava/classpath/doc/gnative2ascii.1 ! 2c6f06b3fcc45400e8e056ae362df3f4 libjava/classpath/doc/gorbd.1 ! 457aeba1343db9b39a6e587ee5ffe234 libjava/classpath/doc/grmid.1 ! cb40126cc5b094ef453575a62aed0c1a libjava/classpath/doc/grmiregistry.1 ! 7e397b4d04930b1525761dd31530d48e libjava/classpath/doc/gserialver.1 ! bb85be82cdd10cd89f9e642244c32f08 libjava/classpath/doc/gtnameserv.1 7e4e31659df1c7e815f9151958dceef2 libjava/classpath/doc/texi2pod.pl 01b23c87dcf82048a5958c8224653305 libjava/classpath/doc/texinfo.tex b1e0c0c30547d57d7a09b04d47c70b06 libjava/classpath/examples/.cvsignore --- 52950,52970 ---- b343eec566430e85d1f95c21438aa4ee libjava/classpath/doc/api/Makefile.am 8f716e277c4626f1f81544c6291101b3 libjava/classpath/doc/api/Makefile.in 5ddd829b35fc94b0cdb119084089edb8 libjava/classpath/doc/cp-hacking.texinfo ! 9420a77f98a342430395275ab8f9d08d libjava/classpath/doc/cp-tools.info 0349e5c38c548584225423ef4bafd20b libjava/classpath/doc/cp-tools.texinfo 3155d9bd9a7bf4aff2ff0dfe4a2cb878 libjava/classpath/doc/cp-vmintegration.texinfo ! 61a077626458c6663df57de3e704eebe libjava/classpath/doc/gappletviewer.1 ! 768d079c9f40b56049004eda128dccbd libjava/classpath/doc/gjar.1 ! b74d6d71d28f5de26e1788a22ac56865 libjava/classpath/doc/gjarsigner.1 ! 46413b34a53fdde434d0e9e8c7c01b42 libjava/classpath/doc/gjavah.1 ! 0c8b01c4959b1eb1b3653a92d9135fff libjava/classpath/doc/gjdoc.1 ! 611bac3282b45d3cd448ea771842cefb libjava/classpath/doc/gkeytool.1 ! d7dcee2f833fdd1e9d61290685820cb6 libjava/classpath/doc/gnative2ascii.1 ! 9448b47fecbd1bc6109c3d01065e0189 libjava/classpath/doc/gorbd.1 ! f5adf6e7d1398f7468aa7253ff26de58 libjava/classpath/doc/grmid.1 ! 2ff2205102b46a9b31ed0409184556a6 libjava/classpath/doc/grmiregistry.1 ! d9f8a34ecb53dd34a046d27b26fbfe7c libjava/classpath/doc/gserialver.1 ! c0da5cb4d3ae38ada831d13af768801d libjava/classpath/doc/gtnameserv.1 7e4e31659df1c7e815f9151958dceef2 libjava/classpath/doc/texi2pod.pl 01b23c87dcf82048a5958c8224653305 libjava/classpath/doc/texinfo.tex b1e0c0c30547d57d7a09b04d47c70b06 libjava/classpath/examples/.cvsignore *************** a40a8f1527e2703fe2f08bf7276d8591 libjav *** 74984,74990 **** 697ca1de35069bd86456a5a19b9c4f11 libjava/libgcj.ver 184718636f014ef2ca46d62ba8d6c3bf libjava/libgcj_bc.c e3eda01d9815f8d24aae2dbd89b68b06 libjava/libltdl/COPYING.LIB ! 1bd8578bcb2c8349d0b2f69db4d5d319 libjava/libltdl/ChangeLog 349267319e3d55dcf180a20f85394144 libjava/libltdl/Makefile.am 930c6383a37e6cc8e0625c9a281eda95 libjava/libltdl/Makefile.in 36da24f9facf00b349ea10dba3789d92 libjava/libltdl/README --- 75181,75187 ---- 697ca1de35069bd86456a5a19b9c4f11 libjava/libgcj.ver 184718636f014ef2ca46d62ba8d6c3bf libjava/libgcj_bc.c e3eda01d9815f8d24aae2dbd89b68b06 libjava/libltdl/COPYING.LIB ! e01186a9328af32b56aa22eb6fd8e1ee libjava/libltdl/ChangeLog 349267319e3d55dcf180a20f85394144 libjava/libltdl/Makefile.am 930c6383a37e6cc8e0625c9a281eda95 libjava/libltdl/Makefile.in 36da24f9facf00b349ea10dba3789d92 libjava/libltdl/README *************** bd41c02d42e4fcef561d88d14c49efc4 libjav *** 75816,75822 **** 4eaec6ec74d70ecea0976f23533030a8 libjava/testsuite/Makefile.am 3ba787898048b29283fac6984043e432 libjava/testsuite/Makefile.in dce80ba7e038ca18591aabc6d3d2582c libjava/testsuite/config/default.exp ! 907c12c20d0293b862b5dc2fa99c4347 libjava/testsuite/lib/libjava.exp 5bc5f3c2b92712d89b8fa8d99293ad20 libjava/testsuite/libjava.cni/PR9577.h 783e9ef77859cbe3613da93348196aa4 libjava/testsuite/libjava.cni/PR9577.jar 1cb376d608ce588877129087d302ad27 libjava/testsuite/libjava.cni/PR9577.java --- 76013,76019 ---- 4eaec6ec74d70ecea0976f23533030a8 libjava/testsuite/Makefile.am 3ba787898048b29283fac6984043e432 libjava/testsuite/Makefile.in dce80ba7e038ca18591aabc6d3d2582c libjava/testsuite/config/default.exp ! 3e5de934096ee73a80706fd9acbff083 libjava/testsuite/lib/libjava.exp 5bc5f3c2b92712d89b8fa8d99293ad20 libjava/testsuite/libjava.cni/PR9577.h 783e9ef77859cbe3613da93348196aa4 libjava/testsuite/libjava.cni/PR9577.jar 1cb376d608ce588877129087d302ad27 libjava/testsuite/libjava.cni/PR9577.java *************** d41d8cd98f00b204e9800998ecf8427e libjav *** 76682,76688 **** 434ac04eb066f5075299583492846410 libjava/verify.cc 355440a0c2fb5e16259d7ae381b37ed5 libjava/win32-threads.cc 434d5e5e91727dec004f0d1d1fab47ec libjava/win32.cc ! 57a7f32af07817aa0d19f9305d1c1be5 libobjc/ChangeLog 5b7fbdee280ee8842f0d92c076996a91 libobjc/Makefile.in e4893352ae160018db798e6ecf5e5378 libobjc/NXConstStr.m 3989d86c4963b58cd68b2584b937e20a libobjc/Object.m --- 76879,76885 ---- 434ac04eb066f5075299583492846410 libjava/verify.cc 355440a0c2fb5e16259d7ae381b37ed5 libjava/win32-threads.cc 434d5e5e91727dec004f0d1d1fab47ec libjava/win32.cc ! bd67b0815c95124bc4836c30f35dfd30 libobjc/ChangeLog 5b7fbdee280ee8842f0d92c076996a91 libobjc/Makefile.in e4893352ae160018db798e6ecf5e5378 libobjc/NXConstStr.m 3989d86c4963b58cd68b2584b937e20a libobjc/Object.m *************** bf68b180d5f82fed7851e900d9c2e00e libobj *** 76740,76746 **** 8824087a6da69f8b39bb0b25a8097646 libobjc/sendmsg.c e6a04cd604bd9234cf63edd367b0d90c libobjc/thr.c a916467b91076e631dd8edb7424769c7 libquadmath/COPYING.LIB ! bb35a9d57d888609ebd21c48b9150f52 libquadmath/ChangeLog 76ca0ca0f1d83d1c11535e45e1044572 libquadmath/Makefile.am e786ca4a729f6b1b34b37c7d15a02ae5 libquadmath/Makefile.in 4c8b4478a1031d129e7cc6b341876b99 libquadmath/acinclude.m4 --- 76937,76943 ---- 8824087a6da69f8b39bb0b25a8097646 libobjc/sendmsg.c e6a04cd604bd9234cf63edd367b0d90c libobjc/thr.c a916467b91076e631dd8edb7424769c7 libquadmath/COPYING.LIB ! 85539852968eaab522a4f676944507e6 libquadmath/ChangeLog 76ca0ca0f1d83d1c11535e45e1044572 libquadmath/Makefile.am e786ca4a729f6b1b34b37c7d15a02ae5 libquadmath/Makefile.in 4c8b4478a1031d129e7cc6b341876b99 libquadmath/acinclude.m4 *************** aece970dd74d47d051257c4d4d1e91fa libqua *** 76748,76754 **** bf09ede5c6d78e3d132bde0f933590d8 libquadmath/config.h.in 0c0336167efb032cecab9dd5ade78d78 libquadmath/configure 29e66c9d2ef7b7621276c63bee20d622 libquadmath/configure.ac ! a27691760e2964b7c14a57f46622026c libquadmath/libquadmath.info 46b44acd71b68faa8a93c7b2a1ea8e0b libquadmath/libquadmath.texi 77280bb7ee423875e03d9c0d34527df6 libquadmath/libtool-version f44065462735b4699d44588271a5f09a libquadmath/math/acoshq.c --- 76945,76951 ---- bf09ede5c6d78e3d132bde0f933590d8 libquadmath/config.h.in 0c0336167efb032cecab9dd5ade78d78 libquadmath/configure 29e66c9d2ef7b7621276c63bee20d622 libquadmath/configure.ac ! c2812117a0c6fb0395c1e032bce1981d libquadmath/libquadmath.info 46b44acd71b68faa8a93c7b2a1ea8e0b libquadmath/libquadmath.texi 77280bb7ee423875e03d9c0d34527df6 libquadmath/libtool-version f44065462735b4699d44588271a5f09a libquadmath/math/acoshq.c *************** e766022f8615b72cbc38335d262e9d3d libqua *** 76871,76877 **** a81cc82679e80c86cfbd5575867450d0 libquadmath/strtod/strtod_l.c da808e110fc09ebd41ebd405790a70df libquadmath/strtod/strtoflt128.c d15a18f7c46ba2add6148edc5b7563c0 libquadmath/strtod/tens_in_limb.c ! a722c60b684d0f98b8cd9685d50833d1 libsanitizer/ChangeLog 0249c37748936faf5b1efd5789587909 libsanitizer/LICENSE.TXT 5c6a385040bdd0ebb0bc0a3498a6f538 libsanitizer/MERGE cd6c39551a9d69f3b38689389e5513be libsanitizer/Makefile.am --- 77068,77074 ---- a81cc82679e80c86cfbd5575867450d0 libquadmath/strtod/strtod_l.c da808e110fc09ebd41ebd405790a70df libquadmath/strtod/strtoflt128.c d15a18f7c46ba2add6148edc5b7563c0 libquadmath/strtod/tens_in_limb.c ! bf1ab0ace158613ac1914c29d64c2696 libsanitizer/ChangeLog 0249c37748936faf5b1efd5789587909 libsanitizer/LICENSE.TXT 5c6a385040bdd0ebb0bc0a3498a6f538 libsanitizer/MERGE cd6c39551a9d69f3b38689389e5513be libsanitizer/Makefile.am *************** d71d401d672fdb0f1568f3a5375fb5b5 libsan *** 76895,76903 **** 8b3a0736dda4686dc3de73e644c60983 libsanitizer/asan/asan_internal.h 514f6881a3d767b78b13bbabb65b07b6 libsanitizer/asan/asan_linux.cc 68b329da9893e34099c7d8ad5cb9c940 libsanitizer/asan/asan_lock.h ! 43219c5319e62de816a064fd81a511f8 libsanitizer/asan/asan_mac.cc ! 96cd38ef91bf4fc91f07347c5b68072b libsanitizer/asan/asan_mac.h ! 4286e24955b7c3c1c4d268b423175ebb libsanitizer/asan/asan_malloc_linux.cc 4fb3bacfba78a399e1b642150ecdfb44 libsanitizer/asan/asan_malloc_mac.cc e5b17726dc3ceb18883fb3a76d0a9b35 libsanitizer/asan/asan_malloc_win.cc a19968e5bedf88b1f208b258304ec760 libsanitizer/asan/asan_mapping.h --- 77092,77100 ---- 8b3a0736dda4686dc3de73e644c60983 libsanitizer/asan/asan_internal.h 514f6881a3d767b78b13bbabb65b07b6 libsanitizer/asan/asan_linux.cc 68b329da9893e34099c7d8ad5cb9c940 libsanitizer/asan/asan_lock.h ! 876597b57b18b49f2caa024dc3e55a8a libsanitizer/asan/asan_mac.cc ! 0c6079e69c9cd96cd252dcdc99e274cd libsanitizer/asan/asan_mac.h ! a45a0684d87ef25aea896678201fa93e libsanitizer/asan/asan_malloc_linux.cc 4fb3bacfba78a399e1b642150ecdfb44 libsanitizer/asan/asan_malloc_mac.cc e5b17726dc3ceb18883fb3a76d0a9b35 libsanitizer/asan/asan_malloc_win.cc a19968e5bedf88b1f208b258304ec760 libsanitizer/asan/asan_mapping.h *************** b5ce42595a9ea1f02cd73595c9bd9366 libsan *** 77094,77100 **** 2219f17a5c8740755ef8e9831cbaa8fe libsanitizer/ubsan/ubsan_type_hash.h e3dd09193c7915da7b4966ed821529c1 libsanitizer/ubsan/ubsan_value.cc b223f4ad4acdcad3f796a2d39e6ff81e libsanitizer/ubsan/ubsan_value.h ! 6706b7f325300d1b047c00a32a0a2efb libssp/ChangeLog 01d9954c400db04da1b8705029e6d9d9 libssp/Makefile.am 6f9651cc4e77f9e7629b0142b05a90e0 libssp/Makefile.in 8b0dd0c2a8b446bf5577a8562ad19885 libssp/aclocal.m4 --- 77291,77297 ---- 2219f17a5c8740755ef8e9831cbaa8fe libsanitizer/ubsan/ubsan_type_hash.h e3dd09193c7915da7b4966ed821529c1 libsanitizer/ubsan/ubsan_value.cc b223f4ad4acdcad3f796a2d39e6ff81e libsanitizer/ubsan/ubsan_value.h ! fcb019b22ee12abe345edeaee9068ccf libssp/ChangeLog 01d9954c400db04da1b8705029e6d9d9 libssp/Makefile.am 6f9651cc4e77f9e7629b0142b05a90e0 libssp/Makefile.in 8b0dd0c2a8b446bf5577a8562ad19885 libssp/aclocal.m4 *************** aeb2f84c5e8ba3215469d507bd2efe57 libssp *** 77123,77129 **** e9ab923d2562bf5f5be6883dfb9f0184 libssp/strncpy-chk.c 5e0d8b8a766c31b12354baec1b7a159c libssp/vsnprintf-chk.c f56ab1f8922a16f7e9e4f5270ae1e34e libssp/vsprintf-chk.c ! eef70e827d2800e718dac9fadf5e6c8e libstdc++-v3/ChangeLog 7aa6c40440a44fcf5ec94c066160c2f8 libstdc++-v3/ChangeLog-1998 7aff86600b6a1ed3fa87305075a92db0 libstdc++-v3/ChangeLog-1999 a6f28e8fc9bb07696a9e068b439a3a87 libstdc++-v3/ChangeLog-2000 --- 77320,77326 ---- e9ab923d2562bf5f5be6883dfb9f0184 libssp/strncpy-chk.c 5e0d8b8a766c31b12354baec1b7a159c libssp/vsnprintf-chk.c f56ab1f8922a16f7e9e4f5270ae1e34e libssp/vsprintf-chk.c ! d3b68a5b2952f4cab20a25a151783293 libstdc++-v3/ChangeLog 7aa6c40440a44fcf5ec94c066160c2f8 libstdc++-v3/ChangeLog-1998 7aff86600b6a1ed3fa87305075a92db0 libstdc++-v3/ChangeLog-1999 a6f28e8fc9bb07696a9e068b439a3a87 libstdc++-v3/ChangeLog-2000 *************** eb9d2fde35220f4aacb111b42ad81ac1 libstd *** 77143,77151 **** 37a81c424d17a7a12bfac05f5ba07864 libstdc++-v3/Makefile.am aa4debf3a9e982bdefc660d3b37f08bc libstdc++-v3/Makefile.in f372af73db4ac0ad88e43199e1f29e08 libstdc++-v3/README ! 5df2d6b8a5af0b5444263a58389a7185 libstdc++-v3/acinclude.m4 8740082679d696cb8e212b6106b77cff libstdc++-v3/aclocal.m4 ! 474aca6c79ccca810ee1693925b3c36d libstdc++-v3/config.h.in 663cd2bbfa447a34ee454623f3532445 libstdc++-v3/config/abi/compatibility.h 46470189daea2767263c77662593167e libstdc++-v3/config/abi/post/alpha-linux-gnu/baseline_symbols.txt aabdea0bca426b80f897335c61dc6c44 libstdc++-v3/config/abi/post/hppa-linux-gnu/baseline_symbols.txt --- 77340,77348 ---- 37a81c424d17a7a12bfac05f5ba07864 libstdc++-v3/Makefile.am aa4debf3a9e982bdefc660d3b37f08bc libstdc++-v3/Makefile.in f372af73db4ac0ad88e43199e1f29e08 libstdc++-v3/README ! 0e7516ea7f291ba4d4d1557bfd9be61f libstdc++-v3/acinclude.m4 8740082679d696cb8e212b6106b77cff libstdc++-v3/aclocal.m4 ! 7ef229b2962410118bf884acb5328168 libstdc++-v3/config.h.in 663cd2bbfa447a34ee454623f3532445 libstdc++-v3/config/abi/compatibility.h 46470189daea2767263c77662593167e libstdc++-v3/config/abi/post/alpha-linux-gnu/baseline_symbols.txt aabdea0bca426b80f897335c61dc6c44 libstdc++-v3/config/abi/post/hppa-linux-gnu/baseline_symbols.txt *************** bbd0d9c8dff9174727aed7ec20a2d075 libstd *** 77318,77325 **** 28f89c281d3bd0ffd2d332a192e56561 libstdc++-v3/config/os/vxworks/ctype_configure_char.cc 81048632431c01bc2d6ea5a6e3eceaa9 libstdc++-v3/config/os/vxworks/ctype_inline.h 0b763fcf9708297aade589be5d9dd84f libstdc++-v3/config/os/vxworks/os_defines.h ! df962e03999dce9fd185ea2f5c95994a libstdc++-v3/configure ! 22c7e66449276f6f40f3d1f3e861a3e8 libstdc++-v3/configure.ac 8e2ea21a666bb7cdafc043cffd9b367e libstdc++-v3/configure.host fdacaed843ab8ade8870caa45c8cbcd0 libstdc++-v3/crossconfig.m4 4c0ea1fd25dccb0a92796dee5a153cba libstdc++-v3/doc/Makefile.am --- 77515,77522 ---- 28f89c281d3bd0ffd2d332a192e56561 libstdc++-v3/config/os/vxworks/ctype_configure_char.cc 81048632431c01bc2d6ea5a6e3eceaa9 libstdc++-v3/config/os/vxworks/ctype_inline.h 0b763fcf9708297aade589be5d9dd84f libstdc++-v3/config/os/vxworks/os_defines.h ! 87305c0c7113dbccdb3ccec9a8ea10d1 libstdc++-v3/configure ! ad0ed2ad3f4da111c949cc26c4bcceb3 libstdc++-v3/configure.ac 8e2ea21a666bb7cdafc043cffd9b367e libstdc++-v3/configure.host fdacaed843ab8ade8870caa45c8cbcd0 libstdc++-v3/crossconfig.m4 4c0ea1fd25dccb0a92796dee5a153cba libstdc++-v3/doc/Makefile.am *************** baa7104b1a90536ac7f79c4d0e86586a libstd *** 77770,77781 **** 3810bcb3cd2be79db2cb2375d6cf451f libstdc++-v3/include/backward/hashtable.h e07e5910e4f67f7d3954f14acbbe82bf libstdc++-v3/include/backward/strstream 7d6a9164dfec3353e96eb66f1cd100dd libstdc++-v3/include/bits/algorithmfwd.h ! 3ee21274c82bf6d90e6ca80b63401a8a libstdc++-v3/include/bits/alloc_traits.h 3baa22df5a9dd15db077741ada4a4013 libstdc++-v3/include/bits/allocator.h fb2612ff10d0e5c69d38948cb59ded2b libstdc++-v3/include/bits/atomic_base.h b6445094d338168182501d1fc887398a libstdc++-v3/include/bits/basic_ios.h ea81f0a9b986c057f49b7b07a4669304 libstdc++-v3/include/bits/basic_ios.tcc ! d9fed6e70ae5a6342483a0f5c4aacd5c libstdc++-v3/include/bits/basic_string.h 3ff87e8d8f6ca5e8c67e58507c05cd04 libstdc++-v3/include/bits/basic_string.tcc 590f3a16f3728c037952220e109916d9 libstdc++-v3/include/bits/boost_concept_check.h 6c592610e7707c2be6ac72bb374a60a0 libstdc++-v3/include/bits/c++0x_warning.h --- 77967,77978 ---- 3810bcb3cd2be79db2cb2375d6cf451f libstdc++-v3/include/backward/hashtable.h e07e5910e4f67f7d3954f14acbbe82bf libstdc++-v3/include/backward/strstream 7d6a9164dfec3353e96eb66f1cd100dd libstdc++-v3/include/bits/algorithmfwd.h ! da04e0bbe6d318a5ac27f2d00c9aae03 libstdc++-v3/include/bits/alloc_traits.h 3baa22df5a9dd15db077741ada4a4013 libstdc++-v3/include/bits/allocator.h fb2612ff10d0e5c69d38948cb59ded2b libstdc++-v3/include/bits/atomic_base.h b6445094d338168182501d1fc887398a libstdc++-v3/include/bits/basic_ios.h ea81f0a9b986c057f49b7b07a4669304 libstdc++-v3/include/bits/basic_ios.tcc ! 56f5d233e509de8430455637a22a6369 libstdc++-v3/include/bits/basic_string.h 3ff87e8d8f6ca5e8c67e58507c05cd04 libstdc++-v3/include/bits/basic_string.tcc 590f3a16f3728c037952220e109916d9 libstdc++-v3/include/bits/boost_concept_check.h 6c592610e7707c2be6ac72bb374a60a0 libstdc++-v3/include/bits/c++0x_warning.h *************** fa4fc451d4d980056e5bb42f077d30d1 libstd *** 77823,77842 **** 7434b1eab512fbc1f5fa69a5d8a6a7fd libstdc++-v3/include/bits/regex.tcc 373a94fd87da4362c71ba2d3ac8076ce libstdc++-v3/include/bits/regex_automaton.h 0e859039cfef2b8e10086955d682f645 libstdc++-v3/include/bits/regex_automaton.tcc ! 7716da7c0ec2d3b9a6ad377e8589da09 libstdc++-v3/include/bits/regex_compiler.h ! 766fe18c94c9b8fc3ebf2f933f632a0d libstdc++-v3/include/bits/regex_compiler.tcc fcf411de1eb0b855de59fa82d47ed503 libstdc++-v3/include/bits/regex_constants.h 267e61d65dd573a232e4794b8a41c090 libstdc++-v3/include/bits/regex_error.h 87657e7a2c416958809f7ddbeb0340c0 libstdc++-v3/include/bits/regex_executor.h ! 3b1558e0273b8cdb32b3f8375a90bd20 libstdc++-v3/include/bits/regex_executor.tcc 40d92d78e2e4d68bd737a1c39f1e8c9a libstdc++-v3/include/bits/regex_scanner.h ! cb07487a8c867ffe44908705172d1d83 libstdc++-v3/include/bits/regex_scanner.tcc ! ebd42997721b883b0c545520f6e1923d libstdc++-v3/include/bits/shared_ptr.h ! 73934af07bbc86b6572b24058ba7f506 libstdc++-v3/include/bits/shared_ptr_base.h 6a86488bbca653f3a59bb8fa94b4e8a2 libstdc++-v3/include/bits/slice_array.h 6571ee6b9bcceaf19c56c7480d662850 libstdc++-v3/include/bits/sstream.tcc 9b7115fc3113f214683a015988549abc libstdc++-v3/include/bits/stl_algo.h ! 5c48b11991e2f15f9eb042d35a3b6a09 libstdc++-v3/include/bits/stl_algobase.h 1ba291a04351a3832bce9f025fd84563 libstdc++-v3/include/bits/stl_bvector.h 34a7c37664b072206561cd7564b4ed96 libstdc++-v3/include/bits/stl_construct.h 31b2e6563922b13c61f34302db1e0895 libstdc++-v3/include/bits/stl_deque.h --- 78020,78039 ---- 7434b1eab512fbc1f5fa69a5d8a6a7fd libstdc++-v3/include/bits/regex.tcc 373a94fd87da4362c71ba2d3ac8076ce libstdc++-v3/include/bits/regex_automaton.h 0e859039cfef2b8e10086955d682f645 libstdc++-v3/include/bits/regex_automaton.tcc ! 5a54928ba78a55719346600a42bc088f libstdc++-v3/include/bits/regex_compiler.h ! a704521532e76ff3303318b3c4ba21a3 libstdc++-v3/include/bits/regex_compiler.tcc fcf411de1eb0b855de59fa82d47ed503 libstdc++-v3/include/bits/regex_constants.h 267e61d65dd573a232e4794b8a41c090 libstdc++-v3/include/bits/regex_error.h 87657e7a2c416958809f7ddbeb0340c0 libstdc++-v3/include/bits/regex_executor.h ! cdc1bd82c10f079c9486cc47b4b615bc libstdc++-v3/include/bits/regex_executor.tcc 40d92d78e2e4d68bd737a1c39f1e8c9a libstdc++-v3/include/bits/regex_scanner.h ! 52fb452591fb9320b31a48a603b4ad80 libstdc++-v3/include/bits/regex_scanner.tcc ! c82ca7cf84c349720434394936971bdd libstdc++-v3/include/bits/shared_ptr.h ! 29a133b49b9bad8b796923f695e34719 libstdc++-v3/include/bits/shared_ptr_base.h 6a86488bbca653f3a59bb8fa94b4e8a2 libstdc++-v3/include/bits/slice_array.h 6571ee6b9bcceaf19c56c7480d662850 libstdc++-v3/include/bits/sstream.tcc 9b7115fc3113f214683a015988549abc libstdc++-v3/include/bits/stl_algo.h ! dc3720de53332a466fd13580f3f433a7 libstdc++-v3/include/bits/stl_algobase.h 1ba291a04351a3832bce9f025fd84563 libstdc++-v3/include/bits/stl_bvector.h 34a7c37664b072206561cd7564b4ed96 libstdc++-v3/include/bits/stl_construct.h 31b2e6563922b13c61f34302db1e0895 libstdc++-v3/include/bits/stl_deque.h *************** ffe4b2ce633d829846436fb65cfa1510 libstd *** 77871,77877 **** 311a6bc9370528e0e520aa53100a0f91 libstdc++-v3/include/bits/valarray_after.h 918fb95f55f1fe8f78197411d268b5c1 libstdc++-v3/include/bits/valarray_array.h 4a627b9075252068afa8da4696a387fc libstdc++-v3/include/bits/valarray_array.tcc ! 485a0086425b2772da4e15fd41433c43 libstdc++-v3/include/bits/valarray_before.h ede724134d0418a65d57478accb50bdd libstdc++-v3/include/bits/vector.tcc c2ea3321ad369e72704e3afde6828ecb libstdc++-v3/include/c/cassert ae6a534cd39eaec2a78f42fcf9df0039 libstdc++-v3/include/c/cctype --- 78068,78074 ---- 311a6bc9370528e0e520aa53100a0f91 libstdc++-v3/include/bits/valarray_after.h 918fb95f55f1fe8f78197411d268b5c1 libstdc++-v3/include/bits/valarray_array.h 4a627b9075252068afa8da4696a387fc libstdc++-v3/include/bits/valarray_array.tcc ! ef38d871c2d0e613c80a376d49ea3285 libstdc++-v3/include/bits/valarray_before.h ede724134d0418a65d57478accb50bdd libstdc++-v3/include/bits/vector.tcc c2ea3321ad369e72704e3afde6828ecb libstdc++-v3/include/c/cassert ae6a534cd39eaec2a78f42fcf9df0039 libstdc++-v3/include/c/cctype *************** a145a8a582eca8298bbd0ba873122e97 libstd *** 77925,77931 **** 36c784a542be7df77426b31eaf1db0f8 libstdc++-v3/include/c_global/ciso646 4612e30352991a85fd6367edc57b23e6 libstdc++-v3/include/c_global/climits 62a31f9ce825f760ecd4be6edbfb9381 libstdc++-v3/include/c_global/clocale ! c997fdba96e98230d9214d268802f8a2 libstdc++-v3/include/c_global/cmath 5f31472d588a6bcee3918698d9a018a6 libstdc++-v3/include/c_global/csetjmp a26ee4dd068e455a0d7df67041c5e129 libstdc++-v3/include/c_global/csignal 34a5549c4c53ffd5921232c472576ebe libstdc++-v3/include/c_global/cstdalign --- 78122,78128 ---- 36c784a542be7df77426b31eaf1db0f8 libstdc++-v3/include/c_global/ciso646 4612e30352991a85fd6367edc57b23e6 libstdc++-v3/include/c_global/climits 62a31f9ce825f760ecd4be6edbfb9381 libstdc++-v3/include/c_global/clocale ! 13991a066449418a9d11cc1fc5daa706 libstdc++-v3/include/c_global/cmath 5f31472d588a6bcee3918698d9a018a6 libstdc++-v3/include/c_global/csetjmp a26ee4dd068e455a0d7df67041c5e129 libstdc++-v3/include/c_global/csignal 34a5549c4c53ffd5921232c472576ebe libstdc++-v3/include/c_global/cstdalign *************** c38d82cba15a7ef449b95904da97addd libstd *** 78363,78369 **** bdd91fa0453fe14cc18653b7dc6927f2 libstdc++-v3/include/std/deque 99ccf219bea076709ff5aa261b1e2d48 libstdc++-v3/include/std/forward_list 597cc52c077c63f1fdddbfa95c4bdf1f libstdc++-v3/include/std/fstream ! 1f66916e04ecf51c5411f9ec534b9b50 libstdc++-v3/include/std/functional 5ff52943442cbbeb265356c679bbe48e libstdc++-v3/include/std/future 7bb240227a6b0f384400781bce9b0523 libstdc++-v3/include/std/iomanip 0c0f52522245aad5244a12ae2e638253 libstdc++-v3/include/std/ios --- 78560,78566 ---- bdd91fa0453fe14cc18653b7dc6927f2 libstdc++-v3/include/std/deque 99ccf219bea076709ff5aa261b1e2d48 libstdc++-v3/include/std/forward_list 597cc52c077c63f1fdddbfa95c4bdf1f libstdc++-v3/include/std/fstream ! 2e6695d0e85664fb106bab63924ac288 libstdc++-v3/include/std/functional 5ff52943442cbbeb265356c679bbe48e libstdc++-v3/include/std/future 7bb240227a6b0f384400781bce9b0523 libstdc++-v3/include/std/iomanip 0c0f52522245aad5244a12ae2e638253 libstdc++-v3/include/std/ios *************** fbbbc19313c67c97d641d0ae680beefb libstd *** 78410,78416 **** 9b38b763e615ac26f36b654125229faa libstdc++-v3/include/tr1/cfloat fc0ea7d07be6888ab7b0ad82a3e9cd21 libstdc++-v3/include/tr1/cinttypes 8c5dc0a8d9e6d86a5acc913ba6727090 libstdc++-v3/include/tr1/climits ! 77399187fec99d2a01f69b102fbc7dde libstdc++-v3/include/tr1/cmath 41a81e4c1a120392109156cd3d68de9d libstdc++-v3/include/tr1/complex ab11d54636d7381f285e8ed03ec59b80 libstdc++-v3/include/tr1/complex.h 3838987e7194d32371b90b898012c57c libstdc++-v3/include/tr1/cstdarg --- 78607,78613 ---- 9b38b763e615ac26f36b654125229faa libstdc++-v3/include/tr1/cfloat fc0ea7d07be6888ab7b0ad82a3e9cd21 libstdc++-v3/include/tr1/cinttypes 8c5dc0a8d9e6d86a5acc913ba6727090 libstdc++-v3/include/tr1/climits ! dde40536f36fe92e16700f2af74bb2ca libstdc++-v3/include/tr1/cmath 41a81e4c1a120392109156cd3d68de9d libstdc++-v3/include/tr1/complex ab11d54636d7381f285e8ed03ec59b80 libstdc++-v3/include/tr1/complex.h 3838987e7194d32371b90b898012c57c libstdc++-v3/include/tr1/cstdarg *************** e9a1a58fb291a11132115964d01c0c4a libstd *** 78496,78502 **** 66b16e7e18077a52167d0aec58b5dcb5 libstdc++-v3/libsupc++/eh_exception.cc 30543fbed39a5922ac2ecfcd1ecf02bb libstdc++-v3/libsupc++/eh_globals.cc 5761ea391b1bb7ec734d5ed66d70544d libstdc++-v3/libsupc++/eh_personality.cc ! 0f210a7ba25a226b04923566a6925d81 libstdc++-v3/libsupc++/eh_ptr.cc 04bd96078b6c72d2aa5c465d5364886a libstdc++-v3/libsupc++/eh_term_handler.cc bb6ebbde47c0f1a4b95c1ba5fefe19e7 libstdc++-v3/libsupc++/eh_terminate.cc 153d425fd4d1f34315f3cbb48d121db9 libstdc++-v3/libsupc++/eh_throw.cc --- 78693,78699 ---- 66b16e7e18077a52167d0aec58b5dcb5 libstdc++-v3/libsupc++/eh_exception.cc 30543fbed39a5922ac2ecfcd1ecf02bb libstdc++-v3/libsupc++/eh_globals.cc 5761ea391b1bb7ec734d5ed66d70544d libstdc++-v3/libsupc++/eh_personality.cc ! ae17f0040ef81a43f72f4137f220e480 libstdc++-v3/libsupc++/eh_ptr.cc 04bd96078b6c72d2aa5c465d5364886a libstdc++-v3/libsupc++/eh_term_handler.cc bb6ebbde47c0f1a4b95c1ba5fefe19e7 libstdc++-v3/libsupc++/eh_terminate.cc 153d425fd4d1f34315f3cbb48d121db9 libstdc++-v3/libsupc++/eh_throw.cc *************** a4587ade1bbb87a92d604681a1c311ae libstd *** 78583,78595 **** 45cfc6520eb3426f5e75e4c635fe5a05 libstdc++-v3/src/c++11/limits.cc 77b90b60f5257e48a1cc8d435bf48008 libstdc++-v3/src/c++11/mutex.cc 050002ca45dc60dce1a60b04070856c2 libstdc++-v3/src/c++11/placeholders.cc ! 6712f49c2a01ec0a51ab1841768401fd libstdc++-v3/src/c++11/random.cc 3da0037728cbd9bbf36756cc740a40b7 libstdc++-v3/src/c++11/regex.cc 2d2f4728760a60ebe54b65e1e21924d2 libstdc++-v3/src/c++11/shared_ptr.cc 561414cffc295fd752cabfc18a056120 libstdc++-v3/src/c++11/snprintf_lite.cc f8513b1388d2cea07f8cedf9fb2b23c5 libstdc++-v3/src/c++11/string-inst.cc 4405ce00bb1926972ae03f2598bf8eb1 libstdc++-v3/src/c++11/system_error.cc ! 074eba25ae21e741b9e39a3a64338631 libstdc++-v3/src/c++11/thread.cc 56809c3688a11b661e80a09919c1a43c libstdc++-v3/src/c++11/wstring-inst.cc c1d5b43ab8a99653cb83aaf16c37cfb9 libstdc++-v3/src/c++98/Makefile.am 3f9f0286be9cee8ac86de3f1a2efef22 libstdc++-v3/src/c++98/Makefile.in --- 78780,78792 ---- 45cfc6520eb3426f5e75e4c635fe5a05 libstdc++-v3/src/c++11/limits.cc 77b90b60f5257e48a1cc8d435bf48008 libstdc++-v3/src/c++11/mutex.cc 050002ca45dc60dce1a60b04070856c2 libstdc++-v3/src/c++11/placeholders.cc ! 2e8ef14136427d4b686c3459a51bdb85 libstdc++-v3/src/c++11/random.cc 3da0037728cbd9bbf36756cc740a40b7 libstdc++-v3/src/c++11/regex.cc 2d2f4728760a60ebe54b65e1e21924d2 libstdc++-v3/src/c++11/shared_ptr.cc 561414cffc295fd752cabfc18a056120 libstdc++-v3/src/c++11/snprintf_lite.cc f8513b1388d2cea07f8cedf9fb2b23c5 libstdc++-v3/src/c++11/string-inst.cc 4405ce00bb1926972ae03f2598bf8eb1 libstdc++-v3/src/c++11/system_error.cc ! bfb91f5074981b8394417097ab259237 libstdc++-v3/src/c++11/thread.cc 56809c3688a11b661e80a09919c1a43c libstdc++-v3/src/c++11/wstring-inst.cc c1d5b43ab8a99653cb83aaf16c37cfb9 libstdc++-v3/src/c++98/Makefile.am 3f9f0286be9cee8ac86de3f1a2efef22 libstdc++-v3/src/c++98/Makefile.in *************** b6b76bddd6e2ea7032312b77fc532302 libstd *** 78682,78687 **** --- 78879,78885 ---- 7bf575f393ab54838d9b08a8036595ff libstdc++-v3/testsuite/18_support/exception_ptr/40296.cc 941be8e80a2056ef4bc571f514b876b4 libstdc++-v3/testsuite/18_support/exception_ptr/60612-terminate.cc 7f0c7c53d19c14d7682c7d2583ed2e74 libstdc++-v3/testsuite/18_support/exception_ptr/60612-unexpected.cc + fbbe2424fd2caa3328661dbc642b30fb libstdc++-v3/testsuite/18_support/exception_ptr/62258.cc babb75b918f5bb92343944df1939d0ba libstdc++-v3/testsuite/18_support/exception_ptr/current_exception.cc b263b1f61ee03bf16dfef46b97ac810f libstdc++-v3/testsuite/18_support/exception_ptr/lifespan.cc 1676ff4ea9eebb464c7c7e450094a2be libstdc++-v3/testsuite/18_support/exception_ptr/make_exception_ptr.cc *************** dffee871c586b094ce51d2b87cfc73d4 libstd *** 78864,78869 **** --- 79062,79068 ---- 386a18079b24cecab0987b69dc3a47d9 libstdc++-v3/testsuite/20_util/bind/49058_1.cc 72b9725aa330095b6961dda28493e9bb libstdc++-v3/testsuite/20_util/bind/49058_2.cc 3c67a7b5a69a9e643f641c3dad23dec7 libstdc++-v3/testsuite/20_util/bind/57899.cc + 2dace2ababf2e4a5b72a0a03d0cb59aa libstdc++-v3/testsuite/20_util/bind/68912.cc 0e0bff1d4be5b3170531641b7c7b8365 libstdc++-v3/testsuite/20_util/bind/all_bound.cc 88ded2383c431b31fffc8c4789b7ee19 libstdc++-v3/testsuite/20_util/bind/conv_result.cc fd31fde570556853ad024229feb3fe60 libstdc++-v3/testsuite/20_util/bind/cv_quals.cc *************** ad3ff3be46852d8363e6427f72c3f7f6 libstd *** 78923,78928 **** --- 79122,79128 ---- d2ba7a44d01f7cddd61aa21e93144fa9 libstdc++-v3/testsuite/20_util/enable_if/requirements/typedefs-2.cc ba04697fcd5f490ad2933e6ebeeadea7 libstdc++-v3/testsuite/20_util/enable_if/requirements/typedefs.cc 0d98d41894c4d5b4372f4c86c2225470 libstdc++-v3/testsuite/20_util/enable_if/requirements/typedefs_neg.cc + d6cde4204362eb5f070c0e5dea2e9fe1 libstdc++-v3/testsuite/20_util/enable_shared_from_this/56383.cc 00e3e28b4c275acbbc23de82f90ed3a3 libstdc++-v3/testsuite/20_util/enable_shared_from_this/cons/constexpr.cc f70796cc82158d466179b84c7efef718 libstdc++-v3/testsuite/20_util/enable_shared_from_this/members/assign.cc a294192b95069cd1825213fed718554c libstdc++-v3/testsuite/20_util/enable_shared_from_this/members/unique_ptr.cc *************** d9ab7a7f1b9b6b6acfc774735e8ae71d libstd *** 78952,78957 **** --- 79152,79158 ---- 9e3c0cf22572df7b8cfad07710c111c9 libstdc++-v3/testsuite/20_util/function/6.cc fabfe76dc30b13e696bbaf0d3da99caf libstdc++-v3/testsuite/20_util/function/60594.cc 3305b3cbdd4c907260077f59225aaafa libstdc++-v3/testsuite/20_util/function/63840.cc + a1dbb251ff9c5f915028cff1d9456eb8 libstdc++-v3/testsuite/20_util/function/68995.cc 0366f931515bb0f27522d8f32613581b libstdc++-v3/testsuite/20_util/function/7.cc 9ace4aecb05784929a870023e72fa190 libstdc++-v3/testsuite/20_util/function/8.cc 9a4341f79b42e1f66f3258b878bc6cd5 libstdc++-v3/testsuite/20_util/function/9.cc *************** ad00ade7e7b678c031a00a6371c5120d libstd *** 79312,79318 **** 1a75cb7539c7f140f29577b83f094999 libstdc++-v3/testsuite/20_util/shared_ptr/cons/51365.cc 6e4b7d0715431126a4fa450e6f94b33f libstdc++-v3/testsuite/20_util/shared_ptr/cons/52924.cc 5d0781c37d398f45d346557df8346d0a libstdc++-v3/testsuite/20_util/shared_ptr/cons/55123.cc ! 72be9b573ae9730908ba49362a208f32 libstdc++-v3/testsuite/20_util/shared_ptr/cons/58659.cc e47350c38a5a123564392ac3d8070833 libstdc++-v3/testsuite/20_util/shared_ptr/cons/58839.cc 18099d5eb630735b727ff66874b6b79a libstdc++-v3/testsuite/20_util/shared_ptr/cons/61036.cc 56294d2ef9d9d9fd6f7c992ac3c7abff libstdc++-v3/testsuite/20_util/shared_ptr/cons/alias.cc --- 79513,79519 ---- 1a75cb7539c7f140f29577b83f094999 libstdc++-v3/testsuite/20_util/shared_ptr/cons/51365.cc 6e4b7d0715431126a4fa450e6f94b33f libstdc++-v3/testsuite/20_util/shared_ptr/cons/52924.cc 5d0781c37d398f45d346557df8346d0a libstdc++-v3/testsuite/20_util/shared_ptr/cons/55123.cc ! b8f06efda0d3fff6e07c6a23a2e4141d libstdc++-v3/testsuite/20_util/shared_ptr/cons/58659.cc e47350c38a5a123564392ac3d8070833 libstdc++-v3/testsuite/20_util/shared_ptr/cons/58839.cc 18099d5eb630735b727ff66874b6b79a libstdc++-v3/testsuite/20_util/shared_ptr/cons/61036.cc 56294d2ef9d9d9fd6f7c992ac3c7abff libstdc++-v3/testsuite/20_util/shared_ptr/cons/alias.cc *************** f387a9d210dfbaf2ddfaf316d57416a7 libstd *** 79508,79513 **** --- 79709,79715 ---- 6989d4baef43d3945ce0eae4fa4be8b2 libstdc++-v3/testsuite/21_strings/basic_string/cons/char/42261.cc a1fe6ad73089368e04457f9ca45e438d libstdc++-v3/testsuite/21_strings/basic_string/cons/char/5.cc c83f54067b226c0f98608b0edf265f9f libstdc++-v3/testsuite/21_strings/basic_string/cons/char/6.cc + 6249cbde042f1e982e125e3d80cdf61c libstdc++-v3/testsuite/21_strings/basic_string/cons/char/69092.cc 54ee752c0d5dd92be244f92f50cc925e libstdc++-v3/testsuite/21_strings/basic_string/cons/char/moveable.cc 37144d8725768e1cfa960b43b71d798f libstdc++-v3/testsuite/21_strings/basic_string/cons/char/moveable2.cc 6236dcd314924650875b6392ce08d1c1 libstdc++-v3/testsuite/21_strings/basic_string/cons/char/noexcept_move_construct.cc *************** d378617e0a90e4c71ac215b76154a06f libstd *** 81414,81419 **** --- 81616,81622 ---- 06d98e478b6f539bd453b8946a65b67b libstdc++-v3/testsuite/25_algorithms/copy/58982.cc 70b84975b3aa51e7458218afca536327 libstdc++-v3/testsuite/25_algorithms/copy/deque_iterators/1.cc 51f5c270a051a1d8de938743eb05cb4f libstdc++-v3/testsuite/25_algorithms/copy/move_iterators/1.cc + 7f42017a219d412750b48669c4f4b988 libstdc++-v3/testsuite/25_algorithms/copy/move_iterators/69478.cc ac8a131ff3b503c9c66ccc5d8ab010e6 libstdc++-v3/testsuite/25_algorithms/copy/requirements/explicit_instantiation/2.cc 6bd9a986ab187be8ba21555696c738fd libstdc++-v3/testsuite/25_algorithms/copy/requirements/explicit_instantiation/pod.cc 08679a08f118e9022ba3d0c3ebd2da64 libstdc++-v3/testsuite/25_algorithms/copy/streambuf_iterators/char/1.cc *************** a19cecd2058c3937d69ea61b9b5c822b libstd *** 81426,81431 **** --- 81629,81635 ---- 4c332958866aab2e8976979cbfdf2d36 libstdc++-v3/testsuite/25_algorithms/copy/streambuf_iterators/wchar_t/4.cc 05a092a74fa4961f8ac5ef713b3e8a90 libstdc++-v3/testsuite/25_algorithms/copy_backward/deque_iterators/1.cc 97f1a94c50c555e26e3f31d05088dff6 libstdc++-v3/testsuite/25_algorithms/copy_backward/move_iterators/1.cc + be7d2c3b385652ff53302b88d8bcf82d libstdc++-v3/testsuite/25_algorithms/copy_backward/move_iterators/69478.cc d51efbbf2b6b7631610124e4a9f4fed6 libstdc++-v3/testsuite/25_algorithms/copy_backward/requirements/explicit_instantiation/2.cc f128978ff5506852f582c413a02f9701 libstdc++-v3/testsuite/25_algorithms/copy_backward/requirements/explicit_instantiation/pod.cc b7e41729ba5ab4db4bfb4fb6d3190f86 libstdc++-v3/testsuite/25_algorithms/copy_if/check_type.cc *************** a5c1b3251c3b88b9d2b3628c8431be20 libstd *** 81620,81629 **** --- 81824,81835 ---- fc261ab024295da9099c60c9329890cb libstdc++-v3/testsuite/25_algorithms/mismatch/check_type.cc a582b5c520e98ccf1947ba697f974963 libstdc++-v3/testsuite/25_algorithms/mismatch/check_type2.cc 65a886f9ac97e445c7e9622091fbc346 libstdc++-v3/testsuite/25_algorithms/move/1.cc + ec41b8bd29342ff1425a7b9b8c3b3543 libstdc++-v3/testsuite/25_algorithms/move/69478.cc 802372a78af8f151ef47a89819bf540d libstdc++-v3/testsuite/25_algorithms/move/deque_iterators/1.cc 6f184881e9aa01e3a74d4683a2bdfcfc libstdc++-v3/testsuite/25_algorithms/move/requirements/explicit_instantiation/2.cc 5a740e4d78630e10ce297b28a1d4d393 libstdc++-v3/testsuite/25_algorithms/move/requirements/explicit_instantiation/pod.cc 8b195c6529bea4b62e9ea6e72f71acc5 libstdc++-v3/testsuite/25_algorithms/move_backward/1.cc + bb4f7300d96d6d79886c46c6fda12095 libstdc++-v3/testsuite/25_algorithms/move_backward/69478.cc 639a1621e81c98b6eda4d20625950ef1 libstdc++-v3/testsuite/25_algorithms/move_backward/deque_iterators/1.cc 7869a4def3920a9b0c2b6c521833f3ef libstdc++-v3/testsuite/25_algorithms/move_backward/requirements/explicit_instantiation/2.cc ac931ae107f5532660065593faad5ae5 libstdc++-v3/testsuite/25_algorithms/move_backward/requirements/explicit_instantiation/pod.cc *************** aeff256971b3b19ee4209f936b845f3e libstd *** 81862,81870 **** fe91a225afd57b9e36c80aa71339f0c5 libstdc++-v3/testsuite/26_numerics/headers/cmath/37582.cc 226b767a8ff6b0b77e49244c4bb57b86 libstdc++-v3/testsuite/26_numerics/headers/cmath/51083.cc f332387ebc0af24eb41d3ab74ed18e2b libstdc++-v3/testsuite/26_numerics/headers/cmath/53503.cc d243e353a4b18189b40463b745e58913 libstdc++-v3/testsuite/26_numerics/headers/cmath/c99_classification_macros_c++.cc 0eb18bf89acccaf8f52c9a8cd8ed2bb1 libstdc++-v3/testsuite/26_numerics/headers/cmath/c99_classification_macros_c++0x.cc ! d1fec5980c4a5c7adf1cd81f078f0290 libstdc++-v3/testsuite/26_numerics/headers/cmath/c99_classification_macros_c.cc 52be78422d8306c8d8fe1a94b072c436 libstdc++-v3/testsuite/26_numerics/headers/cmath/c_math.cc 06cc746151452df098c0283f38eece32 libstdc++-v3/testsuite/26_numerics/headers/cmath/c_math_dynamic.cc 690533a0a1513932fca8b112b22a29ba libstdc++-v3/testsuite/26_numerics/headers/cmath/dr550.cc --- 82068,82077 ---- fe91a225afd57b9e36c80aa71339f0c5 libstdc++-v3/testsuite/26_numerics/headers/cmath/37582.cc 226b767a8ff6b0b77e49244c4bb57b86 libstdc++-v3/testsuite/26_numerics/headers/cmath/51083.cc f332387ebc0af24eb41d3ab74ed18e2b libstdc++-v3/testsuite/26_numerics/headers/cmath/53503.cc + bd60265265c123d189df265dd32f3138 libstdc++-v3/testsuite/26_numerics/headers/cmath/60637.cc d243e353a4b18189b40463b745e58913 libstdc++-v3/testsuite/26_numerics/headers/cmath/c99_classification_macros_c++.cc 0eb18bf89acccaf8f52c9a8cd8ed2bb1 libstdc++-v3/testsuite/26_numerics/headers/cmath/c99_classification_macros_c++0x.cc ! a0c77d27b4b38d730f4952822c6200c4 libstdc++-v3/testsuite/26_numerics/headers/cmath/c99_classification_macros_c.cc 52be78422d8306c8d8fe1a94b072c436 libstdc++-v3/testsuite/26_numerics/headers/cmath/c_math.cc 06cc746151452df098c0283f38eece32 libstdc++-v3/testsuite/26_numerics/headers/cmath/c_math_dynamic.cc 690533a0a1513932fca8b112b22a29ba libstdc++-v3/testsuite/26_numerics/headers/cmath/dr550.cc *************** c2bd3af5eff4ce9f69717e23ef96a1da libstd *** 82169,82174 **** --- 82376,82382 ---- 25faf504b87d5101994883b7cd8fd87c libstdc++-v3/testsuite/26_numerics/valarray/30416.cc 057607a27b7217d5f2f29568bfc4e1f5 libstdc++-v3/testsuite/26_numerics/valarray/33084.cc bf2f7f97fd20e26ec765d1be54553ec9 libstdc++-v3/testsuite/26_numerics/valarray/40691.cc + 826c510e66bba5918e9e652f75565d3d libstdc++-v3/testsuite/26_numerics/valarray/69116.cc 47c42cb819d555e4313e9bd3df478783 libstdc++-v3/testsuite/26_numerics/valarray/algo.cc 3e191d68e11822f58de5e4bd15365ca5 libstdc++-v3/testsuite/26_numerics/valarray/binary_closure.cc 94e3313aebdff6e4496404bbb2d5ae4a libstdc++-v3/testsuite/26_numerics/valarray/const_bracket.cc *************** df236aba0e0905993f7257f97196e21e libstd *** 83074,83083 **** 0c6747e250f155b5e1d43bb0f8ef40b8 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/basic/string_range_00_03.cc 83f7459ad50adfbaca6f655709534bc0 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/basic/string_range_01_03.cc bfdfefe57656667ebcc8df3bdf255796 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/basic/string_range_02_03.cc ! 3649ca590c1496075d6a6dcbe5d6a5e0 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/cstring_bracket_01.cc a61eee397025bf99c815aef958edce6b libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/53622.cc 7e4e5e7d0a959dc08b6c230c4db612ba libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/57173.cc 44818d0e77ef5c0c64f43b48f0206e7c libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/58576.cc 2dde0afb4291f234499243b53063ab91 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/anymatcher.cc 26febabe2ef79fbc91dbfe54dc6a47dc libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/backref.cc a8df08852135acfce31d7a69db7f20b3 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/empty_range.cc --- 83282,83292 ---- 0c6747e250f155b5e1d43bb0f8ef40b8 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/basic/string_range_00_03.cc 83f7459ad50adfbaca6f655709534bc0 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/basic/string_range_01_03.cc bfdfefe57656667ebcc8df3bdf255796 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/basic/string_range_02_03.cc ! 89a647b38bb7d6eb963f530d35046dd3 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/cstring_bracket_01.cc a61eee397025bf99c815aef958edce6b libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/53622.cc 7e4e5e7d0a959dc08b6c230c4db612ba libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/57173.cc 44818d0e77ef5c0c64f43b48f0206e7c libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/58576.cc + 73accf3e3a61cce1a874db316e633ad4 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/68863.cc 2dde0afb4291f234499243b53063ab91 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/anymatcher.cc 26febabe2ef79fbc91dbfe54dc6a47dc libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/backref.cc a8df08852135acfce31d7a69db7f20b3 libstdc++-v3/testsuite/28_regex/algorithms/regex_match/ecma/char/empty_range.cc *************** e010c18a27e8cc55dd19b78d83e42309 libstd *** 83172,83177 **** --- 83381,83387 ---- dc0cd1e0feb3ade1e96a6f6cac913d88 libstdc++-v3/testsuite/28_regex/match_results/typedefs.cc 0082fe40ff69c089d9bb559965151562 libstdc++-v3/testsuite/28_regex/range_access.cc 98583b137f9421b13b79c73875d9b804 libstdc++-v3/testsuite/28_regex/regex_error/regex_error.cc + 23cb11a783af63321966bd02ca7d9edd libstdc++-v3/testsuite/28_regex/regression.cc 383f6f8063afc043d01ad93b66dc7050 libstdc++-v3/testsuite/28_regex/requirements/typedefs.cc 72d10977feca93bea9cbf77a50afdde9 libstdc++-v3/testsuite/28_regex/sub_match/cast_char.cc faf6434f8dd833470a9c23075e9c328f libstdc++-v3/testsuite/28_regex/sub_match/cast_wchar_t.cc *************** fe71ca9cef7e3ebee4e1ebb285e35be3 libstd *** 83442,83447 **** --- 83652,83658 ---- 63fab6df4806c0e6fd0c4763bd21ec65 libstdc++-v3/testsuite/30_threads/this_thread/4.cc dfa67bced0d008bfbdea596073619cd8 libstdc++-v3/testsuite/30_threads/this_thread/58038.cc 9a06ffb70c4ead24c42fa33ffb2c0667 libstdc++-v3/testsuite/30_threads/this_thread/60421.cc + 439bc42ab5ff327022f82723c1149acb libstdc++-v3/testsuite/30_threads/thread/70503.cc 1c71fe3895e30875a087f7b8a37ecf60 libstdc++-v3/testsuite/30_threads/thread/adl.cc bb2f0ee35d97a4812efeade16d25b634 libstdc++-v3/testsuite/30_threads/thread/cons/1.cc eedf062193cd10dd82ab644cd59f7de2 libstdc++-v3/testsuite/30_threads/thread/cons/2.cc *************** a6c67f1fe93fa47c0938650d828063f2 libstd *** 84904,84910 **** e10d3cdddd0f53096227a5beb8dcd757 libstdc++-v3/testsuite/util/thread/all.h 18097d974d6f6a830c12c42592f0006d libtool-ldflags 3bb1de19ee64b1073f3d23d9a410b743 libtool.m4 ! 5716905de7b24c3f86c3b2ccf0e8cba9 libvtv/ChangeLog eef62b8fb153928c0a2c4a0578c942c0 libvtv/Makefile.am 6450c2f34e817a27b51c21ac0bd1cb6f libvtv/Makefile.in 4ce86f8604e6c86211a4cb2025ffc53e libvtv/acinclude.m4 --- 85115,85121 ---- e10d3cdddd0f53096227a5beb8dcd757 libstdc++-v3/testsuite/util/thread/all.h 18097d974d6f6a830c12c42592f0006d libtool-ldflags 3bb1de19ee64b1073f3d23d9a410b743 libtool.m4 ! 285d462012ec78906985a12d0c37e4bc libvtv/ChangeLog eef62b8fb153928c0a2c4a0578c942c0 libvtv/Makefile.am 6450c2f34e817a27b51c21ac0bd1cb6f libvtv/Makefile.in 4ce86f8604e6c86211a4cb2025ffc53e libvtv/acinclude.m4 *************** add56677aeac69caba72b699b2b43f07 libvtv *** 84987,84993 **** 5ddbd6d7662cb8cab972934da6561160 libvtv/vtv_utils.h 247597a3fcc5b5aa8bd923351c59d853 ltgcc.m4 4e65f2f6a05f5eca82ba79c6363aa3db ltmain.sh ! 43c5d3b2d733ff317c16937b8715f5b5 lto-plugin/ChangeLog 4c40915b9f88608e518913005264f8fa lto-plugin/Makefile.am e4afd16e3532d984448f0ca8ba8c3833 lto-plugin/Makefile.in e0b6c77fa2326a08aa2d7a69e87e0f8c lto-plugin/aclocal.m4 --- 85198,85204 ---- 5ddbd6d7662cb8cab972934da6561160 libvtv/vtv_utils.h 247597a3fcc5b5aa8bd923351c59d853 ltgcc.m4 4e65f2f6a05f5eca82ba79c6363aa3db ltmain.sh ! ed3c4fec9d5880bef648ff4f7647a511 lto-plugin/ChangeLog 4c40915b9f88608e518913005264f8fa lto-plugin/Makefile.am e4afd16e3532d984448f0ca8ba8c3833 lto-plugin/Makefile.in e0b6c77fa2326a08aa2d7a69e87e0f8c lto-plugin/aclocal.m4 *************** dee72a6a60e99528b0d17bf3ff9a1e15 ltopti *** 85000,85006 **** bc2f6032c98896249eadb56177c7d357 ltsugar.m4 c30cd33c496505f13d9fbdb6970c7c33 ltversion.m4 293853a13b7e218e3a4342cf85fbbf25 lt~obsolete.m4 ! c430ed08fa9d8345e2e0e61e17725407 maintainer-scripts/ChangeLog 33c7bc2d2c55956dfac85a05d8a80eff maintainer-scripts/README a3cc7e22d2016063d76bfc42361ab230 maintainer-scripts/crontab 6facef54b1f26f6ee5d58aef536e7c82 maintainer-scripts/gcc_release --- 85211,85217 ---- bc2f6032c98896249eadb56177c7d357 ltsugar.m4 c30cd33c496505f13d9fbdb6970c7c33 ltversion.m4 293853a13b7e218e3a4342cf85fbbf25 lt~obsolete.m4 ! af15ae4497f4fcc52dd9142b8474b2c3 maintainer-scripts/ChangeLog 33c7bc2d2c55956dfac85a05d8a80eff maintainer-scripts/README a3cc7e22d2016063d76bfc42361ab230 maintainer-scripts/crontab 6facef54b1f26f6ee5d58aef536e7c82 maintainer-scripts/gcc_release *************** f1fff2ea196cbf6fe4634bc3edc5af4d move-i *** 85015,85021 **** cf2baa0854f564a7785307e79f155efc symlink-tree 69678e72941d681665c3731bfb3044ab ylwrap ed77bd1cb8611c7e07d54332abbbb44a zlib/CMakeLists.txt ! 4e9be4718a69e0eea9f59f20ce2b752f zlib/ChangeLog e7a1201f311d2ce7a5fc5e7eb763fe07 zlib/ChangeLog.gcj b7a1991f01daea3efe108a215c5514a5 zlib/FAQ 3b6b6f9e88f2319b75e6ccb8c2823b13 zlib/INDEX --- 85226,85232 ---- cf2baa0854f564a7785307e79f155efc symlink-tree 69678e72941d681665c3731bfb3044ab ylwrap ed77bd1cb8611c7e07d54332abbbb44a zlib/CMakeLists.txt ! 8850c2b81f034ebef7dca9d5969f2515 zlib/ChangeLog e7a1201f311d2ce7a5fc5e7eb763fe07 zlib/ChangeLog.gcj b7a1991f01daea3efe108a215c5514a5 zlib/FAQ 3b6b6f9e88f2319b75e6ccb8c2823b13 zlib/INDEX diff -Nrcpad gcc-4.9.3/Makefile.def gcc-4.9.4/Makefile.def *** gcc-4.9.3/Makefile.def Thu Dec 4 18:25:37 2014 --- gcc-4.9.4/Makefile.def Fri Dec 4 20:25:13 2015 *************** dependencies = { module=all-m4; on=all-b *** 499,504 **** --- 499,505 ---- // on libgcc and newlib/libgloss. lang_env_dependencies = { module=libjava; cxx=true; }; lang_env_dependencies = { module=libitm; cxx=true; }; + lang_env_dependencies = { module=libffi; cxx=true; }; lang_env_dependencies = { module=libcilkrts; cxx=true; }; lang_env_dependencies = { module=newlib; no_c=true; }; lang_env_dependencies = { module=libgloss; no_c=true; }; diff -Nrcpad gcc-4.9.3/Makefile.in gcc-4.9.4/Makefile.in *** gcc-4.9.3/Makefile.in Thu Dec 4 18:25:37 2014 --- gcc-4.9.4/Makefile.in Fri Dec 4 20:25:13 2015 *************** configure-target-winsup: maybe-all-targe *** 47879,47884 **** --- 47879,47885 ---- configure-target-libffi: maybe-all-target-newlib maybe-all-target-libgloss + configure-target-libffi: maybe-all-target-libstdc++-v3 configure-target-libjava: maybe-all-target-newlib maybe-all-target-libgloss configure-target-libjava: maybe-all-target-libstdc++-v3 diff -Nrcpad gcc-4.9.3/NEWS gcc-4.9.4/NEWS *** gcc-4.9.3/NEWS Fri Jun 26 18:00:03 2015 --- gcc-4.9.4/NEWS Wed Aug 3 05:10:52 2016 *************** see ONEWS. *** 6,34 **** ====================================================================== http://gcc.gnu.org/gcc-4.9/index.html GCC 4.9 Release Series ! June 26, 2015 The [1]GNU project and the GCC developers are pleased to announce the ! release of GCC 4.9.3. This release is a bug-fix release, containing fixes for regressions in ! GCC 4.9.2 relative to previous releases of GCC. Release History GCC 4.9.3 ! June 26, 2015 ([2]changes, [3]documentation) GCC 4.9.2 ! October 30, 2014 ([4]changes, [5]documentation) GCC 4.9.1 ! July 16, 2014 ([6]changes, [7]documentation) GCC 4.9.0 ! April 22, 2014 ([8]changes, [9]documentation) References and Acknowledgements --- 6,38 ---- ====================================================================== http://gcc.gnu.org/gcc-4.9/index.html + GCC 4.9 Release Series ! Aug 3, 2016 The [1]GNU project and the GCC developers are pleased to announce the ! release of GCC 4.9.4. This release is a bug-fix release, containing fixes for regressions in ! GCC 4.9.3 relative to previous releases of GCC. Release History + GCC 4.9.4 + Aug 3, 2016 ([2]changes, [3]documentation) + GCC 4.9.3 ! June 26, 2015 ([4]changes, [5]documentation) GCC 4.9.2 ! October 30, 2014 ([6]changes, [7]documentation) GCC 4.9.1 ! July 16, 2014 ([8]changes, [9]documentation) GCC 4.9.0 ! April 22, 2014 ([10]changes, [11]documentation) References and Acknowledgements *************** References and Acknowledgements *** 36,95 **** supports several other languages aside from C, it now stands for the GNU Compiler Collection. ! A list of [10]successful builds is updated as new information becomes available. The GCC developers would like to thank the numerous people that have contributed new features, improvements, bug fixes, and other changes as ! well as test results to GCC. This [11]amazing group of volunteers is what makes GCC successful. ! For additional information about GCC please refer to the [12]GCC ! project web site or contact the [13]GCC development mailing list. ! To obtain GCC please use [14]our mirror sites or [15]our SVN server. For questions related to the use of GCC, please consult these web ! pages and the [16]GCC manuals. If that fails, the ! [17]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [18]gcc@gcc.gnu.org. All of [19]our lists have public archives. ! Copyright (C) [20]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [21]maintained by the GCC team. Last modified ! 2015-06-26[22]. References 1. http://www.gnu.org/ 2. http://gcc.gnu.org/gcc-4.9/changes.html ! 3. http://gcc.gnu.org/onlinedocs/4.9.3/ 4. http://gcc.gnu.org/gcc-4.9/changes.html ! 5. http://gcc.gnu.org/onlinedocs/4.9.2/ 6. http://gcc.gnu.org/gcc-4.9/changes.html ! 7. http://gcc.gnu.org/onlinedocs/4.9.1/ 8. http://gcc.gnu.org/gcc-4.9/changes.html ! 9. https://gcc.gnu.org/onlinedocs/4.9.0/ ! 10. http://gcc.gnu.org/gcc-4.9/buildstat.html ! 11. https://gcc.gnu.org/onlinedocs/gcc/Contributors.html ! 12. http://gcc.gnu.org/index.html ! 13. mailto:gcc@gcc.gnu.org ! 14. http://gcc.gnu.org/mirrors.html ! 15. http://gcc.gnu.org/svn.html ! 16. https://gcc.gnu.org/onlinedocs/ ! 17. mailto:gcc-help@gcc.gnu.org ! 18. mailto:gcc@gcc.gnu.org ! 19. https://gcc.gnu.org/lists.html ! 20. http://www.fsf.org/ ! 21. https://gcc.gnu.org/about.html ! 22. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.9/changes.html GCC 4.9 Release Series Changes, New Features, and Fixes --- 40,102 ---- supports several other languages aside from C, it now stands for the GNU Compiler Collection. ! A list of [12]successful builds is updated as new information becomes available. The GCC developers would like to thank the numerous people that have contributed new features, improvements, bug fixes, and other changes as ! well as test results to GCC. This [13]amazing group of volunteers is what makes GCC successful. ! For additional information about GCC please refer to the [14]GCC ! project web site or contact the [15]GCC development mailing list. ! To obtain GCC please use [16]our mirror sites or [17]our SVN server. For questions related to the use of GCC, please consult these web ! pages and the [18]GCC manuals. If that fails, the ! [19]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [20]gcc@gcc.gnu.org. All of [21]our lists have public archives. ! Copyright (C) [22]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [23]maintained by the GCC team. Last modified ! 2016-08-03[24]. References 1. http://www.gnu.org/ 2. http://gcc.gnu.org/gcc-4.9/changes.html ! 3. http://gcc.gnu.org/onlinedocs/4.9.4/ 4. http://gcc.gnu.org/gcc-4.9/changes.html ! 5. http://gcc.gnu.org/onlinedocs/4.9.3/ 6. http://gcc.gnu.org/gcc-4.9/changes.html ! 7. http://gcc.gnu.org/onlinedocs/4.9.2/ 8. http://gcc.gnu.org/gcc-4.9/changes.html ! 9. http://gcc.gnu.org/onlinedocs/4.9.1/ ! 10. http://gcc.gnu.org/gcc-4.9/changes.html ! 11. https://gcc.gnu.org/onlinedocs/4.9.0/ ! 12. http://gcc.gnu.org/gcc-4.9/buildstat.html ! 13. https://gcc.gnu.org/onlinedocs/gcc/Contributors.html ! 14. http://gcc.gnu.org/index.html ! 15. mailto:gcc@gcc.gnu.org ! 16. http://gcc.gnu.org/mirrors.html ! 17. http://gcc.gnu.org/svn.html ! 18. https://gcc.gnu.org/onlinedocs/ ! 19. mailto:gcc-help@gcc.gnu.org ! 20. mailto:gcc@gcc.gnu.org ! 21. https://gcc.gnu.org/lists.html ! 22. http://www.fsf.org/ ! 23. https://gcc.gnu.org/about.html ! 24. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.9/changes.html + GCC 4.9 Release Series Changes, New Features, and Fixes *************** New Languages and Language specific impr *** 178,187 **** * Version 4.0 of the [4]OpenMP specification is now supported in the C and C++ compilers and starting with the 4.9.1 release also in the Fortran compiler. The new -fopenmp-simd option can be used to ! enable OpenMP's SIMD directives, while ignoring other OpenMP directives. The new [5]-fsimd-cost-model= option permits to tune the vectorization cost model for loops annotated with OpenMP and ! Cilk Plus simd directives; -Wopenmp-simd warns when the current cost model overrides simd directives set by the user. * The -Wdate-time option has been added for the C, C++ and Fortran compilers, which warns when the __DATE__, __TIME__ or __TIMESTAMP__ --- 185,194 ---- * Version 4.0 of the [4]OpenMP specification is now supported in the C and C++ compilers and starting with the 4.9.1 release also in the Fortran compiler. The new -fopenmp-simd option can be used to ! enable OpenMP's SIMD directives while ignoring other OpenMP directives. The new [5]-fsimd-cost-model= option permits to tune the vectorization cost model for loops annotated with OpenMP and ! Cilk Plus simd directives. -Wopenmp-simd warns when the current cost model overrides simd directives set by the user. * The -Wdate-time option has been added for the C, C++ and Fortran compilers, which warns when the __DATE__, __TIME__ or __TIMESTAMP__ *************** New Languages and Language specific impr *** 203,223 **** -fdiagnostics-color=never. Sample diagnostics output: $ g++ -fdiagnostics-color=always -S -Wall test.C ! test.C: In function ‘int foo()’: test.C:1:14: warning: no return statement in function returning non-void [-W return-type] int foo () { } ^ test.C:2:46: error: template instantiation depth exceeds maximum of 900 (use ! -ftemplate-depth= to increase the maximum) instantiating ‘struct X<100>’ template struct X { static const int value = X::value; }; temp late struct X<1000>; ^ ! test.C:2:46: recursively required from ‘const int X<999>::value’ ! test.C:2:46: required from ‘const int X<1000>::value’ test.C:2:88: required from here ! test.C:2:46: error: incomplete type ‘X<100>’ used in nested name specifier * With the new [7]#pragma GCC ivdep, the user can assert that there are no loop-carried dependencies which would prevent concurrent --- 210,230 ---- -fdiagnostics-color=never. Sample diagnostics output: $ g++ -fdiagnostics-color=always -S -Wall test.C ! test.C: In function `int foo()': test.C:1:14: warning: no return statement in function returning non-void [-W return-type] int foo () { } ^ test.C:2:46: error: template instantiation depth exceeds maximum of 900 (use ! -ftemplate-depth= to increase the maximum) instantiating `struct X<100>' template struct X { static const int value = X::value; }; temp late struct X<1000>; ^ ! test.C:2:46: recursively required from `const int X<999>::value' ! test.C:2:46: required from `const int X<1000>::value' test.C:2:88: required from here ! test.C:2:46: error: incomplete type `X<100>' used in nested name specifier * With the new [7]#pragma GCC ivdep, the user can assert that there are no loop-carried dependencies which would prevent concurrent *************** auto incr = [](auto x) { return x++; }; *** 322,332 **** // a functional object that will add two like-type objects auto add = [] (T a, T b) { return a + b; }; ! * G++ supports unconstrained generic functions as specified by §4.1.2 ! and §5.1.1 of [16]N3889: Concepts Lite Specification. Briefly, auto ! may be used as a type-specifier in a parameter declaration of any ! function declarator in order to introduce an implicit function ! template parameter, akin to generic lambdas. // the following two function declarations are equivalent auto incr(auto x) { return x++; } --- 329,339 ---- // a functional object that will add two like-type objects auto add = [] (T a, T b) { return a + b; }; ! * G++ supports unconstrained generic functions as specified by ! S:4.1.2 and S:5.1.1 of [16]N3889: Concepts Lite Specification. ! Briefly, auto may be used as a type-specifier in a parameter ! declaration of any function declarator in order to introduce an ! implicit function template parameter, akin to generic lambdas. // the following two function declarations are equivalent auto incr(auto x) { return x++; } *************** auto incr(T x) { return x++; } *** 416,422 **** be used as argument to ISO_C_BINDING's C_LOC and as actual argument to another NO_ARG_CHECK dummy argument; also the other constraints of TYPE(*) apply. The dummy arguments should be declared as scalar ! or assumed-size variable of type type(*) (recommended) – or of type integer, real, complex or logical. With NO_ARG_CHECK, a pointer to the data without further type or shape information is passed, similar to C's void*. Note that also TS 29113's --- 423,429 ---- be used as argument to ISO_C_BINDING's C_LOC and as actual argument to another NO_ARG_CHECK dummy argument; also the other constraints of TYPE(*) apply. The dummy arguments should be declared as scalar ! or assumed-size variable of type type(*) (recommended) - or of type integer, real, complex or logical. With NO_ARG_CHECK, a pointer to the data without further type or shape information is passed, similar to C's void*. Note that also TS 29113's *************** auto incr(T x) { return x++; } *** 441,449 **** + Rounding on input (READ) is now handled on systems where strtod honours the rounding mode. (For output, rounding is supported since GCC 4.5.) Note that for input, the compatible ! rounding mode is handled as nearest (i.e., for a tie, rounding ! to an even last significant [cf. IEC 60559:1989] – while ! compatible rounds away from zero for a tie). Go --- 448,456 ---- + Rounding on input (READ) is now handled on systems where strtod honours the rounding mode. (For output, rounding is supported since GCC 4.5.) Note that for input, the compatible ! rounding mode is handled as nearest (i.e., rounding to an even ! least significant [cf. IEC 60559:1989] for a tie, while ! compatible rounds away from zero in that case). Go *************** New Targets and Target Specific Improvem *** 527,532 **** --- 534,545 ---- * A number of code generation improvements for Thumb2 to reduce code size when compiling for the M-profile processors. + AVR + + * A new command-line option -mfract-convert-truncate has been added. + It allows compiler to use truncation instead of rounding towards + zero for fractional fixed-point types. + IA-32/x86-64 * -mfpmath=sse is now implied by -ffast-math on all targets where *************** GCC 4.9.3 *** 673,692 **** not be complete (that is, it is possible that some PRs that have been fixed are not listed here). For questions related to the use of GCC, please consult these web ! pages and the [29]GCC manuals. If that fails, the ! [30]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [31]gcc@gcc.gnu.org. All of [32]our lists have public archives. ! Copyright (C) [33]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [34]maintained by the GCC team. Last modified ! 2015-06-26[35]. References --- 686,712 ---- not be complete (that is, it is possible that some PRs that have been fixed are not listed here). + GCC 4.9.4 + + This is the [29]list of problem reports (PRs) from GCC's bug tracking + system that are known to be fixed in the 4.9.4 release. This list might + not be complete (that is, it is possible that some PRs that have been + fixed are not listed here). + For questions related to the use of GCC, please consult these web ! pages and the [30]GCC manuals. If that fails, the ! [31]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [32]gcc@gcc.gnu.org. All of [33]our lists have public archives. ! Copyright (C) [34]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [35]maintained by the GCC team. Last modified ! 2016-08-03[36]. References *************** References *** 718,732 **** 26. http://openmp.org/wp/openmp-specifications/ 27. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.9.2 28. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.9.3 ! 29. https://gcc.gnu.org/onlinedocs/ ! 30. mailto:gcc-help@gcc.gnu.org ! 31. mailto:gcc@gcc.gnu.org ! 32. https://gcc.gnu.org/lists.html ! 33. http://www.fsf.org/ ! 34. https://gcc.gnu.org/about.html ! 35. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.8/index.html GCC 4.8 Release Series June 23, 2015 --- 738,754 ---- 26. http://openmp.org/wp/openmp-specifications/ 27. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.9.2 28. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.9.3 ! 29. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.9.4 ! 30. https://gcc.gnu.org/onlinedocs/ ! 31. mailto:gcc-help@gcc.gnu.org ! 32. mailto:gcc@gcc.gnu.org ! 33. https://gcc.gnu.org/lists.html ! 34. http://www.fsf.org/ ! 35. https://gcc.gnu.org/about.html ! 36. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.8/index.html + GCC 4.8 Release Series June 23, 2015 *************** References and Acknowledgements *** 789,795 **** provided this notice is preserved. These pages are [25]maintained by the GCC team. Last modified ! 2015-06-23[26]. References --- 811,817 ---- provided this notice is preserved. These pages are [25]maintained by the GCC team. Last modified ! 2016-01-30[26]. References *************** References *** 821,826 **** --- 843,849 ---- 26. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.8/changes.html + GCC 4.8 Release Series Changes, New Features, and Fixes *************** New Languages and Language specific impr *** 949,956 **** diagnostics. Combined with the caret information, an example diagnostic showing these two features is: ! t.c:1:94: error: invalid operands to binary < (have ‘struct mystruct’ and ‘float ! ’) #define MYMAX(A,B) __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) _ _b = (B); __a < __b ? __b : __a; }) --- 972,979 ---- diagnostics. Combined with the caret information, an example diagnostic showing these two features is: ! t.c:1:94: error: invalid operands to binary < (have `struct mystruct' and `float ! ') #define MYMAX(A,B) __extension__ ({ __typeof__(A) __a = (A); __typeof__(B) _ _b = (B); __a < __b ? __b : __a; }) *************** int i = A().f(); // error, f() requires *** 1074,1081 **** older versions except as noted below. + ABI: Some internal names (used in the assembler/object file) have changed for symbols declared in the specification part of ! a module. If an affected module – or a file using it via use ! association – is recompiled, the module and all files which directly use such symbols have to be recompiled as well. This change only affects the following kind of module symbols: o Procedure pointers. Note: C-interoperable function --- 1097,1104 ---- older versions except as noted below. + ABI: Some internal names (used in the assembler/object file) have changed for symbols declared in the specification part of ! a module. If an affected module - or a file using it via use ! association - is recompiled, the module and all files which directly use such symbols have to be recompiled as well. This change only affects the following kind of module symbols: o Procedure pointers. Note: C-interoperable function *************** int i = A().f(); // error, f() requires *** 1102,1108 **** * The [21]-Wcompare-reals command-line option has been added. When this is set, warnings are issued when comparing REAL or COMPLEX types for equality and inequality; consider replacing a == b by ! abs(a−b) < eps with a suitable eps. -Wcompare-reals is enabled by -Wextra. * The [22]-Wtarget-lifetime command-line option has been added (enabled with -Wall), which warns if the pointer in a pointer --- 1125,1131 ---- * The [21]-Wcompare-reals command-line option has been added. When this is set, warnings are issued when comparing REAL or COMPLEX types for equality and inequality; consider replacing a == b by ! abs(a -b) < eps with a suitable eps. -Wcompare-reals is enabled by -Wextra. * The [22]-Wtarget-lifetime command-line option has been added (enabled with -Wall), which warns if the pointer in a pointer *************** int i = A().f(); // error, f() requires *** 1114,1120 **** 4.0e0). (For Fortran source code, consider replacing the "q" in floating-point literals by a kind parameter (e.g. 4.0e0_qp with a ! suitable qp). Note that – in Fortran source code – replacing "q" by a simple "e" is not equivalent.) * The GFORTRAN_TMPDIR environment variable for specifying a non-default directory for files opened with STATUS="SCRATCH", is --- 1137,1143 ---- 4.0e0). (For Fortran source code, consider replacing the "q" in floating-point literals by a kind parameter (e.g. 4.0e0_qp with a ! suitable qp). Note that - in Fortran source code - replacing "q" by a simple "e" is not equivalent.) * The GFORTRAN_TMPDIR environment variable for specifying a non-default directory for files opened with STATUS="SCRATCH", is *************** New Targets and Target Specific Improvem *** 1209,1216 **** } The inline assembler in this example will generate code like mov r24, 8+7 ! provided c is allocated to R24 and val is allocated to R8…R15. This ! works because the GNU assembler accepts plain register numbers without register prefix. * Static initializers with 3-byte symbols are supported now: extern const __memx char foo; --- 1232,1239 ---- } The inline assembler in this example will generate code like mov r24, 8+7 ! provided c is allocated to R24 and val is allocated to R8...R15. ! This works because the GNU assembler accepts plain register numbers without register prefix. * Static initializers with 3-byte symbols are supported now: extern const __memx char foo; *************** GCC 4.8.5 *** 1539,1545 **** provided this notice is preserved. These pages are [43]maintained by the GCC team. Last modified ! 2015-06-23[44]. References --- 1562,1568 ---- provided this notice is preserved. These pages are [43]maintained by the GCC team. Last modified ! 2016-05-28[44]. References *************** References *** 1548,1555 **** 3. http://www.nongnu.org/avr-libc/ 4. https://gcc.gnu.org/PR54461 5. https://gcc.gnu.org/gcc-4.8/porting_to.html ! 6. https://code.google.com/p/address-sanitizer/ ! 7. https://code.google.com/p/data-race-test/wiki/ThreadSanitizer 8. https://lkml.org/lkml/2006/11/28/239 9. http://gcc.gnu.org/gcc-4.8/cxx0x_status.html 10. http://gcc.gnu.org/gcc-4.8/cxx0x_status.html --- 1571,1578 ---- 3. http://www.nongnu.org/avr-libc/ 4. https://gcc.gnu.org/PR54461 5. https://gcc.gnu.org/gcc-4.8/porting_to.html ! 6. https://github.com/google/sanitizers ! 7. https://code.google.com/archive/p/data-race-test/wikis/ThreadSanitizer.wiki 8. https://lkml.org/lkml/2006/11/28/239 9. http://gcc.gnu.org/gcc-4.8/cxx0x_status.html 10. http://gcc.gnu.org/gcc-4.8/cxx0x_status.html *************** References *** 1568,1579 **** 23. https://gcc.gnu.org/onlinedocs/gfortran/TMPDIR.html 24. https://gcc.gnu.org/wiki/Fortran2003Status 25. https://gcc.gnu.org/wiki/TS29113Status ! 26. https://gcc.gnu.org/viewcvs/trunk/libgfortran/libgfortran.h?content-type=text/plain&view=co 27. http://chasm-interop.sourceforge.net/ 28. https://gcc.gnu.org/wiki/avr-gcc#Fixed-Point_Support 29. https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html ! 30. https://gcc.gnu.org/onlinedocs/gcc/X86-Built-in-Functions.html#X86-Built-in-Functions ! 31. https://gcc.gnu.org/onlinedocs/gcc/X86-Built-in-Functions.html#X86-Built-in-Functions 32. https://gcc.gnu.org/wiki/FunctionMultiVersioning 33. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.8.1 34. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.8.2 --- 1591,1602 ---- 23. https://gcc.gnu.org/onlinedocs/gfortran/TMPDIR.html 24. https://gcc.gnu.org/wiki/Fortran2003Status 25. https://gcc.gnu.org/wiki/TS29113Status ! 26. https://gcc.gnu.org/viewcvs/trunk/libgfortran/libgfortran.h?content-type=text%2Fplain&view=co 27. http://chasm-interop.sourceforge.net/ 28. https://gcc.gnu.org/wiki/avr-gcc#Fixed-Point_Support 29. https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html ! 30. https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html ! 31. https://gcc.gnu.org/onlinedocs/gcc/x86-Built-in-Functions.html 32. https://gcc.gnu.org/wiki/FunctionMultiVersioning 33. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.8.1 34. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.8.2 *************** References *** 1589,1594 **** --- 1612,1618 ---- 44. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.7/index.html + GCC 4.7 Release Series June 12, 2014 *************** References and Acknowledgements *** 1648,1654 **** provided this notice is preserved. These pages are [23]maintained by the GCC team. Last modified ! 2014-06-12[24]. References --- 1672,1678 ---- provided this notice is preserved. These pages are [23]maintained by the GCC team. Last modified ! 2016-01-30[24]. References *************** References *** 1678,1683 **** --- 1702,1708 ---- 24. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.7/changes.html + GCC 4.7 Release Series Changes, New Features, and Fixes *************** long double pi = 180.0_degrees; *** 2008,2014 **** template using Ptr = T*; Ptr ip; // decltype(ip) is int* ! * Thanks to Ville Voutilainen and Pedro Lamarão, G++ now implements [13]C++11 delegating constructors. struct A { --- 2033,2039 ---- template using Ptr = T*; Ptr ip; // decltype(ip) is int* ! * Thanks to Ville Voutilainen and Pedro Lamarao, G++ now implements [13]C++11 delegating constructors. struct A { *************** New Targets and Target Specific Improvem *** 2202,2208 **** * GCC now supports the XMEGA architecture. This requires GNU binutils 2.22 or later. ! * Support for the [36]named address spaces __flash, __flash1, …, __flash5 and __memx has been added. These address spaces locate read-only data in flash memory and allow reading from flash memory by means of ordinary C code, i.e. without the need of (inline) --- 2227,2233 ---- * GCC now supports the XMEGA architecture. This requires GNU binutils 2.22 or later. ! * Support for the [36]named address spaces __flash, __flash1, ..., __flash5 and __memx has been added. These address spaces locate read-only data in flash memory and allow reading from flash memory by means of ordinary C code, i.e. without the need of (inline) *************** void set_portb (uint8_t value) *** 2246,2252 **** suitable to be used as operand in an I/O command. The address must be a constant integer known at compile time. * The inline assembler constraint "R" to represent integers in the ! range −6 … 5 has been removed without replacement. * Many optimizations to: + 64-bit integer arithmetic + Widening multiplication --- 2271,2277 ---- suitable to be used as operand in an I/O command. The address must be a constant integer known at compile time. * The inline assembler constraint "R" to represent integers in the ! range -6 ... 5 has been removed without replacement. * Many optimizations to: + 64-bit integer arithmetic + Widening multiplication *************** void set_portb (uint8_t value) *** 2258,2264 **** + If-else decision trees generated by switch instructions + Merging of data located in flash memory + New libgcc variants for devices with 8-bit wide stack pointer ! + … * Better documentation: + Handling of EIND and indirect jumps on devices with more than 128 KiB of program memory. --- 2283,2289 ---- + If-else decision trees generated by switch instructions + Merging of data located in flash memory + New libgcc variants for devices with 8-bit wide stack pointer ! + ... * Better documentation: + Handling of EIND and indirect jumps on devices with more than 128 KiB of program memory. *************** GCC 4.7.4 *** 2469,2475 **** provided this notice is preserved. These pages are [55]maintained by the GCC team. Last modified ! 2014-12-06[56]. References --- 2494,2500 ---- provided this notice is preserved. These pages are [55]maintained by the GCC team. Last modified ! 2016-02-29[56]. References *************** References *** 2498,2504 **** 23. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Code-Gen-Options.html#index-g_t_0040code_007bfaggressive-function-elimination_007d-270 24. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Error-and-Warning-Options.html#index-g_t_0040code_007bWreal-q-constant_007d-149 25. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/SELECTED_005fREAL_005fKIND.html ! 26. http://msdn.microsoft.com/en-us/library/bb787181(v=vs.85).aspx 27. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Debugging-Options.html#index-g_t_0040code_007bfno-backtrace_007d-183 28. https://gcc.gnu.org/wiki/Fortran2003Status 29. https://gcc.gnu.org/wiki/OOP --- 2523,2529 ---- 23. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Code-Gen-Options.html#index-g_t_0040code_007bfaggressive-function-elimination_007d-270 24. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Error-and-Warning-Options.html#index-g_t_0040code_007bWreal-q-constant_007d-149 25. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/SELECTED_005fREAL_005fKIND.html ! 26. https://msdn.microsoft.com/en-us/library/bb787181%28v=vs.85%29.aspx 27. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Debugging-Options.html#index-g_t_0040code_007bfno-backtrace_007d-183 28. https://gcc.gnu.org/wiki/Fortran2003Status 29. https://gcc.gnu.org/wiki/OOP *************** References *** 2507,2524 **** 32. https://gcc.gnu.org/wiki/CoarrayLib 33. https://gcc.gnu.org/wiki/TS29113Status 34. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Fortran-Dialect-Options.html#index-g_t_0040code_007bstd_003d_007d_0040var_007bstd_007d-option-53 ! 35. http://weekly.golang.org/doc/go1.html 36. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Named-Address-Spaces.html 37. http://nongnu.org/avr-libc/ 38. https://gcc.gnu.org/PR54461 ! 39. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/AVR-Built_002din-Functions.html 40. https://sites.google.com/site/x32abi/ 41. http://www.dwarfstd.org/ShowIssue.php?issue=100909.1 42. http://www.dwarfstd.org/ShowIssue.php?issue=100909.2 43. http://www.dwarfstd.org/doc/040408.1.html 44. http://www.dwarfstd.org/ShowIssue.php?issue=110722.1 45. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.1 ! 46. http://weekly.golang.org/doc/go1.html 47. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.2 48. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.3 49. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.4 --- 2532,2549 ---- 32. https://gcc.gnu.org/wiki/CoarrayLib 33. https://gcc.gnu.org/wiki/TS29113Status 34. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gfortran/Fortran-Dialect-Options.html#index-g_t_0040code_007bstd_003d_007d_0040var_007bstd_007d-option-53 ! 35. https://golang.org/doc/go1 36. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/Named-Address-Spaces.html 37. http://nongnu.org/avr-libc/ 38. https://gcc.gnu.org/PR54461 ! 39. https://gcc.gnu.org/onlinedocs/gcc-4.7.1/gcc/AVR-Built%5f002din-Functions.html 40. https://sites.google.com/site/x32abi/ 41. http://www.dwarfstd.org/ShowIssue.php?issue=100909.1 42. http://www.dwarfstd.org/ShowIssue.php?issue=100909.2 43. http://www.dwarfstd.org/doc/040408.1.html 44. http://www.dwarfstd.org/ShowIssue.php?issue=110722.1 45. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.1 ! 46. https://golang.org/doc/go1 47. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.2 48. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.3 49. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.7.4 *************** References *** 2531,2536 **** --- 2556,2562 ---- 56. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.6/index.html + GCC 4.6 Release Series April 12, 2013 *************** References and Acknowledgements *** 2590,2596 **** provided this notice is preserved. These pages are [23]maintained by the GCC team. Last modified ! 2014-06-28[24]. References --- 2616,2622 ---- provided this notice is preserved. These pages are [23]maintained by the GCC team. Last modified ! 2016-01-30[24]. References *************** References *** 2620,2625 **** --- 2646,2652 ---- 24. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.6/changes.html + GCC 4.6 Release Series Changes, New Features, and Fixes *************** New Languages and Language specific impr *** 2959,2965 **** * [12]Improved experimental support for the upcoming ISO C++ standard, C++0x, including using constexpr and nullptr. ! * Performance improvements to the [13]Debug Mode, thanks to François Dumont. * Atomic operations used for reference-counting are annotated so that they can be understood by race detectors such as Helgrind, see --- 2986,2992 ---- * [12]Improved experimental support for the upcoming ISO C++ standard, C++0x, including using constexpr and nullptr. ! * Performance improvements to the [13]Debug Mode, thanks to Franc,ois Dumont. * Atomic operations used for reference-counting are annotated so that they can be understood by race detectors such as Helgrind, see *************** New Languages and Language specific impr *** 3014,3020 **** allocated (if unallocated) or reallocated (if the shape or type parameter is different). To avoid the small performance penalty, you can use a(:) = ... instead of a = ... for arrays ! and character strings – or disable the feature using -std=f95 or -fno-realloc-lhs. + Deferred type parameter: For scalar allocatable and pointer variables the character length can be deferred. --- 3041,3047 ---- allocated (if unallocated) or reallocated (if the shape or type parameter is different). To avoid the small performance penalty, you can use a(:) = ... instead of a = ... for arrays ! and character strings - or disable the feature using -std=f95 or -fno-realloc-lhs. + Deferred type parameter: For scalar allocatable and pointer variables the character length can be deferred. *************** New Languages and Language specific impr *** 3069,3075 **** be declared in a single PROCEDURE statement; implied-shape arrays are supported for named constants (PARAMETER). The transformational, three argument versions of BESSEL_JN and ! BESSEL_YN were added – the elemental, two-argument version had been added in GCC 4.4; note that the transformational functions use a recurrence algorithm. --- 3096,3102 ---- be declared in a single PROCEDURE statement; implied-shape arrays are supported for named constants (PARAMETER). The transformational, three argument versions of BESSEL_JN and ! BESSEL_YN were added - the elemental, two-argument version had been added in GCC 4.4; note that the transformational functions use a recurrence algorithm. *************** GCC 4.6.4 *** 3514,3524 **** provided this notice is preserved. These pages are [29]maintained by the GCC team. Last modified ! 2014-12-06[30]. References ! 1. http://sourceware.org/bugzilla/show_bug.cgi?id=10401 2. http://gcc.gnu.org/gcc-4.5/changes.html 3. http://gcc.gnu.org/gcc-4.5/changes.html#obsoleted 4. http://gcc.gnu.org/gcc-4.6/porting_to.html --- 3541,3551 ---- provided this notice is preserved. These pages are [29]maintained by the GCC team. Last modified ! 2016-05-28[30]. References ! 1. https://sourceware.org/bugzilla/show_bug.cgi?id=10401 2. http://gcc.gnu.org/gcc-4.5/changes.html 3. http://gcc.gnu.org/gcc-4.5/changes.html#obsoleted 4. http://gcc.gnu.org/gcc-4.6/porting_to.html *************** References *** 3536,3542 **** 16. https://gcc.gnu.org/wiki/OOP 17. https://gcc.gnu.org/wiki/Coarray 18. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html#index-g_t_0040code_007bfcoarray_007d-233 ! 19. http://golang.org/ 20. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.6.1 21. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.6.2 22. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.6.3 --- 3563,3569 ---- 16. https://gcc.gnu.org/wiki/OOP 17. https://gcc.gnu.org/wiki/Coarray 18. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html#index-g_t_0040code_007bfcoarray_007d-233 ! 19. https://golang.org/ 20. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.6.1 21. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.6.2 22. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.6.3 *************** References *** 3550,3555 **** --- 3577,3583 ---- 30. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.5/index.html + GCC 4.5 Release Series Jul 2, 2012 *************** References and Acknowledgements *** 3609,3615 **** provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2014-06-28[19]. References --- 3637,3643 ---- provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2016-01-30[19]. References *************** References *** 3634,3639 **** --- 3662,3668 ---- 19. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.5/changes.html + GCC 4.5 Release Series Changes, New Features, and Fixes *************** New Languages and Language specific impr *** 3870,3876 **** defined ([13]DR 757). * Labels may now have attributes, as has been permitted for a while in C. This is only permitted when the label definition and the ! attribute specifier is followed by a semicolon—i.e., the label applies to an empty statement. The only useful attribute for a label is unused. * G++ now implements [14]DR 176. Previously G++ did not support using --- 3899,3905 ---- defined ([13]DR 757). * Labels may now have attributes, as has been permitted for a while in C. This is only permitted when the label definition and the ! attribute specifier is followed by a semicolon--i.e., the label applies to an empty statement. The only useful attribute for a label is unused. * G++ now implements [14]DR 176. Previously G++ did not support using *************** vector-size: improvement = 3: call stack *** 3952,3966 **** Fortran ! * The COMMON default padding has been changed – instead of adding the padding before a variable it is now added afterwards, which increases the compatibility with other vendors and helps to obtain the correct output in some cases. Cf. also the -falign-commons option ([18]added in 4.4). * The -finit-real= option now also supports the value snan for ! signalling not-a-number; to be effective, one additionally needs to enable trapping (e.g. via -ffpe-trap=). Note: Compile-time ! optimizations can turn a signalling NaN into a quiet one. * The new option -fcheck= has been added with the options bounds, array-temps, do, pointer, and recursive. The bounds and array-temps options are equivalent to -fbounds-check and --- 3981,3995 ---- Fortran ! * The COMMON default padding has been changed - instead of adding the padding before a variable it is now added afterwards, which increases the compatibility with other vendors and helps to obtain the correct output in some cases. Cf. also the -falign-commons option ([18]added in 4.4). * The -finit-real= option now also supports the value snan for ! signaling not-a-number; to be effective, one additionally needs to enable trapping (e.g. via -ffpe-trap=). Note: Compile-time ! optimizations can turn a signaling NaN into a quiet one. * The new option -fcheck= has been added with the options bounds, array-temps, do, pointer, and recursive. The bounds and array-temps options are equivalent to -fbounds-check and *************** GCC 4.5.4 *** 4281,4287 **** provided this notice is preserved. These pages are [33]maintained by the GCC team. Last modified ! 2014-12-06[34]. References --- 4310,4316 ---- provided this notice is preserved. These pages are [33]maintained by the GCC team. Last modified ! 2016-05-28[34]. References *************** References *** 4301,4307 **** 14. http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#176 15. https://gcc.gnu.org/onlinedocs/libstdc++/manual/profile_mode.html 16. https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.tr24733 ! 17. http://sourceware.org/gdb/wiki/STLSupport 18. http://gcc.gnu.org/gcc-4.4/changes.html 19. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html 20. https://gcc.gnu.org/onlinedocs/gfortran/Mixed-Language-Programming.html --- 4330,4336 ---- 14. http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#176 15. https://gcc.gnu.org/onlinedocs/libstdc++/manual/profile_mode.html 16. https://gcc.gnu.org/onlinedocs/libstdc++/manual/status.html#status.iso.tr24733 ! 17. https://sourceware.org/gdb/wiki/STLSupport 18. http://gcc.gnu.org/gcc-4.4/changes.html 19. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html 20. https://gcc.gnu.org/onlinedocs/gfortran/Mixed-Language-Programming.html *************** References *** 4321,4326 **** --- 4350,4356 ---- 34. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.4/index.html + GCC 4.4 Release Series March 13, 2012 *************** References and Acknowledgements *** 4389,4395 **** provided this notice is preserved. These pages are [21]maintained by the GCC team. Last modified ! 2014-06-28[22]. References --- 4419,4425 ---- provided this notice is preserved. These pages are [21]maintained by the GCC team. Last modified ! 2016-01-30[22]. References *************** References *** 4417,4422 **** --- 4447,4453 ---- 22. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.4/changes.html + GCC 4.4 Release Series Changes, New Features, and Fixes *************** GCC 4.4.7 *** 5019,5025 **** provided this notice is preserved. These pages are [24]maintained by the GCC team. Last modified ! 2014-12-06[25]. References --- 5050,5056 ---- provided this notice is preserved. These pages are [24]maintained by the GCC team. Last modified ! 2016-01-30[25]. References *************** References *** 5050,5055 **** --- 5081,5087 ---- 25. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.3/index.html + GCC 4.3 Release Series Jun 27, 2011 *************** References and Acknowledgements *** 5115,5121 **** provided this notice is preserved. These pages are [20]maintained by the GCC team. Last modified ! 2014-06-28[21]. References --- 5147,5153 ---- provided this notice is preserved. These pages are [20]maintained by the GCC team. Last modified ! 2016-01-30[21]. References *************** References *** 5142,5147 **** --- 5174,5180 ---- 21. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.3/changes.html + GCC 4.3 Release Series Changes, New Features, and Fixes *************** New Languages and Language specific impr *** 5425,5434 **** Fortran ! * Due to the fact that the [16]GMP and [17]MPFR libraries are ! required for all languages, Fortran is no longer special in this ! regard and is available by default. ! * The [18]-fexternal-blas option has been added, which generates calls to BLAS routines for intrinsic matrix operations such as matmul rather than using the built-in algorithms. * Support to give a backtrace (compiler flag -fbacktrace or --- 5458,5467 ---- Fortran ! * Due to the fact that the GMP and MPFR libraries are required for ! all languages, Fortran is no longer special in this regard and is ! available by default. ! * The [16]-fexternal-blas option has been added, which generates calls to BLAS routines for intrinsic matrix operations such as matmul rather than using the built-in algorithms. * Support to give a backtrace (compiler flag -fbacktrace or *************** New Languages and Language specific impr *** 5437,5452 **** run-time error occured. * GNU Fortran now defines __GFORTRAN__ when it runs the C preprocessor (CPP). ! * The [19]-finit-local-zero, -finit-real, -finit-integer, -finit-character, and -finit-logical options have been added, which can be used to initialize local variables. ! * The intrinsic procedures [20]GAMMA and [21]LGAMMA have been added, which calculate the Gamma function and its logarithm. Use EXTERNAL gamma if you want to use your own gamma function. * GNU Fortran now regards the backslash character as literal (as ! required by the Fortran 2003 standard); using [22]-fbackslash GNU Fortran interprets backslashes as C-style escape characters. ! * The [23]interpretation of binary, octal and hexadecimal (BOZ) literal constants has been changed. Before they were always interpreted as integer; now they are bit-wise transferred as argument of INT, REAL, DBLE and CMPLX as required by the Fortran --- 5470,5485 ---- run-time error occured. * GNU Fortran now defines __GFORTRAN__ when it runs the C preprocessor (CPP). ! * The [17]-finit-local-zero, -finit-real, -finit-integer, -finit-character, and -finit-logical options have been added, which can be used to initialize local variables. ! * The intrinsic procedures [18]GAMMA and [19]LGAMMA have been added, which calculate the Gamma function and its logarithm. Use EXTERNAL gamma if you want to use your own gamma function. * GNU Fortran now regards the backslash character as literal (as ! required by the Fortran 2003 standard); using [20]-fbackslash GNU Fortran interprets backslashes as C-style escape characters. ! * The [21]interpretation of binary, octal and hexadecimal (BOZ) literal constants has been changed. Before they were always interpreted as integer; now they are bit-wise transferred as argument of INT, REAL, DBLE and CMPLX as required by the Fortran *************** Documentation improvements *** 5816,5822 **** * Existing libstdc++ documentation has been edited and restructured into a single DocBook XML manual. The results can be viewed online ! [24]here. Other significant improvements --- 5849,5855 ---- * Existing libstdc++ documentation has been edited and restructured into a single DocBook XML manual. The results can be viewed online ! [22]here. Other significant improvements *************** Other significant improvements *** 5848,5854 **** GCC 4.3.1 ! This is the [25]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.1 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). --- 5881,5887 ---- GCC 4.3.1 ! This is the [23]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.1 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). *************** Target Specific Changes *** 5874,5931 **** GCC 4.3.2 ! This is the [26]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.2 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.3 ! This is the [27]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.3 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.4 ! This is the [28]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.4 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.5 ! This is the [29]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.5 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.6 ! This is the [30]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.6 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). For questions related to the use of GCC, please consult these web ! pages and the [31]GCC manuals. If that fails, the ! [32]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [33]gcc@gcc.gnu.org. All of [34]our lists have public archives. ! Copyright (C) [35]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [36]maintained by the GCC team. Last modified ! 2014-06-28[37]. References 1. http://gcc.gnu.org/gcc-4.3/changes.html#4.3.5 ! 2. http://gmplib.org/ 3. http://www.mpfr.org/ 4. https://gcc.gnu.org/install/prerequisites.html 5. https://gcc.gnu.org/ml/gcc-announce/2001/msg00000.html --- 5907,5964 ---- GCC 4.3.2 ! This is the [24]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.2 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.3 ! This is the [25]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.3 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.4 ! This is the [26]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.4 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.5 ! This is the [27]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.5 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). GCC 4.3.6 ! This is the [28]list of problem reports (PRs) from GCC's bug tracking system that are known to be fixed in the 4.3.6 release. This list might not be complete (that is, it is possible that some PRs that have been fixed are not listed here). For questions related to the use of GCC, please consult these web ! pages and the [29]GCC manuals. If that fails, the ! [30]gcc-help@gcc.gnu.org mailing list might help. Comments on these web pages and the development of GCC are welcome on our developer ! list at [31]gcc@gcc.gnu.org. All of [32]our lists have public archives. ! Copyright (C) [33]Free Software Foundation, Inc. Verbatim copying and distribution of this entire article is permitted in any medium, provided this notice is preserved. ! These pages are [34]maintained by the GCC team. Last modified ! 2016-01-30[35]. References 1. http://gcc.gnu.org/gcc-4.3/changes.html#4.3.5 ! 2. https://gmplib.org/ 3. http://www.mpfr.org/ 4. https://gcc.gnu.org/install/prerequisites.html 5. https://gcc.gnu.org/ml/gcc-announce/2001/msg00000.html *************** References *** 5939,5968 **** 13. http://gcc.gnu.org/gcc-4.3/cxx0x_status.html 14. https://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt01ch01.html#m anual.intro.status.standard.tr1 15. https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html ! 16. http://gmplib.org/ ! 17. http://www.mpfr.org/ ! 18. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html#Code-Gen-Options ! 19. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html#index-g_t_0040code_007bfinit-local-zero_007d-167 ! 20. https://gcc.gnu.org/onlinedocs/gcc-4.3.0/gfortran/GAMMA.html ! 21. https://gcc.gnu.org/onlinedocs/gcc-4.3.0/gfortran/LGAMMA.html ! 22. https://gcc.gnu.org/onlinedocs/gfortran/Fortran-Dialect-Options.html ! 23. https://gcc.gnu.org/onlinedocs/gfortran/BOZ-literal-constants.html ! 24. https://gcc.gnu.org/onlinedocs/libstdc++/ ! 25. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.1 ! 26. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.2 ! 27. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.3 ! 28. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.4 ! 29. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.5 ! 30. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.6 ! 31. https://gcc.gnu.org/onlinedocs/ ! 32. mailto:gcc-help@gcc.gnu.org ! 33. mailto:gcc@gcc.gnu.org ! 34. https://gcc.gnu.org/lists.html ! 35. http://www.fsf.org/ ! 36. https://gcc.gnu.org/about.html ! 37. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.2/index.html GCC 4.2 Release Series May 19, 2008 --- 5972,6000 ---- 13. http://gcc.gnu.org/gcc-4.3/cxx0x_status.html 14. https://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt01ch01.html#m anual.intro.status.standard.tr1 15. https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html ! 16. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html#Code-Gen-Options ! 17. https://gcc.gnu.org/onlinedocs/gfortran/Code-Gen-Options.html#index-g_t_0040code_007bfinit-local-zero_007d-167 ! 18. https://gcc.gnu.org/onlinedocs/gcc-4.3.0/gfortran/GAMMA.html ! 19. https://gcc.gnu.org/onlinedocs/gcc-4.3.0/gfortran/LGAMMA.html ! 20. https://gcc.gnu.org/onlinedocs/gfortran/Fortran-Dialect-Options.html ! 21. https://gcc.gnu.org/onlinedocs/gfortran/BOZ-literal-constants.html ! 22. https://gcc.gnu.org/onlinedocs/libstdc++/ ! 23. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.1 ! 24. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.2 ! 25. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.3 ! 26. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.4 ! 27. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.5 ! 28. https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=4.3.6 ! 29. https://gcc.gnu.org/onlinedocs/ ! 30. mailto:gcc-help@gcc.gnu.org ! 31. mailto:gcc@gcc.gnu.org ! 32. https://gcc.gnu.org/lists.html ! 33. http://www.fsf.org/ ! 34. https://gcc.gnu.org/about.html ! 35. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.2/index.html + GCC 4.2 Release Series May 19, 2008 *************** References and Acknowledgements *** 6022,6028 **** provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2014-06-28[19]. References --- 6054,6060 ---- provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2016-01-30[19]. References *************** References *** 6047,6052 **** --- 6079,6085 ---- 19. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.2/changes.html + GCC 4.2 Release Series Changes, New Features, and Fixes *************** Other significant improvements *** 6351,6357 **** provided this notice is preserved. These pages are [12]maintained by the GCC team. Last modified ! 2014-06-28[13]. References --- 6384,6390 ---- provided this notice is preserved. These pages are [12]maintained by the GCC team. Last modified ! 2016-01-30[13]. References *************** References *** 6370,6375 **** --- 6403,6409 ---- 13. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.1/index.html + GCC 4.1 Release Series February 13, 2007 *************** References and Acknowledgements *** 6423,6429 **** provided this notice is preserved. These pages are [16]maintained by the GCC team. Last modified ! 2014-06-28[17]. References --- 6457,6463 ---- provided this notice is preserved. These pages are [16]maintained by the GCC team. Last modified ! 2016-01-30[17]. References *************** References *** 6446,6451 **** --- 6480,6486 ---- 17. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.1/changes.html + GCC 4.1 Release Series Changes, New Features, and Fixes *************** GCC 4.1.2 *** 6986,6992 **** provided this notice is preserved. These pages are [12]maintained by the GCC team. Last modified ! 2014-06-28[13]. References --- 7021,7027 ---- provided this notice is preserved. These pages are [12]maintained by the GCC team. Last modified ! 2016-01-30[13]. References *************** References *** 7005,7010 **** --- 7040,7046 ---- 13. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.0/index.html + GCC 4.0 Release Series January 31, 2007 *************** References and Acknowledgements *** 7064,7070 **** provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2014-06-28[19]. References --- 7100,7106 ---- provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2016-01-30[19]. References *************** References *** 7089,7094 **** --- 7125,7131 ---- 19. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-4.0/changes.html + GCC 4.0 Release Series Changes, New Features, and Fixes *************** class __attribute__ ((visibility("hidden *** 7219,7225 **** used outside a binary as hidden, one can completely avoid PLT indirection overheads during their usage by the compiler. You can find out more about the advantages of this at ! [6]http://www.akkadia.org/drepper/dsohowto.pdf * The -fvisibility-inlines-hidden option has been added which marks all inlineable functions as having hidden ELF visibility, thus removing their symbol and typeinfo from the exported symbol table --- 7256,7262 ---- used outside a binary as hidden, one can completely avoid PLT indirection overheads during their usage by the compiler. You can find out more about the advantages of this at ! [6]https://www.akkadia.org/drepper/dsohowto.pdf * The -fvisibility-inlines-hidden option has been added which marks all inlineable functions as having hidden ELF visibility, thus removing their symbol and typeinfo from the exported symbol table *************** GCC 4.0.4 *** 7590,7596 **** provided this notice is preserved. These pages are [21]maintained by the GCC team. Last modified ! 2014-06-28[22]. References --- 7627,7633 ---- provided this notice is preserved. These pages are [21]maintained by the GCC team. Last modified ! 2016-05-27[22]. References *************** References *** 7599,7607 **** 3. http://gcc.gnu.org/projects/tree-ssa/ 4. http://gcc.gnu.org/projects/tree-ssa/vectorization.html 5. http://gcc.gnu.org/news/sms.html ! 6. http://www.akkadia.org/drepper/dsohowto.pdf 7. http://gcc.gnu.org/gcc-4.0/changes.html#visibility ! 8. http://mentorembedded.github.com/cxx-abi/ 9. http://gcc.gnu.org/fortran/ 10. https://gcc.gnu.org/install/ 11. https://gcc.gnu.org/wiki/Visibility --- 7636,7644 ---- 3. http://gcc.gnu.org/projects/tree-ssa/ 4. http://gcc.gnu.org/projects/tree-ssa/vectorization.html 5. http://gcc.gnu.org/news/sms.html ! 6. https://www.akkadia.org/drepper/dsohowto.pdf 7. http://gcc.gnu.org/gcc-4.0/changes.html#visibility ! 8. http://mentorembedded.github.io/cxx-abi/ 9. http://gcc.gnu.org/fortran/ 10. https://gcc.gnu.org/install/ 11. https://gcc.gnu.org/wiki/Visibility *************** References *** 7618,7623 **** --- 7655,7661 ---- 22. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.4/index.html + GCC 3.4 Release Series May 26, 2006 *************** References and Acknowledgements *** 7688,7694 **** provided this notice is preserved. These pages are [22]maintained by the GCC team. Last modified ! 2014-06-28[23]. References --- 7726,7732 ---- provided this notice is preserved. These pages are [22]maintained by the GCC team. Last modified ! 2016-01-30[23]. References *************** References *** 7717,7722 **** --- 7755,7761 ---- 23. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.4/changes.html + GCC 3.4 Release Series Changes, New Features, and Fixes *************** GCC 3.4.6 *** 9476,9482 **** provided this notice is preserved. These pages are [417]maintained by the GCC team. Last modified ! 2014-06-28[418]. References --- 9515,9521 ---- provided this notice is preserved. These pages are [417]maintained by the GCC team. Last modified ! 2016-01-30[418]. References *************** References *** 9489,9495 **** 7. http://www.boost.org/ 8. https://gcc.gnu.org/PR11953 9. https://gcc.gnu.org/PR8361 ! 10. https://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/Other-Builtins.html#Other Builtins 11. http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_closed.html#209 12. http://gcc.gnu.org/bugs/#cxx_rvalbind 13. https://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/Objective-C-Dialect-Options.html --- 9528,9534 ---- 7. http://www.boost.org/ 8. https://gcc.gnu.org/PR11953 9. https://gcc.gnu.org/PR8361 ! 10. https://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/Other-Builtins.html#Other%20Builtins 11. http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_closed.html#209 12. http://gcc.gnu.org/bugs/#cxx_rvalbind 13. https://gcc.gnu.org/onlinedocs/gcc-3.4.3/gcc/Objective-C-Dialect-Options.html *************** References *** 9506,9512 **** 24. http://gcc.gnu.org/gcc-3.4/mips-abi.html 25. http://gcc.gnu.org/gcc-3.4/powerpc-abi.html 26. http://gcc.gnu.org/gcc-3.4/sparc-abi.html ! 27. https://gcc.gnu.org/bugzilla/buglist.cgi?short_desc_type=notregexp&short_desc=\[3\.4.*[Rr]egression&target_milestone=3.4.0&bug_status=RESOLVED&resolution=FIXED 28. https://gcc.gnu.org/PR10129 29. https://gcc.gnu.org/PR14576 30. https://gcc.gnu.org/PR14760 --- 9545,9551 ---- 24. http://gcc.gnu.org/gcc-3.4/mips-abi.html 25. http://gcc.gnu.org/gcc-3.4/powerpc-abi.html 26. http://gcc.gnu.org/gcc-3.4/sparc-abi.html ! 27. https://gcc.gnu.org/bugzilla/buglist.cgi?short_desc_type=notregexp&short_desc=%5C%5B3%5C.4.*%5BRr%5Degression&target_milestone=3.4.0&bug_status=RESOLVED&resolution=FIXED 28. https://gcc.gnu.org/PR10129 29. https://gcc.gnu.org/PR14576 30. https://gcc.gnu.org/PR14760 *************** References *** 9900,9905 **** --- 9939,9945 ---- 418. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.3/index.html + GCC 3.3 Release Series May 03, 2005 *************** References and Acknowledgements *** 9971,9977 **** provided this notice is preserved. These pages are [21]maintained by the GCC team. Last modified ! 2014-06-28[22]. References --- 10011,10017 ---- provided this notice is preserved. These pages are [21]maintained by the GCC team. Last modified ! 2016-01-30[22]. References *************** References *** 9999,10004 **** --- 10039,10045 ---- 22. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.3/changes.html + GCC 3.3 Release Series Changes, New Features, and Fixes *************** GCC 3.3.6 *** 11346,11352 **** provided this notice is preserved. These pages are [556]maintained by the GCC team. Last modified ! 2014-06-28[557]. References --- 11387,11393 ---- provided this notice is preserved. These pages are [556]maintained by the GCC team. Last modified ! 2016-01-30[557]. References *************** References *** 11909,11914 **** --- 11950,11956 ---- 557. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.2/index.html + GCC 3.2 Release Series April 25, 2003 *************** References and Acknowledgements *** 11974,11980 **** provided this notice is preserved. These pages are [17]maintained by the GCC team. Last modified ! 2014-06-28[18]. References --- 12016,12022 ---- provided this notice is preserved. These pages are [17]maintained by the GCC team. Last modified ! 2016-01-30[18]. References *************** References *** 11998,12003 **** --- 12040,12046 ---- 18. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.2/changes.html + GCC 3.2 Release Series Changes, New Features, and Fixes *************** GCC 3.2 *** 12597,12603 **** provided this notice is preserved. These pages are [251]maintained by the GCC team. Last modified ! 2014-06-27[252]. References --- 12640,12646 ---- provided this notice is preserved. These pages are [251]maintained by the GCC team. Last modified ! 2016-01-30[252]. References *************** References *** 12855,12860 **** --- 12898,12904 ---- 252. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.1/index.html + GCC 3.1 July 27, 2002 *************** http://gcc.gnu.org/gcc-3.1/index.html *** 12900,12906 **** provided this notice is preserved. These pages are [14]maintained by the GCC team. Last modified ! 2014-06-28[15]. References --- 12944,12950 ---- provided this notice is preserved. These pages are [14]maintained by the GCC team. Last modified ! 2016-01-30[15]. References *************** References *** 12921,12926 **** --- 12965,12971 ---- 15. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.1/changes.html + GCC 3.1 Release Series Changes, New Features, and Fixes *************** New Targets and Target Specific Improvem *** 13139,13145 **** + For those targets that support it, -mfpmath=sse will cause the compiler to generate SSE/SSE2 instructions for floating point math instead of x87 instructions. Usually, this will lead to ! quicker code — especially on the Pentium 4. Note that only scalar floating point instructions are used and GCC does not exploit SIMD features yet. + Prefetch support has been added to the Pentium III, Pentium 4, --- 13184,13190 ---- + For those targets that support it, -mfpmath=sse will cause the compiler to generate SSE/SSE2 instructions for floating point math instead of x87 instructions. Usually, this will lead to ! quicker code -- especially on the Pentium 4. Note that only scalar floating point instructions are used and GCC does not exploit SIMD features yet. + Prefetch support has been added to the Pentium III, Pentium 4, *************** Documentation improvements *** 13255,13261 **** provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2014-06-28[19]. References --- 13300,13306 ---- provided this notice is preserved. These pages are [18]maintained by the GCC team. Last modified ! 2016-01-30[19]. References *************** References *** 13266,13272 **** 5. https://gcc.gnu.org/onlinedocs/libstdc++/faq.html 6. https://gcc.gnu.org/onlinedocs/gcc-3.1.1/g77/News.html 7. http://www.adacore.com/ ! 8. http://www-cs-faculty.stanford.edu/~knuth/mmix.html 9. http://www.axis.com/ 10. http://developer.axis.com/ 11. http://www.superh.com/ --- 13311,13317 ---- 5. https://gcc.gnu.org/onlinedocs/libstdc++/faq.html 6. https://gcc.gnu.org/onlinedocs/gcc-3.1.1/g77/News.html 7. http://www.adacore.com/ ! 8. http://www-cs-faculty.stanford.edu/~uno/mmix.html 9. http://www.axis.com/ 10. http://developer.axis.com/ 11. http://www.superh.com/ *************** References *** 13280,13285 **** --- 13325,13331 ---- 19. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.0/index.html + GCC 3.0.4 February 20, 2002 *************** Previous 3.0.x Releases *** 13332,13338 **** provided this notice is preserved. These pages are [14]maintained by the GCC team. Last modified ! 2014-06-28[15]. References --- 13378,13384 ---- provided this notice is preserved. These pages are [14]maintained by the GCC team. Last modified ! 2016-01-30[15]. References *************** References *** 13353,13358 **** --- 13399,13405 ---- 15. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.0/features.html + GCC 3.0 New Features Additional changes in GCC 3.0.4 *************** Other significant improvements *** 13523,13529 **** provided this notice is preserved. These pages are [19]maintained by the GCC team. Last modified ! 2014-06-28[20]. References --- 13570,13576 ---- provided this notice is preserved. These pages are [19]maintained by the GCC team. Last modified ! 2016-01-30[20]. References *************** References *** 13549,13554 **** --- 13596,13602 ---- 20. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-3.0/caveats.html + GCC 3.0 Caveats * -fstrict-aliasing is now part of -O2 and higher optimization *************** http://gcc.gnu.org/gcc-3.0/caveats.html *** 13595,13601 **** provided this notice is preserved. These pages are [7]maintained by the GCC team. Last modified ! 2014-06-27[8]. References --- 13643,13649 ---- provided this notice is preserved. These pages are [7]maintained by the GCC team. Last modified ! 2016-01-30[8]. References *************** References *** 13609,13614 **** --- 13657,13663 ---- 8. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-2.95/index.html + GCC 2.95 March 16, 2001: The GNU project and the GCC developers are pleased to *************** References and Acknowledgements *** 13675,13681 **** provided this notice is preserved. These pages are [15]maintained by the GCC team. Last modified ! 2014-06-28[16]. References --- 13724,13730 ---- provided this notice is preserved. These pages are [15]maintained by the GCC team. Last modified ! 2016-01-30[16]. References *************** References *** 13697,13702 **** --- 13746,13752 ---- 16. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-2.95/features.html + GCC 2.95 New Features * General Optimizer Improvements: *************** Additional Changes in GCC 2.95.3 *** 13940,13946 **** provided this notice is preserved. These pages are [22]maintained by the GCC team. Last modified ! 2014-06-28[23]. References --- 13990,13996 ---- provided this notice is preserved. These pages are [22]maintained by the GCC team. Last modified ! 2016-01-30[23]. References *************** References *** 13969,13974 **** --- 14019,14025 ---- 23. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/gcc-2.95/caveats.html + GCC 2.95 Caveats * GCC 2.95 will issue an error for invalid asm statements that had *************** http://gcc.gnu.org/gcc-2.95/caveats.html *** 14023,14029 **** provided this notice is preserved. These pages are [7]maintained by the GCC team. Last modified ! 2014-06-12[8]. References --- 14074,14080 ---- provided this notice is preserved. These pages are [7]maintained by the GCC team. Last modified ! 2016-01-30[8]. References *************** References *** 14037,14042 **** --- 14088,14094 ---- 8. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/egcs-1.1/index.html + EGCS 1.1 September 3, 1998: We are pleased to announce the release of EGCS 1.1. *************** http://gcc.gnu.org/egcs-1.1/index.html *** 14244,14250 **** provided this notice is preserved. These pages are [15]maintained by the GCC team. Last modified ! 2014-06-28[16]. References --- 14296,14302 ---- provided this notice is preserved. These pages are [15]maintained by the GCC team. Last modified ! 2016-01-30[16]. References *************** References *** 14266,14271 **** --- 14318,14324 ---- 16. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/egcs-1.1/features.html + EGCS 1.1 new features * Integrated GNU Fortran (g77) compiler and runtime library with *************** http://gcc.gnu.org/egcs-1.1/features.htm *** 14343,14349 **** provided this notice is preserved. These pages are [10]maintained by the GCC team. Last modified ! 2014-06-12[11]. References --- 14396,14402 ---- provided this notice is preserved. These pages are [10]maintained by the GCC team. Last modified ! 2016-01-30[11]. References *************** References *** 14360,14365 **** --- 14413,14419 ---- 11. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/egcs-1.1/caveats.html + EGCS 1.1 Caveats * EGCS has an integrated libstdc++, but does not have an integrated *************** http://gcc.gnu.org/egcs-1.1/caveats.html *** 14397,14403 **** provided this notice is preserved. These pages are [6]maintained by the GCC team. Last modified ! 2014-06-12[7]. References --- 14451,14457 ---- provided this notice is preserved. These pages are [6]maintained by the GCC team. Last modified ! 2016-01-30[7]. References *************** References *** 14410,14415 **** --- 14464,14470 ---- 7. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/egcs-1.0/index.html + EGCS 1.0 December 3, 1997: We are pleased to announce the release of EGCS 1.0. *************** http://gcc.gnu.org/egcs-1.0/index.html *** 14593,14599 **** provided this notice is preserved. These pages are [10]maintained by the GCC team. Last modified ! 2014-06-28[11]. References --- 14648,14654 ---- provided this notice is preserved. These pages are [10]maintained by the GCC team. Last modified ! 2016-01-30[11]. References *************** References *** 14610,14615 **** --- 14665,14671 ---- 11. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/egcs-1.0/features.html + EGCS 1.0 features * Core compiler is based on the gcc2 development tree from Aug 2, *************** http://gcc.gnu.org/egcs-1.0/features.htm *** 14659,14665 **** provided this notice is preserved. These pages are [8]maintained by the GCC team. Last modified ! 2014-06-12[9]. References --- 14715,14721 ---- provided this notice is preserved. These pages are [8]maintained by the GCC team. Last modified ! 2016-01-30[9]. References *************** References *** 14674,14679 **** --- 14730,14736 ---- 9. http://validator.w3.org/check/referer ====================================================================== http://gcc.gnu.org/egcs-1.0/caveats.html + EGCS 1.0 Caveats * EGCS has an integrated libstdc++, but does not have an integrated *************** http://gcc.gnu.org/egcs-1.0/caveats.html *** 14712,14718 **** provided this notice is preserved. These pages are [6]maintained by the GCC team. Last modified ! 2014-06-12[7]. References --- 14769,14775 ---- provided this notice is preserved. These pages are [6]maintained by the GCC team. Last modified ! 2016-01-30[7]. References diff -Nrcpad gcc-4.9.3/boehm-gc/ChangeLog gcc-4.9.4/boehm-gc/ChangeLog *** gcc-4.9.3/boehm-gc/ChangeLog Fri Jun 26 17:57:32 2015 --- gcc-4.9.4/boehm-gc/ChangeLog Wed Aug 3 05:05:07 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/config/ChangeLog gcc-4.9.4/config/ChangeLog *** gcc-4.9.3/config/ChangeLog Fri Jun 26 17:54:38 2015 --- gcc-4.9.4/config/ChangeLog Wed Aug 3 05:06:32 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/configure gcc-4.9.4/configure *** gcc-4.9.3/configure Sun May 3 17:28:00 2015 --- gcc-4.9.4/configure Thu Nov 19 15:19:13 2015 *************** $as_echo "$gcc_cv_isl" >&6; } *** 6072,6077 **** --- 6072,6126 ---- fi + if test "${gcc_cv_isl}" = no ; then + + if test "${ENABLE_ISL_CHECK}" = yes ; then + _isl_saved_CFLAGS=$CFLAGS + _isl_saved_LDFLAGS=$LDFLAGS + _isl_saved_LIBS=$LIBS + + CFLAGS="${_isl_saved_CFLAGS} ${islinc} ${gmpinc}" + LDFLAGS="${_isl_saved_LDFLAGS} ${isllibs}" + LIBS="${_isl_saved_LIBS} -lisl" + + { $as_echo "$as_me:${as_lineno-$LINENO}: checking for version 0.15 of ISL" >&5 + $as_echo_n "checking for version 0.15 of ISL... " >&6; } + if test "$cross_compiling" = yes; then : + gcc_cv_isl=yes + else + cat confdefs.h - <<_ACEOF >conftest.$ac_ext + /* end confdefs.h. */ + #include + #include + int + main () + { + if (strncmp (isl_version (), "isl-0.15", strlen ("isl-0.15")) != 0) + return 1; + + ; + return 0; + } + _ACEOF + if ac_fn_c_try_run "$LINENO"; then : + gcc_cv_isl=yes + else + gcc_cv_isl=no + fi + rm -f core *.core core.conftest.* gmon.out bb.out conftest$ac_exeext \ + conftest.$ac_objext conftest.beam conftest.$ac_ext + fi + + { $as_echo "$as_me:${as_lineno-$LINENO}: result: $gcc_cv_isl" >&5 + $as_echo "$gcc_cv_isl" >&6; } + + CFLAGS=$_isl_saved_CFLAGS + LDFLAGS=$_isl_saved_LDFLAGS + LIBS=$_isl_saved_LIBS + fi + + + fi fi fi fi diff -Nrcpad gcc-4.9.3/configure.ac gcc-4.9.4/configure.ac *** gcc-4.9.3/configure.ac Sun May 3 17:28:00 2015 --- gcc-4.9.4/configure.ac Thu Nov 19 15:19:13 2015 *************** if test "x$with_isl" != "xno" && *** 1660,1665 **** --- 1660,1668 ---- ISL_CHECK_VERSION(0,12) if test "${gcc_cv_isl}" = no ; then ISL_CHECK_VERSION(0,14) + if test "${gcc_cv_isl}" = no ; then + ISL_CHECK_VERSION(0,15) + fi fi fi fi diff -Nrcpad gcc-4.9.3/contrib/ChangeLog gcc-4.9.4/contrib/ChangeLog *** gcc-4.9.3/contrib/ChangeLog Fri Jun 26 17:55:29 2015 --- gcc-4.9.4/contrib/ChangeLog Wed Aug 3 05:03:52 2016 *************** *** 1,3 **** --- 1,12 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2015-09-11 Markus Trippelsdorf + + * download_prerequisites: Make sure that script is run from + top level source directory. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/contrib/download_prerequisites gcc-4.9.4/contrib/download_prerequisites *** gcc-4.9.3/contrib/download_prerequisites Thu Feb 13 14:06:48 2014 --- gcc-4.9.4/contrib/download_prerequisites Fri Sep 11 06:14:32 2015 *************** *** 24,29 **** --- 24,34 ---- # ISL Library and CLooG. GRAPHITE_LOOP_OPT=yes + if [ ! -e gcc/BASE-VER ] ; then + echo "You must run this script in the top level GCC source directory." + exit 1 + fi + # Necessary to build GCC. MPFR=mpfr-2.4.2 GMP=gmp-4.3.2 diff -Nrcpad gcc-4.9.3/contrib/reghunt/ChangeLog gcc-4.9.4/contrib/reghunt/ChangeLog *** gcc-4.9.3/contrib/reghunt/ChangeLog Fri Jun 26 17:55:19 2015 --- gcc-4.9.4/contrib/reghunt/ChangeLog Wed Aug 3 05:03:56 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/contrib/regression/ChangeLog gcc-4.9.4/contrib/regression/ChangeLog *** gcc-4.9.3/contrib/regression/ChangeLog Fri Jun 26 17:55:25 2015 --- gcc-4.9.4/contrib/regression/ChangeLog Wed Aug 3 05:03:46 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/fixincludes/ChangeLog gcc-4.9.4/fixincludes/ChangeLog *** gcc-4.9.3/fixincludes/ChangeLog Fri Jun 26 17:54:29 2015 --- gcc-4.9.4/fixincludes/ChangeLog Wed Aug 3 05:04:51 2016 *************** *** 1,3 **** --- 1,14 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2016-02-01 John David Anglin + + PR target/68741 + * inclhack.def (hpux_vsscanf): New fix. + * fixincl.x: Regenerated. + * tests/base/stdio.h [HPUX_VSSCANF_CHECK]: New test. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/fixincludes/fixincl.x gcc-4.9.4/fixincludes/fixincl.x *** gcc-4.9.3/fixincludes/fixincl.x Sun Dec 8 21:55:46 2013 --- gcc-4.9.4/fixincludes/fixincl.x Mon Feb 1 20:27:47 2016 *************** *** 1,12 **** /* -*- buffer-read-only: t -*- vi: set ro: ! * * DO NOT EDIT THIS FILE (fixincl.x) ! * ! * It has been AutoGen-ed December 8, 2013 at 12:24:14 PM by AutoGen 5.18.2 * From the definitions inclhack.def * and the template file fixincl */ ! /* DO NOT SVN-MERGE THIS FILE, EITHER Sun Dec 8 12:24:14 PST 2013 * * You must regenerate it. Use the ./genfixes script. * --- 1,12 ---- /* -*- buffer-read-only: t -*- vi: set ro: ! * * DO NOT EDIT THIS FILE (fixincl.x) ! * ! * It has been AutoGen-ed Monday February 1, 2016 at 03:26:15 PM EST * From the definitions inclhack.def * and the template file fixincl */ ! /* DO NOT SVN-MERGE THIS FILE, EITHER Mon 1 Feb 2016 15:26:15 EST * * You must regenerate it. Use the ./genfixes script. * *************** *** 15,21 **** * certain ANSI-incompatible system header files which are fixed to work * correctly with ANSI C and placed in a directory that GNU C will search. * ! * This file contains 229 fixup descriptions. * * See README for more information. * --- 15,21 ---- * certain ANSI-incompatible system header files which are fixed to work * correctly with ANSI C and placed in a directory that GNU C will search. * ! * This file contains 230 fixup descriptions. * * See README for more information. * *************** static const char* apzHpux11_VsnprintfPa *** 4119,4124 **** --- 4119,4161 ---- /* * * * * * * * * * * * * * * * * * * * * * * * * * * + * Description of Hpux_Vsscanf fix + */ + tSCC zHpux_VsscanfName[] = + "hpux_vsscanf"; + + /* + * File name selection pattern + */ + tSCC zHpux_VsscanfList[] = + "stdio.h\0"; + /* + * Machine/OS name selection pattern + */ + tSCC* apzHpux_VsscanfMachs[] = { + "*-*-hpux*", + (const char*)NULL }; + + /* + * content selection pattern - do fix if pattern found + */ + tSCC zHpux_VsscanfSelect0[] = + "(extern int vsscanf\\()char"; + + #define HPUX_VSSCANF_TEST_CT 1 + static tTestDesc aHpux_VsscanfTests[] = { + { TT_EGREP, zHpux_VsscanfSelect0, (regex_t*)NULL }, }; + + /* + * Fix Command Arguments for Hpux_Vsscanf + */ + static const char* apzHpux_VsscanfPatch[] = { + "format", + "%1const char", + (char*)NULL }; + + /* * * * * * * * * * * * * * * * * * * * * * * * * * + * * Description of Hpux8_Bogus_Inlines fix */ tSCC zHpux8_Bogus_InlinesName[] = *************** static const char* apzX11_SprintfPatch[] *** 9403,9411 **** * * List of all fixes */ ! #define REGEX_COUNT 268 #define MACH_LIST_SIZE_LIMIT 187 ! #define FIX_COUNT 229 /* * Enumerate the fixes --- 9440,9448 ---- * * List of all fixes */ ! #define REGEX_COUNT 269 #define MACH_LIST_SIZE_LIMIT 187 ! #define FIX_COUNT 230 /* * Enumerate the fixes *************** typedef enum { *** 9506,9511 **** --- 9543,9549 ---- HPUX11_SIZE_T_FIXIDX, HPUX11_SNPRINTF_FIXIDX, HPUX11_VSNPRINTF_FIXIDX, + HPUX_VSSCANF_FIXIDX, HPUX8_BOGUS_INLINES_FIXIDX, HPUX_C99_INTPTR_FIXIDX, HPUX_C99_INTTYPES_FIXIDX, *************** tFixDesc fixDescList[ FIX_COUNT ] = { *** 10118,10123 **** --- 10156,10166 ---- HPUX11_VSNPRINTF_TEST_CT, FD_MACH_ONLY | FD_SUBROUTINE, aHpux11_VsnprintfTests, apzHpux11_VsnprintfPatch, 0 }, + { zHpux_VsscanfName, zHpux_VsscanfList, + apzHpux_VsscanfMachs, + HPUX_VSSCANF_TEST_CT, FD_MACH_ONLY | FD_SUBROUTINE, + aHpux_VsscanfTests, apzHpux_VsscanfPatch, 0 }, + { zHpux8_Bogus_InlinesName, zHpux8_Bogus_InlinesList, apzHpux8_Bogus_InlinesMachs, HPUX8_BOGUS_INLINES_TEST_CT, FD_MACH_ONLY, diff -Nrcpad gcc-4.9.3/fixincludes/inclhack.def gcc-4.9.4/fixincludes/inclhack.def *** gcc-4.9.3/fixincludes/inclhack.def Sun Dec 8 21:55:46 2013 --- gcc-4.9.4/fixincludes/inclhack.def Mon Feb 1 20:27:47 2016 *************** fix = { *** 2186,2191 **** --- 2186,2205 ---- }; /* + * Fix missing const in hpux vsscanf declaration + */ + fix = { + hackname = hpux_vsscanf; + mach = "*-*-hpux*"; + files = stdio.h; + select = '(extern int vsscanf\()char'; + c_fix = format; + c_fix_arg = "%1const char"; + + test_text = 'extern int vsscanf(char *, const char *, __va_list);'; + }; + + /* * get rid of bogus inline definitions in HP-UX 8.0 */ fix = { diff -Nrcpad gcc-4.9.3/fixincludes/tests/base/stdio.h gcc-4.9.4/fixincludes/tests/base/stdio.h *** gcc-4.9.3/fixincludes/tests/base/stdio.h Wed Aug 10 08:43:38 2011 --- gcc-4.9.4/fixincludes/tests/base/stdio.h Mon Feb 1 20:27:47 2016 *************** extern int vsnprintf(char *, _hpux_size_ *** 49,54 **** --- 49,59 ---- #endif /* HPUX11_VSNPRINTF_CHECK */ + #if defined( HPUX_VSSCANF_CHECK ) + extern int vsscanf(const char *, const char *, __gnuc_va_list); + #endif /* HPUX_VSSCANF_CHECK */ + + #if defined( IRIX_STDIO_DUMMY_VA_LIST_CHECK ) extern int printf( const char *, __gnuc_va_list ); #endif /* IRIX_STDIO_DUMMY_VA_LIST_CHECK */ diff -Nrcpad gcc-4.9.3/gcc/BASE-VER gcc-4.9.4/gcc/BASE-VER *** gcc-4.9.3/gcc/BASE-VER Thu Oct 30 09:56:05 2014 --- gcc-4.9.4/gcc/BASE-VER Fri Jun 26 19:30:41 2015 *************** *** 1 **** ! 4.9.3 --- 1 ---- ! 4.9.4 diff -Nrcpad gcc-4.9.3/gcc/ChangeLog gcc-4.9.4/gcc/ChangeLog *** gcc-4.9.3/gcc/ChangeLog Fri Jun 26 17:56:48 2015 --- gcc-4.9.4/gcc/ChangeLog Wed Aug 3 05:06:53 2016 *************** *** 1,3 **** --- 1,1618 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2016-08-01 Marek Polacek + + Backport from mainline + 2016-07-29 Marek Polacek + + PR c/7652 + * config/rs6000/rs6000.c (altivec_expand_ld_builtin): Add break. + (altivec_expand_st_builtin): Likewise. + * config/i386/i386.c (ix86_expand_args_builtin): Likewise. + (ix86_expand_round_builtin): Likewise. + + 2016-07-19 Jakub Jelinek + + PR middle-end/71874 + * builtins.c (fold_builtin_memory_op): Use + get_addr_base_and_unit_offset instead of get_ref_base_and_extent. + + 2016-07-19 Martin Jambor + + PR fortran/71688 + * trans-decl.c (gfc_generate_function_code): Use cgraph_get_create_node + rather than cgraph_create_node to get a call graph node. + + 2016-07-19 Martin Liska + + Backported from mainline + 2016-03-15 Richard Henderson + + * line-map.c (new_linemap): Make alloc_size a size_t. + + 2016-07-19 Jakub Jelinek + + Backported from mainline + 2016-07-11 Jakub Jelinek + + PR middle-end/71758 + * omp-low.c (expand_omp_target): Gimplify device. + + 2016-07-18 Martin Liska + + Backported from mainline + 2016-07-12 Martin Liska + + PR rtl-optimization/71634 + * ira-build.c (mark_loops_for_removal): Properly iterate + loops. + + 2016-07-08 Martin Liska + + Backported from mainline + 2016-07-08 Martin Liska + + PR middle-end/71606 + * fold-const.c (fold_convertible_p): As COMPLEX_TYPE + folding produces SAVE_EXPRs, thus return false for the type. + + 2016-07-07 Jakub Jelinek + + Backported from mainline + 2016-06-28 Jakub Jelinek + + PR middle-end/71626 + * config/i386/i386.c (ix86_expand_vector_move): For SUBREG of + a constant, force its SUBREG_REG into memory or register instead + of whole op1. + + 2016-06-21 Jakub Jelinek + + PR tree-optimization/71588 + * tree-ssa-strlen.c (valid_builtin_call): New function. + (adjust_last_stmt, strlen_optimize_stmt): Use it. + + 2016-06-10 Jakub Jelinek + + PR middle-end/71494 + * tree-nested.c (convert_nonlocal_reference_stmt): For GIMPLE_GOTO + without LABEL_DECL, set *handled_ops_p to false instead of true. + + 2016-03-29 Jakub Jelinek + + PR rtl-optimization/70429 + * combine.c (simplify_shift_const_1): For ASHIFTRT don't optimize + (cst1 >> count) >> cst2 into (cst1 >> cst2) >> count if + mode != result_mode. + + 2016-03-15 Jakub Jelinek + + PR rtl-optimization/70222 + * combine.c (simplify_shift_const_1): For A >> B >> C LSHIFTRT + optimization if mode is different from result_mode, queue up masking + of the result in outer_op. Formatting fix. + + 2016-03-11 Jakub Jelinek + + PR tree-optimization/70169 + * tree-ssa-loop.c (gen_lsm_tmp_name): Handle FUNCTION_DECL and + LABEL_DECL like VAR_DECL. Emit nothing instead of gcc_unreachable + for unknown codes. + + 2016-03-09 Jakub Jelinek + + PR tree-optimization/70152 + * tree-sra.c (replace_removed_params_ssa_names): Copy over + SSA_NAME_OCCURS_IN_ABNORMAL_PHI from old_name to new_name. + + 2016-02-26 Jakub Jelinek + Eric Botcazou + + PR rtl-optimization/69891 + * dse.c (scan_insn): If we can't figure out memset arguments + or they are non-constant, call clear_rhs_from_active_local_stores. + + 2016-02-16 Jakub Jelinek + + PR tree-optimization/69802 + * tree-ssa-reassoc.c (update_range_test): If op is + SSA_NAME_IS_DEFAULT_DEF, give up unless tem is a positive + op == 1 test of precision 1 integral op, otherwise handle + that case as op itself. Fix up formatting. + (optimize_range_tests_to_bit_test, optimize_range_tests): Fix + up formatting. + + 2014-12-12 Richard Biener + + PR middle-end/64280 + * tree-cfg.c (replace_uses_by): Guard assert properly. + + 2016-07-07 Richard Biener + + Backport from mainline + 2016-04-04 Richard Biener + + PR rtl-optimization/70484 + * rtl.h (canon_output_dependence): Declare. + * alias.c (canon_output_dependence): New function. + * dse.c (record_store): Use canon_output_dependence rather + than canon_true_dependence. + + 2016-06-08 Richard Biener + + PR tree-optimization/71452 + * tree-ssa.c (non_rewritable_lvalue_p): Make sure that the + type used for the SSA rewrite has enough precision to cover + the dynamic type of the location. + + 2016-05-06 Richard Biener + + PR middle-end/70931 + * dwarf2out.c (native_encode_initializer): Skip zero-sized fields. + + 2016-03-01 Richard Biener + + PR middle-end/70022 + * fold-const.c (fold_indirect_ref_1): Fix range checking for + vector BIT_FIELD_REF extract. + + 2016-06-30 Jakub Jelinek + + PR middle-end/71693 + * fold-const.c (fold_binary_loc) : Cast + TREE_OPERAND (arg0, 0) and TREE_OPERAND (arg0, 1) to type + first when permuting bitwise operation with rotate. Cast + TREE_OPERAND (arg0, 0) to type when cancelling two rotations. + + 2016-06-21 Georg-Johann Lay + + Backport from 2016-06-21 trunk r237639. + + PR target/30417 + * config/avr/driver-avr.c (avr_device_to_data_start): + Wrap -Tdata into %{!Tdata:...}. + + 2016-06-21 Georg-Johann Lay + + PR target/71103 + * config/avr/avr.md (movqi): Only handle loading subreg:qi of + constant addresses if can_create_pseudo_p. + + 2016-06-20 Georg-Johann Lay + Pitchumani Sivanupandi + + Backport from 2016-06-20 trunk r237589, r236558. + + PR target/71103 + * config/avr/avr.md (movqi): Handle loading subreg:qi (const, + symbol_ref,label_ref). + + 2016-06-16 Jakub Jelinek + + PR target/71554 + * config/i386/i386.md (setcc + movzbl peephole2): Use reg_set_p. + (setcc + and peephole2): Likewise. + + Backported from mainline + 2015-04-29 Uros Bizjak + + * config/i386/i386.md (setcc+movzbl peephole2): Check also clobbered + reg. + (setcc+andl peephole2): Ditto. + + 2016-06-13 Richard Biener + + PR tree-optimization/71505 + * tree-vect-data-refs.c (vect_analyze_data_ref_accesses): Make + assert match comment. + + 2016-06-07 Peter Bergner + + Backport from mainline + 2016-06-07 Peter Bergner + + * doc/invoke.texi (RS/6000 and PowerPC Options): Document -mhtm and + -mno-htm. + + 2016-06-07 Uros Bizjak + + PR target/71389 + * config/i386/i386.c (ix86_avx256_split_vector_move_misalign): + Copy op1 RTX to avoid invalid sharing. + (ix86_expand_vector_move_misalign): Ditto. + + 2016-06-05 Uros Bizjak + + Backport from mainline + 2016-06-01 Uros Bizjak + Jocelyn Mayer + + PR target/67310 + * config/i386/driver-i386.c (host_detect_local_cpu): Correctly + detect processor family for signature_CENTAUR_ebx. + : Pass c3, winchip2 or winchip-c6 for + signature_CENTAUR_ebx. + : Pass c3-2 for signature_CENTAUR_ebx. + : Pass x86-64 for has_longmode. + + 2016-05-22 Iain Sandoe + Dominique d'Humieres + + Backport from mainline + 2015-12-17 Rainer Orth + + PR target/67973 + * configure.ac (gcc_cv_as_stabs_directive): New test. + * configure: Regenerate. + * config.in: Regenerate. + * config/darwin.h (DBX_DEBUGGING_INFO): Wrap in + HAVE_AS_STABS_DIRECTIVE. + (PREFERRED_DEBUGGING_TYPE): Likewise. + * config/i386/darwin.h (PREFERRED_DEBUGGING_TYPE): Only include + DBX_DEBUG if HAVE_AS_STABS_DIRECTIVE. + + * doc/sourcebuild.texi (Effective-Target Keywords, Environment + attributes): Document stabs. + + 2016-05-20 Eric Botcazou + + * config/arm/arm.c (arm_expand_prologue): Set the stack usage to 0 + for naked functions. + (thumb1_expand_prologue): Likewise. + + 2016-05-20 Uros Bizjak + + * sched-deps.c (sched_analyze_2) : Also + force pending loads from memory. + + 2016-05-20 Kyrylo Tkachov + + Backport from mainline + 2016-05-17 Kyrylo Tkachov + + PR target/70809 + * config/aarch64/aarch64-simd.md (aarch64_vmls): Delete. + + 2016-05-19 Martin Jambor + + PR ipa/70646 + * ipa-prop.c (determine_locally_known_aggregate_parts): Bail out early + if parameter PARAM_IPA_MAX_AGG_ITEMS is zero. + + 2016-05-19 Martin Jambor + + PR ipa/70646 + * ipa-inline.h (condition): New field size. + * ipa-inline-analysis.c (add_condition): New parameter SIZE, use it + for comaprison and store it into the new condition. + (evaluate_conditions_for_known_args): Use condition size to check + access sizes for all but CHANGED conditions. + (unmodified_parm_1): New parameter size_p, store access size into it. + (unmodified_parm): Likewise. + (unmodified_parm_or_parm_agg_item): Likewise. + (eliminated_by_inlining_prob): Pass NULL to unmodified_parm as size_p. + (set_cond_stmt_execution_predicate): Extract access sizes and store + them to conditions. + (set_switch_stmt_execution_predicate): Likewise. + (will_be_nonconstant_expr_predicate): Likewise. + (will_be_nonconstant_predicate): Likewise. + (inline_read_section): Stream condition size. + (inline_write_summary): Likewise. + * lto-streamer.h (LTO_minor_version): Bump. + * ipa-prop.c (ipa_load_from_parm_agg): Added size_p parameter, pass it + to ipa_load_from_parm_agg_1. + * ipa-prop.h (ipa_load_from_parm_agg): Update declaration. + + 2016-05-18 Uros Bizjak + + PR target/71145 + * config/alpha/alpha.md (trap): Add (use (reg:DI 29)). + (*exception_receiver_1): Return "#" for TARGET_EXPLICIT_RELOCS. + + 2016-05-10 Kyrylo Tkachov + + Backport from mainline + 2016-03-23 Kyrylo Tkachov + + PR driver/70132 + * config/arm/driver-arm.c (host_detect_local_cpu): Reorder exit logic + to not call fclose twice on file. + + 2016-05-10 Bill Schmidt + + Backport from mainline + 2016-05-10 Bill Schmidt + + PR target/70963 + * config/rs6000/vsx.md (vsx_xvcvdpsxds_scale): Generate correct + code for a zero scale factor. + (vsx_xvcvdpuxds_scale): Likewise. + + 2016-05-09 Sebastian Huber + + Backport from mainline + 2016-04-27 Sebastian Huber + + * config/rtems.h (LIB_SPEC): Add -latomic. + + 2016-05-09 Sebastian Huber + + Backport from mainline + 2016-04-27 Joel Sherrill + + * config/microblaze/rtems.h: Redefine LINK_SPEC to avoid + xilink.ld and flags not relevant to RTEMS. + + 2016-04-28 Jakub Jelinek + + PR target/70858 + * config/i386/i386.c (bdesc_special_args): Add | OPTION_MASK_ISA_64BIT + to __builtin_ia32_lwpval64 and __builtin_ia32_lwpins64. + (bdesc_args): Add | OPTION_MASK_ISA_64BIT to __builtin_ia32_bextr_u64, + __builtin_ia32_bextri_u64, __builtin_ia32_bzhi_di, + __builtin_ia32_pdep_di and __builtin_ia32_pext_di. + + 2016-04-27 Bill Schmidt + + Backport from mainline + 2016-04-25 Bill Schmidt + + * config/rs6000/rs6000-builtin.def: Correct pasto error for + stxvd2x and stxvw4x built-in functions. + + 2016-04-25 Bill Schmidt + + Backport from mainline + 2016-03-14 Segher Boessenkool + + PR target/70098 + * config/rs6000/rs6000.md (*ctr_internal1, *ctr_internal2, + *ctr_internal5, *ctr_internal6): Also allow "d" as output. + (define_split for the GPR case): Use int_reg_operand instead of + gpc_reg_operand for the output. + + 2016-04-21 Andreas Krebbel + + Backport from mainline + 2016-04-20 Andreas Krebbel + + PR target/70674 + * config/s390/s390.c (s390_restore_gprs_from_fprs): Pick the new + stack_restore_from_fpr pattern when restoring r15. + (s390_optimize_prologue): Strip away the memory barrier in the + parallel when trying to get rid of restore insns. + * config/s390/s390.md ("stack_restore_from_fpr"): New insn + definition for loading the stack pointer from an FPR. Compared to + the normal move insn this pattern includes a full memory barrier. + + 2016-04-13 Kyrylo Tkachov + + Backport from mainline + 2016-04-08 Kyrylo Tkachov + + PR target/70566 + * config/arm/thumb2.md (tst + branch-> lsls + branch + peephole below *orsi_not_shiftsi_si): Require that condition + register is dead after the peephole. + (second peephole after the above): Likewise. + + 2016-04-12 Eric Botcazou + + PR target/70630 + * config/sparc/sparc.c (sparc_compute_frame_size): Add parentheses. + + 2016-04-11 Alan Modra + + PR target/70117 + * builtins.c (fold_builtin_classify): For IBM extended precision, + look at just the high-order double to test for NaN. + (fold_builtin_interclass_mathfn): Similarly for Inf. For isnormal + test just the high double for Inf but both doubles for subnormal + limit. + + 2016-04-05 John David Anglin + + * config/pa/predicates.md (integer_store_memory_operand): Accept + REG+D operands with a large offset when reload_in_progress is true. + (floating_point_store_memory_operand): Likewise. + + 2016-04-05 Uros Bizjak + + PR target/70510 + * config/i386/sse.md (iptr): Add V16SI and V8DI modes. + + 2016-04-04 Bill Schmidt + Jakub Jelinek + + PR middle-end/70457 + * tree-inline.c (estimate_num_insn): Use gimple_call_builtin_p + to ensure a call statement is compatible with a built-in's + prototype. + * tree-ssa-math-opts.c (execute_cse_sincos_1): Likewise. + (execute_cse_sincos): Likewise. + (execute_optimize_widening_mul): Likewise. + + 2016-03-31 Kyrylo Tkachov + + * config/arm/sync.md (arm_atomic_loaddi2_ldrd): Fix output template + for non-unified syntax. + + 2016-03-31 Jakub Jelinek + + PR rtl-optimization/70460 + * ira.c (indirect_jump_optimize): Don't substitute LABEL_REF + with operand from REG_LABEL_OPERAND, instead substitute + SET_SRC or REG_EQUAL note content if it is a LABEL_REF. + Don't do anything for REG_NON_LOCAL_GOTO jumps. + + 2016-03-31 Alan Modra + + Backport from mainline + 2016-02-16 Alan Modra + PR target/68973 + * config/rs6000/rs6000.md (reload_vsx_from_gprsf): Rewrite splitter. + (p8_mtvsrd_df, p8_mtvsrd_sf): New. + (p8_mtvsrd_1, p8_mtvsrd_2): Delete. + (p8_mtvsrwz): New. + (p8_mtvsrwz_1, p8_mtvsrwz_2): Delete. + (p8_xxpermdi_): Take two DF inputs rather than one TF. + (p8_fmrgow_): Likewise. + (reload_vsx_from_gpr): Adjust for above. Use "wa" for + clobber constraint. + (reload_fpr_from_gpr): Adjust for above. Use "d" for + op0 constraint. + (reload_vsx_from_gprsf): Use p8_mtvsrd_sf rather than attempting + to use movdi_internal64. Remove op0_di. + * config/rs6000/vsx.md (vsx_xscvspdpn_directmove): Make op1 SFmode. + + 2016-03-29 Kyrylo Tkachov + + PR target/69875 + * config/arm/arm.h (TARGET_HAVE_LPAE): Define. + * config/arm/unspecs.md (VUNSPEC_LDRD_ATOMIC): New value. + * config/arm/sync.md (arm_atomic_loaddi2_ldrd): New pattern. + (atomic_loaddi_1): Delete. + (atomic_loaddi): Rewrite expander using the above changes. + + 2016-03-21 Uros Bizjak + + PR target/70327 + * config/i386/i386.md (movxi): Use ix86_expand_vector_move instead + of ix86_expand_move. + (movoi): Ditto. + (movti): Use general_operand for operand 1 predicate. + + 2016-03-21 Tom de Vries + + backport from trunk: + 2016-03-18 Tom de Vries + + PR ipa/70161 + * passes.c (execute_one_ipa_transform_pass): Add missing argument to + execute_function_dump. + + 2016-03-17 John David Anglin + + PR target/70188 + * config/pa/constraints.md: Revert 2015-02-13 change. Use + define_constraint for "Q" and "T" constraints. + + 2016-03-16 Alan Modra + + PR rtl-optimization/69195 + PR rtl-optimization/47992 + * ira.c (indirect_jump_optimize): Ignore artificial defs. + Add comments. + + 2016-03-15 Bernd Schmidt + + Backport from mainline + 2016-03-04 Bernd Schmidt + + PR rtl-optimization/69941 + * postreload.c (reload_combine_recognize_pattern): Ensure all uses of + the reg share its mode. + + 2016-03-14 Rainer Orth + + Backport from mainline: + 2016-03-07 Rainer Orth + + PR target/62281 + * config/i386/sol2.h (STACK_REALIGN_DEFAULT): Define. + + Revert: + 2014-02-11 Rainer Orth + + PR libgomp/60107 + * config/i386/sol2-9.h: New file. + * config.gcc (i[34567]86-*-solaris2* | x86_64-*-solaris2.1[0-9]*, + *-*-solaris2.9*): Use it. + + 2016-03-10 Alan Modra + + PR rtl-optimization/69195 + PR rtl-optimization/47992 + * ira.c (recorded_label_ref): Delete. + (update_equiv_regs): Return void. + (indirect_jump_optimize): New function. + (ira): Call indirect_jump_optimize and delete_trivially_dead_insns + before regstat_compute_ri. Don't rebuild_jump_labels here. + + 2016-03-04 Jakub Jelinek + + PR target/70059 + * config/i386/sse.md (vec_set_lo_, + _vinsert_mask): Formatting + fixes. + (vec_set_hi_): Likewise. Swap VEC_CONCAT operands. + + 2016-03-01 Eric Botcazou + + PR rtl-optimization/70007 + * gcse.c (compute_ld_motion_mems): Tidy up and also invalidate memory + references present in REG_EQUAL notes attached to non-SET patterns. + + 2016-02-17 Bill Schmidt + + Backport from mainline + 2016-02-17 Bill Schmidt + + * config/rs6000/altivec.md (*altivec_lvxl__internal): Output + correct instruction. + + 2016-02-17 Bernd Schmidt + + Backport from mainline + 2016-02-12 Bernd Schmidt + + PR c/69522 + * c-parser.c (c_parser_braced_init): New arg outer_obstack. All + callers changed. If nested_p is true, use it to call + finish_implicit_inits. + * c-tree.h (finish_implicit_inits): Declare. + * c-typeck.c (finish_implicit_inits): New function. Move code + from ... + (push_init_level): ... here. + (set_designator, process_init_element): Call finish_implicit_inits. + + 2016-02-16 Bernd Schmidt + + Backport from mainline + 2016-02-15 Bernd Schmidt + + PR rtl-optimization/69752 + * ira.c (update_equiv_regs): When looking for more than a single SET, + also take other side effects into account. + + 2016-02-16 Tom de Vries + + backport from trunk: + PR lto/67709 + 2016-02-16 Tom de Vries + + * omp-low.c (simd_clone_create): Remove call to + symtab->call_cgraph_insertion_hooks. + + 2016-02-16 Tom de Vries + + backport from trunk: + 2015-10-21 Ilya Enkovich + + * omp-low.c (simd_clone_create): Set in_other_partition + for created clones. + + 2016-02-13 Oleg Endo + + Backport from mainline + 2016-02-13 Oleg Endo + + PR target/67260 + * config/sh/sh.md (sibcall_value_pcrel): Replace =&k scratch reg with + fixed R1_REG scratch reg. + + 2016-02-12 Richard Biener + + Backport from mainline + 2016-02-09 Richard Biener + + PR tree-optimization/69715 + * tree-ssa.c (execute_update_addresses_taken): Mark non-decl + LHS on calls as non-rewritable. + + 2016-02-01 Richard Biener + + PR tree-optimization/69579 + * tree-ssa-loop-ivcanon.c (propagate_constants_for_unrolling): + Do not propagate through abnormal PHI results. + + 2016-02-01 Richard Biener + + PR tree-optimization/69574 + * tree-chrec.c (hide_evolution_in_other_loops_than_loop): Instead + of asserting return chrec_dont_know. + + 2016-02-11 Richard Biener + + Backport from mainline + 2016-01-18 Richard Biener + + PR middle-end/69308 + * gimple.c (gimple_could_trap_p_1): Handle GIMPLE_COND. + + 2015-02-18 Richard Biener + + PR tree-optimization/62217 + * tree-ssa-dom.c (cprop_operand): Avoid propagating copies + into BIVs. + + 2015-06-18 Richard Biener + + Backport from mainline + 2015-06-03 Richard Biener + + PR tree-optimization/66375 + * tree-scalar-evolution.c (follow_ssa_edge_binary): First + add to the evolution before following SSA edges. + + 2015-06-23 Richard Biener + + Backport from mainline + 2015-06-09 Richard Biener + + PR middle-end/66413 + * tree-inline.c (insert_init_debug_bind): Unshare value. + + 2015-07-08 Richard Biener + + PR tree-optimization/66794 + * gimple-ssa-isolate-paths.c (gimple_ssa_isolate_erroneous_paths): + Free post-dominators. + + 2015-07-10 Richard Biener + + PR tree-optimization/66823 + * tree-if-conv.c (memrefs_read_or_written_unconditionally): Fix + inverted predicate. + + 2016-02-11 Jakub Jelinek + + Backported from mainline + 2016-01-22 Jakub Jelinek + + PR target/69432 + * config/i386/i386.c (expand_small_movmem_or_setmem, + expand_set_or_movmem_prologue_epilogue_by_misaligned_moves): Spelling + fixes. + (ix86_expand_set_or_movmem): Call do_pending_stack_adjust () early + if dynamic_check != -1. + + 2016-01-21 Jakub Jelinek + + PR middle-end/67653 + * gimplify.c (gimplify_asm_expr): Warn if it is too late to + attempt to mark memory input operand addressable and + call prepare_gimple_addressable in that case. Don't adjust + input_location for diagnostics, use error_at instead. + + 2016-01-19 Jakub Jelinek + + PR rtl-optimization/68955 + PR rtl-optimization/64557 + * dse.c (record_store, check_mem_read_rtx): Don't call get_addr + here. Fix up formatting. + * alias.c (get_addr): Handle VALUE +/- CONST_SCALAR_INT_P. + + 2016-01-11 Jakub Jelinek + + PR tree-optimization/69214 + * tree-vrp.c (simplify_cond_using_ranges): Don't propagate + innerop into a comparison if SSA_NAME_OCCURS_IN_ABNORMAL_PHI. + Formatting fix. + + 2016-02-11 Oleg Endo + + Backport from mainline + 2016-02-11 Oleg Endo + + PR target/69713 + * config/sh/sh.md (casesi_worker_0): Add T_REG use. + + 2016-02-11 Jakub Jelinek + + Backported from mainline + 2016-01-07 Jakub Jelinek + + PR middle-end/68960 + * gimple-expr.c (copy_var_decl): If var has DECL_USER_ALIGN set, copy + it and DECL_ALIGN too. + + 2016-01-01 Jakub Jelinek + + PR target/69015 + * ifcvt.c (find_cond_trap): Give up if returnjump_p (jump). + + 2015-12-10 Jakub Jelinek + + PR rtl-optimization/68376 + PR rtl-optimization/68670 + * ifcvt.c (noce_try_abs): For one_cmpl allow < 0, >= 0 + or > -1 conditions regardless of negate, and disallow + all other conditions. + + 2015-11-19 Jakub Jelinek + + PR rtl-optimization/68376 + * ifcvt.c (noce_try_abs): Disable one_cmpl optimization if + encountering x <= 0 ? ~x : x or x > 0 ? ~x : x. + + 2015-12-04 Jakub Jelinek + + PR tree-optimization/68680 + * calls.c (special_function_p): Return ECF_MAY_BE_ALLOCA for + BUILT_IN_ALLOCA{,_WITH_ALIGN}. Don't check for __builtin_alloca + by name. + + 2015-11-21 Jakub Jelinek + + PR debug/66432 + * tree-inline.c (copy_debug_stmt): If + gimple_debug_source_bind_get_value is DECL_ORIGIN of a PARM_DECL + in decl_debug_args, don't call remap_gimple_op_r on it. + + 2015-11-19 Jakub Jelinek + + PR target/67770 + * config/i386/i386.md (simple_return): Disable if + ix86_static_chain_on_stack is true. + + 2016-02-04 Jakub Jelinek + + Backported from mainline + 2016-02-03 Jakub Jelinek + + PR target/69644 + * config/rs6000/rs6000.c (rs6000_expand_atomic_compare_and_swap): + Force oldval into register if it does not satisfy reg_or_short_operand + predicate. Fix up formatting. + + 2016-02-02 Uros Bizjak + + PR target/67032 + * config/i386/i386.c (geode_cost): Increase cost of MMX and SSE moves. + + 2016-02-02 Alan Modra + + PR target/69548 + * config/rs6000/predicates.md (quad_int_reg_operand): Don't + allow subregs. + + 2016-01-29 Martin Jambor + + PR tree-optimization/69355 + * tree-sra.c (analyze_access_subtree): Correct hole detection when + total_scalarization fails. + + 2016-01-29 Uros Bizjak + + Backport from mainline + 2016-01-29 Jakub Jelinek + + PR target/69551 + * config/i386/i386.c (ix86_expand_vector_set) : For + SSE1, copy target into the temporary reg first before recursing + on it. + + 2016-01-29 Uros Bizjak + + PR target/69459 + * config/i386/constraints.md (C): Only accept constant zero operand. + (BC): New constraint. + * config/i386/sse.md (*mov_internal): Use BC constraint + instead of C constraint. + * doc/md.texi (Machine Constraints): Update description + of C constraint. + + 2016-01-26 Tom de Vries + + PR tree-optimization/69110 + * tree-data-ref.c (initialize_data_dependence_relation): Handle + DR_NUM_DIMENSIONS == 0. + + 2016-01-25 Tom de Vries + + backport from trunk: + PR tree-optimization/PR64091 + 2014-11-27 Richard Biener + + * tree-ssa-tail-merge.c (update_debug_stmt): After resetting + the stmt break from the loop over use operands. + + 2016-01-22 Kyrylo Tkachov + + Backport from mainline + 2016-01-22 Kyrylo Tkachov + + PR target/69403 + * config/arm/thumb2.md (*thumb2_ior_scc_strict_it): Convert to + define_insn_and_split. Ensure operands[1] and operands[0] do not + get assigned the same register. + + 2016-01-22 Bernd Schmidt + + PR target/63681 + * cfgrtl.c (cfg_layout_initialize): Weaken assert to only trigger if + flag_reorder_blocks_and_partition. + * hw-doloop.c (reorg_loops): Avoid reordering if that flag is set. + + 2016-01-21 Andreas Krebbel + + Backported from mainline + 2015-07-24 Andreas Krebbel + + * config/s390/s390.c (s390_save_gprs_to_fprs): Add CFA_REGISTER + reg note to the GPR -> FPR save instructions. + + 2016-01-20 Kyrylo Tkachov + + Backport from mainline + 2015-09-10 Kyrylo Tkachov + + PR target/67439 + * config/arm/arm.md (*arm32_movhf): Remove !arm_restrict_it from + predicate. Set predicable_short_it attr to "no". + + 2016-01-19 Sergei Trofimovich + + Backport from mainline + PR other/60465 + * config/ia64/ia64.c (ia64_expand_load_address): Use gprel64 + for local symbolic operands. + * config/ia64/predicates.md (local_symbolic_operand64): New + predicate. + + 2016-01-17 Bill Schmidt + + Backport from mainline: + 2016-01-17 Bill Schmidt + + PR tree-optimization/68799 + * gimple-ssa-strength-reduction.c (create_phi_basis): Directly + look up phi candidates in the statement-candidate map. + (phi_add_costs): Likewise. + (record_phi_increments): Likewise. + (phi_incr_cost): Likewise. + (ncd_with_phi): Likewise. + (all_phi_incrs_profitable): Likewise. + + 2016-01-14 Kyrylo Tkachov + + PR target/68648 + * config/arm/arm.md (*andsi_iorsi3_notsi): Try to simplify + the complement of operands[3] during splitting. + + 2016-01-12 Jeff Law + + PR target/63347 + * haifa-sched.c (prune_ready_list): If we have a SCHED_GROUP_P insn + that needs to be queued, just queue it for a single cycle. + + 2016-01-12 Renlin Li + + PR target/69082 + Backport from mainline. + 2015-08-24 Renlin Li + + * config/arm/arm-protos.h (arm_valid_symbolic_address_p): Declare. + * config/arm/arm.c (arm_valid_symbolic_address_p): Define. + * config/arm/arm.md (arm_movt): Use arm_valid_symbolic_address_p. + * config/arm/constraints.md ("j"): Add check for high code. + + 2016-01-12 James Greenhalgh + + Backport from mainline. + 2015-12-09 James Greenhalgh + + PR rtl-optimization/67609 + * config/aarch64/aarch64.c + (aarch64_cannot_change_mode_class): Don't permit word_mode + subregs of full vector modes. + * config/aarch64/aarch64.md (aarch64_movdi_low): Use + zero_extract rather than truncate. + (aarch64_movdi_high): Likewise. + + 2016-01-11 John David Anglin + + * config/pa/pa.c (pa_emit_move_sequence): Handle floating point + reloads for other unsupported memory operands. + + 2016-01-11 Martin Jambor + + PR ipa/66616 + * ipa-cp.c (propagate_constants_accross_call): Move thuk check... + (call_passes_through_thunk_p): ...here. + (find_more_scalar_values_for_callers_subset): Perform thunk checks + like propagate_constants_accross_call does. + * cgraphclones.c (duplicate_thunk_for_node): Copy can_change_signature + flag from the node to the new flag. + + 2016-01-08 Martin Jambor + + Backport from mainline + 2015-12-15 Martin Jambor + + PR ipa/68851 + * cgraph.c (collect_callers_of_node_1): Do not collect thunks. + (collect_callers): Change comment. + + 2015-12-25 Andreas Tobler + + Backport from mainline + 2015-12-25 Andreas Tobler + + * config/rs6000/freebsd64.h: Delete FREEBSD_DYNAMIC_LINKER32/64 + defines. Use FBSD_DYNAMIC_LINKER instead. + Rename and simplify LINK_OS_FREEBSD_SPEC_DEF32/64 to + LINK_OS_FREEBSD_SPEC_DEF. + + 2015-12-22 Peter Bergner + + Backport from mainline + PR target/68872 + * config/rs6000/rs6000.h (ASM_CPU_SPEC): For -mcpu=powerpc64le, + pass %(asm_cpu_power8). + + 2015-12-18 John David Anglin + + PR target/68729 + * config/pa/pa.c (pa_emit_move_sequence): Reorganize handling of + floating-point reloads. Only reload operands that are not valid + floating-point memory operands. + + 2015-12-17 John David Anglin + + PR target/68779 + * config/pa/pa.md (atomic_loaddi): Honor -mdisable-fpregs. + (atomic_loaddi_1): Likewise. + (atomic_storedi): Likewise. + (atomic_storedi_1): Likewise. + Move all atomic patterns to end of file. + + 2015-12-09 Andreas Tobler + + Backport from mainline + 2015-12-09 Andreas Tobler + + * config/rs6000/freebsd64.h: Remove the redefinition of WCHAR_TYPE. + + 2015-12-10 Jeff Law + + PR tree-optimization/61515 + PR tree-optimization/46590 + Backport from mainline. + * tree-ssa-threadedge.c (invalidate_equivalences): Walk the unwinding + stack rather than looking at every SSA_NAME's value. + + 2015-12-10 Uros Bizjak + + Backport from mainline + 2015-12-08 Uros Bizjak + + PR target/68701 + * config/i386/i386.c (ix86_option_override_internal): Enable + -maccumulate-outgoing-args when %ebp is fixed due to stack + realignment requirements. + + 2015-12-09 John David Anglin + + PR target/68729 + * config/pa/pa.c (pa_emit_move_sequence): Don't check that mode is + consistent with modes of the input and output operands when doing + reloads to and from floating point registers. Do reload for all + address forms. + + 2015-12-08 Maxim Ostapenko + + Backport from mainline. + 2015-03-16 Max Ostapenko + + PR sanitizer/64820 + * cfgexpand.c (align_base): New function. + (alloc_stack_frame_space): Call it. + (expand_stack_vars): Align prev_frame to be sure + data->asan_vec elements aligned properly. + + 2015-12-04 Andreas Tobler + + Backport from mainline + 2015-12-01 Andreas Tobler + + * config/rs6000/freebsd64.h (ELFv2_ABI_CHECK): Add new macro. + (SUBSUBTARGET_OVERRIDE_OPTIONS): Use it to decide whether to set + rs6000_current_abi to ABI_AIX or ABI_ELFv2. + + 2015-12-02 Renlin Li + + Backport from mainline. + 2014-04-22 Ramana Radhakrishnan + + * config/arm/arm.c (arm_hard_regno_mode_ok): Loosen + restrictions on core registers for DImode values in Thumb2. + + 2015-11-25 Vladimir Makarov + + PR rtl-optimization/67954 + * lra-constraints.c (curr_insn_transform): Add check on scratch + pseudo when change class to NO_REGS. Add an assert. + + 2015-11-26 Kyrylo Tkachov + + Backport from mainline + 2015-11-26 Kyrylo Tkachov + Bernd Schmidt + + PR rtl-optimization/67226 + * calls.c (store_one_arg): Take into account + crtl->args.pretend_args_size when checking for overlap between + arg->value and argblock + arg->locate.offset during sibcall + optimization. + + 2015-11-24 Kyrylo Tkachov + + Backport from mainline + 2015-11-24 Bernd Schmidt + Kyrylo Tkachov + + PR rtl-optimization/68194 + PR rtl-optimization/68328 + PR rtl-optimization/68185 + * ree.c (combine_reaching_defs): Reject copy_needed case if + copies_list is not empty. + + 2015-11-23 Kyrylo Tkachov + + Backport from mainline + 2015-11-23 Kyrylo Tkachov + + PR target/68363 + * config/aarch64/aarch64.c (aarch64_madd_needs_nop): Reject arguments + that are not INSN_P. + + 2015-11-19 Matthias Klose + + Backport from the gcc-5-branch + + 2015-07-21 Mike Frysinger + Bernhard Reutner-Fischer + + * configure.ac: Add check for new options in isl-0.15. + * config.in, configure: Rebuilt. + * graphite-blocking.c: Include + * graphite-interchange.c, graphite-poly.c: Likewise. + * graphhite-scop-detection.c, graphite-sese-to-poly.c: Likewise. + * graphite.c, graphite-poly.c: Likewise. + * graphite-dependences.c: Include . + (max_number_of_out_dimensions): Returns isl_stat. + (extend_schedule_1): Likewise + (extend_schedule): Corresponding changes. + * graphite-optimize-isl.c: Include and + . + (getSingleMap): Change return type of isl_stat. + (optimize_isl): Conditionally use + isl_options_set_schedule_serialize_sccs. + * graphite-poly.h (isl_stat, isl_stat_ok): Define fallbacks + if not HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS. + + 2015-11-19 Eric Botcazou + + PR lto/61313 + * configure.ac (PLUGIN_LD_SUFFIX): Do not touch the value specified + by the user. + * configure: Regenerate. + + 2015-11-19 Eric Botcazou + + PR target/68408 + * config/sparc/sp-elf.h (CTORS_SECTION_ASM_OP): Undefine. + (DTORS_SECTION_ASM_OP): Likewise. + + 2015-11-12 Eric Botcazou + + PR target/67265 + * config/i386/i386.c (ix86_adjust_stack_and_probe): Remove obsolete + assertion on the CFA register. + + 2015-11-11 Andreas Tobler + + Backport from mainline + 2015-05-18 Andreas Tobler + + * config/freebsd-spec.h (FBSD_STARTFILE_SPEC): Add the bits to build + pie executables. + (FBSD_ENDFILE_SPEC): Likewise. + * config/i386/freebsd.h (STARTFILE_SPEC): Remove and use the one from + config/freebsd-spec.h. + (ENDFILE_SPEC): Likewise. + + 2015-11-02 Andreas Tobler + + * config/rs6000/freebsd64.h (ASM_SPEC32): Adust spec to handle + PIE executables. + + Backport from mainline + 2015-03-04 Andreas Tobler + + * config/rs6000/t-freebsd64: Remove 32-bit soft-float multilibs. + + 2015-11-11 Eric Botcazou + + PR target/67265 + * ira.c (ira_setup_eliminable_regset): Do not necessarily create the + frame pointer for stack checking if non-call exceptions aren't used. + * config/i386/i386.c (ix86_finalize_stack_realign_flags): Likewise. + + 2015-11-10 James Greenhalgh + + Partial backport from trunk r228751. + PR tree-optimization/68238 + 2015-10-13 Richard Biener + + * tree-vect-loop.c (vect_estimate_min_profitable_iters): Use + LOOP_VINFO_COMP_ALIAS_DDRS to estimate alias versioning cost. + + 2015-11-09 Eric Botcazou + + PR target/57845 + * config/sparc/sparc.c (sparc_function_value_1): In 32-bit mode, do + not promote the mode for aggregate types. + + 2015-11-09 Renlin Li + + Backport from mainline + 2014-09-12 Wilco Dijkstra + + * ree.c (combine_reaching_defs): Ensure inserted copy don't change + the number of hard registers. + + 2015-11-02 Martin Jambor + + Backport from mainline + 2015-10-09 Martin Jambor + + PR tree-optimization/67794 + * tree-sra.c (replace_removed_params_ssa_names): Do not distinguish + between types of statements but accept original definitions as a + parameter. + (ipa_sra_modify_function_body): Use FOR_EACH_SSA_DEF_OPERAND to + iterate over definitions. + + 2015-10-27 Caroline Tice + + (from Richard Biener) + * tree.c (int_cst_hash_hash): Replace XORs with more efficient + calls to iterative_hash_host_wide_int. + + 2015-10-27 Kyrylo Tkachov + + Backport from mainline + 2015-10-26 Kyrylo Tkachov + + PR middle-end/67989 + * optabs.c (expand_atomic_compare_and_swap): Handle case when + ptarget_oval or ptarget_bool are const0_rtx. + + 2015-10-27 Kyrylo Tkachov + + PR target/67929 + * config/arm/arm.c (vfp3_const_double_for_bits): Rewrite. + * config/arm/constraints.md (Dp): Update callsite. + * config/arm/predicates.md (const_double_vcvt_power_of_two): Likewise. + + 2015-10-25 John David Anglin + + PR middle-end/68079 + * dojump.c (do_compare_and_jump): Canonicalize both function and + method types. + + 2015-10-15 Peter Bergner + + Backport from mainline + 2015-10-14 Peter Bergner + Torvald Riegel + + PR target/67281 + * config/rs6000/htm.md (UNSPEC_HTM_FENCE): New. + (tabort, tabortc, tabortci, tbegin, tcheck, tend, + trechkpt, treclaim, tsr, ttest): Rename define_insns from this... + (*tabort, *tabortc, *tabortci, *tbegin, *tcheck, *tend, + *trechkpt, *treclaim, *tsr, *ttest): ...to this. Add memory barrier. + (tabort, tabortc, tabortci, tbegin, tcheck, tend, + trechkpt, treclaim, tsr, ttest): New define_expands. + * config/rs6000/rs6000-c.c (rs6000_target_modify_macros): Define + __TM_FENCE__ for htm. + * doc/extend.texi: Update documentation for htm builtins. + + 2015-10-02 Kyrylo Tkachov + + * sync.md (atomic_load): Fix output modifier for lda. + (atomic_store): Likewise for stl. + + 2015-10-01 Kyrylo Tkachov + + Backport from mainline + 2015-06-09 Shiva Chen + + * sync.md (atomic_load): Add conditional code for lda/ldr + (atomic_store): Likewise. + + 2015-09-28 Daniel Hellstrom + + * config/sparc/t-rtems: Remove -muser-mode. Add ut699, at697f and leon. + + 2015-09-28 Daniel Cederman + + * config/sparc/driver-sparc.c: map LEON to leon3 + + 2015-09-28 Daniel Cederman + + * config/sparc/sparc.opt: Rename mask from USER_MODE to SV_MODE + and make it inverse to change default + * config/sparc/sync.md: Only use supervisor ASI for CASA when in + supervisor mode + * doc/invoke.texi: Document change of default + + 2015-09-28 Daniel Cederman + + * config/sparc/sparc.c (sparc_function_value_regno_p): Do not return + true on %f0 for a target without FPU. + * config/sparc/sparc.md (untyped_call): Do not save %f0 for a target + without FPU. + (untyped_return): Do not load %f0 for a target without FPU. + + 2015-09-25 Tobias Burnus + + * doc/invoke.texi (-fsanitize): Update URLs. + 2015-09-21 Uros Bizjak + + PR middle-end/67619 + * except.c (expand_builtin_eh_return): Use copy_addr_to_reg to copy + the address to a register. + + 2015-09-19 John David Anglin + + * config/pa/pa.c (pa_function_ok_for_sibcall): Remove special treatment + of TARGET_ELF32. + + 2015-09-18 John David Anglin + + PR middle-end/67401 + * optabs.c (expand_atomic_compare_and_swap): Move result of emitting + sync_compare_and_swap_optab libcall to target_oval. + + 2015-09-17 Eric Botcazou + + PR rtl-optimization/66790 + * df-problems.c (LIVE): Amend documentation. + + 2015-09-12 John David Anglin + + * config/pa/pa.c (pa_output_move_double): Enhance to handle HIGH + CONSTANT_P operands. + + 2015-09-09 Alan Modra + + PR target/67378 + * config/rs6000/rs6000.c (rs6000_secondary_reload_gpr): Find + reload replacement for PRE_MODIFY address reg. + + 2015-09-02 Alan Modra + + PR target/67417 + * config/rs6000/predicates.md (current_file_function_operand): Don't + return true for weak symbols. + * config/rs6000/rs6000.c (rs6000_function_ok_for_sibcall): Likewise. + + 2015-08-27 Pat Haugen + + Backport from mainline: + 2015-08-27 Pat Haugen + + * config/rs6000/vector.md (vec_shr_): Fix to do a shift + instead of a rotate. + + 2015-08-24 Michael Meissner + + Back port from mainline: + 2015-08-24 Michael Meissner + + PR target/67211 + * config/rs6000/rs6000-cpus.def (ISA_2_7_MASKS_SERVER): Set + -mefficient-unaligned-vsx on ISA 2.7. + + * config/rs6000/rs6000.opt (-mefficient-unaligned-vsx): Convert + option to a masked option. + + * config/rs6000/rs6000.c (rs6000_option_override_internal): Rework + logic for -mefficient-unaligned-vsx so that it is set via an arch + ISA option, instead of being set if -mtune=power8 is set. Move + -mefficient-unaligned-vsx and -mallow-movmisalign handling to be + near other default option handling. + + 2015-08-18 Segher Boessenkool + + Backport from mainline: + 2015-08-08 Segher Boessenkool + + PR rtl-optimization/67028 + * combine.c (simplify_comparison): Fix comment. Rearrange code. + Add test to see if a const_int fits in the new mode. + + 2015-08-16 Uros Bizjak + + Backport from mainline: + 2015-07-25 Uros Bizjak + + PR target/66648 + * config/i386/i386.c (ix86_expand_set_or_movmem): Emit main loop + execution guard when min_size is less than size_needed. + + 2015-08-04 Szabolcs Nagy + + Backport from mainline: + 2015-07-06 Szabolcs Nagy + + PR target/66731 + * config/aarch64/aarch64.md (fnmul3): Handle -frounding-math. + + 2015-08-03 Peter Bergner + + Backport from mainline: + 2015-08-03 Peter Bergner + + * config/rs6000/htm.md (tabort.): Restrict the source operand to + using a base register. + + 2015-08-03 John David Anglin + + PR target/67060 + * config/pa/pa.md (call_reg_64bit): Remove reg:DI 1 clobber. + Adjust splits to match new pattern. + + 2015-08-03 Szabolcs Nagy + + Backport form mainline r226496. + 2015-08-03 Szabolcs Nagy + + PR target/66731 + * config/arm/vfp.md (negmuldf3_vfp): Add new pattern. + (negmulsf3_vfp): Likewise. + (muldf3negdf_vfp): Disable for -frounding-math. + (mulsf3negsf_vfp): Likewise. + * config/arm/arm.c (arm_new_rtx_costs): Fix NEG cost for VNMUL, + fix MULT cost with -frounding-math. + + 2015-07-30 Uros Bizjak + + Backport from mainline: + 2015-07-17 Uros Bizjak + + PR rtl-optimization/66891 + * calls.c (expand_call): Wrap precompute_register_parameters with + NO_DEFER_POP/OK_DEFER_POP to prevent deferred pops. + + 2015-07-15 Uros Bizjak + + PR target/58066 + * config/i386/i386.md (*tls_global_dynamic_64_): Depend on SP_REG. + (*tls_local_dynamic_base_64_): Ditto. + (*tls_local_dynamic_base_64_largepic): Ditto. + (tls_global_dynamic_64_): Update expander pattern. + (tls_local_dynamic_base_64_): Ditto. + + 2015-07-15 Uros Bizjak + + PR rtl-optimization/58066 + * calls.c (expand_call): Precompute register parameters before stack + alignment is performed. + + 2014-05-08 Wei Mi + + PR target/58066 + * config/i386/i386.c (ix86_compute_frame_layout): Update + preferred_stack_boundary for call, expanded from tls descriptor. + * config/i386/i386.md (*tls_global_dynamic_32_gnu): Update RTX + to depend on SP register. + (*tls_local_dynamic_base_32_gnu): Ditto. + (*tls_local_dynamic_32_once): Ditto. + (tls_global_dynamic_64_): Set + ix86_tls_descriptor_calls_expanded_in_cfun. + (tls_local_dynamic_base_64_): Ditto. + (tls_global_dynamic_32): Set + ix86_tls_descriptor_calls_expanded_in_cfun. Update RTX + to depend on SP register. + (tls_local_dynamic_base_32): Ditto. + + 2015-07-25 Tom de Vries + + backport from trunk: + 2015-07-24 Tom de Vries + + * graphite-sese-to-poly.c (is_reduction_operation_p): Limit + flag_associative_math to FLOAT_TYPE_P. Honour + TYPE_OVERFLOW_WRAPS for INTEGRAL_TYPE_P. Don't allow any other types. + + 2015-07-25 Kaz Kojima + + Backport from mainline + 2015-07-16 Kaz Kojima + + PR target/65249 + * config/sh/sh.md (movdi): Split simple reg move to two movsi + when the destination is R0. + + 2015-07-24 Szabolcs Nagy + + Backported from mainline r226159. + 2015-07-24 Szabolcs Nagy + + * config/aarch64/aarch64-elf-raw.h (LINK_SPEC): Handle -h, -static, + -shared, -symbolic, -rdynamic. + + 2015-07-24 Szabolcs Nagy + + Backported from mainline r226158. + 2015-07-24 Szabolcs Nagy + + PR target/65711 + * config/aarch64/aarch64-linux.h (LINUX_TARGET_LINK_SPEC): Move + -dynamic-linker within %{!static %{!shared, and -rdynamic within + %{!static. + + 2015-07-21 Georg-Johann Lay + + Backport from 2015-07-21 trunk r226046. + + PR target/66956 + * config/avr/avr-dimode.md (mulsidi3_insn) + (mulsidi3): Don't use if !AVR_HAVE_MUL. + + 2015-07-18 Uros Bizjak + + PR target/66922 + * config/i386/i386.c (ix86_expand_pinsr): Reject insertions + to misaligned positions. + + 2015-07-17 Uros Bizjak + + PR target/66866 + * config/i386/i386.c (ix86_expand_pinsr): Reject non-lowpart + source subregs. + + 2015-07-17 Uros Bizjak + + Backport from mainline: + 2015-07-10 Uros Bizjak + + * config/i386/sse.md (movdi_to_sse): Use gen_lowpart + and gen_higpart instead of gen_rtx_SUBREG. + * config/i386/i386.md + (floatdi2_i387_with_xmm splitter): Ditto. + (read-modify peephole2): Use gen_lowpart instead of + gen_rtx_SUBREG for operand 5. + + 2015-07-17 Uros Bizjak + + Backport from mainline: + 2015-07-08 Uros Bizjak + + PR target/66814 + * config/i386/predicates.md (nonimmediate_gr_operand): New predicate. + * config/i386/i386.md (not peephole2): Use nonimmediate_gr_operand. + (varous peephole2s): Use {GENERAL,SSE,MMX}_REGNO_P instead of + {GENERAL,SSE,MMX}_REG_P where appropriate. + + 2015-07-10 Mantas Mikaitis + + * config/arm/arm.h (TARGET_NEON_FP): Remove conditional definition, + define to zero if !TARGET_NEON. + (TARGET_ARM_FP): Add !TARGET_SOFT_FLOAT into the conditional + definition. + + 2015-07-09 Iain Sandoe + + PR target/66523 + * config/darwin.c (darwin_mark_decl_preserved): Exclude 'L' label + names from preservation. + + 2015-07-07 Kaz Kojima + + Backport form mainline + 2015-07-07 Kaz Kojima + + PR target/66780 + * config/sh/sh.md (symGOT_load): Revert a part of 2015-03-03 + change for target/65249. + + 2015-07-05 Bill Schmidt + + Backport from mainline r224725 + 2015-06-22 Bill Schmidt + + PR target/65914 + * config/rs6000/predicates.md (altivec_register_operand): Permit + virtual stack registers. + (vsx_register_operand): Likewise. + (vfloat_operand): Likewise. + (vint_operand): Likewise. + (vlogical_operand): Likewise. + + 2015-07-04 John David Anglin + + PR target/66114 + * config/pa/pa.md (indirect_jump): Use pmode_register_operand instead + of register_operand. Remove constraint. + + 2015-07-03 Jack Howarth + + PR target/66509 + * configure.ac: Fix filds and fildq test for 64-bit. + * configure: Regenerated. + + 2015-07-01 Kaz Kojima + + Backport from mainline + 2015-06-30 Kaz Kojima + + PR target/64833 + * config/sh/sh.md (casesi_worker_1): Set length to 8 when + flag_pic is set. + + 2015-07-01 Ramana Radhakrishnan + + Backport from mainline + 2015-06-24 Ramana Radhakrishnan + + PR target/63408 + * config/arm/arm.c (vfp3_const_double_for_fract_bits): Disable + for negative numbers. + + 2015-06-30 Eric Botcazou + + * config/sparc/leon.md (leon_load): Enable for all LEON variants if + -mfix-ut699 is not specified. + (leon3_load): Rename into... + (ut699_load): ...this. Enable for all LEON variants if -mfix-ut699 + is specified. + + 2015-06-28 Kaz Kojima + + Backport from mainline + 2015-06-24 Kaz Kojima + + PR target/66563 + * config/sh/sh.md (GOTaddr2picreg): Add a new operand for + an additional element of the unspec vector. Modify indices + of operands. + (builtin_setjmp_receiver): Pass const0_rtx to gen_GOTaddr2picreg. + * config/sh/sh.c (prepare_move_operands): Pass incremented + const_int to gen_GOTaddr2picreg. + (sh_expand_prologue): Pass const0_rtx to gen_GOTaddr2picreg. + + 2015-06-27 Uros Bizjak + Segher Boessenkool + + PR target/66412 + * config/i386/i386.md (various splitters): Use shallow_copy_rtx + before doing PUT_MODE or PUT_CODE on operands to avoid + in-place RTX modification. + + 2015-06-26 Jakub Jelinek + + * BASE-VER: Set to 4.9.4. + * DEV-PHASE: Set to prerelease. + 2015-06-26 Release Manager * GCC 4.9.3 released. *************** *** 21,28 **** Backport from mainline r212178. 2014-06-30 Joseph Myers ! * var-tracking.c (add_stores): Return instead of asserting if old ! and new values for conditional store are the same. 2015-06-23 Ludovic Courtès --- 1636,1643 ---- Backport from mainline r212178. 2014-06-30 Joseph Myers ! * var-tracking.c (add_stores): Return instead of asserting if old ! and new values for conditional store are the same. 2015-06-23 Ludovic Courtès *************** *** 584,590 **** Backport from mainline r222205 2015-04-17 Bill Schmidt ! Jakub Jelinek PR target/65787 * config/rs6000/rs6000.c (rtx_is_swappable_p): Ensure that a --- 2199,2205 ---- Backport from mainline r222205 2015-04-17 Bill Schmidt ! Jakub Jelinek PR target/65787 * config/rs6000/rs6000.c (rtx_is_swappable_p): Ensure that a diff -Nrcpad gcc-4.9.3/gcc/DATESTAMP gcc-4.9.4/gcc/DATESTAMP *** gcc-4.9.3/gcc/DATESTAMP Fri Jun 26 00:16:05 2015 --- gcc-4.9.4/gcc/DATESTAMP Tue Jul 26 00:16:05 2016 *************** *** 1 **** ! 20150626 --- 1 ---- ! 20160726 diff -Nrcpad gcc-4.9.3/gcc/ada/ChangeLog gcc-4.9.4/gcc/ada/ChangeLog *** gcc-4.9.3/gcc/ada/ChangeLog Fri Jun 26 17:56:13 2015 --- gcc-4.9.4/gcc/ada/ChangeLog Wed Aug 3 05:06:39 2016 *************** *** 1,3 **** --- 1,61 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2016-04-28 Eric Botcazou + + PR ada/70786 + * a-textio.adb (Get_Immediate): Add missing 'not' in expression. + + 2015-12-06 Eric Botcazou + + PR ada/56274 + * s-osinte-kfreebsd-gnu.ads (pthread_rwlock_t): New subtype. + (pthread_rwlockattr_t): Likewise. + + 2015-12-06 Ludovic Brenta + + PR ada/49944 + * s-osinte-freebsd.ads: Minor reformatting. + (Stack_Base_Available): Correct comments. + * s-osinte-kfreebsd-gnu.ads (Time_Slice_Supported, nanosleep, + clock_id_t, clock_gettime, Stack_Base_Available, Get_Page_Size, + mprotect, pthread_mutexattr_setprotocol,pthread_mutexattr_getprotocol + pthread_mutexattr_setprioceiling, pthread_mutexattr_getprioceiling, + pthread_attr_setscope, pthread_attr_getscope, + pthread_attr_setinheritsched, pthread_attr_getinheritsched, + Time_Slice_Supported): Copy from s-osinte-freebsd.ads. + * gcc-interface/Makefile.in (x86/kfreebsd): Use the POSIX version of + the System.Task_Primitives.Operations package. + + 2015-12-06 Ludovic Brenta + + PR ada/49940 + * s-osinte-kfreebsd-gnu.ads (lwp_self): New imported function. + + 2015-12-01 Jan Sommer + + PR ada/68169 + * s-oscons-tmplt.c: Generate pthread constants for RTEMS + * s-osinte-rtems.ads: Declare pthread structs as opaque types in Ada + + 2015-11-29 Matthias Klose + + PR ada/68564 + * gcc-interface/Makefile.in: Fix powerpc/powerpc64* and + mipsel/mips64el bitness detection. + Merge the mipsel/mips64el definitions into one. + + 2015-11-28 Matthias Klose + + PR ada/68564 + * gcc-interface/Makefile.in: Fix sparc/sparc64 bitness detection. + + 2015-10-09 Eric Botcazou + + * gcc-interface/Make-lang.in: Make sure that GNAT1_OBJS and not just + GNAT1_ADA_OBJS are compiled only after generated files are created. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/ada/a-textio.adb gcc-4.9.4/gcc/ada/a-textio.adb *** gcc-4.9.3/gcc/ada/a-textio.adb Wed Jan 29 15:53:48 2014 --- gcc-4.9.4/gcc/ada/a-textio.adb Thu Apr 28 10:59:17 2016 *************** package body Ada.Text_IO is *** 668,674 **** Available := True; Item := ! (if Is_Start_Of_Encoding (Character'Val (ch), File.WC_Method) then Character'Val (ch) else Get_Upper_Half_Char_Immed (Character'Val (ch), File)); end if; --- 668,674 ---- Available := True; Item := ! (if not Is_Start_Of_Encoding (Character'Val (ch), File.WC_Method) then Character'Val (ch) else Get_Upper_Half_Char_Immed (Character'Val (ch), File)); end if; diff -Nrcpad gcc-4.9.3/gcc/ada/gcc-interface/Make-lang.in gcc-4.9.4/gcc/ada/gcc-interface/Make-lang.in *** gcc-4.9.3/gcc/ada/gcc-interface/Make-lang.in Mon Mar 10 23:58:30 2014 --- gcc-4.9.4/gcc/ada/gcc-interface/Make-lang.in Fri Oct 9 08:15:30 2015 *************** ada_generated_files = ada/sinfo.h ada/ei *** 1001,1007 **** # When building from scratch we don't have dependency files, the only thing # we need to ensure is that the generated files are created first. ! $(GNAT1_ADA_OBJS) $(GNATBIND_OBJS): | $(ada_generated_files) # Manually include the auto-generated dependencies for the Ada host objects. ADA_DEPFILES = $(foreach obj,$(GNAT1_ADA_OBJS) $(GNATBIND_OBJS),\ --- 1001,1007 ---- # When building from scratch we don't have dependency files, the only thing # we need to ensure is that the generated files are created first. ! $(GNAT1_OBJS) $(GNATBIND_OBJS): | $(ada_generated_files) # Manually include the auto-generated dependencies for the Ada host objects. ADA_DEPFILES = $(foreach obj,$(GNAT1_ADA_OBJS) $(GNATBIND_OBJS),\ diff -Nrcpad gcc-4.9.3/gcc/ada/gcc-interface/Makefile.in gcc-4.9.4/gcc/ada/gcc-interface/Makefile.in *** gcc-4.9.3/gcc/ada/gcc-interface/Makefile.in Mon Jan 5 10:17:28 2015 --- gcc-4.9.4/gcc/ada/gcc-interface/Makefile.in Sun Dec 6 14:11:54 2015 *************** ifeq ($(strip $(filter-out %86 kfreebsd% *** 1275,1283 **** s-osinte.adb #endif ! #ifdef __linux__ # include # include #endif --- 154,160 ---- # include <_types.h> #endif ! #if defined (__linux__) || defined (__rtems__) # include # include #endif *************** CND(CLOCK_THREAD_CPUTIME_ID, "Thread CPU *** 1441,1447 **** CNS(CLOCK_RT_Ada, "") #endif ! #if defined (__APPLE__) || defined (__linux__) || defined (DUMMY) /* -- Sizes of pthread data types --- 1441,1448 ---- CNS(CLOCK_RT_Ada, "") #endif ! #if defined (__APPLE__) || defined (__linux__) || defined (__rtems__) || \ ! defined (DUMMY) /* -- Sizes of pthread data types *************** CND(PTHREAD_RWLOCKATTR_SIZE, "pthread_rw *** 1484,1490 **** CND(PTHREAD_RWLOCK_SIZE, "pthread_rwlock_t") CND(PTHREAD_ONCE_SIZE, "pthread_once_t") ! #endif /* __APPLE__ || __linux__ */ /* --- 1485,1491 ---- CND(PTHREAD_RWLOCK_SIZE, "pthread_rwlock_t") CND(PTHREAD_ONCE_SIZE, "pthread_once_t") ! #endif /* __APPLE__ || __linux__ || __rtems__*/ /* diff -Nrcpad gcc-4.9.3/gcc/ada/s-osinte-freebsd.ads gcc-4.9.4/gcc/ada/s-osinte-freebsd.ads *** gcc-4.9.3/gcc/ada/s-osinte-freebsd.ads Wed Nov 23 11:24:48 2011 --- gcc-4.9.4/gcc/ada/s-osinte-freebsd.ads Sun Dec 6 14:11:54 2015 *************** *** 31,37 **** -- -- ------------------------------------------------------------------------------ ! -- This is the FreeBSD PTHREADS version of this package -- This package encapsulates all direct interfaces to OS services -- that are needed by the tasking run-time (libgnarl). --- 31,37 ---- -- -- ------------------------------------------------------------------------------ ! -- This is the FreeBSD (POSIX Threads) version of this package -- This package encapsulates all direct interfaces to OS services -- that are needed by the tasking run-time (libgnarl). *************** package System.OS_Interface is *** 197,203 **** type timespec is private; ! function nanosleep (rqtp, rmtp : access timespec) return int; pragma Import (C, nanosleep, "nanosleep"); type clockid_t is new int; --- 197,203 ---- type timespec is private; ! function nanosleep (rqtp, rmtp : access timespec) return int; pragma Import (C, nanosleep, "nanosleep"); type clockid_t is new int; *************** package System.OS_Interface is *** 317,326 **** -- No alternate signal stack is used on this platform Stack_Base_Available : constant Boolean := False; ! -- Indicates whether the stack base is available on this target. This ! -- allows us to share s-osinte.adb between all the FSU run time. Note that ! -- this value can only be true if pthread_t has a complete definition that ! -- corresponds exactly to the C header files. function Get_Stack_Base (thread : pthread_t) return Address; pragma Inline (Get_Stack_Base); --- 317,323 ---- -- No alternate signal stack is used on this platform Stack_Base_Available : constant Boolean := False; ! -- Indicates whether the stack base is available on this target function Get_Stack_Base (thread : pthread_t) return Address; pragma Inline (Get_Stack_Base); diff -Nrcpad gcc-4.9.3/gcc/ada/s-osinte-kfreebsd-gnu.ads gcc-4.9.4/gcc/ada/s-osinte-kfreebsd-gnu.ads *** gcc-4.9.3/gcc/ada/s-osinte-kfreebsd-gnu.ads Wed Apr 9 14:54:29 2014 --- gcc-4.9.4/gcc/ada/s-osinte-kfreebsd-gnu.ads Sun Dec 6 15:29:03 2015 *************** *** 7,13 **** -- S p e c -- -- -- -- Copyright (C) 1991-1994, Florida State University -- ! -- Copyright (C) 1995-2014, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- --- 7,13 ---- -- S p e c -- -- -- -- Copyright (C) 1991-1994, Florida State University -- ! -- Copyright (C) 1995-2015, Free Software Foundation, Inc. -- -- -- -- GNAT is free software; you can redistribute it and/or modify it under -- -- terms of the GNU General Public License as published by the Free Soft- -- *************** *** 30,36 **** -- -- ------------------------------------------------------------------------------ ! -- This is the GNU/kFreeBSD (GNU/LinuxThreads) version of this package -- This package encapsulates all direct interfaces to OS services -- that are needed by children of System. --- 30,36 ---- -- -- ------------------------------------------------------------------------------ ! -- This is the GNU/kFreeBSD (POSIX Threads) version of this package -- This package encapsulates all direct interfaces to OS services -- that are needed by children of System. *************** package System.OS_Interface is *** 198,205 **** --- 198,221 ---- -- Time -- ---------- + Time_Slice_Supported : constant Boolean := True; + -- Indicates whether time slicing is supported (i.e SCHED_RR is supported) + type timespec is private; + function nanosleep (rqtp, rmtp : access timespec) return int; + pragma Import (C, nanosleep, "nanosleep"); + + type clockid_t is private; + + CLOCK_REALTIME : constant clockid_t; + + function clock_gettime + (clock_id : clockid_t; + tp : access timespec) + return int; + pragma Import (C, clock_gettime, "clock_gettime"); + function To_Duration (TS : timespec) return Duration; pragma Inline (To_Duration); *************** package System.OS_Interface is *** 236,241 **** --- 252,267 ---- function getpid return pid_t; pragma Import (C, getpid, "getpid"); + --------- + -- LWP -- + --------- + + function lwp_self return System.Address; + -- lwp_self does not exist on this thread library, revert to pthread_self + -- which is the closest approximation (with getpid). This function is + -- needed to share 7staprop.adb across POSIX-like targets. + pragma Import (C, lwp_self, "pthread_self"); + ------------- -- Threads -- ------------- *************** package System.OS_Interface is *** 261,266 **** --- 287,304 ---- type pthread_key_t is private; PTHREAD_CREATE_DETACHED : constant := 1; + PTHREAD_CREATE_JOINABLE : constant := 0; + + PTHREAD_SCOPE_PROCESS : constant := 0; + PTHREAD_SCOPE_SYSTEM : constant := 2; + + -- Read/Write lock not supported on kfreebsd. To add support both types + -- pthread_rwlock_t and pthread_rwlockattr_t must properly be defined + -- with the associated routines pthread_rwlock_[init/destroy] and + -- pthread_rwlock_[rdlock/wrlock/unlock]. + + subtype pthread_rwlock_t is pthread_mutex_t; + subtype pthread_rwlockattr_t is pthread_mutexattr_t; ----------- -- Stack -- *************** package System.OS_Interface is *** 284,292 **** Alternate_Stack_Size : constant := 0; -- No alternate signal stack is used on this platform function Get_Stack_Base (thread : pthread_t) return Address; pragma Inline (Get_Stack_Base); ! -- This is a dummy procedure to share some GNULLI files --------------------------------------- -- Nonstandard Thread Initialization -- --- 322,350 ---- Alternate_Stack_Size : constant := 0; -- No alternate signal stack is used on this platform + Stack_Base_Available : constant Boolean := False; + -- Indicates whether the stack base is available on this target + function Get_Stack_Base (thread : pthread_t) return Address; pragma Inline (Get_Stack_Base); ! -- returns the stack base of the specified thread. Only call this function ! -- when Stack_Base_Available is True. ! ! function Get_Page_Size return size_t; ! function Get_Page_Size return Address; ! pragma Import (C, Get_Page_Size, "getpagesize"); ! -- Returns the size of a page ! ! PROT_NONE : constant := 0; ! PROT_READ : constant := 1; ! PROT_WRITE : constant := 2; ! PROT_EXEC : constant := 4; ! PROT_ALL : constant := PROT_READ + PROT_WRITE + PROT_EXEC; ! PROT_ON : constant := PROT_NONE; ! PROT_OFF : constant := PROT_ALL; ! ! function mprotect (addr : Address; len : size_t; prot : int) return int; ! pragma Import (C, mprotect); --------------------------------------- -- Nonstandard Thread Initialization -- *************** package System.OS_Interface is *** 375,380 **** --- 433,468 ---- -- POSIX.1c Section 13 -- -------------------------- + PTHREAD_PRIO_NONE : constant := 0; + PTHREAD_PRIO_PROTECT : constant := 2; + PTHREAD_PRIO_INHERIT : constant := 1; + + function pthread_mutexattr_setprotocol + (attr : access pthread_mutexattr_t; + protocol : int) return int; + pragma Import + (C, pthread_mutexattr_setprotocol, "pthread_mutexattr_setprotocol"); + + function pthread_mutexattr_getprotocol + (attr : access pthread_mutexattr_t; + protocol : access int) return int; + pragma Import + (C, pthread_mutexattr_getprotocol, "pthread_mutexattr_getprotocol"); + + function pthread_mutexattr_setprioceiling + (attr : access pthread_mutexattr_t; + prioceiling : int) return int; + pragma Import + (C, pthread_mutexattr_setprioceiling, + "pthread_mutexattr_setprioceiling"); + + function pthread_mutexattr_getprioceiling + (attr : access pthread_mutexattr_t; + prioceiling : access int) return int; + pragma Import + (C, pthread_mutexattr_getprioceiling, + "pthread_mutexattr_getprioceiling"); + type struct_sched_param is record sched_priority : int; -- scheduling priority end record; *************** package System.OS_Interface is *** 386,391 **** --- 474,501 ---- param : access struct_sched_param) return int; pragma Import (C, pthread_setschedparam, "pthread_setschedparam"); + function pthread_attr_setscope + (attr : access pthread_attr_t; + contentionscope : int) return int; + pragma Import (C, pthread_attr_setscope, "pthread_attr_setscope"); + + function pthread_attr_getscope + (attr : access pthread_attr_t; + contentionscope : access int) return int; + pragma Import (C, pthread_attr_getscope, "pthread_attr_getscope"); + + function pthread_attr_setinheritsched + (attr : access pthread_attr_t; + inheritsched : int) return int; + pragma Import + (C, pthread_attr_setinheritsched, "pthread_attr_setinheritsched"); + + function pthread_attr_getinheritsched + (attr : access pthread_attr_t; + inheritsched : access int) return int; + pragma Import + (C, pthread_attr_getinheritsched, "pthread_attr_getinheritsched"); + function pthread_attr_setschedpolicy (attr : access pthread_attr_t; policy : int) return int; *************** private *** 496,501 **** --- 606,614 ---- end record; pragma Convention (C, timespec); + type clockid_t is new int; + CLOCK_REALTIME : constant clockid_t := 0; + type pthread_attr_t is record detachstate : int; schedpolicy : int; diff -Nrcpad gcc-4.9.3/gcc/ada/s-osinte-rtems.ads gcc-4.9.4/gcc/ada/s-osinte-rtems.ads *** gcc-4.9.3/gcc/ada/s-osinte-rtems.ads Fri Dec 2 15:17:14 2011 --- gcc-4.9.4/gcc/ada/s-osinte-rtems.ads Fri Dec 4 18:42:10 2015 *************** *** 51,56 **** --- 51,58 ---- -- It is designed to be a bottom-level (leaf) package. with Interfaces.C; + with System.OS_Constants; + package System.OS_Interface is pragma Preelaborate; *************** package System.OS_Interface is *** 60,65 **** --- 62,68 ---- subtype rtems_id is Interfaces.C.unsigned; subtype int is Interfaces.C.int; + subtype char is Interfaces.C.char; subtype short is Interfaces.C.short; subtype long is Interfaces.C.long; subtype unsigned is Interfaces.C.unsigned; *************** package System.OS_Interface is *** 68,74 **** subtype unsigned_char is Interfaces.C.unsigned_char; subtype plain_char is Interfaces.C.plain_char; subtype size_t is Interfaces.C.size_t; - ----------- -- Errno -- ----------- --- 71,76 ---- *************** package System.OS_Interface is *** 76,86 **** function errno return int; pragma Import (C, errno, "__get_errno"); ! EAGAIN : constant := 11; ! EINTR : constant := 4; ! EINVAL : constant := 22; ! ENOMEM : constant := 12; ! ETIMEDOUT : constant := 116; ------------- -- Signals -- --- 78,88 ---- function errno return int; pragma Import (C, errno, "__get_errno"); ! EAGAIN : constant := System.OS_Constants.EAGAIN; ! EINTR : constant := System.OS_Constants.EINTR; ! EINVAL : constant := System.OS_Constants.EINVAL; ! ENOMEM : constant := System.OS_Constants.ENOMEM; ! ETIMEDOUT : constant := System.OS_Constants.ETIMEDOUT; ------------- -- Signals -- *************** package System.OS_Interface is *** 448,453 **** --- 450,456 ---- ss_low_priority : int; ss_replenish_period : timespec; ss_initial_budget : timespec; + sched_ss_max_repl : int; end record; pragma Convention (C, struct_sched_param); *************** private *** 621,663 **** end record; pragma Convention (C, timespec); ! CLOCK_REALTIME : constant clockid_t := 1; ! CLOCK_MONOTONIC : constant clockid_t := 4; type pthread_attr_t is record ! is_initialized : int; ! stackaddr : System.Address; ! stacksize : int; ! contentionscope : int; ! inheritsched : int; ! schedpolicy : int; ! schedparam : struct_sched_param; ! cputime_clocked_allowed : int; ! detatchstate : int; end record; pragma Convention (C, pthread_attr_t); type pthread_condattr_t is record ! flags : int; ! process_shared : int; end record; pragma Convention (C, pthread_condattr_t); type pthread_mutexattr_t is record ! is_initialized : int; ! process_shared : int; ! prio_ceiling : int; ! protocol : int; ! mutex_type : int; ! recursive : int; ! end record; pragma Convention (C, pthread_mutexattr_t); type pthread_rwlockattr_t is record ! is_initialized : int; ! process_shared : int; end record; pragma Convention (C, pthread_rwlockattr_t); type pthread_t is new rtems_id; --- 624,657 ---- end record; pragma Convention (C, timespec); ! CLOCK_REALTIME : constant clockid_t := System.OS_Constants.CLOCK_REALTIME; ! CLOCK_MONOTONIC : constant clockid_t := System.OS_Constants.CLOCK_MONOTONIC; ! ! subtype char_array is Interfaces.C.char_array; type pthread_attr_t is record ! Data : char_array (1 .. OS_Constants.PTHREAD_ATTR_SIZE); end record; pragma Convention (C, pthread_attr_t); + for pthread_attr_t'Alignment use Interfaces.C.double'Alignment; type pthread_condattr_t is record ! Data : char_array (1 .. OS_Constants.PTHREAD_CONDATTR_SIZE); end record; pragma Convention (C, pthread_condattr_t); + for pthread_condattr_t'Alignment use Interfaces.C.double'Alignment; type pthread_mutexattr_t is record ! Data : char_array (1 .. OS_Constants.PTHREAD_MUTEXATTR_SIZE); ! end record; pragma Convention (C, pthread_mutexattr_t); + for pthread_mutexattr_t'Alignment use Interfaces.C.double'Alignment; type pthread_rwlockattr_t is record ! Data : char_array (1 .. OS_Constants.PTHREAD_RWLOCKATTR_SIZE); end record; pragma Convention (C, pthread_rwlockattr_t); + for pthread_rwlockattr_t'Alignment use Interfaces.C.double'Alignment; type pthread_t is new rtems_id; diff -Nrcpad gcc-4.9.3/gcc/alias.c gcc-4.9.4/gcc/alias.c *** gcc-4.9.3/gcc/alias.c Thu Jan 15 16:03:05 2015 --- gcc-4.9.4/gcc/alias.c Thu Jul 7 11:46:08 2016 *************** refs_newer_value_p (rtx expr, rtx v) *** 1882,1889 **** } /* Convert the address X into something we can use. This is done by returning ! it unchanged unless it is a value; in the latter case we call cselib to get ! a more useful rtx. */ rtx get_addr (rtx x) --- 1882,1889 ---- } /* Convert the address X into something we can use. This is done by returning ! it unchanged unless it is a VALUE or VALUE +/- constant; for VALUE ! we call cselib to get a more useful rtx. */ rtx get_addr (rtx x) *************** get_addr (rtx x) *** 1892,1898 **** struct elt_loc_list *l; if (GET_CODE (x) != VALUE) ! return x; v = CSELIB_VAL_PTR (x); if (v) { --- 1892,1914 ---- struct elt_loc_list *l; if (GET_CODE (x) != VALUE) ! { ! if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS) ! && GET_CODE (XEXP (x, 0)) == VALUE ! && CONST_SCALAR_INT_P (XEXP (x, 1))) ! { ! rtx op0 = get_addr (XEXP (x, 0)); ! if (op0 != XEXP (x, 0)) ! { ! if (GET_CODE (x) == PLUS ! && GET_CODE (XEXP (x, 1)) == CONST_INT) ! return plus_constant (GET_MODE (x), op0, INTVAL (XEXP (x, 1))); ! return simplify_gen_binary (GET_CODE (x), GET_MODE (x), ! op0, XEXP (x, 1)); ! } ! } ! return x; ! } v = CSELIB_VAL_PTR (x); if (v) { *************** output_dependence (const_rtx mem, const_ *** 2730,2735 **** --- 2746,2765 ---- /*mem_canonicalized=*/false, /*x_canonicalized*/false, /*writep=*/true); } + + /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X. + Also, consider X in X_MODE (which might be from an enclosing + STRICT_LOW_PART / ZERO_EXTRACT). + If MEM_CANONICALIZED is true, MEM is canonicalized. */ + + int + canon_output_dependence (const_rtx mem, bool mem_canonicalized, + const_rtx x, machine_mode x_mode, rtx x_addr) + { + return write_dependence_p (mem, x, x_mode, x_addr, + mem_canonicalized, /*x_canonicalized=*/true, + /*writep=*/true); + } diff -Nrcpad gcc-4.9.3/gcc/builtins.c gcc-4.9.4/gcc/builtins.c *** gcc-4.9.3/gcc/builtins.c Fri Feb 27 10:32:14 2015 --- gcc-4.9.4/gcc/builtins.c Tue Jul 19 17:42:26 2016 *************** fold_builtin_memory_op (location_t loc, *** 8793,8813 **** { tree src_base, dest_base, fn; HOST_WIDE_INT src_offset = 0, dest_offset = 0; ! HOST_WIDE_INT size = -1; ! HOST_WIDE_INT maxsize = -1; srcvar = TREE_OPERAND (src, 0); ! src_base = get_ref_base_and_extent (srcvar, &src_offset, ! &size, &maxsize); destvar = TREE_OPERAND (dest, 0); ! dest_base = get_ref_base_and_extent (destvar, &dest_offset, ! &size, &maxsize); if (tree_fits_uhwi_p (len)) maxsize = tree_to_uhwi (len); else maxsize = -1; - src_offset /= BITS_PER_UNIT; - dest_offset /= BITS_PER_UNIT; if (SSA_VAR_P (src_base) && SSA_VAR_P (dest_base)) { --- 8793,8813 ---- { tree src_base, dest_base, fn; HOST_WIDE_INT src_offset = 0, dest_offset = 0; ! HOST_WIDE_INT maxsize; srcvar = TREE_OPERAND (src, 0); ! src_base = get_addr_base_and_unit_offset (srcvar, &src_offset); ! if (src_base == NULL) ! src_base = srcvar; destvar = TREE_OPERAND (dest, 0); ! dest_base = get_addr_base_and_unit_offset (destvar, ! &dest_offset); ! if (dest_base == NULL) ! dest_base = destvar; if (tree_fits_uhwi_p (len)) maxsize = tree_to_uhwi (len); else maxsize = -1; if (SSA_VAR_P (src_base) && SSA_VAR_P (dest_base)) { *************** fold_builtin_interclass_mathfn (location *** 9997,10002 **** --- 9997,10004 ---- mode = TYPE_MODE (TREE_TYPE (arg)); + bool is_ibm_extended = MODE_COMPOSITE_P (mode); + /* If there is no optab, try generic code. */ switch (DECL_FUNCTION_CODE (fndecl)) { *************** fold_builtin_interclass_mathfn (location *** 10006,10015 **** { /* isinf(x) -> isgreater(fabs(x),DBL_MAX). */ tree const isgr_fn = builtin_decl_explicit (BUILT_IN_ISGREATER); ! tree const type = TREE_TYPE (arg); REAL_VALUE_TYPE r; char buf[128]; get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&r, buf); result = build_call_expr (isgr_fn, 2, --- 10008,10025 ---- { /* isinf(x) -> isgreater(fabs(x),DBL_MAX). */ tree const isgr_fn = builtin_decl_explicit (BUILT_IN_ISGREATER); ! tree type = TREE_TYPE (arg); REAL_VALUE_TYPE r; char buf[128]; + if (is_ibm_extended) + { + /* NaN and Inf are encoded in the high-order double value + only. The low-order value is not significant. */ + type = double_type_node; + mode = DFmode; + arg = fold_build1_loc (loc, NOP_EXPR, type, arg); + } get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&r, buf); result = build_call_expr (isgr_fn, 2, *************** fold_builtin_interclass_mathfn (location *** 10022,10031 **** { /* isfinite(x) -> islessequal(fabs(x),DBL_MAX). */ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL); ! tree const type = TREE_TYPE (arg); REAL_VALUE_TYPE r; char buf[128]; get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&r, buf); result = build_call_expr (isle_fn, 2, --- 10032,10049 ---- { /* isfinite(x) -> islessequal(fabs(x),DBL_MAX). */ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL); ! tree type = TREE_TYPE (arg); REAL_VALUE_TYPE r; char buf[128]; + if (is_ibm_extended) + { + /* NaN and Inf are encoded in the high-order double value + only. The low-order value is not significant. */ + type = double_type_node; + mode = DFmode; + arg = fold_build1_loc (loc, NOP_EXPR, type, arg); + } get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&r, buf); result = build_call_expr (isle_fn, 2, *************** fold_builtin_interclass_mathfn (location *** 10045,10065 **** /* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) & islessequal(fabs(x),DBL_MAX). */ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL); ! tree const isge_fn = builtin_decl_explicit (BUILT_IN_ISGREATEREQUAL); ! tree const type = TREE_TYPE (arg); REAL_VALUE_TYPE rmax, rmin; char buf[128]; get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&rmax, buf); ! sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (mode)->emin - 1); real_from_string (&rmin, buf); ! arg = builtin_save_expr (fold_build1_loc (loc, ABS_EXPR, type, arg)); ! result = build_call_expr (isle_fn, 2, arg, ! build_real (type, rmax)); ! result = fold_build2 (BIT_AND_EXPR, integer_type_node, result, ! build_call_expr (isge_fn, 2, arg, ! build_real (type, rmin))); return result; } default: --- 10063,10134 ---- /* isnormal(x) -> isgreaterequal(fabs(x),DBL_MIN) & islessequal(fabs(x),DBL_MAX). */ tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL); ! tree type = TREE_TYPE (arg); ! tree orig_arg, max_exp, min_exp; ! machine_mode orig_mode = mode; REAL_VALUE_TYPE rmax, rmin; char buf[128]; + orig_arg = arg = builtin_save_expr (arg); + if (is_ibm_extended) + { + /* Use double to test the normal range of IBM extended + precision. Emin for IBM extended precision is + different to emin for IEEE double, being 53 higher + since the low double exponent is at least 53 lower + than the high double exponent. */ + type = double_type_node; + mode = DFmode; + arg = fold_build1_loc (loc, NOP_EXPR, type, arg); + } + arg = fold_build1_loc (loc, ABS_EXPR, type, arg); + get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf)); real_from_string (&rmax, buf); ! sprintf (buf, "0x1p%d", REAL_MODE_FORMAT (orig_mode)->emin - 1); real_from_string (&rmin, buf); ! max_exp = build_real (type, rmax); ! min_exp = build_real (type, rmin); ! ! max_exp = build_call_expr (isle_fn, 2, arg, max_exp); ! if (is_ibm_extended) ! { ! /* Testing the high end of the range is done just using ! the high double, using the same test as isfinite(). ! For the subnormal end of the range we first test the ! high double, then if its magnitude is equal to the ! limit of 0x1p-969, we test whether the low double is ! non-zero and opposite sign to the high double. */ ! tree const islt_fn = builtin_decl_explicit (BUILT_IN_ISLESS); ! tree const isgt_fn = builtin_decl_explicit (BUILT_IN_ISGREATER); ! tree gt_min = build_call_expr (isgt_fn, 2, arg, min_exp); ! tree eq_min = fold_build2 (EQ_EXPR, integer_type_node, ! arg, min_exp); ! tree as_complex = build1 (VIEW_CONVERT_EXPR, ! complex_double_type_node, orig_arg); ! tree hi_dbl = build1 (REALPART_EXPR, type, as_complex); ! tree lo_dbl = build1 (IMAGPART_EXPR, type, as_complex); ! tree zero = build_real (type, dconst0); ! tree hilt = build_call_expr (islt_fn, 2, hi_dbl, zero); ! tree lolt = build_call_expr (islt_fn, 2, lo_dbl, zero); ! tree logt = build_call_expr (isgt_fn, 2, lo_dbl, zero); ! tree ok_lo = fold_build1 (TRUTH_NOT_EXPR, integer_type_node, ! fold_build3 (COND_EXPR, ! integer_type_node, ! hilt, logt, lolt)); ! eq_min = fold_build2 (TRUTH_ANDIF_EXPR, integer_type_node, ! eq_min, ok_lo); ! min_exp = fold_build2 (TRUTH_ORIF_EXPR, integer_type_node, ! gt_min, eq_min); ! } ! else ! { ! tree const isge_fn ! = builtin_decl_explicit (BUILT_IN_ISGREATEREQUAL); ! min_exp = build_call_expr (isge_fn, 2, arg, min_exp); ! } ! result = fold_build2 (BIT_AND_EXPR, integer_type_node, ! max_exp, min_exp); return result; } default: *************** fold_builtin_classify (location_t loc, t *** 10154,10159 **** --- 10223,10237 ---- return real_isnan (&r) ? integer_one_node : integer_zero_node; } + { + bool is_ibm_extended = MODE_COMPOSITE_P (TYPE_MODE (TREE_TYPE (arg))); + if (is_ibm_extended) + { + /* NaN and Inf are encoded in the high-order double value + only. The low-order value is not significant. */ + arg = fold_build1_loc (loc, NOP_EXPR, double_type_node, arg); + } + } arg = builtin_save_expr (arg); return fold_build2_loc (loc, UNORDERED_EXPR, type, arg, arg); diff -Nrcpad gcc-4.9.3/gcc/c/ChangeLog gcc-4.9.4/gcc/c/ChangeLog *** gcc-4.9.3/gcc/c/ChangeLog Fri Jun 26 17:56:21 2015 --- gcc-4.9.4/gcc/c/ChangeLog Wed Aug 3 05:07:42 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/c/c-parser.c gcc-4.9.4/gcc/c/c-parser.c *** gcc-4.9.3/gcc/c/c-parser.c Wed Feb 11 14:48:41 2015 --- gcc-4.9.4/gcc/c/c-parser.c Wed Feb 17 13:13:08 2016 *************** static tree c_parser_simple_asm_expr (c_ *** 1161,1167 **** static tree c_parser_attributes (c_parser *); static struct c_type_name *c_parser_type_name (c_parser *); static struct c_expr c_parser_initializer (c_parser *); ! static struct c_expr c_parser_braced_init (c_parser *, tree, bool); static void c_parser_initelt (c_parser *, struct obstack *); static void c_parser_initval (c_parser *, struct c_expr *, struct obstack *); --- 1161,1168 ---- static tree c_parser_attributes (c_parser *); static struct c_type_name *c_parser_type_name (c_parser *); static struct c_expr c_parser_initializer (c_parser *); ! static struct c_expr c_parser_braced_init (c_parser *, tree, bool, ! struct obstack *); static void c_parser_initelt (c_parser *, struct obstack *); static void c_parser_initval (c_parser *, struct c_expr *, struct obstack *); *************** static struct c_expr *** 4088,4094 **** c_parser_initializer (c_parser *parser) { if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) ! return c_parser_braced_init (parser, NULL_TREE, false); else { struct c_expr ret; --- 4089,4095 ---- c_parser_initializer (c_parser *parser) { if (c_parser_next_token_is (parser, CPP_OPEN_BRACE)) ! return c_parser_braced_init (parser, NULL_TREE, false, NULL); else { struct c_expr ret; *************** c_parser_initializer (c_parser *parser) *** 4108,4114 **** top-level initializer in a declaration. */ static struct c_expr ! c_parser_braced_init (c_parser *parser, tree type, bool nested_p) { struct c_expr ret; struct obstack braced_init_obstack; --- 4109,4116 ---- top-level initializer in a declaration. */ static struct c_expr ! c_parser_braced_init (c_parser *parser, tree type, bool nested_p, ! struct obstack *outer_obstack) { struct c_expr ret; struct obstack braced_init_obstack; *************** c_parser_braced_init (c_parser *parser, *** 4117,4123 **** gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE)); c_parser_consume_token (parser); if (nested_p) ! push_init_level (0, &braced_init_obstack); else really_start_incremental_init (type); if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) --- 4119,4128 ---- gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE)); c_parser_consume_token (parser); if (nested_p) ! { ! finish_implicit_inits (outer_obstack); ! push_init_level (0, &braced_init_obstack); ! } else really_start_incremental_init (type); if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE)) *************** c_parser_initval (c_parser *parser, stru *** 4364,4370 **** struct c_expr init; gcc_assert (!after || c_dialect_objc ()); if (c_parser_next_token_is (parser, CPP_OPEN_BRACE) && !after) ! init = c_parser_braced_init (parser, NULL_TREE, true); else { location_t loc = c_parser_peek_token (parser)->location; --- 4369,4376 ---- struct c_expr init; gcc_assert (!after || c_dialect_objc ()); if (c_parser_next_token_is (parser, CPP_OPEN_BRACE) && !after) ! init = c_parser_braced_init (parser, NULL_TREE, true, ! braced_init_obstack); else { location_t loc = c_parser_peek_token (parser)->location; *************** c_parser_postfix_expression_after_paren_ *** 7564,7570 **** error_at (type_loc, "compound literal has variable size"); type = error_mark_node; } ! init = c_parser_braced_init (parser, type, false); finish_init (); maybe_warn_string_init (type, init); --- 7570,7576 ---- error_at (type_loc, "compound literal has variable size"); type = error_mark_node; } ! init = c_parser_braced_init (parser, type, false, NULL); finish_init (); maybe_warn_string_init (type, init); diff -Nrcpad gcc-4.9.3/gcc/c/c-tree.h gcc-4.9.4/gcc/c/c-tree.h *** gcc-4.9.3/gcc/c/c-tree.h Fri Mar 28 18:16:32 2014 --- gcc-4.9.4/gcc/c/c-tree.h Wed Feb 17 13:13:08 2016 *************** extern void maybe_warn_string_init (tree *** 608,613 **** --- 608,614 ---- extern void start_init (tree, tree, int); extern void finish_init (void); extern void really_start_incremental_init (tree); + extern void finish_implicit_inits (struct obstack *); extern void push_init_level (int, struct obstack *); extern struct c_expr pop_init_level (int, struct obstack *); extern void set_init_index (tree, tree, struct obstack *); diff -Nrcpad gcc-4.9.3/gcc/c/c-typeck.c gcc-4.9.4/gcc/c/c-typeck.c *** gcc-4.9.3/gcc/c/c-typeck.c Sun Feb 1 17:36:26 2015 --- gcc-4.9.4/gcc/c/c-typeck.c Wed Feb 17 13:13:08 2016 *************** really_start_incremental_init (tree type *** 7164,7169 **** --- 7164,7192 ---- } } + /* Called when we see an open brace for a nested initializer. Finish + off any pending levels with implicit braces. */ + void + finish_implicit_inits (struct obstack *braced_init_obstack) + { + while (constructor_stack->implicit) + { + if ((TREE_CODE (constructor_type) == RECORD_TYPE + || TREE_CODE (constructor_type) == UNION_TYPE) + && constructor_fields == 0) + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + else if (TREE_CODE (constructor_type) == ARRAY_TYPE + && constructor_max_index + && tree_int_cst_lt (constructor_max_index, + constructor_index)) + process_init_element (pop_init_level (1, braced_init_obstack), + true, braced_init_obstack); + else + break; + } + } + /* Push down into a subobject, for initialization. If this is for an explicit set of braces, IMPLICIT is 0. If it is because the next element belongs at a lower level, *************** push_init_level (int implicit, struct ob *** 7175,7206 **** struct constructor_stack *p; tree value = NULL_TREE; - /* If we've exhausted any levels that didn't have braces, - pop them now. If implicit == 1, this will have been done in - process_init_element; do not repeat it here because in the case - of excess initializers for an empty aggregate this leads to an - infinite cycle of popping a level and immediately recreating - it. */ - if (implicit != 1) - { - while (constructor_stack->implicit) - { - if ((TREE_CODE (constructor_type) == RECORD_TYPE - || TREE_CODE (constructor_type) == UNION_TYPE) - && constructor_fields == 0) - process_init_element (pop_init_level (1, braced_init_obstack), - true, braced_init_obstack); - else if (TREE_CODE (constructor_type) == ARRAY_TYPE - && constructor_max_index - && tree_int_cst_lt (constructor_max_index, - constructor_index)) - process_init_element (pop_init_level (1, braced_init_obstack), - true, braced_init_obstack); - else - break; - } - } - /* Unless this is an explicit brace, we need to preserve previous content if any. */ if (implicit) --- 7198,7203 ---- *************** set_designator (int array, struct obstac *** 7611,7616 **** --- 7608,7614 ---- } constructor_designated = 1; + finish_implicit_inits (braced_init_obstack); push_init_level (2, braced_init_obstack); return 0; } *************** process_init_element (struct c_expr valu *** 8941,8946 **** --- 8939,8945 ---- p = p->next; if (!p) break; + finish_implicit_inits (braced_init_obstack); push_init_level (2, braced_init_obstack); p->stack = constructor_stack; if (p->range_end && tree_int_cst_equal (p->index, p->range_end)) diff -Nrcpad gcc-4.9.3/gcc/c-family/ChangeLog gcc-4.9.4/gcc/c-family/ChangeLog *** gcc-4.9.3/gcc/c-family/ChangeLog Fri Jun 26 17:56:32 2015 --- gcc-4.9.4/gcc/c-family/ChangeLog Wed Aug 3 05:06:58 2016 *************** *** 1,3 **** --- 1,38 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2016-07-07 Jakub Jelinek + + Backported from mainline + 2016-02-15 Jakub Jelinek + + PR c++/69797 + * c-common.c (sync_resolve_size): Diagnose too few arguments + even when params is non-NULL empty vector. + + 2016-07-05 Markus Trippelsdorf + + PR c++/71214 + * c-cppbuiltin.c (c_cpp_builtins): Define __cpp_rvalue_references. + + 2016-02-11 Jakub Jelinek + + Backported from mainline + 2015-12-03 Jakub Jelinek + + PR preprocessor/57580 + * c-ppoutput.c (print): Change printed field to bool. + (init_pp_output): Set print.printed to false instead of 0. + (scan_translation_unit): Fix up formatting. Set print.printed + to true after printing something other than newline. + (scan_translation_unit_trad): Set print.printed to true instead of 1. + (maybe_print_line_1): Set print.printed to false instead of 0. + (print_line_1): Likewise. + (do_line_change): Set print.printed to true instead of 1. + (cb_define, dump_queued_macros, cb_include, cb_def_pragma, + dump_macro): Set print.printed to false after printing newline. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/c-family/c-common.c gcc-4.9.4/gcc/c-family/c-common.c *** gcc-4.9.3/gcc/c-family/c-common.c Tue Jan 20 14:17:51 2015 --- gcc-4.9.4/gcc/c-family/c-common.c Thu Jul 7 21:45:11 2016 *************** sync_resolve_size (tree function, vecflags & PREV_WHITE || (print.prev && cpp_avoid_paste (pfile, print.prev, token)) || (print.prev == NULL && token->type == CPP_HASH)) ! putc (' ', print.outf); } else if (token->flags & PREV_WHITE) { --- 202,217 ---- { do_line_change (pfile, token, loc, false); putc (' ', print.outf); + print.printed = true; } else if (print.source->flags & PREV_WHITE || (print.prev && cpp_avoid_paste (pfile, print.prev, token)) || (print.prev == NULL && token->type == CPP_HASH)) ! { ! putc (' ', print.outf); ! print.printed = true; ! } } else if (token->flags & PREV_WHITE) { *************** scan_translation_unit (cpp_reader *pfile *** 218,223 **** --- 222,228 ---- && !in_pragma) do_line_change (pfile, token, loc, false); putc (' ', print.outf); + print.printed = true; } avoid_paste = false; *************** scan_translation_unit (cpp_reader *pfile *** 235,241 **** fprintf (print.outf, "%s %s", space, name); else fprintf (print.outf, "%s", name); ! print.printed = 1; in_pragma = true; } else if (token->type == CPP_PRAGMA_EOL) --- 240,246 ---- fprintf (print.outf, "%s %s", space, name); else fprintf (print.outf, "%s", name); ! print.printed = true; in_pragma = true; } else if (token->type == CPP_PRAGMA_EOL) *************** scan_translation_unit (cpp_reader *pfile *** 246,254 **** else { if (cpp_get_options (parse_in)->debug) ! linemap_dump_location (line_table, token->src_loc, ! print.outf); cpp_output_token (token, print.outf); } /* CPP_COMMENT tokens and raw-string literal tokens can --- 251,259 ---- else { if (cpp_get_options (parse_in)->debug) ! linemap_dump_location (line_table, token->src_loc, print.outf); cpp_output_token (token, print.outf); + print.printed = true; } /* CPP_COMMENT tokens and raw-string literal tokens can *************** scan_translation_unit_trad (cpp_reader * *** 298,304 **** size_t len = pfile->out.cur - pfile->out.base; maybe_print_line (pfile->out.first_line); fwrite (pfile->out.base, 1, len, print.outf); ! print.printed = 1; if (!CPP_OPTION (pfile, discard_comments)) account_for_newlines (pfile->out.base, len); } --- 303,309 ---- size_t len = pfile->out.cur - pfile->out.base; maybe_print_line (pfile->out.first_line); fwrite (pfile->out.base, 1, len, print.outf); ! print.printed = true; if (!CPP_OPTION (pfile, discard_comments)) account_for_newlines (pfile->out.base, len); } *************** maybe_print_line_1 (source_location src_ *** 319,325 **** { putc ('\n', stream); print.src_line++; ! print.printed = 0; } if (!flag_no_line_commands --- 324,330 ---- { putc ('\n', stream); print.src_line++; ! print.printed = false; } if (!flag_no_line_commands *************** print_line_1 (source_location src_loc, c *** 360,366 **** /* End any previous line of text. */ if (print.printed) putc ('\n', stream); ! print.printed = 0; if (!flag_no_line_commands) { --- 365,371 ---- /* End any previous line of text. */ if (print.printed) putc ('\n', stream); ! print.printed = false; if (!flag_no_line_commands) { *************** do_line_change (cpp_reader *pfile, const *** 429,435 **** if (!CPP_OPTION (pfile, traditional)) { int spaces = LOCATION_COLUMN (src_loc) - 2; ! print.printed = 1; while (-- spaces >= 0) putc (' ', print.outf); --- 434,440 ---- if (!CPP_OPTION (pfile, traditional)) { int spaces = LOCATION_COLUMN (src_loc) - 2; ! print.printed = true; while (-- spaces >= 0) putc (' ', print.outf); *************** cb_define (cpp_reader *pfile, source_loc *** 470,475 **** --- 475,481 ---- fputs ((const char *) NODE_NAME (node), print.outf); putc ('\n', print.outf); + print.printed = false; linemap_resolve_location (line_table, line, LRK_MACRO_DEFINITION_LOCATION, &map); *************** dump_queued_macros (cpp_reader *pfile AT *** 521,527 **** { putc ('\n', print.outf); print.src_line++; ! print.printed = 0; } for (q = define_queue; q;) --- 527,533 ---- { putc ('\n', print.outf); print.src_line++; ! print.printed = false; } for (q = define_queue; q;) *************** dump_queued_macros (cpp_reader *pfile AT *** 530,535 **** --- 536,542 ---- fputs ("#define ", print.outf); fputs (q->macro, print.outf); putc ('\n', print.outf); + print.printed = false; print.src_line++; oq = q; q = q->next; *************** cb_include (cpp_reader *pfile ATTRIBUTE_ *** 573,578 **** --- 580,586 ---- } putc ('\n', print.outf); + print.printed = false; print.src_line++; } *************** cb_def_pragma (cpp_reader *pfile, source *** 638,643 **** --- 646,652 ---- maybe_print_line (line); fputs ("#pragma ", print.outf); cpp_output_line (pfile, print.outf); + print.printed = false; print.src_line++; } *************** dump_macro (cpp_reader *pfile, cpp_hashn *** 651,656 **** --- 660,666 ---- fputs ((const char *) cpp_macro_definition (pfile, node), print.outf); putc ('\n', print.outf); + print.printed = false; print.src_line++; } diff -Nrcpad gcc-4.9.3/gcc/calls.c gcc-4.9.4/gcc/calls.c *** gcc-4.9.3/gcc/calls.c Thu Mar 20 11:35:22 2014 --- gcc-4.9.4/gcc/calls.c Thu Feb 11 09:09:58 2016 *************** special_function_p (const_tree fndecl, i *** 521,532 **** /* We assume that alloca will always be called by name. It makes no sense to pass it as a pointer-to-function to anything that does not understand its behavior. */ ! if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6 ! && name[0] == 'a' ! && ! strcmp (name, "alloca")) ! || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16 ! && name[0] == '_' ! && ! strcmp (name, "__builtin_alloca")))) flags |= ECF_MAY_BE_ALLOCA; /* Disregard prefix _, __, __x or __builtin_. */ --- 521,529 ---- /* We assume that alloca will always be called by name. It makes no sense to pass it as a pointer-to-function to anything that does not understand its behavior. */ ! if (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6 ! && name[0] == 'a' ! && ! strcmp (name, "alloca")) flags |= ECF_MAY_BE_ALLOCA; /* Disregard prefix _, __, __x or __builtin_. */ *************** special_function_p (const_tree fndecl, i *** 572,577 **** --- 569,585 ---- flags |= ECF_NORETURN; } + if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) + switch (DECL_FUNCTION_CODE (fndecl)) + { + case BUILT_IN_ALLOCA: + case BUILT_IN_ALLOCA_WITH_ALIGN: + flags |= ECF_MAY_BE_ALLOCA; + break; + default: + break; + } + return flags; } *************** expand_call (tree exp, rtx target, int i *** 2952,2957 **** --- 2960,2978 ---- compute_argument_addresses (args, argblock, num_actuals); + /* Stack is properly aligned, pops can't safely be deferred during + the evaluation of the arguments. */ + NO_DEFER_POP; + + /* Precompute all register parameters. It isn't safe to compute + anything once we have started filling any specific hard regs. + TLS symbols sometimes need a call to resolve. Precompute + register parameters before any stack pointer manipulation + to avoid unaligned stack in the called function. */ + precompute_register_parameters (num_actuals, args, ®_parm_seen); + + OK_DEFER_POP; + /* If we push args individually in reverse order, perform stack alignment before the first push (the last arg). */ if (PUSH_ARGS_REVERSED && argblock == 0 *************** expand_call (tree exp, rtx target, int i *** 3019,3028 **** } } - /* Precompute all register parameters. It isn't safe to compute anything - once we have started filling any specific hard regs. */ - precompute_register_parameters (num_actuals, args, ®_parm_seen); - if (CALL_EXPR_STATIC_CHAIN (exp)) static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp)); else --- 3040,3045 ---- *************** store_one_arg (struct arg_data *arg, rtx *** 4662,4667 **** --- 4679,4691 ---- if (XEXP (x, 0) != crtl->args.internal_arg_pointer) i = INTVAL (XEXP (XEXP (x, 0), 1)); + /* arg.locate doesn't contain the pretend_args_size offset, + it's part of argblock. Ensure we don't count it in I. */ + #ifdef STACK_GROWS_DOWNWARD + i -= crtl->args.pretend_args_size; + #else + i += crtl->args.pretend_args_size; + #endif /* expand_call should ensure this. */ gcc_assert (!arg->locate.offset.var && arg->locate.size.var == 0 diff -Nrcpad gcc-4.9.3/gcc/cfgexpand.c gcc-4.9.4/gcc/cfgexpand.c *** gcc-4.9.3/gcc/cfgexpand.c Tue Apr 22 13:15:24 2014 --- gcc-4.9.4/gcc/cfgexpand.c Tue Dec 8 11:34:28 2015 *************** align_local_variable (tree decl) *** 248,253 **** --- 248,262 ---- return align / BITS_PER_UNIT; } + /* Align given offset BASE with ALIGN. Truncate up if ALIGN_UP is true, + down otherwise. Return truncated BASE value. */ + + static inline unsigned HOST_WIDE_INT + align_base (HOST_WIDE_INT base, unsigned HOST_WIDE_INT align, bool align_up) + { + return align_up ? (base + align - 1) & -align : base & -align; + } + /* Allocate SIZE bytes at byte alignment ALIGN from the stack frame. Return the frame offset. */ *************** alloc_stack_frame_space (HOST_WIDE_INT s *** 256,275 **** { HOST_WIDE_INT offset, new_frame_offset; - new_frame_offset = frame_offset; if (FRAME_GROWS_DOWNWARD) { ! new_frame_offset -= size + frame_phase; ! new_frame_offset &= -align; ! new_frame_offset += frame_phase; offset = new_frame_offset; } else { ! new_frame_offset -= frame_phase; ! new_frame_offset += align - 1; ! new_frame_offset &= -align; ! new_frame_offset += frame_phase; offset = new_frame_offset; new_frame_offset += size; } --- 265,281 ---- { HOST_WIDE_INT offset, new_frame_offset; if (FRAME_GROWS_DOWNWARD) { ! new_frame_offset ! = align_base (frame_offset - frame_phase - size, ! align, false) + frame_phase; offset = new_frame_offset; } else { ! new_frame_offset ! = align_base (frame_offset - frame_phase, align, true) + frame_phase; offset = new_frame_offset; new_frame_offset += size; } *************** expand_stack_vars (bool (*pred) (size_t) *** 983,995 **** base = virtual_stack_vars_rtx; if ((flag_sanitize & SANITIZE_ADDRESS) && ASAN_STACK && pred) { ! HOST_WIDE_INT prev_offset = frame_offset; tree repr_decl = NULL_TREE; - offset = alloc_stack_frame_space (stack_vars[i].size + ASAN_RED_ZONE_SIZE, MAX (alignb, ASAN_RED_ZONE_SIZE)); data->asan_vec.safe_push (prev_offset); data->asan_vec.safe_push (offset + stack_vars[i].size); /* Find best representative of the partition. --- 989,1004 ---- base = virtual_stack_vars_rtx; if ((flag_sanitize & SANITIZE_ADDRESS) && ASAN_STACK && pred) { ! HOST_WIDE_INT prev_offset ! = align_base (frame_offset, ! MAX (alignb, ASAN_RED_ZONE_SIZE), ! FRAME_GROWS_DOWNWARD); tree repr_decl = NULL_TREE; offset = alloc_stack_frame_space (stack_vars[i].size + ASAN_RED_ZONE_SIZE, MAX (alignb, ASAN_RED_ZONE_SIZE)); + data->asan_vec.safe_push (prev_offset); data->asan_vec.safe_push (offset + stack_vars[i].size); /* Find best representative of the partition. diff -Nrcpad gcc-4.9.3/gcc/cfgrtl.c gcc-4.9.4/gcc/cfgrtl.c *** gcc-4.9.3/gcc/cfgrtl.c Fri Jan 9 21:36:10 2015 --- gcc-4.9.4/gcc/cfgrtl.c Fri Jan 22 14:49:22 2016 *************** cfg_layout_initialize (unsigned int flag *** 4239,4252 **** rtx x; basic_block bb; ! /* Once bb reordering is complete, cfg layout mode should not be re-entered. ! Entering cfg layout mode will perform optimizations on the cfg that ! could affect the bb layout negatively or even require fixups. An ! example of the latter is if edge forwarding performed when optimizing ! the cfg layout required moving a block from the hot to the cold section ! under -freorder-blocks-and-partition. This would create an illegal ! partitioning unless some manual fixup was performed. */ ! gcc_assert (!crtl->bb_reorder_complete); initialize_original_copy_tables (); --- 4239,4252 ---- rtx x; basic_block bb; ! /* Once bb partitioning is complete, cfg layout mode should not be ! re-entered. Entering cfg layout mode may require fixups. As an ! example, if edge forwarding performed when optimizing the cfg ! layout required moving a block from the hot to the cold ! section. This would create an illegal partitioning unless some ! manual fixup was performed. */ ! gcc_assert (!(crtl->bb_reorder_complete ! && flag_reorder_blocks_and_partition)); initialize_original_copy_tables (); diff -Nrcpad gcc-4.9.3/gcc/cgraph.c gcc-4.9.4/gcc/cgraph.c *** gcc-4.9.3/gcc/cgraph.c Fri Jun 20 09:57:53 2014 --- gcc-4.9.4/gcc/cgraph.c Fri Jan 8 12:34:34 2016 *************** collect_callers_of_node_1 (struct cgraph *** 2527,2539 **** if (avail > AVAIL_OVERWRITABLE) for (cs = node->callers; cs != NULL; cs = cs->next_caller) ! if (!cs->indirect_inlining_edge) redirect_callers->safe_push (cs); return false; } /* Collect all callers of NODE and its aliases that are known to lead to NODE ! (i.e. are not overwritable). */ vec collect_callers_of_node (struct cgraph_node *node) --- 2527,2540 ---- if (avail > AVAIL_OVERWRITABLE) for (cs = node->callers; cs != NULL; cs = cs->next_caller) ! if (!cs->indirect_inlining_edge ! && !cs->caller->thunk.thunk_p) redirect_callers->safe_push (cs); return false; } /* Collect all callers of NODE and its aliases that are known to lead to NODE ! (i.e. are not overwritable) and that are not thunks. */ vec collect_callers_of_node (struct cgraph_node *node) diff -Nrcpad gcc-4.9.3/gcc/cgraphclones.c gcc-4.9.4/gcc/cgraphclones.c *** gcc-4.9.3/gcc/cgraphclones.c Sun Oct 5 02:37:31 2014 --- gcc-4.9.4/gcc/cgraphclones.c Mon Jan 11 09:59:48 2016 *************** duplicate_thunk_for_node (cgraph_node *t *** 367,372 **** --- 367,373 ---- new_thunk = cgraph_create_node (new_decl); set_new_clone_decl_and_node_flags (new_thunk); new_thunk->definition = true; + new_thunk->local.can_change_signature = node->local.can_change_signature; new_thunk->thunk = thunk->thunk; new_thunk->unique_name = in_lto_p; new_thunk->former_clone_of = thunk->decl; diff -Nrcpad gcc-4.9.3/gcc/combine.c gcc-4.9.4/gcc/combine.c *** gcc-4.9.3/gcc/combine.c Sun Dec 14 16:07:03 2014 --- gcc-4.9.4/gcc/combine.c Thu Jul 7 21:50:41 2016 *************** simplify_shift_const_1 (enum rtx_code co *** 10173,10181 **** && CONST_INT_P (XEXP (varop, 0)) && !CONST_INT_P (XEXP (varop, 1))) { rtx new_rtx = simplify_const_binary_operation (code, mode, ! XEXP (varop, 0), ! GEN_INT (count)); varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1)); count = 0; continue; --- 10173,10196 ---- && CONST_INT_P (XEXP (varop, 0)) && !CONST_INT_P (XEXP (varop, 1))) { + /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make + sure the result will be masked. See PR70222. */ + if (code == LSHIFTRT + && mode != result_mode + && !merge_outer_ops (&outer_op, &outer_const, AND, + GET_MODE_MASK (result_mode) + >> orig_count, result_mode, + &complement_p)) + break; + /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing + up outer sign extension (often left and right shift) is + hardly more efficient than the original. See PR70429. */ + if (code == ASHIFTRT && mode != result_mode) + break; + rtx new_rtx = simplify_const_binary_operation (code, mode, ! XEXP (varop, 0), ! GEN_INT (count)); varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1)); count = 0; continue; *************** simplify_comparison (enum rtx_code code, *** 11655,11668 **** continue; } ! /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits in both M1 and M2 and the SUBREG is either paradoxical or represents the low part, permute the SUBREG and the AND and try again. */ ! if (GET_CODE (XEXP (op0, 0)) == SUBREG) { - unsigned HOST_WIDE_INT c1; tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0))); /* Require an integral mode, to avoid creating something like (AND:SF ...). */ if (SCALAR_INT_MODE_P (tmode) --- 11670,11684 ---- continue; } ! /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1 fits in both M1 and M2 and the SUBREG is either paradoxical or represents the low part, permute the SUBREG and the AND and try again. */ ! if (GET_CODE (XEXP (op0, 0)) == SUBREG ! && CONST_INT_P (XEXP (op0, 1))) { tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0))); + unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1)); /* Require an integral mode, to avoid creating something like (AND:SF ...). */ if (SCALAR_INT_MODE_P (tmode) *************** simplify_comparison (enum rtx_code code, *** 11672,11689 **** have a defined value due to the AND operation. However, if we commute the AND inside the SUBREG then they no longer have defined values and the meaning of ! the code has been changed. */ && (0 #ifdef WORD_REGISTER_OPERATIONS || (mode_width > GET_MODE_PRECISION (tmode) ! && mode_width <= BITS_PER_WORD) #endif || (mode_width <= GET_MODE_PRECISION (tmode) && subreg_lowpart_p (XEXP (op0, 0)))) - && CONST_INT_P (XEXP (op0, 1)) && mode_width <= HOST_BITS_PER_WIDE_INT && HWI_COMPUTABLE_MODE_P (tmode) ! && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0 && (c1 & ~GET_MODE_MASK (tmode)) == 0 && c1 != mask && c1 != GET_MODE_MASK (tmode)) --- 11688,11709 ---- have a defined value due to the AND operation. However, if we commute the AND inside the SUBREG then they no longer have defined values and the meaning of ! the code has been changed. ! Also C1 should not change value in the smaller mode, ! see PR67028 (a positive C1 can become negative in the ! smaller mode, so that the AND does no longer mask the ! upper bits). */ && (0 #ifdef WORD_REGISTER_OPERATIONS || (mode_width > GET_MODE_PRECISION (tmode) ! && mode_width <= BITS_PER_WORD ! && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1) #endif || (mode_width <= GET_MODE_PRECISION (tmode) && subreg_lowpart_p (XEXP (op0, 0)))) && mode_width <= HOST_BITS_PER_WIDE_INT && HWI_COMPUTABLE_MODE_P (tmode) ! && (c1 & ~mask) == 0 && (c1 & ~GET_MODE_MASK (tmode)) == 0 && c1 != mask && c1 != GET_MODE_MASK (tmode)) diff -Nrcpad gcc-4.9.3/gcc/config/aarch64/aarch64-elf-raw.h gcc-4.9.4/gcc/config/aarch64/aarch64-elf-raw.h *** gcc-4.9.3/gcc/config/aarch64/aarch64-elf-raw.h Tue May 12 08:55:54 2015 --- gcc-4.9.4/gcc/config/aarch64/aarch64-elf-raw.h Fri Jul 24 16:15:19 2015 *************** *** 42,48 **** #endif #ifndef LINK_SPEC ! #define LINK_SPEC "%{mbig-endian:-EB} %{mlittle-endian:-EL} -X \ -maarch64elf%{mabi=ilp32*:32}%{mbig-endian:b}" \ CA53_ERR_835769_SPEC \ CA53_ERR_843419_SPEC --- 42,53 ---- #endif #ifndef LINK_SPEC ! #define LINK_SPEC "%{h*} \ ! %{static:-Bstatic} \ ! %{shared:-shared} \ ! %{symbolic:-Bsymbolic} \ ! %{!static:%{rdynamic:-export-dynamic}} \ ! %{mbig-endian:-EB} %{mlittle-endian:-EL} -X \ -maarch64elf%{mabi=ilp32*:32}%{mbig-endian:b}" \ CA53_ERR_835769_SPEC \ CA53_ERR_843419_SPEC diff -Nrcpad gcc-4.9.3/gcc/config/aarch64/aarch64-linux.h gcc-4.9.4/gcc/config/aarch64/aarch64-linux.h *** gcc-4.9.3/gcc/config/aarch64/aarch64-linux.h Tue May 12 08:55:54 2015 --- gcc-4.9.4/gcc/config/aarch64/aarch64-linux.h Fri Jul 24 16:12:58 2015 *************** *** 29,36 **** %{static:-Bstatic} \ %{shared:-shared} \ %{symbolic:-Bsymbolic} \ ! %{rdynamic:-export-dynamic} \ ! -dynamic-linker " GNU_USER_DYNAMIC_LINKER " \ -X \ %{mbig-endian:-EB} %{mlittle-endian:-EL} \ -maarch64linux%{mbig-endian:b}" --- 29,37 ---- %{static:-Bstatic} \ %{shared:-shared} \ %{symbolic:-Bsymbolic} \ ! %{!static: \ ! %{rdynamic:-export-dynamic} \ ! %{!shared:-dynamic-linker " GNU_USER_DYNAMIC_LINKER "}} \ -X \ %{mbig-endian:-EB} %{mlittle-endian:-EL} \ -maarch64linux%{mbig-endian:b}" diff -Nrcpad gcc-4.9.3/gcc/config/aarch64/aarch64-simd.md gcc-4.9.4/gcc/config/aarch64/aarch64-simd.md *** gcc-4.9.3/gcc/config/aarch64/aarch64-simd.md Tue Jan 13 16:25:00 2015 --- gcc-4.9.4/gcc/config/aarch64/aarch64-simd.md Fri May 20 09:12:59 2016 *************** *** 1733,1748 **** } ) - (define_insn "aarch64_vmls" - [(set (match_operand:VDQF 0 "register_operand" "=w") - (minus:VDQF (match_operand:VDQF 1 "register_operand" "0") - (mult:VDQF (match_operand:VDQF 2 "register_operand" "w") - (match_operand:VDQF 3 "register_operand" "w"))))] - "TARGET_SIMD" - "fmls\\t%0., %2., %3." - [(set_attr "type" "neon_fp_mla__scalar")] - ) - ;; FP Max/Min ;; Max/Min are introduced by idiom recognition by GCC's mid-end. An ;; expression like: --- 1733,1738 ---- diff -Nrcpad gcc-4.9.3/gcc/config/aarch64/aarch64.c gcc-4.9.4/gcc/config/aarch64/aarch64.c *** gcc-4.9.3/gcc/config/aarch64/aarch64.c Tue Jun 16 15:26:41 2015 --- gcc-4.9.4/gcc/config/aarch64/aarch64.c Tue Jan 12 14:04:26 2016 *************** aarch64_madd_needs_nop (rtx insn) *** 6564,6570 **** if (!aarch64_fix_a53_err835769) return false; ! if (recog_memoized (insn) < 0) return false; attr_type = get_attr_type (insn); --- 6564,6570 ---- if (!aarch64_fix_a53_err835769) return false; ! if (!INSN_P (insn) || recog_memoized (insn) < 0) return false; attr_type = get_attr_type (insn); *************** aarch64_cannot_change_mode_class (enum m *** 8405,8410 **** --- 8405,8422 ---- enum machine_mode to, enum reg_class rclass) { + /* We cannot allow word_mode subregs of full vector modes. + Otherwise the middle-end will assume it's ok to store to + (subreg:DI (reg:TI 100) 0) in order to modify only the low 64 bits + of the 128-bit register. However, after reload the subreg will + be dropped leaving a plain DImode store. See PR67609 for a more + detailed dicussion. In some other cases we can be permissive and + return false. */ + if (reg_classes_intersect_p (FP_REGS, rclass) + && GET_MODE_SIZE (to) == UNITS_PER_WORD + && GET_MODE_SIZE (from) > UNITS_PER_WORD) + return true; + /* Full-reg subregs are allowed on general regs or any class if they are the same size. */ if (GET_MODE_SIZE (from) == GET_MODE_SIZE (to) diff -Nrcpad gcc-4.9.3/gcc/config/aarch64/aarch64.md gcc-4.9.4/gcc/config/aarch64/aarch64.md *** gcc-4.9.3/gcc/config/aarch64/aarch64.md Tue May 5 15:50:18 2015 --- gcc-4.9.4/gcc/config/aarch64/aarch64.md Tue Jan 12 14:04:26 2016 *************** *** 3357,3362 **** --- 3357,3372 ---- (mult:GPF (neg:GPF (match_operand:GPF 1 "register_operand" "w")) (match_operand:GPF 2 "register_operand" "w")))] + "TARGET_FLOAT && !flag_rounding_math" + "fnmul\\t%0, %1, %2" + [(set_attr "type" "fmul")] + ) + + (define_insn "*fnmul3" + [(set (match_operand:GPF 0 "register_operand" "=w") + (neg:GPF (mult:GPF + (match_operand:GPF 1 "register_operand" "w") + (match_operand:GPF 2 "register_operand" "w"))))] "TARGET_FLOAT" "fnmul\\t%0, %1, %2" [(set_attr "type" "fmul")] *************** *** 3444,3450 **** (define_insn "aarch64_movdi_low" [(set (match_operand:DI 0 "register_operand" "=r") ! (truncate:DI (match_operand:TX 1 "register_operand" "w")))] "reload_completed || reload_in_progress" "fmov\\t%x0, %d1" [(set_attr "type" "f_mrc") --- 3454,3461 ---- (define_insn "aarch64_movdi_low" [(set (match_operand:DI 0 "register_operand" "=r") ! (zero_extract:DI (match_operand:TX 1 "register_operand" "w") ! (const_int 64) (const_int 0)))] "reload_completed || reload_in_progress" "fmov\\t%x0, %d1" [(set_attr "type" "f_mrc") *************** *** 3453,3461 **** (define_insn "aarch64_movdi_high" [(set (match_operand:DI 0 "register_operand" "=r") ! (truncate:DI ! (lshiftrt:TX (match_operand:TX 1 "register_operand" "w") ! (const_int 64))))] "reload_completed || reload_in_progress" "fmov\\t%x0, %1.d[1]" [(set_attr "type" "f_mrc") --- 3464,3471 ---- (define_insn "aarch64_movdi_high" [(set (match_operand:DI 0 "register_operand" "=r") ! (zero_extract:DI (match_operand:TX 1 "register_operand" "w") ! (const_int 64) (const_int 64)))] "reload_completed || reload_in_progress" "fmov\\t%x0, %1.d[1]" [(set_attr "type" "f_mrc") diff -Nrcpad gcc-4.9.3/gcc/config/alpha/alpha.md gcc-4.9.4/gcc/config/alpha/alpha.md *** gcc-4.9.3/gcc/config/alpha/alpha.md Wed Feb 11 07:18:21 2015 --- gcc-4.9.4/gcc/config/alpha/alpha.md Wed May 18 19:53:16 2016 *************** *** 3754,3760 **** ;; BUGCHK is documented common to OSF/1 and VMS PALcode. (define_insn "trap" ! [(trap_if (const_int 1) (const_int 0))] "" "call_pal 0x81" [(set_attr "type" "callpal")]) --- 3754,3761 ---- ;; BUGCHK is documented common to OSF/1 and VMS PALcode. (define_insn "trap" ! [(trap_if (const_int 1) (const_int 0)) ! (use (reg:DI 29))] "" "call_pal 0x81" [(set_attr "type" "callpal")]) *************** *** 5174,5180 **** "TARGET_ABI_OSF" { if (TARGET_EXPLICIT_RELOCS) ! return "ldah $29,0($26)\t\t!gpdisp!%*\;lda $29,0($29)\t\t!gpdisp!%*"; else return "ldgp $29,0($26)"; } --- 5175,5181 ---- "TARGET_ABI_OSF" { if (TARGET_EXPLICIT_RELOCS) ! return "#"; else return "ldgp $29,0($26)"; } diff -Nrcpad gcc-4.9.3/gcc/config/arm/arm-protos.h gcc-4.9.4/gcc/config/arm/arm-protos.h *** gcc-4.9.3/gcc/config/arm/arm-protos.h Mon Sep 29 16:47:31 2014 --- gcc-4.9.4/gcc/config/arm/arm-protos.h Tue Jan 12 17:32:18 2016 *************** extern int vfp3_const_double_for_bits (r *** 282,287 **** --- 282,288 ---- extern void arm_emit_coreregs_64bit_shift (enum rtx_code, rtx, rtx, rtx, rtx, rtx); + extern bool arm_valid_symbolic_address_p (rtx); extern bool arm_validize_comparison (rtx *, rtx *, rtx *); #endif /* RTX_CODE */ diff -Nrcpad gcc-4.9.3/gcc/config/arm/arm.c gcc-4.9.4/gcc/config/arm/arm.c *** gcc-4.9.3/gcc/config/arm/arm.c Wed Mar 4 05:51:08 2015 --- gcc-4.9.4/gcc/config/arm/arm.c Fri May 20 20:51:18 2016 *************** arm_new_rtx_costs (rtx x, enum rtx_code *** 9821,9827 **** *cost = COSTS_N_INSNS (1); ! if (GET_CODE (op0) == NEG) op0 = XEXP (op0, 0); if (speed_p) --- 9821,9827 ---- *cost = COSTS_N_INSNS (1); ! if (GET_CODE (op0) == NEG && !flag_rounding_math) op0 = XEXP (op0, 0); if (speed_p) *************** arm_new_rtx_costs (rtx x, enum rtx_code *** 9897,9902 **** --- 9897,9909 ---- if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT && (mode == SFmode || !TARGET_VFP_SINGLE)) { + if (GET_CODE (XEXP (x, 0)) == MULT) + { + /* FNMUL. */ + *cost = rtx_cost (XEXP (x, 0), NEG, 0, speed_p); + return true; + } + *cost = COSTS_N_INSNS (1); if (speed_p) *cost += extra_cost->fp[mode != SFmode].neg; *************** arm_expand_prologue (void) *** 20678,20684 **** /* Naked functions don't have prologues. */ if (IS_NAKED (func_type)) ! return; /* Make a copy of c_f_p_a_s as we may need to modify it locally. */ args_to_push = crtl->args.pretend_args_size; --- 20685,20695 ---- /* Naked functions don't have prologues. */ if (IS_NAKED (func_type)) ! { ! if (flag_stack_usage_info) ! current_function_static_stack_size = 0; ! return; ! } /* Make a copy of c_f_p_a_s as we may need to modify it locally. */ args_to_push = crtl->args.pretend_args_size; *************** arm_hard_regno_mode_ok (unsigned int reg *** 22617,22628 **** } /* We allow almost any value to be stored in the general registers. ! Restrict doubleword quantities to even register pairs so that we can ! use ldrd. Do not allow very large Neon structure opaque modes in ! general registers; they would use too many. */ if (regno <= LAST_ARM_REGNUM) ! return !(TARGET_LDRD && GET_MODE_SIZE (mode) > 4 && (regno & 1) != 0) ! && ARM_NUM_REGS (mode) <= 4; if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) --- 22628,22646 ---- } /* We allow almost any value to be stored in the general registers. ! Restrict doubleword quantities to even register pairs in ARM state ! so that we can use ldrd. Do not allow very large Neon structure ! opaque modes in general registers; they would use too many. */ if (regno <= LAST_ARM_REGNUM) ! { ! if (ARM_NUM_REGS (mode) > 4) ! return FALSE; ! ! if (TARGET_THUMB2) ! return TRUE; ! ! return !(TARGET_LDRD && GET_MODE_SIZE (mode) > 4 && (regno & 1) != 0); ! } if (regno == FRAME_POINTER_REGNUM || regno == ARG_POINTER_REGNUM) *************** thumb1_expand_prologue (void) *** 26695,26701 **** /* Naked functions don't have prologues. */ if (IS_NAKED (func_type)) ! return; if (IS_INTERRUPT (func_type)) { --- 26713,26723 ---- /* Naked functions don't have prologues. */ if (IS_NAKED (func_type)) ! { ! if (flag_stack_usage_info) ! current_function_static_stack_size = 0; ! return; ! } if (IS_INTERRUPT (func_type)) { *************** vfp3_const_double_for_fract_bits (rtx op *** 29812,29818 **** return 0; REAL_VALUE_FROM_CONST_DOUBLE (r0, operand); ! if (exact_real_inverse (DFmode, &r0)) { if (exact_real_truncate (DFmode, &r0)) { --- 29834,29841 ---- return 0; REAL_VALUE_FROM_CONST_DOUBLE (r0, operand); ! if (exact_real_inverse (DFmode, &r0) ! && !REAL_VALUE_NEGATIVE (r0)) { if (exact_real_truncate (DFmode, &r0)) { *************** vfp3_const_double_for_fract_bits (rtx op *** 29825,29849 **** return 0; } int ! vfp3_const_double_for_bits (rtx operand) { ! REAL_VALUE_TYPE r0; ! if (!CONST_DOUBLE_P (operand)) ! return 0; ! REAL_VALUE_FROM_CONST_DOUBLE (r0, operand); ! if (exact_real_truncate (DFmode, &r0)) ! { ! HOST_WIDE_INT value = real_to_integer (&r0); ! value = value & 0xffffffff; ! if ((value != 0) && ( (value & (value - 1)) == 0)) ! return int_log2 (value); ! } ! return 0; } /* Emit a memory barrier around an atomic sequence according to MODEL. */ --- 29848,29883 ---- return 0; } + /* If X is a CONST_DOUBLE with a value that is a power of 2 whose + log2 is in [1, 32], return that log2. Otherwise return -1. + This is used in the patterns for vcvt.s32.f32 floating-point to + fixed-point conversions. */ + int ! vfp3_const_double_for_bits (rtx x) { ! if (!CONST_DOUBLE_P (x)) ! return -1; ! REAL_VALUE_TYPE r; ! REAL_VALUE_FROM_CONST_DOUBLE (r, x); ! if (REAL_VALUE_NEGATIVE (r) ! || REAL_VALUE_ISNAN (r) ! || REAL_VALUE_ISINF (r) ! || !real_isinteger (&r, SFmode)) ! return -1; ! HOST_WIDE_INT hwint = exact_log2 (real_to_integer (&r)); ! ! /* The exact_log2 above will have returned -1 if this is ! not an exact log2. */ ! if (!IN_RANGE (hwint, 1, 32)) ! return -1; ! ! return hwint; } + /* Emit a memory barrier around an atomic sequence according to MODEL. */ *************** arm_emit_coreregs_64bit_shift (enum rtx_ *** 31080,31085 **** --- 31114,31151 ---- #undef BRANCH } + /* Returns true if the pattern is a valid symbolic address, which is either a + symbol_ref or (symbol_ref + addend). + + According to the ARM ELF ABI, the initial addend of REL-type relocations + processing MOVW and MOVT instructions is formed by interpreting the 16-bit + literal field of the instruction as a 16-bit signed value in the range + -32768 <= A < 32768. */ + + bool + arm_valid_symbolic_address_p (rtx addr) + { + rtx xop0, xop1 = NULL_RTX; + rtx tmp = addr; + + if (GET_CODE (tmp) == SYMBOL_REF || GET_CODE (tmp) == LABEL_REF) + return true; + + /* (const (plus: symbol_ref const_int)) */ + if (GET_CODE (addr) == CONST) + tmp = XEXP (addr, 0); + + if (GET_CODE (tmp) == PLUS) + { + xop0 = XEXP (tmp, 0); + xop1 = XEXP (tmp, 1); + + if (GET_CODE (xop0) == SYMBOL_REF && CONST_INT_P (xop1)) + return IN_RANGE (INTVAL (xop1), -0x8000, 0x7fff); + } + + return false; + } /* Returns true if a valid comparison operation and makes the operands in a form that is valid. */ diff -Nrcpad gcc-4.9.3/gcc/config/arm/arm.h gcc-4.9.4/gcc/config/arm/arm.h *** gcc-4.9.3/gcc/config/arm/arm.h Fri Jan 9 13:55:16 2015 --- gcc-4.9.4/gcc/config/arm/arm.h Tue Mar 29 13:32:37 2016 *************** extern void (*arm_lang_output_object_att *** 363,368 **** --- 363,373 ---- /* Nonzero if this chip supports ldrex and strex */ #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) || arm_arch7) + /* Nonzero if this chip supports LPAE. Such systems also support the + hardware divide instructions. */ + #define TARGET_HAVE_LPAE \ + (arm_arch7 && arm_arch_arm_hwdiv && arm_arch_thumb_hwdiv) + /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */ #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) || arm_arch7) *************** extern int making_const_table; *** 2349,2365 **** point types. Where bit 1 indicates 16-bit support, bit 2 indicates 32-bit support, bit 3 indicates 64-bit support. */ #define TARGET_ARM_FP \ ! (TARGET_VFP_SINGLE ? 4 \ ! : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) /* Set as a bit mask indicating the available widths of floating point types for hardware NEON floating point. This is the same as TARGET_ARM_FP without the 64-bit bit set. */ ! #ifdef TARGET_NEON ! #define TARGET_NEON_FP \ ! (TARGET_ARM_FP & (0xff ^ 0x08)) ! #endif /* The maximum number of parallel loads or stores we support in an ldm/stm instruction. */ --- 2354,2370 ---- point types. Where bit 1 indicates 16-bit support, bit 2 indicates 32-bit support, bit 3 indicates 64-bit support. */ #define TARGET_ARM_FP \ ! (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \ ! : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \ ! : 0) /* Set as a bit mask indicating the available widths of floating point types for hardware NEON floating point. This is the same as TARGET_ARM_FP without the 64-bit bit set. */ ! #define TARGET_NEON_FP \ ! (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \ ! : 0) /* The maximum number of parallel loads or stores we support in an ldm/stm instruction. */ diff -Nrcpad gcc-4.9.3/gcc/config/arm/arm.md gcc-4.9.4/gcc/config/arm/arm.md *** gcc-4.9.3/gcc/config/arm/arm.md Thu May 14 13:16:32 2015 --- gcc-4.9.4/gcc/config/arm/arm.md Wed Jan 20 17:05:43 2016 *************** *** 3331,3338 **** "#" ; "orr%?\\t%0, %1, %2\;bic%?\\t%0, %0, %3" "&& reload_completed" [(set (match_dup 0) (ior:SI (match_dup 1) (match_dup 2))) ! (set (match_dup 0) (and:SI (not:SI (match_dup 3)) (match_dup 0)))] ! "" [(set_attr "length" "8") (set_attr "ce_count" "2") (set_attr "predicable" "yes") --- 3331,3352 ---- "#" ; "orr%?\\t%0, %1, %2\;bic%?\\t%0, %0, %3" "&& reload_completed" [(set (match_dup 0) (ior:SI (match_dup 1) (match_dup 2))) ! (set (match_dup 0) (and:SI (match_dup 4) (match_dup 5)))] ! { ! /* If operands[3] is a constant make sure to fold the NOT into it ! to avoid creating a NOT of a CONST_INT. */ ! rtx not_rtx = simplify_gen_unary (NOT, SImode, operands[3], SImode); ! if (CONST_INT_P (not_rtx)) ! { ! operands[4] = operands[0]; ! operands[5] = not_rtx; ! } ! else ! { ! operands[5] = operands[0]; ! operands[4] = not_rtx; ! } ! } [(set_attr "length" "8") (set_attr "ce_count" "2") (set_attr "predicable" "yes") *************** *** 6196,6202 **** [(set (match_operand:SI 0 "nonimmediate_operand" "=r") (lo_sum:SI (match_operand:SI 1 "nonimmediate_operand" "0") (match_operand:SI 2 "general_operand" "i")))] ! "arm_arch_thumb2" "movt%?\t%0, #:upper16:%c2" [(set_attr "predicable" "yes") (set_attr "predicable_short_it" "no") --- 6210,6216 ---- [(set (match_operand:SI 0 "nonimmediate_operand" "=r") (lo_sum:SI (match_operand:SI 1 "nonimmediate_operand" "0") (match_operand:SI 2 "general_operand" "i")))] ! "arm_arch_thumb2 && arm_valid_symbolic_address_p (operands[2])" "movt%?\t%0, #:upper16:%c2" [(set_attr "predicable" "yes") (set_attr "predicable_short_it" "no") *************** *** 7190,7196 **** (define_insn "*arm32_movhf" [(set (match_operand:HF 0 "nonimmediate_operand" "=r,m,r,r") (match_operand:HF 1 "general_operand" " m,r,r,F"))] ! "TARGET_32BIT && !(TARGET_HARD_FLOAT && TARGET_FP16) && !arm_restrict_it && ( s_register_operand (operands[0], HFmode) || s_register_operand (operands[1], HFmode))" "* --- 7204,7210 ---- (define_insn "*arm32_movhf" [(set (match_operand:HF 0 "nonimmediate_operand" "=r,m,r,r") (match_operand:HF 1 "general_operand" " m,r,r,F"))] ! "TARGET_32BIT && !(TARGET_HARD_FLOAT && TARGET_FP16) && ( s_register_operand (operands[0], HFmode) || s_register_operand (operands[1], HFmode))" "* *************** *** 7228,7234 **** [(set_attr "conds" "unconditional") (set_attr "type" "load1,store1,mov_reg,multiple") (set_attr "length" "4,4,4,8") ! (set_attr "predicable" "yes")] ) (define_insn "*thumb1_movhf" --- 7242,7249 ---- [(set_attr "conds" "unconditional") (set_attr "type" "load1,store1,mov_reg,multiple") (set_attr "length" "4,4,4,8") ! (set_attr "predicable" "yes") ! (set_attr "predicable_short_it" "no")] ) (define_insn "*thumb1_movhf" diff -Nrcpad gcc-4.9.3/gcc/config/arm/constraints.md gcc-4.9.4/gcc/config/arm/constraints.md *** gcc-4.9.3/gcc/config/arm/constraints.md Mon Sep 29 16:47:31 2014 --- gcc-4.9.4/gcc/config/arm/constraints.md Tue Jan 12 17:32:18 2016 *************** *** 67,75 **** (define_constraint "j" "A constant suitable for a MOVW instruction. (ARM/Thumb-2)" (and (match_test "TARGET_32BIT && arm_arch_thumb2") ! (ior (match_code "high") (and (match_code "const_int") ! (match_test "(ival & 0xffff0000) == 0"))))) (define_constraint "Pj" "@internal A 12-bit constant suitable for an ADDW or SUBW instruction. (Thumb-2)" --- 67,76 ---- (define_constraint "j" "A constant suitable for a MOVW instruction. (ARM/Thumb-2)" (and (match_test "TARGET_32BIT && arm_arch_thumb2") ! (ior (and (match_code "high") ! (match_test "arm_valid_symbolic_address_p (XEXP (op, 0))")) (and (match_code "const_int") ! (match_test "(ival & 0xffff0000) == 0"))))) (define_constraint "Pj" "@internal A 12-bit constant suitable for an ADDW or SUBW instruction. (Thumb-2)" *************** *** 338,344 **** "@internal In ARM/ Thumb2 a const_double which can be used with a vcvt.s32.f32 with bits operation" (and (match_code "const_double") ! (match_test "TARGET_32BIT && TARGET_VFP && vfp3_const_double_for_bits (op)"))) (define_register_constraint "Ts" "(arm_restrict_it) ? LO_REGS : GENERAL_REGS" "For arm_restrict_it the core registers @code{r0}-@code{r7}. GENERAL_REGS otherwise.") --- 339,346 ---- "@internal In ARM/ Thumb2 a const_double which can be used with a vcvt.s32.f32 with bits operation" (and (match_code "const_double") ! (match_test "TARGET_32BIT && TARGET_VFP ! && vfp3_const_double_for_bits (op) > 0"))) (define_register_constraint "Ts" "(arm_restrict_it) ? LO_REGS : GENERAL_REGS" "For arm_restrict_it the core registers @code{r0}-@code{r7}. GENERAL_REGS otherwise.") diff -Nrcpad gcc-4.9.3/gcc/config/arm/driver-arm.c gcc-4.9.4/gcc/config/arm/driver-arm.c *** gcc-4.9.3/gcc/config/arm/driver-arm.c Wed Jan 29 13:46:39 2014 --- gcc-4.9.4/gcc/config/arm/driver-arm.c Tue May 10 16:15:20 2016 *************** host_detect_local_cpu (int argc, const c *** 124,135 **** } } ! fclose (f); ! ! if (val == NULL) ! goto not_found; ! ! return concat ("-m", argv[0], "=", val, NULL); not_found: { --- 124,134 ---- } } ! if (val) ! { ! fclose (f); ! return concat ("-m", argv[0], "=", val, NULL); ! } not_found: { diff -Nrcpad gcc-4.9.3/gcc/config/arm/predicates.md gcc-4.9.4/gcc/config/arm/predicates.md *** gcc-4.9.3/gcc/config/arm/predicates.md Fri Apr 4 13:13:20 2014 --- gcc-4.9.4/gcc/config/arm/predicates.md Tue Oct 27 13:52:27 2015 *************** *** 659,665 **** (define_predicate "const_double_vcvt_power_of_two" (and (match_code "const_double") (match_test "TARGET_32BIT && TARGET_VFP ! && vfp3_const_double_for_bits (op)"))) (define_predicate "neon_struct_operand" (and (match_code "mem") --- 659,665 ---- (define_predicate "const_double_vcvt_power_of_two" (and (match_code "const_double") (match_test "TARGET_32BIT && TARGET_VFP ! && vfp3_const_double_for_bits (op) > 0"))) (define_predicate "neon_struct_operand" (and (match_code "mem") diff -Nrcpad gcc-4.9.3/gcc/config/arm/sync.md gcc-4.9.4/gcc/config/arm/sync.md *** gcc-4.9.3/gcc/config/arm/sync.md Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/arm/sync.md Thu Mar 31 16:33:51 2016 *************** *** 77,87 **** if (model == MEMMODEL_RELAXED || model == MEMMODEL_CONSUME || model == MEMMODEL_RELEASE) ! return \"ldr\\t%0, %1\"; else ! return \"lda\\t%0, %1\"; } ! ) (define_insn "atomic_store" [(set (match_operand:QHSI 0 "memory_operand" "=Q") --- 77,88 ---- if (model == MEMMODEL_RELAXED || model == MEMMODEL_CONSUME || model == MEMMODEL_RELEASE) ! return \"ldr%(%)\\t%0, %1\"; else ! return \"lda%?\\t%0, %1\"; } ! [(set_attr "predicable" "yes") ! (set_attr "predicable_short_it" "no")]) (define_insn "atomic_store" [(set (match_operand:QHSI 0 "memory_operand" "=Q") *************** *** 95,131 **** if (model == MEMMODEL_RELAXED || model == MEMMODEL_CONSUME || model == MEMMODEL_ACQUIRE) ! return \"str\t%1, %0\"; else ! return \"stl\t%1, %0\"; } ! ) - ;; Note that ldrd and vldr are *not* guaranteed to be single-copy atomic, - ;; even for a 64-bit aligned address. Instead we use a ldrexd unparied - ;; with a store. (define_expand "atomic_loaddi" [(match_operand:DI 0 "s_register_operand") ;; val out (match_operand:DI 1 "mem_noofs_operand") ;; memory (match_operand:SI 2 "const_int_operand")] ;; model ! "TARGET_HAVE_LDREXD && ARM_DOUBLEWORD_ALIGN" { enum memmodel model = (enum memmodel) INTVAL (operands[2]); - expand_mem_thread_fence (model); - emit_insn (gen_atomic_loaddi_1 (operands[0], operands[1])); - if (model == MEMMODEL_SEQ_CST) - expand_mem_thread_fence (model); - DONE; - }) ! (define_insn "atomic_loaddi_1" ! [(set (match_operand:DI 0 "s_register_operand" "=r") ! (unspec:DI [(match_operand:DI 1 "mem_noofs_operand" "Ua")] ! UNSPEC_LL))] ! "TARGET_HAVE_LDREXD && ARM_DOUBLEWORD_ALIGN" ! "ldrexd%?\t%0, %H0, %C1" ! [(set_attr "predicable" "yes") ! (set_attr "predicable_short_it" "no")]) (define_expand "atomic_compare_and_swap" [(match_operand:SI 0 "s_register_operand" "") ;; bool out --- 96,163 ---- if (model == MEMMODEL_RELAXED || model == MEMMODEL_CONSUME || model == MEMMODEL_ACQUIRE) ! return \"str%(%)\t%1, %0\"; else ! return \"stl%?\t%1, %0\"; } ! [(set_attr "predicable" "yes") ! (set_attr "predicable_short_it" "no")]) ! ! ;; An LDRD instruction usable by the atomic_loaddi expander on LPAE targets ! ! (define_insn "arm_atomic_loaddi2_ldrd" ! [(set (match_operand:DI 0 "register_operand" "=r") ! (unspec_volatile:DI ! [(match_operand:DI 1 "arm_sync_memory_operand" "Q")] ! VUNSPEC_LDRD_ATOMIC))] ! "ARM_DOUBLEWORD_ALIGN && TARGET_HAVE_LPAE" ! "ldr%(d%)\t%0, %H0, %C1" ! [(set_attr "predicable" "yes") ! (set_attr "predicable_short_it" "no")]) ! ! ;; There are three ways to expand this depending on the architecture ! ;; features available. As for the barriers, a load needs a barrier ! ;; after it on all non-relaxed memory models except when the load ! ;; has acquire semantics (for ARMv8-A). (define_expand "atomic_loaddi" [(match_operand:DI 0 "s_register_operand") ;; val out (match_operand:DI 1 "mem_noofs_operand") ;; memory (match_operand:SI 2 "const_int_operand")] ;; model ! "(TARGET_HAVE_LDREXD || TARGET_HAVE_LPAE || TARGET_HAVE_LDACQ) ! && ARM_DOUBLEWORD_ALIGN" { enum memmodel model = (enum memmodel) INTVAL (operands[2]); ! /* For ARMv8-A we can use an LDAEXD to atomically load two 32-bit registers ! when acquire or stronger semantics are needed. When the relaxed model is ! used this can be relaxed to a normal LDRD. */ ! if (TARGET_HAVE_LDACQ) ! { ! if (model == MEMMODEL_RELAXED) ! emit_insn (gen_arm_atomic_loaddi2_ldrd (operands[0], operands[1])); ! else ! emit_insn (gen_arm_load_acquire_exclusivedi (operands[0], operands[1])); ! ! DONE; ! } ! ! /* On LPAE targets LDRD and STRD accesses to 64-bit aligned ! locations are 64-bit single-copy atomic. We still need barriers in the ! appropriate places to implement the ordering constraints. */ ! if (TARGET_HAVE_LPAE) ! emit_insn (gen_arm_atomic_loaddi2_ldrd (operands[0], operands[1])); ! else ! emit_insn (gen_arm_load_exclusivedi (operands[0], operands[1])); ! ! ! /* All non-relaxed models need a barrier after the load when load-acquire ! instructions are not available. */ ! if (model != MEMMODEL_RELAXED) ! expand_mem_thread_fence (model); ! ! DONE; ! }) (define_expand "atomic_compare_and_swap" [(match_operand:SI 0 "s_register_operand" "") ;; bool out diff -Nrcpad gcc-4.9.3/gcc/config/arm/thumb2.md gcc-4.9.4/gcc/config/arm/thumb2.md *** gcc-4.9.3/gcc/config/arm/thumb2.md Tue Feb 11 15:48:08 2014 --- gcc-4.9.4/gcc/config/arm/thumb2.md Wed Apr 13 08:24:43 2016 *************** *** 642,656 **** (set_attr "type" "multiple")] ) ! (define_insn "*thumb2_ior_scc_strict_it" ! [(set (match_operand:SI 0 "s_register_operand" "=l,l") (ior:SI (match_operator:SI 2 "arm_comparison_operator" [(match_operand 3 "cc_register" "") (const_int 0)]) ! (match_operand:SI 1 "s_register_operand" "0,?l")))] "TARGET_THUMB2 && arm_restrict_it" ! "@ ! it\\t%d2\;mov%d2\\t%0, #1\;it\\t%d2\;orr%d2\\t%0, %1 ! mov\\t%0, #1\;orr\\t%0, %1\;it\\t%D2\;mov%D2\\t%0, %1" [(set_attr "conds" "use") (set_attr "length" "8") (set_attr "type" "multiple")] --- 642,668 ---- (set_attr "type" "multiple")] ) ! (define_insn_and_split "*thumb2_ior_scc_strict_it" ! [(set (match_operand:SI 0 "s_register_operand" "=&r") (ior:SI (match_operator:SI 2 "arm_comparison_operator" [(match_operand 3 "cc_register" "") (const_int 0)]) ! (match_operand:SI 1 "s_register_operand" "r")))] "TARGET_THUMB2 && arm_restrict_it" ! "#" ; orr\\t%0, %1, #1\;it\\t%D2\;mov%D2\\t%0, %1 ! "&& reload_completed" ! [(set (match_dup 0) (ior:SI (match_dup 1) (const_int 1))) ! (cond_exec (match_dup 4) ! (set (match_dup 0) (match_dup 1)))] ! { ! machine_mode mode = GET_MODE (operands[3]); ! rtx_code rc = GET_CODE (operands[2]); ! ! if (mode == CCFPmode || mode == CCFPEmode) ! rc = reverse_condition_maybe_unordered (rc); ! else ! rc = reverse_condition (rc); ! operands[4] = gen_rtx_fmt_ee (rc, VOIDmode, operands[3], const0_rtx); ! } [(set_attr "conds" "use") (set_attr "length" "8") (set_attr "type" "multiple")] *************** *** 1409,1415 **** (match_operand 5 "" "") (match_operand 6 "" "")))] "TARGET_THUMB2 ! && (INTVAL (operands[2]) >= 0 && INTVAL (operands[2]) < 32)" [(parallel [(set (match_dup 0) (compare:CC_NOOV (ashift:SI (match_dup 1) (match_dup 2)) (const_int 0))) --- 1421,1428 ---- (match_operand 5 "" "") (match_operand 6 "" "")))] "TARGET_THUMB2 ! && (INTVAL (operands[2]) >= 0 && INTVAL (operands[2]) < 32) ! && peep2_reg_dead_p (2, operands[0])" [(parallel [(set (match_dup 0) (compare:CC_NOOV (ashift:SI (match_dup 1) (match_dup 2)) (const_int 0))) *************** *** 1437,1443 **** (match_operand 5 "" "") (match_operand 6 "" "")))] "TARGET_THUMB2 ! && (INTVAL (operands[2]) > 0 && INTVAL (operands[2]) < 32)" [(parallel [(set (match_dup 0) (compare:CC_NOOV (ashift:SI (match_dup 1) (match_dup 2)) (const_int 0))) --- 1450,1457 ---- (match_operand 5 "" "") (match_operand 6 "" "")))] "TARGET_THUMB2 ! && (INTVAL (operands[2]) > 0 && INTVAL (operands[2]) < 32) ! && peep2_reg_dead_p (2, operands[0])" [(parallel [(set (match_dup 0) (compare:CC_NOOV (ashift:SI (match_dup 1) (match_dup 2)) (const_int 0))) diff -Nrcpad gcc-4.9.3/gcc/config/arm/unspecs.md gcc-4.9.4/gcc/config/arm/unspecs.md *** gcc-4.9.3/gcc/config/arm/unspecs.md Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/arm/unspecs.md Tue Mar 29 13:32:37 2016 *************** *** 138,143 **** --- 138,144 ---- VUNSPEC_ATOMIC_XCHG ; Represent an atomic exchange. VUNSPEC_ATOMIC_OP ; Represent an atomic operation. VUNSPEC_LL ; Represent a load-register-exclusive. + VUNSPEC_LDRD_ATOMIC ; Represent an LDRD used as an atomic DImode load. VUNSPEC_SC ; Represent a store-register-exclusive. VUNSPEC_LAX ; Represent a load-register-acquire-exclusive. VUNSPEC_SLX ; Represent a store-register-release-exclusive. diff -Nrcpad gcc-4.9.3/gcc/config/arm/vfp.md gcc-4.9.4/gcc/config/arm/vfp.md *** gcc-4.9.3/gcc/config/arm/vfp.md Wed Aug 20 11:31:21 2014 --- gcc-4.9.4/gcc/config/arm/vfp.md Mon Aug 3 17:04:29 2015 *************** *** 765,770 **** --- 765,781 ---- [(set (match_operand:SF 0 "s_register_operand" "=t") (mult:SF (neg:SF (match_operand:SF 1 "s_register_operand" "t")) (match_operand:SF 2 "s_register_operand" "t")))] + "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP && !flag_rounding_math" + "fnmuls%?\\t%0, %1, %2" + [(set_attr "predicable" "yes") + (set_attr "predicable_short_it" "no") + (set_attr "type" "fmuls")] + ) + + (define_insn "*negmulsf3_vfp" + [(set (match_operand:SF 0 "s_register_operand" "=t") + (neg:SF (mult:SF (match_operand:SF 1 "s_register_operand" "t") + (match_operand:SF 2 "s_register_operand" "t"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP" "fnmuls%?\\t%0, %1, %2" [(set_attr "predicable" "yes") *************** *** 776,781 **** --- 787,804 ---- [(set (match_operand:DF 0 "s_register_operand" "=w") (mult:DF (neg:DF (match_operand:DF 1 "s_register_operand" "w")) (match_operand:DF 2 "s_register_operand" "w")))] + "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE + && !flag_rounding_math" + "fnmuld%?\\t%P0, %P1, %P2" + [(set_attr "predicable" "yes") + (set_attr "predicable_short_it" "no") + (set_attr "type" "fmuld")] + ) + + (define_insn "*negmuldf3_vfp" + [(set (match_operand:DF 0 "s_register_operand" "=w") + (neg:DF (mult:DF (match_operand:DF 1 "s_register_operand" "w") + (match_operand:DF 2 "s_register_operand" "w"))))] "TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE" "fnmuld%?\\t%P0, %P1, %P2" [(set_attr "predicable" "yes") diff -Nrcpad gcc-4.9.3/gcc/config/avr/avr-dimode.md gcc-4.9.4/gcc/config/avr/avr-dimode.md *** gcc-4.9.3/gcc/config/avr/avr-dimode.md Thu Oct 30 13:31:50 2014 --- gcc-4.9.4/gcc/config/avr/avr-dimode.md Tue Jul 21 17:31:22 2015 *************** *** 461,467 **** (match_operand:SI 2 "general_operand" "") ;; Just to mention the iterator (clobber (any_extend:SI (match_dup 1)))])] ! "avr_have_dimode" { avr_fix_inputs (operands, 1 << 2, regmask (SImode, 22)); emit_move_insn (gen_rtx_REG (SImode, 22), operands[1]); --- 461,468 ---- (match_operand:SI 2 "general_operand" "") ;; Just to mention the iterator (clobber (any_extend:SI (match_dup 1)))])] ! "avr_have_dimode ! && AVR_HAVE_MUL" { avr_fix_inputs (operands, 1 << 2, regmask (SImode, 22)); emit_move_insn (gen_rtx_REG (SImode, 22), operands[1]); *************** *** 480,486 **** (any_extend:DI (reg:SI 22)))) (clobber (reg:HI REG_X)) (clobber (reg:HI REG_Z))] ! "avr_have_dimode" "%~call __mulsidi3" [(set_attr "adjust_len" "call") (set_attr "cc" "clobber")]) --- 481,488 ---- (any_extend:DI (reg:SI 22)))) (clobber (reg:HI REG_X)) (clobber (reg:HI REG_Z))] ! "avr_have_dimode ! && AVR_HAVE_MUL" "%~call __mulsidi3" [(set_attr "adjust_len" "call") (set_attr "cc" "clobber")]) diff -Nrcpad gcc-4.9.3/gcc/config/avr/avr.md gcc-4.9.4/gcc/config/avr/avr.md *** gcc-4.9.3/gcc/config/avr/avr.md Fri Feb 20 10:46:05 2015 --- gcc-4.9.4/gcc/config/avr/avr.md Tue Jun 21 10:15:25 2016 *************** *** 621,626 **** --- 621,642 ---- if (avr_mem_flash_p (dest)) DONE; + if (QImode == mode + && SUBREG == GET_CODE (src) + && CONSTANT_ADDRESS_P (SUBREG_REG (src)) + && can_create_pseudo_p()) + { + // store_bitfield may want to store a SYMBOL_REF or CONST in a + // structure that's represented as PSImode. As the upper 16 bits + // of PSImode cannot be expressed as an HImode subreg, the rhs is + // decomposed into QImode (word_mode) subregs of SYMBOL_REF, + // CONST or LABEL_REF; cf. PR71103. + + rtx const_addr = SUBREG_REG (src); + operands[1] = src = copy_rtx (src); + SUBREG_REG (src) = copy_to_mode_reg (GET_MODE (const_addr), const_addr); + } + /* One of the operands has to be in a register. */ if (!register_operand (dest, mode) && !reg_or_0_operand (src, mode)) diff -Nrcpad gcc-4.9.3/gcc/config/avr/driver-avr.c gcc-4.9.4/gcc/config/avr/driver-avr.c *** gcc-4.9.3/gcc/config/avr/driver-avr.c Wed Mar 11 18:35:52 2015 --- gcc-4.9.4/gcc/config/avr/driver-avr.c Tue Jun 21 11:00:54 2016 *************** avr_device_to_data_start (int argc, cons *** 101,107 **** snprintf (data_section_start_str, sizeof(data_section_start_str) - 1, "0x%lX", data_section_start); ! return concat ("-Tdata ", data_section_start_str, NULL); } /* Returns command line parameters that describe the device startfile. */ --- 101,107 ---- snprintf (data_section_start_str, sizeof(data_section_start_str) - 1, "0x%lX", data_section_start); ! return concat ("%{!Tdata:-Tdata ", data_section_start_str, "}", NULL); } /* Returns command line parameters that describe the device startfile. */ diff -Nrcpad gcc-4.9.3/gcc/config/darwin.c gcc-4.9.4/gcc/config/darwin.c *** gcc-4.9.3/gcc/config/darwin.c Sun Jan 5 21:47:43 2014 --- gcc-4.9.4/gcc/config/darwin.c Thu Jul 9 17:56:23 2015 *************** darwin_encode_section_info (tree decl, r *** 1232,1237 **** --- 1232,1242 ---- void darwin_mark_decl_preserved (const char *name) { + /* Actually we shouldn't mark any local symbol this way, but for now + this only happens with ObjC meta-data. */ + if (darwin_label_is_anonymous_local_objc_name (name)) + return; + fprintf (asm_out_file, "\t.no_dead_strip "); assemble_name (asm_out_file, name); fputc ('\n', asm_out_file); diff -Nrcpad gcc-4.9.3/gcc/config/darwin.h gcc-4.9.4/gcc/config/darwin.h *** gcc-4.9.3/gcc/config/darwin.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/darwin.h Sun May 22 08:53:32 2016 *************** *** 1,5 **** /* Target definitions for Darwin (Mac OS X) systems. ! Copyright (C) 1989-2014 Free Software Foundation, Inc. Contributed by Apple Computer Inc. This file is part of GCC. --- 1,5 ---- /* Target definitions for Darwin (Mac OS X) systems. ! Copyright (C) 1989-2016 Free Software Foundation, Inc. Contributed by Apple Computer Inc. This file is part of GCC. *************** extern GTY(()) int darwin_ms_struct; *** 392,403 **** #define ASM_DEBUG_SPEC "%{g*:%{!g0:%{!gdwarf*:--gstabs}}}" ! /* We still allow output of STABS. */ ! #define DBX_DEBUGGING_INFO 1 #define DWARF2_DEBUGGING_INFO 1 - #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG #define DEBUG_FRAME_SECTION "__DWARF,__debug_frame,regular,debug" #define DEBUG_INFO_SECTION "__DWARF,__debug_info,regular,debug" --- 392,404 ---- #define ASM_DEBUG_SPEC "%{g*:%{!g0:%{!gdwarf*:--gstabs}}}" ! /* We still allow output of STABS if the assembler supports it. */ ! #ifdef HAVE_AS_STABS_DIRECTIVE #define DBX_DEBUGGING_INFO 1 + #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG + #endif #define DWARF2_DEBUGGING_INFO 1 #define DEBUG_FRAME_SECTION "__DWARF,__debug_frame,regular,debug" #define DEBUG_INFO_SECTION "__DWARF,__debug_info,regular,debug" diff -Nrcpad gcc-4.9.3/gcc/config/freebsd-spec.h gcc-4.9.4/gcc/config/freebsd-spec.h *** gcc-4.9.3/gcc/config/freebsd-spec.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/freebsd-spec.h Wed Nov 11 21:20:20 2015 *************** see the files COPYING3 and COPYING.RUNTI *** 66,73 **** "%{!shared: \ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \ %{!p:%{profile:gcrt1.o%s} \ ! %{!profile:crt1.o%s}}}} \ ! crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}" /* Provide a ENDFILE_SPEC appropriate for FreeBSD. Here we tack on the magical crtend.o file (see crtstuff.c) which provides part of --- 66,74 ---- "%{!shared: \ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \ %{!p:%{profile:gcrt1.o%s} \ ! %{!profile: \ ! %{pie: Scrt1.o%s;:crt1.o%s}}}}} \ ! crti.o%s %{static:crtbeginT.o%s;shared|pie:crtbeginS.o%s;:crtbegin.o%s}" /* Provide a ENDFILE_SPEC appropriate for FreeBSD. Here we tack on the magical crtend.o file (see crtstuff.c) which provides part of *************** see the files COPYING3 and COPYING.RUNTI *** 76,82 **** `crtn.o'. */ #define FBSD_ENDFILE_SPEC \ ! "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s" /* Provide a LIB_SPEC appropriate for FreeBSD as configured and as required by the user-land thread model. Before __FreeBSD_version --- 77,83 ---- `crtn.o'. */ #define FBSD_ENDFILE_SPEC \ ! "%{shared|pie:crtendS.o%s;:crtend.o%s} crtn.o%s" /* Provide a LIB_SPEC appropriate for FreeBSD as configured and as required by the user-land thread model. Before __FreeBSD_version diff -Nrcpad gcc-4.9.3/gcc/config/i386/constraints.md gcc-4.9.4/gcc/config/i386/constraints.md *** gcc-4.9.3/gcc/config/i386/constraints.md Tue Mar 25 21:47:41 2014 --- gcc-4.9.4/gcc/config/i386/constraints.md Fri Jan 29 18:25:13 2016 *************** *** 18,24 **** ;; . ;;; Unused letters: ! ;;; B H ;;; h j ;; Integer register constraints. --- 18,24 ---- ;; . ;;; Unused letters: ! ;;; H ;;; h j ;; Integer register constraints. *************** *** 156,161 **** --- 156,165 ---- (and (not (match_test "TARGET_X32")) (match_operand 0 "memory_operand"))) + (define_constraint "BC" + "@internal SSE constant operand." + (match_test "standard_sse_constant_p (op)")) + ;; Integer constant constraints. (define_constraint "I" "Integer constant in the range 0 @dots{} 31, for 32-bit shifts." *************** *** 206,213 **** ;; This can theoretically be any mode's CONST0_RTX. (define_constraint "C" ! "Standard SSE floating point constant." ! (match_test "standard_sse_constant_p (op)")) ;; Constant-or-symbol-reference constraints. --- 210,217 ---- ;; This can theoretically be any mode's CONST0_RTX. (define_constraint "C" ! "SSE constant zero operand." ! (match_test "standard_sse_constant_p (op) == 1")) ;; Constant-or-symbol-reference constraints. diff -Nrcpad gcc-4.9.3/gcc/config/i386/darwin.h gcc-4.9.4/gcc/config/i386/darwin.h *** gcc-4.9.3/gcc/config/i386/darwin.h Fri Mar 21 21:24:31 2014 --- gcc-4.9.4/gcc/config/i386/darwin.h Sun May 22 08:53:32 2016 *************** *** 1,5 **** /* Target definitions for x86 running Darwin. ! Copyright (C) 2001-2014 Free Software Foundation, Inc. Contributed by Apple Computer Inc. This file is part of GCC. --- 1,5 ---- /* Target definitions for x86 running Darwin. ! Copyright (C) 2001-2016 Free Software Foundation, Inc. Contributed by Apple Computer Inc. This file is part of GCC. *************** do { \ *** 242,248 **** --- 242,252 ---- compiles default to stabs+. darwin9+ defaults to dwarf-2. */ #ifndef DARWIN_PREFER_DWARF #undef PREFERRED_DEBUGGING_TYPE + #ifdef HAVE_AS_STABS_DIRECTIVE #define PREFERRED_DEBUGGING_TYPE (TARGET_64BIT ? DWARF2_DEBUG : DBX_DEBUG) + #else + #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG + #endif #endif /* Darwin uses the standard DWARF register numbers but the default diff -Nrcpad gcc-4.9.3/gcc/config/i386/driver-i386.c gcc-4.9.4/gcc/config/i386/driver-i386.c *** gcc-4.9.3/gcc/config/i386/driver-i386.c Mon Feb 2 04:20:49 2015 --- gcc-4.9.4/gcc/config/i386/driver-i386.c Sun Jun 5 15:52:01 2016 *************** const char *host_detect_local_cpu (int a *** 596,628 **** } else if (vendor == signature_CENTAUR_ebx) { ! if (arch) { ! switch (family) ! { ! case 6: ! if (model > 9) ! /* Use the default detection procedure. */ ! processor = PROCESSOR_GENERIC; ! else if (model == 9) ! cpu = "c3-2"; ! else if (model >= 6) ! cpu = "c3"; ! else ! processor = PROCESSOR_GENERIC; ! break; ! case 5: ! if (has_3dnow) ! cpu = "winchip2"; ! else if (has_mmx) ! cpu = "winchip2-c6"; ! else ! processor = PROCESSOR_GENERIC; ! break; ! default: ! /* We have no idea. */ ! processor = PROCESSOR_GENERIC; ! } } } else --- 596,622 ---- } else if (vendor == signature_CENTAUR_ebx) { ! processor = PROCESSOR_GENERIC; ! ! switch (family) { ! default: ! /* We have no idea. */ ! break; ! ! case 5: ! if (has_3dnow || has_mmx) ! processor = PROCESSOR_I486; ! break; ! ! case 6: ! if (model > 9 || has_longmode) ! /* Use the default detection procedure. */ ! ; ! else if (model == 9) ! processor = PROCESSOR_PENTIUMPRO; ! else if (model >= 6) ! processor = PROCESSOR_I486; } } else *************** const char *host_detect_local_cpu (int a *** 653,659 **** /* Default. */ break; case PROCESSOR_I486: ! cpu = "i486"; break; case PROCESSOR_PENTIUM: if (arch && has_mmx) --- 647,664 ---- /* Default. */ break; case PROCESSOR_I486: ! if (arch && vendor == signature_CENTAUR_ebx) ! { ! if (model >= 6) ! cpu = "c3"; ! else if (has_3dnow) ! cpu = "winchip2"; ! else ! /* Assume WinChip C6. */ ! cpu = "winchip-c6"; ! } ! else ! cpu = "i486"; break; case PROCESSOR_PENTIUM: if (arch && has_mmx) *************** const char *host_detect_local_cpu (int a *** 766,773 **** /* It is Pentium M. */ cpu = "pentium-m"; else if (has_sse) ! /* It is Pentium III. */ ! cpu = "pentium3"; else if (has_mmx) /* It is Pentium II. */ cpu = "pentium2"; --- 771,783 ---- /* It is Pentium M. */ cpu = "pentium-m"; else if (has_sse) ! { ! if (vendor == signature_CENTAUR_ebx) ! cpu = "c3-2"; ! else ! /* It is Pentium III. */ ! cpu = "pentium3"; ! } else if (has_mmx) /* It is Pentium II. */ cpu = "pentium2"; *************** const char *host_detect_local_cpu (int a *** 848,853 **** --- 858,868 ---- else cpu = "prescott"; } + else if (has_longmode) + /* Perhaps some emulator? Assume x86-64, otherwise gcc + -march=native would be unusable for 64-bit compilations, + as all the CPUs below are 32-bit only. */ + cpu = "x86-64"; else if (has_sse2) cpu = "pentium4"; else if (has_cmov) diff -Nrcpad gcc-4.9.3/gcc/config/i386/freebsd.h gcc-4.9.4/gcc/config/i386/freebsd.h *** gcc-4.9.3/gcc/config/i386/freebsd.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/i386/freebsd.h Wed Nov 11 21:20:20 2015 *************** along with GCC; see the file COPYING3. *** 59,86 **** #define SUBTARGET_EXTRA_SPECS \ { "fbsd_dynamic_linker", FBSD_DYNAMIC_LINKER } ! /* Provide a STARTFILE_SPEC appropriate for FreeBSD. Here we add ! the magical crtbegin.o file (see crtstuff.c) which provides part ! of the support for getting C++ file-scope static object constructed ! before entering `main'. */ ! ! #undef STARTFILE_SPEC ! #define STARTFILE_SPEC \ ! "%{!shared: \ ! %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \ ! %{!p:%{profile:gcrt1.o%s} \ ! %{!profile:crt1.o%s}}}} \ ! crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}" ! /* Provide a ENDFILE_SPEC appropriate for FreeBSD. Here we tack on ! the magical crtend.o file (see crtstuff.c) which provides part of ! the support for getting C++ file-scope static object constructed ! before entering `main', followed by a normal "finalizer" file, ! `crtn.o'. */ ! #undef ENDFILE_SPEC ! #define ENDFILE_SPEC \ ! "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s" /* Provide a LINK_SPEC appropriate for FreeBSD. Here we provide support for the special GCC options -static and -shared, which allow us to --- 59,73 ---- #define SUBTARGET_EXTRA_SPECS \ { "fbsd_dynamic_linker", FBSD_DYNAMIC_LINKER } ! /* Use the STARTFILE_SPEC from config/freebsd-spec.h. */ ! #undef STARTFILE_SPEC ! #define STARTFILE_SPEC FBSD_STARTFILE_SPEC ! /* Use the ENDFILE_SPEC from config/freebsd-spec.h. */ ! ! #undef ENDFILE_SPEC ! #define ENDFILE_SPEC FBSD_ENDFILE_SPEC /* Provide a LINK_SPEC appropriate for FreeBSD. Here we provide support for the special GCC options -static and -shared, which allow us to diff -Nrcpad gcc-4.9.3/gcc/config/i386/i386.c gcc-4.9.4/gcc/config/i386/i386.c *** gcc-4.9.3/gcc/config/i386/i386.c Wed Jun 10 09:26:06 2015 --- gcc-4.9.4/gcc/config/i386/i386.c Mon Aug 1 16:03:41 2016 *************** struct processor_costs geode_cost = { *** 528,544 **** {4, 6, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ ! 1, /* cost of moving MMX register */ ! {1, 1}, /* cost of loading MMX registers in SImode and DImode */ ! {1, 1}, /* cost of storing MMX registers in SImode and DImode */ ! 1, /* cost of moving SSE register */ ! {1, 1, 1}, /* cost of loading SSE registers in SImode, DImode and TImode */ ! {1, 1, 1}, /* cost of storing SSE registers in SImode, DImode and TImode */ ! 1, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 128, /* size of l2 cache. */ 32, /* size of prefetch block */ --- 528,544 ---- {4, 6, 6}, /* cost of storing fp registers in SFmode, DFmode and XFmode */ ! 2, /* cost of moving MMX register */ ! {2, 2}, /* cost of loading MMX registers in SImode and DImode */ ! {2, 2}, /* cost of storing MMX registers in SImode and DImode */ ! 2, /* cost of moving SSE register */ ! {2, 2, 8}, /* cost of loading SSE registers in SImode, DImode and TImode */ ! {2, 2, 8}, /* cost of storing SSE registers in SImode, DImode and TImode */ ! 3, /* MMX or SSE register to integer */ 64, /* size of l1 cache. */ 128, /* size of l2 cache. */ 32, /* size of prefetch block */ *************** ix86_option_override_internal (bool main *** 4029,4034 **** --- 4029,4045 ---- opts->x_target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; } + /* Stack realignment without -maccumulate-outgoing-args requires %ebp, + so enable -maccumulate-outgoing-args when %ebp is fixed. */ + if (fixed_regs[BP_REG] + && !(opts->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS)) + { + if (opts_set->x_target_flags & MASK_ACCUMULATE_OUTGOING_ARGS) + warning (0, "fixed ebp register requires %saccumulate-outgoing-args%s", + prefix, suffix); + opts->x_target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS; + } + /* Figure out what ASM_GENERATE_INTERNAL_LABEL builds as a prefix. */ { char *p; *************** ix86_compute_frame_layout (struct ix86_f *** 9519,9538 **** frame->nregs = ix86_nsaved_regs (); frame->nsseregs = ix86_nsaved_sseregs (); - stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT; - preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT; - /* 64-bit MS ABI seem to require stack alignment to be always 16 except for function prologues and leaf. */ ! if ((TARGET_64BIT_MS_ABI && preferred_alignment < 16) && (!crtl->is_leaf || cfun->calls_alloca != 0 || ix86_current_function_calls_tls_descriptor)) { - preferred_alignment = 16; - stack_alignment_needed = 16; crtl->preferred_stack_boundary = 128; crtl->stack_alignment_needed = 128; } gcc_assert (!size || stack_alignment_needed); gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT); --- 9530,9559 ---- frame->nregs = ix86_nsaved_regs (); frame->nsseregs = ix86_nsaved_sseregs (); /* 64-bit MS ABI seem to require stack alignment to be always 16 except for function prologues and leaf. */ ! if ((TARGET_64BIT_MS_ABI && crtl->preferred_stack_boundary < 128) && (!crtl->is_leaf || cfun->calls_alloca != 0 || ix86_current_function_calls_tls_descriptor)) { crtl->preferred_stack_boundary = 128; crtl->stack_alignment_needed = 128; } + /* preferred_stack_boundary is never updated for call + expanded from tls descriptor. Update it here. We don't update it in + expand stage because according to the comments before + ix86_current_function_calls_tls_descriptor, tls calls may be optimized + away. */ + else if (ix86_current_function_calls_tls_descriptor + && crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY) + { + crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY; + if (crtl->stack_alignment_needed < PREFERRED_STACK_BOUNDARY) + crtl->stack_alignment_needed = PREFERRED_STACK_BOUNDARY; + } + + stack_alignment_needed = crtl->stack_alignment_needed / BITS_PER_UNIT; + preferred_alignment = crtl->preferred_stack_boundary / BITS_PER_UNIT; gcc_assert (!size || stack_alignment_needed); gcc_assert (preferred_alignment >= STACK_BOUNDARY / BITS_PER_UNIT); *************** ix86_adjust_stack_and_probe (const HOST_ *** 10431,10438 **** release_scratch_register_on_entry (&sr); } - gcc_assert (cfun->machine->fs.cfa_reg != stack_pointer_rtx); - /* Even if the stack pointer isn't the CFA register, we need to correctly describe the adjustments made to it, in particular differentiate the frame-related ones from the frame-unrelated ones. */ --- 10452,10457 ---- *************** ix86_finalize_stack_realign_flags (void) *** 10656,10662 **** && !crtl->accesses_prior_frames && !cfun->calls_alloca && !crtl->calls_eh_return ! && !(flag_stack_check && STACK_CHECK_MOVING_SP) && !ix86_frame_pointer_required () && get_frame_size () == 0 && ix86_nsaved_sseregs () == 0 --- 10675,10685 ---- && !crtl->accesses_prior_frames && !cfun->calls_alloca && !crtl->calls_eh_return ! /* See ira_setup_eliminable_regset for the rationale. */ ! && !(STACK_CHECK_MOVING_SP ! && flag_stack_check ! && flag_exceptions ! && cfun->can_throw_non_call_exceptions) && !ix86_frame_pointer_required () && get_frame_size () == 0 && ix86_nsaved_sseregs () == 0 *************** ix86_expand_vector_move (enum machine_mo *** 16895,16906 **** of the register, once we have that information we may be able to handle some of them more efficiently. */ if (can_create_pseudo_p () - && register_operand (op0, mode) && (CONSTANT_P (op1) || (GET_CODE (op1) == SUBREG && CONSTANT_P (SUBREG_REG (op1)))) ! && !standard_sse_constant_p (op1)) ! op1 = validize_mem (force_const_mem (mode, op1)); /* We need to check memory alignment for SSE mode since attribute can make operands unaligned. */ --- 16918,16946 ---- of the register, once we have that information we may be able to handle some of them more efficiently. */ if (can_create_pseudo_p () && (CONSTANT_P (op1) || (GET_CODE (op1) == SUBREG && CONSTANT_P (SUBREG_REG (op1)))) ! && ((register_operand (op0, mode) ! && !standard_sse_constant_p (op1)) ! /* ix86_expand_vector_move_misalign() does not like constants. */ ! || (SSE_REG_MODE_P (mode) ! && MEM_P (op0) ! && MEM_ALIGN (op0) < align))) ! { ! if (GET_CODE (op1) == SUBREG) ! { ! machine_mode imode = GET_MODE (SUBREG_REG (op1)); ! rtx r = force_const_mem (imode, SUBREG_REG (op1)); ! if (r) ! r = validize_mem (r); ! else ! r = force_reg (imode, SUBREG_REG (op1)); ! op1 = simplify_gen_subreg (mode, r, imode, SUBREG_BYTE (op1)); ! } ! else ! op1 = validize_mem (force_const_mem (mode, op1)); ! } /* We need to check memory alignment for SSE mode since attribute can make operands unaligned. */ *************** ix86_expand_vector_move (enum machine_mo *** 16911,16923 **** { rtx tmp[2]; ! /* ix86_expand_vector_move_misalign() does not like constants ... */ ! if (CONSTANT_P (op1) ! || (GET_CODE (op1) == SUBREG ! && CONSTANT_P (SUBREG_REG (op1)))) ! op1 = validize_mem (force_const_mem (mode, op1)); ! ! /* ... nor both arguments in memory. */ if (!register_operand (op0, mode) && !register_operand (op1, mode)) op1 = force_reg (mode, op1); --- 16951,16958 ---- { rtx tmp[2]; ! /* ix86_expand_vector_move_misalign() does not like both ! arguments in memory. */ if (!register_operand (op0, mode) && !register_operand (op1, mode)) op1 = force_reg (mode, op1); *************** ix86_avx256_split_vector_move_misalign ( *** 17001,17007 **** m = adjust_address (op0, mode, 0); emit_insn (extract (m, op1, const0_rtx)); m = adjust_address (op0, mode, 16); ! emit_insn (extract (m, op1, const1_rtx)); } else emit_insn (store_unaligned (op0, op1)); --- 17036,17042 ---- m = adjust_address (op0, mode, 0); emit_insn (extract (m, op1, const0_rtx)); m = adjust_address (op0, mode, 16); ! emit_insn (extract (m, copy_rtx (op1), const1_rtx)); } else emit_insn (store_unaligned (op0, op1)); *************** ix86_expand_vector_move_misalign (enum m *** 17309,17315 **** m = adjust_address (op0, V2SFmode, 0); emit_insn (gen_sse_storelps (m, op1)); m = adjust_address (op0, V2SFmode, 8); ! emit_insn (gen_sse_storehps (m, op1)); } } } --- 17344,17350 ---- m = adjust_address (op0, V2SFmode, 0); emit_insn (gen_sse_storelps (m, op1)); m = adjust_address (op0, V2SFmode, 8); ! emit_insn (gen_sse_storehps (m, copy_rtx (op1))); } } } *************** expand_small_movmem_or_setmem (rtx destm *** 23582,23588 **** if (DYNAMIC_CHECK) Round COUNT down to multiple of SIZE << optional caller supplied zero size guard is here >> ! << optional caller suppplied dynamic check is here >> << caller supplied main copy loop is here >> } done_label: --- 23617,23623 ---- if (DYNAMIC_CHECK) Round COUNT down to multiple of SIZE << optional caller supplied zero size guard is here >> ! << optional caller supplied dynamic check is here >> << caller supplied main copy loop is here >> } done_label: *************** expand_set_or_movmem_prologue_epilogue_b *** 23756,23763 **** else *min_size = 0; ! /* Our loops always round down the bock size, but for dispatch to library ! we need precise value. */ if (dynamic_check) *count = expand_simple_binop (GET_MODE (*count), AND, *count, GEN_INT (-size), *count, 1, OPTAB_DIRECT); --- 23791,23798 ---- else *min_size = 0; ! /* Our loops always round down the block size, but for dispatch to ! library we need precise value. */ if (dynamic_check) *count = expand_simple_binop (GET_MODE (*count), AND, *count, GEN_INT (-size), *count, 1, OPTAB_DIRECT); *************** ix86_expand_set_or_movmem (rtx dst, rtx *** 24335,24340 **** --- 24370,24382 ---- size_needed = GET_MODE_SIZE (move_mode) * unroll_factor; epilogue_size_needed = size_needed; + /* If we are going to call any library calls conditionally, make sure any + pending stack adjustment happen before the first conditional branch, + otherwise they will be emitted before the library call only and won't + happen from the other branches. */ + if (dynamic_check != -1) + do_pending_stack_adjust (); + desired_align = decide_alignment (align, alg, expected_size, move_mode); if (!TARGET_ALIGN_STRINGOPS || noalign) align = desired_align; *************** ix86_expand_set_or_movmem (rtx dst, rtx *** 24409,24415 **** dst = change_address (dst, BLKmode, destreg); set_mem_align (dst, desired_align * BITS_PER_UNIT); epilogue_size_needed = 0; ! if (need_zero_guard && !min_size) { /* It is possible that we copied enough so the main loop will not execute. */ --- 24451,24458 ---- dst = change_address (dst, BLKmode, destreg); set_mem_align (dst, desired_align * BITS_PER_UNIT); epilogue_size_needed = 0; ! if (need_zero_guard ! && min_size < (unsigned HOST_WIDE_INT) size_needed) { /* It is possible that we copied enough so the main loop will not execute. */ *************** ix86_expand_set_or_movmem (rtx dst, rtx *** 24541,24547 **** max_size -= align_bytes; } if (need_zero_guard ! && !min_size && (count < (unsigned HOST_WIDE_INT) size_needed || (align_bytes == 0 && count < ((unsigned HOST_WIDE_INT) size_needed --- 24584,24590 ---- max_size -= align_bytes; } if (need_zero_guard ! && min_size < (unsigned HOST_WIDE_INT) size_needed && (count < (unsigned HOST_WIDE_INT) size_needed || (align_bytes == 0 && count < ((unsigned HOST_WIDE_INT) size_needed *************** static const struct builtin_description *** 29185,29193 **** { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_llwpcb, "__builtin_ia32_llwpcb", IX86_BUILTIN_LLWPCB, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_slwpcb, "__builtin_ia32_slwpcb", IX86_BUILTIN_SLWPCB, UNKNOWN, (int) PVOID_FTYPE_VOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvalsi3, "__builtin_ia32_lwpval32", IX86_BUILTIN_LWPVAL32, UNKNOWN, (int) VOID_FTYPE_UINT_UINT_UINT }, ! { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvaldi3, "__builtin_ia32_lwpval64", IX86_BUILTIN_LWPVAL64, UNKNOWN, (int) VOID_FTYPE_UINT64_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinssi3, "__builtin_ia32_lwpins32", IX86_BUILTIN_LWPINS32, UNKNOWN, (int) UCHAR_FTYPE_UINT_UINT_UINT }, ! { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinsdi3, "__builtin_ia32_lwpins64", IX86_BUILTIN_LWPINS64, UNKNOWN, (int) UCHAR_FTYPE_UINT64_UINT_UINT }, /* FSGSBASE */ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasesi, "__builtin_ia32_rdfsbase32", IX86_BUILTIN_RDFSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID }, --- 29228,29236 ---- { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_llwpcb, "__builtin_ia32_llwpcb", IX86_BUILTIN_LLWPCB, UNKNOWN, (int) VOID_FTYPE_PVOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_slwpcb, "__builtin_ia32_slwpcb", IX86_BUILTIN_SLWPCB, UNKNOWN, (int) PVOID_FTYPE_VOID }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpvalsi3, "__builtin_ia32_lwpval32", IX86_BUILTIN_LWPVAL32, UNKNOWN, (int) VOID_FTYPE_UINT_UINT_UINT }, ! { OPTION_MASK_ISA_LWP | OPTION_MASK_ISA_64BIT, CODE_FOR_lwp_lwpvaldi3, "__builtin_ia32_lwpval64", IX86_BUILTIN_LWPVAL64, UNKNOWN, (int) VOID_FTYPE_UINT64_UINT_UINT }, { OPTION_MASK_ISA_LWP, CODE_FOR_lwp_lwpinssi3, "__builtin_ia32_lwpins32", IX86_BUILTIN_LWPINS32, UNKNOWN, (int) UCHAR_FTYPE_UINT_UINT_UINT }, ! { OPTION_MASK_ISA_LWP | OPTION_MASK_ISA_64BIT, CODE_FOR_lwp_lwpinsdi3, "__builtin_ia32_lwpins64", IX86_BUILTIN_LWPINS64, UNKNOWN, (int) UCHAR_FTYPE_UINT64_UINT_UINT }, /* FSGSBASE */ { OPTION_MASK_ISA_FSGSBASE | OPTION_MASK_ISA_64BIT, CODE_FOR_rdfsbasesi, "__builtin_ia32_rdfsbase32", IX86_BUILTIN_RDFSBASE32, UNKNOWN, (int) UNSIGNED_FTYPE_VOID }, *************** static const struct builtin_description *** 30013,30024 **** /* BMI */ { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_si, "__builtin_ia32_bextr_u32", IX86_BUILTIN_BEXTR32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_di, "__builtin_ia32_bextr_u64", IX86_BUILTIN_BEXTR64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI, CODE_FOR_ctzhi2, "__builtin_ctzs", IX86_BUILTIN_CTZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 }, /* TBM */ { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_si, "__builtin_ia32_bextri_u32", IX86_BUILTIN_BEXTRI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_di, "__builtin_ia32_bextri_u64", IX86_BUILTIN_BEXTRI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, /* F16C */ { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps, "__builtin_ia32_vcvtph2ps", IX86_BUILTIN_CVTPH2PS, UNKNOWN, (int) V4SF_FTYPE_V8HI }, --- 30056,30067 ---- /* BMI */ { OPTION_MASK_ISA_BMI, CODE_FOR_bmi_bextr_si, "__builtin_ia32_bextr_u32", IX86_BUILTIN_BEXTR32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI | OPTION_MASK_ISA_64BIT, CODE_FOR_bmi_bextr_di, "__builtin_ia32_bextr_u64", IX86_BUILTIN_BEXTR64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI, CODE_FOR_ctzhi2, "__builtin_ctzs", IX86_BUILTIN_CTZS, UNKNOWN, (int) UINT16_FTYPE_UINT16 }, /* TBM */ { OPTION_MASK_ISA_TBM, CODE_FOR_tbm_bextri_si, "__builtin_ia32_bextri_u32", IX86_BUILTIN_BEXTRI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_TBM | OPTION_MASK_ISA_64BIT, CODE_FOR_tbm_bextri_di, "__builtin_ia32_bextri_u64", IX86_BUILTIN_BEXTRI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, /* F16C */ { OPTION_MASK_ISA_F16C, CODE_FOR_vcvtph2ps, "__builtin_ia32_vcvtph2ps", IX86_BUILTIN_CVTPH2PS, UNKNOWN, (int) V4SF_FTYPE_V8HI }, *************** static const struct builtin_description *** 30028,30038 **** /* BMI2 */ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_bzhi_si3, "__builtin_ia32_bzhi_si", IX86_BUILTIN_BZHI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_bzhi_di3, "__builtin_ia32_bzhi_di", IX86_BUILTIN_BZHI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pdep_si3, "__builtin_ia32_pdep_si", IX86_BUILTIN_PDEP32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pdep_di3, "__builtin_ia32_pdep_di", IX86_BUILTIN_PDEP64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pext_si3, "__builtin_ia32_pext_si", IX86_BUILTIN_PEXT32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pext_di3, "__builtin_ia32_pext_di", IX86_BUILTIN_PEXT64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, /* AVX512F */ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_alignv16si_mask, "__builtin_ia32_alignd512_mask", IX86_BUILTIN_ALIGND512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_INT_V16SI_HI }, --- 30071,30081 ---- /* BMI2 */ { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_bzhi_si3, "__builtin_ia32_bzhi_si", IX86_BUILTIN_BZHI32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI2 | OPTION_MASK_ISA_64BIT, CODE_FOR_bmi2_bzhi_di3, "__builtin_ia32_bzhi_di", IX86_BUILTIN_BZHI64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pdep_si3, "__builtin_ia32_pdep_si", IX86_BUILTIN_PDEP32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI2 | OPTION_MASK_ISA_64BIT, CODE_FOR_bmi2_pdep_di3, "__builtin_ia32_pdep_di", IX86_BUILTIN_PDEP64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, { OPTION_MASK_ISA_BMI2, CODE_FOR_bmi2_pext_si3, "__builtin_ia32_pext_si", IX86_BUILTIN_PEXT32, UNKNOWN, (int) UINT_FTYPE_UINT_UINT }, ! { OPTION_MASK_ISA_BMI2 | OPTION_MASK_ISA_64BIT, CODE_FOR_bmi2_pext_di3, "__builtin_ia32_pext_di", IX86_BUILTIN_PEXT64, UNKNOWN, (int) UINT64_FTYPE_UINT64_UINT64 }, /* AVX512F */ { OPTION_MASK_ISA_AVX512F, CODE_FOR_avx512f_alignv16si_mask, "__builtin_ia32_alignd512_mask", IX86_BUILTIN_ALIGND512, UNKNOWN, (int) V16SI_FTYPE_V16SI_V16SI_INT_V16SI_HI }, *************** ix86_expand_args_builtin (const struct b *** 34217,34222 **** --- 34260,34266 ---- case 5: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, args[2].op, args[3].op, args[4].op); + break; case 6: pat = GEN_FCN (icode) (real_target, args[0].op, args[1].op, args[2].op, args[3].op, args[4].op, *************** ix86_expand_round_builtin (const struct *** 34586,34591 **** --- 34630,34636 ---- case 5: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op, args[3].op, args[4].op); + break; case 6: pat = GEN_FCN (icode) (target, args[0].op, args[1].op, args[2].op, args[3].op, args[4].op, *************** ix86_expand_vector_set (bool mmx_ok, rtx *** 40631,40636 **** --- 40676,40682 ---- { /* For SSE1, we have to reuse the V4SF code. */ rtx t = gen_reg_rtx (V4SFmode); + emit_move_insn (t, gen_lowpart (V4SFmode, target)); ix86_expand_vector_set (false, t, gen_lowpart (SFmode, val), elt); emit_move_insn (target, gen_lowpart (mode, t)); } *************** ix86_expand_pinsr (rtx *operands) *** 45320,45334 **** unsigned int size = INTVAL (operands[1]); unsigned int pos = INTVAL (operands[2]); if (GET_CODE (dst) == SUBREG) { pos += SUBREG_BYTE (dst) * BITS_PER_UNIT; dst = SUBREG_REG (dst); } - if (GET_CODE (src) == SUBREG) - src = SUBREG_REG (src); - switch (GET_MODE (dst)) { case V16QImode: --- 45366,45385 ---- unsigned int size = INTVAL (operands[1]); unsigned int pos = INTVAL (operands[2]); + if (GET_CODE (src) == SUBREG) + { + /* Reject non-lowpart subregs. */ + if (SUBREG_BYTE (src) != 0) + return false; + src = SUBREG_REG (src); + } + if (GET_CODE (dst) == SUBREG) { pos += SUBREG_BYTE (dst) * BITS_PER_UNIT; dst = SUBREG_REG (dst); } switch (GET_MODE (dst)) { case V16QImode: *************** ix86_expand_pinsr (rtx *operands) *** 45376,45381 **** --- 45427,45436 ---- return false; } + /* Reject insertions to misaligned positions. */ + if (pos & (size-1)) + return false; + rtx d = dst; if (GET_MODE (dst) != dstmode) d = gen_reg_rtx (dstmode); diff -Nrcpad gcc-4.9.3/gcc/config/i386/i386.md gcc-4.9.4/gcc/config/i386/i386.md *** gcc-4.9.3/gcc/config/i386/i386.md Wed Jun 3 15:26:15 2015 --- gcc-4.9.4/gcc/config/i386/i386.md Thu Jun 16 11:38:24 2016 *************** *** 1782,1788 **** [(set (match_operand:XI 0 "nonimmediate_operand") (match_operand:XI 1 "general_operand"))] "TARGET_AVX512F" ! "ix86_expand_move (XImode, operands); DONE;") ;; Reload patterns to support multi-word load/store ;; with non-offsetable address. --- 1782,1788 ---- [(set (match_operand:XI 0 "nonimmediate_operand") (match_operand:XI 1 "general_operand"))] "TARGET_AVX512F" ! "ix86_expand_vector_move (XImode, operands); DONE;") ;; Reload patterns to support multi-word load/store ;; with non-offsetable address. *************** *** 1822,1832 **** [(set (match_operand:OI 0 "nonimmediate_operand") (match_operand:OI 1 "general_operand"))] "TARGET_AVX" ! "ix86_expand_move (OImode, operands); DONE;") (define_expand "movti" [(set (match_operand:TI 0 "nonimmediate_operand") ! (match_operand:TI 1 "nonimmediate_operand"))] "TARGET_64BIT || TARGET_SSE" { if (TARGET_64BIT) --- 1822,1832 ---- [(set (match_operand:OI 0 "nonimmediate_operand") (match_operand:OI 1 "general_operand"))] "TARGET_AVX" ! "ix86_expand_vector_move (OImode, operands); DONE;") (define_expand "movti" [(set (match_operand:TI 0 "nonimmediate_operand") ! (match_operand:TI 1 "general_operand"))] "TARGET_64BIT || TARGET_SSE" { if (TARGET_64BIT) *************** *** 4901,4911 **** /* The DImode arrived in a pair of integral registers (e.g. %edx:%eax). Assemble the 64-bit DImode value in an xmm register. */ emit_insn (gen_sse2_loadld (operands[3], CONST0_RTX (V4SImode), ! gen_rtx_SUBREG (SImode, operands[1], 0))); emit_insn (gen_sse2_loadld (operands[4], CONST0_RTX (V4SImode), ! gen_rtx_SUBREG (SImode, operands[1], 4))); emit_insn (gen_vec_interleave_lowv4si (operands[3], operands[3], ! operands[4])); operands[3] = gen_rtx_REG (DImode, REGNO (operands[3])); }) --- 4901,4911 ---- /* The DImode arrived in a pair of integral registers (e.g. %edx:%eax). Assemble the 64-bit DImode value in an xmm register. */ emit_insn (gen_sse2_loadld (operands[3], CONST0_RTX (V4SImode), ! gen_lowpart (SImode, operands[1]))); emit_insn (gen_sse2_loadld (operands[4], CONST0_RTX (V4SImode), ! gen_highpart (SImode, operands[1]))); emit_insn (gen_vec_interleave_lowv4si (operands[3], operands[3], ! operands[4])); operands[3] = gen_rtx_REG (DImode, REGNO (operands[3])); }) *************** *** 10518,10523 **** --- 10518,10524 ---- [(set (match_dup 2) (match_dup 1)) (set (match_dup 0) (zero_extend:DI (match_dup 2)))] { + operands[1] = shallow_copy_rtx (operands[1]); PUT_MODE (operands[1], QImode); operands[2] = gen_lowpart (QImode, operands[0]); }) *************** *** 10535,10540 **** --- 10536,10542 ---- (parallel [(set (match_dup 0) (zero_extend:SI (match_dup 2))) (clobber (reg:CC FLAGS_REG))])] { + operands[1] = shallow_copy_rtx (operands[1]); PUT_MODE (operands[1], QImode); operands[2] = gen_lowpart (QImode, operands[0]); }) *************** *** 10550,10555 **** --- 10552,10558 ---- [(set (match_dup 2) (match_dup 1)) (set (match_dup 0) (zero_extend:SI (match_dup 2)))] { + operands[1] = shallow_copy_rtx (operands[1]); PUT_MODE (operands[1], QImode); operands[2] = gen_lowpart (QImode, operands[0]); }) *************** *** 10587,10593 **** (const_int 0)))] "" [(set (match_dup 0) (match_dup 1))] ! "PUT_MODE (operands[1], QImode);") (define_split [(set (strict_low_part (match_operand:QI 0 "nonimmediate_operand")) --- 10590,10599 ---- (const_int 0)))] "" [(set (match_dup 0) (match_dup 1))] ! { ! operands[1] = shallow_copy_rtx (operands[1]); ! PUT_MODE (operands[1], QImode); ! }) (define_split [(set (strict_low_part (match_operand:QI 0 "nonimmediate_operand")) *************** *** 10596,10602 **** (const_int 0)))] "" [(set (match_dup 0) (match_dup 1))] ! "PUT_MODE (operands[1], QImode);") (define_split [(set (match_operand:QI 0 "nonimmediate_operand") --- 10602,10611 ---- (const_int 0)))] "" [(set (match_dup 0) (match_dup 1))] ! { ! operands[1] = shallow_copy_rtx (operands[1]); ! PUT_MODE (operands[1], QImode); ! }) (define_split [(set (match_operand:QI 0 "nonimmediate_operand") *************** *** 10606,10620 **** "" [(set (match_dup 0) (match_dup 1))] { ! rtx new_op1 = copy_rtx (operands[1]); ! operands[1] = new_op1; ! PUT_MODE (new_op1, QImode); ! PUT_CODE (new_op1, ix86_reverse_condition (GET_CODE (new_op1), ! GET_MODE (XEXP (new_op1, 0)))); /* Make sure that (a) the CCmode we have for the flags is strong enough for the reversed compare or (b) we have a valid FP compare. */ ! if (! ix86_comparison_operator (new_op1, VOIDmode)) FAIL; }) --- 10615,10629 ---- "" [(set (match_dup 0) (match_dup 1))] { ! operands[1] = shallow_copy_rtx (operands[1]); ! PUT_MODE (operands[1], QImode); ! PUT_CODE (operands[1], ! ix86_reverse_condition (GET_CODE (operands[1]), ! GET_MODE (XEXP (operands[1], 0)))); /* Make sure that (a) the CCmode we have for the flags is strong enough for the reversed compare or (b) we have a valid FP compare. */ ! if (! ix86_comparison_operator (operands[1], VOIDmode)) FAIL; }) *************** *** 10626,10640 **** "" [(set (match_dup 0) (match_dup 1))] { ! rtx new_op1 = copy_rtx (operands[1]); ! operands[1] = new_op1; ! PUT_MODE (new_op1, QImode); ! PUT_CODE (new_op1, ix86_reverse_condition (GET_CODE (new_op1), ! GET_MODE (XEXP (new_op1, 0)))); /* Make sure that (a) the CCmode we have for the flags is strong enough for the reversed compare or (b) we have a valid FP compare. */ ! if (! ix86_comparison_operator (new_op1, VOIDmode)) FAIL; }) --- 10635,10649 ---- "" [(set (match_dup 0) (match_dup 1))] { ! operands[1] = shallow_copy_rtx (operands[1]); ! PUT_MODE (operands[1], QImode); ! PUT_CODE (operands[1], ! ix86_reverse_condition (GET_CODE (operands[1]), ! GET_MODE (XEXP (operands[1], 0)))); /* Make sure that (a) the CCmode we have for the flags is strong enough for the reversed compare or (b) we have a valid FP compare. */ ! if (! ix86_comparison_operator (operands[1], VOIDmode)) FAIL; }) *************** *** 10717,10723 **** (if_then_else (match_dup 0) (label_ref (match_dup 1)) (pc)))] ! "PUT_MODE (operands[0], VOIDmode);") (define_split [(set (pc) --- 10726,10735 ---- (if_then_else (match_dup 0) (label_ref (match_dup 1)) (pc)))] ! { ! operands[0] = shallow_copy_rtx (operands[0]); ! PUT_MODE (operands[0], VOIDmode); ! }) (define_split [(set (pc) *************** *** 10732,10746 **** (label_ref (match_dup 1)) (pc)))] { ! rtx new_op0 = copy_rtx (operands[0]); ! operands[0] = new_op0; ! PUT_MODE (new_op0, VOIDmode); ! PUT_CODE (new_op0, ix86_reverse_condition (GET_CODE (new_op0), ! GET_MODE (XEXP (new_op0, 0)))); /* Make sure that (a) the CCmode we have for the flags is strong enough for the reversed compare or (b) we have a valid FP compare. */ ! if (! ix86_comparison_operator (new_op0, VOIDmode)) FAIL; }) --- 10744,10758 ---- (label_ref (match_dup 1)) (pc)))] { ! operands[0] = shallow_copy_rtx (operands[0]); ! PUT_MODE (operands[0], VOIDmode); ! PUT_CODE (operands[0], ! ix86_reverse_condition (GET_CODE (operands[0]), ! GET_MODE (XEXP (operands[0], 0)))); /* Make sure that (a) the CCmode we have for the flags is strong enough for the reversed compare or (b) we have a valid FP compare. */ ! if (! ix86_comparison_operator (operands[0], VOIDmode)) FAIL; }) *************** *** 10777,10783 **** (pc)))] { operands[2] = simplify_gen_subreg (mode, operands[2], QImode, 0); ! PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) --- 10789,10795 ---- (pc)))] { operands[2] = simplify_gen_subreg (mode, operands[2], QImode, 0); ! operands[0] = shallow_copy_rtx (operands[0]); PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) *************** *** 10810,10816 **** (pc)))] { operands[2] = simplify_gen_subreg (mode, operands[2], SImode, 0); ! PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) --- 10822,10828 ---- (pc)))] { operands[2] = simplify_gen_subreg (mode, operands[2], SImode, 0); ! operands[0] = shallow_copy_rtx (operands[0]); PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) *************** *** 10846,10852 **** (pc)))] { operands[2] = simplify_gen_subreg (mode, operands[2], SImode, 0); ! PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) --- 10858,10864 ---- (pc)))] { operands[2] = simplify_gen_subreg (mode, operands[2], SImode, 0); ! operands[0] = shallow_copy_rtx (operands[0]); PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) *************** *** 10878,10884 **** (pc)))] { operands[2] = simplify_gen_subreg (SImode, operands[2], QImode, 0); ! PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) --- 10890,10896 ---- (pc)))] { operands[2] = simplify_gen_subreg (SImode, operands[2], QImode, 0); ! operands[0] = shallow_copy_rtx (operands[0]); PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); }) *************** *** 10914,10920 **** (if_then_else (match_op_dup 0 [(reg:CCC FLAGS_REG) (const_int 0)]) (label_ref (match_dup 4)) (pc)))] ! "PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0])));") ;; Define combination compare-and-branch fp compare instructions to help ;; combine. --- 10926,10935 ---- (if_then_else (match_op_dup 0 [(reg:CCC FLAGS_REG) (const_int 0)]) (label_ref (match_dup 4)) (pc)))] ! { ! operands[0] = shallow_copy_rtx (operands[0]); ! PUT_CODE (operands[0], reverse_condition (GET_CODE (operands[0]))); ! }) ;; Define combination compare-and-branch fp compare instructions to help ;; combine. *************** *** 11233,11239 **** (zero_extend (match_dup 1)))] "(peep2_reg_dead_p (3, operands[1]) || operands_match_p (operands[1], operands[3])) ! && ! reg_overlap_mentioned_p (operands[3], operands[0])" [(parallel [(set (match_dup 5) (match_dup 0)) (match_dup 4)]) (set (strict_low_part (match_dup 6)) --- 11248,11255 ---- (zero_extend (match_dup 1)))] "(peep2_reg_dead_p (3, operands[1]) || operands_match_p (operands[1], operands[3])) ! && ! reg_overlap_mentioned_p (operands[3], operands[0]) ! && ! reg_set_p (operands[3], operands[4])" [(parallel [(set (match_dup 5) (match_dup 0)) (match_dup 4)]) (set (strict_low_part (match_dup 6)) *************** *** 11276,11282 **** (clobber (reg:CC FLAGS_REG))])] "(peep2_reg_dead_p (3, operands[1]) || operands_match_p (operands[1], operands[3])) ! && ! reg_overlap_mentioned_p (operands[3], operands[0])" [(parallel [(set (match_dup 5) (match_dup 0)) (match_dup 4)]) (set (strict_low_part (match_dup 6)) --- 11292,11299 ---- (clobber (reg:CC FLAGS_REG))])] "(peep2_reg_dead_p (3, operands[1]) || operands_match_p (operands[1], operands[3])) ! && ! reg_overlap_mentioned_p (operands[3], operands[0]) ! && ! reg_set_p (operands[3], operands[4])" [(parallel [(set (match_dup 5) (match_dup 0)) (match_dup 4)]) (set (strict_low_part (match_dup 6)) *************** *** 11569,11578 **** ;; We need to disable this for TARGET_SEH, as otherwise ;; shrink-wrapped prologue gets enabled too. This might exceed ;; the maximum size of prologue in unwind information. (define_expand "simple_return" [(simple_return)] ! "!TARGET_SEH" { if (crtl->args.pops_args) { --- 11586,11599 ---- ;; We need to disable this for TARGET_SEH, as otherwise ;; shrink-wrapped prologue gets enabled too. This might exceed ;; the maximum size of prologue in unwind information. + ;; Also disallow shrink-wrapping if using stack slot to pass the + ;; static chain pointer - the first instruction has to be pushl %esi + ;; and it can't be moved around, as we use alternate entry points + ;; in that case. (define_expand "simple_return" [(simple_return)] ! "!TARGET_SEH && !ix86_static_chain_on_stack" { if (crtl->args.pops_args) { *************** *** 12638,12644 **** (unspec:SI [(match_operand:SI 1 "register_operand" "b") (match_operand 2 "tls_symbolic_operand") ! (match_operand 3 "constant_call_address_operand" "z")] UNSPEC_TLS_GD)) (clobber (match_scratch:SI 4 "=d")) (clobber (match_scratch:SI 5 "=c")) --- 12659,12666 ---- (unspec:SI [(match_operand:SI 1 "register_operand" "b") (match_operand 2 "tls_symbolic_operand") ! (match_operand 3 "constant_call_address_operand" "z") ! (reg:SI SP_REG)] UNSPEC_TLS_GD)) (clobber (match_scratch:SI 4 "=d")) (clobber (match_scratch:SI 5 "=c")) *************** *** 12663,12680 **** [(set (match_operand:SI 0 "register_operand") (unspec:SI [(match_operand:SI 2 "register_operand") (match_operand 1 "tls_symbolic_operand") ! (match_operand 3 "constant_call_address_operand")] UNSPEC_TLS_GD)) (clobber (match_scratch:SI 4)) (clobber (match_scratch:SI 5)) ! (clobber (reg:CC FLAGS_REG))])]) (define_insn "*tls_global_dynamic_64_" [(set (match_operand:P 0 "register_operand" "=a") (call:P (mem:QI (match_operand 2 "constant_call_address_operand" "z")) (match_operand 3))) ! (unspec:P [(match_operand 1 "tls_symbolic_operand")] UNSPEC_TLS_GD)] "TARGET_64BIT" { --- 12685,12706 ---- [(set (match_operand:SI 0 "register_operand") (unspec:SI [(match_operand:SI 2 "register_operand") (match_operand 1 "tls_symbolic_operand") ! (match_operand 3 "constant_call_address_operand") ! (reg:SI SP_REG)] UNSPEC_TLS_GD)) (clobber (match_scratch:SI 4)) (clobber (match_scratch:SI 5)) ! (clobber (reg:CC FLAGS_REG))])] ! "" ! "ix86_tls_descriptor_calls_expanded_in_cfun = true;") (define_insn "*tls_global_dynamic_64_" [(set (match_operand:P 0 "register_operand" "=a") (call:P (mem:QI (match_operand 2 "constant_call_address_operand" "z")) (match_operand 3))) ! (unspec:P [(match_operand 1 "tls_symbolic_operand") ! (reg:P SP_REG)] UNSPEC_TLS_GD)] "TARGET_64BIT" { *************** *** 12698,12705 **** (mem:QI (plus:DI (match_operand:DI 2 "register_operand" "b") (match_operand:DI 3 "immediate_operand" "i"))) (match_operand 4))) ! (unspec:DI [(match_operand 1 "tls_symbolic_operand")] ! UNSPEC_TLS_GD)] "TARGET_64BIT && ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF && GET_CODE (operands[3]) == CONST && GET_CODE (XEXP (operands[3], 0)) == UNSPEC --- 12724,12732 ---- (mem:QI (plus:DI (match_operand:DI 2 "register_operand" "b") (match_operand:DI 3 "immediate_operand" "i"))) (match_operand 4))) ! (unspec:DI [(match_operand 1 "tls_symbolic_operand") ! (reg:DI SP_REG)] ! UNSPEC_TLS_GD)] "TARGET_64BIT && ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF && GET_CODE (operands[3]) == CONST && GET_CODE (XEXP (operands[3], 0)) == UNSPEC *************** *** 12720,12734 **** (call:P (mem:QI (match_operand 2)) (const_int 0))) ! (unspec:P [(match_operand 1 "tls_symbolic_operand")] UNSPEC_TLS_GD)])] ! "TARGET_64BIT") (define_insn "*tls_local_dynamic_base_32_gnu" [(set (match_operand:SI 0 "register_operand" "=a") (unspec:SI [(match_operand:SI 1 "register_operand" "b") ! (match_operand 2 "constant_call_address_operand" "z")] UNSPEC_TLS_LD_BASE)) (clobber (match_scratch:SI 3 "=d")) (clobber (match_scratch:SI 4 "=c")) --- 12747,12764 ---- (call:P (mem:QI (match_operand 2)) (const_int 0))) ! (unspec:P [(match_operand 1 "tls_symbolic_operand") ! (reg:P SP_REG)] UNSPEC_TLS_GD)])] ! "TARGET_64BIT" ! "ix86_tls_descriptor_calls_expanded_in_cfun = true;") (define_insn "*tls_local_dynamic_base_32_gnu" [(set (match_operand:SI 0 "register_operand" "=a") (unspec:SI [(match_operand:SI 1 "register_operand" "b") ! (match_operand 2 "constant_call_address_operand" "z") ! (reg:SI SP_REG)] UNSPEC_TLS_LD_BASE)) (clobber (match_scratch:SI 3 "=d")) (clobber (match_scratch:SI 4 "=c")) *************** *** 12754,12771 **** [(set (match_operand:SI 0 "register_operand") (unspec:SI [(match_operand:SI 1 "register_operand") ! (match_operand 2 "constant_call_address_operand")] UNSPEC_TLS_LD_BASE)) (clobber (match_scratch:SI 3)) (clobber (match_scratch:SI 4)) ! (clobber (reg:CC FLAGS_REG))])]) (define_insn "*tls_local_dynamic_base_64_" [(set (match_operand:P 0 "register_operand" "=a") (call:P (mem:QI (match_operand 1 "constant_call_address_operand" "z")) (match_operand 2))) ! (unspec:P [(const_int 0)] UNSPEC_TLS_LD_BASE)] "TARGET_64BIT" { output_asm_insn --- 12784,12804 ---- [(set (match_operand:SI 0 "register_operand") (unspec:SI [(match_operand:SI 1 "register_operand") ! (match_operand 2 "constant_call_address_operand") ! (reg:SI SP_REG)] UNSPEC_TLS_LD_BASE)) (clobber (match_scratch:SI 3)) (clobber (match_scratch:SI 4)) ! (clobber (reg:CC FLAGS_REG))])] ! "" ! "ix86_tls_descriptor_calls_expanded_in_cfun = true;") (define_insn "*tls_local_dynamic_base_64_" [(set (match_operand:P 0 "register_operand" "=a") (call:P (mem:QI (match_operand 1 "constant_call_address_operand" "z")) (match_operand 2))) ! (unspec:P [(reg:P SP_REG)] UNSPEC_TLS_LD_BASE)] "TARGET_64BIT" { output_asm_insn *************** *** 12783,12789 **** (mem:QI (plus:DI (match_operand:DI 1 "register_operand" "b") (match_operand:DI 2 "immediate_operand" "i"))) (match_operand 3))) ! (unspec:DI [(const_int 0)] UNSPEC_TLS_LD_BASE)] "TARGET_64BIT && ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF && GET_CODE (operands[2]) == CONST && GET_CODE (XEXP (operands[2], 0)) == UNSPEC --- 12816,12822 ---- (mem:QI (plus:DI (match_operand:DI 1 "register_operand" "b") (match_operand:DI 2 "immediate_operand" "i"))) (match_operand 3))) ! (unspec:DI [(reg:DI SP_REG)] UNSPEC_TLS_LD_BASE)] "TARGET_64BIT && ix86_cmodel == CM_LARGE_PIC && !TARGET_PECOFF && GET_CODE (operands[2]) == CONST && GET_CODE (XEXP (operands[2], 0)) == UNSPEC *************** *** 12804,12811 **** (call:P (mem:QI (match_operand 1)) (const_int 0))) ! (unspec:P [(const_int 0)] UNSPEC_TLS_LD_BASE)])] ! "TARGET_64BIT") ;; Local dynamic of a single variable is a lose. Show combine how ;; to convert that back to global dynamic. --- 12837,12845 ---- (call:P (mem:QI (match_operand 1)) (const_int 0))) ! (unspec:P [(reg:P SP_REG)] UNSPEC_TLS_LD_BASE)])] ! "TARGET_64BIT" ! "ix86_tls_descriptor_calls_expanded_in_cfun = true;") ;; Local dynamic of a single variable is a lose. Show combine how ;; to convert that back to global dynamic. *************** *** 12814,12820 **** [(set (match_operand:SI 0 "register_operand" "=a") (plus:SI (unspec:SI [(match_operand:SI 1 "register_operand" "b") ! (match_operand 2 "constant_call_address_operand" "z")] UNSPEC_TLS_LD_BASE) (const:SI (unspec:SI [(match_operand 3 "tls_symbolic_operand")] --- 12848,12855 ---- [(set (match_operand:SI 0 "register_operand" "=a") (plus:SI (unspec:SI [(match_operand:SI 1 "register_operand" "b") ! (match_operand 2 "constant_call_address_operand" "z") ! (reg:SI SP_REG)] UNSPEC_TLS_LD_BASE) (const:SI (unspec:SI [(match_operand 3 "tls_symbolic_operand")] *************** *** 12827,12833 **** "" [(parallel [(set (match_dup 0) ! (unspec:SI [(match_dup 1) (match_dup 3) (match_dup 2)] UNSPEC_TLS_GD)) (clobber (match_dup 4)) (clobber (match_dup 5)) --- 12862,12869 ---- "" [(parallel [(set (match_dup 0) ! (unspec:SI [(match_dup 1) (match_dup 3) (match_dup 2) ! (reg:SI SP_REG)] UNSPEC_TLS_GD)) (clobber (match_dup 4)) (clobber (match_dup 5)) *************** *** 16721,16726 **** --- 16757,16763 ---- operands[1] = gen_lowpart (SImode, operands[1]); if (GET_CODE (operands[3]) != ASHIFT) operands[2] = gen_lowpart (SImode, operands[2]); + operands[3] = shallow_copy_rtx (operands[3]); PUT_MODE (operands[3], SImode); }) *************** *** 16890,16897 **** ;; lifetime information then. (define_peephole2 ! [(set (match_operand:SWI124 0 "nonimmediate_operand") ! (not:SWI124 (match_operand:SWI124 1 "nonimmediate_operand")))] "optimize_insn_for_speed_p () && ((TARGET_NOT_UNPAIRABLE && (!MEM_P (operands[0]) --- 16927,16934 ---- ;; lifetime information then. (define_peephole2 ! [(set (match_operand:SWI124 0 "nonimmediate_gr_operand") ! (not:SWI124 (match_operand:SWI124 1 "nonimmediate_gr_operand")))] "optimize_insn_for_speed_p () && ((TARGET_NOT_UNPAIRABLE && (!MEM_P (operands[0]) *************** *** 17035,17042 **** [(match_dup 0) (match_operand 2 "memory_operand")]))] "REGNO (operands[0]) != REGNO (operands[1]) ! && ((MMX_REG_P (operands[0]) && MMX_REG_P (operands[1])) ! || (SSE_REG_P (operands[0]) && SSE_REG_P (operands[1])))" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (match_op_dup 3 [(match_dup 0) (match_dup 1)]))]) --- 17072,17081 ---- [(match_dup 0) (match_operand 2 "memory_operand")]))] "REGNO (operands[0]) != REGNO (operands[1]) ! && ((MMX_REGNO_P (REGNO (operands[0])) ! && MMX_REGNO_P (REGNO (operands[1]))) ! || (SSE_REGNO_P (REGNO (operands[0])) ! && SSE_REGNO_P (REGNO (operands[1]))))" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (match_op_dup 3 [(match_dup 0) (match_dup 1)]))]) *************** *** 17184,17190 **** (match_operand 1 "const0_operand"))] "GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD && (! TARGET_USE_MOV0 || optimize_insn_for_size_p ()) ! && GENERAL_REG_P (operands[0]) && peep2_regno_dead_p (0, FLAGS_REG)" [(parallel [(set (match_dup 0) (const_int 0)) (clobber (reg:CC FLAGS_REG))])] --- 17223,17229 ---- (match_operand 1 "const0_operand"))] "GET_MODE_SIZE (GET_MODE (operands[0])) <= UNITS_PER_WORD && (! TARGET_USE_MOV0 || optimize_insn_for_size_p ()) ! && GENERAL_REGNO_P (REGNO (operands[0])) && peep2_regno_dead_p (0, FLAGS_REG)" [(parallel [(set (match_dup 0) (const_int 0)) (clobber (reg:CC FLAGS_REG))])] *************** *** 17205,17210 **** --- 17244,17250 ---- [(set (match_operand:SWI248 0 "register_operand") (const_int -1))] "(optimize_insn_for_size_p () || TARGET_MOVE_M1_VIA_OR) + && GENERAL_REGNO_P (REGNO (operands[0])) && peep2_regno_dead_p (0, FLAGS_REG)" [(parallel [(set (match_dup 0) (const_int -1)) (clobber (reg:CC FLAGS_REG))])] *************** *** 17572,17582 **** operands[1] = gen_rtx_PLUS (word_mode, base, gen_rtx_MULT (word_mode, index, GEN_INT (scale))); - operands[5] = base; if (mode != word_mode) operands[1] = gen_rtx_SUBREG (mode, operands[1], 0); if (op1mode != word_mode) ! operands[5] = gen_rtx_SUBREG (op1mode, operands[5], 0); operands[0] = dest; }) --- 17612,17624 ---- operands[1] = gen_rtx_PLUS (word_mode, base, gen_rtx_MULT (word_mode, index, GEN_INT (scale))); if (mode != word_mode) operands[1] = gen_rtx_SUBREG (mode, operands[1], 0); + + operands[5] = base; if (op1mode != word_mode) ! operands[5] = gen_lowpart (op1mode, operands[5]); ! operands[0] = dest; }) diff -Nrcpad gcc-4.9.3/gcc/config/i386/predicates.md gcc-4.9.4/gcc/config/i386/predicates.md *** gcc-4.9.3/gcc/config/i386/predicates.md Wed Feb 4 20:00:48 2015 --- gcc-4.9.4/gcc/config/i386/predicates.md Fri Jul 17 18:44:33 2015 *************** *** 37,42 **** --- 37,48 ---- (and (match_code "reg") (match_test "GENERAL_REG_P (op)"))) + ;; True if the operand is a nonimmediate operand with GENERAL class register. + (define_predicate "nonimmediate_gr_operand" + (if_then_else (match_code "reg") + (match_test "GENERAL_REGNO_P (REGNO (op))") + (match_operand 0 "nonimmediate_operand"))) + ;; Return true if OP is a register operand other than an i387 fp register. (define_predicate "register_and_not_fp_reg_operand" (and (match_code "reg") diff -Nrcpad gcc-4.9.3/gcc/config/i386/sol2-9.h gcc-4.9.4/gcc/config/i386/sol2-9.h *** gcc-4.9.3/gcc/config/i386/sol2-9.h Tue Feb 11 12:56:39 2014 --- gcc-4.9.4/gcc/config/i386/sol2-9.h Thu Jan 1 00:00:00 1970 *************** *** 1,23 **** - /* Target definitions for GCC for Intel 80386 running Solaris 9 - Copyright (C) 2014 Free Software Foundation, Inc. - - This file is part of GCC. - - GCC is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 3, or (at your option) - any later version. - - GCC is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with GCC; see the file COPYING3. If not see - . */ - - /* Solaris 9 only guarantees 4-byte stack alignment as required by the i386 - psABI, so realign it as necessary for SSE instructions. */ - #undef STACK_REALIGN_DEFAULT - #define STACK_REALIGN_DEFAULT 1 --- 0 ---- diff -Nrcpad gcc-4.9.3/gcc/config/i386/sol2.h gcc-4.9.4/gcc/config/i386/sol2.h *** gcc-4.9.3/gcc/config/i386/sol2.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/i386/sol2.h Mon Mar 14 10:03:12 2016 *************** along with GCC; see the file COPYING3. *** 25,30 **** --- 25,35 ---- #define TARGET_SUBTARGET_DEFAULT \ (MASK_80387 | MASK_IEEE_FP | MASK_FLOAT_RETURNS | MASK_VECT8_RETURNS) + /* 32-bit Solaris/x86 only guarantees 4-byte stack alignment as required by + the i386 psABI, so realign it as necessary for SSE instructions. */ + #undef STACK_REALIGN_DEFAULT + #define STACK_REALIGN_DEFAULT (TARGET_64BIT ? 0 : 1) + /* Old versions of the Solaris assembler can not handle the difference of labels in different sections, so force DW_EH_PE_datarel. */ #undef ASM_PREFERRED_EH_DATA_FORMAT diff -Nrcpad gcc-4.9.3/gcc/config/i386/sse.md gcc-4.9.4/gcc/config/i386/sse.md *** gcc-4.9.3/gcc/config/i386/sse.md Mon Jun 8 10:18:02 2015 --- gcc-4.9.4/gcc/config/i386/sse.md Tue Apr 5 18:48:26 2016 *************** *** 546,552 **** ;; Pointer size override for scalar modes (Intel asm dialect) (define_mode_attr iptr ! [(V32QI "b") (V16HI "w") (V8SI "k") (V4DI "q") (V16QI "b") (V8HI "w") (V4SI "k") (V2DI "q") (V8SF "k") (V4DF "q") (V4SF "k") (V2DF "q") --- 546,553 ---- ;; Pointer size override for scalar modes (Intel asm dialect) (define_mode_attr iptr ! [(V16SI "k") (V8DI "q") ! (V32QI "b") (V16HI "w") (V8SI "k") (V4DI "q") (V16QI "b") (V8HI "w") (V4SI "k") (V2DI "q") (V8SF "k") (V4DF "q") (V4SF "k") (V2DF "q") *************** *** 655,661 **** (define_insn "*mov_internal" [(set (match_operand:VMOVE 0 "nonimmediate_operand" "=v,v ,m") ! (match_operand:VMOVE 1 "nonimmediate_or_sse_const_operand" "C ,vm,v"))] "TARGET_SSE && (register_operand (operands[0], mode) || register_operand (operands[1], mode))" --- 656,662 ---- (define_insn "*mov_internal" [(set (match_operand:VMOVE 0 "nonimmediate_operand" "=v,v ,m") ! (match_operand:VMOVE 1 "nonimmediate_or_sse_const_operand" "BC,vm,v"))] "TARGET_SSE && (register_operand (operands[0], mode) || register_operand (operands[1], mode))" *************** *** 872,880 **** /* The DImode arrived in a pair of integral registers (e.g. %edx:%eax). Assemble the 64-bit DImode value in an xmm register. */ emit_insn (gen_sse2_loadld (operands[0], CONST0_RTX (V4SImode), ! gen_rtx_SUBREG (SImode, operands[1], 0))); emit_insn (gen_sse2_loadld (operands[2], CONST0_RTX (V4SImode), ! gen_rtx_SUBREG (SImode, operands[1], 4))); emit_insn (gen_vec_interleave_lowv4si (operands[0], operands[0], operands[2])); } --- 873,881 ---- /* The DImode arrived in a pair of integral registers (e.g. %edx:%eax). Assemble the 64-bit DImode value in an xmm register. */ emit_insn (gen_sse2_loadld (operands[0], CONST0_RTX (V4SImode), ! gen_lowpart (SImode, operands[1]))); emit_insn (gen_sse2_loadld (operands[2], CONST0_RTX (V4SImode), ! gen_highpart (SImode, operands[1]))); emit_insn (gen_vec_interleave_lowv4si (operands[0], operands[0], operands[2])); } *************** *** 9725,9737 **** { int mask = INTVAL (operands[3]); if (mask == 0) ! emit_insn (gen_vec_set_lo__mask ! (operands[0], operands[1], operands[2], ! operands[4], operands[5])); else ! emit_insn (gen_vec_set_hi__mask ! (operands[0], operands[1], operands[2], ! operands[4], operands[5])); DONE; }) --- 9726,9738 ---- { int mask = INTVAL (operands[3]); if (mask == 0) ! emit_insn (gen_vec_set_lo__mask (operands[0], operands[1], ! operands[2], operands[4], ! operands[5])); else ! emit_insn (gen_vec_set_hi__mask (operands[0], operands[1], ! operands[2], operands[4], ! operands[5])); DONE; }) *************** *** 9742,9748 **** (vec_select: (match_operand:V8FI 1 "register_operand" "v") (parallel [(const_int 4) (const_int 5) ! (const_int 6) (const_int 7)]))))] "TARGET_AVX512F" "vinsert64x4\t{$0x0, %2, %1, %0|%0, %1, %2, $0x0}" [(set_attr "type" "sselog") --- 9743,9749 ---- (vec_select: (match_operand:V8FI 1 "register_operand" "v") (parallel [(const_int 4) (const_int 5) ! (const_int 6) (const_int 7)]))))] "TARGET_AVX512F" "vinsert64x4\t{$0x0, %2, %1, %0|%0, %1, %2, $0x0}" [(set_attr "type" "sselog") *************** *** 9753,9763 **** (define_insn "vec_set_hi_" [(set (match_operand:V8FI 0 "register_operand" "=v") (vec_concat:V8FI - (match_operand: 2 "nonimmediate_operand" "vm") (vec_select: (match_operand:V8FI 1 "register_operand" "v") (parallel [(const_int 0) (const_int 1) ! (const_int 2) (const_int 3)]))))] "TARGET_AVX512F" "vinsert64x4\t{$0x1, %2, %1, %0|%0, %1, %2, $0x1}" [(set_attr "type" "sselog") --- 9754,9764 ---- (define_insn "vec_set_hi_" [(set (match_operand:V8FI 0 "register_operand" "=v") (vec_concat:V8FI (vec_select: (match_operand:V8FI 1 "register_operand" "v") (parallel [(const_int 0) (const_int 1) ! (const_int 2) (const_int 3)])) ! (match_operand: 2 "nonimmediate_operand" "vm")))] "TARGET_AVX512F" "vinsert64x4\t{$0x1, %2, %1, %0|%0, %1, %2, $0x1}" [(set_attr "type" "sselog") diff -Nrcpad gcc-4.9.3/gcc/config/ia64/ia64.c gcc-4.9.4/gcc/config/ia64/ia64.c *** gcc-4.9.3/gcc/config/ia64/ia64.c Tue Mar 3 10:41:51 2015 --- gcc-4.9.4/gcc/config/ia64/ia64.c Tue Jan 19 23:15:12 2016 *************** ia64_expand_load_address (rtx dest, rtx *** 1100,1105 **** --- 1100,1114 ---- emit_insn (gen_load_fptr (dest, src)); else if (sdata_symbolic_operand (src, VOIDmode)) emit_insn (gen_load_gprel (dest, src)); + else if (local_symbolic_operand64 (src, VOIDmode)) + { + /* We want to use @gprel rather than @ltoff relocations for local + symbols: + - @gprel does not require dynamic linker + - and does not use .sdata section + https://gcc.gnu.org/bugzilla/60465 */ + emit_insn (gen_load_gprel64 (dest, src)); + } else { HOST_WIDE_INT addend = 0; diff -Nrcpad gcc-4.9.3/gcc/config/ia64/predicates.md gcc-4.9.4/gcc/config/ia64/predicates.md *** gcc-4.9.3/gcc/config/ia64/predicates.md Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/ia64/predicates.md Tue Jan 19 23:15:12 2016 *************** *** 92,97 **** --- 92,123 ---- } }) + ;; True if OP refers to a local symbol [+any offset]. + ;; To be encoded as: + ;; movl % = @gprel(symbol+offset) + ;; add % = %, gp + (define_predicate "local_symbolic_operand64" + (match_code "symbol_ref,const") + { + switch (GET_CODE (op)) + { + case CONST: + op = XEXP (op, 0); + if (GET_CODE (op) != PLUS + || GET_CODE (XEXP (op, 0)) != SYMBOL_REF + || GET_CODE (XEXP (op, 1)) != CONST_INT) + return false; + op = XEXP (op, 0); + /* FALLTHRU */ + + case SYMBOL_REF: + return SYMBOL_REF_LOCAL_P (op); + + default: + gcc_unreachable (); + } + }) + ;; True if OP refers to a symbol in the small address area. (define_predicate "small_addr_symbolic_operand" (match_code "symbol_ref,const") diff -Nrcpad gcc-4.9.3/gcc/config/microblaze/rtems.h gcc-4.9.4/gcc/config/microblaze/rtems.h *** gcc-4.9.3/gcc/config/microblaze/rtems.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/microblaze/rtems.h Mon May 9 06:03:22 2016 *************** along with GCC; see the file COPYING3. *** 23,25 **** --- 23,32 ---- builtin_define( "__rtems__" ); \ builtin_assert( "system=rtems" ); \ } while (0) + + /* Redefine to include only items relevant for RTEMS */ + #undef LINK_SPEC + #define LINK_SPEC "%{shared:-shared} -N -relax \ + %{mbig-endian:-EB --oformat=elf32-microblaze} \ + %{mlittle-endian:-EL --oformat=elf32-microblazeel} \ + %{mxl-gp-opt:%{G*}} %{!mxl-gp-opt: -G 0}" diff -Nrcpad gcc-4.9.3/gcc/config/pa/constraints.md gcc-4.9.4/gcc/config/pa/constraints.md *** gcc-4.9.3/gcc/config/pa/constraints.md Fri Feb 13 13:09:58 2015 --- gcc-4.9.4/gcc/config/pa/constraints.md Thu Mar 17 22:57:19 2016 *************** *** 106,112 **** (and (match_code "mem") (match_test "IS_LO_SUM_DLT_ADDR_P (XEXP (op, 0))"))) ! (define_memory_constraint "Q" "A memory operand that can be used as the destination operand of an integer store, or the source operand of an integer load. That is any memory operand that isn't a symbolic, indexed or lo_sum memory --- 106,112 ---- (and (match_code "mem") (match_test "IS_LO_SUM_DLT_ADDR_P (XEXP (op, 0))"))) ! (define_constraint "Q" "A memory operand that can be used as the destination operand of an integer store, or the source operand of an integer load. That is any memory operand that isn't a symbolic, indexed or lo_sum memory *************** *** 122,128 **** (and (match_code "mem") (match_test "IS_INDEX_ADDR_P (XEXP (op, 0))"))) ! (define_memory_constraint "T" "A memory operand for floating-point loads and stores." (match_test "floating_point_store_memory_operand (op, mode)")) --- 122,128 ---- (and (match_code "mem") (match_test "IS_INDEX_ADDR_P (XEXP (op, 0))"))) ! (define_constraint "T" "A memory operand for floating-point loads and stores." (match_test "floating_point_store_memory_operand (op, mode)")) diff -Nrcpad gcc-4.9.3/gcc/config/pa/pa.c gcc-4.9.4/gcc/config/pa/pa.c *** gcc-4.9.3/gcc/config/pa/pa.c Thu Jun 11 23:24:30 2015 --- gcc-4.9.4/gcc/config/pa/pa.c Tue Jan 12 01:41:59 2016 *************** pa_emit_move_sequence (rtx *operands, en *** 1663,1740 **** /* Handle secondary reloads for loads/stores of FP registers from REG+D addresses where D does not fit in 5 or 14 bits, including ! (subreg (mem (addr))) cases. */ if (scratch_reg ! && fp_reg_operand (operand0, mode) && (MEM_P (operand1) || (GET_CODE (operand1) == SUBREG ! && MEM_P (XEXP (operand1, 0)))) ! && !floating_point_store_memory_operand (operand1, mode)) { ! if (GET_CODE (operand1) == SUBREG) ! operand1 = XEXP (operand1, 0); ! /* SCRATCH_REG will hold an address and maybe the actual data. We want ! it in WORD_MODE regardless of what mode it was originally given ! to us. */ ! scratch_reg = force_mode (word_mode, scratch_reg); ! /* D might not fit in 14 bits either; for such cases load D into ! scratch reg. */ ! if (reg_plus_base_memory_operand (operand1, mode) ! && !(TARGET_PA_20 ! && !TARGET_ELF32 ! && INT_14_BITS (XEXP (XEXP (operand1, 0), 1)))) { ! emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1)); ! emit_move_insn (scratch_reg, ! gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)), ! Pmode, ! XEXP (XEXP (operand1, 0), 0), ! scratch_reg)); } - else - emit_move_insn (scratch_reg, XEXP (operand1, 0)); - emit_insn (gen_rtx_SET (VOIDmode, operand0, - replace_equiv_address (operand1, scratch_reg))); - return 1; } else if (scratch_reg ! && fp_reg_operand (operand1, mode) && (MEM_P (operand0) || (GET_CODE (operand0) == SUBREG ! && MEM_P (XEXP (operand0, 0)))) ! && !floating_point_store_memory_operand (operand0, mode)) { ! if (GET_CODE (operand0) == SUBREG) ! operand0 = XEXP (operand0, 0); ! /* SCRATCH_REG will hold an address and maybe the actual data. We want ! it in WORD_MODE regardless of what mode it was originally given ! to us. */ ! scratch_reg = force_mode (word_mode, scratch_reg); ! /* D might not fit in 14 bits either; for such cases load D into ! scratch reg. */ ! if (reg_plus_base_memory_operand (operand0, mode) ! && !(TARGET_PA_20 ! && !TARGET_ELF32 ! && INT_14_BITS (XEXP (XEXP (operand0, 0), 1)))) { ! emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1)); ! emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0, ! 0)), ! Pmode, ! XEXP (XEXP (operand0, 0), ! 0), ! scratch_reg)); } - else - emit_move_insn (scratch_reg, XEXP (operand0, 0)); - emit_insn (gen_rtx_SET (VOIDmode, - replace_equiv_address (operand0, scratch_reg), - operand1)); - return 1; } /* Handle secondary reloads for loads of FP registers from constant expressions by forcing the constant into memory. For the most part, --- 1663,1776 ---- /* Handle secondary reloads for loads/stores of FP registers from REG+D addresses where D does not fit in 5 or 14 bits, including ! (subreg (mem (addr))) cases, and reloads for other unsupported ! memory operands. */ if (scratch_reg ! && FP_REG_P (operand0) && (MEM_P (operand1) || (GET_CODE (operand1) == SUBREG ! && MEM_P (XEXP (operand1, 0))))) { ! rtx op1 = operand1; ! if (GET_CODE (op1) == SUBREG) ! op1 = XEXP (op1, 0); ! if (reg_plus_base_memory_operand (op1, GET_MODE (op1))) { ! if (!(TARGET_PA_20 ! && !TARGET_ELF32 ! && INT_14_BITS (XEXP (XEXP (op1, 0), 1))) ! && !INT_5_BITS (XEXP (XEXP (op1, 0), 1))) ! { ! /* SCRATCH_REG will hold an address and maybe the actual data. ! We want it in WORD_MODE regardless of what mode it was ! originally given to us. */ ! scratch_reg = force_mode (word_mode, scratch_reg); ! ! /* D might not fit in 14 bits either; for such cases load D ! into scratch reg. */ ! if (!INT_14_BITS (XEXP (XEXP (op1, 0), 1))) ! { ! emit_move_insn (scratch_reg, XEXP (XEXP (op1, 0), 1)); ! emit_move_insn (scratch_reg, ! gen_rtx_fmt_ee (GET_CODE (XEXP (op1, 0)), ! Pmode, ! XEXP (XEXP (op1, 0), 0), ! scratch_reg)); ! } ! else ! emit_move_insn (scratch_reg, XEXP (op1, 0)); ! emit_insn (gen_rtx_SET (VOIDmode, operand0, ! replace_equiv_address (op1, scratch_reg))); ! return 1; ! } ! } ! else if ((!INT14_OK_STRICT && symbolic_memory_operand (op1, VOIDmode)) ! || IS_LO_SUM_DLT_ADDR_P (XEXP (op1, 0)) ! || IS_INDEX_ADDR_P (XEXP (op1, 0))) ! { ! /* Load memory address into SCRATCH_REG. */ ! scratch_reg = force_mode (word_mode, scratch_reg); ! emit_move_insn (scratch_reg, XEXP (op1, 0)); ! emit_insn (gen_rtx_SET (VOIDmode, operand0, ! replace_equiv_address (op1, scratch_reg))); ! return 1; } } else if (scratch_reg ! && FP_REG_P (operand1) && (MEM_P (operand0) || (GET_CODE (operand0) == SUBREG ! && MEM_P (XEXP (operand0, 0))))) { ! rtx op0 = operand0; ! if (GET_CODE (op0) == SUBREG) ! op0 = XEXP (op0, 0); ! if (reg_plus_base_memory_operand (op0, GET_MODE (op0))) { ! if (!(TARGET_PA_20 ! && !TARGET_ELF32 ! && INT_14_BITS (XEXP (XEXP (op0, 0), 1))) ! && !INT_5_BITS (XEXP (XEXP (op0, 0), 1))) ! { ! /* SCRATCH_REG will hold an address and maybe the actual data. ! We want it in WORD_MODE regardless of what mode it was ! originally given to us. */ ! scratch_reg = force_mode (word_mode, scratch_reg); ! ! /* D might not fit in 14 bits either; for such cases load D ! into scratch reg. */ ! if (!INT_14_BITS (XEXP (XEXP (op0, 0), 1))) ! { ! emit_move_insn (scratch_reg, XEXP (XEXP (op0, 0), 1)); ! emit_move_insn (scratch_reg, ! gen_rtx_fmt_ee (GET_CODE (XEXP (op0, 0)), ! Pmode, ! XEXP (XEXP (op0, 0), 0), ! scratch_reg)); ! } ! else ! emit_move_insn (scratch_reg, XEXP (op0, 0)); ! emit_insn (gen_rtx_SET (VOIDmode, ! replace_equiv_address (op0, scratch_reg), ! operand1)); ! return 1; ! } ! } ! else if ((!INT14_OK_STRICT && symbolic_memory_operand (op0, VOIDmode)) ! || IS_LO_SUM_DLT_ADDR_P (XEXP (op0, 0)) ! || IS_INDEX_ADDR_P (XEXP (op0, 0))) ! { ! /* Load memory address into SCRATCH_REG. */ ! emit_move_insn (scratch_reg, XEXP (op0, 0)); ! emit_insn (gen_rtx_SET (VOIDmode, ! replace_equiv_address (op0, scratch_reg), ! operand1)); ! return 1; } } /* Handle secondary reloads for loads of FP registers from constant expressions by forcing the constant into memory. For the most part, *************** pa_emit_move_sequence (rtx *operands, en *** 1743,1749 **** Use scratch_reg to hold the address of the memory location. */ else if (scratch_reg && CONSTANT_P (operand1) ! && fp_reg_operand (operand0, mode)) { rtx const_mem, xoperands[2]; --- 1779,1785 ---- Use scratch_reg to hold the address of the memory location. */ else if (scratch_reg && CONSTANT_P (operand1) ! && FP_REG_P (operand0)) { rtx const_mem, xoperands[2]; *************** pa_emit_move_sequence (rtx *operands, en *** 1788,1799 **** scratch_reg = force_mode (word_mode, scratch_reg); emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1)); ! emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, ! 0)), ! Pmode, ! XEXP (XEXP (operand1, 0), ! 0), ! scratch_reg)); /* Now we are going to load the scratch register from memory, we want to load it in the same width as the original MEM, --- 1824,1834 ---- scratch_reg = force_mode (word_mode, scratch_reg); emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1)); ! emit_move_insn (scratch_reg, ! gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)), ! Pmode, ! XEXP (XEXP (operand1, 0), 0), ! scratch_reg)); /* Now we are going to load the scratch register from memory, we want to load it in the same width as the original MEM, *************** pa_emit_move_sequence (rtx *operands, en *** 1819,1826 **** emit_move_insn (operand0, scratch_reg); return 1; } /* Handle the most common case: storing into a register. */ ! else if (register_operand (operand0, mode)) { /* Legitimize TLS symbol references. This happens for references that aren't a legitimate constant. */ --- 1854,1862 ---- emit_move_insn (operand0, scratch_reg); return 1; } + /* Handle the most common case: storing into a register. */ ! if (register_operand (operand0, mode)) { /* Legitimize TLS symbol references. This happens for references that aren't a legitimate constant. */ *************** pa_output_move_double (rtx *operands) *** 2435,2440 **** --- 2471,2477 ---- enum { REGOP, OFFSOP, MEMOP, CNSTOP, RNDOP } optype0, optype1; rtx latehalf[2]; rtx addreg0 = 0, addreg1 = 0; + int highonly = 0; /* First classify both operands. */ *************** pa_output_move_double (rtx *operands) *** 2645,2651 **** else if (optype1 == OFFSOP) latehalf[1] = adjust_address_nv (operands[1], SImode, 4); else if (optype1 == CNSTOP) ! split_double (operands[1], &operands[1], &latehalf[1]); else latehalf[1] = operands[1]; --- 2682,2695 ---- else if (optype1 == OFFSOP) latehalf[1] = adjust_address_nv (operands[1], SImode, 4); else if (optype1 == CNSTOP) ! { ! if (GET_CODE (operands[1]) == HIGH) ! { ! operands[1] = XEXP (operands[1], 0); ! highonly = 1; ! } ! split_double (operands[1], &operands[1], &latehalf[1]); ! } else latehalf[1] = operands[1]; *************** pa_output_move_double (rtx *operands) *** 2699,2706 **** if (addreg1) output_asm_insn ("ldo 4(%0),%0", &addreg1); ! /* Do that word. */ ! output_asm_insn (pa_singlemove_string (latehalf), latehalf); /* Undo the adds we just did. */ if (addreg0) --- 2743,2753 ---- if (addreg1) output_asm_insn ("ldo 4(%0),%0", &addreg1); ! /* Do high-numbered word. */ ! if (highonly) ! output_asm_insn ("ldil L'%1,%0", latehalf); ! else ! output_asm_insn (pa_singlemove_string (latehalf), latehalf); /* Undo the adds we just did. */ if (addreg0) *************** pa_function_ok_for_sibcall (tree decl, t *** 8539,8552 **** if (TARGET_PORTABLE_RUNTIME) return false; - /* Sibcalls are ok for TARGET_ELF32 as along as the linker is used in - single subspace mode and the call is not indirect. As far as I know, - there is no operating system support for the multiple subspace mode. - It might be possible to support indirect calls if we didn't use - $$dyncall (see the indirect sequence generated in pa_output_call). */ - if (TARGET_ELF32) - return (decl != NULL_TREE); - /* Sibcalls are not ok because the arg pointer register is not a fixed register. This prevents the sibcall optimization from occurring. In addition, there are problems with stub placement using GNU ld. This --- 8586,8591 ---- diff -Nrcpad gcc-4.9.3/gcc/config/pa/pa.md gcc-4.9.4/gcc/config/pa/pa.md *** gcc-4.9.3/gcc/config/pa/pa.md Sun Feb 15 15:21:25 2015 --- gcc-4.9.4/gcc/config/pa/pa.md Fri Dec 18 00:40:55 2015 *************** *** 699,765 **** (include "predicates.md") (include "constraints.md") - ;; Atomic instructions - - ;; All memory loads and stores access storage atomically except - ;; for one exception. The STORE BYTES, STORE DOUBLE BYTES, and - ;; doubleword loads and stores are not guaranteed to be atomic - ;; when referencing the I/O address space. - - ;; Implement atomic DImode load using 64-bit floating point load and copy. - - (define_expand "atomic_loaddi" - [(match_operand:DI 0 "register_operand") ;; val out - (match_operand:DI 1 "memory_operand") ;; memory - (match_operand:SI 2 "const_int_operand")] ;; model - "!TARGET_64BIT && !TARGET_SOFT_FLOAT" - { - enum memmodel model = (enum memmodel) INTVAL (operands[2]); - operands[1] = force_reg (SImode, XEXP (operands[1], 0)); - operands[2] = gen_reg_rtx (DImode); - expand_mem_thread_fence (model); - emit_insn (gen_atomic_loaddi_1 (operands[0], operands[1], operands[2])); - if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST) - expand_mem_thread_fence (model); - DONE; - }) - - (define_insn "atomic_loaddi_1" - [(set (match_operand:DI 0 "register_operand" "=r") - (mem:DI (match_operand:SI 1 "register_operand" "r"))) - (clobber (match_operand:DI 2 "register_operand" "=&f"))] - "!TARGET_64BIT && !TARGET_SOFT_FLOAT" - "{fldds|fldd} 0(%1),%2\;{fstds|fstd} %2,-16(%%sp)\;{ldws|ldw} -16(%%sp),%0\;{ldws|ldw} -12(%%sp),%R0" - [(set_attr "type" "move") - (set_attr "length" "16")]) - - ;; Implement atomic DImode store using copy and 64-bit floating point store. - - (define_expand "atomic_storedi" - [(match_operand:DI 0 "memory_operand") ;; memory - (match_operand:DI 1 "register_operand") ;; val out - (match_operand:SI 2 "const_int_operand")] ;; model - "!TARGET_64BIT && !TARGET_SOFT_FLOAT" - { - enum memmodel model = (enum memmodel) INTVAL (operands[2]); - operands[0] = force_reg (SImode, XEXP (operands[0], 0)); - operands[2] = gen_reg_rtx (DImode); - expand_mem_thread_fence (model); - emit_insn (gen_atomic_storedi_1 (operands[0], operands[1], operands[2])); - if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST) - expand_mem_thread_fence (model); - DONE; - }) - - (define_insn "atomic_storedi_1" - [(set (mem:DI (match_operand:SI 0 "register_operand" "r")) - (match_operand:DI 1 "register_operand" "r")) - (clobber (match_operand:DI 2 "register_operand" "=&f"))] - "!TARGET_64BIT && !TARGET_SOFT_FLOAT" - "{stws|stw} %1,-16(%%sp)\;{stws|stw} %R1,-12(%%sp)\;{fldds|fldd} -16(%%sp),%2\;{fstds|fstd} %2,0(%0)" - [(set_attr "type" "move") - (set_attr "length" "16")]) - ;; Compare instructions. ;; This controls RTL generation and register allocation. --- 699,704 ---- *************** *** 6933,6940 **** ;;; Hope this is only within a function... (define_insn "indirect_jump" ! [(set (pc) (match_operand 0 "register_operand" "r"))] ! "GET_MODE (operands[0]) == word_mode" "bv%* %%r0(%0)" [(set_attr "type" "branch") (set_attr "length" "4")]) --- 6872,6879 ---- ;;; Hope this is only within a function... (define_insn "indirect_jump" ! [(set (pc) (match_operand 0 "pmode_register_operand" "r"))] ! "" "bv%* %%r0(%0)" [(set_attr "type" "branch") (set_attr "length" "4")]) *************** add,l %2,%3,%3\;bv,n %%r0(%3)" *** 7529,7535 **** (define_insn "call_reg_64bit" [(call (mem:SI (match_operand:DI 0 "register_operand" "r")) (match_operand 1 "" "i")) - (clobber (reg:DI 1)) (clobber (reg:DI 2)) (clobber (match_operand 2)) (use (reg:DI 27)) --- 7468,7473 ---- *************** add,l %2,%3,%3\;bv,n %%r0(%3)" *** 7550,7556 **** (define_split [(parallel [(call (mem:SI (match_operand 0 "register_operand" "")) (match_operand 1 "" "")) - (clobber (reg:DI 1)) (clobber (reg:DI 2)) (clobber (match_operand 2)) (use (reg:DI 27)) --- 7488,7493 ---- *************** add,l %2,%3,%3\;bv,n %%r0(%3)" *** 7561,7567 **** [(set (match_dup 2) (reg:DI 27)) (parallel [(call (mem:SI (match_dup 0)) (match_dup 1)) - (clobber (reg:DI 1)) (clobber (reg:DI 2)) (use (reg:DI 27)) (use (reg:DI 29)) --- 7498,7503 ---- *************** add,l %2,%3,%3\;bv,n %%r0(%3)" *** 7571,7577 **** (define_split [(parallel [(call (mem:SI (match_operand 0 "register_operand" "")) (match_operand 1 "" "")) - (clobber (reg:DI 1)) (clobber (reg:DI 2)) (clobber (match_operand 2)) (use (reg:DI 27)) --- 7507,7512 ---- *************** add,l %2,%3,%3\;bv,n %%r0(%3)" *** 7581,7587 **** [(set (match_dup 2) (reg:DI 27)) (parallel [(call (mem:SI (match_dup 0)) (match_dup 1)) - (clobber (reg:DI 1)) (clobber (reg:DI 2)) (use (reg:DI 27)) (use (reg:DI 29)) --- 7516,7521 ---- *************** add,l %2,%3,%3\;bv,n %%r0(%3)" *** 7592,7598 **** (define_insn "*call_reg_64bit_post_reload" [(call (mem:SI (match_operand:DI 0 "register_operand" "r")) (match_operand 1 "" "i")) - (clobber (reg:DI 1)) (clobber (reg:DI 2)) (use (reg:DI 27)) (use (reg:DI 29)) --- 7526,7531 ---- *************** add,l %2,%3,%3\;bv,n %%r0(%3)" *** 9855,9857 **** --- 9788,9859 ---- "addil LR'%1-$tls_leoff$,%2\;ldo RR'%1-$tls_leoff$(%%r1),%0" [(set_attr "type" "multi") (set_attr "length" "8")]) + + ;; Atomic instructions + + ;; All memory loads and stores access storage atomically except + ;; for one exception. The STORE BYTES, STORE DOUBLE BYTES, and + ;; doubleword loads and stores are not guaranteed to be atomic + ;; when referencing the I/O address space. + + ;; Implement atomic DImode load using 64-bit floating point load and copy. + + (define_expand "atomic_loaddi" + [(match_operand:DI 0 "register_operand") ;; val out + (match_operand:DI 1 "memory_operand") ;; memory + (match_operand:SI 2 "const_int_operand")] ;; model + "" + { + enum memmodel model = (enum memmodel) INTVAL (operands[2]); + + if (TARGET_64BIT || TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT) + FAIL; + + operands[1] = force_reg (SImode, XEXP (operands[1], 0)); + operands[2] = gen_reg_rtx (DImode); + expand_mem_thread_fence (model); + emit_insn (gen_atomic_loaddi_1 (operands[0], operands[1], operands[2])); + if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST) + expand_mem_thread_fence (model); + DONE; + }) + + (define_insn "atomic_loaddi_1" + [(set (match_operand:DI 0 "register_operand" "=r") + (mem:DI (match_operand:SI 1 "register_operand" "r"))) + (clobber (match_operand:DI 2 "register_operand" "=&f"))] + "!TARGET_64BIT && !TARGET_DISABLE_FPREGS && !TARGET_SOFT_FLOAT" + "{fldds|fldd} 0(%1),%2\;{fstds|fstd} %2,-16(%%sp)\;{ldws|ldw} -16(%%sp),%0\;{ldws|ldw} -12(%%sp),%R0" + [(set_attr "type" "move") + (set_attr "length" "16")]) + + ;; Implement atomic DImode store using copy and 64-bit floating point store. + + (define_expand "atomic_storedi" + [(match_operand:DI 0 "memory_operand") ;; memory + (match_operand:DI 1 "register_operand") ;; val out + (match_operand:SI 2 "const_int_operand")] ;; model + "" + { + enum memmodel model = (enum memmodel) INTVAL (operands[2]); + + if (TARGET_64BIT || TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT) + FAIL; + + operands[0] = force_reg (SImode, XEXP (operands[0], 0)); + operands[2] = gen_reg_rtx (DImode); + expand_mem_thread_fence (model); + emit_insn (gen_atomic_storedi_1 (operands[0], operands[1], operands[2])); + if ((model & MEMMODEL_MASK) == MEMMODEL_SEQ_CST) + expand_mem_thread_fence (model); + DONE; + }) + + (define_insn "atomic_storedi_1" + [(set (mem:DI (match_operand:SI 0 "register_operand" "r")) + (match_operand:DI 1 "register_operand" "r")) + (clobber (match_operand:DI 2 "register_operand" "=&f"))] + "!TARGET_64BIT && !TARGET_DISABLE_FPREGS && !TARGET_SOFT_FLOAT" + "{stws|stw} %1,-16(%%sp)\;{stws|stw} %R1,-12(%%sp)\;{fldds|fldd} -16(%%sp),%2\;{fstds|fstd} %2,0(%0)" + [(set_attr "type" "move") + (set_attr "length" "16")]) diff -Nrcpad gcc-4.9.3/gcc/config/pa/predicates.md gcc-4.9.4/gcc/config/pa/predicates.md *** gcc-4.9.3/gcc/config/pa/predicates.md Sat Jan 3 19:19:49 2015 --- gcc-4.9.4/gcc/config/pa/predicates.md Tue Apr 5 23:46:23 2016 *************** *** 301,306 **** --- 301,309 ---- if (reg_plus_base_memory_operand (op, mode)) { + if (reload_in_progress) + return true; + /* Extract CONST_INT operand. */ if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); *************** *** 335,340 **** --- 338,346 ---- if (reg_plus_base_memory_operand (op, mode)) { + if (reload_in_progress) + return true; + /* Extract CONST_INT operand. */ if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op); diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/altivec.md gcc-4.9.4/gcc/config/rs6000/altivec.md *** gcc-4.9.3/gcc/config/rs6000/altivec.md Fri Apr 24 21:16:35 2015 --- gcc-4.9.4/gcc/config/rs6000/altivec.md Wed Feb 17 17:55:33 2016 *************** *** 2436,2442 **** (match_operand:VM2 1 "memory_operand" "Z")) (unspec [(const_int 0)] UNSPEC_SET_VSCR)])] "TARGET_ALTIVEC" ! "lvx %0,%y1" [(set_attr "type" "vecload")]) (define_expand "altivec_lvx_" --- 2436,2442 ---- (match_operand:VM2 1 "memory_operand" "Z")) (unspec [(const_int 0)] UNSPEC_SET_VSCR)])] "TARGET_ALTIVEC" ! "lvxl %0,%y1" [(set_attr "type" "vecload")]) (define_expand "altivec_lvx_" diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/freebsd64.h gcc-4.9.4/gcc/config/rs6000/freebsd64.h *** gcc-4.9.3/gcc/config/rs6000/freebsd64.h Thu Jul 24 17:25:19 2014 --- gcc-4.9.4/gcc/config/rs6000/freebsd64.h Fri Dec 25 21:12:14 2015 *************** extern int dot_symbols; *** 65,70 **** --- 65,77 ---- #define INVALID_64BIT "-m%s not supported in this configuration" #define INVALID_32BIT INVALID_64BIT + /* Use LINUX64 instead of FREEBSD64 for compat with e.g. sysv4le.h */ + #ifdef LINUX64_DEFAULT_ABI_ELFv2 + #define ELFv2_ABI_CHECK (rs6000_elf_abi != 1) + #else + #define ELFv2_ABI_CHECK (rs6000_elf_abi == 2) + #endif + #undef SUBSUBTARGET_OVERRIDE_OPTIONS #define SUBSUBTARGET_OVERRIDE_OPTIONS \ do \ *************** extern int dot_symbols; *** 84,89 **** --- 91,102 ---- rs6000_isa_flags &= ~OPTION_MASK_RELOCATABLE; \ error (INVALID_64BIT, "relocatable"); \ } \ + if (ELFv2_ABI_CHECK) \ + { \ + rs6000_current_abi = ABI_ELFv2; \ + if (dot_symbols) \ + error ("-mcall-aixdesc incompatible with -mabi=elfv2"); \ + } \ if (rs6000_isa_flags & OPTION_MASK_EABI) \ { \ rs6000_isa_flags &= ~OPTION_MASK_EABI; \ *************** extern int dot_symbols; *** 130,136 **** #define LINK_OS_FREEBSD_SPEC "%{m32:%(link_os_freebsd_spec32)}%{!m32:%(link_os_freebsd_spec64)}" #define ASM_SPEC32 "-a32 \ ! %{mrelocatable} %{mrelocatable-lib} %{fpic:-K PIC} %{fPIC:-K PIC} \ %{memb} %{!memb: %{msdata=eabi: -memb}} \ %{!mlittle: %{!mlittle-endian: %{!mbig: %{!mbig-endian: \ %{mcall-freebsd: -mbig} \ --- 143,149 ---- #define LINK_OS_FREEBSD_SPEC "%{m32:%(link_os_freebsd_spec32)}%{!m32:%(link_os_freebsd_spec64)}" #define ASM_SPEC32 "-a32 \ ! %{mrelocatable} %{mrelocatable-lib} %{fpic|fpie|fPIC|fPIE:-K PIC} \ %{memb} %{!memb: %{msdata=eabi: -memb}} \ %{!mlittle: %{!mlittle-endian: %{!mbig: %{!mbig-endian: \ %{mcall-freebsd: -mbig} \ *************** extern int dot_symbols; *** 154,175 **** { "link_os_freebsd_spec32", LINK_OS_FREEBSD_SPEC32 }, \ { "link_os_freebsd_spec64", LINK_OS_FREEBSD_SPEC64 }, ! #define FREEBSD_DYNAMIC_LINKER32 "/libexec/ld-elf32.so.1" ! #define FREEBSD_DYNAMIC_LINKER64 "/libexec/ld-elf.so.1" ! ! #define LINK_OS_FREEBSD_SPEC_DEF32 "\ ! %{p:%nconsider using `-pg' instead of `-p' with gprof(1)} \ ! %{v:-V} \ ! %{assert*} %{R*} %{rpath*} %{defsym*} \ ! %{shared:-Bshareable %{h*} %{soname*}} \ ! %{!shared: \ ! %{!static: \ ! %{rdynamic: -export-dynamic} \ ! %{!dynamic-linker:-dynamic-linker " FREEBSD_DYNAMIC_LINKER32 "}} \ ! %{static:-Bstatic}} \ ! %{symbolic:-Bsymbolic}" ! ! #define LINK_OS_FREEBSD_SPEC_DEF64 "\ %{p:%nconsider using `-pg' instead of `-p' with gprof(1)} \ %{v:-V} \ %{assert*} %{R*} %{rpath*} %{defsym*} \ --- 167,173 ---- { "link_os_freebsd_spec32", LINK_OS_FREEBSD_SPEC32 }, \ { "link_os_freebsd_spec64", LINK_OS_FREEBSD_SPEC64 }, ! #define LINK_OS_FREEBSD_SPEC_DEF "\ %{p:%nconsider using `-pg' instead of `-p' with gprof(1)} \ %{v:-V} \ %{assert*} %{R*} %{rpath*} %{defsym*} \ *************** extern int dot_symbols; *** 177,189 **** %{!shared: \ %{!static: \ %{rdynamic: -export-dynamic} \ ! %{!dynamic-linker:-dynamic-linker " FREEBSD_DYNAMIC_LINKER64 "}} \ %{static:-Bstatic}} \ %{symbolic:-Bsymbolic}" ! #define LINK_OS_FREEBSD_SPEC32 "-melf32ppc_fbsd " LINK_OS_FREEBSD_SPEC_DEF32 ! #define LINK_OS_FREEBSD_SPEC64 "-melf64ppc_fbsd " LINK_OS_FREEBSD_SPEC_DEF64 #undef MULTILIB_DEFAULTS #define MULTILIB_DEFAULTS { "m64" } --- 175,187 ---- %{!shared: \ %{!static: \ %{rdynamic: -export-dynamic} \ ! %{!dynamic-linker:-dynamic-linker " FBSD_DYNAMIC_LINKER "}} \ %{static:-Bstatic}} \ %{symbolic:-Bsymbolic}" ! #define LINK_OS_FREEBSD_SPEC32 "-melf32ppc_fbsd " LINK_OS_FREEBSD_SPEC_DEF ! #define LINK_OS_FREEBSD_SPEC64 "-melf64ppc_fbsd " LINK_OS_FREEBSD_SPEC_DEF #undef MULTILIB_DEFAULTS #define MULTILIB_DEFAULTS { "m64" } *************** extern int dot_symbols; *** 304,310 **** /* rs6000.h gets this wrong for FreeBSD. We use the GCC defaults instead. */ #undef WCHAR_TYPE ! #define WCHAR_TYPE (TARGET_64BIT ? "int" : "long int") #undef WCHAR_TYPE_SIZE #define WCHAR_TYPE_SIZE 32 --- 302,308 ---- /* rs6000.h gets this wrong for FreeBSD. We use the GCC defaults instead. */ #undef WCHAR_TYPE ! #undef WCHAR_TYPE_SIZE #define WCHAR_TYPE_SIZE 32 diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/htm.md gcc-4.9.4/gcc/config/rs6000/htm.md *** gcc-4.9.3/gcc/config/rs6000/htm.md Tue May 5 14:25:35 2015 --- gcc-4.9.4/gcc/config/rs6000/htm.md Thu Oct 15 16:40:14 2015 *************** *** 27,32 **** --- 27,40 ---- ]) ;; + ;; UNSPEC usage + ;; + + (define_c_enum "unspec" + [UNSPEC_HTM_FENCE + ]) + + ;; ;; UNSPEC_VOLATILE usage ;; *************** *** 45,140 **** UNSPECV_HTM_MTSPR ]) ! (define_insn "tabort" [(set (match_operand:CC 1 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand:SI 0 "gpc_reg_operand" "r")] ! UNSPECV_HTM_TABORT))] "TARGET_HTM" "tabort. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "tabortc" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "u5bit_cint_operand" "n") (match_operand:GPR 1 "gpc_reg_operand" "r") (match_operand:GPR 2 "gpc_reg_operand" "r")] ! UNSPECV_HTM_TABORTXC))] "TARGET_HTM" "tabortc. %0,%1,%2" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "tabortci" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "u5bit_cint_operand" "n") (match_operand:GPR 1 "gpc_reg_operand" "r") (match_operand 2 "s5bit_cint_operand" "n")] ! UNSPECV_HTM_TABORTXCI))] "TARGET_HTM" "tabortci. %0,%1,%2" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "tbegin" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TBEGIN))] "TARGET_HTM" "tbegin. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "tcheck" [(set (match_operand:CC 0 "cc_reg_operand" "=y") ! (unspec_volatile:CC [(const_int 0)] ! UNSPECV_HTM_TCHECK))] "TARGET_HTM" "tcheck %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "tend" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TEND))] "TARGET_HTM" "tend. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "trechkpt" [(set (match_operand:CC 0 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(const_int 0)] ! UNSPECV_HTM_TRECHKPT))] "TARGET_HTM" "trechkpt." [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "treclaim" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand:SI 0 "gpc_reg_operand" "r")] ! UNSPECV_HTM_TRECLAIM))] "TARGET_HTM" "treclaim. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "tsr" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TSR))] "TARGET_HTM" "tsr. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_insn "ttest" [(set (match_operand:CC 0 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(const_int 0)] ! UNSPECV_HTM_TTEST))] "TARGET_HTM" "tabortwci. 0,1,0" [(set_attr "type" "htm") --- 53,275 ---- UNSPECV_HTM_MTSPR ]) + (define_expand "tabort" + [(parallel + [(set (match_operand:CC 1 "cc_reg_operand" "=x") + (unspec_volatile:CC [(match_operand:SI 0 "base_reg_operand" "b")] + UNSPECV_HTM_TABORT)) + (set (match_dup 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))])] + "TARGET_HTM" + { + operands[2] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); + MEM_VOLATILE_P (operands[2]) = 1; + }) ! (define_insn "*tabort" [(set (match_operand:CC 1 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand:SI 0 "base_reg_operand" "b")] ! UNSPECV_HTM_TABORT)) ! (set (match_operand:BLK 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tabort. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "tabortc" ! [(parallel ! [(set (match_operand:CC 3 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand 0 "u5bit_cint_operand" "n") ! (match_operand:GPR 1 "gpc_reg_operand" "r") ! (match_operand:GPR 2 "gpc_reg_operand" "r")] ! UNSPECV_HTM_TABORTXC)) ! (set (match_dup 4) (unspec:BLK [(match_dup 4)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[4] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[4]) = 1; ! }) ! ! (define_insn "*tabortc" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "u5bit_cint_operand" "n") (match_operand:GPR 1 "gpc_reg_operand" "r") (match_operand:GPR 2 "gpc_reg_operand" "r")] ! UNSPECV_HTM_TABORTXC)) ! (set (match_operand:BLK 4) (unspec:BLK [(match_dup 4)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tabortc. %0,%1,%2" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "tabortci" ! [(parallel ! [(set (match_operand:CC 3 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand 0 "u5bit_cint_operand" "n") ! (match_operand:GPR 1 "gpc_reg_operand" "r") ! (match_operand 2 "s5bit_cint_operand" "n")] ! UNSPECV_HTM_TABORTXCI)) ! (set (match_dup 4) (unspec:BLK [(match_dup 4)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[4] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[4]) = 1; ! }) ! ! (define_insn "*tabortci" [(set (match_operand:CC 3 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "u5bit_cint_operand" "n") (match_operand:GPR 1 "gpc_reg_operand" "r") (match_operand 2 "s5bit_cint_operand" "n")] ! UNSPECV_HTM_TABORTXCI)) ! (set (match_operand:BLK 4) (unspec:BLK [(match_dup 4)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tabortci. %0,%1,%2" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "tbegin" ! [(parallel ! [(set (match_operand:CC 1 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TBEGIN)) ! (set (match_dup 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[2] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[2]) = 1; ! }) ! ! (define_insn "*tbegin" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TBEGIN)) ! (set (match_operand:BLK 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tbegin. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "tcheck" ! [(parallel ! [(set (match_operand:CC 0 "cc_reg_operand" "=y") ! (unspec_volatile:CC [(const_int 0)] UNSPECV_HTM_TCHECK)) ! (set (match_dup 1) (unspec:BLK [(match_dup 1)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[1] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[1]) = 1; ! }) ! ! (define_insn "*tcheck" [(set (match_operand:CC 0 "cc_reg_operand" "=y") ! (unspec_volatile:CC [(const_int 0)] UNSPECV_HTM_TCHECK)) ! (set (match_operand:BLK 1) (unspec:BLK [(match_dup 1)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tcheck %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "tend" ! [(parallel ! [(set (match_operand:CC 1 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TEND)) ! (set (match_dup 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[2] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[2]) = 1; ! }) ! ! (define_insn "*tend" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TEND)) ! (set (match_operand:BLK 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tend. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "trechkpt" ! [(parallel ! [(set (match_operand:CC 0 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(const_int 0)] UNSPECV_HTM_TRECHKPT)) ! (set (match_dup 1) (unspec:BLK [(match_dup 1)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[1] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[1]) = 1; ! }) ! ! (define_insn "*trechkpt" [(set (match_operand:CC 0 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(const_int 0)] UNSPECV_HTM_TRECHKPT)) ! (set (match_operand:BLK 1) (unspec:BLK [(match_dup 1)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "trechkpt." [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "treclaim" ! [(parallel ! [(set (match_operand:CC 1 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand:SI 0 "gpc_reg_operand" "r")] ! UNSPECV_HTM_TRECLAIM)) ! (set (match_dup 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[2] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[2]) = 1; ! }) ! ! (define_insn "*treclaim" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand:SI 0 "gpc_reg_operand" "r")] ! UNSPECV_HTM_TRECLAIM)) ! (set (match_operand:BLK 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "treclaim. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "tsr" ! [(parallel ! [(set (match_operand:CC 1 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TSR)) ! (set (match_dup 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[2] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[2]) = 1; ! }) ! ! (define_insn "*tsr" [(set (match_operand:CC 1 "cc_reg_operand" "=x") (unspec_volatile:CC [(match_operand 0 "const_0_to_1_operand" "n")] ! UNSPECV_HTM_TSR)) ! (set (match_operand:BLK 2) (unspec:BLK [(match_dup 2)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tsr. %0" [(set_attr "type" "htm") (set_attr "length" "4")]) ! (define_expand "ttest" ! [(parallel ! [(set (match_operand:CC 0 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(const_int 0)] UNSPECV_HTM_TTEST)) ! (set (match_dup 1) (unspec:BLK [(match_dup 1)] UNSPEC_HTM_FENCE))])] ! "TARGET_HTM" ! { ! operands[1] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); ! MEM_VOLATILE_P (operands[1]) = 1; ! }) ! ! (define_insn "*ttest" [(set (match_operand:CC 0 "cc_reg_operand" "=x") ! (unspec_volatile:CC [(const_int 0)] UNSPECV_HTM_TTEST)) ! (set (match_operand:BLK 1) (unspec:BLK [(match_dup 1)] UNSPEC_HTM_FENCE))] "TARGET_HTM" "tabortwci. 0,1,0" [(set_attr "type" "htm") diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/predicates.md gcc-4.9.4/gcc/config/rs6000/predicates.md *** gcc-4.9.3/gcc/config/rs6000/predicates.md Fri Sep 19 20:59:51 2014 --- gcc-4.9.4/gcc/config/rs6000/predicates.md Tue Feb 2 01:29:58 2016 *************** *** 41,47 **** if (!REG_P (op)) return 0; ! if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return ALTIVEC_REGNO_P (REGNO (op)); --- 41,47 ---- if (!REG_P (op)) return 0; ! if (REGNO (op) >= FIRST_PSEUDO_REGISTER) return 1; return ALTIVEC_REGNO_P (REGNO (op)); *************** *** 57,63 **** if (!REG_P (op)) return 0; ! if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VSX_REGNO_P (REGNO (op)); --- 57,63 ---- if (!REG_P (op)) return 0; ! if (REGNO (op) >= FIRST_PSEUDO_REGISTER) return 1; return VSX_REGNO_P (REGNO (op)); *************** *** 74,80 **** if (!REG_P (op)) return 0; ! if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VFLOAT_REGNO_P (REGNO (op)); --- 74,80 ---- if (!REG_P (op)) return 0; ! if (REGNO (op) >= FIRST_PSEUDO_REGISTER) return 1; return VFLOAT_REGNO_P (REGNO (op)); *************** *** 91,97 **** if (!REG_P (op)) return 0; ! if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VINT_REGNO_P (REGNO (op)); --- 91,97 ---- if (!REG_P (op)) return 0; ! if (REGNO (op) >= FIRST_PSEUDO_REGISTER) return 1; return VINT_REGNO_P (REGNO (op)); *************** *** 108,114 **** if (!REG_P (op)) return 0; ! if (REGNO (op) > LAST_VIRTUAL_REGISTER) return 1; return VLOGICAL_REGNO_P (REGNO (op)); --- 108,114 ---- if (!REG_P (op)) return 0; ! if (REGNO (op) >= FIRST_PSEUDO_REGISTER) return 1; return VLOGICAL_REGNO_P (REGNO (op)); *************** *** 270,289 **** ;; Return 1 if op is a general purpose register that is an even register ;; which suitable for a load/store quad operation (define_predicate "quad_int_reg_operand" ! (match_operand 0 "register_operand") { HOST_WIDE_INT r; if (!TARGET_QUAD_MEMORY && !TARGET_QUAD_MEMORY_ATOMIC) return 0; - if (GET_CODE (op) == SUBREG) - op = SUBREG_REG (op); - - if (!REG_P (op)) - return 0; - r = REGNO (op); if (r >= FIRST_PSEUDO_REGISTER) return 1; --- 270,288 ---- ;; Return 1 if op is a general purpose register that is an even register ;; which suitable for a load/store quad operation + ;; Subregs are not allowed here because when they are combine can + ;; create (subreg:PTI (reg:TI pseudo)) which will cause reload to + ;; think the innermost reg needs reloading, in TImode instead of + ;; PTImode. So reload will choose a reg in TImode which has no + ;; requirement that the reg be even. (define_predicate "quad_int_reg_operand" ! (match_code "reg") { HOST_WIDE_INT r; if (!TARGET_QUAD_MEMORY && !TARGET_QUAD_MEMORY_ATOMIC) return 0; r = REGNO (op); if (r >= FIRST_PSEUDO_REGISTER) return 1; *************** *** 1063,1074 **** (define_predicate "current_file_function_operand" (and (match_code "symbol_ref") (match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op)) ! && ((SYMBOL_REF_LOCAL_P (op) ! && ((DEFAULT_ABI != ABI_AIX ! && DEFAULT_ABI != ABI_ELFv2) ! || !SYMBOL_REF_EXTERNAL_P (op))) ! || (op == XEXP (DECL_RTL (current_function_decl), ! 0)))"))) ;; Return 1 if this operand is a valid input for a move insn. (define_predicate "input_operand" --- 1062,1073 ---- (define_predicate "current_file_function_operand" (and (match_code "symbol_ref") (match_test "(DEFAULT_ABI != ABI_AIX || SYMBOL_REF_FUNCTION_P (op)) ! && (SYMBOL_REF_LOCAL_P (op) ! || op == XEXP (DECL_RTL (current_function_decl), 0)) ! && !((DEFAULT_ABI == ABI_AIX ! || DEFAULT_ABI == ABI_ELFv2) ! && (SYMBOL_REF_EXTERNAL_P (op) ! || SYMBOL_REF_WEAK (op)))"))) ;; Return 1 if this operand is a valid input for a move insn. (define_predicate "input_operand" diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/rs6000-builtin.def gcc-4.9.4/gcc/config/rs6000/rs6000-builtin.def *** gcc-4.9.3/gcc/config/rs6000/rs6000-builtin.def Tue May 5 14:25:35 2015 --- gcc-4.9.4/gcc/config/rs6000/rs6000-builtin.def Wed Apr 27 18:49:26 2016 *************** BU_VSX_X (LXVW4X_V4SI, "lxvw4x_v4 *** 1371,1383 **** BU_VSX_X (LXVW4X_V8HI, "lxvw4x_v8hi", MEM) BU_VSX_X (LXVW4X_V16QI, "lxvw4x_v16qi", MEM) BU_VSX_X (STXSDX, "stxsdx", MEM) ! BU_VSX_X (STXVD2X_V1TI, "stxsdx_v1ti", MEM) ! BU_VSX_X (STXVD2X_V2DF, "stxsdx_v2df", MEM) ! BU_VSX_X (STXVD2X_V2DI, "stxsdx_v2di", MEM) ! BU_VSX_X (STXVW4X_V4SF, "stxsdx_v4sf", MEM) ! BU_VSX_X (STXVW4X_V4SI, "stxsdx_v4si", MEM) ! BU_VSX_X (STXVW4X_V8HI, "stxsdx_v8hi", MEM) ! BU_VSX_X (STXVW4X_V16QI, "stxsdx_v16qi", MEM) BU_VSX_X (XSABSDP, "xsabsdp", CONST) BU_VSX_X (XSADDDP, "xsadddp", FP) BU_VSX_X (XSCMPODP, "xscmpodp", FP) --- 1371,1383 ---- BU_VSX_X (LXVW4X_V8HI, "lxvw4x_v8hi", MEM) BU_VSX_X (LXVW4X_V16QI, "lxvw4x_v16qi", MEM) BU_VSX_X (STXSDX, "stxsdx", MEM) ! BU_VSX_X (STXVD2X_V1TI, "stxvd2x_v1ti", MEM) ! BU_VSX_X (STXVD2X_V2DF, "stxvd2x_v2df", MEM) ! BU_VSX_X (STXVD2X_V2DI, "stxvd2x_v2di", MEM) ! BU_VSX_X (STXVW4X_V4SF, "stxvw4x_v4sf", MEM) ! BU_VSX_X (STXVW4X_V4SI, "stxvw4x_v4si", MEM) ! BU_VSX_X (STXVW4X_V8HI, "stxvw4x_v8hi", MEM) ! BU_VSX_X (STXVW4X_V16QI, "stxvw4x_v16qi", MEM) BU_VSX_X (XSABSDP, "xsabsdp", CONST) BU_VSX_X (XSADDDP, "xsadddp", FP) BU_VSX_X (XSCMPODP, "xscmpodp", FP) diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/rs6000-c.c gcc-4.9.4/gcc/config/rs6000/rs6000-c.c *** gcc-4.9.3/gcc/config/rs6000/rs6000-c.c Wed Dec 10 21:40:33 2014 --- gcc-4.9.4/gcc/config/rs6000/rs6000-c.c Thu Oct 15 16:40:14 2015 *************** rs6000_target_modify_macros (bool define *** 353,359 **** if ((flags & OPTION_MASK_VSX) != 0) rs6000_define_or_undefine_macro (define_p, "__VSX__"); if ((flags & OPTION_MASK_HTM) != 0) ! rs6000_define_or_undefine_macro (define_p, "__HTM__"); if ((flags & OPTION_MASK_P8_VECTOR) != 0) rs6000_define_or_undefine_macro (define_p, "__POWER8_VECTOR__"); if ((flags & OPTION_MASK_QUAD_MEMORY) != 0) --- 353,363 ---- if ((flags & OPTION_MASK_VSX) != 0) rs6000_define_or_undefine_macro (define_p, "__VSX__"); if ((flags & OPTION_MASK_HTM) != 0) ! { ! rs6000_define_or_undefine_macro (define_p, "__HTM__"); ! /* Tell the user that our HTM insn patterns act as memory barriers. */ ! rs6000_define_or_undefine_macro (define_p, "__TM_FENCE__"); ! } if ((flags & OPTION_MASK_P8_VECTOR) != 0) rs6000_define_or_undefine_macro (define_p, "__POWER8_VECTOR__"); if ((flags & OPTION_MASK_QUAD_MEMORY) != 0) diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/rs6000-cpus.def gcc-4.9.4/gcc/config/rs6000/rs6000-cpus.def *** gcc-4.9.3/gcc/config/rs6000/rs6000-cpus.def Thu Mar 5 20:31:10 2015 --- gcc-4.9.4/gcc/config/rs6000/rs6000-cpus.def Mon Aug 24 20:36:35 2015 *************** *** 52,57 **** --- 52,58 ---- | OPTION_MASK_P8_VECTOR \ | OPTION_MASK_CRYPTO \ | OPTION_MASK_DIRECT_MOVE \ + | OPTION_MASK_EFFICIENT_UNALIGNED_VSX \ | OPTION_MASK_HTM \ | OPTION_MASK_QUAD_MEMORY \ | OPTION_MASK_QUAD_MEMORY_ATOMIC) *************** *** 76,81 **** --- 77,83 ---- | OPTION_MASK_DFP \ | OPTION_MASK_DIRECT_MOVE \ | OPTION_MASK_DLMZB \ + | OPTION_MASK_EFFICIENT_UNALIGNED_VSX \ | OPTION_MASK_FPRND \ | OPTION_MASK_HTM \ | OPTION_MASK_ISEL \ diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/rs6000.c gcc-4.9.4/gcc/config/rs6000/rs6000.c *** gcc-4.9.3/gcc/config/rs6000/rs6000.c Tue May 5 14:25:35 2015 --- gcc-4.9.4/gcc/config/rs6000/rs6000.c Thu Feb 4 13:59:27 2016 *************** rs6000_option_override_internal (bool gl *** 3506,3511 **** --- 3506,3550 ---- && optimize >= 3) rs6000_isa_flags |= OPTION_MASK_P8_FUSION_SIGN; + /* Set -mallow-movmisalign to explicitly on if we have full ISA 2.07 + support. If we only have ISA 2.06 support, and the user did not specify + the switch, leave it set to -1 so the movmisalign patterns are enabled, + but we don't enable the full vectorization support */ + if (TARGET_ALLOW_MOVMISALIGN == -1 && TARGET_P8_VECTOR && TARGET_DIRECT_MOVE) + TARGET_ALLOW_MOVMISALIGN = 1; + + else if (TARGET_ALLOW_MOVMISALIGN && !TARGET_VSX) + { + if (TARGET_ALLOW_MOVMISALIGN > 0) + error ("-mallow-movmisalign requires -mvsx"); + + TARGET_ALLOW_MOVMISALIGN = 0; + } + + /* Determine when unaligned vector accesses are permitted, and when + they are preferred over masked Altivec loads. Note that if + TARGET_ALLOW_MOVMISALIGN has been disabled by the user, then + TARGET_EFFICIENT_UNALIGNED_VSX must be as well. The converse is + not true. */ + if (TARGET_EFFICIENT_UNALIGNED_VSX) + { + if (!TARGET_VSX) + { + if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX) + error ("-mefficient-unaligned-vsx requires -mvsx"); + + rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX; + } + + else if (!TARGET_ALLOW_MOVMISALIGN) + { + if (rs6000_isa_flags_explicit & OPTION_MASK_EFFICIENT_UNALIGNED_VSX) + error ("-mefficient-unaligned-vsx requires -mallow-movmisalign"); + + rs6000_isa_flags &= ~OPTION_MASK_EFFICIENT_UNALIGNED_VSX; + } + } + if (TARGET_DEBUG_REG || TARGET_DEBUG_TARGET) rs6000_print_isa_options (stderr, 0, "after defaults", rs6000_isa_flags); *************** rs6000_option_override_internal (bool gl *** 4065,4086 **** } } - /* Determine when unaligned vector accesses are permitted, and when - they are preferred over masked Altivec loads. Note that if - TARGET_ALLOW_MOVMISALIGN has been disabled by the user, then - TARGET_EFFICIENT_UNALIGNED_VSX must be as well. The converse is - not true. */ - if (TARGET_EFFICIENT_UNALIGNED_VSX == -1) { - if (TARGET_VSX && rs6000_cpu == PROCESSOR_POWER8 - && TARGET_ALLOW_MOVMISALIGN != 0) - TARGET_EFFICIENT_UNALIGNED_VSX = 1; - else - TARGET_EFFICIENT_UNALIGNED_VSX = 0; - } - - if (TARGET_ALLOW_MOVMISALIGN == -1 && rs6000_cpu == PROCESSOR_POWER8) - TARGET_ALLOW_MOVMISALIGN = 1; - /* Set the builtin mask of the various options used that could affect which builtins were used. In the past we used target_flags, but we've run out of bits, and some options like SPE and PAIRED are no longer in --- 4104,4109 ---- *************** rs6000_secondary_reload_gpr (rtx reg, rt *** 17212,17219 **** if (GET_CODE (addr) == PRE_MODIFY) { scratch_or_premodify = XEXP (addr, 0); ! gcc_assert (REG_P (scratch_or_premodify)); addr = XEXP (addr, 1); } gcc_assert (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM); --- 17235,17255 ---- if (GET_CODE (addr) == PRE_MODIFY) { + gcc_assert (REG_P (XEXP (addr, 0)) + && GET_CODE (XEXP (addr, 1)) == PLUS + && XEXP (XEXP (addr, 1), 0) == XEXP (addr, 0)); scratch_or_premodify = XEXP (addr, 0); ! if (!HARD_REGISTER_P (scratch_or_premodify)) ! /* If we have a pseudo here then reload will have arranged ! to have it replaced, but only in the original insn. ! Use the replacement here too. */ ! scratch_or_premodify = find_replacement (&XEXP (addr, 0)); ! ! /* RTL emitted by rs6000_secondary_reload_gpr uses RTL ! expressions from the original insn, without unsharing them. ! Any RTL that points into the original insn will of course ! have register replacements applied. That is why we don't ! need to look for replacements under the PLUS. */ addr = XEXP (addr, 1); } gcc_assert (GET_CODE (addr) == PLUS || GET_CODE (addr) == LO_SUM); *************** rs6000_expand_atomic_compare_and_swap (r *** 20227,20232 **** --- 20263,20271 ---- else if (reg_overlap_mentioned_p (retval, oldval)) oldval = copy_to_reg (oldval); + if (mode != TImode && !reg_or_short_operand (oldval, mode)) + oldval = copy_to_mode_reg (mode, oldval); + mem = rs6000_pre_atomic_barrier (mem, mod_s); label1 = NULL_RTX; *************** rs6000_expand_atomic_compare_and_swap (r *** 20241,20250 **** x = retval; if (mask) ! { ! x = expand_simple_binop (SImode, AND, retval, mask, ! NULL_RTX, 1, OPTAB_LIB_WIDEN); ! } cond = gen_reg_rtx (CCmode); /* If we have TImode, synthesize a comparison. */ --- 20280,20287 ---- x = retval; if (mask) ! x = expand_simple_binop (SImode, AND, retval, mask, ! NULL_RTX, 1, OPTAB_LIB_WIDEN); cond = gen_reg_rtx (CCmode); /* If we have TImode, synthesize a comparison. */ *************** rs6000_function_ok_for_sibcall (tree dec *** 21843,21848 **** --- 21880,21886 ---- || ((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_ELFv2) && decl && !DECL_EXTERNAL (decl) + && !DECL_WEAK (decl) && (*targetm.binds_local_p) (decl)) || (DEFAULT_ABI == ABI_V4 && (!TARGET_SECURE_PLT *************** static struct rs6000_opt_mask const rs60 *** 31578,31583 **** --- 31616,31623 ---- { "crypto", OPTION_MASK_CRYPTO, false, true }, { "direct-move", OPTION_MASK_DIRECT_MOVE, false, true }, { "dlmzb", OPTION_MASK_DLMZB, false, true }, + { "efficient-unaligned-vsx", OPTION_MASK_EFFICIENT_UNALIGNED_VSX, + false, true }, { "fprnd", OPTION_MASK_FPRND, false, true }, { "hard-dfp", OPTION_MASK_DFP, false, true }, { "htm", OPTION_MASK_HTM, false, true }, diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/rs6000.h gcc-4.9.4/gcc/config/rs6000/rs6000.h *** gcc-4.9.3/gcc/config/rs6000/rs6000.h Tue May 5 14:25:35 2015 --- gcc-4.9.4/gcc/config/rs6000/rs6000.h Tue Dec 22 20:51:12 2015 *************** *** 121,126 **** --- 121,127 ---- %{mcpu=power8: %(asm_cpu_power8)} \ %{mcpu=a2: -ma2} \ %{mcpu=powerpc: -mppc} \ + %{mcpu=powerpc64le: %(asm_cpu_power8)} \ %{mcpu=rs64a: -mppc64} \ %{mcpu=401: -mppc} \ %{mcpu=403: -m403} \ diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/rs6000.md gcc-4.9.4/gcc/config/rs6000/rs6000.md *** gcc-4.9.3/gcc/config/rs6000/rs6000.md Thu Mar 26 08:33:53 2015 --- gcc-4.9.4/gcc/config/rs6000/rs6000.md Mon Apr 25 22:29:49 2016 *************** *** 9976,10013 **** ;; value, since it is allocated in reload and not all of the flow information ;; is setup for it. We have two patterns to do the two moves between gprs and ;; fprs. There isn't a dependancy between the two, but we could potentially ! ;; schedule other instructions between the two instructions. TFmode is ! ;; currently limited to traditional FPR registers. If/when this is changed, we ! ;; will need to revist %L to make sure it works with VSX registers, or add an ! ;; %x version of %L. (define_insn "p8_fmrgow_" [(set (match_operand:FMOVE64X 0 "register_operand" "=d") ! (unspec:FMOVE64X [(match_operand:TF 1 "register_operand" "d")] UNSPEC_P8V_FMRGOW))] "!TARGET_POWERPC64 && TARGET_DIRECT_MOVE" ! "fmrgow %0,%1,%L1" [(set_attr "type" "vecperm")]) ! (define_insn "p8_mtvsrwz_1" ! [(set (match_operand:TF 0 "register_operand" "=d") ! (unspec:TF [(match_operand:SI 1 "register_operand" "r")] UNSPEC_P8V_MTVSRWZ))] "!TARGET_POWERPC64 && TARGET_DIRECT_MOVE" "mtvsrwz %x0,%1" [(set_attr "type" "mftgpr")]) - (define_insn "p8_mtvsrwz_2" - [(set (match_operand:TF 0 "register_operand" "+d") - (unspec:TF [(match_dup 0) - (match_operand:SI 1 "register_operand" "r")] - UNSPEC_P8V_MTVSRWZ))] - "!TARGET_POWERPC64 && TARGET_DIRECT_MOVE" - "mtvsrwz %L0,%1" - [(set_attr "type" "mftgpr")]) - (define_insn_and_split "reload_fpr_from_gpr" ! [(set (match_operand:FMOVE64X 0 "register_operand" "=ws") (unspec:FMOVE64X [(match_operand:FMOVE64X 1 "register_operand" "r")] UNSPEC_P8V_RELOAD_FROM_GPR)) (clobber (match_operand:TF 2 "register_operand" "=d"))] --- 9976,10003 ---- ;; value, since it is allocated in reload and not all of the flow information ;; is setup for it. We have two patterns to do the two moves between gprs and ;; fprs. There isn't a dependancy between the two, but we could potentially ! ;; schedule other instructions between the two instructions. (define_insn "p8_fmrgow_" [(set (match_operand:FMOVE64X 0 "register_operand" "=d") ! (unspec:FMOVE64X [ ! (match_operand:DF 1 "register_operand" "d") ! (match_operand:DF 2 "register_operand" "d")] UNSPEC_P8V_FMRGOW))] "!TARGET_POWERPC64 && TARGET_DIRECT_MOVE" ! "fmrgow %0,%1,%2" [(set_attr "type" "vecperm")]) ! (define_insn "p8_mtvsrwz" ! [(set (match_operand:DF 0 "register_operand" "=d") ! (unspec:DF [(match_operand:SI 1 "register_operand" "r")] UNSPEC_P8V_MTVSRWZ))] "!TARGET_POWERPC64 && TARGET_DIRECT_MOVE" "mtvsrwz %x0,%1" [(set_attr "type" "mftgpr")]) (define_insn_and_split "reload_fpr_from_gpr" ! [(set (match_operand:FMOVE64X 0 "register_operand" "=d") (unspec:FMOVE64X [(match_operand:FMOVE64X 1 "register_operand" "r")] UNSPEC_P8V_RELOAD_FROM_GPR)) (clobber (match_operand:TF 2 "register_operand" "=d"))] *************** *** 10018,10059 **** { rtx dest = operands[0]; rtx src = operands[1]; ! rtx tmp = operands[2]; rtx gpr_hi_reg = gen_highpart (SImode, src); rtx gpr_lo_reg = gen_lowpart (SImode, src); ! emit_insn (gen_p8_mtvsrwz_1 (tmp, gpr_hi_reg)); ! emit_insn (gen_p8_mtvsrwz_2 (tmp, gpr_lo_reg)); ! emit_insn (gen_p8_fmrgow_ (dest, tmp)); DONE; } [(set_attr "length" "12") (set_attr "type" "three")]) ;; Move 128 bit values from GPRs to VSX registers in 64-bit mode ! (define_insn "p8_mtvsrd_1" ! [(set (match_operand:TF 0 "register_operand" "=ws") ! (unspec:TF [(match_operand:DI 1 "register_operand" "r")] ! UNSPEC_P8V_MTVSRD))] ! "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" ! "mtvsrd %0,%1" ! [(set_attr "type" "mftgpr")]) ! ! (define_insn "p8_mtvsrd_2" ! [(set (match_operand:TF 0 "register_operand" "+ws") ! (unspec:TF [(match_dup 0) ! (match_operand:DI 1 "register_operand" "r")] UNSPEC_P8V_MTVSRD))] "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" ! "mtvsrd %L0,%1" [(set_attr "type" "mftgpr")]) (define_insn "p8_xxpermdi_" [(set (match_operand:FMOVE128_GPR 0 "register_operand" "=wa") ! (unspec:FMOVE128_GPR [(match_operand:TF 1 "register_operand" "ws")] ! UNSPEC_P8V_XXPERMDI))] "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" ! "xxpermdi %x0,%1,%L1,0" [(set_attr "type" "vecperm")]) (define_insn_and_split "reload_vsx_from_gpr" --- 10008,10043 ---- { rtx dest = operands[0]; rtx src = operands[1]; ! rtx tmp_hi = simplify_gen_subreg (DFmode, operands[2], TFmode, 0); ! rtx tmp_lo = simplify_gen_subreg (DFmode, operands[2], TFmode, 8); rtx gpr_hi_reg = gen_highpart (SImode, src); rtx gpr_lo_reg = gen_lowpart (SImode, src); ! emit_insn (gen_p8_mtvsrwz (tmp_hi, gpr_hi_reg)); ! emit_insn (gen_p8_mtvsrwz (tmp_lo, gpr_lo_reg)); ! emit_insn (gen_p8_fmrgow_ (dest, tmp_hi, tmp_lo)); DONE; } [(set_attr "length" "12") (set_attr "type" "three")]) ;; Move 128 bit values from GPRs to VSX registers in 64-bit mode ! (define_insn "p8_mtvsrd_df" ! [(set (match_operand:DF 0 "register_operand" "=wa") ! (unspec:DF [(match_operand:DI 1 "register_operand" "r")] UNSPEC_P8V_MTVSRD))] "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" ! "mtvsrd %x0,%1" [(set_attr "type" "mftgpr")]) (define_insn "p8_xxpermdi_" [(set (match_operand:FMOVE128_GPR 0 "register_operand" "=wa") ! (unspec:FMOVE128_GPR [ ! (match_operand:DF 1 "register_operand" "wa") ! (match_operand:DF 2 "register_operand" "wa")] ! UNSPEC_P8V_XXPERMDI))] "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" ! "xxpermdi %x0,%x1,%x2,0" [(set_attr "type" "vecperm")]) (define_insn_and_split "reload_vsx_from_gpr" *************** *** 10061,10067 **** (unspec:FMOVE128_GPR [(match_operand:FMOVE128_GPR 1 "register_operand" "r")] UNSPEC_P8V_RELOAD_FROM_GPR)) ! (clobber (match_operand:TF 2 "register_operand" "=ws"))] "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" "#" "&& reload_completed" --- 10045,10051 ---- (unspec:FMOVE128_GPR [(match_operand:FMOVE128_GPR 1 "register_operand" "r")] UNSPEC_P8V_RELOAD_FROM_GPR)) ! (clobber (match_operand:TF 2 "register_operand" "=wa"))] "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" "#" "&& reload_completed" *************** *** 10069,10081 **** { rtx dest = operands[0]; rtx src = operands[1]; ! rtx tmp = operands[2]; rtx gpr_hi_reg = gen_highpart (DImode, src); rtx gpr_lo_reg = gen_lowpart (DImode, src); ! emit_insn (gen_p8_mtvsrd_1 (tmp, gpr_hi_reg)); ! emit_insn (gen_p8_mtvsrd_2 (tmp, gpr_lo_reg)); ! emit_insn (gen_p8_xxpermdi_ (dest, tmp)); } [(set_attr "length" "12") (set_attr "type" "three")]) --- 10053,10070 ---- { rtx dest = operands[0]; rtx src = operands[1]; ! /* You might think that we could use op0 as one temp and a DF clobber ! as op2, but you'd be wrong. Secondary reload move patterns don't ! check for overlap of the clobber and the destination. */ ! rtx tmp_hi = simplify_gen_subreg (DFmode, operands[2], TFmode, 0); ! rtx tmp_lo = simplify_gen_subreg (DFmode, operands[2], TFmode, 8); rtx gpr_hi_reg = gen_highpart (DImode, src); rtx gpr_lo_reg = gen_lowpart (DImode, src); ! emit_insn (gen_p8_mtvsrd_df (tmp_hi, gpr_hi_reg)); ! emit_insn (gen_p8_mtvsrd_df (tmp_lo, gpr_lo_reg)); ! emit_insn (gen_p8_xxpermdi_ (dest, tmp_hi, tmp_lo)); ! DONE; } [(set_attr "length" "12") (set_attr "type" "three")]) *************** *** 10092,10097 **** --- 10081,10093 ---- ;; Move SFmode to a VSX from a GPR register. Because scalar floating point ;; type is stored internally as double precision in the VSX registers, we have ;; to convert it from the vector format. + (define_insn "p8_mtvsrd_sf" + [(set (match_operand:SF 0 "register_operand" "=wa") + (unspec:SF [(match_operand:DI 1 "register_operand" "r")] + UNSPEC_P8V_MTVSRD))] + "TARGET_POWERPC64 && TARGET_DIRECT_MOVE" + "mtvsrd %x0,%1" + [(set_attr "type" "mftgpr")]) (define_insn_and_split "reload_vsx_from_gprsf" [(set (match_operand:SF 0 "register_operand" "=wa") *************** *** 10106,10121 **** rtx op0 = operands[0]; rtx op1 = operands[1]; rtx op2 = operands[2]; - /* Also use the destination register to hold the unconverted DImode value. - This is conceptually a separate value from OP0, so we use gen_rtx_REG - rather than simplify_gen_subreg. */ - rtx op0_di = gen_rtx_REG (DImode, REGNO (op0)); rtx op1_di = simplify_gen_subreg (DImode, op1, SFmode, 0); /* Move SF value to upper 32-bits for xscvspdpn. */ emit_insn (gen_ashldi3 (op2, op1_di, GEN_INT (32))); ! emit_move_insn (op0_di, op2); ! emit_insn (gen_vsx_xscvspdpn_directmove (op0, op0_di)); DONE; } [(set_attr "length" "8") --- 10102,10113 ---- rtx op0 = operands[0]; rtx op1 = operands[1]; rtx op2 = operands[2]; rtx op1_di = simplify_gen_subreg (DImode, op1, SFmode, 0); /* Move SF value to upper 32-bits for xscvspdpn. */ emit_insn (gen_ashldi3 (op2, op1_di, GEN_INT (32))); ! emit_insn (gen_p8_mtvsrd_sf (op0, op2)); ! emit_insn (gen_vsx_xscvspdpn_directmove (op0, op0)); DONE; } [(set_attr "length" "8") *************** *** 14917,14923 **** (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) --- 14909,14915 ---- (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*d*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) *************** *** 14941,14947 **** (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) --- 14933,14939 ---- (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*d*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) *************** *** 14967,14973 **** (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) --- 14959,14965 ---- (const_int 1)) (label_ref (match_operand 0 "" "")) (pc))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*d*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) *************** *** 14991,14997 **** (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) --- 14983,14989 ---- (const_int 1)) (pc) (label_ref (match_operand 0 "" "")))) ! (set (match_operand:P 2 "nonimmediate_operand" "=1,*r,m,*d*c*l") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "=X,&x,&x,&x")) *************** *** 15018,15024 **** (const_int 1)]) (match_operand 5 "" "") (match_operand 6 "" ""))) ! (set (match_operand:P 0 "gpc_reg_operand" "") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "")) (clobber (match_scratch:P 4 ""))] --- 15010,15016 ---- (const_int 1)]) (match_operand 5 "" "") (match_operand 6 "" ""))) ! (set (match_operand:P 0 "int_reg_operand" "") (plus:P (match_dup 1) (const_int -1))) (clobber (match_scratch:CC 3 "")) (clobber (match_scratch:P 4 ""))] diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/rs6000.opt gcc-4.9.4/gcc/config/rs6000/rs6000.opt *** gcc-4.9.3/gcc/config/rs6000/rs6000.opt Fri Apr 24 23:44:41 2015 --- gcc-4.9.4/gcc/config/rs6000/rs6000.opt Mon Aug 24 20:36:35 2015 *************** Target Undocumented Var(TARGET_ALLOW_MOV *** 212,218 **** ; Allow/disallow the movmisalign in DF/DI vectors mefficient-unaligned-vector ! Target Undocumented Report Var(TARGET_EFFICIENT_UNALIGNED_VSX) Init(-1) Save ; Consider unaligned VSX accesses to be efficient/inefficient mallow-df-permute --- 212,218 ---- ; Allow/disallow the movmisalign in DF/DI vectors mefficient-unaligned-vector ! Target Undocumented Report Mask(EFFICIENT_UNALIGNED_VSX) Var(rs6000_isa_flags) ; Consider unaligned VSX accesses to be efficient/inefficient mallow-df-permute diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/t-freebsd64 gcc-4.9.4/gcc/config/rs6000/t-freebsd64 *** gcc-4.9.3/gcc/config/rs6000/t-freebsd64 Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/rs6000/t-freebsd64 Wed Nov 11 21:21:43 2015 *************** *** 21,31 **** # On FreeBSD the 32-bit libraries are found under /usr/lib32. # Set MULTILIB_OSDIRNAMES according to this. ! MULTILIB_OPTIONS = m32 msoft-float ! MULTILIB_DIRNAMES = 32 nof MULTILIB_EXTRA_OPTS = fPIC mstrict-align MULTILIB_EXCEPTIONS = - MULTILIB_EXCLUSIONS = !m32/msoft-float MULTILIB_OSDIRNAMES = ../lib32 - #MULTILIB_MATCHES = $(MULTILIB_MATCHES_FLOAT) --- 21,29 ---- # On FreeBSD the 32-bit libraries are found under /usr/lib32. # Set MULTILIB_OSDIRNAMES according to this. ! MULTILIB_OPTIONS = m32 ! MULTILIB_DIRNAMES = 32 MULTILIB_EXTRA_OPTS = fPIC mstrict-align MULTILIB_EXCEPTIONS = MULTILIB_OSDIRNAMES = ../lib32 diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/vector.md gcc-4.9.4/gcc/config/rs6000/vector.md *** gcc-4.9.3/gcc/config/rs6000/vector.md Thu Mar 13 00:11:56 2014 --- gcc-4.9.4/gcc/config/rs6000/vector.md Thu Aug 27 18:42:04 2015 *************** *** 988,993 **** --- 988,994 ---- rtx bitshift = operands[2]; rtx shift; rtx insn; + rtx zero_reg; HOST_WIDE_INT bitshift_val; HOST_WIDE_INT byteshift_val; *************** *** 997,1012 **** if (bitshift_val & 0x7) FAIL; byteshift_val = bitshift_val >> 3; if (TARGET_VSX && (byteshift_val & 0x3) == 0) { shift = gen_rtx_CONST_INT (QImode, byteshift_val >> 2); ! insn = gen_vsx_xxsldwi_ (operands[0], operands[1], operands[1], shift); } else { shift = gen_rtx_CONST_INT (QImode, byteshift_val); ! insn = gen_altivec_vsldoi_ (operands[0], operands[1], operands[1], shift); } --- 998,1015 ---- if (bitshift_val & 0x7) FAIL; byteshift_val = bitshift_val >> 3; + zero_reg = gen_reg_rtx (mode); + emit_move_insn (zero_reg, CONST0_RTX (mode)); if (TARGET_VSX && (byteshift_val & 0x3) == 0) { shift = gen_rtx_CONST_INT (QImode, byteshift_val >> 2); ! insn = gen_vsx_xxsldwi_ (operands[0], operands[1], zero_reg, shift); } else { shift = gen_rtx_CONST_INT (QImode, byteshift_val); ! insn = gen_altivec_vsldoi_ (operands[0], operands[1], zero_reg, shift); } *************** *** 1029,1034 **** --- 1032,1038 ---- rtx bitshift = operands[2]; rtx shift; rtx insn; + rtx zero_reg; HOST_WIDE_INT bitshift_val; HOST_WIDE_INT byteshift_val; *************** *** 1038,1053 **** if (bitshift_val & 0x7) FAIL; byteshift_val = 16 - (bitshift_val >> 3); if (TARGET_VSX && (byteshift_val & 0x3) == 0) { shift = gen_rtx_CONST_INT (QImode, byteshift_val >> 2); ! insn = gen_vsx_xxsldwi_ (operands[0], operands[1], operands[1], shift); } else { shift = gen_rtx_CONST_INT (QImode, byteshift_val); ! insn = gen_altivec_vsldoi_ (operands[0], operands[1], operands[1], shift); } --- 1042,1059 ---- if (bitshift_val & 0x7) FAIL; byteshift_val = 16 - (bitshift_val >> 3); + zero_reg = gen_reg_rtx (mode); + emit_move_insn (zero_reg, CONST0_RTX (mode)); if (TARGET_VSX && (byteshift_val & 0x3) == 0) { shift = gen_rtx_CONST_INT (QImode, byteshift_val >> 2); ! insn = gen_vsx_xxsldwi_ (operands[0], zero_reg, operands[1], shift); } else { shift = gen_rtx_CONST_INT (QImode, byteshift_val); ! insn = gen_altivec_vsldoi_ (operands[0], zero_reg, operands[1], shift); } diff -Nrcpad gcc-4.9.3/gcc/config/rs6000/vsx.md gcc-4.9.4/gcc/config/rs6000/vsx.md *** gcc-4.9.3/gcc/config/rs6000/vsx.md Wed Dec 10 21:40:33 2014 --- gcc-4.9.4/gcc/config/rs6000/vsx.md Tue May 10 16:09:28 2016 *************** *** 1353,1359 **** ;; Used by direct move to move a SFmode value from GPR to VSX register (define_insn "vsx_xscvspdpn_directmove" [(set (match_operand:SF 0 "vsx_register_operand" "=wa") ! (unspec:SF [(match_operand:DI 1 "vsx_register_operand" "wa")] UNSPEC_VSX_CVSPDPN))] "TARGET_XSCVSPDPN" "xscvspdpn %x0,%x1" --- 1353,1359 ---- ;; Used by direct move to move a SFmode value from GPR to VSX register (define_insn "vsx_xscvspdpn_directmove" [(set (match_operand:SF 0 "vsx_register_operand" "=wa") ! (unspec:SF [(match_operand:SF 1 "vsx_register_operand" "wa")] UNSPEC_VSX_CVSPDPN))] "TARGET_XSCVSPDPN" "xscvspdpn %x0,%x1" *************** *** 1415,1424 **** { rtx op0 = operands[0]; rtx op1 = operands[1]; ! rtx tmp = gen_reg_rtx (V2DFmode); ! int scale = INTVAL(operands[2]); ! if (scale != 0) ! rs6000_scale_v2df (tmp, op1, scale); emit_insn (gen_vsx_xvcvdpsxds (op0, tmp)); DONE; }) --- 1415,1429 ---- { rtx op0 = operands[0]; rtx op1 = operands[1]; ! rtx tmp; ! int scale = INTVAL (operands[2]); ! if (scale == 0) ! tmp = op1; ! else ! { ! tmp = gen_reg_rtx (V2DFmode); ! rs6000_scale_v2df (tmp, op1, scale); ! } emit_insn (gen_vsx_xvcvdpsxds (op0, tmp)); DONE; }) *************** *** 1439,1448 **** { rtx op0 = operands[0]; rtx op1 = operands[1]; ! rtx tmp = gen_reg_rtx (V2DFmode); ! int scale = INTVAL(operands[2]); ! if (scale != 0) ! rs6000_scale_v2df (tmp, op1, scale); emit_insn (gen_vsx_xvcvdpuxds (op0, tmp)); DONE; }) --- 1444,1458 ---- { rtx op0 = operands[0]; rtx op1 = operands[1]; ! rtx tmp; ! int scale = INTVAL (operands[2]); ! if (scale == 0) ! tmp = op1; ! else ! { ! tmp = gen_reg_rtx (V2DFmode); ! rs6000_scale_v2df (tmp, op1, scale); ! } emit_insn (gen_vsx_xvcvdpuxds (op0, tmp)); DONE; }) diff -Nrcpad gcc-4.9.3/gcc/config/rtems.h gcc-4.9.4/gcc/config/rtems.h *** gcc-4.9.3/gcc/config/rtems.h Wed May 28 09:35:19 2014 --- gcc-4.9.4/gcc/config/rtems.h Mon May 9 06:13:05 2016 *************** see the files COPYING3 and COPYING.RUNTI *** 45,50 **** #define LIB_SPEC "%{!qrtems: " STD_LIB_SPEC "} " \ "%{!nostdlib: %{qrtems: --start-group \ -lrtemsbsp -lrtemscpu \ ! -lc -lgcc --end-group %{!qnolinkcmds: -T linkcmds%s}}}" #define TARGET_POSIX_IO --- 45,50 ---- #define LIB_SPEC "%{!qrtems: " STD_LIB_SPEC "} " \ "%{!nostdlib: %{qrtems: --start-group \ -lrtemsbsp -lrtemscpu \ ! -latomic -lc -lgcc --end-group %{!qnolinkcmds: -T linkcmds%s}}}" #define TARGET_POSIX_IO diff -Nrcpad gcc-4.9.3/gcc/config/s390/s390.c gcc-4.9.4/gcc/config/s390/s390.c *** gcc-4.9.3/gcc/config/s390/s390.c Mon Jun 1 11:28:09 2015 --- gcc-4.9.4/gcc/config/s390/s390.c Thu Apr 21 11:50:22 2016 *************** s390_save_gprs_to_fprs (void) *** 8595,8600 **** --- 8595,8604 ---- emit_move_insn (gen_rtx_REG (DImode, cfun_gpr_save_slot (i)), gen_rtx_REG (DImode, i)); RTX_FRAME_RELATED_P (insn) = 1; + /* This prevents dwarf2cfi from interpreting the set. Doing + so it might emit def_cfa_register infos setting an FPR as + new CFA. */ + add_reg_note (insn, REG_CFA_REGISTER, PATTERN (insn)); } } } *************** s390_restore_gprs_from_fprs (void) *** 8611,8629 **** for (i = 6; i < 16; i++) { ! if (FP_REGNO_P (cfun_gpr_save_slot (i))) ! { ! rtx insn = ! emit_move_insn (gen_rtx_REG (DImode, i), ! gen_rtx_REG (DImode, cfun_gpr_save_slot (i))); ! df_set_regs_ever_live (i, true); ! add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (DImode, i)); ! if (i == STACK_POINTER_REGNUM) ! add_reg_note (insn, REG_CFA_DEF_CFA, ! plus_constant (Pmode, stack_pointer_rtx, ! STACK_POINTER_OFFSET)); ! RTX_FRAME_RELATED_P (insn) = 1; ! } } } --- 8615,8639 ---- for (i = 6; i < 16; i++) { ! rtx insn; ! ! if (!FP_REGNO_P (cfun_gpr_save_slot (i))) ! continue; ! ! rtx fpr = gen_rtx_REG (DImode, cfun_gpr_save_slot (i)); ! ! if (i == STACK_POINTER_REGNUM) ! insn = emit_insn (gen_stack_restore_from_fpr (fpr)); ! else ! insn = emit_move_insn (gen_rtx_REG (DImode, i), fpr); ! ! df_set_regs_ever_live (i, true); ! add_reg_note (insn, REG_CFA_RESTORE, gen_rtx_REG (DImode, i)); ! if (i == STACK_POINTER_REGNUM) ! add_reg_note (insn, REG_CFA_DEF_CFA, ! plus_constant (Pmode, stack_pointer_rtx, ! STACK_POINTER_OFFSET)); ! RTX_FRAME_RELATED_P (insn) = 1; } } *************** s390_optimize_prologue (void) *** 10908,10944 **** /* Remove ldgr/lgdr instructions used for saving and restore GPRs if possible. */ ! if (TARGET_Z10 ! && GET_CODE (pat) == SET ! && GET_MODE (SET_SRC (pat)) == DImode ! && REG_P (SET_SRC (pat)) ! && REG_P (SET_DEST (pat))) { ! int src_regno = REGNO (SET_SRC (pat)); ! int dest_regno = REGNO (SET_DEST (pat)); ! int gpr_regno; ! int fpr_regno; ! if (!((GENERAL_REGNO_P (src_regno) && FP_REGNO_P (dest_regno)) ! || (FP_REGNO_P (src_regno) && GENERAL_REGNO_P (dest_regno)))) ! continue; ! gpr_regno = GENERAL_REGNO_P (src_regno) ? src_regno : dest_regno; ! fpr_regno = FP_REGNO_P (src_regno) ? src_regno : dest_regno; ! /* GPR must be call-saved, FPR must be call-clobbered. */ ! if (!call_really_used_regs[fpr_regno] ! || call_really_used_regs[gpr_regno]) ! continue; ! /* It must not happen that what we once saved in an FPR now ! needs a stack slot. */ ! gcc_assert (cfun_gpr_save_slot (gpr_regno) != -1); ! if (cfun_gpr_save_slot (gpr_regno) == 0) ! { ! remove_insn (insn); ! continue; } } --- 10918,10963 ---- /* Remove ldgr/lgdr instructions used for saving and restore GPRs if possible. */ ! if (TARGET_Z10) { ! rtx tmp_pat = pat; ! if (INSN_CODE (insn) == CODE_FOR_stack_restore_from_fpr) ! tmp_pat = XVECEXP (pat, 0, 0); ! if (GET_CODE (tmp_pat) == SET ! && GET_MODE (SET_SRC (tmp_pat)) == DImode ! && REG_P (SET_SRC (tmp_pat)) ! && REG_P (SET_DEST (tmp_pat))) ! { ! int src_regno = REGNO (SET_SRC (tmp_pat)); ! int dest_regno = REGNO (SET_DEST (tmp_pat)); ! int gpr_regno; ! int fpr_regno; ! if (!((GENERAL_REGNO_P (src_regno) ! && FP_REGNO_P (dest_regno)) ! || (FP_REGNO_P (src_regno) ! && GENERAL_REGNO_P (dest_regno)))) ! continue; ! gpr_regno = GENERAL_REGNO_P (src_regno) ? src_regno : dest_regno; ! fpr_regno = FP_REGNO_P (src_regno) ? src_regno : dest_regno; ! /* GPR must be call-saved, FPR must be call-clobbered. */ ! if (!call_really_used_regs[fpr_regno] ! || call_really_used_regs[gpr_regno]) ! continue; ! ! /* It must not happen that what we once saved in an FPR now ! needs a stack slot. */ ! gcc_assert (cfun_gpr_save_slot (gpr_regno) != -1); ! ! if (cfun_gpr_save_slot (gpr_regno) == 0) ! { ! remove_insn (insn); ! continue; ! } } } diff -Nrcpad gcc-4.9.3/gcc/config/s390/s390.md gcc-4.9.4/gcc/config/s390/s390.md *** gcc-4.9.3/gcc/config/s390/s390.md Thu Mar 12 11:36:55 2015 --- gcc-4.9.4/gcc/config/s390/s390.md Thu Apr 21 11:50:22 2016 *************** *** 183,188 **** --- 183,190 ---- (BASE_REGNUM 13) ; Return address register. (RETURN_REGNUM 14) + ; Stack pointer register. + (STACK_REGNUM 15) ; Condition code register. (CC_REGNUM 33) ; Thread local storage pointer register. *************** *** 9896,9901 **** --- 9898,9911 ---- [(set_attr "length" "0")]) + (define_insn "stack_restore_from_fpr" + [(set (reg:DI STACK_REGNUM) + (match_operand:DI 0 "register_operand" "f")) + (clobber (mem:BLK (scratch)))] + "TARGET_Z10" + "lgdr\t%%r15,%0" + [(set_attr "op_type" "RRE")]) + ; ; Data prefetch patterns ; diff -Nrcpad gcc-4.9.3/gcc/config/sh/sh.c gcc-4.9.4/gcc/config/sh/sh.c *** gcc-4.9.3/gcc/config/sh/sh.c Wed Feb 25 01:00:29 2015 --- gcc-4.9.4/gcc/config/sh/sh.c Sun Jun 28 07:02:47 2015 *************** prepare_move_operands (rtx operands[], e *** 1746,1757 **** || tls_kind == TLS_MODEL_LOCAL_DYNAMIC || tls_kind == TLS_MODEL_INITIAL_EXEC)) { /* Don't schedule insns for getting GOT address when the first scheduling is enabled, to avoid spill failures for R0. */ if (flag_schedule_insns) emit_insn (gen_blockage ()); ! emit_insn (gen_GOTaddr2picreg ()); emit_use (gen_rtx_REG (SImode, PIC_REG)); if (flag_schedule_insns) emit_insn (gen_blockage ()); --- 1746,1758 ---- || tls_kind == TLS_MODEL_LOCAL_DYNAMIC || tls_kind == TLS_MODEL_INITIAL_EXEC)) { + static int got_labelno; /* Don't schedule insns for getting GOT address when the first scheduling is enabled, to avoid spill failures for R0. */ if (flag_schedule_insns) emit_insn (gen_blockage ()); ! emit_insn (gen_GOTaddr2picreg (GEN_INT (++got_labelno))); emit_use (gen_rtx_REG (SImode, PIC_REG)); if (flag_schedule_insns) emit_insn (gen_blockage ()); *************** sh_expand_prologue (void) *** 7768,7774 **** } if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM)) ! emit_insn (gen_GOTaddr2picreg ()); if (SHMEDIA_REGS_STACK_ADJUST ()) { --- 7769,7775 ---- } if (flag_pic && df_regs_ever_live_p (PIC_OFFSET_TABLE_REGNUM)) ! emit_insn (gen_GOTaddr2picreg (const0_rtx)); if (SHMEDIA_REGS_STACK_ADJUST ()) { diff -Nrcpad gcc-4.9.3/gcc/config/sh/sh.md gcc-4.9.4/gcc/config/sh/sh.md *** gcc-4.9.3/gcc/config/sh/sh.md Tue Mar 10 08:09:56 2015 --- gcc-4.9.4/gcc/config/sh/sh.md Sat Feb 13 08:48:50 2016 *************** label: *** 7448,7453 **** --- 7448,7471 ---- "" { prepare_move_operands (operands, DImode); + if (TARGET_SH1) + { + /* When the dest operand is (R0, R1) register pair, split it to + two movsi of which dest is R1 and R0 so as to lower R0-register + pressure on the first movsi. Apply only for simple source not + to make complex rtl here. */ + if (REG_P (operands[0]) + && REGNO (operands[0]) == R0_REG + && REG_P (operands[1]) + && REGNO (operands[1]) >= FIRST_PSEUDO_REGISTER) + { + emit_insn (gen_movsi (gen_rtx_REG (SImode, R1_REG), + gen_rtx_SUBREG (SImode, operands[1], 4))); + emit_insn (gen_movsi (gen_rtx_REG (SImode, R0_REG), + gen_rtx_SUBREG (SImode, operands[1], 0))); + DONE; + } + } }) (define_insn "movdf_media" *************** label: *** 9587,9598 **** (const_string "single") (const_string "double"))) (set_attr "type" "jump_ind")]) (define_insn_and_split "sibcall_value_pcrel" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "symbol_ref_operand" "")) (match_operand 2 "" ""))) (use (reg:PSI FPSCR_REG)) ! (clobber (match_scratch:SI 3 "=k")) (return)] "TARGET_SH2" "#" --- 9605,9620 ---- (const_string "single") (const_string "double"))) (set_attr "type" "jump_ind")]) + ;; sibcall_value_pcrel used to have a =&k clobber for the scratch register + ;; that it needs for the branch address. This causes troubles when there + ;; is a big overlap of argument and return value registers. Hence, use a + ;; fixed call clobbered register for the address. See also PR 67260. (define_insn_and_split "sibcall_value_pcrel" [(set (match_operand 0 "" "=rf") (call (mem:SI (match_operand:SI 1 "symbol_ref_operand" "")) (match_operand 2 "" ""))) (use (reg:PSI FPSCR_REG)) ! (clobber (reg:SI R1_REG)) (return)] "TARGET_SH2" "#" *************** label: *** 9602,9607 **** --- 9624,9631 ---- rtx lab = PATTERN (gen_call_site ()); rtx call_insn; + operands[3] = gen_rtx_REG (SImode, R1_REG); + emit_insn (gen_sym_label2reg (operands[3], operands[1], lab)); call_insn = emit_call_insn (gen_sibcall_valuei_pcrel (operands[0], operands[3], *************** label: *** 9999,10010 **** [(set_attr "in_delay_slot" "no") (set_attr "type" "arith")]) (define_expand "GOTaddr2picreg" [(set (reg:SI R0_REG) ! (unspec:SI [(const:SI (unspec:SI [(match_dup 1)] UNSPEC_PIC))] ! UNSPEC_MOVA)) ! (set (match_dup 0) (const:SI (unspec:SI [(match_dup 1)] UNSPEC_PIC))) ! (set (match_dup 0) (plus:SI (match_dup 0) (reg:SI R0_REG)))] "" { if (TARGET_VXWORKS_RTP) --- 10023,10040 ---- [(set_attr "in_delay_slot" "no") (set_attr "type" "arith")]) + ;; Loads of the GOTPC relocation values must not be optimized away + ;; by e.g. any kind of CSE and must stay as they are. Although there + ;; are other various ways to ensure this, we use an artificial counter + ;; operand to generate unique symbols. (define_expand "GOTaddr2picreg" [(set (reg:SI R0_REG) ! (unspec:SI [(const:SI (unspec:SI [(match_dup 2) ! (match_operand:SI 0 "" "")] ! UNSPEC_PIC))] UNSPEC_MOVA)) ! (set (match_dup 1) ! (const:SI (unspec:SI [(match_dup 2) (match_dup 0)] UNSPEC_PIC))) ! (set (match_dup 1) (plus:SI (match_dup 1) (reg:SI R0_REG)))] "" { if (TARGET_VXWORKS_RTP) *************** label: *** 10015,10022 **** DONE; } ! operands[0] = gen_rtx_REG (Pmode, PIC_REG); ! operands[1] = gen_rtx_SYMBOL_REF (VOIDmode, GOT_SYMBOL_NAME); if (TARGET_SHMEDIA) { --- 10045,10052 ---- DONE; } ! operands[1] = gen_rtx_REG (Pmode, PIC_REG); ! operands[2] = gen_rtx_SYMBOL_REF (VOIDmode, GOT_SYMBOL_NAME); if (TARGET_SHMEDIA) { *************** label: *** 10025,10047 **** rtx lab = PATTERN (gen_call_site ()); rtx insn, equiv; ! equiv = operands[1]; ! operands[1] = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, operands[1], lab), UNSPEC_PCREL_SYMOFF); ! operands[1] = gen_rtx_CONST (Pmode, operands[1]); if (Pmode == SImode) { ! emit_insn (gen_movsi_const (pic, operands[1])); emit_insn (gen_ptrel_si (tr, pic, copy_rtx (lab))); } else { ! emit_insn (gen_movdi_const (pic, operands[1])); emit_insn (gen_ptrel_di (tr, pic, copy_rtx (lab))); } ! insn = emit_move_insn (operands[0], tr); set_unique_reg_note (insn, REG_EQUAL, equiv); --- 10055,10077 ---- rtx lab = PATTERN (gen_call_site ()); rtx insn, equiv; ! equiv = operands[2]; ! operands[2] = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, operands[2], lab), UNSPEC_PCREL_SYMOFF); ! operands[2] = gen_rtx_CONST (Pmode, operands[2]); if (Pmode == SImode) { ! emit_insn (gen_movsi_const (pic, operands[2])); emit_insn (gen_ptrel_si (tr, pic, copy_rtx (lab))); } else { ! emit_insn (gen_movdi_const (pic, operands[2])); emit_insn (gen_ptrel_di (tr, pic, copy_rtx (lab))); } ! insn = emit_move_insn (operands[1], tr); set_unique_reg_note (insn, REG_EQUAL, equiv); *************** label: *** 10095,10101 **** [(match_operand 0 "" "")] "flag_pic" { ! emit_insn (gen_GOTaddr2picreg ()); DONE; }) --- 10125,10131 ---- [(match_operand 0 "" "")] "flag_pic" { ! emit_insn (gen_GOTaddr2picreg (const0_rtx)); DONE; }) *************** label: *** 10152,10162 **** "__stack_chk_guard") == 0) stack_chk_guard_p = true; - /* Use R0 to avoid long R0 liveness which stack-protector tends to - produce. */ - if (stack_chk_guard_p && ! reload_in_progress && ! reload_completed) - operands[2] = gen_rtx_REG (Pmode, R0_REG); - if (TARGET_SHMEDIA) { rtx reg = operands[2]; --- 10182,10187 ---- *************** label: *** 10700,10711 **** ;; ??? reload might clobber r0 if we use it explicitly in the RTL before ;; reload; using a R0_REGS pseudo reg is likely to give poor code. ;; So we keep the use of r0 hidden in a R0_REGS clobber until after reload. (define_insn "casesi_worker_0" [(set (match_operand:SI 0 "register_operand" "=r,r") (unspec:SI [(match_operand:SI 1 "register_operand" "0,r") (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI)) (clobber (match_scratch:SI 3 "=X,1")) ! (clobber (match_scratch:SI 4 "=&z,z"))] "TARGET_SH1" "#") --- 10725,10740 ---- ;; ??? reload might clobber r0 if we use it explicitly in the RTL before ;; reload; using a R0_REGS pseudo reg is likely to give poor code. ;; So we keep the use of r0 hidden in a R0_REGS clobber until after reload. + ;; + ;; The use on the T_REG in the casesi_worker* patterns links the bounds + ;; checking insns and the table memory access. See also PR 69713. (define_insn "casesi_worker_0" [(set (match_operand:SI 0 "register_operand" "=r,r") (unspec:SI [(match_operand:SI 1 "register_operand" "0,r") (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI)) (clobber (match_scratch:SI 3 "=X,1")) ! (clobber (match_scratch:SI 4 "=&z,z")) ! (use (reg:SI T_REG))] "TARGET_SH1" "#") *************** label: *** 10714,10720 **** (unspec:SI [(match_operand:SI 1 "register_operand" "") (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI)) (clobber (match_scratch:SI 3 "")) ! (clobber (match_scratch:SI 4 ""))] "TARGET_SH1 && ! TARGET_SH2 && reload_completed" [(set (reg:SI R0_REG) (unspec:SI [(label_ref (match_dup 2))] UNSPEC_MOVA)) (parallel [(set (match_dup 0) --- 10743,10750 ---- (unspec:SI [(match_operand:SI 1 "register_operand" "") (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI)) (clobber (match_scratch:SI 3 "")) ! (clobber (match_scratch:SI 4)) ! (use (reg:SI T_REG))] "TARGET_SH1 && ! TARGET_SH2 && reload_completed" [(set (reg:SI R0_REG) (unspec:SI [(label_ref (match_dup 2))] UNSPEC_MOVA)) (parallel [(set (match_dup 0) *************** label: *** 10732,10738 **** (unspec:SI [(match_operand:SI 1 "register_operand" "") (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI)) (clobber (match_scratch:SI 3 "")) ! (clobber (match_scratch:SI 4 ""))] "TARGET_SH2 && reload_completed" [(set (reg:SI R0_REG) (unspec:SI [(label_ref (match_dup 2))] UNSPEC_MOVA)) (parallel [(set (match_dup 0) --- 10762,10769 ---- (unspec:SI [(match_operand:SI 1 "register_operand" "") (label_ref (match_operand 2 "" ""))] UNSPEC_CASESI)) (clobber (match_scratch:SI 3 "")) ! (clobber (match_scratch:SI 4)) ! (use (reg:SI T_REG))] "TARGET_SH2 && reload_completed" [(set (reg:SI R0_REG) (unspec:SI [(label_ref (match_dup 2))] UNSPEC_MOVA)) (parallel [(set (match_dup 0) *************** label: *** 10744,10749 **** --- 10775,10782 ---- LABEL_NUSES (operands[2])++; }) + ;; This may be replaced with casesi_worker_2 in sh_reorg for PIC. + ;; The insn length is set to 8 for that case. (define_insn "casesi_worker_1" [(set (match_operand:SI 0 "register_operand" "=r,r") (unspec:SI [(reg:SI R0_REG) *************** label: *** 10775,10781 **** gcc_unreachable (); } } ! [(set_attr "length" "4")]) (define_insn "casesi_worker_2" [(set (match_operand:SI 0 "register_operand" "=r,r") --- 10808,10816 ---- gcc_unreachable (); } } ! [(set_attr_alternative "length" ! [(if_then_else (match_test "flag_pic") (const_int 8) (const_int 4)) ! (if_then_else (match_test "flag_pic") (const_int 8) (const_int 4))])]) (define_insn "casesi_worker_2" [(set (match_operand:SI 0 "register_operand" "=r,r") diff -Nrcpad gcc-4.9.3/gcc/config/sparc/driver-sparc.c gcc-4.9.4/gcc/config/sparc/driver-sparc.c *** gcc-4.9.3/gcc/config/sparc/driver-sparc.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/sparc/driver-sparc.c Mon Sep 28 05:48:37 2015 *************** static const struct cpu_names { *** 73,78 **** --- 73,79 ---- { "UltraSparc T2", "niagara2" }, { "UltraSparc T3", "niagara3" }, { "UltraSparc T4", "niagara4" }, + { "LEON", "leon3" }, #endif { NULL, NULL } }; diff -Nrcpad gcc-4.9.3/gcc/config/sparc/leon.md gcc-4.9.4/gcc/config/sparc/leon.md *** gcc-4.9.3/gcc/config/sparc/leon.md Thu Nov 6 10:58:33 2014 --- gcc-4.9.4/gcc/config/sparc/leon.md Tue Jun 30 11:05:35 2015 *************** *** 24,35 **** (define_cpu_unit "leon_memory" "leon") (define_insn_reservation "leon_load" 1 ! (and (eq_attr "cpu" "leon") (eq_attr "type" "load,sload")) "leon_memory") ;; Use a double reservation to work around the load pipeline hazard on UT699. ! (define_insn_reservation "leon3_load" 1 ! (and (eq_attr "cpu" "leon3,leon3v7") (eq_attr "type" "load,sload")) "leon_memory*2") (define_insn_reservation "leon_store" 2 --- 24,37 ---- (define_cpu_unit "leon_memory" "leon") (define_insn_reservation "leon_load" 1 ! (and (eq_attr "cpu" "leon,leon3,leon3v7") ! (and (eq_attr "fix_ut699" "false") (eq_attr "type" "load,sload"))) "leon_memory") ;; Use a double reservation to work around the load pipeline hazard on UT699. ! (define_insn_reservation "ut699_load" 1 ! (and (eq_attr "cpu" "leon,leon3,leon3v7") ! (and (eq_attr "fix_ut699" "true") (eq_attr "type" "load,sload"))) "leon_memory*2") (define_insn_reservation "leon_store" 2 diff -Nrcpad gcc-4.9.3/gcc/config/sparc/sp-elf.h gcc-4.9.4/gcc/config/sparc/sp-elf.h *** gcc-4.9.3/gcc/config/sparc/sp-elf.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/config/sparc/sp-elf.h Thu Nov 19 11:51:20 2015 *************** along with GCC; see the file COPYING3. *** 53,58 **** --- 53,62 ---- #undef ASM_GENERATE_INTERNAL_LABEL #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \ sprintf ((LABEL), "*.L%s%ld", (PREFIX), (long)(NUM)) + + /* We use GNU ld so undefine this so that attribute((init_priority)) works. */ + #undef CTORS_SECTION_ASM_OP + #undef DTORS_SECTION_ASM_OP /* ??? Inherited from sol2.h. Probably wrong. */ #undef WCHAR_TYPE diff -Nrcpad gcc-4.9.3/gcc/config/sparc/sparc.c gcc-4.9.4/gcc/config/sparc/sparc.c *** gcc-4.9.3/gcc/config/sparc/sparc.c Thu Jun 11 15:59:27 2015 --- gcc-4.9.4/gcc/config/sparc/sparc.c Tue Apr 12 20:56:11 2016 *************** sparc_compute_frame_size (HOST_WIDE_INT *** 4980,4992 **** /* Calculate space needed for global registers. */ if (TARGET_ARCH64) ! for (i = 0; i < 8; i++) ! if (save_global_or_fp_reg_p (i, 0)) ! n_global_fp_regs += 2; else ! for (i = 0; i < 8; i += 2) ! if (save_global_or_fp_reg_p (i, 0) || save_global_or_fp_reg_p (i + 1, 0)) ! n_global_fp_regs += 2; /* In the flat window model, find out which local and in registers need to be saved. We don't reserve space in the current frame for them as they --- 4980,4997 ---- /* Calculate space needed for global registers. */ if (TARGET_ARCH64) ! { ! for (i = 0; i < 8; i++) ! if (save_global_or_fp_reg_p (i, 0)) ! n_global_fp_regs += 2; ! } else ! { ! for (i = 0; i < 8; i += 2) ! if (save_global_or_fp_reg_p (i, 0) ! || save_global_or_fp_reg_p (i + 1, 0)) ! n_global_fp_regs += 2; ! } /* In the flat window model, find out which local and in registers need to be saved. We don't reserve space in the current frame for them as they *************** sparc_function_value_1 (const_tree type, *** 7384,7392 **** mode = word_mode; } ! /* We should only have pointer and integer types at this point. This must ! match sparc_promote_function_mode. */ else if (TARGET_ARCH32 && mclass == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD) mode = word_mode; --- 7389,7398 ---- mode = word_mode; } ! /* We should only have pointer and integer types at this point, except with ! -freg-struct-return. This must match sparc_promote_function_mode. */ else if (TARGET_ARCH32 + && !(type && AGGREGATE_TYPE_P (type)) && mclass == MODE_INT && GET_MODE_SIZE (mode) < UNITS_PER_WORD) mode = word_mode; *************** sparc_libcall_value (enum machine_mode m *** 7427,7433 **** static bool sparc_function_value_regno_p (const unsigned int regno) { ! return (regno == 8 || regno == 32); } /* Do what is necessary for `va_start'. We look at the current function --- 7433,7439 ---- static bool sparc_function_value_regno_p (const unsigned int regno) { ! return (regno == 8 || (TARGET_FPU && regno == 32)); } /* Do what is necessary for `va_start'. We look at the current function diff -Nrcpad gcc-4.9.3/gcc/config/sparc/sparc.md gcc-4.9.4/gcc/config/sparc/sparc.md *** gcc-4.9.3/gcc/config/sparc/sparc.md Thu Jun 11 15:59:27 2015 --- gcc-4.9.4/gcc/config/sparc/sparc.md Mon Sep 28 05:43:53 2015 *************** *** 6398,6404 **** "" { rtx valreg1 = gen_rtx_REG (DImode, 8); - rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); rtx result = operands[1]; /* Pass constm1 to indicate that it may expect a structure value, but --- 6398,6403 ---- *************** *** 6407,6414 **** /* Save the function value registers. */ emit_move_insn (adjust_address (result, DImode, 0), valreg1); ! emit_move_insn (adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8), ! valreg2); /* The optimizer does not know that the call sets the function value registers we stored in the result block. We avoid problems by --- 6406,6417 ---- /* Save the function value registers. */ emit_move_insn (adjust_address (result, DImode, 0), valreg1); ! if (TARGET_FPU) ! { ! rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); ! emit_move_insn (adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8), ! valreg2); ! } /* The optimizer does not know that the call sets the function value registers we stored in the result block. We avoid problems by *************** *** 6620,6626 **** "" { rtx valreg1 = gen_rtx_REG (DImode, 24); - rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); rtx result = operands[0]; if (! TARGET_ARCH64) --- 6623,6628 ---- *************** *** 6637,6650 **** emit_insn (gen_update_return (rtnreg, value)); } ! /* Reload the function value registers. */ emit_move_insn (valreg1, adjust_address (result, DImode, 0)); - emit_move_insn (valreg2, - adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8)); - - /* Put USE insns before the return. */ emit_use (valreg1); ! emit_use (valreg2); /* Construct the return. */ expand_naked_return (); --- 6639,6656 ---- emit_insn (gen_update_return (rtnreg, value)); } ! /* Reload the function value registers. ! Put USE insns before the return. */ emit_move_insn (valreg1, adjust_address (result, DImode, 0)); emit_use (valreg1); ! ! if (TARGET_FPU) ! { ! rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); ! emit_move_insn (valreg2, ! adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8)); ! emit_use (valreg2); ! } /* Construct the return. */ expand_naked_return (); diff -Nrcpad gcc-4.9.3/gcc/config/sparc/sparc.opt gcc-4.9.4/gcc/config/sparc/sparc.opt *** gcc-4.9.3/gcc/config/sparc/sparc.opt Thu Nov 6 10:58:33 2014 --- gcc-4.9.4/gcc/config/sparc/sparc.opt Mon Sep 28 05:46:04 2015 *************** Target *** 114,121 **** Optimize tail call instructions in assembler and linker muser-mode ! Target Report Mask(USER_MODE) ! Do not generate code that can only run in supervisor mode mcpu= Target RejectNegative Joined Var(sparc_cpu_and_features) Enum(sparc_processor_type) Init(PROCESSOR_V7) --- 114,121 ---- Optimize tail call instructions in assembler and linker muser-mode ! Target Report InverseMask(SV_MODE) ! Do not generate code that can only run in supervisor mode (default) mcpu= Target RejectNegative Joined Var(sparc_cpu_and_features) Enum(sparc_processor_type) Init(PROCESSOR_V7) diff -Nrcpad gcc-4.9.3/gcc/config/sparc/sync.md gcc-4.9.4/gcc/config/sparc/sync.md *** gcc-4.9.3/gcc/config/sparc/sync.md Sat Jul 19 10:41:51 2014 --- gcc-4.9.4/gcc/config/sparc/sync.md Mon Sep 28 05:46:04 2015 *************** *** 222,231 **** UNSPECV_CAS))] "TARGET_LEON3" { ! if (TARGET_USER_MODE) ! return "casa\t%1 0xa, %2, %0"; /* ASI for user data space. */ ! else return "casa\t%1 0xb, %2, %0"; /* ASI for supervisor data space. */ } [(set_attr "type" "multi")]) --- 222,231 ---- UNSPECV_CAS))] "TARGET_LEON3" { ! if (TARGET_SV_MODE) return "casa\t%1 0xb, %2, %0"; /* ASI for supervisor data space. */ + else + return "casa\t%1 0xa, %2, %0"; /* ASI for user data space. */ } [(set_attr "type" "multi")]) diff -Nrcpad gcc-4.9.3/gcc/config/sparc/t-rtems gcc-4.9.4/gcc/config/sparc/t-rtems *** gcc-4.9.3/gcc/config/sparc/t-rtems Fri Nov 7 16:40:16 2014 --- gcc-4.9.4/gcc/config/sparc/t-rtems Mon Sep 28 15:03:06 2015 *************** *** 17,31 **** # . # ! MULTILIB_OPTIONS = msoft-float mcpu=v8/mcpu=leon3/mcpu=leon3v7 muser-mode ! MULTILIB_DIRNAMES = soft v8 leon3 leon3v7 user-mode MULTILIB_MATCHES = msoft-float=mno-fpu ! MULTILIB_EXCEPTIONS = muser-mode ! MULTILIB_EXCEPTIONS += mcpu=leon3 ! MULTILIB_EXCEPTIONS += mcpu=leon3v7 ! MULTILIB_EXCEPTIONS += msoft-float/mcpu=leon3 ! MULTILIB_EXCEPTIONS += msoft-float/mcpu=leon3v7 ! MULTILIB_EXCEPTIONS += msoft-float/muser-mode ! MULTILIB_EXCEPTIONS += msoft-float/mcpu=v8/muser-mode ! MULTILIB_EXCEPTIONS += mcpu=v8/muser-mode --- 17,36 ---- # . # ! MULTILIB_OPTIONS = msoft-float mcpu=v8/mcpu=leon3/mcpu=leon3v7/mcpu=leon \ ! mfix-ut699/mfix-at697f ! MULTILIB_DIRNAMES = soft v8 leon3 leon3v7 leon ut699 at697f MULTILIB_MATCHES = msoft-float=mno-fpu ! MULTILIB_EXCEPTIONS = mfix-ut699 ! MULTILIB_EXCEPTIONS += msoft-float/mfix-ut699 ! MULTILIB_EXCEPTIONS += msoft-float/mcpu=v8/mfix-ut699 ! MULTILIB_EXCEPTIONS += msoft-float/mcpu=leon3*/mfix-ut699 ! MULTILIB_EXCEPTIONS += mcpu=v8/mfix-ut699 ! MULTILIB_EXCEPTIONS += mcpu=leon3*/mfix-ut699 ! MULTILIB_EXCEPTIONS += mfix-at697f ! MULTILIB_EXCEPTIONS += msoft-float/mfix-at697f ! MULTILIB_EXCEPTIONS += msoft-float/mcpu=v8/mfix-at697f ! MULTILIB_EXCEPTIONS += msoft-float/mcpu=leon3*/mfix-at697f ! MULTILIB_EXCEPTIONS += mcpu=v8/mfix-at697f ! MULTILIB_EXCEPTIONS += mcpu=leon3*/mfix-at697f diff -Nrcpad gcc-4.9.3/gcc/config.gcc gcc-4.9.4/gcc/config.gcc *** gcc-4.9.3/gcc/config.gcc Thu May 21 20:50:59 2015 --- gcc-4.9.4/gcc/config.gcc Mon Mar 14 10:03:12 2016 *************** i[34567]86-*-solaris2* | x86_64-*-solari *** 1542,1550 **** esac with_tune_32=${with_tune_32:-generic} case ${target} in - *-*-solaris2.9*) - tm_file="${tm_file} i386/sol2-9.h" - ;; *-*-solaris2.1[0-9]*) tm_file="${tm_file} i386/x86-64.h i386/sol2-bi.h sol2-bi.h" tm_defines="${tm_defines} TARGET_BI_ARCH=1" --- 1542,1547 ---- diff -Nrcpad gcc-4.9.3/gcc/config.in gcc-4.9.4/gcc/config.in *** gcc-4.9.3/gcc/config.in Fri Jun 26 17:59:14 2015 --- gcc-4.9.4/gcc/config.in Wed Aug 3 05:09:47 2016 *************** *** 551,556 **** --- 551,562 ---- #endif + /* Define if your assembler supports .stabs. */ + #ifndef USED_FOR_TARGET + #undef HAVE_AS_STABS_DIRECTIVE + #endif + + /* Define if your assembler and linker support thread-local storage. */ #ifndef USED_FOR_TARGET #undef HAVE_AS_TLS *************** *** 1223,1228 **** --- 1229,1240 ---- #endif + /* Define if isl_options_set_schedule_serialize_sccs exists. */ + #ifndef USED_FOR_TARGET + #undef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS + #endif + + /* Define if isl_schedule_constraints_compute_schedule exists. */ #ifndef USED_FOR_TARGET #undef HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE diff -Nrcpad gcc-4.9.3/gcc/configure gcc-4.9.4/gcc/configure *** gcc-4.9.3/gcc/configure Tue May 12 08:55:54 2015 --- gcc-4.9.4/gcc/configure Sun May 22 08:53:32 2016 *************** _LT_EOF *** 15917,15923 **** if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else ! export_symbols_cmds='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no --- 15917,15923 ---- if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else ! export_symbols_cmds='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "L")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi aix_use_runtimelinking=no *************** $as_echo_n "checking whether the $compil *** 20403,20409 **** if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds_CXX='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else ! export_symbols_cmds_CXX='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi ;; pw32*) --- 20403,20409 ---- if $NM -V 2>&1 | $GREP 'GNU' > /dev/null; then export_symbols_cmds_CXX='$NM -Bpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "W")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' else ! export_symbols_cmds_CXX='$NM -BCpg $libobjs $convenience | awk '\''{ if (((\$ 2 == "T") || (\$ 2 == "D") || (\$ 2 == "B") || (\$ 2 == "L")) && (substr(\$ 3,1,1) != ".")) { print \$ 3 } }'\'' | sort -u > $export_symbols' fi ;; pw32*) *************** fi *** 21552,21558 **** if test "${with_plugin_ld+set}" = set; then : withval=$with_plugin_ld; if test x"$withval" != x; then ORIGINAL_PLUGIN_LD_FOR_TARGET="$withval" ! PLUGIN_LD_SUFFIX=`echo $withval | sed -e "s,$target_alias-,,"` fi fi --- 21552,21558 ---- if test "${with_plugin_ld+set}" = set; then : withval=$with_plugin_ld; if test x"$withval" != x; then ORIGINAL_PLUGIN_LD_FOR_TARGET="$withval" ! PLUGIN_LD_SUFFIX="$withval" fi fi *************** cat >>confdefs.h <<_ACEOF *** 22987,22992 **** --- 22987,23023 ---- _ACEOF + { $as_echo "$as_me:${as_lineno-$LINENO}: checking assembler for stabs directive" >&5 + $as_echo_n "checking assembler for stabs directive... " >&6; } + if test "${gcc_cv_as_stabs_directive+set}" = set; then : + $as_echo_n "(cached) " >&6 + else + gcc_cv_as_stabs_directive=no + if test x$gcc_cv_as != x; then + $as_echo '.stabs "gcc2_compiled.",60,0,0,0' > conftest.s + if { ac_try='$gcc_cv_as $gcc_cv_as_flags -o conftest.o conftest.s >&5' + { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_try\""; } >&5 + (eval $ac_try) 2>&5 + ac_status=$? + $as_echo "$as_me:${as_lineno-$LINENO}: \$? = $ac_status" >&5 + test $ac_status = 0; }; } + then + gcc_cv_as_stabs_directive=yes + else + echo "configure: failed program was" >&5 + cat conftest.s >&5 + fi + rm -f conftest.o conftest.s + fi + fi + { $as_echo "$as_me:${as_lineno-$LINENO}: result: $gcc_cv_as_stabs_directive" >&5 + $as_echo "$gcc_cv_as_stabs_directive" >&6; } + if test $gcc_cv_as_stabs_directive = yes; then + + $as_echo "#define HAVE_AS_STABS_DIRECTIVE 1" >>confdefs.h + + fi + { $as_echo "$as_me:${as_lineno-$LINENO}: checking assembler for COMDAT group support (GNU as)" >&5 $as_echo_n "checking assembler for COMDAT group support (GNU as)... " >&6; } if test "${gcc_cv_as_comdat_group+set}" = set; then : *************** if test "${gcc_cv_as_ix86_filds+set}" = *** 24810,24816 **** else gcc_cv_as_ix86_filds=no if test x$gcc_cv_as != x; then ! $as_echo 'filds mem; fists mem' > conftest.s if { ac_try='$gcc_cv_as $gcc_cv_as_flags -o conftest.o conftest.s >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_try\""; } >&5 (eval $ac_try) 2>&5 --- 24841,24847 ---- else gcc_cv_as_ix86_filds=no if test x$gcc_cv_as != x; then ! $as_echo 'filds (%ebp); fists (%ebp)' > conftest.s if { ac_try='$gcc_cv_as $gcc_cv_as_flags -o conftest.o conftest.s >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_try\""; } >&5 (eval $ac_try) 2>&5 *************** if test "${gcc_cv_as_ix86_fildq+set}" = *** 24841,24847 **** else gcc_cv_as_ix86_fildq=no if test x$gcc_cv_as != x; then ! $as_echo 'fildq mem; fistpq mem' > conftest.s if { ac_try='$gcc_cv_as $gcc_cv_as_flags -o conftest.o conftest.s >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_try\""; } >&5 (eval $ac_try) 2>&5 --- 24872,24878 ---- else gcc_cv_as_ix86_fildq=no if test x$gcc_cv_as != x; then ! $as_echo 'fildq (%ebp); fistpq (%ebp)' > conftest.s if { ac_try='$gcc_cv_as $gcc_cv_as_flags -o conftest.o conftest.s >&5' { { eval echo "\"\$as_me\":${as_lineno-$LINENO}: \"$ac_try\""; } >&5 (eval $ac_try) 2>&5 *************** $as_echo "#define HAVE_cloog 1" >>confde *** 27947,27952 **** --- 27978,27985 ---- # Check whether isl_schedule_constraints_compute_schedule is available; # it's new in ISL-0.13. + # Check whether isl_options_set_schedule_serialize_sccs is available; + # it's new in ISL-0.15. saved_CFLAGS="$CFLAGS" CFLAGS="$CFLAGS $ISLINC" saved_LIBS="$LIBS" *************** rm -f core conftest.err conftest.$ac_obj *** 27975,27980 **** --- 28008,28036 ---- { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_has_isl_schedule_constraints_compute_schedule" >&5 $as_echo "$ac_has_isl_schedule_constraints_compute_schedule" >&6; } + { $as_echo "$as_me:${as_lineno-$LINENO}: checking Checking for isl_options_set_schedule_serialize_sccs" >&5 + $as_echo_n "checking Checking for isl_options_set_schedule_serialize_sccs... " >&6; } + cat confdefs.h - <<_ACEOF >conftest.$ac_ext + /* end confdefs.h. */ + #include + int + main () + { + isl_options_set_schedule_serialize_sccs (NULL, 0); + ; + return 0; + } + _ACEOF + if ac_fn_c_try_link "$LINENO"; then : + ac_has_isl_options_set_schedule_serialize_sccs=yes + else + ac_has_isl_options_set_schedule_serialize_sccs=no + fi + rm -f core conftest.err conftest.$ac_objext \ + conftest$ac_exeext conftest.$ac_ext + { $as_echo "$as_me:${as_lineno-$LINENO}: result: $ac_has_isl_options_set_schedule_serialize_sccs" >&5 + $as_echo "$ac_has_isl_options_set_schedule_serialize_sccs" >&6; } + LIBS="$saved_LIBS" CFLAGS="$saved_CFLAGS" *************** $as_echo "$ac_has_isl_schedule_constrain *** 27983,27988 **** --- 28039,28050 ---- $as_echo "#define HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE 1" >>confdefs.h fi + + if test x"$ac_has_isl_options_set_schedule_serialize_sccs" = x"yes"; then + + $as_echo "#define HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS 1" >>confdefs.h + + fi fi diff -Nrcpad gcc-4.9.3/gcc/configure.ac gcc-4.9.4/gcc/configure.ac *** gcc-4.9.3/gcc/configure.ac Tue May 12 08:55:54 2015 --- gcc-4.9.4/gcc/configure.ac Sun May 22 08:53:32 2016 *************** AC_ARG_WITH(plugin-ld, *** 2098,2104 **** [AS_HELP_STRING([[--with-plugin-ld=[ARG]]], [specify the plugin linker])], [if test x"$withval" != x; then ORIGINAL_PLUGIN_LD_FOR_TARGET="$withval" ! PLUGIN_LD_SUFFIX=`echo $withval | sed -e "s,$target_alias-,,"` fi]) AC_SUBST(ORIGINAL_PLUGIN_LD_FOR_TARGET) AC_DEFINE_UNQUOTED(PLUGIN_LD_SUFFIX, "$PLUGIN_LD_SUFFIX", [Specify plugin linker]) --- 2098,2104 ---- [AS_HELP_STRING([[--with-plugin-ld=[ARG]]], [specify the plugin linker])], [if test x"$withval" != x; then ORIGINAL_PLUGIN_LD_FOR_TARGET="$withval" ! PLUGIN_LD_SUFFIX="$withval" fi]) AC_SUBST(ORIGINAL_PLUGIN_LD_FOR_TARGET) AC_DEFINE_UNQUOTED(PLUGIN_LD_SUFFIX, "$PLUGIN_LD_SUFFIX", [Specify plugin linker]) *************** AC_DEFINE_UNQUOTED(HAVE_GAS_SHF_MERGE, *** 2746,2751 **** --- 2746,2756 ---- [`if test $gcc_cv_as_shf_merge = yes; then echo 1; else echo 0; fi`], [Define 0/1 if your assembler supports marking sections with SHF_MERGE flag.]) + gcc_GAS_CHECK_FEATURE([stabs directive], gcc_cv_as_stabs_directive, ,, + [.stabs "gcc2_compiled.",60,0,0,0],, + [AC_DEFINE(HAVE_AS_STABS_DIRECTIVE, 1, + [Define if your assembler supports .stabs.])]) + gcc_GAS_CHECK_FEATURE([COMDAT group support (GNU as)], gcc_cv_as_comdat_group, [elf,2,16,0], [--fatal-warnings], *************** foo: nop *** 3858,3870 **** gcc_GAS_CHECK_FEATURE([filds and fists mnemonics], gcc_cv_as_ix86_filds,,, ! [filds mem; fists mem],, [AC_DEFINE(HAVE_AS_IX86_FILDS, 1, [Define if your assembler uses filds and fists mnemonics.])]) gcc_GAS_CHECK_FEATURE([fildq and fistpq mnemonics], gcc_cv_as_ix86_fildq,,, ! [fildq mem; fistpq mem],, [AC_DEFINE(HAVE_AS_IX86_FILDQ, 1, [Define if your assembler uses fildq and fistq mnemonics.])]) --- 3863,3875 ---- gcc_GAS_CHECK_FEATURE([filds and fists mnemonics], gcc_cv_as_ix86_filds,,, ! [filds (%ebp); fists (%ebp)],, [AC_DEFINE(HAVE_AS_IX86_FILDS, 1, [Define if your assembler uses filds and fists mnemonics.])]) gcc_GAS_CHECK_FEATURE([fildq and fistpq mnemonics], gcc_cv_as_ix86_fildq,,, ! [fildq (%ebp); fistpq (%ebp)],, [AC_DEFINE(HAVE_AS_IX86_FILDQ, 1, [Define if your assembler uses fildq and fistq mnemonics.])]) *************** if test "x${CLOOGLIBS}" != "x" ; then *** 5535,5540 **** --- 5540,5547 ---- # Check whether isl_schedule_constraints_compute_schedule is available; # it's new in ISL-0.13. + # Check whether isl_options_set_schedule_serialize_sccs is available; + # it's new in ISL-0.15. saved_CFLAGS="$CFLAGS" CFLAGS="$CFLAGS $ISLINC" saved_LIBS="$LIBS" *************** if test "x${CLOOGLIBS}" != "x" ; then *** 5547,5552 **** --- 5554,5566 ---- [ac_has_isl_schedule_constraints_compute_schedule=no]) AC_MSG_RESULT($ac_has_isl_schedule_constraints_compute_schedule) + AC_MSG_CHECKING([Checking for isl_options_set_schedule_serialize_sccs]) + AC_TRY_LINK([#include ], + [isl_options_set_schedule_serialize_sccs (NULL, 0);], + [ac_has_isl_options_set_schedule_serialize_sccs=yes], + [ac_has_isl_options_set_schedule_serialize_sccs=no]) + AC_MSG_RESULT($ac_has_isl_options_set_schedule_serialize_sccs) + LIBS="$saved_LIBS" CFLAGS="$saved_CFLAGS" *************** if test "x${CLOOGLIBS}" != "x" ; then *** 5554,5559 **** --- 5568,5578 ---- AC_DEFINE(HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE, 1, [Define if isl_schedule_constraints_compute_schedule exists.]) fi + + if test x"$ac_has_isl_options_set_schedule_serialize_sccs" = x"yes"; then + AC_DEFINE(HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS, 1, + [Define if isl_options_set_schedule_serialize_sccs exists.]) + fi fi diff -Nrcpad gcc-4.9.3/gcc/cp/ChangeLog gcc-4.9.4/gcc/cp/ChangeLog *** gcc-4.9.3/gcc/cp/ChangeLog Fri Jun 26 17:56:05 2015 --- gcc-4.9.4/gcc/cp/ChangeLog Wed Aug 3 05:07:29 2016 *************** *** 1,3 **** --- 1,148 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2016-07-21 Jason Merrill + + PR c++/69223 + * semantics.c (apply_deduced_return_type): Call + complete_type_or_else before building the new RESULT_DECL. + + PR c++/71913 + * call.c (unsafe_copy_elision_p): It's OK to elide when + initializing an unknown object. + + 2016-07-20 Jakub Jelinek + + PR c++/71909 + * parser.c (cp_parser_save_member_function_body): Consume + __transaction_relaxed or __transaction_atomic with optional + attribute. Only skip catch with block if try keyword is seen. + + 2016-07-19 Jakub Jelinek + + Backported from mainline + 2016-07-18 Jakub Jelinek + + PR c++/71871 + * typeck.c (build_x_conditional_expr): Revert the 2012-10-25 change. + + 2016-07-07 Jakub Jelinek + + Backported from mainline + 2016-02-19 Jakub Jelinek + + PR c++/67767 + * parser.c (cp_parser_std_attribute_spec_seq): Don't assume + attr_spec is always single element chain, chain all the attributes + properly together in the right order. + + 2016-05-18 Jason Merrill + + PR c++/70505 + * pt.c (tsubst_baselink): Give the new TEMPLATE_ID_EXPR + unknown_type_node, too. + + 2016-04-13 Alan Modra + + Backport from mainline + 2016-03-22 Patrick Palka + PR target/70107 + PR c++/70096 + * pt.c (tsubst_decl): Clear the DECL_MODE of the new decl. + + 2016-03-18 Jonathan Wakely + + Backported from mainline + 2014-12-19 Kai Tietz + + PR c++/61198 + * pt.c (most_general_template): Don't break for template-alias. + + 2016-03-03 Jason Merrill + + PR c++/65061 + * parser.c (cp_parser_template_name): Call strip_using_decl. + + 2016-02-25 Bernd Edlinger + + Backported from mainline + 2016-02-19 Jakub Jelinek + Bernd Edlinger + + * Make-lang.in: Invoke gperf with -L C++. + * cfns.gperf: Remove prototypes for hash and libc_name_p + inlines. + * cfns.h: Regenerated. + * except.c (nothrow_libfn_p): Adjust. + + 2016-02-11 Jakub Jelinek + + Backported from mainline + 2016-02-08 Jakub Jelinek + + PR c++/59627 + * parser.c (cp_parser_omp_declare_reduction): Set assembler name + of the DECL_OMP_DECLARE_REDUCTION_P decls. + + 2016-02-10 Jason Merrill + + PR c++/68926 + * pt.c (resolve_nondeduced_context): Add complain parm. + (do_auto_deduction): Pass it. + * cvt.c (convert_to_void): Likewise. + * decl.c (cp_finish_decl): Likewise. + * init.c (build_new): Likewise. + * rtti.c (get_tinfo_decl_dynamic): Likewise. + * semantics.c (finish_decltype_type): Likewise. + * typeck.c (decay_conversion): Likewise. + * cp-tree.h: Adjust declaration. + + 2016-01-07 Jason Merrill + + PR c++/68983 + PR c++/67557 + * call.c (unsafe_copy_elision_p): Look through COMPOUND_EXPR. + + 2015-12-21 Jason Merrill + + PR c++/66921 + * decl.c (cp_complete_array_type): Allow an initializer that + already has array type. + + 2015-12-17 Jason Merrill + + PR c++/67576 + PR c++/25466 + * rtti.c (build_typeid): Use save_expr, not stabilize_reference. + + PR c++/67557 + * call.c (is_base_field_ref): New. + (unsafe_copy_elision_p): New. + (build_over_call): Use it. + + 2015-12-04 Markus Trippelsdorf + + PR c++/67337 + * mangle.c (write_template_prefix): Guard against context==NULL. + + 2015-08-17 Jason Merrill + + PR c++/66957 + * search.c (protected_accessible_p): Revert fix for 38579. + + PR c++/58063 + * tree.c (bot_manip): Remap SAVE_EXPR. + + 2015-07-16 Marek Polacek + + 2015-07-08 Marek Polacek + Backported from mainline + + PR c++/66748 + * tree.c (handle_abi_tag_attribute): Check for CLASS_TYPE_P before + accessing TYPE_LANG_SPECIFIC node. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/cp/Make-lang.in gcc-4.9.4/gcc/cp/Make-lang.in *** gcc-4.9.3/gcc/cp/Make-lang.in Tue Apr 15 08:04:17 2014 --- gcc-4.9.4/gcc/cp/Make-lang.in Thu Feb 25 15:36:41 2016 *************** else *** 111,117 **** # deleting the $(srcdir)/cp/cfns.h file. $(srcdir)/cp/cfns.h: endif ! gperf -o -C -E -k '1-6,$$' -j1 -D -N 'libc_name_p' -L ANSI-C \ $(srcdir)/cp/cfns.gperf --output-file $(srcdir)/cp/cfns.h # --- 111,117 ---- # deleting the $(srcdir)/cp/cfns.h file. $(srcdir)/cp/cfns.h: endif ! gperf -o -C -E -k '1-6,$$' -j1 -D -N 'libc_name_p' -L C++ \ $(srcdir)/cp/cfns.gperf --output-file $(srcdir)/cp/cfns.h # diff -Nrcpad gcc-4.9.3/gcc/cp/call.c gcc-4.9.4/gcc/cp/call.c *** gcc-4.9.3/gcc/cp/call.c Wed Jan 7 15:18:05 2015 --- gcc-4.9.4/gcc/cp/call.c Fri Jul 22 03:41:44 2016 *************** mark_versions_used (tree fn) *** 6734,6739 **** --- 6734,6776 ---- } } + /* Return true iff T refers to a base field. */ + + static bool + is_base_field_ref (tree t) + { + STRIP_NOPS (t); + if (TREE_CODE (t) == ADDR_EXPR) + t = TREE_OPERAND (t, 0); + if (TREE_CODE (t) == COMPONENT_REF) + t = TREE_OPERAND (t, 1); + if (TREE_CODE (t) == FIELD_DECL) + return DECL_FIELD_IS_BASE (t); + return false; + } + + /* We can't elide a copy from a function returning by value to a base + subobject, as the callee might clobber tail padding. Return true iff this + could be that case. */ + + static bool + unsafe_copy_elision_p (tree target, tree exp) + { + tree type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); + /* It's safe to elide the copy for a class with no tail padding. */ + if (tree_int_cst_equal (TYPE_SIZE (type), CLASSTYPE_SIZE (type))) + return false; + /* It's safe to elide the copy if we aren't initializing a base object. */ + if (!is_base_field_ref (target)) + return false; + tree init = TARGET_EXPR_INITIAL (exp); + /* build_compound_expr pushes COMPOUND_EXPR inside TARGET_EXPR. */ + while (TREE_CODE (init) == COMPOUND_EXPR) + init = TREE_OPERAND (init, 1); + return (TREE_CODE (init) == AGGR_INIT_EXPR + && !AGGR_INIT_VIA_CTOR_P (init)); + } + /* Subroutine of the various build_*_call functions. Overload resolution has chosen a winning candidate CAND; build up a CALL_EXPR accordingly. ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a *************** build_over_call (struct z_candidate *can *** 7133,7139 **** else if (trivial) return force_target_expr (DECL_CONTEXT (fn), arg, complain); } ! else if (TREE_CODE (arg) == TARGET_EXPR || trivial) { tree to = stabilize_reference (cp_build_indirect_ref (fa, RO_NULL, complain)); --- 7170,7178 ---- else if (trivial) return force_target_expr (DECL_CONTEXT (fn), arg, complain); } ! else if (trivial ! || (TREE_CODE (arg) == TARGET_EXPR ! && !unsafe_copy_elision_p (fa, arg))) { tree to = stabilize_reference (cp_build_indirect_ref (fa, RO_NULL, complain)); diff -Nrcpad gcc-4.9.3/gcc/cp/cfns.gperf gcc-4.9.4/gcc/cp/cfns.gperf *** gcc-4.9.3/gcc/cp/cfns.gperf Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/cp/cfns.gperf Thu Feb 25 15:36:41 2016 *************** *** 1,3 **** --- 1,5 ---- + %language=C++ + %define class-name libc_name %{ /* Copyright (C) 2000-2014 Free Software Foundation, Inc. *************** for more details. *** 16,29 **** You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ - #ifdef __GNUC__ - __inline - #endif - static unsigned int hash (const char *, unsigned int); - #ifdef __GNUC__ - __inline - #endif - const char * libc_name_p (const char *, unsigned int); %} %% # The standard C library functions, for feeding to gperf; the result is used --- 18,23 ---- diff -Nrcpad gcc-4.9.3/gcc/cp/cfns.h gcc-4.9.4/gcc/cp/cfns.h *** gcc-4.9.3/gcc/cp/cfns.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/cp/cfns.h Thu Feb 25 15:36:41 2016 *************** *** 1,5 **** ! /* ANSI-C code produced by gperf version 3.0.3 */ ! /* Command-line: gperf -o -C -E -k '1-6,$' -j1 -D -N libc_name_p -L ANSI-C cfns.gperf */ #if !((' ' == 32) && ('!' == 33) && ('"' == 34) && ('#' == 35) \ && ('%' == 37) && ('&' == 38) && ('\'' == 39) && ('(' == 40) \ --- 1,5 ---- ! /* C++ code produced by gperf version 3.0.4 */ ! /* Command-line: gperf -o -C -E -k '1-6,$' -j1 -D -N libc_name_p -L C++ --output-file cfns.h cfns.gperf */ #if !((' ' == 32) && ('!' == 33) && ('"' == 34) && ('#' == 35) \ && ('%' == 37) && ('&' == 38) && ('\'' == 39) && ('(' == 40) \ *************** *** 28,34 **** #error "gperf generated tables don't work with this execution character set. Please report a bug to ." #endif ! #line 1 "cfns.gperf" /* Copyright (C) 2000-2014 Free Software Foundation, Inc. --- 28,34 ---- #error "gperf generated tables don't work with this execution character set. Please report a bug to ." #endif ! #line 3 "cfns.gperf" /* Copyright (C) 2000-2014 Free Software Foundation, Inc. *************** for more details. *** 47,71 **** You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ - #ifdef __GNUC__ - __inline - #endif - static unsigned int hash (const char *, unsigned int); - #ifdef __GNUC__ - __inline - #endif - const char * libc_name_p (const char *, unsigned int); /* maximum key range = 391, duplicates = 0 */ ! #ifdef __GNUC__ ! __inline ! #else ! #ifdef __cplusplus ! inline ! #endif ! #endif ! static unsigned int ! hash (register const char *str, register unsigned int len) { static const unsigned short asso_values[] = { --- 47,64 ---- You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ /* maximum key range = 391, duplicates = 0 */ ! class libc_name ! { ! private: ! static inline unsigned int hash (const char *str, unsigned int len); ! public: ! static const char *libc_name_p (const char *str, unsigned int len); ! }; ! ! inline unsigned int ! libc_name::hash (register const char *str, register unsigned int len) { static const unsigned short asso_values[] = { *************** hash (register const char *str, register *** 122,135 **** return hval + asso_values[(unsigned char)str[len - 1]]; } - #ifdef __GNUC__ - __inline - #ifdef __GNUC_STDC_INLINE__ - __attribute__ ((__gnu_inline__)) - #endif - #endif const char * ! libc_name_p (register const char *str, register unsigned int len) { enum { --- 115,122 ---- return hval + asso_values[(unsigned char)str[len - 1]]; } const char * ! libc_name::libc_name_p (register const char *str, register unsigned int len) { enum { diff -Nrcpad gcc-4.9.3/gcc/cp/cp-tree.h gcc-4.9.4/gcc/cp/cp-tree.h *** gcc-4.9.3/gcc/cp/cp-tree.h Fri Dec 19 09:13:05 2014 --- gcc-4.9.4/gcc/cp/cp-tree.h Wed Feb 10 19:35:35 2016 *************** extern tree get_template_parms_at_level *** 5632,5638 **** extern tree get_template_innermost_arguments (const_tree); extern tree get_template_argument_pack_elems (const_tree); extern tree get_function_template_decl (const_tree); ! extern tree resolve_nondeduced_context (tree); extern hashval_t iterative_hash_template_arg (tree arg, hashval_t val); /* in repo.c */ --- 5632,5638 ---- extern tree get_template_innermost_arguments (const_tree); extern tree get_template_argument_pack_elems (const_tree); extern tree get_function_template_decl (const_tree); ! extern tree resolve_nondeduced_context (tree, tsubst_flags_t); extern hashval_t iterative_hash_template_arg (tree arg, hashval_t val); /* in repo.c */ diff -Nrcpad gcc-4.9.3/gcc/cp/cvt.c gcc-4.9.4/gcc/cp/cvt.c *** gcc-4.9.3/gcc/cp/cvt.c Thu Apr 23 13:21:17 2015 --- gcc-4.9.4/gcc/cp/cvt.c Wed Feb 10 19:35:35 2016 *************** convert_to_void (tree expr, impl_conv_vo *** 1253,1259 **** default:; } ! expr = resolve_nondeduced_context (expr); { tree probe = expr; --- 1253,1259 ---- default:; } ! expr = resolve_nondeduced_context (expr, complain); { tree probe = expr; diff -Nrcpad gcc-4.9.3/gcc/cp/decl.c gcc-4.9.4/gcc/cp/decl.c *** gcc-4.9.3/gcc/cp/decl.c Thu Apr 23 13:21:06 2015 --- gcc-4.9.4/gcc/cp/decl.c Wed Feb 10 19:35:35 2016 *************** cp_finish_decl (tree decl, tree init, bo *** 6215,6221 **** if (TREE_CODE (d_init) == TREE_LIST) d_init = build_x_compound_expr_from_list (d_init, ELK_INIT, tf_warning_or_error); ! d_init = resolve_nondeduced_context (d_init); type = TREE_TYPE (decl) = do_auto_deduction (type, d_init, auto_node); if (type == error_mark_node) --- 6215,6221 ---- if (TREE_CODE (d_init) == TREE_LIST) d_init = build_x_compound_expr_from_list (d_init, ELK_INIT, tf_warning_or_error); ! d_init = resolve_nondeduced_context (d_init, tf_warning_or_error); type = TREE_TYPE (decl) = do_auto_deduction (type, d_init, auto_node); if (type == error_mark_node) *************** cp_complete_array_type (tree *ptype, tre *** 7138,7144 **** /* Don't get confused by a CONSTRUCTOR for some other type. */ if (initial_value && TREE_CODE (initial_value) == CONSTRUCTOR ! && !BRACE_ENCLOSED_INITIALIZER_P (initial_value)) return 1; if (initial_value) --- 7138,7145 ---- /* Don't get confused by a CONSTRUCTOR for some other type. */ if (initial_value && TREE_CODE (initial_value) == CONSTRUCTOR ! && !BRACE_ENCLOSED_INITIALIZER_P (initial_value) ! && TREE_CODE (TREE_TYPE (initial_value)) != ARRAY_TYPE) return 1; if (initial_value) diff -Nrcpad gcc-4.9.3/gcc/cp/except.c gcc-4.9.4/gcc/cp/except.c *** gcc-4.9.3/gcc/cp/except.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/cp/except.c Thu Feb 25 15:36:41 2016 *************** nothrow_libfn_p (const_tree fn) *** 1030,1036 **** unless the system headers are playing rename tricks, and if they are, we don't want to be confused by them. */ id = DECL_NAME (fn); ! return !!libc_name_p (IDENTIFIER_POINTER (id), IDENTIFIER_LENGTH (id)); } /* Returns nonzero if an exception of type FROM will be caught by a --- 1030,1037 ---- unless the system headers are playing rename tricks, and if they are, we don't want to be confused by them. */ id = DECL_NAME (fn); ! return !!libc_name::libc_name_p (IDENTIFIER_POINTER (id), ! IDENTIFIER_LENGTH (id)); } /* Returns nonzero if an exception of type FROM will be caught by a diff -Nrcpad gcc-4.9.3/gcc/cp/init.c gcc-4.9.4/gcc/cp/init.c *** gcc-4.9.3/gcc/cp/init.c Wed Jun 24 15:41:52 2015 --- gcc-4.9.4/gcc/cp/init.c Wed Feb 10 19:35:35 2016 *************** build_new (vec **placement, *** 3027,3033 **** if (auto_node) { tree d_init = (**init)[0]; ! d_init = resolve_nondeduced_context (d_init); type = do_auto_deduction (type, d_init, auto_node); } } --- 3027,3033 ---- if (auto_node) { tree d_init = (**init)[0]; ! d_init = resolve_nondeduced_context (d_init, complain); type = do_auto_deduction (type, d_init, auto_node); } } diff -Nrcpad gcc-4.9.3/gcc/cp/mangle.c gcc-4.9.4/gcc/cp/mangle.c *** gcc-4.9.3/gcc/cp/mangle.c Wed Jan 7 15:17:59 2015 --- gcc-4.9.4/gcc/cp/mangle.c Fri Dec 4 11:46:39 2015 *************** write_template_prefix (const tree node) *** 1118,1124 **** So, for the example above, `Outer::Inner' is represented as a substitution candidate by a TREE_LIST whose purpose is `Outer' and whose value is `Outer::Inner'. */ ! if (TYPE_P (context)) substitution = build_tree_list (context, templ); else substitution = templ; --- 1118,1124 ---- So, for the example above, `Outer::Inner' is represented as a substitution candidate by a TREE_LIST whose purpose is `Outer' and whose value is `Outer::Inner'. */ ! if (context && TYPE_P (context)) substitution = build_tree_list (context, templ); else substitution = templ; diff -Nrcpad gcc-4.9.3/gcc/cp/parser.c gcc-4.9.4/gcc/cp/parser.c *** gcc-4.9.3/gcc/cp/parser.c Wed Feb 11 14:44:10 2015 --- gcc-4.9.4/gcc/cp/parser.c Wed Jul 20 14:32:46 2016 *************** cp_parser_template_name (cp_parser* pars *** 13669,13674 **** --- 13669,13676 ---- /*ambiguous_decls=*/NULL, token->location); + decl = strip_using_decl (decl); + /* If DECL is a template, then the name was a template-name. */ if (TREE_CODE (decl) == TEMPLATE_DECL) ; *************** cp_parser_std_attribute_spec (cp_parser *** 22045,22051 **** static tree cp_parser_std_attribute_spec_seq (cp_parser *parser) { ! tree attr_specs = NULL; while (true) { --- 22047,22054 ---- static tree cp_parser_std_attribute_spec_seq (cp_parser *parser) { ! tree attr_specs = NULL_TREE; ! tree attr_last = NULL_TREE; while (true) { *************** cp_parser_std_attribute_spec_seq (cp_par *** 22055,22065 **** if (attr_spec == error_mark_node) return error_mark_node; ! TREE_CHAIN (attr_spec) = attr_specs; ! attr_specs = attr_spec; } - attr_specs = nreverse (attr_specs); return attr_specs; } --- 22058,22070 ---- if (attr_spec == error_mark_node) return error_mark_node; ! if (attr_last) ! TREE_CHAIN (attr_last) = attr_spec; ! else ! attr_specs = attr_last = attr_spec; ! attr_last = tree_last (attr_last); } return attr_specs; } *************** cp_parser_save_member_function_body (cp_ *** 23361,23366 **** --- 23366,23372 ---- cp_token *first; cp_token *last; tree fn; + bool function_try_block = false; /* Create the FUNCTION_DECL. */ fn = grokmethod (decl_specifiers, declarator, attributes); *************** cp_parser_save_member_function_body (cp_ *** 23381,23389 **** /* Save away the tokens that make up the body of the function. */ first = parser->lexer->next_token; /* Handle function try blocks. */ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY)) ! cp_lexer_consume_token (parser->lexer); /* We can have braced-init-list mem-initializers before the fn body. */ if (cp_lexer_next_token_is (parser->lexer, CPP_COLON)) { --- 23387,23434 ---- /* Save away the tokens that make up the body of the function. */ first = parser->lexer->next_token; + + if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRANSACTION_RELAXED)) + cp_lexer_consume_token (parser->lexer); + else if (cp_lexer_next_token_is_keyword (parser->lexer, + RID_TRANSACTION_ATOMIC)) + { + cp_lexer_consume_token (parser->lexer); + /* Match cp_parser_txn_attribute_opt [[ identifier ]]. */ + if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE) + && (cp_lexer_peek_nth_token (parser->lexer, 2)->type + == CPP_OPEN_SQUARE) + && (cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_NAME + || (cp_lexer_peek_nth_token (parser->lexer, 3)->type + == CPP_KEYWORD)) + && (cp_lexer_peek_nth_token (parser->lexer, 4)->type + == CPP_CLOSE_SQUARE) + && (cp_lexer_peek_nth_token (parser->lexer, 5)->type + == CPP_CLOSE_SQUARE)) + { + cp_lexer_consume_token (parser->lexer); + cp_lexer_consume_token (parser->lexer); + cp_lexer_consume_token (parser->lexer); + cp_lexer_consume_token (parser->lexer); + cp_lexer_consume_token (parser->lexer); + } + else + while (cp_next_tokens_can_be_gnu_attribute_p (parser) + && (cp_lexer_peek_nth_token (parser->lexer, 2)->type + == CPP_OPEN_PAREN)) + { + cp_lexer_consume_token (parser->lexer); + if (cp_parser_cache_group (parser, CPP_CLOSE_PAREN, /*depth=*/0)) + break; + } + } + /* Handle function try blocks. */ if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY)) ! { ! cp_lexer_consume_token (parser->lexer); ! function_try_block = true; ! } /* We can have braced-init-list mem-initializers before the fn body. */ if (cp_lexer_next_token_is (parser->lexer, CPP_COLON)) { *************** cp_parser_save_member_function_body (cp_ *** 23401,23408 **** } cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0); /* Handle function try blocks. */ ! while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH)) ! cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0); last = parser->lexer->next_token; /* Save away the inline definition; we will process it when the --- 23446,23454 ---- } cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0); /* Handle function try blocks. */ ! if (function_try_block) ! while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH)) ! cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0); last = parser->lexer->next_token; /* Save away the inline definition; we will process it when the *************** cp_parser_omp_declare_reduction (cp_pars *** 30918,30923 **** --- 30964,30970 ---- DECL_DECLARED_INLINE_P (fndecl) = 1; DECL_IGNORED_P (fndecl) = 1; DECL_OMP_DECLARE_REDUCTION_P (fndecl) = 1; + SET_DECL_ASSEMBLER_NAME (fndecl, get_identifier ("")); DECL_ATTRIBUTES (fndecl) = tree_cons (get_identifier ("gnu_inline"), NULL_TREE, DECL_ATTRIBUTES (fndecl)); diff -Nrcpad gcc-4.9.3/gcc/cp/pt.c gcc-4.9.4/gcc/cp/pt.c *** gcc-4.9.3/gcc/cp/pt.c Wed Apr 29 09:10:13 2015 --- gcc-4.9.4/gcc/cp/pt.c Wed May 18 17:40:49 2016 *************** tsubst_decl (tree t, tree args, tsubst_f *** 11164,11169 **** --- 11164,11171 ---- /* The initializer must not be expanded until it is required; see [temp.inst]. */ DECL_INITIAL (r) = NULL_TREE; + if (VAR_P (r)) + DECL_MODE (r) = VOIDmode; if (CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_DECL_WRTL)) SET_DECL_RTL (r, NULL); DECL_SIZE (r) = DECL_SIZE_UNIT (r) = 0; *************** tsubst_baselink (tree baselink, tree obj *** 12390,12398 **** /* Add back the template arguments, if present. */ if (BASELINK_P (baselink) && template_id_p) BASELINK_FUNCTIONS (baselink) ! = build_nt (TEMPLATE_ID_EXPR, ! BASELINK_FUNCTIONS (baselink), ! template_args); /* Update the conversion operator type. */ BASELINK_OPTYPE (baselink) = optype; --- 12392,12401 ---- /* Add back the template arguments, if present. */ if (BASELINK_P (baselink) && template_id_p) BASELINK_FUNCTIONS (baselink) ! = build2 (TEMPLATE_ID_EXPR, ! unknown_type_node, ! BASELINK_FUNCTIONS (baselink), ! template_args); /* Update the conversion operator type. */ BASELINK_OPTYPE (baselink) = optype; *************** resolve_overloaded_unification (tree tpa *** 16773,16779 **** lvalue for the function template specialization. */ tree ! resolve_nondeduced_context (tree orig_expr) { tree expr, offset, baselink; bool addr; --- 16776,16782 ---- lvalue for the function template specialization. */ tree ! resolve_nondeduced_context (tree orig_expr, tsubst_flags_t complain) { tree expr, offset, baselink; bool addr; *************** resolve_nondeduced_context (tree orig_ex *** 16856,16871 **** { tree base = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (offset, 0))); ! expr = build_offset_ref (base, expr, addr, tf_warning_or_error); } if (addr) ! expr = cp_build_addr_expr (expr, tf_warning_or_error); return expr; } ! else if (good == 0 && badargs) /* There were no good options and at least one bad one, so let the user know what the problem is. */ ! instantiate_template (badfn, badargs, tf_warning_or_error); } return orig_expr; } --- 16859,16874 ---- { tree base = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (offset, 0))); ! expr = build_offset_ref (base, expr, addr, complain); } if (addr) ! expr = cp_build_addr_expr (expr, complain); return expr; } ! else if (good == 0 && badargs && (complain & tf_error)) /* There were no good options and at least one bad one, so let the user know what the problem is. */ ! instantiate_template (badfn, badargs, complain); } return orig_expr; } *************** most_general_template (tree decl) *** 18873,18878 **** --- 18876,18882 ---- break; if (CLASS_TYPE_P (TREE_TYPE (decl)) + && !TYPE_DECL_ALIAS_P (TYPE_NAME (TREE_TYPE (decl))) && CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (decl))) break; *************** do_auto_deduction (tree type, tree init, *** 21738,21744 **** if (BRACE_ENCLOSED_INITIALIZER_P (init)) type = listify_autos (type, auto_node); ! init = resolve_nondeduced_context (init); targs = make_tree_vec (1); if (AUTO_IS_DECLTYPE (auto_node)) --- 21742,21748 ---- if (BRACE_ENCLOSED_INITIALIZER_P (init)) type = listify_autos (type, auto_node); ! init = resolve_nondeduced_context (init, tf_warning_or_error); targs = make_tree_vec (1); if (AUTO_IS_DECLTYPE (auto_node)) diff -Nrcpad gcc-4.9.3/gcc/cp/rtti.c gcc-4.9.4/gcc/cp/rtti.c *** gcc-4.9.3/gcc/cp/rtti.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/cp/rtti.c Wed Feb 10 19:35:35 2016 *************** get_tinfo_decl_dynamic (tree exp, tsubst *** 245,251 **** if (error_operand_p (exp)) return error_mark_node; ! exp = resolve_nondeduced_context (exp); /* peel back references, so they match. */ type = non_reference (TREE_TYPE (exp)); --- 245,251 ---- if (error_operand_p (exp)) return error_mark_node; ! exp = resolve_nondeduced_context (exp, complain); /* peel back references, so they match. */ type = non_reference (TREE_TYPE (exp)); *************** build_typeid (tree exp, tsubst_flags_t c *** 335,341 **** /* So we need to look into the vtable of the type of exp. Make sure it isn't a null lvalue. */ exp = cp_build_addr_expr (exp, complain); ! exp = stabilize_reference (exp); cond = cp_convert (boolean_type_node, exp, complain); exp = cp_build_indirect_ref (exp, RO_NULL, complain); } --- 335,341 ---- /* So we need to look into the vtable of the type of exp. Make sure it isn't a null lvalue. */ exp = cp_build_addr_expr (exp, complain); ! exp = save_expr (exp); cond = cp_convert (boolean_type_node, exp, complain); exp = cp_build_indirect_ref (exp, RO_NULL, complain); } diff -Nrcpad gcc-4.9.3/gcc/cp/search.c gcc-4.9.4/gcc/cp/search.c *** gcc-4.9.3/gcc/cp/search.c Wed Mar 26 16:50:26 2014 --- gcc-4.9.4/gcc/cp/search.c Tue Aug 18 14:43:44 2015 *************** protected_accessible_p (tree decl, tree *** 727,733 **** Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */ /* If DERIVED isn't derived from N, then it can't be a P. */ ! if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived)) return 0; access = access_in_type (derived, decl); --- 727,733 ---- Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */ /* If DERIVED isn't derived from N, then it can't be a P. */ ! if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived)) return 0; access = access_in_type (derived, decl); diff -Nrcpad gcc-4.9.3/gcc/cp/semantics.c gcc-4.9.4/gcc/cp/semantics.c *** gcc-4.9.3/gcc/cp/semantics.c Wed Jan 7 15:18:39 2015 --- gcc-4.9.4/gcc/cp/semantics.c Fri Jul 22 03:57:43 2016 *************** finish_decltype_type (tree expr, bool id *** 6936,6942 **** /* The type denoted by decltype(e) is defined as follows: */ ! expr = resolve_nondeduced_context (expr); if (invalid_nonstatic_memfn_p (expr, complain)) return error_mark_node; --- 6936,6942 ---- /* The type denoted by decltype(e) is defined as follows: */ ! expr = resolve_nondeduced_context (expr, complain); if (invalid_nonstatic_memfn_p (expr, complain)) return error_mark_node; *************** apply_deduced_return_type (tree fco, tre *** 10664,10669 **** --- 10664,10673 ---- if (TREE_TYPE (result) == return_type) return; + if (!processing_template_decl && !VOID_TYPE_P (return_type) + && !complete_type_or_else (return_type, NULL_TREE)) + return; + /* We already have a DECL_RESULT from start_preparsed_function. Now we need to redo the work it and allocate_struct_function did to reflect the new type. */ diff -Nrcpad gcc-4.9.3/gcc/cp/tree.c gcc-4.9.4/gcc/cp/tree.c *** gcc-4.9.3/gcc/cp/tree.c Tue Jun 23 14:29:51 2015 --- gcc-4.9.4/gcc/cp/tree.c Tue Aug 18 14:43:38 2015 *************** bot_manip (tree* tp, int* walk_subtrees, *** 2314,2319 **** --- 2314,2342 ---- *walk_subtrees = 0; return NULL_TREE; } + if (TREE_CODE (*tp) == SAVE_EXPR) + { + t = *tp; + splay_tree_node n = splay_tree_lookup (target_remap, + (splay_tree_key) t); + if (n) + { + *tp = (tree)n->value; + *walk_subtrees = 0; + } + else + { + copy_tree_r (tp, walk_subtrees, NULL); + splay_tree_insert (target_remap, + (splay_tree_key)t, + (splay_tree_value)*tp); + /* Make sure we don't remap an already-remapped SAVE_EXPR. */ + splay_tree_insert (target_remap, + (splay_tree_key)*tp, + (splay_tree_value)*tp); + } + return NULL_TREE; + } /* Make a copy of this node. */ t = copy_tree_r (tp, walk_subtrees, NULL); *************** handle_abi_tag_attribute (tree* node, tr *** 3375,3387 **** name, *node); goto fail; } ! else if (CLASSTYPE_TEMPLATE_INSTANTIATION (*node)) { warning (OPT_Wattributes, "ignoring %qE attribute applied to " "template instantiation %qT", name, *node); goto fail; } ! else if (CLASSTYPE_TEMPLATE_SPECIALIZATION (*node)) { warning (OPT_Wattributes, "ignoring %qE attribute applied to " "template specialization %qT", name, *node); --- 3398,3412 ---- name, *node); goto fail; } ! else if (CLASS_TYPE_P (*node) ! && CLASSTYPE_TEMPLATE_INSTANTIATION (*node)) { warning (OPT_Wattributes, "ignoring %qE attribute applied to " "template instantiation %qT", name, *node); goto fail; } ! else if (CLASS_TYPE_P (*node) ! && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node)) { warning (OPT_Wattributes, "ignoring %qE attribute applied to " "template specialization %qT", name, *node); diff -Nrcpad gcc-4.9.3/gcc/cp/typeck.c gcc-4.9.4/gcc/cp/typeck.c *** gcc-4.9.3/gcc/cp/typeck.c Wed Jan 7 15:18:21 2015 --- gcc-4.9.4/gcc/cp/typeck.c Tue Jul 19 09:26:30 2016 *************** decay_conversion (tree exp, tsubst_flags *** 1896,1902 **** exp = mark_rvalue_use (exp); ! exp = resolve_nondeduced_context (exp); if (type_unknown_p (exp)) { if (complain & tf_error) --- 1896,1902 ---- exp = mark_rvalue_use (exp); ! exp = resolve_nondeduced_context (exp, complain); if (type_unknown_p (exp)) { if (complain & tf_error) *************** build_x_conditional_expr (location_t loc *** 6055,6062 **** } expr = build_conditional_expr (loc, ifexp, op1, op2, complain); ! if (processing_template_decl && expr != error_mark_node ! && TREE_CODE (expr) != VEC_COND_EXPR) { tree min = build_min_non_dep (COND_EXPR, expr, orig_ifexp, orig_op1, orig_op2); --- 6055,6061 ---- } expr = build_conditional_expr (loc, ifexp, op1, op2, complain); ! if (processing_template_decl && expr != error_mark_node) { tree min = build_min_non_dep (COND_EXPR, expr, orig_ifexp, orig_op1, orig_op2); diff -Nrcpad gcc-4.9.3/gcc/df-problems.c gcc-4.9.4/gcc/df-problems.c *** gcc-4.9.3/gcc/df-problems.c Tue Mar 18 14:39:16 2014 --- gcc-4.9.4/gcc/df-problems.c Thu Sep 17 15:35:58 2015 *************** df_lr_verify_transfer_functions (void) *** 1340,1361 **** /*---------------------------------------------------------------------------- ! LIVE AND MUST-INITIALIZED REGISTERS. This problem first computes the IN and OUT bitvectors for the ! must-initialized registers problems, which is a forward problem. ! It gives the set of registers for which we MUST have an available ! definition on any path from the entry block to the entry/exit of ! a basic block. Sets generate a definition, while clobbers kill a definition. In and out bitvectors are built for each basic block and are indexed by regnum (see df.h for details). In and out bitvectors in struct ! df_live_bb_info actually refers to the must-initialized problem; Then, the in and out sets for the LIVE problem itself are computed. These are the logical AND of the IN and OUT sets from the LR problem ! and the must-initialized problem. ----------------------------------------------------------------------------*/ /* Private data used to verify the solution for this problem. */ --- 1340,1362 ---- /*---------------------------------------------------------------------------- ! LIVE AND MAY-INITIALIZED REGISTERS. This problem first computes the IN and OUT bitvectors for the ! may-initialized registers problems, which is a forward problem. ! It gives the set of registers for which we MAY have an available ! definition, i.e. for which there is an available definition on ! at least one path from the entry block to the entry/exit of a ! basic block. Sets generate a definition, while clobbers kill a definition. In and out bitvectors are built for each basic block and are indexed by regnum (see df.h for details). In and out bitvectors in struct ! df_live_bb_info actually refers to the may-initialized problem; Then, the in and out sets for the LIVE problem itself are computed. These are the logical AND of the IN and OUT sets from the LR problem ! and the may-initialized problem. ----------------------------------------------------------------------------*/ /* Private data used to verify the solution for this problem. */ *************** df_live_confluence_n (edge e) *** 1566,1572 **** } ! /* Transfer function for the forwards must-initialized problem. */ static bool df_live_transfer_function (int bb_index) --- 1567,1573 ---- } ! /* Transfer function for the forwards may-initialized problem. */ static bool df_live_transfer_function (int bb_index) *************** df_live_transfer_function (int bb_index) *** 1590,1596 **** } ! /* And the LR info with the must-initialized registers, to produce the LIVE info. */ static void df_live_finalize (bitmap all_blocks) --- 1591,1597 ---- } ! /* And the LR info with the may-initialized registers to produce the LIVE info. */ static void df_live_finalize (bitmap all_blocks) diff -Nrcpad gcc-4.9.3/gcc/doc/aot-compile.1 gcc-4.9.4/gcc/doc/aot-compile.1 *** gcc-4.9.3/gcc/doc/aot-compile.1 Fri Jun 26 18:49:08 2015 --- gcc-4.9.4/gcc/doc/aot-compile.1 Wed Aug 3 06:14:16 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "AOT-COMPILE 1" ! .TH AOT-COMPILE 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "AOT-COMPILE 1" ! .TH AOT-COMPILE 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.9.3/gcc/doc/cpp.1 gcc-4.9.4/gcc/doc/cpp.1 *** gcc-4.9.3/gcc/doc/cpp.1 Fri Jun 26 18:05:19 2015 --- gcc-4.9.4/gcc/doc/cpp.1 Wed Aug 3 05:16:30 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "CPP 1" ! .TH CPP 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "CPP 1" ! .TH CPP 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** Wherever possible, you should use a prep *** 181,191 **** you are writing in. Modern versions of the \s-1GNU\s0 assembler have macro facilities. Most high level programming languages have their own conditional compilation and inclusion mechanism. If all else fails, ! try a true general text processor, such as \s-1GNU M4.\s0 .PP ! C preprocessors vary in some details. This manual discusses the \s-1GNU C\s0 preprocessor, which provides a small superset of the features of \s-1ISO\s0 ! Standard C. In its default mode, the \s-1GNU C\s0 preprocessor does not do a few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict \s-1ISO\s0 Standard C, --- 180,190 ---- you are writing in. Modern versions of the \s-1GNU\s0 assembler have macro facilities. Most high level programming languages have their own conditional compilation and inclusion mechanism. If all else fails, ! try a true general text processor, such as \s-1GNU\s0 M4. .PP ! C preprocessors vary in some details. This manual discusses the \s-1GNU\s0 C preprocessor, which provides a small superset of the features of \s-1ISO\s0 ! Standard C. In its default mode, the \s-1GNU\s0 C preprocessor does not do a few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict \s-1ISO\s0 Standard C, *************** differences that do exist are detailed i *** 202,208 **** Mode\fR. .PP For clarity, unless noted otherwise, references to \fB\s-1CPP\s0\fR in this ! manual refer to \s-1GNU CPP.\s0 .SH "OPTIONS" .IX Header "OPTIONS" The C preprocessor expects two file names as arguments, \fIinfile\fR and --- 201,207 ---- Mode\fR. .PP For clarity, unless noted otherwise, references to \fB\s-1CPP\s0\fR in this ! manual refer to \s-1GNU\s0 \s-1CPP\s0. .SH "OPTIONS" .IX Header "OPTIONS" The C preprocessor expects two file names as arguments, \fIinfile\fR and *************** get trigraph conversion without warnings *** 306,312 **** .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" --- 305,311 ---- .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" *************** in finding bugs in your own code, theref *** 359,365 **** responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of --- 358,364 ---- responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of *************** may be one of: *** 531,537 **** .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. --- 530,536 ---- .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO\s0 C standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. *************** The 1990 C standard, as amended in 1994. *** 553,559 **** .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO C\s0 standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 --- 552,558 ---- .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO\s0 C standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 *************** publication, this was known as C9X. *** 566,572 **** .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO C\s0 standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 --- 565,571 ---- .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO\s0 C standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 *************** The 2011 C standard plus \s-1GNU\s0 exte *** 598,604 **** .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO \*(C+\s0 standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" --- 597,603 ---- .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO\s0 \*(C+ standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" *************** Accept \fB$\fR in identifiers. *** 727,733 **** .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC,\s0 it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" --- 726,732 ---- .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC\s0, it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" *************** line. If the value is less than 1 or gr *** 754,760 **** ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC. \s0 When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would --- 753,759 ---- ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC\s0. When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would *************** Note that \-ftrack\-macro\-expansion=2 i *** 787,798 **** .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have --- 786,797 ---- .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8\s0. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16\s0, whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have *************** problems with encodings that do not fit *** 800,808 **** .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC. \s0 If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. --- 799,807 ---- .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC\s0. If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8\s0. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. *************** Cancel an assertion with the predicate \ *** 839,845 **** .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 --- 838,844 ---- .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 *************** The \fB\-CC\fR option is generally used *** 915,921 **** .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO C\s0 preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. --- 914,920 ---- .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO\s0 C preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. *************** Print text describing all the command li *** 933,939 **** preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" --- 932,938 ---- preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" *************** header file is printed with \fB...x\fR a *** 948,954 **** .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SH "ENVIRONMENT" .IX Header "ENVIRONMENT" --- 947,953 ---- .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. .SH "ENVIRONMENT" .IX Header "ENVIRONMENT" *************** Note that you can also specify places to *** 960,966 **** \&\fB\-I\fR, and control dependency output with options like \&\fB\-M\fR. These take precedence over environment variables, which in turn take precedence over the ! configuration of \s-1GCC.\s0 .IP "\fB\s-1CPATH\s0\fR" 4 .IX Item "CPATH" .PD 0 --- 959,965 ---- \&\fB\-I\fR, and control dependency output with options like \&\fB\-M\fR. These take precedence over environment variables, which in turn take precedence over the ! configuration of \s-1GCC\s0. .IP "\fB\s-1CPATH\s0\fR" 4 .IX Item "CPATH" .PD 0 diff -Nrcpad gcc-4.9.3/gcc/doc/cpp.info gcc-4.9.4/gcc/doc/cpp.info *** gcc-4.9.3/gcc/doc/cpp.info Fri Jun 26 18:48:32 2015 --- gcc-4.9.4/gcc/doc/cpp.info Wed Aug 3 06:14:12 2016 *************** *** 1,4 **** ! This is cpp.info, produced by makeinfo version 5.2 from cpp.texi. Copyright (C) 1987-2015 Free Software Foundation, Inc. --- 1,5 ---- ! This is doc/cpp.info, produced by makeinfo version 4.12 from ! /space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/doc/cpp.texi. Copyright (C) 1987-2015 Free Software Foundation, Inc. *************** are (a) (see below), and the Back-Cover *** 18,25 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpp: (cpp). The GNU C preprocessor. --- 19,27 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpp: (cpp). The GNU C preprocessor. *************** useful on its own. *** 55,61 **** * Option Index:: * Concept Index:: ! -- The Detailed Node Listing -- Overview --- 57,63 ---- * Option Index:: * Concept Index:: ! --- The Detailed Node Listing --- Overview *************** Obsolete Features *** 130,136 **** * Obsolete Features:: - Copyright (C) 1987-2015 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document --- 132,137 ---- *************** are (a) (see below), and the Back-Cover *** 149,156 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: cpp.info, Node: Overview, Next: Header Files, Prev: Top, Up: Top --- 150,157 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development.  File: cpp.info, Node: Overview, Next: Header Files, Prev: Top, Up: Top *************** File: cpp.info, Node: Overview, Next: *** 158,167 **** 1 Overview ********** ! The C preprocessor, often known as "cpp", is a "macro processor" that is ! used automatically by the C compiler to transform your program before ! compilation. It is called a macro processor because it allows you to ! define "macros", which are brief abbreviations for longer constructs. The C preprocessor is intended to be used only with C, C++, and Objective-C source code. In the past, it has been abused as a general --- 159,169 ---- 1 Overview ********** ! The C preprocessor, often known as "cpp", is a "macro processor" that ! is used automatically by the C compiler to transform your program ! before compilation. It is called a macro processor because it allows ! you to define "macros", which are brief abbreviations for longer ! constructs. The C preprocessor is intended to be used only with C, C++, and Objective-C source code. In the past, it has been abused as a general *************** will be removed, and the Makefile will n *** 174,180 **** Having said that, you can often get away with using cpp on things which are not C. Other Algol-ish programming languages are often safe ! (Pascal, Ada, etc.) So is assembly, with caution. '-traditional-cpp' mode preserves more white space, and is otherwise more permissive. Many of the problems can be avoided by writing C or C++ style comments instead of native language comments, and keeping macros simple. --- 176,182 ---- Having said that, you can often get away with using cpp on things which are not C. Other Algol-ish programming languages are often safe ! (Pascal, Ada, etc.) So is assembly, with caution. `-traditional-cpp' mode preserves more white space, and is otherwise more permissive. Many of the problems can be avoided by writing C or C++ style comments instead of native language comments, and keeping macros simple. *************** instead of native language comments, and *** 182,189 **** Wherever possible, you should use a preprocessor geared to the language you are writing in. Modern versions of the GNU assembler have macro facilities. Most high level programming languages have their own ! conditional compilation and inclusion mechanism. If all else fails, try ! a true general text processor, such as GNU M4. C preprocessors vary in some details. This manual discusses the GNU C preprocessor, which provides a small superset of the features of ISO --- 184,191 ---- Wherever possible, you should use a preprocessor geared to the language you are writing in. Modern versions of the GNU assembler have macro facilities. Most high level programming languages have their own ! conditional compilation and inclusion mechanism. If all else fails, ! try a true general text processor, such as GNU M4. C preprocessors vary in some details. This manual discusses the GNU C preprocessor, which provides a small superset of the features of ISO *************** Standard C. In its default mode, the GN *** 191,199 **** few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict ISO Standard C, ! you should use the '-std=c90', '-std=c99' or '-std=c11' options, depending on which version of the standard you want. To get all the ! mandatory diagnostics, you must also use '-pedantic'. *Note Invocation::. This manual describes the behavior of the ISO preprocessor. To --- 193,201 ---- few things required by the standard. These are features which are rarely, if ever, used, and may cause surprising changes to the meaning of a program which does not expect them. To get strict ISO Standard C, ! you should use the `-std=c90', `-std=c99' or `-std=c11' options, depending on which version of the standard you want. To get all the ! mandatory diagnostics, you must also use `-pedantic'. *Note Invocation::. This manual describes the behavior of the ISO preprocessor. To *************** does not conflict with traditional seman *** 202,208 **** preprocessor should behave the same way. The various differences that do exist are detailed in the section *note Traditional Mode::. ! For clarity, unless noted otherwise, references to 'CPP' in this manual refer to GNU CPP. * Menu: --- 204,210 ---- preprocessor should behave the same way. The various differences that do exist are detailed in the section *note Traditional Mode::. ! For clarity, unless noted otherwise, references to `CPP' in this manual refer to GNU CPP. * Menu: *************** there are really at least four. *** 224,265 **** The files input to CPP might be in any character set at all. CPP's very first action, before it even looks for line boundaries, is to ! convert the file into the character set it uses for internal processing. ! That set is what the C standard calls the "source" character set. It ! must be isomorphic with ISO 10646, also known as Unicode. CPP uses the ! UTF-8 encoding of Unicode. The character sets of the input files are specified using the ! '-finput-charset=' option. All preprocessing work (the subject of the rest of this manual) is carried out in the source character set. If you request textual output ! from the preprocessor with the '-E' option, it will be in UTF-8. After preprocessing is complete, string and character constants are ! converted again, into the "execution" character set. This character set ! is under control of the user; the default is UTF-8, matching the source ! character set. Wide string and character constants have their own ! character set, which is not called out specifically in the standard. ! Again, it is under control of the user. The default is UTF-16 or ! UTF-32, whichever fits in the target's 'wchar_t' type, in the target ! machine's byte order.(1) Octal and hexadecimal escape sequences do not ! undergo conversion; '\x12' has the value 0x12 regardless of the currently selected execution character set. All other escapes are replaced by the character in the source character set that they represent, then converted to the execution character set, just like unescaped characters. ! Unless the experimental '-fextended-identifiers' option is used, GCC ! does not permit the use of characters outside the ASCII range, nor '\u' ! and '\U' escapes, in identifiers. Even with that option, characters ! outside the ASCII range can only be specified with the '\u' and '\U' escapes, not used directly in identifiers. ---------- Footnotes ---------- (1) UTF-16 does not meet the requirements of the C standard for a ! wide character set, but the choice of 16-bit 'wchar_t' is enshrined in some system ABIs so we cannot fix this.  --- 226,267 ---- The files input to CPP might be in any character set at all. CPP's very first action, before it even looks for line boundaries, is to ! convert the file into the character set it uses for internal ! processing. That set is what the C standard calls the "source" ! character set. It must be isomorphic with ISO 10646, also known as ! Unicode. CPP uses the UTF-8 encoding of Unicode. The character sets of the input files are specified using the ! `-finput-charset=' option. All preprocessing work (the subject of the rest of this manual) is carried out in the source character set. If you request textual output ! from the preprocessor with the `-E' option, it will be in UTF-8. After preprocessing is complete, string and character constants are ! converted again, into the "execution" character set. This character ! set is under control of the user; the default is UTF-8, matching the ! source character set. Wide string and character constants have their ! own character set, which is not called out specifically in the ! standard. Again, it is under control of the user. The default is ! UTF-16 or UTF-32, whichever fits in the target's `wchar_t' type, in the ! target machine's byte order.(1) Octal and hexadecimal escape sequences ! do not undergo conversion; '\x12' has the value 0x12 regardless of the currently selected execution character set. All other escapes are replaced by the character in the source character set that they represent, then converted to the execution character set, just like unescaped characters. ! Unless the experimental `-fextended-identifiers' option is used, GCC ! does not permit the use of characters outside the ASCII range, nor `\u' ! and `\U' escapes, in identifiers. Even with that option, characters ! outside the ASCII range can only be specified with the `\u' and `\U' escapes, not used directly in identifiers. ---------- Footnotes ---------- (1) UTF-16 does not meet the requirements of the C standard for a ! wide character set, but the choice of 16-bit `wchar_t' is enshrined in some system ABIs so we cannot fix this.  *************** standard. *** 279,313 **** 1. The input file is read into memory and broken into lines. Different systems use different conventions to indicate the end of ! a line. GCC accepts the ASCII control sequences 'LF', 'CR LF' and ! 'CR' as end-of-line markers. These are the canonical sequences used by Unix, DOS and VMS, and the classic Mac OS (before OSX) ! respectively. You may therefore safely copy source code written on ! any of those systems to a different one and use it without conversion. (GCC may lose track of the current line number if a file doesn't consistently use one convention, as sometimes happens when it is edited on computers with different conventions that share a network file system.) ! If the last line of any input file lacks an end-of-line marker, the ! end of the file is considered to implicitly supply one. The C standard says that this condition provokes undefined behavior, so GCC will emit a warning message. 2. If trigraphs are enabled, they are replaced by their corresponding single characters. By default GCC ignores trigraphs, but if you ! request a strictly conforming mode with the '-std' option, or you ! specify the '-trigraphs' option, then it converts them. ! These are nine three-character sequences, all starting with '??', that are defined by ISO C to stand for single characters. They ! permit obsolete systems that lack some of C's punctuation to use C. ! For example, '??/' stands for '\', so '??/n' is a character constant for a newline. Trigraphs are not popular and many compilers implement them incorrectly. Portable code should not rely on trigraphs being ! either converted or ignored. With '-Wtrigraphs' GCC will warn you when a trigraph may change the meaning of your program if it were converted. *Note Wtrigraphs::. --- 281,315 ---- 1. The input file is read into memory and broken into lines. Different systems use different conventions to indicate the end of ! a line. GCC accepts the ASCII control sequences `LF', `CR LF' and ! `CR' as end-of-line markers. These are the canonical sequences used by Unix, DOS and VMS, and the classic Mac OS (before OSX) ! respectively. You may therefore safely copy source code written ! on any of those systems to a different one and use it without conversion. (GCC may lose track of the current line number if a file doesn't consistently use one convention, as sometimes happens when it is edited on computers with different conventions that share a network file system.) ! If the last line of any input file lacks an end-of-line marker, ! the end of the file is considered to implicitly supply one. The C standard says that this condition provokes undefined behavior, so GCC will emit a warning message. 2. If trigraphs are enabled, they are replaced by their corresponding single characters. By default GCC ignores trigraphs, but if you ! request a strictly conforming mode with the `-std' option, or you ! specify the `-trigraphs' option, then it converts them. ! These are nine three-character sequences, all starting with `??', that are defined by ISO C to stand for single characters. They ! permit obsolete systems that lack some of C's punctuation to use ! C. For example, `??/' stands for `\', so '??/n' is a character constant for a newline. Trigraphs are not popular and many compilers implement them incorrectly. Portable code should not rely on trigraphs being ! either converted or ignored. With `-Wtrigraphs' GCC will warn you when a trigraph may change the meaning of your program if it were converted. *Note Wtrigraphs::. *************** standard. *** 315,322 **** from being confused with a trigraph by inserting a backslash between the question marks, or by separating the string literal at the trigraph and making use of string literal concatenation. ! "(??\?)" is the string '(???)', not '(?]'. Traditional C compilers ! do not recognize these idioms. The nine trigraphs and their replacements are --- 317,324 ---- from being confused with a trigraph by inserting a backslash between the question marks, or by separating the string literal at the trigraph and making use of string literal concatenation. ! "(??\?)" is the string `(???)', not `(?]'. Traditional C ! compilers do not recognize these idioms. The nine trigraphs and their replacements are *************** standard. *** 325,331 **** 3. Continued lines are merged into one long line. ! A continued line is a line which ends with a backslash, '\'. The backslash is removed and the following line is joined with the current one. No space is inserted, so you may split a line anywhere, even in the middle of a word. (It is generally more --- 327,333 ---- 3. Continued lines are merged into one long line. ! A continued line is a line which ends with a backslash, `\'. The backslash is removed and the following line is joined with the current one. No space is inserted, so you may split a line anywhere, even in the middle of a word. (It is generally more *************** standard. *** 336,352 **** If there is white space between a backslash and the end of a line, that is still a continued line. However, as this is usually the ! result of an editing mistake, and many compilers will not accept it ! as a continued line, GCC will warn you about it. 4. All comments are replaced with single spaces. ! There are two kinds of comments. "Block comments" begin with '/*' ! and continue until the next '*/'. Block comments do not nest: /* this is /* one comment */ text outside comment ! "Line comments" begin with '//' and continue to the end of the current line. Line comments do not nest either, but it does not matter, because they would end in the same place anyway. --- 338,354 ---- If there is white space between a backslash and the end of a line, that is still a continued line. However, as this is usually the ! result of an editing mistake, and many compilers will not accept ! it as a continued line, GCC will warn you about it. 4. All comments are replaced with single spaces. ! There are two kinds of comments. "Block comments" begin with `/*' ! and continue until the next `*/'. Block comments do not nest: /* this is /* one comment */ text outside comment ! "Line comments" begin with `//' and continue to the end of the current line. Line comments do not nest either, but it does not matter, because they would end in the same place anyway. *************** comment. *** 369,375 **** oops! this isn't a comment anymore */ Comments are not recognized within string literals. "/* blah */" is ! the string constant '/* blah */', not an empty string. Line comments are not in the 1989 edition of the C standard, but they are recognized by GCC as an extension. In C++ and in the 1999 edition --- 371,377 ---- oops! this isn't a comment anymore */ Comments are not recognized within string literals. "/* blah */" is ! the string constant `/* blah */', not an empty string. Line comments are not in the 1989 edition of the C standard, but they are recognized by GCC as an extension. In C++ and in the 1999 edition *************** of the C standard, they are an official *** 378,385 **** Since these transformations happen before all other processing, you can split a line mechanically with backslash-newline anywhere. You can comment out the end of a line. You can continue a line comment onto the ! next line with backslash-newline. You can even split '/*', '*/', and ! '//' onto multiple lines with backslash-newline. For example: /\ * --- 380,387 ---- Since these transformations happen before all other processing, you can split a line mechanically with backslash-newline anywhere. You can comment out the end of a line. You can continue a line comment onto the ! next line with backslash-newline. You can even split `/*', `*/', and ! `//' onto multiple lines with backslash-newline. For example: /\ * *************** next line with backslash-newline. You c *** 389,395 **** O 10\ 20 ! is equivalent to '#define FOO 1020'. All these tricks are extremely confusing and should not be used in code intended to be readable. There is no way to prevent a backslash at the end of a line from --- 391,397 ---- O 10\ 20 ! is equivalent to `#define FOO 1020'. All these tricks are extremely confusing and should not be used in code intended to be readable. There is no way to prevent a backslash at the end of a line from *************** token of any kind. Tokens do not have t *** 410,423 **** but it is often necessary to avoid ambiguities. When faced with a sequence of characters that has more than one ! possible tokenization, the preprocessor is greedy. It always makes each ! token, starting from the left, as big as possible before moving on to ! the next token. For instance, 'a+++++b' is interpreted as ! 'a ++ ++ + b', not as 'a ++ + ++ b', even though the latter tokenization ! could be part of a valid C program and the former could not. Once the input file is broken into tokens, the token boundaries never ! change, except when the '##' preprocessing operator is used to paste tokens together. *Note Concatenation::. For example, #define foo() bar --- 412,426 ---- but it is often necessary to avoid ambiguities. When faced with a sequence of characters that has more than one ! possible tokenization, the preprocessor is greedy. It always makes ! each token, starting from the left, as big as possible before moving on ! to the next token. For instance, `a+++++b' is interpreted as ! `a ++ ++ + b', not as `a ++ + ++ b', even though the latter ! tokenization could be part of a valid C program and the former could ! not. Once the input file is broken into tokens, the token boundaries never ! change, except when the `##' preprocessing operator is used to paste tokens together. *Note Concatenation::. For example, #define foo() bar *************** preprocessing token becomes one compiler *** 431,442 **** Preprocessing tokens fall into five broad classes: identifiers, preprocessing numbers, string literals, punctuators, and other. An ! "identifier" is the same as an identifier in C: any sequence of letters, ! digits, or underscores, which begins with a letter or underscore. ! Keywords of C have no significance to the preprocessor; they are ! ordinary identifiers. You can define a macro whose name is a keyword, ! for instance. The only identifier which can be considered a ! preprocessing keyword is 'defined'. *Note Defined::. This is mostly true of other languages which use the C preprocessor. However, a few of the keywords of C++ are significant even in the --- 434,445 ---- Preprocessing tokens fall into five broad classes: identifiers, preprocessing numbers, string literals, punctuators, and other. An ! "identifier" is the same as an identifier in C: any sequence of ! letters, digits, or underscores, which begins with a letter or ! underscore. Keywords of C have no significance to the preprocessor; ! they are ordinary identifiers. You can define a macro whose name is a ! keyword, for instance. The only identifier which can be considered a ! preprocessing keyword is `defined'. *Note Defined::. This is mostly true of other languages which use the C preprocessor. However, a few of the keywords of C++ are significant even in the *************** preprocessor. *Note C++ Named Operators *** 446,459 **** part of the "basic source character set", at the implementation's discretion (such as accented Latin letters, Greek letters, or Chinese ideograms). This may be done with an extended character set, or the ! '\u' and '\U' escape sequences. The implementation of this feature in ! GCC is experimental; such characters are only accepted in the '\u' and ! '\U' forms and only if '-fextended-identifiers' is used. ! As an extension, GCC treats '$' as a letter. This is for ! compatibility with some systems, such as VMS, where '$' is commonly used ! in system-defined function and object names. '$' is not a letter in ! strictly conforming mode, or if you specify the '-$' option. *Note Invocation::. A "preprocessing number" has a rather bizarre definition. The --- 449,462 ---- part of the "basic source character set", at the implementation's discretion (such as accented Latin letters, Greek letters, or Chinese ideograms). This may be done with an extended character set, or the ! `\u' and `\U' escape sequences. The implementation of this feature in ! GCC is experimental; such characters are only accepted in the `\u' and ! `\U' forms and only if `-fextended-identifiers' is used. ! As an extension, GCC treats `$' as a letter. This is for ! compatibility with some systems, such as VMS, where `$' is commonly ! used in system-defined function and object names. `$' is not a letter ! in strictly conforming mode, or if you specify the `-$' option. *Note Invocation::. A "preprocessing number" has a rather bizarre definition. The *************** one expects of C, but also a number of o *** 462,470 **** initially recognize as a number. Formally, preprocessing numbers begin with an optional period, a required decimal digit, and then continue with any sequence of letters, digits, underscores, periods, and ! exponents. Exponents are the two-character sequences 'e+', 'e-', 'E+', ! 'E-', 'p+', 'p-', 'P+', and 'P-'. (The exponents that begin with 'p' or ! 'P' are new to C99. They are used for hexadecimal floating-point constants.) The purpose of this unusual definition is to isolate the preprocessor --- 465,473 ---- initially recognize as a number. Formally, preprocessing numbers begin with an optional period, a required decimal digit, and then continue with any sequence of letters, digits, underscores, periods, and ! exponents. Exponents are the two-character sequences `e+', `e-', `E+', ! `E-', `p+', `p-', `P+', and `P-'. (The exponents that begin with `p' ! or `P' are new to C99. They are used for hexadecimal floating-point constants.) The purpose of this unusual definition is to isolate the preprocessor *************** from the full complexity of numeric cons *** 472,493 **** distinguish between lexically valid and invalid floating-point numbers, which is complicated. The definition also permits you to split an identifier at any position and get exactly two tokens, which can then be ! pasted back together with the '##' operator. It's possible for preprocessing numbers to cause programs to be ! misinterpreted. For example, '0xE+12' is a preprocessing number which does not translate to any valid numeric constant, therefore a syntax ! error. It does not mean '0xE + 12', which is what you might have intended. "String literals" are string constants, character constants, and ! header file names (the argument of '#include').(1) String constants and ! character constants are straightforward: "..." or '...'. In either case ! embedded quotes should be escaped with a backslash: '\'' is the ! character constant for '''. There is no limit on the length of a character constant, but the value of a character constant that contains ! more than one character is implementation-defined. *Note Implementation ! Details::. Header file names either look like string constants, "...", or are written with angle brackets instead, <...>. In either case, backslash --- 475,496 ---- distinguish between lexically valid and invalid floating-point numbers, which is complicated. The definition also permits you to split an identifier at any position and get exactly two tokens, which can then be ! pasted back together with the `##' operator. It's possible for preprocessing numbers to cause programs to be ! misinterpreted. For example, `0xE+12' is a preprocessing number which does not translate to any valid numeric constant, therefore a syntax ! error. It does not mean `0xE + 12', which is what you might have intended. "String literals" are string constants, character constants, and ! header file names (the argument of `#include').(1) String constants ! and character constants are straightforward: "..." or '...'. In either ! case embedded quotes should be escaped with a backslash: '\'' is the ! character constant for `''. There is no limit on the length of a character constant, but the value of a character constant that contains ! more than one character is implementation-defined. *Note ! Implementation Details::. Header file names either look like string constants, "...", or are written with angle brackets instead, <...>. In either case, backslash *************** Operation::. *** 498,516 **** No string literal may extend past the end of a line. Older versions of GCC accepted multi-line string constants. You may use continued ! lines instead, or string constant concatenation. *Note Differences from ! previous versions::. "Punctuators" are all the usual bits of punctuation which are meaningful to C and C++. All but three of the punctuation characters in ! ASCII are C punctuators. The exceptions are '@', '$', and '`'. In addition, all the two- and three-character operators are punctuators. ! There are also six "digraphs", which the C++ standard calls "alternative ! tokens", which are merely alternate ways to spell other punctuators. ! This is a second attempt to work around missing punctuation in obsolete ! systems. It has no negative side effects, unlike trigraphs, but does ! not cover as much ground. The digraphs and their corresponding normal ! punctuators are: Digraph: <% %> <: :> %: %:%: Punctuator: { } [ ] # ## --- 501,519 ---- No string literal may extend past the end of a line. Older versions of GCC accepted multi-line string constants. You may use continued ! lines instead, or string constant concatenation. *Note Differences ! from previous versions::. "Punctuators" are all the usual bits of punctuation which are meaningful to C and C++. All but three of the punctuation characters in ! ASCII are C punctuators. The exceptions are `@', `$', and ``'. In addition, all the two- and three-character operators are punctuators. ! There are also six "digraphs", which the C++ standard calls ! "alternative tokens", which are merely alternate ways to spell other ! punctuators. This is a second attempt to work around missing ! punctuation in obsolete systems. It has no negative side effects, ! unlike trigraphs, but does not cover as much ground. The digraphs and ! their corresponding normal punctuators are: Digraph: <% %> <: :> %: %:%: Punctuator: { } [ ] # ## *************** punctuators are: *** 518,528 **** Any other single character is considered "other". It is passed on to the preprocessor's output unmolested. The C compiler will almost certainly reject source code containing "other" tokens. In ASCII, the ! only other characters are '@', '$', '`', and control characters other ! than NUL (all bits zero). (Note that '$' is normally considered a ! letter.) All characters with the high bit set (numeric range 0x7F-0xFF) ! are also "other" in the present implementation. This will change when ! proper support for international character sets is added to GCC. NUL is a special case because of the high probability that its appearance is accidental, and because it may be invisible to the user --- 521,532 ---- Any other single character is considered "other". It is passed on to the preprocessor's output unmolested. The C compiler will almost certainly reject source code containing "other" tokens. In ASCII, the ! only other characters are `@', `$', ``', and control characters other ! than NUL (all bits zero). (Note that `$' is normally considered a ! letter.) All characters with the high bit set (numeric range ! 0x7F-0xFF) are also "other" in the present implementation. This will ! change when proper support for international character sets is added to ! GCC. NUL is a special case because of the high probability that its appearance is accidental, and because it may be invisible to the user *************** have the same meaning. *** 534,542 **** #define X^@1 #define X 1 ! (where '^@' is ASCII NUL). Within string or character constants, NULs ! are preserved. In the latter two cases the preprocessor emits a warning ! message. ---------- Footnotes ---------- --- 538,546 ---- #define X^@1 #define X 1 ! (where `^@' is ASCII NUL). Within string or character constants, NULs ! are preserved. In the latter two cases the preprocessor emits a ! warning message. ---------- Footnotes ---------- *************** and "macros" to be expanded. Its primar *** 570,577 **** program according to various conditions. * Line control. If you use a program to combine or rearrange source ! files into an intermediate file which is then compiled, you can use ! line control to inform the compiler where each source line originally came from. * Diagnostics. You can detect problems at compile time and issue --- 574,581 ---- program according to various conditions. * Line control. If you use a program to combine or rearrange source ! files into an intermediate file which is then compiled, you can ! use line control to inform the compiler where each source line originally came from. * Diagnostics. You can detect problems at compile time and issue *************** and "macros" to be expanded. Its primar *** 580,595 **** There are a few more, less useful, features. Except for expansion of predefined macros, all these operations are ! triggered with "preprocessing directives". Preprocessing directives are ! lines in your program that start with '#'. Whitespace is allowed before ! and after the '#'. The '#' is followed by an identifier, the "directive ! name". It specifies the operation to perform. Directives are commonly ! referred to as '#NAME' where NAME is the directive name. For example, ! '#define' is the directive that defines a macro. ! The '#' which begins a directive cannot come from a macro expansion. ! Also, the directive name is not macro expanded. Thus, if 'foo' is ! defined as a macro expanding to 'define', that does not make '#foo' a valid preprocessing directive. The set of valid directive names is fixed. Programs cannot define --- 584,599 ---- There are a few more, less useful, features. Except for expansion of predefined macros, all these operations are ! triggered with "preprocessing directives". Preprocessing directives ! are lines in your program that start with `#'. Whitespace is allowed ! before and after the `#'. The `#' is followed by an identifier, the ! "directive name". It specifies the operation to perform. Directives ! are commonly referred to as `#NAME' where NAME is the directive name. ! For example, `#define' is the directive that defines a macro. ! The `#' which begins a directive cannot come from a macro expansion. ! Also, the directive name is not macro expanded. Thus, if `foo' is ! defined as a macro expanding to `define', that does not make `#foo' a valid preprocessing directive. The set of valid directive names is fixed. Programs cannot define *************** new preprocessing directives. *** 597,604 **** Some directives require arguments; these make up the rest of the directive line and must be separated from the directive name by ! whitespace. For example, '#define' must be followed by a macro name and ! the intended expansion of the macro. A preprocessing directive cannot cover more than one line. The line may, however, be continued with backslash-newline, or by a block comment --- 601,608 ---- Some directives require arguments; these make up the rest of the directive line and must be separated from the directive name by ! whitespace. For example, `#define' must be followed by a macro name ! and the intended expansion of the macro. A preprocessing directive cannot cover more than one line. The line may, however, be continued with backslash-newline, or by a block comment *************** File: cpp.info, Node: Header Files, Ne *** 615,621 **** A header file is a file containing C declarations and macro definitions (*note Macros::) to be shared between several source files. You request the use of a header file in your program by "including" it, with the C ! preprocessing directive '#include'. Header files serve two purposes. --- 619,625 ---- A header file is a file containing C declarations and macro definitions (*note Macros::) to be shared between several source files. You request the use of a header file in your program by "including" it, with the C ! preprocessing directive `#include'. Header files serve two purposes. *************** preprocessing directive '#include'. *** 626,633 **** * Your own header files contain declarations for interfaces between the source files of your program. Each time you have a group of ! related declarations and macro definitions all or most of which are ! needed in several different source files, it is a good idea to create a header file for them. Including a header file produces the same results as copying the --- 630,637 ---- * Your own header files contain declarations for interfaces between the source files of your program. Each time you have a group of ! related declarations and macro definitions all or most of which ! are needed in several different source files, it is a good idea to create a header file for them. Including a header file produces the same results as copying the *************** as the risk that a failure to find one c *** 641,647 **** inconsistencies within a program. In C, the usual convention is to give header files names that end ! with '.h'. It is most portable to use only letters, digits, dashes, and underscores in header file names, and at most one dot. * Menu: --- 645,651 ---- inconsistencies within a program. In C, the usual convention is to give header files names that end ! with `.h'. It is most portable to use only letters, digits, dashes, and underscores in header file names, and at most one dot. * Menu: *************** File: cpp.info, Node: Include Syntax, *** 662,694 **** ================== Both user and system header files are included using the preprocessing ! directive '#include'. It has two variants: ! '#include ' This variant is used for system header files. It searches for a file named FILE in a standard list of system directories. You can ! prepend directories to this list with the '-I' option (*note Invocation::). ! '#include "FILE"' This variant is used for header files of your own program. It searches for a file named FILE first in the directory containing the current file, then in the quote directories and then the same ! directories used for ''. You can prepend directories to the ! list of quote directories with the '-iquote' option. ! The argument of '#include', whether delimited with quote marks or angle brackets, behaves like a string constant in that comments are not ! recognized, and macro names are not expanded. Thus, '#include ' ! specifies inclusion of a system header file named 'x/*y'. However, if backslashes occur within FILE, they are considered ordinary text characters, not escape characters. None of the character escape sequences appropriate to string constants in C are processed. ! Thus, '#include "x\n\\y"' specifies a filename containing three ! backslashes. (Some systems interpret '\' as a pathname separator. All ! of these also interpret '/' the same way. It is most portable to use ! only '/'.) It is an error if there is anything (other than comments) on the line after the file name. --- 666,698 ---- ================== Both user and system header files are included using the preprocessing ! directive `#include'. It has two variants: ! `#include ' This variant is used for system header files. It searches for a file named FILE in a standard list of system directories. You can ! prepend directories to this list with the `-I' option (*note Invocation::). ! `#include "FILE"' This variant is used for header files of your own program. It searches for a file named FILE first in the directory containing the current file, then in the quote directories and then the same ! directories used for `'. You can prepend directories to the ! list of quote directories with the `-iquote' option. ! The argument of `#include', whether delimited with quote marks or angle brackets, behaves like a string constant in that comments are not ! recognized, and macro names are not expanded. Thus, `#include ' ! specifies inclusion of a system header file named `x/*y'. However, if backslashes occur within FILE, they are considered ordinary text characters, not escape characters. None of the character escape sequences appropriate to string constants in C are processed. ! Thus, `#include "x\n\\y"' specifies a filename containing three ! backslashes. (Some systems interpret `\' as a pathname separator. All ! of these also interpret `/' the same way. It is most portable to use ! only `/'.) It is an error if there is anything (other than comments) on the line after the file name. *************** File: cpp.info, Node: Include Operation *** 699,715 **** 2.2 Include Operation ===================== ! The '#include' directive works by directing the C preprocessor to scan the specified file as input before continuing with the rest of the current file. The output from the preprocessor contains the output already generated, followed by the output resulting from the included file, followed by the output that comes from the text after the ! '#include' directive. For example, if you have a header file 'header.h' ! as follows, char *test (void); ! and a main program called 'program.c' that uses the header file, like this, int x; --- 703,719 ---- 2.2 Include Operation ===================== ! The `#include' directive works by directing the C preprocessor to scan the specified file as input before continuing with the rest of the current file. The output from the preprocessor contains the output already generated, followed by the output resulting from the included file, followed by the output that comes from the text after the ! `#include' directive. For example, if you have a header file ! `header.h' as follows, char *test (void); ! and a main program called `program.c' that uses the header file, like this, int x; *************** this, *** 721,727 **** puts (test ()); } ! the compiler will see the same token stream as it would if 'program.c' read int x; --- 725,731 ---- puts (test ()); } ! the compiler will see the same token stream as it would if `program.c' read int x; *************** the file. *** 747,753 **** syntactic units--function declarations or definitions, type declarations, etc. ! The line following the '#include' directive is always treated as a separate line by the C preprocessor, even if the included file lacks a final newline. --- 751,757 ---- syntactic units--function declarations or definitions, type declarations, etc. ! The line following the `#include' directive is always treated as a separate line by the C preprocessor, even if the included file lacks a final newline. *************** File: cpp.info, Node: Search Path, Nex *** 759,765 **** GCC looks in several different places for headers. On a normal Unix system, if you do not instruct it otherwise, it will look for headers ! requested with '#include ' in: /usr/local/include LIBDIR/gcc/TARGET/VERSION/include --- 763,769 ---- GCC looks in several different places for headers. On a normal Unix system, if you do not instruct it otherwise, it will look for headers ! requested with `#include ' in: /usr/local/include LIBDIR/gcc/TARGET/VERSION/include *************** requested with '#include ' in: *** 767,780 **** /usr/include For C++ programs, it will also look in ! 'LIBDIR/../include/c++/VERSION', first. In the above, TARGET is the canonical name of the system GCC was configured to compile code for; often but not always the same as the canonical name of the system it runs on. VERSION is the version of GCC in use. ! You can add to this list with the '-IDIR' command line option. All ! the directories named by '-I' are searched, in left-to-right order, ! _before_ the default directories. The only exception is when 'dir' is already searched by default. In this case, the option is ignored and the search order for system directories remains unchanged. --- 771,784 ---- /usr/include For C++ programs, it will also look in ! `LIBDIR/../include/c++/VERSION', first. In the above, TARGET is the canonical name of the system GCC was configured to compile code for; often but not always the same as the canonical name of the system it runs on. VERSION is the version of GCC in use. ! You can add to this list with the `-IDIR' command line option. All ! the directories named by `-I' are searched, in left-to-right order, ! _before_ the default directories. The only exception is when `dir' is already searched by default. In this case, the option is ignored and the search order for system directories remains unchanged. *************** Thus, it is possible for a directory to *** 784,821 **** chain if it was specified in both the quote and bracket chains. You can prevent GCC from searching any of the default directories ! with the '-nostdinc' option. This is useful when you are compiling an operating system kernel or some other program that does not use the ! standard C library facilities, or the standard C library itself. '-I' ! options are not ignored as described above when '-nostdinc' is in effect. ! GCC looks for headers requested with '#include "FILE"' first in the directory containing the current file, then in the directories as ! specified by '-iquote' options, then in the same places it would have looked for a header requested with angle brackets. For example, if ! '/usr/include/sys/stat.h' contains '#include "types.h"', GCC looks for ! 'types.h' first in '/usr/include/sys', then in its usual search path. ! '#line' (*note Line Control::) does not change GCC's idea of the directory containing the current file. ! You may put '-I-' at any point in your list of '-I' options. This ! has two effects. First, directories appearing before the '-I-' in the list are searched only for headers requested with quote marks. ! Directories after '-I-' are searched for all headers. Second, the directory containing the current file is not searched for anything, ! unless it happens to be one of the directories named by an '-I' switch. ! '-I-' is deprecated, '-iquote' should be used instead. ! '-I. -I-' is not the same as no '-I' options at all, and does not ! cause the same behavior for '<>' includes that '""' includes get with no ! special options. '-I.' searches the compiler's current working directory for header files. That may or may not be the same as the directory containing the current file. ! If you need to look for headers in a directory named '-', write ! '-I./-'. There are several more ways to adjust the header search path. They are generally less useful. *Note Invocation::. --- 788,825 ---- chain if it was specified in both the quote and bracket chains. You can prevent GCC from searching any of the default directories ! with the `-nostdinc' option. This is useful when you are compiling an operating system kernel or some other program that does not use the ! standard C library facilities, or the standard C library itself. `-I' ! options are not ignored as described above when `-nostdinc' is in effect. ! GCC looks for headers requested with `#include "FILE"' first in the directory containing the current file, then in the directories as ! specified by `-iquote' options, then in the same places it would have looked for a header requested with angle brackets. For example, if ! `/usr/include/sys/stat.h' contains `#include "types.h"', GCC looks for ! `types.h' first in `/usr/include/sys', then in its usual search path. ! `#line' (*note Line Control::) does not change GCC's idea of the directory containing the current file. ! You may put `-I-' at any point in your list of `-I' options. This ! has two effects. First, directories appearing before the `-I-' in the list are searched only for headers requested with quote marks. ! Directories after `-I-' are searched for all headers. Second, the directory containing the current file is not searched for anything, ! unless it happens to be one of the directories named by an `-I' switch. ! `-I-' is deprecated, `-iquote' should be used instead. ! `-I. -I-' is not the same as no `-I' options at all, and does not ! cause the same behavior for `<>' includes that `""' includes get with ! no special options. `-I.' searches the compiler's current working directory for header files. That may or may not be the same as the directory containing the current file. ! If you need to look for headers in a directory named `-', write ! `-I./-'. There are several more ways to adjust the header search path. They are generally less useful. *Note Invocation::. *************** contents of the file in a conditional, l *** 844,863 **** This construct is commonly known as a "wrapper #ifndef". When the header is included again, the conditional will be false, because ! 'FILE_FOO_SEEN' is defined. The preprocessor will skip over the entire contents of the file, and the compiler will not see it twice. CPP optimizes even further. It remembers when a header file has a ! wrapper '#ifndef'. If a subsequent '#include' specifies that header, ! and the macro in the '#ifndef' is still defined, it does not bother to rescan the file at all. You can put comments outside the wrapper. They will not interfere with this optimization. ! The macro 'FILE_FOO_SEEN' is called the "controlling macro" or "guard ! macro". In a user header file, the macro name should not begin with ! '_'. In a system header file, it should begin with '__' to avoid conflicts with user programs. In any kind of header file, the macro name should contain the name of the file and some additional text, to avoid conflicts with other header files. --- 848,867 ---- This construct is commonly known as a "wrapper #ifndef". When the header is included again, the conditional will be false, because ! `FILE_FOO_SEEN' is defined. The preprocessor will skip over the entire contents of the file, and the compiler will not see it twice. CPP optimizes even further. It remembers when a header file has a ! wrapper `#ifndef'. If a subsequent `#include' specifies that header, ! and the macro in the `#ifndef' is still defined, it does not bother to rescan the file at all. You can put comments outside the wrapper. They will not interfere with this optimization. ! The macro `FILE_FOO_SEEN' is called the "controlling macro" or ! "guard macro". In a user header file, the macro name should not begin ! with `_'. In a system header file, it should begin with `__' to avoid conflicts with user programs. In any kind of header file, the macro name should contain the name of the file and some additional text, to avoid conflicts with other header files. *************** File: cpp.info, Node: Alternatives to W *** 869,903 **** =================================== CPP supports two more ways of indicating that a header file should be ! read only once. Neither one is as portable as a wrapper '#ifndef' and we recommend you do not use them in new programs, with the caveat that ! '#import' is standard practice in Objective-C. ! CPP supports a variant of '#include' called '#import' which includes ! a file, but does so at most once. If you use '#import' instead of ! '#include', then you don't need the conditionals inside the header file ! to prevent multiple inclusion of the contents. '#import' is standard in ! Objective-C, but is considered a deprecated extension in C and C++. ! '#import' is not a well designed feature. It requires the users of a ! header file to know that it should only be included once. It is much better for the header file's implementor to write the file so that users ! don't need to know this. Using a wrapper '#ifndef' accomplishes this goal. ! In the present implementation, a single use of '#import' will prevent ! the file from ever being read again, by either '#import' or '#include'. ! You should not rely on this; do not use both '#import' and '#include' to ! refer to the same header file. Another way to prevent a header file from being included more than ! once is with the '#pragma once' directive. If '#pragma once' is seen when scanning a header file, that file will never be read again, no matter what. ! '#pragma once' does not have the problems that '#import' does, but it ! is not recognized by all preprocessors, so you cannot rely on it in a ! portable program.  File: cpp.info, Node: Computed Includes, Next: Wrapper Headers, Prev: Alternatives to Wrapper #ifndef, Up: Header Files --- 873,907 ---- =================================== CPP supports two more ways of indicating that a header file should be ! read only once. Neither one is as portable as a wrapper `#ifndef' and we recommend you do not use them in new programs, with the caveat that ! `#import' is standard practice in Objective-C. ! CPP supports a variant of `#include' called `#import' which includes ! a file, but does so at most once. If you use `#import' instead of ! `#include', then you don't need the conditionals inside the header file ! to prevent multiple inclusion of the contents. `#import' is standard ! in Objective-C, but is considered a deprecated extension in C and C++. ! `#import' is not a well designed feature. It requires the users of ! a header file to know that it should only be included once. It is much better for the header file's implementor to write the file so that users ! don't need to know this. Using a wrapper `#ifndef' accomplishes this goal. ! In the present implementation, a single use of `#import' will ! prevent the file from ever being read again, by either `#import' or ! `#include'. You should not rely on this; do not use both `#import' and ! `#include' to refer to the same header file. Another way to prevent a header file from being included more than ! once is with the `#pragma once' directive. If `#pragma once' is seen when scanning a header file, that file will never be read again, no matter what. ! `#pragma once' does not have the problems that `#import' does, but ! it is not recognized by all preprocessors, so you cannot rely on it in ! a portable program.  File: cpp.info, Node: Computed Includes, Next: Wrapper Headers, Prev: Alternatives to Wrapper #ifndef, Up: Header Files *************** systems, for instance. You could do thi *** 921,947 **** That rapidly becomes tedious. Instead, the preprocessor offers the ability to use a macro for the header name. This is called a "computed include". Instead of writing a header name as the direct argument of ! '#include', you simply put a macro name there instead: #define SYSTEM_H "system_1.h" ... #include SYSTEM_H ! 'SYSTEM_H' will be expanded, and the preprocessor will look for ! 'system_1.h' as if the '#include' had been written that way originally. ! 'SYSTEM_H' could be defined by your Makefile with a '-D' option. ! You must be careful when you define the macro. '#define' saves tokens, not text. The preprocessor has no way of knowing that the macro ! will be used as the argument of '#include', so it generates ordinary tokens, not a header name. This is unlikely to cause problems if you use double-quote includes, which are close enough to string constants. If you use angle brackets, however, you may have trouble. The syntax of a computed include is actually a bit more general than ! the above. If the first non-whitespace character after '#include' is ! not '"' or '<', then the entire line is macro-expanded like running text ! would be. If the line expands to a single string constant, the contents of that string constant are the file to be included. CPP does not re-examine --- 925,951 ---- That rapidly becomes tedious. Instead, the preprocessor offers the ability to use a macro for the header name. This is called a "computed include". Instead of writing a header name as the direct argument of ! `#include', you simply put a macro name there instead: #define SYSTEM_H "system_1.h" ... #include SYSTEM_H ! `SYSTEM_H' will be expanded, and the preprocessor will look for ! `system_1.h' as if the `#include' had been written that way originally. ! `SYSTEM_H' could be defined by your Makefile with a `-D' option. ! You must be careful when you define the macro. `#define' saves tokens, not text. The preprocessor has no way of knowing that the macro ! will be used as the argument of `#include', so it generates ordinary tokens, not a header name. This is unlikely to cause problems if you use double-quote includes, which are close enough to string constants. If you use angle brackets, however, you may have trouble. The syntax of a computed include is actually a bit more general than ! the above. If the first non-whitespace character after `#include' is ! not `"' or `<', then the entire line is macro-expanded like running ! text would be. If the line expands to a single string constant, the contents of that string constant are the file to be included. CPP does not re-examine *************** escapes in the string. Therefore *** 951,970 **** #define HEADER "a\"b" #include HEADER ! looks for a file named 'a\"b'. CPP searches for the file according to the rules for double-quoted includes. ! If the line expands to a token stream beginning with a '<' token and ! including a '>' token, then the tokens between the '<' and the first '>' ! are combined to form the filename to be included. Any whitespace between tokens is reduced to a single space; then any space after the ! initial '<' is retained, but a trailing space before the closing '>' is ignored. CPP searches for the file according to the rules for angle-bracket includes. In either case, if there are any tokens on the line after the file ! name, an error occurs and the directive is not processed. It is also an ! error if the result of expansion does not match either of the two expected forms. These rules are implementation-defined behavior according to the C --- 955,974 ---- #define HEADER "a\"b" #include HEADER ! looks for a file named `a\"b'. CPP searches for the file according to the rules for double-quoted includes. ! If the line expands to a token stream beginning with a `<' token and ! including a `>' token, then the tokens between the `<' and the first ! `>' are combined to form the filename to be included. Any whitespace between tokens is reduced to a single space; then any space after the ! initial `<' is retained, but a trailing space before the closing `>' is ignored. CPP searches for the file according to the rules for angle-bracket includes. In either case, if there are any tokens on the line after the file ! name, an error occurs and the directive is not processed. It is also ! an error if the result of expansion does not match either of the two expected forms. These rules are implementation-defined behavior according to the C *************** File: cpp.info, Node: Wrapper Headers, *** 980,1027 **** =================== Sometimes it is necessary to adjust the contents of a system-provided ! header file without editing it directly. GCC's 'fixincludes' operation does this, for example. One way to do that would be to create a new header file with the same name and insert it in the search path before the original header. That works fine as long as you're willing to replace the old header entirely. But what if you want to refer to the old header from the new one? ! You cannot simply include the old header with '#include'. That will start from the beginning, and find your new header again. If your header is not protected from multiple inclusion (*note Once-Only Headers::), it will recurse infinitely and cause a fatal error. You could include the old header with an absolute pathname: #include "/usr/include/old-header.h" ! This works, but is not clean; should the system headers ever move, you ! would have to edit the new headers to match. There is no way to solve this problem within the C standard, but you ! can use the GNU extension '#include_next'. It means, "Include the ! _next_ file with this name". This directive works like '#include' ! except in searching for the specified file: it starts searching the list ! of header file directories _after_ the directory in which the current ! file was found. ! Suppose you specify '-I /usr/local/include', and the list of ! directories to search also includes '/usr/include'; and suppose both ! directories contain 'signal.h'. Ordinary '#include ' finds ! the file under '/usr/local/include'. If that file contains ! '#include_next ', it starts searching after that directory, ! and finds the file in '/usr/include'. ! '#include_next' does not distinguish between '' and '"FILE"' ! inclusion, nor does it check that the file you specify has the same name ! as the current file. It simply looks for the file named, starting with ! the directory in the search path after the one where the current file ! was found. ! The use of '#include_next' can lead to great confusion. We recommend ! it be used only when there is no other alternative. In particular, it ! should not be used in the headers belonging to a specific program; it ! should be used only to make global corrections along the lines of ! 'fixincludes'.  File: cpp.info, Node: System Headers, Prev: Wrapper Headers, Up: Header Files --- 984,1031 ---- =================== Sometimes it is necessary to adjust the contents of a system-provided ! header file without editing it directly. GCC's `fixincludes' operation does this, for example. One way to do that would be to create a new header file with the same name and insert it in the search path before the original header. That works fine as long as you're willing to replace the old header entirely. But what if you want to refer to the old header from the new one? ! You cannot simply include the old header with `#include'. That will start from the beginning, and find your new header again. If your header is not protected from multiple inclusion (*note Once-Only Headers::), it will recurse infinitely and cause a fatal error. You could include the old header with an absolute pathname: #include "/usr/include/old-header.h" ! This works, but is not clean; should the system headers ever move, ! you would have to edit the new headers to match. There is no way to solve this problem within the C standard, but you ! can use the GNU extension `#include_next'. It means, "Include the ! _next_ file with this name". This directive works like `#include' ! except in searching for the specified file: it starts searching the ! list of header file directories _after_ the directory in which the ! current file was found. ! Suppose you specify `-I /usr/local/include', and the list of ! directories to search also includes `/usr/include'; and suppose both ! directories contain `signal.h'. Ordinary `#include ' finds ! the file under `/usr/local/include'. If that file contains ! `#include_next ', it starts searching after that directory, ! and finds the file in `/usr/include'. ! `#include_next' does not distinguish between `' and `"FILE"' ! inclusion, nor does it check that the file you specify has the same ! name as the current file. It simply looks for the file named, starting ! with the directory in the search path after the one where the current ! file was found. ! The use of `#include_next' can lead to great confusion. We ! recommend it be used only when there is no other alternative. In ! particular, it should not be used in the headers belonging to a specific ! program; it should be used only to make global corrections along the ! lines of `fixincludes'.  File: cpp.info, Node: System Headers, Prev: Wrapper Headers, Up: Header Files *************** File: cpp.info, Node: System Headers, *** 1032,1069 **** The header files declaring interfaces to the operating system and runtime libraries often cannot be written in strictly conforming C. Therefore, GCC gives code found in "system headers" special treatment. ! All warnings, other than those generated by '#warning' (*note Diagnostics::), are suppressed while GCC is processing a system header. Macros defined in a system header are immune to a few warnings wherever ! they are expanded. This immunity is granted on an ad-hoc basis, when we ! find that a warning generates lots of false positives because of code in ! macros defined in system headers. Normally, only the headers found in specific directories are ! considered system headers. These directories are determined when GCC is ! compiled. There are, however, two ways to make normal headers into system headers. ! The '-isystem' command line option adds its argument to the list of ! directories to search for headers, just like '-I'. Any headers found in ! that directory will be considered system headers. ! All directories named by '-isystem' are searched _after_ all ! directories named by '-I', no matter what their order was on the command ! line. If the same directory is named by both '-I' and '-isystem', the ! '-I' option is ignored. GCC provides an informative message when this ! occurs if '-v' is used. ! There is also a directive, '#pragma GCC system_header', which tells ! GCC to consider the rest of the current include file a system header, no ! matter where it was found. Code that comes before the '#pragma' in the ! file will not be affected. '#pragma GCC system_header' has no effect in ! the primary source file. On very old systems, some of the pre-defined system header directories get even more special treatment. GNU C++ considers code in ! headers found in those directories to be surrounded by an 'extern "C"' ! block. There is no way to request this behavior with a '#pragma', or from the command line.  --- 1036,1073 ---- The header files declaring interfaces to the operating system and runtime libraries often cannot be written in strictly conforming C. Therefore, GCC gives code found in "system headers" special treatment. ! All warnings, other than those generated by `#warning' (*note Diagnostics::), are suppressed while GCC is processing a system header. Macros defined in a system header are immune to a few warnings wherever ! they are expanded. This immunity is granted on an ad-hoc basis, when ! we find that a warning generates lots of false positives because of ! code in macros defined in system headers. Normally, only the headers found in specific directories are ! considered system headers. These directories are determined when GCC ! is compiled. There are, however, two ways to make normal headers into system headers. ! The `-isystem' command line option adds its argument to the list of ! directories to search for headers, just like `-I'. Any headers found ! in that directory will be considered system headers. ! All directories named by `-isystem' are searched _after_ all ! directories named by `-I', no matter what their order was on the ! command line. If the same directory is named by both `-I' and ! `-isystem', the `-I' option is ignored. GCC provides an informative ! message when this occurs if `-v' is used. ! There is also a directive, `#pragma GCC system_header', which tells ! GCC to consider the rest of the current include file a system header, ! no matter where it was found. Code that comes before the `#pragma' in ! the file will not be affected. `#pragma GCC system_header' has no ! effect in the primary source file. On very old systems, some of the pre-defined system header directories get even more special treatment. GNU C++ considers code in ! headers found in those directories to be surrounded by an `extern "C"' ! block. There is no way to request this behavior with a `#pragma', or from the command line.  *************** File: cpp.info, Node: Macros, Next: Co *** 1074,1090 **** A "macro" is a fragment of code which has been given a name. Whenever the name is used, it is replaced by the contents of the macro. There ! are two kinds of macros. They differ mostly in what they look like when ! they are used. "Object-like" macros resemble data objects when used, ! "function-like" macros resemble function calls. You may define any valid identifier as a macro, even if it is a C keyword. The preprocessor does not know anything about keywords. This ! can be useful if you wish to hide a keyword such as 'const' from an older compiler that does not understand it. However, the preprocessor ! operator 'defined' (*note Defined::) can never be defined as a macro, ! and C++'s named operators (*note C++ Named Operators::) cannot be macros ! when you are compiling C++. * Menu: --- 1078,1094 ---- A "macro" is a fragment of code which has been given a name. Whenever the name is used, it is replaced by the contents of the macro. There ! are two kinds of macros. They differ mostly in what they look like ! when they are used. "Object-like" macros resemble data objects when ! used, "function-like" macros resemble function calls. You may define any valid identifier as a macro, even if it is a C keyword. The preprocessor does not know anything about keywords. This ! can be useful if you wish to hide a keyword such as `const' from an older compiler that does not understand it. However, the preprocessor ! operator `defined' (*note Defined::) can never be defined as a macro, ! and C++'s named operators (*note C++ Named Operators::) cannot be ! macros when you are compiling C++. * Menu: *************** a code fragment. It is called object-li *** 1110,1130 **** object in code that uses it. They are most commonly used to give symbolic names to numeric constants. ! You create macros with the '#define' directive. '#define' is followed by the name of the macro and then the token sequence it should be an abbreviation for, which is variously referred to as the macro's "body", "expansion" or "replacement list". For example, #define BUFFER_SIZE 1024 ! defines a macro named 'BUFFER_SIZE' as an abbreviation for the token ! '1024'. If somewhere after this '#define' directive there comes a C statement of the form foo = (char *) malloc (BUFFER_SIZE); then the C preprocessor will recognize and "expand" the macro ! 'BUFFER_SIZE'. The C compiler will see the same tokens as it would if you had written foo = (char *) malloc (1024); --- 1114,1134 ---- object in code that uses it. They are most commonly used to give symbolic names to numeric constants. ! You create macros with the `#define' directive. `#define' is followed by the name of the macro and then the token sequence it should be an abbreviation for, which is variously referred to as the macro's "body", "expansion" or "replacement list". For example, #define BUFFER_SIZE 1024 ! defines a macro named `BUFFER_SIZE' as an abbreviation for the token ! `1024'. If somewhere after this `#define' directive there comes a C statement of the form foo = (char *) malloc (BUFFER_SIZE); then the C preprocessor will recognize and "expand" the macro ! `BUFFER_SIZE'. The C compiler will see the same tokens as it would if you had written foo = (char *) malloc (1024); *************** you had written *** 1133,1139 **** easier to read when it is possible to tell at a glance which names are macros. ! The macro's body ends at the end of the '#define' line. You may continue the definition onto multiple lines, if necessary, using backslash-newline. When the macro is expanded, however, it will all come out on one line. For example, --- 1137,1143 ---- easier to read when it is possible to tell at a glance which names are macros. ! The macro's body ends at the end of the `#define' line. You may continue the definition onto multiple lines, if necessary, using backslash-newline. When the macro is expanded, however, it will all come out on one line. For example, *************** macros to expand. For example, *** 1175,1192 **** ==> BUFSIZE ==> 1024 ! 'TABLESIZE' is expanded first to produce 'BUFSIZE', then that macro is ! expanded to produce the final result, '1024'. ! Notice that 'BUFSIZE' was not defined when 'TABLESIZE' was defined. ! The '#define' for 'TABLESIZE' uses exactly the expansion you specify--in ! this case, 'BUFSIZE'--and does not check to see whether it too contains ! macro names. Only when you _use_ 'TABLESIZE' is the result of its ! expansion scanned for more macro names. ! This makes a difference if you change the definition of 'BUFSIZE' at ! some point in the source file. 'TABLESIZE', defined as shown, will ! always expand using the definition of 'BUFSIZE' that is currently in effect: #define BUFSIZE 1020 --- 1179,1196 ---- ==> BUFSIZE ==> 1024 ! `TABLESIZE' is expanded first to produce `BUFSIZE', then that macro is ! expanded to produce the final result, `1024'. ! Notice that `BUFSIZE' was not defined when `TABLESIZE' was defined. ! The `#define' for `TABLESIZE' uses exactly the expansion you ! specify--in this case, `BUFSIZE'--and does not check to see whether it ! too contains macro names. Only when you _use_ `TABLESIZE' is the ! result of its expansion scanned for more macro names. ! This makes a difference if you change the definition of `BUFSIZE' at ! some point in the source file. `TABLESIZE', defined as shown, will ! always expand using the definition of `BUFSIZE' that is currently in effect: #define BUFSIZE 1020 *************** effect: *** 1194,1200 **** #undef BUFSIZE #define BUFSIZE 37 ! Now 'TABLESIZE' expands (in two stages) to '37'. If the expansion of a macro contains its own name, either directly or via intermediate macros, it is not expanded again when the expansion is --- 1198,1204 ---- #undef BUFSIZE #define BUFSIZE 37 ! Now `TABLESIZE' expands (in two stages) to `37'. If the expansion of a macro contains its own name, either directly or via intermediate macros, it is not expanded again when the expansion is *************** File: cpp.info, Node: Function-like Mac *** 1208,1215 **** ======================== You can also define macros whose use looks like a function call. These ! are called "function-like macros". To define a function-like macro, you ! use the same '#define' directive, but you put a pair of parentheses immediately after the macro name. For example, #define lang_init() c_init() --- 1212,1219 ---- ======================== You can also define macros whose use looks like a function call. These ! are called "function-like macros". To define a function-like macro, ! you use the same `#define' directive, but you put a pair of parentheses immediately after the macro name. For example, #define lang_init() c_init() *************** same name, and you wish to use the funct *** 1227,1235 **** foo(); funcptr = foo; ! Here the call to 'foo()' will use the macro, but the function pointer ! will get the address of the real function. If the macro were to be ! expanded, it would cause a syntax error. If you put spaces between the macro name and the parentheses in the macro definition, that does not define a function-like macro, it defines --- 1231,1239 ---- foo(); funcptr = foo; ! Here the call to `foo()' will use the macro, but the function ! pointer will get the address of the real function. If the macro were to ! be expanded, it would cause a syntax error. If you put spaces between the macro name and the parentheses in the macro definition, that does not define a function-like macro, it defines *************** parentheses. *** 1242,1248 **** The first two pairs of parentheses in this expansion come from the macro. The third is the pair that was originally after the macro ! invocation. Since 'lang_init' is an object-like macro, it does not consume those parentheses.  --- 1246,1252 ---- The first two pairs of parentheses in this expansion come from the macro. The third is the pair that was originally after the macro ! invocation. Since `lang_init' is an object-like macro, it does not consume those parentheses.  *************** File: cpp.info, Node: Macro Arguments, *** 1251,1261 **** 3.3 Macro Arguments =================== ! Function-like macros can take "arguments", just like true functions. To ! define a macro that uses arguments, you insert "parameters" between the ! pair of parentheses in the macro definition that make the macro ! function-like. The parameters must be valid C identifiers, separated by ! commas and optionally whitespace. To invoke a macro that takes arguments, you write the name of the macro followed by a list of "actual arguments" in parentheses, separated --- 1255,1265 ---- 3.3 Macro Arguments =================== ! Function-like macros can take "arguments", just like true functions. ! To define a macro that uses arguments, you insert "parameters" between ! the pair of parentheses in the macro definition that make the macro ! function-like. The parameters must be valid C identifiers, separated ! by commas and optionally whitespace. To invoke a macro that takes arguments, you write the name of the macro followed by a list of "actual arguments" in parentheses, separated *************** prevent a comma from separating argument *** 1287,1305 **** macro (array[x = y, x + 1]) ! passes two arguments to 'macro': 'array[x = y' and 'x + 1]'. If you ! want to supply 'array[x = y, x + 1]' as an argument, you can write it as ! 'array[(x = y, x + 1)]', which is equivalent C code. All arguments to a macro are completely macro-expanded before they are substituted into the macro body. After substitution, the complete text is scanned again for macros to expand, including the arguments. ! This rule may seem strange, but it is carefully designed so you need not ! worry about whether any function call is actually a macro invocation. ! You can run into trouble if you try to be too clever, though. *Note ! Argument Prescan::, for detailed discussion. ! For example, 'min (min (a, b), c)' is first expanded to min (((a) < (b) ? (a) : (b)), (c)) --- 1291,1309 ---- macro (array[x = y, x + 1]) ! passes two arguments to `macro': `array[x = y' and `x + 1]'. If you ! want to supply `array[x = y, x + 1]' as an argument, you can write it ! as `array[(x = y, x + 1)]', which is equivalent C code. All arguments to a macro are completely macro-expanded before they are substituted into the macro body. After substitution, the complete text is scanned again for macros to expand, including the arguments. ! This rule may seem strange, but it is carefully designed so you need ! not worry about whether any function call is actually a macro ! invocation. You can run into trouble if you try to be too clever, ! though. *Note Argument Prescan::, for detailed discussion. ! For example, `min (min (a, b), c)' is first expanded to min (((a) < (b) ? (a) : (b)), (c)) *************** and then to *** 1315,1335 **** preprocessor (but many macros will then expand to invalid code). You cannot leave out arguments entirely; if a macro takes two arguments, there must be exactly one comma at the top level of its argument list. ! Here are some silly examples using 'min': min(, b) ==> (( ) < (b) ? ( ) : (b)) min(a, ) ==> ((a ) < ( ) ? (a ) : ( )) min(,) ==> (( ) < ( ) ? ( ) : ( )) min((,),) ==> (((,)) < ( ) ? ((,)) : ( )) ! min() error-> macro "min" requires 2 arguments, but only 1 given ! min(,,) error-> macro "min" passed 3 arguments, but takes just 2 ! Whitespace is not a preprocessing token, so if a macro 'foo' takes ! one argument, 'foo ()' and 'foo ( )' both supply it an empty argument. Previous GNU preprocessor implementations and documentation were ! incorrect on this point, insisting that a function-like macro that takes ! a single argument be passed a space if an empty argument was required. Macro parameters appearing inside string literals are not replaced by their corresponding actual arguments. --- 1319,1340 ---- preprocessor (but many macros will then expand to invalid code). You cannot leave out arguments entirely; if a macro takes two arguments, there must be exactly one comma at the top level of its argument list. ! Here are some silly examples using `min': min(, b) ==> (( ) < (b) ? ( ) : (b)) min(a, ) ==> ((a ) < ( ) ? (a ) : ( )) min(,) ==> (( ) < ( ) ? ( ) : ( )) min((,),) ==> (((,)) < ( ) ? ((,)) : ( )) ! min() error--> macro "min" requires 2 arguments, but only 1 given ! min(,,) error--> macro "min" passed 3 arguments, but takes just 2 ! Whitespace is not a preprocessing token, so if a macro `foo' takes ! one argument, `foo ()' and `foo ( )' both supply it an empty argument. Previous GNU preprocessor implementations and documentation were ! incorrect on this point, insisting that a function-like macro that ! takes a single argument be passed a space if an empty argument was ! required. Macro parameters appearing inside string literals are not replaced by their corresponding actual arguments. *************** File: cpp.info, Node: Stringification, *** 1345,1352 **** Sometimes you may want to convert a macro argument into a string constant. Parameters are not replaced inside string constants, but you ! can use the '#' preprocessing operator instead. When a macro parameter ! is used with a leading '#', the preprocessor replaces it with the literal text of the actual argument, converted to a string constant. Unlike normal parameter replacement, the argument is not macro-expanded first. This is called "stringification". --- 1350,1357 ---- Sometimes you may want to convert a macro argument into a string constant. Parameters are not replaced inside string constants, but you ! can use the `#' preprocessing operator instead. When a macro parameter ! is used with a leading `#', the preprocessor replaces it with the literal text of the actual argument, converted to a string constant. Unlike normal parameter replacement, the argument is not macro-expanded first. This is called "stringification". *************** first. This is called "stringification" *** 1354,1362 **** There is no way to combine an argument with surrounding text and stringify it all together. Instead, you can write a series of adjacent string constants and stringified arguments. The preprocessor will ! replace the stringified arguments with string constants. The C compiler ! will then combine all the adjacent string constants into one long ! string. Here is an example of a macro definition that uses stringification: --- 1359,1367 ---- There is no way to combine an argument with surrounding text and stringify it all together. Instead, you can write a series of adjacent string constants and stringified arguments. The preprocessor will ! replace the stringified arguments with string constants. The C ! compiler will then combine all the adjacent string constants into one ! long string. Here is an example of a macro definition that uses stringification: *************** string. *** 1368,1389 **** ==> do { if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n"); } while (0); ! The argument for 'EXP' is substituted once, as-is, into the 'if' ! statement, and once, stringified, into the argument to 'fprintf'. If ! 'x' were a macro, it would be expanded in the 'if' statement, but not in ! the string. ! The 'do' and 'while (0)' are a kludge to make it possible to write ! 'WARN_IF (ARG);', which the resemblance of 'WARN_IF' to a function would ! make C programmers want to do; see *note Swallowing the Semicolon::. Stringification in C involves more than putting double-quote characters around the fragment. The preprocessor backslash-escapes the ! quotes surrounding embedded string constants, and all backslashes within ! string and character constants, in order to get a valid C string ! constant with the proper contents. Thus, stringifying 'p = "foo\n";' results in "p = \"foo\\n\";". However, backslashes that are not inside ! string or character constants are not duplicated: '\n' by itself stringifies to "\n". All leading and trailing whitespace in text being stringified is --- 1373,1395 ---- ==> do { if (x == 0) fprintf (stderr, "Warning: " "x == 0" "\n"); } while (0); ! The argument for `EXP' is substituted once, as-is, into the `if' ! statement, and once, stringified, into the argument to `fprintf'. If ! `x' were a macro, it would be expanded in the `if' statement, but not ! in the string. ! The `do' and `while (0)' are a kludge to make it possible to write ! `WARN_IF (ARG);', which the resemblance of `WARN_IF' to a function ! would make C programmers want to do; see *note Swallowing the ! Semicolon::. Stringification in C involves more than putting double-quote characters around the fragment. The preprocessor backslash-escapes the ! quotes surrounding embedded string constants, and all backslashes ! within string and character constants, in order to get a valid C string ! constant with the proper contents. Thus, stringifying `p = "foo\n";' results in "p = \"foo\\n\";". However, backslashes that are not inside ! string or character constants are not duplicated: `\n' by itself stringifies to "\n". All leading and trailing whitespace in text being stringified is *************** you have to use two levels of macros. *** 1408,1418 **** ==> str (4) ==> "4" ! 's' is stringified when it is used in 'str', so it is not ! macro-expanded first. But 's' is an ordinary argument to 'xstr', so it ! is completely macro-expanded before 'xstr' itself is expanded (*note ! Argument Prescan::). Therefore, by the time 'str' gets to its argument, ! it has already been macro-expanded.  File: cpp.info, Node: Concatenation, Next: Variadic Macros, Prev: Stringification, Up: Macros --- 1414,1424 ---- ==> str (4) ==> "4" ! `s' is stringified when it is used in `str', so it is not ! macro-expanded first. But `s' is an ordinary argument to `xstr', so it ! is completely macro-expanded before `xstr' itself is expanded (*note ! Argument Prescan::). Therefore, by the time `str' gets to its ! argument, it has already been macro-expanded.  File: cpp.info, Node: Concatenation, Next: Variadic Macros, Prev: Stringification, Up: Macros *************** File: cpp.info, Node: Concatenation, N *** 1421,1459 **** ================= It is often useful to merge two tokens into one while expanding macros. ! This is called "token pasting" or "token concatenation". The '##' preprocessing operator performs token pasting. When a macro is ! expanded, the two tokens on either side of each '##' operator are ! combined into a single token, which then replaces the '##' and the two original tokens in the macro expansion. Usually both will be identifiers, or one will be an identifier and the other a preprocessing number. When pasted, they make a longer identifier. This isn't the only valid case. It is also possible to concatenate two numbers (or a ! number and a name, such as '1.5' and 'e3') into a number. Also, ! multi-character operators such as '+=' can be formed by token pasting. However, two tokens that don't together form a valid token cannot be ! pasted together. For example, you cannot concatenate 'x' with '+' in either order. If you try, the preprocessor issues a warning and emits the two tokens. Whether it puts white space between the tokens is ! undefined. It is common to find unnecessary uses of '##' in complex macros. If you get this warning, it is likely that you can simply ! remove the '##'. ! Both the tokens combined by '##' could come from the macro body, but you could just as well write them as one token in the first place. Token pasting is most useful when one or both of the tokens comes from a ! macro argument. If either of the tokens next to an '##' is a parameter ! name, it is replaced by its actual argument before '##' executes. As with stringification, the actual argument is not macro-expanded first. ! If the argument is empty, that '##' has no effect. Keep in mind that the C preprocessor converts comments to whitespace before macros are even considered. Therefore, you cannot create a ! comment by concatenating '/' and '*'. You can put as much whitespace ! between '##' and its operands as you like, including comments, and you ! can put comments in arguments that will be concatenated. However, it is ! an error if '##' appears at either end of a macro body. Consider a C program that interprets named commands. There probably needs to be a table of commands, perhaps an array of structures declared --- 1427,1465 ---- ================= It is often useful to merge two tokens into one while expanding macros. ! This is called "token pasting" or "token concatenation". The `##' preprocessing operator performs token pasting. When a macro is ! expanded, the two tokens on either side of each `##' operator are ! combined into a single token, which then replaces the `##' and the two original tokens in the macro expansion. Usually both will be identifiers, or one will be an identifier and the other a preprocessing number. When pasted, they make a longer identifier. This isn't the only valid case. It is also possible to concatenate two numbers (or a ! number and a name, such as `1.5' and `e3') into a number. Also, ! multi-character operators such as `+=' can be formed by token pasting. However, two tokens that don't together form a valid token cannot be ! pasted together. For example, you cannot concatenate `x' with `+' in either order. If you try, the preprocessor issues a warning and emits the two tokens. Whether it puts white space between the tokens is ! undefined. It is common to find unnecessary uses of `##' in complex macros. If you get this warning, it is likely that you can simply ! remove the `##'. ! Both the tokens combined by `##' could come from the macro body, but you could just as well write them as one token in the first place. Token pasting is most useful when one or both of the tokens comes from a ! macro argument. If either of the tokens next to an `##' is a parameter ! name, it is replaced by its actual argument before `##' executes. As with stringification, the actual argument is not macro-expanded first. ! If the argument is empty, that `##' has no effect. Keep in mind that the C preprocessor converts comments to whitespace before macros are even considered. Therefore, you cannot create a ! comment by concatenating `/' and `*'. You can put as much whitespace ! between `##' and its operands as you like, including comments, and you ! can put comments in arguments that will be concatenated. However, it ! is an error if `##' appears at either end of a macro body. Consider a C program that interprets named commands. There probably needs to be a table of commands, perhaps an array of structures declared *************** as follows: *** 1472,1483 **** ... }; ! It would be cleaner not to have to give each command name twice, once ! in the string constant and once in the function name. A macro which ! takes the name of a command as an argument can make this unnecessary. ! The string constant can be created with stringification, and the ! function name by concatenating the argument with '_command'. Here is ! how it is done: #define COMMAND(NAME) { #NAME, NAME ## _command } --- 1478,1489 ---- ... }; ! It would be cleaner not to have to give each command name twice, ! once in the string constant and once in the function name. A macro ! which takes the name of a command as an argument can make this ! unnecessary. The string constant can be created with stringification, ! and the function name by concatenating the argument with `_command'. ! Here is how it is done: #define COMMAND(NAME) { #NAME, NAME ## _command } *************** a function. Here is an example: *** 1503,1509 **** This kind of macro is called "variadic". When the macro is invoked, all the tokens in its argument list after the last named argument (this macro has none), including any commas, become the "variable argument". ! This sequence of tokens replaces the identifier '__VA_ARGS__' in the macro body wherever it appears. Thus, we have this expansion: eprintf ("%s:%d: ", input_file, lineno) --- 1509,1515 ---- This kind of macro is called "variadic". When the macro is invoked, all the tokens in its argument list after the last named argument (this macro has none), including any commas, become the "variable argument". ! This sequence of tokens replaces the identifier `__VA_ARGS__' in the macro body wherever it appears. Thus, we have this expansion: eprintf ("%s:%d: ", input_file, lineno) *************** macro body wherever it appears. Thus, w *** 1511,1533 **** The variable argument is completely macro-expanded before it is inserted into the macro expansion, just like an ordinary argument. You ! may use the '#' and '##' operators to stringify the variable argument or ! to paste its leading or trailing token with another token. (But see ! below for an important special case for '##'.) If your macro is complicated, you may want a more descriptive name ! for the variable argument than '__VA_ARGS__'. CPP permits this, as an ! extension. You may write an argument name immediately before the '...'; ! that name is used for the variable argument. The 'eprintf' macro above ! could be written #define eprintf(args...) fprintf (stderr, args) ! using this extension. You cannot use '__VA_ARGS__' and this extension in the same macro. You can have named arguments as well as variable arguments in a ! variadic macro. We could define 'eprintf' like this, instead: #define eprintf(format, ...) fprintf (stderr, format, __VA_ARGS__) --- 1517,1539 ---- The variable argument is completely macro-expanded before it is inserted into the macro expansion, just like an ordinary argument. You ! may use the `#' and `##' operators to stringify the variable argument ! or to paste its leading or trailing token with another token. (But see ! below for an important special case for `##'.) If your macro is complicated, you may want a more descriptive name ! for the variable argument than `__VA_ARGS__'. CPP permits this, as an ! extension. You may write an argument name immediately before the ! `...'; that name is used for the variable argument. The `eprintf' ! macro above could be written #define eprintf(args...) fprintf (stderr, args) ! using this extension. You cannot use `__VA_ARGS__' and this extension in the same macro. You can have named arguments as well as variable arguments in a ! variadic macro. We could define `eprintf' like this, instead: #define eprintf(format, ...) fprintf (stderr, format, __VA_ARGS__) *************** This formulation looks more descriptive, *** 1535,1542 **** flexible: you must now supply at least one argument after the format string. In standard C, you cannot omit the comma separating the named argument from the variable arguments. Furthermore, if you leave the ! variable argument empty, you will get a syntax error, because there will ! be an extra comma after the format string. eprintf("success!\n", ); ==> fprintf(stderr, "success!\n", ); --- 1541,1548 ---- flexible: you must now supply at least one argument after the format string. In standard C, you cannot omit the comma separating the named argument from the variable arguments. Furthermore, if you leave the ! variable argument empty, you will get a syntax error, because there ! will be an extra comma after the format string. eprintf("success!\n", ); ==> fprintf(stderr, "success!\n", ); *************** First, you are allowed to leave the vari *** 1547,1592 **** eprintf ("success!\n") ==> fprintf(stderr, "success!\n", ); ! Second, the '##' token paste operator has a special meaning when placed between a comma and a variable argument. If you write #define eprintf(format, ...) fprintf (stderr, format, ##__VA_ARGS__) ! and the variable argument is left out when the 'eprintf' macro is used, ! then the comma before the '##' will be deleted. This does _not_ happen ! if you pass an empty argument, nor does it happen if the token preceding ! '##' is anything other than a comma. eprintf ("success!\n") ==> fprintf(stderr, "success!\n"); The above explanation is ambiguous about the case where the only macro ! parameter is a variable arguments parameter, as it is meaningless to try ! to distinguish whether no argument at all is an empty argument or a ! missing argument. In this case the C99 standard is clear that the comma ! must remain, however the existing GCC extension used to swallow the ! comma. So CPP retains the comma when conforming to a specific C standard, and drops it otherwise. ! C99 mandates that the only place the identifier '__VA_ARGS__' can appear is in the replacement list of a variadic macro. It may not be ! used as a macro name, macro argument name, or within a different type of ! macro. It may also be forbidden in open text; the standard is ambiguous. We recommend you avoid using it except for its defined purpose. Variadic macros are a new feature in C99. GNU CPP has supported them ! for a long time, but only with a named variable argument ('args...', not ! '...' and '__VA_ARGS__'). If you are concerned with portability to previous versions of GCC, you should use only named variable arguments. On the other hand, if you are concerned with portability to other ! conforming implementations of C99, you should use only '__VA_ARGS__'. Previous versions of CPP implemented the comma-deletion extension much more generally. We have restricted it in this release to minimize the differences from C99. To get the same effect with both this and ! previous versions of GCC, the token preceding the special '##' must be a ! comma, and there must be white space between that comma and whatever comes immediately before it: #define eprintf(format, args...) fprintf (stderr, format , ##args) --- 1553,1598 ---- eprintf ("success!\n") ==> fprintf(stderr, "success!\n", ); ! Second, the `##' token paste operator has a special meaning when placed between a comma and a variable argument. If you write #define eprintf(format, ...) fprintf (stderr, format, ##__VA_ARGS__) ! and the variable argument is left out when the `eprintf' macro is used, ! then the comma before the `##' will be deleted. This does _not_ happen ! if you pass an empty argument, nor does it happen if the token ! preceding `##' is anything other than a comma. eprintf ("success!\n") ==> fprintf(stderr, "success!\n"); The above explanation is ambiguous about the case where the only macro ! parameter is a variable arguments parameter, as it is meaningless to ! try to distinguish whether no argument at all is an empty argument or a ! missing argument. In this case the C99 standard is clear that the ! comma must remain, however the existing GCC extension used to swallow ! the comma. So CPP retains the comma when conforming to a specific C standard, and drops it otherwise. ! C99 mandates that the only place the identifier `__VA_ARGS__' can appear is in the replacement list of a variadic macro. It may not be ! used as a macro name, macro argument name, or within a different type ! of macro. It may also be forbidden in open text; the standard is ambiguous. We recommend you avoid using it except for its defined purpose. Variadic macros are a new feature in C99. GNU CPP has supported them ! for a long time, but only with a named variable argument (`args...', ! not `...' and `__VA_ARGS__'). If you are concerned with portability to previous versions of GCC, you should use only named variable arguments. On the other hand, if you are concerned with portability to other ! conforming implementations of C99, you should use only `__VA_ARGS__'. Previous versions of CPP implemented the comma-deletion extension much more generally. We have restricted it in this release to minimize the differences from C99. To get the same effect with both this and ! previous versions of GCC, the token preceding the special `##' must be ! a comma, and there must be white space between that comma and whatever comes immediately before it: #define eprintf(format, args...) fprintf (stderr, format , ##args) *************** File: cpp.info, Node: Standard Predefin *** 1620,1644 **** -------------------------------- The standard predefined macros are specified by the relevant language ! standards, so they are available with all compilers that implement those ! standards. Older compilers may not provide all of them. Their names ! all start with double underscores. ! '__FILE__' This macro expands to the name of the current input file, in the form of a C string constant. This is the path by which the preprocessor opened the file, not the short name specified in ! '#include' or as the input file name argument. For example, ! '"/usr/local/include/myheader.h"' is a possible expansion of this macro. ! '__LINE__' ! This macro expands to the current input line number, in the form of ! a decimal integer constant. While we call it a predefined macro, ! it's a pretty strange macro, since its "definition" changes with ! each new line of source code. ! '__FILE__' and '__LINE__' are useful in generating an error message to report an inconsistency detected by the program; the message can state the source line at which the inconsistency was detected. For example, --- 1626,1650 ---- -------------------------------- The standard predefined macros are specified by the relevant language ! standards, so they are available with all compilers that implement ! those standards. Older compilers may not provide all of them. Their ! names all start with double underscores. ! `__FILE__' This macro expands to the name of the current input file, in the form of a C string constant. This is the path by which the preprocessor opened the file, not the short name specified in ! `#include' or as the input file name argument. For example, ! `"/usr/local/include/myheader.h"' is a possible expansion of this macro. ! `__LINE__' ! This macro expands to the current input line number, in the form ! of a decimal integer constant. While we call it a predefined ! macro, it's a pretty strange macro, since its "definition" changes ! with each new line of source code. ! `__FILE__' and `__LINE__' are useful in generating an error message to report an inconsistency detected by the program; the message can state the source line at which the inconsistency was detected. For example, *************** example, *** 1648,1748 **** "%d at %s, line %d.", length, __FILE__, __LINE__); ! An '#include' directive changes the expansions of '__FILE__' and ! '__LINE__' to correspond to the included file. At the end of that file, ! when processing resumes on the input file that contained the '#include' ! directive, the expansions of '__FILE__' and '__LINE__' revert to the ! values they had before the '#include' (but '__LINE__' is then ! incremented by one as processing moves to the line after the ! '#include'). ! A '#line' directive changes '__LINE__', and may change '__FILE__' as well. *Note Line Control::. ! C99 introduces '__func__', and GCC has provided '__FUNCTION__' for a ! long time. Both of these are strings containing the name of the current ! function (there are slight semantic differences; see the GCC manual). ! Neither of them is a macro; the preprocessor does not know the name of ! the current function. They tend to be useful in conjunction with ! '__FILE__' and '__LINE__', though. ! '__DATE__' This macro expands to a string constant that describes the date on which the preprocessor is being run. The string constant contains ! eleven characters and looks like '"Feb 12 1996"'. If the day of the month is less than 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and '__DATE__' will expand to ! '"??? ?? ????"'. ! '__TIME__' This macro expands to a string constant that describes the time at which the preprocessor is being run. The string constant contains ! eight characters and looks like '"23:59:01"'. If GCC cannot determine the current time, it will emit a warning ! message (once per compilation) and '__TIME__' will expand to ! '"??:??:??"'. ! '__STDC__' In normal operation, this macro expands to the constant 1, to signify that this compiler conforms to ISO Standard C. If GNU CPP is used with a compiler other than GCC, this is not necessarily true; however, the preprocessor always conforms to the standard ! unless the '-traditional-cpp' option is used. ! This macro is not defined if the '-traditional-cpp' option is used. On some hosts, the system compiler uses a different convention, ! where '__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. CPP follows the host ! convention when processing system header files, but when processing ! user files '__STDC__' is always 1. This has been reported to cause ! problems; for instance, some versions of Solaris provide X Windows ! headers that expect '__STDC__' to be either undefined or 1. *Note ! Invocation::. ! '__STDC_VERSION__' This macro expands to the C Standard's version number, a long ! integer constant of the form 'YYYYMML' where YYYY and MM are the year and month of the Standard version. This signifies which version of the C Standard the compiler conforms to. Like ! '__STDC__', this is not necessarily accurate for the entire implementation, unless GNU CPP is being used with GCC. ! The value '199409L' signifies the 1989 C standard as amended in ! 1994, which is the current default; the value '199901L' signifies ! the 1999 revision of the C standard. Support for the 1999 revision ! is not yet complete. ! This macro is not defined if the '-traditional-cpp' option is used, ! nor when compiling C++ or Objective-C. ! '__STDC_HOSTED__' This macro is defined, with value 1, if the compiler's target is a "hosted environment". A hosted environment has the complete facilities of the standard C library available. ! '__cplusplus' This macro is defined when the C++ compiler is in use. You can use ! '__cplusplus' to test whether a header is compiled by a C compiler ! or a C++ compiler. This macro is similar to '__STDC_VERSION__', in that it expands to a version number. Depending on the language ! standard selected, the value of the macro is '199711L', as mandated ! by the 1998 C++ standard; '201103L', per the 2011 C++ standard; an ! unspecified value strictly larger than '201103L' for the ! experimental languages enabled by '-std=c++1y' and '-std=gnu++1y'. ! '__OBJC__' This macro is defined, with value 1, when the Objective-C compiler ! is in use. You can use '__OBJC__' to test whether a header is compiled by a C compiler or an Objective-C compiler. ! '__ASSEMBLER__' This macro is defined with value 1 when preprocessing assembly language.  File: cpp.info, Node: Common Predefined Macros, Next: System-specific Predefined Macros, Prev: Standard Predefined Macros, Up: Predefined Macros --- 1654,1756 ---- "%d at %s, line %d.", length, __FILE__, __LINE__); ! An `#include' directive changes the expansions of `__FILE__' and ! `__LINE__' to correspond to the included file. At the end of that ! file, when processing resumes on the input file that contained the ! `#include' directive, the expansions of `__FILE__' and `__LINE__' ! revert to the values they had before the `#include' (but `__LINE__' is ! then incremented by one as processing moves to the line after the ! `#include'). ! A `#line' directive changes `__LINE__', and may change `__FILE__' as well. *Note Line Control::. ! C99 introduces `__func__', and GCC has provided `__FUNCTION__' for a ! long time. Both of these are strings containing the name of the ! current function (there are slight semantic differences; see the GCC ! manual). Neither of them is a macro; the preprocessor does not know the ! name of the current function. They tend to be useful in conjunction ! with `__FILE__' and `__LINE__', though. ! `__DATE__' This macro expands to a string constant that describes the date on which the preprocessor is being run. The string constant contains ! eleven characters and looks like `"Feb 12 1996"'. If the day of the month is less than 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and `__DATE__' will expand to ! `"??? ?? ????"'. ! `__TIME__' This macro expands to a string constant that describes the time at which the preprocessor is being run. The string constant contains ! eight characters and looks like `"23:59:01"'. If GCC cannot determine the current time, it will emit a warning ! message (once per compilation) and `__TIME__' will expand to ! `"??:??:??"'. ! `__STDC__' In normal operation, this macro expands to the constant 1, to signify that this compiler conforms to ISO Standard C. If GNU CPP is used with a compiler other than GCC, this is not necessarily true; however, the preprocessor always conforms to the standard ! unless the `-traditional-cpp' option is used. ! This macro is not defined if the `-traditional-cpp' option is used. On some hosts, the system compiler uses a different convention, ! where `__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. CPP follows the host ! convention when processing system header files, but when ! processing user files `__STDC__' is always 1. This has been ! reported to cause problems; for instance, some versions of Solaris ! provide X Windows headers that expect `__STDC__' to be either ! undefined or 1. *Note Invocation::. ! `__STDC_VERSION__' This macro expands to the C Standard's version number, a long ! integer constant of the form `YYYYMML' where YYYY and MM are the year and month of the Standard version. This signifies which version of the C Standard the compiler conforms to. Like ! `__STDC__', this is not necessarily accurate for the entire implementation, unless GNU CPP is being used with GCC. ! The value `199409L' signifies the 1989 C standard as amended in ! 1994, which is the current default; the value `199901L' signifies ! the 1999 revision of the C standard. Support for the 1999 ! revision is not yet complete. ! This macro is not defined if the `-traditional-cpp' option is ! used, nor when compiling C++ or Objective-C. ! `__STDC_HOSTED__' This macro is defined, with value 1, if the compiler's target is a "hosted environment". A hosted environment has the complete facilities of the standard C library available. ! `__cplusplus' This macro is defined when the C++ compiler is in use. You can use ! `__cplusplus' to test whether a header is compiled by a C compiler ! or a C++ compiler. This macro is similar to `__STDC_VERSION__', in that it expands to a version number. Depending on the language ! standard selected, the value of the macro is `199711L', as ! mandated by the 1998 C++ standard; `201103L', per the 2011 C++ ! standard; an unspecified value strictly larger than `201103L' for ! the experimental languages enabled by `-std=c++1y' and ! `-std=gnu++1y'. ! `__OBJC__' This macro is defined, with value 1, when the Objective-C compiler ! is in use. You can use `__OBJC__' to test whether a header is compiled by a C compiler or an Objective-C compiler. ! `__ASSEMBLER__' This macro is defined with value 1 when preprocessing assembly language. +  File: cpp.info, Node: Common Predefined Macros, Next: System-specific Predefined Macros, Prev: Standard Predefined Macros, Up: Predefined Macros *************** with the same meanings regardless of the *** 1754,1795 **** which you are using GNU C or GNU Fortran. Their names all start with double underscores. ! '__COUNTER__' This macro expands to sequential integral values starting from 0. ! In conjunction with the '##' operator, this provides a convenient ! means to generate unique identifiers. Care must be taken to ensure ! that '__COUNTER__' is not expanded prior to inclusion of precompiled headers which use it. Otherwise, the precompiled headers will not be used. ! '__GFORTRAN__' The GNU Fortran compiler defines this. ! '__GNUC__' ! '__GNUC_MINOR__' ! '__GNUC_PATCHLEVEL__' These macros are defined by all GNU compilers that use the C preprocessor: C, C++, Objective-C and Fortran. Their values are the major version, minor version, and patch level of the compiler, as integer constants. For example, GCC 3.2.1 will define ! '__GNUC__' to 3, '__GNUC_MINOR__' to 2, and '__GNUC_PATCHLEVEL__' ! to 1. These macros are also defined if you invoke the preprocessor ! directly. ! '__GNUC_PATCHLEVEL__' is new to GCC 3.0; it is also present in the widely-used development snapshots leading up to 3.0 (which identify themselves as GCC 2.96 or 2.97, depending on which snapshot you have). If all you need to know is whether or not your program is being compiled by GCC, or a non-GCC compiler that claims to accept the ! GNU C dialects, you can simply test '__GNUC__'. If you need to write code which depends on a specific version, you must be more ! careful. Each time the minor version is increased, the patch level ! is reset to zero; each time the major version is increased (which ! happens rarely), the minor version and patch level are reset. If ! you wish to use the predefined macros directly in the conditional, ! you will need to write it like this: /* Test for GCC > 3.2.0 */ #if __GNUC__ > 3 || \ --- 1762,1803 ---- which you are using GNU C or GNU Fortran. Their names all start with double underscores. ! `__COUNTER__' This macro expands to sequential integral values starting from 0. ! In conjunction with the `##' operator, this provides a convenient ! means to generate unique identifiers. Care must be taken to ! ensure that `__COUNTER__' is not expanded prior to inclusion of precompiled headers which use it. Otherwise, the precompiled headers will not be used. ! `__GFORTRAN__' The GNU Fortran compiler defines this. ! `__GNUC__' ! `__GNUC_MINOR__' ! `__GNUC_PATCHLEVEL__' These macros are defined by all GNU compilers that use the C preprocessor: C, C++, Objective-C and Fortran. Their values are the major version, minor version, and patch level of the compiler, as integer constants. For example, GCC 3.2.1 will define ! `__GNUC__' to 3, `__GNUC_MINOR__' to 2, and `__GNUC_PATCHLEVEL__' ! to 1. These macros are also defined if you invoke the ! preprocessor directly. ! `__GNUC_PATCHLEVEL__' is new to GCC 3.0; it is also present in the widely-used development snapshots leading up to 3.0 (which identify themselves as GCC 2.96 or 2.97, depending on which snapshot you have). If all you need to know is whether or not your program is being compiled by GCC, or a non-GCC compiler that claims to accept the ! GNU C dialects, you can simply test `__GNUC__'. If you need to write code which depends on a specific version, you must be more ! careful. Each time the minor version is increased, the patch ! level is reset to zero; each time the major version is increased ! (which happens rarely), the minor version and patch level are ! reset. If you wish to use the predefined macros directly in the ! conditional, you will need to write it like this: /* Test for GCC > 3.2.0 */ #if __GNUC__ > 3 || \ *************** double underscores. *** 1809,1856 **** Many people find this form easier to understand. ! '__GNUG__' The GNU C++ compiler defines this. Testing it is equivalent to ! testing '(__GNUC__ && __cplusplus)'. ! '__STRICT_ANSI__' ! GCC defines this macro if and only if the '-ansi' switch, or a ! '-std' switch specifying strict conformance to some version of ISO ! C or ISO C++, was specified when GCC was invoked. It is defined to ! '1'. This macro exists primarily to direct GNU libc's header files ! to restrict their definitions to the minimal set found in the 1989 ! C standard. ! '__BASE_FILE__' This macro expands to the name of the main input file, in the form of a C string constant. This is the source file that was specified on the command line of the preprocessor or C compiler. ! '__INCLUDE_LEVEL__' This macro expands to a decimal integer constant that represents the depth of nesting in include files. The value of this macro is ! incremented on every '#include' directive and decremented at the end of every included file. It starts out at 0, its value within the base file specified on the command line. ! '__ELF__' This macro is defined if the target uses the ELF object format. ! '__VERSION__' ! This macro expands to a string constant which describes the version ! of the compiler in use. You should not rely on its contents having ! any particular form, but it can be counted on to contain at least ! the release number. ! '__OPTIMIZE__' ! '__OPTIMIZE_SIZE__' ! '__NO_INLINE__' ! These macros describe the compilation mode. '__OPTIMIZE__' is ! defined in all optimizing compilations. '__OPTIMIZE_SIZE__' is defined if the compiler is optimizing for size, not speed. ! '__NO_INLINE__' is defined if no functions will be inlined into their callers (when not optimizing, or when inlining has been ! specifically disabled by '-fno-inline'). These macros cause certain GNU header files to provide optimized definitions, using macros or inline functions, of system library --- 1817,1864 ---- Many people find this form easier to understand. ! `__GNUG__' The GNU C++ compiler defines this. Testing it is equivalent to ! testing `(__GNUC__ && __cplusplus)'. ! `__STRICT_ANSI__' ! GCC defines this macro if and only if the `-ansi' switch, or a ! `-std' switch specifying strict conformance to some version of ISO ! C or ISO C++, was specified when GCC was invoked. It is defined ! to `1'. This macro exists primarily to direct GNU libc's header ! files to restrict their definitions to the minimal set found in ! the 1989 C standard. ! `__BASE_FILE__' This macro expands to the name of the main input file, in the form of a C string constant. This is the source file that was specified on the command line of the preprocessor or C compiler. ! `__INCLUDE_LEVEL__' This macro expands to a decimal integer constant that represents the depth of nesting in include files. The value of this macro is ! incremented on every `#include' directive and decremented at the end of every included file. It starts out at 0, its value within the base file specified on the command line. ! `__ELF__' This macro is defined if the target uses the ELF object format. ! `__VERSION__' ! This macro expands to a string constant which describes the ! version of the compiler in use. You should not rely on its ! contents having any particular form, but it can be counted on to ! contain at least the release number. ! `__OPTIMIZE__' ! `__OPTIMIZE_SIZE__' ! `__NO_INLINE__' ! These macros describe the compilation mode. `__OPTIMIZE__' is ! defined in all optimizing compilations. `__OPTIMIZE_SIZE__' is defined if the compiler is optimizing for size, not speed. ! `__NO_INLINE__' is defined if no functions will be inlined into their callers (when not optimizing, or when inlining has been ! specifically disabled by `-fno-inline'). These macros cause certain GNU header files to provide optimized definitions, using macros or inline functions, of system library *************** double underscores. *** 1858,2073 **** make sure that programs will execute with the same effect whether or not they are defined. If they are defined, their value is 1. ! '__GNUC_GNU_INLINE__' ! GCC defines this macro if functions declared 'inline' will be handled in GCC's traditional gnu90 mode. Object files will contain ! externally visible definitions of all functions declared 'inline' ! without 'extern' or 'static'. They will not contain any ! definitions of any functions declared 'extern inline'. ! '__GNUC_STDC_INLINE__' ! GCC defines this macro if functions declared 'inline' will be handled according to the ISO C99 standard. Object files will contain externally visible definitions of all functions declared ! 'extern inline'. They will not contain definitions of any ! functions declared 'inline' without 'extern'. ! If this macro is defined, GCC supports the 'gnu_inline' function attribute as a way to always get the gnu90 behavior. Support for ! this and '__GNUC_GNU_INLINE__' was added in GCC 4.1.3. If neither ! macro is defined, an older version of GCC is being used: 'inline' ! functions will be compiled in gnu90 mode, and the 'gnu_inline' function attribute will not be recognized. ! '__CHAR_UNSIGNED__' ! GCC defines this macro if and only if the data type 'char' is unsigned on the target machine. It exists to cause the standard ! header file 'limits.h' to work correctly. You should not use this macro yourself; instead, refer to the standard macros defined in ! 'limits.h'. ! '__WCHAR_UNSIGNED__' ! Like '__CHAR_UNSIGNED__', this macro is defined if and only if the ! data type 'wchar_t' is unsigned and the front-end is in C++ mode. ! '__REGISTER_PREFIX__' This macro expands to a single token (not a string constant) which is the prefix applied to CPU register names in assembly language for this target. You can use it to write assembly that is usable ! in multiple environments. For example, in the 'm68k-aout' ! environment it expands to nothing, but in the 'm68k-coff' ! environment it expands to a single '%'. ! '__USER_LABEL_PREFIX__' This macro expands to a single token which is the prefix applied to user labels (symbols visible to C code) in assembly. For example, ! in the 'm68k-aout' environment it expands to an '_', but in the ! 'm68k-coff' environment it expands to nothing. This macro will have the correct definition even if ! '-f(no-)underscores' is in use, but it will not be correct if target-specific options that adjust this prefix are used (e.g. the ! OSF/rose '-mno-underscores' option). ! '__SIZE_TYPE__' ! '__PTRDIFF_TYPE__' ! '__WCHAR_TYPE__' ! '__WINT_TYPE__' ! '__INTMAX_TYPE__' ! '__UINTMAX_TYPE__' ! '__SIG_ATOMIC_TYPE__' ! '__INT8_TYPE__' ! '__INT16_TYPE__' ! '__INT32_TYPE__' ! '__INT64_TYPE__' ! '__UINT8_TYPE__' ! '__UINT16_TYPE__' ! '__UINT32_TYPE__' ! '__UINT64_TYPE__' ! '__INT_LEAST8_TYPE__' ! '__INT_LEAST16_TYPE__' ! '__INT_LEAST32_TYPE__' ! '__INT_LEAST64_TYPE__' ! '__UINT_LEAST8_TYPE__' ! '__UINT_LEAST16_TYPE__' ! '__UINT_LEAST32_TYPE__' ! '__UINT_LEAST64_TYPE__' ! '__INT_FAST8_TYPE__' ! '__INT_FAST16_TYPE__' ! '__INT_FAST32_TYPE__' ! '__INT_FAST64_TYPE__' ! '__UINT_FAST8_TYPE__' ! '__UINT_FAST16_TYPE__' ! '__UINT_FAST32_TYPE__' ! '__UINT_FAST64_TYPE__' ! '__INTPTR_TYPE__' ! '__UINTPTR_TYPE__' These macros are defined to the correct underlying types for the ! 'size_t', 'ptrdiff_t', 'wchar_t', 'wint_t', 'intmax_t', ! 'uintmax_t', 'sig_atomic_t', 'int8_t', 'int16_t', 'int32_t', ! 'int64_t', 'uint8_t', 'uint16_t', 'uint32_t', 'uint64_t', ! 'int_least8_t', 'int_least16_t', 'int_least32_t', 'int_least64_t', ! 'uint_least8_t', 'uint_least16_t', 'uint_least32_t', ! 'uint_least64_t', 'int_fast8_t', 'int_fast16_t', 'int_fast32_t', ! 'int_fast64_t', 'uint_fast8_t', 'uint_fast16_t', 'uint_fast32_t', ! 'uint_fast64_t', 'intptr_t', and 'uintptr_t' typedefs, respectively. They exist to make the standard header files ! 'stddef.h', 'stdint.h', and 'wchar.h' work correctly. You should not use these macros directly; instead, include the appropriate headers and use the typedefs. Some of these macros may not be ! defined on particular systems if GCC does not provide a 'stdint.h' header on those systems. ! '__CHAR_BIT__' Defined to the number of bits used in the representation of the ! 'char' data type. It exists to make the standard header given numerical limits work correctly. You should not use this macro directly; instead, include the appropriate headers. ! '__SCHAR_MAX__' ! '__WCHAR_MAX__' ! '__SHRT_MAX__' ! '__INT_MAX__' ! '__LONG_MAX__' ! '__LONG_LONG_MAX__' ! '__WINT_MAX__' ! '__SIZE_MAX__' ! '__PTRDIFF_MAX__' ! '__INTMAX_MAX__' ! '__UINTMAX_MAX__' ! '__SIG_ATOMIC_MAX__' ! '__INT8_MAX__' ! '__INT16_MAX__' ! '__INT32_MAX__' ! '__INT64_MAX__' ! '__UINT8_MAX__' ! '__UINT16_MAX__' ! '__UINT32_MAX__' ! '__UINT64_MAX__' ! '__INT_LEAST8_MAX__' ! '__INT_LEAST16_MAX__' ! '__INT_LEAST32_MAX__' ! '__INT_LEAST64_MAX__' ! '__UINT_LEAST8_MAX__' ! '__UINT_LEAST16_MAX__' ! '__UINT_LEAST32_MAX__' ! '__UINT_LEAST64_MAX__' ! '__INT_FAST8_MAX__' ! '__INT_FAST16_MAX__' ! '__INT_FAST32_MAX__' ! '__INT_FAST64_MAX__' ! '__UINT_FAST8_MAX__' ! '__UINT_FAST16_MAX__' ! '__UINT_FAST32_MAX__' ! '__UINT_FAST64_MAX__' ! '__INTPTR_MAX__' ! '__UINTPTR_MAX__' ! '__WCHAR_MIN__' ! '__WINT_MIN__' ! '__SIG_ATOMIC_MIN__' ! Defined to the maximum value of the 'signed char', 'wchar_t', ! 'signed short', 'signed int', 'signed long', 'signed long long', ! 'wint_t', 'size_t', 'ptrdiff_t', 'intmax_t', 'uintmax_t', ! 'sig_atomic_t', 'int8_t', 'int16_t', 'int32_t', 'int64_t', ! 'uint8_t', 'uint16_t', 'uint32_t', 'uint64_t', 'int_least8_t', ! 'int_least16_t', 'int_least32_t', 'int_least64_t', 'uint_least8_t', ! 'uint_least16_t', 'uint_least32_t', 'uint_least64_t', ! 'int_fast8_t', 'int_fast16_t', 'int_fast32_t', 'int_fast64_t', ! 'uint_fast8_t', 'uint_fast16_t', 'uint_fast32_t', 'uint_fast64_t', ! 'intptr_t', and 'uintptr_t' types and to the minimum value of the ! 'wchar_t', 'wint_t', and 'sig_atomic_t' types respectively. They ! exist to make the standard header given numerical limits work ! correctly. You should not use these macros directly; instead, ! include the appropriate headers. Some of these macros may not be ! defined on particular systems if GCC does not provide a 'stdint.h' ! header on those systems. ! '__INT8_C' ! '__INT16_C' ! '__INT32_C' ! '__INT64_C' ! '__UINT8_C' ! '__UINT16_C' ! '__UINT32_C' ! '__UINT64_C' ! '__INTMAX_C' ! '__UINTMAX_C' ! Defined to implementations of the standard 'stdint.h' macros with ! the same names without the leading '__'. They exist the make the implementation of that header work correctly. You should not use these macros directly; instead, include the appropriate headers. Some of these macros may not be defined on particular systems if ! GCC does not provide a 'stdint.h' header on those systems. ! '__SIZEOF_INT__' ! '__SIZEOF_LONG__' ! '__SIZEOF_LONG_LONG__' ! '__SIZEOF_SHORT__' ! '__SIZEOF_POINTER__' ! '__SIZEOF_FLOAT__' ! '__SIZEOF_DOUBLE__' ! '__SIZEOF_LONG_DOUBLE__' ! '__SIZEOF_SIZE_T__' ! '__SIZEOF_WCHAR_T__' ! '__SIZEOF_WINT_T__' ! '__SIZEOF_PTRDIFF_T__' ! Defined to the number of bytes of the C standard data types: 'int', ! 'long', 'long long', 'short', 'void *', 'float', 'double', 'long ! double', 'size_t', 'wchar_t', 'wint_t' and 'ptrdiff_t'. ! '__BYTE_ORDER__' ! '__ORDER_LITTLE_ENDIAN__' ! '__ORDER_BIG_ENDIAN__' ! '__ORDER_PDP_ENDIAN__' ! '__BYTE_ORDER__' is defined to one of the values ! '__ORDER_LITTLE_ENDIAN__', '__ORDER_BIG_ENDIAN__', or ! '__ORDER_PDP_ENDIAN__' to reflect the layout of multi-byte and ! multi-word quantities in memory. If '__BYTE_ORDER__' is equal to ! '__ORDER_LITTLE_ENDIAN__' or '__ORDER_BIG_ENDIAN__', then multi-byte and multi-word quantities are laid out identically: the byte (word) at the lowest address is the least significant or most significant byte (word) of the quantity, respectively. If ! '__BYTE_ORDER__' is equal to '__ORDER_PDP_ENDIAN__', then bytes in 16-bit words are laid out in a little-endian fashion, whereas the 16-bit subwords of a 32-bit quantity are laid out in big-endian fashion. --- 1866,2081 ---- make sure that programs will execute with the same effect whether or not they are defined. If they are defined, their value is 1. ! `__GNUC_GNU_INLINE__' ! GCC defines this macro if functions declared `inline' will be handled in GCC's traditional gnu90 mode. Object files will contain ! externally visible definitions of all functions declared `inline' ! without `extern' or `static'. They will not contain any ! definitions of any functions declared `extern inline'. ! `__GNUC_STDC_INLINE__' ! GCC defines this macro if functions declared `inline' will be handled according to the ISO C99 standard. Object files will contain externally visible definitions of all functions declared ! `extern inline'. They will not contain definitions of any ! functions declared `inline' without `extern'. ! If this macro is defined, GCC supports the `gnu_inline' function attribute as a way to always get the gnu90 behavior. Support for ! this and `__GNUC_GNU_INLINE__' was added in GCC 4.1.3. If neither ! macro is defined, an older version of GCC is being used: `inline' ! functions will be compiled in gnu90 mode, and the `gnu_inline' function attribute will not be recognized. ! `__CHAR_UNSIGNED__' ! GCC defines this macro if and only if the data type `char' is unsigned on the target machine. It exists to cause the standard ! header file `limits.h' to work correctly. You should not use this macro yourself; instead, refer to the standard macros defined in ! `limits.h'. ! `__WCHAR_UNSIGNED__' ! Like `__CHAR_UNSIGNED__', this macro is defined if and only if the ! data type `wchar_t' is unsigned and the front-end is in C++ mode. ! `__REGISTER_PREFIX__' This macro expands to a single token (not a string constant) which is the prefix applied to CPU register names in assembly language for this target. You can use it to write assembly that is usable ! in multiple environments. For example, in the `m68k-aout' ! environment it expands to nothing, but in the `m68k-coff' ! environment it expands to a single `%'. ! `__USER_LABEL_PREFIX__' This macro expands to a single token which is the prefix applied to user labels (symbols visible to C code) in assembly. For example, ! in the `m68k-aout' environment it expands to an `_', but in the ! `m68k-coff' environment it expands to nothing. This macro will have the correct definition even if ! `-f(no-)underscores' is in use, but it will not be correct if target-specific options that adjust this prefix are used (e.g. the ! OSF/rose `-mno-underscores' option). ! `__SIZE_TYPE__' ! `__PTRDIFF_TYPE__' ! `__WCHAR_TYPE__' ! `__WINT_TYPE__' ! `__INTMAX_TYPE__' ! `__UINTMAX_TYPE__' ! `__SIG_ATOMIC_TYPE__' ! `__INT8_TYPE__' ! `__INT16_TYPE__' ! `__INT32_TYPE__' ! `__INT64_TYPE__' ! `__UINT8_TYPE__' ! `__UINT16_TYPE__' ! `__UINT32_TYPE__' ! `__UINT64_TYPE__' ! `__INT_LEAST8_TYPE__' ! `__INT_LEAST16_TYPE__' ! `__INT_LEAST32_TYPE__' ! `__INT_LEAST64_TYPE__' ! `__UINT_LEAST8_TYPE__' ! `__UINT_LEAST16_TYPE__' ! `__UINT_LEAST32_TYPE__' ! `__UINT_LEAST64_TYPE__' ! `__INT_FAST8_TYPE__' ! `__INT_FAST16_TYPE__' ! `__INT_FAST32_TYPE__' ! `__INT_FAST64_TYPE__' ! `__UINT_FAST8_TYPE__' ! `__UINT_FAST16_TYPE__' ! `__UINT_FAST32_TYPE__' ! `__UINT_FAST64_TYPE__' ! `__INTPTR_TYPE__' ! `__UINTPTR_TYPE__' These macros are defined to the correct underlying types for the ! `size_t', `ptrdiff_t', `wchar_t', `wint_t', `intmax_t', ! `uintmax_t', `sig_atomic_t', `int8_t', `int16_t', `int32_t', ! `int64_t', `uint8_t', `uint16_t', `uint32_t', `uint64_t', ! `int_least8_t', `int_least16_t', `int_least32_t', `int_least64_t', ! `uint_least8_t', `uint_least16_t', `uint_least32_t', ! `uint_least64_t', `int_fast8_t', `int_fast16_t', `int_fast32_t', ! `int_fast64_t', `uint_fast8_t', `uint_fast16_t', `uint_fast32_t', ! `uint_fast64_t', `intptr_t', and `uintptr_t' typedefs, respectively. They exist to make the standard header files ! `stddef.h', `stdint.h', and `wchar.h' work correctly. You should not use these macros directly; instead, include the appropriate headers and use the typedefs. Some of these macros may not be ! defined on particular systems if GCC does not provide a `stdint.h' header on those systems. ! `__CHAR_BIT__' Defined to the number of bits used in the representation of the ! `char' data type. It exists to make the standard header given numerical limits work correctly. You should not use this macro directly; instead, include the appropriate headers. ! `__SCHAR_MAX__' ! `__WCHAR_MAX__' ! `__SHRT_MAX__' ! `__INT_MAX__' ! `__LONG_MAX__' ! `__LONG_LONG_MAX__' ! `__WINT_MAX__' ! `__SIZE_MAX__' ! `__PTRDIFF_MAX__' ! `__INTMAX_MAX__' ! `__UINTMAX_MAX__' ! `__SIG_ATOMIC_MAX__' ! `__INT8_MAX__' ! `__INT16_MAX__' ! `__INT32_MAX__' ! `__INT64_MAX__' ! `__UINT8_MAX__' ! `__UINT16_MAX__' ! `__UINT32_MAX__' ! `__UINT64_MAX__' ! `__INT_LEAST8_MAX__' ! `__INT_LEAST16_MAX__' ! `__INT_LEAST32_MAX__' ! `__INT_LEAST64_MAX__' ! `__UINT_LEAST8_MAX__' ! `__UINT_LEAST16_MAX__' ! `__UINT_LEAST32_MAX__' ! `__UINT_LEAST64_MAX__' ! `__INT_FAST8_MAX__' ! `__INT_FAST16_MAX__' ! `__INT_FAST32_MAX__' ! `__INT_FAST64_MAX__' ! `__UINT_FAST8_MAX__' ! `__UINT_FAST16_MAX__' ! `__UINT_FAST32_MAX__' ! `__UINT_FAST64_MAX__' ! `__INTPTR_MAX__' ! `__UINTPTR_MAX__' ! `__WCHAR_MIN__' ! `__WINT_MIN__' ! `__SIG_ATOMIC_MIN__' ! Defined to the maximum value of the `signed char', `wchar_t', ! `signed short', `signed int', `signed long', `signed long long', ! `wint_t', `size_t', `ptrdiff_t', `intmax_t', `uintmax_t', ! `sig_atomic_t', `int8_t', `int16_t', `int32_t', `int64_t', ! `uint8_t', `uint16_t', `uint32_t', `uint64_t', `int_least8_t', ! `int_least16_t', `int_least32_t', `int_least64_t', ! `uint_least8_t', `uint_least16_t', `uint_least32_t', ! `uint_least64_t', `int_fast8_t', `int_fast16_t', `int_fast32_t', ! `int_fast64_t', `uint_fast8_t', `uint_fast16_t', `uint_fast32_t', ! `uint_fast64_t', `intptr_t', and `uintptr_t' types and to the ! minimum value of the `wchar_t', `wint_t', and `sig_atomic_t' types ! respectively. They exist to make the standard header given ! numerical limits work correctly. You should not use these macros ! directly; instead, include the appropriate headers. Some of these ! macros may not be defined on particular systems if GCC does not ! provide a `stdint.h' header on those systems. ! `__INT8_C' ! `__INT16_C' ! `__INT32_C' ! `__INT64_C' ! `__UINT8_C' ! `__UINT16_C' ! `__UINT32_C' ! `__UINT64_C' ! `__INTMAX_C' ! `__UINTMAX_C' ! Defined to implementations of the standard `stdint.h' macros with ! the same names without the leading `__'. They exist the make the implementation of that header work correctly. You should not use these macros directly; instead, include the appropriate headers. Some of these macros may not be defined on particular systems if ! GCC does not provide a `stdint.h' header on those systems. ! `__SIZEOF_INT__' ! `__SIZEOF_LONG__' ! `__SIZEOF_LONG_LONG__' ! `__SIZEOF_SHORT__' ! `__SIZEOF_POINTER__' ! `__SIZEOF_FLOAT__' ! `__SIZEOF_DOUBLE__' ! `__SIZEOF_LONG_DOUBLE__' ! `__SIZEOF_SIZE_T__' ! `__SIZEOF_WCHAR_T__' ! `__SIZEOF_WINT_T__' ! `__SIZEOF_PTRDIFF_T__' ! Defined to the number of bytes of the C standard data types: `int', ! `long', `long long', `short', `void *', `float', `double', `long ! double', `size_t', `wchar_t', `wint_t' and `ptrdiff_t'. ! `__BYTE_ORDER__' ! `__ORDER_LITTLE_ENDIAN__' ! `__ORDER_BIG_ENDIAN__' ! `__ORDER_PDP_ENDIAN__' ! `__BYTE_ORDER__' is defined to one of the values ! `__ORDER_LITTLE_ENDIAN__', `__ORDER_BIG_ENDIAN__', or ! `__ORDER_PDP_ENDIAN__' to reflect the layout of multi-byte and ! multi-word quantities in memory. If `__BYTE_ORDER__' is equal to ! `__ORDER_LITTLE_ENDIAN__' or `__ORDER_BIG_ENDIAN__', then multi-byte and multi-word quantities are laid out identically: the byte (word) at the lowest address is the least significant or most significant byte (word) of the quantity, respectively. If ! `__BYTE_ORDER__' is equal to `__ORDER_PDP_ENDIAN__', then bytes in 16-bit words are laid out in a little-endian fashion, whereas the 16-bit subwords of a 32-bit quantity are laid out in big-endian fashion. *************** double underscores. *** 2077,2219 **** /* Test for a little-endian machine */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ! '__FLOAT_WORD_ORDER__' ! '__FLOAT_WORD_ORDER__' is defined to one of the values ! '__ORDER_LITTLE_ENDIAN__' or '__ORDER_BIG_ENDIAN__' to reflect the layout of the words of multi-word floating-point quantities. ! '__DEPRECATED' This macro is defined, with value 1, when compiling a C++ source file with warnings about deprecated constructs enabled. These warnings are enabled by default, but can be disabled with ! '-Wno-deprecated'. ! '__EXCEPTIONS' This macro is defined, with value 1, when compiling a C++ source ! file with exceptions enabled. If '-fno-exceptions' is used when compiling the file, then this macro is not defined. ! '__GXX_RTTI' This macro is defined, with value 1, when compiling a C++ source ! file with runtime type identification enabled. If '-fno-rtti' is used when compiling the file, then this macro is not defined. ! '__USING_SJLJ_EXCEPTIONS__' This macro is defined, with value 1, if the compiler uses the old ! mechanism based on 'setjmp' and 'longjmp' for exception handling. ! '__GXX_EXPERIMENTAL_CXX0X__' This macro is defined when compiling a C++ source file with the ! option '-std=c++0x' or '-std=gnu++0x'. It indicates that some ! features likely to be included in C++0x are available. Note that these features are experimental, and may change or be removed in future versions of GCC. ! '__GXX_WEAK__' This macro is defined when compiling a C++ source file. It has the value 1 if the compiler will use weak symbols, COMDAT sections, or other similar techniques to collapse symbols with "vague linkage" that are defined in multiple translation units. If the compiler ! will not collapse such symbols, this macro is defined with value 0. ! In general, user code should not need to make use of this macro; ! the purpose of this macro is to ease implementation of the C++ ! runtime library provided with G++. ! '__NEXT_RUNTIME__' This macro is defined, with value 1, if (and only if) the NeXT ! runtime (as in '-fnext-runtime') is in use for Objective-C. If the ! GNU runtime is used, this macro is not defined, so that you can use ! this macro to determine which runtime (NeXT or GNU) is being used. ! '__LP64__' ! '_LP64' These macros are defined, with value 1, if (and only if) the ! compilation is for a target where 'long int' and pointer both use ! 64-bits and 'int' uses 32-bit. ! '__SSP__' ! This macro is defined, with value 1, when '-fstack-protector' is in use. ! '__SSP_ALL__' ! This macro is defined, with value 2, when '-fstack-protector-all' is in use. ! '__SSP_STRONG__' This macro is defined, with value 3, when ! '-fstack-protector-strong' is in use. ! '__SANITIZE_ADDRESS__' ! This macro is defined, with value 1, when '-fsanitize=address' or ! '-fsanitize=kernel-address' are in use. ! '__TIMESTAMP__' ! This macro expands to a string constant that describes the date and ! time of the last modification of the current source file. The ! string constant contains abbreviated day of the week, month, day of ! the month, time in hh:mm:ss form, year and looks like ! '"Sun Sep 16 01:03:52 1973"'. If the day of the month is less than ! 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and '__TIMESTAMP__' will expand to ! '"??? ??? ?? ??:??:?? ????"'. ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8' ! '__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16' These macros are defined when the target processor supports atomic compare and swap operations on operands 1, 2, 4, 8 or 16 bytes in length, respectively. ! '__GCC_HAVE_DWARF2_CFI_ASM' This macro is defined when the compiler is emitting Dwarf2 CFI directives to the assembler. When this is defined, it is possible to emit those same directives in inline assembly. ! '__FP_FAST_FMA' ! '__FP_FAST_FMAF' ! '__FP_FAST_FMAL' These macros are defined with value 1 if the backend supports the ! 'fma', 'fmaf', and 'fmal' builtin functions, so that the include ! file 'math.h' can define the macros 'FP_FAST_FMA', 'FP_FAST_FMAF', ! and 'FP_FAST_FMAL' for compatibility with the 1999 C standard. ! '__GCC_IEC_559' This macro is defined to indicate the intended level of support for IEEE 754 (IEC 60559) floating-point arithmetic. It expands to a ! nonnegative integer value. If 0, it indicates that the combination ! of the compiler configuration and the command-line options is not ! intended to support IEEE 754 arithmetic for 'float' and 'double' as ! defined in C99 and C11 Annex F (for example, that the standard ! rounding modes and exceptions are not supported, or that ! optimizations are enabled that conflict with IEEE 754 semantics). ! If 1, it indicates that IEEE 754 arithmetic is intended to be ! supported; this does not mean that all relevant language features ! are supported by GCC. If 2 or more, it additionally indicates ! support for IEEE 754-2008 (in particular, that the binary encodings ! for quiet and signaling NaNs are as specified in IEEE 754-2008). This macro does not indicate the default state of command-line options that control optimizations that C99 and C11 permit to be controlled by standard pragmas, where those standards do not require a particular default state. It does not indicate whether optimizations respect signaling NaN semantics (the macro for that ! is '__SUPPORT_SNAN__'). It does not indicate support for decimal floating point or the IEEE 754 binary16 and binary128 types. ! '__GCC_IEC_559_COMPLEX' This macro is defined to indicate the intended level of support for ! IEEE 754 (IEC 60559) floating-point arithmetic for complex numbers, ! as defined in C99 and C11 Annex G. It expands to a nonnegative ! integer value. If 0, it indicates that the combination of the ! compiler configuration and the command-line options is not intended ! to support Annex G requirements (for example, because ! '-fcx-limited-range' was used). If 1 or more, it indicates that it ! is intended to support those requirements; this does not mean that ! all relevant language features are supported by GCC.  File: cpp.info, Node: System-specific Predefined Macros, Next: C++ Named Operators, Prev: Common Predefined Macros, Up: Predefined Macros --- 2085,2230 ---- /* Test for a little-endian machine */ #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ! `__FLOAT_WORD_ORDER__' ! `__FLOAT_WORD_ORDER__' is defined to one of the values ! `__ORDER_LITTLE_ENDIAN__' or `__ORDER_BIG_ENDIAN__' to reflect the layout of the words of multi-word floating-point quantities. ! `__DEPRECATED' This macro is defined, with value 1, when compiling a C++ source file with warnings about deprecated constructs enabled. These warnings are enabled by default, but can be disabled with ! `-Wno-deprecated'. ! `__EXCEPTIONS' This macro is defined, with value 1, when compiling a C++ source ! file with exceptions enabled. If `-fno-exceptions' is used when compiling the file, then this macro is not defined. ! `__GXX_RTTI' This macro is defined, with value 1, when compiling a C++ source ! file with runtime type identification enabled. If `-fno-rtti' is used when compiling the file, then this macro is not defined. ! `__USING_SJLJ_EXCEPTIONS__' This macro is defined, with value 1, if the compiler uses the old ! mechanism based on `setjmp' and `longjmp' for exception handling. ! `__GXX_EXPERIMENTAL_CXX0X__' This macro is defined when compiling a C++ source file with the ! option `-std=c++0x' or `-std=gnu++0x'. It indicates that some ! features likely to be included in C++0x are available. Note that these features are experimental, and may change or be removed in future versions of GCC. ! `__GXX_WEAK__' This macro is defined when compiling a C++ source file. It has the value 1 if the compiler will use weak symbols, COMDAT sections, or other similar techniques to collapse symbols with "vague linkage" that are defined in multiple translation units. If the compiler ! will not collapse such symbols, this macro is defined with value ! 0. In general, user code should not need to make use of this ! macro; the purpose of this macro is to ease implementation of the ! C++ runtime library provided with G++. ! `__NEXT_RUNTIME__' This macro is defined, with value 1, if (and only if) the NeXT ! runtime (as in `-fnext-runtime') is in use for Objective-C. If ! the GNU runtime is used, this macro is not defined, so that you ! can use this macro to determine which runtime (NeXT or GNU) is ! being used. ! `__LP64__' ! `_LP64' These macros are defined, with value 1, if (and only if) the ! compilation is for a target where `long int' and pointer both use ! 64-bits and `int' uses 32-bit. ! `__SSP__' ! This macro is defined, with value 1, when `-fstack-protector' is in use. ! `__SSP_ALL__' ! This macro is defined, with value 2, when `-fstack-protector-all' is in use. ! `__SSP_STRONG__' This macro is defined, with value 3, when ! `-fstack-protector-strong' is in use. ! `__SANITIZE_ADDRESS__' ! This macro is defined, with value 1, when `-fsanitize=address' or ! `-fsanitize=kernel-address' are in use. ! `__TIMESTAMP__' ! This macro expands to a string constant that describes the date ! and time of the last modification of the current source file. The ! string constant contains abbreviated day of the week, month, day ! of the month, time in hh:mm:ss form, year and looks like ! `"Sun Sep 16 01:03:52 1973"'. If the day of the month is less ! than 10, it is padded with a space on the left. If GCC cannot determine the current date, it will emit a warning ! message (once per compilation) and `__TIMESTAMP__' will expand to ! `"??? ??? ?? ??:??:?? ????"'. ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8' ! `__GCC_HAVE_SYNC_COMPARE_AND_SWAP_16' These macros are defined when the target processor supports atomic compare and swap operations on operands 1, 2, 4, 8 or 16 bytes in length, respectively. ! `__GCC_HAVE_DWARF2_CFI_ASM' This macro is defined when the compiler is emitting Dwarf2 CFI directives to the assembler. When this is defined, it is possible to emit those same directives in inline assembly. ! `__FP_FAST_FMA' ! `__FP_FAST_FMAF' ! `__FP_FAST_FMAL' These macros are defined with value 1 if the backend supports the ! `fma', `fmaf', and `fmal' builtin functions, so that the include ! file `math.h' can define the macros `FP_FAST_FMA', `FP_FAST_FMAF', ! and `FP_FAST_FMAL' for compatibility with the 1999 C standard. ! `__GCC_IEC_559' This macro is defined to indicate the intended level of support for IEEE 754 (IEC 60559) floating-point arithmetic. It expands to a ! nonnegative integer value. If 0, it indicates that the ! combination of the compiler configuration and the command-line ! options is not intended to support IEEE 754 arithmetic for `float' ! and `double' as defined in C99 and C11 Annex F (for example, that ! the standard rounding modes and exceptions are not supported, or ! that optimizations are enabled that conflict with IEEE 754 ! semantics). If 1, it indicates that IEEE 754 arithmetic is ! intended to be supported; this does not mean that all relevant ! language features are supported by GCC. If 2 or more, it ! additionally indicates support for IEEE 754-2008 (in particular, ! that the binary encodings for quiet and signaling NaNs are as ! specified in IEEE 754-2008). This macro does not indicate the default state of command-line options that control optimizations that C99 and C11 permit to be controlled by standard pragmas, where those standards do not require a particular default state. It does not indicate whether optimizations respect signaling NaN semantics (the macro for that ! is `__SUPPORT_SNAN__'). It does not indicate support for decimal floating point or the IEEE 754 binary16 and binary128 types. ! `__GCC_IEC_559_COMPLEX' This macro is defined to indicate the intended level of support for ! IEEE 754 (IEC 60559) floating-point arithmetic for complex ! numbers, as defined in C99 and C11 Annex G. It expands to a ! nonnegative integer value. If 0, it indicates that the ! combination of the compiler configuration and the command-line ! options is not intended to support Annex G requirements (for ! example, because `-fcx-limited-range' was used). If 1 or more, it ! indicates that it is intended to support those requirements; this ! does not mean that all relevant language features are supported by ! GCC.  File: cpp.info, Node: System-specific Predefined Macros, Next: C++ Named Operators, Prev: Common Predefined Macros, Up: Predefined Macros *************** File: cpp.info, Node: System-specific P *** 2224,2246 **** The C preprocessor normally predefines several macros that indicate what type of system and machine is in use. They are obviously different on each target supported by GCC. This manual, being for all systems and ! machines, cannot tell you what their names are, but you can use 'cpp -dM' to see them all. *Note Invocation::. All system-specific predefined macros expand to a constant value, so you can test them with ! either '#ifdef' or '#if'. The C standard requires that all system-specific macros be part of the "reserved namespace". All names which begin with two underscores, or an underscore and a capital letter, are reserved for the compiler and library to use as they wish. However, historically system-specific macros have had names with no special prefix; for instance, it is common ! to find 'unix' defined on Unix systems. For all such macros, GCC provides a parallel macro with two underscores added at the beginning ! and the end. If 'unix' is defined, '__unix__' will be defined too. ! There will never be more than two underscores; the parallel of '_mips' ! is '__mips__'. ! When the '-ansi' option, or any '-std' option that requests strict conformance, is given to the compiler, all the system-specific predefined macros outside the reserved namespace are suppressed. The parallel macros, inside the reserved namespace, remain defined. --- 2235,2257 ---- The C preprocessor normally predefines several macros that indicate what type of system and machine is in use. They are obviously different on each target supported by GCC. This manual, being for all systems and ! machines, cannot tell you what their names are, but you can use `cpp -dM' to see them all. *Note Invocation::. All system-specific predefined macros expand to a constant value, so you can test them with ! either `#ifdef' or `#if'. The C standard requires that all system-specific macros be part of the "reserved namespace". All names which begin with two underscores, or an underscore and a capital letter, are reserved for the compiler and library to use as they wish. However, historically system-specific macros have had names with no special prefix; for instance, it is common ! to find `unix' defined on Unix systems. For all such macros, GCC provides a parallel macro with two underscores added at the beginning ! and the end. If `unix' is defined, `__unix__' will be defined too. ! There will never be more than two underscores; the parallel of `_mips' ! is `__mips__'. ! When the `-ansi' option, or any `-std' option that requests strict conformance, is given to the compiler, all the system-specific predefined macros outside the reserved namespace are suppressed. The parallel macros, inside the reserved namespace, remain defined. *************** encourage you to correct older code to u *** 2251,2257 **** you find it. We don't recommend you use the system-specific macros that are in the reserved namespace, either. It is better in the long run to check specifically for features you need, using a tool such as ! 'autoconf'.  File: cpp.info, Node: C++ Named Operators, Prev: System-specific Predefined Macros, Up: Predefined Macros --- 2262,2268 ---- you find it. We don't recommend you use the system-specific macros that are in the reserved namespace, either. It is better in the long run to check specifically for features you need, using a tool such as ! `autoconf'.  File: cpp.info, Node: C++ Named Operators, Prev: System-specific Predefined Macros, Up: Predefined Macros *************** File: cpp.info, Node: C++ Named Operato *** 2262,2286 **** In C++, there are eleven keywords which are simply alternate spellings of operators normally written with punctuation. These keywords are treated as such even in the preprocessor. They function as operators in ! '#if', and they cannot be defined as macros or poisoned. In C, you can request that those keywords take their C++ meaning by including ! 'iso646.h'. That header defines each one as a normal object-like macro expanding to the appropriate punctuator. These are the named operators and their corresponding punctuators: Named Operator Punctuator ! 'and' '&&' ! 'and_eq' '&=' ! 'bitand' '&' ! 'bitor' '|' ! 'compl' '~' ! 'not' '!' ! 'not_eq' '!=' ! 'or' '||' ! 'or_eq' '|=' ! 'xor' '^' ! 'xor_eq' '^='  File: cpp.info, Node: Undefining and Redefining Macros, Next: Directives Within Macro Arguments, Prev: Predefined Macros, Up: Macros --- 2273,2297 ---- In C++, there are eleven keywords which are simply alternate spellings of operators normally written with punctuation. These keywords are treated as such even in the preprocessor. They function as operators in ! `#if', and they cannot be defined as macros or poisoned. In C, you can request that those keywords take their C++ meaning by including ! `iso646.h'. That header defines each one as a normal object-like macro expanding to the appropriate punctuator. These are the named operators and their corresponding punctuators: Named Operator Punctuator ! `and' `&&' ! `and_eq' `&=' ! `bitand' `&' ! `bitor' `|' ! `compl' `~' ! `not' `!' ! `not_eq' `!=' ! `or' `||' ! `or_eq' `|=' ! `xor' `^' ! `xor_eq' `^='  File: cpp.info, Node: Undefining and Redefining Macros, Next: Directives Within Macro Arguments, Prev: Predefined Macros, Up: Macros *************** File: cpp.info, Node: Undefining and Re *** 2288,2298 **** 3.8 Undefining and Redefining Macros ==================================== ! If a macro ceases to be useful, it may be "undefined" with the '#undef' ! directive. '#undef' takes a single argument, the name of the macro to undefine. You use the bare macro name, even if the macro is ! function-like. It is an error if anything appears on the line after the ! macro name. '#undef' has no effect if the name is not a macro. #define FOO 4 x = FOO; ==> x = 4; --- 2299,2309 ---- 3.8 Undefining and Redefining Macros ==================================== ! If a macro ceases to be useful, it may be "undefined" with the `#undef' ! directive. `#undef' takes a single argument, the name of the macro to undefine. You use the bare macro name, even if the macro is ! function-like. It is an error if anything appears on the line after ! the macro name. `#undef' has no effect if the name is not a macro. #define FOO 4 x = FOO; ==> x = 4; *************** macro name. '#undef' has no effect if t *** 2300,2314 **** x = FOO; ==> x = FOO; Once a macro has been undefined, that identifier may be "redefined" ! as a macro by a subsequent '#define' directive. The new definition need ! not have any resemblance to the old definition. However, if an identifier which is currently a macro is redefined, then the new definition must be "effectively the same" as the old one. Two macro definitions are effectively the same if: * Both are the same type of macro (object- or function-like). * All the tokens of the replacement list are the same. * If there are any parameters, they are the same. * Whitespace appears in the same places in both. It need not be exactly the same amount of whitespace, though. Remember that comments count as whitespace. --- 2311,2328 ---- x = FOO; ==> x = FOO; Once a macro has been undefined, that identifier may be "redefined" ! as a macro by a subsequent `#define' directive. The new definition ! need not have any resemblance to the old definition. However, if an identifier which is currently a macro is redefined, then the new definition must be "effectively the same" as the old one. Two macro definitions are effectively the same if: * Both are the same type of macro (object- or function-like). + * All the tokens of the replacement list are the same. + * If there are any parameters, they are the same. + * Whitespace appears in the same places in both. It need not be exactly the same amount of whitespace, though. Remember that comments count as whitespace. *************** These definitions are effectively the sa *** 2317,2323 **** #define FOUR (2 + 2) #define FOUR (2 + 2) #define FOUR (2 /* two */ + 2) ! but these are not: #define FOUR (2 + 2) #define FOUR ( 2+2 ) #define FOUR (2 * 2) --- 2331,2337 ---- #define FOUR (2 + 2) #define FOUR (2 + 2) #define FOUR (2 /* two */ + 2) ! but these are not: #define FOUR (2 + 2) #define FOUR ( 2+2 ) #define FOUR (2 * 2) *************** these cases is undefined. *** 2343,2353 **** Versions of CPP prior to 3.2 would reject such constructs with an error message. This was the only syntactic difference between normal functions and function-like macros, so it seemed attractive to remove ! this limitation, and people would often be surprised that they could not ! use macros in this way. Moreover, sometimes people would use conditional compilation in the argument list to a normal library ! function like 'printf', only to find that after a library upgrade ! 'printf' had changed to be a function-like macro, and their code would no longer compile. So from version 3.2 we changed CPP to successfully process arbitrary directives within macro arguments in exactly the same way as it would have processed the directive were the function-like --- 2357,2367 ---- Versions of CPP prior to 3.2 would reject such constructs with an error message. This was the only syntactic difference between normal functions and function-like macros, so it seemed attractive to remove ! this limitation, and people would often be surprised that they could ! not use macros in this way. Moreover, sometimes people would use conditional compilation in the argument list to a normal library ! function like `printf', only to find that after a library upgrade ! `printf' had changed to be a function-like macro, and their code would no longer compile. So from version 3.2 we changed CPP to successfully process arbitrary directives within macro arguments in exactly the same way as it would have processed the directive were the function-like *************** outside of it. For example, *** 2418,2426 **** strange(stderr) p, 35) ==> fprintf (stderr, "%s %d", p, 35) ! The ability to piece together a macro call can be useful, but the use ! of unbalanced open parentheses in a macro body is just confusing, and ! should be avoided.  File: cpp.info, Node: Operator Precedence Problems, Next: Swallowing the Semicolon, Prev: Misnesting, Up: Macro Pitfalls --- 2432,2440 ---- strange(stderr) p, 35) ==> fprintf (stderr, "%s %d", p, 35) ! The ability to piece together a macro call can be useful, but the ! use of unbalanced open parentheses in a macro body is just confusing, ! and should be avoided.  File: cpp.info, Node: Operator Precedence Problems, Next: Swallowing the Semicolon, Prev: Misnesting, Up: Macro Pitfalls *************** way. *** 2439,2446 **** #define ceil_div(x, y) (x + y - 1) / y whose purpose is to divide, rounding up. (One use for this operation is ! to compute how many 'int' objects are needed to hold a certain number of ! 'char' objects.) Then suppose it is used as follows: a = ceil_div (b & c, sizeof (int)); ==> a = (b & c + sizeof (int) - 1) / sizeof (int); --- 2453,2460 ---- #define ceil_div(x, y) (x + y - 1) / y whose purpose is to divide, rounding up. (One use for this operation is ! to compute how many `int' objects are needed to hold a certain number ! of `char' objects.) Then suppose it is used as follows: a = ceil_div (b & c, sizeof (int)); ==> a = (b & c + sizeof (int) - 1) / sizeof (int); *************** Defining the macro as *** 2460,2478 **** provides the desired result. ! Unintended grouping can result in another way. Consider 'sizeof ceil_div(1, 2)'. That has the appearance of a C expression that would ! compute the size of the type of 'ceil_div (1, 2)', but in fact it means something very different. Here is what it expands to: sizeof ((1) + (2) - 1) / (2) This would take the size of an integer and divide it by two. The ! precedence rules have put the division outside the 'sizeof' when it was intended to be inside. Parentheses around the entire macro definition prevent such problems. ! Here, then, is the recommended way to define 'ceil_div': #define ceil_div(x, y) (((x) + (y) - 1) / (y)) --- 2474,2492 ---- provides the desired result. ! Unintended grouping can result in another way. Consider `sizeof ceil_div(1, 2)'. That has the appearance of a C expression that would ! compute the size of the type of `ceil_div (1, 2)', but in fact it means something very different. Here is what it expands to: sizeof ((1) + (2) - 1) / (2) This would take the size of an integer and divide it by two. The ! precedence rules have put the division outside the `sizeof' when it was intended to be inside. Parentheses around the entire macro definition prevent such problems. ! Here, then, is the recommended way to define `ceil_div': #define ceil_div(x, y) (((x) + (y) - 1) / (y)) *************** File: cpp.info, Node: Swallowing the Se *** 2484,2490 **** Often it is desirable to define a macro that expands into a compound statement. Consider, for example, the following macro, that advances a ! pointer (the argument 'p' says where to find it) across whitespace characters: #define SKIP_SPACES(p, limit) \ --- 2498,2504 ---- Often it is desirable to define a macro that expands into a compound statement. Consider, for example, the following macro, that advances a ! pointer (the argument `p' says where to find it) across whitespace characters: #define SKIP_SPACES(p, limit) \ *************** Here backslash-newline is used to split *** 2497,2510 **** be a single logical line, so that it resembles the way such code would be laid out if not part of a macro definition. ! A call to this macro might be 'SKIP_SPACES (p, lim)'. Strictly speaking, the call expands to a compound statement, which is a complete statement with no need for a semicolon to end it. However, since it looks like a function call, it minimizes confusion if you can use it ! like a function call, writing a semicolon afterward, as in 'SKIP_SPACES (p, lim);' ! This can cause trouble before 'else' statements, because the semicolon is actually a null statement. Suppose you write if (*p != 0) --- 2511,2524 ---- be a single logical line, so that it resembles the way such code would be laid out if not part of a macro definition. ! A call to this macro might be `SKIP_SPACES (p, lim)'. Strictly speaking, the call expands to a compound statement, which is a complete statement with no need for a semicolon to end it. However, since it looks like a function call, it minimizes confusion if you can use it ! like a function call, writing a semicolon afterward, as in `SKIP_SPACES (p, lim);' ! This can cause trouble before `else' statements, because the semicolon is actually a null statement. Suppose you write if (*p != 0) *************** semicolon is actually a null statement. *** 2512,2522 **** else ... The presence of two statements--the compound statement and a null ! statement--in between the 'if' condition and the 'else' makes invalid C code. ! The definition of the macro 'SKIP_SPACES' can be altered to solve ! this problem, using a 'do ... while' statement. Here is how: #define SKIP_SPACES(p, limit) \ do { char *lim = (limit); \ --- 2526,2536 ---- else ... The presence of two statements--the compound statement and a null ! statement--in between the `if' condition and the `else' makes invalid C code. ! The definition of the macro `SKIP_SPACES' can be altered to solve ! this problem, using a `do ... while' statement. Here is how: #define SKIP_SPACES(p, limit) \ do { char *lim = (limit); \ *************** this problem, using a 'do ... while' sta *** 2525,2531 **** p--; break; }}} \ while (0) ! Now 'SKIP_SPACES (p, lim);' expands into do {...} while (0); --- 2539,2545 ---- p--; break; }}} \ while (0) ! Now `SKIP_SPACES (p, lim);' expands into do {...} while (0); *************** File: cpp.info, Node: Duplication of Si *** 2538,2549 **** 3.10.4 Duplication of Side Effects ---------------------------------- ! Many C programs define a macro 'min', for "minimum", like this: #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ! When you use this macro with an argument containing a side effect, as ! shown here, next = min (x + y, foo (z)); --- 2552,2563 ---- 3.10.4 Duplication of Side Effects ---------------------------------- ! Many C programs define a macro `min', for "minimum", like this: #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ! When you use this macro with an argument containing a side effect, ! as shown here, next = min (x + y, foo (z)); *************** it expands as follows: *** 2551,2567 **** next = ((x + y) < (foo (z)) ? (x + y) : (foo (z))); ! where 'x + y' has been substituted for 'X' and 'foo (z)' for 'Y'. ! The function 'foo' is used only once in the statement as it appears ! in the program, but the expression 'foo (z)' has been substituted twice ! into the macro expansion. As a result, 'foo' might be called two times ! when the statement is executed. If it has side effects or if it takes a ! long time to compute, the results might not be what you intended. We ! say that 'min' is an "unsafe" macro. ! The best solution to this problem is to define 'min' in a way that ! computes the value of 'foo (z)' only once. The C language offers no standard way to do this, but it can be done with GNU extensions as follows: --- 2565,2581 ---- next = ((x + y) < (foo (z)) ? (x + y) : (foo (z))); ! where `x + y' has been substituted for `X' and `foo (z)' for `Y'. ! The function `foo' is used only once in the statement as it appears ! in the program, but the expression `foo (z)' has been substituted twice ! into the macro expansion. As a result, `foo' might be called two times ! when the statement is executed. If it has side effects or if it takes ! a long time to compute, the results might not be what you intended. We ! say that `min' is an "unsafe" macro. ! The best solution to this problem is to define `min' in a way that ! computes the value of `foo (z)' only once. The C language offers no standard way to do this, but it can be done with GNU extensions as follows: *************** follows: *** 2570,2576 **** typeof (Y) y_ = (Y); \ (x_ < y_) ? x_ : y_; }) ! The '({ ... })' notation produces a compound statement that acts as an expression. Its value is the value of its last statement. This permits us to define local variables and assign each argument to one. The local variables have underscores after their names to reduce the --- 2584,2590 ---- typeof (Y) y_ = (Y); \ (x_ < y_) ? x_ : y_; }) ! The `({ ... })' notation produces a compound statement that acts as an expression. Its value is the value of its last statement. This permits us to define local variables and assign each argument to one. The local variables have underscores after their names to reduce the *************** risk of conflict with an identifier of w *** 2578,2586 **** avoid this entirely). Now each argument is evaluated exactly once. If you do not wish to use GNU C extensions, the only solution is to ! be careful when _using_ the macro 'min'. For example, you can calculate ! the value of 'foo (z)', save it in a variable, and use that variable in ! 'min': #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ... --- 2592,2600 ---- avoid this entirely). Now each argument is evaluated exactly once. If you do not wish to use GNU C extensions, the only solution is to ! be careful when _using_ the macro `min'. For example, you can ! calculate the value of `foo (z)', save it in a variable, and use that ! variable in `min': #define min(X, Y) ((X) < (Y) ? (X) : (Y)) ... *************** the value of 'foo (z)', save it in a var *** 2589,2595 **** next = min (x + y, tem); } ! (where we assume that 'foo' returns type 'int').  File: cpp.info, Node: Self-Referential Macros, Next: Argument Prescan, Prev: Duplication of Side Effects, Up: Macro Pitfalls --- 2603,2609 ---- next = min (x + y, tem); } ! (where we assume that `foo' returns type `int').  File: cpp.info, Node: Self-Referential Macros, Next: Argument Prescan, Prev: Duplication of Side Effects, Up: Macro Pitfalls *************** preprocessor output unchanged. Consider *** 2606,2647 **** #define foo (4 + foo) ! where 'foo' is also a variable in your program. ! Following the ordinary rules, each reference to 'foo' will expand ! into '(4 + foo)'; then this will be rescanned and will expand into '(4 + ! (4 + foo))'; and so on until the computer runs out of memory. The self-reference rule cuts this process short after one step, at ! '(4 + foo)'. Therefore, this macro definition has the possibly useful ! effect of causing the program to add 4 to the value of 'foo' wherever ! 'foo' is referred to. In most cases, it is a bad idea to take advantage of this feature. A ! person reading the program who sees that 'foo' is a variable will not expect that it is a macro as well. The reader will come across the ! identifier 'foo' in the program and think its value should be that of ! the variable 'foo', whereas in fact the value is four greater. One common, useful use of self-reference is to create a macro which expands to itself. If you write #define EPERM EPERM ! then the macro 'EPERM' expands to 'EPERM'. Effectively, it is left alone by the preprocessor whenever it's used in running text. You can ! tell that it's a macro with '#ifdef'. You might do this if you want to ! define numeric constants with an 'enum', but have '#ifdef' be true for each constant. ! If a macro 'x' expands to use a macro 'y', and the expansion of 'y' ! refers to the macro 'x', that is an "indirect self-reference" of 'x'. ! 'x' is not expanded in this case either. Thus, if we have #define x (4 + y) #define y (2 * x) ! then 'x' and 'y' expand as follows: x ==> (4 + y) ==> (4 + (2 * x)) --- 2620,2661 ---- #define foo (4 + foo) ! where `foo' is also a variable in your program. ! Following the ordinary rules, each reference to `foo' will expand ! into `(4 + foo)'; then this will be rescanned and will expand into `(4 ! + (4 + foo))'; and so on until the computer runs out of memory. The self-reference rule cuts this process short after one step, at ! `(4 + foo)'. Therefore, this macro definition has the possibly useful ! effect of causing the program to add 4 to the value of `foo' wherever ! `foo' is referred to. In most cases, it is a bad idea to take advantage of this feature. A ! person reading the program who sees that `foo' is a variable will not expect that it is a macro as well. The reader will come across the ! identifier `foo' in the program and think its value should be that of ! the variable `foo', whereas in fact the value is four greater. One common, useful use of self-reference is to create a macro which expands to itself. If you write #define EPERM EPERM ! then the macro `EPERM' expands to `EPERM'. Effectively, it is left alone by the preprocessor whenever it's used in running text. You can ! tell that it's a macro with `#ifdef'. You might do this if you want to ! define numeric constants with an `enum', but have `#ifdef' be true for each constant. ! If a macro `x' expands to use a macro `y', and the expansion of `y' ! refers to the macro `x', that is an "indirect self-reference" of `x'. ! `x' is not expanded in this case either. Thus, if we have #define x (4 + y) #define y (2 * x) ! then `x' and `y' expand as follows: x ==> (4 + y) ==> (4 + (2 * x)) *************** same results. *** 2674,2701 **** You might expect the double scan to change the results when a self-referential macro is used in an argument of another macro (*note ! Self-Referential Macros::): the self-referential macro would be expanded ! once in the first scan, and a second time in the second scan. However, ! this is not what happens. The self-references that do not expand in the ! first scan are marked so that they will not expand in the second scan ! either. You might wonder, "Why mention the prescan, if it makes no ! difference? And why not skip it and make the preprocessor faster?" The ! answer is that the prescan does make a difference in three special cases: * Nested calls to a macro. We say that "nested" calls to a macro occur when a macro's argument ! contains a call to that very macro. For example, if 'f' is a macro ! that expects one argument, 'f (f (1))' is a nested pair of calls to ! 'f'. The desired expansion is made by expanding 'f (1)' and ! substituting that into the definition of 'f'. The prescan causes ! the expected result to happen. Without the prescan, 'f (1)' itself ! would be substituted as an argument, and the inner use of 'f' would ! appear during the main scan as an indirect self-reference and would ! not be expanded. * Macros that call other macros that stringify or concatenate. --- 2688,2715 ---- You might expect the double scan to change the results when a self-referential macro is used in an argument of another macro (*note ! Self-Referential Macros::): the self-referential macro would be ! expanded once in the first scan, and a second time in the second scan. ! However, this is not what happens. The self-references that do not ! expand in the first scan are marked so that they will not expand in the ! second scan either. You might wonder, "Why mention the prescan, if it makes no ! difference? And why not skip it and make the preprocessor faster?" ! The answer is that the prescan does make a difference in three special cases: * Nested calls to a macro. We say that "nested" calls to a macro occur when a macro's argument ! contains a call to that very macro. For example, if `f' is a macro ! that expects one argument, `f (f (1))' is a nested pair of calls to ! `f'. The desired expansion is made by expanding `f (1)' and ! substituting that into the definition of `f'. The prescan causes ! the expected result to happen. Without the prescan, `f (1)' itself ! would be substituted as an argument, and the inner use of `f' would ! appear during the main scan as an indirect self-reference and ! would not be expanded. * Macros that call other macros that stringify or concatenate. *************** cases: *** 2710,2717 **** #define TABLESIZE 1024 #define BUFSIZE TABLESIZE ! then 'AFTERX(BUFSIZE)' expands to 'X_BUFSIZE', and ! 'XAFTERX(BUFSIZE)' expands to 'X_1024'. (Not to 'X_TABLESIZE'. Prescan always does a complete expansion.) * Macros used in arguments, whose expansions contain unshielded --- 2724,2731 ---- #define TABLESIZE 1024 #define BUFSIZE TABLESIZE ! then `AFTERX(BUFSIZE)' expands to `X_BUFSIZE', and ! `XAFTERX(BUFSIZE)' expands to `X_1024'. (Not to `X_TABLESIZE'. Prescan always does a complete expansion.) * Macros used in arguments, whose expansions contain unshielded *************** cases: *** 2724,2732 **** #define bar(x) lose(x) #define lose(x) (1 + (x)) ! We would like 'bar(foo)' to turn into '(1 + (foo))', which would ! then turn into '(1 + (a,b))'. Instead, 'bar(foo)' expands into ! 'lose(a,b)', and you get an error because 'lose' requires a single argument. In this case, the problem is easily solved by the same parentheses that ought to be used to prevent misnesting of arithmetic operations: --- 2738,2746 ---- #define bar(x) lose(x) #define lose(x) (1 + (x)) ! We would like `bar(foo)' to turn into `(1 + (foo))', which would ! then turn into `(1 + (a,b))'. Instead, `bar(foo)' expands into ! `lose(a,b)', and you get an error because `lose' requires a single argument. In this case, the problem is easily solved by the same parentheses that ought to be used to prevent misnesting of arithmetic operations: *************** cases: *** 2735,2743 **** or #define bar(x) lose((x)) ! The extra pair of parentheses prevents the comma in 'foo''s definition from being interpreted as an argument separator.  File: cpp.info, Node: Newlines in Arguments, Prev: Argument Prescan, Up: Macro Pitfalls --- 2749,2758 ---- or #define bar(x) lose((x)) ! The extra pair of parentheses prevents the comma in `foo''s definition from being interpreted as an argument separator. +  File: cpp.info, Node: Newlines in Arguments, Prev: Argument Prescan, Up: Macro Pitfalls *************** different to the line containing the arg *** 2758,2764 **** ignored (), syntax error); ! The syntax error triggered by the tokens 'syntax error' results in an error message citing line three--the line of ignore_second_arg-- even though the problematic code comes from line five. --- 2773,2779 ---- ignored (), syntax error); ! The syntax error triggered by the tokens `syntax error' results in an error message citing line three--the line of ignore_second_arg-- even though the problematic code comes from line five. *************** File: cpp.info, Node: Conditionals, Ne *** 2770,2796 **** 4 Conditionals ************** ! A "conditional" is a directive that instructs the preprocessor to select ! whether or not to include a chunk of code in the final token stream ! passed to the compiler. Preprocessor conditionals can test arithmetic ! expressions, or whether a name is defined as a macro, or both ! simultaneously using the special 'defined' operator. ! A conditional in the C preprocessor resembles in some ways an 'if' statement in C, but it is important to understand the difference between ! them. The condition in an 'if' statement is tested during the execution ! of your program. Its purpose is to allow your program to behave ! differently from run to run, depending on the data it is operating on. ! The condition in a preprocessing conditional directive is tested when ! your program is compiled. Its purpose is to allow different code to be ! included in the program depending on the situation at the time of ! compilation. However, the distinction is becoming less clear. Modern compilers ! often do test 'if' statements when a program is compiled, if their conditions are known not to vary at run time, and eliminate code which can never be executed. If you can count on your compiler to do this, ! you may find that your program is more readable if you use 'if' statements with constant conditions (perhaps determined by macros). Of course, you can only use this to exclude code, not type definitions or other preprocessing directives, and you can only do it if the code --- 2785,2811 ---- 4 Conditionals ************** ! A "conditional" is a directive that instructs the preprocessor to ! select whether or not to include a chunk of code in the final token ! stream passed to the compiler. Preprocessor conditionals can test ! arithmetic expressions, or whether a name is defined as a macro, or both ! simultaneously using the special `defined' operator. ! A conditional in the C preprocessor resembles in some ways an `if' statement in C, but it is important to understand the difference between ! them. The condition in an `if' statement is tested during the ! execution of your program. Its purpose is to allow your program to ! behave differently from run to run, depending on the data it is ! operating on. The condition in a preprocessing conditional directive is ! tested when your program is compiled. Its purpose is to allow different ! code to be included in the program depending on the situation at the ! time of compilation. However, the distinction is becoming less clear. Modern compilers ! often do test `if' statements when a program is compiled, if their conditions are known not to vary at run time, and eliminate code which can never be executed. If you can count on your compiler to do this, ! you may find that your program is more readable if you use `if' statements with constant conditions (perhaps determined by macros). Of course, you can only use this to exclude code, not type definitions or other preprocessing directives, and you can only do it if the code *************** There are three general reasons to use a *** 2818,2836 **** one operating system may be erroneous on another operating system; for example, it might refer to data types or constants that do not exist on the other system. When this happens, it is not enough to ! avoid executing the invalid code. Its mere presence will cause the ! compiler to reject the program. With a preprocessing conditional, ! the offending code can be effectively excised from the program when ! it is not valid. * You may want to be able to compile the same source file into two different programs. One version might make frequent time-consuming consistency checks on its intermediate data, or print the values of those data for debugging, and the other not. ! * A conditional whose condition is always false is one way to exclude ! code from the program but keep it as a sort of comment for future ! reference. Simple programs that do not need system-specific logic or complex debugging hooks generally will not need to use preprocessing --- 2833,2851 ---- one operating system may be erroneous on another operating system; for example, it might refer to data types or constants that do not exist on the other system. When this happens, it is not enough to ! avoid executing the invalid code. Its mere presence will cause ! the compiler to reject the program. With a preprocessing ! conditional, the offending code can be effectively excised from ! the program when it is not valid. * You may want to be able to compile the same source file into two different programs. One version might make frequent time-consuming consistency checks on its intermediate data, or print the values of those data for debugging, and the other not. ! * A conditional whose condition is always false is one way to ! exclude code from the program but keep it as a sort of comment for ! future reference. Simple programs that do not need system-specific logic or complex debugging hooks generally will not need to use preprocessing *************** File: cpp.info, Node: Conditional Synta *** 2843,2849 **** ====================== A conditional in the C preprocessor begins with a "conditional ! directive": '#if', '#ifdef' or '#ifndef'. * Menu: --- 2858,2864 ---- ====================== A conditional in the C preprocessor begins with a "conditional ! directive": `#if', `#ifdef' or `#ifndef'. * Menu: *************** included in the output of the preprocess *** 2872,2883 **** defined. We say that the conditional "succeeds" if MACRO is defined, "fails" if it is not. ! The CONTROLLED TEXT inside of a conditional can include preprocessing ! directives. They are executed only if the conditional succeeds. You ! can nest conditional groups inside other conditional groups, but they ! must be completely nested. In other words, '#endif' always matches the ! nearest '#ifdef' (or '#ifndef', or '#if'). Also, you cannot start a ! conditional group in one file and end it in another. Even if a conditional fails, the CONTROLLED TEXT inside it is still run through initial transformations and tokenization. Therefore, it --- 2887,2898 ---- defined. We say that the conditional "succeeds" if MACRO is defined, "fails" if it is not. ! The CONTROLLED TEXT inside of a conditional can include ! preprocessing directives. They are executed only if the conditional ! succeeds. You can nest conditional groups inside other conditional ! groups, but they must be completely nested. In other words, `#endif' ! always matches the nearest `#ifdef' (or `#ifndef', or `#if'). Also, ! you cannot start a conditional group in one file and end it in another. Even if a conditional fails, the CONTROLLED TEXT inside it is still run through initial transformations and tokenization. Therefore, it *************** must all be lexically valid C. Normally *** 2885,2902 **** that all comments and string literals inside a failing conditional group must still be properly ended. ! The comment following the '#endif' is not required, but it is a good practice if there is a lot of CONTROLLED TEXT, because it helps people ! match the '#endif' to the corresponding '#ifdef'. Older programs ! sometimes put MACRO directly after the '#endif' without enclosing it in a comment. This is invalid code according to the C standard. CPP ! accepts it with a warning. It never affects which '#ifndef' the ! '#endif' matches. ! Sometimes you wish to use some code if a macro is _not_ defined. You ! can do this by writing '#ifndef' instead of '#ifdef'. One common use of ! '#ifndef' is to include code only the first time a header file is ! included. *Note Once-Only Headers::. Macro definitions can vary between compilations for several reasons. Here are some samples. --- 2900,2917 ---- that all comments and string literals inside a failing conditional group must still be properly ended. ! The comment following the `#endif' is not required, but it is a good practice if there is a lot of CONTROLLED TEXT, because it helps people ! match the `#endif' to the corresponding `#ifdef'. Older programs ! sometimes put MACRO directly after the `#endif' without enclosing it in a comment. This is invalid code according to the C standard. CPP ! accepts it with a warning. It never affects which `#ifndef' the ! `#endif' matches. ! Sometimes you wish to use some code if a macro is _not_ defined. ! You can do this by writing `#ifndef' instead of `#ifdef'. One common ! use of `#ifndef' is to include code only the first time a header file ! is included. *Note Once-Only Headers::. Macro definitions can vary between compilations for several reasons. Here are some samples. *************** Here are some samples. *** 2910,2928 **** conditionals to avoid using a system feature on a machine where it is not implemented. ! * Macros can be defined or undefined with the '-D' and '-U' command line options when you compile the program. You can arrange to compile the same source file into two different programs by choosing a macro name to specify which program you want, writing ! conditionals to test whether or how this macro is defined, and then ! controlling the state of the macro with command line options, perhaps set in the Makefile. *Note Invocation::. * Your program might have a special header file (often called ! 'config.h') that is adjusted when the program is compiled. It can ! define or not define macros depending on the features of the system ! and the desired capabilities of the program. The adjustment can be ! automated by a tool such as 'autoconf', or done by hand.  File: cpp.info, Node: If, Next: Defined, Prev: Ifdef, Up: Conditional Syntax --- 2925,2944 ---- conditionals to avoid using a system feature on a machine where it is not implemented. ! * Macros can be defined or undefined with the `-D' and `-U' command line options when you compile the program. You can arrange to compile the same source file into two different programs by choosing a macro name to specify which program you want, writing ! conditionals to test whether or how this macro is defined, and ! then controlling the state of the macro with command line options, perhaps set in the Makefile. *Note Invocation::. * Your program might have a special header file (often called ! `config.h') that is adjusted when the program is compiled. It can ! define or not define macros depending on the features of the ! system and the desired capabilities of the program. The ! adjustment can be automated by a tool such as `autoconf', or done ! by hand.  File: cpp.info, Node: If, Next: Defined, Prev: Ifdef, Up: Conditional Syntax *************** File: cpp.info, Node: If, Next: Define *** 2930,2936 **** 4.2.2 If -------- ! The '#if' directive allows you to test the value of an arithmetic expression, rather than the mere existence of one macro. Its syntax is #if EXPRESSION --- 2946,2952 ---- 4.2.2 If -------- ! The `#if' directive allows you to test the value of an arithmetic expression, rather than the mere existence of one macro. Its syntax is #if EXPRESSION *************** restrictions. It may contain *** 2949,2977 **** * Arithmetic operators for addition, subtraction, multiplication, division, bitwise operations, shifts, comparisons, and logical ! operations ('&&' and '||'). The latter two obey the usual short-circuiting rules of standard C. * Macros. All macros in the expression are expanded before actual computation of the expression's value begins. ! * Uses of the 'defined' operator, which lets you check whether macros ! are defined in the middle of an '#if'. * Identifiers that are not macros, which are all considered to be the ! number zero. This allows you to write '#if MACRO' instead of ! '#ifdef MACRO', if you know that MACRO, when defined, will always have a nonzero value. Function-like macros used without their function call parentheses are also treated as zero. ! In some contexts this shortcut is undesirable. The '-Wundef' option causes GCC to warn whenever it encounters an identifier ! which is not a macro in an '#if'. The preprocessor does not know anything about types in the language. ! Therefore, 'sizeof' operators are not recognized in '#if', and neither ! are 'enum' constants. They will be taken as identifiers which are not ! macros, and replaced by zero. In the case of 'sizeof', this is likely to cause the expression to be invalid. The preprocessor calculates the value of EXPRESSION. It carries out --- 2965,2993 ---- * Arithmetic operators for addition, subtraction, multiplication, division, bitwise operations, shifts, comparisons, and logical ! operations (`&&' and `||'). The latter two obey the usual short-circuiting rules of standard C. * Macros. All macros in the expression are expanded before actual computation of the expression's value begins. ! * Uses of the `defined' operator, which lets you check whether macros ! are defined in the middle of an `#if'. * Identifiers that are not macros, which are all considered to be the ! number zero. This allows you to write `#if MACRO' instead of ! `#ifdef MACRO', if you know that MACRO, when defined, will always have a nonzero value. Function-like macros used without their function call parentheses are also treated as zero. ! In some contexts this shortcut is undesirable. The `-Wundef' option causes GCC to warn whenever it encounters an identifier ! which is not a macro in an `#if'. The preprocessor does not know anything about types in the language. ! Therefore, `sizeof' operators are not recognized in `#if', and neither ! are `enum' constants. They will be taken as identifiers which are not ! macros, and replaced by zero. In the case of `sizeof', this is likely to cause the expression to be invalid. The preprocessor calculates the value of EXPRESSION. It carries out *************** all calculations in the widest integer t *** 2979,2985 **** most machines supported by GCC this is 64 bits. This is not the same rule as the compiler uses to calculate the value of a constant expression, and may give different results in some cases. If the value ! comes out to be nonzero, the '#if' succeeds and the CONTROLLED TEXT is included; otherwise it is skipped.  --- 2995,3001 ---- most machines supported by GCC this is 64 bits. This is not the same rule as the compiler uses to calculate the value of a constant expression, and may give different results in some cases. If the value ! comes out to be nonzero, the `#if' succeeds and the CONTROLLED TEXT is included; otherwise it is skipped.  *************** File: cpp.info, Node: Defined, Next: E *** 2988,3020 **** 4.2.3 Defined ------------- ! The special operator 'defined' is used in '#if' and '#elif' expressions ! to test whether a certain name is defined as a macro. 'defined NAME' ! and 'defined (NAME)' are both expressions whose value is 1 if NAME is ! defined as a macro at the current point in the program, and 0 otherwise. ! Thus, '#if defined MACRO' is precisely equivalent to '#ifdef MACRO'. ! 'defined' is useful when you wish to test more than one macro for existence at once. For example, #if defined (__vax__) || defined (__ns16000__) ! would succeed if either of the names '__vax__' or '__ns16000__' is defined as a macro. Conditionals written like this: #if defined BUFSIZE && BUFSIZE >= 1024 ! can generally be simplified to just '#if BUFSIZE >= 1024', since if ! 'BUFSIZE' is not defined, it will be interpreted as having the value zero. ! If the 'defined' operator appears as a result of a macro expansion, the C standard says the behavior is undefined. GNU cpp treats it as a ! genuine 'defined' operator and evaluates it normally. It will warn wherever your code uses this feature if you use the command-line option ! '-pedantic', since other compilers may handle it differently.  File: cpp.info, Node: Else, Next: Elif, Prev: Defined, Up: Conditional Syntax --- 3004,3037 ---- 4.2.3 Defined ------------- ! The special operator `defined' is used in `#if' and `#elif' expressions ! to test whether a certain name is defined as a macro. `defined NAME' ! and `defined (NAME)' are both expressions whose value is 1 if NAME is ! defined as a macro at the current point in the program, and 0 ! otherwise. Thus, `#if defined MACRO' is precisely equivalent to ! `#ifdef MACRO'. ! `defined' is useful when you wish to test more than one macro for existence at once. For example, #if defined (__vax__) || defined (__ns16000__) ! would succeed if either of the names `__vax__' or `__ns16000__' is defined as a macro. Conditionals written like this: #if defined BUFSIZE && BUFSIZE >= 1024 ! can generally be simplified to just `#if BUFSIZE >= 1024', since if ! `BUFSIZE' is not defined, it will be interpreted as having the value zero. ! If the `defined' operator appears as a result of a macro expansion, the C standard says the behavior is undefined. GNU cpp treats it as a ! genuine `defined' operator and evaluates it normally. It will warn wherever your code uses this feature if you use the command-line option ! `-pedantic', since other compilers may handle it differently.  File: cpp.info, Node: Else, Next: Elif, Prev: Defined, Up: Conditional Syntax *************** File: cpp.info, Node: Else, Next: Elif *** 3022,3028 **** 4.2.4 Else ---------- ! The '#else' directive can be added to a conditional to provide alternative text to be used if the condition fails. This is what it looks like: --- 3039,3045 ---- 4.2.4 Else ---------- ! The `#else' directive can be added to a conditional to provide alternative text to be used if the condition fails. This is what it looks like: *************** looks like: *** 3035,3041 **** If EXPRESSION is nonzero, the TEXT-IF-TRUE is included and the TEXT-IF-FALSE is skipped. If EXPRESSION is zero, the opposite happens. ! You can use '#else' with '#ifdef' and '#ifndef', too.  File: cpp.info, Node: Elif, Prev: Else, Up: Conditional Syntax --- 3052,3058 ---- If EXPRESSION is nonzero, the TEXT-IF-TRUE is included and the TEXT-IF-FALSE is skipped. If EXPRESSION is zero, the opposite happens. ! You can use `#else' with `#ifdef' and `#ifndef', too.  File: cpp.info, Node: Elif, Prev: Else, Up: Conditional Syntax *************** two possible alternatives. For example, *** 3056,3063 **** #endif /* X != 2 */ #endif /* X != 1 */ ! Another conditional directive, '#elif', allows this to be abbreviated ! as follows: #if X == 1 ... --- 3073,3080 ---- #endif /* X != 2 */ #endif /* X != 1 */ ! Another conditional directive, `#elif', allows this to be ! abbreviated as follows: #if X == 1 ... *************** as follows: *** 3067,3086 **** ... #endif /* X != 2 and X != 1*/ ! '#elif' stands for "else if". Like '#else', it goes in the middle of ! a conditional group and subdivides it; it does not require a matching ! '#endif' of its own. Like '#if', the '#elif' directive includes an ! expression to be tested. The text following the '#elif' is processed ! only if the original '#if'-condition failed and the '#elif' condition ! succeeds. ! More than one '#elif' can go in the same conditional group. Then the ! text after each '#elif' is processed only if the '#elif' condition ! succeeds after the original '#if' and all previous '#elif' directives within it have failed. ! '#else' is allowed after any number of '#elif' directives, but ! '#elif' may not follow '#else'.  File: cpp.info, Node: Deleted Code, Prev: Conditional Syntax, Up: Conditionals --- 3084,3103 ---- ... #endif /* X != 2 and X != 1*/ ! `#elif' stands for "else if". Like `#else', it goes in the middle ! of a conditional group and subdivides it; it does not require a ! matching `#endif' of its own. Like `#if', the `#elif' directive ! includes an expression to be tested. The text following the `#elif' is ! processed only if the original `#if'-condition failed and the `#elif' ! condition succeeds. ! More than one `#elif' can go in the same conditional group. Then ! the text after each `#elif' is processed only if the `#elif' condition ! succeeds after the original `#if' and all previous `#elif' directives within it have failed. ! `#else' is allowed after any number of `#elif' directives, but ! `#elif' may not follow `#else'.  File: cpp.info, Node: Deleted Code, Prev: Conditional Syntax, Up: Conditionals *************** code will end the commenting-out. The p *** 3095,3114 **** syntax errors. One way to avoid this problem is to use an always-false conditional ! instead. For instance, put '#if 0' before the deleted code and '#endif' ! after it. This works even if the code being turned off contains ! conditionals, but they must be entire conditionals (balanced '#if' and ! '#endif'). ! Some people use '#ifdef notdef' instead. This is risky, because ! 'notdef' might be accidentally defined as a macro, and then the ! conditional would succeed. '#if 0' can be counted on to fail. ! Do not use '#if 0' for comments which are not C code. Use a real ! comment, instead. The interior of '#if 0' must consist of complete tokens; in particular, single-quote characters must balance. Comments often contain unbalanced single-quote characters (known in English as ! apostrophes). These confuse '#if 0'. They don't confuse '/*'.  File: cpp.info, Node: Diagnostics, Next: Line Control, Prev: Conditionals, Up: Top --- 3112,3131 ---- syntax errors. One way to avoid this problem is to use an always-false conditional ! instead. For instance, put `#if 0' before the deleted code and ! `#endif' after it. This works even if the code being turned off ! contains conditionals, but they must be entire conditionals (balanced ! `#if' and `#endif'). ! Some people use `#ifdef notdef' instead. This is risky, because ! `notdef' might be accidentally defined as a macro, and then the ! conditional would succeed. `#if 0' can be counted on to fail. ! Do not use `#if 0' for comments which are not C code. Use a real ! comment, instead. The interior of `#if 0' must consist of complete tokens; in particular, single-quote characters must balance. Comments often contain unbalanced single-quote characters (known in English as ! apostrophes). These confuse `#if 0'. They don't confuse `/*'.  File: cpp.info, Node: Diagnostics, Next: Line Control, Prev: Conditionals, Up: Top *************** File: cpp.info, Node: Diagnostics, Nex *** 3116,3126 **** 5 Diagnostics ************* ! The directive '#error' causes the preprocessor to report a fatal error. ! The tokens forming the rest of the line following '#error' are used as the error message. ! You would use '#error' inside of a conditional that detects a combination of parameters which you know the program does not properly support. For example, if you know that the program will not run properly on a VAX, you might write --- 3133,3143 ---- 5 Diagnostics ************* ! The directive `#error' causes the preprocessor to report a fatal error. ! The tokens forming the rest of the line following `#error' are used as the error message. ! You would use `#error' inside of a conditional that detects a combination of parameters which you know the program does not properly support. For example, if you know that the program will not run properly on a VAX, you might write *************** properly on a VAX, you might write *** 3131,3154 **** If you have several configuration parameters that must be set up by the installation in a consistent way, you can use conditionals to detect ! an inconsistency and report it with '#error'. For example, #if !defined(FOO) && defined(BAR) #error "BAR requires FOO." #endif ! The directive '#warning' is like '#error', but causes the preprocessor to issue a warning and continue preprocessing. The tokens ! following '#warning' are used as the warning message. ! You might use '#warning' in obsolete header files, with a message directing the user to the header file which should be used instead. ! Neither '#error' nor '#warning' macro-expands its argument. Internal ! whitespace sequences are each replaced with a single space. The line ! must consist of complete tokens. It is wisest to make the argument of ! these directives be a single string constant; this avoids problems with ! apostrophes and the like.  File: cpp.info, Node: Line Control, Next: Pragmas, Prev: Diagnostics, Up: Top --- 3148,3171 ---- If you have several configuration parameters that must be set up by the installation in a consistent way, you can use conditionals to detect ! an inconsistency and report it with `#error'. For example, #if !defined(FOO) && defined(BAR) #error "BAR requires FOO." #endif ! The directive `#warning' is like `#error', but causes the preprocessor to issue a warning and continue preprocessing. The tokens ! following `#warning' are used as the warning message. ! You might use `#warning' in obsolete header files, with a message directing the user to the header file which should be used instead. ! Neither `#error' nor `#warning' macro-expands its argument. ! Internal whitespace sequences are each replaced with a single space. ! The line must consist of complete tokens. It is wisest to make the ! argument of these directives be a single string constant; this avoids ! problems with apostrophes and the like.  File: cpp.info, Node: Line Control, Next: Pragmas, Prev: Diagnostics, Up: Top *************** reported as having appeared on the line *** 3163,3220 **** outermost macro was used. We intend to be more accurate in the future. If you write a program which generates source code, such as the ! 'bison' parser generator, you may want to adjust the preprocessor's notion of the current file name and line number by hand. Parts of the ! output from 'bison' are generated from scratch, other parts come from a ! standard parser file. The rest are copied verbatim from 'bison''s ! input. You would like compiler error messages and symbolic debuggers to ! be able to refer to 'bison''s input file. ! 'bison' or any such program can arrange this by writing '#line' ! directives into the output file. '#line' is a directive that specifies the original line number and source file name for subsequent input in ! the current preprocessor input file. '#line' has three variants: ! '#line LINENUM' LINENUM is a non-negative decimal integer constant. It specifies the line number which should be reported for the following line of input. Subsequent lines are counted from LINENUM. ! '#line LINENUM FILENAME' ! LINENUM is the same as for the first form, and has the same effect. ! In addition, FILENAME is a string constant. The following line and ! all subsequent lines are reported to come from the file it ! specifies, until something else happens to change that. FILENAME ! is interpreted according to the normal rules for a string constant: ! backslash escapes are interpreted. This is different from ! '#include'. ! Previous versions of CPP did not interpret escapes in '#line'; we have changed it because the standard requires they be interpreted, and most other compilers do. ! '#line ANYTHING ELSE' ANYTHING ELSE is checked for macro calls, which are expanded. The result should match one of the above two forms. ! '#line' directives alter the results of the '__FILE__' and '__LINE__' ! predefined macros from that point on. *Note Standard Predefined ! Macros::. They do not have any effect on '#include''s idea of the ! directory containing the current file. This is a change from GCC 2.95. ! Previously, a file reading #include "gram.h" ! would search for 'gram.h' in '../src', then the '-I' chain; the ! directory containing the physical source file would not be searched. In ! GCC 3.0 and later, the '#include' is not affected by the presence of a ! '#line' referring to a different directory. We made this change because the old behavior caused problems when generated source files were transported between machines. For instance, it is common practice to ship generated parsers with a source release, so that people building the distribution do not need to have yacc or ! Bison installed. These files frequently have '#line' directives referring to the directory tree of the system where the distribution was created. If GCC tries to search for headers in those directories, the build is likely to fail. --- 3180,3238 ---- outermost macro was used. We intend to be more accurate in the future. If you write a program which generates source code, such as the ! `bison' parser generator, you may want to adjust the preprocessor's notion of the current file name and line number by hand. Parts of the ! output from `bison' are generated from scratch, other parts come from a ! standard parser file. The rest are copied verbatim from `bison''s ! input. You would like compiler error messages and symbolic debuggers ! to be able to refer to `bison''s input file. ! `bison' or any such program can arrange this by writing `#line' ! directives into the output file. `#line' is a directive that specifies the original line number and source file name for subsequent input in ! the current preprocessor input file. `#line' has three variants: ! `#line LINENUM' LINENUM is a non-negative decimal integer constant. It specifies the line number which should be reported for the following line of input. Subsequent lines are counted from LINENUM. ! `#line LINENUM FILENAME' ! LINENUM is the same as for the first form, and has the same ! effect. In addition, FILENAME is a string constant. The ! following line and all subsequent lines are reported to come from ! the file it specifies, until something else happens to change that. ! FILENAME is interpreted according to the normal rules for a string ! constant: backslash escapes are interpreted. This is different ! from `#include'. ! Previous versions of CPP did not interpret escapes in `#line'; we have changed it because the standard requires they be interpreted, and most other compilers do. ! `#line ANYTHING ELSE' ANYTHING ELSE is checked for macro calls, which are expanded. The result should match one of the above two forms. ! `#line' directives alter the results of the `__FILE__' and ! `__LINE__' predefined macros from that point on. *Note Standard ! Predefined Macros::. They do not have any effect on `#include''s idea ! of the directory containing the current file. This is a change from ! GCC 2.95. Previously, a file reading + #line 1 "../src/gram.y" #include "gram.h" ! would search for `gram.h' in `../src', then the `-I' chain; the ! directory containing the physical source file would not be searched. ! In GCC 3.0 and later, the `#include' is not affected by the presence of ! a `#line' referring to a different directory. We made this change because the old behavior caused problems when generated source files were transported between machines. For instance, it is common practice to ship generated parsers with a source release, so that people building the distribution do not need to have yacc or ! Bison installed. These files frequently have `#line' directives referring to the directory tree of the system where the distribution was created. If GCC tries to search for headers in those directories, the build is likely to fail. *************** build is likely to fail. *** 3223,3229 **** in the same directory as its source and it attempts to include a header which would be visible searching from the directory containing the source file. However, this problem is easily solved with an additional ! '-I' switch on the command line. The failures caused by the old semantics could sometimes be corrected only by editing the generated files, which is difficult and error-prone. --- 3241,3247 ---- in the same directory as its source and it attempts to include a header which would be visible searching from the directory containing the source file. However, this problem is easily solved with an additional ! `-I' switch on the command line. The failures caused by the old semantics could sometimes be corrected only by editing the generated files, which is difficult and error-prone. *************** File: cpp.info, Node: Pragmas, Next: O *** 3233,3280 **** 7 Pragmas ********* ! The '#pragma' directive is the method specified by the C standard for providing additional information to the compiler, beyond what is conveyed in the language itself. Three forms of this directive ! (commonly known as "pragmas") are specified by the 1999 C standard. A C ! compiler is free to attach any meaning it likes to other pragmas. GCC has historically preferred to use extensions to the syntax of the ! language, such as '__attribute__', for this purpose. However, GCC does define a few pragmas of its own. These mostly have effects on the entire translation unit or source file. In GCC version 3, all GNU-defined, supported pragmas have been given ! a 'GCC' prefix. This is in line with the 'STDC' prefix on all pragmas defined by C99. For backward compatibility, pragmas which were ! recognized by previous versions are still recognized without the 'GCC' ! prefix, but that usage is deprecated. Some older pragmas are deprecated ! in their entirety. They are not recognized with the 'GCC' prefix. ! *Note Obsolete Features::. ! C99 introduces the '_Pragma' operator. This feature addresses a ! major problem with '#pragma': being a directive, it cannot be produced ! as the result of macro expansion. '_Pragma' is an operator, much like ! 'sizeof' or 'defined', and can be embedded in a macro. ! Its syntax is '_Pragma (STRING-LITERAL)', where STRING-LITERAL can be ! either a normal or wide-character string literal. It is destringized, ! by replacing all '\\' with a single '\' and all '\"' with a '"'. The ! result is then processed as if it had appeared as the right hand side of ! a '#pragma' directive. For example, _Pragma ("GCC dependency \"parse.y\"") ! has the same effect as '#pragma GCC dependency "parse.y"'. The same effect could be achieved using macros, for example #define DO_PRAGMA(x) _Pragma (#x) DO_PRAGMA (GCC dependency "parse.y") ! The standard is unclear on where a '_Pragma' operator can appear. The preprocessor does not accept it within a preprocessing conditional ! directive like '#if'. To be safe, you are probably best keeping it out ! of directives other than '#define', and putting it on a line of its own. This manual documents the pragmas which are meaningful to the preprocessor itself. Other pragmas are meaningful to the C or C++ --- 3251,3298 ---- 7 Pragmas ********* ! The `#pragma' directive is the method specified by the C standard for providing additional information to the compiler, beyond what is conveyed in the language itself. Three forms of this directive ! (commonly known as "pragmas") are specified by the 1999 C standard. A ! C compiler is free to attach any meaning it likes to other pragmas. GCC has historically preferred to use extensions to the syntax of the ! language, such as `__attribute__', for this purpose. However, GCC does define a few pragmas of its own. These mostly have effects on the entire translation unit or source file. In GCC version 3, all GNU-defined, supported pragmas have been given ! a `GCC' prefix. This is in line with the `STDC' prefix on all pragmas defined by C99. For backward compatibility, pragmas which were ! recognized by previous versions are still recognized without the `GCC' ! prefix, but that usage is deprecated. Some older pragmas are ! deprecated in their entirety. They are not recognized with the `GCC' ! prefix. *Note Obsolete Features::. ! C99 introduces the `_Pragma' operator. This feature addresses a ! major problem with `#pragma': being a directive, it cannot be produced ! as the result of macro expansion. `_Pragma' is an operator, much like ! `sizeof' or `defined', and can be embedded in a macro. ! Its syntax is `_Pragma (STRING-LITERAL)', where STRING-LITERAL can ! be either a normal or wide-character string literal. It is ! destringized, by replacing all `\\' with a single `\' and all `\"' with ! a `"'. The result is then processed as if it had appeared as the right ! hand side of a `#pragma' directive. For example, _Pragma ("GCC dependency \"parse.y\"") ! has the same effect as `#pragma GCC dependency "parse.y"'. The same effect could be achieved using macros, for example #define DO_PRAGMA(x) _Pragma (#x) DO_PRAGMA (GCC dependency "parse.y") ! The standard is unclear on where a `_Pragma' operator can appear. The preprocessor does not accept it within a preprocessing conditional ! directive like `#if'. To be safe, you are probably best keeping it out ! of directives other than `#define', and putting it on a line of its own. This manual documents the pragmas which are meaningful to the preprocessor itself. Other pragmas are meaningful to the C or C++ *************** compilers. They are documented in the G *** 3282,3289 **** GCC plugins may provide their own pragmas. ! '#pragma GCC dependency' ! '#pragma GCC dependency' allows you to check the relative dates of the current file and another file. If the other file is more recent than the current file, a warning is issued. This is useful if the current file is derived from the other file, and should be --- 3300,3307 ---- GCC plugins may provide their own pragmas. ! `#pragma GCC dependency' ! `#pragma GCC dependency' allows you to check the relative dates of the current file and another file. If the other file is more recent than the current file, a warning is issued. This is useful if the current file is derived from the other file, and should be *************** compilers. They are documented in the G *** 3294,3304 **** #pragma GCC dependency "parse.y" #pragma GCC dependency "/usr/include/time.h" rerun fixincludes ! '#pragma GCC poison' Sometimes, there is an identifier that you want to remove completely from your program, and make sure that it never creeps back in. To enforce this, you can "poison" the identifier with ! this pragma. '#pragma GCC poison' is followed by a list of identifiers to poison. If any of those identifiers appears anywhere in the source after the directive, it is a hard error. For example, --- 3312,3322 ---- #pragma GCC dependency "parse.y" #pragma GCC dependency "/usr/include/time.h" rerun fixincludes ! `#pragma GCC poison' Sometimes, there is an identifier that you want to remove completely from your program, and make sure that it never creeps back in. To enforce this, you can "poison" the identifier with ! this pragma. `#pragma GCC poison' is followed by a list of identifiers to poison. If any of those identifiers appears anywhere in the source after the directive, it is a hard error. For example, *************** compilers. They are documented in the G *** 3309,3317 **** will produce an error. If a poisoned identifier appears as part of the expansion of a ! macro which was defined before the identifier was poisoned, it will ! _not_ cause an error. This lets you poison an identifier without ! worrying about system headers defining macros that use it. For example, --- 3327,3335 ---- will produce an error. If a poisoned identifier appears as part of the expansion of a ! macro which was defined before the identifier was poisoned, it ! will _not_ cause an error. This lets you poison an identifier ! without worrying about system headers defining macros that use it. For example, *************** compilers. They are documented in the G *** 3321,3339 **** will not produce an error. ! '#pragma GCC system_header' This pragma takes no arguments. It causes the rest of the code in the current file to be treated as if it came from a system header. *Note System Headers::. ! '#pragma GCC warning' ! '#pragma GCC error' ! '#pragma GCC warning "message"' causes the preprocessor to issue a ! warning diagnostic with the text 'message'. The message contained ! in the pragma must be a single string literal. Similarly, '#pragma ! GCC error "message"' issues an error message. Unlike the ! '#warning' and '#error' directives, these pragmas can be embedded ! in preprocessor macros using '_Pragma'.  File: cpp.info, Node: Other Directives, Next: Preprocessor Output, Prev: Pragmas, Up: Top --- 3339,3358 ---- will not produce an error. ! `#pragma GCC system_header' This pragma takes no arguments. It causes the rest of the code in the current file to be treated as if it came from a system header. *Note System Headers::. ! `#pragma GCC warning' ! `#pragma GCC error' ! `#pragma GCC warning "message"' causes the preprocessor to issue a ! warning diagnostic with the text `message'. The message contained ! in the pragma must be a single string literal. Similarly, ! `#pragma GCC error "message"' issues an error message. Unlike the ! `#warning' and `#error' directives, these pragmas can be embedded ! in preprocessor macros using `_Pragma'. !  File: cpp.info, Node: Other Directives, Next: Preprocessor Output, Prev: Pragmas, Up: Top *************** File: cpp.info, Node: Other Directives, *** 3341,3361 **** 8 Other Directives ****************** ! The '#ident' directive takes one argument, a string constant. On some systems, that string constant is copied into a special segment of the ! object file. On other systems, the directive is ignored. The '#sccs' ! directive is a synonym for '#ident'. These directives are not part of the C standard, but they are not official GNU extensions either. What historical information we have been able to find, suggests they originated with System V. ! The "null directive" consists of a '#' followed by a newline, with only whitespace (including comments) in between. A null directive is understood as a preprocessing directive but has no effect on the preprocessor output. The primary significance of the existence of the ! null directive is that an input line consisting of just a '#' will ! produce no output, rather than a line of output containing just a '#'. Supposedly some old C programs contain such lines.  --- 3360,3380 ---- 8 Other Directives ****************** ! The `#ident' directive takes one argument, a string constant. On some systems, that string constant is copied into a special segment of the ! object file. On other systems, the directive is ignored. The `#sccs' ! directive is a synonym for `#ident'. These directives are not part of the C standard, but they are not official GNU extensions either. What historical information we have been able to find, suggests they originated with System V. ! The "null directive" consists of a `#' followed by a newline, with only whitespace (including comments) in between. A null directive is understood as a preprocessing directive but has no effect on the preprocessor output. The primary significance of the existence of the ! null directive is that an input line consisting of just a `#' will ! produce no output, rather than a line of output containing just a `#'. Supposedly some old C programs contain such lines.  *************** that the following line originated in fi *** 3397,3432 **** FILENAME will never contain any non-printing characters; they are replaced with octal escape sequences. ! After the file name comes zero or more flags, which are '1', '2', ! '3', or '4'. If there are multiple flags, spaces separate them. Here is what the flags mean: ! '1' This indicates the start of a new file. ! '2' This indicates returning to a file (after having included another file). ! '3' This indicates that the following text comes from a system header file, so certain warnings should be suppressed. ! '4' This indicates that the following text should be treated as being ! wrapped in an implicit 'extern "C"' block. As an extension, the preprocessor accepts linemarkers in non-assembler input files. They are treated like the corresponding ! '#line' directive, (*note Line Control::), except that trailing flags are permitted, and are interpreted with the meanings described above. If multiple flags are given, they must be in ascending order. Some directives may be duplicated in the output of the preprocessor. ! These are '#ident' (always), '#pragma' (only if the preprocessor does ! not handle the pragma itself), and '#define' and '#undef' (with certain ! debugging options). If this happens, the '#' of the directive will always be in the first column, and there will be no space between the ! '#' and the directive name. If macro expansion happens to generate tokens which might be mistaken for a duplicated directive, a space will ! be inserted between the '#' and the directive name.  File: cpp.info, Node: Traditional Mode, Next: Implementation Details, Prev: Preprocessor Output, Up: Top --- 3416,3454 ---- FILENAME will never contain any non-printing characters; they are replaced with octal escape sequences. ! After the file name comes zero or more flags, which are `1', `2', ! `3', or `4'. If there are multiple flags, spaces separate them. Here is what the flags mean: ! `1' This indicates the start of a new file. ! ! `2' This indicates returning to a file (after having included another file). ! ! `3' This indicates that the following text comes from a system header file, so certain warnings should be suppressed. ! ! `4' This indicates that the following text should be treated as being ! wrapped in an implicit `extern "C"' block. As an extension, the preprocessor accepts linemarkers in non-assembler input files. They are treated like the corresponding ! `#line' directive, (*note Line Control::), except that trailing flags are permitted, and are interpreted with the meanings described above. If multiple flags are given, they must be in ascending order. Some directives may be duplicated in the output of the preprocessor. ! These are `#ident' (always), `#pragma' (only if the preprocessor does ! not handle the pragma itself), and `#define' and `#undef' (with certain ! debugging options). If this happens, the `#' of the directive will always be in the first column, and there will be no space between the ! `#' and the directive name. If macro expansion happens to generate tokens which might be mistaken for a duplicated directive, a space will ! be inserted between the `#' and the directive name.  File: cpp.info, Node: Traditional Mode, Next: Implementation Details, Prev: Preprocessor Output, Up: Top *************** File: cpp.info, Node: Traditional Mode, *** 3436,3442 **** Traditional (pre-standard) C preprocessing is rather different from the preprocessing specified by the standard. When GCC is given the ! '-traditional-cpp' option, it attempts to emulate a traditional preprocessor. GCC versions 3.2 and later only support traditional mode semantics in --- 3458,3464 ---- Traditional (pre-standard) C preprocessing is rather different from the preprocessing specified by the standard. When GCC is given the ! `-traditional-cpp' option, it attempts to emulate a traditional preprocessor. GCC versions 3.2 and later only support traditional mode semantics in *************** simply treated as a stream of text with *** 3469,3498 **** This implementation does not treat trigraphs (*note trigraphs::) specially since they were an invention of the standards committee. It ! handles arbitrarily-positioned escaped newlines properly and splices the ! lines as you would expect; many traditional preprocessors did not do ! this. The form of horizontal whitespace in the input file is preserved in the output. In particular, hard tabs remain hard tabs. This can be useful if, for example, you are preprocessing a Makefile. Traditional CPP only recognizes C-style block comments, and treats ! the '/*' sequence as introducing a comment only if it lies outside quoted text. Quoted text is introduced by the usual single and double ! quotes, and also by an initial '<' in a '#include' directive. Traditionally, comments are completely removed and are not replaced ! with a space. Since a traditional compiler does its own tokenization of ! the output of the preprocessor, this means that comments can effectively ! be used as token paste operators. However, comments behave like ! separators for text handled by the preprocessor itself, since it doesn't ! re-lex its input. For example, in #if foo/**/bar ! 'foo' and 'bar' are distinct identifiers and expanded separately if they ! happen to be macros. In other words, this directive is equivalent to #if foo bar --- 3491,3521 ---- This implementation does not treat trigraphs (*note trigraphs::) specially since they were an invention of the standards committee. It ! handles arbitrarily-positioned escaped newlines properly and splices ! the lines as you would expect; many traditional preprocessors did not ! do this. The form of horizontal whitespace in the input file is preserved in the output. In particular, hard tabs remain hard tabs. This can be useful if, for example, you are preprocessing a Makefile. Traditional CPP only recognizes C-style block comments, and treats ! the `/*' sequence as introducing a comment only if it lies outside quoted text. Quoted text is introduced by the usual single and double ! quotes, and also by an initial `<' in a `#include' directive. Traditionally, comments are completely removed and are not replaced ! with a space. Since a traditional compiler does its own tokenization ! of the output of the preprocessor, this means that comments can ! effectively be used as token paste operators. However, comments behave ! like separators for text handled by the preprocessor itself, since it ! doesn't re-lex its input. For example, in #if foo/**/bar ! `foo' and `bar' are distinct identifiers and expanded separately if ! they happen to be macros. In other words, this directive is equivalent ! to #if foo bar *************** with replacement text that contains an u *** 3506,3512 **** you attempt to compile preprocessed output containing an unmatched quote you will get a syntax error. ! However, all preprocessing directives other than '#define' require matching quotes. For example: #define m This macro's fine and has an unmatched quote --- 3529,3535 ---- you attempt to compile preprocessed output containing an unmatched quote you will get a syntax error. ! However, all preprocessing directives other than `#define' require matching quotes. For example: #define m This macro's fine and has an unmatched quote *************** can run together with the text after the *** 3537,3552 **** single token. Normally comments are removed from the replacement text after the ! macro is expanded, but if the '-CC' option is passed on the command line ! comments are preserved. (In fact, the current implementation removes ! comments even before saving the macro replacement text, but it careful ! to do it in such a way that the observed effect is identical even in the ! function-like macro case.) ! The ISO stringification operator '#' and token paste operator '##' ! have no special meaning. As explained later, an effect similar to these ! operators can be obtained in a different way. Macro names that are ! embedded in quotes, either from the main file or after macro replacement, do not expand. CPP replaces an unquoted object-like macro name with its replacement --- 3560,3575 ---- single token. Normally comments are removed from the replacement text after the ! macro is expanded, but if the `-CC' option is passed on the command ! line comments are preserved. (In fact, the current implementation ! removes comments even before saving the macro replacement text, but it ! careful to do it in such a way that the observed effect is identical ! even in the function-like macro case.) ! The ISO stringification operator `#' and token paste operator `##' ! have no special meaning. As explained later, an effect similar to ! these operators can be obtained in a different way. Macro names that ! are embedded in quotes, either from the main file or after macro replacement, do not expand. CPP replaces an unquoted object-like macro name with its replacement *************** invocation. *** 3566,3587 **** Function-like macros are similar in form but quite different in behavior to their ISO counterparts. Their arguments are contained within parentheses, are comma-separated, and can cross physical lines. ! Commas within nested parentheses are not treated as argument separators. ! Similarly, a quote in an argument cannot be left unclosed; a following ! comma or parenthesis that comes before the closing quote is treated like ! any other character. There is no facility for handling variadic macros. This implementation removes all comments from macro arguments, unless ! the '-C' option is given. The form of all other horizontal whitespace in arguments is preserved, including leading and trailing whitespace. In particular f( ) ! is treated as an invocation of the macro 'f' with a single argument consisting of a single space. If you want to invoke a function-like ! macro that takes no arguments, you must not leave any whitespace between ! the parentheses. If a macro argument crosses a new line, the new line is replaced with a space when forming the argument. If the previous line contained an --- 3589,3611 ---- Function-like macros are similar in form but quite different in behavior to their ISO counterparts. Their arguments are contained within parentheses, are comma-separated, and can cross physical lines. ! Commas within nested parentheses are not treated as argument ! separators. Similarly, a quote in an argument cannot be left unclosed; ! a following comma or parenthesis that comes before the closing quote is ! treated like any other character. There is no facility for handling ! variadic macros. This implementation removes all comments from macro arguments, unless ! the `-C' option is given. The form of all other horizontal whitespace in arguments is preserved, including leading and trailing whitespace. In particular f( ) ! is treated as an invocation of the macro `f' with a single argument consisting of a single space. If you want to invoke a function-like ! macro that takes no arguments, you must not leave any whitespace ! between the parentheses. If a macro argument crosses a new line, the new line is replaced with a space when forming the argument. If the previous line contained an *************** File: cpp.info, Node: Traditional misce *** 3612,3627 **** Here are some things to be aware of when using the traditional preprocessor. ! * Preprocessing directives are recognized only when their leading '#' ! appears in the first column. There can be no whitespace between ! the beginning of the line and the '#', but whitespace can follow ! the '#'. ! * A true traditional C preprocessor does not recognize '#error' or ! '#pragma', and may not recognize '#elif'. CPP supports all the directives in traditional mode that it supports in ISO mode, including extensions, with the exception that the effects of ! '#pragma GCC poison' are undefined. * __STDC__ is not defined. --- 3636,3651 ---- Here are some things to be aware of when using the traditional preprocessor. ! * Preprocessing directives are recognized only when their leading ! `#' appears in the first column. There can be no whitespace ! between the beginning of the line and the `#', but whitespace can ! follow the `#'. ! * A true traditional C preprocessor does not recognize `#error' or ! `#pragma', and may not recognize `#elif'. CPP supports all the directives in traditional mode that it supports in ISO mode, including extensions, with the exception that the effects of ! `#pragma GCC poison' are undefined. * __STDC__ is not defined. *************** preprocessor. *** 3630,3635 **** --- 3654,3660 ---- * If a line that looks like a directive appears within macro arguments, the behavior is undefined. +  File: cpp.info, Node: Traditional warnings, Prev: Traditional miscellany, Up: Traditional Mode *************** File: cpp.info, Node: Traditional warni *** 3637,3660 **** ========================= You can request warnings about features that did not exist, or worked ! differently, in traditional C with the '-Wtraditional' option. GCC does ! not warn about features of ISO C which you must use when you are using a ! conforming compiler, such as the '#' and '##' operators. ! Presently '-Wtraditional' warns about: * Macro parameters that appear within string literals in the macro ! body. In traditional C macro replacement takes place within string ! literals, but does not in ISO C. * In traditional C, some preprocessor directives did not exist. Traditional preprocessors would only consider a line to be a ! directive if the '#' appeared in column 1 on the line. Therefore ! '-Wtraditional' warns about directives that traditional C ! understands but would ignore because the '#' does not appear as the first character on the line. It also suggests you hide directives ! like '#pragma' not understood by traditional C by indenting them. ! Some traditional implementations would not recognize '#elif', so it suggests avoiding it altogether. * A function-like macro that appears without an argument list. In --- 3662,3685 ---- ========================= You can request warnings about features that did not exist, or worked ! differently, in traditional C with the `-Wtraditional' option. GCC ! does not warn about features of ISO C which you must use when you are ! using a conforming compiler, such as the `#' and `##' operators. ! Presently `-Wtraditional' warns about: * Macro parameters that appear within string literals in the macro ! body. In traditional C macro replacement takes place within ! string literals, but does not in ISO C. * In traditional C, some preprocessor directives did not exist. Traditional preprocessors would only consider a line to be a ! directive if the `#' appeared in column 1 on the line. Therefore ! `-Wtraditional' warns about directives that traditional C ! understands but would ignore because the `#' does not appear as the first character on the line. It also suggests you hide directives ! like `#pragma' not understood by traditional C by indenting them. ! Some traditional implementations would not recognize `#elif', so it suggests avoiding it altogether. * A function-like macro that appears without an argument list. In *************** conforming compiler, such as the '#' and *** 3663,3674 **** * The unary plus operator. This did not exist in traditional C. ! * The 'U' and 'LL' integer constant suffixes, which were not ! available in traditional C. (Traditional C does support the 'L' suffix for simple long integer constants.) You are not warned about uses of these suffixes in macros defined in system headers. ! For instance, 'UINT_MAX' may well be defined as '4294967295U', but ! you will not be warned if you use 'UINT_MAX'. You can usually avoid the warning, and the related warning about constants which are so large that they are unsigned, by writing the --- 3688,3699 ---- * The unary plus operator. This did not exist in traditional C. ! * The `U' and `LL' integer constant suffixes, which were not ! available in traditional C. (Traditional C does support the `L' suffix for simple long integer constants.) You are not warned about uses of these suffixes in macros defined in system headers. ! For instance, `UINT_MAX' may well be defined as `4294967295U', but ! you will not be warned if you use `UINT_MAX'. You can usually avoid the warning, and the related warning about constants which are so large that they are unsigned, by writing the *************** File: cpp.info, Node: Implementation-de *** 3704,3773 **** ==================================== This is how CPP behaves in all the cases which the C standard describes ! as "implementation-defined". This term means that the implementation is ! free to do what it likes, but must document its choice and stick to it. * The mapping of physical source file multi-byte characters to the execution character set. The input character set can be specified using the ! '-finput-charset' option, while the execution character set may be ! controlled using the '-fexec-charset' and '-fwide-exec-charset' options. ! * Identifier characters. ! ! The C and C++ standards allow identifiers to be composed of '_' and ! the alphanumeric characters. C++ and C99 also allow universal ! character names, and C99 further permits implementation-defined ! characters. GCC currently only permits universal character names ! if '-fextended-identifiers' is used, because the implementation of ! universal character names in identifiers is experimental. ! GCC allows the '$' character in identifiers as an extension for ! most targets. This is true regardless of the 'std=' switch, since this extension cannot conflict with standards-conforming programs. When preprocessing assembler, however, dollars are not identifier characters by default. ! Currently the targets that by default do not permit '$' are AVR, IP2K, MMIX, MIPS Irix 3, ARM aout, and PowerPC targets for the AIX operating system. ! You can override the default with '-fdollars-in-identifiers' or ! 'fno-dollars-in-identifiers'. *Note fdollars-in-identifiers::. * Non-empty sequences of whitespace characters. In textual output, each whitespace sequence is collapsed to a single space. For aesthetic reasons, the first token on each non-directive line of output is preceded with sufficient spaces ! that it appears in the same column as it did in the original source ! file. * The numeric value of character constants in preprocessor expressions. The preprocessor and compiler interpret character constants in the ! same way; i.e. escape sequences such as '\a' are given the values they would have on the target machine. The compiler evaluates a multi-character character constant a ! character at a time, shifting the previous value left by the number ! of bits per target character, and then or-ing in the bit-pattern of ! the new character truncated to the width of a target character. ! The final bit-pattern is given type 'int', and is therefore signed, ! regardless of whether single characters are signed or not (a slight ! change from versions 3.1 and earlier of GCC). If there are more ! characters in the constant than would fit in the target 'int' the ! compiler issues a warning, and the excess leading characters are ! ignored. ! For example, ''ab'' for a target with an 8-bit 'char' would be interpreted as ! '(int) ((unsigned char) 'a' * 256 + (unsigned char) 'b')', and ! ''\234a'' as ! '(int) ((unsigned char) '\234' * 256 + (unsigned char) 'a')'. * Source file inclusion. --- 3729,3798 ---- ==================================== This is how CPP behaves in all the cases which the C standard describes ! as "implementation-defined". This term means that the implementation ! is free to do what it likes, but must document its choice and stick to ! it. * The mapping of physical source file multi-byte characters to the execution character set. The input character set can be specified using the ! `-finput-charset' option, while the execution character set may be ! controlled using the `-fexec-charset' and `-fwide-exec-charset' options. ! * Identifier characters. The C and C++ standards allow identifiers ! to be composed of `_' and the alphanumeric characters. C++ and ! C99 also allow universal character names, and C99 further permits ! implementation-defined characters. GCC currently only permits ! universal character names if `-fextended-identifiers' is used, ! because the implementation of universal character names in ! identifiers is experimental. ! GCC allows the `$' character in identifiers as an extension for ! most targets. This is true regardless of the `std=' switch, since this extension cannot conflict with standards-conforming programs. When preprocessing assembler, however, dollars are not identifier characters by default. ! Currently the targets that by default do not permit `$' are AVR, IP2K, MMIX, MIPS Irix 3, ARM aout, and PowerPC targets for the AIX operating system. ! You can override the default with `-fdollars-in-identifiers' or ! `fno-dollars-in-identifiers'. *Note fdollars-in-identifiers::. * Non-empty sequences of whitespace characters. In textual output, each whitespace sequence is collapsed to a single space. For aesthetic reasons, the first token on each non-directive line of output is preceded with sufficient spaces ! that it appears in the same column as it did in the original ! source file. * The numeric value of character constants in preprocessor expressions. The preprocessor and compiler interpret character constants in the ! same way; i.e. escape sequences such as `\a' are given the values they would have on the target machine. The compiler evaluates a multi-character character constant a ! character at a time, shifting the previous value left by the ! number of bits per target character, and then or-ing in the ! bit-pattern of the new character truncated to the width of a ! target character. The final bit-pattern is given type `int', and ! is therefore signed, regardless of whether single characters are ! signed or not (a slight change from versions 3.1 and earlier of ! GCC). If there are more characters in the constant than would fit ! in the target `int' the compiler issues a warning, and the excess ! leading characters are ignored. ! For example, `'ab'' for a target with an 8-bit `char' would be interpreted as ! `(int) ((unsigned char) 'a' * 256 + (unsigned char) 'b')', and ! `'\234a'' as ! `(int) ((unsigned char) '\234' * 256 + (unsigned char) 'a')'. * Source file inclusion. *************** free to do what it likes, but must docum *** 3775,3792 **** *note Include Operation::. * Interpretation of the filename resulting from a macro-expanded ! '#include' directive. *Note Computed Includes::. ! * Treatment of a '#pragma' directive that after macro-expansion results in a standard pragma. ! No macro expansion occurs on any '#pragma' directive line, so the question does not arise. Note that GCC does not yet implement any of the standard pragmas.  File: cpp.info, Node: Implementation limits, Next: Obsolete Features, Prev: Implementation-defined behavior, Up: Implementation Details --- 3800,3818 ---- *note Include Operation::. * Interpretation of the filename resulting from a macro-expanded ! `#include' directive. *Note Computed Includes::. ! * Treatment of a `#pragma' directive that after macro-expansion results in a standard pragma. ! No macro expansion occurs on any `#pragma' directive line, so the question does not arise. Note that GCC does not yet implement any of the standard pragmas. +  File: cpp.info, Node: Implementation limits, Next: Obsolete Features, Prev: Implementation-defined behavior, Up: Implementation Details *************** limit, please report that as a bug. *No *** 3801,3812 **** Where we say something is limited "only by available memory", that means that internal data structures impose no intrinsic limit, and space ! is allocated with 'malloc' or equivalent. The actual limit will therefore depend on many things, such as the size of other things allocated by the compiler at the same time, the amount of memory consumed by other processes on the same computer, etc. ! * Nesting levels of '#include' files. We impose an arbitrary limit of 200 levels, to avoid runaway recursion. The standard requires at least 15 levels. --- 3827,3838 ---- Where we say something is limited "only by available memory", that means that internal data structures impose no intrinsic limit, and space ! is allocated with `malloc' or equivalent. The actual limit will therefore depend on many things, such as the size of other things allocated by the compiler at the same time, the amount of memory consumed by other processes on the same computer, etc. ! * Nesting levels of `#include' files. We impose an arbitrary limit of 200 levels, to avoid runaway recursion. The standard requires at least 15 levels. *************** consumed by other processes on the same *** 3832,3841 **** The standard requires at least 4095 be possible. CPP is limited only by available memory. ! * Number of parameters in a macro definition and arguments in a macro ! call. ! We allow 'USHRT_MAX', which is no smaller than 65,535. The minimum required by the standard is 127. * Number of characters on a logical source line. --- 3858,3867 ---- The standard requires at least 4095 be possible. CPP is limited only by available memory. ! * Number of parameters in a macro definition and arguments in a ! macro call. ! We allow `USHRT_MAX', which is no smaller than 65,535. The minimum required by the standard is 127. * Number of characters on a logical source line. *************** consumed by other processes on the same *** 3847,3856 **** * Maximum size of a source file. The standard does not specify any lower limit on the maximum size ! of a source file. GNU cpp maps files into memory, so it is limited ! by the available address space. This is generally at least two ! gigabytes. Depending on the operating system, the size of physical ! memory may or may not be a limitation.  File: cpp.info, Node: Obsolete Features, Next: Differences from previous versions, Prev: Implementation limits, Up: Implementation Details --- 3873,3883 ---- * Maximum size of a source file. The standard does not specify any lower limit on the maximum size ! of a source file. GNU cpp maps files into memory, so it is ! limited by the available address space. This is generally at ! least two gigabytes. Depending on the operating system, the size ! of physical memory may or may not be a limitation. !  File: cpp.info, Node: Obsolete Features, Next: Differences from previous versions, Prev: Implementation limits, Up: Implementation Details *************** File: cpp.info, Node: Obsolete Features *** 3859,3866 **** ====================== CPP has some features which are present mainly for compatibility with ! older programs. We discourage their use in new code. In some cases, we ! plan to remove the feature in a future version of GCC. 11.3.1 Assertions ----------------- --- 3886,3893 ---- ====================== CPP has some features which are present mainly for compatibility with ! older programs. We discourage their use in new code. In some cases, ! we plan to remove the feature in a future version of GCC. 11.3.1 Assertions ----------------- *************** define them with preprocessing directive *** 3874,3881 **** the compiler's target system and we added them for compatibility with existing compilers. In practice they are just as unpredictable as the system-specific predefined macros. In addition, they are not part of ! any standard, and only a few compilers support them. Therefore, the use ! of assertions is *less* portable than the use of system-specific predefined macros. We recommend you do not use them at all. An assertion looks like this: --- 3901,3908 ---- the compiler's target system and we added them for compatibility with existing compilers. In practice they are just as unpredictable as the system-specific predefined macros. In addition, they are not part of ! any standard, and only a few compilers support them. Therefore, the ! use of assertions is *less* portable than the use of system-specific predefined macros. We recommend you do not use them at all. An assertion looks like this: *************** PREDICATE must be a single identifier. *** 3886,3897 **** tokens; all characters are significant except for leading and trailing whitespace, and differences in internal whitespace sequences are ignored. (This is similar to the rules governing macro redefinition.) ! Thus, '(x + y)' is different from '(x+y)' but equivalent to '( x + y )'. ! Parentheses do not nest inside an answer. ! To test an assertion, you write it in an '#if'. For example, this ! conditional succeeds if either 'vax' or 'ns16000' has been asserted as ! an answer for 'machine'. #if #machine (vax) || #machine (ns16000) --- 3913,3924 ---- tokens; all characters are significant except for leading and trailing whitespace, and differences in internal whitespace sequences are ignored. (This is similar to the rules governing macro redefinition.) ! Thus, `(x + y)' is different from `(x+y)' but equivalent to ! `( x + y )'. Parentheses do not nest inside an answer. ! To test an assertion, you write it in an `#if'. For example, this ! conditional succeeds if either `vax' or `ns16000' has been asserted as ! an answer for `machine'. #if #machine (vax) || #machine (ns16000) *************** omitting the answer in the conditional: *** 3900,3907 **** #if #machine ! Assertions are made with the '#assert' directive. Its sole argument ! is the assertion to make, without the leading '#' that identifies assertions in conditionals. #assert PREDICATE (ANSWER) --- 3927,3934 ---- #if #machine ! Assertions are made with the `#assert' directive. Its sole argument ! is the assertion to make, without the leading `#' that identifies assertions in conditionals. #assert PREDICATE (ANSWER) *************** answers. Subsequent assertions do not o *** 3911,3925 **** same predicate. All the answers for any given predicate are simultaneously true. ! Assertions can be canceled with the '#unassert' directive. It has ! the same syntax as '#assert'. In that form it cancels only the answer ! which was specified on the '#unassert' line; other answers for that predicate remain true. You can cancel an entire predicate by leaving out the answer: #unassert PREDICATE ! In either form, if no such assertion has been made, '#unassert' has no effect. You can also make or cancel assertions using command line options. --- 3938,3952 ---- same predicate. All the answers for any given predicate are simultaneously true. ! Assertions can be canceled with the `#unassert' directive. It has ! the same syntax as `#assert'. In that form it cancels only the answer ! which was specified on the `#unassert' line; other answers for that predicate remain true. You can cancel an entire predicate by leaving out the answer: #unassert PREDICATE ! In either form, if no such assertion has been made, `#unassert' has no effect. You can also make or cancel assertions using command line options. *************** File: cpp.info, Node: Differences from *** 3932,3939 **** ======================================= This section details behavior which has changed from previous versions ! of CPP. We do not plan to change it again in the near future, but we do ! not promise not to, either. The "previous versions" discussed here are 2.95 and before. The behavior of GCC 3.0 is mostly the same as the behavior of the widely --- 3959,3966 ---- ======================================= This section details behavior which has changed from previous versions ! of CPP. We do not plan to change it again in the near future, but we ! do not promise not to, either. The "previous versions" discussed here are 2.95 and before. The behavior of GCC 3.0 is mostly the same as the behavior of the widely *************** they generally represent bugs in the sna *** 3942,3989 **** * -I- deprecated ! This option has been deprecated in 4.0. '-iquote' is meant to replace the need for this option. ! * Order of evaluation of '#' and '##' operators The standard does not specify the order of evaluation of a chain of ! '##' operators, nor whether '#' is evaluated before, after, or at ! the same time as '##'. You should therefore not write any code which depends on any specific ordering. It is possible to guarantee an ordering, if you need one, by suitable use of nested macros. ! An example of where this might matter is pasting the arguments '1', ! 'e' and '-2'. This would be fine for left-to-right pasting, but ! right-to-left pasting would produce an invalid token 'e-2'. ! GCC 3.0 evaluates '#' and '##' at the same time and strictly left ! to right. Older versions evaluated all '#' operators first, then ! all '##' operators, in an unreliable order. * The form of whitespace between tokens in preprocessor output *Note Preprocessor Output::, for the current textual format. This is also the format used by stringification. Normally, the ! preprocessor communicates tokens directly to the compiler's parser, ! and whitespace does not come up at all. ! Older versions of GCC preserved all whitespace provided by the user ! and inserted lots more whitespace of their own, because they could ! not accurately predict when extra spaces were needed to prevent ! accidental token pasting. * Optional argument when invoking rest argument macros As an extension, GCC permits you to omit the variable arguments ! entirely when you use a variable argument macro. This is forbidden ! by the 1999 C standard, and will provoke a pedantic warning with ! GCC 3.0. Previous versions accepted it silently. ! * '##' swallowing preceding text in rest argument macros ! Formerly, in a macro expansion, if '##' appeared before a variable arguments parameter, and the set of tokens specified for that argument in the macro invocation was empty, previous versions of CPP would back up and remove the preceding sequence of --- 3969,4016 ---- * -I- deprecated ! This option has been deprecated in 4.0. `-iquote' is meant to replace the need for this option. ! * Order of evaluation of `#' and `##' operators The standard does not specify the order of evaluation of a chain of ! `##' operators, nor whether `#' is evaluated before, after, or at ! the same time as `##'. You should therefore not write any code which depends on any specific ordering. It is possible to guarantee an ordering, if you need one, by suitable use of nested macros. ! An example of where this might matter is pasting the arguments `1', ! `e' and `-2'. This would be fine for left-to-right pasting, but ! right-to-left pasting would produce an invalid token `e-2'. ! GCC 3.0 evaluates `#' and `##' at the same time and strictly left ! to right. Older versions evaluated all `#' operators first, then ! all `##' operators, in an unreliable order. * The form of whitespace between tokens in preprocessor output *Note Preprocessor Output::, for the current textual format. This is also the format used by stringification. Normally, the ! preprocessor communicates tokens directly to the compiler's ! parser, and whitespace does not come up at all. ! Older versions of GCC preserved all whitespace provided by the ! user and inserted lots more whitespace of their own, because they ! could not accurately predict when extra spaces were needed to ! prevent accidental token pasting. * Optional argument when invoking rest argument macros As an extension, GCC permits you to omit the variable arguments ! entirely when you use a variable argument macro. This is ! forbidden by the 1999 C standard, and will provoke a pedantic ! warning with GCC 3.0. Previous versions accepted it silently. ! * `##' swallowing preceding text in rest argument macros ! Formerly, in a macro expansion, if `##' appeared before a variable arguments parameter, and the set of tokens specified for that argument in the macro invocation was empty, previous versions of CPP would back up and remove the preceding sequence of *************** they generally represent bugs in the sna *** 3991,4019 **** extension is in direct conflict with the 1999 C standard and has been drastically pared back. ! In the current version of the preprocessor, if '##' appears between a comma and a variable arguments parameter, and the variable argument is omitted entirely, the comma will be removed from the expansion. If the variable argument is empty, or the token before ! '##' is not a comma, then '##' behaves as a normal token paste. ! * '#line' and '#include' ! The '#line' directive used to change GCC's notion of the "directory ! containing the current file", used by '#include' with a double-quoted header file name. In 3.0 and later, it does not. *Note Line Control::, for further explanation. ! * Syntax of '#line' ! In GCC 2.95 and previous, the string constant argument to '#line' ! was treated the same way as the argument to '#include': backslash ! escapes were not honored, and the string ended at the second '"'. This is not compliant with the C standard. In GCC 3.0, an attempt ! was made to correct the behavior, so that the string was treated as ! a real string constant, but it turned out to be buggy. In 3.1, the ! bugs have been fixed. (We are not fixing the bugs in 3.0 because ! they affect relatively few people and the fix is quite invasive.)  File: cpp.info, Node: Invocation, Next: Environment Variables, Prev: Implementation Details, Up: Top --- 4018,4048 ---- extension is in direct conflict with the 1999 C standard and has been drastically pared back. ! In the current version of the preprocessor, if `##' appears between a comma and a variable arguments parameter, and the variable argument is omitted entirely, the comma will be removed from the expansion. If the variable argument is empty, or the token before ! `##' is not a comma, then `##' behaves as a normal token paste. ! * `#line' and `#include' ! The `#line' directive used to change GCC's notion of the ! "directory containing the current file", used by `#include' with a double-quoted header file name. In 3.0 and later, it does not. *Note Line Control::, for further explanation. ! * Syntax of `#line' ! In GCC 2.95 and previous, the string constant argument to `#line' ! was treated the same way as the argument to `#include': backslash ! escapes were not honored, and the string ended at the second `"'. This is not compliant with the C standard. In GCC 3.0, an attempt ! was made to correct the behavior, so that the string was treated ! as a real string constant, but it turned out to be buggy. In 3.1, ! the bugs have been fixed. (We are not fixing the bugs in 3.0 ! because they affect relatively few people and the fix is quite ! invasive.) !  File: cpp.info, Node: Invocation, Next: Environment Variables, Prev: Implementation Details, Up: Top *************** here are also acceptable to the C compil *** 4028,4066 **** except that the C compiler has different rules for specifying the output file. ! _Note:_ Whether you use the preprocessor by way of 'gcc' or 'cpp', the "compiler driver" is run first. This program's purpose is to translate your command into invocations of the programs that do the actual work. Their command line interfaces are similar but not identical to the documented interface, and may change without notice. The C preprocessor expects two file names as arguments, INFILE and ! OUTFILE. The preprocessor reads INFILE together with any other files it ! specifies with '#include'. All the output generated by the combined input files is written in OUTFILE. ! Either INFILE or OUTFILE may be '-', which as INFILE means to read from standard input and as OUTFILE means to write to standard output. ! Also, if either file is omitted, it means the same as if '-' had been specified for that file. ! Unless otherwise noted, or the option ends in '=', all options which take an argument may have that argument appear either immediately after ! the option, or with a space between option and argument: '-Ifoo' and '-I ! foo' have the same effect. Many options have multi-letter names; therefore multiple ! single-letter options may _not_ be grouped: '-dM' is very different from ! '-d -M'. ! '-D NAME' ! Predefine NAME as a macro, with definition '1'. ! '-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a '#define' directive. ! In particular, the definition will be truncated by embedded newline ! characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect --- 4057,4095 ---- except that the C compiler has different rules for specifying the output file. ! _Note:_ Whether you use the preprocessor by way of `gcc' or `cpp', the "compiler driver" is run first. This program's purpose is to translate your command into invocations of the programs that do the actual work. Their command line interfaces are similar but not identical to the documented interface, and may change without notice. The C preprocessor expects two file names as arguments, INFILE and ! OUTFILE. The preprocessor reads INFILE together with any other files ! it specifies with `#include'. All the output generated by the combined input files is written in OUTFILE. ! Either INFILE or OUTFILE may be `-', which as INFILE means to read from standard input and as OUTFILE means to write to standard output. ! Also, if either file is omitted, it means the same as if `-' had been specified for that file. ! Unless otherwise noted, or the option ends in `=', all options which take an argument may have that argument appear either immediately after ! the option, or with a space between option and argument: `-Ifoo' and ! `-I foo' have the same effect. Many options have multi-letter names; therefore multiple ! single-letter options may _not_ be grouped: `-dM' is very different from ! `-d -M'. ! `-D NAME' ! Predefine NAME as a macro, with definition `1'. ! `-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a `#define' directive. ! In particular, the definition will be truncated by embedded ! newline characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect *************** single-letter options may _not_ be group *** 4069,4144 **** If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With 'sh' and 'csh', ! '-D'NAME(ARGS...)=DEFINITION'' works. ! '-D' and '-U' options are processed in the order they are given on ! the command line. All '-imacros FILE' and '-include FILE' options ! are processed after all '-D' and '-U' options. ! '-U NAME' ! Cancel any previous definition of NAME, either built in or provided ! with a '-D' option. ! '-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. *Note Standard Predefined Macros::. ! '-I DIR' ! Add the directory DIR to the list of directories to be searched for ! header files. *Note Search Path::. Directories named by '-I' are ! searched before the standard system include directories. If the ! directory DIR is a standard system include directory, the option is ! ignored to ensure that the default search order for system ! directories and the special treatment of system headers are not ! defeated (*note System Headers::) . If DIR begins with '=', then ! the '=' will be replaced by the sysroot prefix; see '--sysroot' and ! '-isysroot'. ! '-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to 'cpp'. 'gcc' has a different interpretation of a second non-option argument, so you must use ! '-o' to specify the output file. ! '-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is '-Wcomment', '-Wtrigraphs', '-Wmultichar' and a ! warning about integer promotion causing a change of sign in '#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! '-Wcomment' ! '-Wcomments' ! Warn whenever a comment-start sequence '/*' appears in a '/*' ! comment, or whenever a backslash-newline appears in a '//' comment. (Both forms have the same effect.) ! '-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! ('??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by '-Wall'. If '-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other '-Wall' ! warnings, use '-trigraphs -Wall -Wno-trigraphs'. ! '-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. *Note Traditional Mode::. ! '-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an '#if' directive, outside of 'defined'. Such identifiers are replaced with zero. ! '-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been --- 4098,4173 ---- If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With `sh' and `csh', ! `-D'NAME(ARGS...)=DEFINITION'' works. ! `-D' and `-U' options are processed in the order they are given on ! the command line. All `-imacros FILE' and `-include FILE' options ! are processed after all `-D' and `-U' options. ! `-U NAME' ! Cancel any previous definition of NAME, either built in or ! provided with a `-D' option. ! `-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. *Note Standard Predefined Macros::. ! `-I DIR' ! Add the directory DIR to the list of directories to be searched ! for header files. *Note Search Path::. Directories named by `-I' ! are searched before the standard system include directories. If ! the directory DIR is a standard system include directory, the ! option is ignored to ensure that the default search order for ! system directories and the special treatment of system headers are ! not defeated (*note System Headers::) . If DIR begins with `=', ! then the `=' will be replaced by the sysroot prefix; see ! `--sysroot' and `-isysroot'. ! `-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to `cpp'. `gcc' has a different interpretation of a second non-option argument, so you must use ! `-o' to specify the output file. ! `-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is `-Wcomment', `-Wtrigraphs', `-Wmultichar' and a ! warning about integer promotion causing a change of sign in `#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! `-Wcomment' ! `-Wcomments' ! Warn whenever a comment-start sequence `/*' appears in a `/*' ! comment, or whenever a backslash-newline appears in a `//' comment. (Both forms have the same effect.) ! `-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! (`??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by `-Wall'. If `-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other `-Wall' ! warnings, use `-trigraphs -Wall -Wno-trigraphs'. ! `-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. *Note Traditional Mode::. ! `-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an `#if' directive, outside of `defined'. Such identifiers are replaced with zero. ! `-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been *************** single-letter options may _not_ be group *** 4157,4165 **** #if defined the_macro_causing_the_warning #endif ! '-Wendif-labels' ! Warn whenever an '#else' or an '#endif' are followed by text. This ! usually happens in code of the form #if FOO ... --- 4186,4194 ---- #if defined the_macro_causing_the_warning #endif ! `-Wendif-labels' ! Warn whenever an `#else' or an `#endif' are followed by text. ! This usually happens in code of the form #if FOO ... *************** single-letter options may _not_ be group *** 4167,4258 **** ... #endif FOO ! The second and third 'FOO' should be in comments, but often are not in older programs. This warning is on by default. ! '-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! '-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! '-w' Suppress all warnings, including those which GNU CPP issues by default. ! '-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. Some ! of them are left out by default, since they trigger frequently on ! harmless code. ! '-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without '-pedantic' but treats as warnings. ! '-M' Instead of outputting the result of preprocessing, output a rule ! suitable for 'make' describing the dependencies of the main source ! file. The preprocessor outputs one 'make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from '-include' or ! '-imacros' command line options. ! Unless specified explicitly (with '-MT' or '-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using '\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, such ! as '-dM'. To avoid mixing such debug output with the dependency ! rules you should explicitly specify the dependency output file with ! '-MF', or use an environment variable like 'DEPENDENCIES_OUTPUT' ! (*note Environment Variables::). Debug output will still be sent ! to the regular output stream as normal. ! Passing '-M' to the driver implies '-E', and suppresses warnings ! with an implicit '-w'. ! '-MM' ! Like '-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly or ! indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an '#include' directive does not in itself determine whether that ! header will appear in '-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! '-MF FILE' ! When used with '-M' or '-MM', specifies a file to write the ! dependencies to. If no '-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options '-MD' or '-MMD', '-MF' overrides the default dependency output file. ! '-MG' ! In conjunction with an option such as '-M' requesting dependency ! generation, '-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. The ! dependency filename is taken directly from the '#include' directive ! without prepending any path. '-MG' also suppresses preprocessed ! output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! '-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors 'make' gives if you remove header ! files without updating the 'Makefile' to match. This is typical output: --- 4196,4287 ---- ... #endif FOO ! The second and third `FOO' should be in comments, but often are not in older programs. This warning is on by default. ! `-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! `-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! `-w' Suppress all warnings, including those which GNU CPP issues by default. ! `-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. ! Some of them are left out by default, since they trigger ! frequently on harmless code. ! `-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without `-pedantic' but treats as warnings. ! `-M' Instead of outputting the result of preprocessing, output a rule ! suitable for `make' describing the dependencies of the main source ! file. The preprocessor outputs one `make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from `-include' or ! `-imacros' command line options. ! Unless specified explicitly (with `-MT' or `-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using `\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, ! such as `-dM'. To avoid mixing such debug output with the ! dependency rules you should explicitly specify the dependency ! output file with `-MF', or use an environment variable like ! `DEPENDENCIES_OUTPUT' (*note Environment Variables::). Debug ! output will still be sent to the regular output stream as normal. ! Passing `-M' to the driver implies `-E', and suppresses warnings ! with an implicit `-w'. ! `-MM' ! Like `-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly ! or indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an `#include' directive does not in itself determine whether that ! header will appear in `-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! `-MF FILE' ! When used with `-M' or `-MM', specifies a file to write the ! dependencies to. If no `-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options `-MD' or `-MMD', `-MF' overrides the default dependency output file. ! `-MG' ! In conjunction with an option such as `-M' requesting dependency ! generation, `-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. ! The dependency filename is taken directly from the `#include' ! directive without prepending any path. `-MG' also suppresses ! preprocessed output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! `-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors `make' gives if you remove header ! files without updating the `Makefile' to match. This is typical output: *************** single-letter options may _not_ be group *** 4260,4696 **** test.h: ! '-MT TARGET' ! Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as '.c', and appends the platform's usual object suffix. The result is the target. ! An '-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to '-MT', or use multiple '-MT' options. ! For example, '-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! '-MQ TARGET' ! ! Same as '-MT', but it quotes any characters which are special to ! Make. '-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with '-MQ'. ! '-MD' ! '-MD' is equivalent to '-M -MF FILE', except that '-E' is not ! implied. The driver determines FILE based on whether an '-o' ! option is given. If it is, the driver uses its argument but with a ! suffix of '.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a '.d' suffix. ! If '-MD' is used in conjunction with '-E', any '-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without '-E', each '-o' is understood to specify a target object file. ! Since '-E' is not implied, '-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! '-MMD' ! Like '-MD' except mention only user header files, not system header ! files. ! '-x c' ! '-x c++' ! '-x objective-c' ! '-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; it ! merely selects which base syntax to expect. If you give none of ! these options, cpp will deduce the language from the extension of ! the source file: '.c', '.cc', '.m', or '.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a '-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the '-l' option. ! '-std=STANDARD' ! '-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! 'c90' ! 'c89' ! 'iso9899:1990' ! The ISO C standard from 1990. 'c90' is the customary shorthand for this version of the standard. ! The '-ansi' option is equivalent to '-std=c90'. ! 'iso9899:199409' The 1990 C standard, as amended in 1994. ! 'iso9899:1999' ! 'c99' ! 'iso9899:199x' ! 'c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! 'iso9899:2011' ! 'c11' ! 'c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! 'gnu90' ! 'gnu89' The 1990 C standard plus GNU extensions. This is the default. ! 'gnu99' ! 'gnu9x' The 1999 C standard plus GNU extensions. ! 'gnu11' ! 'gnu1x' The 2011 C standard plus GNU extensions. ! 'c++98' The 1998 ISO C++ standard plus amendments. ! 'gnu++98' ! The same as '-std=c++98' plus GNU extensions. This is the default for C++ code. ! '-I-' ! Split the include path. Any directories specified with '-I' ! options before '-I-' are searched only for headers requested with ! '#include "FILE"'; they are not searched for '#include '. If ! additional directories are specified with '-I' options after the ! '-I-', those directories are searched for all '#include' directives. ! In addition, '-I-' inhibits the use of the directory of the current ! file directory as the first search directory for '#include "FILE"'. *Note Search Path::. This option has been deprecated. ! '-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with '-I' options (and the directory of the current file, if appropriate) are searched. ! '-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! '-include FILE' ! Process FILE as if '#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched for ! FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the '#include "..."' search chain as normal. ! If multiple '-include' options are given, the files are included in ! the order they appear on the command line. ! '-imacros FILE' ! Exactly like '-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by '-imacros' are processed before all files ! specified by '-include'. ! '-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with '-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent '-iwithprefix' options. ! If the prefix represents a directory, you should include the final ! '/'. ! '-iwithprefix DIR' ! '-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with '-iprefix', and add the resulting directory to the include search path. ! '-iwithprefixbefore' puts it in the same place '-I' would; ! '-iwithprefix' puts it where '-idirafter' would. ! '-isysroot DIR' ! This option is like the '--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the '--sysroot' option for more information. ! '-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! '-isystem DIR' Search DIR for header files, after all directories specified by ! '-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. *Note System ! Headers::. If DIR begins with '=', then the '=' will be replaced ! by the sysroot prefix; see '--sysroot' and '-isysroot'. ! '-iquote DIR' ! Search DIR only for header files requested with '#include "FILE"'; ! they are not searched for '#include ', before all directories ! specified by '-I' and before the standard system directories. ! *Note Search Path::. If DIR begins with '=', then the '=' will be ! replaced by the sysroot prefix; see '--sysroot' and '-isysroot'. ! '-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the '-E' and '-fpreprocessed' options. ! With '-E', preprocessing is limited to the handling of directives ! such as '#define', '#ifdef', and '#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are not ! performed. In addition, the '-dD' option is implicitly enabled. ! With '-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as '__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with '-E -fdirectives-only'. ! With both '-E' and '-fpreprocessed', the rules for '-fpreprocessed' ! take precedence. This enables full preprocessing of files ! previously preprocessed with '-E -fdirectives-only'. ! '-fdollars-in-identifiers' ! Accept '$' in identifiers. *Note Identifier characters::. ! '-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! '-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! '-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with '-C' to the ! compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! '-fpreprocessed' is implicit if the input file has one of the ! extensions '.i', '.ii' or '.mi'. These are the extensions that GCC ! uses for preprocessed files created by '-save-temps'. ! '-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! '-fdebug-cpp' ! This option is only useful for debugging GCC. When used with '-E', ! dumps debugging information about location maps. Every token in ! the output is preceded by the dump of the map its location belongs ! to. The dump of the map holding the location of a token would be: ! {'P':/file/path;'F':/includer/path;'L':LINE_NUM;'C':COL_NUM;'S':SYSTEM_HEADER_P;'M':MAP_ADDRESS;'E':MACRO_EXPANSION_P,'loc':LOCATION} ! When used without '-E', this option has no effect. ! '-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more memory. ! The LEVEL parameter can be used to choose the level of precision of ! token location tracking thus decreasing the memory consumption if ! necessary. Value '0' of LEVEL de-activates this option just as if ! no '-ftrack-macro-expansion' was present on the command line. ! Value '1' tracks tokens locations in a degraded mode for the sake ! of minimal memory overhead. In this mode all tokens resulting from ! the expansion of an argument of a function-like macro have the same ! location. Value '2' tracks tokens locations completely. This ! value is the most memory hungry. When this option is given no ! argument, the default parameter value is '2'. Note that -ftrack-macro-expansion=2 is activated by default. ! '-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's 'iconv' library routine. ! '-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of 'wchar_t'. As with '-fexec-charset', ! CHARSET can be any encoding supported by the system's 'iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in 'wchar_t'. ! '-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used by ! GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! 'iconv' library routine. ! '-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current working ! directory in some debugging information formats. This option is ! implicitly enabled if debugging information is enabled, but this ! can be inhibited with the negated form '-fno-working-directory'. ! If the '-P' flag is present in the command line, this option has no ! effect, since no '#line' directives are emitted whatsoever. ! '-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as 'dejagnu'. ! '-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form '-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. *Note Obsolete Features::. ! '-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! '-dCHARS' ! CHARS is a sequence of one or more of the following characters, and ! must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of GCC, and ! so are silently ignored. If you specify characters whose behavior ! conflicts, the result is undefined. ! 'M' ! Instead of the normal output, generate a list of '#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives you ! a way of finding out what is predefined in your version of the ! preprocessor. Assuming you have no file 'foo.h', the command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use '-dM' without the '-E' option, '-dM' is interpreted ! as a synonym for '-fdump-rtl-mach'. *Note (gcc)Debugging ! Options::. ! 'D' ! Like 'M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the '#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! 'N' ! Like 'D', but emit only the macro names, not their expansions. ! 'I' ! Output '#include' directives in addition to the result of preprocessing. ! 'U' ! Like 'D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! '#undef' directives are also output for macros tested but undefined at the time. ! '-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. *Note Preprocessor Output::. ! '-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which are ! deleted along with the directive. ! You should be prepared for side effects when using '-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a '#'. ! '-CC' Do not discard comments, including during macro expansion. This is ! like '-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the '-C' option, the '-CC' ! option causes all C++-style comments inside a macro to be converted ! to C-style comments. This is to prevent later use of that macro ! from inadvertently commenting out the remainder of the source line. ! The '-CC' option is generally used to support lint comments. ! '-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. *Note Traditional Mode::. ! '-trigraphs' Process trigraph sequences. *Note Initial processing::. ! '-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! '--help' ! '--target-help' Print text describing all the command line options instead of preprocessing anything. ! '-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! '-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! '#include' stack it is. Precompiled header files are also printed, ! even if they are found to be invalid; an invalid precompiled header ! file is printed with '...x' and a valid one with '...!' . ! '-version' ! '--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. --- 4289,4730 ---- test.h: ! `-MT TARGET' Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as `.c', and appends the platform's usual object suffix. The result is the target. ! An `-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to `-MT', or use multiple `-MT' options. ! For example, `-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! `-MQ TARGET' ! Same as `-MT', but it quotes any characters which are special to ! Make. `-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with `-MQ'. ! `-MD' ! `-MD' is equivalent to `-M -MF FILE', except that `-E' is not ! implied. The driver determines FILE based on whether an `-o' ! option is given. If it is, the driver uses its argument but with ! a suffix of `.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a `.d' suffix. ! If `-MD' is used in conjunction with `-E', any `-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without `-E', each `-o' is understood to specify a target object file. ! Since `-E' is not implied, `-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! `-MMD' ! Like `-MD' except mention only user header files, not system ! header files. ! `-x c' ! `-x c++' ! `-x objective-c' ! `-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; ! it merely selects which base syntax to expect. If you give none ! of these options, cpp will deduce the language from the extension ! of the source file: `.c', `.cc', `.m', or `.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a `-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the `-l' option. ! `-std=STANDARD' ! `-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! `c90' ! `c89' ! `iso9899:1990' ! The ISO C standard from 1990. `c90' is the customary shorthand for this version of the standard. ! The `-ansi' option is equivalent to `-std=c90'. ! `iso9899:199409' The 1990 C standard, as amended in 1994. ! `iso9899:1999' ! `c99' ! `iso9899:199x' ! `c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! `iso9899:2011' ! `c11' ! `c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! `gnu90' ! `gnu89' The 1990 C standard plus GNU extensions. This is the default. ! `gnu99' ! `gnu9x' The 1999 C standard plus GNU extensions. ! `gnu11' ! `gnu1x' The 2011 C standard plus GNU extensions. ! `c++98' The 1998 ISO C++ standard plus amendments. ! `gnu++98' ! The same as `-std=c++98' plus GNU extensions. This is the default for C++ code. ! `-I-' ! Split the include path. Any directories specified with `-I' ! options before `-I-' are searched only for headers requested with ! `#include "FILE"'; they are not searched for `#include '. ! If additional directories are specified with `-I' options after ! the `-I-', those directories are searched for all `#include' directives. ! In addition, `-I-' inhibits the use of the directory of the current ! file directory as the first search directory for `#include "FILE"'. *Note Search Path::. This option has been deprecated. ! `-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with `-I' options (and the directory of the current file, if appropriate) are searched. ! `-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! `-include FILE' ! Process FILE as if `#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched ! for FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the `#include "..."' search chain as normal. ! If multiple `-include' options are given, the files are included ! in the order they appear on the command line. ! `-imacros FILE' ! Exactly like `-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by `-imacros' are processed before all files ! specified by `-include'. ! `-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with `-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent `-iwithprefix' ! options. If the prefix represents a directory, you should include ! the final `/'. ! `-iwithprefix DIR' ! `-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with `-iprefix', and add the resulting directory to the include search path. ! `-iwithprefixbefore' puts it in the same place `-I' would; ! `-iwithprefix' puts it where `-idirafter' would. ! `-isysroot DIR' ! This option is like the `--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the `--sysroot' option for more information. ! `-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! `-isystem DIR' Search DIR for header files, after all directories specified by ! `-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. *Note System ! Headers::. If DIR begins with `=', then the `=' will be replaced ! by the sysroot prefix; see `--sysroot' and `-isysroot'. ! `-iquote DIR' ! Search DIR only for header files requested with `#include "FILE"'; ! they are not searched for `#include ', before all ! directories specified by `-I' and before the standard system ! directories. *Note Search Path::. If DIR begins with `=', then ! the `=' will be replaced by the sysroot prefix; see `--sysroot' ! and `-isysroot'. ! `-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the `-E' and `-fpreprocessed' options. ! With `-E', preprocessing is limited to the handling of directives ! such as `#define', `#ifdef', and `#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are ! not performed. In addition, the `-dD' option is implicitly ! enabled. ! With `-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as `__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with `-E -fdirectives-only'. ! With both `-E' and `-fpreprocessed', the rules for ! `-fpreprocessed' take precedence. This enables full preprocessing ! of files previously preprocessed with `-E -fdirectives-only'. ! `-fdollars-in-identifiers' ! Accept `$' in identifiers. *Note Identifier characters::. ! `-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! `-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! `-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with `-C' to ! the compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! `-fpreprocessed' is implicit if the input file has one of the ! extensions `.i', `.ii' or `.mi'. These are the extensions that ! GCC uses for preprocessed files created by `-save-temps'. ! `-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! `-fdebug-cpp' ! This option is only useful for debugging GCC. When used with ! `-E', dumps debugging information about location maps. Every ! token in the output is preceded by the dump of the map its location ! belongs to. The dump of the map holding the location of a token ! would be: ! {`P':`/file/path';`F':`/includer/path';`L':LINE_NUM;`C':COL_NUM;`S':SYSTEM_HEADER_P;`M':MAP_ADDRESS;`E':MACRO_EXPANSION_P,`loc':LOCATION} ! When used without `-E', this option has no effect. ! `-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more ! memory. The LEVEL parameter can be used to choose the level of ! precision of token location tracking thus decreasing the memory ! consumption if necessary. Value `0' of LEVEL de-activates this ! option just as if no `-ftrack-macro-expansion' was present on the ! command line. Value `1' tracks tokens locations in a degraded mode ! for the sake of minimal memory overhead. In this mode all tokens ! resulting from the expansion of an argument of a function-like ! macro have the same location. Value `2' tracks tokens locations ! completely. This value is the most memory hungry. When this ! option is given no argument, the default parameter value is `2'. Note that -ftrack-macro-expansion=2 is activated by default. ! `-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's `iconv' library routine. ! `-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of `wchar_t'. As with `-fexec-charset', ! CHARSET can be any encoding supported by the system's `iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in `wchar_t'. ! `-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used ! by GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! `iconv' library routine. ! `-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current ! working directory in some debugging information formats. This ! option is implicitly enabled if debugging information is enabled, ! but this can be inhibited with the negated form ! `-fno-working-directory'. If the `-P' flag is present in the ! command line, this option has no effect, since no `#line' ! directives are emitted whatsoever. ! `-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as `dejagnu'. ! `-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form `-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. *Note Obsolete Features::. ! `-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! `-dCHARS' ! CHARS is a sequence of one or more of the following characters, ! and must not be preceded by a space. Other characters are ! interpreted by the compiler proper, or reserved for future ! versions of GCC, and so are silently ignored. If you specify ! characters whose behavior conflicts, the result is undefined. ! `M' ! Instead of the normal output, generate a list of `#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives ! you a way of finding out what is predefined in your version ! of the preprocessor. Assuming you have no file `foo.h', the ! command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use `-dM' without the `-E' option, `-dM' is ! interpreted as a synonym for `-fdump-rtl-mach'. *Note ! Debugging Options: (gcc)Debugging Options. ! `D' ! Like `M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the `#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! `N' ! Like `D', but emit only the macro names, not their expansions. ! `I' ! Output `#include' directives in addition to the result of preprocessing. ! `U' ! Like `D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! `#undef' directives are also output for macros tested but undefined at the time. ! `-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. *Note Preprocessor Output::. ! `-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which ! are deleted along with the directive. ! You should be prepared for side effects when using `-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a `#'. ! `-CC' Do not discard comments, including during macro expansion. This is ! like `-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the `-C' option, the `-CC' ! option causes all C++-style comments inside a macro to be ! converted to C-style comments. This is to prevent later use of ! that macro from inadvertently commenting out the remainder of the ! source line. ! The `-CC' option is generally used to support lint comments. ! `-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. *Note Traditional Mode::. ! `-trigraphs' Process trigraph sequences. *Note Initial processing::. ! `-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! `--help' ! `--target-help' Print text describing all the command line options instead of preprocessing anything. ! `-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! `-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! `#include' stack it is. Precompiled header files are also ! printed, even if they are found to be invalid; an invalid ! precompiled header file is printed with `...x' and a valid one ! with `...!' . ! `-version' ! `--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. *************** operates. You can use them to specify d *** 4705,4764 **** when searching for include files, or to control dependency output. Note that you can also specify places to search using options such as ! '-I', and control dependency output with options like '-M' (*note Invocation::). These take precedence over environment variables, which in turn take precedence over the configuration of GCC. ! 'CPATH' ! 'C_INCLUDE_PATH' ! 'CPLUS_INCLUDE_PATH' ! 'OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like 'PATH', in which to look for header ! files. The special character, 'PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! 'CPATH' specifies a list of directories to be searched as if ! specified with '-I', but after any paths given with '-I' options on ! the command line. This environment variable is used regardless of ! which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with '-isystem', but ! after any paths given with '-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear at ! the beginning or end of a path. For instance, if the value of ! 'CPATH' is ':/special/include', that has the same effect as ! '-I. -I/special/include'. See also *note Search Path::. ! 'DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of 'DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form 'FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options '-MM' and '-MF' (*note Invocation::), with an ! optional '-MT' switch too. ! 'SUNPRO_DEPENDENCIES' ! This variable is the same as 'DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies '-M' ! rather than '-MM'. However, the dependence on the main input file ! is omitted. *Note Invocation::.  File: cpp.info, Node: GNU Free Documentation License, Next: Index of Directives, Prev: Environment Variables, Up: Top --- 4739,4798 ---- when searching for include files, or to control dependency output. Note that you can also specify places to search using options such as ! `-I', and control dependency output with options like `-M' (*note Invocation::). These take precedence over environment variables, which in turn take precedence over the configuration of GCC. ! `CPATH' ! `C_INCLUDE_PATH' ! `CPLUS_INCLUDE_PATH' ! `OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like `PATH', in which to look for header ! files. The special character, `PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! `CPATH' specifies a list of directories to be searched as if ! specified with `-I', but after any paths given with `-I' options ! on the command line. This environment variable is used regardless ! of which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with `-isystem', but ! after any paths given with `-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear ! at the beginning or end of a path. For instance, if the value of ! `CPATH' is `:/special/include', that has the same effect as ! `-I. -I/special/include'. See also *note Search Path::. ! `DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of `DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form `FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options `-MM' and `-MF' (*note Invocation::), with ! an optional `-MT' switch too. ! `SUNPRO_DEPENDENCIES' ! This variable is the same as `DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies ! `-M' rather than `-MM'. However, the dependence on the main input ! file is omitted. *Note Invocation::.  File: cpp.info, Node: GNU Free Documentation License, Next: Index of Directives, Prev: Environment Variables, Up: Top *************** GNU Free Documentation License *** 4769,4775 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 4803,4809 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 4794,4814 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 4828,4848 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 4826,4837 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 4860,4871 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 4842,4868 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 4876,4902 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 4900,4907 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 4934,4941 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 4915,4925 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 4949,4960 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 4927,4965 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 4962,5001 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 4989,5018 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 5025,5055 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 5025,5035 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 5062,5072 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 5038,5052 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 5075,5089 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 5056,5063 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 5093,5100 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 5084,5103 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 5121,5140 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 5142,5149 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 5179,5186 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 5155,5187 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 5192,5224 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 5211,5216 **** --- 5248,5254 ---- site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. + ADDENDUM: How to use this License for your documents ==================================================== *************** notices just after the title page: *** 5227,5233 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 5265,5271 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 5238,5246 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: cpp.info, Node: Index of Directives, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 5276,5284 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: cpp.info, Node: Index of Directives, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** Index of Directives *** 5269,5276 **** * #pragma GCC dependency: Pragmas. (line 55) * #pragma GCC error: Pragmas. (line 100) * #pragma GCC poison: Pragmas. (line 67) - * #pragma GCC system_header: System Headers. (line 31) * #pragma GCC system_header <1>: Pragmas. (line 94) * #pragma GCC warning: Pragmas. (line 99) * #sccs: Other Directives. (line 6) * #unassert: Obsolete Features. (line 59) --- 5307,5314 ---- * #pragma GCC dependency: Pragmas. (line 55) * #pragma GCC error: Pragmas. (line 100) * #pragma GCC poison: Pragmas. (line 67) * #pragma GCC system_header <1>: Pragmas. (line 94) + * #pragma GCC system_header: System Headers. (line 31) * #pragma GCC warning: Pragmas. (line 99) * #sccs: Other Directives. (line 6) * #unassert: Obsolete Features. (line 59) *************** Option Index *** 5285,5380 **** ************ CPP's command line options and environment variables are indexed here ! without any initial '-' or '--'. [index] * Menu: ! * A: Invocation. (line 567) ! * ansi: Invocation. (line 311) ! * C: Invocation. (line 625) * CPATH: Environment Variables. (line 15) * CPLUS_INCLUDE_PATH: Environment Variables. (line 17) ! * C_INCLUDE_PATH: Environment Variables. ! (line 16) ! * D: Invocation. (line 40) ! * dD: Invocation. (line 598) * DEPENDENCIES_OUTPUT: Environment Variables. (line 44) ! * dI: Invocation. (line 607) ! * dM: Invocation. (line 583) ! * dN: Invocation. (line 604) ! * dU: Invocation. (line 611) ! * fdebug-cpp: Invocation. (line 498) ! * fdirectives-only: Invocation. (line 446) ! * fdollars-in-identifiers: Invocation. (line 467) * fexec-charset: Invocation. (line 525) ! * fextended-identifiers: Invocation. (line 470) * finput-charset: Invocation. (line 538) ! * fno-canonical-system-headers: Invocation. (line 475) ! * fno-show-column: Invocation. (line 562) * fno-working-directory: Invocation. (line 548) ! * fpreprocessed: Invocation. (line 479) ! * ftabstop: Invocation. (line 492) * ftrack-macro-expansion: Invocation. (line 507) * fwide-exec-charset: Invocation. (line 530) * fworking-directory: Invocation. (line 548) ! * H: Invocation. (line 669) ! * help: Invocation. (line 661) ! * I: Invocation. (line 72) ! * I-: Invocation. (line 360) ! * idirafter: Invocation. (line 402) ! * imacros: Invocation. (line 393) ! * imultilib: Invocation. (line 427) ! * include: Invocation. (line 382) ! * iprefix: Invocation. (line 409) ! * iquote: Invocation. (line 439) ! * isysroot: Invocation. (line 421) ! * isystem: Invocation. (line 431) ! * iwithprefix: Invocation. (line 415) ! * iwithprefixbefore: Invocation. (line 415) ! * M: Invocation. (line 181) ! * MD: Invocation. (line 272) ! * MF: Invocation. (line 216) ! * MG: Invocation. (line 225) ! * MM: Invocation. (line 206) ! * MMD: Invocation. (line 288) ! * MP: Invocation. (line 235) ! * MQ: Invocation. (line 262) ! * MT: Invocation. (line 247) ! * nostdinc: Invocation. (line 372) ! * nostdinc++: Invocation. (line 377) ! * o: Invocation. (line 83) * OBJC_INCLUDE_PATH: Environment Variables. (line 18) ! * P: Invocation. (line 618) ! * pedantic: Invocation. (line 171) ! * pedantic-errors: Invocation. (line 176) ! * remap: Invocation. (line 656) ! * std=: Invocation. (line 311) * SUNPRO_DEPENDENCIES: Environment Variables. (line 60) ! * target-help: Invocation. (line 661) ! * traditional-cpp: Invocation. (line 649) ! * trigraphs: Invocation. (line 653) ! * U: Invocation. (line 63) ! * undef: Invocation. (line 67) ! * v: Invocation. (line 665) ! * version: Invocation. (line 677) ! * w: Invocation. (line 167) ! * Wall: Invocation. (line 89) ! * Wcomment: Invocation. (line 97) ! * Wcomments: Invocation. (line 97) ! * Wendif-labels: Invocation. (line 144) ! * Werror: Invocation. (line 157) ! * Wsystem-headers: Invocation. (line 161) ! * Wtraditional: Invocation. (line 114) ! * Wtrigraphs: Invocation. (line 102) ! * Wundef: Invocation. (line 120) ! * Wunused-macros: Invocation. (line 125) ! * x: Invocation. (line 295)  File: cpp.info, Node: Concept Index, Prev: Option Index, Up: Top --- 5323,5418 ---- ************ CPP's command line options and environment variables are indexed here ! without any initial `-' or `--'. [index] * Menu: ! * A: Invocation. (line 568) ! * ansi: Invocation. (line 308) ! * C: Invocation. (line 627) ! * C_INCLUDE_PATH: Environment Variables. ! (line 16) * CPATH: Environment Variables. (line 15) * CPLUS_INCLUDE_PATH: Environment Variables. (line 17) ! * D: Invocation. (line 39) ! * dD: Invocation. (line 600) * DEPENDENCIES_OUTPUT: Environment Variables. (line 44) ! * dI: Invocation. (line 609) ! * dM: Invocation. (line 584) ! * dN: Invocation. (line 606) ! * dU: Invocation. (line 613) ! * fdebug-cpp: Invocation. (line 497) ! * fdirectives-only: Invocation. (line 444) ! * fdollars-in-identifiers: Invocation. (line 466) * fexec-charset: Invocation. (line 525) ! * fextended-identifiers: Invocation. (line 469) * finput-charset: Invocation. (line 538) ! * fno-canonical-system-headers: Invocation. (line 474) ! * fno-show-column: Invocation. (line 563) * fno-working-directory: Invocation. (line 548) ! * fpreprocessed: Invocation. (line 478) ! * ftabstop: Invocation. (line 491) * ftrack-macro-expansion: Invocation. (line 507) * fwide-exec-charset: Invocation. (line 530) * fworking-directory: Invocation. (line 548) ! * H: Invocation. (line 672) ! * help: Invocation. (line 664) ! * I: Invocation. (line 71) ! * I-: Invocation. (line 357) ! * idirafter: Invocation. (line 399) ! * imacros: Invocation. (line 390) ! * imultilib: Invocation. (line 424) ! * include: Invocation. (line 379) ! * iprefix: Invocation. (line 406) ! * iquote: Invocation. (line 436) ! * isysroot: Invocation. (line 418) ! * isystem: Invocation. (line 428) ! * iwithprefix: Invocation. (line 412) ! * iwithprefixbefore: Invocation. (line 412) ! * M: Invocation. (line 180) ! * MD: Invocation. (line 269) ! * MF: Invocation. (line 215) ! * MG: Invocation. (line 224) ! * MM: Invocation. (line 205) ! * MMD: Invocation. (line 285) ! * MP: Invocation. (line 234) ! * MQ: Invocation. (line 260) ! * MT: Invocation. (line 246) ! * nostdinc: Invocation. (line 369) ! * nostdinc++: Invocation. (line 374) ! * o: Invocation. (line 82) * OBJC_INCLUDE_PATH: Environment Variables. (line 18) ! * P: Invocation. (line 620) ! * pedantic: Invocation. (line 170) ! * pedantic-errors: Invocation. (line 175) ! * remap: Invocation. (line 659) ! * std=: Invocation. (line 308) * SUNPRO_DEPENDENCIES: Environment Variables. (line 60) ! * target-help: Invocation. (line 664) ! * traditional-cpp: Invocation. (line 652) ! * trigraphs: Invocation. (line 656) ! * U: Invocation. (line 62) ! * undef: Invocation. (line 66) ! * v: Invocation. (line 668) ! * version: Invocation. (line 681) ! * w: Invocation. (line 166) ! * Wall: Invocation. (line 88) ! * Wcomment: Invocation. (line 96) ! * Wcomments: Invocation. (line 96) ! * Wendif-labels: Invocation. (line 143) ! * Werror: Invocation. (line 156) ! * Wsystem-headers: Invocation. (line 160) ! * Wtraditional: Invocation. (line 113) ! * Wtrigraphs: Invocation. (line 101) ! * Wundef: Invocation. (line 119) ! * Wunused-macros: Invocation. (line 124) ! * x: Invocation. (line 292)  File: cpp.info, Node: Concept Index, Prev: Option Index, Up: Top *************** Concept Index *** 5385,5394 **** [index] * Menu: ! * '#' operator: Stringification. (line 6) ! * '##' operator: Concatenation. (line 6) ! * '_Pragma': Pragmas. (line 25) ! * alternative tokens: Tokenization. (line 105) * arguments: Macro Arguments. (line 6) * arguments in macro definitions: Macro Arguments. (line 6) * assertions: Obsolete Features. (line 13) --- 5423,5432 ---- [index] * Menu: ! * # operator: Stringification. (line 6) ! * ## operator: Concatenation. (line 6) ! * _Pragma: Pragmas. (line 25) ! * alternative tokens: Tokenization. (line 106) * arguments: Macro Arguments. (line 6) * arguments in macro definitions: Macro Arguments. (line 6) * assertions: Obsolete Features. (line 13) *************** Concept Index *** 5396,5402 **** * backslash-newline: Initial processing. (line 61) * block comments: Initial processing. (line 77) * C++ named operators: C++ Named Operators. (line 6) ! * character constants: Tokenization. (line 84) * character set, execution: Invocation. (line 525) * character set, input: Invocation. (line 538) * character set, wide execution: Invocation. (line 530) --- 5434,5440 ---- * backslash-newline: Initial processing. (line 61) * block comments: Initial processing. (line 77) * C++ named operators: C++ Named Operators. (line 6) ! * character constants: Tokenization. (line 85) * character set, execution: Invocation. (line 525) * character set, input: Invocation. (line 538) * character set, wide execution: Invocation. (line 530) *************** Concept Index *** 5411,5426 **** * conditionals: Conditionals. (line 6) * continued lines: Initial processing. (line 61) * controlling macro: Once-Only Headers. (line 35) ! * 'defined': Defined. (line 6) * dependencies for make as output: Environment Variables. (line 45) ! * dependencies for make as output <1>: Environment Variables. ! (line 61) ! * dependencies, 'make': Invocation. (line 181) * diagnostic: Diagnostics. (line 6) * differences from previous versions: Differences from previous versions. (line 6) ! * digraphs: Tokenization. (line 105) * directive line: The preprocessing language. (line 6) * directive name: The preprocessing language. --- 5449,5462 ---- * conditionals: Conditionals. (line 6) * continued lines: Initial processing. (line 61) * controlling macro: Once-Only Headers. (line 35) ! * defined: Defined. (line 6) * dependencies for make as output: Environment Variables. (line 45) ! * dependencies, make: Invocation. (line 180) * diagnostic: Diagnostics. (line 6) * differences from previous versions: Differences from previous versions. (line 6) ! * digraphs: Tokenization. (line 106) * directive line: The preprocessing language. (line 6) * directive name: The preprocessing language. *************** Concept Index *** 5438,5452 **** * grouping options: Invocation. (line 34) * guard macro: Once-Only Headers. (line 35) * header file: Header Files. (line 6) ! * header file names: Tokenization. (line 84) ! * identifiers: Tokenization. (line 33) * implementation limits: Implementation limits. (line 6) * implementation-defined behavior: Implementation-defined behavior. (line 6) * including just once: Once-Only Headers. (line 6) * invocation: Invocation. (line 6) ! * 'iso646.h': C++ Named Operators. (line 6) * line comments: Initial processing. (line 77) * line control: Line Control. (line 6) * line endings: Initial processing. (line 14) --- 5474,5488 ---- * grouping options: Invocation. (line 34) * guard macro: Once-Only Headers. (line 35) * header file: Header Files. (line 6) ! * header file names: Tokenization. (line 85) ! * identifiers: Tokenization. (line 34) * implementation limits: Implementation limits. (line 6) * implementation-defined behavior: Implementation-defined behavior. (line 6) * including just once: Once-Only Headers. (line 6) * invocation: Invocation. (line 6) ! * iso646.h: C++ Named Operators. (line 6) * line comments: Initial processing. (line 77) * line control: Line Control. (line 6) * line endings: Initial processing. (line 14) *************** Concept Index *** 5457,5473 **** * macros in include: Computed Includes. (line 6) * macros with arguments: Macro Arguments. (line 6) * macros with variable arguments: Variadic Macros. (line 6) ! * 'make': Invocation. (line 181) * manifest constants: Object-like Macros. (line 6) * named operators: C++ Named Operators. (line 6) * newlines in macro arguments: Newlines in Arguments. (line 6) * null directive: Other Directives. (line 15) ! * numbers: Tokenization. (line 60) * object-like macro: Object-like Macros. (line 6) ! * options: Invocation. (line 39) * options, grouping: Invocation. (line 34) ! * other tokens: Tokenization. (line 119) * output format: Preprocessor Output. (line 12) * overriding a header file: Wrapper Headers. (line 6) * parentheses in macro bodies: Operator Precedence Problems. --- 5493,5509 ---- * macros in include: Computed Includes. (line 6) * macros with arguments: Macro Arguments. (line 6) * macros with variable arguments: Variadic Macros. (line 6) ! * make: Invocation. (line 180) * manifest constants: Object-like Macros. (line 6) * named operators: C++ Named Operators. (line 6) * newlines in macro arguments: Newlines in Arguments. (line 6) * null directive: Other Directives. (line 15) ! * numbers: Tokenization. (line 61) * object-like macro: Object-like Macros. (line 6) ! * options: Invocation. (line 38) * options, grouping: Invocation. (line 34) ! * other tokens: Tokenization. (line 120) * output format: Preprocessor Output. (line 12) * overriding a header file: Wrapper Headers. (line 6) * parentheses in macro bodies: Operator Precedence Problems. *************** Concept Index *** 5479,5489 **** * predicates: Obsolete Features. (line 26) * preprocessing directives: The preprocessing language. (line 6) ! * preprocessing numbers: Tokenization. (line 60) * preprocessing tokens: Tokenization. (line 6) * prescan of macro arguments: Argument Prescan. (line 6) * problems with macros: Macro Pitfalls. (line 6) ! * punctuators: Tokenization. (line 105) * redefining macros: Undefining and Redefining Macros. (line 6) * repeated inclusion: Once-Only Headers. (line 6) --- 5515,5525 ---- * predicates: Obsolete Features. (line 26) * preprocessing directives: The preprocessing language. (line 6) ! * preprocessing numbers: Tokenization. (line 61) * preprocessing tokens: Tokenization. (line 6) * prescan of macro arguments: Argument Prescan. (line 6) * problems with macros: Macro Pitfalls. (line 6) ! * punctuators: Tokenization. (line 106) * redefining macros: Undefining and Redefining Macros. (line 6) * repeated inclusion: Once-Only Headers. (line 6) *************** Concept Index *** 5499,5510 **** (line 6) * standard predefined macros.: Standard Predefined Macros. (line 6) ! * string constants: Tokenization. (line 84) ! * string literals: Tokenization. (line 84) * stringification: Stringification. (line 6) * symbolic constants: Object-like Macros. (line 6) - * system header files: Header Files. (line 13) * system header files <1>: System Headers. (line 6) * system-specific predefined macros: System-specific Predefined Macros. (line 6) * testing predicates: Obsolete Features. (line 37) --- 5535,5546 ---- (line 6) * standard predefined macros.: Standard Predefined Macros. (line 6) ! * string constants: Tokenization. (line 85) ! * string literals: Tokenization. (line 85) * stringification: Stringification. (line 6) * symbolic constants: Object-like Macros. (line 6) * system header files <1>: System Headers. (line 6) + * system header files: Header Files. (line 13) * system-specific predefined macros: System-specific Predefined Macros. (line 6) * testing predicates: Obsolete Features. (line 37) *************** Concept Index *** 5518,5602 **** (line 6) * variable number of arguments: Variadic Macros. (line 6) * variadic macros: Variadic Macros. (line 6) ! * wrapper '#ifndef': Once-Only Headers. (line 6) * wrapper headers: Wrapper Headers. (line 6)  Tag Table: ! Node: Top945 ! Node: Overview3549 ! Node: Character sets6383 ! Ref: Character sets-Footnote-18564 ! Node: Initial processing8745 ! Ref: trigraphs10304 ! Node: Tokenization14504 ! Ref: Tokenization-Footnote-121638 ! Node: The preprocessing language21749 ! Node: Header Files24628 ! Node: Include Syntax26544 ! Node: Include Operation28181 ! Node: Search Path30029 ! Node: Once-Only Headers33230 ! Node: Alternatives to Wrapper #ifndef34889 ! Node: Computed Includes36631 ! Node: Wrapper Headers39789 ! Node: System Headers42212 ! Node: Macros44262 ! Node: Object-like Macros45403 ! Node: Function-like Macros48993 ! Node: Macro Arguments50609 ! Node: Stringification54752 ! Node: Concatenation57958 ! Node: Variadic Macros61066 ! Node: Predefined Macros65853 ! Node: Standard Predefined Macros66441 ! Node: Common Predefined Macros72410 ! Node: System-specific Predefined Macros92222 ! Node: C++ Named Operators94245 ! Node: Undefining and Redefining Macros95209 ! Node: Directives Within Macro Arguments97307 ! Node: Macro Pitfalls98855 ! Node: Misnesting99388 ! Node: Operator Precedence Problems100500 ! Node: Swallowing the Semicolon102366 ! Node: Duplication of Side Effects104389 ! Node: Self-Referential Macros106572 ! Node: Argument Prescan108981 ! Node: Newlines in Arguments112736 ! Node: Conditionals113687 ! Node: Conditional Uses115516 ! Node: Conditional Syntax116874 ! Node: Ifdef117194 ! Node: If120351 ! Node: Defined122655 ! Node: Else123936 ! Node: Elif124506 ! Node: Deleted Code125795 ! Node: Diagnostics127042 ! Node: Line Control128591 ! Node: Pragmas132366 ! Node: Other Directives137120 ! Node: Preprocessor Output138170 ! Node: Traditional Mode141368 ! Node: Traditional lexical analysis142426 ! Node: Traditional macros144929 ! Node: Traditional miscellany148730 ! Node: Traditional warnings149726 ! Node: Implementation Details151923 ! Node: Implementation-defined behavior152544 ! Ref: Identifier characters153294 ! Node: Implementation limits156372 ! Node: Obsolete Features159045 ! Node: Differences from previous versions161932 ! Node: Invocation166134 ! Ref: Wtrigraphs170586 ! Ref: dashMF175363 ! Ref: fdollars-in-identifiers185105 ! Node: Environment Variables194932 ! Node: GNU Free Documentation License197898 ! Node: Index of Directives223043 ! Node: Option Index225123 ! Node: Concept Index231526  End Tag Table --- 5554,5638 ---- (line 6) * variable number of arguments: Variadic Macros. (line 6) * variadic macros: Variadic Macros. (line 6) ! * wrapper #ifndef: Once-Only Headers. (line 6) * wrapper headers: Wrapper Headers. (line 6)  Tag Table: ! Node: Top996 ! Node: Overview3601 ! Node: Character sets6434 ! Ref: Character sets-Footnote-18617 ! Node: Initial processing8798 ! Ref: trigraphs10357 ! Node: Tokenization14559 ! Ref: Tokenization-Footnote-121695 ! Node: The preprocessing language21806 ! Node: Header Files24684 ! Node: Include Syntax26600 ! Node: Include Operation28237 ! Node: Search Path30085 ! Node: Once-Only Headers33286 ! Node: Alternatives to Wrapper #ifndef34945 ! Node: Computed Includes36688 ! Node: Wrapper Headers39846 ! Node: System Headers42272 ! Node: Macros44322 ! Node: Object-like Macros45463 ! Node: Function-like Macros49053 ! Node: Macro Arguments50669 ! Node: Stringification54814 ! Node: Concatenation58020 ! Node: Variadic Macros61128 ! Node: Predefined Macros65915 ! Node: Standard Predefined Macros66503 ! Node: Common Predefined Macros72479 ! Node: System-specific Predefined Macros92307 ! Node: C++ Named Operators94330 ! Node: Undefining and Redefining Macros95294 ! Node: Directives Within Macro Arguments97398 ! Node: Macro Pitfalls98946 ! Node: Misnesting99479 ! Node: Operator Precedence Problems100591 ! Node: Swallowing the Semicolon102457 ! Node: Duplication of Side Effects104480 ! Node: Self-Referential Macros106663 ! Node: Argument Prescan109072 ! Node: Newlines in Arguments112826 ! Node: Conditionals113777 ! Node: Conditional Uses115607 ! Node: Conditional Syntax116965 ! Node: Ifdef117285 ! Node: If120446 ! Node: Defined122750 ! Node: Else124033 ! Node: Elif124603 ! Node: Deleted Code125892 ! Node: Diagnostics127139 ! Node: Line Control128686 ! Node: Pragmas132490 ! Node: Other Directives137246 ! Node: Preprocessor Output138296 ! Node: Traditional Mode141497 ! Node: Traditional lexical analysis142555 ! Node: Traditional macros145058 ! Node: Traditional miscellany148860 ! Node: Traditional warnings149857 ! Node: Implementation Details152054 ! Node: Implementation-defined behavior152675 ! Ref: Identifier characters153427 ! Node: Implementation limits156505 ! Node: Obsolete Features159179 ! Node: Differences from previous versions162067 ! Node: Invocation166275 ! Ref: Wtrigraphs170727 ! Ref: dashMF175502 ! Ref: fdollars-in-identifiers185233 ! Node: Environment Variables195102 ! Node: GNU Free Documentation License198068 ! Node: Index of Directives223232 ! Node: Option Index225312 ! Node: Concept Index231715  End Tag Table diff -Nrcpad gcc-4.9.3/gcc/doc/cppinternals.info gcc-4.9.4/gcc/doc/cppinternals.info *** gcc-4.9.3/gcc/doc/cppinternals.info Fri Jun 26 18:49:02 2015 --- gcc-4.9.4/gcc/doc/cppinternals.info Wed Aug 3 06:14:13 2016 *************** *** 1,12 **** ! This is cppinternals.info, produced by makeinfo version 5.2 from ! cppinternals.texi. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpplib: (cppinternals). Cpplib internals. END-INFO-DIR-ENTRY ! This file documents the internals of the GNU C Preprocessor. Copyright (C) 2000-2015 Free Software Foundation, Inc. --- 1,12 ---- ! This is doc/cppinternals.info, produced by makeinfo version 4.12 from ! /space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/doc/cppinternals.texi. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Cpplib: (cppinternals). Cpplib internals. END-INFO-DIR-ENTRY ! This file documents the internals of the GNU C Preprocessor. Copyright (C) 2000-2015 Free Software Foundation, Inc. *************** preserved on all copies. *** 16,23 **** Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also ! that the entire resulting derived work is distributed under the terms of ! a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified --- 16,23 ---- Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided also ! that the entire resulting derived work is distributed under the terms ! of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified *************** preprocessor in previous versions of GCC *** 46,54 **** as the fundamental unit. This brief manual documents the internals of cpplib, and explains ! some of the tricky issues. It is intended that, along with the comments ! in the source code, a reasonably competent C programmer should be able ! to figure out what the code is doing, and why things have been implemented the way they have. * Menu: --- 46,54 ---- as the fundamental unit. This brief manual documents the internals of cpplib, and explains ! some of the tricky issues. It is intended that, along with the ! comments in the source code, a reasonably competent C programmer should ! be able to figure out what the code is doing, and why things have been implemented the way they have. * Menu: *************** File: cppinternals.info, Node: Conventi *** 69,85 **** Conventions *********** ! cpplib has two interfaces--one is exposed internally only, and the other ! is for both internal and external use. The convention is that functions and types that are exposed to ! multiple files internally are prefixed with '_cpp_', and are to be found ! in the file 'internal.h'. Functions and types exposed to external ! clients are in 'cpplib.h', and prefixed with 'cpp_'. For historical reasons this is no longer quite true, but we should strive to stick to it. ! We are striving to reduce the information exposed in 'cpplib.h' to the bare minimum necessary, and then to keep it there. This makes clear exactly what external clients are entitled to assume, and allows us to change internals in the future without worrying whether library clients --- 69,85 ---- Conventions *********** ! cpplib has two interfaces--one is exposed internally only, and the ! other is for both internal and external use. The convention is that functions and types that are exposed to ! multiple files internally are prefixed with `_cpp_', and are to be ! found in the file `internal.h'. Functions and types exposed to external ! clients are in `cpplib.h', and prefixed with `cpp_'. For historical reasons this is no longer quite true, but we should strive to stick to it. ! We are striving to reduce the information exposed in `cpplib.h' to the bare minimum necessary, and then to keep it there. This makes clear exactly what external clients are entitled to assume, and allows us to change internals in the future without worrying whether library clients *************** The Lexer *** 95,101 **** Overview ======== ! The lexer is contained in the file 'lex.c'. It is a hand-coded lexer, and not implemented as a state machine. It can understand C, C++ and Objective-C source code, and has been extended to allow reasonably successful preprocessing of assembly language. The lexer does not make --- 95,101 ---- Overview ======== ! The lexer is contained in the file `lex.c'. It is a hand-coded lexer, and not implemented as a state machine. It can understand C, C++ and Objective-C source code, and has been extended to allow reasonably successful preprocessing of assembly language. The lexer does not make *************** them as they are encountered in a single *** 104,120 **** returns preprocessing tokens individually, not a line at a time. It is mostly transparent to users of the library, since the library's ! interface for obtaining the next token, 'cpp_get_token', takes care of lexing new tokens, handling directives, and expanding macros as necessary. However, the lexer does expose some functionality so that clients of the library can easily spell a given token, such as ! 'cpp_spell_token' and 'cpp_token_len'. These functions are useful when generating diagnostics, and for emitting the preprocessed output. Lexing a token ============== ! Lexing of an individual token is handled by '_cpp_lex_direct' and its subroutines. In its current form the code is quite complicated, with read ahead characters and such-like, since it strives to not step back in the character stream in preparation for handling non-ASCII file --- 104,120 ---- returns preprocessing tokens individually, not a line at a time. It is mostly transparent to users of the library, since the library's ! interface for obtaining the next token, `cpp_get_token', takes care of lexing new tokens, handling directives, and expanding macros as necessary. However, the lexer does expose some functionality so that clients of the library can easily spell a given token, such as ! `cpp_spell_token' and `cpp_token_len'. These functions are useful when generating diagnostics, and for emitting the preprocessed output. Lexing a token ============== ! Lexing of an individual token is handled by `_cpp_lex_direct' and its subroutines. In its current form the code is quite complicated, with read ahead characters and such-like, since it strives to not step back in the character stream in preparation for handling non-ASCII file *************** encodings. The current plan is to conve *** 122,187 **** before processing them. This complexity is therefore unnecessary and will be removed, so I'll not discuss it further here. ! The job of '_cpp_lex_direct' is simply to lex a token. It is not responsible for issues like directive handling, returning lookahead tokens directly, multiple-include optimization, or conditional block ! skipping. It necessarily has a minor ro^le to play in memory management ! of lexed lines. I discuss these issues in a separate section (*note ! Lexing a line::). The lexer places the token it lexes into storage pointed to by the ! variable 'cur_token', and then increments it. This variable is important for correct diagnostic positioning. Unless a specific line and column are passed to the diagnostic routines, they will examine the ! 'line' and 'col' values of the token just before the location that ! 'cur_token' points to, and use that location to report the diagnostic. The lexer does not consider whitespace to be a token in its own right. If whitespace (other than a new line) precedes a token, it sets ! the 'PREV_WHITE' bit in the token's flags. Each token has its 'line' ! and 'col' variables set to the line and column of the first character of ! the token. This line number is the line number in the translation unit, ! and can be converted to a source (file, line) pair using the line map ! code. ! The first token on a logical, i.e. unescaped, line has the flag 'BOL' ! set for beginning-of-line. This flag is intended for internal use, both ! to distinguish a '#' that begins a directive from one that doesn't, and ! to generate a call-back to clients that want to be notified about the ! start of every non-directive line with tokens on it. Clients cannot ! reliably determine this for themselves: the first token might be a ! macro, and the tokens of a macro expansion do not have the 'BOL' flag ! set. The macro expansion may even be empty, and the next token on the ! line certainly won't have the 'BOL' flag set. New lines are treated specially; exactly how the lexer handles them is context-dependent. The C standard mandates that directives are terminated by the first unescaped newline character, even if it appears in the middle of a macro expansion. Therefore, if the state variable ! 'in_directive' is set, the lexer returns a 'CPP_EOF' token, which is ! normally used to indicate end-of-file, to indicate end-of-directive. In ! a directive a 'CPP_EOF' token never means end-of-file. Conveniently, if ! the caller was 'collect_args', it already handles 'CPP_EOF' as if it ! were end-of-file, and reports an error about an unterminated macro ! argument list. The C standard also specifies that a new line in the middle of the arguments to a macro is treated as whitespace. This white space is important in case the macro argument is stringified. The state variable ! 'parsing_args' is nonzero when the preprocessor is collecting the arguments to a macro call. It is set to 1 when looking for the opening parenthesis to a function-like macro, and 2 when collecting the actual arguments up to the closing parenthesis, since these two cases need to be distinguished sometimes. One such time is here: the lexer sets the ! 'PREV_WHITE' flag of a token if it meets a new line when 'parsing_args' is set to 2. It doesn't set it if it meets a new line when ! 'parsing_args' is 1, since then code like #define foo() bar foo baz ! would be output with an erroneous space before 'baz': foo baz --- 122,187 ---- before processing them. This complexity is therefore unnecessary and will be removed, so I'll not discuss it further here. ! The job of `_cpp_lex_direct' is simply to lex a token. It is not responsible for issues like directive handling, returning lookahead tokens directly, multiple-include optimization, or conditional block ! skipping. It necessarily has a minor ro^le to play in memory ! management of lexed lines. I discuss these issues in a separate section ! (*note Lexing a line::). The lexer places the token it lexes into storage pointed to by the ! variable `cur_token', and then increments it. This variable is important for correct diagnostic positioning. Unless a specific line and column are passed to the diagnostic routines, they will examine the ! `line' and `col' values of the token just before the location that ! `cur_token' points to, and use that location to report the diagnostic. The lexer does not consider whitespace to be a token in its own right. If whitespace (other than a new line) precedes a token, it sets ! the `PREV_WHITE' bit in the token's flags. Each token has its `line' ! and `col' variables set to the line and column of the first character ! of the token. This line number is the line number in the translation ! unit, and can be converted to a source (file, line) pair using the line ! map code. ! The first token on a logical, i.e. unescaped, line has the flag ! `BOL' set for beginning-of-line. This flag is intended for internal ! use, both to distinguish a `#' that begins a directive from one that ! doesn't, and to generate a call-back to clients that want to be ! notified about the start of every non-directive line with tokens on it. ! Clients cannot reliably determine this for themselves: the first token ! might be a macro, and the tokens of a macro expansion do not have the ! `BOL' flag set. The macro expansion may even be empty, and the next ! token on the line certainly won't have the `BOL' flag set. New lines are treated specially; exactly how the lexer handles them is context-dependent. The C standard mandates that directives are terminated by the first unescaped newline character, even if it appears in the middle of a macro expansion. Therefore, if the state variable ! `in_directive' is set, the lexer returns a `CPP_EOF' token, which is ! normally used to indicate end-of-file, to indicate end-of-directive. ! In a directive a `CPP_EOF' token never means end-of-file. ! Conveniently, if the caller was `collect_args', it already handles ! `CPP_EOF' as if it were end-of-file, and reports an error about an ! unterminated macro argument list. The C standard also specifies that a new line in the middle of the arguments to a macro is treated as whitespace. This white space is important in case the macro argument is stringified. The state variable ! `parsing_args' is nonzero when the preprocessor is collecting the arguments to a macro call. It is set to 1 when looking for the opening parenthesis to a function-like macro, and 2 when collecting the actual arguments up to the closing parenthesis, since these two cases need to be distinguished sometimes. One such time is here: the lexer sets the ! `PREV_WHITE' flag of a token if it meets a new line when `parsing_args' is set to 2. It doesn't set it if it meets a new line when ! `parsing_args' is 1, since then code like #define foo() bar foo baz ! would be output with an erroneous space before `baz': foo baz *************** would be output with an erroneous space *** 190,276 **** correct in the preprocessor; there are plenty of tests in the testsuite for corner cases like this. ! The lexer is written to treat each of '\r', '\n', '\r\n' and '\n\r' as a single new line indicator. This allows it to transparently preprocess MS-DOS, Macintosh and Unix files without their needing to pass through a special filter beforehand. ! We also decided to treat a backslash, either '\' or the trigraph ! '??/', separated from one of the above newline indicators by non-comment ! whitespace only, as intending to escape the newline. It tends to be a ! typing mistake, and cannot reasonably be mistaken for anything else in ! any of the C-family grammars. Since handling it this way is not ! strictly conforming to the ISO standard, the library issues a warning ! wherever it encounters it. Handling newlines like this is made simpler by doing it in one place ! only. The function 'handle_newline' takes care of all newline ! characters, and 'skip_escaped_newlines' takes care of arbitrarily long ! sequences of escaped newlines, deferring to 'handle_newline' to handle the newlines themselves. The most painful aspect of lexing ISO-standard C and C++ is handling trigraphs and backlash-escaped newlines. Trigraphs are processed before any interpretation of the meaning of a character is made, and unfortunately there is a trigraph representation for a backslash, so it ! is possible for the trigraph '??/' to introduce an escaped newline. Escaped newlines are tedious because theoretically they can occur ! anywhere--between the '+' and '=' of the '+=' token, within the ! characters of an identifier, and even between the '*' and '/' that terminates a comment. Moreover, you cannot be sure there is just one--there might be an arbitrarily long sequence of them. ! So, for example, the routine that lexes a number, 'parse_number', cannot assume that it can scan forwards until the first non-number ! character and be done with it, because this could be the '\' introducing ! an escaped newline, or the '?' introducing the trigraph sequence that ! represents the '\' of an escaped newline. If it encounters a '?' or ! '\', it calls 'skip_escaped_newlines' to skip over any potential escaped ! newlines before checking whether the number has been finished. ! Similarly code in the main body of '_cpp_lex_direct' cannot simply ! check for a '=' after a '+' character to determine whether it has a '+=' ! token; it needs to be prepared for an escaped newline of some sort. ! Such cases use the function 'get_effective_char', which returns the ! first character after any intervening escaped newlines. The lexer needs to keep track of the correct column position, ! including counting tabs as specified by the '-ftabstop=' option. This should be done even within C-style comments; they can appear in the middle of a line, and we want to report diagnostics in the correct position for text appearing after the end of the comment. ! Some identifiers, such as '__VA_ARGS__' and poisoned identifiers, may ! be invalid and require a diagnostic. However, if they appear in a macro ! expansion we don't want to complain with each use of the macro. It is ! therefore best to catch them during the lexing stage, in ! 'parse_identifier'. In both cases, whether a diagnostic is needed or not is dependent upon the lexer's state. For example, we don't want to issue a diagnostic for re-poisoning a poisoned identifier, or for using ! '__VA_ARGS__' in the expansion of a variable-argument macro. Therefore ! 'parse_identifier' makes use of state flags to determine whether a diagnostic is appropriate. Since we change state on a per-token basis, and don't lex whole lines at a time, this is not a problem. Another place where state flags are used to change behavior is whilst ! lexing header names. Normally, a '<' would be lexed as a single token. ! After a '#include' directive, though, it should be lexed as a single ! token as far as the nearest '>' character. Note that we don't allow the ! terminators of header names to be escaped; the first '"' or '>' terminates the header name. Interpretation of some character sequences depends upon whether we are lexing C, C++ or Objective-C, and on the revision of the standard in ! force. For example, '::' is a single token in C++, but in C it is two ! separate ':' tokens and almost certainly a syntax error. Such cases are ! handled by '_cpp_lex_direct' based upon command-line flags stored in the ! 'cpp_options' structure. Once a token has been lexed, it leads an independent existence. The spelling of numbers, identifiers and strings is copied to permanent storage from the original input buffer, so a token remains valid and ! correct even if its source buffer is freed with '_cpp_pop_buffer'. The storage holding the spellings of such tokens remains until the client program calls cpp_destroy, probably at the end of the translation unit. --- 190,277 ---- correct in the preprocessor; there are plenty of tests in the testsuite for corner cases like this. ! The lexer is written to treat each of `\r', `\n', `\r\n' and `\n\r' as a single new line indicator. This allows it to transparently preprocess MS-DOS, Macintosh and Unix files without their needing to pass through a special filter beforehand. ! We also decided to treat a backslash, either `\' or the trigraph ! `??/', separated from one of the above newline indicators by ! non-comment whitespace only, as intending to escape the newline. It ! tends to be a typing mistake, and cannot reasonably be mistaken for ! anything else in any of the C-family grammars. Since handling it this ! way is not strictly conforming to the ISO standard, the library issues a ! warning wherever it encounters it. Handling newlines like this is made simpler by doing it in one place ! only. The function `handle_newline' takes care of all newline ! characters, and `skip_escaped_newlines' takes care of arbitrarily long ! sequences of escaped newlines, deferring to `handle_newline' to handle the newlines themselves. The most painful aspect of lexing ISO-standard C and C++ is handling trigraphs and backlash-escaped newlines. Trigraphs are processed before any interpretation of the meaning of a character is made, and unfortunately there is a trigraph representation for a backslash, so it ! is possible for the trigraph `??/' to introduce an escaped newline. Escaped newlines are tedious because theoretically they can occur ! anywhere--between the `+' and `=' of the `+=' token, within the ! characters of an identifier, and even between the `*' and `/' that terminates a comment. Moreover, you cannot be sure there is just one--there might be an arbitrarily long sequence of them. ! So, for example, the routine that lexes a number, `parse_number', cannot assume that it can scan forwards until the first non-number ! character and be done with it, because this could be the `\' ! introducing an escaped newline, or the `?' introducing the trigraph ! sequence that represents the `\' of an escaped newline. If it ! encounters a `?' or `\', it calls `skip_escaped_newlines' to skip over ! any potential escaped newlines before checking whether the number has ! been finished. ! Similarly code in the main body of `_cpp_lex_direct' cannot simply ! check for a `=' after a `+' character to determine whether it has a ! `+=' token; it needs to be prepared for an escaped newline of some ! sort. Such cases use the function `get_effective_char', which returns ! the first character after any intervening escaped newlines. The lexer needs to keep track of the correct column position, ! including counting tabs as specified by the `-ftabstop=' option. This should be done even within C-style comments; they can appear in the middle of a line, and we want to report diagnostics in the correct position for text appearing after the end of the comment. ! Some identifiers, such as `__VA_ARGS__' and poisoned identifiers, ! may be invalid and require a diagnostic. However, if they appear in a ! macro expansion we don't want to complain with each use of the macro. ! It is therefore best to catch them during the lexing stage, in ! `parse_identifier'. In both cases, whether a diagnostic is needed or not is dependent upon the lexer's state. For example, we don't want to issue a diagnostic for re-poisoning a poisoned identifier, or for using ! `__VA_ARGS__' in the expansion of a variable-argument macro. Therefore ! `parse_identifier' makes use of state flags to determine whether a diagnostic is appropriate. Since we change state on a per-token basis, and don't lex whole lines at a time, this is not a problem. Another place where state flags are used to change behavior is whilst ! lexing header names. Normally, a `<' would be lexed as a single token. ! After a `#include' directive, though, it should be lexed as a single ! token as far as the nearest `>' character. Note that we don't allow ! the terminators of header names to be escaped; the first `"' or `>' terminates the header name. Interpretation of some character sequences depends upon whether we are lexing C, C++ or Objective-C, and on the revision of the standard in ! force. For example, `::' is a single token in C++, but in C it is two ! separate `:' tokens and almost certainly a syntax error. Such cases ! are handled by `_cpp_lex_direct' based upon command-line flags stored ! in the `cpp_options' structure. Once a token has been lexed, it leads an independent existence. The spelling of numbers, identifiers and strings is copied to permanent storage from the original input buffer, so a token remains valid and ! correct even if its source buffer is freed with `_cpp_pop_buffer'. The storage holding the spellings of such tokens remains until the client program calls cpp_destroy, probably at the end of the translation unit. *************** to cpplib itself internally. *** 287,295 **** token stream. For example, after the name of a function-like macro, it wants to check the next token to see if it is an opening parenthesis. Another example is that, after reading the first few tokens of a ! '#pragma' directive and not recognizing it as a registered pragma, it wants to backtrack and allow the user-defined handler for unknown ! pragmas to access the full '#pragma' token stream. The stand-alone preprocessor wants to be able to test the current token with the previous one to see if a space needs to be inserted to preserve their separate tokenization upon re-lexing (paste avoidance), so it needs to --- 288,296 ---- token stream. For example, after the name of a function-like macro, it wants to check the next token to see if it is an opening parenthesis. Another example is that, after reading the first few tokens of a ! `#pragma' directive and not recognizing it as a registered pragma, it wants to backtrack and allow the user-defined handler for unknown ! pragmas to access the full `#pragma' token stream. The stand-alone preprocessor wants to be able to test the current token with the previous one to see if a space needs to be inserted to preserve their separate tokenization upon re-lexing (paste avoidance), so it needs to *************** to jump back to a prior position in that *** 302,309 **** preprocessor lex all tokens on a line consecutively into a token buffer, which I call a "token run", and when meeting an unescaped new line (newlines within comments do not count either), to start lexing back at ! the beginning of the run. Note that we do _not_ lex a line of tokens at ! once; if we did that 'parse_identifier' would not have state flags available to warn about invalid identifiers (*note Invalid identifiers::). --- 303,310 ---- preprocessor lex all tokens on a line consecutively into a token buffer, which I call a "token run", and when meeting an unescaped new line (newlines within comments do not count either), to start lexing back at ! the beginning of the run. Note that we do _not_ lex a line of tokens ! at once; if we did that `parse_identifier' would not have state flags available to warn about invalid identifiers (*note Invalid identifiers::). *************** identifiers::). *** 311,335 **** line is valid, but since each logical line overwrites the tokens of the previous line, tokens from prior lines are unavailable. In particular, since a directive only occupies a single logical line, this means that ! the directive handlers like the '#pragma' handler can jump around in the ! directive's tokens if necessary. Two issues remain: what about tokens that arise from macro ! expansions, and what happens when we have a long line that overflows the ! token run? Since we promise clients that we preserve the validity of pointers that we have already returned for tokens that appeared earlier in the ! line, we cannot reallocate the run. Instead, on overflow it is expanded ! by chaining a new token run on to the end of the existing one. The tokens forming a macro's replacement list are collected by the ! '#define' handler, and placed in storage that is only freed by ! 'cpp_destroy'. So if a macro is expanded in the line of tokens, the pointers to the tokens of its expansion that are returned will always remain valid. However, macros are a little trickier than that, since they give rise to three sources of fresh tokens. They are the built-in ! macros like '__LINE__', and the '#' and '##' operators for stringification and token pasting. I handled this by allocating space for these tokens from the lexer's token run chain. This means they automatically receive the same lifetime guarantees as lexed tokens, and --- 312,336 ---- line is valid, but since each logical line overwrites the tokens of the previous line, tokens from prior lines are unavailable. In particular, since a directive only occupies a single logical line, this means that ! the directive handlers like the `#pragma' handler can jump around in ! the directive's tokens if necessary. Two issues remain: what about tokens that arise from macro ! expansions, and what happens when we have a long line that overflows ! the token run? Since we promise clients that we preserve the validity of pointers that we have already returned for tokens that appeared earlier in the ! line, we cannot reallocate the run. Instead, on overflow it is ! expanded by chaining a new token run on to the end of the existing one. The tokens forming a macro's replacement list are collected by the ! `#define' handler, and placed in storage that is only freed by ! `cpp_destroy'. So if a macro is expanded in the line of tokens, the pointers to the tokens of its expansion that are returned will always remain valid. However, macros are a little trickier than that, since they give rise to three sources of fresh tokens. They are the built-in ! macros like `__LINE__', and the `#' and `##' operators for stringification and token pasting. I handled this by allocating space for these tokens from the lexer's token run chain. This means they automatically receive the same lifetime guarantees as lexed tokens, and *************** management issues, but not all. The ope *** 340,359 **** function-like macro name might lie on a different line, and the front ends definitely want the ability to look ahead past the end of the current line. So cpplib only moves back to the start of the token run ! at the end of a line if the variable 'keep_tokens' is zero. Line-buffering is quite natural for the preprocessor, and as a result the only time cpplib needs to increment this variable is whilst looking for the opening parenthesis to, and reading the arguments of, a ! function-like macro. In the near future cpplib will export an interface ! to increment and decrement this variable, so that clients can share full ! control over the lifetime of token pointers too. ! The routine '_cpp_lex_token' handles moving to new token runs, ! calling '_cpp_lex_direct' to lex new tokens, or returning previously-lexed tokens if we stepped back in the token stream. It also ! checks each token for the 'BOL' flag, which might indicate a directive that needs to be handled, or require a start-of-line call-back to be ! made. '_cpp_lex_token' also handles skipping over tokens in failed conditional blocks, and invalidates the control macro of the multiple-include optimization if a token was successfully lexed outside a directive. In other words, its callers do not need to concern --- 341,360 ---- function-like macro name might lie on a different line, and the front ends definitely want the ability to look ahead past the end of the current line. So cpplib only moves back to the start of the token run ! at the end of a line if the variable `keep_tokens' is zero. Line-buffering is quite natural for the preprocessor, and as a result the only time cpplib needs to increment this variable is whilst looking for the opening parenthesis to, and reading the arguments of, a ! function-like macro. In the near future cpplib will export an ! interface to increment and decrement this variable, so that clients can ! share full control over the lifetime of token pointers too. ! The routine `_cpp_lex_token' handles moving to new token runs, ! calling `_cpp_lex_direct' to lex new tokens, or returning previously-lexed tokens if we stepped back in the token stream. It also ! checks each token for the `BOL' flag, which might indicate a directive that needs to be handled, or require a start-of-line call-back to be ! made. `_cpp_lex_token' also handles skipping over tokens in failed conditional blocks, and invalidates the control macro of the multiple-include optimization if a token was successfully lexed outside a directive. In other words, its callers do not need to concern *************** Hash Nodes *** 367,376 **** When cpplib encounters an "identifier", it generates a hash code for it and stores it in the hash table. By "identifier" we mean tokens with ! type 'CPP_NAME'; this includes identifiers in the usual C sense, as well ! as keywords, directive names, macro names and so on. For example, all ! of 'pragma', 'int', 'foo' and '__GNUC__' are identifiers and hashed when ! lexed. Each node in the hash table contain various information about the identifier it represents. For example, its length and type. At any one --- 368,377 ---- When cpplib encounters an "identifier", it generates a hash code for it and stores it in the hash table. By "identifier" we mean tokens with ! type `CPP_NAME'; this includes identifiers in the usual C sense, as ! well as keywords, directive names, macro names and so on. For example, ! all of `pragma', `int', `foo' and `__GNUC__' are identifiers and hashed ! when lexed. Each node in the hash table contain various information about the identifier it represents. For example, its length and type. At any one *************** time, each identifier falls into exactly *** 379,424 **** * Macros These have been declared to be macros, either on the command line ! or with '#define'. A few, such as '__TIME__' are built-ins entered ! in the hash table during initialization. The hash node for a ! normal macro points to a structure with more information about the ! macro, such as whether it is function-like, how many arguments it ! takes, and its expansion. Built-in macros are flagged as special, ! and instead contain an enum indicating which of the various ! built-in macros it is. * Assertions ! Assertions are in a separate namespace to macros. To enforce this, ! cpp actually prepends a '#' character before hashing and entering ! it in the hash table. An assertion's node points to a chain of ! answers to that assertion. * Void Everything else falls into this category--an identifier that is not currently a macro, or a macro that has since been undefined with ! '#undef'. When preprocessing C++, this category also includes the named ! operators, such as 'xor'. In expressions these behave like the operators they represent, but in contexts where the spelling of a token matters they are spelt differently. This spelling distinction is relevant when they are operands of the stringizing ! and pasting macro operators '#' and '##'. Named operator hash nodes are flagged, both to catch the spelling distinction and to prevent them from being defined as macros. The same identifiers share the same hash node. Since each identifier token, after lexing, contains a pointer to its hash node, this is used to provide rapid lookup of various information. For example, when ! parsing a '#define' statement, CPP flags each argument's identifier hash ! node with the index of that argument. This makes duplicated argument ! checking an O(1) operation for each argument. Similarly, for each ! identifier in the macro's expansion, lookup to see if it is an argument, ! and which argument it is, is also an O(1) operation. Further, each ! directive name, such as 'endif', has an associated directive enum stored ! in its hash node, so that directive lookup is also O(1).  File: cppinternals.info, Node: Macro Expansion, Next: Token Spacing, Prev: Hash Nodes, Up: Top --- 380,425 ---- * Macros These have been declared to be macros, either on the command line ! or with `#define'. A few, such as `__TIME__' are built-ins ! entered in the hash table during initialization. The hash node ! for a normal macro points to a structure with more information ! about the macro, such as whether it is function-like, how many ! arguments it takes, and its expansion. Built-in macros are ! flagged as special, and instead contain an enum indicating which ! of the various built-in macros it is. * Assertions ! Assertions are in a separate namespace to macros. To enforce ! this, cpp actually prepends a `#' character before hashing and ! entering it in the hash table. An assertion's node points to a ! chain of answers to that assertion. * Void Everything else falls into this category--an identifier that is not currently a macro, or a macro that has since been undefined with ! `#undef'. When preprocessing C++, this category also includes the named ! operators, such as `xor'. In expressions these behave like the operators they represent, but in contexts where the spelling of a token matters they are spelt differently. This spelling distinction is relevant when they are operands of the stringizing ! and pasting macro operators `#' and `##'. Named operator hash nodes are flagged, both to catch the spelling distinction and to prevent them from being defined as macros. The same identifiers share the same hash node. Since each identifier token, after lexing, contains a pointer to its hash node, this is used to provide rapid lookup of various information. For example, when ! parsing a `#define' statement, CPP flags each argument's identifier ! hash node with the index of that argument. This makes duplicated ! argument checking an O(1) operation for each argument. Similarly, for ! each identifier in the macro's expansion, lookup to see if it is an ! argument, and which argument it is, is also an O(1) operation. Further, ! each directive name, such as `endif', has an associated directive enum ! stored in its hash node, so that directive lookup is also O(1).  File: cppinternals.info, Node: Macro Expansion, Next: Token Spacing, Prev: Hash Nodes, Up: Top *************** and situations that render what you thou *** 431,459 **** the preprocessor's expansion algorithm wrong in quite subtle ways. I strongly recommend you have a good grasp of how the C and C++ ! standards require macros to be expanded before diving into this section, ! let alone the code!. If you don't have a clear mental picture of how ! things like nested macro expansion, stringification and token pasting ! are supposed to work, damage to your sanity can quickly result. Internal representation of macros ================================= The preprocessor stores macro expansions in tokenized form. This saves ! repeated lexing passes during expansion, at the cost of a small increase ! in memory consumption on average. The tokens are stored contiguously in ! memory, so a pointer to the first one and a token count is all you need ! to get the replacement list of a macro. If the macro is a function-like macro the preprocessor also stores its parameters, in the form of an ordered list of pointers to the hash table entry of each parameter's identifier. Further, in the macro's stored expansion each occurrence of a parameter is replaced with a ! special token of type 'CPP_MACRO_ARG'. Each such token holds the index ! of the parameter it represents in the parameter list, which allows rapid ! replacement of parameters with their arguments during expansion. Despite this optimization it is still necessary to store the original ! parameters to the macro, both for dumping with e.g., '-dD', and to warn about non-trivial macro redefinitions when the parameter names have changed. --- 432,460 ---- the preprocessor's expansion algorithm wrong in quite subtle ways. I strongly recommend you have a good grasp of how the C and C++ ! standards require macros to be expanded before diving into this ! section, let alone the code!. If you don't have a clear mental picture ! of how things like nested macro expansion, stringification and token ! pasting are supposed to work, damage to your sanity can quickly result. Internal representation of macros ================================= The preprocessor stores macro expansions in tokenized form. This saves ! repeated lexing passes during expansion, at the cost of a small ! increase in memory consumption on average. The tokens are stored ! contiguously in memory, so a pointer to the first one and a token count ! is all you need to get the replacement list of a macro. If the macro is a function-like macro the preprocessor also stores its parameters, in the form of an ordered list of pointers to the hash table entry of each parameter's identifier. Further, in the macro's stored expansion each occurrence of a parameter is replaced with a ! special token of type `CPP_MACRO_ARG'. Each such token holds the index ! of the parameter it represents in the parameter list, which allows ! rapid replacement of parameters with their arguments during expansion. Despite this optimization it is still necessary to store the original ! parameters to the macro, both for dumping with e.g., `-dD', and to warn about non-trivial macro redefinitions when the parameter names have changed. *************** Macro expansion overview *** 461,516 **** ======================== The preprocessor maintains a "context stack", implemented as a linked ! list of 'cpp_context' structures, which together represent the macro ! expansion state at any one time. The 'struct cpp_reader' member ! variable 'context' points to the current top of this stack. The top normally holds the unexpanded replacement list of the innermost macro under expansion, except when cpplib is about to pre-expand an argument, in which case it holds that argument's unexpanded tokens. When there are no macros under expansion, cpplib is in "base ! context". All contexts other than the base context contain a contiguous ! list of tokens delimited by a starting and ending token. When not in ! base context, cpplib obtains the next token from the list of the top ! context. If there are no tokens left in the list, it pops that context ! off the stack, and subsequent ones if necessary, until an unexhausted ! context is found or it returns to base context. In base context, cpplib ! reads tokens directly from the lexer. If it encounters an identifier that is both a macro and enabled for expansion, cpplib prepares to push a new context for that macro on the ! stack by calling the routine 'enter_macro_context'. When this routine returns, the new context will contain the unexpanded tokens of the replacement list of that macro. In the case of function-like macros, ! 'enter_macro_context' also replaces any parameters in the replacement ! list, stored as 'CPP_MACRO_ARG' tokens, with the appropriate macro argument. If the standard requires that the parameter be replaced with its expanded argument, the argument will have been fully macro expanded first. ! 'enter_macro_context' also handles special macros like '__LINE__'. Although these macros expand to a single token which cannot contain any ! further macros, for reasons of token spacing (*note Token Spacing::) and ! simplicity of implementation, cpplib handles these special macros by ! pushing a context containing just that one token. ! The final thing that 'enter_macro_context' does before returning is ! to mark the macro disabled for expansion (except for special macros like ! '__TIME__'). The macro is re-enabled when its context is later popped ! from the context stack, as described above. This strict ordering ! ensures that a macro is disabled whilst its expansion is being scanned, ! but that it is _not_ disabled whilst any arguments to it are being ! expanded. Scanning the replacement list for macros to expand ================================================== ! The C standard states that, after any parameters have been replaced with ! their possibly-expanded arguments, the replacement list is scanned for ! nested macros. Further, any identifiers in the replacement list that ! are not expanded during this scan are never again eligible for expansion ! in the future, if the reason they were not expanded is that the macro in ! question was disabled. Clearly this latter condition can only apply to tokens resulting from argument pre-expansion. Other tokens never have an opportunity to be --- 462,517 ---- ======================== The preprocessor maintains a "context stack", implemented as a linked ! list of `cpp_context' structures, which together represent the macro ! expansion state at any one time. The `struct cpp_reader' member ! variable `context' points to the current top of this stack. The top normally holds the unexpanded replacement list of the innermost macro under expansion, except when cpplib is about to pre-expand an argument, in which case it holds that argument's unexpanded tokens. When there are no macros under expansion, cpplib is in "base ! context". All contexts other than the base context contain a ! contiguous list of tokens delimited by a starting and ending token. ! When not in base context, cpplib obtains the next token from the list ! of the top context. If there are no tokens left in the list, it pops ! that context off the stack, and subsequent ones if necessary, until an ! unexhausted context is found or it returns to base context. In base ! context, cpplib reads tokens directly from the lexer. If it encounters an identifier that is both a macro and enabled for expansion, cpplib prepares to push a new context for that macro on the ! stack by calling the routine `enter_macro_context'. When this routine returns, the new context will contain the unexpanded tokens of the replacement list of that macro. In the case of function-like macros, ! `enter_macro_context' also replaces any parameters in the replacement ! list, stored as `CPP_MACRO_ARG' tokens, with the appropriate macro argument. If the standard requires that the parameter be replaced with its expanded argument, the argument will have been fully macro expanded first. ! `enter_macro_context' also handles special macros like `__LINE__'. Although these macros expand to a single token which cannot contain any ! further macros, for reasons of token spacing (*note Token Spacing::) ! and simplicity of implementation, cpplib handles these special macros ! by pushing a context containing just that one token. ! The final thing that `enter_macro_context' does before returning is ! to mark the macro disabled for expansion (except for special macros ! like `__TIME__'). The macro is re-enabled when its context is later ! popped from the context stack, as described above. This strict ! ordering ensures that a macro is disabled whilst its expansion is being ! scanned, but that it is _not_ disabled whilst any arguments to it are ! being expanded. Scanning the replacement list for macros to expand ================================================== ! The C standard states that, after any parameters have been replaced ! with their possibly-expanded arguments, the replacement list is scanned ! for nested macros. Further, any identifiers in the replacement list ! that are not expanded during this scan are never again eligible for ! expansion in the future, if the reason they were not expanded is that ! the macro in question was disabled. Clearly this latter condition can only apply to tokens resulting from argument pre-expansion. Other tokens never have an opportunity to be *************** looking for the _next_ token do we pop i *** 529,555 **** lower context. This makes backing up by one token easy, but more importantly ensures that the macro corresponding to the current context is still disabled when we are considering the last token of its ! replacement list for expansion (or indeed expanding it). As an example, ! which illustrates many of the points above, consider #define foo(x) bar x foo(foo) (2) ! which fully expands to 'bar foo (2)'. During pre-expansion of the ! argument, 'foo' does not expand even though the macro is enabled, since it has no following parenthesis [pre-expansion of an argument only uses tokens from that argument; it cannot take tokens from whatever follows ! the macro invocation]. This still leaves the argument token 'foo' eligible for future expansion. Then, when re-scanning after argument ! replacement, the token 'foo' is rejected for expansion, and marked ! ineligible for future expansion, since the macro is now disabled. It is ! disabled because the replacement list 'bar foo' of the macro is still on ! the context stack. If instead the algorithm looked for an opening parenthesis first and then tested whether the macro were disabled it would be subtly wrong. ! In the example above, the replacement list of 'foo' would be popped in ! the process of finding the parenthesis, re-enabling 'foo' and expanding it a second time. Looking for a function-like macro's opening parenthesis --- 530,556 ---- lower context. This makes backing up by one token easy, but more importantly ensures that the macro corresponding to the current context is still disabled when we are considering the last token of its ! replacement list for expansion (or indeed expanding it). As an ! example, which illustrates many of the points above, consider #define foo(x) bar x foo(foo) (2) ! which fully expands to `bar foo (2)'. During pre-expansion of the ! argument, `foo' does not expand even though the macro is enabled, since it has no following parenthesis [pre-expansion of an argument only uses tokens from that argument; it cannot take tokens from whatever follows ! the macro invocation]. This still leaves the argument token `foo' eligible for future expansion. Then, when re-scanning after argument ! replacement, the token `foo' is rejected for expansion, and marked ! ineligible for future expansion, since the macro is now disabled. It ! is disabled because the replacement list `bar foo' of the macro is ! still on the context stack. If instead the algorithm looked for an opening parenthesis first and then tested whether the macro were disabled it would be subtly wrong. ! In the example above, the replacement list of `foo' would be popped in ! the process of finding the parenthesis, re-enabling `foo' and expanding it a second time. Looking for a function-like macro's opening parenthesis *************** Function-like macros only expand when im *** 559,576 **** parenthesis. To do this cpplib needs to temporarily disable macros and read the next token. Unfortunately, because of spacing issues (*note Token Spacing::), there can be fake padding tokens in-between, and if ! the next real token is not a parenthesis cpplib needs to be able to back ! up that one token as well as retain the information in any intervening ! padding tokens. Backing up more than one token when macros are involved is not permitted by cpplib, because in general it might involve issues like restoring popped contexts onto the context stack, which are too hard. ! Instead, searching for the parenthesis is handled by a special function, ! 'funlike_invocation_p', which remembers padding information as it reads ! tokens. If the next real token is not an opening parenthesis, it backs ! up that one token, and then pushes an extra context just containing the ! padding information if necessary. Marking tokens ineligible for future expansion ============================================== --- 560,577 ---- parenthesis. To do this cpplib needs to temporarily disable macros and read the next token. Unfortunately, because of spacing issues (*note Token Spacing::), there can be fake padding tokens in-between, and if ! the next real token is not a parenthesis cpplib needs to be able to ! back up that one token as well as retain the information in any ! intervening padding tokens. Backing up more than one token when macros are involved is not permitted by cpplib, because in general it might involve issues like restoring popped contexts onto the context stack, which are too hard. ! Instead, searching for the parenthesis is handled by a special ! function, `funlike_invocation_p', which remembers padding information ! as it reads tokens. If the next real token is not an opening ! parenthesis, it backs up that one token, and then pushes an extra ! context just containing the padding information if necessary. Marking tokens ineligible for future expansion ============================================== *************** Marking tokens ineligible for future exp *** 578,589 **** As discussed above, cpplib needs a way of marking tokens as unexpandable. Since the tokens cpplib handles are read-only once they have been lexed, it instead makes a copy of the token and adds the flag ! 'NO_EXPAND' to the copy. For efficiency and to simplify memory management by avoiding having to remember to free these tokens, they are allocated as temporary tokens from the lexer's current token run (*note Lexing a line::) using the ! function '_cpp_temp_token'. The tokens are then re-used once the current line of tokens has been read in. This might sound unsafe. However, tokens runs are not re-used at the --- 579,590 ---- As discussed above, cpplib needs a way of marking tokens as unexpandable. Since the tokens cpplib handles are read-only once they have been lexed, it instead makes a copy of the token and adds the flag ! `NO_EXPAND' to the copy. For efficiency and to simplify memory management by avoiding having to remember to free these tokens, they are allocated as temporary tokens from the lexer's current token run (*note Lexing a line::) using the ! function `_cpp_temp_token'. The tokens are then re-used once the current line of tokens has been read in. This might sound unsafe. However, tokens runs are not re-used at the *************** both for aesthetic reasons and because i *** 618,637 **** still try to abuse the preprocessor for things like Fortran source and Makefiles. ! For now, just notice that when tokens are added (or removed, as shown ! by the 'EMPTY' example) from the original lexed token stream, we need to ! check for accidental token pasting. We call this "paste avoidance". ! Token addition and removal can only occur because of macro expansion, ! but accidental pasting can occur in many places: both before and after ! each macro replacement, each argument replacement, and additionally each ! token created by the '#' and '##' operators. ! Look at how the preprocessor gets whitespace output correct normally. ! The 'cpp_token' structure contains a flags byte, and one of those flags ! is 'PREV_WHITE'. This is flagged by the lexer, and indicates that the ! token was preceded by whitespace of some form other than a new line. ! The stand-alone preprocessor can use this flag to decide whether to ! insert a space between tokens in the output. Now consider the result of the following macro expansion: --- 619,638 ---- still try to abuse the preprocessor for things like Fortran source and Makefiles. ! For now, just notice that when tokens are added (or removed, as ! shown by the `EMPTY' example) from the original lexed token stream, we ! need to check for accidental token pasting. We call this "paste ! avoidance". Token addition and removal can only occur because of macro ! expansion, but accidental pasting can occur in many places: both before ! and after each macro replacement, each argument replacement, and ! additionally each token created by the `#' and `##' operators. ! Look at how the preprocessor gets whitespace output correct ! normally. The `cpp_token' structure contains a flags byte, and one of ! those flags is `PREV_WHITE'. This is flagged by the lexer, and ! indicates that the token was preceded by whitespace of some form other ! than a new line. The stand-alone preprocessor can use this flag to ! decide whether to insert a space between tokens in the output. Now consider the result of the following macro expansion: *************** insert a space between tokens in the out *** 639,677 **** sum = add (1,2, 3); ==> sum = 1 + 2 +3; ! The interesting thing here is that the tokens '1' and '2' are output ! with a preceding space, and '3' is output without a preceding space, but ! when lexed none of these tokens had that property. Careful ! consideration reveals that '1' gets its preceding whitespace from the ! space preceding 'add' in the macro invocation, _not_ replacement list. ! '2' gets its whitespace from the space preceding the parameter 'y' in ! the macro replacement list, and '3' has no preceding space because ! parameter 'z' has none in the replacement list. Once lexed, tokens are effectively fixed and cannot be altered, since pointers to them might be held in many places, in particular by in-progress macro expansions. So instead of modifying the two tokens ! above, the preprocessor inserts a special token, which I call a "padding ! token", into the token stream to indicate that spacing of the subsequent ! token is special. The preprocessor inserts padding tokens in front of ! every macro expansion and expanded macro argument. These point to a ! "source token" from which the subsequent real token should inherit its ! spacing. In the above example, the source tokens are 'add' in the macro ! invocation, and 'y' and 'z' in the macro replacement list, respectively. ! It is quite easy to get multiple padding tokens in a row, for example ! if a macro's first replacement token expands straight into another ! macro. #define foo bar #define bar baz [foo] ==> [baz] ! Here, two padding tokens are generated with sources the 'foo' token ! between the brackets, and the 'bar' token from foo's replacement list, ! respectively. Clearly the first padding token is the one to use, so the ! output code should contain a rule that the first padding token in a sequence is the one that matters. But what if a macro expansion is left? Adjusting the above example --- 640,679 ---- sum = add (1,2, 3); ==> sum = 1 + 2 +3; ! The interesting thing here is that the tokens `1' and `2' are output ! with a preceding space, and `3' is output without a preceding space, ! but when lexed none of these tokens had that property. Careful ! consideration reveals that `1' gets its preceding whitespace from the ! space preceding `add' in the macro invocation, _not_ replacement list. ! `2' gets its whitespace from the space preceding the parameter `y' in ! the macro replacement list, and `3' has no preceding space because ! parameter `z' has none in the replacement list. Once lexed, tokens are effectively fixed and cannot be altered, since pointers to them might be held in many places, in particular by in-progress macro expansions. So instead of modifying the two tokens ! above, the preprocessor inserts a special token, which I call a ! "padding token", into the token stream to indicate that spacing of the ! subsequent token is special. The preprocessor inserts padding tokens ! in front of every macro expansion and expanded macro argument. These ! point to a "source token" from which the subsequent real token should ! inherit its spacing. In the above example, the source tokens are `add' ! in the macro invocation, and `y' and `z' in the macro replacement list, ! respectively. ! It is quite easy to get multiple padding tokens in a row, for ! example if a macro's first replacement token expands straight into ! another macro. #define foo bar #define bar baz [foo] ==> [baz] ! Here, two padding tokens are generated with sources the `foo' token ! between the brackets, and the `bar' token from foo's replacement list, ! respectively. Clearly the first padding token is the one to use, so ! the output code should contain a rule that the first padding token in a sequence is the one that matters. But what if a macro expansion is left? Adjusting the above example *************** slightly: *** 683,695 **** [foo] EMPTY; ==> [ baz] ; ! As shown, now there should be a space before 'baz' and the semicolon in the output. ! The rules we decided above fail for 'baz': we generate three padding ! tokens, one per macro invocation, before the token 'baz'. We would then ! have it take its spacing from the first of these, which carries source ! token 'foo' with no leading space. It is vital that cpplib get spacing correct in these examples since any of these macro expansions could be stringified, where spacing --- 685,697 ---- [foo] EMPTY; ==> [ baz] ; ! As shown, now there should be a space before `baz' and the semicolon in the output. ! The rules we decided above fail for `baz': we generate three padding ! tokens, one per macro invocation, before the token `baz'. We would ! then have it take its spacing from the first of these, which carries ! source token `foo' with no leading space. It is vital that cpplib get spacing correct in these examples since any of these macro expansions could be stringified, where spacing *************** matters. *** 697,707 **** So, this demonstrates that not just entering macro and argument expansions, but leaving them requires special handling too. I made ! cpplib insert a padding token with a 'NULL' source token when leaving macro expansions, as well as after each replaced argument in a macro's replacement list. It also inserts appropriate padding tokens on either ! side of tokens created by the '#' and '##' operators. I expanded the ! rule so that, if we see a padding token with a 'NULL' source token, _and_ that source token has no leading space, then we behave as if we have seen no padding tokens at all. A quick check shows this rule will then get the above example correct as well. --- 699,709 ---- So, this demonstrates that not just entering macro and argument expansions, but leaving them requires special handling too. I made ! cpplib insert a padding token with a `NULL' source token when leaving macro expansions, as well as after each replaced argument in a macro's replacement list. It also inserts appropriate padding tokens on either ! side of tokens created by the `#' and `##' operators. I expanded the ! rule so that, if we see a padding token with a `NULL' source token, _and_ that source token has no leading space, then we behave as if we have seen no padding tokens at all. A quick check shows this rule will then get the above example correct as well. *************** implementation of paste avoidance easy: *** 713,719 **** preprocessor is fixing up spacing because of padding tokens, and it turns out that no space is needed, it has to take the extra step to check that a space is not needed after all to avoid an accidental paste. ! The function 'cpp_avoid_paste' advises whether a space is required between two consecutive tokens. To avoid excessive spacing, it tries hard to only require a space if one is likely to be necessary, but for reasons of efficiency it is slightly conservative and might recommend a --- 715,721 ---- preprocessor is fixing up spacing because of padding tokens, and it turns out that no space is needed, it has to take the extra step to check that a space is not needed after all to avoid an accidental paste. ! The function `cpp_avoid_paste' advises whether a space is required between two consecutive tokens. To avoid excessive spacing, it tries hard to only require a space if one is likely to be necessary, but for reasons of efficiency it is slightly conservative and might recommend a *************** There are three reasonable requirements *** 732,737 **** --- 734,740 ---- the line number of a token passed to it: * The source line it was lexed on. + * The line it is output on. This can be different to the line it was lexed on if, for example, there are intervening escaped newlines or C-style comments. For example: *************** the line number of a token passed to it: *** 746,759 **** name, or possibly the line of the closing parenthesis in the case of function-like macro expansion. ! The 'cpp_token' structure contains 'line' and 'col' members. The lexer fills these in with the line and column of the first character of the token. Consequently, but maybe unexpectedly, a token from the replacement list of a macro expansion carries the location of the token ! within the '#define' directive, because cpplib expands a macro by returning pointers to the tokens in its replacement list. The current ! implementation of cpplib assigns tokens created from built-in macros and ! the '#' and '##' operators the location of the most recently lexed token. This is a because they are allocated from the lexer's token runs, and because of the way the diagnostic routines infer the appropriate location to report. --- 749,762 ---- name, or possibly the line of the closing parenthesis in the case of function-like macro expansion. ! The `cpp_token' structure contains `line' and `col' members. The lexer fills these in with the line and column of the first character of the token. Consequently, but maybe unexpectedly, a token from the replacement list of a macro expansion carries the location of the token ! within the `#define' directive, because cpplib expands a macro by returning pointers to the tokens in its replacement list. The current ! implementation of cpplib assigns tokens created from built-in macros ! and the `#' and `##' operators the location of the most recently lexed token. This is a because they are allocated from the lexer's token runs, and because of the way the diagnostic routines infer the appropriate location to report. *************** line other than the first. *** 775,784 **** To solve these issues, cpplib provides a callback that is generated whenever it lexes a preprocessing token that starts a new logical line ! other than a directive. It passes this token (which may be a 'CPP_EOF' token indicating the end of the translation unit) to the callback ! routine, which can then use the line and column of this token to produce ! correct output. Representation of line numbers ============================== --- 778,787 ---- To solve these issues, cpplib provides a callback that is generated whenever it lexes a preprocessing token that starts a new logical line ! other than a directive. It passes this token (which may be a `CPP_EOF' token indicating the end of the translation unit) to the callback ! routine, which can then use the line and column of this token to ! produce correct output. Representation of line numbers ============================== *************** starts counting from one. *** 798,811 **** translation unit. With some simple infrastructure, it is straight forward to map from this to the original source file and line number pair, saving space whenever line number information needs to be saved. ! The code the implements this mapping lies in the files 'line-map.c' and ! 'line-map.h'. Command-line macros and assertions are implemented by pushing a ! buffer containing the right hand side of an equivalent '#define' or ! '#assert' directive. Some built-in macros are handled similarly. Since ! these are all processed before the first line of the main input file, it ! will typically have an assigned line closer to twenty than to one.  File: cppinternals.info, Node: Guard Macros, Next: Files, Prev: Line Numbering, Up: Top --- 801,815 ---- translation unit. With some simple infrastructure, it is straight forward to map from this to the original source file and line number pair, saving space whenever line number information needs to be saved. ! The code the implements this mapping lies in the files `line-map.c' and ! `line-map.h'. Command-line macros and assertions are implemented by pushing a ! buffer containing the right hand side of an equivalent `#define' or ! `#assert' directive. Some built-in macros are handled similarly. ! Since these are all processed before the first line of the main input ! file, it will typically have an assigned line closer to twenty than to ! one.  File: cppinternals.info, Node: Guard Macros, Next: Files, Prev: Line Numbering, Up: Top *************** Header files are often of the form *** 822,828 **** to prevent the compiler from processing them more than once. The preprocessor notices such header files, so that if the header file ! appears in a subsequent '#include' directive and 'FOO' is defined, then it is ignored and it doesn't preprocess or even re-open the file a second time. This is referred to as the "multiple include optimization". --- 826,832 ---- to prevent the compiler from processing them more than once. The preprocessor notices such header files, so that if the header file ! appears in a subsequent `#include' directive and `FOO' is defined, then it is ignored and it doesn't preprocess or even re-open the file a second time. This is referred to as the "multiple include optimization". *************** inclusion would result in no tokens to r *** 833,844 **** directives to process. Therefore the current implementation imposes requirements and makes some allowances as follows: ! 1. There must be no tokens outside the controlling '#if'-'#endif' pair, but whitespace and comments are permitted. ! 2. There must be no directives outside the controlling directive pair, ! but the "null directive" (a line containing nothing other than a ! single '#' and possibly whitespace) is permitted. 3. The opening directive must be of the form --- 837,848 ---- directives to process. Therefore the current implementation imposes requirements and makes some allowances as follows: ! 1. There must be no tokens outside the controlling `#if'-`#endif' pair, but whitespace and comments are permitted. ! 2. There must be no directives outside the controlling directive ! pair, but the "null directive" (a line containing nothing other ! than a single `#' and possibly whitespace) is permitted. 3. The opening directive must be of the form *************** requirements and makes some allowances a *** 848,915 **** #if !defined FOO [equivalently, #if !defined(FOO)] ! 4. In the second form above, the tokens forming the '#if' expression must have come directly from the source file--no macro expansion must have been involved. This is because macro definitions can ! change, and tracking whether or not a relevant change has been made ! is not worth the implementation cost. ! 5. There can be no '#else' or '#elif' directives at the outer conditional block level, because they would probably contain something of interest to a subsequent pass. First, when pushing a new file on the buffer stack, ! '_stack_include_file' sets the controlling macro 'mi_cmacro' to 'NULL', ! and sets 'mi_valid' to 'true'. This indicates that the preprocessor has ! not yet encountered anything that would invalidate the multiple-include ! optimization. As described in the next few paragraphs, these two ! variables having these values effectively indicates top-of-file. When about to return a token that is not part of a directive, ! '_cpp_lex_token' sets 'mi_valid' to 'false'. This enforces the constraint that tokens outside the controlling conditional block invalidate the optimization. ! The 'do_if', when appropriate, and 'do_ifndef' directive handlers ! pass the controlling macro to the function 'push_conditional'. cpplib maintains a stack of nested conditional blocks, and after processing ! every opening conditional this function pushes an 'if_stack' structure onto the stack. In this structure it records the controlling macro for the block, provided there is one and we're at top-of-file (as described ! above). If an '#elif' or '#else' directive is encountered, the ! controlling macro for that block is cleared to 'NULL'. Otherwise, it ! survives until the '#endif' closing the block, upon which 'do_endif' ! sets 'mi_valid' to true and stores the controlling macro in 'mi_cmacro'. ! '_cpp_handle_directive' clears 'mi_valid' when processing any directive other than an opening conditional and the null directive. With this, and requiring top-of-file to record a controlling macro, and ! no '#else' or '#elif' for it to survive and be copied to 'mi_cmacro' by ! 'do_endif', we have enforced the absence of directives outside the main conditional block for the optimization to be on. ! Note that whilst we are inside the conditional block, 'mi_valid' is ! likely to be reset to 'false', but this does not matter since the ! closing '#endif' restores it to 'true' if appropriate. ! Finally, since '_cpp_lex_direct' pops the file off the buffer stack ! at 'EOF' without returning a token, if the '#endif' directive was not ! followed by any tokens, 'mi_valid' is 'true' and '_cpp_pop_file_buffer' remembers the controlling macro associated with the file. Subsequent ! calls to 'stack_include_file' result in no buffer being pushed if the controlling macro is defined, effecting the optimization. A quick word on how we handle the #if !defined FOO ! case. '_cpp_parse_expr' and 'parse_defined' take steps to see whether ! the three stages '!', 'defined-expression' and 'end-of-directive' occur ! in order in a '#if' expression. If so, they return the guard macro to ! 'do_if' in the variable 'mi_ind_cmacro', and otherwise set it to 'NULL'. ! 'enter_macro_context' sets 'mi_valid' to false, so if a macro was ! expanded whilst parsing any part of the expression, then the top-of-file ! test in 'push_conditional' fails and the optimization is turned off.  File: cppinternals.info, Node: Files, Next: Concept Index, Prev: Guard Macros, Up: Top --- 852,921 ---- #if !defined FOO [equivalently, #if !defined(FOO)] ! 4. In the second form above, the tokens forming the `#if' expression must have come directly from the source file--no macro expansion must have been involved. This is because macro definitions can ! change, and tracking whether or not a relevant change has been ! made is not worth the implementation cost. ! 5. There can be no `#else' or `#elif' directives at the outer conditional block level, because they would probably contain something of interest to a subsequent pass. First, when pushing a new file on the buffer stack, ! `_stack_include_file' sets the controlling macro `mi_cmacro' to `NULL', ! and sets `mi_valid' to `true'. This indicates that the preprocessor ! has not yet encountered anything that would invalidate the ! multiple-include optimization. As described in the next few ! paragraphs, these two variables having these values effectively ! indicates top-of-file. When about to return a token that is not part of a directive, ! `_cpp_lex_token' sets `mi_valid' to `false'. This enforces the constraint that tokens outside the controlling conditional block invalidate the optimization. ! The `do_if', when appropriate, and `do_ifndef' directive handlers ! pass the controlling macro to the function `push_conditional'. cpplib maintains a stack of nested conditional blocks, and after processing ! every opening conditional this function pushes an `if_stack' structure onto the stack. In this structure it records the controlling macro for the block, provided there is one and we're at top-of-file (as described ! above). If an `#elif' or `#else' directive is encountered, the ! controlling macro for that block is cleared to `NULL'. Otherwise, it ! survives until the `#endif' closing the block, upon which `do_endif' ! sets `mi_valid' to true and stores the controlling macro in `mi_cmacro'. ! `_cpp_handle_directive' clears `mi_valid' when processing any directive other than an opening conditional and the null directive. With this, and requiring top-of-file to record a controlling macro, and ! no `#else' or `#elif' for it to survive and be copied to `mi_cmacro' by ! `do_endif', we have enforced the absence of directives outside the main conditional block for the optimization to be on. ! Note that whilst we are inside the conditional block, `mi_valid' is ! likely to be reset to `false', but this does not matter since the ! closing `#endif' restores it to `true' if appropriate. ! Finally, since `_cpp_lex_direct' pops the file off the buffer stack ! at `EOF' without returning a token, if the `#endif' directive was not ! followed by any tokens, `mi_valid' is `true' and `_cpp_pop_file_buffer' remembers the controlling macro associated with the file. Subsequent ! calls to `stack_include_file' result in no buffer being pushed if the controlling macro is defined, effecting the optimization. A quick word on how we handle the #if !defined FOO ! case. `_cpp_parse_expr' and `parse_defined' take steps to see whether ! the three stages `!', `defined-expression' and `end-of-directive' occur ! in order in a `#if' expression. If so, they return the guard macro to ! `do_if' in the variable `mi_ind_cmacro', and otherwise set it to `NULL'. ! `enter_macro_context' sets `mi_valid' to false, so if a macro was ! expanded whilst parsing any part of the expression, then the ! top-of-file test in `push_conditional' fails and the optimization is ! turned off.  File: cppinternals.info, Node: Files, Next: Concept Index, Prev: Guard Macros, Up: Top *************** File Handling *** 918,930 **** ************* Fairly obviously, the file handling code of cpplib resides in the file ! 'files.c'. It takes care of the details of file searching, opening, reading and caching, for both the main source file and all the headers it recursively includes. The basic strategy is to minimize the number of system calls. On ! many systems, the basic 'open ()' and 'fstat ()' system calls can be ! quite expensive. For every '#include'-d file, we need to try all the directories in the search path until we find a match. Some projects, such as glibc, pass twenty or thirty include paths on the command line, so this can rapidly become time consuming. --- 924,936 ---- ************* Fairly obviously, the file handling code of cpplib resides in the file ! `files.c'. It takes care of the details of file searching, opening, reading and caching, for both the main source file and all the headers it recursively includes. The basic strategy is to minimize the number of system calls. On ! many systems, the basic `open ()' and `fstat ()' system calls can be ! quite expensive. For every `#include'-d file, we need to try all the directories in the search path until we find a match. Some projects, such as glibc, pass twenty or thirty include paths on the command line, so this can rapidly become time consuming. *************** repeating the filesystem queries whilst *** 936,980 **** For each file we try to open, we store the constructed path in a splay tree. This path first undergoes simplification by the function ! '_cpp_simplify_pathname'. For example, '/usr/include/bits/../foo.h' is ! simplified to '/usr/include/foo.h' before we enter it in the splay tree ! and try to 'open ()' the file. CPP will then find subsequent uses of ! 'foo.h', even as '/usr/include/foo.h', in the splay tree and save system ! calls. ! Further, it is likely the file contents have also been cached, saving ! a 'read ()' system call. We don't bother caching the contents of header ! files that are re-inclusion protected, and whose re-inclusion macro is ! defined when we leave the header file for the first time. If the host ! supports it, we try to map suitably large files into memory, rather than ! reading them in directly. The include paths are internally stored on a null-terminated ! singly-linked list, starting with the '"header.h"' directory search ! chain, which then links into the '' directory chain. ! Files included with the '' syntax start the lookup directly in ! the second half of this chain. However, files included with the ! '"foo.h"' syntax start at the beginning of the chain, but with one extra ! directory prepended. This is the directory of the current file; the one ! containing the '#include' directive. Prepending this directory on a ! per-file basis is handled by the function 'search_from'. Note that a header included with a directory component, such as ! '#include "mydir/foo.h"' and opened as '/usr/local/include/mydir/foo.h', ! will have the complete path minus the basename 'foo.h' as the current ! directory. Enough information is stored in the splay tree that CPP can immediately tell whether it can skip the header file because of the ! multiple include optimization, whether the file didn't exist or couldn't ! be opened for some reason, or whether the header was flagged not to be ! re-used, as it is with the obsolete '#import' directive. For the benefit of MS-DOS filesystems with an 8.3 filename limitation, CPP offers the ability to treat various include file names as aliases for the real header files with shorter names. The map from ! one to the other is found in a special file called 'header.gcc', stored in the command line (or system) include directories to which the mapping applies. This may be higher up the directory tree than the full path to the file minus the base name. --- 942,986 ---- For each file we try to open, we store the constructed path in a splay tree. This path first undergoes simplification by the function ! `_cpp_simplify_pathname'. For example, `/usr/include/bits/../foo.h' is ! simplified to `/usr/include/foo.h' before we enter it in the splay tree ! and try to `open ()' the file. CPP will then find subsequent uses of ! `foo.h', even as `/usr/include/foo.h', in the splay tree and save ! system calls. ! Further, it is likely the file contents have also been cached, ! saving a `read ()' system call. We don't bother caching the contents of ! header files that are re-inclusion protected, and whose re-inclusion ! macro is defined when we leave the header file for the first time. If ! the host supports it, we try to map suitably large files into memory, ! rather than reading them in directly. The include paths are internally stored on a null-terminated ! singly-linked list, starting with the `"header.h"' directory search ! chain, which then links into the `' directory chain. ! Files included with the `' syntax start the lookup directly ! in the second half of this chain. However, files included with the ! `"foo.h"' syntax start at the beginning of the chain, but with one ! extra directory prepended. This is the directory of the current file; ! the one containing the `#include' directive. Prepending this directory ! on a per-file basis is handled by the function `search_from'. Note that a header included with a directory component, such as ! `#include "mydir/foo.h"' and opened as ! `/usr/local/include/mydir/foo.h', will have the complete path minus the ! basename `foo.h' as the current directory. Enough information is stored in the splay tree that CPP can immediately tell whether it can skip the header file because of the ! multiple include optimization, whether the file didn't exist or ! couldn't be opened for some reason, or whether the header was flagged ! not to be re-used, as it is with the obsolete `#import' directive. For the benefit of MS-DOS filesystems with an 8.3 filename limitation, CPP offers the ability to treat various include file names as aliases for the real header files with shorter names. The map from ! one to the other is found in a special file called `header.gcc', stored in the command line (or system) include directories to which the mapping applies. This may be higher up the directory tree than the full path to the file minus the base name. *************** Concept Index *** 990,996 **** * assertions: Hash Nodes. (line 6) * controlling macros: Guard Macros. (line 6) ! * escaped newlines: Lexer. (line 5) * files: Files. (line 6) * guard macros: Guard Macros. (line 6) * hash table: Hash Nodes. (line 6) --- 996,1002 ---- * assertions: Hash Nodes. (line 6) * controlling macros: Guard Macros. (line 6) ! * escaped newlines: Lexer. (line 6) * files: Files. (line 6) * guard macros: Guard Macros. (line 6) * hash table: Hash Nodes. (line 6) *************** Concept Index *** 998,1004 **** * identifiers: Hash Nodes. (line 6) * interface: Conventions. (line 6) * lexer: Lexer. (line 6) ! * line numbers: Line Numbering. (line 5) * macro expansion: Macro Expansion. (line 6) * macro representation (internal): Macro Expansion. (line 19) * macros: Hash Nodes. (line 6) --- 1004,1010 ---- * identifiers: Hash Nodes. (line 6) * interface: Conventions. (line 6) * lexer: Lexer. (line 6) ! * line numbers: Line Numbering. (line 6) * macro expansion: Macro Expansion. (line 6) * macro representation (internal): Macro Expansion. (line 19) * macros: Hash Nodes. (line 6) *************** Concept Index *** 1007,1029 **** * newlines: Lexer. (line 6) * paste avoidance: Token Spacing. (line 6) * spacing: Token Spacing. (line 6) ! * token run: Lexer. (line 191) * token spacing: Token Spacing. (line 6)  Tag Table: ! Node: Top905 ! Node: Conventions2590 ! Node: Lexer3532 ! Ref: Invalid identifiers11447 ! Ref: Lexing a line13397 ! Node: Hash Nodes18170 ! Node: Macro Expansion21049 ! Node: Token Spacing29997 ! Node: Line Numbering35854 ! Node: Guard Macros39939 ! Node: Files44730 ! Node: Concept Index48196  End Tag Table --- 1013,1035 ---- * newlines: Lexer. (line 6) * paste avoidance: Token Spacing. (line 6) * spacing: Token Spacing. (line 6) ! * token run: Lexer. (line 192) * token spacing: Token Spacing. (line 6)  Tag Table: ! Node: Top958 ! Node: Conventions2643 ! Node: Lexer3585 ! Ref: Invalid identifiers11498 ! Ref: Lexing a line13447 ! Node: Hash Nodes18220 ! Node: Macro Expansion21099 ! Node: Token Spacing30046 ! Node: Line Numbering35906 ! Node: Guard Macros39991 ! Node: Files44782 ! Node: Concept Index48248  End Tag Table diff -Nrcpad gcc-4.9.3/gcc/doc/extend.texi gcc-4.9.4/gcc/doc/extend.texi *** gcc-4.9.3/gcc/doc/extend.texi Tue May 5 14:25:35 2015 --- gcc-4.9.4/gcc/doc/extend.texi Thu Oct 15 16:40:14 2015 *************** unsigned int __builtin_tresume (void) *** 15505,15510 **** --- 15505,15532 ---- unsigned int __builtin_tsuspend (void) @end smallexample + Note that the semantics of the above HTM builtins are required to mimic + the locking semantics used for critical sections. Builtins that are used + to create a new transaction or restart a suspended transaction must have + lock acquisition like semantics while those builtins that end or suspend a + transaction must have lock release like semantics. Specifically, this must + mimic lock semantics as specified by C++11, for example: Lock acquisition is + as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE) + that returns 0, and lock release is as-if an execution of + __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an + implicit implementation-defined lock used for all transactions. The HTM + instructions associated with with the builtins inherently provide the + correct acquisition and release hardware barriers required. However, + the compiler must also be prohibited from moving loads and stores across + the builtins in a way that would violate their semantics. This has been + accomplished by adding memory barriers to the associated HTM instructions + (which is a conservative approach to provide acquire and release semantics). + Earlier versions of the compiler did not treat the HTM instructions as + memory barriers. A @code{__TM_FENCE__} macro has been added, which can + be used to determine whether the current compiler treats HTM instructions + as memory barriers or not. This allows the user to explicitly add memory + barriers to their code when using an older version of the compiler. + The following set of built-in functions are available to gain access to the HTM specific special purpose registers. diff -Nrcpad gcc-4.9.3/gcc/doc/fsf-funding.7 gcc-4.9.4/gcc/doc/fsf-funding.7 *** gcc-4.9.3/gcc/doc/fsf-funding.7 Fri Jun 26 18:05:21 2015 --- gcc-4.9.4/gcc/doc/fsf-funding.7 Wed Aug 3 05:16:33 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "FSF-FUNDING 7" ! .TH FSF-FUNDING 7 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "FSF-FUNDING 7" ! .TH FSF-FUNDING 7 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** *** 142,148 **** fsf\-funding \- Funding Free Software .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! .SS "Funding Free Software" .IX Subsection "Funding Free Software" If you want to have more free software a few years from now, it makes sense for you to help encourage people to contribute funds for its --- 141,147 ---- fsf\-funding \- Funding Free Software .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! .Sh "Funding Free Software" .IX Subsection "Funding Free Software" If you want to have more free software a few years from now, it makes sense for you to help encourage people to contribute funds for its diff -Nrcpad gcc-4.9.3/gcc/doc/g++.1 gcc-4.9.4/gcc/doc/g++.1 *** gcc-4.9.3/gcc/doc/g++.1 Fri Jun 26 18:49:08 2015 --- gcc-4.9.4/gcc/doc/g++.1 Wed Aug 3 06:14:16 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** Only the most useful options are listed *** 154,160 **** remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC,\s0 it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files --- 153,159 ---- remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC\s0, it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files *************** these have both positive and negative fo *** 189,195 **** only one of these two forms, whichever one is not the default. .SH "OPTIONS" .IX Header "OPTIONS" ! .SS "Option Summary" .IX Subsection "Option Summary" Here is a summary of all the options, grouped by type. Explanations are in the following sections. --- 188,194 ---- only one of these two forms, whichever one is not the default. .SH "OPTIONS" .IX Header "OPTIONS" ! .Sh "Option Summary" .IX Subsection "Option Summary" Here is a summary of all the options, grouped by type. Explanations are in the following sections. *************** See \s-1RS/6000\s0 and PowerPC Options. *** 942,948 **** \&\-mpointers\-to\-nested\-functions \-mno\-pointers\-to\-nested\-functions \&\-msave\-toc\-indirect \-mno\-save\-toc\-indirect \&\-mpower8\-fusion \-mno\-mpower8\-fusion \-mpower8\-vector \-mno\-power8\-vector ! \&\-mcrypto \-mno\-crypto \-mdirect\-move \-mno\-direct\-move \&\-mquad\-memory \-mno\-quad\-memory \&\-mquad\-memory\-atomic \-mno\-quad\-memory\-atomic \&\-mcompat\-align\-parm \-mno\-compat\-align\-parm\fR --- 941,947 ---- \&\-mpointers\-to\-nested\-functions \-mno\-pointers\-to\-nested\-functions \&\-msave\-toc\-indirect \-mno\-save\-toc\-indirect \&\-mpower8\-fusion \-mno\-mpower8\-fusion \-mpower8\-vector \-mno\-power8\-vector ! \&\-mcrypto \-mno\-crypto \-mhtm \-mno\-htm \-mdirect\-move \-mno\-direct\-move \&\-mquad\-memory \-mno\-quad\-memory \&\-mquad\-memory\-atomic \-mno\-quad\-memory\-atomic \&\-mcompat\-align\-parm \-mno\-compat\-align\-parm\fR *************** See S/390 and zSeries Options. *** 1111,1117 **** \&\fB\-fstack\-reuse=\fR\fIreuse_level\fR \&\fB\-ftrapv \-fwrapv \-fbounds\-check \&\-fvisibility \-fstrict\-volatile\-bitfields \-fsync\-libcalls\fR ! .SS "Options Controlling the Kind of Output" .IX Subsection "Options Controlling the Kind of Output" Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. \s-1GCC\s0 is capable of --- 1110,1116 ---- \&\fB\-fstack\-reuse=\fR\fIreuse_level\fR \&\fB\-ftrapv \-fwrapv \-fbounds\-check \&\-fvisibility \-fstrict\-volatile\-bitfields \-fsync\-libcalls\fR ! .Sh "Options Controlling the Kind of Output" .IX Subsection "Options Controlling the Kind of Output" Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. \s-1GCC\s0 is capable of *************** option. *** 1415,1421 **** .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC.\s0 .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. --- 1414,1420 ---- .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC\s0. .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. *************** or \fB/./\fR, or make the path absolute *** 1512,1518 **** prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC.\s0 .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the --- 1511,1517 ---- prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC\s0. .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the *************** the shared object file is used to identi *** 1534,1540 **** purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API.\s0 .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR --- 1533,1539 ---- purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API\s0. .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR *************** option in either single or double quotes *** 1566,1573 **** backslash) may be included by prefixing the character to be included with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. ! .SS "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, --- 1565,1572 ---- backslash) may be included by prefixing the character to be included with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. ! .Sh "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, *************** When you compile \*(C+ programs, you may *** 1590,1596 **** command-line options that you use for compiling programs in any language; or command-line options meaningful for C and related languages; or options that are meaningful only for \*(C+ programs. ! .SS "Options Controlling C Dialect" .IX Subsection "Options Controlling C Dialect" The following options control the dialect of C (or languages derived from C, such as \*(C+, Objective-C and Objective\-\*(C+) that the compiler --- 1589,1595 ---- command-line options that you use for compiling programs in any language; or command-line options meaningful for C and related languages; or options that are meaningful only for \*(C+ programs. ! .Sh "Options Controlling C Dialect" .IX Subsection "Options Controlling C Dialect" The following options control the dialect of C (or languages derived from C, such as \*(C+, Objective-C and Objective\-\*(C+) that the compiler *************** accepts: *** 1600,1607 **** In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO ! C90 \s0(when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and --- 1599,1606 ---- In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO\s0 ! C90 (when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and *************** the \f(CW\*(C`inline\*(C'\fR keyword. *** 1611,1617 **** .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO C\s0 program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or --- 1610,1616 ---- .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO\s0 C program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or *************** from declaring certain functions or defi *** 1628,1634 **** programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO C \s0(such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" --- 1627,1633 ---- programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO\s0 C (such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" *************** The compiler can accept several base sta *** 1641,1649 **** compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO C90,\s0 such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO C90,\s0 such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some --- 1640,1648 ---- compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO\s0 C90, such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO\s0 C90, such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some *************** A value for this option must be provided *** 1663,1673 **** .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO C90\s0 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO C90\s0 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO C90\s0 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 --- 1662,1672 ---- .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO\s0 C90 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO\s0 C90 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO\s0 C90 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 *************** with \s-1ISO C90\s0 are disabled). Same *** 1678,1684 **** .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO C99. \s0 This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used) and floating-point issues (mainly but not entirely relating to optional C99 features from --- 1677,1683 ---- .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO\s0 C99. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used) and floating-point issues (mainly but not entirely relating to optional C99 features from *************** names \fBc9x\fR and \fBiso9899:199x\fR a *** 1693,1699 **** .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO C11,\s0 the 2011 revision of the \s-1ISO C\s0 standard. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used), floating-point issues --- 1692,1698 ---- .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO\s0 C11, the 2011 revision of the \s-1ISO\s0 C standard. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used), floating-point issues *************** interfaces) and L (Analyzability). The *** 1706,1712 **** .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C90 \s0(including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" --- 1705,1711 ---- .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C90 (including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" *************** is the default for C code. *** 1714,1735 **** .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C99. \s0 The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" .PD 0 .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C11. \s0 This is intended to become the default in a ! future release of \s-1GCC. \s0 The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" .PD 0 .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO \*(C+\s0 standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" --- 1713,1734 ---- .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C99. The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" .PD 0 .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C11. This is intended to become the default in a ! future release of \s-1GCC\s0. The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" .PD 0 .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO\s0 \*(C+ standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" *************** additional defect reports. Same as \fB\- *** 1745,1751 **** .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO \*(C+\s0 standard plus amendments. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 .IX Item "gnu++11" --- 1744,1750 ---- .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO\s0 \*(C+ standard plus amendments. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 .IX Item "gnu++11" *************** The name \fBc++0x\fR is deprecated. *** 1757,1763 **** The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO \*(C+\s0 standard, tentatively planned for 2014. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 --- 1756,1762 ---- The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO\s0 \*(C+ standard, tentatively planned for 2014. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 *************** C99 mode. Using this option is roughly *** 1781,1787 **** The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC 4.3. \s0 This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and --- 1780,1786 ---- The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC\s0 4.3. This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and *************** In \*(C+, this switch only affects the \ *** 1821,1827 **** use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO C99.\s0 .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 --- 1820,1826 ---- use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO\s0 C99. .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 *************** known not to modify global memory. *** 1849,1855 **** With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC,\s0 this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or --- 1848,1854 ---- With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC\s0, this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or *************** When the option \fB\-fgnu\-tm\fR is spec *** 1903,1909 **** generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC,\s0 as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, --- 1902,1908 ---- generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC\s0, as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, *************** fields declared using a typedef. This *** 1940,1947 **** supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO C\s0 trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO C\s0 conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 --- 1939,1946 ---- supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO\s0 C trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO\s0 C conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 *************** options for strict \s-1ISO C\s0 conforma *** 1950,1957 **** .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU ! CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and --- 1949,1956 ---- .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU\s0 ! \&\s-1CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and *************** These options control whether a bit-fiel *** 2001,2008 **** declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. ! .SS "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you --- 2000,2007 ---- declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. ! .Sh "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you *************** might compile a file \f(CW\*(C`firstClas *** 2014,2025 **** .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC.\s0 .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI. \s0 The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 --- 2013,2024 ---- .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC\s0. .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI\s0. The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 *************** Inject friend functions into the enclosi *** 2094,2100 **** visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO \*(C+\s0 a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. --- 2093,2099 ---- visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO\s0 \*(C+ a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. *************** controlled by \fB#pragma implementation\ *** 2178,2189 **** errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC,\s0 such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO C. \s0 These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" --- 2177,2188 ---- errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC\s0, such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO\s0 C. These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" *************** warning or error to \fIn\fR. The defaul *** 2257,2263 **** .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO \*(C+\s0 conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. --- 2256,2262 ---- .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO\s0 \*(C+ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. *************** are taken in different shared objects. *** 2288,2294 **** The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO. \s0 Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp --- 2287,2293 ---- The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO\s0. Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp *************** is used when building the \*(C+ library. *** 2400,2408 **** In addition, these optimization, warning, and code generation options have meanings only for \*(C+ programs: .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI. \s0 Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated --- 2399,2407 ---- In addition, these optimization, warning, and code generation options have meanings only for \*(C+ programs: .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI\s0. Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated *************** This is on by default for all pre\-\*(C+ *** 2615,2621 **** \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO \*(C+11\s0 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 --- 2614,2620 ---- \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO\s0 \*(C+11 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 *************** Warn when overload resolution chooses a *** 2711,2717 **** enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve unsignedness, but the standard mandates the current behavior. ! .SS "Options Controlling Objective-C and Objective\-\*(C+ Dialects" .IX Subsection "Options Controlling Objective-C and Objective- Dialects" (\s-1NOTE:\s0 This manual does not describe the Objective-C and Objective\-\*(C+ languages themselves. --- 2710,2716 ---- enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve unsignedness, but the standard mandates the current behavior. ! .Sh "Options Controlling Objective-C and Objective\-\*(C+ Dialects" .IX Subsection "Options Controlling Objective-C and Objective- Dialects" (\s-1NOTE:\s0 This manual does not describe the Objective-C and Objective\-\*(C+ languages themselves. *************** For example, you might compile a file \f *** 2727,2733 **** .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC.\s0 .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., --- 2726,2732 ---- .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC\s0. .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., *************** runtime. This is the default for most t *** 2752,2758 **** .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS X. \s0 The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 --- 2751,2757 ---- .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS\s0 X. The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 *************** This option is currently supported only *** 2769,2775 **** case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI. \s0 If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 --- 2768,2774 ---- case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI\s0. If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 *************** by the runtime immediately after a new o *** 2793,2799 **** the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS X 10.4\s0 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 --- 2792,2798 ---- the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS\s0 X 10.4 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 *************** is required to use the Objective-C keywo *** 2808,2814 **** \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS X 10.2\s0 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ --- 2807,2813 ---- \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS\s0 X 10.2 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ *************** programs. This option is only available *** 2817,2839 **** does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI,\s0 check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI,\s0 is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC 4.0. \s0 This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC 4.0\s0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC.\s0 .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in --- 2816,2838 ---- does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI\s0, check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI\s0, is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC\s0 4.0. This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC\s0 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC\s0. .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in *************** run time instead. This is used in conju *** 2842,2848 **** debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS X 10.3\s0 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" --- 2841,2847 ---- debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS\s0 X 10.3 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" *************** that methods and selectors must be decla *** 2908,2914 **** .IX Item "-print-objc-runtime-info" Generate C header describing the largest structure that is passed by value, if any. ! .SS "Options to Control Diagnostic Messages Formatting" .IX Subsection "Options to Control Diagnostic Messages Formatting" Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the --- 2907,2913 ---- .IX Item "-print-objc-runtime-info" Generate C header describing the largest structure that is passed by value, if any. ! .Sh "Options to Control Diagnostic Messages Formatting" .IX Subsection "Options to Control Diagnostic Messages Formatting" Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the *************** honor these options. *** 2921,2927 **** .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC. \s0 If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 --- 2920,2926 ---- .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC\s0. If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 *************** option is known to the diagnostic machin *** 3022,3035 **** By default, each diagnostic emitted includes the original source line and a caret '^' indicating the column. This option suppresses this information. ! .SS "Options to Request or Suppress Warnings" .IX Subsection "Options to Request or Suppress Warnings" Warnings are diagnostic messages that report constructions that are not inherently erroneous but that are risky or suggest there may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC.\s0 .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. --- 3021,3034 ---- By default, each diagnostic emitted includes the original source line and a caret '^' indicating the column. This option suppresses this information. ! .Sh "Options to Request or Suppress Warnings" .IX Subsection "Options to Request or Suppress Warnings" Warnings are diagnostic messages that report constructions that are not inherently erroneous but that are risky or suggest there may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC\s0. .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. *************** warns that an unrecognized option is pre *** 3095,3108 **** .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO C\s0 and \s-1ISO \*(C+\s0; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO C\s0 and \s-1ISO \*(C+. \s0 For \s-1ISO C,\s0 follows the ! version of the \s-1ISO C\s0 standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO C\s0 and \s-1ISO \*(C+\s0 programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO C\s0). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp --- 3094,3107 ---- .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO\s0 C and \s-1ISO\s0 \*(C+; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO\s0 C and \s-1ISO\s0 \*(C+. For \s-1ISO\s0 C, follows the ! version of the \s-1ISO\s0 C standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO\s0 C and \s-1ISO\s0 \*(C+ programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO\s0 C). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp *************** warnings are also disabled in the expres *** 3112,3135 **** \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO ! C\s0 conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO C \s0\fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO C\s0 might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO C\s0 on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU ! C\s0 dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 --- 3111,3134 ---- \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO\s0 ! C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO\s0 C \fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO\s0 C might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO\s0 C on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU\s0 ! C dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 *************** functions without the attribute specifie *** 3297,3303 **** \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO C90\s0 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a --- 3296,3302 ---- \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO\s0 C90 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a *************** enabled by default and it is made into a *** 3409,3420 **** Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO C\s0 such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO C\s0 prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp --- 3408,3419 ---- Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO\s0 C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO\s0 C prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp *************** between \fB\-Wswitch\fR and this option *** 3581,3589 **** warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC 4.4.\s0 .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of --- 3580,3588 ---- warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC\s0 4.4. .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of *************** This warning is enabled by \fB\-Wall\fR. *** 3620,3626 **** .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 --- 3619,3625 ---- .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 *************** This warning is enabled by \fB\-Wall\fR *** 3727,3733 **** .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC. \s0 If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 --- 3726,3732 ---- .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC\s0. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 *************** probably mistaken. *** 3928,3940 **** .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO C\s0 it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive --- 3927,3939 ---- .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO\s0 C it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive *************** versa. The absence of these prototypes *** 3989,3997 **** C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO C\s0 style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO C\s0 features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to --- 3988,3996 ---- C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO\s0 C style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO\s0 C features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to *************** except when the same as the default prom *** 4009,4017 **** .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO C99\s0 and is by default ! allowed in \s-1GCC. \s0 It is not supported by \s-1ISO C90\s0 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC 3.0. \s0 .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. --- 4008,4016 ---- .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO\s0 C99 and is by default ! allowed in \s-1GCC\s0. It is not supported by \s-1ISO\s0 C90 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC\s0 3.0. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. *************** which depend on the \s-1MS\s0 runtime. *** 4088,4094 **** .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU C\s0 assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. --- 4087,4093 ---- .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU\s0 C assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. *************** Warn whenever a function call is cast to *** 4105,4118 **** For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO C\s0 constructs that are outside of the common subset of ! \&\s-1ISO C\s0 and \s-1ISO \*(C+,\s0 e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO \*(C+ 1998\s0 ! and \s-1ISO \*(C+ 2011,\s0 e.g., identifiers in \s-1ISO \*(C+ 1998\s0 that are keywords ! in \s-1ISO \*(C+ 2011. \s0 This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" --- 4104,4117 ---- For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO\s0 C constructs that are outside of the common subset of ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+, e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO\s0 \*(C+ 1998 ! and \s-1ISO\s0 \*(C+ 2011, e.g., identifiers in \s-1ISO\s0 \*(C+ 1998 that are keywords ! in \s-1ISO\s0 \*(C+ 2011. This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" *************** Usually they indicate a typo in the user *** 4355,4379 **** implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO C\s0 and \s-1ISO \*(C+,\s0 two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO 10646\s0 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC. \s0 The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO 10646 \*(L"C\*(R"\s0 normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO C\s0 and \s-1ISO \*(C+\s0 that, when turned into \s-1NFC,\s0 are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO C\s0 or \*(C+ and have all your identifiers in \s-1NFC. ! \&\s0\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp --- 4354,4378 ---- implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO\s0 C and \s-1ISO\s0 \*(C+, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO\s0 10646 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC\s0. The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO\s0 10646 \*(L"C\*(R" normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+ that, when turned into \s-1NFC\s0, are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO\s0 C or \*(C+ and have all your identifiers in \s-1NFC\s0. ! \&\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp *************** You can switch the warning off for all c *** 4382,4392 **** are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO 10646\s0 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT LATIN SMALL ! LETTER N\*(R",\s0 displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO 10646\s0 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning --- 4381,4391 ---- are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO\s0 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT\s0 \s-1LATIN\s0 \s-1SMALL\s0 ! \&\s-1LETTER\s0 N\*(R", displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO\s0 10646 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning *************** have the packed attribute: *** 4440,4448 **** .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC 4.4\s0 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC 4.4.\s0 For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp --- 4439,4447 ---- .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC\s0 4.4 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC\s0 4.4. For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp *************** warnings produced by \fB\-Winline\fR to *** 4489,4495 **** .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO \*(C+\s0 standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple --- 4488,4494 ---- .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO\s0 \*(C+ standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple *************** the search path but can't be used. *** 4516,4527 **** .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO C90\s0 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO C90\s0 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO C99\s0 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" --- 4515,4526 ---- .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO\s0 C90 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO\s0 C90 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO\s0 C99 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" *************** standard's minimum limit, but very porta *** 4584,4590 **** using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL. \s0 In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp --- 4583,4589 ---- using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL\s0. In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp *************** a suffix. When used together with \fB\- *** 4597,4610 **** warns about such constants in system header files. This can be useful when preparing code to use with the \f(CW\*(C`FLOAT_CONST_DECIMAL64\*(C'\fR pragma from the decimal floating-point extension to C99. ! .SS "Options for Debugging Your Program or \s-1GCC\s0" .IX Subsection "Options for Debugging Your Program or GCC" \&\s-1GCC\s0 has various special options that are used for debugging either your program or \s-1GCC:\s0 .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF, XCOFF,\s0 or \s-1DWARF 2\s0). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra --- 4596,4609 ---- warns about such constants in system header files. This can be useful when preparing code to use with the \f(CW\*(C`FLOAT_CONST_DECIMAL64\*(C'\fR pragma from the decimal floating-point extension to C99. ! .Sh "Options for Debugging Your Program or \s-1GCC\s0" .IX Subsection "Options for Debugging Your Program or GCC" \&\s-1GCC\s0 has various special options that are used for debugging either your program or \s-1GCC:\s0 .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF\s0, \s-1XCOFF\s0, or \s-1DWARF\s0 2). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra *************** be useful, this option requires a debugg *** 4637,4644 **** files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB. \s0 This means to use the ! most expressive format available (\s-1DWARF 2,\s0 stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 --- 4636,4643 ---- files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB\s0. This means to use the ! most expressive format available (\s-1DWARF\s0 2, stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 *************** with a linker that can produce \s-1GDB\s *** 4653,4660 **** .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS,\s0 Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB.\s0 On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" --- 4652,4659 ---- .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS\s0, Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB\s0. On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" *************** System V Release 4. *** 4691,4697 **** .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), --- 4690,4696 ---- .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM\s0 \s-1RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), *************** The value of \fIversion\fR may be either *** 4706,4714 **** for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF 3\s0 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB 7.0\s0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" --- 4705,4713 ---- for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF\s0 3 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB\s0 7.0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" *************** debug information in version 1 of the \s *** 4770,4776 **** different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF.\s0 .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option --- 4769,4775 ---- different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF\s0. .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option *************** many times it is given. This is mainly *** 4784,4806 **** Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. ! See <\fBhttp://code.google.com/p/address\-sanitizer/\fR> for more details. The run-time behavior can be influenced using the ! \&\fB\s-1ASAN_OPTIONS\s0\fR environment variable; see ! <\fBhttps://code.google.com/p/address\-sanitizer/wiki/Flags#Run\-time_flags\fR> for ! a list of supported options. .IP "\fB\-fsanitize=kernel\-address\fR" 4 .IX Item "-fsanitize=kernel-address" Enable AddressSanitizer for Linux kernel. ! See <\fBhttp://code.google.com/p/address\-sanitizer/wiki/AddressSanitizerForKernel\fR> for more details. .IP "\fB\-fsanitize=thread\fR" 4 .IX Item "-fsanitize=thread" Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect ! data race bugs. See <\fBhttp://code.google.com/p/thread\-sanitizer/\fR> for more details. The run-time behavior can be influenced using the \fB\s-1TSAN_OPTIONS\s0\fR environment variable; see ! <\fBhttps://code.google.com/p/thread\-sanitizer/wiki/Flags\fR> for a list of supported options. .IP "\fB\-fsanitize=leak\fR" 4 .IX Item "-fsanitize=leak" --- 4783,4806 ---- Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. ! See <\fBhttps://github.com/google/sanitizers/wiki/AddressSanitizer\fR> for more details. The run-time behavior can be influenced using the ! \&\fB\s-1ASAN_OPTIONS\s0\fR environment variable. When set to \f(CW\*(C`help=1\*(C'\fR, ! the available options are shown at startup of the instrumended program. See ! <\fBhttps://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run\-time\-flags\fR> ! for a list of supported options. .IP "\fB\-fsanitize=kernel\-address\fR" 4 .IX Item "-fsanitize=kernel-address" Enable AddressSanitizer for Linux kernel. ! See <\fBhttps://github.com/google/sanitizers/wiki#threadsanitizer\fR> for more details. .IP "\fB\-fsanitize=thread\fR" 4 .IX Item "-fsanitize=thread" Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect ! data race bugs. See <\fBhttps://github.com/google/sanitizers/wiki/ThreadSanitizerFlags\fR> for more details. The run-time behavior can be influenced using the \fB\s-1TSAN_OPTIONS\s0\fR environment variable; see ! <\fBhttps://github.com/google/sanitizers/wiki/ThreadSanitizerFlags\fR> for a list of supported options. .IP "\fB\-fsanitize=leak\fR" 4 .IX Item "-fsanitize=leak" *************** This option only matters for linking of *** 4809,4815 **** \&\fB\-fsanitize=address\fR nor \fB\-fsanitize=thread\fR is used. In that case it will link the executable against a library that overrides \f(CW\*(C`malloc\*(C'\fR and other allocator functions. See ! <\fBhttps://code.google.com/p/address\-sanitizer/wiki/LeakSanitizer\fR> for more details. The run-time behavior can be influenced using the \&\fB\s-1LSAN_OPTIONS\s0\fR environment variable. .IP "\fB\-fsanitize=undefined\fR" 4 --- 4809,4815 ---- \&\fB\-fsanitize=address\fR nor \fB\-fsanitize=thread\fR is used. In that case it will link the executable against a library that overrides \f(CW\*(C`malloc\*(C'\fR and other allocator functions. See ! <\fBhttps://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer\fR> for more details. The run-time behavior can be influenced using the \&\fB\s-1LSAN_OPTIONS\s0\fR environment variable. .IP "\fB\-fsanitize=undefined\fR" 4 *************** at runtime. Current suboptions are: *** 4822,4828 **** .IX Item "-fsanitize=shift" This option enables checking that the result of a shift operation is not undefined. Note that what exactly is considered undefined differs ! slightly between C and \*(C+, as well as between \s-1ISO C90\s0 and C99, etc. .IP "\fB\-fsanitize=integer\-divide\-by\-zero\fR" 4 .IX Item "-fsanitize=integer-divide-by-zero" Detect integer division by zero as well as \f(CW\*(C`INT_MIN / \-1\*(C'\fR division. --- 4822,4828 ---- .IX Item "-fsanitize=shift" This option enables checking that the result of a shift operation is not undefined. Note that what exactly is considered undefined differs ! slightly between C and \*(C+, as well as between \s-1ISO\s0 C90 and C99, etc. .IP "\fB\-fsanitize=integer\-divide\-by\-zero\fR" 4 .IX Item "-fsanitize=integer-divide-by-zero" Detect integer division by zero as well as \f(CW\*(C`INT_MIN / \-1\*(C'\fR division. *************** When this option is passed to the compil *** 4915,4923 **** other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF 2\s0 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF 2\s0 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types --- 4915,4923 ---- other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF\s0 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF\s0 2 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types *************** but at significant potential loss in typ *** 4929,4935 **** See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types --- 4929,4935 ---- See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types *************** with some potential loss in type informa *** 4942,4948 **** See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types --- 4942,4948 ---- See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types *************** You may need to experiment to determine *** 4988,4994 **** .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging --- 4988,4994 ---- .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging *************** When compiling files in directory \fI\fI *** 5002,5009 **** information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF 2\s0 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS \s0\f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the --- 5002,5009 ---- information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF\s0 2 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS\s0 \f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the *************** For example, with \fB\-fdbg\-cnt=dce:10, *** 5160,5166 **** .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC.\s0 Compiler users should use regular options for enabling/disabling passes instead. .RS 4 --- 5160,5166 ---- .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC\s0. Compiler users should use regular options for enabling/disabling passes instead. .RS 4 *************** by some other path. *** 5631,5637 **** When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL,\s0 print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" --- 5631,5637 ---- When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL\s0, print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" *************** Enable showing virtual operands for ever *** 5666,5672 **** Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID \s0(\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. --- 5666,5672 ---- Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID\s0 (\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. *************** Dump aliasing information for each funct *** 5744,5750 **** appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP. \s0 The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" --- 5744,5750 ---- appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP\s0. The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" *************** Print the compiler's built-in specs\-\-\ *** 6154,6160 **** is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF 2\s0 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation --- 6154,6160 ---- is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF\s0 2 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation *************** in that compilation unit, for example *** 6163,6169 **** if, in the debugger, you want to cast a value to a type that is not actually used in your program (but is declared). More often, however, this results in a significant amount of wasted space. ! .SS "Options That Control Optimization" .IX Subsection "Options That Control Optimization" These options control various sorts of optimizations. .PP --- 6163,6169 ---- if, in the debugger, you want to cast a value to a type that is not actually used in your program (but is declared). More often, however, this results in a significant amount of wasted space. ! .Sh "Options That Control Optimization" .IX Subsection "Options That Control Optimization" These options control various sorts of optimizations. .PP *************** function calls and pops them all at once *** 6343,6349 **** Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL. \s0 The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. --- 6343,6349 ---- Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL\s0. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. *************** restore frame pointers; it also makes an *** 6369,6375 **** in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX,\s0 this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls --- 6369,6375 ---- in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX\s0, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls *************** attribute or declspec *** 6488,6494 **** In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU C90. \s0 In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" --- 6488,6494 ---- In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU\s0 C90. In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" *************** The default is \fB\-ffunction\-cse\fR *** 6553,6559 **** .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS. \s0 This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly --- 6553,6559 ---- .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS\s0. This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly *************** instructions to support this. Enabled b *** 6676,6686 **** higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" --- 6676,6686 ---- higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" *************** at \fB\-O\fR and higher. *** 7032,7038 **** Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE,\s0 though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" --- 7032,7038 ---- Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE\s0, though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" *************** infrastructure. *** 7271,7277 **** Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE \-\s0> \s-1GRAPHITE \-\s0> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 --- 7271,7277 ---- Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE\s0 \-> \s-1GRAPHITE\s0 \-> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 *************** targets. *** 7789,7795 **** Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE,\s0 loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp --- 7789,7795 ---- Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE\s0, loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp *************** information. *** 7807,7813 **** .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE \s0(one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they --- 7807,7813 ---- .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE\s0 (one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they *************** link time. *** 7931,7937 **** .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO C99 6.2.7\s0), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. Similar diagnostics may be raised for other languages. .Sp --- 7931,7937 ---- .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO\s0 C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. Similar diagnostics may be raised for other languages. .Sp *************** regular (non-LTO) compilation. *** 7954,7960 **** If object files containing \s-1GIMPLE\s0 bytecode are stored in a library archive, say \&\fIlibfoo.a\fR, it is possible to extract and use them in an \s-1LTO\s0 link if you are using a linker with plugin support. To create static libraries suitable ! for \s-1LTO,\s0 use \fBgcc-ar\fR and \fBgcc-ranlib\fR instead of \fBar\fR and \f(CW\*(C`ranlib\*(C'\fR; to show the symbols of object files with \s-1GIMPLE\s0 bytecode, use \&\fBgcc-nm\fR. Those commands require that \fBar\fR, \fBranlib\fR and \fBnm\fR have been compiled with plugin support. At link time, use the the --- 7954,7960 ---- If object files containing \s-1GIMPLE\s0 bytecode are stored in a library archive, say \&\fIlibfoo.a\fR, it is possible to extract and use them in an \s-1LTO\s0 link if you are using a linker with plugin support. To create static libraries suitable ! for \s-1LTO\s0, use \fBgcc-ar\fR and \fBgcc-ranlib\fR instead of \fBar\fR and \f(CW\*(C`ranlib\*(C'\fR; to show the symbols of object files with \s-1GIMPLE\s0 bytecode, use \&\fBgcc-nm\fR. Those commands require that \fBar\fR, \fBranlib\fR and \fBnm\fR have been compiled with plugin support. At link time, use the the *************** The current implementation of \s-1LTO\s0 *** 7988,7994 **** attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older or newer version of \s-1GCC.\s0 .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with --- 7988,7994 ---- attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older or newer version of \s-1GCC\s0. .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with *************** and the object code. This makes them usa *** 8063,8070 **** linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO,\s0 but ! requires the complete toolchain to be aware of \s-1LTO.\s0 It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment --- 8063,8070 ---- linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO\s0, but ! requires the complete toolchain to be aware of \s-1LTO\s0. It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment *************** them to store all pertinent intermediate *** 8168,8182 **** .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE ! \&\s0\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO C99\s0; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict --- 8168,8182 ---- .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE\s0 ! \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO\s0 C99; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict *************** The default is \fB\-fno\-unsafe\-math\-o *** 8240,8246 **** .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO C\s0 and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like --- 8240,8246 ---- .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO\s0 C and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like *************** whether the result of a complex multipli *** 8343,8350 **** default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO C99 ! \&\s0\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" --- 8343,8350 ---- default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO\s0 C99 ! \&\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" *************** optimization is not done. *** 8600,8606 **** .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" --- 8600,8606 ---- .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL\s0 \s-1PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" *************** when modulo scheduling a loop. Larger v *** 8615,8621 **** compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC.\s0 This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared --- 8615,8621 ---- compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC\s0. This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared *************** Tuning this may improve compilation spee *** 8969,8975 **** generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM \s0>= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\*(R"\s0 is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and --- 8969,8975 ---- generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM\s0 >= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\s0\*(R" is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and *************** by \fBggc-min-expand\fR% beyond \fBggc-m *** 8984,8990 **** tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8, RLIMIT_RSS,\s0 or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a --- 8984,8990 ---- tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8\s0, \s-1RLIMIT_RSS\s0, or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a *************** The number of partitions should exceed t *** 9302,9308 **** The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR \s0(in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 --- 9302,9308 ---- The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR\s0 (in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 *************** E.g. to disable inline code use *** 9411,9417 **** .RE .RS 4 .RE ! .SS "Options Controlling the Preprocessor" .IX Subsection "Options Controlling the Preprocessor" These options control the C preprocessor, which is run on each C source file before actual compilation. --- 9411,9417 ---- .RE .RS 4 .RE ! .Sh "Options Controlling the Preprocessor" .IX Subsection "Options Controlling the Preprocessor" These options control the C preprocessor, which is run on each C source file before actual compilation. *************** get trigraph conversion without warnings *** 9535,9541 **** .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" --- 9535,9541 ---- .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" *************** in finding bugs in your own code, theref *** 9588,9594 **** responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of --- 9588,9594 ---- responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of *************** This option allows use of a precompiled *** 9728,9737 **** \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH.\s0 .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC. \s0 It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is --- 9728,9737 ---- \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH\s0. .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC\s0. It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is *************** may be one of: *** 9784,9790 **** .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. --- 9784,9790 ---- .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO\s0 C standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. *************** The 1990 C standard, as amended in 1994. *** 9806,9812 **** .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO C\s0 standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 --- 9806,9812 ---- .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO\s0 C standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 *************** publication, this was known as C9X. *** 9819,9825 **** .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO C\s0 standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 --- 9819,9825 ---- .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO\s0 C standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 *************** The 2011 C standard plus \s-1GNU\s0 exte *** 9851,9857 **** .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO \*(C+\s0 standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" --- 9851,9857 ---- .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO\s0 \*(C+ standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" *************** Accept \fB$\fR in identifiers. *** 9977,9983 **** .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC,\s0 it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" --- 9977,9983 ---- .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC\s0, it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" *************** line. If the value is less than 1 or gr *** 10004,10010 **** ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC. \s0 When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would --- 10004,10010 ---- ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC\s0. When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would *************** Note that \-ftrack\-macro\-expansion=2 i *** 10037,10048 **** .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have --- 10037,10048 ---- .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8\s0. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16\s0, whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have *************** problems with encodings that do not fit *** 10050,10058 **** .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC. \s0 If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. --- 10050,10058 ---- .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC\s0. If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8\s0. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. *************** Cancel an assertion with the predicate \ *** 10089,10095 **** .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 --- 10089,10095 ---- .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 *************** The \fB\-CC\fR option is generally used *** 10165,10176 **** .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO C\s0 preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO C\s0 to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and --- 10165,10176 ---- .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO\s0 C preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO\s0 C to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and *************** Print text describing all the command li *** 10196,10202 **** preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" --- 10196,10202 ---- preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" *************** header file is printed with \fB...x\fR a *** 10211,10219 **** .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. ! .SS "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" You can pass options to the assembler. .IP "\fB\-Wa,\fR\fIoption\fR" 4 --- 10211,10219 ---- .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. ! .Sh "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" You can pass options to the assembler. .IP "\fB\-Wa,\fR\fIoption\fR" 4 *************** recognize. *** 10228,10234 **** .Sp If you want to pass an option that takes an argument, you must use \&\fB\-Xassembler\fR twice, once for the option and once for the argument. ! .SS "Options for Linking" .IX Subsection "Options for Linking" These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is --- 10228,10234 ---- .Sp If you want to pass an option that takes an argument, you must use \&\fB\-Xassembler\fR twice, once for the option and once for the argument. ! .Sh "Options for Linking" .IX Subsection "Options for Linking" These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is *************** linker. When using the \s-1GNU\s0 linke *** 10485,10491 **** Pretend the symbol \fIsymbol\fR is undefined, to force linking of library modules to define it. You can use \fB\-u\fR multiple times with different symbols to force loading of additional library modules. ! .SS "Options for Directory Search" .IX Subsection "Options for Directory Search" These options specify directories to search for header files, for libraries and for parts of the compiler: --- 10485,10491 ---- Pretend the symbol \fIsymbol\fR is undefined, to force linking of library modules to define it. You can use \fB\-u\fR multiple times with different symbols to force loading of additional library modules. ! .Sh "Options for Directory Search" .IX Subsection "Options for Directory Search" These options specify directories to search for header files, for libraries and for parts of the compiler: *************** by default, but it is often satisfactory *** 10620,10632 **** \&\fB\-I\-\fR does not inhibit the use of the standard system directories for header files. Thus, \fB\-I\-\fR and \fB\-nostdinc\fR are independent. ! .SS "Specifying Target Machine and Compiler Version" .IX Subsection "Specifying Target Machine and Compiler Version" The usual way to run \s-1GCC\s0 is to run the executable called \fBgcc\fR, or \&\fImachine\fR\fB\-gcc\fR when cross-compiling, or \&\fImachine\fR\fB\-gcc\-\fR\fIversion\fR to run a version other than the one that was installed last. ! .SS "Hardware Models and Configurations" .IX Subsection "Hardware Models and Configurations" Each target machine types can have its own special options, starting with \fB\-m\fR, to choose among various --- 10620,10632 ---- \&\fB\-I\-\fR does not inhibit the use of the standard system directories for header files. Thus, \fB\-I\-\fR and \fB\-nostdinc\fR are independent. ! .Sh "Specifying Target Machine and Compiler Version" .IX Subsection "Specifying Target Machine and Compiler Version" The usual way to run \s-1GCC\s0 is to run the executable called \fBgcc\fR, or \&\fImachine\fR\fB\-gcc\fR when cross-compiling, or \&\fImachine\fR\fB\-gcc\-\fR\fIversion\fR to run a version other than the one that was installed last. ! .Sh "Hardware Models and Configurations" .IX Subsection "Hardware Models and Configurations" Each target machine types can have its own special options, starting with \fB\-m\fR, to choose among various *************** but long int and pointer are 64\-bit. *** 10652,10658 **** .Sp The default depends on the specific target configuration. Note that the \s-1LP64\s0 and \s-1ILP32\s0 ABIs are not link-compatible; you must compile your ! entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries. .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" Generate big-endian code. This is the default when \s-1GCC\s0 is configured for an --- 10652,10658 ---- .Sp The default depends on the specific target configuration. Note that the \s-1LP64\s0 and \s-1ILP32\s0 ABIs are not link-compatible; you must compile your ! entire program with the same \s-1ABI\s0, and link with a compatible set of libraries. .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" Generate big-endian code. This is the default when \s-1GCC\s0 is configured for an *************** This is the mode used for floating-point *** 10887,10893 **** round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU,\s0 e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 --- 10887,10893 ---- round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU\s0, e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 *************** values for \fIcpu\fR are *** 10949,10961 **** .RS 4 .IP "\fB\s-1ARC600\s0\fR" 4 .IX Item "ARC600" ! Compile for \s-1ARC600. \s0 Aliases: \fB\-mA6\fR, \fB\-mARC600\fR. .IP "\fB\s-1ARC601\s0\fR" 4 .IX Item "ARC601" ! Compile for \s-1ARC601. \s0 Alias: \fB\-mARC601\fR. .IP "\fB\s-1ARC700\s0\fR" 4 .IX Item "ARC700" ! Compile for \s-1ARC700. \s0 Aliases: \fB\-mA7\fR, \fB\-mARC700\fR. This is the default when configured with \fB\-\-with\-cpu=arc700\fR. .RE .RS 4 --- 10949,10961 ---- .RS 4 .IP "\fB\s-1ARC600\s0\fR" 4 .IX Item "ARC600" ! Compile for \s-1ARC600\s0. Aliases: \fB\-mA6\fR, \fB\-mARC600\fR. .IP "\fB\s-1ARC601\s0\fR" 4 .IX Item "ARC601" ! Compile for \s-1ARC601\s0. Alias: \fB\-mARC601\fR. .IP "\fB\s-1ARC700\s0\fR" 4 .IX Item "ARC700" ! Compile for \s-1ARC700\s0. Aliases: \fB\-mA7\fR, \fB\-mARC700\fR. This is the default when configured with \fB\-\-with\-cpu=arc700\fR. .RE .RS 4 *************** Generate Extended arithmetic instruction *** 10982,10988 **** supported. This is always enabled for \fB\-mcpu=ARC700\fR. .IP "\fB\-mno\-mpy\fR" 4 .IX Item "-mno-mpy" ! Do not generate mpy instructions for \s-1ARC700.\s0 .IP "\fB\-mmul32x16\fR" 4 .IX Item "-mmul32x16" Generate 32x16 bit multiply and mac instructions. --- 10982,10988 ---- supported. This is always enabled for \fB\-mcpu=ARC700\fR. .IP "\fB\-mno\-mpy\fR" 4 .IX Item "-mno-mpy" ! Do not generate mpy instructions for \s-1ARC700\s0. .IP "\fB\-mmul32x16\fR" 4 .IX Item "-mmul32x16" Generate 32x16 bit multiply and mac instructions. *************** implementation. *** 11007,11013 **** implementation. .IP "\fB\-msimd\fR" 4 .IX Item "-msimd" ! Enable generation of \s-1ARC SIMD\s0 instructions via target-specific builtins. Only valid for \fB\-mcpu=ARC700\fR. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" --- 11007,11013 ---- implementation. .IP "\fB\-msimd\fR" 4 .IX Item "-msimd" ! Enable generation of \s-1ARC\s0 \s-1SIMD\s0 instructions via target-specific builtins. Only valid for \fB\-mcpu=ARC700\fR. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" *************** optimizers will then assume the that ind *** 11174,11180 **** the case. .IP "\fB\-mlra\fR" 4 .IX Item "-mlra" ! Enable Local Register Allocation. This is still experimental for \s-1ARC,\s0 so by default the compiler uses standard reload (i.e. \fB\-mno\-lra\fR). .IP "\fB\-mlra\-priority\-none\fR" 4 --- 11174,11180 ---- the case. .IP "\fB\-mlra\fR" 4 .IX Item "-mlra" ! Enable Local Register Allocation. This is still experimental for \s-1ARC\s0, so by default the compiler uses standard reload (i.e. \fB\-mno\-lra\fR). .IP "\fB\-mlra\-priority\-none\fR" 4 *************** The following options are maintained for *** 11280,11286 **** are now deprecated and will be removed in a future release: .IP "\fB\-margonaut\fR" 4 .IX Item "-margonaut" ! Obsolete \s-1FPX.\s0 .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" .PD 0 --- 11280,11286 ---- are now deprecated and will be removed in a future release: .IP "\fB\-margonaut\fR" 4 .IX Item "-margonaut" ! Obsolete \s-1FPX\s0. .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" .PD 0 *************** These \fB\-m\fR options are defined for *** 11344,11350 **** architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI. \s0 Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" --- 11344,11350 ---- architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI\s0. Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" *************** and uses FPU-specific calling convention *** 11387,11393 **** .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" --- 11387,11393 ---- .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI\s0, and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" *************** If the selected floating-point hardware *** 11516,11522 **** (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE 754\s0 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 --- 11516,11522 ---- (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE\s0 754 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 *************** otherwise the default is \fBR10\fR. *** 11589,11595 **** .IX Item "-mpic-data-is-text-relative" Assume that each data segments are relative to text segment at load time. Therefore, it permits addressing data using PC-relative operations. ! This option is on by default for targets other than VxWorks \s-1RTP.\s0 .IP "\fB\-mpoke\-function\-name\fR" 4 .IX Item "-mpoke-function-name" Write the name of each function into the text section, directly --- 11589,11595 ---- .IX Item "-mpic-data-is-text-relative" Assume that each data segments are relative to text segment at load time. Therefore, it permits addressing data using PC-relative operations. ! This option is on by default for targets other than VxWorks \s-1RTP\s0. .IP "\fB\-mpoke\-function\-name\fR" 4 .IX Item "-mpoke-function-name" Write the name of each function into the text section, directly *************** The default for this option is@tie{}\f(C *** 11769,11801 **** .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC,\s0 i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" --- 11769,11801 ---- .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC\s0, i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" *************** command-line option. *** 11998,12004 **** .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 --- 11998,12004 ---- .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 *************** The definition of these macros is affect *** 12179,12185 **** .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH \s0(high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also --- 12179,12185 ---- .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH\s0 (high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also *************** This macro reflects the \f(CW\*(C`\-mno\ *** 12212,12218 **** .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515,\s0 ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also --- 12212,12218 ---- .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515\s0, ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also *************** set. *** 12220,12226 **** .ie n .IP """_\|_AVR_ISA_RMW_\|_""" 4 .el .IP "\f(CW_\|_AVR_ISA_RMW_\|_\fR" 4 .IX Item "__AVR_ISA_RMW__" ! The device has Read-Modify-Write instructions (\s-1XCH, LAC, LAS\s0 and \s-1LAT\s0). .ie n .IP """_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW""" 4 .el .IP "\f(CW_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW\fR" 4 .IX Item "__AVR_SFR_OFFSET__=offset" --- 12220,12226 ---- .ie n .IP """_\|_AVR_ISA_RMW_\|_""" 4 .el .IP "\f(CW_\|_AVR_ISA_RMW_\|_\fR" 4 .IX Item "__AVR_ISA_RMW__" ! The device has Read-Modify-Write instructions (\s-1XCH\s0, \s-1LAC\s0, \s-1LAS\s0 and \s-1LAT\s0). .ie n .IP """_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW""" 4 .el .IP "\f(CW_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW\fR" 4 .IX Item "__AVR_SFR_OFFSET__=offset" *************** should be used instead of \f(CW\*(C`main *** 12404,12411 **** This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM.\s0 Proper start files and ! link scripts are used to put the application into \s-1SDRAM,\s0 and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 --- 12404,12411 ---- This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM\s0. Proper start files and ! link scripts are used to put the application into \s-1SDRAM\s0, and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 *************** These options are defined specifically f *** 12464,12470 **** .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX.\s0 Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 --- 12464,12470 ---- .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX\s0. Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 *************** or storage for local variables needs to *** 12557,12563 **** With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT. \s0 The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and --- 12557,12563 ---- With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT\s0. The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and *************** However, \fBfar\fR is not valid with \fB *** 12613,12619 **** These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or --- 12613,12619 ---- These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF\s0 \s-1GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or *************** warn about constructs contained within h *** 12673,12679 **** .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON.\s0 .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. --- 12673,12679 ---- .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON\s0. .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. *************** an executable when linking, using the Da *** 12749,12755 **** This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" --- 12749,12755 ---- This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" *************** compilers call this option \fB\-ieee_wit *** 12923,12929 **** .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE \s0\fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute --- 12923,12929 ---- .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE\s0 \fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute *************** before it can find the variables and con *** 13049,13056 **** .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX, ! CIX, FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 --- 13049,13056 ---- .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX\s0, ! \&\s-1CIX\s0, \s-1FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 *************** of the \s-1CPU\s0 on which \s-1GCC\s0 wa *** 13059,13065 **** .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX F\s0 and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" --- 13059,13065 ---- .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX\s0 F and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" *************** The default is \fB\-mlarge\-text\fR. *** 13114,13120 **** Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4, EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. --- 13114,13120 ---- Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4\s0, \s-1EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. *************** Schedules as an \s-1EV5\s0 and supports *** 13159,13172 **** .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, FIX,\s0 and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, CIX, FIX,\s0 and \s-1MAX\s0 extensions. .RE .RS 4 .Sp --- 13159,13172 ---- .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1CIX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .RE .RS 4 .Sp *************** A decimal number representing clock cycl *** 13207,13215 **** .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4 & EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5.\s0 .RE .RS 4 .RE --- 13207,13215 ---- .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4\s0 & \s-1EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5\s0. .RE .RS 4 .RE *************** Use multiply and add/subtract instructio *** 13282,13288 **** Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC ABI,\s0 which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the --- 13282,13288 ---- Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC\s0 \s-1ABI\s0, which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the *************** Assume a large \s-1TLS\s0 segment when g *** 13305,13311 **** Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. --- 13305,13311 ---- Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC\s0 \s-1ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. *************** Select the processor type for which to g *** 13449,13455 **** These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU C\s0 library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" --- 13449,13455 ---- These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU\s0 C library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" *************** These \fB\-m\fR options are defined for *** 13528,13535 **** .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA 1.0, \s0\fB1.1\fR for \s-1PA ! 1.1,\s0 and \fB2.0\fR for \s-1PA 2.0\s0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the --- 13528,13535 ---- .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA\s0 1.0, \fB1.1\fR for \s-1PA\s0 ! 1.1, and \fB2.0\fR for \s-1PA\s0 2.0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the *************** floating-point operations, the compiler *** 13557,13563 **** .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH.\s0 .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows --- 13557,13563 ---- .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH\s0. .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows *************** cross-compilation. *** 13614,13630 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO. \s0 The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO. \s0 These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU \s0\fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not --- 13614,13630 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO\s0. The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO\s0. These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU\s0 \fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not *************** The \fBld\fR that is called is determine *** 13634,13643 **** \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP \s0\fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or --- 13634,13643 ---- \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP\s0 \fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or *************** The \fBld\fR that is called is determine *** 13648,13654 **** configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call --- 13648,13654 ---- configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call *************** long calls only when the distance from t *** 13657,13663 **** of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA 2.0\s0 and \s-1PA 1.X\s0 architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the --- 13657,13663 ---- of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA\s0 2.0 and \s-1PA\s0 1.X architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the *************** is available on HP-UX 10.10 and later. *** 13685,13691 **** \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC 3.3\s0 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, --- 13685,13691 ---- \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC\s0 3.3 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, *************** produces code optimized for the local ma *** 13749,13758 **** of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU.\s0 .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU. \s0(No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 --- 13749,13758 ---- of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU\s0. .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU\s0. (No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 *************** Intel i486 \s-1CPU. \s0(No scheduling i *** 13762,13771 **** Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX CPU,\s0 based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU.\s0 .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro --- 13762,13771 ---- Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX\s0 \s-1CPU\s0, based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU\s0. .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro *************** instruction set is used, so the code run *** 13773,13779 **** When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" --- 13773,13779 ---- When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" *************** support. *** 13781,13863 **** .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III CPU\s0 ! with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE, SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, ! SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBnehalem\fR" 4 .IX Item "nehalem" ! Intel Nehalem \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2\s0 and \s-1POPCNT\s0 instruction set support. .IP "\fBwestmere\fR" 4 .IX Item "westmere" ! Intel Westmere \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBsandybridge\fR" 4 .IX Item "sandybridge" ! Intel Sandy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBivybridge\fR" 4 .IX Item "ivybridge" ! Intel Ivy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND\s0 and F16C instruction set support. .IP "\fBhaswell\fR" 4 .IX Item "haswell" ! Intel Haswell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, ! BMI, BMI2\s0 and F16C instruction set support. .IP "\fBbroadwell\fR" 4 .IX Item "broadwell" ! Intel Broadwell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, ! BMI, BMI2, F16C, RDSEED, ADCX\s0 and \s-1PREFETCHW\s0 instruction set support. .IP "\fBbonnell\fR" 4 .IX Item "bonnell" ! Intel Bonnell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBsilvermont\fR" 4 .IX Item "silvermont" ! Intel Silvermont \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AES, PCLMUL\s0 and \s-1RDRND\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD K6 CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD K6 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" --- 13781,13863 ---- .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III\s0 \s-1CPU\s0 ! with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBnehalem\fR" 4 .IX Item "nehalem" ! Intel Nehalem \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2 and \s-1POPCNT\s0 instruction set support. .IP "\fBwestmere\fR" 4 .IX Item "westmere" ! Intel Westmere \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBsandybridge\fR" 4 .IX Item "sandybridge" ! Intel Sandy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBivybridge\fR" 4 .IX Item "ivybridge" ! Intel Ivy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0 and F16C instruction set support. .IP "\fBhaswell\fR" 4 .IX Item "haswell" ! Intel Haswell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AVX2\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, \s-1FMA\s0, ! \&\s-1BMI\s0, \s-1BMI2\s0 and F16C instruction set support. .IP "\fBbroadwell\fR" 4 .IX Item "broadwell" ! Intel Broadwell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AVX2\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, \s-1FMA\s0, ! \&\s-1BMI\s0, \s-1BMI2\s0, F16C, \s-1RDSEED\s0, \s-1ADCX\s0 and \s-1PREFETCHW\s0 instruction set support. .IP "\fBbonnell\fR" 4 .IX Item "bonnell" ! Intel Bonnell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBsilvermont\fR" 4 .IX Item "silvermont" ! Intel Silvermont \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AES\s0, \s-1PCLMUL\s0 and \s-1RDRND\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" *************** support. *** 13867,13873 **** .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" --- 13867,13873 ---- .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" *************** instruction set support. *** 13879,13887 **** .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD K8\s0 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX, SSE, SSE2,\s0 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" --- 13879,13887 ---- .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD\s0 K8 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" *************** instruction set extensions.) *** 13891,13897 **** .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD K8\s0 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 --- 13891,13897 ---- .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD\s0 K8 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 *************** Improved versions of \s-1AMD K8\s0 cores *** 13899,13954 **** .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSE4A,\s0 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, ! SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, ! SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, ! PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbdver4\fR" 4 .IX Item "bdver4" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, ! AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, ! SSE4.2, ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM, ! SSE4A, SSSE3, SSE3, SSE2, SSE, MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA C3 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA C3\-2 \s0(Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 --- 13899,13954 ---- .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, ! \&\s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1FMA4\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, ! \&\s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1FMA4\s0, \s-1FSGSBASE\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, ! \&\s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbdver4\fR" 4 .IX Item "bdver4" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1BMI2\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1FMA4\s0, \s-1FSGSBASE\s0, \s-1AVX\s0, \s-1AVX2\s0, \s-1XOP\s0, \s-1LWP\s0, ! \&\s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, ! \&\s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4A\s0, \s-1CX16\s0, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE\s0, F16C, \s-1BMI\s0, \s-1AVX\s0, \s-1PCL_MUL\s0, \s-1AES\s0, \s-1SSE4\s0.2, \s-1SSE4\s0.1, \s-1CX16\s0, \s-1ABM\s0, ! \&\s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE3\s0, \s-1SSE2\s0, \s-1SSE\s0, \s-1MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA\s0 C3 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA\s0 C3\-2 (Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 *************** of your application will have, then you *** 13982,13988 **** .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC,\s0 code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp --- 13982,13988 ---- .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC\s0, code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp *************** processors) for which the code is optimi *** 13994,14000 **** .IP "\fBintel\fR" 4 .IX Item "intel" Produce code optimized for the most current Intel processors, which are ! Haswell and Silvermont for this version of \s-1GCC. \s0 If you know the \s-1CPU\s0 on which your code will run, then you should use the corresponding \&\fB\-mtune\fR or \fB\-march\fR option instead of \fB\-mtune=intel\fR. But, if you want your application performs better on both Haswell and --- 13994,14000 ---- .IP "\fBintel\fR" 4 .IX Item "intel" Produce code optimized for the most current Intel processors, which are ! Haswell and Silvermont for this version of \s-1GCC\s0. If you know the \s-1CPU\s0 on which your code will run, then you should use the corresponding \&\fB\-mtune\fR or \fB\-march\fR option instead of \fB\-mtune=intel\fR. But, if you want your application performs better on both Haswell and *************** Silvermont, then you should use this opt *** 14002,14008 **** .Sp As new Intel processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC,\s0 code generation controlled by this option will change to reflect the most current Intel processors at the time that version of \s-1GCC\s0 is released. .Sp --- 14002,14008 ---- .Sp As new Intel processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC\s0, code generation controlled by this option will change to reflect the most current Intel processors at the time that version of \s-1GCC\s0 is released. .Sp *************** comparison is unordered. *** 14085,14091 **** .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC.\s0 Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for --- 14085,14091 ---- .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for *************** Do not use the \s-1FPU\s0 registers for *** 14100,14107 **** .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU. \s0 The idea is that the operating system should emulate ! an \s-1FPU.\s0 .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. --- 14100,14107 ---- .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU\s0. The idea is that the operating system should emulate ! an \s-1FPU\s0. .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. *************** so \fB\-m96bit\-long\-double\fR is the d *** 14146,14152 **** .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI,\s0 this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. --- 14146,14152 ---- .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI\s0, this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. *************** its \s-1ABI\s0 specifies that \f(CW\*(C` *** 14157,14163 **** Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 14157,14163 ---- Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** type. This is the default for 32\-bit Bi *** 14177,14183 **** of 128 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \&\f(CW\*(C`_\|_float128\*(C'\fR type. This is the default for 64\-bit Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 14177,14183 ---- of 128 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \&\f(CW\*(C`_\|_float128\*(C'\fR type. This is the default for 64\-bit Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** Studio compilers until version 12. Late *** 14241,14247 **** with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC.\s0 .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 --- 14241,14247 ---- with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC\s0. .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 *************** the one specified by \fB\-mpreferred\-st *** 14302,14308 **** .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III,\s0 the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp --- 14302,14308 ---- .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III\s0, the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp *************** preferred alignment to \fB\-mpreferred\- *** 14460,14469 **** .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX, SSE, ! SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD, ! SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, ! BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM,\s0 or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and --- 14460,14469 ---- .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1AVX\s0, \s-1AVX2\s0, \s-1AVX512F\s0, \s-1AVX512PF\s0, \s-1AVX512ER\s0, \s-1AVX512CD\s0, ! \&\s-1SHA\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, F16C, \s-1FMA\s0, \s-1SSE4A\s0, \s-1FMA4\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1ABM\s0, ! \&\s-1BMI\s0, \s-1BMI2\s0, \s-1FXSR\s0, \s-1XSAVE\s0, \s-1XSAVEOPT\s0, \s-1LZCNT\s0, \s-1RTM\s0, or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and *************** This option enables generation of \f(CW\ *** 14538,14544 **** Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64.\s0 These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; --- 14538,14544 ---- Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64\s0. These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; *************** external library. Supported values for *** 14614,14620 **** for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML \s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, --- 14614,14620 ---- for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML\s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, *************** when \fB\-mveclibabi=acml\fR is used. *** 14637,14643 **** .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI. \s0 The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. --- 14637,14643 ---- .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI\s0. The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. *************** or whether the thread base pointer must *** 14752,14758 **** is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU C\s0 Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 --- 14752,14758 ---- is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU\s0 C Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 *************** appropriately. *** 14913,14919 **** This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API,\s0 which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" --- 14913,14919 ---- This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API\s0, which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" *************** Generate (or don't) code for the \s-1GNU *** 14960,14966 **** .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64 ABI.\s0 .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 --- 14960,14966 ---- .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64\s0 \s-1ABI\s0. .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 *************** instructions. The default is to use the *** 15040,15046 **** .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF 2\s0 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" --- 15040,15046 ---- .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF\s0 2 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" *************** Specify bit size of immediate \s-1TLS\s0 *** 15064,15070 **** 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU,\s0 Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 --- 15064,15070 ---- 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU\s0, Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 *************** have to be emulated by software on the 6 *** 15513,15519 **** does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32. \s0 This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp --- 15513,15519 ---- does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32\s0. This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp *************** Use this option for microcontrollers wit *** 15522,15537 **** 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU. \s0 This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202, MCF5203, MCF5204\s0 and \s-1MCF5206.\s0 .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" --- 15522,15537 ---- 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU\s0. This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202\s0, \s-1MCF5203\s0, \s-1MCF5204\s0 and \s-1MCF5206\s0. .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" *************** The option is now deprecated in favor of *** 15540,15554 **** \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU \s0(e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. --- 15540,15554 ---- \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU\s0 (e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. *************** The option is equivalent to \fB\-march=6 *** 15575,15588 **** .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU. \s0 It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU.\s0 .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 --- 15575,15588 ---- .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU\s0. It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU\s0. .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 *************** the default for ColdFire devices that ha *** 15592,15599 **** Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU ! \&\s0(either the default \s-1CPU,\s0 or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp --- 15592,15599 ---- Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU\s0 ! (either the default \s-1CPU\s0, or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp *************** that works if the \s-1GOT\s0 has more th *** 15712,15718 **** larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 15712,15718 ---- larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** useful unless you also provide \f(CW\*(C *** 15854,15860 **** Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC,\s0 provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. --- 15854,15860 ---- Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC\s0, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. *************** Do not optimize block moves, use \f(CW\* *** 15957,15963 **** This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU.\s0 Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, --- 15957,15963 ---- This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU\s0. Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, *************** configurations. *** 16043,16049 **** .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS ISA,\s0 or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. --- 16043,16049 ---- .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS\s0 \s-1ISA\s0, or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. *************** The processor names are: *** 16072,16078 **** \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI \s0(that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, --- 16072,16078 ---- \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI\s0 (that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, *************** Equivalent to \fB\-march=mips64r2\fR. *** 16153,16159 **** .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE.\s0 .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. --- 16153,16159 ---- .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE\s0. .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. *************** not intended for ordinary use in compili *** 16168,16174 **** .IP "\fB\-mno\-interlink\-compressed\fR" 4 .IX Item "-mno-interlink-compressed" .PD ! Require (do not require) that code using the standard (uncompressed) \s-1MIPS ISA\s0 be link-compatible with \s-1MIPS16\s0 and microMIPS code, and vice versa. .Sp For example, code using the standard \s-1ISA\s0 encoding cannot jump directly --- 16168,16174 ---- .IP "\fB\-mno\-interlink\-compressed\fR" 4 .IX Item "-mno-interlink-compressed" .PD ! Require (do not require) that code using the standard (uncompressed) \s-1MIPS\s0 \s-1ISA\s0 be link-compatible with \s-1MIPS16\s0 and microMIPS code, and vice versa. .Sp For example, code using the standard \s-1ISA\s0 encoding cannot jump directly *************** and are retained for backwards compatibi *** 16196,16208 **** .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI.\s0 .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI,\s0 see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers --- 16196,16208 ---- .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI\s0. .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI\s0, see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers *************** executables both smaller and quicker. *** 16258,16264 **** .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI,\s0 this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring --- 16258,16264 ---- .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI\s0, this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring *************** You can make \fB\-mplt\fR the default by *** 16273,16279 **** Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 16273,16279 ---- Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** operations. This is the default. *** 16338,16344 **** .IX Item "-mabs=legacy" .PD These options control the treatment of the special not-a-number (NaN) ! \&\s-1IEEE 754\s0 floating-point data with the \f(CW\*(C`abs.\f(CIfmt\f(CW\*(C'\fR and \&\f(CW\*(C`neg.\f(CIfmt\f(CW\*(C'\fR machine instructions. .Sp By default or when the \fB\-mabs=legacy\fR is used the legacy --- 16338,16344 ---- .IX Item "-mabs=legacy" .PD These options control the treatment of the special not-a-number (NaN) ! \&\s-1IEEE\s0 754 floating-point data with the \f(CW\*(C`abs.\f(CIfmt\f(CW\*(C'\fR and \&\f(CW\*(C`neg.\f(CIfmt\f(CW\*(C'\fR machine instructions. .Sp By default or when the \fB\-mabs=legacy\fR is used the legacy *************** manipulate the sign bit of floating-poin *** 16349,16355 **** instead unless the \fB\-ffinite\-math\-only\fR option has also been specified. .Sp ! The \fB\-mabs=2008\fR option selects the \s-1IEEE 754\-2008\s0 treatment. In this case these instructions are considered non-arithmetic and therefore operating correctly in all cases, including in particular where the input operand is a NaN. These instructions are therefore always used --- 16349,16355 ---- instead unless the \fB\-ffinite\-math\-only\fR option has also been specified. .Sp ! The \fB\-mabs=2008\fR option selects the \s-1IEEE\s0 754\-2008 treatment. In this case these instructions are considered non-arithmetic and therefore operating correctly in all cases, including in particular where the input operand is a NaN. These instructions are therefore always used *************** for the respective operations. *** 16361,16374 **** .IX Item "-mnan=legacy" .PD These options control the encoding of the special not-a-number (NaN) ! \&\s-1IEEE 754\s0 floating-point data. .Sp The \fB\-mnan=legacy\fR option selects the legacy encoding. In this case quiet NaNs (qNaNs) are denoted by the first bit of their trailing significand field being 0, whereas signalling NaNs (sNaNs) are denoted by the first bit of their trailing significand field being 1. .Sp ! The \fB\-mnan=2008\fR option selects the \s-1IEEE 754\-2008\s0 encoding. In this case qNaNs are denoted by the first bit of their trailing significand field being 1, whereas sNaNs are denoted by the first bit of their trailing significand field being 0. --- 16361,16374 ---- .IX Item "-mnan=legacy" .PD These options control the encoding of the special not-a-number (NaN) ! \&\s-1IEEE\s0 754 floating-point data. .Sp The \fB\-mnan=legacy\fR option selects the legacy encoding. In this case quiet NaNs (qNaNs) are denoted by the first bit of their trailing significand field being 0, whereas signalling NaNs (sNaNs) are denoted by the first bit of their trailing significand field being 1. .Sp ! The \fB\-mnan=2008\fR option selects the \s-1IEEE\s0 754\-2008 encoding. In this case qNaNs are denoted by the first bit of their trailing significand field being 1, whereas sNaNs are denoted by the first bit of their trailing significand field being 0. *************** configurations; see the installation doc *** 16398,16405 **** .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 --- 16398,16405 ---- .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 *************** preprocessor macro \fB_\|_mips_dsp\fR. *** 16408,16415 **** .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 --- 16408,16415 ---- .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 *************** It also defines \fB_\|_mips_dsp_rev\fR t *** 16418,16424 **** .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE.\s0 .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 --- 16418,16424 ---- .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE\s0. .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 *************** hardware floating-point support to be en *** 16443,16449 **** .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D ASE. \s0 The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmicromips\fR" 4 .IX Item "-mmicromips" --- 16443,16449 ---- .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D\s0 \s-1ASE\s0. The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmicromips\fR" 4 .IX Item "-mmicromips" *************** Use (do not use) \s-1MT\s0 Multithreadin *** 16468,16474 **** .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS MCU ASE\s0 instructions. .IP "\fB\-meva\fR" 4 .IX Item "-meva" .PD 0 --- 16468,16474 ---- .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS\s0 \s-1MCU\s0 \s-1ASE\s0 instructions. .IP "\fB\-meva\fR" 4 .IX Item "-meva" .PD 0 *************** determined. *** 16493,16499 **** Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI. \s0 All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. --- 16493,16499 ---- Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI\s0. All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. *************** or the same size as integer registers, w *** 16504,16510 **** .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI. \s0 This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 --- 16504,16510 ---- .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI\s0. This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 *************** but other instructions must not do so. *** 16609,16621 **** and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM.\s0 .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM.\s0 .RE .RS 4 .RE --- 16609,16621 ---- and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM\s0. .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM\s0. .RE .RS 4 .RE *************** The default is \fB\-mcheck\-zero\-divisi *** 16657,16663 **** .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and --- 16657,16663 ---- .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS\s0 \s-1II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and *************** This option has no effect on abicalls co *** 16695,16701 **** .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA.\s0 .IP "\fB\-mimadd\fR" 4 .IX Item "-mimadd" .PD 0 --- 16695,16701 ---- .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA\s0. .IP "\fB\-mimadd\fR" 4 .IX Item "-mimadd" .PD 0 *************** assembler files (with a \fB.s\fR suffix) *** 16733,16739 **** .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC.\s0 .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 --- 16733,16739 ---- .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC\s0. .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 *************** otherwise. *** 16793,16800 **** .IP "\fB\-mno\-fix\-rm7000\fR" 4 .IX Item "-mno-fix-rm7000" .PD ! Work around the \s-1RM7000 \s0\f(CW\*(C`dmult\*(C'\fR/\f(CW\*(C`dmultu\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC.\s0 .IP "\fB\-mfix\-vr4120\fR" 4 .IX Item "-mfix-vr4120" .PD 0 --- 16793,16800 ---- .IP "\fB\-mno\-fix\-rm7000\fR" 4 .IX Item "-mno-fix-rm7000" .PD ! Work around the \s-1RM7000\s0 \f(CW\*(C`dmult\*(C'\fR/\f(CW\*(C`dmultu\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC\s0. .IP "\fB\-mfix\-vr4120\fR" 4 .IX Item "-mfix-vr4120" .PD 0 *************** instructions. These errata are handled *** 16820,16829 **** .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130 \s0\f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC,\s0 although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130 \s0\f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" --- 16820,16829 ---- .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130\s0 \f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC\s0, although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130\s0 \f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" *************** instructions are available instead. *** 16831,16837 **** .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1 CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 --- 16831,16837 ---- .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1\s0 \s-1CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 *************** Specifies whether \s-1FP\s0 exceptions a *** 16942,16948 **** The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1,\s0 if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 --- 16942,16948 ---- The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1\s0, if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 *************** instructions together if the first one i *** 16956,16962 **** option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130.\s0 It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 --- 16956,16962 ---- option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130\s0. It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 *************** to the \f(CW\*(C`rE\*(C'\fR epsilon regi *** 17045,17051 **** .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 --- 17045,17051 ---- .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU\s0 \s-1ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 *************** Do not generate code using features spec *** 17129,17135 **** is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2.0\s0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. --- 17129,17135 ---- is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2\s0.0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. *************** header file. *** 17210,17217 **** The option also sets the \s-1ISA\s0 to use. If the \s-1MCU\s0 name is one that is known to only support the 430 \s-1ISA\s0 then that is selected, otherwise the 430X \s-1ISA\s0 is selected. A generic \s-1MCU\s0 name of \f(CW\*(C`msp430\*(C'\fR can also be ! used to select the 430 \s-1ISA. \s0 Similarly the generic \f(CW\*(C`msp430x\*(C'\fR \s-1MCU\s0 ! name will select the 430X \s-1ISA.\s0 .Sp In addition an \s-1MCU\s0 specific linker script will be added to the linker command line. The script's name is the name of the \s-1MCU\s0 with --- 17210,17217 ---- The option also sets the \s-1ISA\s0 to use. If the \s-1MCU\s0 name is one that is known to only support the 430 \s-1ISA\s0 then that is selected, otherwise the 430X \s-1ISA\s0 is selected. A generic \s-1MCU\s0 name of \f(CW\*(C`msp430\*(C'\fR can also be ! used to select the 430 \s-1ISA\s0. Similarly the generic \f(CW\*(C`msp430x\*(C'\fR \s-1MCU\s0 ! name will select the 430X \s-1ISA\s0. .Sp In addition an \s-1MCU\s0 specific linker script will be added to the linker command line. The script's name is the name of the \s-1MCU\s0 with *************** This option is also passed on to the ass *** 17224,17230 **** .IX Item "-mcpu=" Specifies the \s-1ISA\s0 to use. Accepted values are \f(CW\*(C`msp430\*(C'\fR, \&\f(CW\*(C`msp430x\*(C'\fR and \f(CW\*(C`msp430xv2\*(C'\fR. This option is deprecated. The ! \&\fB\-mmcu=\fR option should be used to select the \s-1ISA.\s0 .IP "\fB\-msim\fR" 4 .IX Item "-msim" Link to the simulator runtime libraries and linker script. Overrides --- 17224,17230 ---- .IX Item "-mcpu=" Specifies the \s-1ISA\s0 to use. Accepted values are \f(CW\*(C`msp430\*(C'\fR, \&\f(CW\*(C`msp430x\*(C'\fR and \f(CW\*(C`msp430xv2\*(C'\fR. This option is deprecated. The ! \&\fB\-mmcu=\fR option should be used to select the \s-1ISA\s0. .IP "\fB\-msim\fR" 4 .IX Item "-msim" Link to the simulator runtime libraries and linker script. Overrides *************** sections. The default value of \fInum\f *** 17361,17367 **** Generate (do not generate) GP-relative accesses for objects in the small data or \s-1BSS\s0 sections. The default is \fB\-mgpopt\fR except when \fB\-fpic\fR or \fB\-fPIC\fR is specified to generate ! position-independent code. Note that the Nios \s-1II ABI\s0 does not permit GP-relative accesses from shared libraries. .Sp You may need to specify \fB\-mno\-gpopt\fR explicitly when building --- 17361,17367 ---- Generate (do not generate) GP-relative accesses for objects in the small data or \s-1BSS\s0 sections. The default is \fB\-mgpopt\fR except when \fB\-fpic\fR or \fB\-fPIC\fR is specified to generate ! position-independent code. Note that the Nios \s-1II\s0 \s-1ABI\s0 does not permit GP-relative accesses from shared libraries. .Sp You may need to specify \fB\-mno\-gpopt\fR explicitly when building *************** of the default behavior of using a libra *** 17433,17439 **** .Sp The following values of \fIinsn\fR are supported. Except as otherwise noted, floating-point operations are expected to be implemented with ! normal \s-1IEEE 754\s0 semantics and correspond directly to the C operators or the equivalent \s-1GCC\s0 built-in functions. .Sp Single-precision floating point: --- 17433,17439 ---- .Sp The following values of \fIinsn\fR are supported. Except as otherwise noted, floating-point operations are expected to be implemented with ! normal \s-1IEEE\s0 754 semantics and correspond directly to the C operators or the equivalent \s-1GCC\s0 built-in functions. .Sp Single-precision floating point: *************** configuration by using the \f(CW\*(C`tar *** 17586,17599 **** function attribute or pragma. .PP ! These additional \fB\-m\fR options are available for the Altera Nios \s-1II ! ELF \s0(bare-metal) target: .IP "\fB\-mhal\fR" 4 .IX Item "-mhal" ! Link with \s-1HAL BSP. \s0 This suppresses linking with the GCC-provided C runtime startup and termination code, and is typically used in conjunction with \&\fB\-msys\-crt0=\fR to specify the location of the alternate startup code ! provided by the \s-1HAL BSP.\s0 .IP "\fB\-msmallc\fR" 4 .IX Item "-msmallc" Link with a limited version of the C library, \fB\-lsmallc\fR, rather than --- 17586,17599 ---- function attribute or pragma. .PP ! These additional \fB\-m\fR options are available for the Altera Nios \s-1II\s0 ! \&\s-1ELF\s0 (bare-metal) target: .IP "\fB\-mhal\fR" 4 .IX Item "-mhal" ! Link with \s-1HAL\s0 \s-1BSP\s0. This suppresses linking with the GCC-provided C runtime startup and termination code, and is typically used in conjunction with \&\fB\-msys\-crt0=\fR to specify the location of the alternate startup code ! provided by the \s-1HAL\s0 \s-1BSP\s0. .IP "\fB\-msmallc\fR" 4 .IX Item "-msmallc" Link with a limited version of the C library, \fB\-lsmallc\fR, rather than *************** when linking. This option is only usefu *** 17607,17613 **** \&\fIsystemlib\fR is the library name of the library that provides low-level system calls required by the C library, e.g. \f(CW\*(C`read\*(C'\fR and \f(CW\*(C`write\*(C'\fR. ! This option is typically used to link with a library provided by a \s-1HAL BSP.\s0 .PP \fI\s-1PDP\-11\s0 Options\fR .IX Subsection "PDP-11 Options" --- 17607,17613 ---- \&\fIsystemlib\fR is the library name of the library that provides low-level system calls required by the C library, e.g. \f(CW\*(C`read\*(C'\fR and \f(CW\*(C`write\*(C'\fR. ! This option is typically used to link with a library provided by a \s-1HAL\s0 \s-1BSP\s0. .PP \fI\s-1PDP\-11\s0 Options\fR .IX Subsection "PDP-11 Options" *************** Return floating-point results in ac0 (fr *** 17628,17640 **** Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40.\s0 .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45. \s0 This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10.\s0 .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the --- 17628,17640 ---- Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40\s0. .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45\s0. This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10\s0. .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the *************** for \fIae_type\fR are \fB\s-1ANY\s0\fR, *** 17706,17719 **** generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE.\s0 .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC AE. \s0 Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a --- 17706,17719 ---- generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE\s0. .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL\s0 \s-1AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC\s0 \s-1AE\s0. Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP\s0 \s-1AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a *************** rather than being permanently enabled. *** 17726,17732 **** .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC AE\s0 type. The \s-1MAC AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate --- 17726,17732 ---- .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC\s0 \s-1AE\s0 type. The \s-1MAC\s0 \s-1AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate *************** The \f(CW\*(C`g13\*(C'\fR option is for *** 17759,17768 **** only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 --- 17759,17768 ---- only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM\s0 \s-1RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM\s0 \s-1RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 *************** These \fB\-m\fR options are defined for *** 17807,17813 **** .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC. \s0 Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. --- 17807,17813 ---- .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC\s0. Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. *************** following options: *** 17880,17886 **** \&\-mpopcntb \-mpopcntd \-mpowerpc64 \&\-mpowerpc\-gpopt \-mpowerpc\-gfxopt \-msingle\-float \-mdouble\-float \&\-msimple\-fpu \-mstring \-mmulhw \-mdlmzb \-mmfpgpr \-mvsx ! \&\-mcrypto \-mdirect\-move \-mpower8\-fusion \-mpower8\-vector \&\-mquad\-memory \-mquad\-memory\-atomic\fR .Sp The particular options set for any particular \s-1CPU\s0 varies between --- 17880,17886 ---- \&\-mpopcntb \-mpopcntd \-mpowerpc64 \&\-mpowerpc\-gpopt \-mpowerpc\-gfxopt \-msingle\-float \-mdouble\-float \&\-msimple\-fpu \-mstring \-mmulhw \-mdlmzb \-mmfpgpr \-mvsx ! \&\-mcrypto \-mdirect\-move \-mhtm \-mpower8\-fusion \-mpower8\-vector \&\-mquad\-memory \-mquad\-memory\-atomic\fR .Sp The particular options set for any particular \s-1CPU\s0 varies between *************** capabilities. If you wish to set an ind *** 17890,17896 **** value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX,\s0 the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your --- 17890,17896 ---- value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX\s0, the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your *************** Generate code that allows \fBld\fR and \ *** 17978,17991 **** to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS \s0\f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 --- 17978,17991 ---- to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS\s0 \f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 *************** more direct access to the \s-1VSX\s0 ins *** 18034,18040 **** .PD Enable the use (disable) of the built-in functions that allow direct access to the cryptographic instructions that were added in version ! 2.07 of the PowerPC \s-1ISA.\s0 .IP "\fB\-mdirect\-move\fR" 4 .IX Item "-mdirect-move" .PD 0 --- 18034,18040 ---- .PD Enable the use (disable) of the built-in functions that allow direct access to the cryptographic instructions that were added in version ! 2.07 of the PowerPC \s-1ISA\s0. .IP "\fB\-mdirect\-move\fR" 4 .IX Item "-mdirect-move" .PD 0 *************** access to the cryptographic instructions *** 18043,18049 **** .PD Generate code that uses (does not use) the instructions to move data between the general purpose registers and the vector/scalar (\s-1VSX\s0) ! registers that were added in version 2.07 of the PowerPC \s-1ISA.\s0 .IP "\fB\-mpower8\-fusion\fR" 4 .IX Item "-mpower8-fusion" .PD 0 --- 18043,18058 ---- .PD Generate code that uses (does not use) the instructions to move data between the general purpose registers and the vector/scalar (\s-1VSX\s0) ! registers that were added in version 2.07 of the PowerPC \s-1ISA\s0. ! .IP "\fB\-mhtm\fR" 4 ! .IX Item "-mhtm" ! .PD 0 ! .IP "\fB\-mno\-htm\fR" 4 ! .IX Item "-mno-htm" ! .PD ! Enable (disable) the use of the built-in functions that allow direct ! access to the Hardware Transactional Memory (\s-1HTM\s0) instructions that ! were added in version 2.07 of the PowerPC \s-1ISA\s0. .IP "\fB\-mpower8\-fusion\fR" 4 .IX Item "-mpower8-fusion" .PD 0 *************** later processors. *** 18060,18066 **** .IX Item "-mno-power8-vector" .PD Generate code that uses (does not use) the vector and scalar ! instructions that were added in version 2.07 of the PowerPC \s-1ISA. \s0 Also enable the use of built-in functions that allow more direct access to the vector instructions. .IP "\fB\-mquad\-memory\fR" 4 --- 18069,18075 ---- .IX Item "-mno-power8-vector" .PD Generate code that uses (does not use) the vector and scalar ! instructions that were added in version 2.07 of the PowerPC \s-1ISA\s0. Also enable the use of built-in functions that allow more direct access to the vector instructions. .IP "\fB\-mquad\-memory\fR" 4 *************** pointer to 64 bits, and generates code f *** 18123,18134 **** .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC \s0(Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC. \s0 However, only ! 16,384 entries are available in the \s-1TOC.\s0 .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used --- 18132,18143 ---- .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC\s0 (Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC\s0. However, only ! 16,384 entries are available in the \s-1TOC\s0. .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used *************** with the \fB\-mno\-fp\-in\-toc\fR and \f *** 18136,18142 **** \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC. \s0 You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp --- 18145,18151 ---- \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC\s0. You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp *************** only on files that contain less frequent *** 18152,18158 **** .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and --- 18161,18167 ---- .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX\s0 \s-1ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and *************** implies \fB\-mno\-powerpc64\fR. \s-1GCC *** 18163,18170 **** .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI. \s0 Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing --- 18172,18179 ---- .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM\s0 \s-1XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI\s0. Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing *************** support routines. *** 18173,18188 **** .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM ! XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM RS/6000 SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file --- 18182,18197 ---- .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM\s0 \s-1XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM\s0 ! \&\s-1XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM\s0 \s-1RS/6000\s0 \s-1SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file *************** option are incompatible. *** 18196,18206 **** .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX,\s0 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI.\s0 .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. --- 18205,18215 ---- .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX\s0, 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI\s0. .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. *************** Specify type of floating-point unit. Va *** 18234,18240 **** and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC 405/440.\s0 .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 --- 18243,18249 ---- and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC\s0 405/440. .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 *************** mapped to \fB\-ffp\-contract=off\fR. *** 18305,18311 **** .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM 405, 440, 464\s0 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 --- 18314,18320 ---- .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM\s0 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 *************** processors. *** 18315,18321 **** .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM 405, 440, 464\s0 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" --- 18324,18330 ---- .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM\s0 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" *************** processor in big-endian mode. The \fB\- *** 18395,18401 **** the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS X\s0 systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. --- 18404,18410 ---- the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS\s0 X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. *************** On System V.4 and embedded PowerPC syste *** 18501,18511 **** OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4 ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. --- 18510,18520 ---- OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX\s0 \s-1ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4\s0 \s-1ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. *************** Valid values are \fIaltivec\fR, \fIno-al *** 18514,18542 **** \&\fIelfv1\fR, \fIelfv2\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE ABI\s0 extensions. This does not change ! the default \s-1ABI,\s0 instead it adds the \s-1SPE ABI\s0 extensions to the current ! \&\s-1ABI.\s0 .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE ABI\s0 extensions for the current \s-1ABI.\s0 .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. This is a PowerPC 32\-bit Linux \s-1ABI\s0 option. .IP "\fB\-mabi=elfv1\fR" 4 .IX Item "-mabi=elfv1" ! Change the current \s-1ABI\s0 to use the ELFv1 \s-1ABI.\s0 This is the default \s-1ABI\s0 for big-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. .IP "\fB\-mabi=elfv2\fR" 4 .IX Item "-mabi=elfv2" ! Change the current \s-1ABI\s0 to use the ELFv2 \s-1ABI.\s0 This is the default \s-1ABI\s0 for little-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. --- 18523,18551 ---- \&\fIelfv1\fR, \fIelfv2\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE\s0 \s-1ABI\s0 extensions. This does not change ! the default \s-1ABI\s0, instead it adds the \s-1SPE\s0 \s-1ABI\s0 extensions to the current ! \&\s-1ABI\s0. .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE\s0 \s-1ABI\s0 extensions for the current \s-1ABI\s0. .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. This is a PowerPC 32\-bit Linux \s-1ABI\s0 option. .IP "\fB\-mabi=elfv1\fR" 4 .IX Item "-mabi=elfv1" ! Change the current \s-1ABI\s0 to use the ELFv1 \s-1ABI\s0. This is the default \s-1ABI\s0 for big-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. .IP "\fB\-mabi=elfv2\fR" 4 .IX Item "-mabi=elfv2" ! Change the current \s-1ABI\s0 to use the ELFv2 \s-1ABI\s0. This is the default \s-1ABI\s0 for little-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. *************** On Darwin/PPC systems, \f(CW\*(C`#pragma *** 18690,18696 **** callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC \s0\f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee --- 18699,18705 ---- callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC\s0 \f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee *************** which handle the double-precision recipr *** 18762,18768 **** .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI. \s0 Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an --- 18771,18777 ---- .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI\s0. Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an *************** pointer. The \fB\-mno\-save\-toc\-indir *** 18835,18848 **** .PD Generate (do not generate) code to pass structure parameters with a maximum alignment of 64 bits, for compatibility with older versions ! of \s-1GCC.\s0 .Sp ! Older versions of \s-1GCC \s0(prior to 4.9.0) incorrectly did not align a structure parameter on a 128\-bit boundary when that structure contained a member requiring 128\-bit alignment. This is corrected in more ! recent versions of \s-1GCC. \s0 This option may be used to generate code that is compatible with functions compiled with older versions of ! \&\s-1GCC.\s0 .Sp The \fB\-mno\-compat\-align\-parm\fR option is the default. .PP --- 18844,18857 ---- .PD Generate (do not generate) code to pass structure parameters with a maximum alignment of 64 bits, for compatibility with older versions ! of \s-1GCC\s0. .Sp ! Older versions of \s-1GCC\s0 (prior to 4.9.0) incorrectly did not align a structure parameter on a 128\-bit boundary when that structure contained a member requiring 128\-bit alignment. This is corrected in more ! recent versions of \s-1GCC\s0. This option may be used to generate code that is compatible with functions compiled with older versions of ! \&\s-1GCC\s0. .Sp The \fB\-mno\-compat\-align\-parm\fR option is the default. .PP *************** values, however, so the \s-1FPU\s0 hardw *** 18877,18888 **** .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU. \s0 The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. --- 18886,18897 ---- .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX\s0 \s-1FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX\s0 \s-1CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU\s0. The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. *************** type. This is the default. *** 19068,19074 **** Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF 2\s0 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register --- 19077,19083 ---- Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF\s0 2 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register *************** register is always saved two words below *** 19100,19106 **** .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC 2.95\s0 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the --- 19109,19115 ---- .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC\s0 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the *************** which does not have this limitation. *** 19127,19134 **** .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI. \s0 When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI. \s0 This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. --- 19136,19143 ---- .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI\s0. When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI\s0. This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. *************** targets default to \fB\-m64\fR. *** 19141,19151 **** When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390. \s0 Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI,\s0 the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI,\s0 the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 --- 19150,19160 ---- When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390\s0. Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI\s0, the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI\s0, the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 *************** The default is the value used for \fB\-m *** 19185,19193 **** .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF OS.\s0 .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 --- 19194,19202 ---- .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF\s0 \s-1OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF\s0 \s-1OS\s0. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 *************** Specify the \s-1SCORE7D\s0 as the target *** 19280,19295 **** These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1.\s0 .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2.\s0 .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU,\s0 or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" --- 19289,19304 ---- These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1\s0. .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2\s0. .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU\s0, or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" *************** Generate code for the SH2a\-FPU assuming *** 19305,19311 **** double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3.\s0 .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. --- 19314,19320 ---- double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3\s0. .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. *************** Generate code for the \s-1SH4\s0 assumin *** 19322,19331 **** single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4.\s0 .IP "\fB\-m4\-100\fR" 4 .IX Item "-m4-100" ! Generate code for \s-1SH4\-100.\s0 .IP "\fB\-m4\-100\-nofpu\fR" 4 .IX Item "-m4-100-nofpu" Generate code for \s-1SH4\-100\s0 in such a way that the --- 19331,19340 ---- single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4\s0. .IP "\fB\-m4\-100\fR" 4 .IX Item "-m4-100" ! Generate code for \s-1SH4\-100\s0. .IP "\fB\-m4\-100\-nofpu\fR" 4 .IX Item "-m4-100-nofpu" Generate code for \s-1SH4\-100\s0 in such a way that the *************** Generate code for \s-1SH4\-100\s0 in suc *** 19340,19346 **** floating-point operations are used. .IP "\fB\-m4\-200\fR" 4 .IX Item "-m4-200" ! Generate code for \s-1SH4\-200.\s0 .IP "\fB\-m4\-200\-nofpu\fR" 4 .IX Item "-m4-200-nofpu" Generate code for \s-1SH4\-200\s0 without in such a way that the --- 19349,19355 ---- floating-point operations are used. .IP "\fB\-m4\-200\fR" 4 .IX Item "-m4-200" ! Generate code for \s-1SH4\-200\s0. .IP "\fB\-m4\-200\-nofpu\fR" 4 .IX Item "-m4-200-nofpu" Generate code for \s-1SH4\-200\s0 without in such a way that the *************** Generate code for \s-1SH4\-200\s0 in suc *** 19355,19361 **** floating-point operations are used. .IP "\fB\-m4\-300\fR" 4 .IX Item "-m4-300" ! Generate code for \s-1SH4\-300.\s0 .IP "\fB\-m4\-300\-nofpu\fR" 4 .IX Item "-m4-300-nofpu" Generate code for \s-1SH4\-300\s0 without in such a way that the --- 19364,19370 ---- floating-point operations are used. .IP "\fB\-m4\-300\fR" 4 .IX Item "-m4-300" ! Generate code for \s-1SH4\-300\s0. .IP "\fB\-m4\-300\-nofpu\fR" 4 .IX Item "-m4-300-nofpu" Generate code for \s-1SH4\-300\s0 without in such a way that the *************** Generate code for \s-1SH4\-300\s0 in suc *** 19370,19379 **** floating-point operations are used. .IP "\fB\-m4\-340\fR" 4 .IX Item "-m4-340" ! Generate code for \s-1SH4\-340 \s0(no \s-1MMU,\s0 no \s-1FPU\s0). .IP "\fB\-m4\-500\fR" 4 .IX Item "-m4-500" ! Generate code for \s-1SH4\-500 \s0(no \s-1FPU\s0). Passes \fB\-isa=sh4\-nofpu\fR to the assembler. .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" --- 19379,19388 ---- floating-point operations are used. .IP "\fB\-m4\-340\fR" 4 .IX Item "-m4-340" ! Generate code for \s-1SH4\-340\s0 (no \s-1MMU\s0, no \s-1FPU\s0). .IP "\fB\-m4\-500\fR" 4 .IX Item "-m4-500" ! Generate code for \s-1SH4\-500\s0 (no \s-1FPU\s0). Passes \fB\-isa=sh4\-nofpu\fR to the assembler. .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" *************** Use 32\-bit offsets in \f(CW\*(C`switch\ *** 19437,19443 **** 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A.\s0 .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for --- 19446,19452 ---- 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A\s0. .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for *************** Dump instruction size and location in th *** 19484,19490 **** .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH ABI.\s0 .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma --- 19493,19499 ---- .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH\s0 \s-1ABI\s0. .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma *************** Generate GNU/Linux compatible gUSA softw *** 19501,19507 **** built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh*\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A,\s0 this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. --- 19510,19516 ---- built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh*\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A\s0, this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. *************** For targets other than SHmedia \fIstrate *** 19644,19663 **** .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4, ! SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU. \s0 Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4. \s0 Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 --- 19653,19672 ---- .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4\s0, ! \&\s-1SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU\s0. Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4\s0. Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 *************** specified separated by a comma. *** 19691,19700 **** Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU,\s0 which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI,\s0 the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. --- 19700,19709 ---- Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU\s0, which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI\s0, the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. *************** the compiler are always valid to load wi *** 19731,19737 **** but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE,\s0 hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" --- 19740,19746 ---- but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE\s0, hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" *************** is being compiled for. *** 19748,19754 **** Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A. \s0 It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" --- 19757,19763 ---- Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A\s0. It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" *************** mapped to \fB\-ffp\-contract=off\fR. *** 19771,19777 **** Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" --- 19780,19786 ---- Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" *************** Allow or disallow the compiler to emit t *** 19783,19789 **** reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 --- 19792,19798 ---- reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 *************** These \fB\-m\fR options are supported on *** 19837,19843 **** .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC SVR4 ABI\s0 reserves for applications. Like the global register 1, each global register 2 through 4 is then treated as an allocable register that is clobbered by function calls. This is the default. .Sp --- 19846,19852 ---- .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC\s0 \s-1SVR4\s0 \s-1ABI\s0 reserves for applications. Like the global register 1, each global register 2 through 4 is then treated as an allocable register that is clobbered by function calls. This is the default. .Sp *************** cross-compilation. The embedded targets *** 19883,19889 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" --- 19892,19898 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" *************** instructions. *** 19893,19899 **** .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC ABI. \s0 This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke --- 19902,19908 ---- .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC\s0 \s-1ABI\s0. This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke *************** in a performance loss, especially for fl *** 19922,19929 **** .IX Item "-mno-user-mode" .PD Do not generate code that can only run in supervisor mode. This is relevant ! only for the \f(CW\*(C`casa\*(C'\fR instruction emitted for the \s-1LEON3\s0 processor. The ! default is \fB\-mno\-user\-mode\fR. .IP "\fB\-mno\-faster\-structs\fR" 4 .IX Item "-mno-faster-structs" .PD 0 --- 19931,19938 ---- .IX Item "-mno-user-mode" .PD Do not generate code that can only run in supervisor mode. This is relevant ! only for the \f(CW\*(C`casa\*(C'\fR instruction emitted for the \s-1LEON3\s0 processor. This ! is the default. .IP "\fB\-mno\-faster\-structs\fR" 4 .IX Item "-mno-faster-structs" .PD 0 *************** With \fB\-mfaster\-structs\fR, the compi *** 19934,19943 **** should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC ! ABI. \s0 Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI.\s0 .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters --- 19943,19952 ---- should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC\s0 ! \&\s-1ABI\s0. Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI\s0. .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters *************** SPARCStation 1, 2, \s-1IPX\s0 etc. *** 19987,20008 **** With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7.\s0 With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU. \s0 With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU.\s0 .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 --- 19996,20017 ---- With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU\s0. With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU\s0. .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 *************** toolchains, \fBnative\fR can also be use *** 20039,20045 **** .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+ ABI. \s0 The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. --- 20048,20054 ---- .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+\s0 \s-1ABI\s0. The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. *************** This option suppresses generation of the *** 20494,20502 **** v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850 ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" --- 20503,20511 ---- v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850\s0 \s-1ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC\s0 \s-1ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" *************** selected because its use is still experi *** 20536,20542 **** .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI. \s0 This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 20545,20551 ---- .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI\s0. This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** When this version of the \s-1ABI\s0 is e *** 20561,20567 **** .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI. \s0 With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 20570,20576 ---- .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI\s0. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** kernel code. *** 20751,20757 **** Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM,\s0 and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as --- 20760,20766 ---- Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM\s0, and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as *************** every cross-file call, not just those th *** 20797,20803 **** .IX Subsection "zSeries Options" .PP These are listed under ! .SS "Options for Code Generation Conventions" .IX Subsection "Options for Code Generation Conventions" These machine-independent options control the interface conventions used in code generation. --- 20806,20812 ---- .IX Subsection "zSeries Options" .PP These are listed under ! .Sh "Options for Code Generation Conventions" .IX Subsection "Options for Code Generation Conventions" These machine-independent options control the interface conventions used in code generation. *************** You normally do not need to enable this *** 20936,20942 **** that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF 2\s0 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fno\-gnu\-unique\fR" 4 --- 20945,20951 ---- that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF\s0 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fno\-gnu\-unique\fR" 4 *************** Use it to conform to a non-default appli *** 21007,21013 **** .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE.\s0 .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. --- 21016,21022 ---- .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE\s0. .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. *************** such variables in different compilation *** 21020,21026 **** in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO C,\s0 and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, --- 21029,21035 ---- in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO\s0 C, and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, *************** the \s-1GOT\s0 size for the linked execu *** 21076,21086 **** maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000. \s0 The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR --- 21085,21095 ---- maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000\s0. The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM\s0 \s-1RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR *************** are defined to 1. *** 21090,21096 **** If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC.\s0 .Sp Position-independent code requires special support, and therefore works only on certain machines. --- 21099,21105 ---- If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC\s0. .Sp Position-independent code requires special support, and therefore works only on certain machines. *************** name, such as \f(CW\*(C`vector blah *** 21240,21246 **** internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8,\s0 not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" --- 21249,21255 ---- internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8\s0, not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" *************** usage so the only other commonly used op *** 21353,21359 **** The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC.\s0 .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write --- 21362,21368 ---- The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC\s0. .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write *************** always specify visibility when it is not *** 21378,21384 **** only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO \*(C+\s0 specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system --- 21387,21393 ---- only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO\s0 \*(C+ specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system *************** before including any such headers. *** 21390,21396 **** \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT,\s0 so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. --- 21399,21405 ---- \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT\s0, so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. *************** aspects of the compilation environment. *** 21452,21458 **** Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC.\s0 .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 --- 21461,21467 ---- Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC\s0. .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 *************** national conventions. \s-1GCC\s0 inspec *** 21469,21475 **** \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8.\s0 .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in --- 21478,21484 ---- \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8\s0. .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in *************** and the Info entries for \fIgcc\fR, \fIc *** 21649,21655 **** .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC.\s0 .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2015 Free Software Foundation, Inc. --- 21658,21664 ---- .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC\s0. .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2015 Free Software Foundation, Inc. diff -Nrcpad gcc-4.9.3/gcc/doc/gc-analyze.1 gcc-4.9.4/gcc/doc/gc-analyze.1 *** gcc-4.9.3/gcc/doc/gc-analyze.1 Fri Jun 26 18:37:25 2015 --- gcc-4.9.4/gcc/doc/gc-analyze.1 Wed Aug 3 06:01:09 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GC-ANALYZE 1" ! .TH GC-ANALYZE 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GC-ANALYZE 1" ! .TH GC-ANALYZE 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.9.3/gcc/doc/gcc.1 gcc-4.9.4/gcc/doc/gcc.1 *** gcc-4.9.3/gcc/doc/gcc.1 Fri Jun 26 18:49:08 2015 --- gcc-4.9.4/gcc/doc/gcc.1 Wed Aug 3 06:14:15 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GCC 1" ! .TH GCC 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** Only the most useful options are listed *** 154,160 **** remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC,\s0 it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files --- 153,159 ---- remainder. \fBg++\fR accepts mostly the same options as \fBgcc\fR. .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! When you invoke \s-1GCC\s0, it normally does preprocessing, compilation, assembly and linking. The \*(L"overall options\*(R" allow you to stop this process at an intermediate stage. For example, the \fB\-c\fR option says not to run the linker. Then the output consists of object files *************** these have both positive and negative fo *** 189,195 **** only one of these two forms, whichever one is not the default. .SH "OPTIONS" .IX Header "OPTIONS" ! .SS "Option Summary" .IX Subsection "Option Summary" Here is a summary of all the options, grouped by type. Explanations are in the following sections. --- 188,194 ---- only one of these two forms, whichever one is not the default. .SH "OPTIONS" .IX Header "OPTIONS" ! .Sh "Option Summary" .IX Subsection "Option Summary" Here is a summary of all the options, grouped by type. Explanations are in the following sections. *************** See \s-1RS/6000\s0 and PowerPC Options. *** 942,948 **** \&\-mpointers\-to\-nested\-functions \-mno\-pointers\-to\-nested\-functions \&\-msave\-toc\-indirect \-mno\-save\-toc\-indirect \&\-mpower8\-fusion \-mno\-mpower8\-fusion \-mpower8\-vector \-mno\-power8\-vector ! \&\-mcrypto \-mno\-crypto \-mdirect\-move \-mno\-direct\-move \&\-mquad\-memory \-mno\-quad\-memory \&\-mquad\-memory\-atomic \-mno\-quad\-memory\-atomic \&\-mcompat\-align\-parm \-mno\-compat\-align\-parm\fR --- 941,947 ---- \&\-mpointers\-to\-nested\-functions \-mno\-pointers\-to\-nested\-functions \&\-msave\-toc\-indirect \-mno\-save\-toc\-indirect \&\-mpower8\-fusion \-mno\-mpower8\-fusion \-mpower8\-vector \-mno\-power8\-vector ! \&\-mcrypto \-mno\-crypto \-mhtm \-mno\-htm \-mdirect\-move \-mno\-direct\-move \&\-mquad\-memory \-mno\-quad\-memory \&\-mquad\-memory\-atomic \-mno\-quad\-memory\-atomic \&\-mcompat\-align\-parm \-mno\-compat\-align\-parm\fR *************** See S/390 and zSeries Options. *** 1111,1117 **** \&\fB\-fstack\-reuse=\fR\fIreuse_level\fR \&\fB\-ftrapv \-fwrapv \-fbounds\-check \&\-fvisibility \-fstrict\-volatile\-bitfields \-fsync\-libcalls\fR ! .SS "Options Controlling the Kind of Output" .IX Subsection "Options Controlling the Kind of Output" Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. \s-1GCC\s0 is capable of --- 1110,1116 ---- \&\fB\-fstack\-reuse=\fR\fIreuse_level\fR \&\fB\-ftrapv \-fwrapv \-fbounds\-check \&\-fvisibility \-fstrict\-volatile\-bitfields \-fsync\-libcalls\fR ! .Sh "Options Controlling the Kind of Output" .IX Subsection "Options Controlling the Kind of Output" Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. \s-1GCC\s0 is capable of *************** option. *** 1415,1421 **** .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC.\s0 .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. --- 1414,1420 ---- .IX Item "language" Display the options supported for \fIlanguage\fR, where \&\fIlanguage\fR is the name of one of the languages supported in this ! version of \s-1GCC\s0. .IP "\fBcommon\fR" 4 .IX Item "common" Display the options that are common to all languages. *************** or \fB/./\fR, or make the path absolute *** 1512,1518 **** prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC.\s0 .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the --- 1511,1517 ---- prefix. .IP "\fB\-\-version\fR" 4 .IX Item "--version" ! Display the version number and copyrights of the invoked \s-1GCC\s0. .IP "\fB\-wrapper\fR" 4 .IX Item "-wrapper" Invoke all subcommands under a wrapper program. The name of the *************** the shared object file is used to identi *** 1534,1540 **** purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API.\s0 .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR --- 1533,1539 ---- purposes of argument parsing (See \&\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR below). Each plugin should define the callback functions specified in the ! Plugins \s-1API\s0. .IP "\fB\-fplugin\-arg\-\fR\fIname\fR\fB\-\fR\fIkey\fR\fB=\fR\fIvalue\fR" 4 .IX Item "-fplugin-arg-name-key=value" Define an argument called \fIkey\fR with a value of \fIvalue\fR *************** option in either single or double quotes *** 1566,1573 **** backslash) may be included by prefixing the character to be included with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. ! .SS "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, --- 1565,1572 ---- backslash) may be included by prefixing the character to be included with a backslash. The \fIfile\fR may itself contain additional @\fIfile\fR options; any such options will be processed recursively. ! .Sh "Compiling \*(C+ Programs" ! .IX Subsection "Compiling Programs" \&\*(C+ source files conventionally use one of the suffixes \fB.C\fR, \&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or \&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR, \fB.hpp\fR, *************** When you compile \*(C+ programs, you may *** 1590,1596 **** command-line options that you use for compiling programs in any language; or command-line options meaningful for C and related languages; or options that are meaningful only for \*(C+ programs. ! .SS "Options Controlling C Dialect" .IX Subsection "Options Controlling C Dialect" The following options control the dialect of C (or languages derived from C, such as \*(C+, Objective-C and Objective\-\*(C+) that the compiler --- 1589,1595 ---- command-line options that you use for compiling programs in any language; or command-line options meaningful for C and related languages; or options that are meaningful only for \*(C+ programs. ! .Sh "Options Controlling C Dialect" .IX Subsection "Options Controlling C Dialect" The following options control the dialect of C (or languages derived from C, such as \*(C+, Objective-C and Objective\-\*(C+) that the compiler *************** accepts: *** 1600,1607 **** In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO ! C90 \s0(when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and --- 1599,1606 ---- In C mode, this is equivalent to \fB\-std=c90\fR. In \*(C+ mode, it is equivalent to \fB\-std=c++98\fR. .Sp ! This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO\s0 ! C90 (when compiling C code), or of standard \*(C+ (when compiling \*(C+ code), such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the type of system you are using. It also enables the undesirable and *************** the \f(CW\*(C`inline\*(C'\fR keyword. *** 1611,1617 **** .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO C\s0 program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or --- 1610,1616 ---- .Sp The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR, \&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite ! \&\fB\-ansi\fR. You would not want to use them in an \s-1ISO\s0 C program, of course, but it is useful to put them in header files that might be included in compilations done with \fB\-ansi\fR. Alternate predefined macros such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or *************** from declaring certain functions or defi *** 1628,1634 **** programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO C \s0(such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" --- 1627,1633 ---- programs that might use these names for other things. .Sp Functions that are normally built in but do not have semantics ! defined by \s-1ISO\s0 C (such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in functions when \fB\-ansi\fR is used. .IP "\fB\-std=\fR" 4 .IX Item "-std=" *************** The compiler can accept several base sta *** 1641,1649 **** compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO C90,\s0 such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO C90,\s0 such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some --- 1640,1648 ---- compiler accepts all programs following that standard plus those using \s-1GNU\s0 extensions that do not contradict it. For example, \&\fB\-std=c90\fR turns off certain features of \s-1GCC\s0 that are ! incompatible with \s-1ISO\s0 C90, such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, but not other \s-1GNU\s0 extensions that do not have a meaning in ! \&\s-1ISO\s0 C90, such as omitting the middle term of a \f(CW\*(C`?:\*(C'\fR expression. On the other hand, when a \s-1GNU\s0 dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some *************** A value for this option must be provided *** 1663,1673 **** .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO C90\s0 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO C90\s0 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO C90\s0 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 --- 1662,1672 ---- .IP "\fBiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! Support all \s-1ISO\s0 C90 programs (certain \s-1GNU\s0 extensions that conflict ! with \s-1ISO\s0 C90 are disabled). Same as \fB\-ansi\fR for C code. .IP "\fBiso9899:199409\fR" 4 .IX Item "iso9899:199409" ! \&\s-1ISO\s0 C90 as modified in amendment 1. .IP "\fBc99\fR" 4 .IX Item "c99" .PD 0 *************** with \s-1ISO C90\s0 are disabled). Same *** 1678,1684 **** .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO C99. \s0 This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used) and floating-point issues (mainly but not entirely relating to optional C99 features from --- 1677,1683 ---- .IP "\fBiso9899:199x\fR" 4 .IX Item "iso9899:199x" .PD ! \&\s-1ISO\s0 C99. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used) and floating-point issues (mainly but not entirely relating to optional C99 features from *************** names \fBc9x\fR and \fBiso9899:199x\fR a *** 1693,1699 **** .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO C11,\s0 the 2011 revision of the \s-1ISO C\s0 standard. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used), floating-point issues --- 1692,1698 ---- .IP "\fBiso9899:2011\fR" 4 .IX Item "iso9899:2011" .PD ! \&\s-1ISO\s0 C11, the 2011 revision of the \s-1ISO\s0 C standard. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when \&\fB\-fextended\-identifiers\fR is used), floating-point issues *************** interfaces) and L (Analyzability). The *** 1706,1712 **** .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C90 \s0(including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" --- 1705,1711 ---- .IP "\fBgnu89\fR" 4 .IX Item "gnu89" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C90 (including some C99 features). This is the default for C code. .IP "\fBgnu99\fR" 4 .IX Item "gnu99" *************** is the default for C code. *** 1714,1735 **** .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C99. \s0 The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" .PD 0 .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO C11. \s0 This is intended to become the default in a ! future release of \s-1GCC. \s0 The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" .PD 0 .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO \*(C+\s0 standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" --- 1713,1734 ---- .IP "\fBgnu9x\fR" 4 .IX Item "gnu9x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C99. The name \fBgnu9x\fR is deprecated. .IP "\fBgnu11\fR" 4 .IX Item "gnu11" .PD 0 .IP "\fBgnu1x\fR" 4 .IX Item "gnu1x" .PD ! \&\s-1GNU\s0 dialect of \s-1ISO\s0 C11. This is intended to become the default in a ! future release of \s-1GCC\s0. The name \fBgnu1x\fR is deprecated. .IP "\fBc++98\fR" 4 .IX Item "c++98" .PD 0 .IP "\fBc++03\fR" 4 .IX Item "c++03" .PD ! The 1998 \s-1ISO\s0 \*(C+ standard plus the 2003 technical corrigendum and some additional defect reports. Same as \fB\-ansi\fR for \*(C+ code. .IP "\fBgnu++98\fR" 4 .IX Item "gnu++98" *************** additional defect reports. Same as \fB\- *** 1745,1751 **** .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO \*(C+\s0 standard plus amendments. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 .IX Item "gnu++11" --- 1744,1750 ---- .IP "\fBc++0x\fR" 4 .IX Item "c++0x" .PD ! The 2011 \s-1ISO\s0 \*(C+ standard plus amendments. The name \fBc++0x\fR is deprecated. .IP "\fBgnu++11\fR" 4 .IX Item "gnu++11" *************** The name \fBc++0x\fR is deprecated. *** 1757,1763 **** The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO \*(C+\s0 standard, tentatively planned for 2014. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 --- 1756,1762 ---- The name \fBgnu++0x\fR is deprecated. .IP "\fBc++1y\fR" 4 .IX Item "c++1y" ! The next revision of the \s-1ISO\s0 \*(C+ standard, tentatively planned for 2014. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. .IP "\fBgnu++1y\fR" 4 *************** C99 mode. Using this option is roughly *** 1781,1787 **** The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC 4.3. \s0 This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and --- 1780,1786 ---- The option \fB\-fno\-gnu89\-inline\fR explicitly tells \s-1GCC\s0 to use the C99 semantics for \f(CW\*(C`inline\*(C'\fR when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported in ! \&\s-1GCC\s0 4.3. This option is not supported in \fB\-std=c90\fR or \&\fB\-std=gnu90\fR mode. .Sp The preprocessor macros \f(CW\*(C`_\|_GNUC_GNU_INLINE_\|_\*(C'\fR and *************** In \*(C+, this switch only affects the \ *** 1821,1827 **** use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO C99.\s0 .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 --- 1820,1826 ---- use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same effect. In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since ! \&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO\s0 C99. .IP "\fB\-fno\-builtin\fR" 4 .IX Item "-fno-builtin" .PD 0 *************** known not to modify global memory. *** 1849,1855 **** With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC,\s0 this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or --- 1848,1854 ---- With the \fB\-fno\-builtin\-\fR\fIfunction\fR option only the built-in function \fIfunction\fR is disabled. \fIfunction\fR must not begin with \fB_\|_builtin_\fR. If a ! function is named that is not built-in in this version of \s-1GCC\s0, this option is ignored. There is no corresponding \&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable built-in functions selectively when using \fB\-fno\-builtin\fR or *************** When the option \fB\-fgnu\-tm\fR is spec *** 1903,1909 **** generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC,\s0 as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, --- 1902,1908 ---- generates code for the Linux variant of Intel's current Transactional Memory \s-1ABI\s0 specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions ! of \s-1GCC\s0, as the official specification changes. Please note that not all architectures are supported for this feature. .Sp For more information on \s-1GCC\s0's support for transactional memory, *************** fields declared using a typedef. This *** 1940,1947 **** supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO C\s0 trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO C\s0 conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 --- 1939,1946 ---- supported for C, not \*(C+. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" ! Support \s-1ISO\s0 C trigraphs. The \fB\-ansi\fR option (and \fB\-std\fR ! options for strict \s-1ISO\s0 C conformance) implies \fB\-trigraphs\fR. .IP "\fB\-traditional\fR" 4 .IX Item "-traditional" .PD 0 *************** options for strict \s-1ISO C\s0 conforma *** 1950,1957 **** .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU ! CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and --- 1949,1956 ---- .PD Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard C compiler. They are now only supported with the \fB\-E\fR switch. ! The preprocessor continues to support a pre-standard mode. See the \s-1GNU\s0 ! \&\s-1CPP\s0 manual for details. .IP "\fB\-fcond\-mismatch\fR" 4 .IX Item "-fcond-mismatch" Allow conditional expressions with mismatched types in the second and *************** These options control whether a bit-fiel *** 2001,2008 **** declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. ! .SS "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you --- 2000,2007 ---- declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR. By default, such a bit-field is signed, because this is consistent: the basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types. ! .Sh "Options Controlling \*(C+ Dialect" ! .IX Subsection "Options Controlling Dialect" This section describes the command-line options that are only meaningful for \*(C+ programs. You can also use most of the \s-1GNU\s0 compiler options regardless of what language your program is in. For example, you *************** might compile a file \f(CW\*(C`firstClas *** 2014,2025 **** .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC.\s0 .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI. \s0 The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 --- 2013,2024 ---- .PP In this example, only \fB\-frepo\fR is an option meant only for \*(C+ programs; you can use the other options with any ! language supported by \s-1GCC\s0. .PP Here is a list of options that are \fIonly\fR for compiling \*(C+ programs: .IP "\fB\-fabi\-version=\fR\fIn\fR" 4 .IX Item "-fabi-version=n" ! Use version \fIn\fR of the \*(C+ \s-1ABI\s0. The default is version 2. .Sp Version 0 refers to the version conforming most closely to the \*(C+ \s-1ABI\s0 specification. Therefore, the \s-1ABI\s0 obtained using version 0 *************** Inject friend functions into the enclosi *** 2094,2100 **** visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO \*(C+\s0 a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. --- 2093,2099 ---- visible outside the scope of the class in which they are declared. Friend functions were documented to work this way in the old Annotated \&\*(C+ Reference Manual, and versions of G++ before 4.1 always worked ! that way. However, in \s-1ISO\s0 \*(C+ a friend function that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. *************** controlled by \fB#pragma implementation\ *** 2178,2189 **** errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC,\s0 such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO C. \s0 These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" --- 2177,2188 ---- errors if these functions are not inlined everywhere they are called. .IP "\fB\-fms\-extensions\fR" 4 .IX Item "-fms-extensions" ! Disable Wpedantic warnings about constructs used in \s-1MFC\s0, such as implicit int and getting a pointer to member function via non-standard syntax. .IP "\fB\-fno\-nonansi\-builtins\fR" 4 .IX Item "-fno-nonansi-builtins" Disable built-in declarations of functions that are not mandated by ! \&\s-1ANSI/ISO\s0 C. These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR, \&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions. .IP "\fB\-fnothrow\-opt\fR" 4 .IX Item "-fnothrow-opt" *************** warning or error to \fIn\fR. The defaul *** 2257,2263 **** .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO \*(C+\s0 conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. --- 2256,2262 ---- .IX Item "-ftemplate-depth=n" Set the maximum instantiation depth for template classes to \fIn\fR. A limit on the template instantiation depth is needed to detect ! endless recursions during template class instantiation. \s-1ANSI/ISO\s0 \*(C+ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in \*(C+11). The default value is 900, as the compiler can run out of stack space before hitting 1024 in some situations. *************** are taken in different shared objects. *** 2288,2294 **** The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO. \s0 Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp --- 2287,2293 ---- The effect of this is that \s-1GCC\s0 may, effectively, mark inline methods with \&\f(CW\*(C`_\|_attribute_\|_ ((visibility ("hidden")))\*(C'\fR so that they do not appear in the export table of a \s-1DSO\s0 and do not require a \s-1PLT\s0 indirection ! when used within the \s-1DSO\s0. Enabling this option can have a dramatic effect on load and link times of a \s-1DSO\s0 as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. .Sp *************** is used when building the \*(C+ library. *** 2400,2408 **** In addition, these optimization, warning, and code generation options have meanings only for \*(C+ programs: .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI. \s0 Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated --- 2399,2407 ---- In addition, these optimization, warning, and code generation options have meanings only for \*(C+ programs: .IP "\fB\-Wabi\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wabi (C, Objective-C, and Objective- only)" Warn when G++ generates code that is probably not compatible with the ! vendor-neutral \*(C+ \s-1ABI\s0. Although an effort has been made to warn about all such cases, there are probably some cases that are not warned about, even though G++ is generating incompatible code. There may also be cases where warnings are emitted even though the code that is generated *************** This is on by default for all pre\-\*(C+ *** 2615,2621 **** \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO \*(C+11\s0 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 --- 2614,2620 ---- \&\fB\-std=c++98\fR, \fB\-std=gnu++98\fR, \fB\-std=gnu++11\fR, \&\fB\-std=gnu++1y\fR. This option is off by default ! for \s-1ISO\s0 \*(C+11 onwards (\fB\-std=c++11\fR, ...). .PP The following \fB\-W...\fR options are not affected by \fB\-Wall\fR. .IP "\fB\-Weffc++\fR (\*(C+ and Objective\-\*(C+ only)" 4 *************** Warn when overload resolution chooses a *** 2711,2717 **** enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve unsignedness, but the standard mandates the current behavior. ! .SS "Options Controlling Objective-C and Objective\-\*(C+ Dialects" .IX Subsection "Options Controlling Objective-C and Objective- Dialects" (\s-1NOTE:\s0 This manual does not describe the Objective-C and Objective\-\*(C+ languages themselves. --- 2710,2716 ---- enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve unsignedness, but the standard mandates the current behavior. ! .Sh "Options Controlling Objective-C and Objective\-\*(C+ Dialects" .IX Subsection "Options Controlling Objective-C and Objective- Dialects" (\s-1NOTE:\s0 This manual does not describe the Objective-C and Objective\-\*(C+ languages themselves. *************** For example, you might compile a file \f *** 2727,2733 **** .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC.\s0 .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., --- 2726,2732 ---- .PP In this example, \fB\-fgnu\-runtime\fR is an option meant only for Objective-C and Objective\-\*(C+ programs; you can use the other options with ! any language supported by \s-1GCC\s0. .PP Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C front-end (e.g., *************** runtime. This is the default for most t *** 2752,2758 **** .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS X. \s0 The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 --- 2751,2757 ---- .IP "\fB\-fnext\-runtime\fR" 4 .IX Item "-fnext-runtime" Generate output compatible with the NeXT runtime. This is the default ! for NeXT-based systems, including Darwin and Mac \s-1OS\s0 X. The macro \&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is used. .IP "\fB\-fno\-nil\-receivers\fR" 4 *************** This option is currently supported only *** 2769,2775 **** case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI. \s0 If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 --- 2768,2774 ---- case, Version 0 is the traditional (32\-bit) \s-1ABI\s0 without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32\-bit) \s-1ABI\s0 with support for properties and other ! Objective-C 2.0 additions. Version 2 is the modern (64\-bit) \s-1ABI\s0. If nothing is specified, the default is Version 0 on 32\-bit target machines, and Version 2 on 64\-bit target machines. .IP "\fB\-fobjc\-call\-cxx\-cdtors\fR" 4 *************** by the runtime immediately after a new o *** 2793,2799 **** the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS X 10.4\s0 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 --- 2792,2798 ---- the \f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods are invoked immediately before the runtime deallocates an object instance. .Sp ! As of this writing, only the NeXT runtime on Mac \s-1OS\s0 X 10.4 and later has support for invoking the \f(CW\*(C`\- (id) .cxx_construct\*(C'\fR and \&\f(CW\*(C`\- (void) .cxx_destruct\*(C'\fR methods. .IP "\fB\-fobjc\-direct\-dispatch\fR" 4 *************** is required to use the Objective-C keywo *** 2808,2814 **** \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS X 10.2\s0 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ --- 2807,2813 ---- \&\f(CW@throw\fR, \f(CW@catch\fR, \f(CW@finally\fR and \&\f(CW@synchronized\fR. This option is available with both the \s-1GNU\s0 runtime and the NeXT runtime (but not available in conjunction with ! the NeXT runtime on Mac \s-1OS\s0 X 10.2 and earlier). .IP "\fB\-fobjc\-gc\fR" 4 .IX Item "-fobjc-gc" Enable garbage collection (\s-1GC\s0) in Objective-C and Objective\-\*(C+ *************** programs. This option is only available *** 2817,2839 **** does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI,\s0 check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI,\s0 is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC 4.0. \s0 This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC 4.0\s0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC.\s0 .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in --- 2816,2838 ---- does not require special compiler flags. .IP "\fB\-fobjc\-nilcheck\fR" 4 .IX Item "-fobjc-nilcheck" ! For the NeXT runtime with version 2 of the \s-1ABI\s0, check for a nil receiver in method invocations before doing the actual method call. This is the default and can be disabled using \&\fB\-fno\-objc\-nilcheck\fR. Class methods and super calls are never checked for nil in this way no matter what this flag is set to. Currently this flag does nothing when the \s-1GNU\s0 runtime, or an older ! version of the NeXT runtime \s-1ABI\s0, is used. .IP "\fB\-fobjc\-std=objc1\fR" 4 .IX Item "-fobjc-std=objc1" Conform to the language syntax of Objective-C 1.0, the language ! recognized by \s-1GCC\s0 4.0. This only affects the Objective-C additions to the C/\*(C+ language; it does not affect conformance to C/\*(C+ standards, which is controlled by the separate C/\*(C+ dialect option flags. When this option is used with the Objective-C or Objective\-\*(C+ compiler, ! any Objective-C syntax that is not recognized by \s-1GCC\s0 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can ! be compiled with older versions of \s-1GCC\s0. .IP "\fB\-freplace\-objc\-classes\fR" 4 .IX Item "-freplace-objc-classes" Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in *************** run time instead. This is used in conju *** 2842,2848 **** debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS X 10.3\s0 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" --- 2841,2847 ---- debugging mode, where the object file in question may be recompiled and dynamically reloaded in the course of program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality ! is only available in conjunction with the NeXT runtime on Mac \s-1OS\s0 X 10.3 and later. .IP "\fB\-fzero\-link\fR" 4 .IX Item "-fzero-link" *************** that methods and selectors must be decla *** 2908,2914 **** .IX Item "-print-objc-runtime-info" Generate C header describing the largest structure that is passed by value, if any. ! .SS "Options to Control Diagnostic Messages Formatting" .IX Subsection "Options to Control Diagnostic Messages Formatting" Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the --- 2907,2913 ---- .IX Item "-print-objc-runtime-info" Generate C header describing the largest structure that is passed by value, if any. ! .Sh "Options to Control Diagnostic Messages Formatting" .IX Subsection "Options to Control Diagnostic Messages Formatting" Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the *************** honor these options. *** 2921,2927 **** .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC. \s0 If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 --- 2920,2926 ---- .IX Item "-fmessage-length=n" Try to format error messages so that they fit on lines of about \fIn\fR characters. The default is 72 characters for \fBg++\fR and 0 for the rest of ! the front ends supported by \s-1GCC\s0. If \fIn\fR is zero, then no line-wrapping is done; each error message appears on a single line. .IP "\fB\-fdiagnostics\-show\-location=once\fR" 4 *************** option is known to the diagnostic machin *** 3022,3035 **** By default, each diagnostic emitted includes the original source line and a caret '^' indicating the column. This option suppresses this information. ! .SS "Options to Request or Suppress Warnings" .IX Subsection "Options to Request or Suppress Warnings" Warnings are diagnostic messages that report constructions that are not inherently erroneous but that are risky or suggest there may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC.\s0 .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. --- 3021,3034 ---- By default, each diagnostic emitted includes the original source line and a caret '^' indicating the column. This option suppresses this information. ! .Sh "Options to Request or Suppress Warnings" .IX Subsection "Options to Request or Suppress Warnings" Warnings are diagnostic messages that report constructions that are not inherently erroneous but that are risky or suggest there may have been an error. .PP The following language-independent options do not enable specific ! warnings but control the kinds of diagnostics produced by \s-1GCC\s0. .IP "\fB\-fsyntax\-only\fR" 4 .IX Item "-fsyntax-only" Check the code for syntax errors, but don't do anything beyond that. *************** warns that an unrecognized option is pre *** 3095,3108 **** .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO C\s0 and \s-1ISO \*(C+\s0; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO C\s0 and \s-1ISO \*(C+. \s0 For \s-1ISO C,\s0 follows the ! version of the \s-1ISO C\s0 standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO C\s0 and \s-1ISO \*(C+\s0 programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO C\s0). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp --- 3094,3107 ---- .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" .PD ! Issue all the warnings demanded by strict \s-1ISO\s0 C and \s-1ISO\s0 \*(C+; reject all programs that use forbidden extensions, and some other ! programs that do not follow \s-1ISO\s0 C and \s-1ISO\s0 \*(C+. For \s-1ISO\s0 C, follows the ! version of the \s-1ISO\s0 C standard specified by any \fB\-std\fR option used. .Sp ! Valid \s-1ISO\s0 C and \s-1ISO\s0 \*(C+ programs should compile properly with or without this option (though a rare few require \fB\-ansi\fR or a ! \&\fB\-std\fR option specifying the required version of \s-1ISO\s0 C). However, without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+ features are supported as well. With this option, they are rejected. .Sp *************** warnings are also disabled in the expres *** 3112,3135 **** \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO ! C\s0 conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO C \s0\fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO C\s0 might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO C\s0 on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU ! C\s0 dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 --- 3111,3134 ---- \&\f(CW\*(C`_\|_extension_\|_\*(C'\fR. However, only system header files should use these escape routes; application programs should avoid them. .Sp ! Some users try to use \fB\-Wpedantic\fR to check programs for strict \s-1ISO\s0 ! C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all\-\-\-only those for which ! \&\s-1ISO\s0 C \fIrequires\fR a diagnostic, and some others for which diagnostics have been added. .Sp ! A feature to report any failure to conform to \s-1ISO\s0 C might be useful in some instances, but would require considerable additional work and would be quite different from \fB\-Wpedantic\fR. We don't have plans to support such a feature in the near future. .Sp Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0 extended dialect of C, such as \fBgnu90\fR or \fBgnu99\fR, there is a ! corresponding \fIbase standard\fR, the version of \s-1ISO\s0 C on which the \s-1GNU\s0 extended dialect is based. Warnings from \fB\-Wpedantic\fR are given where they are required by the base standard. (It does not make sense ! for such warnings to be given only for features not in the specified \s-1GNU\s0 ! C dialect, since by definition the \s-1GNU\s0 dialects of C include all features the compiler supports with the given option, and there would be nothing to warn about.) .IP "\fB\-pedantic\-errors\fR" 4 *************** functions without the attribute specifie *** 3297,3303 **** \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO C90\s0 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a --- 3296,3302 ---- \&\fB\-ffreestanding\fR or \fB\-fno\-builtin\fR. .Sp The formats are checked against the format features supported by \s-1GNU\s0 ! libc version 2.2. These include all \s-1ISO\s0 C90 and C99 features, as well as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0 extensions. Other library implementations may not support all these features; \s-1GCC\s0 does not support warning about features that go beyond a *************** enabled by default and it is made into a *** 3409,3420 **** Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO C\s0 such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO C\s0 prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp --- 3408,3419 ---- Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wignored\-qualifiers\fR (C and \*(C+ only)" 4 ! .IX Item "-Wignored-qualifiers (C and only)" Warn if the return type of a function has a type qualifier ! such as \f(CW\*(C`const\*(C'\fR. For \s-1ISO\s0 C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For \*(C+, the warning is only emitted for scalar types or \f(CW\*(C`void\*(C'\fR. ! \&\s-1ISO\s0 C prohibits qualified \f(CW\*(C`void\*(C'\fR return types on function definitions, so such return types always receive a warning even without this option. .Sp *************** between \fB\-Wswitch\fR and this option *** 3581,3589 **** warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC 4.4.\s0 .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of --- 3580,3588 ---- warning about an omitted enumeration code even if there is a \&\f(CW\*(C`default\*(C'\fR label. .IP "\fB\-Wsync\-nand\fR (C and \*(C+ only)" 4 ! .IX Item "-Wsync-nand (C and only)" Warn when \f(CW\*(C`_\|_sync_fetch_and_nand\*(C'\fR and \f(CW\*(C`_\|_sync_nand_and_fetch\*(C'\fR ! built-in functions are used. These functions changed semantics in \s-1GCC\s0 4.4. .IP "\fB\-Wtrigraphs\fR" 4 .IX Item "-Wtrigraphs" Warn if any trigraphs are encountered that might change the meaning of *************** This warning is enabled by \fB\-Wall\fR. *** 3620,3626 **** .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 --- 3619,3625 ---- .Sp To suppress this warning use the \fBunused\fR attribute. .IP "\fB\-Wunused\-local\-typedefs\fR (C, Objective-C, \*(C+ and Objective\-\*(C+ only)" 4 ! .IX Item "-Wunused-local-typedefs (C, Objective-C, and Objective- only)" Warn when a typedef locally defined in a function is not used. This warning is enabled by \fB\-Wall\fR. .IP "\fB\-Wunused\-parameter\fR" 4 *************** This warning is enabled by \fB\-Wall\fR *** 3727,3733 **** .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC. \s0 If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 --- 3726,3732 ---- .IP "\fB\-Wunknown\-pragmas\fR" 4 .IX Item "-Wunknown-pragmas" Warn when a \f(CW\*(C`#pragma\*(C'\fR directive is encountered that is not understood by ! \&\s-1GCC\s0. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This is not the case if the warnings are only enabled by the \fB\-Wall\fR command-line option. .IP "\fB\-Wno\-pragmas\fR" 4 *************** probably mistaken. *** 3928,3940 **** .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO C\s0 it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive --- 3927,3939 ---- .IP "\fB\-Wtraditional\fR (C and Objective-C only)" 4 .IX Item "-Wtraditional (C and Objective-C only)" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and/or problematic constructs that should be avoided. .RS 4 .IP "\(bu" 4 Macro parameters that appear within string literals in the macro body. In traditional C macro replacement takes place within string literals, ! but in \s-1ISO\s0 C it does not. .IP "\(bu" 4 In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a directive *************** versa. The absence of these prototypes *** 3989,3997 **** C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO C\s0 style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO C\s0 features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to --- 3988,3996 ---- C causes serious problems. This is a subset of the possible conversion warnings; for the full set use \fB\-Wtraditional\-conversion\fR. .IP "\(bu" 4 ! Use of \s-1ISO\s0 C style function definitions. This warning intentionally is \&\fInot\fR issued for prototype declarations or variadic functions ! because these \s-1ISO\s0 C features appear in your code when using libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and \&\f(CW\*(C`VPARAMS\*(C'\fR. This warning is also bypassed for nested functions because that feature is already a \s-1GCC\s0 extension and thus not relevant to *************** except when the same as the default prom *** 4009,4017 **** .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO C99\s0 and is by default ! allowed in \s-1GCC. \s0 It is not supported by \s-1ISO C90\s0 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC 3.0. \s0 .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. --- 4008,4016 ---- .IP "\fB\-Wdeclaration\-after\-statement\fR (C and Objective-C only)" 4 .IX Item "-Wdeclaration-after-statement (C and Objective-C only)" Warn when a declaration is found after a statement in a block. This ! construct, known from \*(C+, was introduced with \s-1ISO\s0 C99 and is by default ! allowed in \s-1GCC\s0. It is not supported by \s-1ISO\s0 C90 and was not supported by ! \&\s-1GCC\s0 versions before \s-1GCC\s0 3.0. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" Warn if an undefined identifier is evaluated in an \fB#if\fR directive. *************** which depend on the \s-1MS\s0 runtime. *** 4088,4094 **** .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU C\s0 assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. --- 4087,4093 ---- .IP "\fB\-Wpointer\-arith\fR" 4 .IX Item "-Wpointer-arith" Warn about anything that depends on the \*(L"size of\*(R" a function type or ! of \f(CW\*(C`void\*(C'\fR. \s-1GNU\s0 C assigns these types a size of 1, for convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers to functions. In \*(C+, warn also when an arithmetic operation involves \&\f(CW\*(C`NULL\*(C'\fR. This warning is also enabled by \fB\-Wpedantic\fR. *************** Warn whenever a function call is cast to *** 4105,4118 **** For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO C\s0 constructs that are outside of the common subset of ! \&\s-1ISO C\s0 and \s-1ISO \*(C+,\s0 e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO \*(C+ 1998\s0 ! and \s-1ISO \*(C+ 2011,\s0 e.g., identifiers in \s-1ISO \*(C+ 1998\s0 that are keywords ! in \s-1ISO \*(C+ 2011. \s0 This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" --- 4104,4117 ---- For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR. .IP "\fB\-Wc++\-compat\fR (C and Objective-C only)" 4 .IX Item "-Wc++-compat (C and Objective-C only)" ! Warn about \s-1ISO\s0 C constructs that are outside of the common subset of ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+, e.g. request for implicit conversion from \&\f(CW\*(C`void *\*(C'\fR to a pointer to non\-\f(CW\*(C`void\*(C'\fR type. .IP "\fB\-Wc++11\-compat\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wc++11-compat ( and Objective- only)" ! Warn about \*(C+ constructs whose meaning differs between \s-1ISO\s0 \*(C+ 1998 ! and \s-1ISO\s0 \*(C+ 2011, e.g., identifiers in \s-1ISO\s0 \*(C+ 1998 that are keywords ! in \s-1ISO\s0 \*(C+ 2011. This warning turns on \fB\-Wnarrowing\fR and is enabled by \fB\-Wall\fR. .IP "\fB\-Wcast\-qual\fR" 4 .IX Item "-Wcast-qual" *************** Usually they indicate a typo in the user *** 4355,4379 **** implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO C\s0 and \s-1ISO \*(C+,\s0 two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO 10646\s0 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC. \s0 The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO 10646 \*(L"C\*(R"\s0 normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO C\s0 and \s-1ISO \*(C+\s0 that, when turned into \s-1NFC,\s0 are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO C\s0 or \*(C+ and have all your identifiers in \s-1NFC. ! \&\s0\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp --- 4354,4378 ---- implementation-defined values, and should not be used in portable code. .IP "\fB\-Wnormalized=\fR" 4 .IX Item "-Wnormalized=" ! In \s-1ISO\s0 C and \s-1ISO\s0 \*(C+, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic \s-1ASCII\s0 character set are used, you can have two different character sequences that look the same. To avoid confusion, ! the \s-1ISO\s0 10646 standard sets out some \fInormalization rules\fR which when applied ensure that two sequences that look the same are turned into the same sequence. \s-1GCC\s0 can warn you if you are using identifiers that have not been normalized; this option controls that warning. .Sp ! There are four levels of warning supported by \s-1GCC\s0. The default is \&\fB\-Wnormalized=nfc\fR, which warns about any identifier that is ! not in the \s-1ISO\s0 10646 \*(L"C\*(R" normalized form, \fI\s-1NFC\s0\fR. \s-1NFC\s0 is the recommended form for most uses. .Sp Unfortunately, there are some characters allowed in identifiers by ! \&\s-1ISO\s0 C and \s-1ISO\s0 \*(C+ that, when turned into \s-1NFC\s0, are not allowed in identifiers. That is, there's no way to use these symbols in portable ! \&\s-1ISO\s0 C or \*(C+ and have all your identifiers in \s-1NFC\s0. ! \&\fB\-Wnormalized=id\fR suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. .Sp *************** You can switch the warning off for all c *** 4382,4392 **** are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO 10646\s0 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT LATIN SMALL ! LETTER N\*(R",\s0 displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO 10646\s0 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning --- 4381,4391 ---- are using some other normalization scheme (like \*(L"D\*(R"), because otherwise you can easily create bugs that are literally impossible to see. .Sp ! Some characters in \s-1ISO\s0 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once formatting has ! been applied. For instance \f(CW\*(C`\eu207F\*(C'\fR, \*(L"\s-1SUPERSCRIPT\s0 \s-1LATIN\s0 \s-1SMALL\s0 ! \&\s-1LETTER\s0 N\*(R", displays just like a regular \f(CW\*(C`n\*(C'\fR that has been ! placed in a superscript. \s-1ISO\s0 10646 defines the \fI\s-1NFKC\s0\fR normalization scheme to convert all these into a standard form as well, and \s-1GCC\s0 warns if your code is not in \s-1NFKC\s0 if you use \&\fB\-Wnormalized=nfkc\fR. This warning is comparable to warning *************** have the packed attribute: *** 4440,4448 **** .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC 4.4\s0 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC 4.4.\s0 For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp --- 4439,4447 ---- .IP "\fB\-Wpacked\-bitfield\-compat\fR" 4 .IX Item "-Wpacked-bitfield-compat" The 4.1, 4.2 and 4.3 series of \s-1GCC\s0 ignore the \f(CW\*(C`packed\*(C'\fR attribute ! on bit-fields of type \f(CW\*(C`char\*(C'\fR. This has been fixed in \s-1GCC\s0 4.4 but the change can lead to differences in the structure layout. \s-1GCC\s0 ! informs you when the offset of such a field has changed in \s-1GCC\s0 4.4. For example there is no longer a 4\-bit padding between field \f(CW\*(C`a\*(C'\fR and \f(CW\*(C`b\*(C'\fR in this structure: .Sp *************** warnings produced by \fB\-Winline\fR to *** 4489,4495 **** .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO \*(C+\s0 standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple --- 4488,4494 ---- .IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ and Objective\-\*(C+ only)" 4 .IX Item "-Wno-invalid-offsetof ( and Objective- only)" Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD ! type. According to the 1998 \s-1ISO\s0 \*(C+ standard, applying \fBoffsetof\fR to a non-POD type is undefined. In existing \*(C+ implementations, however, \fBoffsetof\fR typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple *************** the search path but can't be used. *** 4516,4527 **** .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO C90\s0 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO C90\s0 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO C99\s0 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" --- 4515,4526 ---- .IP "\fB\-Wlong\-long\fR" 4 .IX Item "-Wlong-long" Warn if \fBlong long\fR type is used. This is enabled by either ! \&\fB\-Wpedantic\fR or \fB\-Wtraditional\fR in \s-1ISO\s0 C90 and \*(C+98 modes. To inhibit the warning messages, use \fB\-Wno\-long\-long\fR. .IP "\fB\-Wvariadic\-macros\fR" 4 .IX Item "-Wvariadic-macros" ! Warn if variadic macros are used in pedantic \s-1ISO\s0 C90 mode, or the \s-1GNU\s0 ! alternate syntax when in pedantic \s-1ISO\s0 C99 mode. This is default. To inhibit the warning messages, use \fB\-Wno\-variadic\-macros\fR. .IP "\fB\-Wvarargs\fR" 4 .IX Item "-Wvarargs" *************** standard's minimum limit, but very porta *** 4584,4590 **** using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL. \s0 In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp --- 4583,4589 ---- using longer strings. .Sp The limit applies \fIafter\fR string constant concatenation, and does ! not count the trailing \s-1NUL\s0. In C90, the limit was 509 characters; in C99, it was raised to 4095. \*(C+98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in \*(C+. .Sp *************** a suffix. When used together with \fB\- *** 4597,4610 **** warns about such constants in system header files. This can be useful when preparing code to use with the \f(CW\*(C`FLOAT_CONST_DECIMAL64\*(C'\fR pragma from the decimal floating-point extension to C99. ! .SS "Options for Debugging Your Program or \s-1GCC\s0" .IX Subsection "Options for Debugging Your Program or GCC" \&\s-1GCC\s0 has various special options that are used for debugging either your program or \s-1GCC:\s0 .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF, XCOFF,\s0 or \s-1DWARF 2\s0). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra --- 4596,4609 ---- warns about such constants in system header files. This can be useful when preparing code to use with the \f(CW\*(C`FLOAT_CONST_DECIMAL64\*(C'\fR pragma from the decimal floating-point extension to C99. ! .Sh "Options for Debugging Your Program or \s-1GCC\s0" .IX Subsection "Options for Debugging Your Program or GCC" \&\s-1GCC\s0 has various special options that are used for debugging either your program or \s-1GCC:\s0 .IP "\fB\-g\fR" 4 .IX Item "-g" Produce debugging information in the operating system's native format ! (stabs, \s-1COFF\s0, \s-1XCOFF\s0, or \s-1DWARF\s0 2). \s-1GDB\s0 can work with this debugging information. .Sp On most systems that use stabs format, \fB\-g\fR enables use of extra *************** be useful, this option requires a debugg *** 4637,4644 **** files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB. \s0 This means to use the ! most expressive format available (\s-1DWARF 2,\s0 stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 --- 4636,4643 ---- files. .IP "\fB\-ggdb\fR" 4 .IX Item "-ggdb" ! Produce debugging information for use by \s-1GDB\s0. This means to use the ! most expressive format available (\s-1DWARF\s0 2, stabs, or the native format if neither of those are supported), including \s-1GDB\s0 extensions if at all possible. .IP "\fB\-gpubnames\fR" 4 *************** with a linker that can produce \s-1GDB\s *** 4653,4660 **** .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS,\s0 Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB.\s0 On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" --- 4652,4659 ---- .IX Item "-gstabs" Produce debugging information in stabs format (if that is supported), without \s-1GDB\s0 extensions. This is the format used by \s-1DBX\s0 on most \s-1BSD\s0 ! systems. On \s-1MIPS\s0, Alpha and System V Release 4 systems this option ! produces stabs debugging output that is not understood by \s-1DBX\s0 or \s-1SDB\s0. On System V Release 4 systems this option requires the \s-1GNU\s0 assembler. .IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4 .IX Item "-feliminate-unused-debug-symbols" *************** System V Release 4. *** 4691,4697 **** .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), --- 4690,4696 ---- .IP "\fB\-gxcoff\fR" 4 .IX Item "-gxcoff" Produce debugging information in \s-1XCOFF\s0 format (if that is supported). ! This is the format used by the \s-1DBX\s0 debugger on \s-1IBM\s0 \s-1RS/6000\s0 systems. .IP "\fB\-gxcoff+\fR" 4 .IX Item "-gxcoff+" Produce debugging information in \s-1XCOFF\s0 format (if that is supported), *************** The value of \fIversion\fR may be either *** 4706,4714 **** for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF 3\s0 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB 7.0\s0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" --- 4705,4713 ---- for most targets is 4. .Sp Note that with \s-1DWARF\s0 Version 2, some ports require and always ! use some non-conflicting \s-1DWARF\s0 3 extensions in the unwind tables. .Sp ! Version 4 may require \s-1GDB\s0 7.0 and \fB\-fvar\-tracking\-assignments\fR for maximum benefit. .IP "\fB\-grecord\-gcc\-switches\fR" 4 .IX Item "-grecord-gcc-switches" *************** debug information in version 1 of the \s *** 4770,4776 **** different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF.\s0 .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option --- 4769,4775 ---- different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be changed now. Instead use an additional \fB\-g\fR\fIlevel\fR option to change the ! debug level for \s-1DWARF\s0. .IP "\fB\-gtoggle\fR" 4 .IX Item "-gtoggle" Turn off generation of debug info, if leaving out this option *************** many times it is given. This is mainly *** 4784,4806 **** Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. ! See <\fBhttp://code.google.com/p/address\-sanitizer/\fR> for more details. The run-time behavior can be influenced using the ! \&\fB\s-1ASAN_OPTIONS\s0\fR environment variable; see ! <\fBhttps://code.google.com/p/address\-sanitizer/wiki/Flags#Run\-time_flags\fR> for ! a list of supported options. .IP "\fB\-fsanitize=kernel\-address\fR" 4 .IX Item "-fsanitize=kernel-address" Enable AddressSanitizer for Linux kernel. ! See <\fBhttp://code.google.com/p/address\-sanitizer/wiki/AddressSanitizerForKernel\fR> for more details. .IP "\fB\-fsanitize=thread\fR" 4 .IX Item "-fsanitize=thread" Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect ! data race bugs. See <\fBhttp://code.google.com/p/thread\-sanitizer/\fR> for more details. The run-time behavior can be influenced using the \fB\s-1TSAN_OPTIONS\s0\fR environment variable; see ! <\fBhttps://code.google.com/p/thread\-sanitizer/wiki/Flags\fR> for a list of supported options. .IP "\fB\-fsanitize=leak\fR" 4 .IX Item "-fsanitize=leak" --- 4783,4806 ---- Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. ! See <\fBhttps://github.com/google/sanitizers/wiki/AddressSanitizer\fR> for more details. The run-time behavior can be influenced using the ! \&\fB\s-1ASAN_OPTIONS\s0\fR environment variable. When set to \f(CW\*(C`help=1\*(C'\fR, ! the available options are shown at startup of the instrumended program. See ! <\fBhttps://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run\-time\-flags\fR> ! for a list of supported options. .IP "\fB\-fsanitize=kernel\-address\fR" 4 .IX Item "-fsanitize=kernel-address" Enable AddressSanitizer for Linux kernel. ! See <\fBhttps://github.com/google/sanitizers/wiki#threadsanitizer\fR> for more details. .IP "\fB\-fsanitize=thread\fR" 4 .IX Item "-fsanitize=thread" Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect ! data race bugs. See <\fBhttps://github.com/google/sanitizers/wiki/ThreadSanitizerFlags\fR> for more details. The run-time behavior can be influenced using the \fB\s-1TSAN_OPTIONS\s0\fR environment variable; see ! <\fBhttps://github.com/google/sanitizers/wiki/ThreadSanitizerFlags\fR> for a list of supported options. .IP "\fB\-fsanitize=leak\fR" 4 .IX Item "-fsanitize=leak" *************** This option only matters for linking of *** 4809,4815 **** \&\fB\-fsanitize=address\fR nor \fB\-fsanitize=thread\fR is used. In that case it will link the executable against a library that overrides \f(CW\*(C`malloc\*(C'\fR and other allocator functions. See ! <\fBhttps://code.google.com/p/address\-sanitizer/wiki/LeakSanitizer\fR> for more details. The run-time behavior can be influenced using the \&\fB\s-1LSAN_OPTIONS\s0\fR environment variable. .IP "\fB\-fsanitize=undefined\fR" 4 --- 4809,4815 ---- \&\fB\-fsanitize=address\fR nor \fB\-fsanitize=thread\fR is used. In that case it will link the executable against a library that overrides \f(CW\*(C`malloc\*(C'\fR and other allocator functions. See ! <\fBhttps://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer\fR> for more details. The run-time behavior can be influenced using the \&\fB\s-1LSAN_OPTIONS\s0\fR environment variable. .IP "\fB\-fsanitize=undefined\fR" 4 *************** at runtime. Current suboptions are: *** 4822,4828 **** .IX Item "-fsanitize=shift" This option enables checking that the result of a shift operation is not undefined. Note that what exactly is considered undefined differs ! slightly between C and \*(C+, as well as between \s-1ISO C90\s0 and C99, etc. .IP "\fB\-fsanitize=integer\-divide\-by\-zero\fR" 4 .IX Item "-fsanitize=integer-divide-by-zero" Detect integer division by zero as well as \f(CW\*(C`INT_MIN / \-1\*(C'\fR division. --- 4822,4828 ---- .IX Item "-fsanitize=shift" This option enables checking that the result of a shift operation is not undefined. Note that what exactly is considered undefined differs ! slightly between C and \*(C+, as well as between \s-1ISO\s0 C90 and C99, etc. .IP "\fB\-fsanitize=integer\-divide\-by\-zero\fR" 4 .IX Item "-fsanitize=integer-divide-by-zero" Detect integer division by zero as well as \f(CW\*(C`INT_MIN / \-1\*(C'\fR division. *************** When this option is passed to the compil *** 4915,4923 **** other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF 2\s0 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF 2\s0 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types --- 4915,4923 ---- other than debugging the compiler proper. .IP "\fB\-feliminate\-dwarf2\-dups\fR" 4 .IX Item "-feliminate-dwarf2-dups" ! Compress \s-1DWARF\s0 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating \s-1DWARF\s0 2 debugging information with \fB\-gdwarf\-2\fR. .IP "\fB\-femit\-struct\-debug\-baseonly\fR" 4 .IX Item "-femit-struct-debug-baseonly" Emit debug information for struct-like types *************** but at significant potential loss in typ *** 4929,4935 **** See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types --- 4929,4935 ---- See \fB\-femit\-struct\-debug\-reduced\fR for a less aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-reduced\fR" 4 .IX Item "-femit-struct-debug-reduced" Emit debug information for struct-like types *************** with some potential loss in type informa *** 4942,4948 **** See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types --- 4942,4948 ---- See \fB\-femit\-struct\-debug\-baseonly\fR for a more aggressive option. See \fB\-femit\-struct\-debug\-detailed\fR for more detailed control. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-femit\-struct\-debug\-detailed\fR[\fB=\fR\fIspec-list\fR]" 4 .IX Item "-femit-struct-debug-detailed[=spec-list]" Specify the struct-like types *************** You may need to experiment to determine *** 4988,4994 **** .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF 2.\s0 .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging --- 4988,4994 ---- .Sp The default is \fB\-femit\-struct\-debug\-detailed=all\fR. .Sp ! This option works only with \s-1DWARF\s0 2. .IP "\fB\-fno\-merge\-debug\-strings\fR" 4 .IX Item "-fno-merge-debug-strings" Direct the linker to not merge together strings in the debugging *************** When compiling files in directory \fI\fI *** 5002,5009 **** information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF 2\s0 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS \s0\f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the --- 5002,5009 ---- information describing them as in \fI\fInew\fI\fR instead. .IP "\fB\-fno\-dwarf2\-cfi\-asm\fR" 4 .IX Item "-fno-dwarf2-cfi-asm" ! Emit \s-1DWARF\s0 2 unwind info as compiler generated \f(CW\*(C`.eh_frame\*(C'\fR section ! instead of using \s-1GAS\s0 \f(CW\*(C`.cfi_*\*(C'\fR directives. .IP "\fB\-p\fR" 4 .IX Item "-p" Generate extra code to write profile information suitable for the *************** For example, with \fB\-fdbg\-cnt=dce:10, *** 5160,5166 **** .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC.\s0 Compiler users should use regular options for enabling/disabling passes instead. .RS 4 --- 5160,5166 ---- .IX Item "-fdisable-kind-pass=range-list" .PD This is a set of options that are used to explicitly disable/enable ! optimization passes. These options are intended for use for debugging \s-1GCC\s0. Compiler users should use regular options for enabling/disabling passes instead. .RS 4 *************** by some other path. *** 5631,5637 **** When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL,\s0 print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" --- 5631,5637 ---- When dumping pretty-printed trees, this option inhibits dumping the bodies of control structures. .Sp ! When dumping \s-1RTL\s0, print the \s-1RTL\s0 in slim (condensed) form instead of the default LISP-like representation. .IP "\fBraw\fR" 4 .IX Item "raw" *************** Enable showing virtual operands for ever *** 5666,5672 **** Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID \s0(\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. --- 5666,5672 ---- Enable showing line numbers for statements. .IP "\fBuid\fR" 4 .IX Item "uid" ! Enable showing the unique \s-1ID\s0 (\f(CW\*(C`DECL_UID\*(C'\fR) for each variable. .IP "\fBverbose\fR" 4 .IX Item "verbose" Enable showing the tree dump for each statement. *************** Dump aliasing information for each funct *** 5744,5750 **** appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP. \s0 The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" --- 5744,5750 ---- appending \fI.alias\fR to the source file name. .IP "\fBccp\fR" 4 .IX Item "ccp" ! Dump each function after \s-1CCP\s0. The file name is made by appending \&\fI.ccp\fR to the source file name. .IP "\fBstoreccp\fR" 4 .IX Item "storeccp" *************** Print the compiler's built-in specs\-\-\ *** 6154,6160 **** is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF 2\s0 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation --- 6154,6160 ---- is used when \s-1GCC\s0 itself is being built.) .IP "\fB\-fno\-eliminate\-unused\-debug\-types\fR" 4 .IX Item "-fno-eliminate-unused-debug-types" ! Normally, when producing \s-1DWARF\s0 2 output, \s-1GCC\s0 avoids producing debug symbol output for types that are nowhere used in the source file being compiled. Sometimes it is useful to have \s-1GCC\s0 emit debugging information for all types declared in a compilation *************** in that compilation unit, for example *** 6163,6169 **** if, in the debugger, you want to cast a value to a type that is not actually used in your program (but is declared). More often, however, this results in a significant amount of wasted space. ! .SS "Options That Control Optimization" .IX Subsection "Options That Control Optimization" These options control various sorts of optimizations. .PP --- 6163,6169 ---- if, in the debugger, you want to cast a value to a type that is not actually used in your program (but is declared). More often, however, this results in a significant amount of wasted space. ! .Sh "Options That Control Optimization" .IX Subsection "Options That Control Optimization" These options control various sorts of optimizations. .PP *************** function calls and pops them all at once *** 6343,6349 **** Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL. \s0 The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. --- 6343,6349 ---- Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR. .IP "\fB\-fforward\-propagate\fR" 4 .IX Item "-fforward-propagate" ! Perform a forward propagation pass on \s-1RTL\s0. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. *************** restore frame pointers; it also makes an *** 6369,6375 **** in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX,\s0 this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls --- 6369,6375 ---- in many functions. \fBIt also makes debugging impossible on some machines.\fR .Sp ! On some machines, such as the \s-1VAX\s0, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls *************** attribute or declspec *** 6488,6494 **** In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU C90. \s0 In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" --- 6488,6494 ---- In C, emit \f(CW\*(C`static\*(C'\fR functions that are declared \f(CW\*(C`inline\*(C'\fR into the object file, even if the function has been inlined into all of its callers. This switch does not affect functions using the ! \&\f(CW\*(C`extern inline\*(C'\fR extension in \s-1GNU\s0 C90. In \*(C+, emit any and all inline functions into the object file. .IP "\fB\-fkeep\-static\-consts\fR" 4 .IX Item "-fkeep-static-consts" *************** The default is \fB\-ffunction\-cse\fR *** 6553,6559 **** .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS. \s0 This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly --- 6553,6559 ---- .IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4 .IX Item "-fno-zero-initialized-in-bss" If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that ! are initialized to zero into \s-1BSS\s0. This can save space in the resulting code. .Sp This option turns off this behavior because some programs explicitly *************** instructions to support this. Enabled b *** 6676,6686 **** higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL.\s0 Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" --- 6676,6686 ---- higher on architectures that support this. .IP "\fB\-fdce\fR" 4 .IX Item "-fdce" ! Perform dead code elimination (\s-1DCE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fdse\fR" 4 .IX Item "-fdse" ! Perform dead store elimination (\s-1DSE\s0) on \s-1RTL\s0. Enabled by default at \fB\-O\fR and higher. .IP "\fB\-fif\-conversion\fR" 4 .IX Item "-fif-conversion" *************** at \fB\-O\fR and higher. *** 7032,7038 **** Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE,\s0 though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" --- 7032,7038 ---- Perform full redundancy elimination (\s-1FRE\s0) on trees. The difference between \s-1FRE\s0 and \s-1PRE\s0 is that \s-1FRE\s0 only considers expressions that are computed on all paths leading to the redundant computation. ! This analysis is faster than \s-1PRE\s0, though it exposes fewer redundancies. This flag is enabled by default at \fB\-O\fR and higher. .IP "\fB\-ftree\-phiprop\fR" 4 .IX Item "-ftree-phiprop" *************** infrastructure. *** 7271,7277 **** Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE \-\s0> \s-1GRAPHITE \-\s0> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 --- 7271,7277 ---- Enable the identity transformation for graphite. For every SCoP we generate the polyhedral representation and transform it back to gimple. Using \&\fB\-fgraphite\-identity\fR we can check the costs or benefits of the ! \&\s-1GIMPLE\s0 \-> \s-1GRAPHITE\s0 \-> \s-1GIMPLE\s0 transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. .IP "\fB\-floop\-nest\-optimize\fR" 4 *************** targets. *** 7789,7795 **** Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE,\s0 loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp --- 7789,7795 ---- Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also strengthens several other optimization ! passes, such as \s-1CSE\s0, loop optimizer and trivial dead code remover. It can, however, make debugging impossible, since variables no longer stay in a \&\*(L"home register\*(R". .Sp *************** information. *** 7807,7813 **** .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE \s0(one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they --- 7807,7813 ---- .IP "\fB\-flto[=\fR\fIn\fR\fB]\fR" 4 .IX Item "-flto[=n]" This option runs the standard link-time optimizer. When invoked ! with source code, it generates \s-1GIMPLE\s0 (one of \s-1GCC\s0's internal representations) and writes it to special \s-1ELF\s0 sections in the object file. When the object files are linked together, all the function bodies are read from these \s-1ELF\s0 sections and instantiated as if they *************** link time. *** 7931,7937 **** .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO C99 6.2.7\s0), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. Similar diagnostics may be raised for other languages. .Sp --- 7931,7937 ---- .Sp If \s-1LTO\s0 encounters objects with C linkage declared with incompatible types in separate translation units to be linked together (undefined ! behavior according to \s-1ISO\s0 C99 6.2.7), a non-fatal diagnostic may be issued. The behavior is still undefined at run time. Similar diagnostics may be raised for other languages. .Sp *************** regular (non-LTO) compilation. *** 7954,7960 **** If object files containing \s-1GIMPLE\s0 bytecode are stored in a library archive, say \&\fIlibfoo.a\fR, it is possible to extract and use them in an \s-1LTO\s0 link if you are using a linker with plugin support. To create static libraries suitable ! for \s-1LTO,\s0 use \fBgcc-ar\fR and \fBgcc-ranlib\fR instead of \fBar\fR and \f(CW\*(C`ranlib\*(C'\fR; to show the symbols of object files with \s-1GIMPLE\s0 bytecode, use \&\fBgcc-nm\fR. Those commands require that \fBar\fR, \fBranlib\fR and \fBnm\fR have been compiled with plugin support. At link time, use the the --- 7954,7960 ---- If object files containing \s-1GIMPLE\s0 bytecode are stored in a library archive, say \&\fIlibfoo.a\fR, it is possible to extract and use them in an \s-1LTO\s0 link if you are using a linker with plugin support. To create static libraries suitable ! for \s-1LTO\s0, use \fBgcc-ar\fR and \fBgcc-ranlib\fR instead of \fBar\fR and \f(CW\*(C`ranlib\*(C'\fR; to show the symbols of object files with \s-1GIMPLE\s0 bytecode, use \&\fBgcc-nm\fR. Those commands require that \fBar\fR, \fBranlib\fR and \fBnm\fR have been compiled with plugin support. At link time, use the the *************** The current implementation of \s-1LTO\s0 *** 7988,7994 **** attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older or newer version of \s-1GCC.\s0 .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with --- 7988,7994 ---- attempt to generate bytecode that is portable between different types of hosts. The bytecode files are versioned and there is a strict version check, so bytecode files generated in one version of ! \&\s-1GCC\s0 will not work with an older or newer version of \s-1GCC\s0. .Sp Link-time optimization does not work well with generation of debugging information. Combining \fB\-flto\fR with *************** and the object code. This makes them usa *** 8063,8070 **** linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO,\s0 but ! requires the complete toolchain to be aware of \s-1LTO.\s0 It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment --- 8063,8070 ---- linking. This option is effective only when compiling with \fB\-flto\fR and is ignored at link time. .Sp ! \&\fB\-fno\-fat\-lto\-objects\fR improves compilation time over plain \s-1LTO\s0, but ! requires the complete toolchain to be aware of \s-1LTO\s0. It requires a linker with linker plugin support for basic functionality. Additionally, \&\fBnm\fR, \fBar\fR and \fBranlib\fR need to support linker plugins to allow a full-featured build environment *************** them to store all pertinent intermediate *** 8168,8182 **** .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE ! \&\s0\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO C99\s0; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict --- 8168,8182 ---- .IP "\fB\-fexcess\-precision=\fR\fIstyle\fR" 4 .IX Item "-fexcess-precision=style" This option allows further control over excess precision on machines ! where floating-point registers have more precision than the \s-1IEEE\s0 ! \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR types and the processor does not support operations rounding to those types. By default, \&\fB\-fexcess\-precision=fast\fR is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if \&\fB\-fexcess\-precision=standard\fR is specified then excess ! precision follows the rules specified in \s-1ISO\s0 C99; in particular, both casts and assignments cause values to be rounded to their semantic types (whereas \fB\-ffloat\-store\fR only affects assignments). This option is enabled by default for C if a strict *************** The default is \fB\-fno\-unsafe\-math\-o *** 8240,8246 **** .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO C\s0 and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like --- 8240,8246 ---- .IP "\fB\-fassociative\-math\fR" 4 .IX Item "-fassociative-math" Allow re-association of operands in series of floating-point operations. ! This violates the \s-1ISO\s0 C and \*(C+ language standard by possibly changing computation result. \s-1NOTE:\s0 re-ordering may change the sign of zero as well as ignore NaNs and inhibit or create underflow or overflow (and thus cannot be used on code that relies on rounding behavior like *************** whether the result of a complex multipli *** 8343,8350 **** default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO C99 ! \&\s0\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" --- 8343,8350 ---- default is \fB\-fno\-cx\-limited\-range\fR, but is enabled by \&\fB\-ffast\-math\fR. .Sp ! This option controls the default setting of the \s-1ISO\s0 C99 ! \&\f(CW\*(C`CX_LIMITED_RANGE\*(C'\fR pragma. Nevertheless, the option applies to all languages. .IP "\fB\-fcx\-fortran\-rules\fR" 4 .IX Item "-fcx-fortran-rules" *************** optimization is not done. *** 8600,8606 **** .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" --- 8600,8606 ---- .IP "\fBmax-gcse-insertion-ratio\fR" 4 .IX Item "max-gcse-insertion-ratio" If the ratio of expression insertions to deletions is larger than this value ! for any expression, then \s-1RTL\s0 \s-1PRE\s0 inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. .IP "\fBmax-pending-list-length\fR" 4 .IX Item "max-pending-list-length" *************** when modulo scheduling a loop. Larger v *** 8615,8621 **** compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC.\s0 This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared --- 8615,8621 ---- compilation time. .IP "\fBmax-inline-insns-single\fR" 4 .IX Item "max-inline-insns-single" ! Several parameters control the tree inliner used in \s-1GCC\s0. This number sets the maximum number of instructions (counted in \s-1GCC\s0's internal representation) in a single function that the tree inliner considers for inlining. This only affects functions declared *************** Tuning this may improve compilation spee *** 8969,8975 **** generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM \s0>= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\*(R"\s0 is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and --- 8969,8975 ---- generation. .Sp The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when ! \&\s-1RAM\s0 >= 1GB. If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\s0\*(R" is the smallest of actual \s-1RAM\s0 and \f(CW\*(C`RLIMIT_DATA\*(C'\fR or \f(CW\*(C`RLIMIT_AS\*(C'\fR. If \&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower bound of 30% is used. Setting this parameter and *************** by \fBggc-min-expand\fR% beyond \fBggc-m *** 8984,8990 **** tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8, RLIMIT_RSS,\s0 or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a --- 8984,8990 ---- tuning this may improve compilation speed, and has no effect on code generation. .Sp ! The default is the smaller of \s-1RAM/8\s0, \s-1RLIMIT_RSS\s0, or a limit that tries to ensure that \s-1RLIMIT_DATA\s0 or \s-1RLIMIT_AS\s0 are not exceeded, but with a lower bound of 4096 (four megabytes) and an upper bound of 131072 (128 megabytes). If \s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a *************** The number of partitions should exceed t *** 9302,9308 **** The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR \s0(in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 --- 9302,9308 ---- The default value is 32. .IP "\fBlto-minpartition\fR" 4 .IX Item "lto-minpartition" ! Size of minimal partition for \s-1WHOPR\s0 (in estimated instructions). This prevents expenses of splitting very small programs into too many partitions. .IP "\fBcxx-max-namespaces-for-diagnostic-help\fR" 4 *************** E.g. to disable inline code use *** 9411,9417 **** .RE .RS 4 .RE ! .SS "Options Controlling the Preprocessor" .IX Subsection "Options Controlling the Preprocessor" These options control the C preprocessor, which is run on each C source file before actual compilation. --- 9411,9417 ---- .RE .RS 4 .RE ! .Sh "Options Controlling the Preprocessor" .IX Subsection "Options Controlling the Preprocessor" These options control the C preprocessor, which is run on each C source file before actual compilation. *************** get trigraph conversion without warnings *** 9535,9541 **** .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO C. \s0 Also warn about \s-1ISO C\s0 constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" --- 9535,9541 ---- .IP "\fB\-Wtraditional\fR" 4 .IX Item "-Wtraditional" Warn about certain constructs that behave differently in traditional and ! \&\s-1ISO\s0 C. Also warn about \s-1ISO\s0 C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. .IP "\fB\-Wundef\fR" 4 .IX Item "-Wundef" *************** in finding bugs in your own code, theref *** 9588,9594 **** responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of --- 9588,9594 ---- responsible for the system library, you may want to see them. .IP "\fB\-w\fR" 4 .IX Item "-w" ! Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default. .IP "\fB\-pedantic\fR" 4 .IX Item "-pedantic" Issue all the mandatory diagnostics listed in the C standard. Some of *************** This option allows use of a precompiled *** 9728,9737 **** \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH.\s0 .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC. \s0 It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is --- 9728,9737 ---- \&\f(CW\*(C`#pragma GCC pch_preprocess "\f(CIfilename\f(CW"\*(C'\fR in the output to mark the place where the precompiled header was found, and its \fIfilename\fR. When \fB\-fpreprocessed\fR is in use, \s-1GCC\s0 recognizes this \f(CW\*(C`#pragma\*(C'\fR ! and loads the \s-1PCH\s0. .Sp This option is off by default, because the resulting preprocessed output ! is only really suitable as input to \s-1GCC\s0. It is switched on by \&\fB\-save\-temps\fR. .Sp You should not write this \f(CW\*(C`#pragma\*(C'\fR in your own code, but it is *************** may be one of: *** 9784,9790 **** .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO C\s0 standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. --- 9784,9790 ---- .el .IP "\f(CWiso9899:1990\fR" 4 .IX Item "iso9899:1990" .PD ! The \s-1ISO\s0 C standard from 1990. \fBc90\fR is the customary shorthand for this version of the standard. .Sp The \fB\-ansi\fR option is equivalent to \fB\-std=c90\fR. *************** The 1990 C standard, as amended in 1994. *** 9806,9812 **** .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO C\s0 standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 --- 9806,9812 ---- .el .IP "\f(CWc9x\fR" 4 .IX Item "c9x" .PD ! The revised \s-1ISO\s0 C standard, published in December 1999. Before publication, this was known as C9X. .ie n .IP """iso9899:2011""" 4 .el .IP "\f(CWiso9899:2011\fR" 4 *************** publication, this was known as C9X. *** 9819,9825 **** .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO C\s0 standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 --- 9819,9825 ---- .el .IP "\f(CWc1x\fR" 4 .IX Item "c1x" .PD ! The revised \s-1ISO\s0 C standard, published in December 2011. Before publication, this was known as C1X. .ie n .IP """gnu90""" 4 .el .IP "\f(CWgnu90\fR" 4 *************** The 2011 C standard plus \s-1GNU\s0 exte *** 9851,9857 **** .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO \*(C+\s0 standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" --- 9851,9857 ---- .ie n .IP """c++98""" 4 .el .IP "\f(CWc++98\fR" 4 .IX Item "c++98" ! The 1998 \s-1ISO\s0 \*(C+ standard plus amendments. .ie n .IP """gnu++98""" 4 .el .IP "\f(CWgnu++98\fR" 4 .IX Item "gnu++98" *************** Accept \fB$\fR in identifiers. *** 9977,9983 **** .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC,\s0 it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" --- 9977,9983 ---- .IP "\fB\-fextended\-identifiers\fR" 4 .IX Item "-fextended-identifiers" Accept universal character names in identifiers. This option is ! experimental; in a future version of \s-1GCC\s0, it will be enabled by default for C99 and \*(C+. .IP "\fB\-fno\-canonical\-system\-headers\fR" 4 .IX Item "-fno-canonical-system-headers" *************** line. If the value is less than 1 or gr *** 10004,10010 **** ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC. \s0 When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would --- 10004,10010 ---- ignored. The default is 8. .IP "\fB\-fdebug\-cpp\fR" 4 .IX Item "-fdebug-cpp" ! This option is only useful for debugging \s-1GCC\s0. When used with \&\fB\-E\fR, dumps debugging information about location maps. Every token in the output is preceded by the dump of the map its location belongs to. The dump of the map holding the location of a token would *************** Note that \-ftrack\-macro\-expansion=2 i *** 10037,10048 **** .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8. \s0\fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16,\s0 whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have --- 10037,10048 ---- .IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fexec-charset=charset" Set the execution character set, used for string and character ! constants. The default is \s-1UTF\-8\s0. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. .IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4 .IX Item "-fwide-exec-charset=charset" Set the wide execution character set, used for wide string and ! character constants. The default is \s-1UTF\-32\s0 or \s-1UTF\-16\s0, whichever corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR. As with \&\fB\-fexec\-charset\fR, \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have *************** problems with encodings that do not fit *** 10050,10058 **** .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC. \s0 If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8. \s0 This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. --- 10050,10058 ---- .IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4 .IX Item "-finput-charset=charset" Set the input character set, used for translation from the character ! set of the input file to the source character set used by \s-1GCC\s0. If the locale does not specify, or \s-1GCC\s0 cannot get this information from the ! locale, the default is \s-1UTF\-8\s0. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. \fIcharset\fR can be any encoding supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine. *************** Cancel an assertion with the predicate \ *** 10089,10095 **** .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC,\s0 and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 --- 10089,10095 ---- .IX Item "-dCHARS" \&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters, and must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so are silently ignored. If you specify characters whose behavior conflicts, the result is undefined. .RS 4 *************** The \fB\-CC\fR option is generally used *** 10165,10176 **** .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO C\s0 preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO C\s0 to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and --- 10165,10176 ---- .IP "\fB\-traditional\-cpp\fR" 4 .IX Item "-traditional-cpp" Try to imitate the behavior of old-fashioned C preprocessors, as ! opposed to \s-1ISO\s0 C preprocessors. .IP "\fB\-trigraphs\fR" 4 .IX Item "-trigraphs" Process trigraph sequences. These are three-character sequences, all starting with \fB??\fR, that ! are defined by \s-1ISO\s0 C to stand for single characters. For example, \&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character constant for a newline. By default, \s-1GCC\s0 ignores trigraphs, but in standard-conforming modes it converts them. See the \fB\-std\fR and *************** Print text describing all the command li *** 10196,10202 **** preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" --- 10196,10202 ---- preprocessing anything. .IP "\fB\-v\fR" 4 .IX Item "-v" ! Verbose mode. Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of execution, and report the final form of the include path. .IP "\fB\-H\fR" 4 .IX Item "-H" *************** header file is printed with \fB...x\fR a *** 10211,10219 **** .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. ! .SS "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" You can pass options to the assembler. .IP "\fB\-Wa,\fR\fIoption\fR" 4 --- 10211,10219 ---- .IP "\fB\-\-version\fR" 4 .IX Item "--version" .PD ! Print out \s-1GNU\s0 \s-1CPP\s0's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. ! .Sh "Passing Options to the Assembler" .IX Subsection "Passing Options to the Assembler" You can pass options to the assembler. .IP "\fB\-Wa,\fR\fIoption\fR" 4 *************** recognize. *** 10228,10234 **** .Sp If you want to pass an option that takes an argument, you must use \&\fB\-Xassembler\fR twice, once for the option and once for the argument. ! .SS "Options for Linking" .IX Subsection "Options for Linking" These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is --- 10228,10234 ---- .Sp If you want to pass an option that takes an argument, you must use \&\fB\-Xassembler\fR twice, once for the option and once for the argument. ! .Sh "Options for Linking" .IX Subsection "Options for Linking" These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is *************** linker. When using the \s-1GNU\s0 linke *** 10485,10491 **** Pretend the symbol \fIsymbol\fR is undefined, to force linking of library modules to define it. You can use \fB\-u\fR multiple times with different symbols to force loading of additional library modules. ! .SS "Options for Directory Search" .IX Subsection "Options for Directory Search" These options specify directories to search for header files, for libraries and for parts of the compiler: --- 10485,10491 ---- Pretend the symbol \fIsymbol\fR is undefined, to force linking of library modules to define it. You can use \fB\-u\fR multiple times with different symbols to force loading of additional library modules. ! .Sh "Options for Directory Search" .IX Subsection "Options for Directory Search" These options specify directories to search for header files, for libraries and for parts of the compiler: *************** by default, but it is often satisfactory *** 10620,10632 **** \&\fB\-I\-\fR does not inhibit the use of the standard system directories for header files. Thus, \fB\-I\-\fR and \fB\-nostdinc\fR are independent. ! .SS "Specifying Target Machine and Compiler Version" .IX Subsection "Specifying Target Machine and Compiler Version" The usual way to run \s-1GCC\s0 is to run the executable called \fBgcc\fR, or \&\fImachine\fR\fB\-gcc\fR when cross-compiling, or \&\fImachine\fR\fB\-gcc\-\fR\fIversion\fR to run a version other than the one that was installed last. ! .SS "Hardware Models and Configurations" .IX Subsection "Hardware Models and Configurations" Each target machine types can have its own special options, starting with \fB\-m\fR, to choose among various --- 10620,10632 ---- \&\fB\-I\-\fR does not inhibit the use of the standard system directories for header files. Thus, \fB\-I\-\fR and \fB\-nostdinc\fR are independent. ! .Sh "Specifying Target Machine and Compiler Version" .IX Subsection "Specifying Target Machine and Compiler Version" The usual way to run \s-1GCC\s0 is to run the executable called \fBgcc\fR, or \&\fImachine\fR\fB\-gcc\fR when cross-compiling, or \&\fImachine\fR\fB\-gcc\-\fR\fIversion\fR to run a version other than the one that was installed last. ! .Sh "Hardware Models and Configurations" .IX Subsection "Hardware Models and Configurations" Each target machine types can have its own special options, starting with \fB\-m\fR, to choose among various *************** but long int and pointer are 64\-bit. *** 10652,10658 **** .Sp The default depends on the specific target configuration. Note that the \s-1LP64\s0 and \s-1ILP32\s0 ABIs are not link-compatible; you must compile your ! entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries. .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" Generate big-endian code. This is the default when \s-1GCC\s0 is configured for an --- 10652,10658 ---- .Sp The default depends on the specific target configuration. Note that the \s-1LP64\s0 and \s-1ILP32\s0 ABIs are not link-compatible; you must compile your ! entire program with the same \s-1ABI\s0, and link with a compatible set of libraries. .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" Generate big-endian code. This is the default when \s-1GCC\s0 is configured for an *************** This is the mode used for floating-point *** 10887,10893 **** round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU,\s0 e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 --- 10887,10893 ---- round-to-nearest-or-even rounding mode. .IP "\fBint\fR" 4 .IX Item "int" ! This is the mode used to perform integer calculations in the \s-1FPU\s0, e.g. integer multiply, or integer multiply-and-accumulate. .RE .RS 4 *************** values for \fIcpu\fR are *** 10949,10961 **** .RS 4 .IP "\fB\s-1ARC600\s0\fR" 4 .IX Item "ARC600" ! Compile for \s-1ARC600. \s0 Aliases: \fB\-mA6\fR, \fB\-mARC600\fR. .IP "\fB\s-1ARC601\s0\fR" 4 .IX Item "ARC601" ! Compile for \s-1ARC601. \s0 Alias: \fB\-mARC601\fR. .IP "\fB\s-1ARC700\s0\fR" 4 .IX Item "ARC700" ! Compile for \s-1ARC700. \s0 Aliases: \fB\-mA7\fR, \fB\-mARC700\fR. This is the default when configured with \fB\-\-with\-cpu=arc700\fR. .RE .RS 4 --- 10949,10961 ---- .RS 4 .IP "\fB\s-1ARC600\s0\fR" 4 .IX Item "ARC600" ! Compile for \s-1ARC600\s0. Aliases: \fB\-mA6\fR, \fB\-mARC600\fR. .IP "\fB\s-1ARC601\s0\fR" 4 .IX Item "ARC601" ! Compile for \s-1ARC601\s0. Alias: \fB\-mARC601\fR. .IP "\fB\s-1ARC700\s0\fR" 4 .IX Item "ARC700" ! Compile for \s-1ARC700\s0. Aliases: \fB\-mA7\fR, \fB\-mARC700\fR. This is the default when configured with \fB\-\-with\-cpu=arc700\fR. .RE .RS 4 *************** Generate Extended arithmetic instruction *** 10982,10988 **** supported. This is always enabled for \fB\-mcpu=ARC700\fR. .IP "\fB\-mno\-mpy\fR" 4 .IX Item "-mno-mpy" ! Do not generate mpy instructions for \s-1ARC700.\s0 .IP "\fB\-mmul32x16\fR" 4 .IX Item "-mmul32x16" Generate 32x16 bit multiply and mac instructions. --- 10982,10988 ---- supported. This is always enabled for \fB\-mcpu=ARC700\fR. .IP "\fB\-mno\-mpy\fR" 4 .IX Item "-mno-mpy" ! Do not generate mpy instructions for \s-1ARC700\s0. .IP "\fB\-mmul32x16\fR" 4 .IX Item "-mmul32x16" Generate 32x16 bit multiply and mac instructions. *************** implementation. *** 11007,11013 **** implementation. .IP "\fB\-msimd\fR" 4 .IX Item "-msimd" ! Enable generation of \s-1ARC SIMD\s0 instructions via target-specific builtins. Only valid for \fB\-mcpu=ARC700\fR. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" --- 11007,11013 ---- implementation. .IP "\fB\-msimd\fR" 4 .IX Item "-msimd" ! Enable generation of \s-1ARC\s0 \s-1SIMD\s0 instructions via target-specific builtins. Only valid for \fB\-mcpu=ARC700\fR. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" *************** optimizers will then assume the that ind *** 11174,11180 **** the case. .IP "\fB\-mlra\fR" 4 .IX Item "-mlra" ! Enable Local Register Allocation. This is still experimental for \s-1ARC,\s0 so by default the compiler uses standard reload (i.e. \fB\-mno\-lra\fR). .IP "\fB\-mlra\-priority\-none\fR" 4 --- 11174,11180 ---- the case. .IP "\fB\-mlra\fR" 4 .IX Item "-mlra" ! Enable Local Register Allocation. This is still experimental for \s-1ARC\s0, so by default the compiler uses standard reload (i.e. \fB\-mno\-lra\fR). .IP "\fB\-mlra\-priority\-none\fR" 4 *************** The following options are maintained for *** 11280,11286 **** are now deprecated and will be removed in a future release: .IP "\fB\-margonaut\fR" 4 .IX Item "-margonaut" ! Obsolete \s-1FPX.\s0 .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" .PD 0 --- 11280,11286 ---- are now deprecated and will be removed in a future release: .IP "\fB\-margonaut\fR" 4 .IX Item "-margonaut" ! Obsolete \s-1FPX\s0. .IP "\fB\-mbig\-endian\fR" 4 .IX Item "-mbig-endian" .PD 0 *************** These \fB\-m\fR options are defined for *** 11344,11350 **** architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI. \s0 Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" --- 11344,11350 ---- architectures: .IP "\fB\-mabi=\fR\fIname\fR" 4 .IX Item "-mabi=name" ! Generate code for the specified \s-1ABI\s0. Permissible values are: \fBapcs-gnu\fR, \&\fBatpcs\fR, \fBaapcs\fR, \fBaapcs-linux\fR and \fBiwmmxt\fR. .IP "\fB\-mapcs\-frame\fR" 4 .IX Item "-mapcs-frame" *************** and uses FPU-specific calling convention *** 11387,11393 **** .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI,\s0 and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" --- 11387,11393 ---- .Sp The default depends on the specific target configuration. Note that the hard-float and soft-float ABIs are not link-compatible; you must ! compile your entire program with the same \s-1ABI\s0, and link with a compatible set of libraries. .IP "\fB\-mlittle\-endian\fR" 4 .IX Item "-mlittle-endian" *************** If the selected floating-point hardware *** 11516,11522 **** (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE 754\s0 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 --- 11516,11522 ---- (e.g. \fB\-mfpu\fR=\fBneon\fR), note that floating-point operations are not generated by \s-1GCC\s0's auto-vectorization pass unless \&\fB\-funsafe\-math\-optimizations\fR is also specified. This is ! because \s-1NEON\s0 hardware does not fully implement the \s-1IEEE\s0 754 standard for floating-point arithmetic (in particular denormal values are treated as zero), so the use of \s-1NEON\s0 instructions may lead to a loss of precision. .IP "\fB\-mfp16\-format=\fR\fIname\fR" 4 *************** otherwise the default is \fBR10\fR. *** 11589,11595 **** .IX Item "-mpic-data-is-text-relative" Assume that each data segments are relative to text segment at load time. Therefore, it permits addressing data using PC-relative operations. ! This option is on by default for targets other than VxWorks \s-1RTP.\s0 .IP "\fB\-mpoke\-function\-name\fR" 4 .IX Item "-mpoke-function-name" Write the name of each function into the text section, directly --- 11589,11595 ---- .IX Item "-mpic-data-is-text-relative" Assume that each data segments are relative to text segment at load time. Therefore, it permits addressing data using PC-relative operations. ! This option is on by default for targets other than VxWorks \s-1RTP\s0. .IP "\fB\-mpoke\-function\-name\fR" 4 .IX Item "-mpoke-function-name" Write the name of each function into the text section, directly *************** The default for this option is@tie{}\f(C *** 11769,11801 **** .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC,\s0 i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\*(R"\s0 devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM. ! \&\s0\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" --- 11769,11801 ---- .ie n .IP """avr6""" 4 .el .IP "\f(CWavr6\fR" 4 .IX Item "avr6" ! \&\*(L"Enhanced\*(R" devices with 3\-byte \s-1PC\s0, i.e. with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmega2560\*(C'\fR, \f(CW\*(C`atmega2561\*(C'\fR. .ie n .IP """avrxmega2""" 4 .el .IP "\f(CWavrxmega2\fR" 4 .IX Item "avrxmega2" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 8@tie{}KiB and up to 64@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt112sl\*(C'\fR, \f(CW\*(C`atmxt224\*(C'\fR, \f(CW\*(C`atmxt224e\*(C'\fR, \f(CW\*(C`atmxt336s\*(C'\fR, \f(CW\*(C`atxmega16a4\*(C'\fR, \f(CW\*(C`atxmega16a4u\*(C'\fR, \f(CW\*(C`atxmega16c4\*(C'\fR, \f(CW\*(C`atxmega16d4\*(C'\fR, \f(CW\*(C`atxmega32a4\*(C'\fR, \f(CW\*(C`atxmega32a4u\*(C'\fR, \f(CW\*(C`atxmega32c4\*(C'\fR, \f(CW\*(C`atxmega32d4\*(C'\fR, \f(CW\*(C`atxmega32e5\*(C'\fR, \f(CW\*(C`atxmega32x1\*(C'\fR. .ie n .IP """avrxmega4""" 4 .el .IP "\f(CWavrxmega4\fR" 4 .IX Item "avrxmega4" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a3\*(C'\fR, \f(CW\*(C`atxmega64a3u\*(C'\fR, \f(CW\*(C`atxmega64a4u\*(C'\fR, \f(CW\*(C`atxmega64b1\*(C'\fR, \f(CW\*(C`atxmega64b3\*(C'\fR, \f(CW\*(C`atxmega64c3\*(C'\fR, \f(CW\*(C`atxmega64d3\*(C'\fR, \f(CW\*(C`atxmega64d4\*(C'\fR. .ie n .IP """avrxmega5""" 4 .el .IP "\f(CWavrxmega5\fR" 4 .IX Item "avrxmega5" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 64@tie{}KiB and up to 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega64a1\*(C'\fR, \f(CW\*(C`atxmega64a1u\*(C'\fR. .ie n .IP """avrxmega6""" 4 .el .IP "\f(CWavrxmega6\fR" 4 .IX Item "avrxmega6" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory. \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atmxt540s\*(C'\fR, \f(CW\*(C`atmxt540sreva\*(C'\fR, \f(CW\*(C`atxmega128a3\*(C'\fR, \f(CW\*(C`atxmega128a3u\*(C'\fR, \f(CW\*(C`atxmega128b1\*(C'\fR, \f(CW\*(C`atxmega128b3\*(C'\fR, \f(CW\*(C`atxmega128c3\*(C'\fR, \f(CW\*(C`atxmega128d3\*(C'\fR, \f(CW\*(C`atxmega128d4\*(C'\fR, \f(CW\*(C`atxmega192a3\*(C'\fR, \f(CW\*(C`atxmega192a3u\*(C'\fR, \f(CW\*(C`atxmega192c3\*(C'\fR, \f(CW\*(C`atxmega192d3\*(C'\fR, \f(CW\*(C`atxmega256a3\*(C'\fR, \f(CW\*(C`atxmega256a3b\*(C'\fR, \f(CW\*(C`atxmega256a3bu\*(C'\fR, \f(CW\*(C`atxmega256a3u\*(C'\fR, \f(CW\*(C`atxmega256c3\*(C'\fR, \f(CW\*(C`atxmega256d3\*(C'\fR, \f(CW\*(C`atxmega384c3\*(C'\fR, \f(CW\*(C`atxmega384d3\*(C'\fR. .ie n .IP """avrxmega7""" 4 .el .IP "\f(CWavrxmega7\fR" 4 .IX Item "avrxmega7" ! \&\*(L"\s-1XMEGA\s0\*(R" devices with more than 128@tie{}KiB of program memory and more than 64@tie{}KiB of \s-1RAM\s0. ! \&\fImcu\fR\f(CW@tie\fR{}= \f(CW\*(C`atxmega128a1\*(C'\fR, \f(CW\*(C`atxmega128a1u\*(C'\fR, \f(CW\*(C`atxmega128a4u\*(C'\fR. .ie n .IP """avr1""" 4 .el .IP "\f(CWavr1\fR" 4 .IX Item "avr1" *************** command-line option. *** 11998,12004 **** .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 --- 11998,12004 ---- .IX Item "-" tables you can specify the \fB\-fno\-jump\-tables\fR command-line option. .IP "\-" 4 ! .IX Item "-" .PD 0 .ie n .IP "\-" 4 .el .IP "\-" 4 *************** The definition of these macros is affect *** 12179,12185 **** .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH \s0(high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also --- 12179,12185 ---- .el .IP "\f(CW_\|_AVR_SP8_\|_\fR" 4 .IX Item "__AVR_SP8__" .PD ! The device has the \s-1SPH\s0 (high part of stack pointer) special function register or has an 8\-bit stack pointer, respectively. The definition of these macros is affected by \f(CW\*(C`\-mmcu=\*(C'\fR and in the cases of \f(CW\*(C`\-mmcu=avr2\*(C'\fR and \f(CW\*(C`\-mmcu=avr25\*(C'\fR also *************** This macro reflects the \f(CW\*(C`\-mno\ *** 12212,12218 **** .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515,\s0 ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also --- 12212,12218 ---- .el .IP "\f(CW_\|_AVR_ERRATA_SKIP_JMP_CALL_\|_\fR" 4 .IX Item "__AVR_ERRATA_SKIP_JMP_CALL__" .PD ! Some \s-1AVR\s0 devices (\s-1AT90S8515\s0, ATmega103) must not skip 32\-bit instructions because of a hardware erratum. Skip instructions are \&\f(CW\*(C`SBRS\*(C'\fR, \f(CW\*(C`SBRC\*(C'\fR, \f(CW\*(C`SBIS\*(C'\fR, \f(CW\*(C`SBIC\*(C'\fR and \f(CW\*(C`CPSE\*(C'\fR. The second macro is only defined if \f(CW\*(C`_\|_AVR_HAVE_JMP_CALL_\|_\*(C'\fR is also *************** set. *** 12220,12226 **** .ie n .IP """_\|_AVR_ISA_RMW_\|_""" 4 .el .IP "\f(CW_\|_AVR_ISA_RMW_\|_\fR" 4 .IX Item "__AVR_ISA_RMW__" ! The device has Read-Modify-Write instructions (\s-1XCH, LAC, LAS\s0 and \s-1LAT\s0). .ie n .IP """_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW""" 4 .el .IP "\f(CW_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW\fR" 4 .IX Item "__AVR_SFR_OFFSET__=offset" --- 12220,12226 ---- .ie n .IP """_\|_AVR_ISA_RMW_\|_""" 4 .el .IP "\f(CW_\|_AVR_ISA_RMW_\|_\fR" 4 .IX Item "__AVR_ISA_RMW__" ! The device has Read-Modify-Write instructions (\s-1XCH\s0, \s-1LAC\s0, \s-1LAS\s0 and \s-1LAT\s0). .ie n .IP """_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW""" 4 .el .IP "\f(CW_\|_AVR_SFR_OFFSET_\|_=\f(CIoffset\f(CW\fR" 4 .IX Item "__AVR_SFR_OFFSET__=offset" *************** should be used instead of \f(CW\*(C`main *** 12404,12411 **** This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM.\s0 Proper start files and ! link scripts are used to put the application into \s-1SDRAM,\s0 and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 --- 12404,12411 ---- This option can only be used in conjunction with \fB\-mmulticore\fR. .IP "\fB\-msdram\fR" 4 .IX Item "-msdram" ! Build a standalone application for \s-1SDRAM\s0. Proper start files and ! link scripts are used to put the application into \s-1SDRAM\s0, and the macro \&\f(CW\*(C`_\|_BFIN_SDRAM\*(C'\fR is defined. The loader should initialize \s-1SDRAM\s0 before loading the application. .IP "\fB\-micplb\fR" 4 *************** These options are defined specifically f *** 12464,12470 **** .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX.\s0 Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 --- 12464,12470 ---- .PD Generate code for the specified architecture. The choices for \&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for ! respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX\s0. Default is \fBv0\fR except for cris-axis-linux-gnu, where the default is \&\fBv10\fR. .IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4 *************** or storage for local variables needs to *** 12557,12563 **** With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT. \s0 The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and --- 12557,12563 ---- With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate) instruction sequences that load addresses for functions from the \s-1PLT\s0 part of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the ! \&\s-1PLT\s0. The default is \fB\-mgotplt\fR. .IP "\fB\-melf\fR" 4 .IX Item "-melf" Legacy no-op option only recognized with the cris-axis-elf and *************** However, \fBfar\fR is not valid with \fB *** 12613,12619 **** These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or --- 12613,12619 ---- These options are defined for all architectures running the Darwin operating system. .PP ! \&\s-1FSF\s0 \s-1GCC\s0 on Darwin does not create \*(L"fat\*(R" object files; it creates an object file for the single architecture that \s-1GCC\s0 was built to target. Apple's \s-1GCC\s0 on Darwin does create \*(L"fat\*(R" files if multiple \&\fB\-arch\fR options are used; it does so by running the compiler or *************** warn about constructs contained within h *** 12673,12679 **** .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON.\s0 .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. --- 12673,12679 ---- .IX Item "-gused" Emit debugging information for symbols that are used. For stabs debugging format, this enables \fB\-feliminate\-unused\-debug\-symbols\fR. ! This is by default \s-1ON\s0. .IP "\fB\-gfull\fR" 4 .IX Item "-gfull" Emit debugging information for all symbols and types. *************** an executable when linking, using the Da *** 12749,12755 **** This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" --- 12749,12755 ---- This causes \s-1GCC\s0's output file to have the \fI\s-1ALL\s0\fR subtype, instead of one controlled by the \fB\-mcpu\fR or \fB\-march\fR option. .IP "\fB\-allowable_client\fR \fIclient_name\fR" 4 ! .IX Item "-allowable_client client_name" .PD 0 .IP "\fB\-client_name\fR" 4 .IX Item "-client_name" *************** compilers call this option \fB\-ieee_wit *** 12923,12929 **** .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE \s0\fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute --- 12923,12929 ---- .IP "\fB\-mieee\-with\-inexact\fR" 4 .IX Item "-mieee-with-inexact" This is like \fB\-mieee\fR except the generated code also maintains ! the \s-1IEEE\s0 \fIinexact-flag\fR. Turning on this option causes the generated code to implement fully-compliant \s-1IEEE\s0 math. In addition to \&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute *************** before it can find the variables and con *** 13049,13056 **** .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX, ! CIX, FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 --- 13049,13056 ---- .IP "\fB\-mno\-max\fR" 4 .IX Item "-mno-max" .PD ! Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX\s0, ! \&\s-1CIX\s0, \s-1FIX\s0 and \s-1MAX\s0 instruction sets. The default is to use the instruction sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none is specified. .IP "\fB\-mfloat\-vax\fR" 4 *************** of the \s-1CPU\s0 on which \s-1GCC\s0 wa *** 13059,13065 **** .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX F\s0 and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" --- 13059,13065 ---- .IP "\fB\-mfloat\-ieee\fR" 4 .IX Item "-mfloat-ieee" .PD ! Generate code that uses (does not use) \s-1VAX\s0 F and G floating-point arithmetic instead of \s-1IEEE\s0 single and double precision. .IP "\fB\-mexplicit\-relocs\fR" 4 .IX Item "-mexplicit-relocs" *************** The default is \fB\-mlarge\-text\fR. *** 13114,13120 **** Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4, EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. --- 13114,13120 ---- Set the instruction set and instruction scheduling parameters for machine type \fIcpu_type\fR. You can specify either the \fB\s-1EV\s0\fR style name or the corresponding chip number. \s-1GCC\s0 supports scheduling ! parameters for the \s-1EV4\s0, \s-1EV5\s0 and \s-1EV6\s0 family of processors and chooses the default values for the instruction set from the processor you specify. If you do not specify a processor type, \s-1GCC\s0 defaults to the processor on which the compiler was built. *************** Schedules as an \s-1EV5\s0 and supports *** 13159,13172 **** .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, FIX,\s0 and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX, CIX, FIX,\s0 and \s-1MAX\s0 extensions. .RE .RS 4 .Sp --- 13159,13172 ---- .IP "\fB21264\fR" 4 .IX Item "21264" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .IP "\fBev67\fR" 4 .IX Item "ev67" .PD 0 .IP "\fB21264a\fR" 4 .IX Item "21264a" .PD ! Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1CIX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions. .RE .RS 4 .Sp *************** A decimal number representing clock cycl *** 13207,13215 **** .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4 & EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5.\s0 .RE .RS 4 .RE --- 13207,13215 ---- .IX Item "main" .PD The compiler contains estimates of the number of clock cycles for ! \&\*(L"typical\*(R" \s-1EV4\s0 & \s-1EV5\s0 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. ! Note that L3 is only valid for \s-1EV5\s0. .RE .RS 4 .RE *************** Use multiply and add/subtract instructio *** 13282,13288 **** Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC ABI,\s0 which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the --- 13282,13288 ---- Do not use multiply and add/subtract instructions. .IP "\fB\-mfdpic\fR" 4 .IX Item "-mfdpic" ! Select the \s-1FDPIC\s0 \s-1ABI\s0, which uses function descriptors to represent pointers to functions. Without any PIC/PIE\-related options, it implies \fB\-fPIE\fR. With \fB\-fpic\fR or \fB\-fpie\fR, it assumes \s-1GOT\s0 entries and small data are within a 12\-bit range from the *************** Assume a large \s-1TLS\s0 segment when g *** 13305,13311 **** Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. --- 13305,13311 ---- Do not assume a large \s-1TLS\s0 segment when generating thread-local code. .IP "\fB\-mgprel\-ro\fR" 4 .IX Item "-mgprel-ro" ! Enable the use of \f(CW\*(C`GPREL\*(C'\fR relocations in the \s-1FDPIC\s0 \s-1ABI\s0 for data that is known to be in read-only sections. It's enabled by default, except for \fB\-fpic\fR or \fB\-fpie\fR: even though it may help make the global offset table smaller, it trades 1 instruction for 4. *************** Select the processor type for which to g *** 13449,13455 **** These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU C\s0 library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" --- 13449,13455 ---- These \fB\-m\fR options are defined for GNU/Linux targets: .IP "\fB\-mglibc\fR" 4 .IX Item "-mglibc" ! Use the \s-1GNU\s0 C library. This is the default except on \fB*\-*\-linux\-*uclibc*\fR and \fB*\-*\-linux\-*android*\fR targets. .IP "\fB\-muclibc\fR" 4 .IX Item "-muclibc" *************** These \fB\-m\fR options are defined for *** 13528,13535 **** .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA 1.0, \s0\fB1.1\fR for \s-1PA ! 1.1,\s0 and \fB2.0\fR for \s-1PA 2.0\s0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the --- 13528,13535 ---- .IP "\fB\-march=\fR\fIarchitecture-type\fR" 4 .IX Item "-march=architecture-type" Generate code for the specified architecture. The choices for ! \&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA\s0 1.0, \fB1.1\fR for \s-1PA\s0 ! 1.1, and \fB2.0\fR for \s-1PA\s0 2.0 processors. Refer to \&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper architecture option for your machine. Code compiled for lower numbered architectures runs on higher numbered architectures, but not the *************** floating-point operations, the compiler *** 13557,13563 **** .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH.\s0 .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows --- 13557,13563 ---- .IP "\fB\-mdisable\-indexing\fR" 4 .IX Item "-mdisable-indexing" Prevent the compiler from using indexing address modes. This avoids some ! rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH\s0. .IP "\fB\-mno\-space\-regs\fR" 4 .IX Item "-mno-space-regs" Generate code that assumes the target has no space registers. This allows *************** cross-compilation. *** 13614,13630 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO. \s0 The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO. \s0 These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU \s0\fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not --- 13614,13630 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-msio\fR" 4 .IX Item "-msio" ! Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO\s0. The default is \&\fB\-mwsio\fR. This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR, ! \&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO\s0. These options are available under HP-UX and HI-UX. .IP "\fB\-mgnu\-ld\fR" 4 .IX Item "-mgnu-ld" ! Use options specific to \s-1GNU\s0 \fBld\fR. This passes \fB\-shared\fR to \fBld\fR when building a shared library. It is the default when \s-1GCC\s0 is configured, explicitly or implicitly, with the \s-1GNU\s0 linker. This option does not *************** The \fBld\fR that is called is determine *** 13634,13643 **** \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP \s0\fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or --- 13634,13643 ---- \&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and finally by the user's \fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available ! on the 64\-bit HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mhp\-ld\fR" 4 .IX Item "-mhp-ld" ! Use options specific to \s-1HP\s0 \fBld\fR. This passes \fB\-b\fR to \fBld\fR when building a shared library and passes \fB+Accept TypeMismatch\fR to \fBld\fR on all links. It is the default when \s-1GCC\s0 is configured, explicitly or *************** The \fBld\fR that is called is determine *** 13648,13654 **** configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC,\s0 i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call --- 13648,13654 ---- configure option, \s-1GCC\s0's program search path, and finally by the user's \&\fB\s-1PATH\s0\fR. The linker used by \s-1GCC\s0 can be printed using \fBwhich `gcc \-print\-prog\-name=ld`\fR. This option is only available on the 64\-bit ! HP-UX \s-1GCC\s0, i.e. configured with \fBhppa*64*\-*\-hpux*\fR. .IP "\fB\-mlong\-calls\fR" 4 .IX Item "-mlong-calls" Generate code that uses long call sequences. This ensures that a call *************** long calls only when the distance from t *** 13657,13663 **** of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA 2.0\s0 and \s-1PA 1.X\s0 architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the --- 13657,13663 ---- of the function or translation unit, as the case may be, exceeds a predefined limit set by the branch type being used. The limits for normal calls are 7,600,000 and 240,000 bytes, respectively for the ! \&\s-1PA\s0 2.0 and \s-1PA\s0 1.X architectures. Sibcalls are always limited at 240,000 bytes. .Sp Distances are measured from the beginning of functions when using the *************** is available on HP-UX 10.10 and later. *** 13685,13691 **** \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC 3.3\s0 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, --- 13685,13691 ---- \&\fB95\fR for HP-UX 10.10 though to 11.00, and \fB98\fR for HP-UX 11.11 and later. .Sp ! \&\fB\-munix=93\fR provides the same predefines as \s-1GCC\s0 3.3 and 3.4. \&\fB\-munix=95\fR provides additional predefines for \f(CW\*(C`XOPEN_UNIX\*(C'\fR and \f(CW\*(C`_XOPEN_SOURCE_EXTENDED\*(C'\fR, and the startfile \fIunix95.o\fR. \&\fB\-munix=98\fR provides additional predefines for \f(CW\*(C`_XOPEN_UNIX\*(C'\fR, *************** produces code optimized for the local ma *** 13749,13758 **** of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU.\s0 .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU. \s0(No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 --- 13749,13758 ---- of the selected instruction set. .IP "\fBi386\fR" 4 .IX Item "i386" ! Original Intel i386 \s-1CPU\s0. .IP "\fBi486\fR" 4 .IX Item "i486" ! Intel i486 \s-1CPU\s0. (No scheduling is implemented for this chip.) .IP "\fBi586\fR" 4 .IX Item "i586" .PD 0 *************** Intel i486 \s-1CPU. \s0(No scheduling i *** 13762,13771 **** Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX CPU,\s0 based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU.\s0 .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro --- 13762,13771 ---- Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support. .IP "\fBpentium-mmx\fR" 4 .IX Item "pentium-mmx" ! Intel Pentium \s-1MMX\s0 \s-1CPU\s0, based on Pentium core with \s-1MMX\s0 instruction set support. .IP "\fBpentiumpro\fR" 4 .IX Item "pentiumpro" ! Intel Pentium Pro \s-1CPU\s0. .IP "\fBi686\fR" 4 .IX Item "i686" When used with \fB\-march\fR, the Pentium Pro *************** instruction set is used, so the code run *** 13773,13779 **** When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" --- 13773,13779 ---- When used with \fB\-mtune\fR, it has the same meaning as \fBgeneric\fR. .IP "\fBpentium2\fR" 4 .IX Item "pentium2" ! Intel Pentium \s-1II\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 instruction set support. .IP "\fBpentium3\fR" 4 .IX Item "pentium3" *************** support. *** 13781,13863 **** .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III CPU,\s0 based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III CPU\s0 ! with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX, SSE, SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, ! SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBnehalem\fR" 4 .IX Item "nehalem" ! Intel Nehalem \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2\s0 and \s-1POPCNT\s0 instruction set support. .IP "\fBwestmere\fR" 4 .IX Item "westmere" ! Intel Westmere \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBsandybridge\fR" 4 .IX Item "sandybridge" ! Intel Sandy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBivybridge\fR" 4 .IX Item "ivybridge" ! Intel Ivy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND\s0 and F16C instruction set support. .IP "\fBhaswell\fR" 4 .IX Item "haswell" ! Intel Haswell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, ! BMI, BMI2\s0 and F16C instruction set support. .IP "\fBbroadwell\fR" 4 .IX Item "broadwell" ! Intel Broadwell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, ! BMI, BMI2, F16C, RDSEED, ADCX\s0 and \s-1PREFETCHW\s0 instruction set support. .IP "\fBbonnell\fR" 4 .IX Item "bonnell" ! Intel Bonnell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBsilvermont\fR" 4 .IX Item "silvermont" ! Intel Silvermont \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4.1, SSE4.2, POPCNT, AES, PCLMUL\s0 and \s-1RDRND\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD K6 CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD K6 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" --- 13781,13863 ---- .IP "\fBpentium3m\fR" 4 .IX Item "pentium3m" .PD ! Intel Pentium \s-1III\s0 \s-1CPU\s0, based on Pentium Pro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. .IP "\fBpentium-m\fR" 4 .IX Item "pentium-m" ! Intel Pentium M; low-power version of Intel Pentium \s-1III\s0 \s-1CPU\s0 ! with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. Used by Centrino notebooks. .IP "\fBpentium4\fR" 4 .IX Item "pentium4" .PD 0 .IP "\fBpentium4m\fR" 4 .IX Item "pentium4m" .PD ! Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support. .IP "\fBprescott\fR" 4 .IX Item "prescott" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBnocona\fR" 4 .IX Item "nocona" ! Improved version of Intel Pentium 4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0 and \s-1SSE3\s0 instruction set support. .IP "\fBcore2\fR" 4 .IX Item "core2" ! Intel Core 2 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBnehalem\fR" 4 .IX Item "nehalem" ! Intel Nehalem \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2 and \s-1POPCNT\s0 instruction set support. .IP "\fBwestmere\fR" 4 .IX Item "westmere" ! Intel Westmere \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBsandybridge\fR" 4 .IX Item "sandybridge" ! Intel Sandy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AES\s0 and \s-1PCLMUL\s0 instruction set support. .IP "\fBivybridge\fR" 4 .IX Item "ivybridge" ! Intel Ivy Bridge \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0 and F16C instruction set support. .IP "\fBhaswell\fR" 4 .IX Item "haswell" ! Intel Haswell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AVX2\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, \s-1FMA\s0, ! \&\s-1BMI\s0, \s-1BMI2\s0 and F16C instruction set support. .IP "\fBbroadwell\fR" 4 .IX Item "broadwell" ! Intel Broadwell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AVX\s0, \s-1AVX2\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, \s-1FMA\s0, ! \&\s-1BMI\s0, \s-1BMI2\s0, F16C, \s-1RDSEED\s0, \s-1ADCX\s0 and \s-1PREFETCHW\s0 instruction set support. .IP "\fBbonnell\fR" 4 .IX Item "bonnell" ! Intel Bonnell \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and \s-1SSSE3\s0 instruction set support. .IP "\fBsilvermont\fR" 4 .IX Item "silvermont" ! Intel Silvermont \s-1CPU\s0 with 64\-bit extensions, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, ! \&\s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1POPCNT\s0, \s-1AES\s0, \s-1PCLMUL\s0 and \s-1RDRND\s0 instruction set support. .IP "\fBk6\fR" 4 .IX Item "k6" ! \&\s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 instruction set support. .IP "\fBk6\-2\fR" 4 .IX Item "k6-2" .PD 0 .IP "\fBk6\-3\fR" 4 .IX Item "k6-3" .PD ! Improved versions of \s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBathlon\fR" 4 .IX Item "athlon" .PD 0 .IP "\fBathlon-tbird\fR" 4 .IX Item "athlon-tbird" .PD ! \&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3dNOW!, enhanced 3DNow! and \s-1SSE\s0 prefetch instructions support. .IP "\fBathlon\-4\fR" 4 .IX Item "athlon-4" *************** support. *** 13867,13873 **** .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX,\s0 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" --- 13867,13873 ---- .IP "\fBathlon-mp\fR" 4 .IX Item "athlon-mp" .PD ! Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3DNow!, enhanced 3DNow! and full \s-1SSE\s0 instruction set support. .IP "\fBk8\fR" 4 .IX Item "k8" *************** instruction set support. *** 13879,13887 **** .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD K8\s0 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX, SSE, SSE2,\s0 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" --- 13879,13887 ---- .IP "\fBathlon-fx\fR" 4 .IX Item "athlon-fx" .PD ! Processors based on the \s-1AMD\s0 K8 core with x86\-64 instruction set support, including the \s-1AMD\s0 Opteron, Athlon 64, and Athlon 64 \s-1FX\s0 processors. ! (This supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, 3DNow!, enhanced 3DNow! and 64\-bit instruction set extensions.) .IP "\fBk8\-sse3\fR" 4 .IX Item "k8-sse3" *************** instruction set extensions.) *** 13891,13897 **** .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD K8\s0 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 --- 13891,13897 ---- .IP "\fBathlon64\-sse3\fR" 4 .IX Item "athlon64-sse3" .PD ! Improved versions of \s-1AMD\s0 K8 cores with \s-1SSE3\s0 instruction set support. .IP "\fBamdfam10\fR" 4 .IX Item "amdfam10" .PD 0 *************** Improved versions of \s-1AMD K8\s0 cores *** 13899,13954 **** .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSE4A,\s0 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, ! SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, ! SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES, ! PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbdver4\fR" 4 .IX Item "bdver4" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP, ! AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, ! SSE4.2, ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM, ! SSE4A, SSSE3, SSE3, SSE2, SSE, MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU,\s0 dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA C3 CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA C3\-2 \s0(Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 --- 13899,13954 ---- .IX Item "barcelona" .PD CPUs based on \s-1AMD\s0 Family 10h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, 3DNow!, enhanced 3DNow!, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver1\fR" 4 .IX Item "bdver1" CPUs based on \s-1AMD\s0 Family 15h cores with x86\-64 instruction set support. (This ! supersets \s-1FMA4\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, ! \&\s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver2\fR" 4 .IX Item "bdver2" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1FMA4\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, ! \&\s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbdver3\fR" 4 .IX Item "bdver3" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1FMA4\s0, \s-1FSGSBASE\s0, \s-1AVX\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1AES\s0, ! \&\s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbdver4\fR" 4 .IX Item "bdver4" \&\s-1AMD\s0 Family 15h core based CPUs with x86\-64 instruction set support. (This ! supersets \s-1BMI\s0, \s-1BMI2\s0, \s-1TBM\s0, F16C, \s-1FMA\s0, \s-1FMA4\s0, \s-1FSGSBASE\s0, \s-1AVX\s0, \s-1AVX2\s0, \s-1XOP\s0, \s-1LWP\s0, ! \&\s-1AES\s0, \s-1PCL_MUL\s0, \s-1CX16\s0, \s-1MOVBE\s0, \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, ! \&\s-1SSE4\s0.2, \s-1ABM\s0 and 64\-bit instruction set extensions. .IP "\fBbtver1\fR" 4 .IX Item "btver1" CPUs based on \s-1AMD\s0 Family 14h cores with x86\-64 instruction set support. (This ! supersets \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4A\s0, \s-1CX16\s0, \s-1ABM\s0 and 64\-bit instruction set extensions.) .IP "\fBbtver2\fR" 4 .IX Item "btver2" CPUs based on \s-1AMD\s0 Family 16h cores with x86\-64 instruction set support. This ! includes \s-1MOVBE\s0, F16C, \s-1BMI\s0, \s-1AVX\s0, \s-1PCL_MUL\s0, \s-1AES\s0, \s-1SSE4\s0.2, \s-1SSE4\s0.1, \s-1CX16\s0, \s-1ABM\s0, ! \&\s-1SSE4A\s0, \s-1SSSE3\s0, \s-1SSE3\s0, \s-1SSE2\s0, \s-1SSE\s0, \s-1MMX\s0 and 64\-bit instruction set extensions. .IP "\fBwinchip\-c6\fR" 4 .IX Item "winchip-c6" ! \&\s-1IDT\s0 WinChip C6 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 instruction set support. .IP "\fBwinchip2\fR" 4 .IX Item "winchip2" ! \&\s-1IDT\s0 WinChip 2 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 and 3DNow! instruction set support. .IP "\fBc3\fR" 4 .IX Item "c3" ! \&\s-1VIA\s0 C3 \s-1CPU\s0 with \s-1MMX\s0 and 3DNow! instruction set support. (No scheduling is implemented for this chip.) .IP "\fBc3\-2\fR" 4 .IX Item "c3-2" ! \&\s-1VIA\s0 C3\-2 (Nehemiah/C5XL) \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support. (No scheduling is implemented for this chip.) .IP "\fBgeode\fR" 4 *************** of your application will have, then you *** 13982,13988 **** .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC,\s0 code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp --- 13982,13988 ---- .Sp As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC\s0, code generation controlled by this option will change to reflect the processors that are most common at the time that version of \s-1GCC\s0 is released. .Sp *************** processors) for which the code is optimi *** 13994,14000 **** .IP "\fBintel\fR" 4 .IX Item "intel" Produce code optimized for the most current Intel processors, which are ! Haswell and Silvermont for this version of \s-1GCC. \s0 If you know the \s-1CPU\s0 on which your code will run, then you should use the corresponding \&\fB\-mtune\fR or \fB\-march\fR option instead of \fB\-mtune=intel\fR. But, if you want your application performs better on both Haswell and --- 13994,14000 ---- .IP "\fBintel\fR" 4 .IX Item "intel" Produce code optimized for the most current Intel processors, which are ! Haswell and Silvermont for this version of \s-1GCC\s0. If you know the \s-1CPU\s0 on which your code will run, then you should use the corresponding \&\fB\-mtune\fR or \fB\-march\fR option instead of \fB\-mtune=intel\fR. But, if you want your application performs better on both Haswell and *************** Silvermont, then you should use this opt *** 14002,14008 **** .Sp As new Intel processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC,\s0 code generation controlled by this option will change to reflect the most current Intel processors at the time that version of \s-1GCC\s0 is released. .Sp --- 14002,14008 ---- .Sp As new Intel processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you upgrade to a newer version of ! \&\s-1GCC\s0, code generation controlled by this option will change to reflect the most current Intel processors at the time that version of \s-1GCC\s0 is released. .Sp *************** comparison is unordered. *** 14085,14091 **** .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC.\s0 Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for --- 14085,14091 ---- .IX Item "-msoft-float" Generate output containing library calls for floating point. .Sp ! \&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0. Normally the facilities of the machine's usual C compiler are used, but this can't be done directly in cross-compilation. You must make your own arrangements to provide suitable library functions for *************** Do not use the \s-1FPU\s0 registers for *** 14100,14107 **** .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU. \s0 The idea is that the operating system should emulate ! an \s-1FPU.\s0 .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. --- 14100,14107 ---- .Sp The usual calling convention has functions return values of types \&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there ! is no \s-1FPU\s0. The idea is that the operating system should emulate ! an \s-1FPU\s0. .Sp The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned in ordinary \s-1CPU\s0 registers instead. *************** so \fB\-m96bit\-long\-double\fR is the d *** 14146,14152 **** .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI,\s0 this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. --- 14146,14152 ---- .Sp Modern architectures (Pentium and newer) prefer \f(CW\*(C`long double\*(C'\fR to be aligned to an 8\- or 16\-byte boundary. In arrays or structures ! conforming to the \s-1ABI\s0, this is not possible. So specifying \&\fB\-m128bit\-long\-double\fR aligns \f(CW\*(C`long double\*(C'\fR to a 16\-byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional 32\-bit zero. *************** its \s-1ABI\s0 specifies that \f(CW\*(C` *** 14157,14163 **** Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 14157,14163 ---- Notice that neither of these options enable any extra precision over the x87 standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** type. This is the default for 32\-bit Bi *** 14177,14183 **** of 128 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \&\f(CW\*(C`_\|_float128\*(C'\fR type. This is the default for 64\-bit Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI,\s0 this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking --- 14177,14183 ---- of 128 bits makes the \f(CW\*(C`long double\*(C'\fR type equivalent to the \&\f(CW\*(C`_\|_float128\*(C'\fR type. This is the default for 64\-bit Bionic C library. .Sp ! \&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, this changes the size of structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables, as well as modifying the function calling convention for functions taking *************** Studio compilers until version 12. Late *** 14241,14247 **** with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC.\s0 .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 --- 14241,14247 ---- with Studio 12 Update@tie{}1) follow the \s-1ABI\s0 used by other x86 targets, which is the default on Solaris@tie{}10 and later. \fIOnly\fR use this option if you need to remain compatible with existing code produced by those ! previous compiler versions or older versions of \s-1GCC\s0. .IP "\fB\-mpc32\fR" 4 .IX Item "-mpc32" .PD 0 *************** the one specified by \fB\-mpreferred\-st *** 14302,14308 **** .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III,\s0 the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp --- 14302,14308 ---- .Sp On Pentium and Pentium Pro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values should be aligned to an 8\-byte boundary (see \fB\-malign\-double\fR) or ! suffer significant run time performance penalties. On Pentium \s-1III\s0, the Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR may not work properly if it is not 16\-byte aligned. .Sp *************** preferred alignment to \fB\-mpreferred\- *** 14460,14469 **** .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX, SSE, ! SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD, ! SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, ! BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM,\s0 or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and --- 14460,14469 ---- .IP "\fB\-mno\-tbm\fR" 4 .IX Item "-mno-tbm" .PD ! These switches enable or disable the use of instructions in the \s-1MMX\s0, \s-1SSE\s0, ! \&\s-1SSE2\s0, \s-1SSE3\s0, \s-1SSSE3\s0, \s-1SSE4\s0.1, \s-1AVX\s0, \s-1AVX2\s0, \s-1AVX512F\s0, \s-1AVX512PF\s0, \s-1AVX512ER\s0, \s-1AVX512CD\s0, ! \&\s-1SHA\s0, \s-1AES\s0, \s-1PCLMUL\s0, \s-1FSGSBASE\s0, \s-1RDRND\s0, F16C, \s-1FMA\s0, \s-1SSE4A\s0, \s-1FMA4\s0, \s-1XOP\s0, \s-1LWP\s0, \s-1ABM\s0, ! \&\s-1BMI\s0, \s-1BMI2\s0, \s-1FXSR\s0, \s-1XSAVE\s0, \s-1XSAVEOPT\s0, \s-1LZCNT\s0, \s-1RTM\s0, or 3DNow! extended instruction sets. These extensions are also available as built-in functions: see \&\fBX86 Built-in Functions\fR, for details of the functions enabled and *************** This option enables generation of \f(CW\ *** 14538,14544 **** Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64.\s0 These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; --- 14538,14544 ---- Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the \f(CW\*(C`LAHF\*(C'\fR and \f(CW\*(C`SAHF\*(C'\fR instructions ! which were supported by \s-1AMD64\s0. These are load and store instructions, respectively, for certain status flags. In 64\-bit mode, the \f(CW\*(C`SAHF\*(C'\fR instruction is used to optimize \f(CW\*(C`fmod\*(C'\fR, \&\f(CW\*(C`drem\*(C'\fR, and \f(CW\*(C`remainder\*(C'\fR built-in functions; *************** external library. Supported values for *** 14614,14620 **** for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML \s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, --- 14614,14620 ---- for the Intel short vector math library and \fBacml\fR for the \s-1AMD\s0 math core library. To use this option, both \fB\-ftree\-vectorize\fR and ! \&\fB\-funsafe\-math\-optimizations\fR have to be enabled, and an \s-1SVML\s0 or \s-1ACML\s0 ABI-compatible library must be specified at link time. .Sp \&\s-1GCC\s0 currently emits calls to \f(CW\*(C`vmldExp2\*(C'\fR, *************** when \fB\-mveclibabi=acml\fR is used. *** 14637,14643 **** .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI. \s0 The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. --- 14637,14643 ---- .IX Item "-mabi=name" Generate code for the specified calling convention. Permissible values are \fBsysv\fR for the \s-1ABI\s0 used on GNU/Linux and other systems, and ! \&\fBms\fR for the Microsoft \s-1ABI\s0. The default is to use the Microsoft \&\s-1ABI\s0 when targeting Microsoft Windows and the SysV \s-1ABI\s0 on all other systems. You can control this behavior for a specific function by using the function attribute \fBms_abi\fR/\fBsysv_abi\fR. *************** or whether the thread base pointer must *** 14752,14758 **** is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU C\s0 Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 --- 14752,14758 ---- is valid depends on the operating system, and whether it maps the segment to cover the entire \s-1TLS\s0 area. .Sp ! For systems that use the \s-1GNU\s0 C Library, the default is on. .IP "\fB\-msse2avx\fR" 4 .IX Item "-msse2avx" .PD 0 *************** appropriately. *** 14913,14919 **** This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API,\s0 which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" --- 14913,14919 ---- This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of ! Microsoft Windows, as there the User32 \s-1API\s0, which is used to set executable privileges, isn't available. .IP "\fB\-fwritable\-relocated\-rdata\fR" 4 .IX Item "-fwritable-relocated-rdata" *************** Generate (or don't) code for the \s-1GNU *** 14960,14966 **** .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64 ABI.\s0 .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 --- 14960,14966 ---- .IP "\fB\-mno\-pic\fR" 4 .IX Item "-mno-pic" Generate code that does not use a global pointer register. The result ! is not position independent code, and violates the \s-1IA\-64\s0 \s-1ABI\s0. .IP "\fB\-mvolatile\-asm\-stop\fR" 4 .IX Item "-mvolatile-asm-stop" .PD 0 *************** instructions. The default is to use the *** 15040,15046 **** .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF 2\s0 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" --- 15040,15046 ---- .IP "\fB\-mdwarf2\-asm\fR" 4 .IX Item "-mdwarf2-asm" .PD ! Don't (or do) generate assembler code for the \s-1DWARF\s0 2 line number debugging info. This may be useful when not using the \s-1GNU\s0 assembler. .IP "\fB\-mearly\-stop\-bits\fR" 4 .IX Item "-mearly-stop-bits" *************** Specify bit size of immediate \s-1TLS\s0 *** 15064,15070 **** 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU,\s0 Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 --- 15064,15070 ---- 64. .IP "\fB\-mtune=\fR\fIcpu-type\fR" 4 .IX Item "-mtune=cpu-type" ! Tune the instruction scheduling for a particular \s-1CPU\s0, Valid values are \&\fBitanium\fR, \fBitanium1\fR, \fBmerced\fR, \fBitanium2\fR, and \fBmckinley\fR. .IP "\fB\-milp32\fR" 4 *************** have to be emulated by software on the 6 *** 15513,15519 **** does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32. \s0 This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp --- 15513,15519 ---- does not have code to emulate those instructions. .IP "\fB\-mcpu32\fR" 4 .IX Item "-mcpu32" ! Generate output for a \s-1CPU32\s0. This is the default when the compiler is configured for CPU32\-based systems. It is equivalent to \fB\-march=cpu32\fR. .Sp *************** Use this option for microcontrollers wit *** 15522,15537 **** 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU. \s0 This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202, MCF5203, MCF5204\s0 and \s-1MCF5206.\s0 .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" --- 15522,15537 ---- 68336, 68340, 68341, 68349 and 68360. .IP "\fB\-m5200\fR" 4 .IX Item "-m5200" ! Generate output for a 520X ColdFire \s-1CPU\s0. This is the default when the compiler is configured for 520X\-based systems. It is equivalent to \fB\-mcpu=5206\fR, and is now deprecated in favor of that option. .Sp Use this option for microcontroller with a 5200 core, including ! the \s-1MCF5202\s0, \s-1MCF5203\s0, \s-1MCF5204\s0 and \s-1MCF5206\s0. .IP "\fB\-m5206e\fR" 4 .IX Item "-m5206e" ! Generate output for a 5206e ColdFire \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5206e\fR. .IP "\fB\-m528x\fR" 4 .IX Item "-m528x" *************** The option is now deprecated in favor of *** 15540,15554 **** \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU. \s0 The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU \s0(e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. --- 15540,15554 ---- \&\fB\-mcpu=528x\fR. .IP "\fB\-m5307\fR" 4 .IX Item "-m5307" ! Generate output for a ColdFire 5307 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5307\fR. .IP "\fB\-m5407\fR" 4 .IX Item "-m5407" ! Generate output for a ColdFire 5407 \s-1CPU\s0. The option is now deprecated in favor of the equivalent \fB\-mcpu=5407\fR. .IP "\fB\-mcfv4e\fR" 4 .IX Item "-mcfv4e" ! Generate output for a ColdFire V4e family \s-1CPU\s0 (e.g. 547x/548x). This includes use of hardware floating-point instructions. The option is equivalent to \fB\-mcpu=547x\fR, and is now deprecated in favor of that option. *************** The option is equivalent to \fB\-march=6 *** 15575,15588 **** .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU. \s0 It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU.\s0 .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 --- 15575,15588 ---- .IX Item "-m68881" .PD Generate floating-point instructions. This is the default for 68020 ! and above, and for ColdFire devices that have an \s-1FPU\s0. It defines the macro \fB_\|_HAVE_68881_\|_\fR on M680x0 targets and \fB_\|_mcffpu_\|_\fR on ColdFire targets. .IP "\fB\-msoft\-float\fR" 4 .IX Item "-msoft-float" Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also ! the default for ColdFire devices that have no \s-1FPU\s0. .IP "\fB\-mdiv\fR" 4 .IX Item "-mdiv" .PD 0 *************** the default for ColdFire devices that ha *** 15592,15599 **** Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU ! \&\s0(either the default \s-1CPU,\s0 or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp --- 15592,15599 ---- Generate (do not generate) ColdFire hardware divide and remainder instructions. If \fB\-march\fR is used without \fB\-mcpu\fR, the default is \*(L"on\*(R" for ColdFire architectures and \*(L"off\*(R" for M680x0 ! architectures. Otherwise, the default is taken from the target \s-1CPU\s0 ! (either the default \s-1CPU\s0, or the one specified by \fB\-mcpu\fR). For example, the default is \*(L"off\*(R" for \fB\-mcpu=5206\fR and \*(L"on\*(R" for \&\fB\-mcpu=5206e\fR. .Sp *************** that works if the \s-1GOT\s0 has more th *** 15712,15718 **** larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 15712,15718 ---- larger and slower than code generated without this option. On M680x0 processors, this option is not needed; \fB\-fPIC\fR suffices. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** useful unless you also provide \f(CW\*(C *** 15854,15860 **** Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC,\s0 provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. --- 15854,15860 ---- Selects one of the built-in core configurations. Each MeP chip has one or more modules in it; each module has a core \s-1CPU\s0 and a variety of coprocessors, optional instructions, and peripherals. The ! \&\f(CW\*(C`MeP\-Integrator\*(C'\fR tool, not part of \s-1GCC\s0, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default configuration is \f(CW\*(C`default\*(C'\fR. *************** Do not optimize block moves, use \f(CW\* *** 15957,15963 **** This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU.\s0 Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, --- 15957,15963 ---- This option is deprecated. Use \fB\-fno\-zero\-initialized\-in\-bss\fR instead. .IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4 .IX Item "-mcpu=cpu-type" ! Use features of, and schedule code for, the given \s-1CPU\s0. Supported values are in the format \fBv\fR\fIX\fR\fB.\fR\fI\s-1YY\s0\fR\fB.\fR\fIZ\fR, where \fIX\fR is a major version, \fI\s-1YY\s0\fR is the minor version, and \&\fIZ\fR is compatibility code. Example values are \fBv3.00.a\fR, *************** configurations. *** 16043,16049 **** .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS ISA,\s0 or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. --- 16043,16049 ---- .IP "\fB\-march=\fR\fIarch\fR" 4 .IX Item "-march=arch" Generate code that runs on \fIarch\fR, which can be the name of a ! generic \s-1MIPS\s0 \s-1ISA\s0, or the name of a particular processor. The \s-1ISA\s0 names are: \&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR, \&\fBmips32\fR, \fBmips32r2\fR, \fBmips64\fR and \fBmips64r2\fR. *************** The processor names are: *** 16072,16078 **** \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI \s0(that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, --- 16072,16078 ---- \&\fBvr5000\fR, \fBvr5400\fR, \fBvr5500\fR, \&\fBxlr\fR and \fBxlp\fR. The special value \fBfrom-abi\fR selects the ! most compatible architecture for the selected \s-1ABI\s0 (that is, \&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs). .Sp The native Linux/GNU toolchain also supports the value \fBnative\fR, *************** Equivalent to \fB\-march=mips64r2\fR. *** 16153,16159 **** .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE.\s0 .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. --- 16153,16159 ---- .IX Item "-mno-mips16" .PD Generate (do not generate) \s-1MIPS16\s0 code. If \s-1GCC\s0 is targeting a ! \&\s-1MIPS32\s0 or \s-1MIPS64\s0 architecture, it makes use of the MIPS16e \s-1ASE\s0. .Sp \&\s-1MIPS16\s0 code generation can also be controlled on a per-function basis by means of \f(CW\*(C`mips16\*(C'\fR and \f(CW\*(C`nomips16\*(C'\fR attributes. *************** not intended for ordinary use in compili *** 16168,16174 **** .IP "\fB\-mno\-interlink\-compressed\fR" 4 .IX Item "-mno-interlink-compressed" .PD ! Require (do not require) that code using the standard (uncompressed) \s-1MIPS ISA\s0 be link-compatible with \s-1MIPS16\s0 and microMIPS code, and vice versa. .Sp For example, code using the standard \s-1ISA\s0 encoding cannot jump directly --- 16168,16174 ---- .IP "\fB\-mno\-interlink\-compressed\fR" 4 .IX Item "-mno-interlink-compressed" .PD ! Require (do not require) that code using the standard (uncompressed) \s-1MIPS\s0 \s-1ISA\s0 be link-compatible with \s-1MIPS16\s0 and microMIPS code, and vice versa. .Sp For example, code using the standard \s-1ISA\s0 encoding cannot jump directly *************** and are retained for backwards compatibi *** 16196,16208 **** .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI.\s0 .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI,\s0 see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers --- 16196,16208 ---- .IP "\fB\-mabi=eabi\fR" 4 .IX Item "-mabi=eabi" .PD ! Generate code for the given \s-1ABI\s0. .Sp Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant. \s-1GCC\s0 normally generates 64\-bit code when you select a 64\-bit architecture, but you can use \fB\-mgp32\fR to get 32\-bit code instead. .Sp ! For information about the O64 \s-1ABI\s0, see <\fBhttp://gcc.gnu.org/projects/mipso64\-abi.html\fR>. .Sp \&\s-1GCC\s0 supports a variant of the o32 \s-1ABI\s0 in which floating-point registers *************** executables both smaller and quicker. *** 16258,16264 **** .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI,\s0 this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring --- 16258,16264 ---- .PD Assume (do not assume) that the static and dynamic linkers support PLTs and copy relocations. This option only affects ! \&\fB\-mno\-shared \-mabicalls\fR. For the n64 \s-1ABI\s0, this option has no effect without \fB\-msym32\fR. .Sp You can make \fB\-mplt\fR the default by configuring *************** You can make \fB\-mplt\fR the default by *** 16273,16279 **** Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT.\s0 While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: --- 16273,16279 ---- Lift (do not lift) the usual restrictions on the size of the global offset table. .Sp ! \&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0. While this is relatively efficient, it only works if the \s-1GOT\s0 is smaller than about 64k. Anything larger causes the linker to report an error such as: *************** operations. This is the default. *** 16338,16344 **** .IX Item "-mabs=legacy" .PD These options control the treatment of the special not-a-number (NaN) ! \&\s-1IEEE 754\s0 floating-point data with the \f(CW\*(C`abs.\f(CIfmt\f(CW\*(C'\fR and \&\f(CW\*(C`neg.\f(CIfmt\f(CW\*(C'\fR machine instructions. .Sp By default or when the \fB\-mabs=legacy\fR is used the legacy --- 16338,16344 ---- .IX Item "-mabs=legacy" .PD These options control the treatment of the special not-a-number (NaN) ! \&\s-1IEEE\s0 754 floating-point data with the \f(CW\*(C`abs.\f(CIfmt\f(CW\*(C'\fR and \&\f(CW\*(C`neg.\f(CIfmt\f(CW\*(C'\fR machine instructions. .Sp By default or when the \fB\-mabs=legacy\fR is used the legacy *************** manipulate the sign bit of floating-poin *** 16349,16355 **** instead unless the \fB\-ffinite\-math\-only\fR option has also been specified. .Sp ! The \fB\-mabs=2008\fR option selects the \s-1IEEE 754\-2008\s0 treatment. In this case these instructions are considered non-arithmetic and therefore operating correctly in all cases, including in particular where the input operand is a NaN. These instructions are therefore always used --- 16349,16355 ---- instead unless the \fB\-ffinite\-math\-only\fR option has also been specified. .Sp ! The \fB\-mabs=2008\fR option selects the \s-1IEEE\s0 754\-2008 treatment. In this case these instructions are considered non-arithmetic and therefore operating correctly in all cases, including in particular where the input operand is a NaN. These instructions are therefore always used *************** for the respective operations. *** 16361,16374 **** .IX Item "-mnan=legacy" .PD These options control the encoding of the special not-a-number (NaN) ! \&\s-1IEEE 754\s0 floating-point data. .Sp The \fB\-mnan=legacy\fR option selects the legacy encoding. In this case quiet NaNs (qNaNs) are denoted by the first bit of their trailing significand field being 0, whereas signalling NaNs (sNaNs) are denoted by the first bit of their trailing significand field being 1. .Sp ! The \fB\-mnan=2008\fR option selects the \s-1IEEE 754\-2008\s0 encoding. In this case qNaNs are denoted by the first bit of their trailing significand field being 1, whereas sNaNs are denoted by the first bit of their trailing significand field being 0. --- 16361,16374 ---- .IX Item "-mnan=legacy" .PD These options control the encoding of the special not-a-number (NaN) ! \&\s-1IEEE\s0 754 floating-point data. .Sp The \fB\-mnan=legacy\fR option selects the legacy encoding. In this case quiet NaNs (qNaNs) are denoted by the first bit of their trailing significand field being 0, whereas signalling NaNs (sNaNs) are denoted by the first bit of their trailing significand field being 1. .Sp ! The \fB\-mnan=2008\fR option selects the \s-1IEEE\s0 754\-2008 encoding. In this case qNaNs are denoted by the first bit of their trailing significand field being 1, whereas sNaNs are denoted by the first bit of their trailing significand field being 0. *************** configurations; see the installation doc *** 16398,16405 **** .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 --- 16398,16405 ---- .IP "\fB\-mno\-dsp\fR" 4 .IX Item "-mno-dsp" .PD ! Use (do not use) revision 1 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macro \fB_\|_mips_dsp\fR. It also defines \&\fB_\|_mips_dsp_rev\fR to 1. .IP "\fB\-mdspr2\fR" 4 *************** preprocessor macro \fB_\|_mips_dsp\fR. *** 16408,16415 **** .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS DSP ASE. ! \s0 This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 --- 16408,16415 ---- .IP "\fB\-mno\-dspr2\fR" 4 .IX Item "-mno-dspr2" .PD ! Use (do not use) revision 2 of the \s-1MIPS\s0 \s-1DSP\s0 \s-1ASE\s0. ! This option defines the preprocessor macros \fB_\|_mips_dsp\fR and \fB_\|_mips_dspr2\fR. It also defines \fB_\|_mips_dsp_rev\fR to 2. .IP "\fB\-msmartmips\fR" 4 *************** It also defines \fB_\|_mips_dsp_rev\fR t *** 16418,16424 **** .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE.\s0 .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 --- 16418,16424 ---- .IP "\fB\-mno\-smartmips\fR" 4 .IX Item "-mno-smartmips" .PD ! Use (do not use) the \s-1MIPS\s0 SmartMIPS \s-1ASE\s0. .IP "\fB\-mpaired\-single\fR" 4 .IX Item "-mpaired-single" .PD 0 *************** hardware floating-point support to be en *** 16443,16449 **** .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D ASE. \s0 The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmicromips\fR" 4 .IX Item "-mmicromips" --- 16443,16449 ---- .IP "\fB\-mno\-mips3d\fR" 4 .IX Item "-mno-mips3d" .PD ! Use (do not use) the \s-1MIPS\-3D\s0 \s-1ASE\s0. The option \fB\-mips3d\fR implies \fB\-mpaired\-single\fR. .IP "\fB\-mmicromips\fR" 4 .IX Item "-mmicromips" *************** Use (do not use) \s-1MT\s0 Multithreadin *** 16468,16474 **** .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS MCU ASE\s0 instructions. .IP "\fB\-meva\fR" 4 .IX Item "-meva" .PD 0 --- 16468,16474 ---- .IP "\fB\-mno\-mcu\fR" 4 .IX Item "-mno-mcu" .PD ! Use (do not use) the \s-1MIPS\s0 \s-1MCU\s0 \s-1ASE\s0 instructions. .IP "\fB\-meva\fR" 4 .IX Item "-meva" .PD 0 *************** determined. *** 16493,16499 **** Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI. \s0 All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. --- 16493,16499 ---- Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide. .Sp The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on ! the \s-1ABI\s0. All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs. The n64 \s-1ABI\s0 uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use 32\-bit \f(CW\*(C`long\*(C'\fRs. Pointers are the same size as \f(CW\*(C`long\*(C'\fRs, or the same size as integer registers, whichever is smaller. *************** or the same size as integer registers, w *** 16504,16510 **** .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI. \s0 This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 --- 16504,16510 ---- .IX Item "-mno-sym32" .PD Assume (do not assume) that all symbols have 32\-bit values, regardless ! of the selected \s-1ABI\s0. This option is useful in combination with \&\fB\-mabi=64\fR and \fB\-mno\-abicalls\fR because it allows \s-1GCC\s0 to generate shorter and faster references to symbolic addresses. .IP "\fB\-G\fR \fInum\fR" 4 *************** but other instructions must not do so. *** 16609,16621 **** and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM.\s0 .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM.\s0 .RE .RS 4 .RE --- 16609,16621 ---- and 4KSd processors when the code TLBs have the Read Inhibit bit set. It is also useful on processors that can be configured to have a dual instruction/data \s-1SRAM\s0 interface and that, like the M4K, automatically ! redirect PC-relative loads to the instruction \s-1RAM\s0. .IP "\fB\-mcode\-readable=no\fR" 4 .IX Item "-mcode-readable=no" Instructions must not access executable sections. This option can be useful on targets that are configured to have a dual instruction/data \&\s-1SRAM\s0 interface but that (unlike the M4K) do not automatically redirect ! PC-relative loads to the instruction \s-1RAM\s0. .RE .RS 4 .RE *************** The default is \fB\-mcheck\-zero\-divisi *** 16657,16663 **** .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and --- 16657,16663 ---- .PD \&\s-1MIPS\s0 systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in ! smaller code, but is only supported on \s-1MIPS\s0 \s-1II\s0 and later. Also, some versions of the Linux kernel have a bug that prevents trap from generating the proper signal (\f(CW\*(C`SIGFPE\*(C'\fR). Use \fB\-mdivide\-traps\fR to allow conditional traps on architectures that support them and *************** This option has no effect on abicalls co *** 16695,16701 **** .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA.\s0 .IP "\fB\-mimadd\fR" 4 .IX Item "-mimadd" .PD 0 --- 16695,16701 ---- .IX Item "-mno-mad" .PD Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR ! instructions, as provided by the R4650 \s-1ISA\s0. .IP "\fB\-mimadd\fR" 4 .IX Item "-mimadd" .PD 0 *************** assembler files (with a \fB.s\fR suffix) *** 16733,16739 **** .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC.\s0 .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 --- 16733,16739 ---- .IX Item "-mno-fix-24k" .PD Work around the 24K E48 (lost data on stores during refill) errata. ! The workarounds are implemented by the assembler rather than by \s-1GCC\s0. .IP "\fB\-mfix\-r4000\fR" 4 .IX Item "-mfix-r4000" .PD 0 *************** otherwise. *** 16793,16800 **** .IP "\fB\-mno\-fix\-rm7000\fR" 4 .IX Item "-mno-fix-rm7000" .PD ! Work around the \s-1RM7000 \s0\f(CW\*(C`dmult\*(C'\fR/\f(CW\*(C`dmultu\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC.\s0 .IP "\fB\-mfix\-vr4120\fR" 4 .IX Item "-mfix-vr4120" .PD 0 --- 16793,16800 ---- .IP "\fB\-mno\-fix\-rm7000\fR" 4 .IX Item "-mno-fix-rm7000" .PD ! Work around the \s-1RM7000\s0 \f(CW\*(C`dmult\*(C'\fR/\f(CW\*(C`dmultu\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC\s0. .IP "\fB\-mfix\-vr4120\fR" 4 .IX Item "-mfix-vr4120" .PD 0 *************** instructions. These errata are handled *** 16820,16829 **** .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130 \s0\f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC,\s0 although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130 \s0\f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" --- 16820,16829 ---- .RE .IP "\fB\-mfix\-vr4130\fR" 4 .IX Item "-mfix-vr4130" ! Work around the \s-1VR4130\s0 \f(CW\*(C`mflo\*(C'\fR/\f(CW\*(C`mfhi\*(C'\fR errata. The ! workarounds are implemented by the assembler rather than by \s-1GCC\s0, although \s-1GCC\s0 avoids using \f(CW\*(C`mflo\*(C'\fR and \f(CW\*(C`mfhi\*(C'\fR if the ! \&\s-1VR4130\s0 \f(CW\*(C`macc\*(C'\fR, \f(CW\*(C`macchi\*(C'\fR, \f(CW\*(C`dmacc\*(C'\fR and \f(CW\*(C`dmacchi\*(C'\fR instructions are available instead. .IP "\fB\-mfix\-sb1\fR" 4 .IX Item "-mfix-sb1" *************** instructions are available instead. *** 16831,16837 **** .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1 CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 --- 16831,16837 ---- .IP "\fB\-mno\-fix\-sb1\fR" 4 .IX Item "-mno-fix-sb1" .PD ! Work around certain \s-1SB\-1\s0 \s-1CPU\s0 core errata. (This flag currently works around the \s-1SB\-1\s0 revision 2 \&\*(L"F1\*(R" and \*(L"F2\*(R" floating-point errata.) .IP "\fB\-mr10k\-cache\-barrier=\fR\fIsetting\fR" 4 *************** Specifies whether \s-1FP\s0 exceptions a *** 16942,16948 **** The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1,\s0 if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 --- 16942,16948 ---- The default is that \s-1FP\s0 exceptions are enabled. .Sp ! For instance, on the \s-1SB\-1\s0, if \s-1FP\s0 exceptions are disabled, and we are emitting 64\-bit code, then we can use both \s-1FP\s0 pipes. Otherwise, we can only use one \&\s-1FP\s0 pipe. .IP "\fB\-mvr4130\-align\fR" 4 *************** instructions together if the first one i *** 16956,16962 **** option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130.\s0 It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 --- 16956,16962 ---- option is enabled, \s-1GCC\s0 aligns pairs of instructions that it thinks should execute in parallel. .Sp ! This option only has an effect when optimizing for the \s-1VR4130\s0. It normally makes code faster, but at the expense of making it bigger. It is enabled by default at optimization level \fB\-O3\fR. .IP "\fB\-msynci\fR" 4 *************** to the \f(CW\*(C`rE\*(C'\fR epsilon regi *** 17045,17051 **** .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 --- 17045,17051 ---- .PD Generate code that passes function parameters and return values that (in the called function) are seen as registers \f(CW$0\fR and up, as opposed to ! the \s-1GNU\s0 \s-1ABI\s0 which uses global registers \f(CW$231\fR and up. .IP "\fB\-mzero\-extend\fR" 4 .IX Item "-mzero-extend" .PD 0 *************** Do not generate code using features spec *** 17129,17135 **** is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2.0\s0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. --- 17129,17135 ---- is the default. .IP "\fB\-mam33\-2\fR" 4 .IX Item "-mam33-2" ! Generate code using features specific to the \s-1AM33/2\s0.0 processor. .IP "\fB\-mam34\fR" 4 .IX Item "-mam34" Generate code using features specific to the \s-1AM34\s0 processor. *************** header file. *** 17210,17217 **** The option also sets the \s-1ISA\s0 to use. If the \s-1MCU\s0 name is one that is known to only support the 430 \s-1ISA\s0 then that is selected, otherwise the 430X \s-1ISA\s0 is selected. A generic \s-1MCU\s0 name of \f(CW\*(C`msp430\*(C'\fR can also be ! used to select the 430 \s-1ISA. \s0 Similarly the generic \f(CW\*(C`msp430x\*(C'\fR \s-1MCU\s0 ! name will select the 430X \s-1ISA.\s0 .Sp In addition an \s-1MCU\s0 specific linker script will be added to the linker command line. The script's name is the name of the \s-1MCU\s0 with --- 17210,17217 ---- The option also sets the \s-1ISA\s0 to use. If the \s-1MCU\s0 name is one that is known to only support the 430 \s-1ISA\s0 then that is selected, otherwise the 430X \s-1ISA\s0 is selected. A generic \s-1MCU\s0 name of \f(CW\*(C`msp430\*(C'\fR can also be ! used to select the 430 \s-1ISA\s0. Similarly the generic \f(CW\*(C`msp430x\*(C'\fR \s-1MCU\s0 ! name will select the 430X \s-1ISA\s0. .Sp In addition an \s-1MCU\s0 specific linker script will be added to the linker command line. The script's name is the name of the \s-1MCU\s0 with *************** This option is also passed on to the ass *** 17224,17230 **** .IX Item "-mcpu=" Specifies the \s-1ISA\s0 to use. Accepted values are \f(CW\*(C`msp430\*(C'\fR, \&\f(CW\*(C`msp430x\*(C'\fR and \f(CW\*(C`msp430xv2\*(C'\fR. This option is deprecated. The ! \&\fB\-mmcu=\fR option should be used to select the \s-1ISA.\s0 .IP "\fB\-msim\fR" 4 .IX Item "-msim" Link to the simulator runtime libraries and linker script. Overrides --- 17224,17230 ---- .IX Item "-mcpu=" Specifies the \s-1ISA\s0 to use. Accepted values are \f(CW\*(C`msp430\*(C'\fR, \&\f(CW\*(C`msp430x\*(C'\fR and \f(CW\*(C`msp430xv2\*(C'\fR. This option is deprecated. The ! \&\fB\-mmcu=\fR option should be used to select the \s-1ISA\s0. .IP "\fB\-msim\fR" 4 .IX Item "-msim" Link to the simulator runtime libraries and linker script. Overrides *************** sections. The default value of \fInum\f *** 17361,17367 **** Generate (do not generate) GP-relative accesses for objects in the small data or \s-1BSS\s0 sections. The default is \fB\-mgpopt\fR except when \fB\-fpic\fR or \fB\-fPIC\fR is specified to generate ! position-independent code. Note that the Nios \s-1II ABI\s0 does not permit GP-relative accesses from shared libraries. .Sp You may need to specify \fB\-mno\-gpopt\fR explicitly when building --- 17361,17367 ---- Generate (do not generate) GP-relative accesses for objects in the small data or \s-1BSS\s0 sections. The default is \fB\-mgpopt\fR except when \fB\-fpic\fR or \fB\-fPIC\fR is specified to generate ! position-independent code. Note that the Nios \s-1II\s0 \s-1ABI\s0 does not permit GP-relative accesses from shared libraries. .Sp You may need to specify \fB\-mno\-gpopt\fR explicitly when building *************** of the default behavior of using a libra *** 17433,17439 **** .Sp The following values of \fIinsn\fR are supported. Except as otherwise noted, floating-point operations are expected to be implemented with ! normal \s-1IEEE 754\s0 semantics and correspond directly to the C operators or the equivalent \s-1GCC\s0 built-in functions. .Sp Single-precision floating point: --- 17433,17439 ---- .Sp The following values of \fIinsn\fR are supported. Except as otherwise noted, floating-point operations are expected to be implemented with ! normal \s-1IEEE\s0 754 semantics and correspond directly to the C operators or the equivalent \s-1GCC\s0 built-in functions. .Sp Single-precision floating point: *************** configuration by using the \f(CW\*(C`tar *** 17586,17599 **** function attribute or pragma. .PP ! These additional \fB\-m\fR options are available for the Altera Nios \s-1II ! ELF \s0(bare-metal) target: .IP "\fB\-mhal\fR" 4 .IX Item "-mhal" ! Link with \s-1HAL BSP. \s0 This suppresses linking with the GCC-provided C runtime startup and termination code, and is typically used in conjunction with \&\fB\-msys\-crt0=\fR to specify the location of the alternate startup code ! provided by the \s-1HAL BSP.\s0 .IP "\fB\-msmallc\fR" 4 .IX Item "-msmallc" Link with a limited version of the C library, \fB\-lsmallc\fR, rather than --- 17586,17599 ---- function attribute or pragma. .PP ! These additional \fB\-m\fR options are available for the Altera Nios \s-1II\s0 ! \&\s-1ELF\s0 (bare-metal) target: .IP "\fB\-mhal\fR" 4 .IX Item "-mhal" ! Link with \s-1HAL\s0 \s-1BSP\s0. This suppresses linking with the GCC-provided C runtime startup and termination code, and is typically used in conjunction with \&\fB\-msys\-crt0=\fR to specify the location of the alternate startup code ! provided by the \s-1HAL\s0 \s-1BSP\s0. .IP "\fB\-msmallc\fR" 4 .IX Item "-msmallc" Link with a limited version of the C library, \fB\-lsmallc\fR, rather than *************** when linking. This option is only usefu *** 17607,17613 **** \&\fIsystemlib\fR is the library name of the library that provides low-level system calls required by the C library, e.g. \f(CW\*(C`read\*(C'\fR and \f(CW\*(C`write\*(C'\fR. ! This option is typically used to link with a library provided by a \s-1HAL BSP.\s0 .PP \fI\s-1PDP\-11\s0 Options\fR .IX Subsection "PDP-11 Options" --- 17607,17613 ---- \&\fIsystemlib\fR is the library name of the library that provides low-level system calls required by the C library, e.g. \f(CW\*(C`read\*(C'\fR and \f(CW\*(C`write\*(C'\fR. ! This option is typically used to link with a library provided by a \s-1HAL\s0 \s-1BSP\s0. .PP \fI\s-1PDP\-11\s0 Options\fR .IX Subsection "PDP-11 Options" *************** Return floating-point results in ac0 (fr *** 17628,17640 **** Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40.\s0 .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45. \s0 This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10.\s0 .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the --- 17628,17640 ---- Return floating-point results in memory. This is the default. .IP "\fB\-m40\fR" 4 .IX Item "-m40" ! Generate code for a \s-1PDP\-11/40\s0. .IP "\fB\-m45\fR" 4 .IX Item "-m45" ! Generate code for a \s-1PDP\-11/45\s0. This is the default. .IP "\fB\-m10\fR" 4 .IX Item "-m10" ! Generate code for a \s-1PDP\-11/10\s0. .IP "\fB\-mbcopy\-builtin\fR" 4 .IX Item "-mbcopy-builtin" Use inline \f(CW\*(C`movmemhi\*(C'\fR patterns for copying memory. This is the *************** for \fIae_type\fR are \fB\s-1ANY\s0\fR, *** 17706,17719 **** generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE.\s0 .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC AE. \s0 Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a --- 17706,17719 ---- generated with this option runs on any of the other \s-1AE\s0 types. The code is not as efficient as it would be if compiled for a specific \&\s-1AE\s0 type, and some types of operation (e.g., multiplication) do not ! work properly on all types of \s-1AE\s0. .Sp ! \&\fB\-mae=MUL\fR selects a \s-1MUL\s0 \s-1AE\s0 type. This is the most useful \s-1AE\s0 type for compiled code, and is the default. .Sp ! \&\fB\-mae=MAC\fR selects a DSP-style \s-1MAC\s0 \s-1AE\s0. Code compiled with this option may suffer from poor performance of byte (char) manipulation, ! since the \s-1DSP\s0 \s-1AE\s0 does not provide hardware support for byte load/stores. .IP "\fB\-msymbol\-as\-address\fR" 4 .IX Item "-msymbol-as-address" Enable the compiler to directly use a symbol name as an address in a *************** rather than being permanently enabled. *** 17726,17732 **** .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC AE\s0 type. The \s-1MAC AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate --- 17726,17732 ---- .IX Item "-mno-inefficient-warnings" Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that ! performs byte-level memory operations on the \s-1MAC\s0 \s-1AE\s0 type. The \s-1MAC\s0 \s-1AE\s0 has no hardware support for byte-level memory operations, so all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to indicate *************** The \f(CW\*(C`g13\*(C'\fR option is for *** 17759,17768 **** only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 --- 17759,17768 ---- only on the \s-1RL78/G13\s0 targets. The \f(CW\*(C`rl78\*(C'\fR option is for the standard hardware multiplication defined in the \s-1RL78\s0 software manual. .PP ! \fI\s-1IBM\s0 \s-1RS/6000\s0 and PowerPC Options\fR .IX Subsection "IBM RS/6000 and PowerPC Options" .PP ! These \fB\-m\fR options are defined for the \s-1IBM\s0 \s-1RS/6000\s0 and PowerPC: .IP "\fB\-mpowerpc\-gpopt\fR" 4 .IX Item "-mpowerpc-gpopt" .PD 0 *************** These \fB\-m\fR options are defined for *** 17807,17813 **** .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC. \s0 Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. --- 17807,17813 ---- .PD You use these options to specify which instructions are available on the processor you are using. The default value of these options is ! determined when configuring \s-1GCC\s0. Specifying the \&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these options. We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option rather than the options listed above. *************** following options: *** 17880,17886 **** \&\-mpopcntb \-mpopcntd \-mpowerpc64 \&\-mpowerpc\-gpopt \-mpowerpc\-gfxopt \-msingle\-float \-mdouble\-float \&\-msimple\-fpu \-mstring \-mmulhw \-mdlmzb \-mmfpgpr \-mvsx ! \&\-mcrypto \-mdirect\-move \-mpower8\-fusion \-mpower8\-vector \&\-mquad\-memory \-mquad\-memory\-atomic\fR .Sp The particular options set for any particular \s-1CPU\s0 varies between --- 17880,17886 ---- \&\-mpopcntb \-mpopcntd \-mpowerpc64 \&\-mpowerpc\-gpopt \-mpowerpc\-gfxopt \-msingle\-float \-mdouble\-float \&\-msimple\-fpu \-mstring \-mmulhw \-mdlmzb \-mmfpgpr \-mvsx ! \&\-mcrypto \-mdirect\-move \-mhtm \-mpower8\-fusion \-mpower8\-vector \&\-mquad\-memory \-mquad\-memory\-atomic\fR .Sp The particular options set for any particular \s-1CPU\s0 varies between *************** capabilities. If you wish to set an ind *** 17890,17896 **** value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX,\s0 the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your --- 17890,17896 ---- value, you may specify it after the \fB\-mcpu\fR option, like \&\fB\-mcpu=970 \-mno\-altivec\fR. .Sp ! On \s-1AIX\s0, the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are not enabled or disabled by the \fB\-mcpu\fR option at present because \&\s-1AIX\s0 does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your *************** Generate code that allows \fBld\fR and \ *** 17978,17991 **** to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS \s0\f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 --- 17978,17991 ---- to build executables and shared libraries with non-executable \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections. This is a PowerPC ! 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mbss\-plt\fR" 4 .IX Item "-mbss-plt" ! Generate code that uses a \s-1BSS\s0 \f(CW\*(C`.plt\*(C'\fR section that \fBld.so\fR fills in, and requires \f(CW\*(C`.plt\*(C'\fR and \f(CW\*(C`.got\*(C'\fR sections that are both writable and executable. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-misel\fR" 4 .IX Item "-misel" .PD 0 *************** more direct access to the \s-1VSX\s0 ins *** 18034,18040 **** .PD Enable the use (disable) of the built-in functions that allow direct access to the cryptographic instructions that were added in version ! 2.07 of the PowerPC \s-1ISA.\s0 .IP "\fB\-mdirect\-move\fR" 4 .IX Item "-mdirect-move" .PD 0 --- 18034,18040 ---- .PD Enable the use (disable) of the built-in functions that allow direct access to the cryptographic instructions that were added in version ! 2.07 of the PowerPC \s-1ISA\s0. .IP "\fB\-mdirect\-move\fR" 4 .IX Item "-mdirect-move" .PD 0 *************** access to the cryptographic instructions *** 18043,18049 **** .PD Generate code that uses (does not use) the instructions to move data between the general purpose registers and the vector/scalar (\s-1VSX\s0) ! registers that were added in version 2.07 of the PowerPC \s-1ISA.\s0 .IP "\fB\-mpower8\-fusion\fR" 4 .IX Item "-mpower8-fusion" .PD 0 --- 18043,18058 ---- .PD Generate code that uses (does not use) the instructions to move data between the general purpose registers and the vector/scalar (\s-1VSX\s0) ! registers that were added in version 2.07 of the PowerPC \s-1ISA\s0. ! .IP "\fB\-mhtm\fR" 4 ! .IX Item "-mhtm" ! .PD 0 ! .IP "\fB\-mno\-htm\fR" 4 ! .IX Item "-mno-htm" ! .PD ! Enable (disable) the use of the built-in functions that allow direct ! access to the Hardware Transactional Memory (\s-1HTM\s0) instructions that ! were added in version 2.07 of the PowerPC \s-1ISA\s0. .IP "\fB\-mpower8\-fusion\fR" 4 .IX Item "-mpower8-fusion" .PD 0 *************** later processors. *** 18060,18066 **** .IX Item "-mno-power8-vector" .PD Generate code that uses (does not use) the vector and scalar ! instructions that were added in version 2.07 of the PowerPC \s-1ISA. \s0 Also enable the use of built-in functions that allow more direct access to the vector instructions. .IP "\fB\-mquad\-memory\fR" 4 --- 18069,18075 ---- .IX Item "-mno-power8-vector" .PD Generate code that uses (does not use) the vector and scalar ! instructions that were added in version 2.07 of the PowerPC \s-1ISA\s0. Also enable the use of built-in functions that allow more direct access to the vector instructions. .IP "\fB\-mquad\-memory\fR" 4 *************** pointer to 64 bits, and generates code f *** 18123,18134 **** .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC \s0(Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC. \s0 However, only ! 16,384 entries are available in the \s-1TOC.\s0 .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used --- 18132,18143 ---- .IP "\fB\-mminimal\-toc\fR" 4 .IX Item "-mminimal-toc" .PD ! Modify generation of the \s-1TOC\s0 (Table Of Contents), which is created for every executable file. The \fB\-mfull\-toc\fR option is selected by default. In that case, \s-1GCC\s0 allocates at least one \s-1TOC\s0 entry for each unique non-automatic variable reference in your program. \s-1GCC\s0 ! also places floating-point constants in the \s-1TOC\s0. However, only ! 16,384 entries are available in the \s-1TOC\s0. .Sp If you receive a linker error message that saying you have overflowed the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used *************** with the \fB\-mno\-fp\-in\-toc\fR and \f *** 18136,18142 **** \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC. \s0 You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp --- 18145,18151 ---- \&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to generate code to calculate the sum of an address and a constant at ! run time instead of putting that sum into the \s-1TOC\s0. You may specify one or both of these options. Each causes \s-1GCC\s0 to produce very slightly slower and larger code at the expense of conserving \s-1TOC\s0 space. .Sp *************** only on files that contain less frequent *** 18152,18158 **** .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and --- 18161,18167 ---- .IP "\fB\-maix32\fR" 4 .IX Item "-maix32" .PD ! Enable 64\-bit \s-1AIX\s0 \s-1ABI\s0 and calling convention: 64\-bit pointers, 64\-bit \&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them. Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and *************** implies \fB\-mno\-powerpc64\fR. \s-1GCC *** 18163,18170 **** .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI. \s0 Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing --- 18172,18179 ---- .IP "\fB\-mno\-xl\-compat\fR" 4 .IX Item "-mno-xl-compat" .PD ! Produce code that conforms more closely to \s-1IBM\s0 \s-1XL\s0 compiler semantics ! when using AIX-compatible \s-1ABI\s0. Pass floating-point arguments to prototyped functions beyond the register save area (\s-1RSA\s0) on the stack in addition to argument FPRs. Do not assume that most significant double in 128\-bit long double value is properly rounded when comparing *************** support routines. *** 18173,18188 **** .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM ! XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM RS/6000 SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file --- 18182,18197 ---- .Sp The \s-1AIX\s0 calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the ! address of its arguments with fewer arguments than declared. \s-1IBM\s0 \s-1XL\s0 compilers access floating-point arguments that do not fit in the \&\s-1RSA\s0 from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this option is not enabled by ! default and only is necessary when calling subroutines compiled by \s-1IBM\s0 ! \&\s-1XL\s0 compilers without optimization. .IP "\fB\-mpe\fR" 4 .IX Item "-mpe" ! Support \fI\s-1IBM\s0 \s-1RS/6000\s0 \s-1SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0). Link an application written to use message passing with special startup code to enable the application to run. The system must have \s-1PE\s0 installed in the standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file *************** option are incompatible. *** 18196,18206 **** .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX,\s0 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI.\s0 .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. --- 18205,18215 ---- .IP "\fB\-malign\-power\fR" 4 .IX Item "-malign-power" .PD ! On \s-1AIX\s0, 32\-bit Darwin, and 64\-bit PowerPC GNU/Linux, the option \&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based boundary. The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified ! alignment rules. \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI\s0. .Sp On 64\-bit Darwin, natural alignment is the default, and \fB\-malign\-power\fR is not supported. *************** Specify type of floating-point unit. Va *** 18234,18240 **** and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC 405/440.\s0 .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 --- 18243,18249 ---- and \fBdp_full\fR (equivalent to \fB\-mdouble\-float\fR). .IP "\fB\-mxilinx\-fpu\fR" 4 .IX Item "-mxilinx-fpu" ! Perform optimizations for the floating-point unit on Xilinx \s-1PPC\s0 405/440. .IP "\fB\-mmultiple\fR" 4 .IX Item "-mmultiple" .PD 0 *************** mapped to \fB\-ffp\-contract=off\fR. *** 18305,18311 **** .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM 405, 440, 464\s0 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 --- 18314,18320 ---- .IX Item "-mno-mulhw" .PD Generate code that uses (does not use) the half-word multiply and ! multiply-accumulate instructions on the \s-1IBM\s0 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. .IP "\fB\-mdlmzb\fR" 4 *************** processors. *** 18315,18321 **** .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM 405, 440, 464\s0 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" --- 18324,18330 ---- .IX Item "-mno-dlmzb" .PD Generate code that uses (does not use) the string-search \fBdlmzb\fR ! instruction on the \s-1IBM\s0 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. .IP "\fB\-mno\-bit\-align\fR" 4 .IX Item "-mno-bit-align" *************** processor in big-endian mode. The \fB\- *** 18395,18401 **** the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS X\s0 systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. --- 18404,18410 ---- the same as \fB\-mbig\fR. .IP "\fB\-mdynamic\-no\-pic\fR" 4 .IX Item "-mdynamic-no-pic" ! On Darwin and Mac \s-1OS\s0 X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. *************** On System V.4 and embedded PowerPC syste *** 18501,18511 **** OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4 ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. --- 18510,18520 ---- OpenBSD operating system. .IP "\fB\-maix\-struct\-return\fR" 4 .IX Item "-maix-struct-return" ! Return all structures in memory (as specified by the \s-1AIX\s0 \s-1ABI\s0). .IP "\fB\-msvr4\-struct\-return\fR" 4 .IX Item "-msvr4-struct-return" Return structures smaller than 8 bytes in registers (as specified by the ! \&\s-1SVR4\s0 \s-1ABI\s0). .IP "\fB\-mabi=\fR\fIabi-type\fR" 4 .IX Item "-mabi=abi-type" Extend the current \s-1ABI\s0 with a particular extension, or remove such extension. *************** Valid values are \fIaltivec\fR, \fIno-al *** 18514,18542 **** \&\fIelfv1\fR, \fIelfv2\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE ABI\s0 extensions. This does not change ! the default \s-1ABI,\s0 instead it adds the \s-1SPE ABI\s0 extensions to the current ! \&\s-1ABI.\s0 .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE ABI\s0 extensions for the current \s-1ABI.\s0 .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. This is a PowerPC 32\-bit Linux \s-1ABI\s0 option. .IP "\fB\-mabi=elfv1\fR" 4 .IX Item "-mabi=elfv1" ! Change the current \s-1ABI\s0 to use the ELFv1 \s-1ABI.\s0 This is the default \s-1ABI\s0 for big-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. .IP "\fB\-mabi=elfv2\fR" 4 .IX Item "-mabi=elfv2" ! Change the current \s-1ABI\s0 to use the ELFv2 \s-1ABI.\s0 This is the default \s-1ABI\s0 for little-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. --- 18523,18551 ---- \&\fIelfv1\fR, \fIelfv2\fR. .IP "\fB\-mabi=spe\fR" 4 .IX Item "-mabi=spe" ! Extend the current \s-1ABI\s0 with \s-1SPE\s0 \s-1ABI\s0 extensions. This does not change ! the default \s-1ABI\s0, instead it adds the \s-1SPE\s0 \s-1ABI\s0 extensions to the current ! \&\s-1ABI\s0. .IP "\fB\-mabi=no\-spe\fR" 4 .IX Item "-mabi=no-spe" ! Disable Book-E \s-1SPE\s0 \s-1ABI\s0 extensions for the current \s-1ABI\s0. .IP "\fB\-mabi=ibmlongdouble\fR" 4 .IX Item "-mabi=ibmlongdouble" Change the current \s-1ABI\s0 to use \s-1IBM\s0 extended-precision long double. ! This is a PowerPC 32\-bit \s-1SYSV\s0 \s-1ABI\s0 option. .IP "\fB\-mabi=ieeelongdouble\fR" 4 .IX Item "-mabi=ieeelongdouble" Change the current \s-1ABI\s0 to use \s-1IEEE\s0 extended-precision long double. This is a PowerPC 32\-bit Linux \s-1ABI\s0 option. .IP "\fB\-mabi=elfv1\fR" 4 .IX Item "-mabi=elfv1" ! Change the current \s-1ABI\s0 to use the ELFv1 \s-1ABI\s0. This is the default \s-1ABI\s0 for big-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. .IP "\fB\-mabi=elfv2\fR" 4 .IX Item "-mabi=elfv2" ! Change the current \s-1ABI\s0 to use the ELFv2 \s-1ABI\s0. This is the default \s-1ABI\s0 for little-endian PowerPC 64\-bit Linux. Overriding the default \s-1ABI\s0 requires special system support and is likely to fail in spectacular ways. *************** On Darwin/PPC systems, \f(CW\*(C`#pragma *** 18690,18696 **** callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC \s0\f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee --- 18699,18705 ---- callee, L42\*(C'\fR, plus a \fIbranch island\fR (glue code). The two target addresses represent the callee and the branch island. The Darwin/PPC linker prefers the first address and generates a \f(CW\*(C`bl ! callee\*(C'\fR if the \s-1PPC\s0 \f(CW\*(C`bl\*(C'\fR instruction reaches the callee directly; otherwise, the linker generates \f(CW\*(C`bl L42\*(C'\fR to call the branch island. The branch island is appended to the body of the calling function; it computes the full 32\-bit address of the callee *************** which handle the double-precision recipr *** 18762,18768 **** .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI. \s0 Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an --- 18771,18777 ---- .PD Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! \&\s-1ABI\s0. Selecting \fB\-mcpu=power6\fR, \fB\-mcpu=power7\fR or \&\fB\-mcpu=power8\fR automatically selects \fB\-mrecip\-precision\fR. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an *************** pointer. The \fB\-mno\-save\-toc\-indir *** 18835,18848 **** .PD Generate (do not generate) code to pass structure parameters with a maximum alignment of 64 bits, for compatibility with older versions ! of \s-1GCC.\s0 .Sp ! Older versions of \s-1GCC \s0(prior to 4.9.0) incorrectly did not align a structure parameter on a 128\-bit boundary when that structure contained a member requiring 128\-bit alignment. This is corrected in more ! recent versions of \s-1GCC. \s0 This option may be used to generate code that is compatible with functions compiled with older versions of ! \&\s-1GCC.\s0 .Sp The \fB\-mno\-compat\-align\-parm\fR option is the default. .PP --- 18844,18857 ---- .PD Generate (do not generate) code to pass structure parameters with a maximum alignment of 64 bits, for compatibility with older versions ! of \s-1GCC\s0. .Sp ! Older versions of \s-1GCC\s0 (prior to 4.9.0) incorrectly did not align a structure parameter on a 128\-bit boundary when that structure contained a member requiring 128\-bit alignment. This is corrected in more ! recent versions of \s-1GCC\s0. This option may be used to generate code that is compatible with functions compiled with older versions of ! \&\s-1GCC\s0. .Sp The \fB\-mno\-compat\-align\-parm\fR option is the default. .PP *************** values, however, so the \s-1FPU\s0 hardw *** 18877,18888 **** .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU. \s0 The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. --- 18886,18897 ---- .Sp \&\fINote\fR If the \fB\-fpu\fR option is enabled then \&\fB\-funsafe\-math\-optimizations\fR is also enabled automatically. ! This is because the \s-1RX\s0 \s-1FPU\s0 instructions are themselves unsafe. .IP "\fB\-mcpu=\fR\fIname\fR" 4 .IX Item "-mcpu=name" ! Selects the type of \s-1RX\s0 \s-1CPU\s0 to be targeted. Currently three types are supported, the generic \fI\s-1RX600\s0\fR and \fI\s-1RX200\s0\fR series hardware and ! the specific \fI\s-1RX610\s0\fR \s-1CPU\s0. The default is \fI\s-1RX600\s0\fR. .Sp The only difference between \fI\s-1RX600\s0\fR and \fI\s-1RX610\s0\fR is that the \&\fI\s-1RX610\s0\fR does not support the \f(CW\*(C`MVTIPL\*(C'\fR instruction. *************** type. This is the default. *** 19068,19074 **** Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF 2\s0 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register --- 19077,19083 ---- Store (do not store) the address of the caller's frame as backchain pointer into the callee's stack frame. A backchain may be needed to allow debugging using tools that do not understand ! \&\s-1DWARF\s0 2 call frame information. When \fB\-mno\-packed\-stack\fR is in effect, the backchain pointer is stored at the bottom of the stack frame; when \fB\-mpacked\-stack\fR is in effect, the backchain is placed into the topmost word of the 96/160 byte register *************** register is always saved two words below *** 19100,19106 **** .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC 2.95\s0 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the --- 19109,19115 ---- .Sp As long as the stack frame backchain is not used, code generated with \&\fB\-mpacked\-stack\fR is call-compatible with code generated with ! \&\fB\-mno\-packed\-stack\fR. Note that some non-FSF releases of \s-1GCC\s0 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code is not call-compatible with code compiled with \fB\-mpacked\-stack\fR. Also, note that the *************** which does not have this limitation. *** 19127,19134 **** .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI. \s0 When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI. \s0 This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. --- 19136,19143 ---- .IX Item "-m31" .PD When \fB\-m31\fR is specified, generate code compliant to the ! GNU/Linux for S/390 \s-1ABI\s0. When \fB\-m64\fR is specified, generate ! code compliant to the GNU/Linux for zSeries \s-1ABI\s0. This allows \s-1GCC\s0 in particular to generate 64\-bit instructions. For the \fBs390\fR targets, the default is \fB\-m31\fR, while the \fBs390x\fR targets default to \fB\-m64\fR. *************** targets default to \fB\-m64\fR. *** 19141,19151 **** When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390. \s0 Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI,\s0 the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI,\s0 the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 --- 19150,19160 ---- When \fB\-mzarch\fR is specified, generate code using the instructions available on z/Architecture. When \fB\-mesa\fR is specified, generate code using the ! instructions available on \s-1ESA/390\s0. Note that \fB\-mesa\fR is not possible with \fB\-m64\fR. ! When generating code compliant to the GNU/Linux for S/390 \s-1ABI\s0, the default is \fB\-mesa\fR. When generating code compliant ! to the GNU/Linux for zSeries \s-1ABI\s0, the default is \fB\-mzarch\fR. .IP "\fB\-mmvcle\fR" 4 .IX Item "-mmvcle" .PD 0 *************** The default is the value used for \fB\-m *** 19185,19193 **** .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF OS.\s0 .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 --- 19194,19202 ---- .IP "\fB\-mno\-tpf\-trace\fR" 4 .IX Item "-mno-tpf-trace" .PD ! Generate code that adds (does not add) in \s-1TPF\s0 \s-1OS\s0 specific branches to trace routines in the operating system. This option is off by default, even ! when compiling for the \s-1TPF\s0 \s-1OS\s0. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" .PD 0 *************** Specify the \s-1SCORE7D\s0 as the target *** 19280,19295 **** These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1.\s0 .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2.\s0 .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU,\s0 or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" --- 19289,19304 ---- These \fB\-m\fR options are defined for the \s-1SH\s0 implementations: .IP "\fB\-m1\fR" 4 .IX Item "-m1" ! Generate code for the \s-1SH1\s0. .IP "\fB\-m2\fR" 4 .IX Item "-m2" ! Generate code for the \s-1SH2\s0. .IP "\fB\-m2e\fR" 4 .IX Item "-m2e" Generate code for the SH2e. .IP "\fB\-m2a\-nofpu\fR" 4 .IX Item "-m2a-nofpu" ! Generate code for the SH2a without \s-1FPU\s0, or for a SH2a\-FPU in such a way that the floating-point unit is not used. .IP "\fB\-m2a\-single\-only\fR" 4 .IX Item "-m2a-single-only" *************** Generate code for the SH2a\-FPU assuming *** 19305,19311 **** double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3.\s0 .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. --- 19314,19320 ---- double-precision mode by default. .IP "\fB\-m3\fR" 4 .IX Item "-m3" ! Generate code for the \s-1SH3\s0. .IP "\fB\-m3e\fR" 4 .IX Item "-m3e" Generate code for the SH3e. *************** Generate code for the \s-1SH4\s0 assumin *** 19322,19331 **** single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4.\s0 .IP "\fB\-m4\-100\fR" 4 .IX Item "-m4-100" ! Generate code for \s-1SH4\-100.\s0 .IP "\fB\-m4\-100\-nofpu\fR" 4 .IX Item "-m4-100-nofpu" Generate code for \s-1SH4\-100\s0 in such a way that the --- 19331,19340 ---- single-precision mode by default. .IP "\fB\-m4\fR" 4 .IX Item "-m4" ! Generate code for the \s-1SH4\s0. .IP "\fB\-m4\-100\fR" 4 .IX Item "-m4-100" ! Generate code for \s-1SH4\-100\s0. .IP "\fB\-m4\-100\-nofpu\fR" 4 .IX Item "-m4-100-nofpu" Generate code for \s-1SH4\-100\s0 in such a way that the *************** Generate code for \s-1SH4\-100\s0 in suc *** 19340,19346 **** floating-point operations are used. .IP "\fB\-m4\-200\fR" 4 .IX Item "-m4-200" ! Generate code for \s-1SH4\-200.\s0 .IP "\fB\-m4\-200\-nofpu\fR" 4 .IX Item "-m4-200-nofpu" Generate code for \s-1SH4\-200\s0 without in such a way that the --- 19349,19355 ---- floating-point operations are used. .IP "\fB\-m4\-200\fR" 4 .IX Item "-m4-200" ! Generate code for \s-1SH4\-200\s0. .IP "\fB\-m4\-200\-nofpu\fR" 4 .IX Item "-m4-200-nofpu" Generate code for \s-1SH4\-200\s0 without in such a way that the *************** Generate code for \s-1SH4\-200\s0 in suc *** 19355,19361 **** floating-point operations are used. .IP "\fB\-m4\-300\fR" 4 .IX Item "-m4-300" ! Generate code for \s-1SH4\-300.\s0 .IP "\fB\-m4\-300\-nofpu\fR" 4 .IX Item "-m4-300-nofpu" Generate code for \s-1SH4\-300\s0 without in such a way that the --- 19364,19370 ---- floating-point operations are used. .IP "\fB\-m4\-300\fR" 4 .IX Item "-m4-300" ! Generate code for \s-1SH4\-300\s0. .IP "\fB\-m4\-300\-nofpu\fR" 4 .IX Item "-m4-300-nofpu" Generate code for \s-1SH4\-300\s0 without in such a way that the *************** Generate code for \s-1SH4\-300\s0 in suc *** 19370,19379 **** floating-point operations are used. .IP "\fB\-m4\-340\fR" 4 .IX Item "-m4-340" ! Generate code for \s-1SH4\-340 \s0(no \s-1MMU,\s0 no \s-1FPU\s0). .IP "\fB\-m4\-500\fR" 4 .IX Item "-m4-500" ! Generate code for \s-1SH4\-500 \s0(no \s-1FPU\s0). Passes \fB\-isa=sh4\-nofpu\fR to the assembler. .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" --- 19379,19388 ---- floating-point operations are used. .IP "\fB\-m4\-340\fR" 4 .IX Item "-m4-340" ! Generate code for \s-1SH4\-340\s0 (no \s-1MMU\s0, no \s-1FPU\s0). .IP "\fB\-m4\-500\fR" 4 .IX Item "-m4-500" ! Generate code for \s-1SH4\-500\s0 (no \s-1FPU\s0). Passes \fB\-isa=sh4\-nofpu\fR to the assembler. .IP "\fB\-m4a\-nofpu\fR" 4 .IX Item "-m4a-nofpu" *************** Use 32\-bit offsets in \f(CW\*(C`switch\ *** 19437,19443 **** 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A.\s0 .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for --- 19446,19452 ---- 16\-bit offsets. .IP "\fB\-mbitops\fR" 4 .IX Item "-mbitops" ! Enable the use of bit manipulation instructions on \s-1SH2A\s0. .IP "\fB\-mfmovd\fR" 4 .IX Item "-mfmovd" Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR. Check \fB\-mdalign\fR for *************** Dump instruction size and location in th *** 19484,19490 **** .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH ABI.\s0 .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma --- 19493,19499 ---- .IP "\fB\-mpadstruct\fR" 4 .IX Item "-mpadstruct" This option is deprecated. It pads structures to multiple of 4 bytes, ! which is incompatible with the \s-1SH\s0 \s-1ABI\s0. .IP "\fB\-matomic\-model=\fR\fImodel\fR" 4 .IX Item "-matomic-model=model" Sets the model of atomic operations and additional parameters as a comma *************** Generate GNU/Linux compatible gUSA softw *** 19501,19507 **** built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh*\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A,\s0 this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. --- 19510,19516 ---- built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option is enabled by default when ! the target is \f(CW\*(C`sh*\-*\-linux*\*(C'\fR and SH3* or SH4*. When the target is \s-1SH4A\s0, this option will also partially utilize the hardware atomic instructions \&\f(CW\*(C`movli.l\*(C'\fR and \f(CW\*(C`movco.l\*(C'\fR to create more efficient code, unless \&\fBstrict\fR is specified. *************** For targets other than SHmedia \fIstrate *** 19644,19663 **** .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4, ! SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU. \s0 Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4. \s0 Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 --- 19653,19672 ---- .IX Item "call-div1" Calls a library function that uses the single-step division instruction \&\f(CW\*(C`div1\*(C'\fR to perform the operation. Division by zero calculates an ! unspecified result and does not trap. This is the default except for \s-1SH4\s0, ! \&\s-1SH2A\s0 and SHcompact. .IP "\fBcall-fp\fR" 4 .IX Item "call-fp" Calls a library function that performs the operation in double precision floating point. Division by zero causes a floating-point exception. This is ! the default for SHcompact with \s-1FPU\s0. Specifying this for targets that do not have a double precision \s-1FPU\s0 will default to \f(CW\*(C`call\-div1\*(C'\fR. .IP "\fBcall-table\fR" 4 .IX Item "call-table" Calls a library function that uses a lookup table for small divisors and the \f(CW\*(C`div1\*(C'\fR instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default ! for \s-1SH4\s0. Specifying this for targets that do not have dynamic shift instructions will default to \f(CW\*(C`call\-div1\*(C'\fR. .RE .RS 4 *************** specified separated by a comma. *** 19691,19700 **** Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU,\s0 which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI,\s0 the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. --- 19700,19709 ---- Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or \s-1OS\s0 implement 32\-bit wrap-around semantics for the indexed addressing mode. The architecture allows the ! implementation of processors with 64\-bit \s-1MMU\s0, which the \s-1OS\s0 could use to get 32\-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in ! the 32\-bit \s-1ABI\s0, the default is \fB\-mno\-indexed\-addressing\fR. .IP "\fB\-mgettrcost=\fR\fInumber\fR" 4 .IX Item "-mgettrcost=number" Set the cost assumed for the \f(CW\*(C`gettr\*(C'\fR instruction to \fInumber\fR. *************** the compiler are always valid to load wi *** 19731,19737 **** but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE,\s0 hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" --- 19740,19746 ---- but with assembler and/or linker tricks it is possible to generate symbols that cause \f(CW\*(C`ptabs\*(C'\fR or \f(CW\*(C`ptrel\*(C'\fR to trap. This option is only meaningful when \fB\-mno\-pt\-fixed\fR is in effect. ! It prevents cross-basic-block \s-1CSE\s0, hoisting and most scheduling of symbol loads. The default is \fB\-mno\-invalid\-symbols\fR. .IP "\fB\-mbranch\-cost=\fR\fInum\fR" 4 .IX Item "-mbranch-cost=num" *************** is being compiled for. *** 19748,19754 **** Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A. \s0 It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" --- 19757,19763 ---- Assume (do not assume) that zero displacement conditional branch instructions \&\f(CW\*(C`bt\*(C'\fR and \f(CW\*(C`bf\*(C'\fR are fast. If \fB\-mzdcbranch\fR is specified, the compiler will try to prefer zero displacement branch code sequences. This is ! enabled by default when generating code for \s-1SH4\s0 and \s-1SH4A\s0. It can be explicitly disabled by specifying \fB\-mno\-zdcbranch\fR. .IP "\fB\-mfused\-madd\fR" 4 .IX Item "-mfused-madd" *************** mapped to \fB\-ffp\-contract=off\fR. *** 19771,19777 **** Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" --- 19780,19786 ---- Allow or disallow the compiler to emit the \f(CW\*(C`fsca\*(C'\fR instruction for sine and cosine approximations. The option \f(CW\*(C`\-mfsca\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR. It is enabled by default ! when generating code for \s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsca\*(C'\fR disables sine and cosine approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR is in effect. .IP "\fB\-mfsrra\fR" 4 .IX Item "-mfsrra" *************** Allow or disallow the compiler to emit t *** 19783,19789 **** reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A. \s0 Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 --- 19792,19798 ---- reciprocal square root approximations. The option \f(CW\*(C`\-mfsrra\*(C'\fR must be used in combination with \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \&\f(CW\*(C`\-ffinite\-math\-only\*(C'\fR. It is enabled by default when generating code for ! \&\s-1SH4A\s0. Using \f(CW\*(C`\-mno\-fsrra\*(C'\fR disables reciprocal square root approximations even if \f(CW\*(C`\-funsafe\-math\-optimizations\*(C'\fR and \f(CW\*(C`\-ffinite\-math\-only\*(C'\fR are in effect. .IP "\fB\-mpretend\-cmove\fR" 4 *************** These \fB\-m\fR options are supported on *** 19837,19843 **** .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC SVR4 ABI\s0 reserves for applications. Like the global register 1, each global register 2 through 4 is then treated as an allocable register that is clobbered by function calls. This is the default. .Sp --- 19846,19852 ---- .IX Item "-mapp-regs" .PD Specify \fB\-mapp\-regs\fR to generate output using the global registers ! 2 through 4, which the \s-1SPARC\s0 \s-1SVR4\s0 \s-1ABI\s0 reserves for applications. Like the global register 1, each global register 2 through 4 is then treated as an allocable register that is clobbered by function calls. This is the default. .Sp *************** cross-compilation. The embedded targets *** 19883,19889 **** \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC,\s0 with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" --- 19892,19898 ---- \&\fB\-msoft\-float\fR changes the calling convention in the output file; therefore, it is only useful if you compile \fIall\fR of a program with this option. In particular, you need to compile \fIlibgcc.a\fR, the ! library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for this to work. .IP "\fB\-mhard\-quad\-float\fR" 4 .IX Item "-mhard-quad-float" *************** instructions. *** 19893,19899 **** .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC ABI. \s0 This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke --- 19902,19908 ---- .IX Item "-msoft-quad-float" Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified ! in the \s-1SPARC\s0 \s-1ABI\s0. This is the default. .Sp As of this writing, there are no \s-1SPARC\s0 implementations that have hardware support for the quad-word floating-point instructions. They all invoke *************** in a performance loss, especially for fl *** 19922,19929 **** .IX Item "-mno-user-mode" .PD Do not generate code that can only run in supervisor mode. This is relevant ! only for the \f(CW\*(C`casa\*(C'\fR instruction emitted for the \s-1LEON3\s0 processor. The ! default is \fB\-mno\-user\-mode\fR. .IP "\fB\-mno\-faster\-structs\fR" 4 .IX Item "-mno-faster-structs" .PD 0 --- 19931,19938 ---- .IX Item "-mno-user-mode" .PD Do not generate code that can only run in supervisor mode. This is relevant ! only for the \f(CW\*(C`casa\*(C'\fR instruction emitted for the \s-1LEON3\s0 processor. This ! is the default. .IP "\fB\-mno\-faster\-structs\fR" 4 .IX Item "-mno-faster-structs" .PD 0 *************** With \fB\-mfaster\-structs\fR, the compi *** 19934,19943 **** should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC ! ABI. \s0 Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI.\s0 .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters --- 19943,19952 ---- should have 8\-byte alignment. This enables the use of pairs of \&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs. ! However, the use of this changed alignment directly violates the \s-1SPARC\s0 ! \&\s-1ABI\s0. Thus, it's intended only for use on targets where the developer acknowledges that their resulting code is not directly in line with ! the rules of the \s-1ABI\s0. .IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4 .IX Item "-mcpu=cpu_type" Set the instruction set, register set, and instruction scheduling parameters *************** SPARCStation 1, 2, \s-1IPX\s0 etc. *** 19987,20008 **** With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7.\s0 With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU. \s0 With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU.\s0 .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7. \s0 With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 --- 19996,20017 ---- With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0 architecture. The only difference from V7 code is that the compiler emits the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0 ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=supersparc\fR, the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. .Sp With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, integer divide step ! and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the ! Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU\s0. With \&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu ! \&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU\s0. .Sp With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of the \s-1SPARC\s0 architecture. This adds the integer multiply, multiply/accumulate, integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet ! but not in \s-1SPARC\-V7\s0. With \fB\-mcpu=tsc701\fR, the compiler additionally optimizes it for the \s-1TEMIC\s0 SPARClet chip. .Sp With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0 *************** toolchains, \fBnative\fR can also be use *** 20039,20045 **** .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+ ABI. \s0 The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. --- 20048,20054 ---- .IP "\fB\-mno\-v8plus\fR" 4 .IX Item "-mno-v8plus" .PD ! With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+\s0 \s-1ABI\s0. The difference from the V8 \s-1ABI\s0 is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32\-bit mode for all \s-1SPARC\-V9\s0 processors. *************** This option suppresses generation of the *** 20494,20502 **** v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850 ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" --- 20503,20511 ---- v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. .Sp ! This option is enabled by default when the \s-1RH850\s0 \s-1ABI\s0 is in use (see \fB\-mrh850\-abi\fR), and disabled by default when the ! \&\s-1GCC\s0 \s-1ABI\s0 is in use. If \f(CW\*(C`CALLT\*(C'\fR instructions are being generated then the C preprocessor symbol \f(CW\*(C`_\|_V850_CALLT_\|_\*(C'\fR will be defined. .IP "\fB\-mrelax\fR" 4 .IX Item "-mrelax" *************** selected because its use is still experi *** 20536,20542 **** .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI. \s0 This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 20545,20551 ---- .IP "\fB\-mghs\fR" 4 .IX Item "-mghs" .PD ! Enables support for the \s-1RH850\s0 version of the V850 \s-1ABI\s0. This is the default. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** When this version of the \s-1ABI\s0 is e *** 20561,20567 **** .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI. \s0 With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 --- 20570,20576 ---- .RE .IP "\fB\-mgcc\-abi\fR" 4 .IX Item "-mgcc-abi" ! Enables support for the old \s-1GCC\s0 version of the V850 \s-1ABI\s0. With this version of the \s-1ABI\s0 the following rules apply: .RS 4 .IP "\(bu" 4 *************** kernel code. *** 20751,20757 **** Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM,\s0 and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as --- 20760,20766 ---- Control the treatment of literal pools. The default is \&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate section in the output file. This allows the literal pool to be placed ! in a data \s-1RAM/ROM\s0, and it also allows the linker to combine literal pools from separate object files to remove redundant literals and improve code size. With \fB\-mtext\-section\-literals\fR, the literals are interspersed in the text section in order to keep them as close as *************** every cross-file call, not just those th *** 20797,20803 **** .IX Subsection "zSeries Options" .PP These are listed under ! .SS "Options for Code Generation Conventions" .IX Subsection "Options for Code Generation Conventions" These machine-independent options control the interface conventions used in code generation. --- 20806,20812 ---- .IX Subsection "zSeries Options" .PP These are listed under ! .Sh "Options for Code Generation Conventions" .IX Subsection "Options for Code Generation Conventions" These machine-independent options control the interface conventions used in code generation. *************** You normally do not need to enable this *** 20936,20942 **** that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF 2\s0 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fno\-gnu\-unique\fR" 4 --- 20945,20951 ---- that needs this handling enables it on your behalf. .IP "\fB\-fasynchronous\-unwind\-tables\fR" 4 .IX Item "-fasynchronous-unwind-tables" ! Generate unwind table in \s-1DWARF\s0 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). .IP "\fB\-fno\-gnu\-unique\fR" 4 *************** Use it to conform to a non-default appli *** 21007,21013 **** .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE.\s0 .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. --- 21016,21022 ---- .IX Item "-fshort-wchar" Override the underlying type for \fBwchar_t\fR to be \fBshort unsigned int\fR instead of the default for the target. This option is ! useful for building programs to run under \s-1WINE\s0. .Sp \&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate code that is not binary compatible with code generated without that switch. *************** such variables in different compilation *** 21020,21026 **** in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO C,\s0 and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, --- 21029,21035 ---- in a common block. This is the behavior specified by \fB\-fcommon\fR, and is the default for \s-1GCC\s0 on most targets. ! On the other hand, this behavior is not required by \s-1ISO\s0 C, and on some targets may carry a speed or code size penalty on variable references. The \fB\-fno\-common\fR option specifies that the compiler should place uninitialized global variables in the data section of the object file, *************** the \s-1GOT\s0 size for the linked execu *** 21076,21086 **** maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000. \s0 The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR --- 21085,21095 ---- maximum size, you get an error message from the linker indicating that \&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR instead. (These maximums are 8k on the \s-1SPARC\s0 and 32k ! on the m68k and \s-1RS/6000\s0. The 386 has no such limit.) .Sp Position-independent code requires special support, and therefore works only on certain machines. For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V ! but not for the Sun 386i. Code generated for the \s-1IBM\s0 \s-1RS/6000\s0 is always position-independent. .Sp When this flag is set, the macros \f(CW\*(C`_\|_pic_\|_\*(C'\fR and \f(CW\*(C`_\|_PIC_\|_\*(C'\fR *************** are defined to 1. *** 21090,21096 **** If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC.\s0 .Sp Position-independent code requires special support, and therefore works only on certain machines. --- 21099,21105 ---- If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the size of the global offset table. This option makes a difference on the m68k, ! PowerPC and \s-1SPARC\s0. .Sp Position-independent code requires special support, and therefore works only on certain machines. *************** name, such as \f(CW\*(C`vector blah *** 21240,21246 **** internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8,\s0 not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" --- 21249,21255 ---- internal mangled name (e.g., \f(CW\*(C`_Z4blahRSt6vectorIiSaIiEE\*(C'\fR). The match is done on substrings: if the \fIsym\fR parameter is a substring of the function name, it is considered to be a match. For C99 and \*(C+ ! extended identifiers, the function name must be given in \s-1UTF\-8\s0, not using universal character names. .IP "\fB\-fstack\-check\fR" 4 .IX Item "-fstack-check" *************** usage so the only other commonly used op *** 21353,21359 **** The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC.\s0 .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write --- 21362,21368 ---- The default if \fB\-fvisibility\fR isn't specified is \&\f(CW\*(C`default\*(C'\fR, i.e., make every symbol public\-\-\-this causes the same behavior as previous versions of ! \&\s-1GCC\s0. .Sp A good explanation of the benefits offered by ensuring \s-1ELF\s0 symbols have the correct visibility is given by \*(L"How To Write *************** always specify visibility when it is not *** 21378,21384 **** only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO \*(C+\s0 specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system --- 21387,21393 ---- only for use within the local \s-1DSO\s0 should \fBalways\fR be marked explicitly as hidden as so to avoid \s-1PLT\s0 indirection overheads\-\-\-making this abundantly clear also aids readability and self-documentation of the code. ! Note that due to \s-1ISO\s0 \*(C+ specification requirements, \f(CW\*(C`operator new\*(C'\fR and \&\f(CW\*(C`operator delete\*(C'\fR must always be of default visibility. .Sp Be aware that headers from outside your project, in particular system *************** before including any such headers. *** 21390,21396 **** \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT,\s0 so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. --- 21399,21405 ---- \&\fBextern\fR declarations are not affected by \fB\-fvisibility\fR, so a lot of code can be recompiled with \fB\-fvisibility=hidden\fR with no modifications. However, this means that calls to \f(CW\*(C`extern\*(C'\fR ! functions with no explicit visibility use the \s-1PLT\s0, so it is more effective to use \f(CW\*(C`_\|_attribute ((visibility))\*(C'\fR and/or \&\f(CW\*(C`#pragma GCC visibility\*(C'\fR to tell the compiler which \f(CW\*(C`extern\*(C'\fR declarations should be treated as hidden. *************** aspects of the compilation environment. *** 21452,21458 **** Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC.\s0 .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 --- 21461,21467 ---- Note that you can also specify places to search using options such as \&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR. These take precedence over places specified using environment variables, which ! in turn take precedence over those specified by the configuration of \s-1GCC\s0. .IP "\fB\s-1LANG\s0\fR" 4 .IX Item "LANG" .PD 0 *************** national conventions. \s-1GCC\s0 inspec *** 21469,21475 **** \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8.\s0 .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in --- 21478,21484 ---- \&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do so. These locale categories can be set to any value supported by your installation. A typical value is \fBen_GB.UTF\-8\fR for English in the United ! Kingdom encoded in \s-1UTF\-8\s0. .Sp The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character classification. \s-1GCC\s0 uses it to determine the character boundaries in *************** and the Info entries for \fIgcc\fR, \fIc *** 21649,21655 **** .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC.\s0 .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2015 Free Software Foundation, Inc. --- 21658,21664 ---- .IX Header "AUTHOR" See the Info entry for \fBgcc\fR, or <\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>, ! for contributors to \s-1GCC\s0. .SH "COPYRIGHT" .IX Header "COPYRIGHT" Copyright (c) 1988\-2015 Free Software Foundation, Inc. diff -Nrcpad gcc-4.9.3/gcc/doc/gcc.info gcc-4.9.4/gcc/doc/gcc.info *** gcc-4.9.3/gcc/doc/gcc.info Fri Jun 26 18:48:41 2015 --- gcc-4.9.4/gcc/doc/gcc.info Wed Aug 3 06:14:12 2016 *************** *** 1,4 **** ! This is gcc.info, produced by makeinfo version 5.2 from gcc.texi. Copyright (C) 1988-2015 Free Software Foundation, Inc. --- 1,5 ---- ! This is doc/gcc.info, produced by makeinfo version 4.12 from ! /space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/doc/gcc.texi. Copyright (C) 1988-2015 Free Software Foundation, Inc. *************** Free Documentation License". *** 16,31 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gcc: (gcc). The GNU Compiler Collection. * g++: (gcc). The GNU C++ compiler. ! * gcov: (gcc) Gcov. 'gcov'--a test coverage program. END-INFO-DIR-ENTRY - This file documents the use of the GNU compilers. Copyright (C) 1988-2015 Free Software Foundation, Inc. --- 17,32 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gcc: (gcc). The GNU Compiler Collection. * g++: (gcc). The GNU C++ compiler. ! * gcov: (gcc) Gcov. `gcov'--a test coverage program. END-INFO-DIR-ENTRY This file documents the use of the GNU compilers. Copyright (C) 1988-2015 Free Software Foundation, Inc. *************** Free Documentation License". *** 44,52 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development.  File: gcc.info, Node: Top, Next: G++ and GCC, Up: (DIR) --- 45,54 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. !  File: gcc.info, Node: Top, Next: G++ and GCC, Up: (DIR) *************** Introduction *** 56,62 **** This manual documents how to use the GNU compilers, as well as their features and incompatibilities, and how to report bugs. It corresponds ! to the compilers (GCC) version 4.9.3. The internals of the GNU compilers, including how to port them to new targets and some information about how to write front ends for new languages, are documented in a separate manual. *Note Introduction: (gccint)Top. --- 58,64 ---- This manual documents how to use the GNU compilers, as well as their features and incompatibilities, and how to report bugs. It corresponds ! to the compilers (GCC) version 4.9.4. The internals of the GNU compilers, including how to port them to new targets and some information about how to write front ends for new languages, are documented in a separate manual. *Note Introduction: (gccint)Top. *************** documented in a separate manual. *Note *** 65,78 **** * G++ and GCC:: You can compile C or C++ programs. * Standards:: Language standards supported by GCC. ! * Invoking GCC:: Command options supported by 'gcc'. * C Implementation:: How GCC implements the ISO C specification. * C++ Implementation:: How GCC implements the ISO C++ specification. * C Extensions:: GNU extensions to the C language family. * C++ Extensions:: GNU extensions to the C++ language. * Objective-C:: GNU Objective-C runtime features. * Compatibility:: Binary Compatibility ! * Gcov:: 'gcov'--a test coverage program. * Trouble:: If you have trouble using GCC. * Bugs:: How, why and where to report bugs. * Service:: How To Get Help with GCC --- 67,80 ---- * G++ and GCC:: You can compile C or C++ programs. * Standards:: Language standards supported by GCC. ! * Invoking GCC:: Command options supported by `gcc'. * C Implementation:: How GCC implements the ISO C specification. * C++ Implementation:: How GCC implements the ISO C++ specification. * C Extensions:: GNU extensions to the C language family. * C++ Extensions:: GNU extensions to the C++ language. * Objective-C:: GNU Objective-C runtime features. * Compatibility:: Binary Compatibility ! * Gcov:: `gcov'---a test coverage program. * Trouble:: If you have trouble using GCC. * Bugs:: How, why and where to report bugs. * Service:: How To Get Help with GCC *************** documented in a separate manual. *Note *** 90,96 **** * Keyword Index:: Index of concepts and symbol names.  ! File: gcc.info, Node: G++ and GCC, Next: Standards, Up: Top 1 Programming Languages Supported by GCC **************************************** --- 92,98 ---- * Keyword Index:: Index of concepts and symbol names.  ! File: gcc.info, Node: G++ and GCC, Next: Standards, Prev: Top, Up: Top 1 Programming Languages Supported by GCC **************************************** *************** published in 1990. This standard was ra *** 153,164 **** (ISO/IEC 9899:1990) later in 1990. There were no technical differences between these publications, although the sections of the ANSI standard were renumbered and became clauses in the ISO standard. This standard, ! in both its forms, is commonly known as "C89", or occasionally as "C90", ! from the dates of ratification. The ANSI standard, but not the ISO ! standard, also came with a Rationale document. To select this standard ! in GCC, use one of the options '-ansi', '-std=c90' or ! '-std=iso9899:1990'; to obtain all the diagnostics required by the ! standard, you should also specify '-pedantic' (or '-pedantic-errors' if you want them to be errors rather than warnings). *Note Options Controlling C Dialect: C Dialect Options. --- 155,166 ---- (ISO/IEC 9899:1990) later in 1990. There were no technical differences between these publications, although the sections of the ANSI standard were renumbered and became clauses in the ISO standard. This standard, ! in both its forms, is commonly known as "C89", or occasionally as ! "C90", from the dates of ratification. The ANSI standard, but not the ! ISO standard, also came with a Rationale document. To select this ! standard in GCC, use one of the options `-ansi', `-std=c90' or ! `-std=iso9899:1990'; to obtain all the diagnostics required by the ! standard, you should also specify `-pedantic' (or `-pedantic-errors' if you want them to be errors rather than warnings). *Note Options Controlling C Dialect: C Dialect Options. *************** Corrigenda published in 1994 and 1996. *** 167,185 **** uncorrected version. An amendment to the 1990 standard was published in 1995. This ! amendment added digraphs and '__STDC_VERSION__' to the language, but otherwise concerned the library. This amendment is commonly known as "AMD1"; the amended standard is sometimes known as "C94" or "C95". To ! select this standard in GCC, use the option '-std=iso9899:199409' (with, ! as for other standard versions, '-pedantic' to receive all required ! diagnostics). A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and is commonly known as "C99". GCC has substantially complete support for this standard version; see ! for details. To select this ! standard, use '-std=c99' or '-std=iso9899:1999'. (While in development, ! drafts of this standard version were referred to as "C9X".) Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published in 2001, 2004 and 2007. GCC does not support the --- 169,187 ---- uncorrected version. An amendment to the 1990 standard was published in 1995. This ! amendment added digraphs and `__STDC_VERSION__' to the language, but otherwise concerned the library. This amendment is commonly known as "AMD1"; the amended standard is sometimes known as "C94" or "C95". To ! select this standard in GCC, use the option `-std=iso9899:199409' ! (with, as for other standard versions, `-pedantic' to receive all ! required diagnostics). A new edition of the ISO C standard was published in 1999 as ISO/IEC 9899:1999, and is commonly known as "C99". GCC has substantially complete support for this standard version; see ! `http://gcc.gnu.org/c99status.html' for details. To select this ! standard, use `-std=c99' or `-std=iso9899:1999'. (While in ! development, drafts of this standard version were referred to as "C9X".) Errors in the 1999 ISO C standard were corrected in three Technical Corrigenda published in 2001, 2004 and 2007. GCC does not support the *************** uncorrected version. *** 187,225 **** A fourth version of the C standard, known as "C11", was published in 2011 as ISO/IEC 9899:2011. GCC has substantially complete support for ! this standard, enabled with '-std=c11' or '-std=iso9899:2011'. (While in development, drafts of this standard version were referred to as "C1X".) ! By default, GCC provides some extensions to the C language that on rare ! occasions conflict with the C standard. *Note Extensions to the C ! Language Family: C Extensions. Use of the '-std' options listed above will disable these extensions where they conflict with the C standard version selected. You may also select an extended version of the C ! language explicitly with '-std=gnu90' (for C90 with GNU extensions), ! '-std=gnu99' (for C99 with GNU extensions) or '-std=gnu11' (for C11 with ! GNU extensions). The default, if no C language dialect options are ! given, is '-std=gnu90'; this is intended to change to '-std=gnu11' in ! some future release. Some features that are part of the C99 standard ! are accepted as extensions in C90 mode, and some features that are part ! of the C11 standard are accepted as extensions in C90 and C99 modes. The ISO C standard defines (in clause 4) two classes of conforming ! implementation. A "conforming hosted implementation" supports the whole ! standard including all the library facilities; a "conforming ! freestanding implementation" is only required to provide certain library ! facilities: those in '', '', '', and ! ''; since AMD1, also those in ''; since C99, also ! those in '' and ''; and since C11, also those in ! '' and ''. In addition, complex types, added ! in C99, are not required for freestanding implementations. The standard ! also defines two environments for programs, a "freestanding environment", required of all implementations and which may not have library facilities beyond those required of freestanding implementations, where the handling of program startup and termination are implementation-defined, and a "hosted environment", which is not required, in which all the library facilities are provided and startup ! is through a function 'int main (void)' or 'int main (int, char *[])'. An OS kernel would be a freestanding environment; a program using the facilities of an operating system would normally be in a hosted implementation. --- 189,228 ---- A fourth version of the C standard, known as "C11", was published in 2011 as ISO/IEC 9899:2011. GCC has substantially complete support for ! this standard, enabled with `-std=c11' or `-std=iso9899:2011'. (While in development, drafts of this standard version were referred to as "C1X".) ! By default, GCC provides some extensions to the C language that on ! rare occasions conflict with the C standard. *Note Extensions to the C ! Language Family: C Extensions. Use of the `-std' options listed above will disable these extensions where they conflict with the C standard version selected. You may also select an extended version of the C ! language explicitly with `-std=gnu90' (for C90 with GNU extensions), ! `-std=gnu99' (for C99 with GNU extensions) or `-std=gnu11' (for C11 ! with GNU extensions). The default, if no C language dialect options ! are given, is `-std=gnu90'; this is intended to change to `-std=gnu11' ! in some future release. Some features that are part of the C99 ! standard are accepted as extensions in C90 mode, and some features that ! are part of the C11 standard are accepted as extensions in C90 and C99 ! modes. The ISO C standard defines (in clause 4) two classes of conforming ! implementation. A "conforming hosted implementation" supports the ! whole standard including all the library facilities; a "conforming ! freestanding implementation" is only required to provide certain ! library facilities: those in `', `', `', ! and `'; since AMD1, also those in `'; since C99, ! also those in `' and `'; and since C11, also those ! in `' and `'. In addition, complex types, ! added in C99, are not required for freestanding implementations. The ! standard also defines two environments for programs, a "freestanding environment", required of all implementations and which may not have library facilities beyond those required of freestanding implementations, where the handling of program startup and termination are implementation-defined, and a "hosted environment", which is not required, in which all the library facilities are provided and startup ! is through a function `int main (void)' or `int main (int, char *[])'. An OS kernel would be a freestanding environment; a program using the facilities of an operating system would normally be in a hosted implementation. *************** implementation. *** 227,237 **** GCC aims towards being usable as a conforming freestanding implementation, or as the compiler for a conforming hosted implementation. By default, it will act as the compiler for a hosted ! implementation, defining '__STDC_HOSTED__' as '1' and presuming that when the names of ISO C functions are used, they have the semantics defined in the standard. To make it act as a conforming freestanding implementation for a freestanding environment, use the option ! '-ffreestanding'; it will then define '__STDC_HOSTED__' to '0' and not make assumptions about the meanings of function names from the standard library, with exceptions noted below. To build an OS kernel, you may well still need to make your own arrangements for linking and startup. --- 230,240 ---- GCC aims towards being usable as a conforming freestanding implementation, or as the compiler for a conforming hosted implementation. By default, it will act as the compiler for a hosted ! implementation, defining `__STDC_HOSTED__' as `1' and presuming that when the names of ISO C functions are used, they have the semantics defined in the standard. To make it act as a conforming freestanding implementation for a freestanding environment, use the option ! `-ffreestanding'; it will then define `__STDC_HOSTED__' to `0' and not make assumptions about the meanings of function names from the standard library, with exceptions noted below. To build an OS kernel, you may well still need to make your own arrangements for linking and startup. *************** well still need to make your own arrange *** 240,257 **** GCC does not provide the library facilities required only of hosted implementations, nor yet all the facilities required by C99 of freestanding implementations on all platforms; to use the facilities of ! a hosted environment, you will need to find them elsewhere (for example, ! in the GNU C library). *Note Standard Libraries: Standard Libraries. Most of the compiler support routines used by GCC are present in ! 'libgcc', but there are a few exceptions. GCC requires the freestanding ! environment provide 'memcpy', 'memmove', 'memset' and 'memcmp'. ! Finally, if '__builtin_trap' is used, and the target does not implement ! the 'trap' pattern, then GCC will emit a call to 'abort'. For references to Technical Corrigenda, Rationale documents and information concerning the history of C that is available online, see ! 2.2 C++ language ================ --- 243,261 ---- GCC does not provide the library facilities required only of hosted implementations, nor yet all the facilities required by C99 of freestanding implementations on all platforms; to use the facilities of ! a hosted environment, you will need to find them elsewhere (for ! example, in the GNU C library). *Note Standard Libraries: Standard ! Libraries. Most of the compiler support routines used by GCC are present in ! `libgcc', but there are a few exceptions. GCC requires the ! freestanding environment provide `memcpy', `memmove', `memset' and ! `memcmp'. Finally, if `__builtin_trap' is used, and the target does ! not implement the `trap' pattern, then GCC will emit a call to `abort'. For references to Technical Corrigenda, Rationale documents and information concerning the history of C that is available online, see ! `http://gcc.gnu.org/readings.html' 2.2 C++ language ================ *************** experimental support for the second ISO *** 261,360 **** The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998) and amended by a Technical Corrigenda published in ! 2003 (ISO/IEC 14882:2003). These standards are referred to as C++98 and ! C++03, respectively. GCC implements the majority of C++98 ('export' is a notable exception) and most of the changes in C++03. To select this ! standard in GCC, use one of the options '-ansi', '-std=c++98', or ! '-std=c++03'; to obtain all the diagnostics required by the standard, ! you should also specify '-pedantic' (or '-pedantic-errors' if you want them to be errors rather than warnings). ! A revised ISO C++ standard was published in 2011 as ISO/IEC 14882:2011, ! and is referred to as C++11; before its publication it was commonly ! referred to as C++0x. C++11 contains several changes to the C++ ! language, most of which have been implemented in an experimental C++11 ! mode in GCC. For information regarding the C++11 features available in ! the experimental C++11 mode, see ! . To select this standard in ! GCC, use the option '-std=c++11'; to obtain all the diagnostics required ! by the standard, you should also specify '-pedantic' (or ! '-pedantic-errors' if you want them to be errors rather than warnings). More information about the C++ standards is available on the ISO C++ ! committee's web site at . By default, GCC provides some extensions to the C++ language; *Note ! Options Controlling C++ Dialect: C++ Dialect Options. Use of the '-std' ! option listed above will disable these extensions. You may also select ! an extended version of the C++ language explicitly with '-std=gnu++98' ! (for C++98 with GNU extensions) or '-std=gnu++11' (for C++11 with GNU ! extensions). The default, if no C++ language dialect options are given, ! is '-std=gnu++98'. 2.3 Objective-C and Objective-C++ languages =========================================== ! GCC supports "traditional" Objective-C (also known as "Objective-C 1.0") ! and contains support for the Objective-C exception and synchronization ! syntax. It has also support for a number of "Objective-C 2.0" language ! extensions, including properties, fast enumeration (only for ! Objective-C), method attributes and the @optional and @required keywords ! in protocols. GCC supports Objective-C++ and features available in ! Objective-C are also available in Objective-C++. GCC by default uses the GNU Objective-C runtime library, which is part ! of GCC and is not the same as the Apple/NeXT Objective-C runtime library ! used on Apple systems. There are a number of differences documented in ! this manual. The options '-fgnu-runtime' and '-fnext-runtime' allow you ! to switch between producing output that works with the GNU Objective-C ! runtime library and output that works with the Apple/NeXT Objective-C ! runtime library. There is no formal written standard for Objective-C or Objective-C++. The authoritative manual on traditional Objective-C (1.0) is ! "Object-Oriented Programming and the Objective-C Language", available at ! a number of web sites: ! * is the original NeXTstep document; ! * is the same document in another format; ! * ! has an updated version but make sure you search for "Object Oriented Programming and the Objective-C Programming Language 1.0", not documentation on the newer "Objective-C 2.0" language The Objective-C exception and synchronization syntax (that is, the keywords @try, @throw, @catch, @finally and @synchronized) is supported ! by GCC and is enabled with the option '-fobjc-exceptions'. The syntax is briefly documented in this manual and in the Objective-C 2.0 manuals from Apple. The Objective-C 2.0 language extensions and features are automatically enabled; they include properties (via the @property, @synthesize and @dynamic keywords), fast enumeration (not available in Objective-C++), ! attributes for methods (such as deprecated, noreturn, sentinel, format), ! the unused attribute for method arguments, the @package keyword for ! instance variables and the @optional and @required keywords in ! protocols. You can disable all these Objective-C 2.0 language ! extensions with the option '-fobjc-std=objc1', which causes the compiler ! to recognize the same Objective-C language syntax recognized by GCC 4.0, ! and to produce an error if one of the new features is used. GCC has currently no support for non-fragile instance variables. The authoritative manual on Objective-C 2.0 is available from Apple: ! * ! For more information concerning the history of Objective-C that is ! available online, see 2.4 Go language =============== As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, ! described at . 2.5 References for other languages ================================== --- 265,366 ---- The original ISO C++ standard was published as the ISO standard (ISO/IEC 14882:1998) and amended by a Technical Corrigenda published in ! 2003 (ISO/IEC 14882:2003). These standards are referred to as C++98 and ! C++03, respectively. GCC implements the majority of C++98 (`export' is a notable exception) and most of the changes in C++03. To select this ! standard in GCC, use one of the options `-ansi', `-std=c++98', or ! `-std=c++03'; to obtain all the diagnostics required by the standard, ! you should also specify `-pedantic' (or `-pedantic-errors' if you want them to be errors rather than warnings). ! A revised ISO C++ standard was published in 2011 as ISO/IEC ! 14882:2011, and is referred to as C++11; before its publication it was ! commonly referred to as C++0x. C++11 contains several changes to the ! C++ language, most of which have been implemented in an experimental ! C++11 mode in GCC. For information regarding the C++11 features ! available in the experimental C++11 mode, see ! `http://gcc.gnu.org/projects/cxx0x.html'. To select this standard in ! GCC, use the option `-std=c++11'; to obtain all the diagnostics ! required by the standard, you should also specify `-pedantic' (or ! `-pedantic-errors' if you want them to be errors rather than warnings). More information about the C++ standards is available on the ISO C++ ! committee's web site at `http://www.open-std.org/jtc1/sc22/wg21/'. By default, GCC provides some extensions to the C++ language; *Note ! Options Controlling C++ Dialect: C++ Dialect Options. Use of the ! `-std' option listed above will disable these extensions. You may also ! select an extended version of the C++ language explicitly with ! `-std=gnu++98' (for C++98 with GNU extensions) or `-std=gnu++11' (for ! C++11 with GNU extensions). The default, if no C++ language dialect ! options are given, is `-std=gnu++98'. 2.3 Objective-C and Objective-C++ languages =========================================== ! GCC supports "traditional" Objective-C (also known as "Objective-C ! 1.0") and contains support for the Objective-C exception and ! synchronization syntax. It has also support for a number of ! "Objective-C 2.0" language extensions, including properties, fast ! enumeration (only for Objective-C), method attributes and the @optional ! and @required keywords in protocols. GCC supports Objective-C++ and ! features available in Objective-C are also available in Objective-C++. GCC by default uses the GNU Objective-C runtime library, which is part ! of GCC and is not the same as the Apple/NeXT Objective-C runtime ! library used on Apple systems. There are a number of differences ! documented in this manual. The options `-fgnu-runtime' and ! `-fnext-runtime' allow you to switch between producing output that ! works with the GNU Objective-C runtime library and output that works ! with the Apple/NeXT Objective-C runtime library. There is no formal written standard for Objective-C or Objective-C++. The authoritative manual on traditional Objective-C (1.0) is ! "Object-Oriented Programming and the Objective-C Language", available ! at a number of web sites: ! * `http://www.gnustep.org/resources/documentation/ObjectivCBook.pdf' is the original NeXTstep document; ! ! * `http://objc.toodarkpark.net' is the same document in another format; ! ! * ! `http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/' has an updated version but make sure you search for "Object Oriented Programming and the Objective-C Programming Language 1.0", not documentation on the newer "Objective-C 2.0" language The Objective-C exception and synchronization syntax (that is, the keywords @try, @throw, @catch, @finally and @synchronized) is supported ! by GCC and is enabled with the option `-fobjc-exceptions'. The syntax is briefly documented in this manual and in the Objective-C 2.0 manuals from Apple. The Objective-C 2.0 language extensions and features are automatically enabled; they include properties (via the @property, @synthesize and @dynamic keywords), fast enumeration (not available in Objective-C++), ! attributes for methods (such as deprecated, noreturn, sentinel, ! format), the unused attribute for method arguments, the @package ! keyword for instance variables and the @optional and @required keywords ! in protocols. You can disable all these Objective-C 2.0 language ! extensions with the option `-fobjc-std=objc1', which causes the ! compiler to recognize the same Objective-C language syntax recognized ! by GCC 4.0, and to produce an error if one of the new features is used. GCC has currently no support for non-fragile instance variables. The authoritative manual on Objective-C 2.0 is available from Apple: ! * ! `http://developer.apple.com/mac/library/documentation/Cocoa/Conceptual/ObjectiveC/' For more information concerning the history of Objective-C that is ! available online, see `http://gcc.gnu.org/readings.html' 2.4 Go language =============== As of the GCC 4.7.1 release, GCC supports the Go 1 language standard, ! described at `http://golang.org/doc/go1.html'. 2.5 References for other languages ================================== *************** conformance and compatibility of the Ada *** 366,372 **** supported by GNU Fortran. *Note Compatibility with the Java Platform: (gcj)Compatibility, for ! details of compatibility between 'gcj' and the Java Platform.  File: gcc.info, Node: Invoking GCC, Next: C Implementation, Prev: Standards, Up: Top --- 372,378 ---- supported by GNU Fortran. *Note Compatibility with the Java Platform: (gcj)Compatibility, for ! details of compatibility between `gcj' and the Java Platform.  File: gcc.info, Node: Invoking GCC, Next: C Implementation, Prev: Standards, Up: Top *************** File: gcc.info, Node: Invoking GCC, Ne *** 376,384 **** When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The "overall options" allow you to stop this ! process at an intermediate stage. For example, the '-c' option says not ! to run the linker. Then the output consists of object files output by ! the assembler. Other options are passed on to one stage of processing. Some options control the preprocessor and others the compiler itself. Yet other --- 382,390 ---- When you invoke GCC, it normally does preprocessing, compilation, assembly and linking. The "overall options" allow you to stop this ! process at an intermediate stage. For example, the `-c' option says ! not to run the linker. Then the output consists of object files output ! by the assembler. Other options are passed on to one stage of processing. Some options control the preprocessor and others the compiler itself. Yet other *************** that option with all supported languages *** 394,413 **** *Note Compiling C++ Programs: Invoking G++, for a summary of special options for compiling C++ programs. ! The 'gcc' program accepts options and file names as operands. Many options have multi-letter names; therefore multiple single-letter ! options may _not_ be grouped: '-dv' is very different from '-d -v'. You can mix options and other arguments. For the most part, the order you use doesn't matter. Order does matter when you use several options ! of the same kind; for example, if you specify '-L' more than once, the ! directories are searched in the order specified. Also, the placement of ! the '-l' option is significant. ! Many options have long names starting with '-f' or with '-W'--for ! example, '-fmove-loop-invariants', '-Wformat' and so on. Most of these ! have both positive and negative forms; the negative form of '-ffoo' is ! '-fno-foo'. This manual documents only one of these two forms, whichever one is not the default. *Note Option Index::, for an index to GCC's options. --- 400,419 ---- *Note Compiling C++ Programs: Invoking G++, for a summary of special options for compiling C++ programs. ! The `gcc' program accepts options and file names as operands. Many options have multi-letter names; therefore multiple single-letter ! options may _not_ be grouped: `-dv' is very different from `-d -v'. You can mix options and other arguments. For the most part, the order you use doesn't matter. Order does matter when you use several options ! of the same kind; for example, if you specify `-L' more than once, the ! directories are searched in the order specified. Also, the placement ! of the `-l' option is significant. ! Many options have long names starting with `-f' or with `-W'--for ! example, `-fmove-loop-invariants', `-Wformat' and so on. Most of these ! have both positive and negative forms; the negative form of `-ffoo' is ! `-fno-foo'. This manual documents only one of these two forms, whichever one is not the default. *Note Option Index::, for an index to GCC's options. *************** _Machine Dependent Options_ *** 1215,1221 **** -mpointers-to-nested-functions -mno-pointers-to-nested-functions -msave-toc-indirect -mno-save-toc-indirect -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector ! -mcrypto -mno-crypto -mdirect-move -mno-direct-move -mquad-memory -mno-quad-memory -mquad-memory-atomic -mno-quad-memory-atomic -mcompat-align-parm -mno-compat-align-parm --- 1221,1227 ---- -mpointers-to-nested-functions -mno-pointers-to-nested-functions -msave-toc-indirect -mno-save-toc-indirect -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector ! -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move -mquad-memory -mno-quad-memory -mquad-memory-atomic -mno-quad-memory-atomic -mcompat-align-parm -mno-compat-align-parm *************** _Code Generation Options_ *** 1384,1389 **** --- 1390,1396 ---- -ftrapv -fwrapv -fbounds-check -fvisibility -fstrict-volatile-bitfields -fsync-libcalls +  File: gcc.info, Node: Overall Options, Next: Invoking G++, Prev: Option Summary, Up: Invoking GCC *************** File: gcc.info, Node: Overall Options, *** 1393,1522 **** Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. GCC is capable of preprocessing and compiling several files either into several assembler ! input files, or into one assembler input file; then each assembler input ! file produces an object file, and linking combines all the object files ! (those newly compiled, and those specified as input) into an executable ! file. For any given input file, the file name suffix determines what kind of compilation is done: ! 'FILE.c' C source code that must be preprocessed. ! 'FILE.i' C source code that should not be preprocessed. ! 'FILE.ii' C++ source code that should not be preprocessed. ! 'FILE.m' Objective-C source code. Note that you must link with the ! 'libobjc' library to make an Objective-C program work. ! 'FILE.mi' Objective-C source code that should not be preprocessed. ! 'FILE.mm' ! 'FILE.M' Objective-C++ source code. Note that you must link with the ! 'libobjc' library to make an Objective-C++ program work. Note that ! '.M' refers to a literal capital M. ! 'FILE.mii' Objective-C++ source code that should not be preprocessed. ! 'FILE.h' C, C++, Objective-C or Objective-C++ header file to be turned into a precompiled header (default), or C, C++ header file to be turned ! into an Ada spec (via the '-fdump-ada-spec' switch). ! 'FILE.cc' ! 'FILE.cp' ! 'FILE.cxx' ! 'FILE.cpp' ! 'FILE.CPP' ! 'FILE.c++' ! 'FILE.C' ! C++ source code that must be preprocessed. Note that in '.cxx', ! the last two letters must both be literally 'x'. Likewise, '.C' refers to a literal capital C. ! 'FILE.mm' ! 'FILE.M' Objective-C++ source code that must be preprocessed. ! 'FILE.mii' Objective-C++ source code that should not be preprocessed. ! 'FILE.hh' ! 'FILE.H' ! 'FILE.hp' ! 'FILE.hxx' ! 'FILE.hpp' ! 'FILE.HPP' ! 'FILE.h++' ! 'FILE.tcc' C++ header file to be turned into a precompiled header or Ada spec. ! 'FILE.f' ! 'FILE.for' ! 'FILE.ftn' Fixed form Fortran source code that should not be preprocessed. ! 'FILE.F' ! 'FILE.FOR' ! 'FILE.fpp' ! 'FILE.FPP' ! 'FILE.FTN' Fixed form Fortran source code that must be preprocessed (with the traditional preprocessor). ! 'FILE.f90' ! 'FILE.f95' ! 'FILE.f03' ! 'FILE.f08' Free form Fortran source code that should not be preprocessed. ! 'FILE.F90' ! 'FILE.F95' ! 'FILE.F03' ! 'FILE.F08' Free form Fortran source code that must be preprocessed (with the traditional preprocessor). ! 'FILE.go' Go source code. ! 'FILE.ads' Ada source code file that contains a library unit declaration (a declaration of a package, subprogram, or generic, or a generic instantiation), or a library unit renaming declaration (a package, generic, or subprogram renaming declaration). Such files are also called "specs". ! 'FILE.adb' Ada source code file containing a library unit body (a subprogram or package body). Such files are also called "bodies". ! 'FILE.s' Assembler code. ! 'FILE.S' ! 'FILE.sx' Assembler code that must be preprocessed. ! 'OTHER' ! An object file to be fed straight into linking. Any file name with ! no recognized suffix is treated this way. ! You can specify the input language explicitly with the '-x' option: ! '-x LANGUAGE' Specify explicitly the LANGUAGE for the following input files (rather than letting the compiler choose a default based on the file name suffix). This option applies to all following input ! files until the next '-x' option. Possible values for LANGUAGE are: c c-header cpp-output c++ c++-header c++-cpp-output --- 1400,1529 ---- Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. GCC is capable of preprocessing and compiling several files either into several assembler ! input files, or into one assembler input file; then each assembler ! input file produces an object file, and linking combines all the object ! files (those newly compiled, and those specified as input) into an ! executable file. For any given input file, the file name suffix determines what kind of compilation is done: ! `FILE.c' C source code that must be preprocessed. ! `FILE.i' C source code that should not be preprocessed. ! `FILE.ii' C++ source code that should not be preprocessed. ! `FILE.m' Objective-C source code. Note that you must link with the ! `libobjc' library to make an Objective-C program work. ! `FILE.mi' Objective-C source code that should not be preprocessed. ! `FILE.mm' ! `FILE.M' Objective-C++ source code. Note that you must link with the ! `libobjc' library to make an Objective-C++ program work. Note ! that `.M' refers to a literal capital M. ! `FILE.mii' Objective-C++ source code that should not be preprocessed. ! `FILE.h' C, C++, Objective-C or Objective-C++ header file to be turned into a precompiled header (default), or C, C++ header file to be turned ! into an Ada spec (via the `-fdump-ada-spec' switch). ! `FILE.cc' ! `FILE.cp' ! `FILE.cxx' ! `FILE.cpp' ! `FILE.CPP' ! `FILE.c++' ! `FILE.C' ! C++ source code that must be preprocessed. Note that in `.cxx', ! the last two letters must both be literally `x'. Likewise, `.C' refers to a literal capital C. ! `FILE.mm' ! `FILE.M' Objective-C++ source code that must be preprocessed. ! `FILE.mii' Objective-C++ source code that should not be preprocessed. ! `FILE.hh' ! `FILE.H' ! `FILE.hp' ! `FILE.hxx' ! `FILE.hpp' ! `FILE.HPP' ! `FILE.h++' ! `FILE.tcc' C++ header file to be turned into a precompiled header or Ada spec. ! `FILE.f' ! `FILE.for' ! `FILE.ftn' Fixed form Fortran source code that should not be preprocessed. ! `FILE.F' ! `FILE.FOR' ! `FILE.fpp' ! `FILE.FPP' ! `FILE.FTN' Fixed form Fortran source code that must be preprocessed (with the traditional preprocessor). ! `FILE.f90' ! `FILE.f95' ! `FILE.f03' ! `FILE.f08' Free form Fortran source code that should not be preprocessed. ! `FILE.F90' ! `FILE.F95' ! `FILE.F03' ! `FILE.F08' Free form Fortran source code that must be preprocessed (with the traditional preprocessor). ! `FILE.go' Go source code. ! `FILE.ads' Ada source code file that contains a library unit declaration (a declaration of a package, subprogram, or generic, or a generic instantiation), or a library unit renaming declaration (a package, generic, or subprogram renaming declaration). Such files are also called "specs". ! `FILE.adb' Ada source code file containing a library unit body (a subprogram or package body). Such files are also called "bodies". ! `FILE.s' Assembler code. ! `FILE.S' ! `FILE.sx' Assembler code that must be preprocessed. ! `OTHER' ! An object file to be fed straight into linking. Any file name ! with no recognized suffix is treated this way. ! You can specify the input language explicitly with the `-x' option: ! `-x LANGUAGE' Specify explicitly the LANGUAGE for the following input files (rather than letting the compiler choose a default based on the file name suffix). This option applies to all following input ! files until the next `-x' option. Possible values for LANGUAGE are: c c-header cpp-output c++ c++-header c++-cpp-output *************** compilation is done: *** 1528,1666 **** go java ! '-x none' Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if ! '-x' has not been used at all). ! '-pass-exit-codes' ! Normally the 'gcc' program exits with the code of 1 if any phase of ! the compiler returns a non-success return code. If you specify ! '-pass-exit-codes', the 'gcc' program instead returns with the numerically highest error produced by any phase returning an error indication. The C, C++, and Fortran front ends return 4 if an internal compiler error is encountered. ! If you only want some of the stages of compilation, you can use '-x' ! (or filename suffixes) to tell 'gcc' where to start, and one of the ! options '-c', '-S', or '-E' to say where 'gcc' is to stop. Note that ! some combinations (for example, '-x cpp-output -E') instruct 'gcc' to do ! nothing at all. ! '-c' Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file. By default, the object file name for a source file is made by ! replacing the suffix '.c', '.i', '.s', etc., with '.o'. Unrecognized input files, not requiring compilation or assembly, are ignored. ! '-S' Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified. By default, the assembler file name for a source file is made by ! replacing the suffix '.c', '.i', etc., with '.s'. Input files that don't require compilation are ignored. ! '-E' ! Stop after the preprocessing stage; do not run the compiler proper. ! The output is in the form of preprocessed source code, which is ! sent to the standard output. Input files that don't require preprocessing are ignored. ! '-o FILE' ! Place output in file FILE. This applies to whatever sort of output ! is being produced, whether it be an executable file, an object ! file, an assembler file or preprocessed C code. ! If '-o' is not specified, the default is to put an executable file ! in 'a.out', the object file for 'SOURCE.SUFFIX' in 'SOURCE.o', its ! assembler file in 'SOURCE.s', a precompiled header file in ! 'SOURCE.SUFFIX.gch', and all preprocessed C source on standard output. ! '-v' Print (on standard error output) the commands executed to run the stages of compilation. Also print the version number of the compiler driver program and of the preprocessor and the compiler proper. ! '-###' ! Like '-v' except the commands are not executed and arguments are ! quoted unless they contain only alphanumeric characters or './-_'. This is useful for shell scripts to capture the driver-generated command lines. ! '-pipe' Use pipes rather than temporary files for communication between the various stages of compilation. This fails to work on some systems where the assembler is unable to read from a pipe; but the GNU assembler has no trouble. ! '--help' Print (on the standard output) a description of the command-line ! options understood by 'gcc'. If the '-v' option is also specified ! then '--help' is also passed on to the various processes invoked by ! 'gcc', so that they can display the command-line options they ! accept. If the '-Wextra' option has also been specified (prior to ! the '--help' option), then command-line options that have no documentation associated with them are also displayed. ! '--target-help' Print (on the standard output) a description of target-specific command-line options for each tool. For some targets extra target-specific information may also be printed. ! '--help={CLASS|[^]QUALIFIER}[,...]' Print (on the standard output) a description of the command-line options understood by the compiler that fit into all specified classes and qualifiers. These are the supported classes: ! 'optimizers' Display all of the optimization options supported by the compiler. ! 'warnings' Display all of the options controlling warning messages produced by the compiler. ! 'target' ! Display target-specific options. Unlike the '--target-help' option however, target-specific options of the linker and assembler are not displayed. This is because those tools do ! not currently support the extended '--help=' syntax. ! 'params' ! Display the values recognized by the '--param' option. ! LANGUAGE Display the options supported for LANGUAGE, where LANGUAGE is the name of one of the languages supported in this version of GCC. ! 'common' Display the options that are common to all languages. These are the supported qualifiers: ! 'undocumented' Display only those options that are undocumented. ! 'joined' Display options taking an argument that appears after an equal sign in the same continuous piece of text, such as: ! '--help=target'. ! 'separate' Display options taking an argument that appears as a separate ! word following the original option, such as: '-o output-file'. Thus for example to display all the undocumented target-specific switches supported by the compiler, use: --- 1535,1673 ---- go java ! `-x none' Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if ! `-x' has not been used at all). ! `-pass-exit-codes' ! Normally the `gcc' program exits with the code of 1 if any phase ! of the compiler returns a non-success return code. If you specify ! `-pass-exit-codes', the `gcc' program instead returns with the numerically highest error produced by any phase returning an error indication. The C, C++, and Fortran front ends return 4 if an internal compiler error is encountered. ! If you only want some of the stages of compilation, you can use `-x' ! (or filename suffixes) to tell `gcc' where to start, and one of the ! options `-c', `-S', or `-E' to say where `gcc' is to stop. Note that ! some combinations (for example, `-x cpp-output -E') instruct `gcc' to ! do nothing at all. ! `-c' Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file. By default, the object file name for a source file is made by ! replacing the suffix `.c', `.i', `.s', etc., with `.o'. Unrecognized input files, not requiring compilation or assembly, are ignored. ! `-S' Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified. By default, the assembler file name for a source file is made by ! replacing the suffix `.c', `.i', etc., with `.s'. Input files that don't require compilation are ignored. ! `-E' ! Stop after the preprocessing stage; do not run the compiler ! proper. The output is in the form of preprocessed source code, ! which is sent to the standard output. Input files that don't require preprocessing are ignored. ! `-o FILE' ! Place output in file FILE. This applies to whatever sort of ! output is being produced, whether it be an executable file, an ! object file, an assembler file or preprocessed C code. ! If `-o' is not specified, the default is to put an executable file ! in `a.out', the object file for `SOURCE.SUFFIX' in `SOURCE.o', its ! assembler file in `SOURCE.s', a precompiled header file in ! `SOURCE.SUFFIX.gch', and all preprocessed C source on standard output. ! `-v' Print (on standard error output) the commands executed to run the stages of compilation. Also print the version number of the compiler driver program and of the preprocessor and the compiler proper. ! `-###' ! Like `-v' except the commands are not executed and arguments are ! quoted unless they contain only alphanumeric characters or `./-_'. This is useful for shell scripts to capture the driver-generated command lines. ! `-pipe' Use pipes rather than temporary files for communication between the various stages of compilation. This fails to work on some systems where the assembler is unable to read from a pipe; but the GNU assembler has no trouble. ! `--help' Print (on the standard output) a description of the command-line ! options understood by `gcc'. If the `-v' option is also specified ! then `--help' is also passed on to the various processes invoked ! by `gcc', so that they can display the command-line options they ! accept. If the `-Wextra' option has also been specified (prior to ! the `--help' option), then command-line options that have no documentation associated with them are also displayed. ! `--target-help' Print (on the standard output) a description of target-specific command-line options for each tool. For some targets extra target-specific information may also be printed. ! `--help={CLASS|[^]QUALIFIER}[,...]' Print (on the standard output) a description of the command-line options understood by the compiler that fit into all specified classes and qualifiers. These are the supported classes: ! `optimizers' Display all of the optimization options supported by the compiler. ! `warnings' Display all of the options controlling warning messages produced by the compiler. ! `target' ! Display target-specific options. Unlike the `--target-help' option however, target-specific options of the linker and assembler are not displayed. This is because those tools do ! not currently support the extended `--help=' syntax. ! `params' ! Display the values recognized by the `--param' option. ! LANGUAGE Display the options supported for LANGUAGE, where LANGUAGE is the name of one of the languages supported in this version of GCC. ! `common' Display the options that are common to all languages. These are the supported qualifiers: ! `undocumented' Display only those options that are undocumented. ! `joined' Display options taking an argument that appears after an equal sign in the same continuous piece of text, such as: ! `--help=target'. ! `separate' Display options taking an argument that appears as a separate ! word following the original option, such as: `-o output-file'. Thus for example to display all the undocumented target-specific switches supported by the compiler, use: *************** nothing at all. *** 1668,1680 **** --help=target,undocumented The sense of a qualifier can be inverted by prefixing it with the ! '^' character, so for example to display all binary warning options ! (i.e., ones that are either on or off and that do not take an ! argument) that have a description, use: --help=warnings,^joined,^undocumented ! The argument to '--help=' should not consist solely of inverted qualifiers. Combining several classes is possible, although this usually --- 1675,1687 ---- --help=target,undocumented The sense of a qualifier can be inverted by prefixing it with the ! `^' character, so for example to display all binary warning ! options (i.e., ones that are either on or off and that do not take ! an argument) that have a description, use: --help=warnings,^joined,^undocumented ! The argument to `--help=' should not consist solely of inverted qualifiers. Combining several classes is possible, although this usually *************** nothing at all. *** 1685,1702 **** --help=target,optimizers ! The '--help=' option can be repeated on the command line. Each successive use displays its requested class of options, skipping those that have already been displayed. ! If the '-Q' option appears on the command line before the '--help=' ! option, then the descriptive text displayed by '--help=' is ! changed. Instead of describing the displayed options, an indication is given as to whether the option is enabled, disabled or set to a specific value (assuming that the compiler knows this ! at the point where the '--help=' option is used). ! Here is a truncated example from the ARM port of 'gcc': % gcc -Q -mabi=2 --help=target -c The following options are target specific: --- 1692,1709 ---- --help=target,optimizers ! The `--help=' option can be repeated on the command line. Each successive use displays its requested class of options, skipping those that have already been displayed. ! If the `-Q' option appears on the command line before the ! `--help=' option, then the descriptive text displayed by `--help=' ! is changed. Instead of describing the displayed options, an indication is given as to whether the option is enabled, disabled or set to a specific value (assuming that the compiler knows this ! at the point where the `--help=' option is used). ! Here is a truncated example from the ARM port of `gcc': % gcc -Q -mabi=2 --help=target -c The following options are target specific: *************** nothing at all. *** 1706,1777 **** The output is sensitive to the effects of previous command-line options, so for example it is possible to find out which ! optimizations are enabled at '-O2' by using: -Q -O2 --help=optimizers Alternatively you can discover which binary optimizations are ! enabled by '-O3' by using: gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts diff /tmp/O2-opts /tmp/O3-opts | grep enabled ! '-no-canonical-prefixes' ! Do not expand any symbolic links, resolve references to '/../' or ! '/./', or make the path absolute when generating a relative prefix. ! '--version' Display the version number and copyrights of the invoked GCC. ! '-wrapper' Invoke all subcommands under a wrapper program. The name of the wrapper program and its parameters are passed as a comma separated list. gcc -c t.c -wrapper gdb,--args ! This invokes all subprograms of 'gcc' under 'gdb --args', thus the ! invocation of 'cc1' is 'gdb --args cc1 ...'. ! '-fplugin=NAME.so' ! Load the plugin code in file NAME.so, assumed to be a shared object ! to be dlopen'd by the compiler. The base name of the shared object ! file is used to identify the plugin for the purposes of argument ! parsing (See '-fplugin-arg-NAME-KEY=VALUE' below). Each plugin ! should define the callback functions specified in the Plugins API. ! '-fplugin-arg-NAME-KEY=VALUE' Define an argument called KEY with a value of VALUE for the plugin called NAME. ! '-fdump-ada-spec[-slim]' For C and C++ source and include files, generate corresponding Ada ! specs. *Note (gnat_ugn)Generating Ada Bindings for C and C++ ! headers::, which provides detailed documentation on this feature. ! '-fada-spec-parent=UNIT' ! In conjunction with '-fdump-ada-spec[-slim]' above, generate Ada specs as child units of parent UNIT. ! '-fdump-go-spec=FILE' For input files in any language, generate corresponding Go ! declarations in FILE. This generates Go 'const', 'type', 'var', ! and 'func' declarations which may be a useful way to start writing a Go interface to code written in some other language. ! '@FILE' ! Read command-line options from FILE. The options read are inserted ! in place of the original @FILE option. If FILE does not exist, or ! cannot be read, then the option will be treated literally, and not ! removed. Options in FILE are separated by whitespace. A whitespace character may be included in an option by surrounding the entire ! option in either single or double quotes. Any character (including ! a backslash) may be included by prefixing the character to be ! included with a backslash. The FILE may itself contain additional ! @FILE options; any such options will be processed recursively.  File: gcc.info, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC --- 1713,1787 ---- The output is sensitive to the effects of previous command-line options, so for example it is possible to find out which ! optimizations are enabled at `-O2' by using: -Q -O2 --help=optimizers Alternatively you can discover which binary optimizations are ! enabled by `-O3' by using: gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts diff /tmp/O2-opts /tmp/O3-opts | grep enabled ! `-no-canonical-prefixes' ! Do not expand any symbolic links, resolve references to `/../' or ! `/./', or make the path absolute when generating a relative prefix. ! `--version' Display the version number and copyrights of the invoked GCC. ! `-wrapper' Invoke all subcommands under a wrapper program. The name of the wrapper program and its parameters are passed as a comma separated list. gcc -c t.c -wrapper gdb,--args ! This invokes all subprograms of `gcc' under `gdb --args', thus the ! invocation of `cc1' is `gdb --args cc1 ...'. ! `-fplugin=NAME.so' ! Load the plugin code in file NAME.so, assumed to be a shared ! object to be dlopen'd by the compiler. The base name of the ! shared object file is used to identify the plugin for the purposes ! of argument parsing (See `-fplugin-arg-NAME-KEY=VALUE' below). ! Each plugin should define the callback functions specified in the ! Plugins API. ! `-fplugin-arg-NAME-KEY=VALUE' Define an argument called KEY with a value of VALUE for the plugin called NAME. ! `-fdump-ada-spec[-slim]' For C and C++ source and include files, generate corresponding Ada ! specs. *Note Generating Ada Bindings for C and C++ headers: ! (gnat_ugn)Generating Ada Bindings for C and C++ headers, which ! provides detailed documentation on this feature. ! `-fada-spec-parent=UNIT' ! In conjunction with `-fdump-ada-spec[-slim]' above, generate Ada specs as child units of parent UNIT. ! `-fdump-go-spec=FILE' For input files in any language, generate corresponding Go ! declarations in FILE. This generates Go `const', `type', `var', ! and `func' declarations which may be a useful way to start writing a Go interface to code written in some other language. ! `@FILE' ! Read command-line options from FILE. The options read are ! inserted in place of the original @FILE option. If FILE does not ! exist, or cannot be read, then the option will be treated ! literally, and not removed. Options in FILE are separated by whitespace. A whitespace character may be included in an option by surrounding the entire ! option in either single or double quotes. Any character ! (including a backslash) may be included by prefixing the character ! to be included with a backslash. The FILE may itself contain ! additional @FILE options; any such options will be processed ! recursively.  File: gcc.info, Node: Invoking G++, Next: C Dialect Options, Prev: Overall Options, Up: Invoking GCC *************** File: gcc.info, Node: Invoking G++, Ne *** 1779,1799 **** 3.3 Compiling C++ Programs ========================== ! C++ source files conventionally use one of the suffixes '.C', '.cc', ! '.cpp', '.CPP', '.c++', '.cp', or '.cxx'; C++ header files often use ! '.hh', '.hpp', '.H', or (for shared template code) '.tcc'; and ! preprocessed C++ files use the suffix '.ii'. GCC recognizes files with these names and compiles them as C++ programs even if you call the ! compiler the same way as for compiling C programs (usually with the name ! 'gcc'). ! However, the use of 'gcc' does not add the C++ library. 'g++' is a program that calls GCC and automatically specifies linking against the ! C++ library. It treats '.c', '.h' and '.i' files as C++ source files ! instead of C source files unless '-x' is used. This program is also ! useful when precompiling a C header file with a '.h' extension for use ! in C++ compilations. On many systems, 'g++' is also installed with the ! name 'c++'. When you compile C++ programs, you may specify many of the same command-line options that you use for compiling programs in any --- 1789,1809 ---- 3.3 Compiling C++ Programs ========================== ! C++ source files conventionally use one of the suffixes `.C', `.cc', ! `.cpp', `.CPP', `.c++', `.cp', or `.cxx'; C++ header files often use ! `.hh', `.hpp', `.H', or (for shared template code) `.tcc'; and ! preprocessed C++ files use the suffix `.ii'. GCC recognizes files with these names and compiles them as C++ programs even if you call the ! compiler the same way as for compiling C programs (usually with the ! name `gcc'). ! However, the use of `gcc' does not add the C++ library. `g++' is a program that calls GCC and automatically specifies linking against the ! C++ library. It treats `.c', `.h' and `.i' files as C++ source files ! instead of C source files unless `-x' is used. This program is also ! useful when precompiling a C header file with a `.h' extension for use ! in C++ compilations. On many systems, `g++' is also installed with the ! name `c++'. When you compile C++ programs, you may specify many of the same command-line options that you use for compiling programs in any *************** The following options control the dialec *** 1814,2095 **** from C, such as C++, Objective-C and Objective-C++) that the compiler accepts: ! '-ansi' ! In C mode, this is equivalent to '-std=c90'. In C++ mode, it is ! equivalent to '-std=c++98'. This turns off certain features of GCC that are incompatible with ! ISO C90 (when compiling C code), or of standard C++ (when compiling ! C++ code), such as the 'asm' and 'typeof' keywords, and predefined ! macros such as 'unix' and 'vax' that identify the type of system ! you are using. It also enables the undesirable and rarely used ISO ! trigraph feature. For the C compiler, it disables recognition of ! C++ style '//' comments as well as the 'inline' keyword. ! The alternate keywords '__asm__', '__extension__', '__inline__' and ! '__typeof__' continue to work despite '-ansi'. You would not want ! to use them in an ISO C program, of course, but it is useful to put ! them in header files that might be included in compilations done ! with '-ansi'. Alternate predefined macros such as '__unix__' and ! '__vax__' are also available, with or without '-ansi'. ! The '-ansi' option does not cause non-ISO programs to be rejected ! gratuitously. For that, '-Wpedantic' is required in addition to ! '-ansi'. *Note Warning Options::. ! The macro '__STRICT_ANSI__' is predefined when the '-ansi' option is used. Some header files may notice this macro and refrain from ! declaring certain functions or defining certain macros that the ISO ! standard doesn't call for; this is to avoid interfering with any ! programs that might use these names for other things. Functions that are normally built in but do not have semantics ! defined by ISO C (such as 'alloca' and 'ffs') are not built-in ! functions when '-ansi' is used. *Note Other built-in functions provided by GCC: Other Builtins, for details of the functions affected. ! '-std=' ! Determine the language standard. *Note Language Standards Supported by GCC: Standards, for details of these standard ! versions. This option is currently only supported when compiling C ! or C++. ! The compiler can accept several base standards, such as 'c90' or ! 'c++98', and GNU dialects of those standards, such as 'gnu90' or ! 'gnu++98'. When a base standard is specified, the compiler accepts ! all programs following that standard plus those using GNU ! extensions that do not contradict it. For example, '-std=c90' turns off certain features of GCC that are incompatible with ISO ! C90, such as the 'asm' and 'typeof' keywords, but not other GNU extensions that do not have a meaning in ISO C90, such as omitting ! the middle term of a '?:' expression. On the other hand, when a GNU dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some strict-conforming programs may be rejected. The particular standard is used by ! '-Wpedantic' to identify which features are GNU extensions given ! that version of the standard. For example '-std=gnu90 -Wpedantic' ! warns about C++ style '//' comments, while '-std=gnu99 -Wpedantic' does not. A value for this option must be provided; possible values are ! 'c90' ! 'c89' ! 'iso9899:1990' Support all ISO C90 programs (certain GNU extensions that ! conflict with ISO C90 are disabled). Same as '-ansi' for C code. ! 'iso9899:199409' ISO C90 as modified in amendment 1. ! 'c99' ! 'c9x' ! 'iso9899:1999' ! 'iso9899:199x' ! ISO C99. This standard is substantially completely supported, ! modulo bugs, extended identifiers (supported except for corner ! cases when '-fextended-identifiers' is used) and ! floating-point issues (mainly but not entirely relating to ! optional C99 features from Annexes F and G). See ! for more information. The names 'c9x' and 'iso9899:199x' are ! deprecated. ! 'c11' ! 'c1x' ! 'iso9899:2011' ISO C11, the 2011 revision of the ISO C standard. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when ! '-fextended-identifiers' is used), floating-point issues (mainly but not entirely relating to optional C11 features from Annexes F and G) and the optional Annexes K (Bounds-checking interfaces) and L (Analyzability). The name ! 'c1x' is deprecated. ! 'gnu90' ! 'gnu89' ! GNU dialect of ISO C90 (including some C99 features). This is the default for C code. ! 'gnu99' ! 'gnu9x' ! GNU dialect of ISO C99. The name 'gnu9x' is deprecated. ! 'gnu11' ! 'gnu1x' GNU dialect of ISO C11. This is intended to become the ! default in a future release of GCC. The name 'gnu1x' is deprecated. ! 'c++98' ! 'c++03' The 1998 ISO C++ standard plus the 2003 technical corrigendum ! and some additional defect reports. Same as '-ansi' for C++ code. ! 'gnu++98' ! 'gnu++03' ! GNU dialect of '-std=c++98'. This is the default for C++ code. ! 'c++11' ! 'c++0x' ! The 2011 ISO C++ standard plus amendments. The name 'c++0x' is deprecated. ! 'gnu++11' ! 'gnu++0x' ! GNU dialect of '-std=c++11'. The name 'gnu++0x' is deprecated. ! 'c++1y' ! The next revision of the ISO C++ standard, tentatively planned ! for 2014. Support is highly experimental, and will almost ! certainly change in incompatible ways in future releases. ! 'gnu++1y' ! GNU dialect of '-std=c++1y'. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. ! '-fgnu89-inline' ! The option '-fgnu89-inline' tells GCC to use the traditional GNU ! semantics for 'inline' functions when in C99 mode. *Note An Inline ! Function is As Fast As a Macro: Inline. This option is accepted ! and ignored by GCC versions 4.1.3 up to but not including 4.3. In ! GCC versions 4.3 and later it changes the behavior of GCC in C99 ! mode. Using this option is roughly equivalent to adding the ! 'gnu_inline' function attribute to all inline functions (*note Function Attributes::). ! The option '-fno-gnu89-inline' explicitly tells GCC to use the C99 ! semantics for 'inline' when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported ! in GCC 4.3. This option is not supported in '-std=c90' or ! '-std=gnu90' mode. ! The preprocessor macros '__GNUC_GNU_INLINE__' and ! '__GNUC_STDC_INLINE__' may be used to check which semantics are in ! effect for 'inline' functions. *Note (cpp)Common Predefined ! Macros::. ! '-aux-info FILENAME' Output to the given filename prototyped declarations for all functions declared and/or defined in a translation unit, including those in header files. This option is silently ignored in any language other than C. Besides declarations, the file indicates, in comments, the origin ! of each declaration (source file and line), whether the declaration ! was implicit, prototyped or unprototyped ('I', 'N' for new or 'O' ! for old, respectively, in the first character after the line number ! and the colon), and whether it came from a declaration or a ! definition ('C' or 'F', respectively, in the following character). ! In the case of function definitions, a K&R-style list of arguments ! followed by their declarations is also provided, inside comments, ! after the declaration. ! '-fallow-parameterless-variadic-functions' Accept variadic functions without named parameters. Although it is possible to define such a function, this is not very useful as it is not possible to read the arguments. This is only supported for C as this construct is allowed by C++. ! '-fno-asm' ! Do not recognize 'asm', 'inline' or 'typeof' as a keyword, so that code can use these words as identifiers. You can use the keywords ! '__asm__', '__inline__' and '__typeof__' instead. '-ansi' implies ! '-fno-asm'. ! In C++, this switch only affects the 'typeof' keyword, since 'asm' ! and 'inline' are standard keywords. You may want to use the ! '-fno-gnu-keywords' flag instead, which has the same effect. In ! C99 mode ('-std=c99' or '-std=gnu99'), this switch only affects the ! 'asm' and 'typeof' keywords, since 'inline' is a standard keyword ! in ISO C99. ! '-fno-builtin' ! '-fno-builtin-FUNCTION' Don't recognize built-in functions that do not begin with ! '__builtin_' as prefix. *Note Other built-in functions provided by ! GCC: Other Builtins, for details of the functions affected, ! including those which are not built-in functions when '-ansi' or ! '-std' options for strict ISO C conformance are used because they do not have an ISO standard meaning. GCC normally generates special code to handle certain built-in ! functions more efficiently; for instance, calls to 'alloca' may become single instructions which adjust the stack directly, and ! calls to 'memcpy' may become inline copy loops. The resulting code ! is often both smaller and faster, but since the function calls no ! longer appear as such, you cannot set a breakpoint on those calls, ! nor can you change the behavior of the functions by linking with a ! different library. In addition, when a function is recognized as a ! built-in function, GCC may use information about that function to ! warn about problems with calls to that function, or to generate ! more efficient code, even if the resulting code still contains ! calls to that function. For example, warnings are given with ! '-Wformat' for bad calls to 'printf' when 'printf' is built in and ! 'strlen' is known not to modify global memory. ! With the '-fno-builtin-FUNCTION' option only the built-in function ! FUNCTION is disabled. FUNCTION must not begin with '__builtin_'. ! If a function is named that is not built-in in this version of GCC, ! this option is ignored. There is no corresponding ! '-fbuiltin-FUNCTION' option; if you wish to enable built-in ! functions selectively when using '-fno-builtin' or ! '-ffreestanding', you may define macros such as: #define abs(n) __builtin_abs ((n)) #define strcpy(d, s) __builtin_strcpy ((d), (s)) ! '-fhosted' ! Assert that compilation targets a hosted environment. This implies ! '-fbuiltin'. A hosted environment is one in which the entire ! standard library is available, and in which 'main' has a return ! type of 'int'. Examples are nearly everything except a kernel. ! This is equivalent to '-fno-freestanding'. ! ! '-ffreestanding' Assert that compilation targets a freestanding environment. This ! implies '-fno-builtin'. A freestanding environment is one in which ! the standard library may not exist, and program startup may not ! necessarily be at 'main'. The most obvious example is an OS ! kernel. This is equivalent to '-fno-hosted'. *Note Language Standards Supported by GCC: Standards, for details of freestanding and hosted environments. ! '-fopenmp' ! Enable handling of OpenMP directives '#pragma omp' in C/C++ and ! '!$omp' in Fortran. When '-fopenmp' is specified, the compiler ! generates parallel code according to the OpenMP Application Program ! Interface v4.0 . This option implies ! '-pthread', and thus is only supported on targets that have support ! for '-pthread'. '-fopenmp' implies '-fopenmp-simd'. ! '-fopenmp-simd' ! Enable handling of OpenMP's SIMD directives with '#pragma omp' in ! C/C++ and '!$omp' in Fortran. Other OpenMP directives are ignored. ! '-fcilkplus' Enable the usage of Cilk Plus language extension features for ! C/C++. When the option '-fcilkplus' is specified, enable the usage ! of the Cilk Plus Language extension features for C/C++. The present implementation follows ABI version 1.2. This is an experimental feature that is only partially complete, and whose interface may change in future versions of GCC as the official ! specification changes. Currently, all features but '_Cilk_for' have been implemented. ! '-fgnu-tm' ! When the option '-fgnu-tm' is specified, the compiler generates code for the Linux variant of Intel's current Transactional Memory ABI specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions --- 1824,2105 ---- from C, such as C++, Objective-C and Objective-C++) that the compiler accepts: ! `-ansi' ! In C mode, this is equivalent to `-std=c90'. In C++ mode, it is ! equivalent to `-std=c++98'. This turns off certain features of GCC that are incompatible with ! ISO C90 (when compiling C code), or of standard C++ (when ! compiling C++ code), such as the `asm' and `typeof' keywords, and ! predefined macros such as `unix' and `vax' that identify the type ! of system you are using. It also enables the undesirable and ! rarely used ISO trigraph feature. For the C compiler, it disables ! recognition of C++ style `//' comments as well as the `inline' ! keyword. ! The alternate keywords `__asm__', `__extension__', `__inline__' ! and `__typeof__' continue to work despite `-ansi'. You would not ! want to use them in an ISO C program, of course, but it is useful ! to put them in header files that might be included in compilations ! done with `-ansi'. Alternate predefined macros such as `__unix__' ! and `__vax__' are also available, with or without `-ansi'. ! The `-ansi' option does not cause non-ISO programs to be rejected ! gratuitously. For that, `-Wpedantic' is required in addition to ! `-ansi'. *Note Warning Options::. ! The macro `__STRICT_ANSI__' is predefined when the `-ansi' option is used. Some header files may notice this macro and refrain from ! declaring certain functions or defining certain macros that the ! ISO standard doesn't call for; this is to avoid interfering with ! any programs that might use these names for other things. Functions that are normally built in but do not have semantics ! defined by ISO C (such as `alloca' and `ffs') are not built-in ! functions when `-ansi' is used. *Note Other built-in functions provided by GCC: Other Builtins, for details of the functions affected. ! `-std=' ! Determine the language standard. *Note Language Standards Supported by GCC: Standards, for details of these standard ! versions. This option is currently only supported when compiling ! C or C++. ! The compiler can accept several base standards, such as `c90' or ! `c++98', and GNU dialects of those standards, such as `gnu90' or ! `gnu++98'. When a base standard is specified, the compiler ! accepts all programs following that standard plus those using GNU ! extensions that do not contradict it. For example, `-std=c90' turns off certain features of GCC that are incompatible with ISO ! C90, such as the `asm' and `typeof' keywords, but not other GNU extensions that do not have a meaning in ISO C90, such as omitting ! the middle term of a `?:' expression. On the other hand, when a GNU dialect of a standard is specified, all features supported by the compiler are enabled, even when those features change the meaning of the base standard. As a result, some strict-conforming programs may be rejected. The particular standard is used by ! `-Wpedantic' to identify which features are GNU extensions given ! that version of the standard. For example `-std=gnu90 -Wpedantic' ! warns about C++ style `//' comments, while `-std=gnu99 -Wpedantic' does not. A value for this option must be provided; possible values are ! `c90' ! `c89' ! `iso9899:1990' Support all ISO C90 programs (certain GNU extensions that ! conflict with ISO C90 are disabled). Same as `-ansi' for C code. ! `iso9899:199409' ISO C90 as modified in amendment 1. ! `c99' ! `c9x' ! `iso9899:1999' ! `iso9899:199x' ! ISO C99. This standard is substantially completely ! supported, modulo bugs, extended identifiers (supported ! except for corner cases when `-fextended-identifiers' is ! used) and floating-point issues (mainly but not entirely ! relating to optional C99 features from Annexes F and G). See ! `http://gcc.gnu.org/c99status.html' for more information. The ! names `c9x' and `iso9899:199x' are deprecated. ! `c11' ! `c1x' ! `iso9899:2011' ISO C11, the 2011 revision of the ISO C standard. This standard is substantially completely supported, modulo bugs, extended identifiers (supported except for corner cases when ! `-fextended-identifiers' is used), floating-point issues (mainly but not entirely relating to optional C11 features from Annexes F and G) and the optional Annexes K (Bounds-checking interfaces) and L (Analyzability). The name ! `c1x' is deprecated. ! `gnu90' ! `gnu89' ! GNU dialect of ISO C90 (including some C99 features). This is the default for C code. ! `gnu99' ! `gnu9x' ! GNU dialect of ISO C99. The name `gnu9x' is deprecated. ! `gnu11' ! `gnu1x' GNU dialect of ISO C11. This is intended to become the ! default in a future release of GCC. The name `gnu1x' is deprecated. ! `c++98' ! `c++03' The 1998 ISO C++ standard plus the 2003 technical corrigendum ! and some additional defect reports. Same as `-ansi' for C++ code. ! `gnu++98' ! `gnu++03' ! GNU dialect of `-std=c++98'. This is the default for C++ code. ! `c++11' ! `c++0x' ! The 2011 ISO C++ standard plus amendments. The name `c++0x' is deprecated. ! `gnu++11' ! `gnu++0x' ! GNU dialect of `-std=c++11'. The name `gnu++0x' is deprecated. ! `c++1y' ! The next revision of the ISO C++ standard, tentatively ! planned for 2014. Support is highly experimental, and will ! almost certainly change in incompatible ways in future ! releases. ! `gnu++1y' ! GNU dialect of `-std=c++1y'. Support is highly experimental, and will almost certainly change in incompatible ways in future releases. ! `-fgnu89-inline' ! The option `-fgnu89-inline' tells GCC to use the traditional GNU ! semantics for `inline' functions when in C99 mode. *Note An ! Inline Function is As Fast As a Macro: Inline. This option is ! accepted and ignored by GCC versions 4.1.3 up to but not including ! 4.3. In GCC versions 4.3 and later it changes the behavior of GCC ! in C99 mode. Using this option is roughly equivalent to adding the ! `gnu_inline' function attribute to all inline functions (*note Function Attributes::). ! The option `-fno-gnu89-inline' explicitly tells GCC to use the C99 ! semantics for `inline' when in C99 or gnu99 mode (i.e., it specifies the default behavior). This option was first supported ! in GCC 4.3. This option is not supported in `-std=c90' or ! `-std=gnu90' mode. ! The preprocessor macros `__GNUC_GNU_INLINE__' and ! `__GNUC_STDC_INLINE__' may be used to check which semantics are in ! effect for `inline' functions. *Note Common Predefined Macros: ! (cpp)Common Predefined Macros. ! `-aux-info FILENAME' Output to the given filename prototyped declarations for all functions declared and/or defined in a translation unit, including those in header files. This option is silently ignored in any language other than C. Besides declarations, the file indicates, in comments, the origin ! of each declaration (source file and line), whether the ! declaration was implicit, prototyped or unprototyped (`I', `N' for ! new or `O' for old, respectively, in the first character after the ! line number and the colon), and whether it came from a declaration ! or a definition (`C' or `F', respectively, in the following ! character). In the case of function definitions, a K&R-style list ! of arguments followed by their declarations is also provided, ! inside comments, after the declaration. ! `-fallow-parameterless-variadic-functions' Accept variadic functions without named parameters. Although it is possible to define such a function, this is not very useful as it is not possible to read the arguments. This is only supported for C as this construct is allowed by C++. ! `-fno-asm' ! Do not recognize `asm', `inline' or `typeof' as a keyword, so that code can use these words as identifiers. You can use the keywords ! `__asm__', `__inline__' and `__typeof__' instead. `-ansi' implies ! `-fno-asm'. ! In C++, this switch only affects the `typeof' keyword, since `asm' ! and `inline' are standard keywords. You may want to use the ! `-fno-gnu-keywords' flag instead, which has the same effect. In ! C99 mode (`-std=c99' or `-std=gnu99'), this switch only affects ! the `asm' and `typeof' keywords, since `inline' is a standard ! keyword in ISO C99. ! `-fno-builtin' ! `-fno-builtin-FUNCTION' Don't recognize built-in functions that do not begin with ! `__builtin_' as prefix. *Note Other built-in functions provided ! by GCC: Other Builtins, for details of the functions affected, ! including those which are not built-in functions when `-ansi' or ! `-std' options for strict ISO C conformance are used because they do not have an ISO standard meaning. GCC normally generates special code to handle certain built-in ! functions more efficiently; for instance, calls to `alloca' may become single instructions which adjust the stack directly, and ! calls to `memcpy' may become inline copy loops. The resulting ! code is often both smaller and faster, but since the function ! calls no longer appear as such, you cannot set a breakpoint on ! those calls, nor can you change the behavior of the functions by ! linking with a different library. In addition, when a function is ! recognized as a built-in function, GCC may use information about ! that function to warn about problems with calls to that function, ! or to generate more efficient code, even if the resulting code ! still contains calls to that function. For example, warnings are ! given with `-Wformat' for bad calls to `printf' when `printf' is ! built in and `strlen' is known not to modify global memory. ! With the `-fno-builtin-FUNCTION' option only the built-in function ! FUNCTION is disabled. FUNCTION must not begin with `__builtin_'. ! If a function is named that is not built-in in this version of ! GCC, this option is ignored. There is no corresponding ! `-fbuiltin-FUNCTION' option; if you wish to enable built-in ! functions selectively when using `-fno-builtin' or ! `-ffreestanding', you may define macros such as: #define abs(n) __builtin_abs ((n)) #define strcpy(d, s) __builtin_strcpy ((d), (s)) ! `-fhosted' Assert that compilation targets a hosted environment. This implies ! `-fbuiltin'. A hosted environment is one in which the entire ! standard library is available, and in which `main' has a return ! type of `int'. Examples are nearly everything except a kernel. ! This is equivalent to `-fno-freestanding'. + `-ffreestanding' Assert that compilation targets a freestanding environment. This ! implies `-fno-builtin'. A freestanding environment is one in ! which the standard library may not exist, and program startup may ! not necessarily be at `main'. The most obvious example is an OS ! kernel. This is equivalent to `-fno-hosted'. *Note Language Standards Supported by GCC: Standards, for details of freestanding and hosted environments. ! `-fopenmp' ! Enable handling of OpenMP directives `#pragma omp' in C/C++ and ! `!$omp' in Fortran. When `-fopenmp' is specified, the compiler ! generates parallel code according to the OpenMP Application ! Program Interface v4.0 `http://www.openmp.org/'. This option ! implies `-pthread', and thus is only supported on targets that ! have support for `-pthread'. `-fopenmp' implies `-fopenmp-simd'. ! `-fopenmp-simd' ! Enable handling of OpenMP's SIMD directives with `#pragma omp' in ! C/C++ and `!$omp' in Fortran. Other OpenMP directives are ignored. ! `-fcilkplus' Enable the usage of Cilk Plus language extension features for ! C/C++. When the option `-fcilkplus' is specified, enable the ! usage of the Cilk Plus Language extension features for C/C++. The present implementation follows ABI version 1.2. This is an experimental feature that is only partially complete, and whose interface may change in future versions of GCC as the official ! specification changes. Currently, all features but `_Cilk_for' have been implemented. ! `-fgnu-tm' ! When the option `-fgnu-tm' is specified, the compiler generates code for the Linux variant of Intel's current Transactional Memory ABI specification document (Revision 1.1, May 6 2009). This is an experimental feature whose interface may change in future versions *************** accepts: *** 2101,2109 **** libitm. Note that the transactional memory feature is not supported with ! non-call exceptions ('-fnon-call-exceptions'). ! '-fms-extensions' Accept some non-standard constructs used in Microsoft header files. In C++ code, this allows member names in structures to be similar --- 2111,2119 ---- libitm. Note that the transactional memory feature is not supported with ! non-call exceptions (`-fnon-call-exceptions'). ! `-fms-extensions' Accept some non-standard constructs used in Microsoft header files. In C++ code, this allows member names in structures to be similar *************** accepts: *** 2120,2189 **** Note that this option is off for all targets but i?86 and x86_64 targets using ms-abi. ! '-fplan9-extensions' Accept some non-standard constructs used in Plan 9 code. ! This enables '-fms-extensions', permits passing pointers to structures with anonymous fields to functions that expect pointers to elements of the type of the field, and permits referring to anonymous fields declared using a typedef. *Note Unnamed struct/union fields within structs/unions: Unnamed Fields, for details. This is only supported for C, not C++. ! '-trigraphs' ! Support ISO C trigraphs. The '-ansi' option (and '-std' options ! for strict ISO C conformance) implies '-trigraphs'. ! '-traditional' ! '-traditional-cpp' Formerly, these options caused GCC to attempt to emulate a ! pre-standard C compiler. They are now only supported with the '-E' ! switch. The preprocessor continues to support a pre-standard mode. ! See the GNU CPP manual for details. ! '-fcond-mismatch' Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void. This option is not supported for C++. ! '-flax-vector-conversions' Allow implicit conversions between vectors with differing numbers of elements and/or incompatible element types. This option should not be used for new code. ! '-funsigned-char' ! Let the type 'char' be unsigned, like 'unsigned char'. ! Each kind of machine has a default for what 'char' should be. It ! is either like 'unsigned char' by default or like 'signed char' by default. ! Ideally, a portable program should always use 'signed char' or ! 'unsigned char' when it depends on the signedness of an object. ! But many programs have been written to use plain 'char' and expect it to be signed, or expect it to be unsigned, depending on the machines they were written for. This option, and its inverse, let you make such a program work with the opposite default. ! The type 'char' is always a distinct type from each of 'signed ! char' or 'unsigned char', even though its behavior is always just like one of those two. ! '-fsigned-char' ! Let the type 'char' be signed, like 'signed char'. ! Note that this is equivalent to '-fno-unsigned-char', which is the ! negative form of '-funsigned-char'. Likewise, the option ! '-fno-signed-char' is equivalent to '-funsigned-char'. ! '-fsigned-bitfields' ! '-funsigned-bitfields' ! '-fno-signed-bitfields' ! '-fno-unsigned-bitfields' These options control whether a bit-field is signed or unsigned, ! when the declaration does not use either 'signed' or 'unsigned'. ! By default, such a bit-field is signed, because this is consistent: ! the basic integer types such as 'int' are signed types.  File: gcc.info, Node: C++ Dialect Options, Next: Objective-C and Objective-C++ Dialect Options, Prev: C Dialect Options, Up: Invoking GCC --- 2130,2200 ---- Note that this option is off for all targets but i?86 and x86_64 targets using ms-abi. ! ! `-fplan9-extensions' Accept some non-standard constructs used in Plan 9 code. ! This enables `-fms-extensions', permits passing pointers to structures with anonymous fields to functions that expect pointers to elements of the type of the field, and permits referring to anonymous fields declared using a typedef. *Note Unnamed struct/union fields within structs/unions: Unnamed Fields, for details. This is only supported for C, not C++. ! `-trigraphs' ! Support ISO C trigraphs. The `-ansi' option (and `-std' options ! for strict ISO C conformance) implies `-trigraphs'. ! `-traditional' ! `-traditional-cpp' Formerly, these options caused GCC to attempt to emulate a ! pre-standard C compiler. They are now only supported with the ! `-E' switch. The preprocessor continues to support a pre-standard ! mode. See the GNU CPP manual for details. ! `-fcond-mismatch' Allow conditional expressions with mismatched types in the second and third arguments. The value of such an expression is void. This option is not supported for C++. ! `-flax-vector-conversions' Allow implicit conversions between vectors with differing numbers of elements and/or incompatible element types. This option should not be used for new code. ! `-funsigned-char' ! Let the type `char' be unsigned, like `unsigned char'. ! Each kind of machine has a default for what `char' should be. It ! is either like `unsigned char' by default or like `signed char' by default. ! Ideally, a portable program should always use `signed char' or ! `unsigned char' when it depends on the signedness of an object. ! But many programs have been written to use plain `char' and expect it to be signed, or expect it to be unsigned, depending on the machines they were written for. This option, and its inverse, let you make such a program work with the opposite default. ! The type `char' is always a distinct type from each of `signed ! char' or `unsigned char', even though its behavior is always just like one of those two. ! `-fsigned-char' ! Let the type `char' be signed, like `signed char'. ! Note that this is equivalent to `-fno-unsigned-char', which is the ! negative form of `-funsigned-char'. Likewise, the option ! `-fno-signed-char' is equivalent to `-funsigned-char'. ! `-fsigned-bitfields' ! `-funsigned-bitfields' ! `-fno-signed-bitfields' ! `-fno-unsigned-bitfields' These options control whether a bit-field is signed or unsigned, ! when the declaration does not use either `signed' or `unsigned'. ! By default, such a bit-field is signed, because this is ! consistent: the basic integer types such as `int' are signed types.  File: gcc.info, Node: C++ Dialect Options, Next: Objective-C and Objective-C++ Dialect Options, Prev: C Dialect Options, Up: Invoking GCC *************** File: gcc.info, Node: C++ Dialect Optio *** 2194,2209 **** This section describes the command-line options that are only meaningful for C++ programs. You can also use most of the GNU compiler options regardless of what language your program is in. For example, you might ! compile a file 'firstClass.C' like this: g++ -g -frepo -O -c firstClass.C ! In this example, only '-frepo' is an option meant only for C++ programs; ! you can use the other options with any language supported by GCC. Here is a list of options that are _only_ for compiling C++ programs: ! '-fabi-version=N' Use version N of the C++ ABI. The default is version 2. Version 0 refers to the version conforming most closely to the C++ --- 2205,2221 ---- This section describes the command-line options that are only meaningful for C++ programs. You can also use most of the GNU compiler options regardless of what language your program is in. For example, you might ! compile a file `firstClass.C' like this: g++ -g -frepo -O -c firstClass.C ! In this example, only `-frepo' is an option meant only for C++ ! programs; you can use the other options with any language supported by ! GCC. Here is a list of options that are _only_ for compiling C++ programs: ! `-fabi-version=N' Use version N of the C++ ABI. The default is version 2. Version 0 refers to the version conforming most closely to the C++ *************** you can use the other options with any l *** 2232,2262 **** argument packs, const/static_cast, prefix ++ and -, and a class scope function used as a template argument. ! See also '-Wabi'. ! '-fno-access-control' Turn off all access checking. This switch is mainly useful for working around bugs in the access control code. ! '-fcheck-new' ! Check that the pointer returned by 'operator new' is non-null before attempting to modify the storage allocated. This check is normally unnecessary because the C++ standard specifies that ! 'operator new' only returns '0' if it is declared 'throw()', in ! which case the compiler always checks the return value even without ! this option. In all other cases, when 'operator new' has a ! non-empty exception specification, memory exhaustion is signalled ! by throwing 'std::bad_alloc'. See also 'new (nothrow)'. ! '-fconstexpr-depth=N' Set the maximum nested evaluation depth for C++11 constexpr functions to N. A limit is needed to detect endless recursion during constant expression evaluation. The minimum specified by the standard is 512. ! '-fdeduce-init-list' Enable deduction of a template type parameter as ! 'std::initializer_list' from a brace-enclosed initializer list, i.e. template auto forward(T t) -> decltype (realfn (t)) --- 2244,2274 ---- argument packs, const/static_cast, prefix ++ and -, and a class scope function used as a template argument. ! See also `-Wabi'. ! `-fno-access-control' Turn off all access checking. This switch is mainly useful for working around bugs in the access control code. ! `-fcheck-new' ! Check that the pointer returned by `operator new' is non-null before attempting to modify the storage allocated. This check is normally unnecessary because the C++ standard specifies that ! `operator new' only returns `0' if it is declared `throw()', in ! which case the compiler always checks the return value even ! without this option. In all other cases, when `operator new' has ! a non-empty exception specification, memory exhaustion is ! signalled by throwing `std::bad_alloc'. See also `new (nothrow)'. ! `-fconstexpr-depth=N' Set the maximum nested evaluation depth for C++11 constexpr functions to N. A limit is needed to detect endless recursion during constant expression evaluation. The minimum specified by the standard is 512. ! `-fdeduce-init-list' Enable deduction of a template type parameter as ! `std::initializer_list' from a brace-enclosed initializer list, i.e. template auto forward(T t) -> decltype (realfn (t)) *************** you can use the other options with any l *** 2275,2334 **** option is deprecated, and may be removed in a future version of G++. ! '-ffriend-injection' Inject friend functions into the enclosing namespace, so that they are visible outside the scope of the class in which they are ! declared. Friend functions were documented to work this way in the ! old Annotated C++ Reference Manual, and versions of G++ before 4.1 ! always worked that way. However, in ISO C++ a friend function that ! is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. This option is for compatibility, and may be removed in a future release of G++. ! '-fno-elide-constructors' The C++ standard allows an implementation to omit creating a temporary that is only used to initialize another object of the same type. Specifying this option disables that optimization, and forces G++ to call the copy constructor in all cases. ! '-fno-enforce-eh-specs' Don't generate code to check for violation of exception ! specifications at run time. This option violates the C++ standard, ! but may be useful for reducing code size in production builds, much ! like defining 'NDEBUG'. This does not give user code permission to ! throw exceptions in violation of the exception specifications; the ! compiler still optimizes based on the specifications, so throwing ! an unexpected exception results in undefined behavior at run time. ! '-fextern-tls-init' ! '-fno-extern-tls-init' ! The C++11 and OpenMP standards allow 'thread_local' and ! 'threadprivate' variables to have dynamic (runtime) initialization. ! To support this, any use of such a variable goes through a wrapper ! function that performs any necessary initialization. When the use ! and definition of the variable are in the same translation unit, ! this overhead can be optimized away, but when the use is in a ! different translation unit there is significant overhead even if ! the variable doesn't actually need dynamic initialization. If the ! programmer can be sure that no use of the variable in a ! non-defining TU needs to trigger dynamic initialization (either ! because the variable is statically initialized, or a use of the ! variable in the defining TU will be executed before any uses in ! another TU), they can avoid this overhead with the ! '-fno-extern-tls-init' option. On targets that support symbol aliases, the default is ! '-fextern-tls-init'. On targets that do not support symbol ! aliases, the default is '-fno-extern-tls-init'. ! '-ffor-scope' ! '-fno-for-scope' ! If '-ffor-scope' is specified, the scope of variables declared in a ! for-init-statement is limited to the 'for' loop itself, as ! specified by the C++ standard. If '-fno-for-scope' is specified, the scope of variables declared in a for-init-statement extends to the end of the enclosing scope, as was the case in old versions of G++, and other (traditional) implementations of C++. --- 2287,2347 ---- option is deprecated, and may be removed in a future version of G++. ! `-ffriend-injection' Inject friend functions into the enclosing namespace, so that they are visible outside the scope of the class in which they are ! declared. Friend functions were documented to work this way in ! the old Annotated C++ Reference Manual, and versions of G++ before ! 4.1 always worked that way. However, in ISO C++ a friend function ! that is not declared in an enclosing scope can only be found using argument dependent lookup. This option causes friends to be injected as they were in earlier releases. This option is for compatibility, and may be removed in a future release of G++. ! `-fno-elide-constructors' The C++ standard allows an implementation to omit creating a temporary that is only used to initialize another object of the same type. Specifying this option disables that optimization, and forces G++ to call the copy constructor in all cases. ! `-fno-enforce-eh-specs' Don't generate code to check for violation of exception ! specifications at run time. This option violates the C++ ! standard, but may be useful for reducing code size in production ! builds, much like defining `NDEBUG'. This does not give user code ! permission to throw exceptions in violation of the exception ! specifications; the compiler still optimizes based on the ! specifications, so throwing an unexpected exception results in ! undefined behavior at run time. ! `-fextern-tls-init' ! `-fno-extern-tls-init' ! The C++11 and OpenMP standards allow `thread_local' and ! `threadprivate' variables to have dynamic (runtime) ! initialization. To support this, any use of such a variable goes ! through a wrapper function that performs any necessary ! initialization. When the use and definition of the variable are ! in the same translation unit, this overhead can be optimized away, ! but when the use is in a different translation unit there is ! significant overhead even if the variable doesn't actually need ! dynamic initialization. If the programmer can be sure that no use ! of the variable in a non-defining TU needs to trigger dynamic ! initialization (either because the variable is statically ! initialized, or a use of the variable in the defining TU will be ! executed before any uses in another TU), they can avoid this ! overhead with the `-fno-extern-tls-init' option. On targets that support symbol aliases, the default is ! `-fextern-tls-init'. On targets that do not support symbol ! aliases, the default is `-fno-extern-tls-init'. ! `-ffor-scope' ! `-fno-for-scope' ! If `-ffor-scope' is specified, the scope of variables declared in ! a for-init-statement is limited to the `for' loop itself, as ! specified by the C++ standard. If `-fno-for-scope' is specified, the scope of variables declared in a for-init-statement extends to the end of the enclosing scope, as was the case in old versions of G++, and other (traditional) implementations of C++. *************** you can use the other options with any l *** 2337,2481 **** but to allow and give a warning for old-style code that would otherwise be invalid, or have different behavior. ! '-fno-gnu-keywords' ! Do not recognize 'typeof' as a keyword, so that code can use this ! word as an identifier. You can use the keyword '__typeof__' ! instead. '-ansi' implies '-fno-gnu-keywords'. ! '-fno-implicit-templates' Never emit code for non-inline templates that are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. *Note Template Instantiation::, for more information. ! '-fno-implicit-inline-templates' Don't emit code for implicit instantiations of inline templates, either. The default is to handle inlines differently so that compiles with and without optimization need the same set of explicit instantiations. ! '-fno-implement-inlines' To save space, do not emit out-of-line copies of inline functions ! controlled by '#pragma implementation'. This causes linker errors if these functions are not inlined everywhere they are called. ! '-fms-extensions' Disable Wpedantic warnings about constructs used in MFC, such as implicit int and getting a pointer to member function via non-standard syntax. ! '-fno-nonansi-builtins' Disable built-in declarations of functions that are not mandated by ! ANSI/ISO C. These include 'ffs', 'alloca', '_exit', 'index', ! 'bzero', 'conjf', and other related functions. ! '-fnothrow-opt' ! Treat a 'throw()' exception specification as if it were a ! 'noexcept' specification to reduce or eliminate the text size overhead relative to a function with no exception specification. If the function has local variables of types with non-trivial destructors, the exception specification actually makes the function smaller because the EH cleanups for those variables can be optimized away. The semantic effect is that an exception thrown ! out of a function with such an exception specification results in a ! call to 'terminate' rather than 'unexpected'. ! '-fno-operator-names' ! Do not treat the operator name keywords 'and', 'bitand', 'bitor', ! 'compl', 'not', 'or' and 'xor' as synonyms as keywords. ! '-fno-optional-diags' ! Disable diagnostics that the standard says a compiler does not need ! to issue. Currently, the only such diagnostic issued by G++ is the ! one for a name having multiple meanings within a class. ! '-fpermissive' Downgrade some diagnostics about nonconformant code from errors to ! warnings. Thus, using '-fpermissive' allows some nonconforming code to compile. ! '-fno-pretty-templates' When an error message refers to a specialization of a function template, the compiler normally prints the signature of the template followed by the template arguments and any typedefs or ! typenames in the signature (e.g. 'void f(T) [with T = int]' rather ! than 'void f(int)') so that it's clear which template is involved. When an error message refers to a specialization of a class template, the compiler omits any template arguments that match the default template arguments for that template. If either of these behaviors make it harder to understand the error message rather ! than easier, you can use '-fno-pretty-templates' to disable them. ! '-frepo' Enable automatic template instantiation at link time. This option ! also implies '-fno-implicit-templates'. *Note Template Instantiation::, for more information. ! '-fno-rtti' Disable generation of information about every class with virtual functions for use by the C++ run-time type identification features ! ('dynamic_cast' and 'typeid'). If you don't use those parts of the ! language, you can save some space by using this flag. Note that ! exception handling uses the same information, but G++ generates it ! as needed. The 'dynamic_cast' operator can still be used for casts ! that do not require run-time type information, i.e. casts to 'void ! *' or to unambiguous base classes. ! '-fstats' Emit statistics about front-end processing at the end of the compilation. This information is generally only useful to the G++ development team. ! '-fstrict-enums' Allow the compiler to optimize using the assumption that a value of enumerated type can only be one of the values of the enumeration (as defined in the C++ standard; basically, a value that can be represented in the minimum number of bits needed to represent all the enumerators). This assumption may not be valid if the program ! uses a cast to convert an arbitrary integer value to the enumerated ! type. ! '-ftemplate-backtrace-limit=N' Set the maximum number of template instantiation notes for a single warning or error to N. The default value is 10. ! '-ftemplate-depth=N' Set the maximum instantiation depth for template classes to N. A limit on the template instantiation depth is needed to detect endless recursions during template class instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in C++11). The default value is 900, as ! the compiler can run out of stack space before hitting 1024 in some ! situations. ! '-fno-threadsafe-statics' Do not emit the extra code to use the routines specified in the C++ ABI for thread-safe initialization of local statics. You can use this option to reduce code size slightly in code that doesn't need to be thread-safe. ! '-fuse-cxa-atexit' Register destructors for objects with static storage duration with ! the '__cxa_atexit' function rather than the 'atexit' function. This option is required for fully standards-compliant handling of static destructors, but only works if your C library supports ! '__cxa_atexit'. ! '-fno-use-cxa-get-exception-ptr' ! Don't use the '__cxa_get_exception_ptr' runtime routine. This ! causes 'std::uncaught_exception' to be incorrect, but is necessary if the runtime routine is not available. ! '-fvisibility-inlines-hidden' This switch declares that the user does not attempt to compare pointers to inline functions or methods where the addresses of the two functions are taken in different shared objects. The effect of this is that GCC may, effectively, mark inline ! methods with '__attribute__ ((visibility ("hidden")))' so that they ! do not appear in the export table of a DSO and do not require a PLT ! indirection when used within the DSO. Enabling this option can ! have a dramatic effect on load and link times of a DSO as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. --- 2350,2494 ---- but to allow and give a warning for old-style code that would otherwise be invalid, or have different behavior. ! `-fno-gnu-keywords' ! Do not recognize `typeof' as a keyword, so that code can use this ! word as an identifier. You can use the keyword `__typeof__' ! instead. `-ansi' implies `-fno-gnu-keywords'. ! `-fno-implicit-templates' Never emit code for non-inline templates that are instantiated implicitly (i.e. by use); only emit code for explicit instantiations. *Note Template Instantiation::, for more information. ! `-fno-implicit-inline-templates' Don't emit code for implicit instantiations of inline templates, either. The default is to handle inlines differently so that compiles with and without optimization need the same set of explicit instantiations. ! `-fno-implement-inlines' To save space, do not emit out-of-line copies of inline functions ! controlled by `#pragma implementation'. This causes linker errors if these functions are not inlined everywhere they are called. ! `-fms-extensions' Disable Wpedantic warnings about constructs used in MFC, such as implicit int and getting a pointer to member function via non-standard syntax. ! `-fno-nonansi-builtins' Disable built-in declarations of functions that are not mandated by ! ANSI/ISO C. These include `ffs', `alloca', `_exit', `index', ! `bzero', `conjf', and other related functions. ! `-fnothrow-opt' ! Treat a `throw()' exception specification as if it were a ! `noexcept' specification to reduce or eliminate the text size overhead relative to a function with no exception specification. If the function has local variables of types with non-trivial destructors, the exception specification actually makes the function smaller because the EH cleanups for those variables can be optimized away. The semantic effect is that an exception thrown ! out of a function with such an exception specification results in ! a call to `terminate' rather than `unexpected'. ! `-fno-operator-names' ! Do not treat the operator name keywords `and', `bitand', `bitor', ! `compl', `not', `or' and `xor' as synonyms as keywords. ! `-fno-optional-diags' ! Disable diagnostics that the standard says a compiler does not ! need to issue. Currently, the only such diagnostic issued by G++ ! is the one for a name having multiple meanings within a class. ! `-fpermissive' Downgrade some diagnostics about nonconformant code from errors to ! warnings. Thus, using `-fpermissive' allows some nonconforming code to compile. ! `-fno-pretty-templates' When an error message refers to a specialization of a function template, the compiler normally prints the signature of the template followed by the template arguments and any typedefs or ! typenames in the signature (e.g. `void f(T) [with T = int]' rather ! than `void f(int)') so that it's clear which template is involved. When an error message refers to a specialization of a class template, the compiler omits any template arguments that match the default template arguments for that template. If either of these behaviors make it harder to understand the error message rather ! than easier, you can use `-fno-pretty-templates' to disable them. ! `-frepo' Enable automatic template instantiation at link time. This option ! also implies `-fno-implicit-templates'. *Note Template Instantiation::, for more information. ! `-fno-rtti' Disable generation of information about every class with virtual functions for use by the C++ run-time type identification features ! (`dynamic_cast' and `typeid'). If you don't use those parts of ! the language, you can save some space by using this flag. Note ! that exception handling uses the same information, but G++ ! generates it as needed. The `dynamic_cast' operator can still be ! used for casts that do not require run-time type information, i.e. ! casts to `void *' or to unambiguous base classes. ! `-fstats' Emit statistics about front-end processing at the end of the compilation. This information is generally only useful to the G++ development team. ! `-fstrict-enums' Allow the compiler to optimize using the assumption that a value of enumerated type can only be one of the values of the enumeration (as defined in the C++ standard; basically, a value that can be represented in the minimum number of bits needed to represent all the enumerators). This assumption may not be valid if the program ! uses a cast to convert an arbitrary integer value to the ! enumerated type. ! `-ftemplate-backtrace-limit=N' Set the maximum number of template instantiation notes for a single warning or error to N. The default value is 10. ! `-ftemplate-depth=N' Set the maximum instantiation depth for template classes to N. A limit on the template instantiation depth is needed to detect endless recursions during template class instantiation. ANSI/ISO C++ conforming programs must not rely on a maximum depth greater than 17 (changed to 1024 in C++11). The default value is 900, as ! the compiler can run out of stack space before hitting 1024 in ! some situations. ! `-fno-threadsafe-statics' Do not emit the extra code to use the routines specified in the C++ ABI for thread-safe initialization of local statics. You can use this option to reduce code size slightly in code that doesn't need to be thread-safe. ! `-fuse-cxa-atexit' Register destructors for objects with static storage duration with ! the `__cxa_atexit' function rather than the `atexit' function. This option is required for fully standards-compliant handling of static destructors, but only works if your C library supports ! `__cxa_atexit'. ! `-fno-use-cxa-get-exception-ptr' ! Don't use the `__cxa_get_exception_ptr' runtime routine. This ! causes `std::uncaught_exception' to be incorrect, but is necessary if the runtime routine is not available. ! `-fvisibility-inlines-hidden' This switch declares that the user does not attempt to compare pointers to inline functions or methods where the addresses of the two functions are taken in different shared objects. The effect of this is that GCC may, effectively, mark inline ! methods with `__attribute__ ((visibility ("hidden")))' so that ! they do not appear in the export table of a DSO and do not require ! a PLT indirection when used within the DSO. Enabling this option ! can have a dramatic effect on load and link times of a DSO as it massively reduces the size of the dynamic export table when the library makes heavy use of templates. *************** you can use the other options with any l *** 2494,2507 **** option as their linkage might otherwise cross a shared library boundary. *Note Template Instantiation::. ! '-fvisibility-ms-compat' This flag attempts to use visibility settings to make GCC's C++ linkage model compatible with that of Microsoft Visual Studio. The flag makes these changes to GCC's linkage model: ! 1. It sets the default visibility to 'hidden', like ! '-fvisibility=hidden'. 2. Types, but not their members, are not hidden by default. --- 2507,2520 ---- option as their linkage might otherwise cross a shared library boundary. *Note Template Instantiation::. ! `-fvisibility-ms-compat' This flag attempts to use visibility settings to make GCC's C++ linkage model compatible with that of Microsoft Visual Studio. The flag makes these changes to GCC's linkage model: ! 1. It sets the default visibility to `hidden', like ! `-fvisibility=hidden'. 2. Types, but not their members, are not hidden by default. *************** you can use the other options with any l *** 2510,2516 **** shared object: those declarations are permitted if they are permitted when this option is not used. ! In new code it is better to use '-fvisibility=hidden' and export those classes that are intended to be externally visible. Unfortunately it is possible for code to rely, perhaps accidentally, on the Visual Studio behavior. --- 2523,2529 ---- shared object: those declarations are permitted if they are permitted when this option is not used. ! In new code it is better to use `-fvisibility=hidden' and export those classes that are intended to be externally visible. Unfortunately it is possible for code to rely, perhaps accidentally, on the Visual Studio behavior. *************** you can use the other options with any l *** 2523,2530 **** given, it is a violation of the ODR to define types with the same name differently. ! '-fvtable-verify=STD|PREINIT|NONE' ! Turn on (or off, if using '-fvtable-verify=none') the security feature that verifies at runtime, for every virtual call that is made, that the vtable pointer through which the call is made is valid for the type of the object, and has not been corrupted or --- 2536,2543 ---- given, it is a violation of the ODR to define types with the same name differently. ! `-fvtable-verify=STD|PREINIT|NONE' ! Turn on (or off, if using `-fvtable-verify=none') the security feature that verifies at runtime, for every virtual call that is made, that the vtable pointer through which the call is made is valid for the type of the object, and has not been corrupted or *************** you can use the other options with any l *** 2533,2544 **** immediately halted. This option causes runtime data structures to be built, at program ! start up, for verifying the vtable pointers. The options 'std' and ! 'preinit' control the timing of when these data structures are built. In both cases the data structures are built before ! execution reaches 'main'. The '-fvtable-verify=std' causes these data structure to be built after the shared libraries have been ! loaded and initialized. '-fvtable-verify=preinit' causes them to be built before the shared libraries have been loaded and initialized. --- 2546,2557 ---- immediately halted. This option causes runtime data structures to be built, at program ! start up, for verifying the vtable pointers. The options `std' ! and `preinit' control the timing of when these data structures are built. In both cases the data structures are built before ! execution reaches 'main'. The `-fvtable-verify=std' causes these data structure to be built after the shared libraries have been ! loaded and initialized. `-fvtable-verify=preinit' causes them to be built before the shared libraries have been loaded and initialized. *************** you can use the other options with any l *** 2546,2594 **** different values specified, 'none' will take highest priority over both 'std' and 'preinit'; 'preinit' will take priority over 'std'. ! '-fvtv-debug' Causes debug versions of the runtime functions for the vtable verification feature to be called. This assumes the ! '-fvtable-verify=std' or '-fvtable-verify=preinit' has been used. This flag will also cause the compiler to keep track of which vtable pointers it found for each class, and record that information in the file "vtv_set_ptr_data.log", in the dump file directory on the user's machine. ! Note: This feature APPENDS data to the log file. If you want a fresh log file, be sure to delete any existing one. ! '-fvtv-counts' This is a debugging flag. When used in conjunction with ! '-fvtable-verify=std' or '-fvtable-verify=preinit', this causes the ! compiler to keep track of the total number of virtual calls it encountered and the number of verifications it inserted. It also counts the number of calls to certain runtime library functions that it inserts. This information, for each compilation unit, is written to a file named "vtv_count_data.log", in the dump_file ! directory on the user's machine. It also counts the size of the vtable pointer sets for each class, and writes this information to "vtv_class_set_sizes.log" in the same directory. ! Note: This feature APPENDS data to the log files. To get a fresh log files, be sure to delete any existing ones. ! '-fno-weak' Do not use weak symbol support, even if it is provided by the linker. By default, G++ uses weak symbols if they are available. This option exists only for testing, and should not be used by end-users; it results in inferior code and has no benefits. This option may be removed in a future release of G++. ! '-nostdinc++' ! Do not search for header files in the standard directories specific ! to C++, but do still search the other standard directories. (This ! option is used when building the C++ library.) In addition, these optimization, warning, and code generation options have meanings only for C++ programs: ! '-Wabi (C, Objective-C, C++ and Objective-C++ only)' Warn when G++ generates code that is probably not compatible with the vendor-neutral C++ ABI. Although an effort has been made to warn about all such cases, there are probably some cases that are --- 2559,2607 ---- different values specified, 'none' will take highest priority over both 'std' and 'preinit'; 'preinit' will take priority over 'std'. ! `-fvtv-debug' Causes debug versions of the runtime functions for the vtable verification feature to be called. This assumes the ! `-fvtable-verify=std' or `-fvtable-verify=preinit' has been used. This flag will also cause the compiler to keep track of which vtable pointers it found for each class, and record that information in the file "vtv_set_ptr_data.log", in the dump file directory on the user's machine. ! Note: This feature APPENDS data to the log file. If you want a fresh log file, be sure to delete any existing one. ! `-fvtv-counts' This is a debugging flag. When used in conjunction with ! `-fvtable-verify=std' or `-fvtable-verify=preinit', this causes ! the compiler to keep track of the total number of virtual calls it encountered and the number of verifications it inserted. It also counts the number of calls to certain runtime library functions that it inserts. This information, for each compilation unit, is written to a file named "vtv_count_data.log", in the dump_file ! directory on the user's machine. It also counts the size of the vtable pointer sets for each class, and writes this information to "vtv_class_set_sizes.log" in the same directory. ! Note: This feature APPENDS data to the log files. To get a fresh log files, be sure to delete any existing ones. ! `-fno-weak' Do not use weak symbol support, even if it is provided by the linker. By default, G++ uses weak symbols if they are available. This option exists only for testing, and should not be used by end-users; it results in inferior code and has no benefits. This option may be removed in a future release of G++. ! `-nostdinc++' ! Do not search for header files in the standard directories ! specific to C++, but do still search the other standard ! directories. (This option is used when building the C++ library.) In addition, these optimization, warning, and code generation options have meanings only for C++ programs: ! `-Wabi (C, Objective-C, C++ and Objective-C++ only)' Warn when G++ generates code that is probably not compatible with the vendor-neutral C++ ABI. Although an effort has been made to warn about all such cases, there are probably some cases that are *************** have meanings only for C++ programs: *** 2600,2606 **** concerned about the fact that code generated by G++ may not be binary compatible with code generated by other compilers. ! The known incompatibilities in '-fabi-version=2' (the default) include: * A template with a non-type template parameter of reference --- 2613,2619 ---- concerned about the fact that code generated by G++ may not be binary compatible with code generated by other compilers. ! The known incompatibilities in `-fabi-version=2' (the default) include: * A template with a non-type template parameter of reference *************** have meanings only for C++ programs: *** 2609,2623 **** template struct S {}; void n (S) {2} ! This is fixed in '-fabi-version=3'. ! * SIMD vector types declared using '__attribute ((vector_size))' ! are mangled in a non-standard way that does not allow for ! overloading of functions taking vectors of different sizes. ! The mangling is changed in '-fabi-version=4'. ! The known incompatibilities in '-fabi-version=1' include: * Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack data into the same byte as a base class. For --- 2622,2637 ---- template struct S {}; void n (S) {2} ! This is fixed in `-fabi-version=3'. ! * SIMD vector types declared using `__attribute ! ((vector_size))' are mangled in a non-standard way that does ! not allow for overloading of functions taking vectors of ! different sizes. ! The mangling is changed in `-fabi-version=4'. ! The known incompatibilities in `-fabi-version=1' include: * Incorrect handling of tail-padding for bit-fields. G++ may attempt to pack data into the same byte as a base class. For *************** have meanings only for C++ programs: *** 2626,2636 **** struct A { virtual void f(); int f1 : 1; }; struct B : public A { int f2 : 1; }; ! In this case, G++ places 'B::f2' into the same byte as ! 'A::f1'; other compilers do not. You can avoid this problem ! by explicitly padding 'A' so that its size is a multiple of the byte size on your platform; that causes G++ and other ! compilers to lay out 'B' identically. * Incorrect handling of tail-padding for virtual bases. G++ does not use tail padding when laying out virtual bases. For --- 2640,2650 ---- struct A { virtual void f(); int f1 : 1; }; struct B : public A { int f2 : 1; }; ! In this case, G++ places `B::f2' into the same byte as ! `A::f1'; other compilers do not. You can avoid this problem ! by explicitly padding `A' so that its size is a multiple of the byte size on your platform; that causes G++ and other ! compilers to lay out `B' identically. * Incorrect handling of tail-padding for virtual bases. G++ does not use tail padding when laying out virtual bases. For *************** have meanings only for C++ programs: *** 2640,2650 **** struct B { B(); char c2; }; struct C : public A, public virtual B {}; ! In this case, G++ does not place 'B' into the tail-padding for ! 'A'; other compilers do. You can avoid this problem by ! explicitly padding 'A' so that its size is a multiple of its ! alignment (ignoring virtual base classes); that causes G++ and ! other compilers to lay out 'C' identically. * Incorrect handling of bit-fields with declared widths greater than that of their underlying types, when the bit-fields --- 2654,2664 ---- struct B { B(); char c2; }; struct C : public A, public virtual B {}; ! In this case, G++ does not place `B' into the tail-padding for ! `A'; other compilers do. You can avoid this problem by ! explicitly padding `A' so that its size is a multiple of its ! alignment (ignoring virtual base classes); that causes G++ ! and other compilers to lay out `C' identically. * Incorrect handling of bit-fields with declared widths greater than that of their underlying types, when the bit-fields *************** have meanings only for C++ programs: *** 2652,2659 **** union U { int i : 4096; }; ! Assuming that an 'int' does not have 4096 bits, G++ makes the ! union too small by the number of bits in an 'int'. * Empty classes can be placed at incorrect offsets. For example: --- 2666,2673 ---- union U { int i : 4096; }; ! Assuming that an `int' does not have 4096 bits, G++ makes the ! union too small by the number of bits in an `int'. * Empty classes can be placed at incorrect offsets. For example: *************** have meanings only for C++ programs: *** 2667,2677 **** struct C : public B, public A {}; ! G++ places the 'A' base class of 'C' at a nonzero offset; it ! should be placed at offset zero. G++ mistakenly believes that ! the 'A' data member of 'B' is already at offset zero. ! * Names of template functions whose types involve 'typename' or template template parameters can be mangled incorrectly. template --- 2681,2691 ---- struct C : public B, public A {}; ! G++ places the `A' base class of `C' at a nonzero offset; it ! should be placed at offset zero. G++ mistakenly believes ! that the `A' data member of `B' is already at offset zero. ! * Names of template functions whose types involve `typename' or template template parameters can be mangled incorrectly. template *************** have meanings only for C++ programs: *** 2682,2720 **** Instantiations of these templates may be mangled incorrectly. - It also warns about psABI-related changes. The known psABI changes - at this point include: ! * For SysV/x86-64, unions with 'long double' members are passed ! in memory as specified in psABI. For example: union U { long double ld; int i; }; ! 'union U' is always passed in memory. ! '-Wctor-dtor-privacy (C++ and Objective-C++ only)' Warn when a class seems unusable because all the constructors or destructors in that class are private, and it has neither friends nor public static member functions. Also warn if there are no non-private methods, and there's at least one private member function that isn't a constructor or destructor. ! '-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)' ! Warn when 'delete' is used to destroy an instance of a class that ! has virtual functions and non-virtual destructor. It is unsafe to delete an instance of a derived class through a pointer to a base class if the base class does not have a virtual destructor. This ! warning is enabled by '-Wall'. ! '-Wliteral-suffix (C++ and Objective-C++ only)' Warn when a string or character literal is followed by a ud-suffix which does not begin with an underscore. As a conforming extension, GCC treats such suffixes as separate preprocessing tokens in order to maintain backwards compatibility with code that ! uses formatting macros from ''. For example: #define __STDC_FORMAT_MACROS #include --- 2696,2736 ---- Instantiations of these templates may be mangled incorrectly. ! It also warns about psABI-related changes. The known psABI ! changes at this point include: ! ! * For SysV/x86-64, unions with `long double' members are passed ! in memory as specified in psABI. For example: union U { long double ld; int i; }; ! `union U' is always passed in memory. ! ! `-Wctor-dtor-privacy (C++ and Objective-C++ only)' Warn when a class seems unusable because all the constructors or destructors in that class are private, and it has neither friends nor public static member functions. Also warn if there are no non-private methods, and there's at least one private member function that isn't a constructor or destructor. ! `-Wdelete-non-virtual-dtor (C++ and Objective-C++ only)' ! Warn when `delete' is used to destroy an instance of a class that ! has virtual functions and non-virtual destructor. It is unsafe to delete an instance of a derived class through a pointer to a base class if the base class does not have a virtual destructor. This ! warning is enabled by `-Wall'. ! `-Wliteral-suffix (C++ and Objective-C++ only)' Warn when a string or character literal is followed by a ud-suffix which does not begin with an underscore. As a conforming extension, GCC treats such suffixes as separate preprocessing tokens in order to maintain backwards compatibility with code that ! uses formatting macros from `'. For example: #define __STDC_FORMAT_MACROS #include *************** have meanings only for C++ programs: *** 2725,2763 **** printf("My int64: %"PRId64"\n", i64); } ! In this case, 'PRId64' is treated as a separate preprocessing token. This warning is enabled by default. ! '-Wnarrowing (C++ and Objective-C++ only)' Warn when a narrowing conversion prohibited by C++11 occurs within ! '{ }', e.g. int i = { 2.2 }; // error: narrowing from double to int ! This flag is included in '-Wall' and '-Wc++11-compat'. ! With '-std=c++11', '-Wno-narrowing' suppresses the diagnostic required by the standard. Note that this does not affect the meaning of well-formed code; narrowing conversions are still considered ill-formed in SFINAE context. ! '-Wnoexcept (C++ and Objective-C++ only)' Warn when a noexcept-expression evaluates to false because of a call to a function that does not have a non-throwing exception ! specification (i.e. 'throw()' or 'noexcept') but is known by the compiler to never throw an exception. ! '-Wnon-virtual-dtor (C++ and Objective-C++ only)' Warn when a class has virtual functions and an accessible non-virtual destructor itself or in an accessible polymorphic base class, in which case it is possible but unsafe to delete an instance of a derived class through a pointer to the class itself ! or base class. This warning is automatically enabled if '-Weffc++' ! is specified. ! '-Wreorder (C++ and Objective-C++ only)' Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance: --- 2741,2779 ---- printf("My int64: %"PRId64"\n", i64); } ! In this case, `PRId64' is treated as a separate preprocessing token. This warning is enabled by default. ! `-Wnarrowing (C++ and Objective-C++ only)' Warn when a narrowing conversion prohibited by C++11 occurs within ! `{ }', e.g. int i = { 2.2 }; // error: narrowing from double to int ! This flag is included in `-Wall' and `-Wc++11-compat'. ! With `-std=c++11', `-Wno-narrowing' suppresses the diagnostic required by the standard. Note that this does not affect the meaning of well-formed code; narrowing conversions are still considered ill-formed in SFINAE context. ! `-Wnoexcept (C++ and Objective-C++ only)' Warn when a noexcept-expression evaluates to false because of a call to a function that does not have a non-throwing exception ! specification (i.e. `throw()' or `noexcept') but is known by the compiler to never throw an exception. ! `-Wnon-virtual-dtor (C++ and Objective-C++ only)' Warn when a class has virtual functions and an accessible non-virtual destructor itself or in an accessible polymorphic base class, in which case it is possible but unsafe to delete an instance of a derived class through a pointer to the class itself ! or base class. This warning is automatically enabled if ! `-Weffc++' is specified. ! `-Wreorder (C++ and Objective-C++ only)' Warn when the order of member initializers given in the code does not match the order in which they must be executed. For instance: *************** have meanings only for C++ programs: *** 2767,2797 **** A(): j (0), i (1) { } }; ! The compiler rearranges the member initializers for 'i' and 'j' to match the declaration order of the members, emitting a warning to ! that effect. This warning is enabled by '-Wall'. ! '-fext-numeric-literals (C++ and Objective-C++ only)' Accept imaginary, fixed-point, or machine-defined literal number suffixes as GNU extensions. When this option is turned off these suffixes are treated as C++11 user-defined literal numeric ! suffixes. This is on by default for all pre-C++11 dialects and all ! GNU dialects: '-std=c++98', '-std=gnu++98', '-std=gnu++11', ! '-std=gnu++1y'. This option is off by default for ISO C++11 ! onwards ('-std=c++11', ...). ! The following '-W...' options are not affected by '-Wall'. ! '-Weffc++ (C++ and Objective-C++ only)' Warn about violations of the following style guidelines from Scott ! Meyers' 'Effective C++' series of books: * Define a copy constructor and an assignment operator for classes with dynamically-allocated memory. * Prefer initialization to assignment in constructors. ! * Have 'operator=' return a reference to '*this'. * Don't try to return a reference when you must return an object. --- 2783,2813 ---- A(): j (0), i (1) { } }; ! The compiler rearranges the member initializers for `i' and `j' to match the declaration order of the members, emitting a warning to ! that effect. This warning is enabled by `-Wall'. ! `-fext-numeric-literals (C++ and Objective-C++ only)' Accept imaginary, fixed-point, or machine-defined literal number suffixes as GNU extensions. When this option is turned off these suffixes are treated as C++11 user-defined literal numeric ! suffixes. This is on by default for all pre-C++11 dialects and ! all GNU dialects: `-std=c++98', `-std=gnu++98', `-std=gnu++11', ! `-std=gnu++1y'. This option is off by default for ISO C++11 ! onwards (`-std=c++11', ...). ! The following `-W...' options are not affected by `-Wall'. ! `-Weffc++ (C++ and Objective-C++ only)' Warn about violations of the following style guidelines from Scott ! Meyers' `Effective C++' series of books: * Define a copy constructor and an assignment operator for classes with dynamically-allocated memory. * Prefer initialization to assignment in constructors. ! * Have `operator=' return a reference to `*this'. * Don't try to return a reference when you must return an object. *************** have meanings only for C++ programs: *** 2799,2845 **** * Distinguish between prefix and postfix forms of increment and decrement operators. ! * Never overload '&&', '||', or ','. ! This option also enables '-Wnon-virtual-dtor', which is also one of ! the effective C++ recommendations. However, the check is extended ! to warn about the lack of virtual destructor in accessible non-polymorphic bases classes too. When selecting this option, be aware that the standard library ! headers do not obey all of these guidelines; use 'grep -v' to filter out those warnings. ! '-Wstrict-null-sentinel (C++ and Objective-C++ only)' ! Warn about the use of an uncasted 'NULL' as sentinel. When ! compiling only with GCC this is a valid sentinel, as 'NULL' is ! defined to '__null'. Although it is a null pointer constant rather ! than a null pointer, it is guaranteed to be of the same size as a ! pointer. But this use is not portable across different compilers. ! '-Wno-non-template-friend (C++ and Objective-C++ only)' Disable warnings when non-templatized friend functions are declared within a template. Since the advent of explicit template specification support in G++, if the name of the friend is an ! unqualified-id (i.e., 'friend foo(int)'), the C++ language specification demands that the friend declare or define an ordinary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit specification, unqualified-ids could be interpreted as a particular specialization of a templatized function. Because this non-conforming behavior is no longer the ! default behavior for G++, '-Wnon-template-friend' allows the compiler to check existing code for potential trouble spots and is on by default. This new compiler behavior can be turned off with ! '-Wno-non-template-friend', which keeps the conformant compiler code but disables the helpful warning. ! '-Wold-style-cast (C++ and Objective-C++ only)' Warn if an old-style (C-style) cast to a non-void type is used ! within a C++ program. The new-style casts ('dynamic_cast', ! 'static_cast', 'reinterpret_cast', and 'const_cast') are less vulnerable to unintended effects and much easier to search for. ! '-Woverloaded-virtual (C++ and Objective-C++ only)' Warn when a function declaration hides virtual functions from a base class. For example, in: --- 2815,2863 ---- * Distinguish between prefix and postfix forms of increment and decrement operators. ! * Never overload `&&', `||', or `,'. ! ! This option also enables `-Wnon-virtual-dtor', which is also one ! of the effective C++ recommendations. However, the check is ! extended to warn about the lack of virtual destructor in accessible non-polymorphic bases classes too. When selecting this option, be aware that the standard library ! headers do not obey all of these guidelines; use `grep -v' to filter out those warnings. ! `-Wstrict-null-sentinel (C++ and Objective-C++ only)' ! Warn about the use of an uncasted `NULL' as sentinel. When ! compiling only with GCC this is a valid sentinel, as `NULL' is ! defined to `__null'. Although it is a null pointer constant ! rather than a null pointer, it is guaranteed to be of the same ! size as a pointer. But this use is not portable across different ! compilers. ! `-Wno-non-template-friend (C++ and Objective-C++ only)' Disable warnings when non-templatized friend functions are declared within a template. Since the advent of explicit template specification support in G++, if the name of the friend is an ! unqualified-id (i.e., `friend foo(int)'), the C++ language specification demands that the friend declare or define an ordinary, nontemplate function. (Section 14.5.3). Before G++ implemented explicit specification, unqualified-ids could be interpreted as a particular specialization of a templatized function. Because this non-conforming behavior is no longer the ! default behavior for G++, `-Wnon-template-friend' allows the compiler to check existing code for potential trouble spots and is on by default. This new compiler behavior can be turned off with ! `-Wno-non-template-friend', which keeps the conformant compiler code but disables the helpful warning. ! `-Wold-style-cast (C++ and Objective-C++ only)' Warn if an old-style (C-style) cast to a non-void type is used ! within a C++ program. The new-style casts (`dynamic_cast', ! `static_cast', `reinterpret_cast', and `const_cast') are less vulnerable to unintended effects and much easier to search for. ! `-Woverloaded-virtual (C++ and Objective-C++ only)' Warn when a function declaration hides virtual functions from a base class. For example, in: *************** have meanings only for C++ programs: *** 2851,2868 **** void f(int); }; ! the 'A' class version of 'f' is hidden in 'B', and code like: B* b; b->f(); fails to compile. ! '-Wno-pmf-conversions (C++ and Objective-C++ only)' Disable the diagnostic for converting a bound pointer to member function to a plain pointer. ! '-Wsign-promo (C++ and Objective-C++ only)' Warn when overload resolution chooses a promotion from unsigned or enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve --- 2869,2886 ---- void f(int); }; ! the `A' class version of `f' is hidden in `B', and code like: B* b; b->f(); fails to compile. ! `-Wno-pmf-conversions (C++ and Objective-C++ only)' Disable the diagnostic for converting a bound pointer to member function to a plain pointer. ! `-Wsign-promo (C++ and Objective-C++ only)' Warn when overload resolution chooses a promotion from unsigned or enumerated type to a signed type, over a conversion to an unsigned type of the same size. Previous versions of G++ tried to preserve *************** languages themselves. *Note Language St *** 2879,3079 **** Standards, for references.) This section describes the command-line options that are only ! meaningful for Objective-C and Objective-C++ programs. You can also use ! most of the language-independent GNU compiler options. For example, you ! might compile a file 'some_class.m' like this: gcc -g -fgnu-runtime -O -c some_class.m ! In this example, '-fgnu-runtime' is an option meant only for Objective-C ! and Objective-C++ programs; you can use the other options with any ! language supported by GCC. Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C ! front-end (e.g., '-Wtraditional'). Similarly, Objective-C++ ! compilations may use C++-specific options (e.g., '-Wabi'). ! Here is a list of options that are _only_ for compiling Objective-C and ! Objective-C++ programs: ! '-fconstant-string-class=CLASS-NAME' Use CLASS-NAME as the name of the class to instantiate for each ! literal string specified with the syntax '@"..."'. The default ! class name is 'NXConstantString' if the GNU runtime is being used, ! and 'NSConstantString' if the NeXT runtime is being used (see ! below). The '-fconstant-cfstrings' option, if also present, ! overrides the '-fconstant-string-class' setting and cause '@"..."' literals to be laid out as constant CoreFoundation strings. ! '-fgnu-runtime' Generate object code compatible with the standard GNU Objective-C runtime. This is the default for most types of systems. ! '-fnext-runtime' Generate output compatible with the NeXT runtime. This is the ! default for NeXT-based systems, including Darwin and Mac OS X. The ! macro '__NEXT_RUNTIME__' is predefined if (and only if) this option ! is used. ! '-fno-nil-receivers' ! Assume that all Objective-C message dispatches ('[receiver message:arg]') in this translation unit ensure that the receiver is ! not 'nil'. This allows for more efficient entry points in the runtime to be used. This option is only available in conjunction with the NeXT runtime and ABI version 0 or 1. ! '-fobjc-abi-version=N' Use version N of the Objective-C ABI for the selected runtime. This option is currently supported only for the NeXT runtime. In that case, Version 0 is the traditional (32-bit) ABI without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for properties and other Objective-C 2.0 additions. Version 2 is the ! modern (64-bit) ABI. If nothing is specified, the default is ! Version 0 on 32-bit target machines, and Version 2 on 64-bit target ! machines. ! '-fobjc-call-cxx-cdtors' For each Objective-C class, check if any of its instance variables is a C++ object with a non-trivial default constructor. If so, ! synthesize a special '- (id) .cxx_construct' instance method which runs non-trivial default constructors on any such instance ! variables, in order, and then return 'self'. Similarly, check if any instance variable is a C++ object with a non-trivial ! destructor, and if so, synthesize a special '- (void) .cxx_destruct' method which runs all such default destructors, in reverse order. ! The '- (id) .cxx_construct' and '- (void) .cxx_destruct' methods ! thusly generated only operate on instance variables declared in the ! current Objective-C class, and not those inherited from superclasses. It is the responsibility of the Objective-C runtime to invoke all such methods in an object's inheritance hierarchy. ! The '- (id) .cxx_construct' methods are invoked by the runtime ! immediately after a new object instance is allocated; the '- (void) ! .cxx_destruct' methods are invoked immediately before the runtime ! deallocates an object instance. As of this writing, only the NeXT runtime on Mac OS X 10.4 and ! later has support for invoking the '- (id) .cxx_construct' and '- (void) .cxx_destruct' methods. ! '-fobjc-direct-dispatch' Allow fast jumps to the message dispatcher. On Darwin this is accomplished via the comm page. ! '-fobjc-exceptions' Enable syntactic support for structured exception handling in Objective-C, similar to what is offered by C++ and Java. This ! option is required to use the Objective-C keywords '@try', ! '@throw', '@catch', '@finally' and '@synchronized'. This option is ! available with both the GNU runtime and the NeXT runtime (but not ! available in conjunction with the NeXT runtime on Mac OS X 10.2 and ! earlier). ! '-fobjc-gc' Enable garbage collection (GC) in Objective-C and Objective-C++ programs. This option is only available with the NeXT runtime; the GNU runtime has a different garbage collection implementation that does not require special compiler flags. ! '-fobjc-nilcheck' For the NeXT runtime with version 2 of the ABI, check for a nil receiver in method invocations before doing the actual method call. ! This is the default and can be disabled using '-fno-objc-nilcheck'. ! Class methods and super calls are never checked for nil in this way ! no matter what this flag is set to. Currently this flag does ! nothing when the GNU runtime, or an older version of the NeXT ! runtime ABI, is used. ! '-fobjc-std=objc1' Conform to the language syntax of Objective-C 1.0, the language ! recognized by GCC 4.0. This only affects the Objective-C additions ! to the C/C++ language; it does not affect conformance to C/C++ ! standards, which is controlled by the separate C/C++ dialect option ! flags. When this option is used with the Objective-C or Objective-C++ compiler, any Objective-C syntax that is not recognized by GCC 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can be compiled with older versions of GCC. ! '-freplace-objc-classes' ! Emit a special marker instructing 'ld(1)' not to statically link in ! the resulting object file, and allow 'dyld(1)' to load it in at run ! time instead. This is used in conjunction with the Fix-and-Continue debugging mode, where the object file in question ! may be recompiled and dynamically reloaded in the course of program ! execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality is only available in conjunction with the NeXT runtime on Mac OS X 10.3 and later. ! '-fzero-link' When compiling for the NeXT runtime, the compiler ordinarily ! replaces calls to 'objc_getClass("...")' (when the name of the class is known at compile time) with static class references that get initialized at load time, which improves run-time performance. ! Specifying the '-fzero-link' flag suppresses this behavior and ! causes calls to 'objc_getClass("...")' to be retained. This is useful in Zero-Link debugging mode, since it allows for individual ! class implementations to be modified during program execution. The ! GNU runtime currently always retains calls to ! 'objc_get_class("...")' regardless of command-line options. ! '-gen-decls' ! Dump interface declarations for all classes seen in the source file ! to a file named 'SOURCENAME.decl'. ! '-Wassign-intercept (Objective-C and Objective-C++ only)' Warn whenever an Objective-C assignment is being intercepted by the garbage collector. ! '-Wno-protocol (Objective-C and Objective-C++ only)' ! If a class is declared to implement a protocol, a warning is issued ! for every method in the protocol that is not implemented by the ! class. The default behavior is to issue a warning for every method ! not explicitly implemented in the class, even if a method implementation is inherited from the superclass. If you use the ! '-Wno-protocol' option, then methods inherited from the superclass are considered to be implemented, and no warning is issued for them. ! '-Wselector (Objective-C and Objective-C++ only)' Warn if multiple methods of different types for the same selector are found during compilation. The check is performed on the list of methods in the final stage of compilation. Additionally, a check is performed for each selector appearing in a ! '@selector(...)' expression, and a corresponding method for that selector has been found during compilation. Because these checks scan the method table only at the end of compilation, these warnings are not produced if the final stage of compilation is not reached, for example because an error is found during compilation, ! or because the '-fsyntax-only' option is being used. ! '-Wstrict-selector-match (Objective-C and Objective-C++ only)' Warn if multiple methods with differing argument and/or return types are found for a given selector when attempting to send a ! message using this selector to a receiver of type 'id' or 'Class'. ! When this flag is off (which is the default behavior), the compiler ! omits such warnings if any differences found are confined to types ! that share the same size and alignment. ! '-Wundeclared-selector (Objective-C and Objective-C++ only)' ! Warn if a '@selector(...)' expression referring to an undeclared selector is found. A selector is considered undeclared if no ! method with that name has been declared before the '@selector(...)' ! expression, either explicitly in an '@interface' or '@protocol' ! declaration, or implicitly in an '@implementation' section. This ! option always performs its checks as soon as a '@selector(...)' ! expression is found, while '-Wselector' only performs its checks in ! the final stage of compilation. This also enforces the coding ! style convention that methods and selectors must be declared before ! being used. ! '-print-objc-runtime-info' Generate C header describing the largest structure that is passed by value, if any.  File: gcc.info, Node: Language Independent Options, Next: Warning Options, Prev: Objective-C and Objective-C++ Dialect Options, Up: Invoking GCC --- 2897,3098 ---- Standards, for references.) This section describes the command-line options that are only ! meaningful for Objective-C and Objective-C++ programs. You can also ! use most of the language-independent GNU compiler options. For ! example, you might compile a file `some_class.m' like this: gcc -g -fgnu-runtime -O -c some_class.m ! In this example, `-fgnu-runtime' is an option meant only for ! Objective-C and Objective-C++ programs; you can use the other options ! with any language supported by GCC. Note that since Objective-C is an extension of the C language, Objective-C compilations may also use options specific to the C ! front-end (e.g., `-Wtraditional'). Similarly, Objective-C++ ! compilations may use C++-specific options (e.g., `-Wabi'). ! Here is a list of options that are _only_ for compiling Objective-C ! and Objective-C++ programs: ! `-fconstant-string-class=CLASS-NAME' Use CLASS-NAME as the name of the class to instantiate for each ! literal string specified with the syntax `@"..."'. The default ! class name is `NXConstantString' if the GNU runtime is being used, ! and `NSConstantString' if the NeXT runtime is being used (see ! below). The `-fconstant-cfstrings' option, if also present, ! overrides the `-fconstant-string-class' setting and cause `@"..."' literals to be laid out as constant CoreFoundation strings. ! `-fgnu-runtime' Generate object code compatible with the standard GNU Objective-C runtime. This is the default for most types of systems. ! `-fnext-runtime' Generate output compatible with the NeXT runtime. This is the ! default for NeXT-based systems, including Darwin and Mac OS X. ! The macro `__NEXT_RUNTIME__' is predefined if (and only if) this ! option is used. ! `-fno-nil-receivers' ! Assume that all Objective-C message dispatches (`[receiver message:arg]') in this translation unit ensure that the receiver is ! not `nil'. This allows for more efficient entry points in the runtime to be used. This option is only available in conjunction with the NeXT runtime and ABI version 0 or 1. ! `-fobjc-abi-version=N' Use version N of the Objective-C ABI for the selected runtime. This option is currently supported only for the NeXT runtime. In that case, Version 0 is the traditional (32-bit) ABI without support for properties and other Objective-C 2.0 additions. Version 1 is the traditional (32-bit) ABI with support for properties and other Objective-C 2.0 additions. Version 2 is the ! modern (64-bit) ABI. If nothing is specified, the default is ! Version 0 on 32-bit target machines, and Version 2 on 64-bit ! target machines. ! `-fobjc-call-cxx-cdtors' For each Objective-C class, check if any of its instance variables is a C++ object with a non-trivial default constructor. If so, ! synthesize a special `- (id) .cxx_construct' instance method which runs non-trivial default constructors on any such instance ! variables, in order, and then return `self'. Similarly, check if any instance variable is a C++ object with a non-trivial ! destructor, and if so, synthesize a special `- (void) .cxx_destruct' method which runs all such default destructors, in reverse order. ! The `- (id) .cxx_construct' and `- (void) .cxx_destruct' methods ! thusly generated only operate on instance variables declared in ! the current Objective-C class, and not those inherited from superclasses. It is the responsibility of the Objective-C runtime to invoke all such methods in an object's inheritance hierarchy. ! The `- (id) .cxx_construct' methods are invoked by the runtime ! immediately after a new object instance is allocated; the `- ! (void) .cxx_destruct' methods are invoked immediately before the ! runtime deallocates an object instance. As of this writing, only the NeXT runtime on Mac OS X 10.4 and ! later has support for invoking the `- (id) .cxx_construct' and `- (void) .cxx_destruct' methods. ! `-fobjc-direct-dispatch' Allow fast jumps to the message dispatcher. On Darwin this is accomplished via the comm page. ! `-fobjc-exceptions' Enable syntactic support for structured exception handling in Objective-C, similar to what is offered by C++ and Java. This ! option is required to use the Objective-C keywords `@try', ! `@throw', `@catch', `@finally' and `@synchronized'. This option ! is available with both the GNU runtime and the NeXT runtime (but ! not available in conjunction with the NeXT runtime on Mac OS X ! 10.2 and earlier). ! `-fobjc-gc' Enable garbage collection (GC) in Objective-C and Objective-C++ programs. This option is only available with the NeXT runtime; the GNU runtime has a different garbage collection implementation that does not require special compiler flags. ! `-fobjc-nilcheck' For the NeXT runtime with version 2 of the ABI, check for a nil receiver in method invocations before doing the actual method call. ! This is the default and can be disabled using ! `-fno-objc-nilcheck'. Class methods and super calls are never ! checked for nil in this way no matter what this flag is set to. ! Currently this flag does nothing when the GNU runtime, or an older ! version of the NeXT runtime ABI, is used. ! `-fobjc-std=objc1' Conform to the language syntax of Objective-C 1.0, the language ! recognized by GCC 4.0. This only affects the Objective-C ! additions to the C/C++ language; it does not affect conformance to ! C/C++ standards, which is controlled by the separate C/C++ dialect ! option flags. When this option is used with the Objective-C or Objective-C++ compiler, any Objective-C syntax that is not recognized by GCC 4.0 is rejected. This is useful if you need to make sure that your Objective-C code can be compiled with older versions of GCC. ! `-freplace-objc-classes' ! Emit a special marker instructing `ld(1)' not to statically link in ! the resulting object file, and allow `dyld(1)' to load it in at ! run time instead. This is used in conjunction with the Fix-and-Continue debugging mode, where the object file in question ! may be recompiled and dynamically reloaded in the course of ! program execution, without the need to restart the program itself. Currently, Fix-and-Continue functionality is only available in conjunction with the NeXT runtime on Mac OS X 10.3 and later. ! `-fzero-link' When compiling for the NeXT runtime, the compiler ordinarily ! replaces calls to `objc_getClass("...")' (when the name of the class is known at compile time) with static class references that get initialized at load time, which improves run-time performance. ! Specifying the `-fzero-link' flag suppresses this behavior and ! causes calls to `objc_getClass("...")' to be retained. This is useful in Zero-Link debugging mode, since it allows for individual ! class implementations to be modified during program execution. ! The GNU runtime currently always retains calls to ! `objc_get_class("...")' regardless of command-line options. ! `-gen-decls' ! Dump interface declarations for all classes seen in the source ! file to a file named `SOURCENAME.decl'. ! `-Wassign-intercept (Objective-C and Objective-C++ only)' Warn whenever an Objective-C assignment is being intercepted by the garbage collector. ! `-Wno-protocol (Objective-C and Objective-C++ only)' ! If a class is declared to implement a protocol, a warning is ! issued for every method in the protocol that is not implemented by ! the class. The default behavior is to issue a warning for every ! method not explicitly implemented in the class, even if a method implementation is inherited from the superclass. If you use the ! `-Wno-protocol' option, then methods inherited from the superclass are considered to be implemented, and no warning is issued for them. ! `-Wselector (Objective-C and Objective-C++ only)' Warn if multiple methods of different types for the same selector are found during compilation. The check is performed on the list of methods in the final stage of compilation. Additionally, a check is performed for each selector appearing in a ! `@selector(...)' expression, and a corresponding method for that selector has been found during compilation. Because these checks scan the method table only at the end of compilation, these warnings are not produced if the final stage of compilation is not reached, for example because an error is found during compilation, ! or because the `-fsyntax-only' option is being used. ! `-Wstrict-selector-match (Objective-C and Objective-C++ only)' Warn if multiple methods with differing argument and/or return types are found for a given selector when attempting to send a ! message using this selector to a receiver of type `id' or `Class'. ! When this flag is off (which is the default behavior), the ! compiler omits such warnings if any differences found are confined ! to types that share the same size and alignment. ! `-Wundeclared-selector (Objective-C and Objective-C++ only)' ! Warn if a `@selector(...)' expression referring to an undeclared selector is found. A selector is considered undeclared if no ! method with that name has been declared before the ! `@selector(...)' expression, either explicitly in an `@interface' ! or `@protocol' declaration, or implicitly in an `@implementation' ! section. This option always performs its checks as soon as a ! `@selector(...)' expression is found, while `-Wselector' only ! performs its checks in the final stage of compilation. This also ! enforces the coding style convention that methods and selectors ! must be declared before being used. ! `-print-objc-runtime-info' Generate C header describing the largest structure that is passed by value, if any. +  File: gcc.info, Node: Language Independent Options, Next: Warning Options, Prev: Objective-C and Objective-C++ Dialect Options, Up: Invoking GCC *************** File: gcc.info, Node: Language Independ *** 3083,3174 **** Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the options described below to control the formatting algorithm for ! diagnostic messages, e.g. how many characters per line, how often source ! location information should be reported. Note that some language front ! ends may not honor these options. ! '-fmessage-length=N' Try to format error messages so that they fit on lines of about N ! characters. The default is 72 characters for 'g++' and 0 for the rest of the front ends supported by GCC. If N is zero, then no line-wrapping is done; each error message appears on a single line. ! '-fdiagnostics-show-location=once' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit source location information _once_; that is, in case the message is too long to fit on a single physical line and has to be wrapped, the source location won't be emitted ! (as prefix) again, over and over, in subsequent continuation lines. ! This is the default behavior. ! '-fdiagnostics-show-location=every-line' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit the same source location information (as prefix) for physical lines that result from the process of breaking a message which is too long to fit on a single line. ! '-fdiagnostics-color[=WHEN]' ! '-fno-diagnostics-color' ! Use color in diagnostics. WHEN is 'never', 'always', or 'auto'. ! The default is 'never' if 'GCC_COLORS' environment variable isn't ! present in the environment, and 'auto' otherwise. 'auto' means to use color only when the standard error is a terminal. The forms ! '-fdiagnostics-color' and '-fno-diagnostics-color' are aliases for ! '-fdiagnostics-color=always' and '-fdiagnostics-color=never', respectively. ! The colors are defined by the environment variable 'GCC_COLORS'. Its value is a colon-separated list of capabilities and Select ! Graphic Rendition (SGR) substrings. SGR commands are interpreted by the terminal or terminal emulator. (See the section in the documentation of your text terminal for permitted values and their meanings as character attributes.) These substring values are integers in decimal representation and can be concatenated with ! semicolons. Common values to concatenate include '1' for bold, '4' ! for underline, '5' for blink, '7' for inverse, '39' for default ! foreground color, '30' to '37' for foreground colors, '90' to '97' ! for 16-color mode foreground colors, '38;5;0' to '38;5;255' for ! 88-color and 256-color modes foreground colors, '49' for default ! background color, '40' to '47' for background colors, '100' to ! '107' for 16-color mode background colors, and '48;5;0' to ! '48;5;255' for 88-color and 256-color modes background colors. ! The default 'GCC_COLORS' is ! 'error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01' ! where '01;31' is bold red, '01;35' is bold magenta, '01;36' is bold ! cyan, '01;32' is bold green and '01' is bold. Setting 'GCC_COLORS' ! to the empty string disables colors. Supported capabilities are as ! follows. ! 'error=' SGR substring for error: markers. ! 'warning=' SGR substring for warning: markers. ! 'note=' SGR substring for note: markers. ! 'caret=' SGR substring for caret line. ! 'locus=' ! SGR substring for location information, 'file:line' or ! 'file:line:column' etc. ! 'quote=' SGR substring for information printed within quotes. ! '-fno-diagnostics-show-option' By default, each diagnostic emitted includes text indicating the command-line option that directly controls the diagnostic (if such an option is known to the diagnostic machinery). Specifying the ! '-fno-diagnostics-show-option' flag suppresses that behavior. ! '-fno-diagnostics-show-caret' By default, each diagnostic emitted includes the original source ! line and a caret '^' indicating the column. This option suppresses ! this information.  File: gcc.info, Node: Warning Options, Next: Debugging Options, Prev: Language Independent Options, Up: Invoking GCC --- 3102,3194 ---- Traditionally, diagnostic messages have been formatted irrespective of the output device's aspect (e.g. its width, ...). You can use the options described below to control the formatting algorithm for ! diagnostic messages, e.g. how many characters per line, how often ! source location information should be reported. Note that some ! language front ends may not honor these options. ! `-fmessage-length=N' Try to format error messages so that they fit on lines of about N ! characters. The default is 72 characters for `g++' and 0 for the rest of the front ends supported by GCC. If N is zero, then no line-wrapping is done; each error message appears on a single line. ! `-fdiagnostics-show-location=once' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit source location information _once_; that is, in case the message is too long to fit on a single physical line and has to be wrapped, the source location won't be emitted ! (as prefix) again, over and over, in subsequent continuation ! lines. This is the default behavior. ! `-fdiagnostics-show-location=every-line' Only meaningful in line-wrapping mode. Instructs the diagnostic messages reporter to emit the same source location information (as prefix) for physical lines that result from the process of breaking a message which is too long to fit on a single line. ! `-fdiagnostics-color[=WHEN]' ! `-fno-diagnostics-color' ! Use color in diagnostics. WHEN is `never', `always', or `auto'. ! The default is `never' if `GCC_COLORS' environment variable isn't ! present in the environment, and `auto' otherwise. `auto' means to use color only when the standard error is a terminal. The forms ! `-fdiagnostics-color' and `-fno-diagnostics-color' are aliases for ! `-fdiagnostics-color=always' and `-fdiagnostics-color=never', respectively. ! The colors are defined by the environment variable `GCC_COLORS'. Its value is a colon-separated list of capabilities and Select ! Graphic Rendition (SGR) substrings. SGR commands are interpreted by the terminal or terminal emulator. (See the section in the documentation of your text terminal for permitted values and their meanings as character attributes.) These substring values are integers in decimal representation and can be concatenated with ! semicolons. Common values to concatenate include `1' for bold, ! `4' for underline, `5' for blink, `7' for inverse, `39' for ! default foreground color, `30' to `37' for foreground colors, `90' ! to `97' for 16-color mode foreground colors, `38;5;0' to `38;5;255' ! for 88-color and 256-color modes foreground colors, `49' for ! default background color, `40' to `47' for background colors, ! `100' to `107' for 16-color mode background colors, and `48;5;0' ! to `48;5;255' for 88-color and 256-color modes background colors. ! The default `GCC_COLORS' is ! `error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01' ! where `01;31' is bold red, `01;35' is bold magenta, `01;36' is ! bold cyan, `01;32' is bold green and `01' is bold. Setting ! `GCC_COLORS' to the empty string disables colors. Supported ! capabilities are as follows. ! `error=' SGR substring for error: markers. ! `warning=' SGR substring for warning: markers. ! `note=' SGR substring for note: markers. ! `caret=' SGR substring for caret line. ! `locus=' ! SGR substring for location information, `file:line' or ! `file:line:column' etc. ! `quote=' SGR substring for information printed within quotes. ! `-fno-diagnostics-show-option' By default, each diagnostic emitted includes text indicating the command-line option that directly controls the diagnostic (if such an option is known to the diagnostic machinery). Specifying the ! `-fno-diagnostics-show-option' flag suppresses that behavior. ! `-fno-diagnostics-show-caret' By default, each diagnostic emitted includes the original source ! line and a caret '^' indicating the column. This option ! suppresses this information. !  File: gcc.info, Node: Warning Options, Next: Debugging Options, Prev: Language Independent Options, Up: Invoking GCC *************** an error. *** 3183,3291 **** The following language-independent options do not enable specific warnings but control the kinds of diagnostics produced by GCC. ! '-fsyntax-only' Check the code for syntax errors, but don't do anything beyond that. ! '-fmax-errors=N' Limits the maximum number of error messages to N, at which point GCC bails out rather than attempting to continue processing the source code. If N is 0 (the default), there is no limit on the ! number of error messages produced. If '-Wfatal-errors' is also ! specified, then '-Wfatal-errors' takes precedence over this option. ! '-w' Inhibit all warning messages. ! '-Werror' Make all warnings into errors. ! '-Werror=' Make the specified warning into an error. The specifier for a ! warning is appended; for example '-Werror=switch' turns the ! warnings controlled by '-Wswitch' into errors. This switch takes a ! negative form, to be used to negate '-Werror' for specific ! warnings; for example '-Wno-error=switch' makes '-Wswitch' warnings ! not be errors, even when '-Werror' is in effect. The warning message for each controllable warning includes the option that controls the warning. That option can then be used ! with '-Werror=' and '-Wno-error=' as described above. (Printing of ! the option in the warning message can be disabled using the ! '-fno-diagnostics-show-option' flag.) ! Note that specifying '-Werror='FOO automatically implies '-W'FOO. ! However, '-Wno-error='FOO does not imply anything. ! '-Wfatal-errors' This option causes the compiler to abort compilation on the first error occurred rather than trying to keep going and printing further error messages. You can request many specific warnings with options beginning with ! '-W', for example '-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a ! negative form beginning '-Wno-' to turn off warnings; for example, ! '-Wno-implicit'. This manual lists only one of the two forms, whichever ! is not the default. For further language-specific options also refer to ! *note C++ Dialect Options:: and *note Objective-C and Objective-C++ ! Dialect Options::. When an unrecognized warning option is requested (e.g., ! '-Wunknown-warning'), GCC emits a diagnostic stating that the option is ! not recognized. However, if the '-Wno-' form is used, the behavior is ! slightly different: no diagnostic is produced for '-Wno-unknown-warning' ! unless other diagnostics are being produced. This allows the use of new ! '-Wno-' options with old compilers, but if something goes wrong, the ! compiler warns that an unrecognized option is present. ! '-Wpedantic' ! '-pedantic' ! Issue all the warnings demanded by strict ISO C and ISO C++; reject ! all programs that use forbidden extensions, and some other programs ! that do not follow ISO C and ISO C++. For ISO C, follows the ! version of the ISO C standard specified by any '-std' option used. Valid ISO C and ISO C++ programs should compile properly with or ! without this option (though a rare few require '-ansi' or a '-std' ! option specifying the required version of ISO C). However, without ! this option, certain GNU extensions and traditional C and C++ ! features are supported as well. With this option, they are rejected. ! '-Wpedantic' does not cause warning messages for use of the ! alternate keywords whose names begin and end with '__'. Pedantic warnings are also disabled in the expression that follows ! '__extension__'. However, only system header files should use ! these escape routes; application programs should avoid them. *Note ! Alternate Keywords::. ! Some users try to use '-Wpedantic' to check programs for strict ISO C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all--only those for which ISO C _requires_ a diagnostic, and some others for which diagnostics have been added. ! A feature to report any failure to conform to ISO C might be useful ! in some instances, but would require considerable additional work ! and would be quite different from '-Wpedantic'. We don't have ! plans to support such a feature in the near future. ! Where the standard specified with '-std' represents a GNU extended ! dialect of C, such as 'gnu90' or 'gnu99', there is a corresponding "base standard", the version of ISO C on which the GNU extended ! dialect is based. Warnings from '-Wpedantic' are given where they are required by the base standard. (It does not make sense for such warnings to be given only for features not in the specified GNU C dialect, since by definition the GNU dialects of C include ! all features the compiler supports with the given option, and there ! would be nothing to warn about.) ! '-pedantic-errors' ! Like '-Wpedantic', except that errors are produced rather than warnings. ! '-Wall' This enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros. This also --- 3203,3314 ---- The following language-independent options do not enable specific warnings but control the kinds of diagnostics produced by GCC. ! `-fsyntax-only' Check the code for syntax errors, but don't do anything beyond that. ! `-fmax-errors=N' Limits the maximum number of error messages to N, at which point GCC bails out rather than attempting to continue processing the source code. If N is 0 (the default), there is no limit on the ! number of error messages produced. If `-Wfatal-errors' is also ! specified, then `-Wfatal-errors' takes precedence over this option. ! `-w' Inhibit all warning messages. ! `-Werror' Make all warnings into errors. ! `-Werror=' Make the specified warning into an error. The specifier for a ! warning is appended; for example `-Werror=switch' turns the ! warnings controlled by `-Wswitch' into errors. This switch takes a ! negative form, to be used to negate `-Werror' for specific ! warnings; for example `-Wno-error=switch' makes `-Wswitch' ! warnings not be errors, even when `-Werror' is in effect. The warning message for each controllable warning includes the option that controls the warning. That option can then be used ! with `-Werror=' and `-Wno-error=' as described above. (Printing ! of the option in the warning message can be disabled using the ! `-fno-diagnostics-show-option' flag.) ! Note that specifying `-Werror='FOO automatically implies `-W'FOO. ! However, `-Wno-error='FOO does not imply anything. ! `-Wfatal-errors' This option causes the compiler to abort compilation on the first error occurred rather than trying to keep going and printing further error messages. + You can request many specific warnings with options beginning with ! `-W', for example `-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a ! negative form beginning `-Wno-' to turn off warnings; for example, ! `-Wno-implicit'. This manual lists only one of the two forms, ! whichever is not the default. For further language-specific options ! also refer to *note C++ Dialect Options:: and *note Objective-C and ! Objective-C++ Dialect Options::. When an unrecognized warning option is requested (e.g., ! `-Wunknown-warning'), GCC emits a diagnostic stating that the option is ! not recognized. However, if the `-Wno-' form is used, the behavior is ! slightly different: no diagnostic is produced for ! `-Wno-unknown-warning' unless other diagnostics are being produced. ! This allows the use of new `-Wno-' options with old compilers, but if ! something goes wrong, the compiler warns that an unrecognized option is ! present. ! `-Wpedantic' ! `-pedantic' ! Issue all the warnings demanded by strict ISO C and ISO C++; ! reject all programs that use forbidden extensions, and some other ! programs that do not follow ISO C and ISO C++. For ISO C, follows ! the version of the ISO C standard specified by any `-std' option ! used. Valid ISO C and ISO C++ programs should compile properly with or ! without this option (though a rare few require `-ansi' or a `-std' ! option specifying the required version of ISO C). However, ! without this option, certain GNU extensions and traditional C and ! C++ features are supported as well. With this option, they are rejected. ! `-Wpedantic' does not cause warning messages for use of the ! alternate keywords whose names begin and end with `__'. Pedantic warnings are also disabled in the expression that follows ! `__extension__'. However, only system header files should use ! these escape routes; application programs should avoid them. ! *Note Alternate Keywords::. ! Some users try to use `-Wpedantic' to check programs for strict ISO C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all--only those for which ISO C _requires_ a diagnostic, and some others for which diagnostics have been added. ! A feature to report any failure to conform to ISO C might be ! useful in some instances, but would require considerable ! additional work and would be quite different from `-Wpedantic'. ! We don't have plans to support such a feature in the near future. ! Where the standard specified with `-std' represents a GNU extended ! dialect of C, such as `gnu90' or `gnu99', there is a corresponding "base standard", the version of ISO C on which the GNU extended ! dialect is based. Warnings from `-Wpedantic' are given where they are required by the base standard. (It does not make sense for such warnings to be given only for features not in the specified GNU C dialect, since by definition the GNU dialects of C include ! all features the compiler supports with the given option, and ! there would be nothing to warn about.) ! `-pedantic-errors' ! Like `-Wpedantic', except that errors are produced rather than warnings. ! `-Wall' This enables all the warnings about constructions that some users consider questionable, and that are easy to avoid (or modify to prevent the warning), even in conjunction with macros. This also *************** compiler warns that an unrecognized opti *** 3293,3302 **** Dialect Options:: and *note Objective-C and Objective-C++ Dialect Options::. ! '-Wall' turns on the following warning flags: -Waddress ! -Warray-bounds (only with -O2) -Wc++11-compat -Wchar-subscripts -Wenum-compare (in C/ObjC; this is on by default in C++) --- 3316,3325 ---- Dialect Options:: and *note Objective-C and Objective-C++ Dialect Options::. ! `-Wall' turns on the following warning flags: -Waddress ! -Warray-bounds (only with `-O2') -Wc++11-compat -Wchar-subscripts -Wenum-compare (in C/ObjC; this is on by default in C++) *************** compiler warns that an unrecognized opti *** 3304,3310 **** -Wimplicit-function-declaration (C and Objective-C only) -Wcomment -Wformat ! -Wmain (only for C/ObjC and unless -ffreestanding) -Wmaybe-uninitialized -Wmissing-braces (only for C/ObjC) -Wnonnull --- 3327,3333 ---- -Wimplicit-function-declaration (C and Objective-C only) -Wcomment -Wformat ! -Wmain (only for C/ObjC and unless `-ffreestanding') -Wmaybe-uninitialized -Wmissing-braces (only for C/ObjC) -Wnonnull *************** compiler warns that an unrecognized opti *** 3327,3344 **** -Wunused-variable -Wvolatile-register-var ! ! Note that some warning flags are not implied by '-Wall'. Some of them warn about constructions that users generally do not consider questionable, but which occasionally you might wish to check for; ! others warn about constructions that are necessary or hard to avoid ! in some cases, and there is no simple way to modify the code to ! suppress the warning. Some of them are enabled by '-Wextra' but many of them must be enabled individually. ! '-Wextra' This enables some extra warning flags that are not enabled by ! '-Wall'. (This option used to be called '-W'. The older name is still supported, but the newer name is more descriptive.) -Wclobbered --- 3350,3366 ---- -Wunused-variable -Wvolatile-register-var ! Note that some warning flags are not implied by `-Wall'. Some of them warn about constructions that users generally do not consider questionable, but which occasionally you might wish to check for; ! others warn about constructions that are necessary or hard to ! avoid in some cases, and there is no simple way to modify the code ! to suppress the warning. Some of them are enabled by `-Wextra' but many of them must be enabled individually. ! `-Wextra' This enables some extra warning flags that are not enabled by ! `-Wall'. (This option used to be called `-W'. The older name is still supported, but the newer name is more descriptive.) -Wclobbered *************** compiler warns that an unrecognized opti *** 3351,3365 **** -Wsign-compare -Wtype-limits -Wuninitialized ! -Wunused-parameter (only with -Wunused or -Wall) ! -Wunused-but-set-parameter (only with -Wunused or -Wall) ! ! The option '-Wextra' also prints warning messages for the following ! cases: ! * A pointer is compared against integer zero with '<', '<=', ! '>', or '>='. * (C++ only) An enumerator and a non-enumerator both appear in a conditional expression. --- 3373,3386 ---- -Wsign-compare -Wtype-limits -Wuninitialized ! -Wunused-parameter (only with `-Wunused' or `-Wall') ! -Wunused-but-set-parameter (only with `-Wunused' or `-Wall') ! The option `-Wextra' also prints warning messages for the ! following cases: ! * A pointer is compared against integer zero with `<', `<=', ! `>', or `>='. * (C++ only) An enumerator and a non-enumerator both appear in a conditional expression. *************** compiler warns that an unrecognized opti *** 3367,3591 **** * (C++ only) Ambiguous virtual bases. * (C++ only) Subscripting an array that has been declared ! 'register'. * (C++ only) Taking the address of a variable that has been ! declared 'register'. * (C++ only) A base class is not initialized in a derived class's copy constructor. ! '-Wchar-subscripts' ! Warn if an array subscript has type 'char'. This is a common cause of error, as programmers often forget that this type is signed on ! some machines. This warning is enabled by '-Wall'. ! '-Wcomment' ! Warn whenever a comment-start sequence '/*' appears in a '/*' ! comment, or whenever a Backslash-Newline appears in a '//' comment. ! This warning is enabled by '-Wall'. ! '-Wno-coverage-mismatch' Warn if feedback profiles do not match when using the ! '-fprofile-use' option. If a source file is changed between ! compiling with '-fprofile-gen' and with '-fprofile-use', the files ! with the profile feedback can fail to match the source file and GCC ! cannot use the profile feedback information. By default, this warning is enabled and is treated as an error. ! '-Wno-coverage-mismatch' can be used to disable the warning or ! '-Wno-error=coverage-mismatch' can be used to disable the error. ! Disabling the error for this warning can result in poorly optimized ! code and is useful only in the case of very minor changes such as ! bug fixes to an existing code-base. Completely disabling the ! warning is not recommended. ! '-Wno-cpp' (C, Objective-C, C++, Objective-C++ and Fortran only) ! Suppress warning messages emitted by '#warning' directives. ! '-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)' ! Give a warning when a value of type 'float' is implicitly promoted ! to 'double'. CPUs with a 32-bit "single-precision" floating-point ! unit implement 'float' in hardware, but emulate 'double' in ! software. On such a machine, doing computations using 'double' values is much more expensive because of the overhead required for software emulation. ! It is easy to accidentally do computations with 'double' because ! floating-point literals are implicitly of type 'double'. For example, in: float area(float radius) { return 3.14159 * radius * radius; } ! the compiler performs the entire computation with 'double' because ! the floating-point literal is a 'double'. ! '-Wformat' ! '-Wformat=N' ! Check calls to 'printf' and 'scanf', etc., to make sure that the arguments supplied have types appropriate to the format string specified, and that the conversions specified in the format string ! make sense. This includes standard functions, and others specified ! by format attributes (*note Function Attributes::), in the ! 'printf', 'scanf', 'strftime' and 'strfmon' (an X/Open extension, ! not in the C standard) families (or other target-specific ! families). Which functions are checked without format attributes ! having been specified depends on the standard version selected, and ! such checks of functions without the attribute specified are ! disabled by '-ffreestanding' or '-fno-builtin'. The formats are checked against the format features supported by GNU libc version 2.2. These include all ISO C90 and C99 features, ! as well as features from the Single Unix Specification and some BSD ! and GNU extensions. Other library implementations may not support ! all these features; GCC does not support warning about features ! that go beyond a particular library's limitations. However, if ! '-Wpedantic' is used with '-Wformat', warnings are given about ! format features not in the selected standard version (but not for ! 'strfmon' formats, since those are not in any version of the C ! standard). *Note Options Controlling C Dialect: C Dialect Options. ! '-Wformat=1' ! '-Wformat' ! Option '-Wformat' is equivalent to '-Wformat=1', and ! '-Wno-format' is equivalent to '-Wformat=0'. Since '-Wformat' ! also checks for null format arguments for several functions, ! '-Wformat' also implies '-Wnonnull'. Some aspects of this ! level of format checking can be disabled by the options: ! '-Wno-format-contains-nul', '-Wno-format-extra-args', and ! '-Wno-format-zero-length'. '-Wformat' is enabled by '-Wall'. ! '-Wno-format-contains-nul' ! If '-Wformat' is specified, do not warn about format strings that contain NUL bytes. ! '-Wno-format-extra-args' ! If '-Wformat' is specified, do not warn about excess arguments ! to a 'printf' or 'scanf' format function. The C standard ! specifies that such arguments are ignored. Where the unused arguments lie between used arguments that are ! specified with '$' operand number specifications, normally warnings are still given, since the implementation could not ! know what type to pass to 'va_arg' to skip the unused ! arguments. However, in the case of 'scanf' formats, this option suppresses the warning if the unused arguments are all pointers, since the Single Unix Specification says that such unused arguments are allowed. ! '-Wno-format-zero-length' ! If '-Wformat' is specified, do not warn about zero-length formats. The C standard specifies that zero-length formats are allowed. ! '-Wformat=2' ! Enable '-Wformat' plus additional format checks. Currently ! equivalent to '-Wformat -Wformat-nonliteral -Wformat-security -Wformat-y2k'. ! '-Wformat-nonliteral' ! If '-Wformat' is specified, also warn if the format string is not a string literal and so cannot be checked, unless the ! format function takes its format arguments as a 'va_list'. ! '-Wformat-security' ! If '-Wformat' is specified, also warn about uses of format functions that represent possible security problems. At ! present, this warns about calls to 'printf' and 'scanf' functions where the format string is not a string literal and ! there are no format arguments, as in 'printf (foo);'. This may be a security hole if the format string came from ! untrusted input and contains '%n'. (This is currently a ! subset of what '-Wformat-nonliteral' warns about, but in ! future warnings may be added to '-Wformat-security' that are ! not included in '-Wformat-nonliteral'.) ! '-Wformat-y2k' ! If '-Wformat' is specified, also warn about 'strftime' formats ! that may yield only a two-digit year. ! '-Wnonnull' ! Warn about passing a null pointer for arguments marked as requiring ! a non-null value by the 'nonnull' function attribute. ! '-Wnonnull' is included in '-Wall' and '-Wformat'. It can be ! disabled with the '-Wno-nonnull' option. ! '-Winit-self (C, C++, Objective-C and Objective-C++ only)' Warn about uninitialized variables that are initialized with themselves. Note this option can only be used with the ! '-Wuninitialized' option. ! For example, GCC warns about 'i' being uninitialized in the ! following snippet only when '-Winit-self' has been specified: int f() { int i = i; return i; } ! This warning is enabled by '-Wall' in C++. ! '-Wimplicit-int (C and Objective-C only)' Warn when a declaration does not specify a type. This warning is ! enabled by '-Wall'. ! '-Wimplicit-function-declaration (C and Objective-C only)' Give a warning whenever a function is used before being declared. ! In C99 mode ('-std=c99' or '-std=gnu99'), this warning is enabled ! by default and it is made into an error by '-pedantic-errors'. ! This warning is also enabled by '-Wall'. ! '-Wimplicit (C and Objective-C only)' ! Same as '-Wimplicit-int' and '-Wimplicit-function-declaration'. ! This warning is enabled by '-Wall'. ! '-Wignored-qualifiers (C and C++ only)' Warn if the return type of a function has a type qualifier such as ! 'const'. For ISO C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For C++, the ! warning is only emitted for scalar types or 'void'. ISO C ! prohibits qualified 'void' return types on function definitions, so ! such return types always receive a warning even without this option. ! This warning is also enabled by '-Wextra'. ! '-Wmain' ! Warn if the type of 'main' is suspicious. 'main' should be a function with external linkage, returning int, taking either zero arguments, two, or three arguments of appropriate types. This warning is enabled by default in C++ and is enabled by either ! '-Wall' or '-Wpedantic'. ! '-Wmissing-braces' Warn if an aggregate or union initializer is not fully bracketed. ! In the following example, the initializer for 'a' is not fully ! bracketed, but that for 'b' is fully bracketed. This warning is ! enabled by '-Wall' in C. int a[2][2] = { 0, 1, 2, 3 }; int b[2][2] = { { 0, 1 }, { 2, 3 } }; ! This warning is enabled by '-Wall'. ! '-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)' Warn if a user-supplied include directory does not exist. ! '-Wparentheses' Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context where a truth value is expected, or when operators are nested whose precedence people often get confused about. ! Also warn if a comparison like 'x<=y<=z' appears; this is ! equivalent to '(x<=y ? 1 : 0) <= z', which is a different interpretation from that of ordinary mathematical notation. Also warn about constructions where there may be confusion to which ! 'if' statement an 'else' branch belongs. Here is an example of such a case: { --- 3388,3616 ---- * (C++ only) Ambiguous virtual bases. * (C++ only) Subscripting an array that has been declared ! `register'. * (C++ only) Taking the address of a variable that has been ! declared `register'. * (C++ only) A base class is not initialized in a derived class's copy constructor. ! ! `-Wchar-subscripts' ! Warn if an array subscript has type `char'. This is a common cause of error, as programmers often forget that this type is signed on ! some machines. This warning is enabled by `-Wall'. ! `-Wcomment' ! Warn whenever a comment-start sequence `/*' appears in a `/*' ! comment, or whenever a Backslash-Newline appears in a `//' comment. ! This warning is enabled by `-Wall'. ! `-Wno-coverage-mismatch' Warn if feedback profiles do not match when using the ! `-fprofile-use' option. If a source file is changed between ! compiling with `-fprofile-gen' and with `-fprofile-use', the files ! with the profile feedback can fail to match the source file and ! GCC cannot use the profile feedback information. By default, this warning is enabled and is treated as an error. ! `-Wno-coverage-mismatch' can be used to disable the warning or ! `-Wno-error=coverage-mismatch' can be used to disable the error. ! Disabling the error for this warning can result in poorly ! optimized code and is useful only in the case of very minor ! changes such as bug fixes to an existing code-base. Completely ! disabling the warning is not recommended. ! `-Wno-cpp' (C, Objective-C, C++, Objective-C++ and Fortran only) ! Suppress warning messages emitted by `#warning' directives. ! `-Wdouble-promotion (C, C++, Objective-C and Objective-C++ only)' ! Give a warning when a value of type `float' is implicitly promoted ! to `double'. CPUs with a 32-bit "single-precision" floating-point ! unit implement `float' in hardware, but emulate `double' in ! software. On such a machine, doing computations using `double' values is much more expensive because of the overhead required for software emulation. ! It is easy to accidentally do computations with `double' because ! floating-point literals are implicitly of type `double'. For example, in: float area(float radius) { return 3.14159 * radius * radius; } ! the compiler performs the entire computation with `double' because ! the floating-point literal is a `double'. ! `-Wformat' ! `-Wformat=N' ! Check calls to `printf' and `scanf', etc., to make sure that the arguments supplied have types appropriate to the format string specified, and that the conversions specified in the format string ! make sense. This includes standard functions, and others ! specified by format attributes (*note Function Attributes::), in ! the `printf', `scanf', `strftime' and `strfmon' (an X/Open ! extension, not in the C standard) families (or other ! target-specific families). Which functions are checked without ! format attributes having been specified depends on the standard ! version selected, and such checks of functions without the ! attribute specified are disabled by `-ffreestanding' or ! `-fno-builtin'. The formats are checked against the format features supported by GNU libc version 2.2. These include all ISO C90 and C99 features, ! as well as features from the Single Unix Specification and some ! BSD and GNU extensions. Other library implementations may not ! support all these features; GCC does not support warning about ! features that go beyond a particular library's limitations. ! However, if `-Wpedantic' is used with `-Wformat', warnings are ! given about format features not in the selected standard version ! (but not for `strfmon' formats, since those are not in any version ! of the C standard). *Note Options Controlling C Dialect: C ! Dialect Options. ! `-Wformat=1' ! `-Wformat' ! Option `-Wformat' is equivalent to `-Wformat=1', and ! `-Wno-format' is equivalent to `-Wformat=0'. Since ! `-Wformat' also checks for null format arguments for several ! functions, `-Wformat' also implies `-Wnonnull'. Some aspects ! of this level of format checking can be disabled by the ! options: `-Wno-format-contains-nul', ! `-Wno-format-extra-args', and `-Wno-format-zero-length'. ! `-Wformat' is enabled by `-Wall'. ! `-Wno-format-contains-nul' ! If `-Wformat' is specified, do not warn about format strings that contain NUL bytes. ! `-Wno-format-extra-args' ! If `-Wformat' is specified, do not warn about excess ! arguments to a `printf' or `scanf' format function. The C ! standard specifies that such arguments are ignored. Where the unused arguments lie between used arguments that are ! specified with `$' operand number specifications, normally warnings are still given, since the implementation could not ! know what type to pass to `va_arg' to skip the unused ! arguments. However, in the case of `scanf' formats, this option suppresses the warning if the unused arguments are all pointers, since the Single Unix Specification says that such unused arguments are allowed. ! `-Wno-format-zero-length' ! If `-Wformat' is specified, do not warn about zero-length formats. The C standard specifies that zero-length formats are allowed. ! `-Wformat=2' ! Enable `-Wformat' plus additional format checks. Currently ! equivalent to `-Wformat -Wformat-nonliteral -Wformat-security -Wformat-y2k'. ! `-Wformat-nonliteral' ! If `-Wformat' is specified, also warn if the format string is not a string literal and so cannot be checked, unless the ! format function takes its format arguments as a `va_list'. ! `-Wformat-security' ! If `-Wformat' is specified, also warn about uses of format functions that represent possible security problems. At ! present, this warns about calls to `printf' and `scanf' functions where the format string is not a string literal and ! there are no format arguments, as in `printf (foo);'. This may be a security hole if the format string came from ! untrusted input and contains `%n'. (This is currently a ! subset of what `-Wformat-nonliteral' warns about, but in ! future warnings may be added to `-Wformat-security' that are ! not included in `-Wformat-nonliteral'.) ! `-Wformat-y2k' ! If `-Wformat' is specified, also warn about `strftime' ! formats that may yield only a two-digit year. ! `-Wnonnull' ! Warn about passing a null pointer for arguments marked as ! requiring a non-null value by the `nonnull' function attribute. ! `-Wnonnull' is included in `-Wall' and `-Wformat'. It can be ! disabled with the `-Wno-nonnull' option. ! `-Winit-self (C, C++, Objective-C and Objective-C++ only)' Warn about uninitialized variables that are initialized with themselves. Note this option can only be used with the ! `-Wuninitialized' option. ! For example, GCC warns about `i' being uninitialized in the ! following snippet only when `-Winit-self' has been specified: int f() { int i = i; return i; } ! This warning is enabled by `-Wall' in C++. ! `-Wimplicit-int (C and Objective-C only)' Warn when a declaration does not specify a type. This warning is ! enabled by `-Wall'. ! `-Wimplicit-function-declaration (C and Objective-C only)' Give a warning whenever a function is used before being declared. ! In C99 mode (`-std=c99' or `-std=gnu99'), this warning is enabled ! by default and it is made into an error by `-pedantic-errors'. ! This warning is also enabled by `-Wall'. ! `-Wimplicit (C and Objective-C only)' ! Same as `-Wimplicit-int' and `-Wimplicit-function-declaration'. ! This warning is enabled by `-Wall'. ! `-Wignored-qualifiers (C and C++ only)' Warn if the return type of a function has a type qualifier such as ! `const'. For ISO C such a type qualifier has no effect, since the value returned by a function is not an lvalue. For C++, the ! warning is only emitted for scalar types or `void'. ISO C ! prohibits qualified `void' return types on function definitions, ! so such return types always receive a warning even without this option. ! This warning is also enabled by `-Wextra'. ! `-Wmain' ! Warn if the type of `main' is suspicious. `main' should be a function with external linkage, returning int, taking either zero arguments, two, or three arguments of appropriate types. This warning is enabled by default in C++ and is enabled by either ! `-Wall' or `-Wpedantic'. ! `-Wmissing-braces' Warn if an aggregate or union initializer is not fully bracketed. ! In the following example, the initializer for `a' is not fully ! bracketed, but that for `b' is fully bracketed. This warning is ! enabled by `-Wall' in C. int a[2][2] = { 0, 1, 2, 3 }; int b[2][2] = { { 0, 1 }, { 2, 3 } }; ! This warning is enabled by `-Wall'. ! `-Wmissing-include-dirs (C, C++, Objective-C and Objective-C++ only)' Warn if a user-supplied include directory does not exist. ! `-Wparentheses' Warn if parentheses are omitted in certain contexts, such as when there is an assignment in a context where a truth value is expected, or when operators are nested whose precedence people often get confused about. ! Also warn if a comparison like `x<=y<=z' appears; this is ! equivalent to `(x<=y ? 1 : 0) <= z', which is a different interpretation from that of ordinary mathematical notation. Also warn about constructions where there may be confusion to which ! `if' statement an `else' branch belongs. Here is an example of such a case: { *************** compiler warns that an unrecognized opti *** 3596,3609 **** bar (); } ! In C/C++, every 'else' branch belongs to the innermost possible ! 'if' statement, which in this example is 'if (b)'. This is often not what the programmer expected, as illustrated in the above example by indentation the programmer chose. When there is the potential for this confusion, GCC issues a warning when this flag is specified. To eliminate the warning, add explicit braces around ! the innermost 'if' statement so there is no way the 'else' can ! belong to the enclosing 'if'. The resulting code looks like this: { if (a) --- 3621,3634 ---- bar (); } ! In C/C++, every `else' branch belongs to the innermost possible ! `if' statement, which in this example is `if (b)'. This is often not what the programmer expected, as illustrated in the above example by indentation the programmer chose. When there is the potential for this confusion, GCC issues a warning when this flag is specified. To eliminate the warning, add explicit braces around ! the innermost `if' statement so there is no way the `else' can ! belong to the enclosing `if'. The resulting code looks like this: { if (a) *************** compiler warns that an unrecognized opti *** 3615,3629 **** } } ! Also warn for dangerous uses of the GNU extension to '?:' with ! omitted middle operand. When the condition in the '?': operator is a boolean expression, the omitted value is always 1. Often ! programmers expect it to be a value computed inside the conditional ! expression instead. ! This warning is enabled by '-Wall'. ! '-Wsequence-point' Warn about code that may have undefined semantics because of violations of sequence point rules in the C and C++ standards. --- 3640,3654 ---- } } ! Also warn for dangerous uses of the GNU extension to `?:' with ! omitted middle operand. When the condition in the `?': operator is a boolean expression, the omitted value is always 1. Often ! programmers expect it to be a value computed inside the ! conditional expression instead. ! This warning is enabled by `-Wall'. ! `-Wsequence-point' Warn about code that may have undefined semantics because of violations of sequence point rules in the C and C++ standards. *************** compiler warns that an unrecognized opti *** 3633,3662 **** program: those executed before the sequence point, and those executed after it. These occur after the evaluation of a full expression (one which is not part of a larger expression), after ! the evaluation of the first operand of a '&&', '||', '? :' or ',' (comma) operator, before a function is called (but after the evaluation of its arguments and the expression denoting the called ! function), and in certain other places. Other than as expressed by ! the sequence point rules, the order of evaluation of subexpressions ! of an expression is not specified. All these rules describe only a ! partial order rather than a total order, since, for example, if two ! functions are called within one expression with no sequence point ! between them, the order in which the functions are called is not ! specified. However, the standards committee have ruled that ! function calls do not overlap. It is not specified when between sequence points modifications to ! the values of objects take effect. Programs whose behavior depends ! on this have undefined behavior; the C and C++ standards specify ! that "Between the previous and next sequence point an object shall ! have its stored value modified at most once by the evaluation of an ! expression. Furthermore, the prior value shall be read only to ! determine the value to be stored.". If a program breaks these ! rules, the results on any particular implementation are entirely ! unpredictable. ! Examples of code with undefined behavior are 'a = a++;', 'a[n] = ! b[n++]' and 'a[i++] = i;'. Some more complicated cases are not diagnosed by this option, and it may give an occasional false positive result, but in general it has been found fairly effective at detecting this sort of problem in programs. --- 3658,3687 ---- program: those executed before the sequence point, and those executed after it. These occur after the evaluation of a full expression (one which is not part of a larger expression), after ! the evaluation of the first operand of a `&&', `||', `? :' or `,' (comma) operator, before a function is called (but after the evaluation of its arguments and the expression denoting the called ! function), and in certain other places. Other than as expressed ! by the sequence point rules, the order of evaluation of ! subexpressions of an expression is not specified. All these rules ! describe only a partial order rather than a total order, since, ! for example, if two functions are called within one expression ! with no sequence point between them, the order in which the ! functions are called is not specified. However, the standards ! committee have ruled that function calls do not overlap. It is not specified when between sequence points modifications to ! the values of objects take effect. Programs whose behavior ! depends on this have undefined behavior; the C and C++ standards ! specify that "Between the previous and next sequence point an ! object shall have its stored value modified at most once by the ! evaluation of an expression. Furthermore, the prior value shall ! be read only to determine the value to be stored.". If a program ! breaks these rules, the results on any particular implementation ! are entirely unpredictable. ! Examples of code with undefined behavior are `a = a++;', `a[n] = ! b[n++]' and `a[i++] = i;'. Some more complicated cases are not diagnosed by this option, and it may give an occasional false positive result, but in general it has been found fairly effective at detecting this sort of problem in programs. *************** compiler warns that an unrecognized opti *** 3665,3807 **** over the precise meaning of the sequence point rules in subtle cases. Links to discussions of the problem, including proposed formal definitions, may be found on the GCC readings page, at ! . ! This warning is enabled by '-Wall' for C and C++. ! '-Wno-return-local-addr' Do not warn about returning a pointer (or in C++, a reference) to a variable that goes out of scope after the function returns. ! '-Wreturn-type' Warn whenever a function is defined with a return type that ! defaults to 'int'. Also warn about any 'return' statement with no ! return value in a function whose return type is not 'void' (falling ! off the end of the function body is considered returning without a ! value), and about a 'return' statement with an expression in a ! function whose return type is 'void'. For C++, a function without return type always produces a ! diagnostic message, even when '-Wno-return-type' is specified. The ! only exceptions are 'main' and functions defined in system headers. ! This warning is enabled by '-Wall'. ! '-Wswitch' ! Warn whenever a 'switch' statement has an index of enumerated type ! and lacks a 'case' for one or more of the named codes of that ! enumeration. (The presence of a 'default' label prevents this ! warning.) 'case' labels outside the enumeration range also provoke ! warnings when this option is used (even if there is a 'default' ! label). This warning is enabled by '-Wall'. ! '-Wswitch-default' ! Warn whenever a 'switch' statement does not have a 'default' case. ! '-Wswitch-enum' ! Warn whenever a 'switch' statement has an index of enumerated type ! and lacks a 'case' for one or more of the named codes of that ! enumeration. 'case' labels outside the enumeration range also provoke warnings when this option is used. The only difference ! between '-Wswitch' and this option is that this option gives a warning about an omitted enumeration code even if there is a ! 'default' label. ! '-Wsync-nand (C and C++ only)' ! Warn when '__sync_fetch_and_nand' and '__sync_nand_and_fetch' built-in functions are used. These functions changed semantics in GCC 4.4. ! '-Wtrigraphs' ! Warn if any trigraphs are encountered that might change the meaning ! of the program (trigraphs within comments are not warned about). ! This warning is enabled by '-Wall'. ! '-Wunused-but-set-parameter' Warn whenever a function parameter is assigned to, but otherwise unused (aside from its declaration). ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! This warning is also enabled by '-Wunused' together with '-Wextra'. ! '-Wunused-but-set-variable' Warn whenever a local variable is assigned to, but otherwise unused ! (aside from its declaration). This warning is enabled by '-Wall'. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! This warning is also enabled by '-Wunused', which is enabled by ! '-Wall'. ! '-Wunused-function' Warn whenever a static function is declared but not defined or a non-inline static function is unused. This warning is enabled by ! '-Wall'. ! '-Wunused-label' Warn whenever a label is declared but not used. This warning is ! enabled by '-Wall'. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! '-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)' Warn when a typedef locally defined in a function is not used. ! This warning is enabled by '-Wall'. ! '-Wunused-parameter' Warn whenever a function parameter is unused aside from its declaration. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! '-Wno-unused-result' Do not warn if a caller of a function marked with attribute ! 'warn_unused_result' (*note Function Attributes::) does not use its ! return value. The default is '-Wunused-result'. ! '-Wunused-variable' Warn whenever a local variable or non-constant static variable is unused aside from its declaration. This warning is enabled by ! '-Wall'. ! To suppress this warning use the 'unused' attribute (*note Variable ! Attributes::). ! '-Wunused-value' Warn whenever a statement computes a result that is explicitly not ! used. To suppress this warning cast the unused expression to ! 'void'. This includes an expression-statement or the left-hand ! side of a comma expression that contains no side effects. For ! example, an expression such as 'x[i,j]' causes a warning, while ! 'x[(void)i,j]' does not. ! This warning is enabled by '-Wall'. ! '-Wunused' ! All the above '-Wunused' options combined. In order to get a warning about an unused function parameter, you ! must either specify '-Wextra -Wunused' (note that '-Wall' implies ! '-Wunused'), or separately specify '-Wunused-parameter'. ! '-Wuninitialized' Warn if an automatic variable is used without first being ! initialized or if a variable may be clobbered by a 'setjmp' call. ! In C++, warn if a non-static reference or non-static 'const' member appears in a class without constructors. ! If you want to warn about code that uses the uninitialized value of ! the variable in its own initializer, use the '-Winit-self' option. These warnings occur for individual uninitialized or clobbered elements of structure, union or array variables as well as for variables that are uninitialized or clobbered as a whole. They do ! not occur for variables or elements declared 'volatile'. Because these warnings depend on optimization, the exact variables or elements for which there are warnings depends on the precise optimization options and version of GCC used. --- 3690,3834 ---- over the precise meaning of the sequence point rules in subtle cases. Links to discussions of the problem, including proposed formal definitions, may be found on the GCC readings page, at ! `http://gcc.gnu.org/readings.html'. ! This warning is enabled by `-Wall' for C and C++. ! `-Wno-return-local-addr' Do not warn about returning a pointer (or in C++, a reference) to a variable that goes out of scope after the function returns. ! `-Wreturn-type' Warn whenever a function is defined with a return type that ! defaults to `int'. Also warn about any `return' statement with no ! return value in a function whose return type is not `void' ! (falling off the end of the function body is considered returning ! without a value), and about a `return' statement with an ! expression in a function whose return type is `void'. For C++, a function without return type always produces a ! diagnostic message, even when `-Wno-return-type' is specified. ! The only exceptions are `main' and functions defined in system ! headers. ! This warning is enabled by `-Wall'. ! `-Wswitch' ! Warn whenever a `switch' statement has an index of enumerated type ! and lacks a `case' for one or more of the named codes of that ! enumeration. (The presence of a `default' label prevents this ! warning.) `case' labels outside the enumeration range also ! provoke warnings when this option is used (even if there is a ! `default' label). This warning is enabled by `-Wall'. ! `-Wswitch-default' ! Warn whenever a `switch' statement does not have a `default' case. ! `-Wswitch-enum' ! Warn whenever a `switch' statement has an index of enumerated type ! and lacks a `case' for one or more of the named codes of that ! enumeration. `case' labels outside the enumeration range also provoke warnings when this option is used. The only difference ! between `-Wswitch' and this option is that this option gives a warning about an omitted enumeration code even if there is a ! `default' label. ! `-Wsync-nand (C and C++ only)' ! Warn when `__sync_fetch_and_nand' and `__sync_nand_and_fetch' built-in functions are used. These functions changed semantics in GCC 4.4. ! `-Wtrigraphs' ! Warn if any trigraphs are encountered that might change the ! meaning of the program (trigraphs within comments are not warned ! about). This warning is enabled by `-Wall'. ! `-Wunused-but-set-parameter' Warn whenever a function parameter is assigned to, but otherwise unused (aside from its declaration). ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! This warning is also enabled by `-Wunused' together with `-Wextra'. ! `-Wunused-but-set-variable' Warn whenever a local variable is assigned to, but otherwise unused ! (aside from its declaration). This warning is enabled by `-Wall'. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! This warning is also enabled by `-Wunused', which is enabled by ! `-Wall'. ! `-Wunused-function' Warn whenever a static function is declared but not defined or a non-inline static function is unused. This warning is enabled by ! `-Wall'. ! `-Wunused-label' Warn whenever a label is declared but not used. This warning is ! enabled by `-Wall'. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! `-Wunused-local-typedefs (C, Objective-C, C++ and Objective-C++ only)' Warn when a typedef locally defined in a function is not used. ! This warning is enabled by `-Wall'. ! `-Wunused-parameter' Warn whenever a function parameter is unused aside from its declaration. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! `-Wno-unused-result' Do not warn if a caller of a function marked with attribute ! `warn_unused_result' (*note Function Attributes::) does not use ! its return value. The default is `-Wunused-result'. ! `-Wunused-variable' Warn whenever a local variable or non-constant static variable is unused aside from its declaration. This warning is enabled by ! `-Wall'. ! To suppress this warning use the `unused' attribute (*note ! Variable Attributes::). ! `-Wunused-value' Warn whenever a statement computes a result that is explicitly not ! used. To suppress this warning cast the unused expression to ! `void'. This includes an expression-statement or the left-hand ! side of a comma expression that contains no side effects. For ! example, an expression such as `x[i,j]' causes a warning, while ! `x[(void)i,j]' does not. ! This warning is enabled by `-Wall'. ! `-Wunused' ! All the above `-Wunused' options combined. In order to get a warning about an unused function parameter, you ! must either specify `-Wextra -Wunused' (note that `-Wall' implies ! `-Wunused'), or separately specify `-Wunused-parameter'. ! `-Wuninitialized' Warn if an automatic variable is used without first being ! initialized or if a variable may be clobbered by a `setjmp' call. ! In C++, warn if a non-static reference or non-static `const' member appears in a class without constructors. ! If you want to warn about code that uses the uninitialized value ! of the variable in its own initializer, use the `-Winit-self' ! option. These warnings occur for individual uninitialized or clobbered elements of structure, union or array variables as well as for variables that are uninitialized or clobbered as a whole. They do ! not occur for variables or elements declared `volatile'. Because these warnings depend on optimization, the exact variables or elements for which there are warnings depends on the precise optimization options and version of GCC used. *************** compiler warns that an unrecognized opti *** 3811,3825 **** computations may be deleted by data flow analysis before the warnings are printed. ! '-Wmaybe-uninitialized' For an automatic variable, if there exists a path from the function entry to a use of the variable that is initialized, but there exist some other paths for which the variable is not initialized, the ! compiler emits a warning if it cannot prove the uninitialized paths ! are not executed at run time. These warnings are made optional ! because GCC is not smart enough to see all the reasons why the code ! might be correct in spite of appearing to have an error. Here is ! one example of how this can happen: { int x; --- 3838,3852 ---- computations may be deleted by data flow analysis before the warnings are printed. ! `-Wmaybe-uninitialized' For an automatic variable, if there exists a path from the function entry to a use of the variable that is initialized, but there exist some other paths for which the variable is not initialized, the ! compiler emits a warning if it cannot prove the uninitialized ! paths are not executed at run time. These warnings are made ! optional because GCC is not smart enough to see all the reasons ! why the code might be correct in spite of appearing to have an ! error. Here is one example of how this can happen: { int x; *************** compiler warns that an unrecognized opti *** 3834,3912 **** foo (x); } ! If the value of 'y' is always 1, 2 or 3, then 'x' is always ! initialized, but GCC doesn't know this. To suppress the warning, you need to provide a default case with assert(0) or similar code. ! This option also warns when a non-volatile automatic variable might ! be changed by a call to 'longjmp'. These warnings as well are ! possible only in optimizing compilation. ! The compiler sees only the calls to 'setjmp'. It cannot know where ! 'longjmp' will be called; in fact, a signal handler could call it ! at any point in the code. As a result, you may get a warning even ! when there is in fact no problem because 'longjmp' cannot in fact ! be called at the place that would cause a problem. Some spurious warnings can be avoided if you declare all the ! functions you use that never return as 'noreturn'. *Note Function Attributes::. ! This warning is enabled by '-Wall' or '-Wextra'. ! '-Wunknown-pragmas' ! Warn when a '#pragma' directive is encountered that is not understood by GCC. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This ! is not the case if the warnings are only enabled by the '-Wall' command-line option. ! '-Wno-pragmas' Do not warn about misuses of pragmas, such as incorrect parameters, invalid syntax, or conflicts between pragmas. See also ! '-Wunknown-pragmas'. ! '-Wstrict-aliasing' ! This option is only active when '-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that ! the compiler is using for optimization. The warning does not catch ! all cases, but does attempt to catch the more common pitfalls. It ! is included in '-Wall'. It is equivalent to '-Wstrict-aliasing=3' ! '-Wstrict-aliasing=n' ! This option is only active when '-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that the compiler is using for optimization. Higher levels correspond to higher accuracy (fewer false positives). Higher levels also ! correspond to more effort, similar to the way '-O' works. ! '-Wstrict-aliasing' is equivalent to '-Wstrict-aliasing=3'. Level 1: Most aggressive, quick, least accurate. Possibly useful ! when higher levels do not warn but '-fstrict-aliasing' still breaks ! the code, as it has very few false negatives. However, it has many ! false positives. Warns for all pointer conversions between ! possibly incompatible types, even if never dereferenced. Runs in ! the front end only. Level 2: Aggressive, quick, not too precise. May still have many false positives (not as many as level 1 though), and few false negatives (but possibly more than level 1). Unlike level 1, it ! only warns when an address is taken. Warns about incomplete types. ! Runs in the front end only. ! Level 3 (default for '-Wstrict-aliasing'): Should have very few false positives and few false negatives. Slightly slower than levels 1 or 2 when optimization is enabled. Takes care of the common pun+dereference pattern in the front end: ! '*(int*)&some_float'. If optimization is enabled, it also runs in the back end, where it deals with multiple statement cases using flow-sensitive points-to information. Only warns when the converted pointer is dereferenced. Does not warn about incomplete types. ! '-Wstrict-overflow' ! '-Wstrict-overflow=N' ! This option is only active when '-fstrict-overflow' is active. It warns about cases where the compiler optimizes based on the assumption that signed overflow does not occur. Note that it does not warn about all cases where the code might overflow: it only --- 3861,3940 ---- foo (x); } ! If the value of `y' is always 1, 2 or 3, then `x' is always ! initialized, but GCC doesn't know this. To suppress the warning, you need to provide a default case with assert(0) or similar code. ! This option also warns when a non-volatile automatic variable ! might be changed by a call to `longjmp'. These warnings as well ! are possible only in optimizing compilation. ! The compiler sees only the calls to `setjmp'. It cannot know ! where `longjmp' will be called; in fact, a signal handler could ! call it at any point in the code. As a result, you may get a ! warning even when there is in fact no problem because `longjmp' ! cannot in fact be called at the place that would cause a problem. Some spurious warnings can be avoided if you declare all the ! functions you use that never return as `noreturn'. *Note Function Attributes::. ! This warning is enabled by `-Wall' or `-Wextra'. ! `-Wunknown-pragmas' ! Warn when a `#pragma' directive is encountered that is not understood by GCC. If this command-line option is used, warnings are even issued for unknown pragmas in system header files. This ! is not the case if the warnings are only enabled by the `-Wall' command-line option. ! `-Wno-pragmas' Do not warn about misuses of pragmas, such as incorrect parameters, invalid syntax, or conflicts between pragmas. See also ! `-Wunknown-pragmas'. ! `-Wstrict-aliasing' ! This option is only active when `-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that ! the compiler is using for optimization. The warning does not ! catch all cases, but does attempt to catch the more common ! pitfalls. It is included in `-Wall'. It is equivalent to ! `-Wstrict-aliasing=3' ! `-Wstrict-aliasing=n' ! This option is only active when `-fstrict-aliasing' is active. It warns about code that might break the strict aliasing rules that the compiler is using for optimization. Higher levels correspond to higher accuracy (fewer false positives). Higher levels also ! correspond to more effort, similar to the way `-O' works. ! `-Wstrict-aliasing' is equivalent to `-Wstrict-aliasing=3'. Level 1: Most aggressive, quick, least accurate. Possibly useful ! when higher levels do not warn but `-fstrict-aliasing' still ! breaks the code, as it has very few false negatives. However, it ! has many false positives. Warns for all pointer conversions ! between possibly incompatible types, even if never dereferenced. ! Runs in the front end only. Level 2: Aggressive, quick, not too precise. May still have many false positives (not as many as level 1 though), and few false negatives (but possibly more than level 1). Unlike level 1, it ! only warns when an address is taken. Warns about incomplete ! types. Runs in the front end only. ! Level 3 (default for `-Wstrict-aliasing'): Should have very few false positives and few false negatives. Slightly slower than levels 1 or 2 when optimization is enabled. Takes care of the common pun+dereference pattern in the front end: ! `*(int*)&some_float'. If optimization is enabled, it also runs in the back end, where it deals with multiple statement cases using flow-sensitive points-to information. Only warns when the converted pointer is dereferenced. Does not warn about incomplete types. ! `-Wstrict-overflow' ! `-Wstrict-overflow=N' ! This option is only active when `-fstrict-overflow' is active. It warns about cases where the compiler optimizes based on the assumption that signed overflow does not occur. Note that it does not warn about all cases where the code might overflow: it only *************** compiler warns that an unrecognized opti *** 3923,4033 **** loop requires, in particular when determining whether a loop will be executed at all. ! '-Wstrict-overflow=1' ! Warn about cases that are both questionable and easy to avoid. ! For example, with '-fstrict-overflow', the compiler simplifies ! 'x + 1 > x' to '1'. This level of '-Wstrict-overflow' is ! enabled by '-Wall'; higher levels are not, and must be ! explicitly requested. ! '-Wstrict-overflow=2' Also warn about other cases where a comparison is simplified ! to a constant. For example: 'abs (x) >= 0'. This can only be ! simplified when '-fstrict-overflow' is in effect, because 'abs ! (INT_MIN)' overflows to 'INT_MIN', which is less than zero. ! '-Wstrict-overflow' (with no level) is the same as ! '-Wstrict-overflow=2'. ! '-Wstrict-overflow=3' Also warn about other cases where a comparison is simplified. ! For example: 'x + 1 > 1' is simplified to 'x > 0'. ! '-Wstrict-overflow=4' ! Also warn about other simplifications not covered by the above ! cases. For example: '(x * 10) / 5' is simplified to 'x * 2'. ! '-Wstrict-overflow=5' ! Also warn about cases where the compiler reduces the magnitude ! of a constant involved in a comparison. For example: 'x + 2 > ! y' is simplified to 'x + 1 >= y'. This is reported only at ! the highest warning level because this simplification applies ! to many comparisons, so this warning level gives a very large ! number of false positives. ! '-Wsuggest-attribute=[pure|const|noreturn|format]' ! Warn for cases where adding an attribute may be beneficial. The attributes currently supported are listed below. ! '-Wsuggest-attribute=pure' ! '-Wsuggest-attribute=const' ! '-Wsuggest-attribute=noreturn' ! Warn about functions that might be candidates for attributes ! 'pure', 'const' or 'noreturn'. The compiler only warns for functions visible in other compilation units or (in the case ! of 'pure' and 'const') if it cannot prove that the function ! returns normally. A function returns normally if it doesn't contain an infinite loop or return abnormally by throwing, ! calling 'abort()' or trapping. This analysis requires option ! '-fipa-pure-const', which is enabled by default at '-O' and higher. Higher optimization levels improve the accuracy of the analysis. ! '-Wsuggest-attribute=format' ! '-Wmissing-format-attribute' ! Warn about function pointers that might be candidates for ! 'format' attributes. Note these are only possible candidates, ! not absolute ones. GCC guesses that function pointers with ! 'format' attributes that are used in assignment, ! initialization, parameter passing or return statements should ! have a corresponding 'format' attribute in the resulting type. ! I.e. the left-hand side of the assignment or initialization, ! the type of the parameter variable, or the return type of the ! containing function respectively should also have a 'format' ! attribute to avoid the warning. GCC also warns about function definitions that might be ! candidates for 'format' attributes. Again, these are only ! possible candidates. GCC guesses that 'format' attributes might be appropriate for any function that calls a function ! like 'vprintf' or 'vscanf', but this might not always be the ! case, and some functions for which 'format' attributes are appropriate may not be detected. ! '-Warray-bounds' ! This option is only active when '-ftree-vrp' is active (default for ! '-O2' and above). It warns about subscripts to arrays that are ! always out of bounds. This warning is enabled by '-Wall'. ! '-Wno-div-by-zero' Do not warn about compile-time integer division by zero. ! Floating-point division by zero is not warned about, as it can be a ! legitimate way of obtaining infinities and NaNs. ! '-Wsystem-headers' Print warning messages for constructs found in system header files. Warnings from system headers are normally suppressed, on the assumption that they usually do not indicate real problems and would only make the compiler output harder to read. Using this command-line option tells GCC to emit warnings from system headers ! as if they occurred in user code. However, note that using '-Wall' ! in conjunction with this option does _not_ warn about unknown ! pragmas in system headers--for that, '-Wunknown-pragmas' must also ! be used. ! '-Wtrampolines' Warn about trampolines generated for pointers to nested functions. A trampoline is a small piece of data or code that is created at ! run time on the stack when the address of a nested function is ! taken, and is used to call the nested function indirectly. For ! some targets, it is made up of data only and thus requires no ! special treatment. But, for most targets, it is made up of code ! and thus requires the stack to be made executable in order for the ! program to work properly. ! '-Wfloat-equal' Warn if floating-point values are used in equality comparisons. The idea behind this is that sometimes it is convenient (for the --- 3951,4061 ---- loop requires, in particular when determining whether a loop will be executed at all. ! `-Wstrict-overflow=1' ! Warn about cases that are both questionable and easy to ! avoid. For example, with `-fstrict-overflow', the compiler ! simplifies `x + 1 > x' to `1'. This level of ! `-Wstrict-overflow' is enabled by `-Wall'; higher levels are ! not, and must be explicitly requested. ! `-Wstrict-overflow=2' Also warn about other cases where a comparison is simplified ! to a constant. For example: `abs (x) >= 0'. This can only be ! simplified when `-fstrict-overflow' is in effect, because ! `abs (INT_MIN)' overflows to `INT_MIN', which is less than ! zero. `-Wstrict-overflow' (with no level) is the same as ! `-Wstrict-overflow=2'. ! `-Wstrict-overflow=3' Also warn about other cases where a comparison is simplified. ! For example: `x + 1 > 1' is simplified to `x > 0'. ! `-Wstrict-overflow=4' ! Also warn about other simplifications not covered by the ! above cases. For example: `(x * 10) / 5' is simplified to `x ! * 2'. ! `-Wstrict-overflow=5' ! Also warn about cases where the compiler reduces the ! magnitude of a constant involved in a comparison. For ! example: `x + 2 > y' is simplified to `x + 1 >= y'. This is ! reported only at the highest warning level because this ! simplification applies to many comparisons, so this warning ! level gives a very large number of false positives. ! `-Wsuggest-attribute=[pure|const|noreturn|format]' ! Warn for cases where adding an attribute may be beneficial. The attributes currently supported are listed below. ! `-Wsuggest-attribute=pure' ! `-Wsuggest-attribute=const' ! `-Wsuggest-attribute=noreturn' Warn about functions that might be candidates for attributes ! `pure', `const' or `noreturn'. The compiler only warns for functions visible in other compilation units or (in the case ! of `pure' and `const') if it cannot prove that the function ! returns normally. A function returns normally if it doesn't contain an infinite loop or return abnormally by throwing, ! calling `abort()' or trapping. This analysis requires option ! `-fipa-pure-const', which is enabled by default at `-O' and higher. Higher optimization levels improve the accuracy of the analysis. ! `-Wsuggest-attribute=format' ! `-Wmissing-format-attribute' Warn about function pointers that might be candidates for ! `format' attributes. Note these are only possible ! candidates, not absolute ones. GCC guesses that function ! pointers with `format' attributes that are used in ! assignment, initialization, parameter passing or return ! statements should have a corresponding `format' attribute in ! the resulting type. I.e. the left-hand side of the ! assignment or initialization, the type of the parameter ! variable, or the return type of the containing function ! respectively should also have a `format' attribute to avoid ! the warning. GCC also warns about function definitions that might be ! candidates for `format' attributes. Again, these are only ! possible candidates. GCC guesses that `format' attributes might be appropriate for any function that calls a function ! like `vprintf' or `vscanf', but this might not always be the ! case, and some functions for which `format' attributes are appropriate may not be detected. ! `-Warray-bounds' ! This option is only active when `-ftree-vrp' is active (default ! for `-O2' and above). It warns about subscripts to arrays that are ! always out of bounds. This warning is enabled by `-Wall'. ! `-Wno-div-by-zero' Do not warn about compile-time integer division by zero. ! Floating-point division by zero is not warned about, as it can be ! a legitimate way of obtaining infinities and NaNs. ! `-Wsystem-headers' Print warning messages for constructs found in system header files. Warnings from system headers are normally suppressed, on the assumption that they usually do not indicate real problems and would only make the compiler output harder to read. Using this command-line option tells GCC to emit warnings from system headers ! as if they occurred in user code. However, note that using ! `-Wall' in conjunction with this option does _not_ warn about ! unknown pragmas in system headers--for that, `-Wunknown-pragmas' ! must also be used. ! `-Wtrampolines' Warn about trampolines generated for pointers to nested functions. A trampoline is a small piece of data or code that is created at ! run time on the stack when the address of a nested function is ! taken, and is used to call the nested function indirectly. For ! some targets, it is made up of data only and thus requires no ! special treatment. But, for most targets, it is made up of code ! and thus requires the stack to be made executable in order for ! the program to work properly. ! `-Wfloat-equal' Warn if floating-point values are used in equality comparisons. The idea behind this is that sometimes it is convenient (for the *************** compiler warns that an unrecognized opti *** 4036,4048 **** need to compute (by analyzing the code, or in some other way) the maximum or likely maximum error that the computation introduces, and allow for it when performing comparisons (and when producing ! output, but that's a different problem). In particular, instead of ! testing for equality, you should check to see whether the two values have ranges that overlap; and this is done with the relational operators, so equality comparisons are probably mistaken. ! '-Wtraditional (C and Objective-C only)' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and/or problematic constructs that --- 4064,4076 ---- need to compute (by analyzing the code, or in some other way) the maximum or likely maximum error that the computation introduces, and allow for it when performing comparisons (and when producing ! output, but that's a different problem). In particular, instead ! of testing for equality, you should check to see whether the two values have ranges that overlap; and this is done with the relational operators, so equality comparisons are probably mistaken. ! `-Wtraditional (C and Objective-C only)' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and/or problematic constructs that *************** compiler warns that an unrecognized opti *** 4054,4087 **** * In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a ! directive if the '#' appeared in column 1 on the line. ! Therefore '-Wtraditional' warns about directives that ! traditional C understands but ignores because the '#' does not ! appear as the first character on the line. It also suggests ! you hide directives like '#pragma' not understood by traditional C by indenting them. Some traditional ! implementations do not recognize '#elif', so this option suggests avoiding it altogether. * A function-like macro that appears without arguments. * The unary plus operator. ! * The 'U' integer constant suffix, or the 'F' or 'L' ! floating-point constant suffixes. (Traditional C does support ! the 'L' suffix on integer constants.) Note, these suffixes ! appear in macros defined in the system headers of most modern ! systems, e.g. the '_MIN'/'_MAX' macros in ''. Use ! of these macros in user code might normally lead to spurious ! warnings, however GCC's integrated preprocessor has enough ! context to avoid warning in these cases. * A function declared external in one block and then used after the end of the block. ! * A 'switch' statement has an operand of type 'long'. ! * A non-'static' function declaration follows a 'static' one. This construct is not accepted by some traditional C compilers. --- 4082,4116 ---- * In traditional C, some preprocessor directives did not exist. Traditional preprocessors only considered a line to be a ! directive if the `#' appeared in column 1 on the line. ! Therefore `-Wtraditional' warns about directives that ! traditional C understands but ignores because the `#' does ! not appear as the first character on the line. It also ! suggests you hide directives like `#pragma' not understood by traditional C by indenting them. Some traditional ! implementations do not recognize `#elif', so this option suggests avoiding it altogether. * A function-like macro that appears without arguments. * The unary plus operator. ! * The `U' integer constant suffix, or the `F' or `L' ! floating-point constant suffixes. (Traditional C does ! support the `L' suffix on integer constants.) Note, these ! suffixes appear in macros defined in the system headers of ! most modern systems, e.g. the `_MIN'/`_MAX' macros in ! `'. Use of these macros in user code might ! normally lead to spurious warnings, however GCC's integrated ! preprocessor has enough context to avoid warning in these ! cases. * A function declared external in one block and then used after the end of the block. ! * A `switch' statement has an operand of type `long'. ! * A non-`static' function declaration follows a `static' one. This construct is not accepted by some traditional C compilers. *************** compiler warns that an unrecognized opti *** 4101,4237 **** * Initialization of unions. If the initializer is zero, the warning is omitted. This is done under the assumption that the zero initializer in user code appears conditioned on e.g. ! '__STDC__' to avoid missing initializer warnings and relies on ! default initialization to zero in the traditional C case. * Conversions by prototypes between fixed/floating-point values and vice versa. The absence of these prototypes when ! compiling with traditional C causes serious problems. This is ! a subset of the possible conversion warnings; for the full set ! use '-Wtraditional-conversion'. * Use of ISO C style function definitions. This warning intentionally is _not_ issued for prototype declarations or ! variadic functions because these ISO C features appear in your ! code when using libiberty's traditional C compatibility ! macros, 'PARAMS' and 'VPARAMS'. This warning is also bypassed ! for nested functions because that feature is already a GCC ! extension and thus not relevant to traditional C compatibility. ! '-Wtraditional-conversion (C and Objective-C only)' ! Warn if a prototype causes a type conversion that is different from ! what would happen to the same argument in the absence of a prototype. This includes conversions of fixed point to floating ! and vice versa, and conversions changing the width or signedness of ! a fixed-point argument except when the same as the default promotion. ! '-Wdeclaration-after-statement (C and Objective-C only)' Warn when a declaration is found after a statement in a block. This construct, known from C++, was introduced with ISO C99 and is by default allowed in GCC. It is not supported by ISO C90 and was not supported by GCC versions before GCC 3.0. *Note Mixed Declarations::. ! '-Wundef' ! Warn if an undefined identifier is evaluated in an '#if' directive. ! '-Wno-endif-labels' ! Do not warn whenever an '#else' or an '#endif' are followed by text. ! '-Wshadow' Warn whenever a local variable or type declaration shadows another variable, parameter, type, or class member (in C++), or whenever a ! built-in function is shadowed. Note that in C++, the compiler warns if a local variable shadows an explicit typedef, but not if it shadows a struct/class/enum. ! '-Wlarger-than=LEN' Warn whenever an object of larger than LEN bytes is defined. ! '-Wframe-larger-than=LEN' ! Warn if the size of a function frame is larger than LEN bytes. The ! computation done to determine the stack frame size is approximate ! and not conservative. The actual requirements may be somewhat ! greater than LEN even if you do not get a warning. In addition, ! any space allocated via 'alloca', variable-length arrays, or ! related constructs is not included by the compiler when determining ! whether or not to issue a warning. ! '-Wno-free-nonheap-object' Do not warn when attempting to free an object that was not allocated on the heap. ! '-Wstack-usage=LEN' Warn if the stack usage of a function might be larger than LEN bytes. The computation done to determine the stack usage is ! conservative. Any space allocated via 'alloca', variable-length arrays, or related constructs is included by the compiler when determining whether or not to issue a warning. ! The message is in keeping with the output of '-fstack-usage'. * If the stack usage is fully static but exceeds the specified amount, it's: warning: stack usage is 1120 bytes * If the stack usage is (partly) dynamic but bounded, it's: warning: stack usage might be 1648 bytes * If the stack usage is (partly) dynamic and not bounded, it's: warning: stack usage might be unbounded ! '-Wunsafe-loop-optimizations' Warn if the loop cannot be optimized because the compiler cannot assume anything on the bounds of the loop indices. With ! '-funsafe-loop-optimizations' warn if the compiler makes such assumptions. ! '-Wno-pedantic-ms-format (MinGW targets only)' ! When used in combination with '-Wformat' and '-pedantic' without GNU extensions, this option disables the warnings about non-ISO ! 'printf' / 'scanf' format width specifiers 'I32', 'I64', and 'I' used on Windows targets, which depend on the MS runtime. ! '-Wpointer-arith' Warn about anything that depends on the "size of" a function type ! or of 'void'. GNU C assigns these types a size of 1, for ! convenience in calculations with 'void *' pointers and pointers to functions. In C++, warn also when an arithmetic operation involves ! 'NULL'. This warning is also enabled by '-Wpedantic'. ! '-Wtype-limits' Warn if a comparison is always true or always false due to the limited range of the data type, but do not warn for constant ! expressions. For example, warn if an unsigned variable is compared ! against zero with '<' or '>='. This warning is also enabled by ! '-Wextra'. ! '-Wbad-function-cast (C and Objective-C only)' Warn whenever a function call is cast to a non-matching type. For ! example, warn if 'int malloc()' is cast to 'anything *'. ! '-Wc++-compat (C and Objective-C only)' Warn about ISO C constructs that are outside of the common subset of ISO C and ISO C++, e.g. request for implicit conversion from ! 'void *' to a pointer to non-'void' type. ! '-Wc++11-compat (C++ and Objective-C++ only)' Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are ! keywords in ISO C++ 2011. This warning turns on '-Wnarrowing' and ! is enabled by '-Wall'. ! '-Wcast-qual' Warn whenever a pointer is cast so as to remove a type qualifier ! from the target type. For example, warn if a 'const char *' is ! cast to an ordinary 'char *'. Also warn when making a cast that introduces a type qualifier in an ! unsafe way. For example, casting 'char **' to 'const char **' is unsafe, as in this example: /* p is char ** value. */ --- 4130,4268 ---- * Initialization of unions. If the initializer is zero, the warning is omitted. This is done under the assumption that the zero initializer in user code appears conditioned on e.g. ! `__STDC__' to avoid missing initializer warnings and relies ! on default initialization to zero in the traditional C case. * Conversions by prototypes between fixed/floating-point values and vice versa. The absence of these prototypes when ! compiling with traditional C causes serious problems. This ! is a subset of the possible conversion warnings; for the full ! set use `-Wtraditional-conversion'. * Use of ISO C style function definitions. This warning intentionally is _not_ issued for prototype declarations or ! variadic functions because these ISO C features appear in ! your code when using libiberty's traditional C compatibility ! macros, `PARAMS' and `VPARAMS'. This warning is also ! bypassed for nested functions because that feature is already ! a GCC extension and thus not relevant to traditional C compatibility. ! `-Wtraditional-conversion (C and Objective-C only)' ! Warn if a prototype causes a type conversion that is different ! from what would happen to the same argument in the absence of a prototype. This includes conversions of fixed point to floating ! and vice versa, and conversions changing the width or signedness ! of a fixed-point argument except when the same as the default promotion. ! `-Wdeclaration-after-statement (C and Objective-C only)' Warn when a declaration is found after a statement in a block. This construct, known from C++, was introduced with ISO C99 and is by default allowed in GCC. It is not supported by ISO C90 and was not supported by GCC versions before GCC 3.0. *Note Mixed Declarations::. ! `-Wundef' ! Warn if an undefined identifier is evaluated in an `#if' directive. ! `-Wno-endif-labels' ! Do not warn whenever an `#else' or an `#endif' are followed by text. ! `-Wshadow' Warn whenever a local variable or type declaration shadows another variable, parameter, type, or class member (in C++), or whenever a ! built-in function is shadowed. Note that in C++, the compiler warns if a local variable shadows an explicit typedef, but not if it shadows a struct/class/enum. ! `-Wlarger-than=LEN' Warn whenever an object of larger than LEN bytes is defined. ! `-Wframe-larger-than=LEN' ! Warn if the size of a function frame is larger than LEN bytes. ! The computation done to determine the stack frame size is ! approximate and not conservative. The actual requirements may be ! somewhat greater than LEN even if you do not get a warning. In ! addition, any space allocated via `alloca', variable-length ! arrays, or related constructs is not included by the compiler when ! determining whether or not to issue a warning. ! `-Wno-free-nonheap-object' Do not warn when attempting to free an object that was not allocated on the heap. ! `-Wstack-usage=LEN' Warn if the stack usage of a function might be larger than LEN bytes. The computation done to determine the stack usage is ! conservative. Any space allocated via `alloca', variable-length arrays, or related constructs is included by the compiler when determining whether or not to issue a warning. ! The message is in keeping with the output of `-fstack-usage'. * If the stack usage is fully static but exceeds the specified amount, it's: warning: stack usage is 1120 bytes + * If the stack usage is (partly) dynamic but bounded, it's: warning: stack usage might be 1648 bytes + * If the stack usage is (partly) dynamic and not bounded, it's: warning: stack usage might be unbounded ! `-Wunsafe-loop-optimizations' Warn if the loop cannot be optimized because the compiler cannot assume anything on the bounds of the loop indices. With ! `-funsafe-loop-optimizations' warn if the compiler makes such assumptions. ! `-Wno-pedantic-ms-format (MinGW targets only)' ! When used in combination with `-Wformat' and `-pedantic' without GNU extensions, this option disables the warnings about non-ISO ! `printf' / `scanf' format width specifiers `I32', `I64', and `I' used on Windows targets, which depend on the MS runtime. ! `-Wpointer-arith' Warn about anything that depends on the "size of" a function type ! or of `void'. GNU C assigns these types a size of 1, for ! convenience in calculations with `void *' pointers and pointers to functions. In C++, warn also when an arithmetic operation involves ! `NULL'. This warning is also enabled by `-Wpedantic'. ! `-Wtype-limits' Warn if a comparison is always true or always false due to the limited range of the data type, but do not warn for constant ! expressions. For example, warn if an unsigned variable is ! compared against zero with `<' or `>='. This warning is also ! enabled by `-Wextra'. ! `-Wbad-function-cast (C and Objective-C only)' Warn whenever a function call is cast to a non-matching type. For ! example, warn if `int malloc()' is cast to `anything *'. ! `-Wc++-compat (C and Objective-C only)' Warn about ISO C constructs that are outside of the common subset of ISO C and ISO C++, e.g. request for implicit conversion from ! `void *' to a pointer to non-`void' type. ! `-Wc++11-compat (C++ and Objective-C++ only)' Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are ! keywords in ISO C++ 2011. This warning turns on `-Wnarrowing' and ! is enabled by `-Wall'. ! `-Wcast-qual' Warn whenever a pointer is cast so as to remove a type qualifier ! from the target type. For example, warn if a `const char *' is ! cast to an ordinary `char *'. Also warn when making a cast that introduces a type qualifier in an ! unsafe way. For example, casting `char **' to `const char **' is unsafe, as in this example: /* p is char ** value. */ *************** compiler warns that an unrecognized opti *** 4241,4422 **** /* Now char** pointer points to read-only memory. */ **p = 'b'; ! '-Wcast-align' ! Warn whenever a pointer is cast such that the required alignment of ! the target is increased. For example, warn if a 'char *' is cast ! to an 'int *' on machines where integers can only be accessed at ! two- or four-byte boundaries. ! '-Wwrite-strings' ! When compiling C, give string constants the type 'const ! char[LENGTH]' so that copying the address of one into a non-'const' ! 'char *' pointer produces a warning. These warnings help you find ! at compile time code that can try to write into a string constant, ! but only if you have been very careful about using 'const' in ! declarations and prototypes. Otherwise, it is just a nuisance. ! This is why we did not make '-Wall' request these warnings. When compiling C++, warn about the deprecated conversion from ! string literals to 'char *'. This warning is enabled by default for C++ programs. ! '-Wclobbered' ! Warn for variables that might be changed by 'longjmp' or 'vfork'. ! This warning is also enabled by '-Wextra'. ! '-Wconditionally-supported (C++ and Objective-C++ only)' Warn for conditionally-supported (C++11 [intro.defs]) constructs. ! '-Wconversion' ! Warn for implicit conversions that may alter a value. This ! includes conversions between real and integer, like 'abs (x)' when ! 'x' is 'double'; conversions between signed and unsigned, like ! 'unsigned ui = -1'; and conversions to smaller types, like 'sqrtf ! (M_PI)'. Do not warn for explicit casts like 'abs ((int) x)' and ! 'ui = (unsigned) -1', or if the value is not changed by the ! conversion like in 'abs (2.0)'. Warnings about conversions between ! signed and unsigned integers can be disabled by using ! '-Wno-sign-conversion'. For C++, also warn for confusing overload resolution for user-defined conversions; and conversions that never use a type ! conversion operator: conversions to 'void', the same type, a base ! class or a reference to them. Warnings about conversions between signed and unsigned integers are disabled by default in C++ unless ! '-Wsign-conversion' is explicitly enabled. ! '-Wno-conversion-null (C++ and Objective-C++ only)' ! Do not warn for conversions between 'NULL' and non-pointer types. ! '-Wconversion-null' is enabled by default. ! '-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)' Warn when a literal '0' is used as null pointer constant. This can ! be useful to facilitate the conversion to 'nullptr' in C++11. ! '-Wdate-time' ! Warn when macros '__TIME__', '__DATE__' or '__TIMESTAMP__' are encountered as they might prevent bit-wise-identical reproducible compilations. ! '-Wdelete-incomplete (C++ and Objective-C++ only)' Warn when deleting a pointer to incomplete type, which may cause undefined behavior at runtime. This warning is enabled by default. ! '-Wuseless-cast (C++ and Objective-C++ only)' Warn when an expression is casted to its own type. ! '-Wempty-body' ! Warn if an empty body occurs in an 'if', 'else' or 'do while' ! statement. This warning is also enabled by '-Wextra'. ! '-Wenum-compare' Warn about a comparison between values of different enumerated types. In C++ enumeral mismatches in conditional expressions are also diagnosed and the warning is enabled by default. In C this ! warning is enabled by '-Wall'. ! '-Wjump-misses-init (C, Objective-C only)' ! Warn if a 'goto' statement or a 'switch' statement jumps forward across the initialization of a variable, or jumps backward to a label after the variable has been initialized. This only warns about variables that are initialized when they are declared. This warning is only supported for C and Objective-C; in C++ this sort of branch is an error in any case. ! '-Wjump-misses-init' is included in '-Wc++-compat'. It can be ! disabled with the '-Wno-jump-misses-init' option. ! '-Wsign-compare' Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to ! unsigned. This warning is also enabled by '-Wextra'; to get the ! other warnings of '-Wextra' without this warning, use '-Wextra -Wno-sign-compare'. ! '-Wsign-conversion' Warn for implicit conversions that may change the sign of an integer value, like assigning a signed integer expression to an ! unsigned integer variable. An explicit cast silences the warning. ! In C, this option is enabled also by '-Wconversion'. ! '-Wfloat-conversion' Warn for implicit conversions that reduce the precision of a real value. This includes conversions from real to integer, and from higher precision real to lower precision real values. This option ! is also enabled by '-Wconversion'. ! '-Wsizeof-pointer-memaccess' Warn for suspicious length parameters to certain string and memory ! built-in functions if the argument uses 'sizeof'. This warning ! warns e.g. about 'memset (ptr, 0, sizeof (ptr));' if 'ptr' is not an array, but a pointer, and suggests a possible fix, or about ! 'memcpy (&foo, ptr, sizeof (&foo));'. This warning is enabled by ! '-Wall'. ! '-Waddress' ! Warn about suspicious uses of memory addresses. These include ! using the address of a function in a conditional expression, such ! as 'void func(void); if (func)', and comparisons against the memory ! address of a string literal, such as 'if (x == "abc")'. Such uses typically indicate a programmer error: the address of a function always evaluates to true, so their use in a conditional usually indicate that the programmer forgot the parentheses in a function call; and comparisons against string literals result in unspecified behavior and are not portable in C, so they usually indicate that ! the programmer intended to use 'strcmp'. This warning is enabled ! by '-Wall'. ! '-Wlogical-op' Warn about suspicious uses of logical operators in expressions. This includes using logical operators in contexts where a bit-wise operator is likely to be expected. ! '-Waggregate-return' Warn if any functions that return structures or unions are defined or called. (In languages where you can return an array, this also elicits a warning.) ! '-Wno-aggressive-loop-optimizations' Warn if in a loop with constant number of iterations the compiler detects undefined behavior in some statement during one or more of the iterations. ! '-Wno-attributes' ! Do not warn if an unexpected '__attribute__' is used, such as unrecognized attributes, function attributes applied to variables, etc. This does not stop errors for incorrect use of supported attributes. ! '-Wno-builtin-macro-redefined' Do not warn if certain built-in macros are redefined. This ! suppresses warnings for redefinition of '__TIMESTAMP__', ! '__TIME__', '__DATE__', '__FILE__', and '__BASE_FILE__'. ! '-Wstrict-prototypes (C and Objective-C only)' Warn if a function is declared or defined without specifying the argument types. (An old-style function definition is permitted without a warning if preceded by a declaration that specifies the argument types.) ! '-Wold-style-declaration (C and Objective-C only)' Warn for obsolescent usages, according to the C Standard, in a ! declaration. For example, warn if storage-class specifiers like ! 'static' are not the first things in a declaration. This warning ! is also enabled by '-Wextra'. ! '-Wold-style-definition (C and Objective-C only)' Warn if an old-style function definition is used. A warning is given even if there is a previous prototype. ! '-Wmissing-parameter-type (C and Objective-C only)' A function parameter is declared without a type specifier in K&R-style functions: void foo(bar) { } ! This warning is also enabled by '-Wextra'. ! '-Wmissing-prototypes (C and Objective-C only)' Warn if a global function is defined without a previous prototype declaration. This warning is issued even if the definition itself provides a prototype. Use this option to detect global functions --- 4272,4454 ---- /* Now char** pointer points to read-only memory. */ **p = 'b'; ! `-Wcast-align' ! Warn whenever a pointer is cast such that the required alignment ! of the target is increased. For example, warn if a `char *' is ! cast to an `int *' on machines where integers can only be accessed ! at two- or four-byte boundaries. ! `-Wwrite-strings' ! When compiling C, give string constants the type `const ! char[LENGTH]' so that copying the address of one into a ! non-`const' `char *' pointer produces a warning. These warnings ! help you find at compile time code that can try to write into a ! string constant, but only if you have been very careful about ! using `const' in declarations and prototypes. Otherwise, it is ! just a nuisance. This is why we did not make `-Wall' request these ! warnings. When compiling C++, warn about the deprecated conversion from ! string literals to `char *'. This warning is enabled by default for C++ programs. ! `-Wclobbered' ! Warn for variables that might be changed by `longjmp' or `vfork'. ! This warning is also enabled by `-Wextra'. ! `-Wconditionally-supported (C++ and Objective-C++ only)' Warn for conditionally-supported (C++11 [intro.defs]) constructs. ! `-Wconversion' ! Warn for implicit conversions that may alter a value. This includes ! conversions between real and integer, like `abs (x)' when `x' is ! `double'; conversions between signed and unsigned, like `unsigned ! ui = -1'; and conversions to smaller types, like `sqrtf (M_PI)'. ! Do not warn for explicit casts like `abs ((int) x)' and `ui = ! (unsigned) -1', or if the value is not changed by the conversion ! like in `abs (2.0)'. Warnings about conversions between signed ! and unsigned integers can be disabled by using ! `-Wno-sign-conversion'. For C++, also warn for confusing overload resolution for user-defined conversions; and conversions that never use a type ! conversion operator: conversions to `void', the same type, a base ! class or a reference to them. Warnings about conversions between signed and unsigned integers are disabled by default in C++ unless ! `-Wsign-conversion' is explicitly enabled. ! `-Wno-conversion-null (C++ and Objective-C++ only)' ! Do not warn for conversions between `NULL' and non-pointer types. ! `-Wconversion-null' is enabled by default. ! `-Wzero-as-null-pointer-constant (C++ and Objective-C++ only)' Warn when a literal '0' is used as null pointer constant. This can ! be useful to facilitate the conversion to `nullptr' in C++11. ! `-Wdate-time' ! Warn when macros `__TIME__', `__DATE__' or `__TIMESTAMP__' are encountered as they might prevent bit-wise-identical reproducible compilations. ! `-Wdelete-incomplete (C++ and Objective-C++ only)' Warn when deleting a pointer to incomplete type, which may cause undefined behavior at runtime. This warning is enabled by default. ! `-Wuseless-cast (C++ and Objective-C++ only)' Warn when an expression is casted to its own type. ! `-Wempty-body' ! Warn if an empty body occurs in an `if', `else' or `do while' ! statement. This warning is also enabled by `-Wextra'. ! `-Wenum-compare' Warn about a comparison between values of different enumerated types. In C++ enumeral mismatches in conditional expressions are also diagnosed and the warning is enabled by default. In C this ! warning is enabled by `-Wall'. ! `-Wjump-misses-init (C, Objective-C only)' ! Warn if a `goto' statement or a `switch' statement jumps forward across the initialization of a variable, or jumps backward to a label after the variable has been initialized. This only warns about variables that are initialized when they are declared. This warning is only supported for C and Objective-C; in C++ this sort of branch is an error in any case. ! `-Wjump-misses-init' is included in `-Wc++-compat'. It can be ! disabled with the `-Wno-jump-misses-init' option. ! `-Wsign-compare' Warn when a comparison between signed and unsigned values could produce an incorrect result when the signed value is converted to ! unsigned. This warning is also enabled by `-Wextra'; to get the ! other warnings of `-Wextra' without this warning, use `-Wextra -Wno-sign-compare'. ! `-Wsign-conversion' Warn for implicit conversions that may change the sign of an integer value, like assigning a signed integer expression to an ! unsigned integer variable. An explicit cast silences the warning. ! In C, this option is enabled also by `-Wconversion'. ! `-Wfloat-conversion' Warn for implicit conversions that reduce the precision of a real value. This includes conversions from real to integer, and from higher precision real to lower precision real values. This option ! is also enabled by `-Wconversion'. ! `-Wsizeof-pointer-memaccess' Warn for suspicious length parameters to certain string and memory ! built-in functions if the argument uses `sizeof'. This warning ! warns e.g. about `memset (ptr, 0, sizeof (ptr));' if `ptr' is not an array, but a pointer, and suggests a possible fix, or about ! `memcpy (&foo, ptr, sizeof (&foo));'. This warning is enabled by ! `-Wall'. ! `-Waddress' ! Warn about suspicious uses of memory addresses. These include using ! the address of a function in a conditional expression, such as ! `void func(void); if (func)', and comparisons against the memory ! address of a string literal, such as `if (x == "abc")'. Such uses typically indicate a programmer error: the address of a function always evaluates to true, so their use in a conditional usually indicate that the programmer forgot the parentheses in a function call; and comparisons against string literals result in unspecified behavior and are not portable in C, so they usually indicate that ! the programmer intended to use `strcmp'. This warning is enabled ! by `-Wall'. ! `-Wlogical-op' Warn about suspicious uses of logical operators in expressions. This includes using logical operators in contexts where a bit-wise operator is likely to be expected. ! `-Waggregate-return' Warn if any functions that return structures or unions are defined or called. (In languages where you can return an array, this also elicits a warning.) ! `-Wno-aggressive-loop-optimizations' Warn if in a loop with constant number of iterations the compiler detects undefined behavior in some statement during one or more of the iterations. ! `-Wno-attributes' ! Do not warn if an unexpected `__attribute__' is used, such as unrecognized attributes, function attributes applied to variables, etc. This does not stop errors for incorrect use of supported attributes. ! `-Wno-builtin-macro-redefined' Do not warn if certain built-in macros are redefined. This ! suppresses warnings for redefinition of `__TIMESTAMP__', ! `__TIME__', `__DATE__', `__FILE__', and `__BASE_FILE__'. ! `-Wstrict-prototypes (C and Objective-C only)' Warn if a function is declared or defined without specifying the argument types. (An old-style function definition is permitted without a warning if preceded by a declaration that specifies the argument types.) ! `-Wold-style-declaration (C and Objective-C only)' Warn for obsolescent usages, according to the C Standard, in a ! declaration. For example, warn if storage-class specifiers like ! `static' are not the first things in a declaration. This warning ! is also enabled by `-Wextra'. ! `-Wold-style-definition (C and Objective-C only)' Warn if an old-style function definition is used. A warning is given even if there is a previous prototype. ! `-Wmissing-parameter-type (C and Objective-C only)' A function parameter is declared without a type specifier in K&R-style functions: void foo(bar) { } ! This warning is also enabled by `-Wextra'. ! `-Wmissing-prototypes (C and Objective-C only)' Warn if a global function is defined without a previous prototype declaration. This warning is issued even if the definition itself provides a prototype. Use this option to detect global functions *************** compiler warns that an unrecognized opti *** 4424,4445 **** This option is not valid for C++ because all function declarations provide prototypes and a non-matching declaration will declare an overload rather than conflict with an earlier declaration. Use ! '-Wmissing-declarations' to detect missing declarations in C++. ! '-Wmissing-declarations' Warn if a global function is defined without a previous declaration. Do so even if the definition itself provides a ! prototype. Use this option to detect global functions that are not ! declared in header files. In C, no warnings are issued for functions with previous non-prototype declarations; use ! '-Wmissing-prototype' to detect missing prototypes. In C++, no warnings are issued for function templates, or for inline functions, or for functions in anonymous namespaces. ! '-Wmissing-field-initializers' Warn if a structure's initializer has some fields missing. For ! example, the following code causes such a warning, because 'x.h' is ! implicitly zero: struct s { int f, g, h; }; struct s x = { 3, 4 }; --- 4456,4477 ---- This option is not valid for C++ because all function declarations provide prototypes and a non-matching declaration will declare an overload rather than conflict with an earlier declaration. Use ! `-Wmissing-declarations' to detect missing declarations in C++. ! `-Wmissing-declarations' Warn if a global function is defined without a previous declaration. Do so even if the definition itself provides a ! prototype. Use this option to detect global functions that are ! not declared in header files. In C, no warnings are issued for functions with previous non-prototype declarations; use ! `-Wmissing-prototype' to detect missing prototypes. In C++, no warnings are issued for function templates, or for inline functions, or for functions in anonymous namespaces. ! `-Wmissing-field-initializers' Warn if a structure's initializer has some fields missing. For ! example, the following code causes such a warning, because `x.h' ! is implicitly zero: struct s { int f, g, h; }; struct s x = { 3, 4 }; *************** compiler warns that an unrecognized opti *** 4450,4540 **** struct s { int f, g, h; }; struct s x = { .f = 3, .g = 4 }; ! This warning is included in '-Wextra'. To get other '-Wextra' ! warnings without this one, use '-Wextra -Wno-missing-field-initializers'. ! '-Wno-multichar' ! Do not warn if a multicharacter constant (''FOOF'') is used. Usually they indicate a typo in the user's code, as they have implementation-defined values, and should not be used in portable code. ! '-Wnormalized=' In ISO C and ISO C++, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic ASCII character set are used, you can have two different character sequences that look the same. To avoid confusion, the ISO 10646 standard sets out some "normalization rules" which when applied ensure that two sequences ! that look the same are turned into the same sequence. GCC can warn ! you if you are using identifiers that have not been normalized; ! this option controls that warning. There are four levels of warning supported by GCC. The default is ! '-Wnormalized=nfc', which warns about any identifier that is not in ! the ISO 10646 "C" normalized form, "NFC". NFC is the recommended ! form for most uses. Unfortunately, there are some characters allowed in identifiers by ISO C and ISO C++ that, when turned into NFC, are not allowed in identifiers. That is, there's no way to use these symbols in portable ISO C or C++ and have all your identifiers in NFC. ! '-Wnormalized=id' suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. You can switch the warning off for all characters by writing ! '-Wnormalized=none'. You should only do this if you are using some ! other normalization scheme (like "D"), because otherwise you can ! easily create bugs that are literally impossible to see. Some characters in ISO 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once ! formatting has been applied. For instance '\u207F', "SUPERSCRIPT ! LATIN SMALL LETTER N", displays just like a regular 'n' that has been placed in a superscript. ISO 10646 defines the "NFKC" normalization scheme to convert all these into a standard form as well, and GCC warns if your code is not in NFKC if you use ! '-Wnormalized=nfkc'. This warning is comparable to warning about every identifier that contains the letter O because it might be confused with the digit 0, and so is not the default, but may be useful as a local coding convention if the programming environment cannot be fixed to display these characters distinctly. ! '-Wno-deprecated' Do not warn about usage of deprecated features. *Note Deprecated Features::. ! '-Wno-deprecated-declarations' Do not warn about uses of functions (*note Function Attributes::), variables (*note Variable Attributes::), and types (*note Type ! Attributes::) marked as deprecated by using the 'deprecated' attribute. ! '-Wno-overflow' Do not warn about compile-time overflow in constant expressions. ! '-Wopenmp-simd' Warn if the vectorizer cost model overrides the OpenMP or the Cilk ! Plus simd directive set by user. The '-fsimd-cost-model=unlimited' ! can be used to relax the cost model. ! '-Woverride-init (C and Objective-C only)' Warn if an initialized field without side effects is overridden when using designated initializers (*note Designated Initializers: Designated Inits.). ! This warning is included in '-Wextra'. To get other '-Wextra' ! warnings without this one, use '-Wextra -Wno-override-init'. ! '-Wpacked' Warn if a structure is given the packed attribute, but the packed attribute has no effect on the layout or size of the structure. Such structures may be mis-aligned for little benefit. For ! instance, in this code, the variable 'f.x' in 'struct bar' is ! misaligned even though 'struct bar' does not itself have the packed ! attribute: struct foo { int x; --- 4482,4572 ---- struct s { int f, g, h; }; struct s x = { .f = 3, .g = 4 }; ! This warning is included in `-Wextra'. To get other `-Wextra' ! warnings without this one, use `-Wextra -Wno-missing-field-initializers'. ! `-Wno-multichar' ! Do not warn if a multicharacter constant (`'FOOF'') is used. Usually they indicate a typo in the user's code, as they have implementation-defined values, and should not be used in portable code. ! `-Wnormalized=' In ISO C and ISO C++, two identifiers are different if they are different sequences of characters. However, sometimes when characters outside the basic ASCII character set are used, you can have two different character sequences that look the same. To avoid confusion, the ISO 10646 standard sets out some "normalization rules" which when applied ensure that two sequences ! that look the same are turned into the same sequence. GCC can ! warn you if you are using identifiers that have not been ! normalized; this option controls that warning. There are four levels of warning supported by GCC. The default is ! `-Wnormalized=nfc', which warns about any identifier that is not ! in the ISO 10646 "C" normalized form, "NFC". NFC is the ! recommended form for most uses. Unfortunately, there are some characters allowed in identifiers by ISO C and ISO C++ that, when turned into NFC, are not allowed in identifiers. That is, there's no way to use these symbols in portable ISO C or C++ and have all your identifiers in NFC. ! `-Wnormalized=id' suppresses the warning for these characters. It is hoped that future versions of the standards involved will correct this, which is why this option is not the default. You can switch the warning off for all characters by writing ! `-Wnormalized=none'. You should only do this if you are using ! some other normalization scheme (like "D"), because otherwise you ! can easily create bugs that are literally impossible to see. Some characters in ISO 10646 have distinct meanings but look identical in some fonts or display methodologies, especially once ! formatting has been applied. For instance `\u207F', "SUPERSCRIPT ! LATIN SMALL LETTER N", displays just like a regular `n' that has been placed in a superscript. ISO 10646 defines the "NFKC" normalization scheme to convert all these into a standard form as well, and GCC warns if your code is not in NFKC if you use ! `-Wnormalized=nfkc'. This warning is comparable to warning about every identifier that contains the letter O because it might be confused with the digit 0, and so is not the default, but may be useful as a local coding convention if the programming environment cannot be fixed to display these characters distinctly. ! `-Wno-deprecated' Do not warn about usage of deprecated features. *Note Deprecated Features::. ! `-Wno-deprecated-declarations' Do not warn about uses of functions (*note Function Attributes::), variables (*note Variable Attributes::), and types (*note Type ! Attributes::) marked as deprecated by using the `deprecated' attribute. ! `-Wno-overflow' Do not warn about compile-time overflow in constant expressions. ! `-Wopenmp-simd' Warn if the vectorizer cost model overrides the OpenMP or the Cilk ! Plus simd directive set by user. The ! `-fsimd-cost-model=unlimited' can be used to relax the cost model. ! `-Woverride-init (C and Objective-C only)' Warn if an initialized field without side effects is overridden when using designated initializers (*note Designated Initializers: Designated Inits.). ! This warning is included in `-Wextra'. To get other `-Wextra' ! warnings without this one, use `-Wextra -Wno-override-init'. ! `-Wpacked' Warn if a structure is given the packed attribute, but the packed attribute has no effect on the layout or size of the structure. Such structures may be mis-aligned for little benefit. For ! instance, in this code, the variable `f.x' in `struct bar' is ! misaligned even though `struct bar' does not itself have the ! packed attribute: struct foo { int x; *************** compiler warns that an unrecognized opti *** 4545,4557 **** struct foo f; }; ! '-Wpacked-bitfield-compat' ! The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed' attribute on ! bit-fields of type 'char'. This has been fixed in GCC 4.4 but the ! change can lead to differences in the structure layout. GCC informs you when the offset of such a field has changed in GCC 4.4. ! For example there is no longer a 4-bit padding between field 'a' ! and 'b' in this structure: struct foo { --- 4577,4589 ---- struct foo f; }; ! `-Wpacked-bitfield-compat' ! The 4.1, 4.2 and 4.3 series of GCC ignore the `packed' attribute ! on bit-fields of type `char'. This has been fixed in GCC 4.4 but ! the change can lead to differences in the structure layout. GCC informs you when the offset of such a field has changed in GCC 4.4. ! For example there is no longer a 4-bit padding between field `a' ! and `b' in this structure: struct foo { *************** compiler warns that an unrecognized opti *** 4560,4587 **** } __attribute__ ((packed)); This warning is enabled by default. Use ! '-Wno-packed-bitfield-compat' to disable this warning. ! '-Wpadded' Warn if padding is included in a structure, either to align an element of the structure or to align the whole structure. Sometimes when this happens it is possible to rearrange the fields of the structure to reduce the padding and so make the structure smaller. ! '-Wredundant-decls' ! Warn if anything is declared more than once in the same scope, even ! in cases where multiple declaration is valid and changes nothing. ! '-Wnested-externs (C and Objective-C only)' ! Warn if an 'extern' declaration is encountered within a function. ! '-Wno-inherited-variadic-ctor' Suppress warnings about use of C++11 inheriting constructors when the base class inherited from has a C variadic constructor; the warning is on by default because the ellipsis is not inherited. ! '-Winline' Warn if a function that is declared as inline cannot be inlined. Even with this option, the compiler does not warn about failures to inline functions declared in system headers. --- 4592,4620 ---- } __attribute__ ((packed)); This warning is enabled by default. Use ! `-Wno-packed-bitfield-compat' to disable this warning. ! `-Wpadded' Warn if padding is included in a structure, either to align an element of the structure or to align the whole structure. Sometimes when this happens it is possible to rearrange the fields of the structure to reduce the padding and so make the structure smaller. ! `-Wredundant-decls' ! Warn if anything is declared more than once in the same scope, ! even in cases where multiple declaration is valid and changes ! nothing. ! `-Wnested-externs (C and Objective-C only)' ! Warn if an `extern' declaration is encountered within a function. ! `-Wno-inherited-variadic-ctor' Suppress warnings about use of C++11 inheriting constructors when the base class inherited from has a C variadic constructor; the warning is on by default because the ellipsis is not inherited. ! `-Winline' Warn if a function that is declared as inline cannot be inlined. Even with this option, the compiler does not warn about failures to inline functions declared in system headers. *************** compiler warns that an unrecognized opti *** 4591,4672 **** account the size of the function being inlined and the amount of inlining that has already been done in the current function. Therefore, seemingly insignificant changes in the source program ! can cause the warnings produced by '-Winline' to appear or disappear. ! '-Wno-invalid-offsetof (C++ and Objective-C++ only)' ! Suppress warnings from applying the 'offsetof' macro to a non-POD ! type. According to the 1998 ISO C++ standard, applying 'offsetof' to a non-POD type is undefined. In existing C++ implementations, ! however, 'offsetof' typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple ! 'struct' that fails to be a POD type only by virtue of having a constructor). This flag is for users who are aware that they are ! writing nonportable code and who have deliberately chosen to ignore ! the warning about it. ! The restrictions on 'offsetof' may be relaxed in a future version of the C++ standard. ! '-Wno-int-to-pointer-cast' Suppress warnings from casts to pointer type of an integer of a ! different size. In C++, casting to a pointer type of smaller size ! is an error. 'Wint-to-pointer-cast' is enabled by default. ! '-Wno-pointer-to-int-cast (C and Objective-C only)' Suppress warnings from casts from a pointer to an integer type of a different size. ! '-Winvalid-pch' ! Warn if a precompiled header (*note Precompiled Headers::) is found ! in the search path but can't be used. ! '-Wlong-long' ! Warn if 'long long' type is used. This is enabled by either ! '-Wpedantic' or '-Wtraditional' in ISO C90 and C++98 modes. To ! inhibit the warning messages, use '-Wno-long-long'. ! '-Wvariadic-macros' Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit the warning messages, use ! '-Wno-variadic-macros'. ! '-Wvarargs' Warn upon questionable usage of the macros used to handle variable ! arguments like 'va_start'. This is default. To inhibit the ! warning messages, use '-Wno-varargs'. ! '-Wvector-operation-performance' Warn if vector operation is not implemented via SIMD capabilities of the architecture. Mainly useful for the performance tuning. ! Vector operation can be implemented 'piecewise', which means that ! the scalar operation is performed on every vector element; 'in parallel', which means that the vector operation is implemented using scalars of wider type, which normally is more performance ! efficient; and 'as a single scalar', which means that vector fits into a scalar type. ! '-Wno-virtual-move-assign' Suppress warnings about inheriting from a virtual base with a non-trivial C++11 move assignment operator. This is dangerous because if the virtual base is reachable along more than one path, ! it will be moved multiple times, which can mean both objects end up ! in the moved-from state. If the move assignment operator is written to avoid moving from a moved-from object, this warning can be disabled. ! '-Wvla' ! Warn if variable length array is used in the code. '-Wno-vla' ! prevents the '-Wpedantic' warning of the variable length array. ! '-Wvolatile-register-var' Warn if a register variable is declared volatile. The volatile modifier does not inhibit all optimizations that may eliminate ! reads and/or writes to register variables. This warning is enabled ! by '-Wall'. ! '-Wdisabled-optimization' Warn if a requested optimization pass is disabled. This warning does not generally indicate that there is anything wrong with your code; it merely indicates that GCC's optimizers are unable to --- 4624,4705 ---- account the size of the function being inlined and the amount of inlining that has already been done in the current function. Therefore, seemingly insignificant changes in the source program ! can cause the warnings produced by `-Winline' to appear or disappear. ! `-Wno-invalid-offsetof (C++ and Objective-C++ only)' ! Suppress warnings from applying the `offsetof' macro to a non-POD ! type. According to the 1998 ISO C++ standard, applying `offsetof' to a non-POD type is undefined. In existing C++ implementations, ! however, `offsetof' typically gives meaningful results even when applied to certain kinds of non-POD types (such as a simple ! `struct' that fails to be a POD type only by virtue of having a constructor). This flag is for users who are aware that they are ! writing nonportable code and who have deliberately chosen to ! ignore the warning about it. ! The restrictions on `offsetof' may be relaxed in a future version of the C++ standard. ! `-Wno-int-to-pointer-cast' Suppress warnings from casts to pointer type of an integer of a ! different size. In C++, casting to a pointer type of smaller size ! is an error. `Wint-to-pointer-cast' is enabled by default. ! `-Wno-pointer-to-int-cast (C and Objective-C only)' Suppress warnings from casts from a pointer to an integer type of a different size. ! `-Winvalid-pch' ! Warn if a precompiled header (*note Precompiled Headers::) is ! found in the search path but can't be used. ! `-Wlong-long' ! Warn if `long long' type is used. This is enabled by either ! `-Wpedantic' or `-Wtraditional' in ISO C90 and C++98 modes. To ! inhibit the warning messages, use `-Wno-long-long'. ! `-Wvariadic-macros' Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU alternate syntax when in pedantic ISO C99 mode. This is default. To inhibit the warning messages, use ! `-Wno-variadic-macros'. ! `-Wvarargs' Warn upon questionable usage of the macros used to handle variable ! arguments like `va_start'. This is default. To inhibit the ! warning messages, use `-Wno-varargs'. ! `-Wvector-operation-performance' Warn if vector operation is not implemented via SIMD capabilities of the architecture. Mainly useful for the performance tuning. ! Vector operation can be implemented `piecewise', which means that ! the scalar operation is performed on every vector element; `in parallel', which means that the vector operation is implemented using scalars of wider type, which normally is more performance ! efficient; and `as a single scalar', which means that vector fits into a scalar type. ! `-Wno-virtual-move-assign' Suppress warnings about inheriting from a virtual base with a non-trivial C++11 move assignment operator. This is dangerous because if the virtual base is reachable along more than one path, ! it will be moved multiple times, which can mean both objects end ! up in the moved-from state. If the move assignment operator is written to avoid moving from a moved-from object, this warning can be disabled. ! `-Wvla' ! Warn if variable length array is used in the code. `-Wno-vla' ! prevents the `-Wpedantic' warning of the variable length array. ! `-Wvolatile-register-var' Warn if a register variable is declared volatile. The volatile modifier does not inhibit all optimizations that may eliminate ! reads and/or writes to register variables. This warning is ! enabled by `-Wall'. ! `-Wdisabled-optimization' Warn if a requested optimization pass is disabled. This warning does not generally indicate that there is anything wrong with your code; it merely indicates that GCC's optimizers are unable to *************** compiler warns that an unrecognized opti *** 4675,4692 **** the optimization itself is likely to take inordinate amounts of time. ! '-Wpointer-sign (C and Objective-C only)' Warn for pointer argument passing or assignment with different signedness. This option is only supported for C and Objective-C. ! It is implied by '-Wall' and by '-Wpedantic', which can be disabled ! with '-Wno-pointer-sign'. ! '-Wstack-protector' ! This option is only active when '-fstack-protector' is active. It warns about functions that are not protected against stack smashing. ! '-Woverlength-strings' Warn about string constants that are longer than the "minimum maximum" length specified in the C standard. Modern compilers generally allow string constants that are much longer than the --- 4708,4725 ---- the optimization itself is likely to take inordinate amounts of time. ! `-Wpointer-sign (C and Objective-C only)' Warn for pointer argument passing or assignment with different signedness. This option is only supported for C and Objective-C. ! It is implied by `-Wall' and by `-Wpedantic', which can be ! disabled with `-Wno-pointer-sign'. ! `-Wstack-protector' ! This option is only active when `-fstack-protector' is active. It warns about functions that are not protected against stack smashing. ! `-Woverlength-strings' Warn about string constants that are longer than the "minimum maximum" length specified in the C standard. Modern compilers generally allow string constants that are much longer than the *************** compiler warns that an unrecognized opti *** 4698,4712 **** in C99, it was raised to 4095. C++98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in C++. ! This option is implied by '-Wpedantic', and can be disabled with ! '-Wno-overlength-strings'. ! ! '-Wunsuffixed-float-constants (C and Objective-C only)' Issue a warning for any floating constant that does not have a ! suffix. When used together with '-Wsystem-headers' it warns about such constants in system header files. This can be useful when ! preparing code to use with the 'FLOAT_CONST_DECIMAL64' pragma from the decimal floating-point extension to C99.  --- 4731,4744 ---- in C99, it was raised to 4095. C++98 does not specify a normative minimum maximum, so we do not diagnose overlength strings in C++. ! This option is implied by `-Wpedantic', and can be disabled with ! `-Wno-overlength-strings'. + `-Wunsuffixed-float-constants (C and Objective-C only)' Issue a warning for any floating constant that does not have a ! suffix. When used together with `-Wsystem-headers' it warns about such constants in system header files. This can be useful when ! preparing code to use with the `FLOAT_CONST_DECIMAL64' pragma from the decimal floating-point extension to C99.  *************** File: gcc.info, Node: Debugging Options *** 4718,4737 **** GCC has various special options that are used for debugging either your program or GCC: ! '-g' Produce debugging information in the operating system's native format (stabs, COFF, XCOFF, or DWARF 2). GDB can work with this debugging information. ! On most systems that use stabs format, '-g' enables use of extra debugging information that only GDB can use; this extra information makes debugging work better in GDB but probably makes other debuggers crash or refuse to read the program. If you want to control for certain whether to generate the extra information, use ! '-gstabs+', '-gstabs', '-gxcoff+', '-gxcoff', or '-gvms' (see below). ! GCC allows you to use '-g' with '-O'. The shortcuts taken by optimized code may occasionally produce surprising results: some variables you declared may not exist at all; flow of control may briefly move where you did not expect it; some statements may not --- 4750,4769 ---- GCC has various special options that are used for debugging either your program or GCC: ! `-g' Produce debugging information in the operating system's native format (stabs, COFF, XCOFF, or DWARF 2). GDB can work with this debugging information. ! On most systems that use stabs format, `-g' enables use of extra debugging information that only GDB can use; this extra information makes debugging work better in GDB but probably makes other debuggers crash or refuse to read the program. If you want to control for certain whether to generate the extra information, use ! `-gstabs+', `-gstabs', `-gxcoff+', `-gxcoff', or `-gvms' (see below). ! GCC allows you to use `-g' with `-O'. The shortcuts taken by optimized code may occasionally produce surprising results: some variables you declared may not exist at all; flow of control may briefly move where you did not expect it; some statements may not *************** program or GCC: *** 4746,4818 **** The following options are useful when GCC is generated with the capability for more than one debugging format. ! '-gsplit-dwarf' Separate as much dwarf debugging information as possible into a separate output file with the extension .dwo. This option allows the build system to avoid linking files with debug information. To be useful, this option requires a debugger capable of reading .dwo files. ! '-ggdb' Produce debugging information for use by GDB. This means to use ! the most expressive format available (DWARF 2, stabs, or the native ! format if neither of those are supported), including GDB extensions ! if at all possible. ! '-gpubnames' Generate dwarf .debug_pubnames and .debug_pubtypes sections. ! '-ggnu-pubnames' Generate .debug_pubnames and .debug_pubtypes sections in a format suitable for conversion into a GDB index. This option is only useful with a linker that can produce GDB index version 7. ! '-gstabs' Produce debugging information in stabs format (if that is ! supported), without GDB extensions. This is the format used by DBX ! on most BSD systems. On MIPS, Alpha and System V Release 4 systems ! this option produces stabs debugging output that is not understood ! by DBX or SDB. On System V Release 4 systems this option requires ! the GNU assembler. ! '-feliminate-unused-debug-symbols' Produce debugging information in stabs format (if that is supported), for only symbols that are actually used. ! '-femit-class-debug-always' Instead of emitting debugging information for a C++ class in only ! one object file, emit it in all object files using the class. This ! option should be used only with debuggers that are unable to handle ! the way GCC normally emits debugging information for classes ! because using this option increases the size of debugging information by as much as a factor of two. ! '-fdebug-types-section' When using DWARF Version 4 or higher, type DIEs can be put into ! their own '.debug_types' section instead of making them part of the ! '.debug_info' section. It is more efficient to put them in a separate comdat sections since the linker can then remove ! duplicates. But not all DWARF consumers support '.debug_types' ! sections yet and on some objects '.debug_types' produces larger instead of smaller debugging information. ! '-gstabs+' Produce debugging information in stabs format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program. ! '-gcoff' Produce debugging information in COFF format (if that is supported). This is the format used by SDB on most System V systems prior to System V Release 4. ! '-gxcoff' Produce debugging information in XCOFF format (if that is supported). This is the format used by the DBX debugger on IBM RS/6000 systems. ! '-gxcoff+' Produce debugging information in XCOFF format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make --- 4778,4850 ---- The following options are useful when GCC is generated with the capability for more than one debugging format. ! `-gsplit-dwarf' Separate as much dwarf debugging information as possible into a separate output file with the extension .dwo. This option allows the build system to avoid linking files with debug information. To be useful, this option requires a debugger capable of reading .dwo files. ! `-ggdb' Produce debugging information for use by GDB. This means to use ! the most expressive format available (DWARF 2, stabs, or the ! native format if neither of those are supported), including GDB ! extensions if at all possible. ! `-gpubnames' Generate dwarf .debug_pubnames and .debug_pubtypes sections. ! `-ggnu-pubnames' Generate .debug_pubnames and .debug_pubtypes sections in a format suitable for conversion into a GDB index. This option is only useful with a linker that can produce GDB index version 7. ! `-gstabs' Produce debugging information in stabs format (if that is ! supported), without GDB extensions. This is the format used by ! DBX on most BSD systems. On MIPS, Alpha and System V Release 4 ! systems this option produces stabs debugging output that is not ! understood by DBX or SDB. On System V Release 4 systems this ! option requires the GNU assembler. ! `-feliminate-unused-debug-symbols' Produce debugging information in stabs format (if that is supported), for only symbols that are actually used. ! `-femit-class-debug-always' Instead of emitting debugging information for a C++ class in only ! one object file, emit it in all object files using the class. ! This option should be used only with debuggers that are unable to ! handle the way GCC normally emits debugging information for ! classes because using this option increases the size of debugging information by as much as a factor of two. ! `-fdebug-types-section' When using DWARF Version 4 or higher, type DIEs can be put into ! their own `.debug_types' section instead of making them part of the ! `.debug_info' section. It is more efficient to put them in a separate comdat sections since the linker can then remove ! duplicates. But not all DWARF consumers support `.debug_types' ! sections yet and on some objects `.debug_types' produces larger instead of smaller debugging information. ! `-gstabs+' Produce debugging information in stabs format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make other debuggers crash or refuse to read the program. ! `-gcoff' Produce debugging information in COFF format (if that is supported). This is the format used by SDB on most System V systems prior to System V Release 4. ! `-gxcoff' Produce debugging information in XCOFF format (if that is supported). This is the format used by the DBX debugger on IBM RS/6000 systems. ! `-gxcoff+' Produce debugging information in XCOFF format (if that is supported), using GNU extensions understood only by the GNU debugger (GDB). The use of these extensions is likely to make *************** program or GCC: *** 4820,4826 **** assemblers other than the GNU assembler (GAS) to fail with an error. ! '-gdwarf-VERSION' Produce debugging information in DWARF format (if that is supported). The value of VERSION may be either 2, 3 or 4; the default version for most targets is 4. --- 4852,4858 ---- assemblers other than the GNU assembler (GAS) to fail with an error. ! `-gdwarf-VERSION' Produce debugging information in DWARF format (if that is supported). The value of VERSION may be either 2, 3 or 4; the default version for most targets is 4. *************** program or GCC: *** 4828,5058 **** Note that with DWARF Version 2, some ports require and always use some non-conflicting DWARF 3 extensions in the unwind tables. ! Version 4 may require GDB 7.0 and '-fvar-tracking-assignments' for maximum benefit. ! '-grecord-gcc-switches' This switch causes the command-line options used to invoke the compiler that may affect code generation to be appended to the DW_AT_producer attribute in DWARF debugging information. The options are concatenated with spaces separating them from each other and from the compiler version. See also ! '-frecord-gcc-switches' for another way of storing compiler options ! into the object file. This is the default. ! '-gno-record-gcc-switches' Disallow appending command-line options to the DW_AT_producer attribute in DWARF debugging information. ! '-gstrict-dwarf' Disallow using extensions of later DWARF standard version than ! selected with '-gdwarf-VERSION'. On most targets using non-conflicting DWARF extensions from later standard versions is allowed. ! '-gno-strict-dwarf' Allow using extensions of later DWARF standard version than ! selected with '-gdwarf-VERSION'. ! '-gvms' Produce debugging information in Alpha/VMS debug format (if that is supported). This is the format used by DEBUG on Alpha/VMS systems. ! '-gLEVEL' ! '-ggdbLEVEL' ! '-gstabsLEVEL' ! '-gcoffLEVEL' ! '-gxcoffLEVEL' ! '-gvmsLEVEL' Request debugging information and also use LEVEL to specify how much information. The default level is 2. ! Level 0 produces no debug information at all. Thus, '-g0' negates ! '-g'. Level 1 produces minimal information, enough for making backtraces in parts of the program that you don't plan to debug. This ! includes descriptions of functions and external variables, and line ! number tables, but no information about local variables. Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers support macro ! expansion when you use '-g3'. ! '-gdwarf-2' does not accept a concatenated debug level, because GCC ! used to support an option '-gdwarf' that meant to generate debug ! information in version 1 of the DWARF format (which is very different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be ! changed now. Instead use an additional '-gLEVEL' option to change the debug level for DWARF. ! '-gtoggle' Turn off generation of debug info, if leaving out this option generates it, or turn it on at level 2 otherwise. The position of this argument in the command line does not matter; it takes effect ! after all other options are processed, and it does so only once, no ! matter how many times it is given. This is mainly intended to be ! used with '-fcompare-debug'. ! '-fsanitize=address' Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. See ! for more details. ! The run-time behavior can be influenced using the 'ASAN_OPTIONS' ! environment variable; see ! for a list of supported options. ! '-fsanitize=kernel-address' Enable AddressSanitizer for Linux kernel. See ! ! for more details. ! '-fsanitize=thread' Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect data race bugs. See ! for more details. The ! run-time behavior can be influenced using the 'TSAN_OPTIONS' ! environment variable; see ! for a list ! of supported options. ! '-fsanitize=leak' Enable LeakSanitizer, a memory leak detector. This option only matters for linking of executables and if neither ! '-fsanitize=address' nor '-fsanitize=thread' is used. In that case ! it will link the executable against a library that overrides ! 'malloc' and other allocator functions. See ! for more details. The run-time behavior can be influenced using ! the 'LSAN_OPTIONS' environment variable. ! '-fsanitize=undefined' Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Various computations will be instrumented to detect undefined behavior at runtime. Current suboptions are: ! '-fsanitize=shift' ! This option enables checking that the result of a shift operation is not undefined. Note that what exactly is considered undefined differs slightly between C and C++, as well as between ISO C90 and C99, etc. ! '-fsanitize=integer-divide-by-zero' ! ! Detect integer division by zero as well as 'INT_MIN / -1' division. ! '-fsanitize=unreachable' ! With this option, the compiler will turn the ! '__builtin_unreachable' call into a diagnostics message call ! instead. When reaching the '__builtin_unreachable' call, the behavior is undefined. ! '-fsanitize=vla-bound' ! ! This option instructs the compiler to check that the size of a ! variable length array is positive. This option does not have ! any effect in '-std=c++1y' mode, as the standard requires the ! exception be thrown instead. ! ! '-fsanitize=null' This option enables pointer checking. Particularly, the application built with this option turned on will issue an error message when it tries to dereference a NULL pointer, or if a reference (possibly an rvalue reference) is bound to a NULL pointer. ! '-fsanitize=return' ! ! This option enables return statement checking. Programs built ! with this option turned on will issue an error message when ! the end of a non-void function is reached without actually ! returning a value. This option works in C++ only. ! ! '-fsanitize=signed-integer-overflow' This option enables signed integer overflow checking. We ! check that the result of '+', '*', and both unary and binary ! '-' does not overflow in the signed arithmetics. Note, integer promotion rules must be taken into account. That is, the following is not an overflow: signed char a = SCHAR_MAX; a++; ! While '-ftrapv' causes traps for signed overflows to be emitted, ! '-fsanitize=undefined' gives a diagnostic message. This currently works only for the C family of languages. ! '-fdump-final-insns[=FILE]' Dump the final internal representation (RTL) to FILE. If the ! optional argument is omitted (or if FILE is '.'), the name of the ! dump file is determined by appending '.gkd' to the compilation output file name. ! '-fcompare-debug[=OPTS]' If no error occurs during compilation, run the compiler a second ! time, adding OPTS and '-fcompare-debug-second' to the arguments passed to the second compilation. Dump the final internal representation in both compilations, and print an error if they differ. ! If the equal sign is omitted, the default '-gtoggle' is used. ! The environment variable 'GCC_COMPARE_DEBUG', if defined, non-empty ! and nonzero, implicitly enables '-fcompare-debug'. If ! 'GCC_COMPARE_DEBUG' is defined to a string starting with a dash, ! then it is used for OPTS, otherwise the default '-gtoggle' is used. ! '-fcompare-debug=', with the equal sign but without OPTS, is ! equivalent to '-fno-compare-debug', which disables the dumping of the final representation and the second compilation, preventing ! even 'GCC_COMPARE_DEBUG' from taking effect. ! To verify full coverage during '-fcompare-debug' testing, set ! 'GCC_COMPARE_DEBUG' to say '-fcompare-debug-not-overridden', which GCC rejects as an invalid option in any actual compilation (rather than preprocessing, assembly or linking). To get just a warning, ! setting 'GCC_COMPARE_DEBUG' to '-w%n-fcompare-debug not overridden' ! will do. ! '-fcompare-debug-second' This option is implicitly passed to the compiler for the second ! compilation requested by '-fcompare-debug', along with options to silence warnings, and omitting other options that would cause side-effect compiler outputs to files or to the standard output. Dump files and preserved temporary files are renamed so as to ! contain the '.gk' additional extension during the second compilation, to avoid overwriting those generated by the first. When this option is passed to the compiler driver, it causes the _first_ compilation to be skipped, which makes it useful for little other than debugging the compiler proper. ! '-feliminate-dwarf2-dups' Compress DWARF 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating DWARF 2 debugging information with '-gdwarf-2'. ! '-femit-struct-debug-baseonly' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the struct is defined. This option substantially reduces the size of debugging information, but at significant potential loss in type information ! to the debugger. See '-femit-struct-debug-reduced' for a less ! aggressive option. See '-femit-struct-debug-detailed' for more detailed control. This option works only with DWARF 2. ! '-femit-struct-debug-reduced' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the type is defined, unless the struct is a template or --- 4860,5086 ---- Note that with DWARF Version 2, some ports require and always use some non-conflicting DWARF 3 extensions in the unwind tables. ! Version 4 may require GDB 7.0 and `-fvar-tracking-assignments' for maximum benefit. ! `-grecord-gcc-switches' This switch causes the command-line options used to invoke the compiler that may affect code generation to be appended to the DW_AT_producer attribute in DWARF debugging information. The options are concatenated with spaces separating them from each other and from the compiler version. See also ! `-frecord-gcc-switches' for another way of storing compiler ! options into the object file. This is the default. ! `-gno-record-gcc-switches' Disallow appending command-line options to the DW_AT_producer attribute in DWARF debugging information. ! `-gstrict-dwarf' Disallow using extensions of later DWARF standard version than ! selected with `-gdwarf-VERSION'. On most targets using non-conflicting DWARF extensions from later standard versions is allowed. ! `-gno-strict-dwarf' Allow using extensions of later DWARF standard version than ! selected with `-gdwarf-VERSION'. ! `-gvms' Produce debugging information in Alpha/VMS debug format (if that is supported). This is the format used by DEBUG on Alpha/VMS systems. ! `-gLEVEL' ! `-ggdbLEVEL' ! `-gstabsLEVEL' ! `-gcoffLEVEL' ! `-gxcoffLEVEL' ! `-gvmsLEVEL' Request debugging information and also use LEVEL to specify how much information. The default level is 2. ! Level 0 produces no debug information at all. Thus, `-g0' negates ! `-g'. Level 1 produces minimal information, enough for making backtraces in parts of the program that you don't plan to debug. This ! includes descriptions of functions and external variables, and ! line number tables, but no information about local variables. Level 3 includes extra information, such as all the macro definitions present in the program. Some debuggers support macro ! expansion when you use `-g3'. ! `-gdwarf-2' does not accept a concatenated debug level, because ! GCC used to support an option `-gdwarf' that meant to generate ! debug information in version 1 of the DWARF format (which is very different from version 2), and it would have been too confusing. That debug format is long obsolete, but the option cannot be ! changed now. Instead use an additional `-gLEVEL' option to change the debug level for DWARF. ! `-gtoggle' Turn off generation of debug info, if leaving out this option generates it, or turn it on at level 2 otherwise. The position of this argument in the command line does not matter; it takes effect ! after all other options are processed, and it does so only once, ! no matter how many times it is given. This is mainly intended to ! be used with `-fcompare-debug'. ! `-fsanitize=address' Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. See ! `https://github.com/google/sanitizers/wiki/AddressSanitizer' for ! more details. The run-time behavior can be influenced using the ! `ASAN_OPTIONS' environment variable. When set to `help=1', the ! available options are shown at startup of the instrumended ! program. See ! `https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags' for a list of supported options. ! `-fsanitize=kernel-address' Enable AddressSanitizer for Linux kernel. See ! `https://github.com/google/sanitizers/wiki#threadsanitizer' for ! more details. ! `-fsanitize=thread' Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect data race bugs. See ! `https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags' ! for more details. The run-time behavior can be influenced using ! the `TSAN_OPTIONS' environment variable; see ! `https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags' ! for a list of supported options. ! `-fsanitize=leak' Enable LeakSanitizer, a memory leak detector. This option only matters for linking of executables and if neither ! `-fsanitize=address' nor `-fsanitize=thread' is used. In that ! case it will link the executable against a library that overrides ! `malloc' and other allocator functions. See ! `https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer' for more details. The run-time behavior can be influenced using ! the `LSAN_OPTIONS' environment variable. ! `-fsanitize=undefined' Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector. Various computations will be instrumented to detect undefined behavior at runtime. Current suboptions are: ! `-fsanitize=shift' This option enables checking that the result of a shift operation is not undefined. Note that what exactly is considered undefined differs slightly between C and C++, as well as between ISO C90 and C99, etc. ! `-fsanitize=integer-divide-by-zero' ! Detect integer division by zero as well as `INT_MIN / -1' division. ! `-fsanitize=unreachable' With this option, the compiler will turn the ! `__builtin_unreachable' call into a diagnostics message call ! instead. When reaching the `__builtin_unreachable' call, the behavior is undefined. ! `-fsanitize=vla-bound' ! This option instructs the compiler to check that the size of ! a variable length array is positive. This option does not ! have any effect in `-std=c++1y' mode, as the standard ! requires the exception be thrown instead. + `-fsanitize=null' This option enables pointer checking. Particularly, the application built with this option turned on will issue an error message when it tries to dereference a NULL pointer, or if a reference (possibly an rvalue reference) is bound to a NULL pointer. ! `-fsanitize=return' ! This option enables return statement checking. Programs ! built with this option turned on will issue an error message ! when the end of a non-void function is reached without ! actually returning a value. This option works in C++ only. + `-fsanitize=signed-integer-overflow' This option enables signed integer overflow checking. We ! check that the result of `+', `*', and both unary and binary ! `-' does not overflow in the signed arithmetics. Note, integer promotion rules must be taken into account. That is, the following is not an overflow: signed char a = SCHAR_MAX; a++; ! ! While `-ftrapv' causes traps for signed overflows to be emitted, ! `-fsanitize=undefined' gives a diagnostic message. This currently works only for the C family of languages. ! `-fdump-final-insns[=FILE]' Dump the final internal representation (RTL) to FILE. If the ! optional argument is omitted (or if FILE is `.'), the name of the ! dump file is determined by appending `.gkd' to the compilation output file name. ! `-fcompare-debug[=OPTS]' If no error occurs during compilation, run the compiler a second ! time, adding OPTS and `-fcompare-debug-second' to the arguments passed to the second compilation. Dump the final internal representation in both compilations, and print an error if they differ. ! If the equal sign is omitted, the default `-gtoggle' is used. ! The environment variable `GCC_COMPARE_DEBUG', if defined, non-empty ! and nonzero, implicitly enables `-fcompare-debug'. If ! `GCC_COMPARE_DEBUG' is defined to a string starting with a dash, ! then it is used for OPTS, otherwise the default `-gtoggle' is used. ! `-fcompare-debug=', with the equal sign but without OPTS, is ! equivalent to `-fno-compare-debug', which disables the dumping of the final representation and the second compilation, preventing ! even `GCC_COMPARE_DEBUG' from taking effect. ! To verify full coverage during `-fcompare-debug' testing, set ! `GCC_COMPARE_DEBUG' to say `-fcompare-debug-not-overridden', which GCC rejects as an invalid option in any actual compilation (rather than preprocessing, assembly or linking). To get just a warning, ! setting `GCC_COMPARE_DEBUG' to `-w%n-fcompare-debug not ! overridden' will do. ! `-fcompare-debug-second' This option is implicitly passed to the compiler for the second ! compilation requested by `-fcompare-debug', along with options to silence warnings, and omitting other options that would cause side-effect compiler outputs to files or to the standard output. Dump files and preserved temporary files are renamed so as to ! contain the `.gk' additional extension during the second compilation, to avoid overwriting those generated by the first. When this option is passed to the compiler driver, it causes the _first_ compilation to be skipped, which makes it useful for little other than debugging the compiler proper. ! `-feliminate-dwarf2-dups' Compress DWARF 2 debugging information by eliminating duplicated information about each symbol. This option only makes sense when ! generating DWARF 2 debugging information with `-gdwarf-2'. ! `-femit-struct-debug-baseonly' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the struct is defined. This option substantially reduces the size of debugging information, but at significant potential loss in type information ! to the debugger. See `-femit-struct-debug-reduced' for a less ! aggressive option. See `-femit-struct-debug-detailed' for more detailed control. This option works only with DWARF 2. ! `-femit-struct-debug-reduced' Emit debug information for struct-like types only when the base name of the compilation source file matches the base name of file in which the type is defined, unless the struct is a template or *************** program or GCC: *** 5060,5320 **** This option significantly reduces the size of debugging information, with some potential loss in type information to the ! debugger. See '-femit-struct-debug-baseonly' for a more aggressive ! option. See '-femit-struct-debug-detailed' for more detailed ! control. This option works only with DWARF 2. ! '-femit-struct-debug-detailed[=SPEC-LIST]' Specify the struct-like types for which the compiler generates debug information. The intent is to reduce duplicate struct debug information between different object files within the same program. ! This option is a detailed version of '-femit-struct-debug-reduced' ! and '-femit-struct-debug-baseonly', which serves for most needs. A specification has the syntax ! ['dir:'|'ind:']['ord:'|'gen:']('any'|'sys'|'base'|'none') The optional first word limits the specification to structs that ! are used directly ('dir:') or used indirectly ('ind:'). A struct type is used directly when it is the type of a variable, member. ! Indirect uses arise through pointers to structs. That is, when use ! of an incomplete struct is valid, the use is indirect. An example ! is 'struct one direct; struct two * indirect;'. The optional second word limits the specification to ordinary ! structs ('ord:') or generic structs ('gen:'). Generic structs are a bit complicated to explain. For C++, these are non-explicit ! specializations of template classes, or non-template classes within ! the above. Other programming languages have generics, but ! '-femit-struct-debug-detailed' does not yet implement them. The third word specifies the source files for those structs for which the compiler should emit debug information. The values ! 'none' and 'any' have the normal meaning. The value 'base' means that the base of name of the file in which the type declaration appears must match the base of the name of the main compilation ! file. In practice, this means that when compiling 'foo.c', debug information is generated for types declared in that file and ! 'foo.h', but not other header files. The value 'sys' means those ! types satisfying 'base' or declared in system or compiler headers. You may need to experiment to determine the best settings for your application. ! The default is '-femit-struct-debug-detailed=all'. This option works only with DWARF 2. ! '-fno-merge-debug-strings' Direct the linker to not merge together strings in the debugging information that are identical in different object files. Merging is not supported by all assemblers or linkers. Merging decreases ! the size of the debug information in the output file at the cost of ! increasing link processing time. Merging is enabled by default. ! '-fdebug-prefix-map=OLD=NEW' ! When compiling files in directory 'OLD', record debugging ! information describing them as in 'NEW' instead. ! '-fno-dwarf2-cfi-asm' ! Emit DWARF 2 unwind info as compiler generated '.eh_frame' section ! instead of using GAS '.cfi_*' directives. ! '-p' Generate extra code to write profile information suitable for the ! analysis program 'prof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! '-pg' Generate extra code to write profile information suitable for the ! analysis program 'gprof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! '-Q' Makes the compiler print out each function name as it is compiled, and print some statistics about each pass when it finishes. ! '-ftime-report' ! Makes the compiler print some statistics about the time consumed by ! each pass when it finishes. ! '-fmem-report' Makes the compiler print some statistics about permanent memory allocation when it finishes. ! '-fmem-report-wpa' Makes the compiler print some statistics about permanent memory allocation for the WPA phase only. ! '-fpre-ipa-mem-report' ! '-fpost-ipa-mem-report' Makes the compiler print some statistics about permanent memory allocation before or after interprocedural optimization. ! '-fprofile-report' Makes the compiler print some statistics about consistency of the (estimated) profile and effect of individual passes. ! '-fstack-usage' Makes the compiler output stack usage information for the program, on a per-function basis. The filename for the dump is made by ! appending '.su' to the AUXNAME. AUXNAME is generated from the name ! of the output file, if explicitly specified and it is not an executable, otherwise it is the basename of the source file. An entry is made up of three fields: * The name of the function. * A number of bytes. - * One or more qualifiers: 'static', 'dynamic', 'bounded'. ! The qualifier 'static' means that the function manipulates the stack statically: a fixed number of bytes are allocated for the frame on function entry and released on function exit; no stack adjustments are otherwise made in the function. The second field is this fixed number of bytes. ! The qualifier 'dynamic' means that the function manipulates the stack dynamically: in addition to the static allocation described above, stack adjustments are made in the body of the function, for example to push/pop arguments around function calls. If the ! qualifier 'bounded' is also present, the amount of these adjustments is bounded at compile time and the second field is an upper bound of the total amount of stack used by the function. If it is not present, the amount of these adjustments is not bounded at compile time and the second field only represents the bounded part. ! '-fprofile-arcs' Add code so that program flow "arcs" are instrumented. During execution the program records how many times each branch and call is executed and how many times it is taken or returns. When the compiled program exits it saves this data to a file called ! 'AUXNAME.gcda' for each source file. The data may be used for ! profile-directed optimizations ('-fbranch-probabilities'), or for ! test coverage analysis ('-ftest-coverage'). Each object file's AUXNAME is generated from the name of the output file, if explicitly specified and it is not the final executable, otherwise ! it is the basename of the source file. In both cases any suffix is ! removed (e.g. 'foo.gcda' for input file 'dir/foo.c', or ! 'dir/foo.gcda' for output file specified as '-o dir/foo.o'). *Note ! Cross-profiling::. ! ! '--coverage' This option is used to compile and link code instrumented for ! coverage analysis. The option is a synonym for '-fprofile-arcs' ! '-ftest-coverage' (when compiling) and '-lgcov' (when linking). See the documentation for those options for more details. ! * Compile the source files with '-fprofile-arcs' plus optimization and code generation options. For test coverage ! analysis, use the additional '-ftest-coverage' option. You do ! not need to profile every source file in a program. ! * Link your object files with '-lgcov' or '-fprofile-arcs' (the latter implies the former). * Run the program on a representative workload to generate the arc profile information. This may be repeated any number of times. You can run concurrent instances of your program, and ! provided that the file system supports locking, the data files ! will be correctly updated. Also 'fork' calls are detected and ! correctly handled (double counting will not happen). * For profile-directed optimizations, compile the source files again with the same optimization and code generation options ! plus '-fbranch-probabilities' (*note Options that Control Optimization: Optimize Options.). ! * For test coverage analysis, use 'gcov' to produce human ! readable information from the '.gcno' and '.gcda' files. ! Refer to the 'gcov' documentation for further information. ! With '-fprofile-arcs', for each function of your program GCC creates a program flow graph, then finds a spanning tree for the graph. Only arcs that are not on the spanning tree have to be instrumented: the compiler adds code to count the number of times ! that these arcs are executed. When an arc is the only exit or only ! entrance to a block, the instrumentation code can be added to the ! block; otherwise, a new basic block must be created to hold the ! instrumentation code. ! '-ftest-coverage' ! Produce a notes file that the 'gcov' code-coverage utility (*note ! 'gcov'--a Test Coverage Program: Gcov.) can use to show program ! coverage. Each source file's note file is called 'AUXNAME.gcno'. ! Refer to the '-fprofile-arcs' option above for a description of AUXNAME and instructions on how to generate test coverage data. Coverage data matches the source files more closely if you do not optimize. ! '-fdbg-cnt-list' Print the name and the counter upper bound for all debug counters. ! '-fdbg-cnt=COUNTER-VALUE-LIST' Set the internal debug counter upper bound. COUNTER-VALUE-LIST is a comma-separated list of NAME:VALUE pairs which sets the upper ! bound of each debug counter NAME to VALUE. All debug counters have ! the initial upper bound of 'UINT_MAX'; thus 'dbg_cnt()' returns ! true always unless the upper bound is set by this option. For ! example, with '-fdbg-cnt=dce:10,tail_call:0', 'dbg_cnt(dce)' returns true only for first 10 invocations. ! '-fenable-KIND-PASS' ! '-fdisable-KIND-PASS=RANGE-LIST' ! This is a set of options that are used to explicitly disable/enable optimization passes. These options are intended for use for ! debugging GCC. Compiler users should use regular options for enabling/disabling passes instead. ! '-fdisable-ipa-PASS' ! Disable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, the ! pass name should be appended with a sequential number starting ! from 1. ! '-fdisable-rtl-PASS' ! '-fdisable-rtl-PASS=RANGE-LIST' Disable RTL pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, the ! pass name should be appended with a sequential number starting ! from 1. RANGE-LIST is a comma-separated list of function ! ranges or assembler names. Each range is a number pair ! separated by a colon. The range is inclusive in both ends. ! If the range is trivial, the number pair can be simplified as ! a single number. If the function's call graph node's UID ! falls within one of the specified ranges, the PASS is disabled ! for that function. The UID is shown in the function header of ! a dump file, and the pass names can be dumped by using option ! '-fdump-passes'. ! '-fdisable-tree-PASS' ! '-fdisable-tree-PASS=RANGE-LIST' ! Disable tree pass PASS. See '-fdisable-rtl' for the description of option arguments. ! '-fenable-ipa-PASS' Enable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, the ! pass name should be appended with a sequential number starting ! from 1. ! '-fenable-rtl-PASS' ! '-fenable-rtl-PASS=RANGE-LIST' ! Enable RTL pass PASS. See '-fdisable-rtl' for option argument description and examples. ! '-fenable-tree-PASS' ! '-fenable-tree-PASS=RANGE-LIST' ! Enable tree pass PASS. See '-fdisable-rtl' for the description of option arguments. Here are some examples showing uses of these options. --- 5088,5352 ---- This option significantly reduces the size of debugging information, with some potential loss in type information to the ! debugger. See `-femit-struct-debug-baseonly' for a more ! aggressive option. See `-femit-struct-debug-detailed' for more ! detailed control. This option works only with DWARF 2. ! `-femit-struct-debug-detailed[=SPEC-LIST]' Specify the struct-like types for which the compiler generates debug information. The intent is to reduce duplicate struct debug information between different object files within the same program. ! This option is a detailed version of `-femit-struct-debug-reduced' ! and `-femit-struct-debug-baseonly', which serves for most needs. A specification has the syntax ! [`dir:'|`ind:'][`ord:'|`gen:'](`any'|`sys'|`base'|`none') The optional first word limits the specification to structs that ! are used directly (`dir:') or used indirectly (`ind:'). A struct type is used directly when it is the type of a variable, member. ! Indirect uses arise through pointers to structs. That is, when ! use of an incomplete struct is valid, the use is indirect. An ! example is `struct one direct; struct two * indirect;'. The optional second word limits the specification to ordinary ! structs (`ord:') or generic structs (`gen:'). Generic structs are a bit complicated to explain. For C++, these are non-explicit ! specializations of template classes, or non-template classes ! within the above. Other programming languages have generics, but ! `-femit-struct-debug-detailed' does not yet implement them. The third word specifies the source files for those structs for which the compiler should emit debug information. The values ! `none' and `any' have the normal meaning. The value `base' means that the base of name of the file in which the type declaration appears must match the base of the name of the main compilation ! file. In practice, this means that when compiling `foo.c', debug information is generated for types declared in that file and ! `foo.h', but not other header files. The value `sys' means those ! types satisfying `base' or declared in system or compiler headers. You may need to experiment to determine the best settings for your application. ! The default is `-femit-struct-debug-detailed=all'. This option works only with DWARF 2. ! `-fno-merge-debug-strings' Direct the linker to not merge together strings in the debugging information that are identical in different object files. Merging is not supported by all assemblers or linkers. Merging decreases ! the size of the debug information in the output file at the cost ! of increasing link processing time. Merging is enabled by default. ! `-fdebug-prefix-map=OLD=NEW' ! When compiling files in directory `OLD', record debugging ! information describing them as in `NEW' instead. ! `-fno-dwarf2-cfi-asm' ! Emit DWARF 2 unwind info as compiler generated `.eh_frame' section ! instead of using GAS `.cfi_*' directives. ! `-p' Generate extra code to write profile information suitable for the ! analysis program `prof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! `-pg' Generate extra code to write profile information suitable for the ! analysis program `gprof'. You must use this option when compiling the source files you want data about, and you must also use it when linking. ! `-Q' Makes the compiler print out each function name as it is compiled, and print some statistics about each pass when it finishes. ! `-ftime-report' ! Makes the compiler print some statistics about the time consumed ! by each pass when it finishes. ! `-fmem-report' Makes the compiler print some statistics about permanent memory allocation when it finishes. ! `-fmem-report-wpa' Makes the compiler print some statistics about permanent memory allocation for the WPA phase only. ! `-fpre-ipa-mem-report' ! ! `-fpost-ipa-mem-report' Makes the compiler print some statistics about permanent memory allocation before or after interprocedural optimization. ! `-fprofile-report' Makes the compiler print some statistics about consistency of the (estimated) profile and effect of individual passes. ! `-fstack-usage' Makes the compiler output stack usage information for the program, on a per-function basis. The filename for the dump is made by ! appending `.su' to the AUXNAME. AUXNAME is generated from the ! name of the output file, if explicitly specified and it is not an executable, otherwise it is the basename of the source file. An entry is made up of three fields: * The name of the function. + * A number of bytes. ! * One or more qualifiers: `static', `dynamic', `bounded'. ! ! The qualifier `static' means that the function manipulates the stack statically: a fixed number of bytes are allocated for the frame on function entry and released on function exit; no stack adjustments are otherwise made in the function. The second field is this fixed number of bytes. ! The qualifier `dynamic' means that the function manipulates the stack dynamically: in addition to the static allocation described above, stack adjustments are made in the body of the function, for example to push/pop arguments around function calls. If the ! qualifier `bounded' is also present, the amount of these adjustments is bounded at compile time and the second field is an upper bound of the total amount of stack used by the function. If it is not present, the amount of these adjustments is not bounded at compile time and the second field only represents the bounded part. ! `-fprofile-arcs' Add code so that program flow "arcs" are instrumented. During execution the program records how many times each branch and call is executed and how many times it is taken or returns. When the compiled program exits it saves this data to a file called ! `AUXNAME.gcda' for each source file. The data may be used for ! profile-directed optimizations (`-fbranch-probabilities'), or for ! test coverage analysis (`-ftest-coverage'). Each object file's AUXNAME is generated from the name of the output file, if explicitly specified and it is not the final executable, otherwise ! it is the basename of the source file. In both cases any suffix ! is removed (e.g. `foo.gcda' for input file `dir/foo.c', or ! `dir/foo.gcda' for output file specified as `-o dir/foo.o'). ! *Note Cross-profiling::. + `--coverage' This option is used to compile and link code instrumented for ! coverage analysis. The option is a synonym for `-fprofile-arcs' ! `-ftest-coverage' (when compiling) and `-lgcov' (when linking). See the documentation for those options for more details. ! * Compile the source files with `-fprofile-arcs' plus optimization and code generation options. For test coverage ! analysis, use the additional `-ftest-coverage' option. You ! do not need to profile every source file in a program. ! * Link your object files with `-lgcov' or `-fprofile-arcs' (the latter implies the former). * Run the program on a representative workload to generate the arc profile information. This may be repeated any number of times. You can run concurrent instances of your program, and ! provided that the file system supports locking, the data ! files will be correctly updated. Also `fork' calls are ! detected and correctly handled (double counting will not ! happen). * For profile-directed optimizations, compile the source files again with the same optimization and code generation options ! plus `-fbranch-probabilities' (*note Options that Control Optimization: Optimize Options.). ! * For test coverage analysis, use `gcov' to produce human ! readable information from the `.gcno' and `.gcda' files. ! Refer to the `gcov' documentation for further information. ! ! With `-fprofile-arcs', for each function of your program GCC creates a program flow graph, then finds a spanning tree for the graph. Only arcs that are not on the spanning tree have to be instrumented: the compiler adds code to count the number of times ! that these arcs are executed. When an arc is the only exit or ! only entrance to a block, the instrumentation code can be added to ! the block; otherwise, a new basic block must be created to hold ! the instrumentation code. ! `-ftest-coverage' ! Produce a notes file that the `gcov' code-coverage utility (*note ! `gcov'--a Test Coverage Program: Gcov.) can use to show program ! coverage. Each source file's note file is called `AUXNAME.gcno'. ! Refer to the `-fprofile-arcs' option above for a description of AUXNAME and instructions on how to generate test coverage data. Coverage data matches the source files more closely if you do not optimize. ! `-fdbg-cnt-list' Print the name and the counter upper bound for all debug counters. ! `-fdbg-cnt=COUNTER-VALUE-LIST' Set the internal debug counter upper bound. COUNTER-VALUE-LIST is a comma-separated list of NAME:VALUE pairs which sets the upper ! bound of each debug counter NAME to VALUE. All debug counters ! have the initial upper bound of `UINT_MAX'; thus `dbg_cnt()' ! returns true always unless the upper bound is set by this option. ! For example, with `-fdbg-cnt=dce:10,tail_call:0', `dbg_cnt(dce)' returns true only for first 10 invocations. ! `-fenable-KIND-PASS' ! `-fdisable-KIND-PASS=RANGE-LIST' This is a set of options that are used to explicitly disable/enable optimization passes. These options are intended for use for ! debugging GCC. Compiler users should use regular options for enabling/disabling passes instead. ! `-fdisable-ipa-PASS' ! Disable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, ! the pass name should be appended with a sequential number ! starting from 1. ! `-fdisable-rtl-PASS' ! `-fdisable-rtl-PASS=RANGE-LIST' Disable RTL pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, ! the pass name should be appended with a sequential number ! starting from 1. RANGE-LIST is a comma-separated list of ! function ranges or assembler names. Each range is a number ! pair separated by a colon. The range is inclusive in both ! ends. If the range is trivial, the number pair can be ! simplified as a single number. If the function's call graph ! node's UID falls within one of the specified ranges, the PASS ! is disabled for that function. The UID is shown in the ! function header of a dump file, and the pass names can be ! dumped by using option `-fdump-passes'. ! `-fdisable-tree-PASS' ! `-fdisable-tree-PASS=RANGE-LIST' ! Disable tree pass PASS. See `-fdisable-rtl' for the description of option arguments. ! `-fenable-ipa-PASS' Enable IPA pass PASS. PASS is the pass name. If the same ! pass is statically invoked in the compiler multiple times, ! the pass name should be appended with a sequential number ! starting from 1. ! `-fenable-rtl-PASS' ! `-fenable-rtl-PASS=RANGE-LIST' ! Enable RTL pass PASS. See `-fdisable-rtl' for option argument description and examples. ! `-fenable-tree-PASS' ! `-fenable-tree-PASS=RANGE-LIST' ! Enable tree pass PASS. See `-fdisable-rtl' for the description of option arguments. + Here are some examples showing uses of these options. *************** program or GCC: *** 5333,5662 **** # enable tree full unroll -fenable-tree-unroll ! ! '-dLETTERS' ! '-fdump-rtl-PASS' ! '-fdump-rtl-PASS=FILENAME' Says to make debugging dumps during compilation at times specified by LETTERS. This is used for debugging the RTL-based passes of the compiler. The file names for most of the dumps are made by appending a pass number and a word to the DUMPNAME, and the files ! are created in the directory of the output file. In case of ! '=FILENAME' option, the dump is output on the given file instead of ! the pass numbered dump files. Note that the pass number is computed statically as passes get registered into the pass manager. ! Thus the numbering is not related to the dynamic order of execution ! of passes. In particular, a pass installed by a plugin could have ! a number over 200 even if it executed quite early. DUMPNAME is ! generated from the name of the output file, if explicitly specified ! and it is not an executable, otherwise it is the basename of the ! source file. These switches may have different effects when '-E' ! is used for preprocessing. ! Debug dumps can be enabled with a '-fdump-rtl' switch or some '-d' option LETTERS. Here are the possible letters for use in PASS and LETTERS, and their meanings: ! '-fdump-rtl-alignments' Dump after branch alignments have been computed. ! '-fdump-rtl-asmcons' Dump after fixing rtl statements that have unsatisfied in/out constraints. ! '-fdump-rtl-auto_inc_dec' Dump after auto-inc-dec discovery. This pass is only run on architectures that have auto inc or auto dec instructions. ! '-fdump-rtl-barriers' Dump after cleaning up the barrier instructions. ! '-fdump-rtl-bbpart' Dump after partitioning hot and cold basic blocks. ! '-fdump-rtl-bbro' Dump after block reordering. ! '-fdump-rtl-btl1' ! '-fdump-rtl-btl2' ! '-fdump-rtl-btl1' and '-fdump-rtl-btl2' enable dumping after the two branch target load optimization passes. ! '-fdump-rtl-bypass' Dump after jump bypassing and control flow optimizations. ! '-fdump-rtl-combine' Dump after the RTL instruction combination pass. ! '-fdump-rtl-compgotos' Dump after duplicating the computed gotos. ! '-fdump-rtl-ce1' ! '-fdump-rtl-ce2' ! '-fdump-rtl-ce3' ! '-fdump-rtl-ce1', '-fdump-rtl-ce2', and '-fdump-rtl-ce3' enable dumping after the three if conversion passes. ! '-fdump-rtl-cprop_hardreg' Dump after hard register copy propagation. ! '-fdump-rtl-csa' Dump after combining stack adjustments. ! '-fdump-rtl-cse1' ! '-fdump-rtl-cse2' ! '-fdump-rtl-cse1' and '-fdump-rtl-cse2' enable dumping after the two common subexpression elimination passes. ! '-fdump-rtl-dce' Dump after the standalone dead code elimination passes. ! '-fdump-rtl-dbr' Dump after delayed branch scheduling. ! '-fdump-rtl-dce1' ! '-fdump-rtl-dce2' ! '-fdump-rtl-dce1' and '-fdump-rtl-dce2' enable dumping after the two dead store elimination passes. ! '-fdump-rtl-eh' Dump after finalization of EH handling code. ! '-fdump-rtl-eh_ranges' Dump after conversion of EH handling range regions. ! '-fdump-rtl-expand' Dump after RTL generation. ! '-fdump-rtl-fwprop1' ! '-fdump-rtl-fwprop2' ! '-fdump-rtl-fwprop1' and '-fdump-rtl-fwprop2' enable dumping after the two forward propagation passes. ! '-fdump-rtl-gcse1' ! '-fdump-rtl-gcse2' ! '-fdump-rtl-gcse1' and '-fdump-rtl-gcse2' enable dumping after ! global common subexpression elimination. ! '-fdump-rtl-init-regs' Dump after the initialization of the registers. ! '-fdump-rtl-initvals' Dump after the computation of the initial value sets. ! '-fdump-rtl-into_cfglayout' Dump after converting to cfglayout mode. ! '-fdump-rtl-ira' Dump after iterated register allocation. ! '-fdump-rtl-jump' Dump after the second jump optimization. ! '-fdump-rtl-loop2' ! '-fdump-rtl-loop2' enables dumping after the rtl loop optimization passes. ! '-fdump-rtl-mach' Dump after performing the machine dependent reorganization pass, if that pass exists. ! '-fdump-rtl-mode_sw' Dump after removing redundant mode switches. ! '-fdump-rtl-rnreg' Dump after register renumbering. ! '-fdump-rtl-outof_cfglayout' Dump after converting from cfglayout mode. ! '-fdump-rtl-peephole2' Dump after the peephole pass. ! '-fdump-rtl-postreload' Dump after post-reload optimizations. ! '-fdump-rtl-pro_and_epilogue' Dump after generating the function prologues and epilogues. ! '-fdump-rtl-sched1' ! '-fdump-rtl-sched2' ! '-fdump-rtl-sched1' and '-fdump-rtl-sched2' enable dumping after the basic block scheduling passes. ! '-fdump-rtl-ree' Dump after sign/zero extension elimination. ! '-fdump-rtl-seqabstr' Dump after common sequence discovery. ! '-fdump-rtl-shorten' Dump after shortening branches. ! '-fdump-rtl-sibling' Dump after sibling call optimizations. ! '-fdump-rtl-split1' ! '-fdump-rtl-split2' ! '-fdump-rtl-split3' ! '-fdump-rtl-split4' ! '-fdump-rtl-split5' ! '-fdump-rtl-split1', '-fdump-rtl-split2', '-fdump-rtl-split3', ! '-fdump-rtl-split4' and '-fdump-rtl-split5' enable dumping ! after five rounds of instruction splitting. ! '-fdump-rtl-sms' Dump after modulo scheduling. This pass is only run on some architectures. ! '-fdump-rtl-stack' Dump after conversion from GCC's "flat register file" registers to the x87's stack-like registers. This pass is only run on x86 variants. ! '-fdump-rtl-subreg1' ! '-fdump-rtl-subreg2' ! '-fdump-rtl-subreg1' and '-fdump-rtl-subreg2' enable dumping after the two subreg expansion passes. ! '-fdump-rtl-unshare' Dump after all rtl has been unshared. ! '-fdump-rtl-vartrack' Dump after variable tracking. ! '-fdump-rtl-vregs' Dump after converting virtual registers to hard registers. ! '-fdump-rtl-web' Dump after live range splitting. ! '-fdump-rtl-regclass' ! '-fdump-rtl-subregs_of_mode_init' ! '-fdump-rtl-subregs_of_mode_finish' ! '-fdump-rtl-dfinit' ! '-fdump-rtl-dfinish' These dumps are defined but always produce empty files. ! '-da' ! '-fdump-rtl-all' Produce all the dumps listed above. ! '-dA' Annotate the assembler output with miscellaneous debugging information. ! '-dD' Dump all macro definitions, at the end of preprocessing, in addition to normal output. ! '-dH' Produce a core dump whenever an error occurs. ! '-dp' Annotate the assembler output with a comment indicating which pattern and alternative is used. The length of each instruction is also printed. ! '-dP' Dump the RTL in the assembler output as a comment before each ! instruction. Also turns on '-dp' annotation. ! '-dx' Just generate RTL for a function instead of compiling it. ! Usually used with '-fdump-rtl-expand'. ! '-fdump-noaddr' ! When doing debugging dumps, suppress address output. This makes it ! more feasible to use diff on debugging dumps for compiler invocations with different compiler binaries and/or different text / bss / data / heap / stack / dso start locations. ! '-fdump-unnumbered' When doing debugging dumps, suppress instruction numbers and address output. This makes it more feasible to use diff on ! debugging dumps for compiler invocations with different options, in ! particular with and without '-g'. ! '-fdump-unnumbered-links' ! When doing debugging dumps (see '-d' option above), suppress instruction numbers for the links to the previous and next instructions in a sequence. ! '-fdump-translation-unit (C++ only)' ! '-fdump-translation-unit-OPTIONS (C++ only)' Dump a representation of the tree structure for the entire translation unit to a file. The file name is made by appending ! '.tu' to the source file name, and the file is created in the same ! directory as the output file. If the '-OPTIONS' form is used, OPTIONS controls the details of the dump as described for the ! '-fdump-tree' options. ! '-fdump-class-hierarchy (C++ only)' ! '-fdump-class-hierarchy-OPTIONS (C++ only)' Dump a representation of each class's hierarchy and virtual function table layout to a file. The file name is made by ! appending '.class' to the source file name, and the file is created ! in the same directory as the output file. If the '-OPTIONS' form ! is used, OPTIONS controls the details of the dump as described for ! the '-fdump-tree' options. ! '-fdump-ipa-SWITCH' Control the dumping at various stages of inter-procedural analysis language tree to a file. The file name is generated by appending a switch specific suffix to the source file name, and the file is created in the same directory as the output file. The following dumps are possible: ! 'all' Enables all inter-procedural analysis dumps. ! 'cgraph' Dumps information about call-graph optimization, unused function removal, and inlining decisions. ! 'inline' Dump after function inlining. ! '-fdump-passes' Dump the list of optimization passes that are turned on and off by the current command-line options. ! '-fdump-statistics-OPTION' Enable and control dumping of pass statistics in a separate file. The file name is generated by appending a suffix ending in ! '.statistics' to the source file name, and the file is created in ! the same directory as the output file. If the '-OPTION' form is ! used, '-stats' causes counters to be summed over the whole ! compilation unit while '-details' dumps every event as the passes generate them. The default with no option is to sum counters for each function compiled. ! '-fdump-tree-SWITCH' ! '-fdump-tree-SWITCH-OPTIONS' ! '-fdump-tree-SWITCH-OPTIONS=FILENAME' Control the dumping at various stages of processing the intermediate language tree to a file. The file name is generated by appending a switch-specific suffix to the source file name, and ! the file is created in the same directory as the output file. In ! case of '=FILENAME' option, the dump is output on the given file ! instead of the auto named dump files. If the '-OPTIONS' form is ! used, OPTIONS is a list of '-' separated options which control the details of the dump. Not all options are applicable to all dumps; those that are not meaningful are ignored. The following options are available ! 'address' Print the address of each node. Usually this is not meaningful as it changes according to the environment and ! source file. Its primary use is for tying up a dump file with ! a debug environment. ! 'asmname' ! If 'DECL_ASSEMBLER_NAME' has been set for a given decl, use ! that in the dump instead of 'DECL_NAME'. Its primary use is ease of use working backward from mangled names in the assembly file. ! 'slim' When dumping front-end intermediate representations, inhibit dumping of members of a scope or body of a function merely because that scope has been reached. Only dump such items --- 5365,5697 ---- # enable tree full unroll -fenable-tree-unroll ! `-dLETTERS' ! `-fdump-rtl-PASS' ! `-fdump-rtl-PASS=FILENAME' Says to make debugging dumps during compilation at times specified by LETTERS. This is used for debugging the RTL-based passes of the compiler. The file names for most of the dumps are made by appending a pass number and a word to the DUMPNAME, and the files ! are created in the directory of the output file. In case of ! `=FILENAME' option, the dump is output on the given file instead ! of the pass numbered dump files. Note that the pass number is computed statically as passes get registered into the pass manager. ! Thus the numbering is not related to the dynamic order of ! execution of passes. In particular, a pass installed by a plugin ! could have a number over 200 even if it executed quite early. ! DUMPNAME is generated from the name of the output file, if ! explicitly specified and it is not an executable, otherwise it is ! the basename of the source file. These switches may have different ! effects when `-E' is used for preprocessing. ! Debug dumps can be enabled with a `-fdump-rtl' switch or some `-d' option LETTERS. Here are the possible letters for use in PASS and LETTERS, and their meanings: ! `-fdump-rtl-alignments' Dump after branch alignments have been computed. ! `-fdump-rtl-asmcons' Dump after fixing rtl statements that have unsatisfied in/out constraints. ! `-fdump-rtl-auto_inc_dec' Dump after auto-inc-dec discovery. This pass is only run on architectures that have auto inc or auto dec instructions. ! `-fdump-rtl-barriers' Dump after cleaning up the barrier instructions. ! `-fdump-rtl-bbpart' Dump after partitioning hot and cold basic blocks. ! `-fdump-rtl-bbro' Dump after block reordering. ! `-fdump-rtl-btl1' ! `-fdump-rtl-btl2' ! `-fdump-rtl-btl1' and `-fdump-rtl-btl2' enable dumping after the two branch target load optimization passes. ! `-fdump-rtl-bypass' Dump after jump bypassing and control flow optimizations. ! `-fdump-rtl-combine' Dump after the RTL instruction combination pass. ! `-fdump-rtl-compgotos' Dump after duplicating the computed gotos. ! `-fdump-rtl-ce1' ! `-fdump-rtl-ce2' ! `-fdump-rtl-ce3' ! `-fdump-rtl-ce1', `-fdump-rtl-ce2', and `-fdump-rtl-ce3' enable dumping after the three if conversion passes. ! `-fdump-rtl-cprop_hardreg' Dump after hard register copy propagation. ! `-fdump-rtl-csa' Dump after combining stack adjustments. ! `-fdump-rtl-cse1' ! `-fdump-rtl-cse2' ! `-fdump-rtl-cse1' and `-fdump-rtl-cse2' enable dumping after the two common subexpression elimination passes. ! `-fdump-rtl-dce' Dump after the standalone dead code elimination passes. ! `-fdump-rtl-dbr' Dump after delayed branch scheduling. ! `-fdump-rtl-dce1' ! `-fdump-rtl-dce2' ! `-fdump-rtl-dce1' and `-fdump-rtl-dce2' enable dumping after the two dead store elimination passes. ! `-fdump-rtl-eh' Dump after finalization of EH handling code. ! `-fdump-rtl-eh_ranges' Dump after conversion of EH handling range regions. ! `-fdump-rtl-expand' Dump after RTL generation. ! `-fdump-rtl-fwprop1' ! `-fdump-rtl-fwprop2' ! `-fdump-rtl-fwprop1' and `-fdump-rtl-fwprop2' enable dumping after the two forward propagation passes. ! `-fdump-rtl-gcse1' ! `-fdump-rtl-gcse2' ! `-fdump-rtl-gcse1' and `-fdump-rtl-gcse2' enable dumping ! after global common subexpression elimination. ! `-fdump-rtl-init-regs' Dump after the initialization of the registers. ! `-fdump-rtl-initvals' Dump after the computation of the initial value sets. ! `-fdump-rtl-into_cfglayout' Dump after converting to cfglayout mode. ! `-fdump-rtl-ira' Dump after iterated register allocation. ! `-fdump-rtl-jump' Dump after the second jump optimization. ! `-fdump-rtl-loop2' ! `-fdump-rtl-loop2' enables dumping after the rtl loop optimization passes. ! `-fdump-rtl-mach' Dump after performing the machine dependent reorganization pass, if that pass exists. ! `-fdump-rtl-mode_sw' Dump after removing redundant mode switches. ! `-fdump-rtl-rnreg' Dump after register renumbering. ! `-fdump-rtl-outof_cfglayout' Dump after converting from cfglayout mode. ! `-fdump-rtl-peephole2' Dump after the peephole pass. ! `-fdump-rtl-postreload' Dump after post-reload optimizations. ! `-fdump-rtl-pro_and_epilogue' Dump after generating the function prologues and epilogues. ! `-fdump-rtl-sched1' ! `-fdump-rtl-sched2' ! `-fdump-rtl-sched1' and `-fdump-rtl-sched2' enable dumping after the basic block scheduling passes. ! `-fdump-rtl-ree' Dump after sign/zero extension elimination. ! `-fdump-rtl-seqabstr' Dump after common sequence discovery. ! `-fdump-rtl-shorten' Dump after shortening branches. ! `-fdump-rtl-sibling' Dump after sibling call optimizations. ! `-fdump-rtl-split1' ! `-fdump-rtl-split2' ! `-fdump-rtl-split3' ! `-fdump-rtl-split4' ! `-fdump-rtl-split5' ! `-fdump-rtl-split1', `-fdump-rtl-split2', ! `-fdump-rtl-split3', `-fdump-rtl-split4' and ! `-fdump-rtl-split5' enable dumping after five rounds of ! instruction splitting. ! `-fdump-rtl-sms' Dump after modulo scheduling. This pass is only run on some architectures. ! `-fdump-rtl-stack' Dump after conversion from GCC's "flat register file" registers to the x87's stack-like registers. This pass is only run on x86 variants. ! `-fdump-rtl-subreg1' ! `-fdump-rtl-subreg2' ! `-fdump-rtl-subreg1' and `-fdump-rtl-subreg2' enable dumping after the two subreg expansion passes. ! `-fdump-rtl-unshare' Dump after all rtl has been unshared. ! `-fdump-rtl-vartrack' Dump after variable tracking. ! `-fdump-rtl-vregs' Dump after converting virtual registers to hard registers. ! `-fdump-rtl-web' Dump after live range splitting. ! `-fdump-rtl-regclass' ! `-fdump-rtl-subregs_of_mode_init' ! `-fdump-rtl-subregs_of_mode_finish' ! `-fdump-rtl-dfinit' ! `-fdump-rtl-dfinish' These dumps are defined but always produce empty files. ! `-da' ! `-fdump-rtl-all' Produce all the dumps listed above. ! `-dA' Annotate the assembler output with miscellaneous debugging information. ! `-dD' Dump all macro definitions, at the end of preprocessing, in addition to normal output. ! `-dH' Produce a core dump whenever an error occurs. ! `-dp' Annotate the assembler output with a comment indicating which pattern and alternative is used. The length of each instruction is also printed. ! `-dP' Dump the RTL in the assembler output as a comment before each ! instruction. Also turns on `-dp' annotation. ! `-dx' Just generate RTL for a function instead of compiling it. ! Usually used with `-fdump-rtl-expand'. ! `-fdump-noaddr' ! When doing debugging dumps, suppress address output. This makes ! it more feasible to use diff on debugging dumps for compiler invocations with different compiler binaries and/or different text / bss / data / heap / stack / dso start locations. ! `-fdump-unnumbered' When doing debugging dumps, suppress instruction numbers and address output. This makes it more feasible to use diff on ! debugging dumps for compiler invocations with different options, ! in particular with and without `-g'. ! `-fdump-unnumbered-links' ! When doing debugging dumps (see `-d' option above), suppress instruction numbers for the links to the previous and next instructions in a sequence. ! `-fdump-translation-unit (C++ only)' ! `-fdump-translation-unit-OPTIONS (C++ only)' Dump a representation of the tree structure for the entire translation unit to a file. The file name is made by appending ! `.tu' to the source file name, and the file is created in the same ! directory as the output file. If the `-OPTIONS' form is used, OPTIONS controls the details of the dump as described for the ! `-fdump-tree' options. ! `-fdump-class-hierarchy (C++ only)' ! `-fdump-class-hierarchy-OPTIONS (C++ only)' Dump a representation of each class's hierarchy and virtual function table layout to a file. The file name is made by ! appending `.class' to the source file name, and the file is ! created in the same directory as the output file. If the ! `-OPTIONS' form is used, OPTIONS controls the details of the dump ! as described for the `-fdump-tree' options. ! `-fdump-ipa-SWITCH' Control the dumping at various stages of inter-procedural analysis language tree to a file. The file name is generated by appending a switch specific suffix to the source file name, and the file is created in the same directory as the output file. The following dumps are possible: ! `all' Enables all inter-procedural analysis dumps. ! `cgraph' Dumps information about call-graph optimization, unused function removal, and inlining decisions. ! `inline' Dump after function inlining. ! ! `-fdump-passes' Dump the list of optimization passes that are turned on and off by the current command-line options. ! `-fdump-statistics-OPTION' Enable and control dumping of pass statistics in a separate file. The file name is generated by appending a suffix ending in ! `.statistics' to the source file name, and the file is created in ! the same directory as the output file. If the `-OPTION' form is ! used, `-stats' causes counters to be summed over the whole ! compilation unit while `-details' dumps every event as the passes generate them. The default with no option is to sum counters for each function compiled. ! `-fdump-tree-SWITCH' ! `-fdump-tree-SWITCH-OPTIONS' ! `-fdump-tree-SWITCH-OPTIONS=FILENAME' Control the dumping at various stages of processing the intermediate language tree to a file. The file name is generated by appending a switch-specific suffix to the source file name, and ! the file is created in the same directory as the output file. In ! case of `=FILENAME' option, the dump is output on the given file ! instead of the auto named dump files. If the `-OPTIONS' form is ! used, OPTIONS is a list of `-' separated options which control the details of the dump. Not all options are applicable to all dumps; those that are not meaningful are ignored. The following options are available ! `address' Print the address of each node. Usually this is not meaningful as it changes according to the environment and ! source file. Its primary use is for tying up a dump file ! with a debug environment. ! ! `asmname' ! If `DECL_ASSEMBLER_NAME' has been set for a given decl, use ! that in the dump instead of `DECL_NAME'. Its primary use is ease of use working backward from mangled names in the assembly file. ! ! `slim' When dumping front-end intermediate representations, inhibit dumping of members of a scope or body of a function merely because that scope has been reached. Only dump such items *************** program or GCC: *** 5667,6002 **** When dumping RTL, print the RTL in slim (condensed) form instead of the default LISP-like representation. ! 'raw' Print a raw representation of the tree. By default, trees are pretty-printed into a C-like representation. ! 'details' ! Enable more detailed dumps (not honored by every dump option). ! Also include information from the optimization passes. ! 'stats' Enable dumping various statistics about the pass (not honored by every dump option). ! 'blocks' Enable showing basic block boundaries (disabled in raw dumps). ! 'graph' For each of the other indicated dump files ! ('-fdump-rtl-PASS'), dump a representation of the control flow ! graph suitable for viewing with GraphViz to ! 'FILE.PASSID.PASS.dot'. Each function in the file is pretty-printed as a subgraph, so that GraphViz can render them all in a single plot. ! This option currently only works for RTL dumps, and the RTL is ! always dumped in slim form. ! 'vops' Enable showing virtual operands for every statement. ! 'lineno' Enable showing line numbers for statements. ! 'uid' ! Enable showing the unique ID ('DECL_UID') for each variable. ! 'verbose' Enable showing the tree dump for each statement. ! 'eh' Enable showing the EH region number holding each statement. ! 'scev' Enable showing scalar evolution analysis details. ! 'optimized' Enable showing optimization information (only available in certain passes). ! 'missed' ! Enable showing missed optimization information (only available ! in certain passes). ! 'notes' ! Enable other detailed optimization information (only available ! in certain passes). ! '=FILENAME' Instead of an auto named dump file, output into the given file ! name. The file names 'stdout' and 'stderr' are treated specially and are considered already open standard streams. For example, gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump -fdump-tree-pre=stderr file.c ! outputs vectorizer dump into 'foo.dump', while the PRE dump is ! output on to 'stderr'. If two conflicting dump filenames are given for the same pass, then the latter option overrides the earlier one. ! 'all' ! Turn on all options, except 'raw', 'slim', 'verbose' and ! 'lineno'. ! 'optall' ! Turn on all optimization options, i.e., 'optimized', 'missed', ! and 'note'. The following tree dumps are possible: ! 'original' ! Dump before any tree based optimization, to 'FILE.original'. ! ! 'optimized' ! Dump after all tree based optimization, to 'FILE.optimized'. ! 'gimple' ! Dump each function before and after the gimplification pass to ! a file. The file name is made by appending '.gimple' to the ! source file name. ! 'cfg' Dump the control flow graph of each function to a file. The ! file name is made by appending '.cfg' to the source file name. ! 'ch' Dump each function after copying loop headers. The file name ! is made by appending '.ch' to the source file name. ! 'ssa' ! Dump SSA related information to a file. The file name is made ! by appending '.ssa' to the source file name. ! 'alias' ! Dump aliasing information for each function. The file name is ! made by appending '.alias' to the source file name. ! 'ccp' Dump each function after CCP. The file name is made by ! appending '.ccp' to the source file name. ! 'storeccp' Dump each function after STORE-CCP. The file name is made by ! appending '.storeccp' to the source file name. ! 'pre' Dump trees after partial redundancy elimination. The file ! name is made by appending '.pre' to the source file name. ! 'fre' Dump trees after full redundancy elimination. The file name ! is made by appending '.fre' to the source file name. ! 'copyprop' Dump trees after copy propagation. The file name is made by ! appending '.copyprop' to the source file name. ! 'store_copyprop' Dump trees after store copy-propagation. The file name is ! made by appending '.store_copyprop' to the source file name. ! 'dce' ! Dump each function after dead code elimination. The file name ! is made by appending '.dce' to the source file name. ! 'sra' Dump each function after performing scalar replacement of ! aggregates. The file name is made by appending '.sra' to the source file name. ! 'sink' Dump each function after performing code sinking. The file ! name is made by appending '.sink' to the source file name. ! 'dom' Dump each function after applying dominator tree ! optimizations. The file name is made by appending '.dom' to the source file name. ! 'dse' ! Dump each function after applying dead store elimination. The ! file name is made by appending '.dse' to the source file name. ! 'phiopt' Dump each function after optimizing PHI nodes into straightline code. The file name is made by appending ! '.phiopt' to the source file name. ! 'forwprop' Dump each function after forward propagating single use ! variables. The file name is made by appending '.forwprop' to the source file name. ! 'copyrename' Dump each function after applying the copy rename optimization. The file name is made by appending ! '.copyrename' to the source file name. ! 'nrv' Dump each function after applying the named return value optimization on generic trees. The file name is made by ! appending '.nrv' to the source file name. ! 'vect' ! Dump each function after applying vectorization of loops. The ! file name is made by appending '.vect' to the source file name. ! 'slp' Dump each function after applying vectorization of basic ! blocks. The file name is made by appending '.slp' to the source file name. ! 'vrp' ! Dump each function after Value Range Propagation (VRP). The ! file name is made by appending '.vrp' to the source file name. ! 'all' ! Enable all the available tree dumps with the flags provided in ! this option. ! '-fopt-info' ! '-fopt-info-OPTIONS' ! '-fopt-info-OPTIONS=FILENAME' ! Controls optimization dumps from various optimization passes. If ! the '-OPTIONS' form is used, OPTIONS is a list of '-' separated options to select the dump details and optimizations. If OPTIONS ! is not specified, it defaults to 'optimized' for details and ! 'optall' for optimization groups. If the FILENAME is not ! specified, it defaults to 'stderr'. Note that the output FILENAME ! will be overwritten in case of multiple translation units. If a combined output from multiple translation units is desired, ! 'stderr' should be used instead. The options can be divided into two groups, 1) options describing the verbosity of the dump, and 2) options describing which ! optimizations should be included. The options from both the groups ! can be freely mixed as they are non-overlapping. However, in case of any conflicts, the latter options override the earlier options ! on the command line. Though multiple -fopt-info options are ! accepted, only one of them can have '=filename'. If other filenames are provided then all but the first one are ignored. The dump verbosity has the following options ! 'optimized' Print information when an optimization is successfully ! applied. It is up to a pass to decide which information is ! relevant. For example, the vectorizer passes print the source location of loops which got successfully vectorized. ! 'missed' ! Print information about missed optimizations. Individual passes control which information to include in the output. For example, gcc -O2 -ftree-vectorize -fopt-info-vec-missed ! will print information about missed optimization opportunities ! from vectorization passes on stderr. ! 'note' Print verbose information about optimizations, such as certain transformations, more detailed messages about decisions etc. ! 'all' ! Print detailed optimization information. This includes OPTIMIZED, MISSED, and NOTE. The second set of options describes a group of optimizations and may include one or more of the following. ! 'ipa' Enable dumps from all interprocedural optimizations. ! 'loop' Enable dumps from all loop optimizations. ! 'inline' Enable dumps from all inlining optimizations. ! 'vec' Enable dumps from all vectorization optimizations. ! 'optall' ! Enable dumps from all optimizations. This is a superset of the optimization groups listed above. For example, gcc -O3 -fopt-info-missed=missed.all outputs missed optimization report from all the passes into ! 'missed.all'. As another example, gcc -O3 -fopt-info-inline-optimized-missed=inline.txt will output information about missed optimizations as well as ! optimized locations from all the inlining passes into 'inline.txt'. ! If the FILENAME is provided, then the dumps from all the applicable ! optimizations are concatenated into the 'filename'. Otherwise the ! dump is output onto 'stderr'. If OPTIONS is omitted, it defaults ! to 'all-optall', which means dump all available optimization info ! from all the passes. In the following example, all optimization ! info is output on to 'stderr'. gcc -O3 -fopt-info ! Note that '-fopt-info-vec-missed' behaves the same as ! '-fopt-info-missed-vec'. As another example, consider gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt ! Here the two output filenames 'vec.miss' and 'loop.opt' are in ! conflict since only one output file is allowed. In this case, only the first option takes effect and the subsequent options are ! ignored. Thus only the 'vec.miss' is produced which contains dumps from the vectorizer about missed opportunities. ! '-frandom-seed=STRING' This option provides a seed that GCC uses in place of random numbers in generating certain symbol names that have to be different in every compiled file. It is also used to place unique stamps in coverage data files and the object files that produce ! them. You can use the '-frandom-seed' option to produce reproducibly identical object files. The STRING should be different for every file you compile. ! '-fsched-verbose=N' On targets that use instruction scheduling, this option controls the amount of debugging output the scheduler prints. This information is written to standard error, unless ! '-fdump-rtl-sched1' or '-fdump-rtl-sched2' is specified, in which ! case it is output to the usual dump listing file, '.sched1' or ! '.sched2' respectively. However for N greater than nine, the output is always printed to standard error. ! For N greater than zero, '-fsched-verbose' outputs the same ! information as '-fdump-rtl-sched1' and '-fdump-rtl-sched2'. For N greater than one, it also output basic block probabilities, detailed ready list information and unit/insn info. For N greater than two, it includes RTL at abort point, control-flow and regions ! info. And for N over four, '-fsched-verbose' also includes dependence info. ! '-save-temps' ! '-save-temps=cwd' Store the usual "temporary" intermediate files permanently; place them in the current directory and name them based on the source ! file. Thus, compiling 'foo.c' with '-c -save-temps' produces files ! 'foo.i' and 'foo.s', as well as 'foo.o'. This creates a ! preprocessed 'foo.i' output file even though the compiler now normally uses an integrated preprocessor. ! When used in combination with the '-x' command-line option, ! '-save-temps' is sensible enough to avoid over writing an input source file with the same extension as an intermediate file. The corresponding intermediate file may be obtained by renaming the ! source file before using '-save-temps'. If you invoke GCC in parallel, compiling several different source files that share a common base name in different subdirectories or the same source file compiled for multiple output destinations, it ! is likely that the different parallel compilers will interfere with ! each other, and overwrite the temporary files. For instance: gcc -save-temps -o outdir1/foo.o indir1/foo.c& gcc -save-temps -o outdir2/foo.o indir2/foo.c& ! may result in 'foo.i' and 'foo.o' being written to simultaneously by both compilers. ! '-save-temps=obj' Store the usual "temporary" intermediate files permanently. If the ! '-o' option is used, the temporary files are based on the object ! file. If the '-o' option is not used, the '-save-temps=obj' switch ! behaves like '-save-temps'. For example: --- 5702,6060 ---- When dumping RTL, print the RTL in slim (condensed) form instead of the default LISP-like representation. ! ! `raw' Print a raw representation of the tree. By default, trees are pretty-printed into a C-like representation. ! ! `details' ! Enable more detailed dumps (not honored by every dump ! option). Also include information from the optimization ! passes. ! ! `stats' Enable dumping various statistics about the pass (not honored by every dump option). ! ! `blocks' Enable showing basic block boundaries (disabled in raw dumps). ! ! `graph' For each of the other indicated dump files ! (`-fdump-rtl-PASS'), dump a representation of the control ! flow graph suitable for viewing with GraphViz to ! `FILE.PASSID.PASS.dot'. Each function in the file is pretty-printed as a subgraph, so that GraphViz can render them all in a single plot. ! This option currently only works for RTL dumps, and the RTL ! is always dumped in slim form. ! ! `vops' Enable showing virtual operands for every statement. ! ! `lineno' Enable showing line numbers for statements. ! ! `uid' ! Enable showing the unique ID (`DECL_UID') for each variable. ! ! `verbose' Enable showing the tree dump for each statement. ! ! `eh' Enable showing the EH region number holding each statement. ! ! `scev' Enable showing scalar evolution analysis details. ! ! `optimized' Enable showing optimization information (only available in certain passes). ! ! `missed' ! Enable showing missed optimization information (only ! available in certain passes). ! ! `notes' ! Enable other detailed optimization information (only ! available in certain passes). ! ! `=FILENAME' Instead of an auto named dump file, output into the given file ! name. The file names `stdout' and `stderr' are treated specially and are considered already open standard streams. For example, gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump -fdump-tree-pre=stderr file.c ! outputs vectorizer dump into `foo.dump', while the PRE dump is ! output on to `stderr'. If two conflicting dump filenames are given for the same pass, then the latter option overrides the earlier one. ! `all' ! Turn on all options, except `raw', `slim', `verbose' and ! `lineno'. ! `optall' ! Turn on all optimization options, i.e., `optimized', ! `missed', and `note'. The following tree dumps are possible: + `original' + Dump before any tree based optimization, to `FILE.original'. ! `optimized' ! Dump after all tree based optimization, to `FILE.optimized'. ! `gimple' ! Dump each function before and after the gimplification pass ! to a file. The file name is made by appending `.gimple' to ! the source file name. ! `cfg' Dump the control flow graph of each function to a file. The ! file name is made by appending `.cfg' to the source file name. ! `ch' Dump each function after copying loop headers. The file name ! is made by appending `.ch' to the source file name. ! `ssa' ! Dump SSA related information to a file. The file name is ! made by appending `.ssa' to the source file name. ! `alias' ! Dump aliasing information for each function. The file name ! is made by appending `.alias' to the source file name. ! `ccp' Dump each function after CCP. The file name is made by ! appending `.ccp' to the source file name. ! `storeccp' Dump each function after STORE-CCP. The file name is made by ! appending `.storeccp' to the source file name. ! `pre' Dump trees after partial redundancy elimination. The file ! name is made by appending `.pre' to the source file name. ! `fre' Dump trees after full redundancy elimination. The file name ! is made by appending `.fre' to the source file name. ! `copyprop' Dump trees after copy propagation. The file name is made by ! appending `.copyprop' to the source file name. ! `store_copyprop' Dump trees after store copy-propagation. The file name is ! made by appending `.store_copyprop' to the source file name. ! `dce' ! Dump each function after dead code elimination. The file ! name is made by appending `.dce' to the source file name. ! `sra' Dump each function after performing scalar replacement of ! aggregates. The file name is made by appending `.sra' to the source file name. ! `sink' Dump each function after performing code sinking. The file ! name is made by appending `.sink' to the source file name. ! `dom' Dump each function after applying dominator tree ! optimizations. The file name is made by appending `.dom' to the source file name. ! `dse' ! Dump each function after applying dead store elimination. ! The file name is made by appending `.dse' to the source file ! name. ! `phiopt' Dump each function after optimizing PHI nodes into straightline code. The file name is made by appending ! `.phiopt' to the source file name. ! `forwprop' Dump each function after forward propagating single use ! variables. The file name is made by appending `.forwprop' to the source file name. ! `copyrename' Dump each function after applying the copy rename optimization. The file name is made by appending ! `.copyrename' to the source file name. ! `nrv' Dump each function after applying the named return value optimization on generic trees. The file name is made by ! appending `.nrv' to the source file name. ! `vect' ! Dump each function after applying vectorization of loops. ! The file name is made by appending `.vect' to the source file name. ! `slp' Dump each function after applying vectorization of basic ! blocks. The file name is made by appending `.slp' to the source file name. ! `vrp' ! Dump each function after Value Range Propagation (VRP). The ! file name is made by appending `.vrp' to the source file name. ! `all' ! Enable all the available tree dumps with the flags provided ! in this option. ! `-fopt-info' ! `-fopt-info-OPTIONS' ! `-fopt-info-OPTIONS=FILENAME' ! Controls optimization dumps from various optimization passes. If ! the `-OPTIONS' form is used, OPTIONS is a list of `-' separated options to select the dump details and optimizations. If OPTIONS ! is not specified, it defaults to `optimized' for details and ! `optall' for optimization groups. If the FILENAME is not ! specified, it defaults to `stderr'. Note that the output FILENAME ! will be overwritten in case of multiple translation units. If a combined output from multiple translation units is desired, ! `stderr' should be used instead. The options can be divided into two groups, 1) options describing the verbosity of the dump, and 2) options describing which ! optimizations should be included. The options from both the groups ! can be freely mixed as they are non-overlapping. However, in case of any conflicts, the latter options override the earlier options ! on the command line. Though multiple -fopt-info options are ! accepted, only one of them can have `=filename'. If other filenames are provided then all but the first one are ignored. The dump verbosity has the following options ! `optimized' Print information when an optimization is successfully ! applied. It is up to a pass to decide which information is ! relevant. For example, the vectorizer passes print the source location of loops which got successfully vectorized. ! ! `missed' ! Print information about missed optimizations. Individual passes control which information to include in the output. For example, gcc -O2 -ftree-vectorize -fopt-info-vec-missed ! will print information about missed optimization ! opportunities from vectorization passes on stderr. ! ! `note' Print verbose information about optimizations, such as certain transformations, more detailed messages about decisions etc. ! ! `all' ! Print detailed optimization information. This includes OPTIMIZED, MISSED, and NOTE. The second set of options describes a group of optimizations and may include one or more of the following. ! `ipa' Enable dumps from all interprocedural optimizations. ! ! `loop' Enable dumps from all loop optimizations. ! ! `inline' Enable dumps from all inlining optimizations. ! ! `vec' Enable dumps from all vectorization optimizations. ! ! `optall' ! Enable dumps from all optimizations. This is a superset of the optimization groups listed above. For example, gcc -O3 -fopt-info-missed=missed.all outputs missed optimization report from all the passes into ! `missed.all'. As another example, gcc -O3 -fopt-info-inline-optimized-missed=inline.txt will output information about missed optimizations as well as ! optimized locations from all the inlining passes into `inline.txt'. ! If the FILENAME is provided, then the dumps from all the ! applicable optimizations are concatenated into the `filename'. ! Otherwise the dump is output onto `stderr'. If OPTIONS is omitted, ! it defaults to `all-optall', which means dump all available ! optimization info from all the passes. In the following example, ! all optimization info is output on to `stderr'. gcc -O3 -fopt-info ! Note that `-fopt-info-vec-missed' behaves the same as ! `-fopt-info-missed-vec'. As another example, consider gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt ! Here the two output filenames `vec.miss' and `loop.opt' are in ! conflict since only one output file is allowed. In this case, only the first option takes effect and the subsequent options are ! ignored. Thus only the `vec.miss' is produced which contains dumps from the vectorizer about missed opportunities. ! `-frandom-seed=STRING' This option provides a seed that GCC uses in place of random numbers in generating certain symbol names that have to be different in every compiled file. It is also used to place unique stamps in coverage data files and the object files that produce ! them. You can use the `-frandom-seed' option to produce reproducibly identical object files. The STRING should be different for every file you compile. ! `-fsched-verbose=N' On targets that use instruction scheduling, this option controls the amount of debugging output the scheduler prints. This information is written to standard error, unless ! `-fdump-rtl-sched1' or `-fdump-rtl-sched2' is specified, in which ! case it is output to the usual dump listing file, `.sched1' or ! `.sched2' respectively. However for N greater than nine, the output is always printed to standard error. ! For N greater than zero, `-fsched-verbose' outputs the same ! information as `-fdump-rtl-sched1' and `-fdump-rtl-sched2'. For N greater than one, it also output basic block probabilities, detailed ready list information and unit/insn info. For N greater than two, it includes RTL at abort point, control-flow and regions ! info. And for N over four, `-fsched-verbose' also includes dependence info. ! `-save-temps' ! `-save-temps=cwd' Store the usual "temporary" intermediate files permanently; place them in the current directory and name them based on the source ! file. Thus, compiling `foo.c' with `-c -save-temps' produces files ! `foo.i' and `foo.s', as well as `foo.o'. This creates a ! preprocessed `foo.i' output file even though the compiler now normally uses an integrated preprocessor. ! When used in combination with the `-x' command-line option, ! `-save-temps' is sensible enough to avoid over writing an input source file with the same extension as an intermediate file. The corresponding intermediate file may be obtained by renaming the ! source file before using `-save-temps'. If you invoke GCC in parallel, compiling several different source files that share a common base name in different subdirectories or the same source file compiled for multiple output destinations, it ! is likely that the different parallel compilers will interfere ! with each other, and overwrite the temporary files. For instance: gcc -save-temps -o outdir1/foo.o indir1/foo.c& gcc -save-temps -o outdir2/foo.o indir2/foo.c& ! may result in `foo.i' and `foo.o' being written to simultaneously by both compilers. ! `-save-temps=obj' Store the usual "temporary" intermediate files permanently. If the ! `-o' option is used, the temporary files are based on the object ! file. If the `-o' option is not used, the `-save-temps=obj' ! switch behaves like `-save-temps'. For example: *************** program or GCC: *** 6004,6013 **** gcc -save-temps=obj -c bar.c -o dir/xbar.o gcc -save-temps=obj foobar.c -o dir2/yfoobar ! creates 'foo.i', 'foo.s', 'dir/xbar.i', 'dir/xbar.s', ! 'dir2/yfoobar.i', 'dir2/yfoobar.s', and 'dir2/yfoobar.o'. ! '-time[=FILE]' Report the CPU time taken by each subprocess in the compilation sequence. For C source files, this is the compiler proper and assembler (plus the linker if linking is done). --- 6062,6071 ---- gcc -save-temps=obj -c bar.c -o dir/xbar.o gcc -save-temps=obj foobar.c -o dir2/yfoobar ! creates `foo.i', `foo.s', `dir/xbar.i', `dir/xbar.s', ! `dir2/yfoobar.i', `dir2/yfoobar.s', and `dir2/yfoobar.o'. ! `-time[=FILE]' Report the CPU time taken by each subprocess in the compilation sequence. For C source files, this is the compiler proper and assembler (plus the linker if linking is done). *************** program or GCC: *** 6023,6030 **** time", time spent executing operating system routines on behalf of the program. Both numbers are in seconds. ! With the specification of an output file, the output is appended to ! the named file, and it looks like this: 0.12 0.01 cc1 OPTIONS 0.00 0.01 as OPTIONS --- 6081,6088 ---- time", time spent executing operating system routines on behalf of the program. Both numbers are in seconds. ! With the specification of an output file, the output is appended ! to the named file, and it looks like this: 0.12 0.01 cc1 OPTIONS 0.00 0.01 as OPTIONS *************** program or GCC: *** 6034,6151 **** one can later tell what file was being compiled, and with which options. ! '-fvar-tracking' ! Run variable tracking pass. It computes where variables are stored ! at each position in code. Better debugging information is then ! generated (if the debugging information format supports this information). ! It is enabled by default when compiling with optimization ('-Os', ! '-O', '-O2', ...), debugging information ('-g') and the debug info format supports it. ! '-fvar-tracking-assignments' Annotate assignments to user variables early in the compilation and attempt to carry the annotations over throughout the compilation all the way to the end, in an attempt to improve debug information ! while optimizing. Use of '-gdwarf-4' is recommended along with it. It can be enabled even if var-tracking is disabled, in which case annotations are created and maintained, but discarded at the end. ! '-fvar-tracking-assignments-toggle' ! Toggle '-fvar-tracking-assignments', in the same way that ! '-gtoggle' toggles '-g'. ! '-print-file-name=LIBRARY' ! Print the full absolute name of the library file LIBRARY that would ! be used when linking--and don't do anything else. With this option, GCC does not compile or link anything; it just prints the file name. ! '-print-multi-directory' Print the directory name corresponding to the multilib selected by any other switches present in the command line. This directory is ! supposed to exist in 'GCC_EXEC_PREFIX'. ! '-print-multi-lib' Print the mapping from multilib directory names to compiler switches that enable them. The directory name is separated from ! the switches by ';', and each switch starts with an '@' instead of ! the '-', without spaces between multiple switches. This is supposed to ease shell processing. ! '-print-multi-os-directory' Print the path to OS libraries for the selected multilib, relative ! to some 'lib' subdirectory. If OS libraries are present in the ! 'lib' subdirectory and no multilibs are used, this is usually just ! '.', if OS libraries are present in 'libSUFFIX' sibling directories ! this prints e.g. '../lib64', '../lib' or '../lib32', or if OS ! libraries are present in 'lib/SUBDIR' subdirectories it prints e.g. ! 'amd64', 'sparcv9' or 'ev6'. ! '-print-multiarch' ! Print the path to OS libraries for the selected multiarch, relative ! to some 'lib' subdirectory. ! '-print-prog-name=PROGRAM' ! Like '-print-file-name', but searches for a program such as 'cpp'. ! '-print-libgcc-file-name' ! Same as '-print-file-name=libgcc.a'. ! This is useful when you use '-nostdlib' or '-nodefaultlibs' but you ! do want to link with 'libgcc.a'. You can do: gcc -nostdlib FILES... `gcc -print-libgcc-file-name` ! '-print-search-dirs' Print the name of the configured installation directory and a list ! of program and library directories 'gcc' searches--and don't do anything else. ! This is useful when 'gcc' prints the error message 'installation problem, cannot exec cpp0: No such file or directory'. To resolve ! this you either need to put 'cpp0' and the other compiler ! components where 'gcc' expects to find them, or you can set the ! environment variable 'GCC_EXEC_PREFIX' to the directory where you ! installed them. Don't forget the trailing '/'. *Note Environment Variables::. ! '-print-sysroot' ! Print the target sysroot directory that is used during compilation. ! This is the target sysroot specified either at configure time or ! using the '--sysroot' option, possibly with an extra suffix that ! depends on compilation options. If no target sysroot is specified, ! the option prints nothing. ! '-print-sysroot-headers-suffix' Print the suffix added to the target sysroot when searching for headers, or give an error if the compiler is not configured with such a suffix--and don't do anything else. ! '-dumpmachine' Print the compiler's target machine (for example, ! 'i686-pc-linux-gnu')--and don't do anything else. ! '-dumpversion' ! Print the compiler version (for example, '3.0')--and don't do anything else. ! '-dumpspecs' Print the compiler's built-in specs--and don't do anything else. (This is used when GCC itself is being built.) *Note Spec Files::. ! '-fno-eliminate-unused-debug-types' ! Normally, when producing DWARF 2 output, GCC avoids producing debug ! symbol output for types that are nowhere used in the source file ! being compiled. Sometimes it is useful to have GCC emit debugging ! information for all types declared in a compilation unit, ! regardless of whether or not they are actually used in that ! compilation unit, for example if, in the debugger, you want to cast ! a value to a type that is not actually used in your program (but is ! declared). More often, however, this results in a significant ! amount of wasted space.  File: gcc.info, Node: Optimize Options, Next: Preprocessor Options, Prev: Debugging Options, Up: Invoking GCC --- 6092,6209 ---- one can later tell what file was being compiled, and with which options. ! `-fvar-tracking' ! Run variable tracking pass. It computes where variables are ! stored at each position in code. Better debugging information is ! then generated (if the debugging information format supports this information). ! It is enabled by default when compiling with optimization (`-Os', ! `-O', `-O2', ...), debugging information (`-g') and the debug info format supports it. ! `-fvar-tracking-assignments' Annotate assignments to user variables early in the compilation and attempt to carry the annotations over throughout the compilation all the way to the end, in an attempt to improve debug information ! while optimizing. Use of `-gdwarf-4' is recommended along with it. It can be enabled even if var-tracking is disabled, in which case annotations are created and maintained, but discarded at the end. ! `-fvar-tracking-assignments-toggle' ! Toggle `-fvar-tracking-assignments', in the same way that ! `-gtoggle' toggles `-g'. ! `-print-file-name=LIBRARY' ! Print the full absolute name of the library file LIBRARY that ! would be used when linking--and don't do anything else. With this option, GCC does not compile or link anything; it just prints the file name. ! `-print-multi-directory' Print the directory name corresponding to the multilib selected by any other switches present in the command line. This directory is ! supposed to exist in `GCC_EXEC_PREFIX'. ! `-print-multi-lib' Print the mapping from multilib directory names to compiler switches that enable them. The directory name is separated from ! the switches by `;', and each switch starts with an `@' instead of ! the `-', without spaces between multiple switches. This is supposed to ease shell processing. ! `-print-multi-os-directory' Print the path to OS libraries for the selected multilib, relative ! to some `lib' subdirectory. If OS libraries are present in the ! `lib' subdirectory and no multilibs are used, this is usually just ! `.', if OS libraries are present in `libSUFFIX' sibling ! directories this prints e.g. `../lib64', `../lib' or `../lib32', ! or if OS libraries are present in `lib/SUBDIR' subdirectories it ! prints e.g. `amd64', `sparcv9' or `ev6'. ! `-print-multiarch' ! Print the path to OS libraries for the selected multiarch, ! relative to some `lib' subdirectory. ! `-print-prog-name=PROGRAM' ! Like `-print-file-name', but searches for a program such as `cpp'. ! `-print-libgcc-file-name' ! Same as `-print-file-name=libgcc.a'. ! This is useful when you use `-nostdlib' or `-nodefaultlibs' but ! you do want to link with `libgcc.a'. You can do: gcc -nostdlib FILES... `gcc -print-libgcc-file-name` ! `-print-search-dirs' Print the name of the configured installation directory and a list ! of program and library directories `gcc' searches--and don't do anything else. ! This is useful when `gcc' prints the error message `installation problem, cannot exec cpp0: No such file or directory'. To resolve ! this you either need to put `cpp0' and the other compiler ! components where `gcc' expects to find them, or you can set the ! environment variable `GCC_EXEC_PREFIX' to the directory where you ! installed them. Don't forget the trailing `/'. *Note Environment Variables::. ! `-print-sysroot' ! Print the target sysroot directory that is used during ! compilation. This is the target sysroot specified either at ! configure time or using the `--sysroot' option, possibly with an ! extra suffix that depends on compilation options. If no target ! sysroot is specified, the option prints nothing. ! `-print-sysroot-headers-suffix' Print the suffix added to the target sysroot when searching for headers, or give an error if the compiler is not configured with such a suffix--and don't do anything else. ! `-dumpmachine' Print the compiler's target machine (for example, ! `i686-pc-linux-gnu')--and don't do anything else. ! `-dumpversion' ! Print the compiler version (for example, `3.0')--and don't do anything else. ! `-dumpspecs' Print the compiler's built-in specs--and don't do anything else. (This is used when GCC itself is being built.) *Note Spec Files::. ! `-fno-eliminate-unused-debug-types' ! Normally, when producing DWARF 2 output, GCC avoids producing ! debug symbol output for types that are nowhere used in the source ! file being compiled. Sometimes it is useful to have GCC emit ! debugging information for all types declared in a compilation ! unit, regardless of whether or not they are actually used in that ! compilation unit, for example if, in the debugger, you want to ! cast a value to a type that is not actually used in your program ! (but is declared). More often, however, this results in a ! significant amount of wasted space.  File: gcc.info, Node: Optimize Options, Next: Preprocessor Options, Prev: Debugging Options, Up: Invoking GCC *************** between statements, you can then assign *** 6162,6199 **** change the program counter to any other statement in the function and get exactly the results you expect from the source code. ! Turning on optimization flags makes the compiler attempt to improve the ! performance and/or code size at the expense of compilation time and possibly the ability to debug the program. The compiler performs optimization based on the knowledge it has of the program. Compiling multiple files at once to a single output file mode ! allows the compiler to use information gained from all of the files when ! compiling each of them. Not all optimizations are controlled directly by a flag. Only optimizations that have a flag are listed in this section. ! Most optimizations are only enabled if an '-O' level is set on the command line. Otherwise they are disabled, even if individual optimization flags are specified. Depending on the target and how GCC was configured, a slightly ! different set of optimizations may be enabled at each '-O' level than ! those listed here. You can invoke GCC with '-Q --help=optimizers' to find out the exact set of optimizations that are enabled at each level. *Note Overall Options::, for examples. ! '-O' ! '-O1' Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function. ! With '-O', the compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time. ! '-O' turns on the following optimization flags: -fauto-inc-dec -fcompare-elim -fcprop-registers --- 6220,6257 ---- change the program counter to any other statement in the function and get exactly the results you expect from the source code. ! Turning on optimization flags makes the compiler attempt to improve ! the performance and/or code size at the expense of compilation time and possibly the ability to debug the program. The compiler performs optimization based on the knowledge it has of the program. Compiling multiple files at once to a single output file mode ! allows the compiler to use information gained from all of the files ! when compiling each of them. Not all optimizations are controlled directly by a flag. Only optimizations that have a flag are listed in this section. ! Most optimizations are only enabled if an `-O' level is set on the command line. Otherwise they are disabled, even if individual optimization flags are specified. Depending on the target and how GCC was configured, a slightly ! different set of optimizations may be enabled at each `-O' level than ! those listed here. You can invoke GCC with `-Q --help=optimizers' to find out the exact set of optimizations that are enabled at each level. *Note Overall Options::, for examples. ! `-O' ! `-O1' Optimize. Optimizing compilation takes somewhat more time, and a lot more memory for a large function. ! With `-O', the compiler tries to reduce code size and execution time, without performing any optimizations that take a great deal of compilation time. ! `-O' turns on the following optimization flags: -fauto-inc-dec -fcompare-elim -fcprop-registers *************** find out the exact set of optimizations *** 6226,6241 **** -ftree-ter -funit-at-a-time ! '-O' also turns on '-fomit-frame-pointer' on machines where doing so does not interfere with debugging. ! '-O2' Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. As ! compared to '-O', this option increases both compilation time and the performance of the generated code. ! '-O2' turns on all optimization flags specified by '-O'. It also turns on the following optimization flags: -fthread-jumps -falign-functions -falign-jumps --- 6284,6299 ---- -ftree-ter -funit-at-a-time ! `-O' also turns on `-fomit-frame-pointer' on machines where doing so does not interfere with debugging. ! `-O2' Optimize even more. GCC performs nearly all supported optimizations that do not involve a space-speed tradeoff. As ! compared to `-O', this option increases both compilation time and the performance of the generated code. ! `-O2' turns on all optimization flags specified by `-O'. It also turns on the following optimization flags: -fthread-jumps -falign-functions -falign-jumps *************** find out the exact set of optimizations *** 6264,6453 **** -ftree-pre -ftree-vrp ! Please note the warning under '-fgcse' about invoking '-O2' on programs that use computed gotos. ! '-O3' ! Optimize yet more. '-O3' turns on all optimizations specified by ! '-O2' and also turns on the '-finline-functions', ! '-funswitch-loops', '-fpredictive-commoning', ! '-fgcse-after-reload', '-ftree-loop-vectorize', ! '-ftree-slp-vectorize', '-fvect-cost-model', '-ftree-partial-pre' ! and '-fipa-cp-clone' options. ! '-O0' Reduce compilation time and make debugging produce the expected results. This is the default. ! '-Os' ! Optimize for size. '-Os' enables all '-O2' optimizations that do not typically increase code size. It also performs further optimizations designed to reduce code size. ! '-Os' disables the following optimization flags: -falign-functions -falign-jumps -falign-loops -falign-labels -freorder-blocks -freorder-blocks-and-partition -fprefetch-loop-arrays ! '-Ofast' ! Disregard strict standards compliance. '-Ofast' enables all '-O3' optimizations. It also enables optimizations that are not valid ! for all standard-compliant programs. It turns on '-ffast-math' and ! the Fortran-specific '-fno-protect-parens' and '-fstack-arrays'. ! '-Og' ! Optimize debugging experience. '-Og' enables optimizations that do ! not interfere with debugging. It should be the optimization level ! of choice for the standard edit-compile-debug cycle, offering a ! reasonable level of optimization while maintaining fast compilation ! and a good debugging experience. ! If you use multiple '-O' options, with or without level numbers, the last such option is the one that is effective. ! Options of the form '-fFLAG' specify machine-independent flags. Most flags have both positive and negative forms; the negative form of ! '-ffoo' is '-fno-foo'. In the table below, only one of the forms is ! listed--the one you typically use. You can figure out the other form by ! either removing 'no-' or adding it. The following options control specific optimizations. They are either ! activated by '-O' options or are related to ones that are. You can use the following flags in the rare cases when "fine-tuning" of optimizations to be performed is desired. ! '-fno-defer-pop' Always pop the arguments to each function call as soon as that function returns. For machines that must pop arguments after a function call, the compiler normally lets arguments accumulate on the stack for several function calls and pops them all at once. ! Disabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fforward-propagate' Perform a forward propagation pass on RTL. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. ! This option is enabled by default at optimization levels '-O', ! '-O2', '-O3', '-Os'. ! '-ffp-contract=STYLE' ! '-ffp-contract=off' disables floating-point expression contraction. ! '-ffp-contract=fast' enables floating-point expression contraction such as forming of fused multiply-add operations if the target has ! native support for them. '-ffp-contract=on' enables floating-point ! expression contraction if allowed by the language standard. This ! is currently not implemented and treated equal to ! '-ffp-contract=off'. ! The default is '-ffp-contract=fast'. ! '-fomit-frame-pointer' ! Don't keep the frame pointer in a register for functions that don't ! need one. This avoids the instructions to save, set up and restore ! frame pointers; it also makes an extra register available in many ! functions. *It also makes debugging impossible on some machines.* On some machines, such as the VAX, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The ! machine-description macro 'FRAME_POINTER_REQUIRED' controls whether ! a target machine supports this flag. *Note Register Usage: ! (gccint)Registers. Starting with GCC version 4.6, the default setting (when not ! optimizing for size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 ! targets has been changed to '-fomit-frame-pointer'. The default ! can be reverted to '-fno-omit-frame-pointer' by configuring GCC ! with the '--enable-frame-pointer' configure option. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-foptimize-sibling-calls' Optimize sibling and tail recursive calls. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fno-inline' ! Do not expand any functions inline apart from those marked with the ! 'always_inline' attribute. This is the default when not optimizing. ! Single functions can be exempted from inlining by marking them with ! the 'noinline' attribute. ! '-finline-small-functions' Integrate functions into their callers when their body is smaller than expected function call code (so overall size of program gets smaller). The compiler heuristically decides which functions are simple enough to be worth integrating in this way. This inlining applies to all functions, even those not declared inline. ! Enabled at level '-O2'. ! '-findirect-inlining' Inline also indirect calls that are discovered to be known at compile time thanks to previous inlining. This option has any effect only when inlining itself is turned on by the ! '-finline-functions' or '-finline-small-functions' options. ! Enabled at level '-O2'. ! '-finline-functions' Consider all functions for inlining, even if they are not declared inline. The compiler heuristically decides which functions are worth integrating in this way. If all calls to a given function are integrated, and the function ! is declared 'static', then the function is normally not output as assembler code in its own right. ! Enabled at level '-O3'. ! '-finline-functions-called-once' ! Consider all 'static' functions called once for inlining into their ! caller even if they are not marked 'inline'. If a call to a given function is integrated, then the function is not output as assembler code in its own right. ! Enabled at levels '-O1', '-O2', '-O3' and '-Os'. ! '-fearly-inlining' ! Inline functions marked by 'always_inline' and functions whose body ! seems smaller than the function call overhead early before doing ! '-fprofile-generate' instrumentation and real inlining pass. Doing ! so makes profiling significantly cheaper and usually inlining ! faster on programs having large chains of nested wrapper functions. Enabled by default. ! '-fipa-sra' Perform interprocedural scalar replacement of aggregates, removal of unused parameters and replacement of parameters passed by reference by parameters passed by value. ! Enabled at levels '-O2', '-O3' and '-Os'. ! '-finline-limit=N' By default, GCC limits the size of functions that can be inlined. This flag allows coarse control of this limit. N is the size of functions that can be inlined in number of pseudo instructions. Inlining is actually controlled by a number of parameters, which ! may be specified individually by using '--param NAME=VALUE'. The ! '-finline-limit=N' option sets some of these parameters as follows: ! 'max-inline-insns-single' is set to N/2. ! 'max-inline-insns-auto' is set to N/2. See below for a documentation of the individual parameters controlling inlining and for the defaults of these parameters. ! _Note:_ there may be no value to '-finline-limit' that results in default behavior. _Note:_ pseudo instruction represents, in this particular context, --- 6322,6515 ---- -ftree-pre -ftree-vrp ! Please note the warning under `-fgcse' about invoking `-O2' on programs that use computed gotos. ! `-O3' ! Optimize yet more. `-O3' turns on all optimizations specified by ! `-O2' and also turns on the `-finline-functions', ! `-funswitch-loops', `-fpredictive-commoning', ! `-fgcse-after-reload', `-ftree-loop-vectorize', ! `-ftree-slp-vectorize', `-fvect-cost-model', `-ftree-partial-pre' ! and `-fipa-cp-clone' options. ! `-O0' Reduce compilation time and make debugging produce the expected results. This is the default. ! `-Os' ! Optimize for size. `-Os' enables all `-O2' optimizations that do not typically increase code size. It also performs further optimizations designed to reduce code size. ! `-Os' disables the following optimization flags: -falign-functions -falign-jumps -falign-loops -falign-labels -freorder-blocks -freorder-blocks-and-partition -fprefetch-loop-arrays ! `-Ofast' ! Disregard strict standards compliance. `-Ofast' enables all `-O3' optimizations. It also enables optimizations that are not valid ! for all standard-compliant programs. It turns on `-ffast-math' ! and the Fortran-specific `-fno-protect-parens' and ! `-fstack-arrays'. ! `-Og' ! Optimize debugging experience. `-Og' enables optimizations that ! do not interfere with debugging. It should be the optimization ! level of choice for the standard edit-compile-debug cycle, offering ! a reasonable level of optimization while maintaining fast ! compilation and a good debugging experience. ! If you use multiple `-O' options, with or without level numbers, the last such option is the one that is effective. ! Options of the form `-fFLAG' specify machine-independent flags. Most flags have both positive and negative forms; the negative form of ! `-ffoo' is `-fno-foo'. In the table below, only one of the forms is ! listed--the one you typically use. You can figure out the other form ! by either removing `no-' or adding it. The following options control specific optimizations. They are either ! activated by `-O' options or are related to ones that are. You can use the following flags in the rare cases when "fine-tuning" of optimizations to be performed is desired. ! `-fno-defer-pop' Always pop the arguments to each function call as soon as that function returns. For machines that must pop arguments after a function call, the compiler normally lets arguments accumulate on the stack for several function calls and pops them all at once. ! Disabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fforward-propagate' Perform a forward propagation pass on RTL. The pass tries to combine two instructions and checks if the result can be simplified. If loop unrolling is active, two passes are performed and the second is scheduled after loop unrolling. ! This option is enabled by default at optimization levels `-O', ! `-O2', `-O3', `-Os'. ! `-ffp-contract=STYLE' ! `-ffp-contract=off' disables floating-point expression contraction. ! `-ffp-contract=fast' enables floating-point expression contraction such as forming of fused multiply-add operations if the target has ! native support for them. `-ffp-contract=on' enables ! floating-point expression contraction if allowed by the language ! standard. This is currently not implemented and treated equal to ! `-ffp-contract=off'. ! The default is `-ffp-contract=fast'. ! `-fomit-frame-pointer' ! Don't keep the frame pointer in a register for functions that ! don't need one. This avoids the instructions to save, set up and ! restore frame pointers; it also makes an extra register available ! in many functions. *It also makes debugging impossible on some ! machines.* On some machines, such as the VAX, this flag has no effect, because the standard calling sequence automatically handles the frame pointer and nothing is saved by pretending it doesn't exist. The ! machine-description macro `FRAME_POINTER_REQUIRED' controls ! whether a target machine supports this flag. *Note Register ! Usage: (gccint)Registers. Starting with GCC version 4.6, the default setting (when not ! optimizing for size) for 32-bit GNU/Linux x86 and 32-bit Darwin ! x86 targets has been changed to `-fomit-frame-pointer'. The ! default can be reverted to `-fno-omit-frame-pointer' by ! configuring GCC with the `--enable-frame-pointer' configure option. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-foptimize-sibling-calls' Optimize sibling and tail recursive calls. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fno-inline' ! Do not expand any functions inline apart from those marked with ! the `always_inline' attribute. This is the default when not optimizing. ! Single functions can be exempted from inlining by marking them ! with the `noinline' attribute. ! `-finline-small-functions' Integrate functions into their callers when their body is smaller than expected function call code (so overall size of program gets smaller). The compiler heuristically decides which functions are simple enough to be worth integrating in this way. This inlining applies to all functions, even those not declared inline. ! Enabled at level `-O2'. ! `-findirect-inlining' Inline also indirect calls that are discovered to be known at compile time thanks to previous inlining. This option has any effect only when inlining itself is turned on by the ! `-finline-functions' or `-finline-small-functions' options. ! Enabled at level `-O2'. ! `-finline-functions' Consider all functions for inlining, even if they are not declared inline. The compiler heuristically decides which functions are worth integrating in this way. If all calls to a given function are integrated, and the function ! is declared `static', then the function is normally not output as assembler code in its own right. ! Enabled at level `-O3'. ! `-finline-functions-called-once' ! Consider all `static' functions called once for inlining into their ! caller even if they are not marked `inline'. If a call to a given function is integrated, then the function is not output as assembler code in its own right. ! Enabled at levels `-O1', `-O2', `-O3' and `-Os'. ! `-fearly-inlining' ! Inline functions marked by `always_inline' and functions whose ! body seems smaller than the function call overhead early before ! doing `-fprofile-generate' instrumentation and real inlining pass. ! Doing so makes profiling significantly cheaper and usually ! inlining faster on programs having large chains of nested wrapper ! functions. Enabled by default. ! `-fipa-sra' Perform interprocedural scalar replacement of aggregates, removal of unused parameters and replacement of parameters passed by reference by parameters passed by value. ! Enabled at levels `-O2', `-O3' and `-Os'. ! `-finline-limit=N' By default, GCC limits the size of functions that can be inlined. This flag allows coarse control of this limit. N is the size of functions that can be inlined in number of pseudo instructions. Inlining is actually controlled by a number of parameters, which ! may be specified individually by using `--param NAME=VALUE'. The ! `-finline-limit=N' option sets some of these parameters as follows: ! `max-inline-insns-single' is set to N/2. ! ! `max-inline-insns-auto' is set to N/2. See below for a documentation of the individual parameters controlling inlining and for the defaults of these parameters. ! _Note:_ there may be no value to `-finline-limit' that results in default behavior. _Note:_ pseudo instruction represents, in this particular context, *************** optimizations to be performed is desired *** 6455,6516 **** represent a count of assembly instructions and as such its exact meaning might change from one release to an another. ! '-fno-keep-inline-dllexport' ! This is a more fine-grained version of '-fkeep-inline-functions', which applies only to functions that are declared using the ! 'dllexport' attribute or declspec (*Note Declaring Attributes of Functions: Function Attributes.) ! '-fkeep-inline-functions' ! In C, emit 'static' functions that are declared 'inline' into the object file, even if the function has been inlined into all of its ! callers. This switch does not affect functions using the 'extern inline' extension in GNU C90. In C++, emit any and all inline functions into the object file. ! '-fkeep-static-consts' ! Emit variables declared 'static const' when optimization isn't turned on, even if the variables aren't referenced. GCC enables this option by default. If you want to force the compiler to check if a variable is referenced, regardless of whether or not optimization is turned on, use the ! '-fno-keep-static-consts' option. ! '-fmerge-constants' Attempt to merge identical constants (string constants and floating-point constants) across compilation units. This option is the default for optimized compilation if the ! assembler and linker support it. Use '-fno-merge-constants' to inhibit this behavior. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fmerge-all-constants' Attempt to merge identical constants and identical variables. ! This option implies '-fmerge-constants'. In addition to ! '-fmerge-constants' this considers e.g. even constant initialized arrays or initialized constant variables with integral or floating-point types. Languages like C or C++ require each variable, including multiple instances of the same variable in recursive calls, to have distinct locations, so using this option results in non-conforming behavior. ! '-fmodulo-sched' Perform swing modulo scheduling immediately before the first scheduling pass. This pass looks at innermost loops and reorders their instructions by overlapping different iterations. ! '-fmodulo-sched-allow-regmoves' Perform more aggressive SMS-based modulo scheduling with register ! moves allowed. By setting this flag certain anti-dependences edges ! are deleted, which triggers the generation of reg-moves based on ! the life-range analysis. This option is effective only with ! '-fmodulo-sched' enabled. ! '-fno-branch-count-reg' Do not use "decrement and branch" instructions on a count register, but instead generate a sequence of instructions that decrement a register, compare it against zero, then branch based upon the --- 6517,6578 ---- represent a count of assembly instructions and as such its exact meaning might change from one release to an another. ! `-fno-keep-inline-dllexport' ! This is a more fine-grained version of `-fkeep-inline-functions', which applies only to functions that are declared using the ! `dllexport' attribute or declspec (*Note Declaring Attributes of Functions: Function Attributes.) ! `-fkeep-inline-functions' ! In C, emit `static' functions that are declared `inline' into the object file, even if the function has been inlined into all of its ! callers. This switch does not affect functions using the `extern inline' extension in GNU C90. In C++, emit any and all inline functions into the object file. ! `-fkeep-static-consts' ! Emit variables declared `static const' when optimization isn't turned on, even if the variables aren't referenced. GCC enables this option by default. If you want to force the compiler to check if a variable is referenced, regardless of whether or not optimization is turned on, use the ! `-fno-keep-static-consts' option. ! `-fmerge-constants' Attempt to merge identical constants (string constants and floating-point constants) across compilation units. This option is the default for optimized compilation if the ! assembler and linker support it. Use `-fno-merge-constants' to inhibit this behavior. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fmerge-all-constants' Attempt to merge identical constants and identical variables. ! This option implies `-fmerge-constants'. In addition to ! `-fmerge-constants' this considers e.g. even constant initialized arrays or initialized constant variables with integral or floating-point types. Languages like C or C++ require each variable, including multiple instances of the same variable in recursive calls, to have distinct locations, so using this option results in non-conforming behavior. ! `-fmodulo-sched' Perform swing modulo scheduling immediately before the first scheduling pass. This pass looks at innermost loops and reorders their instructions by overlapping different iterations. ! `-fmodulo-sched-allow-regmoves' Perform more aggressive SMS-based modulo scheduling with register ! moves allowed. By setting this flag certain anti-dependences ! edges are deleted, which triggers the generation of reg-moves ! based on the life-range analysis. This option is effective only ! with `-fmodulo-sched' enabled. ! `-fno-branch-count-reg' Do not use "decrement and branch" instructions on a count register, but instead generate a sequence of instructions that decrement a register, compare it against zero, then branch based upon the *************** optimizations to be performed is desired *** 6518,6526 **** support such instructions, which include x86, PowerPC, IA-64 and S/390. ! The default is '-fbranch-count-reg'. ! '-fno-function-cse' Do not put function addresses in registers; make each instruction that calls a constant function contain the function's address explicitly. --- 6580,6588 ---- support such instructions, which include x86, PowerPC, IA-64 and S/390. ! The default is `-fbranch-count-reg'. ! `-fno-function-cse' Do not put function addresses in registers; make each instruction that calls a constant function contain the function's address explicitly. *************** optimizations to be performed is desired *** 6529,6683 **** that alter the assembler output may be confused by the optimizations performed when this option is not used. ! The default is '-ffunction-cse' ! '-fno-zero-initialized-in-bss' ! If the target supports a BSS section, GCC by default puts variables ! that are initialized to zero into BSS. This can save space in the ! resulting code. This option turns off this behavior because some programs explicitly rely on variables going to the data section--e.g., so that the resulting executable can find the beginning of that section and/or make assumptions based on that. ! The default is '-fzero-initialized-in-bss'. ! '-fthread-jumps' Perform optimizations that check to see if a jump branches to a location where another comparison subsumed by the first is found. If so, the first branch is redirected to either the destination of ! the second branch or a point immediately following it, depending on ! whether the condition is known to be true or false. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fsplit-wide-types' ! When using a type that occupies multiple registers, such as 'long long' on a 32-bit system, split the registers apart and allocate them independently. This normally generates better code for those types, but may make debugging more difficult. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fcse-follow-jumps' In common subexpression elimination (CSE), scan through jump instructions when the target of the jump is not reached by any ! other path. For example, when CSE encounters an 'if' statement ! with an 'else' clause, CSE follows the jump when the condition tested is false. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fcse-skip-blocks' ! This is similar to '-fcse-follow-jumps', but causes CSE to follow jumps that conditionally skip over blocks. When CSE encounters a ! simple 'if' statement with no else clause, '-fcse-skip-blocks' ! causes CSE to follow the jump around the body of the 'if'. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-frerun-cse-after-loop' Re-run common subexpression elimination after loop optimizations are performed. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fgcse' Perform a global common subexpression elimination pass. This pass also performs global constant and copy propagation. _Note:_ When compiling a program using computed gotos, a GCC extension, you may get better run-time performance if you disable the global common subexpression elimination pass by adding ! '-fno-gcse' to the command line. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fgcse-lm' ! When '-fgcse-lm' is enabled, global common subexpression elimination attempts to move loads that are only killed by stores into themselves. This allows a loop containing a load/store ! sequence to be changed to a load outside the loop, and a copy/store ! within the loop. ! Enabled by default when '-fgcse' is enabled. ! '-fgcse-sm' ! When '-fgcse-sm' is enabled, a store motion pass is run after global common subexpression elimination. This pass attempts to move stores out of loops. When used in conjunction with ! '-fgcse-lm', loops containing a load/store sequence can be changed to a load before the loop and a store after the loop. Not enabled at any optimization level. ! '-fgcse-las' ! When '-fgcse-las' is enabled, the global common subexpression elimination pass eliminates redundant loads that come after stores to the same memory location (both partial and full redundancies). Not enabled at any optimization level. ! '-fgcse-after-reload' ! When '-fgcse-after-reload' is enabled, a redundant load elimination pass is performed after reload. The purpose of this pass is to clean up redundant spilling. ! '-faggressive-loop-optimizations' This option tells the loop optimizer to use language constraints to ! derive bounds for the number of iterations of a loop. This assumes ! that loop code does not invoke undefined behavior by for example ! causing signed integer overflows or out-of-bound array accesses. ! The bounds for the number of iterations of a loop are used to guide ! loop unrolling and peeling and loop exit test optimizations. This ! option is enabled by default. ! '-funsafe-loop-optimizations' ! This option tells the loop optimizer to assume that loop indices do ! not overflow, and that loops with nontrivial exit condition are not ! infinite. This enables a wider range of loop optimizations even if ! the loop optimizer itself cannot prove that these assumptions are ! valid. If you use '-Wunsafe-loop-optimizations', the compiler ! warns you if it finds this kind of loop. ! '-fcrossjumping' Perform cross-jumping transformation. This transformation unifies ! equivalent code and saves code size. The resulting code may or may ! not perform better than without cross-jumping. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fauto-inc-dec' Combine increments or decrements of addresses with memory accesses. This pass is always skipped on architectures that do not have ! instructions to support this. Enabled by default at '-O' and higher on architectures that support this. ! '-fdce' Perform dead code elimination (DCE) on RTL. Enabled by default at ! '-O' and higher. ! '-fdse' ! Perform dead store elimination (DSE) on RTL. Enabled by default at ! '-O' and higher. ! '-fif-conversion' Attempt to transform conditional jumps into branch-less ! equivalents. This includes use of conditional moves, min, max, set ! flags and abs instructions, and some tricks doable by standard ! arithmetics. The use of conditional execution on chips where it is ! available is controlled by 'if-conversion2'. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fif-conversion2' Use conditional execution (where available) to transform conditional jumps into branch-less equivalents. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fdeclone-ctor-dtor' The C++ ABI requires multiple entry points for constructors and destructors: one for a base subobject, one for a complete object, and one for a virtual destructor that calls operator delete --- 6591,6745 ---- that alter the assembler output may be confused by the optimizations performed when this option is not used. ! The default is `-ffunction-cse' ! `-fno-zero-initialized-in-bss' ! If the target supports a BSS section, GCC by default puts ! variables that are initialized to zero into BSS. This can save ! space in the resulting code. This option turns off this behavior because some programs explicitly rely on variables going to the data section--e.g., so that the resulting executable can find the beginning of that section and/or make assumptions based on that. ! The default is `-fzero-initialized-in-bss'. ! `-fthread-jumps' Perform optimizations that check to see if a jump branches to a location where another comparison subsumed by the first is found. If so, the first branch is redirected to either the destination of ! the second branch or a point immediately following it, depending ! on whether the condition is known to be true or false. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fsplit-wide-types' ! When using a type that occupies multiple registers, such as `long long' on a 32-bit system, split the registers apart and allocate them independently. This normally generates better code for those types, but may make debugging more difficult. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fcse-follow-jumps' In common subexpression elimination (CSE), scan through jump instructions when the target of the jump is not reached by any ! other path. For example, when CSE encounters an `if' statement ! with an `else' clause, CSE follows the jump when the condition tested is false. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fcse-skip-blocks' ! This is similar to `-fcse-follow-jumps', but causes CSE to follow jumps that conditionally skip over blocks. When CSE encounters a ! simple `if' statement with no else clause, `-fcse-skip-blocks' ! causes CSE to follow the jump around the body of the `if'. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-frerun-cse-after-loop' Re-run common subexpression elimination after loop optimizations are performed. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fgcse' Perform a global common subexpression elimination pass. This pass also performs global constant and copy propagation. _Note:_ When compiling a program using computed gotos, a GCC extension, you may get better run-time performance if you disable the global common subexpression elimination pass by adding ! `-fno-gcse' to the command line. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fgcse-lm' ! When `-fgcse-lm' is enabled, global common subexpression elimination attempts to move loads that are only killed by stores into themselves. This allows a loop containing a load/store ! sequence to be changed to a load outside the loop, and a ! copy/store within the loop. ! Enabled by default when `-fgcse' is enabled. ! `-fgcse-sm' ! When `-fgcse-sm' is enabled, a store motion pass is run after global common subexpression elimination. This pass attempts to move stores out of loops. When used in conjunction with ! `-fgcse-lm', loops containing a load/store sequence can be changed to a load before the loop and a store after the loop. Not enabled at any optimization level. ! `-fgcse-las' ! When `-fgcse-las' is enabled, the global common subexpression elimination pass eliminates redundant loads that come after stores to the same memory location (both partial and full redundancies). Not enabled at any optimization level. ! `-fgcse-after-reload' ! When `-fgcse-after-reload' is enabled, a redundant load elimination pass is performed after reload. The purpose of this pass is to clean up redundant spilling. ! `-faggressive-loop-optimizations' This option tells the loop optimizer to use language constraints to ! derive bounds for the number of iterations of a loop. This ! assumes that loop code does not invoke undefined behavior by for ! example causing signed integer overflows or out-of-bound array ! accesses. The bounds for the number of iterations of a loop are ! used to guide loop unrolling and peeling and loop exit test ! optimizations. This option is enabled by default. ! `-funsafe-loop-optimizations' ! This option tells the loop optimizer to assume that loop indices ! do not overflow, and that loops with nontrivial exit condition are ! not infinite. This enables a wider range of loop optimizations ! even if the loop optimizer itself cannot prove that these ! assumptions are valid. If you use `-Wunsafe-loop-optimizations', ! the compiler warns you if it finds this kind of loop. ! `-fcrossjumping' Perform cross-jumping transformation. This transformation unifies ! equivalent code and saves code size. The resulting code may or ! may not perform better than without cross-jumping. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fauto-inc-dec' Combine increments or decrements of addresses with memory accesses. This pass is always skipped on architectures that do not have ! instructions to support this. Enabled by default at `-O' and higher on architectures that support this. ! `-fdce' Perform dead code elimination (DCE) on RTL. Enabled by default at ! `-O' and higher. ! `-fdse' ! Perform dead store elimination (DSE) on RTL. Enabled by default ! at `-O' and higher. ! `-fif-conversion' Attempt to transform conditional jumps into branch-less ! equivalents. This includes use of conditional moves, min, max, ! set flags and abs instructions, and some tricks doable by standard ! arithmetics. The use of conditional execution on chips where it ! is available is controlled by `if-conversion2'. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fif-conversion2' Use conditional execution (where available) to transform conditional jumps into branch-less equivalents. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fdeclone-ctor-dtor' The C++ ABI requires multiple entry points for constructors and destructors: one for a base subobject, one for a complete object, and one for a virtual destructor that calls operator delete *************** optimizations to be performed is desired *** 6686,7156 **** function. With this option, the base and complete variants are changed to be thunks that call a common implementation. ! Enabled by '-Os'. ! '-fdelete-null-pointer-checks' Assume that programs cannot safely dereference null pointers, and that no code or data element resides there. This enables simple constant folding optimizations at all optimization levels. In ! addition, other optimization passes in GCC use this flag to control ! global dataflow analyses that eliminate useless checks for null ! pointers; these assume that if a pointer is checked after it has ! already been dereferenced, it cannot be null. Note however that in some environments this assumption is not true. ! Use '-fno-delete-null-pointer-checks' to disable this optimization for programs that depend on that behavior. Some targets, especially embedded ones, disable this option at all ! levels. Otherwise it is enabled at all levels: '-O0', '-O1', ! '-O2', '-O3', '-Os'. Passes that use the information are enabled independently at different optimization levels. ! '-fdevirtualize' Attempt to convert calls to virtual functions to direct calls. This is done both within a procedure and interprocedurally as part ! of indirect inlining ('-findirect-inlining') and interprocedural ! constant propagation ('-fipa-cp'). Enabled at levels '-O2', '-O3', ! '-Os'. ! '-fdevirtualize-speculatively' ! Attempt to convert calls to virtual functions to speculative direct ! calls. Based on the analysis of the type inheritance graph, ! determine for a given call the set of likely targets. If the set ! is small, preferably of size 1, change the call into an conditional ! deciding on direct and indirect call. The speculative calls enable ! more optimizations, such as inlining. When they seem useless after ! further optimization, they are converted back into original form. ! '-fexpensive-optimizations' Perform a number of minor optimizations that are relatively expensive. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-free' Attempt to remove redundant extension instructions. This is especially helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit registers after writing to their lower 32-bit half. ! Enabled for Alpha, AArch64 and x86 at levels '-O2', '-O3', '-Os'. ! '-fno-lifetime-dse' In C++ the value of an object is only affected by changes within its lifetime: when the constructor begins, the object has an indeterminate value, and any changes during the lifetime of the object are dead when the object is destroyed. Normally dead store ! elimination will take advantage of this; if your code relies on the ! value of the object storage persisting beyond the lifetime of the ! object, you can use this flag to disable this optimization. ! '-flive-range-shrinkage' Attempt to decrease register pressure through register live range shrinkage. This is helpful for fast processors with small or moderate size register sets. ! '-fira-algorithm=ALGORITHM' Use the specified coloring algorithm for the integrated register ! allocator. The ALGORITHM argument can be 'priority', which ! specifies Chow's priority coloring, or 'CB', which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented for all architectures, but for those targets that do support it, it is the default because it generates better code. ! '-fira-region=REGION' Use specified regions for the integrated register allocator. The REGION argument should be one of the following: ! 'all' Use all loops as register allocation regions. This can give the best results for machines with a small and/or irregular register set. ! 'mixed' ! Use all loops except for loops with small register pressure as ! the regions. This value usually gives the best results in most cases and for most architectures, and is enabled by ! default when compiling with optimization for speed ('-O', ! '-O2', ...). ! 'one' Use all functions as a single region. This typically results ! in the smallest code size, and is enabled by default for '-Os' ! or '-O0'. ! '-fira-hoist-pressure' Use IRA to evaluate register pressure in the code hoisting pass for decisions to hoist expressions. This option usually results in smaller code, but it can slow the compiler down. ! This option is enabled at level '-Os' for all targets. ! '-fira-loop-pressure' Use IRA to evaluate register pressure in loops for decisions to ! move loop invariants. This option usually results in generation of ! faster and smaller code on machines with large register files (>= ! 32 registers), but it can slow the compiler down. ! This option is enabled at level '-O3' for some targets. ! '-fno-ira-share-save-slots' Disable sharing of stack slots used for saving call-used hard registers living through a call. Each hard register gets a separate stack slot, and as a result function stack frames are larger. ! '-fno-ira-share-spill-slots' Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-register that does not get a hard register gets a separate stack slot, and as a result function stack frames are larger. ! '-fira-verbose=N' Control the verbosity of the dump file for the integrated register allocator. The default value is 5. If the value N is greater or equal to 10, the dump output is sent to stderr using the same format as N minus 10. ! '-fdelayed-branch' If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch instructions. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fschedule-insns' If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to required data being unavailable. This helps machines that have slow floating ! point or memory load instructions by allowing other instructions to ! be issued until the result of the load or floating-point instruction is required. ! Enabled at levels '-O2', '-O3'. ! '-fschedule-insns2' ! Similar to '-fschedule-insns', but requests an additional pass of instruction scheduling after register allocation has been done. This is especially useful on machines with a relatively small number of registers and where memory load instructions take more than one cycle. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fno-sched-interblock' Don't schedule instructions across basic blocks. This is normally enabled by default when scheduling before register allocation, i.e. ! with '-fschedule-insns' or at '-O2' or higher. ! '-fno-sched-spec' Don't allow speculative motion of non-load instructions. This is normally enabled by default when scheduling before register ! allocation, i.e. with '-fschedule-insns' or at '-O2' or higher. ! '-fsched-pressure' Enable register pressure sensitive insn scheduling before register allocation. This only makes sense when scheduling before register ! allocation is enabled, i.e. with '-fschedule-insns' or at '-O2' or higher. Usage of this option can improve the generated code and decrease its size by preventing register pressure increase above the number of available hard registers and subsequent spills in register allocation. ! '-fsched-spec-load' Allow speculative motion of some load instructions. This only makes sense when scheduling before register allocation, i.e. with ! '-fschedule-insns' or at '-O2' or higher. ! '-fsched-spec-load-dangerous' Allow speculative motion of more load instructions. This only makes sense when scheduling before register allocation, i.e. with ! '-fschedule-insns' or at '-O2' or higher. ! '-fsched-stalled-insns' ! '-fsched-stalled-insns=N' Define how many insns (if any) can be moved prematurely from the queue of stalled insns into the ready list during the second ! scheduling pass. '-fno-sched-stalled-insns' means that no insns ! are moved prematurely, '-fsched-stalled-insns=0' means there is no limit on how many queued insns can be moved prematurely. ! '-fsched-stalled-insns' without a value is equivalent to ! '-fsched-stalled-insns=1'. ! '-fsched-stalled-insns-dep' ! '-fsched-stalled-insns-dep=N' Define how many insn groups (cycles) are examined for a dependency on a stalled insn that is a candidate for premature removal from the queue of stalled insns. This has an effect only during the ! second scheduling pass, and only if '-fsched-stalled-insns' is ! used. '-fno-sched-stalled-insns-dep' is equivalent to ! '-fsched-stalled-insns-dep=0'. '-fsched-stalled-insns-dep' without ! a value is equivalent to '-fsched-stalled-insns-dep=1'. ! '-fsched2-use-superblocks' When scheduling after register allocation, use superblock scheduling. This allows motion across basic block boundaries, ! resulting in faster schedules. This option is experimental, as not ! all machine descriptions used by GCC model the CPU closely enough ! to avoid unreliable results from the algorithm. This only makes sense when scheduling after register allocation, ! i.e. with '-fschedule-insns2' or at '-O2' or higher. ! '-fsched-group-heuristic' Enable the group heuristic in the scheduler. This heuristic favors the instruction that belongs to a schedule group. This is enabled ! by default when scheduling is enabled, i.e. with '-fschedule-insns' ! or '-fschedule-insns2' or at '-O2' or higher. ! '-fsched-critical-path-heuristic' Enable the critical-path heuristic in the scheduler. This heuristic favors instructions on the critical path. This is enabled by default when scheduling is enabled, i.e. with ! '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or higher. ! '-fsched-spec-insn-heuristic' Enable the speculative instruction heuristic in the scheduler. This heuristic favors speculative instructions with greater ! dependency weakness. This is enabled by default when scheduling is ! enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at ! '-O2' or higher. ! '-fsched-rank-heuristic' Enable the rank heuristic in the scheduler. This heuristic favors the instruction belonging to a basic block with greater size or frequency. This is enabled by default when scheduling is enabled, ! i.e. with '-fschedule-insns' or '-fschedule-insns2' or at '-O2' or ! higher. ! '-fsched-last-insn-heuristic' Enable the last-instruction heuristic in the scheduler. This ! heuristic favors the instruction that is less dependent on the last ! instruction scheduled. This is enabled by default when scheduling ! is enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or ! at '-O2' or higher. ! '-fsched-dep-count-heuristic' Enable the dependent-count heuristic in the scheduler. This heuristic favors the instruction that has more instructions depending on it. This is enabled by default when scheduling is ! enabled, i.e. with '-fschedule-insns' or '-fschedule-insns2' or at ! '-O2' or higher. ! '-freschedule-modulo-scheduled-loops' ! Modulo scheduling is performed before traditional scheduling. If a ! loop is modulo scheduled, later scheduling passes may change its schedule. Use this option to control that behavior. ! '-fselective-scheduling' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the first scheduler pass. ! '-fselective-scheduling2' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the second scheduler pass. ! '-fsel-sched-pipelining' Enable software pipelining of innermost loops during selective scheduling. This option has no effect unless one of ! '-fselective-scheduling' or '-fselective-scheduling2' is turned on. ! '-fsel-sched-pipelining-outer-loops' When pipelining loops during selective scheduling, also pipeline outer loops. This option has no effect unless ! '-fsel-sched-pipelining' is turned on. ! '-fshrink-wrap' ! Emit function prologues only before parts of the function that need ! it, rather than at the top of the function. This flag is enabled ! by default at '-O' and higher. ! '-fcaller-saves' Enable allocation of values to registers that are clobbered by function calls, by emitting extra instructions to save and restore ! the registers around such calls. Such allocation is done only when ! it seems to result in better code. This option is always enabled by default on certain machines, usually those which have no call-preserved registers to use instead. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fcombine-stack-adjustments' Tracks stack adjustments (pushes and pops) and stack memory references and then tries to find ways to combine them. ! Enabled by default at '-O1' and higher. ! '-fconserve-stack' Attempt to minimize stack usage. The compiler attempts to use less stack space, even if that makes the program slower. This option ! implies setting the 'large-stack-frame' parameter to 100 and the ! 'large-stack-frame-growth' parameter to 400. ! '-ftree-reassoc' ! Perform reassociation on trees. This flag is enabled by default at ! '-O' and higher. ! '-ftree-pre' Perform partial redundancy elimination (PRE) on trees. This flag ! is enabled by default at '-O2' and '-O3'. ! '-ftree-partial-pre' Make partial redundancy elimination (PRE) more aggressive. This ! flag is enabled by default at '-O3'. ! '-ftree-forwprop' Perform forward propagation on trees. This flag is enabled by ! default at '-O' and higher. ! '-ftree-fre' Perform full redundancy elimination (FRE) on trees. The difference ! between FRE and PRE is that FRE only considers expressions that are ! computed on all paths leading to the redundant computation. This ! analysis is faster than PRE, though it exposes fewer redundancies. ! This flag is enabled by default at '-O' and higher. ! '-ftree-phiprop' Perform hoisting of loads from conditional pointers on trees. This ! pass is enabled by default at '-O' and higher. ! '-fhoist-adjacent-loads' Speculatively hoist loads from both branches of an if-then-else if ! the loads are from adjacent locations in the same structure and the ! target architecture has a conditional move instruction. This flag ! is enabled by default at '-O2' and higher. ! '-ftree-copy-prop' Perform copy propagation on trees. This pass eliminates unnecessary copy operations. This flag is enabled by default at ! '-O' and higher. ! '-fipa-pure-const' Discover which functions are pure or constant. Enabled by default ! at '-O' and higher. ! '-fipa-reference' Discover which static variables do not escape the compilation unit. ! Enabled by default at '-O' and higher. ! '-fipa-pta' Perform interprocedural pointer analysis and interprocedural modification and reference analysis. This option can cause ! excessive memory and compile-time usage on large compilation units. ! It is not enabled by default at any optimization level. ! '-fipa-profile' Perform interprocedural profile propagation. The functions called ! only from cold functions are marked as cold. Also functions ! executed once (such as 'cold', 'noreturn', static constructors or ! destructors) are identified. Cold functions and loop less parts of functions executed once are then optimized for size. Enabled by ! default at '-O' and higher. ! '-fipa-cp' Perform interprocedural constant propagation. This optimization analyzes the program to determine when values passed to functions are constants and then optimizes accordingly. This optimization can substantially increase performance if the application has constants passed to functions. This flag is enabled by default at ! '-O2', '-Os' and '-O3'. ! '-fipa-cp-clone' Perform function cloning to make interprocedural constant propagation stronger. When enabled, interprocedural constant propagation performs function cloning when externally visible function can be called with constant arguments. Because this optimization can create multiple copies of functions, it may ! significantly increase code size (see '--param ipcp-unit-growth=VALUE'). This flag is enabled by default at ! '-O3'. ! '-fisolate-erroneous-paths-dereference' Detect paths which trigger erroneous or undefined behaviour due to dereferencing a NULL pointer. Isolate those paths from the main control flow and turn the statement with erroneous or undefined behaviour into a trap. ! '-fisolate-erroneous-paths-attribute' Detect paths which trigger erroneous or undefined behaviour due a NULL value being used in a way which is forbidden by a ! 'returns_nonnull' or 'nonnull' attribute. Isolate those paths from ! the main control flow and turn the statement with erroneous or ! undefined behaviour into a trap. This is not currently enabled, ! but may be enabled by '-O2' in the future. ! '-ftree-sink' ! Perform forward store motion on trees. This flag is enabled by ! default at '-O' and higher. ! '-ftree-bit-ccp' Perform sparse conditional bit constant propagation on trees and propagate pointer alignment information. This pass only operates ! on local scalar variables and is enabled by default at '-O' and ! higher. It requires that '-ftree-ccp' is enabled. ! '-ftree-ccp' Perform sparse conditional constant propagation (CCP) on trees. ! This pass only operates on local scalar variables and is enabled by ! default at '-O' and higher. ! '-ftree-switch-conversion' Perform conversion of simple initializations in a switch to initializations from a scalar array. This flag is enabled by ! default at '-O2' and higher. ! '-ftree-tail-merge' Look for identical code sequences. When found, replace one with a jump to the other. This optimization is known as tail merging or ! cross jumping. This flag is enabled by default at '-O2' and higher. The compilation time in this pass can be limited using ! 'max-tail-merge-comparisons' parameter and ! 'max-tail-merge-iterations' parameter. ! '-ftree-dce' ! Perform dead code elimination (DCE) on trees. This flag is enabled ! by default at '-O' and higher. ! '-ftree-builtin-call-dce' Perform conditional dead code elimination (DCE) for calls to ! built-in functions that may set 'errno' but are otherwise ! side-effect free. This flag is enabled by default at '-O2' and ! higher if '-Os' is not also specified. ! '-ftree-dominator-opts' Perform a variety of simple scalar cleanups (constant/copy propagation, redundancy elimination, range propagation and expression simplification) based on a dominator tree traversal. ! This also performs jump threading (to reduce jumps to jumps). This ! flag is enabled by default at '-O' and higher. ! '-ftree-dse' Perform dead store elimination (DSE) on trees. A dead store is a store into a memory location that is later overwritten by another store without any intervening loads. In this case the earlier ! store can be deleted. This flag is enabled by default at '-O' and higher. ! '-ftree-ch' Perform loop header copying on trees. This is beneficial since it increases effectiveness of code motion optimizations. It also ! saves one jump. This flag is enabled by default at '-O' and ! higher. It is not enabled for '-Os', since it usually increases code size. ! '-ftree-loop-optimize' Perform loop optimizations on trees. This flag is enabled by ! default at '-O' and higher. ! '-ftree-loop-linear' Perform loop interchange transformations on tree. Same as ! '-floop-interchange'. To use this code transformation, GCC has to ! be configured with '--with-ppl' and '--with-cloog' to enable the Graphite loop transformation infrastructure. ! '-floop-interchange' Perform loop interchange transformations on loops. Interchanging two nested loops switches the inner and outer loops. For example, given a loop like: --- 6748,7220 ---- function. With this option, the base and complete variants are changed to be thunks that call a common implementation. ! Enabled by `-Os'. ! `-fdelete-null-pointer-checks' Assume that programs cannot safely dereference null pointers, and that no code or data element resides there. This enables simple constant folding optimizations at all optimization levels. In ! addition, other optimization passes in GCC use this flag to ! control global dataflow analyses that eliminate useless checks for ! null pointers; these assume that if a pointer is checked after it ! has already been dereferenced, it cannot be null. Note however that in some environments this assumption is not true. ! Use `-fno-delete-null-pointer-checks' to disable this optimization for programs that depend on that behavior. Some targets, especially embedded ones, disable this option at all ! levels. Otherwise it is enabled at all levels: `-O0', `-O1', ! `-O2', `-O3', `-Os'. Passes that use the information are enabled independently at different optimization levels. ! `-fdevirtualize' Attempt to convert calls to virtual functions to direct calls. This is done both within a procedure and interprocedurally as part ! of indirect inlining (`-findirect-inlining') and interprocedural ! constant propagation (`-fipa-cp'). Enabled at levels `-O2', ! `-O3', `-Os'. ! `-fdevirtualize-speculatively' ! Attempt to convert calls to virtual functions to speculative ! direct calls. Based on the analysis of the type inheritance ! graph, determine for a given call the set of likely targets. If ! the set is small, preferably of size 1, change the call into an ! conditional deciding on direct and indirect call. The speculative ! calls enable more optimizations, such as inlining. When they seem ! useless after further optimization, they are converted back into ! original form. ! `-fexpensive-optimizations' Perform a number of minor optimizations that are relatively expensive. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-free' Attempt to remove redundant extension instructions. This is especially helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit registers after writing to their lower 32-bit half. ! Enabled for Alpha, AArch64 and x86 at levels `-O2', `-O3', `-Os'. ! `-fno-lifetime-dse' In C++ the value of an object is only affected by changes within its lifetime: when the constructor begins, the object has an indeterminate value, and any changes during the lifetime of the object are dead when the object is destroyed. Normally dead store ! elimination will take advantage of this; if your code relies on ! the value of the object storage persisting beyond the lifetime of ! the object, you can use this flag to disable this optimization. ! `-flive-range-shrinkage' Attempt to decrease register pressure through register live range shrinkage. This is helpful for fast processors with small or moderate size register sets. ! `-fira-algorithm=ALGORITHM' Use the specified coloring algorithm for the integrated register ! allocator. The ALGORITHM argument can be `priority', which ! specifies Chow's priority coloring, or `CB', which specifies Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented for all architectures, but for those targets that do support it, it is the default because it generates better code. ! `-fira-region=REGION' Use specified regions for the integrated register allocator. The REGION argument should be one of the following: ! `all' Use all loops as register allocation regions. This can give the best results for machines with a small and/or irregular register set. ! `mixed' ! Use all loops except for loops with small register pressure ! as the regions. This value usually gives the best results in most cases and for most architectures, and is enabled by ! default when compiling with optimization for speed (`-O', ! `-O2', ...). ! `one' Use all functions as a single region. This typically results ! in the smallest code size, and is enabled by default for ! `-Os' or `-O0'. ! ! `-fira-hoist-pressure' Use IRA to evaluate register pressure in the code hoisting pass for decisions to hoist expressions. This option usually results in smaller code, but it can slow the compiler down. ! This option is enabled at level `-Os' for all targets. ! `-fira-loop-pressure' Use IRA to evaluate register pressure in loops for decisions to ! move loop invariants. This option usually results in generation ! of faster and smaller code on machines with large register files ! (>= 32 registers), but it can slow the compiler down. ! This option is enabled at level `-O3' for some targets. ! `-fno-ira-share-save-slots' Disable sharing of stack slots used for saving call-used hard registers living through a call. Each hard register gets a separate stack slot, and as a result function stack frames are larger. ! `-fno-ira-share-spill-slots' Disable sharing of stack slots allocated for pseudo-registers. Each pseudo-register that does not get a hard register gets a separate stack slot, and as a result function stack frames are larger. ! `-fira-verbose=N' Control the verbosity of the dump file for the integrated register allocator. The default value is 5. If the value N is greater or equal to 10, the dump output is sent to stderr using the same format as N minus 10. ! `-fdelayed-branch' If supported for the target machine, attempt to reorder instructions to exploit instruction slots available after delayed branch instructions. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fschedule-insns' If supported for the target machine, attempt to reorder instructions to eliminate execution stalls due to required data being unavailable. This helps machines that have slow floating ! point or memory load instructions by allowing other instructions ! to be issued until the result of the load or floating-point instruction is required. ! Enabled at levels `-O2', `-O3'. ! `-fschedule-insns2' ! Similar to `-fschedule-insns', but requests an additional pass of instruction scheduling after register allocation has been done. This is especially useful on machines with a relatively small number of registers and where memory load instructions take more than one cycle. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fno-sched-interblock' Don't schedule instructions across basic blocks. This is normally enabled by default when scheduling before register allocation, i.e. ! with `-fschedule-insns' or at `-O2' or higher. ! `-fno-sched-spec' Don't allow speculative motion of non-load instructions. This is normally enabled by default when scheduling before register ! allocation, i.e. with `-fschedule-insns' or at `-O2' or higher. ! `-fsched-pressure' Enable register pressure sensitive insn scheduling before register allocation. This only makes sense when scheduling before register ! allocation is enabled, i.e. with `-fschedule-insns' or at `-O2' or higher. Usage of this option can improve the generated code and decrease its size by preventing register pressure increase above the number of available hard registers and subsequent spills in register allocation. ! `-fsched-spec-load' Allow speculative motion of some load instructions. This only makes sense when scheduling before register allocation, i.e. with ! `-fschedule-insns' or at `-O2' or higher. ! `-fsched-spec-load-dangerous' Allow speculative motion of more load instructions. This only makes sense when scheduling before register allocation, i.e. with ! `-fschedule-insns' or at `-O2' or higher. ! `-fsched-stalled-insns' ! `-fsched-stalled-insns=N' Define how many insns (if any) can be moved prematurely from the queue of stalled insns into the ready list during the second ! scheduling pass. `-fno-sched-stalled-insns' means that no insns ! are moved prematurely, `-fsched-stalled-insns=0' means there is no limit on how many queued insns can be moved prematurely. ! `-fsched-stalled-insns' without a value is equivalent to ! `-fsched-stalled-insns=1'. ! `-fsched-stalled-insns-dep' ! `-fsched-stalled-insns-dep=N' Define how many insn groups (cycles) are examined for a dependency on a stalled insn that is a candidate for premature removal from the queue of stalled insns. This has an effect only during the ! second scheduling pass, and only if `-fsched-stalled-insns' is ! used. `-fno-sched-stalled-insns-dep' is equivalent to ! `-fsched-stalled-insns-dep=0'. `-fsched-stalled-insns-dep' ! without a value is equivalent to `-fsched-stalled-insns-dep=1'. ! `-fsched2-use-superblocks' When scheduling after register allocation, use superblock scheduling. This allows motion across basic block boundaries, ! resulting in faster schedules. This option is experimental, as ! not all machine descriptions used by GCC model the CPU closely ! enough to avoid unreliable results from the algorithm. This only makes sense when scheduling after register allocation, ! i.e. with `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-group-heuristic' Enable the group heuristic in the scheduler. This heuristic favors the instruction that belongs to a schedule group. This is enabled ! by default when scheduling is enabled, i.e. with `-fschedule-insns' ! or `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-critical-path-heuristic' Enable the critical-path heuristic in the scheduler. This heuristic favors instructions on the critical path. This is enabled by default when scheduling is enabled, i.e. with ! `-fschedule-insns' or `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-spec-insn-heuristic' Enable the speculative instruction heuristic in the scheduler. This heuristic favors speculative instructions with greater ! dependency weakness. This is enabled by default when scheduling ! is enabled, i.e. with `-fschedule-insns' or `-fschedule-insns2' ! or at `-O2' or higher. ! `-fsched-rank-heuristic' Enable the rank heuristic in the scheduler. This heuristic favors the instruction belonging to a basic block with greater size or frequency. This is enabled by default when scheduling is enabled, ! i.e. with `-fschedule-insns' or `-fschedule-insns2' or at `-O2' ! or higher. ! `-fsched-last-insn-heuristic' Enable the last-instruction heuristic in the scheduler. This ! heuristic favors the instruction that is less dependent on the ! last instruction scheduled. This is enabled by default when ! scheduling is enabled, i.e. with `-fschedule-insns' or ! `-fschedule-insns2' or at `-O2' or higher. ! `-fsched-dep-count-heuristic' Enable the dependent-count heuristic in the scheduler. This heuristic favors the instruction that has more instructions depending on it. This is enabled by default when scheduling is ! enabled, i.e. with `-fschedule-insns' or `-fschedule-insns2' or ! at `-O2' or higher. ! `-freschedule-modulo-scheduled-loops' ! Modulo scheduling is performed before traditional scheduling. If ! a loop is modulo scheduled, later scheduling passes may change its schedule. Use this option to control that behavior. ! `-fselective-scheduling' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the first scheduler pass. ! `-fselective-scheduling2' Schedule instructions using selective scheduling algorithm. Selective scheduling runs instead of the second scheduler pass. ! `-fsel-sched-pipelining' Enable software pipelining of innermost loops during selective scheduling. This option has no effect unless one of ! `-fselective-scheduling' or `-fselective-scheduling2' is turned on. ! `-fsel-sched-pipelining-outer-loops' When pipelining loops during selective scheduling, also pipeline outer loops. This option has no effect unless ! `-fsel-sched-pipelining' is turned on. ! `-fshrink-wrap' ! Emit function prologues only before parts of the function that ! need it, rather than at the top of the function. This flag is ! enabled by default at `-O' and higher. ! `-fcaller-saves' Enable allocation of values to registers that are clobbered by function calls, by emitting extra instructions to save and restore ! the registers around such calls. Such allocation is done only ! when it seems to result in better code. This option is always enabled by default on certain machines, usually those which have no call-preserved registers to use instead. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fcombine-stack-adjustments' Tracks stack adjustments (pushes and pops) and stack memory references and then tries to find ways to combine them. ! Enabled by default at `-O1' and higher. ! `-fconserve-stack' Attempt to minimize stack usage. The compiler attempts to use less stack space, even if that makes the program slower. This option ! implies setting the `large-stack-frame' parameter to 100 and the ! `large-stack-frame-growth' parameter to 400. ! `-ftree-reassoc' ! Perform reassociation on trees. This flag is enabled by default ! at `-O' and higher. ! `-ftree-pre' Perform partial redundancy elimination (PRE) on trees. This flag ! is enabled by default at `-O2' and `-O3'. ! `-ftree-partial-pre' Make partial redundancy elimination (PRE) more aggressive. This ! flag is enabled by default at `-O3'. ! `-ftree-forwprop' Perform forward propagation on trees. This flag is enabled by ! default at `-O' and higher. ! `-ftree-fre' Perform full redundancy elimination (FRE) on trees. The difference ! between FRE and PRE is that FRE only considers expressions that ! are computed on all paths leading to the redundant computation. ! This analysis is faster than PRE, though it exposes fewer ! redundancies. This flag is enabled by default at `-O' and higher. ! `-ftree-phiprop' Perform hoisting of loads from conditional pointers on trees. This ! pass is enabled by default at `-O' and higher. ! `-fhoist-adjacent-loads' Speculatively hoist loads from both branches of an if-then-else if ! the loads are from adjacent locations in the same structure and ! the target architecture has a conditional move instruction. This ! flag is enabled by default at `-O2' and higher. ! `-ftree-copy-prop' Perform copy propagation on trees. This pass eliminates unnecessary copy operations. This flag is enabled by default at ! `-O' and higher. ! `-fipa-pure-const' Discover which functions are pure or constant. Enabled by default ! at `-O' and higher. ! `-fipa-reference' Discover which static variables do not escape the compilation unit. ! Enabled by default at `-O' and higher. ! `-fipa-pta' Perform interprocedural pointer analysis and interprocedural modification and reference analysis. This option can cause ! excessive memory and compile-time usage on large compilation ! units. It is not enabled by default at any optimization level. ! `-fipa-profile' Perform interprocedural profile propagation. The functions called ! only from cold functions are marked as cold. Also functions ! executed once (such as `cold', `noreturn', static constructors or ! destructors) are identified. Cold functions and loop less parts of functions executed once are then optimized for size. Enabled by ! default at `-O' and higher. ! `-fipa-cp' Perform interprocedural constant propagation. This optimization analyzes the program to determine when values passed to functions are constants and then optimizes accordingly. This optimization can substantially increase performance if the application has constants passed to functions. This flag is enabled by default at ! `-O2', `-Os' and `-O3'. ! `-fipa-cp-clone' Perform function cloning to make interprocedural constant propagation stronger. When enabled, interprocedural constant propagation performs function cloning when externally visible function can be called with constant arguments. Because this optimization can create multiple copies of functions, it may ! significantly increase code size (see `--param ipcp-unit-growth=VALUE'). This flag is enabled by default at ! `-O3'. ! `-fisolate-erroneous-paths-dereference' Detect paths which trigger erroneous or undefined behaviour due to dereferencing a NULL pointer. Isolate those paths from the main control flow and turn the statement with erroneous or undefined behaviour into a trap. ! `-fisolate-erroneous-paths-attribute' Detect paths which trigger erroneous or undefined behaviour due a NULL value being used in a way which is forbidden by a ! `returns_nonnull' or `nonnull' attribute. Isolate those paths ! from the main control flow and turn the statement with erroneous ! or undefined behaviour into a trap. This is not currently ! enabled, but may be enabled by `-O2' in the future. ! `-ftree-sink' ! Perform forward store motion on trees. This flag is enabled by ! default at `-O' and higher. ! `-ftree-bit-ccp' Perform sparse conditional bit constant propagation on trees and propagate pointer alignment information. This pass only operates ! on local scalar variables and is enabled by default at `-O' and ! higher. It requires that `-ftree-ccp' is enabled. ! `-ftree-ccp' Perform sparse conditional constant propagation (CCP) on trees. ! This pass only operates on local scalar variables and is enabled ! by default at `-O' and higher. ! `-ftree-switch-conversion' Perform conversion of simple initializations in a switch to initializations from a scalar array. This flag is enabled by ! default at `-O2' and higher. ! `-ftree-tail-merge' Look for identical code sequences. When found, replace one with a jump to the other. This optimization is known as tail merging or ! cross jumping. This flag is enabled by default at `-O2' and higher. The compilation time in this pass can be limited using ! `max-tail-merge-comparisons' parameter and ! `max-tail-merge-iterations' parameter. ! `-ftree-dce' ! Perform dead code elimination (DCE) on trees. This flag is ! enabled by default at `-O' and higher. ! `-ftree-builtin-call-dce' Perform conditional dead code elimination (DCE) for calls to ! built-in functions that may set `errno' but are otherwise ! side-effect free. This flag is enabled by default at `-O2' and ! higher if `-Os' is not also specified. ! `-ftree-dominator-opts' Perform a variety of simple scalar cleanups (constant/copy propagation, redundancy elimination, range propagation and expression simplification) based on a dominator tree traversal. ! This also performs jump threading (to reduce jumps to jumps). This ! flag is enabled by default at `-O' and higher. ! `-ftree-dse' Perform dead store elimination (DSE) on trees. A dead store is a store into a memory location that is later overwritten by another store without any intervening loads. In this case the earlier ! store can be deleted. This flag is enabled by default at `-O' and higher. ! `-ftree-ch' Perform loop header copying on trees. This is beneficial since it increases effectiveness of code motion optimizations. It also ! saves one jump. This flag is enabled by default at `-O' and ! higher. It is not enabled for `-Os', since it usually increases code size. ! `-ftree-loop-optimize' Perform loop optimizations on trees. This flag is enabled by ! default at `-O' and higher. ! `-ftree-loop-linear' Perform loop interchange transformations on tree. Same as ! `-floop-interchange'. To use this code transformation, GCC has to ! be configured with `--with-ppl' and `--with-cloog' to enable the Graphite loop transformation infrastructure. ! `-floop-interchange' Perform loop interchange transformations on loops. Interchanging two nested loops switches the inner and outer loops. For example, given a loop like: *************** optimizations to be performed is desired *** 7165,7185 **** A(J, I) = A(J, I) * C ENDDO ENDDO ! which can be beneficial when 'N' is larger than the caches, because ! in Fortran, the elements of an array are stored in memory contiguously by column, and the original loop iterates over rows, potentially creating at each access a cache miss. This optimization applies to all the languages supported by GCC and is not limited to Fortran. To use this code transformation, GCC has ! to be configured with '--with-ppl' and '--with-cloog' to enable the Graphite loop transformation infrastructure. ! '-floop-strip-mine' Perform loop strip mining transformations on loops. Strip mining splits a loop into two nested loops. The outer loop has strides equal to the strip size and the inner loop has strides of the original loop within a strip. The strip length can be changed ! using the 'loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N A(I) = A(I) + C --- 7229,7249 ---- A(J, I) = A(J, I) * C ENDDO ENDDO ! which can be beneficial when `N' is larger than the caches, ! because in Fortran, the elements of an array are stored in memory contiguously by column, and the original loop iterates over rows, potentially creating at each access a cache miss. This optimization applies to all the languages supported by GCC and is not limited to Fortran. To use this code transformation, GCC has ! to be configured with `--with-ppl' and `--with-cloog' to enable the Graphite loop transformation infrastructure. ! `-floop-strip-mine' Perform loop strip mining transformations on loops. Strip mining splits a loop into two nested loops. The outer loop has strides equal to the strip size and the inner loop has strides of the original loop within a strip. The strip length can be changed ! using the `loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N A(I) = A(I) + C *************** optimizations to be performed is desired *** 7190,7205 **** A(I) = A(I) + C ENDDO ENDDO ! This optimization applies to all the languages supported by GCC and ! is not limited to Fortran. To use this code transformation, GCC ! has to be configured with '--with-ppl' and '--with-cloog' to enable ! the Graphite loop transformation infrastructure. ! '-floop-block' Perform loop blocking transformations on loops. Blocking strip mines each loop in the loop nest such that the memory accesses of the element loops fit inside caches. The strip length can be ! changed using the 'loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N DO J = 1, M --- 7254,7269 ---- A(I) = A(I) + C ENDDO ENDDO ! This optimization applies to all the languages supported by GCC ! and is not limited to Fortran. To use this code transformation, ! GCC has to be configured with `--with-ppl' and `--with-cloog' to ! enable the Graphite loop transformation infrastructure. ! `-floop-block' Perform loop blocking transformations on loops. Blocking strip mines each loop in the loop nest such that the memory accesses of the element loops fit inside caches. The strip length can be ! changed using the `loop-block-tile-size' parameter. For example, given a loop like: DO I = 1, N DO J = 1, M *************** optimizations to be performed is desired *** 7216,7261 **** ENDDO ENDDO ENDDO ! which can be beneficial when 'M' is larger than the caches, because ! the innermost loop iterates over a smaller amount of data which can ! be kept in the caches. This optimization applies to all the ! languages supported by GCC and is not limited to Fortran. To use ! this code transformation, GCC has to be configured with ! '--with-ppl' and '--with-cloog' to enable the Graphite loop transformation infrastructure. ! '-fgraphite-identity' ! Enable the identity transformation for graphite. For every SCoP we ! generate the polyhedral representation and transform it back to ! gimple. Using '-fgraphite-identity' we can check the costs or benefits of the GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. ! '-floop-nest-optimize' Enable the ISL based loop nest optimizer. This is a generic loop nest optimizer based on the Pluto optimization algorithms. It calculates a loop structure optimized for data-locality and parallelism. This option is experimental. ! '-floop-parallelize-all' Use the Graphite data dependence analysis to identify loops that can be parallelized. Parallelize all the loops that can be analyzed to not contain loop carried dependences without checking that it is profitable to parallelize the loops. ! '-fcheck-data-deps' Compare the results of several data dependence analyzers. This option is used for debugging the data dependence analyzers. ! '-ftree-loop-if-convert' Attempt to transform conditional jumps in the innermost loops to branch-less equivalents. The intent is to remove control-flow from the innermost loops in order to improve the ability of the vectorization pass to handle these loops. This is enabled by default if vectorization is enabled. ! '-ftree-loop-if-convert-stores' Attempt to also if-convert conditional jumps containing memory writes. This transformation can be unsafe for multi-threaded programs as it transforms conditional memory writes into --- 7280,7325 ---- ENDDO ENDDO ENDDO ! which can be beneficial when `M' is larger than the caches, ! because the innermost loop iterates over a smaller amount of data ! which can be kept in the caches. This optimization applies to all ! the languages supported by GCC and is not limited to Fortran. To ! use this code transformation, GCC has to be configured with ! `--with-ppl' and `--with-cloog' to enable the Graphite loop transformation infrastructure. ! `-fgraphite-identity' ! Enable the identity transformation for graphite. For every SCoP ! we generate the polyhedral representation and transform it back to ! gimple. Using `-fgraphite-identity' we can check the costs or benefits of the GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations are also performed by the code generator CLooG, like index splitting and dead code elimination in loops. ! `-floop-nest-optimize' Enable the ISL based loop nest optimizer. This is a generic loop nest optimizer based on the Pluto optimization algorithms. It calculates a loop structure optimized for data-locality and parallelism. This option is experimental. ! `-floop-parallelize-all' Use the Graphite data dependence analysis to identify loops that can be parallelized. Parallelize all the loops that can be analyzed to not contain loop carried dependences without checking that it is profitable to parallelize the loops. ! `-fcheck-data-deps' Compare the results of several data dependence analyzers. This option is used for debugging the data dependence analyzers. ! `-ftree-loop-if-convert' Attempt to transform conditional jumps in the innermost loops to branch-less equivalents. The intent is to remove control-flow from the innermost loops in order to improve the ability of the vectorization pass to handle these loops. This is enabled by default if vectorization is enabled. ! `-ftree-loop-if-convert-stores' Attempt to also if-convert conditional jumps containing memory writes. This transformation can be unsafe for multi-threaded programs as it transforms conditional memory writes into *************** optimizations to be performed is desired *** 7268,7278 **** A[i] = cond ? expr : A[i]; potentially producing data races. ! '-ftree-loop-distribution' ! Perform loop distribution. This flag can improve cache performance ! on big loop bodies and allow further loop optimizations, like ! parallelization or vectorization, to take place. For example, the ! loop DO I = 1, N A(I) = B(I) + C D(I) = E(I) * F --- 7332,7342 ---- A[i] = cond ? expr : A[i]; potentially producing data races. ! `-ftree-loop-distribution' ! Perform loop distribution. This flag can improve cache ! performance on big loop bodies and allow further loop ! optimizations, like parallelization or vectorization, to take ! place. For example, the loop DO I = 1, N A(I) = B(I) + C D(I) = E(I) * F *************** optimizations to be performed is desired *** 7285,7296 **** D(I) = E(I) * F ENDDO ! '-ftree-loop-distribute-patterns' Perform loop distribution of patterns that can be code generated ! with calls to a library. This flag is enabled by default at '-O3'. ! This pass distributes the initialization loops and generates a call ! to memset zero. For example, the loop DO I = 1, N A(I) = 0 B(I) = A(I) + I --- 7349,7360 ---- D(I) = E(I) * F ENDDO ! `-ftree-loop-distribute-patterns' Perform loop distribution of patterns that can be code generated ! with calls to a library. This flag is enabled by default at `-O3'. ! This pass distributes the initialization loops and generates a ! call to memset zero. For example, the loop DO I = 1, N A(I) = 0 B(I) = A(I) + I *************** optimizations to be performed is desired *** 7305,7483 **** and the initialization loop is transformed into a call to memset zero. ! '-ftree-loop-im' Perform loop invariant motion on trees. This pass moves only invariants that are hard to handle at RTL level (function calls, operations that expand to nontrivial sequences of insns). With ! '-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. ! '-ftree-loop-ivcanon' Create a canonical counter for number of iterations in loops for which determining number of iterations requires complicated analysis. Later optimizations then may determine the number easily. Useful especially in connection with unrolling. ! '-fivopts' Perform induction variable optimizations (strength reduction, induction variable merging and induction variable elimination) on trees. ! '-ftree-parallelize-loops=n' Parallelize loops, i.e., split their iteration space to run in n threads. This is only possible for loops whose iterations are independent and can be arbitrarily reordered. The optimization is only profitable on multiprocessor machines, for loops that are CPU-intensive, rather than constrained e.g. by memory bandwidth. ! This option implies '-pthread', and thus is only supported on ! targets that have support for '-pthread'. ! '-ftree-pta' Perform function-local points-to analysis on trees. This flag is ! enabled by default at '-O' and higher. ! '-ftree-sra' Perform scalar replacement of aggregates. This pass replaces structure references with scalars to prevent committing structures ! to memory too early. This flag is enabled by default at '-O' and higher. ! '-ftree-copyrename' Perform copy renaming on trees. This pass attempts to rename compiler temporaries to other variables at copy locations, usually resulting in variable names which more closely resemble the ! original variables. This flag is enabled by default at '-O' and higher. ! '-ftree-coalesce-inlined-vars' ! Tell the copyrename pass (see '-ftree-copyrename') to attempt to combine small user-defined variables too, but only if they were inlined from other functions. It is a more limited form of ! '-ftree-coalesce-vars'. This may harm debug information of such inlined variables, but it will keep variables of the inlined-into function apart from each other, such that they are more likely to contain the expected values in a debugging session. This was the default in GCC versions older than 4.7. ! '-ftree-coalesce-vars' ! Tell the copyrename pass (see '-ftree-copyrename') to attempt to combine small user-defined variables too, instead of just compiler temporaries. This may severely limit the ability to debug an ! optimized program compiled with '-fno-var-tracking-assignments'. In the negated form, this flag prevents SSA coalescing of user variables, including inlined ones. This option is enabled by default. ! '-ftree-ter' Perform temporary expression replacement during the SSA->normal ! phase. Single use/single def temporaries are replaced at their use ! location with their defining expression. This results in ! non-GIMPLE code, but gives the expanders much more complex trees to ! work on resulting in better RTL generation. This is enabled by ! default at '-O' and higher. ! '-ftree-slsr' ! Perform straight-line strength reduction on trees. This recognizes ! related expressions involving multiplications and replaces them by ! less expensive calculations when possible. This is enabled by ! default at '-O' and higher. ! '-ftree-vectorize' ! Perform vectorization on trees. This flag enables ! '-ftree-loop-vectorize' and '-ftree-slp-vectorize' if not explicitly specified. ! '-ftree-loop-vectorize' ! Perform loop vectorization on trees. This flag is enabled by ! default at '-O3' and when '-ftree-vectorize' is enabled. ! '-ftree-slp-vectorize' ! Perform basic block vectorization on trees. This flag is enabled ! by default at '-O3' and when '-ftree-vectorize' is enabled. ! '-fvect-cost-model=MODEL' Alter the cost model used for vectorization. The MODEL argument ! should be one of 'unlimited', 'dynamic' or 'cheap'. With the ! 'unlimited' model the vectorized code-path is assumed to be ! profitable while with the 'dynamic' model a runtime check will guard the vectorized code-path to enable it only for iteration counts that will likely execute faster than when executing the ! original scalar loop. The 'cheap' model will disable vectorization ! of loops where doing so would be cost prohibitive for example due ! to required runtime checks for data dependence or alignment but ! otherwise is equal to the 'dynamic' model. The default cost model ! depends on other optimization flags and is either 'dynamic' or ! 'cheap'. ! '-fsimd-cost-model=MODEL' Alter the cost model used for vectorization of loops marked with the OpenMP or Cilk Plus simd directive. The MODEL argument should ! be one of 'unlimited', 'dynamic', 'cheap'. All values of MODEL ! have the same meaning as described in '-fvect-cost-model' and by ! default a cost model defined with '-fvect-cost-model' is used. ! '-ftree-vrp' Perform Value Range Propagation on trees. This is similar to the constant propagation pass, but instead of values, ranges of values are propagated. This allows the optimizers to remove unnecessary ! range checks like array bound checks and null pointer checks. This ! is enabled by default at '-O2' and higher. Null pointer check ! elimination is only done if '-fdelete-null-pointer-checks' is enabled. ! '-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function allowing ! other optimizations to do a better job. ! '-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. '-funroll-loops' implies ! '-frerun-cse-after-loop'. This option makes code larger, and may or may not make it run faster. ! '-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. '-funroll-all-loops' implies the same options as ! '-funroll-loops', ! '-fsplit-ivs-in-unroller' Enables expression of values of induction variables in later iterations of the unrolled loop using the value in the first iteration. This breaks long dependency chains, thus improving efficiency of the scheduling passes. ! A combination of '-fweb' and CSE is often sufficient to obtain the ! same effect. However, that is not reliable in cases where the loop ! body is more complicated than a single basic block. It also does ! not work at all on some architectures due to restrictions in the ! CSE pass. This optimization is enabled by default. ! '-fvariable-expansion-in-unroller' With this option, the compiler creates multiple copies of some ! local variables when unrolling a loop, which can result in superior ! code. ! '-fpartial-inlining' Inline parts of functions. This option has any effect only when ! inlining itself is turned on by the '-finline-functions' or ! '-finline-small-functions' options. ! Enabled at level '-O2'. ! '-fpredictive-commoning' Perform predictive commoning optimization, i.e., reusing computations (especially memory loads and stores) performed in previous iterations of loops. ! This option is enabled at level '-O3'. ! '-fprefetch-loop-arrays' If supported by the target machine, generate instructions to prefetch memory to improve the performance of loops that access large arrays. --- 7369,7547 ---- and the initialization loop is transformed into a call to memset zero. ! `-ftree-loop-im' Perform loop invariant motion on trees. This pass moves only invariants that are hard to handle at RTL level (function calls, operations that expand to nontrivial sequences of insns). With ! `-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. ! `-ftree-loop-ivcanon' Create a canonical counter for number of iterations in loops for which determining number of iterations requires complicated analysis. Later optimizations then may determine the number easily. Useful especially in connection with unrolling. ! `-fivopts' Perform induction variable optimizations (strength reduction, induction variable merging and induction variable elimination) on trees. ! `-ftree-parallelize-loops=n' Parallelize loops, i.e., split their iteration space to run in n threads. This is only possible for loops whose iterations are independent and can be arbitrarily reordered. The optimization is only profitable on multiprocessor machines, for loops that are CPU-intensive, rather than constrained e.g. by memory bandwidth. ! This option implies `-pthread', and thus is only supported on ! targets that have support for `-pthread'. ! `-ftree-pta' Perform function-local points-to analysis on trees. This flag is ! enabled by default at `-O' and higher. ! `-ftree-sra' Perform scalar replacement of aggregates. This pass replaces structure references with scalars to prevent committing structures ! to memory too early. This flag is enabled by default at `-O' and higher. ! `-ftree-copyrename' Perform copy renaming on trees. This pass attempts to rename compiler temporaries to other variables at copy locations, usually resulting in variable names which more closely resemble the ! original variables. This flag is enabled by default at `-O' and higher. ! `-ftree-coalesce-inlined-vars' ! Tell the copyrename pass (see `-ftree-copyrename') to attempt to combine small user-defined variables too, but only if they were inlined from other functions. It is a more limited form of ! `-ftree-coalesce-vars'. This may harm debug information of such inlined variables, but it will keep variables of the inlined-into function apart from each other, such that they are more likely to contain the expected values in a debugging session. This was the default in GCC versions older than 4.7. ! `-ftree-coalesce-vars' ! Tell the copyrename pass (see `-ftree-copyrename') to attempt to combine small user-defined variables too, instead of just compiler temporaries. This may severely limit the ability to debug an ! optimized program compiled with `-fno-var-tracking-assignments'. In the negated form, this flag prevents SSA coalescing of user variables, including inlined ones. This option is enabled by default. ! `-ftree-ter' Perform temporary expression replacement during the SSA->normal ! phase. Single use/single def temporaries are replaced at their ! use location with their defining expression. This results in ! non-GIMPLE code, but gives the expanders much more complex trees ! to work on resulting in better RTL generation. This is enabled by ! default at `-O' and higher. ! `-ftree-slsr' ! Perform straight-line strength reduction on trees. This ! recognizes related expressions involving multiplications and ! replaces them by less expensive calculations when possible. This ! is enabled by default at `-O' and higher. ! `-ftree-vectorize' ! Perform vectorization on trees. This flag enables ! `-ftree-loop-vectorize' and `-ftree-slp-vectorize' if not explicitly specified. ! `-ftree-loop-vectorize' ! Perform loop vectorization on trees. This flag is enabled by ! default at `-O3' and when `-ftree-vectorize' is enabled. ! `-ftree-slp-vectorize' ! Perform basic block vectorization on trees. This flag is enabled ! by default at `-O3' and when `-ftree-vectorize' is enabled. ! `-fvect-cost-model=MODEL' Alter the cost model used for vectorization. The MODEL argument ! should be one of `unlimited', `dynamic' or `cheap'. With the ! `unlimited' model the vectorized code-path is assumed to be ! profitable while with the `dynamic' model a runtime check will guard the vectorized code-path to enable it only for iteration counts that will likely execute faster than when executing the ! original scalar loop. The `cheap' model will disable ! vectorization of loops where doing so would be cost prohibitive ! for example due to required runtime checks for data dependence or ! alignment but otherwise is equal to the `dynamic' model. The ! default cost model depends on other optimization flags and is ! either `dynamic' or `cheap'. ! `-fsimd-cost-model=MODEL' Alter the cost model used for vectorization of loops marked with the OpenMP or Cilk Plus simd directive. The MODEL argument should ! be one of `unlimited', `dynamic', `cheap'. All values of MODEL ! have the same meaning as described in `-fvect-cost-model' and by ! default a cost model defined with `-fvect-cost-model' is used. ! `-ftree-vrp' Perform Value Range Propagation on trees. This is similar to the constant propagation pass, but instead of values, ranges of values are propagated. This allows the optimizers to remove unnecessary ! range checks like array bound checks and null pointer checks. ! This is enabled by default at `-O2' and higher. Null pointer check ! elimination is only done if `-fdelete-null-pointer-checks' is enabled. ! `-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function ! allowing other optimizations to do a better job. ! `-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. `-funroll-loops' implies ! `-frerun-cse-after-loop'. This option makes code larger, and may or may not make it run faster. ! `-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. `-funroll-all-loops' implies the same options as ! `-funroll-loops', ! `-fsplit-ivs-in-unroller' Enables expression of values of induction variables in later iterations of the unrolled loop using the value in the first iteration. This breaks long dependency chains, thus improving efficiency of the scheduling passes. ! A combination of `-fweb' and CSE is often sufficient to obtain the ! same effect. However, that is not reliable in cases where the ! loop body is more complicated than a single basic block. It also ! does not work at all on some architectures due to restrictions in ! the CSE pass. This optimization is enabled by default. ! `-fvariable-expansion-in-unroller' With this option, the compiler creates multiple copies of some ! local variables when unrolling a loop, which can result in ! superior code. ! `-fpartial-inlining' Inline parts of functions. This option has any effect only when ! inlining itself is turned on by the `-finline-functions' or ! `-finline-small-functions' options. ! Enabled at level `-O2'. ! `-fpredictive-commoning' Perform predictive commoning optimization, i.e., reusing computations (especially memory loads and stores) performed in previous iterations of loops. ! This option is enabled at level `-O3'. ! `-fprefetch-loop-arrays' If supported by the target machine, generate instructions to prefetch memory to improve the performance of loops that access large arrays. *************** optimizations to be performed is desired *** 7485,7560 **** This option may generate better or worse code; results are highly dependent on the structure of loops within the source code. ! Disabled at level '-Os'. ! '-fno-peephole' ! '-fno-peephole2' Disable any machine-specific peephole optimizations. The ! difference between '-fno-peephole' and '-fno-peephole2' is in how they are implemented in the compiler; some targets use one, some use the other, a few use both. ! '-fpeephole' is enabled by default. '-fpeephole2' enabled at ! levels '-O2', '-O3', '-Os'. ! '-fno-guess-branch-probability' Do not guess branch probabilities using heuristics. GCC uses heuristics to guess branch probabilities if they are not ! provided by profiling feedback ('-fprofile-arcs'). These heuristics are based on the control flow graph. If some branch ! probabilities are specified by '__builtin_expect', then the heuristics are used to guess branch probabilities for the rest of ! the control flow graph, taking the '__builtin_expect' info into account. The interactions between the heuristics and ! '__builtin_expect' can be complex, and in some cases, it may be useful to disable the heuristics so that the effects of ! '__builtin_expect' are easier to understand. ! The default is '-fguess-branch-probability' at levels '-O', '-O2', ! '-O3', '-Os'. ! '-freorder-blocks' Reorder basic blocks in the compiled function in order to reduce number of taken branches and improve code locality. ! Enabled at levels '-O2', '-O3'. ! '-freorder-blocks-and-partition' ! In addition to reordering basic blocks in the compiled function, in ! order to reduce number of taken branches, partitions hot and cold ! basic blocks into separate sections of the assembly and .o files, ! to improve paging and cache locality performance. This optimization is automatically turned off in the presence of exception handling, for linkonce sections, for functions with a user-defined section attribute and on any architecture that does not support named sections. ! Enabled for x86 at levels '-O2', '-O3'. ! '-freorder-functions' Reorder functions in the object file in order to improve code locality. This is implemented by using special subsections ! '.text.hot' for most frequently executed functions and ! '.text.unlikely' for unlikely executed functions. Reordering is done by the linker so object file format must support named sections and linker must place them in a reasonable way. Also profile feedback must be available to make this option ! effective. See '-fprofile-arcs' for details. ! Enabled at levels '-O2', '-O3', '-Os'. ! '-fstrict-aliasing' Allow the compiler to assume the strictest aliasing rules applicable to the language being compiled. For C (and C++), this activates optimizations based on the type of expressions. In ! particular, an object of one type is assumed never to reside at the ! same address as an object of a different type, unless the types are ! almost the same. For example, an 'unsigned int' can alias an ! 'int', but not a 'void*' or a 'double'. A character type may alias ! any other type. Pay special attention to code like this: union a_union { --- 7549,7624 ---- This option may generate better or worse code; results are highly dependent on the structure of loops within the source code. ! Disabled at level `-Os'. ! `-fno-peephole' ! `-fno-peephole2' Disable any machine-specific peephole optimizations. The ! difference between `-fno-peephole' and `-fno-peephole2' is in how they are implemented in the compiler; some targets use one, some use the other, a few use both. ! `-fpeephole' is enabled by default. `-fpeephole2' enabled at ! levels `-O2', `-O3', `-Os'. ! `-fno-guess-branch-probability' Do not guess branch probabilities using heuristics. GCC uses heuristics to guess branch probabilities if they are not ! provided by profiling feedback (`-fprofile-arcs'). These heuristics are based on the control flow graph. If some branch ! probabilities are specified by `__builtin_expect', then the heuristics are used to guess branch probabilities for the rest of ! the control flow graph, taking the `__builtin_expect' info into account. The interactions between the heuristics and ! `__builtin_expect' can be complex, and in some cases, it may be useful to disable the heuristics so that the effects of ! `__builtin_expect' are easier to understand. ! The default is `-fguess-branch-probability' at levels `-O', `-O2', ! `-O3', `-Os'. ! `-freorder-blocks' Reorder basic blocks in the compiled function in order to reduce number of taken branches and improve code locality. ! Enabled at levels `-O2', `-O3'. ! `-freorder-blocks-and-partition' ! In addition to reordering basic blocks in the compiled function, ! in order to reduce number of taken branches, partitions hot and ! cold basic blocks into separate sections of the assembly and .o ! files, to improve paging and cache locality performance. This optimization is automatically turned off in the presence of exception handling, for linkonce sections, for functions with a user-defined section attribute and on any architecture that does not support named sections. ! Enabled for x86 at levels `-O2', `-O3'. ! `-freorder-functions' Reorder functions in the object file in order to improve code locality. This is implemented by using special subsections ! `.text.hot' for most frequently executed functions and ! `.text.unlikely' for unlikely executed functions. Reordering is done by the linker so object file format must support named sections and linker must place them in a reasonable way. Also profile feedback must be available to make this option ! effective. See `-fprofile-arcs' for details. ! Enabled at levels `-O2', `-O3', `-Os'. ! `-fstrict-aliasing' Allow the compiler to assume the strictest aliasing rules applicable to the language being compiled. For C (and C++), this activates optimizations based on the type of expressions. In ! particular, an object of one type is assumed never to reside at ! the same address as an object of a different type, unless the ! types are almost the same. For example, an `unsigned int' can ! alias an `int', but not a `void*' or a `double'. A character type ! may alias any other type. Pay special attention to code like this: union a_union { *************** optimizations to be performed is desired *** 7569,7575 **** } The practice of reading from a different union member than the one most recently written to (called "type-punning") is common. Even ! with '-fstrict-aliasing', type-punning is allowed, provided the memory is accessed through the union type. So, the code above works as expected. *Note Structures unions enumerations and bit-fields implementation::. However, this code might not: --- 7633,7639 ---- } The practice of reading from a different union member than the one most recently written to (called "type-punning") is common. Even ! with `-fstrict-aliasing', type-punning is allowed, provided the memory is accessed through the union type. So, the code above works as expected. *Note Structures unions enumerations and bit-fields implementation::. However, this code might not: *************** optimizations to be performed is desired *** 7589,7606 **** return ((union a_union *) &d)->i; } ! The '-fstrict-aliasing' option is enabled at levels '-O2', '-O3', ! '-Os'. ! '-fstrict-overflow' Allow the compiler to assume strict signed overflow rules, depending on the language being compiled. For C (and C++) this means that overflow when doing arithmetic with signed numbers is undefined, which means that the compiler may assume that it does not happen. This permits various optimizations. For example, the ! compiler assumes that an expression like 'i + 10 > i' is always ! true for signed 'i'. This assumption is only valid if signed ! overflow is undefined, as the expression is false if 'i + 10' overflows when using twos complement arithmetic. When this option is in effect any attempt to determine whether an operation on signed numbers overflows must be written carefully to not actually --- 7653,7670 ---- return ((union a_union *) &d)->i; } ! The `-fstrict-aliasing' option is enabled at levels `-O2', `-O3', ! `-Os'. ! `-fstrict-overflow' Allow the compiler to assume strict signed overflow rules, depending on the language being compiled. For C (and C++) this means that overflow when doing arithmetic with signed numbers is undefined, which means that the compiler may assume that it does not happen. This permits various optimizations. For example, the ! compiler assumes that an expression like `i + 10 > i' is always ! true for signed `i'. This assumption is only valid if signed ! overflow is undefined, as the expression is false if `i + 10' overflows when using twos complement arithmetic. When this option is in effect any attempt to determine whether an operation on signed numbers overflows must be written carefully to not actually *************** optimizations to be performed is desired *** 7610,7714 **** semantics: given a pointer to an object, if adding an offset to that pointer does not produce a pointer to the same object, the addition is undefined. This permits the compiler to conclude that ! 'p + u > p' is always true for a pointer 'p' and unsigned integer ! 'u'. This assumption is only valid because pointer wraparound is ! undefined, as the expression is false if 'p + u' overflows using twos complement arithmetic. ! See also the '-fwrapv' option. Using '-fwrapv' means that integer ! signed overflow is fully defined: it wraps. When '-fwrapv' is ! used, there is no difference between '-fstrict-overflow' and ! '-fno-strict-overflow' for integers. With '-fwrapv' certain types of overflow are permitted. For example, if the compiler gets an overflow when doing arithmetic on constants, the overflowed value ! can still be used with '-fwrapv', but not otherwise. ! The '-fstrict-overflow' option is enabled at levels '-O2', '-O3', ! '-Os'. ! '-falign-functions' ! '-falign-functions=N' Align the start of functions to the next power-of-two greater than ! N, skipping up to N bytes. For instance, '-falign-functions=32' aligns functions to the next 32-byte boundary, but ! '-falign-functions=24' aligns to the next 32-byte boundary only if this can be done by skipping 23 bytes or less. ! '-fno-align-functions' and '-falign-functions=1' are equivalent and ! mean that functions are not aligned. ! Some assemblers only support this flag when N is a power of two; in ! that case, it is rounded up. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels '-O2', '-O3'. ! '-falign-labels' ! '-falign-labels=N' Align all branch targets to a power-of-two boundary, skipping up to ! N bytes like '-falign-functions'. This option can easily make code ! slower, because it must insert dummy operations for when the branch ! target is reached in the usual flow of the code. ! '-fno-align-labels' and '-falign-labels=1' are equivalent and mean that labels are not aligned. ! If '-falign-loops' or '-falign-jumps' are applicable and are greater than this value, then their values are used instead. If N is not specified or is zero, use a machine-dependent default ! which is very likely to be '1', meaning no alignment. ! Enabled at levels '-O2', '-O3'. ! '-falign-loops' ! '-falign-loops=N' ! Align loops to a power-of-two boundary, skipping up to N bytes like ! '-falign-functions'. If the loops are executed many times, this ! makes up for any execution of the dummy operations. ! '-fno-align-loops' and '-falign-loops=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels '-O2', '-O3'. ! '-falign-jumps' ! '-falign-jumps=N' Align branch targets to a power-of-two boundary, for branch targets where the targets can only be reached by jumping, skipping up to N ! bytes like '-falign-functions'. In this case, no dummy operations need be executed. ! '-fno-align-jumps' and '-falign-jumps=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels '-O2', '-O3'. ! '-funit-at-a-time' ! This option is left for compatibility reasons. '-funit-at-a-time' ! has no effect, while '-fno-unit-at-a-time' implies ! '-fno-toplevel-reorder' and '-fno-section-anchors'. Enabled by default. ! '-fno-toplevel-reorder' ! Do not reorder top-level functions, variables, and 'asm' statements. Output them in the same order that they appear in the input file. When this option is used, unreferenced static variables are not removed. This option is intended to support existing code that relies on a particular ordering. For new code, it is better to use attributes when possible. ! Enabled at level '-O0'. When disabled explicitly, it also implies ! '-fno-section-anchors', which is otherwise enabled at '-O0' on some targets. ! '-fweb' Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also --- 7674,7778 ---- semantics: given a pointer to an object, if adding an offset to that pointer does not produce a pointer to the same object, the addition is undefined. This permits the compiler to conclude that ! `p + u > p' is always true for a pointer `p' and unsigned integer ! `u'. This assumption is only valid because pointer wraparound is ! undefined, as the expression is false if `p + u' overflows using twos complement arithmetic. ! See also the `-fwrapv' option. Using `-fwrapv' means that integer ! signed overflow is fully defined: it wraps. When `-fwrapv' is ! used, there is no difference between `-fstrict-overflow' and ! `-fno-strict-overflow' for integers. With `-fwrapv' certain types of overflow are permitted. For example, if the compiler gets an overflow when doing arithmetic on constants, the overflowed value ! can still be used with `-fwrapv', but not otherwise. ! The `-fstrict-overflow' option is enabled at levels `-O2', `-O3', ! `-Os'. ! `-falign-functions' ! `-falign-functions=N' Align the start of functions to the next power-of-two greater than ! N, skipping up to N bytes. For instance, `-falign-functions=32' aligns functions to the next 32-byte boundary, but ! `-falign-functions=24' aligns to the next 32-byte boundary only if this can be done by skipping 23 bytes or less. ! `-fno-align-functions' and `-falign-functions=1' are equivalent ! and mean that functions are not aligned. ! Some assemblers only support this flag when N is a power of two; ! in that case, it is rounded up. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels `-O2', `-O3'. ! `-falign-labels' ! `-falign-labels=N' Align all branch targets to a power-of-two boundary, skipping up to ! N bytes like `-falign-functions'. This option can easily make ! code slower, because it must insert dummy operations for when the ! branch target is reached in the usual flow of the code. ! `-fno-align-labels' and `-falign-labels=1' are equivalent and mean that labels are not aligned. ! If `-falign-loops' or `-falign-jumps' are applicable and are greater than this value, then their values are used instead. If N is not specified or is zero, use a machine-dependent default ! which is very likely to be `1', meaning no alignment. ! Enabled at levels `-O2', `-O3'. ! `-falign-loops' ! `-falign-loops=N' ! Align loops to a power-of-two boundary, skipping up to N bytes ! like `-falign-functions'. If the loops are executed many times, ! this makes up for any execution of the dummy operations. ! `-fno-align-loops' and `-falign-loops=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels `-O2', `-O3'. ! `-falign-jumps' ! `-falign-jumps=N' Align branch targets to a power-of-two boundary, for branch targets where the targets can only be reached by jumping, skipping up to N ! bytes like `-falign-functions'. In this case, no dummy operations need be executed. ! `-fno-align-jumps' and `-falign-jumps=1' are equivalent and mean that loops are not aligned. If N is not specified or is zero, use a machine-dependent default. ! Enabled at levels `-O2', `-O3'. ! `-funit-at-a-time' ! This option is left for compatibility reasons. `-funit-at-a-time' ! has no effect, while `-fno-unit-at-a-time' implies ! `-fno-toplevel-reorder' and `-fno-section-anchors'. Enabled by default. ! `-fno-toplevel-reorder' ! Do not reorder top-level functions, variables, and `asm' statements. Output them in the same order that they appear in the input file. When this option is used, unreferenced static variables are not removed. This option is intended to support existing code that relies on a particular ordering. For new code, it is better to use attributes when possible. ! Enabled at level `-O0'. When disabled explicitly, it also implies ! `-fno-section-anchors', which is otherwise enabled at `-O0' on some targets. ! `-fweb' Constructs webs as commonly used for register allocation purposes and assign each web individual pseudo register. This allows the register allocation pass to operate on pseudos directly, but also *************** optimizations to be performed is desired *** 7717,7736 **** debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with '-funroll-loops'. ! '-fwhole-program' Assume that the current compilation unit represents the whole program being compiled. All public functions and variables with ! the exception of 'main' and those merged by attribute ! 'externally_visible' become static functions and in effect are optimized more aggressively by interprocedural optimizers. ! This option should not be used in combination with '-flto'. Instead relying on a linker plugin should provide safer and more precise information. ! '-flto[=N]' This option runs the standard link-time optimizer. When invoked with source code, it generates GIMPLE (one of GCC's internal representations) and writes it to special ELF sections in the --- 7781,7800 ---- debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with `-funroll-loops'. ! `-fwhole-program' Assume that the current compilation unit represents the whole program being compiled. All public functions and variables with ! the exception of `main' and those merged by attribute ! `externally_visible' become static functions and in effect are optimized more aggressively by interprocedural optimizers. ! This option should not be used in combination with `-flto'. Instead relying on a linker plugin should provide safer and more precise information. ! `-flto[=N]' This option runs the standard link-time optimizer. When invoked with source code, it generates GIMPLE (one of GCC's internal representations) and writes it to special ELF sections in the *************** optimizations to be performed is desired *** 7738,7799 **** function bodies are read from these ELF sections and instantiated as if they had been part of the same translation unit. ! To use the link-time optimizer, '-flto' and optimization options ! should be specified at compile time and during the final link. For ! example: gcc -c -O2 -flto foo.c gcc -c -O2 -flto bar.c gcc -o myprog -flto -O2 foo.o bar.o The first two invocations to GCC save a bytecode representation of ! GIMPLE into special ELF sections inside 'foo.o' and 'bar.o'. The ! final invocation reads the GIMPLE bytecode from 'foo.o' and ! 'bar.o', merges the two files into a single internal image, and ! compiles the result as usual. Since both 'foo.o' and 'bar.o' are merged into a single image, this causes all the interprocedural analyses and optimizations in GCC to work across the two files as if they were a single one. This means, for example, that the ! inliner is able to inline functions in 'bar.o' into functions in ! 'foo.o' and vice-versa. Another (simpler) way to enable link-time optimization is: gcc -o myprog -flto -O2 foo.c bar.c ! The above generates bytecode for 'foo.c' and 'bar.c', merges them together into a single GIMPLE representation and optimizes them as ! usual to produce 'myprog'. The only important thing to keep in mind is that to enable link-time optimizations you need to use the GCC driver to perform the link-step. GCC then automatically performs link-time optimization if any of the objects involved were compiled with the ! '-flto'. You generally should specify the optimization options to ! be used for link-time optimization though GCC will try to be clever ! at guessing an optimization level to use from the options used at ! compile-time if you fail to specify one at link-time. You can ! always override the automatic decision to do link-time optimization ! at link-time by passing '-fno-lto' to the link command. To make whole program optimization effective, it is necessary to make certain whole program assumptions. The compiler needs to know what functions and variables can be accessed by libraries and ! runtime outside of the link-time optimized unit. When supported by ! the linker, the linker plugin (see '-fuse-linker-plugin') passes ! information to the compiler about used and externally visible ! symbols. When the linker plugin is not available, ! '-fwhole-program' should be used to allow the compiler to make these assumptions, which leads to more aggressive optimization decisions. ! When '-fuse-linker-plugin' is not enabled then, when a file is ! compiled with '-flto', the generated object file is larger than a regular object file because it contains GIMPLE bytecodes and the ! usual final code (see '-ffat-lto-objects'. This means that object ! files with LTO information can be linked as normal object files; if ! '-fno-lto' is passed to the linker, no interprocedural ! optimizations are applied. Note that when '-fno-fat-lto-objects' is enabled the compile-stage is faster but you cannot perform a regular, non-LTO link on them. --- 7802,7864 ---- function bodies are read from these ELF sections and instantiated as if they had been part of the same translation unit. ! To use the link-time optimizer, `-flto' and optimization options ! should be specified at compile time and during the final link. ! For example: gcc -c -O2 -flto foo.c gcc -c -O2 -flto bar.c gcc -o myprog -flto -O2 foo.o bar.o The first two invocations to GCC save a bytecode representation of ! GIMPLE into special ELF sections inside `foo.o' and `bar.o'. The ! final invocation reads the GIMPLE bytecode from `foo.o' and ! `bar.o', merges the two files into a single internal image, and ! compiles the result as usual. Since both `foo.o' and `bar.o' are merged into a single image, this causes all the interprocedural analyses and optimizations in GCC to work across the two files as if they were a single one. This means, for example, that the ! inliner is able to inline functions in `bar.o' into functions in ! `foo.o' and vice-versa. Another (simpler) way to enable link-time optimization is: gcc -o myprog -flto -O2 foo.c bar.c ! The above generates bytecode for `foo.c' and `bar.c', merges them together into a single GIMPLE representation and optimizes them as ! usual to produce `myprog'. The only important thing to keep in mind is that to enable link-time optimizations you need to use the GCC driver to perform the link-step. GCC then automatically performs link-time optimization if any of the objects involved were compiled with the ! `-flto'. You generally should specify the optimization options to ! be used for link-time optimization though GCC will try to be ! clever at guessing an optimization level to use from the options ! used at compile-time if you fail to specify one at link-time. You ! can always override the automatic decision to do link-time ! optimization at link-time by passing `-fno-lto' to the link ! command. To make whole program optimization effective, it is necessary to make certain whole program assumptions. The compiler needs to know what functions and variables can be accessed by libraries and ! runtime outside of the link-time optimized unit. When supported ! by the linker, the linker plugin (see `-fuse-linker-plugin') ! passes information to the compiler about used and externally ! visible symbols. When the linker plugin is not available, ! `-fwhole-program' should be used to allow the compiler to make these assumptions, which leads to more aggressive optimization decisions. ! When `-fuse-linker-plugin' is not enabled then, when a file is ! compiled with `-flto', the generated object file is larger than a regular object file because it contains GIMPLE bytecodes and the ! usual final code (see `-ffat-lto-objects'. This means that object ! files with LTO information can be linked as normal object files; ! if `-fno-lto' is passed to the linker, no interprocedural ! optimizations are applied. Note that when `-fno-fat-lto-objects' is enabled the compile-stage is faster but you cannot perform a regular, non-LTO link on them. *************** optimizations to be performed is desired *** 7806,7849 **** gcc -o myprog -O3 foo.o bar.o This produces individual object files with unoptimized assembler ! code, but the resulting binary 'myprog' is optimized at '-O3'. If, ! instead, the final binary is generated with '-fno-lto', then ! 'myprog' is not optimized. When producing the final binary, GCC only applies link-time ! optimizations to those files that contain bytecode. Therefore, you ! can mix and match object files and libraries with GIMPLE bytecodes ! and final object code. GCC automatically selects which files to ! optimize in LTO mode and which files to link without further ! processing. There are some code generation flags preserved by GCC when generating bytecodes, as they need to be used during the final link stage. Generally options specified at link-time override those specified at compile-time. ! If you do not specify an optimization level option '-O' at link-time then GCC will compute one based on the optimization levels used when compiling the object files. The highest optimization level will win here. Currently, the following options and their setting are take from ! the first object file that explicitely specified it: '-fPIC', ! '-fpic', '-fpie', '-fcommon', '-fexceptions', ! '-fnon-call-exceptions', '-fgnu-tm' and all the '-m' target flags. Certain ABI changing flags are required to match in all compilation-units and trying to override this at link-time with a conflicting value is ignored. This includes options such as ! '-freg-struct-return' and '-fpcc-struct-return'. ! Other options such as '-ffp-contract', '-fno-strict-overflow', ! '-fwrapv', '-fno-trapv' or '-fno-strict-aliasing' are passed ! through to the link stage and merged conservatively for conflicting ! translation units. Specifically '-fno-strict-overflow', '-fwrapv' ! and '-fno-trapv' take precedence and for example ! '-ffp-contract=off' takes precedence over '-ffp-contract=fast'. ! You can override them at linke-time. It is recommended that you compile all the files participating in the same link with the same options and also specify those options --- 7871,7914 ---- gcc -o myprog -O3 foo.o bar.o This produces individual object files with unoptimized assembler ! code, but the resulting binary `myprog' is optimized at `-O3'. ! If, instead, the final binary is generated with `-fno-lto', then ! `myprog' is not optimized. When producing the final binary, GCC only applies link-time ! optimizations to those files that contain bytecode. Therefore, ! you can mix and match object files and libraries with GIMPLE ! bytecodes and final object code. GCC automatically selects which ! files to optimize in LTO mode and which files to link without ! further processing. There are some code generation flags preserved by GCC when generating bytecodes, as they need to be used during the final link stage. Generally options specified at link-time override those specified at compile-time. ! If you do not specify an optimization level option `-O' at link-time then GCC will compute one based on the optimization levels used when compiling the object files. The highest optimization level will win here. Currently, the following options and their setting are take from ! the first object file that explicitely specified it: `-fPIC', ! `-fpic', `-fpie', `-fcommon', `-fexceptions', ! `-fnon-call-exceptions', `-fgnu-tm' and all the `-m' target flags. Certain ABI changing flags are required to match in all compilation-units and trying to override this at link-time with a conflicting value is ignored. This includes options such as ! `-freg-struct-return' and `-fpcc-struct-return'. ! Other options such as `-ffp-contract', `-fno-strict-overflow', ! `-fwrapv', `-fno-trapv' or `-fno-strict-aliasing' are passed ! through to the link stage and merged conservatively for ! conflicting translation units. Specifically ! `-fno-strict-overflow', `-fwrapv' and `-fno-trapv' take precedence ! and for example `-ffp-contract=off' takes precedence over ! `-ffp-contract=fast'. You can override them at linke-time. It is recommended that you compile all the files participating in the same link with the same options and also specify those options *************** optimizations to be performed is desired *** 7864,7906 **** gfortran -c -flto baz.f90 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran ! Notice that the final link is done with 'g++' to get the C++ ! runtime libraries and '-lgfortran' is added to get the Fortran runtime libraries. In general, when mixing languages in LTO mode, you should use the same link command options as when mixing languages in a regular (non-LTO) compilation. If object files containing GIMPLE bytecode are stored in a library ! archive, say 'libfoo.a', it is possible to extract and use them in an LTO link if you are using a linker with plugin support. To ! create static libraries suitable for LTO, use 'gcc-ar' and ! 'gcc-ranlib' instead of 'ar' and 'ranlib'; to show the symbols of ! object files with GIMPLE bytecode, use 'gcc-nm'. Those commands ! require that 'ar', 'ranlib' and 'nm' have been compiled with plugin ! support. At link time, use the the flag '-fuse-linker-plugin' to ! ensure that the library participates in the LTO optimization ! process: gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo With the linker plugin enabled, the linker extracts the needed ! GIMPLE files from 'libfoo.a' and passes them on to the running GCC to make them part of the aggregated GIMPLE image to be optimized. If you are not using a linker with plugin support and/or do not ! enable the linker plugin, then the objects inside 'libfoo.a' are extracted and linked as usual, but they do not participate in the LTO optimization process. In order to make a static library suitable for both LTO optimization and usual linkage, compile its ! object files with '-flto' '-ffat-lto-objects'. Link-time optimizations do not require the presence of the whole ! program to operate. If the program does not require any symbols to ! be exported, it is possible to combine '-flto' and ! '-fwhole-program' to allow the interprocedural optimizers to use ! more aggressive assumptions which may lead to improved optimization ! opportunities. Use of '-fwhole-program' is not needed when linker ! plugin is active (see '-fuse-linker-plugin'). The current implementation of LTO makes no attempt to generate bytecode that is portable between different types of hosts. The --- 7929,7971 ---- gfortran -c -flto baz.f90 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran ! Notice that the final link is done with `g++' to get the C++ ! runtime libraries and `-lgfortran' is added to get the Fortran runtime libraries. In general, when mixing languages in LTO mode, you should use the same link command options as when mixing languages in a regular (non-LTO) compilation. If object files containing GIMPLE bytecode are stored in a library ! archive, say `libfoo.a', it is possible to extract and use them in an LTO link if you are using a linker with plugin support. To ! create static libraries suitable for LTO, use `gcc-ar' and ! `gcc-ranlib' instead of `ar' and `ranlib'; to show the symbols of ! object files with GIMPLE bytecode, use `gcc-nm'. Those commands ! require that `ar', `ranlib' and `nm' have been compiled with ! plugin support. At link time, use the the flag ! `-fuse-linker-plugin' to ensure that the library participates in ! the LTO optimization process: gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo With the linker plugin enabled, the linker extracts the needed ! GIMPLE files from `libfoo.a' and passes them on to the running GCC to make them part of the aggregated GIMPLE image to be optimized. If you are not using a linker with plugin support and/or do not ! enable the linker plugin, then the objects inside `libfoo.a' are extracted and linked as usual, but they do not participate in the LTO optimization process. In order to make a static library suitable for both LTO optimization and usual linkage, compile its ! object files with `-flto' `-ffat-lto-objects'. Link-time optimizations do not require the presence of the whole ! program to operate. If the program does not require any symbols ! to be exported, it is possible to combine `-flto' and ! `-fwhole-program' to allow the interprocedural optimizers to use ! more aggressive assumptions which may lead to improved ! optimization opportunities. Use of `-fwhole-program' is not ! needed when linker plugin is active (see `-fuse-linker-plugin'). The current implementation of LTO makes no attempt to generate bytecode that is portable between different types of hosts. The *************** optimizations to be performed is desired *** 7909,7997 **** with an older or newer version of GCC. Link-time optimization does not work well with generation of ! debugging information. Combining '-flto' with '-g' is currently experimental and expected to produce unexpected results. ! If you specify the optional N, the optimization and code generation ! done at link time is executed in parallel using N parallel jobs by ! utilizing an installed 'make' program. The environment variable ! 'MAKE' may be used to override the program used. The default value ! for N is 1. ! You can also specify '-flto=jobserver' to use GNU make's job server ! mode to determine the number of parallel jobs. This is useful when ! the Makefile calling GCC is already executing in parallel. You ! must prepend a '+' to the command recipe in the parent Makefile for ! this to work. This option likely only works if 'MAKE' is GNU make. ! '-flto-partition=ALG' Specify the partitioning algorithm used by the link-time optimizer. ! The value is either '1to1' to specify a partitioning mirroring the ! original source files or 'balanced' to specify partitioning into ! equally sized chunks (whenever possible) or 'max' to create new ! partition for every symbol where possible. Specifying 'none' as an ! algorithm disables partitioning and streaming completely. The ! default value is 'balanced'. While '1to1' can be used as an ! workaround for various code ordering issues, the 'max' partitioning ! is intended for internal testing only. ! '-flto-compression-level=N' This option specifies the level of compression used for intermediate language written to LTO object files, and is only ! meaningful in conjunction with LTO mode ('-flto'). Valid values are 0 (no compression) to 9 (maximum compression). Values outside this range are clamped to either 0 or 9. If the option is not given, a default balanced compression setting is used. ! '-flto-report' Prints a report with internal details on the workings of the ! link-time optimizer. The contents of this report vary from version ! to version. It is meant to be useful to GCC developers when ! processing object files in LTO mode (via '-flto'). Disabled by default. ! '-flto-report-wpa' ! Like '-flto-report', but only print for the WPA phase of Link Time Optimization. ! '-fuse-linker-plugin' Enables the use of a linker plugin during link-time optimization. This option relies on plugin support in the linker, which is available in gold or in GNU ld 2.21 or newer. This option enables the extraction of object files with GIMPLE ! bytecode out of library archives. This improves the quality of optimization by exposing more code to the link-time optimizer. This information specifies what symbols can be accessed externally (by non-LTO object or during dynamic linking). Resulting code quality improvements on binaries (and shared libraries that use ! hidden visibility) are similar to '-fwhole-program'. See '-flto' for a description of the effect of this flag and how to use it. This option is enabled by default when LTO support in GCC is enabled and GCC was configured for use with a linker supporting plugins (GNU ld 2.21 or newer or gold). ! '-ffat-lto-objects' ! Fat LTO objects are object files that contain both the intermediate ! language and the object code. This makes them usable for both LTO ! linking and normal linking. This option is effective only when ! compiling with '-flto' and is ignored at link time. ! '-fno-fat-lto-objects' improves compilation time over plain LTO, ! but requires the complete toolchain to be aware of LTO. It requires ! a linker with linker plugin support for basic functionality. ! Additionally, 'nm', 'ar' and 'ranlib' need to support linker ! plugins to allow a full-featured build environment (capable of ! building static libraries etc). GCC provides the 'gcc-ar', ! 'gcc-nm', 'gcc-ranlib' wrappers to pass the right options to these ! tools. With non fat LTO makefiles need to be modified to use them. ! The default is '-fno-fat-lto-objects' on targets with linker plugin support. ! '-fcompare-elim' After register allocation and post-register allocation instruction splitting, identify arithmetic instructions that compute processor flags similar to a comparison operation based on that arithmetic. --- 7974,8064 ---- with an older or newer version of GCC. Link-time optimization does not work well with generation of ! debugging information. Combining `-flto' with `-g' is currently experimental and expected to produce unexpected results. ! If you specify the optional N, the optimization and code ! generation done at link time is executed in parallel using N ! parallel jobs by utilizing an installed `make' program. The ! environment variable `MAKE' may be used to override the program ! used. The default value for N is 1. ! You can also specify `-flto=jobserver' to use GNU make's job ! server mode to determine the number of parallel jobs. This is ! useful when the Makefile calling GCC is already executing in ! parallel. You must prepend a `+' to the command recipe in the ! parent Makefile for this to work. This option likely only works ! if `MAKE' is GNU make. ! `-flto-partition=ALG' Specify the partitioning algorithm used by the link-time optimizer. ! The value is either `1to1' to specify a partitioning mirroring the ! original source files or `balanced' to specify partitioning into ! equally sized chunks (whenever possible) or `max' to create new ! partition for every symbol where possible. Specifying `none' as ! an algorithm disables partitioning and streaming completely. The ! default value is `balanced'. While `1to1' can be used as an ! workaround for various code ordering issues, the `max' ! partitioning is intended for internal testing only. ! `-flto-compression-level=N' This option specifies the level of compression used for intermediate language written to LTO object files, and is only ! meaningful in conjunction with LTO mode (`-flto'). Valid values are 0 (no compression) to 9 (maximum compression). Values outside this range are clamped to either 0 or 9. If the option is not given, a default balanced compression setting is used. ! `-flto-report' Prints a report with internal details on the workings of the ! link-time optimizer. The contents of this report vary from ! version to version. It is meant to be useful to GCC developers ! when processing object files in LTO mode (via `-flto'). Disabled by default. ! `-flto-report-wpa' ! Like `-flto-report', but only print for the WPA phase of Link Time Optimization. ! `-fuse-linker-plugin' Enables the use of a linker plugin during link-time optimization. This option relies on plugin support in the linker, which is available in gold or in GNU ld 2.21 or newer. This option enables the extraction of object files with GIMPLE ! bytecode out of library archives. This improves the quality of optimization by exposing more code to the link-time optimizer. This information specifies what symbols can be accessed externally (by non-LTO object or during dynamic linking). Resulting code quality improvements on binaries (and shared libraries that use ! hidden visibility) are similar to `-fwhole-program'. See `-flto' for a description of the effect of this flag and how to use it. This option is enabled by default when LTO support in GCC is enabled and GCC was configured for use with a linker supporting plugins (GNU ld 2.21 or newer or gold). ! `-ffat-lto-objects' ! Fat LTO objects are object files that contain both the ! intermediate language and the object code. This makes them usable ! for both LTO linking and normal linking. This option is effective ! only when compiling with `-flto' and is ignored at link time. ! `-fno-fat-lto-objects' improves compilation time over plain LTO, ! but requires the complete toolchain to be aware of LTO. It ! requires a linker with linker plugin support for basic ! functionality. Additionally, `nm', `ar' and `ranlib' need to ! support linker plugins to allow a full-featured build environment ! (capable of building static libraries etc). GCC provides the ! `gcc-ar', `gcc-nm', `gcc-ranlib' wrappers to pass the right options ! to these tools. With non fat LTO makefiles need to be modified to ! use them. ! The default is `-fno-fat-lto-objects' on targets with linker plugin support. ! `-fcompare-elim' After register allocation and post-register allocation instruction splitting, identify arithmetic instructions that compute processor flags similar to a comparison operation based on that arithmetic. *************** optimizations to be performed is desired *** 8001,8334 **** represent the comparison operation before register allocation is complete. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fuse-ld=bfd' ! Use the 'bfd' linker instead of the default linker. ! '-fuse-ld=gold' ! Use the 'gold' linker instead of the default linker. ! '-fcprop-registers' After register allocation and post-register allocation instruction splitting, perform a copy-propagation pass to try to reduce scheduling dependencies and occasionally eliminate the copy. ! Enabled at levels '-O', '-O2', '-O3', '-Os'. ! '-fprofile-correction' Profiles collected using an instrumented binary for multi-threaded ! programs may be inconsistent due to missed counter updates. When this option is specified, GCC uses heuristics to correct or smooth ! out such inconsistencies. By default, GCC emits an error message when an inconsistent profile is detected. ! '-fprofile-dir=PATH' ! Set the directory to search for the profile data files in to PATH. This option affects only the profile data generated by ! '-fprofile-generate', '-ftest-coverage', '-fprofile-arcs' and used ! by '-fprofile-use' and '-fbranch-probabilities' and its related options. Both absolute and relative paths can be used. By default, GCC uses the current directory as PATH, thus the profile data file appears in the same directory as the object file. ! '-fprofile-generate' ! '-fprofile-generate=PATH' ! Enable options usually used for instrumenting application to produce profile useful for later recompilation with profile ! feedback based optimization. You must use '-fprofile-generate' both when compiling and when linking your program. ! The following options are enabled: '-fprofile-arcs', ! '-fprofile-values', '-fvpt'. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See '-fprofile-dir'. ! '-fprofile-use' ! '-fprofile-use=PATH' Enable profile feedback directed optimizations, and optimizations generally profitable only with profile feedback available. ! The following options are enabled: '-fbranch-probabilities', ! '-fvpt', '-funroll-loops', '-fpeel-loops', '-ftracer', ! '-ftree-vectorize', 'ftree-loop-distribute-patterns' By default, GCC emits an error message if the feedback profiles do ! not match the source code. This error can be turned into a warning ! by using '-Wcoverage-mismatch'. Note this may result in poorly ! optimized code. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See '-fprofile-dir'. The following options control compiler behavior regarding floating-point arithmetic. These options trade off between speed and correctness. All must be specifically enabled. ! '-ffloat-store' Do not store floating-point variables in registers, and inhibit other options that might change whether a floating-point value is taken from a register or memory. This option prevents undesirable excess precision on machines such as the 68000 where the floating registers (of the 68881) keep more ! precision than a 'double' is supposed to have. Similarly for the x86 architecture. For most programs, the excess precision does only good, but a few programs rely on the precise definition of ! IEEE floating point. Use '-ffloat-store' for such programs, after modifying them to store all pertinent intermediate computations into variables. ! '-fexcess-precision=STYLE' This option allows further control over excess precision on machines where floating-point registers have more precision than ! the IEEE 'float' and 'double' types and the processor does not support operations rounding to those types. By default, ! '-fexcess-precision=fast' is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if ! '-fexcess-precision=standard' is specified then excess precision follows the rules specified in ISO C99; in particular, both casts and assignments cause values to be rounded to their semantic types ! (whereas '-ffloat-store' only affects assignments). This option is ! enabled by default for C if a strict conformance option such as ! '-std=c99' is used. ! '-fexcess-precision=standard' is not implemented for languages ! other than C, and has no effect if '-funsafe-math-optimizations' or ! '-ffast-math' is specified. On the x86, it also has no effect if ! '-mfpmath=sse' or '-mfpmath=sse+387' is specified; in the former ! case, IEEE semantics apply without excess precision, and in the ! latter, rounding is unpredictable. ! '-ffast-math' ! Sets '-fno-math-errno', '-funsafe-math-optimizations', ! '-ffinite-math-only', '-fno-rounding-math', '-fno-signaling-nans' ! and '-fcx-limited-range'. ! This option causes the preprocessor macro '__FAST_MATH__' to be defined. ! This option is not turned on by any '-O' option besides '-Ofast' ! since it can result in incorrect output for programs that depend on ! an exact implementation of IEEE or ISO rules/specifications for ! math functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! '-fno-math-errno' ! Do not set 'errno' after calling math functions that are executed ! with a single instruction, e.g., 'sqrt'. A program that relies on IEEE exceptions for math error handling may want to use this flag for speed while maintaining IEEE arithmetic compatibility. ! This option is not turned on by any '-O' option since it can result ! in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is '-fmath-errno'. ! On Darwin systems, the math library never sets 'errno'. There is therefore no reason for the compiler to consider the possibility ! that it might, and '-fno-math-errno' is the default. ! ! '-funsafe-math-optimizations' Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate IEEE or ANSI standards. When used at link-time, it may include libraries or startup files that change the default FPU control word or other similar optimizations. ! This option is not turned on by any '-O' option since it can result ! in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. Enables ! '-fno-signed-zeros', '-fno-trapping-math', '-fassociative-math' and ! '-freciprocal-math'. ! ! The default is '-fno-unsafe-math-optimizations'. ! '-fassociative-math' Allow re-association of operands in series of floating-point operations. This violates the ISO C and C++ language standard by ! possibly changing computation result. NOTE: re-ordering may change ! the sign of zero as well as ignore NaNs and inhibit or create ! underflow or overflow (and thus cannot be used on code that relies ! on rounding behavior like '(x + 2**52) - 2**52'. May also reorder ! floating-point comparisons and thus may not be used when ordered ! comparisons are required. This option requires that both ! '-fno-signed-zeros' and '-fno-trapping-math' be in effect. ! Moreover, it doesn't make much sense with '-frounding-math'. For Fortran the option is automatically enabled when both ! '-fno-signed-zeros' and '-fno-trapping-math' are in effect. ! ! The default is '-fno-associative-math'. ! '-freciprocal-math' Allow the reciprocal of a value to be used instead of dividing by ! the value if this enables optimizations. For example 'x / y' can ! be replaced with 'x * (1/y)', which is useful if '(1/y)' is subject ! to common subexpression elimination. Note that this loses precision and increases the number of flops operating on the value. ! The default is '-fno-reciprocal-math'. ! '-ffinite-math-only' Allow optimizations for floating-point arithmetic that assume that arguments and results are not NaNs or +-Infs. ! This option is not turned on by any '-O' option since it can result ! in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is '-fno-finite-math-only'. ! '-fno-signed-zeros' Allow optimizations for floating-point arithmetic that ignore the signedness of zero. IEEE arithmetic specifies the behavior of distinct +0.0 and -0.0 values, which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even with ! '-ffinite-math-only'). This option implies that the sign of a zero ! result isn't significant. ! The default is '-fsigned-zeros'. ! '-fno-trapping-math' Compile code assuming that floating-point operations cannot ! generate user-visible traps. These traps include division by zero, ! overflow, underflow, inexact result and invalid operation. This ! option requires that '-fno-signaling-nans' be in effect. Setting ! this option may allow faster code if one relies on "non-stop" IEEE ! arithmetic, for example. ! This option should never be turned on by any '-O' option since it ! can result in incorrect output for programs that depend on an exact ! implementation of IEEE or ISO rules/specifications for math functions. ! The default is '-ftrapping-math'. ! '-frounding-math' Disable transformations and optimizations that assume default floating-point rounding behavior. This is round-to-zero for all ! floating point to integer conversions, and round-to-nearest for all ! other arithmetic truncations. This option should be specified for ! programs that change the FP rounding mode dynamically, or that may ! be executed with a non-default rounding mode. This option disables ! constant folding of floating-point expressions at compile time ! (which may be affected by rounding mode) and arithmetic transformations that are unsafe in the presence of sign-dependent rounding modes. ! The default is '-fno-rounding-math'. This option is experimental and does not currently guarantee to disable all GCC optimizations that are affected by rounding mode. Future versions of GCC may provide finer control of this setting ! using C99's 'FENV_ACCESS' pragma. This command-line option will be ! used to specify the default state for 'FENV_ACCESS'. ! '-fsignaling-nans' Compile code assuming that IEEE signaling NaNs may generate user-visible traps during floating-point operations. Setting this option disables optimizations that may change the number of exceptions visible with signaling NaNs. This option implies ! '-ftrapping-math'. ! This option causes the preprocessor macro '__SUPPORT_SNAN__' to be defined. ! The default is '-fno-signaling-nans'. This option is experimental and does not currently guarantee to disable all GCC optimizations that affect signaling NaN behavior. ! '-fsingle-precision-constant' Treat floating-point constants as single precision instead of implicitly converting them to double-precision constants. ! '-fcx-limited-range' When enabled, this option states that a range reduction step is not needed when performing complex division. Also, there is no ! checking whether the result of a complex multiplication or division ! is 'NaN + I*NaN', with an attempt to rescue the situation in that ! case. The default is '-fno-cx-limited-range', but is enabled by ! '-ffast-math'. This option controls the default setting of the ISO C99 ! 'CX_LIMITED_RANGE' pragma. Nevertheless, the option applies to all ! languages. ! '-fcx-fortran-rules' Complex multiplication and division follow Fortran rules. Range reduction is done as part of complex division, but there is no ! checking whether the result of a complex multiplication or division ! is 'NaN + I*NaN', with an attempt to rescue the situation in that ! case. - The default is '-fno-cx-fortran-rules'. The following options control optimizations that may improve ! performance, but are not enabled by any '-O' options. This section includes experimental options that may produce broken code. ! '-fbranch-probabilities' ! After running a program compiled with '-fprofile-arcs' (*note ! Options for Debugging Your Program or 'gcc': Debugging Options.), ! you can compile it a second time using '-fbranch-probabilities', to ! improve optimizations based on the number of times each branch was ! taken. When a program compiled with '-fprofile-arcs' exits, it ! saves arc execution counts to a file called 'SOURCENAME.gcda' for ! each source file. The information in this data file is very dependent on the structure of the generated code, so you must use the same source code and the same optimization options for both compilations. ! With '-fbranch-probabilities', GCC puts a 'REG_BR_PROB' note on ! each 'JUMP_INSN' and 'CALL_INSN'. These can be used to improve optimization. Currently, they are only used in one place: in ! 'reorg.c', instead of guessing which path a branch is most likely ! to take, the 'REG_BR_PROB' values are used to exactly determine which path is taken more often. ! '-fprofile-values' ! If combined with '-fprofile-arcs', it adds code so that some data about values of expressions in the program is gathered. ! With '-fbranch-probabilities', it reads back the data gathered from ! profiling values of expressions for usage in optimizations. ! Enabled with '-fprofile-generate' and '-fprofile-use'. ! '-fprofile-reorder-functions' ! Function reordering based on profile instrumentation collects first ! time of execution of a function and orders these functions in ! ascending order. ! Enabled with '-fprofile-use'. ! '-fvpt' ! If combined with '-fprofile-arcs', this option instructs the compiler to add code to gather information about values of expressions. ! With '-fbranch-probabilities', it reads back the data gathered and actually performs the optimizations based on them. Currently the optimizations include specialization of division operations using the knowledge about the value of the denominator. ! '-frename-registers' Attempt to avoid false dependencies in scheduled code by making use of registers left over after register allocation. This optimization most benefits processors with lots of registers. --- 8068,8397 ---- represent the comparison operation before register allocation is complete. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fuse-ld=bfd' ! Use the `bfd' linker instead of the default linker. ! `-fuse-ld=gold' ! Use the `gold' linker instead of the default linker. ! `-fcprop-registers' After register allocation and post-register allocation instruction splitting, perform a copy-propagation pass to try to reduce scheduling dependencies and occasionally eliminate the copy. ! Enabled at levels `-O', `-O2', `-O3', `-Os'. ! `-fprofile-correction' Profiles collected using an instrumented binary for multi-threaded ! programs may be inconsistent due to missed counter updates. When this option is specified, GCC uses heuristics to correct or smooth ! out such inconsistencies. By default, GCC emits an error message when an inconsistent profile is detected. ! `-fprofile-dir=PATH' Set the directory to search for the profile data files in to PATH. This option affects only the profile data generated by ! `-fprofile-generate', `-ftest-coverage', `-fprofile-arcs' and used ! by `-fprofile-use' and `-fbranch-probabilities' and its related options. Both absolute and relative paths can be used. By default, GCC uses the current directory as PATH, thus the profile data file appears in the same directory as the object file. ! `-fprofile-generate' ! `-fprofile-generate=PATH' Enable options usually used for instrumenting application to produce profile useful for later recompilation with profile ! feedback based optimization. You must use `-fprofile-generate' both when compiling and when linking your program. ! The following options are enabled: `-fprofile-arcs', ! `-fprofile-values', `-fvpt'. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See `-fprofile-dir'. ! `-fprofile-use' ! `-fprofile-use=PATH' Enable profile feedback directed optimizations, and optimizations generally profitable only with profile feedback available. ! The following options are enabled: `-fbranch-probabilities', ! `-fvpt', `-funroll-loops', `-fpeel-loops', `-ftracer', ! `-ftree-vectorize', `ftree-loop-distribute-patterns' By default, GCC emits an error message if the feedback profiles do ! not match the source code. This error can be turned into a ! warning by using `-Wcoverage-mismatch'. Note this may result in ! poorly optimized code. If PATH is specified, GCC looks at the PATH to find the profile ! feedback data files. See `-fprofile-dir'. The following options control compiler behavior regarding floating-point arithmetic. These options trade off between speed and correctness. All must be specifically enabled. ! `-ffloat-store' Do not store floating-point variables in registers, and inhibit other options that might change whether a floating-point value is taken from a register or memory. This option prevents undesirable excess precision on machines such as the 68000 where the floating registers (of the 68881) keep more ! precision than a `double' is supposed to have. Similarly for the x86 architecture. For most programs, the excess precision does only good, but a few programs rely on the precise definition of ! IEEE floating point. Use `-ffloat-store' for such programs, after modifying them to store all pertinent intermediate computations into variables. ! `-fexcess-precision=STYLE' This option allows further control over excess precision on machines where floating-point registers have more precision than ! the IEEE `float' and `double' types and the processor does not support operations rounding to those types. By default, ! `-fexcess-precision=fast' is in effect; this means that operations are carried out in the precision of the registers and that it is unpredictable when rounding to the types specified in the source code takes place. When compiling C, if ! `-fexcess-precision=standard' is specified then excess precision follows the rules specified in ISO C99; in particular, both casts and assignments cause values to be rounded to their semantic types ! (whereas `-ffloat-store' only affects assignments). This option ! is enabled by default for C if a strict conformance option such as ! `-std=c99' is used. ! `-fexcess-precision=standard' is not implemented for languages ! other than C, and has no effect if `-funsafe-math-optimizations' ! or `-ffast-math' is specified. On the x86, it also has no effect ! if `-mfpmath=sse' or `-mfpmath=sse+387' is specified; in the ! former case, IEEE semantics apply without excess precision, and in ! the latter, rounding is unpredictable. ! `-ffast-math' ! Sets `-fno-math-errno', `-funsafe-math-optimizations', ! `-ffinite-math-only', `-fno-rounding-math', `-fno-signaling-nans' ! and `-fcx-limited-range'. ! This option causes the preprocessor macro `__FAST_MATH__' to be defined. ! This option is not turned on by any `-O' option besides `-Ofast' ! since it can result in incorrect output for programs that depend ! on an exact implementation of IEEE or ISO rules/specifications for ! math functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! `-fno-math-errno' ! Do not set `errno' after calling math functions that are executed ! with a single instruction, e.g., `sqrt'. A program that relies on IEEE exceptions for math error handling may want to use this flag for speed while maintaining IEEE arithmetic compatibility. ! This option is not turned on by any `-O' option since it can ! result in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is `-fmath-errno'. ! On Darwin systems, the math library never sets `errno'. There is therefore no reason for the compiler to consider the possibility ! that it might, and `-fno-math-errno' is the default. + `-funsafe-math-optimizations' Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are valid and (b) may violate IEEE or ANSI standards. When used at link-time, it may include libraries or startup files that change the default FPU control word or other similar optimizations. ! This option is not turned on by any `-O' option since it can ! result in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. Enables ! `-fno-signed-zeros', `-fno-trapping-math', `-fassociative-math' ! and `-freciprocal-math'. ! The default is `-fno-unsafe-math-optimizations'. + `-fassociative-math' Allow re-association of operands in series of floating-point operations. This violates the ISO C and C++ language standard by ! possibly changing computation result. NOTE: re-ordering may ! change the sign of zero as well as ignore NaNs and inhibit or ! create underflow or overflow (and thus cannot be used on code that ! relies on rounding behavior like `(x + 2**52) - 2**52'. May also ! reorder floating-point comparisons and thus may not be used when ! ordered comparisons are required. This option requires that both ! `-fno-signed-zeros' and `-fno-trapping-math' be in effect. ! Moreover, it doesn't make much sense with `-frounding-math'. For Fortran the option is automatically enabled when both ! `-fno-signed-zeros' and `-fno-trapping-math' are in effect. ! The default is `-fno-associative-math'. + `-freciprocal-math' Allow the reciprocal of a value to be used instead of dividing by ! the value if this enables optimizations. For example `x / y' can ! be replaced with `x * (1/y)', which is useful if `(1/y)' is ! subject to common subexpression elimination. Note that this loses precision and increases the number of flops operating on the value. ! The default is `-fno-reciprocal-math'. ! `-ffinite-math-only' Allow optimizations for floating-point arithmetic that assume that arguments and results are not NaNs or +-Infs. ! This option is not turned on by any `-O' option since it can ! result in incorrect output for programs that depend on an exact implementation of IEEE or ISO rules/specifications for math ! functions. It may, however, yield faster code for programs that do not require the guarantees of these specifications. ! The default is `-fno-finite-math-only'. ! `-fno-signed-zeros' Allow optimizations for floating-point arithmetic that ignore the signedness of zero. IEEE arithmetic specifies the behavior of distinct +0.0 and -0.0 values, which then prohibits simplification of expressions such as x+0.0 or 0.0*x (even with ! `-ffinite-math-only'). This option implies that the sign of a ! zero result isn't significant. ! The default is `-fsigned-zeros'. ! `-fno-trapping-math' Compile code assuming that floating-point operations cannot ! generate user-visible traps. These traps include division by ! zero, overflow, underflow, inexact result and invalid operation. ! This option requires that `-fno-signaling-nans' be in effect. ! Setting this option may allow faster code if one relies on ! "non-stop" IEEE arithmetic, for example. ! This option should never be turned on by any `-O' option since it ! can result in incorrect output for programs that depend on an ! exact implementation of IEEE or ISO rules/specifications for math functions. ! The default is `-ftrapping-math'. ! `-frounding-math' Disable transformations and optimizations that assume default floating-point rounding behavior. This is round-to-zero for all ! floating point to integer conversions, and round-to-nearest for ! all other arithmetic truncations. This option should be specified ! for programs that change the FP rounding mode dynamically, or that ! may be executed with a non-default rounding mode. This option ! disables constant folding of floating-point expressions at compile ! time (which may be affected by rounding mode) and arithmetic transformations that are unsafe in the presence of sign-dependent rounding modes. ! The default is `-fno-rounding-math'. This option is experimental and does not currently guarantee to disable all GCC optimizations that are affected by rounding mode. Future versions of GCC may provide finer control of this setting ! using C99's `FENV_ACCESS' pragma. This command-line option will ! be used to specify the default state for `FENV_ACCESS'. ! `-fsignaling-nans' Compile code assuming that IEEE signaling NaNs may generate user-visible traps during floating-point operations. Setting this option disables optimizations that may change the number of exceptions visible with signaling NaNs. This option implies ! `-ftrapping-math'. ! This option causes the preprocessor macro `__SUPPORT_SNAN__' to be defined. ! The default is `-fno-signaling-nans'. This option is experimental and does not currently guarantee to disable all GCC optimizations that affect signaling NaN behavior. ! `-fsingle-precision-constant' Treat floating-point constants as single precision instead of implicitly converting them to double-precision constants. ! `-fcx-limited-range' When enabled, this option states that a range reduction step is not needed when performing complex division. Also, there is no ! checking whether the result of a complex multiplication or ! division is `NaN + I*NaN', with an attempt to rescue the situation ! in that case. The default is `-fno-cx-limited-range', but is ! enabled by `-ffast-math'. This option controls the default setting of the ISO C99 ! `CX_LIMITED_RANGE' pragma. Nevertheless, the option applies to ! all languages. ! `-fcx-fortran-rules' Complex multiplication and division follow Fortran rules. Range reduction is done as part of complex division, but there is no ! checking whether the result of a complex multiplication or ! division is `NaN + I*NaN', with an attempt to rescue the situation ! in that case. ! ! The default is `-fno-cx-fortran-rules'. The following options control optimizations that may improve ! performance, but are not enabled by any `-O' options. This section includes experimental options that may produce broken code. ! `-fbranch-probabilities' ! After running a program compiled with `-fprofile-arcs' (*note ! Options for Debugging Your Program or `gcc': Debugging Options.), ! you can compile it a second time using `-fbranch-probabilities', ! to improve optimizations based on the number of times each branch ! was taken. When a program compiled with `-fprofile-arcs' exits, ! it saves arc execution counts to a file called `SOURCENAME.gcda' ! for each source file. The information in this data file is very dependent on the structure of the generated code, so you must use the same source code and the same optimization options for both compilations. ! With `-fbranch-probabilities', GCC puts a `REG_BR_PROB' note on ! each `JUMP_INSN' and `CALL_INSN'. These can be used to improve optimization. Currently, they are only used in one place: in ! `reorg.c', instead of guessing which path a branch is most likely ! to take, the `REG_BR_PROB' values are used to exactly determine which path is taken more often. ! `-fprofile-values' ! If combined with `-fprofile-arcs', it adds code so that some data about values of expressions in the program is gathered. ! With `-fbranch-probabilities', it reads back the data gathered ! from profiling values of expressions for usage in optimizations. ! Enabled with `-fprofile-generate' and `-fprofile-use'. ! `-fprofile-reorder-functions' ! Function reordering based on profile instrumentation collects ! first time of execution of a function and orders these functions ! in ascending order. ! Enabled with `-fprofile-use'. ! `-fvpt' ! If combined with `-fprofile-arcs', this option instructs the compiler to add code to gather information about values of expressions. ! With `-fbranch-probabilities', it reads back the data gathered and actually performs the optimizations based on them. Currently the optimizations include specialization of division operations using the knowledge about the value of the denominator. ! `-frename-registers' Attempt to avoid false dependencies in scheduled code by making use of registers left over after register allocation. This optimization most benefits processors with lots of registers. *************** includes experimental options that may p *** 8336,8385 **** however, it can make debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with '-funroll-loops' and '-fpeel-loops'. ! '-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function allowing ! other optimizations to do a better job. ! Enabled with '-fprofile-use'. ! '-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. '-funroll-loops' implies ! '-frerun-cse-after-loop', '-fweb' and '-frename-registers'. It ! also turns on complete loop peeling (i.e. complete removal of loops ! with a small constant number of iterations). This option makes ! code larger, and may or may not make it run faster. ! Enabled with '-fprofile-use'. ! '-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. '-funroll-all-loops' implies the same options as ! '-funroll-loops'. ! '-fpeel-loops' Peels loops for which there is enough information that they do not roll much (from profile feedback). It also turns on complete loop peeling (i.e. complete removal of loops with small constant number of iterations). ! Enabled with '-fprofile-use'. ! '-fmove-loop-invariants' Enables the loop invariant motion pass in the RTL loop optimizer. ! Enabled at level '-O1' ! '-funswitch-loops' Move branches with loop invariant conditions out of the loop, with duplicates of the loop on both branches (modified according to result of the condition). ! '-ffunction-sections' ! '-fdata-sections' Place each function or data item into its own section in the output file if the target supports arbitrary sections. The name of the function or the name of the data item determines the section's name --- 8399,8448 ---- however, it can make debugging impossible, since variables no longer stay in a "home register". ! Enabled by default with `-funroll-loops' and `-fpeel-loops'. ! `-ftracer' Perform tail duplication to enlarge superblock size. This ! transformation simplifies the control flow of the function ! allowing other optimizations to do a better job. ! Enabled with `-fprofile-use'. ! `-funroll-loops' Unroll loops whose number of iterations can be determined at ! compile time or upon entry to the loop. `-funroll-loops' implies ! `-frerun-cse-after-loop', `-fweb' and `-frename-registers'. It ! also turns on complete loop peeling (i.e. complete removal of ! loops with a small constant number of iterations). This option ! makes code larger, and may or may not make it run faster. ! Enabled with `-fprofile-use'. ! `-funroll-all-loops' Unroll all loops, even if their number of iterations is uncertain when the loop is entered. This usually makes programs run more ! slowly. `-funroll-all-loops' implies the same options as ! `-funroll-loops'. ! `-fpeel-loops' Peels loops for which there is enough information that they do not roll much (from profile feedback). It also turns on complete loop peeling (i.e. complete removal of loops with small constant number of iterations). ! Enabled with `-fprofile-use'. ! `-fmove-loop-invariants' Enables the loop invariant motion pass in the RTL loop optimizer. ! Enabled at level `-O1' ! `-funswitch-loops' Move branches with loop invariant conditions out of the loop, with duplicates of the loop on both branches (modified according to result of the condition). ! `-ffunction-sections' ! `-fdata-sections' Place each function or data item into its own section in the output file if the target supports arbitrary sections. The name of the function or the name of the data item determines the section's name *************** includes experimental options that may p *** 8393,8448 **** Only use these options when there are significant benefits from doing so. When you specify these options, the assembler and linker ! create larger object and executable files and are also slower. You ! cannot use 'gprof' on all systems if you specify this option, and ! you may have problems with debugging if you specify both this ! option and '-g'. ! '-fbranch-target-load-optimize' Perform branch target register load optimization before prologue / epilogue threading. The use of target registers can typically be exposed only during reload, thus hoisting loads out of loops and doing inter-block scheduling needs a separate optimization pass. ! '-fbranch-target-load-optimize2' Perform branch target register load optimization after prologue / epilogue threading. ! '-fbtr-bb-exclusive' When performing branch target register load optimization, don't reuse branch target registers within any basic block. ! '-fstack-protector' Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by adding a guard variable to functions with vulnerable objects. This includes functions that ! call 'alloca', and functions with buffers larger than 8 bytes. The ! guards are initialized when a function is entered and then checked ! when the function exits. If a guard check fails, an error message ! is printed and the program exits. ! '-fstack-protector-all' ! Like '-fstack-protector' except that all functions are protected. ! '-fstack-protector-strong' ! Like '-fstack-protector' but includes additional functions to be protected -- those that have local array definitions, or have references to local frame addresses. ! '-fsection-anchors' Try to reduce the number of symbolic address calculations by using shared "anchor" symbols to address nearby objects. This ! transformation can help to reduce the number of GOT entries and GOT ! accesses on some targets. ! For example, the implementation of the following function 'foo': static int a, b, c; int foo (void) { return a + b + c; } usually calculates the addresses of all three variables, but if you ! compile it with '-fsection-anchors', it accesses the variables from ! a common anchor point instead. The effect is similar to the following pseudocode (which isn't valid C): int foo (void) --- 8456,8511 ---- Only use these options when there are significant benefits from doing so. When you specify these options, the assembler and linker ! create larger object and executable files and are also slower. ! You cannot use `gprof' on all systems if you specify this option, ! and you may have problems with debugging if you specify both this ! option and `-g'. ! `-fbranch-target-load-optimize' Perform branch target register load optimization before prologue / epilogue threading. The use of target registers can typically be exposed only during reload, thus hoisting loads out of loops and doing inter-block scheduling needs a separate optimization pass. ! `-fbranch-target-load-optimize2' Perform branch target register load optimization after prologue / epilogue threading. ! `-fbtr-bb-exclusive' When performing branch target register load optimization, don't reuse branch target registers within any basic block. ! `-fstack-protector' Emit extra code to check for buffer overflows, such as stack smashing attacks. This is done by adding a guard variable to functions with vulnerable objects. This includes functions that ! call `alloca', and functions with buffers larger than 8 bytes. ! The guards are initialized when a function is entered and then ! checked when the function exits. If a guard check fails, an error ! message is printed and the program exits. ! `-fstack-protector-all' ! Like `-fstack-protector' except that all functions are protected. ! `-fstack-protector-strong' ! Like `-fstack-protector' but includes additional functions to be protected -- those that have local array definitions, or have references to local frame addresses. ! `-fsection-anchors' Try to reduce the number of symbolic address calculations by using shared "anchor" symbols to address nearby objects. This ! transformation can help to reduce the number of GOT entries and ! GOT accesses on some targets. ! For example, the implementation of the following function `foo': static int a, b, c; int foo (void) { return a + b + c; } usually calculates the addresses of all three variables, but if you ! compile it with `-fsection-anchors', it accesses the variables ! from a common anchor point instead. The effect is similar to the following pseudocode (which isn't valid C): int foo (void) *************** includes experimental options that may p *** 8453,8464 **** Not all targets support this option. ! '--param NAME=VALUE' In some places, GCC uses various constants to control the amount of optimization that is done. For example, GCC does not inline functions that contain more than a certain number of instructions. You can control some of these constants on the command line using ! the '--param' option. The names of specific parameters, and the meaning of the values, are tied to the internals of the compiler, and are subject to --- 8516,8527 ---- Not all targets support this option. ! `--param NAME=VALUE' In some places, GCC uses various constants to control the amount of optimization that is done. For example, GCC does not inline functions that contain more than a certain number of instructions. You can control some of these constants on the command line using ! the `--param' option. The names of specific parameters, and the meaning of the values, are tied to the internals of the compiler, and are subject to *************** includes experimental options that may p *** 8467,8498 **** In each case, the VALUE is an integer. The allowable choices for NAME are: ! 'predictable-branch-outcome' When branch is predicted to be taken with probability lower than this threshold (in percent), then it is considered well ! predictable. The default is 10. ! 'max-crossjump-edges' The maximum number of incoming edges to consider for ! cross-jumping. The algorithm used by '-fcrossjumping' is O(N^2) in the number of edges incoming to each block. Increasing values mean more aggressive optimization, making the compilation time increase with probably small improvement in executable size. ! 'min-crossjump-insns' ! The minimum number of instructions that must be matched at the ! end of two blocks before cross-jumping is performed on them. ! This value is ignored in the case where all instructions in ! the block being cross-jumped from are matched. The default ! value is 5. ! 'max-grow-copy-bb-insns' The maximum code size expansion factor when copying basic blocks instead of jumping. The expansion is relative to a jump instruction. The default value is 8. ! 'max-goto-duplication-insns' The maximum number of instructions to duplicate to a block that jumps to a computed goto. To avoid O(N^2) behavior in a number of passes, GCC factors computed gotos early in the --- 8530,8561 ---- In each case, the VALUE is an integer. The allowable choices for NAME are: ! `predictable-branch-outcome' When branch is predicted to be taken with probability lower than this threshold (in percent), then it is considered well ! predictable. The default is 10. ! `max-crossjump-edges' The maximum number of incoming edges to consider for ! cross-jumping. The algorithm used by `-fcrossjumping' is O(N^2) in the number of edges incoming to each block. Increasing values mean more aggressive optimization, making the compilation time increase with probably small improvement in executable size. ! `min-crossjump-insns' ! The minimum number of instructions that must be matched at ! the end of two blocks before cross-jumping is performed on ! them. This value is ignored in the case where all ! instructions in the block being cross-jumped from are ! matched. The default value is 5. ! `max-grow-copy-bb-insns' The maximum code size expansion factor when copying basic blocks instead of jumping. The expansion is relative to a jump instruction. The default value is 8. ! `max-goto-duplication-insns' The maximum number of instructions to duplicate to a block that jumps to a computed goto. To avoid O(N^2) behavior in a number of passes, GCC factors computed gotos early in the *************** includes experimental options that may p *** 8501,8507 **** than max-goto-duplication-insns are unfactored. The default value is 8. ! 'max-delay-slot-insn-search' The maximum number of instructions to consider when looking for an instruction to fill a delay slot. If more than this arbitrary number of instructions are searched, the time --- 8564,8570 ---- than max-goto-duplication-insns are unfactored. The default value is 8. ! `max-delay-slot-insn-search' The maximum number of instructions to consider when looking for an instruction to fill a delay slot. If more than this arbitrary number of instructions are searched, the time *************** includes experimental options that may p *** 8510,8691 **** optimization, making the compilation time increase with probably small improvement in execution time. ! 'max-delay-slot-live-search' When trying to fill delay slots, the maximum number of ! instructions to consider when searching for a block with valid ! live register information. Increasing this arbitrarily chosen ! value means more aggressive optimization, increasing the ! compilation time. This parameter should be removed when the ! delay slot code is rewritten to maintain the control-flow graph. ! 'max-gcse-memory' ! The approximate maximum amount of memory that can be allocated ! in order to perform the global common subexpression elimination optimization. If more memory than specified is required, the optimization is not done. ! 'max-gcse-insertion-ratio' If the ratio of expression insertions to deletions is larger than this value for any expression, then RTL PRE inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. ! 'max-pending-list-length' The maximum number of pending dependencies scheduling allows before flushing the current state and starting over. Large functions with few branches or calls can create excessively large lists which needlessly consume memory and resources. ! 'max-modulo-backtrack-attempts' The maximum number of backtrack attempts the scheduler should make when modulo scheduling a loop. Larger values can exponentially increase compilation time. ! 'max-inline-insns-single' ! Several parameters control the tree inliner used in GCC. This ! number sets the maximum number of instructions (counted in ! GCC's internal representation) in a single function that the ! tree inliner considers for inlining. This only affects functions declared inline and methods implemented in a class declaration (C++). The default value is 400. ! 'max-inline-insns-auto' ! When you use '-finline-functions' (included in '-O3'), a lot of functions that would otherwise not be considered for inlining by the compiler are investigated. To those functions, a different (more restrictive) limit compared to functions declared inline can be applied. The default value is 40. ! 'inline-min-speedup' When estimated performance improvement of caller + callee runtime exceeds this threshold (in precent), the function can ! be inlined regardless the limit on '--param ! max-inline-insns-single' and '--param max-inline-insns-auto'. ! 'large-function-insns' The limit specifying really large functions. For functions ! larger than this limit after inlining, inlining is constrained ! by '--param large-function-growth'. This parameter is useful ! primarily to avoid extreme compilation time caused by ! non-linear algorithms used by the back end. The default value ! is 2700. ! 'large-function-growth' Specifies maximal growth of large function caused by inlining in percents. The default value is 100 which limits large function growth to 2.0 times the original size. ! 'large-unit-insns' ! The limit specifying large translation unit. Growth caused by ! inlining of units larger than this limit is limited by ! '--param inline-unit-growth'. For small units this might be too tight. For example, consider a unit consisting of ! function A that is inline and B that just calls A three times. ! If B is small relative to A, the growth of unit is 300\% and ! yet such inlining is very sane. For very large units ! consisting of small inlineable functions, however, the overall ! unit growth limit is needed to avoid exponential explosion of ! code size. Thus for smaller units, the size is increased to ! '--param large-unit-insns' before applying '--param ! inline-unit-growth'. The default is 10000. ! 'inline-unit-growth' Specifies maximal overall growth of the compilation unit ! caused by inlining. The default value is 30 which limits unit ! growth to 1.3 times the original size. ! 'ipcp-unit-growth' Specifies maximal overall growth of the compilation unit caused by interprocedural constant propagation. The default ! value is 10 which limits unit growth to 1.1 times the original ! size. ! 'large-stack-frame' The limit specifying large stack frames. While inlining the ! algorithm is trying to not grow past this limit too much. The ! default value is 256 bytes. ! 'large-stack-frame-growth' Specifies maximal growth of large stack frames caused by inlining in percents. The default value is 1000 which limits large stack frame growth to 11 times the original size. ! 'max-inline-insns-recursive' ! 'max-inline-insns-recursive-auto' Specifies the maximum number of instructions an out-of-line copy of a self-recursive inline function can grow into by performing recursive inlining. ! For functions declared inline, '--param max-inline-insns-recursive' is taken into account. For ! functions not declared inline, recursive inlining happens only ! when '-finline-functions' (included in '-O3') is enabled and ! '--param max-inline-insns-recursive-auto' is used. The default value is 450. ! 'max-inline-recursive-depth' ! 'max-inline-recursive-depth-auto' Specifies the maximum recursion depth used for recursive inlining. ! For functions declared inline, '--param max-inline-recursive-depth' is taken into account. For ! functions not declared inline, recursive inlining happens only ! when '-finline-functions' (included in '-O3') is enabled and ! '--param max-inline-recursive-depth-auto' is used. The default value is 8. ! 'min-inline-recursive-probability' ! Recursive inlining is profitable only for function having deep ! recursion in average and can hurt for function having little ! recursion depth by increasing the prologue size or complexity ! of function body to other optimizers. ! When profile feedback is available (see '-fprofile-generate') the actual recursion depth can be guessed from probability that function recurses via a given call expression. This parameter limits inlining only to call expressions whose probability exceeds the given threshold (in percents). The default value is 10. ! 'early-inlining-insns' Specify growth that the early inliner can make. In effect it increases the amount of inlining for code having a large abstraction penalty. The default value is 10. ! 'max-early-inliner-iterations' ! 'max-early-inliner-iterations' Limit of iterations of the early inliner. This basically bounds the number of nested indirect calls the early inliner can resolve. Deeper chains are still handled by late inlining. ! 'comdat-sharing-probability' ! 'comdat-sharing-probability' Probability (in percent) that C++ inline function with comdat visibility are shared across multiple compilation units. The default value is 20. ! 'min-vect-loop-bound' The minimum number of iterations under which loops are not ! vectorized when '-ftree-vectorize' is used. The number of iterations after vectorization needs to be greater than the value specified by this option to allow vectorization. The default value is 0. ! 'gcse-cost-distance-ratio' Scaling factor in calculation of maximum distance an expression can be moved by GCSE optimizations. This is currently supported only in the code hoisting pass. The bigger the ratio, the more aggressive code hoisting is with simple expressions, i.e., the expressions that have cost less ! than 'gcse-unrestricted-cost'. Specifying 0 disables hoisting ! of simple expressions. The default value is 10. ! 'gcse-unrestricted-cost' Cost, roughly measured as the cost of a single typical machine instruction, at which GCSE optimizations do not constrain the distance an expression can travel. This is currently --- 8573,8754 ---- optimization, making the compilation time increase with probably small improvement in execution time. ! `max-delay-slot-live-search' When trying to fill delay slots, the maximum number of ! instructions to consider when searching for a block with ! valid live register information. Increasing this arbitrarily ! chosen value means more aggressive optimization, increasing ! the compilation time. This parameter should be removed when ! the delay slot code is rewritten to maintain the control-flow graph. ! `max-gcse-memory' ! The approximate maximum amount of memory that can be ! allocated in order to perform the global common subexpression elimination optimization. If more memory than specified is required, the optimization is not done. ! `max-gcse-insertion-ratio' If the ratio of expression insertions to deletions is larger than this value for any expression, then RTL PRE inserts or removes the expression and thus leaves partially redundant computations in the instruction stream. The default value is 20. ! `max-pending-list-length' The maximum number of pending dependencies scheduling allows before flushing the current state and starting over. Large functions with few branches or calls can create excessively large lists which needlessly consume memory and resources. ! `max-modulo-backtrack-attempts' The maximum number of backtrack attempts the scheduler should make when modulo scheduling a loop. Larger values can exponentially increase compilation time. ! `max-inline-insns-single' ! Several parameters control the tree inliner used in GCC. ! This number sets the maximum number of instructions (counted ! in GCC's internal representation) in a single function that ! the tree inliner considers for inlining. This only affects functions declared inline and methods implemented in a class declaration (C++). The default value is 400. ! `max-inline-insns-auto' ! When you use `-finline-functions' (included in `-O3'), a lot of functions that would otherwise not be considered for inlining by the compiler are investigated. To those functions, a different (more restrictive) limit compared to functions declared inline can be applied. The default value is 40. ! `inline-min-speedup' When estimated performance improvement of caller + callee runtime exceeds this threshold (in precent), the function can ! be inlined regardless the limit on `--param ! max-inline-insns-single' and `--param max-inline-insns-auto'. ! `large-function-insns' The limit specifying really large functions. For functions ! larger than this limit after inlining, inlining is ! constrained by `--param large-function-growth'. This ! parameter is useful primarily to avoid extreme compilation ! time caused by non-linear algorithms used by the back end. ! The default value is 2700. ! `large-function-growth' Specifies maximal growth of large function caused by inlining in percents. The default value is 100 which limits large function growth to 2.0 times the original size. ! `large-unit-insns' ! The limit specifying large translation unit. Growth caused ! by inlining of units larger than this limit is limited by ! `--param inline-unit-growth'. For small units this might be too tight. For example, consider a unit consisting of ! function A that is inline and B that just calls A three ! times. If B is small relative to A, the growth of unit is ! 300\% and yet such inlining is very sane. For very large ! units consisting of small inlineable functions, however, the ! overall unit growth limit is needed to avoid exponential ! explosion of code size. Thus for smaller units, the size is ! increased to `--param large-unit-insns' before applying ! `--param inline-unit-growth'. The default is 10000. ! `inline-unit-growth' Specifies maximal overall growth of the compilation unit ! caused by inlining. The default value is 30 which limits ! unit growth to 1.3 times the original size. ! `ipcp-unit-growth' Specifies maximal overall growth of the compilation unit caused by interprocedural constant propagation. The default ! value is 10 which limits unit growth to 1.1 times the ! original size. ! `large-stack-frame' The limit specifying large stack frames. While inlining the ! algorithm is trying to not grow past this limit too much. ! The default value is 256 bytes. ! `large-stack-frame-growth' Specifies maximal growth of large stack frames caused by inlining in percents. The default value is 1000 which limits large stack frame growth to 11 times the original size. ! `max-inline-insns-recursive' ! `max-inline-insns-recursive-auto' Specifies the maximum number of instructions an out-of-line copy of a self-recursive inline function can grow into by performing recursive inlining. ! For functions declared inline, `--param max-inline-insns-recursive' is taken into account. For ! functions not declared inline, recursive inlining happens ! only when `-finline-functions' (included in `-O3') is enabled ! and `--param max-inline-insns-recursive-auto' is used. The default value is 450. ! `max-inline-recursive-depth' ! `max-inline-recursive-depth-auto' Specifies the maximum recursion depth used for recursive inlining. ! For functions declared inline, `--param max-inline-recursive-depth' is taken into account. For ! functions not declared inline, recursive inlining happens ! only when `-finline-functions' (included in `-O3') is enabled ! and `--param max-inline-recursive-depth-auto' is used. The default value is 8. ! `min-inline-recursive-probability' ! Recursive inlining is profitable only for function having ! deep recursion in average and can hurt for function having ! little recursion depth by increasing the prologue size or ! complexity of function body to other optimizers. ! When profile feedback is available (see `-fprofile-generate') the actual recursion depth can be guessed from probability that function recurses via a given call expression. This parameter limits inlining only to call expressions whose probability exceeds the given threshold (in percents). The default value is 10. ! `early-inlining-insns' Specify growth that the early inliner can make. In effect it increases the amount of inlining for code having a large abstraction penalty. The default value is 10. ! `max-early-inliner-iterations' ! `max-early-inliner-iterations' Limit of iterations of the early inliner. This basically bounds the number of nested indirect calls the early inliner can resolve. Deeper chains are still handled by late inlining. ! `comdat-sharing-probability' ! `comdat-sharing-probability' Probability (in percent) that C++ inline function with comdat visibility are shared across multiple compilation units. The default value is 20. ! `min-vect-loop-bound' The minimum number of iterations under which loops are not ! vectorized when `-ftree-vectorize' is used. The number of iterations after vectorization needs to be greater than the value specified by this option to allow vectorization. The default value is 0. ! `gcse-cost-distance-ratio' Scaling factor in calculation of maximum distance an expression can be moved by GCSE optimizations. This is currently supported only in the code hoisting pass. The bigger the ratio, the more aggressive code hoisting is with simple expressions, i.e., the expressions that have cost less ! than `gcse-unrestricted-cost'. Specifying 0 disables ! hoisting of simple expressions. The default value is 10. ! `gcse-unrestricted-cost' Cost, roughly measured as the cost of a single typical machine instruction, at which GCSE optimizations do not constrain the distance an expression can travel. This is currently *************** includes experimental options that may p *** 8694,8843 **** allows all expressions to travel unrestricted distances. The default value is 3. ! 'max-hoist-depth' The depth of search in the dominator tree for expressions to hoist. This is used to avoid quadratic behavior in hoisting algorithm. The value of 0 does not limit on the search, but may slow down compilation of huge functions. The default value is 30. ! 'max-tail-merge-comparisons' The maximum amount of similar bbs to compare a bb with. This ! is used to avoid quadratic behavior in tree tail merging. The ! default value is 10. ! 'max-tail-merge-iterations' The maximum amount of iterations of the pass over the ! function. This is used to limit compilation time in tree tail ! merging. The default value is 2. ! 'max-unrolled-insns' The maximum number of instructions that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! 'max-average-unrolled-insns' The maximum number of instructions biased by probabilities of their execution that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! 'max-unroll-times' The maximum number of unrollings of a single loop. ! 'max-peeled-insns' The maximum number of instructions that a loop may have to be peeled. If a loop is peeled, this parameter also determines how many times the loop code is peeled. ! 'max-peel-times' The maximum number of peelings of a single loop. ! 'max-peel-branches' The maximum number of branches on the hot path through the peeled sequence. ! 'max-completely-peeled-insns' The maximum number of insns of a completely peeled loop. ! 'max-completely-peel-times' The maximum number of iterations of a loop to be suitable for complete peeling. ! 'max-completely-peel-loop-nest-depth' The maximum depth of a loop nest suitable for complete peeling. ! 'max-unswitch-insns' The maximum number of insns of an unswitched loop. ! 'max-unswitch-level' The maximum number of branches unswitched in a single loop. ! 'lim-expensive' The minimum cost of an expensive expression in the loop invariant motion. ! 'iv-consider-all-candidates-bound' Bound on number of candidates for induction variables, below which all candidates are considered for each use in induction variable optimizations. If there are more candidates than this, only the most relevant ones are considered to avoid quadratic time complexity. ! 'iv-max-considered-uses' The induction variable optimizations give up on loops that contain more induction variable uses. ! 'iv-always-prune-cand-set-bound' If the number of candidates in the set is smaller than this value, always try to remove unnecessary ivs from the set when adding a new one. ! 'scev-max-expr-size' Bound on size of expressions used in the scalar evolutions analyzer. Large expressions slow the analyzer. ! 'scev-max-expr-complexity' Bound on the complexity of the expressions in the scalar evolutions analyzer. Complex expressions slow the analyzer. ! 'omega-max-vars' The maximum number of variables in an Omega constraint system. The default value is 128. ! 'omega-max-geqs' The maximum number of inequalities in an Omega constraint system. The default value is 256. ! 'omega-max-eqs' The maximum number of equalities in an Omega constraint system. The default value is 128. ! 'omega-max-wild-cards' ! The maximum number of wildcard variables that the Omega solver ! is able to insert. The default value is 18. ! 'omega-hash-table-size' The size of the hash table in the Omega solver. The default value is 550. ! 'omega-max-keys' The maximal number of keys used by the Omega solver. The default value is 500. ! 'omega-eliminate-redundant-constraints' When set to 1, use expensive methods to eliminate all redundant constraints. The default value is 0. ! 'vect-max-version-for-alignment-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alignment in the vectorizer. ! 'vect-max-version-for-alias-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alias in the vectorizer. ! 'vect-max-peeling-for-alignment' The maximum number of loop peels to enhance access alignment ! for vectorizer. Value -1 means 'no limit'. ! 'max-iterations-to-track' The maximum number of iterations of a loop the brute-force ! algorithm for analysis of the number of iterations of the loop ! tries to evaluate. ! 'hot-bb-count-ws-permille' A basic block profile count is considered hot if it ! contributes to the given permillage (i.e. 0...1000) of the entire profiled execution. ! 'hot-bb-frequency-fraction' Select fraction of the entry block frequency of executions of basic block in function given basic block needs to have to be considered hot. ! 'max-predicted-iterations' The maximum number of loop iterations we predict statically. This is useful in cases where a function contains a single loop with known bound and another loop with unknown bound. --- 8757,8906 ---- allows all expressions to travel unrestricted distances. The default value is 3. ! `max-hoist-depth' The depth of search in the dominator tree for expressions to hoist. This is used to avoid quadratic behavior in hoisting algorithm. The value of 0 does not limit on the search, but may slow down compilation of huge functions. The default value is 30. ! `max-tail-merge-comparisons' The maximum amount of similar bbs to compare a bb with. This ! is used to avoid quadratic behavior in tree tail merging. ! The default value is 10. ! `max-tail-merge-iterations' The maximum amount of iterations of the pass over the ! function. This is used to limit compilation time in tree ! tail merging. The default value is 2. ! `max-unrolled-insns' The maximum number of instructions that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! `max-average-unrolled-insns' The maximum number of instructions biased by probabilities of their execution that a loop may have to be unrolled. If a loop is unrolled, this parameter also determines how many times the loop code is unrolled. ! `max-unroll-times' The maximum number of unrollings of a single loop. ! `max-peeled-insns' The maximum number of instructions that a loop may have to be peeled. If a loop is peeled, this parameter also determines how many times the loop code is peeled. ! `max-peel-times' The maximum number of peelings of a single loop. ! `max-peel-branches' The maximum number of branches on the hot path through the peeled sequence. ! `max-completely-peeled-insns' The maximum number of insns of a completely peeled loop. ! `max-completely-peel-times' The maximum number of iterations of a loop to be suitable for complete peeling. ! `max-completely-peel-loop-nest-depth' The maximum depth of a loop nest suitable for complete peeling. ! `max-unswitch-insns' The maximum number of insns of an unswitched loop. ! `max-unswitch-level' The maximum number of branches unswitched in a single loop. ! `lim-expensive' The minimum cost of an expensive expression in the loop invariant motion. ! `iv-consider-all-candidates-bound' Bound on number of candidates for induction variables, below which all candidates are considered for each use in induction variable optimizations. If there are more candidates than this, only the most relevant ones are considered to avoid quadratic time complexity. ! `iv-max-considered-uses' The induction variable optimizations give up on loops that contain more induction variable uses. ! `iv-always-prune-cand-set-bound' If the number of candidates in the set is smaller than this value, always try to remove unnecessary ivs from the set when adding a new one. ! `scev-max-expr-size' Bound on size of expressions used in the scalar evolutions analyzer. Large expressions slow the analyzer. ! `scev-max-expr-complexity' Bound on the complexity of the expressions in the scalar evolutions analyzer. Complex expressions slow the analyzer. ! `omega-max-vars' The maximum number of variables in an Omega constraint system. The default value is 128. ! `omega-max-geqs' The maximum number of inequalities in an Omega constraint system. The default value is 256. ! `omega-max-eqs' The maximum number of equalities in an Omega constraint system. The default value is 128. ! `omega-max-wild-cards' ! The maximum number of wildcard variables that the Omega ! solver is able to insert. The default value is 18. ! `omega-hash-table-size' The size of the hash table in the Omega solver. The default value is 550. ! `omega-max-keys' The maximal number of keys used by the Omega solver. The default value is 500. ! `omega-eliminate-redundant-constraints' When set to 1, use expensive methods to eliminate all redundant constraints. The default value is 0. ! `vect-max-version-for-alignment-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alignment in the vectorizer. ! `vect-max-version-for-alias-checks' The maximum number of run-time checks that can be performed when doing loop versioning for alias in the vectorizer. ! `vect-max-peeling-for-alignment' The maximum number of loop peels to enhance access alignment ! for vectorizer. Value -1 means 'no limit'. ! `max-iterations-to-track' The maximum number of iterations of a loop the brute-force ! algorithm for analysis of the number of iterations of the ! loop tries to evaluate. ! `hot-bb-count-ws-permille' A basic block profile count is considered hot if it ! contributes to the given permillage (i.e. 0...1000) of the entire profiled execution. ! `hot-bb-frequency-fraction' Select fraction of the entry block frequency of executions of basic block in function given basic block needs to have to be considered hot. ! `max-predicted-iterations' The maximum number of loop iterations we predict statically. This is useful in cases where a function contains a single loop with known bound and another loop with unknown bound. *************** includes experimental options that may p *** 8846,8913 **** means that the loop without bounds appears artificially cold relative to the other one. ! 'builtin-expect-probability' ! Control the probability of the expression having the specified ! value. This parameter takes a percentage (i.e. 0 ... 100) ! as input. The default probability of 90 is obtained empirically. ! 'align-threshold' ! Select fraction of the maximal frequency of executions of a basic block in a function to align the basic block. ! 'align-loop-iterations' ! A loop expected to iterate at least the selected number of iterations is aligned. ! 'tracer-dynamic-coverage' ! 'tracer-dynamic-coverage-feedback' ! This value is used to limit superblock formation once the given percentage of executed instructions is covered. This limits unnecessary code size expansion. ! The 'tracer-dynamic-coverage-feedback' is used only when profile feedback is available. The real profiles (as opposed to statically estimated ones) are much less balanced allowing the threshold to be larger value. ! 'tracer-max-code-growth' Stop tail duplication once code growth has reached given ! percentage. This is a rather artificial limit, as most of the ! duplicates are eliminated later in cross jumping, so it may be ! set to much higher values than is the desired code growth. ! ! 'tracer-min-branch-ratio' Stop reverse growth when the reverse probability of best edge is less than this threshold (in percent). ! 'tracer-min-branch-ratio' ! 'tracer-min-branch-ratio-feedback' ! Stop forward growth if the best edge has probability lower than this threshold. ! Similarly to 'tracer-dynamic-coverage' two values are present, ! one for compilation for profile feedback and one for compilation without. The value for compilation with profile feedback needs to be more conservative (higher) in order to make tracer effective. ! 'max-cse-path-length' ! The maximum number of basic blocks on path that CSE considers. The default is 10. ! 'max-cse-insns' The maximum number of instructions CSE processes before flushing. The default is 1000. ! 'ggc-min-expand' ! GCC uses a garbage collector to manage its own memory allocation. This parameter specifies the minimum percentage by which the garbage collector's heap should be allowed to --- 8909,8970 ---- means that the loop without bounds appears artificially cold relative to the other one. ! `builtin-expect-probability' ! Control the probability of the expression having the ! specified value. This parameter takes a percentage (i.e. 0 ! ... 100) as input. The default probability of 90 is obtained empirically. ! `align-threshold' Select fraction of the maximal frequency of executions of a basic block in a function to align the basic block. ! `align-loop-iterations' A loop expected to iterate at least the selected number of iterations is aligned. ! `tracer-dynamic-coverage' ! `tracer-dynamic-coverage-feedback' This value is used to limit superblock formation once the given percentage of executed instructions is covered. This limits unnecessary code size expansion. ! The `tracer-dynamic-coverage-feedback' is used only when profile feedback is available. The real profiles (as opposed to statically estimated ones) are much less balanced allowing the threshold to be larger value. ! `tracer-max-code-growth' Stop tail duplication once code growth has reached given ! percentage. This is a rather artificial limit, as most of ! the duplicates are eliminated later in cross jumping, so it ! may be set to much higher values than is the desired code ! growth. + `tracer-min-branch-ratio' Stop reverse growth when the reverse probability of best edge is less than this threshold (in percent). ! `tracer-min-branch-ratio' ! `tracer-min-branch-ratio-feedback' Stop forward growth if the best edge has probability lower than this threshold. ! Similarly to `tracer-dynamic-coverage' two values are ! present, one for compilation for profile feedback and one for compilation without. The value for compilation with profile feedback needs to be more conservative (higher) in order to make tracer effective. ! `max-cse-path-length' The maximum number of basic blocks on path that CSE considers. The default is 10. ! `max-cse-insns' The maximum number of instructions CSE processes before flushing. The default is 1000. ! `ggc-min-expand' GCC uses a garbage collector to manage its own memory allocation. This parameter specifies the minimum percentage by which the garbage collector's heap should be allowed to *************** includes experimental options that may p *** 8915,8934 **** compilation speed; it has no effect on code generation. The default is 30% + 70% * (RAM/1GB) with an upper bound of ! 100% when RAM >= 1GB. If 'getrlimit' is available, the notion ! of "RAM" is the smallest of actual RAM and 'RLIMIT_DATA' or ! 'RLIMIT_AS'. If GCC is not able to calculate RAM on a ! particular platform, the lower bound of 30% is used. Setting ! this parameter and 'ggc-min-heapsize' to zero causes a full ! collection to occur at every opportunity. This is extremely ! slow, but can be useful for debugging. ! ! 'ggc-min-heapsize' Minimum size of the garbage collector's heap before it begins bothering to collect garbage. The first collection occurs ! after the heap expands by 'ggc-min-expand'% beyond ! 'ggc-min-heapsize'. Again, tuning this may improve compilation speed, and has no effect on code generation. The default is the smaller of RAM/8, RLIMIT_RSS, or a limit --- 8972,8991 ---- compilation speed; it has no effect on code generation. The default is 30% + 70% * (RAM/1GB) with an upper bound of ! 100% when RAM >= 1GB. If `getrlimit' is available, the ! notion of "RAM" is the smallest of actual RAM and ! `RLIMIT_DATA' or `RLIMIT_AS'. If GCC is not able to ! calculate RAM on a particular platform, the lower bound of ! 30% is used. Setting this parameter and `ggc-min-heapsize' ! to zero causes a full collection to occur at every ! opportunity. This is extremely slow, but can be useful for ! debugging. + `ggc-min-heapsize' Minimum size of the garbage collector's heap before it begins bothering to collect garbage. The first collection occurs ! after the heap expands by `ggc-min-expand'% beyond ! `ggc-min-heapsize'. Again, tuning this may improve compilation speed, and has no effect on code generation. The default is the smaller of RAM/8, RLIMIT_RSS, or a limit *************** includes experimental options that may p *** 8938,9101 **** to calculate RAM on a particular platform, the lower bound is used. Setting this parameter very large effectively disables garbage collection. Setting this parameter and ! 'ggc-min-expand' to zero causes a full collection to occur at every opportunity. ! 'max-reload-search-insns' The maximum number of instruction reload should look backward for equivalent register. Increasing values mean more aggressive optimization, making the compilation time increase with probably slightly better performance. The default value is 100. ! 'max-cselib-memory-locations' ! The maximum number of memory locations cselib should take into ! account. Increasing values mean more aggressive optimization, ! making the compilation time increase with probably slightly ! better performance. The default value is 500. ! ! 'reorder-blocks-duplicate' ! 'reorder-blocks-duplicate-feedback' Used by the basic block reordering pass to decide whether to use unconditional branch or duplicate the code on its destination. Code is duplicated when its estimated size is smaller than this value multiplied by the estimated size of unconditional jump in the hot spots of the program. ! The 'reorder-block-duplicate-feedback' is used only when ! profile feedback is available. It may be set to higher values ! than 'reorder-block-duplicate' since information about the hot ! spots is more accurate. ! 'max-sched-ready-insns' The maximum number of instructions ready to be issued the scheduler should consider at any given time during the first scheduling pass. Increasing values mean more thorough searches, making the compilation time increase with probably little benefit. The default value is 100. ! 'max-sched-region-blocks' The maximum number of blocks in a region to be considered for interblock scheduling. The default value is 10. ! 'max-pipeline-region-blocks' The maximum number of blocks in a region to be considered for pipelining in the selective scheduler. The default value is 15. ! 'max-sched-region-insns' The maximum number of insns in a region to be considered for interblock scheduling. The default value is 100. ! 'max-pipeline-region-insns' The maximum number of insns in a region to be considered for pipelining in the selective scheduler. The default value is 200. ! 'min-spec-prob' The minimum probability (in percents) of reaching a source block for interblock speculative scheduling. The default value is 40. ! 'max-sched-extend-regions-iters' The maximum number of iterations through CFG to extend regions. A value of 0 (the default) disables region extensions. ! 'max-sched-insn-conflict-delay' The maximum conflict delay for an insn to be considered for speculative motion. The default value is 3. ! 'sched-spec-prob-cutoff' The minimal probability of speculation success (in percents), ! so that speculative insns are scheduled. The default value is ! 40. ! 'sched-spec-state-edge-prob-cutoff' ! The minimum probability an edge must have for the scheduler to ! save its state across it. The default value is 10. ! 'sched-mem-true-dep-cost' Minimal distance (in CPU cycles) between store and load targeting same memory locations. The default value is 1. ! 'selsched-max-lookahead' The maximum size of the lookahead window of selective scheduling. It is a depth of search for available instructions. The default value is 50. ! 'selsched-max-sched-times' The maximum number of times that an instruction is scheduled during selective scheduling. This is the limit on the number of iterations through which the instruction may be pipelined. The default value is 2. ! 'selsched-max-insns-to-rename' ! The maximum number of best instructions in the ready list that ! are considered for renaming in the selective scheduler. The ! default value is 2. ! 'sms-min-sc' The minimum value of stage count that swing modulo scheduler generates. The default value is 2. ! 'max-last-value-rtl' The maximum size measured as number of RTLs that can be ! recorded in an expression in combiner for a pseudo register as ! last known value of that register. The default is 10000. ! 'integer-share-limit' Small integer constants can use a shared data structure, ! reducing the compiler's memory usage and increasing its speed. ! This sets the maximum value of a shared integer constant. The ! default value is 256. ! 'ssp-buffer-size' The minimum size of buffers (i.e. arrays) that receive stack ! smashing protection when '-fstack-protection' is used. ! 'min-size-for-stack-sharing' The minimum size of variables taking part in stack slot ! sharing when not optimizing. The default value is 32. ! 'max-jump-thread-duplication-stmts' Maximum number of statements allowed in a block that needs to be duplicated when threading jumps. ! 'max-fields-for-field-sensitive' Maximum number of fields in a structure treated in a field sensitive manner during pointer analysis. The default is zero ! for '-O0' and '-O1', and 100 for '-Os', '-O2', and '-O3'. ! 'prefetch-latency' Estimate on average number of instructions that are executed before prefetch finishes. The distance prefetched ahead is proportional to this constant. Increasing this number may also lead to less streams being prefetched (see ! 'simultaneous-prefetches'). ! 'simultaneous-prefetches' Maximum number of prefetches that can run at the same time. ! 'l1-cache-line-size' The size of cache line in L1 cache, in bytes. ! 'l1-cache-size' The size of L1 cache, in kilobytes. ! 'l2-cache-size' The size of L2 cache, in kilobytes. ! 'min-insn-to-prefetch-ratio' The minimum ratio between the number of instructions and the number of prefetches to enable prefetching in a loop. ! 'prefetch-min-insn-to-mem-ratio' The minimum ratio between the number of instructions and the number of memory references to enable prefetching in a loop. ! 'use-canonical-types' Whether the compiler should use the "canonical" type system. By default, this should always be 1, which uses a more efficient internal mechanism for comparing types in C++ and --- 8995,9158 ---- to calculate RAM on a particular platform, the lower bound is used. Setting this parameter very large effectively disables garbage collection. Setting this parameter and ! `ggc-min-expand' to zero causes a full collection to occur at every opportunity. ! `max-reload-search-insns' The maximum number of instruction reload should look backward for equivalent register. Increasing values mean more aggressive optimization, making the compilation time increase with probably slightly better performance. The default value is 100. ! `max-cselib-memory-locations' ! The maximum number of memory locations cselib should take ! into account. Increasing values mean more aggressive ! optimization, making the compilation time increase with ! probably slightly better performance. The default value is ! 500. + `reorder-blocks-duplicate' + `reorder-blocks-duplicate-feedback' Used by the basic block reordering pass to decide whether to use unconditional branch or duplicate the code on its destination. Code is duplicated when its estimated size is smaller than this value multiplied by the estimated size of unconditional jump in the hot spots of the program. ! The `reorder-block-duplicate-feedback' is used only when ! profile feedback is available. It may be set to higher ! values than `reorder-block-duplicate' since information about ! the hot spots is more accurate. ! `max-sched-ready-insns' The maximum number of instructions ready to be issued the scheduler should consider at any given time during the first scheduling pass. Increasing values mean more thorough searches, making the compilation time increase with probably little benefit. The default value is 100. ! `max-sched-region-blocks' The maximum number of blocks in a region to be considered for interblock scheduling. The default value is 10. ! `max-pipeline-region-blocks' The maximum number of blocks in a region to be considered for pipelining in the selective scheduler. The default value is 15. ! `max-sched-region-insns' The maximum number of insns in a region to be considered for interblock scheduling. The default value is 100. ! `max-pipeline-region-insns' The maximum number of insns in a region to be considered for pipelining in the selective scheduler. The default value is 200. ! `min-spec-prob' The minimum probability (in percents) of reaching a source block for interblock speculative scheduling. The default value is 40. ! `max-sched-extend-regions-iters' The maximum number of iterations through CFG to extend regions. A value of 0 (the default) disables region extensions. ! `max-sched-insn-conflict-delay' The maximum conflict delay for an insn to be considered for speculative motion. The default value is 3. ! `sched-spec-prob-cutoff' The minimal probability of speculation success (in percents), ! so that speculative insns are scheduled. The default value ! is 40. ! `sched-spec-state-edge-prob-cutoff' ! The minimum probability an edge must have for the scheduler ! to save its state across it. The default value is 10. ! `sched-mem-true-dep-cost' Minimal distance (in CPU cycles) between store and load targeting same memory locations. The default value is 1. ! `selsched-max-lookahead' The maximum size of the lookahead window of selective scheduling. It is a depth of search for available instructions. The default value is 50. ! `selsched-max-sched-times' The maximum number of times that an instruction is scheduled during selective scheduling. This is the limit on the number of iterations through which the instruction may be pipelined. The default value is 2. ! `selsched-max-insns-to-rename' ! The maximum number of best instructions in the ready list ! that are considered for renaming in the selective scheduler. ! The default value is 2. ! `sms-min-sc' The minimum value of stage count that swing modulo scheduler generates. The default value is 2. ! `max-last-value-rtl' The maximum size measured as number of RTLs that can be ! recorded in an expression in combiner for a pseudo register ! as last known value of that register. The default is 10000. ! `integer-share-limit' Small integer constants can use a shared data structure, ! reducing the compiler's memory usage and increasing its ! speed. This sets the maximum value of a shared integer ! constant. The default value is 256. ! `ssp-buffer-size' The minimum size of buffers (i.e. arrays) that receive stack ! smashing protection when `-fstack-protection' is used. ! `min-size-for-stack-sharing' The minimum size of variables taking part in stack slot ! sharing when not optimizing. The default value is 32. ! `max-jump-thread-duplication-stmts' Maximum number of statements allowed in a block that needs to be duplicated when threading jumps. ! `max-fields-for-field-sensitive' Maximum number of fields in a structure treated in a field sensitive manner during pointer analysis. The default is zero ! for `-O0' and `-O1', and 100 for `-Os', `-O2', and `-O3'. ! `prefetch-latency' Estimate on average number of instructions that are executed before prefetch finishes. The distance prefetched ahead is proportional to this constant. Increasing this number may also lead to less streams being prefetched (see ! `simultaneous-prefetches'). ! `simultaneous-prefetches' Maximum number of prefetches that can run at the same time. ! `l1-cache-line-size' The size of cache line in L1 cache, in bytes. ! `l1-cache-size' The size of L1 cache, in kilobytes. ! `l2-cache-size' The size of L2 cache, in kilobytes. ! `min-insn-to-prefetch-ratio' The minimum ratio between the number of instructions and the number of prefetches to enable prefetching in a loop. ! `prefetch-min-insn-to-mem-ratio' The minimum ratio between the number of instructions and the number of memory references to enable prefetching in a loop. ! `use-canonical-types' Whether the compiler should use the "canonical" type system. By default, this should always be 1, which uses a more efficient internal mechanism for comparing types in C++ and *************** includes experimental options that may p *** 9103,9117 **** are causing compilation failures, set this value to 0 to disable canonical types. ! 'switch-conversion-max-branch-ratio' ! Switch initialization conversion refuses to create arrays that ! are bigger than 'switch-conversion-max-branch-ratio' times the ! number of branches in the switch. ! 'max-partial-antic-length' Maximum length of the partial antic set computed during the tree partial redundancy elimination optimization ! ('-ftree-pre') when optimizing at '-O3' and above. For some sorts of source code the enhanced partial redundancy elimination optimization can run away, consuming all of the memory available on the host machine. This parameter sets a --- 9160,9174 ---- are causing compilation failures, set this value to 0 to disable canonical types. ! `switch-conversion-max-branch-ratio' ! Switch initialization conversion refuses to create arrays ! that are bigger than `switch-conversion-max-branch-ratio' ! times the number of branches in the switch. ! `max-partial-antic-length' Maximum length of the partial antic set computed during the tree partial redundancy elimination optimization ! (`-ftree-pre') when optimizing at `-O3' and above. For some sorts of source code the enhanced partial redundancy elimination optimization can run away, consuming all of the memory available on the host machine. This parameter sets a *************** includes experimental options that may p *** 9119,9147 **** prevents the runaway behavior. Setting a value of 0 for this parameter allows an unlimited set length. ! 'sccvn-max-scc-size' Maximum size of a strongly connected component (SCC) during SCCVN processing. If this limit is hit, SCCVN processing for the whole function is not done and optimizations depending on it are disabled. The default maximum SCC size is 10000. ! 'sccvn-max-alias-queries-per-access' ! Maximum number of alias-oracle queries we perform when looking ! for redundancies for loads and stores. If this limit is hit ! the search is aborted and the load or store is not considered ! redundant. The number of queries is algorithmically limited ! to the number of stores on all paths from the load to the ! function entry. The default maxmimum number of queries is ! 1000. ! 'ira-max-loops-num' IRA uses regional register allocation by default. If a function contains more loops than the number given by this parameter, only at most the given number of the most frequently-executed loops form regions for regional register allocation. The default value of the parameter is 100. ! 'ira-max-conflict-table-size' Although IRA uses a sophisticated algorithm to compress the conflict table, the table can still require excessive amounts of memory for huge functions. If the conflict table for a --- 9176,9204 ---- prevents the runaway behavior. Setting a value of 0 for this parameter allows an unlimited set length. ! `sccvn-max-scc-size' Maximum size of a strongly connected component (SCC) during SCCVN processing. If this limit is hit, SCCVN processing for the whole function is not done and optimizations depending on it are disabled. The default maximum SCC size is 10000. ! `sccvn-max-alias-queries-per-access' ! Maximum number of alias-oracle queries we perform when ! looking for redundancies for loads and stores. If this limit ! is hit the search is aborted and the load or store is not ! considered redundant. The number of queries is ! algorithmically limited to the number of stores on all paths ! from the load to the function entry. The default maxmimum ! number of queries is 1000. ! `ira-max-loops-num' IRA uses regional register allocation by default. If a function contains more loops than the number given by this parameter, only at most the given number of the most frequently-executed loops form regions for regional register allocation. The default value of the parameter is 100. ! `ira-max-conflict-table-size' Although IRA uses a sophisticated algorithm to compress the conflict table, the table can still require excessive amounts of memory for huge functions. If the conflict table for a *************** includes experimental options that may p *** 9151,9191 **** building a pseudo-register conflict table. The default value of the parameter is 2000. ! 'ira-loop-reserved-regs' ! IRA can be used to evaluate more accurate register pressure in ! loops for decisions to move loop invariants (see '-O3'). The ! number of available registers reserved for some other purposes ! is given by this parameter. The default value of the ! parameter is 2, which is the minimal number of registers needed by typical instructions. This value is the best found from numerous experiments. ! 'loop-invariant-max-bbs-in-loop' Loop invariant motion can be very expensive, both in compilation time and in amount of needed compile-time memory, ! with very large loops. Loops with more basic blocks than this ! parameter won't have loop invariant motion optimization ! performed on them. The default value of the parameter is 1000 ! for '-O1' and 10000 for '-O2' and above. ! 'loop-max-datarefs-for-datadeps' Building data dapendencies is expensive for very large loops. This parameter limits the number of data references in loops ! that are considered for data dependence analysis. These large ! loops are no handled by the optimizations using loop data ! dependencies. The default value is 1000. ! 'max-vartrack-size' Sets a maximum number of hash table slots to use during variable tracking dataflow analysis of any function. If this limit is exceeded with variable tracking at assignments enabled, analysis for that function is retried without it, after removing all debug insns from the function. If the limit is exceeded even without debug insns, var tracking ! analysis is completely disabled for the function. Setting the ! parameter to zero makes it unlimited. ! 'max-vartrack-expr-depth' Sets a maximum number of recursion levels when attempting to map variable names or debug temporaries to value expressions. This trades compilation time for more complete debug --- 9208,9248 ---- building a pseudo-register conflict table. The default value of the parameter is 2000. ! `ira-loop-reserved-regs' ! IRA can be used to evaluate more accurate register pressure ! in loops for decisions to move loop invariants (see `-O3'). ! The number of available registers reserved for some other ! purposes is given by this parameter. The default value of ! the parameter is 2, which is the minimal number of registers needed by typical instructions. This value is the best found from numerous experiments. ! `loop-invariant-max-bbs-in-loop' Loop invariant motion can be very expensive, both in compilation time and in amount of needed compile-time memory, ! with very large loops. Loops with more basic blocks than ! this parameter won't have loop invariant motion optimization ! performed on them. The default value of the parameter is ! 1000 for `-O1' and 10000 for `-O2' and above. ! `loop-max-datarefs-for-datadeps' Building data dapendencies is expensive for very large loops. This parameter limits the number of data references in loops ! that are considered for data dependence analysis. These ! large loops are no handled by the optimizations using loop ! data dependencies. The default value is 1000. ! `max-vartrack-size' Sets a maximum number of hash table slots to use during variable tracking dataflow analysis of any function. If this limit is exceeded with variable tracking at assignments enabled, analysis for that function is retried without it, after removing all debug insns from the function. If the limit is exceeded even without debug insns, var tracking ! analysis is completely disabled for the function. Setting ! the parameter to zero makes it unlimited. ! `max-vartrack-expr-depth' Sets a maximum number of recursion levels when attempting to map variable names or debug temporaries to value expressions. This trades compilation time for more complete debug *************** includes experimental options that may p *** 9195,9390 **** compiler to find more complex debug expressions, but compile time and memory use may grow. The default is 12. ! 'min-nondebug-insn-uid' Use uids starting at this parameter for nondebug insns. The range below the parameter is reserved exclusively for debug ! insns created by '-fvar-tracking-assignments', but debug insns ! may get (non-overlapping) uids above it if the reserved range ! is exhausted. ! 'ipa-sra-ptr-growth-factor' IPA-SRA replaces a pointer to an aggregate with one or more new parameters only when their cumulative size is less or ! equal to 'ipa-sra-ptr-growth-factor' times the size of the original pointer parameter. ! 'tm-max-aggregate-size' ! When making copies of thread-local variables in a transaction, ! this parameter specifies the size in bytes after which ! variables are saved with the logging functions as opposed to ! save/restore code sequence pairs. This option only applies ! when using '-fgnu-tm'. ! 'graphite-max-nb-scop-params' To avoid exponential effects in the Graphite loop transforms, the number of parameters in a Static Control Part (SCoP) is bounded. The default value is 10 parameters. A variable ! whose value is unknown at compilation time and defined outside ! a SCoP is a parameter of the SCoP. ! 'graphite-max-bbs-per-function' To avoid exponential effects in the detection of SCoPs, the size of the functions analyzed by Graphite is bounded. The default value is 100 basic blocks. ! 'loop-block-tile-size' Loop blocking or strip mining transforms, enabled with ! '-floop-block' or '-floop-strip-mine', strip mine each loop in ! the loop nest by a given number of iterations. The strip ! length can be changed using the 'loop-block-tile-size' parameter. The default value is 51 iterations. ! 'ipa-cp-value-list-size' IPA-CP attempts to track all possible values and types passed to a function's parameter in order to propagate them and ! perform devirtualization. 'ipa-cp-value-list-size' is the maximum number of values and types it stores per one formal parameter of a function. ! 'ipa-cp-eval-threshold' IPA-CP calculates its own score of cloning profitability heuristics and performs those cloning opportunities with ! scores that exceed 'ipa-cp-eval-threshold'. ! 'ipa-max-agg-items' IPA-CP is also capable to propagate a number of scalar values ! passed in an aggregate. 'ipa-max-agg-items' controls the maximum number of such values per one parameter. ! 'ipa-cp-loop-hint-bonus' ! When IPA-CP determines that a cloning candidate would make the ! number of iterations of a loop known, it adds a bonus of ! 'ipa-cp-loop-hint-bonus' bonus to the profitability score of the candidate. ! 'ipa-cp-array-index-hint-bonus' ! When IPA-CP determines that a cloning candidate would make the ! index of an array access known, it adds a bonus of ! 'ipa-cp-array-index-hint-bonus' bonus to the profitability score of the candidate. ! 'lto-partitions' Specify desired number of partitions produced during WHOPR compilation. The number of partitions should exceed the number of CPUs used for compilation. The default value is 32. ! 'lto-minpartition' Size of minimal partition for WHOPR (in estimated ! instructions). This prevents expenses of splitting very small ! programs into too many partitions. ! 'cxx-max-namespaces-for-diagnostic-help' The maximum number of namespaces to consult for suggestions when C++ name lookup fails for an identifier. The default is 1000. ! 'sink-frequency-threshold' The maximum relative execution frequency (in percents) of the ! target block relative to a statement's original block to allow ! statement sinking of a statement. Larger numbers result in ! more aggressive statement sinking. The default value is 75. ! A small positive adjustment is applied for statements with ! memory operands as those are even more profitable so sink. ! 'max-stores-to-sink' The maximum number of conditional stores paires that can be ! sunk. Set to 0 if either vectorization ('-ftree-vectorize') ! or if-conversion ('-ftree-loop-if-convert') is disabled. The default is 2. ! 'allow-load-data-races' ! Allow optimizers to introduce new data races on loads. Set to ! 1 to allow, otherwise to 0. This option is enabled by default ! unless implicitly set by the '-fmemory-model=' option. ! 'allow-store-data-races' Allow optimizers to introduce new data races on stores. Set to 1 to allow, otherwise to 0. This option is enabled by ! default unless implicitly set by the '-fmemory-model=' option. ! 'allow-packed-load-data-races' Allow optimizers to introduce new data races on packed data loads. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! '-fmemory-model=' option. ! 'allow-packed-store-data-races' Allow optimizers to introduce new data races on packed data stores. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! '-fmemory-model=' option. ! 'case-values-threshold' The smallest number of different values for which it is best ! to use a jump-table instead of a tree of conditional branches. ! If the value is 0, use the default for the machine. The ! default is 0. ! 'tree-reassoc-width' Set the maximum number of instructions executed in parallel in ! reassociated tree. This parameter overrides target dependent heuristics used by default if has non zero value. ! 'sched-pressure-algorithm' Choose between the two available implementations of ! '-fsched-pressure'. Algorithm 1 is the original implementation and is the more likely to prevent instructions from being reordered. Algorithm 2 was designed to be a compromise between the relatively conservative approach taken ! by algorithm 1 and the rather aggressive approach taken by the ! default scheduler. It relies more heavily on having a regular ! register file and accurate register pressure classes. See ! 'haifa-sched.c' in the GCC sources for more details. The default choice depends on the target. ! 'max-slsr-cand-scan' Set the maximum number of existing candidates that will be considered when seeking a basis for a new straight-line strength reduction candidate. ! 'asan-globals' Enable buffer overflow detection for global objects. This kind of protection is enabled by default if you are using ! '-fsanitize=address' option. To disable global objects ! protection use '--param asan-globals=0'. ! 'asan-stack' ! Enable buffer overflow detection for stack objects. This kind ! of protection is enabled by default when ! using'-fsanitize=address'. To disable stack protection use ! '--param asan-stack=0' option. ! 'asan-instrument-reads' Enable buffer overflow detection for memory reads. This kind of protection is enabled by default when using ! '-fsanitize=address'. To disable memory reads protection use ! '--param asan-instrument-reads=0'. ! 'asan-instrument-writes' ! Enable buffer overflow detection for memory writes. This kind ! of protection is enabled by default when using ! '-fsanitize=address'. To disable memory writes protection use ! '--param asan-instrument-writes=0' option. ! 'asan-memintrin' Enable detection for built-in functions. This kind of protection is enabled by default when using ! '-fsanitize=address'. To disable built-in functions ! protection use '--param asan-memintrin=0'. ! 'asan-use-after-return' Enable detection of use-after-return. This kind of protection ! is enabled by default when using '-fsanitize=address' option. ! To disable use-after-return detection use '--param asan-use-after-return=0'. ! 'asan-instrumentation-with-call-threshold' ! If number of memory accesses in function being instrumented is ! greater or equal to this number, use callbacks instead of ! inline checks. E.g. to disable inline code use '--param asan-instrumentation-with-call-threshold=0'.  File: gcc.info, Node: Preprocessor Options, Next: Assembler Options, Prev: Optimize Options, Up: Invoking GCC --- 9252,9449 ---- compiler to find more complex debug expressions, but compile time and memory use may grow. The default is 12. ! `min-nondebug-insn-uid' Use uids starting at this parameter for nondebug insns. The range below the parameter is reserved exclusively for debug ! insns created by `-fvar-tracking-assignments', but debug ! insns may get (non-overlapping) uids above it if the reserved ! range is exhausted. ! `ipa-sra-ptr-growth-factor' IPA-SRA replaces a pointer to an aggregate with one or more new parameters only when their cumulative size is less or ! equal to `ipa-sra-ptr-growth-factor' times the size of the original pointer parameter. ! `tm-max-aggregate-size' ! When making copies of thread-local variables in a ! transaction, this parameter specifies the size in bytes after ! which variables are saved with the logging functions as ! opposed to save/restore code sequence pairs. This option ! only applies when using `-fgnu-tm'. ! `graphite-max-nb-scop-params' To avoid exponential effects in the Graphite loop transforms, the number of parameters in a Static Control Part (SCoP) is bounded. The default value is 10 parameters. A variable ! whose value is unknown at compilation time and defined ! outside a SCoP is a parameter of the SCoP. ! `graphite-max-bbs-per-function' To avoid exponential effects in the detection of SCoPs, the size of the functions analyzed by Graphite is bounded. The default value is 100 basic blocks. ! `loop-block-tile-size' Loop blocking or strip mining transforms, enabled with ! `-floop-block' or `-floop-strip-mine', strip mine each loop ! in the loop nest by a given number of iterations. The strip ! length can be changed using the `loop-block-tile-size' parameter. The default value is 51 iterations. ! `ipa-cp-value-list-size' IPA-CP attempts to track all possible values and types passed to a function's parameter in order to propagate them and ! perform devirtualization. `ipa-cp-value-list-size' is the maximum number of values and types it stores per one formal parameter of a function. ! `ipa-cp-eval-threshold' IPA-CP calculates its own score of cloning profitability heuristics and performs those cloning opportunities with ! scores that exceed `ipa-cp-eval-threshold'. ! `ipa-max-agg-items' IPA-CP is also capable to propagate a number of scalar values ! passed in an aggregate. `ipa-max-agg-items' controls the maximum number of such values per one parameter. ! `ipa-cp-loop-hint-bonus' ! When IPA-CP determines that a cloning candidate would make ! the number of iterations of a loop known, it adds a bonus of ! `ipa-cp-loop-hint-bonus' bonus to the profitability score of the candidate. ! `ipa-cp-array-index-hint-bonus' ! When IPA-CP determines that a cloning candidate would make ! the index of an array access known, it adds a bonus of ! `ipa-cp-array-index-hint-bonus' bonus to the profitability score of the candidate. ! `lto-partitions' Specify desired number of partitions produced during WHOPR compilation. The number of partitions should exceed the number of CPUs used for compilation. The default value is 32. ! `lto-minpartition' Size of minimal partition for WHOPR (in estimated ! instructions). This prevents expenses of splitting very ! small programs into too many partitions. ! `cxx-max-namespaces-for-diagnostic-help' The maximum number of namespaces to consult for suggestions when C++ name lookup fails for an identifier. The default is 1000. ! `sink-frequency-threshold' The maximum relative execution frequency (in percents) of the ! target block relative to a statement's original block to ! allow statement sinking of a statement. Larger numbers ! result in more aggressive statement sinking. The default ! value is 75. A small positive adjustment is applied for ! statements with memory operands as those are even more ! profitable so sink. ! `max-stores-to-sink' The maximum number of conditional stores paires that can be ! sunk. Set to 0 if either vectorization (`-ftree-vectorize') ! or if-conversion (`-ftree-loop-if-convert') is disabled. The default is 2. ! `allow-load-data-races' ! Allow optimizers to introduce new data races on loads. Set ! to 1 to allow, otherwise to 0. This option is enabled by ! default unless implicitly set by the `-fmemory-model=' option. ! `allow-store-data-races' Allow optimizers to introduce new data races on stores. Set to 1 to allow, otherwise to 0. This option is enabled by ! default unless implicitly set by the `-fmemory-model=' option. ! `allow-packed-load-data-races' Allow optimizers to introduce new data races on packed data loads. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! `-fmemory-model=' option. ! `allow-packed-store-data-races' Allow optimizers to introduce new data races on packed data stores. Set to 1 to allow, otherwise to 0. This option is enabled by default unless implicitly set by the ! `-fmemory-model=' option. ! `case-values-threshold' The smallest number of different values for which it is best ! to use a jump-table instead of a tree of conditional ! branches. If the value is 0, use the default for the ! machine. The default is 0. ! `tree-reassoc-width' Set the maximum number of instructions executed in parallel in ! reassociated tree. This parameter overrides target dependent heuristics used by default if has non zero value. ! `sched-pressure-algorithm' Choose between the two available implementations of ! `-fsched-pressure'. Algorithm 1 is the original implementation and is the more likely to prevent instructions from being reordered. Algorithm 2 was designed to be a compromise between the relatively conservative approach taken ! by algorithm 1 and the rather aggressive approach taken by ! the default scheduler. It relies more heavily on having a ! regular register file and accurate register pressure classes. ! See `haifa-sched.c' in the GCC sources for more details. The default choice depends on the target. ! `max-slsr-cand-scan' Set the maximum number of existing candidates that will be considered when seeking a basis for a new straight-line strength reduction candidate. ! `asan-globals' Enable buffer overflow detection for global objects. This kind of protection is enabled by default if you are using ! `-fsanitize=address' option. To disable global objects ! protection use `--param asan-globals=0'. ! `asan-stack' ! Enable buffer overflow detection for stack objects. This ! kind of protection is enabled by default when ! using`-fsanitize=address'. To disable stack protection use ! `--param asan-stack=0' option. ! `asan-instrument-reads' Enable buffer overflow detection for memory reads. This kind of protection is enabled by default when using ! `-fsanitize=address'. To disable memory reads protection use ! `--param asan-instrument-reads=0'. ! `asan-instrument-writes' ! Enable buffer overflow detection for memory writes. This ! kind of protection is enabled by default when using ! `-fsanitize=address'. To disable memory writes protection use ! `--param asan-instrument-writes=0' option. ! `asan-memintrin' Enable detection for built-in functions. This kind of protection is enabled by default when using ! `-fsanitize=address'. To disable built-in functions ! protection use `--param asan-memintrin=0'. ! `asan-use-after-return' Enable detection of use-after-return. This kind of protection ! is enabled by default when using `-fsanitize=address' option. ! To disable use-after-return detection use `--param asan-use-after-return=0'. ! `asan-instrumentation-with-call-threshold' ! If number of memory accesses in function being instrumented ! is greater or equal to this number, use callbacks instead of ! inline checks. E.g. to disable inline code use `--param asan-instrumentation-with-call-threshold=0'. +  File: gcc.info, Node: Preprocessor Options, Next: Assembler Options, Prev: Optimize Options, Up: Invoking GCC *************** File: gcc.info, Node: Preprocessor Opti *** 9394,9443 **** These options control the C preprocessor, which is run on each C source file before actual compilation. ! If you use the '-E' option, nothing is done except preprocessing. Some ! of these options make sense only together with '-E' because they cause ! the preprocessor output to be unsuitable for actual compilation. ! '-Wp,OPTION' ! You can use '-Wp,OPTION' to bypass the compiler driver and pass OPTION directly through to the preprocessor. If OPTION contains commas, it is split into multiple options at the commas. However, many options are modified, translated or interpreted by the ! compiler driver before being passed to the preprocessor, and '-Wp' forcibly bypasses this phase. The preprocessor's direct interface is undocumented and subject to change, so whenever possible you ! should avoid using '-Wp' and let the driver handle the options instead. ! '-Xpreprocessor OPTION' Pass OPTION as an option to the preprocessor. You can use this to supply system-specific preprocessor options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! '-Xpreprocessor' twice, once for the option and once for the argument. ! '-no-integrated-cpp' Perform preprocessing as a separate pass before compilation. By default, GCC performs preprocessing as an integrated part of input tokenization and parsing. If this option is provided, the ! appropriate language front end ('cc1', 'cc1plus', or 'cc1obj' for C, C++, and Objective-C, respectively) is instead invoked twice, once for preprocessing only and once for actual compilation of the preprocessed input. This option may be useful in conjunction with ! the '-B' or '-wrapper' options to specify an alternate preprocessor ! or perform additional processing of the program source between ! normal preprocessing and compilation. ! '-D NAME' ! Predefine NAME as a macro, with definition '1'. ! '-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a '#define' directive. ! In particular, the definition will be truncated by embedded newline ! characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect --- 9453,9502 ---- These options control the C preprocessor, which is run on each C source file before actual compilation. ! If you use the `-E' option, nothing is done except preprocessing. ! Some of these options make sense only together with `-E' because they ! cause the preprocessor output to be unsuitable for actual compilation. ! `-Wp,OPTION' ! You can use `-Wp,OPTION' to bypass the compiler driver and pass OPTION directly through to the preprocessor. If OPTION contains commas, it is split into multiple options at the commas. However, many options are modified, translated or interpreted by the ! compiler driver before being passed to the preprocessor, and `-Wp' forcibly bypasses this phase. The preprocessor's direct interface is undocumented and subject to change, so whenever possible you ! should avoid using `-Wp' and let the driver handle the options instead. ! `-Xpreprocessor OPTION' Pass OPTION as an option to the preprocessor. You can use this to supply system-specific preprocessor options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! `-Xpreprocessor' twice, once for the option and once for the argument. ! `-no-integrated-cpp' Perform preprocessing as a separate pass before compilation. By default, GCC performs preprocessing as an integrated part of input tokenization and parsing. If this option is provided, the ! appropriate language front end (`cc1', `cc1plus', or `cc1obj' for C, C++, and Objective-C, respectively) is instead invoked twice, once for preprocessing only and once for actual compilation of the preprocessed input. This option may be useful in conjunction with ! the `-B' or `-wrapper' options to specify an alternate ! preprocessor or perform additional processing of the program ! source between normal preprocessing and compilation. ! `-D NAME' ! Predefine NAME as a macro, with definition `1'. ! `-D NAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a `#define' directive. ! In particular, the definition will be truncated by embedded ! newline characters. If you are invoking the preprocessor from a shell or shell-like program you may need to use the shell's quoting syntax to protect *************** the preprocessor output to be unsuitable *** 9446,9519 **** If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With 'sh' and 'csh', ! '-D'NAME(ARGS...)=DEFINITION'' works. ! '-D' and '-U' options are processed in the order they are given on ! the command line. All '-imacros FILE' and '-include FILE' options ! are processed after all '-D' and '-U' options. ! '-U NAME' ! Cancel any previous definition of NAME, either built in or provided ! with a '-D' option. ! '-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! '-I DIR' ! Add the directory DIR to the list of directories to be searched for ! header files. Directories named by '-I' are searched before the ! standard system include directories. If the directory DIR is a ! standard system include directory, the option is ignored to ensure ! that the default search order for system directories and the ! special treatment of system headers are not defeated . If DIR ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to 'cpp'. 'gcc' has a different interpretation of a second non-option argument, so you must use ! '-o' to specify the output file. ! '-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is '-Wcomment', '-Wtrigraphs', '-Wmultichar' and a ! warning about integer promotion causing a change of sign in '#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! '-Wcomment' ! '-Wcomments' ! Warn whenever a comment-start sequence '/*' appears in a '/*' ! comment, or whenever a backslash-newline appears in a '//' comment. (Both forms have the same effect.) ! '-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! ('??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by '-Wall'. If '-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other '-Wall' ! warnings, use '-trigraphs -Wall -Wno-trigraphs'. ! '-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. ! '-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an '#if' directive, outside of 'defined'. Such identifiers are replaced with zero. ! '-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been --- 9505,9578 ---- If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With `sh' and `csh', ! `-D'NAME(ARGS...)=DEFINITION'' works. ! `-D' and `-U' options are processed in the order they are given on ! the command line. All `-imacros FILE' and `-include FILE' options ! are processed after all `-D' and `-U' options. ! `-U NAME' ! Cancel any previous definition of NAME, either built in or ! provided with a `-D' option. ! `-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! `-I DIR' ! Add the directory DIR to the list of directories to be searched ! for header files. Directories named by `-I' are searched before ! the standard system include directories. If the directory DIR is ! a standard system include directory, the option is ignored to ! ensure that the default search order for system directories and ! the special treatment of system headers are not defeated . If DIR ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-o FILE' Write output to FILE. This is the same as specifying FILE as the ! second non-option argument to `cpp'. `gcc' has a different interpretation of a second non-option argument, so you must use ! `-o' to specify the output file. ! `-Wall' Turns on all optional warnings which are desirable for normal code. ! At present this is `-Wcomment', `-Wtrigraphs', `-Wmultichar' and a ! warning about integer promotion causing a change of sign in `#if' expressions. Note that many of the preprocessor's warnings are on by default and have no options to control them. ! `-Wcomment' ! `-Wcomments' ! Warn whenever a comment-start sequence `/*' appears in a `/*' ! comment, or whenever a backslash-newline appears in a `//' comment. (Both forms have the same effect.) ! `-Wtrigraphs' Most trigraphs in comments cannot affect the meaning of the program. However, a trigraph that would form an escaped newline ! (`??/' at the end of a line) can, by changing where the comment begins or ends. Therefore, only trigraphs that would form escaped newlines produce warnings inside a comment. ! This option is implied by `-Wall'. If `-Wall' is not given, this option is still enabled unless trigraphs are enabled. To get ! trigraph conversion without warnings, but get the other `-Wall' ! warnings, use `-trigraphs -Wall -Wno-trigraphs'. ! `-Wtraditional' Warn about certain constructs that behave differently in traditional and ISO C. Also warn about ISO C constructs that have no traditional C equivalent, and problematic constructs which should be avoided. ! `-Wundef' Warn whenever an identifier which is not a macro is encountered in ! an `#if' directive, outside of `defined'. Such identifiers are replaced with zero. ! `-Wunused-macros' Warn about macros defined in the main file that are unused. A macro is "used" if it is expanded or tested for existence at least once. The preprocessor will also warn if the macro has not been *************** the preprocessor output to be unsuitable *** 9532,9540 **** #if defined the_macro_causing_the_warning #endif ! '-Wendif-labels' ! Warn whenever an '#else' or an '#endif' are followed by text. This ! usually happens in code of the form #if FOO ... --- 9591,9599 ---- #if defined the_macro_causing_the_warning #endif ! `-Wendif-labels' ! Warn whenever an `#else' or an `#endif' are followed by text. ! This usually happens in code of the form #if FOO ... *************** the preprocessor output to be unsuitable *** 9542,9633 **** ... #endif FOO ! The second and third 'FOO' should be in comments, but often are not in older programs. This warning is on by default. ! '-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! '-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! '-w' Suppress all warnings, including those which GNU CPP issues by default. ! '-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. Some ! of them are left out by default, since they trigger frequently on ! harmless code. ! '-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without '-pedantic' but treats as warnings. ! '-M' Instead of outputting the result of preprocessing, output a rule ! suitable for 'make' describing the dependencies of the main source ! file. The preprocessor outputs one 'make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from '-include' or ! '-imacros' command line options. ! Unless specified explicitly (with '-MT' or '-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using '\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, such ! as '-dM'. To avoid mixing such debug output with the dependency ! rules you should explicitly specify the dependency output file with ! '-MF', or use an environment variable like 'DEPENDENCIES_OUTPUT' ! (*note Environment Variables::). Debug output will still be sent ! to the regular output stream as normal. ! Passing '-M' to the driver implies '-E', and suppresses warnings ! with an implicit '-w'. ! '-MM' ! Like '-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly or ! indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an '#include' directive does not in itself determine whether that ! header will appear in '-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! '-MF FILE' ! When used with '-M' or '-MM', specifies a file to write the ! dependencies to. If no '-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options '-MD' or '-MMD', '-MF' overrides the default dependency output file. ! '-MG' ! In conjunction with an option such as '-M' requesting dependency ! generation, '-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. The ! dependency filename is taken directly from the '#include' directive ! without prepending any path. '-MG' also suppresses preprocessed ! output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! '-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors 'make' gives if you remove header ! files without updating the 'Makefile' to match. This is typical output: --- 9601,9692 ---- ... #endif FOO ! The second and third `FOO' should be in comments, but often are not in older programs. This warning is on by default. ! `-Werror' Make all warnings into hard errors. Source code which triggers warnings will be rejected. ! `-Wsystem-headers' Issue warnings for code in system headers. These are normally unhelpful in finding bugs in your own code, therefore suppressed. If you are responsible for the system library, you may want to see them. ! `-w' Suppress all warnings, including those which GNU CPP issues by default. ! `-pedantic' ! Issue all the mandatory diagnostics listed in the C standard. ! Some of them are left out by default, since they trigger ! frequently on harmless code. ! `-pedantic-errors' Issue all the mandatory diagnostics, and make all mandatory diagnostics into errors. This includes mandatory diagnostics that ! GCC issues without `-pedantic' but treats as warnings. ! `-M' Instead of outputting the result of preprocessing, output a rule ! suitable for `make' describing the dependencies of the main source ! file. The preprocessor outputs one `make' rule containing the object file name for that source file, a colon, and the names of ! all the included files, including those coming from `-include' or ! `-imacros' command line options. ! Unless specified explicitly (with `-MT' or `-MQ'), the object file name consists of the name of the source file with any suffix replaced with object file suffix and with any leading directory parts removed. If there are many included files then the rule is ! split into several lines using `\'-newline. The rule has no commands. ! This option does not suppress the preprocessor's debug output, ! such as `-dM'. To avoid mixing such debug output with the ! dependency rules you should explicitly specify the dependency ! output file with `-MF', or use an environment variable like ! `DEPENDENCIES_OUTPUT' (*note Environment Variables::). Debug ! output will still be sent to the regular output stream as normal. ! Passing `-M' to the driver implies `-E', and suppresses warnings ! with an implicit `-w'. ! `-MM' ! Like `-M' but do not mention header files that are found in system ! header directories, nor header files that are included, directly ! or indirectly, from such a header. This implies that the choice of angle brackets or double quotes in ! an `#include' directive does not in itself determine whether that ! header will appear in `-MM' dependency output. This is a slight change in semantics from GCC versions 3.0 and earlier. ! `-MF FILE' ! When used with `-M' or `-MM', specifies a file to write the ! dependencies to. If no `-MF' switch is given the preprocessor sends the rules to the same place it would have sent preprocessed output. ! When used with the driver options `-MD' or `-MMD', `-MF' overrides the default dependency output file. ! `-MG' ! In conjunction with an option such as `-M' requesting dependency ! generation, `-MG' assumes missing header files are generated files ! and adds them to the dependency list without raising an error. ! The dependency filename is taken directly from the `#include' ! directive without prepending any path. `-MG' also suppresses ! preprocessed output, as a missing header file renders this useless. This feature is used in automatic updating of makefiles. ! `-MP' This option instructs CPP to add a phony target for each dependency other than the main file, causing each to depend on nothing. These ! dummy rules work around errors `make' gives if you remove header ! files without updating the `Makefile' to match. This is typical output: *************** the preprocessor output to be unsuitable *** 9635,9686 **** test.h: ! '-MT TARGET' ! Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as '.c', and appends the platform's usual object suffix. The result is the target. ! An '-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to '-MT', or use multiple '-MT' options. ! For example, '-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! '-MQ TARGET' ! ! Same as '-MT', but it quotes any characters which are special to ! Make. '-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with '-MQ'. ! '-MD' ! '-MD' is equivalent to '-M -MF FILE', except that '-E' is not ! implied. The driver determines FILE based on whether an '-o' ! option is given. If it is, the driver uses its argument but with a ! suffix of '.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a '.d' suffix. ! If '-MD' is used in conjunction with '-E', any '-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without '-E', each '-o' is understood to specify a target object file. ! Since '-E' is not implied, '-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! '-MMD' ! Like '-MD' except mention only user header files, not system header ! files. ! '-fpch-deps' When using precompiled headers (*note Precompiled Headers::), this flag will cause the dependency-output flags to also list the files from the precompiled header's dependencies. If not specified only --- 9694,9743 ---- test.h: ! `-MT TARGET' Change the target of the rule emitted by dependency generation. By default CPP takes the name of the main input file, deletes any ! directory components and any file suffix such as `.c', and appends the platform's usual object suffix. The result is the target. ! An `-MT' option will set the target to be exactly the string you specify. If you want multiple targets, you can specify them as a ! single argument to `-MT', or use multiple `-MT' options. ! For example, `-MT '$(objpfx)foo.o'' might give $(objpfx)foo.o: foo.c ! `-MQ TARGET' ! Same as `-MT', but it quotes any characters which are special to ! Make. `-MQ '$(objpfx)foo.o'' gives $$(objpfx)foo.o: foo.c The default target is automatically quoted, as if it were given ! with `-MQ'. ! `-MD' ! `-MD' is equivalent to `-M -MF FILE', except that `-E' is not ! implied. The driver determines FILE based on whether an `-o' ! option is given. If it is, the driver uses its argument but with ! a suffix of `.d', otherwise it takes the name of the input file, ! removes any directory components and suffix, and applies a `.d' suffix. ! If `-MD' is used in conjunction with `-E', any `-o' switch is understood to specify the dependency output file (*note -MF: ! dashMF.), but if used without `-E', each `-o' is understood to specify a target object file. ! Since `-E' is not implied, `-MD' can be used to generate a dependency output file as a side-effect of the compilation process. ! `-MMD' ! Like `-MD' except mention only user header files, not system ! header files. ! `-fpch-deps' When using precompiled headers (*note Precompiled Headers::), this flag will cause the dependency-output flags to also list the files from the precompiled header's dependencies. If not specified only *************** the preprocessor output to be unsuitable *** 9688,10105 **** used to create it because those files are not consulted when a precompiled header is used. ! '-fpch-preprocess' This option allows use of a precompiled header (*note Precompiled ! Headers::) together with '-E'. It inserts a special '#pragma', ! '#pragma GCC pch_preprocess "FILENAME"' in the output to mark the place where the precompiled header was found, and its FILENAME. ! When '-fpreprocessed' is in use, GCC recognizes this '#pragma' and loads the PCH. This option is off by default, because the resulting preprocessed output is only really suitable as input to GCC. It is switched on ! by '-save-temps'. ! You should not write this '#pragma' in your own code, but it is safe to edit the filename if the PCH file is available in a different location. The filename may be absolute or it may be relative to GCC's current directory. ! '-x c' ! '-x c++' ! '-x objective-c' ! '-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; it ! merely selects which base syntax to expect. If you give none of ! these options, cpp will deduce the language from the extension of ! the source file: '.c', '.cc', '.m', or '.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a '-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the '-l' option. ! '-std=STANDARD' ! '-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! 'c90' ! 'c89' ! 'iso9899:1990' ! The ISO C standard from 1990. 'c90' is the customary shorthand for this version of the standard. ! The '-ansi' option is equivalent to '-std=c90'. ! 'iso9899:199409' The 1990 C standard, as amended in 1994. ! 'iso9899:1999' ! 'c99' ! 'iso9899:199x' ! 'c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! 'iso9899:2011' ! 'c11' ! 'c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! 'gnu90' ! 'gnu89' The 1990 C standard plus GNU extensions. This is the default. ! 'gnu99' ! 'gnu9x' The 1999 C standard plus GNU extensions. ! 'gnu11' ! 'gnu1x' The 2011 C standard plus GNU extensions. ! 'c++98' The 1998 ISO C++ standard plus amendments. ! 'gnu++98' ! The same as '-std=c++98' plus GNU extensions. This is the default for C++ code. ! '-I-' ! Split the include path. Any directories specified with '-I' ! options before '-I-' are searched only for headers requested with ! '#include "FILE"'; they are not searched for '#include '. If ! additional directories are specified with '-I' options after the ! '-I-', those directories are searched for all '#include' directives. ! In addition, '-I-' inhibits the use of the directory of the current ! file directory as the first search directory for '#include "FILE"'. This option has been deprecated. ! '-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with '-I' options (and the directory of the current file, if appropriate) are searched. ! '-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! '-include FILE' ! Process FILE as if '#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched for ! FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the '#include "..."' search chain as normal. ! If multiple '-include' options are given, the files are included in ! the order they appear on the command line. ! '-imacros FILE' ! Exactly like '-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by '-imacros' are processed before all files ! specified by '-include'. ! '-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with '-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent '-iwithprefix' options. ! If the prefix represents a directory, you should include the final ! '/'. ! '-iwithprefix DIR' ! '-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with '-iprefix', and add the resulting directory to the include search path. ! '-iwithprefixbefore' puts it in the same place '-I' would; ! '-iwithprefix' puts it where '-idirafter' would. ! '-isysroot DIR' ! This option is like the '--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the '--sysroot' option for more information. ! '-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! '-isystem DIR' Search DIR for header files, after all directories specified by ! '-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. If DIR begins with ! '=', then the '=' will be replaced by the sysroot prefix; see ! '--sysroot' and '-isysroot'. ! '-iquote DIR' ! Search DIR only for header files requested with '#include "FILE"'; ! they are not searched for '#include ', before all directories ! specified by '-I' and before the standard system directories. If ! DIR begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the '-E' and '-fpreprocessed' options. ! With '-E', preprocessing is limited to the handling of directives ! such as '#define', '#ifdef', and '#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are not ! performed. In addition, the '-dD' option is implicitly enabled. ! With '-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as '__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with '-E -fdirectives-only'. ! With both '-E' and '-fpreprocessed', the rules for '-fpreprocessed' ! take precedence. This enables full preprocessing of files ! previously preprocessed with '-E -fdirectives-only'. ! '-fdollars-in-identifiers' ! Accept '$' in identifiers. ! '-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! '-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! '-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with '-C' to the ! compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! '-fpreprocessed' is implicit if the input file has one of the ! extensions '.i', '.ii' or '.mi'. These are the extensions that GCC ! uses for preprocessed files created by '-save-temps'. ! '-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! '-fdebug-cpp' ! This option is only useful for debugging GCC. When used with '-E', ! dumps debugging information about location maps. Every token in ! the output is preceded by the dump of the map its location belongs ! to. The dump of the map holding the location of a token would be: ! {'P':/file/path;'F':/includer/path;'L':LINE_NUM;'C':COL_NUM;'S':SYSTEM_HEADER_P;'M':MAP_ADDRESS;'E':MACRO_EXPANSION_P,'loc':LOCATION} ! When used without '-E', this option has no effect. ! '-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more memory. ! The LEVEL parameter can be used to choose the level of precision of ! token location tracking thus decreasing the memory consumption if ! necessary. Value '0' of LEVEL de-activates this option just as if ! no '-ftrack-macro-expansion' was present on the command line. ! Value '1' tracks tokens locations in a degraded mode for the sake ! of minimal memory overhead. In this mode all tokens resulting from ! the expansion of an argument of a function-like macro have the same ! location. Value '2' tracks tokens locations completely. This ! value is the most memory hungry. When this option is given no ! argument, the default parameter value is '2'. Note that -ftrack-macro-expansion=2 is activated by default. ! '-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's 'iconv' library routine. ! '-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of 'wchar_t'. As with '-fexec-charset', ! CHARSET can be any encoding supported by the system's 'iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in 'wchar_t'. ! '-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used by ! GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! 'iconv' library routine. ! '-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current working ! directory in some debugging information formats. This option is ! implicitly enabled if debugging information is enabled, but this ! can be inhibited with the negated form '-fno-working-directory'. ! If the '-P' flag is present in the command line, this option has no ! effect, since no '#line' directives are emitted whatsoever. ! '-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as 'dejagnu'. ! '-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form '-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. ! '-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! '-dCHARS' ! CHARS is a sequence of one or more of the following characters, and ! must not be preceded by a space. Other characters are interpreted ! by the compiler proper, or reserved for future versions of GCC, and ! so are silently ignored. If you specify characters whose behavior ! conflicts, the result is undefined. ! 'M' ! Instead of the normal output, generate a list of '#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives you ! a way of finding out what is predefined in your version of the ! preprocessor. Assuming you have no file 'foo.h', the command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use '-dM' without the '-E' option, '-dM' is interpreted ! as a synonym for '-fdump-rtl-mach'. *Note (gcc)Debugging ! Options::. ! 'D' ! Like 'M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the '#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! 'N' ! Like 'D', but emit only the macro names, not their expansions. ! 'I' ! Output '#include' directives in addition to the result of preprocessing. ! 'U' ! Like 'D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! '#undef' directives are also output for macros tested but undefined at the time. ! '-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! '-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which are ! deleted along with the directive. ! You should be prepared for side effects when using '-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a '#'. ! '-CC' Do not discard comments, including during macro expansion. This is ! like '-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the '-C' option, the '-CC' ! option causes all C++-style comments inside a macro to be converted ! to C-style comments. This is to prevent later use of that macro ! from inadvertently commenting out the remainder of the source line. ! The '-CC' option is generally used to support lint comments. ! '-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. ! '-trigraphs' Process trigraph sequences. These are three-character sequences, ! all starting with '??', that are defined by ISO C to stand for ! single characters. For example, '??/' stands for '\', so ''??/n'' is a character constant for a newline. By default, GCC ignores trigraphs, but in standard-conforming modes it converts them. See ! the '-std' and '-ansi' options. The nine trigraphs and their replacements are Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??- Replacement: [ ] { } # \ ^ | ~ ! '-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! '--help' ! '--target-help' Print text describing all the command line options instead of preprocessing anything. ! '-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! '-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! '#include' stack it is. Precompiled header files are also printed, ! even if they are found to be invalid; an invalid precompiled header ! file is printed with '...x' and a valid one with '...!' . ! '-version' ! '--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. --- 9745,10168 ---- used to create it because those files are not consulted when a precompiled header is used. ! `-fpch-preprocess' This option allows use of a precompiled header (*note Precompiled ! Headers::) together with `-E'. It inserts a special `#pragma', ! `#pragma GCC pch_preprocess "FILENAME"' in the output to mark the place where the precompiled header was found, and its FILENAME. ! When `-fpreprocessed' is in use, GCC recognizes this `#pragma' and loads the PCH. This option is off by default, because the resulting preprocessed output is only really suitable as input to GCC. It is switched on ! by `-save-temps'. ! You should not write this `#pragma' in your own code, but it is safe to edit the filename if the PCH file is available in a different location. The filename may be absolute or it may be relative to GCC's current directory. ! `-x c' ! `-x c++' ! `-x objective-c' ! `-x assembler-with-cpp' Specify the source language: C, C++, Objective-C, or assembly. ! This has nothing to do with standards conformance or extensions; ! it merely selects which base syntax to expect. If you give none ! of these options, cpp will deduce the language from the extension ! of the source file: `.c', `.cc', `.m', or `.S'. Some other common extensions for C++ and assembly are also recognized. If cpp does not recognize the extension, it will treat the file as C; this is the most generic mode. ! _Note:_ Previous versions of cpp accepted a `-lang' option which selected both the language and the standards conformance level. ! This option has been removed, because it conflicts with the `-l' option. ! `-std=STANDARD' ! `-ansi' Specify the standard to which the code should conform. Currently CPP knows about C and C++ standards; others may be added in the future. STANDARD may be one of: ! `c90' ! `c89' ! `iso9899:1990' ! The ISO C standard from 1990. `c90' is the customary shorthand for this version of the standard. ! The `-ansi' option is equivalent to `-std=c90'. ! `iso9899:199409' The 1990 C standard, as amended in 1994. ! `iso9899:1999' ! `c99' ! `iso9899:199x' ! `c9x' The revised ISO C standard, published in December 1999. Before publication, this was known as C9X. ! `iso9899:2011' ! `c11' ! `c1x' The revised ISO C standard, published in December 2011. Before publication, this was known as C1X. ! `gnu90' ! `gnu89' The 1990 C standard plus GNU extensions. This is the default. ! `gnu99' ! `gnu9x' The 1999 C standard plus GNU extensions. ! `gnu11' ! `gnu1x' The 2011 C standard plus GNU extensions. ! `c++98' The 1998 ISO C++ standard plus amendments. ! `gnu++98' ! The same as `-std=c++98' plus GNU extensions. This is the default for C++ code. ! `-I-' ! Split the include path. Any directories specified with `-I' ! options before `-I-' are searched only for headers requested with ! `#include "FILE"'; they are not searched for `#include '. ! If additional directories are specified with `-I' options after ! the `-I-', those directories are searched for all `#include' directives. ! In addition, `-I-' inhibits the use of the directory of the current ! file directory as the first search directory for `#include "FILE"'. This option has been deprecated. ! `-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with `-I' options (and the directory of the current file, if appropriate) are searched. ! `-nostdinc++' Do not search for header files in the C++-specific standard directories, but do still search the other standard directories. (This option is used when building the C++ library.) ! `-include FILE' ! Process FILE as if `#include "file"' appeared as the first line of ! the primary source file. However, the first directory searched ! for FILE is the preprocessor's working directory _instead of_ the directory containing the main source file. If not found there, it ! is searched for in the remainder of the `#include "..."' search chain as normal. ! If multiple `-include' options are given, the files are included ! in the order they appear on the command line. ! `-imacros FILE' ! Exactly like `-include', except that any output produced by scanning FILE is thrown away. Macros it defines remain defined. This allows you to acquire all the macros from a header without also processing its declarations. ! All files specified by `-imacros' are processed before all files ! specified by `-include'. ! `-idirafter DIR' Search DIR for header files, but do it _after_ all directories ! specified with `-I' and the standard system directories have been exhausted. DIR is treated as a system include directory. If DIR ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent `-iwithprefix' ! options. If the prefix represents a directory, you should include ! the final `/'. ! `-iwithprefix DIR' ! `-iwithprefixbefore DIR' ! Append DIR to the prefix specified previously with `-iprefix', and add the resulting directory to the include search path. ! `-iwithprefixbefore' puts it in the same place `-I' would; ! `-iwithprefix' puts it where `-idirafter' would. ! `-isysroot DIR' ! This option is like the `--sysroot' option, but applies only to header files (except for Darwin targets, where it applies to both ! header files and libraries). See the `--sysroot' option for more information. ! `-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! `-isystem DIR' Search DIR for header files, after all directories specified by ! `-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is applied to the standard system directories. If DIR begins with ! `=', then the `=' will be replaced by the sysroot prefix; see ! `--sysroot' and `-isysroot'. ! `-iquote DIR' ! Search DIR only for header files requested with `#include "FILE"'; ! they are not searched for `#include ', before all ! directories specified by `-I' and before the standard system ! directories. If DIR begins with `=', then the `=' will be replaced ! by the sysroot prefix; see `--sysroot' and `-isysroot'. ! `-fdirectives-only' When preprocessing, handle directives, but do not expand macros. ! The option's behavior depends on the `-E' and `-fpreprocessed' options. ! With `-E', preprocessing is limited to the handling of directives ! such as `#define', `#ifdef', and `#error'. Other preprocessor ! operations, such as macro expansion and trigraph conversion are ! not performed. In addition, the `-dD' option is implicitly ! enabled. ! With `-fpreprocessed', predefinition of command line and most ! builtin macros is disabled. Macros such as `__LINE__', which are contextually dependent, are handled normally. This enables ! compilation of files previously preprocessed with `-E -fdirectives-only'. ! With both `-E' and `-fpreprocessed', the rules for ! `-fpreprocessed' take precedence. This enables full preprocessing ! of files previously preprocessed with `-E -fdirectives-only'. ! `-fdollars-in-identifiers' ! Accept `$' in identifiers. ! `-fextended-identifiers' Accept universal character names in identifiers. This option is experimental; in a future version of GCC, it will be enabled by default for C99 and C++. ! `-fno-canonical-system-headers' When preprocessing, do not shorten system header paths with canonicalization. ! `-fpreprocessed' Indicate to the preprocessor that the input file has already been preprocessed. This suppresses things like macro expansion, trigraph conversion, escaped newline splicing, and processing of most directives. The preprocessor still recognizes and removes ! comments, so that you can pass a file preprocessed with `-C' to ! the compiler without problems. In this mode the integrated preprocessor is little more than a tokenizer for the front ends. ! `-fpreprocessed' is implicit if the input file has one of the ! extensions `.i', `.ii' or `.mi'. These are the extensions that ! GCC uses for preprocessed files created by `-save-temps'. ! `-ftabstop=WIDTH' Set the distance between tab stops. This helps the preprocessor report correct column numbers in warnings or errors, even if tabs appear on the line. If the value is less than 1 or greater than 100, the option is ignored. The default is 8. ! `-fdebug-cpp' ! This option is only useful for debugging GCC. When used with ! `-E', dumps debugging information about location maps. Every ! token in the output is preceded by the dump of the map its location ! belongs to. The dump of the map holding the location of a token ! would be: ! {`P':`/file/path';`F':`/includer/path';`L':LINE_NUM;`C':COL_NUM;`S':SYSTEM_HEADER_P;`M':MAP_ADDRESS;`E':MACRO_EXPANSION_P,`loc':LOCATION} ! When used without `-E', this option has no effect. ! `-ftrack-macro-expansion[=LEVEL]' ! Track locations of tokens across macro expansions. This allows the compiler to emit diagnostic about the current macro expansion stack ! when a compilation error occurs in a macro expansion. Using this ! option makes the preprocessor and the compiler consume more ! memory. The LEVEL parameter can be used to choose the level of ! precision of token location tracking thus decreasing the memory ! consumption if necessary. Value `0' of LEVEL de-activates this ! option just as if no `-ftrack-macro-expansion' was present on the ! command line. Value `1' tracks tokens locations in a degraded mode ! for the sake of minimal memory overhead. In this mode all tokens ! resulting from the expansion of an argument of a function-like ! macro have the same location. Value `2' tracks tokens locations ! completely. This value is the most memory hungry. When this ! option is given no argument, the default parameter value is `2'. Note that -ftrack-macro-expansion=2 is activated by default. ! `-fexec-charset=CHARSET' Set the execution character set, used for string and character constants. The default is UTF-8. CHARSET can be any encoding ! supported by the system's `iconv' library routine. ! `-fwide-exec-charset=CHARSET' Set the wide execution character set, used for wide string and character constants. The default is UTF-32 or UTF-16, whichever ! corresponds to the width of `wchar_t'. As with `-fexec-charset', ! CHARSET can be any encoding supported by the system's `iconv' library routine; however, you will have problems with encodings ! that do not fit exactly in `wchar_t'. ! `-finput-charset=CHARSET' Set the input character set, used for translation from the ! character set of the input file to the source character set used ! by GCC. If the locale does not specify, or GCC cannot get this information from the locale, the default is UTF-8. This can be overridden by either the locale or this command line option. Currently the command line option takes precedence if there's a conflict. CHARSET can be any encoding supported by the system's ! `iconv' library routine. ! `-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two slashes. GCC will use this directory, when it's present in the ! preprocessed input, as the directory emitted as the current ! working directory in some debugging information formats. This ! option is implicitly enabled if debugging information is enabled, ! but this can be inhibited with the negated form ! `-fno-working-directory'. If the `-P' flag is present in the ! command line, this option has no effect, since no `#line' ! directives are emitted whatsoever. ! `-fno-show-column' Do not print column numbers in diagnostics. This may be necessary if diagnostics are being scanned by a program that does not ! understand the column numbers, such as `dejagnu'. ! `-A PREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. ! This form is preferred to the older form `-A PREDICATE(ANSWER)', which is still supported, because it does not use shell special characters. ! `-A -PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! `-dCHARS' ! CHARS is a sequence of one or more of the following characters, ! and must not be preceded by a space. Other characters are ! interpreted by the compiler proper, or reserved for future ! versions of GCC, and so are silently ignored. If you specify ! characters whose behavior conflicts, the result is undefined. ! `M' ! Instead of the normal output, generate a list of `#define' directives for all the macros defined during the execution of ! the preprocessor, including predefined macros. This gives ! you a way of finding out what is predefined in your version ! of the preprocessor. Assuming you have no file `foo.h', the ! command touch foo.h; cpp -dM foo.h will show all the predefined macros. ! If you use `-dM' without the `-E' option, `-dM' is ! interpreted as a synonym for `-fdump-rtl-mach'. *Note ! Debugging Options: (gcc)Debugging Options. ! `D' ! Like `M' except in two respects: it does _not_ include the ! predefined macros, and it outputs _both_ the `#define' directives and the result of preprocessing. Both kinds of output go to the standard output file. ! `N' ! Like `D', but emit only the macro names, not their expansions. ! `I' ! Output `#include' directives in addition to the result of preprocessing. ! `U' ! Like `D' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! `#undef' directives are also output for macros tested but undefined at the time. ! `-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! `-C' Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which ! are deleted along with the directive. ! You should be prepared for side effects when using `-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a `#'. ! `-CC' Do not discard comments, including during macro expansion. This is ! like `-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the `-C' option, the `-CC' ! option causes all C++-style comments inside a macro to be ! converted to C-style comments. This is to prevent later use of ! that macro from inadvertently commenting out the remainder of the ! source line. ! The `-CC' option is generally used to support lint comments. ! `-traditional-cpp' Try to imitate the behavior of old-fashioned C preprocessors, as opposed to ISO C preprocessors. ! `-trigraphs' Process trigraph sequences. These are three-character sequences, ! all starting with `??', that are defined by ISO C to stand for ! single characters. For example, `??/' stands for `\', so `'??/n'' is a character constant for a newline. By default, GCC ignores trigraphs, but in standard-conforming modes it converts them. See ! the `-std' and `-ansi' options. The nine trigraphs and their replacements are Trigraph: ??( ??) ??< ??> ??= ??/ ??' ??! ??- Replacement: [ ] { } # \ ^ | ~ ! `-remap' Enable special code to work around file systems which only permit very short file names, such as MS-DOS. ! `--help' ! `--target-help' Print text describing all the command line options instead of preprocessing anything. ! `-v' Verbose mode. Print out GNU CPP's version number at the beginning of execution, and report the final form of the include path. ! `-H' Print the name of each header file used, in addition to other normal activities. Each name is indented to show how deep in the ! `#include' stack it is. Precompiled header files are also ! printed, even if they are found to be invalid; an invalid ! precompiled header file is printed with `...x' and a valid one ! with `...!' . ! `-version' ! `--version' Print out GNU CPP's version number. With one dash, proceed to preprocess as normal. With two dashes, exit immediately. *************** File: gcc.info, Node: Assembler Options *** 10111,10127 **** You can pass options to the assembler. ! '-Wa,OPTION' Pass OPTION as an option to the assembler. If OPTION contains commas, it is split into multiple options at the commas. ! '-Xassembler OPTION' Pass OPTION as an option to the assembler. You can use this to supply system-specific assembler options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! '-Xassembler' twice, once for the option and once for the argument.  File: gcc.info, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC --- 10174,10191 ---- You can pass options to the assembler. ! `-Wa,OPTION' Pass OPTION as an option to the assembler. If OPTION contains commas, it is split into multiple options at the commas. ! `-Xassembler OPTION' Pass OPTION as an option to the assembler. You can use this to supply system-specific assembler options that GCC does not recognize. If you want to pass an option that takes an argument, you must use ! `-Xassembler' twice, once for the option and once for the argument. !  File: gcc.info, Node: Link Options, Next: Directory Options, Prev: Assembler Options, Up: Invoking GCC *************** These options come into play when the co *** 10133,10381 **** an executable output file. They are meaningless if the compiler is not doing a link step. ! 'OBJECT-FILE-NAME' A file name that does not end in a special recognized suffix is considered to name an object file or library. (Object files are distinguished from libraries by the linker according to the file contents.) If linking is done, these object files are used as input to the linker. ! '-c' ! '-S' ! '-E' If any of these options is used, then the linker is not run, and object file names should not be used as arguments. *Note Overall Options::. ! '-lLIBRARY' ! '-l LIBRARY' Search the library named LIBRARY when linking. (The second alternative with the library as a separate argument is only for POSIX compliance and is not recommended.) It makes a difference where in the command you write this option; ! the linker searches and processes libraries and object files in the ! order they are specified. Thus, 'foo.o -lz bar.o' searches library ! 'z' after file 'foo.o' but before 'bar.o'. If 'bar.o' refers to ! functions in 'z', those functions may not be loaded. The linker searches a standard list of directories for the library, ! which is actually a file named 'libLIBRARY.a'. The linker then uses this file as if it had been specified precisely by name. The directories searched include several standard system ! directories plus any that you specify with '-L'. Normally the files found this way are library files--archive files ! whose members are object files. The linker handles an archive file ! by scanning through it for members which define symbols that have ! so far been referenced but not defined. But if the file that is ! found is an ordinary object file, it is linked in the usual ! fashion. The only difference between using an '-l' option and ! specifying a file name is that '-l' surrounds LIBRARY with 'lib' ! and '.a' and searches several directories. ! '-lobjc' ! You need this special case of the '-l' option in order to link an Objective-C or Objective-C++ program. ! '-nostartfiles' Do not use the standard system startup files when linking. The ! standard system libraries are used normally, unless '-nostdlib' or ! '-nodefaultlibs' is used. ! '-nodefaultlibs' Do not use the standard system libraries when linking. Only the libraries you specify are passed to the linker, and options specifying linkage of the system libraries, such as ! '-static-libgcc' or '-shared-libgcc', are ignored. The standard ! startup files are used normally, unless '-nostartfiles' is used. ! The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and ! 'memmove'. These entries are usually resolved by entries in libc. ! These entry points should be supplied through some other mechanism ! when this option is specified. ! '-nostdlib' Do not use the standard system startup files or libraries when linking. No startup files and only the libraries you specify are passed to the linker, and options specifying linkage of the system ! libraries, such as '-static-libgcc' or '-shared-libgcc', are ignored. ! The compiler may generate calls to 'memcmp', 'memset', 'memcpy' and ! 'memmove'. These entries are usually resolved by entries in libc. ! These entry points should be supplied through some other mechanism ! when this option is specified. ! One of the standard libraries bypassed by '-nostdlib' and ! '-nodefaultlibs' is 'libgcc.a', a library of internal subroutines which GCC uses to overcome shortcomings of particular machines, or special needs for some languages. (*Note Interfacing to GCC ! Output: (gccint)Interface, for more discussion of 'libgcc.a'.) In ! most cases, you need 'libgcc.a' even when you want to avoid other ! standard libraries. In other words, when you specify '-nostdlib' ! or '-nodefaultlibs' you should usually specify '-lgcc' as well. This ensures that you have no unresolved references to internal GCC ! library subroutines. (An example of such an internal subroutine is ! '__main', used to ensure C++ constructors are called; *note ! 'collect2': (gccint)Collect2.) ! '-pie' Produce a position independent executable on targets that support ! it. For predictable results, you must also specify the same set of ! options used for compilation ('-fpie', '-fPIE', or model suboptions) when you specify this linker option. ! '-rdynamic' ! Pass the flag '-export-dynamic' to the ELF linker, on targets that ! support it. This instructs the linker to add all symbols, not only ! used ones, to the dynamic symbol table. This option is needed for ! some uses of 'dlopen' or to allow obtaining backtraces from within a program. ! '-s' Remove all symbol table and relocation information from the executable. ! '-static' ! On systems that support dynamic linking, this prevents linking with ! the shared libraries. On other systems, this option has no effect. ! '-shared' ! Produce a shared object which can then be linked with other objects ! to form an executable. Not all systems support this option. For ! predictable results, you must also specify the same set of options ! used for compilation ('-fpic', '-fPIC', or model suboptions) when ! you specify this linker option.(1) ! '-shared-libgcc' ! '-static-libgcc' ! On systems that provide 'libgcc' as a shared library, these options force the use of either the shared or static version, respectively. ! If no shared version of 'libgcc' was built when the compiler was configured, these options have no effect. There are several situations in which an application should use the ! shared 'libgcc' instead of the static version. The most common of these is when the application wishes to throw and catch exceptions across different shared libraries. In that case, each of the libraries as well as the application itself should use the shared ! 'libgcc'. Therefore, the G++ and GCJ drivers automatically add ! '-shared-libgcc' whenever you build a shared library or a main ! executable, because C++ and Java programs typically use exceptions, ! so this is the right thing to do. ! If, instead, you use the GCC driver to create shared libraries, you ! may find that they are not always linked with the shared 'libgcc'. ! If GCC finds, at its configuration time, that you have a non-GNU ! linker or a GNU linker that does not support option ! '--eh-frame-hdr', it links the shared version of 'libgcc' into shared libraries by default. Otherwise, it takes advantage of the linker and optimizes away the linking with the shared version of ! 'libgcc', linking with the static version of libgcc by default. This allows exceptions to propagate through such shared libraries, without incurring relocation costs at library load time. However, if a library or main executable is supposed to throw or catch exceptions, you must link it using the G++ or GCJ driver, as appropriate for the languages used in the program, or using the ! option '-shared-libgcc', such that it is linked with the shared ! 'libgcc'. ! '-static-libasan' ! When the '-fsanitize=address' option is used to link a program, the ! GCC driver automatically links against 'libasan'. If 'libasan' is ! available as a shared library, and the '-static' option is not ! used, then this links against the shared version of 'libasan'. The ! '-static-libasan' option directs the GCC driver to link 'libasan' ! statically, without necessarily linking other libraries statically. ! '-static-libtsan' ! When the '-fsanitize=thread' option is used to link a program, the ! GCC driver automatically links against 'libtsan'. If 'libtsan' is ! available as a shared library, and the '-static' option is not ! used, then this links against the shared version of 'libtsan'. The ! '-static-libtsan' option directs the GCC driver to link 'libtsan' ! statically, without necessarily linking other libraries statically. ! '-static-liblsan' ! When the '-fsanitize=leak' option is used to link a program, the ! GCC driver automatically links against 'liblsan'. If 'liblsan' is ! available as a shared library, and the '-static' option is not ! used, then this links against the shared version of 'liblsan'. The ! '-static-liblsan' option directs the GCC driver to link 'liblsan' ! statically, without necessarily linking other libraries statically. ! '-static-libubsan' ! When the '-fsanitize=undefined' option is used to link a program, ! the GCC driver automatically links against 'libubsan'. If ! 'libubsan' is available as a shared library, and the '-static' option is not used, then this links against the shared version of ! 'libubsan'. The '-static-libubsan' option directs the GCC driver ! to link 'libubsan' statically, without necessarily linking other libraries statically. ! '-static-libstdc++' ! When the 'g++' program is used to link a C++ program, it normally ! automatically links against 'libstdc++'. If 'libstdc++' is ! available as a shared library, and the '-static' option is not ! used, then this links against the shared version of 'libstdc++'. That is normally fine. However, it is sometimes useful to freeze ! the version of 'libstdc++' used by the program without going all ! the way to a fully static link. The '-static-libstdc++' option ! directs the 'g++' driver to link 'libstdc++' statically, without necessarily linking other libraries statically. ! '-symbolic' Bind references to global symbols when building a shared object. ! Warn about any unresolved references (unless overridden by the link ! editor option '-Xlinker -z -Xlinker defs'). Only a few systems ! support this option. ! '-T SCRIPT' Use SCRIPT as the linker script. This option is supported by most systems using the GNU linker. On some targets, such as bare-board ! targets without an operating system, the '-T' option may be required when linking to avoid references to undefined symbols. ! '-Xlinker OPTION' ! Pass OPTION as an option to the linker. You can use this to supply ! system-specific linker options that GCC does not recognize. If you want to pass an option that takes a separate argument, you ! must use '-Xlinker' twice, once for the option and once for the ! argument. For example, to pass '-assert definitions', you must ! write '-Xlinker -assert -Xlinker definitions'. It does not work to ! write '-Xlinker "-assert definitions"', because this passes the entire string as a single argument, which is not what the linker expects. When using the GNU linker, it is usually more convenient to pass ! arguments to linker options using the 'OPTION=VALUE' syntax than as ! separate arguments. For example, you can specify '-Xlinker ! -Map=output.map' rather than '-Xlinker -Map -Xlinker output.map'. Other linkers may not support this syntax for command-line options. ! '-Wl,OPTION' ! Pass OPTION as an option to the linker. If OPTION contains commas, ! it is split into multiple options at the commas. You can use this ! syntax to pass an argument to the option. For example, ! '-Wl,-Map,output.map' passes '-Map output.map' to the linker. When ! using the GNU linker, you can also get the same effect with ! '-Wl,-Map=output.map'. ! '-u SYMBOL' ! Pretend the symbol SYMBOL is undefined, to force linking of library ! modules to define it. You can use '-u' multiple times with different symbols to force loading of additional library modules. ! ---------- Footnotes ---------- ! (1) On some systems, 'gcc -shared' needs to build supplementary stub ! code for constructors to work. On multi-libbed systems, 'gcc -shared' must select the correct support libraries to link against. Failing to supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous. --- 10197,10449 ---- an executable output file. They are meaningless if the compiler is not doing a link step. ! `OBJECT-FILE-NAME' A file name that does not end in a special recognized suffix is considered to name an object file or library. (Object files are distinguished from libraries by the linker according to the file contents.) If linking is done, these object files are used as input to the linker. ! `-c' ! `-S' ! `-E' If any of these options is used, then the linker is not run, and object file names should not be used as arguments. *Note Overall Options::. ! `-lLIBRARY' ! `-l LIBRARY' Search the library named LIBRARY when linking. (The second alternative with the library as a separate argument is only for POSIX compliance and is not recommended.) It makes a difference where in the command you write this option; ! the linker searches and processes libraries and object files in ! the order they are specified. Thus, `foo.o -lz bar.o' searches ! library `z' after file `foo.o' but before `bar.o'. If `bar.o' ! refers to functions in `z', those functions may not be loaded. The linker searches a standard list of directories for the library, ! which is actually a file named `libLIBRARY.a'. The linker then uses this file as if it had been specified precisely by name. The directories searched include several standard system ! directories plus any that you specify with `-L'. Normally the files found this way are library files--archive files ! whose members are object files. The linker handles an archive ! file by scanning through it for members which define symbols that ! have so far been referenced but not defined. But if the file that ! is found is an ordinary object file, it is linked in the usual ! fashion. The only difference between using an `-l' option and ! specifying a file name is that `-l' surrounds LIBRARY with `lib' ! and `.a' and searches several directories. ! `-lobjc' ! You need this special case of the `-l' option in order to link an Objective-C or Objective-C++ program. ! `-nostartfiles' Do not use the standard system startup files when linking. The ! standard system libraries are used normally, unless `-nostdlib' or ! `-nodefaultlibs' is used. ! `-nodefaultlibs' Do not use the standard system libraries when linking. Only the libraries you specify are passed to the linker, and options specifying linkage of the system libraries, such as ! `-static-libgcc' or `-shared-libgcc', are ignored. The standard ! startup files are used normally, unless `-nostartfiles' is used. ! The compiler may generate calls to `memcmp', `memset', `memcpy' ! and `memmove'. These entries are usually resolved by entries in ! libc. These entry points should be supplied through some other ! mechanism when this option is specified. ! `-nostdlib' Do not use the standard system startup files or libraries when linking. No startup files and only the libraries you specify are passed to the linker, and options specifying linkage of the system ! libraries, such as `-static-libgcc' or `-shared-libgcc', are ignored. ! The compiler may generate calls to `memcmp', `memset', `memcpy' ! and `memmove'. These entries are usually resolved by entries in ! libc. These entry points should be supplied through some other ! mechanism when this option is specified. ! One of the standard libraries bypassed by `-nostdlib' and ! `-nodefaultlibs' is `libgcc.a', a library of internal subroutines which GCC uses to overcome shortcomings of particular machines, or special needs for some languages. (*Note Interfacing to GCC ! Output: (gccint)Interface, for more discussion of `libgcc.a'.) In ! most cases, you need `libgcc.a' even when you want to avoid other ! standard libraries. In other words, when you specify `-nostdlib' ! or `-nodefaultlibs' you should usually specify `-lgcc' as well. This ensures that you have no unresolved references to internal GCC ! library subroutines. (An example of such an internal subroutine ! is `__main', used to ensure C++ constructors are called; *note ! `collect2': (gccint)Collect2.) ! `-pie' Produce a position independent executable on targets that support ! it. For predictable results, you must also specify the same set ! of options used for compilation (`-fpie', `-fPIE', or model suboptions) when you specify this linker option. ! `-rdynamic' ! Pass the flag `-export-dynamic' to the ELF linker, on targets that ! support it. This instructs the linker to add all symbols, not only ! used ones, to the dynamic symbol table. This option is needed for ! some uses of `dlopen' or to allow obtaining backtraces from within a program. ! `-s' Remove all symbol table and relocation information from the executable. ! `-static' ! On systems that support dynamic linking, this prevents linking ! with the shared libraries. On other systems, this option has no ! effect. ! `-shared' ! Produce a shared object which can then be linked with other ! objects to form an executable. Not all systems support this ! option. For predictable results, you must also specify the same ! set of options used for compilation (`-fpic', `-fPIC', or model ! suboptions) when you specify this linker option.(1) ! `-shared-libgcc' ! `-static-libgcc' ! On systems that provide `libgcc' as a shared library, these options force the use of either the shared or static version, respectively. ! If no shared version of `libgcc' was built when the compiler was configured, these options have no effect. There are several situations in which an application should use the ! shared `libgcc' instead of the static version. The most common of these is when the application wishes to throw and catch exceptions across different shared libraries. In that case, each of the libraries as well as the application itself should use the shared ! `libgcc'. Therefore, the G++ and GCJ drivers automatically add ! `-shared-libgcc' whenever you build a shared library or a main ! executable, because C++ and Java programs typically use ! exceptions, so this is the right thing to do. ! If, instead, you use the GCC driver to create shared libraries, ! you may find that they are not always linked with the shared ! `libgcc'. If GCC finds, at its configuration time, that you have ! a non-GNU linker or a GNU linker that does not support option ! `--eh-frame-hdr', it links the shared version of `libgcc' into shared libraries by default. Otherwise, it takes advantage of the linker and optimizes away the linking with the shared version of ! `libgcc', linking with the static version of libgcc by default. This allows exceptions to propagate through such shared libraries, without incurring relocation costs at library load time. However, if a library or main executable is supposed to throw or catch exceptions, you must link it using the G++ or GCJ driver, as appropriate for the languages used in the program, or using the ! option `-shared-libgcc', such that it is linked with the shared ! `libgcc'. ! `-static-libasan' ! When the `-fsanitize=address' option is used to link a program, ! the GCC driver automatically links against `libasan'. If ! `libasan' is available as a shared library, and the `-static' ! option is not used, then this links against the shared version of ! `libasan'. The `-static-libasan' option directs the GCC driver to ! link `libasan' statically, without necessarily linking other ! libraries statically. ! `-static-libtsan' ! When the `-fsanitize=thread' option is used to link a program, the ! GCC driver automatically links against `libtsan'. If `libtsan' is ! available as a shared library, and the `-static' option is not ! used, then this links against the shared version of `libtsan'. ! The `-static-libtsan' option directs the GCC driver to link ! `libtsan' statically, without necessarily linking other libraries ! statically. ! `-static-liblsan' ! When the `-fsanitize=leak' option is used to link a program, the ! GCC driver automatically links against `liblsan'. If `liblsan' is ! available as a shared library, and the `-static' option is not ! used, then this links against the shared version of `liblsan'. ! The `-static-liblsan' option directs the GCC driver to link ! `liblsan' statically, without necessarily linking other libraries ! statically. ! `-static-libubsan' ! When the `-fsanitize=undefined' option is used to link a program, ! the GCC driver automatically links against `libubsan'. If ! `libubsan' is available as a shared library, and the `-static' option is not used, then this links against the shared version of ! `libubsan'. The `-static-libubsan' option directs the GCC driver ! to link `libubsan' statically, without necessarily linking other libraries statically. ! `-static-libstdc++' ! When the `g++' program is used to link a C++ program, it normally ! automatically links against `libstdc++'. If `libstdc++' is ! available as a shared library, and the `-static' option is not ! used, then this links against the shared version of `libstdc++'. That is normally fine. However, it is sometimes useful to freeze ! the version of `libstdc++' used by the program without going all ! the way to a fully static link. The `-static-libstdc++' option ! directs the `g++' driver to link `libstdc++' statically, without necessarily linking other libraries statically. ! `-symbolic' Bind references to global symbols when building a shared object. ! Warn about any unresolved references (unless overridden by the ! link editor option `-Xlinker -z -Xlinker defs'). Only a few ! systems support this option. ! `-T SCRIPT' Use SCRIPT as the linker script. This option is supported by most systems using the GNU linker. On some targets, such as bare-board ! targets without an operating system, the `-T' option may be required when linking to avoid references to undefined symbols. ! `-Xlinker OPTION' ! Pass OPTION as an option to the linker. You can use this to ! supply system-specific linker options that GCC does not recognize. If you want to pass an option that takes a separate argument, you ! must use `-Xlinker' twice, once for the option and once for the ! argument. For example, to pass `-assert definitions', you must ! write `-Xlinker -assert -Xlinker definitions'. It does not work ! to write `-Xlinker "-assert definitions"', because this passes the entire string as a single argument, which is not what the linker expects. When using the GNU linker, it is usually more convenient to pass ! arguments to linker options using the `OPTION=VALUE' syntax than ! as separate arguments. For example, you can specify `-Xlinker ! -Map=output.map' rather than `-Xlinker -Map -Xlinker output.map'. Other linkers may not support this syntax for command-line options. ! `-Wl,OPTION' ! Pass OPTION as an option to the linker. If OPTION contains ! commas, it is split into multiple options at the commas. You can ! use this syntax to pass an argument to the option. For example, ! `-Wl,-Map,output.map' passes `-Map output.map' to the linker. ! When using the GNU linker, you can also get the same effect with ! `-Wl,-Map=output.map'. ! `-u SYMBOL' ! Pretend the symbol SYMBOL is undefined, to force linking of ! library modules to define it. You can use `-u' multiple times with different symbols to force loading of additional library modules. ! ---------- Footnotes ---------- ! (1) On some systems, `gcc -shared' needs to build supplementary stub ! code for constructors to work. On multi-libbed systems, `gcc -shared' must select the correct support libraries to link against. Failing to supply the correct flags may lead to subtle defects. Supplying them in cases where they are not necessary is innocuous. *************** File: gcc.info, Node: Directory Options *** 10389,10521 **** These options specify directories to search for header files, for libraries and for parts of the compiler: ! '-IDIR' Add the directory DIR to the head of the list of directories to be searched for header files. This can be used to override a system ! header file, substituting your own version, since these directories ! are searched before the system header file directories. However, ! you should not use this option to add directories that contain ! vendor-supplied system header files (use '-isystem' for that). If ! you use more than one '-I' option, the directories are scanned in ! left-to-right order; the standard system directories come after. If a standard system include directory, or a directory specified ! with '-isystem', is also specified with '-I', the '-I' option is ! ignored. The directory is still searched but as a system directory ! at its normal position in the system include chain. This is to ! ensure that GCC's procedure to fix buggy system headers and the ! ordering for the 'include_next' directive are not inadvertently ! changed. If you really need to change the search order for system ! directories, use the '-nostdinc' and/or '-isystem' options. ! '-iplugindir=DIR' Set the directory to search for plugins that are passed by ! '-fplugin=NAME' instead of '-fplugin=PATH/NAME.so'. This option is ! not meant to be used by the user, but only passed by the driver. ! '-iquoteDIR' Add the directory DIR to the head of the list of directories to be ! searched for header files only for the case of '#include "FILE"'; ! they are not searched for '#include ', otherwise just like ! '-I'. ! '-LDIR' Add directory DIR to the list of directories to be searched for ! '-l'. ! '-BPREFIX' This option specifies where to find the executables, libraries, include files, and data files of the compiler itself. The compiler driver program runs one or more of the subprograms ! 'cpp', 'cc1', 'as' and 'ld'. It tries PREFIX as a prefix for each ! program it tries to run, both with and without 'MACHINE/VERSION/' (*note Target Options::). For each subprogram to be run, the compiler driver first tries the ! '-B' prefix, if any. If that name is not found, or if '-B' is not ! specified, the driver tries two standard prefixes, '/usr/lib/gcc/' ! and '/usr/local/lib/gcc/'. If neither of those results in a file name that is found, the unmodified program name is searched for ! using the directories specified in your 'PATH' environment variable. ! The compiler checks to see if the path provided by the '-B' refers to a directory, and if necessary it adds a directory separator character at the end of the path. ! '-B' prefixes that effectively specify directory names also apply to libraries in the linker, because the compiler translates these ! options into '-L' options for the linker. They also apply to include files in the preprocessor, because the compiler translates ! these options into '-isystem' options for the preprocessor. In ! this case, the compiler appends 'include' to the prefix. ! The runtime support file 'libgcc.a' can also be searched for using ! the '-B' prefix, if needed. If it is not found there, the two standard prefixes above are tried, and that is all. The file is left out of the link if it is not found by those means. ! Another way to specify a prefix much like the '-B' prefix is to use ! the environment variable 'GCC_EXEC_PREFIX'. *Note Environment Variables::. ! As a special kludge, if the path provided by '-B' is ! '[dir/]stageN/', where N is a number in the range 0 to 9, then it ! is replaced by '[dir/]include'. This is to help with boot-strapping the compiler. ! '-specs=FILE' ! Process FILE after the compiler reads in the standard 'specs' file, ! in order to override the defaults which the 'gcc' driver program ! uses when determining what switches to pass to 'cc1', 'cc1plus', ! 'as', 'ld', etc. More than one '-specs=FILE' can be specified on ! the command line, and they are processed in order, from left to ! right. ! '--sysroot=DIR' Use DIR as the logical root directory for headers and libraries. For example, if the compiler normally searches for headers in ! '/usr/include' and libraries in '/usr/lib', it instead searches ! 'DIR/usr/include' and 'DIR/usr/lib'. ! If you use both this option and the '-isysroot' option, then the ! '--sysroot' option applies to libraries, but the '-isysroot' option ! applies to header files. The GNU linker (beginning with version 2.16) has the necessary support for this option. If your linker does not support this ! option, the header file aspect of '--sysroot' still works, but the library aspect does not. ! '--no-sysroot-suffix' For some targets, a suffix is added to the root directory specified ! with '--sysroot', depending on the other options used, so that ! headers may for example be found in 'DIR/SUFFIX/usr/include' ! instead of 'DIR/usr/include'. This option disables the addition of such a suffix. ! '-I-' ! This option has been deprecated. Please use '-iquote' instead for ! '-I' directories before the '-I-' and remove the '-I-'. Any ! directories you specify with '-I' options before the '-I-' option ! are searched only for the case of '#include "FILE"'; they are not ! searched for '#include '. ! If additional directories are specified with '-I' options after the ! '-I-', these directories are searched for all '#include' ! directives. (Ordinarily _all_ '-I' directories are used this way.) ! In addition, the '-I-' option inhibits the use of the current directory (where the current input file came from) as the first ! search directory for '#include "FILE"'. There is no way to ! override this effect of '-I-'. With '-I.' you can specify searching the directory that is current when the compiler is invoked. That is not exactly the same as what the preprocessor does by default, but it is often satisfactory. ! '-I-' does not inhibit the use of the standard system directories ! for header files. Thus, '-I-' and '-nostdinc' are independent.  File: gcc.info, Node: Spec Files, Next: Target Options, Prev: Directory Options, Up: Invoking GCC --- 10457,10591 ---- These options specify directories to search for header files, for libraries and for parts of the compiler: ! `-IDIR' Add the directory DIR to the head of the list of directories to be searched for header files. This can be used to override a system ! header file, substituting your own version, since these ! directories are searched before the system header file ! directories. However, you should not use this option to add ! directories that contain vendor-supplied system header files (use ! `-isystem' for that). If you use more than one `-I' option, the ! directories are scanned in left-to-right order; the standard ! system directories come after. If a standard system include directory, or a directory specified ! with `-isystem', is also specified with `-I', the `-I' option is ! ignored. The directory is still searched but as a system ! directory at its normal position in the system include chain. ! This is to ensure that GCC's procedure to fix buggy system headers ! and the ordering for the `include_next' directive are not ! inadvertently changed. If you really need to change the search ! order for system directories, use the `-nostdinc' and/or ! `-isystem' options. ! `-iplugindir=DIR' Set the directory to search for plugins that are passed by ! `-fplugin=NAME' instead of `-fplugin=PATH/NAME.so'. This option ! is not meant to be used by the user, but only passed by the driver. ! `-iquoteDIR' Add the directory DIR to the head of the list of directories to be ! searched for header files only for the case of `#include "FILE"'; ! they are not searched for `#include ', otherwise just like ! `-I'. ! `-LDIR' Add directory DIR to the list of directories to be searched for ! `-l'. ! `-BPREFIX' This option specifies where to find the executables, libraries, include files, and data files of the compiler itself. The compiler driver program runs one or more of the subprograms ! `cpp', `cc1', `as' and `ld'. It tries PREFIX as a prefix for each ! program it tries to run, both with and without `MACHINE/VERSION/' (*note Target Options::). For each subprogram to be run, the compiler driver first tries the ! `-B' prefix, if any. If that name is not found, or if `-B' is not ! specified, the driver tries two standard prefixes, `/usr/lib/gcc/' ! and `/usr/local/lib/gcc/'. If neither of those results in a file name that is found, the unmodified program name is searched for ! using the directories specified in your `PATH' environment variable. ! The compiler checks to see if the path provided by the `-B' refers to a directory, and if necessary it adds a directory separator character at the end of the path. ! `-B' prefixes that effectively specify directory names also apply to libraries in the linker, because the compiler translates these ! options into `-L' options for the linker. They also apply to include files in the preprocessor, because the compiler translates ! these options into `-isystem' options for the preprocessor. In ! this case, the compiler appends `include' to the prefix. ! The runtime support file `libgcc.a' can also be searched for using ! the `-B' prefix, if needed. If it is not found there, the two standard prefixes above are tried, and that is all. The file is left out of the link if it is not found by those means. ! Another way to specify a prefix much like the `-B' prefix is to use ! the environment variable `GCC_EXEC_PREFIX'. *Note Environment Variables::. ! As a special kludge, if the path provided by `-B' is ! `[dir/]stageN/', where N is a number in the range 0 to 9, then it ! is replaced by `[dir/]include'. This is to help with boot-strapping the compiler. ! `-specs=FILE' ! Process FILE after the compiler reads in the standard `specs' ! file, in order to override the defaults which the `gcc' driver ! program uses when determining what switches to pass to `cc1', ! `cc1plus', `as', `ld', etc. More than one `-specs=FILE' can be ! specified on the command line, and they are processed in order, ! from left to right. ! `--sysroot=DIR' Use DIR as the logical root directory for headers and libraries. For example, if the compiler normally searches for headers in ! `/usr/include' and libraries in `/usr/lib', it instead searches ! `DIR/usr/include' and `DIR/usr/lib'. ! If you use both this option and the `-isysroot' option, then the ! `--sysroot' option applies to libraries, but the `-isysroot' ! option applies to header files. The GNU linker (beginning with version 2.16) has the necessary support for this option. If your linker does not support this ! option, the header file aspect of `--sysroot' still works, but the library aspect does not. ! `--no-sysroot-suffix' For some targets, a suffix is added to the root directory specified ! with `--sysroot', depending on the other options used, so that ! headers may for example be found in `DIR/SUFFIX/usr/include' ! instead of `DIR/usr/include'. This option disables the addition of such a suffix. ! `-I-' ! This option has been deprecated. Please use `-iquote' instead for ! `-I' directories before the `-I-' and remove the `-I-'. Any ! directories you specify with `-I' options before the `-I-' option ! are searched only for the case of `#include "FILE"'; they are not ! searched for `#include '. ! If additional directories are specified with `-I' options after ! the `-I-', these directories are searched for all `#include' ! directives. (Ordinarily _all_ `-I' directories are used this way.) ! In addition, the `-I-' option inhibits the use of the current directory (where the current input file came from) as the first ! search directory for `#include "FILE"'. There is no way to ! override this effect of `-I-'. With `-I.' you can specify searching the directory that is current when the compiler is invoked. That is not exactly the same as what the preprocessor does by default, but it is often satisfactory. ! `-I-' does not inhibit the use of the standard system directories ! for header files. Thus, `-I-' and `-nostdinc' are independent.  File: gcc.info, Node: Spec Files, Next: Target Options, Prev: Directory Options, Up: Invoking GCC *************** File: gcc.info, Node: Spec Files, Next *** 10523,10559 **** 3.15 Specifying subprocesses and the switches to pass to them ============================================================= ! 'gcc' is a driver program. It performs its job by invoking a sequence of other programs to do the work of compiling, assembling and linking. GCC interprets its command-line parameters and uses these to deduce ! which programs it should invoke, and which command-line options it ought ! to place on their command lines. This behavior is controlled by "spec ! strings". In most cases there is one spec string for each program that ! GCC can invoke, but a few programs have multiple spec strings to control ! their behavior. The spec strings built into GCC can be overridden by ! using the '-specs=' command-line switch to specify a spec file. "Spec files" are plaintext files that are used to construct spec strings. They consist of a sequence of directives separated by blank lines. The type of directive is determined by the first non-whitespace character on the line, which can be one of the following: ! '%COMMAND' Issues a COMMAND to the spec file processor. The commands that can appear here are: ! '%include ' Search for FILE and insert its text at the current point in the specs file. ! '%include_noerr ' ! Just like '%include', but do not generate an error message if the include file cannot be found. ! '%rename OLD_NAME NEW_NAME' Rename the spec string OLD_NAME to NEW_NAME. ! '*[SPEC_NAME]:' This tells the compiler to create, override or delete the named spec string. All lines after this directive up to the next directive or blank line are considered to be the text for the spec --- 10593,10631 ---- 3.15 Specifying subprocesses and the switches to pass to them ============================================================= ! `gcc' is a driver program. It performs its job by invoking a sequence of other programs to do the work of compiling, assembling and linking. GCC interprets its command-line parameters and uses these to deduce ! which programs it should invoke, and which command-line options it ! ought to place on their command lines. This behavior is controlled by ! "spec strings". In most cases there is one spec string for each ! program that GCC can invoke, but a few programs have multiple spec ! strings to control their behavior. The spec strings built into GCC can ! be overridden by using the `-specs=' command-line switch to specify a ! spec file. "Spec files" are plaintext files that are used to construct spec strings. They consist of a sequence of directives separated by blank lines. The type of directive is determined by the first non-whitespace character on the line, which can be one of the following: ! `%COMMAND' Issues a COMMAND to the spec file processor. The commands that can appear here are: ! `%include ' Search for FILE and insert its text at the current point in the specs file. ! `%include_noerr ' ! Just like `%include', but do not generate an error message if the include file cannot be found. ! `%rename OLD_NAME NEW_NAME' Rename the spec string OLD_NAME to NEW_NAME. ! ! `*[SPEC_NAME]:' This tells the compiler to create, override or delete the named spec string. All lines after this directive up to the next directive or blank line are considered to be the text for the spec *************** character on the line, which can be one *** 10562,10572 **** Otherwise, if the spec does not currently exist a new spec is created. If the spec does exist then its contents are overridden by the text of this directive, unless the first character of that ! text is the '+' character, in which case the text is appended to the spec. ! '[SUFFIX]:' ! Creates a new '[SUFFIX] spec' pair. All lines after this directive and up to the next directive or blank line are considered to make up the spec string for the indicated suffix. When the compiler encounters an input file with the named suffix, it processes the --- 10634,10644 ---- Otherwise, if the spec does not currently exist a new spec is created. If the spec does exist then its contents are overridden by the text of this directive, unless the first character of that ! text is the `+' character, in which case the text is appended to the spec. ! `[SUFFIX]:' ! Creates a new `[SUFFIX] spec' pair. All lines after this directive and up to the next directive or blank line are considered to make up the spec string for the indicated suffix. When the compiler encounters an input file with the named suffix, it processes the *************** character on the line, which can be one *** 10576,10592 **** .ZZ: z-compile -input %i ! This says that any input file whose name ends in '.ZZ' should be ! passed to the program 'z-compile', which should be invoked with the ! command-line switch '-input' and with the result of performing the ! '%i' substitution. (See below.) As an alternative to providing a spec string, the text following a suffix directive can be one of the following: ! '@LANGUAGE' This says that the suffix is an alias for a known LANGUAGE. ! This is similar to using the '-x' command-line switch to GCC to specify a language explicitly. For example: .ZZ: --- 10648,10664 ---- .ZZ: z-compile -input %i ! This says that any input file whose name ends in `.ZZ' should be ! passed to the program `z-compile', which should be invoked with the ! command-line switch `-input' and with the result of performing the ! `%i' substitution. (See below.) As an alternative to providing a spec string, the text following a suffix directive can be one of the following: ! `@LANGUAGE' This says that the suffix is an alias for a known LANGUAGE. ! This is similar to using the `-x' command-line switch to GCC to specify a language explicitly. For example: .ZZ: *************** character on the line, which can be one *** 10594,10600 **** Says that .ZZ files are, in fact, C++ source files. ! '#NAME' This causes an error messages saying: NAME compiler not installed on this system. --- 10666,10672 ---- Says that .ZZ files are, in fact, C++ source files. ! `#NAME' This causes an error messages saying: NAME compiler not installed on this system. *************** character on the line, which can be one *** 10605,10610 **** --- 10677,10683 ---- effectively possible to override earlier entries using this technique. + GCC has the following spec strings built into it. Spec files can override these strings or create their own. Note that individual targets can also add their own spec strings to this list. *************** targets can also add their own spec stri *** 10620,10626 **** libgcc Decides which GCC support library to pass to the linker linker Sets the name of the linker predefines Defines to be passed to the C preprocessor ! signed_char Defines to pass to CPP to say whether char is signed by default startfile Object files to include at the start of the link --- 10693,10699 ---- libgcc Decides which GCC support library to pass to the linker linker Sets the name of the linker predefines Defines to be passed to the C preprocessor ! signed_char Defines to pass to CPP to say whether `char' is signed by default startfile Object files to include at the start of the link *************** targets can also add their own spec stri *** 10631,10922 **** *lib: --start-group -lgcc -lc -leval1 --end-group %(old_lib) ! This example renames the spec called 'lib' to 'old_lib' and then ! overrides the previous definition of 'lib' with a new one. The new definition adds in some extra command-line options before including the text of the old definition. "Spec strings" are a list of command-line options to be passed to their corresponding program. In addition, the spec strings can contain ! '%'-prefixed sequences to substitute variable text or to conditionally insert text into the command line. Using these constructs it is possible to generate quite complex command lines. ! Here is a table of all defined '%'-sequences for spec strings. Note that spaces are not generated automatically around the results of expanding these sequences. Therefore you can concatenate them together or combine them with constant text in a single argument. ! '%%' ! Substitute one '%' into the program name or argument. ! '%i' Substitute the name of the input file being processed. ! '%b' ! Substitute the basename of the input file being processed. This is ! the substring up to (and not including) the last period and not including the directory. ! '%B' ! This is the same as '%b', but include the file suffix (text after the last period). ! '%d' ! Marks the argument containing or following the '%d' as a temporary file name, so that that file is deleted if GCC exits successfully. ! Unlike '%g', this contributes no text to the argument. ! '%gSUFFIX' Substitute a file name that has suffix SUFFIX and is chosen once ! per compilation, and mark the argument in the same way as '%d'. To ! reduce exposure to denial-of-service attacks, the file name is now ! chosen in a way that is hard to predict even when previously chosen ! file names are known. For example, '%g.s ... %g.o ... %g.s' might ! turn into 'ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s'. SUFFIX matches the ! regexp '[.A-Za-z]*' or the special string '%O', which is treated ! exactly as if '%O' had been preprocessed. Previously, '%g' was ! simply substituted with a file name chosen once per compilation, ! without regard to any appended suffix (which was therefore treated ! just like ordinary text), making such attacks more likely to ! succeed. ! '%uSUFFIX' ! Like '%g', but generates a new temporary file name each time it appears instead of once per compilation. ! '%USUFFIX' ! Substitutes the last file name generated with '%uSUFFIX', generating a new one if there is no such last file name. In the ! absence of any '%uSUFFIX', this is just like '%gSUFFIX', except ! they don't share the same suffix _space_, so '%g.s ... %U.s ... %g.s ... %U.s' involves the generation of two distinct file names, ! one for each '%g.s' and another for each '%U.s'. Previously, '%U' was simply substituted with a file name chosen for the previous ! '%u', without regard to any appended suffix. ! '%jSUFFIX' ! Substitutes the name of the 'HOST_BIT_BUCKET', if any, and if it is ! writable, and if '-save-temps' is not used; otherwise, substitute ! the name of a temporary file, just like '%u'. This temporary file is not meant for communication between processes, but rather as a junk disposal mechanism. ! '%|SUFFIX' ! '%mSUFFIX' ! Like '%g', except if '-pipe' is in effect. In that case '%|' ! substitutes a single dash and '%m' substitutes nothing at all. These are the two most common ways to instruct a program that it should read from standard input or write to standard output. If ! you need something more elaborate you can use an '%{pipe:'X'}' ! construct: see for example 'f/lang-specs.h'. ! '%.SUFFIX' Substitutes .SUFFIX for the suffixes of a matched switch's args ! when it is subsequently output with '%*'. SUFFIX is terminated by the next space or %. ! '%w' ! Marks the argument containing or following the '%w' as the designated output file of this compilation. This puts the argument ! into the sequence of arguments that '%o' substitutes. ! '%o' Substitutes the names of all the output files, with spaces automatically placed around them. You should write spaces around ! the '%o' as well or the results are undefined. '%o' is for use in the specs for running the linker. Input files whose names have no recognized suffix are not compiled at all, but they are included among the output files, so they are linked. ! '%O' ! Substitutes the suffix for object files. Note that this is handled ! specially when it immediately follows '%g, %u, or %U', because of ! the need for those to form complete file names. The handling is ! such that '%O' is treated exactly as if it had already been ! substituted, except that '%g, %u, and %U' do not currently support ! additional SUFFIX characters following '%O' as they do following, ! for example, '.o'. ! '%p' Substitutes the standard macro predefinitions for the current ! target machine. Use this when running 'cpp'. ! '%P' ! Like '%p', but puts '__' before and after the name of each ! predefined macro, except for macros that start with '__' or with ! '_L', where L is an uppercase letter. This is for ISO C. ! '%I' ! Substitute any of '-iprefix' (made from 'GCC_EXEC_PREFIX'), ! '-isysroot' (made from 'TARGET_SYSTEM_ROOT'), '-isystem' (made from ! 'COMPILER_PATH' and '-B' options) and '-imultilib' as necessary. ! '%s' Current argument is the name of a library or startup file of some sort. Search for that file in a standard list of directories and substitute the full name found. The current working directory is included in the list of directories scanned. ! '%T' Current argument is the name of a linker script. Search for that ! file in the current list of directories to scan for libraries. If ! the file is located insert a '--script' option into the command line followed by the full path name found. If the file is not found then generate an error message. Note: the current working directory is not searched. ! '%eSTR' Print STR as an error message. STR is terminated by a newline. Use this when inconsistent options are detected. ! '%(NAME)' Substitute the contents of spec string NAME at this point. ! '%x{OPTION}' ! Accumulate an option for '%X'. ! '%X' ! Output the accumulated linker options specified by '-Wl' or a '%x' spec string. ! '%Y' ! Output the accumulated assembler options specified by '-Wa'. ! '%Z' ! Output the accumulated preprocessor options specified by '-Wp'. ! '%a' ! Process the 'asm' spec. This is used to compute the switches to be ! passed to the assembler. ! '%A' ! Process the 'asm_final' spec. This is a spec string for passing switches to an assembler post-processor, if such a program is needed. ! '%l' ! Process the 'link' spec. This is the spec for computing the command line passed to the linker. Typically it makes use of the ! '%L %G %S %D and %E' sequences. ! '%D' ! Dump out a '-L' option for each directory that GCC believes might contain startup files. If the target supports multilibs then the current multilib directory is prepended to each of these paths. ! '%L' ! Process the 'lib' spec. This is a spec string for deciding which libraries are included on the command line to the linker. ! '%G' ! Process the 'libgcc' spec. This is a spec string for deciding which GCC support library is included on the command line to the linker. ! '%S' ! Process the 'startfile' spec. This is a spec for deciding which object files are the first ones passed to the linker. Typically ! this might be a file named 'crt0.o'. ! '%E' ! Process the 'endfile' spec. This is a spec string that specifies the last object files that are passed to the linker. ! '%C' ! Process the 'cpp' spec. This is used to construct the arguments to ! be passed to the C preprocessor. ! '%1' ! Process the 'cc1' spec. This is used to construct the options to ! be passed to the actual C compiler ('cc1'). ! '%2' ! Process the 'cc1plus' spec. This is used to construct the options ! to be passed to the actual C++ compiler ('cc1plus'). ! '%*' ! Substitute the variable part of a matched option. See below. Note ! that each comma in the substituted string is replaced by a single ! space. ! '% --- 12477,12526 ---- In order to facilitate indirect jump on devices with more than 128 Ki bytes of program memory space, there is a special function register ! called `EIND' that serves as most significant part of the target address ! when `EICALL' or `EIJMP' instructions are used. ! Indirect jumps and calls on these devices are handled as follows by ! the compiler and are subject to some limitations: ! * The compiler never sets `EIND'. ! * The compiler uses `EIND' implicitely in `EICALL'/`EIJMP' ! instructions or might read `EIND' directly in order to emulate an ! indirect call/jump by means of a `RET' instruction. ! * The compiler assumes that `EIND' never changes during the startup ! code or during the application. In particular, `EIND' is not saved/restored in function or interrupt service routine prologue/epilogue. * For indirect calls to functions and computed goto, the linker ! generates _stubs_. Stubs are jump pads sometimes also called ! _trampolines_. Thus, the indirect call/jump jumps to such a stub. The stub contains a direct jump to the desired address. * Linker relaxation must be turned on so that the linker will ! generate the stubs correctly an all situaltion. See the compiler ! option `-mrelax' and the linler option `--relax'. There are ! corner cases where the linker is supposed to generate stubs but ! aborts without relaxation and without a helpful error message. ! * The default linker script is arranged for code with `EIND = 0'. ! If code is supposed to work for a setup with `EIND != 0', a custom linker script has to be used in order to place the sections whose ! name start with `.trampolines' into the segment where `EIND' ! points to. ! * The startup code from libgcc never sets `EIND'. Notice that ! startup code is a blend of code from libgcc and AVR-LibC. For the ! impact of AVR-LibC on `EIND', see the AVR-LibC user manual (http://nongnu.org/avr-libc/user-manual/). ! * It is legitimate for user-specific startup code to set up `EIND' early, for example by means of initialization code located in ! section `.init3'. Such code runs prior to general startup code that initializes RAM and calls constructors, but after the bit of ! startup code from AVR-LibC that sets `EIND' to the segment where the vector table is located. #include *************** compiler and are subject to some limitat *** 12444,12473 **** "out %i0,r24" :: "n" (&EIND) : "r24","memory"); } ! The '__trampolines_start' symbol is defined in the linker script. * Stubs are generated automatically by the linker if the following two conditions are met: ! ! - The address of a label is taken by means of the 'gs' modifier (short for _generate stubs_) like so: LDI r24, lo8(gs(FUNC)) LDI r25, hi8(gs(FUNC)) - The final location of that label is in a code segment _outside_ the segment where the stubs are located. ! * The compiler emits such 'gs' modifiers for code labels in the following situations: - Taking address of a function or code label. - Computed goto. ! - If prologue-save function is used, see '-mcall-prologues' command-line option. ! - Switch/case dispatch tables. If you do not want such dispatch ! tables you can specify the '-fno-jump-tables' command-line option. - C and C++ constructors/destructors called during startup/shutdown. ! - If the tools hit a 'gs()' modifier explained above. * Jumping to non-symbolic addresses like so is _not_ supported: --- 12532,12566 ---- "out %i0,r24" :: "n" (&EIND) : "r24","memory"); } ! The `__trampolines_start' symbol is defined in the linker script. * Stubs are generated automatically by the linker if the following two conditions are met: ! - The address of a label is taken by means of the `gs' modifier (short for _generate stubs_) like so: LDI r24, lo8(gs(FUNC)) LDI r25, hi8(gs(FUNC)) + - The final location of that label is in a code segment _outside_ the segment where the stubs are located. ! * The compiler emits such `gs' modifiers for code labels in the following situations: - Taking address of a function or code label. + - Computed goto. ! ! - If prologue-save function is used, see `-mcall-prologues' command-line option. ! ! - Switch/case dispatch tables. If you do not want such dispatch ! tables you can specify the `-fno-jump-tables' command-line option. + - C and C++ constructors/destructors called during startup/shutdown. ! ! - If the tools hit a `gs()' modifier explained above. * Jumping to non-symbolic addresses like so is _not_ supported: *************** compiler and are subject to some limitat *** 12478,12484 **** } Instead, a stub has to be set up, i.e. the function has to be ! called through a symbol ('func_4' in the example): int main (void) { --- 12571,12577 ---- } Instead, a stub has to be set up, i.e. the function has to be ! called through a symbol (`func_4' in the example): int main (void) { *************** compiler and are subject to some limitat *** 12488,12526 **** return func_4(); } ! and the application be linked with '-Wl,--defsym,func_4=0x4'. ! Alternatively, 'func_4' can be defined in the linker script. ! 3.17.5.2 Handling of the 'RAMPD', 'RAMPX', 'RAMPY' and 'RAMPZ' Special Function Registers ......................................................................................... Some AVR devices support memories larger than the 64 KiB range that can be accessed with 16-bit pointers. To access memory locations outside ! this 64 KiB range, the contentent of a 'RAMP' register is used as high ! part of the address: The 'X', 'Y', 'Z' address register is concatenated ! with the 'RAMPX', 'RAMPY', 'RAMPZ' special function register, ! respectively, to get a wide address. Similarly, 'RAMPD' is used together with direct addressing. ! * The startup code initializes the 'RAMP' special function registers with zero. * If a *note named address space: AVR Named Address Spaces. other ! than generic or '__flash' is used, then 'RAMPZ' is set as needed before the operation. * If the device supports RAM larger than 64 KiB and the compiler ! needs to change 'RAMPZ' to accomplish an operation, 'RAMPZ' is reset to zero after the operation. ! * If the device comes with a specific 'RAMP' register, the ISR prologue/epilogue saves/restores that SFR and initializes it with zero in case the ISR code might (implicitly) use it. ! * RAM larger than 64 KiB is not supported by GCC for AVR targets. If ! you use inline assembler to read from locations outside the 16-bit ! address range and change one of the 'RAMP' registers, you must ! reset it to zero after the access. 3.17.5.3 AVR Built-in Macros ............................ --- 12581,12620 ---- return func_4(); } ! and the application be linked with `-Wl,--defsym,func_4=0x4'. ! Alternatively, `func_4' can be defined in the linker script. ! 3.17.5.2 Handling of the `RAMPD', `RAMPX', `RAMPY' and `RAMPZ' Special Function Registers ......................................................................................... Some AVR devices support memories larger than the 64 KiB range that can be accessed with 16-bit pointers. To access memory locations outside ! this 64 KiB range, the contentent of a `RAMP' register is used as high ! part of the address: The `X', `Y', `Z' address register is concatenated ! with the `RAMPX', `RAMPY', `RAMPZ' special function register, ! respectively, to get a wide address. Similarly, `RAMPD' is used together with direct addressing. ! * The startup code initializes the `RAMP' special function registers with zero. * If a *note named address space: AVR Named Address Spaces. other ! than generic or `__flash' is used, then `RAMPZ' is set as needed before the operation. * If the device supports RAM larger than 64 KiB and the compiler ! needs to change `RAMPZ' to accomplish an operation, `RAMPZ' is reset to zero after the operation. ! * If the device comes with a specific `RAMP' register, the ISR prologue/epilogue saves/restores that SFR and initializes it with zero in case the ISR code might (implicitly) use it. ! * RAM larger than 64 KiB is not supported by GCC for AVR targets. ! If you use inline assembler to read from locations outside the ! 16-bit address range and change one of the `RAMP' registers, you ! must reset it to zero after the access. ! 3.17.5.3 AVR Built-in Macros ............................ *************** together with direct addressing. *** 12528,12644 **** GCC defines several built-in macros so that the user code can test for the presence or absence of features. Almost any of the following built-in macros are deduced from device capabilities and thus triggered ! by the '-mmcu=' command-line option. For even more AVR-specific built-in macros see *note AVR Named Address Spaces:: and *note AVR Built-in Functions::. ! '__AVR_ARCH__' Build-in macro that resolves to a decimal number that identifies ! the architecture and depends on the '-mmcu=MCU' option. Possible values are: ! '2', '25', '3', '31', '35', '4', '5', '51', '6', '102', '104', ! '105', '106', '107' ! for MCU='avr2', 'avr25', 'avr3', 'avr31', 'avr35', 'avr4', 'avr5', ! 'avr51', 'avr6', 'avrxmega2', 'avrxmega4', 'avrxmega5', ! 'avrxmega6', 'avrxmega7', respectively. If MCU specifies a device, ! this built-in macro is set accordingly. For example, with ! '-mmcu=atmega8' the macro will be defined to '4'. ! '__AVR_DEVICE__' ! Setting '-mmcu=DEVICE' defines this built-in macro which reflects ! the device's name. For example, '-mmcu=atmega8' defines the ! built-in macro '__AVR_ATmega8__', '-mmcu=attiny261a' defines ! '__AVR_ATtiny261A__', etc. ! The built-in macros' names follow the scheme '__AVR_DEVICE__' where ! DEVICE is the device name as from the AVR user manual. The difference between DEVICE in the built-in macro and DEVICE in ! '-mmcu=DEVICE' is that the latter is always lowercase. If DEVICE is not a device but only a core architecture like ! 'avr51', this macro will not be defined. ! '__AVR_XMEGA__' The device / architecture belongs to the XMEGA family of devices. ! '__AVR_HAVE_ELPM__' ! The device has the the 'ELPM' instruction. ! '__AVR_HAVE_ELPMX__' ! The device has the 'ELPM RN,Z' and 'ELPM RN,Z+' instructions. ! '__AVR_HAVE_MOVW__' ! The device has the 'MOVW' instruction to perform 16-bit register-register moves. ! '__AVR_HAVE_LPMX__' ! The device has the 'LPM RN,Z' and 'LPM RN,Z+' instructions. ! '__AVR_HAVE_MUL__' The device has a hardware multiplier. ! '__AVR_HAVE_JMP_CALL__' ! The device has the 'JMP' and 'CALL' instructions. This is the case ! for devices with at least 16 KiB of program memory. ! '__AVR_HAVE_EIJMP_EICALL__' ! '__AVR_3_BYTE_PC__' ! The device has the 'EIJMP' and 'EICALL' instructions. This is the case for devices with more than 128 KiB of program memory. This also means that the program counter (PC) is 3 bytes wide. ! '__AVR_2_BYTE_PC__' ! The program counter (PC) is 2 bytes wide. This is the case for devices with up to 128 KiB of program memory. ! '__AVR_HAVE_8BIT_SP__' ! '__AVR_HAVE_16BIT_SP__' The stack pointer (SP) register is treated as 8-bit respectively ! 16-bit register by the compiler. The definition of these macros is ! affected by '-mtiny-stack'. ! '__AVR_HAVE_SPH__' ! '__AVR_SP8__' The device has the SPH (high part of stack pointer) special ! function register or has an 8-bit stack pointer, respectively. The ! definition of these macros is affected by '-mmcu=' and in the cases ! of '-mmcu=avr2' and '-mmcu=avr25' also by '-msp8'. ! '__AVR_HAVE_RAMPD__' ! '__AVR_HAVE_RAMPX__' ! '__AVR_HAVE_RAMPY__' ! '__AVR_HAVE_RAMPZ__' ! The device has the 'RAMPD', 'RAMPX', 'RAMPY', 'RAMPZ' special function register, respectively. ! '__NO_INTERRUPTS__' ! This macro reflects the '-mno-interrupts' command line option. ! '__AVR_ERRATA_SKIP__' ! '__AVR_ERRATA_SKIP_JMP_CALL__' Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions because of a hardware erratum. Skip instructions are ! 'SBRS', 'SBRC', 'SBIS', 'SBIC' and 'CPSE'. The second macro is ! only defined if '__AVR_HAVE_JMP_CALL__' is also set. ! '__AVR_ISA_RMW__' The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT). ! '__AVR_SFR_OFFSET__=OFFSET' Instructions that can address I/O special function registers ! directly like 'IN', 'OUT', 'SBI', etc. may use a different address ! as if addressed by an instruction to access RAM like 'LD' or 'STS'. ! This offset depends on the device architecture and has to be ! subtracted from the RAM address in order to get the respective I/O address. ! '__WITH_AVRLIBC__' The compiler is configured to be used together with AVR-Libc. See ! the '--with-avrlibc' configure option.  File: gcc.info, Node: Blackfin Options, Next: C6X Options, Prev: AVR Options, Up: Submodel Options --- 12622,12739 ---- GCC defines several built-in macros so that the user code can test for the presence or absence of features. Almost any of the following built-in macros are deduced from device capabilities and thus triggered ! by the `-mmcu=' command-line option. For even more AVR-specific built-in macros see *note AVR Named Address Spaces:: and *note AVR Built-in Functions::. ! `__AVR_ARCH__' Build-in macro that resolves to a decimal number that identifies ! the architecture and depends on the `-mmcu=MCU' option. Possible values are: ! `2', `25', `3', `31', `35', `4', `5', `51', `6', `102', `104', ! `105', `106', `107' ! for MCU=`avr2', `avr25', `avr3', `avr31', `avr35', `avr4', `avr5', ! `avr51', `avr6', `avrxmega2', `avrxmega4', `avrxmega5', ! `avrxmega6', `avrxmega7', respectively. If MCU specifies a ! device, this built-in macro is set accordingly. For example, with ! `-mmcu=atmega8' the macro will be defined to `4'. ! `__AVR_DEVICE__' ! Setting `-mmcu=DEVICE' defines this built-in macro which reflects ! the device's name. For example, `-mmcu=atmega8' defines the ! built-in macro `__AVR_ATmega8__', `-mmcu=attiny261a' defines ! `__AVR_ATtiny261A__', etc. ! The built-in macros' names follow the scheme `__AVR_DEVICE__' ! where DEVICE is the device name as from the AVR user manual. The difference between DEVICE in the built-in macro and DEVICE in ! `-mmcu=DEVICE' is that the latter is always lowercase. If DEVICE is not a device but only a core architecture like ! `avr51', this macro will not be defined. ! `__AVR_XMEGA__' The device / architecture belongs to the XMEGA family of devices. ! `__AVR_HAVE_ELPM__' ! The device has the the `ELPM' instruction. ! `__AVR_HAVE_ELPMX__' ! The device has the `ELPM RN,Z' and `ELPM RN,Z+' instructions. ! `__AVR_HAVE_MOVW__' ! The device has the `MOVW' instruction to perform 16-bit register-register moves. ! `__AVR_HAVE_LPMX__' ! The device has the `LPM RN,Z' and `LPM RN,Z+' instructions. ! `__AVR_HAVE_MUL__' The device has a hardware multiplier. ! `__AVR_HAVE_JMP_CALL__' ! The device has the `JMP' and `CALL' instructions. This is the ! case for devices with at least 16 KiB of program memory. ! `__AVR_HAVE_EIJMP_EICALL__' ! `__AVR_3_BYTE_PC__' ! The device has the `EIJMP' and `EICALL' instructions. This is the case for devices with more than 128 KiB of program memory. This also means that the program counter (PC) is 3 bytes wide. ! `__AVR_2_BYTE_PC__' ! The program counter (PC) is 2 bytes wide. This is the case for devices with up to 128 KiB of program memory. ! `__AVR_HAVE_8BIT_SP__' ! `__AVR_HAVE_16BIT_SP__' The stack pointer (SP) register is treated as 8-bit respectively ! 16-bit register by the compiler. The definition of these macros ! is affected by `-mtiny-stack'. ! `__AVR_HAVE_SPH__' ! `__AVR_SP8__' The device has the SPH (high part of stack pointer) special ! function register or has an 8-bit stack pointer, respectively. ! The definition of these macros is affected by `-mmcu=' and in the ! cases of `-mmcu=avr2' and `-mmcu=avr25' also by `-msp8'. ! `__AVR_HAVE_RAMPD__' ! `__AVR_HAVE_RAMPX__' ! `__AVR_HAVE_RAMPY__' ! `__AVR_HAVE_RAMPZ__' ! The device has the `RAMPD', `RAMPX', `RAMPY', `RAMPZ' special function register, respectively. ! `__NO_INTERRUPTS__' ! This macro reflects the `-mno-interrupts' command line option. ! `__AVR_ERRATA_SKIP__' ! `__AVR_ERRATA_SKIP_JMP_CALL__' Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit instructions because of a hardware erratum. Skip instructions are ! `SBRS', `SBRC', `SBIS', `SBIC' and `CPSE'. The second macro is ! only defined if `__AVR_HAVE_JMP_CALL__' is also set. ! `__AVR_ISA_RMW__' The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT). ! `__AVR_SFR_OFFSET__=OFFSET' Instructions that can address I/O special function registers ! directly like `IN', `OUT', `SBI', etc. may use a different address ! as if addressed by an instruction to access RAM like `LD' or ! `STS'. This offset depends on the device architecture and has to ! be subtracted from the RAM address in order to get the respective I/O address. ! `__WITH_AVRLIBC__' The compiler is configured to be used together with AVR-Libc. See ! the `--with-avrlibc' configure option. !  File: gcc.info, Node: Blackfin Options, Next: C6X Options, Prev: AVR Options, Up: Submodel Options *************** File: gcc.info, Node: Blackfin Options, *** 12646,12765 **** 3.17.6 Blackfin Options ----------------------- ! '-mcpu=CPU[-SIREVISION]' Specifies the name of the target Blackfin processor. Currently, ! CPU can be one of 'bf512', 'bf514', 'bf516', 'bf518', 'bf522', ! 'bf523', 'bf524', 'bf525', 'bf526', 'bf527', 'bf531', 'bf532', ! 'bf533', 'bf534', 'bf536', 'bf537', 'bf538', 'bf539', 'bf542', ! 'bf544', 'bf547', 'bf548', 'bf549', 'bf542m', 'bf544m', 'bf547m', ! 'bf548m', 'bf549m', 'bf561', 'bf592'. The optional SIREVISION specifies the silicon revision of the target Blackfin processor. Any workarounds available for the ! targeted silicon revision are enabled. If SIREVISION is 'none', no ! workarounds are enabled. If SIREVISION is 'any', all workarounds ! for the targeted processor are enabled. The '__SILICON_REVISION__' ! macro is defined to two hexadecimal digits representing the major ! and minor numbers in the silicon revision. If SIREVISION is ! 'none', the '__SILICON_REVISION__' is not defined. If SIREVISION ! is 'any', the '__SILICON_REVISION__' is defined to be '0xffff'. If ! this optional SIREVISION is not used, GCC assumes the latest known ! silicon revision of the targeted Blackfin processor. GCC defines a preprocessor macro for the specified CPU. For the ! 'bfin-elf' toolchain, this option causes the hardware BSP provided ! by libgloss to be linked in if '-msim' is not given. ! Without this option, 'bf532' is used as the processor by default. ! Note that support for 'bf561' is incomplete. For 'bf561', only the ! preprocessor macro is defined. ! '-msim' Specifies that the program will be run on the simulator. This causes the simulator BSP provided by libgloss to be linked in. ! This option has effect only for 'bfin-elf' toolchain. Certain ! other options, such as '-mid-shared-library' and '-mfdpic', imply ! '-msim'. ! '-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up and restore frame pointers and makes an extra register available in leaf functions. ! The option '-fomit-frame-pointer' removes the frame pointer for all ! functions, which might make debugging harder. ! '-mspecld-anomaly' When enabled, the compiler ensures that the generated code does not ! contain speculative loads after jump instructions. If this option ! is used, '__WORKAROUND_SPECULATIVE_LOADS' is defined. ! '-mno-specld-anomaly' Don't generate extra code to prevent speculative loads from occurring. ! '-mcsync-anomaly' When enabled, the compiler ensures that the generated code does not contain CSYNC or SSYNC instructions too soon after conditional ! branches. If this option is used, '__WORKAROUND_SPECULATIVE_SYNCS' ! is defined. ! '-mno-csync-anomaly' Don't generate extra code to prevent CSYNC or SSYNC instructions from occurring too soon after a conditional branch. ! '-mlow-64k' When enabled, the compiler is free to take advantage of the knowledge that the entire program fits into the low 64k of memory. ! '-mno-low-64k' Assume that the program is arbitrarily large. This is the default. ! '-mstack-check-l1' Do stack checking using information placed into L1 scratchpad memory by the uClinux kernel. ! '-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute in place and shared libraries in an environment without virtual memory management. This option ! implies '-fPIC'. With a 'bfin-elf' target, this option implies ! '-msim'. ! '-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! '-mleaf-id-shared-library' Generate code that supports shared libraries via the library ID method, but assumes that this library or executable won't link ! against any other ID shared libraries. That allows the compiler to ! use faster code for jumps and calls. ! '-mno-leaf-id-shared-library' Do not assume that the code being compiled won't link against any ID shared libraries. Slower code is generated for jump and call insns. ! '-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number ! to the current library but is no more space- or time-efficient than ! omitting this option. ! '-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute in place in an environment without virtual memory management by eliminating relocations against the text section. ! '-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! '-mlong-calls' ! '-mno-long-calls' Tells the compiler to perform function calls by first loading the address of the function into a register and then performing a subroutine call on this register. This switch is needed if the --- 12741,12861 ---- 3.17.6 Blackfin Options ----------------------- ! `-mcpu=CPU[-SIREVISION]' Specifies the name of the target Blackfin processor. Currently, ! CPU can be one of `bf512', `bf514', `bf516', `bf518', `bf522', ! `bf523', `bf524', `bf525', `bf526', `bf527', `bf531', `bf532', ! `bf533', `bf534', `bf536', `bf537', `bf538', `bf539', `bf542', ! `bf544', `bf547', `bf548', `bf549', `bf542m', `bf544m', `bf547m', ! `bf548m', `bf549m', `bf561', `bf592'. The optional SIREVISION specifies the silicon revision of the target Blackfin processor. Any workarounds available for the ! targeted silicon revision are enabled. If SIREVISION is `none', ! no workarounds are enabled. If SIREVISION is `any', all ! workarounds for the targeted processor are enabled. The ! `__SILICON_REVISION__' macro is defined to two hexadecimal digits ! representing the major and minor numbers in the silicon revision. ! If SIREVISION is `none', the `__SILICON_REVISION__' is not ! defined. If SIREVISION is `any', the `__SILICON_REVISION__' is ! defined to be `0xffff'. If this optional SIREVISION is not used, ! GCC assumes the latest known silicon revision of the targeted ! Blackfin processor. GCC defines a preprocessor macro for the specified CPU. For the ! `bfin-elf' toolchain, this option causes the hardware BSP provided ! by libgloss to be linked in if `-msim' is not given. ! Without this option, `bf532' is used as the processor by default. ! Note that support for `bf561' is incomplete. For `bf561', only ! the preprocessor macro is defined. ! `-msim' Specifies that the program will be run on the simulator. This causes the simulator BSP provided by libgloss to be linked in. ! This option has effect only for `bfin-elf' toolchain. Certain ! other options, such as `-mid-shared-library' and `-mfdpic', imply ! `-msim'. ! `-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up and restore frame pointers and makes an extra register available in leaf functions. ! The option `-fomit-frame-pointer' removes the frame pointer for ! all functions, which might make debugging harder. ! `-mspecld-anomaly' When enabled, the compiler ensures that the generated code does not ! contain speculative loads after jump instructions. If this option ! is used, `__WORKAROUND_SPECULATIVE_LOADS' is defined. ! `-mno-specld-anomaly' Don't generate extra code to prevent speculative loads from occurring. ! `-mcsync-anomaly' When enabled, the compiler ensures that the generated code does not contain CSYNC or SSYNC instructions too soon after conditional ! branches. If this option is used, ! `__WORKAROUND_SPECULATIVE_SYNCS' is defined. ! `-mno-csync-anomaly' Don't generate extra code to prevent CSYNC or SSYNC instructions from occurring too soon after a conditional branch. ! `-mlow-64k' When enabled, the compiler is free to take advantage of the knowledge that the entire program fits into the low 64k of memory. ! `-mno-low-64k' Assume that the program is arbitrarily large. This is the default. ! `-mstack-check-l1' Do stack checking using information placed into L1 scratchpad memory by the uClinux kernel. ! `-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute in place and shared libraries in an environment without virtual memory management. This option ! implies `-fPIC'. With a `bfin-elf' target, this option implies ! `-msim'. ! `-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! `-mleaf-id-shared-library' Generate code that supports shared libraries via the library ID method, but assumes that this library or executable won't link ! against any other ID shared libraries. That allows the compiler ! to use faster code for jumps and calls. ! `-mno-leaf-id-shared-library' Do not assume that the code being compiled won't link against any ID shared libraries. Slower code is generated for jump and call insns. ! `-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number ! to the current library but is no more space- or time-efficient ! than omitting this option. ! `-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute in place in an environment without virtual memory management by eliminating relocations against the text section. ! `-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! `-mlong-calls' ! `-mno-long-calls' Tells the compiler to perform function calls by first loading the address of the function into a register and then performing a subroutine call on this register. This switch is needed if the *************** File: gcc.info, Node: Blackfin Options, *** 12767,12822 **** offset-based version of subroutine call instruction. This feature is not enabled by default. Specifying ! '-mno-long-calls' restores the default behavior. Note these switches have no effect on how the compiler generates code to handle function calls via function pointers. ! '-mfast-fp' ! Link with the fast floating-point library. This library relaxes some of the IEEE floating-point standard's rules for checking inputs against Not-a-Number (NAN), in the interest of performance. ! '-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without '-mfdpic'. ! '-mmulticore' Build a standalone application for multicore Blackfin processors. This option causes proper start files and link scripts supporting ! multicore to be used, and defines the macro '__BFIN_MULTICORE'. It ! can only be used with '-mcpu=bf561[-SIREVISION]'. ! This option can be used with '-mcorea' or '-mcoreb', which selects ! the one-application-per-core programming model. Without '-mcorea' ! or '-mcoreb', the single-application/dual-core programming model is ! used. In this model, the main function of Core B should be named ! as 'coreb_main'. If this option is not used, the single-core application programming model is used. ! '-mcorea' Build a standalone application for Core A of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core A, and the macro ! '__BFIN_COREA' is defined. This option can only be used in ! conjunction with '-mmulticore'. ! '-mcoreb' Build a standalone application for Core B of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core B, and the macro ! '__BFIN_COREB' is defined. When this option is used, 'coreb_main' ! should be used instead of 'main'. This option can only be used in ! conjunction with '-mmulticore'. ! '-msdram' Build a standalone application for SDRAM. Proper start files and link scripts are used to put the application into SDRAM, and the ! macro '__BFIN_SDRAM' is defined. The loader should initialize SDRAM before loading the application. ! '-micplb' Assume that ICPLBs are enabled at run time. This has an effect on certain anomaly workarounds. For Linux targets, the default is to assume ICPLBs are enabled; for standalone applications the default --- 12863,12918 ---- offset-based version of subroutine call instruction. This feature is not enabled by default. Specifying ! `-mno-long-calls' restores the default behavior. Note these switches have no effect on how the compiler generates code to handle function calls via function pointers. ! `-mfast-fp' ! Link with the fast floating-point library. This library relaxes some of the IEEE floating-point standard's rules for checking inputs against Not-a-Number (NAN), in the interest of performance. ! `-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without `-mfdpic'. ! `-mmulticore' Build a standalone application for multicore Blackfin processors. This option causes proper start files and link scripts supporting ! multicore to be used, and defines the macro `__BFIN_MULTICORE'. ! It can only be used with `-mcpu=bf561[-SIREVISION]'. ! This option can be used with `-mcorea' or `-mcoreb', which selects ! the one-application-per-core programming model. Without `-mcorea' ! or `-mcoreb', the single-application/dual-core programming model ! is used. In this model, the main function of Core B should be ! named as `coreb_main'. If this option is not used, the single-core application programming model is used. ! `-mcorea' Build a standalone application for Core A of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core A, and the macro ! `__BFIN_COREA' is defined. This option can only be used in ! conjunction with `-mmulticore'. ! `-mcoreb' Build a standalone application for Core B of BF561 when using the ! one-application-per-core programming model. Proper start files and link scripts are used to support Core B, and the macro ! `__BFIN_COREB' is defined. When this option is used, `coreb_main' ! should be used instead of `main'. This option can only be used in ! conjunction with `-mmulticore'. ! `-msdram' Build a standalone application for SDRAM. Proper start files and link scripts are used to put the application into SDRAM, and the ! macro `__BFIN_SDRAM' is defined. The loader should initialize SDRAM before loading the application. ! `-micplb' Assume that ICPLBs are enabled at run time. This has an effect on certain anomaly workarounds. For Linux targets, the default is to assume ICPLBs are enabled; for standalone applications the default *************** File: gcc.info, Node: C6X Options, Nex *** 12828,12867 **** 3.17.7 C6X Options ------------------ ! '-march=NAME' This specifies the name of the target architecture. GCC uses this name to determine what kind of instructions it can emit when ! generating assembly code. Permissible names are: 'c62x', 'c64x', ! 'c64x+', 'c67x', 'c67x+', 'c674x'. ! '-mbig-endian' Generate code for a big-endian target. ! '-mlittle-endian' Generate code for a little-endian target. This is the default. ! '-msim' Choose startup files and linker script suitable for the simulator. ! '-msdata=default' ! Put small global and static data in the '.neardata' section, which ! is pointed to by register 'B14'. Put small uninitialized global ! and static data in the '.bss' section, which is adjacent to the ! '.neardata' section. Put small read-only data into the '.rodata' section. The corresponding sections used for large pieces of data ! are '.fardata', '.far' and '.const'. ! '-msdata=all' Put all data, not just small objects, into the sections reserved ! for small data, and use addressing relative to the 'B14' register to access them. ! '-msdata=none' Make no use of the sections reserved for small data, and use absolute addresses to access all data. Put all initialized global ! and static data in the '.fardata' section, and all uninitialized ! data in the '.far' section. Put all constant data into the ! '.const' section.  File: gcc.info, Node: CRIS Options, Next: CR16 Options, Prev: C6X Options, Up: Submodel Options --- 12924,12963 ---- 3.17.7 C6X Options ------------------ ! `-march=NAME' This specifies the name of the target architecture. GCC uses this name to determine what kind of instructions it can emit when ! generating assembly code. Permissible names are: `c62x', `c64x', ! `c64x+', `c67x', `c67x+', `c674x'. ! `-mbig-endian' Generate code for a big-endian target. ! `-mlittle-endian' Generate code for a little-endian target. This is the default. ! `-msim' Choose startup files and linker script suitable for the simulator. ! `-msdata=default' ! Put small global and static data in the `.neardata' section, which ! is pointed to by register `B14'. Put small uninitialized global ! and static data in the `.bss' section, which is adjacent to the ! `.neardata' section. Put small read-only data into the `.rodata' section. The corresponding sections used for large pieces of data ! are `.fardata', `.far' and `.const'. ! `-msdata=all' Put all data, not just small objects, into the sections reserved ! for small data, and use addressing relative to the `B14' register to access them. ! `-msdata=none' Make no use of the sections reserved for small data, and use absolute addresses to access all data. Put all initialized global ! and static data in the `.fardata' section, and all uninitialized ! data in the `.far' section. Put all constant data into the ! `.const' section.  File: gcc.info, Node: CRIS Options, Next: CR16 Options, Prev: C6X Options, Up: Submodel Options *************** File: gcc.info, Node: CRIS Options, Ne *** 12871,12969 **** These options are defined specifically for the CRIS ports. ! '-march=ARCHITECTURE-TYPE' ! '-mcpu=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are 'v3', 'v8' and 'v10' for respectively ! ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is 'v0' except for ! cris-axis-linux-gnu, where the default is 'v10'. ! '-mtune=ARCHITECTURE-TYPE' Tune to ARCHITECTURE-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. The choices for ARCHITECTURE-TYPE are the same as for ! '-march=ARCHITECTURE-TYPE'. ! '-mmax-stack-frame=N' Warn when the stack frame of a function exceeds N bytes. ! '-metrax4' ! '-metrax100' ! The options '-metrax4' and '-metrax100' are synonyms for ! '-march=v3' and '-march=v8' respectively. ! '-mmul-bug-workaround' ! '-mno-mul-bug-workaround' ! Work around a bug in the 'muls' and 'mulu' instructions for CPU models where it applies. This option is active by default. ! '-mpdebug' Enable CRIS-specific verbose debug-related information in the assembly code. This option also has the effect of turning off the ! '#NO_APP' formatted-code indicator to the assembler at the beginning of the assembly file. ! '-mcc-init' ! Do not use condition-code results from previous instruction; always ! emit compare and test instructions before use of condition codes. ! '-mno-side-effects' Do not emit instructions with side effects in addressing modes other than post-increment. ! '-mstack-align' ! '-mno-stack-align' ! '-mdata-align' ! '-mno-data-align' ! '-mconst-align' ! '-mno-const-align' ! These options ('no-' options) arrange (eliminate arrangements) for the stack frame, individual data and constants to be aligned for the maximum single data access size for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI details such as structure layout are not affected by these options. ! '-m32-bit' ! '-m16-bit' ! '-m8-bit' Similar to the stack- data- and const-align options above, these ! options arrange for stack frame, writable data and constants to all ! be 32-bit, 16-bit or 8-bit aligned. The default is 32-bit alignment. ! '-mno-prologue-epilogue' ! '-mprologue-epilogue' ! With '-mno-prologue-epilogue', the normal function prologue and epilogue which set up the stack frame are omitted and no return instructions or return sequences are generated in the code. Use this option only together with visual inspection of the compiled ! code: no warnings or errors are generated when call-saved registers ! must be saved, or storage for local variables needs to be ! allocated. ! '-mno-gotplt' ! '-mgotplt' ! With '-fpic' and '-fPIC', don't generate (do generate) instruction sequences that load addresses for functions from the PLT part of the GOT rather than (traditional on other architectures) calls to ! the PLT. The default is '-mgotplt'. ! '-melf' Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu targets. ! '-mlinux' Legacy no-op option only recognized with the cris-axis-linux-gnu target. ! '-sim' This option, recognized for the cris-axis-elf, arranges to link with input-output functions from a simulator library. Code, initialized data and zero-initialized data are allocated consecutively. ! '-sim2' ! Like '-sim', but pass linker options to locate initialized data at 0x40000000 and zero-initialized data at 0x80000000.  --- 12967,13066 ---- These options are defined specifically for the CRIS ports. ! `-march=ARCHITECTURE-TYPE' ! `-mcpu=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are `v3', `v8' and `v10' for respectively ! ETRAX 4, ETRAX 100, and ETRAX 100 LX. Default is `v0' except for ! cris-axis-linux-gnu, where the default is `v10'. ! `-mtune=ARCHITECTURE-TYPE' Tune to ARCHITECTURE-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. The choices for ARCHITECTURE-TYPE are the same as for ! `-march=ARCHITECTURE-TYPE'. ! `-mmax-stack-frame=N' Warn when the stack frame of a function exceeds N bytes. ! `-metrax4' ! `-metrax100' ! The options `-metrax4' and `-metrax100' are synonyms for ! `-march=v3' and `-march=v8' respectively. ! `-mmul-bug-workaround' ! `-mno-mul-bug-workaround' ! Work around a bug in the `muls' and `mulu' instructions for CPU models where it applies. This option is active by default. ! `-mpdebug' Enable CRIS-specific verbose debug-related information in the assembly code. This option also has the effect of turning off the ! `#NO_APP' formatted-code indicator to the assembler at the beginning of the assembly file. ! `-mcc-init' ! Do not use condition-code results from previous instruction; ! always emit compare and test instructions before use of condition ! codes. ! `-mno-side-effects' Do not emit instructions with side effects in addressing modes other than post-increment. ! `-mstack-align' ! `-mno-stack-align' ! `-mdata-align' ! `-mno-data-align' ! `-mconst-align' ! `-mno-const-align' ! These options (`no-' options) arrange (eliminate arrangements) for the stack frame, individual data and constants to be aligned for the maximum single data access size for the chosen CPU model. The default is to arrange for 32-bit alignment. ABI details such as structure layout are not affected by these options. ! `-m32-bit' ! `-m16-bit' ! `-m8-bit' Similar to the stack- data- and const-align options above, these ! options arrange for stack frame, writable data and constants to ! all be 32-bit, 16-bit or 8-bit aligned. The default is 32-bit alignment. ! `-mno-prologue-epilogue' ! `-mprologue-epilogue' ! With `-mno-prologue-epilogue', the normal function prologue and epilogue which set up the stack frame are omitted and no return instructions or return sequences are generated in the code. Use this option only together with visual inspection of the compiled ! code: no warnings or errors are generated when call-saved ! registers must be saved, or storage for local variables needs to ! be allocated. ! `-mno-gotplt' ! `-mgotplt' ! With `-fpic' and `-fPIC', don't generate (do generate) instruction sequences that load addresses for functions from the PLT part of the GOT rather than (traditional on other architectures) calls to ! the PLT. The default is `-mgotplt'. ! `-melf' Legacy no-op option only recognized with the cris-axis-elf and cris-axis-linux-gnu targets. ! `-mlinux' Legacy no-op option only recognized with the cris-axis-linux-gnu target. ! `-sim' This option, recognized for the cris-axis-elf, arranges to link with input-output functions from a simulator library. Code, initialized data and zero-initialized data are allocated consecutively. ! `-sim2' ! Like `-sim', but pass linker options to locate initialized data at 0x40000000 and zero-initialized data at 0x80000000.  *************** File: gcc.info, Node: CR16 Options, Ne *** 12974,13002 **** These options are defined specifically for the CR16 ports. ! '-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! '-mcr16cplus' ! '-mcr16c' ! Generate code for CR16C or CR16C+ architecture. CR16C+ ! architecture is default. ! '-msim' Links the library libsim.a which is in compatible with simulator. Applicable to ELF compiler only. ! '-mint32' Choose integer type as 32-bit wide. ! '-mbit-ops' ! Generates 'sbit'/'cbit' instructions for bit manipulations. ! '-mdata-model=MODEL' ! Choose a data model. The choices for MODEL are 'near', 'far' or ! 'medium'. 'medium' is default. However, 'far' is not valid with ! '-mcr16c', as the CR16C architecture does not support the far data model.  --- 13071,13099 ---- These options are defined specifically for the CR16 ports. ! `-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! `-mcr16cplus' ! `-mcr16c' ! Generate code for CR16C or CR16C+ architecture. CR16C+ architecture ! is default. ! `-msim' Links the library libsim.a which is in compatible with simulator. Applicable to ELF compiler only. ! `-mint32' Choose integer type as 32-bit wide. ! `-mbit-ops' ! Generates `sbit'/`cbit' instructions for bit manipulations. ! `-mdata-model=MODEL' ! Choose a data model. The choices for MODEL are `near', `far' or ! `medium'. `medium' is default. However, `far' is not valid with ! `-mcr16c', as the CR16C architecture does not support the far data model.  *************** operating system. *** 13010,13048 **** FSF GCC on Darwin does not create "fat" object files; it creates an object file for the single architecture that GCC was built to target. ! Apple's GCC on Darwin does create "fat" files if multiple '-arch' options are used; it does so by running the compiler or linker multiple ! times and joining the results together with 'lipo'. ! The subtype of the file created (like 'ppc7400' or 'ppc970' or 'i686') is determined by the flags that specify the ISA that GCC is targeting, ! like '-mcpu' or '-march'. The '-force_cpusubtype_ALL' option can be used to override this. The Darwin tools vary in their behavior when presented with an ISA ! mismatch. The assembler, 'as', only permits instructions to be used that are valid for the subtype of the file it is generating, so you ! cannot put 64-bit instructions in a 'ppc750' object file. The linker ! for shared libraries, '/usr/bin/libtool', fails and prints an error if asked to create a shared library with a less restrictive subtype than ! its input files (for instance, trying to put a 'ppc970' object file in a ! 'ppc7400' library). The linker for executables, 'ld', quietly gives the ! executable the most restrictive subtype of any of its input files. ! '-FDIR' Add the framework directory DIR to the head of the list of directories to be searched for header files. These directories are ! interleaved with those specified by '-I' options and are scanned in ! a left-to-right order. A framework directory is a directory with frameworks in it. A ! framework is a directory with a 'Headers' and/or 'PrivateHeaders' ! directory contained directly in it that ends in '.framework'. The name of a framework is the name of this directory excluding the ! '.framework'. Headers associated with the framework are found in ! one of those two directories, with 'Headers' being searched first. A subframework is a framework directory that is in a framework's ! 'Frameworks' directory. Includes of subframework headers can only appear in a header of a framework that contains the subframework, or in a sibling subframework header. Two subframeworks are siblings if they occur in the same framework. A subframework --- 13107,13145 ---- FSF GCC on Darwin does not create "fat" object files; it creates an object file for the single architecture that GCC was built to target. ! Apple's GCC on Darwin does create "fat" files if multiple `-arch' options are used; it does so by running the compiler or linker multiple ! times and joining the results together with `lipo'. ! The subtype of the file created (like `ppc7400' or `ppc970' or `i686') is determined by the flags that specify the ISA that GCC is targeting, ! like `-mcpu' or `-march'. The `-force_cpusubtype_ALL' option can be used to override this. The Darwin tools vary in their behavior when presented with an ISA ! mismatch. The assembler, `as', only permits instructions to be used that are valid for the subtype of the file it is generating, so you ! cannot put 64-bit instructions in a `ppc750' object file. The linker ! for shared libraries, `/usr/bin/libtool', fails and prints an error if asked to create a shared library with a less restrictive subtype than ! its input files (for instance, trying to put a `ppc970' object file in ! a `ppc7400' library). The linker for executables, `ld', quietly gives ! the executable the most restrictive subtype of any of its input files. ! `-FDIR' Add the framework directory DIR to the head of the list of directories to be searched for header files. These directories are ! interleaved with those specified by `-I' options and are scanned ! in a left-to-right order. A framework directory is a directory with frameworks in it. A ! framework is a directory with a `Headers' and/or `PrivateHeaders' ! directory contained directly in it that ends in `.framework'. The name of a framework is the name of this directory excluding the ! `.framework'. Headers associated with the framework are found in ! one of those two directories, with `Headers' being searched first. A subframework is a framework directory that is in a framework's ! `Frameworks' directory. Includes of subframework headers can only appear in a header of a framework that contains the subframework, or in a sibling subframework header. Two subframeworks are siblings if they occur in the same framework. A subframework *************** executable the most restrictive subtype *** 13050,13200 **** if this is violated. Currently a subframework cannot have subframeworks; in the future, the mechanism may be extended to support this. The standard frameworks can be found in ! '/System/Library/Frameworks' and '/Library/Frameworks'. An example ! include looks like '#include ', where ! 'Framework' denotes the name of the framework and 'header.h' is ! found in the 'PrivateHeaders' or 'Headers' directory. ! '-iframeworkDIR' ! Like '-F' except the directory is a treated as a system directory. ! The main difference between this '-iframework' and '-F' is that ! with '-iframework' the compiler does not warn about constructs contained within header files found via DIR. This option is valid only for the C family of languages. ! '-gused' Emit debugging information for symbols that are used. For stabs ! debugging format, this enables '-feliminate-unused-debug-symbols'. This is by default ON. ! '-gfull' Emit debugging information for all symbols and types. ! '-mmacosx-version-min=VERSION' ! The earliest version of MacOS X that this executable will run on is ! VERSION. Typical values of VERSION include '10.1', '10.2', and ! '10.3.9'. If the compiler was built to use the system's headers by default, then the default for this option is the system version on which the compiler is running, otherwise the default is to make choices that are compatible with as many systems and code bases as possible. ! '-mkernel' ! Enable kernel development mode. The '-mkernel' option sets ! '-static', '-fno-common', '-fno-use-cxa-atexit', '-fno-exceptions', ! '-fno-non-call-exceptions', '-fapple-kext', '-fno-weak' and ! '-fno-rtti' where applicable. This mode also sets '-mno-altivec', ! '-msoft-float', '-fno-builtin' and '-mlong-branch' for PowerPC ! targets. ! '-mone-byte-bool' ! Override the defaults for 'bool' so that 'sizeof(bool)==1'. By ! default 'sizeof(bool)' is '4' when compiling for Darwin/PowerPC and ! '1' when compiling for Darwin/x86, so this option has no effect on ! x86. ! *Warning:* The '-mone-byte-bool' switch causes GCC to generate code ! that is not binary compatible with code generated without that ! switch. Using this switch may require recompiling all other modules in a program, including system libraries. Use this switch to conform to a non-default data model. ! '-mfix-and-continue' ! '-ffix-and-continue' ! '-findirect-data' Generate code suitable for fast turnaround development, such as to ! allow GDB to dynamically load '.o' files into already-running ! programs. '-findirect-data' and '-ffix-and-continue' are provided for backwards compatibility. ! '-all_load' Loads all members of static archive libraries. See man ld(1) for more information. ! '-arch_errors_fatal' Cause the errors having to do with files that have the wrong architecture to be fatal. ! '-bind_at_load' Causes the output file to be marked such that the dynamic linker will bind all undefined references when the file is loaded or launched. ! '-bundle' Produce a Mach-o bundle format file. See man ld(1) for more information. ! '-bundle_loader EXECUTABLE' This option specifies the EXECUTABLE that will load the build output file being linked. See man ld(1) for more information. ! '-dynamiclib' When passed this option, GCC produces a dynamic library instead of ! an executable when linking, using the Darwin 'libtool' command. ! '-force_cpusubtype_ALL' This causes GCC's output file to have the ALL subtype, instead of ! one controlled by the '-mcpu' or '-march' option. ! '-allowable_client CLIENT_NAME' ! '-client_name' ! '-compatibility_version' ! '-current_version' ! '-dead_strip' ! '-dependency-file' ! '-dylib_file' ! '-dylinker_install_name' ! '-dynamic' ! '-exported_symbols_list' ! '-filelist' ! '-flat_namespace' ! '-force_flat_namespace' ! '-headerpad_max_install_names' ! '-image_base' ! '-init' ! '-install_name' ! '-keep_private_externs' ! '-multi_module' ! '-multiply_defined' ! '-multiply_defined_unused' ! '-noall_load' ! '-no_dead_strip_inits_and_terms' ! '-nofixprebinding' ! '-nomultidefs' ! '-noprebind' ! '-noseglinkedit' ! '-pagezero_size' ! '-prebind' ! '-prebind_all_twolevel_modules' ! '-private_bundle' ! '-read_only_relocs' ! '-sectalign' ! '-sectobjectsymbols' ! '-whyload' ! '-seg1addr' ! '-sectcreate' ! '-sectobjectsymbols' ! '-sectorder' ! '-segaddr' ! '-segs_read_only_addr' ! '-segs_read_write_addr' ! '-seg_addr_table' ! '-seg_addr_table_filename' ! '-seglinkedit' ! '-segprot' ! '-segs_read_only_addr' ! '-segs_read_write_addr' ! '-single_module' ! '-static' ! '-sub_library' ! '-sub_umbrella' ! '-twolevel_namespace' ! '-umbrella' ! '-undefined' ! '-unexported_symbols_list' ! '-weak_reference_mismatches' ! '-whatsloaded' These options are passed to the Darwin linker. The Darwin linker man page describes them in detail. --- 13147,13297 ---- if this is violated. Currently a subframework cannot have subframeworks; in the future, the mechanism may be extended to support this. The standard frameworks can be found in ! `/System/Library/Frameworks' and `/Library/Frameworks'. An ! example include looks like `#include ', where ! `Framework' denotes the name of the framework and `header.h' is ! found in the `PrivateHeaders' or `Headers' directory. ! `-iframeworkDIR' ! Like `-F' except the directory is a treated as a system directory. ! The main difference between this `-iframework' and `-F' is that ! with `-iframework' the compiler does not warn about constructs contained within header files found via DIR. This option is valid only for the C family of languages. ! `-gused' Emit debugging information for symbols that are used. For stabs ! debugging format, this enables `-feliminate-unused-debug-symbols'. This is by default ON. ! `-gfull' Emit debugging information for all symbols and types. ! `-mmacosx-version-min=VERSION' ! The earliest version of MacOS X that this executable will run on ! is VERSION. Typical values of VERSION include `10.1', `10.2', and ! `10.3.9'. If the compiler was built to use the system's headers by default, then the default for this option is the system version on which the compiler is running, otherwise the default is to make choices that are compatible with as many systems and code bases as possible. ! `-mkernel' ! Enable kernel development mode. The `-mkernel' option sets ! `-static', `-fno-common', `-fno-use-cxa-atexit', ! `-fno-exceptions', `-fno-non-call-exceptions', `-fapple-kext', ! `-fno-weak' and `-fno-rtti' where applicable. This mode also sets ! `-mno-altivec', `-msoft-float', `-fno-builtin' and `-mlong-branch' ! for PowerPC targets. ! `-mone-byte-bool' ! Override the defaults for `bool' so that `sizeof(bool)==1'. By ! default `sizeof(bool)' is `4' when compiling for Darwin/PowerPC ! and `1' when compiling for Darwin/x86, so this option has no ! effect on x86. ! *Warning:* The `-mone-byte-bool' switch causes GCC to generate ! code that is not binary compatible with code generated without ! that switch. Using this switch may require recompiling all other modules in a program, including system libraries. Use this switch to conform to a non-default data model. ! `-mfix-and-continue' ! `-ffix-and-continue' ! `-findirect-data' Generate code suitable for fast turnaround development, such as to ! allow GDB to dynamically load `.o' files into already-running ! programs. `-findirect-data' and `-ffix-and-continue' are provided for backwards compatibility. ! `-all_load' Loads all members of static archive libraries. See man ld(1) for more information. ! `-arch_errors_fatal' Cause the errors having to do with files that have the wrong architecture to be fatal. ! `-bind_at_load' Causes the output file to be marked such that the dynamic linker will bind all undefined references when the file is loaded or launched. ! `-bundle' Produce a Mach-o bundle format file. See man ld(1) for more information. ! `-bundle_loader EXECUTABLE' This option specifies the EXECUTABLE that will load the build output file being linked. See man ld(1) for more information. ! `-dynamiclib' When passed this option, GCC produces a dynamic library instead of ! an executable when linking, using the Darwin `libtool' command. ! `-force_cpusubtype_ALL' This causes GCC's output file to have the ALL subtype, instead of ! one controlled by the `-mcpu' or `-march' option. ! `-allowable_client CLIENT_NAME' ! `-client_name' ! `-compatibility_version' ! `-current_version' ! `-dead_strip' ! `-dependency-file' ! `-dylib_file' ! `-dylinker_install_name' ! `-dynamic' ! `-exported_symbols_list' ! `-filelist' ! `-flat_namespace' ! `-force_flat_namespace' ! `-headerpad_max_install_names' ! `-image_base' ! `-init' ! `-install_name' ! `-keep_private_externs' ! `-multi_module' ! `-multiply_defined' ! `-multiply_defined_unused' ! `-noall_load' ! `-no_dead_strip_inits_and_terms' ! `-nofixprebinding' ! `-nomultidefs' ! `-noprebind' ! `-noseglinkedit' ! `-pagezero_size' ! `-prebind' ! `-prebind_all_twolevel_modules' ! `-private_bundle' ! `-read_only_relocs' ! `-sectalign' ! `-sectobjectsymbols' ! `-whyload' ! `-seg1addr' ! `-sectcreate' ! `-sectobjectsymbols' ! `-sectorder' ! `-segaddr' ! `-segs_read_only_addr' ! `-segs_read_write_addr' ! `-seg_addr_table' ! `-seg_addr_table_filename' ! `-seglinkedit' ! `-segprot' ! `-segs_read_only_addr' ! `-segs_read_write_addr' ! `-single_module' ! `-static' ! `-sub_library' ! `-sub_umbrella' ! `-twolevel_namespace' ! `-umbrella' ! `-undefined' ! `-unexported_symbols_list' ! `-weak_reference_mismatches' ! `-whatsloaded' These options are passed to the Darwin linker. The Darwin linker man page describes them in detail. *************** File: gcc.info, Node: DEC Alpha Options *** 13204,13346 **** 3.17.11 DEC Alpha Options ------------------------- ! These '-m' options are defined for the DEC Alpha implementations: ! '-mno-soft-float' ! '-msoft-float' Use (do not use) the hardware floating-point instructions for ! floating-point operations. When '-msoft-float' is specified, ! functions in 'libgcc.a' are used to perform floating-point operations. Unless they are replaced by routines that emulate the floating-point operations, or compiled in such a way as to call such emulations routines, these routines issue floating-point ! operations. If you are compiling for an Alpha without floating-point operations, you must ensure that the library is built so as not to call them. Note that Alpha implementations without floating-point operations are required to have floating-point registers. ! '-mfp-reg' ! '-mno-fp-regs' Generate code that uses (does not use) the floating-point register ! set. '-mno-fp-regs' implies '-msoft-float'. If the floating-point register set is not used, floating-point operands are passed in integer registers as if they were integers and floating-point ! results are passed in '$0' instead of '$f0'. This is a non-standard calling sequence, so any function with a floating-point argument or return value called by code compiled ! with '-mno-fp-regs' must also be compiled with that option. A typical use of this option is building a kernel that does not use, and hence need not save and restore, any floating-point registers. ! '-mieee' ! The Alpha architecture implements floating-point hardware optimized ! for maximum performance. It is mostly compliant with the IEEE ! floating-point standard. However, for full compliance, software ! assistance is required. This option generates code fully IEEE-compliant code _except_ that the INEXACT-FLAG is not maintained (see below). If this option is turned on, the ! preprocessor macro '_IEEE_FP' is defined during compilation. The resulting code is less efficient but is able to correctly support denormalized numbers and exceptional IEEE values such as not-a-number and plus/minus infinity. Other Alpha compilers call ! this option '-ieee_with_no_inexact'. ! '-mieee-with-inexact' ! This is like '-mieee' except the generated code also maintains the IEEE INEXACT-FLAG. Turning on this option causes the generated code to implement fully-compliant IEEE math. In addition to ! '_IEEE_FP', '_IEEE_FP_EXACT' is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute significantly slower than the code generated by default. Since there is very little code that depends on the INEXACT-FLAG, you should normally not specify this option. Other Alpha compilers ! call this option '-ieee_with_inexact'. ! '-mfp-trap-mode=TRAP-MODE' This option controls what floating-point related traps are enabled. ! Other Alpha compilers call this option '-fptm TRAP-MODE'. The trap ! mode can be set to one of four values: ! 'n' ! This is the default (normal) setting. The only traps that are ! enabled are the ones that cannot be disabled in software (e.g., division by zero trap). ! 'u' ! In addition to the traps enabled by 'n', underflow traps are enabled as well. ! 'su' ! Like 'u', but the instructions are marked to be safe for software completion (see Alpha architecture manual for details). ! 'sui' ! Like 'su', but inexact traps are enabled as well. ! '-mfp-rounding-mode=ROUNDING-MODE' Selects the IEEE rounding mode. Other Alpha compilers call this ! option '-fprm ROUNDING-MODE'. The ROUNDING-MODE can be one of: ! 'n' ! Normal IEEE rounding mode. Floating-point numbers are rounded ! towards the nearest machine number or towards the even machine ! number in case of a tie. ! 'm' Round towards minus infinity. ! 'c' Chopped rounding mode. Floating-point numbers are rounded towards zero. ! 'd' Dynamic rounding mode. A field in the floating-point control register (FPCR, see Alpha architecture reference manual) controls the rounding mode in effect. The C library initializes this register for rounding towards plus infinity. ! Thus, unless your program modifies the FPCR, 'd' corresponds to round towards plus infinity. ! '-mtrap-precision=TRAP-PRECISION' In the Alpha architecture, floating-point traps are imprecise. This means without software assistance it is impossible to recover from a floating trap and program execution normally needs to be ! terminated. GCC can generate code that can assist operating system ! trap handlers in determining the exact location that caused a ! floating-point trap. Depending on the requirements of an application, different levels of precisions can be selected: ! 'p' Program precision. This option is the default and means a trap handler can only identify which program caused a floating-point exception. ! 'f' Function precision. The trap handler can determine the function that caused a floating-point exception. ! 'i' Instruction precision. The trap handler can determine the exact instruction that caused a floating-point exception. Other Alpha compilers provide the equivalent options called ! '-scope_safe' and '-resumption_safe'. ! '-mieee-conformant' This option marks the generated code as IEEE conformant. You must ! not use this option unless you also specify '-mtrap-precision=i' ! and either '-mfp-trap-mode=su' or '-mfp-trap-mode=sui'. Its only ! effect is to emit the line '.eflag 48' in the function prologue of the generated assembly file. ! '-mbuild-constants' ! Normally GCC examines a 32- or 64-bit integer constant to see if it ! can construct it from smaller constants in two or three instructions. If it cannot, it outputs the constant as a literal and generates code to load it from the data segment at run time. --- 13301,13443 ---- 3.17.11 DEC Alpha Options ------------------------- ! These `-m' options are defined for the DEC Alpha implementations: ! `-mno-soft-float' ! `-msoft-float' Use (do not use) the hardware floating-point instructions for ! floating-point operations. When `-msoft-float' is specified, ! functions in `libgcc.a' are used to perform floating-point operations. Unless they are replaced by routines that emulate the floating-point operations, or compiled in such a way as to call such emulations routines, these routines issue floating-point ! operations. If you are compiling for an Alpha without floating-point operations, you must ensure that the library is built so as not to call them. Note that Alpha implementations without floating-point operations are required to have floating-point registers. ! `-mfp-reg' ! `-mno-fp-regs' Generate code that uses (does not use) the floating-point register ! set. `-mno-fp-regs' implies `-msoft-float'. If the floating-point register set is not used, floating-point operands are passed in integer registers as if they were integers and floating-point ! results are passed in `$0' instead of `$f0'. This is a non-standard calling sequence, so any function with a floating-point argument or return value called by code compiled ! with `-mno-fp-regs' must also be compiled with that option. A typical use of this option is building a kernel that does not use, and hence need not save and restore, any floating-point registers. ! `-mieee' ! The Alpha architecture implements floating-point hardware ! optimized for maximum performance. It is mostly compliant with ! the IEEE floating-point standard. However, for full compliance, ! software assistance is required. This option generates code fully IEEE-compliant code _except_ that the INEXACT-FLAG is not maintained (see below). If this option is turned on, the ! preprocessor macro `_IEEE_FP' is defined during compilation. The resulting code is less efficient but is able to correctly support denormalized numbers and exceptional IEEE values such as not-a-number and plus/minus infinity. Other Alpha compilers call ! this option `-ieee_with_no_inexact'. ! `-mieee-with-inexact' ! This is like `-mieee' except the generated code also maintains the IEEE INEXACT-FLAG. Turning on this option causes the generated code to implement fully-compliant IEEE math. In addition to ! `_IEEE_FP', `_IEEE_FP_EXACT' is defined as a preprocessor macro. On some Alpha implementations the resulting code may execute significantly slower than the code generated by default. Since there is very little code that depends on the INEXACT-FLAG, you should normally not specify this option. Other Alpha compilers ! call this option `-ieee_with_inexact'. ! `-mfp-trap-mode=TRAP-MODE' This option controls what floating-point related traps are enabled. ! Other Alpha compilers call this option `-fptm TRAP-MODE'. The ! trap mode can be set to one of four values: ! `n' ! This is the default (normal) setting. The only traps that ! are enabled are the ones that cannot be disabled in software (e.g., division by zero trap). ! `u' ! In addition to the traps enabled by `n', underflow traps are enabled as well. ! `su' ! Like `u', but the instructions are marked to be safe for software completion (see Alpha architecture manual for details). ! `sui' ! Like `su', but inexact traps are enabled as well. ! `-mfp-rounding-mode=ROUNDING-MODE' Selects the IEEE rounding mode. Other Alpha compilers call this ! option `-fprm ROUNDING-MODE'. The ROUNDING-MODE can be one of: ! `n' ! Normal IEEE rounding mode. Floating-point numbers are ! rounded towards the nearest machine number or towards the ! even machine number in case of a tie. ! `m' Round towards minus infinity. ! `c' Chopped rounding mode. Floating-point numbers are rounded towards zero. ! `d' Dynamic rounding mode. A field in the floating-point control register (FPCR, see Alpha architecture reference manual) controls the rounding mode in effect. The C library initializes this register for rounding towards plus infinity. ! Thus, unless your program modifies the FPCR, `d' corresponds to round towards plus infinity. ! `-mtrap-precision=TRAP-PRECISION' In the Alpha architecture, floating-point traps are imprecise. This means without software assistance it is impossible to recover from a floating trap and program execution normally needs to be ! terminated. GCC can generate code that can assist operating ! system trap handlers in determining the exact location that caused ! a floating-point trap. Depending on the requirements of an application, different levels of precisions can be selected: ! `p' Program precision. This option is the default and means a trap handler can only identify which program caused a floating-point exception. ! `f' Function precision. The trap handler can determine the function that caused a floating-point exception. ! `i' Instruction precision. The trap handler can determine the exact instruction that caused a floating-point exception. Other Alpha compilers provide the equivalent options called ! `-scope_safe' and `-resumption_safe'. ! `-mieee-conformant' This option marks the generated code as IEEE conformant. You must ! not use this option unless you also specify `-mtrap-precision=i' ! and either `-mfp-trap-mode=su' or `-mfp-trap-mode=sui'. Its only ! effect is to emit the line `.eflag 48' in the function prologue of the generated assembly file. ! `-mbuild-constants' ! Normally GCC examines a 32- or 64-bit integer constant to see if ! it can construct it from smaller constants in two or three instructions. If it cannot, it outputs the constant as a literal and generates code to load it from the data segment at run time. *************** These '-m' options are defined for the D *** 13353,13490 **** before it can find the variables and constants in its own data segment. ! '-mbwx' ! '-mno-bwx' ! '-mcix' ! '-mno-cix' ! '-mfix' ! '-mno-fix' ! '-mmax' ! '-mno-max' Indicate whether GCC should generate code to use the optional BWX, CIX, FIX and MAX instruction sets. The default is to use the ! instruction sets supported by the CPU type specified via '-mcpu=' option or that of the CPU on which GCC was built if none is specified. ! '-mfloat-vax' ! '-mfloat-ieee' Generate code that uses (does not use) VAX F and G floating-point arithmetic instead of IEEE single and double precision. ! '-mexplicit-relocs' ! '-mno-explicit-relocs' Older Alpha assemblers provided no way to generate symbol relocations except via assembler macros. Use of these macros does not allow optimal instruction scheduling. GNU binutils as of version 2.12 supports a new syntax that allows the compiler to explicitly mark which relocations should apply to which instructions. This option is mostly useful for debugging, as GCC ! detects the capabilities of the assembler when it is built and sets ! the default accordingly. ! '-msmall-data' ! '-mlarge-data' ! When '-mexplicit-relocs' is in effect, static data is accessed via ! "gp-relative" relocations. When '-msmall-data' is used, objects 8 bytes long or smaller are placed in a "small data area" (the ! '.sdata' and '.sbss' sections) and are accessed via 16-bit ! relocations off of the '$gp' register. This limits the size of the ! small data area to 64KB, but allows the variables to be directly ! accessed via a single instruction. ! The default is '-mlarge-data'. With this option the data area is limited to just below 2GB. Programs that require more than 2GB of ! data must use 'malloc' or 'mmap' to allocate the data in the heap instead of in the program's data segment. ! When generating code for shared libraries, '-fpic' implies ! '-msmall-data' and '-fPIC' implies '-mlarge-data'. ! '-msmall-text' ! '-mlarge-text' ! When '-msmall-text' is used, the compiler assumes that the code of the entire program (or shared library) fits in 4MB, and is thus ! reachable with a branch instruction. When '-msmall-data' is used, ! the compiler can assume that all local symbols share the same '$gp' ! value, and thus reduce the number of instructions required for a ! function call from 4 to 1. ! The default is '-mlarge-text'. ! '-mcpu=CPU_TYPE' Set the instruction set and instruction scheduling parameters for ! machine type CPU_TYPE. You can specify either the 'EV' style name or the corresponding chip number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family of processors and chooses the default values for the instruction set from the ! processor you specify. If you do not specify a processor type, GCC ! defaults to the processor on which the compiler was built. Supported values for CPU_TYPE are ! 'ev4' ! 'ev45' ! '21064' Schedules as an EV4 and has no instruction set extensions. ! 'ev5' ! '21164' Schedules as an EV5 and has no instruction set extensions. ! 'ev56' ! '21164a' Schedules as an EV5 and supports the BWX extension. ! 'pca56' ! '21164pc' ! '21164PC' Schedules as an EV5 and supports the BWX and MAX extensions. ! 'ev6' ! '21264' Schedules as an EV6 and supports the BWX, FIX, and MAX extensions. ! 'ev67' ! '21264a' Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions. ! Native toolchains also support the value 'native', which selects the best architecture option for the host processor. ! '-mcpu=native' has no effect if GCC does not recognize the processor. ! '-mtune=CPU_TYPE' Set only the instruction scheduling parameters for machine type CPU_TYPE. The instruction set is not changed. ! Native toolchains also support the value 'native', which selects the best architecture option for the host processor. ! '-mtune=native' has no effect if GCC does not recognize the processor. ! '-mmemory-latency=TIME' Sets the latency the scheduler should assume for typical memory references as seen by the application. This number is highly ! dependent on the memory access patterns used by the application and ! the size of the external cache on the machine. Valid options for TIME are ! 'NUMBER' A decimal number representing clock cycles. ! 'L1' ! 'L2' ! 'L3' ! 'main' The compiler contains estimates of the number of clock cycles for "typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. Note that L3 is only valid for EV5.  File: gcc.info, Node: FR30 Options, Next: FRV Options, Prev: DEC Alpha Options, Up: Submodel Options --- 13450,13588 ---- before it can find the variables and constants in its own data segment. ! `-mbwx' ! `-mno-bwx' ! `-mcix' ! `-mno-cix' ! `-mfix' ! `-mno-fix' ! `-mmax' ! `-mno-max' Indicate whether GCC should generate code to use the optional BWX, CIX, FIX and MAX instruction sets. The default is to use the ! instruction sets supported by the CPU type specified via `-mcpu=' option or that of the CPU on which GCC was built if none is specified. ! `-mfloat-vax' ! `-mfloat-ieee' Generate code that uses (does not use) VAX F and G floating-point arithmetic instead of IEEE single and double precision. ! `-mexplicit-relocs' ! `-mno-explicit-relocs' Older Alpha assemblers provided no way to generate symbol relocations except via assembler macros. Use of these macros does not allow optimal instruction scheduling. GNU binutils as of version 2.12 supports a new syntax that allows the compiler to explicitly mark which relocations should apply to which instructions. This option is mostly useful for debugging, as GCC ! detects the capabilities of the assembler when it is built and ! sets the default accordingly. ! `-msmall-data' ! `-mlarge-data' ! When `-mexplicit-relocs' is in effect, static data is accessed via ! "gp-relative" relocations. When `-msmall-data' is used, objects 8 bytes long or smaller are placed in a "small data area" (the ! `.sdata' and `.sbss' sections) and are accessed via 16-bit ! relocations off of the `$gp' register. This limits the size of ! the small data area to 64KB, but allows the variables to be ! directly accessed via a single instruction. ! The default is `-mlarge-data'. With this option the data area is limited to just below 2GB. Programs that require more than 2GB of ! data must use `malloc' or `mmap' to allocate the data in the heap instead of in the program's data segment. ! When generating code for shared libraries, `-fpic' implies ! `-msmall-data' and `-fPIC' implies `-mlarge-data'. ! `-msmall-text' ! `-mlarge-text' ! When `-msmall-text' is used, the compiler assumes that the code of the entire program (or shared library) fits in 4MB, and is thus ! reachable with a branch instruction. When `-msmall-data' is used, ! the compiler can assume that all local symbols share the same ! `$gp' value, and thus reduce the number of instructions required ! for a function call from 4 to 1. ! The default is `-mlarge-text'. ! `-mcpu=CPU_TYPE' Set the instruction set and instruction scheduling parameters for ! machine type CPU_TYPE. You can specify either the `EV' style name or the corresponding chip number. GCC supports scheduling parameters for the EV4, EV5 and EV6 family of processors and chooses the default values for the instruction set from the ! processor you specify. If you do not specify a processor type, ! GCC defaults to the processor on which the compiler was built. Supported values for CPU_TYPE are ! `ev4' ! `ev45' ! `21064' Schedules as an EV4 and has no instruction set extensions. ! `ev5' ! `21164' Schedules as an EV5 and has no instruction set extensions. ! `ev56' ! `21164a' Schedules as an EV5 and supports the BWX extension. ! `pca56' ! `21164pc' ! `21164PC' Schedules as an EV5 and supports the BWX and MAX extensions. ! `ev6' ! `21264' Schedules as an EV6 and supports the BWX, FIX, and MAX extensions. ! `ev67' ! `21264a' Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions. ! Native toolchains also support the value `native', which selects the best architecture option for the host processor. ! `-mcpu=native' has no effect if GCC does not recognize the processor. ! `-mtune=CPU_TYPE' Set only the instruction scheduling parameters for machine type CPU_TYPE. The instruction set is not changed. ! Native toolchains also support the value `native', which selects the best architecture option for the host processor. ! `-mtune=native' has no effect if GCC does not recognize the processor. ! `-mmemory-latency=TIME' Sets the latency the scheduler should assume for typical memory references as seen by the application. This number is highly ! dependent on the memory access patterns used by the application ! and the size of the external cache on the machine. Valid options for TIME are ! `NUMBER' A decimal number representing clock cycles. ! `L1' ! `L2' ! `L3' ! `main' The compiler contains estimates of the number of clock cycles for "typical" EV4 & EV5 hardware for the Level 1, 2 & 3 caches (also called Dcache, Scache, and Bcache), as well as to main memory. Note that L3 is only valid for EV5. +  File: gcc.info, Node: FR30 Options, Next: FRV Options, Prev: DEC Alpha Options, Up: Submodel Options *************** File: gcc.info, Node: FR30 Options, Ne *** 13493,13770 **** These options are defined specifically for the FR30 port. ! '-msmall-model' Use the small address space model. This can produce smaller code, but it does assume that all symbolic values and addresses fit into a 20-bit range. ! '-mno-lsim' Assume that runtime support has been provided and so there is no ! need to include the simulator library ('libsim.a') on the linker command line.  File: gcc.info, Node: FRV Options, Next: GNU/Linux Options, Prev: FR30 Options, Up: Submodel Options 3.17.13 FRV Options ------------------- ! '-mgpr-32' ! Only use the first 32 general-purpose registers. ! '-mgpr-64' ! Use all 64 general-purpose registers. ! '-mfpr-32' ! Use only the first 32 floating-point registers. ! '-mfpr-64' ! Use all 64 floating-point registers. ! '-mhard-float' ! Use hardware instructions for floating-point operations. ! '-msoft-float' ! Use library routines for floating-point operations. ! '-malloc-cc' ! Dynamically allocate condition code registers. ! '-mfixed-cc' ! Do not try to dynamically allocate condition code registers, only ! use 'icc0' and 'fcc0'. ! ! '-mdword' Change ABI to use double word insns. ! '-mno-dword' ! Do not use double word instructions. ! '-mdouble' ! Use floating-point double instructions. ! '-mno-double' ! Do not use floating-point double instructions. ! '-mmedia' ! Use media instructions. ! '-mno-media' ! Do not use media instructions. ! '-mmuladd' ! Use multiply and add/subtract instructions. ! '-mno-muladd' ! Do not use multiply and add/subtract instructions. ! '-mfdpic' ! Select the FDPIC ABI, which uses function descriptors to represent pointers to functions. Without any PIC/PIE-related options, it ! implies '-fPIE'. With '-fpic' or '-fpie', it assumes GOT entries ! and small data are within a 12-bit range from the GOT base address; ! with '-fPIC' or '-fPIE', GOT offsets are computed with 32 bits. ! With a 'bfin-elf' target, this option implies '-msim'. ! ! '-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without '-mfdpic'. It's enabled by default if optimizing for speed and compiling for ! shared libraries (i.e., '-fPIC' or '-fpic'), or when an ! optimization option such as '-O3' or above is present in the command line. ! '-mTLS' ! Assume a large TLS segment when generating thread-local code. ! '-mtls' ! Do not assume a large TLS segment when generating thread-local code. ! '-mgprel-ro' ! ! Enable the use of 'GPREL' relocations in the FDPIC ABI for data that is known to be in read-only sections. It's enabled by ! default, except for '-fpic' or '-fpie': even though it may help make the global offset table smaller, it trades 1 instruction for ! 4. With '-fPIC' or '-fPIE', it trades 3 instructions for 4, one of ! which may be shared by multiple symbols, and it avoids the need for ! a GOT entry for the referenced symbol, so it's more likely to be a ! win. If it is not, '-mno-gprel-ro' can be used to disable it. ! ! '-multilib-library-pic' Link with the (library, not FD) pic libraries. It's implied by ! '-mlibrary-pic', as well as by '-fPIC' and '-fpic' without ! '-mfdpic'. You should never have to use it explicitly. ! ! '-mlinked-fp' Follow the EABI requirement of always creating a frame pointer whenever a stack frame is allocated. This option is enabled by ! default and can be disabled with '-mno-linked-fp'. ! ! '-mlong-calls' Use indirect addressing to call functions outside the current compilation unit. This allows the functions to be placed anywhere within the 32-bit address space. ! '-malign-labels' ! Try to align labels to an 8-byte boundary by inserting NOPs into the previous packet. This option only has an effect when VLIW packing is enabled. It doesn't create new packets; it merely adds NOPs to existing ones. ! '-mlibrary-pic' ! Generate position-independent EABI code. ! '-macc-4' ! Use only the first four media accumulator registers. ! '-macc-8' ! Use all eight media accumulator registers. ! '-mpack' ! Pack VLIW instructions. ! '-mno-pack' ! Do not pack VLIW instructions. ! '-mno-eflags' ! Do not mark ABI switches in e_flags. ! '-mcond-move' ! Enable the use of conditional-move instructions (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-cond-move' Disable the use of conditional-move instructions. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mscc' Enable the use of conditional set instructions (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-scc' Disable the use of conditional set instructions. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mcond-exec' Enable the use of conditional execution (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-cond-exec' Disable the use of conditional execution. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mvliw-branch' Run a pass to pack branches into VLIW instructions (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-vliw-branch' Do not run a pass to pack branches into VLIW instructions. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mmulti-cond-exec' ! Enable optimization of '&&' and '||' in conditional execution (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-multi-cond-exec' ! ! Disable optimization of '&&' and '||' in conditional execution. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! '-mnested-cond-exec' Enable nested conditional execution optimizations (default). ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-mno-nested-cond-exec' Disable nested conditional execution optimizations. ! This switch is mainly for debugging the compiler and will likely be ! removed in a future version. ! ! '-moptimize-membar' ! This switch removes redundant 'membar' instructions from the compiler-generated code. It is enabled by default. ! '-mno-optimize-membar' ! ! This switch disables the automatic removal of redundant 'membar' instructions from the generated code. ! '-mtomcat-stats' ! Cause gas to print out tomcat statistics. ! '-mcpu=CPU' ! Select the processor type for which to generate code. Possible ! values are 'frv', 'fr550', 'tomcat', 'fr500', 'fr450', 'fr405', ! 'fr400', 'fr300' and 'simple'.  File: gcc.info, Node: GNU/Linux Options, Next: H8/300 Options, Prev: FRV Options, Up: Submodel Options --- 13591,13823 ---- These options are defined specifically for the FR30 port. ! `-msmall-model' Use the small address space model. This can produce smaller code, but it does assume that all symbolic values and addresses fit into a 20-bit range. ! `-mno-lsim' Assume that runtime support has been provided and so there is no ! need to include the simulator library (`libsim.a') on the linker command line. +  File: gcc.info, Node: FRV Options, Next: GNU/Linux Options, Prev: FR30 Options, Up: Submodel Options 3.17.13 FRV Options ------------------- ! `-mgpr-32' Only use the first 32 general-purpose registers. ! `-mgpr-64' Use all 64 general-purpose registers. ! `-mfpr-32' Use only the first 32 floating-point registers. ! `-mfpr-64' Use all 64 floating-point registers. ! `-mhard-float' Use hardware instructions for floating-point operations. ! `-msoft-float' Use library routines for floating-point operations. ! `-malloc-cc' Dynamically allocate condition code registers. ! `-mfixed-cc' Do not try to dynamically allocate condition code registers, only ! use `icc0' and `fcc0'. + `-mdword' Change ABI to use double word insns. ! `-mno-dword' Do not use double word instructions. ! `-mdouble' Use floating-point double instructions. ! `-mno-double' Do not use floating-point double instructions. ! `-mmedia' Use media instructions. ! `-mno-media' Do not use media instructions. ! `-mmuladd' Use multiply and add/subtract instructions. ! `-mno-muladd' Do not use multiply and add/subtract instructions. ! `-mfdpic' Select the FDPIC ABI, which uses function descriptors to represent pointers to functions. Without any PIC/PIE-related options, it ! implies `-fPIE'. With `-fpic' or `-fpie', it assumes GOT entries ! and small data are within a 12-bit range from the GOT base ! address; with `-fPIC' or `-fPIE', GOT offsets are computed with 32 ! bits. With a `bfin-elf' target, this option implies `-msim'. + `-minline-plt' Enable inlining of PLT entries in function calls to functions that ! are not known to bind locally. It has no effect without `-mfdpic'. It's enabled by default if optimizing for speed and compiling for ! shared libraries (i.e., `-fPIC' or `-fpic'), or when an ! optimization option such as `-O3' or above is present in the command line. ! `-mTLS' Assume a large TLS segment when generating thread-local code. ! `-mtls' Do not assume a large TLS segment when generating thread-local code. ! `-mgprel-ro' ! Enable the use of `GPREL' relocations in the FDPIC ABI for data that is known to be in read-only sections. It's enabled by ! default, except for `-fpic' or `-fpie': even though it may help make the global offset table smaller, it trades 1 instruction for ! 4. With `-fPIC' or `-fPIE', it trades 3 instructions for 4, one ! of which may be shared by multiple symbols, and it avoids the need ! for a GOT entry for the referenced symbol, so it's more likely to ! be a win. If it is not, `-mno-gprel-ro' can be used to disable it. + `-multilib-library-pic' Link with the (library, not FD) pic libraries. It's implied by ! `-mlibrary-pic', as well as by `-fPIC' and `-fpic' without ! `-mfdpic'. You should never have to use it explicitly. + `-mlinked-fp' Follow the EABI requirement of always creating a frame pointer whenever a stack frame is allocated. This option is enabled by ! default and can be disabled with `-mno-linked-fp'. + `-mlong-calls' Use indirect addressing to call functions outside the current compilation unit. This allows the functions to be placed anywhere within the 32-bit address space. ! `-malign-labels' Try to align labels to an 8-byte boundary by inserting NOPs into the previous packet. This option only has an effect when VLIW packing is enabled. It doesn't create new packets; it merely adds NOPs to existing ones. ! `-mlibrary-pic' Generate position-independent EABI code. ! `-macc-4' Use only the first four media accumulator registers. ! `-macc-8' Use all eight media accumulator registers. ! `-mpack' Pack VLIW instructions. ! `-mno-pack' Do not pack VLIW instructions. ! `-mno-eflags' Do not mark ABI switches in e_flags. ! `-mcond-move' Enable the use of conditional-move instructions (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mno-cond-move' Disable the use of conditional-move instructions. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mscc' Enable the use of conditional set instructions (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mno-scc' Disable the use of conditional set instructions. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mcond-exec' Enable the use of conditional execution (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mno-cond-exec' Disable the use of conditional execution. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mvliw-branch' Run a pass to pack branches into VLIW instructions (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mno-vliw-branch' Do not run a pass to pack branches into VLIW instructions. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. ! `-mmulti-cond-exec' ! Enable optimization of `&&' and `||' in conditional execution (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. ! `-mno-multi-cond-exec' ! Disable optimization of `&&' and `||' in conditional execution. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mnested-cond-exec' Enable nested conditional execution optimizations (default). ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. + `-mno-nested-cond-exec' Disable nested conditional execution optimizations. ! This switch is mainly for debugging the compiler and will likely ! be removed in a future version. ! `-moptimize-membar' ! This switch removes redundant `membar' instructions from the compiler-generated code. It is enabled by default. ! `-mno-optimize-membar' ! This switch disables the automatic removal of redundant `membar' instructions from the generated code. ! `-mtomcat-stats' Cause gas to print out tomcat statistics. ! `-mcpu=CPU' Select the processor type for which to generate code. Possible ! values are `frv', `fr550', `tomcat', `fr500', `fr450', `fr405', ! `fr400', `fr300' and `simple'. !  File: gcc.info, Node: GNU/Linux Options, Next: H8/300 Options, Prev: FRV Options, Up: Submodel Options *************** File: gcc.info, Node: GNU/Linux Options *** 13772,13853 **** 3.17.14 GNU/Linux Options ------------------------- ! These '-m' options are defined for GNU/Linux targets: ! '-mglibc' Use the GNU C library. This is the default except on ! '*-*-linux-*uclibc*' and '*-*-linux-*android*' targets. ! '-muclibc' ! Use uClibc C library. This is the default on '*-*-linux-*uclibc*' targets. ! '-mbionic' ! Use Bionic C library. This is the default on '*-*-linux-*android*' ! targets. ! '-mandroid' ! Compile code compatible with Android platform. This is the default ! on '*-*-linux-*android*' targets. ! When compiling, this option enables '-mbionic', '-fPIC', ! '-fno-exceptions' and '-fno-rtti' by default. When linking, this option makes the GCC driver pass Android-specific options to the linker. Finally, this option causes the preprocessor macro ! '__ANDROID__' to be defined. ! '-tno-android-cc' ! Disable compilation effects of '-mandroid', i.e., do not enable ! '-mbionic', '-fPIC', '-fno-exceptions' and '-fno-rtti' by default. ! '-tno-android-ld' ! Disable linking effects of '-mandroid', i.e., pass standard Linux linking options to the linker.  File: gcc.info, Node: H8/300 Options, Next: HPPA Options, Prev: GNU/Linux Options, Up: Submodel Options 3.17.15 H8/300 Options ---------------------- ! These '-m' options are defined for the H8/300 implementations: ! '-mrelax' Shorten some address references at link time, when possible; uses ! the linker option '-relax'. *Note 'ld' and the H8/300: (ld)H8/300, ! for a fuller description. ! '-mh' Generate code for the H8/300H. ! '-ms' Generate code for the H8S. ! '-mn' Generate code for the H8S and H8/300H in the normal mode. This ! switch must be used either with '-mh' or '-ms'. ! '-ms2600' Generate code for the H8S/2600. This switch must be used with ! '-ms'. ! '-mexr' Extended registers are stored on stack before execution of function ! with monitor attribute. Default option is '-mexr'. This option is valid only for H8S targets. ! '-mno-exr' Extended registers are not stored on stack before execution of ! function with monitor attribute. Default option is '-mno-exr'. This option is valid only for H8S targets. ! '-mint32' ! Make 'int' data 32 bits by default. ! '-malign-300' On the H8/300H and H8S, use the same alignment rules as for the H8/300. The default for the H8/300H and H8S is to align longs and ! floats on 4-byte boundaries. '-malign-300' causes them to be aligned on 2-byte boundaries. This option has no effect on the H8/300. --- 13825,13907 ---- 3.17.14 GNU/Linux Options ------------------------- ! These `-m' options are defined for GNU/Linux targets: ! `-mglibc' Use the GNU C library. This is the default except on ! `*-*-linux-*uclibc*' and `*-*-linux-*android*' targets. ! `-muclibc' ! Use uClibc C library. This is the default on `*-*-linux-*uclibc*' targets. ! `-mbionic' ! Use Bionic C library. This is the default on ! `*-*-linux-*android*' targets. ! `-mandroid' ! Compile code compatible with Android platform. This is the ! default on `*-*-linux-*android*' targets. ! When compiling, this option enables `-mbionic', `-fPIC', ! `-fno-exceptions' and `-fno-rtti' by default. When linking, this option makes the GCC driver pass Android-specific options to the linker. Finally, this option causes the preprocessor macro ! `__ANDROID__' to be defined. ! `-tno-android-cc' ! Disable compilation effects of `-mandroid', i.e., do not enable ! `-mbionic', `-fPIC', `-fno-exceptions' and `-fno-rtti' by default. ! `-tno-android-ld' ! Disable linking effects of `-mandroid', i.e., pass standard Linux linking options to the linker. +  File: gcc.info, Node: H8/300 Options, Next: HPPA Options, Prev: GNU/Linux Options, Up: Submodel Options 3.17.15 H8/300 Options ---------------------- ! These `-m' options are defined for the H8/300 implementations: ! `-mrelax' Shorten some address references at link time, when possible; uses ! the linker option `-relax'. *Note `ld' and the H8/300: ! (ld)H8/300, for a fuller description. ! `-mh' Generate code for the H8/300H. ! `-ms' Generate code for the H8S. ! `-mn' Generate code for the H8S and H8/300H in the normal mode. This ! switch must be used either with `-mh' or `-ms'. ! `-ms2600' Generate code for the H8S/2600. This switch must be used with ! `-ms'. ! `-mexr' Extended registers are stored on stack before execution of function ! with monitor attribute. Default option is `-mexr'. This option is valid only for H8S targets. ! `-mno-exr' Extended registers are not stored on stack before execution of ! function with monitor attribute. Default option is `-mno-exr'. This option is valid only for H8S targets. ! `-mint32' ! Make `int' data 32 bits by default. ! `-malign-300' On the H8/300H and H8S, use the same alignment rules as for the H8/300. The default for the H8/300H and H8S is to align longs and ! floats on 4-byte boundaries. `-malign-300' causes them to be aligned on 2-byte boundaries. This option has no effect on the H8/300. *************** File: gcc.info, Node: HPPA Options, Ne *** 13857,13998 **** 3.17.16 HPPA Options -------------------- ! These '-m' options are defined for the HPPA family of computers: ! '-march=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are '1.0' for PA 1.0, '1.1' for PA 1.1, and '2.0' ! for PA 2.0 processors. Refer to '/usr/lib/sched.models' on an ! HP-UX system to determine the proper architecture option for your ! machine. Code compiled for lower numbered architectures runs on ! higher numbered architectures, but not the other way around. ! '-mpa-risc-1-0' ! '-mpa-risc-1-1' ! '-mpa-risc-2-0' ! Synonyms for '-march=1.0', '-march=1.1', and '-march=2.0' respectively. ! '-mjump-in-delay' Fill delay slots of function calls with unconditional jump instructions by modifying the return pointer for the function call to be the target of the conditional jump. ! '-mdisable-fpregs' Prevent floating-point registers from being used in any manner. This is necessary for compiling kernels that perform lazy context switching of floating-point registers. If you use this option and attempt to perform floating-point operations, the compiler aborts. ! '-mdisable-indexing' Prevent the compiler from using indexing address modes. This avoids some rather obscure problems when compiling MIG generated code under MACH. ! '-mno-space-regs' ! Generate code that assumes the target has no space registers. This ! allows GCC to generate faster indirect calls and use unscaled index ! address modes. Such code is suitable for level 0 PA systems and kernels. ! '-mfast-indirect-calls' Generate code that assumes calls never cross space boundaries. This allows GCC to emit code that performs faster indirect calls. This option does not work in the presence of shared libraries or nested functions. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mlong-load-store' Generate 3-instruction load and store sequences as sometimes ! required by the HP-UX 10 linker. This is equivalent to the '+k' option to the HP compilers. ! '-mportable-runtime' Use the portable calling conventions proposed by HP for ELF systems. ! '-mgas' Enable the use of assembler directives only GAS understands. ! '-mschedule=CPU-TYPE' Schedule code according to the constraints for the machine type ! CPU-TYPE. The choices for CPU-TYPE are '700' '7100', '7100LC', ! '7200', '7300' and '8000'. Refer to '/usr/lib/sched.models' on an HP-UX system to determine the proper scheduling option for your ! machine. The default scheduling is '8000'. ! '-mlinker-opt' Enable the optimization pass in the HP-UX linker. Note this makes ! symbolic debugging impossible. It also triggers a bug in the HP-UX ! 8 and HP-UX 9 linkers in which they give bogus error messages when ! linking some programs. ! '-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all HPPA ! targets. Normally the facilities of the machine's usual C compiler ! are used, but this cannot be done directly in cross-compilation. ! You must make your own arrangements to provide suitable library ! functions for cross-compilation. ! '-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile 'libgcc.a', the ! library that comes with GCC, with '-msoft-float' in order for this to work. ! '-msio' ! Generate the predefine, '_SIO', for server IO. The default is ! '-mwsio'. This generates the predefines, '__hp9000s700', ! '__hp9000s700__' and '_WSIO', for workstation IO. These options are available under HP-UX and HI-UX. ! '-mgnu-ld' ! Use options specific to GNU 'ld'. This passes '-shared' to 'ld' when building a shared library. It is the default when GCC is configured, explicitly or implicitly, with the GNU linker. This ! option does not affect which 'ld' is called; it only changes what ! parameters are passed to that 'ld'. The 'ld' that is called is ! determined by the '--with-ld' configure option, GCC's program ! search path, and finally by the user's 'PATH'. The linker used by ! GCC can be printed using 'which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured ! with 'hppa*64*-*-hpux*'. ! '-mhp-ld' ! Use options specific to HP 'ld'. This passes '-b' to 'ld' when ! building a shared library and passes '+Accept TypeMismatch' to 'ld' ! on all links. It is the default when GCC is configured, explicitly ! or implicitly, with the HP linker. This option does not affect ! which 'ld' is called; it only changes what parameters are passed to ! that 'ld'. The 'ld' that is called is determined by the ! '--with-ld' configure option, GCC's program search path, and ! finally by the user's 'PATH'. The linker used by GCC can be ! printed using 'which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured with ! 'hppa*64*-*-hpux*'. ! '-mlong-calls' Generate code that uses long call sequences. This ensures that a call is always able to reach linker generated stubs. The default ! is to generate long calls only when the distance from the call site ! to the beginning of the function or translation unit, as the case ! may be, exceeds a predefined limit set by the branch type being ! used. The limits for normal calls are 7,600,000 and 240,000 bytes, ! respectively for the PA 2.0 and PA 1.X architectures. Sibcalls are ! always limited at 240,000 bytes. Distances are measured from the beginning of functions when using ! the '-ffunction-sections' option, or when using the '-mgas' and ! '-mno-portable-runtime' options together under HP-UX with the SOM linker. It is normally not desirable to use this option as it degrades --- 13911,14052 ---- 3.17.16 HPPA Options -------------------- ! These `-m' options are defined for the HPPA family of computers: ! `-march=ARCHITECTURE-TYPE' Generate code for the specified architecture. The choices for ! ARCHITECTURE-TYPE are `1.0' for PA 1.0, `1.1' for PA 1.1, and ! `2.0' for PA 2.0 processors. Refer to `/usr/lib/sched.models' on ! an HP-UX system to determine the proper architecture option for ! your machine. Code compiled for lower numbered architectures runs ! on higher numbered architectures, but not the other way around. ! `-mpa-risc-1-0' ! `-mpa-risc-1-1' ! `-mpa-risc-2-0' ! Synonyms for `-march=1.0', `-march=1.1', and `-march=2.0' respectively. ! `-mjump-in-delay' Fill delay slots of function calls with unconditional jump instructions by modifying the return pointer for the function call to be the target of the conditional jump. ! `-mdisable-fpregs' Prevent floating-point registers from being used in any manner. This is necessary for compiling kernels that perform lazy context switching of floating-point registers. If you use this option and attempt to perform floating-point operations, the compiler aborts. ! `-mdisable-indexing' Prevent the compiler from using indexing address modes. This avoids some rather obscure problems when compiling MIG generated code under MACH. ! `-mno-space-regs' ! Generate code that assumes the target has no space registers. ! This allows GCC to generate faster indirect calls and use unscaled ! index address modes. Such code is suitable for level 0 PA systems and kernels. ! `-mfast-indirect-calls' Generate code that assumes calls never cross space boundaries. This allows GCC to emit code that performs faster indirect calls. This option does not work in the presence of shared libraries or nested functions. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mlong-load-store' Generate 3-instruction load and store sequences as sometimes ! required by the HP-UX 10 linker. This is equivalent to the `+k' option to the HP compilers. ! `-mportable-runtime' Use the portable calling conventions proposed by HP for ELF systems. ! `-mgas' Enable the use of assembler directives only GAS understands. ! `-mschedule=CPU-TYPE' Schedule code according to the constraints for the machine type ! CPU-TYPE. The choices for CPU-TYPE are `700' `7100', `7100LC', ! `7200', `7300' and `8000'. Refer to `/usr/lib/sched.models' on an HP-UX system to determine the proper scheduling option for your ! machine. The default scheduling is `8000'. ! `-mlinker-opt' Enable the optimization pass in the HP-UX linker. Note this makes ! symbolic debugging impossible. It also triggers a bug in the ! HP-UX 8 and HP-UX 9 linkers in which they give bogus error ! messages when linking some programs. ! `-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all HPPA ! targets. Normally the facilities of the machine's usual C ! compiler are used, but this cannot be done directly in ! cross-compilation. You must make your own arrangements to provide ! suitable library functions for cross-compilation. ! `-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile `libgcc.a', the ! library that comes with GCC, with `-msoft-float' in order for this to work. ! `-msio' ! Generate the predefine, `_SIO', for server IO. The default is ! `-mwsio'. This generates the predefines, `__hp9000s700', ! `__hp9000s700__' and `_WSIO', for workstation IO. These options are available under HP-UX and HI-UX. ! `-mgnu-ld' ! Use options specific to GNU `ld'. This passes `-shared' to `ld' when building a shared library. It is the default when GCC is configured, explicitly or implicitly, with the GNU linker. This ! option does not affect which `ld' is called; it only changes what ! parameters are passed to that `ld'. The `ld' that is called is ! determined by the `--with-ld' configure option, GCC's program ! search path, and finally by the user's `PATH'. The linker used by ! GCC can be printed using `which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured ! with `hppa*64*-*-hpux*'. ! `-mhp-ld' ! Use options specific to HP `ld'. This passes `-b' to `ld' when ! building a shared library and passes `+Accept TypeMismatch' to ! `ld' on all links. It is the default when GCC is configured, ! explicitly or implicitly, with the HP linker. This option does ! not affect which `ld' is called; it only changes what parameters ! are passed to that `ld'. The `ld' that is called is determined by ! the `--with-ld' configure option, GCC's program search path, and ! finally by the user's `PATH'. The linker used by GCC can be ! printed using `which `gcc -print-prog-name=ld`'. This option is only available on the 64-bit HP-UX GCC, i.e. configured with ! `hppa*64*-*-hpux*'. ! `-mlong-calls' Generate code that uses long call sequences. This ensures that a call is always able to reach linker generated stubs. The default ! is to generate long calls only when the distance from the call ! site to the beginning of the function or translation unit, as the ! case may be, exceeds a predefined limit set by the branch type ! being used. The limits for normal calls are 7,600,000 and 240,000 ! bytes, respectively for the PA 2.0 and PA 1.X architectures. ! Sibcalls are always limited at 240,000 bytes. Distances are measured from the beginning of functions when using ! the `-ffunction-sections' option, or when using the `-mgas' and ! `-mno-portable-runtime' options together under HP-UX with the SOM linker. It is normally not desirable to use this option as it degrades *************** These '-m' options are defined for the H *** 14006,14055 **** However, an indirect call is used on 32-bit ELF systems in pic code and it is quite long. ! '-munix=UNIX-STD' Generate compiler predefines and select a startfile for the ! specified UNIX standard. The choices for UNIX-STD are '93', '95' ! and '98'. '93' is supported on all HP-UX versions. '95' is ! available on HP-UX 10.10 and later. '98' is available on HP-UX ! 11.11 and later. The default values are '93' for HP-UX 10.00, '95' ! for HP-UX 10.10 though to 11.00, and '98' for HP-UX 11.11 and later. ! '-munix=93' provides the same predefines as GCC 3.3 and 3.4. ! '-munix=95' provides additional predefines for 'XOPEN_UNIX' and ! '_XOPEN_SOURCE_EXTENDED', and the startfile 'unix95.o'. ! '-munix=98' provides additional predefines for '_XOPEN_UNIX', ! '_XOPEN_SOURCE_EXTENDED', '_INCLUDE__STDC_A1_SOURCE' and ! '_INCLUDE_XOPEN_SOURCE_500', and the startfile 'unix98.o'. It is _important_ to note that this option changes the interfaces for various library routines. It also affects the operational ! behavior of the C library. Thus, _extreme_ care is needed in using ! this option. Library code that is intended to operate with more than one UNIX standard must test, set and restore the variable __XPG4_EXTENDED_MASK as appropriate. Most GNU software doesn't provide this capability. ! '-nolibdld' Suppress the generation of link options to search libdld.sl when ! the '-static' option is specified on HP-UX 10 and later. ! '-static' The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There isn't an archive version of libdld.sl. Thus, ! when the '-static' option is specified, special link options are needed to resolve this dependency. On HP-UX 10 and later, the GCC driver adds the necessary options to ! link with libdld.sl when the '-static' option is specified. This ! causes the resulting binary to be dynamic. On the 64-bit port, the ! linkers generate dynamic binaries by default in any case. The ! '-nolibdld' option can be used to prevent the GCC driver from adding these link options. ! '-threads' Add support for multithreading with the "dce thread" library under HP-UX. This option sets flags for both the preprocessor and linker. --- 14060,14109 ---- However, an indirect call is used on 32-bit ELF systems in pic code and it is quite long. ! `-munix=UNIX-STD' Generate compiler predefines and select a startfile for the ! specified UNIX standard. The choices for UNIX-STD are `93', `95' ! and `98'. `93' is supported on all HP-UX versions. `95' is ! available on HP-UX 10.10 and later. `98' is available on HP-UX ! 11.11 and later. The default values are `93' for HP-UX 10.00, ! `95' for HP-UX 10.10 though to 11.00, and `98' for HP-UX 11.11 and later. ! `-munix=93' provides the same predefines as GCC 3.3 and 3.4. ! `-munix=95' provides additional predefines for `XOPEN_UNIX' and ! `_XOPEN_SOURCE_EXTENDED', and the startfile `unix95.o'. ! `-munix=98' provides additional predefines for `_XOPEN_UNIX', ! `_XOPEN_SOURCE_EXTENDED', `_INCLUDE__STDC_A1_SOURCE' and ! `_INCLUDE_XOPEN_SOURCE_500', and the startfile `unix98.o'. It is _important_ to note that this option changes the interfaces for various library routines. It also affects the operational ! behavior of the C library. Thus, _extreme_ care is needed in ! using this option. Library code that is intended to operate with more than one UNIX standard must test, set and restore the variable __XPG4_EXTENDED_MASK as appropriate. Most GNU software doesn't provide this capability. ! `-nolibdld' Suppress the generation of link options to search libdld.sl when ! the `-static' option is specified on HP-UX 10 and later. ! `-static' The HP-UX implementation of setlocale in libc has a dependency on libdld.sl. There isn't an archive version of libdld.sl. Thus, ! when the `-static' option is specified, special link options are needed to resolve this dependency. On HP-UX 10 and later, the GCC driver adds the necessary options to ! link with libdld.sl when the `-static' option is specified. This ! causes the resulting binary to be dynamic. On the 64-bit port, ! the linkers generate dynamic binaries by default in any case. The ! `-nolibdld' option can be used to prevent the GCC driver from adding these link options. ! `-threads' Add support for multithreading with the "dce thread" library under HP-UX. This option sets flags for both the preprocessor and linker. *************** File: gcc.info, Node: i386 and x86-64 O *** 14060,14294 **** 3.17.17 Intel 386 and AMD x86-64 Options ---------------------------------------- ! These '-m' options are defined for the i386 and x86-64 family of computers: ! '-march=CPU-TYPE' Generate instructions for the machine type CPU-TYPE. In contrast ! to '-mtune=CPU-TYPE', which merely tunes the generated code for the ! specified CPU-TYPE, '-march=CPU-TYPE' allows GCC to generate code ! that may not run at all on processors other than the one indicated. ! Specifying '-march=CPU-TYPE' implies '-mtune=CPU-TYPE'. The choices for CPU-TYPE are: ! 'native' This selects the CPU to generate code for at compilation time by determining the processor type of the compiling machine. ! Using '-march=native' enables all instruction subsets ! supported by the local machine (hence the result might not run ! on different machines). Using '-mtune=native' produces code ! optimized for the local machine under the constraints of the ! selected instruction set. ! 'i386' Original Intel i386 CPU. ! 'i486' Intel i486 CPU. (No scheduling is implemented for this chip.) ! 'i586' ! 'pentium' Intel Pentium CPU with no MMX support. ! 'pentium-mmx' Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support. ! 'pentiumpro' Intel Pentium Pro CPU. ! 'i686' ! When used with '-march', the Pentium Pro instruction set is used, so the code runs on all i686 family chips. When used ! with '-mtune', it has the same meaning as 'generic'. ! 'pentium2' Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set support. ! 'pentium3' ! 'pentium3m' Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction set support. ! 'pentium-m' Intel Pentium M; low-power version of Intel Pentium III CPU with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks. ! 'pentium4' ! 'pentium4m' Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support. ! 'prescott' Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction set support. ! 'nocona' Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE, SSE2 and SSE3 instruction set support. ! 'core2' Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. ! 'nehalem' Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2 and POPCNT instruction set support. ! 'westmere' Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support. ! 'sandybridge' ! Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, ! SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL ! instruction set support. ! 'ivybridge' Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set support. ! 'haswell' Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2 and F16C instruction set support. ! 'broadwell' Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support. ! 'bonnell' Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. ! 'silvermont' Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support. ! 'k6' AMD K6 CPU with MMX instruction set support. ! 'k6-2' ! 'k6-3' Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support. ! 'athlon' ! 'athlon-tbird' AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions support. ! 'athlon-4' ! 'athlon-xp' ! 'athlon-mp' Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE instruction set support. ! 'k8' ! 'opteron' ! 'athlon64' ! 'athlon-fx' Processors based on the AMD K8 core with x86-64 instruction set support, including the AMD Opteron, Athlon 64, and Athlon 64 FX processors. (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction set extensions.) ! 'k8-sse3' ! 'opteron-sse3' ! 'athlon64-sse3' Improved versions of AMD K8 cores with SSE3 instruction set support. ! 'amdfam10' ! 'barcelona' ! CPUs based on AMD Family 10h cores with x86-64 instruction set ! support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, ! enhanced 3DNow!, ABM and 64-bit instruction set extensions.) ! 'bdver1' ! CPUs based on AMD Family 15h cores with x86-64 instruction set ! support. (This supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, ! CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM ! and 64-bit instruction set extensions.) ! 'bdver2' AMD Family 15h core based CPUs with x86-64 instruction set ! support. (This supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, ! LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, ! SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.) ! 'bdver3' AMD Family 15h core based CPUs with x86-64 instruction set ! support. (This supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, ! AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, ! SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set ! extensions. ! 'bdver4' AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, BMI2, TBM, F16C, FMA, FMA4, ! FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL_MUL, CX16, MOVBE, MMX, ! SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit ! instruction set extensions. ! 'btver1' ! CPUs based on AMD Family 14h cores with x86-64 instruction set ! support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, ! CX16, ABM and 64-bit instruction set extensions.) ! 'btver2' ! CPUs based on AMD Family 16h cores with x86-64 instruction set ! support. This includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, ! SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, SSE, MMX ! and 64-bit instruction set extensions. ! 'winchip-c6' IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction set support. ! 'winchip2' IDT WinChip 2 CPU, dealt in same way as i486 with additional ! MMX and 3DNow! instruction set support. ! 'c3' VIA C3 CPU with MMX and 3DNow! instruction set support. (No scheduling is implemented for this chip.) ! 'c3-2' VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support. (No scheduling is implemented for this chip.) ! 'geode' AMD Geode embedded processor with MMX and 3DNow! instruction set support. ! '-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. While ! picking a specific CPU-TYPE schedules things appropriately for that ! particular chip, the compiler does not generate any code that cannot run on the default machine type unless you use a ! '-march=CPU-TYPE' option. For example, if GCC is configured for ! i686-pc-linux-gnu then '-mtune=pentium4' generates code that is tuned for Pentium 4 but still runs on i686 machines. ! The choices for CPU-TYPE are the same as for '-march'. In ! addition, '-mtune' supports 2 extra choices for CPU-TYPE: ! 'generic' Produce code optimized for the most common IA32/AMD64/EM64T processors. If you know the CPU on which your code will run, ! then you should use the corresponding '-mtune' or '-march' ! option instead of '-mtune=generic'. But, if you do not know ! exactly what CPU users of your application will have, then you ! should use this option. As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you --- 14114,14353 ---- 3.17.17 Intel 386 and AMD x86-64 Options ---------------------------------------- ! These `-m' options are defined for the i386 and x86-64 family of computers: ! `-march=CPU-TYPE' Generate instructions for the machine type CPU-TYPE. In contrast ! to `-mtune=CPU-TYPE', which merely tunes the generated code for ! the specified CPU-TYPE, `-march=CPU-TYPE' allows GCC to generate ! code that may not run at all on processors other than the one ! indicated. Specifying `-march=CPU-TYPE' implies `-mtune=CPU-TYPE'. The choices for CPU-TYPE are: ! `native' This selects the CPU to generate code for at compilation time by determining the processor type of the compiling machine. ! Using `-march=native' enables all instruction subsets ! supported by the local machine (hence the result might not ! run on different machines). Using `-mtune=native' produces ! code optimized for the local machine under the constraints of ! the selected instruction set. ! `i386' Original Intel i386 CPU. ! `i486' Intel i486 CPU. (No scheduling is implemented for this chip.) ! `i586' ! `pentium' Intel Pentium CPU with no MMX support. ! `pentium-mmx' Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support. ! `pentiumpro' Intel Pentium Pro CPU. ! `i686' ! When used with `-march', the Pentium Pro instruction set is used, so the code runs on all i686 family chips. When used ! with `-mtune', it has the same meaning as `generic'. ! `pentium2' Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set support. ! `pentium3' ! `pentium3m' Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction set support. ! `pentium-m' Intel Pentium M; low-power version of Intel Pentium III CPU with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks. ! `pentium4' ! `pentium4m' Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support. ! `prescott' Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction set support. ! `nocona' Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE, SSE2 and SSE3 instruction set support. ! `core2' Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. ! `nehalem' Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2 and POPCNT instruction set support. ! `westmere' Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support. ! `sandybridge' ! Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, ! SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES and ! PCLMUL instruction set support. ! `ivybridge' Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C instruction set support. ! `haswell' Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2 and F16C instruction set support. ! `broadwell' Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support. ! `bonnell' Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3 instruction set support. ! `silvermont' Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support. ! `k6' AMD K6 CPU with MMX instruction set support. ! `k6-2' ! `k6-3' Improved versions of AMD K6 CPU with MMX and 3DNow! instruction set support. ! `athlon' ! `athlon-tbird' AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow! and SSE prefetch instructions support. ! `athlon-4' ! `athlon-xp' ! `athlon-mp' Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow! and full SSE instruction set support. ! `k8' ! `opteron' ! `athlon64' ! `athlon-fx' Processors based on the AMD K8 core with x86-64 instruction set support, including the AMD Opteron, Athlon 64, and Athlon 64 FX processors. (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow! and 64-bit instruction set extensions.) ! `k8-sse3' ! `opteron-sse3' ! `athlon64-sse3' Improved versions of AMD K8 cores with SSE3 instruction set support. ! `amdfam10' ! `barcelona' ! CPUs based on AMD Family 10h cores with x86-64 instruction ! set support. (This supersets MMX, SSE, SSE2, SSE3, SSE4A, ! 3DNow!, enhanced 3DNow!, ABM and 64-bit instruction set ! extensions.) ! `bdver1' ! CPUs based on AMD Family 15h cores with x86-64 instruction ! set support. (This supersets FMA4, AVX, XOP, LWP, AES, ! PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, ! SSE4.2, ABM and 64-bit instruction set extensions.) ! ! `bdver2' AMD Family 15h core based CPUs with x86-64 instruction set ! support. (This supersets BMI, TBM, F16C, FMA, FMA4, AVX, ! XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, ! SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set ! extensions.) ! ! `bdver3' AMD Family 15h core based CPUs with x86-64 instruction set ! support. (This supersets BMI, TBM, F16C, FMA, FMA4, ! FSGSBASE, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, ! SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit ! instruction set extensions. ! ! `bdver4' AMD Family 15h core based CPUs with x86-64 instruction set support. (This supersets BMI, BMI2, TBM, F16C, FMA, FMA4, ! FSGSBASE, AVX, AVX2, XOP, LWP, AES, PCL_MUL, CX16, MOVBE, ! MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and ! 64-bit instruction set extensions. ! `btver1' ! CPUs based on AMD Family 14h cores with x86-64 instruction ! set support. (This supersets MMX, SSE, SSE2, SSE3, SSSE3, ! SSE4A, CX16, ABM and 64-bit instruction set extensions.) ! `btver2' ! CPUs based on AMD Family 16h cores with x86-64 instruction ! set support. This includes MOVBE, F16C, BMI, AVX, PCL_MUL, ! AES, SSE4.2, SSE4.1, CX16, ABM, SSE4A, SSSE3, SSE3, SSE2, ! SSE, MMX and 64-bit instruction set extensions. ! `winchip-c6' IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction set support. ! `winchip2' IDT WinChip 2 CPU, dealt in same way as i486 with additional ! MMX and 3DNow! instruction set support. ! `c3' VIA C3 CPU with MMX and 3DNow! instruction set support. (No scheduling is implemented for this chip.) ! `c3-2' VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support. (No scheduling is implemented for this chip.) ! `geode' AMD Geode embedded processor with MMX and 3DNow! instruction set support. ! `-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, except for the ABI and the set of available instructions. While ! picking a specific CPU-TYPE schedules things appropriately for ! that particular chip, the compiler does not generate any code that cannot run on the default machine type unless you use a ! `-march=CPU-TYPE' option. For example, if GCC is configured for ! i686-pc-linux-gnu then `-mtune=pentium4' generates code that is tuned for Pentium 4 but still runs on i686 machines. ! The choices for CPU-TYPE are the same as for `-march'. In ! addition, `-mtune' supports 2 extra choices for CPU-TYPE: ! `generic' Produce code optimized for the most common IA32/AMD64/EM64T processors. If you know the CPU on which your code will run, ! then you should use the corresponding `-mtune' or `-march' ! option instead of `-mtune=generic'. But, if you do not know ! exactly what CPU users of your application will have, then ! you should use this option. As new processors are deployed in the marketplace, the behavior of this option will change. Therefore, if you *************** computers: *** 14296,14313 **** by this option will change to reflect the processors that are most common at the time that version of GCC is released. ! There is no '-march=generic' option because '-march' indicates ! the instruction set the compiler can use, and there is no ! generic instruction set applicable to all processors. In ! contrast, '-mtune' indicates the processor (or, in this case, ! collection of processors) for which the code is optimized. ! 'intel' Produce code optimized for the most current Intel processors, ! which are Haswell and Silvermont for this version of GCC. If you know the CPU on which your code will run, then you should ! use the corresponding '-mtune' or '-march' option instead of ! '-mtune=intel'. But, if you want your application performs better on both Haswell and Silvermont, then you should use this option. --- 14355,14373 ---- by this option will change to reflect the processors that are most common at the time that version of GCC is released. ! There is no `-march=generic' option because `-march' ! indicates the instruction set the compiler can use, and there ! is no generic instruction set applicable to all processors. ! In contrast, `-mtune' indicates the processor (or, in this ! case, collection of processors) for which the code is ! optimized. ! `intel' Produce code optimized for the most current Intel processors, ! which are Haswell and Silvermont for this version of GCC. If you know the CPU on which your code will run, then you should ! use the corresponding `-mtune' or `-march' option instead of ! `-mtune=intel'. But, if you want your application performs better on both Haswell and Silvermont, then you should use this option. *************** computers: *** 14317,14372 **** by this option will change to reflect the most current Intel processors at the time that version of GCC is released. ! There is no '-march=intel' option because '-march' indicates the instruction set the compiler can use, and there is no common instruction set applicable to all processors. In ! contrast, '-mtune' indicates the processor (or, in this case, collection of processors) for which the code is optimized. ! '-mcpu=CPU-TYPE' ! A deprecated synonym for '-mtune'. ! '-mfpmath=UNIT' Generate floating-point arithmetic for selected unit UNIT. The choices for UNIT are: ! '387' ! Use the standard 387 floating-point coprocessor present on the ! majority of chips and emulated otherwise. Code compiled with ! this option runs almost everywhere. The temporary results are ! computed in 80-bit precision instead of the precision ! specified by the type, resulting in slightly different results ! compared to most of other chips. See '-ffloat-store' for more ! detailed description. This is the default choice for i386 compiler. ! 'sse' Use scalar floating-point instructions present in the SSE ! instruction set. This instruction set is supported by Pentium ! III and newer chips, and in the AMD line by Athlon-4, Athlon ! XP and Athlon MP chips. The earlier version of the SSE instruction set supports only single-precision arithmetic, thus the double and extended-precision arithmetic are still done using 387. A later version, present only in Pentium 4 and AMD x86-64 chips, supports double-precision arithmetic too. ! For the i386 compiler, you must use '-march=CPU-TYPE', '-msse' ! or '-msse2' switches to enable SSE extensions and make this option effective. For the x86-64 compiler, these extensions are enabled by default. The resulting code should be considerably faster in the ! majority of cases and avoid the numerical instability problems ! of 387 code, but may break some existing code that expects ! temporaries to be 80 bits. This is the default choice for the x86-64 compiler. ! 'sse,387' ! 'sse+387' ! 'both' Attempt to utilize both instruction sets at once. This effectively doubles the amount of available registers, and on chips with separate execution units for 387 and SSE the --- 14377,14432 ---- by this option will change to reflect the most current Intel processors at the time that version of GCC is released. ! There is no `-march=intel' option because `-march' indicates the instruction set the compiler can use, and there is no common instruction set applicable to all processors. In ! contrast, `-mtune' indicates the processor (or, in this case, collection of processors) for which the code is optimized. ! `-mcpu=CPU-TYPE' ! A deprecated synonym for `-mtune'. ! `-mfpmath=UNIT' Generate floating-point arithmetic for selected unit UNIT. The choices for UNIT are: ! `387' ! Use the standard 387 floating-point coprocessor present on ! the majority of chips and emulated otherwise. Code compiled ! with this option runs almost everywhere. The temporary ! results are computed in 80-bit precision instead of the ! precision specified by the type, resulting in slightly ! different results compared to most of other chips. See ! `-ffloat-store' for more detailed description. This is the default choice for i386 compiler. ! `sse' Use scalar floating-point instructions present in the SSE ! instruction set. This instruction set is supported by ! Pentium III and newer chips, and in the AMD line by Athlon-4, ! Athlon XP and Athlon MP chips. The earlier version of the SSE instruction set supports only single-precision arithmetic, thus the double and extended-precision arithmetic are still done using 387. A later version, present only in Pentium 4 and AMD x86-64 chips, supports double-precision arithmetic too. ! For the i386 compiler, you must use `-march=CPU-TYPE', `-msse' ! or `-msse2' switches to enable SSE extensions and make this option effective. For the x86-64 compiler, these extensions are enabled by default. The resulting code should be considerably faster in the ! majority of cases and avoid the numerical instability ! problems of 387 code, but may break some existing code that ! expects temporaries to be 80 bits. This is the default choice for the x86-64 compiler. ! `sse,387' ! `sse+387' ! `both' Attempt to utilize both instruction sets at once. This effectively doubles the amount of available registers, and on chips with separate execution units for 387 and SSE the *************** computers: *** 14375,14550 **** not model separate functional units well, resulting in unstable performance. ! '-masm=DIALECT' Output assembly instructions using selected DIALECT. Supported ! choices are 'intel' or 'att' (the default). Darwin does not ! support 'intel'. ! '-mieee-fp' ! '-mno-ieee-fp' Control whether or not the compiler uses IEEE floating-point comparisons. These correctly handle the case where the result of a comparison is unordered. ! '-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not part of GCC. Normally ! the facilities of the machine's usual C compiler are used, but this ! can't be done directly in cross-compilation. You must make your ! own arrangements to provide suitable library functions for cross-compilation. On machines where a function returns floating-point results in the 80387 register stack, some floating-point opcodes may be emitted ! even if '-msoft-float' is used. ! '-mno-fp-ret-in-387' Do not use the FPU registers for return values of functions. The usual calling convention has functions return values of types ! 'float' and 'double' in an FPU register, even if there is no FPU. The idea is that the operating system should emulate an FPU. ! The option '-mno-fp-ret-in-387' causes such values to be returned in ordinary CPU registers instead. ! '-mno-fancy-math-387' ! Some 387 emulators do not support the 'sin', 'cos' and 'sqrt' instructions for the 387. Specify this option to avoid generating ! those instructions. This option is the default on FreeBSD, OpenBSD ! and NetBSD. This option is overridden when '-march' indicates that ! the target CPU always has an FPU and so the instruction does not ! need emulation. These instructions are not generated unless you ! also use the '-funsafe-math-optimizations' switch. ! '-malign-double' ! '-mno-align-double' ! Control whether GCC aligns 'double', 'long double', and 'long long' ! variables on a two-word boundary or a one-word boundary. Aligning ! 'double' variables on a two-word boundary produces code that runs ! somewhat faster on a Pentium at the expense of more memory. ! On x86-64, '-malign-double' is enabled by default. ! *Warning:* if you use the '-malign-double' switch, structures containing the above types are aligned differently than the published application binary interface specifications for the 386 and are not binary compatible with structures in code compiled without that switch. ! '-m96bit-long-double' ! '-m128bit-long-double' ! These switches control the size of 'long double' type. The i386 application binary interface specifies the size to be 96 bits, so ! '-m96bit-long-double' is the default in 32-bit mode. ! Modern architectures (Pentium and newer) prefer 'long double' to be ! aligned to an 8- or 16-byte boundary. In arrays or structures conforming to the ABI, this is not possible. So specifying ! '-m128bit-long-double' aligns 'long double' to a 16-byte boundary ! by padding the 'long double' with an additional 32-bit zero. ! In the x86-64 compiler, '-m128bit-long-double' is the default ! choice as its ABI specifies that 'long double' is aligned on 16-byte boundary. Notice that neither of these options enable any extra precision ! over the x87 standard of 80 bits for a 'long double'. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing 'long double' variables, as well as modifying the function calling ! convention for functions taking 'long double'. Hence they are not binary-compatible with code compiled without that switch. ! '-mlong-double-64' ! '-mlong-double-80' ! '-mlong-double-128' ! These switches control the size of 'long double' type. A size of ! 64 bits makes the 'long double' type equivalent to the 'double' ! type. This is the default for 32-bit Bionic C library. A size of ! 128 bits makes the 'long double' type equivalent to the ! '__float128' type. This is the default for 64-bit Bionic C ! library. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing 'long double' variables, as well as modifying the function calling ! convention for functions taking 'long double'. Hence they are not binary-compatible with code compiled without that switch. ! '-mlarge-data-threshold=THRESHOLD' ! When '-mcmodel=medium' is specified, data objects larger than ! THRESHOLD are placed in the large data section. This value must be ! the same across all objects linked into the binary, and defaults to ! 65535. ! '-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the 'ret NUM' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. You can specify that an individual function is called with this ! calling sequence with the function attribute 'stdcall'. You can ! also override the '-mrtd' option by using the function attribute ! 'cdecl'. *Note Function Attributes::. *Warning:* this calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including 'printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! '-mregparm=NUM' Control how many registers are used to pass integer arguments. By default, no registers are used to pass arguments, and at most 3 registers can be used. You can control this behavior for a ! specific function by using the function attribute 'regparm'. *Note ! Function Attributes::. *Warning:* if you use this switch, and NUM is nonzero, then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! '-msseregparm' Use SSE register passing conventions for float and double arguments and return values. You can control this behavior for a specific ! function by using the function attribute 'sseregparm'. *Note Function Attributes::. *Warning:* if you use this switch then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! '-mvect8-ret-in-mem' Return 8-byte vectors in memory instead of MMX registers. This is the default on Solaris 8 and 9 and VxWorks to match the ABI of the Sun Studio compilers until version 12. Later compiler versions ! (starting with Studio 12 Update 1) follow the ABI used by other x86 ! targets, which is the default on Solaris 10 and later. _Only_ use ! this option if you need to remain compatible with existing code ! produced by those previous compiler versions or older versions of ! GCC. ! ! '-mpc32' ! '-mpc64' ! '-mpc80' Set 80387 floating-point precision to 32, 64 or 80 bits. When ! '-mpc32' is specified, the significands of results of floating-point operations are rounded to 24 bits (single ! precision); '-mpc64' rounds the significands of results of floating-point operations to 53 bits (double precision) and ! '-mpc80' rounds the significands of results of floating-point operations to 64 bits (extended double precision), which is the default. When this option is used, floating-point operations in higher precisions are not available to the programmer without --- 14435,14610 ---- not model separate functional units well, resulting in unstable performance. ! `-masm=DIALECT' Output assembly instructions using selected DIALECT. Supported ! choices are `intel' or `att' (the default). Darwin does not ! support `intel'. ! `-mieee-fp' ! `-mno-ieee-fp' Control whether or not the compiler uses IEEE floating-point comparisons. These correctly handle the case where the result of a comparison is unordered. ! `-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not part of GCC. Normally ! the facilities of the machine's usual C compiler are used, but ! this can't be done directly in cross-compilation. You must make ! your own arrangements to provide suitable library functions for cross-compilation. On machines where a function returns floating-point results in the 80387 register stack, some floating-point opcodes may be emitted ! even if `-msoft-float' is used. ! `-mno-fp-ret-in-387' Do not use the FPU registers for return values of functions. The usual calling convention has functions return values of types ! `float' and `double' in an FPU register, even if there is no FPU. The idea is that the operating system should emulate an FPU. ! The option `-mno-fp-ret-in-387' causes such values to be returned in ordinary CPU registers instead. ! `-mno-fancy-math-387' ! Some 387 emulators do not support the `sin', `cos' and `sqrt' instructions for the 387. Specify this option to avoid generating ! those instructions. This option is the default on FreeBSD, ! OpenBSD and NetBSD. This option is overridden when `-march' ! indicates that the target CPU always has an FPU and so the ! instruction does not need emulation. These instructions are not ! generated unless you also use the `-funsafe-math-optimizations' ! switch. ! `-malign-double' ! `-mno-align-double' ! Control whether GCC aligns `double', `long double', and `long ! long' variables on a two-word boundary or a one-word boundary. ! Aligning `double' variables on a two-word boundary produces code ! that runs somewhat faster on a Pentium at the expense of more ! memory. ! On x86-64, `-malign-double' is enabled by default. ! *Warning:* if you use the `-malign-double' switch, structures containing the above types are aligned differently than the published application binary interface specifications for the 386 and are not binary compatible with structures in code compiled without that switch. ! `-m96bit-long-double' ! `-m128bit-long-double' ! These switches control the size of `long double' type. The i386 application binary interface specifies the size to be 96 bits, so ! `-m96bit-long-double' is the default in 32-bit mode. ! Modern architectures (Pentium and newer) prefer `long double' to ! be aligned to an 8- or 16-byte boundary. In arrays or structures conforming to the ABI, this is not possible. So specifying ! `-m128bit-long-double' aligns `long double' to a 16-byte boundary ! by padding the `long double' with an additional 32-bit zero. ! In the x86-64 compiler, `-m128bit-long-double' is the default ! choice as its ABI specifies that `long double' is aligned on 16-byte boundary. Notice that neither of these options enable any extra precision ! over the x87 standard of 80 bits for a `long double'. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing `long double' variables, as well as modifying the function calling ! convention for functions taking `long double'. Hence they are not binary-compatible with code compiled without that switch. ! `-mlong-double-64' ! `-mlong-double-80' ! `-mlong-double-128' ! These switches control the size of `long double' type. A size of ! 64 bits makes the `long double' type equivalent to the `double' ! type. This is the default for 32-bit Bionic C library. A size of ! 128 bits makes the `long double' type equivalent to the ! `__float128' type. This is the default for 64-bit Bionic C library. *Warning:* if you override the default value for your target ABI, ! this changes the size of structures and arrays containing `long double' variables, as well as modifying the function calling ! convention for functions taking `long double'. Hence they are not binary-compatible with code compiled without that switch. ! `-mlarge-data-threshold=THRESHOLD' ! When `-mcmodel=medium' is specified, data objects larger than ! THRESHOLD are placed in the large data section. This value must ! be the same across all objects linked into the binary, and ! defaults to 65535. ! `-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the `ret NUM' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. You can specify that an individual function is called with this ! calling sequence with the function attribute `stdcall'. You can ! also override the `-mrtd' option by using the function attribute ! `cdecl'. *Note Function Attributes::. *Warning:* this calling convention is incompatible with the one normally used on Unix, so you cannot use it if you need to call libraries compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including `printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! `-mregparm=NUM' Control how many registers are used to pass integer arguments. By default, no registers are used to pass arguments, and at most 3 registers can be used. You can control this behavior for a ! specific function by using the function attribute `regparm'. ! *Note Function Attributes::. *Warning:* if you use this switch, and NUM is nonzero, then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! `-msseregparm' Use SSE register passing conventions for float and double arguments and return values. You can control this behavior for a specific ! function by using the function attribute `sseregparm'. *Note Function Attributes::. *Warning:* if you use this switch then you must build all modules with the same value, including any libraries. This includes the system libraries and startup modules. ! `-mvect8-ret-in-mem' Return 8-byte vectors in memory instead of MMX registers. This is the default on Solaris 8 and 9 and VxWorks to match the ABI of the Sun Studio compilers until version 12. Later compiler versions ! (starting with Studio 12 Update 1) follow the ABI used by other ! x86 targets, which is the default on Solaris 10 and later. _Only_ ! use this option if you need to remain compatible with existing ! code produced by those previous compiler versions or older ! versions of GCC. + `-mpc32' + `-mpc64' + `-mpc80' Set 80387 floating-point precision to 32, 64 or 80 bits. When ! `-mpc32' is specified, the significands of results of floating-point operations are rounded to 24 bits (single ! precision); `-mpc64' rounds the significands of results of floating-point operations to 53 bits (double precision) and ! `-mpc80' rounds the significands of results of floating-point operations to 64 bits (extended double precision), which is the default. When this option is used, floating-point operations in higher precisions are not available to the programmer without *************** computers: *** 14552,14580 **** Setting the rounding of floating-point operations to less than the default 80 bits can speed some programs by 2% or more. Note that ! some mathematical libraries assume that extended-precision (80-bit) ! floating-point operations are enabled by default; routines in such ! libraries could suffer significant loss of accuracy, typically ! through so-called "catastrophic cancellation", when this option is ! used to set the precision to less than extended precision. ! '-mstackrealign' ! Realign the stack at entry. On the Intel x86, the '-mstackrealign' option generates an alternate prologue and epilogue that realigns ! the run-time stack if necessary. This supports mixing legacy codes ! that keep 4-byte stack alignment with modern codes that keep 16-byte stack alignment for SSE compatibility. See also the ! attribute 'force_align_arg_pointer', applicable to individual functions. ! '-mpreferred-stack-boundary=NUM' Attempt to keep the stack boundary aligned to a 2 raised to NUM ! byte boundary. If '-mpreferred-stack-boundary' is not specified, the default is 4 (16 bytes or 128 bits). *Warning:* When generating code for the x86-64 architecture with ! SSE extensions disabled, '-mpreferred-stack-boundary=3' can be used ! to keep the stack boundary aligned to 8 byte boundary. Since x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and intended to be used in controlled environment where stack space is important limitation. This option will lead --- 14612,14641 ---- Setting the rounding of floating-point operations to less than the default 80 bits can speed some programs by 2% or more. Note that ! some mathematical libraries assume that extended-precision ! (80-bit) floating-point operations are enabled by default; ! routines in such libraries could suffer significant loss of ! accuracy, typically through so-called "catastrophic cancellation", ! when this option is used to set the precision to less than ! extended precision. ! `-mstackrealign' ! Realign the stack at entry. On the Intel x86, the `-mstackrealign' option generates an alternate prologue and epilogue that realigns ! the run-time stack if necessary. This supports mixing legacy ! codes that keep 4-byte stack alignment with modern codes that keep 16-byte stack alignment for SSE compatibility. See also the ! attribute `force_align_arg_pointer', applicable to individual functions. ! `-mpreferred-stack-boundary=NUM' Attempt to keep the stack boundary aligned to a 2 raised to NUM ! byte boundary. If `-mpreferred-stack-boundary' is not specified, the default is 4 (16 bytes or 128 bits). *Warning:* When generating code for the x86-64 architecture with ! SSE extensions disabled, `-mpreferred-stack-boundary=3' can be ! used to keep the stack boundary aligned to 8 byte boundary. Since x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and intended to be used in controlled environment where stack space is important limitation. This option will lead *************** computers: *** 14584,14732 **** misaligned memory access traps. In addition, variable arguments will be handled incorrectly for 16 byte aligned objects (including x87 long double and __int128), leading to wrong results. You must ! build all modules with '-mpreferred-stack-boundary=3', including any libraries. This includes the system libraries and startup modules. ! '-mincoming-stack-boundary=NUM' Assume the incoming stack is aligned to a 2 raised to NUM byte ! boundary. If '-mincoming-stack-boundary' is not specified, the one ! specified by '-mpreferred-stack-boundary' is used. ! On Pentium and Pentium Pro, 'double' and 'long double' values ! should be aligned to an 8-byte boundary (see '-malign-double') or ! suffer significant run time performance penalties. On Pentium III, ! the Streaming SIMD Extension (SSE) data type '__m128' may not work ! properly if it is not 16-byte aligned. To ensure proper alignment of this values on the stack, the stack ! boundary must be as aligned as that required by any value stored on ! the stack. Further, every function must be generated such that it ! keeps the stack aligned. Thus calling a function compiled with a ! higher preferred stack boundary from a function compiled with a ! lower preferred stack boundary most likely misaligns the stack. It ! is recommended that libraries that use callbacks always use the default setting. This extra alignment does consume extra stack space, and generally increases code size. Code that is sensitive to stack space usage, such as embedded systems and operating system kernels, may want to ! reduce the preferred alignment to '-mpreferred-stack-boundary=2'. ! '-mmmx' ! '-mno-mmx' ! '-msse' ! '-mno-sse' ! '-msse2' ! '-mno-sse2' ! '-msse3' ! '-mno-sse3' ! '-mssse3' ! '-mno-ssse3' ! '-msse4.1' ! '-mno-sse4.1' ! '-msse4.2' ! '-mno-sse4.2' ! '-msse4' ! '-mno-sse4' ! '-mavx' ! '-mno-avx' ! '-mavx2' ! '-mno-avx2' ! '-mavx512f' ! '-mno-avx512f' ! '-mavx512pf' ! '-mno-avx512pf' ! '-mavx512er' ! '-mno-avx512er' ! '-mavx512cd' ! '-mno-avx512cd' ! '-msha' ! '-mno-sha' ! '-maes' ! '-mno-aes' ! '-mpclmul' ! '-mno-pclmul' ! '-mfsgsbase' ! '-mno-fsgsbase' ! '-mrdrnd' ! '-mno-rdrnd' ! '-mf16c' ! '-mno-f16c' ! '-mfma' ! '-mno-fma' ! '-mprefetchwt1' ! '-mno-prefetchwt1' ! '-msse4a' ! '-mno-sse4a' ! '-mfma4' ! '-mno-fma4' ! '-mxop' ! '-mno-xop' ! '-mlwp' ! '-mno-lwp' ! '-m3dnow' ! '-mno-3dnow' ! '-mpopcnt' ! '-mno-popcnt' ! '-mabm' ! '-mno-abm' ! '-mbmi' ! '-mbmi2' ! '-mno-bmi' ! '-mno-bmi2' ! '-mlzcnt' ! '-mno-lzcnt' ! '-mfxsr' ! '-mxsave' ! '-mxsaveopt' ! '-mrtm' ! '-mtbm' ! '-mno-tbm' These switches enable or disable the use of instructions in the MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD, SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, FXSR, XSAVE, XSAVEOPT, ! LZCNT, RTM, or 3DNow! extended instruction sets. These extensions ! are also available as built-in functions: see *note X86 Built-in ! Functions::, for details of the functions enabled and disabled by ! these switches. To generate SSE/SSE2 instructions automatically from floating-point ! code (as opposed to 387 instructions), see '-mfpmath=sse'. ! GCC depresses SSEx instructions when '-mavx' is used. Instead, it generates new AVX instructions or AVX equivalence for all SSEx instructions when needed. These options enable GCC to use these extended instructions in ! generated code, even without '-mfpmath=sse'. Applications that perform run-time CPU detection must compile separate files for each supported architecture, using the appropriate flags. In particular, the file containing the CPU detection code should be compiled without these options. ! '-mdump-tune-features' This option instructs GCC to dump the names of the x86 performance ! tuning features and default settings. The names can be used in ! '-mtune-ctrl=FEATURE-LIST'. ! '-mtune-ctrl=FEATURE-LIST' ! This option is used to do fine grain control of x86 code generation ! features. FEATURE-LIST is a comma separated list of FEATURE names. ! See also '-mdump-tune-features'. When specified, the FEATURE will ! be turned on if it is not preceded with '^', otherwise, it will be ! turned off. '-mtune-ctrl=FEATURE-LIST' is intended to be used by ! GCC developers. Using it may lead to code paths not covered by ! testing and can potentially result in compiler ICEs or runtime ! errors. ! '-mno-default' ! This option instructs GCC to turn off all tunable features. See ! also '-mtune-ctrl=FEATURE-LIST' and '-mdump-tune-features'. ! '-mcld' ! This option instructs GCC to emit a 'cld' instruction in the prologue of functions that use string instructions. String instructions depend on the DF flag to select between autoincrement or autodecrement mode. While the ABI specifies the DF flag to be --- 14645,14793 ---- misaligned memory access traps. In addition, variable arguments will be handled incorrectly for 16 byte aligned objects (including x87 long double and __int128), leading to wrong results. You must ! build all modules with `-mpreferred-stack-boundary=3', including any libraries. This includes the system libraries and startup modules. ! `-mincoming-stack-boundary=NUM' Assume the incoming stack is aligned to a 2 raised to NUM byte ! boundary. If `-mincoming-stack-boundary' is not specified, the ! one specified by `-mpreferred-stack-boundary' is used. ! On Pentium and Pentium Pro, `double' and `long double' values ! should be aligned to an 8-byte boundary (see `-malign-double') or ! suffer significant run time performance penalties. On Pentium ! III, the Streaming SIMD Extension (SSE) data type `__m128' may not ! work properly if it is not 16-byte aligned. To ensure proper alignment of this values on the stack, the stack ! boundary must be as aligned as that required by any value stored ! on the stack. Further, every function must be generated such that ! it keeps the stack aligned. Thus calling a function compiled with ! a higher preferred stack boundary from a function compiled with a ! lower preferred stack boundary most likely misaligns the stack. ! It is recommended that libraries that use callbacks always use the default setting. This extra alignment does consume extra stack space, and generally increases code size. Code that is sensitive to stack space usage, such as embedded systems and operating system kernels, may want to ! reduce the preferred alignment to `-mpreferred-stack-boundary=2'. ! `-mmmx' ! `-mno-mmx' ! `-msse' ! `-mno-sse' ! `-msse2' ! `-mno-sse2' ! `-msse3' ! `-mno-sse3' ! `-mssse3' ! `-mno-ssse3' ! `-msse4.1' ! `-mno-sse4.1' ! `-msse4.2' ! `-mno-sse4.2' ! `-msse4' ! `-mno-sse4' ! `-mavx' ! `-mno-avx' ! `-mavx2' ! `-mno-avx2' ! `-mavx512f' ! `-mno-avx512f' ! `-mavx512pf' ! `-mno-avx512pf' ! `-mavx512er' ! `-mno-avx512er' ! `-mavx512cd' ! `-mno-avx512cd' ! `-msha' ! `-mno-sha' ! `-maes' ! `-mno-aes' ! `-mpclmul' ! `-mno-pclmul' ! `-mfsgsbase' ! `-mno-fsgsbase' ! `-mrdrnd' ! `-mno-rdrnd' ! `-mf16c' ! `-mno-f16c' ! `-mfma' ! `-mno-fma' ! `-mprefetchwt1' ! `-mno-prefetchwt1' ! `-msse4a' ! `-mno-sse4a' ! `-mfma4' ! `-mno-fma4' ! `-mxop' ! `-mno-xop' ! `-mlwp' ! `-mno-lwp' ! `-m3dnow' ! `-mno-3dnow' ! `-mpopcnt' ! `-mno-popcnt' ! `-mabm' ! `-mno-abm' ! `-mbmi' ! `-mbmi2' ! `-mno-bmi' ! `-mno-bmi2' ! `-mlzcnt' ! `-mno-lzcnt' ! `-mfxsr' ! `-mxsave' ! `-mxsaveopt' ! `-mrtm' ! `-mtbm' ! `-mno-tbm' These switches enable or disable the use of instructions in the MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD, SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM, BMI, BMI2, FXSR, XSAVE, XSAVEOPT, ! LZCNT, RTM, or 3DNow! extended instruction sets. These ! extensions are also available as built-in functions: see *note X86 ! Built-in Functions::, for details of the functions enabled and ! disabled by these switches. To generate SSE/SSE2 instructions automatically from floating-point ! code (as opposed to 387 instructions), see `-mfpmath=sse'. ! GCC depresses SSEx instructions when `-mavx' is used. Instead, it generates new AVX instructions or AVX equivalence for all SSEx instructions when needed. These options enable GCC to use these extended instructions in ! generated code, even without `-mfpmath=sse'. Applications that perform run-time CPU detection must compile separate files for each supported architecture, using the appropriate flags. In particular, the file containing the CPU detection code should be compiled without these options. ! `-mdump-tune-features' This option instructs GCC to dump the names of the x86 performance ! tuning features and default settings. The names can be used in ! `-mtune-ctrl=FEATURE-LIST'. ! `-mtune-ctrl=FEATURE-LIST' ! This option is used to do fine grain control of x86 code ! generation features. FEATURE-LIST is a comma separated list of ! FEATURE names. See also `-mdump-tune-features'. When specified, ! the FEATURE will be turned on if it is not preceded with `^', ! otherwise, it will be turned off. `-mtune-ctrl=FEATURE-LIST' is ! intended to be used by GCC developers. Using it may lead to code ! paths not covered by testing and can potentially result in ! compiler ICEs or runtime errors. ! `-mno-default' ! This option instructs GCC to turn off all tunable features. See ! also `-mtune-ctrl=FEATURE-LIST' and `-mdump-tune-features'. ! `-mcld' ! This option instructs GCC to emit a `cld' instruction in the prologue of functions that use string instructions. String instructions depend on the DF flag to select between autoincrement or autodecrement mode. While the ABI specifies the DF flag to be *************** computers: *** 14735,15051 **** dispatchers. The exception handler can be invoked with the DF flag set, which leads to wrong direction mode when string instructions are used. This option can be enabled by default on 32-bit x86 ! targets by configuring GCC with the '--enable-cld' configure ! option. Generation of 'cld' instructions can be suppressed with ! the '-mno-cld' compiler option in this case. ! '-mvzeroupper' ! This option instructs GCC to emit a 'vzeroupper' instruction before ! a transfer of control flow out of the function to minimize the AVX ! to SSE transition penalty as well as remove unnecessary 'zeroupper' ! intrinsics. ! '-mprefer-avx128' This option instructs GCC to use 128-bit AVX instructions instead of 256-bit AVX instructions in the auto-vectorizer. ! '-mcx16' ! This option enables GCC to generate 'CMPXCHG16B' instructions. ! 'CMPXCHG16B' allows for atomic operations on 128-bit double ! quadword (or oword) data types. This is useful for high-resolution ! counters that can be updated by multiple processors (or cores). ! This instruction is generated as part of atomic built-in functions: ! see *note __sync Builtins:: or *note __atomic Builtins:: for ! details. ! '-msahf' ! This option enables generation of 'SAHF' instructions in 64-bit code. Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the ! 'LAHF' and 'SAHF' instructions which were supported by AMD64. These are load and store instructions, respectively, for certain ! status flags. In 64-bit mode, the 'SAHF' instruction is used to ! optimize 'fmod', 'drem', and 'remainder' built-in functions; see *note Other Builtins:: for details. ! '-mmovbe' ! This option enables use of the 'movbe' instruction to implement ! '__builtin_bswap32' and '__builtin_bswap64'. ! '-mcrc32' ! This option enables built-in functions '__builtin_ia32_crc32qi', ! '__builtin_ia32_crc32hi', '__builtin_ia32_crc32si' and ! '__builtin_ia32_crc32di' to generate the 'crc32' machine instruction. ! '-mrecip' ! This option enables use of 'RCPSS' and 'RSQRTSS' instructions (and ! their vectorized variants 'RCPPS' and 'RSQRTPS') with an additional ! Newton-Raphson step to increase precision instead of 'DIVSS' and ! 'SQRTSS' (and their vectorized variants) for single-precision ! floating-point arguments. These instructions are generated only ! when '-funsafe-math-optimizations' is enabled together with ! '-finite-math-only' and '-fno-trapping-math'. Note that while the ! throughput of the sequence is higher than the throughput of the ! non-reciprocal instruction, the precision of the sequence can be ! decreased by up to 2 ulp (i.e. the inverse of 1.0 equals ! 0.99999994). ! Note that GCC implements '1.0f/sqrtf(X)' in terms of 'RSQRTSS' (or ! 'RSQRTPS') already with '-ffast-math' (or the above option ! combination), and doesn't need '-mrecip'. Also note that GCC emits the above sequence with additional Newton-Raphson step for vectorized single-float division and ! vectorized 'sqrtf(X)' already with '-ffast-math' (or the above ! option combination), and doesn't need '-mrecip'. ! '-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a '!' to invert the option: ! 'all' Enable all estimate instructions. ! 'default' ! Enable the default instructions, equivalent to '-mrecip'. ! 'none' ! Disable all estimate instructions, equivalent to '-mno-recip'. ! 'div' Enable the approximation for scalar division. ! 'vec-div' Enable the approximation for vectorized division. ! 'sqrt' Enable the approximation for scalar square root. ! 'vec-sqrt' Enable the approximation for vectorized square root. ! So, for example, '-mrecip=all,!sqrt' enables all of the reciprocal approximations, except for square root. ! '-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. Supported values for TYPE are 'svml' for the ! Intel short vector math library and 'acml' for the AMD math core ! library. To use this option, both '-ftree-vectorize' and ! '-funsafe-math-optimizations' have to be enabled, and an SVML or ACML ABI-compatible library must be specified at link time. ! GCC currently emits calls to 'vmldExp2', 'vmldLn2', 'vmldLog102', ! 'vmldLog102', 'vmldPow2', 'vmldTanh2', 'vmldTan2', 'vmldAtan2', ! 'vmldAtanh2', 'vmldCbrt2', 'vmldSinh2', 'vmldSin2', 'vmldAsinh2', ! 'vmldAsin2', 'vmldCosh2', 'vmldCos2', 'vmldAcosh2', 'vmldAcos2', ! 'vmlsExp4', 'vmlsLn4', 'vmlsLog104', 'vmlsLog104', 'vmlsPow4', ! 'vmlsTanh4', 'vmlsTan4', 'vmlsAtan4', 'vmlsAtanh4', 'vmlsCbrt4', ! 'vmlsSinh4', 'vmlsSin4', 'vmlsAsinh4', 'vmlsAsin4', 'vmlsCosh4', ! 'vmlsCos4', 'vmlsAcosh4' and 'vmlsAcos4' for corresponding function ! type when '-mveclibabi=svml' is used, and '__vrd2_sin', ! '__vrd2_cos', '__vrd2_exp', '__vrd2_log', '__vrd2_log2', ! '__vrd2_log10', '__vrs4_sinf', '__vrs4_cosf', '__vrs4_expf', ! '__vrs4_logf', '__vrs4_log2f', '__vrs4_log10f' and '__vrs4_powf' ! for the corresponding function type when '-mveclibabi=acml' is used. ! '-mabi=NAME' Generate code for the specified calling convention. Permissible ! values are 'sysv' for the ABI used on GNU/Linux and other systems, ! and 'ms' for the Microsoft ABI. The default is to use the Microsoft ! ABI when targeting Microsoft Windows and the SysV ABI on all other ! systems. You can control this behavior for a specific function by ! using the function attribute 'ms_abi'/'sysv_abi'. *Note Function ! Attributes::. ! '-mtls-dialect=TYPE' ! Generate code to access thread-local storage using the 'gnu' or ! 'gnu2' conventions. 'gnu' is the conservative default; 'gnu2' is more efficient, but it may add compile- and run-time requirements that cannot be satisfied on all systems. ! '-mpush-args' ! '-mno-push-args' Use PUSH operations to store outgoing parameters. This method is ! shorter and usually equally fast as method using SUB/MOV operations ! and is enabled by default. In some cases disabling it may improve ! performance because of improved scheduling and reduced dependencies. ! '-maccumulate-outgoing-args' If enabled, the maximum amount of space required for outgoing arguments is computed in the function prologue. This is faster on most modern CPUs because of reduced dependencies, improved scheduling and reduced stack usage when the preferred stack boundary is not equal to 2. The drawback is a notable increase in ! code size. This switch implies '-mno-push-args'. ! '-mthreads' ! Support thread-safe exception handling on MinGW. Programs that rely ! on thread-safe exception handling must compile and link all code ! with the '-mthreads' option. When compiling, '-mthreads' defines ! '-D_MT'; when linking, it links in a special thread helper library ! '-lmingwthrd' which cleans up per-thread exception-handling data. ! '-mno-align-stringops' Do not align the destination of inlined string operations. This switch reduces code size and improves performance in case the destination is already aligned, but GCC doesn't know about it. ! '-minline-all-stringops' By default GCC inlines string operations only when the destination is known to be aligned to least a 4-byte boundary. This enables more inlining and increases code size, but may improve performance ! of code that depends on fast 'memcpy', 'strlen', and 'memset' for short lengths. ! '-minline-stringops-dynamically' For string operations of unknown size, use run-time checks with inline code for small blocks and a library call for large blocks. ! '-mstringop-strategy=ALG' Override the internal decision heuristic for the particular algorithm to use for inlining string operations. The allowed values for ALG are: ! 'rep_byte' ! 'rep_4byte' ! 'rep_8byte' ! Expand using i386 'rep' prefix of the specified size. ! 'byte_loop' ! 'loop' ! 'unrolled_loop' Expand into an inline loop. ! 'libcall' Always use a library call. ! '-mmemcpy-strategy=STRATEGY' Override the internal decision heuristic to decide if ! '__builtin_memcpy' should be inlined and what inline algorithm to ! use when the expected size of the copy operation is known. ! STRATEGY is a comma-separated list of ALG:MAX_SIZE:DEST_ALIGN ! triplets. ALG is specified in '-mstringop-strategy', MAX_SIZE ! specifies the max byte size with which inline algorithm ALG is ! allowed. For the last triplet, the MAX_SIZE must be '-1'. The ! MAX_SIZE of the triplets in the list must be specified in ! increasing order. The minimal byte size for ALG is '0' for the ! first triplet and 'MAX_SIZE + 1' of the preceding range. ! '-mmemset-strategy=STRATEGY' ! The option is similar to '-mmemcpy-strategy=' except that it is to ! control '__builtin_memset' expansion. ! '-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up, and restore frame pointers and makes an extra register available in leaf functions. ! The option '-fomit-leaf-frame-pointer' removes the frame pointer for leaf functions, which might make debugging harder. ! '-mtls-direct-seg-refs' ! '-mno-tls-direct-seg-refs' Controls whether TLS variables may be accessed with offsets from ! the TLS segment register ('%gs' for 32-bit, '%fs' for 64-bit), or whether the thread base pointer must be added. Whether or not this is valid depends on the operating system, and whether it maps the segment to cover the entire TLS area. For systems that use the GNU C Library, the default is on. ! '-msse2avx' ! '-mno-sse2avx' Specify that the assembler should encode SSE instructions with VEX ! prefix. The option '-mavx' turns this on by default. ! '-mfentry' ! '-mno-fentry' ! If profiling is active ('-pg'), put the profiling counter call before the prologue. Note: On x86 architectures the attribute ! 'ms_hook_prologue' isn't possible at the moment for '-mfentry' and ! '-pg'. ! '-m8bit-idiv' ! '-mno-8bit-idiv' On some processors, like Intel Atom, 8-bit unsigned integer divide is much faster than 32-bit/64-bit integer divide. This option generates a run-time check. If both dividend and divisor are within range of 0 to 255, 8-bit unsigned integer divide is used instead of 32-bit/64-bit integer divide. ! '-mavx256-split-unaligned-load' ! '-mavx256-split-unaligned-store' Split 32-byte AVX unaligned load and store. ! '-mstack-protector-guard=GUARD' Generate stack protection code using canary at GUARD. Supported ! locations are 'global' for global canary or 'tls' for per-thread ! canary in the TLS block (the default). This option has effect only ! when '-fstack-protector' or '-fstack-protector-all' is specified. ! These '-m' switches are supported in addition to the above on x86-64 processors in 64-bit environments. ! '-m32' ! '-m64' ! '-mx32' ! '-m16' Generate code for a 16-bit, 32-bit or 64-bit environment. The ! '-m32' option sets 'int', 'long', and pointer types to 32 bits, and generates code that runs on any i386 system. ! The '-m64' option sets 'int' to 32 bits and 'long' and pointer types to 64 bits, and generates code for the x86-64 architecture. ! For Darwin only the '-m64' option also turns off the '-fno-pic' and ! '-mdynamic-no-pic' options. ! The '-mx32' option sets 'int', 'long', and pointer types to 32 bits, and generates code for the x86-64 architecture. ! The '-m16' option is the same as '-m32', except for that it outputs ! the '.code16gcc' assembly directive at the beginning of the ! assembly output so that the binary can run in 16-bit mode. ! '-mno-red-zone' ! Do not use a so-called "red zone" for x86-64 code. The red zone is ! mandated by the x86-64 ABI; it is a 128-byte area beyond the location of the stack pointer that is not modified by signal or interrupt handlers and therefore can be used for temporary data ! without adjusting the stack pointer. The flag '-mno-red-zone' disables this red zone. ! '-mcmodel=small' ! Generate code for the small code model: the program and its symbols ! must be linked in the lower 2 GB of the address space. Pointers ! are 64 bits. Programs can be statically or dynamically linked. ! This is the default code model. ! '-mcmodel=kernel' Generate code for the kernel code model. The kernel runs in the negative 2 GB of the address space. This model has to be used for Linux kernel code. ! '-mcmodel=medium' Generate code for the medium model: the program is linked in the lower 2 GB of the address space. Small symbols are also placed ! there. Symbols with sizes larger than '-mlarge-data-threshold' are ! put into large data or BSS sections and can be located above 2GB. ! Programs can be statically or dynamically linked. ! '-mcmodel=large' Generate code for the large model. This model makes no assumptions about addresses and sizes of sections. ! '-maddress-mode=long' Generate code for long address mode. This is only supported for 64-bit and x32 environments. It is the default address mode for 64-bit environments. ! '-maddress-mode=short' Generate code for short address mode. This is only supported for 32-bit and x32 environments. It is the default address mode for 32-bit and x32 environments. --- 14796,15115 ---- dispatchers. The exception handler can be invoked with the DF flag set, which leads to wrong direction mode when string instructions are used. This option can be enabled by default on 32-bit x86 ! targets by configuring GCC with the `--enable-cld' configure ! option. Generation of `cld' instructions can be suppressed with ! the `-mno-cld' compiler option in this case. ! `-mvzeroupper' ! This option instructs GCC to emit a `vzeroupper' instruction ! before a transfer of control flow out of the function to minimize ! the AVX to SSE transition penalty as well as remove unnecessary ! `zeroupper' intrinsics. ! `-mprefer-avx128' This option instructs GCC to use 128-bit AVX instructions instead of 256-bit AVX instructions in the auto-vectorizer. ! `-mcx16' ! This option enables GCC to generate `CMPXCHG16B' instructions. ! `CMPXCHG16B' allows for atomic operations on 128-bit double ! quadword (or oword) data types. This is useful for ! high-resolution counters that can be updated by multiple ! processors (or cores). This instruction is generated as part of ! atomic built-in functions: see *note __sync Builtins:: or *note ! __atomic Builtins:: for details. ! `-msahf' ! This option enables generation of `SAHF' instructions in 64-bit code. Early Intel Pentium 4 CPUs with Intel 64 support, prior to the introduction of Pentium 4 G1 step in December 2005, lacked the ! `LAHF' and `SAHF' instructions which were supported by AMD64. These are load and store instructions, respectively, for certain ! status flags. In 64-bit mode, the `SAHF' instruction is used to ! optimize `fmod', `drem', and `remainder' built-in functions; see *note Other Builtins:: for details. ! `-mmovbe' ! This option enables use of the `movbe' instruction to implement ! `__builtin_bswap32' and `__builtin_bswap64'. ! `-mcrc32' ! This option enables built-in functions `__builtin_ia32_crc32qi', ! `__builtin_ia32_crc32hi', `__builtin_ia32_crc32si' and ! `__builtin_ia32_crc32di' to generate the `crc32' machine instruction. ! `-mrecip' ! This option enables use of `RCPSS' and `RSQRTSS' instructions (and ! their vectorized variants `RCPPS' and `RSQRTPS') with an ! additional Newton-Raphson step to increase precision instead of ! `DIVSS' and `SQRTSS' (and their vectorized variants) for ! single-precision floating-point arguments. These instructions are ! generated only when `-funsafe-math-optimizations' is enabled ! together with `-finite-math-only' and `-fno-trapping-math'. Note ! that while the throughput of the sequence is higher than the ! throughput of the non-reciprocal instruction, the precision of the ! sequence can be decreased by up to 2 ulp (i.e. the inverse of 1.0 ! equals 0.99999994). ! Note that GCC implements `1.0f/sqrtf(X)' in terms of `RSQRTSS' (or ! `RSQRTPS') already with `-ffast-math' (or the above option ! combination), and doesn't need `-mrecip'. Also note that GCC emits the above sequence with additional Newton-Raphson step for vectorized single-float division and ! vectorized `sqrtf(X)' already with `-ffast-math' (or the above ! option combination), and doesn't need `-mrecip'. ! `-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a `!' to invert the option: ! `all' Enable all estimate instructions. ! `default' ! Enable the default instructions, equivalent to `-mrecip'. ! `none' ! Disable all estimate instructions, equivalent to `-mno-recip'. ! `div' Enable the approximation for scalar division. ! `vec-div' Enable the approximation for vectorized division. ! `sqrt' Enable the approximation for scalar square root. ! `vec-sqrt' Enable the approximation for vectorized square root. ! So, for example, `-mrecip=all,!sqrt' enables all of the reciprocal approximations, except for square root. ! `-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. Supported values for TYPE are `svml' for the ! Intel short vector math library and `acml' for the AMD math core ! library. To use this option, both `-ftree-vectorize' and ! `-funsafe-math-optimizations' have to be enabled, and an SVML or ACML ABI-compatible library must be specified at link time. ! GCC currently emits calls to `vmldExp2', `vmldLn2', `vmldLog102', ! `vmldLog102', `vmldPow2', `vmldTanh2', `vmldTan2', `vmldAtan2', ! `vmldAtanh2', `vmldCbrt2', `vmldSinh2', `vmldSin2', `vmldAsinh2', ! `vmldAsin2', `vmldCosh2', `vmldCos2', `vmldAcosh2', `vmldAcos2', ! `vmlsExp4', `vmlsLn4', `vmlsLog104', `vmlsLog104', `vmlsPow4', ! `vmlsTanh4', `vmlsTan4', `vmlsAtan4', `vmlsAtanh4', `vmlsCbrt4', ! `vmlsSinh4', `vmlsSin4', `vmlsAsinh4', `vmlsAsin4', `vmlsCosh4', ! `vmlsCos4', `vmlsAcosh4' and `vmlsAcos4' for corresponding ! function type when `-mveclibabi=svml' is used, and `__vrd2_sin', ! `__vrd2_cos', `__vrd2_exp', `__vrd2_log', `__vrd2_log2', ! `__vrd2_log10', `__vrs4_sinf', `__vrs4_cosf', `__vrs4_expf', ! `__vrs4_logf', `__vrs4_log2f', `__vrs4_log10f' and `__vrs4_powf' ! for the corresponding function type when `-mveclibabi=acml' is used. ! `-mabi=NAME' Generate code for the specified calling convention. Permissible ! values are `sysv' for the ABI used on GNU/Linux and other systems, ! and `ms' for the Microsoft ABI. The default is to use the ! Microsoft ABI when targeting Microsoft Windows and the SysV ABI on ! all other systems. You can control this behavior for a specific ! function by using the function attribute `ms_abi'/`sysv_abi'. ! *Note Function Attributes::. ! `-mtls-dialect=TYPE' ! Generate code to access thread-local storage using the `gnu' or ! `gnu2' conventions. `gnu' is the conservative default; `gnu2' is more efficient, but it may add compile- and run-time requirements that cannot be satisfied on all systems. ! `-mpush-args' ! `-mno-push-args' Use PUSH operations to store outgoing parameters. This method is ! shorter and usually equally fast as method using SUB/MOV ! operations and is enabled by default. In some cases disabling it ! may improve performance because of improved scheduling and reduced dependencies. ! `-maccumulate-outgoing-args' If enabled, the maximum amount of space required for outgoing arguments is computed in the function prologue. This is faster on most modern CPUs because of reduced dependencies, improved scheduling and reduced stack usage when the preferred stack boundary is not equal to 2. The drawback is a notable increase in ! code size. This switch implies `-mno-push-args'. ! `-mthreads' ! Support thread-safe exception handling on MinGW. Programs that ! rely on thread-safe exception handling must compile and link all ! code with the `-mthreads' option. When compiling, `-mthreads' ! defines `-D_MT'; when linking, it links in a special thread helper ! library `-lmingwthrd' which cleans up per-thread ! exception-handling data. ! `-mno-align-stringops' Do not align the destination of inlined string operations. This switch reduces code size and improves performance in case the destination is already aligned, but GCC doesn't know about it. ! `-minline-all-stringops' By default GCC inlines string operations only when the destination is known to be aligned to least a 4-byte boundary. This enables more inlining and increases code size, but may improve performance ! of code that depends on fast `memcpy', `strlen', and `memset' for short lengths. ! `-minline-stringops-dynamically' For string operations of unknown size, use run-time checks with inline code for small blocks and a library call for large blocks. ! `-mstringop-strategy=ALG' Override the internal decision heuristic for the particular algorithm to use for inlining string operations. The allowed values for ALG are: ! `rep_byte' ! `rep_4byte' ! `rep_8byte' ! Expand using i386 `rep' prefix of the specified size. ! `byte_loop' ! `loop' ! `unrolled_loop' Expand into an inline loop. ! `libcall' Always use a library call. ! `-mmemcpy-strategy=STRATEGY' Override the internal decision heuristic to decide if ! `__builtin_memcpy' should be inlined and what inline algorithm to ! use when the expected size of the copy operation is known. STRATEGY ! is a comma-separated list of ALG:MAX_SIZE:DEST_ALIGN triplets. ! ALG is specified in `-mstringop-strategy', MAX_SIZE specifies the ! max byte size with which inline algorithm ALG is allowed. For the ! last triplet, the MAX_SIZE must be `-1'. The MAX_SIZE of the ! triplets in the list must be specified in increasing order. The ! minimal byte size for ALG is `0' for the first triplet and ! `MAX_SIZE + 1' of the preceding range. ! `-mmemset-strategy=STRATEGY' ! The option is similar to `-mmemcpy-strategy=' except that it is to ! control `__builtin_memset' expansion. ! `-momit-leaf-frame-pointer' Don't keep the frame pointer in a register for leaf functions. This avoids the instructions to save, set up, and restore frame pointers and makes an extra register available in leaf functions. ! The option `-fomit-leaf-frame-pointer' removes the frame pointer for leaf functions, which might make debugging harder. ! `-mtls-direct-seg-refs' ! `-mno-tls-direct-seg-refs' Controls whether TLS variables may be accessed with offsets from ! the TLS segment register (`%gs' for 32-bit, `%fs' for 64-bit), or whether the thread base pointer must be added. Whether or not this is valid depends on the operating system, and whether it maps the segment to cover the entire TLS area. For systems that use the GNU C Library, the default is on. ! `-msse2avx' ! `-mno-sse2avx' Specify that the assembler should encode SSE instructions with VEX ! prefix. The option `-mavx' turns this on by default. ! `-mfentry' ! `-mno-fentry' ! If profiling is active (`-pg'), put the profiling counter call before the prologue. Note: On x86 architectures the attribute ! `ms_hook_prologue' isn't possible at the moment for `-mfentry' and ! `-pg'. ! `-m8bit-idiv' ! `-mno-8bit-idiv' On some processors, like Intel Atom, 8-bit unsigned integer divide is much faster than 32-bit/64-bit integer divide. This option generates a run-time check. If both dividend and divisor are within range of 0 to 255, 8-bit unsigned integer divide is used instead of 32-bit/64-bit integer divide. ! `-mavx256-split-unaligned-load' ! `-mavx256-split-unaligned-store' Split 32-byte AVX unaligned load and store. ! `-mstack-protector-guard=GUARD' Generate stack protection code using canary at GUARD. Supported ! locations are `global' for global canary or `tls' for per-thread ! canary in the TLS block (the default). This option has effect ! only when `-fstack-protector' or `-fstack-protector-all' is ! specified. ! ! These `-m' switches are supported in addition to the above on x86-64 processors in 64-bit environments. ! `-m32' ! `-m64' ! `-mx32' ! `-m16' Generate code for a 16-bit, 32-bit or 64-bit environment. The ! `-m32' option sets `int', `long', and pointer types to 32 bits, and generates code that runs on any i386 system. ! The `-m64' option sets `int' to 32 bits and `long' and pointer types to 64 bits, and generates code for the x86-64 architecture. ! For Darwin only the `-m64' option also turns off the `-fno-pic' ! and `-mdynamic-no-pic' options. ! The `-mx32' option sets `int', `long', and pointer types to 32 bits, and generates code for the x86-64 architecture. ! The `-m16' option is the same as `-m32', except for that it ! outputs the `.code16gcc' assembly directive at the beginning of ! the assembly output so that the binary can run in 16-bit mode. ! `-mno-red-zone' ! Do not use a so-called "red zone" for x86-64 code. The red zone ! is mandated by the x86-64 ABI; it is a 128-byte area beyond the location of the stack pointer that is not modified by signal or interrupt handlers and therefore can be used for temporary data ! without adjusting the stack pointer. The flag `-mno-red-zone' disables this red zone. ! `-mcmodel=small' ! Generate code for the small code model: the program and its ! symbols must be linked in the lower 2 GB of the address space. ! Pointers are 64 bits. Programs can be statically or dynamically ! linked. This is the default code model. ! `-mcmodel=kernel' Generate code for the kernel code model. The kernel runs in the negative 2 GB of the address space. This model has to be used for Linux kernel code. ! `-mcmodel=medium' Generate code for the medium model: the program is linked in the lower 2 GB of the address space. Small symbols are also placed ! there. Symbols with sizes larger than `-mlarge-data-threshold' ! are put into large data or BSS sections and can be located above ! 2GB. Programs can be statically or dynamically linked. ! `-mcmodel=large' Generate code for the large model. This model makes no assumptions about addresses and sizes of sections. ! `-maddress-mode=long' Generate code for long address mode. This is only supported for 64-bit and x32 environments. It is the default address mode for 64-bit environments. ! `-maddress-mode=short' Generate code for short address mode. This is only supported for 32-bit and x32 environments. It is the default address mode for 32-bit and x32 environments. *************** File: gcc.info, Node: i386 and x86-64 W *** 15058,15119 **** These additional options are available for Microsoft Windows targets: ! '-mconsole' This option specifies that a console application is to be ! generated, by instructing the linker to set the PE header subsystem ! type required for console applications. This option is available ! for Cygwin and MinGW targets and is enabled by default on those ! targets. ! '-mdll' This option is available for Cygwin and MinGW targets. It specifies that a DLL--a dynamic link library--is to be generated, enabling the selection of the required runtime startup object and entry point. ! '-mnop-fun-dllimport' This option is available for Cygwin and MinGW targets. It ! specifies that the 'dllimport' attribute should be ignored. ! '-mthread' ! This option is available for MinGW targets. It specifies that MinGW-specific thread support is to be used. ! '-municode' This option is available for MinGW-w64 targets. It causes the ! 'UNICODE' preprocessor macro to be predefined, and chooses Unicode-capable runtime startup code. ! '-mwin32' This option is available for Cygwin and MinGW targets. It specifies that the typical Microsoft Windows predefined macros are to be set in the pre-processor, but does not influence the choice of runtime library/startup code. ! '-mwindows' This option is available for Cygwin and MinGW targets. It specifies that a GUI application is to be generated by instructing the linker to set the PE header subsystem type appropriately. ! '-fno-set-stack-executable' ! This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of Microsoft Windows, as there the User32 API, which is used to set executable privileges, isn't available. ! '-fwritable-relocated-rdata' This option is available for MinGW and Cygwin targets. It specifies that relocated-data in read-only section is put into .data section. This is a necessary for older runtimes not supporting modification of .rdata sections for pseudo-relocation. ! '-mpe-aligned-commons' This option is available for Cygwin and MinGW targets. It ! specifies that the GNU extension to the PE file format that permits ! the correct alignment of COMMON variables should be used when ! generating code. It is enabled by default if GCC detects that the ! target assembler found during configuration supports the feature. See also under *note i386 and x86-64 Options:: for standard options. --- 15122,15184 ---- These additional options are available for Microsoft Windows targets: ! `-mconsole' This option specifies that a console application is to be ! generated, by instructing the linker to set the PE header ! subsystem type required for console applications. This option is ! available for Cygwin and MinGW targets and is enabled by default ! on those targets. ! `-mdll' This option is available for Cygwin and MinGW targets. It specifies that a DLL--a dynamic link library--is to be generated, enabling the selection of the required runtime startup object and entry point. ! `-mnop-fun-dllimport' This option is available for Cygwin and MinGW targets. It ! specifies that the `dllimport' attribute should be ignored. ! `-mthread' ! This option is available for MinGW targets. It specifies that MinGW-specific thread support is to be used. ! `-municode' This option is available for MinGW-w64 targets. It causes the ! `UNICODE' preprocessor macro to be predefined, and chooses Unicode-capable runtime startup code. ! `-mwin32' This option is available for Cygwin and MinGW targets. It specifies that the typical Microsoft Windows predefined macros are to be set in the pre-processor, but does not influence the choice of runtime library/startup code. ! `-mwindows' This option is available for Cygwin and MinGW targets. It specifies that a GUI application is to be generated by instructing the linker to set the PE header subsystem type appropriately. ! `-fno-set-stack-executable' ! This option is available for MinGW targets. It specifies that the executable flag for the stack used by nested functions isn't set. This is necessary for binaries running in kernel mode of Microsoft Windows, as there the User32 API, which is used to set executable privileges, isn't available. ! `-fwritable-relocated-rdata' This option is available for MinGW and Cygwin targets. It specifies that relocated-data in read-only section is put into .data section. This is a necessary for older runtimes not supporting modification of .rdata sections for pseudo-relocation. ! `-mpe-aligned-commons' This option is available for Cygwin and MinGW targets. It ! specifies that the GNU extension to the PE file format that ! permits the correct alignment of COMMON variables should be used ! when generating code. It is enabled by default if GCC detects ! that the target assembler found during configuration supports the ! feature. See also under *note i386 and x86-64 Options:: for standard options. *************** File: gcc.info, Node: IA-64 Options, N *** 15123,15385 **** 3.17.19 IA-64 Options --------------------- ! These are the '-m' options defined for the Intel IA-64 architecture. ! '-mbig-endian' Generate code for a big-endian target. This is the default for HP-UX. ! '-mlittle-endian' Generate code for a little-endian target. This is the default for AIX5 and GNU/Linux. ! '-mgnu-as' ! '-mno-gnu-as' Generate (or don't) code for the GNU assembler. This is the default. ! '-mgnu-ld' ! '-mno-gnu-ld' Generate (or don't) code for the GNU linker. This is the default. ! '-mno-pic' Generate code that does not use a global pointer register. The result is not position independent code, and violates the IA-64 ABI. ! '-mvolatile-asm-stop' ! '-mno-volatile-asm-stop' Generate (or don't) a stop bit immediately before and after volatile asm statements. ! '-mregister-names' ! '-mno-register-names' ! Generate (or don't) 'in', 'loc', and 'out' register names for the stacked registers. This may make assembler output more readable. ! '-mno-sdata' ! '-msdata' Disable (or enable) optimizations that use the small data section. This may be useful for working around optimizer bugs. ! '-mconstant-gp' Generate code that uses a single constant global pointer value. This is useful when compiling kernel code. ! '-mauto-pic' Generate code that is self-relocatable. This implies ! '-mconstant-gp'. This is useful when compiling firmware code. ! '-minline-float-divide-min-latency' ! Generate code for inline divides of floating-point values using the ! minimum latency algorithm. ! '-minline-float-divide-max-throughput' ! Generate code for inline divides of floating-point values using the ! maximum throughput algorithm. ! '-mno-inline-float-divide' Do not generate inline code for divides of floating-point values. ! '-minline-int-divide-min-latency' Generate code for inline divides of integer values using the minimum latency algorithm. ! '-minline-int-divide-max-throughput' Generate code for inline divides of integer values using the maximum throughput algorithm. ! '-mno-inline-int-divide' Do not generate inline code for divides of integer values. ! '-minline-sqrt-min-latency' Generate code for inline square roots using the minimum latency algorithm. ! '-minline-sqrt-max-throughput' Generate code for inline square roots using the maximum throughput algorithm. ! '-mno-inline-sqrt' ! Do not generate inline code for 'sqrt'. ! '-mfused-madd' ! '-mno-fused-madd' Do (don't) generate code that uses the fused multiply/add or multiply/subtract instructions. The default is to use these instructions. ! '-mno-dwarf2-asm' ! '-mdwarf2-asm' Don't (or do) generate assembler code for the DWARF 2 line number debugging info. This may be useful when not using the GNU assembler. ! '-mearly-stop-bits' ! '-mno-early-stop-bits' Allow stop bits to be placed earlier than immediately preceding the instruction that triggered the stop bit. This can improve instruction scheduling, but does not always do so. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mtls-size=TLS-SIZE' Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64. ! '-mtune=CPU-TYPE' Tune the instruction scheduling for a particular CPU, Valid values ! are 'itanium', 'itanium1', 'merced', 'itanium2', and 'mckinley'. ! '-milp32' ! '-mlp64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. These are HP-UX specific flags. ! '-mno-sched-br-data-spec' ! '-msched-br-data-spec' (Dis/En)able data speculative scheduling before reload. This ! results in generation of 'ld.a' instructions and the corresponding ! check instructions ('ld.c' / 'chk.a'). The default is 'disable'. ! '-msched-ar-data-spec' ! '-mno-sched-ar-data-spec' (En/Dis)able data speculative scheduling after reload. This ! results in generation of 'ld.a' instructions and the corresponding ! check instructions ('ld.c' / 'chk.a'). The default is 'enable'. ! '-mno-sched-control-spec' ! '-msched-control-spec' (Dis/En)able control speculative scheduling. This feature is ! available only during region scheduling (i.e. before reload). This ! results in generation of the 'ld.s' instructions and the ! corresponding check instructions 'chk.s'. The default is 'disable'. ! '-msched-br-in-data-spec' ! '-mno-sched-br-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads before reload. This is ! effective only with '-msched-br-data-spec' enabled. The default is ! 'enable'. ! '-msched-ar-in-data-spec' ! '-mno-sched-ar-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads after reload. This is ! effective only with '-msched-ar-data-spec' enabled. The default is ! 'enable'. ! '-msched-in-control-spec' ! '-mno-sched-in-control-spec' (En/Dis)able speculative scheduling of the instructions that are ! dependent on the control speculative loads. This is effective only ! with '-msched-control-spec' enabled. The default is 'enable'. ! '-mno-sched-prefer-non-data-spec-insns' ! '-msched-prefer-non-data-spec-insns' If enabled, data-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the ! use of the data speculation much more conservative. The default is ! 'disable'. ! '-mno-sched-prefer-non-control-spec-insns' ! '-msched-prefer-non-control-spec-insns' If enabled, control-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the use of the control speculation much more conservative. The default is 'disable'. ! '-mno-sched-count-spec-in-critical-path' ! '-msched-count-spec-in-critical-path' If enabled, speculative dependencies are considered during computation of the instructions priorities. This makes the use of the speculation a bit more conservative. The default is 'disable'. ! '-msched-spec-ldc' Use a simple data speculation check. This option is on by default. ! '-msched-control-spec-ldc' Use a simple check for control speculation. This option is on by default. ! '-msched-stop-bits-after-every-cycle' ! Place a stop bit after every cycle when scheduling. This option is ! on by default. ! '-msched-fp-mem-deps-zero-cost' ! Assume that floating-point stores and loads are not likely to cause ! a conflict when placed into the same instruction group. This ! option is disabled by default. ! '-msel-sched-dont-check-control-spec' Generate checks for control speculation in selective scheduling. This flag is disabled by default. ! '-msched-max-memory-insns=MAX-INSNS' Limit on the number of memory insns per instruction group, giving ! lower priority to subsequent memory insns attempting to schedule in ! the same instruction group. Frequently useful to prevent cache bank conflicts. The default value is 1. ! '-msched-max-memory-insns-hard-limit' ! Makes the limit specified by 'msched-max-memory-insns' a hard limit, disallowing more than that number in an instruction group. Otherwise, the limit is "soft", meaning that non-memory operations are preferred when the limit is reached, but memory operations may still be scheduled.  File: gcc.info, Node: LM32 Options, Next: M32C Options, Prev: IA-64 Options, Up: Submodel Options 3.17.20 LM32 Options -------------------- ! These '-m' options are defined for the LatticeMico32 architecture: ! '-mbarrel-shift-enabled' Enable barrel-shift instructions. ! '-mdivide-enabled' Enable divide and modulus instructions. ! '-mmultiply-enabled' Enable multiply instructions. ! '-msign-extend-enabled' Enable sign extend instructions. ! '-muser-enabled' Enable user-defined instructions.  File: gcc.info, Node: M32C Options, Next: M32R/D Options, Prev: LM32 Options, Up: Submodel Options 3.17.21 M32C Options -------------------- ! '-mcpu=NAME' Select the CPU for which code is generated. NAME may be one of ! 'r8c' for the R8C/Tiny series, 'm16c' for the M16C (up to /60) ! series, 'm32cm' for the M16C/80 series, or 'm32c' for the M32C/80 series. ! '-msim' Specifies that the program will be run on the simulator. This ! causes an alternate runtime library to be linked in which supports, ! for example, file I/O. You must not use this option when ! generating programs that will run on real hardware; you must provide your own runtime library for whatever I/O functions are needed. ! '-memregs=NUMBER' Specifies the number of memory-based pseudo-registers GCC uses during code generation. These pseudo-registers are used like real registers, so there is a tradeoff between GCC's ability to fit the --- 15188,15452 ---- 3.17.19 IA-64 Options --------------------- ! These are the `-m' options defined for the Intel IA-64 architecture. ! `-mbig-endian' Generate code for a big-endian target. This is the default for HP-UX. ! `-mlittle-endian' Generate code for a little-endian target. This is the default for AIX5 and GNU/Linux. ! `-mgnu-as' ! `-mno-gnu-as' Generate (or don't) code for the GNU assembler. This is the default. ! `-mgnu-ld' ! `-mno-gnu-ld' Generate (or don't) code for the GNU linker. This is the default. ! `-mno-pic' Generate code that does not use a global pointer register. The result is not position independent code, and violates the IA-64 ABI. ! `-mvolatile-asm-stop' ! `-mno-volatile-asm-stop' Generate (or don't) a stop bit immediately before and after volatile asm statements. ! `-mregister-names' ! `-mno-register-names' ! Generate (or don't) `in', `loc', and `out' register names for the stacked registers. This may make assembler output more readable. ! `-mno-sdata' ! `-msdata' Disable (or enable) optimizations that use the small data section. This may be useful for working around optimizer bugs. ! `-mconstant-gp' Generate code that uses a single constant global pointer value. This is useful when compiling kernel code. ! `-mauto-pic' Generate code that is self-relocatable. This implies ! `-mconstant-gp'. This is useful when compiling firmware code. ! `-minline-float-divide-min-latency' ! Generate code for inline divides of floating-point values using ! the minimum latency algorithm. ! `-minline-float-divide-max-throughput' ! Generate code for inline divides of floating-point values using ! the maximum throughput algorithm. ! `-mno-inline-float-divide' Do not generate inline code for divides of floating-point values. ! `-minline-int-divide-min-latency' Generate code for inline divides of integer values using the minimum latency algorithm. ! `-minline-int-divide-max-throughput' Generate code for inline divides of integer values using the maximum throughput algorithm. ! `-mno-inline-int-divide' Do not generate inline code for divides of integer values. ! `-minline-sqrt-min-latency' Generate code for inline square roots using the minimum latency algorithm. ! `-minline-sqrt-max-throughput' Generate code for inline square roots using the maximum throughput algorithm. ! `-mno-inline-sqrt' ! Do not generate inline code for `sqrt'. ! `-mfused-madd' ! `-mno-fused-madd' Do (don't) generate code that uses the fused multiply/add or multiply/subtract instructions. The default is to use these instructions. ! `-mno-dwarf2-asm' ! `-mdwarf2-asm' Don't (or do) generate assembler code for the DWARF 2 line number debugging info. This may be useful when not using the GNU assembler. ! `-mearly-stop-bits' ! `-mno-early-stop-bits' Allow stop bits to be placed earlier than immediately preceding the instruction that triggered the stop bit. This can improve instruction scheduling, but does not always do so. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mtls-size=TLS-SIZE' Specify bit size of immediate TLS offsets. Valid values are 14, 22, and 64. ! `-mtune=CPU-TYPE' Tune the instruction scheduling for a particular CPU, Valid values ! are `itanium', `itanium1', `merced', `itanium2', and `mckinley'. ! `-milp32' ! `-mlp64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. These are HP-UX specific flags. ! `-mno-sched-br-data-spec' ! `-msched-br-data-spec' (Dis/En)able data speculative scheduling before reload. This ! results in generation of `ld.a' instructions and the corresponding ! check instructions (`ld.c' / `chk.a'). The default is 'disable'. ! `-msched-ar-data-spec' ! `-mno-sched-ar-data-spec' (En/Dis)able data speculative scheduling after reload. This ! results in generation of `ld.a' instructions and the corresponding ! check instructions (`ld.c' / `chk.a'). The default is 'enable'. ! `-mno-sched-control-spec' ! `-msched-control-spec' (Dis/En)able control speculative scheduling. This feature is ! available only during region scheduling (i.e. before reload). ! This results in generation of the `ld.s' instructions and the ! corresponding check instructions `chk.s'. The default is 'disable'. ! `-msched-br-in-data-spec' ! `-mno-sched-br-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads before reload. This is ! effective only with `-msched-br-data-spec' enabled. The default ! is 'enable'. ! `-msched-ar-in-data-spec' ! `-mno-sched-ar-in-data-spec' (En/Dis)able speculative scheduling of the instructions that are dependent on the data speculative loads after reload. This is ! effective only with `-msched-ar-data-spec' enabled. The default ! is 'enable'. ! `-msched-in-control-spec' ! `-mno-sched-in-control-spec' (En/Dis)able speculative scheduling of the instructions that are ! dependent on the control speculative loads. This is effective ! only with `-msched-control-spec' enabled. The default is 'enable'. ! `-mno-sched-prefer-non-data-spec-insns' ! `-msched-prefer-non-data-spec-insns' If enabled, data-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the ! use of the data speculation much more conservative. The default ! is 'disable'. ! `-mno-sched-prefer-non-control-spec-insns' ! `-msched-prefer-non-control-spec-insns' If enabled, control-speculative instructions are chosen for schedule only if there are no other choices at the moment. This makes the use of the control speculation much more conservative. The default is 'disable'. ! `-mno-sched-count-spec-in-critical-path' ! `-msched-count-spec-in-critical-path' If enabled, speculative dependencies are considered during computation of the instructions priorities. This makes the use of the speculation a bit more conservative. The default is 'disable'. ! `-msched-spec-ldc' Use a simple data speculation check. This option is on by default. ! `-msched-control-spec-ldc' Use a simple check for control speculation. This option is on by default. ! `-msched-stop-bits-after-every-cycle' ! Place a stop bit after every cycle when scheduling. This option ! is on by default. ! `-msched-fp-mem-deps-zero-cost' ! Assume that floating-point stores and loads are not likely to ! cause a conflict when placed into the same instruction group. ! This option is disabled by default. ! `-msel-sched-dont-check-control-spec' Generate checks for control speculation in selective scheduling. This flag is disabled by default. ! `-msched-max-memory-insns=MAX-INSNS' Limit on the number of memory insns per instruction group, giving ! lower priority to subsequent memory insns attempting to schedule ! in the same instruction group. Frequently useful to prevent cache bank conflicts. The default value is 1. ! `-msched-max-memory-insns-hard-limit' ! Makes the limit specified by `msched-max-memory-insns' a hard limit, disallowing more than that number in an instruction group. Otherwise, the limit is "soft", meaning that non-memory operations are preferred when the limit is reached, but memory operations may still be scheduled. +  File: gcc.info, Node: LM32 Options, Next: M32C Options, Prev: IA-64 Options, Up: Submodel Options 3.17.20 LM32 Options -------------------- ! These `-m' options are defined for the LatticeMico32 architecture: ! `-mbarrel-shift-enabled' Enable barrel-shift instructions. ! `-mdivide-enabled' Enable divide and modulus instructions. ! `-mmultiply-enabled' Enable multiply instructions. ! `-msign-extend-enabled' Enable sign extend instructions. ! `-muser-enabled' Enable user-defined instructions. +  File: gcc.info, Node: M32C Options, Next: M32R/D Options, Prev: LM32 Options, Up: Submodel Options 3.17.21 M32C Options -------------------- ! `-mcpu=NAME' Select the CPU for which code is generated. NAME may be one of ! `r8c' for the R8C/Tiny series, `m16c' for the M16C (up to /60) ! series, `m32cm' for the M16C/80 series, or `m32c' for the M32C/80 series. ! `-msim' Specifies that the program will be run on the simulator. This ! causes an alternate runtime library to be linked in which ! supports, for example, file I/O. You must not use this option ! when generating programs that will run on real hardware; you must provide your own runtime library for whatever I/O functions are needed. ! `-memregs=NUMBER' Specifies the number of memory-based pseudo-registers GCC uses during code generation. These pseudo-registers are used like real registers, so there is a tradeoff between GCC's ability to fit the *************** File: gcc.info, Node: M32C Options, Ne *** 15389,15732 **** that, you must not use this option with GCC's default runtime libraries.  File: gcc.info, Node: M32R/D Options, Next: M680x0 Options, Prev: M32C Options, Up: Submodel Options 3.17.22 M32R/D Options ---------------------- ! These '-m' options are defined for Renesas M32R/D architectures: ! '-m32r2' Generate code for the M32R/2. ! '-m32rx' Generate code for the M32R/X. ! '-m32r' Generate code for the M32R. This is the default. ! '-mmodel=small' Assume all objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the 'ld24' instruction), and assume ! all subroutines are reachable with the 'bl' instruction. This is the default. The addressability of a particular object can be set with the ! 'model' attribute. ! '-mmodel=medium' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates 'seth/add3' instructions to load their ! addresses), and assume all subroutines are reachable with the 'bl' instruction. ! '-mmodel=large' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates 'seth/add3' instructions to load their addresses), and assume subroutines may not be reachable with the ! 'bl' instruction (the compiler generates the much slower ! 'seth/add3/jl' instruction sequence). ! '-msdata=none' Disable use of the small data area. Variables are put into one of ! '.data', '.bss', or '.rodata' (unless the 'section' attribute has been specified). This is the default. ! The small data area consists of sections '.sdata' and '.sbss'. Objects may be explicitly put in the small data area with the ! 'section' attribute using one of these sections. ! '-msdata=sdata' Put small global and static data in the small data area, but do not generate special code to reference them. ! '-msdata=use' Put small global and static data in the small data area, and generate special instructions to reference them. ! '-G NUM' Put global and static objects less than or equal to NUM bytes into the small data or BSS sections instead of the normal data or BSS ! sections. The default value of NUM is 8. The '-msdata' option ! must be set to one of 'sdata' or 'use' for this option to have any effect. ! All modules should be compiled with the same '-G NUM' value. Compiling with different values of NUM may or may not work; if it doesn't the linker gives an error message--incorrect code is not generated. ! '-mdebug' Makes the M32R-specific code in the compiler display some statistics that might help in debugging programs. ! '-malign-loops' Align all loops to a 32-byte boundary. ! '-mno-align-loops' Do not enforce a 32-byte alignment for loops. This is the default. ! '-missue-rate=NUMBER' Issue NUMBER instructions per cycle. NUMBER can only be 1 or 2. ! '-mbranch-cost=NUMBER' NUMBER can only be 1 or 2. If it is 1 then branches are preferred over conditional code, if it is 2, then the opposite applies. ! '-mflush-trap=NUMBER' Specifies the trap number to use to flush the cache. The default is 12. Valid numbers are between 0 and 15 inclusive. ! '-mno-flush-trap' Specifies that the cache cannot be flushed by using a trap. ! '-mflush-func=NAME' Specifies the name of the operating system function to call to flush the cache. The default is __flush_cache_, but a function call is only used if a trap is not available. ! '-mno-flush-func' Indicates that there is no OS function for flushing the cache.  File: gcc.info, Node: M680x0 Options, Next: MCore Options, Prev: M32R/D Options, Up: Submodel Options 3.17.23 M680x0 Options ---------------------- ! These are the '-m' options defined for M680x0 and ColdFire processors. The default settings depend on which architecture was selected when the compiler was configured; the defaults for the most common choices are given below. ! '-march=ARCH' Generate code for a specific M680x0 or ColdFire instruction set architecture. Permissible values of ARCH for M680x0 architectures ! are: '68000', '68010', '68020', '68030', '68040', '68060' and ! 'cpu32'. ColdFire architectures are selected according to Freescale's ISA classification and the permissible values are: ! 'isaa', 'isaaplus', 'isab' and 'isac'. ! GCC defines a macro '__mcfARCH__' whenever it is generating code for a ColdFire target. The ARCH in this macro is one of the ! '-march' arguments given above. ! When used together, '-march' and '-mtune' select code that runs on a family of similar processors but that is optimized for a particular microarchitecture. ! '-mcpu=CPU' Generate code for a specific M680x0 or ColdFire processor. The ! M680x0 CPUs are: '68000', '68010', '68020', '68030', '68040', ! '68060', '68302', '68332' and 'cpu32'. The ColdFire CPUs are given ! by the table below, which also classifies the CPUs into families: ! *Family* *'-mcpu' arguments* ! '51' '51' '51ac' '51ag' '51cn' '51em' '51je' '51jf' '51jg' ! '51jm' '51mm' '51qe' '51qm' ! '5206' '5202' '5204' '5206' ! '5206e' '5206e' ! '5208' '5207' '5208' ! '5211a' '5210a' '5211a' ! '5213' '5211' '5212' '5213' ! '5216' '5214' '5216' ! '52235' '52230' '52231' '52232' '52233' '52234' '52235' ! '5225' '5224' '5225' ! '52259' '52252' '52254' '52255' '52256' '52258' '52259' ! '5235' '5232' '5233' '5234' '5235' '523x' ! '5249' '5249' ! '5250' '5250' ! '5271' '5270' '5271' ! '5272' '5272' ! '5275' '5274' '5275' ! '5282' '5280' '5281' '5282' '528x' ! '53017' '53011' '53012' '53013' '53014' '53015' '53016' '53017' ! '5307' '5307' ! '5329' '5327' '5328' '5329' '532x' ! '5373' '5372' '5373' '537x' ! '5407' '5407' ! '5475' '5470' '5471' '5472' '5473' '5474' '5475' '547x' '5480' ! '5481' '5482' '5483' '5484' '5485' ! '-mcpu=CPU' overrides '-march=ARCH' if ARCH is compatible with CPU. ! Other combinations of '-mcpu' and '-march' are rejected. ! GCC defines the macro '__mcf_cpu_CPU' when ColdFire target CPU is ! selected. It also defines '__mcf_family_FAMILY', where the value of FAMILY is given by the table above. ! '-mtune=TUNE' Tune the code for a particular microarchitecture within the ! constraints set by '-march' and '-mcpu'. The M680x0 ! microarchitectures are: '68000', '68010', '68020', '68030', ! '68040', '68060' and 'cpu32'. The ColdFire microarchitectures are: ! 'cfv1', 'cfv2', 'cfv3', 'cfv4' and 'cfv4e'. ! You can also use '-mtune=68020-40' for code that needs to run relatively well on 68020, 68030 and 68040 targets. ! '-mtune=68020-60' is similar but includes 68060 targets as well. ! These two options select the same tuning decisions as '-m68020-40' ! and '-m68020-60' respectively. ! GCC defines the macros '__mcARCH' and '__mcARCH__' when tuning for ! 680x0 architecture ARCH. It also defines 'mcARCH' unless either ! '-ansi' or a non-GNU '-std' option is used. If GCC is tuning for a ! range of architectures, as selected by '-mtune=68020-40' or ! '-mtune=68020-60', it defines the macros for every architecture in the range. ! GCC also defines the macro '__mUARCH__' when tuning for ColdFire microarchitecture UARCH, where UARCH is one of the arguments given above. ! '-m68000' ! '-mc68000' ! Generate output for a 68000. This is the default when the compiler ! is configured for 68000-based systems. It is equivalent to ! '-march=68000'. Use this option for microcontrollers with a 68000 or EC000 core, including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356. ! '-m68010' ! Generate output for a 68010. This is the default when the compiler ! is configured for 68010-based systems. It is equivalent to ! '-march=68010'. ! '-m68020' ! '-mc68020' ! Generate output for a 68020. This is the default when the compiler ! is configured for 68020-based systems. It is equivalent to ! '-march=68020'. ! '-m68030' ! Generate output for a 68030. This is the default when the compiler ! is configured for 68030-based systems. It is equivalent to ! '-march=68030'. ! '-m68040' ! Generate output for a 68040. This is the default when the compiler ! is configured for 68040-based systems. It is equivalent to ! '-march=68040'. This option inhibits the use of 68881/68882 instructions that have to be emulated by software on the 68040. Use this option if your 68040 does not have code to emulate those instructions. ! '-m68060' ! Generate output for a 68060. This is the default when the compiler ! is configured for 68060-based systems. It is equivalent to ! '-march=68060'. This option inhibits the use of 68020 and 68881/68882 instructions ! that have to be emulated by software on the 68060. Use this option ! if your 68060 does not have code to emulate those instructions. ! '-mcpu32' ! Generate output for a CPU32. This is the default when the compiler ! is configured for CPU32-based systems. It is equivalent to ! '-march=cpu32'. Use this option for microcontrollers with a CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360. ! '-m5200' Generate output for a 520X ColdFire CPU. This is the default when the compiler is configured for 520X-based systems. It is ! equivalent to '-mcpu=5206', and is now deprecated in favor of that option. ! Use this option for microcontroller with a 5200 core, including the ! MCF5202, MCF5203, MCF5204 and MCF5206. ! '-m5206e' Generate output for a 5206e ColdFire CPU. The option is now ! deprecated in favor of the equivalent '-mcpu=5206e'. ! '-m528x' Generate output for a member of the ColdFire 528X family. The ! option is now deprecated in favor of the equivalent '-mcpu=528x'. ! '-m5307' Generate output for a ColdFire 5307 CPU. The option is now ! deprecated in favor of the equivalent '-mcpu=5307'. ! '-m5407' Generate output for a ColdFire 5407 CPU. The option is now ! deprecated in favor of the equivalent '-mcpu=5407'. ! '-mcfv4e' Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This includes use of hardware floating-point instructions. The ! option is equivalent to '-mcpu=547x', and is now deprecated in favor of that option. ! '-m68020-40' Generate output for a 68040, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated on ! the 68040. ! The option is equivalent to '-march=68020' '-mtune=68020-40'. ! '-m68020-60' Generate output for a 68060, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated on ! the 68060. ! The option is equivalent to '-march=68020' '-mtune=68020-60'. ! '-mhard-float' ! '-m68881' Generate floating-point instructions. This is the default for 68020 and above, and for ColdFire devices that have an FPU. It ! defines the macro '__HAVE_68881__' on M680x0 targets and ! '__mcffpu__' on ColdFire targets. ! '-msoft-float' Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also the default for ColdFire devices that have no FPU. ! '-mdiv' ! '-mno-div' Generate (do not generate) ColdFire hardware divide and remainder ! instructions. If '-march' is used without '-mcpu', the default is ! "on" for ColdFire architectures and "off" for M680x0 architectures. ! Otherwise, the default is taken from the target CPU (either the ! default CPU, or the one specified by '-mcpu'). For example, the ! default is "off" for '-mcpu=5206' and "on" for '-mcpu=5206e'. ! GCC defines the macro '__mcfhwdiv__' when this option is enabled. ! '-mshort' ! Consider type 'int' to be 16 bits wide, like 'short int'. Additionally, parameters passed on the stack are also aligned to a 16-bit boundary even on targets whose API mandates promotion to 32-bit. ! '-mno-short' ! Do not consider type 'int' to be 16 bits wide. This is the default. ! '-mnobitfield' ! '-mno-bitfield' ! Do not use the bit-field instructions. The '-m68000', '-mcpu32' ! and '-m5200' options imply '-mnobitfield'. ! '-mbitfield' ! Do use the bit-field instructions. The '-m68020' option implies ! '-mbitfield'. This is the default if you use a configuration designed for a 68020. ! '-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the 'rtd' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. --- 15456,15805 ---- that, you must not use this option with GCC's default runtime libraries. +  File: gcc.info, Node: M32R/D Options, Next: M680x0 Options, Prev: M32C Options, Up: Submodel Options 3.17.22 M32R/D Options ---------------------- ! These `-m' options are defined for Renesas M32R/D architectures: ! `-m32r2' Generate code for the M32R/2. ! `-m32rx' Generate code for the M32R/X. ! `-m32r' Generate code for the M32R. This is the default. ! `-mmodel=small' Assume all objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the `ld24' instruction), and assume ! all subroutines are reachable with the `bl' instruction. This is the default. The addressability of a particular object can be set with the ! `model' attribute. ! `-mmodel=medium' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates `seth/add3' instructions to load their ! addresses), and assume all subroutines are reachable with the `bl' instruction. ! `-mmodel=large' Assume objects may be anywhere in the 32-bit address space (the ! compiler generates `seth/add3' instructions to load their addresses), and assume subroutines may not be reachable with the ! `bl' instruction (the compiler generates the much slower ! `seth/add3/jl' instruction sequence). ! `-msdata=none' Disable use of the small data area. Variables are put into one of ! `.data', `.bss', or `.rodata' (unless the `section' attribute has been specified). This is the default. ! The small data area consists of sections `.sdata' and `.sbss'. Objects may be explicitly put in the small data area with the ! `section' attribute using one of these sections. ! `-msdata=sdata' Put small global and static data in the small data area, but do not generate special code to reference them. ! `-msdata=use' Put small global and static data in the small data area, and generate special instructions to reference them. ! `-G NUM' Put global and static objects less than or equal to NUM bytes into the small data or BSS sections instead of the normal data or BSS ! sections. The default value of NUM is 8. The `-msdata' option ! must be set to one of `sdata' or `use' for this option to have any effect. ! All modules should be compiled with the same `-G NUM' value. Compiling with different values of NUM may or may not work; if it doesn't the linker gives an error message--incorrect code is not generated. ! `-mdebug' Makes the M32R-specific code in the compiler display some statistics that might help in debugging programs. ! `-malign-loops' Align all loops to a 32-byte boundary. ! `-mno-align-loops' Do not enforce a 32-byte alignment for loops. This is the default. ! `-missue-rate=NUMBER' Issue NUMBER instructions per cycle. NUMBER can only be 1 or 2. ! `-mbranch-cost=NUMBER' NUMBER can only be 1 or 2. If it is 1 then branches are preferred over conditional code, if it is 2, then the opposite applies. ! `-mflush-trap=NUMBER' Specifies the trap number to use to flush the cache. The default is 12. Valid numbers are between 0 and 15 inclusive. ! `-mno-flush-trap' Specifies that the cache cannot be flushed by using a trap. ! `-mflush-func=NAME' Specifies the name of the operating system function to call to flush the cache. The default is __flush_cache_, but a function call is only used if a trap is not available. ! `-mno-flush-func' Indicates that there is no OS function for flushing the cache. +  File: gcc.info, Node: M680x0 Options, Next: MCore Options, Prev: M32R/D Options, Up: Submodel Options 3.17.23 M680x0 Options ---------------------- ! These are the `-m' options defined for M680x0 and ColdFire processors. The default settings depend on which architecture was selected when the compiler was configured; the defaults for the most common choices are given below. ! `-march=ARCH' Generate code for a specific M680x0 or ColdFire instruction set architecture. Permissible values of ARCH for M680x0 architectures ! are: `68000', `68010', `68020', `68030', `68040', `68060' and ! `cpu32'. ColdFire architectures are selected according to Freescale's ISA classification and the permissible values are: ! `isaa', `isaaplus', `isab' and `isac'. ! GCC defines a macro `__mcfARCH__' whenever it is generating code for a ColdFire target. The ARCH in this macro is one of the ! `-march' arguments given above. ! When used together, `-march' and `-mtune' select code that runs on a family of similar processors but that is optimized for a particular microarchitecture. ! `-mcpu=CPU' Generate code for a specific M680x0 or ColdFire processor. The ! M680x0 CPUs are: `68000', `68010', `68020', `68030', `68040', ! `68060', `68302', `68332' and `cpu32'. The ColdFire CPUs are ! given by the table below, which also classifies the CPUs into ! families: ! *Family* *`-mcpu' arguments* ! `51' `51' `51ac' `51ag' `51cn' `51em' `51je' `51jf' `51jg' ! `51jm' `51mm' `51qe' `51qm' ! `5206' `5202' `5204' `5206' ! `5206e' `5206e' ! `5208' `5207' `5208' ! `5211a' `5210a' `5211a' ! `5213' `5211' `5212' `5213' ! `5216' `5214' `5216' ! `52235' `52230' `52231' `52232' `52233' `52234' `52235' ! `5225' `5224' `5225' ! `52259' `52252' `52254' `52255' `52256' `52258' `52259' ! `5235' `5232' `5233' `5234' `5235' `523x' ! `5249' `5249' ! `5250' `5250' ! `5271' `5270' `5271' ! `5272' `5272' ! `5275' `5274' `5275' ! `5282' `5280' `5281' `5282' `528x' ! `53017' `53011' `53012' `53013' `53014' `53015' `53016' ! `53017' ! `5307' `5307' ! `5329' `5327' `5328' `5329' `532x' ! `5373' `5372' `5373' `537x' ! `5407' `5407' ! `5475' `5470' `5471' `5472' `5473' `5474' `5475' `547x' ! `5480' `5481' `5482' `5483' `5484' `5485' ! `-mcpu=CPU' overrides `-march=ARCH' if ARCH is compatible with ! CPU. Other combinations of `-mcpu' and `-march' are rejected. ! GCC defines the macro `__mcf_cpu_CPU' when ColdFire target CPU is ! selected. It also defines `__mcf_family_FAMILY', where the value of FAMILY is given by the table above. ! `-mtune=TUNE' Tune the code for a particular microarchitecture within the ! constraints set by `-march' and `-mcpu'. The M680x0 ! microarchitectures are: `68000', `68010', `68020', `68030', ! `68040', `68060' and `cpu32'. The ColdFire microarchitectures ! are: `cfv1', `cfv2', `cfv3', `cfv4' and `cfv4e'. ! You can also use `-mtune=68020-40' for code that needs to run relatively well on 68020, 68030 and 68040 targets. ! `-mtune=68020-60' is similar but includes 68060 targets as well. ! These two options select the same tuning decisions as `-m68020-40' ! and `-m68020-60' respectively. ! GCC defines the macros `__mcARCH' and `__mcARCH__' when tuning for ! 680x0 architecture ARCH. It also defines `mcARCH' unless either ! `-ansi' or a non-GNU `-std' option is used. If GCC is tuning for ! a range of architectures, as selected by `-mtune=68020-40' or ! `-mtune=68020-60', it defines the macros for every architecture in the range. ! GCC also defines the macro `__mUARCH__' when tuning for ColdFire microarchitecture UARCH, where UARCH is one of the arguments given above. ! `-m68000' ! `-mc68000' ! Generate output for a 68000. This is the default when the ! compiler is configured for 68000-based systems. It is equivalent ! to `-march=68000'. Use this option for microcontrollers with a 68000 or EC000 core, including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356. ! `-m68010' ! Generate output for a 68010. This is the default when the ! compiler is configured for 68010-based systems. It is equivalent ! to `-march=68010'. ! `-m68020' ! `-mc68020' ! Generate output for a 68020. This is the default when the ! compiler is configured for 68020-based systems. It is equivalent ! to `-march=68020'. ! `-m68030' ! Generate output for a 68030. This is the default when the ! compiler is configured for 68030-based systems. It is equivalent ! to `-march=68030'. ! `-m68040' ! Generate output for a 68040. This is the default when the ! compiler is configured for 68040-based systems. It is equivalent ! to `-march=68040'. This option inhibits the use of 68881/68882 instructions that have to be emulated by software on the 68040. Use this option if your 68040 does not have code to emulate those instructions. ! `-m68060' ! Generate output for a 68060. This is the default when the ! compiler is configured for 68060-based systems. It is equivalent ! to `-march=68060'. This option inhibits the use of 68020 and 68881/68882 instructions ! that have to be emulated by software on the 68060. Use this ! option if your 68060 does not have code to emulate those ! instructions. ! `-mcpu32' ! Generate output for a CPU32. This is the default when the ! compiler is configured for CPU32-based systems. It is equivalent ! to `-march=cpu32'. Use this option for microcontrollers with a CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334, 68336, 68340, 68341, 68349 and 68360. ! `-m5200' Generate output for a 520X ColdFire CPU. This is the default when the compiler is configured for 520X-based systems. It is ! equivalent to `-mcpu=5206', and is now deprecated in favor of that option. ! Use this option for microcontroller with a 5200 core, including ! the MCF5202, MCF5203, MCF5204 and MCF5206. ! `-m5206e' Generate output for a 5206e ColdFire CPU. The option is now ! deprecated in favor of the equivalent `-mcpu=5206e'. ! `-m528x' Generate output for a member of the ColdFire 528X family. The ! option is now deprecated in favor of the equivalent `-mcpu=528x'. ! `-m5307' Generate output for a ColdFire 5307 CPU. The option is now ! deprecated in favor of the equivalent `-mcpu=5307'. ! `-m5407' Generate output for a ColdFire 5407 CPU. The option is now ! deprecated in favor of the equivalent `-mcpu=5407'. ! `-mcfv4e' Generate output for a ColdFire V4e family CPU (e.g. 547x/548x). This includes use of hardware floating-point instructions. The ! option is equivalent to `-mcpu=547x', and is now deprecated in favor of that option. ! `-m68020-40' Generate output for a 68040, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated ! on the 68040. ! The option is equivalent to `-march=68020' `-mtune=68020-40'. ! `-m68020-60' Generate output for a 68060, without using any of the new instructions. This results in code that can run relatively efficiently on either a 68020/68881 or a 68030 or a 68040. The ! generated code does use the 68881 instructions that are emulated ! on the 68060. ! The option is equivalent to `-march=68020' `-mtune=68020-60'. ! `-mhard-float' ! `-m68881' Generate floating-point instructions. This is the default for 68020 and above, and for ColdFire devices that have an FPU. It ! defines the macro `__HAVE_68881__' on M680x0 targets and ! `__mcffpu__' on ColdFire targets. ! `-msoft-float' Do not generate floating-point instructions; use library calls instead. This is the default for 68000, 68010, and 68832 targets. It is also the default for ColdFire devices that have no FPU. ! `-mdiv' ! `-mno-div' Generate (do not generate) ColdFire hardware divide and remainder ! instructions. If `-march' is used without `-mcpu', the default is ! "on" for ColdFire architectures and "off" for M680x0 ! architectures. Otherwise, the default is taken from the target CPU ! (either the default CPU, or the one specified by `-mcpu'). For ! example, the default is "off" for `-mcpu=5206' and "on" for ! `-mcpu=5206e'. ! GCC defines the macro `__mcfhwdiv__' when this option is enabled. ! `-mshort' ! Consider type `int' to be 16 bits wide, like `short int'. Additionally, parameters passed on the stack are also aligned to a 16-bit boundary even on targets whose API mandates promotion to 32-bit. ! `-mno-short' ! Do not consider type `int' to be 16 bits wide. This is the default. ! `-mnobitfield' ! `-mno-bitfield' ! Do not use the bit-field instructions. The `-m68000', `-mcpu32' ! and `-m5200' options imply `-mnobitfield'. ! `-mbitfield' ! Do use the bit-field instructions. The `-m68020' option implies ! `-mbitfield'. This is the default if you use a configuration designed for a 68020. ! `-mrtd' Use a different function-calling convention, in which functions ! that take a fixed number of arguments return with the `rtd' instruction, which pops their arguments while returning. This saves one instruction in the caller since there is no need to pop the arguments there. *************** given below. *** 15736,15813 **** compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including 'printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! The 'rtd' instruction is supported by the 68010, 68020, 68030, 68040, 68060 and CPU32 processors, but not by the 68000 or 5200. ! '-mno-rtd' ! Do not use the calling conventions selected by '-mrtd'. This is the default. ! '-malign-int' ! '-mno-align-int' ! Control whether GCC aligns 'int', 'long', 'long long', 'float', ! 'double', and 'long double' variables on a 32-bit boundary ! ('-malign-int') or a 16-bit boundary ('-mno-align-int'). Aligning variables on 32-bit boundaries produces code that runs somewhat faster on processors with 32-bit busses at the expense of more memory. ! *Warning:* if you use the '-malign-int' switch, GCC aligns structures containing the above types differently than most published application binary interface specifications for the m68k. ! '-mpcrel' Use the pc-relative addressing mode of the 68000 directly, instead of using a global offset table. At present, this option implies ! '-fpic', allowing at most a 16-bit offset for pc-relative ! addressing. '-fPIC' is not presently supported with '-mpcrel', though this could be supported for 68020 and higher processors. ! '-mno-strict-align' ! '-mstrict-align' Do not (do) assume that unaligned memory references are handled by the system. ! '-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute-in-place in an environment without virtual memory ! management. This option implies '-fPIC'. ! '-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! '-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute-in-place and shared libraries in an environment without virtual memory management. This option ! implies '-fPIC'. ! '-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! '-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number to the current library, but is no more space- or time-efficient than omitting this option. ! '-mxgot' ! '-mno-xgot' When generating position-independent code for ColdFire, generate code that works if the GOT has more than 8192 entries. This code is larger and slower than code generated without this option. On ! M680x0 processors, this option is not needed; '-fPIC' suffices. GCC normally uses a single instruction to load values from the GOT. While this is relatively efficient, it only works if the GOT is --- 15809,15886 ---- compiled with the Unix compiler. Also, you must provide function prototypes for all functions that ! take variable numbers of arguments (including `printf'); otherwise incorrect code is generated for calls to those functions. In addition, seriously incorrect code results if you call a function with too many arguments. (Normally, extra arguments are harmlessly ignored.) ! The `rtd' instruction is supported by the 68010, 68020, 68030, 68040, 68060 and CPU32 processors, but not by the 68000 or 5200. ! `-mno-rtd' ! Do not use the calling conventions selected by `-mrtd'. This is the default. ! `-malign-int' ! `-mno-align-int' ! Control whether GCC aligns `int', `long', `long long', `float', ! `double', and `long double' variables on a 32-bit boundary ! (`-malign-int') or a 16-bit boundary (`-mno-align-int'). Aligning variables on 32-bit boundaries produces code that runs somewhat faster on processors with 32-bit busses at the expense of more memory. ! *Warning:* if you use the `-malign-int' switch, GCC aligns structures containing the above types differently than most published application binary interface specifications for the m68k. ! `-mpcrel' Use the pc-relative addressing mode of the 68000 directly, instead of using a global offset table. At present, this option implies ! `-fpic', allowing at most a 16-bit offset for pc-relative ! addressing. `-fPIC' is not presently supported with `-mpcrel', though this could be supported for 68020 and higher processors. ! `-mno-strict-align' ! `-mstrict-align' Do not (do) assume that unaligned memory references are handled by the system. ! `-msep-data' Generate code that allows the data segment to be located in a different area of memory from the text segment. This allows for execute-in-place in an environment without virtual memory ! management. This option implies `-fPIC'. ! `-mno-sep-data' Generate code that assumes that the data segment follows the text segment. This is the default. ! `-mid-shared-library' Generate code that supports shared libraries via the library ID method. This allows for execute-in-place and shared libraries in an environment without virtual memory management. This option ! implies `-fPIC'. ! `-mno-id-shared-library' Generate code that doesn't assume ID-based shared libraries are being used. This is the default. ! `-mshared-library-id=n' Specifies the identification number of the ID-based shared library being compiled. Specifying a value of 0 generates more compact code; specifying other values forces the allocation of that number to the current library, but is no more space- or time-efficient than omitting this option. ! `-mxgot' ! `-mno-xgot' When generating position-independent code for ColdFire, generate code that works if the GOT has more than 8192 entries. This code is larger and slower than code generated without this option. On ! M680x0 processors, this option is not needed; `-fPIC' suffices. GCC normally uses a single instruction to load values from the GOT. While this is relatively efficient, it only works if the GOT is *************** given below. *** 15816,16020 **** relocation truncated to fit: R_68K_GOT16O foobar ! If this happens, you should recompile your code with '-mxgot'. It should then work with very large GOTs. However, code generated ! with '-mxgot' is less efficient, since it takes 4 instructions to fetch the value of a global symbol. Note that some linkers, including newer versions of the GNU linker, can create multiple GOTs and sort GOT entries. If you have such a ! linker, you should only need to use '-mxgot' when compiling a single object file that accesses more than 8192 GOT entries. Very few do. These options have no effect unless GCC is generating position-independent code.  File: gcc.info, Node: MCore Options, Next: MeP Options, Prev: M680x0 Options, Up: Submodel Options 3.17.24 MCore Options --------------------- ! These are the '-m' options defined for the Motorola M*Core processors. ! '-mhardlit' ! '-mno-hardlit' Inline constants into the code stream if it can be done in two instructions or less. ! '-mdiv' ! '-mno-div' Use the divide instruction. (Enabled by default). ! '-mrelax-immediate' ! '-mno-relax-immediate' Allow arbitrary-sized immediates in bit operations. ! '-mwide-bitfields' ! '-mno-wide-bitfields' ! Always treat bit-fields as 'int'-sized. ! '-m4byte-functions' ! '-mno-4byte-functions' Force all functions to be aligned to a 4-byte boundary. ! '-mcallgraph-data' ! '-mno-callgraph-data' Emit callgraph information. ! '-mslow-bytes' ! '-mno-slow-bytes' Prefer word access when reading byte quantities. ! '-mlittle-endian' ! '-mbig-endian' Generate code for a little-endian target. ! '-m210' ! '-m340' Generate code for the 210 processor. ! '-mno-lsim' Assume that runtime support has been provided and so omit the ! simulator library ('libsim.a)' from the linker command line. ! '-mstack-increment=SIZE' Set the maximum amount for a single stack increment operation. Large values can increase the speed of programs that contain functions that need a large amount of stack space, but they can also trigger a segmentation fault if the stack is extended too much. The default value is 0x1000.  File: gcc.info, Node: MeP Options, Next: MicroBlaze Options, Prev: MCore Options, Up: Submodel Options 3.17.25 MeP Options ------------------- ! '-mabsdiff' ! Enables the 'abs' instruction, which is the absolute difference between two registers. ! '-mall-opts' Enables all the optional instructions--average, multiply, divide, bit operations, leading zero, absolute difference, min/max, clip, and saturation. ! '-maverage' ! Enables the 'ave' instruction, which computes the average of two registers. ! '-mbased=N' ! Variables of size N bytes or smaller are placed in the '.based' ! section by default. Based variables use the '$tp' register as a ! base register, and there is a 128-byte limit to the '.based' section. ! '-mbitops' ! Enables the bit operation instructions--bit test ('btstm'), set ! ('bsetm'), clear ('bclrm'), invert ('bnotm'), and test-and-set ! ('tas'). ! '-mc=NAME' Selects which section constant data is placed in. NAME may be ! 'tiny', 'near', or 'far'. ! '-mclip' ! Enables the 'clip' instruction. Note that '-mclip' is not useful ! unless you also provide '-mminmax'. ! '-mconfig=NAME' Selects one of the built-in core configurations. Each MeP chip has ! one or more modules in it; each module has a core CPU and a variety ! of coprocessors, optional instructions, and peripherals. The ! 'MeP-Integrator' tool, not part of GCC, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default ! configuration is 'default'. ! '-mcop' Enables the coprocessor instructions. By default, this is a 32-bit coprocessor. Note that the coprocessor is normally enabled via the ! '-mconfig=' option. ! '-mcop32' Enables the 32-bit coprocessor's instructions. ! '-mcop64' Enables the 64-bit coprocessor's instructions. ! '-mivc2' Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor. ! '-mdc' ! Causes constant variables to be placed in the '.near' section. ! '-mdiv' ! Enables the 'div' and 'divu' instructions. ! '-meb' Generate big-endian code. ! '-mel' Generate little-endian code. ! '-mio-volatile' ! Tells the compiler that any variable marked with the 'io' attribute ! is to be considered volatile. ! '-ml' ! Causes variables to be assigned to the '.far' section by default. ! '-mleadz' ! Enables the 'leadz' (leading zero) instruction. ! '-mm' ! Causes variables to be assigned to the '.near' section by default. ! '-mminmax' ! Enables the 'min' and 'max' instructions. ! '-mmult' Enables the multiplication and multiply-accumulate instructions. ! '-mno-opts' ! Disables all the optional instructions enabled by '-mall-opts'. ! '-mrepeat' ! Enables the 'repeat' and 'erepeat' instructions, used for low-overhead looping. ! '-ms' ! Causes all variables to default to the '.tiny' section. Note that there is a 65536-byte limit to this section. Accesses to these ! variables use the '%gp' base register. ! '-msatur' Enables the saturation instructions. Note that the compiler does not currently generate these itself, but this option is included ! for compatibility with other tools, like 'as'. ! '-msdram' Link the SDRAM-based runtime instead of the default ROM-based runtime. ! '-msim' Link the simulator run-time libraries. ! '-msimnovec' Link the simulator runtime libraries, excluding built-in support for reset and exception vectors and tables. ! '-mtf' ! Causes all functions to default to the '.far' section. Without ! this option, functions default to the '.near' section. - '-mtiny=N' - Variables that are N bytes or smaller are allocated to the '.tiny' - section. These variables use the '$gp' base register. The default - for this option is 4, but note that there's a 65536-byte limit to - the '.tiny' section.  File: gcc.info, Node: MicroBlaze Options, Next: MIPS Options, Prev: MeP Options, Up: Submodel Options --- 15889,16096 ---- relocation truncated to fit: R_68K_GOT16O foobar ! If this happens, you should recompile your code with `-mxgot'. It should then work with very large GOTs. However, code generated ! with `-mxgot' is less efficient, since it takes 4 instructions to fetch the value of a global symbol. Note that some linkers, including newer versions of the GNU linker, can create multiple GOTs and sort GOT entries. If you have such a ! linker, you should only need to use `-mxgot' when compiling a single object file that accesses more than 8192 GOT entries. Very few do. These options have no effect unless GCC is generating position-independent code. +  File: gcc.info, Node: MCore Options, Next: MeP Options, Prev: M680x0 Options, Up: Submodel Options 3.17.24 MCore Options --------------------- ! These are the `-m' options defined for the Motorola M*Core processors. ! `-mhardlit' ! `-mno-hardlit' Inline constants into the code stream if it can be done in two instructions or less. ! `-mdiv' ! `-mno-div' Use the divide instruction. (Enabled by default). ! `-mrelax-immediate' ! `-mno-relax-immediate' Allow arbitrary-sized immediates in bit operations. ! `-mwide-bitfields' ! `-mno-wide-bitfields' ! Always treat bit-fields as `int'-sized. ! `-m4byte-functions' ! `-mno-4byte-functions' Force all functions to be aligned to a 4-byte boundary. ! `-mcallgraph-data' ! `-mno-callgraph-data' Emit callgraph information. ! `-mslow-bytes' ! `-mno-slow-bytes' Prefer word access when reading byte quantities. ! `-mlittle-endian' ! `-mbig-endian' Generate code for a little-endian target. ! `-m210' ! `-m340' Generate code for the 210 processor. ! `-mno-lsim' Assume that runtime support has been provided and so omit the ! simulator library (`libsim.a)' from the linker command line. ! `-mstack-increment=SIZE' Set the maximum amount for a single stack increment operation. Large values can increase the speed of programs that contain functions that need a large amount of stack space, but they can also trigger a segmentation fault if the stack is extended too much. The default value is 0x1000. +  File: gcc.info, Node: MeP Options, Next: MicroBlaze Options, Prev: MCore Options, Up: Submodel Options 3.17.25 MeP Options ------------------- ! `-mabsdiff' ! Enables the `abs' instruction, which is the absolute difference between two registers. ! `-mall-opts' Enables all the optional instructions--average, multiply, divide, bit operations, leading zero, absolute difference, min/max, clip, and saturation. ! `-maverage' ! Enables the `ave' instruction, which computes the average of two registers. ! `-mbased=N' ! Variables of size N bytes or smaller are placed in the `.based' ! section by default. Based variables use the `$tp' register as a ! base register, and there is a 128-byte limit to the `.based' section. ! `-mbitops' ! Enables the bit operation instructions--bit test (`btstm'), set ! (`bsetm'), clear (`bclrm'), invert (`bnotm'), and test-and-set ! (`tas'). ! `-mc=NAME' Selects which section constant data is placed in. NAME may be ! `tiny', `near', or `far'. ! `-mclip' ! Enables the `clip' instruction. Note that `-mclip' is not useful ! unless you also provide `-mminmax'. ! `-mconfig=NAME' Selects one of the built-in core configurations. Each MeP chip has ! one or more modules in it; each module has a core CPU and a ! variety of coprocessors, optional instructions, and peripherals. ! The `MeP-Integrator' tool, not part of GCC, provides these configurations through this option; using this option is the same as using all the corresponding command-line options. The default ! configuration is `default'. ! `-mcop' Enables the coprocessor instructions. By default, this is a 32-bit coprocessor. Note that the coprocessor is normally enabled via the ! `-mconfig=' option. ! `-mcop32' Enables the 32-bit coprocessor's instructions. ! `-mcop64' Enables the 64-bit coprocessor's instructions. ! `-mivc2' Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor. ! `-mdc' ! Causes constant variables to be placed in the `.near' section. ! `-mdiv' ! Enables the `div' and `divu' instructions. ! `-meb' Generate big-endian code. ! `-mel' Generate little-endian code. ! `-mio-volatile' ! Tells the compiler that any variable marked with the `io' ! attribute is to be considered volatile. ! `-ml' ! Causes variables to be assigned to the `.far' section by default. ! `-mleadz' ! Enables the `leadz' (leading zero) instruction. ! `-mm' ! Causes variables to be assigned to the `.near' section by default. ! `-mminmax' ! Enables the `min' and `max' instructions. ! `-mmult' Enables the multiplication and multiply-accumulate instructions. ! `-mno-opts' ! Disables all the optional instructions enabled by `-mall-opts'. ! `-mrepeat' ! Enables the `repeat' and `erepeat' instructions, used for low-overhead looping. ! `-ms' ! Causes all variables to default to the `.tiny' section. Note that there is a 65536-byte limit to this section. Accesses to these ! variables use the `%gp' base register. ! `-msatur' Enables the saturation instructions. Note that the compiler does not currently generate these itself, but this option is included ! for compatibility with other tools, like `as'. ! `-msdram' Link the SDRAM-based runtime instead of the default ROM-based runtime. ! `-msim' Link the simulator run-time libraries. ! `-msimnovec' Link the simulator runtime libraries, excluding built-in support for reset and exception vectors and tables. ! `-mtf' ! Causes all functions to default to the `.far' section. Without ! this option, functions default to the `.near' section. ! ! `-mtiny=N' ! Variables that are N bytes or smaller are allocated to the `.tiny' ! section. These variables use the `$gp' base register. The ! default for this option is 4, but note that there's a 65536-byte ! limit to the `.tiny' section.  File: gcc.info, Node: MicroBlaze Options, Next: MIPS Options, Prev: MeP Options, Up: Submodel Options *************** File: gcc.info, Node: MicroBlaze Option *** 16022,16112 **** 3.17.26 MicroBlaze Options -------------------------- ! '-msoft-float' Use software emulation for floating point (default). ! '-mhard-float' Use hardware floating-point instructions. ! '-mmemcpy' ! Do not optimize block moves, use 'memcpy'. ! '-mno-clearbss' ! This option is deprecated. Use '-fno-zero-initialized-in-bss' instead. ! '-mcpu=CPU-TYPE' ! Use features of, and schedule code for, the given CPU. Supported ! values are in the format 'vX.YY.Z', where X is a major version, YY is the minor version, and Z is compatibility code. Example values ! are 'v3.00.a', 'v4.00.b', 'v5.00.a', 'v5.00.b', 'v5.00.b', ! 'v6.00.a'. ! '-mxl-soft-mul' Use software multiply emulation (default). ! '-mxl-soft-div' Use software emulation for divides (default). ! '-mxl-barrel-shift' Use the hardware barrel shifter. ! '-mxl-pattern-compare' Use pattern compare instructions. ! '-msmall-divides' Use table lookup optimization for small signed integer divisions. ! '-mxl-stack-check' ! This option is deprecated. Use '-fstack-check' instead. ! '-mxl-gp-opt' ! Use GP-relative '.sdata'/'.sbss' sections. ! '-mxl-multiply-high' Use multiply high instructions for high part of 32x32 multiply. ! '-mxl-float-convert' Use hardware floating-point conversion instructions. ! '-mxl-float-sqrt' Use hardware floating-point square root instruction. ! '-mbig-endian' Generate code for a big-endian target. ! '-mlittle-endian' Generate code for a little-endian target. ! '-mxl-reorder' Use reorder instructions (swap and byte reversed load/store). ! '-mxl-mode-APP-MODEL' Select application model APP-MODEL. Valid models are ! 'executable' ! normal executable (default), uses startup code 'crt0.o'. ! 'xmdstub' for use with Xilinx Microprocessor Debugger (XMD) based ! software intrusive debug agent called xmdstub. This uses ! startup file 'crt1.o' and sets the start address of the program to 0x800. ! 'bootstrap' for applications that are loaded using a bootloader. This ! model uses startup file 'crt2.o' which does not contain a ! processor reset vector handler. This is suitable for transferring control on a processor reset to the bootloader rather than the application. ! 'novectors' for applications that do not require any of the MicroBlaze ! vectors. This option may be useful for applications running ! within a monitoring application. This model uses 'crt3.o' as a startup file. ! Option '-xl-mode-APP-MODEL' is a deprecated alias for ! '-mxl-mode-APP-MODEL'.  File: gcc.info, Node: MIPS Options, Next: MMIX Options, Prev: MicroBlaze Options, Up: Submodel Options --- 16098,16189 ---- 3.17.26 MicroBlaze Options -------------------------- ! `-msoft-float' Use software emulation for floating point (default). ! `-mhard-float' Use hardware floating-point instructions. ! `-mmemcpy' ! Do not optimize block moves, use `memcpy'. ! `-mno-clearbss' ! This option is deprecated. Use `-fno-zero-initialized-in-bss' instead. ! `-mcpu=CPU-TYPE' ! Use features of, and schedule code for, the given CPU. Supported ! values are in the format `vX.YY.Z', where X is a major version, YY is the minor version, and Z is compatibility code. Example values ! are `v3.00.a', `v4.00.b', `v5.00.a', `v5.00.b', `v5.00.b', ! `v6.00.a'. ! `-mxl-soft-mul' Use software multiply emulation (default). ! `-mxl-soft-div' Use software emulation for divides (default). ! `-mxl-barrel-shift' Use the hardware barrel shifter. ! `-mxl-pattern-compare' Use pattern compare instructions. ! `-msmall-divides' Use table lookup optimization for small signed integer divisions. ! `-mxl-stack-check' ! This option is deprecated. Use `-fstack-check' instead. ! `-mxl-gp-opt' ! Use GP-relative `.sdata'/`.sbss' sections. ! `-mxl-multiply-high' Use multiply high instructions for high part of 32x32 multiply. ! `-mxl-float-convert' Use hardware floating-point conversion instructions. ! `-mxl-float-sqrt' Use hardware floating-point square root instruction. ! `-mbig-endian' Generate code for a big-endian target. ! `-mlittle-endian' Generate code for a little-endian target. ! `-mxl-reorder' Use reorder instructions (swap and byte reversed load/store). ! `-mxl-mode-APP-MODEL' Select application model APP-MODEL. Valid models are ! `executable' ! normal executable (default), uses startup code `crt0.o'. ! `xmdstub' for use with Xilinx Microprocessor Debugger (XMD) based ! software intrusive debug agent called xmdstub. This uses ! startup file `crt1.o' and sets the start address of the program to 0x800. ! `bootstrap' for applications that are loaded using a bootloader. This ! model uses startup file `crt2.o' which does not contain a ! processor reset vector handler. This is suitable for transferring control on a processor reset to the bootloader rather than the application. ! `novectors' for applications that do not require any of the MicroBlaze ! vectors. This option may be useful for applications running ! within a monitoring application. This model uses `crt3.o' as a startup file. ! Option `-xl-mode-APP-MODEL' is a deprecated alias for ! `-mxl-mode-APP-MODEL'. !  File: gcc.info, Node: MIPS Options, Next: MMIX Options, Prev: MicroBlaze Options, Up: Submodel Options *************** File: gcc.info, Node: MIPS Options, Ne *** 16114,16312 **** 3.17.27 MIPS Options -------------------- ! '-EB' Generate big-endian code. ! '-EL' ! Generate little-endian code. This is the default for 'mips*el-*-*' configurations. ! '-march=ARCH' ! Generate code that runs on ARCH, which can be the name of a generic ! MIPS ISA, or the name of a particular processor. The ISA names ! are: 'mips1', 'mips2', 'mips3', 'mips4', 'mips32', 'mips32r2', ! 'mips64' and 'mips64r2'. The processor names are: '4kc', '4km', ! '4kp', '4ksc', '4kec', '4kem', '4kep', '4ksd', '5kc', '5kf', ! '20kc', '24kc', '24kf2_1', '24kf1_1', '24kec', '24kef2_1', ! '24kef1_1', '34kc', '34kf2_1', '34kf1_1', '34kn', '74kc', ! '74kf2_1', '74kf1_1', '74kf3_2', '1004kc', '1004kf2_1', ! '1004kf1_1', 'loongson2e', 'loongson2f', 'loongson3a', 'm4k', ! 'm14k', 'm14kc', 'm14ke', 'm14kec', 'octeon', 'octeon+', 'octeon2', ! 'orion', 'r2000', 'r3000', 'r3900', 'r4000', 'r4400', 'r4600', ! 'r4650', 'r4700', 'r6000', 'r8000', 'rm7000', 'rm9000', 'r10000', ! 'r12000', 'r14000', 'r16000', 'sb1', 'sr71000', 'vr4100', 'vr4111', ! 'vr4120', 'vr4130', 'vr4300', 'vr5000', 'vr5400', 'vr5500', 'xlr' ! and 'xlp'. The special value 'from-abi' selects the most ! compatible architecture for the selected ABI (that is, 'mips1' for ! 32-bit ABIs and 'mips3' for 64-bit ABIs). ! The native Linux/GNU toolchain also supports the value 'native', which selects the best architecture option for the host processor. ! '-march=native' has no effect if GCC does not recognize the processor. ! In processor names, a final '000' can be abbreviated as 'k' (for ! example, '-march=r2k'). Prefixes are optional, and 'vr' may be ! written 'r'. ! Names of the form 'Nf2_1' refer to processors with FPUs clocked at ! half the rate of the core, names of the form 'Nf1_1' refer to processors with FPUs clocked at the same rate as the core, and ! names of the form 'Nf3_2' refer to processors with FPUs clocked a ratio of 3:2 with respect to the core. For compatibility reasons, ! 'Nf' is accepted as a synonym for 'Nf2_1' while 'Nx' and 'Bfx' are ! accepted as synonyms for 'Nf1_1'. GCC defines two macros based on the value of this option. The ! first is '_MIPS_ARCH', which gives the name of target architecture, ! as a string. The second has the form '_MIPS_ARCH_FOO', where FOO ! is the capitalized value of '_MIPS_ARCH'. For example, ! '-march=r2000' sets '_MIPS_ARCH' to '"r2000"' and defines the macro ! '_MIPS_ARCH_R2000'. ! Note that the '_MIPS_ARCH' macro uses the processor names given above. In other words, it has the full prefix and does not ! abbreviate '000' as 'k'. In the case of 'from-abi', the macro ! names the resolved architecture (either '"mips1"' or '"mips3"'). ! It names the default architecture when no '-march' option is given. ! '-mtune=ARCH' Optimize for ARCH. Among other things, this option controls the way instructions are scheduled, and the perceived cost of arithmetic operations. The list of ARCH values is the same as for ! '-march'. When this option is not used, GCC optimizes for the processor ! specified by '-march'. By using '-march' and '-mtune' together, it ! is possible to generate code that runs on a family of processors, ! but optimize the code for one particular member of that family. ! '-mtune' defines the macros '_MIPS_TUNE' and '_MIPS_TUNE_FOO', ! which work in the same way as the '-march' ones described above. ! '-mips1' ! Equivalent to '-march=mips1'. ! '-mips2' ! Equivalent to '-march=mips2'. ! '-mips3' ! Equivalent to '-march=mips3'. ! '-mips4' ! Equivalent to '-march=mips4'. ! '-mips32' ! Equivalent to '-march=mips32'. ! '-mips32r2' ! Equivalent to '-march=mips32r2'. ! '-mips64' ! Equivalent to '-march=mips64'. ! '-mips64r2' ! Equivalent to '-march=mips64r2'. ! '-mips16' ! '-mno-mips16' Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE. MIPS16 code generation can also be controlled on a per-function ! basis by means of 'mips16' and 'nomips16' attributes. *Note Function Attributes::, for more information. ! '-mflip-mips16' Generate MIPS16 code on alternating functions. This option is provided for regression testing of mixed MIPS16/non-MIPS16 code generation, and is not intended for ordinary use in compiling user code. ! '-minterlink-compressed' ! '-mno-interlink-compressed' Require (do not require) that code using the standard (uncompressed) MIPS ISA be link-compatible with MIPS16 and microMIPS code, and vice versa. For example, code using the standard ISA encoding cannot jump directly to MIPS16 or microMIPS code; it must either use a call or ! an indirect jump. '-minterlink-compressed' therefore disables direct jumps unless GCC knows that the target of the jump is not compressed. ! '-minterlink-mips16' ! '-mno-interlink-mips16' ! Aliases of '-minterlink-compressed' and ! '-mno-interlink-compressed'. These options predate the microMIPS ASE and are retained for backwards compatibility. ! '-mabi=32' ! '-mabi=o64' ! '-mabi=n32' ! '-mabi=64' ! '-mabi=eabi' Generate code for the given ABI. Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates 64-bit code when you select a 64-bit architecture, but ! you can use '-mgp32' to get 32-bit code instead. For information about the O64 ABI, see ! . GCC supports a variant of the o32 ABI in which floating-point registers are 64 rather than 32 bits wide. You can select this ! combination with '-mabi=32' '-mfp64'. This ABI relies on the ! 'mthc1' and 'mfhc1' instructions and is therefore only supported for MIPS32R2 processors. The register assignments for arguments and return values remain the same, but each scalar value is passed in a single 64-bit register rather than a pair of 32-bit registers. For example, scalar ! floating-point values are returned in '$f0' only, not a '$f0'/'$f1' ! pair. The set of call-saved registers also remains the same, but ! all 64 bits are saved. ! '-mabicalls' ! '-mno-abicalls' Generate (do not generate) code that is suitable for SVR4-style ! dynamic objects. '-mabicalls' is the default for SVR4-based systems. ! '-mshared' ! '-mno-shared' Generate (do not generate) code that is fully position-independent, and that can therefore be linked into shared libraries. This ! option only affects '-mabicalls'. ! All '-mabicalls' code has traditionally been position-independent, ! regardless of options like '-fPIC' and '-fpic'. However, as an extension, the GNU toolchain allows executables to use absolute accesses for locally-binding symbols. It can also use shorter GP initialization sequences and generate direct calls to ! locally-defined functions. This mode is selected by '-mno-shared'. ! '-mno-shared' depends on binutils 2.16 or higher and generates objects that can only be linked by the GNU linker. However, the option does not affect the ABI of the final executable; it only ! affects the ABI of relocatable objects. Using '-mno-shared' generally makes executables both smaller and quicker. ! '-mshared' is the default. ! '-mplt' ! '-mno-plt' Assume (do not assume) that the static and dynamic linkers support ! PLTs and copy relocations. This option only affects '-mno-shared -mabicalls'. For the n64 ABI, this option has no effect without ! '-msym32'. ! You can make '-mplt' the default by configuring GCC with ! '--with-mips-plt'. The default is '-mno-plt' otherwise. ! '-mxgot' ! '-mno-xgot' Lift (do not lift) the usual restrictions on the size of the global offset table. --- 16191,16391 ---- 3.17.27 MIPS Options -------------------- ! `-EB' Generate big-endian code. ! `-EL' ! Generate little-endian code. This is the default for `mips*el-*-*' configurations. ! `-march=ARCH' ! Generate code that runs on ARCH, which can be the name of a ! generic MIPS ISA, or the name of a particular processor. The ISA ! names are: `mips1', `mips2', `mips3', `mips4', `mips32', ! `mips32r2', `mips64' and `mips64r2'. The processor names are: ! `4kc', `4km', `4kp', `4ksc', `4kec', `4kem', `4kep', `4ksd', ! `5kc', `5kf', `20kc', `24kc', `24kf2_1', `24kf1_1', `24kec', ! `24kef2_1', `24kef1_1', `34kc', `34kf2_1', `34kf1_1', `34kn', ! `74kc', `74kf2_1', `74kf1_1', `74kf3_2', `1004kc', `1004kf2_1', ! `1004kf1_1', `loongson2e', `loongson2f', `loongson3a', `m4k', ! `m14k', `m14kc', `m14ke', `m14kec', `octeon', `octeon+', `octeon2', ! `orion', `r2000', `r3000', `r3900', `r4000', `r4400', `r4600', ! `r4650', `r4700', `r6000', `r8000', `rm7000', `rm9000', `r10000', ! `r12000', `r14000', `r16000', `sb1', `sr71000', `vr4100', ! `vr4111', `vr4120', `vr4130', `vr4300', `vr5000', `vr5400', ! `vr5500', `xlr' and `xlp'. The special value `from-abi' selects ! the most compatible architecture for the selected ABI (that is, ! `mips1' for 32-bit ABIs and `mips3' for 64-bit ABIs). ! The native Linux/GNU toolchain also supports the value `native', which selects the best architecture option for the host processor. ! `-march=native' has no effect if GCC does not recognize the processor. ! In processor names, a final `000' can be abbreviated as `k' (for ! example, `-march=r2k'). Prefixes are optional, and `vr' may be ! written `r'. ! Names of the form `Nf2_1' refer to processors with FPUs clocked at ! half the rate of the core, names of the form `Nf1_1' refer to processors with FPUs clocked at the same rate as the core, and ! names of the form `Nf3_2' refer to processors with FPUs clocked a ratio of 3:2 with respect to the core. For compatibility reasons, ! `Nf' is accepted as a synonym for `Nf2_1' while `Nx' and `Bfx' are ! accepted as synonyms for `Nf1_1'. GCC defines two macros based on the value of this option. The ! first is `_MIPS_ARCH', which gives the name of target ! architecture, as a string. The second has the form ! `_MIPS_ARCH_FOO', where FOO is the capitalized value of ! `_MIPS_ARCH'. For example, `-march=r2000' sets `_MIPS_ARCH' to ! `"r2000"' and defines the macro `_MIPS_ARCH_R2000'. ! Note that the `_MIPS_ARCH' macro uses the processor names given above. In other words, it has the full prefix and does not ! abbreviate `000' as `k'. In the case of `from-abi', the macro ! names the resolved architecture (either `"mips1"' or `"mips3"'). ! It names the default architecture when no `-march' option is given. ! `-mtune=ARCH' Optimize for ARCH. Among other things, this option controls the way instructions are scheduled, and the perceived cost of arithmetic operations. The list of ARCH values is the same as for ! `-march'. When this option is not used, GCC optimizes for the processor ! specified by `-march'. By using `-march' and `-mtune' together, ! it is possible to generate code that runs on a family of ! processors, but optimize the code for one particular member of ! that family. ! `-mtune' defines the macros `_MIPS_TUNE' and `_MIPS_TUNE_FOO', ! which work in the same way as the `-march' ones described above. ! `-mips1' ! Equivalent to `-march=mips1'. ! `-mips2' ! Equivalent to `-march=mips2'. ! `-mips3' ! Equivalent to `-march=mips3'. ! `-mips4' ! Equivalent to `-march=mips4'. ! `-mips32' ! Equivalent to `-march=mips32'. ! `-mips32r2' ! Equivalent to `-march=mips32r2'. ! `-mips64' ! Equivalent to `-march=mips64'. ! `-mips64r2' ! Equivalent to `-march=mips64r2'. ! `-mips16' ! `-mno-mips16' Generate (do not generate) MIPS16 code. If GCC is targeting a MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE. MIPS16 code generation can also be controlled on a per-function ! basis by means of `mips16' and `nomips16' attributes. *Note Function Attributes::, for more information. ! `-mflip-mips16' Generate MIPS16 code on alternating functions. This option is provided for regression testing of mixed MIPS16/non-MIPS16 code generation, and is not intended for ordinary use in compiling user code. ! `-minterlink-compressed' ! ! `-mno-interlink-compressed' Require (do not require) that code using the standard (uncompressed) MIPS ISA be link-compatible with MIPS16 and microMIPS code, and vice versa. For example, code using the standard ISA encoding cannot jump directly to MIPS16 or microMIPS code; it must either use a call or ! an indirect jump. `-minterlink-compressed' therefore disables direct jumps unless GCC knows that the target of the jump is not compressed. ! `-minterlink-mips16' ! `-mno-interlink-mips16' ! Aliases of `-minterlink-compressed' and ! `-mno-interlink-compressed'. These options predate the microMIPS ASE and are retained for backwards compatibility. ! `-mabi=32' ! `-mabi=o64' ! `-mabi=n32' ! `-mabi=64' ! `-mabi=eabi' Generate code for the given ABI. Note that the EABI has a 32-bit and a 64-bit variant. GCC normally generates 64-bit code when you select a 64-bit architecture, but ! you can use `-mgp32' to get 32-bit code instead. For information about the O64 ABI, see ! `http://gcc.gnu.org/projects/mipso64-abi.html'. GCC supports a variant of the o32 ABI in which floating-point registers are 64 rather than 32 bits wide. You can select this ! combination with `-mabi=32' `-mfp64'. This ABI relies on the ! `mthc1' and `mfhc1' instructions and is therefore only supported for MIPS32R2 processors. The register assignments for arguments and return values remain the same, but each scalar value is passed in a single 64-bit register rather than a pair of 32-bit registers. For example, scalar ! floating-point values are returned in `$f0' only, not a ! `$f0'/`$f1' pair. The set of call-saved registers also remains ! the same, but all 64 bits are saved. ! `-mabicalls' ! `-mno-abicalls' Generate (do not generate) code that is suitable for SVR4-style ! dynamic objects. `-mabicalls' is the default for SVR4-based systems. ! `-mshared' ! `-mno-shared' Generate (do not generate) code that is fully position-independent, and that can therefore be linked into shared libraries. This ! option only affects `-mabicalls'. ! All `-mabicalls' code has traditionally been position-independent, ! regardless of options like `-fPIC' and `-fpic'. However, as an extension, the GNU toolchain allows executables to use absolute accesses for locally-binding symbols. It can also use shorter GP initialization sequences and generate direct calls to ! locally-defined functions. This mode is selected by `-mno-shared'. ! `-mno-shared' depends on binutils 2.16 or higher and generates objects that can only be linked by the GNU linker. However, the option does not affect the ABI of the final executable; it only ! affects the ABI of relocatable objects. Using `-mno-shared' generally makes executables both smaller and quicker. ! `-mshared' is the default. ! `-mplt' ! `-mno-plt' Assume (do not assume) that the static and dynamic linkers support ! PLTs and copy relocations. This option only affects `-mno-shared -mabicalls'. For the n64 ABI, this option has no effect without ! `-msym32'. ! You can make `-mplt' the default by configuring GCC with ! `--with-mips-plt'. The default is `-mno-plt' otherwise. ! `-mxgot' ! `-mno-xgot' Lift (do not lift) the usual restrictions on the size of the global offset table. *************** File: gcc.info, Node: MIPS Options, Ne *** 16317,16584 **** relocation truncated to fit: R_MIPS_GOT16 foobar ! If this happens, you should recompile your code with '-mxgot'. This works with very large GOTs, although the code is also less efficient, since it takes three instructions to fetch the value of a global symbol. Note that some linkers can create multiple GOTs. If you have such ! a linker, you should only need to use '-mxgot' when a single object file accesses more than 64k's worth of GOT entries. Very few do. These options have no effect unless GCC is generating position independent code. ! '-mgp32' Assume that general-purpose registers are 32 bits wide. ! '-mgp64' Assume that general-purpose registers are 64 bits wide. ! '-mfp32' Assume that floating-point registers are 32 bits wide. ! '-mfp64' Assume that floating-point registers are 64 bits wide. ! '-mhard-float' Use floating-point coprocessor instructions. ! '-msoft-float' Do not use floating-point coprocessor instructions. Implement floating-point calculations using library calls instead. ! '-mno-float' ! Equivalent to '-msoft-float', but additionally asserts that the program being compiled does not perform any floating-point operations. This option is presently supported only by some bare-metal MIPS configurations, where it may select a special set of libraries that lack all floating-point support (including, for ! example, the floating-point 'printf' formats). If code compiled ! with '-mno-float' accidentally contains floating-point operations, it is likely to suffer a link-time or run-time failure. ! '-msingle-float' Assume that the floating-point coprocessor only supports single-precision operations. ! '-mdouble-float' Assume that the floating-point coprocessor supports double-precision operations. This is the default. ! '-mabs=2008' ! '-mabs=legacy' These options control the treatment of the special not-a-number ! (NaN) IEEE 754 floating-point data with the 'abs.fmt' and 'neg.fmt' ! machine instructions. ! By default or when the '-mabs=legacy' is used the legacy treatment is selected. In this case these instructions are considered arithmetic and avoided where correct operation is required and the ! input operand might be a NaN. A longer sequence of instructions that manipulate the sign bit of floating-point datum manually is ! used instead unless the '-ffinite-math-only' option has also been specified. ! The '-mabs=2008' option selects the IEEE 754-2008 treatment. In this case these instructions are considered non-arithmetic and ! therefore operating correctly in all cases, including in particular ! where the input operand is a NaN. These instructions are therefore ! always used for the respective operations. ! '-mnan=2008' ! '-mnan=legacy' These options control the encoding of the special not-a-number (NaN) IEEE 754 floating-point data. ! The '-mnan=legacy' option selects the legacy encoding. In this case quiet NaNs (qNaNs) are denoted by the first bit of their ! trailing significand field being 0, whereas signalling NaNs (sNaNs) ! are denoted by the first bit of their trailing significand field ! being 1. ! The '-mnan=2008' option selects the IEEE 754-2008 encoding. In this case qNaNs are denoted by the first bit of their trailing significand field being 1, whereas sNaNs are denoted by the first bit of their trailing significand field being 0. ! The default is '-mnan=legacy' unless GCC has been configured with ! '--with-nan=2008'. ! '-mllsc' ! '-mno-llsc' ! Use (do not use) 'll', 'sc', and 'sync' instructions to implement atomic memory built-in functions. When neither option is specified, GCC uses the instructions if the target architecture supports them. ! '-mllsc' is useful if the runtime environment can emulate the ! instructions and '-mno-llsc' can be useful when compiling for nonstandard ISAs. You can make either option the default by ! configuring GCC with '--with-llsc' and '--without-llsc' ! respectively. '--with-llsc' is the default for some configurations; see the installation documentation for details. ! '-mdsp' ! '-mno-dsp' Use (do not use) revision 1 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macro ! '__mips_dsp'. It also defines '__mips_dsp_rev' to 1. ! '-mdspr2' ! '-mno-dspr2' Use (do not use) revision 2 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macros ! '__mips_dsp' and '__mips_dspr2'. It also defines '__mips_dsp_rev' to 2. ! '-msmartmips' ! '-mno-smartmips' Use (do not use) the MIPS SmartMIPS ASE. ! '-mpaired-single' ! '-mno-paired-single' Use (do not use) paired-single floating-point instructions. *Note MIPS Paired-Single Support::. This option requires hardware floating-point support to be enabled. ! '-mdmx' ! '-mno-mdmx' Use (do not use) MIPS Digital Media Extension instructions. This option can only be used when generating 64-bit code and requires hardware floating-point support to be enabled. ! '-mips3d' ! '-mno-mips3d' Use (do not use) the MIPS-3D ASE. *Note MIPS-3D Built-in ! Functions::. The option '-mips3d' implies '-mpaired-single'. ! '-mmicromips' ! '-mno-micromips' Generate (do not generate) microMIPS code. MicroMIPS code generation can also be controlled on a per-function ! basis by means of 'micromips' and 'nomicromips' attributes. *Note Function Attributes::, for more information. ! '-mmt' ! '-mno-mt' Use (do not use) MT Multithreading instructions. ! '-mmcu' ! '-mno-mcu' Use (do not use) the MIPS MCU ASE instructions. ! '-meva' ! '-mno-eva' Use (do not use) the MIPS Enhanced Virtual Addressing instructions. ! '-mvirt' ! '-mno-virt' Use (do not use) the MIPS Virtualization Application Specific instructions. ! '-mlong64' ! Force 'long' types to be 64 bits wide. See '-mlong32' for an explanation of the default and the way that the pointer size is determined. ! '-mlong32' ! Force 'long', 'int', and pointer types to be 32 bits wide. ! The default size of 'int's, 'long's and pointers depends on the ! ABI. All the supported ABIs use 32-bit 'int's. The n64 ABI uses ! 64-bit 'long's, as does the 64-bit EABI; the others use 32-bit ! 'long's. Pointers are the same size as 'long's, or the same size as integer registers, whichever is smaller. ! '-msym32' ! '-mno-sym32' Assume (do not assume) that all symbols have 32-bit values, regardless of the selected ABI. This option is useful in ! combination with '-mabi=64' and '-mno-abicalls' because it allows GCC to generate shorter and faster references to symbolic addresses. ! '-G NUM' Put definitions of externally-visible data in a small data section if that data is no bigger than NUM bytes. GCC can then generate ! more efficient accesses to the data; see '-mgpopt' for details. ! The default '-G' option depends on the configuration. ! '-mlocal-sdata' ! '-mno-local-sdata' ! Extend (do not extend) the '-G' behavior to local data too, such as ! to static variables in C. '-mlocal-sdata' is the default for all ! configurations. ! If the linker complains that an application is using too much small ! data, you might want to try rebuilding the less ! performance-critical parts with '-mno-local-sdata'. You might also ! want to build large libraries with '-mno-local-sdata', so that the ! libraries leave more room for the main program. ! '-mextern-sdata' ! '-mno-extern-sdata' Assume (do not assume) that externally-defined data is in a small ! data section if the size of that data is within the '-G' limit. ! '-mextern-sdata' is the default for all configurations. ! If you compile a module MOD with '-mextern-sdata' '-G NUM' ! '-mgpopt', and MOD references a variable VAR that is no bigger than ! NUM bytes, you must make sure that VAR is placed in a small data ! section. If VAR is defined by another module, you must either ! compile that module with a high-enough '-G' setting or attach a ! 'section' attribute to VAR's definition. If VAR is common, you ! must link the application with a high-enough '-G' setting. The easiest way of satisfying these restrictions is to compile and ! link every module with the same '-G' option. However, you may wish ! to build a library that supports several different small data limits. You can do this by compiling the library with the highest ! supported '-G' setting and additionally using '-mno-extern-sdata' to stop the library from making assumptions about externally-defined data. ! '-mgpopt' ! '-mno-gpopt' ! Use (do not use) GP-relative accesses for symbols that are known to ! be in a small data section; see '-G', '-mlocal-sdata' and ! '-mextern-sdata'. '-mgpopt' is the default for all configurations. ! '-mno-gpopt' is useful for cases where the '$gp' register might not ! hold the value of '_gp'. For example, if the code is part of a ! library that might be used in a boot monitor, programs that call ! boot monitor routines pass an unknown value in '$gp'. (In such situations, the boot monitor itself is usually compiled with ! '-G0'.) ! '-mno-gpopt' implies '-mno-local-sdata' and '-mno-extern-sdata'. ! '-membedded-data' ! '-mno-embedded-data' ! Allocate variables to the read-only data section first if possible, ! then next in the small data section if possible, otherwise in data. ! This gives slightly slower code than the default, but reduces the ! amount of RAM required when executing, and thus may be preferred ! for some embedded systems. ! '-muninit-const-in-rodata' ! '-mno-uninit-const-in-rodata' ! Put uninitialized 'const' variables in the read-only data section. This option is only meaningful in conjunction with ! '-membedded-data'. ! '-mcode-readable=SETTING' Specify whether GCC may generate code that reads from executable sections. There are three possible settings: ! '-mcode-readable=yes' Instructions may freely access executable sections. This is the default setting. ! '-mcode-readable=pcrel' MIPS16 PC-relative load instructions can access executable sections, but other instructions must not do so. This option is useful on 4KSc and 4KSd processors when the code TLBs have --- 16396,16664 ---- relocation truncated to fit: R_MIPS_GOT16 foobar ! If this happens, you should recompile your code with `-mxgot'. This works with very large GOTs, although the code is also less efficient, since it takes three instructions to fetch the value of a global symbol. Note that some linkers can create multiple GOTs. If you have such ! a linker, you should only need to use `-mxgot' when a single object file accesses more than 64k's worth of GOT entries. Very few do. These options have no effect unless GCC is generating position independent code. ! `-mgp32' Assume that general-purpose registers are 32 bits wide. ! `-mgp64' Assume that general-purpose registers are 64 bits wide. ! `-mfp32' Assume that floating-point registers are 32 bits wide. ! `-mfp64' Assume that floating-point registers are 64 bits wide. ! `-mhard-float' Use floating-point coprocessor instructions. ! `-msoft-float' Do not use floating-point coprocessor instructions. Implement floating-point calculations using library calls instead. ! `-mno-float' ! Equivalent to `-msoft-float', but additionally asserts that the program being compiled does not perform any floating-point operations. This option is presently supported only by some bare-metal MIPS configurations, where it may select a special set of libraries that lack all floating-point support (including, for ! example, the floating-point `printf' formats). If code compiled ! with `-mno-float' accidentally contains floating-point operations, it is likely to suffer a link-time or run-time failure. ! `-msingle-float' Assume that the floating-point coprocessor only supports single-precision operations. ! `-mdouble-float' Assume that the floating-point coprocessor supports double-precision operations. This is the default. ! `-mabs=2008' ! `-mabs=legacy' These options control the treatment of the special not-a-number ! (NaN) IEEE 754 floating-point data with the `abs.fmt' and ! `neg.fmt' machine instructions. ! By default or when the `-mabs=legacy' is used the legacy treatment is selected. In this case these instructions are considered arithmetic and avoided where correct operation is required and the ! input operand might be a NaN. A longer sequence of instructions that manipulate the sign bit of floating-point datum manually is ! used instead unless the `-ffinite-math-only' option has also been specified. ! The `-mabs=2008' option selects the IEEE 754-2008 treatment. In this case these instructions are considered non-arithmetic and ! therefore operating correctly in all cases, including in ! particular where the input operand is a NaN. These instructions ! are therefore always used for the respective operations. ! `-mnan=2008' ! `-mnan=legacy' These options control the encoding of the special not-a-number (NaN) IEEE 754 floating-point data. ! The `-mnan=legacy' option selects the legacy encoding. In this case quiet NaNs (qNaNs) are denoted by the first bit of their ! trailing significand field being 0, whereas signalling NaNs ! (sNaNs) are denoted by the first bit of their trailing significand ! field being 1. ! The `-mnan=2008' option selects the IEEE 754-2008 encoding. In this case qNaNs are denoted by the first bit of their trailing significand field being 1, whereas sNaNs are denoted by the first bit of their trailing significand field being 0. ! The default is `-mnan=legacy' unless GCC has been configured with ! `--with-nan=2008'. ! `-mllsc' ! `-mno-llsc' ! Use (do not use) `ll', `sc', and `sync' instructions to implement atomic memory built-in functions. When neither option is specified, GCC uses the instructions if the target architecture supports them. ! `-mllsc' is useful if the runtime environment can emulate the ! instructions and `-mno-llsc' can be useful when compiling for nonstandard ISAs. You can make either option the default by ! configuring GCC with `--with-llsc' and `--without-llsc' ! respectively. `--with-llsc' is the default for some configurations; see the installation documentation for details. ! `-mdsp' ! `-mno-dsp' Use (do not use) revision 1 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macro ! `__mips_dsp'. It also defines `__mips_dsp_rev' to 1. ! `-mdspr2' ! `-mno-dspr2' Use (do not use) revision 2 of the MIPS DSP ASE. *Note MIPS DSP Built-in Functions::. This option defines the preprocessor macros ! `__mips_dsp' and `__mips_dspr2'. It also defines `__mips_dsp_rev' to 2. ! `-msmartmips' ! `-mno-smartmips' Use (do not use) the MIPS SmartMIPS ASE. ! `-mpaired-single' ! `-mno-paired-single' Use (do not use) paired-single floating-point instructions. *Note MIPS Paired-Single Support::. This option requires hardware floating-point support to be enabled. ! `-mdmx' ! `-mno-mdmx' Use (do not use) MIPS Digital Media Extension instructions. This option can only be used when generating 64-bit code and requires hardware floating-point support to be enabled. ! `-mips3d' ! `-mno-mips3d' Use (do not use) the MIPS-3D ASE. *Note MIPS-3D Built-in ! Functions::. The option `-mips3d' implies `-mpaired-single'. ! `-mmicromips' ! `-mno-micromips' Generate (do not generate) microMIPS code. MicroMIPS code generation can also be controlled on a per-function ! basis by means of `micromips' and `nomicromips' attributes. *Note Function Attributes::, for more information. ! `-mmt' ! `-mno-mt' Use (do not use) MT Multithreading instructions. ! `-mmcu' ! `-mno-mcu' Use (do not use) the MIPS MCU ASE instructions. ! `-meva' ! `-mno-eva' Use (do not use) the MIPS Enhanced Virtual Addressing instructions. ! `-mvirt' ! `-mno-virt' Use (do not use) the MIPS Virtualization Application Specific instructions. ! `-mlong64' ! Force `long' types to be 64 bits wide. See `-mlong32' for an explanation of the default and the way that the pointer size is determined. ! `-mlong32' ! Force `long', `int', and pointer types to be 32 bits wide. ! The default size of `int's, `long's and pointers depends on the ! ABI. All the supported ABIs use 32-bit `int's. The n64 ABI uses ! 64-bit `long's, as does the 64-bit EABI; the others use 32-bit ! `long's. Pointers are the same size as `long's, or the same size as integer registers, whichever is smaller. ! `-msym32' ! `-mno-sym32' Assume (do not assume) that all symbols have 32-bit values, regardless of the selected ABI. This option is useful in ! combination with `-mabi=64' and `-mno-abicalls' because it allows GCC to generate shorter and faster references to symbolic addresses. ! `-G NUM' Put definitions of externally-visible data in a small data section if that data is no bigger than NUM bytes. GCC can then generate ! more efficient accesses to the data; see `-mgpopt' for details. ! The default `-G' option depends on the configuration. ! `-mlocal-sdata' ! `-mno-local-sdata' ! Extend (do not extend) the `-G' behavior to local data too, such ! as to static variables in C. `-mlocal-sdata' is the default for ! all configurations. ! If the linker complains that an application is using too much ! small data, you might want to try rebuilding the less ! performance-critical parts with `-mno-local-sdata'. You might ! also want to build large libraries with `-mno-local-sdata', so ! that the libraries leave more room for the main program. ! `-mextern-sdata' ! `-mno-extern-sdata' Assume (do not assume) that externally-defined data is in a small ! data section if the size of that data is within the `-G' limit. ! `-mextern-sdata' is the default for all configurations. ! If you compile a module MOD with `-mextern-sdata' `-G NUM' ! `-mgpopt', and MOD references a variable VAR that is no bigger ! than NUM bytes, you must make sure that VAR is placed in a small ! data section. If VAR is defined by another module, you must ! either compile that module with a high-enough `-G' setting or ! attach a `section' attribute to VAR's definition. If VAR is ! common, you must link the application with a high-enough `-G' ! setting. The easiest way of satisfying these restrictions is to compile and ! link every module with the same `-G' option. However, you may ! wish to build a library that supports several different small data limits. You can do this by compiling the library with the highest ! supported `-G' setting and additionally using `-mno-extern-sdata' to stop the library from making assumptions about externally-defined data. ! `-mgpopt' ! `-mno-gpopt' ! Use (do not use) GP-relative accesses for symbols that are known ! to be in a small data section; see `-G', `-mlocal-sdata' and ! `-mextern-sdata'. `-mgpopt' is the default for all configurations. ! `-mno-gpopt' is useful for cases where the `$gp' register might ! not hold the value of `_gp'. For example, if the code is part of ! a library that might be used in a boot monitor, programs that call ! boot monitor routines pass an unknown value in `$gp'. (In such situations, the boot monitor itself is usually compiled with ! `-G0'.) ! `-mno-gpopt' implies `-mno-local-sdata' and `-mno-extern-sdata'. ! `-membedded-data' ! `-mno-embedded-data' ! Allocate variables to the read-only data section first if ! possible, then next in the small data section if possible, ! otherwise in data. This gives slightly slower code than the ! default, but reduces the amount of RAM required when executing, ! and thus may be preferred for some embedded systems. ! `-muninit-const-in-rodata' ! `-mno-uninit-const-in-rodata' ! Put uninitialized `const' variables in the read-only data section. This option is only meaningful in conjunction with ! `-membedded-data'. ! `-mcode-readable=SETTING' Specify whether GCC may generate code that reads from executable sections. There are three possible settings: ! `-mcode-readable=yes' Instructions may freely access executable sections. This is the default setting. ! `-mcode-readable=pcrel' MIPS16 PC-relative load instructions can access executable sections, but other instructions must not do so. This option is useful on 4KSc and 4KSd processors when the code TLBs have *************** File: gcc.info, Node: MIPS Options, Ne *** 16587,16743 **** interface and that, like the M4K, automatically redirect PC-relative loads to the instruction RAM. ! '-mcode-readable=no' ! Instructions must not access executable sections. This option ! can be useful on targets that are configured to have a dual ! instruction/data SRAM interface but that (unlike the M4K) do ! not automatically redirect PC-relative loads to the instruction RAM. ! '-msplit-addresses' ! '-mno-split-addresses' ! Enable (disable) use of the '%hi()' and '%lo()' assembler relocation operators. This option has been superseded by ! '-mexplicit-relocs' but is retained for backwards compatibility. ! '-mexplicit-relocs' ! '-mno-explicit-relocs' Use (do not use) assembler relocation operators when dealing with symbolic addresses. The alternative, selected by ! '-mno-explicit-relocs', is to use assembler macros instead. ! '-mexplicit-relocs' is the default if GCC was configured to use an assembler that supports relocation operators. ! '-mcheck-zero-division' ! '-mno-check-zero-division' Trap (do not trap) on integer division by zero. ! The default is '-mcheck-zero-division'. ! '-mdivide-traps' ! '-mdivide-breaks' MIPS systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap ! from generating the proper signal ('SIGFPE'). Use '-mdivide-traps' ! to allow conditional traps on architectures that support them and ! '-mdivide-breaks' to force the use of breaks. ! The default is usually '-mdivide-traps', but this can be overridden ! at configure time using '--with-divide=breaks'. Divide-by-zero ! checks can be completely disabled using '-mno-check-zero-division'. ! '-mmemcpy' ! '-mno-memcpy' ! Force (do not force) the use of 'memcpy()' for non-trivial block ! moves. The default is '-mno-memcpy', which allows GCC to inline most constant-sized copies. ! '-mlong-calls' ! '-mno-long-calls' ! Disable (do not disable) use of the 'jal' instruction. Calling ! functions using 'jal' is more efficient but requires the caller and ! callee to be in the same 256 megabyte segment. This option has no effect on abicalls code. The default is ! '-mno-long-calls'. ! '-mmad' ! '-mno-mad' ! Enable (disable) use of the 'mad', 'madu' and 'mul' instructions, as provided by the R4650 ISA. ! '-mimadd' ! '-mno-imadd' ! Enable (disable) use of the 'madd' and 'msub' integer instructions. ! The default is '-mimadd' on architectures that support 'madd' and ! 'msub' except for the 74k architecture where it was found to ! generate slower code. ! '-mfused-madd' ! '-mno-fused-madd' Enable (disable) use of the floating-point multiply-accumulate instructions, when they are available. The default is ! '-mfused-madd'. On the R8000 CPU when multiply-accumulate instructions are used, ! the intermediate product is calculated to infinite precision and is ! not subject to the FCSR Flush to Zero bit. This may be undesirable ! in some circumstances. On other processors the result is ! numerically identical to the equivalent computation using separate ! multiply, add, subtract and negate instructions. ! '-nocpp' Tell the MIPS assembler to not run its preprocessor over user ! assembler files (with a '.s' suffix) when assembling them. ! '-mfix-24k' ! '-mno-fix-24k' Work around the 24K E48 (lost data on stores during refill) errata. The workarounds are implemented by the assembler rather than by GCC. ! '-mfix-r4000' ! '-mno-fix-r4000' Work around certain R4000 CPU errata: ! - A double-word or a variable shift may give an incorrect result ! if executed immediately after starting an integer division. ! - A double-word or a variable shift may give an incorrect result ! if executed while an integer multiplication is in progress. ! - An integer division may give an incorrect result if started in ! a delay slot of a taken branch or a jump. ! '-mfix-r4400' ! '-mno-fix-r4400' Work around certain R4400 CPU errata: ! - A double-word or a variable shift may give an incorrect result ! if executed immediately after starting an integer division. ! '-mfix-r10000' ! '-mno-fix-r10000' Work around certain R10000 errata: ! - 'll'/'sc' sequences may not behave atomically on revisions prior to 3.0. They may deadlock on revisions 2.6 and earlier. This option can only be used if the target architecture supports ! branch-likely instructions. '-mfix-r10000' is the default when ! '-march=r10000' is used; '-mno-fix-r10000' is the default otherwise. ! '-mfix-rm7000' ! '-mno-fix-rm7000' ! Work around the RM7000 'dmult'/'dmultu' errata. The workarounds are implemented by the assembler rather than by GCC. ! '-mfix-vr4120' ! '-mno-fix-vr4120' Work around certain VR4120 errata: ! - 'dmultu' does not always produce the correct result. ! - 'div' and 'ddiv' do not always produce the correct result if one of the operands is negative. The workarounds for the division errata rely on special functions ! in 'libgcc.a'. At present, these functions are only provided by ! the 'mips64vr*-elf' configurations. Other VR4120 errata require a NOP to be inserted between certain pairs of instructions. These errata are handled by the assembler, not by GCC itself. ! '-mfix-vr4130' ! Work around the VR4130 'mflo'/'mfhi' errata. The workarounds are implemented by the assembler rather than by GCC, although GCC ! avoids using 'mflo' and 'mfhi' if the VR4130 'macc', 'macchi', ! 'dmacc' and 'dmacchi' instructions are available instead. ! '-mfix-sb1' ! '-mno-fix-sb1' Work around certain SB-1 CPU core errata. (This flag currently works around the SB-1 revision 2 "F1" and "F2" floating-point errata.) ! '-mr10k-cache-barrier=SETTING' Specify whether GCC should insert cache barriers to avoid the side-effects of speculation on R10K processors. --- 16667,16831 ---- interface and that, like the M4K, automatically redirect PC-relative loads to the instruction RAM. ! `-mcode-readable=no' ! Instructions must not access executable sections. This ! option can be useful on targets that are configured to have a ! dual instruction/data SRAM interface but that (unlike the ! M4K) do not automatically redirect PC-relative loads to the instruction RAM. ! `-msplit-addresses' ! `-mno-split-addresses' ! Enable (disable) use of the `%hi()' and `%lo()' assembler relocation operators. This option has been superseded by ! `-mexplicit-relocs' but is retained for backwards compatibility. ! `-mexplicit-relocs' ! `-mno-explicit-relocs' Use (do not use) assembler relocation operators when dealing with symbolic addresses. The alternative, selected by ! `-mno-explicit-relocs', is to use assembler macros instead. ! `-mexplicit-relocs' is the default if GCC was configured to use an assembler that supports relocation operators. ! `-mcheck-zero-division' ! `-mno-check-zero-division' Trap (do not trap) on integer division by zero. ! The default is `-mcheck-zero-division'. ! `-mdivide-traps' ! `-mdivide-breaks' MIPS systems check for division by zero by generating either a conditional trap or a break instruction. Using traps results in smaller code, but is only supported on MIPS II and later. Also, some versions of the Linux kernel have a bug that prevents trap ! from generating the proper signal (`SIGFPE'). Use ! `-mdivide-traps' to allow conditional traps on architectures that ! support them and `-mdivide-breaks' to force the use of breaks. ! The default is usually `-mdivide-traps', but this can be ! overridden at configure time using `--with-divide=breaks'. ! Divide-by-zero checks can be completely disabled using ! `-mno-check-zero-division'. ! `-mmemcpy' ! `-mno-memcpy' ! Force (do not force) the use of `memcpy()' for non-trivial block ! moves. The default is `-mno-memcpy', which allows GCC to inline most constant-sized copies. ! `-mlong-calls' ! `-mno-long-calls' ! Disable (do not disable) use of the `jal' instruction. Calling ! functions using `jal' is more efficient but requires the caller ! and callee to be in the same 256 megabyte segment. This option has no effect on abicalls code. The default is ! `-mno-long-calls'. ! `-mmad' ! `-mno-mad' ! Enable (disable) use of the `mad', `madu' and `mul' instructions, as provided by the R4650 ISA. ! `-mimadd' ! `-mno-imadd' ! Enable (disable) use of the `madd' and `msub' integer ! instructions. The default is `-mimadd' on architectures that ! support `madd' and `msub' except for the 74k architecture where it ! was found to generate slower code. ! `-mfused-madd' ! `-mno-fused-madd' Enable (disable) use of the floating-point multiply-accumulate instructions, when they are available. The default is ! `-mfused-madd'. On the R8000 CPU when multiply-accumulate instructions are used, ! the intermediate product is calculated to infinite precision and ! is not subject to the FCSR Flush to Zero bit. This may be ! undesirable in some circumstances. On other processors the result ! is numerically identical to the equivalent computation using ! separate multiply, add, subtract and negate instructions. ! `-nocpp' Tell the MIPS assembler to not run its preprocessor over user ! assembler files (with a `.s' suffix) when assembling them. ! `-mfix-24k' ! ! `-mno-fix-24k' Work around the 24K E48 (lost data on stores during refill) errata. The workarounds are implemented by the assembler rather than by GCC. ! `-mfix-r4000' ! `-mno-fix-r4000' Work around certain R4000 CPU errata: ! - A double-word or a variable shift may give an incorrect ! result if executed immediately after starting an integer ! division. ! - A double-word or a variable shift may give an incorrect ! result if executed while an integer multiplication is in ! progress. ! ! - An integer division may give an incorrect result if started ! in a delay slot of a taken branch or a jump. ! ! `-mfix-r4400' ! `-mno-fix-r4400' Work around certain R4400 CPU errata: ! - A double-word or a variable shift may give an incorrect ! result if executed immediately after starting an integer ! division. ! `-mfix-r10000' ! `-mno-fix-r10000' Work around certain R10000 errata: ! - `ll'/`sc' sequences may not behave atomically on revisions prior to 3.0. They may deadlock on revisions 2.6 and earlier. This option can only be used if the target architecture supports ! branch-likely instructions. `-mfix-r10000' is the default when ! `-march=r10000' is used; `-mno-fix-r10000' is the default otherwise. ! `-mfix-rm7000' ! `-mno-fix-rm7000' ! Work around the RM7000 `dmult'/`dmultu' errata. The workarounds are implemented by the assembler rather than by GCC. ! `-mfix-vr4120' ! `-mno-fix-vr4120' Work around certain VR4120 errata: ! - `dmultu' does not always produce the correct result. ! ! - `div' and `ddiv' do not always produce the correct result if one of the operands is negative. The workarounds for the division errata rely on special functions ! in `libgcc.a'. At present, these functions are only provided by ! the `mips64vr*-elf' configurations. Other VR4120 errata require a NOP to be inserted between certain pairs of instructions. These errata are handled by the assembler, not by GCC itself. ! `-mfix-vr4130' ! Work around the VR4130 `mflo'/`mfhi' errata. The workarounds are implemented by the assembler rather than by GCC, although GCC ! avoids using `mflo' and `mfhi' if the VR4130 `macc', `macchi', ! `dmacc' and `dmacchi' instructions are available instead. ! `-mfix-sb1' ! `-mno-fix-sb1' Work around certain SB-1 CPU core errata. (This flag currently works around the SB-1 revision 2 "F1" and "F2" floating-point errata.) ! `-mr10k-cache-barrier=SETTING' Specify whether GCC should insert cache barriers to avoid the side-effects of speculation on R10K processors. *************** File: gcc.info, Node: MIPS Options, Ne *** 16749,16767 **** This problem only affects kernel stores and, depending on the system, kernel loads. As an example, a speculatively-executed ! store may load the target memory into cache and mark the cache line ! as dirty, even if the store itself is later aborted. If a DMA ! operation writes to the same area of memory before the "dirty" line ! is flushed, the cached data overwrites the DMA-ed data. See the ! R10K processor manual for a full description, including other potential problems. ! One workaround is to insert cache barrier instructions before every ! memory access that might be speculatively executed and that might ! have side effects even if aborted. '-mr10k-cache-barrier=SETTING' ! controls GCC's implementation of this workaround. It assumes that ! aborted accesses to any byte in the following regions does not have ! side effects: 1. the memory occupied by the current function's stack frame; --- 16837,16855 ---- This problem only affects kernel stores and, depending on the system, kernel loads. As an example, a speculatively-executed ! store may load the target memory into cache and mark the cache ! line as dirty, even if the store itself is later aborted. If a ! DMA operation writes to the same area of memory before the "dirty" ! line is flushed, the cached data overwrites the DMA-ed data. See ! the R10K processor manual for a full description, including other potential problems. ! One workaround is to insert cache barrier instructions before ! every memory access that might be speculatively executed and that ! might have side effects even if aborted. ! `-mr10k-cache-barrier=SETTING' controls GCC's implementation of ! this workaround. It assumes that aborted accesses to any byte in ! the following regions does not have side effects: 1. the memory occupied by the current function's stack frame; *************** File: gcc.info, Node: MIPS Options, Ne *** 16777,16821 **** void foo (void); ! then the implementation of 'foo' must allow 'j foo' and 'jal foo' to be executed speculatively. GCC honors this restriction for functions it compiles itself. It expects non-GCC functions (such as hand-written assembly code) to do the same. The option has three forms: ! '-mr10k-cache-barrier=load-store' Insert a cache barrier before a load or store that might be speculatively executed and that might have side effects even if aborted. ! '-mr10k-cache-barrier=store' Insert a cache barrier before a store that might be speculatively executed and that might have side effects even if aborted. ! '-mr10k-cache-barrier=none' Disable the insertion of cache barriers. This is the default setting. ! '-mflush-func=FUNC' ! '-mno-flush-func' Specifies the function to call to flush the I and D caches, or to not call any such function. If called, the function must take the ! same arguments as the common '_flush_func()', that is, the address of the memory range for which the cache is being flushed, the size of the memory range, and the number 3 (to flush both caches). The default depends on the target GCC was configured for, but commonly ! is either '_flush_func' or '__cpu_flush'. ! 'mbranch-cost=NUM' Set the cost of branches to roughly NUM "simple" instructions. This cost is only a heuristic and is not guaranteed to produce consistent results across releases. A zero cost redundantly ! selects the default, which is based on the '-mtune' setting. ! '-mbranch-likely' ! '-mno-branch-likely' Enable or disable use of Branch Likely instructions, regardless of the default for the selected architecture. By default, Branch Likely instructions may be generated if they are supported by the --- 16865,16909 ---- void foo (void); ! then the implementation of `foo' must allow `j foo' and `jal foo' to be executed speculatively. GCC honors this restriction for functions it compiles itself. It expects non-GCC functions (such as hand-written assembly code) to do the same. The option has three forms: ! `-mr10k-cache-barrier=load-store' Insert a cache barrier before a load or store that might be speculatively executed and that might have side effects even if aborted. ! `-mr10k-cache-barrier=store' Insert a cache barrier before a store that might be speculatively executed and that might have side effects even if aborted. ! `-mr10k-cache-barrier=none' Disable the insertion of cache barriers. This is the default setting. ! `-mflush-func=FUNC' ! `-mno-flush-func' Specifies the function to call to flush the I and D caches, or to not call any such function. If called, the function must take the ! same arguments as the common `_flush_func()', that is, the address of the memory range for which the cache is being flushed, the size of the memory range, and the number 3 (to flush both caches). The default depends on the target GCC was configured for, but commonly ! is either `_flush_func' or `__cpu_flush'. ! `mbranch-cost=NUM' Set the cost of branches to roughly NUM "simple" instructions. This cost is only a heuristic and is not guaranteed to produce consistent results across releases. A zero cost redundantly ! selects the default, which is based on the `-mtune' setting. ! `-mbranch-likely' ! `-mno-branch-likely' Enable or disable use of Branch Likely instructions, regardless of the default for the selected architecture. By default, Branch Likely instructions may be generated if they are supported by the *************** File: gcc.info, Node: MIPS Options, Ne *** 16825,16832 **** default because the MIPS32 and MIPS64 architectures specifically deprecate their use. ! '-mfp-exceptions' ! '-mno-fp-exceptions' Specifies whether FP exceptions are enabled. This affects how FP instructions are scheduled for some processors. The default is that FP exceptions are enabled. --- 16913,16920 ---- default because the MIPS32 and MIPS64 architectures specifically deprecate their use. ! `-mfp-exceptions' ! `-mno-fp-exceptions' Specifies whether FP exceptions are enabled. This affects how FP instructions are scheduled for some processors. The default is that FP exceptions are enabled. *************** File: gcc.info, Node: MIPS Options, Ne *** 16835,16842 **** are emitting 64-bit code, then we can use both FP pipes. Otherwise, we can only use one FP pipe. ! '-mvr4130-align' ! '-mno-vr4130-align' The VR4130 pipeline is two-way superscalar, but can only issue two instructions together if the first one is 8-byte aligned. When this option is enabled, GCC aligns pairs of instructions that it --- 16923,16930 ---- are emitting 64-bit code, then we can use both FP pipes. Otherwise, we can only use one FP pipe. ! `-mvr4130-align' ! `-mno-vr4130-align' The VR4130 pipeline is two-way superscalar, but can only issue two instructions together if the first one is 8-byte aligned. When this option is enabled, GCC aligns pairs of instructions that it *************** File: gcc.info, Node: MIPS Options, Ne *** 16844,16891 **** This option only has an effect when optimizing for the VR4130. It normally makes code faster, but at the expense of making it bigger. ! It is enabled by default at optimization level '-O3'. ! '-msynci' ! '-mno-synci' ! Enable (disable) generation of 'synci' instructions on ! architectures that support it. The 'synci' instructions (if ! enabled) are generated when '__builtin___clear_cache()' is compiled. ! This option defaults to '-mno-synci', but the default can be ! overridden by configuring with '--with-synci'. When compiling code for single processor systems, it is generally ! safe to use 'synci'. However, on many multi-core (SMP) systems, it does not invalidate the instruction caches on all cores and may lead to undefined behavior. ! '-mrelax-pic-calls' ! '-mno-relax-pic-calls' Try to turn PIC calls that are normally dispatched via register ! '$25' into direct calls. This is only possible if the linker can resolve the destination at link-time and if the destination is within range for a direct call. ! '-mrelax-pic-calls' is the default if GCC was configured to use an ! assembler and a linker that support the '.reloc' assembly directive ! and '-mexplicit-relocs' is in effect. With '-mno-explicit-relocs', ! this optimization can be performed by the assembler and the linker ! alone without help from the compiler. ! '-mmcount-ra-address' ! '-mno-mcount-ra-address' ! Emit (do not emit) code that allows '_mcount' to modify the calling ! function's return address. When enabled, this option extends the ! usual '_mcount' interface with a new RA-ADDRESS parameter, which ! has type 'intptr_t *' and is passed in register '$12'. '_mcount' ! can then modify the return address by doing both of the following: ! * Returning the new address in register '$31'. ! * Storing the new address in '*RA-ADDRESS', if RA-ADDRESS is nonnull. ! The default is '-mno-mcount-ra-address'.  File: gcc.info, Node: MMIX Options, Next: MN10300 Options, Prev: MIPS Options, Up: Submodel Options --- 16932,16982 ---- This option only has an effect when optimizing for the VR4130. It normally makes code faster, but at the expense of making it bigger. ! It is enabled by default at optimization level `-O3'. ! `-msynci' ! `-mno-synci' ! Enable (disable) generation of `synci' instructions on ! architectures that support it. The `synci' instructions (if ! enabled) are generated when `__builtin___clear_cache()' is compiled. ! This option defaults to `-mno-synci', but the default can be ! overridden by configuring with `--with-synci'. When compiling code for single processor systems, it is generally ! safe to use `synci'. However, on many multi-core (SMP) systems, it does not invalidate the instruction caches on all cores and may lead to undefined behavior. ! `-mrelax-pic-calls' ! `-mno-relax-pic-calls' Try to turn PIC calls that are normally dispatched via register ! `$25' into direct calls. This is only possible if the linker can resolve the destination at link-time and if the destination is within range for a direct call. ! `-mrelax-pic-calls' is the default if GCC was configured to use an ! assembler and a linker that support the `.reloc' assembly ! directive and `-mexplicit-relocs' is in effect. With ! `-mno-explicit-relocs', this optimization can be performed by the ! assembler and the linker alone without help from the compiler. ! `-mmcount-ra-address' ! `-mno-mcount-ra-address' ! Emit (do not emit) code that allows `_mcount' to modify the ! calling function's return address. When enabled, this option ! extends the usual `_mcount' interface with a new RA-ADDRESS ! parameter, which has type `intptr_t *' and is passed in register ! `$12'. `_mcount' can then modify the return address by doing both ! of the following: ! * Returning the new address in register `$31'. ! ! * Storing the new address in `*RA-ADDRESS', if RA-ADDRESS is nonnull. ! The default is `-mno-mcount-ra-address'. !  File: gcc.info, Node: MMIX Options, Next: MN10300 Options, Prev: MIPS Options, Up: Submodel Options *************** File: gcc.info, Node: MMIX Options, Ne *** 16895,16945 **** These options are defined for the MMIX: ! '-mlibfuncs' ! '-mno-libfuncs' Specify that intrinsic library functions are being compiled, passing all values in registers, no matter the size. ! '-mepsilon' ! '-mno-epsilon' Generate floating-point comparison instructions that compare with ! respect to the 'rE' epsilon register. ! '-mabi=mmixware' ! '-mabi=gnu' Generate code that passes function parameters and return values ! that (in the called function) are seen as registers '$0' and up, as ! opposed to the GNU ABI which uses global registers '$231' and up. ! '-mzero-extend' ! '-mno-zero-extend' When reading data from memory in sizes shorter than 64 bits, use (do not use) zero-extending load instructions by default, rather than sign-extending ones. ! '-mknuthdiv' ! '-mno-knuthdiv' Make the result of a division yielding a remainder have the same ! sign as the divisor. With the default, '-mno-knuthdiv', the sign of the remainder follows the sign of the dividend. Both methods are arithmetically valid, the latter being almost exclusively used. ! '-mtoplevel-symbols' ! '-mno-toplevel-symbols' ! Prepend (do not prepend) a ':' to all global symbols, so the ! assembly code can be used with the 'PREFIX' assembly directive. ! '-melf' Generate an executable in the ELF format, rather than the default ! 'mmo' format used by the 'mmix' simulator. ! '-mbranch-predict' ! '-mno-branch-predict' Use (do not use) the probable-branch instructions, when static branch prediction indicates a probable branch. ! '-mbase-addresses' ! '-mno-base-addresses' Generate (do not generate) code that uses _base addresses_. Using a base address automatically generates a request (handled by the assembler and the linker) for a constant to be set up in a global --- 16986,17037 ---- These options are defined for the MMIX: ! `-mlibfuncs' ! `-mno-libfuncs' Specify that intrinsic library functions are being compiled, passing all values in registers, no matter the size. ! `-mepsilon' ! `-mno-epsilon' Generate floating-point comparison instructions that compare with ! respect to the `rE' epsilon register. ! `-mabi=mmixware' ! `-mabi=gnu' Generate code that passes function parameters and return values ! that (in the called function) are seen as registers `$0' and up, ! as opposed to the GNU ABI which uses global registers `$231' and ! up. ! `-mzero-extend' ! `-mno-zero-extend' When reading data from memory in sizes shorter than 64 bits, use (do not use) zero-extending load instructions by default, rather than sign-extending ones. ! `-mknuthdiv' ! `-mno-knuthdiv' Make the result of a division yielding a remainder have the same ! sign as the divisor. With the default, `-mno-knuthdiv', the sign of the remainder follows the sign of the dividend. Both methods are arithmetically valid, the latter being almost exclusively used. ! `-mtoplevel-symbols' ! `-mno-toplevel-symbols' ! Prepend (do not prepend) a `:' to all global symbols, so the ! assembly code can be used with the `PREFIX' assembly directive. ! `-melf' Generate an executable in the ELF format, rather than the default ! `mmo' format used by the `mmix' simulator. ! `-mbranch-predict' ! `-mno-branch-predict' Use (do not use) the probable-branch instructions, when static branch prediction indicates a probable branch. ! `-mbase-addresses' ! `-mno-base-addresses' Generate (do not generate) code that uses _base addresses_. Using a base address automatically generates a request (handled by the assembler and the linker) for a constant to be set up in a global *************** These options are defined for the MMIX: *** 16947,16957 **** requests within the range 0 to 255 from the value held in the register. The generally leads to short and fast code, but the number of different data items that can be addressed is limited. ! This means that a program that uses lots of static data may require ! '-mno-base-addresses'. ! '-msingle-exit' ! '-mno-single-exit' Force (do not force) generated code to have a single exit point in each function. --- 17039,17049 ---- requests within the range 0 to 255 from the value held in the register. The generally leads to short and fast code, but the number of different data items that can be addressed is limited. ! This means that a program that uses lots of static data may ! require `-mno-base-addresses'. ! `-msingle-exit' ! `-mno-single-exit' Force (do not force) generated code to have a single exit point in each function. *************** File: gcc.info, Node: MN10300 Options, *** 16961,17032 **** 3.17.29 MN10300 Options ----------------------- ! These '-m' options are defined for Matsushita MN10300 architectures: ! '-mmult-bug' Generate code to avoid bugs in the multiply instructions for the MN10300 processors. This is the default. ! '-mno-mult-bug' ! Do not generate code to avoid bugs in the multiply instructions for ! the MN10300 processors. ! '-mam33' Generate code using features specific to the AM33 processor. ! '-mno-am33' ! Do not generate code using features specific to the AM33 processor. ! This is the default. ! '-mam33-2' Generate code using features specific to the AM33/2.0 processor. ! '-mam34' Generate code using features specific to the AM34 processor. ! '-mtune=CPU-TYPE' Use the timing characteristics of the indicated CPU type when scheduling instructions. This does not change the targeted ! processor type. The CPU type must be one of 'mn10300', 'am33', ! 'am33-2' or 'am34'. ! '-mreturn-pointer-on-d0' When generating a function that returns a pointer, return the ! pointer in both 'a0' and 'd0'. Otherwise, the pointer is returned ! only in 'a0', and attempts to call such functions without a prototype result in errors. Note that this option is on by ! default; use '-mno-return-pointer-on-d0' to disable it. ! '-mno-crt0' Do not link in the C run-time initialization object file. ! '-mrelax' Indicate to the linker that it should perform a relaxation optimization pass to shorten branches, calls and absolute memory ! addresses. This option only has an effect when used on the command ! line for the final link step. This option makes symbolic debugging impossible. ! '-mliw' ! Allow the compiler to generate _Long Instruction Word_ instructions ! if the target is the 'AM33' or later. This is the default. This ! option defines the preprocessor macro '__LIW__'. ! '-mnoliw' Do not allow the compiler to generate _Long Instruction Word_ instructions. This option defines the preprocessor macro ! '__NO_LIW__'. ! '-msetlb' Allow the compiler to generate the _SETLB_ and _Lcc_ instructions ! if the target is the 'AM33' or later. This is the default. This ! option defines the preprocessor macro '__SETLB__'. ! '-mnosetlb' Do not allow the compiler to generate _SETLB_ or _Lcc_ instructions. This option defines the preprocessor macro ! '__NO_SETLB__'.  File: gcc.info, Node: Moxie Options, Next: MSP430 Options, Prev: MN10300 Options, Up: Submodel Options --- 17053,17125 ---- 3.17.29 MN10300 Options ----------------------- ! These `-m' options are defined for Matsushita MN10300 architectures: ! `-mmult-bug' Generate code to avoid bugs in the multiply instructions for the MN10300 processors. This is the default. ! `-mno-mult-bug' ! Do not generate code to avoid bugs in the multiply instructions ! for the MN10300 processors. ! `-mam33' Generate code using features specific to the AM33 processor. ! `-mno-am33' ! Do not generate code using features specific to the AM33 ! processor. This is the default. ! `-mam33-2' Generate code using features specific to the AM33/2.0 processor. ! `-mam34' Generate code using features specific to the AM34 processor. ! `-mtune=CPU-TYPE' Use the timing characteristics of the indicated CPU type when scheduling instructions. This does not change the targeted ! processor type. The CPU type must be one of `mn10300', `am33', ! `am33-2' or `am34'. ! `-mreturn-pointer-on-d0' When generating a function that returns a pointer, return the ! pointer in both `a0' and `d0'. Otherwise, the pointer is returned ! only in `a0', and attempts to call such functions without a prototype result in errors. Note that this option is on by ! default; use `-mno-return-pointer-on-d0' to disable it. ! `-mno-crt0' Do not link in the C run-time initialization object file. ! `-mrelax' Indicate to the linker that it should perform a relaxation optimization pass to shorten branches, calls and absolute memory ! addresses. This option only has an effect when used on the ! command line for the final link step. This option makes symbolic debugging impossible. ! `-mliw' ! Allow the compiler to generate _Long Instruction Word_ ! instructions if the target is the `AM33' or later. This is the ! default. This option defines the preprocessor macro `__LIW__'. ! `-mnoliw' Do not allow the compiler to generate _Long Instruction Word_ instructions. This option defines the preprocessor macro ! `__NO_LIW__'. ! `-msetlb' Allow the compiler to generate the _SETLB_ and _Lcc_ instructions ! if the target is the `AM33' or later. This is the default. This ! option defines the preprocessor macro `__SETLB__'. ! `-mnosetlb' Do not allow the compiler to generate _SETLB_ or _Lcc_ instructions. This option defines the preprocessor macro ! `__NO_SETLB__'. !  File: gcc.info, Node: Moxie Options, Next: MSP430 Options, Prev: MN10300 Options, Up: Submodel Options *************** File: gcc.info, Node: Moxie Options, N *** 17034,17049 **** 3.17.30 Moxie Options --------------------- ! '-meb' ! Generate big-endian code. This is the default for 'moxie-*-*' configurations. ! '-mel' Generate little-endian code. ! '-mno-crt0' Do not link in the C run-time initialization object file.  File: gcc.info, Node: MSP430 Options, Next: NDS32 Options, Prev: Moxie Options, Up: Submodel Options --- 17127,17143 ---- 3.17.30 Moxie Options --------------------- ! `-meb' ! Generate big-endian code. This is the default for `moxie-*-*' configurations. ! `-mel' Generate little-endian code. ! `-mno-crt0' Do not link in the C run-time initialization object file. +  File: gcc.info, Node: MSP430 Options, Next: NDS32 Options, Prev: Moxie Options, Up: Submodel Options *************** File: gcc.info, Node: MSP430 Options, *** 17052,17118 **** These options are defined for the MSP430: ! '-masm-hex' Force assembly output to always use hex constants. Normally such constants are signed decimals, but this option is available for testsuite and/or aesthetic purposes. ! '-mmcu=' Select the MCU to target. This is used to create a C preprocessor symbol based upon the MCU name, converted to upper case and pre- ! and post- fixed with '__'. This in turn will be used by the ! 'msp430.h' header file to select an MCU specific supplimentary header file. The option also sets the ISA to use. If the MCU name is one that is known to only support the 430 ISA then that is selected, ! otherwise the 430X ISA is selected. A generic MCU name of 'msp430' ! can also be used to select the 430 ISA. Similarly the generic ! 'msp430x' MCU name will select the 430X ISA. In addition an MCU specific linker script will be added to the linker command line. The script's name is the name of the MCU with ! '.ld' appended. Thus specifying '-mmcu=xxx' on the gcc command ! line will define the C preprocessor symbol '__XXX__' and cause the ! linker to search for a script called 'xxx.ld'. This option is also passed on to the assembler. ! '-mcpu=' ! Specifies the ISA to use. Accepted values are 'msp430', 'msp430x' ! and 'msp430xv2'. This option is deprecated. The '-mmcu=' option should be used to select the ISA. ! '-msim' Link to the simulator runtime libraries and linker script. ! Overrides any scripts that would be selected by the '-mmcu=' option. ! '-mlarge' ! Use large-model addressing (20-bit pointers, 32-bit 'size_t'). ! '-msmall' ! Use small-model addressing (16-bit pointers, 16-bit 'size_t'). ! '-mrelax' This option is passed to the assembler and linker, and allows the linker to perform certain optimizations that cannot be done until the final link. ! 'mhwmult=' Describes the type of hardware multiply supported by the target. ! Accepted values are 'none' for no hardware multiply, '16bit' for ! the original 16-bit-only multiply supported by early MCUs. '32bit' ! for the 16/32-bit multiply supported by later MCUs and 'f5series' ! for the 16/32-bit multiply supported by F5-series MCUs. A value of ! 'auto' can also be given. This tells GCC to deduce the hardware ! multiply support based upon the MCU name provided by the '-mmcu' ! option. If no '-mmcu' option is specified then '32bit' hardware ! multiply support is assumed. 'auto' is the default setting. Hardware multiplies are normally performed by calling a library routine. This saves space in the generated code. When compiling ! at '-O3' or higher however the hardware multiplier is invoked inline. This makes for bigger, but faster code. The hardware multiply routines disable interrupts whilst running --- 17146,17213 ---- These options are defined for the MSP430: ! `-masm-hex' Force assembly output to always use hex constants. Normally such constants are signed decimals, but this option is available for testsuite and/or aesthetic purposes. ! `-mmcu=' Select the MCU to target. This is used to create a C preprocessor symbol based upon the MCU name, converted to upper case and pre- ! and post- fixed with `__'. This in turn will be used by the ! `msp430.h' header file to select an MCU specific supplimentary header file. The option also sets the ISA to use. If the MCU name is one that is known to only support the 430 ISA then that is selected, ! otherwise the 430X ISA is selected. A generic MCU name of ! `msp430' can also be used to select the 430 ISA. Similarly the ! generic `msp430x' MCU name will select the 430X ISA. In addition an MCU specific linker script will be added to the linker command line. The script's name is the name of the MCU with ! `.ld' appended. Thus specifying `-mmcu=xxx' on the gcc command ! line will define the C preprocessor symbol `__XXX__' and cause the ! linker to search for a script called `xxx.ld'. This option is also passed on to the assembler. ! `-mcpu=' ! Specifies the ISA to use. Accepted values are `msp430', `msp430x' ! and `msp430xv2'. This option is deprecated. The `-mmcu=' option should be used to select the ISA. ! `-msim' Link to the simulator runtime libraries and linker script. ! Overrides any scripts that would be selected by the `-mmcu=' option. ! `-mlarge' ! Use large-model addressing (20-bit pointers, 32-bit `size_t'). ! `-msmall' ! Use small-model addressing (16-bit pointers, 16-bit `size_t'). ! `-mrelax' This option is passed to the assembler and linker, and allows the linker to perform certain optimizations that cannot be done until the final link. ! `mhwmult=' Describes the type of hardware multiply supported by the target. ! Accepted values are `none' for no hardware multiply, `16bit' for ! the original 16-bit-only multiply supported by early MCUs. ! `32bit' for the 16/32-bit multiply supported by later MCUs and ! `f5series' for the 16/32-bit multiply supported by F5-series MCUs. ! A value of `auto' can also be given. This tells GCC to deduce the ! hardware multiply support based upon the MCU name provided by the ! `-mmcu' option. If no `-mmcu' option is specified then `32bit' ! hardware multiply support is assumed. `auto' is the default ! setting. Hardware multiplies are normally performed by calling a library routine. This saves space in the generated code. When compiling ! at `-O3' or higher however the hardware multiplier is invoked inline. This makes for bigger, but faster code. The hardware multiply routines disable interrupts whilst running *************** These options are defined for the MSP430 *** 17120,17131 **** makes them safe to use inside interrupt handlers as well as in normal code. ! '-minrt' Enable the use of a minimum runtime environment - no static initializers or constructors. This is intended for memory-constrained devices. The compiler will include special ! symbols in some objects that tell the linker and runtime which code ! fragments are required.  File: gcc.info, Node: NDS32 Options, Next: Nios II Options, Prev: MSP430 Options, Up: Submodel Options --- 17215,17227 ---- makes them safe to use inside interrupt handlers as well as in normal code. ! `-minrt' Enable the use of a minimum runtime environment - no static initializers or constructors. This is intended for memory-constrained devices. The compiler will include special ! symbols in some objects that tell the linker and runtime which ! code fragments are required. !  File: gcc.info, Node: NDS32 Options, Next: Nios II Options, Prev: MSP430 Options, Up: Submodel Options *************** File: gcc.info, Node: NDS32 Options, N *** 17135,17210 **** These options are defined for NDS32 implementations: ! '-mbig-endian' Generate code in big-endian mode. ! '-mlittle-endian' Generate code in little-endian mode. ! '-mreduced-regs' Use reduced-set registers for register allocation. ! '-mfull-regs' Use full-set registers for register allocation. ! '-mcmov' Generate conditional move instructions. ! '-mno-cmov' Do not generate conditional move instructions. ! '-mperf-ext' Generate performance extension instructions. ! '-mno-perf-ext' Do not generate performance extension instructions. ! '-mv3push' Generate v3 push25/pop25 instructions. ! '-mno-v3push' Do not generate v3 push25/pop25 instructions. ! '-m16-bit' Generate 16-bit instructions. ! '-mno-16-bit' Do not generate 16-bit instructions. ! '-mgp-direct' Generate GP base instructions directly. ! '-mno-gp-direct' Do no generate GP base instructions directly. ! '-misr-vector-size=NUM' Specify the size of each interrupt vector, which must be 4 or 16. ! '-mcache-block-size=NUM' Specify the size of each cache block, which must be a power of 2 between 4 and 512. ! '-march=ARCH' Specify the name of the target architecture. ! '-mforce-fp-as-gp' Prevent $fp being allocated during register allocation so that compiler is able to force performing fp-as-gp optimization. ! '-mforbid-fp-as-gp' Forbid using $fp to access static and global variables. This option strictly forbids fp-as-gp optimization regardless of ! '-mforce-fp-as-gp'. ! '-mex9' Use special directives to guide linker doing ex9 optimization. ! '-mctor-dtor' Enable constructor/destructor feature. ! '-mrelax' Guide linker to relax instructions.  File: gcc.info, Node: Nios II Options, Next: PDP-11 Options, Prev: NDS32 Options, Up: Submodel Options --- 17231,17307 ---- These options are defined for NDS32 implementations: ! `-mbig-endian' Generate code in big-endian mode. ! `-mlittle-endian' Generate code in little-endian mode. ! `-mreduced-regs' Use reduced-set registers for register allocation. ! `-mfull-regs' Use full-set registers for register allocation. ! `-mcmov' Generate conditional move instructions. ! `-mno-cmov' Do not generate conditional move instructions. ! `-mperf-ext' Generate performance extension instructions. ! `-mno-perf-ext' Do not generate performance extension instructions. ! `-mv3push' Generate v3 push25/pop25 instructions. ! `-mno-v3push' Do not generate v3 push25/pop25 instructions. ! `-m16-bit' Generate 16-bit instructions. ! `-mno-16-bit' Do not generate 16-bit instructions. ! `-mgp-direct' Generate GP base instructions directly. ! `-mno-gp-direct' Do no generate GP base instructions directly. ! `-misr-vector-size=NUM' Specify the size of each interrupt vector, which must be 4 or 16. ! `-mcache-block-size=NUM' Specify the size of each cache block, which must be a power of 2 between 4 and 512. ! `-march=ARCH' Specify the name of the target architecture. ! `-mforce-fp-as-gp' Prevent $fp being allocated during register allocation so that compiler is able to force performing fp-as-gp optimization. ! `-mforbid-fp-as-gp' Forbid using $fp to access static and global variables. This option strictly forbids fp-as-gp optimization regardless of ! `-mforce-fp-as-gp'. ! `-mex9' Use special directives to guide linker doing ex9 optimization. ! `-mctor-dtor' Enable constructor/destructor feature. ! `-mrelax' Guide linker to relax instructions. +  File: gcc.info, Node: Nios II Options, Next: PDP-11 Options, Prev: NDS32 Options, Up: Submodel Options *************** File: gcc.info, Node: Nios II Options, *** 17213,17274 **** These are the options defined for the Altera Nios II processor. ! '-G NUM' Put global and static objects less than or equal to NUM bytes into the small data or BSS sections instead of the normal data or BSS sections. The default value of NUM is 8. ! '-mgpopt' ! '-mno-gpopt' Generate (do not generate) GP-relative accesses for objects in the ! small data or BSS sections. The default is '-mgpopt' except when ! '-fpic' or '-fPIC' is specified to generate position-independent code. Note that the Nios II ABI does not permit GP-relative accesses from shared libraries. ! You may need to specify '-mno-gpopt' explicitly when building programs that include large amounts of small data, including large GOT data sections. In this case, the 16-bit offset for GP-relative addressing may not be large enough to allow access to the entire small data section. ! '-mel' ! '-meb' Generate little-endian (default) or big-endian (experimental) code, respectively. ! '-mbypass-cache' ! '-mno-bypass-cache' Force all load and store instructions to always bypass cache by ! using I/O variants of the instructions. The default is not to bypass the cache. ! '-mno-cache-volatile' ! '-mcache-volatile' Volatile memory access bypass the cache using the I/O variants of ! the load and store instructions. The default is not to bypass the cache. ! '-mno-fast-sw-div' ! '-mfast-sw-div' ! Do not use table-based fast divide for small numbers. The default ! is to use the fast divide at '-O3' and above. ! '-mno-hw-mul' ! '-mhw-mul' ! '-mno-hw-mulx' ! '-mhw-mulx' ! '-mno-hw-div' ! '-mhw-div' ! Enable or disable emitting 'mul', 'mulx' and 'div' family of ! instructions by the compiler. The default is to emit 'mul' and not ! emit 'div' and 'mulx'. ! '-mcustom-INSN=N' ! '-mno-custom-INSN' ! Each '-mcustom-INSN=N' option enables use of a custom instruction with encoding N when generating code that uses INSN. For example, ! '-mcustom-fadds=253' generates custom instruction 253 for single-precision floating-point add operations instead of the default behavior of using a library call. --- 17310,17371 ---- These are the options defined for the Altera Nios II processor. ! `-G NUM' Put global and static objects less than or equal to NUM bytes into the small data or BSS sections instead of the normal data or BSS sections. The default value of NUM is 8. ! `-mgpopt' ! `-mno-gpopt' Generate (do not generate) GP-relative accesses for objects in the ! small data or BSS sections. The default is `-mgpopt' except when ! `-fpic' or `-fPIC' is specified to generate position-independent code. Note that the Nios II ABI does not permit GP-relative accesses from shared libraries. ! You may need to specify `-mno-gpopt' explicitly when building programs that include large amounts of small data, including large GOT data sections. In this case, the 16-bit offset for GP-relative addressing may not be large enough to allow access to the entire small data section. ! `-mel' ! `-meb' Generate little-endian (default) or big-endian (experimental) code, respectively. ! `-mbypass-cache' ! `-mno-bypass-cache' Force all load and store instructions to always bypass cache by ! using I/O variants of the instructions. The default is not to bypass the cache. ! `-mno-cache-volatile' ! `-mcache-volatile' Volatile memory access bypass the cache using the I/O variants of ! the load and store instructions. The default is not to bypass the cache. ! `-mno-fast-sw-div' ! `-mfast-sw-div' ! Do not use table-based fast divide for small numbers. The default ! is to use the fast divide at `-O3' and above. ! `-mno-hw-mul' ! `-mhw-mul' ! `-mno-hw-mulx' ! `-mhw-mulx' ! `-mno-hw-div' ! `-mhw-div' ! Enable or disable emitting `mul', `mulx' and `div' family of ! instructions by the compiler. The default is to emit `mul' and not ! emit `div' and `mulx'. ! `-mcustom-INSN=N' ! `-mno-custom-INSN' ! Each `-mcustom-INSN=N' option enables use of a custom instruction with encoding N when generating code that uses INSN. For example, ! `-mcustom-fadds=253' generates custom instruction 253 for single-precision floating-point add operations instead of the default behavior of using a library call. *************** These are the options defined for the Al *** 17279,17404 **** Builtins::). Single-precision floating point: ! ! 'fadds', 'fsubs', 'fdivs', 'fmuls' Binary arithmetic operations. ! 'fnegs' Unary negation. ! 'fabss' Unary absolute value. ! 'fcmpeqs', 'fcmpges', 'fcmpgts', 'fcmples', 'fcmplts', 'fcmpnes' Comparison operations. ! 'fmins', 'fmaxs' Floating-point minimum and maximum. These instructions are ! only generated if '-ffinite-math-only' is specified. ! 'fsqrts' Unary square root operation. ! 'fcoss', 'fsins', 'ftans', 'fatans', 'fexps', 'flogs' ! Floating-point trigonometric and exponential functions. These ! instructions are only generated if ! '-funsafe-math-optimizations' is also specified. - Double-precision floating point: ! 'faddd', 'fsubd', 'fdivd', 'fmuld' Binary arithmetic operations. ! 'fnegd' Unary negation. ! 'fabsd' Unary absolute value. ! 'fcmpeqd', 'fcmpged', 'fcmpgtd', 'fcmpled', 'fcmpltd', 'fcmpned' Comparison operations. ! 'fmind', 'fmaxd' Double-precision minimum and maximum. These instructions are ! only generated if '-ffinite-math-only' is specified. ! 'fsqrtd' Unary square root operation. ! 'fcosd', 'fsind', 'ftand', 'fatand', 'fexpd', 'flogd' Double-precision trigonometric and exponential functions. These instructions are only generated if ! '-funsafe-math-optimizations' is also specified. Conversions: ! 'fextsd' Conversion from single precision to double precision. ! 'ftruncds' Conversion from double precision to single precision. ! 'fixsi', 'fixsu', 'fixdi', 'fixdu' Conversion from floating point to signed or unsigned integer types, with truncation towards zero. ! 'floatis', 'floatus', 'floatid', 'floatud' Conversion from signed or unsigned integer types to floating-point types. In addition, all of the following transfer instructions for internal registers X and Y must be provided to use any of the double-precision floating-point instructions. Custom instructions taking two double-precision source operands expect the first ! operand in the 64-bit register X. The other operand (or only operand of a unary operation) is given to the custom arithmetic ! instruction with the least significant half in source register SRC1 ! and the most significant half in SRC2. A custom instruction that ! returns a double-precision result returns the most significant 32 ! bits in the destination register and the other half in 32-bit ! register Y. GCC automatically generates the necessary code ! sequences to write register X and/or read register Y when double-precision floating-point instructions are used. ! 'fwrx' Write SRC1 into the least significant half of X and SRC2 into the most significant half of X. ! 'fwry' Write SRC1 into Y. ! 'frdxhi', 'frdxlo' Read the most or least (respectively) significant half of X and store it in DEST. ! 'frdy' Read the value of Y and store it into DEST. Note that you can gain more local control over generation of Nios ! II custom instructions by using the 'target("custom-INSN=N")' and ! 'target("no-custom-INSN")' function attributes (*note Function Attributes::) or pragmas (*note Function Specific Option Pragmas::). ! '-mcustom-fpu-cfg=NAME' ! This option enables a predefined, named set of custom instruction ! encodings (see '-mcustom-INSN' above). Currently, the following sets are defined: ! '-mcustom-fpu-cfg=60-1' is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -fsingle-precision-constant ! '-mcustom-fpu-cfg=60-2' is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -mcustom-fdivs=255 -fsingle-precision-constant ! '-mcustom-fpu-cfg=72-3' is equivalent to: -mcustom-floatus=243 -mcustom-fixsi=244 -mcustom-floatis=245 --- 17376,17501 ---- Builtins::). Single-precision floating point: ! `fadds', `fsubs', `fdivs', `fmuls' Binary arithmetic operations. ! `fnegs' Unary negation. ! `fabss' Unary absolute value. ! `fcmpeqs', `fcmpges', `fcmpgts', `fcmples', `fcmplts', `fcmpnes' Comparison operations. ! `fmins', `fmaxs' Floating-point minimum and maximum. These instructions are ! only generated if `-ffinite-math-only' is specified. ! `fsqrts' Unary square root operation. ! `fcoss', `fsins', `ftans', `fatans', `fexps', `flogs' ! Floating-point trigonometric and exponential functions. ! These instructions are only generated if ! `-funsafe-math-optimizations' is also specified. ! Double-precision floating point: ! `faddd', `fsubd', `fdivd', `fmuld' Binary arithmetic operations. ! `fnegd' Unary negation. ! `fabsd' Unary absolute value. ! `fcmpeqd', `fcmpged', `fcmpgtd', `fcmpled', `fcmpltd', `fcmpned' Comparison operations. ! `fmind', `fmaxd' Double-precision minimum and maximum. These instructions are ! only generated if `-ffinite-math-only' is specified. ! `fsqrtd' Unary square root operation. ! `fcosd', `fsind', `ftand', `fatand', `fexpd', `flogd' Double-precision trigonometric and exponential functions. These instructions are only generated if ! `-funsafe-math-optimizations' is also specified. ! Conversions: ! `fextsd' Conversion from single precision to double precision. ! `ftruncds' Conversion from double precision to single precision. ! `fixsi', `fixsu', `fixdi', `fixdu' Conversion from floating point to signed or unsigned integer types, with truncation towards zero. ! `floatis', `floatus', `floatid', `floatud' Conversion from signed or unsigned integer types to floating-point types. + In addition, all of the following transfer instructions for internal registers X and Y must be provided to use any of the double-precision floating-point instructions. Custom instructions taking two double-precision source operands expect the first ! operand in the 64-bit register X. The other operand (or only operand of a unary operation) is given to the custom arithmetic ! instruction with the least significant half in source register ! SRC1 and the most significant half in SRC2. A custom instruction ! that returns a double-precision result returns the most ! significant 32 bits in the destination register and the other half ! in 32-bit register Y. GCC automatically generates the necessary ! code sequences to write register X and/or read register Y when double-precision floating-point instructions are used. ! `fwrx' Write SRC1 into the least significant half of X and SRC2 into the most significant half of X. ! `fwry' Write SRC1 into Y. ! `frdxhi', `frdxlo' Read the most or least (respectively) significant half of X and store it in DEST. ! `frdy' Read the value of Y and store it into DEST. Note that you can gain more local control over generation of Nios ! II custom instructions by using the `target("custom-INSN=N")' and ! `target("no-custom-INSN")' function attributes (*note Function Attributes::) or pragmas (*note Function Specific Option Pragmas::). ! `-mcustom-fpu-cfg=NAME' This option enables a predefined, named set of custom instruction ! encodings (see `-mcustom-INSN' above). Currently, the following sets are defined: ! `-mcustom-fpu-cfg=60-1' is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -fsingle-precision-constant ! `-mcustom-fpu-cfg=60-2' is equivalent to: -mcustom-fmuls=252 -mcustom-fadds=253 -mcustom-fsubs=254 -mcustom-fdivs=255 -fsingle-precision-constant ! `-mcustom-fpu-cfg=72-3' is equivalent to: -mcustom-floatus=243 -mcustom-fixsi=244 -mcustom-floatis=245 *************** These are the options defined for the Al *** 17412,17449 **** -mcustom-fdivs=255 -fsingle-precision-constant ! Custom instruction assignments given by individual '-mcustom-INSN=' ! options override those given by '-mcustom-fpu-cfg=', regardless of ! the order of the options on the command line. Note that you can gain more local control over selection of a FPU ! configuration by using the 'target("custom-fpu-cfg=NAME")' function ! attribute (*note Function Attributes::) or pragma (*note Function ! Specific Option Pragmas::). ! These additional '-m' options are available for the Altera Nios II ELF (bare-metal) target: ! '-mhal' ! Link with HAL BSP. This suppresses linking with the GCC-provided C ! runtime startup and termination code, and is typically used in ! conjunction with '-msys-crt0=' to specify the location of the alternate startup code provided by the HAL BSP. ! '-msmallc' ! Link with a limited version of the C library, '-lsmallc', rather than Newlib. ! '-msys-crt0=STARTFILE' STARTFILE is the file name of the startfile (crt0) to use when ! linking. This option is only useful in conjunction with '-mhal'. ! '-msys-lib=SYSTEMLIB' SYSTEMLIB is the library name of the library that provides ! low-level system calls required by the C library, e.g. 'read' and ! 'write'. This option is typically used to link with a library provided by a HAL BSP.  File: gcc.info, Node: PDP-11 Options, Next: picoChip Options, Prev: Nios II Options, Up: Submodel Options --- 17509,17549 ---- -mcustom-fdivs=255 -fsingle-precision-constant ! Custom instruction assignments given by individual ! `-mcustom-INSN=' options override those given by ! `-mcustom-fpu-cfg=', regardless of the order of the options on the ! command line. Note that you can gain more local control over selection of a FPU ! configuration by using the `target("custom-fpu-cfg=NAME")' ! function attribute (*note Function Attributes::) or pragma (*note ! Function Specific Option Pragmas::). ! ! These additional `-m' options are available for the Altera Nios II ELF (bare-metal) target: ! `-mhal' ! Link with HAL BSP. This suppresses linking with the GCC-provided ! C runtime startup and termination code, and is typically used in ! conjunction with `-msys-crt0=' to specify the location of the alternate startup code provided by the HAL BSP. ! `-msmallc' ! Link with a limited version of the C library, `-lsmallc', rather than Newlib. ! `-msys-crt0=STARTFILE' STARTFILE is the file name of the startfile (crt0) to use when ! linking. This option is only useful in conjunction with `-mhal'. ! `-msys-lib=SYSTEMLIB' SYSTEMLIB is the library name of the library that provides ! low-level system calls required by the C library, e.g. `read' and ! `write'. This option is typically used to link with a library provided by a HAL BSP. +  File: gcc.info, Node: PDP-11 Options, Next: picoChip Options, Prev: Nios II Options, Up: Submodel Options *************** File: gcc.info, Node: PDP-11 Options, *** 17452,17523 **** These options are defined for the PDP-11: ! '-mfpu' Use hardware FPP floating point. This is the default. (FIS floating point on the PDP-11/40 is not supported.) ! '-msoft-float' Do not use hardware floating point. ! '-mac0' Return floating-point results in ac0 (fr0 in Unix assembler syntax). ! '-mno-ac0' Return floating-point results in memory. This is the default. ! '-m40' Generate code for a PDP-11/40. ! '-m45' Generate code for a PDP-11/45. This is the default. ! '-m10' Generate code for a PDP-11/10. ! '-mbcopy-builtin' ! Use inline 'movmemhi' patterns for copying memory. This is the default. ! '-mbcopy' ! Do not use inline 'movmemhi' patterns for copying memory. ! '-mint16' ! '-mno-int32' ! Use 16-bit 'int'. This is the default. ! '-mint32' ! '-mno-int16' ! Use 32-bit 'int'. ! '-mfloat64' ! '-mno-float32' ! Use 64-bit 'float'. This is the default. ! '-mfloat32' ! '-mno-float64' ! Use 32-bit 'float'. ! '-mabshi' ! Use 'abshi2' pattern. This is the default. ! '-mno-abshi' ! Do not use 'abshi2' pattern. ! '-mbranch-expensive' Pretend that branches are expensive. This is for experimenting with code generation only. ! '-mbranch-cheap' Do not pretend that branches are expensive. This is the default. ! '-munix-asm' Use Unix assembler syntax. This is the default when configured for ! 'pdp11-*-bsd'. ! '-mdec-asm' Use DEC assembler syntax. This is the default when configured for ! any PDP-11 target other than 'pdp11-*-bsd'.  File: gcc.info, Node: picoChip Options, Next: PowerPC Options, Prev: PDP-11 Options, Up: Submodel Options --- 17552,17623 ---- These options are defined for the PDP-11: ! `-mfpu' Use hardware FPP floating point. This is the default. (FIS floating point on the PDP-11/40 is not supported.) ! `-msoft-float' Do not use hardware floating point. ! `-mac0' Return floating-point results in ac0 (fr0 in Unix assembler syntax). ! `-mno-ac0' Return floating-point results in memory. This is the default. ! `-m40' Generate code for a PDP-11/40. ! `-m45' Generate code for a PDP-11/45. This is the default. ! `-m10' Generate code for a PDP-11/10. ! `-mbcopy-builtin' ! Use inline `movmemhi' patterns for copying memory. This is the default. ! `-mbcopy' ! Do not use inline `movmemhi' patterns for copying memory. ! `-mint16' ! `-mno-int32' ! Use 16-bit `int'. This is the default. ! `-mint32' ! `-mno-int16' ! Use 32-bit `int'. ! `-mfloat64' ! `-mno-float32' ! Use 64-bit `float'. This is the default. ! `-mfloat32' ! `-mno-float64' ! Use 32-bit `float'. ! `-mabshi' ! Use `abshi2' pattern. This is the default. ! `-mno-abshi' ! Do not use `abshi2' pattern. ! `-mbranch-expensive' Pretend that branches are expensive. This is for experimenting with code generation only. ! `-mbranch-cheap' Do not pretend that branches are expensive. This is the default. ! `-munix-asm' Use Unix assembler syntax. This is the default when configured for ! `pdp11-*-bsd'. ! `-mdec-asm' Use DEC assembler syntax. This is the default when configured for ! any PDP-11 target other than `pdp11-*-bsd'.  File: gcc.info, Node: picoChip Options, Next: PowerPC Options, Prev: PDP-11 Options, Up: Submodel Options *************** File: gcc.info, Node: picoChip Options, *** 17525,17569 **** 3.17.35 picoChip Options ------------------------ ! These '-m' options are defined for picoChip implementations: ! '-mae=AE_TYPE' Set the instruction set, register set, and instruction scheduling parameters for array element type AE_TYPE. Supported values for ! AE_TYPE are 'ANY', 'MUL', and 'MAC'. ! '-mae=ANY' selects a completely generic AE type. Code generated with this option runs on any of the other AE types. The code is ! not as efficient as it would be if compiled for a specific AE type, ! and some types of operation (e.g., multiplication) do not work ! properly on all types of AE. ! '-mae=MUL' selects a MUL AE type. This is the most useful AE type for compiled code, and is the default. ! '-mae=MAC' selects a DSP-style MAC AE. Code compiled with this option may suffer from poor performance of byte (char) manipulation, since the DSP AE does not provide hardware support for byte load/stores. ! '-msymbol-as-address' Enable the compiler to directly use a symbol name as an address in ! a load/store instruction, without first loading it into a register. ! Typically, the use of this option generates larger programs, which ! run faster than when the option isn't used. However, the results ! vary from program to program, so it is left as a user option, ! rather than being permanently enabled. ! '-mno-inefficient-warnings' Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that performs byte-level memory operations on the MAC AE type. The MAC ! AE has no hardware support for byte-level memory operations, so all ! byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to ! indicate that you should rewrite the code to avoid byte operations, ! or to target an AE type that has the necessary hardware support. ! This option disables these warnings.  File: gcc.info, Node: PowerPC Options, Next: RL78 Options, Prev: picoChip Options, Up: Submodel Options --- 17625,17670 ---- 3.17.35 picoChip Options ------------------------ ! These `-m' options are defined for picoChip implementations: ! `-mae=AE_TYPE' Set the instruction set, register set, and instruction scheduling parameters for array element type AE_TYPE. Supported values for ! AE_TYPE are `ANY', `MUL', and `MAC'. ! `-mae=ANY' selects a completely generic AE type. Code generated with this option runs on any of the other AE types. The code is ! not as efficient as it would be if compiled for a specific AE ! type, and some types of operation (e.g., multiplication) do not ! work properly on all types of AE. ! `-mae=MUL' selects a MUL AE type. This is the most useful AE type for compiled code, and is the default. ! `-mae=MAC' selects a DSP-style MAC AE. Code compiled with this option may suffer from poor performance of byte (char) manipulation, since the DSP AE does not provide hardware support for byte load/stores. ! `-msymbol-as-address' Enable the compiler to directly use a symbol name as an address in ! a load/store instruction, without first loading it into a ! register. Typically, the use of this option generates larger ! programs, which run faster than when the option isn't used. ! However, the results vary from program to program, so it is left ! as a user option, rather than being permanently enabled. ! `-mno-inefficient-warnings' Disables warnings about the generation of inefficient code. These warnings can be generated, for example, when compiling code that performs byte-level memory operations on the MAC AE type. The MAC ! AE has no hardware support for byte-level memory operations, so ! all byte load/stores must be synthesized from word load/store operations. This is inefficient and a warning is generated to ! indicate that you should rewrite the code to avoid byte ! operations, or to target an AE type that has the necessary ! hardware support. This option disables these warnings. !  File: gcc.info, Node: PowerPC Options, Next: RL78 Options, Prev: picoChip Options, Up: Submodel Options *************** File: gcc.info, Node: RL78 Options, Ne *** 17579,17858 **** 3.17.37 RL78 Options -------------------- ! '-msim' Links in additional target libraries to support operation within a simulator. ! '-mmul=none' ! '-mmul=g13' ! '-mmul=rl78' Specifies the type of hardware multiplication support to be used. ! The default is 'none', which uses software multiplication ! functions. The 'g13' option is for the hardware multiply/divide ! peripheral only on the RL78/G13 targets. The 'rl78' option is for the standard hardware multiplication defined in the RL78 software manual.  File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RX Options, Prev: RL78 Options, Up: Submodel Options 3.17.38 IBM RS/6000 and PowerPC Options --------------------------------------- ! These '-m' options are defined for the IBM RS/6000 and PowerPC: ! '-mpowerpc-gpopt' ! '-mno-powerpc-gpopt' ! '-mpowerpc-gfxopt' ! '-mno-powerpc-gfxopt' ! '-mpowerpc64' ! '-mno-powerpc64' ! '-mmfcrf' ! '-mno-mfcrf' ! '-mpopcntb' ! '-mno-popcntb' ! '-mpopcntd' ! '-mno-popcntd' ! '-mfprnd' ! '-mno-fprnd' ! '-mcmpb' ! '-mno-cmpb' ! '-mmfpgpr' ! '-mno-mfpgpr' ! '-mhard-dfp' ! '-mno-hard-dfp' You use these options to specify which instructions are available ! on the processor you are using. The default value of these options ! is determined when configuring GCC. Specifying the ! '-mcpu=CPU_TYPE' overrides the specification of these options. We ! recommend you use the '-mcpu=CPU_TYPE' option rather than the options listed above. ! Specifying '-mpowerpc-gpopt' allows GCC to use the optional PowerPC ! architecture instructions in the General Purpose group, including ! floating-point square root. Specifying '-mpowerpc-gfxopt' allows ! GCC to use the optional PowerPC architecture instructions in the ! Graphics group, including floating-point select. ! The '-mmfcrf' option allows GCC to generate the move from condition ! register field instruction implemented on the POWER4 processor and ! other processors that support the PowerPC V2.01 architecture. The ! '-mpopcntb' option allows GCC to generate the popcount and ! double-precision FP reciprocal estimate instruction implemented on ! the POWER5 processor and other processors that support the PowerPC ! V2.02 architecture. The '-mpopcntd' option allows GCC to generate ! the popcount instruction implemented on the POWER7 processor and ! other processors that support the PowerPC V2.06 architecture. The ! '-mfprnd' option allows GCC to generate the FP round to integer ! instructions implemented on the POWER5+ processor and other ! processors that support the PowerPC V2.03 architecture. The ! '-mcmpb' option allows GCC to generate the compare bytes ! instruction implemented on the POWER6 processor and other ! processors that support the PowerPC V2.05 architecture. The ! '-mmfpgpr' option allows GCC to generate the FP move to/from general-purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC ! V2.05 architecture. The '-mhard-dfp' option allows GCC to generate ! the decimal floating-point instructions implemented on some POWER ! processors. ! The '-mpowerpc64' option allows GCC to generate the additional 64-bit instructions that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit, doubleword quantities. ! GCC defaults to '-mno-powerpc64'. ! '-mcpu=CPU_TYPE' Set architecture type, register usage, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are '401', '403', '405', '405fp', '440', '440fp', '464', ! '464fp', '476', '476fp', '505', '601', '602', '603', '603e', '604', ! '604e', '620', '630', '740', '7400', '7450', '750', '801', '821', ! '823', '860', '970', '8540', 'a2', 'e300c2', 'e300c3', 'e500mc', ! 'e500mc64', 'e5500', 'e6500', 'ec603e', 'G3', 'G4', 'G5', 'titan', ! 'power3', 'power4', 'power5', 'power5+', 'power6', 'power6x', ! 'power7', 'power8', 'powerpc', 'powerpc64', 'powerpc64le', and ! 'rs64'. ! '-mcpu=powerpc', '-mcpu=powerpc64', and '-mcpu=powerpc64le' specify ! pure 32-bit PowerPC (either endian), 64-bit big endian PowerPC and ! 64-bit little endian PowerPC architecture machine types, with an ! appropriate, generic processor model assumed for scheduling ! purposes. The other options specify a specific processor. Code generated ! under those options runs best on that processor, and may not run at ! all on others. ! The '-mcpu' options automatically enable or disable the following options: -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple -mpopcntb -mpopcntd -mpowerpc64 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx ! -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector -mquad-memory -mquad-memory-atomic The particular options set for any particular CPU varies between compiler versions, depending on what setting seems to produce optimal code for that CPU; it doesn't necessarily reflect the actual hardware's capabilities. If you wish to set an individual ! option to a particular value, you may specify it after the '-mcpu' ! option, like '-mcpu=970 -mno-altivec'. ! On AIX, the '-maltivec' and '-mpowerpc64' options are not enabled ! or disabled by the '-mcpu' option at present because AIX does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your environment. ! '-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the architecture type or register usage, ! as '-mcpu=CPU_TYPE' does. The same values for CPU_TYPE are used ! for '-mtune' as for '-mcpu'. If both are specified, the code ! generated uses the architecture and registers set by '-mcpu', but ! the scheduling parameters set by '-mtune'. ! '-mcmodel=small' Generate PowerPC64 code for the small model: The TOC is limited to 64k. ! '-mcmodel=medium' Generate PowerPC64 code for the medium model: The TOC and other static data may be up to a total of 4G in size. ! '-mcmodel=large' Generate PowerPC64 code for the large model: The TOC may be up to 4G in size. Other data and code is only limited by the 64-bit address space. ! '-maltivec' ! '-mno-altivec' Generate code that uses (does not use) AltiVec instructions, and also enable the use of built-in functions that allow more direct access to the AltiVec instruction set. You may also need to set ! '-mabi=altivec' to adjust the current ABI with AltiVec ABI enhancements. ! When '-maltivec' is used, rather than '-maltivec=le' or ! '-maltivec=be', the element order for Altivec intrinsics such as ! 'vec_splat', 'vec_extract', and 'vec_insert' will match array element order corresponding to the endianness of the target. That is, element zero identifies the leftmost element in a vector register when targeting a big-endian platform, and identifies the rightmost element in a vector register when targeting a little-endian platform. ! '-maltivec=be' Generate Altivec instructions using big-endian element order, regardless of whether the target is big- or little-endian. This is the default when targeting a big-endian platform. The element order is used to interpret element numbers in Altivec ! intrinsics such as 'vec_splat', 'vec_extract', and 'vec_insert'. By default, these will match array element order corresponding to the endianness for the target. ! '-maltivec=le' Generate Altivec instructions using little-endian element order, regardless of whether the target is big- or little-endian. This is the default when targeting a little-endian platform. This option is currently ignored when targeting a big-endian platform. The element order is used to interpret element numbers in Altivec ! intrinsics such as 'vec_splat', 'vec_extract', and 'vec_insert'. By default, these will match array element order corresponding to the endianness for the target. ! '-mvrsave' ! '-mno-vrsave' Generate VRSAVE instructions when generating AltiVec code. ! '-mgen-cell-microcode' Generate Cell microcode instructions. ! '-mwarn-cell-microcode' ! Warn when a Cell microcode instruction is emitted. An example of a ! Cell microcode instruction is a variable shift. ! '-msecure-plt' ! Generate code that allows 'ld' and 'ld.so' to build executables and ! shared libraries with non-executable '.plt' and '.got' sections. ! This is a PowerPC 32-bit SYSV ABI option. ! '-mbss-plt' ! Generate code that uses a BSS '.plt' section that 'ld.so' fills in, ! and requires '.plt' and '.got' sections that are both writable and ! executable. This is a PowerPC 32-bit SYSV ABI option. ! '-misel' ! '-mno-isel' This switch enables or disables the generation of ISEL instructions. ! '-misel=YES/NO' ! This switch has been deprecated. Use '-misel' and '-mno-isel' instead. ! '-mspe' ! '-mno-spe' This switch enables or disables the generation of SPE simd instructions. ! '-mpaired' ! '-mno-paired' This switch enables or disables the generation of PAIRED simd instructions. ! '-mspe=YES/NO' ! This option has been deprecated. Use '-mspe' and '-mno-spe' instead. ! '-mvsx' ! '-mno-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. ! '-mcrypto' ! '-mno-crypto' Enable the use (disable) of the built-in functions that allow direct access to the cryptographic instructions that were added in version 2.07 of the PowerPC ISA. ! '-mdirect-move' ! '-mno-direct-move' Generate code that uses (does not use) the instructions to move data between the general purpose registers and the vector/scalar (VSX) registers that were added in version 2.07 of the PowerPC ISA. ! '-mpower8-fusion' ! '-mno-power8-fusion' Generate code that keeps (does not keeps) some integer operations adjacent so that the instructions can be fused together on power8 and later processors. ! '-mpower8-vector' ! '-mno-power8-vector' Generate code that uses (does not use) the vector and scalar instructions that were added in version 2.07 of the PowerPC ISA. Also enable the use of built-in functions that allow more direct access to the vector instructions. ! '-mquad-memory' ! '-mno-quad-memory' Generate code that uses (does not use) the non-atomic quad word ! memory instructions. The '-mquad-memory' option requires use of 64-bit mode. ! '-mquad-memory-atomic' ! '-mno-quad-memory-atomic' Generate code that uses (does not use) the atomic quad word memory ! instructions. The '-mquad-memory-atomic' option requires use of 64-bit mode. ! '-mfloat-gprs=YES/SINGLE/DOUBLE/NO' ! '-mfloat-gprs' This switch enables or disables the generation of floating-point operations on the general-purpose registers for architectures that support it. --- 17680,17967 ---- 3.17.37 RL78 Options -------------------- ! `-msim' Links in additional target libraries to support operation within a simulator. ! `-mmul=none' ! `-mmul=g13' ! `-mmul=rl78' Specifies the type of hardware multiplication support to be used. ! The default is `none', which uses software multiplication ! functions. The `g13' option is for the hardware multiply/divide ! peripheral only on the RL78/G13 targets. The `rl78' option is for the standard hardware multiplication defined in the RL78 software manual. +  File: gcc.info, Node: RS/6000 and PowerPC Options, Next: RX Options, Prev: RL78 Options, Up: Submodel Options 3.17.38 IBM RS/6000 and PowerPC Options --------------------------------------- ! These `-m' options are defined for the IBM RS/6000 and PowerPC: ! `-mpowerpc-gpopt' ! `-mno-powerpc-gpopt' ! `-mpowerpc-gfxopt' ! `-mno-powerpc-gfxopt' ! `-mpowerpc64' ! `-mno-powerpc64' ! `-mmfcrf' ! `-mno-mfcrf' ! `-mpopcntb' ! `-mno-popcntb' ! `-mpopcntd' ! `-mno-popcntd' ! `-mfprnd' ! `-mno-fprnd' ! `-mcmpb' ! `-mno-cmpb' ! `-mmfpgpr' ! `-mno-mfpgpr' ! `-mhard-dfp' ! `-mno-hard-dfp' You use these options to specify which instructions are available ! on the processor you are using. The default value of these ! options is determined when configuring GCC. Specifying the ! `-mcpu=CPU_TYPE' overrides the specification of these options. We ! recommend you use the `-mcpu=CPU_TYPE' option rather than the options listed above. ! Specifying `-mpowerpc-gpopt' allows GCC to use the optional ! PowerPC architecture instructions in the General Purpose group, ! including floating-point square root. Specifying ! `-mpowerpc-gfxopt' allows GCC to use the optional PowerPC ! architecture instructions in the Graphics group, including ! floating-point select. ! The `-mmfcrf' option allows GCC to generate the move from ! condition register field instruction implemented on the POWER4 ! processor and other processors that support the PowerPC V2.01 ! architecture. The `-mpopcntb' option allows GCC to generate the ! popcount and double-precision FP reciprocal estimate instruction ! implemented on the POWER5 processor and other processors that ! support the PowerPC V2.02 architecture. The `-mpopcntd' option ! allows GCC to generate the popcount instruction implemented on the ! POWER7 processor and other processors that support the PowerPC ! V2.06 architecture. The `-mfprnd' option allows GCC to generate ! the FP round to integer instructions implemented on the POWER5+ ! processor and other processors that support the PowerPC V2.03 ! architecture. The `-mcmpb' option allows GCC to generate the ! compare bytes instruction implemented on the POWER6 processor and ! other processors that support the PowerPC V2.05 architecture. The ! `-mmfpgpr' option allows GCC to generate the FP move to/from general-purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC ! V2.05 architecture. The `-mhard-dfp' option allows GCC to ! generate the decimal floating-point instructions implemented on ! some POWER processors. ! The `-mpowerpc64' option allows GCC to generate the additional 64-bit instructions that are found in the full PowerPC64 architecture and to treat GPRs as 64-bit, doubleword quantities. ! GCC defaults to `-mno-powerpc64'. ! `-mcpu=CPU_TYPE' Set architecture type, register usage, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are `401', `403', `405', `405fp', `440', `440fp', `464', ! `464fp', `476', `476fp', `505', `601', `602', `603', `603e', ! `604', `604e', `620', `630', `740', `7400', `7450', `750', `801', ! `821', `823', `860', `970', `8540', `a2', `e300c2', `e300c3', ! `e500mc', `e500mc64', `e5500', `e6500', `ec603e', `G3', `G4', `G5', ! `titan', `power3', `power4', `power5', `power5+', `power6', ! `power6x', `power7', `power8', `powerpc', `powerpc64', ! `powerpc64le', and `rs64'. ! `-mcpu=powerpc', `-mcpu=powerpc64', and `-mcpu=powerpc64le' ! specify pure 32-bit PowerPC (either endian), 64-bit big endian ! PowerPC and 64-bit little endian PowerPC architecture machine ! types, with an appropriate, generic processor model assumed for ! scheduling purposes. The other options specify a specific processor. Code generated ! under those options runs best on that processor, and may not run ! at all on others. ! The `-mcpu' options automatically enable or disable the following options: -maltivec -mfprnd -mhard-float -mmfcrf -mmultiple -mpopcntb -mpopcntd -mpowerpc64 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx ! -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector -mquad-memory -mquad-memory-atomic The particular options set for any particular CPU varies between compiler versions, depending on what setting seems to produce optimal code for that CPU; it doesn't necessarily reflect the actual hardware's capabilities. If you wish to set an individual ! option to a particular value, you may specify it after the `-mcpu' ! option, like `-mcpu=970 -mno-altivec'. ! On AIX, the `-maltivec' and `-mpowerpc64' options are not enabled ! or disabled by the `-mcpu' option at present because AIX does not have full support for these options. You may still enable or disable them individually if you're sure it'll work in your environment. ! `-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the architecture type or register usage, ! as `-mcpu=CPU_TYPE' does. The same values for CPU_TYPE are used ! for `-mtune' as for `-mcpu'. If both are specified, the code ! generated uses the architecture and registers set by `-mcpu', but ! the scheduling parameters set by `-mtune'. ! `-mcmodel=small' Generate PowerPC64 code for the small model: The TOC is limited to 64k. ! `-mcmodel=medium' Generate PowerPC64 code for the medium model: The TOC and other static data may be up to a total of 4G in size. ! `-mcmodel=large' Generate PowerPC64 code for the large model: The TOC may be up to 4G in size. Other data and code is only limited by the 64-bit address space. ! `-maltivec' ! `-mno-altivec' Generate code that uses (does not use) AltiVec instructions, and also enable the use of built-in functions that allow more direct access to the AltiVec instruction set. You may also need to set ! `-mabi=altivec' to adjust the current ABI with AltiVec ABI enhancements. ! When `-maltivec' is used, rather than `-maltivec=le' or ! `-maltivec=be', the element order for Altivec intrinsics such as ! `vec_splat', `vec_extract', and `vec_insert' will match array element order corresponding to the endianness of the target. That is, element zero identifies the leftmost element in a vector register when targeting a big-endian platform, and identifies the rightmost element in a vector register when targeting a little-endian platform. ! `-maltivec=be' Generate Altivec instructions using big-endian element order, regardless of whether the target is big- or little-endian. This is the default when targeting a big-endian platform. The element order is used to interpret element numbers in Altivec ! intrinsics such as `vec_splat', `vec_extract', and `vec_insert'. By default, these will match array element order corresponding to the endianness for the target. ! `-maltivec=le' Generate Altivec instructions using little-endian element order, regardless of whether the target is big- or little-endian. This is the default when targeting a little-endian platform. This option is currently ignored when targeting a big-endian platform. The element order is used to interpret element numbers in Altivec ! intrinsics such as `vec_splat', `vec_extract', and `vec_insert'. By default, these will match array element order corresponding to the endianness for the target. ! `-mvrsave' ! `-mno-vrsave' Generate VRSAVE instructions when generating AltiVec code. ! `-mgen-cell-microcode' Generate Cell microcode instructions. ! `-mwarn-cell-microcode' ! Warn when a Cell microcode instruction is emitted. An example of ! a Cell microcode instruction is a variable shift. ! `-msecure-plt' ! Generate code that allows `ld' and `ld.so' to build executables ! and shared libraries with non-executable `.plt' and `.got' ! sections. This is a PowerPC 32-bit SYSV ABI option. ! `-mbss-plt' ! Generate code that uses a BSS `.plt' section that `ld.so' fills ! in, and requires `.plt' and `.got' sections that are both writable ! and executable. This is a PowerPC 32-bit SYSV ABI option. ! `-misel' ! `-mno-isel' This switch enables or disables the generation of ISEL instructions. ! `-misel=YES/NO' ! This switch has been deprecated. Use `-misel' and `-mno-isel' instead. ! `-mspe' ! `-mno-spe' This switch enables or disables the generation of SPE simd instructions. ! `-mpaired' ! `-mno-paired' This switch enables or disables the generation of PAIRED simd instructions. ! `-mspe=YES/NO' ! This option has been deprecated. Use `-mspe' and `-mno-spe' instead. ! `-mvsx' ! `-mno-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. ! `-mcrypto' ! `-mno-crypto' Enable the use (disable) of the built-in functions that allow direct access to the cryptographic instructions that were added in version 2.07 of the PowerPC ISA. ! `-mdirect-move' ! `-mno-direct-move' Generate code that uses (does not use) the instructions to move data between the general purpose registers and the vector/scalar (VSX) registers that were added in version 2.07 of the PowerPC ISA. ! `-mhtm' ! `-mno-htm' ! Enable (disable) the use of the built-in functions that allow ! direct access to the Hardware Transactional Memory (HTM) ! instructions that were added in version 2.07 of the PowerPC ISA. ! ! `-mpower8-fusion' ! `-mno-power8-fusion' Generate code that keeps (does not keeps) some integer operations adjacent so that the instructions can be fused together on power8 and later processors. ! `-mpower8-vector' ! `-mno-power8-vector' Generate code that uses (does not use) the vector and scalar instructions that were added in version 2.07 of the PowerPC ISA. Also enable the use of built-in functions that allow more direct access to the vector instructions. ! `-mquad-memory' ! `-mno-quad-memory' Generate code that uses (does not use) the non-atomic quad word ! memory instructions. The `-mquad-memory' option requires use of 64-bit mode. ! `-mquad-memory-atomic' ! `-mno-quad-memory-atomic' Generate code that uses (does not use) the atomic quad word memory ! instructions. The `-mquad-memory-atomic' option requires use of 64-bit mode. ! `-mfloat-gprs=YES/SINGLE/DOUBLE/NO' ! `-mfloat-gprs' This switch enables or disables the generation of floating-point operations on the general-purpose registers for architectures that support it. *************** These '-m' options are defined for the I *** 17868,17888 **** This option is currently only available on the MPC854x. ! '-m32' ! '-m64' Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets (including GNU/Linux). The 32-bit environment sets int, long and pointer to 32 bits and generates code that runs on any PowerPC variant. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits, and generates code for PowerPC64, as ! for '-mpowerpc64'. ! '-mfull-toc' ! '-mno-fp-in-toc' ! '-mno-sum-in-toc' ! '-mminimal-toc' Modify generation of the TOC (Table Of Contents), which is created ! for every executable file. The '-mfull-toc' option is selected by default. In that case, GCC allocates at least one TOC entry for each unique non-automatic variable reference in your program. GCC also places floating-point constants in the TOC. However, only --- 17977,17997 ---- This option is currently only available on the MPC854x. ! `-m32' ! `-m64' Generate code for 32-bit or 64-bit environments of Darwin and SVR4 targets (including GNU/Linux). The 32-bit environment sets int, long and pointer to 32 bits and generates code that runs on any PowerPC variant. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits, and generates code for PowerPC64, as ! for `-mpowerpc64'. ! `-mfull-toc' ! `-mno-fp-in-toc' ! `-mno-sum-in-toc' ! `-mminimal-toc' Modify generation of the TOC (Table Of Contents), which is created ! for every executable file. The `-mfull-toc' option is selected by default. In that case, GCC allocates at least one TOC entry for each unique non-automatic variable reference in your program. GCC also places floating-point constants in the TOC. However, only *************** These '-m' options are defined for the I *** 17890,17921 **** If you receive a linker error message that saying you have overflowed the available TOC space, you can reduce the amount of ! TOC space used with the '-mno-fp-in-toc' and '-mno-sum-in-toc' ! options. '-mno-fp-in-toc' prevents GCC from putting floating-point ! constants in the TOC and '-mno-sum-in-toc' forces GCC to generate code to calculate the sum of an address and a constant at run time instead of putting that sum into the TOC. You may specify one or both of these options. Each causes GCC to produce very slightly slower and larger code at the expense of conserving TOC space. ! If you still run out of space in the TOC even when you specify both ! of these options, specify '-mminimal-toc' instead. This option ! causes GCC to make only one TOC entry for every file. When you ! specify this option, GCC produces code that is slower and larger ! but which uses extremely little TOC space. You may wish to use ! this option only on files that contain less frequently-executed ! code. ! '-maix64' ! '-maix32' Enable 64-bit AIX ABI and calling convention: 64-bit pointers, ! 64-bit 'long' type, and the infrastructure needed to support them. ! Specifying '-maix64' implies '-mpowerpc64', while '-maix32' ! disables the 64-bit ABI and implies '-mno-powerpc64'. GCC defaults ! to '-maix32'. ! '-mxl-compat' ! '-mno-xl-compat' Produce code that conforms more closely to IBM XL compiler semantics when using AIX-compatible ABI. Pass floating-point arguments to prototyped functions beyond the register save area --- 17999,18030 ---- If you receive a linker error message that saying you have overflowed the available TOC space, you can reduce the amount of ! TOC space used with the `-mno-fp-in-toc' and `-mno-sum-in-toc' ! options. `-mno-fp-in-toc' prevents GCC from putting floating-point ! constants in the TOC and `-mno-sum-in-toc' forces GCC to generate code to calculate the sum of an address and a constant at run time instead of putting that sum into the TOC. You may specify one or both of these options. Each causes GCC to produce very slightly slower and larger code at the expense of conserving TOC space. ! If you still run out of space in the TOC even when you specify ! both of these options, specify `-mminimal-toc' instead. This ! option causes GCC to make only one TOC entry for every file. When ! you specify this option, GCC produces code that is slower and ! larger but which uses extremely little TOC space. You may wish to ! use this option only on files that contain less ! frequently-executed code. ! `-maix64' ! `-maix32' Enable 64-bit AIX ABI and calling convention: 64-bit pointers, ! 64-bit `long' type, and the infrastructure needed to support them. ! Specifying `-maix64' implies `-mpowerpc64', while `-maix32' ! disables the 64-bit ABI and implies `-mno-powerpc64'. GCC ! defaults to `-maix32'. ! `-mxl-compat' ! `-mno-xl-compat' Produce code that conforms more closely to IBM XL compiler semantics when using AIX-compatible ABI. Pass floating-point arguments to prototyped functions beyond the register save area *************** These '-m' options are defined for the I *** 17927,18360 **** The AIX calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the address of its arguments with fewer arguments than ! declared. IBM XL compilers access floating-point arguments that do ! not fit in the RSA from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this ! option is not enabled by default and only is necessary when calling ! subroutines compiled by IBM XL compilers without optimization. ! '-mpe' Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an application written to use message passing with special startup code to enable the application to run. The system must have PE ! installed in the standard location ('/usr/lpp/ppe.poe/'), or the ! 'specs' file must be overridden with the '-specs=' option to specify the appropriate directory location. The Parallel ! Environment does not support threads, so the '-mpe' option and the ! '-pthread' option are incompatible. ! '-malign-natural' ! '-malign-power' On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option ! '-malign-natural' overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based ! boundary. The option '-malign-power' instructs GCC to follow the ABI-specified alignment rules. GCC defaults to the standard alignment defined in the ABI. On 64-bit Darwin, natural alignment is the default, and ! '-malign-power' is not supported. ! '-msoft-float' ! '-mhard-float' Generate code that does not use (uses) the floating-point register set. Software floating-point emulation is provided if you use the ! '-msoft-float' option, and pass the option to GCC when linking. ! '-msingle-float' ! '-mdouble-float' Generate code for single- or double-precision floating-point ! operations. '-mdouble-float' implies '-msingle-float'. ! '-msimple-fpu' ! Do not generate 'sqrt' and 'div' instructions for hardware floating-point unit. ! '-mfpu=NAME' Specify type of floating-point unit. Valid values for NAME are ! 'sp_lite' (equivalent to '-msingle-float -msimple-fpu'), 'dp_lite' ! (equivalent to '-mdouble-float -msimple-fpu'), 'sp_full' ! (equivalent to '-msingle-float'), and 'dp_full' (equivalent to ! '-mdouble-float'). ! '-mxilinx-fpu' Perform optimizations for the floating-point unit on Xilinx PPC 405/440. ! '-mmultiple' ! '-mno-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. These instructions are generated by default on POWER systems, and not ! generated on PowerPC systems. Do not use '-mmultiple' on ! little-endian PowerPC systems, since those instructions do not work ! when the processor is in little-endian mode. The exceptions are ! PPC740 and PPC750 which permit these instructions in little-endian ! mode. ! '-mstring' ! '-mno-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. These instructions are generated by ! default on POWER systems, and not generated on PowerPC systems. Do ! not use '-mstring' on little-endian PowerPC systems, since those instructions do not work when the processor is in little-endian mode. The exceptions are PPC740 and PPC750 which permit these instructions in little-endian mode. ! '-mupdate' ! '-mno-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. These instructions are generated by ! default. If you use '-mno-update', there is a small window between ! the time that the stack pointer is updated and the address of the ! previous frame is stored, which means code that walks the stack ! frame across interrupts or signals may get corrupted data. ! '-mavoid-indexed-addresses' ! '-mno-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed ! load or store instructions. These instructions can incur a performance penalty on Power6 processors in certain situations, such as when stepping through large arrays that cross a 16M boundary. This option is enabled by default when targeting Power6 and disabled otherwise. ! '-mfused-madd' ! '-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! '-mfused-madd' option is now mapped to the machine-independent ! '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to ! '-ffp-contract=off'. ! '-mmulhw' ! '-mno-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! '-mdlmzb' ! '-mno-dlmzb' ! Generate code that uses (does not use) the string-search 'dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! '-mno-bit-align' ! '-mbit-align' On System V.4 and embedded PowerPC systems do not (do) force structures and unions that contain bit-fields to be aligned to the base type of the bit-field. For example, by default a structure containing nothing but 8 ! 'unsigned' bit-fields of length 1 is aligned to a 4-byte boundary ! and has a size of 4 bytes. By using '-mno-bit-align', the structure is aligned to a 1-byte boundary and is 1 byte in size. ! '-mno-strict-align' ! '-mstrict-align' On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory references are handled by the system. ! '-mrelocatable' ! '-mno-relocatable' Generate code that allows (does not allow) a static executable to be relocated to a different address at run time. A simple embedded PowerPC system loader should relocate the entire contents of ! '.got2' and 4-byte locations listed in the '.fixup' section, a table of 32-bit addresses generated by this option. For this to work, all objects linked together must be compiled with ! '-mrelocatable' or '-mrelocatable-lib'. '-mrelocatable' code aligns the stack to an 8-byte boundary. ! '-mrelocatable-lib' ! '-mno-relocatable-lib' ! Like '-mrelocatable', '-mrelocatable-lib' generates a '.fixup' section to allow static executables to be relocated at run time, ! but '-mrelocatable-lib' does not use the smaller stack alignment of ! '-mrelocatable'. Objects compiled with '-mrelocatable-lib' may be ! linked with objects compiled with any combination of the ! '-mrelocatable' options. ! '-mno-toc' ! '-mtoc' On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains a pointer to a global area pointing to the addresses used in the program. ! '-mlittle' ! '-mlittle-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in little-endian mode. The '-mlittle-endian' option is ! the same as '-mlittle'. ! '-mbig' ! '-mbig-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in big-endian mode. The '-mbig-endian' option is the ! same as '-mbig'. ! '-mdynamic-no-pic' On Darwin and Mac OS X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. ! '-msingle-pic-base' Treat the register used for PIC addressing as read-only, rather than loading it in the prologue for each function. The runtime system is responsible for initializing this register with an appropriate value before execution begins. ! '-mprioritize-restricted-insns=PRIORITY' ! This option controls the priority that is assigned to dispatch-slot ! restricted instructions during the second scheduling pass. The ! argument PRIORITY takes the value '0', '1', or '2' to assign no, ! highest, or second-highest (respectively) priority to dispatch-slot ! restricted instructions. ! '-msched-costly-dep=DEPENDENCE_TYPE' ! This option controls which dependences are considered costly by the ! target during instruction scheduling. The argument DEPENDENCE_TYPE ! takes one of the following values: ! 'no' No dependence is costly. ! 'all' All dependences are costly. ! 'true_store_to_load' A true dependence from store to load is costly. ! 'store_to_load' Any dependence from store to load is costly. ! NUMBER Any dependence for which the latency is greater than or equal to NUMBER is costly. ! '-minsert-sched-nops=SCHEME' This option controls which NOP insertion scheme is used during the second scheduling pass. The argument SCHEME takes one of the following values: ! 'no' Don't insert NOPs. ! 'pad' Pad with NOPs any dispatch group that has vacant issue slots, according to the scheduler's grouping. ! 'regroup_exact' Insert NOPs to force costly dependent insns into separate groups. Insert exactly as many NOPs as needed to force an insn to a new group, according to the estimated processor grouping. ! NUMBER Insert NOPs to force costly dependent insns into separate groups. Insert NUMBER NOPs to force an insn to a new group. ! '-mcall-sysv' On System V.4 and embedded PowerPC systems compile code using calling conventions that adhere to the March 1995 draft of the System V Application Binary Interface, PowerPC processor supplement. This is the default unless you configured GCC using ! 'powerpc-*-eabiaix'. ! '-mcall-sysv-eabi' ! '-mcall-eabi' ! Specify both '-mcall-sysv' and '-meabi' options. ! '-mcall-sysv-noeabi' ! Specify both '-mcall-sysv' and '-mno-eabi' options. ! '-mcall-aixdesc' On System V.4 and embedded PowerPC systems compile code for the AIX operating system. ! '-mcall-linux' On System V.4 and embedded PowerPC systems compile code for the Linux-based GNU system. ! '-mcall-freebsd' On System V.4 and embedded PowerPC systems compile code for the FreeBSD operating system. ! '-mcall-netbsd' On System V.4 and embedded PowerPC systems compile code for the NetBSD operating system. ! '-mcall-openbsd' On System V.4 and embedded PowerPC systems compile code for the OpenBSD operating system. ! '-maix-struct-return' Return all structures in memory (as specified by the AIX ABI). ! '-msvr4-struct-return' Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI). ! '-mabi=ABI-TYPE' Extend the current ABI with a particular extension, or remove such extension. Valid values are ALTIVEC, NO-ALTIVEC, SPE, NO-SPE, IBMLONGDOUBLE, IEEELONGDOUBLE, ELFV1, ELFV2. ! '-mabi=spe' Extend the current ABI with SPE ABI extensions. This does not change the default ABI, instead it adds the SPE ABI extensions to the current ABI. ! '-mabi=no-spe' Disable Book-E SPE ABI extensions for the current ABI. ! '-mabi=ibmlongdouble' Change the current ABI to use IBM extended-precision long double. This is a PowerPC 32-bit SYSV ABI option. ! '-mabi=ieeelongdouble' Change the current ABI to use IEEE extended-precision long double. This is a PowerPC 32-bit Linux ABI option. ! '-mabi=elfv1' ! Change the current ABI to use the ELFv1 ABI. This is the default ABI for big-endian PowerPC 64-bit Linux. Overriding the default ABI requires special system support and is likely to fail in spectacular ways. ! '-mabi=elfv2' ! Change the current ABI to use the ELFv2 ABI. This is the default ! ABI for little-endian PowerPC 64-bit Linux. Overriding the default ! ABI requires special system support and is likely to fail in ! spectacular ways. ! '-mprototype' ! '-mno-prototype' On System V.4 and embedded PowerPC systems assume that all calls to variable argument functions are properly prototyped. Otherwise, ! the compiler must insert an instruction before every non-prototyped ! call to set or clear bit 6 of the condition code register (CR) to ! indicate whether floating-point values are passed in the ! floating-point registers in case the function takes variable ! arguments. With '-mprototype', only calls to prototyped variable ! argument functions set or clear the bit. ! '-msim' On embedded PowerPC systems, assume that the startup module is ! called 'sim-crt0.o' and that the standard C libraries are ! 'libsim.a' and 'libc.a'. This is the default for ! 'powerpc-*-eabisim' configurations. ! '-mmvme' On embedded PowerPC systems, assume that the startup module is ! called 'crt0.o' and the standard C libraries are 'libmvme.a' and ! 'libc.a'. ! '-mads' On embedded PowerPC systems, assume that the startup module is ! called 'crt0.o' and the standard C libraries are 'libads.a' and ! 'libc.a'. ! '-myellowknife' On embedded PowerPC systems, assume that the startup module is ! called 'crt0.o' and the standard C libraries are 'libyk.a' and ! 'libc.a'. ! '-mvxworks' On System V.4 and embedded PowerPC systems, specify that you are compiling for a VxWorks system. ! '-memb' On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags ! header to indicate that 'eabi' extended relocations are used. ! '-meabi' ! '-mno-eabi' On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded Applications Binary Interface (EABI), which is a set of modifications to the System V.4 specifications. Selecting ! '-meabi' means that the stack is aligned to an 8-byte boundary, a ! function '__eabi' is called from 'main' to set up the EABI ! environment, and the '-msdata' option can use both 'r2' and 'r13' ! to point to two separate small data areas. Selecting '-mno-eabi' means that the stack is aligned to a 16-byte boundary, no EABI ! initialization function is called from 'main', and the '-msdata' ! option only uses 'r13' to point to a single small data area. The ! '-meabi' option is on by default if you configured GCC using one of ! the 'powerpc*-*-eabi*' options. ! '-msdata=eabi' On System V.4 and embedded PowerPC systems, put small initialized ! 'const' global and static data in the '.sdata2' section, which is ! pointed to by register 'r2'. Put small initialized non-'const' ! global and static data in the '.sdata' section, which is pointed to ! by register 'r13'. Put small uninitialized global and static data ! in the '.sbss' section, which is adjacent to the '.sdata' section. ! The '-msdata=eabi' option is incompatible with the '-mrelocatable' ! option. The '-msdata=eabi' option also sets the '-memb' option. ! '-msdata=sysv' On System V.4 and embedded PowerPC systems, put small global and ! static data in the '.sdata' section, which is pointed to by ! register 'r13'. Put small uninitialized global and static data in ! the '.sbss' section, which is adjacent to the '.sdata' section. ! The '-msdata=sysv' option is incompatible with the '-mrelocatable' option. ! '-msdata=default' ! '-msdata' ! On System V.4 and embedded PowerPC systems, if '-meabi' is used, ! compile code the same as '-msdata=eabi', otherwise compile code the ! same as '-msdata=sysv'. ! '-msdata=data' On System V.4 and embedded PowerPC systems, put small global data ! in the '.sdata' section. Put small uninitialized global data in ! the '.sbss' section. Do not use register 'r13' to address small ! data however. This is the default behavior unless other '-msdata' options are used. ! '-msdata=none' ! '-mno-sdata' On embedded PowerPC systems, put all initialized global and static ! data in the '.data' section, and all uninitialized data in the ! '.bss' section. ! '-mblock-move-inline-limit=NUM' ! Inline all block moves (such as calls to 'memcpy' or structure ! copies) less than or equal to NUM bytes. The minimum value for NUM ! is 32 bytes on 32-bit targets and 64 bytes on 64-bit targets. The ! default value is target-specific. ! '-G NUM' On embedded PowerPC systems, put global and static items less than or equal to NUM bytes into the small data or BSS sections instead ! of the normal data or BSS section. By default, NUM is 8. The '-G NUM' switch is also passed to the linker. All modules should be ! compiled with the same '-G NUM' value. ! '-mregnames' ! '-mno-regnames' On System V.4 and embedded PowerPC systems do (do not) emit register names in the assembly language output using symbolic forms. ! '-mlongcall' ! '-mno-longcall' By default assume that all calls are far away so that a longer and more expensive calling sequence is required. This is required for ! calls farther than 32 megabytes (33,554,432 bytes) from the current ! location. A short call is generated if the compiler knows the call ! cannot be that far away. This setting can be overridden by the ! 'shortcall' function attribute, or by '#pragma longcall(0)'. Some linkers are capable of detecting out-of-range calls and generating glue code on the fly. On these systems, long calls are --- 18036,18471 ---- The AIX calling convention was extended but not initially documented to handle an obscure K&R C case of calling a function that takes the address of its arguments with fewer arguments than ! declared. IBM XL compilers access floating-point arguments that ! do not fit in the RSA from the stack when a subroutine is compiled without optimization. Because always storing floating-point arguments on the stack is inefficient and rarely needed, this ! option is not enabled by default and only is necessary when ! calling subroutines compiled by IBM XL compilers without ! optimization. ! `-mpe' Support "IBM RS/6000 SP" "Parallel Environment" (PE). Link an application written to use message passing with special startup code to enable the application to run. The system must have PE ! installed in the standard location (`/usr/lpp/ppe.poe/'), or the ! `specs' file must be overridden with the `-specs=' option to specify the appropriate directory location. The Parallel ! Environment does not support threads, so the `-mpe' option and the ! `-pthread' option are incompatible. ! `-malign-natural' ! `-malign-power' On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option ! `-malign-natural' overrides the ABI-defined alignment of larger types, such as floating-point doubles, on their natural size-based ! boundary. The option `-malign-power' instructs GCC to follow the ABI-specified alignment rules. GCC defaults to the standard alignment defined in the ABI. On 64-bit Darwin, natural alignment is the default, and ! `-malign-power' is not supported. ! `-msoft-float' ! `-mhard-float' Generate code that does not use (uses) the floating-point register set. Software floating-point emulation is provided if you use the ! `-msoft-float' option, and pass the option to GCC when linking. ! `-msingle-float' ! `-mdouble-float' Generate code for single- or double-precision floating-point ! operations. `-mdouble-float' implies `-msingle-float'. ! `-msimple-fpu' ! Do not generate `sqrt' and `div' instructions for hardware floating-point unit. ! `-mfpu=NAME' Specify type of floating-point unit. Valid values for NAME are ! `sp_lite' (equivalent to `-msingle-float -msimple-fpu'), `dp_lite' ! (equivalent to `-mdouble-float -msimple-fpu'), `sp_full' ! (equivalent to `-msingle-float'), and `dp_full' (equivalent to ! `-mdouble-float'). ! `-mxilinx-fpu' Perform optimizations for the floating-point unit on Xilinx PPC 405/440. ! `-mmultiple' ! `-mno-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. These instructions are generated by default on POWER systems, and not ! generated on PowerPC systems. Do not use `-mmultiple' on ! little-endian PowerPC systems, since those instructions do not ! work when the processor is in little-endian mode. The exceptions ! are PPC740 and PPC750 which permit these instructions in ! little-endian mode. ! `-mstring' ! `-mno-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. These instructions are generated by ! default on POWER systems, and not generated on PowerPC systems. ! Do not use `-mstring' on little-endian PowerPC systems, since those instructions do not work when the processor is in little-endian mode. The exceptions are PPC740 and PPC750 which permit these instructions in little-endian mode. ! `-mupdate' ! `-mno-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. These instructions are generated by ! default. If you use `-mno-update', there is a small window ! between the time that the stack pointer is updated and the address ! of the previous frame is stored, which means code that walks the ! stack frame across interrupts or signals may get corrupted data. ! `-mavoid-indexed-addresses' ! `-mno-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed ! load or store instructions. These instructions can incur a performance penalty on Power6 processors in certain situations, such as when stepping through large arrays that cross a 16M boundary. This option is enabled by default when targeting Power6 and disabled otherwise. ! `-mfused-madd' ! `-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! `-mfused-madd' option is now mapped to the machine-independent ! `-ffp-contract=fast' option, and `-mno-fused-madd' is mapped to ! `-ffp-contract=off'. ! `-mmulhw' ! `-mno-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! `-mdlmzb' ! `-mno-dlmzb' ! Generate code that uses (does not use) the string-search `dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! `-mno-bit-align' ! `-mbit-align' On System V.4 and embedded PowerPC systems do not (do) force structures and unions that contain bit-fields to be aligned to the base type of the bit-field. For example, by default a structure containing nothing but 8 ! `unsigned' bit-fields of length 1 is aligned to a 4-byte boundary ! and has a size of 4 bytes. By using `-mno-bit-align', the structure is aligned to a 1-byte boundary and is 1 byte in size. ! `-mno-strict-align' ! `-mstrict-align' On System V.4 and embedded PowerPC systems do not (do) assume that unaligned memory references are handled by the system. ! `-mrelocatable' ! `-mno-relocatable' Generate code that allows (does not allow) a static executable to be relocated to a different address at run time. A simple embedded PowerPC system loader should relocate the entire contents of ! `.got2' and 4-byte locations listed in the `.fixup' section, a table of 32-bit addresses generated by this option. For this to work, all objects linked together must be compiled with ! `-mrelocatable' or `-mrelocatable-lib'. `-mrelocatable' code aligns the stack to an 8-byte boundary. ! `-mrelocatable-lib' ! `-mno-relocatable-lib' ! Like `-mrelocatable', `-mrelocatable-lib' generates a `.fixup' section to allow static executables to be relocated at run time, ! but `-mrelocatable-lib' does not use the smaller stack alignment ! of `-mrelocatable'. Objects compiled with `-mrelocatable-lib' may ! be linked with objects compiled with any combination of the ! `-mrelocatable' options. ! `-mno-toc' ! `-mtoc' On System V.4 and embedded PowerPC systems do not (do) assume that register 2 contains a pointer to a global area pointing to the addresses used in the program. ! `-mlittle' ! `-mlittle-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in little-endian mode. The `-mlittle-endian' option is ! the same as `-mlittle'. ! `-mbig' ! `-mbig-endian' On System V.4 and embedded PowerPC systems compile code for the ! processor in big-endian mode. The `-mbig-endian' option is the ! same as `-mbig'. ! `-mdynamic-no-pic' On Darwin and Mac OS X systems, compile code so that it is not relocatable, but that its external references are relocatable. The resulting code is suitable for applications, but not shared libraries. ! `-msingle-pic-base' Treat the register used for PIC addressing as read-only, rather than loading it in the prologue for each function. The runtime system is responsible for initializing this register with an appropriate value before execution begins. ! `-mprioritize-restricted-insns=PRIORITY' ! This option controls the priority that is assigned to ! dispatch-slot restricted instructions during the second scheduling ! pass. The argument PRIORITY takes the value `0', `1', or `2' to ! assign no, highest, or second-highest (respectively) priority to ! dispatch-slot restricted instructions. ! `-msched-costly-dep=DEPENDENCE_TYPE' ! This option controls which dependences are considered costly by ! the target during instruction scheduling. The argument ! DEPENDENCE_TYPE takes one of the following values: ! `no' No dependence is costly. ! `all' All dependences are costly. ! `true_store_to_load' A true dependence from store to load is costly. ! `store_to_load' Any dependence from store to load is costly. ! NUMBER Any dependence for which the latency is greater than or equal to NUMBER is costly. ! `-minsert-sched-nops=SCHEME' This option controls which NOP insertion scheme is used during the second scheduling pass. The argument SCHEME takes one of the following values: ! `no' Don't insert NOPs. ! `pad' Pad with NOPs any dispatch group that has vacant issue slots, according to the scheduler's grouping. ! `regroup_exact' Insert NOPs to force costly dependent insns into separate groups. Insert exactly as many NOPs as needed to force an insn to a new group, according to the estimated processor grouping. ! NUMBER Insert NOPs to force costly dependent insns into separate groups. Insert NUMBER NOPs to force an insn to a new group. ! `-mcall-sysv' On System V.4 and embedded PowerPC systems compile code using calling conventions that adhere to the March 1995 draft of the System V Application Binary Interface, PowerPC processor supplement. This is the default unless you configured GCC using ! `powerpc-*-eabiaix'. ! `-mcall-sysv-eabi' ! `-mcall-eabi' ! Specify both `-mcall-sysv' and `-meabi' options. ! `-mcall-sysv-noeabi' ! Specify both `-mcall-sysv' and `-mno-eabi' options. ! `-mcall-aixdesc' On System V.4 and embedded PowerPC systems compile code for the AIX operating system. ! `-mcall-linux' On System V.4 and embedded PowerPC systems compile code for the Linux-based GNU system. ! `-mcall-freebsd' On System V.4 and embedded PowerPC systems compile code for the FreeBSD operating system. ! `-mcall-netbsd' On System V.4 and embedded PowerPC systems compile code for the NetBSD operating system. ! `-mcall-openbsd' On System V.4 and embedded PowerPC systems compile code for the OpenBSD operating system. ! `-maix-struct-return' Return all structures in memory (as specified by the AIX ABI). ! `-msvr4-struct-return' Return structures smaller than 8 bytes in registers (as specified by the SVR4 ABI). ! `-mabi=ABI-TYPE' Extend the current ABI with a particular extension, or remove such extension. Valid values are ALTIVEC, NO-ALTIVEC, SPE, NO-SPE, IBMLONGDOUBLE, IEEELONGDOUBLE, ELFV1, ELFV2. ! `-mabi=spe' Extend the current ABI with SPE ABI extensions. This does not change the default ABI, instead it adds the SPE ABI extensions to the current ABI. ! `-mabi=no-spe' Disable Book-E SPE ABI extensions for the current ABI. ! `-mabi=ibmlongdouble' Change the current ABI to use IBM extended-precision long double. This is a PowerPC 32-bit SYSV ABI option. ! `-mabi=ieeelongdouble' Change the current ABI to use IEEE extended-precision long double. This is a PowerPC 32-bit Linux ABI option. ! `-mabi=elfv1' ! Change the current ABI to use the ELFv1 ABI. This is the default ABI for big-endian PowerPC 64-bit Linux. Overriding the default ABI requires special system support and is likely to fail in spectacular ways. ! `-mabi=elfv2' ! Change the current ABI to use the ELFv2 ABI. This is the default ! ABI for little-endian PowerPC 64-bit Linux. Overriding the ! default ABI requires special system support and is likely to fail ! in spectacular ways. ! `-mprototype' ! `-mno-prototype' On System V.4 and embedded PowerPC systems assume that all calls to variable argument functions are properly prototyped. Otherwise, ! the compiler must insert an instruction before every ! non-prototyped call to set or clear bit 6 of the condition code ! register (CR) to indicate whether floating-point values are passed ! in the floating-point registers in case the function takes ! variable arguments. With `-mprototype', only calls to prototyped ! variable argument functions set or clear the bit. ! `-msim' On embedded PowerPC systems, assume that the startup module is ! called `sim-crt0.o' and that the standard C libraries are ! `libsim.a' and `libc.a'. This is the default for ! `powerpc-*-eabisim' configurations. ! `-mmvme' On embedded PowerPC systems, assume that the startup module is ! called `crt0.o' and the standard C libraries are `libmvme.a' and ! `libc.a'. ! `-mads' On embedded PowerPC systems, assume that the startup module is ! called `crt0.o' and the standard C libraries are `libads.a' and ! `libc.a'. ! `-myellowknife' On embedded PowerPC systems, assume that the startup module is ! called `crt0.o' and the standard C libraries are `libyk.a' and ! `libc.a'. ! `-mvxworks' On System V.4 and embedded PowerPC systems, specify that you are compiling for a VxWorks system. ! `-memb' On embedded PowerPC systems, set the PPC_EMB bit in the ELF flags ! header to indicate that `eabi' extended relocations are used. ! `-meabi' ! `-mno-eabi' On System V.4 and embedded PowerPC systems do (do not) adhere to the Embedded Applications Binary Interface (EABI), which is a set of modifications to the System V.4 specifications. Selecting ! `-meabi' means that the stack is aligned to an 8-byte boundary, a ! function `__eabi' is called from `main' to set up the EABI ! environment, and the `-msdata' option can use both `r2' and `r13' ! to point to two separate small data areas. Selecting `-mno-eabi' means that the stack is aligned to a 16-byte boundary, no EABI ! initialization function is called from `main', and the `-msdata' ! option only uses `r13' to point to a single small data area. The ! `-meabi' option is on by default if you configured GCC using one ! of the `powerpc*-*-eabi*' options. ! `-msdata=eabi' On System V.4 and embedded PowerPC systems, put small initialized ! `const' global and static data in the `.sdata2' section, which is ! pointed to by register `r2'. Put small initialized non-`const' ! global and static data in the `.sdata' section, which is pointed ! to by register `r13'. Put small uninitialized global and static ! data in the `.sbss' section, which is adjacent to the `.sdata' ! section. The `-msdata=eabi' option is incompatible with the ! `-mrelocatable' option. The `-msdata=eabi' option also sets the ! `-memb' option. ! `-msdata=sysv' On System V.4 and embedded PowerPC systems, put small global and ! static data in the `.sdata' section, which is pointed to by ! register `r13'. Put small uninitialized global and static data in ! the `.sbss' section, which is adjacent to the `.sdata' section. ! The `-msdata=sysv' option is incompatible with the `-mrelocatable' option. ! `-msdata=default' ! `-msdata' ! On System V.4 and embedded PowerPC systems, if `-meabi' is used, ! compile code the same as `-msdata=eabi', otherwise compile code the ! same as `-msdata=sysv'. ! `-msdata=data' On System V.4 and embedded PowerPC systems, put small global data ! in the `.sdata' section. Put small uninitialized global data in ! the `.sbss' section. Do not use register `r13' to address small ! data however. This is the default behavior unless other `-msdata' options are used. ! `-msdata=none' ! `-mno-sdata' On embedded PowerPC systems, put all initialized global and static ! data in the `.data' section, and all uninitialized data in the ! `.bss' section. ! `-mblock-move-inline-limit=NUM' ! Inline all block moves (such as calls to `memcpy' or structure ! copies) less than or equal to NUM bytes. The minimum value for ! NUM is 32 bytes on 32-bit targets and 64 bytes on 64-bit targets. ! The default value is target-specific. ! `-G NUM' On embedded PowerPC systems, put global and static items less than or equal to NUM bytes into the small data or BSS sections instead ! of the normal data or BSS section. By default, NUM is 8. The `-G NUM' switch is also passed to the linker. All modules should be ! compiled with the same `-G NUM' value. ! `-mregnames' ! `-mno-regnames' On System V.4 and embedded PowerPC systems do (do not) emit register names in the assembly language output using symbolic forms. ! `-mlongcall' ! `-mno-longcall' By default assume that all calls are far away so that a longer and more expensive calling sequence is required. This is required for ! calls farther than 32 megabytes (33,554,432 bytes) from the ! current location. A short call is generated if the compiler knows ! the call cannot be that far away. This setting can be overridden ! by the `shortcall' function attribute, or by `#pragma longcall(0)'. Some linkers are capable of detecting out-of-range calls and generating glue code on the fly. On these systems, long calls are *************** These '-m' options are defined for the I *** 18363,18376 **** planned to add this feature to the GNU linker for 32-bit PowerPC systems as well. ! On Darwin/PPC systems, '#pragma longcall' generates 'jbsr callee, ! L42', plus a "branch island" (glue code). The two target addresses ! represent the callee and the branch island. The Darwin/PPC linker ! prefers the first address and generates a 'bl callee' if the PPC ! 'bl' instruction reaches the callee directly; otherwise, the linker ! generates 'bl L42' to call the branch island. The branch island is ! appended to the body of the calling function; it computes the full ! 32-bit address of the callee and jumps to it. On Mach-O (Darwin) systems, this option directs the compiler emit to the glue for every direct call, and the Darwin linker decides --- 18474,18488 ---- planned to add this feature to the GNU linker for 32-bit PowerPC systems as well. ! On Darwin/PPC systems, `#pragma longcall' generates `jbsr callee, ! L42', plus a "branch island" (glue code). The two target ! addresses represent the callee and the branch island. The ! Darwin/PPC linker prefers the first address and generates a `bl ! callee' if the PPC `bl' instruction reaches the callee directly; ! otherwise, the linker generates `bl L42' to call the branch ! island. The branch island is appended to the body of the calling ! function; it computes the full 32-bit address of the callee and ! jumps to it. On Mach-O (Darwin) systems, this option directs the compiler emit to the glue for every direct call, and the Darwin linker decides *************** These '-m' options are defined for the I *** 18379,18490 **** In the future, GCC may ignore all longcall specifications when the linker is known to generate glue. ! '-mtls-markers' ! '-mno-tls-markers' ! Mark (do not mark) calls to '__tls_get_addr' with a relocation ! specifying the function argument. The relocation allows the linker ! to reliably associate function call with argument setup instructions for TLS optimization, which in turn allows GCC to better schedule the sequence. ! '-pthread' Adds support for multithreading with the "pthreads" library. This option sets flags for both the preprocessor and linker. ! '-mrecip' ! '-mno-recip' This option enables use of the reciprocal estimate and reciprocal square root estimate instructions with additional Newton-Raphson steps to increase precision instead of doing a divide or square root and divide for floating-point arguments. You should use the ! '-ffast-math' option when using '-mrecip' (or at least ! '-funsafe-math-optimizations', '-finite-math-only', ! '-freciprocal-math' and '-fno-trapping-math'). Note that while the ! throughput of the sequence is generally higher than the throughput ! of the non-reciprocal instruction, the precision of the sequence ! can be decreased by up to 2 ulp (i.e. the inverse of 1.0 equals ! 0.99999994) for reciprocal square roots. ! '-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a '!' to invert the option: 'all': enable all estimate ! instructions, 'default': enable the default instructions, ! equivalent to '-mrecip', 'none': disable all estimate instructions, ! equivalent to '-mno-recip'; 'div': enable the reciprocal ! approximation instructions for both single and double precision; ! 'divf': enable the single-precision reciprocal approximation ! instructions; 'divd': enable the double-precision reciprocal ! approximation instructions; 'rsqrt': enable the reciprocal square ! root approximation instructions for both single and double ! precision; 'rsqrtf': enable the single-precision reciprocal square ! root approximation instructions; 'rsqrtd': enable the ! double-precision reciprocal square root approximation instructions; ! So, for example, '-mrecip=all,!rsqrtd' enables all of the ! reciprocal estimate instructions, except for the 'FRSQRTE', ! 'XSRSQRTEDP', and 'XVRSQRTEDP' instructions which handle the double-precision reciprocal square root calculations. ! '-mrecip-precision' ! '-mno-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! ABI. Selecting '-mcpu=power6', '-mcpu=power7' or '-mcpu=power8' ! automatically selects '-mrecip-precision'. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an estimate that converges after three steps. ! '-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. The only type supported at present is 'mass', which specifies to use IBM's Mathematical Acceleration Subsystem (MASS) libraries for vectorizing intrinsics using external ! libraries. GCC currently emits calls to 'acosd2', 'acosf4', ! 'acoshd2', 'acoshf4', 'asind2', 'asinf4', 'asinhd2', 'asinhf4', ! 'atan2d2', 'atan2f4', 'atand2', 'atanf4', 'atanhd2', 'atanhf4', ! 'cbrtd2', 'cbrtf4', 'cosd2', 'cosf4', 'coshd2', 'coshf4', 'erfcd2', ! 'erfcf4', 'erfd2', 'erff4', 'exp2d2', 'exp2f4', 'expd2', 'expf4', ! 'expm1d2', 'expm1f4', 'hypotd2', 'hypotf4', 'lgammad2', 'lgammaf4', ! 'log10d2', 'log10f4', 'log1pd2', 'log1pf4', 'log2d2', 'log2f4', ! 'logd2', 'logf4', 'powd2', 'powf4', 'sind2', 'sinf4', 'sinhd2', ! 'sinhf4', 'sqrtd2', 'sqrtf4', 'tand2', 'tanf4', 'tanhd2', and ! 'tanhf4' when generating code for power7. Both '-ftree-vectorize' ! and '-funsafe-math-optimizations' must also be enabled. The MASS ! libraries must be specified at link time. ! '-mfriz' ! '-mno-friz' ! Generate (do not generate) the 'friz' instruction when the ! '-funsafe-math-optimizations' option is used to optimize rounding of floating-point values to 64-bit integer and back to floating ! point. The 'friz' instruction does not return the same value if the floating-point number is too large to fit in an integer. ! '-mpointers-to-nested-functions' ! '-mno-pointers-to-nested-functions' Generate (do not generate) code to load up the static chain register (R11) when calling through a pointer on AIX and 64-bit Linux systems where a function pointer points to a 3-word descriptor giving the function address, TOC value to be loaded in register R2, and static chain value to be loaded in register R11. ! The '-mpointers-to-nested-functions' is on by default. You cannot call through pointers to nested functions or pointers to functions compiled in other languages that use the static chain if you use ! the '-mno-pointers-to-nested-functions'. ! '-msave-toc-indirect' ! '-mno-save-toc-indirect' Generate (do not generate) code to save the TOC value in the reserved stack location in the function prologue if the function calls through a pointer on AIX and 64-bit Linux systems. If the ! TOC value is not saved in the prologue, it is saved just before the ! call through the pointer. The '-mno-save-toc-indirect' option is ! the default. ! '-mcompat-align-parm' ! '-mno-compat-align-parm' Generate (do not generate) code to pass structure parameters with a maximum alignment of 64 bits, for compatibility with older versions of GCC. --- 18491,18603 ---- In the future, GCC may ignore all longcall specifications when the linker is known to generate glue. ! `-mtls-markers' ! `-mno-tls-markers' ! Mark (do not mark) calls to `__tls_get_addr' with a relocation ! specifying the function argument. The relocation allows the ! linker to reliably associate function call with argument setup instructions for TLS optimization, which in turn allows GCC to better schedule the sequence. ! `-pthread' Adds support for multithreading with the "pthreads" library. This option sets flags for both the preprocessor and linker. ! `-mrecip' ! `-mno-recip' This option enables use of the reciprocal estimate and reciprocal square root estimate instructions with additional Newton-Raphson steps to increase precision instead of doing a divide or square root and divide for floating-point arguments. You should use the ! `-ffast-math' option when using `-mrecip' (or at least ! `-funsafe-math-optimizations', `-finite-math-only', ! `-freciprocal-math' and `-fno-trapping-math'). Note that while ! the throughput of the sequence is generally higher than the ! throughput of the non-reciprocal instruction, the precision of the ! sequence can be decreased by up to 2 ulp (i.e. the inverse of 1.0 ! equals 0.99999994) for reciprocal square roots. ! `-mrecip=OPT' This option controls which reciprocal estimate instructions may be used. OPT is a comma-separated list of options, which may be ! preceded by a `!' to invert the option: `all': enable all estimate ! instructions, `default': enable the default instructions, ! equivalent to `-mrecip', `none': disable all estimate ! instructions, equivalent to `-mno-recip'; `div': enable the ! reciprocal approximation instructions for both single and double ! precision; `divf': enable the single-precision reciprocal ! approximation instructions; `divd': enable the double-precision ! reciprocal approximation instructions; `rsqrt': enable the ! reciprocal square root approximation instructions for both single ! and double precision; `rsqrtf': enable the single-precision ! reciprocal square root approximation instructions; `rsqrtd': ! enable the double-precision reciprocal square root approximation ! instructions; ! So, for example, `-mrecip=all,!rsqrtd' enables all of the ! reciprocal estimate instructions, except for the `FRSQRTE', ! `XSRSQRTEDP', and `XVRSQRTEDP' instructions which handle the double-precision reciprocal square root calculations. ! `-mrecip-precision' ! `-mno-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the PowerPC ! ABI. Selecting `-mcpu=power6', `-mcpu=power7' or `-mcpu=power8' ! automatically selects `-mrecip-precision'. The double-precision square root estimate instructions are not generated by default on low-precision machines, since they do not provide an estimate that converges after three steps. ! `-mveclibabi=TYPE' Specifies the ABI type to use for vectorizing intrinsics using an ! external library. The only type supported at present is `mass', which specifies to use IBM's Mathematical Acceleration Subsystem (MASS) libraries for vectorizing intrinsics using external ! libraries. GCC currently emits calls to `acosd2', `acosf4', ! `acoshd2', `acoshf4', `asind2', `asinf4', `asinhd2', `asinhf4', ! `atan2d2', `atan2f4', `atand2', `atanf4', `atanhd2', `atanhf4', ! `cbrtd2', `cbrtf4', `cosd2', `cosf4', `coshd2', `coshf4', ! `erfcd2', `erfcf4', `erfd2', `erff4', `exp2d2', `exp2f4', `expd2', ! `expf4', `expm1d2', `expm1f4', `hypotd2', `hypotf4', `lgammad2', ! `lgammaf4', `log10d2', `log10f4', `log1pd2', `log1pf4', `log2d2', ! `log2f4', `logd2', `logf4', `powd2', `powf4', `sind2', `sinf4', ! `sinhd2', `sinhf4', `sqrtd2', `sqrtf4', `tand2', `tanf4', ! `tanhd2', and `tanhf4' when generating code for power7. Both ! `-ftree-vectorize' and `-funsafe-math-optimizations' must also be ! enabled. The MASS libraries must be specified at link time. ! `-mfriz' ! `-mno-friz' ! Generate (do not generate) the `friz' instruction when the ! `-funsafe-math-optimizations' option is used to optimize rounding of floating-point values to 64-bit integer and back to floating ! point. The `friz' instruction does not return the same value if the floating-point number is too large to fit in an integer. ! `-mpointers-to-nested-functions' ! `-mno-pointers-to-nested-functions' Generate (do not generate) code to load up the static chain register (R11) when calling through a pointer on AIX and 64-bit Linux systems where a function pointer points to a 3-word descriptor giving the function address, TOC value to be loaded in register R2, and static chain value to be loaded in register R11. ! The `-mpointers-to-nested-functions' is on by default. You cannot call through pointers to nested functions or pointers to functions compiled in other languages that use the static chain if you use ! the `-mno-pointers-to-nested-functions'. ! `-msave-toc-indirect' ! `-mno-save-toc-indirect' Generate (do not generate) code to save the TOC value in the reserved stack location in the function prologue if the function calls through a pointer on AIX and 64-bit Linux systems. If the ! TOC value is not saved in the prologue, it is saved just before ! the call through the pointer. The `-mno-save-toc-indirect' option ! is the default. ! `-mcompat-align-parm' ! `-mno-compat-align-parm' Generate (do not generate) code to pass structure parameters with a maximum alignment of 64 bits, for compatibility with older versions of GCC. *************** These '-m' options are defined for the I *** 18492,18502 **** Older versions of GCC (prior to 4.9.0) incorrectly did not align a structure parameter on a 128-bit boundary when that structure contained a member requiring 128-bit alignment. This is corrected ! in more recent versions of GCC. This option may be used to generate ! code that is compatible with functions compiled with older versions ! of GCC. ! The '-mno-compat-align-parm' option is the default.  File: gcc.info, Node: RX Options, Next: S/390 and zSeries Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options --- 18605,18615 ---- Older versions of GCC (prior to 4.9.0) incorrectly did not align a structure parameter on a 128-bit boundary when that structure contained a member requiring 128-bit alignment. This is corrected ! in more recent versions of GCC. This option may be used to ! generate code that is compatible with functions compiled with ! older versions of GCC. ! The `-mno-compat-align-parm' option is the default.  File: gcc.info, Node: RX Options, Next: S/390 and zSeries Options, Prev: RS/6000 and PowerPC Options, Up: Submodel Options *************** File: gcc.info, Node: RX Options, Next *** 18506,18556 **** These command-line options are defined for RX targets: ! '-m64bit-doubles' ! '-m32bit-doubles' ! Make the 'double' data type be 64 bits ('-m64bit-doubles') or 32 ! bits ('-m32bit-doubles') in size. The default is ! '-m32bit-doubles'. _Note_ RX floating-point hardware only works on ! 32-bit values, which is why the default is '-m32bit-doubles'. ! '-fpu' ! '-nofpu' ! Enables ('-fpu') or disables ('-nofpu') the use of RX floating-point hardware. The default is enabled for the RX600 series and disabled for the RX200 series. Floating-point instructions are only generated for 32-bit ! floating-point values, however, so the FPU hardware is not used for ! doubles if the '-m64bit-doubles' option is used. ! _Note_ If the '-fpu' option is enabled then ! '-funsafe-math-optimizations' is also enabled automatically. This is because the RX FPU instructions are themselves unsafe. ! '-mcpu=NAME' Selects the type of RX CPU to be targeted. Currently three types are supported, the generic RX600 and RX200 series hardware and the ! specific RX610 CPU. The default is RX600. The only difference between RX600 and RX610 is that the RX610 does ! not support the 'MVTIPL' instruction. The RX200 series does not have a hardware floating-point unit and ! so '-nofpu' is enabled by default when this type is selected. ! '-mbig-endian-data' ! '-mlittle-endian-data' Store data (but not code) in the big-endian format. The default is ! '-mlittle-endian-data', i.e. to store data in the little-endian format. ! '-msmall-data-limit=N' Specifies the maximum size in bytes of global and static variables which can be placed into the small data area. Using the small data area can lead to smaller and faster code, but the size of area is limited and it is up to the programmer to ensure that the area does not overflow. Also when the small data area is used one of the ! RX's registers (usually 'r13') is reserved for use pointing to this area, so it is no longer available for use by the compiler. This could result in slower and/or larger code if variables are pushed onto the stack instead of being held in this register. --- 18619,18669 ---- These command-line options are defined for RX targets: ! `-m64bit-doubles' ! `-m32bit-doubles' ! Make the `double' data type be 64 bits (`-m64bit-doubles') or 32 ! bits (`-m32bit-doubles') in size. The default is ! `-m32bit-doubles'. _Note_ RX floating-point hardware only works ! on 32-bit values, which is why the default is `-m32bit-doubles'. ! `-fpu' ! `-nofpu' ! Enables (`-fpu') or disables (`-nofpu') the use of RX floating-point hardware. The default is enabled for the RX600 series and disabled for the RX200 series. Floating-point instructions are only generated for 32-bit ! floating-point values, however, so the FPU hardware is not used ! for doubles if the `-m64bit-doubles' option is used. ! _Note_ If the `-fpu' option is enabled then ! `-funsafe-math-optimizations' is also enabled automatically. This is because the RX FPU instructions are themselves unsafe. ! `-mcpu=NAME' Selects the type of RX CPU to be targeted. Currently three types are supported, the generic RX600 and RX200 series hardware and the ! specific RX610 CPU. The default is RX600. The only difference between RX600 and RX610 is that the RX610 does ! not support the `MVTIPL' instruction. The RX200 series does not have a hardware floating-point unit and ! so `-nofpu' is enabled by default when this type is selected. ! `-mbig-endian-data' ! `-mlittle-endian-data' Store data (but not code) in the big-endian format. The default is ! `-mlittle-endian-data', i.e. to store data in the little-endian format. ! `-msmall-data-limit=N' Specifies the maximum size in bytes of global and static variables which can be placed into the small data area. Using the small data area can lead to smaller and faster code, but the size of area is limited and it is up to the programmer to ensure that the area does not overflow. Also when the small data area is used one of the ! RX's registers (usually `r13') is reserved for use pointing to this area, so it is no longer available for use by the compiler. This could result in slower and/or larger code if variables are pushed onto the stack instead of being held in this register. *************** These command-line options are defined f *** 18561,18585 **** The default value is zero, which disables this feature. Note, this feature is not enabled by default with higher optimization levels ! ('-O2' etc) because of the potentially detrimental effects of reserving a register. It is up to the programmer to experiment and discover whether this feature is of benefit to their program. See ! the description of the '-mpid' option for a description of how the actual register to hold the small data area pointer is chosen. ! '-msim' ! '-mno-sim' Use the simulator runtime. The default is to use the libgloss board-specific runtime. ! '-mas100-syntax' ! '-mno-as100-syntax' When generating assembler output use a syntax that is compatible ! with Renesas's AS100 assembler. This syntax can also be handled by ! the GAS assembler, but it has some restrictions so it is not generated by default. ! '-mmax-constant-size=N' Specifies the maximum size, in bytes, of a constant that can be used as an operand in a RX instruction. Although the RX instruction set does allow constants of up to 4 bytes in length to --- 18674,18698 ---- The default value is zero, which disables this feature. Note, this feature is not enabled by default with higher optimization levels ! (`-O2' etc) because of the potentially detrimental effects of reserving a register. It is up to the programmer to experiment and discover whether this feature is of benefit to their program. See ! the description of the `-mpid' option for a description of how the actual register to hold the small data area pointer is chosen. ! `-msim' ! `-mno-sim' Use the simulator runtime. The default is to use the libgloss board-specific runtime. ! `-mas100-syntax' ! `-mno-as100-syntax' When generating assembler output use a syntax that is compatible ! with Renesas's AS100 assembler. This syntax can also be handled ! by the GAS assembler, but it has some restrictions so it is not generated by default. ! `-mmax-constant-size=N' Specifies the maximum size, in bytes, of a constant that can be used as an operand in a RX instruction. Although the RX instruction set does allow constants of up to 4 bytes in length to *************** These command-line options are defined f *** 18592,18620 **** The value N can be between 0 and 4. A value of 0 (the default) or 4 means that constants of any size are allowed. ! '-mrelax' Enable linker relaxation. Linker relaxation is a process whereby the linker attempts to reduce the size of a program by finding shorter versions of various instructions. Disabled by default. ! '-mint-register=N' Specify the number of registers to reserve for fast interrupt ! handler functions. The value N can be between 0 and 4. A value of ! 1 means that register 'r13' is reserved for the exclusive use of ! fast interrupt handlers. A value of 2 reserves 'r13' and 'r12'. A ! value of 3 reserves 'r13', 'r12' and 'r11', and a value of 4 ! reserves 'r13' through 'r10'. A value of 0, the default, does not ! reserve any registers. ! '-msave-acc-in-interrupts' Specifies that interrupt handler functions should preserve the accumulator register. This is only necessary if normal code might use the accumulator register, for example because it performs 64-bit multiplications. The default is to ignore the accumulator as this makes the interrupt handlers faster. ! '-mpid' ! '-mno-pid' Enables the generation of position independent data. When enabled any access to constant data is done via an offset from a base address held in a register. This allows the location of constant --- 18705,18733 ---- The value N can be between 0 and 4. A value of 0 (the default) or 4 means that constants of any size are allowed. ! `-mrelax' Enable linker relaxation. Linker relaxation is a process whereby the linker attempts to reduce the size of a program by finding shorter versions of various instructions. Disabled by default. ! `-mint-register=N' Specify the number of registers to reserve for fast interrupt ! handler functions. The value N can be between 0 and 4. A value ! of 1 means that register `r13' is reserved for the exclusive use ! of fast interrupt handlers. A value of 2 reserves `r13' and ! `r12'. A value of 3 reserves `r13', `r12' and `r11', and a value ! of 4 reserves `r13' through `r10'. A value of 0, the default, ! does not reserve any registers. ! `-msave-acc-in-interrupts' Specifies that interrupt handler functions should preserve the accumulator register. This is only necessary if normal code might use the accumulator register, for example because it performs 64-bit multiplications. The default is to ignore the accumulator as this makes the interrupt handlers faster. ! `-mpid' ! `-mno-pid' Enables the generation of position independent data. When enabled any access to constant data is done via an offset from a base address held in a register. This allows the location of constant *************** These command-line options are defined f *** 18623,18658 **** tight memory constraints. Data that can be modified is not affected by this option. ! Note, using this feature reserves a register, usually 'r13', for the constant data base address. This can result in slower and/or larger code, especially in complicated functions. The actual register chosen to hold the constant data base address ! depends upon whether the '-msmall-data-limit' and/or the ! '-mint-register' command-line options are enabled. Starting with ! register 'r13' and proceeding downwards, registers are allocated ! first to satisfy the requirements of '-mint-register', then '-mpid' ! and finally '-msmall-data-limit'. Thus it is possible for the ! small data area register to be 'r8' if both '-mint-register=4' and ! '-mpid' are specified on the command line. By default this feature is not enabled. The default can be ! restored via the '-mno-pid' command-line option. ! '-mno-warn-multiple-fast-interrupts' ! '-mwarn-multiple-fast-interrupts' Prevents GCC from issuing a warning message if it finds more than one fast interrupt handler when it is compiling a file. The ! default is to issue a warning for each extra fast interrupt handler ! found, as the RX only supports one such interrupt. ! _Note:_ The generic GCC command-line option '-ffixed-REG' has special ! significance to the RX port when used with the 'interrupt' function ! attribute. This attribute indicates a function intended to process fast ! interrupts. GCC ensures that it only uses the registers 'r10', 'r11', ! 'r12' and/or 'r13' and only provided that the normal use of the ! corresponding registers have been restricted via the '-ffixed-REG' or ! '-mint-register' command-line options.  File: gcc.info, Node: S/390 and zSeries Options, Next: Score Options, Prev: RX Options, Up: Submodel Options --- 18736,18772 ---- tight memory constraints. Data that can be modified is not affected by this option. ! Note, using this feature reserves a register, usually `r13', for the constant data base address. This can result in slower and/or larger code, especially in complicated functions. The actual register chosen to hold the constant data base address ! depends upon whether the `-msmall-data-limit' and/or the ! `-mint-register' command-line options are enabled. Starting with ! register `r13' and proceeding downwards, registers are allocated ! first to satisfy the requirements of `-mint-register', then ! `-mpid' and finally `-msmall-data-limit'. Thus it is possible for ! the small data area register to be `r8' if both `-mint-register=4' ! and `-mpid' are specified on the command line. By default this feature is not enabled. The default can be ! restored via the `-mno-pid' command-line option. ! `-mno-warn-multiple-fast-interrupts' ! `-mwarn-multiple-fast-interrupts' Prevents GCC from issuing a warning message if it finds more than one fast interrupt handler when it is compiling a file. The ! default is to issue a warning for each extra fast interrupt ! handler found, as the RX only supports one such interrupt. ! ! _Note:_ The generic GCC command-line option `-ffixed-REG' has special ! significance to the RX port when used with the `interrupt' function ! attribute. This attribute indicates a function intended to process ! fast interrupts. GCC ensures that it only uses the registers `r10', ! `r11', `r12' and/or `r13' and only provided that the normal use of the ! corresponding registers have been restricted via the `-ffixed-REG' or ! `-mint-register' command-line options.  File: gcc.info, Node: S/390 and zSeries Options, Next: Score Options, Prev: RX Options, Up: Submodel Options *************** File: gcc.info, Node: S/390 and zSeries *** 18660,18840 **** 3.17.40 S/390 and zSeries Options --------------------------------- ! These are the '-m' options defined for the S/390 and zSeries architecture. ! '-mhard-float' ! '-msoft-float' Use (do not use) the hardware floating-point instructions and ! registers for floating-point operations. When '-msoft-float' is ! specified, functions in 'libgcc.a' are used to perform ! floating-point operations. When '-mhard-float' is specified, the compiler generates IEEE floating-point instructions. This is the default. ! '-mhard-dfp' ! '-mno-hard-dfp' Use (do not use) the hardware decimal-floating-point instructions ! for decimal-floating-point operations. When '-mno-hard-dfp' is ! specified, functions in 'libgcc.a' are used to perform ! decimal-floating-point operations. When '-mhard-dfp' is specified, ! the compiler generates decimal-floating-point hardware ! instructions. This is the default for '-march=z9-ec' or higher. ! '-mlong-double-64' ! '-mlong-double-128' ! These switches control the size of 'long double' type. A size of ! 64 bits makes the 'long double' type equivalent to the 'double' ! type. This is the default. ! '-mbackchain' ! '-mno-backchain' ! Store (do not store) the address of the caller's frame as backchain ! pointer into the callee's stack frame. A backchain may be needed ! to allow debugging using tools that do not understand DWARF 2 call ! frame information. When '-mno-packed-stack' is in effect, the ! backchain pointer is stored at the bottom of the stack frame; when ! '-mpacked-stack' is in effect, the backchain is placed into the ! topmost word of the 96/160 byte register save area. ! In general, code compiled with '-mbackchain' is call-compatible ! with code compiled with '-mmo-backchain'; however, use of the backchain for debugging purposes usually requires that the whole ! binary is built with '-mbackchain'. Note that the combination of ! '-mbackchain', '-mpacked-stack' and '-mhard-float' is not ! supported. In order to build a linux kernel use '-msoft-float'. The default is to not maintain the backchain. ! '-mpacked-stack' ! '-mno-packed-stack' ! Use (do not use) the packed stack layout. When '-mno-packed-stack' ! is specified, the compiler uses the all fields of the 96/160 byte ! register save area only for their default purpose; unused fields ! still take up stack space. When '-mpacked-stack' is specified, ! register save slots are densely packed at the top of the register ! save area; unused space is reused for other purposes, allowing for ! more efficient use of the available stack space. However, when ! '-mbackchain' is also in effect, the topmost word of the save area ! is always used to store the backchain, and the return address ! register is always saved two words below the backchain. As long as the stack frame backchain is not used, code generated ! with '-mpacked-stack' is call-compatible with code generated with ! '-mno-packed-stack'. Note that some non-FSF releases of GCC 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code ! is not call-compatible with code compiled with '-mpacked-stack'. ! Also, note that the combination of '-mbackchain', '-mpacked-stack' ! and '-mhard-float' is not supported. In order to build a linux ! kernel use '-msoft-float'. The default is to not use the packed stack layout. ! '-msmall-exec' ! '-mno-small-exec' ! Generate (or do not generate) code using the 'bras' instruction to do subroutine calls. This only works reliably if the total executable size does not exceed 64k. The default is to use the ! 'basr' instruction instead, which does not have this limitation. ! '-m64' ! '-m31' ! When '-m31' is specified, generate code compliant to the GNU/Linux ! for S/390 ABI. When '-m64' is specified, generate code compliant ! to the GNU/Linux for zSeries ABI. This allows GCC in particular to ! generate 64-bit instructions. For the 's390' targets, the default ! is '-m31', while the 's390x' targets default to '-m64'. ! '-mzarch' ! '-mesa' ! When '-mzarch' is specified, generate code using the instructions ! available on z/Architecture. When '-mesa' is specified, generate code using the instructions available on ESA/390. Note that ! '-mesa' is not possible with '-m64'. When generating code ! compliant to the GNU/Linux for S/390 ABI, the default is '-mesa'. When generating code compliant to the GNU/Linux for zSeries ABI, ! the default is '-mzarch'. ! '-mmvcle' ! '-mno-mvcle' ! Generate (or do not generate) code using the 'mvcle' instruction to ! perform block moves. When '-mno-mvcle' is specified, use a 'mvc' ! loop instead. This is the default unless optimizing for size. ! '-mdebug' ! '-mno-debug' Print (or do not print) additional debug information when compiling. The default is to not print debug information. ! '-march=CPU-TYPE' Generate code that runs on CPU-TYPE, which is the name of a system representing a certain processor type. Possible values for ! CPU-TYPE are 'g5', 'g6', 'z900', 'z990', 'z9-109', 'z9-ec', 'z10', ! 'z196', and 'zEC12'. When generating code using the instructions ! available on z/Architecture, the default is '-march=z900'. ! Otherwise, the default is '-march=g5'. ! '-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, ! except for the ABI and the set of available instructions. The list ! of CPU-TYPE values is the same as for '-march'. The default is the ! value used for '-march'. ! '-mtpf-trace' ! '-mno-tpf-trace' Generate code that adds (does not add) in TPF OS specific branches to trace routines in the operating system. This option is off by default, even when compiling for the TPF OS. ! '-mfused-madd' ! '-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. ! '-mwarn-framesize=FRAMESIZE' Emit a warning if the current function exceeds the given frame ! size. Because this is a compile-time check it doesn't need to be a ! real problem when the program runs. It is intended to identify functions that most probably cause a stack overflow. It is useful ! to be used in an environment with limited stack size e.g. the linux ! kernel. ! '-mwarn-dynamicstack' ! Emit a warning if the function calls 'alloca' or uses dynamically-sized arrays. This is generally a bad idea with a limited stack size. ! '-mstack-guard=STACK-GUARD' ! '-mstack-size=STACK-SIZE' If these options are provided the S/390 back end emits additional instructions in the function prologue that trigger a trap if the ! stack size is STACK-GUARD bytes above the STACK-SIZE (remember that ! the stack on S/390 grows downward). If the STACK-GUARD option is ! omitted the smallest power of 2 larger than the frame size of the ! compiled function is chosen. These options are intended to be used ! to help debugging stack overflow problems. The additionally ! emitted code causes only little overhead and hence can also be used ! in production-like systems without greater performance degradation. ! The given values have to be exact powers of 2 and STACK-SIZE has to ! be greater than STACK-GUARD without exceeding 64k. In order to be ! efficient the extra code makes the assumption that the stack starts ! at an address aligned to the value given by STACK-SIZE. The ! STACK-GUARD option can only be used in conjunction with STACK-SIZE. ! '-mhotpatch=PRE-HALFWORDS,POST-HALFWORDS' If the hotpatch option is enabled, a "hot-patching" function prologue is generated for all functions in the compilation unit. The funtion label is prepended with the given number of two-byte NOP instructions (PRE-HALFWORDS, maximum 1000000). After the ! label, 2 * POST-HALFWORDS bytes are appended, using the largest NOP ! like instructions the architecture allows (maximum 1000000). If both arguments are zero, hotpatching is disabled. This option can be overridden for individual functions with the ! 'hotpatch' attribute.  File: gcc.info, Node: Score Options, Next: SH Options, Prev: S/390 and zSeries Options, Up: Submodel Options --- 18774,18957 ---- 3.17.40 S/390 and zSeries Options --------------------------------- ! These are the `-m' options defined for the S/390 and zSeries architecture. ! `-mhard-float' ! `-msoft-float' Use (do not use) the hardware floating-point instructions and ! registers for floating-point operations. When `-msoft-float' is ! specified, functions in `libgcc.a' are used to perform ! floating-point operations. When `-mhard-float' is specified, the compiler generates IEEE floating-point instructions. This is the default. ! `-mhard-dfp' ! `-mno-hard-dfp' Use (do not use) the hardware decimal-floating-point instructions ! for decimal-floating-point operations. When `-mno-hard-dfp' is ! specified, functions in `libgcc.a' are used to perform ! decimal-floating-point operations. When `-mhard-dfp' is ! specified, the compiler generates decimal-floating-point hardware ! instructions. This is the default for `-march=z9-ec' or higher. ! `-mlong-double-64' ! `-mlong-double-128' ! These switches control the size of `long double' type. A size of ! 64 bits makes the `long double' type equivalent to the `double' ! type. This is the default. ! `-mbackchain' ! `-mno-backchain' ! Store (do not store) the address of the caller's frame as ! backchain pointer into the callee's stack frame. A backchain may ! be needed to allow debugging using tools that do not understand ! DWARF 2 call frame information. When `-mno-packed-stack' is in ! effect, the backchain pointer is stored at the bottom of the stack ! frame; when `-mpacked-stack' is in effect, the backchain is placed ! into the topmost word of the 96/160 byte register save area. ! In general, code compiled with `-mbackchain' is call-compatible ! with code compiled with `-mmo-backchain'; however, use of the backchain for debugging purposes usually requires that the whole ! binary is built with `-mbackchain'. Note that the combination of ! `-mbackchain', `-mpacked-stack' and `-mhard-float' is not ! supported. In order to build a linux kernel use `-msoft-float'. The default is to not maintain the backchain. ! `-mpacked-stack' ! `-mno-packed-stack' ! Use (do not use) the packed stack layout. When ! `-mno-packed-stack' is specified, the compiler uses the all fields ! of the 96/160 byte register save area only for their default ! purpose; unused fields still take up stack space. When ! `-mpacked-stack' is specified, register save slots are densely ! packed at the top of the register save area; unused space is ! reused for other purposes, allowing for more efficient use of the ! available stack space. However, when `-mbackchain' is also in ! effect, the topmost word of the save area is always used to store ! the backchain, and the return address register is always saved two ! words below the backchain. As long as the stack frame backchain is not used, code generated ! with `-mpacked-stack' is call-compatible with code generated with ! `-mno-packed-stack'. Note that some non-FSF releases of GCC 2.95 for S/390 or zSeries generated code that uses the stack frame backchain at run time, not just for debugging purposes. Such code ! is not call-compatible with code compiled with `-mpacked-stack'. ! Also, note that the combination of `-mbackchain', `-mpacked-stack' ! and `-mhard-float' is not supported. In order to build a linux ! kernel use `-msoft-float'. The default is to not use the packed stack layout. ! `-msmall-exec' ! `-mno-small-exec' ! Generate (or do not generate) code using the `bras' instruction to do subroutine calls. This only works reliably if the total executable size does not exceed 64k. The default is to use the ! `basr' instruction instead, which does not have this limitation. ! `-m64' ! `-m31' ! When `-m31' is specified, generate code compliant to the GNU/Linux ! for S/390 ABI. When `-m64' is specified, generate code compliant ! to the GNU/Linux for zSeries ABI. This allows GCC in particular ! to generate 64-bit instructions. For the `s390' targets, the ! default is `-m31', while the `s390x' targets default to `-m64'. ! `-mzarch' ! `-mesa' ! When `-mzarch' is specified, generate code using the instructions ! available on z/Architecture. When `-mesa' is specified, generate code using the instructions available on ESA/390. Note that ! `-mesa' is not possible with `-m64'. When generating code ! compliant to the GNU/Linux for S/390 ABI, the default is `-mesa'. When generating code compliant to the GNU/Linux for zSeries ABI, ! the default is `-mzarch'. ! `-mmvcle' ! `-mno-mvcle' ! Generate (or do not generate) code using the `mvcle' instruction ! to perform block moves. When `-mno-mvcle' is specified, use a ! `mvc' loop instead. This is the default unless optimizing for ! size. ! `-mdebug' ! `-mno-debug' Print (or do not print) additional debug information when compiling. The default is to not print debug information. ! `-march=CPU-TYPE' Generate code that runs on CPU-TYPE, which is the name of a system representing a certain processor type. Possible values for ! CPU-TYPE are `g5', `g6', `z900', `z990', `z9-109', `z9-ec', `z10', ! `z196', and `zEC12'. When generating code using the instructions ! available on z/Architecture, the default is `-march=z900'. ! Otherwise, the default is `-march=g5'. ! `-mtune=CPU-TYPE' Tune to CPU-TYPE everything applicable about the generated code, ! except for the ABI and the set of available instructions. The ! list of CPU-TYPE values is the same as for `-march'. The default ! is the value used for `-march'. ! `-mtpf-trace' ! `-mno-tpf-trace' Generate code that adds (does not add) in TPF OS specific branches to trace routines in the operating system. This option is off by default, even when compiling for the TPF OS. ! `-mfused-madd' ! `-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. ! `-mwarn-framesize=FRAMESIZE' Emit a warning if the current function exceeds the given frame ! size. Because this is a compile-time check it doesn't need to be ! a real problem when the program runs. It is intended to identify functions that most probably cause a stack overflow. It is useful ! to be used in an environment with limited stack size e.g. the ! linux kernel. ! `-mwarn-dynamicstack' ! Emit a warning if the function calls `alloca' or uses dynamically-sized arrays. This is generally a bad idea with a limited stack size. ! `-mstack-guard=STACK-GUARD' ! `-mstack-size=STACK-SIZE' If these options are provided the S/390 back end emits additional instructions in the function prologue that trigger a trap if the ! stack size is STACK-GUARD bytes above the STACK-SIZE (remember ! that the stack on S/390 grows downward). If the STACK-GUARD ! option is omitted the smallest power of 2 larger than the frame ! size of the compiled function is chosen. These options are ! intended to be used to help debugging stack overflow problems. ! The additionally emitted code causes only little overhead and ! hence can also be used in production-like systems without greater ! performance degradation. The given values have to be exact powers ! of 2 and STACK-SIZE has to be greater than STACK-GUARD without ! exceeding 64k. In order to be efficient the extra code makes the ! assumption that the stack starts at an address aligned to the ! value given by STACK-SIZE. The STACK-GUARD option can only be ! used in conjunction with STACK-SIZE. ! `-mhotpatch=PRE-HALFWORDS,POST-HALFWORDS' If the hotpatch option is enabled, a "hot-patching" function prologue is generated for all functions in the compilation unit. The funtion label is prepended with the given number of two-byte NOP instructions (PRE-HALFWORDS, maximum 1000000). After the ! label, 2 * POST-HALFWORDS bytes are appended, using the largest ! NOP like instructions the architecture allows (maximum 1000000). If both arguments are zero, hotpatching is disabled. This option can be overridden for individual functions with the ! `hotpatch' attribute.  File: gcc.info, Node: Score Options, Next: SH Options, Prev: S/390 and zSeries Options, Up: Submodel Options *************** File: gcc.info, Node: Score Options, N *** 18844,18876 **** These options are defined for Score implementations: ! '-meb' Compile code for big-endian mode. This is the default. ! '-mel' Compile code for little-endian mode. ! '-mnhwloop' ! Disable generation of 'bcnz' instructions. ! '-muls' Enable generation of unaligned load and store instructions. ! '-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! '-mscore5' Specify the SCORE5 as the target architecture. ! '-mscore5u' Specify the SCORE5U of the target architecture. ! '-mscore7' ! Specify the SCORE7 as the target architecture. This is the ! default. ! '-mscore7d' Specify the SCORE7D as the target architecture.  --- 18961,18992 ---- These options are defined for Score implementations: ! `-meb' Compile code for big-endian mode. This is the default. ! `-mel' Compile code for little-endian mode. ! `-mnhwloop' ! Disable generation of `bcnz' instructions. ! `-muls' Enable generation of unaligned load and store instructions. ! `-mmac' ! Enable the use of multiply-accumulate instructions. Disabled by default. ! `-mscore5' Specify the SCORE5 as the target architecture. ! `-mscore5u' Specify the SCORE5U of the target architecture. ! `-mscore7' ! Specify the SCORE7 as the target architecture. This is the default. ! `-mscore7d' Specify the SCORE7D as the target architecture.  *************** File: gcc.info, Node: SH Options, Next *** 18879,19135 **** 3.17.42 SH Options ------------------ ! These '-m' options are defined for the SH implementations: ! '-m1' Generate code for the SH1. ! '-m2' Generate code for the SH2. ! '-m2e' Generate code for the SH2e. ! '-m2a-nofpu' ! Generate code for the SH2a without FPU, or for a SH2a-FPU in such a ! way that the floating-point unit is not used. ! '-m2a-single-only' Generate code for the SH2a-FPU, in such a way that no double-precision floating-point operations are used. ! '-m2a-single' Generate code for the SH2a-FPU assuming the floating-point unit is in single-precision mode by default. ! '-m2a' Generate code for the SH2a-FPU assuming the floating-point unit is in double-precision mode by default. ! '-m3' Generate code for the SH3. ! '-m3e' Generate code for the SH3e. ! '-m4-nofpu' Generate code for the SH4 without a floating-point unit. ! '-m4-single-only' Generate code for the SH4 with a floating-point unit that only supports single-precision arithmetic. ! '-m4-single' Generate code for the SH4 assuming the floating-point unit is in single-precision mode by default. ! '-m4' Generate code for the SH4. ! '-m4-100' Generate code for SH4-100. ! '-m4-100-nofpu' Generate code for SH4-100 in such a way that the floating-point unit is not used. ! '-m4-100-single' Generate code for SH4-100 assuming the floating-point unit is in single-precision mode by default. ! '-m4-100-single-only' Generate code for SH4-100 in such a way that no double-precision floating-point operations are used. ! '-m4-200' Generate code for SH4-200. ! '-m4-200-nofpu' Generate code for SH4-200 without in such a way that the floating-point unit is not used. ! '-m4-200-single' Generate code for SH4-200 assuming the floating-point unit is in single-precision mode by default. ! '-m4-200-single-only' Generate code for SH4-200 in such a way that no double-precision floating-point operations are used. ! '-m4-300' Generate code for SH4-300. ! '-m4-300-nofpu' Generate code for SH4-300 without in such a way that the floating-point unit is not used. ! '-m4-300-single' Generate code for SH4-300 in such a way that no double-precision floating-point operations are used. ! '-m4-300-single-only' Generate code for SH4-300 in such a way that no double-precision floating-point operations are used. ! '-m4-340' Generate code for SH4-340 (no MMU, no FPU). ! '-m4-500' ! Generate code for SH4-500 (no FPU). Passes '-isa=sh4-nofpu' to the assembler. ! '-m4a-nofpu' Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-point unit is not used. ! '-m4a-single-only' Generate code for the SH4a, in such a way that no double-precision floating-point operations are used. ! '-m4a-single' Generate code for the SH4a assuming the floating-point unit is in single-precision mode by default. ! '-m4a' Generate code for the SH4a. ! '-m4al' ! Same as '-m4a-nofpu', except that it implicitly passes '-dsp' to the assembler. GCC doesn't generate any DSP instructions at the moment. ! '-m5-32media' Generate 32-bit code for SHmedia. ! '-m5-32media-nofpu' Generate 32-bit code for SHmedia in such a way that the floating-point unit is not used. ! '-m5-64media' Generate 64-bit code for SHmedia. ! '-m5-64media-nofpu' Generate 64-bit code for SHmedia in such a way that the floating-point unit is not used. ! '-m5-compact' Generate code for SHcompact. ! '-m5-compact-nofpu' Generate code for SHcompact in such a way that the floating-point unit is not used. ! '-mb' Compile code for the processor in big-endian mode. ! '-ml' Compile code for the processor in little-endian mode. ! '-mdalign' Align doubles at 64-bit boundaries. Note that this changes the calling conventions, and thus some functions from the standard C ! library do not work unless you recompile it first with '-mdalign'. ! '-mrelax' Shorten some address references at link time, when possible; uses ! the linker option '-relax'. ! '-mbigtable' ! Use 32-bit offsets in 'switch' tables. The default is to use 16-bit offsets. ! '-mbitops' Enable the use of bit manipulation instructions on SH2A. ! '-mfmovd' ! Enable the use of the instruction 'fmovd'. Check '-mdalign' for alignment constraints. ! '-mrenesas' Comply with the calling conventions defined by Renesas. ! '-mno-renesas' Comply with the calling conventions defined for GCC before the ! Renesas conventions were available. This option is the default for ! all targets of the SH toolchain. ! '-mnomacsave' ! Mark the 'MAC' register as call-clobbered, even if '-mrenesas' is given. ! '-mieee' ! '-mno-ieee' Control the IEEE compliance of floating-point comparisons, which affects the handling of cases where the result of a comparison is ! unordered. By default '-mieee' is implicitly enabled. If ! '-ffinite-math-only' is enabled '-mno-ieee' is implicitly set, ! which results in faster floating-point greater-equal and less-equal ! comparisons. The implcit settings can be overridden by specifying ! either '-mieee' or '-mno-ieee'. ! '-minline-ic_invalidate' Inline code to invalidate instruction cache entries after setting up nested function trampolines. This option has no effect if ! '-musermode' is in effect and the selected code generation option ! (e.g. '-m4') does not allow the use of the 'icbi' instruction. If the selected code generation option does not allow the use of the ! 'icbi' instruction, and '-musermode' is not in effect, the inlined code manipulates the instruction cache address array directly with an associative write. This not only requires privileged mode at run time, but it also fails if the cache line had been mapped via the TLB and has become unmapped. ! '-misize' Dump instruction size and location in the assembly code. ! '-mpadstruct' This option is deprecated. It pads structures to multiple of 4 bytes, which is incompatible with the SH ABI. ! '-matomic-model=MODEL' Sets the model of atomic operations and additional parameters as a ! comma separated list. For details on the atomic built-in functions ! see *note __atomic Builtins::. The following models and parameters ! are supported: ! 'none' Disable compiler generated atomic sequences and emit library calls for atomic operations. This is the default if the ! target is not 'sh*-*-linux*'. ! 'soft-gusa' Generate GNU/Linux compatible gUSA software atomic sequences for the atomic built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option ! is enabled by default when the target is 'sh*-*-linux*' and SH3* or SH4*. When the target is SH4A, this option will also ! partially utilize the hardware atomic instructions 'movli.l' ! and 'movco.l' to create more efficient code, unless 'strict' is specified. ! 'soft-tcb' Generate software atomic sequences that use a variable in the thread control block. This is a variation of the gUSA sequences which can also be used on SH1* and SH2* targets. ! The generated atomic sequences require additional support from ! the interrupt/exception handling code of the system and are ! only suitable for single-core systems. When using this model, ! the 'gbr-offset=' parameter has to be specified as well. ! 'soft-imask' Generate software atomic sequences that temporarily disable ! interrupts by setting 'SR.IMASK = 1111'. This model works only when the program runs in privileged mode and is only ! suitable for single-core systems. Additional support from the ! interrupt/exception handling code of the system is not required. This model is enabled by default when the target is ! 'sh*-*-linux*' and SH1* or SH2*. ! 'hard-llcs' ! Generate hardware atomic sequences using the 'movli.l' and ! 'movco.l' instructions only. This is only available on SH4A and is suitable for multi-core systems. Since the hardware instructions support only 32 bit atomic variables access to 8 or 16 bit variables is emulated with 32 bit accesses. Code --- 18995,19252 ---- 3.17.42 SH Options ------------------ ! These `-m' options are defined for the SH implementations: ! `-m1' Generate code for the SH1. ! `-m2' Generate code for the SH2. ! `-m2e' Generate code for the SH2e. ! `-m2a-nofpu' ! Generate code for the SH2a without FPU, or for a SH2a-FPU in such ! a way that the floating-point unit is not used. ! `-m2a-single-only' Generate code for the SH2a-FPU, in such a way that no double-precision floating-point operations are used. ! `-m2a-single' Generate code for the SH2a-FPU assuming the floating-point unit is in single-precision mode by default. ! `-m2a' Generate code for the SH2a-FPU assuming the floating-point unit is in double-precision mode by default. ! `-m3' Generate code for the SH3. ! `-m3e' Generate code for the SH3e. ! `-m4-nofpu' Generate code for the SH4 without a floating-point unit. ! `-m4-single-only' Generate code for the SH4 with a floating-point unit that only supports single-precision arithmetic. ! `-m4-single' Generate code for the SH4 assuming the floating-point unit is in single-precision mode by default. ! `-m4' Generate code for the SH4. ! `-m4-100' Generate code for SH4-100. ! `-m4-100-nofpu' Generate code for SH4-100 in such a way that the floating-point unit is not used. ! `-m4-100-single' Generate code for SH4-100 assuming the floating-point unit is in single-precision mode by default. ! `-m4-100-single-only' Generate code for SH4-100 in such a way that no double-precision floating-point operations are used. ! `-m4-200' Generate code for SH4-200. ! `-m4-200-nofpu' Generate code for SH4-200 without in such a way that the floating-point unit is not used. ! `-m4-200-single' Generate code for SH4-200 assuming the floating-point unit is in single-precision mode by default. ! `-m4-200-single-only' Generate code for SH4-200 in such a way that no double-precision floating-point operations are used. ! `-m4-300' Generate code for SH4-300. ! `-m4-300-nofpu' Generate code for SH4-300 without in such a way that the floating-point unit is not used. ! `-m4-300-single' Generate code for SH4-300 in such a way that no double-precision floating-point operations are used. ! `-m4-300-single-only' Generate code for SH4-300 in such a way that no double-precision floating-point operations are used. ! `-m4-340' Generate code for SH4-340 (no MMU, no FPU). ! `-m4-500' ! Generate code for SH4-500 (no FPU). Passes `-isa=sh4-nofpu' to the assembler. ! `-m4a-nofpu' Generate code for the SH4al-dsp, or for a SH4a in such a way that the floating-point unit is not used. ! `-m4a-single-only' Generate code for the SH4a, in such a way that no double-precision floating-point operations are used. ! `-m4a-single' Generate code for the SH4a assuming the floating-point unit is in single-precision mode by default. ! `-m4a' Generate code for the SH4a. ! `-m4al' ! Same as `-m4a-nofpu', except that it implicitly passes `-dsp' to the assembler. GCC doesn't generate any DSP instructions at the moment. ! `-m5-32media' Generate 32-bit code for SHmedia. ! `-m5-32media-nofpu' Generate 32-bit code for SHmedia in such a way that the floating-point unit is not used. ! `-m5-64media' Generate 64-bit code for SHmedia. ! `-m5-64media-nofpu' Generate 64-bit code for SHmedia in such a way that the floating-point unit is not used. ! `-m5-compact' Generate code for SHcompact. ! `-m5-compact-nofpu' Generate code for SHcompact in such a way that the floating-point unit is not used. ! `-mb' Compile code for the processor in big-endian mode. ! `-ml' Compile code for the processor in little-endian mode. ! `-mdalign' Align doubles at 64-bit boundaries. Note that this changes the calling conventions, and thus some functions from the standard C ! library do not work unless you recompile it first with `-mdalign'. ! `-mrelax' Shorten some address references at link time, when possible; uses ! the linker option `-relax'. ! `-mbigtable' ! Use 32-bit offsets in `switch' tables. The default is to use 16-bit offsets. ! `-mbitops' Enable the use of bit manipulation instructions on SH2A. ! `-mfmovd' ! Enable the use of the instruction `fmovd'. Check `-mdalign' for alignment constraints. ! `-mrenesas' Comply with the calling conventions defined by Renesas. ! `-mno-renesas' Comply with the calling conventions defined for GCC before the ! Renesas conventions were available. This option is the default ! for all targets of the SH toolchain. ! `-mnomacsave' ! Mark the `MAC' register as call-clobbered, even if `-mrenesas' is given. ! `-mieee' ! `-mno-ieee' Control the IEEE compliance of floating-point comparisons, which affects the handling of cases where the result of a comparison is ! unordered. By default `-mieee' is implicitly enabled. If ! `-ffinite-math-only' is enabled `-mno-ieee' is implicitly set, ! which results in faster floating-point greater-equal and ! less-equal comparisons. The implcit settings can be overridden by ! specifying either `-mieee' or `-mno-ieee'. ! `-minline-ic_invalidate' Inline code to invalidate instruction cache entries after setting up nested function trampolines. This option has no effect if ! `-musermode' is in effect and the selected code generation option ! (e.g. `-m4') does not allow the use of the `icbi' instruction. If the selected code generation option does not allow the use of the ! `icbi' instruction, and `-musermode' is not in effect, the inlined code manipulates the instruction cache address array directly with an associative write. This not only requires privileged mode at run time, but it also fails if the cache line had been mapped via the TLB and has become unmapped. ! `-misize' Dump instruction size and location in the assembly code. ! `-mpadstruct' This option is deprecated. It pads structures to multiple of 4 bytes, which is incompatible with the SH ABI. ! `-matomic-model=MODEL' Sets the model of atomic operations and additional parameters as a ! comma separated list. For details on the atomic built-in ! functions see *note __atomic Builtins::. The following models and ! parameters are supported: ! `none' Disable compiler generated atomic sequences and emit library calls for atomic operations. This is the default if the ! target is not `sh*-*-linux*'. ! `soft-gusa' Generate GNU/Linux compatible gUSA software atomic sequences for the atomic built-in functions. The generated atomic sequences require additional support from the interrupt/exception handling code of the system and are only suitable for SH3* and SH4* single-core systems. This option ! is enabled by default when the target is `sh*-*-linux*' and SH3* or SH4*. When the target is SH4A, this option will also ! partially utilize the hardware atomic instructions `movli.l' ! and `movco.l' to create more efficient code, unless `strict' is specified. ! `soft-tcb' Generate software atomic sequences that use a variable in the thread control block. This is a variation of the gUSA sequences which can also be used on SH1* and SH2* targets. ! The generated atomic sequences require additional support ! from the interrupt/exception handling code of the system and ! are only suitable for single-core systems. When using this ! model, the `gbr-offset=' parameter has to be specified as ! well. ! `soft-imask' Generate software atomic sequences that temporarily disable ! interrupts by setting `SR.IMASK = 1111'. This model works only when the program runs in privileged mode and is only ! suitable for single-core systems. Additional support from ! the interrupt/exception handling code of the system is not required. This model is enabled by default when the target is ! `sh*-*-linux*' and SH1* or SH2*. ! `hard-llcs' ! Generate hardware atomic sequences using the `movli.l' and ! `movco.l' instructions only. This is only available on SH4A and is suitable for multi-core systems. Since the hardware instructions support only 32 bit atomic variables access to 8 or 16 bit variables is emulated with 32 bit accesses. Code *************** These '-m' options are defined for the S *** 19139,19188 **** interrupt/exception handling code of the system is not required for this model. ! 'gbr-offset=' This parameter specifies the offset in bytes of the variable in the thread control block structure that should be used by ! the generated atomic sequences when the 'soft-tcb' model has been selected. For other models this parameter is ignored. ! The specified value must be an integer multiple of four and in ! the range 0-1020. ! 'strict' ! This parameter prevents mixed usage of multiple atomic models, ! even though they would be compatible, and will make the ! compiler generate atomic sequences of the specified model only. ! '-mtas' ! Generate the 'tas.b' opcode for '__atomic_test_and_set'. Notice that depending on the particular hardware and software configuration this can degrade overall performance due to the ! operand cache line flushes that are implied by the 'tas.b' ! instruction. On multi-core SH4A processors the 'tas.b' instruction ! must be used with caution since it can result in data corruption ! for certain cache configurations. ! '-mprefergot' When generating position-independent code, emit function calls using the Global Offset Table instead of the Procedure Linkage Table. ! '-musermode' ! '-mno-usermode' Don't allow (allow) the compiler generating privileged mode code. ! Specifying '-musermode' also implies '-mno-inline-ic_invalidate' if ! the inlined code would not work in user mode. '-musermode' is the ! default when the target is 'sh*-*-linux*'. If the target is SH1* ! or SH2* '-musermode' has no effect, since there is no user mode. ! '-multcost=NUMBER' Set the cost to assume for a multiply insn. ! '-mdiv=STRATEGY' Set the division strategy to be used for integer division operations. For SHmedia STRATEGY can be one of: ! 'fp' Performs the operation in floating point. This has a very high latency, but needs only a few instructions, so it might be a good choice if your code has enough easily-exploitable --- 19256,19307 ---- interrupt/exception handling code of the system is not required for this model. ! `gbr-offset=' This parameter specifies the offset in bytes of the variable in the thread control block structure that should be used by ! the generated atomic sequences when the `soft-tcb' model has been selected. For other models this parameter is ignored. ! The specified value must be an integer multiple of four and ! in the range 0-1020. ! `strict' ! This parameter prevents mixed usage of multiple atomic ! models, even though they would be compatible, and will make ! the compiler generate atomic sequences of the specified model only. ! ! `-mtas' ! Generate the `tas.b' opcode for `__atomic_test_and_set'. Notice that depending on the particular hardware and software configuration this can degrade overall performance due to the ! operand cache line flushes that are implied by the `tas.b' ! instruction. On multi-core SH4A processors the `tas.b' ! instruction must be used with caution since it can result in data ! corruption for certain cache configurations. ! `-mprefergot' When generating position-independent code, emit function calls using the Global Offset Table instead of the Procedure Linkage Table. ! `-musermode' ! `-mno-usermode' Don't allow (allow) the compiler generating privileged mode code. ! Specifying `-musermode' also implies `-mno-inline-ic_invalidate' ! if the inlined code would not work in user mode. `-musermode' is ! the default when the target is `sh*-*-linux*'. If the target is ! SH1* or SH2* `-musermode' has no effect, since there is no user ! mode. ! `-multcost=NUMBER' Set the cost to assume for a multiply insn. ! `-mdiv=STRATEGY' Set the division strategy to be used for integer division operations. For SHmedia STRATEGY can be one of: ! `fp' Performs the operation in floating point. This has a very high latency, but needs only a few instructions, so it might be a good choice if your code has enough easily-exploitable *************** These '-m' options are defined for the S *** 19190,19227 **** instructions together with other instructions. Division by zero causes a floating-point exception. ! 'inv' Uses integer operations to calculate the inverse of the divisor, and then multiplies the dividend with the inverse. This strategy allows CSE and hoisting of the inverse calculation. Division by zero calculates an unspecified result, but does not trap. ! 'inv:minlat' ! A variant of 'inv' where, if no CSE or hoisting opportunities have been found, or if the entire operation has been hoisted to the same place, the last stages of the inverse calculation are intertwined with the final multiply to reduce the overall latency, at the expense of using a few more instructions, and thus offering fewer scheduling opportunities with other code. ! 'call' Calls a library function that usually implements the ! 'inv:minlat' strategy. This gives high code density for ! 'm5-*media-nofpu' compilations. ! 'call2' Uses a different entry point of the same library function, where it assumes that a pointer to a lookup table has already been set up, which exposes the pointer load to CSE and code hoisting optimizations. ! 'inv:call' ! 'inv:call2' ! 'inv:fp' ! Use the 'inv' algorithm for initial code generation, but if ! the code stays unoptimized, revert to the 'call', 'call2', or ! 'fp' strategies, respectively. Note that the potentially-trapping side effect of division by zero is carried by a separate instruction, so it is possible that all the integer instructions are hoisted out, but the marker for --- 19309,19346 ---- instructions together with other instructions. Division by zero causes a floating-point exception. ! `inv' Uses integer operations to calculate the inverse of the divisor, and then multiplies the dividend with the inverse. This strategy allows CSE and hoisting of the inverse calculation. Division by zero calculates an unspecified result, but does not trap. ! `inv:minlat' ! A variant of `inv' where, if no CSE or hoisting opportunities have been found, or if the entire operation has been hoisted to the same place, the last stages of the inverse calculation are intertwined with the final multiply to reduce the overall latency, at the expense of using a few more instructions, and thus offering fewer scheduling opportunities with other code. ! `call' Calls a library function that usually implements the ! `inv:minlat' strategy. This gives high code density for ! `m5-*media-nofpu' compilations. ! `call2' Uses a different entry point of the same library function, where it assumes that a pointer to a lookup table has already been set up, which exposes the pointer load to CSE and code hoisting optimizations. ! `inv:call' ! `inv:call2' ! `inv:fp' ! Use the `inv' algorithm for initial code generation, but if ! the code stays unoptimized, revert to the `call', `call2', or ! `fp' strategies, respectively. Note that the potentially-trapping side effect of division by zero is carried by a separate instruction, so it is possible that all the integer instructions are hoisted out, but the marker for *************** These '-m' options are defined for the S *** 19229,19293 **** floating-point operations or a call is not possible in that case. ! 'inv20u' ! 'inv20l' ! Variants of the 'inv:minlat' strategy. In the case that the inverse calculation is not separated from the multiply, they speed up division where the dividend fits into 20 bits (plus ! sign where applicable) by inserting a test to skip a number of ! operations in this case; this test slows down the case of ! larger dividends. 'inv20u' assumes the case of a such a small ! dividend to be unlikely, and 'inv20l' assumes it to be likely. For targets other than SHmedia STRATEGY can be one of: ! 'call-div1' Calls a library function that uses the single-step division ! instruction 'div1' to perform the operation. Division by zero ! calculates an unspecified result and does not trap. This is ! the default except for SH4, SH2A and SHcompact. ! 'call-fp' ! Calls a library function that performs the operation in double ! precision floating point. Division by zero causes a floating-point exception. This is the default for SHcompact ! with FPU. Specifying this for targets that do not have a ! double precision FPU will default to 'call-div1'. ! 'call-table' Calls a library function that uses a lookup table for small ! divisors and the 'div1' instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default for SH4. Specifying this for targets that do not have dynamic shift ! instructions will default to 'call-div1'. When a division strategy has not been specified the default strategy will be selected based on the current target. For SH2A ! the default strategy is to use the 'divs' and 'divu' instructions instead of library function calls. ! '-maccumulate-outgoing-args' Reserve space once for outgoing arguments in the function prologue ! rather than around each call. Generally beneficial for performance ! and size. Also needed for unwinding to avoid changing the stack ! frame around conditional code. ! '-mdivsi3_libfunc=NAME' Set the name of the library function used for 32-bit signed ! division to NAME. This only affects the name used in the 'call' ! and 'inv:call' division strategies, and the compiler still expects ! the same sets of input/output/clobbered registers as if this option ! were not present. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator can not use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mindexed-addressing' Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or OS implement 32-bit wrap-around semantics for the indexed addressing --- 19348,19415 ---- floating-point operations or a call is not possible in that case. ! `inv20u' ! `inv20l' ! Variants of the `inv:minlat' strategy. In the case that the inverse calculation is not separated from the multiply, they speed up division where the dividend fits into 20 bits (plus ! sign where applicable) by inserting a test to skip a number ! of operations in this case; this test slows down the case of ! larger dividends. `inv20u' assumes the case of a such a ! small dividend to be unlikely, and `inv20l' assumes it to be ! likely. ! For targets other than SHmedia STRATEGY can be one of: ! `call-div1' Calls a library function that uses the single-step division ! instruction `div1' to perform the operation. Division by ! zero calculates an unspecified result and does not trap. ! This is the default except for SH4, SH2A and SHcompact. ! `call-fp' ! Calls a library function that performs the operation in ! double precision floating point. Division by zero causes a floating-point exception. This is the default for SHcompact ! with FPU. Specifying this for targets that do not have a ! double precision FPU will default to `call-div1'. ! `call-table' Calls a library function that uses a lookup table for small ! divisors and the `div1' instruction with case distinction for larger divisors. Division by zero calculates an unspecified result and does not trap. This is the default for SH4. Specifying this for targets that do not have dynamic shift ! instructions will default to `call-div1'. ! When a division strategy has not been specified the default strategy will be selected based on the current target. For SH2A ! the default strategy is to use the `divs' and `divu' instructions instead of library function calls. ! `-maccumulate-outgoing-args' Reserve space once for outgoing arguments in the function prologue ! rather than around each call. Generally beneficial for ! performance and size. Also needed for unwinding to avoid changing ! the stack frame around conditional code. ! `-mdivsi3_libfunc=NAME' Set the name of the library function used for 32-bit signed ! division to NAME. This only affects the name used in the `call' ! and `inv:call' division strategies, and the compiler still expects ! the same sets of input/output/clobbered registers as if this ! option were not present. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator can not use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mindexed-addressing' Enable the use of the indexed addressing mode for SHmedia32/SHcompact. This is only safe if the hardware and/or OS implement 32-bit wrap-around semantics for the indexed addressing *************** These '-m' options are defined for the S *** 19295,19421 **** with 64-bit MMU, which the OS could use to get 32-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in the ! 32-bit ABI, the default is '-mno-indexed-addressing'. ! '-mgettrcost=NUMBER' ! Set the cost assumed for the 'gettr' instruction to NUMBER. The ! default is 2 if '-mpt-fixed' is in effect, 100 otherwise. ! '-mpt-fixed' ! Assume 'pt*' instructions won't trap. This generally generates better-scheduled code, but is unsafe on current hardware. The ! current architecture definition says that 'ptabs' and 'ptrel' trap when the target anded with 3 is 3. This has the unintentional effect of making it unsafe to schedule these instructions before a branch, or hoist them out of a loop. For example, ! '__do_global_ctors', a part of 'libgcc' that runs constructors at program startup, calls functions in a list which is delimited by ! -1. With the '-mpt-fixed' option, the 'ptabs' is done before ! testing against -1. That means that all the constructors run a bit ! more quickly, but when the loop comes to the end of the list, the ! program crashes because 'ptabs' loads -1 into a target register. Since this option is unsafe for any hardware implementing the ! current architecture specification, the default is '-mno-pt-fixed'. ! Unless specified explicitly with '-mgettrcost', '-mno-pt-fixed' ! also implies '-mgettrcost=100'; this deters register allocation ! from using target registers for storing ordinary integers. ! '-minvalid-symbols' Assume symbols might be invalid. Ordinary function symbols generated by the compiler are always valid to load with ! 'movi'/'shori'/'ptabs' or 'movi'/'shori'/'ptrel', but with assembler and/or linker tricks it is possible to generate symbols ! that cause 'ptabs' or 'ptrel' to trap. This option is only ! meaningful when '-mno-pt-fixed' is in effect. It prevents cross-basic-block CSE, hoisting and most scheduling of symbol ! loads. The default is '-mno-invalid-symbols'. ! '-mbranch-cost=NUM' Assume NUM to be the cost for a branch instruction. Higher numbers make the compiler try to generate more branch-free code if possible. If not specified the value is selected depending on the processor type that is being compiled for. ! '-mzdcbranch' ! '-mno-zdcbranch' Assume (do not assume) that zero displacement conditional branch ! instructions 'bt' and 'bf' are fast. If '-mzdcbranch' is ! specified, the compiler will try to prefer zero displacement branch ! code sequences. This is enabled by default when generating code ! for SH4 and SH4A. It can be explicitly disabled by specifying ! '-mno-zdcbranch'. ! '-mfused-madd' ! '-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! '-mfused-madd' option is now mapped to the machine-independent ! '-ffp-contract=fast' option, and '-mno-fused-madd' is mapped to ! '-ffp-contract=off'. ! '-mfsca' ! '-mno-fsca' ! Allow or disallow the compiler to emit the 'fsca' instruction for ! sine and cosine approximations. The option '-mfsca' must be used ! in combination with '-funsafe-math-optimizations'. It is enabled ! by default when generating code for SH4A. Using '-mno-fsca' disables sine and cosine approximations even if ! '-funsafe-math-optimizations' is in effect. ! '-mfsrra' ! '-mno-fsrra' ! Allow or disallow the compiler to emit the 'fsrra' instruction for ! reciprocal square root approximations. The option '-mfsrra' must ! be used in combination with '-funsafe-math-optimizations' and ! '-ffinite-math-only'. It is enabled by default when generating ! code for SH4A. Using '-mno-fsrra' disables reciprocal square root ! approximations even if '-funsafe-math-optimizations' and ! '-ffinite-math-only' are in effect. ! '-mpretend-cmove' Prefer zero-displacement conditional branches for conditional move instruction patterns. This can result in faster code on the SH4 processor.  File: gcc.info, Node: Solaris 2 Options, Next: SPARC Options, Prev: SH Options, Up: Submodel Options 3.17.43 Solaris 2 Options ------------------------- ! These '-m' options are supported on Solaris 2: ! '-mclear-hwcap' ! '-mclear-hwcap' tells the compiler to remove the hardware capabilities generated by the Solaris assembler. This is only ! necessary when object files use ISA extensions not supported by the ! current machine, but check at runtime whether or not to use them. ! '-mimpure-text' ! '-mimpure-text', used in addition to '-shared', tells the compiler ! to not pass '-z text' to the linker when linking a shared object. Using this option, you can link position-dependent code into a shared object. ! '-mimpure-text' suppresses the "relocations remain against allocatable but non-writable sections" linker error message. However, the necessary relocations trigger copy-on-write, and the shared object is not actually shared across processes. Instead of ! using '-mimpure-text', you should compile all source code with ! '-fpic' or '-fPIC'. These switches are supported in addition to the above on Solaris 2: ! '-pthreads' Add support for multithreading using the POSIX threads library. This option sets flags for both the preprocessor and linker. This ! option does not affect the thread safety of object code produced by ! the compiler or that of libraries supplied with it. ! '-pthread' ! This is a synonym for '-pthreads'.  File: gcc.info, Node: SPARC Options, Next: SPU Options, Prev: Solaris 2 Options, Up: Submodel Options --- 19417,19548 ---- with 64-bit MMU, which the OS could use to get 32-bit addressing, but since no current hardware implementation supports this or any other way to make the indexed addressing mode safe to use in the ! 32-bit ABI, the default is `-mno-indexed-addressing'. ! `-mgettrcost=NUMBER' ! Set the cost assumed for the `gettr' instruction to NUMBER. The ! default is 2 if `-mpt-fixed' is in effect, 100 otherwise. ! `-mpt-fixed' ! Assume `pt*' instructions won't trap. This generally generates better-scheduled code, but is unsafe on current hardware. The ! current architecture definition says that `ptabs' and `ptrel' trap when the target anded with 3 is 3. This has the unintentional effect of making it unsafe to schedule these instructions before a branch, or hoist them out of a loop. For example, ! `__do_global_ctors', a part of `libgcc' that runs constructors at program startup, calls functions in a list which is delimited by ! -1. With the `-mpt-fixed' option, the `ptabs' is done before ! testing against -1. That means that all the constructors run a ! bit more quickly, but when the loop comes to the end of the list, ! the program crashes because `ptabs' loads -1 into a target ! register. Since this option is unsafe for any hardware implementing the ! current architecture specification, the default is ! `-mno-pt-fixed'. Unless specified explicitly with `-mgettrcost', ! `-mno-pt-fixed' also implies `-mgettrcost=100'; this deters ! register allocation from using target registers for storing ! ordinary integers. ! `-minvalid-symbols' Assume symbols might be invalid. Ordinary function symbols generated by the compiler are always valid to load with ! `movi'/`shori'/`ptabs' or `movi'/`shori'/`ptrel', but with assembler and/or linker tricks it is possible to generate symbols ! that cause `ptabs' or `ptrel' to trap. This option is only ! meaningful when `-mno-pt-fixed' is in effect. It prevents cross-basic-block CSE, hoisting and most scheduling of symbol ! loads. The default is `-mno-invalid-symbols'. ! `-mbranch-cost=NUM' Assume NUM to be the cost for a branch instruction. Higher numbers make the compiler try to generate more branch-free code if possible. If not specified the value is selected depending on the processor type that is being compiled for. ! `-mzdcbranch' ! `-mno-zdcbranch' Assume (do not assume) that zero displacement conditional branch ! instructions `bt' and `bf' are fast. If `-mzdcbranch' is ! specified, the compiler will try to prefer zero displacement ! branch code sequences. This is enabled by default when generating ! code for SH4 and SH4A. It can be explicitly disabled by ! specifying `-mno-zdcbranch'. ! `-mfused-madd' ! `-mno-fused-madd' Generate code that uses (does not use) the floating-point multiply and accumulate instructions. These instructions are generated by default if hardware floating point is used. The machine-dependent ! `-mfused-madd' option is now mapped to the machine-independent ! `-ffp-contract=fast' option, and `-mno-fused-madd' is mapped to ! `-ffp-contract=off'. ! `-mfsca' ! `-mno-fsca' ! Allow or disallow the compiler to emit the `fsca' instruction for ! sine and cosine approximations. The option `-mfsca' must be used ! in combination with `-funsafe-math-optimizations'. It is enabled ! by default when generating code for SH4A. Using `-mno-fsca' disables sine and cosine approximations even if ! `-funsafe-math-optimizations' is in effect. ! `-mfsrra' ! `-mno-fsrra' ! Allow or disallow the compiler to emit the `fsrra' instruction for ! reciprocal square root approximations. The option `-mfsrra' must ! be used in combination with `-funsafe-math-optimizations' and ! `-ffinite-math-only'. It is enabled by default when generating ! code for SH4A. Using `-mno-fsrra' disables reciprocal square root ! approximations even if `-funsafe-math-optimizations' and ! `-ffinite-math-only' are in effect. ! `-mpretend-cmove' Prefer zero-displacement conditional branches for conditional move instruction patterns. This can result in faster code on the SH4 processor. +  File: gcc.info, Node: Solaris 2 Options, Next: SPARC Options, Prev: SH Options, Up: Submodel Options 3.17.43 Solaris 2 Options ------------------------- ! These `-m' options are supported on Solaris 2: ! `-mclear-hwcap' ! `-mclear-hwcap' tells the compiler to remove the hardware capabilities generated by the Solaris assembler. This is only ! necessary when object files use ISA extensions not supported by ! the current machine, but check at runtime whether or not to use ! them. ! `-mimpure-text' ! `-mimpure-text', used in addition to `-shared', tells the compiler ! to not pass `-z text' to the linker when linking a shared object. Using this option, you can link position-dependent code into a shared object. ! `-mimpure-text' suppresses the "relocations remain against allocatable but non-writable sections" linker error message. However, the necessary relocations trigger copy-on-write, and the shared object is not actually shared across processes. Instead of ! using `-mimpure-text', you should compile all source code with ! `-fpic' or `-fPIC'. ! These switches are supported in addition to the above on Solaris 2: ! `-pthreads' Add support for multithreading using the POSIX threads library. This option sets flags for both the preprocessor and linker. This ! option does not affect the thread safety of object code produced ! by the compiler or that of libraries supplied with it. ! `-pthread' ! This is a synonym for `-pthreads'.  File: gcc.info, Node: SPARC Options, Next: SPU Options, Prev: Solaris 2 Options, Up: Submodel Options *************** File: gcc.info, Node: SPARC Options, N *** 19423,19481 **** 3.17.44 SPARC Options --------------------- ! These '-m' options are supported on the SPARC: ! '-mno-app-regs' ! '-mapp-regs' ! Specify '-mapp-regs' to generate output using the global registers 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the global register 1, each global register 2 through 4 is ! then treated as an allocable register that is clobbered by function ! calls. This is the default. To be fully SVR4 ABI-compliant at the cost of some performance ! loss, specify '-mno-app-regs'. You should compile libraries and system software with this option. ! '-mflat' ! '-mno-flat' ! With '-mflat', the compiler does not generate save/restore instructions and uses a "flat" or single register window model. This model is compatible with the regular register window model. ! The local registers and the input registers (0-5) are still treated ! as "call-saved" registers and are saved on the stack as needed. ! With '-mno-flat' (the default), the compiler generates save/restore instructions (except for leaf functions). This is the normal operating mode. ! '-mfpu' ! '-mhard-float' Generate output containing floating-point instructions. This is the default. ! '-mno-fpu' ! '-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all SPARC ! targets. Normally the facilities of the machine's usual C compiler ! are used, but this cannot be done directly in cross-compilation. ! You must make your own arrangements to provide suitable library ! functions for cross-compilation. The embedded targets ! 'sparc-*-aout' and 'sparclite-*-*' do provide software floating-point support. ! '-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile 'libgcc.a', the ! library that comes with GCC, with '-msoft-float' in order for this to work. ! '-mhard-quad-float' Generate output containing quad-word (long double) floating-point instructions. ! '-msoft-quad-float' Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified in the SPARC ABI. This is the default. --- 19550,19609 ---- 3.17.44 SPARC Options --------------------- ! These `-m' options are supported on the SPARC: ! `-mno-app-regs' ! `-mapp-regs' ! Specify `-mapp-regs' to generate output using the global registers 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the global register 1, each global register 2 through 4 is ! then treated as an allocable register that is clobbered by ! function calls. This is the default. To be fully SVR4 ABI-compliant at the cost of some performance ! loss, specify `-mno-app-regs'. You should compile libraries and system software with this option. ! `-mflat' ! `-mno-flat' ! With `-mflat', the compiler does not generate save/restore instructions and uses a "flat" or single register window model. This model is compatible with the regular register window model. ! The local registers and the input registers (0-5) are still ! treated as "call-saved" registers and are saved on the stack as ! needed. ! With `-mno-flat' (the default), the compiler generates save/restore instructions (except for leaf functions). This is the normal operating mode. ! `-mfpu' ! `-mhard-float' Generate output containing floating-point instructions. This is the default. ! `-mno-fpu' ! `-msoft-float' Generate output containing library calls for floating point. *Warning:* the requisite libraries are not available for all SPARC ! targets. Normally the facilities of the machine's usual C ! compiler are used, but this cannot be done directly in ! cross-compilation. You must make your own arrangements to provide ! suitable library functions for cross-compilation. The embedded ! targets `sparc-*-aout' and `sparclite-*-*' do provide software floating-point support. ! `-msoft-float' changes the calling convention in the output file; therefore, it is only useful if you compile _all_ of a program with ! this option. In particular, you need to compile `libgcc.a', the ! library that comes with GCC, with `-msoft-float' in order for this to work. ! `-mhard-quad-float' Generate output containing quad-word (long double) floating-point instructions. ! `-msoft-quad-float' Generate output containing library calls for quad-word (long double) floating-point instructions. The functions called are those specified in the SPARC ABI. This is the default. *************** These '-m' options are supported on the *** 19485,19498 **** They all invoke a trap handler for one of these instructions, and then the trap handler emulates the effect of the instruction. Because of the trap handler overhead, this is much slower than ! calling the ABI library routines. Thus the '-msoft-quad-float' option is the default. ! '-mno-unaligned-doubles' ! '-munaligned-doubles' Assume that doubles have 8-byte alignment. This is the default. ! With '-munaligned-doubles', GCC assumes that doubles have 8-byte alignment only if they are contained in another type, or if they have an absolute address. Otherwise, it assumes they have 4-byte alignment. Specifying this option avoids some rare compatibility --- 19613,19626 ---- They all invoke a trap handler for one of these instructions, and then the trap handler emulates the effect of the instruction. Because of the trap handler overhead, this is much slower than ! calling the ABI library routines. Thus the `-msoft-quad-float' option is the default. ! `-mno-unaligned-doubles' ! `-munaligned-doubles' Assume that doubles have 8-byte alignment. This is the default. ! With `-munaligned-doubles', GCC assumes that doubles have 8-byte alignment only if they are contained in another type, or if they have an absolute address. Otherwise, it assumes they have 4-byte alignment. Specifying this option avoids some rare compatibility *************** These '-m' options are supported on the *** 19500,19736 **** default because it results in a performance loss, especially for floating-point code. ! '-muser-mode' ! '-mno-user-mode' ! Do not generate code that can only run in supervisor mode. This is ! relevant only for the 'casa' instruction emitted for the LEON3 ! processor. The default is '-mno-user-mode'. ! '-mno-faster-structs' ! '-mfaster-structs' ! With '-mfaster-structs', the compiler assumes that structures should have 8-byte alignment. This enables the use of pairs of ! 'ldd' and 'std' instructions for copies in structure assignment, in ! place of twice as many 'ld' and 'st' pairs. However, the use of ! this changed alignment directly violates the SPARC ABI. Thus, it's ! intended only for use on targets where the developer acknowledges ! that their resulting code is not directly in line with the rules of ! the ABI. ! '-mcpu=CPU_TYPE' Set the instruction set, register set, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are 'v7', 'cypress', 'v8', 'supersparc', 'hypersparc', ! 'leon', 'leon3', 'leon3v7', 'sparclite', 'f930', 'f934', ! 'sparclite86x', 'sparclet', 'tsc701', 'v9', 'ultrasparc', ! 'ultrasparc3', 'niagara', 'niagara2', 'niagara3' and 'niagara4'. Native Solaris and GNU/Linux toolchains also support the value ! 'native', which selects the best architecture option for the host ! processor. '-mcpu=native' has no effect if GCC does not recognize the processor. Default instruction scheduling parameters are used for values that ! select an architecture and not an implementation. These are 'v7', ! 'v8', 'sparclite', 'sparclet', 'v9'. Here is a list of each supported architecture and their supported implementations. ! v7 cypress, leon3v7 ! v8 supersparc, hypersparc, leon, leon3 ! sparclite f930, f934, sparclite86x ! sparclet tsc701 ! v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4 By default (unless configured otherwise), GCC generates code for ! the V7 variant of the SPARC architecture. With '-mcpu=cypress', the compiler additionally optimizes it for the Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series. This is also appropriate for the older SPARCStation 1, 2, IPX etc. ! With '-mcpu=v8', GCC generates code for the V8 variant of the SPARC architecture. The only difference from V7 code is that the ! compiler emits the integer multiply and integer divide instructions ! which exist in SPARC-V8 but not in SPARC-V7. With ! '-mcpu=supersparc', the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. ! With '-mcpu=sparclite', GCC generates code for the SPARClite ! variant of the SPARC architecture. This adds the integer multiply, ! integer divide step and scan ('ffs') instructions which exist in ! SPARClite but not in SPARC-V7. With '-mcpu=f930', the compiler ! additionally optimizes it for the Fujitsu MB86930 chip, which is ! the original SPARClite, with no FPU. With '-mcpu=f934', the ! compiler additionally optimizes it for the Fujitsu MB86934 chip, ! which is the more recent SPARClite with FPU. ! With '-mcpu=sparclet', GCC generates code for the SPARClet variant of the SPARC architecture. This adds the integer multiply, ! multiply/accumulate, integer divide step and scan ('ffs') instructions which exist in SPARClet but not in SPARC-V7. With ! '-mcpu=tsc701', the compiler additionally optimizes it for the TEMIC SPARClet chip. ! With '-mcpu=v9', GCC generates code for the V9 variant of the SPARC architecture. This adds 64-bit integer and floating-point move instructions, 3 additional floating-point condition code registers ! and conditional move instructions. With '-mcpu=ultrasparc', the compiler additionally optimizes it for the Sun UltraSPARC I/II/IIi ! chips. With '-mcpu=ultrasparc3', the compiler additionally optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ ! chips. With '-mcpu=niagara', the compiler additionally optimizes ! it for Sun UltraSPARC T1 chips. With '-mcpu=niagara2', the compiler additionally optimizes it for Sun UltraSPARC T2 chips. ! With '-mcpu=niagara3', the compiler additionally optimizes it for ! Sun UltraSPARC T3 chips. With '-mcpu=niagara4', the compiler additionally optimizes it for Sun UltraSPARC T4 chips. ! '-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the instruction set or register set that ! the option '-mcpu=CPU_TYPE' does. ! The same values for '-mcpu=CPU_TYPE' can be used for ! '-mtune=CPU_TYPE', but the only useful values are those that select ! a particular CPU implementation. Those are 'cypress', ! 'supersparc', 'hypersparc', 'leon', 'leon3', 'leon3v7', 'f930', ! 'f934', 'sparclite86x', 'tsc701', 'ultrasparc', 'ultrasparc3', ! 'niagara', 'niagara2', 'niagara3' and 'niagara4'. With native ! Solaris and GNU/Linux toolchains, 'native' can also be used. ! '-mv8plus' ! '-mno-v8plus' ! With '-mv8plus', GCC generates code for the SPARC-V8+ ABI. The difference from the V8 ABI is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9 processors. ! '-mvis' ! '-mno-vis' ! With '-mvis', GCC generates code that takes advantage of the UltraSPARC Visual Instruction Set extensions. The default is ! '-mno-vis'. ! '-mvis2' ! '-mno-vis2' ! With '-mvis2', GCC generates code that takes advantage of version 2.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is '-mvis2' when targeting a cpu that supports such ! instructions, such as UltraSPARC-III and later. Setting '-mvis2' ! also sets '-mvis'. ! '-mvis3' ! '-mno-vis3' ! With '-mvis3', GCC generates code that takes advantage of version 3.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is '-mvis3' when targeting a cpu that supports such ! instructions, such as niagara-3 and later. Setting '-mvis3' also ! sets '-mvis2' and '-mvis'. ! '-mcbcond' ! '-mno-cbcond' ! With '-mcbcond', GCC generates code that takes advantage of compare-and-branch instructions, as defined in the Sparc ! Architecture 2011. The default is '-mcbcond' when targeting a cpu that supports such instructions, such as niagara-4 and later. ! '-mpopc' ! '-mno-popc' ! With '-mpopc', GCC generates code that takes advantage of the ! UltraSPARC population count instruction. The default is '-mpopc' when targeting a cpu that supports such instructions, such as Niagara-2 and later. ! '-mfmaf' ! '-mno-fmaf' ! With '-mfmaf', GCC generates code that takes advantage of the UltraSPARC Fused Multiply-Add Floating-point extensions. The ! default is '-mfmaf' when targeting a cpu that supports such instructions, such as Niagara-3 and later. ! '-mfix-at697f' Enable the documented workaround for the single erratum of the Atmel AT697F processor (which corresponds to erratum #13 of the AT697E processor). ! '-mfix-ut699' ! Enable the documented workarounds for the floating-point errata and ! the data cache nullify errata of the UT699 processor. ! These '-m' options are supported in addition to the above on SPARC-V9 processors in 64-bit environments: ! '-m32' ! '-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. ! '-mcmodel=WHICH' Set the code model to one of ! 'medlow' The Medium/Low code model: 64-bit addresses, programs must be linked in the low 32 bits of memory. Programs can be statically or dynamically linked. ! 'medmid' The Medium/Middle code model: 64-bit addresses, programs must be linked in the low 44 bits of memory, the text and data segments must be less than 2GB in size and the data segment must be located within 2GB of the text segment. ! 'medany' ! The Medium/Anywhere code model: 64-bit addresses, programs may ! be linked anywhere in memory, the text and data segments must ! be less than 2GB in size and the data segment must be located ! within 2GB of the text segment. ! 'embmedany' The Medium/Anywhere code model for embedded systems: 64-bit addresses, the text and data segments must be less than 2GB in size, both starting anywhere in memory (determined at link ! time). The global register %g4 points to the base of the data ! segment. Programs are statically linked and PIC is not supported. ! '-mmemory-model=MEM-MODEL' Set the memory model in force on the processor to one of ! 'default' The default memory model for the processor and operating system. ! 'rmo' Relaxed Memory Order ! 'pso' Partial Store Order ! 'tso' Total Store Order ! 'sc' Sequential Consistency ! These memory models are formally defined in Appendix D of the Sparc ! V9 architecture manual, as set in the processor's 'PSTATE.MM' ! field. ! '-mstack-bias' ! '-mno-stack-bias' ! With '-mstack-bias', GCC assumes that the stack pointer, and frame pointer if present, are offset by -2047 which must be added back when making stack frame references. This is the default in 64-bit mode. Otherwise, assume no such offset is present. --- 19628,19864 ---- default because it results in a performance loss, especially for floating-point code. ! `-muser-mode' ! `-mno-user-mode' ! Do not generate code that can only run in supervisor mode. This ! is relevant only for the `casa' instruction emitted for the LEON3 ! processor. This is the default. ! `-mno-faster-structs' ! `-mfaster-structs' ! With `-mfaster-structs', the compiler assumes that structures should have 8-byte alignment. This enables the use of pairs of ! `ldd' and `std' instructions for copies in structure assignment, ! in place of twice as many `ld' and `st' pairs. However, the use ! of this changed alignment directly violates the SPARC ABI. Thus, ! it's intended only for use on targets where the developer ! acknowledges that their resulting code is not directly in line with ! the rules of the ABI. ! `-mcpu=CPU_TYPE' Set the instruction set, register set, and instruction scheduling parameters for machine type CPU_TYPE. Supported values for ! CPU_TYPE are `v7', `cypress', `v8', `supersparc', `hypersparc', ! `leon', `leon3', `leon3v7', `sparclite', `f930', `f934', ! `sparclite86x', `sparclet', `tsc701', `v9', `ultrasparc', ! `ultrasparc3', `niagara', `niagara2', `niagara3' and `niagara4'. Native Solaris and GNU/Linux toolchains also support the value ! `native', which selects the best architecture option for the host ! processor. `-mcpu=native' has no effect if GCC does not recognize the processor. Default instruction scheduling parameters are used for values that ! select an architecture and not an implementation. These are `v7', ! `v8', `sparclite', `sparclet', `v9'. Here is a list of each supported architecture and their supported implementations. ! v7 cypress, leon3v7 ! v8 supersparc, hypersparc, leon, leon3 ! sparclite f930, f934, sparclite86x ! sparclet tsc701 ! v9 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4 By default (unless configured otherwise), GCC generates code for ! the V7 variant of the SPARC architecture. With `-mcpu=cypress', the compiler additionally optimizes it for the Cypress CY7C602 chip, as used in the SPARCStation/SPARCServer 3xx series. This is also appropriate for the older SPARCStation 1, 2, IPX etc. ! With `-mcpu=v8', GCC generates code for the V8 variant of the SPARC architecture. The only difference from V7 code is that the ! compiler emits the integer multiply and integer divide ! instructions which exist in SPARC-V8 but not in SPARC-V7. With ! `-mcpu=supersparc', the compiler additionally optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and 2000 series. ! With `-mcpu=sparclite', GCC generates code for the SPARClite ! variant of the SPARC architecture. This adds the integer ! multiply, integer divide step and scan (`ffs') instructions which ! exist in SPARClite but not in SPARC-V7. With `-mcpu=f930', the ! compiler additionally optimizes it for the Fujitsu MB86930 chip, ! which is the original SPARClite, with no FPU. With `-mcpu=f934', ! the compiler additionally optimizes it for the Fujitsu MB86934 ! chip, which is the more recent SPARClite with FPU. ! With `-mcpu=sparclet', GCC generates code for the SPARClet variant of the SPARC architecture. This adds the integer multiply, ! multiply/accumulate, integer divide step and scan (`ffs') instructions which exist in SPARClet but not in SPARC-V7. With ! `-mcpu=tsc701', the compiler additionally optimizes it for the TEMIC SPARClet chip. ! With `-mcpu=v9', GCC generates code for the V9 variant of the SPARC architecture. This adds 64-bit integer and floating-point move instructions, 3 additional floating-point condition code registers ! and conditional move instructions. With `-mcpu=ultrasparc', the compiler additionally optimizes it for the Sun UltraSPARC I/II/IIi ! chips. With `-mcpu=ultrasparc3', the compiler additionally optimizes it for the Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ ! chips. With `-mcpu=niagara', the compiler additionally optimizes ! it for Sun UltraSPARC T1 chips. With `-mcpu=niagara2', the compiler additionally optimizes it for Sun UltraSPARC T2 chips. ! With `-mcpu=niagara3', the compiler additionally optimizes it for ! Sun UltraSPARC T3 chips. With `-mcpu=niagara4', the compiler additionally optimizes it for Sun UltraSPARC T4 chips. ! `-mtune=CPU_TYPE' Set the instruction scheduling parameters for machine type CPU_TYPE, but do not set the instruction set or register set that ! the option `-mcpu=CPU_TYPE' does. ! The same values for `-mcpu=CPU_TYPE' can be used for ! `-mtune=CPU_TYPE', but the only useful values are those that ! select a particular CPU implementation. Those are `cypress', ! `supersparc', `hypersparc', `leon', `leon3', `leon3v7', `f930', ! `f934', `sparclite86x', `tsc701', `ultrasparc', `ultrasparc3', ! `niagara', `niagara2', `niagara3' and `niagara4'. With native ! Solaris and GNU/Linux toolchains, `native' can also be used. ! `-mv8plus' ! `-mno-v8plus' ! With `-mv8plus', GCC generates code for the SPARC-V8+ ABI. The difference from the V8 ABI is that the global and out registers are considered 64 bits wide. This is enabled by default on Solaris in 32-bit mode for all SPARC-V9 processors. ! `-mvis' ! `-mno-vis' ! With `-mvis', GCC generates code that takes advantage of the UltraSPARC Visual Instruction Set extensions. The default is ! `-mno-vis'. ! `-mvis2' ! `-mno-vis2' ! With `-mvis2', GCC generates code that takes advantage of version 2.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is `-mvis2' when targeting a cpu that supports such ! instructions, such as UltraSPARC-III and later. Setting `-mvis2' ! also sets `-mvis'. ! `-mvis3' ! `-mno-vis3' ! With `-mvis3', GCC generates code that takes advantage of version 3.0 of the UltraSPARC Visual Instruction Set extensions. The ! default is `-mvis3' when targeting a cpu that supports such ! instructions, such as niagara-3 and later. Setting `-mvis3' also ! sets `-mvis2' and `-mvis'. ! `-mcbcond' ! `-mno-cbcond' ! With `-mcbcond', GCC generates code that takes advantage of compare-and-branch instructions, as defined in the Sparc ! Architecture 2011. The default is `-mcbcond' when targeting a cpu that supports such instructions, such as niagara-4 and later. ! `-mpopc' ! `-mno-popc' ! With `-mpopc', GCC generates code that takes advantage of the ! UltraSPARC population count instruction. The default is `-mpopc' when targeting a cpu that supports such instructions, such as Niagara-2 and later. ! `-mfmaf' ! `-mno-fmaf' ! With `-mfmaf', GCC generates code that takes advantage of the UltraSPARC Fused Multiply-Add Floating-point extensions. The ! default is `-mfmaf' when targeting a cpu that supports such instructions, such as Niagara-3 and later. ! `-mfix-at697f' Enable the documented workaround for the single erratum of the Atmel AT697F processor (which corresponds to erratum #13 of the AT697E processor). ! `-mfix-ut699' ! Enable the documented workarounds for the floating-point errata ! and the data cache nullify errata of the UT699 processor. ! These `-m' options are supported in addition to the above on SPARC-V9 processors in 64-bit environments: ! `-m32' ! `-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. ! `-mcmodel=WHICH' Set the code model to one of ! `medlow' The Medium/Low code model: 64-bit addresses, programs must be linked in the low 32 bits of memory. Programs can be statically or dynamically linked. ! `medmid' The Medium/Middle code model: 64-bit addresses, programs must be linked in the low 44 bits of memory, the text and data segments must be less than 2GB in size and the data segment must be located within 2GB of the text segment. ! `medany' ! The Medium/Anywhere code model: 64-bit addresses, programs ! may be linked anywhere in memory, the text and data segments ! must be less than 2GB in size and the data segment must be ! located within 2GB of the text segment. ! `embmedany' The Medium/Anywhere code model for embedded systems: 64-bit addresses, the text and data segments must be less than 2GB in size, both starting anywhere in memory (determined at link ! time). The global register %g4 points to the base of the ! data segment. Programs are statically linked and PIC is not supported. ! `-mmemory-model=MEM-MODEL' Set the memory model in force on the processor to one of ! `default' The default memory model for the processor and operating system. ! `rmo' Relaxed Memory Order ! `pso' Partial Store Order ! `tso' Total Store Order ! `sc' Sequential Consistency ! These memory models are formally defined in Appendix D of the ! Sparc V9 architecture manual, as set in the processor's ! `PSTATE.MM' field. ! `-mstack-bias' ! `-mno-stack-bias' ! With `-mstack-bias', GCC assumes that the stack pointer, and frame pointer if present, are offset by -2047 which must be added back when making stack frame references. This is the default in 64-bit mode. Otherwise, assume no such offset is present. *************** File: gcc.info, Node: SPU Options, Nex *** 19741,19856 **** 3.17.45 SPU Options ------------------- ! These '-m' options are supported on the SPU: ! ! '-mwarn-reloc' ! '-merror-reloc' The loader for SPU does not handle dynamic relocations. By default, GCC gives an error when it generates code that requires a ! dynamic relocation. '-mno-error-reloc' disables the error, ! '-mwarn-reloc' generates a warning instead. ! ! '-msafe-dma' ! '-munsafe-dma' Instructions that initiate or test completion of DMA must not be reordered with respect to loads and stores of the memory that is ! being accessed. With '-munsafe-dma' you must use the 'volatile' keyword to protect memory accesses, but that can lead to ! inefficient code in places where the memory is known to not change. ! Rather than mark the memory as volatile, you can use '-msafe-dma' ! to tell the compiler to treat the DMA instructions as potentially ! affecting all memory. ! ! '-mbranch-hints' By default, GCC generates a branch hint instruction to avoid pipeline stalls for always-taken or probably-taken branches. A hint is not generated closer than 8 instructions away from its branch. There is little reason to disable them, except for debugging purposes, or to make an object a little bit smaller. ! '-msmall-mem' ! '-mlarge-mem' ! By default, GCC generates code assuming that addresses are never ! larger than 18 bits. With '-mlarge-mem' code is generated that assumes a full 32-bit address. ! '-mstdmain' ! By default, GCC links against startup code that assumes the SPU-style main function interface (which has an unconventional ! parameter list). With '-mstdmain', GCC links your program against ! startup code that assumes a C99-style interface to 'main', ! including a local copy of 'argv' strings. ! '-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! '-mea32' ! '-mea64' Compile code assuming that pointers to the PPU address space ! accessed via the '__ea' named address space qualifier are either 32 ! or 64 bits wide. The default is 32 bits. As this is an ABI-changing option, all object code in an executable must be compiled with the same setting. ! '-maddress-space-conversion' ! '-mno-address-space-conversion' ! Allow/disallow treating the '__ea' address space as superset of the ! generic address space. This enables explicit type casts between ! '__ea' and generic pointer as well as implicit conversions of ! generic pointers to '__ea' pointers. The default is to allow address space pointer conversions. ! '-mcache-size=CACHE-SIZE' This option controls the version of libgcc that the compiler links ! to an executable and selects a software-managed cache for accessing ! variables in the '__ea' address space with a particular cache size. ! Possible options for CACHE-SIZE are '8', '16', '32', '64' and ! '128'. The default cache size is 64KB. ! '-matomic-updates' ! '-mno-atomic-updates' This option controls the version of libgcc that the compiler links to an executable and selects whether atomic updates to the software-managed cache of PPU-side variables are used. If you use atomic updates, changes to a PPU variable from SPU code using the ! '__ea' named address space qualifier do not interfere with changes to other PPU variables residing in the same cache line from PPU code. If you do not use atomic updates, such interference may occur; however, writing back cache lines is more efficient. The default behavior is to use atomic updates. ! '-mdual-nops' ! '-mdual-nops=N' By default, GCC inserts nops to increase dual issue when it expects it to increase performance. N can be a value from 0 to 10. A smaller N inserts fewer nops. 10 is the default, 0 is the same as ! '-mno-dual-nops'. Disabled with '-Os'. ! '-mhint-max-nops=N' Maximum number of nops to insert for a branch hint. A branch hint must be at least 8 instructions away from the branch it is affecting. GCC inserts up to N nops to enforce this, otherwise it does not generate the branch hint. ! '-mhint-max-distance=N' The encoding of the branch hint instruction limits the hint to be ! within 256 instructions of the branch it is affecting. By default, ! GCC makes sure it is within 125. ! '-msafe-hints' Work around a hardware bug that causes the SPU to stall ! indefinitely. By default, GCC inserts the 'hbrp' instruction to make sure this stall won't happen.  File: gcc.info, Node: System V Options, Next: TILE-Gx Options, Prev: SPU Options, Up: Submodel Options --- 19869,19980 ---- 3.17.45 SPU Options ------------------- ! These `-m' options are supported on the SPU: + `-mwarn-reloc' + `-merror-reloc' The loader for SPU does not handle dynamic relocations. By default, GCC gives an error when it generates code that requires a ! dynamic relocation. `-mno-error-reloc' disables the error, ! `-mwarn-reloc' generates a warning instead. + `-msafe-dma' + `-munsafe-dma' Instructions that initiate or test completion of DMA must not be reordered with respect to loads and stores of the memory that is ! being accessed. With `-munsafe-dma' you must use the `volatile' keyword to protect memory accesses, but that can lead to ! inefficient code in places where the memory is known to not ! change. Rather than mark the memory as volatile, you can use ! `-msafe-dma' to tell the compiler to treat the DMA instructions as ! potentially affecting all memory. + `-mbranch-hints' By default, GCC generates a branch hint instruction to avoid pipeline stalls for always-taken or probably-taken branches. A hint is not generated closer than 8 instructions away from its branch. There is little reason to disable them, except for debugging purposes, or to make an object a little bit smaller. ! `-msmall-mem' ! `-mlarge-mem' By default, GCC generates code assuming that addresses are never ! larger than 18 bits. With `-mlarge-mem' code is generated that assumes a full 32-bit address. ! `-mstdmain' By default, GCC links against startup code that assumes the SPU-style main function interface (which has an unconventional ! parameter list). With `-mstdmain', GCC links your program against ! startup code that assumes a C99-style interface to `main', ! including a local copy of `argv' strings. ! `-mfixed-range=REGISTER-RANGE' Generate code treating the given register range as fixed registers. A fixed register is one that the register allocator cannot use. This is useful when compiling kernel code. A register range is specified as two registers separated by a dash. Multiple register ranges can be specified separated by a comma. ! `-mea32' ! `-mea64' Compile code assuming that pointers to the PPU address space ! accessed via the `__ea' named address space qualifier are either ! 32 or 64 bits wide. The default is 32 bits. As this is an ABI-changing option, all object code in an executable must be compiled with the same setting. ! `-maddress-space-conversion' ! `-mno-address-space-conversion' ! Allow/disallow treating the `__ea' address space as superset of ! the generic address space. This enables explicit type casts ! between `__ea' and generic pointer as well as implicit conversions ! of generic pointers to `__ea' pointers. The default is to allow address space pointer conversions. ! `-mcache-size=CACHE-SIZE' This option controls the version of libgcc that the compiler links ! to an executable and selects a software-managed cache for ! accessing variables in the `__ea' address space with a particular ! cache size. Possible options for CACHE-SIZE are `8', `16', `32', ! `64' and `128'. The default cache size is 64KB. ! `-matomic-updates' ! `-mno-atomic-updates' This option controls the version of libgcc that the compiler links to an executable and selects whether atomic updates to the software-managed cache of PPU-side variables are used. If you use atomic updates, changes to a PPU variable from SPU code using the ! `__ea' named address space qualifier do not interfere with changes to other PPU variables residing in the same cache line from PPU code. If you do not use atomic updates, such interference may occur; however, writing back cache lines is more efficient. The default behavior is to use atomic updates. ! `-mdual-nops' ! `-mdual-nops=N' By default, GCC inserts nops to increase dual issue when it expects it to increase performance. N can be a value from 0 to 10. A smaller N inserts fewer nops. 10 is the default, 0 is the same as ! `-mno-dual-nops'. Disabled with `-Os'. ! `-mhint-max-nops=N' Maximum number of nops to insert for a branch hint. A branch hint must be at least 8 instructions away from the branch it is affecting. GCC inserts up to N nops to enforce this, otherwise it does not generate the branch hint. ! `-mhint-max-distance=N' The encoding of the branch hint instruction limits the hint to be ! within 256 instructions of the branch it is affecting. By ! default, GCC makes sure it is within 125. ! `-msafe-hints' Work around a hardware bug that causes the SPU to stall ! indefinitely. By default, GCC inserts the `hbrp' instruction to make sure this stall won't happen. +  File: gcc.info, Node: System V Options, Next: TILE-Gx Options, Prev: SPU Options, Up: Submodel Options *************** File: gcc.info, Node: System V Options, *** 19860,19882 **** These additional options are available on System V Release 4 for compatibility with other compilers on those systems: ! '-G' ! Create a shared object. It is recommended that '-symbolic' or ! '-shared' be used instead. ! '-Qy' Identify the versions of each tool used by the compiler, in a ! '.ident' assembler directive in the output. ! '-Qn' ! Refrain from adding '.ident' directives to the output file (this is the default). ! '-YP,DIRS' ! Search the directories DIRS, and no others, for libraries specified ! with '-l'. ! '-Ym,DIR' Look in the directory DIR to find the M4 preprocessor. The assembler uses this option. --- 19984,20006 ---- These additional options are available on System V Release 4 for compatibility with other compilers on those systems: ! `-G' ! Create a shared object. It is recommended that `-symbolic' or ! `-shared' be used instead. ! `-Qy' Identify the versions of each tool used by the compiler, in a ! `.ident' assembler directive in the output. ! `-Qn' ! Refrain from adding `.ident' directives to the output file (this is the default). ! `-YP,DIRS' ! Search the directories DIRS, and no others, for libraries ! specified with `-l'. ! `-Ym,DIR' Look in the directory DIR to find the M4 preprocessor. The assembler uses this option. *************** File: gcc.info, Node: TILE-Gx Options, *** 19886,19914 **** 3.17.47 TILE-Gx Options ----------------------- ! These '-m' options are supported on the TILE-Gx: ! '-mcmodel=small' Generate code for the small model. The distance for direct calls is limited to 500M in either direction. PC-relative addresses are 32 bits. Absolute addresses support the full address range. ! '-mcmodel=large' Generate code for the large model. There is no limitation on call distance, pc-relative addresses, or absolute addresses. ! '-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is 'tilegx'. ! '-m32' ! '-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. ! '-mbig-endian' ! '-mlittle-endian' Generate code in big/little endian mode, respectively.  --- 20010,20038 ---- 3.17.47 TILE-Gx Options ----------------------- ! These `-m' options are supported on the TILE-Gx: ! `-mcmodel=small' Generate code for the small model. The distance for direct calls is limited to 500M in either direction. PC-relative addresses are 32 bits. Absolute addresses support the full address range. ! `-mcmodel=large' Generate code for the large model. There is no limitation on call distance, pc-relative addresses, or absolute addresses. ! `-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is `tilegx'. ! `-m32' ! `-m64' Generate code for a 32-bit or 64-bit environment. The 32-bit environment sets int, long, and pointer to 32 bits. The 64-bit environment sets int to 32 bits and long and pointer to 64 bits. ! `-mbig-endian' ! `-mlittle-endian' Generate code in big/little endian mode, respectively.  *************** File: gcc.info, Node: TILEPro Options, *** 19917,19929 **** 3.17.48 TILEPro Options ----------------------- ! These '-m' options are supported on the TILEPro: ! '-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is 'tilepro'. ! '-m32' Generate code for a 32-bit environment, which sets int, long, and pointer to 32 bits. This is the only supported behavior so the flag is essentially ignored. --- 20041,20053 ---- 3.17.48 TILEPro Options ----------------------- ! These `-m' options are supported on the TILEPro: ! `-mcpu=NAME' Selects the type of CPU to be targeted. Currently the only ! supported type is `tilepro'. ! `-m32' Generate code for a 32-bit environment, which sets int, long, and pointer to 32 bits. This is the only supported behavior so the flag is essentially ignored. *************** File: gcc.info, Node: V850 Options, Ne *** 19934,20061 **** 3.17.49 V850 Options -------------------- ! These '-m' options are defined for V850 implementations: ! '-mlong-calls' ! '-mno-long-calls' Treat all calls as being far away (near). If calls are assumed to be far away, the compiler always loads the function's address into a register, and calls indirect through the pointer. ! '-mno-ep' ! '-mep' Do not optimize (do optimize) basic blocks that use the same index ! pointer 4 or more times to copy pointer into the 'ep' register, and ! use the shorter 'sld' and 'sst' instructions. The '-mep' option is ! on by default if you optimize. ! '-mno-prolog-function' ! '-mprolog-function' Do not use (do use) external functions to save and restore ! registers at the prologue and epilogue of a function. The external ! functions are slower, but use less code space if more than one ! function saves the same number of registers. The ! '-mprolog-function' option is on by default if you optimize. ! '-mspace' Try to make the code as small as possible. At present, this just ! turns on the '-mep' and '-mprolog-function' options. ! '-mtda=N' Put static or global variables whose size is N bytes or less into ! the tiny data area that register 'ep' points to. The tiny data area can hold up to 256 bytes in total (128 bytes for byte references). ! '-msda=N' Put static or global variables whose size is N bytes or less into ! the small data area that register 'gp' points to. The small data area can hold up to 64 kilobytes. ! '-mzda=N' Put static or global variables whose size is N bytes or less into the first 32 kilobytes of memory. ! '-mv850' Specify that the target processor is the V850. ! '-mv850e3v5' Specify that the target processor is the V850E3V5. The ! preprocessor constant '__v850e3v5__' is defined if this option is used. ! '-mv850e2v4' Specify that the target processor is the V850E3V5. This is an ! alias for the '-mv850e3v5' option. ! '-mv850e2v3' Specify that the target processor is the V850E2V3. The ! preprocessor constant '__v850e2v3__' is defined if this option is used. ! '-mv850e2' Specify that the target processor is the V850E2. The preprocessor ! constant '__v850e2__' is defined if this option is used. ! '-mv850e1' Specify that the target processor is the V850E1. The preprocessor ! constants '__v850e1__' and '__v850e__' are defined if this option is used. ! '-mv850es' ! Specify that the target processor is the V850ES. This is an alias ! for the '-mv850e1' option. ! '-mv850e' Specify that the target processor is the V850E. The preprocessor ! constant '__v850e__' is defined if this option is used. ! If neither '-mv850' nor '-mv850e' nor '-mv850e1' nor '-mv850e2' nor ! '-mv850e2v3' nor '-mv850e3v5' are defined then a default target ! processor is chosen and the relevant '__v850*__' preprocessor ! constant is defined. ! The preprocessor constants '__v850' and '__v851__' are always defined, regardless of which processor variant is the target. ! '-mdisable-callt' ! '-mno-disable-callt' ! This option suppresses generation of the 'CALLT' instruction for the v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. ! This option is enabled by default when the RH850 ABI is in use (see ! '-mrh850-abi'), and disabled by default when the GCC ABI is in use. ! If 'CALLT' instructions are being generated then the C preprocessor ! symbol '__V850_CALLT__' will be defined. ! '-mrelax' ! '-mno-relax' ! Pass on (or do not pass on) the '-mrelax' command line option to the assembler. ! '-mlong-jumps' ! '-mno-long-jumps' Disable (or re-enable) the generation of PC-relative jump instructions. ! '-msoft-float' ! '-mhard-float' Disable (or re-enable) the generation of hardware floating point instructions. This option is only significant when the target ! architecture is 'V850E2V3' or higher. If hardware floating point instructions are being generated then the C preprocessor symbol ! '__FPU_OK__' will be defined, otherwise the symbol '__NO_FPU__' will be defined. ! '-mloop' Enables the use of the e3v5 LOOP instruction. The use of this instruction is not enabled by default when the e3v5 architecture is selected because its use is still experimental. ! '-mrh850-abi' ! '-mghs' ! Enables support for the RH850 version of the V850 ABI. This is the default. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned via a memory --- 20058,20185 ---- 3.17.49 V850 Options -------------------- ! These `-m' options are defined for V850 implementations: ! `-mlong-calls' ! `-mno-long-calls' Treat all calls as being far away (near). If calls are assumed to be far away, the compiler always loads the function's address into a register, and calls indirect through the pointer. ! `-mno-ep' ! `-mep' Do not optimize (do optimize) basic blocks that use the same index ! pointer 4 or more times to copy pointer into the `ep' register, and ! use the shorter `sld' and `sst' instructions. The `-mep' option ! is on by default if you optimize. ! `-mno-prolog-function' ! `-mprolog-function' Do not use (do use) external functions to save and restore ! registers at the prologue and epilogue of a function. The ! external functions are slower, but use less code space if more ! than one function saves the same number of registers. The ! `-mprolog-function' option is on by default if you optimize. ! `-mspace' Try to make the code as small as possible. At present, this just ! turns on the `-mep' and `-mprolog-function' options. ! `-mtda=N' Put static or global variables whose size is N bytes or less into ! the tiny data area that register `ep' points to. The tiny data area can hold up to 256 bytes in total (128 bytes for byte references). ! `-msda=N' Put static or global variables whose size is N bytes or less into ! the small data area that register `gp' points to. The small data area can hold up to 64 kilobytes. ! `-mzda=N' Put static or global variables whose size is N bytes or less into the first 32 kilobytes of memory. ! `-mv850' Specify that the target processor is the V850. ! `-mv850e3v5' Specify that the target processor is the V850E3V5. The ! preprocessor constant `__v850e3v5__' is defined if this option is used. ! `-mv850e2v4' Specify that the target processor is the V850E3V5. This is an ! alias for the `-mv850e3v5' option. ! `-mv850e2v3' Specify that the target processor is the V850E2V3. The ! preprocessor constant `__v850e2v3__' is defined if this option is used. ! `-mv850e2' Specify that the target processor is the V850E2. The preprocessor ! constant `__v850e2__' is defined if this option is used. ! `-mv850e1' Specify that the target processor is the V850E1. The preprocessor ! constants `__v850e1__' and `__v850e__' are defined if this option is used. ! `-mv850es' ! Specify that the target processor is the V850ES. This is an alias ! for the `-mv850e1' option. ! `-mv850e' Specify that the target processor is the V850E. The preprocessor ! constant `__v850e__' is defined if this option is used. ! If neither `-mv850' nor `-mv850e' nor `-mv850e1' nor `-mv850e2' ! nor `-mv850e2v3' nor `-mv850e3v5' are defined then a default ! target processor is chosen and the relevant `__v850*__' ! preprocessor constant is defined. ! The preprocessor constants `__v850' and `__v851__' are always defined, regardless of which processor variant is the target. ! `-mdisable-callt' ! `-mno-disable-callt' ! This option suppresses generation of the `CALLT' instruction for the v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850 architecture. ! This option is enabled by default when the RH850 ABI is in use ! (see `-mrh850-abi'), and disabled by default when the GCC ABI is ! in use. If `CALLT' instructions are being generated then the C ! preprocessor symbol `__V850_CALLT__' will be defined. ! `-mrelax' ! `-mno-relax' ! Pass on (or do not pass on) the `-mrelax' command line option to the assembler. ! `-mlong-jumps' ! `-mno-long-jumps' Disable (or re-enable) the generation of PC-relative jump instructions. ! `-msoft-float' ! `-mhard-float' Disable (or re-enable) the generation of hardware floating point instructions. This option is only significant when the target ! architecture is `V850E2V3' or higher. If hardware floating point instructions are being generated then the C preprocessor symbol ! `__FPU_OK__' will be defined, otherwise the symbol `__NO_FPU__' will be defined. ! `-mloop' Enables the use of the e3v5 LOOP instruction. The use of this instruction is not enabled by default when the e3v5 architecture is selected because its use is still experimental. ! `-mrh850-abi' ! `-mghs' ! Enables support for the RH850 version of the V850 ABI. This is the default. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned via a memory *************** These '-m' options are defined for V850 *** 20066,20086 **** * Functions are aligned to 16-bit boundaries. ! * The '-m8byte-align' command line option is supported. ! * The '-mdisable-callt' command line option is enabled by ! default. The '-mno-disable-callt' command line option is not supported. When this version of the ABI is enabled the C preprocessor symbol ! '__V850_RH850_ABI__' is defined. ! '-mgcc-abi' ! Enables support for the old GCC version of the V850 ABI. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned in register ! 'r10'. * Large structures and unions (more than 8 bytes in size) are passed by reference. --- 20190,20210 ---- * Functions are aligned to 16-bit boundaries. ! * The `-m8byte-align' command line option is supported. ! * The `-mdisable-callt' command line option is enabled by ! default. The `-mno-disable-callt' command line option is not supported. When this version of the ABI is enabled the C preprocessor symbol ! `__V850_RH850_ABI__' is defined. ! `-mgcc-abi' ! Enables support for the old GCC version of the V850 ABI. With this version of the ABI the following rules apply: * Integer sized structures and unions are returned in register ! `r10'. * Large structures and unions (more than 8 bytes in size) are passed by reference. *************** These '-m' options are defined for V850 *** 20088,20137 **** * Functions are aligned to 32-bit boundaries, unless optimizing for size. ! * The '-m8byte-align' command line option is not supported. ! * The '-mdisable-callt' command line option is supported but not enabled by default. When this version of the ABI is enabled the C preprocessor symbol ! '__V850_GCC_ABI__' is defined. ! '-m8byte-align' ! '-mno-8byte-align' ! Enables support for 'doubles' and 'long long' types to be aligned on 8-byte boundaries. The default is to restrict the alignment of ! all objects to at most 4-bytes. When '-m8byte-align' is in effect ! the C preprocessor symbol '__V850_8BYTE_ALIGN__' will be defined. ! '-mbig-switch' ! Generate code suitable for big switch tables. Use this option only ! if the assembler/linker complain about out of range branches within ! a switch table. ! '-mapp-regs' This option causes r2 and r5 to be used in the code generated by the compiler. This setting is the default. ! '-mno-app-regs' This option causes r2 and r5 to be treated as fixed registers.  File: gcc.info, Node: VAX Options, Next: VMS Options, Prev: V850 Options, Up: Submodel Options 3.17.50 VAX Options ------------------- ! These '-m' options are defined for the VAX: ! '-munix' ! Do not output certain jump instructions ('aobleq' and so on) that the Unix assembler for the VAX cannot handle across long ranges. ! '-mgnu' Do output those jump instructions, on the assumption that the GNU assembler is being used. ! '-mg' Output code for G-format floating-point numbers instead of D-format. --- 20212,20262 ---- * Functions are aligned to 32-bit boundaries, unless optimizing for size. ! * The `-m8byte-align' command line option is not supported. ! * The `-mdisable-callt' command line option is supported but not enabled by default. When this version of the ABI is enabled the C preprocessor symbol ! `__V850_GCC_ABI__' is defined. ! `-m8byte-align' ! `-mno-8byte-align' ! Enables support for `doubles' and `long long' types to be aligned on 8-byte boundaries. The default is to restrict the alignment of ! all objects to at most 4-bytes. When `-m8byte-align' is in effect ! the C preprocessor symbol `__V850_8BYTE_ALIGN__' will be defined. ! `-mbig-switch' ! Generate code suitable for big switch tables. Use this option ! only if the assembler/linker complain about out of range branches ! within a switch table. ! `-mapp-regs' This option causes r2 and r5 to be used in the code generated by the compiler. This setting is the default. ! `-mno-app-regs' This option causes r2 and r5 to be treated as fixed registers. +  File: gcc.info, Node: VAX Options, Next: VMS Options, Prev: V850 Options, Up: Submodel Options 3.17.50 VAX Options ------------------- ! These `-m' options are defined for the VAX: ! `-munix' ! Do not output certain jump instructions (`aobleq' and so on) that the Unix assembler for the VAX cannot handle across long ranges. ! `-mgnu' Do output those jump instructions, on the assumption that the GNU assembler is being used. ! `-mg' Output code for G-format floating-point numbers instead of D-format. *************** File: gcc.info, Node: VMS Options, Nex *** 20141,20164 **** 3.17.51 VMS Options ------------------- ! These '-m' options are defined for the VMS implementations: ! '-mvms-return-codes' ! Return VMS condition codes from 'main'. The default is to return POSIX-style condition (e.g. error) codes. ! '-mdebug-main=PREFIX' Flag the first routine whose name starts with PREFIX as the main routine for the debugger. ! '-mmalloc64' Default to 64-bit memory allocation routines. ! '-mpointer-size=SIZE' ! Set the default size of pointers. Possible options for SIZE are ! '32' or 'short' for 32 bit pointers, '64' or 'long' for 64 bit ! pointers, and 'no' for supporting only 32 bit pointers. The later ! option disables 'pragma pointer_size'.  File: gcc.info, Node: VxWorks Options, Next: x86-64 Options, Prev: VMS Options, Up: Submodel Options --- 20266,20289 ---- 3.17.51 VMS Options ------------------- ! These `-m' options are defined for the VMS implementations: ! `-mvms-return-codes' ! Return VMS condition codes from `main'. The default is to return POSIX-style condition (e.g. error) codes. ! `-mdebug-main=PREFIX' Flag the first routine whose name starts with PREFIX as the main routine for the debugger. ! `-mmalloc64' Default to 64-bit memory allocation routines. ! `-mpointer-size=SIZE' ! Set the default size of pointers. Possible options for SIZE are ! `32' or `short' for 32 bit pointers, `64' or `long' for 64 bit ! pointers, and `no' for supporting only 32 bit pointers. The later ! option disables `pragma pointer_size'.  File: gcc.info, Node: VxWorks Options, Next: x86-64 Options, Prev: VMS Options, Up: Submodel Options *************** The options in this section are defined *** 20170,20197 **** Options specific to the target hardware are listed with the other options for that target. ! '-mrtp' GCC can generate code for both VxWorks kernels and real time processes (RTPs). This option switches from the former to the ! latter. It also defines the preprocessor macro '__RTP__'. ! '-non-static' Link an RTP executable against shared libraries rather than static ! libraries. The options '-static' and '-shared' can also be used ! for RTPs (*note Link Options::); '-static' is the default. ! '-Bstatic' ! '-Bdynamic' These options are passed down to the linker. They are defined for compatibility with Diab. ! '-Xbind-lazy' Enable lazy binding of function calls. This option is equivalent ! to '-Wl,-z,now' and is defined for compatibility with Diab. ! '-Xbind-now' ! Disable lazy binding of function calls. This option is the default ! and is defined for compatibility with Diab.  File: gcc.info, Node: x86-64 Options, Next: Xstormy16 Options, Prev: VxWorks Options, Up: Submodel Options --- 20295,20322 ---- Options specific to the target hardware are listed with the other options for that target. ! `-mrtp' GCC can generate code for both VxWorks kernels and real time processes (RTPs). This option switches from the former to the ! latter. It also defines the preprocessor macro `__RTP__'. ! `-non-static' Link an RTP executable against shared libraries rather than static ! libraries. The options `-static' and `-shared' can also be used ! for RTPs (*note Link Options::); `-static' is the default. ! `-Bstatic' ! `-Bdynamic' These options are passed down to the linker. They are defined for compatibility with Diab. ! `-Xbind-lazy' Enable lazy binding of function calls. This option is equivalent ! to `-Wl,-z,now' and is defined for compatibility with Diab. ! `-Xbind-now' ! Disable lazy binding of function calls. This option is the ! default and is defined for compatibility with Diab.  File: gcc.info, Node: x86-64 Options, Next: Xstormy16 Options, Prev: VxWorks Options, Up: Submodel Options *************** File: gcc.info, Node: Xstormy16 Options *** 20209,20215 **** These options are defined for Xstormy16: ! '-msim' Choose startup files and linker script suitable for the simulator.  --- 20334,20340 ---- These options are defined for Xstormy16: ! `-msim' Choose startup files and linker script suitable for the simulator.  *************** File: gcc.info, Node: Xtensa Options, *** 20220,20303 **** These options are supported for Xtensa targets: ! '-mconst16' ! '-mno-const16' ! Enable or disable use of 'CONST16' instructions for loading ! constant values. The 'CONST16' instruction is currently not a ! standard option from Tensilica. When enabled, 'CONST16' ! instructions are always used in place of the standard 'L32R' ! instructions. The use of 'CONST16' is enabled by default only if ! the 'L32R' instruction is not available. ! '-mfused-madd' ! '-mno-fused-madd' Enable or disable use of fused multiply/add and multiply/subtract instructions in the floating-point option. This has no effect if the floating-point option is not also enabled. Disabling fused ! multiply/add and multiply/subtract instructions forces the compiler ! to use separate instructions for the multiply and add/subtract ! operations. This may be desirable in some cases where strict IEEE ! 754-compliant results are required: the fused multiply add/subtract ! instructions do not round the intermediate result, thereby ! producing results with _more_ bits of precision than specified by ! the IEEE standard. Disabling fused multiply add/subtract ! instructions also ensures that the program output is not sensitive ! to the compiler's ability to combine multiply and add/subtract ! operations. ! '-mserialize-volatile' ! '-mno-serialize-volatile' ! When this option is enabled, GCC inserts 'MEMW' instructions before ! 'volatile' memory references to guarantee sequential consistency. ! The default is '-mserialize-volatile'. Use ! '-mno-serialize-volatile' to omit the 'MEMW' instructions. ! '-mforce-no-pic' For targets, like GNU/Linux, where all user-mode Xtensa code must be position-independent code (PIC), this option disables PIC for compiling kernel code. ! '-mtext-section-literals' ! '-mno-text-section-literals' Control the treatment of literal pools. The default is ! '-mno-text-section-literals', which places literals in a separate section in the output file. This allows the literal pool to be placed in a data RAM/ROM, and it also allows the linker to combine literal pools from separate object files to remove redundant ! literals and improve code size. With '-mtext-section-literals', the literals are interspersed in the text section in order to keep them as close as possible to their references. This may be necessary for large assembly files. ! '-mtarget-align' ! '-mno-target-align' When this option is enabled, GCC instructs the assembler to automatically align instructions to reduce branch penalties at the expense of some code density. The assembler attempts to widen density instructions to align branch targets and the instructions following call instructions. If there are not enough preceding safe density instructions to align a target, no widening is ! performed. The default is '-mtarget-align'. These options do not ! affect the treatment of auto-aligned instructions like 'LOOP', which the assembler always aligns, either by widening density instructions or by inserting NOP instructions. ! '-mlongcalls' ! '-mno-longcalls' When this option is enabled, GCC instructs the assembler to translate direct calls to indirect calls unless it can determine that the target of a direct call is in the range allowed by the call instruction. This translation typically occurs for calls to functions in other source files. Specifically, the assembler ! translates a direct 'CALL' instruction into an 'L32R' followed by a ! 'CALLX' instruction. The default is '-mno-longcalls'. This option ! should be used in programs where the call target can potentially be ! out of range. This option is implemented in the assembler, not the ! compiler, so the assembly code generated by GCC still shows direct ! call instructions--look at the disassembled object code to see the ! actual instructions. Note that the assembler uses an indirect call ! for every cross-file call, not just those that really are out of ! range.  File: gcc.info, Node: zSeries Options, Prev: Xtensa Options, Up: Submodel Options --- 20345,20428 ---- These options are supported for Xtensa targets: ! `-mconst16' ! `-mno-const16' ! Enable or disable use of `CONST16' instructions for loading ! constant values. The `CONST16' instruction is currently not a ! standard option from Tensilica. When enabled, `CONST16' ! instructions are always used in place of the standard `L32R' ! instructions. The use of `CONST16' is enabled by default only if ! the `L32R' instruction is not available. ! `-mfused-madd' ! `-mno-fused-madd' Enable or disable use of fused multiply/add and multiply/subtract instructions in the floating-point option. This has no effect if the floating-point option is not also enabled. Disabling fused ! multiply/add and multiply/subtract instructions forces the ! compiler to use separate instructions for the multiply and ! add/subtract operations. This may be desirable in some cases ! where strict IEEE 754-compliant results are required: the fused ! multiply add/subtract instructions do not round the intermediate ! result, thereby producing results with _more_ bits of precision ! than specified by the IEEE standard. Disabling fused multiply ! add/subtract instructions also ensures that the program output is ! not sensitive to the compiler's ability to combine multiply and ! add/subtract operations. ! `-mserialize-volatile' ! `-mno-serialize-volatile' ! When this option is enabled, GCC inserts `MEMW' instructions before ! `volatile' memory references to guarantee sequential consistency. ! The default is `-mserialize-volatile'. Use ! `-mno-serialize-volatile' to omit the `MEMW' instructions. ! `-mforce-no-pic' For targets, like GNU/Linux, where all user-mode Xtensa code must be position-independent code (PIC), this option disables PIC for compiling kernel code. ! `-mtext-section-literals' ! `-mno-text-section-literals' Control the treatment of literal pools. The default is ! `-mno-text-section-literals', which places literals in a separate section in the output file. This allows the literal pool to be placed in a data RAM/ROM, and it also allows the linker to combine literal pools from separate object files to remove redundant ! literals and improve code size. With `-mtext-section-literals', the literals are interspersed in the text section in order to keep them as close as possible to their references. This may be necessary for large assembly files. ! `-mtarget-align' ! `-mno-target-align' When this option is enabled, GCC instructs the assembler to automatically align instructions to reduce branch penalties at the expense of some code density. The assembler attempts to widen density instructions to align branch targets and the instructions following call instructions. If there are not enough preceding safe density instructions to align a target, no widening is ! performed. The default is `-mtarget-align'. These options do not ! affect the treatment of auto-aligned instructions like `LOOP', which the assembler always aligns, either by widening density instructions or by inserting NOP instructions. ! `-mlongcalls' ! `-mno-longcalls' When this option is enabled, GCC instructs the assembler to translate direct calls to indirect calls unless it can determine that the target of a direct call is in the range allowed by the call instruction. This translation typically occurs for calls to functions in other source files. Specifically, the assembler ! translates a direct `CALL' instruction into an `L32R' followed by ! a `CALLX' instruction. The default is `-mno-longcalls'. This ! option should be used in programs where the call target can ! potentially be out of range. This option is implemented in the ! assembler, not the compiler, so the assembly code generated by GCC ! still shows direct call instructions--look at the disassembled ! object code to see the actual instructions. Note that the ! assembler uses an indirect call for every cross-file call, not ! just those that really are out of range.  File: gcc.info, Node: zSeries Options, Prev: Xtensa Options, Up: Submodel Options *************** File: gcc.info, Node: Code Gen Options, *** 20313,20347 **** 3.18 Options for Code Generation Conventions ============================================ ! These machine-independent options control the interface conventions used ! in code generation. Most of them have both positive and negative forms; the negative form ! of '-ffoo' is '-fno-foo'. In the table below, only one of the forms is listed--the one that is not the default. You can figure out the other ! form by either removing 'no-' or adding it. ! '-fbounds-check' For front ends that support it, generate additional code to check that indices used to access arrays are within the declared range. This is currently only supported by the Java and Fortran front ends, where this option defaults to true and false respectively. ! '-fstack-reuse=REUSE-LEVEL' ! This option controls stack space reuse for user declared local/auto ! variables and compiler generated temporaries. REUSE_LEVEL can be ! 'all', 'named_vars', or 'none'. 'all' enables stack reuse for all ! local variables and temporaries, 'named_vars' enables the reuse ! only for user defined local variables with names, and 'none' ! disables stack reuse completely. The default value is 'all'. The ! option is needed when the program extends the lifetime of a scoped ! local variable or a compiler generated temporary beyond the end ! point defined by the language. When a lifetime of a variable ends, ! and if the variable lives in memory, the optimizing compiler has ! the freedom to reuse its stack space with other temporaries or ! scoped local variables whose live range does not overlap with it. ! Legacy code extending local lifetime will likely to break with the ! stack reuse optimization. For example, --- 20438,20472 ---- 3.18 Options for Code Generation Conventions ============================================ ! These machine-independent options control the interface conventions ! used in code generation. Most of them have both positive and negative forms; the negative form ! of `-ffoo' is `-fno-foo'. In the table below, only one of the forms is listed--the one that is not the default. You can figure out the other ! form by either removing `no-' or adding it. ! `-fbounds-check' For front ends that support it, generate additional code to check that indices used to access arrays are within the declared range. This is currently only supported by the Java and Fortran front ends, where this option defaults to true and false respectively. ! `-fstack-reuse=REUSE-LEVEL' ! This option controls stack space reuse for user declared ! local/auto variables and compiler generated temporaries. ! REUSE_LEVEL can be `all', `named_vars', or `none'. `all' enables ! stack reuse for all local variables and temporaries, `named_vars' ! enables the reuse only for user defined local variables with ! names, and `none' disables stack reuse completely. The default ! value is `all'. The option is needed when the program extends the ! lifetime of a scoped local variable or a compiler generated ! temporary beyond the end point defined by the language. When a ! lifetime of a variable ends, and if the variable lives in memory, ! the optimizing compiler has the freedom to reuse its stack space ! with other temporaries or scoped local variables whose live range ! does not overlap with it. Legacy code extending local lifetime ! will likely to break with the stack reuse optimization. For example, *************** form by either removing 'no-' or adding *** 20392,20413 **** // is reused with a. What is the value of ap->i? } - The lifetime of a compiler generated temporary is well defined by ! the C++ standard. When a lifetime of a temporary ends, and if the temporary lives in memory, the optimizing compiler has the freedom to reuse its stack space with other temporaries or scoped local ! variables whose live range does not overlap with it. However some of the legacy code relies on the behavior of older compilers in which temporaries' stack space is not reused, the aggressive stack ! reuse can lead to runtime errors. This option is used to control the temporary stack reuse optimization. ! '-ftrapv' This option generates traps for signed overflow on addition, subtraction, multiplication operations. ! '-fwrapv' This option instructs the compiler to assume that signed arithmetic overflow of addition, subtraction and multiplication wraps around using twos-complement representation. This flag enables some --- 20517,20537 ---- // is reused with a. What is the value of ap->i? } The lifetime of a compiler generated temporary is well defined by ! the C++ standard. When a lifetime of a temporary ends, and if the temporary lives in memory, the optimizing compiler has the freedom to reuse its stack space with other temporaries or scoped local ! variables whose live range does not overlap with it. However some of the legacy code relies on the behavior of older compilers in which temporaries' stack space is not reused, the aggressive stack ! reuse can lead to runtime errors. This option is used to control the temporary stack reuse optimization. ! `-ftrapv' This option generates traps for signed overflow on addition, subtraction, multiplication operations. ! `-fwrapv' This option instructs the compiler to assume that signed arithmetic overflow of addition, subtraction and multiplication wraps around using twos-complement representation. This flag enables some *************** form by either removing 'no-' or adding *** 20415,20443 **** default for the Java front end, as required by the Java language specification. ! '-fexceptions' Enable exception handling. Generates extra code needed to ! propagate exceptions. For some targets, this implies GCC generates ! frame unwind information for all functions, which can produce ! significant data size overhead, although it does not affect ! execution. If you do not specify this option, GCC enables it by ! default for languages like C++ that normally require exception ! handling, and disables it for languages like C that do not normally ! require it. However, you may need to enable this option when ! compiling C code that needs to interoperate properly with exception ! handlers written in C++. You may also wish to disable this option ! if you are compiling older C++ programs that don't use exception ! handling. ! '-fnon-call-exceptions' Generate code that allows trapping instructions to throw exceptions. Note that this requires platform-specific runtime support that does not exist everywhere. Moreover, it only allows ! _trapping_ instructions to throw exceptions, i.e. memory references ! or floating-point instructions. It does not allow exceptions to be ! thrown from arbitrary signal handlers such as 'SIGALRM'. ! '-fdelete-dead-exceptions' Consider that instructions that may throw exceptions but don't otherwise contribute to the execution of the program can be optimized away. This option is enabled by default for the Ada --- 20539,20568 ---- default for the Java front end, as required by the Java language specification. ! `-fexceptions' Enable exception handling. Generates extra code needed to ! propagate exceptions. For some targets, this implies GCC ! generates frame unwind information for all functions, which can ! produce significant data size overhead, although it does not ! affect execution. If you do not specify this option, GCC enables ! it by default for languages like C++ that normally require ! exception handling, and disables it for languages like C that do ! not normally require it. However, you may need to enable this ! option when compiling C code that needs to interoperate properly ! with exception handlers written in C++. You may also wish to ! disable this option if you are compiling older C++ programs that ! don't use exception handling. ! `-fnon-call-exceptions' Generate code that allows trapping instructions to throw exceptions. Note that this requires platform-specific runtime support that does not exist everywhere. Moreover, it only allows ! _trapping_ instructions to throw exceptions, i.e. memory ! references or floating-point instructions. It does not allow ! exceptions to be thrown from arbitrary signal handlers such as ! `SIGALRM'. ! `-fdelete-dead-exceptions' Consider that instructions that may throw exceptions but don't otherwise contribute to the execution of the program can be optimized away. This option is enabled by default for the Ada *************** form by either removing 'no-' or adding *** 20445,20482 **** Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels. ! '-funwind-tables' ! Similar to '-fexceptions', except that it just generates any needed static data, but does not affect the generated code in any other way. You normally do not need to enable this option; instead, a language processor that needs this handling enables it on your behalf. ! '-fasynchronous-unwind-tables' Generate unwind table in DWARF 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). ! '-fno-gnu-unique' On systems with recent GNU assembler and C library, the C++ ! compiler uses the 'STB_GNU_UNIQUE' binding to make sure that definitions of template static data members and static local variables in inline functions are unique even in the presence of ! 'RTLD_LOCAL'; this is necessary to avoid problems with a library ! used by two different 'RTLD_LOCAL' plugins depending on a definition in one of them and therefore disagreeing with the other ! one about the binding of the symbol. But this causes 'dlclose' to be ignored for affected DSOs; if your program relies on ! reinitialization of a DSO via 'dlclose' and 'dlopen', you can use ! '-fno-gnu-unique'. ! '-fpcc-struct-return' ! Return "short" 'struct' and 'union' values in memory like longer ! ones, rather than in registers. This convention is less efficient, ! but it has the advantage of allowing intercallability between ! GCC-compiled files and files compiled with other compilers, ! particularly the Portable C Compiler (pcc). The precise convention for returning structures in memory depends on the target configuration macros. --- 20570,20607 ---- Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels. ! `-funwind-tables' ! Similar to `-fexceptions', except that it just generates any needed static data, but does not affect the generated code in any other way. You normally do not need to enable this option; instead, a language processor that needs this handling enables it on your behalf. ! `-fasynchronous-unwind-tables' Generate unwind table in DWARF 2 format, if supported by target machine. The table is exact at each instruction boundary, so it can be used for stack unwinding from asynchronous events (such as debugger or garbage collector). ! `-fno-gnu-unique' On systems with recent GNU assembler and C library, the C++ ! compiler uses the `STB_GNU_UNIQUE' binding to make sure that definitions of template static data members and static local variables in inline functions are unique even in the presence of ! `RTLD_LOCAL'; this is necessary to avoid problems with a library ! used by two different `RTLD_LOCAL' plugins depending on a definition in one of them and therefore disagreeing with the other ! one about the binding of the symbol. But this causes `dlclose' to be ignored for affected DSOs; if your program relies on ! reinitialization of a DSO via `dlclose' and `dlopen', you can use ! `-fno-gnu-unique'. ! `-fpcc-struct-return' ! Return "short" `struct' and `union' values in memory like longer ! ones, rather than in registers. This convention is less ! efficient, but it has the advantage of allowing intercallability ! between GCC-compiled files and files compiled with other ! compilers, particularly the Portable C Compiler (pcc). The precise convention for returning structures in memory depends on the target configuration macros. *************** form by either removing 'no-' or adding *** 20484,20591 **** Short structures and unions are those whose size and alignment match that of some integer type. ! *Warning:* code compiled with the '-fpcc-struct-return' switch is not binary compatible with code compiled with the ! '-freg-struct-return' switch. Use it to conform to a non-default application binary interface. ! '-freg-struct-return' ! Return 'struct' and 'union' values in registers when possible. This is more efficient for small structures than ! '-fpcc-struct-return'. ! If you specify neither '-fpcc-struct-return' nor ! '-freg-struct-return', GCC defaults to whichever convention is standard for the target. If there is no standard convention, GCC ! defaults to '-fpcc-struct-return', except on targets where GCC is the principal compiler. In those cases, we can choose the standard, and we chose the more efficient register return alternative. ! *Warning:* code compiled with the '-freg-struct-return' switch is not binary compatible with code compiled with the ! '-fpcc-struct-return' switch. Use it to conform to a non-default application binary interface. ! '-fshort-enums' ! Allocate to an 'enum' type only as many bytes as it needs for the ! declared range of possible values. Specifically, the 'enum' type is equivalent to the smallest integer type that has enough room. ! *Warning:* the '-fshort-enums' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! '-fshort-double' ! Use the same size for 'double' as for 'float'. ! *Warning:* the '-fshort-double' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! '-fshort-wchar' ! Override the underlying type for 'wchar_t' to be 'short unsigned int' instead of the default for the target. This option is useful for building programs to run under WINE. ! *Warning:* the '-fshort-wchar' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! '-fno-common' In C code, controls the placement of uninitialized global variables. Unix C compilers have traditionally permitted multiple definitions of such variables in different compilation units by placing the variables in a common block. This is the behavior ! specified by '-fcommon', and is the default for GCC on most targets. On the other hand, this behavior is not required by ISO C, and on some targets may carry a speed or code size penalty on ! variable references. The '-fno-common' option specifies that the compiler should place uninitialized global variables in the data section of the object file, rather than generating them as common blocks. This has the effect that if the same variable is declared ! (without 'extern') in two different compilations, you get a multiple-definition error when you link them. In this case, you ! must compile with '-fcommon' instead. Compiling with '-fno-common' ! is useful on targets for which it provides better performance, or ! if you wish to verify that the program will work on other systems ! that always treat uninitialized variable declarations this way. ! '-fno-ident' ! Ignore the '#ident' directive. ! '-finhibit-size-directive' ! Don't output a '.size' assembler directive, or anything else that would cause trouble if the function is split in the middle, and the two halves are placed at locations far apart in memory. This ! option is used when compiling 'crtstuff.c'; you should not need to use it for anything else. ! '-fverbose-asm' Put extra commentary information in the generated assembly code to make it more readable. This option is generally only of use to those who actually need to read the generated assembly code (perhaps while debugging the compiler itself). ! '-fno-verbose-asm', the default, causes the extra information to be ! omitted and is useful when comparing two assembler files. ! '-frecord-gcc-switches' This switch causes the command line used to invoke the compiler to be recorded into the object file that is being created. This switch is only implemented on some targets and the exact format of the recording is target and binary file format dependent, but it usually takes the form of a section containing ASCII text. This ! switch is related to the '-fverbose-asm' switch, but that switch only records information in the assembler output file as comments, so it never reaches the object file. See also ! '-grecord-gcc-switches' for another way of storing compiler options ! into the object file. ! '-fpic' Generate position-independent code (PIC) suitable for use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table --- 20609,20717 ---- Short structures and unions are those whose size and alignment match that of some integer type. ! *Warning:* code compiled with the `-fpcc-struct-return' switch is not binary compatible with code compiled with the ! `-freg-struct-return' switch. Use it to conform to a non-default application binary interface. ! `-freg-struct-return' ! Return `struct' and `union' values in registers when possible. This is more efficient for small structures than ! `-fpcc-struct-return'. ! If you specify neither `-fpcc-struct-return' nor ! `-freg-struct-return', GCC defaults to whichever convention is standard for the target. If there is no standard convention, GCC ! defaults to `-fpcc-struct-return', except on targets where GCC is the principal compiler. In those cases, we can choose the standard, and we chose the more efficient register return alternative. ! *Warning:* code compiled with the `-freg-struct-return' switch is not binary compatible with code compiled with the ! `-fpcc-struct-return' switch. Use it to conform to a non-default application binary interface. ! `-fshort-enums' ! Allocate to an `enum' type only as many bytes as it needs for the ! declared range of possible values. Specifically, the `enum' type is equivalent to the smallest integer type that has enough room. ! *Warning:* the `-fshort-enums' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! `-fshort-double' ! Use the same size for `double' as for `float'. ! *Warning:* the `-fshort-double' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! `-fshort-wchar' ! Override the underlying type for `wchar_t' to be `short unsigned int' instead of the default for the target. This option is useful for building programs to run under WINE. ! *Warning:* the `-fshort-wchar' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Use it to conform to a non-default application binary interface. ! `-fno-common' In C code, controls the placement of uninitialized global variables. Unix C compilers have traditionally permitted multiple definitions of such variables in different compilation units by placing the variables in a common block. This is the behavior ! specified by `-fcommon', and is the default for GCC on most targets. On the other hand, this behavior is not required by ISO C, and on some targets may carry a speed or code size penalty on ! variable references. The `-fno-common' option specifies that the compiler should place uninitialized global variables in the data section of the object file, rather than generating them as common blocks. This has the effect that if the same variable is declared ! (without `extern') in two different compilations, you get a multiple-definition error when you link them. In this case, you ! must compile with `-fcommon' instead. Compiling with ! `-fno-common' is useful on targets for which it provides better ! performance, or if you wish to verify that the program will work ! on other systems that always treat uninitialized variable ! declarations this way. ! `-fno-ident' ! Ignore the `#ident' directive. ! `-finhibit-size-directive' ! Don't output a `.size' assembler directive, or anything else that would cause trouble if the function is split in the middle, and the two halves are placed at locations far apart in memory. This ! option is used when compiling `crtstuff.c'; you should not need to use it for anything else. ! `-fverbose-asm' Put extra commentary information in the generated assembly code to make it more readable. This option is generally only of use to those who actually need to read the generated assembly code (perhaps while debugging the compiler itself). ! `-fno-verbose-asm', the default, causes the extra information to ! be omitted and is useful when comparing two assembler files. ! `-frecord-gcc-switches' This switch causes the command line used to invoke the compiler to be recorded into the object file that is being created. This switch is only implemented on some targets and the exact format of the recording is target and binary file format dependent, but it usually takes the form of a section containing ASCII text. This ! switch is related to the `-fverbose-asm' switch, but that switch only records information in the assembler output file as comments, so it never reaches the object file. See also ! `-grecord-gcc-switches' for another way of storing compiler ! options into the object file. ! `-fpic' Generate position-independent code (PIC) suitable for use in a shared library, if supported for the target machine. Such code accesses all constant addresses through a global offset table *************** form by either removing 'no-' or adding *** 20593,20600 **** program starts (the dynamic loader is not part of GCC; it is part of the operating system). If the GOT size for the linked executable exceeds a machine-specific maximum size, you get an ! error message from the linker indicating that '-fpic' does not ! work; in that case, recompile with '-fPIC' instead. (These maximums are 8k on the SPARC and 32k on the m68k and RS/6000. The 386 has no such limit.) --- 20719,20726 ---- program starts (the dynamic loader is not part of GCC; it is part of the operating system). If the GOT size for the linked executable exceeds a machine-specific maximum size, you get an ! error message from the linker indicating that `-fpic' does not ! work; in that case, recompile with `-fPIC' instead. (These maximums are 8k on the SPARC and 32k on the m68k and RS/6000. The 386 has no such limit.) *************** form by either removing 'no-' or adding *** 20603,20654 **** System V but not for the Sun 386i. Code generated for the IBM RS/6000 is always position-independent. ! When this flag is set, the macros '__pic__' and '__PIC__' are defined to 1. ! '-fPIC' If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the ! size of the global offset table. This option makes a difference on ! the m68k, PowerPC and SPARC. Position-independent code requires special support, and therefore works only on certain machines. ! When this flag is set, the macros '__pic__' and '__PIC__' are defined to 2. ! '-fpie' ! '-fPIE' ! These options are similar to '-fpic' and '-fPIC', but generated position independent code can be only linked into executables. ! Usually these options are used when '-pie' GCC option is used during linking. ! '-fpie' and '-fPIE' both define the macros '__pie__' and '__PIE__'. ! The macros have the value 1 for '-fpie' and 2 for '-fPIE'. ! '-fno-jump-tables' Do not use jump tables for switch statements even where it would be more efficient than other code generation strategies. This option ! is of use in conjunction with '-fpic' or '-fPIC' for building code that forms part of a dynamic linker and cannot reference the address of a jump table. On some targets, jump tables do not require a GOT and this option is not needed. ! '-ffixed-REG' Treat the register named REG as a fixed register; generated code should never refer to it (except perhaps as a stack pointer, frame pointer or in some other fixed role). REG must be the name of a register. The register names accepted ! are machine-specific and are defined in the 'REGISTER_NAMES' macro in the machine description macro file. This flag does not have a negative form, because it specifies a three-way choice. ! '-fcall-used-REG' Treat the register named REG as an allocable register that is clobbered by function calls. It may be allocated for temporaries or variables that do not live across a call. Functions compiled --- 20729,20781 ---- System V but not for the Sun 386i. Code generated for the IBM RS/6000 is always position-independent. ! When this flag is set, the macros `__pic__' and `__PIC__' are defined to 1. ! `-fPIC' If supported for the target machine, emit position-independent code, suitable for dynamic linking and avoiding any limit on the ! size of the global offset table. This option makes a difference ! on the m68k, PowerPC and SPARC. Position-independent code requires special support, and therefore works only on certain machines. ! When this flag is set, the macros `__pic__' and `__PIC__' are defined to 2. ! `-fpie' ! `-fPIE' ! These options are similar to `-fpic' and `-fPIC', but generated position independent code can be only linked into executables. ! Usually these options are used when `-pie' GCC option is used during linking. ! `-fpie' and `-fPIE' both define the macros `__pie__' and ! `__PIE__'. The macros have the value 1 for `-fpie' and 2 for ! `-fPIE'. ! `-fno-jump-tables' Do not use jump tables for switch statements even where it would be more efficient than other code generation strategies. This option ! is of use in conjunction with `-fpic' or `-fPIC' for building code that forms part of a dynamic linker and cannot reference the address of a jump table. On some targets, jump tables do not require a GOT and this option is not needed. ! `-ffixed-REG' Treat the register named REG as a fixed register; generated code should never refer to it (except perhaps as a stack pointer, frame pointer or in some other fixed role). REG must be the name of a register. The register names accepted ! are machine-specific and are defined in the `REGISTER_NAMES' macro in the machine description macro file. This flag does not have a negative form, because it specifies a three-way choice. ! `-fcall-used-REG' Treat the register named REG as an allocable register that is clobbered by function calls. It may be allocated for temporaries or variables that do not live across a call. Functions compiled *************** form by either removing 'no-' or adding *** 20662,20668 **** This flag does not have a negative form, because it specifies a three-way choice. ! '-fcall-saved-REG' Treat the register named REG as an allocable register saved by functions. It may be allocated even for temporaries or variables that live across a call. Functions compiled this way save and --- 20789,20795 ---- This flag does not have a negative form, because it specifies a three-way choice. ! `-fcall-saved-REG' Treat the register named REG as an allocable register saved by functions. It may be allocated even for temporaries or variables that live across a call. Functions compiled this way save and *************** form by either removing 'no-' or adding *** 20679,20685 **** This flag does not have a negative form, because it specifies a three-way choice. ! '-fpack-struct[=N]' Without a value specified, pack all structure members together without holes. When a value is specified (which must be a small power of two), pack structure members according to this value, --- 20806,20812 ---- This flag does not have a negative form, because it specifies a three-way choice. ! `-fpack-struct[=N]' Without a value specified, pack all structure members together without holes. When a value is specified (which must be a small power of two), pack structure members according to this value, *************** form by either removing 'no-' or adding *** 20687,20703 **** alignment requirements larger than this are output potentially unaligned at the next fitting location. ! *Warning:* the '-fpack-struct' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Additionally, it makes the code suboptimal. Use it to conform to a non-default application binary interface. ! '-finstrument-functions' Generate instrumentation calls for entry and exit to functions. Just after function entry and just before function exit, the following profiling functions are called with the address of the current function and its call site. (On some platforms, ! '__builtin_return_address' does not work beyond the current function, so the call site information may not be available to the profiling functions otherwise.) --- 20814,20830 ---- alignment requirements larger than this are output potentially unaligned at the next fitting location. ! *Warning:* the `-fpack-struct' switch causes GCC to generate code that is not binary compatible with code generated without that switch. Additionally, it makes the code suboptimal. Use it to conform to a non-default application binary interface. ! `-finstrument-functions' Generate instrumentation calls for entry and exit to functions. Just after function entry and just before function exit, the following profiling functions are called with the address of the current function and its call site. (On some platforms, ! `__builtin_return_address' does not work beyond the current function, so the call site information may not be available to the profiling functions otherwise.) *************** form by either removing 'no-' or adding *** 20710,20736 **** function, which may be looked up exactly in the symbol table. This instrumentation is also done for functions expanded inline in ! other functions. The profiling calls indicate where, conceptually, ! the inline function is entered and exited. This means that ! addressable versions of such functions must be available. If all ! your uses of a function are expanded inline, this may mean an ! additional expansion of code size. If you use 'extern inline' in ! your C code, an addressable version of such functions must be ! provided. (This is normally the case anyway, but if you get lucky ! and the optimizer always expands the functions inline, you might ! have gotten away without providing static copies.) ! A function may be given the attribute 'no_instrument_function', in which case this instrumentation is not done. This can be used, for example, for the profiling functions listed above, high-priority interrupt routines, and any functions from which the profiling functions cannot safely be called (perhaps signal handlers, if the profiling routines generate output or allocate memory). ! '-finstrument-functions-exclude-file-list=FILE,FILE,...' ! Set the list of functions that are excluded from instrumentation ! (see the description of '-finstrument-functions'). If the file that contains a function definition matches with one of FILE, then that function is not instrumented. The match is done on substrings: if the FILE parameter is a substring of the file name, --- 20837,20863 ---- function, which may be looked up exactly in the symbol table. This instrumentation is also done for functions expanded inline in ! other functions. The profiling calls indicate where, ! conceptually, the inline function is entered and exited. This ! means that addressable versions of such functions must be ! available. If all your uses of a function are expanded inline, ! this may mean an additional expansion of code size. If you use ! `extern inline' in your C code, an addressable version of such ! functions must be provided. (This is normally the case anyway, ! but if you get lucky and the optimizer always expands the ! functions inline, you might have gotten away without providing ! static copies.) ! A function may be given the attribute `no_instrument_function', in which case this instrumentation is not done. This can be used, for example, for the profiling functions listed above, high-priority interrupt routines, and any functions from which the profiling functions cannot safely be called (perhaps signal handlers, if the profiling routines generate output or allocate memory). ! `-finstrument-functions-exclude-file-list=FILE,FILE,...' Set the list of functions that are excluded from instrumentation ! (see the description of `-finstrument-functions'). If the file that contains a function definition matches with one of FILE, then that function is not instrumented. The match is done on substrings: if the FILE parameter is a substring of the file name, *************** form by either removing 'no-' or adding *** 20741,20782 **** -finstrument-functions-exclude-file-list=/bits/stl,include/sys excludes any inline function defined in files whose pathnames ! contain '/bits/stl' or 'include/sys'. ! If, for some reason, you want to include letter '','' in one of ! SYM, write ''\,''. For example, ! '-finstrument-functions-exclude-file-list='\,\,tmp'' (note the single quote surrounding the option). ! '-finstrument-functions-exclude-function-list=SYM,SYM,...' ! ! This is similar to '-finstrument-functions-exclude-file-list', but this option sets the list of function names to be excluded from instrumentation. The function name to be matched is its ! user-visible name, such as 'vector blah(const vector &)', ! not the internal mangled name (e.g., '_Z4blahRSt6vectorIiSaIiEE'). ! The match is done on substrings: if the SYM parameter is a ! substring of the function name, it is considered to be a match. ! For C99 and C++ extended identifiers, the function name must be ! given in UTF-8, not using universal character names. ! '-fstack-check' Generate code to verify that you do not go beyond the boundary of the stack. You should specify this flag if you are running in an environment with multiple threads, but you only rarely need to ! specify it in a single-threaded environment since stack overflow is ! automatically detected on nearly all systems if there is only one ! stack. Note that this switch does not actually cause checking to be done; the operating system or the language runtime must do that. The switch causes generation of code to ensure that they see the stack being extended. ! You can additionally specify a string parameter: 'no' means no ! checking, 'generic' means force the use of old-style checking, ! 'specific' means use the best checking method and is equivalent to ! bare '-fstack-check'. Old-style checking is a generic mechanism that requires no specific target support in the compiler but comes with the following --- 20868,20909 ---- -finstrument-functions-exclude-file-list=/bits/stl,include/sys excludes any inline function defined in files whose pathnames ! contain `/bits/stl' or `include/sys'. ! If, for some reason, you want to include letter `','' in one of ! SYM, write `'\,''. For example, ! `-finstrument-functions-exclude-file-list='\,\,tmp'' (note the single quote surrounding the option). ! `-finstrument-functions-exclude-function-list=SYM,SYM,...' ! This is similar to `-finstrument-functions-exclude-file-list', but this option sets the list of function names to be excluded from instrumentation. The function name to be matched is its ! user-visible name, such as `vector blah(const vector ! &)', not the internal mangled name (e.g., ! `_Z4blahRSt6vectorIiSaIiEE'). The match is done on substrings: if ! the SYM parameter is a substring of the function name, it is ! considered to be a match. For C99 and C++ extended identifiers, ! the function name must be given in UTF-8, not using universal ! character names. ! `-fstack-check' Generate code to verify that you do not go beyond the boundary of the stack. You should specify this flag if you are running in an environment with multiple threads, but you only rarely need to ! specify it in a single-threaded environment since stack overflow ! is automatically detected on nearly all systems if there is only ! one stack. Note that this switch does not actually cause checking to be done; the operating system or the language runtime must do that. The switch causes generation of code to ensure that they see the stack being extended. ! You can additionally specify a string parameter: `no' means no ! checking, `generic' means force the use of old-style checking, ! `specific' means use the best checking method and is equivalent to ! bare `-fstack-check'. Old-style checking is a generic mechanism that requires no specific target support in the compiler but comes with the following *************** form by either removing 'no-' or adding *** 20786,20804 **** always allocated dynamically if their size exceeds a fixed threshold. ! 2. Fixed limit on the size of the static frame of functions: when ! it is topped by a particular function, stack checking is not ! reliable and a warning is issued by the compiler. ! 3. Inefficiency: because of both the modified allocation strategy ! and the generic implementation, code performance is hampered. Note that old-style stack checking is also the fallback method for ! 'specific' if no target support has been added in the compiler. ! '-fstack-limit-register=REG' ! '-fstack-limit-symbol=SYM' ! '-fno-stack-limit' Generate code to ensure that the stack does not grow beyond a certain value, either the value of a register or the address of a symbol. If a larger stack is required, a signal is raised at run --- 20913,20932 ---- always allocated dynamically if their size exceeds a fixed threshold. ! 2. Fixed limit on the size of the static frame of functions: ! when it is topped by a particular function, stack checking is ! not reliable and a warning is issued by the compiler. ! 3. Inefficiency: because of both the modified allocation ! strategy and the generic implementation, code performance is ! hampered. Note that old-style stack checking is also the fallback method for ! `specific' if no target support has been added in the compiler. ! `-fstack-limit-register=REG' ! `-fstack-limit-symbol=SYM' ! `-fno-stack-limit' Generate code to ensure that the stack does not grow beyond a certain value, either the value of a register or the address of a symbol. If a larger stack is required, a signal is raised at run *************** form by either removing 'no-' or adding *** 20806,20858 **** overruns the boundary, so it is possible to catch the signal without taking special precautions. ! For instance, if the stack starts at absolute address '0x80000000' and grows downwards, you can use the flags ! '-fstack-limit-symbol=__stack_limit' and ! '-Wl,--defsym,__stack_limit=0x7ffe0000' to enforce a stack limit of ! 128KB. Note that this may only work with the GNU linker. ! '-fsplit-stack' Generate code to automatically split the stack before it overflows. The resulting program has a discontiguous stack which can only overflow if the program is unable to allocate any more memory. This is most useful when running threaded programs, as it is no longer necessary to calculate a good stack size to use for each ! thread. This is currently only implemented for the i386 and x86_64 ! back ends running GNU/Linux. ! When code compiled with '-fsplit-stack' calls code compiled without ! '-fsplit-stack', there may not be much stack space available for ! the latter code to run. If compiling all code, including library ! code, with '-fsplit-stack' is not an option, then the linker can ! fix up these calls so that the code compiled without ! '-fsplit-stack' always has a large stack. Support for this is ! implemented in the gold linker in GNU binutils release 2.21 and ! later. ! '-fleading-underscore' ! This option and its counterpart, '-fno-leading-underscore', forcibly change the way C symbols are represented in the object file. One use is to help link with legacy assembly code. ! *Warning:* the '-fleading-underscore' switch causes GCC to generate ! code that is not binary compatible with code generated without that ! switch. Use it to conform to a non-default application binary ! interface. Not all targets provide complete support for this ! switch. ! '-ftls-model=MODEL' Alter the thread-local storage model to be used (*note Thread-Local::). The MODEL argument should be one of ! 'global-dynamic', 'local-dynamic', 'initial-exec' or 'local-exec'. Note that the choice is subject to optimization: the compiler may use a more efficient model for symbols not visible outside of the ! translation unit, or if '-fpic' is not given on the command line. ! The default without '-fpic' is 'initial-exec'; with '-fpic' the ! default is 'global-dynamic'. ! '-fvisibility=DEFAULT|INTERNAL|HIDDEN|PROTECTED' Set the default ELF image symbol visibility to the specified option--all symbols are marked with this unless overridden within the code. Using this feature can very substantially improve --- 20934,20986 ---- overruns the boundary, so it is possible to catch the signal without taking special precautions. ! For instance, if the stack starts at absolute address `0x80000000' and grows downwards, you can use the flags ! `-fstack-limit-symbol=__stack_limit' and ! `-Wl,--defsym,__stack_limit=0x7ffe0000' to enforce a stack limit ! of 128KB. Note that this may only work with the GNU linker. ! `-fsplit-stack' Generate code to automatically split the stack before it overflows. The resulting program has a discontiguous stack which can only overflow if the program is unable to allocate any more memory. This is most useful when running threaded programs, as it is no longer necessary to calculate a good stack size to use for each ! thread. This is currently only implemented for the i386 and ! x86_64 back ends running GNU/Linux. ! When code compiled with `-fsplit-stack' calls code compiled ! without `-fsplit-stack', there may not be much stack space ! available for the latter code to run. If compiling all code, ! including library code, with `-fsplit-stack' is not an option, ! then the linker can fix up these calls so that the code compiled ! without `-fsplit-stack' always has a large stack. Support for ! this is implemented in the gold linker in GNU binutils release 2.21 ! and later. ! `-fleading-underscore' ! This option and its counterpart, `-fno-leading-underscore', forcibly change the way C symbols are represented in the object file. One use is to help link with legacy assembly code. ! *Warning:* the `-fleading-underscore' switch causes GCC to ! generate code that is not binary compatible with code generated ! without that switch. Use it to conform to a non-default ! application binary interface. Not all targets provide complete ! support for this switch. ! `-ftls-model=MODEL' Alter the thread-local storage model to be used (*note Thread-Local::). The MODEL argument should be one of ! `global-dynamic', `local-dynamic', `initial-exec' or `local-exec'. Note that the choice is subject to optimization: the compiler may use a more efficient model for symbols not visible outside of the ! translation unit, or if `-fpic' is not given on the command line. ! The default without `-fpic' is `initial-exec'; with `-fpic' the ! default is `global-dynamic'. ! `-fvisibility=DEFAULT|INTERNAL|HIDDEN|PROTECTED' Set the default ELF image symbol visibility to the specified option--all symbols are marked with this unless overridden within the code. Using this feature can very substantially improve *************** form by either removing 'no-' or adding *** 20861,20890 **** clashes. It is *strongly* recommended that you use this in any shared objects you distribute. ! Despite the nomenclature, 'default' always means public; i.e., available to be linked against from outside the shared object. ! 'protected' and 'internal' are pretty useless in real-world usage ! so the only other commonly used option is 'hidden'. The default if ! '-fvisibility' isn't specified is 'default', i.e., make every symbol public--this causes the same behavior as previous versions of GCC. A good explanation of the benefits offered by ensuring ELF symbols have the correct visibility is given by "How To Write Shared Libraries" by Ulrich Drepper (which can be found at ! )--however a superior solution made possible by this option to marking things hidden when the default is public is to make the default hidden and mark things public. This is the norm with DLLs on Windows and with ! '-fvisibility=hidden' and '__attribute__ ((visibility("default")))' ! instead of '__declspec(dllexport)' you get almost identical ! semantics with identical syntax. This is a great boon to those ! working with cross-platform projects. For those adding visibility support to existing code, you may find ! '#pragma GCC visibility' of use. This works by you enclosing the declarations you wish to set visibility for with (for example) ! '#pragma GCC visibility push(hidden)' and '#pragma GCC visibility pop'. Bear in mind that symbol visibility should be viewed *as part of the API interface contract* and thus all new code should always specify visibility when it is not the default; i.e., --- 20989,21018 ---- clashes. It is *strongly* recommended that you use this in any shared objects you distribute. ! Despite the nomenclature, `default' always means public; i.e., available to be linked against from outside the shared object. ! `protected' and `internal' are pretty useless in real-world usage ! so the only other commonly used option is `hidden'. The default ! if `-fvisibility' isn't specified is `default', i.e., make every symbol public--this causes the same behavior as previous versions of GCC. A good explanation of the benefits offered by ensuring ELF symbols have the correct visibility is given by "How To Write Shared Libraries" by Ulrich Drepper (which can be found at ! `http://people.redhat.com/~drepper/')--however a superior solution made possible by this option to marking things hidden when the default is public is to make the default hidden and mark things public. This is the norm with DLLs on Windows and with ! `-fvisibility=hidden' and `__attribute__ ! ((visibility("default")))' instead of `__declspec(dllexport)' you ! get almost identical semantics with identical syntax. This is a ! great boon to those working with cross-platform projects. For those adding visibility support to existing code, you may find ! `#pragma GCC visibility' of use. This works by you enclosing the declarations you wish to set visibility for with (for example) ! `#pragma GCC visibility push(hidden)' and `#pragma GCC visibility pop'. Bear in mind that symbol visibility should be viewed *as part of the API interface contract* and thus all new code should always specify visibility when it is not the default; i.e., *************** form by either removing 'no-' or adding *** 20892,20932 **** marked explicitly as hidden as so to avoid PLT indirection overheads--making this abundantly clear also aids readability and self-documentation of the code. Note that due to ISO C++ ! specification requirements, 'operator new' and 'operator delete' must always be of default visibility. Be aware that headers from outside your project, in particular system headers and headers from any other library you use, may not ! be expecting to be compiled with visibility other than the default. ! You may need to explicitly say '#pragma GCC visibility push(default)' before including any such headers. ! 'extern' declarations are not affected by '-fvisibility', so a lot ! of code can be recompiled with '-fvisibility=hidden' with no ! modifications. However, this means that calls to 'extern' functions with no explicit visibility use the PLT, so it is more ! effective to use '__attribute ((visibility))' and/or '#pragma GCC ! visibility' to tell the compiler which 'extern' declarations should ! be treated as hidden. ! Note that '-fvisibility' does affect C++ vague linkage entities. ! This means that, for instance, an exception class that is be thrown ! between DSOs must be explicitly marked with default visibility so ! that the 'type_info' nodes are unified between the DSOs. An overview of these techniques, their benefits and how to use them ! is at . ! '-fstrict-volatile-bitfields' This option should be used if accesses to volatile bit-fields (or other structure fields, although the compiler usually honors those types anyway) should use a single access of the width of the field's type, aligned to a natural alignment if possible. For example, targets with memory-mapped peripheral registers might require all such accesses to be 16 bits wide; with this flag you ! can declare all peripheral bit-fields as 'unsigned short' (assuming ! short is 16 bits on these targets) to force GCC to use 16-bit ! accesses instead of, perhaps, a more efficient 32-bit access. If this option is disabled, the compiler uses the most efficient instruction. In the previous example, that might be a 32-bit load --- 21020,21062 ---- marked explicitly as hidden as so to avoid PLT indirection overheads--making this abundantly clear also aids readability and self-documentation of the code. Note that due to ISO C++ ! specification requirements, `operator new' and `operator delete' must always be of default visibility. Be aware that headers from outside your project, in particular system headers and headers from any other library you use, may not ! be expecting to be compiled with visibility other than the ! default. You may need to explicitly say `#pragma GCC visibility push(default)' before including any such headers. ! `extern' declarations are not affected by `-fvisibility', so a lot ! of code can be recompiled with `-fvisibility=hidden' with no ! modifications. However, this means that calls to `extern' functions with no explicit visibility use the PLT, so it is more ! effective to use `__attribute ((visibility))' and/or `#pragma GCC ! visibility' to tell the compiler which `extern' declarations ! should be treated as hidden. ! Note that `-fvisibility' does affect C++ vague linkage entities. ! This means that, for instance, an exception class that is be ! thrown between DSOs must be explicitly marked with default ! visibility so that the `type_info' nodes are unified between the ! DSOs. An overview of these techniques, their benefits and how to use them ! is at `http://gcc.gnu.org/wiki/Visibility'. ! `-fstrict-volatile-bitfields' This option should be used if accesses to volatile bit-fields (or other structure fields, although the compiler usually honors those types anyway) should use a single access of the width of the field's type, aligned to a natural alignment if possible. For example, targets with memory-mapped peripheral registers might require all such accesses to be 16 bits wide; with this flag you ! can declare all peripheral bit-fields as `unsigned short' ! (assuming short is 16 bits on these targets) to force GCC to use ! 16-bit accesses instead of, perhaps, a more efficient 32-bit ! access. If this option is disabled, the compiler uses the most efficient instruction. In the previous example, that might be a 32-bit load *************** form by either removing 'no-' or adding *** 20934,20947 **** any portion of the bit-field, or memory-mapped registers unrelated to the one being updated. ! In some cases, such as when the 'packed' attribute is applied to a structure field, it may not be possible to access the field with a single read or write that is correctly aligned for the target machine. In this case GCC falls back to generating multiple ! accesses rather than code that will fault or truncate the result at ! run time. ! Note: Due to restrictions of the C/C++11 memory model, write accesses are not allowed to touch non bit-field members. It is therefore recommended to define all bits of the field's type as bit-field members. --- 21064,21077 ---- any portion of the bit-field, or memory-mapped registers unrelated to the one being updated. ! In some cases, such as when the `packed' attribute is applied to a structure field, it may not be possible to access the field with a single read or write that is correctly aligned for the target machine. In this case GCC falls back to generating multiple ! accesses rather than code that will fault or truncate the result ! at run time. ! Note: Due to restrictions of the C/C++11 memory model, write accesses are not allowed to touch non bit-field members. It is therefore recommended to define all bits of the field's type as bit-field members. *************** form by either removing 'no-' or adding *** 20949,20962 **** The default value of this option is determined by the application binary interface for the target processor. ! '-fsync-libcalls' This option controls whether any out-of-line instance of the ! '__sync' family of functions may be used to implement the C++11 ! '__atomic' family of functions. The default value of this option is enabled, thus the only useful ! form of the option is '-fno-sync-libcalls'. This option is used in ! the implementation of the 'libatomic' runtime library.  File: gcc.info, Node: Environment Variables, Next: Precompiled Headers, Prev: Code Gen Options, Up: Invoking GCC --- 21079,21093 ---- The default value of this option is determined by the application binary interface for the target processor. ! `-fsync-libcalls' This option controls whether any out-of-line instance of the ! `__sync' family of functions may be used to implement the C++11 ! `__atomic' family of functions. The default value of this option is enabled, thus the only useful ! form of the option is `-fno-sync-libcalls'. This option is used in ! the implementation of the `libatomic' runtime library. !  File: gcc.info, Node: Environment Variables, Next: Precompiled Headers, Prev: Code Gen Options, Up: Invoking GCC *************** File: gcc.info, Node: Environment Varia *** 20966,21138 **** This section describes several environment variables that affect how GCC operates. Some of them work by specifying directories or prefixes to ! use when searching for various kinds of files. Some are used to specify ! other aspects of the compilation environment. Note that you can also specify places to search using options such as ! '-B', '-I' and '-L' (*note Directory Options::). These take precedence over places specified using environment variables, which in turn take precedence over those specified by the configuration of GCC. *Note ! Controlling the Compilation Driver 'gcc': (gccint)Driver. ! 'LANG' ! 'LC_CTYPE' ! 'LC_MESSAGES' ! 'LC_ALL' These environment variables control the way that GCC uses localization information which allows GCC to work with different national conventions. GCC inspects the locale categories ! 'LC_CTYPE' and 'LC_MESSAGES' if it has been configured to do so. These locale categories can be set to any value supported by your ! installation. A typical value is 'en_GB.UTF-8' for English in the United Kingdom encoded in UTF-8. ! The 'LC_CTYPE' environment variable specifies character classification. GCC uses it to determine the character boundaries in a string; this is needed for some multibyte encodings that contain quote and escape characters that are otherwise interpreted as a string end or escape. ! The 'LC_MESSAGES' environment variable specifies the language to use in diagnostic messages. ! If the 'LC_ALL' environment variable is set, it overrides the value ! of 'LC_CTYPE' and 'LC_MESSAGES'; otherwise, 'LC_CTYPE' and ! 'LC_MESSAGES' default to the value of the 'LANG' environment variable. If none of these variables are set, GCC defaults to traditional C English behavior. ! 'TMPDIR' ! If 'TMPDIR' is set, it specifies the directory to use for temporary files. GCC uses temporary files to hold the output of one stage of compilation which is to be used as input to the next stage: for example, the output of the preprocessor, which is the input to the compiler proper. ! 'GCC_COMPARE_DEBUG' ! Setting 'GCC_COMPARE_DEBUG' is nearly equivalent to passing ! '-fcompare-debug' to the compiler driver. See the documentation of ! this option for more details. ! 'GCC_EXEC_PREFIX' ! If 'GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the names of the subprograms executed by the compiler. No slash is added when this prefix is combined with the name of a subprogram, but you can specify a prefix that ends with a slash if you wish. ! If 'GCC_EXEC_PREFIX' is not set, GCC attempts to figure out an appropriate prefix to use based on the pathname it is invoked with. If GCC cannot find the subprogram using the specified prefix, it tries looking in the usual places for the subprogram. ! The default value of 'GCC_EXEC_PREFIX' is 'PREFIX/lib/gcc/' where ! PREFIX is the prefix to the installed compiler. In many cases ! PREFIX is the value of 'prefix' when you ran the 'configure' script. ! Other prefixes specified with '-B' take precedence over this prefix. ! This prefix is also used for finding files such as 'crt0.o' that are used for linking. In addition, the prefix is used in an unusual way in finding the directories to search for header files. For each of the standard ! directories whose name normally begins with '/usr/local/lib/gcc' ! (more precisely, with the value of 'GCC_INCLUDE_DIR'), GCC tries replacing that beginning with the specified prefix to produce an ! alternate directory name. Thus, with '-Bfoo/', GCC searches ! 'foo/bar' just before it searches the standard directory ! '/usr/local/lib/bar'. If a standard directory begins with the configured PREFIX then the value of PREFIX is replaced by ! 'GCC_EXEC_PREFIX' when looking for header files. ! 'COMPILER_PATH' ! The value of 'COMPILER_PATH' is a colon-separated list of ! directories, much like 'PATH'. GCC tries the directories thus specified when searching for subprograms, if it can't find the ! subprograms using 'GCC_EXEC_PREFIX'. ! 'LIBRARY_PATH' ! The value of 'LIBRARY_PATH' is a colon-separated list of ! directories, much like 'PATH'. When configured as a native compiler, GCC tries the directories thus specified when searching for special linker files, if it can't find them using ! 'GCC_EXEC_PREFIX'. Linking using GCC also uses these directories ! when searching for ordinary libraries for the '-l' option (but ! directories specified with '-L' come first). ! 'LANG' This variable is used to pass locale information to the compiler. One way in which this information is used is to determine the character set to be used when character literals, string literals and comments are parsed in C and C++. When the compiler is configured to allow multibyte characters, the following values for ! 'LANG' are recognized: ! 'C-JIS' Recognize JIS characters. ! 'C-SJIS' Recognize SJIS characters. ! 'C-EUCJP' Recognize EUCJP characters. ! If 'LANG' is not defined, or if it has some other value, then the ! compiler uses 'mblen' and 'mbtowc' as defined by the default locale ! to recognize and translate multibyte characters. Some additional environment variables affect the behavior of the preprocessor. ! 'CPATH' ! 'C_INCLUDE_PATH' ! 'CPLUS_INCLUDE_PATH' ! 'OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like 'PATH', in which to look for header ! files. The special character, 'PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! 'CPATH' specifies a list of directories to be searched as if ! specified with '-I', but after any paths given with '-I' options on ! the command line. This environment variable is used regardless of ! which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with '-isystem', but ! after any paths given with '-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear at ! the beginning or end of a path. For instance, if the value of ! 'CPATH' is ':/special/include', that has the same effect as ! '-I. -I/special/include'. ! 'DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of 'DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form 'FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options '-MM' and '-MF' (*note Preprocessor ! Options::), with an optional '-MT' switch too. ! 'SUNPRO_DEPENDENCIES' ! This variable is the same as 'DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies '-M' ! rather than '-MM'. However, the dependence on the main input file ! is omitted. *Note Preprocessor Options::.  File: gcc.info, Node: Precompiled Headers, Prev: Environment Variables, Up: Invoking GCC --- 21097,21271 ---- This section describes several environment variables that affect how GCC operates. Some of them work by specifying directories or prefixes to ! use when searching for various kinds of files. Some are used to ! specify other aspects of the compilation environment. Note that you can also specify places to search using options such as ! `-B', `-I' and `-L' (*note Directory Options::). These take precedence over places specified using environment variables, which in turn take precedence over those specified by the configuration of GCC. *Note ! Controlling the Compilation Driver `gcc': (gccint)Driver. ! `LANG' ! `LC_CTYPE' ! `LC_MESSAGES' ! `LC_ALL' These environment variables control the way that GCC uses localization information which allows GCC to work with different national conventions. GCC inspects the locale categories ! `LC_CTYPE' and `LC_MESSAGES' if it has been configured to do so. These locale categories can be set to any value supported by your ! installation. A typical value is `en_GB.UTF-8' for English in the United Kingdom encoded in UTF-8. ! The `LC_CTYPE' environment variable specifies character classification. GCC uses it to determine the character boundaries in a string; this is needed for some multibyte encodings that contain quote and escape characters that are otherwise interpreted as a string end or escape. ! The `LC_MESSAGES' environment variable specifies the language to use in diagnostic messages. ! If the `LC_ALL' environment variable is set, it overrides the value ! of `LC_CTYPE' and `LC_MESSAGES'; otherwise, `LC_CTYPE' and ! `LC_MESSAGES' default to the value of the `LANG' environment variable. If none of these variables are set, GCC defaults to traditional C English behavior. ! `TMPDIR' ! If `TMPDIR' is set, it specifies the directory to use for temporary files. GCC uses temporary files to hold the output of one stage of compilation which is to be used as input to the next stage: for example, the output of the preprocessor, which is the input to the compiler proper. ! `GCC_COMPARE_DEBUG' ! Setting `GCC_COMPARE_DEBUG' is nearly equivalent to passing ! `-fcompare-debug' to the compiler driver. See the documentation ! of this option for more details. ! `GCC_EXEC_PREFIX' ! If `GCC_EXEC_PREFIX' is set, it specifies a prefix to use in the names of the subprograms executed by the compiler. No slash is added when this prefix is combined with the name of a subprogram, but you can specify a prefix that ends with a slash if you wish. ! If `GCC_EXEC_PREFIX' is not set, GCC attempts to figure out an appropriate prefix to use based on the pathname it is invoked with. If GCC cannot find the subprogram using the specified prefix, it tries looking in the usual places for the subprogram. ! The default value of `GCC_EXEC_PREFIX' is `PREFIX/lib/gcc/' where ! PREFIX is the prefix to the installed compiler. In many cases ! PREFIX is the value of `prefix' when you ran the `configure' script. ! Other prefixes specified with `-B' take precedence over this prefix. ! This prefix is also used for finding files such as `crt0.o' that are used for linking. In addition, the prefix is used in an unusual way in finding the directories to search for header files. For each of the standard ! directories whose name normally begins with `/usr/local/lib/gcc' ! (more precisely, with the value of `GCC_INCLUDE_DIR'), GCC tries replacing that beginning with the specified prefix to produce an ! alternate directory name. Thus, with `-Bfoo/', GCC searches ! `foo/bar' just before it searches the standard directory ! `/usr/local/lib/bar'. If a standard directory begins with the configured PREFIX then the value of PREFIX is replaced by ! `GCC_EXEC_PREFIX' when looking for header files. ! `COMPILER_PATH' ! The value of `COMPILER_PATH' is a colon-separated list of ! directories, much like `PATH'. GCC tries the directories thus specified when searching for subprograms, if it can't find the ! subprograms using `GCC_EXEC_PREFIX'. ! `LIBRARY_PATH' ! The value of `LIBRARY_PATH' is a colon-separated list of ! directories, much like `PATH'. When configured as a native compiler, GCC tries the directories thus specified when searching for special linker files, if it can't find them using ! `GCC_EXEC_PREFIX'. Linking using GCC also uses these directories ! when searching for ordinary libraries for the `-l' option (but ! directories specified with `-L' come first). ! `LANG' This variable is used to pass locale information to the compiler. One way in which this information is used is to determine the character set to be used when character literals, string literals and comments are parsed in C and C++. When the compiler is configured to allow multibyte characters, the following values for ! `LANG' are recognized: ! `C-JIS' Recognize JIS characters. ! ! `C-SJIS' Recognize SJIS characters. ! ! `C-EUCJP' Recognize EUCJP characters. ! If `LANG' is not defined, or if it has some other value, then the ! compiler uses `mblen' and `mbtowc' as defined by the default ! locale to recognize and translate multibyte characters. Some additional environment variables affect the behavior of the preprocessor. ! `CPATH' ! `C_INCLUDE_PATH' ! `CPLUS_INCLUDE_PATH' ! `OBJC_INCLUDE_PATH' Each variable's value is a list of directories separated by a ! special character, much like `PATH', in which to look for header ! files. The special character, `PATH_SEPARATOR', is target-dependent and determined at GCC build time. For Microsoft Windows-based targets it is a semicolon, and for almost all other targets it is a colon. ! `CPATH' specifies a list of directories to be searched as if ! specified with `-I', but after any paths given with `-I' options ! on the command line. This environment variable is used regardless ! of which language is being preprocessed. The remaining environment variables apply only when preprocessing the particular language indicated. Each specifies a list of ! directories to be searched as if specified with `-isystem', but ! after any paths given with `-isystem' options on the command line. In all these variables, an empty element instructs the compiler to ! search its current working directory. Empty elements can appear ! at the beginning or end of a path. For instance, if the value of ! `CPATH' is `:/special/include', that has the same effect as ! `-I. -I/special/include'. ! `DEPENDENCIES_OUTPUT' If this variable is set, its value specifies how to output dependencies for Make based on the non-system header files processed by the compiler. System header files are ignored in the dependency output. ! The value of `DEPENDENCIES_OUTPUT' can be just a file name, in which case the Make rules are written to that file, guessing the target name from the source file name. Or the value can have the ! form `FILE TARGET', in which case the rules are written to file FILE using TARGET as the target name. In other words, this environment variable is equivalent to ! combining the options `-MM' and `-MF' (*note Preprocessor ! Options::), with an optional `-MT' switch too. ! `SUNPRO_DEPENDENCIES' ! This variable is the same as `DEPENDENCIES_OUTPUT' (see above), ! except that system header files are not ignored, so it implies ! `-M' rather than `-MM'. However, the dependence on the main input ! file is omitted. *Note Preprocessor Options::.  File: gcc.info, Node: Precompiled Headers, Prev: Environment Variables, Up: Invoking GCC *************** build the project. To make builds faste *** 21147,21191 **** "precompile" a header file. To create a precompiled header file, simply compile it as you would any ! other file, if necessary using the '-x' option to make the driver treat ! it as a C or C++ header file. You may want to use a tool like 'make' to ! keep the precompiled header up-to-date when the headers it contains change. ! A precompiled header file is searched for when '#include' is seen in the compilation. As it searches for the included file (*note Search Path: (cpp)Search Path.) the compiler looks for a precompiled header in each directory just before it looks for the include file in that directory. The name searched for is the name specified in the ! '#include' with '.gch' appended. If the precompiled header file can't be used, it is ignored. ! For instance, if you have '#include "all.h"', and you have 'all.h.gch' ! in the same directory as 'all.h', then the precompiled header file is used if possible, and the original header is used otherwise. Alternatively, you might decide to put the precompiled header file in a ! directory and use '-I' to ensure that directory is searched before (or instead of) the directory containing the original header. Then, if you want to check that the precompiled header file is always used, you can put a file of the same name as the original header in this directory ! containing an '#error' command. ! This also works with '-include'. So yet another way to use precompiled ! headers, good for projects not designed with precompiled header files in ! mind, is to simply take most of the header files used by a project, ! include them from another header file, precompile that header file, and ! '-include' the precompiled header. If the header files have guards ! against multiple inclusion, they are skipped because they've already ! been included (in the precompiled header). ! If you need to precompile the same header file for different languages, ! targets, or compiler options, you can instead make a _directory_ named ! like 'all.h.gch', and put each precompiled header in the directory, ! perhaps using '-o'. It doesn't matter what you call the files in the ! directory; every precompiled header in the directory is considered. The ! first precompiled header encountered in the directory that is valid for ! this compilation is used; they're searched in no particular order. There are many other possibilities, limited only by your imagination, good sense, and the constraints of your build system. --- 21280,21325 ---- "precompile" a header file. To create a precompiled header file, simply compile it as you would any ! other file, if necessary using the `-x' option to make the driver treat ! it as a C or C++ header file. You may want to use a tool like `make' ! to keep the precompiled header up-to-date when the headers it contains change. ! A precompiled header file is searched for when `#include' is seen in the compilation. As it searches for the included file (*note Search Path: (cpp)Search Path.) the compiler looks for a precompiled header in each directory just before it looks for the include file in that directory. The name searched for is the name specified in the ! `#include' with `.gch' appended. If the precompiled header file can't be used, it is ignored. ! For instance, if you have `#include "all.h"', and you have `all.h.gch' ! in the same directory as `all.h', then the precompiled header file is used if possible, and the original header is used otherwise. Alternatively, you might decide to put the precompiled header file in a ! directory and use `-I' to ensure that directory is searched before (or instead of) the directory containing the original header. Then, if you want to check that the precompiled header file is always used, you can put a file of the same name as the original header in this directory ! containing an `#error' command. ! This also works with `-include'. So yet another way to use ! precompiled headers, good for projects not designed with precompiled ! header files in mind, is to simply take most of the header files used by ! a project, include them from another header file, precompile that header ! file, and `-include' the precompiled header. If the header files have ! guards against multiple inclusion, they are skipped because they've ! already been included (in the precompiled header). ! If you need to precompile the same header file for different ! languages, targets, or compiler options, you can instead make a ! _directory_ named like `all.h.gch', and put each precompiled header in ! the directory, perhaps using `-o'. It doesn't matter what you call the ! files in the directory; every precompiled header in the directory is ! considered. The first precompiled header encountered in the directory ! that is valid for this compilation is used; they're searched in no ! particular order. There are many other possibilities, limited only by your imagination, good sense, and the constraints of your build system. *************** good sense, and the constraints of your *** 21212,21229 **** usually means that they don't appear in the precompiled header at all. ! The '-D' option is one way to define a macro before a precompiled ! header is included; using a '#define' can also do it. There are ! also some options that define macros implicitly, like '-O' and ! '-Wdeprecated'; the same rule applies to macros defined this way. * If debugging information is output when using the precompiled ! header, using '-g' or similar, the same kind of debugging information must have been output when building the precompiled ! header. However, a precompiled header built using '-g' can be used ! in a compilation when no debugging information is being output. ! * The same '-m' options must generally be used when building and using the precompiled header. *Note Submodel Options::, for any cases where this rule is relaxed. --- 21346,21364 ---- usually means that they don't appear in the precompiled header at all. ! The `-D' option is one way to define a macro before a precompiled ! header is included; using a `#define' can also do it. There are ! also some options that define macros implicitly, like `-O' and ! `-Wdeprecated'; the same rule applies to macros defined this way. * If debugging information is output when using the precompiled ! header, using `-g' or similar, the same kind of debugging information must have been output when building the precompiled ! header. However, a precompiled header built using `-g' can be ! used in a compilation when no debugging information is being ! output. ! * The same `-m' options must generally be used when building and using the precompiled header. *Note Submodel Options::, for any cases where this rule is relaxed. *************** good sense, and the constraints of your *** 21232,21249 **** -fexceptions ! * Some other command-line options starting with '-f', '-p', or '-O' must be defined in the same way as when the precompiled header was generated. At present, it's not clear which options are safe to change and which are not; the safest choice is to use exactly the ! same options when generating and using the precompiled header. The ! following are known to be safe: -fmessage-length= -fpreprocessed -fsched-interblock -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous -fsched-verbose=NUMBER -fschedule-insns -fvisibility= -pedantic-errors For all of these except the last, the compiler automatically ignores the precompiled header if the conditions aren't met. If you find an option combination that doesn't work and doesn't cause the precompiled --- 21367,21385 ---- -fexceptions ! * Some other command-line options starting with `-f', `-p', or `-O' must be defined in the same way as when the precompiled header was generated. At present, it's not clear which options are safe to change and which are not; the safest choice is to use exactly the ! same options when generating and using the precompiled header. ! The following are known to be safe: -fmessage-length= -fpreprocessed -fsched-interblock -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous -fsched-verbose=NUMBER -fschedule-insns -fvisibility= -pedantic-errors + For all of these except the last, the compiler automatically ignores the precompiled header if the conditions aren't met. If you find an option combination that doesn't work and doesn't cause the precompiled *************** header to be ignored, please consider fi *** 21251,21260 **** Bugs::. If you do use differing options when generating and using the ! precompiled header, the actual behavior is a mixture of the behavior for ! the options. For instance, if you use '-g' to generate the precompiled ! header but not when using it, you may or may not get debugging ! information for routines in the precompiled header.  File: gcc.info, Node: C Implementation, Next: C++ Implementation, Prev: Invoking GCC, Up: Top --- 21387,21396 ---- Bugs::. If you do use differing options when generating and using the ! precompiled header, the actual behavior is a mixture of the behavior ! for the options. For instance, if you use `-g' to generate the ! precompiled header but not when using it, you may or may not get ! debugging information for routines in the precompiled header.  File: gcc.info, Node: C Implementation, Next: C++ Implementation, Prev: Invoking GCC, Up: Top *************** version of the standard. *** 21272,21283 **** Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and . Some choices are ! documented in the preprocessor manual. *Note Implementation-defined ! behavior: (cpp)Implementation-defined behavior. Some choices are made ! by the library and operating system (or other environment when compiling ! for a freestanding environment); refer to their documentation for ! details. * Menu: --- 21408,21419 ---- Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and `http://gcc.gnu.org/readings.html'. Some choices ! are documented in the preprocessor manual. *Note ! Implementation-defined behavior: (cpp)Implementation-defined behavior. ! Some choices are made by the library and operating system (or other ! environment when compiling for a freestanding environment); refer to ! their documentation for details. * Menu: *************** File: gcc.info, Node: Translation imple *** 21304,21321 **** 4.1 Translation =============== ! * 'How a diagnostic is identified (C90 3.7, C99 and C11 3.10, C90, C99 and C11 5.1.1.3).' Diagnostics consist of all the output sent to stderr by GCC. ! * 'Whether each nonempty sequence of white-space characters other than new-line is retained or replaced by one space character in translation phase 3 (C90, C99 and C11 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior.  File: gcc.info, Node: Environment implementation, Next: Identifiers implementation, Prev: Translation implementation, Up: C Implementation --- 21440,21458 ---- 4.1 Translation =============== ! * `How a diagnostic is identified (C90 3.7, C99 and C11 3.10, C90, C99 and C11 5.1.1.3).' Diagnostics consist of all the output sent to stderr by GCC. ! * `Whether each nonempty sequence of white-space characters other than new-line is retained or replaced by one space character in translation phase 3 (C90, C99 and C11 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. +  File: gcc.info, Node: Environment implementation, Next: Identifiers implementation, Prev: Translation implementation, Up: C Implementation *************** File: gcc.info, Node: Environment imple *** 21325,21459 **** The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * 'The mapping between physical source file multibyte characters and the source character set in translation phase 1 (C90, C99 and C11 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior.  File: gcc.info, Node: Identifiers implementation, Next: Characters implementation, Prev: Environment implementation, Up: C Implementation 4.3 Identifiers =============== ! * 'Which additional multibyte characters may appear in identifiers and their correspondence to universal character names (C99 and C11 6.4.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The number of significant initial characters in an identifier (C90 ! 6.1.2, C90, C99 and C11 5.2.4.1, C99 and C11 6.4.2).' For internal names, all characters are significant. For external names, the number of significant characters are defined by the linker; for almost all targets, all characters are significant. ! * 'Whether case distinctions are significant in an identifier with external linkage (C90 6.1.2).' This is a property of the linker. C99 and C11 require that case distinctions are always significant in identifiers with external linkage and systems without this property are not supported by GCC.  File: gcc.info, Node: Characters implementation, Next: Integers implementation, Prev: Identifiers implementation, Up: C Implementation 4.4 Characters ============== ! * 'The number of bits in a byte (C90 3.4, C99 and C11 3.6).' Determined by ABI. ! * 'The values of the members of the execution character set (C90, C99 ! and C11 5.2.1).' Determined by ABI. ! * 'The unique value of the member of the execution character set ! produced for each of the standard alphabetic escape sequences (C90, ! C99 and C11 5.2.2).' Determined by ABI. ! * 'The value of a 'char' object into which has been stored any character other than a member of the basic execution character set (C90 6.1.2.5, C99 and C11 6.2.5).' Determined by ABI. ! * 'Which of 'signed char' or 'unsigned char' has the same range, ! representation, and behavior as "plain" 'char' (C90 6.1.2.5, C90 6.2.1.1, C99 and C11 6.2.5, C99 and C11 6.3.1.1).' ! Determined by ABI. The options '-funsigned-char' and ! '-fsigned-char' change the default. *Note Options Controlling C Dialect: C Dialect Options. ! * 'The mapping of members of the source character set (in character constants and string literals) to members of the execution character set (C90 6.1.3.4, C99 and C11 6.4.4.4, C90, C99 and C11 5.1.1.2).' Determined by ABI. ! * 'The value of an integer character constant containing more than one character or containing a character or escape sequence that ! does not map to a single-byte execution character (C90 6.1.3.4, C99 ! and C11 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The value of a wide character constant containing more than one multibyte character or a single multibyte character that maps to multiple members of the extended execution character set, or ! containing a multibyte character or escape sequence not represented ! in the extended execution character set (C90 6.1.3.4, C99 and C11 ! 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The current locale used to convert a wide character constant ! consisting of a single multibyte character that maps to a member of ! the extended execution character set into a corresponding wide character code (C90 6.1.3.4, C99 and C11 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment of the resulting multibyte character sequence (C11 6.4.5).' Such tokens may not be concatenated. ! * 'The current locale used to convert a wide string literal into corresponding wide character codes (C90 6.1.4, C99 and C11 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The value of a string literal containing a multibyte character or ! escape sequence not represented in the execution character set (C90 ! 6.1.4, C99 and C11 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * 'The encoding of any of 'wchar_t', 'char16_t', and 'char32_t' where ! the corresponding standard encoding macro ('__STDC_ISO_10646__', ! '__STDC_UTF_16__', or '__STDC_UTF_32__') is not defined (C11 ! 6.10.8.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined ! behavior. 'char16_t' and 'char32_t' literals are always encoded in ! UTF-16 and UTF-32 respectively.  File: gcc.info, Node: Integers implementation, Next: Floating point implementation, Prev: Characters implementation, Up: C Implementation --- 21462,21599 ---- The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * `The mapping between physical source file multibyte characters and the source character set in translation phase 1 (C90, C99 and C11 5.1.1.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. +  File: gcc.info, Node: Identifiers implementation, Next: Characters implementation, Prev: Environment implementation, Up: C Implementation 4.3 Identifiers =============== ! * `Which additional multibyte characters may appear in identifiers and their correspondence to universal character names (C99 and C11 6.4.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The number of significant initial characters in an identifier ! (C90 6.1.2, C90, C99 and C11 5.2.4.1, C99 and C11 6.4.2).' For internal names, all characters are significant. For external names, the number of significant characters are defined by the linker; for almost all targets, all characters are significant. ! * `Whether case distinctions are significant in an identifier with external linkage (C90 6.1.2).' This is a property of the linker. C99 and C11 require that case distinctions are always significant in identifiers with external linkage and systems without this property are not supported by GCC. +  File: gcc.info, Node: Characters implementation, Next: Integers implementation, Prev: Identifiers implementation, Up: C Implementation 4.4 Characters ============== ! * `The number of bits in a byte (C90 3.4, C99 and C11 3.6).' Determined by ABI. ! * `The values of the members of the execution character set (C90, ! C99 and C11 5.2.1).' Determined by ABI. ! * `The unique value of the member of the execution character set ! produced for each of the standard alphabetic escape sequences ! (C90, C99 and C11 5.2.2).' Determined by ABI. ! * `The value of a `char' object into which has been stored any character other than a member of the basic execution character set (C90 6.1.2.5, C99 and C11 6.2.5).' Determined by ABI. ! * `Which of `signed char' or `unsigned char' has the same range, ! representation, and behavior as "plain" `char' (C90 6.1.2.5, C90 6.2.1.1, C99 and C11 6.2.5, C99 and C11 6.3.1.1).' ! Determined by ABI. The options `-funsigned-char' and ! `-fsigned-char' change the default. *Note Options Controlling C Dialect: C Dialect Options. ! * `The mapping of members of the source character set (in character constants and string literals) to members of the execution character set (C90 6.1.3.4, C99 and C11 6.4.4.4, C90, C99 and C11 5.1.1.2).' Determined by ABI. ! * `The value of an integer character constant containing more than one character or containing a character or escape sequence that ! does not map to a single-byte execution character (C90 6.1.3.4, ! C99 and C11 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The value of a wide character constant containing more than one multibyte character or a single multibyte character that maps to multiple members of the extended execution character set, or ! containing a multibyte character or escape sequence not ! represented in the extended execution character set (C90 6.1.3.4, ! C99 and C11 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The current locale used to convert a wide character constant ! consisting of a single multibyte character that maps to a member ! of the extended execution character set into a corresponding wide character code (C90 6.1.3.4, C99 and C11 6.4.4.4).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the treatment of the resulting multibyte character sequence (C11 6.4.5).' Such tokens may not be concatenated. ! * `The current locale used to convert a wide string literal into corresponding wide character codes (C90 6.1.4, C99 and C11 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The value of a string literal containing a multibyte character or ! escape sequence not represented in the execution character set ! (C90 6.1.4, C99 and C11 6.4.5).' *Note Implementation-defined behavior: (cpp)Implementation-defined behavior. ! * `The encoding of any of `wchar_t', `char16_t', and `char32_t' ! where the corresponding standard encoding macro ! (`__STDC_ISO_10646__', `__STDC_UTF_16__', or `__STDC_UTF_32__') is ! not defined (C11 6.10.8.2).' *Note Implementation-defined behavior: (cpp)Implementation-defined ! behavior. `char16_t' and `char32_t' literals are always encoded ! in UTF-16 and UTF-32 respectively. !  File: gcc.info, Node: Integers implementation, Next: Floating point implementation, Prev: Characters implementation, Up: C Implementation *************** File: gcc.info, Node: Integers implemen *** 21461,21472 **** 4.5 Integers ============ ! * 'Any extended integer types that exist in the implementation (C99 and C11 6.2.5).' GCC does not support any extended integer types. ! * 'Whether signed integer types are represented using sign and magnitude, two's complement, or one's complement, and whether the extraordinary value is a trap representation or an ordinary value (C99 and C11 6.2.6.2).' --- 21601,21612 ---- 4.5 Integers ============ ! * `Any extended integer types that exist in the implementation (C99 and C11 6.2.5).' GCC does not support any extended integer types. ! * `Whether signed integer types are represented using sign and magnitude, two's complement, or one's complement, and whether the extraordinary value is a trap representation or an ordinary value (C99 and C11 6.2.6.2).' *************** File: gcc.info, Node: Integers implemen *** 21474,21597 **** GCC supports only two's complement integer types, and all bit patterns are ordinary values. ! * 'The rank of any extended integer type relative to another extended integer type with the same precision (C99 and C11 6.3.1.1).' GCC does not support any extended integer types. ! * 'The result of, or the signal raised by, converting an integer to a signed integer type when the value cannot be represented in an object of that type (C90 6.2.1.2, C99 and C11 6.3.1.3).' For conversion to a type of width N, the value is reduced modulo 2^N to be within range of the type; no signal is raised. ! * 'The results of some bitwise operations on signed integers (C90 6.3, C99 and C11 6.5).' Bitwise operators act on the representation of the value including both the sign and value bits, where the sign bit is considered ! immediately above the highest-value value bit. Signed '>>' acts on ! negative numbers by sign extension. GCC does not use the latitude given in C99 and C11 only to treat ! certain aspects of signed '<<' as undefined, but this is subject to change. ! * 'The sign of the remainder on integer division (C90 6.3.5).' GCC always follows the C99 and C11 requirement that the result of division is truncated towards zero.  File: gcc.info, Node: Floating point implementation, Next: Arrays and pointers implementation, Prev: Integers implementation, Up: C Implementation 4.6 Floating point ================== ! * 'The accuracy of the floating-point operations and of the library ! functions in '' and '' that return floating-point results (C90, C99 and C11 5.2.4.2.2).' The accuracy is unknown. ! * 'The rounding behaviors characterized by non-standard values of ! 'FLT_ROUNDS' (C90, C99 and C11 5.2.4.2.2).' GCC does not use such values. ! * 'The evaluation methods characterized by non-standard negative ! values of 'FLT_EVAL_METHOD' (C99 and C11 5.2.4.2.2).' GCC does not use such values. ! * 'The direction of rounding when an integer is converted to a floating-point number that cannot exactly represent the original value (C90 6.2.1.3, C99 and C11 6.3.1.4).' C99 Annex F is followed. ! * 'The direction of rounding when a floating-point number is ! converted to a narrower floating-point number (C90 6.2.1.4, C99 and ! C11 6.3.1.5).' C99 Annex F is followed. ! * 'How the nearest representable value or the larger or smaller representable value immediately adjacent to the nearest representable value is chosen for certain floating constants (C90 6.1.3.1, C99 and C11 6.4.4.2).' C99 Annex F is followed. ! * 'Whether and how floating expressions are contracted when not ! disallowed by the 'FP_CONTRACT' pragma (C99 and C11 6.5).' ! Expressions are currently only contracted if '-ffp-contract=fast', ! '-funsafe-math-optimizations' or '-ffast-math' are used. This is subject to change. ! * 'The default state for the 'FENV_ACCESS' pragma (C99 and C11 7.6.1).' This pragma is not implemented, but the default is to "off" unless ! '-frounding-math' is used in which case it is "on". ! * 'Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro names (C99 and C11 7.6, C99 and C11 7.12).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * 'The default state for the 'FP_CONTRACT' pragma (C99 and C11 7.12.2).' This pragma is not implemented. Expressions are currently only ! contracted if '-ffp-contract=fast', '-funsafe-math-optimizations' ! or '-ffast-math' are used. This is subject to change. ! * 'Whether the "inexact" floating-point exception can be raised when the rounded result actually does equal the mathematical result in an IEC 60559 conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * 'Whether the "underflow" (and "inexact") floating-point exception ! can be raised when a result is tiny but not inexact in an IEC 60559 ! conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself.  File: gcc.info, Node: Arrays and pointers implementation, Next: Hints implementation, Prev: Floating point implementation, Up: C Implementation 4.7 Arrays and pointers ======================= ! * 'The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 and C11 6.3.2.3).' A cast from pointer to integer discards most-significant bits if --- 21614,21739 ---- GCC supports only two's complement integer types, and all bit patterns are ordinary values. ! * `The rank of any extended integer type relative to another extended integer type with the same precision (C99 and C11 6.3.1.1).' GCC does not support any extended integer types. ! * `The result of, or the signal raised by, converting an integer to a signed integer type when the value cannot be represented in an object of that type (C90 6.2.1.2, C99 and C11 6.3.1.3).' For conversion to a type of width N, the value is reduced modulo 2^N to be within range of the type; no signal is raised. ! * `The results of some bitwise operations on signed integers (C90 6.3, C99 and C11 6.5).' Bitwise operators act on the representation of the value including both the sign and value bits, where the sign bit is considered ! immediately above the highest-value value bit. Signed `>>' acts ! on negative numbers by sign extension. GCC does not use the latitude given in C99 and C11 only to treat ! certain aspects of signed `<<' as undefined, but this is subject to change. ! * `The sign of the remainder on integer division (C90 6.3.5).' GCC always follows the C99 and C11 requirement that the result of division is truncated towards zero. +  File: gcc.info, Node: Floating point implementation, Next: Arrays and pointers implementation, Prev: Integers implementation, Up: C Implementation 4.6 Floating point ================== ! * `The accuracy of the floating-point operations and of the library ! functions in `' and `' that return floating-point results (C90, C99 and C11 5.2.4.2.2).' The accuracy is unknown. ! * `The rounding behaviors characterized by non-standard values of ! `FLT_ROUNDS' (C90, C99 and C11 5.2.4.2.2).' GCC does not use such values. ! * `The evaluation methods characterized by non-standard negative ! values of `FLT_EVAL_METHOD' (C99 and C11 5.2.4.2.2).' GCC does not use such values. ! * `The direction of rounding when an integer is converted to a floating-point number that cannot exactly represent the original value (C90 6.2.1.3, C99 and C11 6.3.1.4).' C99 Annex F is followed. ! * `The direction of rounding when a floating-point number is ! converted to a narrower floating-point number (C90 6.2.1.4, C99 ! and C11 6.3.1.5).' C99 Annex F is followed. ! * `How the nearest representable value or the larger or smaller representable value immediately adjacent to the nearest representable value is chosen for certain floating constants (C90 6.1.3.1, C99 and C11 6.4.4.2).' C99 Annex F is followed. ! * `Whether and how floating expressions are contracted when not ! disallowed by the `FP_CONTRACT' pragma (C99 and C11 6.5).' ! Expressions are currently only contracted if `-ffp-contract=fast', ! `-funsafe-math-optimizations' or `-ffast-math' are used. This is subject to change. ! * `The default state for the `FENV_ACCESS' pragma (C99 and C11 7.6.1).' This pragma is not implemented, but the default is to "off" unless ! `-frounding-math' is used in which case it is "on". ! * `Additional floating-point exceptions, rounding modes, environments, and classifications, and their macro names (C99 and C11 7.6, C99 and C11 7.12).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * `The default state for the `FP_CONTRACT' pragma (C99 and C11 7.12.2).' This pragma is not implemented. Expressions are currently only ! contracted if `-ffp-contract=fast', `-funsafe-math-optimizations' ! or `-ffast-math' are used. This is subject to change. ! * `Whether the "inexact" floating-point exception can be raised when the rounded result actually does equal the mathematical result in an IEC 60559 conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself. ! * `Whether the "underflow" (and "inexact") floating-point exception ! can be raised when a result is tiny but not inexact in an IEC ! 60559 conformant implementation (C99 F.9).' This is dependent on the implementation of the C library, and is not defined by GCC itself. +  File: gcc.info, Node: Arrays and pointers implementation, Next: Hints implementation, Prev: Floating point implementation, Up: C Implementation 4.7 Arrays and pointers ======================= ! * `The result of converting a pointer to an integer or vice versa (C90 6.3.4, C99 and C11 6.3.2.3).' A cast from pointer to integer discards most-significant bits if *************** File: gcc.info, Node: Arrays and pointe *** 21611,21626 **** integer arithmetic to avoid the undefined behavior of pointer arithmetic as proscribed in C99 and C11 6.5.6/8. ! * 'The size of the result of subtracting two pointers to elements of the same array (C90 6.3.6, C99 and C11 6.5.6).' The value is as specified in the standard and the type is determined by the ABI. - ---------- Footnotes ---------- ! (1) Future versions of GCC may zero-extend, or use a target-defined ! 'ptr_extend' pattern. Do not rely on sign extension.  File: gcc.info, Node: Hints implementation, Next: Structures unions enumerations and bit-fields implementation, Prev: Arrays and pointers implementation, Up: C Implementation --- 21753,21769 ---- integer arithmetic to avoid the undefined behavior of pointer arithmetic as proscribed in C99 and C11 6.5.6/8. ! * `The size of the result of subtracting two pointers to elements of the same array (C90 6.3.6, C99 and C11 6.5.6).' The value is as specified in the standard and the type is determined by the ABI. ! ---------- Footnotes ---------- ! ! (1) Future versions of GCC may zero-extend, or use a target-defined ! `ptr_extend' pattern. Do not rely on sign extension.  File: gcc.info, Node: Hints implementation, Next: Structures unions enumerations and bit-fields implementation, Prev: Arrays and pointers implementation, Up: C Implementation *************** File: gcc.info, Node: Hints implementat *** 21628,21718 **** 4.8 Hints ========= ! * 'The extent to which suggestions made by using the 'register' storage-class specifier are effective (C90 6.5.1, C99 and C11 6.7.1).' ! The 'register' specifier affects code generation only in these ways: * When used as part of the register variable extension, see *note Explicit Reg Vars::. ! * When '-O0' is in use, the compiler allocates distinct stack ! memory for all variables that do not have the 'register' ! storage-class specifier; if 'register' is specified, the variable may have a shorter lifespan than the code would indicate and may never be placed in memory. ! * On some rare x86 targets, 'setjmp' doesn't save the registers in all circumstances. In those cases, GCC doesn't allocate ! any variables in registers unless they are marked 'register'. ! * 'The extent to which suggestions made by using the inline function specifier are effective (C99 and C11 6.7.4).' ! GCC will not inline any functions if the '-fno-inline' option is ! used or if '-O0' is used. Otherwise, GCC may still be unable to ! inline a function for many reasons; the '-Winline' option may be used to determine if a function has not been inlined and why not.  File: gcc.info, Node: Structures unions enumerations and bit-fields implementation, Next: Qualifiers implementation, Prev: Hints implementation, Up: C Implementation 4.9 Structures, unions, enumerations, and bit-fields ==================================================== ! * 'A member of a union object is accessed using a member of a different type (C90 6.3.2.3).' The relevant bytes of the representation of the object are treated as an object of the type used for the access. *Note Type-punning::. This may be a trap representation. ! * 'Whether a "plain" 'int' bit-field is treated as a 'signed int' ! bit-field or as an 'unsigned int' bit-field (C90 6.5.2, C90 6.5.2.1, C99 and C11 6.7.2, C99 and C11 6.7.2.1).' ! By default it is treated as 'signed int' but this may be changed by ! the '-funsigned-bitfields' option. ! * 'Allowable bit-field types other than '_Bool', 'signed int', and ! 'unsigned int' (C99 and C11 6.7.2.1).' ! Other integer types, such as 'long int', and enumerated types are permitted even in strictly conforming mode. ! * 'Whether atomic types are permitted for bit-fields (C11 6.7.2.1).' Atomic types are not permitted for bit-fields. ! * 'Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 and C11 6.7.2.1).' Determined by ABI. ! * 'The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 and C11 6.7.2.1).' Determined by ABI. ! * 'The alignment of non-bit-field members of structures (C90 6.5.2.1, ! C99 and C11 6.7.2.1).' Determined by ABI. ! * 'The integer type compatible with each enumerated type (C90 6.5.2.2, C99 and C11 6.7.2.2).' ! Normally, the type is 'unsigned int' if there are no negative ! values in the enumeration, otherwise 'int'. If '-fshort-enums' is specified, then if there are negative values it is the first of ! 'signed char', 'short' and 'int' that can represent all the values, ! otherwise it is the first of 'unsigned char', 'unsigned short' and ! 'unsigned int' that can represent all the values. - On some targets, '-fshort-enums' is the default; this is determined - by the ABI.  File: gcc.info, Node: Qualifiers implementation, Next: Declarators implementation, Prev: Structures unions enumerations and bit-fields implementation, Up: C Implementation --- 21771,21864 ---- 4.8 Hints ========= ! * `The extent to which suggestions made by using the `register' storage-class specifier are effective (C90 6.5.1, C99 and C11 6.7.1).' ! The `register' specifier affects code generation only in these ways: * When used as part of the register variable extension, see *note Explicit Reg Vars::. ! * When `-O0' is in use, the compiler allocates distinct stack ! memory for all variables that do not have the `register' ! storage-class specifier; if `register' is specified, the variable may have a shorter lifespan than the code would indicate and may never be placed in memory. ! * On some rare x86 targets, `setjmp' doesn't save the registers in all circumstances. In those cases, GCC doesn't allocate ! any variables in registers unless they are marked `register'. ! ! * `The extent to which suggestions made by using the inline function specifier are effective (C99 and C11 6.7.4).' ! GCC will not inline any functions if the `-fno-inline' option is ! used or if `-O0' is used. Otherwise, GCC may still be unable to ! inline a function for many reasons; the `-Winline' option may be used to determine if a function has not been inlined and why not. +  File: gcc.info, Node: Structures unions enumerations and bit-fields implementation, Next: Qualifiers implementation, Prev: Hints implementation, Up: C Implementation 4.9 Structures, unions, enumerations, and bit-fields ==================================================== ! * `A member of a union object is accessed using a member of a different type (C90 6.3.2.3).' The relevant bytes of the representation of the object are treated as an object of the type used for the access. *Note Type-punning::. This may be a trap representation. ! * `Whether a "plain" `int' bit-field is treated as a `signed int' ! bit-field or as an `unsigned int' bit-field (C90 6.5.2, C90 6.5.2.1, C99 and C11 6.7.2, C99 and C11 6.7.2.1).' ! By default it is treated as `signed int' but this may be changed ! by the `-funsigned-bitfields' option. ! * `Allowable bit-field types other than `_Bool', `signed int', and ! `unsigned int' (C99 and C11 6.7.2.1).' ! Other integer types, such as `long int', and enumerated types are permitted even in strictly conforming mode. ! * `Whether atomic types are permitted for bit-fields (C11 6.7.2.1).' Atomic types are not permitted for bit-fields. ! * `Whether a bit-field can straddle a storage-unit boundary (C90 6.5.2.1, C99 and C11 6.7.2.1).' Determined by ABI. ! * `The order of allocation of bit-fields within a unit (C90 6.5.2.1, C99 and C11 6.7.2.1).' Determined by ABI. ! * `The alignment of non-bit-field members of structures (C90 ! 6.5.2.1, C99 and C11 6.7.2.1).' Determined by ABI. ! * `The integer type compatible with each enumerated type (C90 6.5.2.2, C99 and C11 6.7.2.2).' ! Normally, the type is `unsigned int' if there are no negative ! values in the enumeration, otherwise `int'. If `-fshort-enums' is specified, then if there are negative values it is the first of ! `signed char', `short' and `int' that can represent all the ! values, otherwise it is the first of `unsigned char', `unsigned ! short' and `unsigned int' that can represent all the values. ! ! On some targets, `-fshort-enums' is the default; this is ! determined by the ABI.  File: gcc.info, Node: Qualifiers implementation, Next: Declarators implementation, Prev: Structures unions enumerations and bit-fields implementation, Up: C Implementation *************** File: gcc.info, Node: Qualifiers implem *** 21720,21731 **** 4.10 Qualifiers =============== ! * 'What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99 and C11 6.7.3).' Such an object is normally accessed by pointers and used for ! accessing hardware. In most expressions, it is intuitively obvious ! what is a read and what is a write. For example volatile int *dst = SOMEVALUE; volatile int *src = SOMEOTHERVALUE; --- 21866,21877 ---- 4.10 Qualifiers =============== ! * `What constitutes an access to an object that has volatile-qualified type (C90 6.5.3, C99 and C11 6.7.3).' Such an object is normally accessed by pointers and used for ! accessing hardware. In most expressions, it is intuitively ! obvious what is a read and what is a write. For example volatile int *dst = SOMEVALUE; volatile int *src = SOMEOTHERVALUE; *************** File: gcc.info, Node: Qualifiers implem *** 21734,21740 **** will cause a read of the volatile object pointed to by SRC and store the value into the volatile object pointed to by DST. There is no guarantee that these reads and writes are atomic, especially ! for objects larger than 'int'. However, if the volatile storage is not being modified, and the value of the volatile storage is not used, then the situation is --- 21880,21886 ---- will cause a read of the volatile object pointed to by SRC and store the value into the volatile object pointed to by DST. There is no guarantee that these reads and writes are atomic, especially ! for objects larger than `int'. However, if the volatile storage is not being modified, and the value of the volatile storage is not used, then the situation is *************** File: gcc.info, Node: Qualifiers implem *** 21744,21750 **** *src; According to the C standard, such an expression is an rvalue whose ! type is the unqualified version of its original type, i.e. 'int'. Whether GCC interprets this as a read of the volatile object being pointed to or only as a request to evaluate the expression for its side-effects depends on this type. --- 21890,21896 ---- *src; According to the C standard, such an expression is an rvalue whose ! type is the unqualified version of its original type, i.e. `int'. Whether GCC interprets this as a read of the volatile object being pointed to or only as a request to evaluate the expression for its side-effects depends on this type. *************** File: gcc.info, Node: Qualifiers implem *** 21755,21782 **** by GCC as a read of the volatile object; in the other cases, the expression is only evaluated for its side-effects.  File: gcc.info, Node: Declarators implementation, Next: Statements implementation, Prev: Qualifiers implementation, Up: C Implementation 4.11 Declarators ================ ! * 'The maximum number of declarators that may modify an arithmetic, structure or union type (C90 6.5.4).' GCC is only limited by available memory.  File: gcc.info, Node: Statements implementation, Next: Preprocessing directives implementation, Prev: Declarators implementation, Up: C Implementation 4.12 Statements =============== ! * 'The maximum number of 'case' values in a 'switch' statement (C90 6.6.4.2).' GCC is only limited by available memory.  File: gcc.info, Node: Preprocessing directives implementation, Next: Library functions implementation, Prev: Statements implementation, Up: C Implementation --- 21901,21931 ---- by GCC as a read of the volatile object; in the other cases, the expression is only evaluated for its side-effects. +  File: gcc.info, Node: Declarators implementation, Next: Statements implementation, Prev: Qualifiers implementation, Up: C Implementation 4.11 Declarators ================ ! * `The maximum number of declarators that may modify an arithmetic, structure or union type (C90 6.5.4).' GCC is only limited by available memory. +  File: gcc.info, Node: Statements implementation, Next: Preprocessing directives implementation, Prev: Declarators implementation, Up: C Implementation 4.12 Statements =============== ! * `The maximum number of `case' values in a `switch' statement (C90 6.6.4.2).' GCC is only limited by available memory. +  File: gcc.info, Node: Preprocessing directives implementation, Next: Library functions implementation, Prev: Statements implementation, Up: C Implementation *************** File: gcc.info, Node: Preprocessing dir *** 21787,21836 **** behavior, for details of these aspects of implementation-defined behavior. ! * 'The locations within '#pragma' directives where header name preprocessing tokens are recognized (C11 6.4, C11 6.4.7).' ! * 'How sequences in both forms of header names are mapped to headers or external source file names (C90 6.1.7, C99 and C11 6.4.7).' ! * 'Whether the value of a character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set (C90 6.8.1, C99 and C11 6.10.1).' ! * 'Whether the value of a single-character character constant in a constant expression that controls conditional inclusion may have a negative value (C90 6.8.1, C99 and C11 6.10.1).' ! * 'The places that are searched for an included '<>' delimited header, and how the places are specified or the header is identified (C90 6.8.2, C99 and C11 6.10.2).' ! * 'How the named source file is searched for in an included '""' delimited header (C90 6.8.2, C99 and C11 6.10.2).' ! * 'The method by which preprocessing tokens (possibly resulting from ! macro expansion) in a '#include' directive are combined into a header name (C90 6.8.2, C99 and C11 6.10.2).' ! * 'The nesting limit for '#include' processing (C90 6.8.2, C99 and C11 6.10.2).' ! * 'Whether the '#' operator inserts a '\' character before the '\' character that begins a universal character name in a character constant or string literal (C99 and C11 6.10.3.2).' ! * 'The behavior on each recognized non-'STDC #pragma' directive (C90 6.8.6, C99 and C11 6.10.6).' ! *Note Pragmas: (cpp)Pragmas, for details of pragmas accepted by GCC ! on all targets. *Note Pragmas Accepted by GCC: Pragmas, for details of target-specific pragmas. ! * 'The definitions for '__DATE__' and '__TIME__' when respectively, the date and time of translation are not available (C90 6.8.8, C99 6.10.8, C11 6.10.8.1).'  File: gcc.info, Node: Library functions implementation, Next: Architecture implementation, Prev: Preprocessing directives implementation, Up: C Implementation --- 21936,21986 ---- behavior, for details of these aspects of implementation-defined behavior. ! * `The locations within `#pragma' directives where header name preprocessing tokens are recognized (C11 6.4, C11 6.4.7).' ! * `How sequences in both forms of header names are mapped to headers or external source file names (C90 6.1.7, C99 and C11 6.4.7).' ! * `Whether the value of a character constant in a constant expression that controls conditional inclusion matches the value of the same character constant in the execution character set (C90 6.8.1, C99 and C11 6.10.1).' ! * `Whether the value of a single-character character constant in a constant expression that controls conditional inclusion may have a negative value (C90 6.8.1, C99 and C11 6.10.1).' ! * `The places that are searched for an included `<>' delimited header, and how the places are specified or the header is identified (C90 6.8.2, C99 and C11 6.10.2).' ! * `How the named source file is searched for in an included `""' delimited header (C90 6.8.2, C99 and C11 6.10.2).' ! * `The method by which preprocessing tokens (possibly resulting from ! macro expansion) in a `#include' directive are combined into a header name (C90 6.8.2, C99 and C11 6.10.2).' ! * `The nesting limit for `#include' processing (C90 6.8.2, C99 and C11 6.10.2).' ! * `Whether the `#' operator inserts a `\' character before the `\' character that begins a universal character name in a character constant or string literal (C99 and C11 6.10.3.2).' ! * `The behavior on each recognized non-`STDC #pragma' directive (C90 6.8.6, C99 and C11 6.10.6).' ! *Note Pragmas: (cpp)Pragmas, for details of pragmas accepted by ! GCC on all targets. *Note Pragmas Accepted by GCC: Pragmas, for details of target-specific pragmas. ! * `The definitions for `__DATE__' and `__TIME__' when respectively, the date and time of translation are not available (C90 6.8.8, C99 6.10.8, C11 6.10.8.1).' +  File: gcc.info, Node: Library functions implementation, Next: Architecture implementation, Prev: Preprocessing directives implementation, Up: C Implementation *************** File: gcc.info, Node: Library functions *** 21840,21865 **** The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * 'The null pointer constant to which the macro 'NULL' expands (C90 7.1.6, C99 7.17, C11 7.19).' ! In '', 'NULL' expands to '((void *)0)'. GCC does not ! provide the other headers which define 'NULL' and some library implementations may use other definitions in those headers.  File: gcc.info, Node: Architecture implementation, Next: Locale-specific behavior implementation, Prev: Library functions implementation, Up: C Implementation 4.15 Architecture ================= ! * 'The values or expressions assigned to the macros specified in the ! headers '', '', and '' (C90, C99 and C11 5.2.4.2, C99 7.18.2, C99 7.18.3, C11 7.20.2, C11 7.20.3).' Determined by ABI. ! * 'The result of attempting to indirectly access an object with automatic or thread storage duration from a thread other than the one with which it is associated (C11 6.2.4).' --- 21990,22016 ---- The behavior of most of these points are dependent on the implementation of the C library, and are not defined by GCC itself. ! * `The null pointer constant to which the macro `NULL' expands (C90 7.1.6, C99 7.17, C11 7.19).' ! In `', `NULL' expands to `((void *)0)'. GCC does not ! provide the other headers which define `NULL' and some library implementations may use other definitions in those headers. +  File: gcc.info, Node: Architecture implementation, Next: Locale-specific behavior implementation, Prev: Library functions implementation, Up: C Implementation 4.15 Architecture ================= ! * `The values or expressions assigned to the macros specified in the ! headers `', `', and `' (C90, C99 and C11 5.2.4.2, C99 7.18.2, C99 7.18.3, C11 7.20.2, C11 7.20.3).' Determined by ABI. ! * `The result of attempting to indirectly access an object with automatic or thread storage duration from a thread other than the one with which it is associated (C11 6.2.4).' *************** File: gcc.info, Node: Architecture impl *** 21867,21895 **** synchronization for concurrent accesses as for concurrent accesses to any object. ! * 'The number, order, and encoding of bytes in any object (when not explicitly specified in this International Standard) (C99 and C11 6.2.6.1).' Determined by ABI. ! * 'Whether any extended alignments are supported and the contexts in which they are supported (C11 6.2.8).' ! Extended alignments up to 2^{28} (bytes) are supported for objects ! of automatic storage duration. Alignments supported for objects of ! static and thread storage duration are determined by the ABI. ! * 'Valid alignment values other than those returned by an _Alignof expression for fundamental types, if any (C11 6.2.8).' ! Valid alignments are powers of 2 up to and including 2^{28}. ! * 'The value of the result of the 'sizeof' and '_Alignof' operators (C90 6.3.3.4, C99 and C11 6.5.3.4).' Determined by ABI.  File: gcc.info, Node: Locale-specific behavior implementation, Prev: Architecture implementation, Up: C Implementation --- 22018,22047 ---- synchronization for concurrent accesses as for concurrent accesses to any object. ! * `The number, order, and encoding of bytes in any object (when not explicitly specified in this International Standard) (C99 and C11 6.2.6.1).' Determined by ABI. ! * `Whether any extended alignments are supported and the contexts in which they are supported (C11 6.2.8).' ! Extended alignments up to 2^28 (bytes) are supported for objects ! of automatic storage duration. Alignments supported for objects ! of static and thread storage duration are determined by the ABI. ! * `Valid alignment values other than those returned by an _Alignof expression for fundamental types, if any (C11 6.2.8).' ! Valid alignments are powers of 2 up to and including 2^28. ! * `The value of the result of the `sizeof' and `_Alignof' operators (C90 6.3.3.4, C99 and C11 6.5.3.4).' Determined by ABI. +  File: gcc.info, Node: Locale-specific behavior implementation, Prev: Architecture implementation, Up: C Implementation *************** A conforming implementation of ISO C++ i *** 21909,21927 **** choice of behavior in each of the areas that are designated "implementation defined". The following lists all such areas, along with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC ! 14882:2003 standards. Some areas are only implementation-defined in one ! version of the standard. Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and . Some choices are ! documented in the preprocessor manual. *Note Implementation-defined ! behavior: (cpp)Implementation-defined behavior. Some choices are ! documented in the corresponding document for the C language. *Note C ! Implementation::. Some choices are made by the library and operating ! system (or other environment when compiling for a freestanding ! environment); refer to their documentation for details. * Menu: --- 22061,22079 ---- choice of behavior in each of the areas that are designated "implementation defined". The following lists all such areas, along with the section numbers from the ISO/IEC 14882:1998 and ISO/IEC ! 14882:2003 standards. Some areas are only implementation-defined in ! one version of the standard. Some choices depend on the externally determined ABI for the platform (including standard character encodings) which GCC follows; these are listed as "determined by ABI" below. *Note Binary Compatibility: ! Compatibility, and `http://gcc.gnu.org/readings.html'. Some choices ! are documented in the preprocessor manual. *Note ! Implementation-defined behavior: (cpp)Implementation-defined behavior. ! Some choices are documented in the corresponding document for the C ! language. *Note C Implementation::. Some choices are made by the ! library and operating system (or other environment when compiling for a ! freestanding environment); refer to their documentation for details. * Menu: *************** File: gcc.info, Node: Conditionally-sup *** 21934,21960 **** 5.1 Conditionally-supported behavior ==================================== ! 'Each implementation shall include documentation that identifies all conditionally-supported constructs that it does not support (C++0x 1.4).' ! * 'Whether an argument of class type with a non-trivial copy constructor or destructor can be passed to ... (C++0x 5.2.2).' Such argument passing is not supported.  File: gcc.info, Node: Exception handling, Prev: Conditionally-supported behavior, Up: C++ Implementation 5.2 Exception handling ====================== ! * 'In the situation where no matching handler is found, it is implementation-defined whether or not the stack is unwound before std::terminate() is called (C++98 15.5.1).' The stack is not unwound before std::terminate is called.  File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: C++ Implementation, Up: Top --- 22086,22114 ---- 5.1 Conditionally-supported behavior ==================================== ! `Each implementation shall include documentation that identifies all conditionally-supported constructs that it does not support (C++0x 1.4).' ! * `Whether an argument of class type with a non-trivial copy constructor or destructor can be passed to ... (C++0x 5.2.2).' Such argument passing is not supported. +  File: gcc.info, Node: Exception handling, Prev: Conditionally-supported behavior, Up: C++ Implementation 5.2 Exception handling ====================== ! * `In the situation where no matching handler is found, it is implementation-defined whether or not the stack is unwound before std::terminate() is called (C++98 15.5.1).' The stack is not unwound before std::terminate is called. +  File: gcc.info, Node: C Extensions, Next: C++ Extensions, Prev: C++ Implementation, Up: Top *************** File: gcc.info, Node: C Extensions, Ne *** 21962,21971 **** ************************************* GNU C provides several language features not found in ISO standard C. ! (The '-pedantic' option directs GCC to print a warning message if any of ! these features is used.) To test for the availability of these features ! in conditional compilation, check for a predefined macro '__GNUC__', ! which is always defined under GCC. These extensions are available in C and Objective-C. Most of them are also available in C++. *Note Extensions to the C++ Language: C++ --- 22116,22125 ---- ************************************* GNU C provides several language features not found in ISO standard C. ! (The `-pedantic' option directs GCC to print a warning message if any ! of these features is used.) To test for the availability of these ! features in conditional compilation, check for a predefined macro ! `__GNUC__', which is always defined under GCC. These extensions are available in C and Objective-C. Most of them are also available in C++. *Note Extensions to the C++ Language: C++ *************** extensions, accepted by GCC in C90 mode *** 21981,21990 **** * Labels as Values:: Getting pointers to labels, and computed gotos. * Nested Functions:: As in Algol and Pascal, lexical scoping of functions. * Constructing Calls:: Dispatching a call to another function. ! * Typeof:: 'typeof': referring to the type of an expression. ! * Conditionals:: Omitting the middle operand of a '?:' expression. ! * __int128:: 128-bit integers--'__int128'. ! * Long Long:: Double-word integers--'long long int'. * Complex:: Data types for complex numbers. * Floating Types:: Additional Floating Types. * Half-Precision:: Half-Precision Floating Point. --- 22135,22144 ---- * Labels as Values:: Getting pointers to labels, and computed gotos. * Nested Functions:: As in Algol and Pascal, lexical scoping of functions. * Constructing Calls:: Dispatching a call to another function. ! * Typeof:: `typeof': referring to the type of an expression. ! * Conditionals:: Omitting the middle operand of a `?:' expression. ! * __int128:: 128-bit integers---`__int128'. ! * Long Long:: Double-word integers---`long long int'. * Complex:: Data types for complex numbers. * Floating Types:: Additional Floating Types. * Half-Precision:: Half-Precision Floating Point. *************** extensions, accepted by GCC in C90 mode *** 21998,22009 **** * Variadic Macros:: Macros with a variable number of arguments. * Escaped Newlines:: Slightly looser rules for escaped newlines. * Subscripting:: Any array can be subscripted, even if not an lvalue. ! * Pointer Arith:: Arithmetic on 'void'-pointers and function pointers. * Initializers:: Non-constant initializers. * Compound Literals:: Compound literals give structures, unions or arrays as values. * Designated Inits:: Labeling elements of initializers. ! * Case Ranges:: 'case 1 ... 9' and such. * Cast to Union:: Casting to union type from any member of the union. * Mixed Declarations:: Mixing declarations and code. * Function Attributes:: Declaring that functions have no side effects, --- 22152,22163 ---- * Variadic Macros:: Macros with a variable number of arguments. * Escaped Newlines:: Slightly looser rules for escaped newlines. * Subscripting:: Any array can be subscripted, even if not an lvalue. ! * Pointer Arith:: Arithmetic on `void'-pointers and function pointers. * Initializers:: Non-constant initializers. * Compound Literals:: Compound literals give structures, unions or arrays as values. * Designated Inits:: Labeling elements of initializers. ! * Case Ranges:: `case 1 ... 9' and such. * Cast to Union:: Casting to union type from any member of the union. * Mixed Declarations:: Mixing declarations and code. * Function Attributes:: Declaring that functions have no side effects, *************** extensions, accepted by GCC in C90 mode *** 22012,22035 **** * Function Prototypes:: Prototype declarations and old-style definitions. * C++ Comments:: C++ comments are recognized. * Dollar Signs:: Dollar sign is allowed in identifiers. ! * Character Escapes:: '\e' stands for the character . * Variable Attributes:: Specifying attributes of variables. * Type Attributes:: Specifying attributes of types. * Alignment:: Inquiring about the alignment of a type or variable. * Inline:: Defining inline functions (as fast as macros). * Volatiles:: What constitutes an access to a volatile object. * Extended Asm:: Assembler instructions with C expressions as operands. ! (With them you can define "built-in" functions.) * Constraints:: Constraints for asm operands * Asm Labels:: Specifying the assembler name to use for a C symbol. * Explicit Reg Vars:: Defining variables residing in specified registers. ! * Alternate Keywords:: '__const__', '__asm__', etc., for header files. ! * Incomplete Enums:: 'enum foo;', with details to follow. * Function Names:: Printable strings which are the name of the current function. * Return Address:: Getting the return or frame address of a function. * Vector Extensions:: Using vector instructions through built-in functions. ! * Offsetof:: Special syntax for implementing 'offsetof'. * __sync Builtins:: Legacy built-in functions for atomic memory access. * __atomic Builtins:: Atomic built-in functions with memory model. * x86 specific memory model extensions for transactional memory:: x86 memory models. --- 22166,22189 ---- * Function Prototypes:: Prototype declarations and old-style definitions. * C++ Comments:: C++ comments are recognized. * Dollar Signs:: Dollar sign is allowed in identifiers. ! * Character Escapes:: `\e' stands for the character . * Variable Attributes:: Specifying attributes of variables. * Type Attributes:: Specifying attributes of types. * Alignment:: Inquiring about the alignment of a type or variable. * Inline:: Defining inline functions (as fast as macros). * Volatiles:: What constitutes an access to a volatile object. * Extended Asm:: Assembler instructions with C expressions as operands. ! (With them you can define ``built-in'' functions.) * Constraints:: Constraints for asm operands * Asm Labels:: Specifying the assembler name to use for a C symbol. * Explicit Reg Vars:: Defining variables residing in specified registers. ! * Alternate Keywords:: `__const__', `__asm__', etc., for header files. ! * Incomplete Enums:: `enum foo;', with details to follow. * Function Names:: Printable strings which are the name of the current function. * Return Address:: Getting the return or frame address of a function. * Vector Extensions:: Using vector instructions through built-in functions. ! * Offsetof:: Special syntax for implementing `offsetof'. * __sync Builtins:: Legacy built-in functions for atomic memory access. * __atomic Builtins:: Atomic built-in functions with memory model. * x86 specific memory model extensions for transactional memory:: x86 memory models. *************** extensions, accepted by GCC in C90 mode *** 22042,22048 **** * Pragmas:: Pragmas accepted by GCC. * Unnamed Fields:: Unnamed struct/union fields within structs/unions. * Thread-Local:: Per-thread variables. ! * Binary constants:: Binary constants using the '0b' prefix.  File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions --- 22196,22202 ---- * Pragmas:: Pragmas accepted by GCC. * Unnamed Fields:: Unnamed struct/union fields within structs/unions. * Thread-Local:: Per-thread variables. ! * Binary constants:: Binary constants using the `0b' prefix.  File: gcc.info, Node: Statement Exprs, Next: Local Labels, Up: C Extensions *************** example: *** 22064,22075 **** z; }) is a valid (though slightly more complex than necessary) expression for ! the absolute value of 'foo ()'. The last thing in the compound statement should be an expression followed by a semicolon; the value of this subexpression serves as the value of the entire construct. (If you use some other kind of statement ! last within the braces, the construct has type 'void', and thus effectively no value.) This feature is especially useful in making macro definitions "safe" --- 22218,22229 ---- z; }) is a valid (though slightly more complex than necessary) expression for ! the absolute value of `foo ()'. The last thing in the compound statement should be an expression followed by a semicolon; the value of this subexpression serves as the value of the entire construct. (If you use some other kind of statement ! last within the braces, the construct has type `void', and thus effectively no value.) This feature is especially useful in making macro definitions "safe" *************** follows: *** 22081,22087 **** But this definition computes either A or B twice, with bad results if the operand has side effects. In GNU C, if you know the type of the ! operands (here taken as 'int'), you can define the macro safely as follows: #define maxint(a,b) \ --- 22235,22241 ---- But this definition computes either A or B twice, with bad results if the operand has side effects. In GNU C, if you know the type of the ! operands (here taken as `int'), you can define the macro safely as follows: #define maxint(a,b) \ *************** the value of an enumeration constant, th *** 22092,22118 **** initial value of a static variable. If you don't know the type of the operand, you can still do this, but ! you must use 'typeof' or '__auto_type' (*note Typeof::). In G++, the result value of a statement expression undergoes array and function pointer decay, and is returned by value to the enclosing ! expression. For instance, if 'A' is a class, then A a; ({a;}).Foo () ! constructs a temporary 'A' object to hold the result of the statement ! expression, and that is used to invoke 'Foo'. Therefore the 'this' ! pointer observed by 'Foo' is not the address of 'a'. In a statement expression, any temporaries created within a statement ! are destroyed at that statement's end. This makes statement expressions ! inside macros slightly different from function calls. In the latter ! case temporaries introduced during argument evaluation are destroyed at ! the end of the statement that includes the function call. In the ! statement expression case they are destroyed during the statement ! expression. For instance, #define macro(a) ({__typeof__(a) b = (a); b + 3; }) template T function(T a) { T b = a; return b + 3; } --- 22246,22272 ---- initial value of a static variable. If you don't know the type of the operand, you can still do this, but ! you must use `typeof' or `__auto_type' (*note Typeof::). In G++, the result value of a statement expression undergoes array and function pointer decay, and is returned by value to the enclosing ! expression. For instance, if `A' is a class, then A a; ({a;}).Foo () ! constructs a temporary `A' object to hold the result of the statement ! expression, and that is used to invoke `Foo'. Therefore the `this' ! pointer observed by `Foo' is not the address of `a'. In a statement expression, any temporaries created within a statement ! are destroyed at that statement's end. This makes statement ! expressions inside macros slightly different from function calls. In ! the latter case temporaries introduced during argument evaluation are ! destroyed at the end of the statement that includes the function call. ! In the statement expression case they are destroyed during the ! statement expression. For instance, #define macro(a) ({__typeof__(a) b = (a); b + 3; }) template T function(T a) { T b = a; return b + 3; } *************** expression. For instance, *** 22123,22131 **** function (X ()); } ! has different places where temporaries are destroyed. For the 'macro' ! case, the temporary 'X' is destroyed just after the initialization of ! 'b'. In the 'function' case that temporary is destroyed when the function returns. These considerations mean that it is probably a bad idea to use --- 22277,22285 ---- function (X ()); } ! has different places where temporaries are destroyed. For the `macro' ! case, the temporary `X' is destroyed just after the initialization of ! `b'. In the `function' case that temporary is destroyed when the function returns. These considerations mean that it is probably a bad idea to use *************** work with C++. (Note that some versions *** 22134,22143 **** header files using statement expressions that lead to precisely this bug.) ! Jumping into a statement expression with 'goto' or using a 'switch' ! statement outside the statement expression with a 'case' or 'default' label inside the statement expression is not permitted. Jumping into a ! statement expression with a computed 'goto' (*note Labels as Values::) has undefined behavior. Jumping out of a statement expression is permitted, but if the statement expression is part of a larger expression then it is unspecified which other subexpressions of that --- 22288,22297 ---- header files using statement expressions that lead to precisely this bug.) ! Jumping into a statement expression with `goto' or using a `switch' ! statement outside the statement expression with a `case' or `default' label inside the statement expression is not permitted. Jumping into a ! statement expression with a computed `goto' (*note Labels as Values::) has undefined behavior. Jumping out of a statement expression is permitted, but if the statement expression is part of a larger expression then it is unspecified which other subexpressions of that *************** evaluation of other parts of the contain *** 22149,22157 **** foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz(); ! calls 'foo' and 'bar1' and does not call 'baz' but may or may not call ! 'bar2'. If 'bar2' is called, it is called after 'foo' and before ! 'bar1'.  File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions --- 22303,22311 ---- foo (), (({ bar1 (); goto a; 0; }) + bar2 ()), baz(); ! calls `foo' and `bar1' and does not call `baz' but may or may not call ! `bar2'. If `bar2' is called, it is called after `foo' and before ! `bar1'.  File: gcc.info, Node: Local Labels, Next: Labels as Values, Prev: Statement Exprs, Up: C Extensions *************** File: gcc.info, Node: Local Labels, Ne *** 22161,22167 **** GCC allows you to declare "local labels" in any nested block scope. A local label is just like an ordinary label, but you can only reference ! it (with a 'goto' statement, or by taking its address) within the block in which it is declared. A local label declaration looks like this: --- 22315,22321 ---- GCC allows you to declare "local labels" in any nested block scope. A local label is just like an ordinary label, but you can only reference ! it (with a `goto' statement, or by taking its address) within the block in which it is declared. A local label declaration looks like this: *************** or *** 22175,22186 **** Local label declarations must come at the beginning of the block, before any ordinary declarations or statements. ! The label declaration defines the label _name_, but does not define the ! label itself. You must do this in the usual way, with 'LABEL:', within ! the statements of the statement expression. The local label feature is useful for complex macros. If a macro ! contains nested loops, a 'goto' can be useful for breaking out of them. However, an ordinary label whose scope is the whole function cannot be used: if the macro can be expanded several times in one function, the label is multiply defined in that function. A local label avoids this --- 22329,22340 ---- Local label declarations must come at the beginning of the block, before any ordinary declarations or statements. ! The label declaration defines the label _name_, but does not define ! the label itself. You must do this in the usual way, with `LABEL:', ! within the statements of the statement expression. The local label feature is useful for complex macros. If a macro ! contains nested loops, a `goto' can be useful for breaking out of them. However, an ordinary label whose scope is the whole function cannot be used: if the macro can be expanded several times in one function, the label is multiply defined in that function. A local label avoids this *************** File: gcc.info, Node: Labels as Values, *** 22229,22249 **** 6.3 Labels as Values ==================== ! You can get the address of a label defined in the current function (or a ! containing function) with the unary operator '&&'. The value has type ! 'void *'. This value is a constant and can be used wherever a constant ! of that type is valid. For example: void *ptr; /* ... */ ptr = &&foo; To use these values, you need to be able to jump to one. This is done ! with the computed goto statement(1), 'goto *EXP;'. For example, goto *ptr; ! Any expression of type 'void *' is allowed. One way of using these constants is in initializing a static array that serves as a jump table: --- 22383,22403 ---- 6.3 Labels as Values ==================== ! You can get the address of a label defined in the current function (or ! a containing function) with the unary operator `&&'. The value has ! type `void *'. This value is a constant and can be used wherever a ! constant of that type is valid. For example: void *ptr; /* ... */ ptr = &&foo; To use these values, you need to be able to jump to one. This is done ! with the computed goto statement(1), `goto *EXP;'. For example, goto *ptr; ! Any expression of type `void *' is allowed. One way of using these constants is in initializing a static array that serves as a jump table: *************** Note that this does not check whether th *** 22258,22270 **** indexing in C never does that. Such an array of label values serves a purpose much like that of the ! 'switch' statement. The 'switch' statement is cleaner, so use that ! rather than an array unless the problem does not fit a 'switch' statement very well. Another use of label values is in an interpreter for threaded code. ! The labels within the interpreter function can be stored in the threaded ! code for super-fast dispatching. You may not use this mechanism to jump to code in a different function. If you do that, totally unpredictable things happen. The best way to --- 22412,22424 ---- indexing in C never does that. Such an array of label values serves a purpose much like that of the ! `switch' statement. The `switch' statement is cleaner, so use that ! rather than an array unless the problem does not fit a `switch' statement very well. Another use of label values is in an interpreter for threaded code. ! The labels within the interpreter function can be stored in the ! threaded code for super-fast dispatching. You may not use this mechanism to jump to code in a different function. If you do that, totally unpredictable things happen. The best way to *************** allows the data to be read-only. This a *** 22283,22297 **** differences is not supported for the AVR target, please use the first approach for AVR programs. ! The '&&foo' expressions for the same label might have different values ! if the containing function is inlined or cloned. If a program relies on ! them being always the same, '__attribute__((__noinline__,__noclone__))' ! should be used to prevent inlining and cloning. If '&&foo' is used in a ! static variable initializer, inlining and cloning is forbidden. ! ---------- Footnotes ---------- ! (1) The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where one can do more than simply store label addresses in label variables. --- 22437,22452 ---- differences is not supported for the AVR target, please use the first approach for AVR programs. ! The `&&foo' expressions for the same label might have different values ! if the containing function is inlined or cloned. If a program relies ! on them being always the same, ! `__attribute__((__noinline__,__noclone__))' should be used to prevent ! inlining and cloning. If `&&foo' is used in a static variable ! initializer, inlining and cloning is forbidden. ! ---------- Footnotes ---------- ! (1) The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate in C, where one can do more than simply store label addresses in label variables. *************** Nested functions are supported as an ext *** 22306,22312 **** supported by GNU C++. The nested function's name is local to the block where it is defined. ! For example, here we define a nested function named 'square', and call it twice: foo (double a, double b) --- 22461,22467 ---- supported by GNU C++. The nested function's name is local to the block where it is defined. ! For example, here we define a nested function named `square', and call it twice: foo (double a, double b) *************** it twice: *** 22319,22325 **** The nested function can access all the variables of the containing function that are visible at the point of its definition. This is called "lexical scoping". For example, here we show a nested function ! which uses an inherited variable named 'offset': bar (int *array, int offset, int size) { --- 22474,22480 ---- The nested function can access all the variables of the containing function that are visible at the point of its definition. This is called "lexical scoping". For example, here we show a nested function ! which uses an inherited variable named `offset': bar (int *array, int offset, int size) { *************** function: *** 22347,22375 **** intermediate (store, size); } ! Here, the function 'intermediate' receives the address of 'store' as an ! argument. If 'intermediate' calls 'store', the arguments given to ! 'store' are used to store into 'array'. But this technique works only ! so long as the containing function ('hack', in this example) does not exit. If you try to call the nested function through its address after the ! containing function exits, all hell breaks loose. If you try to call it ! after a containing scope level exits, and if it refers to some of the ! variables that are no longer in scope, you may be lucky, but it's not ! wise to take the risk. If, however, the nested function does not refer ! to anything that has gone out of scope, you should be safe. GCC implements taking the address of a nested function using a technique called "trampolines". This technique was described in ! 'Lexical Closures for C++' (Thomas M. Breuel, USENIX C++ Conference Proceedings, October 17-21, 1988). A nested function can jump to a label inherited from a containing function, provided the label is explicitly declared in the containing function (*note Local Labels::). Such a jump returns instantly to the ! containing function, exiting the nested function that did the 'goto' and ! any intermediate functions as well. Here is an example: bar (int *array, int offset, int size) { --- 22502,22530 ---- intermediate (store, size); } ! Here, the function `intermediate' receives the address of `store' as ! an argument. If `intermediate' calls `store', the arguments given to ! `store' are used to store into `array'. But this technique works only ! so long as the containing function (`hack', in this example) does not exit. If you try to call the nested function through its address after the ! containing function exits, all hell breaks loose. If you try to call ! it after a containing scope level exits, and if it refers to some of ! the variables that are no longer in scope, you may be lucky, but it's ! not wise to take the risk. If, however, the nested function does not ! refer to anything that has gone out of scope, you should be safe. GCC implements taking the address of a nested function using a technique called "trampolines". This technique was described in ! `Lexical Closures for C++' (Thomas M. Breuel, USENIX C++ Conference Proceedings, October 17-21, 1988). A nested function can jump to a label inherited from a containing function, provided the label is explicitly declared in the containing function (*note Local Labels::). Such a jump returns instantly to the ! containing function, exiting the nested function that did the `goto' ! and any intermediate functions as well. Here is an example: bar (int *array, int offset, int size) { *************** any intermediate functions as well. Her *** 22387,22401 **** /* ... */ return 0; ! /* Control comes here from 'access' if it detects an error. */ failure: return -1; } ! A nested function always has no linkage. Declaring one with 'extern' ! or 'static' is erroneous. If you need to declare the nested function ! before its definition, use 'auto' (which is otherwise meaningless for function declarations). bar (int *array, int offset, int size) --- 22542,22556 ---- /* ... */ return 0; ! /* Control comes here from `access' if it detects an error. */ failure: return -1; } ! A nested function always has no linkage. Declaring one with `extern' ! or `static' is erroneous. If you need to declare the nested function ! before its definition, use `auto' (which is otherwise meaningless for function declarations). bar (int *array, int offset, int size) *************** acting as mere forwarders for their argu *** 22433,22440 **** -- Built-in Function: void * __builtin_apply_args () This built-in function returns a pointer to data describing how to ! perform a call with the same arguments as are passed to the current ! function. The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to --- 22588,22595 ---- -- Built-in Function: void * __builtin_apply_args () This built-in function returns a pointer to data describing how to ! perform a call with the same arguments as are passed to the ! current function. The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to *************** acting as mere forwarders for their argu *** 22447,22453 **** parameters described by ARGUMENTS and SIZE. The value of ARGUMENTS should be the value returned by ! '__builtin_apply_args'. The argument SIZE specifies the size of the stack argument data, in bytes. This function returns a pointer to data describing how to return --- 22602,22608 ---- parameters described by ARGUMENTS and SIZE. The value of ARGUMENTS should be the value returned by ! `__builtin_apply_args'. The argument SIZE specifies the size of the stack argument data, in bytes. This function returns a pointer to data describing how to return *************** acting as mere forwarders for their argu *** 22455,22479 **** block of memory allocated on the stack. It is not always simple to compute the proper value for SIZE. The ! value is used by '__builtin_apply' to compute the amount of data that should be pushed on the stack and copied from the incoming argument area. -- Built-in Function: void __builtin_return (void *RESULT) This built-in function returns the value described by RESULT from the containing function. You should specify, for RESULT, a value ! returned by '__builtin_apply'. ! -- Built-in Function: __builtin_va_arg_pack () This built-in function represents all anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using '__attribute__ ((__always_inline__))' or '__attribute__ ! ((__gnu_inline__))' extern inline functions. It must be only ! passed as last argument to some other function with variable ! arguments. This is useful for writing small wrapper inlines for ! variable argument functions, when using preprocessor macros is ! undesirable. For example: extern int myprintf (FILE *f, const char *format, ...); extern inline __attribute__ ((__gnu_inline__)) int myprintf (FILE *f, const char *format, ...) --- 22610,22634 ---- block of memory allocated on the stack. It is not always simple to compute the proper value for SIZE. The ! value is used by `__builtin_apply' to compute the amount of data that should be pushed on the stack and copied from the incoming argument area. -- Built-in Function: void __builtin_return (void *RESULT) This built-in function returns the value described by RESULT from the containing function. You should specify, for RESULT, a value ! returned by `__builtin_apply'. ! -- Built-in Function: __builtin_va_arg_pack () This built-in function represents all anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using `__attribute__ ((__always_inline__))' or ! `__attribute__ ((__gnu_inline__))' extern inline functions. It ! must be only passed as last argument to some other function with ! variable arguments. This is useful for writing small wrapper ! inlines for variable argument functions, when using preprocessor ! macros is undesirable. For example: extern int myprintf (FILE *f, const char *format, ...); extern inline __attribute__ ((__gnu_inline__)) int myprintf (FILE *f, const char *format, ...) *************** acting as mere forwarders for their argu *** 22491,22500 **** This built-in function returns the number of anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using '__attribute__ ((__always_inline__))' or '__attribute__ ! ((__gnu_inline__))' extern inline functions. For example following ! does link- or run-time checking of open arguments for optimized ! code: #ifdef __OPTIMIZE__ extern inline __attribute__((__gnu_inline__)) int myopen (const char *path, int oflag, ...) --- 22646,22655 ---- This built-in function returns the number of anonymous arguments of an inline function. It can be used only in inline functions that are always inlined, never compiled as a separate function, such as ! those using `__attribute__ ((__always_inline__))' or ! `__attribute__ ((__gnu_inline__))' extern inline functions. For ! example following does link- or run-time checking of open ! arguments for optimized code: #ifdef __OPTIMIZE__ extern inline __attribute__((__gnu_inline__)) int myopen (const char *path, int oflag, ...) *************** acting as mere forwarders for their argu *** 22522,22561 ****  File: gcc.info, Node: Typeof, Next: Conditionals, Prev: Constructing Calls, Up: C Extensions ! 6.6 Referring to a Type with 'typeof' ===================================== ! Another way to refer to the type of an expression is with 'typeof'. The ! syntax of using of this keyword looks like 'sizeof', but the construct ! acts semantically like a type name defined with 'typedef'. ! There are two ways of writing the argument to 'typeof': with an expression or with a type. Here is an example with an expression: typeof (x[0](1)) ! This assumes that 'x' is an array of pointers to functions; the type described is that of the values of the functions. Here is an example with a typename as the argument: typeof (int *) ! Here the type described is that of pointers to 'int'. If you are writing a header file that must work when included in ISO C ! programs, write '__typeof__' instead of 'typeof'. *Note Alternate Keywords::. ! A 'typeof' construct can be used anywhere a typedef name can be used. For example, you can use it in a declaration, in a cast, or inside of ! 'sizeof' or 'typeof'. ! The operand of 'typeof' is evaluated for its side effects if and only if it is an expression of variably modified type or the name of such a type. ! 'typeof' is often useful in conjunction with statement expressions (*note Statement Exprs::). Here is how the two together can be used to define a safe "maximum" macro which operates on any arithmetic type and evaluates each of its arguments exactly once: --- 22677,22716 ----  File: gcc.info, Node: Typeof, Next: Conditionals, Prev: Constructing Calls, Up: C Extensions ! 6.6 Referring to a Type with `typeof' ===================================== ! Another way to refer to the type of an expression is with `typeof'. ! The syntax of using of this keyword looks like `sizeof', but the ! construct acts semantically like a type name defined with `typedef'. ! There are two ways of writing the argument to `typeof': with an expression or with a type. Here is an example with an expression: typeof (x[0](1)) ! This assumes that `x' is an array of pointers to functions; the type described is that of the values of the functions. Here is an example with a typename as the argument: typeof (int *) ! Here the type described is that of pointers to `int'. If you are writing a header file that must work when included in ISO C ! programs, write `__typeof__' instead of `typeof'. *Note Alternate Keywords::. ! A `typeof' construct can be used anywhere a typedef name can be used. For example, you can use it in a declaration, in a cast, or inside of ! `sizeof' or `typeof'. ! The operand of `typeof' is evaluated for its side effects if and only if it is an expression of variably modified type or the name of such a type. ! `typeof' is often useful in conjunction with statement expressions (*note Statement Exprs::). Here is how the two together can be used to define a safe "maximum" macro which operates on any arithmetic type and evaluates each of its arguments exactly once: *************** evaluates each of its arguments exactly *** 22567,22588 **** The reason for using names that start with underscores for the local variables is to avoid conflicts with variable names that occur within ! the expressions that are substituted for 'a' and 'b'. Eventually we hope to design a new form of declaration syntax that allows you to ! declare variables whose scopes start only after their initializers; this ! will be a more reliable way to prevent such conflicts. ! Some more examples of the use of 'typeof': ! * This declares 'y' with the type of what 'x' points to. typeof (*x) y; ! * This declares 'y' as an array of such values. typeof (*x) y[4]; ! * This declares 'y' as an array of pointers to characters: typeof (typeof (char *)[4]) y; --- 22722,22743 ---- The reason for using names that start with underscores for the local variables is to avoid conflicts with variable names that occur within ! the expressions that are substituted for `a' and `b'. Eventually we hope to design a new form of declaration syntax that allows you to ! declare variables whose scopes start only after their initializers; ! this will be a more reliable way to prevent such conflicts. ! Some more examples of the use of `typeof': ! * This declares `y' with the type of what `x' points to. typeof (*x) y; ! * This declares `y' as an array of such values. typeof (*x) y[4]; ! * This declares `y' as an array of pointers to characters: typeof (typeof (char *)[4]) y; *************** Some more examples of the use of 'typeof *** 22590,22596 **** char *y[4]; ! To see the meaning of the declaration using 'typeof', and why it might be a useful way to write, rewrite it with these macros: #define pointer(T) typeof(T *) --- 22745,22751 ---- char *y[4]; ! To see the meaning of the declaration using `typeof', and why it might be a useful way to write, rewrite it with these macros: #define pointer(T) typeof(T *) *************** Some more examples of the use of 'typeof *** 22600,22641 **** array (pointer (char), 4) y; ! Thus, 'array (pointer (char), 4)' is the type of arrays of 4 ! pointers to 'char'. In GNU C, but not GNU C++, you may also declare the type of a variable ! as '__auto_type'. In that case, the declaration must declare only one variable, whose declarator must just be an identifier, the declaration must be initialized, and the type of the variable is determined by the initializer; the name of the variable is not in scope until after the ! initializer. (In C++, you should use C++11 'auto' for this purpose.) ! Using '__auto_type', the "maximum" macro above could be written as: #define max(a,b) \ ({ __auto_type _a = (a); \ __auto_type _b = (b); \ _a > _b ? _a : _b; }) ! Using '__auto_type' instead of 'typeof' has two advantages: * Each argument to the macro appears only once in the expansion of the macro. This prevents the size of the macro expansion growing ! exponentially when calls to such macros are nested inside arguments ! of such macros. * If the argument to the macro has variably modified type, it is ! evaluated only once when using '__auto_type', but twice if 'typeof' ! is used. ! _Compatibility Note:_ In addition to 'typeof', GCC 2 supported a more limited extension that permitted one to write typedef T = EXPR; with the effect of declaring T to have the type of the expression EXPR. This extension does not work with GCC 3 (versions between 3.0 and 3.2 ! crash; 3.2.1 and later give an error). Code that relies on it should be ! rewritten to use 'typeof': typedef typeof(EXPR) T; --- 22755,22796 ---- array (pointer (char), 4) y; ! Thus, `array (pointer (char), 4)' is the type of arrays of 4 ! pointers to `char'. In GNU C, but not GNU C++, you may also declare the type of a variable ! as `__auto_type'. In that case, the declaration must declare only one variable, whose declarator must just be an identifier, the declaration must be initialized, and the type of the variable is determined by the initializer; the name of the variable is not in scope until after the ! initializer. (In C++, you should use C++11 `auto' for this purpose.) ! Using `__auto_type', the "maximum" macro above could be written as: #define max(a,b) \ ({ __auto_type _a = (a); \ __auto_type _b = (b); \ _a > _b ? _a : _b; }) ! Using `__auto_type' instead of `typeof' has two advantages: * Each argument to the macro appears only once in the expansion of the macro. This prevents the size of the macro expansion growing ! exponentially when calls to such macros are nested inside ! arguments of such macros. * If the argument to the macro has variably modified type, it is ! evaluated only once when using `__auto_type', but twice if ! `typeof' is used. ! _Compatibility Note:_ In addition to `typeof', GCC 2 supported a more limited extension that permitted one to write typedef T = EXPR; with the effect of declaring T to have the type of the expression EXPR. This extension does not work with GCC 3 (versions between 3.0 and 3.2 ! crash; 3.2.1 and later give an error). Code that relies on it should ! be rewritten to use `typeof': typedef typeof(EXPR) T; *************** expression. *** 22655,22661 **** x ? : y ! has the value of 'x' if that is nonzero; otherwise, the value of 'y'. This example is perfectly equivalent to --- 22810,22816 ---- x ? : y ! has the value of `x' if that is nonzero; otherwise, the value of `y'. This example is perfectly equivalent to *************** has the value of 'x' if that is nonzero; *** 22664,22672 **** In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when the first operand does, or may (if it is a macro argument), contain a side effect. Then ! repeating the operand in the middle would perform the side effect twice. ! Omitting the middle operand uses the value already computed without the ! undesirable effects of recomputing it.  File: gcc.info, Node: __int128, Next: Long Long, Prev: Conditionals, Up: C Extensions --- 22819,22827 ---- In this simple case, the ability to omit the middle operand is not especially useful. When it becomes useful is when the first operand does, or may (if it is a macro argument), contain a side effect. Then ! repeating the operand in the middle would perform the side effect ! twice. Omitting the middle operand uses the value already computed ! without the undesirable effects of recomputing it.  File: gcc.info, Node: __int128, Next: Long Long, Prev: Conditionals, Up: C Extensions *************** File: gcc.info, Node: __int128, Next: *** 22674,22685 **** 6.8 128-bit integers ==================== ! As an extension the integer scalar type '__int128' is supported for ! targets which have an integer mode wide enough to hold 128 bits. Simply ! write '__int128' for a signed 128-bit integer, or 'unsigned __int128' ! for an unsigned 128-bit integer. There is no support in GCC for ! expressing an integer constant of type '__int128' for targets with 'long ! long' integer less than 128 bits wide.  File: gcc.info, Node: Long Long, Next: Complex, Prev: __int128, Up: C Extensions --- 22829,22840 ---- 6.8 128-bit integers ==================== ! As an extension the integer scalar type `__int128' is supported for ! targets which have an integer mode wide enough to hold 128 bits. ! Simply write `__int128' for a signed 128-bit integer, or `unsigned ! __int128' for an unsigned 128-bit integer. There is no support in GCC ! for expressing an integer constant of type `__int128' for targets with ! `long long' integer less than 128 bits wide.  File: gcc.info, Node: Long Long, Next: Complex, Prev: __int128, Up: C Extensions *************** File: gcc.info, Node: Long Long, Next: *** 22689,22714 **** ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension GCC supports them in C90 mode and in C++. Simply ! write 'long long int' for a signed integer, or 'unsigned long long int' ! for an unsigned integer. To make an integer constant of type 'long long ! int', add the suffix 'LL' to the integer. To make an integer constant ! of type 'unsigned long long int', add the suffix 'ULL' to the integer. You can use these types in arithmetic like any other integer types. ! Addition, subtraction, and bitwise boolean operations on these types are ! open-coded on all types of machines. Multiplication is open-coded if ! the machine supports a fullword-to-doubleword widening multiply instruction. Division and shifts are open-coded only on machines that provide special support. The operations that are not open-coded use special library routines that come with GCC. ! There may be pitfalls when you use 'long long' types for function ! arguments without function prototypes. If a function expects type 'int' ! for its argument, and you pass a value of type 'long long int', confusion results because the caller and the subroutine disagree about ! the number of bytes for the argument. Likewise, if the function expects ! 'long long int' and you pass 'int'. The best way to avoid such problems ! is to use prototypes.  File: gcc.info, Node: Complex, Next: Floating Types, Prev: Long Long, Up: C Extensions --- 22844,22870 ---- ISO C99 supports data types for integers that are at least 64 bits wide, and as an extension GCC supports them in C90 mode and in C++. Simply ! write `long long int' for a signed integer, or `unsigned long long int' ! for an unsigned integer. To make an integer constant of type `long ! long int', add the suffix `LL' to the integer. To make an integer ! constant of type `unsigned long long int', add the suffix `ULL' to the ! integer. You can use these types in arithmetic like any other integer types. ! Addition, subtraction, and bitwise boolean operations on these types ! are open-coded on all types of machines. Multiplication is open-coded ! if the machine supports a fullword-to-doubleword widening multiply instruction. Division and shifts are open-coded only on machines that provide special support. The operations that are not open-coded use special library routines that come with GCC. ! There may be pitfalls when you use `long long' types for function ! arguments without function prototypes. If a function expects type ! `int' for its argument, and you pass a value of type `long long int', confusion results because the caller and the subroutine disagree about ! the number of bytes for the argument. Likewise, if the function ! expects `long long int' and you pass `int'. The best way to avoid such ! problems is to use prototypes.  File: gcc.info, Node: Complex, Next: Floating Types, Prev: Long Long, Up: C Extensions *************** File: gcc.info, Node: Complex, Next: F *** 22717,22753 **** ==================== ISO C99 supports complex floating data types, and as an extension GCC ! supports them in C90 mode and in C++. GCC also supports complex integer ! data types which are not part of ISO C99. You can declare complex types ! using the keyword '_Complex'. As an extension, the older GNU keyword ! '__complex__' is also supported. ! For example, '_Complex double x;' declares 'x' as a variable whose real ! part and imaginary part are both of type 'double'. '_Complex short int ! y;' declares 'y' to have real and imaginary parts of type 'short int'; ! this is not likely to be useful, but it shows that the set of complex ! types is complete. ! To write a constant with a complex data type, use the suffix 'i' or 'j' ! (either one; they are equivalent). For example, '2.5fi' has type ! '_Complex float' and '3i' has type '_Complex int'. Such a constant always has a pure imaginary value, but you can form any complex value you like by adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming C library (such as the GNU C Library), and want to construct complex constants of floating type, you should ! include '' and use the macros 'I' or '_Complex_I' instead. To extract the real part of a complex-valued expression EXP, write ! '__real__ EXP'. Likewise, use '__imag__' to extract the imaginary part. ! This is a GNU extension; for values of floating type, you should use the ! ISO C99 functions 'crealf', 'creal', 'creall', 'cimagf', 'cimag' and ! 'cimagl', declared in '' and also provided as built-in ! functions by GCC. ! The operator '~' performs complex conjugation when used on a value with ! a complex type. This is a GNU extension; for values of floating type, ! you should use the ISO C99 functions 'conjf', 'conj' and 'conjl', ! declared in '' and also provided as built-in functions by GCC. GCC can allocate complex automatic variables in a noncontiguous --- 22873,22909 ---- ==================== ISO C99 supports complex floating data types, and as an extension GCC ! supports them in C90 mode and in C++. GCC also supports complex ! integer data types which are not part of ISO C99. You can declare ! complex types using the keyword `_Complex'. As an extension, the older ! GNU keyword `__complex__' is also supported. ! For example, `_Complex double x;' declares `x' as a variable whose ! real part and imaginary part are both of type `double'. `_Complex ! short int y;' declares `y' to have real and imaginary parts of type ! `short int'; this is not likely to be useful, but it shows that the set ! of complex types is complete. ! To write a constant with a complex data type, use the suffix `i' or ! `j' (either one; they are equivalent). For example, `2.5fi' has type ! `_Complex float' and `3i' has type `_Complex int'. Such a constant always has a pure imaginary value, but you can form any complex value you like by adding one to a real constant. This is a GNU extension; if you have an ISO C99 conforming C library (such as the GNU C Library), and want to construct complex constants of floating type, you should ! include `' and use the macros `I' or `_Complex_I' instead. To extract the real part of a complex-valued expression EXP, write ! `__real__ EXP'. Likewise, use `__imag__' to extract the imaginary ! part. This is a GNU extension; for values of floating type, you should ! use the ISO C99 functions `crealf', `creal', `creall', `cimagf', ! `cimag' and `cimagl', declared in `' and also provided as ! built-in functions by GCC. ! The operator `~' performs complex conjugation when used on a value ! with a complex type. This is a GNU extension; for values of floating ! type, you should use the ISO C99 functions `conjf', `conj' and `conjl', ! declared in `' and also provided as built-in functions by GCC. GCC can allocate complex automatic variables in a noncontiguous *************** the imaginary part is on the stack (or v *** 22756,22763 **** debug info format can represent this, so use of DWARF 2 is recommended. If you are using the stabs debug info format, GCC describes a noncontiguous complex variable as if it were two separate variables of ! noncomplex type. If the variable's actual name is 'foo', the two ! fictitious variables are named 'foo$real' and 'foo$imag'. You can examine and set these two fictitious variables with your debugger.  --- 22912,22919 ---- debug info format can represent this, so use of DWARF 2 is recommended. If you are using the stabs debug info format, GCC describes a noncontiguous complex variable as if it were two separate variables of ! noncomplex type. If the variable's actual name is `foo', the two ! fictitious variables are named `foo$real' and `foo$imag'. You can examine and set these two fictitious variables with your debugger.  *************** File: gcc.info, Node: Floating Types, *** 22766,22787 **** 6.11 Additional Floating Types ============================== ! As an extension, GNU C supports additional floating types, '__float80' ! and '__float128' to support 80-bit ('XFmode') and 128-bit ('TFmode') floating types. Support for additional types includes the arithmetic operators: add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from ! integer and other floating types. Use a suffix 'w' or 'W' in a literal ! constant of type '__float80' and 'q' or 'Q' for '_float128'. You can declare complex types using the corresponding internal complex type, ! 'XCmode' for '__float80' type and 'TCmode' for '__float128' type: typedef _Complex float __attribute__((mode(TC))) _Complex128; typedef _Complex float __attribute__((mode(XC))) _Complex80; ! Not all targets support additional floating-point types. '__float80' ! and '__float128' types are supported on i386, x86_64 and IA-64 targets. ! The '__float128' type is supported on hppa HP-UX targets.  File: gcc.info, Node: Half-Precision, Next: Decimal Float, Prev: Floating Types, Up: C Extensions --- 22922,22943 ---- 6.11 Additional Floating Types ============================== ! As an extension, GNU C supports additional floating types, `__float80' ! and `__float128' to support 80-bit (`XFmode') and 128-bit (`TFmode') floating types. Support for additional types includes the arithmetic operators: add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from ! integer and other floating types. Use a suffix `w' or `W' in a literal ! constant of type `__float80' and `q' or `Q' for `_float128'. You can declare complex types using the corresponding internal complex type, ! `XCmode' for `__float80' type and `TCmode' for `__float128' type: typedef _Complex float __attribute__((mode(TC))) _Complex128; typedef _Complex float __attribute__((mode(XC))) _Complex80; ! Not all targets support additional floating-point types. `__float80' ! and `__float128' types are supported on i386, x86_64 and IA-64 targets. ! The `__float128' type is supported on hppa HP-UX targets.  File: gcc.info, Node: Half-Precision, Next: Decimal Float, Prev: Floating Types, Up: C Extensions *************** File: gcc.info, Node: Half-Precision, *** 22790,22833 **** ================================== On ARM targets, GCC supports half-precision (16-bit) floating point via ! the '__fp16' type. You must enable this type explicitly with the ! '-mfp16-format' command-line option in order to use it. ARM supports two incompatible representations for half-precision floating-point values. You must choose one of the representations and use it consistently in your program. ! Specifying '-mfp16-format=ieee' selects the IEEE 754-2008 format. This ! format can represent normalized values in the range of 2^{-14} to 65504. ! There are 11 bits of significand precision, approximately 3 decimal ! digits. ! Specifying '-mfp16-format=alternative' selects the ARM alternative ! format. This representation is similar to the IEEE format, but does not ! support infinities or NaNs. Instead, the range of exponents is extended, so that this format can represent normalized values in the ! range of 2^{-14} to 131008. ! The '__fp16' type is a storage format only. For purposes of arithmetic ! and other operations, '__fp16' values in C or C++ expressions are ! automatically promoted to 'float'. In addition, you cannot declare a ! function with a return value or parameters of type '__fp16'. ! Note that conversions from 'double' to '__fp16' involve an intermediate ! conversion to 'float'. Because of rounding, this can sometimes produce ! a different result than a direct conversion. ! ARM provides hardware support for conversions between '__fp16' and ! 'float' values as an extension to VFP and NEON (Advanced SIMD). GCC generates code using these hardware instructions if you compile with options to select an FPU that provides them; for example, ! '-mfpu=neon-fp16 -mfloat-abi=softfp', in addition to the '-mfp16-format' ! option to select a half-precision format. ! Language-level support for the '__fp16' data type is independent of whether GCC generates code using hardware floating-point instructions. In cases where hardware support is not specified, GCC implements ! conversions between '__fp16' and 'float' values as library calls.  File: gcc.info, Node: Decimal Float, Next: Hex Floats, Prev: Half-Precision, Up: C Extensions --- 22946,22990 ---- ================================== On ARM targets, GCC supports half-precision (16-bit) floating point via ! the `__fp16' type. You must enable this type explicitly with the ! `-mfp16-format' command-line option in order to use it. ARM supports two incompatible representations for half-precision floating-point values. You must choose one of the representations and use it consistently in your program. ! Specifying `-mfp16-format=ieee' selects the IEEE 754-2008 format. ! This format can represent normalized values in the range of 2^-14 to ! 65504. There are 11 bits of significand precision, approximately 3 ! decimal digits. ! Specifying `-mfp16-format=alternative' selects the ARM alternative ! format. This representation is similar to the IEEE format, but does ! not support infinities or NaNs. Instead, the range of exponents is extended, so that this format can represent normalized values in the ! range of 2^-14 to 131008. ! The `__fp16' type is a storage format only. For purposes of ! arithmetic and other operations, `__fp16' values in C or C++ ! expressions are automatically promoted to `float'. In addition, you ! cannot declare a function with a return value or parameters of type ! `__fp16'. ! Note that conversions from `double' to `__fp16' involve an ! intermediate conversion to `float'. Because of rounding, this can ! sometimes produce a different result than a direct conversion. ! ARM provides hardware support for conversions between `__fp16' and ! `float' values as an extension to VFP and NEON (Advanced SIMD). GCC generates code using these hardware instructions if you compile with options to select an FPU that provides them; for example, ! `-mfpu=neon-fp16 -mfloat-abi=softfp', in addition to the ! `-mfp16-format' option to select a half-precision format. ! Language-level support for the `__fp16' data type is independent of whether GCC generates code using hardware floating-point instructions. In cases where hardware support is not specified, GCC implements ! conversions between `__fp16' and `float' values as library calls.  File: gcc.info, Node: Decimal Float, Next: Hex Floats, Prev: Half-Precision, Up: C Extensions *************** File: gcc.info, Node: Decimal Float, N *** 22835,22857 **** 6.13 Decimal Floating Types =========================== ! As an extension, GNU C supports decimal floating types as defined in the ! N1312 draft of ISO/IEC WDTR24732. Support for decimal floating types in ! GCC will evolve as the draft technical report changes. Calling ! conventions for any target might also change. Not all targets support ! decimal floating types. ! The decimal floating types are '_Decimal32', '_Decimal64', and ! '_Decimal128'. They use a radix of ten, unlike the floating types ! 'float', 'double', and 'long double' whose radix is not specified by the ! C standard but is usually two. Support for decimal floating types includes the arithmetic operators add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from integer and ! other floating types. Use a suffix 'df' or 'DF' in a literal constant ! of type '_Decimal32', 'dd' or 'DD' for '_Decimal64', and 'dl' or 'DL' ! for '_Decimal128'. GCC support of decimal float as specified by the draft technical report is incomplete: --- 22992,23014 ---- 6.13 Decimal Floating Types =========================== ! As an extension, GNU C supports decimal floating types as defined in ! the N1312 draft of ISO/IEC WDTR24732. Support for decimal floating ! types in GCC will evolve as the draft technical report changes. ! Calling conventions for any target might also change. Not all targets ! support decimal floating types. ! The decimal floating types are `_Decimal32', `_Decimal64', and ! `_Decimal128'. They use a radix of ten, unlike the floating types ! `float', `double', and `long double' whose radix is not specified by ! the C standard but is usually two. Support for decimal floating types includes the arithmetic operators add, subtract, multiply, divide; unary arithmetic operators; relational operators; equality operators; and conversions to and from integer and ! other floating types. Use a suffix `df' or `DF' in a literal constant ! of type `_Decimal32', `dd' or `DD' for `_Decimal64', and `dl' or `DL' ! for `_Decimal128'. GCC support of decimal float as specified by the draft technical report is incomplete: *************** is incomplete: *** 22862,22873 **** technical report. * GCC does not provide the C library functionality associated with ! 'math.h', 'fenv.h', 'stdio.h', 'stdlib.h', and 'wchar.h', which must come from a separate C library implementation. Because of ! this the GNU C compiler does not define macro '__STDC_DEC_FP__' to indicate that the implementation conforms to the technical report. ! Types '_Decimal32', '_Decimal64', and '_Decimal128' are supported by the DWARF 2 debug information format.  --- 23019,23030 ---- technical report. * GCC does not provide the C library functionality associated with ! `math.h', `fenv.h', `stdio.h', `stdlib.h', and `wchar.h', which must come from a separate C library implementation. Because of ! this the GNU C compiler does not define macro `__STDC_DEC_FP__' to indicate that the implementation conforms to the technical report. ! Types `_Decimal32', `_Decimal64', and `_Decimal128' are supported by the DWARF 2 debug information format.  *************** File: gcc.info, Node: Hex Floats, Next *** 22877,22896 **** =============== ISO C99 supports floating-point numbers written not only in the usual ! decimal notation, such as '1.55e1', but also numbers such as '0x1.fp3' ! written in hexadecimal format. As a GNU extension, GCC supports this in ! C90 mode (except in some cases when strictly conforming) and in C++. In ! that format the '0x' hex introducer and the 'p' or 'P' exponent field ! are mandatory. The exponent is a decimal number that indicates the ! power of 2 by which the significant part is multiplied. Thus '0x1.f' is ! 1 15/16, 'p3' multiplies it by 8, and the value of '0x1.fp3' is the same ! as '1.55e1'. Unlike for floating-point numbers in the decimal notation the exponent is always required in the hexadecimal notation. Otherwise the compiler ! would not be able to resolve the ambiguity of, e.g., '0x1.f'. This ! could mean '1.0f' or '1.9375' since 'f' is also the extension for ! floating-point constants of type 'float'.  File: gcc.info, Node: Fixed-Point, Next: Named Address Spaces, Prev: Hex Floats, Up: C Extensions --- 23034,23053 ---- =============== ISO C99 supports floating-point numbers written not only in the usual ! decimal notation, such as `1.55e1', but also numbers such as `0x1.fp3' ! written in hexadecimal format. As a GNU extension, GCC supports this ! in C90 mode (except in some cases when strictly conforming) and in C++. ! In that format the `0x' hex introducer and the `p' or `P' exponent ! field are mandatory. The exponent is a decimal number that indicates ! the power of 2 by which the significant part is multiplied. Thus ! `0x1.f' is 1 15/16, `p3' multiplies it by 8, and the value of `0x1.fp3' ! is the same as `1.55e1'. Unlike for floating-point numbers in the decimal notation the exponent is always required in the hexadecimal notation. Otherwise the compiler ! would not be able to resolve the ambiguity of, e.g., `0x1.f'. This ! could mean `1.0f' or `1.9375' since `f' is also the extension for ! floating-point constants of type `float'.  File: gcc.info, Node: Fixed-Point, Next: Named Address Spaces, Prev: Hex Floats, Up: C Extensions *************** will evolve as the draft technical repor *** 22904,22958 **** for any target might also change. Not all targets support fixed-point types. ! The fixed-point types are 'short _Fract', '_Fract', 'long _Fract', ! 'long long _Fract', 'unsigned short _Fract', 'unsigned _Fract', ! 'unsigned long _Fract', 'unsigned long long _Fract', '_Sat short ! _Fract', '_Sat _Fract', '_Sat long _Fract', '_Sat long long _Fract', ! '_Sat unsigned short _Fract', '_Sat unsigned _Fract', '_Sat unsigned ! long _Fract', '_Sat unsigned long long _Fract', 'short _Accum', ! '_Accum', 'long _Accum', 'long long _Accum', 'unsigned short _Accum', ! 'unsigned _Accum', 'unsigned long _Accum', 'unsigned long long _Accum', ! '_Sat short _Accum', '_Sat _Accum', '_Sat long _Accum', '_Sat long long ! _Accum', '_Sat unsigned short _Accum', '_Sat unsigned _Accum', '_Sat ! unsigned long _Accum', '_Sat unsigned long long _Accum'. Fixed-point data values contain fractional and optional integral parts. The format of fixed-point data varies and depends on the target machine. Support for fixed-point types includes: ! * prefix and postfix increment and decrement operators ('++', '--') ! * unary arithmetic operators ('+', '-', '!') ! * binary arithmetic operators ('+', '-', '*', '/') ! * binary shift operators ('<<', '>>') ! * relational operators ('<', '<=', '>=', '>') ! * equality operators ('==', '!=') ! * assignment operators ('+=', '-=', '*=', '/=', '<<=', '>>=') * conversions to and from integer, floating-point, or fixed-point types Use a suffix in a fixed-point literal constant: ! * 'hr' or 'HR' for 'short _Fract' and '_Sat short _Fract' ! * 'r' or 'R' for '_Fract' and '_Sat _Fract' ! * 'lr' or 'LR' for 'long _Fract' and '_Sat long _Fract' ! * 'llr' or 'LLR' for 'long long _Fract' and '_Sat long long _Fract' ! * 'uhr' or 'UHR' for 'unsigned short _Fract' and '_Sat unsigned short ! _Fract' ! * 'ur' or 'UR' for 'unsigned _Fract' and '_Sat unsigned _Fract' ! * 'ulr' or 'ULR' for 'unsigned long _Fract' and '_Sat unsigned long _Fract' ! * 'ullr' or 'ULLR' for 'unsigned long long _Fract' and '_Sat unsigned ! long long _Fract' ! * 'hk' or 'HK' for 'short _Accum' and '_Sat short _Accum' ! * 'k' or 'K' for '_Accum' and '_Sat _Accum' ! * 'lk' or 'LK' for 'long _Accum' and '_Sat long _Accum' ! * 'llk' or 'LLK' for 'long long _Accum' and '_Sat long long _Accum' ! * 'uhk' or 'UHK' for 'unsigned short _Accum' and '_Sat unsigned short ! _Accum' ! * 'uk' or 'UK' for 'unsigned _Accum' and '_Sat unsigned _Accum' ! * 'ulk' or 'ULK' for 'unsigned long _Accum' and '_Sat unsigned long _Accum' ! * 'ullk' or 'ULLK' for 'unsigned long long _Accum' and '_Sat unsigned ! long long _Accum' GCC support of fixed-point types as specified by the draft technical report is incomplete: --- 23061,23137 ---- for any target might also change. Not all targets support fixed-point types. ! The fixed-point types are `short _Fract', `_Fract', `long _Fract', ! `long long _Fract', `unsigned short _Fract', `unsigned _Fract', ! `unsigned long _Fract', `unsigned long long _Fract', `_Sat short ! _Fract', `_Sat _Fract', `_Sat long _Fract', `_Sat long long _Fract', ! `_Sat unsigned short _Fract', `_Sat unsigned _Fract', `_Sat unsigned ! long _Fract', `_Sat unsigned long long _Fract', `short _Accum', ! `_Accum', `long _Accum', `long long _Accum', `unsigned short _Accum', ! `unsigned _Accum', `unsigned long _Accum', `unsigned long long _Accum', ! `_Sat short _Accum', `_Sat _Accum', `_Sat long _Accum', `_Sat long long ! _Accum', `_Sat unsigned short _Accum', `_Sat unsigned _Accum', `_Sat ! unsigned long _Accum', `_Sat unsigned long long _Accum'. Fixed-point data values contain fractional and optional integral parts. The format of fixed-point data varies and depends on the target machine. Support for fixed-point types includes: ! * prefix and postfix increment and decrement operators (`++', `--') ! ! * unary arithmetic operators (`+', `-', `!') ! ! * binary arithmetic operators (`+', `-', `*', `/') ! ! * binary shift operators (`<<', `>>') ! ! * relational operators (`<', `<=', `>=', `>') ! ! * equality operators (`==', `!=') ! ! * assignment operators (`+=', `-=', `*=', `/=', `<<=', `>>=') ! * conversions to and from integer, floating-point, or fixed-point types Use a suffix in a fixed-point literal constant: ! * `hr' or `HR' for `short _Fract' and `_Sat short _Fract' ! ! * `r' or `R' for `_Fract' and `_Sat _Fract' ! ! * `lr' or `LR' for `long _Fract' and `_Sat long _Fract' ! ! * `llr' or `LLR' for `long long _Fract' and `_Sat long long _Fract' ! ! * `uhr' or `UHR' for `unsigned short _Fract' and `_Sat unsigned ! short _Fract' ! ! * `ur' or `UR' for `unsigned _Fract' and `_Sat unsigned _Fract' ! ! * `ulr' or `ULR' for `unsigned long _Fract' and `_Sat unsigned long _Fract' ! ! * `ullr' or `ULLR' for `unsigned long long _Fract' and `_Sat ! unsigned long long _Fract' ! ! * `hk' or `HK' for `short _Accum' and `_Sat short _Accum' ! ! * `k' or `K' for `_Accum' and `_Sat _Accum' ! ! * `lk' or `LK' for `long _Accum' and `_Sat long _Accum' ! ! * `llk' or `LLK' for `long long _Accum' and `_Sat long long _Accum' ! ! * `uhk' or `UHK' for `unsigned short _Accum' and `_Sat unsigned ! short _Accum' ! ! * `uk' or `UK' for `unsigned _Accum' and `_Sat unsigned _Accum' ! ! * `ulk' or `ULK' for `unsigned long _Accum' and `_Sat unsigned long _Accum' ! ! * `ullk' or `ULLK' for `unsigned long long _Accum' and `_Sat ! unsigned long long _Accum' GCC support of fixed-point types as specified by the draft technical report is incomplete: *************** File: gcc.info, Node: Named Address Spa *** 22972,22983 **** As an extension, GNU C supports named address spaces as defined in the N1275 draft of ISO/IEC DTR 18037. Support for named address spaces in GCC will evolve as the draft technical report changes. Calling ! conventions for any target might also change. At present, only the AVR, ! SPU, M32C, and RL78 targets support address spaces other than the generic address space. Address space identifiers may be used exactly like any other C type ! qualifier (e.g., 'const' or 'volatile'). See the N1275 document for more details. 6.16.1 AVR Named Address Spaces --- 23151,23162 ---- As an extension, GNU C supports named address spaces as defined in the N1275 draft of ISO/IEC DTR 18037. Support for named address spaces in GCC will evolve as the draft technical report changes. Calling ! conventions for any target might also change. At present, only the ! AVR, SPU, M32C, and RL78 targets support address spaces other than the generic address space. Address space identifiers may be used exactly like any other C type ! qualifier (e.g., `const' or `volatile'). See the N1275 document for more details. 6.16.1 AVR Named Address Spaces *************** more details. *** 22985,23022 **** On the AVR target, there are several address spaces that can be used in order to put read-only data into the flash memory and access that data ! by means of the special instructions 'LPM' or 'ELPM' needed to read from ! flash. Per default, any data including read-only data is located in RAM (the generic address space) so that non-generic address spaces are needed to locate read-only data in flash memory _and_ to generate the right instructions to access this data without using (inline) assembler code. ! '__flash' ! The '__flash' qualifier locates data in the '.progmem.data' ! section. Data is read using the 'LPM' instruction. Pointers to this address space are 16 bits wide. ! '__flash1' ! '__flash2' ! '__flash3' ! '__flash4' ! '__flash5' These are 16-bit address spaces locating data in section ! '.progmemN.data' where N refers to address space '__flashN'. The ! compiler sets the 'RAMPZ' segment register appropriately before ! reading data by means of the 'ELPM' instruction. ! '__memx' This is a 24-bit address space that linearizes flash and RAM: If ! the high bit of the address is set, data is read from RAM using the ! lower two bytes as RAM address. If the high bit of the address is ! clear, data is read from flash with 'RAMPZ' set according to the ! high byte of the address. *Note '__builtin_avr_flash_segment': AVR ! Built-in Functions. ! Objects in this address space are located in '.progmemx.data'. Example --- 23164,23201 ---- On the AVR target, there are several address spaces that can be used in order to put read-only data into the flash memory and access that data ! by means of the special instructions `LPM' or `ELPM' needed to read ! from flash. Per default, any data including read-only data is located in RAM (the generic address space) so that non-generic address spaces are needed to locate read-only data in flash memory _and_ to generate the right instructions to access this data without using (inline) assembler code. ! `__flash' ! The `__flash' qualifier locates data in the `.progmem.data' ! section. Data is read using the `LPM' instruction. Pointers to this address space are 16 bits wide. ! `__flash1' ! `__flash2' ! `__flash3' ! `__flash4' ! `__flash5' These are 16-bit address spaces locating data in section ! `.progmemN.data' where N refers to address space `__flashN'. The ! compiler sets the `RAMPZ' segment register appropriately before ! reading data by means of the `ELPM' instruction. ! `__memx' This is a 24-bit address space that linearizes flash and RAM: If ! the high bit of the address is set, data is read from RAM using ! the lower two bytes as RAM address. If the high bit of the ! address is clear, data is read from flash with `RAMPZ' set ! according to the high byte of the address. *Note ! `__builtin_avr_flash_segment': AVR Built-in Functions. ! Objects in this address space are located in `.progmemx.data'. Example *************** not: *** 23064,23096 **** } #endif /* __FLASH */ ! Notice that attribute *note 'progmem': AVR Variable Attributes. locates ! data in flash but accesses to these data read from generic address ! space, i.e. from RAM, so that you need special accessors like ! 'pgm_read_byte' from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) ! together with attribute 'progmem'. Limitations and caveats ! * Reading across the 64 KiB section boundary of the '__flash' or ! '__flashN' address spaces shows undefined behavior. The only ! address space that supports reading across the 64 KiB flash segment ! boundaries is '__memx'. ! * If you use one of the '__flashN' address spaces you must arrange ! your linker script to locate the '.progmemN.data' sections according to your needs. * Any data or pointers to the non-generic address spaces must be ! qualified as 'const', i.e. as read-only data. This still applies if the data in one of these address spaces like software version ! number or calibration lookup table are intended to be changed after ! load time by, say, a boot loader. In this case the right ! qualification is 'const' 'volatile' so that the compiler must not optimize away known values or insert them as immediates into operands of instructions. ! * The following code initializes a variable 'pfoo' located in static storage with a 24-bit address: extern const __memx char foo; const __memx void *pfoo = &foo; --- 23243,23275 ---- } #endif /* __FLASH */ ! Notice that attribute *note `progmem': AVR Variable Attributes. ! locates data in flash but accesses to these data read from generic ! address space, i.e. from RAM, so that you need special accessors like ! `pgm_read_byte' from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) ! together with attribute `progmem'. Limitations and caveats ! * Reading across the 64 KiB section boundary of the `__flash' or ! `__flashN' address spaces shows undefined behavior. The only ! address space that supports reading across the 64 KiB flash ! segment boundaries is `__memx'. ! * If you use one of the `__flashN' address spaces you must arrange ! your linker script to locate the `.progmemN.data' sections according to your needs. * Any data or pointers to the non-generic address spaces must be ! qualified as `const', i.e. as read-only data. This still applies if the data in one of these address spaces like software version ! number or calibration lookup table are intended to be changed ! after load time by, say, a boot loader. In this case the right ! qualification is `const' `volatile' so that the compiler must not optimize away known values or insert them as immediates into operands of instructions. ! * The following code initializes a variable `pfoo' located in static storage with a 24-bit address: extern const __memx char foo; const __memx void *pfoo = &foo; *************** Limitations and caveats *** 23098,23115 **** Such code requires at least binutils 2.23, see PR13503 (http://sourceware.org/PR13503). 6.16.2 M32C Named Address Spaces -------------------------------- On the M32C target, with the R8C and M16C CPU variants, variables ! qualified with '__far' are accessed using 32-bit addresses in order to ! access memory beyond the first 64 Ki bytes. If '__far' is used with the ! M32CM or M32C CPU variants, it has no effect. 6.16.3 RL78 Named Address Spaces -------------------------------- ! On the RL78 target, variables qualified with '__far' are accessed with 32-bit pointers (20-bit addresses) rather than the default 16-bit addresses. Non-far variables are assumed to appear in the topmost 64 KiB of the address space. --- 23277,23295 ---- Such code requires at least binutils 2.23, see PR13503 (http://sourceware.org/PR13503). + 6.16.2 M32C Named Address Spaces -------------------------------- On the M32C target, with the R8C and M16C CPU variants, variables ! qualified with `__far' are accessed using 32-bit addresses in order to ! access memory beyond the first 64 Ki bytes. If `__far' is used with ! the M32CM or M32C CPU variants, it has no effect. 6.16.3 RL78 Named Address Spaces -------------------------------- ! On the RL78 target, variables qualified with `__far' are accessed with 32-bit pointers (20-bit addresses) rather than the default 16-bit addresses. Non-far variables are assumed to appear in the topmost 64 KiB of the address space. *************** addresses. Non-far variables are assume *** 23118,23131 **** ------------------------------- On the SPU target variables may be declared as belonging to another ! address space by qualifying the type with the '__ea' address space identifier: extern int __ea i; ! The compiler generates special code to access the variable 'i'. It may ! use runtime library support, or generate special machine instructions to ! access that address space.  File: gcc.info, Node: Zero Length, Next: Empty Structures, Prev: Named Address Spaces, Up: C Extensions --- 23298,23311 ---- ------------------------------- On the SPU target variables may be declared as belonging to another ! address space by qualifying the type with the `__ea' address space identifier: extern int __ea i; ! The compiler generates special code to access the variable `i'. It may ! use runtime library support, or generate special machine instructions ! to access that address space.  File: gcc.info, Node: Zero Length, Next: Empty Structures, Prev: Named Address Spaces, Up: C Extensions *************** variable-length object: *** 23146,23165 **** malloc (sizeof (struct line) + this_length); thisline->length = this_length; ! In ISO C90, you would have to give 'contents' a length of 1, which ! means either you waste space or complicate the argument to 'malloc'. In ISO C99, you would use a "flexible array member", which is slightly different in syntax and semantics: ! * Flexible array members are written as 'contents[]' without the '0'. ! * Flexible array members have incomplete type, and so the 'sizeof' operator may not be applied. As a quirk of the original ! implementation of zero-length arrays, 'sizeof' evaluates to zero. * Flexible array members may only appear as the last member of a ! 'struct' that is otherwise non-empty. * A structure containing a flexible array member, or a union containing such a structure (possibly recursively), may not be a --- 23326,23345 ---- malloc (sizeof (struct line) + this_length); thisline->length = this_length; ! In ISO C90, you would have to give `contents' a length of 1, which ! means either you waste space or complicate the argument to `malloc'. In ISO C99, you would use a "flexible array member", which is slightly different in syntax and semantics: ! * Flexible array members are written as `contents[]' without the `0'. ! * Flexible array members have incomplete type, and so the `sizeof' operator may not be applied. As a quirk of the original ! implementation of zero-length arrays, `sizeof' evaluates to zero. * Flexible array members may only appear as the last member of a ! `struct' that is otherwise non-empty. * A structure containing a flexible array member, or a union containing such a structure (possibly recursively), may not be a *************** this case) are ignored. *** 23178,23185 **** Instead GCC allows static initialization of flexible array members. This is equivalent to defining a new structure containing the original structure followed by an array of sufficient size to contain the data. ! E.g. in the following, 'f1' is constructed as if it were declared like ! 'f2'. struct f1 { int x; int y[]; --- 23358,23365 ---- Instead GCC allows static initialization of flexible array members. This is equivalent to defining a new structure containing the original structure followed by an array of sufficient size to contain the data. ! E.g. in the following, `f1' is constructed as if it were declared like ! `f2'. struct f1 { int x; int y[]; *************** E.g. in the following, 'f1' is construct *** 23189,23206 **** struct f1 f1; int data[3]; } f2 = { { 1 }, { 2, 3, 4 } }; ! The convenience of this extension is that 'f1' has the desired type, ! eliminating the need to consistently refer to 'f2.f1'. This has symmetry with normal static arrays, in that an array of ! unknown size is also written with '[]'. Of course, this extension only makes sense if the extra data comes at ! the end of a top-level object, as otherwise we would be overwriting data ! at subsequent offsets. To avoid undue complication and confusion with ! initialization of deeply nested arrays, we simply disallow any non-empty ! initialization except when the structure is the top-level object. For ! example: struct foo { int x; int y[]; }; struct bar { struct foo z; }; --- 23369,23386 ---- struct f1 f1; int data[3]; } f2 = { { 1 }, { 2, 3, 4 } }; ! The convenience of this extension is that `f1' has the desired type, ! eliminating the need to consistently refer to `f2.f1'. This has symmetry with normal static arrays, in that an array of ! unknown size is also written with `[]'. Of course, this extension only makes sense if the extra data comes at ! the end of a top-level object, as otherwise we would be overwriting ! data at subsequent offsets. To avoid undue complication and confusion ! with initialization of deeply nested arrays, we simply disallow any ! non-empty initialization except when the structure is the top-level ! object. For example: struct foo { int x; int y[]; }; struct bar { struct foo z; }; *************** GCC permits a C structure to have no mem *** 23222,23229 **** }; The structure has size zero. In C++, empty structures are part of the ! language. G++ treats empty structures as if they had a single member of ! type 'char'.  File: gcc.info, Node: Variable Length, Next: Variadic Macros, Prev: Empty Structures, Up: C Extensions --- 23402,23409 ---- }; The structure has size zero. In C++, empty structures are part of the ! language. G++ treats empty structures as if they had a single member ! of type `char'.  File: gcc.info, Node: Variable Length, Next: Variadic Macros, Prev: Empty Structures, Up: C Extensions *************** structure or a union. For example: *** 23260,23276 **** struct S { int x[n]; }; } ! You can use the function 'alloca' to get an effect much like ! variable-length arrays. The function 'alloca' is available in many other C implementations (but not in all). On the other hand, variable-length arrays are more elegant. There are other differences between these two methods. Space allocated ! with 'alloca' exists until the containing _function_ returns. The space ! for a variable-length array is deallocated as soon as the array name's ! scope ends. (If you use both variable-length arrays and 'alloca' in the ! same function, deallocation of a variable-length array also deallocates ! anything more recently allocated with 'alloca'.) You can also use variable-length arrays as arguments to functions: --- 23440,23456 ---- struct S { int x[n]; }; } ! You can use the function `alloca' to get an effect much like ! variable-length arrays. The function `alloca' is available in many other C implementations (but not in all). On the other hand, variable-length arrays are more elegant. There are other differences between these two methods. Space allocated ! with `alloca' exists until the containing _function_ returns. The ! space for a variable-length array is deallocated as soon as the array ! name's scope ends. (If you use both variable-length arrays and ! `alloca' in the same function, deallocation of a variable-length array ! also deallocates anything more recently allocated with `alloca'.) You can also use variable-length arrays as arguments to functions: *************** anything more recently allocated with 'a *** 23282,23288 **** The length of an array is computed once when the storage is allocated and is remembered for the scope of the array in case you access it with ! 'sizeof'. If you want to pass the array first and the length afterward, you can use a forward declaration in the parameter list--another GNU extension. --- 23462,23468 ---- The length of an array is computed once when the storage is allocated and is remembered for the scope of the array in case you access it with ! `sizeof'. If you want to pass the array first and the length afterward, you can use a forward declaration in the parameter list--another GNU extension. *************** use a forward declaration in the paramet *** 23293,23301 **** /* ... */ } ! The 'int len' before the semicolon is a "parameter forward ! declaration", and it serves the purpose of making the name 'len' known ! when the declaration of 'data' is parsed. You can write any number of such parameter forward declarations in the parameter list. They can be separated by commas or semicolons, but the --- 23473,23481 ---- /* ... */ } ! The `int len' before the semicolon is a "parameter forward ! declaration", and it serves the purpose of making the name `len' known ! when the declaration of `data' is parsed. You can write any number of such parameter forward declarations in the parameter list. They can be separated by commas or semicolons, but the *************** example: *** 23317,23327 **** #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__) ! Here '...' is a "variable argument". In the invocation of such a macro, ! it represents the zero or more tokens until the closing parenthesis that ! ends the invocation, including any commas. This set of tokens replaces ! the identifier '__VA_ARGS__' in the macro body wherever it appears. See ! the CPP manual for more information. GCC has long supported variadic macros, and used a different syntax that allowed you to give a name to the variable arguments just like any --- 23497,23507 ---- #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__) ! Here `...' is a "variable argument". In the invocation of such a ! macro, it represents the zero or more tokens until the closing ! parenthesis that ends the invocation, including any commas. This set of ! tokens replaces the identifier `__VA_ARGS__' in the macro body wherever ! it appears. See the CPP manual for more information. GCC has long supported variadic macros, and used a different syntax that allowed you to give a name to the variable arguments just like any *************** be used with either of the above forms o *** 23337,23344 **** In standard C, you are not allowed to leave the variable argument out entirely; but you are allowed to pass an empty argument. For example, ! this invocation is invalid in ISO C, because there is no comma after the ! string: debug ("A message") --- 23517,23524 ---- In standard C, you are not allowed to leave the variable argument out entirely; but you are allowed to pass an empty argument. For example, ! this invocation is invalid in ISO C, because there is no comma after ! the string: debug ("A message") *************** the expansion of the macro still has the *** 23348,23359 **** string. To help solve this problem, CPP behaves specially for variable ! arguments used with the token paste operator, '##'. If instead you write #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__) ! and if the variable arguments are omitted or empty, the '##' operator causes the preprocessor to remove the comma before it. If you do provide some variable arguments in your macro invocation, GNU CPP does not complain about the paste operation and instead places the variable --- 23528,23539 ---- string. To help solve this problem, CPP behaves specially for variable ! arguments used with the token paste operator, `##'. If instead you write #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__) ! and if the variable arguments are omitted or empty, the `##' operator causes the preprocessor to remove the comma before it. If you do provide some variable arguments in your macro invocation, GNU CPP does not complain about the paste operation and instead places the variable *************** File: gcc.info, Node: Subscripting, Ne *** 23383,23394 **** 6.22 Non-Lvalue Arrays May Have Subscripts ========================================== ! In ISO C99, arrays that are not lvalues still decay to pointers, and may ! be subscripted, although they may not be modified or used after the next ! sequence point and the unary '&' operator may not be applied to them. ! As an extension, GNU C allows such arrays to be subscripted in C90 mode, ! though otherwise they do not decay to pointers outside C99 mode. For ! example, this is valid in GNU C though not valid in C90: struct foo {int a[4];}; --- 23563,23574 ---- 6.22 Non-Lvalue Arrays May Have Subscripts ========================================== ! In ISO C99, arrays that are not lvalues still decay to pointers, and ! may be subscripted, although they may not be modified or used after the ! next sequence point and the unary `&' operator may not be applied to ! them. As an extension, GNU C allows such arrays to be subscripted in ! C90 mode, though otherwise they do not decay to pointers outside C99 ! mode. For example, this is valid in GNU C though not valid in C90: struct foo {int a[4];}; *************** example, this is valid in GNU C though n *** 23402,23419 ****  File: gcc.info, Node: Pointer Arith, Next: Initializers, Prev: Subscripting, Up: C Extensions ! 6.23 Arithmetic on 'void'- and Function-Pointers ================================================ In GNU C, addition and subtraction operations are supported on pointers ! to 'void' and on pointers to functions. This is done by treating the ! size of a 'void' or of a function as 1. ! A consequence of this is that 'sizeof' is also allowed on 'void' and on ! function types, and returns 1. ! The option '-Wpointer-arith' requests a warning if these extensions are ! used.  File: gcc.info, Node: Initializers, Next: Compound Literals, Prev: Pointer Arith, Up: C Extensions --- 23582,23599 ----  File: gcc.info, Node: Pointer Arith, Next: Initializers, Prev: Subscripting, Up: C Extensions ! 6.23 Arithmetic on `void'- and Function-Pointers ================================================ In GNU C, addition and subtraction operations are supported on pointers ! to `void' and on pointers to functions. This is done by treating the ! size of a `void' or of a function as 1. ! A consequence of this is that `sizeof' is also allowed on `void' and ! on function types, and returns 1. ! The option `-Wpointer-arith' requests a warning if these extensions ! are used.  File: gcc.info, Node: Initializers, Next: Compound Literals, Prev: Pointer Arith, Up: C Extensions *************** File: gcc.info, Node: Initializers, Ne *** 23421,23430 **** 6.24 Non-Constant Initializers ============================== ! As in standard C++ and ISO C99, the elements of an aggregate initializer ! for an automatic variable are not required to be constant expressions in ! GNU C. Here is an example of an initializer with run-time varying ! elements: foo (float f, float g) { --- 23601,23610 ---- 6.24 Non-Constant Initializers ============================== ! As in standard C++ and ISO C99, the elements of an aggregate ! initializer for an automatic variable are not required to be constant ! expressions in GNU C. Here is an example of an initializer with ! run-time varying elements: foo (float f, float g) { *************** initializer; it is an lvalue. As an ext *** 23445,23456 **** literals in C90 mode and in C++, though the semantics are somewhat different in C++. ! Usually, the specified type is a structure. Assume that 'struct foo' ! and 'structure' are declared as shown: struct foo {int a; char b[2];} structure; ! Here is an example of constructing a 'struct foo' with a compound literal: structure = ((struct foo) {x + y, 'a', 0}); --- 23625,23636 ---- literals in C90 mode and in C++, though the semantics are somewhat different in C++. ! Usually, the specified type is a structure. Assume that `struct foo' ! and `structure' are declared as shown: struct foo {int a; char b[2];} structure; ! Here is an example of constructing a `struct foo' with a compound literal: structure = ((struct foo) {x + y, 'a', 0}); *************** initializer, as shown here: *** 23475,23487 **** but then the compound literal is equivalent to a cast. As a GNU extension, GCC allows initialization of objects with static ! storage duration by compound literals (which is not possible in ISO C99, ! because the initializer is not a constant). It is handled as if the ! object is initialized only with the bracket enclosed list if the types ! of the compound literal and the object match. The initializer list of ! the compound literal must be constant. If the object being initialized ! has array type of unknown size, the size is determined by compound ! literal size. static struct foo x = (struct foo) {1, 'a', 'b'}; static int y[] = (int []) {1, 2, 3}; --- 23655,23667 ---- but then the compound literal is equivalent to a cast. As a GNU extension, GCC allows initialization of objects with static ! storage duration by compound literals (which is not possible in ISO ! C99, because the initializer is not a constant). It is handled as if ! the object is initialized only with the bracket enclosed list if the ! types of the compound literal and the object match. The initializer ! list of the compound literal must be constant. If the object being ! initialized has array type of unknown size, the size is determined by ! compound literal size. static struct foo x = (struct foo) {1, 'a', 'b'}; static int y[] = (int []) {1, 2, 3}; *************** The above lines are equivalent to the fo *** 23494,23512 **** In C, a compound literal designates an unnamed object with static or automatic storage duration. In C++, a compound literal designates a ! temporary object, which only lives until the end of its full-expression. ! As a result, well-defined C code that takes the address of a subobject ! of a compound literal can be undefined in C++. For instance, if the ! array compound literal example above appeared inside a function, any ! subsequent use of 'foo' in C++ has undefined behavior because the ! lifetime of the array ends after the declaration of 'foo'. As a result, ! the C++ compiler now rejects the conversion of a temporary array to a ! pointer. As an optimization, the C++ compiler sometimes gives array compound literals longer lifetimes: when the array either appears outside a ! function or has const-qualified type. If 'foo' and its initializer had ! elements of 'char *const' type rather than 'char *', or if 'foo' were a global variable, the array would have static storage duration. But it is probably safest just to avoid the use of array compound literals in code compiled as C++. --- 23674,23692 ---- In C, a compound literal designates an unnamed object with static or automatic storage duration. In C++, a compound literal designates a ! temporary object, which only lives until the end of its ! full-expression. As a result, well-defined C code that takes the ! address of a subobject of a compound literal can be undefined in C++. ! For instance, if the array compound literal example above appeared ! inside a function, any subsequent use of `foo' in C++ has undefined ! behavior because the lifetime of the array ends after the declaration ! of `foo'. As a result, the C++ compiler now rejects the conversion of ! a temporary array to a pointer. As an optimization, the C++ compiler sometimes gives array compound literals longer lifetimes: when the array either appears outside a ! function or has const-qualified type. If `foo' and its initializer had ! elements of `char *const' type rather than `char *', or if `foo' were a global variable, the array would have static storage duration. But it is probably safest just to avoid the use of array compound literals in code compiled as C++. *************** indices or structure field names they ap *** 23526,23532 **** an extension in C90 mode as well. This extension is not implemented in GNU C++. ! To specify an array index, write '[INDEX] =' before the element value. For example, int a[6] = { [4] = 29, [2] = 15 }; --- 23706,23712 ---- an extension in C90 mode as well. This extension is not implemented in GNU C++. ! To specify an array index, write `[INDEX] =' before the element value. For example, int a[6] = { [4] = 29, [2] = 15 }; *************** The index values must be constant expres *** 23539,23548 **** initialized is automatic. An alternative syntax for this that has been obsolete since GCC 2.5 but ! GCC still accepts is to write '[INDEX]' before the element value, with ! no '='. ! To initialize a range of elements to the same value, write '[FIRST ... LAST] = VALUE'. This is a GNU extension. For example, int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 }; --- 23719,23728 ---- initialized is automatic. An alternative syntax for this that has been obsolete since GCC 2.5 but ! GCC still accepts is to write `[INDEX]' before the element value, with ! no `='. ! To initialize a range of elements to the same value, write `[FIRST ... LAST] = VALUE'. This is a GNU extension. For example, int widths[] = { [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 }; *************** Note that the length of the array is the *** 23554,23560 **** one. In a structure initializer, specify the name of a field to initialize ! with '.FIELDNAME =' before the element value. For example, given the following structure, struct point { int x, y; }; --- 23734,23740 ---- one. In a structure initializer, specify the name of a field to initialize ! with `.FIELDNAME =' before the element value. For example, given the following structure, struct point { int x, y; }; *************** is equivalent to *** 23568,23592 **** struct point p = { xvalue, yvalue }; Another syntax that has the same meaning, obsolete since GCC 2.5, is ! 'FIELDNAME:', as shown here: struct point p = { y: yvalue, x: xvalue }; Omitted field members are implicitly initialized the same as objects that have static storage duration. ! The '[INDEX]' or '.FIELDNAME' is known as a "designator". You can also ! use a designator (or the obsolete colon syntax) when initializing a ! union, to specify which element of the union should be used. For example, union foo { int i; double d; }; union foo f = { .d = 4 }; ! converts 4 to a 'double' to store it in the union using the second ! element. By contrast, casting 4 to type 'union foo' stores it into the ! union as the integer 'i', since it is an integer. (*Note Cast to Union::.) You can combine this technique of naming elements with ordinary C --- 23748,23772 ---- struct point p = { xvalue, yvalue }; Another syntax that has the same meaning, obsolete since GCC 2.5, is ! `FIELDNAME:', as shown here: struct point p = { y: yvalue, x: xvalue }; Omitted field members are implicitly initialized the same as objects that have static storage duration. ! The `[INDEX]' or `.FIELDNAME' is known as a "designator". You can ! also use a designator (or the obsolete colon syntax) when initializing ! a union, to specify which element of the union should be used. For example, union foo { int i; double d; }; union foo f = { .d = 4 }; ! converts 4 to a `double' to store it in the union using the second ! element. By contrast, casting 4 to type `union foo' stores it into the ! union as the integer `i', since it is an integer. (*Note Cast to Union::.) You can combine this technique of naming elements with ordinary C *************** is equivalent to *** 23600,23616 **** int a[6] = { 0, v1, v2, 0, v4, 0 }; ! Labeling the elements of an array initializer is especially useful when ! the indices are characters or belong to an 'enum' type. For example: int whitespace[256] = { [' '] = 1, ['\t'] = 1, ['\h'] = 1, ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 }; ! You can also write a series of '.FIELDNAME' and '[INDEX]' designators ! before an '=' to specify a nested subobject to initialize; the list is ! taken relative to the subobject corresponding to the closest surrounding ! brace pair. For example, with the 'struct point' declaration above: struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 }; --- 23780,23798 ---- int a[6] = { 0, v1, v2, 0, v4, 0 }; ! Labeling the elements of an array initializer is especially useful ! when the indices are characters or belong to an `enum' type. For ! example: int whitespace[256] = { [' '] = 1, ['\t'] = 1, ['\h'] = 1, ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 }; ! You can also write a series of `.FIELDNAME' and `[INDEX]' designators ! before an `=' to specify a nested subobject to initialize; the list is ! taken relative to the subobject corresponding to the closest ! surrounding brace pair. For example, with the `struct point' ! declaration above: struct point ptarray[10] = { [2].y = yv2, [2].x = xv2, [0].x = xv0 }; *************** File: gcc.info, Node: Case Ranges, Nex *** 23625,23643 **** 6.27 Case Ranges ================ ! You can specify a range of consecutive values in a single 'case' label, like this: case LOW ... HIGH: ! This has the same effect as the proper number of individual 'case' labels, one for each integer value from LOW to HIGH, inclusive. This feature is especially useful for ranges of ASCII character codes: case 'A' ... 'Z': ! *Be careful:* Write spaces around the '...', for otherwise it may be parsed wrong when you use it with integer values. For example, write this: --- 23807,23825 ---- 6.27 Case Ranges ================ ! You can specify a range of consecutive values in a single `case' label, like this: case LOW ... HIGH: ! This has the same effect as the proper number of individual `case' labels, one for each integer value from LOW to HIGH, inclusive. This feature is especially useful for ranges of ASCII character codes: case 'A' ... 'Z': ! *Be careful:* Write spaces around the `...', for otherwise it may be parsed wrong when you use it with integer values. For example, write this: *************** File: gcc.info, Node: Cast to Union, N *** 23654,23663 **** ========================= A cast to union type is similar to other casts, except that the type ! specified is a union type. You can specify the type either with 'union ! TAG' or with a typedef name. A cast to union is actually a constructor, ! not a cast, and hence does not yield an lvalue like normal casts. ! (*Note Compound Literals::.) The types that may be cast to the union type are those of the members of the union. Thus, given the following union and variables: --- 23836,23845 ---- ========================= A cast to union type is similar to other casts, except that the type ! specified is a union type. You can specify the type either with `union ! TAG' or with a typedef name. A cast to union is actually a ! constructor, not a cast, and hence does not yield an lvalue like normal ! casts. (*Note Compound Literals::.) The types that may be cast to the union type are those of the members of the union. Thus, given the following union and variables: *************** of the union. Thus, given the following *** 23666,23672 **** int x; double y; ! both 'x' and 'y' can be cast to type 'union foo'. Using the cast as the right-hand side of an assignment to a variable of union type is equivalent to storing in a member of the union: --- 23848,23854 ---- int x; double y; ! both `x' and `y' can be cast to type `union foo'. Using the cast as the right-hand side of an assignment to a variable of union type is equivalent to storing in a member of the union: *************** In GNU C, you declare certain things abo *** 23710,23802 **** program which help the compiler optimize function calls and check your code more carefully. ! The keyword '__attribute__' allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. The following attributes are ! currently defined for functions on all targets: 'aligned', 'alloc_size', ! 'alloc_align', 'assume_aligned', 'noreturn', 'returns_twice', ! 'noinline', 'noclone', 'always_inline', 'flatten', 'pure', 'const', ! 'nothrow', 'sentinel', 'format', 'format_arg', 'no_instrument_function', ! 'no_split_stack', 'section', 'constructor', 'destructor', 'used', ! 'unused', 'deprecated', 'weak', 'malloc', 'alias', 'ifunc', ! 'warn_unused_result', 'nonnull', 'returns_nonnull', 'gnu_inline', ! 'externally_visible', 'hot', 'cold', 'artificial', ! 'no_sanitize_address', 'no_address_safety_analysis', ! 'no_sanitize_undefined', 'error' and 'warning'. Several other attributes are defined for functions on particular target systems. ! Other attributes, including 'section' are supported for variables declarations (*note Variable Attributes::) and for types (*note Type Attributes::). GCC plugins may provide their own attributes. ! You may also specify attributes with '__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you may ! use '__noreturn__' instead of 'noreturn'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! 'alias ("TARGET")' ! The 'alias' attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance, void __f () { /* Do something. */; } void f () __attribute__ ((weak, alias ("__f"))); ! defines 'f' to be a weak alias for '__f'. In C++, the mangled name ! for the target must be used. It is an error if '__f' is not defined in the same translation unit. Not all target machines support this attribute. ! 'aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the function, measured in bytes. You cannot use this attribute to decrease the alignment of a function, only to increase it. However, when you explicitly specify a function alignment this overrides the effect of the ! '-falign-functions' (*note Optimize Options::) option for this function. ! Note that the effectiveness of 'aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for functions to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) See your linker documentation for further information. ! The 'aligned' attribute can also be used for variables and fields (*note Variable Attributes::.) ! 'alloc_size' ! The 'alloc_size' attribute is used to tell the compiler that the function return value points to memory, where the size is given by one or two of the functions parameters. GCC uses this information ! to improve the correctness of '__builtin_object_size'. ! The function parameter(s) denoting the allocated size are specified ! by one or two integer arguments supplied to the attribute. The ! allocated size is either the value of the single function argument ! specified or the product of the two function arguments specified. ! Argument numbering starts at one. For instance, void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2))) void* my_realloc(void*, size_t) __attribute__((alloc_size(2))) ! declares that 'my_calloc' returns memory of the size given by the ! product of parameter 1 and 2 and that 'my_realloc' returns memory of the size given by parameter 2. ! 'alloc_align' ! The 'alloc_align' attribute is used to tell the compiler that the function return value points to memory, where the returned pointer ! minimum alignment is given by one of the functions parameters. GCC ! uses this information to improve pointer alignment analysis. The function parameter denoting the allocated alignment is specified by one integer argument, whose number is the argument of --- 23892,23984 ---- program which help the compiler optimize function calls and check your code more carefully. ! The keyword `__attribute__' allows you to specify special attributes when making a declaration. This keyword is followed by an attribute specification inside double parentheses. The following attributes are ! currently defined for functions on all targets: `aligned', ! `alloc_size', `alloc_align', `assume_aligned', `noreturn', ! `returns_twice', `noinline', `noclone', `always_inline', `flatten', ! `pure', `const', `nothrow', `sentinel', `format', `format_arg', ! `no_instrument_function', `no_split_stack', `section', `constructor', ! `destructor', `used', `unused', `deprecated', `weak', `malloc', ! `alias', `ifunc', `warn_unused_result', `nonnull', `returns_nonnull', ! `gnu_inline', `externally_visible', `hot', `cold', `artificial', ! `no_sanitize_address', `no_address_safety_analysis', ! `no_sanitize_undefined', `error' and `warning'. Several other attributes are defined for functions on particular target systems. ! Other attributes, including `section' are supported for variables declarations (*note Variable Attributes::) and for types (*note Type Attributes::). GCC plugins may provide their own attributes. ! You may also specify attributes with `__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you ! may use `__noreturn__' instead of `noreturn'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! `alias ("TARGET")' ! The `alias' attribute causes the declaration to be emitted as an alias for another symbol, which must be specified. For instance, void __f () { /* Do something. */; } void f () __attribute__ ((weak, alias ("__f"))); ! defines `f' to be a weak alias for `__f'. In C++, the mangled ! name for the target must be used. It is an error if `__f' is not defined in the same translation unit. Not all target machines support this attribute. ! `aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the function, measured in bytes. You cannot use this attribute to decrease the alignment of a function, only to increase it. However, when you explicitly specify a function alignment this overrides the effect of the ! `-falign-functions' (*note Optimize Options::) option for this function. ! Note that the effectiveness of `aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for functions to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) See your linker documentation for further information. ! The `aligned' attribute can also be used for variables and fields (*note Variable Attributes::.) ! `alloc_size' ! The `alloc_size' attribute is used to tell the compiler that the function return value points to memory, where the size is given by one or two of the functions parameters. GCC uses this information ! to improve the correctness of `__builtin_object_size'. ! The function parameter(s) denoting the allocated size are ! specified by one or two integer arguments supplied to the ! attribute. The allocated size is either the value of the single ! function argument specified or the product of the two function ! arguments specified. Argument numbering starts at one. For instance, void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2))) void* my_realloc(void*, size_t) __attribute__((alloc_size(2))) ! declares that `my_calloc' returns memory of the size given by the ! product of parameter 1 and 2 and that `my_realloc' returns memory of the size given by parameter 2. ! `alloc_align' ! The `alloc_align' attribute is used to tell the compiler that the function return value points to memory, where the returned pointer ! minimum alignment is given by one of the functions parameters. ! GCC uses this information to improve pointer alignment analysis. The function parameter denoting the allocated alignment is specified by one integer argument, whose number is the argument of *************** attributes. *** 23806,23816 **** void* my_memalign(size_t, size_t) __attribute__((alloc_align(1))) ! declares that 'my_memalign' returns memory with minimum alignment given by parameter 1. ! 'assume_aligned' ! The 'assume_aligned' attribute is used to tell the compiler that the function return value points to memory, where the returned pointer minimum alignment is given by the first argument. If the attribute has two arguments, the second argument is misalignment --- 23988,23998 ---- void* my_memalign(size_t, size_t) __attribute__((alloc_align(1))) ! declares that `my_memalign' returns memory with minimum alignment given by parameter 1. ! `assume_aligned' ! The `assume_aligned' attribute is used to tell the compiler that the function return value points to memory, where the returned pointer minimum alignment is given by the first argument. If the attribute has two arguments, the second argument is misalignment *************** attributes. *** 23821,23932 **** void* my_alloc1(size_t) __attribute__((assume_aligned(16))) void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8))) ! declares that 'my_alloc1' returns 16-byte aligned pointer and that ! 'my_alloc2' returns a pointer whose value modulo 32 is equal to 8. ! 'always_inline' Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level is specified. ! 'gnu_inline' This attribute should be used with a function that is also declared ! with the 'inline' keyword. It directs GCC to treat the function as ! if it were defined in gnu90 mode even when compiling in C99 or gnu99 mode. ! If the function is declared 'extern', then this definition of the function is used only for inlining. In no case is the function compiled as a standalone function, not even if you take its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. This has almost the effect of a macro. The way to use this is to put a function definition in a header file with this attribute, and put ! another copy of the function, without 'extern', in a library file. ! The definition in the header file causes most calls to the function ! to be inlined. If any uses of the function remain, they refer to ! the single copy in the library. Note that the two definitions of ! the functions need not be precisely the same, although if they do ! not have the same effect your program may behave oddly. ! In C, if the function is neither 'extern' nor 'static', then the function is compiled as a standalone function, as well as being inlined where possible. ! This is how GCC traditionally handled functions declared 'inline'. ! Since ISO C99 specifies a different semantics for 'inline', this function attribute is provided as a transition measure and as a useful feature in its own right. This attribute is available in ! GCC 4.1.3 and later. It is available if either of the preprocessor ! macros '__GNUC_GNU_INLINE__' or '__GNUC_STDC_INLINE__' are defined. ! *Note An Inline Function is As Fast As a Macro: Inline. ! In C++, this attribute does not depend on 'extern' in any way, but ! it still requires the 'inline' keyword to enable its special behavior. ! 'artificial' This attribute is useful for small inline wrappers that if possible should appear during debugging as a unit. Depending on the debug info format it either means marking the function as artificial or using the caller location for all instructions within the inlined body. ! 'bank_switch' When added to an interrupt handler with the M32C port, causes the prologue and epilogue to use bank switching to preserve the registers rather than saving them on the stack. ! 'flatten' Generally, inlining into a function is limited. For a function marked with this attribute, every call inside this function is inlined, if possible. Whether the function itself is considered for inlining depends on its size and the current inlining parameters. ! 'error ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, an error that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! '__builtin_constant_p' and inline functions where checking the ! inline function arguments is not possible through 'extern char ! [(condition) ? 1 : -1];' tricks. While it is possible to leave the ! function undefined and thus invoke a link failure, when using this ! attribute the problem is diagnosed earlier and with exact location ! of the call even in presence of inline functions or when not ! emitting debugging information. ! 'warning ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, a warning that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! '__builtin_constant_p' and inline functions. While it is possible ! to define the function with a message in '.gnu.warning*' section, ! when using this attribute the problem is diagnosed earlier and with ! exact location of the call even in presence of inline functions or ! when not emitting debugging information. ! 'cdecl' ! On the Intel 386, the 'cdecl' attribute causes the compiler to assume that the calling function pops off the stack space used to pass arguments. This is useful to override the effects of the ! '-mrtd' switch. ! 'const' Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is ! just slightly more strict class than the 'pure' attribute below, since function is not allowed to read global memory. Note that a function that has pointer arguments and examines the ! data pointed to must _not_ be declared 'const'. Likewise, a ! function that calls a non-'const' function usually must not be ! 'const'. It does not make sense for a 'const' function to return ! 'void'. ! The attribute 'const' is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows: --- 24003,24116 ---- void* my_alloc1(size_t) __attribute__((assume_aligned(16))) void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8))) ! declares that `my_alloc1' returns 16-byte aligned pointer and that ! `my_alloc2' returns a pointer whose value modulo 32 is equal to 8. ! `always_inline' Generally, functions are not inlined unless optimization is specified. For functions declared inline, this attribute inlines the function even if no optimization level is specified. ! `gnu_inline' This attribute should be used with a function that is also declared ! with the `inline' keyword. It directs GCC to treat the function ! as if it were defined in gnu90 mode even when compiling in C99 or gnu99 mode. ! If the function is declared `extern', then this definition of the function is used only for inlining. In no case is the function compiled as a standalone function, not even if you take its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. This has almost the effect of a macro. The way to use this is to put a function definition in a header file with this attribute, and put ! another copy of the function, without `extern', in a library file. ! The definition in the header file causes most calls to the ! function to be inlined. If any uses of the function remain, they ! refer to the single copy in the library. Note that the two ! definitions of the functions need not be precisely the same, ! although if they do not have the same effect your program may ! behave oddly. ! In C, if the function is neither `extern' nor `static', then the function is compiled as a standalone function, as well as being inlined where possible. ! This is how GCC traditionally handled functions declared `inline'. ! Since ISO C99 specifies a different semantics for `inline', this function attribute is provided as a transition measure and as a useful feature in its own right. This attribute is available in ! GCC 4.1.3 and later. It is available if either of the ! preprocessor macros `__GNUC_GNU_INLINE__' or ! `__GNUC_STDC_INLINE__' are defined. *Note An Inline Function is ! As Fast As a Macro: Inline. ! In C++, this attribute does not depend on `extern' in any way, but ! it still requires the `inline' keyword to enable its special behavior. ! `artificial' This attribute is useful for small inline wrappers that if possible should appear during debugging as a unit. Depending on the debug info format it either means marking the function as artificial or using the caller location for all instructions within the inlined body. ! `bank_switch' When added to an interrupt handler with the M32C port, causes the prologue and epilogue to use bank switching to preserve the registers rather than saving them on the stack. ! `flatten' Generally, inlining into a function is limited. For a function marked with this attribute, every call inside this function is inlined, if possible. Whether the function itself is considered for inlining depends on its size and the current inlining parameters. ! `error ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, an error that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! `__builtin_constant_p' and inline functions where checking the ! inline function arguments is not possible through `extern char ! [(condition) ? 1 : -1];' tricks. While it is possible to leave ! the function undefined and thus invoke a link failure, when using ! this attribute the problem is diagnosed earlier and with exact ! location of the call even in presence of inline functions or when ! not emitting debugging information. ! `warning ("MESSAGE")' If this attribute is used on a function declaration and a call to such a function is not eliminated through dead code elimination or other optimizations, a warning that includes MESSAGE is diagnosed. This is useful for compile-time checking, especially together with ! `__builtin_constant_p' and inline functions. While it is possible ! to define the function with a message in `.gnu.warning*' section, ! when using this attribute the problem is diagnosed earlier and ! with exact location of the call even in presence of inline ! functions or when not emitting debugging information. ! `cdecl' ! On the Intel 386, the `cdecl' attribute causes the compiler to assume that the calling function pops off the stack space used to pass arguments. This is useful to override the effects of the ! `-mrtd' switch. ! `const' Many functions do not examine any values except their arguments, and have no effects except the return value. Basically this is ! just slightly more strict class than the `pure' attribute below, since function is not allowed to read global memory. Note that a function that has pointer arguments and examines the ! data pointed to must _not_ be declared `const'. Likewise, a ! function that calls a non-`const' function usually must not be ! `const'. It does not make sense for a `const' function to return ! `void'. ! The attribute `const' is not implemented in GCC versions earlier than 2.5. An alternative way to declare that a function has no side effects, which works in the current version and in some older versions, is as follows: *************** attributes. *** 23936,23952 **** extern const intfn square; This approach does not work in GNU C++ from 2.6.0 on, since the ! language specifies that the 'const' must be attached to the return value. ! 'constructor' ! 'destructor' ! 'constructor (PRIORITY)' ! 'destructor (PRIORITY)' ! The 'constructor' attribute causes the function to be called ! automatically before execution enters 'main ()'. Similarly, the ! 'destructor' attribute causes the function to be called ! automatically after 'main ()' completes or 'exit ()' is called. Functions with these attributes are useful for initializing data that is used implicitly during the execution of the program. --- 24120,24136 ---- extern const intfn square; This approach does not work in GNU C++ from 2.6.0 on, since the ! language specifies that the `const' must be attached to the return value. ! `constructor' ! `destructor' ! `constructor (PRIORITY)' ! `destructor (PRIORITY)' ! The `constructor' attribute causes the function to be called ! automatically before execution enters `main ()'. Similarly, the ! `destructor' attribute causes the function to be called ! automatically after `main ()' completes or `exit ()' is called. Functions with these attributes are useful for initializing data that is used implicitly during the execution of the program. *************** attributes. *** 23963,23971 **** These attributes are not currently implemented for Objective-C. ! 'deprecated' ! 'deprecated (MSG)' ! The 'deprecated' attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration --- 24147,24155 ---- These attributes are not currently implemented for Objective-C. ! `deprecated' ! `deprecated (MSG)' ! The `deprecated' attribute results in a warning if the function is used anywhere in the source file. This is useful when identifying functions that are expected to be removed in a future version of a program. The warning also includes the location of the declaration *************** attributes. *** 23981,24014 **** argument, which must be a string, is printed in the warning if present. ! The 'deprecated' attribute can also be used for variables and types ! (*note Variable Attributes::, *note Type Attributes::.) ! 'disinterrupt' On Epiphany and MeP targets, this attribute causes the compiler to emit instructions to disable interrupts for the duration of the given function. ! 'dllexport' ! On Microsoft Windows targets and Symbian OS targets the 'dllexport' ! attribute causes the compiler to provide a global pointer to a ! pointer in a DLL, so that it can be referenced with the 'dllimport' ! attribute. On Microsoft Windows targets, the pointer name is ! formed by combining '_imp__' and the function or variable name. ! You can use '__declspec(dllexport)' as a synonym for '__attribute__ ! ((dllexport))' for compatibility with other compilers. ! On systems that support the 'visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. ! In previous versions of GCC, the 'dllexport' attribute was ignored ! for inlined functions, unless the '-fkeep-inline-functions' flag had been used. The default behavior now is to emit all dllexported inline functions; however, this can cause object file-size bloat, in which case the old behavior can be restored by using ! '-fno-keep-inline-dllexport'. The attribute is also ignored for undefined symbols. --- 24165,24200 ---- argument, which must be a string, is printed in the warning if present. ! The `deprecated' attribute can also be used for variables and ! types (*note Variable Attributes::, *note Type Attributes::.) ! `disinterrupt' On Epiphany and MeP targets, this attribute causes the compiler to emit instructions to disable interrupts for the duration of the given function. ! `dllexport' ! On Microsoft Windows targets and Symbian OS targets the ! `dllexport' attribute causes the compiler to provide a global ! pointer to a pointer in a DLL, so that it can be referenced with ! the `dllimport' attribute. On Microsoft Windows targets, the ! pointer name is formed by combining `_imp__' and the function or ! variable name. ! You can use `__declspec(dllexport)' as a synonym for ! `__attribute__ ((dllexport))' for compatibility with other ! compilers. ! On systems that support the `visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. ! In previous versions of GCC, the `dllexport' attribute was ignored ! for inlined functions, unless the `-fkeep-inline-functions' flag had been used. The default behavior now is to emit all dllexported inline functions; however, this can cause object file-size bloat, in which case the old behavior can be restored by using ! `-fno-keep-inline-dllexport'. The attribute is also ignored for undefined symbols. *************** attributes. *** 24019,24160 **** For Microsoft Windows targets there are alternative methods for including the symbol in the DLL's export table such as using a ! '.def' file with an 'EXPORTS' section or, with GNU ld, using the ! '--export-all' linker flag. ! 'dllimport' ! On Microsoft Windows and Symbian OS targets, the 'dllimport' attribute causes the compiler to reference a function or variable via a global pointer to a pointer that is set up by the DLL ! exporting the symbol. The attribute implies 'extern'. On Microsoft Windows targets, the pointer name is formed by combining ! '_imp__' and the function or variable name. ! You can use '__declspec(dllimport)' as a synonym for '__attribute__ ! ((dllimport))' for compatibility with other compilers. ! On systems that support the 'visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. Currently, the attribute is ignored for inlined functions. If the attribute is applied to a symbol _definition_, an error is ! reported. If a symbol previously declared 'dllimport' is later defined, the attribute is ignored in subsequent references, and a warning is emitted. The attribute is also overridden by a ! subsequent declaration as 'dllexport'. ! When applied to C++ classes, the attribute marks non-inlined member ! functions and static data members as imports. However, the attribute is ignored for virtual methods to allow creation of vtables using thunks. ! On the SH Symbian OS target the 'dllimport' attribute also has another affect--it can cause the vtable and run-time type information for a class to be exported. This happens when the class has a dllimported constructor or a non-inline, non-pure ! virtual function and, for either of those two conditions, the class ! also has an inline constructor or destructor and has a key function ! that is defined in the current translation unit. ! For Microsoft Windows targets the use of the 'dllimport' attribute on functions is not necessary, but provides a small performance benefit by eliminating a thunk in the DLL. The use of the ! 'dllimport' attribute on imported variables was required on older versions of the GNU linker, but can now be avoided by passing the ! '--enable-auto-import' switch to the GNU linker. As with functions, using the attribute for a variable eliminates a thunk in the DLL. One drawback to using this attribute is that a pointer to a ! _variable_ marked as 'dllimport' cannot be used as a constant ! address. However, a pointer to a _function_ with the 'dllimport' attribute can be used as a constant initializer; in this case, the address of a stub function in the import lib is referenced. On Microsoft Windows targets, the attribute can be disabled for ! functions by setting the '-mnop-fun-dllimport' flag. ! 'eightbit_data' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate that ! the specified variable should be placed into the eight-bit data ! section. The compiler generates more efficient code for certain ! operations on data in the eight-bit data area. Note the eight-bit ! data area is limited to 256 bytes of data. You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. ! 'exception' Use this attribute on the NDS32 target to indicate that the specified function is an exception handler. The compiler will generate corresponding sections for use in an exception handler. ! 'exception_handler' Use this attribute on the Blackfin to indicate that the specified function is an exception handler. The compiler generates function entry and exit sequences suitable for use in an exception handler when this attribute is present. ! 'externally_visible' This attribute, attached to a global variable or function, ! nullifies the effect of the '-fwhole-program' command-line option, so the object remains visible outside the current compilation unit. ! If '-fwhole-program' is used together with '-flto' and 'gold' is ! used as the linker plugin, 'externally_visible' attributes are ! automatically added to functions (not variable yet due to a current ! 'gold' issue) that are accessed outside of LTO objects according to ! resolution file produced by 'gold'. For other linkers that cannot ! generate resolution file, explicit 'externally_visible' attributes ! are still necessary. ! 'far' ! On 68HC11 and 68HC12 the 'far' attribute causes the compiler to use ! a calling convention that takes care of switching memory banks when ! entering and leaving a function. This calling convention is also ! the default when using the '-mlong-calls' option. ! On 68HC12 the compiler uses the 'call' and 'rtc' instructions to call and return from a function. On 68HC11 the compiler generates a sequence of instructions to invoke a board-specific routine to switch the memory bank and call ! the real function. The board-specific routine simulates a 'call'. At the end of a function, it jumps to a board-specific routine ! instead of using 'rts'. The board-specific return routine ! simulates the 'rtc'. On MeP targets this causes the compiler to use a calling convention that assumes the called function is too far away for the built-in addressing modes. ! 'fast_interrupt' Use this attribute on the M32C and RX ports to indicate that the specified function is a fast interrupt handler. This is just like ! the 'interrupt' attribute, except that 'freit' is used to return ! instead of 'reit'. ! 'fastcall' ! On the Intel 386, the 'fastcall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX and the second argument (if of integral type) in the register EDX. Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number of ! arguments is variable all arguments are pushed on the stack. ! 'thiscall' ! On the Intel 386, the 'thiscall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX. ! Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number of ! arguments is variable all arguments are pushed on the stack. The ! 'thiscall' attribute is intended for C++ non-static member ! functions. As a GCC extension, this calling convention can be used ! for C functions and for static member methods. ! 'format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)' ! The 'format' attribute specifies that a function takes 'printf', ! 'scanf', 'strftime' or 'strfmon' style arguments that should be type-checked against a format string. For example, the declaration: --- 24205,24347 ---- For Microsoft Windows targets there are alternative methods for including the symbol in the DLL's export table such as using a ! `.def' file with an `EXPORTS' section or, with GNU ld, using the ! `--export-all' linker flag. ! `dllimport' ! On Microsoft Windows and Symbian OS targets, the `dllimport' attribute causes the compiler to reference a function or variable via a global pointer to a pointer that is set up by the DLL ! exporting the symbol. The attribute implies `extern'. On Microsoft Windows targets, the pointer name is formed by combining ! `_imp__' and the function or variable name. ! You can use `__declspec(dllimport)' as a synonym for ! `__attribute__ ((dllimport))' for compatibility with other ! compilers. ! On systems that support the `visibility' attribute, this attribute also implies "default" visibility. It is an error to explicitly specify any other visibility. Currently, the attribute is ignored for inlined functions. If the attribute is applied to a symbol _definition_, an error is ! reported. If a symbol previously declared `dllimport' is later defined, the attribute is ignored in subsequent references, and a warning is emitted. The attribute is also overridden by a ! subsequent declaration as `dllexport'. ! When applied to C++ classes, the attribute marks non-inlined ! member functions and static data members as imports. However, the attribute is ignored for virtual methods to allow creation of vtables using thunks. ! On the SH Symbian OS target the `dllimport' attribute also has another affect--it can cause the vtable and run-time type information for a class to be exported. This happens when the class has a dllimported constructor or a non-inline, non-pure ! virtual function and, for either of those two conditions, the ! class also has an inline constructor or destructor and has a key ! function that is defined in the current translation unit. ! For Microsoft Windows targets the use of the `dllimport' attribute on functions is not necessary, but provides a small performance benefit by eliminating a thunk in the DLL. The use of the ! `dllimport' attribute on imported variables was required on older versions of the GNU linker, but can now be avoided by passing the ! `--enable-auto-import' switch to the GNU linker. As with functions, using the attribute for a variable eliminates a thunk in the DLL. One drawback to using this attribute is that a pointer to a ! _variable_ marked as `dllimport' cannot be used as a constant ! address. However, a pointer to a _function_ with the `dllimport' attribute can be used as a constant initializer; in this case, the address of a stub function in the import lib is referenced. On Microsoft Windows targets, the attribute can be disabled for ! functions by setting the `-mnop-fun-dllimport' flag. ! `eightbit_data' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate ! that the specified variable should be placed into the eight-bit ! data section. The compiler generates more efficient code for ! certain operations on data in the eight-bit data area. Note the ! eight-bit data area is limited to 256 bytes of data. You must use GAS and GLD from GNU binutils version 2.7 or later for this attribute to work correctly. ! `exception' Use this attribute on the NDS32 target to indicate that the specified function is an exception handler. The compiler will generate corresponding sections for use in an exception handler. ! `exception_handler' Use this attribute on the Blackfin to indicate that the specified function is an exception handler. The compiler generates function entry and exit sequences suitable for use in an exception handler when this attribute is present. ! `externally_visible' This attribute, attached to a global variable or function, ! nullifies the effect of the `-fwhole-program' command-line option, so the object remains visible outside the current compilation unit. ! If `-fwhole-program' is used together with `-flto' and `gold' is ! used as the linker plugin, `externally_visible' attributes are ! automatically added to functions (not variable yet due to a ! current `gold' issue) that are accessed outside of LTO objects ! according to resolution file produced by `gold'. For other ! linkers that cannot generate resolution file, explicit ! `externally_visible' attributes are still necessary. ! `far' ! On 68HC11 and 68HC12 the `far' attribute causes the compiler to ! use a calling convention that takes care of switching memory banks ! when entering and leaving a function. This calling convention is ! also the default when using the `-mlong-calls' option. ! On 68HC12 the compiler uses the `call' and `rtc' instructions to call and return from a function. On 68HC11 the compiler generates a sequence of instructions to invoke a board-specific routine to switch the memory bank and call ! the real function. The board-specific routine simulates a `call'. At the end of a function, it jumps to a board-specific routine ! instead of using `rts'. The board-specific return routine ! simulates the `rtc'. On MeP targets this causes the compiler to use a calling convention that assumes the called function is too far away for the built-in addressing modes. ! `fast_interrupt' Use this attribute on the M32C and RX ports to indicate that the specified function is a fast interrupt handler. This is just like ! the `interrupt' attribute, except that `freit' is used to return ! instead of `reit'. ! `fastcall' ! On the Intel 386, the `fastcall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX and the second argument (if of integral type) in the register EDX. Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number ! of arguments is variable all arguments are pushed on the stack. ! `thiscall' ! On the Intel 386, the `thiscall' attribute causes the compiler to pass the first argument (if of integral type) in the register ECX. ! Subsequent and other typed arguments are passed on the stack. The ! called function pops the arguments off the stack. If the number ! of arguments is variable all arguments are pushed on the stack. ! The `thiscall' attribute is intended for C++ non-static member ! functions. As a GCC extension, this calling convention can be ! used for C functions and for static member methods. ! `format (ARCHETYPE, STRING-INDEX, FIRST-TO-CHECK)' ! The `format' attribute specifies that a function takes `printf', ! `scanf', `strftime' or `strfmon' style arguments that should be type-checked against a format string. For example, the declaration: *************** attributes. *** 24162,24288 **** my_printf (void *my_object, const char *my_format, ...) __attribute__ ((format (printf, 2, 3))); ! causes the compiler to check the arguments in calls to 'my_printf' ! for consistency with the 'printf' style format string argument ! 'my_format'. The parameter ARCHETYPE determines how the format string is ! interpreted, and should be 'printf', 'scanf', 'strftime', ! 'gnu_printf', 'gnu_scanf', 'gnu_strftime' or 'strfmon'. (You can ! also use '__printf__', '__scanf__', '__strftime__' or ! '__strfmon__'.) On MinGW targets, 'ms_printf', 'ms_scanf', and ! 'ms_strftime' are also present. ARCHETYPE values such as 'printf' refer to the formats accepted by the system's C runtime library, ! while values prefixed with 'gnu_' always refer to the formats accepted by the GNU C Library. On Microsoft Windows targets, ! values prefixed with 'ms_' refer to the formats accepted by the ! 'msvcrt.dll' library. The parameter STRING-INDEX specifies which argument is the format string argument (starting from 1), while ! FIRST-TO-CHECK is the number of the first argument to check against ! the format string. For functions where the arguments are not ! available to be checked (such as 'vprintf'), specify the third parameter as zero. In this case the compiler only checks the ! format string for consistency. For 'strftime' formats, the third parameter is required to be zero. Since non-static C++ methods ! have an implicit 'this' argument, the arguments of such methods should be counted from two, not one, when giving values for STRING-INDEX and FIRST-TO-CHECK. ! In the example above, the format string ('my_format') is the second ! argument of the function 'my_print', and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3. ! The 'format' attribute allows you to identify your own functions that take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless ! '-ffreestanding' or '-fno-builtin' is used) checks formats for the ! standard library functions 'printf', 'fprintf', 'sprintf', 'scanf', ! 'fscanf', 'sscanf', 'strftime', 'vprintf', 'vfprintf' and ! 'vsprintf' whenever such warnings are requested (using '-Wformat'), ! so there is no need to modify the header file 'stdio.h'. In C99 ! mode, the functions 'snprintf', 'vsnprintf', 'vscanf', 'vfscanf' ! and 'vsscanf' are also checked. Except in strictly conforming C ! standard modes, the X/Open function 'strfmon' is also checked as ! are 'printf_unlocked' and 'fprintf_unlocked'. *Note Options ! Controlling C Dialect: C Dialect Options. ! For Objective-C dialects, 'NSString' (or '__NSString__') is recognized in the same context. Declarations including these ! format attributes are parsed for correct syntax, however the result ! of checking of such format strings is not yet defined, and is not ! carried out by this version of the compiler. The target may also provide additional types of format checks. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! 'format_arg (STRING-INDEX)' ! The 'format_arg' attribute specifies that a function takes a format ! string for a 'printf', 'scanf', 'strftime' or 'strfmon' style ! function and modifies it (for example, to translate it into another ! language), so the result can be passed to a 'printf', 'scanf', ! 'strftime' or 'strfmon' style function (with the remaining ! arguments to the format function the same as they would have been ! for the unmodified string). For example, the declaration: extern char * my_dgettext (char *my_domain, const char *my_format) __attribute__ ((format_arg (2))); ! causes the compiler to check the arguments in calls to a 'printf', ! 'scanf', 'strftime' or 'strfmon' type function, whose format string ! argument is a call to the 'my_dgettext' function, for consistency ! with the format string argument 'my_format'. If the 'format_arg' ! attribute had not been specified, all the compiler could tell in ! such calls to format functions would be that the format string ! argument is not constant; this would generate a warning when ! '-Wformat-nonliteral' is used, but the calls could not be checked ! without the attribute. The parameter STRING-INDEX specifies which argument is the format string argument (starting from one). Since non-static C++ methods ! have an implicit 'this' argument, the arguments of such methods should be counted from two. ! The 'format_arg' attribute allows you to identify your own functions that modify format strings, so that GCC can check the ! calls to 'printf', 'scanf', 'strftime' or 'strfmon' type function whose operands are a call to one of your own function. The ! compiler always treats 'gettext', 'dgettext', and 'dcgettext' in this manner except when strict ISO C support is requested by ! '-ansi' or an appropriate '-std' option, or '-ffreestanding' or ! '-fno-builtin' is used. *Note Options Controlling C Dialect: C Dialect Options. ! For Objective-C dialects, the 'format-arg' attribute may refer to ! an 'NSString' reference for compatibility with the 'format' attribute above. ! The target may also allow additional types in 'format-arg' attributes. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! 'function_vector' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate that ! the specified function should be called through the function vector. Calling a function through the function vector reduces ! code size, however; the function vector has a limited size (maximum ! 128 entries on the H8/300 and 64 entries on the H8/300H and H8S) ! and shares space with the interrupt vector. On SH2A targets, this attribute declares a function to be called using the TBR relative addressing mode. The argument to this attribute is the entry number of the same function in a vector table containing all the TBR relative addressable functions. For ! correct operation the TBR must be setup accordingly to point to the ! start of the vector table before any functions with this attribute ! are invoked. Usually a good place to do the initialization is the ! startup routine. The TBR relative vector table can have at max 256 ! function entries. The jumps to these functions are generated using ! a SH2A specific, non delayed branch instruction JSR/N @(disp8,TBR). ! You must use GAS and GLD from GNU binutils version 2.7 or later for ! this attribute to work correctly. Please refer the example of M16C target, to see the use of this attribute while declaring a function, --- 24349,24477 ---- my_printf (void *my_object, const char *my_format, ...) __attribute__ ((format (printf, 2, 3))); ! causes the compiler to check the arguments in calls to `my_printf' ! for consistency with the `printf' style format string argument ! `my_format'. The parameter ARCHETYPE determines how the format string is ! interpreted, and should be `printf', `scanf', `strftime', ! `gnu_printf', `gnu_scanf', `gnu_strftime' or `strfmon'. (You can ! also use `__printf__', `__scanf__', `__strftime__' or ! `__strfmon__'.) On MinGW targets, `ms_printf', `ms_scanf', and ! `ms_strftime' are also present. ARCHETYPE values such as `printf' refer to the formats accepted by the system's C runtime library, ! while values prefixed with `gnu_' always refer to the formats accepted by the GNU C Library. On Microsoft Windows targets, ! values prefixed with `ms_' refer to the formats accepted by the ! `msvcrt.dll' library. The parameter STRING-INDEX specifies which argument is the format string argument (starting from 1), while ! FIRST-TO-CHECK is the number of the first argument to check ! against the format string. For functions where the arguments are ! not available to be checked (such as `vprintf'), specify the third parameter as zero. In this case the compiler only checks the ! format string for consistency. For `strftime' formats, the third parameter is required to be zero. Since non-static C++ methods ! have an implicit `this' argument, the arguments of such methods should be counted from two, not one, when giving values for STRING-INDEX and FIRST-TO-CHECK. ! In the example above, the format string (`my_format') is the second ! argument of the function `my_print', and the arguments to check start with the third argument, so the correct parameters for the format attribute are 2 and 3. ! The `format' attribute allows you to identify your own functions that take format strings as arguments, so that GCC can check the calls to these functions for errors. The compiler always (unless ! `-ffreestanding' or `-fno-builtin' is used) checks formats for the ! standard library functions `printf', `fprintf', `sprintf', ! `scanf', `fscanf', `sscanf', `strftime', `vprintf', `vfprintf' and ! `vsprintf' whenever such warnings are requested (using ! `-Wformat'), so there is no need to modify the header file ! `stdio.h'. In C99 mode, the functions `snprintf', `vsnprintf', ! `vscanf', `vfscanf' and `vsscanf' are also checked. Except in ! strictly conforming C standard modes, the X/Open function ! `strfmon' is also checked as are `printf_unlocked' and ! `fprintf_unlocked'. *Note Options Controlling C Dialect: C ! Dialect Options. ! For Objective-C dialects, `NSString' (or `__NSString__') is recognized in the same context. Declarations including these ! format attributes are parsed for correct syntax, however the ! result of checking of such format strings is not yet defined, and ! is not carried out by this version of the compiler. The target may also provide additional types of format checks. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! `format_arg (STRING-INDEX)' ! The `format_arg' attribute specifies that a function takes a format ! string for a `printf', `scanf', `strftime' or `strfmon' style ! function and modifies it (for example, to translate it into ! another language), so the result can be passed to a `printf', ! `scanf', `strftime' or `strfmon' style function (with the ! remaining arguments to the format function the same as they would ! have been for the unmodified string). For example, the ! declaration: extern char * my_dgettext (char *my_domain, const char *my_format) __attribute__ ((format_arg (2))); ! causes the compiler to check the arguments in calls to a `printf', ! `scanf', `strftime' or `strfmon' type function, whose format ! string argument is a call to the `my_dgettext' function, for ! consistency with the format string argument `my_format'. If the ! `format_arg' attribute had not been specified, all the compiler ! could tell in such calls to format functions would be that the ! format string argument is not constant; this would generate a ! warning when `-Wformat-nonliteral' is used, but the calls could ! not be checked without the attribute. The parameter STRING-INDEX specifies which argument is the format string argument (starting from one). Since non-static C++ methods ! have an implicit `this' argument, the arguments of such methods should be counted from two. ! The `format_arg' attribute allows you to identify your own functions that modify format strings, so that GCC can check the ! calls to `printf', `scanf', `strftime' or `strfmon' type function whose operands are a call to one of your own function. The ! compiler always treats `gettext', `dgettext', and `dcgettext' in this manner except when strict ISO C support is requested by ! `-ansi' or an appropriate `-std' option, or `-ffreestanding' or ! `-fno-builtin' is used. *Note Options Controlling C Dialect: C Dialect Options. ! For Objective-C dialects, the `format-arg' attribute may refer to ! an `NSString' reference for compatibility with the `format' attribute above. ! The target may also allow additional types in `format-arg' attributes. *Note Format Checks Specific to Particular Target Machines: Target Format Checks. ! `function_vector' ! Use this attribute on the H8/300, H8/300H, and H8S to indicate ! that the specified function should be called through the function vector. Calling a function through the function vector reduces ! code size, however; the function vector has a limited size ! (maximum 128 entries on the H8/300 and 64 entries on the H8/300H ! and H8S) and shares space with the interrupt vector. On SH2A targets, this attribute declares a function to be called using the TBR relative addressing mode. The argument to this attribute is the entry number of the same function in a vector table containing all the TBR relative addressable functions. For ! correct operation the TBR must be setup accordingly to point to ! the start of the vector table before any functions with this ! attribute are invoked. Usually a good place to do the ! initialization is the startup routine. The TBR relative vector ! table can have at max 256 function entries. The jumps to these ! functions are generated using a SH2A specific, non delayed branch ! instruction JSR/N @(disp8,TBR). You must use GAS and GLD from GNU ! binutils version 2.7 or later for this attribute to work correctly. Please refer the example of M16C target, to see the use of this attribute while declaring a function, *************** attributes. *** 24292,24304 **** being made to the same function, it saves 2 bytes of code per each of these calls. ! On M16C/M32C targets, the 'function_vector' attribute declares a ! special page subroutine call function. Use of this attribute reduces the code size by 2 bytes for each call generated to the ! subroutine. The argument to the attribute is the vector number entry from the special page vector table which contains the 16 ! low-order bits of the subroutine's entry address. Each vector ! table has special page number (18 to 255) that is used in 'jsrs' instructions. Jump addresses of the routines are generated by adding 0x0F0000 (in case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2-byte addresses set in the vector table. --- 24481,24493 ---- being made to the same function, it saves 2 bytes of code per each of these calls. ! On M16C/M32C targets, the `function_vector' attribute declares a ! special page subroutine call function. Use of this attribute reduces the code size by 2 bytes for each call generated to the ! subroutine. The argument to the attribute is the vector number entry from the special page vector table which contains the 16 ! low-order bits of the subroutine's entry address. Each vector ! table has special page number (18 to 255) that is used in `jsrs' instructions. Jump addresses of the routines are generated by adding 0x0F0000 (in case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2-byte addresses set in the vector table. *************** attributes. *** 24307,24313 **** 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF (for M32C). In the following example 2 bytes are saved for each call to ! function 'foo'. void foo (void) __attribute__((function_vector(0x18))); void foo (void) --- 24496,24502 ---- 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF (for M32C). In the following example 2 bytes are saved for each call to ! function `foo'. void foo (void) __attribute__((function_vector(0x18))); void foo (void) *************** attributes. *** 24324,24342 **** This attribute is ignored for R8C target. ! 'ifunc ("RESOLVER")' ! The 'ifunc' attribute is used to mark a function as an indirect function using the STT_GNU_IFUNC symbol type extension to the ELF standard. This allows the resolution of the symbol value to be determined dynamically at load time, and an optimized version of the routine can be selected for the particular processor or other system characteristics determined then. To use this attribute, ! first define the implementation functions available, and a resolver ! function that returns a pointer to the selected implementation ! function. The implementation functions' declarations must match ! the API of the function being implemented, the resolver's ! declaration is be a function returning pointer to void function ! returning void: void *my_memcpy (void *dst, const void *src, size_t len) { --- 24513,24531 ---- This attribute is ignored for R8C target. ! `ifunc ("RESOLVER")' ! The `ifunc' attribute is used to mark a function as an indirect function using the STT_GNU_IFUNC symbol type extension to the ELF standard. This allows the resolution of the symbol value to be determined dynamically at load time, and an optimized version of the routine can be selected for the particular processor or other system characteristics determined then. To use this attribute, ! first define the implementation functions available, and a ! resolver function that returns a pointer to the selected ! implementation function. The implementation functions' ! declarations must match the API of the function being implemented, ! the resolver's declaration is be a function returning pointer to ! void function returning void: void *my_memcpy (void *dst, const void *src, size_t len) { *************** attributes. *** 24364,24370 **** (at least version 2.20.1), and GNU C library (at least version 2.11.1). ! 'interrupt' Use this attribute on the ARC, ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS, MSP430, RL78, RX and Xstormy16 ports to indicate that the specified function is an interrupt handler. The --- 24553,24559 ---- (at least version 2.20.1), and GNU C library (at least version 2.11.1). ! `interrupt' Use this attribute on the ARC, ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS, MSP430, RL78, RX and Xstormy16 ports to indicate that the specified function is an interrupt handler. The *************** attributes. *** 24375,24395 **** Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze, and SH processors can be specified via the ! 'interrupt_handler' attribute. Note, on the ARC, you must specify the kind of interrupt to be handled in a parameter to the interrupt attribute like this: void f () __attribute__ ((interrupt ("ilink1"))); ! Permissible values for this parameter are: 'ilink1' and 'ilink2'. Note, on the AVR, the hardware globally disables interrupts when an interrupt is executed. The first instruction of an interrupt ! handler declared with this attribute is a 'SEI' instruction to ! re-enable interrupts. See also the 'signal' function attribute ! that does not insert a 'SEI' instruction. If both 'signal' and ! 'interrupt' are specified for the same function, 'signal' is silently ignored. Note, for the ARM, you can specify the kind of interrupt to be --- 24564,24584 ---- Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze, and SH processors can be specified via the ! `interrupt_handler' attribute. Note, on the ARC, you must specify the kind of interrupt to be handled in a parameter to the interrupt attribute like this: void f () __attribute__ ((interrupt ("ilink1"))); ! Permissible values for this parameter are: `ilink1' and `ilink2'. Note, on the AVR, the hardware globally disables interrupts when an interrupt is executed. The first instruction of an interrupt ! handler declared with this attribute is a `SEI' instruction to ! re-enable interrupts. See also the `signal' function attribute ! that does not insert a `SEI' instruction. If both `signal' and ! `interrupt' are specified for the same function, `signal' is silently ignored. Note, for the ARM, you can specify the kind of interrupt to be *************** attributes. *** 24398,24462 **** void f () __attribute__ ((interrupt ("IRQ"))); ! Permissible values for this parameter are: 'IRQ', 'FIQ', 'SWI', ! 'ABORT' and 'UNDEF'. On ARMv7-M the interrupt type is ignored, and the attribute means the function may be called with a word-aligned stack pointer. Note, for the MSP430 you can provide an argument to the interrupt attribute which specifies a name or number. If the argument is a ! number it indicates the slot in the interrupt vector table (0 - 31) ! to which this handler should be assigned. If the argument is a ! name it is treated as a symbolic name for the vector slot. These ! names should match up with appropriate entries in the linker ! script. By default the names 'watchdog' for vector 26, 'nmi' for ! vector 30 and 'reset' for vector 31 are recognised. You can also use the following function attributes to modify how normal functions interact with interrupt functions: ! 'critical' Critical functions disable interrupts upon entry and restore the previous interrupt state upon exit. Critical functions ! cannot also have the 'naked' or 'reentrant' attributes. They ! can have the 'interrupt' attribute. ! 'reentrant' Reentrant functions disable interrupts upon entry and enable them upon exit. Reentrant functions cannot also have the ! 'naked' or 'critical' attributes. They can have the ! 'interrupt' attribute. ! 'wakeup' This attribute only applies to interrupt functions. It is silently ignored if applied to a non-interrupt function. A wakeup interrupt function will rouse the processor from any low-power state that it might be in when the function exits. On Epiphany targets one or more optional parameters can be added like this: void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler (); ! Permissible values for these parameters are: 'reset', ! 'software_exception', 'page_miss', 'timer0', 'timer1', 'message', ! 'dma0', 'dma1', 'wand' and 'swi'. Multiple parameters indicate that multiple entries in the interrupt vector table should be ! initialized for this function, i.e. for each parameter NAME, a jump ! to the function is emitted in the section ivt_entry_NAME. The ! parameter(s) may be omitted entirely, in which case no interrupt ! vector table entry is provided. Note, on Epiphany targets, interrupts are enabled inside the ! function unless the 'disinterrupt' attribute is also specified. On Epiphany targets, you can also use the following attribute to modify the behavior of an interrupt handler: ! 'forwarder_section' The interrupt handler may be in external memory which cannot ! be reached by a branch instruction, so generate a local memory ! trampoline to transfer control. The single parameter identifies the section where the trampoline is placed. The following examples are all valid uses of these attributes on --- 24587,24652 ---- void f () __attribute__ ((interrupt ("IRQ"))); ! Permissible values for this parameter are: `IRQ', `FIQ', `SWI', ! `ABORT' and `UNDEF'. On ARMv7-M the interrupt type is ignored, and the attribute means the function may be called with a word-aligned stack pointer. Note, for the MSP430 you can provide an argument to the interrupt attribute which specifies a name or number. If the argument is a ! number it indicates the slot in the interrupt vector table (0 - ! 31) to which this handler should be assigned. If the argument is ! a name it is treated as a symbolic name for the vector slot. ! These names should match up with appropriate entries in the linker ! script. By default the names `watchdog' for vector 26, `nmi' for ! vector 30 and `reset' for vector 31 are recognised. You can also use the following function attributes to modify how normal functions interact with interrupt functions: ! `critical' Critical functions disable interrupts upon entry and restore the previous interrupt state upon exit. Critical functions ! cannot also have the `naked' or `reentrant' attributes. They ! can have the `interrupt' attribute. ! `reentrant' Reentrant functions disable interrupts upon entry and enable them upon exit. Reentrant functions cannot also have the ! `naked' or `critical' attributes. They can have the ! `interrupt' attribute. ! `wakeup' This attribute only applies to interrupt functions. It is silently ignored if applied to a non-interrupt function. A wakeup interrupt function will rouse the processor from any low-power state that it might be in when the function exits. + On Epiphany targets one or more optional parameters can be added like this: void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler (); ! Permissible values for these parameters are: `reset', ! `software_exception', `page_miss', `timer0', `timer1', `message', ! `dma0', `dma1', `wand' and `swi'. Multiple parameters indicate that multiple entries in the interrupt vector table should be ! initialized for this function, i.e. for each parameter NAME, a ! jump to the function is emitted in the section ivt_entry_NAME. ! The parameter(s) may be omitted entirely, in which case no ! interrupt vector table entry is provided. Note, on Epiphany targets, interrupts are enabled inside the ! function unless the `disinterrupt' attribute is also specified. On Epiphany targets, you can also use the following attribute to modify the behavior of an interrupt handler: ! `forwarder_section' The interrupt handler may be in external memory which cannot ! be reached by a branch instruction, so generate a local ! memory trampoline to transfer control. The single parameter identifies the section where the trampoline is placed. The following examples are all valid uses of these attributes on *************** attributes. *** 24469,24488 **** void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp"))) external_dma_handler (); ! On MIPS targets, you can use the following attributes to modify the ! behavior of an interrupt handler: ! 'use_shadow_register_set' Assume that the handler uses a shadow register set, instead of the main general-purpose registers. ! 'keep_interrupts_masked' Keep interrupts masked for the whole function. Without this ! attribute, GCC tries to reenable interrupts for as much of the ! function as it can. ! 'use_debug_exception_return' ! Return using the 'deret' instruction. Interrupt handlers that ! don't have this attribute return using 'eret' instead. You can use any combination of these attributes, as shown below: void __attribute__ ((interrupt)) v0 (); --- 24659,24678 ---- void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp"))) external_dma_handler (); ! On MIPS targets, you can use the following attributes to modify ! the behavior of an interrupt handler: ! `use_shadow_register_set' Assume that the handler uses a shadow register set, instead of the main general-purpose registers. ! `keep_interrupts_masked' Keep interrupts masked for the whole function. Without this ! attribute, GCC tries to reenable interrupts for as much of ! the function as it can. ! `use_debug_exception_return' ! Return using the `deret' instruction. Interrupt handlers ! that don't have this attribute return using `eret' instead. You can use any combination of these attributes, as shown below: void __attribute__ ((interrupt)) v0 (); *************** attributes. *** 24503,24803 **** function is an interrupt handler. The compiler will generate corresponding sections for use in an interrupt handler. You can use the following attributes to modify the behavior: ! 'nested' This interrupt service routine is interruptible. ! 'not_nested' This interrupt service routine is not interruptible. ! 'nested_ready' This interrupt service routine is interruptible after ! 'PSW.GIE' (global interrupt enable) is set. This allows interrupt service routine to finish some short critical code before enabling interrupts. ! 'save_all' The system will help save all registers into stack before entering interrupt handler. ! 'partial_save' The system will help save caller registers into stack before entering interrupt handler. ! On RL78, use 'brk_interrupt' instead of 'interrupt' for handlers ! intended to be used with the 'BRK' opcode (i.e. those that must end ! with 'RETB' instead of 'RETI'). ! 'interrupt_handler' ! Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and ! SH to indicate that the specified function is an interrupt handler. ! The compiler generates function entry and exit sequences suitable ! for use in an interrupt handler when this attribute is present. ! 'interrupt_thread' Use this attribute on fido, a subarchitecture of the m68k, to indicate that the specified function is an interrupt handler that is designed to run as a thread. The compiler omits generate prologue/epilogue sequences and replaces the return instruction ! with a 'sleep' instruction. This attribute is available only on fido. ! 'isr' Use this attribute on ARM to write Interrupt Service Routines. ! This is an alias to the 'interrupt' attribute above. ! 'kspisusp' ! When used together with 'interrupt_handler', 'exception_handler' or ! 'nmi_handler', code is generated to load the stack pointer from the ! USP register in the function prologue. ! 'l1_text' This attribute specifies a function to be placed into L1 ! Instruction SRAM. The function is put into a specific section ! named '.l1.text'. With '-mfdpic', function calls with a such function as the callee or caller uses inlined PLT. ! 'l2' On the Blackfin, this attribute specifies a function to be placed into L2 SRAM. The function is put into a specific section named ! '.l1.text'. With '-mfdpic', callers of such functions use an inlined PLT. ! 'leaf' Calls to external functions with this attribute must return to the current compilation unit only by return or by exception handling. In particular, leaf functions are not allowed to call callback ! function passed to it from the current compilation unit or directly ! call functions exported by the unit or longjmp into the unit. Leaf ! function might still call functions from other compilation units ! and thus they are not necessarily leaf in the sense that they ! contain no function calls at all. ! The attribute is intended for library functions to improve dataflow ! analysis. The compiler takes the hint that any data not escaping ! the current compilation unit can not be used or modified by the ! leaf function. For example, the 'sin' function is a leaf function, ! but 'qsort' is not. Note that leaf functions might invoke signals and signal handlers might be defined in the current compilation unit and use static variables. The only compliant way to write such a signal handler ! is to declare such variables 'volatile'. ! The attribute has no effect on functions defined within the current ! compilation unit. This is to allow easy merging of multiple ! compilation units into one, for example, by using the link-time ! optimization. For this reason the attribute is not allowed on ! types to annotate indirect calls. ! 'long_call/medium_call/short_call' These attributes specify how a particular function is called on ! ARC, ARM and Epiphany - with 'medium_call' being specific to ARC. ! These attributes override the '-mlong-calls' (*note ARM Options:: ! and *note ARC Options::) and '-mmedium-calls' (*note ARC Options::) ! command-line switches and '#pragma long_calls' settings. For ARM, ! the 'long_call' attribute indicates that the function might be far away from the call site and require a different (more expensive) ! calling sequence. The 'short_call' attribute always places the ! offset to the function from the call site into the 'BL' instruction ! directly. ! For ARC, a function marked with the 'long_call' attribute is always ! called using register-indirect jump-and-link instructions, thereby ! enabling the called function to be placed anywhere within the ! 32-bit address space. A function marked with the 'medium_call' attribute will always be close enough to be called with an unconditional branch-and-link instruction, which has a 25-bit ! offset from the call site. A function marked with the 'short_call' attribute will always be close enough to be called with a conditional branch-and-link instruction, which has a 21-bit offset from the call site. ! 'longcall/shortcall' ! On the Blackfin, RS/6000 and PowerPC, the 'longcall' attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The ! 'shortcall' attribute indicates that the function is always close enough for the shorter calling sequence to be used. These ! attributes override both the '-mlongcall' switch and, on the ! RS/6000 and PowerPC, the '#pragma longcall' setting. *Note RS/6000 and PowerPC Options::, for more information on whether long calls are necessary. ! 'long_call/near/far' These attributes specify how a particular function is called on ! MIPS. The attributes override the '-mlong-calls' (*note MIPS ! Options::) command-line switch. The 'long_call' and 'far' attributes are synonyms, and cause the compiler to always call the function by first loading its address into a register, and then ! using the contents of that register. The 'near' attribute has the opposite effect; it specifies that non-PIC calls should be made ! using the more efficient 'jal' instruction. ! ! 'malloc' ! The 'malloc' attribute is used to tell the compiler that a function ! may be treated as if any non-'NULL' pointer it returns cannot alias ! any other pointer valid when the function returns and that the ! memory has undefined content. This often improves optimization. ! Standard functions with this property include 'malloc' and ! 'calloc'. 'realloc'-like functions do not have this property as ! the memory pointed to does not have undefined content. ! 'mips16/nomips16' ! On MIPS targets, you can use the 'mips16' and 'nomips16' function ! attributes to locally select or turn off MIPS16 code generation. A ! function with the 'mips16' attribute is emitted as MIPS16 code, while MIPS16 code generation is disabled for functions with the ! 'nomips16' attribute. These attributes override the '-mips16' and ! '-mno-mips16' options on the command line (*note MIPS Options::). When compiling files containing mixed MIPS16 and non-MIPS16 code, ! the preprocessor symbol '__mips16' reflects the setting on the command line, not that within individual functions. Mixed MIPS16 and non-MIPS16 code may interact badly with some GCC extensions ! such as '__builtin_apply' (*note Constructing Calls::). ! ! 'micromips/nomicromips' ! On MIPS targets, you can use the 'micromips' and 'nomicromips' function attributes to locally select or turn off microMIPS code ! generation. A function with the 'micromips' attribute is emitted as microMIPS code, while microMIPS code generation is disabled for ! functions with the 'nomicromips' attribute. These attributes ! override the '-mmicromips' and '-mno-micromips' options on the command line (*note MIPS Options::). When compiling files containing mixed microMIPS and non-microMIPS ! code, the preprocessor symbol '__mips_micromips' reflects the setting on the command line, not that within individual functions. ! Mixed microMIPS and non-microMIPS code may interact badly with some ! GCC extensions such as '__builtin_apply' (*note Constructing Calls::). ! 'model (MODEL-NAME)' ! On the M32R/D, use this attribute to set the addressability of an object, and of the code generated for a function. The identifier ! MODEL-NAME is one of 'small', 'medium', or 'large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the 'ld24' instruction), and are ! callable with the 'bl' instruction. Medium model objects may live anywhere in the 32-bit address space ! (the compiler generates 'seth/add3' instructions to load their ! addresses), and are callable with the 'bl' instruction. Large model objects may live anywhere in the 32-bit address space ! (the compiler generates 'seth/add3' instructions to load their ! addresses), and may not be reachable with the 'bl' instruction (the ! compiler generates the much slower 'seth/add3/jl' instruction sequence). On IA-64, use this attribute to set the addressability of an object. At present, the only supported identifier for MODEL-NAME ! is 'small', indicating addressability via "small" (22-bit) ! addresses (so that their addresses can be loaded with the 'addl' instruction). Caveat: such addressing is by definition not position independent and hence this attribute must not be used for objects defined by shared libraries. ! 'ms_abi/sysv_abi' ! On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI ! attribute to indicate which calling convention should be used for a ! function. The 'ms_abi' attribute tells the compiler to use the ! Microsoft ABI, while the 'sysv_abi' attribute tells the compiler to ! use the ABI used on GNU/Linux and other systems. The default is to ! use the Microsoft ABI when targeting Windows. On all other systems, the default is the x86/AMD ABI. ! Note, the 'ms_abi' attribute for Microsoft Windows 64-bit targets ! currently requires the '-maccumulate-outgoing-args' option. ! ! 'callee_pop_aggregate_return (NUMBER)' On 32-bit i?86-*-* targets, you can use this attribute to control how aggregates are returned in memory. If the caller is responsible for popping the hidden pointer together with the rest of the arguments, specify NUMBER equal to zero. If callee is ! responsible for popping the hidden pointer, specify NUMBER equal to ! one. The default i386 ABI assumes that the callee pops the stack for hidden pointer. However, on 32-bit i386 Microsoft Windows targets, the compiler assumes that the caller pops the stack for hidden pointer. ! 'ms_hook_prologue' ! ! On 32-bit i[34567]86-*-* targets and 64-bit x86_64-*-* targets, you ! can use this function attribute to make GCC generate the "hot-patching" function prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. ! 'hotpatch (HALFWORDS-BEFORE-FUNCTION-LABEL,HALFWORDS-AFTER-FUNCTION-LABEL)' ! On S/390 System z targets, you can use this function attribute to make GCC generate a "hot-patching" function prologue. If the ! '-mhotpatch=' command-line option is used at the same time, the ! 'hotpatch' attribute takes precedence. The first of the two arguments specifies the number of halfwords to be added before the function label. A second argument can be used to specify the ! number of halfwords to be added after the function label. For both ! arguments the maximum allowed value is 1000000. If both ar guments are zero, hotpatching is disabled. ! 'naked' Use this attribute on the ARM, AVR, MCORE, MSP430, NDS32, RL78, RX ! and SPU ports to indicate that the specified function does not need ! prologue/epilogue sequences generated by the compiler. It is up to ! the programmer to provide these sequences. The only statements ! that can be safely included in naked functions are 'asm' statements ! that do not have operands. All other statements, including ! declarations of local variables, 'if' statements, and so forth, ! should be avoided. Naked functions should be used to implement the ! body of an assembly function, while allowing the compiler to ! construct the requisite function declaration for the assembler. ! 'near' ! On 68HC11 and 68HC12 the 'near' attribute causes the compiler to ! use the normal calling convention based on 'jsr' and 'rts'. This ! attribute can be used to cancel the effect of the '-mlong-calls' option. On MeP targets this attribute causes the compiler to assume the called function is close enough to use the normal calling ! convention, overriding the '-mtf' command-line option. ! 'nesting' ! Use this attribute together with 'interrupt_handler', ! 'exception_handler' or 'nmi_handler' to indicate that the function entry code should enable nested interrupts or exceptions. ! 'nmi_handler' Use this attribute on the Blackfin to indicate that the specified function is an NMI handler. The compiler generates function entry and exit sequences suitable for use in an NMI handler when this attribute is present. ! 'nocompression' ! On MIPS targets, you can use the 'nocompression' function attribute to locally turn off MIPS16 and microMIPS code generation. This ! attribute overrides the '-mips16' and '-mmicromips' options on the command line (*note MIPS Options::). ! 'no_instrument_function' ! If '-finstrument-functions' is given, profiling function calls are generated at entry and exit of most user-compiled functions. Functions with this attribute are not so instrumented. ! 'no_split_stack' ! If '-fsplit-stack' is given, functions have a small prologue which decides whether to split the stack. Functions with the ! 'no_split_stack' attribute do not have that prologue, and thus may run with only a small amount of stack space available. ! 'noinline' This function attribute prevents a function from being considered for inlining. If the function does not have side-effects, there are optimizations other than inlining that cause function calls to --- 24693,24992 ---- function is an interrupt handler. The compiler will generate corresponding sections for use in an interrupt handler. You can use the following attributes to modify the behavior: ! `nested' This interrupt service routine is interruptible. ! ! `not_nested' This interrupt service routine is not interruptible. ! ! `nested_ready' This interrupt service routine is interruptible after ! `PSW.GIE' (global interrupt enable) is set. This allows interrupt service routine to finish some short critical code before enabling interrupts. ! ! `save_all' The system will help save all registers into stack before entering interrupt handler. ! ! `partial_save' The system will help save caller registers into stack before entering interrupt handler. ! On RL78, use `brk_interrupt' instead of `interrupt' for handlers ! intended to be used with the `BRK' opcode (i.e. those that must ! end with `RETB' instead of `RETI'). ! `interrupt_handler' ! Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, ! and SH to indicate that the specified function is an interrupt ! handler. The compiler generates function entry and exit sequences ! suitable for use in an interrupt handler when this attribute is ! present. ! `interrupt_thread' Use this attribute on fido, a subarchitecture of the m68k, to indicate that the specified function is an interrupt handler that is designed to run as a thread. The compiler omits generate prologue/epilogue sequences and replaces the return instruction ! with a `sleep' instruction. This attribute is available only on fido. ! `isr' Use this attribute on ARM to write Interrupt Service Routines. ! This is an alias to the `interrupt' attribute above. ! `kspisusp' ! When used together with `interrupt_handler', `exception_handler' ! or `nmi_handler', code is generated to load the stack pointer from ! the USP register in the function prologue. ! `l1_text' This attribute specifies a function to be placed into L1 ! Instruction SRAM. The function is put into a specific section ! named `.l1.text'. With `-mfdpic', function calls with a such function as the callee or caller uses inlined PLT. ! `l2' On the Blackfin, this attribute specifies a function to be placed into L2 SRAM. The function is put into a specific section named ! `.l1.text'. With `-mfdpic', callers of such functions use an inlined PLT. ! `leaf' Calls to external functions with this attribute must return to the current compilation unit only by return or by exception handling. In particular, leaf functions are not allowed to call callback ! function passed to it from the current compilation unit or ! directly call functions exported by the unit or longjmp into the ! unit. Leaf function might still call functions from other ! compilation units and thus they are not necessarily leaf in the ! sense that they contain no function calls at all. ! The attribute is intended for library functions to improve ! dataflow analysis. The compiler takes the hint that any data not ! escaping the current compilation unit can not be used or modified ! by the leaf function. For example, the `sin' function is a leaf ! function, but `qsort' is not. Note that leaf functions might invoke signals and signal handlers might be defined in the current compilation unit and use static variables. The only compliant way to write such a signal handler ! is to declare such variables `volatile'. ! The attribute has no effect on functions defined within the ! current compilation unit. This is to allow easy merging of ! multiple compilation units into one, for example, by using the ! link-time optimization. For this reason the attribute is not ! allowed on types to annotate indirect calls. ! `long_call/medium_call/short_call' These attributes specify how a particular function is called on ! ARC, ARM and Epiphany - with `medium_call' being specific to ARC. ! These attributes override the `-mlong-calls' (*note ARM Options:: ! and *note ARC Options::) and `-mmedium-calls' (*note ARC Options::) ! command-line switches and `#pragma long_calls' settings. For ARM, ! the `long_call' attribute indicates that the function might be far away from the call site and require a different (more expensive) ! calling sequence. The `short_call' attribute always places the ! offset to the function from the call site into the `BL' ! instruction directly. ! For ARC, a function marked with the `long_call' attribute is ! always called using register-indirect jump-and-link instructions, ! thereby enabling the called function to be placed anywhere within ! the 32-bit address space. A function marked with the `medium_call' attribute will always be close enough to be called with an unconditional branch-and-link instruction, which has a 25-bit ! offset from the call site. A function marked with the `short_call' attribute will always be close enough to be called with a conditional branch-and-link instruction, which has a 21-bit offset from the call site. ! `longcall/shortcall' ! On the Blackfin, RS/6000 and PowerPC, the `longcall' attribute indicates that the function might be far away from the call site and require a different (more expensive) calling sequence. The ! `shortcall' attribute indicates that the function is always close enough for the shorter calling sequence to be used. These ! attributes override both the `-mlongcall' switch and, on the ! RS/6000 and PowerPC, the `#pragma longcall' setting. *Note RS/6000 and PowerPC Options::, for more information on whether long calls are necessary. ! `long_call/near/far' These attributes specify how a particular function is called on ! MIPS. The attributes override the `-mlong-calls' (*note MIPS ! Options::) command-line switch. The `long_call' and `far' attributes are synonyms, and cause the compiler to always call the function by first loading its address into a register, and then ! using the contents of that register. The `near' attribute has the opposite effect; it specifies that non-PIC calls should be made ! using the more efficient `jal' instruction. ! `malloc' ! The `malloc' attribute is used to tell the compiler that a function ! may be treated as if any non-`NULL' pointer it returns cannot ! alias any other pointer valid when the function returns and that ! the memory has undefined content. This often improves ! optimization. Standard functions with this property include ! `malloc' and `calloc'. `realloc'-like functions do not have this ! property as the memory pointed to does not have undefined content. ! `mips16/nomips16' ! On MIPS targets, you can use the `mips16' and `nomips16' function ! attributes to locally select or turn off MIPS16 code generation. ! A function with the `mips16' attribute is emitted as MIPS16 code, while MIPS16 code generation is disabled for functions with the ! `nomips16' attribute. These attributes override the `-mips16' and ! `-mno-mips16' options on the command line (*note MIPS Options::). When compiling files containing mixed MIPS16 and non-MIPS16 code, ! the preprocessor symbol `__mips16' reflects the setting on the command line, not that within individual functions. Mixed MIPS16 and non-MIPS16 code may interact badly with some GCC extensions ! such as `__builtin_apply' (*note Constructing Calls::). ! `micromips/nomicromips' ! On MIPS targets, you can use the `micromips' and `nomicromips' function attributes to locally select or turn off microMIPS code ! generation. A function with the `micromips' attribute is emitted as microMIPS code, while microMIPS code generation is disabled for ! functions with the `nomicromips' attribute. These attributes ! override the `-mmicromips' and `-mno-micromips' options on the command line (*note MIPS Options::). When compiling files containing mixed microMIPS and non-microMIPS ! code, the preprocessor symbol `__mips_micromips' reflects the setting on the command line, not that within individual functions. ! Mixed microMIPS and non-microMIPS code may interact badly with ! some GCC extensions such as `__builtin_apply' (*note Constructing Calls::). ! `model (MODEL-NAME)' On the M32R/D, use this attribute to set the addressability of an object, and of the code generated for a function. The identifier ! MODEL-NAME is one of `small', `medium', or `large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the `ld24' instruction), and are ! callable with the `bl' instruction. Medium model objects may live anywhere in the 32-bit address space ! (the compiler generates `seth/add3' instructions to load their ! addresses), and are callable with the `bl' instruction. Large model objects may live anywhere in the 32-bit address space ! (the compiler generates `seth/add3' instructions to load their ! addresses), and may not be reachable with the `bl' instruction ! (the compiler generates the much slower `seth/add3/jl' instruction sequence). On IA-64, use this attribute to set the addressability of an object. At present, the only supported identifier for MODEL-NAME ! is `small', indicating addressability via "small" (22-bit) ! addresses (so that their addresses can be loaded with the `addl' instruction). Caveat: such addressing is by definition not position independent and hence this attribute must not be used for objects defined by shared libraries. ! `ms_abi/sysv_abi' On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI ! attribute to indicate which calling convention should be used for ! a function. The `ms_abi' attribute tells the compiler to use the ! Microsoft ABI, while the `sysv_abi' attribute tells the compiler ! to use the ABI used on GNU/Linux and other systems. The default ! is to use the Microsoft ABI when targeting Windows. On all other systems, the default is the x86/AMD ABI. ! Note, the `ms_abi' attribute for Microsoft Windows 64-bit targets ! currently requires the `-maccumulate-outgoing-args' option. + `callee_pop_aggregate_return (NUMBER)' On 32-bit i?86-*-* targets, you can use this attribute to control how aggregates are returned in memory. If the caller is responsible for popping the hidden pointer together with the rest of the arguments, specify NUMBER equal to zero. If callee is ! responsible for popping the hidden pointer, specify NUMBER equal ! to one. The default i386 ABI assumes that the callee pops the stack for hidden pointer. However, on 32-bit i386 Microsoft Windows targets, the compiler assumes that the caller pops the stack for hidden pointer. ! `ms_hook_prologue' ! On 32-bit i[34567]86-*-* targets and 64-bit x86_64-*-* targets, ! you can use this function attribute to make GCC generate the "hot-patching" function prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2 and newer. ! `hotpatch (HALFWORDS-BEFORE-FUNCTION-LABEL,HALFWORDS-AFTER-FUNCTION-LABEL)' On S/390 System z targets, you can use this function attribute to make GCC generate a "hot-patching" function prologue. If the ! `-mhotpatch=' command-line option is used at the same time, the ! `hotpatch' attribute takes precedence. The first of the two arguments specifies the number of halfwords to be added before the function label. A second argument can be used to specify the ! number of halfwords to be added after the function label. For ! both arguments the maximum allowed value is 1000000. If both ar guments are zero, hotpatching is disabled. ! `naked' Use this attribute on the ARM, AVR, MCORE, MSP430, NDS32, RL78, RX ! and SPU ports to indicate that the specified function does not ! need prologue/epilogue sequences generated by the compiler. It is ! up to the programmer to provide these sequences. The only ! statements that can be safely included in naked functions are ! `asm' statements that do not have operands. All other statements, ! including declarations of local variables, `if' statements, and so ! forth, should be avoided. Naked functions should be used to ! implement the body of an assembly function, while allowing the ! compiler to construct the requisite function declaration for the ! assembler. ! `near' ! On 68HC11 and 68HC12 the `near' attribute causes the compiler to ! use the normal calling convention based on `jsr' and `rts'. This ! attribute can be used to cancel the effect of the `-mlong-calls' option. On MeP targets this attribute causes the compiler to assume the called function is close enough to use the normal calling ! convention, overriding the `-mtf' command-line option. ! `nesting' ! Use this attribute together with `interrupt_handler', ! `exception_handler' or `nmi_handler' to indicate that the function entry code should enable nested interrupts or exceptions. ! `nmi_handler' Use this attribute on the Blackfin to indicate that the specified function is an NMI handler. The compiler generates function entry and exit sequences suitable for use in an NMI handler when this attribute is present. ! `nocompression' ! On MIPS targets, you can use the `nocompression' function attribute to locally turn off MIPS16 and microMIPS code generation. This ! attribute overrides the `-mips16' and `-mmicromips' options on the command line (*note MIPS Options::). ! `no_instrument_function' ! If `-finstrument-functions' is given, profiling function calls are generated at entry and exit of most user-compiled functions. Functions with this attribute are not so instrumented. ! `no_split_stack' ! If `-fsplit-stack' is given, functions have a small prologue which decides whether to split the stack. Functions with the ! `no_split_stack' attribute do not have that prologue, and thus may run with only a small amount of stack space available. ! `noinline' This function attribute prevents a function from being considered for inlining. If the function does not have side-effects, there are optimizations other than inlining that cause function calls to *************** attributes. *** 24808,24836 **** (*note Extended Asm::) in the called function, to serve as a special side-effect. ! 'noclone' This function attribute prevents a function from being considered for cloning--a mechanism that produces specialized copies of functions and which is (currently) performed by interprocedural constant propagation. ! 'nonnull (ARG-INDEX, ...)' ! The 'nonnull' attribute specifies that some function parameters should be non-null pointers. For instance, the declaration: extern void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull (1, 2))); ! causes the compiler to check that, in calls to 'my_memcpy', arguments DEST and SRC are non-null. If the compiler determines that a null pointer is passed in an argument slot marked as ! non-null, and the '-Wnonnull' option is enabled, a warning is issued. The compiler may also choose to make optimizations based on the knowledge that certain function arguments will never be null. ! If no argument index list is given to the 'nonnull' attribute, all pointer arguments are marked as non-null. To illustrate, the following declaration is equivalent to the previous example: --- 24997,25025 ---- (*note Extended Asm::) in the called function, to serve as a special side-effect. ! `noclone' This function attribute prevents a function from being considered for cloning--a mechanism that produces specialized copies of functions and which is (currently) performed by interprocedural constant propagation. ! `nonnull (ARG-INDEX, ...)' ! The `nonnull' attribute specifies that some function parameters should be non-null pointers. For instance, the declaration: extern void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull (1, 2))); ! causes the compiler to check that, in calls to `my_memcpy', arguments DEST and SRC are non-null. If the compiler determines that a null pointer is passed in an argument slot marked as ! non-null, and the `-Wnonnull' option is enabled, a warning is issued. The compiler may also choose to make optimizations based on the knowledge that certain function arguments will never be null. ! If no argument index list is given to the `nonnull' attribute, all pointer arguments are marked as non-null. To illustrate, the following declaration is equivalent to the previous example: *************** attributes. *** 24838,24845 **** my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull)); ! 'returns_nonnull' ! The 'returns_nonnull' attribute specifies that the function return value should be a non-null pointer. For instance, the declaration: extern void * --- 25027,25034 ---- my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull)); ! `returns_nonnull' ! The `returns_nonnull' attribute specifies that the function return value should be a non-null pointer. For instance, the declaration: extern void * *************** attributes. *** 24848,24858 **** lets the compiler optimize callers based on the knowledge that the return value will never be null. ! 'noreturn' ! A few standard library functions, such as 'abort' and 'exit', cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them ! 'noreturn' to tell the compiler this fact. For example, void fatal () __attribute__ ((noreturn)); --- 25037,25047 ---- lets the compiler optimize callers based on the knowledge that the return value will never be null. ! `noreturn' ! A few standard library functions, such as `abort' and `exit', cannot return. GCC knows this automatically. Some programs define their own functions that never return. You can declare them ! `noreturn' to tell the compiler this fact. For example, void fatal () __attribute__ ((noreturn)); *************** attributes. *** 24863,24888 **** exit (1); } ! The 'noreturn' keyword tells the compiler to assume that 'fatal' cannot return. It can then optimize without regard to what would ! happen if 'fatal' ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables. ! The 'noreturn' keyword does not affect the exceptional path when ! that applies: a 'noreturn'-marked function may still return to the ! caller by throwing an exception or calling 'longjmp'. Do not assume that registers saved by the calling function are ! restored before calling the 'noreturn' function. ! It does not make sense for a 'noreturn' function to have a return ! type other than 'void'. ! The attribute 'noreturn' is not implemented in GCC versions earlier ! than 2.5. An alternative way to declare that a function does not ! return, which works in the current version and in some older ! versions, is as follows: typedef void voidfn (); --- 25052,25077 ---- exit (1); } ! The `noreturn' keyword tells the compiler to assume that `fatal' cannot return. It can then optimize without regard to what would ! happen if `fatal' ever did return. This makes slightly better code. More importantly, it helps avoid spurious warnings of uninitialized variables. ! The `noreturn' keyword does not affect the exceptional path when ! that applies: a `noreturn'-marked function may still return to the ! caller by throwing an exception or calling `longjmp'. Do not assume that registers saved by the calling function are ! restored before calling the `noreturn' function. ! It does not make sense for a `noreturn' function to have a return ! type other than `void'. ! The attribute `noreturn' is not implemented in GCC versions ! earlier than 2.5. An alternative way to declare that a function ! does not return, which works in the current version and in some ! older versions, is as follows: typedef void voidfn (); *************** attributes. *** 24890,24919 **** This approach does not work in GNU C++. ! 'nothrow' ! The 'nothrow' attribute is used to inform the compiler that a function cannot throw an exception. For example, most functions in the standard C library can be guaranteed not to throw an exception ! with the notable exceptions of 'qsort' and 'bsearch' that take ! function pointer arguments. The 'nothrow' attribute is not implemented in GCC versions earlier than 3.3. ! 'nosave_low_regs' Use this attribute on SH targets to indicate that an ! 'interrupt_handler' function should not save and restore registers R0..R7. This can be used on SH3* and SH4* targets that have a second R0..R7 register bank for non-reentrant interrupt handlers. ! 'optimize' ! The 'optimize' attribute is used to specify that a function is to be compiled with different optimization options than specified on the command line. Arguments can either be numbers or strings. Numbers are assumed to be an optimization level. Strings that ! begin with 'O' are assumed to be an optimization option, while ! other options are assumed to be used with a '-f' prefix. You can ! also use the '#pragma GCC optimize' pragma to set the optimization options that affect more than one function. *Note Function ! Specific Option Pragmas::, for details about the '#pragma GCC optimize' pragma. This can be used for instance to have frequently-executed functions --- 25079,25108 ---- This approach does not work in GNU C++. ! `nothrow' ! The `nothrow' attribute is used to inform the compiler that a function cannot throw an exception. For example, most functions in the standard C library can be guaranteed not to throw an exception ! with the notable exceptions of `qsort' and `bsearch' that take ! function pointer arguments. The `nothrow' attribute is not implemented in GCC versions earlier than 3.3. ! `nosave_low_regs' Use this attribute on SH targets to indicate that an ! `interrupt_handler' function should not save and restore registers R0..R7. This can be used on SH3* and SH4* targets that have a second R0..R7 register bank for non-reentrant interrupt handlers. ! `optimize' ! The `optimize' attribute is used to specify that a function is to be compiled with different optimization options than specified on the command line. Arguments can either be numbers or strings. Numbers are assumed to be an optimization level. Strings that ! begin with `O' are assumed to be an optimization option, while ! other options are assumed to be used with a `-f' prefix. You can ! also use the `#pragma GCC optimize' pragma to set the optimization options that affect more than one function. *Note Function ! Specific Option Pragmas::, for details about the `#pragma GCC optimize' pragma. This can be used for instance to have frequently-executed functions *************** attributes. *** 24921,25015 **** faster and larger code, while other functions can be compiled with less aggressive options. ! 'OS_main/OS_task' ! On AVR, functions with the 'OS_main' or 'OS_task' attribute do not save/restore any call-saved register in their prologue/epilogue. ! The 'OS_main' attribute can be used when there _is guarantee_ that interrupts are disabled at the time when the function is entered. This saves resources when the stack pointer has to be changed to set up a frame for local variables. ! The 'OS_task' attribute can be used when there is _no guarantee_ that interrupts are disabled at that time when the function is ! entered like for, e.g. task functions in a multi-threading ! operating system. In that case, changing the stack pointer register is guarded by save/clear/restore of the global interrupt enable flag. ! The differences to the 'naked' function attribute are: ! * 'naked' functions do not have a return instruction whereas ! 'OS_main' and 'OS_task' functions have a 'RET' or 'RETI' return instruction. - * 'naked' functions do not set up a frame for local variables or - a frame pointer whereas 'OS_main' and 'OS_task' do this as - needed. ! 'pcs' ! The 'pcs' attribute can be used to control the calling convention ! used for a function on ARM. The attribute takes an argument that specifies the calling convention to use. When compiling using the AAPCS ABI (or a variant of it) then valid ! values for the argument are '"aapcs"' and '"aapcs-vfp"'. In order ! to use a variant other than '"aapcs"' then the compiler must be permitted to use the appropriate co-processor registers (i.e., the ! VFP registers must be available in order to use '"aapcs-vfp"'). For example, /* Argument passed in r0, and result returned in r0+r1. */ double f2d (float) __attribute__((pcs("aapcs"))); ! Variadic functions always use the '"aapcs"' calling convention and the compiler rejects attempts to specify an alternative. ! 'pure' Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute ! 'pure'. For example, int square (int) __attribute__ ((pure)); ! says that the hypothetical function 'square' is safe to call fewer times than the program says. ! Some of common examples of pure functions are 'strlen' or 'memcmp'. ! Interesting non-pure functions are functions with infinite loops or ! those depending on volatile memory or other system resource, that ! may change between two consecutive calls (such as 'feof' in a multithreading environment). ! The attribute 'pure' is not implemented in GCC versions earlier than 2.96. ! 'hot' ! The 'hot' attribute on a function is used to inform the compiler that the function is a hot spot of the compiled program. The function is optimized more aggressively and on many target it is placed into special subsection of the text section so all hot functions appears close together improving locality. ! When profile feedback is available, via '-fprofile-use', hot functions are automatically detected and this attribute is ignored. ! The 'hot' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The 'hot' attribute on a label is used to inform the compiler that path following the label are more likely than paths that are not so annotated. This attribute is used in cases where ! '__builtin_expect' cannot be used, for instance with computed goto ! or 'asm goto'. ! The 'hot' attribute on labels is not implemented in GCC versions earlier than 4.8. ! 'cold' ! The 'cold' attribute on functions is used to inform the compiler that the function is unlikely to be executed. The function is optimized for size rather than speed and on many targets it is placed into special subsection of the text section so all cold --- 25110,25204 ---- faster and larger code, while other functions can be compiled with less aggressive options. ! `OS_main/OS_task' ! On AVR, functions with the `OS_main' or `OS_task' attribute do not save/restore any call-saved register in their prologue/epilogue. ! The `OS_main' attribute can be used when there _is guarantee_ that interrupts are disabled at the time when the function is entered. This saves resources when the stack pointer has to be changed to set up a frame for local variables. ! The `OS_task' attribute can be used when there is _no guarantee_ that interrupts are disabled at that time when the function is ! entered like for, e.g. task functions in a multi-threading ! operating system. In that case, changing the stack pointer register is guarded by save/clear/restore of the global interrupt enable flag. ! The differences to the `naked' function attribute are: ! * `naked' functions do not have a return instruction whereas ! `OS_main' and `OS_task' functions have a `RET' or `RETI' return instruction. ! * `naked' functions do not set up a frame for local variables ! or a frame pointer whereas `OS_main' and `OS_task' do this as ! needed. ! `pcs' ! The `pcs' attribute can be used to control the calling convention ! used for a function on ARM. The attribute takes an argument that specifies the calling convention to use. When compiling using the AAPCS ABI (or a variant of it) then valid ! values for the argument are `"aapcs"' and `"aapcs-vfp"'. In order ! to use a variant other than `"aapcs"' then the compiler must be permitted to use the appropriate co-processor registers (i.e., the ! VFP registers must be available in order to use `"aapcs-vfp"'). For example, /* Argument passed in r0, and result returned in r0+r1. */ double f2d (float) __attribute__((pcs("aapcs"))); ! Variadic functions always use the `"aapcs"' calling convention and the compiler rejects attempts to specify an alternative. ! `pure' Many functions have no effects except the return value and their return value depends only on the parameters and/or global variables. Such a function can be subject to common subexpression elimination and loop optimization just as an arithmetic operator would be. These functions should be declared with the attribute ! `pure'. For example, int square (int) __attribute__ ((pure)); ! says that the hypothetical function `square' is safe to call fewer times than the program says. ! Some of common examples of pure functions are `strlen' or `memcmp'. ! Interesting non-pure functions are functions with infinite loops ! or those depending on volatile memory or other system resource, ! that may change between two consecutive calls (such as `feof' in a multithreading environment). ! The attribute `pure' is not implemented in GCC versions earlier than 2.96. ! `hot' ! The `hot' attribute on a function is used to inform the compiler that the function is a hot spot of the compiled program. The function is optimized more aggressively and on many target it is placed into special subsection of the text section so all hot functions appears close together improving locality. ! When profile feedback is available, via `-fprofile-use', hot functions are automatically detected and this attribute is ignored. ! The `hot' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The `hot' attribute on a label is used to inform the compiler that path following the label are more likely than paths that are not so annotated. This attribute is used in cases where ! `__builtin_expect' cannot be used, for instance with computed goto ! or `asm goto'. ! The `hot' attribute on labels is not implemented in GCC versions earlier than 4.8. ! `cold' ! The `cold' attribute on functions is used to inform the compiler that the function is unlikely to be executed. The function is optimized for size rather than speed and on many targets it is placed into special subsection of the text section so all cold *************** attributes. *** 25017,25205 **** non-cold parts of program. The paths leading to call of cold functions within code are marked as unlikely by the branch prediction mechanism. It is thus useful to mark functions used to ! handle unlikely conditions, such as 'perror', as cold to improve ! optimization of hot functions that do call marked functions in rare ! occasions. ! When profile feedback is available, via '-fprofile-use', cold functions are automatically detected and this attribute is ignored. ! The 'cold' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The 'cold' attribute on labels is used to inform the compiler that the path following the label is unlikely to be executed. This ! attribute is used in cases where '__builtin_expect' cannot be used, ! for instance with computed goto or 'asm goto'. ! The 'cold' attribute on labels is not implemented in GCC versions earlier than 4.8. ! 'no_sanitize_address' ! 'no_address_safety_analysis' ! The 'no_sanitize_address' attribute on functions is used to inform the compiler that it should not instrument memory accesses in the ! function when compiling with the '-fsanitize=address' option. The ! 'no_address_safety_analysis' is a deprecated alias of the ! 'no_sanitize_address' attribute, new code should use ! 'no_sanitize_address'. ! 'no_sanitize_undefined' ! The 'no_sanitize_undefined' attribute on functions is used to inform the compiler that it should not check for undefined behavior ! in the function when compiling with the '-fsanitize=undefined' option. ! 'regparm (NUMBER)' ! On the Intel 386, the 'regparm' attribute causes the compiler to ! pass arguments number one to NUMBER if they are of integral type in ! registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments continue to be passed all of their arguments on the stack. Beware that on some ELF systems this attribute is unsuitable for global functions in shared libraries with lazy binding (which is ! the default). Lazy binding sends the first call via resolving code ! in the loader, which might assume EAX, EDX and ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected by this. Systems with the GNU C Library version 2.1 or higher and FreeBSD are believed to be safe since the loaders there ! save EAX, EDX and ECX. (Lazy binding can be disabled with the linker or the loader if desired, to avoid the problem.) ! 'reset' Use this attribute on the NDS32 target to indicate that the specified function is a reset handler. The compiler will generate ! corresponding sections for use in a reset handler. You can use the ! following attributes to provide extra exception handling: ! 'nmi' Provide a user-defined function to handle NMI exception. ! 'warm' Provide a user-defined function to handle warm reset exception. ! 'sseregparm' ! On the Intel 386 with SSE support, the 'sseregparm' attribute ! causes the compiler to pass up to 3 floating-point arguments in SSE ! registers instead of on the stack. Functions that take a variable ! number of arguments continue to pass all of their floating-point ! arguments on the stack. ! 'force_align_arg_pointer' ! On the Intel x86, the 'force_align_arg_pointer' attribute may be applied to individual function definitions, generating an alternate prologue and epilogue that realigns the run-time stack if necessary. This supports mixing legacy codes that run with a 4-byte aligned stack with modern codes that keep a 16-byte stack for SSE compatibility. ! 'renesas' On SH targets this attribute specifies that the function or struct follows the Renesas ABI. ! 'resbank' On the SH2A target, this attribute enables the high-speed register saving and restoration using a register bank for ! 'interrupt_handler' routines. Saving to the bank is performed automatically after the CPU accepts an interrupt that uses a register bank. The nineteen 32-bit registers comprising general register R0 to R14, control register GBR, and system registers MACH, MACL, and PR ! and the vector table address offset are saved into a register bank. ! Register banks are stacked in first-in last-out (FILO) sequence. ! Restoration from the bank is executed by issuing a RESBANK ! instruction. ! 'returns_twice' ! The 'returns_twice' attribute tells the compiler that a function may return more than one time. The compiler ensures that all registers are dead before calling such a function and emits a warning about the variables that may be clobbered after the second ! return from the function. Examples of such functions are 'setjmp' ! and 'vfork'. The 'longjmp'-like counterpart of such function, if ! any, might need to be marked with the 'noreturn' attribute. ! 'saveall' Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that all registers except the stack pointer should be saved in the prologue regardless of whether they are used or not. ! 'save_volatiles' Use this attribute on the MicroBlaze to indicate that the function is an interrupt handler. All volatile registers (in addition to ! non-volatile registers) are saved in the function prologue. If the ! function is a leaf function, only volatiles used by the function ! are saved. A normal function return is generated instead of a ! return from interrupt. ! 'section ("SECTION-NAME")' ! Normally, the compiler places the code it generates in the 'text' section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. ! The 'section' attribute specifies that a function lives in a particular section. For example, the declaration: extern void foobar (void) __attribute__ ((section ("bar"))); ! puts the function 'foobar' in the 'bar' section. Some file formats do not support arbitrary sections so the ! 'section' attribute is not available on all platforms. If you need ! to map the entire contents of a module to a particular section, ! consider using the facilities of the linker instead. ! 'sentinel' ! This function attribute ensures that a parameter in a function call ! is an explicit 'NULL'. The attribute is only valid on variadic ! functions. By default, the sentinel is located at position zero, ! the last parameter of the function call. If an optional integer ! position argument P is supplied to the attribute, the sentinel must ! be located at position P counting backwards from the end of the ! argument list. __attribute__ ((sentinel)) is equivalent to __attribute__ ((sentinel(0))) The attribute is automatically set with a position of 0 for the ! built-in functions 'execl' and 'execlp'. The built-in function ! 'execle' has the attribute set with a position of 1. ! A valid 'NULL' in this context is defined as zero with any pointer ! type. If your system defines the 'NULL' macro with an integer type ! then you need to add an explicit cast. GCC replaces 'stddef.h' with a copy that redefines NULL appropriately. The warnings for missing or incorrect sentinels are enabled with ! '-Wformat'. ! 'short_call' ! See 'long_call/short_call'. ! 'shortcall' ! See 'longcall/shortcall'. ! 'signal' Use this attribute on the AVR to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. ! See also the 'interrupt' function attribute. The AVR hardware globally disables interrupts when an interrupt is ! executed. Interrupt handler functions defined with the 'signal' attribute do not re-enable interrupts. It is save to enable ! interrupts in a 'signal' handler. This "save" only applies to the code generated by the compiler and not to the IRQ layout of the application which is responsibility of the application. ! If both 'signal' and 'interrupt' are specified for the same ! function, 'signal' is silently ignored. ! 'sp_switch' ! Use this attribute on the SH to indicate an 'interrupt_handler' function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack. --- 25206,25395 ---- non-cold parts of program. The paths leading to call of cold functions within code are marked as unlikely by the branch prediction mechanism. It is thus useful to mark functions used to ! handle unlikely conditions, such as `perror', as cold to improve ! optimization of hot functions that do call marked functions in ! rare occasions. ! When profile feedback is available, via `-fprofile-use', cold functions are automatically detected and this attribute is ignored. ! The `cold' attribute on functions is not implemented in GCC versions earlier than 4.3. ! The `cold' attribute on labels is used to inform the compiler that the path following the label is unlikely to be executed. This ! attribute is used in cases where `__builtin_expect' cannot be ! used, for instance with computed goto or `asm goto'. ! The `cold' attribute on labels is not implemented in GCC versions earlier than 4.8. ! `no_sanitize_address' ! `no_address_safety_analysis' ! The `no_sanitize_address' attribute on functions is used to inform the compiler that it should not instrument memory accesses in the ! function when compiling with the `-fsanitize=address' option. The ! `no_address_safety_analysis' is a deprecated alias of the ! `no_sanitize_address' attribute, new code should use ! `no_sanitize_address'. ! `no_sanitize_undefined' ! The `no_sanitize_undefined' attribute on functions is used to inform the compiler that it should not check for undefined behavior ! in the function when compiling with the `-fsanitize=undefined' option. ! `regparm (NUMBER)' ! On the Intel 386, the `regparm' attribute causes the compiler to ! pass arguments number one to NUMBER if they are of integral type ! in registers EAX, EDX, and ECX instead of on the stack. Functions that take a variable number of arguments continue to be passed all of their arguments on the stack. Beware that on some ELF systems this attribute is unsuitable for global functions in shared libraries with lazy binding (which is ! the default). Lazy binding sends the first call via resolving ! code in the loader, which might assume EAX, EDX and ECX can be clobbered, as per the standard calling conventions. Solaris 8 is affected by this. Systems with the GNU C Library version 2.1 or higher and FreeBSD are believed to be safe since the loaders there ! save EAX, EDX and ECX. (Lazy binding can be disabled with the linker or the loader if desired, to avoid the problem.) ! `reset' Use this attribute on the NDS32 target to indicate that the specified function is a reset handler. The compiler will generate ! corresponding sections for use in a reset handler. You can use ! the following attributes to provide extra exception handling: ! `nmi' Provide a user-defined function to handle NMI exception. ! ! `warm' Provide a user-defined function to handle warm reset exception. ! `sseregparm' ! On the Intel 386 with SSE support, the `sseregparm' attribute ! causes the compiler to pass up to 3 floating-point arguments in ! SSE registers instead of on the stack. Functions that take a ! variable number of arguments continue to pass all of their ! floating-point arguments on the stack. ! `force_align_arg_pointer' ! On the Intel x86, the `force_align_arg_pointer' attribute may be applied to individual function definitions, generating an alternate prologue and epilogue that realigns the run-time stack if necessary. This supports mixing legacy codes that run with a 4-byte aligned stack with modern codes that keep a 16-byte stack for SSE compatibility. ! `renesas' On SH targets this attribute specifies that the function or struct follows the Renesas ABI. ! `resbank' On the SH2A target, this attribute enables the high-speed register saving and restoration using a register bank for ! `interrupt_handler' routines. Saving to the bank is performed automatically after the CPU accepts an interrupt that uses a register bank. The nineteen 32-bit registers comprising general register R0 to R14, control register GBR, and system registers MACH, MACL, and PR ! and the vector table address offset are saved into a register ! bank. Register banks are stacked in first-in last-out (FILO) ! sequence. Restoration from the bank is executed by issuing a ! RESBANK instruction. ! `returns_twice' ! The `returns_twice' attribute tells the compiler that a function may return more than one time. The compiler ensures that all registers are dead before calling such a function and emits a warning about the variables that may be clobbered after the second ! return from the function. Examples of such functions are `setjmp' ! and `vfork'. The `longjmp'-like counterpart of such function, if ! any, might need to be marked with the `noreturn' attribute. ! `saveall' Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that all registers except the stack pointer should be saved in the prologue regardless of whether they are used or not. ! `save_volatiles' Use this attribute on the MicroBlaze to indicate that the function is an interrupt handler. All volatile registers (in addition to ! non-volatile registers) are saved in the function prologue. If ! the function is a leaf function, only volatiles used by the ! function are saved. A normal function return is generated instead ! of a return from interrupt. ! `section ("SECTION-NAME")' ! Normally, the compiler places the code it generates in the `text' section. Sometimes, however, you need additional sections, or you need certain particular functions to appear in special sections. ! The `section' attribute specifies that a function lives in a particular section. For example, the declaration: extern void foobar (void) __attribute__ ((section ("bar"))); ! puts the function `foobar' in the `bar' section. Some file formats do not support arbitrary sections so the ! `section' attribute is not available on all platforms. If you ! need to map the entire contents of a module to a particular ! section, consider using the facilities of the linker instead. ! `sentinel' ! This function attribute ensures that a parameter in a function ! call is an explicit `NULL'. The attribute is only valid on ! variadic functions. By default, the sentinel is located at ! position zero, the last parameter of the function call. If an ! optional integer position argument P is supplied to the attribute, ! the sentinel must be located at position P counting backwards from ! the end of the argument list. __attribute__ ((sentinel)) is equivalent to __attribute__ ((sentinel(0))) The attribute is automatically set with a position of 0 for the ! built-in functions `execl' and `execlp'. The built-in function ! `execle' has the attribute set with a position of 1. ! A valid `NULL' in this context is defined as zero with any pointer ! type. If your system defines the `NULL' macro with an integer type ! then you need to add an explicit cast. GCC replaces `stddef.h' with a copy that redefines NULL appropriately. The warnings for missing or incorrect sentinels are enabled with ! `-Wformat'. ! `short_call' ! See `long_call/short_call'. ! `shortcall' ! See `longcall/shortcall'. ! `signal' Use this attribute on the AVR to indicate that the specified function is an interrupt handler. The compiler generates function entry and exit sequences suitable for use in an interrupt handler when this attribute is present. ! See also the `interrupt' function attribute. The AVR hardware globally disables interrupts when an interrupt is ! executed. Interrupt handler functions defined with the `signal' attribute do not re-enable interrupts. It is save to enable ! interrupts in a `signal' handler. This "save" only applies to the code generated by the compiler and not to the IRQ layout of the application which is responsibility of the application. ! If both `signal' and `interrupt' are specified for the same ! function, `signal' is silently ignored. ! `sp_switch' ! Use this attribute on the SH to indicate an `interrupt_handler' function should switch to an alternate stack. It expects a string argument that names a global variable holding the address of the alternate stack. *************** attributes. *** 25208,25590 **** void f () __attribute__ ((interrupt_handler, sp_switch ("alt_stack"))); ! 'stdcall' ! On the Intel 386, the 'stdcall' attribute causes the compiler to assume that the called function pops off the stack space used to pass arguments, unless it takes a variable number of arguments. ! 'syscall_linkage' This attribute is used to modify the IA-64 calling convention by marking all input registers as live at all function exits. This makes it possible to restart a system call after an interrupt without having to save/restore the input registers. This also prevents kernel data from leaking into application code. ! 'target' ! The 'target' attribute is used to specify that a function is to be compiled with different target options than specified on the command line. This can be used for instance to have functions compiled with a different ISA (instruction set architecture) than ! the default. You can also use the '#pragma GCC target' pragma to set more than one function to be compiled with specific target options. *Note Function Specific Option Pragmas::, for details ! about the '#pragma GCC target' pragma. For instance on a 386, you could compile one function with ! 'target("sse4.1,arch=core2")' and another with ! 'target("sse4a,arch=amdfam10")'. This is equivalent to compiling ! the first function with '-msse4.1' and '-march=core2' options, and ! the second function with '-msse4a' and '-march=amdfam10' options. It is up to the user to make sure that a function is only invoked on a machine that supports the particular ISA it is compiled for ! (for example by using 'cpuid' on 386 to determine what feature bits ! and architecture family are used). int core2_func (void) __attribute__ ((__target__ ("arch=core2"))); int sse3_func (void) __attribute__ ((__target__ ("sse3"))); ! You can either use multiple strings to specify multiple options, or ! separate the options with a comma (','). ! The 'target' attribute is presently implemented for i386/x86_64, PowerPC, and Nios II targets only. The options supported are specific to each target. On the 386, the following options are allowed: ! 'abm' ! 'no-abm' Enable/disable the generation of the advanced bit instructions. ! 'aes' ! 'no-aes' Enable/disable the generation of the AES instructions. ! 'default' *Note Function Multiversioning::, where it is used to specify the default function version. ! 'mmx' ! 'no-mmx' Enable/disable the generation of the MMX instructions. ! 'pclmul' ! 'no-pclmul' Enable/disable the generation of the PCLMUL instructions. ! 'popcnt' ! 'no-popcnt' Enable/disable the generation of the POPCNT instruction. ! 'sse' ! 'no-sse' Enable/disable the generation of the SSE instructions. ! 'sse2' ! 'no-sse2' Enable/disable the generation of the SSE2 instructions. ! 'sse3' ! 'no-sse3' Enable/disable the generation of the SSE3 instructions. ! 'sse4' ! 'no-sse4' Enable/disable the generation of the SSE4 instructions (both SSE4.1 and SSE4.2). ! 'sse4.1' ! 'no-sse4.1' Enable/disable the generation of the sse4.1 instructions. ! 'sse4.2' ! 'no-sse4.2' Enable/disable the generation of the sse4.2 instructions. ! 'sse4a' ! 'no-sse4a' Enable/disable the generation of the SSE4A instructions. ! 'fma4' ! 'no-fma4' Enable/disable the generation of the FMA4 instructions. ! 'xop' ! 'no-xop' Enable/disable the generation of the XOP instructions. ! 'lwp' ! 'no-lwp' Enable/disable the generation of the LWP instructions. ! 'ssse3' ! 'no-ssse3' Enable/disable the generation of the SSSE3 instructions. ! 'cld' ! 'no-cld' Enable/disable the generation of the CLD before string moves. ! 'fancy-math-387' ! 'no-fancy-math-387' ! Enable/disable the generation of the 'sin', 'cos', and 'sqrt' instructions on the 387 floating-point unit. ! 'fused-madd' ! 'no-fused-madd' Enable/disable the generation of the fused multiply/add instructions. ! 'ieee-fp' ! 'no-ieee-fp' Enable/disable the generation of floating point that depends on IEEE arithmetic. ! 'inline-all-stringops' ! 'no-inline-all-stringops' Enable/disable inlining of string operations. ! 'inline-stringops-dynamically' ! 'no-inline-stringops-dynamically' Enable/disable the generation of the inline code to do small string operations and calling the library routines for large operations. ! 'align-stringops' ! 'no-align-stringops' Do/do not align destination of inlined string operations. ! 'recip' ! 'no-recip' Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS instructions followed an additional Newton-Raphson step instead of doing a floating-point division. ! 'arch=ARCH' ! Specify the architecture to generate code for in compiling the ! function. ! 'tune=TUNE' Specify the architecture to tune for in compiling the function. ! 'fpmath=FPMATH' Specify which floating-point unit to use. The ! 'target("fpmath=sse,387")' option must be specified as ! 'target("fpmath=sse+387")' because the comma would separate different options. On the PowerPC, the following options are allowed: ! 'altivec' ! 'no-altivec' Generate code that uses (does not use) AltiVec instructions. In 32-bit code, you cannot enable AltiVec instructions unless ! '-mabi=altivec' is used on the command line. ! 'cmpb' ! 'no-cmpb' Generate code that uses (does not use) the compare bytes instruction implemented on the POWER6 processor and other processors that support the PowerPC V2.05 architecture. ! 'dlmzb' ! 'no-dlmzb' Generate code that uses (does not use) the string-search ! 'dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! 'fprnd' ! 'no-fprnd' Generate code that uses (does not use) the FP round to integer instructions implemented on the POWER5+ processor and other processors that support the PowerPC V2.03 architecture. ! 'hard-dfp' ! 'no-hard-dfp' Generate code that uses (does not use) the decimal floating-point instructions implemented on some POWER processors. ! 'isel' ! 'no-isel' Generate code that uses (does not use) ISEL instruction. ! 'mfcrf' ! 'no-mfcrf' Generate code that uses (does not use) the move from condition ! register field instruction implemented on the POWER4 processor ! and other processors that support the PowerPC V2.01 architecture. ! 'mfpgpr' ! 'no-mfpgpr' Generate code that uses (does not use) the FP move to/from general purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC V2.05 architecture. ! 'mulhw' ! 'no-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! 'multiple' ! 'no-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. ! 'update' ! 'no-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. ! 'popcntb' ! 'no-popcntb' Generate code that uses (does not use) the popcount and double-precision FP reciprocal estimate instruction implemented on the POWER5 processor and other processors that support the PowerPC V2.02 architecture. ! 'popcntd' ! 'no-popcntd' Generate code that uses (does not use) the popcount instruction implemented on the POWER7 processor and other processors that support the PowerPC V2.06 architecture. ! 'powerpc-gfxopt' ! 'no-powerpc-gfxopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the Graphics group, including floating-point select. ! 'powerpc-gpopt' ! 'no-powerpc-gpopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the General Purpose group, including floating-point square root. ! 'recip-precision' ! 'no-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the powerpc ABI. ! 'string' ! 'no-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. ! 'vsx' ! 'no-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. In 32-bit code, you cannot enable VSX or AltiVec instructions ! unless '-mabi=altivec' is used on the command line. ! 'friz' ! 'no-friz' ! Generate (do not generate) the 'friz' instruction when the ! '-funsafe-math-optimizations' option is used to optimize rounding a floating-point value to 64-bit integer and back to ! floating point. The 'friz' instruction does not return the ! same value if the floating-point number is too large to fit in ! an integer. ! 'avoid-indexed-addresses' ! 'no-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed load or store instructions. ! 'paired' ! 'no-paired' Generate code that uses (does not use) the generation of PAIRED simd instructions. ! 'longcall' ! 'no-longcall' Generate code that assumes (does not assume) that all calls are far away so that a longer more expensive calling sequence is required. ! 'cpu=CPU' Specify the architecture to generate code for when compiling ! the function. If you select the 'target("cpu=power7")' attribute when generating 32-bit code, VSX and AltiVec instructions are not generated unless you use the ! '-mabi=altivec' option on the command line. ! 'tune=TUNE' Specify the architecture to tune for when compiling the ! function. If you do not specify the 'target("tune=TUNE")' ! attribute and you do specify the 'target("cpu=CPU")' ! attribute, compilation tunes for the CPU architecture, and not ! the default tuning specified on the command line. When compiling for Nios II, the following options are allowed: ! 'custom-INSN=N' ! 'no-custom-INSN' ! Each 'custom-INSN=N' attribute locally enables use of a custom ! instruction with encoding N when generating code that uses ! INSN. Similarly, 'no-custom-INSN' locally inhibits use of the ! custom instruction INSN. These target attributes correspond ! to the '-mcustom-INSN=N' and '-mno-custom-INSN' command-line ! options, and support the same set of INSN keywords. *Note ! Nios II Options::, for more information. ! 'custom-fpu-cfg=NAME' ! This attribute corresponds to the '-mcustom-fpu-cfg=NAME' command-line option, to select a predefined set of custom instructions named NAME. *Note Nios II Options::, for more information. On the 386/x86_64 and PowerPC back ends, the inliner does not inline a function that has different target options than the ! caller, unless the callee has a subset of the target options of the ! caller. For example a function declared with 'target("sse3")' can ! inline a function with 'target("sse2")', since '-msse3' implies ! '-msse2'. ! 'tiny_data' Use this attribute on the H8/300H and H8S to indicate that the specified variable should be placed into the tiny data section. The compiler generates more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32KB of data. ! 'trap_exit' ! Use this attribute on the SH for an 'interrupt_handler' to return ! using 'trapa' instead of 'rte'. This attribute expects an integer argument specifying the trap number to be used. ! 'trapa_handler' On SH targets this function attribute is similar to ! 'interrupt_handler' but it does not save and restore all registers. ! 'unused' This attribute, attached to a function, means that the function is meant to be possibly unused. GCC does not produce a warning for this function. ! 'used' This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly. When applied to a member function of a C++ class template, the ! attribute also means that the function is instantiated if the class ! itself is instantiated. ! 'version_id' This IA-64 HP-UX attribute, attached to a global variable or function, renames a symbol to contain a version string, thus allowing for function level versioning. HP-UX system header files --- 25398,25780 ---- void f () __attribute__ ((interrupt_handler, sp_switch ("alt_stack"))); ! `stdcall' ! On the Intel 386, the `stdcall' attribute causes the compiler to assume that the called function pops off the stack space used to pass arguments, unless it takes a variable number of arguments. ! `syscall_linkage' This attribute is used to modify the IA-64 calling convention by marking all input registers as live at all function exits. This makes it possible to restart a system call after an interrupt without having to save/restore the input registers. This also prevents kernel data from leaking into application code. ! `target' ! The `target' attribute is used to specify that a function is to be compiled with different target options than specified on the command line. This can be used for instance to have functions compiled with a different ISA (instruction set architecture) than ! the default. You can also use the `#pragma GCC target' pragma to set more than one function to be compiled with specific target options. *Note Function Specific Option Pragmas::, for details ! about the `#pragma GCC target' pragma. For instance on a 386, you could compile one function with ! `target("sse4.1,arch=core2")' and another with ! `target("sse4a,arch=amdfam10")'. This is equivalent to compiling ! the first function with `-msse4.1' and `-march=core2' options, and ! the second function with `-msse4a' and `-march=amdfam10' options. It is up to the user to make sure that a function is only invoked on a machine that supports the particular ISA it is compiled for ! (for example by using `cpuid' on 386 to determine what feature ! bits and architecture family are used). int core2_func (void) __attribute__ ((__target__ ("arch=core2"))); int sse3_func (void) __attribute__ ((__target__ ("sse3"))); ! You can either use multiple strings to specify multiple options, ! or separate the options with a comma (`,'). ! The `target' attribute is presently implemented for i386/x86_64, PowerPC, and Nios II targets only. The options supported are specific to each target. On the 386, the following options are allowed: ! `abm' ! `no-abm' Enable/disable the generation of the advanced bit instructions. ! `aes' ! `no-aes' Enable/disable the generation of the AES instructions. ! `default' *Note Function Multiversioning::, where it is used to specify the default function version. ! `mmx' ! `no-mmx' Enable/disable the generation of the MMX instructions. ! `pclmul' ! `no-pclmul' Enable/disable the generation of the PCLMUL instructions. ! `popcnt' ! `no-popcnt' Enable/disable the generation of the POPCNT instruction. ! `sse' ! `no-sse' Enable/disable the generation of the SSE instructions. ! `sse2' ! `no-sse2' Enable/disable the generation of the SSE2 instructions. ! `sse3' ! `no-sse3' Enable/disable the generation of the SSE3 instructions. ! `sse4' ! `no-sse4' Enable/disable the generation of the SSE4 instructions (both SSE4.1 and SSE4.2). ! `sse4.1' ! `no-sse4.1' Enable/disable the generation of the sse4.1 instructions. ! `sse4.2' ! `no-sse4.2' Enable/disable the generation of the sse4.2 instructions. ! `sse4a' ! `no-sse4a' Enable/disable the generation of the SSE4A instructions. ! `fma4' ! `no-fma4' Enable/disable the generation of the FMA4 instructions. ! `xop' ! `no-xop' Enable/disable the generation of the XOP instructions. ! `lwp' ! `no-lwp' Enable/disable the generation of the LWP instructions. ! `ssse3' ! `no-ssse3' Enable/disable the generation of the SSSE3 instructions. ! `cld' ! `no-cld' Enable/disable the generation of the CLD before string moves. ! `fancy-math-387' ! `no-fancy-math-387' ! Enable/disable the generation of the `sin', `cos', and `sqrt' instructions on the 387 floating-point unit. ! `fused-madd' ! `no-fused-madd' Enable/disable the generation of the fused multiply/add instructions. ! `ieee-fp' ! `no-ieee-fp' Enable/disable the generation of floating point that depends on IEEE arithmetic. ! `inline-all-stringops' ! `no-inline-all-stringops' Enable/disable inlining of string operations. ! `inline-stringops-dynamically' ! `no-inline-stringops-dynamically' Enable/disable the generation of the inline code to do small string operations and calling the library routines for large operations. ! `align-stringops' ! `no-align-stringops' Do/do not align destination of inlined string operations. ! `recip' ! `no-recip' Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS instructions followed an additional Newton-Raphson step instead of doing a floating-point division. ! `arch=ARCH' ! Specify the architecture to generate code for in compiling ! the function. ! `tune=TUNE' Specify the architecture to tune for in compiling the function. ! `fpmath=FPMATH' Specify which floating-point unit to use. The ! `target("fpmath=sse,387")' option must be specified as ! `target("fpmath=sse+387")' because the comma would separate different options. On the PowerPC, the following options are allowed: ! `altivec' ! `no-altivec' Generate code that uses (does not use) AltiVec instructions. In 32-bit code, you cannot enable AltiVec instructions unless ! `-mabi=altivec' is used on the command line. ! `cmpb' ! `no-cmpb' Generate code that uses (does not use) the compare bytes instruction implemented on the POWER6 processor and other processors that support the PowerPC V2.05 architecture. ! `dlmzb' ! `no-dlmzb' Generate code that uses (does not use) the string-search ! `dlmzb' instruction on the IBM 405, 440, 464 and 476 processors. This instruction is generated by default when targeting those processors. ! `fprnd' ! `no-fprnd' Generate code that uses (does not use) the FP round to integer instructions implemented on the POWER5+ processor and other processors that support the PowerPC V2.03 architecture. ! `hard-dfp' ! `no-hard-dfp' Generate code that uses (does not use) the decimal floating-point instructions implemented on some POWER processors. ! `isel' ! `no-isel' Generate code that uses (does not use) ISEL instruction. ! `mfcrf' ! `no-mfcrf' Generate code that uses (does not use) the move from condition ! register field instruction implemented on the POWER4 ! processor and other processors that support the PowerPC V2.01 architecture. ! `mfpgpr' ! `no-mfpgpr' Generate code that uses (does not use) the FP move to/from general purpose register instructions implemented on the POWER6X processor and other processors that support the extended PowerPC V2.05 architecture. ! `mulhw' ! `no-mulhw' Generate code that uses (does not use) the half-word multiply and multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors. These instructions are generated by default when targeting those processors. ! `multiple' ! `no-multiple' Generate code that uses (does not use) the load multiple word instructions and the store multiple word instructions. ! `update' ! `no-update' Generate code that uses (does not use) the load or store instructions that update the base register to the address of the calculated memory location. ! `popcntb' ! `no-popcntb' Generate code that uses (does not use) the popcount and double-precision FP reciprocal estimate instruction implemented on the POWER5 processor and other processors that support the PowerPC V2.02 architecture. ! `popcntd' ! `no-popcntd' Generate code that uses (does not use) the popcount instruction implemented on the POWER7 processor and other processors that support the PowerPC V2.06 architecture. ! `powerpc-gfxopt' ! `no-powerpc-gfxopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the Graphics group, including floating-point select. ! `powerpc-gpopt' ! `no-powerpc-gpopt' Generate code that uses (does not use) the optional PowerPC architecture instructions in the General Purpose group, including floating-point square root. ! `recip-precision' ! `no-recip-precision' Assume (do not assume) that the reciprocal estimate instructions provide higher-precision estimates than is mandated by the powerpc ABI. ! `string' ! `no-string' Generate code that uses (does not use) the load string instructions and the store string word instructions to save multiple registers and do small block moves. ! `vsx' ! `no-vsx' Generate code that uses (does not use) vector/scalar (VSX) instructions, and also enable the use of built-in functions that allow more direct access to the VSX instruction set. In 32-bit code, you cannot enable VSX or AltiVec instructions ! unless `-mabi=altivec' is used on the command line. ! `friz' ! `no-friz' ! Generate (do not generate) the `friz' instruction when the ! `-funsafe-math-optimizations' option is used to optimize rounding a floating-point value to 64-bit integer and back to ! floating point. The `friz' instruction does not return the ! same value if the floating-point number is too large to fit ! in an integer. ! `avoid-indexed-addresses' ! `no-avoid-indexed-addresses' Generate code that tries to avoid (not avoid) the use of indexed load or store instructions. ! `paired' ! `no-paired' Generate code that uses (does not use) the generation of PAIRED simd instructions. ! `longcall' ! `no-longcall' Generate code that assumes (does not assume) that all calls are far away so that a longer more expensive calling sequence is required. ! `cpu=CPU' Specify the architecture to generate code for when compiling ! the function. If you select the `target("cpu=power7")' attribute when generating 32-bit code, VSX and AltiVec instructions are not generated unless you use the ! `-mabi=altivec' option on the command line. ! `tune=TUNE' Specify the architecture to tune for when compiling the ! function. If you do not specify the `target("tune=TUNE")' ! attribute and you do specify the `target("cpu=CPU")' ! attribute, compilation tunes for the CPU architecture, and ! not the default tuning specified on the command line. When compiling for Nios II, the following options are allowed: ! `custom-INSN=N' ! `no-custom-INSN' ! Each `custom-INSN=N' attribute locally enables use of a ! custom instruction with encoding N when generating code that ! uses INSN. Similarly, `no-custom-INSN' locally inhibits use ! of the custom instruction INSN. These target attributes ! correspond to the `-mcustom-INSN=N' and `-mno-custom-INSN' ! command-line options, and support the same set of INSN ! keywords. *Note Nios II Options::, for more information. ! `custom-fpu-cfg=NAME' ! This attribute corresponds to the `-mcustom-fpu-cfg=NAME' command-line option, to select a predefined set of custom instructions named NAME. *Note Nios II Options::, for more information. On the 386/x86_64 and PowerPC back ends, the inliner does not inline a function that has different target options than the ! caller, unless the callee has a subset of the target options of ! the caller. For example a function declared with `target("sse3")' ! can inline a function with `target("sse2")', since `-msse3' ! implies `-msse2'. ! `tiny_data' Use this attribute on the H8/300H and H8S to indicate that the specified variable should be placed into the tiny data section. The compiler generates more efficient code for loads and stores on data in the tiny data section. Note the tiny data area is limited to slightly under 32KB of data. ! `trap_exit' ! Use this attribute on the SH for an `interrupt_handler' to return ! using `trapa' instead of `rte'. This attribute expects an integer argument specifying the trap number to be used. ! `trapa_handler' On SH targets this function attribute is similar to ! `interrupt_handler' but it does not save and restore all registers. ! `unused' This attribute, attached to a function, means that the function is meant to be possibly unused. GCC does not produce a warning for this function. ! `used' This attribute, attached to a function, means that code must be emitted for the function even if it appears that the function is not referenced. This is useful, for example, when the function is referenced only in inline assembly. When applied to a member function of a C++ class template, the ! attribute also means that the function is instantiated if the ! class itself is instantiated. ! `version_id' This IA-64 HP-UX attribute, attached to a global variable or function, renames a symbol to contain a version string, thus allowing for function level versioning. HP-UX system header files *************** attributes. *** 25594,25600 **** Calls to FOO are mapped to calls to FOO{20040821}. ! 'visibility ("VISIBILITY_TYPE")' This attribute affects the linkage of the declaration to which it is attached. There are four supported VISIBILITY_TYPE values: default, hidden, protected or internal visibility. --- 25784,25790 ---- Calls to FOO are mapped to calls to FOO{20040821}. ! `visibility ("VISIBILITY_TYPE")' This attribute affects the linkage of the declaration to which it is attached. There are four supported VISIBILITY_TYPE values: default, hidden, protected or internal visibility. *************** attributes. *** 25603,25612 **** f () { /* Do something. */; } int i __attribute__ ((visibility ("hidden"))); ! The possible values of VISIBILITY_TYPE correspond to the visibility ! settings in the ELF gABI. ! "default" Default visibility is the normal case for the object file format. This value is available for the visibility attribute to override other options that may change the assumed --- 25793,25802 ---- f () { /* Do something. */; } int i __attribute__ ((visibility ("hidden"))); ! The possible values of VISIBILITY_TYPE correspond to the ! visibility settings in the ELF gABI. ! "default" Default visibility is the normal case for the object file format. This value is available for the visibility attribute to override other options that may change the assumed *************** attributes. *** 25622,25653 **** Default visibility corresponds to "external linkage" in the language. ! "hidden" Hidden visibility indicates that the entity declared has a new form of linkage, which we call "hidden linkage". Two declarations of an object with hidden linkage refer to the same object if they are in the same shared object. ! "internal" Internal visibility is like hidden visibility, but with additional processor specific semantics. Unless otherwise specified by the psABI, GCC defines internal visibility to mean that a function is _never_ called from another module. ! Compare this with hidden functions which, while they cannot be ! referenced directly by other modules, can be referenced indirectly via function pointers. By indicating that a ! function cannot be called from outside the module, GCC may for ! instance omit the load of a PIC register since it is known that the calling function loaded the correct value. ! "protected" Protected visibility is like default visibility except that it indicates that references within the defining module bind to the definition in that module. That is, the declared entity cannot be overridden by another module. All visibilities are supported on many, but not all, ELF targets ! (supported when the assembler supports the '.visibility' pseudo-op). Default visibility is supported everywhere. Hidden visibility is supported on Darwin targets. --- 25812,25844 ---- Default visibility corresponds to "external linkage" in the language. ! "hidden" Hidden visibility indicates that the entity declared has a new form of linkage, which we call "hidden linkage". Two declarations of an object with hidden linkage refer to the same object if they are in the same shared object. ! "internal" Internal visibility is like hidden visibility, but with additional processor specific semantics. Unless otherwise specified by the psABI, GCC defines internal visibility to mean that a function is _never_ called from another module. ! Compare this with hidden functions which, while they cannot ! be referenced directly by other modules, can be referenced indirectly via function pointers. By indicating that a ! function cannot be called from outside the module, GCC may ! for instance omit the load of a PIC register since it is known that the calling function loaded the correct value. ! "protected" Protected visibility is like default visibility except that it indicates that references within the defining module bind to the definition in that module. That is, the declared entity cannot be overridden by another module. + All visibilities are supported on many, but not all, ELF targets ! (supported when the assembler supports the `.visibility' pseudo-op). Default visibility is supported everywhere. Hidden visibility is supported on Darwin targets. *************** attributes. *** 25679,25685 **** This attribute applies only to the particular namespace body, not to other definitions of the same namespace; it is equivalent to ! using '#pragma GCC visibility' before and after the namespace definition (*note Visibility Pragmas::). In C++, if a template argument has limited visibility, this --- 25870,25876 ---- This attribute applies only to the particular namespace body, not to other definitions of the same namespace; it is equivalent to ! using `#pragma GCC visibility' before and after the namespace definition (*note Visibility Pragmas::). In C++, if a template argument has limited visibility, this *************** attributes. *** 25690,25707 **** If both the template and enclosing class have explicit visibility, the visibility from the template is used. ! 'vliw' ! On MeP, the 'vliw' attribute tells the compiler to emit instructions in VLIW mode instead of core mode. Note that this attribute is not allowed unless a VLIW coprocessor has been configured and enabled through command-line options. ! 'warn_unused_result' ! The 'warn_unused_result' attribute causes a warning to be emitted if a caller of the function with this attribute does not use its return value. This is useful for functions where not checking the result is either a security problem or always a bug, such as ! 'realloc'. int fn () __attribute__ ((warn_unused_result)); int foo () --- 25881,25898 ---- If both the template and enclosing class have explicit visibility, the visibility from the template is used. ! `vliw' ! On MeP, the `vliw' attribute tells the compiler to emit instructions in VLIW mode instead of core mode. Note that this attribute is not allowed unless a VLIW coprocessor has been configured and enabled through command-line options. ! `warn_unused_result' ! The `warn_unused_result' attribute causes a warning to be emitted if a caller of the function with this attribute does not use its return value. This is useful for functions where not checking the result is either a security problem or always a bug, such as ! `realloc'. int fn () __attribute__ ((warn_unused_result)); int foo () *************** attributes. *** 25713,25735 **** results in warning on line 5. ! 'weak' ! The 'weak' attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions that can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker. ! 'weakref' ! 'weakref ("TARGET")' ! The 'weakref' attribute marks a declaration as a weak reference. ! Without arguments, it should be accompanied by an 'alias' attribute naming the target symbol. Optionally, the TARGET may be given as ! an argument to 'weakref' itself. In either case, 'weakref' ! implicitly marks the declaration as 'weak'. Without a TARGET, ! given as an argument to 'weakref' or to 'alias', 'weakref' is ! equivalent to 'weak'. static int x() __attribute__ ((weakref ("y"))); /* is equivalent to... */ --- 25904,25926 ---- results in warning on line 5. ! `weak' ! The `weak' attribute causes the declaration to be emitted as a weak symbol rather than a global. This is primarily useful in defining library functions that can be overridden in user code, though it can also be used with non-function declarations. Weak symbols are supported for ELF targets, and also for a.out targets when using the GNU assembler and linker. ! `weakref' ! `weakref ("TARGET")' ! The `weakref' attribute marks a declaration as a weak reference. ! Without arguments, it should be accompanied by an `alias' attribute naming the target symbol. Optionally, the TARGET may be given as ! an argument to `weakref' itself. In either case, `weakref' ! implicitly marks the declaration as `weak'. Without a TARGET, ! given as an argument to `weakref' or to `alias', `weakref' is ! equivalent to `weak'. static int x() __attribute__ ((weakref ("y"))); /* is equivalent to... */ *************** attributes. *** 25739,25747 **** static int x() __attribute__ ((alias ("y"))); A weak reference is an alias that does not by itself require a ! definition to be given for the target symbol. If the target symbol ! is only referenced through weak references, then it becomes a ! 'weak' undefined symbol. If it is directly referenced, however, then such strong references prevail, and a definition is required for the symbol, not necessarily in the same translation unit. --- 25930,25938 ---- static int x() __attribute__ ((alias ("y"))); A weak reference is an alias that does not by itself require a ! definition to be given for the target symbol. If the target ! symbol is only referenced through weak references, then it becomes ! a `weak' undefined symbol. If it is directly referenced, however, then such strong references prevail, and a definition is required for the symbol, not necessarily in the same translation unit. *************** attributes. *** 25750,25782 **** symbol, declaring it as weak, compiling the two separate translation units and performing a reloadable link on them. ! At present, a declaration to which 'weakref' is attached can only ! be 'static'. You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration. ! Some people object to the '__attribute__' feature, suggesting that ISO ! C's '#pragma' should be used instead. At the time '__attribute__' was designed, there were two reasons for not doing this. ! 1. It is impossible to generate '#pragma' commands from a macro. ! 2. There is no telling what the same '#pragma' might mean in another compiler. These two reasons applied to almost any application that might have ! been proposed for '#pragma'. It was basically a mistake to use ! '#pragma' for _anything_. ! The ISO C99 standard includes '_Pragma', which now allows pragmas to be ! generated from macros. In addition, a '#pragma GCC' namespace is now in ! use for GCC-specific pragmas. However, it has been found convenient to ! use '__attribute__' to achieve a natural attachment of attributes to ! their corresponding declarations, whereas '#pragma GCC' is of use for ! constructs that do not naturally form part of the grammar. *Note ! Pragmas Accepted by GCC: Pragmas.  File: gcc.info, Node: Attribute Syntax, Next: Function Prototypes, Prev: Function Attributes, Up: C Extensions --- 25941,25974 ---- symbol, declaring it as weak, compiling the two separate translation units and performing a reloadable link on them. ! At present, a declaration to which `weakref' is attached can only ! be `static'. ! You can specify multiple attributes in a declaration by separating them by commas within the double parentheses or by immediately following an attribute declaration with another attribute declaration. ! Some people object to the `__attribute__' feature, suggesting that ISO ! C's `#pragma' should be used instead. At the time `__attribute__' was designed, there were two reasons for not doing this. ! 1. It is impossible to generate `#pragma' commands from a macro. ! 2. There is no telling what the same `#pragma' might mean in another compiler. These two reasons applied to almost any application that might have ! been proposed for `#pragma'. It was basically a mistake to use ! `#pragma' for _anything_. ! The ISO C99 standard includes `_Pragma', which now allows pragmas to ! be generated from macros. In addition, a `#pragma GCC' namespace is ! now in use for GCC-specific pragmas. However, it has been found ! convenient to use `__attribute__' to achieve a natural attachment of ! attributes to their corresponding declarations, whereas `#pragma GCC' ! is of use for constructs that do not naturally form part of the ! grammar. *Note Pragmas Accepted by GCC: Pragmas.  File: gcc.info, Node: Attribute Syntax, Next: Function Prototypes, Prev: Function Attributes, Up: C Extensions *************** File: gcc.info, Node: Attribute Syntax, *** 25784,25790 **** 6.31 Attribute Syntax ===================== ! This section describes the syntax with which '__attribute__' may be used, and the constructs to which attribute specifiers bind, for the C language. Some details may vary for C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms described here --- 25976,25982 ---- 6.31 Attribute Syntax ===================== ! This section describes the syntax with which `__attribute__' may be used, and the constructs to which attribute specifiers bind, for the C language. Some details may vary for C++ and Objective-C. Because of infelicities in the grammar for attributes, some forms described here *************** may not be successfully parsed in all ca *** 25793,25800 **** There are some problems with the semantics of attributes in C++. For example, there are no manglings for attributes, although they may affect code generation, so problems may arise when attributed types are used in ! conjunction with templates or overloading. Similarly, 'typeid' does not ! distinguish between types with different attributes. Support for attributes in C++ may be restricted in future to attributes on declarations only, but not on nested declarators. --- 25985,25992 ---- There are some problems with the semantics of attributes in C++. For example, there are no manglings for attributes, although they may affect code generation, so problems may arise when attributed types are used in ! conjunction with templates or overloading. Similarly, `typeid' does ! not distinguish between types with different attributes. Support for attributes in C++ may be restricted in future to attributes on declarations only, but not on nested declarators. *************** semantics of attributes applying to vari *** 25804,25831 **** for details of the semantics of attributes applying to structure, union and enumerated types. ! An "attribute specifier" is of the form '__attribute__ ((ATTRIBUTE-LIST))'. An "attribute list" is a possibly empty ! comma-separated sequence of "attributes", where each attribute is one of ! the following: * Empty. Empty attributes are ignored. ! * A word (which may be an identifier such as 'unused', or a reserved ! word such as 'const'). * A word, followed by, in parentheses, parameters for the attribute. These parameters take one of the following forms: ! * An identifier. For example, 'mode' attributes use this form. * An identifier followed by a comma and a non-empty ! comma-separated list of expressions. For example, 'format' attributes use this form. * A possibly empty comma-separated list of expressions. For ! example, 'format_arg' attributes use this form with the list ! being a single integer constant expression, and 'alias' attributes use this form with the list being a single string constant. --- 25996,26023 ---- for details of the semantics of attributes applying to structure, union and enumerated types. ! An "attribute specifier" is of the form `__attribute__ ((ATTRIBUTE-LIST))'. An "attribute list" is a possibly empty ! comma-separated sequence of "attributes", where each attribute is one ! of the following: * Empty. Empty attributes are ignored. ! * A word (which may be an identifier such as `unused', or a reserved ! word such as `const'). * A word, followed by, in parentheses, parameters for the attribute. These parameters take one of the following forms: ! * An identifier. For example, `mode' attributes use this form. * An identifier followed by a comma and a non-empty ! comma-separated list of expressions. For example, `format' attributes use this form. * A possibly empty comma-separated list of expressions. For ! example, `format_arg' attributes use this form with the list ! being a single integer constant expression, and `alias' attributes use this form with the list being a single string constant. *************** the following: *** 25833,25854 **** specifiers, not separated by any other tokens. In GNU C, an attribute specifier list may appear after the colon ! following a label, other than a 'case' or 'default' label. The only ! attribute it makes sense to use after a label is 'unused'. This feature ! is intended for program-generated code that may contain unused labels, ! but which is compiled with '-Wall'. It is not normally appropriate to ! use in it human-written code, though it could be useful in cases where ! the code that jumps to the label is contained within an '#ifdef' ! conditional. GNU C++ only permits attributes on labels if the attribute ! specifier is immediately followed by a semicolon (i.e., the label ! applies to an empty statement). If the semicolon is missing, C++ label ! attributes are ambiguous, as it is permissible for a declaration, which ! could begin with an attribute list, to be labelled in C++. Declarations ! cannot be labelled in C90 or C99, so the ambiguity does not arise there. ! An attribute specifier list may appear as part of a 'struct', 'union' ! or 'enum' specifier. It may go either immediately after the 'struct', ! 'union' or 'enum' keyword, or after the closing brace. The former syntax is preferred. Where attribute specifiers follow the closing brace, they are considered to relate to the structure, union or enumerated type defined, not to any enclosing declaration the type --- 26025,26047 ---- specifiers, not separated by any other tokens. In GNU C, an attribute specifier list may appear after the colon ! following a label, other than a `case' or `default' label. The only ! attribute it makes sense to use after a label is `unused'. This ! feature is intended for program-generated code that may contain unused ! labels, but which is compiled with `-Wall'. It is not normally ! appropriate to use in it human-written code, though it could be useful ! in cases where the code that jumps to the label is contained within an ! `#ifdef' conditional. GNU C++ only permits attributes on labels if the ! attribute specifier is immediately followed by a semicolon (i.e., the ! label applies to an empty statement). If the semicolon is missing, C++ ! label attributes are ambiguous, as it is permissible for a declaration, ! which could begin with an attribute list, to be labelled in C++. ! Declarations cannot be labelled in C90 or C99, so the ambiguity does ! not arise there. ! An attribute specifier list may appear as part of a `struct', `union' ! or `enum' specifier. It may go either immediately after the `struct', ! `union' or `enum' keyword, or after the closing brace. The former syntax is preferred. Where attribute specifiers follow the closing brace, they are considered to relate to the structure, union or enumerated type defined, not to any enclosing declaration the type *************** contain attribute specifiers, whether or *** 25870,25889 **** context contain storage class specifiers. (Some attributes, however, are essentially in the nature of storage class specifiers, and only make sense where storage class specifiers may be used; for example, ! 'section'.) There is one necessary limitation to this syntax: the first ! old-style parameter declaration in a function definition cannot begin ! with an attribute specifier, because such an attribute applies to the ! function instead by syntax described below (which, however, is not yet ! implemented in this case). In some other cases, attribute specifiers ! are permitted by this grammar but not yet supported by the compiler. ! All attribute specifiers in this place relate to the declaration as a ! whole. In the obsolescent usage where a type of 'int' is implied by the ! absence of type specifiers, such a list of specifiers and qualifiers may ! be an attribute specifier list with no other specifiers or qualifiers. At present, the first parameter in a function prototype must have some type specifier that is not an attribute specifier; this resolves an ! ambiguity in the interpretation of 'void f(int (__attribute__((foo)) x))', but is subject to change. At present, if the parentheses of a function declarator contain only attributes then those attributes are ignored, rather than yielding an error or warning or implying a single --- 26063,26083 ---- context contain storage class specifiers. (Some attributes, however, are essentially in the nature of storage class specifiers, and only make sense where storage class specifiers may be used; for example, ! `section'.) There is one necessary limitation to this syntax: the ! first old-style parameter declaration in a function definition cannot ! begin with an attribute specifier, because such an attribute applies to ! the function instead by syntax described below (which, however, is not ! yet implemented in this case). In some other cases, attribute ! specifiers are permitted by this grammar but not yet supported by the ! compiler. All attribute specifiers in this place relate to the ! declaration as a whole. In the obsolescent usage where a type of `int' ! is implied by the absence of type specifiers, such a list of specifiers ! and qualifiers may be an attribute specifier list with no other ! specifiers or qualifiers. At present, the first parameter in a function prototype must have some type specifier that is not an attribute specifier; this resolves an ! ambiguity in the interpretation of `void f(int (__attribute__((foo)) x))', but is subject to change. At present, if the parentheses of a function declarator contain only attributes then those attributes are ignored, rather than yielding an error or warning or implying a single *************** identifier before whose declarator they *** 25899,25920 **** __attribute__((format(printf, 1, 2))) d1 (const char *, ...), d2 (void) ! the 'noreturn' attribute applies to all the functions declared; the ! 'format' attribute only applies to 'd1'. An attribute specifier list may appear immediately before the comma, ! '=' or semicolon terminating the declaration of an identifier other than ! a function definition. Such attribute specifiers apply to the declared ! object or function. Where an assembler name for an object or function ! is specified (*note Asm Labels::), the attribute must follow the 'asm' ! specification. An attribute specifier list may, in future, be permitted to appear after the declarator in a function definition (before any old-style parameter declarations or the function body). Attribute specifiers may be mixed with type qualifiers appearing inside ! the '[]' of a parameter array declarator, in the C99 construct by which such qualifiers are applied to the pointer to which the array is implicitly converted. Such attribute specifiers apply to the pointer, not to the array, but at present this is not implemented and they are --- 26093,26114 ---- __attribute__((format(printf, 1, 2))) d1 (const char *, ...), d2 (void) ! the `noreturn' attribute applies to all the functions declared; the ! `format' attribute only applies to `d1'. An attribute specifier list may appear immediately before the comma, ! `=' or semicolon terminating the declaration of an identifier other ! than a function definition. Such attribute specifiers apply to the ! declared object or function. Where an assembler name for an object or ! function is specified (*note Asm Labels::), the attribute must follow ! the `asm' specification. An attribute specifier list may, in future, be permitted to appear after the declarator in a function definition (before any old-style parameter declarations or the function body). Attribute specifiers may be mixed with type qualifiers appearing inside ! the `[]' of a parameter array declarator, in the C99 construct by which such qualifiers are applied to the pointer to which the array is implicitly converted. Such attribute specifiers apply to the pointer, not to the array, but at present this is not implemented and they are *************** ignored. *** 25924,25950 **** declarator. At present, there are some limitations in this usage: the attributes correctly apply to the declarator, but for most individual attributes the semantics this implies are not implemented. When ! attribute specifiers follow the '*' of a pointer declarator, they may be ! mixed with any type qualifiers present. The following describes the formal semantics of this syntax. It makes the most sense if you are familiar with the formal specification of declarators in the ISO C standard. ! Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration 'T D1', ! where 'T' contains declaration specifiers that specify a type TYPE (such ! as 'int') and 'D1' is a declarator that contains an identifier IDENT. ! The type specified for IDENT for derived declarators whose type does not ! include an attribute specifier is as in the ISO C standard. ! If 'D1' has the form '( ATTRIBUTE-SPECIFIER-LIST D )', and the ! declaration 'T D' specifies the type "DERIVED-DECLARATOR-TYPE-LIST TYPE" ! for IDENT, then 'T D1' specifies the type "DERIVED-DECLARATOR-TYPE-LIST ! ATTRIBUTE-SPECIFIER-LIST TYPE" for IDENT. ! If 'D1' has the form '* TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST D', ! and the declaration 'T D' specifies the type ! "DERIVED-DECLARATOR-TYPE-LIST TYPE" for IDENT, then 'T D1' specifies the ! type "DERIVED-DECLARATOR-TYPE-LIST TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST pointer to TYPE" for IDENT. For example, --- 26118,26144 ---- declarator. At present, there are some limitations in this usage: the attributes correctly apply to the declarator, but for most individual attributes the semantics this implies are not implemented. When ! attribute specifiers follow the `*' of a pointer declarator, they may ! be mixed with any type qualifiers present. The following describes the formal semantics of this syntax. It makes the most sense if you are familiar with the formal specification of declarators in the ISO C standard. ! Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration `T D1', ! where `T' contains declaration specifiers that specify a type TYPE ! (such as `int') and `D1' is a declarator that contains an identifier ! IDENT. The type specified for IDENT for derived declarators whose type ! does not include an attribute specifier is as in the ISO C standard. ! If `D1' has the form `( ATTRIBUTE-SPECIFIER-LIST D )', and the ! declaration `T D' specifies the type "DERIVED-DECLARATOR-TYPE-LIST ! TYPE" for IDENT, then `T D1' specifies the type ! "DERIVED-DECLARATOR-TYPE-LIST ATTRIBUTE-SPECIFIER-LIST TYPE" for IDENT. ! If `D1' has the form `* TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST ! D', and the declaration `T D' specifies the type ! "DERIVED-DECLARATOR-TYPE-LIST TYPE" for IDENT, then `T D1' specifies ! the type "DERIVED-DECLARATOR-TYPE-LIST TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-LIST pointer to TYPE" for IDENT. For example, *************** TYPE-QUALIFIER-AND-ATTRIBUTE-SPECIFIER-L *** 25952,25964 **** void (__attribute__((noreturn)) ****f) (void); specifies the type "pointer to pointer to pointer to pointer to ! non-returning function returning 'void'". As another example, char *__attribute__((aligned(8))) *f; ! specifies the type "pointer to 8-byte-aligned pointer to 'char'". Note again that this does not work with most attributes; for example, the ! usage of 'aligned' and 'noreturn' attributes given above is not yet supported. For compatibility with existing code written for compiler versions that --- 26146,26158 ---- void (__attribute__((noreturn)) ****f) (void); specifies the type "pointer to pointer to pointer to pointer to ! non-returning function returning `void'". As another example, char *__attribute__((aligned(8))) *f; ! specifies the type "pointer to 8-byte-aligned pointer to `char'". Note again that this does not work with most attributes; for example, the ! usage of `aligned' and `noreturn' attributes given above is not yet supported. For compatibility with existing code written for compiler versions that *************** the attributes immediately before the id *** 25972,25979 **** attribute applied to a function return type is treated as applying to the function type, and such an attribute applied to an array element type is treated as applying to the array type. If an attribute that ! only applies to function types is applied to a pointer-to-function type, ! it is treated as applying to the pointer target type; if such an attribute is applied to a function return type that is not a pointer-to-function type, it is treated as applying to the function type. --- 26166,26173 ---- attribute applied to a function return type is treated as applying to the function type, and such an attribute applied to an array element type is treated as applying to the array type. If an attribute that ! only applies to function types is applied to a pointer-to-function ! type, it is treated as applying to the pointer target type; if such an attribute is applied to a function return type that is not a pointer-to-function type, it is treated as applying to the function type. *************** old-style non-prototype definition. Con *** 26005,26024 **** return x == 0; } ! Suppose the type 'uid_t' happens to be 'short'. ISO C does not allow this example, because subword arguments in old-style non-prototype definitions are promoted. Therefore in this example the function ! definition's argument is really an 'int', which does not match the ! prototype argument type of 'short'. This restriction of ISO C makes it hard to write code that is portable ! to traditional C compilers, because the programmer does not know whether ! the 'uid_t' type is 'short', 'int', or 'long'. Therefore, in cases like ! these GNU C allows a prototype to override a later old-style definition. ! More precisely, in GNU C, a function prototype argument type overrides ! the argument type specified by a later old-style definition if the ! former type is the same as the latter type before promotion. Thus in ! GNU C the above example is equivalent to the following: int isroot (uid_t); --- 26199,26219 ---- return x == 0; } ! Suppose the type `uid_t' happens to be `short'. ISO C does not allow this example, because subword arguments in old-style non-prototype definitions are promoted. Therefore in this example the function ! definition's argument is really an `int', which does not match the ! prototype argument type of `short'. This restriction of ISO C makes it hard to write code that is portable ! to traditional C compilers, because the programmer does not know ! whether the `uid_t' type is `short', `int', or `long'. Therefore, in ! cases like these GNU C allows a prototype to override a later old-style ! definition. More precisely, in GNU C, a function prototype argument ! type overrides the argument type specified by a later old-style ! definition if the former type is the same as the latter type before ! promotion. Thus in GNU C the above example is equivalent to the ! following: int isroot (uid_t); *************** File: gcc.info, Node: C++ Comments, Ne *** 26037,26048 **** 6.33 C++ Style Comments ======================= ! In GNU C, you may use C++ style comments, which start with '//' and continue until the end of the line. Many other C implementations allow such comments, and they are included in the 1999 C standard. However, ! C++ style comments are not recognized if you specify an '-std' option ! specifying a version of ISO C before C99, or '-ansi' (equivalent to ! '-std=c90').  File: gcc.info, Node: Dollar Signs, Next: Character Escapes, Prev: C++ Comments, Up: C Extensions --- 26232,26243 ---- 6.33 C++ Style Comments ======================= ! In GNU C, you may use C++ style comments, which start with `//' and continue until the end of the line. Many other C implementations allow such comments, and they are included in the 1999 C standard. However, ! C++ style comments are not recognized if you specify an `-std' option ! specifying a version of ISO C before C99, or `-ansi' (equivalent to ! `-std=c90').  File: gcc.info, Node: Dollar Signs, Next: Character Escapes, Prev: C++ Comments, Up: C Extensions *************** File: gcc.info, Node: Character Escapes *** 26061,26068 **** 6.35 The Character in Constants ===================================== ! You can use the sequence '\e' in a string or character constant to stand ! for the ASCII character .  File: gcc.info, Node: Variable Attributes, Next: Type Attributes, Prev: Character Escapes, Up: C Extensions --- 26256,26263 ---- 6.35 The Character in Constants ===================================== ! You can use the sequence `\e' in a string or character constant to ! stand for the ASCII character .  File: gcc.info, Node: Variable Attributes, Next: Type Attributes, Prev: Character Escapes, Up: C Extensions *************** File: gcc.info, Node: Variable Attribut *** 26070,26110 **** 6.36 Specifying Attributes of Variables ======================================= ! The keyword '__attribute__' allows you to specify special attributes of ! variables or structure fields. This keyword is followed by an attribute ! specification inside double parentheses. Some attributes are currently ! defined generically for variables. Other attributes are defined for ! variables on particular target systems. Other attributes are available ! for functions (*note Function Attributes::) and for types (*note Type ! Attributes::). Other front ends might define more attributes (*note ! Extensions to the C++ Language: C++ Extensions.). ! You may also specify attributes with '__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you may ! use '__aligned__' instead of 'aligned'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! 'aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the variable or structure field, measured in bytes. For example, the declaration: int x __attribute__ ((aligned (16))) = 0; ! causes the compiler to allocate the global variable 'x' on a 16-byte boundary. On a 68040, this could be used in conjunction ! with an 'asm' expression to access the 'move16' instruction which requires 16-byte aligned operands. You can also specify the alignment of structure fields. For ! example, to create a double-word aligned 'int' pair, you could write: struct foo { int x[2] __attribute__ ((aligned (8))); }; ! This is an alternative to creating a union with a 'double' member, which forces the union to be double-word aligned. As in the preceding examples, you can explicitly specify the --- 26265,26305 ---- 6.36 Specifying Attributes of Variables ======================================= ! The keyword `__attribute__' allows you to specify special attributes of ! variables or structure fields. This keyword is followed by an ! attribute specification inside double parentheses. Some attributes are ! currently defined generically for variables. Other attributes are ! defined for variables on particular target systems. Other attributes ! are available for functions (*note Function Attributes::) and for types ! (*note Type Attributes::). Other front ends might define more ! attributes (*note Extensions to the C++ Language: C++ Extensions.). ! You may also specify attributes with `__' preceding and following each keyword. This allows you to use them in header files without being ! concerned about a possible macro of the same name. For example, you ! may use `__aligned__' instead of `aligned'. *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! `aligned (ALIGNMENT)' This attribute specifies a minimum alignment for the variable or structure field, measured in bytes. For example, the declaration: int x __attribute__ ((aligned (16))) = 0; ! causes the compiler to allocate the global variable `x' on a 16-byte boundary. On a 68040, this could be used in conjunction ! with an `asm' expression to access the `move16' instruction which requires 16-byte aligned operands. You can also specify the alignment of structure fields. For ! example, to create a double-word aligned `int' pair, you could write: struct foo { int x[2] __attribute__ ((aligned (8))); }; ! This is an alternative to creating a union with a `double' member, which forces the union to be double-word aligned. As in the preceding examples, you can explicitly specify the *************** attributes. *** 26117,26123 **** supports vector operations. The default alignment is fixed for a particular target ABI. ! GCC also provides a target specific macro '__BIGGEST_ALIGNMENT__', which is the largest alignment ever used for any data type on the target machine you are compiling for. For example, you could write: --- 26312,26318 ---- supports vector operations. The default alignment is fixed for a particular target ABI. ! GCC also provides a target specific macro `__BIGGEST_ALIGNMENT__', which is the largest alignment ever used for any data type on the target machine you are compiling for. For example, you could write: *************** attributes. *** 26125,26183 **** short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__))); The compiler automatically sets the alignment for the declared ! variable or field to '__BIGGEST_ALIGNMENT__'. Doing this can often ! make copy operations more efficient, because the compiler can use ! whatever instructions copy the biggest chunks of memory when performing copies to or from the variables or fields that you have ! aligned this way. Note that the value of '__BIGGEST_ALIGNMENT__' may change depending on command-line options. ! When used on a struct, or struct member, the 'aligned' attribute can only increase the alignment; in order to decrease it, the ! 'packed' attribute must be specified as well. When used as part of ! a typedef, the 'aligned' attribute can both increase and decrease ! alignment, and specifying the 'packed' attribute generates a ! warning. ! Note that the effectiveness of 'aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying 'aligned(16)' in an '__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! The 'aligned' attribute can also be used for functions (*note Function Attributes::.) ! 'cleanup (CLEANUP_FUNCTION)' ! The 'cleanup' attribute runs a function when the variable goes out of scope. This attribute can only be applied to auto function scope variables; it may not be applied to parameters or variables with static storage duration. The function must take one parameter, a pointer to a type compatible with the variable. The return value of the function (if any) is ignored. ! If '-fexceptions' is enabled, then CLEANUP_FUNCTION is run during the stack unwinding that happens during the processing of the ! exception. Note that the 'cleanup' attribute does not allow the ! exception to be caught, only to perform an action. It is undefined ! what happens if CLEANUP_FUNCTION does not return normally. ! 'common' ! 'nocommon' ! The 'common' attribute requests GCC to place a variable in "common" ! storage. The 'nocommon' attribute requests the opposite--to ! allocate space for it directly. ! These attributes override the default chosen by the '-fno-common' ! and '-fcommon' flags respectively. ! 'deprecated' ! 'deprecated (MSG)' ! The 'deprecated' attribute results in a warning if the variable is used anywhere in the source file. This is useful when identifying variables that are expected to be removed in a future version of a program. The warning also includes the location of the declaration --- 26320,26379 ---- short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__))); The compiler automatically sets the alignment for the declared ! variable or field to `__BIGGEST_ALIGNMENT__'. Doing this can ! often make copy operations more efficient, because the compiler can ! use whatever instructions copy the biggest chunks of memory when performing copies to or from the variables or fields that you have ! aligned this way. Note that the value of `__BIGGEST_ALIGNMENT__' may change depending on command-line options. ! When used on a struct, or struct member, the `aligned' attribute can only increase the alignment; in order to decrease it, the ! `packed' attribute must be specified as well. When used as part ! of a typedef, the `aligned' attribute can both increase and ! decrease alignment, and specifying the `packed' attribute ! generates a warning. ! Note that the effectiveness of `aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying `aligned(16)' in an `__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! The `aligned' attribute can also be used for functions (*note Function Attributes::.) ! `cleanup (CLEANUP_FUNCTION)' ! The `cleanup' attribute runs a function when the variable goes out of scope. This attribute can only be applied to auto function scope variables; it may not be applied to parameters or variables with static storage duration. The function must take one parameter, a pointer to a type compatible with the variable. The return value of the function (if any) is ignored. ! If `-fexceptions' is enabled, then CLEANUP_FUNCTION is run during the stack unwinding that happens during the processing of the ! exception. Note that the `cleanup' attribute does not allow the ! exception to be caught, only to perform an action. It is ! undefined what happens if CLEANUP_FUNCTION does not return ! normally. ! `common' ! `nocommon' ! The `common' attribute requests GCC to place a variable in ! "common" storage. The `nocommon' attribute requests the ! opposite--to allocate space for it directly. ! These attributes override the default chosen by the `-fno-common' ! and `-fcommon' flags respectively. ! `deprecated' ! `deprecated (MSG)' ! The `deprecated' attribute results in a warning if the variable is used anywhere in the source file. This is useful when identifying variables that are expected to be removed in a future version of a program. The warning also includes the location of the declaration *************** attributes. *** 26193,26220 **** argument, which must be a string, is printed in the warning if present. ! The 'deprecated' attribute can also be used for functions and types ! (*note Function Attributes::, *note Type Attributes::.) ! 'mode (MODE)' This attribute specifies the data type for the declaration--whichever type corresponds to the mode MODE. This in ! effect lets you request an integer or floating-point type according ! to its width. ! You may also specify a mode of 'byte' or '__byte__' to indicate the ! mode corresponding to a one-byte integer, 'word' or '__word__' for ! the mode of a one-word integer, and 'pointer' or '__pointer__' for ! the mode used to represent pointers. ! 'packed' ! The 'packed' attribute specifies that a variable or structure field should have the smallest possible alignment--one byte for a variable, and one bit for a field, unless you specify a larger ! value with the 'aligned' attribute. ! Here is a structure in which the field 'x' is packed, so that it ! immediately follows 'a': struct foo { --- 26389,26416 ---- argument, which must be a string, is printed in the warning if present. ! The `deprecated' attribute can also be used for functions and ! types (*note Function Attributes::, *note Type Attributes::.) ! `mode (MODE)' This attribute specifies the data type for the declaration--whichever type corresponds to the mode MODE. This in ! effect lets you request an integer or floating-point type ! according to its width. ! You may also specify a mode of `byte' or `__byte__' to indicate ! the mode corresponding to a one-byte integer, `word' or `__word__' ! for the mode of a one-word integer, and `pointer' or `__pointer__' ! for the mode used to represent pointers. ! `packed' ! The `packed' attribute specifies that a variable or structure field should have the smallest possible alignment--one byte for a variable, and one bit for a field, unless you specify a larger ! value with the `aligned' attribute. ! Here is a structure in which the field `x' is packed, so that it ! immediately follows `a': struct foo { *************** attributes. *** 26222,26239 **** int x[2] __attribute__ ((packed)); }; ! _Note:_ The 4.1, 4.2 and 4.3 series of GCC ignore the 'packed' ! attribute on bit-fields of type 'char'. This has been fixed in GCC ! 4.4 but the change can lead to differences in the structure layout. ! See the documentation of '-Wpacked-bitfield-compat' for more ! information. ! 'section ("SECTION-NAME")' Normally, the compiler places the objects it generates in sections ! like 'data' and 'bss'. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The ! 'section' attribute specifies that a variable (or function) lives in a particular section. For example, this small program uses several specific section names: --- 26418,26435 ---- int x[2] __attribute__ ((packed)); }; ! _Note:_ The 4.1, 4.2 and 4.3 series of GCC ignore the `packed' ! attribute on bit-fields of type `char'. This has been fixed in ! GCC 4.4 but the change can lead to differences in the structure ! layout. See the documentation of `-Wpacked-bitfield-compat' for ! more information. ! `section ("SECTION-NAME")' Normally, the compiler places the objects it generates in sections ! like `data' and `bss'. Sometimes, however, you need additional sections, or you need certain particular variables to appear in special sections, for example to map to special hardware. The ! `section' attribute specifies that a variable (or function) lives in a particular section. For example, this small program uses several specific section names: *************** attributes. *** 26255,26284 **** init_duart (&b); } ! Use the 'section' attribute with _global_ variables and not _local_ ! variables, as shown in the example. ! You may use the 'section' attribute with initialized or uninitialized global variables but the linker requires each object be defined once, with the exception that uninitialized variables ! tentatively go in the 'common' (or 'bss') section and can be ! multiply "defined". Using the 'section' attribute changes what ! section the variable goes into and may cause the linker to issue an ! error if an uninitialized variable has multiple definitions. You ! can force a variable to be initialized with the '-fno-common' flag ! or the 'nocommon' attribute. Some file formats do not support arbitrary sections so the ! 'section' attribute is not available on all platforms. If you need ! to map the entire contents of a module to a particular section, ! consider using the facilities of the linker instead. ! 'shared' On Microsoft Windows, in addition to putting variable definitions in a named section, the section can also be shared among all running copies of an executable or DLL. For example, this small program defines shared data by putting it in a named section ! 'shared' and marking the section shareable: int foo __attribute__((section ("shared"), shared)) = 0; --- 26451,26480 ---- init_duart (&b); } ! Use the `section' attribute with _global_ variables and not ! _local_ variables, as shown in the example. ! You may use the `section' attribute with initialized or uninitialized global variables but the linker requires each object be defined once, with the exception that uninitialized variables ! tentatively go in the `common' (or `bss') section and can be ! multiply "defined". Using the `section' attribute changes what ! section the variable goes into and may cause the linker to issue ! an error if an uninitialized variable has multiple definitions. ! You can force a variable to be initialized with the `-fno-common' ! flag or the `nocommon' attribute. Some file formats do not support arbitrary sections so the ! `section' attribute is not available on all platforms. If you ! need to map the entire contents of a module to a particular ! section, consider using the facilities of the linker instead. ! `shared' On Microsoft Windows, in addition to putting variable definitions in a named section, the section can also be shared among all running copies of an executable or DLL. For example, this small program defines shared data by putting it in a named section ! `shared' and marking the section shareable: int foo __attribute__((section ("shared"), shared)) = 0; *************** attributes. *** 26290,26349 **** return 0; } ! You may only use the 'shared' attribute along with 'section' ! attribute with a fully-initialized global definition because of the ! way linkers work. See 'section' attribute for more information. ! The 'shared' attribute is only available on Microsoft Windows. ! 'tls_model ("TLS_MODEL")' ! The 'tls_model' attribute sets thread-local storage model (*note ! Thread-Local::) of a particular '__thread' variable, overriding ! '-ftls-model=' command-line switch on a per-variable basis. The ! TLS_MODEL argument should be one of 'global-dynamic', ! 'local-dynamic', 'initial-exec' or 'local-exec'. Not all targets support this attribute. ! 'unused' This attribute, attached to a variable, means that the variable is meant to be possibly unused. GCC does not produce a warning for this variable. ! 'used' This attribute, attached to a variable with the static storage, ! means that the variable must be emitted even if it appears that the ! variable is not referenced. When applied to a static data member of a C++ class template, the attribute also means that the member is instantiated if the class itself is instantiated. ! 'vector_size (BYTES)' ! This attribute specifies the vector size for the variable, measured ! in bytes. For example, the declaration: int foo __attribute__ ((vector_size (16))); ! causes the compiler to set the mode for 'foo', to be 16 bytes, ! divided into 'int' sized units. Assuming a 32-bit int (a vector of ! 4 units of 4 bytes), the corresponding mode of 'foo' is V4SI. This attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are allowed in conjunction with this construct. ! Aggregates with this attribute are invalid, even if they are of the ! same size as a corresponding scalar. For example, the declaration: struct S { int a; }; struct S __attribute__ ((vector_size (16))) foo; is invalid even if the size of the structure is the same as the ! size of the 'int'. ! 'selectany' ! The 'selectany' attribute causes an initialized global variable to have link-once semantics. When multiple definitions of the variable are encountered by the linker, the first is selected and the remainder are discarded. Following usage by the Microsoft --- 26486,26547 ---- return 0; } ! You may only use the `shared' attribute along with `section' ! attribute with a fully-initialized global definition because of ! the way linkers work. See `section' attribute for more ! information. ! The `shared' attribute is only available on Microsoft Windows. ! `tls_model ("TLS_MODEL")' ! The `tls_model' attribute sets thread-local storage model (*note ! Thread-Local::) of a particular `__thread' variable, overriding ! `-ftls-model=' command-line switch on a per-variable basis. The ! TLS_MODEL argument should be one of `global-dynamic', ! `local-dynamic', `initial-exec' or `local-exec'. Not all targets support this attribute. ! `unused' This attribute, attached to a variable, means that the variable is meant to be possibly unused. GCC does not produce a warning for this variable. ! `used' This attribute, attached to a variable with the static storage, ! means that the variable must be emitted even if it appears that ! the variable is not referenced. When applied to a static data member of a C++ class template, the attribute also means that the member is instantiated if the class itself is instantiated. ! `vector_size (BYTES)' ! This attribute specifies the vector size for the variable, ! measured in bytes. For example, the declaration: int foo __attribute__ ((vector_size (16))); ! causes the compiler to set the mode for `foo', to be 16 bytes, ! divided into `int' sized units. Assuming a 32-bit int (a vector of ! 4 units of 4 bytes), the corresponding mode of `foo' is V4SI. This attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are allowed in conjunction with this construct. ! Aggregates with this attribute are invalid, even if they are of ! the same size as a corresponding scalar. For example, the ! declaration: struct S { int a; }; struct S __attribute__ ((vector_size (16))) foo; is invalid even if the size of the structure is the same as the ! size of the `int'. ! `selectany' ! The `selectany' attribute causes an initialized global variable to have link-once semantics. When multiple definitions of the variable are encountered by the linker, the first is selected and the remainder are discarded. Following usage by the Microsoft *************** attributes. *** 26358,26395 **** constructor and destructor are protected by a link-once guard variable. ! The 'selectany' attribute is only available on Microsoft Windows ! targets. You can use '__declspec (selectany)' as a synonym for ! '__attribute__ ((selectany))' for compatibility with other compilers. ! 'weak' ! The 'weak' attribute is described in *note Function Attributes::. ! 'dllimport' ! The 'dllimport' attribute is described in *note Function Attributes::. ! 'dllexport' ! The 'dllexport' attribute is described in *note Function Attributes::. 6.36.1 AVR Variable Attributes ------------------------------ ! 'progmem' ! The 'progmem' attribute is used on the AVR to place read-only data ! in the non-volatile program memory (flash). The 'progmem' attribute accomplishes this by putting respective variables into a ! section whose name starts with '.progmem'. ! This attribute works similar to the 'section' attribute but adds ! additional checking. Notice that just like the 'section' ! attribute, 'progmem' affects the location of the data but not how this data is accessed. ! In order to read data located with the 'progmem' attribute (inline) ! assembler must be used. /* Use custom macros from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) */ #include --- 26556,26594 ---- constructor and destructor are protected by a link-once guard variable. ! The `selectany' attribute is only available on Microsoft Windows ! targets. You can use `__declspec (selectany)' as a synonym for ! `__attribute__ ((selectany))' for compatibility with other compilers. ! `weak' ! The `weak' attribute is described in *note Function Attributes::. ! `dllimport' ! The `dllimport' attribute is described in *note Function Attributes::. ! `dllexport' ! The `dllexport' attribute is described in *note Function Attributes::. + 6.36.1 AVR Variable Attributes ------------------------------ ! `progmem' ! The `progmem' attribute is used on the AVR to place read-only data ! in the non-volatile program memory (flash). The `progmem' attribute accomplishes this by putting respective variables into a ! section whose name starts with `.progmem'. ! This attribute works similar to the `section' attribute but adds ! additional checking. Notice that just like the `section' ! attribute, `progmem' affects the location of the data but not how this data is accessed. ! In order to read data located with the `progmem' attribute ! (inline) assembler must be used. /* Use custom macros from AVR-LibC (http://nongnu.org/avr-libc/user-manual/) */ #include *************** attributes. *** 26413,26516 **** Three attributes are currently defined for the Blackfin. ! 'l1_data' ! 'l1_data_A' ! 'l1_data_B' Use these attributes on the Blackfin to place the variable into L1 ! Data SRAM. Variables with 'l1_data' attribute are put into the ! specific section named '.l1.data'. Those with 'l1_data_A' ! attribute are put into the specific section named '.l1.data.A'. ! Those with 'l1_data_B' attribute are put into the specific section ! named '.l1.data.B'. ! 'l2' Use this attribute on the Blackfin to place the variable into L2 ! SRAM. Variables with 'l2' attribute are put into the specific ! section named '.l2.data'. 6.36.3 M32R/D Variable Attributes --------------------------------- One attribute is currently defined for the M32R/D. ! 'model (MODEL-NAME)' Use this attribute on the M32R/D to set the addressability of an ! object. The identifier MODEL-NAME is one of 'small', 'medium', or ! 'large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the 'ld24' instruction). Medium and large model objects may live anywhere in the 32-bit ! address space (the compiler generates 'seth/add3' instructions to load their addresses). 6.36.4 MeP Variable Attributes ------------------------------ ! The MeP target has a number of addressing modes and busses. The 'near' space spans the standard memory space's first 16 megabytes (24 bits). ! The 'far' space spans the entire 32-bit memory space. The 'based' space ! is a 128-byte region in the memory space that is addressed relative to ! the '$tp' register. The 'tiny' space is a 65536-byte region relative to ! the '$gp' register. In addition to these memory regions, the MeP target ! has a separate 16-bit control bus which is specified with 'cb' ! attributes. ! 'based' ! Any variable with the 'based' attribute is assigned to the '.based' ! section, and is accessed with relative to the '$tp' register. ! 'tiny' ! Likewise, the 'tiny' attribute assigned variables to the '.tiny' ! section, relative to the '$gp' register. ! 'near' ! Variables with the 'near' attribute are assumed to have addresses that fit in a 24-bit addressing mode. This is the default for ! large variables ('-mtiny=4' is the default) but this attribute can ! override '-mtiny=' for small variables, or override '-ml'. ! 'far' ! Variables with the 'far' attribute are addressed using a full 32-bit address. Since this covers the entire memory space, this allows modules to make no assumptions about where variables might be stored. ! 'io' ! 'io (ADDR)' ! Variables with the 'io' attribute are used to address memory-mapped ! peripherals. If an address is specified, the variable is assigned ! that address, else it is not assigned an address (it is assumed ! some other module assigns an address). Example: int timer_count __attribute__((io(0x123))); ! 'cb' ! 'cb (ADDR)' ! Variables with the 'cb' attribute are used to access the control ! bus, using special instructions. 'addr' indicates the control bus address. Example: int cpu_clock __attribute__((cb(0x123))); 6.36.5 i386 Variable Attributes ------------------------------- Two attributes are currently defined for i386 configurations: ! 'ms_struct' and 'gcc_struct' ! ! 'ms_struct' ! 'gcc_struct' ! If 'packed' is used on a structure, or if bit-fields are used, it may be that the Microsoft ABI lays out the structure differently than the way GCC normally does. Particularly when moving packed data between functions compiled with GCC and the native Microsoft ! compiler (either via function call or as data in a file), it may be ! necessary to access either format. ! Currently '-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. The Microsoft structure layout algorithm is fairly simple with the --- 26612,26717 ---- Three attributes are currently defined for the Blackfin. ! `l1_data' ! `l1_data_A' ! `l1_data_B' Use these attributes on the Blackfin to place the variable into L1 ! Data SRAM. Variables with `l1_data' attribute are put into the ! specific section named `.l1.data'. Those with `l1_data_A' ! attribute are put into the specific section named `.l1.data.A'. ! Those with `l1_data_B' attribute are put into the specific section ! named `.l1.data.B'. ! `l2' Use this attribute on the Blackfin to place the variable into L2 ! SRAM. Variables with `l2' attribute are put into the specific ! section named `.l2.data'. 6.36.3 M32R/D Variable Attributes --------------------------------- One attribute is currently defined for the M32R/D. ! `model (MODEL-NAME)' Use this attribute on the M32R/D to set the addressability of an ! object. The identifier MODEL-NAME is one of `small', `medium', or ! `large', representing each of the code models. Small model objects live in the lower 16MB of memory (so that their ! addresses can be loaded with the `ld24' instruction). Medium and large model objects may live anywhere in the 32-bit ! address space (the compiler generates `seth/add3' instructions to load their addresses). 6.36.4 MeP Variable Attributes ------------------------------ ! The MeP target has a number of addressing modes and busses. The `near' space spans the standard memory space's first 16 megabytes (24 bits). ! The `far' space spans the entire 32-bit memory space. The `based' ! space is a 128-byte region in the memory space that is addressed ! relative to the `$tp' register. The `tiny' space is a 65536-byte ! region relative to the `$gp' register. In addition to these memory ! regions, the MeP target has a separate 16-bit control bus which is ! specified with `cb' attributes. ! `based' ! Any variable with the `based' attribute is assigned to the ! `.based' section, and is accessed with relative to the `$tp' ! register. ! `tiny' ! Likewise, the `tiny' attribute assigned variables to the `.tiny' ! section, relative to the `$gp' register. ! `near' ! Variables with the `near' attribute are assumed to have addresses that fit in a 24-bit addressing mode. This is the default for ! large variables (`-mtiny=4' is the default) but this attribute can ! override `-mtiny=' for small variables, or override `-ml'. ! `far' ! Variables with the `far' attribute are addressed using a full 32-bit address. Since this covers the entire memory space, this allows modules to make no assumptions about where variables might be stored. ! `io' ! `io (ADDR)' ! Variables with the `io' attribute are used to address ! memory-mapped peripherals. If an address is specified, the ! variable is assigned that address, else it is not assigned an ! address (it is assumed some other module assigns an address). ! Example: int timer_count __attribute__((io(0x123))); ! `cb' ! `cb (ADDR)' ! Variables with the `cb' attribute are used to access the control ! bus, using special instructions. `addr' indicates the control bus address. Example: int cpu_clock __attribute__((cb(0x123))); + 6.36.5 i386 Variable Attributes ------------------------------- Two attributes are currently defined for i386 configurations: ! `ms_struct' and `gcc_struct' ! `ms_struct' ! `gcc_struct' ! If `packed' is used on a structure, or if bit-fields are used, it may be that the Microsoft ABI lays out the structure differently than the way GCC normally does. Particularly when moving packed data between functions compiled with GCC and the native Microsoft ! compiler (either via function call or as data in a file), it may ! be necessary to access either format. ! Currently `-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. The Microsoft structure layout algorithm is fairly simple with the *************** Two attributes are currently defined for *** 26522,26543 **** which they are declared: the first member has the lowest memory address and the last member the highest. ! 2. Every data object has an alignment requirement. The alignment ! requirement for all data except structures, unions, and arrays ! is either the size of the object or the current packing size ! (specified with either the 'aligned' attribute or the 'pack' ! pragma), whichever is less. For structures, unions, and ! arrays, the alignment requirement is the largest alignment ! requirement of its members. Every object is allocated an ! offset so that: offset % alignment_requirement == 0 ! 3. Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte ! allocation unit if the integral types are the same size and if ! the next bit-field fits into the current allocation unit ! without crossing the boundary imposed by the common alignment ! requirements of the bit-fields. MSVC interprets zero-length bit-fields in the following ways: --- 26723,26744 ---- which they are declared: the first member has the lowest memory address and the last member the highest. ! 2. Every data object has an alignment requirement. The ! alignment requirement for all data except structures, unions, ! and arrays is either the size of the object or the current ! packing size (specified with either the `aligned' attribute ! or the `pack' pragma), whichever is less. For structures, ! unions, and arrays, the alignment requirement is the largest ! alignment requirement of its members. Every object is ! allocated an offset so that: offset % alignment_requirement == 0 ! 3. Adjacent bit-fields are packed into the same 1-, 2-, or ! 4-byte allocation unit if the integral types are the same ! size and if the next bit-field fits into the current ! allocation unit without crossing the boundary imposed by the ! common alignment requirements of the bit-fields. MSVC interprets zero-length bit-fields in the following ways: *************** Two attributes are currently defined for *** 26553,26565 **** unsigned long bf_2 : 12; } t1; ! The size of 't1' is 8 bytes with the zero-length bit-field. ! If the zero-length bit-field were removed, 't1''s size would be 4 bytes. 2. If a zero-length bit-field is inserted after a bit-field, ! 'foo', and the alignment of the zero-length bit-field is ! greater than the member that follows it, 'bar', 'bar' is aligned as the type of the zero-length bit-field. For example: --- 26754,26766 ---- unsigned long bf_2 : 12; } t1; ! The size of `t1' is 8 bytes with the zero-length bit-field. ! If the zero-length bit-field were removed, `t1''s size would be 4 bytes. 2. If a zero-length bit-field is inserted after a bit-field, ! `foo', and the alignment of the zero-length bit-field is ! greater than the member that follows it, `bar', `bar' is aligned as the type of the zero-length bit-field. For example: *************** Two attributes are currently defined for *** 26578,26586 **** double bar; } t3; ! For 't2', 'bar' is placed at offset 2, rather than offset 1. ! Accordingly, the size of 't2' is 4. For 't3', the zero-length ! bit-field does not affect the alignment of 'bar' or, as a result, the size of the structure. Taking this into account, it is important to note the --- 26779,26787 ---- double bar; } t3; ! For `t2', `bar' is placed at offset 2, rather than offset 1. ! Accordingly, the size of `t2' is 4. For `t3', the zero-length ! bit-field does not affect the alignment of `bar' or, as a result, the size of the structure. Taking this into account, it is important to note the *************** Two attributes are currently defined for *** 26588,26594 **** 1. If a zero-length bit-field follows a normal bit-field, the type of the zero-length bit-field may affect the ! alignment of the structure as whole. For example, 't2' has a size of 4 bytes, since the zero-length bit-field follows a normal bit-field, and is of type short. --- 26789,26795 ---- 1. If a zero-length bit-field follows a normal bit-field, the type of the zero-length bit-field may affect the ! alignment of the structure as whole. For example, `t2' has a size of 4 bytes, since the zero-length bit-field follows a normal bit-field, and is of type short. *************** Two attributes are currently defined for *** 26602,26608 **** long : 0; } t4; ! Here, 't4' takes up 4 bytes. 3. Zero-length bit-fields following non-bit-field members are ignored: --- 26803,26809 ---- long : 0; } t4; ! Here, `t4' takes up 4 bytes. 3. Zero-length bit-fields following non-bit-field members are ignored: *************** Two attributes are currently defined for *** 26614,26637 **** char bar; } t5; ! Here, 't5' takes up 2 bytes. 6.36.6 PowerPC Variable Attributes ---------------------------------- Three attributes currently are defined for PowerPC configurations: ! 'altivec', 'ms_struct' and 'gcc_struct'. For full documentation of the struct attributes please see the documentation in *note i386 Variable Attributes::. ! For documentation of 'altivec' attribute please see the documentation in *note PowerPC Type Attributes::. 6.36.7 SPU Variable Attributes ------------------------------ ! The SPU supports the 'spu_vector' attribute for variables. For documentation of this attribute please see the documentation in *note SPU Type Attributes::. --- 26815,26838 ---- char bar; } t5; ! Here, `t5' takes up 2 bytes. 6.36.6 PowerPC Variable Attributes ---------------------------------- Three attributes currently are defined for PowerPC configurations: ! `altivec', `ms_struct' and `gcc_struct'. For full documentation of the struct attributes please see the documentation in *note i386 Variable Attributes::. ! For documentation of `altivec' attribute please see the documentation in *note PowerPC Type Attributes::. 6.36.7 SPU Variable Attributes ------------------------------ ! The SPU supports the `spu_vector' attribute for variables. For documentation of this attribute please see the documentation in *note SPU Type Attributes::. *************** SPU Type Attributes::. *** 26639,26652 **** ------------------------------------ One attribute is currently defined for xstormy16 configurations: ! 'below100'. ! ! 'below100' ! If a variable has the 'below100' attribute ('BELOW100' is allowed also), GCC places the variable in the first 0x100 bytes of memory ! and use special opcodes to access it. Such variables are placed in ! either the '.bss_below100' section or the '.data_below100' section.  File: gcc.info, Node: Type Attributes, Next: Alignment, Prev: Variable Attributes, Up: C Extensions --- 26840,26854 ---- ------------------------------------ One attribute is currently defined for xstormy16 configurations: ! `below100'. ! `below100' ! If a variable has the `below100' attribute (`BELOW100' is allowed also), GCC places the variable in the first 0x100 bytes of memory ! and use special opcodes to access it. Such variables are placed ! in either the `.bss_below100' section or the `.data_below100' ! section. !  File: gcc.info, Node: Type Attributes, Next: Alignment, Prev: Variable Attributes, Up: C Extensions *************** File: gcc.info, Node: Type Attributes, *** 26654,26674 **** 6.37 Specifying Attributes of Types =================================== ! The keyword '__attribute__' allows you to specify special attributes of ! 'struct' and 'union' types when you define such types. This keyword is ! followed by an attribute specification inside double parentheses. Seven ! attributes are currently defined for types: 'aligned', 'packed', ! 'transparent_union', 'unused', 'deprecated', 'visibility', and ! 'may_alias'. Other attributes are defined for functions (*note Function ! Attributes::) and for variables (*note Variable Attributes::). ! You may also specify any one of these attributes with '__' preceding and following its keyword. This allows you to use these attributes in header files without being concerned about a possible macro of the same ! name. For example, you may use '__aligned__' instead of 'aligned'. You may specify type attributes in an enum, struct or union type ! declaration or definition, or for other types in a 'typedef' declaration. For an enum, struct or union type, you may specify attributes either --- 26856,26876 ---- 6.37 Specifying Attributes of Types =================================== ! The keyword `__attribute__' allows you to specify special attributes of ! `struct' and `union' types when you define such types. This keyword is ! followed by an attribute specification inside double parentheses. ! Seven attributes are currently defined for types: `aligned', `packed', ! `transparent_union', `unused', `deprecated', `visibility', and ! `may_alias'. Other attributes are defined for functions (*note ! Function Attributes::) and for variables (*note Variable Attributes::). ! You may also specify any one of these attributes with `__' preceding and following its keyword. This allows you to use these attributes in header files without being concerned about a possible macro of the same ! name. For example, you may use `__aligned__' instead of `aligned'. You may specify type attributes in an enum, struct or union type ! declaration or definition, or for other types in a `typedef' declaration. For an enum, struct or union type, you may specify attributes either *************** preferred. *** 26679,26685 **** *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! 'aligned (ALIGNMENT)' This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations: --- 26881,26887 ---- *Note Attribute Syntax::, for details of the exact syntax for using attributes. ! `aligned (ALIGNMENT)' This attribute specifies a minimum alignment (in bytes) for variables of the specified type. For example, the declarations: *************** attributes. *** 26687,26775 **** typedef int more_aligned_int __attribute__ ((aligned (8))); force the compiler to ensure (as far as it can) that each variable ! whose type is 'struct S' or 'more_aligned_int' is allocated and aligned _at least_ on a 8-byte boundary. On a SPARC, having all ! variables of type 'struct S' aligned to 8-byte boundaries allows ! the compiler to use the 'ldd' and 'std' (doubleword load and store) ! instructions when copying one variable of type 'struct S' to another, thus improving run-time efficiency. ! Note that the alignment of any given 'struct' or 'union' type is required by the ISO C standard to be at least a perfect multiple of the lowest common multiple of the alignments of all of the members ! of the 'struct' or 'union' in question. This means that you _can_ ! effectively adjust the alignment of a 'struct' or 'union' type by ! attaching an 'aligned' attribute to any one of the members of such ! a type, but the notation illustrated in the example above is a more ! obvious, intuitive, and readable way to request the compiler to ! adjust the alignment of an entire 'struct' or 'union' type. As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given ! 'struct' or 'union' type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write: struct S { short f[3]; } __attribute__ ((aligned)); ! Whenever you leave out the alignment factor in an 'aligned' attribute specification, the compiler automatically sets the alignment for the type to the largest alignment that is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks ! of memory when performing copies to or from the variables that have ! types that you have aligned this way. ! In the example above, if the size of each 'short' is 2 bytes, then ! the size of the entire 'struct S' type is 6 bytes. The smallest power of two that is greater than or equal to that is 8, so the ! compiler sets the alignment for the entire 'struct S' type to 8 bytes. Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only ! individual stand-alone objects of that type, the compiler's ability ! to select a time-efficient alignment is primarily useful only when ! you plan to create arrays of variables having the relevant ! (efficiently aligned) type. If you declare or use arrays of ! variables of an efficiently-aligned type, then it is likely that ! your program also does pointer arithmetic (or subscripting, which ! amounts to the same thing) on pointers to the relevant type, and ! the code that the compiler generates for these pointer arithmetic ! operations is often more efficient for efficiently-aligned types ! than for other types. ! The 'aligned' attribute can only increase the alignment; but you ! can decrease it by specifying 'packed' as well. See below. ! Note that the effectiveness of 'aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying 'aligned(16)' in an '__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! 'packed' ! This attribute, attached to 'struct' or 'union' type definition, specifies that each member (other than zero-width bit-fields) of the structure or union is placed to minimize the memory required. ! When attached to an 'enum' definition, it indicates that the smallest integral type should be used. ! Specifying this attribute for 'struct' and 'union' types is ! equivalent to specifying the 'packed' attribute on each of the ! structure or union members. Specifying the '-fshort-enums' flag on ! the line is equivalent to specifying the 'packed' attribute on all ! 'enum' definitions. ! In the following example 'struct my_packed_struct''s members are ! packed closely together, but the internal layout of its 's' member ! is not packed--to do that, 'struct my_unpacked_struct' needs to be packed too. struct my_unpacked_struct --- 26889,26977 ---- typedef int more_aligned_int __attribute__ ((aligned (8))); force the compiler to ensure (as far as it can) that each variable ! whose type is `struct S' or `more_aligned_int' is allocated and aligned _at least_ on a 8-byte boundary. On a SPARC, having all ! variables of type `struct S' aligned to 8-byte boundaries allows ! the compiler to use the `ldd' and `std' (doubleword load and ! store) instructions when copying one variable of type `struct S' to another, thus improving run-time efficiency. ! Note that the alignment of any given `struct' or `union' type is required by the ISO C standard to be at least a perfect multiple of the lowest common multiple of the alignments of all of the members ! of the `struct' or `union' in question. This means that you _can_ ! effectively adjust the alignment of a `struct' or `union' type by ! attaching an `aligned' attribute to any one of the members of such ! a type, but the notation illustrated in the example above is a ! more obvious, intuitive, and readable way to request the compiler ! to adjust the alignment of an entire `struct' or `union' type. As in the preceding example, you can explicitly specify the alignment (in bytes) that you wish the compiler to use for a given ! `struct' or `union' type. Alternatively, you can leave out the alignment factor and just ask the compiler to align a type to the maximum useful alignment for the target machine you are compiling for. For example, you could write: struct S { short f[3]; } __attribute__ ((aligned)); ! Whenever you leave out the alignment factor in an `aligned' attribute specification, the compiler automatically sets the alignment for the type to the largest alignment that is ever used for any data type on the target machine you are compiling for. Doing this can often make copy operations more efficient, because the compiler can use whatever instructions copy the biggest chunks ! of memory when performing copies to or from the variables that ! have types that you have aligned this way. ! In the example above, if the size of each `short' is 2 bytes, then ! the size of the entire `struct S' type is 6 bytes. The smallest power of two that is greater than or equal to that is 8, so the ! compiler sets the alignment for the entire `struct S' type to 8 bytes. Note that although you can ask the compiler to select a time-efficient alignment for a given type and then declare only ! individual stand-alone objects of that type, the compiler's ! ability to select a time-efficient alignment is primarily useful ! only when you plan to create arrays of variables having the ! relevant (efficiently aligned) type. If you declare or use arrays ! of variables of an efficiently-aligned type, then it is likely ! that your program also does pointer arithmetic (or subscripting, ! which amounts to the same thing) on pointers to the relevant type, ! and the code that the compiler generates for these pointer ! arithmetic operations is often more efficient for ! efficiently-aligned types than for other types. ! The `aligned' attribute can only increase the alignment; but you ! can decrease it by specifying `packed' as well. See below. ! Note that the effectiveness of `aligned' attributes may be limited by inherent limitations in your linker. On many systems, the linker is only able to arrange for variables to be aligned up to a certain maximum alignment. (For some linkers, the maximum supported alignment may be very very small.) If your linker is only able to align variables up to a maximum of 8-byte alignment, ! then specifying `aligned(16)' in an `__attribute__' still only provides you with 8-byte alignment. See your linker documentation for further information. ! `packed' ! This attribute, attached to `struct' or `union' type definition, specifies that each member (other than zero-width bit-fields) of the structure or union is placed to minimize the memory required. ! When attached to an `enum' definition, it indicates that the smallest integral type should be used. ! Specifying this attribute for `struct' and `union' types is ! equivalent to specifying the `packed' attribute on each of the ! structure or union members. Specifying the `-fshort-enums' flag ! on the line is equivalent to specifying the `packed' attribute on ! all `enum' definitions. ! In the following example `struct my_packed_struct''s members are ! packed closely together, but the internal layout of its `s' member ! is not packed--to do that, `struct my_unpacked_struct' needs to be packed too. struct my_unpacked_struct *************** attributes. *** 26785,26796 **** struct my_unpacked_struct s; }; ! You may only specify this attribute on the definition of an 'enum', ! 'struct' or 'union', not on a 'typedef' that does not also define the enumerated type, structure or union. ! 'transparent_union' ! This attribute, attached to a 'union' type definition, indicates that any function parameter having that union type causes calls to that function to be treated in a special way. --- 26987,26998 ---- struct my_unpacked_struct s; }; ! You may only specify this attribute on the definition of an `enum', ! `struct' or `union', not on a `typedef' that does not also define the enumerated type, structure or union. ! `transparent_union' ! This attribute, attached to a `union' type definition, indicates that any function parameter having that union type causes calls to that function to be treated in a special way. *************** attributes. *** 26800,26806 **** null pointer constant or a void pointer expression; and if the union contains a void pointer type, the corresponding argument can be any pointer expression. If the union member type is a pointer, ! qualifiers like 'const' on the referenced type must be respected, just as with normal pointer conversions. Second, the argument is passed to the function using the calling --- 27002,27008 ---- null pointer constant or a void pointer expression; and if the union contains a void pointer type, the corresponding argument can be any pointer expression. If the union member type is a pointer, ! qualifiers like `const' on the referenced type must be respected, just as with normal pointer conversions. Second, the argument is passed to the function using the calling *************** attributes. *** 26811,26823 **** Transparent unions are designed for library functions that have multiple interfaces for compatibility reasons. For example, ! suppose the 'wait' function must accept either a value of type 'int ! *' to comply with POSIX, or a value of type 'union wait *' to ! comply with the 4.1BSD interface. If 'wait''s parameter were 'void ! *', 'wait' would accept both kinds of arguments, but it would also ! accept any other pointer type and this would make argument type ! checking less useful. Instead, '' might define the ! interface as follows: typedef union __attribute__ ((__transparent_union__)) { --- 27013,27025 ---- Transparent unions are designed for library functions that have multiple interfaces for compatibility reasons. For example, ! suppose the `wait' function must accept either a value of type ! `int *' to comply with POSIX, or a value of type `union wait *' to ! comply with the 4.1BSD interface. If `wait''s parameter were ! `void *', `wait' would accept both kinds of arguments, but it ! would also accept any other pointer type and this would make ! argument type checking less useful. Instead, `' might ! define the interface as follows: typedef union __attribute__ ((__transparent_union__)) { *************** attributes. *** 26827,26848 **** pid_t wait (wait_status_ptr_t); ! This interface allows either 'int *' or 'union wait *' arguments to ! be passed, using the 'int *' calling convention. The program can ! call 'wait' with arguments of either type: int w1 () { int w; return wait (&w); } int w2 () { union wait w; return wait (&w); } ! With this interface, 'wait''s implementation might look like this: pid_t wait (wait_status_ptr_t p) { return waitpid (-1, p.__ip, 0); } ! 'unused' ! When attached to a type (including a 'union' or a 'struct'), this attribute means that variables of that type are meant to appear possibly unused. GCC does not produce a warning for any variables of that type, even if the variable appears to do nothing. This is --- 27029,27050 ---- pid_t wait (wait_status_ptr_t); ! This interface allows either `int *' or `union wait *' arguments ! to be passed, using the `int *' calling convention. The program ! can call `wait' with arguments of either type: int w1 () { int w; return wait (&w); } int w2 () { union wait w; return wait (&w); } ! With this interface, `wait''s implementation might look like this: pid_t wait (wait_status_ptr_t p) { return waitpid (-1, p.__ip, 0); } ! `unused' ! When attached to a type (including a `union' or a `struct'), this attribute means that variables of that type are meant to appear possibly unused. GCC does not produce a warning for any variables of that type, even if the variable appears to do nothing. This is *************** attributes. *** 26850,26866 **** defined and then not referenced, but contain constructors and destructors that have nontrivial bookkeeping functions. ! 'deprecated' ! 'deprecated (MSG)' ! The 'deprecated' attribute results in a warning if the type is used ! anywhere in the source file. This is useful when identifying types ! that are expected to be removed in a future version of a program. ! If possible, the warning also includes the location of the ! declaration of the deprecated type, to enable users to easily find ! further information about why the type is deprecated, or what they ! should do instead. Note that the warnings only occur for uses and ! then only if the type is being applied to an identifier that itself ! is not being declared as deprecated. typedef int T1 __attribute__ ((deprecated)); T1 x; --- 27052,27068 ---- defined and then not referenced, but contain constructors and destructors that have nontrivial bookkeeping functions. ! `deprecated' ! `deprecated (MSG)' ! The `deprecated' attribute results in a warning if the type is ! used anywhere in the source file. This is useful when identifying ! types that are expected to be removed in a future version of a ! program. If possible, the warning also includes the location of ! the declaration of the deprecated type, to enable users to easily ! find further information about why the type is deprecated, or what ! they should do instead. Note that the warnings only occur for ! uses and then only if the type is being applied to an identifier ! that itself is not being declared as deprecated. typedef int T1 __attribute__ ((deprecated)); T1 x; *************** attributes. *** 26875,26891 **** deprecated. Similarly for line 6. The optional MSG argument, which must be a string, is printed in the warning if present. ! The 'deprecated' attribute can also be used for functions and variables (*note Function Attributes::, *note Variable Attributes::.) ! 'may_alias' Accesses through pointers to types with this attribute are not ! subject to type-based alias analysis, but are instead assumed to be ! able to alias any other type of objects. In the context of section ! 6.5 paragraph 7 of the C99 standard, an lvalue expression dereferencing such a pointer is treated like having a character ! type. See '-fstrict-aliasing' for more information on aliasing issues. This extension exists to support some vector APIs, in which pointers to one vector type are permitted to alias pointers to a different vector type. --- 27077,27093 ---- deprecated. Similarly for line 6. The optional MSG argument, which must be a string, is printed in the warning if present. ! The `deprecated' attribute can also be used for functions and variables (*note Function Attributes::, *note Variable Attributes::.) ! `may_alias' Accesses through pointers to types with this attribute are not ! subject to type-based alias analysis, but are instead assumed to ! be able to alias any other type of objects. In the context of ! section 6.5 paragraph 7 of the C99 standard, an lvalue expression dereferencing such a pointer is treated like having a character ! type. See `-fstrict-aliasing' for more information on aliasing issues. This extension exists to support some vector APIs, in which pointers to one vector type are permitted to alias pointers to a different vector type. *************** attributes. *** 26911,26946 **** exit(0); } ! If you replaced 'short_a' with 'short' in the variable declaration, ! the above program would abort when compiled with ! '-fstrict-aliasing', which is on by default at '-O2' or above in recent GCC versions. ! 'visibility' ! In C++, attribute visibility (*note Function Attributes::) can also ! be applied to class, struct, union and enum types. Unlike other ! type attributes, the attribute must appear between the initial ! keyword and the name of the type; it cannot appear after the body ! of the type. Note that the type visibility is applied to vague linkage entities associated with the class (vtable, typeinfo node, etc.). In particular, if a class is thrown as an exception in one shared object and caught in another, the class must have default ! visibility. Otherwise the two shared objects are unable to use the ! same typeinfo node and exception handling will break. To specify multiple attributes, separate them by commas within the ! double parentheses: for example, '__attribute__ ((aligned (16), packed))'. 6.37.1 ARM Type Attributes -------------------------- ! On those ARM targets that support 'dllimport' (such as Symbian OS), you ! can use the 'notshared' attribute to indicate that the virtual table and ! other similar data for a class should not be exported from a DLL. For ! example: class __declspec(notshared) C { public: --- 27113,27149 ---- exit(0); } ! If you replaced `short_a' with `short' in the variable ! declaration, the above program would abort when compiled with ! `-fstrict-aliasing', which is on by default at `-O2' or above in recent GCC versions. ! `visibility' ! In C++, attribute visibility (*note Function Attributes::) can ! also be applied to class, struct, union and enum types. Unlike ! other type attributes, the attribute must appear between the ! initial keyword and the name of the type; it cannot appear after ! the body of the type. Note that the type visibility is applied to vague linkage entities associated with the class (vtable, typeinfo node, etc.). In particular, if a class is thrown as an exception in one shared object and caught in another, the class must have default ! visibility. Otherwise the two shared objects are unable to use ! the same typeinfo node and exception handling will break. ! To specify multiple attributes, separate them by commas within the ! double parentheses: for example, `__attribute__ ((aligned (16), packed))'. 6.37.1 ARM Type Attributes -------------------------- ! On those ARM targets that support `dllimport' (such as Symbian OS), you ! can use the `notshared' attribute to indicate that the virtual table ! and other similar data for a class should not be exported from a DLL. ! For example: class __declspec(notshared) C { public: *************** example: *** 26951,27016 **** __declspec(dllexport) C::C() {} ! In this code, 'C::C' is exported from the current DLL, but the virtual ! table for 'C' is not exported. (You can use '__attribute__' instead of ! '__declspec' if you prefer, but most Symbian OS code uses '__declspec'.) 6.37.2 MeP Type Attributes -------------------------- Many of the MeP variable attributes may be applied to types as well. ! Specifically, the 'based', 'tiny', 'near', and 'far' attributes may be ! applied to either. The 'io' and 'cb' attributes may not be applied to types. 6.37.3 i386 Type Attributes --------------------------- Two attributes are currently defined for i386 configurations: ! 'ms_struct' and 'gcc_struct'. ! ! 'ms_struct' ! 'gcc_struct' ! If 'packed' is used on a structure, or if bit-fields are used it may be that the Microsoft ABI packs them differently than GCC normally packs them. Particularly when moving packed data between functions compiled with GCC and the native Microsoft compiler (either via function call or as data in a file), it may be necessary to access either format. ! Currently '-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. 6.37.4 PowerPC Type Attributes ------------------------------ Three attributes currently are defined for PowerPC configurations: ! 'altivec', 'ms_struct' and 'gcc_struct'. ! For full documentation of the 'ms_struct' and 'gcc_struct' attributes please see the documentation in *note i386 Type Attributes::. ! The 'altivec' attribute allows one to declare AltiVec vector data types ! supported by the AltiVec Programming Interface Manual. The attribute ! requires an argument to specify one of three vector types: 'vector__', ! 'pixel__' (always followed by unsigned short), and 'bool__' (always ! followed by unsigned). __attribute__((altivec(vector__))) __attribute__((altivec(pixel__))) unsigned short __attribute__((altivec(bool__))) unsigned ! These attributes mainly are intended to support the '__vector', ! '__pixel', and '__bool' AltiVec keywords. 6.37.5 SPU Type Attributes -------------------------- ! The SPU supports the 'spu_vector' attribute for types. This attribute allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU Language Extensions Specification. It is intended ! to support the '__vector' keyword.  File: gcc.info, Node: Alignment, Next: Inline, Prev: Type Attributes, Up: C Extensions --- 27154,27218 ---- __declspec(dllexport) C::C() {} ! In this code, `C::C' is exported from the current DLL, but the virtual ! table for `C' is not exported. (You can use `__attribute__' instead of ! `__declspec' if you prefer, but most Symbian OS code uses `__declspec'.) 6.37.2 MeP Type Attributes -------------------------- Many of the MeP variable attributes may be applied to types as well. ! Specifically, the `based', `tiny', `near', and `far' attributes may be ! applied to either. The `io' and `cb' attributes may not be applied to types. 6.37.3 i386 Type Attributes --------------------------- Two attributes are currently defined for i386 configurations: ! `ms_struct' and `gcc_struct'. ! `ms_struct' ! `gcc_struct' ! If `packed' is used on a structure, or if bit-fields are used it may be that the Microsoft ABI packs them differently than GCC normally packs them. Particularly when moving packed data between functions compiled with GCC and the native Microsoft compiler (either via function call or as data in a file), it may be necessary to access either format. ! Currently `-m[no-]ms-bitfields' is provided for the Microsoft Windows X86 compilers to match the native Microsoft compiler. 6.37.4 PowerPC Type Attributes ------------------------------ Three attributes currently are defined for PowerPC configurations: ! `altivec', `ms_struct' and `gcc_struct'. ! For full documentation of the `ms_struct' and `gcc_struct' attributes please see the documentation in *note i386 Type Attributes::. ! The `altivec' attribute allows one to declare AltiVec vector data ! types supported by the AltiVec Programming Interface Manual. The ! attribute requires an argument to specify one of three vector types: ! `vector__', `pixel__' (always followed by unsigned short), and `bool__' ! (always followed by unsigned). __attribute__((altivec(vector__))) __attribute__((altivec(pixel__))) unsigned short __attribute__((altivec(bool__))) unsigned ! These attributes mainly are intended to support the `__vector', ! `__pixel', and `__bool' AltiVec keywords. 6.37.5 SPU Type Attributes -------------------------- ! The SPU supports the `spu_vector' attribute for types. This attribute allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU Language Extensions Specification. It is intended ! to support the `__vector' keyword.  File: gcc.info, Node: Alignment, Next: Inline, Prev: Type Attributes, Up: C Extensions *************** File: gcc.info, Node: Alignment, Next: *** 27018,27046 **** 6.38 Inquiring on Alignment of Types or Variables ================================================= ! The keyword '__alignof__' allows you to inquire about how an object is aligned, or the minimum alignment usually required by a type. Its ! syntax is just like 'sizeof'. ! For example, if the target machine requires a 'double' value to be ! aligned on an 8-byte boundary, then '__alignof__ (double)' is 8. This is true on many RISC machines. On more traditional machine designs, ! '__alignof__ (double)' is 4 or even 2. ! Some machines never actually require alignment; they allow reference to ! any data type even at an odd address. For these machines, '__alignof__' ! reports the smallest alignment that GCC gives the data type, usually as ! mandated by the target ABI. ! If the operand of '__alignof__' is an lvalue rather than a type, its value is the required alignment for its type, taking into account any ! minimum alignment specified with GCC's '__attribute__' extension (*note Variable Attributes::). For example, after this declaration: struct foo { int x; char y; } foo1; ! the value of '__alignof__ (foo1.y)' is 1, even though its actual ! alignment is probably 2 or 4, the same as '__alignof__ (int)'. It is an error to ask for the alignment of an incomplete type. --- 27220,27248 ---- 6.38 Inquiring on Alignment of Types or Variables ================================================= ! The keyword `__alignof__' allows you to inquire about how an object is aligned, or the minimum alignment usually required by a type. Its ! syntax is just like `sizeof'. ! For example, if the target machine requires a `double' value to be ! aligned on an 8-byte boundary, then `__alignof__ (double)' is 8. This is true on many RISC machines. On more traditional machine designs, ! `__alignof__ (double)' is 4 or even 2. ! Some machines never actually require alignment; they allow reference ! to any data type even at an odd address. For these machines, ! `__alignof__' reports the smallest alignment that GCC gives the data ! type, usually as mandated by the target ABI. ! If the operand of `__alignof__' is an lvalue rather than a type, its value is the required alignment for its type, taking into account any ! minimum alignment specified with GCC's `__attribute__' extension (*note Variable Attributes::). For example, after this declaration: struct foo { int x; char y; } foo1; ! the value of `__alignof__ (foo1.y)' is 1, even though its actual ! alignment is probably 2 or 4, the same as `__alignof__ (int)'. It is an error to ask for the alignment of an incomplete type. *************** File: gcc.info, Node: Inline, Next: Vo *** 27050,27074 **** 6.39 An Inline Function is As Fast As a Macro ============================================= ! By declaring a function inline, you can direct GCC to make calls to that ! function faster. One way GCC can achieve this is to integrate that ! function's code into the code for its callers. This makes execution ! faster by eliminating the function-call overhead; in addition, if any of ! the actual argument values are constant, their known values may permit ! simplifications at compile time so that not all of the inline function's ! code needs to be included. The effect on code size is less predictable; ! object code may be larger or smaller with function inlining, depending ! on the particular case. You can also direct GCC to try to integrate all ! "simple enough" functions into their callers with the option ! '-finline-functions'. GCC implements three different semantics of declaring a function ! inline. One is available with '-std=gnu89' or '-fgnu89-inline' or when ! 'gnu_inline' attribute is present on all inline declarations, another ! when '-std=c99', '-std=c11', '-std=gnu99' or '-std=gnu11' (without ! '-fgnu89-inline'), and the third is used when compiling C++. ! To declare a function inline, use the 'inline' keyword in its declaration, like this: static inline int --- 27252,27276 ---- 6.39 An Inline Function is As Fast As a Macro ============================================= ! By declaring a function inline, you can direct GCC to make calls to ! that function faster. One way GCC can achieve this is to integrate ! that function's code into the code for its callers. This makes ! execution faster by eliminating the function-call overhead; in ! addition, if any of the actual argument values are constant, their ! known values may permit simplifications at compile time so that not all ! of the inline function's code needs to be included. The effect on code ! size is less predictable; object code may be larger or smaller with ! function inlining, depending on the particular case. You can also ! direct GCC to try to integrate all "simple enough" functions into their ! callers with the option `-finline-functions'. GCC implements three different semantics of declaring a function ! inline. One is available with `-std=gnu89' or `-fgnu89-inline' or when ! `gnu_inline' attribute is present on all inline declarations, another ! when `-std=c99', `-std=c11', `-std=gnu99' or `-std=gnu11' (without ! `-fgnu89-inline'), and the third is used when compiling C++. ! To declare a function inline, use the `inline' keyword in its declaration, like this: static inline int *************** declaration, like this: *** 27078,27089 **** } If you are writing a header file to be included in ISO C90 programs, ! write '__inline__' instead of 'inline'. *Note Alternate Keywords::. The three types of inlining behave similarly in two important cases: ! when the 'inline' keyword is used on a 'static' function, like the example above, and when a function is first declared without using the ! 'inline' keyword and then is defined with 'inline', like this: extern int inc (int *a); inline int --- 27280,27291 ---- } If you are writing a header file to be included in ISO C90 programs, ! write `__inline__' instead of `inline'. *Note Alternate Keywords::. The three types of inlining behave similarly in two important cases: ! when the `inline' keyword is used on a `static' function, like the example above, and when a function is first declared without using the ! `inline' keyword and then is defined with `inline', like this: extern int inc (int *a); inline int *************** example above, and when a function is fi *** 27093,27153 **** } In both of these common cases, the program behaves the same as if you ! had not used the 'inline' keyword, except for its speed. ! When a function is both inline and 'static', if all calls to the function are integrated into the caller, and the function's address is never used, then the function's own assembler code is never referenced. In this case, GCC does not actually output assembler code for the ! function, unless you specify the option '-fkeep-inline-functions'. Some ! calls cannot be integrated for various reasons (in particular, calls ! that precede the function's definition cannot be integrated, and neither ! can recursive calls within the definition). If there is a nonintegrated ! call, then the function is compiled to assembler code as usual. The ! function must also be compiled as usual if the program refers to its ! address, because that can't be inlined. Note that certain usages in a function definition can make it unsuitable for inline substitution. Among these usages are: variadic ! functions, use of 'alloca', use of variable-length data types (*note ! Variable Length::), use of computed goto (*note Labels as Values::), use ! of nonlocal goto, and nested functions (*note Nested Functions::). ! Using '-Winline' warns when a function marked 'inline' could not be substituted, and gives the reason for the failure. As required by ISO C++, GCC considers member functions defined within the body of a class to be marked inline even if they are not explicitly ! declared with the 'inline' keyword. You can override this with ! '-fno-default-inline'; *note Options Controlling C++ Dialect: C++ Dialect Options. GCC does not inline any functions when not optimizing unless you ! specify the 'always_inline' attribute for the function, like this: /* Prototype. */ inline void foo (const char) __attribute__((always_inline)); The remainder of this section is specific to GNU C90 inlining. ! When an inline function is not 'static', then the compiler must assume that there may be calls from other source files; since a global symbol can be defined only once in any program, the function must not be defined in the other source files, so the calls therein cannot be ! integrated. Therefore, a non-'static' inline function is always compiled on its own in the usual fashion. ! If you specify both 'inline' and 'extern' in the function definition, then the definition is used only for inlining. In no case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. ! This combination of 'inline' and 'extern' has almost the effect of a macro. The way to use it is to put a function definition in a header file with these keywords, and put another copy of the definition ! (lacking 'inline' and 'extern') in a library file. The definition in ! the header file causes most calls to the function to be inlined. If any ! uses of the function remain, they refer to the single copy in the library.  --- 27295,27355 ---- } In both of these common cases, the program behaves the same as if you ! had not used the `inline' keyword, except for its speed. ! When a function is both inline and `static', if all calls to the function are integrated into the caller, and the function's address is never used, then the function's own assembler code is never referenced. In this case, GCC does not actually output assembler code for the ! function, unless you specify the option `-fkeep-inline-functions'. ! Some calls cannot be integrated for various reasons (in particular, ! calls that precede the function's definition cannot be integrated, and ! neither can recursive calls within the definition). If there is a ! nonintegrated call, then the function is compiled to assembler code as ! usual. The function must also be compiled as usual if the program ! refers to its address, because that can't be inlined. Note that certain usages in a function definition can make it unsuitable for inline substitution. Among these usages are: variadic ! functions, use of `alloca', use of variable-length data types (*note ! Variable Length::), use of computed goto (*note Labels as Values::), ! use of nonlocal goto, and nested functions (*note Nested Functions::). ! Using `-Winline' warns when a function marked `inline' could not be substituted, and gives the reason for the failure. As required by ISO C++, GCC considers member functions defined within the body of a class to be marked inline even if they are not explicitly ! declared with the `inline' keyword. You can override this with ! `-fno-default-inline'; *note Options Controlling C++ Dialect: C++ Dialect Options. GCC does not inline any functions when not optimizing unless you ! specify the `always_inline' attribute for the function, like this: /* Prototype. */ inline void foo (const char) __attribute__((always_inline)); The remainder of this section is specific to GNU C90 inlining. ! When an inline function is not `static', then the compiler must assume that there may be calls from other source files; since a global symbol can be defined only once in any program, the function must not be defined in the other source files, so the calls therein cannot be ! integrated. Therefore, a non-`static' inline function is always compiled on its own in the usual fashion. ! If you specify both `inline' and `extern' in the function definition, then the definition is used only for inlining. In no case is the function compiled on its own, not even if you refer to its address explicitly. Such an address becomes an external reference, as if you had only declared the function, and had not defined it. ! This combination of `inline' and `extern' has almost the effect of a macro. The way to use it is to put a function definition in a header file with these keywords, and put another copy of the definition ! (lacking `inline' and `extern') in a library file. The definition in ! the header file causes most calls to the function to be inlined. If ! any uses of the function remain, they refer to the single copy in the library.  *************** allow you to violate the restriction on *** 27170,27186 **** between two sequence points. Accesses to non-volatile objects are not ordered with respect to ! volatile accesses. You cannot use a volatile object as a memory barrier ! to order a sequence of writes to non-volatile memory. For instance: int *ptr = SOMETHING; volatile int vobj; *ptr = SOMETHING; vobj = 1; ! Unless *PTR and VOBJ can be aliased, it is not guaranteed that the write ! to *PTR occurs by the time the update of VOBJ happens. If you need this ! guarantee, you must use a stronger memory barrier such as: int *ptr = SOMETHING; volatile int vobj; --- 27372,27389 ---- between two sequence points. Accesses to non-volatile objects are not ordered with respect to ! volatile accesses. You cannot use a volatile object as a memory ! barrier to order a sequence of writes to non-volatile memory. For ! instance: int *ptr = SOMETHING; volatile int vobj; *ptr = SOMETHING; vobj = 1; ! Unless *PTR and VOBJ can be aliased, it is not guaranteed that the ! write to *PTR occurs by the time the update of VOBJ happens. If you ! need this guarantee, you must use a stronger memory barrier such as: int *ptr = SOMETHING; volatile int vobj; *************** volatile object being pointed to. *** 27198,27206 **** Assignments are also expressions and have an rvalue. However when assigning to a scalar volatile, the volatile object is not reread, ! regardless of whether the assignment expression's rvalue is used or not. ! If the assignment's rvalue is used, the value is that assigned to the ! volatile object. For instance, there is no read of VOBJ in all the following cases: int obj; --- 27401,27409 ---- Assignments are also expressions and have an rvalue. However when assigning to a scalar volatile, the volatile object is not reread, ! regardless of whether the assignment expression's rvalue is used or ! not. If the assignment's rvalue is used, the value is that assigned to ! the volatile object. For instance, there is no read of VOBJ in all the following cases: int obj; *************** File: gcc.info, Node: Extended Asm, Ne *** 27227,27250 **** 6.41 Assembler Instructions with C Expression Operands ====================================================== ! In an assembler instruction using 'asm', you can specify the operands of ! the instruction using C expressions. This means you need not guess which registers or memory locations contain the data you want to use. You must specify an assembler instruction template much like what appears in a machine description, plus an operand constraint string for each operand. ! For example, here is how to use the 68881's 'fsinx' instruction: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! Here 'angle' is the C expression for the input operand while 'result' is ! that of the output operand. Each has '"f"' as its operand constraint, ! saying that a floating-point register is required. The '=' in '=f' ! indicates that the operand is an output; all output operands' ! constraints must use '='. The constraints use the same language used in ! the machine description (*note Constraints::). Each operand is described by an operand-constraint string followed by the C expression in parentheses. A colon separates the assembler --- 27430,27453 ---- 6.41 Assembler Instructions with C Expression Operands ====================================================== ! In an assembler instruction using `asm', you can specify the operands ! of the instruction using C expressions. This means you need not guess which registers or memory locations contain the data you want to use. You must specify an assembler instruction template much like what appears in a machine description, plus an operand constraint string for each operand. ! For example, here is how to use the 68881's `fsinx' instruction: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! Here `angle' is the C expression for the input operand while `result' ! is that of the output operand. Each has `"f"' as its operand ! constraint, saying that a floating-point register is required. The `=' ! in `=f' indicates that the operand is an output; all output operands' ! constraints must use `='. The constraints use the same language used ! in the machine description (*note Constraints::). Each operand is described by an operand-constraint string followed by the C expression in parentheses. A colon separates the assembler *************** operands would go. *** 27262,27268 **** operands using symbolic names which can be referenced within the assembler code. These names are specified inside square brackets preceding the constraint string, and can be referenced inside the ! assembler code using '%[NAME]' instead of a percentage sign followed by the operand number. Using named operands the above example could look like: --- 27465,27471 ---- operands using symbolic names which can be referenced within the assembler code. These names are specified inside square brackets preceding the constraint string, and can be referenced inside the ! assembler code using `%[NAME]' instead of a percentage sign followed by the operand number. Using named operands the above example could look like: *************** this. The input operands need not be lv *** 27280,27341 **** check whether the operands have data types that are reasonable for the instruction being executed. It does not parse the assembler instruction template and does not know what it means or even whether it is valid ! assembler input. The extended 'asm' feature is most often used for machine instructions the compiler itself does not know exist. If the output expression cannot be directly addressed (for example, it is a bit-field), your constraint must allow a register. In that case, GCC ! uses the register as the output of the 'asm', and then stores that register into the output. The ordinary output operands must be write-only; GCC assumes that the ! values in these operands before the instruction are dead and need not be ! generated. Extended asm supports input-output or read-write operands. ! Use the constraint character '+' to indicate such an operand and list it ! with the output operands. You may, as an alternative, logically split its function into two separate operands, one input operand and one write-only output operand. The connection between them is expressed by constraints that say they need to be in the same location when the instruction executes. You can use the same C expression for both operands, or different expressions. ! For example, here we write the (fictitious) 'combine' instruction with ! 'bar' as its read-only source operand and 'foo' as its read-write destination: asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar)); ! The constraint '"0"' for operand 1 says that it must occupy the same location as operand 0. A number in constraint is allowed only in an input operand and it must refer to an output operand. Only a number in the constraint can guarantee that one operand is in ! the same place as another. The mere fact that 'foo' is the value of ! both operands is not enough to guarantee that they are in the same place ! in the generated assembler code. The following does not work reliably: asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar)); Various optimizations or reloading could cause operands 0 and 1 to be in different registers; GCC knows no reason not to do so. For example, ! the compiler might find a copy of the value of 'foo' in one register and use it for operand 1, but generate the output operand 0 in a different ! register (copying it afterward to 'foo''s own address). Of course, since the register for operand 1 is not even mentioned in the assembler code, the result will not work, but GCC can't tell that. ! As of GCC version 3.1, one may write '[NAME]' instead of the operand number for a matching constraint. For example: asm ("cmoveq %1,%2,%[result]" : [result] "=r"(result) : "r" (test), "r"(new), "[result]"(old)); ! Sometimes you need to make an 'asm' operand be a specific register, but ! there's no matching constraint letter for that register _by itself_. To ! force the operand into that register, use a local variable for the ! operand and specify the register in the variable declaration. *Note ! Explicit Reg Vars::. Then for the 'asm' operand, use any register ! constraint letter that matches the register: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; --- 27483,27545 ---- check whether the operands have data types that are reasonable for the instruction being executed. It does not parse the assembler instruction template and does not know what it means or even whether it is valid ! assembler input. The extended `asm' feature is most often used for machine instructions the compiler itself does not know exist. If the output expression cannot be directly addressed (for example, it is a bit-field), your constraint must allow a register. In that case, GCC ! uses the register as the output of the `asm', and then stores that register into the output. The ordinary output operands must be write-only; GCC assumes that the ! values in these operands before the instruction are dead and need not ! be generated. Extended asm supports input-output or read-write ! operands. Use the constraint character `+' to indicate such an operand ! and list it with the output operands. You may, as an alternative, logically split its function into two separate operands, one input operand and one write-only output operand. The connection between them is expressed by constraints that say they need to be in the same location when the instruction executes. You can use the same C expression for both operands, or different expressions. ! For example, here we write the (fictitious) `combine' instruction with ! `bar' as its read-only source operand and `foo' as its read-write destination: asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar)); ! The constraint `"0"' for operand 1 says that it must occupy the same location as operand 0. A number in constraint is allowed only in an input operand and it must refer to an output operand. Only a number in the constraint can guarantee that one operand is in ! the same place as another. The mere fact that `foo' is the value of ! both operands is not enough to guarantee that they are in the same ! place in the generated assembler code. The following does not work ! reliably: asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar)); Various optimizations or reloading could cause operands 0 and 1 to be in different registers; GCC knows no reason not to do so. For example, ! the compiler might find a copy of the value of `foo' in one register and use it for operand 1, but generate the output operand 0 in a different ! register (copying it afterward to `foo''s own address). Of course, since the register for operand 1 is not even mentioned in the assembler code, the result will not work, but GCC can't tell that. ! As of GCC version 3.1, one may write `[NAME]' instead of the operand number for a matching constraint. For example: asm ("cmoveq %1,%2,%[result]" : [result] "=r"(result) : "r" (test), "r"(new), "[result]"(old)); ! Sometimes you need to make an `asm' operand be a specific register, ! but there's no matching constraint letter for that register _by ! itself_. To force the operand into that register, use a local variable ! for the operand and specify the register in the variable declaration. ! *Note Explicit Reg Vars::. Then for the `asm' operand, use any ! register constraint letter that matches the register: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; *************** constraint letter that matches the regis *** 27345,27355 **** In the above example, beware that a register that is call-clobbered by the target ABI will be overwritten by any function call in the assignment, including library calls for arithmetic operators. Also a ! register may be clobbered when generating some operations, like variable ! shift, memory copy or memory move on x86. Assuming it is a ! call-clobbered register, this may happen to 'r0' above by the assignment ! to 'p2'. If you have to use such a register, use temporary variables ! for expressions between the register assignment and use: int t1 = ...; register int *p1 asm ("r0") = ...; --- 27549,27559 ---- In the above example, beware that a register that is call-clobbered by the target ABI will be overwritten by any function call in the assignment, including library calls for arithmetic operators. Also a ! register may be clobbered when generating some operations, like ! variable shift, memory copy or memory move on x86. Assuming it is a ! call-clobbered register, this may happen to `r0' above by the ! assignment to `p2'. If you have to use such a register, use temporary ! variables for expressions between the register assignment and use: int t1 = ...; register int *p1 asm ("r0") = ...; *************** input or output operand. For example, y *** 27372,27412 **** describing a register class with one member if you mention that register in the clobber list. Variables declared to live in specific registers (*note Explicit Reg Vars::), and used as asm input or output operands ! must have no part mentioned in the clobber description. There is no way ! for you to specify that an input operand is modified without also specifying it as an output operand. Note that if all the output operands you specify are for this purpose (and hence unused), you then ! also need to specify 'volatile' for the 'asm' construct, as described ! below, to prevent GCC from deleting the 'asm' statement as unused. If you refer to a particular hardware register from the assembler code, ! you probably have to list the register after the third colon to tell the ! compiler the register's value is modified. In some assemblers, the ! register names begin with '%'; to produce one '%' in the assembler code, ! you must write '%%' in the input. If your assembler instruction can alter the condition code register, ! add 'cc' to the list of clobbered registers. GCC on some machines ! represents the condition codes as a specific hardware register; 'cc' serves to name this register. On other machines, the condition code is ! handled differently, and specifying 'cc' has no effect. But it is valid ! no matter what the machine. If your assembler instructions access memory in an unpredictable ! fashion, add 'memory' to the list of clobbered registers. This causes GCC to not keep memory values cached in registers across the assembler instruction and not optimize stores or loads to that memory. You also ! should add the 'volatile' keyword if the memory affected is not listed ! in the inputs or outputs of the 'asm', as the 'memory' clobber does not ! count as a side-effect of the 'asm'. If you know how large the accessed ! memory is, you can add it as input or output but if this is not known, ! you should add 'memory'. As an example, if you access ten bytes of a ! string, you can use a memory input like: {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}. Note that in the following example the memory input is necessary, ! otherwise GCC might optimize the store to 'x' away: int foo () { int x = 42; --- 27576,27616 ---- describing a register class with one member if you mention that register in the clobber list. Variables declared to live in specific registers (*note Explicit Reg Vars::), and used as asm input or output operands ! must have no part mentioned in the clobber description. There is no ! way for you to specify that an input operand is modified without also specifying it as an output operand. Note that if all the output operands you specify are for this purpose (and hence unused), you then ! also need to specify `volatile' for the `asm' construct, as described ! below, to prevent GCC from deleting the `asm' statement as unused. If you refer to a particular hardware register from the assembler code, ! you probably have to list the register after the third colon to tell ! the compiler the register's value is modified. In some assemblers, the ! register names begin with `%'; to produce one `%' in the assembler ! code, you must write `%%' in the input. If your assembler instruction can alter the condition code register, ! add `cc' to the list of clobbered registers. GCC on some machines ! represents the condition codes as a specific hardware register; `cc' serves to name this register. On other machines, the condition code is ! handled differently, and specifying `cc' has no effect. But it is ! valid no matter what the machine. If your assembler instructions access memory in an unpredictable ! fashion, add `memory' to the list of clobbered registers. This causes GCC to not keep memory values cached in registers across the assembler instruction and not optimize stores or loads to that memory. You also ! should add the `volatile' keyword if the memory affected is not listed ! in the inputs or outputs of the `asm', as the `memory' clobber does not ! count as a side-effect of the `asm'. If you know how large the ! accessed memory is, you can add it as input or output but if this is ! not known, you should add `memory'. As an example, if you access ten ! bytes of a string, you can use a memory input like: {"m"( ({ struct { char x[10]; } *p = (void *)ptr ; *p; }) )}. Note that in the following example the memory input is necessary, ! otherwise GCC might optimize the store to `x' away: int foo () { int x = 42; *************** otherwise GCC might optimize the store t *** 27417,27449 **** return result; } ! You can put multiple assembler instructions together in a single 'asm' ! template, separated by the characters normally used in assembly code for ! the system. A combination that works in most places is a newline to ! break the line, plus a tab character to move to the instruction field ! (written as '\n\t'). Sometimes semicolons can be used, if the assembler ! allows semicolons as a line-breaking character. Note that some ! assembler dialects use semicolons to start a comment. The input operands are guaranteed not to use any of the clobbered registers, and ! neither do the output operands' addresses, so you can read and write the ! clobbered registers as many times as you like. Here is an example of ! multiple instructions in a template; it assumes the subroutine '_foo' ! accepts arguments in registers 9 and 10: asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo" : /* no outputs */ : "g" (from), "g" (to) : "r9", "r10"); ! Unless an output operand has the '&' constraint modifier, GCC may allocate it in the same register as an unrelated input operand, on the assumption the inputs are consumed before the outputs are produced. This assumption may be false if the assembler code actually consists of ! more than one instruction. In such a case, use '&' for each output operand that may not overlap an input. *Note Modifiers::. If you want to test the condition code produced by an assembler ! instruction, you must include a branch and a label in the 'asm' construct, as follows: asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:" --- 27621,27653 ---- return result; } ! You can put multiple assembler instructions together in a single `asm' ! template, separated by the characters normally used in assembly code ! for the system. A combination that works in most places is a newline ! to break the line, plus a tab character to move to the instruction field ! (written as `\n\t'). Sometimes semicolons can be used, if the ! assembler allows semicolons as a line-breaking character. Note that ! some assembler dialects use semicolons to start a comment. The input operands are guaranteed not to use any of the clobbered registers, and ! neither do the output operands' addresses, so you can read and write ! the clobbered registers as many times as you like. Here is an example ! of multiple instructions in a template; it assumes the subroutine ! `_foo' accepts arguments in registers 9 and 10: asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo" : /* no outputs */ : "g" (from), "g" (to) : "r9", "r10"); ! Unless an output operand has the `&' constraint modifier, GCC may allocate it in the same register as an unrelated input operand, on the assumption the inputs are consumed before the outputs are produced. This assumption may be false if the assembler code actually consists of ! more than one instruction. In such a case, use `&' for each output operand that may not overlap an input. *Note Modifiers::. If you want to test the condition code produced by an assembler ! instruction, you must include a branch and a label in the `asm' construct, as follows: asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:" *************** construct, as follows: *** 27453,27464 **** This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers do. ! Speaking of labels, jumps from one 'asm' to another are not supported. The compiler's optimizers do not know about these jumps, and therefore they cannot take account of them when deciding how to optimize. *Note Extended asm with goto::. ! Usually the most convenient way to use these 'asm' instructions is to encapsulate them in macros that look like functions. For example, #define sin(x) \ --- 27657,27668 ---- This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers do. ! Speaking of labels, jumps from one `asm' to another are not supported. The compiler's optimizers do not know about these jumps, and therefore they cannot take account of them when deciding how to optimize. *Note Extended asm with goto::. ! Usually the most convenient way to use these `asm' instructions is to encapsulate them in macros that look like functions. For example, #define sin(x) \ *************** encapsulate them in macros that look lik *** 27466,27484 **** asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \ __value; }) ! Here the variable '__arg' is used to make sure that the instruction ! operates on a proper 'double' value, and to accept only those arguments ! 'x' that can convert automatically to a 'double'. Another way to make sure the instruction operates on the correct data ! type is to use a cast in the 'asm'. This is different from using a ! variable '__arg' in that it converts more different types. For example, ! if the desired type is 'int', casting the argument to 'int' accepts a ! pointer with no complaint, while assigning the argument to an 'int' ! variable named '__arg' warns about using a pointer unless the caller ! explicitly casts it. ! If an 'asm' has output operands, GCC assumes for optimization purposes the instruction has no side effects except to change the output operands. This does not mean instructions with a side effect cannot be used, but you must be careful, because the compiler may eliminate them --- 27670,27688 ---- asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \ __value; }) ! Here the variable `__arg' is used to make sure that the instruction ! operates on a proper `double' value, and to accept only those arguments ! `x' that can convert automatically to a `double'. Another way to make sure the instruction operates on the correct data ! type is to use a cast in the `asm'. This is different from using a ! variable `__arg' in that it converts more different types. For ! example, if the desired type is `int', casting the argument to `int' ! accepts a pointer with no complaint, while assigning the argument to an ! `int' variable named `__arg' warns about using a pointer unless the ! caller explicitly casts it. ! If an `asm' has output operands, GCC assumes for optimization purposes the instruction has no side effects except to change the output operands. This does not mean instructions with a side effect cannot be used, but you must be careful, because the compiler may eliminate them *************** if your instruction does have a side eff *** 27488,27495 **** appears not to change, the old value of the variable may be reused later if it happens to be found in a register. ! You can prevent an 'asm' instruction from being deleted by writing the ! keyword 'volatile' after the 'asm'. For example: #define get_and_set_priority(new) \ ({ int __old; \ --- 27692,27699 ---- appears not to change, the old value of the variable may be reused later if it happens to be found in a register. ! You can prevent an `asm' instruction from being deleted by writing the ! keyword `volatile' after the `asm'. For example: #define get_and_set_priority(new) \ ({ int __old; \ *************** keyword 'volatile' after the 'asm'. For *** 27497,27556 **** : "=g" (__old) : "g" (new)); \ __old; }) ! The 'volatile' keyword indicates that the instruction has important ! side-effects. GCC does not delete a volatile 'asm' if it is reachable. ! (The instruction can still be deleted if GCC can prove that control flow ! never reaches the location of the instruction.) Note that even a ! volatile 'asm' instruction can be moved relative to other code, including across jump instructions. For example, on many targets there is a system register that can be set to control the rounding mode of floating-point operations. You might try setting it with a volatile ! 'asm', like this PowerPC example: asm volatile("mtfsf 255,%0" : : "f" (fpenv)); sum = x + y; This does not work reliably, as the compiler may move the addition back ! before the volatile 'asm'. To make it work you need to add an ! artificial dependency to the 'asm' referencing a variable in the code you don't want moved, for example: asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv)); sum = x + y; ! Similarly, you can't expect a sequence of volatile 'asm' instructions to remain perfectly consecutive. If you want consecutive output, use a ! single 'asm'. Also, GCC performs some optimizations across a volatile ! 'asm' instruction; GCC does not "forget everything" when it encounters a ! volatile 'asm' instruction the way some other compilers do. ! An 'asm' instruction without any output operands is treated identically ! to a volatile 'asm' instruction. It is a natural idea to look for a way to give access to the condition code left by the assembler instruction. However, when we attempted to implement this, we found no way to make it work reliably. The problem ! is that output operands might need reloading, which result in additional ! following "store" instructions. On most machines, these instructions ! alter the condition code before there is time to test it. This problem ! doesn't arise for ordinary "test" and "compare" instructions because ! they don't have any output operands. For reasons similar to those described above, it is not possible to give an assembler instruction access to the condition code left by previous instructions. ! As of GCC version 4.5, 'asm goto' may be used to have the assembly jump ! to one or more C labels. In this form, a fifth section after the clobber list contains a list of all C labels to which the assembly may ! jump. Each label operand is implicitly self-named. The 'asm' is also assumed to fall through to the next statement. ! This form of 'asm' is restricted to not have outputs. This is due to a ! internal restriction in the compiler that control transfer instructions ! cannot have outputs. This restriction on 'asm goto' may be lifted in ! some future version of the compiler. In the meantime, 'asm goto' may ! include a memory clobber, and so leave outputs in memory. int frob(int x) { --- 27701,27760 ---- : "=g" (__old) : "g" (new)); \ __old; }) ! The `volatile' keyword indicates that the instruction has important ! side-effects. GCC does not delete a volatile `asm' if it is reachable. ! (The instruction can still be deleted if GCC can prove that control ! flow never reaches the location of the instruction.) Note that even a ! volatile `asm' instruction can be moved relative to other code, including across jump instructions. For example, on many targets there is a system register that can be set to control the rounding mode of floating-point operations. You might try setting it with a volatile ! `asm', like this PowerPC example: asm volatile("mtfsf 255,%0" : : "f" (fpenv)); sum = x + y; This does not work reliably, as the compiler may move the addition back ! before the volatile `asm'. To make it work you need to add an ! artificial dependency to the `asm' referencing a variable in the code you don't want moved, for example: asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv)); sum = x + y; ! Similarly, you can't expect a sequence of volatile `asm' instructions to remain perfectly consecutive. If you want consecutive output, use a ! single `asm'. Also, GCC performs some optimizations across a volatile ! `asm' instruction; GCC does not "forget everything" when it encounters ! a volatile `asm' instruction the way some other compilers do. ! An `asm' instruction without any output operands is treated ! identically to a volatile `asm' instruction. It is a natural idea to look for a way to give access to the condition code left by the assembler instruction. However, when we attempted to implement this, we found no way to make it work reliably. The problem ! is that output operands might need reloading, which result in ! additional following "store" instructions. On most machines, these ! instructions alter the condition code before there is time to test it. ! This problem doesn't arise for ordinary "test" and "compare" ! instructions because they don't have any output operands. For reasons similar to those described above, it is not possible to give an assembler instruction access to the condition code left by previous instructions. ! As of GCC version 4.5, `asm goto' may be used to have the assembly ! jump to one or more C labels. In this form, a fifth section after the clobber list contains a list of all C labels to which the assembly may ! jump. Each label operand is implicitly self-named. The `asm' is also assumed to fall through to the next statement. ! This form of `asm' is restricted to not have outputs. This is due to ! a internal restriction in the compiler that control transfer ! instructions cannot have outputs. This restriction on `asm goto' may ! be lifted in some future version of the compiler. In the meantime, ! `asm goto' may include a memory clobber, and so leave outputs in memory. int frob(int x) { *************** include a memory clobber, and so leave o *** 27562,27572 **** return -1; } ! In this (inefficient) example, the 'frob' instruction sets the carry bit ! to indicate an error. The 'jc' instruction detects this and branches to ! the 'error' label. Finally, the output of the 'frob' instruction ! ('%r5') is stored into the memory for variable 'y', which is later read ! by the 'return' statement. void doit(void) { --- 27766,27776 ---- return -1; } ! In this (inefficient) example, the `frob' instruction sets the carry ! bit to indicate an error. The `jc' instruction detects this and ! branches to the `error' label. Finally, the output of the `frob' ! instruction (`%r5') is stored into the memory for variable `y', which ! is later read by the `return' statement. void doit(void) { *************** by the 'return' statement. *** 27590,27603 **** f3(i); } ! In this (also inefficient) example, the 'mfsr' instruction reads an ! address from some out-of-band machine register, and the following 'jmp' ! instruction branches to that address. The address read by the 'mfsr' instruction is assumed to have been previously set via some application-specific mechanism to be one of the four values stored in ! the 'doit_table' section. Finally, the 'asm' is followed by a call to ! '__builtin_unreachable' to indicate that the 'asm' does not in fact fall ! through. #define TRACE1(NUM) \ do { \ --- 27794,27807 ---- f3(i); } ! In this (also inefficient) example, the `mfsr' instruction reads an ! address from some out-of-band machine register, and the following `jmp' ! instruction branches to that address. The address read by the `mfsr' instruction is assumed to have been previously set via some application-specific mechanism to be one of the four values stored in ! the `doit_table' section. Finally, the `asm' is followed by a call to ! `__builtin_unreachable' to indicate that the `asm' does not in fact ! fall through. #define TRACE1(NUM) \ do { \ *************** through. *** 27610,27640 **** } while (0) #define TRACE TRACE1(__COUNTER__) ! In this example (which in fact inspired the 'asm goto' feature) we want ! on rare occasions to call the 'trace' function; on other occasions we'd ! like to keep the overhead to the absolute minimum. The normal code path ! consists of a single 'nop' instruction. However, we record the address ! of this 'nop' together with the address of a label that calls the ! 'trace' function. This allows the 'nop' instruction to be patched at ! run time to be an unconditional branch to the stored label. It is ! assumed that an optimizing compiler moves the labeled block out of line, ! to optimize the fall through path from the 'asm'. If you are writing a header file that should be includable in ISO C ! programs, write '__asm__' instead of 'asm'. *Note Alternate Keywords::. ! 6.41.1 Size of an 'asm' ----------------------- Some targets require that GCC track the size of each instruction used in ! order to generate correct code. Because the final length of an 'asm' is ! only known by the assembler, GCC must make an estimate as to how big it ! will be. The estimate is formed by counting the number of statements in ! the pattern of the 'asm' and multiplying that by the length of the ! longest instruction on that processor. Statements in the 'asm' are ! identified by newline characters and whatever statement separator ! characters are supported by the assembler; on most processors this is ! the ';' character. Normally, GCC's estimate is perfectly adequate to ensure that correct code is generated, but it is possible to confuse the compiler if you use --- 27814,27844 ---- } while (0) #define TRACE TRACE1(__COUNTER__) ! In this example (which in fact inspired the `asm goto' feature) we want ! on rare occasions to call the `trace' function; on other occasions we'd ! like to keep the overhead to the absolute minimum. The normal code ! path consists of a single `nop' instruction. However, we record the ! address of this `nop' together with the address of a label that calls ! the `trace' function. This allows the `nop' instruction to be patched ! at run time to be an unconditional branch to the stored label. It is ! assumed that an optimizing compiler moves the labeled block out of ! line, to optimize the fall through path from the `asm'. If you are writing a header file that should be includable in ISO C ! programs, write `__asm__' instead of `asm'. *Note Alternate Keywords::. ! 6.41.1 Size of an `asm' ----------------------- Some targets require that GCC track the size of each instruction used in ! order to generate correct code. Because the final length of an `asm' ! is only known by the assembler, GCC must make an estimate as to how big ! it will be. The estimate is formed by counting the number of ! statements in the pattern of the `asm' and multiplying that by the ! length of the longest instruction on that processor. Statements in the ! `asm' are identified by newline characters and whatever statement ! separator characters are supported by the assembler; on most processors ! this is the `;' character. Normally, GCC's estimate is perfectly adequate to ensure that correct code is generated, but it is possible to confuse the compiler if you use *************** label is unreachable. *** 27648,27688 **** --------------------------------------- On i386 targets, there are several rules on the usage of stack-like ! registers in the operands of an 'asm'. These rules apply only to the operands that are stack-like registers: ! 1. Given a set of input registers that die in an 'asm', it is ! necessary to know which are implicitly popped by the 'asm', and which must be explicitly popped by GCC. ! An input register that is implicitly popped by the 'asm' must be explicitly clobbered, unless it is constrained to match an output operand. ! 2. For any input register that is implicitly popped by an 'asm', it is necessary to know how to adjust the stack to compensate for the ! pop. If any non-popped input is closer to the top of the reg-stack ! than the implicitly popped register, it would not be possible to ! know what the stack looked like--it's not clear how the rest of the ! stack "slides up". All implicitly popped input registers must be closer to the top of the reg-stack than any input that is not implicitly popped. ! It is possible that if an input dies in an 'asm', the compiler might use the input register for an output reload. Consider this example: asm ("foo" : "=t" (a) : "f" (b)); ! This code says that input 'b' is not popped by the 'asm', and that ! the 'asm' pushes a result onto the reg-stack, i.e., the stack is ! one deeper after the 'asm' than it was before. But, it is possible ! that reload may think that it can use the same register for both ! the input and the output. ! To prevent this from happening, if any input operand uses the 'f' ! constraint, all output register constraints must use the '&' early-clobber modifier. The example above would be correctly written as: --- 27852,27892 ---- --------------------------------------- On i386 targets, there are several rules on the usage of stack-like ! registers in the operands of an `asm'. These rules apply only to the operands that are stack-like registers: ! 1. Given a set of input registers that die in an `asm', it is ! necessary to know which are implicitly popped by the `asm', and which must be explicitly popped by GCC. ! An input register that is implicitly popped by the `asm' must be explicitly clobbered, unless it is constrained to match an output operand. ! 2. For any input register that is implicitly popped by an `asm', it is necessary to know how to adjust the stack to compensate for the ! pop. If any non-popped input is closer to the top of the ! reg-stack than the implicitly popped register, it would not be ! possible to know what the stack looked like--it's not clear how ! the rest of the stack "slides up". All implicitly popped input registers must be closer to the top of the reg-stack than any input that is not implicitly popped. ! It is possible that if an input dies in an `asm', the compiler might use the input register for an output reload. Consider this example: asm ("foo" : "=t" (a) : "f" (b)); ! This code says that input `b' is not popped by the `asm', and that ! the `asm' pushes a result onto the reg-stack, i.e., the stack is ! one deeper after the `asm' than it was before. But, it is ! possible that reload may think that it can use the same register ! for both the input and the output. ! To prevent this from happening, if any input operand uses the `f' ! constraint, all output register constraints must use the `&' early-clobber modifier. The example above would be correctly written as: *************** operands that are stack-like registers: *** 27690,27742 **** asm ("foo" : "=&t" (a) : "f" (b)); 3. Some operands need to be in particular places on the stack. All ! output operands fall in this category--GCC has no other way to know ! which registers the outputs appear in unless you indicate this in ! the constraints. Output operands must specifically indicate which register an output ! appears in after an 'asm'. '=f' is not allowed: the operand constraints must select a class with a single register. 4. Output operands may not be "inserted" between existing stack registers. Since no 387 opcode uses a read/write operand, all ! output operands are dead before the 'asm', and are pushed by the ! 'asm'. It makes no sense to push anywhere but the top of the reg-stack. Output operands must start at the top of the reg-stack: output operands may not "skip" a register. ! 5. Some 'asm' statements may need extra stack space for internal calculations. This can be guaranteed by clobbering stack registers unrelated to the inputs and outputs. ! Here are a couple of reasonable 'asm's to want to write. This 'asm' takes one input, which is internally popped, and produces two outputs. asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp)); ! This 'asm' takes two inputs, which are popped by the 'fyl2xp1' opcode, ! and replaces them with one output. The 'st(1)' clobber is necessary for ! the compiler to know that 'fyl2xp1' pops both inputs. asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");  File: gcc.info, Node: Constraints, Next: Asm Labels, Prev: Extended Asm, Up: C Extensions ! 6.42 Constraints for 'asm' Operands =================================== Here are specific details on what constraint letters you can use with ! 'asm' operands. Constraints can say whether an operand may be in a register, and which kinds of register; whether the operand can be a ! memory reference, and which kinds of address; whether the operand may be ! an immediate constant, and which possible values it may have. ! Constraints can also require two operands to match. Side-effects aren't ! allowed in operands of inline 'asm', unless '<' or '>' constraints are ! used, because there is no guarantee that the side-effects will happen ! exactly once in an instruction that can update the addressing register. * Menu: --- 27894,27948 ---- asm ("foo" : "=&t" (a) : "f" (b)); 3. Some operands need to be in particular places on the stack. All ! output operands fall in this category--GCC has no other way to ! know which registers the outputs appear in unless you indicate ! this in the constraints. Output operands must specifically indicate which register an output ! appears in after an `asm'. `=f' is not allowed: the operand constraints must select a class with a single register. 4. Output operands may not be "inserted" between existing stack registers. Since no 387 opcode uses a read/write operand, all ! output operands are dead before the `asm', and are pushed by the ! `asm'. It makes no sense to push anywhere but the top of the reg-stack. Output operands must start at the top of the reg-stack: output operands may not "skip" a register. ! 5. Some `asm' statements may need extra stack space for internal calculations. This can be guaranteed by clobbering stack registers unrelated to the inputs and outputs. ! ! Here are a couple of reasonable `asm's to want to write. This `asm' takes one input, which is internally popped, and produces two outputs. asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp)); ! This `asm' takes two inputs, which are popped by the `fyl2xp1' opcode, ! and replaces them with one output. The `st(1)' clobber is necessary ! for the compiler to know that `fyl2xp1' pops both inputs. asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");  File: gcc.info, Node: Constraints, Next: Asm Labels, Prev: Extended Asm, Up: C Extensions ! 6.42 Constraints for `asm' Operands =================================== Here are specific details on what constraint letters you can use with ! `asm' operands. Constraints can say whether an operand may be in a register, and which kinds of register; whether the operand can be a ! memory reference, and which kinds of address; whether the operand may ! be an immediate constant, and which possible values it may have. ! Constraints can also require two operands to match. Side-effects ! aren't allowed in operands of inline `asm', unless `<' or `>' ! constraints are used, because there is no guarantee that the ! side-effects will happen exactly once in an instruction that can update ! the addressing register. * Menu: *************** whitespace *** 27762,27774 **** description even if they have different number of constraints and modifiers. ! 'm' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using the ! 'TARGET_MEM_CONSTRAINT' macro. ! 'o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine --- 27968,27980 ---- description even if they have different number of constraints and modifiers. ! `m' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using ! the `TARGET_MEM_CONSTRAINT' macro. ! `o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine *************** whitespace *** 27784,27893 **** on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter 'o' is valid only when accompanied ! by both '<' (if the target machine has predecrement addressing) and ! '>' (if the target machine has preincrement addressing). ! 'V' ! A memory operand that is not offsettable. In other words, anything ! that would fit the 'm' constraint but not the 'o' constraint. ! '<' ! A memory operand with autodecrement addressing (either predecrement ! or postdecrement) is allowed. In inline 'asm' this constraint is ! only allowed if the operand is used exactly once in an instruction ! that can handle the side-effects. Not using an operand with '<' in ! constraint string in the inline 'asm' pattern at all or using it in ! multiple instructions isn't valid, because the side-effects ! wouldn't be performed or would be performed more than once. ! Furthermore, on some targets the operand with '<' in constraint ! string must be accompanied by special instruction suffixes like ! '%U0' instruction suffix on PowerPC or '%P0' on IA-64. ! '>' ! A memory operand with autoincrement addressing (either preincrement ! or postincrement) is allowed. In inline 'asm' the same ! restrictions as for '<' apply. ! 'r' A register operand is allowed provided that it is in a general register. ! 'i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! 'n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! 'n' rather than 'i'. ! 'I', 'J', 'K', ... 'P' ! Other letters in the range 'I' through 'P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, 'I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! 'E' ! An immediate floating operand (expression code 'const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! 'F' ! An immediate floating operand (expression code 'const_double' or ! 'const_vector') is allowed. ! 'G', 'H' ! 'G' and 'H' may be defined in a machine-dependent fashion to permit ! immediate floating operands in particular ranges of values. ! 's' ! An immediate integer operand whose value is not an explicit integer ! is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow any ! known value. So why use 's' instead of 'i'? Sometimes it allows ! better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into the ! register can be done with a 'moveq' instruction. We arrange for ! this to happen by defining the letter 'K' to mean "any integer ! outside the range -128 to 127", and then specifying 'Ks' in the operand constraints. ! 'g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! 'X' Any operand whatsoever is allowed. ! '0', '1', '2', ... '9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, since ! to-date it has never been desirable that '10' be interpreted as ! matching either operand 1 _or_ operand 0. Should this be desired, ! one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles ! which 'asm' distinguishes. For example, an add instruction uses ! two input operands and an output operand, but on most CISC machines ! an add instruction really has only two operands, one of them an ! input-output operand: addl #35,r12 --- 27990,28101 ---- on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter `o' is valid only when accompanied ! by both `<' (if the target machine has predecrement addressing) ! and `>' (if the target machine has preincrement addressing). ! `V' ! A memory operand that is not offsettable. In other words, ! anything that would fit the `m' constraint but not the `o' ! constraint. ! `<' ! A memory operand with autodecrement addressing (either ! predecrement or postdecrement) is allowed. In inline `asm' this ! constraint is only allowed if the operand is used exactly once in ! an instruction that can handle the side-effects. Not using an ! operand with `<' in constraint string in the inline `asm' pattern ! at all or using it in multiple instructions isn't valid, because ! the side-effects wouldn't be performed or would be performed more ! than once. Furthermore, on some targets the operand with `<' in ! constraint string must be accompanied by special instruction ! suffixes like `%U0' instruction suffix on PowerPC or `%P0' on ! IA-64. ! `>' ! A memory operand with autoincrement addressing (either ! preincrement or postincrement) is allowed. In inline `asm' the ! same restrictions as for `<' apply. ! `r' A register operand is allowed provided that it is in a general register. ! `i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! `n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! `n' rather than `i'. ! `I', `J', `K', ... `P' ! Other letters in the range `I' through `P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, `I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! `E' ! An immediate floating operand (expression code `const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! `F' ! An immediate floating operand (expression code `const_double' or ! `const_vector') is allowed. ! `G', `H' ! `G' and `H' may be defined in a machine-dependent fashion to ! permit immediate floating operands in particular ranges of values. ! `s' ! An immediate integer operand whose value is not an explicit ! integer is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow ! any known value. So why use `s' instead of `i'? Sometimes it ! allows better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into ! the register can be done with a `moveq' instruction. We arrange ! for this to happen by defining the letter `K' to mean "any integer ! outside the range -128 to 127", and then specifying `Ks' in the operand constraints. ! `g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! `X' Any operand whatsoever is allowed. ! `0', `1', `2', ... `9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, ! since to-date it has never been desirable that `10' be interpreted ! as matching either operand 1 _or_ operand 0. Should this be ! desired, one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles ! which `asm' distinguishes. For example, an add instruction uses ! two input operands and an output operand, but on most CISC ! machines an add instruction really has only two operands, one of ! them an input-output operand: addl #35,r12 *************** whitespace *** 27897,27915 **** smaller number than the number of the operand that uses it in the constraint. ! 'p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! 'p' in the constraint must be accompanied by 'address_operand' as ! the predicate in the 'match_operand'. This predicate interprets ! the mode specified in the 'match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand for data, address and floating point registers.  --- 28105,28123 ---- smaller number than the number of the operand that uses it in the constraint. ! `p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! `p' in the constraint must be accompanied by `address_operand' as ! the predicate in the `match_operand'. This predicate interprets ! the mode specified in the `match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. `d', `a' and `f' are defined on the 68000/68020 to stand for data, address and floating point registers.  *************** alternative. *** 27933,27952 **** If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that alternative ! applies. The alternative requiring the least copying is chosen. If two ! alternatives need the same amount of copying, the one that comes first ! is chosen. These choices can be altered with the '?' and '!' ! characters: ! '?' ! Disparage slightly the alternative that the '?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each '?' that appears in it. ! '!' ! Disparage severely the alternative that the '!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. --- 28141,28160 ---- If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that ! alternative applies. The alternative requiring the least copying is ! chosen. If two alternatives need the same amount of copying, the one ! that comes first is chosen. These choices can be altered with the `?' ! and `!' characters: ! `?' ! Disparage slightly the alternative that the `?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each `?' that appears in it. ! `!' ! Disparage severely the alternative that the `!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. *************** File: gcc.info, Node: Modifiers, Next: *** 27958,28024 **** Here are constraint modifier characters. ! '=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! '+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. '=' identifies an output; '+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify '=' or '+' in a constraint, you put it in the first character of the constraint string. ! '&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may not ! lie in a register that is used as an input operand or as part of ! any memory address. ! '&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires '&' while others do not. See, for example, the 'movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the 'mulsi3' insn of the ARM. ! '&' does not obviate the need to write '='. ! '%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. GCC can only handle one commutative pair in ! an asm; if you use more, the compiler may fail. Note that you need ! not use the modifier if the two alternatives are strictly identical; this would only waste time in the reload pass. The modifier is not operational after register allocation, so the ! result of 'define_peephole2' and 'define_split's performed after ! reload cannot rely on '%' to make the intended insn match. ! '#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! '*' Says that the following character should be ignored when choosing ! register preferences. '*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! '*' additionally disparages slightly the alternative if the following character matches the operand.  File: gcc.info, Node: Machine Constraints, Prev: Modifiers, Up: Constraints --- 28166,28233 ---- Here are constraint modifier characters. ! `=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! `+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. `=' identifies an output; `+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify `=' or `+' in a constraint, you put it in the first character of the constraint string. ! `&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may ! not lie in a register that is used as an input operand or as part ! of any memory address. ! `&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires `&' while others do not. See, for example, the `movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the `mulsi3' insn of the ARM. ! `&' does not obviate the need to write `='. ! `%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. GCC can only handle one commutative pair in ! an asm; if you use more, the compiler may fail. Note that you ! need not use the modifier if the two alternatives are strictly identical; this would only waste time in the reload pass. The modifier is not operational after register allocation, so the ! result of `define_peephole2' and `define_split's performed after ! reload cannot rely on `%' to make the intended insn match. ! `#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! `*' Says that the following character should be ignored when choosing ! register preferences. `*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! `*' additionally disparages slightly the alternative if the following character matches the operand. +  File: gcc.info, Node: Machine Constraints, Prev: Modifiers, Up: Constraints *************** File: gcc.info, Node: Machine Constrain *** 28026,28490 **** ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in 'asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters that ! usually have very similar meanings across architectures. The most ! commonly used constraints are 'm' and 'r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! 'I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for 'asm' statements; therefore, some of the constraints are not ! particularly useful for 'asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for 'asm' and constraints that ! aren't. The compiler source file mentioned in the table heading for ! each architecture is the definitive reference for the meanings of that ! architecture's constraints. ! _AArch64 family--'config/aarch64/constraints.md'_ ! 'k' ! The stack pointer register ('SP') ! 'w' Floating point or SIMD vector register ! 'I' Integer constant that is valid as an immediate operand in an ! 'ADD' instruction ! 'J' Integer constant that is valid as an immediate operand in a ! 'SUB' instruction (once negated) ! 'K' Integer constant that can be used with a 32-bit logical instruction ! 'L' Integer constant that can be used with a 64-bit logical instruction ! 'M' Integer constant that is valid as an immediate operand in a ! 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled to one of several different machine instructions depending on the value ! 'N' Integer constant that is valid as an immediate operand in a ! 64-bit 'MOV' pseudo instruction ! 'S' An absolute symbolic address or a label reference ! 'Y' Floating point constant zero ! 'Z' Integer constant zero ! 'Ush' ! The high part (bits 12 and upwards) of the pc-relative address ! of a symbol within 4GB of the instruction ! 'Q' A memory address which uses a single base register with no offset ! 'Ump' ! A memory address suitable for a load/store pair instruction in ! SI, DI, SF and DF modes ! _ARC --'config/arc/constraints.md'_ ! 'q' ! Registers usable in ARCompact 16-bit instructions: 'r0'-'r3', ! 'r12'-'r15'. This constraint can only match when the '-mq' option is in effect. ! 'e' ! Registers usable as base-regs of memory addresses in ARCompact ! 16-bit memory instructions: 'r0'-'r3', 'r12'-'r15', 'sp'. ! This constraint can only match when the '-mq' option is in ! effect. ! 'D' ! ARC FPX (dpfp) 64-bit registers. 'D0', 'D1'. ! 'I' A signed 12-bit integer constant. ! 'Cal' ! constant for arithmetic/logical operations. This might be any ! constant that can be put into a long immediate by the assmbler ! or linker without involving a PIC relocation. ! 'K' A 3-bit unsigned integer constant. ! 'L' A 6-bit unsigned integer constant. ! 'CnL' One's complement of a 6-bit unsigned integer constant. ! 'CmL' Two's complement of a 6-bit unsigned integer constant. ! 'M' A 5-bit unsigned integer constant. ! 'O' A 7-bit unsigned integer constant. ! 'P' A 8-bit unsigned integer constant. ! 'H' Any const_double value. ! _ARM family--'config/arm/constraints.md'_ ! 'w' VFP floating-point register ! 'G' The floating-point constant 0.0 ! 'I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 to ! 255 rotated by a multiple of 2 ! 'J' Integer in the range -4095 to 4095 ! 'K' ! Integer that satisfies constraint 'I' when inverted (ones complement) ! 'L' ! Integer that satisfies constraint 'I' when negated (twos complement) ! 'M' Integer in the range 0 to 32 ! 'Q' A memory reference where the exact address is in a single ! register (''m'' is preferable for 'asm' statements) ! 'R' An item in the constant pool ! 'S' A symbol in the text segment of the current file ! 'Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! 'Uy' A memory reference suitable for iWMMXt load/store instructions. ! 'Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--'config/avr/constraints.md'_ ! 'l' Registers from r0 to r15 ! 'a' Registers from r16 to r23 ! 'd' Registers from r16 to r31 ! 'w' Registers from r24 to r31. These registers can be used in ! 'adiw' command ! 'e' Pointer register (r26-r31) ! 'b' Base pointer register (r28-r31) ! 'q' Stack pointer register (SPH:SPL) ! 't' Temporary register r0 ! 'x' Register pair X (r27:r26) ! 'y' Register pair Y (r29:r28) ! 'z' Register pair Z (r31:r30) ! 'I' Constant greater than -1, less than 64 ! 'J' Constant greater than -64, less than 1 ! 'K' Constant integer 2 ! 'L' Constant integer 0 ! 'M' Constant that fits in 8 bits ! 'N' Constant integer -1 ! 'O' Constant integer 8, 16, or 24 ! 'P' Constant integer 1 ! 'G' A floating point constant 0.0 ! 'Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--'config/epiphany/constraints.md'_ ! 'U16' An unsigned 16-bit constant. ! 'K' An unsigned 5-bit constant. ! 'L' A signed 11-bit constant. ! 'Cm1' ! A signed 11-bit constant added to -1. Can only match when the ! '-m1reg-REG' option is active. ! 'Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the '-m1reg-REG' option is active. ! 'Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! '-m1reg-REG' option is active. ! 'Cal' ! Constant for arithmetic/logical operations. This is like 'i', ! except that for position independent code, no symbols / expressions needing relocations are allowed. ! 'Csy' Symbolic constant for call/jump instruction. ! 'Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless '-mprefer-short-insn-regs' is in effect. ! 'Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! 'Rct' Core control register class. ! 'Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! 'Rra' ! Matches the return address if it can be replaced with the link ! register. ! 'Rcc' Matches the integer condition code register. ! 'Sra' Matches the return address if it is in a stack slot. ! 'Cfm' Matches control register values to switch fp mode, which are ! encapsulated in 'UNSPEC_FP_MODE'. ! _CR16 Architecture--'config/cr16/cr16.h'_ ! 'b' Registers from r0 to r14 (registers without stack pointer) ! 't' Register from r0 to r11 (all 16-bit registers) ! 'p' Register from r12 to r15 (all 32-bit registers) ! 'I' Signed constant that fits in 4 bits ! 'J' Signed constant that fits in 5 bits ! 'K' Signed constant that fits in 6 bits ! 'L' Unsigned constant that fits in 4 bits ! 'M' Signed constant that fits in 32 bits ! 'N' Check for 64 bits wide constants for add/sub instructions ! 'G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--'config/pa/pa.h'_ ! 'a' General register 1 ! 'f' Floating point register ! 'q' Shift amount register ! 'x' Floating point register (deprecated) ! 'y' Upper floating point register (32-bit), floating point register (64-bit) ! 'Z' Any register ! 'I' Signed 11-bit integer constant ! 'J' Signed 14-bit integer constant ! 'K' ! Integer constant that can be deposited with a 'zdepi' instruction ! 'L' Signed 5-bit integer constant ! 'M' Integer constant 0 ! 'N' ! Integer constant that can be loaded with a 'ldil' instruction ! 'O' Integer constant whose value plus one is a power of 2 ! 'P' ! Integer constant that can be used for 'and' operations in ! 'depi' and 'extru' instructions ! 'S' Integer constant 31 ! 'U' Integer constant 63 ! 'G' Floating-point constant 0.0 ! 'A' ! A 'lo_sum' data-linkage-table memory operand ! 'Q' A memory operand that can be used as the destination operand of an integer store instruction ! 'R' A scaled or unscaled indexed memory operand ! 'T' A memory operand for floating-point loads and stores ! 'W' A register indirect memory operand ! _picoChip family--'picochip.h'_ ! 'k' Stack register. ! 'f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can be ! used to access memory, but will need a constant offset. In ! the case of the offset being zero, it is more efficient to use ! a pointer register, since this reduces code size. ! 't' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! 'a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! 'I' 4-bit signed integer. ! 'J' 4-bit unsigned integer. ! 'K' 8-bit signed integer. ! 'M' Any constant whose absolute value is no greater than 4-bits. ! 'N' 10-bit signed integer ! 'O' 16-bit signed integer. ! _PowerPC and IBM RS6000--'config/rs6000/constraints.md'_ ! 'b' Address base register ! 'd' Floating point register (containing 64-bit value) ! 'f' Floating point register (containing 32-bit value) ! 'v' Altivec vector register ! 'wa' Any VSX register if the -mvsx option was used or NO_REGS. ! When using any of the register constraints ('wa', 'wd', 'wf', ! 'wg', 'wh', 'wi', 'wj', 'wk', 'wl', 'wm', 'ws', 'wt', 'wu', ! 'wv', 'ww', or 'wy') that take VSX registers, you must use ! '%x' in the template so that the correct register is used. ! Otherwise the register number output in the assembly file will ! be incorrect if an Altivec register is an operand of a VSX ! instruction that expects VSX register numbering. asm ("xvadddp %x0,%x1,%x2" : "=wa" (v1) : "wa" (v2), "wa" (v3)); --- 28235,28710 ---- ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in `asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters ! that usually have very similar meanings across architectures. The most ! commonly used constraints are `m' and `r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! `I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for `asm' statements; therefore, some of the constraints are not ! particularly useful for `asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for `asm' and constraints ! that aren't. The compiler source file mentioned in the table heading ! for each architecture is the definitive reference for the meanings of ! that architecture's constraints. ! _AArch64 family--`config/aarch64/constraints.md'_ ! `k' ! The stack pointer register (`SP') ! ! `w' Floating point or SIMD vector register ! `I' Integer constant that is valid as an immediate operand in an ! `ADD' instruction ! `J' Integer constant that is valid as an immediate operand in a ! `SUB' instruction (once negated) ! `K' Integer constant that can be used with a 32-bit logical instruction ! `L' Integer constant that can be used with a 64-bit logical instruction ! `M' Integer constant that is valid as an immediate operand in a ! 32-bit `MOV' pseudo instruction. The `MOV' may be assembled to one of several different machine instructions depending on the value ! `N' Integer constant that is valid as an immediate operand in a ! 64-bit `MOV' pseudo instruction ! `S' An absolute symbolic address or a label reference ! `Y' Floating point constant zero ! `Z' Integer constant zero ! `Ush' ! The high part (bits 12 and upwards) of the pc-relative ! address of a symbol within 4GB of the instruction ! `Q' A memory address which uses a single base register with no offset ! `Ump' ! A memory address suitable for a load/store pair instruction ! in SI, DI, SF and DF modes ! ! _ARC --`config/arc/constraints.md'_ ! ! `q' ! Registers usable in ARCompact 16-bit instructions: `r0'-`r3', ! `r12'-`r15'. This constraint can only match when the `-mq' option is in effect. ! `e' ! Registers usable as base-regs of memory addresses in ! ARCompact 16-bit memory instructions: `r0'-`r3', `r12'-`r15', ! `sp'. This constraint can only match when the `-mq' option ! is in effect. ! `D' ! ARC FPX (dpfp) 64-bit registers. `D0', `D1'. ! ! `I' A signed 12-bit integer constant. ! `Cal' ! constant for arithmetic/logical operations. This might be ! any constant that can be put into a long immediate by the ! assmbler or linker without involving a PIC relocation. ! `K' A 3-bit unsigned integer constant. ! `L' A 6-bit unsigned integer constant. ! `CnL' One's complement of a 6-bit unsigned integer constant. ! `CmL' Two's complement of a 6-bit unsigned integer constant. ! `M' A 5-bit unsigned integer constant. ! `O' A 7-bit unsigned integer constant. ! `P' A 8-bit unsigned integer constant. ! `H' Any const_double value. ! _ARM family--`config/arm/constraints.md'_ ! ! `w' VFP floating-point register ! `G' The floating-point constant 0.0 ! `I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 ! to 255 rotated by a multiple of 2 ! `J' Integer in the range -4095 to 4095 ! `K' ! Integer that satisfies constraint `I' when inverted (ones complement) ! `L' ! Integer that satisfies constraint `I' when negated (twos complement) ! `M' Integer in the range 0 to 32 ! `Q' A memory reference where the exact address is in a single ! register (``m'' is preferable for `asm' statements) ! `R' An item in the constant pool ! `S' A symbol in the text segment of the current file ! `Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! `Uy' A memory reference suitable for iWMMXt load/store instructions. ! `Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--`config/avr/constraints.md'_ ! ! `l' Registers from r0 to r15 ! `a' Registers from r16 to r23 ! `d' Registers from r16 to r31 ! `w' Registers from r24 to r31. These registers can be used in ! `adiw' command ! `e' Pointer register (r26-r31) ! `b' Base pointer register (r28-r31) ! `q' Stack pointer register (SPH:SPL) ! `t' Temporary register r0 ! `x' Register pair X (r27:r26) ! `y' Register pair Y (r29:r28) ! `z' Register pair Z (r31:r30) ! `I' Constant greater than -1, less than 64 ! `J' Constant greater than -64, less than 1 ! `K' Constant integer 2 ! `L' Constant integer 0 ! `M' Constant that fits in 8 bits ! `N' Constant integer -1 ! `O' Constant integer 8, 16, or 24 ! `P' Constant integer 1 ! `G' A floating point constant 0.0 ! `Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--`config/epiphany/constraints.md'_ ! ! `U16' An unsigned 16-bit constant. ! `K' An unsigned 5-bit constant. ! `L' A signed 11-bit constant. ! `Cm1' ! A signed 11-bit constant added to -1. Can only match when ! the `-m1reg-REG' option is active. ! `Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the `-m1reg-REG' option is active. ! `Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! `-m1reg-REG' option is active. ! `Cal' ! Constant for arithmetic/logical operations. This is like ! `i', except that for position independent code, no symbols / expressions needing relocations are allowed. ! `Csy' Symbolic constant for call/jump instruction. ! `Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless `-mprefer-short-insn-regs' is in effect. ! `Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! `Rct' Core control register class. ! `Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! `Rra' ! Matches the return address if it can be replaced with the ! link register. ! `Rcc' Matches the integer condition code register. ! `Sra' Matches the return address if it is in a stack slot. ! `Cfm' Matches control register values to switch fp mode, which are ! encapsulated in `UNSPEC_FP_MODE'. ! _CR16 Architecture--`config/cr16/cr16.h'_ ! `b' Registers from r0 to r14 (registers without stack pointer) ! `t' Register from r0 to r11 (all 16-bit registers) ! `p' Register from r12 to r15 (all 32-bit registers) ! `I' Signed constant that fits in 4 bits ! `J' Signed constant that fits in 5 bits ! `K' Signed constant that fits in 6 bits ! `L' Unsigned constant that fits in 4 bits ! `M' Signed constant that fits in 32 bits ! `N' Check for 64 bits wide constants for add/sub instructions ! `G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--`config/pa/pa.h'_ ! ! `a' General register 1 ! `f' Floating point register ! `q' Shift amount register ! `x' Floating point register (deprecated) ! `y' Upper floating point register (32-bit), floating point register (64-bit) ! `Z' Any register ! `I' Signed 11-bit integer constant ! `J' Signed 14-bit integer constant ! `K' ! Integer constant that can be deposited with a `zdepi' instruction ! `L' Signed 5-bit integer constant ! `M' Integer constant 0 ! `N' ! Integer constant that can be loaded with a `ldil' instruction ! `O' Integer constant whose value plus one is a power of 2 ! `P' ! Integer constant that can be used for `and' operations in ! `depi' and `extru' instructions ! `S' Integer constant 31 ! `U' Integer constant 63 ! `G' Floating-point constant 0.0 ! `A' ! A `lo_sum' data-linkage-table memory operand ! `Q' A memory operand that can be used as the destination operand of an integer store instruction ! `R' A scaled or unscaled indexed memory operand ! `T' A memory operand for floating-point loads and stores ! `W' A register indirect memory operand ! _picoChip family--`picochip.h'_ ! ! `k' Stack register. ! `f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can ! be used to access memory, but will need a constant offset. ! In the case of the offset being zero, it is more efficient to ! use a pointer register, since this reduces code size. ! `t' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! `a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! `I' 4-bit signed integer. ! `J' 4-bit unsigned integer. ! `K' 8-bit signed integer. ! `M' Any constant whose absolute value is no greater than 4-bits. ! `N' 10-bit signed integer ! `O' 16-bit signed integer. ! ! _PowerPC and IBM RS6000--`config/rs6000/constraints.md'_ ! ! `b' Address base register ! `d' Floating point register (containing 64-bit value) ! `f' Floating point register (containing 32-bit value) ! `v' Altivec vector register ! `wa' Any VSX register if the -mvsx option was used or NO_REGS. ! When using any of the register constraints (`wa', `wd', `wf', ! `wg', `wh', `wi', `wj', `wk', `wl', `wm', `ws', `wt', `wu', ! `wv', `ww', or `wy') that take VSX registers, you must use ! `%x' in the template so that the correct register is used. ! Otherwise the register number output in the assembly file ! will be incorrect if an Altivec register is an operand of a ! VSX instruction that expects VSX register numbering. asm ("xvadddp %x0,%x1,%x2" : "=wa" (v1) : "wa" (v2), "wa" (v3)); *************** _PowerPC and IBM RS6000--'config/rs6000/ *** 28494,28636 **** is not correct. ! 'wd' VSX vector register to hold vector double data or NO_REGS. ! 'wf' VSX vector register to hold vector float data or NO_REGS. ! 'wg' ! If '-mmfpgpr' was used, a floating point register or NO_REGS. ! 'wh' Floating point register if direct moves are available, or NO_REGS. ! 'wi' FP or VSX register to hold 64-bit integers for VSX insns or NO_REGS. ! 'wj' ! FP or VSX register to hold 64-bit integers for direct moves or ! NO_REGS. ! 'wk' FP or VSX register to hold 64-bit doubles for direct moves or NO_REGS. ! 'wl' Floating point register if the LFIWAX instruction is enabled or NO_REGS. ! 'wm' VSX register if direct move instructions are enabled, or NO_REGS. ! 'wn' No register (NO_REGS). ! 'wr' ! General purpose register if 64-bit instructions are enabled or ! NO_REGS. ! 'ws' VSX vector register to hold scalar double values or NO_REGS. ! 'wt' VSX vector register to hold 128 bit integer or NO_REGS. ! 'wu' ! Altivec register to use for float/32-bit int loads/stores or NO_REGS. ! 'wv' ! Altivec register to use for double loads/stores or NO_REGS. ! 'ww' ! FP or VSX register to perform float operations under '-mvsx' or NO_REGS. ! 'wx' Floating point register if the STFIWX instruction is enabled or NO_REGS. ! 'wy' FP or VSX register to perform ISA 2.07 float ops or NO_REGS. ! 'wz' Floating point register if the LFIWZX instruction is enabled or NO_REGS. ! 'wD' Int constant that is the element number of the 64-bit scalar in a vector. ! 'wQ' ! A memory address that will work with the 'lq' and 'stq' instructions. ! 'h' ! 'MQ', 'CTR', or 'LINK' register ! 'q' ! 'MQ' register ! 'c' ! 'CTR' register ! 'l' ! 'LINK' register ! 'x' ! 'CR' register (condition register) number 0 ! 'y' ! 'CR' register (condition register) ! 'z' ! 'XER[CA]' carry bit (part of the XER register) ! 'I' Signed 16-bit constant ! 'J' ! Unsigned 16-bit constant shifted left 16 bits (use 'L' instead ! for 'SImode' constants) ! 'K' Unsigned 16-bit constant ! 'L' Signed 16-bit constant shifted left 16 bits ! 'M' Constant larger than 31 ! 'N' Exact power of 2 ! 'O' Zero ! 'P' Constant whose negation is a signed 16-bit constant ! 'G' Floating point constant that can be loaded into a register with one instruction per word ! 'H' Integer/Floating point constant that can be loaded into a register using three instructions ! 'm' ! Memory operand. Normally, 'm' does not allow addresses that ! update the base register. If '<' or '>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use 'm<>' in an 'asm' statement ! if that 'asm' statement accesses the operand exactly once. ! The 'asm' statement must also use '%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: --- 28714,28856 ---- is not correct. ! `wd' VSX vector register to hold vector double data or NO_REGS. ! `wf' VSX vector register to hold vector float data or NO_REGS. ! `wg' ! If `-mmfpgpr' was used, a floating point register or NO_REGS. ! `wh' Floating point register if direct moves are available, or NO_REGS. ! `wi' FP or VSX register to hold 64-bit integers for VSX insns or NO_REGS. ! `wj' ! FP or VSX register to hold 64-bit integers for direct moves ! or NO_REGS. ! `wk' FP or VSX register to hold 64-bit doubles for direct moves or NO_REGS. ! `wl' Floating point register if the LFIWAX instruction is enabled or NO_REGS. ! `wm' VSX register if direct move instructions are enabled, or NO_REGS. ! `wn' No register (NO_REGS). ! `wr' ! General purpose register if 64-bit instructions are enabled ! or NO_REGS. ! `ws' VSX vector register to hold scalar double values or NO_REGS. ! `wt' VSX vector register to hold 128 bit integer or NO_REGS. ! `wu' ! Altivec register to use for float/32-bit int loads/stores or NO_REGS. ! `wv' ! Altivec register to use for double loads/stores or NO_REGS. ! `ww' ! FP or VSX register to perform float operations under `-mvsx' or NO_REGS. ! `wx' Floating point register if the STFIWX instruction is enabled or NO_REGS. ! `wy' FP or VSX register to perform ISA 2.07 float ops or NO_REGS. ! `wz' Floating point register if the LFIWZX instruction is enabled or NO_REGS. ! `wD' Int constant that is the element number of the 64-bit scalar in a vector. ! `wQ' ! A memory address that will work with the `lq' and `stq' instructions. ! `h' ! `MQ', `CTR', or `LINK' register ! `q' ! `MQ' register ! `c' ! `CTR' register ! `l' ! `LINK' register ! `x' ! `CR' register (condition register) number 0 ! `y' ! `CR' register (condition register) ! `z' ! `XER[CA]' carry bit (part of the XER register) ! `I' Signed 16-bit constant ! `J' ! Unsigned 16-bit constant shifted left 16 bits (use `L' ! instead for `SImode' constants) ! `K' Unsigned 16-bit constant ! `L' Signed 16-bit constant shifted left 16 bits ! `M' Constant larger than 31 ! `N' Exact power of 2 ! `O' Zero ! `P' Constant whose negation is a signed 16-bit constant ! `G' Floating point constant that can be loaded into a register with one instruction per word ! `H' Integer/Floating point constant that can be loaded into a register using three instructions ! `m' ! Memory operand. Normally, `m' does not allow addresses that ! update the base register. If `<' or `>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use `m<>' in an `asm' statement ! if that `asm' statement accesses the operand exactly once. ! The `asm' statement must also use `%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: *************** _PowerPC and IBM RS6000--'config/rs6000/ *** 28642,28724 **** is not. ! 'es' ! A "stable" memory operand; that is, one which does not include ! any automodification of the base register. This used to be ! useful when 'm' allowed automodification of the base register, ! but as those are now only allowed when '<' or '>' is used, ! 'es' is basically the same as 'm' without '<' and '>'. ! 'Q' Memory operand that is an offset from a register (it is ! usually better to use 'm' or 'es' in 'asm' statements) ! 'Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use 'm' or 'es' in 'asm' statements) ! 'R' AIX TOC entry ! 'a' ! Address operand that is an indexed or indirect from a register ! ('p' is preferable for 'asm' statements) ! 'S' Constant suitable as a 64-bit mask operand ! 'T' Constant suitable as a 32-bit mask operand ! 'U' System V Release 4 small data area reference ! 't' AND masks that can be performed by two rldic{l, r} instructions ! 'W' Vector constant that does not require memory ! 'j' Vector constant that is all zeros. ! _Intel 386--'config/i386/constraints.md'_ ! 'R' Legacy register--the eight integer registers available on all ! i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp'). ! 'q' ! Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b', ! 'c', and 'd'; in 64-bit mode, any integer register. ! 'Q' ! Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'. ! 'a' ! The 'a' register. ! 'b' ! The 'b' register. ! 'c' ! The 'c' register. ! 'd' ! The 'd' register. ! 'S' ! The 'si' register. ! 'D' ! The 'di' register. ! 'A' ! The 'a' and 'd' registers. This class is used for ! instructions that return double word results in the 'ax:dx' ! register pair. Single word values will be allocated either in ! 'ax' or 'dx'. For example on i386 the following implements ! 'rdtsc': unsigned long long rdtsc (void) { --- 28862,28947 ---- is not. ! `es' ! A "stable" memory operand; that is, one which does not ! include any automodification of the base register. This used ! to be useful when `m' allowed automodification of the base ! register, but as those are now only allowed when `<' or `>' ! is used, `es' is basically the same as `m' without `<' and ! `>'. ! `Q' Memory operand that is an offset from a register (it is ! usually better to use `m' or `es' in `asm' statements) ! `Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use `m' or `es' in `asm' statements) ! `R' AIX TOC entry ! `a' ! Address operand that is an indexed or indirect from a ! register (`p' is preferable for `asm' statements) ! `S' Constant suitable as a 64-bit mask operand ! `T' Constant suitable as a 32-bit mask operand ! `U' System V Release 4 small data area reference ! `t' AND masks that can be performed by two rldic{l, r} instructions ! `W' Vector constant that does not require memory ! `j' Vector constant that is all zeros. ! ! _Intel 386--`config/i386/constraints.md'_ ! ! `R' Legacy register--the eight integer registers available on all ! i386 processors (`a', `b', `c', `d', `si', `di', `bp', `sp'). ! `q' ! Any register accessible as `Rl'. In 32-bit mode, `a', `b', ! `c', and `d'; in 64-bit mode, any integer register. ! `Q' ! Any register accessible as `Rh': `a', `b', `c', and `d'. ! `a' ! The `a' register. ! `b' ! The `b' register. ! `c' ! The `c' register. ! `d' ! The `d' register. ! `S' ! The `si' register. ! `D' ! The `di' register. ! `A' ! The `a' and `d' registers. This class is used for ! instructions that return double word results in the `ax:dx' ! register pair. Single word values will be allocated either ! in `ax' or `dx'. For example on i386 the following ! implements `rdtsc': unsigned long long rdtsc (void) { *************** _Intel 386--'config/i386/constraints.md' *** 28728,28734 **** } This is not correct on x86_64 as it would allocate tick in ! either 'ax' or 'dx'. You have to use the following variant instead: unsigned long long rdtsc (void) --- 28951,28957 ---- } This is not correct on x86_64 as it would allocate tick in ! either `ax' or `dx'. You have to use the following variant instead: unsigned long long rdtsc (void) *************** _Intel 386--'config/i386/constraints.md' *** 28738,30403 **** return ((unsigned long long)tickh << 32)|tickl; } ! 'f' Any 80387 floating-point (stack) register. ! 't' ! Top of 80387 floating-point stack ('%st(0)'). ! 'u' ! Second from top of 80387 floating-point stack ('%st(1)'). ! 'y' Any MMX register. ! 'x' Any SSE register. ! 'Yz' ! First SSE register ('%xmm0'). ! 'I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! 'J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! 'K' Signed 8-bit integer constant. ! 'L' ! '0xFF' or '0xFFFF', for andsi as a zero-extending move. ! 'M' ! 0, 1, 2, or 3 (shifts for the 'lea' instruction). ! 'N' ! Unsigned 8-bit integer constant (for 'in' and 'out' instructions). ! 'G' Standard 80387 floating point constant. ! 'C' ! Standard SSE floating point constant. ! 'e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! 'Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). - _Intel IA-64--'config/ia64/ia64.h'_ - 'a' - General register 'r0' to 'r3' for 'addl' instruction ! 'b' Branch register ! 'c' ! Predicate register ('c' as in "conditional") ! 'd' Application register residing in M-unit ! 'e' Application register residing in I-unit ! 'f' Floating-point register ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement and postdecrement which require ! printing with '%Pn' on IA-64. ! 'G' Floating-point constant 0.0 or 1.0 ! 'I' 14-bit signed integer constant ! 'J' 22-bit signed integer constant ! 'K' 8-bit signed integer constant for logical instructions ! 'L' 8-bit adjusted signed integer constant for compare pseudo-ops ! 'M' 6-bit unsigned integer constant for shift counts ! 'N' 9-bit signed integer constant for load and store postincrements ! 'O' The constant zero ! 'P' ! 0 or -1 for 'dep' instruction ! 'Q' Non-volatile memory for floating-point loads and stores ! 'R' ! Integer constant in the range 1 to 4 for 'shladd' instruction ! 'S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as 'm' when not used together with '<' ! or '>'. ! _FRV--'config/frv/frv.h'_ ! 'a' ! Register in the class 'ACC_REGS' ('acc0' to 'acc7'). ! 'b' ! Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7'). ! 'c' ! Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0' ! to 'icc3'). ! 'd' ! Register in the class 'GPR_REGS' ('gr0' to 'gr63'). ! 'e' ! Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'f' ! Register in the class 'FPR_REGS' ('fr0' to 'fr63'). ! 'h' ! Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'l' ! Register in the class 'LR_REG' (the 'lr' register). ! 'q' ! Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register ! numbers not divisible by 4 are excluded not in the class but ! through the use of a machine mode larger than 8 bytes. ! 't' ! Register in the class 'ICC_REGS' ('icc0' to 'icc3'). ! 'u' ! Register in the class 'FCC_REGS' ('fcc0' to 'fcc3'). ! 'v' ! Register in the class 'ICR_REGS' ('cc4' to 'cc7'). ! 'w' ! Register in the class 'FCR_REGS' ('cc0' to 'cc3'). ! 'x' ! Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! 'z' ! Register in the class 'SPR_REGS' ('lcr' and 'lr'). ! 'A' ! Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7'). ! 'B' ! Register in the class 'ACCG_REGS' ('accg0' to 'accg7'). ! 'C' ! Register in the class 'CR_REGS' ('cc0' to 'cc7'). ! 'G' Floating point constant zero ! 'I' 6-bit signed integer constant ! 'J' 10-bit signed integer constant ! 'L' 16-bit signed integer constant ! 'M' 16-bit unsigned integer constant ! 'N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! 'O' Constant zero ! 'P' ! 12-bit signed integer constant that is greater than zero--i.e. ! in the range of 1 to 2047. ! _Blackfin family--'config/bfin/constraints.md'_ ! 'a' P register ! 'd' D register ! 'z' A call clobbered P register. ! 'qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is 'A', then the register P0. ! 'D' Even-numbered D register ! 'W' Odd-numbered D register ! 'e' Accumulator register. ! 'A' Even-numbered accumulator register. ! 'B' Odd-numbered accumulator register. ! 'b' I register ! 'v' B register ! 'f' M register ! 'c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! 'C' The CC register. ! 't' LT0 or LT1. ! 'k' LC0 or LC1. ! 'u' LB0 or LB1. ! 'x' Any D, P, B, M, I or L register. ! 'y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! 'w' Any register except accumulators or CC. ! 'Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! 'Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! 'Ks7' Signed 7 bit integer (in the range -64 to 63) ! 'Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! 'Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! 'Ks4' Signed 4 bit integer (in the range -8 to 7) ! 'Ks3' Signed 3 bit integer (in the range -3 to 4) ! 'Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! 'PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! 'PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! 'PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! 'M1' Constant 255. ! 'M2' Constant 65535. ! 'J' An integer constant with exactly a single bit set. ! 'L' An integer constant with all bits set except exactly one. ! 'H' ! 'Q' Any SYMBOL_REF. ! _M32C--'config/m32c/m32c.c'_ ! 'Rsp' ! 'Rfb' ! 'Rsb' ! '$sp', '$fb', '$sb'. ! 'Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! 'Rcl' Any control register, when they're 24 bits wide. ! 'R0w' ! 'R1w' ! 'R2w' ! 'R3w' $r0, $r1, $r2, $r3. ! 'R02' $r0 or $r2, or $r2r0 for 32 bit values. ! 'R13' $r1 or $r3, or $r3r1 for 32 bit values. ! 'Rdi' A register that can hold a 64 bit value. ! 'Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! 'R23' $r2 or $r3 ! 'Raa' Address registers ! 'Raw' Address registers when they're 16 bits wide. ! 'Ral' Address registers when they're 24 bits wide. ! 'Rqi' Registers that can hold QI values. ! 'Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! 'Rsi' Registers that can hold 32 bit values. ! 'Rhi' Registers that can hold 16 bit values. ! 'Rhc' Registers chat can hold 16 bit values, including all control registers. ! 'Rra' $r0 through R1, plus $a0 and $a1. ! 'Rfl' The flags register. ! 'Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! 'Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! 'Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! 'Is3' -8 ... 7 ! 'IS1' -128 ... 127 ! 'IS2' -32768 ... 32767 ! 'IU2' 0 ... 65535 ! 'In4' -8 ... -1 or 1 ... 8 ! 'In5' -16 ... -1 or 1 ... 16 ! 'In6' -32 ... -1 or 1 ... 32 ! 'IM2' -65536 ... -1 ! 'Ilb' An 8 bit value with exactly one bit set. ! 'Ilw' A 16 bit value with exactly one bit set. ! 'Sd' The common src/dest memory addressing modes. ! 'Sa' Memory addressed using $a0 or $a1. ! 'Si' Memory addressed with immediate addresses. ! 'Ss' Memory addressed using the stack pointer ($sp). ! 'Sf' Memory addressed using the frame base register ($fb). ! 'Ss' Memory addressed using the small base register ($sb). ! 'S1' $r1h ! _MeP--'config/mep/constraints.md'_ ! 'a' The $sp register. ! 'b' The $tp register. ! 'c' Any control register. ! 'd' Either the $hi or the $lo register. ! 'em' Coprocessor registers that can be directly loaded ($c0-$c15). ! 'ex' Coprocessor registers that can be moved to each other. ! 'er' Coprocessor registers that can be moved to core registers. ! 'h' The $hi register. ! 'j' The $rpc register. ! 'l' The $lo register. ! 't' Registers which can be used in $tp-relative addressing. ! 'v' The $gp register. ! 'x' The coprocessor registers. ! 'y' The coprocessor control registers. ! 'z' The $0 register. ! 'A' User-defined register set A. ! 'B' User-defined register set B. ! 'C' User-defined register set C. ! 'D' User-defined register set D. ! 'I' Offsets for $gp-rel addressing. ! 'J' Constants that can be used directly with boolean insns. ! 'K' Constants that can be moved directly to registers. ! 'L' Small constants that can be added to registers. ! 'M' Long shift counts. ! 'N' Small constants that can be compared to registers. ! 'O' Constants that can be loaded into the top half of registers. ! 'S' Signed 8-bit immediates. ! 'T' Symbols encoded for $tp-rel or $gp-rel addressing. ! 'U' Non-constant addresses for loading/saving coprocessor registers. ! 'W' The top half of a symbol's value. ! 'Y' A register indirect address without offset. ! 'Z' Symbolic references to the control bus. - _MicroBlaze--'config/microblaze/constraints.md'_ - 'd' - A general register ('r0' to 'r31'). ! 'z' ! A status register ('rmsr', '$fcc1' to '$fcc7'). ! _MIPS--'config/mips/constraints.md'_ ! 'd' ! An address register. This is equivalent to 'r' unless generating MIPS16 code. ! 'f' A floating-point register (if available). ! 'h' ! Formerly the 'hi' register. This constraint is no longer supported. ! 'l' ! The 'lo' register. Use this register to store values that are no bigger than a word. ! 'x' ! The concatenated 'hi' and 'lo' registers. Use this register to store doubleword values. ! 'c' A register suitable for use in an indirect jump. This will ! always be '$25' for '-mabicalls'. ! 'v' ! Register '$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! 'y' ! Equivalent to 'r'; retained for backwards compatibility. ! 'z' A floating-point condition code register. ! 'I' A signed 16-bit constant (for arithmetic instructions). ! 'J' Integer zero. ! 'K' An unsigned 16-bit constant (for logic instructions). ! 'L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using 'lui'. ! 'M' ! A constant that cannot be loaded using 'lui', 'addiu' or ! 'ori'. ! 'N' A constant in the range -65535 to -1 (inclusive). ! 'O' A signed 15-bit constant. ! 'P' A constant in the range 1 to 65535 (inclusive). ! 'G' Floating-point zero. ! 'R' An address that can be used in a non-macro load or store. ! 'ZC' When compiling microMIPS code, this constraint matches a memory operand whose address is formed from a base register ! and a 12-bit offset. These operands can be used for microMIPS ! instructions such as 'll' and 'sc'. When not compiling for ! microMIPS code, 'ZC' is equivalent to 'R'. ! 'ZD' When compiling microMIPS code, this constraint matches an address operand that is formed from a base register and a 12-bit offset. These operands can be used for microMIPS ! instructions such as 'prefetch'. When not compiling for ! microMIPS code, 'ZD' is equivalent to 'p'. ! _Motorola 680x0--'config/m68k/constraints.md'_ ! 'a' Address register ! 'd' Data register ! 'f' 68881 floating-point register, if available ! 'I' Integer in the range 1 to 8 ! 'J' 16-bit signed number ! 'K' Signed number whose magnitude is greater than 0x80 ! 'L' Integer in the range -8 to -1 ! 'M' Signed number whose magnitude is greater than 0x100 ! 'N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! 'O' 16 (for rotate using swap) ! 'P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! 'R' Numbers that mov3q can handle ! 'G' Floating point constant that is not a 68881 constant ! 'S' Operands that satisfy 'm' when -mpcrel is in effect ! 'T' Operands that satisfy 's' when -mpcrel is not in effect ! 'Q' Address register indirect addressing mode ! 'U' Register offset addressing ! 'W' const_call_operand ! 'Cs' symbol_ref or const ! 'Ci' const_int ! 'C0' const_int 0 ! 'Cj' Range of signed numbers that don't fit in 16 bits ! 'Cmvq' Integers valid for mvq ! 'Capsw' Integers valid for a moveq followed by a swap ! 'Cmvz' Integers valid for mvz ! 'Cmvs' Integers valid for mvs ! 'Ap' push_operand ! 'Ac' Non-register operands allowed in clr ! _Moxie--'config/moxie/constraints.md'_ ! 'A' An absolute address ! 'B' An offset address ! 'W' A register indirect memory operand ! 'I' A constant in the range of 0 to 255. ! 'N' A constant in the range of 0 to -255. - _MSP430-'config/msp430/constraints.md'_ ! 'R12' Register R12. ! 'R13' Register R13. ! 'K' Integer constant 1. ! 'L' Integer constant -1^20..1^19. ! 'M' Integer constant 1-4. ! 'Ya' Memory references which do not require an extended MOVX instruction. ! 'Yl' Memory reference, labels only. ! 'Ys' Memory reference, stack only. ! _NDS32--'config/nds32/constraints.md'_ ! 'w' LOW register class $r0 to $r7 constraint for V3/V3M ISA. ! 'l' LOW register class $r0 to $r7. ! 'd' MIDDLE register class $r0 to $r11, $r16 to $r19. ! 'h' HIGH register class $r12 to $r14, $r20 to $r31. ! 't' Temporary assist register $ta (i.e. $r15). ! 'k' Stack register $sp. ! 'Iu03' Unsigned immediate 3-bit value. ! 'In03' Negative immediate 3-bit value in the range of -7-0. ! 'Iu04' Unsigned immediate 4-bit value. ! 'Is05' Signed immediate 5-bit value. ! 'Iu05' Unsigned immediate 5-bit value. ! 'In05' Negative immediate 5-bit value in the range of -31-0. ! 'Ip05' Unsigned immediate 5-bit value for movpi45 instruction with range 16-47. ! 'Iu06' Unsigned immediate 6-bit value constraint for addri36.sp instruction. ! 'Iu08' Unsigned immediate 8-bit value. ! 'Iu09' Unsigned immediate 9-bit value. ! 'Is10' Signed immediate 10-bit value. ! 'Is11' Signed immediate 11-bit value. ! 'Is15' Signed immediate 15-bit value. ! 'Iu15' Unsigned immediate 15-bit value. ! 'Ic15' ! A constant which is not in the range of imm15u but ok for bclr ! instruction. ! 'Ie15' ! A constant which is not in the range of imm15u but ok for bset ! instruction. ! 'It15' ! A constant which is not in the range of imm15u but ok for btgl ! instruction. ! 'Ii15' A constant whose compliment value is in the range of imm15u and ok for bitci instruction. ! 'Is16' Signed immediate 16-bit value. ! 'Is17' Signed immediate 17-bit value. ! 'Is19' Signed immediate 19-bit value. ! 'Is20' Signed immediate 20-bit value. ! 'Ihig' The immediate value that can be simply set high 20-bit. ! 'Izeb' The immediate value 0xff. ! 'Izeh' The immediate value 0xffff. ! 'Ixls' The immediate value 0x01. ! 'Ix11' The immediate value 0x7ff. ! 'Ibms' The immediate value with power of 2. ! 'Ifex' The immediate value with power of 2 minus 1. ! 'U33' Memory constraint for 333 format. ! 'U45' Memory constraint for 45 format. ! 'U37' Memory constraint for 37 format. ! _Nios II family--'config/nios2/constraints.md'_ ! 'I' Integer that is valid as an immediate operand in an ! instruction taking a signed 16-bit number. Range -32768 to 32767. ! 'J' Integer that is valid as an immediate operand in an ! instruction taking an unsigned 16-bit number. Range 0 to 65535. ! 'K' Integer that is valid as an immediate operand in an instruction taking only the upper 16-bits of a 32-bit number. Range 32-bit numbers with the lower 16-bits being 0. ! 'L' Integer that is valid as an immediate operand for a shift ! instruction. Range 0 to 31. ! 'M' Integer that is valid as an immediate operand for only the ! value 0. Can be used in conjunction with the format modifier ! 'z' to use 'r0' instead of '0' in the assembly output. ! 'N' Integer that is valid as an immediate operand for a custom ! instruction opcode. Range 0 to 255. ! 'S' Matches immediates which are addresses in the small data ! section and therefore can be added to 'gp' as a 16-bit immediate to re-create their 32-bit value. - _PDP-11--'config/pdp11/constraints.md'_ - 'a' - Floating point registers AC0 through AC3. These can be loaded - from/to memory with a single instruction. ! 'd' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! 'f' Any of the floating point registers (AC0 through AC5). ! 'G' Floating point constant 0. ! 'I' An integer constant that fits in 16 bits. ! 'J' An integer constant whose low order 16 bits are zero. ! 'K' An integer constant that does not meet the constraints for ! codes 'I' or 'J'. ! 'L' The integer constant 1. ! 'M' The integer constant -1. ! 'N' The integer constant 0. ! 'O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts rather ! than a single variable-length shift. ! 'Q' A memory reference which requires an additional word (address or offset) after the opcode. ! 'R' A memory reference that is encoded within the opcode. - _RL78--'config/rl78/constraints.md'_ ! 'Int3' An integer constant in the range 1 ... 7. ! 'Int8' An integer constant in the range 0 ... 255. ! 'J' An integer constant in the range -255 ... 0 ! 'K' The integer constant 1. ! 'L' The integer constant -1. ! 'M' The integer constant 0. ! 'N' The integer constant 2. ! 'O' The integer constant -2. ! 'P' An integer constant in the range 1 ... 15. ! 'Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! 'Qsc' The synthetic compare types-gt, lt, ge, and le. ! 'Wab' A memory reference with an absolute address. ! 'Wbc' ! A memory reference using 'BC' as a base register, with an optional offset. ! 'Wca' ! A memory reference using 'AX', 'BC', 'DE', or 'HL' for the address, for calls. ! 'Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! 'Wd2' ! A memory reference using 'DE' as a base register, with an optional offset. ! 'Wde' ! A memory reference using 'DE' as a base register, without any offset. ! 'Wfr' Any memory reference to an address in the far address space. ! 'Wh1' ! A memory reference using 'HL' as a base register, with an optional one-byte offset. ! 'Whb' ! A memory reference using 'HL' as a base register, with 'B' or ! 'C' as the index register. ! 'Whl' ! A memory reference using 'HL' as a base register, without any offset. ! 'Ws1' ! A memory reference using 'SP' as a base register, with an optional one-byte offset. ! 'Y' Any memory reference to an address in the near address space. ! 'A' ! The 'AX' register. ! 'B' ! The 'BC' register. ! 'D' ! The 'DE' register. ! 'R' ! 'A' through 'L' registers. ! 'S' ! The 'SP' register. ! 'T' ! The 'HL' register. ! 'Z08W' ! The 16-bit 'R8' register. ! 'Z10W' ! The 16-bit 'R10' register. ! 'Zint' ! The registers reserved for interrupts ('R24' to 'R31'). ! 'a' ! The 'A' register. ! 'b' ! The 'B' register. ! 'c' ! The 'C' register. ! 'd' ! The 'D' register. ! 'e' ! The 'E' register. ! 'h' ! The 'H' register. ! 'l' ! The 'L' register. ! 'v' The virtual registers. - 'w' - The 'PSW' register. - 'x' - The 'X' register. ! _RX--'config/rx/constraints.md'_ ! 'Q' ! An address which does not involve register indirect addressing ! or pre/post increment/decrement addressing. ! 'Symbol' A symbol reference. ! 'Int08' A constant in the range -256 to 255, inclusive. ! 'Sint08' A constant in the range -128 to 127, inclusive. ! 'Sint16' A constant in the range -32768 to 32767, inclusive. ! 'Sint24' A constant in the range -8388608 to 8388607, inclusive. ! 'Uint04' A constant in the range 0 to 15, inclusive. - _SPARC--'config/sparc/sparc.h'_ - 'f' - Floating-point register on the SPARC-V8 architecture and lower - floating-point register on the SPARC-V9 architecture. ! 'e' ! Floating-point register. It is equivalent to 'f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! 'c' Floating-point condition code register. ! 'd' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'h' 64-bit global or out register for the SPARC-V8+ architecture. ! 'C' The constant all-ones, for floating-point. ! 'A' Signed 5-bit constant ! 'D' A vector constant ! 'I' Signed 13-bit constant ! 'J' Zero ! 'K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the 'sethi' instruction) ! 'L' ! A constant in the range supported by 'movcc' instructions (11-bit signed immediate) ! 'M' ! A constant in the range supported by 'movrcc' instructions (10-bit signed immediate) ! 'N' ! Same as 'K', except that it verifies that bits that are not in ! the lower 32-bit range are all zero. Must be used instead of ! 'K' for modes wider than 'SImode' ! 'O' The constant 4096 ! 'G' Floating-point zero ! 'H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! 'P' The constant -1 ! 'Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! 'R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! 'S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum instruction ! sequence ! 'T' Memory address aligned to an 8-byte boundary ! 'U' Even register ! 'W' ! Memory address for 'e' constraint registers ! 'w' Memory address with only a base register ! 'Y' Vector zero ! _SPU--'config/spu/spu.h'_ ! 'a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! 'c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! 'd' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 64 bit value. ! 'f' ! An immediate which can be loaded with 'fsmbi'. ! 'A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! 'B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! 'C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! 'D' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 32 bit value. ! 'I' A constant in the range [-64, 63] for shift/rotate instructions. ! 'J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! 'K' A signed 10-bit constant for most arithmetic instructions. ! 'M' ! A signed 16 bit immediate for 'stop'. ! 'N' ! An unsigned 16-bit constant for 'iohl' and 'fsmbi'. ! 'O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! 'P' An unsigned 3-bit constant for 16-byte rotates and shifts ! 'R' Call operand, reg, for indirect calls ! 'S' Call operand, symbol, for relative calls. ! 'T' Call operand, const_int, for absolute calls. ! 'U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! 'W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! 'Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! 'Z' ! An immediate for the 'iohl' instruction. const_int is sign extended to 128 bit. ! _S/390 and zSeries--'config/s390/s390.h'_ ! 'a' Address register (general purpose register except r0) ! 'c' Condition code register ! 'd' Data register (arbitrary general purpose register) ! 'f' Floating-point register ! 'I' Unsigned 8-bit constant (0-255) ! 'J' Unsigned 12-bit constant (0-4095) ! 'K' Signed 16-bit constant (-32768-32767) ! 'L' Value appropriate as displacement. ! '(0..4095)' for short displacement ! '(-524288..524287)' for long displacement ! 'M' Constant integer with a value of 0x7fffffff. ! 'N' Multiple letter constraint followed by 4 parameter letters. ! '0..9:' number of the part counting from most to least significant ! 'H,Q:' mode of the part ! 'D,S,H:' mode of the containing operand ! '0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant has ! a value different from its other parts. ! 'Q' Memory reference without index register and with short displacement. ! 'R' Memory reference with index register and short displacement. ! 'S' Memory reference without index register but with long displacement. ! 'T' Memory reference with index register and long displacement. ! 'U' Pointer with short displacement. ! 'W' Pointer with long displacement. ! 'Y' Shift count operand. ! _Score family--'config/score/score.h'_ ! 'd' Registers from r0 to r32. ! 'e' Registers from r0 to r16. ! 't' r8--r11 or r22--r27 registers. ! 'h' hi register. ! 'l' lo register. ! 'x' hi + lo register. ! 'q' cnt register. ! 'y' lcb register. ! 'z' scb register. ! 'a' cnt + lcb + scb register. ! 'c' cr0--cr15 register. ! 'b' cp1 registers. ! 'f' cp2 registers. ! 'i' cp3 registers. ! 'j' cp1 + cp2 + cp3 registers. ! 'I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! 'J' Unsigned 5 bit integer (in the range 0 to 31). ! 'K' Unsigned 16 bit integer (in the range 0 to 65535). ! 'L' Signed 16 bit integer (in the range -32768 to 32767). ! 'M' Unsigned 14 bit integer (in the range 0 to 16383). ! 'N' Signed 14 bit integer (in the range -8192 to 8191). ! 'Z' Any SYMBOL_REF. ! _Xstormy16--'config/stormy16/stormy16.h'_ ! 'a' Register r0. ! 'b' Register r1. ! 'c' Register r2. ! 'd' Register r8. ! 'e' Registers r0 through r7. ! 't' Registers r0 and r1. ! 'y' The carry register. ! 'z' Registers r8 and r9. ! 'I' A constant between 0 and 3 inclusive. ! 'J' A constant that has exactly one bit set. ! 'K' A constant that has exactly one bit clear. ! 'L' A constant between 0 and 255 inclusive. ! 'M' A constant between -255 and 0 inclusive. ! 'N' A constant between -3 and 0 inclusive. ! 'O' A constant between 1 and 4 inclusive. ! 'P' A constant between -4 and -1 inclusive. ! 'Q' A memory reference that is a stack push. ! 'R' A memory reference that is a stack pop. ! 'S' A memory reference that refers to a constant address of known value. ! 'T' The register indicated by Rx (not implemented yet). ! 'U' A constant that is not between 2 and 15 inclusive. ! 'Z' The constant 0. ! _TI C6X family--'config/c6x/constraints.md'_ ! 'a' Register file A (A0-A31). ! 'b' Register file B (B0-B31). ! 'A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! 'B' Predicate registers in register file B (B0-B2). ! 'C' A call-used register in register file B (B0-B9, B16-B31). ! 'Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! 'Db' Register file B, excluding predicate registers (B3-B31). ! 'Iu4' Integer constant in the range 0 ... 15. ! 'Iu5' Integer constant in the range 0 ... 31. ! 'In5' Integer constant in the range -31 ... 0. ! 'Is5' Integer constant in the range -16 ... 15. ! 'I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! 'IuB' Integer constant in the range 0 ... 65535. ! 'IsB' Integer constant in the range -32768 ... 32767. ! 'IsC' ! Integer constant in the range -2^{20} ... 2^{20} - 1. ! 'Jc' Integer constant that is a valid mask for the clr instruction. ! 'Js' Integer constant that is a valid mask for the set instruction. ! 'Q' Memory location with A base register. ! 'R' Memory location with B base register. ! 'Z' Register B14 (aka DP). ! _TILE-Gx--'config/tilegx/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Unsigned 16-bit integer constant. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! 'M' A bit mask suitable for the BFINS instruction. ! 'N' Integer constant that is a byte tiled out eight times. ! 'O' The integer zero constant. ! 'P' Integer constant that is a sign-extended byte tiled out as four shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! 'T' A 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' An 8-element vector constant with identical elements. ! 'Y' A 4-element vector constant with identical elements. ! 'Z0' The integer constant 0xffffffff. ! 'Z1' The integer constant 0xffffffff00000000. ! _TILEPro--'config/tilepro/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Nonzero integer constant with low 16 bits zero. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! 'M' A bit mask suitable for the MM instruction. ! 'N' Integer constant that is a byte tiled out four times. ! 'O' The integer zero constant. ! 'P' ! Integer constant that is a sign-extended byte tiled out as two ! shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' A 4-element vector constant with identical elements. ! 'Y' A 2-element vector constant with identical elements. ! _Xtensa--'config/xtensa/constraints.md'_ ! 'a' General-purpose 32-bit register ! 'b' One-bit boolean register ! 'A' MAC16 40-bit accumulator register ! 'I' Signed 12-bit integer constant, for use in MOVI instructions ! 'J' Signed 8-bit integer constant, for use in ADDI instructions ! 'K' Integer constant valid for BccI instructions ! 'L' Unsigned constant valid for BccUI instructions  File: gcc.info, Node: Asm Labels, Next: Explicit Reg Vars, Prev: Constraints, Up: C Extensions --- 28961,30749 ---- return ((unsigned long long)tickh << 32)|tickl; } ! `f' Any 80387 floating-point (stack) register. ! `t' ! Top of 80387 floating-point stack (`%st(0)'). ! `u' ! Second from top of 80387 floating-point stack (`%st(1)'). ! `y' Any MMX register. ! `x' Any SSE register. ! `Yz' ! First SSE register (`%xmm0'). ! `I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! `J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! `K' Signed 8-bit integer constant. ! `L' ! `0xFF' or `0xFFFF', for andsi as a zero-extending move. ! `M' ! 0, 1, 2, or 3 (shifts for the `lea' instruction). ! `N' ! Unsigned 8-bit integer constant (for `in' and `out' instructions). ! `G' Standard 80387 floating point constant. ! `C' ! SSE constant zero operand. ! `e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! `Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). ! _Intel IA-64--`config/ia64/ia64.h'_ ! ! `a' ! General register `r0' to `r3' for `addl' instruction ! ! `b' Branch register ! `c' ! Predicate register (`c' as in "conditional") ! `d' Application register residing in M-unit ! `e' Application register residing in I-unit ! `f' Floating-point register ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement and postdecrement which ! require printing with `%Pn' on IA-64. ! `G' Floating-point constant 0.0 or 1.0 ! `I' 14-bit signed integer constant ! `J' 22-bit signed integer constant ! `K' 8-bit signed integer constant for logical instructions ! `L' 8-bit adjusted signed integer constant for compare pseudo-ops ! `M' 6-bit unsigned integer constant for shift counts ! `N' 9-bit signed integer constant for load and store postincrements ! `O' The constant zero ! `P' ! 0 or -1 for `dep' instruction ! `Q' Non-volatile memory for floating-point loads and stores ! `R' ! Integer constant in the range 1 to 4 for `shladd' instruction ! `S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as `m' when not used together with `<' ! or `>'. ! _FRV--`config/frv/frv.h'_ ! `a' ! Register in the class `ACC_REGS' (`acc0' to `acc7'). ! `b' ! Register in the class `EVEN_ACC_REGS' (`acc0' to `acc7'). ! `c' ! Register in the class `CC_REGS' (`fcc0' to `fcc3' and `icc0' ! to `icc3'). ! `d' ! Register in the class `GPR_REGS' (`gr0' to `gr63'). ! `e' ! Register in the class `EVEN_REGS' (`gr0' to `gr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `f' ! Register in the class `FPR_REGS' (`fr0' to `fr63'). ! `h' ! Register in the class `FEVEN_REGS' (`fr0' to `fr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `l' ! Register in the class `LR_REG' (the `lr' register). ! `q' ! Register in the class `QUAD_REGS' (`gr2' to `gr63'). ! Register numbers not divisible by 4 are excluded not in the ! class but through the use of a machine mode larger than 8 ! bytes. ! `t' ! Register in the class `ICC_REGS' (`icc0' to `icc3'). ! `u' ! Register in the class `FCC_REGS' (`fcc0' to `fcc3'). ! `v' ! Register in the class `ICR_REGS' (`cc4' to `cc7'). ! `w' ! Register in the class `FCR_REGS' (`cc0' to `cc3'). ! ! `x' ! Register in the class `QUAD_FPR_REGS' (`fr0' to `fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! `z' ! Register in the class `SPR_REGS' (`lcr' and `lr'). ! `A' ! Register in the class `QUAD_ACC_REGS' (`acc0' to `acc7'). ! `B' ! Register in the class `ACCG_REGS' (`accg0' to `accg7'). ! `C' ! Register in the class `CR_REGS' (`cc0' to `cc7'). ! `G' Floating point constant zero ! `I' 6-bit signed integer constant ! `J' 10-bit signed integer constant ! `L' 16-bit signed integer constant ! `M' 16-bit unsigned integer constant ! `N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! `O' Constant zero ! `P' ! 12-bit signed integer constant that is greater than ! zero--i.e. in the range of 1 to 2047. ! ! _Blackfin family--`config/bfin/constraints.md'_ ! ! `a' P register ! `d' D register ! `z' A call clobbered P register. ! `qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is `A', then the register P0. ! `D' Even-numbered D register ! `W' Odd-numbered D register ! `e' Accumulator register. ! `A' Even-numbered accumulator register. ! `B' Odd-numbered accumulator register. ! `b' I register ! `v' B register ! `f' M register ! `c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! `C' The CC register. ! `t' LT0 or LT1. ! `k' LC0 or LC1. ! `u' LB0 or LB1. ! `x' Any D, P, B, M, I or L register. ! `y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! `w' Any register except accumulators or CC. ! `Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! `Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! `Ks7' Signed 7 bit integer (in the range -64 to 63) ! `Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! `Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! `Ks4' Signed 4 bit integer (in the range -8 to 7) ! `Ks3' Signed 3 bit integer (in the range -3 to 4) ! `Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! `PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! `PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! `PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! `M1' Constant 255. ! `M2' Constant 65535. ! `J' An integer constant with exactly a single bit set. ! `L' An integer constant with all bits set except exactly one. ! `H' ! `Q' Any SYMBOL_REF. ! _M32C--`config/m32c/m32c.c'_ ! `Rsp' ! `Rfb' ! `Rsb' ! `$sp', `$fb', `$sb'. ! ! `Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! `Rcl' Any control register, when they're 24 bits wide. ! `R0w' ! `R1w' ! `R2w' ! `R3w' $r0, $r1, $r2, $r3. ! `R02' $r0 or $r2, or $r2r0 for 32 bit values. ! `R13' $r1 or $r3, or $r3r1 for 32 bit values. ! `Rdi' A register that can hold a 64 bit value. ! `Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! `R23' $r2 or $r3 ! `Raa' Address registers ! `Raw' Address registers when they're 16 bits wide. ! `Ral' Address registers when they're 24 bits wide. ! `Rqi' Registers that can hold QI values. ! `Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! `Rsi' Registers that can hold 32 bit values. ! `Rhi' Registers that can hold 16 bit values. ! `Rhc' Registers chat can hold 16 bit values, including all control registers. ! `Rra' $r0 through R1, plus $a0 and $a1. ! `Rfl' The flags register. ! `Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! `Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! `Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! `Is3' -8 ... 7 ! `IS1' -128 ... 127 ! `IS2' -32768 ... 32767 ! `IU2' 0 ... 65535 ! `In4' -8 ... -1 or 1 ... 8 ! `In5' -16 ... -1 or 1 ... 16 ! `In6' -32 ... -1 or 1 ... 32 ! `IM2' -65536 ... -1 ! `Ilb' An 8 bit value with exactly one bit set. ! `Ilw' A 16 bit value with exactly one bit set. ! `Sd' The common src/dest memory addressing modes. ! `Sa' Memory addressed using $a0 or $a1. ! `Si' Memory addressed with immediate addresses. ! `Ss' Memory addressed using the stack pointer ($sp). ! `Sf' Memory addressed using the frame base register ($fb). ! `Ss' Memory addressed using the small base register ($sb). ! `S1' $r1h ! _MeP--`config/mep/constraints.md'_ ! `a' The $sp register. ! `b' The $tp register. ! `c' Any control register. ! `d' Either the $hi or the $lo register. ! `em' Coprocessor registers that can be directly loaded ($c0-$c15). ! `ex' Coprocessor registers that can be moved to each other. ! `er' Coprocessor registers that can be moved to core registers. ! `h' The $hi register. ! `j' The $rpc register. ! `l' The $lo register. ! `t' Registers which can be used in $tp-relative addressing. ! `v' The $gp register. ! `x' The coprocessor registers. ! `y' The coprocessor control registers. ! `z' The $0 register. ! `A' User-defined register set A. ! `B' User-defined register set B. ! `C' User-defined register set C. ! `D' User-defined register set D. ! `I' Offsets for $gp-rel addressing. ! `J' Constants that can be used directly with boolean insns. ! `K' Constants that can be moved directly to registers. ! `L' Small constants that can be added to registers. ! `M' Long shift counts. ! `N' Small constants that can be compared to registers. ! `O' Constants that can be loaded into the top half of registers. ! `S' Signed 8-bit immediates. ! `T' Symbols encoded for $tp-rel or $gp-rel addressing. ! `U' Non-constant addresses for loading/saving coprocessor registers. ! `W' The top half of a symbol's value. ! `Y' A register indirect address without offset. ! `Z' Symbolic references to the control bus. ! _MicroBlaze--`config/microblaze/constraints.md'_ ! `d' ! A general register (`r0' to `r31'). ! ! `z' ! A status register (`rmsr', `$fcc1' to `$fcc7'). ! ! ! _MIPS--`config/mips/constraints.md'_ ! ! `d' ! An address register. This is equivalent to `r' unless generating MIPS16 code. ! `f' A floating-point register (if available). ! `h' ! Formerly the `hi' register. This constraint is no longer supported. ! `l' ! The `lo' register. Use this register to store values that are no bigger than a word. ! `x' ! The concatenated `hi' and `lo' registers. Use this register to store doubleword values. ! `c' A register suitable for use in an indirect jump. This will ! always be `$25' for `-mabicalls'. ! `v' ! Register `$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! `y' ! Equivalent to `r'; retained for backwards compatibility. ! `z' A floating-point condition code register. ! `I' A signed 16-bit constant (for arithmetic instructions). ! `J' Integer zero. ! `K' An unsigned 16-bit constant (for logic instructions). ! `L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using `lui'. ! `M' ! A constant that cannot be loaded using `lui', `addiu' or ! `ori'. ! `N' A constant in the range -65535 to -1 (inclusive). ! `O' A signed 15-bit constant. ! `P' A constant in the range 1 to 65535 (inclusive). ! `G' Floating-point zero. ! `R' An address that can be used in a non-macro load or store. ! `ZC' When compiling microMIPS code, this constraint matches a memory operand whose address is formed from a base register ! and a 12-bit offset. These operands can be used for ! microMIPS instructions such as `ll' and `sc'. When not ! compiling for microMIPS code, `ZC' is equivalent to `R'. ! `ZD' When compiling microMIPS code, this constraint matches an address operand that is formed from a base register and a 12-bit offset. These operands can be used for microMIPS ! instructions such as `prefetch'. When not compiling for ! microMIPS code, `ZD' is equivalent to `p'. ! _Motorola 680x0--`config/m68k/constraints.md'_ ! ! `a' Address register ! `d' Data register ! `f' 68881 floating-point register, if available ! `I' Integer in the range 1 to 8 ! `J' 16-bit signed number ! `K' Signed number whose magnitude is greater than 0x80 ! `L' Integer in the range -8 to -1 ! `M' Signed number whose magnitude is greater than 0x100 ! `N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! `O' 16 (for rotate using swap) ! `P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! `R' Numbers that mov3q can handle ! `G' Floating point constant that is not a 68881 constant ! `S' Operands that satisfy 'm' when -mpcrel is in effect ! `T' Operands that satisfy 's' when -mpcrel is not in effect ! `Q' Address register indirect addressing mode ! `U' Register offset addressing ! `W' const_call_operand ! `Cs' symbol_ref or const ! `Ci' const_int ! `C0' const_int 0 ! `Cj' Range of signed numbers that don't fit in 16 bits ! `Cmvq' Integers valid for mvq ! `Capsw' Integers valid for a moveq followed by a swap ! `Cmvz' Integers valid for mvz ! `Cmvs' Integers valid for mvs ! `Ap' push_operand ! `Ac' Non-register operands allowed in clr ! ! _Moxie--`config/moxie/constraints.md'_ ! ! `A' An absolute address ! `B' An offset address ! `W' A register indirect memory operand ! `I' A constant in the range of 0 to 255. ! `N' A constant in the range of 0 to -255. ! _MSP430-`config/msp430/constraints.md'_ ! ! `R12' Register R12. ! `R13' Register R13. ! `K' Integer constant 1. ! `L' Integer constant -1^20..1^19. ! `M' Integer constant 1-4. ! `Ya' Memory references which do not require an extended MOVX instruction. ! `Yl' Memory reference, labels only. ! `Ys' Memory reference, stack only. ! ! _NDS32--`config/nds32/constraints.md'_ ! ! `w' LOW register class $r0 to $r7 constraint for V3/V3M ISA. ! ! `l' LOW register class $r0 to $r7. ! ! `d' MIDDLE register class $r0 to $r11, $r16 to $r19. ! ! `h' HIGH register class $r12 to $r14, $r20 to $r31. ! ! `t' Temporary assist register $ta (i.e. $r15). ! ! `k' Stack register $sp. ! ! `Iu03' Unsigned immediate 3-bit value. ! ! `In03' Negative immediate 3-bit value in the range of -7-0. ! ! `Iu04' Unsigned immediate 4-bit value. ! ! `Is05' Signed immediate 5-bit value. ! ! `Iu05' Unsigned immediate 5-bit value. ! ! `In05' Negative immediate 5-bit value in the range of -31-0. ! ! `Ip05' Unsigned immediate 5-bit value for movpi45 instruction with range 16-47. ! ! `Iu06' Unsigned immediate 6-bit value constraint for addri36.sp instruction. ! ! `Iu08' Unsigned immediate 8-bit value. ! ! `Iu09' Unsigned immediate 9-bit value. ! ! `Is10' Signed immediate 10-bit value. ! ! `Is11' Signed immediate 11-bit value. ! ! `Is15' Signed immediate 15-bit value. ! ! `Iu15' Unsigned immediate 15-bit value. ! ! `Ic15' ! A constant which is not in the range of imm15u but ok for ! bclr instruction. ! ! `Ie15' ! A constant which is not in the range of imm15u but ok for ! bset instruction. ! ! `It15' ! A constant which is not in the range of imm15u but ok for ! btgl instruction. ! ! `Ii15' A constant whose compliment value is in the range of imm15u and ok for bitci instruction. ! ! `Is16' Signed immediate 16-bit value. ! ! `Is17' Signed immediate 17-bit value. ! ! `Is19' Signed immediate 19-bit value. ! ! `Is20' Signed immediate 20-bit value. ! ! `Ihig' The immediate value that can be simply set high 20-bit. ! ! `Izeb' The immediate value 0xff. ! ! `Izeh' The immediate value 0xffff. ! ! `Ixls' The immediate value 0x01. ! ! `Ix11' The immediate value 0x7ff. ! ! `Ibms' The immediate value with power of 2. ! ! `Ifex' The immediate value with power of 2 minus 1. ! ! `U33' Memory constraint for 333 format. ! ! `U45' Memory constraint for 45 format. ! ! `U37' Memory constraint for 37 format. ! _Nios II family--`config/nios2/constraints.md'_ ! `I' Integer that is valid as an immediate operand in an ! instruction taking a signed 16-bit number. Range -32768 to 32767. ! `J' Integer that is valid as an immediate operand in an ! instruction taking an unsigned 16-bit number. Range 0 to 65535. ! `K' Integer that is valid as an immediate operand in an instruction taking only the upper 16-bits of a 32-bit number. Range 32-bit numbers with the lower 16-bits being 0. ! `L' Integer that is valid as an immediate operand for a shift ! instruction. Range 0 to 31. ! `M' Integer that is valid as an immediate operand for only the ! value 0. Can be used in conjunction with the format modifier ! `z' to use `r0' instead of `0' in the assembly output. ! `N' Integer that is valid as an immediate operand for a custom ! instruction opcode. Range 0 to 255. ! `S' Matches immediates which are addresses in the small data ! section and therefore can be added to `gp' as a 16-bit immediate to re-create their 32-bit value. ! _PDP-11--`config/pdp11/constraints.md'_ ! ! `a' ! Floating point registers AC0 through AC3. These can be ! loaded from/to memory with a single instruction. ! ! `d' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! `f' Any of the floating point registers (AC0 through AC5). ! `G' Floating point constant 0. ! `I' An integer constant that fits in 16 bits. ! `J' An integer constant whose low order 16 bits are zero. ! `K' An integer constant that does not meet the constraints for ! codes `I' or `J'. ! `L' The integer constant 1. ! `M' The integer constant -1. ! `N' The integer constant 0. ! `O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts ! rather than a single variable-length shift. ! `Q' A memory reference which requires an additional word (address or offset) after the opcode. ! `R' A memory reference that is encoded within the opcode. ! _RL78--`config/rl78/constraints.md'_ ! ! `Int3' An integer constant in the range 1 ... 7. ! ! `Int8' An integer constant in the range 0 ... 255. ! ! `J' An integer constant in the range -255 ... 0 ! ! `K' The integer constant 1. ! ! `L' The integer constant -1. ! ! `M' The integer constant 0. ! ! `N' The integer constant 2. ! ! `O' The integer constant -2. ! ! `P' An integer constant in the range 1 ... 15. ! ! `Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! ! `Qsc' The synthetic compare types-gt, lt, ge, and le. ! ! `Wab' A memory reference with an absolute address. ! ! `Wbc' ! A memory reference using `BC' as a base register, with an optional offset. ! ! `Wca' ! A memory reference using `AX', `BC', `DE', or `HL' for the address, for calls. ! ! `Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! ! `Wd2' ! A memory reference using `DE' as a base register, with an optional offset. ! ! `Wde' ! A memory reference using `DE' as a base register, without any offset. ! ! `Wfr' Any memory reference to an address in the far address space. ! ! `Wh1' ! A memory reference using `HL' as a base register, with an optional one-byte offset. ! ! `Whb' ! A memory reference using `HL' as a base register, with `B' or ! `C' as the index register. ! ! `Whl' ! A memory reference using `HL' as a base register, without any offset. ! ! `Ws1' ! A memory reference using `SP' as a base register, with an optional one-byte offset. ! ! `Y' Any memory reference to an address in the near address space. ! ! `A' ! The `AX' register. ! ! `B' ! The `BC' register. ! ! `D' ! The `DE' register. ! ! `R' ! `A' through `L' registers. ! ! `S' ! The `SP' register. ! ! `T' ! The `HL' register. ! ! `Z08W' ! The 16-bit `R8' register. ! ! `Z10W' ! The 16-bit `R10' register. ! ! `Zint' ! The registers reserved for interrupts (`R24' to `R31'). ! ! `a' ! The `A' register. ! ! `b' ! The `B' register. ! ! `c' ! The `C' register. ! ! `d' ! The `D' register. ! ! `e' ! The `E' register. ! ! `h' ! The `H' register. ! ! `l' ! The `L' register. ! ! `v' The virtual registers. ! `w' ! The `PSW' register. ! `x' ! The `X' register. ! ! ! _RX--`config/rx/constraints.md'_ ! ! `Q' ! An address which does not involve register indirect ! addressing or pre/post increment/decrement addressing. ! ! `Symbol' A symbol reference. ! `Int08' A constant in the range -256 to 255, inclusive. ! `Sint08' A constant in the range -128 to 127, inclusive. ! `Sint16' A constant in the range -32768 to 32767, inclusive. ! `Sint24' A constant in the range -8388608 to 8388607, inclusive. ! `Uint04' A constant in the range 0 to 15, inclusive. ! _SPARC--`config/sparc/sparc.h'_ ! ! `f' ! Floating-point register on the SPARC-V8 architecture and ! lower floating-point register on the SPARC-V9 architecture. ! ! `e' ! Floating-point register. It is equivalent to `f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! `c' Floating-point condition code register. ! `d' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `h' 64-bit global or out register for the SPARC-V8+ architecture. ! `C' The constant all-ones, for floating-point. ! `A' Signed 5-bit constant ! `D' A vector constant ! `I' Signed 13-bit constant ! `J' Zero ! `K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the `sethi' instruction) ! `L' ! A constant in the range supported by `movcc' instructions (11-bit signed immediate) ! `M' ! A constant in the range supported by `movrcc' instructions (10-bit signed immediate) ! `N' ! Same as `K', except that it verifies that bits that are not ! in the lower 32-bit range are all zero. Must be used instead ! of `K' for modes wider than `SImode' ! `O' The constant 4096 ! `G' Floating-point zero ! `H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! `P' The constant -1 ! `Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! `R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! `S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum ! instruction sequence ! `T' Memory address aligned to an 8-byte boundary ! `U' Even register ! `W' ! Memory address for `e' constraint registers ! `w' Memory address with only a base register ! `Y' Vector zero ! ! _SPU--`config/spu/spu.h'_ ! ! `a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! `c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! `d' ! An immediate for the `iohl' instruction. const_int is ! treated as a 64 bit value. ! `f' ! An immediate which can be loaded with `fsmbi'. ! `A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! `B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! `C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! `D' ! An immediate for the `iohl' instruction. const_int is ! treated as a 32 bit value. ! `I' A constant in the range [-64, 63] for shift/rotate instructions. ! `J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! `K' A signed 10-bit constant for most arithmetic instructions. ! `M' ! A signed 16 bit immediate for `stop'. ! `N' ! An unsigned 16-bit constant for `iohl' and `fsmbi'. ! `O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! `P' An unsigned 3-bit constant for 16-byte rotates and shifts ! `R' Call operand, reg, for indirect calls ! `S' Call operand, symbol, for relative calls. ! `T' Call operand, const_int, for absolute calls. ! `U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! `W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! `Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! `Z' ! An immediate for the `iohl' instruction. const_int is sign extended to 128 bit. ! ! _S/390 and zSeries--`config/s390/s390.h'_ ! ! `a' Address register (general purpose register except r0) ! `c' Condition code register ! `d' Data register (arbitrary general purpose register) ! `f' Floating-point register ! `I' Unsigned 8-bit constant (0-255) ! `J' Unsigned 12-bit constant (0-4095) ! `K' Signed 16-bit constant (-32768-32767) ! `L' Value appropriate as displacement. ! `(0..4095)' for short displacement ! ! `(-524288..524287)' for long displacement ! `M' Constant integer with a value of 0x7fffffff. ! `N' Multiple letter constraint followed by 4 parameter letters. ! `0..9:' number of the part counting from most to least significant ! ! `H,Q:' mode of the part ! ! `D,S,H:' mode of the containing operand ! ! `0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant ! has a value different from its other parts. ! `Q' Memory reference without index register and with short displacement. ! `R' Memory reference with index register and short displacement. ! `S' Memory reference without index register but with long displacement. ! `T' Memory reference with index register and long displacement. ! `U' Pointer with short displacement. ! `W' Pointer with long displacement. ! `Y' Shift count operand. ! ! _Score family--`config/score/score.h'_ ! ! `d' Registers from r0 to r32. ! `e' Registers from r0 to r16. ! `t' r8--r11 or r22--r27 registers. ! `h' hi register. ! `l' lo register. ! `x' hi + lo register. ! `q' cnt register. ! `y' lcb register. ! `z' scb register. ! `a' cnt + lcb + scb register. ! `c' cr0--cr15 register. ! `b' cp1 registers. ! `f' cp2 registers. ! `i' cp3 registers. ! `j' cp1 + cp2 + cp3 registers. ! `I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! `J' Unsigned 5 bit integer (in the range 0 to 31). ! `K' Unsigned 16 bit integer (in the range 0 to 65535). ! `L' Signed 16 bit integer (in the range -32768 to 32767). ! `M' Unsigned 14 bit integer (in the range 0 to 16383). ! `N' Signed 14 bit integer (in the range -8192 to 8191). ! `Z' Any SYMBOL_REF. ! _Xstormy16--`config/stormy16/stormy16.h'_ ! ! `a' Register r0. ! `b' Register r1. ! `c' Register r2. ! `d' Register r8. ! `e' Registers r0 through r7. ! `t' Registers r0 and r1. ! `y' The carry register. ! `z' Registers r8 and r9. ! `I' A constant between 0 and 3 inclusive. ! `J' A constant that has exactly one bit set. ! `K' A constant that has exactly one bit clear. ! `L' A constant between 0 and 255 inclusive. ! `M' A constant between -255 and 0 inclusive. ! `N' A constant between -3 and 0 inclusive. ! `O' A constant between 1 and 4 inclusive. ! `P' A constant between -4 and -1 inclusive. ! `Q' A memory reference that is a stack push. ! `R' A memory reference that is a stack pop. ! `S' A memory reference that refers to a constant address of known value. ! `T' The register indicated by Rx (not implemented yet). ! `U' A constant that is not between 2 and 15 inclusive. ! `Z' The constant 0. ! ! _TI C6X family--`config/c6x/constraints.md'_ ! ! `a' Register file A (A0-A31). ! `b' Register file B (B0-B31). ! `A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! `B' Predicate registers in register file B (B0-B2). ! `C' A call-used register in register file B (B0-B9, B16-B31). ! `Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! `Db' Register file B, excluding predicate registers (B3-B31). ! `Iu4' Integer constant in the range 0 ... 15. ! `Iu5' Integer constant in the range 0 ... 31. ! `In5' Integer constant in the range -31 ... 0. ! `Is5' Integer constant in the range -16 ... 15. ! `I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! `IuB' Integer constant in the range 0 ... 65535. ! `IsB' Integer constant in the range -32768 ... 32767. ! `IsC' ! Integer constant in the range -2^20 ... 2^20 - 1. ! `Jc' Integer constant that is a valid mask for the clr instruction. ! `Js' Integer constant that is a valid mask for the set instruction. ! `Q' Memory location with A base register. ! `R' Memory location with B base register. ! `Z' Register B14 (aka DP). ! ! _TILE-Gx--`config/tilegx/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Unsigned 16-bit integer constant. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! `M' A bit mask suitable for the BFINS instruction. ! `N' Integer constant that is a byte tiled out eight times. ! `O' The integer zero constant. ! `P' Integer constant that is a sign-extended byte tiled out as four shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! `T' A 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' An 8-element vector constant with identical elements. ! `Y' A 4-element vector constant with identical elements. ! `Z0' The integer constant 0xffffffff. ! `Z1' The integer constant 0xffffffff00000000. ! ! _TILEPro--`config/tilepro/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Nonzero integer constant with low 16 bits zero. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! `M' A bit mask suitable for the MM instruction. ! `N' Integer constant that is a byte tiled out four times. ! `O' The integer zero constant. ! `P' ! Integer constant that is a sign-extended byte tiled out as ! two shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' A 4-element vector constant with identical elements. ! `Y' A 2-element vector constant with identical elements. ! ! _Xtensa--`config/xtensa/constraints.md'_ ! ! `a' General-purpose 32-bit register ! `b' One-bit boolean register ! `A' MAC16 40-bit accumulator register ! `I' Signed 12-bit integer constant, for use in MOVI instructions ! `J' Signed 8-bit integer constant, for use in ADDI instructions ! `K' Integer constant valid for BccI instructions ! `L' Unsigned constant valid for BccUI instructions + +  File: gcc.info, Node: Asm Labels, Next: Explicit Reg Vars, Prev: Constraints, Up: C Extensions *************** File: gcc.info, Node: Asm Labels, Next *** 30405,30417 **** ============================================= You can specify the name to be used in the assembler code for a C ! function or variable by writing the 'asm' (or '__asm__') keyword after the declarator as follows: int foo asm ("myfoo") = 2; ! This specifies that the name to be used for the variable 'foo' in the ! assembler code should be 'myfoo' rather than the usual '_foo'. On systems where an underscore is normally prepended to the name of a C function or variable, this feature allows you to define names for the --- 30751,30763 ---- ============================================= You can specify the name to be used in the assembler code for a C ! function or variable by writing the `asm' (or `__asm__') keyword after the declarator as follows: int foo asm ("myfoo") = 2; ! This specifies that the name to be used for the variable `foo' in the ! assembler code should be `myfoo' rather than the usual `_foo'. On systems where an underscore is normally prepended to the name of a C function or variable, this feature allows you to define names for the *************** Reg Vars::. GCC presently accepts such *** 30424,30432 **** probably be changed to issue an error, rather than a warning, in the future. ! You cannot use 'asm' in this way in a function _definition_; but you ! can get the same effect by writing a declaration for the function before ! its definition and putting 'asm' there, like this: extern func () asm ("FUNC"); --- 30770,30778 ---- probably be changed to issue an error, rather than a warning, in the future. ! You cannot use `asm' in this way in a function _definition_; but you ! can get the same effect by writing a declaration for the function ! before its definition and putting `asm' there, like this: extern func () asm ("FUNC"); *************** register variable should be allocated. *** 30457,30475 **** * Local register variables in specific registers do not reserve the registers, except at the point where they are used as input or ! output operands in an 'asm' statement and the 'asm' statement itself is not deleted. The compiler's data flow analysis is capable of determining where the specified registers contain live values, and where they are available for other uses. Stores into ! local register variables may be deleted when they appear to be dead ! according to dataflow analysis. References to local register variables may be deleted or moved or simplified. These local variables are sometimes convenient for use with the ! extended 'asm' feature (*note Extended Asm::), if you want to write ! one output of the assembler instruction directly into a particular ! register. (This works provided the register you specify fits the ! constraints specified for that operand in the 'asm'.) * Menu: --- 30803,30822 ---- * Local register variables in specific registers do not reserve the registers, except at the point where they are used as input or ! output operands in an `asm' statement and the `asm' statement itself is not deleted. The compiler's data flow analysis is capable of determining where the specified registers contain live values, and where they are available for other uses. Stores into ! local register variables may be deleted when they appear to be ! dead according to dataflow analysis. References to local register variables may be deleted or moved or simplified. These local variables are sometimes convenient for use with the ! extended `asm' feature (*note Extended Asm::), if you want to ! write one output of the assembler instruction directly into a ! particular register. (This works provided the register you ! specify fits the constraints specified for that operand in the ! `asm'.) * Menu: *************** You can define a global register variabl *** 30486,30504 **** register int *foo asm ("a5"); ! Here 'a5' is the name of the register that should be used. Choose a register that is normally saved and restored by function calls on your machine, so that library routines will not clobber it. Naturally the register name is cpu-dependent, so you need to ! conditionalize your program according to cpu type. The register 'a5' is ! a good choice on a 68000 for a variable of pointer type. On machines ! with register windows, be sure to choose a "global" register that is not ! affected magically by the function call mechanism. In addition, different operating systems on the same CPU may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register '%a5'. Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should --- 30833,30851 ---- register int *foo asm ("a5"); ! Here `a5' is the name of the register that should be used. Choose a register that is normally saved and restored by function calls on your machine, so that library routines will not clobber it. Naturally the register name is cpu-dependent, so you need to ! conditionalize your program according to cpu type. The register `a5' ! is a good choice on a 68000 for a variable of pointer type. On ! machines with register windows, be sure to choose a "global" register ! that is not affected magically by the function call mechanism. In addition, different operating systems on the same CPU may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register `%a5'. Eventually there may be a way of asking the compiler to choose a register automatically, but first we need to figure out how it should *************** library routines may temporarily use the *** 30518,30537 **** (unless you recompile them specially for the task at hand). It is not safe for one function that uses a global register variable to ! call another such function 'foo' by way of a third function 'lose' that is compiled without knowledge of this variable (i.e. in a different source file in which the variable isn't declared). This is because ! 'lose' might save the register and put some other value there. For example, you can't expect a global register variable to be available in ! the comparison-function that you pass to 'qsort', since 'qsort' might have put something else in that register. (If you are prepared to ! recompile 'qsort' with the same global register variable, you can solve this problem.) ! If you want to recompile 'qsort' or other source files that do not actually use your global register variable, so that they do not use that register for any other purpose, then it suffices to specify the compiler ! option '-ffixed-REG'. You need not actually add a global register declaration to their source code. A function that can alter the value of a global register variable --- 30865,30884 ---- (unless you recompile them specially for the task at hand). It is not safe for one function that uses a global register variable to ! call another such function `foo' by way of a third function `lose' that is compiled without knowledge of this variable (i.e. in a different source file in which the variable isn't declared). This is because ! `lose' might save the register and put some other value there. For example, you can't expect a global register variable to be available in ! the comparison-function that you pass to `qsort', since `qsort' might have put something else in that register. (If you are prepared to ! recompile `qsort' with the same global register variable, you can solve this problem.) ! If you want to recompile `qsort' or other source files that do not actually use your global register variable, so that they do not use that register for any other purpose, then it suffices to specify the compiler ! option `-ffixed-REG'. You need not actually add a global register declaration to their source code. A function that can alter the value of a global register variable *************** return. Therefore, the function that is *** 30541,30553 **** of the program that uses the global register variable must explicitly save and restore the value that belongs to its caller. ! On most machines, 'longjmp' restores to each global register variable ! the value it had at the time of the 'setjmp'. On some machines, ! however, 'longjmp' does not change the value of global register ! variables. To be portable, the function that called 'setjmp' should make other arrangements to save the values of the global register ! variables, and to restore them in a 'longjmp'. This way, the same thing ! happens regardless of what 'longjmp' does. All global register variable declarations must precede all function definitions. If such a declaration could appear after function --- 30888,30900 ---- of the program that uses the global register variable must explicitly save and restore the value that belongs to its caller. ! On most machines, `longjmp' restores to each global register variable ! the value it had at the time of the `setjmp'. On some machines, ! however, `longjmp' does not change the value of global register ! variables. To be portable, the function that called `setjmp' should make other arrangements to save the values of the global register ! variables, and to restore them in a `longjmp'. This way, the same ! thing happens regardless of what `longjmp' does. All global register variable declarations must precede all function definitions. If such a declaration could appear after function *************** from being used for other purposes in th *** 30558,30566 **** executable file has no means to supply initial contents for a register. On the SPARC, there are reports that g3 ... g7 are suitable registers, ! but certain library functions, such as 'getwd', as well as the ! subroutines for division and remainder, modify g3 and g4. g1 and g2 are ! local temporaries. On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of course, it does not do to use more than a few of those. --- 30905,30913 ---- executable file has no means to supply initial contents for a register. On the SPARC, there are reports that g3 ... g7 are suitable registers, ! but certain library functions, such as `getwd', as well as the ! subroutines for division and remainder, modify g3 and g4. g1 and g2 ! are local temporaries. On the 68000, a2 ... a5 should be suitable, as should d2 ... d7. Of course, it does not do to use more than a few of those. *************** this: *** 30576,30584 **** register int *foo asm ("a5"); ! Here 'a5' is the name of the register that should be used. Note that ! this is the same syntax used for defining global register variables, but ! for a local variable it appears within a function. Naturally the register name is cpu-dependent, but this is not a problem, since specific registers are most often useful with explicit --- 30923,30931 ---- register int *foo asm ("a5"); ! Here `a5' is the name of the register that should be used. Note that ! this is the same syntax used for defining global register variables, ! but for a local variable it appears within a function. Naturally the register name is cpu-dependent, but this is not a problem, since specific registers are most often useful with explicit *************** type. *** 30588,30594 **** In addition, operating systems on one type of cpu may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register '%a5'. Defining such a register variable does not reserve the register; it remains available for other uses in places where flow control determines --- 30935,30941 ---- In addition, operating systems on one type of cpu may differ in how they name the registers; then you need additional conditionals. For ! example, some 68000 operating systems call this register `%a5'. Defining such a register variable does not reserve the register; it remains available for other uses in places where flow control determines *************** the variable's value is not live. *** 30597,30622 **** This option does not guarantee that GCC generates code that has this variable in the register you specify at all times. You may not code an explicit reference to this register in the _assembler instruction ! template_ part of an 'asm' statement and assume it always refers to this ! variable. However, using the variable as an 'asm' _operand_ guarantees ! that the specified register is used for the operand. ! Stores into local register variables may be deleted when they appear to ! be dead according to dataflow analysis. References to local register ! variables may be deleted or moved or simplified. As for global register variables, it's recommended that you choose a register that is normally saved and restored by function calls on your ! machine, so that library routines will not clobber it. A common pitfall ! is to initialize multiple call-clobbered registers with arbitrary ! expressions, where a function call or library call for an arithmetic ! operator overwrites a register value from a previous assignment, for ! example 'r0' below: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; In those cases, a solution is to use a temporary variable for each ! arbitrary expression. *Note Example of asm with clobbered asm reg::.  File: gcc.info, Node: Alternate Keywords, Next: Incomplete Enums, Prev: Explicit Reg Vars, Up: C Extensions --- 30944,30969 ---- This option does not guarantee that GCC generates code that has this variable in the register you specify at all times. You may not code an explicit reference to this register in the _assembler instruction ! template_ part of an `asm' statement and assume it always refers to ! this variable. However, using the variable as an `asm' _operand_ ! guarantees that the specified register is used for the operand. ! Stores into local register variables may be deleted when they appear ! to be dead according to dataflow analysis. References to local ! register variables may be deleted or moved or simplified. As for global register variables, it's recommended that you choose a register that is normally saved and restored by function calls on your ! machine, so that library routines will not clobber it. A common ! pitfall is to initialize multiple call-clobbered registers with ! arbitrary expressions, where a function call or library call for an ! arithmetic operator overwrites a register value from a previous ! assignment, for example `r0' below: register int *p1 asm ("r0") = ...; register int *p2 asm ("r1") = ...; In those cases, a solution is to use a temporary variable for each ! arbitrary expression. *Note Example of asm with clobbered asm reg::.  File: gcc.info, Node: Alternate Keywords, Next: Incomplete Enums, Prev: Explicit Reg Vars, Up: C Extensions *************** File: gcc.info, Node: Alternate Keyword *** 30624,30643 **** 6.45 Alternate Keywords ======================= ! '-ansi' and the various '-std' options disable certain keywords. This causes trouble when you want to use GNU C extensions, or a general-purpose header file that should be usable by all programs, ! including ISO C programs. The keywords 'asm', 'typeof' and 'inline' are ! not available in programs compiled with '-ansi' or '-std' (although ! 'inline' can be used in a program compiled with '-std=c99' or ! '-std=c11'). The ISO C99 keyword 'restrict' is only available when ! '-std=gnu99' (which will eventually be the default) or '-std=c99' (or ! the equivalent '-std=iso9899:1999'), or an option for a later standard version, is used. ! The way to solve these problems is to put '__' at the beginning and end ! of each problematical keyword. For example, use '__asm__' instead of ! 'asm', and '__inline__' instead of 'inline'. Other C compilers won't accept these alternative keywords; if you want to compile with another compiler, you can define the alternate keywords --- 30971,30990 ---- 6.45 Alternate Keywords ======================= ! `-ansi' and the various `-std' options disable certain keywords. This causes trouble when you want to use GNU C extensions, or a general-purpose header file that should be usable by all programs, ! including ISO C programs. The keywords `asm', `typeof' and `inline' ! are not available in programs compiled with `-ansi' or `-std' (although ! `inline' can be used in a program compiled with `-std=c99' or ! `-std=c11'). The ISO C99 keyword `restrict' is only available when ! `-std=gnu99' (which will eventually be the default) or `-std=c99' (or ! the equivalent `-std=iso9899:1999'), or an option for a later standard version, is used. ! The way to solve these problems is to put `__' at the beginning and ! end of each problematical keyword. For example, use `__asm__' instead ! of `asm', and `__inline__' instead of `inline'. Other C compilers won't accept these alternative keywords; if you want to compile with another compiler, you can define the alternate keywords *************** this: *** 30648,30674 **** #define __asm__ asm #endif ! '-pedantic' and other options cause warnings for many GNU C extensions. You can prevent such warnings within one expression by writing ! '__extension__' before the expression. '__extension__' has no effect aside from this.  File: gcc.info, Node: Incomplete Enums, Next: Function Names, Prev: Alternate Keywords, Up: C Extensions ! 6.46 Incomplete 'enum' Types ============================ ! You can define an 'enum' tag without specifying its possible values. This results in an incomplete type, much like what you get if you write ! 'struct foo' without describing the elements. A later declaration that does specify the possible values completes the type. You can't allocate variables or storage using the type while it is incomplete. However, you can work with pointers to that type. This extension may not be very useful, but it makes the handling of ! 'enum' more consistent with the way 'struct' and 'union' are handled. This extension is not supported by GNU C++. --- 30995,31021 ---- #define __asm__ asm #endif ! `-pedantic' and other options cause warnings for many GNU C extensions. You can prevent such warnings within one expression by writing ! `__extension__' before the expression. `__extension__' has no effect aside from this.  File: gcc.info, Node: Incomplete Enums, Next: Function Names, Prev: Alternate Keywords, Up: C Extensions ! 6.46 Incomplete `enum' Types ============================ ! You can define an `enum' tag without specifying its possible values. This results in an incomplete type, much like what you get if you write ! `struct foo' without describing the elements. A later declaration that does specify the possible values completes the type. You can't allocate variables or storage using the type while it is incomplete. However, you can work with pointers to that type. This extension may not be very useful, but it makes the handling of ! `enum' more consistent with the way `struct' and `union' are handled. This extension is not supported by GNU C++. *************** File: gcc.info, Node: Function Names, *** 30679,30700 **** ============================== GCC provides three magic variables that hold the name of the current ! function, as a string. The first of these is '__func__', which is part of the C99 standard: ! The identifier '__func__' is implicitly declared by the translator as ! if, immediately following the opening brace of each function definition, ! the declaration static const char __func__[] = "function-name"; appeared, where function-name is the name of the lexically-enclosing function. This name is the unadorned name of the function. ! '__FUNCTION__' is another name for '__func__'. Older versions of GCC ! recognize only this name. However, it is not standardized. For maximum ! portability, we recommend you use '__func__', but provide a fallback ! definition with the preprocessor: #if __STDC_VERSION__ < 199901L # if __GNUC__ >= 2 --- 31026,31047 ---- ============================== GCC provides three magic variables that hold the name of the current ! function, as a string. The first of these is `__func__', which is part of the C99 standard: ! The identifier `__func__' is implicitly declared by the translator as ! if, immediately following the opening brace of each function ! definition, the declaration static const char __func__[] = "function-name"; appeared, where function-name is the name of the lexically-enclosing function. This name is the unadorned name of the function. ! `__FUNCTION__' is another name for `__func__'. Older versions of GCC ! recognize only this name. However, it is not standardized. For ! maximum portability, we recommend you use `__func__', but provide a ! fallback definition with the preprocessor: #if __STDC_VERSION__ < 199901L # if __GNUC__ >= 2 *************** definition with the preprocessor: *** 30704,30711 **** # endif #endif ! In C, '__PRETTY_FUNCTION__' is yet another name for '__func__'. ! However, in C++, '__PRETTY_FUNCTION__' contains the type signature of the function as well as its bare name. For example, this program: extern "C" { --- 31051,31058 ---- # endif #endif ! In C, `__PRETTY_FUNCTION__' is yet another name for `__func__'. ! However, in C++, `__PRETTY_FUNCTION__' contains the type signature of the function as well as its bare name. For example, this program: extern "C" { *************** gives this output: *** 30734,30745 **** __FUNCTION__ = sub __PRETTY_FUNCTION__ = void a::sub(int) ! These identifiers are not preprocessor macros. In GCC 3.3 and earlier, ! in C only, '__FUNCTION__' and '__PRETTY_FUNCTION__' were treated as ! string literals; they could be used to initialize 'char' arrays, and ! they could be concatenated with other string literals. GCC 3.4 and ! later treat them as variables, like '__func__'. In C++, '__FUNCTION__' ! and '__PRETTY_FUNCTION__' have always been variables.  File: gcc.info, Node: Return Address, Next: Vector Extensions, Prev: Function Names, Up: C Extensions --- 31081,31092 ---- __FUNCTION__ = sub __PRETTY_FUNCTION__ = void a::sub(int) ! These identifiers are not preprocessor macros. In GCC 3.3 and ! earlier, in C only, `__FUNCTION__' and `__PRETTY_FUNCTION__' were ! treated as string literals; they could be used to initialize `char' ! arrays, and they could be concatenated with other string literals. GCC ! 3.4 and later treat them as variables, like `__func__'. In C++, ! `__FUNCTION__' and `__PRETTY_FUNCTION__' have always been variables.  File: gcc.info, Node: Return Address, Next: Vector Extensions, Prev: Function Names, Up: C Extensions *************** function. *** 30754,30800 **** LEVEL) This function returns the return address of the current function, or of one of its callers. The LEVEL argument is number of frames ! to scan up the call stack. A value of '0' yields the return ! address of the current function, a value of '1' yields the return address of the caller of the current function, and so forth. When inlining the expected behavior is that the function returns the address of the function that is returned to. To work around this ! behavior use the 'noinline' function attribute. The LEVEL argument must be a constant integer. On some machines it may be impossible to determine the return address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns '0' or a random value. In addition, ! '__builtin_frame_address' may be used to determine if the top of the stack has been reached. Additional post-processing of the returned value may be needed, see ! '__builtin_extract_return_addr'. This function should only be used with a nonzero argument for debugging purposes. -- Built-in Function: void * __builtin_extract_return_addr (void *ADDR) ! The address as returned by '__builtin_return_address' may have to be fed through this function to get the actual encoded address. ! For example, on the 31-bit S/390 platform the highest bit has to be ! masked out, or on SPARC platforms an offset has to be added for the ! true next instruction to be executed. If no fixup is needed, this function simply passes through ADDR. -- Built-in Function: void * __builtin_frob_return_address (void *ADDR) ! This function does the reverse of '__builtin_extract_return_addr'. -- Built-in Function: void * __builtin_frame_address (unsigned int LEVEL) ! This function is similar to '__builtin_return_address', but it returns the address of the function frame rather than the return ! address of the function. Calling '__builtin_frame_address' with a ! value of '0' yields the frame address of the current function, a ! value of '1' yields the frame address of the caller of the current function, and so forth. The frame is the area on the stack that holds local variables and --- 31101,31147 ---- LEVEL) This function returns the return address of the current function, or of one of its callers. The LEVEL argument is number of frames ! to scan up the call stack. A value of `0' yields the return ! address of the current function, a value of `1' yields the return address of the caller of the current function, and so forth. When inlining the expected behavior is that the function returns the address of the function that is returned to. To work around this ! behavior use the `noinline' function attribute. The LEVEL argument must be a constant integer. On some machines it may be impossible to determine the return address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns `0' or a random value. In addition, ! `__builtin_frame_address' may be used to determine if the top of the stack has been reached. Additional post-processing of the returned value may be needed, see ! `__builtin_extract_return_addr'. This function should only be used with a nonzero argument for debugging purposes. -- Built-in Function: void * __builtin_extract_return_addr (void *ADDR) ! The address as returned by `__builtin_return_address' may have to be fed through this function to get the actual encoded address. ! For example, on the 31-bit S/390 platform the highest bit has to ! be masked out, or on SPARC platforms an offset has to be added for ! the true next instruction to be executed. If no fixup is needed, this function simply passes through ADDR. -- Built-in Function: void * __builtin_frob_return_address (void *ADDR) ! This function does the reverse of `__builtin_extract_return_addr'. -- Built-in Function: void * __builtin_frame_address (unsigned int LEVEL) ! This function is similar to `__builtin_return_address', but it returns the address of the function frame rather than the return ! address of the function. Calling `__builtin_frame_address' with a ! value of `0' yields the frame address of the current function, a ! value of `1' yields the frame address of the caller of the current function, and so forth. The frame is the area on the stack that holds local variables and *************** function. *** 30803,30815 **** exact definition depends upon the processor and the calling convention. If the processor has a dedicated frame pointer register, and the function has a frame, then ! '__builtin_frame_address' returns the value of the frame pointer register. On some machines it may be impossible to determine the frame address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns '0' if the first frame pointer is properly initialized by the startup code. This function should only be used with a nonzero argument for --- 31150,31162 ---- exact definition depends upon the processor and the calling convention. If the processor has a dedicated frame pointer register, and the function has a frame, then ! `__builtin_frame_address' returns the value of the frame pointer register. On some machines it may be impossible to determine the frame address of any function other than the current one; in such cases, or when the top of the stack has been reached, this function ! returns `0' if the first frame pointer is properly initialized by the startup code. This function should only be used with a nonzero argument for *************** same time. For example, on the i386 the *** 30827,30866 **** can be used this way. The first step in using these extensions is to provide the necessary ! data types. This should be done using an appropriate 'typedef': typedef int v4si __attribute__ ((vector_size (16))); ! The 'int' type specifies the base type, while the attribute specifies the vector size for the variable, measured in bytes. For example, the ! declaration above causes the compiler to set the mode for the 'v4si' ! type to be 16 bytes wide and divided into 'int' sized units. For a ! 32-bit 'int' this means a vector of 4 units of 4 bytes, and the ! corresponding mode of 'foo' is V4SI. ! The 'vector_size' attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are ! allowed in conjunction with this construct. Only sizes that are a power of two are currently allowed. All the basic integer types can be used as base types, both as signed ! and as unsigned: 'char', 'short', 'int', 'long', 'long long'. In ! addition, 'float' and 'double' can be used to build floating-point vector types. Specifying a combination that is not valid for the current architecture causes GCC to synthesize the instructions using a narrower mode. For ! example, if you specify a variable of type 'V4SI' and your architecture does not allow for this specific SIMD type, GCC produces code that uses ! 4 'SIs'. The types defined in this manner can be used with a subset of normal C operations. Currently, GCC allows using the following operators on ! these types: '+, -, *, /, unary minus, ^, |, &, ~, %'. ! The operations behave like C++ 'valarrays'. Addition is defined as the ! addition of the corresponding elements of the operands. For example, in ! the code below, each of the 4 elements in A is added to the corresponding 4 elements in B and the resulting vector is stored in C. typedef int v4si __attribute__ ((vector_size (16))); --- 31174,31213 ---- can be used this way. The first step in using these extensions is to provide the necessary ! data types. This should be done using an appropriate `typedef': typedef int v4si __attribute__ ((vector_size (16))); ! The `int' type specifies the base type, while the attribute specifies the vector size for the variable, measured in bytes. For example, the ! declaration above causes the compiler to set the mode for the `v4si' ! type to be 16 bytes wide and divided into `int' sized units. For a ! 32-bit `int' this means a vector of 4 units of 4 bytes, and the ! corresponding mode of `foo' is V4SI. ! The `vector_size' attribute is only applicable to integral and float scalars, although arrays, pointers, and function return values are ! allowed in conjunction with this construct. Only sizes that are a power of two are currently allowed. All the basic integer types can be used as base types, both as signed ! and as unsigned: `char', `short', `int', `long', `long long'. In ! addition, `float' and `double' can be used to build floating-point vector types. Specifying a combination that is not valid for the current architecture causes GCC to synthesize the instructions using a narrower mode. For ! example, if you specify a variable of type `V4SI' and your architecture does not allow for this specific SIMD type, GCC produces code that uses ! 4 `SIs'. The types defined in this manner can be used with a subset of normal C operations. Currently, GCC allows using the following operators on ! these types: `+, -, *, /, unary minus, ^, |, &, ~, %'. ! The operations behave like C++ `valarrays'. Addition is defined as ! the addition of the corresponding elements of the operands. For ! example, in the code below, each of the 4 elements in A is added to the corresponding 4 elements in B and the resulting vector is stored in C. typedef int v4si __attribute__ ((vector_size (16))); *************** minus or complement operators on a vecto *** 30875,30889 **** elements are the negative or complemented values of the corresponding elements in the operand. ! It is possible to use shifting operators '<<', '>>' on integer-type ! vectors. The operation is defined as following: '{a0, a1, ..., an} >> ! {b0, b1, ..., bn} == {a0 >> b0, a1 >> b1, ..., an >> bn}'. Vector operands must have the same number of elements. For convenience, it is allowed to use a binary vector operation where ! one operand is a scalar. In that case the compiler transforms the scalar operand into a vector where each element is the scalar from the ! operation. The transformation happens only if the scalar could be safely converted to the vector-element type. Consider the following code. --- 31222,31236 ---- elements are the negative or complemented values of the corresponding elements in the operand. ! It is possible to use shifting operators `<<', `>>' on integer-type ! vectors. The operation is defined as following: `{a0, a1, ..., an} >> ! {b0, b1, ..., bn} == {a0 >> b0, a1 >> b1, ..., an >> bn}'. Vector operands must have the same number of elements. For convenience, it is allowed to use a binary vector operation where ! one operand is a scalar. In that case the compiler transforms the scalar operand into a vector where each element is the scalar from the ! operation. The transformation happens only if the scalar could be safely converted to the vector-element type. Consider the following code. *************** code. *** 30897,30917 **** a = l + a; /* Error, cannot convert long to int. */ ! Vectors can be subscripted as if the vector were an array with the same ! number of elements and base type. Out of bound accesses invoke undefined behavior at run time. Warnings for out of bound accesses for ! vector subscription can be enabled with '-Warray-bounds'. ! Vector comparison is supported with standard comparison operators: '==, ! !=, <, <=, >, >='. Comparison operands can be vector expressions of ! integer-type or real-type. Comparison between integer-type vectors and ! real-type vectors are not supported. The result of the comparison is a ! vector of the same width and number of elements as the comparison operands with a signed integral element type. Vectors are compared element-wise producing 0 when comparison is false and -1 (constant of the appropriate type where all bits are set) ! otherwise. Consider the following example. typedef int v4si __attribute__ ((vector_size (16))); --- 31244,31264 ---- a = l + a; /* Error, cannot convert long to int. */ ! Vectors can be subscripted as if the vector were an array with the ! same number of elements and base type. Out of bound accesses invoke undefined behavior at run time. Warnings for out of bound accesses for ! vector subscription can be enabled with `-Warray-bounds'. ! Vector comparison is supported with standard comparison operators: ! `==, !=, <, <=, >, >='. Comparison operands can be vector expressions ! of integer-type or real-type. Comparison between integer-type vectors ! and real-type vectors are not supported. The result of the comparison ! is a vector of the same width and number of elements as the comparison operands with a signed integral element type. Vectors are compared element-wise producing 0 when comparison is false and -1 (constant of the appropriate type where all bits are set) ! otherwise. Consider the following example. typedef int v4si __attribute__ ((vector_size (16))); *************** otherwise. Consider the following examp *** 30922,30945 **** c = a > b; /* The result would be {0, 0,-1, 0} */ c = a == b; /* The result would be {0,-1, 0,-1} */ ! In C++, the ternary operator '?:' is available. 'a?b:c', where 'b' and ! 'c' are vectors of the same type and 'a' is an integer vector with the ! same number of elements of the same size as 'b' and 'c', computes all ! three arguments and creates a vector '{a[0]?b[0]:c[0], a[1]?b[1]:c[1], ! ...}'. Note that unlike in OpenCL, 'a' is thus interpreted as 'a != 0' ! and not 'a < 0'. As in the case of binary operations, this syntax is ! also accepted when one of 'b' or 'c' is a scalar that is then ! transformed into a vector. If both 'b' and 'c' are scalars and the type ! of 'true?b:c' has the same size as the element type of 'a', then 'b' and ! 'c' are converted to a vector type whose elements have this type and ! with the same number of elements as 'a'. ! Vector shuffling is available using functions '__builtin_shuffle (vec, ! mask)' and '__builtin_shuffle (vec0, vec1, mask)'. Both functions ! construct a permutation of elements from one or two vectors and return a ! vector of the same type as the input vector(s). The MASK is an integral ! vector with the same width (W) and element count (N) as the output ! vector. The elements of the input vectors are numbered in memory ordering of VEC0 beginning at 0 and VEC1 beginning at N. The elements of MASK are --- 31269,31292 ---- c = a > b; /* The result would be {0, 0,-1, 0} */ c = a == b; /* The result would be {0,-1, 0,-1} */ ! In C++, the ternary operator `?:' is available. `a?b:c', where `b' and ! `c' are vectors of the same type and `a' is an integer vector with the ! same number of elements of the same size as `b' and `c', computes all ! three arguments and creates a vector `{a[0]?b[0]:c[0], a[1]?b[1]:c[1], ! ...}'. Note that unlike in OpenCL, `a' is thus interpreted as `a != 0' ! and not `a < 0'. As in the case of binary operations, this syntax is ! also accepted when one of `b' or `c' is a scalar that is then ! transformed into a vector. If both `b' and `c' are scalars and the type ! of `true?b:c' has the same size as the element type of `a', then `b' ! and `c' are converted to a vector type whose elements have this type ! and with the same number of elements as `a'. ! Vector shuffling is available using functions `__builtin_shuffle (vec, ! mask)' and `__builtin_shuffle (vec0, vec1, mask)'. Both functions ! construct a permutation of elements from one or two vectors and return ! a vector of the same type as the input vector(s). The MASK is an ! integral vector with the same width (W) and element count (N) as the ! output vector. The elements of the input vectors are numbered in memory ordering of VEC0 beginning at 0 and VEC1 beginning at N. The elements of MASK are *************** two-operand case. *** 30959,30970 **** res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */ res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */ ! Note that '__builtin_shuffle' is intentionally semantically compatible ! with the OpenCL 'shuffle' and 'shuffle2' functions. You can declare variables and use them in function calls and returns, ! as well as in assignments and some casts. You can specify a vector type ! as a return type for a function. Vector types can also be used as function arguments. It is possible to cast from one vector type to another, provided they are of the same size (in fact, you can also cast vectors to and from other datatypes of the same size). --- 31306,31317 ---- res = __builtin_shuffle (a, mask1); /* res is {1,2,2,4} */ res = __builtin_shuffle (a, b, mask2); /* res is {1,5,3,6} */ ! Note that `__builtin_shuffle' is intentionally semantically compatible ! with the OpenCL `shuffle' and `shuffle2' functions. You can declare variables and use them in function calls and returns, ! as well as in assignments and some casts. You can specify a vector ! type as a return type for a function. Vector types can also be used as function arguments. It is possible to cast from one vector type to another, provided they are of the same size (in fact, you can also cast vectors to and from other datatypes of the same size). *************** File: gcc.info, Node: Offsetof, Next: *** 30978,30999 **** 6.50 Offsetof ============= ! GCC implements for both C and C++ a syntactic extension to implement the ! 'offsetof' macro. primary: ! "__builtin_offsetof" "(" typename "," offsetof_member_designator ")" offsetof_member_designator: ! identifier ! | offsetof_member_designator "." identifier ! | offsetof_member_designator "[" expr "]" This extension is sufficient such that #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER) ! is a suitable definition of the 'offsetof' macro. In C++, TYPE may be dependent. In either case, MEMBER may consist of a single identifier, or a sequence of member accesses and array references. --- 31325,31346 ---- 6.50 Offsetof ============= ! GCC implements for both C and C++ a syntactic extension to implement ! the `offsetof' macro. primary: ! "__builtin_offsetof" "(" `typename' "," offsetof_member_designator ")" offsetof_member_designator: ! `identifier' ! | offsetof_member_designator "." `identifier' ! | offsetof_member_designator "[" `expr' "]" This extension is sufficient such that #define offsetof(TYPE, MEMBER) __builtin_offsetof (TYPE, MEMBER) ! is a suitable definition of the `offsetof' macro. In C++, TYPE may be dependent. In either case, MEMBER may consist of a single identifier, or a sequence of member accesses and array references. *************** File: gcc.info, Node: __sync Builtins, *** 31004,31024 **** ============================================================== The following built-in functions are intended to be compatible with ! those described in the 'Intel Itanium Processor-specific Application Binary Interface', section 7.4. As such, they depart from the normal ! GCC practice of using the '__builtin_' prefix, and further that they are ! overloaded such that they work on multiple types. ! The definition given in the Intel documentation allows only for the use ! of the types 'int', 'long', 'long long' as well as their unsigned ! counterparts. GCC allows any integral scalar or pointer type that is 1, ! 2, 4 or 8 bytes in length. Not all operations are supported by all target processors. If a particular operation cannot be implemented on the target processor, a warning is generated and a call an external function is generated. The ! external function carries the same name as the built-in version, with an ! additional suffix '_N' where N is the size of the data type. In most cases, these built-in functions are considered a "full barrier". That is, no memory operand is moved across the operation, --- 31351,31371 ---- ============================================================== The following built-in functions are intended to be compatible with ! those described in the `Intel Itanium Processor-specific Application Binary Interface', section 7.4. As such, they depart from the normal ! GCC practice of using the `__builtin_' prefix, and further that they ! are overloaded such that they work on multiple types. ! The definition given in the Intel documentation allows only for the ! use of the types `int', `long', `long long' as well as their unsigned ! counterparts. GCC allows any integral scalar or pointer type that is ! 1, 2, 4 or 8 bytes in length. Not all operations are supported by all target processors. If a particular operation cannot be implemented on the target processor, a warning is generated and a call an external function is generated. The ! external function carries the same name as the built-in version, with ! an additional suffix `_N' where N is the size of the data type. In most cases, these built-in functions are considered a "full barrier". That is, no memory operand is moved across the operation, *************** operation and from queuing stores after *** 31028,31046 **** All of the routines are described in the Intel documentation to take "an optional list of variables protected by the memory barrier". It's ! not clear what is meant by that; it could mean that _only_ the following ! variables are protected, or it could mean that these variables should in ! addition be protected. At present GCC ignores this list and protects ! all variables that are globally accessible. If in the future we make ! some use of this list, an empty list will continue to mean all globally ! accessible variables. ! 'TYPE __sync_fetch_and_add (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_sub (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_or (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_and (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_xor (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_fetch_and_nand (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and returns the value that had previously been in memory. That is, --- 31375,31393 ---- All of the routines are described in the Intel documentation to take "an optional list of variables protected by the memory barrier". It's ! not clear what is meant by that; it could mean that _only_ the ! following variables are protected, or it could mean that these variables ! should in addition be protected. At present GCC ignores this list and ! protects all variables that are globally accessible. If in the future ! we make some use of this list, an empty list will continue to mean all ! globally accessible variables. ! `TYPE __sync_fetch_and_add (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_sub (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_or (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_and (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_xor (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_fetch_and_nand (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and returns the value that had previously been in memory. That is, *************** accessible variables. *** 31048,31095 **** { tmp = *ptr; *ptr OP= value; return tmp; } { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand ! _Note:_ GCC 4.4 and later implement '__sync_fetch_and_nand' as ! '*ptr = ~(tmp & value)' instead of '*ptr = ~tmp & value'. ! 'TYPE __sync_add_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_sub_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_or_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_and_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_xor_and_fetch (TYPE *ptr, TYPE value, ...)' ! 'TYPE __sync_nand_and_fetch (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and return the new value. That is, { *ptr OP= value; return *ptr; } { *ptr = ~(*ptr & value); return *ptr; } // nand ! _Note:_ GCC 4.4 and later implement '__sync_nand_and_fetch' as ! '*ptr = ~(*ptr & value)' instead of '*ptr = ~*ptr & value'. ! 'bool __sync_bool_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' ! 'TYPE __sync_val_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' These built-in functions perform an atomic compare and swap. That ! is, if the current value of '*PTR' is OLDVAL, then write NEWVAL ! into '*PTR'. The "bool" version returns true if the comparison is successful and NEWVAL is written. The "val" version returns the contents of ! '*PTR' before the operation. ! '__sync_synchronize (...)' This built-in function issues a full memory barrier. ! 'TYPE __sync_lock_test_and_set (TYPE *ptr, TYPE value, ...)' ! This built-in function, as described by Intel, is not a traditional ! test-and-set operation, but rather an atomic exchange operation. ! It writes VALUE into '*PTR', and returns the previous contents of ! '*PTR'. Many targets have only minimal support for such locks, and do not support a full exchange operation. In this case, a target may support reduced functionality here by which the _only_ valid value to store is the immediate constant 1. The exact value actually ! stored in '*PTR' is implementation defined. This built-in function is not a full barrier, but rather an "acquire barrier". This means that references after the operation --- 31395,31442 ---- { tmp = *ptr; *ptr OP= value; return tmp; } { tmp = *ptr; *ptr = ~(tmp & value); return tmp; } // nand ! _Note:_ GCC 4.4 and later implement `__sync_fetch_and_nand' as ! `*ptr = ~(tmp & value)' instead of `*ptr = ~tmp & value'. ! `TYPE __sync_add_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_sub_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_or_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_and_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_xor_and_fetch (TYPE *ptr, TYPE value, ...)' ! `TYPE __sync_nand_and_fetch (TYPE *ptr, TYPE value, ...)' These built-in functions perform the operation suggested by the name, and return the new value. That is, { *ptr OP= value; return *ptr; } { *ptr = ~(*ptr & value); return *ptr; } // nand ! _Note:_ GCC 4.4 and later implement `__sync_nand_and_fetch' as ! `*ptr = ~(*ptr & value)' instead of `*ptr = ~*ptr & value'. ! `bool __sync_bool_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' ! `TYPE __sync_val_compare_and_swap (TYPE *ptr, TYPE oldval, TYPE newval, ...)' These built-in functions perform an atomic compare and swap. That ! is, if the current value of `*PTR' is OLDVAL, then write NEWVAL ! into `*PTR'. The "bool" version returns true if the comparison is successful and NEWVAL is written. The "val" version returns the contents of ! `*PTR' before the operation. ! `__sync_synchronize (...)' This built-in function issues a full memory barrier. ! `TYPE __sync_lock_test_and_set (TYPE *ptr, TYPE value, ...)' ! This built-in function, as described by Intel, is not a ! traditional test-and-set operation, but rather an atomic exchange ! operation. It writes VALUE into `*PTR', and returns the previous ! contents of `*PTR'. Many targets have only minimal support for such locks, and do not support a full exchange operation. In this case, a target may support reduced functionality here by which the _only_ valid value to store is the immediate constant 1. The exact value actually ! stored in `*PTR' is implementation defined. This built-in function is not a full barrier, but rather an "acquire barrier". This means that references after the operation *************** accessible variables. *** 31097,31112 **** previous memory stores may not be globally visible yet, and previous memory loads may not yet be satisfied. ! 'void __sync_lock_release (TYPE *ptr, ...)' This built-in function releases the lock acquired by ! '__sync_lock_test_and_set'. Normally this means writing the ! constant 0 to '*PTR'. ! This built-in function is not a full barrier, but rather a "release ! barrier". This means that all previous memory stores are globally ! visible, and all previous memory loads have been satisfied, but ! following memory reads are not prevented from being speculated to ! before the barrier.  File: gcc.info, Node: __atomic Builtins, Next: x86 specific memory model extensions for transactional memory, Prev: __sync Builtins, Up: C Extensions --- 31444,31459 ---- previous memory stores may not be globally visible yet, and previous memory loads may not yet be satisfied. ! `void __sync_lock_release (TYPE *ptr, ...)' This built-in function releases the lock acquired by ! `__sync_lock_test_and_set'. Normally this means writing the ! constant 0 to `*PTR'. ! This built-in function is not a full barrier, but rather a ! "release barrier". This means that all previous memory stores are ! globally visible, and all previous memory loads have been ! satisfied, but following memory reads are not prevented from being ! speculated to before the barrier.  File: gcc.info, Node: __atomic Builtins, Next: x86 specific memory model extensions for transactional memory, Prev: __sync Builtins, Up: C Extensions *************** File: gcc.info, Node: __atomic Builtins *** 31115,31132 **** ================================================================ The following built-in functions approximately match the requirements ! for C++11 memory model. Many are similar to the '__sync' prefixed built-in functions, but all also have a memory model parameter. These ! are all identified by being prefixed with '__atomic', and most are overloaded such that they work with multiple types. GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8 ! bytes in length. 16-byte integral types are also allowed if '__int128' (*note __int128::) is supported by the architecture. Target architectures are encouraged to provide their own patterns for each of these built-in functions. If no target is provided, the ! original non-memory model set of '__sync' atomic built-in functions are utilized, along with any required synchronization fences surrounding it in order to achieve the proper behavior. Execution in this case is subject to the same restrictions as those built-in functions. --- 31462,31479 ---- ================================================================ The following built-in functions approximately match the requirements ! for C++11 memory model. Many are similar to the `__sync' prefixed built-in functions, but all also have a memory model parameter. These ! are all identified by being prefixed with `__atomic', and most are overloaded such that they work with multiple types. GCC allows any integral scalar or pointer type that is 1, 2, 4, or 8 ! bytes in length. 16-byte integral types are also allowed if `__int128' (*note __int128::) is supported by the architecture. Target architectures are encouraged to provide their own patterns for each of these built-in functions. If no target is provided, the ! original non-memory model set of `__sync' atomic built-in functions are utilized, along with any required synchronization fences surrounding it in order to achieve the proper behavior. Execution in this case is subject to the same restrictions as those built-in functions. *************** to be resolved at run time. *** 31139,31188 **** compare_exchange) all have a generic version as well. This generic version works on any data type. If the data type size maps to one of the integral sizes that may have lock free support, the generic version ! utilizes the lock free built-in function. Otherwise an external call is ! left to be resolved at run time. This external call is the same format ! with the addition of a 'size_t' parameter inserted as the first parameter indicating the size of the object being pointed to. All objects must be the same size. There are 6 different memory models that can be specified. These map ! to the same names in the C++11 standard. Refer there or to the GCC wiki ! on atomic synchronization (http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync) for more detailed ! definitions. These memory models integrate both barriers to code motion ! as well as synchronization requirements with other threads. These are ! listed in approximately ascending order of strength. It is also ! possible to use target specific flags for memory model flags, like Hardware Lock Elision. ! '__ATOMIC_RELAXED' No barriers or synchronization. ! '__ATOMIC_CONSUME' Data dependency only for both barrier and synchronization with another thread. ! '__ATOMIC_ACQUIRE' Barrier to hoisting of code and synchronizes with release (or stronger) semantic stores from another thread. ! '__ATOMIC_RELEASE' Barrier to sinking of code and synchronizes with acquire (or stronger) semantic loads from another thread. ! '__ATOMIC_ACQ_REL' ! Full barrier in both directions and synchronizes with acquire loads ! and release stores in another thread. ! '__ATOMIC_SEQ_CST' ! Full barrier in both directions and synchronizes with acquire loads ! and release stores in all threads. When implementing patterns for these built-in functions, the memory model parameter can be ignored as long as the pattern implements the ! most restrictive '__ATOMIC_SEQ_CST' model. Any of the other memory ! models execute correctly with this memory model but they may not execute ! as efficiently as they could with a more appropriate implementation of ! the relaxed requirements. Note that the C++11 standard allows for the memory model parameter to be determined at run time rather than at compile time. These built-in ! functions map any run-time value to '__ATOMIC_SEQ_CST' rather than invoke a runtime library call or inline a switch statement. This is standard compliant, safe, and the simplest approach for now. --- 31486,31540 ---- compare_exchange) all have a generic version as well. This generic version works on any data type. If the data type size maps to one of the integral sizes that may have lock free support, the generic version ! utilizes the lock free built-in function. Otherwise an external call ! is left to be resolved at run time. This external call is the same ! format with the addition of a `size_t' parameter inserted as the first parameter indicating the size of the object being pointed to. All objects must be the same size. There are 6 different memory models that can be specified. These map ! to the same names in the C++11 standard. Refer there or to the GCC ! wiki on atomic synchronization (http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync) for more detailed ! definitions. These memory models integrate both barriers to code ! motion as well as synchronization requirements with other threads. ! These are listed in approximately ascending order of strength. It is ! also possible to use target specific flags for memory model flags, like Hardware Lock Elision. ! `__ATOMIC_RELAXED' No barriers or synchronization. ! ! `__ATOMIC_CONSUME' Data dependency only for both barrier and synchronization with another thread. ! ! `__ATOMIC_ACQUIRE' Barrier to hoisting of code and synchronizes with release (or stronger) semantic stores from another thread. ! ! `__ATOMIC_RELEASE' Barrier to sinking of code and synchronizes with acquire (or stronger) semantic loads from another thread. ! ! `__ATOMIC_ACQ_REL' ! Full barrier in both directions and synchronizes with acquire ! loads and release stores in another thread. ! ! `__ATOMIC_SEQ_CST' ! Full barrier in both directions and synchronizes with acquire ! loads and release stores in all threads. When implementing patterns for these built-in functions, the memory model parameter can be ignored as long as the pattern implements the ! most restrictive `__ATOMIC_SEQ_CST' model. Any of the other memory ! models execute correctly with this memory model but they may not ! execute as efficiently as they could with a more appropriate ! implementation of the relaxed requirements. Note that the C++11 standard allows for the memory model parameter to be determined at run time rather than at compile time. These built-in ! functions map any run-time value to `__ATOMIC_SEQ_CST' rather than invoke a runtime library call or inline a switch statement. This is standard compliant, safe, and the simplest approach for now. *************** values ensures proper usage. *** 31193,31346 **** -- Built-in Function: TYPE __atomic_load_n (TYPE *ptr, int memmodel) This built-in function implements an atomic load operation. It ! returns the contents of '*PTR'. - The valid memory model variants are '__ATOMIC_RELAXED', - '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', and '__ATOMIC_CONSUME'. -- Built-in Function: void __atomic_load (TYPE *ptr, TYPE *ret, int memmodel) This is the generic version of an atomic load. It returns the ! contents of '*PTR' in '*RET'. -- Built-in Function: void __atomic_store_n (TYPE *ptr, TYPE val, int memmodel) This built-in function implements an atomic store operation. It ! writes 'VAL' into '*PTR'. - The valid memory model variants are '__ATOMIC_RELAXED', - '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'. -- Built-in Function: void __atomic_store (TYPE *ptr, TYPE *val, int memmodel) This is the generic version of an atomic store. It stores the ! value of '*VAL' into '*PTR'. -- Built-in Function: TYPE __atomic_exchange_n (TYPE *ptr, TYPE val, int memmodel) ! This built-in function implements an atomic exchange operation. It ! writes VAL into '*PTR', and returns the previous contents of ! '*PTR'. - The valid memory model variants are '__ATOMIC_RELAXED', - '__ATOMIC_SEQ_CST', '__ATOMIC_ACQUIRE', '__ATOMIC_RELEASE', and - '__ATOMIC_ACQ_REL'. -- Built-in Function: void __atomic_exchange (TYPE *ptr, TYPE *val, TYPE *ret, int memmodel) This is the generic version of an atomic exchange. It stores the ! contents of '*VAL' into '*PTR'. The original value of '*PTR' is ! copied into '*RET'. ! -- Built-in Function: bool __atomic_compare_exchange_n (TYPE *ptr, TYPE ! *expected, TYPE desired, bool weak, int success_memmodel, int ! failure_memmodel) This built-in function implements an atomic compare and exchange ! operation. This compares the contents of '*PTR' with the contents ! of '*EXPECTED' and if equal, writes DESIRED into '*PTR'. If they ! are not equal, the current contents of '*PTR' is written into ! '*EXPECTED'. WEAK is true for weak compare_exchange, and false for ! the strong variation. Many targets only offer the strong variation ! and ignore the parameter. When in doubt, use the strong variation. ! True is returned if DESIRED is written into '*PTR' and the ! execution is considered to conform to the memory model specified by ! SUCCESS_MEMMODEL. There are no restrictions on what memory model ! can be used here. False is returned otherwise, and the execution is considered to ! conform to FAILURE_MEMMODEL. This memory model cannot be ! '__ATOMIC_RELEASE' nor '__ATOMIC_ACQ_REL'. It also cannot be a stronger model than that specified by SUCCESS_MEMMODEL. -- Built-in Function: bool __atomic_compare_exchange (TYPE *ptr, TYPE ! *expected, TYPE *desired, bool weak, int success_memmodel, int ! failure_memmodel) This built-in function implements the generic version of ! '__atomic_compare_exchange'. The function is virtually identical ! to '__atomic_compare_exchange_n', except the desired value is also a pointer. ! -- Built-in Function: TYPE __atomic_add_fetch (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_sub_fetch (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_and_fetch (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_xor_fetch (TYPE *ptr, TYPE val, int ! memmodel) -- Built-in Function: TYPE __atomic_or_fetch (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_nand_fetch (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the result of the operation. That is, { *ptr OP= val; return *ptr; } All memory models are valid. ! -- Built-in Function: TYPE __atomic_fetch_add (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_fetch_sub (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_fetch_and (TYPE *ptr, TYPE val, int ! memmodel) ! -- Built-in Function: TYPE __atomic_fetch_xor (TYPE *ptr, TYPE val, int ! memmodel) -- Built-in Function: TYPE __atomic_fetch_or (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_fetch_nand (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the value that had previously been in '*PTR'. That is, { tmp = *ptr; *ptr OP= val; return tmp; } All memory models are valid. -- Built-in Function: bool __atomic_test_and_set (void *ptr, int memmodel) - This built-in function performs an atomic test-and-set operation on ! the byte at '*PTR'. The byte is set to some implementation defined ! nonzero "set" value and the return value is 'true' if and only if ! the previous contents were "set". It should be only used for ! operands of type 'bool' or 'char'. For other types only part of ! the value may be set. All memory models are valid. - -- Built-in Function: void __atomic_clear (bool *ptr, int memmodel) This built-in function performs an atomic clear operation on ! '*PTR'. After the operation, '*PTR' contains 0. It should be only ! used for operands of type 'bool' or 'char' and in conjunction with ! '__atomic_test_and_set'. For other types it may only clear ! partially. If the type is not 'bool' prefer using ! '__atomic_store'. ! The valid memory model variants are '__ATOMIC_RELAXED', ! '__ATOMIC_SEQ_CST', and '__ATOMIC_RELEASE'. - -- Built-in Function: void __atomic_thread_fence (int memmodel) This built-in function acts as a synchronization fence between threads based on the specified memory model. All memory orders are valid. - -- Built-in Function: void __atomic_signal_fence (int memmodel) This built-in function acts as a synchronization fence between a thread and signal handlers based in the same thread. All memory orders are valid. - -- Built-in Function: bool __atomic_always_lock_free (size_t size, void - *ptr) This built-in function returns true if objects of SIZE bytes always generate lock free atomic instructions for the target architecture. SIZE must resolve to a compile-time constant and the result also --- 31545,31707 ---- -- Built-in Function: TYPE __atomic_load_n (TYPE *ptr, int memmodel) This built-in function implements an atomic load operation. It ! returns the contents of `*PTR'. ! ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', `__ATOMIC_ACQUIRE', and `__ATOMIC_CONSUME'. -- Built-in Function: void __atomic_load (TYPE *ptr, TYPE *ret, int memmodel) This is the generic version of an atomic load. It returns the ! contents of `*PTR' in `*RET'. ! -- Built-in Function: void __atomic_store_n (TYPE *ptr, TYPE val, int memmodel) This built-in function implements an atomic store operation. It ! writes `VAL' into `*PTR'. ! ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', and `__ATOMIC_RELEASE'. -- Built-in Function: void __atomic_store (TYPE *ptr, TYPE *val, int memmodel) This is the generic version of an atomic store. It stores the ! value of `*VAL' into `*PTR'. ! -- Built-in Function: TYPE __atomic_exchange_n (TYPE *ptr, TYPE val, int memmodel) ! This built-in function implements an atomic exchange operation. ! It writes VAL into `*PTR', and returns the previous contents of ! `*PTR'. ! ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', `__ATOMIC_ACQUIRE', `__ATOMIC_RELEASE', and ! `__ATOMIC_ACQ_REL'. -- Built-in Function: void __atomic_exchange (TYPE *ptr, TYPE *val, TYPE *ret, int memmodel) This is the generic version of an atomic exchange. It stores the ! contents of `*VAL' into `*PTR'. The original value of `*PTR' is ! copied into `*RET'. ! ! -- Built-in Function: bool __atomic_compare_exchange_n (TYPE *ptr, ! TYPE *expected, TYPE desired, bool weak, int ! success_memmodel, int failure_memmodel) This built-in function implements an atomic compare and exchange ! operation. This compares the contents of `*PTR' with the contents ! of `*EXPECTED' and if equal, writes DESIRED into `*PTR'. If they ! are not equal, the current contents of `*PTR' is written into ! `*EXPECTED'. WEAK is true for weak compare_exchange, and false ! for the strong variation. Many targets only offer the strong ! variation and ignore the parameter. When in doubt, use the strong ! variation. ! True is returned if DESIRED is written into `*PTR' and the ! execution is considered to conform to the memory model specified ! by SUCCESS_MEMMODEL. There are no restrictions on what memory ! model can be used here. False is returned otherwise, and the execution is considered to ! conform to FAILURE_MEMMODEL. This memory model cannot be ! `__ATOMIC_RELEASE' nor `__ATOMIC_ACQ_REL'. It also cannot be a stronger model than that specified by SUCCESS_MEMMODEL. + -- Built-in Function: bool __atomic_compare_exchange (TYPE *ptr, TYPE ! *expected, TYPE *desired, bool weak, int success_memmodel, ! int failure_memmodel) This built-in function implements the generic version of ! `__atomic_compare_exchange'. The function is virtually identical ! to `__atomic_compare_exchange_n', except the desired value is also a pointer. ! ! -- Built-in Function: TYPE __atomic_add_fetch (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_sub_fetch (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_and_fetch (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_xor_fetch (TYPE *ptr, TYPE val, ! int memmodel) -- Built-in Function: TYPE __atomic_or_fetch (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_nand_fetch (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the result of the operation. That is, { *ptr OP= val; return *ptr; } All memory models are valid. ! ! -- Built-in Function: TYPE __atomic_fetch_add (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_fetch_sub (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_fetch_and (TYPE *ptr, TYPE val, ! int memmodel) ! -- Built-in Function: TYPE __atomic_fetch_xor (TYPE *ptr, TYPE val, ! int memmodel) -- Built-in Function: TYPE __atomic_fetch_or (TYPE *ptr, TYPE val, int memmodel) -- Built-in Function: TYPE __atomic_fetch_nand (TYPE *ptr, TYPE val, int memmodel) These built-in functions perform the operation suggested by the ! name, and return the value that had previously been in `*PTR'. That is, { tmp = *ptr; *ptr OP= val; return tmp; } All memory models are valid. + -- Built-in Function: bool __atomic_test_and_set (void *ptr, int memmodel) This built-in function performs an atomic test-and-set operation on ! the byte at `*PTR'. The byte is set to some implementation ! defined nonzero "set" value and the return value is `true' if and ! only if the previous contents were "set". It should be only used ! for operands of type `bool' or `char'. For other types only part ! of the value may be set. All memory models are valid. + -- Built-in Function: void __atomic_clear (bool *ptr, int memmodel) This built-in function performs an atomic clear operation on ! `*PTR'. After the operation, `*PTR' contains 0. It should be ! only used for operands of type `bool' or `char' and in conjunction ! with `__atomic_test_and_set'. For other types it may only clear ! partially. If the type is not `bool' prefer using `__atomic_store'. ! The valid memory model variants are `__ATOMIC_RELAXED', ! `__ATOMIC_SEQ_CST', and `__ATOMIC_RELEASE'. + -- Built-in Function: void __atomic_thread_fence (int memmodel) This built-in function acts as a synchronization fence between threads based on the specified memory model. All memory orders are valid. + -- Built-in Function: void __atomic_signal_fence (int memmodel) This built-in function acts as a synchronization fence between a thread and signal handlers based in the same thread. All memory orders are valid. + -- Built-in Function: bool __atomic_always_lock_free (size_t size, + void *ptr) This built-in function returns true if objects of SIZE bytes always generate lock free atomic instructions for the target architecture. SIZE must resolve to a compile-time constant and the result also *************** values ensures proper usage. *** 31352,31364 **** if (_atomic_always_lock_free (sizeof (long long), 0)) -- Built-in Function: bool __atomic_is_lock_free (size_t size, void *ptr) - This built-in function returns true if objects of SIZE bytes always ! generate lock free atomic instructions for the target architecture. ! If it is not known to be lock free a call is made to a runtime ! routine named '__atomic_is_lock_free'. PTR is an optional pointer to the object that may be used to determine alignment. A value of 0 indicates typical alignment --- 31713,31725 ---- if (_atomic_always_lock_free (sizeof (long long), 0)) + -- Built-in Function: bool __atomic_is_lock_free (size_t size, void *ptr) This built-in function returns true if objects of SIZE bytes always ! generate lock free atomic instructions for the target ! architecture. If it is not known to be lock free a call is made ! to a runtime routine named `__atomic_is_lock_free'. PTR is an optional pointer to the object that may be used to determine alignment. A value of 0 indicates typical alignment *************** The i386 architecture supports additiona *** 31374,31388 **** lock critical sections for hardware lock elision. These must be specified in addition to an existing memory model to atomic intrinsics. ! '__ATOMIC_HLE_ACQUIRE' Start lock elision on a lock variable. Memory model must be ! '__ATOMIC_ACQUIRE' or stronger. ! '__ATOMIC_HLE_RELEASE' End lock elision on a lock variable. Memory model must be ! '__ATOMIC_RELEASE' or stronger. When a lock acquire fails it is required for good performance to abort ! the transaction quickly. This can be done with a '_mm_pause' #include // For _mm_pause --- 31735,31750 ---- lock critical sections for hardware lock elision. These must be specified in addition to an existing memory model to atomic intrinsics. ! `__ATOMIC_HLE_ACQUIRE' Start lock elision on a lock variable. Memory model must be ! `__ATOMIC_ACQUIRE' or stronger. ! ! `__ATOMIC_HLE_RELEASE' End lock elision on a lock variable. Memory model must be ! `__ATOMIC_RELEASE' or stronger. When a lock acquire fails it is required for good performance to abort ! the transaction quickly. This can be done with a `_mm_pause' #include // For _mm_pause *************** prevent some buffer overflow attacks. *** 31408,31423 **** TYPE) is a built-in construct that returns a constant number of bytes from PTR to the end of the object PTR pointer points to (if known ! at compile time). '__builtin_object_size' never evaluates its ! arguments for side-effects. If there are any side-effects in them, ! it returns '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for TYPE ! 2 or 3. If there are multiple objects PTR can point to and all of ! them are known at compile time, the returned number is the maximum ! of remaining byte counts in those objects if TYPE & 2 is 0 and ! minimum if nonzero. If it is not possible to determine which ! objects PTR points to at compile time, '__builtin_object_size' ! should return '(size_t) -1' for TYPE 0 or 1 and '(size_t) 0' for ! TYPE 2 or 3. TYPE is an integer constant from 0 to 3. If the least significant bit is clear, objects are whole variables, if it is set, a closest --- 31770,31785 ---- TYPE) is a built-in construct that returns a constant number of bytes from PTR to the end of the object PTR pointer points to (if known ! at compile time). `__builtin_object_size' never evaluates its ! arguments for side-effects. If there are any side-effects in ! them, it returns `(size_t) -1' for TYPE 0 or 1 and `(size_t) 0' ! for TYPE 2 or 3. If there are multiple objects PTR can point to ! and all of them are known at compile time, the returned number is ! the maximum of remaining byte counts in those objects if TYPE & 2 ! is 0 and minimum if nonzero. If it is not possible to determine ! which objects PTR points to at compile time, ! `__builtin_object_size' should return `(size_t) -1' for TYPE 0 or ! 1 and `(size_t) 0' for TYPE 2 or 3. TYPE is an integer constant from 0 to 3. If the least significant bit is clear, objects are whole variables, if it is set, a closest *************** prevent some buffer overflow attacks. *** 31439,31453 **** assert (__builtin_object_size (q, 1) == sizeof (var.b)); There are built-in functions added for many common string operation ! functions, e.g., for 'memcpy' '__builtin___memcpy_chk' built-in is provided. This built-in has an additional last argument, which is the number of bytes remaining in object the DEST argument points to or ! '(size_t) -1' if the size is not known. The built-in functions are optimized into the normal string functions ! like 'memcpy' if the last argument is '(size_t) -1' or if it is known at ! compile time that the destination object will not be overflown. If the ! compiler can determine at compile time the object will be always overflown, it issues a warning. The intended use can be e.g. --- 31801,31815 ---- assert (__builtin_object_size (q, 1) == sizeof (var.b)); There are built-in functions added for many common string operation ! functions, e.g., for `memcpy' `__builtin___memcpy_chk' built-in is provided. This built-in has an additional last argument, which is the number of bytes remaining in object the DEST argument points to or ! `(size_t) -1' if the size is not known. The built-in functions are optimized into the normal string functions ! like `memcpy' if the last argument is `(size_t) -1' or if it is known ! at compile time that the destination object will not be overflown. If ! the compiler can determine at compile time the object will be always overflown, it issues a warning. The intended use can be e.g. *************** overflown, it issues a warning. *** 31474,31482 **** will abort the program at run time. */ memcpy (&buf[6], "abcde", 5); ! Such built-in functions are provided for 'memcpy', 'mempcpy', ! 'memmove', 'memset', 'strcpy', 'stpcpy', 'strncpy', 'strcat' and ! 'strncat'. There are also checking built-in functions for formatted output functions. --- 31836,31844 ---- will abort the program at run time. */ memcpy (&buf[6], "abcde", 5); ! Such built-in functions are provided for `memcpy', `mempcpy', ! `memmove', `memset', `strcpy', `stpcpy', `strncpy', `strcat' and ! `strncat'. There are also checking built-in functions for formatted output functions. *************** functions. *** 31488,31509 **** int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os, const char *fmt, va_list ap); ! The added FLAG argument is passed unchanged to '__sprintf_chk' etc. functions and can contain implementation specific flags on what additional security measures the checking function might take, such as ! handling '%n' differently. The OS argument is the object size S points to, like in the other ! built-in functions. There is a small difference in the behavior though, ! if OS is '(size_t) -1', the built-in functions are optimized into the ! non-checking functions only if FLAG is 0, otherwise the checking ! function is called with OS argument set to '(size_t) -1'. In addition to this, there are checking built-in functions ! '__builtin___printf_chk', '__builtin___vprintf_chk', ! '__builtin___fprintf_chk' and '__builtin___vfprintf_chk'. These have just one additional argument, FLAG, right before format string FMT. If ! the compiler is able to optimize them to 'fputc' etc. functions, it does, otherwise the checking function is called and the FLAG argument passed to it. --- 31850,31871 ---- int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os, const char *fmt, va_list ap); ! The added FLAG argument is passed unchanged to `__sprintf_chk' etc. functions and can contain implementation specific flags on what additional security measures the checking function might take, such as ! handling `%n' differently. The OS argument is the object size S points to, like in the other ! built-in functions. There is a small difference in the behavior ! though, if OS is `(size_t) -1', the built-in functions are optimized ! into the non-checking functions only if FLAG is 0, otherwise the ! checking function is called with OS argument set to `(size_t) -1'. In addition to this, there are checking built-in functions ! `__builtin___printf_chk', `__builtin___vprintf_chk', ! `__builtin___fprintf_chk' and `__builtin___vfprintf_chk'. These have just one additional argument, FLAG, right before format string FMT. If ! the compiler is able to optimize them to `fputc' etc. functions, it does, otherwise the checking function is called and the FLAG argument passed to it. *************** File: gcc.info, Node: Cilk Plus Builtin *** 31514,31539 **** =========================================================== GCC provides support for the following built-in reduction funtions if ! Cilk Plus is enabled. Cilk Plus can be enabled using the '-fcilkplus' flag. * __sec_implicit_index * __sec_reduce * __sec_reduce_add * __sec_reduce_all_nonzero * __sec_reduce_all_zero * __sec_reduce_any_nonzero * __sec_reduce_any_zero * __sec_reduce_max * __sec_reduce_min * __sec_reduce_max_ind * __sec_reduce_min_ind * __sec_reduce_mul * __sec_reduce_mutating Further details and examples about these built-in functions are described in the Cilk Plus language manual which can be found at ! .  File: gcc.info, Node: Other Builtins, Next: Target Builtins, Prev: Cilk Plus Builtins, Up: C Extensions --- 31876,31913 ---- =========================================================== GCC provides support for the following built-in reduction funtions if ! Cilk Plus is enabled. Cilk Plus can be enabled using the `-fcilkplus' flag. * __sec_implicit_index + * __sec_reduce + * __sec_reduce_add + * __sec_reduce_all_nonzero + * __sec_reduce_all_zero + * __sec_reduce_any_nonzero + * __sec_reduce_any_zero + * __sec_reduce_max + * __sec_reduce_min + * __sec_reduce_max_ind + * __sec_reduce_min_ind + * __sec_reduce_mul + * __sec_reduce_mutating Further details and examples about these built-in functions are described in the Cilk Plus language manual which can be found at ! `http://www.cilkplus.org'.  File: gcc.info, Node: Other Builtins, Next: Target Builtins, Prev: Cilk Plus Builtins, Up: C Extensions *************** general use of these functions. *** 31550,31652 **** The remaining functions are provided for optimization purposes. GCC includes built-in versions of many of the functions in the standard ! C library. The versions prefixed with '__builtin_' are always treated ! as having the same meaning as the C library function even if you specify ! the '-fno-builtin' option. (*note C Dialect Options::) Many of these ! functions are only optimized in certain cases; if they are not optimized ! in a particular case, a call to the library function is emitted. ! Outside strict ISO C mode ('-ansi', '-std=c90', '-std=c99' or ! '-std=c11'), the functions '_exit', 'alloca', 'bcmp', 'bzero', ! 'dcgettext', 'dgettext', 'dremf', 'dreml', 'drem', 'exp10f', 'exp10l', ! 'exp10', 'ffsll', 'ffsl', 'ffs', 'fprintf_unlocked', 'fputs_unlocked', ! 'gammaf', 'gammal', 'gamma', 'gammaf_r', 'gammal_r', 'gamma_r', ! 'gettext', 'index', 'isascii', 'j0f', 'j0l', 'j0', 'j1f', 'j1l', 'j1', ! 'jnf', 'jnl', 'jn', 'lgammaf_r', 'lgammal_r', 'lgamma_r', 'mempcpy', ! 'pow10f', 'pow10l', 'pow10', 'printf_unlocked', 'rindex', 'scalbf', ! 'scalbl', 'scalb', 'signbit', 'signbitf', 'signbitl', 'signbitd32', ! 'signbitd64', 'signbitd128', 'significandf', 'significandl', ! 'significand', 'sincosf', 'sincosl', 'sincos', 'stpcpy', 'stpncpy', ! 'strcasecmp', 'strdup', 'strfmon', 'strncasecmp', 'strndup', 'toascii', ! 'y0f', 'y0l', 'y0', 'y1f', 'y1l', 'y1', 'ynf', 'ynl' and 'yn' may be handled as built-in functions. All these functions have corresponding ! versions prefixed with '__builtin_', which may be used even in strict C90 mode. ! The ISO C99 functions '_Exit', 'acoshf', 'acoshl', 'acosh', 'asinhf', ! 'asinhl', 'asinh', 'atanhf', 'atanhl', 'atanh', 'cabsf', 'cabsl', ! 'cabs', 'cacosf', 'cacoshf', 'cacoshl', 'cacosh', 'cacosl', 'cacos', ! 'cargf', 'cargl', 'carg', 'casinf', 'casinhf', 'casinhl', 'casinh', ! 'casinl', 'casin', 'catanf', 'catanhf', 'catanhl', 'catanh', 'catanl', ! 'catan', 'cbrtf', 'cbrtl', 'cbrt', 'ccosf', 'ccoshf', 'ccoshl', 'ccosh', ! 'ccosl', 'ccos', 'cexpf', 'cexpl', 'cexp', 'cimagf', 'cimagl', 'cimag', ! 'clogf', 'clogl', 'clog', 'conjf', 'conjl', 'conj', 'copysignf', ! 'copysignl', 'copysign', 'cpowf', 'cpowl', 'cpow', 'cprojf', 'cprojl', ! 'cproj', 'crealf', 'creall', 'creal', 'csinf', 'csinhf', 'csinhl', ! 'csinh', 'csinl', 'csin', 'csqrtf', 'csqrtl', 'csqrt', 'ctanf', ! 'ctanhf', 'ctanhl', 'ctanh', 'ctanl', 'ctan', 'erfcf', 'erfcl', 'erfc', ! 'erff', 'erfl', 'erf', 'exp2f', 'exp2l', 'exp2', 'expm1f', 'expm1l', ! 'expm1', 'fdimf', 'fdiml', 'fdim', 'fmaf', 'fmal', 'fmaxf', 'fmaxl', ! 'fmax', 'fma', 'fminf', 'fminl', 'fmin', 'hypotf', 'hypotl', 'hypot', ! 'ilogbf', 'ilogbl', 'ilogb', 'imaxabs', 'isblank', 'iswblank', ! 'lgammaf', 'lgammal', 'lgamma', 'llabs', 'llrintf', 'llrintl', 'llrint', ! 'llroundf', 'llroundl', 'llround', 'log1pf', 'log1pl', 'log1p', 'log2f', ! 'log2l', 'log2', 'logbf', 'logbl', 'logb', 'lrintf', 'lrintl', 'lrint', ! 'lroundf', 'lroundl', 'lround', 'nearbyintf', 'nearbyintl', 'nearbyint', ! 'nextafterf', 'nextafterl', 'nextafter', 'nexttowardf', 'nexttowardl', ! 'nexttoward', 'remainderf', 'remainderl', 'remainder', 'remquof', ! 'remquol', 'remquo', 'rintf', 'rintl', 'rint', 'roundf', 'roundl', ! 'round', 'scalblnf', 'scalblnl', 'scalbln', 'scalbnf', 'scalbnl', ! 'scalbn', 'snprintf', 'tgammaf', 'tgammal', 'tgamma', 'truncf', ! 'truncl', 'trunc', 'vfscanf', 'vscanf', 'vsnprintf' and 'vsscanf' are ! handled as built-in functions except in strict ISO C90 mode ('-ansi' or ! '-std=c90'). ! There are also built-in versions of the ISO C99 functions 'acosf', ! 'acosl', 'asinf', 'asinl', 'atan2f', 'atan2l', 'atanf', 'atanl', ! 'ceilf', 'ceill', 'cosf', 'coshf', 'coshl', 'cosl', 'expf', 'expl', ! 'fabsf', 'fabsl', 'floorf', 'floorl', 'fmodf', 'fmodl', 'frexpf', ! 'frexpl', 'ldexpf', 'ldexpl', 'log10f', 'log10l', 'logf', 'logl', ! 'modfl', 'modf', 'powf', 'powl', 'sinf', 'sinhf', 'sinhl', 'sinl', ! 'sqrtf', 'sqrtl', 'tanf', 'tanhf', 'tanhl' and 'tanl' that are recognized in any mode since ISO C90 reserves these names for the purpose to which ISO C99 puts them. All these functions have ! corresponding versions prefixed with '__builtin_'. ! The ISO C94 functions 'iswalnum', 'iswalpha', 'iswcntrl', 'iswdigit', ! 'iswgraph', 'iswlower', 'iswprint', 'iswpunct', 'iswspace', 'iswupper', ! 'iswxdigit', 'towlower' and 'towupper' are handled as built-in functions ! except in strict ISO C90 mode ('-ansi' or '-std=c90'). ! The ISO C90 functions 'abort', 'abs', 'acos', 'asin', 'atan2', 'atan', ! 'calloc', 'ceil', 'cosh', 'cos', 'exit', 'exp', 'fabs', 'floor', 'fmod', ! 'fprintf', 'fputs', 'frexp', 'fscanf', 'isalnum', 'isalpha', 'iscntrl', ! 'isdigit', 'isgraph', 'islower', 'isprint', 'ispunct', 'isspace', ! 'isupper', 'isxdigit', 'tolower', 'toupper', 'labs', 'ldexp', 'log10', ! 'log', 'malloc', 'memchr', 'memcmp', 'memcpy', 'memset', 'modf', 'pow', ! 'printf', 'putchar', 'puts', 'scanf', 'sinh', 'sin', 'snprintf', ! 'sprintf', 'sqrt', 'sscanf', 'strcat', 'strchr', 'strcmp', 'strcpy', ! 'strcspn', 'strlen', 'strncat', 'strncmp', 'strncpy', 'strpbrk', ! 'strrchr', 'strspn', 'strstr', 'tanh', 'tan', 'vfprintf', 'vprintf' and ! 'vsprintf' are all recognized as built-in functions unless ! '-fno-builtin' is specified (or '-fno-builtin-FUNCTION' is specified for ! an individual function). All of these functions have corresponding ! versions prefixed with '__builtin_'. GCC provides built-in versions of the ISO C99 floating-point comparison macros that avoid raising exceptions for unordered operands. They have ! the same names as the standard macros ( 'isgreater', 'isgreaterequal', ! 'isless', 'islessequal', 'islessgreater', and 'isunordered') , with ! '__builtin_' prefixed. We intend for a library implementor to be able ! to simply '#define' each standard macro to its built-in equivalent. In ! the same fashion, GCC provides 'fpclassify', 'isfinite', 'isinf_sign' ! and 'isnormal' built-ins used with '__builtin_' prefixed. The 'isinf' ! and 'isnan' built-in functions appear both with and without the ! '__builtin_' prefix. -- Built-in Function: int __builtin_types_compatible_p (TYPE1, TYPE2) ! ! You can use the built-in function '__builtin_types_compatible_p' to determine whether two types are the same. This built-in function returns 1 if the unqualified versions of the --- 31924,32026 ---- The remaining functions are provided for optimization purposes. GCC includes built-in versions of many of the functions in the standard ! C library. The versions prefixed with `__builtin_' are always treated ! as having the same meaning as the C library function even if you ! specify the `-fno-builtin' option. (*note C Dialect Options::) Many of ! these functions are only optimized in certain cases; if they are not ! optimized in a particular case, a call to the library function is ! emitted. ! Outside strict ISO C mode (`-ansi', `-std=c90', `-std=c99' or ! `-std=c11'), the functions `_exit', `alloca', `bcmp', `bzero', ! `dcgettext', `dgettext', `dremf', `dreml', `drem', `exp10f', `exp10l', ! `exp10', `ffsll', `ffsl', `ffs', `fprintf_unlocked', `fputs_unlocked', ! `gammaf', `gammal', `gamma', `gammaf_r', `gammal_r', `gamma_r', ! `gettext', `index', `isascii', `j0f', `j0l', `j0', `j1f', `j1l', `j1', ! `jnf', `jnl', `jn', `lgammaf_r', `lgammal_r', `lgamma_r', `mempcpy', ! `pow10f', `pow10l', `pow10', `printf_unlocked', `rindex', `scalbf', ! `scalbl', `scalb', `signbit', `signbitf', `signbitl', `signbitd32', ! `signbitd64', `signbitd128', `significandf', `significandl', ! `significand', `sincosf', `sincosl', `sincos', `stpcpy', `stpncpy', ! `strcasecmp', `strdup', `strfmon', `strncasecmp', `strndup', `toascii', ! `y0f', `y0l', `y0', `y1f', `y1l', `y1', `ynf', `ynl' and `yn' may be handled as built-in functions. All these functions have corresponding ! versions prefixed with `__builtin_', which may be used even in strict C90 mode. ! The ISO C99 functions `_Exit', `acoshf', `acoshl', `acosh', `asinhf', ! `asinhl', `asinh', `atanhf', `atanhl', `atanh', `cabsf', `cabsl', ! `cabs', `cacosf', `cacoshf', `cacoshl', `cacosh', `cacosl', `cacos', ! `cargf', `cargl', `carg', `casinf', `casinhf', `casinhl', `casinh', ! `casinl', `casin', `catanf', `catanhf', `catanhl', `catanh', `catanl', ! `catan', `cbrtf', `cbrtl', `cbrt', `ccosf', `ccoshf', `ccoshl', ! `ccosh', `ccosl', `ccos', `cexpf', `cexpl', `cexp', `cimagf', `cimagl', ! `cimag', `clogf', `clogl', `clog', `conjf', `conjl', `conj', ! `copysignf', `copysignl', `copysign', `cpowf', `cpowl', `cpow', ! `cprojf', `cprojl', `cproj', `crealf', `creall', `creal', `csinf', ! `csinhf', `csinhl', `csinh', `csinl', `csin', `csqrtf', `csqrtl', ! `csqrt', `ctanf', `ctanhf', `ctanhl', `ctanh', `ctanl', `ctan', ! `erfcf', `erfcl', `erfc', `erff', `erfl', `erf', `exp2f', `exp2l', ! `exp2', `expm1f', `expm1l', `expm1', `fdimf', `fdiml', `fdim', `fmaf', ! `fmal', `fmaxf', `fmaxl', `fmax', `fma', `fminf', `fminl', `fmin', ! `hypotf', `hypotl', `hypot', `ilogbf', `ilogbl', `ilogb', `imaxabs', ! `isblank', `iswblank', `lgammaf', `lgammal', `lgamma', `llabs', ! `llrintf', `llrintl', `llrint', `llroundf', `llroundl', `llround', ! `log1pf', `log1pl', `log1p', `log2f', `log2l', `log2', `logbf', ! `logbl', `logb', `lrintf', `lrintl', `lrint', `lroundf', `lroundl', ! `lround', `nearbyintf', `nearbyintl', `nearbyint', `nextafterf', ! `nextafterl', `nextafter', `nexttowardf', `nexttowardl', `nexttoward', ! `remainderf', `remainderl', `remainder', `remquof', `remquol', ! `remquo', `rintf', `rintl', `rint', `roundf', `roundl', `round', ! `scalblnf', `scalblnl', `scalbln', `scalbnf', `scalbnl', `scalbn', ! `snprintf', `tgammaf', `tgammal', `tgamma', `truncf', `truncl', `trunc', ! `vfscanf', `vscanf', `vsnprintf' and `vsscanf' are handled as built-in ! functions except in strict ISO C90 mode (`-ansi' or `-std=c90'). ! There are also built-in versions of the ISO C99 functions `acosf', ! `acosl', `asinf', `asinl', `atan2f', `atan2l', `atanf', `atanl', ! `ceilf', `ceill', `cosf', `coshf', `coshl', `cosl', `expf', `expl', ! `fabsf', `fabsl', `floorf', `floorl', `fmodf', `fmodl', `frexpf', ! `frexpl', `ldexpf', `ldexpl', `log10f', `log10l', `logf', `logl', ! `modfl', `modf', `powf', `powl', `sinf', `sinhf', `sinhl', `sinl', ! `sqrtf', `sqrtl', `tanf', `tanhf', `tanhl' and `tanl' that are recognized in any mode since ISO C90 reserves these names for the purpose to which ISO C99 puts them. All these functions have ! corresponding versions prefixed with `__builtin_'. ! The ISO C94 functions `iswalnum', `iswalpha', `iswcntrl', `iswdigit', ! `iswgraph', `iswlower', `iswprint', `iswpunct', `iswspace', `iswupper', ! `iswxdigit', `towlower' and `towupper' are handled as built-in functions ! except in strict ISO C90 mode (`-ansi' or `-std=c90'). ! The ISO C90 functions `abort', `abs', `acos', `asin', `atan2', `atan', ! `calloc', `ceil', `cosh', `cos', `exit', `exp', `fabs', `floor', `fmod', ! `fprintf', `fputs', `frexp', `fscanf', `isalnum', `isalpha', `iscntrl', ! `isdigit', `isgraph', `islower', `isprint', `ispunct', `isspace', ! `isupper', `isxdigit', `tolower', `toupper', `labs', `ldexp', `log10', ! `log', `malloc', `memchr', `memcmp', `memcpy', `memset', `modf', `pow', ! `printf', `putchar', `puts', `scanf', `sinh', `sin', `snprintf', ! `sprintf', `sqrt', `sscanf', `strcat', `strchr', `strcmp', `strcpy', ! `strcspn', `strlen', `strncat', `strncmp', `strncpy', `strpbrk', ! `strrchr', `strspn', `strstr', `tanh', `tan', `vfprintf', `vprintf' and ! `vsprintf' are all recognized as built-in functions unless ! `-fno-builtin' is specified (or `-fno-builtin-FUNCTION' is specified ! for an individual function). All of these functions have corresponding ! versions prefixed with `__builtin_'. GCC provides built-in versions of the ISO C99 floating-point comparison macros that avoid raising exceptions for unordered operands. They have ! the same names as the standard macros ( `isgreater', `isgreaterequal', ! `isless', `islessequal', `islessgreater', and `isunordered') , with ! `__builtin_' prefixed. We intend for a library implementor to be able ! to simply `#define' each standard macro to its built-in equivalent. In ! the same fashion, GCC provides `fpclassify', `isfinite', `isinf_sign' ! and `isnormal' built-ins used with `__builtin_' prefixed. The `isinf' ! and `isnan' built-in functions appear both with and without the ! `__builtin_' prefix. -- Built-in Function: int __builtin_types_compatible_p (TYPE1, TYPE2) ! You can use the built-in function `__builtin_types_compatible_p' to determine whether two types are the same. This built-in function returns 1 if the unqualified versions of the *************** and 'isnan' built-in functions appear bo *** 31654,31674 **** compatible, 0 otherwise. The result of this built-in function can be used in integer constant expressions. ! This built-in function ignores top level qualifiers (e.g., 'const', ! 'volatile'). For example, 'int' is equivalent to 'const int'. ! The type 'int[]' and 'int[5]' are compatible. On the other hand, ! 'int' and 'char *' are not compatible, even if the size of their types, on the particular architecture are the same. Also, the amount of pointer indirection is taken into account when ! determining similarity. Consequently, 'short *' is not similar to ! 'short **'. Furthermore, two types that are typedefed are considered compatible if their underlying types are compatible. ! An 'enum' type is not considered to be compatible with another ! 'enum' type even if both are compatible with the same integer type; ! this is what the C standard specifies. For example, 'enum {foo, ! bar}' is not similar to 'enum {hot, dog}'. You typically use this function in code whose execution varies depending on the arguments' types. For example: --- 32028,32048 ---- compatible, 0 otherwise. The result of this built-in function can be used in integer constant expressions. ! This built-in function ignores top level qualifiers (e.g., `const', ! `volatile'). For example, `int' is equivalent to `const int'. ! The type `int[]' and `int[5]' are compatible. On the other hand, ! `int' and `char *' are not compatible, even if the size of their types, on the particular architecture are the same. Also, the amount of pointer indirection is taken into account when ! determining similarity. Consequently, `short *' is not similar to ! `short **'. Furthermore, two types that are typedefed are considered compatible if their underlying types are compatible. ! An `enum' type is not considered to be compatible with another ! `enum' type even if both are compatible with the same integer ! type; this is what the C standard specifies. For example, `enum ! {foo, bar}' is not similar to `enum {hot, dog}'. You typically use this function in code whose execution varies depending on the arguments' types. For example: *************** and 'isnan' built-in functions appear bo *** 31689,31708 **** _Note:_ This construct is only available for C. -- Built-in Function: TYPE __builtin_choose_expr (CONST_EXP, EXP1, EXP2) ! ! You can use the built-in function '__builtin_choose_expr' to evaluate code depending on the value of a constant expression. This built-in function returns EXP1 if CONST_EXP, which is an integer constant expression, is nonzero. Otherwise it returns EXP2. ! This built-in function is analogous to the '? :' operator in C, except that the expression returned has its type unaltered by ! promotion rules. Also, the built-in function does not evaluate the ! expression that is not chosen. For example, if CONST_EXP evaluates ! to true, EXP2 is not evaluated even if it has side-effects. This built-in function can return an lvalue if the chosen argument is an lvalue. --- 32063,32083 ---- _Note:_ This construct is only available for C. + -- Built-in Function: TYPE __builtin_choose_expr (CONST_EXP, EXP1, EXP2) ! You can use the built-in function `__builtin_choose_expr' to evaluate code depending on the value of a constant expression. This built-in function returns EXP1 if CONST_EXP, which is an integer constant expression, is nonzero. Otherwise it returns EXP2. ! This built-in function is analogous to the `? :' operator in C, except that the expression returned has its type unaltered by ! promotion rules. Also, the built-in function does not evaluate ! the expression that is not chosen. For example, if CONST_EXP ! evaluates to true, EXP2 is not evaluated even if it has ! side-effects. This built-in function can return an lvalue if the chosen argument is an lvalue. *************** and 'isnan' built-in functions appear bo *** 31729,31758 **** CONST_EXP) may still generate syntax errors. This may change in future revisions. -- Built-in Function: TYPE __builtin_complex (REAL, IMAG) - The built-in function '__builtin_complex' is provided for use in - implementing the ISO C11 macros 'CMPLXF', 'CMPLX' and 'CMPLXL'. - REAL and IMAG must have the same type, a real binary floating-point - type, and the result has the corresponding complex type with real - and imaginary parts REAL and IMAG. Unlike 'REAL + I * IMAG', this - works even when infinities, NaNs and negative zeros are involved. -- Built-in Function: int __builtin_constant_p (EXP) ! You can use the built-in function '__builtin_constant_p' to determine if a value is known to be constant at compile time and hence that GCC can perform constant-folding on expressions ! involving that value. The argument of the function is the value to ! test. The function returns the integer 1 if the argument is known ! to be a compile-time constant and 0 if it is not known to be a ! compile-time constant. A return of 0 does not indicate that the ! value is _not_ a constant, but merely that GCC cannot prove it is a ! constant with the specified value of the '-O' option. You typically use this function in an embedded application where memory is a critical resource. If you have some complex ! calculation, you may want it to be folded if it involves constants, ! but need to call a function if it does not. For example: #define Scale_Value(X) \ (__builtin_constant_p (X) \ --- 32104,32136 ---- CONST_EXP) may still generate syntax errors. This may change in future revisions. + -- Built-in Function: TYPE __builtin_complex (REAL, IMAG) + The built-in function `__builtin_complex' is provided for use in + implementing the ISO C11 macros `CMPLXF', `CMPLX' and `CMPLXL'. + REAL and IMAG must have the same type, a real binary + floating-point type, and the result has the corresponding complex + type with real and imaginary parts REAL and IMAG. Unlike `REAL + + I * IMAG', this works even when infinities, NaNs and negative + zeros are involved. -- Built-in Function: int __builtin_constant_p (EXP) ! You can use the built-in function `__builtin_constant_p' to determine if a value is known to be constant at compile time and hence that GCC can perform constant-folding on expressions ! involving that value. The argument of the function is the value ! to test. The function returns the integer 1 if the argument is ! known to be a compile-time constant and 0 if it is not known to be ! a compile-time constant. A return of 0 does not indicate that the ! value is _not_ a constant, but merely that GCC cannot prove it is ! a constant with the specified value of the `-O' option. You typically use this function in an embedded application where memory is a critical resource. If you have some complex ! calculation, you may want it to be folded if it involves ! constants, but need to call a function if it does not. For ! example: #define Scale_Value(X) \ (__builtin_constant_p (X) \ *************** and 'isnan' built-in functions appear bo *** 31764,31772 **** never returns 1 when you call the inline function with a string constant or compound literal (*note Compound Literals::) and does not return 1 when you pass a constant numeric value to the inline ! function unless you specify the '-O' option. ! You may also use '__builtin_constant_p' in initializers for static data. For instance, you can write static const int table[] = { --- 32142,32150 ---- never returns 1 when you call the inline function with a string constant or compound literal (*note Compound Literals::) and does not return 1 when you pass a constant numeric value to the inline ! function unless you specify the `-O' option. ! You may also use `__builtin_constant_p' in initializers for static data. For instance, you can write static const int table[] = { *************** and 'isnan' built-in functions appear bo *** 31776,31786 **** This is an acceptable initializer even if EXPRESSION is not a constant expression, including the case where ! '__builtin_constant_p' returns 1 because EXPRESSION can be folded to a constant but EXPRESSION contains operands that are not ! otherwise permitted in a static initializer (for example, '0 && foo ! ()'). GCC must be more conservative about evaluating the built-in ! in this case, because it has no opportunity to perform optimization. Previous versions of GCC did not accept this built-in in data --- 32154,32164 ---- This is an acceptable initializer even if EXPRESSION is not a constant expression, including the case where ! `__builtin_constant_p' returns 1 because EXPRESSION can be folded to a constant but EXPRESSION contains operands that are not ! otherwise permitted in a static initializer (for example, `0 && ! foo ()'). GCC must be more conservative about evaluating the ! built-in in this case, because it has no opportunity to perform optimization. Previous versions of GCC did not accept this built-in in data *************** and 'isnan' built-in functions appear bo *** 31788,31799 **** 3.0.1. -- Built-in Function: long __builtin_expect (long EXP, long C) ! You may use '__builtin_expect' to provide the compiler with branch prediction information. In general, you should prefer to use ! actual profile feedback for this ('-fprofile-arcs'), as programmers ! are notoriously bad at predicting how their programs actually ! perform. However, there are applications in which this data is ! hard to collect. The return value is the value of EXP, which should be an integral expression. The semantics of the built-in are that it is expected --- 32166,32177 ---- 3.0.1. -- Built-in Function: long __builtin_expect (long EXP, long C) ! You may use `__builtin_expect' to provide the compiler with branch prediction information. In general, you should prefer to use ! actual profile feedback for this (`-fprofile-arcs'), as ! programmers are notoriously bad at predicting how their programs ! actually perform. However, there are applications in which this ! data is hard to collect. The return value is the value of EXP, which should be an integral expression. The semantics of the built-in are that it is expected *************** and 'isnan' built-in functions appear bo *** 31802,31810 **** if (__builtin_expect (x, 0)) foo (); ! indicates that we do not expect to call 'foo', since we expect 'x' ! to be zero. Since you are limited to integral expressions for EXP, ! you should use constructions such as if (__builtin_expect (ptr != NULL, 1)) foo (*ptr); --- 32180,32188 ---- if (__builtin_expect (x, 0)) foo (); ! indicates that we do not expect to call `foo', since we expect `x' ! to be zero. Since you are limited to integral expressions for ! EXP, you should use constructions such as if (__builtin_expect (ptr != NULL, 1)) foo (*ptr); *************** and 'isnan' built-in functions appear bo *** 31815,31834 **** This function causes the program to exit abnormally. GCC implements this function by using a target-dependent mechanism (such as intentionally executing an illegal instruction) or by ! calling 'abort'. The mechanism used may vary from release to release so you should not rely on any particular implementation. -- Built-in Function: void __builtin_unreachable (void) ! If control flow reaches the point of the '__builtin_unreachable', the program is undefined. It is useful in situations where the compiler cannot deduce the unreachability of the code. ! One such case is immediately following an 'asm' statement that either never terminates, or one that transfers control elsewhere and never returns. In this example, without the ! '__builtin_unreachable', GCC issues a warning that control reaches the end of a non-void function. It also generates code to return ! after the 'asm'. int f (int c, int v) { --- 32193,32212 ---- This function causes the program to exit abnormally. GCC implements this function by using a target-dependent mechanism (such as intentionally executing an illegal instruction) or by ! calling `abort'. The mechanism used may vary from release to release so you should not rely on any particular implementation. -- Built-in Function: void __builtin_unreachable (void) ! If control flow reaches the point of the `__builtin_unreachable', the program is undefined. It is useful in situations where the compiler cannot deduce the unreachability of the code. ! One such case is immediately following an `asm' statement that either never terminates, or one that transfers control elsewhere and never returns. In this example, without the ! `__builtin_unreachable', GCC issues a warning that control reaches the end of a non-void function. It also generates code to return ! after the `asm'. int f (int c, int v) { *************** and 'isnan' built-in functions appear bo *** 31843,31856 **** } } ! Because the 'asm' statement unconditionally transfers control out of the function, control never reaches the end of the function ! body. The '__builtin_unreachable' is in fact unreachable and communicates this fact to the compiler. ! Another use for '__builtin_unreachable' is following a call a function that never returns but that is not declared ! '__attribute__((noreturn))', as in this example: void function_that_never_returns (void); --- 32221,32234 ---- } } ! Because the `asm' statement unconditionally transfers control out of the function, control never reaches the end of the function ! body. The `__builtin_unreachable' is in fact unreachable and communicates this fact to the compiler. ! Another use for `__builtin_unreachable' is following a call a function that never returns but that is not declared ! `__attribute__((noreturn))', as in this example: void function_that_never_returns (void); *************** and 'isnan' built-in functions appear bo *** 31867,31872 **** --- 32245,32251 ---- } } + -- Built-in Function: void *__builtin_assume_aligned (const void *EXP, size_t ALIGN, ...) This function returns its first argument, and allows the compiler *************** and 'isnan' built-in functions appear bo *** 31877,31903 **** void *x = __builtin_assume_aligned (arg, 16); ! means that the compiler can assume 'x', set to 'arg', is at least 16-byte aligned, while: void *x = __builtin_assume_aligned (arg, 32, 8); ! means that the compiler can assume for 'x', set to 'arg', that ! '(char *) x - 8' is 32-byte aligned. -- Built-in Function: int __builtin_LINE () ! This function is the equivalent to the preprocessor '__LINE__' macro and returns the line number of the invocation of the built-in. In a C++ default argument for a function F, it gets the line number of the call to F. -- Built-in Function: const char * __builtin_FUNCTION () ! This function is the equivalent to the preprocessor '__FUNCTION__' macro and returns the function name the invocation of the built-in is in. -- Built-in Function: const char * __builtin_FILE () ! This function is the equivalent to the preprocessor '__FILE__' macro and returns the file name the invocation of the built-in is in. In a C++ default argument for a function F, it gets the file name of the call to F. --- 32256,32282 ---- void *x = __builtin_assume_aligned (arg, 16); ! means that the compiler can assume `x', set to `arg', is at least 16-byte aligned, while: void *x = __builtin_assume_aligned (arg, 32, 8); ! means that the compiler can assume for `x', set to `arg', that ! `(char *) x - 8' is 32-byte aligned. -- Built-in Function: int __builtin_LINE () ! This function is the equivalent to the preprocessor `__LINE__' macro and returns the line number of the invocation of the built-in. In a C++ default argument for a function F, it gets the line number of the call to F. -- Built-in Function: const char * __builtin_FUNCTION () ! This function is the equivalent to the preprocessor `__FUNCTION__' macro and returns the function name the invocation of the built-in is in. -- Built-in Function: const char * __builtin_FILE () ! This function is the equivalent to the preprocessor `__FILE__' macro and returns the file name the invocation of the built-in is in. In a C++ default argument for a function F, it gets the file name of the call to F. *************** and 'isnan' built-in functions appear bo *** 31905,31925 **** -- Built-in Function: void __builtin___clear_cache (char *BEGIN, char *END) This function is used to flush the processor's instruction cache ! for the region of memory between BEGIN inclusive and END exclusive. ! Some targets require that the instruction cache be flushed, after ! modifying memory containing code, in order to obtain deterministic ! behavior. If the target does not require instruction cache flushes, ! '__builtin___clear_cache' has no effect. Otherwise either instructions are emitted in-line to clear the instruction cache or ! a call to the '__clear_cache' function in libgcc is made. -- Built-in Function: void __builtin_prefetch (const void *ADDR, ...) ! This function is used to minimize cache-miss latency by moving data ! into a cache before it is accessed. You can insert calls to ! '__builtin_prefetch' into code for which you know addresses of data ! in memory that is likely to be accessed soon. If the target supports them, data prefetch instructions are generated. If the prefetch is done early enough before the access then the data will be in the cache by the time it is accessed. --- 32284,32304 ---- -- Built-in Function: void __builtin___clear_cache (char *BEGIN, char *END) This function is used to flush the processor's instruction cache ! for the region of memory between BEGIN inclusive and END ! exclusive. Some targets require that the instruction cache be ! flushed, after modifying memory containing code, in order to obtain ! deterministic behavior. If the target does not require instruction cache flushes, ! `__builtin___clear_cache' has no effect. Otherwise either instructions are emitted in-line to clear the instruction cache or ! a call to the `__clear_cache' function in libgcc is made. -- Built-in Function: void __builtin_prefetch (const void *ADDR, ...) ! This function is used to minimize cache-miss latency by moving ! data into a cache before it is accessed. You can insert calls to ! `__builtin_prefetch' into code for which you know addresses of ! data in memory that is likely to be accessed soon. If the target supports them, data prefetch instructions are generated. If the prefetch is done early enough before the access then the data will be in the cache by the time it is accessed. *************** and 'isnan' built-in functions appear bo *** 31947,31954 **** Data prefetch does not generate faults if ADDR is invalid, but the address expression itself must be valid. For example, a prefetch ! of 'p->next' does not fault if 'p->next' is not a valid address, ! but evaluation faults if 'p' is not a valid address. If the target does not support data prefetch, the address expression is evaluated if it includes side effects but no other --- 32326,32333 ---- Data prefetch does not generate faults if ADDR is invalid, but the address expression itself must be valid. For example, a prefetch ! of `p->next' does not fault if `p->next' is not a valid address, ! but evaluation faults if `p' is not a valid address. If the target does not support data prefetch, the address expression is evaluated if it includes side effects but no other *************** and 'isnan' built-in functions appear bo *** 31956,31969 **** -- Built-in Function: double __builtin_huge_val (void) Returns a positive infinity, if supported by the floating-point ! format, else 'DBL_MAX'. This function is suitable for implementing ! the ISO C macro 'HUGE_VAL'. -- Built-in Function: float __builtin_huge_valf (void) ! Similar to '__builtin_huge_val', except the return type is 'float'. -- Built-in Function: long double __builtin_huge_vall (void) ! Similar to '__builtin_huge_val', except the return type is 'long double'. -- Built-in Function: int __builtin_fpclassify (int, int, int, int, --- 32335,32348 ---- -- Built-in Function: double __builtin_huge_val (void) Returns a positive infinity, if supported by the floating-point ! format, else `DBL_MAX'. This function is suitable for ! implementing the ISO C macro `HUGE_VAL'. -- Built-in Function: float __builtin_huge_valf (void) ! Similar to `__builtin_huge_val', except the return type is `float'. -- Built-in Function: long double __builtin_huge_vall (void) ! Similar to `__builtin_huge_val', except the return type is `long double'. -- Built-in Function: int __builtin_fpclassify (int, int, int, int, *************** and 'isnan' built-in functions appear bo *** 31971,32055 **** This built-in implements the C99 fpclassify functionality. The first five int arguments should be the target library's notion of the possible FP classes and are used for return values. They must ! be constant values and they must appear in this order: 'FP_NAN', ! 'FP_INFINITE', 'FP_NORMAL', 'FP_SUBNORMAL' and 'FP_ZERO'. The ellipsis is for exactly one floating-point value to classify. GCC treats the last argument as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_inf (void) ! Similar to '__builtin_huge_val', except a warning is generated if the target floating-point format does not support infinities. -- Built-in Function: _Decimal32 __builtin_infd32 (void) ! Similar to '__builtin_inf', except the return type is '_Decimal32'. -- Built-in Function: _Decimal64 __builtin_infd64 (void) ! Similar to '__builtin_inf', except the return type is '_Decimal64'. -- Built-in Function: _Decimal128 __builtin_infd128 (void) ! Similar to '__builtin_inf', except the return type is ! '_Decimal128'. -- Built-in Function: float __builtin_inff (void) ! Similar to '__builtin_inf', except the return type is 'float'. This function is suitable for implementing the ISO C99 macro ! 'INFINITY'. -- Built-in Function: long double __builtin_infl (void) ! Similar to '__builtin_inf', except the return type is 'long double'. -- Built-in Function: int __builtin_isinf_sign (...) ! Similar to 'isinf', except the return value is -1 for an argument ! of '-Inf' and 1 for an argument of '+Inf'. Note while the parameter list is an ellipsis, this function only accepts exactly one floating-point argument. GCC treats this parameter as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_nan (const char *str) ! This is an implementation of the ISO C99 function 'nan'. ! Since ISO C99 defines this function in terms of 'strtod', which we do not implement, a description of the parsing is in order. The ! string is parsed as by 'strtol'; that is, the base is recognized by ! leading '0' or '0x' prefixes. The number parsed is placed in the ! significand such that the least significant bit of the number is at ! the least significant bit of the significand. The number is truncated to fit the significand field provided. The significand is forced to be a quiet NaN. This function, if given a string literal all of which would have ! been consumed by 'strtol', is evaluated early enough that it is considered a compile-time constant. -- Built-in Function: _Decimal32 __builtin_nand32 (const char *str) ! Similar to '__builtin_nan', except the return type is '_Decimal32'. -- Built-in Function: _Decimal64 __builtin_nand64 (const char *str) ! Similar to '__builtin_nan', except the return type is '_Decimal64'. -- Built-in Function: _Decimal128 __builtin_nand128 (const char *str) ! Similar to '__builtin_nan', except the return type is ! '_Decimal128'. -- Built-in Function: float __builtin_nanf (const char *str) ! Similar to '__builtin_nan', except the return type is 'float'. -- Built-in Function: long double __builtin_nanl (const char *str) ! Similar to '__builtin_nan', except the return type is 'long double'. -- Built-in Function: double __builtin_nans (const char *str) ! Similar to '__builtin_nan', except the significand is forced to be ! a signaling NaN. The 'nans' function is proposed by WG14 N965. -- Built-in Function: float __builtin_nansf (const char *str) ! Similar to '__builtin_nans', except the return type is 'float'. -- Built-in Function: long double __builtin_nansl (const char *str) ! Similar to '__builtin_nans', except the return type is 'long double'. -- Built-in Function: int __builtin_ffs (int x) --- 32350,32434 ---- This built-in implements the C99 fpclassify functionality. The first five int arguments should be the target library's notion of the possible FP classes and are used for return values. They must ! be constant values and they must appear in this order: `FP_NAN', ! `FP_INFINITE', `FP_NORMAL', `FP_SUBNORMAL' and `FP_ZERO'. The ellipsis is for exactly one floating-point value to classify. GCC treats the last argument as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_inf (void) ! Similar to `__builtin_huge_val', except a warning is generated if the target floating-point format does not support infinities. -- Built-in Function: _Decimal32 __builtin_infd32 (void) ! Similar to `__builtin_inf', except the return type is `_Decimal32'. -- Built-in Function: _Decimal64 __builtin_infd64 (void) ! Similar to `__builtin_inf', except the return type is `_Decimal64'. -- Built-in Function: _Decimal128 __builtin_infd128 (void) ! Similar to `__builtin_inf', except the return type is ! `_Decimal128'. -- Built-in Function: float __builtin_inff (void) ! Similar to `__builtin_inf', except the return type is `float'. This function is suitable for implementing the ISO C99 macro ! `INFINITY'. -- Built-in Function: long double __builtin_infl (void) ! Similar to `__builtin_inf', except the return type is `long double'. -- Built-in Function: int __builtin_isinf_sign (...) ! Similar to `isinf', except the return value is -1 for an argument ! of `-Inf' and 1 for an argument of `+Inf'. Note while the parameter list is an ellipsis, this function only accepts exactly one floating-point argument. GCC treats this parameter as type-generic, which means it does not do default promotion from float to double. -- Built-in Function: double __builtin_nan (const char *str) ! This is an implementation of the ISO C99 function `nan'. ! Since ISO C99 defines this function in terms of `strtod', which we do not implement, a description of the parsing is in order. The ! string is parsed as by `strtol'; that is, the base is recognized by ! leading `0' or `0x' prefixes. The number parsed is placed in the ! significand such that the least significant bit of the number is ! at the least significant bit of the significand. The number is truncated to fit the significand field provided. The significand is forced to be a quiet NaN. This function, if given a string literal all of which would have ! been consumed by `strtol', is evaluated early enough that it is considered a compile-time constant. -- Built-in Function: _Decimal32 __builtin_nand32 (const char *str) ! Similar to `__builtin_nan', except the return type is `_Decimal32'. -- Built-in Function: _Decimal64 __builtin_nand64 (const char *str) ! Similar to `__builtin_nan', except the return type is `_Decimal64'. -- Built-in Function: _Decimal128 __builtin_nand128 (const char *str) ! Similar to `__builtin_nan', except the return type is ! `_Decimal128'. -- Built-in Function: float __builtin_nanf (const char *str) ! Similar to `__builtin_nan', except the return type is `float'. -- Built-in Function: long double __builtin_nanl (const char *str) ! Similar to `__builtin_nan', except the return type is `long double'. -- Built-in Function: double __builtin_nans (const char *str) ! Similar to `__builtin_nan', except the significand is forced to be ! a signaling NaN. The `nans' function is proposed by WG14 N965. -- Built-in Function: float __builtin_nansf (const char *str) ! Similar to `__builtin_nans', except the return type is `float'. -- Built-in Function: long double __builtin_nansl (const char *str) ! Similar to `__builtin_nans', except the return type is `long double'. -- Built-in Function: int __builtin_ffs (int x) *************** and 'isnan' built-in functions appear bo *** 32076,32149 **** Returns the parity of X, i.e. the number of 1-bits in X modulo 2. -- Built-in Function: int __builtin_ffsl (long) ! Similar to '__builtin_ffs', except the argument type is 'long'. -- Built-in Function: int __builtin_clzl (unsigned long) ! Similar to '__builtin_clz', except the argument type is 'unsigned long'. -- Built-in Function: int __builtin_ctzl (unsigned long) ! Similar to '__builtin_ctz', except the argument type is 'unsigned long'. -- Built-in Function: int __builtin_clrsbl (long) ! Similar to '__builtin_clrsb', except the argument type is 'long'. -- Built-in Function: int __builtin_popcountl (unsigned long) ! Similar to '__builtin_popcount', except the argument type is ! 'unsigned long'. -- Built-in Function: int __builtin_parityl (unsigned long) ! Similar to '__builtin_parity', except the argument type is ! 'unsigned long'. -- Built-in Function: int __builtin_ffsll (long long) ! Similar to '__builtin_ffs', except the argument type is 'long long'. -- Built-in Function: int __builtin_clzll (unsigned long long) ! Similar to '__builtin_clz', except the argument type is 'unsigned long long'. -- Built-in Function: int __builtin_ctzll (unsigned long long) ! Similar to '__builtin_ctz', except the argument type is 'unsigned long long'. -- Built-in Function: int __builtin_clrsbll (long long) ! Similar to '__builtin_clrsb', except the argument type is 'long long'. -- Built-in Function: int __builtin_popcountll (unsigned long long) ! Similar to '__builtin_popcount', except the argument type is ! 'unsigned long long'. -- Built-in Function: int __builtin_parityll (unsigned long long) ! Similar to '__builtin_parity', except the argument type is ! 'unsigned long long'. -- Built-in Function: double __builtin_powi (double, int) Returns the first argument raised to the power of the second. ! Unlike the 'pow' function no guarantees about precision and rounding are made. -- Built-in Function: float __builtin_powif (float, int) ! Similar to '__builtin_powi', except the argument and return types ! are 'float'. -- Built-in Function: long double __builtin_powil (long double, int) ! Similar to '__builtin_powi', except the argument and return types ! are 'long double'. -- Built-in Function: uint16_t __builtin_bswap16 (uint16_t x) Returns X with the order of the bytes reversed; for example, ! '0xaabb' becomes '0xbbaa'. Byte here always means exactly 8 bits. -- Built-in Function: uint32_t __builtin_bswap32 (uint32_t x) ! Similar to '__builtin_bswap16', except the argument and return types are 32 bit. -- Built-in Function: uint64_t __builtin_bswap64 (uint64_t x) ! Similar to '__builtin_bswap32', except the argument and return types are 64 bit.  --- 32455,32528 ---- Returns the parity of X, i.e. the number of 1-bits in X modulo 2. -- Built-in Function: int __builtin_ffsl (long) ! Similar to `__builtin_ffs', except the argument type is `long'. -- Built-in Function: int __builtin_clzl (unsigned long) ! Similar to `__builtin_clz', except the argument type is `unsigned long'. -- Built-in Function: int __builtin_ctzl (unsigned long) ! Similar to `__builtin_ctz', except the argument type is `unsigned long'. -- Built-in Function: int __builtin_clrsbl (long) ! Similar to `__builtin_clrsb', except the argument type is `long'. -- Built-in Function: int __builtin_popcountl (unsigned long) ! Similar to `__builtin_popcount', except the argument type is ! `unsigned long'. -- Built-in Function: int __builtin_parityl (unsigned long) ! Similar to `__builtin_parity', except the argument type is ! `unsigned long'. -- Built-in Function: int __builtin_ffsll (long long) ! Similar to `__builtin_ffs', except the argument type is `long long'. -- Built-in Function: int __builtin_clzll (unsigned long long) ! Similar to `__builtin_clz', except the argument type is `unsigned long long'. -- Built-in Function: int __builtin_ctzll (unsigned long long) ! Similar to `__builtin_ctz', except the argument type is `unsigned long long'. -- Built-in Function: int __builtin_clrsbll (long long) ! Similar to `__builtin_clrsb', except the argument type is `long long'. -- Built-in Function: int __builtin_popcountll (unsigned long long) ! Similar to `__builtin_popcount', except the argument type is ! `unsigned long long'. -- Built-in Function: int __builtin_parityll (unsigned long long) ! Similar to `__builtin_parity', except the argument type is ! `unsigned long long'. -- Built-in Function: double __builtin_powi (double, int) Returns the first argument raised to the power of the second. ! Unlike the `pow' function no guarantees about precision and rounding are made. -- Built-in Function: float __builtin_powif (float, int) ! Similar to `__builtin_powi', except the argument and return types ! are `float'. -- Built-in Function: long double __builtin_powil (long double, int) ! Similar to `__builtin_powi', except the argument and return types ! are `long double'. -- Built-in Function: uint16_t __builtin_bswap16 (uint16_t x) Returns X with the order of the bytes reversed; for example, ! `0xaabb' becomes `0xbbaa'. Byte here always means exactly 8 bits. -- Built-in Function: uint32_t __builtin_bswap32 (uint32_t x) ! Similar to `__builtin_bswap16', except the argument and return types are 32 bit. -- Built-in Function: uint64_t __builtin_bswap64 (uint64_t x) ! Similar to `__builtin_bswap32', except the argument and return types are 64 bit.  *************** generate the machine instruction that is *** 32230,32238 **** long __builtin_alpha_zap (long, long) long __builtin_alpha_zapnot (long, long) ! The following built-in functions are always with '-mmax' or '-mcpu=CPU' ! where CPU is 'pca56' or later. They all generate the machine ! instruction that is part of the name. long __builtin_alpha_pklb (long) long __builtin_alpha_pkwb (long) --- 32609,32617 ---- long __builtin_alpha_zap (long, long) long __builtin_alpha_zapnot (long, long) ! The following built-in functions are always with `-mmax' or ! `-mcpu=CPU' where CPU is `pca56' or later. They all generate the ! machine instruction that is part of the name. long __builtin_alpha_pklb (long) long __builtin_alpha_pkwb (long) *************** instruction that is part of the name. *** 32248,32265 **** long __builtin_alpha_maxsw4 (long, long) long __builtin_alpha_perr (long, long) ! The following built-in functions are always with '-mcix' or '-mcpu=CPU' ! where CPU is 'ev67' or later. They all generate the machine instruction ! that is part of the name. long __builtin_alpha_cttz (long) long __builtin_alpha_ctlz (long) long __builtin_alpha_ctpop (long) The following built-in functions are available on systems that use the ! OSF/1 PALcode. Normally they invoke the 'rduniq' and 'wruniq' PAL ! calls, but when invoked with '-mtls-kernel', they invoke 'rdval' and ! 'wrval'. void *__builtin_thread_pointer (void) void __builtin_set_thread_pointer (void *) --- 32627,32644 ---- long __builtin_alpha_maxsw4 (long, long) long __builtin_alpha_perr (long, long) ! The following built-in functions are always with `-mcix' or ! `-mcpu=CPU' where CPU is `ev67' or later. They all generate the ! machine instruction that is part of the name. long __builtin_alpha_cttz (long) long __builtin_alpha_ctlz (long) long __builtin_alpha_ctpop (long) The following built-in functions are available on systems that use the ! OSF/1 PALcode. Normally they invoke the `rduniq' and `wruniq' PAL ! calls, but when invoked with `-mtls-kernel', they invoke `rdval' and ! `wrval'. void *__builtin_thread_pointer (void) void __builtin_set_thread_pointer (void *) *************** generate the machine instruction that is *** 32289,32313 **** void __builtin_wrctl (int, int) The following built-in functions are always available. They all ! generate a Nios II Custom Instruction. The name of the function ! represents the types that the function takes and returns. The letter ! before the 'n' is the return type or void if absent. The 'n' represents the first parameter to all the custom instructions, the custom ! instruction number. The two letters after the 'n' represent the up to two parameters to the function. The letters represent the following data types: ! '' ! 'void' for return type and no parameter for parameter types. ! 'i' ! 'int' for return type and parameter type ! 'f' ! 'float' for return type and parameter type - 'p' - 'void *' for return type and parameter type And the function names are: void __builtin_custom_n (void) --- 32668,32693 ---- void __builtin_wrctl (int, int) The following built-in functions are always available. They all ! generate a Nios II Custom Instruction. The name of the function ! represents the types that the function takes and returns. The letter ! before the `n' is the return type or void if absent. The `n' represents the first parameter to all the custom instructions, the custom ! instruction number. The two letters after the `n' represent the up to two parameters to the function. The letters represent the following data types: ! `' ! `void' for return type and no parameter for parameter types. ! `i' ! `int' for return type and parameter type ! `f' ! `float' for return type and parameter type ! ! `p' ! `void *' for return type and parameter type And the function names are: void __builtin_custom_n (void) *************** generated to ensure this is true, but fo *** 32377,32383 **** in each case. _Note:_ Using a built-in to generate an instruction not supported by a ! target may cause problems. At present the compiler is not guaranteed to detect such misuse, and as a result an internal compiler error may be generated. --- 32757,32763 ---- in each case. _Note:_ Using a built-in to generate an instruction not supported by a ! target may cause problems. At present the compiler is not guaranteed to detect such misuse, and as a result an internal compiler error may be generated. *************** generated. *** 32410,32416 **** mov rREGNO, VAL -- Built-in Function: int __builtin_arc_divaw (int A, int B) ! Only available if either '-mcpu=ARC700' or '-meA' is set. Generates: divaw DEST, A, B where the value in DEST will be the result returned from the --- 32790,32796 ---- mov rREGNO, VAL -- Built-in Function: int __builtin_arc_divaw (int A, int B) ! Only available if either `-mcpu=ARC700' or `-meA' is set. Generates: divaw DEST, A, B where the value in DEST will be the result returned from the *************** generated. *** 32421,32439 **** flag A -- Built-in Function: unsigned int __builtin_arc_lr (unsigned int AUXR) ! The operand, AUXV, is the address of an auxiliary register and must ! be a compile time constant. Generates: lr DEST, [AUXR] Where the value in DEST will be the result returned from the built-in. -- Built-in Function: void __builtin_arc_mul64 (int A, int B) ! Only available with '-mmul64'. Generates: mul64 A, B -- Built-in Function: void __builtin_arc_mulu64 (unsigned int A, unsigned int B) ! Only available with '-mmul64'. Generates: mulu64 A, B -- Built-in Function: void __builtin_arc_nop (void) --- 32801,32819 ---- flag A -- Built-in Function: unsigned int __builtin_arc_lr (unsigned int AUXR) ! The operand, AUXV, is the address of an auxiliary register and ! must be a compile time constant. Generates: lr DEST, [AUXR] Where the value in DEST will be the result returned from the built-in. -- Built-in Function: void __builtin_arc_mul64 (int A, int B) ! Only available with `-mmul64'. Generates: mul64 A, B -- Built-in Function: void __builtin_arc_mulu64 (unsigned int A, unsigned int B) ! Only available with `-mmul64'. Generates: mulu64 A, B -- Built-in Function: void __builtin_arc_nop (void) *************** generated. *** 32441,32455 **** nop -- Built-in Function: int __builtin_arc_norm (int SRC) ! Only valid if the 'norm' instruction is available through the ! '-mnorm' option or by default with '-mcpu=ARC700'. Generates: norm DEST, SRC Where the value in DEST will be the result returned from the built-in. -- Built-in Function: short int __builtin_arc_normw (short int SRC) ! Only valid if the 'normw' instruction is available through the ! '-mnorm' option or by default with '-mcpu=ARC700'. Generates: normw DEST, SRC Where the value in DEST will be the result returned from the built-in. --- 32821,32835 ---- nop -- Built-in Function: int __builtin_arc_norm (int SRC) ! Only valid if the `norm' instruction is available through the ! `-mnorm' option or by default with `-mcpu=ARC700'. Generates: norm DEST, SRC Where the value in DEST will be the result returned from the built-in. -- Built-in Function: short int __builtin_arc_normw (short int SRC) ! Only valid if the `normw' instruction is available through the ! `-mnorm' option or by default with `-mcpu=ARC700'. Generates: normw DEST, SRC Where the value in DEST will be the result returned from the built-in. *************** generated. *** 32470,32476 **** sr AUXR, [VAL] -- Built-in Function: int __builtin_arc_swap (int SRC) ! Only valid with '-mswap'. Generates: swap DEST, SRC Where the value in DEST will be the result returned from the built-in. --- 32850,32856 ---- sr AUXR, [VAL] -- Built-in Function: int __builtin_arc_swap (int SRC) ! Only valid with `-mswap'. Generates: swap DEST, SRC Where the value in DEST will be the result returned from the built-in. *************** generated. *** 32480,32500 **** swi -- Built-in Function: void __builtin_arc_sync (void) ! Only available with '-mcpu=ARC700'. Generates: sync -- Built-in Function: void __builtin_arc_trap_s (unsigned int C) ! Only available with '-mcpu=ARC700'. Generates: trap_s C -- Built-in Function: void __builtin_arc_unimp_s (void) ! Only available with '-mcpu=ARC700'. Generates: unimp_s ! The instructions generated by the following builtins are not considered ! as candidates for scheduling. They are not moved around by the compiler ! during scheduling, and thus can be expected to appear where they are put ! in the C code: __builtin_arc_brk() __builtin_arc_core_read() __builtin_arc_core_write() --- 32860,32880 ---- swi -- Built-in Function: void __builtin_arc_sync (void) ! Only available with `-mcpu=ARC700'. Generates: sync -- Built-in Function: void __builtin_arc_trap_s (unsigned int C) ! Only available with `-mcpu=ARC700'. Generates: trap_s C -- Built-in Function: void __builtin_arc_unimp_s (void) ! Only available with `-mcpu=ARC700'. Generates: unimp_s ! The instructions generated by the following builtins are not ! considered as candidates for scheduling. They are not moved around by ! the compiler during scheduling, and thus can be expected to appear ! where they are put in the C code: __builtin_arc_brk() __builtin_arc_core_read() __builtin_arc_core_write() *************** File: gcc.info, Node: ARC SIMD Built-in *** 32512,32539 **** SIMD builtins provided by the compiler can be used to generate the vector instructions. This section describes the available builtins and ! their usage in programs. With the '-msimd' option, the compiler provides 128-bit vector types, which can be specified using the ! 'vector_size' attribute. The header file 'arc-simd.h' can be included to use the following predefined types: typedef int __v4si __attribute__((vector_size(16))); typedef short __v8hi __attribute__((vector_size(16))); These types can be used to define 128-bit variables. The built-in ! functions listed in the following section can be used on these variables ! to generate the vector operations. ! For all builtins, '__builtin_arc_SOMEINSN', the header file ! 'arc-simd.h' also provides equivalent macros called '_SOMEINSN' that can ! be used for programming ease and improved readability. The following ! macros for DMA control are also provided: #define _setup_dma_in_channel_reg _vdiwr #define _setup_dma_out_channel_reg _vdowr ! The following is a complete list of all the SIMD built-ins provided for ! ARC, grouped by calling signature. ! The following take two '__v8hi' arguments and return a '__v8hi' result: __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi) __v8hi __builtin_arc_vaddw (__v8hi, __v8hi) __v8hi __builtin_arc_vand (__v8hi, __v8hi) --- 32892,32919 ---- SIMD builtins provided by the compiler can be used to generate the vector instructions. This section describes the available builtins and ! their usage in programs. With the `-msimd' option, the compiler provides 128-bit vector types, which can be specified using the ! `vector_size' attribute. The header file `arc-simd.h' can be included to use the following predefined types: typedef int __v4si __attribute__((vector_size(16))); typedef short __v8hi __attribute__((vector_size(16))); These types can be used to define 128-bit variables. The built-in ! functions listed in the following section can be used on these ! variables to generate the vector operations. ! For all builtins, `__builtin_arc_SOMEINSN', the header file ! `arc-simd.h' also provides equivalent macros called `_SOMEINSN' that ! can be used for programming ease and improved readability. The ! following macros for DMA control are also provided: #define _setup_dma_in_channel_reg _vdiwr #define _setup_dma_out_channel_reg _vdowr ! The following is a complete list of all the SIMD built-ins provided ! for ARC, grouped by calling signature. ! The following take two `__v8hi' arguments and return a `__v8hi' result: __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi) __v8hi __builtin_arc_vaddw (__v8hi, __v8hi) __v8hi __builtin_arc_vand (__v8hi, __v8hi) *************** ARC, grouped by calling signature. *** 32583,32590 **** __v8hi __builtin_arc_vxor (__v8hi, __v8hi) __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi) ! The following take one '__v8hi' and one 'int' argument and return a ! '__v8hi' result: __v8hi __builtin_arc_vbaddw (__v8hi, int) __v8hi __builtin_arc_vbmaxw (__v8hi, int) --- 32963,32970 ---- __v8hi __builtin_arc_vxor (__v8hi, __v8hi) __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi) ! The following take one `__v8hi' and one `int' argument and return a ! `__v8hi' result: __v8hi __builtin_arc_vbaddw (__v8hi, int) __v8hi __builtin_arc_vbmaxw (__v8hi, int) *************** ARC, grouped by calling signature. *** 32595,32609 **** __v8hi __builtin_arc_vbrsubw (__v8hi, int) __v8hi __builtin_arc_vbsubw (__v8hi, int) ! The following take one '__v8hi' argument and one 'int' argument which must be a 3-bit compile time constant indicating a register number ! I0-I7. They return a '__v8hi' result. __v8hi __builtin_arc_vasrw (__v8hi, const int) __v8hi __builtin_arc_vsr8 (__v8hi, const int) __v8hi __builtin_arc_vsr8aw (__v8hi, const int) ! The following take one '__v8hi' argument and one 'int' argument which ! must be a 6-bit compile time constant. They return a '__v8hi' result. __v8hi __builtin_arc_vasrpwbi (__v8hi, const int) __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int) __v8hi __builtin_arc_vasrrwi (__v8hi, const int) --- 32975,32989 ---- __v8hi __builtin_arc_vbrsubw (__v8hi, int) __v8hi __builtin_arc_vbsubw (__v8hi, int) ! The following take one `__v8hi' argument and one `int' argument which must be a 3-bit compile time constant indicating a register number ! I0-I7. They return a `__v8hi' result. __v8hi __builtin_arc_vasrw (__v8hi, const int) __v8hi __builtin_arc_vsr8 (__v8hi, const int) __v8hi __builtin_arc_vsr8aw (__v8hi, const int) ! The following take one `__v8hi' argument and one `int' argument which ! must be a 6-bit compile time constant. They return a `__v8hi' result. __v8hi __builtin_arc_vasrpwbi (__v8hi, const int) __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int) __v8hi __builtin_arc_vasrrwi (__v8hi, const int) *************** must be a 6-bit compile time constant. *** 32612,32631 **** __v8hi __builtin_arc_vsr8awi (__v8hi, const int) __v8hi __builtin_arc_vsr8i (__v8hi, const int) ! The following take one '__v8hi' argument and one 'int' argument which ! must be a 8-bit compile time constant. They return a '__v8hi' result. __v8hi __builtin_arc_vd6tapf (__v8hi, const int) __v8hi __builtin_arc_vmvaw (__v8hi, const int) __v8hi __builtin_arc_vmvw (__v8hi, const int) __v8hi __builtin_arc_vmvzw (__v8hi, const int) ! The following take two 'int' arguments, the second of which which must ! be a 8-bit compile time constant. They return a '__v8hi' result: __v8hi __builtin_arc_vmovaw (int, const int) __v8hi __builtin_arc_vmovw (int, const int) __v8hi __builtin_arc_vmovzw (int, const int) ! The following take a single '__v8hi' argument and return a '__v8hi' result: __v8hi __builtin_arc_vabsaw (__v8hi) __v8hi __builtin_arc_vabsw (__v8hi) --- 32992,33011 ---- __v8hi __builtin_arc_vsr8awi (__v8hi, const int) __v8hi __builtin_arc_vsr8i (__v8hi, const int) ! The following take one `__v8hi' argument and one `int' argument which ! must be a 8-bit compile time constant. They return a `__v8hi' result. __v8hi __builtin_arc_vd6tapf (__v8hi, const int) __v8hi __builtin_arc_vmvaw (__v8hi, const int) __v8hi __builtin_arc_vmvw (__v8hi, const int) __v8hi __builtin_arc_vmvzw (__v8hi, const int) ! The following take two `int' arguments, the second of which which must ! be a 8-bit compile time constant. They return a `__v8hi' result: __v8hi __builtin_arc_vmovaw (int, const int) __v8hi __builtin_arc_vmovw (int, const int) __v8hi __builtin_arc_vmovzw (int, const int) ! The following take a single `__v8hi' argument and return a `__v8hi' result: __v8hi __builtin_arc_vabsaw (__v8hi) __v8hi __builtin_arc_vabsw (__v8hi) *************** result: *** 32639,32676 **** __v8hi __builtin_arc_vupsbaw (__v8hi) __v8hi __builtin_arc_vupsbw (__v8hi) ! The followign take two 'int' arguments and return no result: void __builtin_arc_vdirun (int, int) void __builtin_arc_vdorun (int, int) ! The following take two 'int' arguments and return no result. The first ! argument must a 3-bit compile time constant indicating one of the DR0-DR7 DMA setup channels: void __builtin_arc_vdiwr (const int, int) void __builtin_arc_vdowr (const int, int) ! The following take an 'int' argument and return no result: void __builtin_arc_vendrec (int) void __builtin_arc_vrec (int) void __builtin_arc_vrecrun (int) void __builtin_arc_vrun (int) ! The following take a '__v8hi' argument and two 'int' arguments and ! return a '__v8hi' result. The second argument must be a 3-bit compile time constants, indicating one the registers I0-I7, and the third argument must be an 8-bit compile time constant. _Note:_ Although the equivalent hardware instructions do not take an SIMD register as an operand, these builtins overwrite the relevant bits ! of the '__v8hi' register provided as the first argument with the value ! loaded from the '[Ib, u8]' location in the SDM. __v8hi __builtin_arc_vld32 (__v8hi, const int, const int) __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int) __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int) __v8hi __builtin_arc_vld64 (__v8hi, const int, const int) ! The following take two 'int' arguments and return a '__v8hi' result. The first argument must be a 3-bit compile time constants, indicating one the registers I0-I7, and the second argument must be an 8-bit compile time constant. --- 33019,33056 ---- __v8hi __builtin_arc_vupsbaw (__v8hi) __v8hi __builtin_arc_vupsbw (__v8hi) ! The followign take two `int' arguments and return no result: void __builtin_arc_vdirun (int, int) void __builtin_arc_vdorun (int, int) ! The following take two `int' arguments and return no result. The ! first argument must a 3-bit compile time constant indicating one of the DR0-DR7 DMA setup channels: void __builtin_arc_vdiwr (const int, int) void __builtin_arc_vdowr (const int, int) ! The following take an `int' argument and return no result: void __builtin_arc_vendrec (int) void __builtin_arc_vrec (int) void __builtin_arc_vrecrun (int) void __builtin_arc_vrun (int) ! The following take a `__v8hi' argument and two `int' arguments and ! return a `__v8hi' result. The second argument must be a 3-bit compile time constants, indicating one the registers I0-I7, and the third argument must be an 8-bit compile time constant. _Note:_ Although the equivalent hardware instructions do not take an SIMD register as an operand, these builtins overwrite the relevant bits ! of the `__v8hi' register provided as the first argument with the value ! loaded from the `[Ib, u8]' location in the SDM. __v8hi __builtin_arc_vld32 (__v8hi, const int, const int) __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int) __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int) __v8hi __builtin_arc_vld64 (__v8hi, const int, const int) ! The following take two `int' arguments and return a `__v8hi' result. The first argument must be a 3-bit compile time constants, indicating one the registers I0-I7, and the second argument must be an 8-bit compile time constant. *************** compile time constant. *** 32678,32684 **** __v8hi __builtin_arc_vld128 (const int, const int) __v8hi __builtin_arc_vld64w (const int, const int) ! The following take a '__v8hi' argument and two 'int' arguments and return no result. The second argument must be a 3-bit compile time constants, indicating one the registers I0-I7, and the third argument must be an 8-bit compile time constant. --- 33058,33064 ---- __v8hi __builtin_arc_vld128 (const int, const int) __v8hi __builtin_arc_vld64w (const int, const int) ! The following take a `__v8hi' argument and two `int' arguments and return no result. The second argument must be a 3-bit compile time constants, indicating one the registers I0-I7, and the third argument must be an 8-bit compile time constant. *************** must be an 8-bit compile time constant. *** 32686,32692 **** void __builtin_arc_vst128 (__v8hi, const int, const int) void __builtin_arc_vst64 (__v8hi, const int, const int) ! The following take a '__v8hi' argument and three 'int' arguments and return no result. The second argument must be a 3-bit compile-time constant, identifying the 16-bit sub-register to be stored, the third argument must be a 3-bit compile time constants, indicating one the --- 33066,33072 ---- void __builtin_arc_vst128 (__v8hi, const int, const int) void __builtin_arc_vst64 (__v8hi, const int, const int) ! The following take a `__v8hi' argument and three `int' arguments and return no result. The second argument must be a 3-bit compile-time constant, identifying the 16-bit sub-register to be stored, the third argument must be a 3-bit compile time constants, indicating one the *************** File: gcc.info, Node: ARM iWMMXt Built- *** 32703,32709 **** ------------------------------------ These built-in functions are available for the ARM family of processors ! when the '-mcpu=iwmmxt' switch is used: typedef int v2si __attribute__ ((vector_size (8))); typedef short v4hi __attribute__ ((vector_size (8))); --- 33083,33089 ---- ------------------------------------ These built-in functions are available for the ARM family of processors ! when the `-mcpu=iwmmxt' switch is used: typedef int v2si __attribute__ ((vector_size (8))); typedef short v4hi __attribute__ ((vector_size (8))); *************** File: gcc.info, Node: ARM NEON Intrinsi *** 32857,35452 **** -------------------------- These built-in intrinsics for the ARM Advanced SIMD extension are ! available when the '-mfpu=neon' switch is used: 6.57.6.1 Addition ................. * uint32x2_t vadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vadd.i32 D0, D0, D0' * uint16x4_t vadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vadd.i16 D0, D0, D0' * uint8x8_t vadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vadd.i8 D0, D0, D0' * int32x2_t vadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vadd.i32 D0, D0, D0' * int16x4_t vadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vadd.i16 D0, D0, D0' * int8x8_t vadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vadd.i8 D0, D0, D0' * float32x2_t vadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vadd.f32 D0, D0, D0' * uint64x1_t vadd_u64 (uint64x1_t, uint64x1_t) * int64x1_t vadd_s64 (int64x1_t, int64x1_t) * uint32x4_t vaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vadd.i32 Q0, Q0, Q0' * uint16x8_t vaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vadd.i16 Q0, Q0, Q0' * uint8x16_t vaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vadd.i8 Q0, Q0, Q0' * int32x4_t vaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vadd.i32 Q0, Q0, Q0' * int16x8_t vaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vadd.i16 Q0, Q0, Q0' * int8x16_t vaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vadd.i8 Q0, Q0, Q0' * uint64x2_t vaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vadd.i64 Q0, Q0, Q0' * int64x2_t vaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vadd.i64 Q0, Q0, Q0' * float32x4_t vaddq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vadd.f32 Q0, Q0, Q0' * uint64x2_t vaddl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vaddl.u32 Q0, D0, D0' * uint32x4_t vaddl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vaddl.u16 Q0, D0, D0' * uint16x8_t vaddl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vaddl.u8 Q0, D0, D0' * int64x2_t vaddl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vaddl.s32 Q0, D0, D0' * int32x4_t vaddl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vaddl.s16 Q0, D0, D0' * int16x8_t vaddl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vaddl.s8 Q0, D0, D0' * uint64x2_t vaddw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vaddw.u32 Q0, Q0, D0' * uint32x4_t vaddw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vaddw.u16 Q0, Q0, D0' * uint16x8_t vaddw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vaddw.u8 Q0, Q0, D0' * int64x2_t vaddw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vaddw.s32 Q0, Q0, D0' * int32x4_t vaddw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vaddw.s16 Q0, Q0, D0' * int16x8_t vaddw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vaddw.s8 Q0, Q0, D0' * uint32x2_t vhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vhadd.u32 D0, D0, D0' * uint16x4_t vhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vhadd.u16 D0, D0, D0' * uint8x8_t vhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vhadd.u8 D0, D0, D0' * int32x2_t vhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vhadd.s32 D0, D0, D0' * int16x4_t vhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vhadd.s16 D0, D0, D0' * int8x8_t vhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vhadd.s8 D0, D0, D0' * uint32x4_t vhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vhadd.u32 Q0, Q0, Q0' * uint16x8_t vhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vhadd.u16 Q0, Q0, Q0' * uint8x16_t vhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vhadd.u8 Q0, Q0, Q0' * int32x4_t vhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vhadd.s32 Q0, Q0, Q0' * int16x8_t vhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vhadd.s16 Q0, Q0, Q0' * int8x16_t vhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vhadd.s8 Q0, Q0, Q0' * uint32x2_t vrhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vrhadd.u32 D0, D0, D0' * uint16x4_t vrhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vrhadd.u16 D0, D0, D0' * uint8x8_t vrhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vrhadd.u8 D0, D0, D0' * int32x2_t vrhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vrhadd.s32 D0, D0, D0' * int16x4_t vrhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vrhadd.s16 D0, D0, D0' * int8x8_t vrhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vrhadd.s8 D0, D0, D0' * uint32x4_t vrhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vrhadd.u32 Q0, Q0, Q0' * uint16x8_t vrhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vrhadd.u16 Q0, Q0, Q0' * uint8x16_t vrhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vrhadd.u8 Q0, Q0, Q0' * int32x4_t vrhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrhadd.s32 Q0, Q0, Q0' * int16x8_t vrhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrhadd.s16 Q0, Q0, Q0' * int8x16_t vrhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vrhadd.s8 Q0, Q0, Q0' * uint32x2_t vqadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vqadd.u32 D0, D0, D0' * uint16x4_t vqadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vqadd.u16 D0, D0, D0' * uint8x8_t vqadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vqadd.u8 D0, D0, D0' * int32x2_t vqadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqadd.s32 D0, D0, D0' * int16x4_t vqadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqadd.s16 D0, D0, D0' * int8x8_t vqadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqadd.s8 D0, D0, D0' * uint64x1_t vqadd_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ 'vqadd.u64 D0, D0, D0' * int64x1_t vqadd_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqadd.s64 D0, D0, D0' * uint32x4_t vqaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vqadd.u32 Q0, Q0, Q0' * uint16x8_t vqaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vqadd.u16 Q0, Q0, Q0' * uint8x16_t vqaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vqadd.u8 Q0, Q0, Q0' * int32x4_t vqaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqadd.s32 Q0, Q0, Q0' * int16x8_t vqaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqadd.s16 Q0, Q0, Q0' * int8x16_t vqaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqadd.s8 Q0, Q0, Q0' * uint64x2_t vqaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vqadd.u64 Q0, Q0, Q0' * int64x2_t vqaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqadd.s64 Q0, Q0, Q0' * uint32x2_t vaddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vaddhn.i64 D0, Q0, Q0' * uint16x4_t vaddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vaddhn.i32 D0, Q0, Q0' * uint8x8_t vaddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vaddhn.i16 D0, Q0, Q0' * int32x2_t vaddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vaddhn.i64 D0, Q0, Q0' * int16x4_t vaddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vaddhn.i32 D0, Q0, Q0' * int8x8_t vaddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vaddhn.i16 D0, Q0, Q0' * uint32x2_t vraddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vraddhn.i64 D0, Q0, Q0' * uint16x4_t vraddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vraddhn.i32 D0, Q0, Q0' * uint8x8_t vraddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vraddhn.i16 D0, Q0, Q0' * int32x2_t vraddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vraddhn.i64 D0, Q0, Q0' * int16x4_t vraddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vraddhn.i32 D0, Q0, Q0' * int8x8_t vraddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vraddhn.i16 D0, Q0, Q0' 6.57.6.2 Multiplication ....................... * uint32x2_t vmul_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0' * uint16x4_t vmul_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0' * uint8x8_t vmul_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmul.i8 D0, D0, D0' * int32x2_t vmul_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0' * int16x4_t vmul_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0' * int8x8_t vmul_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmul.i8 D0, D0, D0' * float32x2_t vmul_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0' * poly8x8_t vmul_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vmul.p8 D0, D0, D0' * uint32x4_t vmulq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, Q0' * uint16x8_t vmulq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, Q0' * uint8x16_t vmulq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmul.i8 Q0, Q0, Q0' * int32x4_t vmulq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, Q0' * int16x8_t vmulq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, Q0' * int8x16_t vmulq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmul.i8 Q0, Q0, Q0' * float32x4_t vmulq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, Q0' * poly8x16_t vmulq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vmul.p8 Q0, Q0, Q0' * int32x2_t vqdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0' * int16x4_t vqdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0' * int32x4_t vqdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, Q0' * int16x8_t vqdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, Q0' * int32x2_t vqrdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0' * int16x4_t vqrdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0' * int32x4_t vqrdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, Q0' * int16x8_t vqrdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, Q0' * uint64x2_t vmull_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0' * uint32x4_t vmull_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0' * uint16x8_t vmull_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmull.u8 Q0, D0, D0' * int64x2_t vmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0' * int32x4_t vmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0' * int16x8_t vmull_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmull.s8 Q0, D0, D0' * poly16x8_t vmull_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vmull.p8 Q0, D0, D0' * int64x2_t vqdmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0' * int32x4_t vqdmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0' 6.57.6.3 Multiply-accumulate ............................ * uint32x2_t vmla_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0' * uint16x4_t vmla_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0' * uint8x8_t vmla_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmla.i8 D0, D0, D0' * int32x2_t vmla_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0' * int16x4_t vmla_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0' * int8x8_t vmla_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmla.i8 D0, D0, D0' * float32x2_t vmla_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0' * uint32x4_t vmlaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, Q0' * uint16x8_t vmlaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, Q0' * uint8x16_t vmlaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmla.i8 Q0, Q0, Q0' * int32x4_t vmlaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, Q0' * int16x8_t vmlaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, Q0' * int8x16_t vmlaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmla.i8 Q0, Q0, Q0' * float32x4_t vmlaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, Q0' * uint64x2_t vmlal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0' * uint32x4_t vmlal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0' * uint16x8_t vmlal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmlal.u8 Q0, D0, D0' * int64x2_t vmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0' * int32x4_t vmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0' * int16x8_t vmlal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmlal.s8 Q0, D0, D0' * int64x2_t vqdmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0' * int32x4_t vqdmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0' 6.57.6.4 Multiply-subtract .......................... * uint32x2_t vmls_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0' * uint16x4_t vmls_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0' * uint8x8_t vmls_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmls.i8 D0, D0, D0' * int32x2_t vmls_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0' * int16x4_t vmls_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0' * int8x8_t vmls_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmls.i8 D0, D0, D0' * float32x2_t vmls_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0' * uint32x4_t vmlsq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, Q0' * uint16x8_t vmlsq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, Q0' * uint8x16_t vmlsq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmls.i8 Q0, Q0, Q0' * int32x4_t vmlsq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, Q0' * int16x8_t vmlsq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, Q0' * int8x16_t vmlsq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmls.i8 Q0, Q0, Q0' * float32x4_t vmlsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, Q0' * uint64x2_t vmlsl_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0' * uint32x4_t vmlsl_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0' * uint16x8_t vmlsl_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmlsl.u8 Q0, D0, D0' * int64x2_t vmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0' * int32x4_t vmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0' * int16x8_t vmlsl_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmlsl.s8 Q0, D0, D0' * int64x2_t vqdmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0' * int32x4_t vqdmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0' 6.57.6.5 Fused-multiply-accumulate .................................. * float32x2_t vfma_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vfma.f32 D0, D0, D0' * float32x4_t vfmaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vfma.f32 Q0, Q0, Q0' 6.57.6.6 Fused-multiply-subtract ................................ * float32x2_t vfms_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vfms.f32 D0, D0, D0' * float32x4_t vfmsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vfms.f32 Q0, Q0, Q0' 6.57.6.7 Round to integral (to nearest, ties to even) ..................................................... * float32x2_t vrndn_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintn.f32 D0, D0' * float32x4_t vrndqn_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintn.f32 Q0, Q0' 6.57.6.8 Round to integral (to nearest, ties away from zero) ............................................................ * float32x2_t vrnda_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrinta.f32 D0, D0' * float32x4_t vrndqa_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrinta.f32 Q0, Q0' 6.57.6.9 Round to integral (towards +Inf) ......................................... * float32x2_t vrndp_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintp.f32 D0, D0' * float32x4_t vrndqp_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintp.f32 Q0, Q0' 6.57.6.10 Round to integral (towards -Inf) .......................................... * float32x2_t vrndm_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintm.f32 D0, D0' * float32x4_t vrndqm_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintm.f32 Q0, Q0' 6.57.6.11 Round to integral (towards 0) ....................................... * float32x2_t vrnd_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrintz.f32 D0, D0' * float32x4_t vrndq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrintz.f32 Q0, Q0' 6.57.6.12 Subtraction ..................... * uint32x2_t vsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vsub.i32 D0, D0, D0' * uint16x4_t vsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vsub.i16 D0, D0, D0' * uint8x8_t vsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vsub.i8 D0, D0, D0' * int32x2_t vsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vsub.i32 D0, D0, D0' * int16x4_t vsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vsub.i16 D0, D0, D0' * int8x8_t vsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vsub.i8 D0, D0, D0' * float32x2_t vsub_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vsub.f32 D0, D0, D0' * uint64x1_t vsub_u64 (uint64x1_t, uint64x1_t) * int64x1_t vsub_s64 (int64x1_t, int64x1_t) * uint32x4_t vsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vsub.i32 Q0, Q0, Q0' * uint16x8_t vsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vsub.i16 Q0, Q0, Q0' * uint8x16_t vsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vsub.i8 Q0, Q0, Q0' * int32x4_t vsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vsub.i32 Q0, Q0, Q0' * int16x8_t vsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vsub.i16 Q0, Q0, Q0' * int8x16_t vsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vsub.i8 Q0, Q0, Q0' * uint64x2_t vsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vsub.i64 Q0, Q0, Q0' * int64x2_t vsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vsub.i64 Q0, Q0, Q0' * float32x4_t vsubq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vsub.f32 Q0, Q0, Q0' * uint64x2_t vsubl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vsubl.u32 Q0, D0, D0' * uint32x4_t vsubl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vsubl.u16 Q0, D0, D0' * uint16x8_t vsubl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vsubl.u8 Q0, D0, D0' * int64x2_t vsubl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vsubl.s32 Q0, D0, D0' * int32x4_t vsubl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vsubl.s16 Q0, D0, D0' * int16x8_t vsubl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vsubl.s8 Q0, D0, D0' * uint64x2_t vsubw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vsubw.u32 Q0, Q0, D0' * uint32x4_t vsubw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vsubw.u16 Q0, Q0, D0' * uint16x8_t vsubw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vsubw.u8 Q0, Q0, D0' * int64x2_t vsubw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vsubw.s32 Q0, Q0, D0' * int32x4_t vsubw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vsubw.s16 Q0, Q0, D0' * int16x8_t vsubw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vsubw.s8 Q0, Q0, D0' * uint32x2_t vhsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vhsub.u32 D0, D0, D0' * uint16x4_t vhsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vhsub.u16 D0, D0, D0' * uint8x8_t vhsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vhsub.u8 D0, D0, D0' * int32x2_t vhsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vhsub.s32 D0, D0, D0' * int16x4_t vhsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vhsub.s16 D0, D0, D0' * int8x8_t vhsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vhsub.s8 D0, D0, D0' * uint32x4_t vhsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vhsub.u32 Q0, Q0, Q0' * uint16x8_t vhsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vhsub.u16 Q0, Q0, Q0' * uint8x16_t vhsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vhsub.u8 Q0, Q0, Q0' * int32x4_t vhsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vhsub.s32 Q0, Q0, Q0' * int16x8_t vhsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vhsub.s16 Q0, Q0, Q0' * int8x16_t vhsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vhsub.s8 Q0, Q0, Q0' * uint32x2_t vqsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vqsub.u32 D0, D0, D0' * uint16x4_t vqsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vqsub.u16 D0, D0, D0' * uint8x8_t vqsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vqsub.u8 D0, D0, D0' * int32x2_t vqsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqsub.s32 D0, D0, D0' * int16x4_t vqsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqsub.s16 D0, D0, D0' * int8x8_t vqsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqsub.s8 D0, D0, D0' * uint64x1_t vqsub_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ 'vqsub.u64 D0, D0, D0' * int64x1_t vqsub_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqsub.s64 D0, D0, D0' * uint32x4_t vqsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vqsub.u32 Q0, Q0, Q0' * uint16x8_t vqsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vqsub.u16 Q0, Q0, Q0' * uint8x16_t vqsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vqsub.u8 Q0, Q0, Q0' * int32x4_t vqsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqsub.s32 Q0, Q0, Q0' * int16x8_t vqsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqsub.s16 Q0, Q0, Q0' * int8x16_t vqsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqsub.s8 Q0, Q0, Q0' * uint64x2_t vqsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vqsub.u64 Q0, Q0, Q0' * int64x2_t vqsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqsub.s64 Q0, Q0, Q0' * uint32x2_t vsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vsubhn.i64 D0, Q0, Q0' * uint16x4_t vsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vsubhn.i32 D0, Q0, Q0' * uint8x8_t vsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vsubhn.i16 D0, Q0, Q0' * int32x2_t vsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vsubhn.i64 D0, Q0, Q0' * int16x4_t vsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vsubhn.i32 D0, Q0, Q0' * int8x8_t vsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vsubhn.i16 D0, Q0, Q0' * uint32x2_t vrsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vrsubhn.i64 D0, Q0, Q0' * uint16x4_t vrsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vrsubhn.i32 D0, Q0, Q0' * uint8x8_t vrsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vrsubhn.i16 D0, Q0, Q0' * int32x2_t vrsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vrsubhn.i64 D0, Q0, Q0' * int16x4_t vrsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrsubhn.i32 D0, Q0, Q0' * int8x8_t vrsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrsubhn.i16 D0, Q0, Q0' 6.57.6.13 Comparison (equal-to) ............................... * uint32x2_t vceq_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vceq.i32 D0, D0, D0' * uint16x4_t vceq_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vceq.i16 D0, D0, D0' * uint8x8_t vceq_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0' * uint32x2_t vceq_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vceq.i32 D0, D0, D0' * uint16x4_t vceq_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vceq.i16 D0, D0, D0' * uint8x8_t vceq_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0' * uint32x2_t vceq_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vceq.f32 D0, D0, D0' * uint8x8_t vceq_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vceq.i8 D0, D0, D0' * uint32x4_t vceqq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vceq.f32 Q0, Q0, Q0' * uint8x16_t vceqq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vceq.i8 Q0, Q0, Q0' 6.57.6.14 Comparison (greater-than-or-equal-to) ............................................... * uint32x2_t vcge_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcge.s32 D0, D0, D0' * uint16x4_t vcge_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcge.s16 D0, D0, D0' * uint8x8_t vcge_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcge.s8 D0, D0, D0' * uint32x2_t vcge_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcge.f32 D0, D0, D0' * uint32x2_t vcge_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcge.u32 D0, D0, D0' * uint16x4_t vcge_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcge.u16 D0, D0, D0' * uint8x8_t vcge_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcge.u8 D0, D0, D0' * uint32x4_t vcgeq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcge.s32 Q0, Q0, Q0' * uint16x8_t vcgeq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcge.s16 Q0, Q0, Q0' * uint8x16_t vcgeq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcge.s8 Q0, Q0, Q0' * uint32x4_t vcgeq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcge.f32 Q0, Q0, Q0' * uint32x4_t vcgeq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcge.u32 Q0, Q0, Q0' * uint16x8_t vcgeq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcge.u16 Q0, Q0, Q0' * uint8x16_t vcgeq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcge.u8 Q0, Q0, Q0' 6.57.6.15 Comparison (less-than-or-equal-to) ............................................ * uint32x2_t vcle_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcge.s32 D0, D0, D0' * uint16x4_t vcle_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcge.s16 D0, D0, D0' * uint8x8_t vcle_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcge.s8 D0, D0, D0' * uint32x2_t vcle_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcge.f32 D0, D0, D0' * uint32x2_t vcle_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcge.u32 D0, D0, D0' * uint16x4_t vcle_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcge.u16 D0, D0, D0' * uint8x8_t vcle_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcge.u8 D0, D0, D0' * uint32x4_t vcleq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcge.s32 Q0, Q0, Q0' * uint16x8_t vcleq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcge.s16 Q0, Q0, Q0' * uint8x16_t vcleq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcge.s8 Q0, Q0, Q0' * uint32x4_t vcleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcge.f32 Q0, Q0, Q0' * uint32x4_t vcleq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcge.u32 Q0, Q0, Q0' * uint16x8_t vcleq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcge.u16 Q0, Q0, Q0' * uint8x16_t vcleq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcge.u8 Q0, Q0, Q0' 6.57.6.16 Comparison (greater-than) ................................... * uint32x2_t vcgt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcgt.s32 D0, D0, D0' * uint16x4_t vcgt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcgt.s16 D0, D0, D0' * uint8x8_t vcgt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcgt.s8 D0, D0, D0' * uint32x2_t vcgt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcgt.f32 D0, D0, D0' * uint32x2_t vcgt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcgt.u32 D0, D0, D0' * uint16x4_t vcgt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcgt.u16 D0, D0, D0' * uint8x8_t vcgt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcgt.u8 D0, D0, D0' * uint32x4_t vcgtq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcgtq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcgtq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcgtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcgtq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcgtq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcgtq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcgt.u8 Q0, Q0, Q0' 6.57.6.17 Comparison (less-than) ................................ * uint32x2_t vclt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vcgt.s32 D0, D0, D0' * uint16x4_t vclt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vcgt.s16 D0, D0, D0' * uint8x8_t vclt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vcgt.s8 D0, D0, D0' * uint32x2_t vclt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vcgt.f32 D0, D0, D0' * uint32x2_t vclt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vcgt.u32 D0, D0, D0' * uint16x4_t vclt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vcgt.u16 D0, D0, D0' * uint8x8_t vclt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vcgt.u8 D0, D0, D0' * uint32x4_t vcltq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcltq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcltq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcltq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcltq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcltq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vcgt.u8 Q0, Q0, Q0' 6.57.6.18 Comparison (absolute greater-than-or-equal-to) ........................................................ * uint32x2_t vcage_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacge.f32 D0, D0, D0' * uint32x4_t vcageq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacge.f32 Q0, Q0, Q0' 6.57.6.19 Comparison (absolute less-than-or-equal-to) ..................................................... * uint32x2_t vcale_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacge.f32 D0, D0, D0' * uint32x4_t vcaleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacge.f32 Q0, Q0, Q0' 6.57.6.20 Comparison (absolute greater-than) ............................................ * uint32x2_t vcagt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacgt.f32 D0, D0, D0' * uint32x4_t vcagtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacgt.f32 Q0, Q0, Q0' 6.57.6.21 Comparison (absolute less-than) ......................................... * uint32x2_t vcalt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vacgt.f32 D0, D0, D0' * uint32x4_t vcaltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vacgt.f32 Q0, Q0, Q0' 6.57.6.22 Test bits ................... * uint32x2_t vtst_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vtst.32 D0, D0, D0' * uint16x4_t vtst_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vtst.16 D0, D0, D0' * uint8x8_t vtst_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0' * uint32x2_t vtst_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vtst.32 D0, D0, D0' * uint16x4_t vtst_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vtst.16 D0, D0, D0' * uint8x8_t vtst_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0' * uint8x8_t vtst_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vtst.8 D0, D0, D0' * uint32x4_t vtstq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0' * uint32x4_t vtstq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0' * uint8x16_t vtstq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vtst.8 Q0, Q0, Q0' 6.57.6.23 Absolute difference ............................. * uint32x2_t vabd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vabd.u32 D0, D0, D0' * uint16x4_t vabd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vabd.u16 D0, D0, D0' * uint8x8_t vabd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vabd.u8 D0, D0, D0' * int32x2_t vabd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vabd.s32 D0, D0, D0' * int16x4_t vabd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vabd.s16 D0, D0, D0' * int8x8_t vabd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vabd.s8 D0, D0, D0' * float32x2_t vabd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vabd.f32 D0, D0, D0' * uint32x4_t vabdq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vabd.u32 Q0, Q0, Q0' * uint16x8_t vabdq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vabd.u16 Q0, Q0, Q0' * uint8x16_t vabdq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vabd.u8 Q0, Q0, Q0' * int32x4_t vabdq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vabd.s32 Q0, Q0, Q0' * int16x8_t vabdq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vabd.s16 Q0, Q0, Q0' * int8x16_t vabdq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vabd.s8 Q0, Q0, Q0' * float32x4_t vabdq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vabd.f32 Q0, Q0, Q0' * uint64x2_t vabdl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vabdl.u32 Q0, D0, D0' * uint32x4_t vabdl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vabdl.u16 Q0, D0, D0' * uint16x8_t vabdl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vabdl.u8 Q0, D0, D0' * int64x2_t vabdl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vabdl.s32 Q0, D0, D0' * int32x4_t vabdl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vabdl.s16 Q0, D0, D0' * int16x8_t vabdl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vabdl.s8 Q0, D0, D0' 6.57.6.24 Absolute difference and accumulate ............................................ * uint32x2_t vaba_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vaba.u32 D0, D0, D0' * uint16x4_t vaba_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vaba.u16 D0, D0, D0' * uint8x8_t vaba_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vaba.u8 D0, D0, D0' * int32x2_t vaba_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vaba.s32 D0, D0, D0' * int16x4_t vaba_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vaba.s16 D0, D0, D0' * int8x8_t vaba_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vaba.s8 D0, D0, D0' * uint32x4_t vabaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vaba.u32 Q0, Q0, Q0' * uint16x8_t vabaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vaba.u16 Q0, Q0, Q0' * uint8x16_t vabaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vaba.u8 Q0, Q0, Q0' * int32x4_t vabaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vaba.s32 Q0, Q0, Q0' * int16x8_t vabaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vaba.s16 Q0, Q0, Q0' * int8x16_t vabaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vaba.s8 Q0, Q0, Q0' * uint64x2_t vabal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vabal.u32 Q0, D0, D0' * uint32x4_t vabal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vabal.u16 Q0, D0, D0' * uint16x8_t vabal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vabal.u8 Q0, D0, D0' * int64x2_t vabal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vabal.s32 Q0, D0, D0' * int32x4_t vabal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vabal.s16 Q0, D0, D0' * int16x8_t vabal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vabal.s8 Q0, D0, D0' 6.57.6.25 Maximum ................. * uint32x2_t vmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmax.u32 D0, D0, D0' * uint16x4_t vmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmax.u16 D0, D0, D0' * uint8x8_t vmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmax.u8 D0, D0, D0' * int32x2_t vmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmax.s32 D0, D0, D0' * int16x4_t vmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmax.s16 D0, D0, D0' * int8x8_t vmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmax.s8 D0, D0, D0' * float32x2_t vmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmax.f32 D0, D0, D0' * uint32x4_t vmaxq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmax.u32 Q0, Q0, Q0' * uint16x8_t vmaxq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmax.u16 Q0, Q0, Q0' * uint8x16_t vmaxq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmax.u8 Q0, Q0, Q0' * int32x4_t vmaxq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmax.s32 Q0, Q0, Q0' * int16x8_t vmaxq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmax.s16 Q0, Q0, Q0' * int8x16_t vmaxq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmax.s8 Q0, Q0, Q0' * float32x4_t vmaxq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmax.f32 Q0, Q0, Q0' 6.57.6.26 Minimum ................. * uint32x2_t vmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vmin.u32 D0, D0, D0' * uint16x4_t vmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vmin.u16 D0, D0, D0' * uint8x8_t vmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vmin.u8 D0, D0, D0' * int32x2_t vmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vmin.s32 D0, D0, D0' * int16x4_t vmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vmin.s16 D0, D0, D0' * int8x8_t vmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vmin.s8 D0, D0, D0' * float32x2_t vmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vmin.f32 D0, D0, D0' * uint32x4_t vminq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vmin.u32 Q0, Q0, Q0' * uint16x8_t vminq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vmin.u16 Q0, Q0, Q0' * uint8x16_t vminq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vmin.u8 Q0, Q0, Q0' * int32x4_t vminq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vmin.s32 Q0, Q0, Q0' * int16x8_t vminq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vmin.s16 Q0, Q0, Q0' * int8x16_t vminq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vmin.s8 Q0, Q0, Q0' * float32x4_t vminq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vmin.f32 Q0, Q0, Q0' 6.57.6.27 Pairwise add ...................... * uint32x2_t vpadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpadd.i32 D0, D0, D0' * uint16x4_t vpadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpadd.i16 D0, D0, D0' * uint8x8_t vpadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpadd.i8 D0, D0, D0' * int32x2_t vpadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpadd.i32 D0, D0, D0' * int16x4_t vpadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpadd.i16 D0, D0, D0' * int8x8_t vpadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpadd.i8 D0, D0, D0' * float32x2_t vpadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vpadd.f32 D0, D0, D0' * uint64x1_t vpaddl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vpaddl.u32 D0, D0' * uint32x2_t vpaddl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vpaddl.u16 D0, D0' * uint16x4_t vpaddl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vpaddl.u8 D0, D0' * int64x1_t vpaddl_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vpaddl.s32 D0, D0' * int32x2_t vpaddl_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vpaddl.s16 D0, D0' * int16x4_t vpaddl_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vpaddl.s8 D0, D0' * uint64x2_t vpaddlq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vpaddl.u32 Q0, Q0' * uint32x4_t vpaddlq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vpaddl.u16 Q0, Q0' * uint16x8_t vpaddlq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vpaddl.u8 Q0, Q0' * int64x2_t vpaddlq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vpaddl.s32 Q0, Q0' * int32x4_t vpaddlq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vpaddl.s16 Q0, Q0' * int16x8_t vpaddlq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vpaddl.s8 Q0, Q0' 6.57.6.28 Pairwise add, single_opcode widen and accumulate .......................................................... * uint64x1_t vpadal_u32 (uint64x1_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpadal.u32 D0, D0' * uint32x2_t vpadal_u16 (uint32x2_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpadal.u16 D0, D0' * uint16x4_t vpadal_u8 (uint16x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpadal.u8 D0, D0' * int64x1_t vpadal_s32 (int64x1_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpadal.s32 D0, D0' * int32x2_t vpadal_s16 (int32x2_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpadal.s16 D0, D0' * int16x4_t vpadal_s8 (int16x4_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpadal.s8 D0, D0' * uint64x2_t vpadalq_u32 (uint64x2_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vpadal.u32 Q0, Q0' * uint32x4_t vpadalq_u16 (uint32x4_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vpadal.u16 Q0, Q0' * uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vpadal.u8 Q0, Q0' * int64x2_t vpadalq_s32 (int64x2_t, int32x4_t) ! _Form of expected instruction(s):_ 'vpadal.s32 Q0, Q0' * int32x4_t vpadalq_s16 (int32x4_t, int16x8_t) ! _Form of expected instruction(s):_ 'vpadal.s16 Q0, Q0' * int16x8_t vpadalq_s8 (int16x8_t, int8x16_t) ! _Form of expected instruction(s):_ 'vpadal.s8 Q0, Q0' 6.57.6.29 Folding maximum ......................... * uint32x2_t vpmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpmax.u32 D0, D0, D0' * uint16x4_t vpmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpmax.u16 D0, D0, D0' * uint8x8_t vpmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpmax.u8 D0, D0, D0' * int32x2_t vpmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpmax.s32 D0, D0, D0' * int16x4_t vpmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpmax.s16 D0, D0, D0' * int8x8_t vpmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpmax.s8 D0, D0, D0' * float32x2_t vpmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vpmax.f32 D0, D0, D0' 6.57.6.30 Folding minimum ......................... * uint32x2_t vpmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vpmin.u32 D0, D0, D0' * uint16x4_t vpmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vpmin.u16 D0, D0, D0' * uint8x8_t vpmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vpmin.u8 D0, D0, D0' * int32x2_t vpmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vpmin.s32 D0, D0, D0' * int16x4_t vpmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vpmin.s16 D0, D0, D0' * int8x8_t vpmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vpmin.s8 D0, D0, D0' * float32x2_t vpmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vpmin.f32 D0, D0, D0' 6.57.6.31 Reciprocal step ......................... * float32x2_t vrecps_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vrecps.f32 D0, D0, D0' * float32x4_t vrecpsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vrecps.f32 Q0, Q0, Q0' * float32x2_t vrsqrts_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vrsqrts.f32 D0, D0, D0' * float32x4_t vrsqrtsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vrsqrts.f32 Q0, Q0, Q0' 6.57.6.32 Vector shift left ........................... * uint32x2_t vshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vshl.u32 D0, D0, D0' * uint16x4_t vshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vshl.u16 D0, D0, D0' * uint8x8_t vshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vshl.u8 D0, D0, D0' * int32x2_t vshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vshl.s32 D0, D0, D0' * int16x4_t vshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vshl.s16 D0, D0, D0' * int8x8_t vshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vshl.s8 D0, D0, D0' * uint64x1_t vshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vshl.u64 D0, D0, D0' * int64x1_t vshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vshl.s64 D0, D0, D0' * uint32x4_t vshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vshl.u32 Q0, Q0, Q0' * uint16x8_t vshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vshl.u16 Q0, Q0, Q0' * uint8x16_t vshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vshl.u8 Q0, Q0, Q0' * int32x4_t vshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vshl.s32 Q0, Q0, Q0' * int16x8_t vshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vshl.s16 Q0, Q0, Q0' * int8x16_t vshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vshl.s8 Q0, Q0, Q0' * uint64x2_t vshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vshl.u64 Q0, Q0, Q0' * int64x2_t vshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vshl.s64 Q0, Q0, Q0' * uint32x2_t vrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vrshl.u32 D0, D0, D0' * uint16x4_t vrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vrshl.u16 D0, D0, D0' * uint8x8_t vrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vrshl.u8 D0, D0, D0' * int32x2_t vrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vrshl.s32 D0, D0, D0' * int16x4_t vrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vrshl.s16 D0, D0, D0' * int8x8_t vrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vrshl.s8 D0, D0, D0' * uint64x1_t vrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vrshl.u64 D0, D0, D0' * int64x1_t vrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vrshl.s64 D0, D0, D0' * uint32x4_t vrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrshl.u32 Q0, Q0, Q0' * uint16x8_t vrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrshl.u16 Q0, Q0, Q0' * uint8x16_t vrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vrshl.u8 Q0, Q0, Q0' * int32x4_t vrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vrshl.s32 Q0, Q0, Q0' * int16x8_t vrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vrshl.s16 Q0, Q0, Q0' * int8x16_t vrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vrshl.s8 Q0, Q0, Q0' * uint64x2_t vrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vrshl.u64 Q0, Q0, Q0' * int64x2_t vrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vrshl.s64 Q0, Q0, Q0' * uint32x2_t vqshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqshl.u32 D0, D0, D0' * uint16x4_t vqshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqshl.u16 D0, D0, D0' * uint8x8_t vqshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqshl.u8 D0, D0, D0' * int32x2_t vqshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqshl.s32 D0, D0, D0' * int16x4_t vqshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqshl.s16 D0, D0, D0' * int8x8_t vqshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqshl.s8 D0, D0, D0' * uint64x1_t vqshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqshl.u64 D0, D0, D0' * int64x1_t vqshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqshl.s64 D0, D0, D0' * uint32x4_t vqshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqshl.u32 Q0, Q0, Q0' * uint16x8_t vqshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqshl.u16 Q0, Q0, Q0' * uint8x16_t vqshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqshl.u8 Q0, Q0, Q0' * int32x4_t vqshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqshl.s32 Q0, Q0, Q0' * int16x8_t vqshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqshl.s16 Q0, Q0, Q0' * int8x16_t vqshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqshl.s8 Q0, Q0, Q0' * uint64x2_t vqshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqshl.u64 Q0, Q0, Q0' * int64x2_t vqshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqshl.s64 Q0, Q0, Q0' * uint32x2_t vqrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqrshl.u32 D0, D0, D0' * uint16x4_t vqrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqrshl.u16 D0, D0, D0' * uint8x8_t vqrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqrshl.u8 D0, D0, D0' * int32x2_t vqrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vqrshl.s32 D0, D0, D0' * int16x4_t vqrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vqrshl.s16 D0, D0, D0' * int8x8_t vqrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vqrshl.s8 D0, D0, D0' * uint64x1_t vqrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqrshl.u64 D0, D0, D0' * int64x1_t vqrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vqrshl.s64 D0, D0, D0' * uint32x4_t vqrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqrshl.u32 Q0, Q0, Q0' * uint16x8_t vqrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqrshl.u16 Q0, Q0, Q0' * uint8x16_t vqrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqrshl.u8 Q0, Q0, Q0' * int32x4_t vqrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vqrshl.s32 Q0, Q0, Q0' * int16x8_t vqrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vqrshl.s16 Q0, Q0, Q0' * int8x16_t vqrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vqrshl.s8 Q0, Q0, Q0' * uint64x2_t vqrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqrshl.u64 Q0, Q0, Q0' * int64x2_t vqrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vqrshl.s64 Q0, Q0, Q0' 6.57.6.33 Vector shift left by constant ....................................... * uint32x2_t vshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 D0, D0, #0' * uint16x4_t vshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 D0, D0, #0' * uint8x8_t vshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 D0, D0, #0' * int32x2_t vshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 D0, D0, #0' * int16x4_t vshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 D0, D0, #0' * int8x8_t vshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 D0, D0, #0' * uint64x1_t vshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 D0, D0, #0' * int64x1_t vshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 D0, D0, #0' * uint32x4_t vshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 Q0, Q0, #0' * uint16x8_t vshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 Q0, Q0, #0' * uint8x16_t vshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 Q0, Q0, #0' * int32x4_t vshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vshl.i32 Q0, Q0, #0' * int16x8_t vshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vshl.i16 Q0, Q0, #0' * int8x16_t vshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vshl.i8 Q0, Q0, #0' * uint64x2_t vshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 Q0, Q0, #0' * int64x2_t vshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vshl.i64 Q0, Q0, #0' * uint32x2_t vqshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u32 D0, D0, #0' * uint16x4_t vqshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u16 D0, D0, #0' * uint8x8_t vqshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u8 D0, D0, #0' * int32x2_t vqshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s32 D0, D0, #0' * int16x4_t vqshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s16 D0, D0, #0' * int8x8_t vqshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s8 D0, D0, #0' * uint64x1_t vqshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u64 D0, D0, #0' * int64x1_t vqshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s64 D0, D0, #0' * uint32x4_t vqshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u32 Q0, Q0, #0' * uint16x8_t vqshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u16 Q0, Q0, #0' * uint8x16_t vqshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u8 Q0, Q0, #0' * int32x4_t vqshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s32 Q0, Q0, #0' * int16x8_t vqshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s16 Q0, Q0, #0' * int8x16_t vqshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s8 Q0, Q0, #0' * uint64x2_t vqshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.u64 Q0, Q0, #0' * int64x2_t vqshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshl.s64 Q0, Q0, #0' * uint64x1_t vqshlu_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s64 D0, D0, #0' * uint32x2_t vqshlu_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s32 D0, D0, #0' * uint16x4_t vqshlu_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s16 D0, D0, #0' * uint8x8_t vqshlu_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s8 D0, D0, #0' * uint64x2_t vqshluq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s64 Q0, Q0, #0' * uint32x4_t vqshluq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s32 Q0, Q0, #0' * uint16x8_t vqshluq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s16 Q0, Q0, #0' * uint8x16_t vqshluq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vqshlu.s8 Q0, Q0, #0' * uint64x2_t vshll_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vshll.u32 Q0, D0, #0' * uint32x4_t vshll_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vshll.u16 Q0, D0, #0' * uint16x8_t vshll_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vshll.u8 Q0, D0, #0' * int64x2_t vshll_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vshll.s32 Q0, D0, #0' * int32x4_t vshll_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vshll.s16 Q0, D0, #0' * int16x8_t vshll_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vshll.s8 Q0, D0, #0' 6.57.6.34 Vector shift right by constant ........................................ * uint32x2_t vshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.u32 D0, D0, #0' * uint16x4_t vshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.u16 D0, D0, #0' * uint8x8_t vshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.u8 D0, D0, #0' * int32x2_t vshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.s32 D0, D0, #0' * int16x4_t vshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.s16 D0, D0, #0' * int8x8_t vshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.s8 D0, D0, #0' * uint64x1_t vshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vshr.u64 D0, D0, #0' * int64x1_t vshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vshr.s64 D0, D0, #0' * uint32x4_t vshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.u32 Q0, Q0, #0' * uint16x8_t vshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.u16 Q0, Q0, #0' * uint8x16_t vshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vshr.u8 Q0, Q0, #0' * int32x4_t vshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vshr.s32 Q0, Q0, #0' * int16x8_t vshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vshr.s16 Q0, Q0, #0' * int8x16_t vshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vshr.s8 Q0, Q0, #0' * uint64x2_t vshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.u64 Q0, Q0, #0' * int64x2_t vshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vshr.s64 Q0, Q0, #0' * uint32x2_t vrshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u32 D0, D0, #0' * uint16x4_t vrshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u16 D0, D0, #0' * uint8x8_t vrshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u8 D0, D0, #0' * int32x2_t vrshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s32 D0, D0, #0' * int16x4_t vrshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s16 D0, D0, #0' * int8x8_t vrshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s8 D0, D0, #0' * uint64x1_t vrshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u64 D0, D0, #0' * int64x1_t vrshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s64 D0, D0, #0' * uint32x4_t vrshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u32 Q0, Q0, #0' * uint16x8_t vrshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u16 Q0, Q0, #0' * uint8x16_t vrshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u8 Q0, Q0, #0' * int32x4_t vrshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s32 Q0, Q0, #0' * int16x8_t vrshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s16 Q0, Q0, #0' * int8x16_t vrshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s8 Q0, Q0, #0' * uint64x2_t vrshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.u64 Q0, Q0, #0' * int64x2_t vrshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshr.s64 Q0, Q0, #0' * uint32x2_t vshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i64 D0, Q0, #0' * uint16x4_t vshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i32 D0, Q0, #0' * uint8x8_t vshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i16 D0, Q0, #0' * int32x2_t vshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i64 D0, Q0, #0' * int16x4_t vshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i32 D0, Q0, #0' * int8x8_t vshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vshrn.i16 D0, Q0, #0' * uint32x2_t vrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i64 D0, Q0, #0' * uint16x4_t vrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i32 D0, Q0, #0' * uint8x8_t vrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i16 D0, Q0, #0' * int32x2_t vrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i64 D0, Q0, #0' * int16x4_t vrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i32 D0, Q0, #0' * int8x8_t vrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vrshrn.i16 D0, Q0, #0' * uint32x2_t vqshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.u64 D0, Q0, #0' * uint16x4_t vqshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.u32 D0, Q0, #0' * uint8x8_t vqshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.u16 D0, Q0, #0' * int32x2_t vqshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.s64 D0, Q0, #0' * int16x4_t vqshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.s32 D0, Q0, #0' * int8x8_t vqshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshrn.s16 D0, Q0, #0' * uint32x2_t vqrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.u64 D0, Q0, #0' * uint16x4_t vqrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.u32 D0, Q0, #0' * uint8x8_t vqrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.u16 D0, Q0, #0' * int32x2_t vqrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.s64 D0, Q0, #0' * int16x4_t vqrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.s32 D0, Q0, #0' * int8x8_t vqrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqrshrn.s16 D0, Q0, #0' * uint32x2_t vqshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqshrun.s64 D0, Q0, #0' * uint16x4_t vqshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqshrun.s32 D0, Q0, #0' * uint8x8_t vqshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqshrun.s16 D0, Q0, #0' * uint32x2_t vqrshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vqrshrun.s64 D0, Q0, #0' * uint16x4_t vqrshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vqrshrun.s32 D0, Q0, #0' * uint8x8_t vqrshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vqrshrun.s16 D0, Q0, #0' 6.57.6.35 Vector shift right by constant and accumulate ....................................................... * uint32x2_t vsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.u32 D0, D0, #0' * uint16x4_t vsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.u16 D0, D0, #0' * uint8x8_t vsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.u8 D0, D0, #0' * int32x2_t vsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.s32 D0, D0, #0' * int16x4_t vsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.s16 D0, D0, #0' * int8x8_t vsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.s8 D0, D0, #0' * uint64x1_t vsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vsra.u64 D0, D0, #0' * int64x1_t vsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vsra.s64 D0, D0, #0' * uint32x4_t vsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.u32 Q0, Q0, #0' * uint16x8_t vsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.u16 Q0, Q0, #0' * uint8x16_t vsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vsra.u8 Q0, Q0, #0' * int32x4_t vsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vsra.s32 Q0, Q0, #0' * int16x8_t vsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vsra.s16 Q0, Q0, #0' * int8x16_t vsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vsra.s8 Q0, Q0, #0' * uint64x2_t vsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.u64 Q0, Q0, #0' * int64x2_t vsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vsra.s64 Q0, Q0, #0' * uint32x2_t vrsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u32 D0, D0, #0' * uint16x4_t vrsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u16 D0, D0, #0' * uint8x8_t vrsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u8 D0, D0, #0' * int32x2_t vrsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s32 D0, D0, #0' * int16x4_t vrsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s16 D0, D0, #0' * int8x8_t vrsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s8 D0, D0, #0' * uint64x1_t vrsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u64 D0, D0, #0' * int64x1_t vrsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s64 D0, D0, #0' * uint32x4_t vrsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u32 Q0, Q0, #0' * uint16x8_t vrsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u16 Q0, Q0, #0' * uint8x16_t vrsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u8 Q0, Q0, #0' * int32x4_t vrsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s32 Q0, Q0, #0' * int16x8_t vrsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s16 Q0, Q0, #0' * int8x16_t vrsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s8 Q0, Q0, #0' * uint64x2_t vrsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.u64 Q0, Q0, #0' * int64x2_t vrsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vrsra.s64 Q0, Q0, #0' 6.57.6.36 Vector shift right and insert ....................................... * poly64x1_t vsri_n_p64 (poly64x1_t, poly64x1_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0' * uint32x2_t vsri_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 D0, D0, #0' * uint16x4_t vsri_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0' * uint8x8_t vsri_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0' * int32x2_t vsri_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 D0, D0, #0' * int16x4_t vsri_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0' * int8x8_t vsri_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0' * uint64x1_t vsri_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0' * int64x1_t vsri_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 D0, D0, #0' * poly16x4_t vsri_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 D0, D0, #0' * poly8x8_t vsri_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 D0, D0, #0' * poly64x2_t vsriq_n_p64 (poly64x2_t, poly64x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0' * uint32x4_t vsriq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 Q0, Q0, #0' * uint16x8_t vsriq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0' * uint8x16_t vsriq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0' * int32x4_t vsriq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vsri.32 Q0, Q0, #0' * int16x8_t vsriq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0' * int8x16_t vsriq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0' * uint64x2_t vsriq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0' * int64x2_t vsriq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vsri.64 Q0, Q0, #0' * poly16x8_t vsriq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vsri.16 Q0, Q0, #0' * poly8x16_t vsriq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vsri.8 Q0, Q0, #0' 6.57.6.37 Vector shift left and insert ...................................... * poly64x1_t vsli_n_p64 (poly64x1_t, poly64x1_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0' * uint32x2_t vsli_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 D0, D0, #0' * uint16x4_t vsli_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0' * uint8x8_t vsli_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0' * int32x2_t vsli_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 D0, D0, #0' * int16x4_t vsli_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0' * int8x8_t vsli_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0' * uint64x1_t vsli_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0' * int64x1_t vsli_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 D0, D0, #0' * poly16x4_t vsli_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 D0, D0, #0' * poly8x8_t vsli_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 D0, D0, #0' * poly64x2_t vsliq_n_p64 (poly64x2_t, poly64x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0' * uint32x4_t vsliq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 Q0, Q0, #0' * uint16x8_t vsliq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0' * uint8x16_t vsliq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0' * int32x4_t vsliq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vsli.32 Q0, Q0, #0' * int16x8_t vsliq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0' * int8x16_t vsliq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0' * uint64x2_t vsliq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0' * int64x2_t vsliq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vsli.64 Q0, Q0, #0' * poly16x8_t vsliq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vsli.16 Q0, Q0, #0' * poly8x16_t vsliq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vsli.8 Q0, Q0, #0' 6.57.6.38 Absolute value ........................ * float32x2_t vabs_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vabs.f32 D0, D0' * int32x2_t vabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vabs.s32 D0, D0' * int16x4_t vabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vabs.s16 D0, D0' * int8x8_t vabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vabs.s8 D0, D0' * float32x4_t vabsq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vabs.f32 Q0, Q0' * int32x4_t vabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vabs.s32 Q0, Q0' * int16x8_t vabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vabs.s16 Q0, Q0' * int8x16_t vabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vabs.s8 Q0, Q0' * int32x2_t vqabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vqabs.s32 D0, D0' * int16x4_t vqabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vqabs.s16 D0, D0' * int8x8_t vqabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vqabs.s8 D0, D0' * int32x4_t vqabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqabs.s32 Q0, Q0' * int16x8_t vqabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqabs.s16 Q0, Q0' * int8x16_t vqabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vqabs.s8 Q0, Q0' 6.57.6.39 Negation .................. * float32x2_t vneg_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vneg.f32 D0, D0' * int32x2_t vneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vneg.s32 D0, D0' * int16x4_t vneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vneg.s16 D0, D0' * int8x8_t vneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vneg.s8 D0, D0' * float32x4_t vnegq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vneg.f32 Q0, Q0' * int32x4_t vnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vneg.s32 Q0, Q0' * int16x8_t vnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vneg.s16 Q0, Q0' * int8x16_t vnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vneg.s8 Q0, Q0' * int32x2_t vqneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vqneg.s32 D0, D0' * int16x4_t vqneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vqneg.s16 D0, D0' * int8x8_t vqneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vqneg.s8 D0, D0' * int32x4_t vqnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqneg.s32 Q0, Q0' * int16x8_t vqnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqneg.s16 Q0, Q0' * int8x16_t vqnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vqneg.s8 Q0, Q0' 6.57.6.40 Bitwise not ..................... * uint32x2_t vmvn_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * uint16x4_t vmvn_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * uint8x8_t vmvn_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * int32x2_t vmvn_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * int16x4_t vmvn_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * int8x8_t vmvn_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * poly8x8_t vmvn_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vmvn D0, D0' * uint32x4_t vmvnq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * uint16x8_t vmvnq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * uint8x16_t vmvnq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * int32x4_t vmvnq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * int16x8_t vmvnq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * int8x16_t vmvnq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' * poly8x16_t vmvnq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vmvn Q0, Q0' 6.57.6.41 Count leading sign bits ................................. * int32x2_t vcls_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vcls.s32 D0, D0' * int16x4_t vcls_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vcls.s16 D0, D0' * int8x8_t vcls_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vcls.s8 D0, D0' * int32x4_t vclsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vcls.s32 Q0, Q0' * int16x8_t vclsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vcls.s16 Q0, Q0' * int8x16_t vclsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vcls.s8 Q0, Q0' 6.57.6.42 Count leading zeros ............................. * uint32x2_t vclz_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vclz.i32 D0, D0' * uint16x4_t vclz_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vclz.i16 D0, D0' * uint8x8_t vclz_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vclz.i8 D0, D0' * int32x2_t vclz_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vclz.i32 D0, D0' * int16x4_t vclz_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vclz.i16 D0, D0' * int8x8_t vclz_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vclz.i8 D0, D0' * uint32x4_t vclzq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vclz.i32 Q0, Q0' * uint16x8_t vclzq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vclz.i16 Q0, Q0' * uint8x16_t vclzq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vclz.i8 Q0, Q0' * int32x4_t vclzq_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vclz.i32 Q0, Q0' * int16x8_t vclzq_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vclz.i16 Q0, Q0' * int8x16_t vclzq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vclz.i8 Q0, Q0' 6.57.6.43 Count number of set bits .................................. * uint8x8_t vcnt_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vcnt.8 D0, D0' * int8x8_t vcnt_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vcnt.8 D0, D0' * poly8x8_t vcnt_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vcnt.8 D0, D0' * uint8x16_t vcntq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0' * int8x16_t vcntq_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0' * poly8x16_t vcntq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vcnt.8 Q0, Q0' 6.57.6.44 Reciprocal estimate ............................. * float32x2_t vrecpe_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrecpe.f32 D0, D0' * uint32x2_t vrecpe_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vrecpe.u32 D0, D0' * float32x4_t vrecpeq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrecpe.f32 Q0, Q0' * uint32x4_t vrecpeq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vrecpe.u32 Q0, Q0' 6.57.6.45 Reciprocal square-root estimate ......................................... * float32x2_t vrsqrte_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrsqrte.f32 D0, D0' * uint32x2_t vrsqrte_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vrsqrte.u32 D0, D0' * float32x4_t vrsqrteq_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrsqrte.f32 Q0, Q0' * uint32x4_t vrsqrteq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vrsqrte.u32 Q0, Q0' 6.57.6.46 Get lanes from a vector ................................. * uint32_t vget_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * uint16_t vget_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * uint8_t vget_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * int32_t vget_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * int16_t vget_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.s16 R0, D0[0]' * int8_t vget_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.s8 R0, D0[0]' * float32_t vget_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * poly16_t vget_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * poly8_t vget_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * uint64_t vget_lane_u64 (uint64x1_t, const int) * int64_t vget_lane_s64 (int64x1_t, const int) * uint32_t vgetq_lane_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * uint16_t vgetq_lane_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * uint8_t vgetq_lane_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * int32_t vgetq_lane_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * int16_t vgetq_lane_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.s16 R0, D0[0]' * int8_t vgetq_lane_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.s8 R0, D0[0]' * float32_t vgetq_lane_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 R0, D0[0]' * poly16_t vgetq_lane_p16 (poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.u16 R0, D0[0]' * poly8_t vgetq_lane_p8 (poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.u8 R0, D0[0]' * uint64_t vgetq_lane_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov R0, R0, D0' _or_ 'fmrrd R0, R0, D0' * int64_t vgetq_lane_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov R0, R0, D0' _or_ 'fmrrd R0, R0, D0' 6.57.6.47 Set lanes in a vector ............................... * uint32x2_t vset_lane_u32 (uint32_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * uint16x4_t vset_lane_u16 (uint16_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * uint8x8_t vset_lane_u8 (uint8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * int32x2_t vset_lane_s32 (int32_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * int16x4_t vset_lane_s16 (int16_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * int8x8_t vset_lane_s8 (int8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * float32x2_t vset_lane_f32 (float32_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * poly16x4_t vset_lane_p16 (poly16_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * poly8x8_t vset_lane_p8 (poly8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * uint64x1_t vset_lane_u64 (uint64_t, uint64x1_t, const int) * int64x1_t vset_lane_s64 (int64_t, int64x1_t, const int) * uint32x4_t vsetq_lane_u32 (uint32_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * uint16x8_t vsetq_lane_u16 (uint16_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * uint8x16_t vsetq_lane_u8 (uint8_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * int32x4_t vsetq_lane_s32 (int32_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * int16x8_t vsetq_lane_s16 (int16_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * int8x16_t vsetq_lane_s8 (int8_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * float32x4_t vsetq_lane_f32 (float32_t, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vmov.32 D0[0], R0' * poly16x8_t vsetq_lane_p16 (poly16_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vmov.16 D0[0], R0' * poly8x16_t vsetq_lane_p8 (poly8_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vmov.8 D0[0], R0' * uint64x2_t vsetq_lane_u64 (uint64_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov D0, R0, R0' * int64x2_t vsetq_lane_s64 (int64_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vmov D0, R0, R0' 6.57.6.48 Create vector from literal bit pattern ................................................ --- 33237,35832 ---- -------------------------- These built-in intrinsics for the ARM Advanced SIMD extension are ! available when the `-mfpu=neon' switch is used: 6.57.6.1 Addition ................. * uint32x2_t vadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vadd.i32 D0, D0, D0' * uint16x4_t vadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vadd.i16 D0, D0, D0' * uint8x8_t vadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vadd.i8 D0, D0, D0' * int32x2_t vadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vadd.i32 D0, D0, D0' * int16x4_t vadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vadd.i16 D0, D0, D0' * int8x8_t vadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vadd.i8 D0, D0, D0' * float32x2_t vadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vadd.f32 D0, D0, D0' * uint64x1_t vadd_u64 (uint64x1_t, uint64x1_t) * int64x1_t vadd_s64 (int64x1_t, int64x1_t) * uint32x4_t vaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vadd.i32 Q0, Q0, Q0' * uint16x8_t vaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vadd.i16 Q0, Q0, Q0' * uint8x16_t vaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vadd.i8 Q0, Q0, Q0' * int32x4_t vaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vadd.i32 Q0, Q0, Q0' * int16x8_t vaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vadd.i16 Q0, Q0, Q0' * int8x16_t vaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vadd.i8 Q0, Q0, Q0' * uint64x2_t vaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vadd.i64 Q0, Q0, Q0' * int64x2_t vaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vadd.i64 Q0, Q0, Q0' * float32x4_t vaddq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vadd.f32 Q0, Q0, Q0' * uint64x2_t vaddl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vaddl.u32 Q0, D0, D0' * uint32x4_t vaddl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vaddl.u16 Q0, D0, D0' * uint16x8_t vaddl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vaddl.u8 Q0, D0, D0' * int64x2_t vaddl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vaddl.s32 Q0, D0, D0' * int32x4_t vaddl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vaddl.s16 Q0, D0, D0' * int16x8_t vaddl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vaddl.s8 Q0, D0, D0' * uint64x2_t vaddw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vaddw.u32 Q0, Q0, D0' * uint32x4_t vaddw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vaddw.u16 Q0, Q0, D0' * uint16x8_t vaddw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vaddw.u8 Q0, Q0, D0' * int64x2_t vaddw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vaddw.s32 Q0, Q0, D0' * int32x4_t vaddw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vaddw.s16 Q0, Q0, D0' * int16x8_t vaddw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vaddw.s8 Q0, Q0, D0' * uint32x2_t vhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vhadd.u32 D0, D0, D0' * uint16x4_t vhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vhadd.u16 D0, D0, D0' * uint8x8_t vhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vhadd.u8 D0, D0, D0' * int32x2_t vhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vhadd.s32 D0, D0, D0' * int16x4_t vhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vhadd.s16 D0, D0, D0' * int8x8_t vhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vhadd.s8 D0, D0, D0' * uint32x4_t vhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vhadd.u32 Q0, Q0, Q0' * uint16x8_t vhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vhadd.u16 Q0, Q0, Q0' * uint8x16_t vhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vhadd.u8 Q0, Q0, Q0' * int32x4_t vhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vhadd.s32 Q0, Q0, Q0' * int16x8_t vhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vhadd.s16 Q0, Q0, Q0' * int8x16_t vhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vhadd.s8 Q0, Q0, Q0' * uint32x2_t vrhadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vrhadd.u32 D0, D0, D0' * uint16x4_t vrhadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vrhadd.u16 D0, D0, D0' * uint8x8_t vrhadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vrhadd.u8 D0, D0, D0' * int32x2_t vrhadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vrhadd.s32 D0, D0, D0' * int16x4_t vrhadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vrhadd.s16 D0, D0, D0' * int8x8_t vrhadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vrhadd.s8 D0, D0, D0' * uint32x4_t vrhaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vrhadd.u32 Q0, Q0, Q0' * uint16x8_t vrhaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vrhadd.u16 Q0, Q0, Q0' * uint8x16_t vrhaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vrhadd.u8 Q0, Q0, Q0' * int32x4_t vrhaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrhadd.s32 Q0, Q0, Q0' * int16x8_t vrhaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrhadd.s16 Q0, Q0, Q0' * int8x16_t vrhaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vrhadd.s8 Q0, Q0, Q0' * uint32x2_t vqadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vqadd.u32 D0, D0, D0' * uint16x4_t vqadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vqadd.u16 D0, D0, D0' * uint8x8_t vqadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vqadd.u8 D0, D0, D0' * int32x2_t vqadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqadd.s32 D0, D0, D0' * int16x4_t vqadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqadd.s16 D0, D0, D0' * int8x8_t vqadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqadd.s8 D0, D0, D0' * uint64x1_t vqadd_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ `vqadd.u64 D0, D0, D0' * int64x1_t vqadd_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqadd.s64 D0, D0, D0' * uint32x4_t vqaddq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vqadd.u32 Q0, Q0, Q0' * uint16x8_t vqaddq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vqadd.u16 Q0, Q0, Q0' * uint8x16_t vqaddq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vqadd.u8 Q0, Q0, Q0' * int32x4_t vqaddq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqadd.s32 Q0, Q0, Q0' * int16x8_t vqaddq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqadd.s16 Q0, Q0, Q0' * int8x16_t vqaddq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqadd.s8 Q0, Q0, Q0' * uint64x2_t vqaddq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vqadd.u64 Q0, Q0, Q0' * int64x2_t vqaddq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqadd.s64 Q0, Q0, Q0' * uint32x2_t vaddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vaddhn.i64 D0, Q0, Q0' * uint16x4_t vaddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vaddhn.i32 D0, Q0, Q0' * uint8x8_t vaddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vaddhn.i16 D0, Q0, Q0' * int32x2_t vaddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vaddhn.i64 D0, Q0, Q0' * int16x4_t vaddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vaddhn.i32 D0, Q0, Q0' * int8x8_t vaddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vaddhn.i16 D0, Q0, Q0' * uint32x2_t vraddhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vraddhn.i64 D0, Q0, Q0' * uint16x4_t vraddhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vraddhn.i32 D0, Q0, Q0' * uint8x8_t vraddhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vraddhn.i16 D0, Q0, Q0' * int32x2_t vraddhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vraddhn.i64 D0, Q0, Q0' * int16x4_t vraddhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vraddhn.i32 D0, Q0, Q0' * int8x8_t vraddhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vraddhn.i16 D0, Q0, Q0' 6.57.6.2 Multiplication ....................... * uint32x2_t vmul_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0' * uint16x4_t vmul_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0' * uint8x8_t vmul_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmul.i8 D0, D0, D0' * int32x2_t vmul_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0' * int16x4_t vmul_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0' * int8x8_t vmul_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmul.i8 D0, D0, D0' * float32x2_t vmul_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmul.f32 D0, D0, D0' * poly8x8_t vmul_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vmul.p8 D0, D0, D0' * uint32x4_t vmulq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, Q0' * uint16x8_t vmulq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, Q0' * uint8x16_t vmulq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmul.i8 Q0, Q0, Q0' * int32x4_t vmulq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, Q0' * int16x8_t vmulq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, Q0' * int8x16_t vmulq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmul.i8 Q0, Q0, Q0' * float32x4_t vmulq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmul.f32 Q0, Q0, Q0' * poly8x16_t vmulq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vmul.p8 Q0, Q0, Q0' * int32x2_t vqdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 D0, D0, D0' * int16x4_t vqdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 D0, D0, D0' * int32x4_t vqdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 Q0, Q0, Q0' * int16x8_t vqdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 Q0, Q0, Q0' * int32x2_t vqrdmulh_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 D0, D0, D0' * int16x4_t vqrdmulh_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 D0, D0, D0' * int32x4_t vqrdmulhq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 Q0, Q0, Q0' * int16x8_t vqrdmulhq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 Q0, Q0, Q0' * uint64x2_t vmull_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmull.u32 Q0, D0, D0' * uint32x4_t vmull_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmull.u16 Q0, D0, D0' * uint16x8_t vmull_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmull.u8 Q0, D0, D0' * int64x2_t vmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmull.s32 Q0, D0, D0' * int32x4_t vmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmull.s16 Q0, D0, D0' * int16x8_t vmull_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmull.s8 Q0, D0, D0' * poly16x8_t vmull_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vmull.p8 Q0, D0, D0' * int64x2_t vqdmull_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmull.s32 Q0, D0, D0' * int32x4_t vqdmull_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmull.s16 Q0, D0, D0' 6.57.6.3 Multiply-accumulate ............................ * uint32x2_t vmla_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0' * uint16x4_t vmla_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0' * uint8x8_t vmla_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmla.i8 D0, D0, D0' * int32x2_t vmla_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0' * int16x4_t vmla_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0' * int8x8_t vmla_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmla.i8 D0, D0, D0' * float32x2_t vmla_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmla.f32 D0, D0, D0' * uint32x4_t vmlaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, Q0' * uint16x8_t vmlaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, Q0' * uint8x16_t vmlaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmla.i8 Q0, Q0, Q0' * int32x4_t vmlaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, Q0' * int16x8_t vmlaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, Q0' * int8x16_t vmlaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmla.i8 Q0, Q0, Q0' * float32x4_t vmlaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmla.f32 Q0, Q0, Q0' * uint64x2_t vmlal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmlal.u32 Q0, D0, D0' * uint32x4_t vmlal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmlal.u16 Q0, D0, D0' * uint16x8_t vmlal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmlal.u8 Q0, D0, D0' * int64x2_t vmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmlal.s32 Q0, D0, D0' * int32x4_t vmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmlal.s16 Q0, D0, D0' * int16x8_t vmlal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmlal.s8 Q0, D0, D0' * int64x2_t vqdmlal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmlal.s32 Q0, D0, D0' * int32x4_t vqdmlal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmlal.s16 Q0, D0, D0' 6.57.6.4 Multiply-subtract .......................... * uint32x2_t vmls_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0' * uint16x4_t vmls_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0' * uint8x8_t vmls_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmls.i8 D0, D0, D0' * int32x2_t vmls_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0' * int16x4_t vmls_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0' * int8x8_t vmls_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmls.i8 D0, D0, D0' * float32x2_t vmls_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmls.f32 D0, D0, D0' * uint32x4_t vmlsq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, Q0' * uint16x8_t vmlsq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, Q0' * uint8x16_t vmlsq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmls.i8 Q0, Q0, Q0' * int32x4_t vmlsq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, Q0' * int16x8_t vmlsq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, Q0' * int8x16_t vmlsq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmls.i8 Q0, Q0, Q0' * float32x4_t vmlsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmls.f32 Q0, Q0, Q0' * uint64x2_t vmlsl_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmlsl.u32 Q0, D0, D0' * uint32x4_t vmlsl_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmlsl.u16 Q0, D0, D0' * uint16x8_t vmlsl_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmlsl.u8 Q0, D0, D0' * int64x2_t vmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmlsl.s32 Q0, D0, D0' * int32x4_t vmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmlsl.s16 Q0, D0, D0' * int16x8_t vmlsl_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmlsl.s8 Q0, D0, D0' * int64x2_t vqdmlsl_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqdmlsl.s32 Q0, D0, D0' * int32x4_t vqdmlsl_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqdmlsl.s16 Q0, D0, D0' 6.57.6.5 Fused-multiply-accumulate .................................. * float32x2_t vfma_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vfma.f32 D0, D0, D0' * float32x4_t vfmaq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vfma.f32 Q0, Q0, Q0' 6.57.6.6 Fused-multiply-subtract ................................ * float32x2_t vfms_f32 (float32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vfms.f32 D0, D0, D0' * float32x4_t vfmsq_f32 (float32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vfms.f32 Q0, Q0, Q0' 6.57.6.7 Round to integral (to nearest, ties to even) ..................................................... * float32x2_t vrndn_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintn.f32 D0, D0' * float32x4_t vrndqn_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintn.f32 Q0, Q0' 6.57.6.8 Round to integral (to nearest, ties away from zero) ............................................................ * float32x2_t vrnda_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrinta.f32 D0, D0' * float32x4_t vrndqa_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrinta.f32 Q0, Q0' 6.57.6.9 Round to integral (towards +Inf) ......................................... * float32x2_t vrndp_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintp.f32 D0, D0' * float32x4_t vrndqp_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintp.f32 Q0, Q0' 6.57.6.10 Round to integral (towards -Inf) .......................................... * float32x2_t vrndm_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintm.f32 D0, D0' * float32x4_t vrndqm_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintm.f32 Q0, Q0' 6.57.6.11 Round to integral (towards 0) ....................................... * float32x2_t vrnd_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrintz.f32 D0, D0' * float32x4_t vrndq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrintz.f32 Q0, Q0' 6.57.6.12 Subtraction ..................... * uint32x2_t vsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vsub.i32 D0, D0, D0' * uint16x4_t vsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vsub.i16 D0, D0, D0' * uint8x8_t vsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vsub.i8 D0, D0, D0' * int32x2_t vsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vsub.i32 D0, D0, D0' * int16x4_t vsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vsub.i16 D0, D0, D0' * int8x8_t vsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vsub.i8 D0, D0, D0' * float32x2_t vsub_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vsub.f32 D0, D0, D0' * uint64x1_t vsub_u64 (uint64x1_t, uint64x1_t) * int64x1_t vsub_s64 (int64x1_t, int64x1_t) * uint32x4_t vsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vsub.i32 Q0, Q0, Q0' * uint16x8_t vsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vsub.i16 Q0, Q0, Q0' * uint8x16_t vsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vsub.i8 Q0, Q0, Q0' * int32x4_t vsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vsub.i32 Q0, Q0, Q0' * int16x8_t vsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vsub.i16 Q0, Q0, Q0' * int8x16_t vsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vsub.i8 Q0, Q0, Q0' * uint64x2_t vsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vsub.i64 Q0, Q0, Q0' * int64x2_t vsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vsub.i64 Q0, Q0, Q0' * float32x4_t vsubq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vsub.f32 Q0, Q0, Q0' * uint64x2_t vsubl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vsubl.u32 Q0, D0, D0' * uint32x4_t vsubl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vsubl.u16 Q0, D0, D0' * uint16x8_t vsubl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vsubl.u8 Q0, D0, D0' * int64x2_t vsubl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vsubl.s32 Q0, D0, D0' * int32x4_t vsubl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vsubl.s16 Q0, D0, D0' * int16x8_t vsubl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vsubl.s8 Q0, D0, D0' * uint64x2_t vsubw_u32 (uint64x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vsubw.u32 Q0, Q0, D0' * uint32x4_t vsubw_u16 (uint32x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vsubw.u16 Q0, Q0, D0' * uint16x8_t vsubw_u8 (uint16x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vsubw.u8 Q0, Q0, D0' * int64x2_t vsubw_s32 (int64x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vsubw.s32 Q0, Q0, D0' * int32x4_t vsubw_s16 (int32x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vsubw.s16 Q0, Q0, D0' * int16x8_t vsubw_s8 (int16x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vsubw.s8 Q0, Q0, D0' * uint32x2_t vhsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vhsub.u32 D0, D0, D0' * uint16x4_t vhsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vhsub.u16 D0, D0, D0' * uint8x8_t vhsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vhsub.u8 D0, D0, D0' * int32x2_t vhsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vhsub.s32 D0, D0, D0' * int16x4_t vhsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vhsub.s16 D0, D0, D0' * int8x8_t vhsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vhsub.s8 D0, D0, D0' * uint32x4_t vhsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vhsub.u32 Q0, Q0, Q0' * uint16x8_t vhsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vhsub.u16 Q0, Q0, Q0' * uint8x16_t vhsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vhsub.u8 Q0, Q0, Q0' * int32x4_t vhsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vhsub.s32 Q0, Q0, Q0' * int16x8_t vhsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vhsub.s16 Q0, Q0, Q0' * int8x16_t vhsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vhsub.s8 Q0, Q0, Q0' * uint32x2_t vqsub_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vqsub.u32 D0, D0, D0' * uint16x4_t vqsub_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vqsub.u16 D0, D0, D0' * uint8x8_t vqsub_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vqsub.u8 D0, D0, D0' * int32x2_t vqsub_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqsub.s32 D0, D0, D0' * int16x4_t vqsub_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqsub.s16 D0, D0, D0' * int8x8_t vqsub_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqsub.s8 D0, D0, D0' * uint64x1_t vqsub_u64 (uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ `vqsub.u64 D0, D0, D0' * int64x1_t vqsub_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqsub.s64 D0, D0, D0' * uint32x4_t vqsubq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vqsub.u32 Q0, Q0, Q0' * uint16x8_t vqsubq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vqsub.u16 Q0, Q0, Q0' * uint8x16_t vqsubq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vqsub.u8 Q0, Q0, Q0' * int32x4_t vqsubq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqsub.s32 Q0, Q0, Q0' * int16x8_t vqsubq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqsub.s16 Q0, Q0, Q0' * int8x16_t vqsubq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqsub.s8 Q0, Q0, Q0' * uint64x2_t vqsubq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vqsub.u64 Q0, Q0, Q0' * int64x2_t vqsubq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqsub.s64 Q0, Q0, Q0' * uint32x2_t vsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vsubhn.i64 D0, Q0, Q0' * uint16x4_t vsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vsubhn.i32 D0, Q0, Q0' * uint8x8_t vsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vsubhn.i16 D0, Q0, Q0' * int32x2_t vsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vsubhn.i64 D0, Q0, Q0' * int16x4_t vsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vsubhn.i32 D0, Q0, Q0' * int8x8_t vsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vsubhn.i16 D0, Q0, Q0' * uint32x2_t vrsubhn_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vrsubhn.i64 D0, Q0, Q0' * uint16x4_t vrsubhn_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vrsubhn.i32 D0, Q0, Q0' * uint8x8_t vrsubhn_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vrsubhn.i16 D0, Q0, Q0' * int32x2_t vrsubhn_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vrsubhn.i64 D0, Q0, Q0' * int16x4_t vrsubhn_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrsubhn.i32 D0, Q0, Q0' * int8x8_t vrsubhn_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrsubhn.i16 D0, Q0, Q0' 6.57.6.13 Comparison (equal-to) ............................... * uint32x2_t vceq_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vceq.i32 D0, D0, D0' * uint16x4_t vceq_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vceq.i16 D0, D0, D0' * uint8x8_t vceq_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vceq.i8 D0, D0, D0' * uint32x2_t vceq_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vceq.i32 D0, D0, D0' * uint16x4_t vceq_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vceq.i16 D0, D0, D0' * uint8x8_t vceq_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vceq.i8 D0, D0, D0' * uint32x2_t vceq_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vceq.f32 D0, D0, D0' * uint8x8_t vceq_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vceq.i8 D0, D0, D0' * uint32x4_t vceqq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vceq.i32 Q0, Q0, Q0' * uint16x8_t vceqq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vceq.i16 Q0, Q0, Q0' * uint8x16_t vceqq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vceq.i8 Q0, Q0, Q0' * uint32x4_t vceqq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vceq.f32 Q0, Q0, Q0' * uint8x16_t vceqq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vceq.i8 Q0, Q0, Q0' 6.57.6.14 Comparison (greater-than-or-equal-to) ............................................... * uint32x2_t vcge_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcge.s32 D0, D0, D0' * uint16x4_t vcge_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcge.s16 D0, D0, D0' * uint8x8_t vcge_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcge.s8 D0, D0, D0' * uint32x2_t vcge_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcge.f32 D0, D0, D0' * uint32x2_t vcge_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcge.u32 D0, D0, D0' * uint16x4_t vcge_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcge.u16 D0, D0, D0' * uint8x8_t vcge_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcge.u8 D0, D0, D0' * uint32x4_t vcgeq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcge.s32 Q0, Q0, Q0' * uint16x8_t vcgeq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcge.s16 Q0, Q0, Q0' * uint8x16_t vcgeq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcge.s8 Q0, Q0, Q0' * uint32x4_t vcgeq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcge.f32 Q0, Q0, Q0' * uint32x4_t vcgeq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcge.u32 Q0, Q0, Q0' * uint16x8_t vcgeq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcge.u16 Q0, Q0, Q0' * uint8x16_t vcgeq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcge.u8 Q0, Q0, Q0' 6.57.6.15 Comparison (less-than-or-equal-to) ............................................ * uint32x2_t vcle_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcge.s32 D0, D0, D0' * uint16x4_t vcle_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcge.s16 D0, D0, D0' * uint8x8_t vcle_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcge.s8 D0, D0, D0' * uint32x2_t vcle_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcge.f32 D0, D0, D0' * uint32x2_t vcle_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcge.u32 D0, D0, D0' * uint16x4_t vcle_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcge.u16 D0, D0, D0' * uint8x8_t vcle_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcge.u8 D0, D0, D0' * uint32x4_t vcleq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcge.s32 Q0, Q0, Q0' * uint16x8_t vcleq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcge.s16 Q0, Q0, Q0' * uint8x16_t vcleq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcge.s8 Q0, Q0, Q0' * uint32x4_t vcleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcge.f32 Q0, Q0, Q0' * uint32x4_t vcleq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcge.u32 Q0, Q0, Q0' * uint16x8_t vcleq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcge.u16 Q0, Q0, Q0' * uint8x16_t vcleq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcge.u8 Q0, Q0, Q0' 6.57.6.16 Comparison (greater-than) ................................... * uint32x2_t vcgt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcgt.s32 D0, D0, D0' * uint16x4_t vcgt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcgt.s16 D0, D0, D0' * uint8x8_t vcgt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcgt.s8 D0, D0, D0' * uint32x2_t vcgt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcgt.f32 D0, D0, D0' * uint32x2_t vcgt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcgt.u32 D0, D0, D0' * uint16x4_t vcgt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcgt.u16 D0, D0, D0' * uint8x8_t vcgt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcgt.u8 D0, D0, D0' * uint32x4_t vcgtq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcgtq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcgtq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcgtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcgtq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcgtq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcgtq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcgt.u8 Q0, Q0, Q0' 6.57.6.17 Comparison (less-than) ................................ * uint32x2_t vclt_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vcgt.s32 D0, D0, D0' * uint16x4_t vclt_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vcgt.s16 D0, D0, D0' * uint8x8_t vclt_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vcgt.s8 D0, D0, D0' * uint32x2_t vclt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vcgt.f32 D0, D0, D0' * uint32x2_t vclt_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vcgt.u32 D0, D0, D0' * uint16x4_t vclt_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vcgt.u16 D0, D0, D0' * uint8x8_t vclt_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vcgt.u8 D0, D0, D0' * uint32x4_t vcltq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vcgt.s32 Q0, Q0, Q0' * uint16x8_t vcltq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vcgt.s16 Q0, Q0, Q0' * uint8x16_t vcltq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vcgt.s8 Q0, Q0, Q0' * uint32x4_t vcltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vcgt.f32 Q0, Q0, Q0' * uint32x4_t vcltq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vcgt.u32 Q0, Q0, Q0' * uint16x8_t vcltq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vcgt.u16 Q0, Q0, Q0' * uint8x16_t vcltq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vcgt.u8 Q0, Q0, Q0' 6.57.6.18 Comparison (absolute greater-than-or-equal-to) ........................................................ * uint32x2_t vcage_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacge.f32 D0, D0, D0' * uint32x4_t vcageq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacge.f32 Q0, Q0, Q0' 6.57.6.19 Comparison (absolute less-than-or-equal-to) ..................................................... * uint32x2_t vcale_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacge.f32 D0, D0, D0' * uint32x4_t vcaleq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacge.f32 Q0, Q0, Q0' 6.57.6.20 Comparison (absolute greater-than) ............................................ * uint32x2_t vcagt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacgt.f32 D0, D0, D0' * uint32x4_t vcagtq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacgt.f32 Q0, Q0, Q0' 6.57.6.21 Comparison (absolute less-than) ......................................... * uint32x2_t vcalt_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vacgt.f32 D0, D0, D0' * uint32x4_t vcaltq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vacgt.f32 Q0, Q0, Q0' 6.57.6.22 Test bits ................... * uint32x2_t vtst_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vtst.32 D0, D0, D0' * uint16x4_t vtst_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vtst.16 D0, D0, D0' * uint8x8_t vtst_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtst.8 D0, D0, D0' * uint32x2_t vtst_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vtst.32 D0, D0, D0' * uint16x4_t vtst_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vtst.16 D0, D0, D0' * uint8x8_t vtst_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtst.8 D0, D0, D0' * uint8x8_t vtst_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vtst.8 D0, D0, D0' * uint32x4_t vtstq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vtst.8 Q0, Q0, Q0' * uint32x4_t vtstq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vtst.32 Q0, Q0, Q0' * uint16x8_t vtstq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vtst.16 Q0, Q0, Q0' * uint8x16_t vtstq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vtst.8 Q0, Q0, Q0' * uint8x16_t vtstq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vtst.8 Q0, Q0, Q0' 6.57.6.23 Absolute difference ............................. * uint32x2_t vabd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vabd.u32 D0, D0, D0' * uint16x4_t vabd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vabd.u16 D0, D0, D0' * uint8x8_t vabd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vabd.u8 D0, D0, D0' * int32x2_t vabd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vabd.s32 D0, D0, D0' * int16x4_t vabd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vabd.s16 D0, D0, D0' * int8x8_t vabd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vabd.s8 D0, D0, D0' * float32x2_t vabd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vabd.f32 D0, D0, D0' * uint32x4_t vabdq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vabd.u32 Q0, Q0, Q0' * uint16x8_t vabdq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vabd.u16 Q0, Q0, Q0' * uint8x16_t vabdq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vabd.u8 Q0, Q0, Q0' * int32x4_t vabdq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vabd.s32 Q0, Q0, Q0' * int16x8_t vabdq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vabd.s16 Q0, Q0, Q0' * int8x16_t vabdq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vabd.s8 Q0, Q0, Q0' * float32x4_t vabdq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vabd.f32 Q0, Q0, Q0' * uint64x2_t vabdl_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vabdl.u32 Q0, D0, D0' * uint32x4_t vabdl_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vabdl.u16 Q0, D0, D0' * uint16x8_t vabdl_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vabdl.u8 Q0, D0, D0' * int64x2_t vabdl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vabdl.s32 Q0, D0, D0' * int32x4_t vabdl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vabdl.s16 Q0, D0, D0' * int16x8_t vabdl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vabdl.s8 Q0, D0, D0' 6.57.6.24 Absolute difference and accumulate ............................................ * uint32x2_t vaba_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vaba.u32 D0, D0, D0' * uint16x4_t vaba_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vaba.u16 D0, D0, D0' * uint8x8_t vaba_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vaba.u8 D0, D0, D0' * int32x2_t vaba_s32 (int32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vaba.s32 D0, D0, D0' * int16x4_t vaba_s16 (int16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vaba.s16 D0, D0, D0' * int8x8_t vaba_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vaba.s8 D0, D0, D0' * uint32x4_t vabaq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vaba.u32 Q0, Q0, Q0' * uint16x8_t vabaq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vaba.u16 Q0, Q0, Q0' * uint8x16_t vabaq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vaba.u8 Q0, Q0, Q0' * int32x4_t vabaq_s32 (int32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vaba.s32 Q0, Q0, Q0' * int16x8_t vabaq_s16 (int16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vaba.s16 Q0, Q0, Q0' * int8x16_t vabaq_s8 (int8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vaba.s8 Q0, Q0, Q0' * uint64x2_t vabal_u32 (uint64x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vabal.u32 Q0, D0, D0' * uint32x4_t vabal_u16 (uint32x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vabal.u16 Q0, D0, D0' * uint16x8_t vabal_u8 (uint16x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vabal.u8 Q0, D0, D0' * int64x2_t vabal_s32 (int64x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vabal.s32 Q0, D0, D0' * int32x4_t vabal_s16 (int32x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vabal.s16 Q0, D0, D0' * int16x8_t vabal_s8 (int16x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vabal.s8 Q0, D0, D0' 6.57.6.25 Maximum ................. * uint32x2_t vmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmax.u32 D0, D0, D0' * uint16x4_t vmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmax.u16 D0, D0, D0' * uint8x8_t vmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmax.u8 D0, D0, D0' * int32x2_t vmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmax.s32 D0, D0, D0' * int16x4_t vmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmax.s16 D0, D0, D0' * int8x8_t vmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmax.s8 D0, D0, D0' * float32x2_t vmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmax.f32 D0, D0, D0' * uint32x4_t vmaxq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmax.u32 Q0, Q0, Q0' * uint16x8_t vmaxq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmax.u16 Q0, Q0, Q0' * uint8x16_t vmaxq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmax.u8 Q0, Q0, Q0' * int32x4_t vmaxq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmax.s32 Q0, Q0, Q0' * int16x8_t vmaxq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmax.s16 Q0, Q0, Q0' * int8x16_t vmaxq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmax.s8 Q0, Q0, Q0' * float32x4_t vmaxq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmax.f32 Q0, Q0, Q0' 6.57.6.26 Minimum ................. * uint32x2_t vmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vmin.u32 D0, D0, D0' * uint16x4_t vmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vmin.u16 D0, D0, D0' * uint8x8_t vmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vmin.u8 D0, D0, D0' * int32x2_t vmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vmin.s32 D0, D0, D0' * int16x4_t vmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vmin.s16 D0, D0, D0' * int8x8_t vmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vmin.s8 D0, D0, D0' * float32x2_t vmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vmin.f32 D0, D0, D0' * uint32x4_t vminq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vmin.u32 Q0, Q0, Q0' * uint16x8_t vminq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vmin.u16 Q0, Q0, Q0' * uint8x16_t vminq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vmin.u8 Q0, Q0, Q0' * int32x4_t vminq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vmin.s32 Q0, Q0, Q0' * int16x8_t vminq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vmin.s16 Q0, Q0, Q0' * int8x16_t vminq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vmin.s8 Q0, Q0, Q0' * float32x4_t vminq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vmin.f32 Q0, Q0, Q0' 6.57.6.27 Pairwise add ...................... * uint32x2_t vpadd_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpadd.i32 D0, D0, D0' * uint16x4_t vpadd_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpadd.i16 D0, D0, D0' * uint8x8_t vpadd_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpadd.i8 D0, D0, D0' * int32x2_t vpadd_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vpadd.i32 D0, D0, D0' * int16x4_t vpadd_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vpadd.i16 D0, D0, D0' * int8x8_t vpadd_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vpadd.i8 D0, D0, D0' * float32x2_t vpadd_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vpadd.f32 D0, D0, D0' * uint64x1_t vpaddl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vpaddl.u32 D0, D0' * uint32x2_t vpaddl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vpaddl.u16 D0, D0' * uint16x4_t vpaddl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vpaddl.u8 D0, D0' * int64x1_t vpaddl_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vpaddl.s32 D0, D0' * int32x2_t vpaddl_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vpaddl.s16 D0, D0' * int16x4_t vpaddl_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vpaddl.s8 D0, D0' * uint64x2_t vpaddlq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vpaddl.u32 Q0, Q0' * uint32x4_t vpaddlq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vpaddl.u16 Q0, Q0' * uint16x8_t vpaddlq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vpaddl.u8 Q0, Q0' * int64x2_t vpaddlq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vpaddl.s32 Q0, Q0' * int32x4_t vpaddlq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vpaddl.s16 Q0, Q0' * int16x8_t vpaddlq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vpaddl.s8 Q0, Q0' 6.57.6.28 Pairwise add, single_opcode widen and accumulate .......................................................... * uint64x1_t vpadal_u32 (uint64x1_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpadal.u32 D0, D0' * uint32x2_t vpadal_u16 (uint32x2_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpadal.u16 D0, D0' * uint16x4_t vpadal_u8 (uint16x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpadal.u8 D0, D0' * int64x1_t vpadal_s32 (int64x1_t, int32x2_t) ! _Form of expected instruction(s):_ `vpadal.s32 D0, D0' * int32x2_t vpadal_s16 (int32x2_t, int16x4_t) ! _Form of expected instruction(s):_ `vpadal.s16 D0, D0' * int16x4_t vpadal_s8 (int16x4_t, int8x8_t) ! _Form of expected instruction(s):_ `vpadal.s8 D0, D0' * uint64x2_t vpadalq_u32 (uint64x2_t, uint32x4_t) ! _Form of expected instruction(s):_ `vpadal.u32 Q0, Q0' * uint32x4_t vpadalq_u16 (uint32x4_t, uint16x8_t) ! _Form of expected instruction(s):_ `vpadal.u16 Q0, Q0' * uint16x8_t vpadalq_u8 (uint16x8_t, uint8x16_t) ! _Form of expected instruction(s):_ `vpadal.u8 Q0, Q0' * int64x2_t vpadalq_s32 (int64x2_t, int32x4_t) ! _Form of expected instruction(s):_ `vpadal.s32 Q0, Q0' * int32x4_t vpadalq_s16 (int32x4_t, int16x8_t) ! _Form of expected instruction(s):_ `vpadal.s16 Q0, Q0' * int16x8_t vpadalq_s8 (int16x8_t, int8x16_t) ! _Form of expected instruction(s):_ `vpadal.s8 Q0, Q0' 6.57.6.29 Folding maximum ......................... * uint32x2_t vpmax_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpmax.u32 D0, D0, D0' * uint16x4_t vpmax_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpmax.u16 D0, D0, D0' * uint8x8_t vpmax_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpmax.u8 D0, D0, D0' * int32x2_t vpmax_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vpmax.s32 D0, D0, D0' * int16x4_t vpmax_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vpmax.s16 D0, D0, D0' * int8x8_t vpmax_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vpmax.s8 D0, D0, D0' * float32x2_t vpmax_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vpmax.f32 D0, D0, D0' 6.57.6.30 Folding minimum ......................... * uint32x2_t vpmin_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vpmin.u32 D0, D0, D0' * uint16x4_t vpmin_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vpmin.u16 D0, D0, D0' * uint8x8_t vpmin_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vpmin.u8 D0, D0, D0' * int32x2_t vpmin_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vpmin.s32 D0, D0, D0' * int16x4_t vpmin_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vpmin.s16 D0, D0, D0' * int8x8_t vpmin_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vpmin.s8 D0, D0, D0' * float32x2_t vpmin_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vpmin.f32 D0, D0, D0' 6.57.6.31 Reciprocal step ......................... * float32x2_t vrecps_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vrecps.f32 D0, D0, D0' * float32x4_t vrecpsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vrecps.f32 Q0, Q0, Q0' * float32x2_t vrsqrts_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vrsqrts.f32 D0, D0, D0' * float32x4_t vrsqrtsq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vrsqrts.f32 Q0, Q0, Q0' 6.57.6.32 Vector shift left ........................... * uint32x2_t vshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vshl.u32 D0, D0, D0' * uint16x4_t vshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vshl.u16 D0, D0, D0' * uint8x8_t vshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vshl.u8 D0, D0, D0' * int32x2_t vshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vshl.s32 D0, D0, D0' * int16x4_t vshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vshl.s16 D0, D0, D0' * int8x8_t vshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vshl.s8 D0, D0, D0' * uint64x1_t vshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vshl.u64 D0, D0, D0' * int64x1_t vshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vshl.s64 D0, D0, D0' * uint32x4_t vshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vshl.u32 Q0, Q0, Q0' * uint16x8_t vshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vshl.u16 Q0, Q0, Q0' * uint8x16_t vshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vshl.u8 Q0, Q0, Q0' * int32x4_t vshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vshl.s32 Q0, Q0, Q0' * int16x8_t vshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vshl.s16 Q0, Q0, Q0' * int8x16_t vshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vshl.s8 Q0, Q0, Q0' * uint64x2_t vshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vshl.u64 Q0, Q0, Q0' * int64x2_t vshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vshl.s64 Q0, Q0, Q0' * uint32x2_t vrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vrshl.u32 D0, D0, D0' * uint16x4_t vrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vrshl.u16 D0, D0, D0' * uint8x8_t vrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vrshl.u8 D0, D0, D0' * int32x2_t vrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vrshl.s32 D0, D0, D0' * int16x4_t vrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vrshl.s16 D0, D0, D0' * int8x8_t vrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vrshl.s8 D0, D0, D0' * uint64x1_t vrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vrshl.u64 D0, D0, D0' * int64x1_t vrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vrshl.s64 D0, D0, D0' * uint32x4_t vrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrshl.u32 Q0, Q0, Q0' * uint16x8_t vrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrshl.u16 Q0, Q0, Q0' * uint8x16_t vrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vrshl.u8 Q0, Q0, Q0' * int32x4_t vrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vrshl.s32 Q0, Q0, Q0' * int16x8_t vrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vrshl.s16 Q0, Q0, Q0' * int8x16_t vrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vrshl.s8 Q0, Q0, Q0' * uint64x2_t vrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vrshl.u64 Q0, Q0, Q0' * int64x2_t vrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vrshl.s64 Q0, Q0, Q0' * uint32x2_t vqshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqshl.u32 D0, D0, D0' * uint16x4_t vqshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqshl.u16 D0, D0, D0' * uint8x8_t vqshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqshl.u8 D0, D0, D0' * int32x2_t vqshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqshl.s32 D0, D0, D0' * int16x4_t vqshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqshl.s16 D0, D0, D0' * int8x8_t vqshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqshl.s8 D0, D0, D0' * uint64x1_t vqshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqshl.u64 D0, D0, D0' * int64x1_t vqshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqshl.s64 D0, D0, D0' * uint32x4_t vqshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqshl.u32 Q0, Q0, Q0' * uint16x8_t vqshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqshl.u16 Q0, Q0, Q0' * uint8x16_t vqshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqshl.u8 Q0, Q0, Q0' * int32x4_t vqshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqshl.s32 Q0, Q0, Q0' * int16x8_t vqshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqshl.s16 Q0, Q0, Q0' * int8x16_t vqshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqshl.s8 Q0, Q0, Q0' * uint64x2_t vqshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqshl.u64 Q0, Q0, Q0' * int64x2_t vqshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqshl.s64 Q0, Q0, Q0' * uint32x2_t vqrshl_u32 (uint32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqrshl.u32 D0, D0, D0' * uint16x4_t vqrshl_u16 (uint16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqrshl.u16 D0, D0, D0' * uint8x8_t vqrshl_u8 (uint8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqrshl.u8 D0, D0, D0' * int32x2_t vqrshl_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vqrshl.s32 D0, D0, D0' * int16x4_t vqrshl_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vqrshl.s16 D0, D0, D0' * int8x8_t vqrshl_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vqrshl.s8 D0, D0, D0' * uint64x1_t vqrshl_u64 (uint64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqrshl.u64 D0, D0, D0' * int64x1_t vqrshl_s64 (int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vqrshl.s64 D0, D0, D0' * uint32x4_t vqrshlq_u32 (uint32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqrshl.u32 Q0, Q0, Q0' * uint16x8_t vqrshlq_u16 (uint16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqrshl.u16 Q0, Q0, Q0' * uint8x16_t vqrshlq_u8 (uint8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqrshl.u8 Q0, Q0, Q0' * int32x4_t vqrshlq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vqrshl.s32 Q0, Q0, Q0' * int16x8_t vqrshlq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vqrshl.s16 Q0, Q0, Q0' * int8x16_t vqrshlq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vqrshl.s8 Q0, Q0, Q0' * uint64x2_t vqrshlq_u64 (uint64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqrshl.u64 Q0, Q0, Q0' * int64x2_t vqrshlq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vqrshl.s64 Q0, Q0, Q0' 6.57.6.33 Vector shift left by constant ....................................... * uint32x2_t vshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 D0, D0, #0' * uint16x4_t vshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 D0, D0, #0' * uint8x8_t vshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 D0, D0, #0' * int32x2_t vshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 D0, D0, #0' * int16x4_t vshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 D0, D0, #0' * int8x8_t vshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 D0, D0, #0' * uint64x1_t vshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 D0, D0, #0' * int64x1_t vshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 D0, D0, #0' * uint32x4_t vshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 Q0, Q0, #0' * uint16x8_t vshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 Q0, Q0, #0' * uint8x16_t vshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 Q0, Q0, #0' * int32x4_t vshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vshl.i32 Q0, Q0, #0' * int16x8_t vshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vshl.i16 Q0, Q0, #0' * int8x16_t vshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vshl.i8 Q0, Q0, #0' * uint64x2_t vshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 Q0, Q0, #0' * int64x2_t vshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vshl.i64 Q0, Q0, #0' * uint32x2_t vqshl_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.u32 D0, D0, #0' * uint16x4_t vqshl_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.u16 D0, D0, #0' * uint8x8_t vqshl_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.u8 D0, D0, #0' * int32x2_t vqshl_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.s32 D0, D0, #0' * int16x4_t vqshl_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.s16 D0, D0, #0' * int8x8_t vqshl_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.s8 D0, D0, #0' * uint64x1_t vqshl_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vqshl.u64 D0, D0, #0' * int64x1_t vqshl_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vqshl.s64 D0, D0, #0' * uint32x4_t vqshlq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.u32 Q0, Q0, #0' * uint16x8_t vqshlq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.u16 Q0, Q0, #0' * uint8x16_t vqshlq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vqshl.u8 Q0, Q0, #0' * int32x4_t vqshlq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshl.s32 Q0, Q0, #0' * int16x8_t vqshlq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshl.s16 Q0, Q0, #0' * int8x16_t vqshlq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vqshl.s8 Q0, Q0, #0' * uint64x2_t vqshlq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.u64 Q0, Q0, #0' * int64x2_t vqshlq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshl.s64 Q0, Q0, #0' * uint64x1_t vqshlu_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s64 D0, D0, #0' * uint32x2_t vqshlu_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s32 D0, D0, #0' * uint16x4_t vqshlu_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s16 D0, D0, #0' * uint8x8_t vqshlu_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s8 D0, D0, #0' * uint64x2_t vqshluq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s64 Q0, Q0, #0' * uint32x4_t vqshluq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s32 Q0, Q0, #0' * uint16x8_t vqshluq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s16 Q0, Q0, #0' * uint8x16_t vqshluq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vqshlu.s8 Q0, Q0, #0' * uint64x2_t vshll_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vshll.u32 Q0, D0, #0' * uint32x4_t vshll_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vshll.u16 Q0, D0, #0' * uint16x8_t vshll_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vshll.u8 Q0, D0, #0' * int64x2_t vshll_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vshll.s32 Q0, D0, #0' * int32x4_t vshll_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vshll.s16 Q0, D0, #0' * int16x8_t vshll_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vshll.s8 Q0, D0, #0' 6.57.6.34 Vector shift right by constant ........................................ * uint32x2_t vshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vshr.u32 D0, D0, #0' * uint16x4_t vshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vshr.u16 D0, D0, #0' * uint8x8_t vshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vshr.u8 D0, D0, #0' * int32x2_t vshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vshr.s32 D0, D0, #0' * int16x4_t vshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vshr.s16 D0, D0, #0' * int8x8_t vshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vshr.s8 D0, D0, #0' * uint64x1_t vshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vshr.u64 D0, D0, #0' * int64x1_t vshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vshr.s64 D0, D0, #0' * uint32x4_t vshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vshr.u32 Q0, Q0, #0' * uint16x8_t vshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vshr.u16 Q0, Q0, #0' * uint8x16_t vshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vshr.u8 Q0, Q0, #0' * int32x4_t vshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vshr.s32 Q0, Q0, #0' * int16x8_t vshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vshr.s16 Q0, Q0, #0' * int8x16_t vshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vshr.s8 Q0, Q0, #0' * uint64x2_t vshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vshr.u64 Q0, Q0, #0' * int64x2_t vshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vshr.s64 Q0, Q0, #0' * uint32x2_t vrshr_n_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.u32 D0, D0, #0' * uint16x4_t vrshr_n_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.u16 D0, D0, #0' * uint8x8_t vrshr_n_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.u8 D0, D0, #0' * int32x2_t vrshr_n_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.s32 D0, D0, #0' * int16x4_t vrshr_n_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.s16 D0, D0, #0' * int8x8_t vrshr_n_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.s8 D0, D0, #0' * uint64x1_t vrshr_n_u64 (uint64x1_t, const int) ! _Form of expected instruction(s):_ `vrshr.u64 D0, D0, #0' * int64x1_t vrshr_n_s64 (int64x1_t, const int) ! _Form of expected instruction(s):_ `vrshr.s64 D0, D0, #0' * uint32x4_t vrshrq_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.u32 Q0, Q0, #0' * uint16x8_t vrshrq_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.u16 Q0, Q0, #0' * uint8x16_t vrshrq_n_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vrshr.u8 Q0, Q0, #0' * int32x4_t vrshrq_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vrshr.s32 Q0, Q0, #0' * int16x8_t vrshrq_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vrshr.s16 Q0, Q0, #0' * int8x16_t vrshrq_n_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vrshr.s8 Q0, Q0, #0' * uint64x2_t vrshrq_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.u64 Q0, Q0, #0' * int64x2_t vrshrq_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vrshr.s64 Q0, Q0, #0' * uint32x2_t vshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vshrn.i64 D0, Q0, #0' * uint16x4_t vshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vshrn.i32 D0, Q0, #0' * uint8x8_t vshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vshrn.i16 D0, Q0, #0' * int32x2_t vshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vshrn.i64 D0, Q0, #0' * int16x4_t vshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vshrn.i32 D0, Q0, #0' * int8x8_t vshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vshrn.i16 D0, Q0, #0' * uint32x2_t vrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i64 D0, Q0, #0' * uint16x4_t vrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i32 D0, Q0, #0' * uint8x8_t vrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i16 D0, Q0, #0' * int32x2_t vrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i64 D0, Q0, #0' * int16x4_t vrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i32 D0, Q0, #0' * int8x8_t vrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vrshrn.i16 D0, Q0, #0' * uint32x2_t vqshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vqshrn.u64 D0, Q0, #0' * uint16x4_t vqshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vqshrn.u32 D0, Q0, #0' * uint8x8_t vqshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vqshrn.u16 D0, Q0, #0' * int32x2_t vqshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshrn.s64 D0, Q0, #0' * int16x4_t vqshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshrn.s32 D0, Q0, #0' * int8x8_t vqshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshrn.s16 D0, Q0, #0' * uint32x2_t vqrshrn_n_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.u64 D0, Q0, #0' * uint16x4_t vqrshrn_n_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.u32 D0, Q0, #0' * uint8x8_t vqrshrn_n_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.u16 D0, Q0, #0' * int32x2_t vqrshrn_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.s64 D0, Q0, #0' * int16x4_t vqrshrn_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.s32 D0, Q0, #0' * int8x8_t vqrshrn_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqrshrn.s16 D0, Q0, #0' * uint32x2_t vqshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqshrun.s64 D0, Q0, #0' * uint16x4_t vqshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqshrun.s32 D0, Q0, #0' * uint8x8_t vqshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqshrun.s16 D0, Q0, #0' * uint32x2_t vqrshrun_n_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vqrshrun.s64 D0, Q0, #0' * uint16x4_t vqrshrun_n_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vqrshrun.s32 D0, Q0, #0' * uint8x8_t vqrshrun_n_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vqrshrun.s16 D0, Q0, #0' 6.57.6.35 Vector shift right by constant and accumulate ....................................................... * uint32x2_t vsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vsra.u32 D0, D0, #0' * uint16x4_t vsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vsra.u16 D0, D0, #0' * uint8x8_t vsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vsra.u8 D0, D0, #0' * int32x2_t vsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vsra.s32 D0, D0, #0' * int16x4_t vsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vsra.s16 D0, D0, #0' * int8x8_t vsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vsra.s8 D0, D0, #0' * uint64x1_t vsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vsra.u64 D0, D0, #0' * int64x1_t vsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vsra.s64 D0, D0, #0' * uint32x4_t vsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vsra.u32 Q0, Q0, #0' * uint16x8_t vsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vsra.u16 Q0, Q0, #0' * uint8x16_t vsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vsra.u8 Q0, Q0, #0' * int32x4_t vsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vsra.s32 Q0, Q0, #0' * int16x8_t vsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vsra.s16 Q0, Q0, #0' * int8x16_t vsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vsra.s8 Q0, Q0, #0' * uint64x2_t vsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vsra.u64 Q0, Q0, #0' * int64x2_t vsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vsra.s64 Q0, Q0, #0' * uint32x2_t vrsra_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.u32 D0, D0, #0' * uint16x4_t vrsra_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.u16 D0, D0, #0' * uint8x8_t vrsra_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.u8 D0, D0, #0' * int32x2_t vrsra_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.s32 D0, D0, #0' * int16x4_t vrsra_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.s16 D0, D0, #0' * int8x8_t vrsra_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.s8 D0, D0, #0' * uint64x1_t vrsra_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vrsra.u64 D0, D0, #0' * int64x1_t vrsra_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vrsra.s64 D0, D0, #0' * uint32x4_t vrsraq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.u32 Q0, Q0, #0' * uint16x8_t vrsraq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.u16 Q0, Q0, #0' * uint8x16_t vrsraq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vrsra.u8 Q0, Q0, #0' * int32x4_t vrsraq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vrsra.s32 Q0, Q0, #0' * int16x8_t vrsraq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vrsra.s16 Q0, Q0, #0' * int8x16_t vrsraq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vrsra.s8 Q0, Q0, #0' * uint64x2_t vrsraq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.u64 Q0, Q0, #0' * int64x2_t vrsraq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vrsra.s64 Q0, Q0, #0' 6.57.6.36 Vector shift right and insert ....................................... * poly64x1_t vsri_n_p64 (poly64x1_t, poly64x1_t, const int) ! _Form of expected instruction(s):_ `vsri.64 D0, D0, #0' * uint32x2_t vsri_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vsri.32 D0, D0, #0' * uint16x4_t vsri_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vsri.16 D0, D0, #0' * uint8x8_t vsri_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vsri.8 D0, D0, #0' * int32x2_t vsri_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vsri.32 D0, D0, #0' * int16x4_t vsri_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vsri.16 D0, D0, #0' * int8x8_t vsri_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vsri.8 D0, D0, #0' * uint64x1_t vsri_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vsri.64 D0, D0, #0' * int64x1_t vsri_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vsri.64 D0, D0, #0' * poly16x4_t vsri_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vsri.16 D0, D0, #0' * poly8x8_t vsri_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vsri.8 D0, D0, #0' * poly64x2_t vsriq_n_p64 (poly64x2_t, poly64x2_t, const int) ! _Form of expected instruction(s):_ `vsri.64 Q0, Q0, #0' * uint32x4_t vsriq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vsri.32 Q0, Q0, #0' * uint16x8_t vsriq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vsri.16 Q0, Q0, #0' * uint8x16_t vsriq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vsri.8 Q0, Q0, #0' * int32x4_t vsriq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vsri.32 Q0, Q0, #0' * int16x8_t vsriq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vsri.16 Q0, Q0, #0' * int8x16_t vsriq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vsri.8 Q0, Q0, #0' * uint64x2_t vsriq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vsri.64 Q0, Q0, #0' * int64x2_t vsriq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vsri.64 Q0, Q0, #0' * poly16x8_t vsriq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vsri.16 Q0, Q0, #0' * poly8x16_t vsriq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vsri.8 Q0, Q0, #0' 6.57.6.37 Vector shift left and insert ...................................... * poly64x1_t vsli_n_p64 (poly64x1_t, poly64x1_t, const int) ! _Form of expected instruction(s):_ `vsli.64 D0, D0, #0' * uint32x2_t vsli_n_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vsli.32 D0, D0, #0' * uint16x4_t vsli_n_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vsli.16 D0, D0, #0' * uint8x8_t vsli_n_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vsli.8 D0, D0, #0' * int32x2_t vsli_n_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vsli.32 D0, D0, #0' * int16x4_t vsli_n_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vsli.16 D0, D0, #0' * int8x8_t vsli_n_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vsli.8 D0, D0, #0' * uint64x1_t vsli_n_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vsli.64 D0, D0, #0' * int64x1_t vsli_n_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vsli.64 D0, D0, #0' * poly16x4_t vsli_n_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vsli.16 D0, D0, #0' * poly8x8_t vsli_n_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vsli.8 D0, D0, #0' * poly64x2_t vsliq_n_p64 (poly64x2_t, poly64x2_t, const int) ! _Form of expected instruction(s):_ `vsli.64 Q0, Q0, #0' * uint32x4_t vsliq_n_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vsli.32 Q0, Q0, #0' * uint16x8_t vsliq_n_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vsli.16 Q0, Q0, #0' * uint8x16_t vsliq_n_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vsli.8 Q0, Q0, #0' * int32x4_t vsliq_n_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vsli.32 Q0, Q0, #0' * int16x8_t vsliq_n_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vsli.16 Q0, Q0, #0' * int8x16_t vsliq_n_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vsli.8 Q0, Q0, #0' * uint64x2_t vsliq_n_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vsli.64 Q0, Q0, #0' * int64x2_t vsliq_n_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vsli.64 Q0, Q0, #0' * poly16x8_t vsliq_n_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vsli.16 Q0, Q0, #0' * poly8x16_t vsliq_n_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vsli.8 Q0, Q0, #0' 6.57.6.38 Absolute value ........................ * float32x2_t vabs_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vabs.f32 D0, D0' * int32x2_t vabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vabs.s32 D0, D0' * int16x4_t vabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vabs.s16 D0, D0' * int8x8_t vabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vabs.s8 D0, D0' * float32x4_t vabsq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vabs.f32 Q0, Q0' * int32x4_t vabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vabs.s32 Q0, Q0' * int16x8_t vabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vabs.s16 Q0, Q0' * int8x16_t vabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vabs.s8 Q0, Q0' * int32x2_t vqabs_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vqabs.s32 D0, D0' * int16x4_t vqabs_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vqabs.s16 D0, D0' * int8x8_t vqabs_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vqabs.s8 D0, D0' * int32x4_t vqabsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqabs.s32 Q0, Q0' * int16x8_t vqabsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqabs.s16 Q0, Q0' * int8x16_t vqabsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vqabs.s8 Q0, Q0' 6.57.6.39 Negation .................. * float32x2_t vneg_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vneg.f32 D0, D0' * int32x2_t vneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vneg.s32 D0, D0' * int16x4_t vneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vneg.s16 D0, D0' * int8x8_t vneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vneg.s8 D0, D0' * float32x4_t vnegq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vneg.f32 Q0, Q0' * int32x4_t vnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vneg.s32 Q0, Q0' * int16x8_t vnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vneg.s16 Q0, Q0' * int8x16_t vnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vneg.s8 Q0, Q0' * int32x2_t vqneg_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vqneg.s32 D0, D0' * int16x4_t vqneg_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vqneg.s16 D0, D0' * int8x8_t vqneg_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vqneg.s8 D0, D0' * int32x4_t vqnegq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqneg.s32 Q0, Q0' * int16x8_t vqnegq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqneg.s16 Q0, Q0' * int8x16_t vqnegq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vqneg.s8 Q0, Q0' 6.57.6.40 Bitwise not ..................... * uint32x2_t vmvn_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * uint16x4_t vmvn_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * uint8x8_t vmvn_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * int32x2_t vmvn_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * int16x4_t vmvn_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * int8x8_t vmvn_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * poly8x8_t vmvn_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vmvn D0, D0' * uint32x4_t vmvnq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * uint16x8_t vmvnq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * uint8x16_t vmvnq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * int32x4_t vmvnq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * int16x8_t vmvnq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * int8x16_t vmvnq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' * poly8x16_t vmvnq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vmvn Q0, Q0' 6.57.6.41 Count leading sign bits ................................. * int32x2_t vcls_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vcls.s32 D0, D0' * int16x4_t vcls_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vcls.s16 D0, D0' * int8x8_t vcls_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vcls.s8 D0, D0' * int32x4_t vclsq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vcls.s32 Q0, Q0' * int16x8_t vclsq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vcls.s16 Q0, Q0' * int8x16_t vclsq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vcls.s8 Q0, Q0' 6.57.6.42 Count leading zeros ............................. * uint32x2_t vclz_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vclz.i32 D0, D0' * uint16x4_t vclz_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vclz.i16 D0, D0' * uint8x8_t vclz_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vclz.i8 D0, D0' * int32x2_t vclz_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vclz.i32 D0, D0' * int16x4_t vclz_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vclz.i16 D0, D0' * int8x8_t vclz_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vclz.i8 D0, D0' * uint32x4_t vclzq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vclz.i32 Q0, Q0' * uint16x8_t vclzq_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vclz.i16 Q0, Q0' * uint8x16_t vclzq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vclz.i8 Q0, Q0' * int32x4_t vclzq_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vclz.i32 Q0, Q0' * int16x8_t vclzq_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vclz.i16 Q0, Q0' * int8x16_t vclzq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vclz.i8 Q0, Q0' 6.57.6.43 Count number of set bits .................................. * uint8x8_t vcnt_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vcnt.8 D0, D0' * int8x8_t vcnt_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vcnt.8 D0, D0' * poly8x8_t vcnt_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vcnt.8 D0, D0' * uint8x16_t vcntq_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vcnt.8 Q0, Q0' * int8x16_t vcntq_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vcnt.8 Q0, Q0' * poly8x16_t vcntq_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vcnt.8 Q0, Q0' 6.57.6.44 Reciprocal estimate ............................. * float32x2_t vrecpe_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrecpe.f32 D0, D0' * uint32x2_t vrecpe_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vrecpe.u32 D0, D0' * float32x4_t vrecpeq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrecpe.f32 Q0, Q0' * uint32x4_t vrecpeq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vrecpe.u32 Q0, Q0' 6.57.6.45 Reciprocal square-root estimate ......................................... * float32x2_t vrsqrte_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrsqrte.f32 D0, D0' * uint32x2_t vrsqrte_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vrsqrte.u32 D0, D0' * float32x4_t vrsqrteq_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrsqrte.f32 Q0, Q0' * uint32x4_t vrsqrteq_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vrsqrte.u32 Q0, Q0' 6.57.6.46 Get lanes from a vector ................................. * uint32_t vget_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * uint16_t vget_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * uint8_t vget_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * int32_t vget_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * int16_t vget_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.s16 R0, D0[0]' * int8_t vget_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.s8 R0, D0[0]' * float32_t vget_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * poly16_t vget_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * poly8_t vget_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * uint64_t vget_lane_u64 (uint64x1_t, const int) * int64_t vget_lane_s64 (int64x1_t, const int) * uint32_t vgetq_lane_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * uint16_t vgetq_lane_u16 (uint16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * uint8_t vgetq_lane_u8 (uint8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * int32_t vgetq_lane_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * int16_t vgetq_lane_s16 (int16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.s16 R0, D0[0]' * int8_t vgetq_lane_s8 (int8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.s8 R0, D0[0]' * float32_t vgetq_lane_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 R0, D0[0]' * poly16_t vgetq_lane_p16 (poly16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.u16 R0, D0[0]' * poly8_t vgetq_lane_p8 (poly8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.u8 R0, D0[0]' * uint64_t vgetq_lane_u64 (uint64x2_t, const int) ! _Form of expected instruction(s):_ `vmov R0, R0, D0' _or_ `fmrrd R0, R0, D0' * int64_t vgetq_lane_s64 (int64x2_t, const int) ! _Form of expected instruction(s):_ `vmov R0, R0, D0' _or_ `fmrrd R0, R0, D0' 6.57.6.47 Set lanes in a vector ............................... * uint32x2_t vset_lane_u32 (uint32_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * uint16x4_t vset_lane_u16 (uint16_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * uint8x8_t vset_lane_u8 (uint8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * int32x2_t vset_lane_s32 (int32_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * int16x4_t vset_lane_s16 (int16_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * int8x8_t vset_lane_s8 (int8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * float32x2_t vset_lane_f32 (float32_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * poly16x4_t vset_lane_p16 (poly16_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * poly8x8_t vset_lane_p8 (poly8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * uint64x1_t vset_lane_u64 (uint64_t, uint64x1_t, const int) * int64x1_t vset_lane_s64 (int64_t, int64x1_t, const int) * uint32x4_t vsetq_lane_u32 (uint32_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * uint16x8_t vsetq_lane_u16 (uint16_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * uint8x16_t vsetq_lane_u8 (uint8_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * int32x4_t vsetq_lane_s32 (int32_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * int16x8_t vsetq_lane_s16 (int16_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * int8x16_t vsetq_lane_s8 (int8_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * float32x4_t vsetq_lane_f32 (float32_t, float32x4_t, const int) ! _Form of expected instruction(s):_ `vmov.32 D0[0], R0' * poly16x8_t vsetq_lane_p16 (poly16_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vmov.16 D0[0], R0' * poly8x16_t vsetq_lane_p8 (poly8_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vmov.8 D0[0], R0' * uint64x2_t vsetq_lane_u64 (uint64_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vmov D0, R0, R0' * int64x2_t vsetq_lane_s64 (int64_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vmov D0, R0, R0' 6.57.6.48 Create vector from literal bit pattern ................................................ *************** available when the '-mfpu=neon' switch i *** 35479,35509 **** ......................................... * uint32x2_t vdup_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * uint16x4_t vdup_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * uint8x8_t vdup_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * int32x2_t vdup_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * int16x4_t vdup_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * int8x8_t vdup_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * float32x2_t vdup_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * poly16x4_t vdup_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * poly8x8_t vdup_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * poly64x1_t vdup_n_p64 (poly64_t) --- 35859,35889 ---- ......................................... * uint32x2_t vdup_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * uint16x4_t vdup_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * uint8x8_t vdup_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * int32x2_t vdup_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * int16x4_t vdup_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * int8x8_t vdup_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * float32x2_t vdup_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * poly16x4_t vdup_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * poly8x8_t vdup_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * poly64x1_t vdup_n_p64 (poly64_t) *************** available when the '-mfpu=neon' switch i *** 35514,35637 **** * poly64x2_t vdupq_n_p64 (poly64_t) * uint32x4_t vdupq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * uint16x8_t vdupq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * uint8x16_t vdupq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * int32x4_t vdupq_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * int16x8_t vdupq_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * int8x16_t vdupq_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * float32x4_t vdupq_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * poly16x8_t vdupq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * poly8x16_t vdupq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * uint64x2_t vdupq_n_u64 (uint64_t) * int64x2_t vdupq_n_s64 (int64_t) * uint32x2_t vmov_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * uint16x4_t vmov_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * uint8x8_t vmov_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * int32x2_t vmov_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * int16x4_t vmov_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * int8x8_t vmov_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * float32x2_t vmov_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 D0, R0' * poly16x4_t vmov_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 D0, R0' * poly8x8_t vmov_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 D0, R0' * uint64x1_t vmov_n_u64 (uint64_t) * int64x1_t vmov_n_s64 (int64_t) * uint32x4_t vmovq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * uint16x8_t vmovq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * uint8x16_t vmovq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * int32x4_t vmovq_n_s32 (int32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * int16x8_t vmovq_n_s16 (int16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * int8x16_t vmovq_n_s8 (int8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * float32x4_t vmovq_n_f32 (float32_t) ! _Form of expected instruction(s):_ 'vdup.32 Q0, R0' * poly16x8_t vmovq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ 'vdup.16 Q0, R0' * poly8x16_t vmovq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ 'vdup.8 Q0, R0' * uint64x2_t vmovq_n_u64 (uint64_t) * int64x2_t vmovq_n_s64 (int64_t) * uint32x2_t vdup_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]' * uint16x4_t vdup_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]' * uint8x8_t vdup_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]' * int32x2_t vdup_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]' * int16x4_t vdup_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]' * int8x8_t vdup_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]' * float32x2_t vdup_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 D0, D0[0]' * poly16x4_t vdup_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 D0, D0[0]' * poly8x8_t vdup_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 D0, D0[0]' * poly64x1_t vdup_lane_p64 (poly64x1_t, const int) --- 35894,36017 ---- * poly64x2_t vdupq_n_p64 (poly64_t) * uint32x4_t vdupq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * uint16x8_t vdupq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * uint8x16_t vdupq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * int32x4_t vdupq_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * int16x8_t vdupq_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * int8x16_t vdupq_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * float32x4_t vdupq_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * poly16x8_t vdupq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * poly8x16_t vdupq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * uint64x2_t vdupq_n_u64 (uint64_t) * int64x2_t vdupq_n_s64 (int64_t) * uint32x2_t vmov_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * uint16x4_t vmov_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * uint8x8_t vmov_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * int32x2_t vmov_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * int16x4_t vmov_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * int8x8_t vmov_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * float32x2_t vmov_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 D0, R0' * poly16x4_t vmov_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 D0, R0' * poly8x8_t vmov_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 D0, R0' * uint64x1_t vmov_n_u64 (uint64_t) * int64x1_t vmov_n_s64 (int64_t) * uint32x4_t vmovq_n_u32 (uint32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * uint16x8_t vmovq_n_u16 (uint16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * uint8x16_t vmovq_n_u8 (uint8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * int32x4_t vmovq_n_s32 (int32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * int16x8_t vmovq_n_s16 (int16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * int8x16_t vmovq_n_s8 (int8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * float32x4_t vmovq_n_f32 (float32_t) ! _Form of expected instruction(s):_ `vdup.32 Q0, R0' * poly16x8_t vmovq_n_p16 (poly16_t) ! _Form of expected instruction(s):_ `vdup.16 Q0, R0' * poly8x16_t vmovq_n_p8 (poly8_t) ! _Form of expected instruction(s):_ `vdup.8 Q0, R0' * uint64x2_t vmovq_n_u64 (uint64_t) * int64x2_t vmovq_n_s64 (int64_t) * uint32x2_t vdup_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 D0, D0[0]' * uint16x4_t vdup_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 D0, D0[0]' * uint8x8_t vdup_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 D0, D0[0]' * int32x2_t vdup_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 D0, D0[0]' * int16x4_t vdup_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 D0, D0[0]' * int8x8_t vdup_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 D0, D0[0]' * float32x2_t vdup_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 D0, D0[0]' * poly16x4_t vdup_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 D0, D0[0]' * poly8x8_t vdup_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 D0, D0[0]' * poly64x1_t vdup_lane_p64 (poly64x1_t, const int) *************** available when the '-mfpu=neon' switch i *** 35640,35670 **** * int64x1_t vdup_lane_s64 (int64x1_t, const int) * uint32x4_t vdupq_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]' * uint16x8_t vdupq_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]' * uint8x16_t vdupq_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]' * int32x4_t vdupq_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]' * int16x8_t vdupq_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]' * int8x16_t vdupq_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]' * float32x4_t vdupq_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vdup.32 Q0, D0[0]' * poly16x8_t vdupq_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vdup.16 Q0, D0[0]' * poly8x16_t vdupq_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vdup.8 Q0, D0[0]' * poly64x2_t vdupq_lane_p64 (poly64x1_t, const int) --- 36020,36050 ---- * int64x1_t vdup_lane_s64 (int64x1_t, const int) * uint32x4_t vdupq_lane_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 Q0, D0[0]' * uint16x8_t vdupq_lane_u16 (uint16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 Q0, D0[0]' * uint8x16_t vdupq_lane_u8 (uint8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 Q0, D0[0]' * int32x4_t vdupq_lane_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 Q0, D0[0]' * int16x8_t vdupq_lane_s16 (int16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 Q0, D0[0]' * int8x16_t vdupq_lane_s8 (int8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 Q0, D0[0]' * float32x4_t vdupq_lane_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vdup.32 Q0, D0[0]' * poly16x8_t vdupq_lane_p16 (poly16x4_t, const int) ! _Form of expected instruction(s):_ `vdup.16 Q0, D0[0]' * poly8x16_t vdupq_lane_p8 (poly8x8_t, const int) ! _Form of expected instruction(s):_ `vdup.8 Q0, D0[0]' * poly64x2_t vdupq_lane_p64 (poly64x1_t, const int) *************** available when the '-mfpu=neon' switch i *** 35727,35757 **** * poly8x8_t vget_high_p8 (poly8x16_t) * uint32x2_t vget_low_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * uint16x4_t vget_low_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * uint8x8_t vget_low_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * int32x2_t vget_low_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * int16x4_t vget_low_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * int8x8_t vget_low_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * float32x2_t vget_low_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * poly16x4_t vget_low_p16 (poly16x8_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * poly8x8_t vget_low_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vmov D0, D0' * poly64x1_t vget_low_p64 (poly64x2_t) --- 36107,36137 ---- * poly8x8_t vget_high_p8 (poly8x16_t) * uint32x2_t vget_low_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * uint16x4_t vget_low_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * uint8x8_t vget_low_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * int32x2_t vget_low_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * int16x4_t vget_low_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * int8x8_t vget_low_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * float32x2_t vget_low_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * poly16x4_t vget_low_p16 (poly16x8_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * poly8x8_t vget_low_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vmov D0, D0' * poly64x1_t vget_low_p64 (poly64x2_t) *************** available when the '-mfpu=neon' switch i *** 35763,38339 **** ..................... * float32x2_t vcvt_f32_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 D0, D0' * float32x2_t vcvt_f32_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 D0, D0' * uint32x2_t vcvt_u32_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 D0, D0' * int32x2_t vcvt_s32_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 D0, D0' * float32x4_t vcvtq_f32_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 Q0, Q0' * float32x4_t vcvtq_f32_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 Q0, Q0' * uint32x4_t vcvtq_u32_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 Q0, Q0' * int32x4_t vcvtq_s32_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 Q0, Q0' * float16x4_t vcvt_f16_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vcvt.f16.f32 D0, Q0' * float32x4_t vcvt_f32_f16 (float16x4_t) ! _Form of expected instruction(s):_ 'vcvt.f32.f16 Q0, D0' * float32x2_t vcvt_n_f32_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 D0, D0, #0' * float32x2_t vcvt_n_f32_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 D0, D0, #0' * uint32x2_t vcvt_n_u32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 D0, D0, #0' * int32x2_t vcvt_n_s32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 D0, D0, #0' * float32x4_t vcvtq_n_f32_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.u32 Q0, Q0, #0' * float32x4_t vcvtq_n_f32_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.f32.s32 Q0, Q0, #0' * uint32x4_t vcvtq_n_u32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.u32.f32 Q0, Q0, #0' * int32x4_t vcvtq_n_s32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ 'vcvt.s32.f32 Q0, Q0, #0' 6.57.6.53 Move, single_opcode narrowing ....................................... * uint32x2_t vmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ 'vmovn.i64 D0, Q0' * uint16x4_t vmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vmovn.i32 D0, Q0' * uint8x8_t vmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vmovn.i16 D0, Q0' * int32x2_t vmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ 'vmovn.i64 D0, Q0' * int16x4_t vmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vmovn.i32 D0, Q0' * int8x8_t vmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vmovn.i16 D0, Q0' * uint32x2_t vqmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ 'vqmovn.u64 D0, Q0' * uint16x4_t vqmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vqmovn.u32 D0, Q0' * uint8x8_t vqmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vqmovn.u16 D0, Q0' * int32x2_t vqmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ 'vqmovn.s64 D0, Q0' * int16x4_t vqmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqmovn.s32 D0, Q0' * int8x8_t vqmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqmovn.s16 D0, Q0' * uint32x2_t vqmovun_s64 (int64x2_t) ! _Form of expected instruction(s):_ 'vqmovun.s64 D0, Q0' * uint16x4_t vqmovun_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vqmovun.s32 D0, Q0' * uint8x8_t vqmovun_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vqmovun.s16 D0, Q0' 6.57.6.54 Move, single_opcode long .................................. * uint64x2_t vmovl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vmovl.u32 Q0, D0' * uint32x4_t vmovl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vmovl.u16 Q0, D0' * uint16x8_t vmovl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vmovl.u8 Q0, D0' * int64x2_t vmovl_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vmovl.s32 Q0, D0' * int32x4_t vmovl_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vmovl.s16 Q0, D0' * int16x8_t vmovl_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vmovl.s8 Q0, D0' 6.57.6.55 Table lookup ...................... * poly8x8_t vtbl1_p8 (poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0' * int8x8_t vtbl1_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0' * uint8x8_t vtbl1_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0}, D0' * poly8x8_t vtbl2_p8 (poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0' * int8x8_t vtbl2_s8 (int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0' * uint8x8_t vtbl2_u8 (uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1}, D0' * poly8x8_t vtbl3_p8 (poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbl3_s8 (int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbl3_u8 (uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbl4_p8 (poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbl4_s8 (int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbl4_u8 (uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbl.8 D0, {D0, D1, D2, D3}, D0' 6.57.6.56 Extended table lookup ............................... * poly8x8_t vtbx1_p8 (poly8x8_t, poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0' * int8x8_t vtbx1_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0' * uint8x8_t vtbx1_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0}, D0' * poly8x8_t vtbx2_p8 (poly8x8_t, poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0' * int8x8_t vtbx2_s8 (int8x8_t, int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0' * uint8x8_t vtbx2_u8 (uint8x8_t, uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1}, D0' * poly8x8_t vtbx3_p8 (poly8x8_t, poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbx3_s8 (int8x8_t, int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbx3_u8 (uint8x8_t, uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbx4_p8 (poly8x8_t, poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbx4_s8 (int8x8_t, int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbx4_u8 (uint8x8_t, uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtbx.8 D0, {D0, D1, D2, D3}, D0' 6.57.6.57 Multiply, lane ........................ * float32x2_t vmul_lane_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_lane_f32 (float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_lane_u32 (uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_lane_u16 (uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' 6.57.6.58 Long multiply, lane ............................. * uint64x2_t vmull_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0[0]' 6.57.6.59 Saturating doubling long multiply, lane ................................................. * int64x2_t vqdmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0[0]' 6.57.6.60 Saturating doubling multiply high, lane ................................................. * int32x4_t vqdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0[0]' 6.57.6.61 Multiply-accumulate, lane ................................... * float32x2_t vmla_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0[0]' ! * uint32x2_t vmla_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const ! int) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' ! * uint16x4_t vmla_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const ! int) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0[0]' 6.57.6.62 Multiply-subtract, lane ................................. * float32x2_t vmls_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0[0]' ! * uint32x2_t vmls_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, const ! int) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' ! * uint16x4_t vmls_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, const ! int) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0[0]' 6.57.6.63 Vector multiply by scalar ................................... * float32x2_t vmul_n_f32 (float32x2_t, float32_t) ! _Form of expected instruction(s):_ 'vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_n_f32 (float32x4_t, float32_t) ! _Form of expected instruction(s):_ 'vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_n_u32 (uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_n_u16 (uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vmul.i16 Q0, Q0, D0[0]' 6.57.6.64 Vector long multiply by scalar ........................................ * uint64x2_t vmull_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmull.s16 Q0, D0, D0[0]' 6.57.6.65 Vector saturating doubling long multiply by scalar ............................................................ * int64x2_t vqdmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmull.s16 Q0, D0, D0[0]' 6.57.6.66 Vector saturating doubling multiply high by scalar ............................................................ * int32x4_t vqdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqrdmulh.s16 D0, D0, D0[0]' 6.57.6.67 Vector multiply-accumulate by scalar .............................................. * float32x2_t vmla_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ 'vmla.f32 D0, D0, D0[0]' * uint32x2_t vmla_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' * uint16x4_t vmla_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ 'vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmlal.s16 Q0, D0, D0[0]' 6.57.6.68 Vector multiply-subtract by scalar ............................................ * float32x2_t vmls_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ 'vmls.f32 D0, D0, D0[0]' * uint32x2_t vmls_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' * uint16x4_t vmls_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ 'vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ 'vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ 'vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ 'vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ 'vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ 'vqdmlsl.s16 Q0, D0, D0[0]' 6.57.6.69 Vector extract ........................ * poly64x1_t vext_p64 (poly64x1_t, poly64x1_t, const int) ! _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0' * uint32x2_t vext_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0' * uint16x4_t vext_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0' * uint8x8_t vext_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0' * int32x2_t vext_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0' * int16x4_t vext_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0' * int8x8_t vext_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0' * uint64x1_t vext_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0' * int64x1_t vext_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vext.64 D0, D0, D0, #0' * float32x2_t vext_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vext.32 D0, D0, D0, #0' * poly16x4_t vext_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vext.16 D0, D0, D0, #0' * poly8x8_t vext_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vext.8 D0, D0, D0, #0' * poly64x2_t vextq_p64 (poly64x2_t, poly64x2_t, const int) ! _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0' * uint32x4_t vextq_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0' * uint16x8_t vextq_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0' * uint8x16_t vextq_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0' * int32x4_t vextq_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0' * int16x8_t vextq_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0' * int8x16_t vextq_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0' * uint64x2_t vextq_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0' * int64x2_t vextq_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vext.64 Q0, Q0, Q0, #0' * float32x4_t vextq_f32 (float32x4_t, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vext.32 Q0, Q0, Q0, #0' * poly16x8_t vextq_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vext.16 Q0, Q0, Q0, #0' * poly8x16_t vextq_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vext.8 Q0, Q0, Q0, #0' 6.57.6.70 Reverse elements .......................... * uint32x2_t vrev64_u32 (uint32x2_t) ! _Form of expected instruction(s):_ 'vrev64.32 D0, D0' * uint16x4_t vrev64_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vrev64.16 D0, D0' * uint8x8_t vrev64_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vrev64.8 D0, D0' * int32x2_t vrev64_s32 (int32x2_t) ! _Form of expected instruction(s):_ 'vrev64.32 D0, D0' * int16x4_t vrev64_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vrev64.16 D0, D0' * int8x8_t vrev64_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vrev64.8 D0, D0' * float32x2_t vrev64_f32 (float32x2_t) ! _Form of expected instruction(s):_ 'vrev64.32 D0, D0' * poly16x4_t vrev64_p16 (poly16x4_t) ! _Form of expected instruction(s):_ 'vrev64.16 D0, D0' * poly8x8_t vrev64_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vrev64.8 D0, D0' * uint32x4_t vrev64q_u32 (uint32x4_t) ! _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0' * uint16x8_t vrev64q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0' * uint8x16_t vrev64q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0' * int32x4_t vrev64q_s32 (int32x4_t) ! _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0' * int16x8_t vrev64q_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0' * int8x16_t vrev64q_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0' * float32x4_t vrev64q_f32 (float32x4_t) ! _Form of expected instruction(s):_ 'vrev64.32 Q0, Q0' * poly16x8_t vrev64q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ 'vrev64.16 Q0, Q0' * poly8x16_t vrev64q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vrev64.8 Q0, Q0' * uint16x4_t vrev32_u16 (uint16x4_t) ! _Form of expected instruction(s):_ 'vrev32.16 D0, D0' * int16x4_t vrev32_s16 (int16x4_t) ! _Form of expected instruction(s):_ 'vrev32.16 D0, D0' * uint8x8_t vrev32_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vrev32.8 D0, D0' * int8x8_t vrev32_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vrev32.8 D0, D0' * poly16x4_t vrev32_p16 (poly16x4_t) ! _Form of expected instruction(s):_ 'vrev32.16 D0, D0' * poly8x8_t vrev32_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vrev32.8 D0, D0' * uint16x8_t vrev32q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0' * int16x8_t vrev32q_s16 (int16x8_t) ! _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0' * uint8x16_t vrev32q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0' * int8x16_t vrev32q_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0' * poly16x8_t vrev32q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ 'vrev32.16 Q0, Q0' * poly8x16_t vrev32q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vrev32.8 Q0, Q0' * uint8x8_t vrev16_u8 (uint8x8_t) ! _Form of expected instruction(s):_ 'vrev16.8 D0, D0' * int8x8_t vrev16_s8 (int8x8_t) ! _Form of expected instruction(s):_ 'vrev16.8 D0, D0' * poly8x8_t vrev16_p8 (poly8x8_t) ! _Form of expected instruction(s):_ 'vrev16.8 D0, D0' * uint8x16_t vrev16q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0' * int8x16_t vrev16q_s8 (int8x16_t) ! _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0' * poly8x16_t vrev16q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ 'vrev16.8 Q0, Q0' 6.57.6.71 Bit selection ....................... * poly64x1_t vbsl_p64 (uint64x1_t, poly64x1_t, poly64x1_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint32x2_t vbsl_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint16x4_t vbsl_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint8x8_t vbsl_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int32x2_t vbsl_s32 (uint32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int16x4_t vbsl_s16 (uint16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int8x8_t vbsl_s8 (uint8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * uint64x1_t vbsl_u64 (uint64x1_t, uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * int64x1_t vbsl_s64 (uint64x1_t, int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * float32x2_t vbsl_f32 (uint32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * poly16x4_t vbsl_p16 (uint16x4_t, poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * poly8x8_t vbsl_p8 (uint8x8_t, poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vbsl D0, D0, D0' _or_ 'vbit D0, ! D0, D0' _or_ 'vbif D0, D0, D0' * poly64x2_t vbslq_p64 (uint64x2_t, poly64x2_t, poly64x2_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * uint32x4_t vbslq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * uint16x8_t vbslq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * uint8x16_t vbslq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int32x4_t vbslq_s32 (uint32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int16x8_t vbslq_s16 (uint16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int8x16_t vbslq_s8 (uint8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * uint64x2_t vbslq_u64 (uint64x2_t, uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * int64x2_t vbslq_s64 (uint64x2_t, int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * float32x4_t vbslq_f32 (uint32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * poly16x8_t vbslq_p16 (uint16x8_t, poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' * poly8x16_t vbslq_p8 (uint8x16_t, poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vbsl Q0, Q0, Q0' _or_ 'vbit Q0, ! Q0, Q0' _or_ 'vbif Q0, Q0, Q0' 6.57.6.72 Transpose elements ............................ * uint16x4x2_t vtrn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vtrn.16 D0, D1' * uint8x8x2_t vtrn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vtrn.8 D0, D1' * int16x4x2_t vtrn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vtrn.16 D0, D1' * int8x8x2_t vtrn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vtrn.8 D0, D1' * poly16x4x2_t vtrn_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vtrn.16 D0, D1' * poly8x8x2_t vtrn_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vtrn.8 D0, D1' * float32x2x2_t vtrn_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x2x2_t vtrn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * int32x2x2_t vtrn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x4x2_t vtrnq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1' * uint16x8x2_t vtrnq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1' * uint8x16x2_t vtrnq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1' * int32x4x2_t vtrnq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1' * int16x8x2_t vtrnq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1' * int8x16x2_t vtrnq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1' * float32x4x2_t vtrnq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vtrn.32 Q0, Q1' * poly16x8x2_t vtrnq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vtrn.16 Q0, Q1' * poly8x16x2_t vtrnq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vtrn.8 Q0, Q1' 6.57.6.73 Zip elements ...................... * uint16x4x2_t vzip_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vzip.16 D0, D1' * uint8x8x2_t vzip_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vzip.8 D0, D1' * int16x4x2_t vzip_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vzip.16 D0, D1' * int8x8x2_t vzip_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vzip.8 D0, D1' * poly16x4x2_t vzip_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vzip.16 D0, D1' * poly8x8x2_t vzip_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vzip.8 D0, D1' * float32x2x2_t vzip_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x2x2_t vzip_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * int32x2x2_t vzip_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint32x4x2_t vzipq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vzip.32 Q0, Q1' * uint16x8x2_t vzipq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vzip.16 Q0, Q1' * uint8x16x2_t vzipq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vzip.8 Q0, Q1' * int32x4x2_t vzipq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vzip.32 Q0, Q1' * int16x8x2_t vzipq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vzip.16 Q0, Q1' * int8x16x2_t vzipq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vzip.8 Q0, Q1' * float32x4x2_t vzipq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vzip.32 Q0, Q1' * poly16x8x2_t vzipq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vzip.16 Q0, Q1' * poly8x16x2_t vzipq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vzip.8 Q0, Q1' 6.57.6.74 Unzip elements ........................ * uint32x2x2_t vuzp_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * uint16x4x2_t vuzp_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vuzp.16 D0, D1' * uint8x8x2_t vuzp_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vuzp.8 D0, D1' * int32x2x2_t vuzp_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * int16x4x2_t vuzp_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vuzp.16 D0, D1' * int8x8x2_t vuzp_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vuzp.8 D0, D1' * float32x2x2_t vuzp_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ 'vuzp.32 D0, D1' * poly16x4x2_t vuzp_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ 'vuzp.16 D0, D1' * poly8x8x2_t vuzp_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ 'vuzp.8 D0, D1' * uint32x4x2_t vuzpq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1' * uint16x8x2_t vuzpq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1' * uint8x16x2_t vuzpq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1' * int32x4x2_t vuzpq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1' * int16x8x2_t vuzpq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1' * int8x16x2_t vuzpq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1' * float32x4x2_t vuzpq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ 'vuzp.32 Q0, Q1' * poly16x8x2_t vuzpq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ 'vuzp.16 Q0, Q1' * poly8x16x2_t vuzpq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ 'vuzp.8 Q0, Q1' 6.57.6.75 Element/structure loads, VLD1 variants ................................................ * poly64x1_t vld1_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint32x2_t vld1_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]' * uint16x4_t vld1_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]' * uint8x8_t vld1_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]' * int32x2_t vld1_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]' * int16x4_t vld1_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]' * int8x8_t vld1_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]' * uint64x1_t vld1_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x1_t vld1_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * float32x2_t vld1_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0}, [R0]' * poly16x4_t vld1_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0}, [R0]' * poly8x8_t vld1_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0}, [R0]' * poly64x2_t vld1q_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * uint32x4_t vld1q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]' * uint16x8_t vld1q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]' * uint8x16_t vld1q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]' * int32x4_t vld1q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]' * int16x8_t vld1q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]' * int8x16_t vld1q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]' * uint64x2_t vld1q_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * int64x2_t vld1q_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * float32x4_t vld1q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0, D1}, [R0]' * poly16x8_t vld1q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0, D1}, [R0]' * poly8x16_t vld1q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0, D1}, [R0]' * uint32x2_t vld1_lane_u32 (const uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * uint16x4_t vld1_lane_u16 (const uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * uint8x8_t vld1_lane_u8 (const uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * int32x2_t vld1_lane_s32 (const int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * int16x4_t vld1_lane_s16 (const int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * int8x8_t vld1_lane_s8 (const int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * float32x2_t vld1_lane_f32 (const float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * poly16x4_t vld1_lane_p16 (const poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * poly8x8_t vld1_lane_p8 (const poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * poly64x1_t vld1_lane_p64 (const poly64_t *, poly64x1_t, const int) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint64x1_t vld1_lane_u64 (const uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x1_t vld1_lane_s64 (const int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint32x4_t vld1q_lane_u32 (const uint32_t *, uint32x4_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * uint16x8_t vld1q_lane_u16 (const uint16_t *, uint16x8_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * uint8x16_t vld1q_lane_u8 (const uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * int32x4_t vld1q_lane_s32 (const int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * int16x8_t vld1q_lane_s16 (const int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * int8x16_t vld1q_lane_s8 (const int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * float32x4_t vld1q_lane_f32 (const float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vld1.32 {D0[0]}, [R0]' * poly16x8_t vld1q_lane_p16 (const poly16_t *, poly16x8_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.16 {D0[0]}, [R0]' * poly8x16_t vld1q_lane_p8 (const poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vld1.8 {D0[0]}, [R0]' * poly64x2_t vld1q_lane_p64 (const poly64_t *, poly64x2_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint64x2_t vld1q_lane_u64 (const uint64_t *, uint64x2_t, const int) ! ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x2_t vld1q_lane_s64 (const int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint32x2_t vld1_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]' * uint16x4_t vld1_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]' * uint8x8_t vld1_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]' * int32x2_t vld1_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]' * int16x4_t vld1_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]' * int8x8_t vld1_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]' * float32x2_t vld1_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[]}, [R0]' * poly16x4_t vld1_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[]}, [R0]' * poly8x8_t vld1_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[]}, [R0]' * poly64x1_t vld1_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint64x1_t vld1_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x1_t vld1_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint32x4_t vld1q_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]' * uint16x8_t vld1q_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]' * uint8x16_t vld1q_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]' * int32x4_t vld1q_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]' * int16x8_t vld1q_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]' * int8x16_t vld1q_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]' * float32x4_t vld1q_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld1.32 {D0[], D1[]}, [R0]' * poly16x8_t vld1q_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld1.16 {D0[], D1[]}, [R0]' * poly8x16_t vld1q_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld1.8 {D0[], D1[]}, [R0]' * poly64x2_t vld1q_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * uint64x2_t vld1q_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' * int64x2_t vld1q_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0}, [R0]' 6.57.6.76 Element/structure stores, VST1 variants ................................................. * void vst1_p64 (poly64_t *, poly64x1_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_u32 (uint32_t *, uint32x2_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]' * void vst1_u16 (uint16_t *, uint16x4_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]' * void vst1_u8 (uint8_t *, uint8x8_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]' * void vst1_s32 (int32_t *, int32x2_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]' * void vst1_s16 (int16_t *, int16x4_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]' * void vst1_s8 (int8_t *, int8x8_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]' * void vst1_u64 (uint64_t *, uint64x1_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_s64 (int64_t *, int64x1_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_f32 (float32_t *, float32x2_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0}, [R0]' * void vst1_p16 (poly16_t *, poly16x4_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0}, [R0]' * void vst1_p8 (poly8_t *, poly8x8_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0}, [R0]' * void vst1q_p64 (poly64_t *, poly64x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst1q_u32 (uint32_t *, uint32x4_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]' * void vst1q_u16 (uint16_t *, uint16x8_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]' * void vst1q_u8 (uint8_t *, uint8x16_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]' * void vst1q_s32 (int32_t *, int32x4_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]' * void vst1q_s16 (int16_t *, int16x8_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]' * void vst1q_s8 (int8_t *, int8x16_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]' * void vst1q_u64 (uint64_t *, uint64x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst1q_s64 (int64_t *, int64x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst1q_f32 (float32_t *, float32x4_t) ! _Form of expected instruction(s):_ 'vst1.32 {D0, D1}, [R0]' * void vst1q_p16 (poly16_t *, poly16x8_t) ! _Form of expected instruction(s):_ 'vst1.16 {D0, D1}, [R0]' * void vst1q_p8 (poly8_t *, poly8x16_t) ! _Form of expected instruction(s):_ 'vst1.8 {D0, D1}, [R0]' * void vst1_lane_u32 (uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1_lane_u16 (uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1_lane_u8 (uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1_lane_s32 (int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1_lane_s16 (int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1_lane_s8 (int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1_lane_f32 (float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1_lane_p16 (poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1_lane_p8 (poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1_lane_p64 (poly64_t *, poly64x1_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_lane_s64 (int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1_lane_u64 (uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1q_lane_u32 (uint32_t *, uint32x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1q_lane_u16 (uint16_t *, uint16x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1q_lane_u8 (uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1q_lane_s32 (int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1q_lane_s16 (int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1q_lane_s8 (int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1q_lane_f32 (float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ 'vst1.32 {D0[0]}, [R0]' * void vst1q_lane_p16 (poly16_t *, poly16x8_t, const int) ! _Form of expected instruction(s):_ 'vst1.16 {D0[0]}, [R0]' * void vst1q_lane_p8 (poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ 'vst1.8 {D0[0]}, [R0]' * void vst1q_lane_p64 (poly64_t *, poly64x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1q_lane_s64 (int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' * void vst1q_lane_u64 (uint64_t *, uint64x2_t, const int) ! _Form of expected instruction(s):_ 'vst1.64 {D0}, [R0]' 6.57.6.77 Element/structure loads, VLD2 variants ................................................ * uint32x2x2_t vld2_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * uint16x4x2_t vld2_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * uint8x8x2_t vld2_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * int32x2x2_t vld2_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * int16x4x2_t vld2_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * int8x8x2_t vld2_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * float32x2x2_t vld2_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * poly16x4x2_t vld2_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * poly8x8x2_t vld2_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * poly64x1x2_t vld2_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * uint64x1x2_t vld2_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * uint32x4x2_t vld2q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * uint16x8x2_t vld2q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * uint8x16x2_t vld2q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * int32x4x2_t vld2q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * int16x8x2_t vld2q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * int8x16x2_t vld2q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * float32x4x2_t vld2q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0, D1}, [R0]' * poly16x8x2_t vld2q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0, D1}, [R0]' * poly8x16x2_t vld2q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0, D1}, [R0]' * uint32x2x2_t vld2_lane_u32 (const uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * uint16x4x2_t vld2_lane_u16 (const uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * uint8x8x2_t vld2_lane_u8 (const uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]' * int32x2x2_t vld2_lane_s32 (const int32_t *, int32x2x2_t, const int) ! ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * int16x4x2_t vld2_lane_s16 (const int16_t *, int16x4x2_t, const int) ! ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * int8x8x2_t vld2_lane_s8 (const int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]' * float32x2x2_t vld2_lane_f32 (const float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * poly16x4x2_t vld2_lane_p16 (const poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * poly8x8x2_t vld2_lane_p8 (const poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.8 {D0[0], D1[0]}, [R0]' * int32x4x2_t vld2q_lane_s32 (const int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * int16x8x2_t vld2q_lane_s16 (const int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * uint32x4x2_t vld2q_lane_u32 (const uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * uint16x8x2_t vld2q_lane_u16 (const uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * float32x4x2_t vld2q_lane_f32 (const float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.32 {D0[0], D1[0]}, [R0]' * poly16x8x2_t vld2q_lane_p16 (const poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vld2.16 {D0[0], D1[0]}, [R0]' * uint32x2x2_t vld2_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]' * uint16x4x2_t vld2_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]' * uint8x8x2_t vld2_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]' * int32x2x2_t vld2_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]' * int16x4x2_t vld2_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]' * int8x8x2_t vld2_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]' * float32x2x2_t vld2_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld2.32 {D0[], D1[]}, [R0]' * poly16x4x2_t vld2_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld2.16 {D0[], D1[]}, [R0]' * poly8x8x2_t vld2_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld2.8 {D0[], D1[]}, [R0]' * poly64x1x2_t vld2_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * uint64x1x2_t vld2_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1}, [R0]' 6.57.6.78 Element/structure stores, VST2 variants ................................................. * void vst2_u32 (uint32_t *, uint32x2x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2_u16 (uint16_t *, uint16x4x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2_u8 (uint8_t *, uint8x8x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_s32 (int32_t *, int32x2x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2_s16 (int16_t *, int16x4x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2_s8 (int8_t *, int8x8x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_f32 (float32_t *, float32x2x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2_p16 (poly16_t *, poly16x4x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2_p8 (poly8_t *, poly8x8x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_p64 (poly64_t *, poly64x1x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst2_u64 (uint64_t *, uint64x1x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst2_s64 (int64_t *, int64x1x2_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1}, [R0]' * void vst2q_u32 (uint32_t *, uint32x4x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2q_u16 (uint16_t *, uint16x8x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2q_u8 (uint8_t *, uint8x16x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2q_s32 (int32_t *, int32x4x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2q_s16 (int16_t *, int16x8x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2q_s8 (int8_t *, int8x16x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2q_f32 (float32_t *, float32x4x2_t) ! _Form of expected instruction(s):_ 'vst2.32 {D0, D1}, [R0]' * void vst2q_p16 (poly16_t *, poly16x8x2_t) ! _Form of expected instruction(s):_ 'vst2.16 {D0, D1}, [R0]' * void vst2q_p8 (poly8_t *, poly8x16x2_t) ! _Form of expected instruction(s):_ 'vst2.8 {D0, D1}, [R0]' * void vst2_lane_u32 (uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_u16 (uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_u8 (uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_s32 (int32_t *, int32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_s16 (int16_t *, int16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_s8 (int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_f32 (float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_p16 (poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_p8 (poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.8 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s32 (int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s16 (int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u32 (uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u16 (uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_f32 (float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_p16 (poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ 'vst2.16 {D0[0], D1[0]}, [R0]' 6.57.6.79 Element/structure loads, VLD3 variants ................................................ * uint32x2x3_t vld3_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * uint16x4x3_t vld3_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * uint8x8x3_t vld3_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * int32x2x3_t vld3_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * int16x4x3_t vld3_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * int8x8x3_t vld3_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * float32x2x3_t vld3_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * poly16x4x3_t vld3_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * poly8x8x3_t vld3_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * poly64x1x3_t vld3_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * uint64x1x3_t vld3_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * uint32x4x3_t vld3q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * uint16x8x3_t vld3q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * uint8x16x3_t vld3q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * int32x4x3_t vld3q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * int16x8x3_t vld3q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * int8x16x3_t vld3q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * float32x4x3_t vld3q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0, D1, D2}, [R0]' * poly16x8x3_t vld3q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0, D1, D2}, [R0]' * poly8x16x3_t vld3q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0, D1, D2}, [R0]' * uint32x2x3_t vld3_lane_u32 (const uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x4x3_t vld3_lane_u16 (const uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint8x8x3_t vld3_lane_u8 (const uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x2x3_t vld3_lane_s32 (const int32_t *, int32x2x3_t, const int) ! ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x4x3_t vld3_lane_s16 (const int16_t *, int16x4x3_t, const int) ! ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * int8x8x3_t vld3_lane_s8 (const int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * float32x2x3_t vld3_lane_f32 (const float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x4x3_t vld3_lane_p16 (const poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * poly8x8x3_t vld3_lane_p8 (const poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x4x3_t vld3q_lane_s32 (const int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x8x3_t vld3q_lane_s16 (const int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x4x3_t vld3q_lane_u32 (const uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x8x3_t vld3q_lane_u16 (const uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * float32x4x3_t vld3q_lane_f32 (const float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x8x3_t vld3q_lane_p16 (const poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x2x3_t vld3_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]}, [R0]' * uint16x4x3_t vld3_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]}, [R0]' * uint8x8x3_t vld3_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]}, [R0]' * int32x2x3_t vld3_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]}, [R0]' * int16x4x3_t vld3_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]}, [R0]' * int8x8x3_t vld3_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]}, [R0]' * float32x2x3_t vld3_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld3.32 {D0[], D1[], D2[]}, [R0]' * poly16x4x3_t vld3_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld3.16 {D0[], D1[], D2[]}, [R0]' * poly8x8x3_t vld3_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld3.8 {D0[], D1[], D2[]}, [R0]' * poly64x1x3_t vld3_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * uint64x1x3_t vld3_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2}, [R0]' 6.57.6.80 Element/structure stores, VST3 variants ................................................. * void vst3_u32 (uint32_t *, uint32x2x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_u16 (uint16_t *, uint16x4x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_u8 (uint8_t *, uint8x8x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_s32 (int32_t *, int32x2x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_s16 (int16_t *, int16x4x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_s8 (int8_t *, int8x8x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_f32 (float32_t *, float32x2x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_p16 (poly16_t *, poly16x4x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_p8 (poly8_t *, poly8x8x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_p64 (poly64_t *, poly64x1x3_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3_u64 (uint64_t *, uint64x1x3_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3_s64 (int64_t *, int64x1x3_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3q_u32 (uint32_t *, uint32x4x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]' * void vst3q_u16 (uint16_t *, uint16x8x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]' * void vst3q_u8 (uint8_t *, uint8x16x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]' * void vst3q_s32 (int32_t *, int32x4x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]' * void vst3q_s16 (int16_t *, int16x8x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]' * void vst3q_s8 (int8_t *, int8x16x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]' * void vst3q_f32 (float32_t *, float32x4x3_t) ! _Form of expected instruction(s):_ 'vst3.32 {D0, D1, D2}, [R0]' * void vst3q_p16 (poly16_t *, poly16x8x3_t) ! _Form of expected instruction(s):_ 'vst3.16 {D0, D1, D2}, [R0]' * void vst3q_p8 (poly8_t *, poly8x16x3_t) ! _Form of expected instruction(s):_ 'vst3.8 {D0, D1, D2}, [R0]' * void vst3_lane_u32 (uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u16 (uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u8 (uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s32 (int32_t *, int32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s16 (int16_t *, int16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s8 (int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_f32 (float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p16 (poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p8 (poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s32 (int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s16 (int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u32 (uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u16 (uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_f32 (float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_p16 (poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ 'vst3.16 {D0[0], D1[0], D2[0]}, [R0]' 6.57.6.81 Element/structure loads, VLD4 variants ................................................ * uint32x2x4_t vld4_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x4x4_t vld4_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x8x4_t vld4_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * int32x2x4_t vld4_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * int16x4x4_t vld4_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * int8x8x4_t vld4_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * float32x2x4_t vld4_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x4x4_t vld4_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x8x4_t vld4_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * poly64x1x4_t vld4_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * uint64x1x4_t vld4_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * uint32x4x4_t vld4q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x8x4_t vld4q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x16x4_t vld4q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * int32x4x4_t vld4q_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * int16x8x4_t vld4q_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * int8x16x4_t vld4q_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * float32x4x4_t vld4q_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x8x4_t vld4q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x16x4_t vld4q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0, D1, D2, D3}, [R0]' * uint32x2x4_t vld4_lane_u32 (const uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x4x4_t vld4_lane_u16 (const uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint8x8x4_t vld4_lane_u8 (const uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x2x4_t vld4_lane_s32 (const int32_t *, int32x2x4_t, const int) ! ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x4x4_t vld4_lane_s16 (const int16_t *, int16x4x4_t, const int) ! ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int8x8x4_t vld4_lane_s8 (const int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x2x4_t vld4_lane_f32 (const float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x4x4_t vld4_lane_p16 (const poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly8x8x4_t vld4_lane_p8 (const poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x4x4_t vld4q_lane_s32 (const int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x8x4_t vld4q_lane_s16 (const int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x4x4_t vld4q_lane_u32 (const uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x8x4_t vld4q_lane_u16 (const uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x4x4_t vld4q_lane_f32 (const float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x8x4_t vld4q_lane_p16 (const poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x2x4_t vld4_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * uint16x4x4_t vld4_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * uint8x8x4_t vld4_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * int32x2x4_t vld4_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * int16x4x4_t vld4_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * int8x8x4_t vld4_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * float32x2x4_t vld4_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ 'vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * poly16x4x4_t vld4_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ 'vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * poly8x8x4_t vld4_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ 'vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * poly64x1x4_t vld4_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * uint64x1x4_t vld4_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ 'vld1.64 {D0, D1, D2, D3}, [R0]' 6.57.6.82 Element/structure stores, VST4 variants ................................................. * void vst4_u32 (uint32_t *, uint32x2x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_u16 (uint16_t *, uint16x4x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_u8 (uint8_t *, uint8x8x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_s32 (int32_t *, int32x2x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_s16 (int16_t *, int16x4x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_s8 (int8_t *, int8x8x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_f32 (float32_t *, float32x2x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_p16 (poly16_t *, poly16x4x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_p8 (poly8_t *, poly8x8x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_p64 (poly64_t *, poly64x1x4_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4_u64 (uint64_t *, uint64x1x4_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4_s64 (int64_t *, int64x1x4_t) ! _Form of expected instruction(s):_ 'vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4q_u32 (uint32_t *, uint32x4x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_u16 (uint16_t *, uint16x8x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_u8 (uint8_t *, uint8x16x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_s32 (int32_t *, int32x4x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_s16 (int16_t *, int16x8x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_s8 (int8_t *, int8x16x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_f32 (float32_t *, float32x4x4_t) ! _Form of expected instruction(s):_ 'vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_p16 (poly16_t *, poly16x8x4_t) ! _Form of expected instruction(s):_ 'vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_p8 (poly8_t *, poly8x16x4_t) ! _Form of expected instruction(s):_ 'vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_lane_u32 (uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u16 (uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u8 (uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s32 (int32_t *, int32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s16 (int16_t *, int16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s8 (int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_f32 (float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p16 (poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p8 (poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s32 (int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s16 (int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u32 (uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u16 (uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_f32 (float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_p16 (poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ 'vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' 6.57.6.83 Logical operations (AND) .................................. * uint32x2_t vand_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * uint16x4_t vand_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * uint8x8_t vand_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * int32x2_t vand_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * int16x4_t vand_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * int8x8_t vand_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vand D0, D0, D0' * uint64x1_t vand_u64 (uint64x1_t, uint64x1_t) * int64x1_t vand_s64 (int64x1_t, int64x1_t) * uint32x4_t vandq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * uint16x8_t vandq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * uint8x16_t vandq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int32x4_t vandq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int16x8_t vandq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int8x16_t vandq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * uint64x2_t vandq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' * int64x2_t vandq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vand Q0, Q0, Q0' 6.57.6.84 Logical operations (OR) ................................. * uint32x2_t vorr_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * uint16x4_t vorr_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * uint8x8_t vorr_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * int32x2_t vorr_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * int16x4_t vorr_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * int8x8_t vorr_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vorr D0, D0, D0' * uint64x1_t vorr_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorr_s64 (int64x1_t, int64x1_t) * uint32x4_t vorrq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * uint16x8_t vorrq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * uint8x16_t vorrq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int32x4_t vorrq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int16x8_t vorrq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int8x16_t vorrq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * uint64x2_t vorrq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' * int64x2_t vorrq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vorr Q0, Q0, Q0' 6.57.6.85 Logical operations (exclusive OR) ........................................... * uint32x2_t veor_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * uint16x4_t veor_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * uint8x8_t veor_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * int32x2_t veor_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * int16x4_t veor_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * int8x8_t veor_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'veor D0, D0, D0' * uint64x1_t veor_u64 (uint64x1_t, uint64x1_t) * int64x1_t veor_s64 (int64x1_t, int64x1_t) * uint32x4_t veorq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * uint16x8_t veorq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int32x4_t veorq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int16x8_t veorq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int8x16_t veorq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * uint64x2_t veorq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' * int64x2_t veorq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'veor Q0, Q0, Q0' 6.57.6.86 Logical operations (AND-NOT) ...................................... * uint32x2_t vbic_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * uint16x4_t vbic_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * uint8x8_t vbic_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * int32x2_t vbic_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * int16x4_t vbic_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * int8x8_t vbic_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vbic D0, D0, D0' * uint64x1_t vbic_u64 (uint64x1_t, uint64x1_t) * int64x1_t vbic_s64 (int64x1_t, int64x1_t) * uint32x4_t vbicq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * uint16x8_t vbicq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * uint8x16_t vbicq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int32x4_t vbicq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int16x8_t vbicq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int8x16_t vbicq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * uint64x2_t vbicq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' * int64x2_t vbicq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vbic Q0, Q0, Q0' 6.57.6.87 Logical operations (OR-NOT) ..................................... * uint32x2_t vorn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * uint16x4_t vorn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * uint8x8_t vorn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * int32x2_t vorn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * int16x4_t vorn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * int8x8_t vorn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ 'vorn D0, D0, D0' * uint64x1_t vorn_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorn_s64 (int64x1_t, int64x1_t) * uint32x4_t vornq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * uint16x8_t vornq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * uint8x16_t vornq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int32x4_t vornq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int16x8_t vornq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int8x16_t vornq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * uint64x2_t vornq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' * int64x2_t vornq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ 'vorn Q0, Q0, Q0' 6.57.6.88 Reinterpret casts ........................... --- 36143,38708 ---- ..................... * float32x2_t vcvt_f32_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vcvt.f32.u32 D0, D0' * float32x2_t vcvt_f32_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vcvt.f32.s32 D0, D0' * uint32x2_t vcvt_u32_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vcvt.u32.f32 D0, D0' * int32x2_t vcvt_s32_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vcvt.s32.f32 D0, D0' * float32x4_t vcvtq_f32_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vcvt.f32.u32 Q0, Q0' * float32x4_t vcvtq_f32_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vcvt.f32.s32 Q0, Q0' * uint32x4_t vcvtq_u32_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vcvt.u32.f32 Q0, Q0' * int32x4_t vcvtq_s32_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vcvt.s32.f32 Q0, Q0' * float16x4_t vcvt_f16_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vcvt.f16.f32 D0, Q0' * float32x4_t vcvt_f32_f16 (float16x4_t) ! _Form of expected instruction(s):_ `vcvt.f32.f16 Q0, D0' * float32x2_t vcvt_n_f32_u32 (uint32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.u32 D0, D0, #0' * float32x2_t vcvt_n_f32_s32 (int32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.s32 D0, D0, #0' * uint32x2_t vcvt_n_u32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.u32.f32 D0, D0, #0' * int32x2_t vcvt_n_s32_f32 (float32x2_t, const int) ! _Form of expected instruction(s):_ `vcvt.s32.f32 D0, D0, #0' * float32x4_t vcvtq_n_f32_u32 (uint32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.u32 Q0, Q0, #0' * float32x4_t vcvtq_n_f32_s32 (int32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.f32.s32 Q0, Q0, #0' * uint32x4_t vcvtq_n_u32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.u32.f32 Q0, Q0, #0' * int32x4_t vcvtq_n_s32_f32 (float32x4_t, const int) ! _Form of expected instruction(s):_ `vcvt.s32.f32 Q0, Q0, #0' 6.57.6.53 Move, single_opcode narrowing ....................................... * uint32x2_t vmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ `vmovn.i64 D0, Q0' * uint16x4_t vmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vmovn.i32 D0, Q0' * uint8x8_t vmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vmovn.i16 D0, Q0' * int32x2_t vmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ `vmovn.i64 D0, Q0' * int16x4_t vmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vmovn.i32 D0, Q0' * int8x8_t vmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vmovn.i16 D0, Q0' * uint32x2_t vqmovn_u64 (uint64x2_t) ! _Form of expected instruction(s):_ `vqmovn.u64 D0, Q0' * uint16x4_t vqmovn_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vqmovn.u32 D0, Q0' * uint8x8_t vqmovn_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vqmovn.u16 D0, Q0' * int32x2_t vqmovn_s64 (int64x2_t) ! _Form of expected instruction(s):_ `vqmovn.s64 D0, Q0' * int16x4_t vqmovn_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqmovn.s32 D0, Q0' * int8x8_t vqmovn_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqmovn.s16 D0, Q0' * uint32x2_t vqmovun_s64 (int64x2_t) ! _Form of expected instruction(s):_ `vqmovun.s64 D0, Q0' * uint16x4_t vqmovun_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vqmovun.s32 D0, Q0' * uint8x8_t vqmovun_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vqmovun.s16 D0, Q0' 6.57.6.54 Move, single_opcode long .................................. * uint64x2_t vmovl_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vmovl.u32 Q0, D0' * uint32x4_t vmovl_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vmovl.u16 Q0, D0' * uint16x8_t vmovl_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vmovl.u8 Q0, D0' * int64x2_t vmovl_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vmovl.s32 Q0, D0' * int32x4_t vmovl_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vmovl.s16 Q0, D0' * int16x8_t vmovl_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vmovl.s8 Q0, D0' 6.57.6.55 Table lookup ...................... * poly8x8_t vtbl1_p8 (poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0}, D0' * int8x8_t vtbl1_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0}, D0' * uint8x8_t vtbl1_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0}, D0' * poly8x8_t vtbl2_p8 (poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1}, D0' * int8x8_t vtbl2_s8 (int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1}, D0' * uint8x8_t vtbl2_u8 (uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1}, D0' * poly8x8_t vtbl3_p8 (poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbl3_s8 (int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbl3_u8 (uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbl4_p8 (poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbl4_s8 (int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbl4_u8 (uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbl.8 D0, {D0, D1, D2, D3}, D0' 6.57.6.56 Extended table lookup ............................... * poly8x8_t vtbx1_p8 (poly8x8_t, poly8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0}, D0' * int8x8_t vtbx1_s8 (int8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0}, D0' * uint8x8_t vtbx1_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0}, D0' * poly8x8_t vtbx2_p8 (poly8x8_t, poly8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1}, D0' * int8x8_t vtbx2_s8 (int8x8_t, int8x8x2_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1}, D0' * uint8x8_t vtbx2_u8 (uint8x8_t, uint8x8x2_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1}, D0' * poly8x8_t vtbx3_p8 (poly8x8_t, poly8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2}, D0' * int8x8_t vtbx3_s8 (int8x8_t, int8x8x3_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2}, D0' * uint8x8_t vtbx3_u8 (uint8x8_t, uint8x8x3_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2}, D0' * poly8x8_t vtbx4_p8 (poly8x8_t, poly8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2, D3}, D0' * int8x8_t vtbx4_s8 (int8x8_t, int8x8x4_t, int8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2, D3}, D0' * uint8x8_t vtbx4_u8 (uint8x8_t, uint8x8x4_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtbx.8 D0, {D0, D1, D2, D3}, D0' 6.57.6.57 Multiply, lane ........................ * float32x2_t vmul_lane_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_lane_f32 (float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_lane_u32 (uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_lane_u16 (uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' 6.57.6.58 Long multiply, lane ............................. * uint64x2_t vmull_lane_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_lane_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmull.s16 Q0, D0, D0[0]' 6.57.6.59 Saturating doubling long multiply, lane ................................................. * int64x2_t vqdmull_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmull.s16 Q0, D0, D0[0]' 6.57.6.60 Saturating doubling multiply high, lane ................................................. * int32x4_t vqdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_lane_s32 (int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_lane_s16 (int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_lane_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_lane_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqrdmulh.s16 D0, D0, D0[0]' 6.57.6.61 Multiply-accumulate, lane ................................... * float32x2_t vmla_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.f32 D0, D0, D0[0]' ! * uint32x2_t vmla_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, ! const int) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' ! * uint16x4_t vmla_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, ! const int) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmlal.s16 Q0, D0, D0[0]' 6.57.6.62 Multiply-subtract, lane ................................. * float32x2_t vmls_lane_f32 (float32x2_t, float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.f32 D0, D0, D0[0]' ! * uint32x2_t vmls_lane_u32 (uint32x2_t, uint32x2_t, uint32x2_t, ! const int) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' ! * uint16x4_t vmls_lane_u16 (uint16x4_t, uint16x4_t, uint16x4_t, ! const int) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_lane_s32 (int32x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_lane_s16 (int16x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_lane_f32 (float32x4_t, float32x4_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_lane_u32 (uint32x4_t, uint32x4_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_lane_u16 (uint16x8_t, uint16x8_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_lane_s32 (int32x4_t, int32x4_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_lane_s16 (int16x8_t, int16x8_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_lane_u32 (uint64x2_t, uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_lane_u16 (uint32x4_t, uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_lane_s32 (int64x2_t, int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_lane_s16 (int32x4_t, int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vqdmlsl.s16 Q0, D0, D0[0]' 6.57.6.63 Vector multiply by scalar ................................... * float32x2_t vmul_n_f32 (float32x2_t, float32_t) ! _Form of expected instruction(s):_ `vmul.f32 D0, D0, D0[0]' * uint32x2_t vmul_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * uint16x4_t vmul_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * int32x2_t vmul_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmul.i32 D0, D0, D0[0]' * int16x4_t vmul_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmul.i16 D0, D0, D0[0]' * float32x4_t vmulq_n_f32 (float32x4_t, float32_t) ! _Form of expected instruction(s):_ `vmul.f32 Q0, Q0, D0[0]' * uint32x4_t vmulq_n_u32 (uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * uint16x8_t vmulq_n_u16 (uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' * int32x4_t vmulq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vmul.i32 Q0, Q0, D0[0]' * int16x8_t vmulq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vmul.i16 Q0, Q0, D0[0]' 6.57.6.64 Vector long multiply by scalar ........................................ * uint64x2_t vmull_n_u32 (uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmull.u32 Q0, D0, D0[0]' * uint32x4_t vmull_n_u16 (uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmull.u16 Q0, D0, D0[0]' * int64x2_t vmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmull.s32 Q0, D0, D0[0]' * int32x4_t vmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmull.s16 Q0, D0, D0[0]' 6.57.6.65 Vector saturating doubling long multiply by scalar ............................................................ * int64x2_t vqdmull_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmull.s32 Q0, D0, D0[0]' * int32x4_t vqdmull_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmull.s16 Q0, D0, D0[0]' 6.57.6.66 Vector saturating doubling multiply high by scalar ............................................................ * int32x4_t vqdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmulh.s32 D0, D0, D0[0]' * int16x4_t vqdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmulh.s16 D0, D0, D0[0]' * int32x4_t vqrdmulhq_n_s32 (int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 Q0, Q0, D0[0]' * int16x8_t vqrdmulhq_n_s16 (int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 Q0, Q0, D0[0]' * int32x2_t vqrdmulh_n_s32 (int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqrdmulh.s32 D0, D0, D0[0]' * int16x4_t vqrdmulh_n_s16 (int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqrdmulh.s16 D0, D0, D0[0]' 6.57.6.67 Vector multiply-accumulate by scalar .............................................. * float32x2_t vmla_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ `vmla.f32 D0, D0, D0[0]' * uint32x2_t vmla_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' * uint16x4_t vmla_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * int32x2_t vmla_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmla.i32 D0, D0, D0[0]' * int16x4_t vmla_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmla.i16 D0, D0, D0[0]' * float32x4_t vmlaq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ `vmla.f32 Q0, Q0, D0[0]' * uint32x4_t vmlaq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * uint16x8_t vmlaq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * int32x4_t vmlaq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vmla.i32 Q0, Q0, D0[0]' * int16x8_t vmlaq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vmla.i16 Q0, Q0, D0[0]' * uint64x2_t vmlal_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmlal.u32 Q0, D0, D0[0]' * uint32x4_t vmlal_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmlal.u16 Q0, D0, D0[0]' * int64x2_t vmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmlal.s32 Q0, D0, D0[0]' * int32x4_t vmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmlal.s16 Q0, D0, D0[0]' * int64x2_t vqdmlal_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmlal.s32 Q0, D0, D0[0]' * int32x4_t vqdmlal_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmlal.s16 Q0, D0, D0[0]' 6.57.6.68 Vector multiply-subtract by scalar ............................................ * float32x2_t vmls_n_f32 (float32x2_t, float32x2_t, float32_t) ! _Form of expected instruction(s):_ `vmls.f32 D0, D0, D0[0]' * uint32x2_t vmls_n_u32 (uint32x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' * uint16x4_t vmls_n_u16 (uint16x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * int32x2_t vmls_n_s32 (int32x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmls.i32 D0, D0, D0[0]' * int16x4_t vmls_n_s16 (int16x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmls.i16 D0, D0, D0[0]' * float32x4_t vmlsq_n_f32 (float32x4_t, float32x4_t, float32_t) ! _Form of expected instruction(s):_ `vmls.f32 Q0, Q0, D0[0]' * uint32x4_t vmlsq_n_u32 (uint32x4_t, uint32x4_t, uint32_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * uint16x8_t vmlsq_n_u16 (uint16x8_t, uint16x8_t, uint16_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * int32x4_t vmlsq_n_s32 (int32x4_t, int32x4_t, int32_t) ! _Form of expected instruction(s):_ `vmls.i32 Q0, Q0, D0[0]' * int16x8_t vmlsq_n_s16 (int16x8_t, int16x8_t, int16_t) ! _Form of expected instruction(s):_ `vmls.i16 Q0, Q0, D0[0]' * uint64x2_t vmlsl_n_u32 (uint64x2_t, uint32x2_t, uint32_t) ! _Form of expected instruction(s):_ `vmlsl.u32 Q0, D0, D0[0]' * uint32x4_t vmlsl_n_u16 (uint32x4_t, uint16x4_t, uint16_t) ! _Form of expected instruction(s):_ `vmlsl.u16 Q0, D0, D0[0]' * int64x2_t vmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vmlsl.s32 Q0, D0, D0[0]' * int32x4_t vmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vmlsl.s16 Q0, D0, D0[0]' * int64x2_t vqdmlsl_n_s32 (int64x2_t, int32x2_t, int32_t) ! _Form of expected instruction(s):_ `vqdmlsl.s32 Q0, D0, D0[0]' * int32x4_t vqdmlsl_n_s16 (int32x4_t, int16x4_t, int16_t) ! _Form of expected instruction(s):_ `vqdmlsl.s16 Q0, D0, D0[0]' 6.57.6.69 Vector extract ........................ * poly64x1_t vext_p64 (poly64x1_t, poly64x1_t, const int) ! _Form of expected instruction(s):_ `vext.64 D0, D0, D0, #0' * uint32x2_t vext_u32 (uint32x2_t, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vext.32 D0, D0, D0, #0' * uint16x4_t vext_u16 (uint16x4_t, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vext.16 D0, D0, D0, #0' * uint8x8_t vext_u8 (uint8x8_t, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vext.8 D0, D0, D0, #0' * int32x2_t vext_s32 (int32x2_t, int32x2_t, const int) ! _Form of expected instruction(s):_ `vext.32 D0, D0, D0, #0' * int16x4_t vext_s16 (int16x4_t, int16x4_t, const int) ! _Form of expected instruction(s):_ `vext.16 D0, D0, D0, #0' * int8x8_t vext_s8 (int8x8_t, int8x8_t, const int) ! _Form of expected instruction(s):_ `vext.8 D0, D0, D0, #0' * uint64x1_t vext_u64 (uint64x1_t, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vext.64 D0, D0, D0, #0' * int64x1_t vext_s64 (int64x1_t, int64x1_t, const int) ! _Form of expected instruction(s):_ `vext.64 D0, D0, D0, #0' * float32x2_t vext_f32 (float32x2_t, float32x2_t, const int) ! _Form of expected instruction(s):_ `vext.32 D0, D0, D0, #0' * poly16x4_t vext_p16 (poly16x4_t, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vext.16 D0, D0, D0, #0' * poly8x8_t vext_p8 (poly8x8_t, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vext.8 D0, D0, D0, #0' * poly64x2_t vextq_p64 (poly64x2_t, poly64x2_t, const int) ! _Form of expected instruction(s):_ `vext.64 Q0, Q0, Q0, #0' * uint32x4_t vextq_u32 (uint32x4_t, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vext.32 Q0, Q0, Q0, #0' * uint16x8_t vextq_u16 (uint16x8_t, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vext.16 Q0, Q0, Q0, #0' * uint8x16_t vextq_u8 (uint8x16_t, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vext.8 Q0, Q0, Q0, #0' * int32x4_t vextq_s32 (int32x4_t, int32x4_t, const int) ! _Form of expected instruction(s):_ `vext.32 Q0, Q0, Q0, #0' * int16x8_t vextq_s16 (int16x8_t, int16x8_t, const int) ! _Form of expected instruction(s):_ `vext.16 Q0, Q0, Q0, #0' * int8x16_t vextq_s8 (int8x16_t, int8x16_t, const int) ! _Form of expected instruction(s):_ `vext.8 Q0, Q0, Q0, #0' * uint64x2_t vextq_u64 (uint64x2_t, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vext.64 Q0, Q0, Q0, #0' * int64x2_t vextq_s64 (int64x2_t, int64x2_t, const int) ! _Form of expected instruction(s):_ `vext.64 Q0, Q0, Q0, #0' * float32x4_t vextq_f32 (float32x4_t, float32x4_t, const int) ! _Form of expected instruction(s):_ `vext.32 Q0, Q0, Q0, #0' * poly16x8_t vextq_p16 (poly16x8_t, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vext.16 Q0, Q0, Q0, #0' * poly8x16_t vextq_p8 (poly8x16_t, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vext.8 Q0, Q0, Q0, #0' 6.57.6.70 Reverse elements .......................... * uint32x2_t vrev64_u32 (uint32x2_t) ! _Form of expected instruction(s):_ `vrev64.32 D0, D0' * uint16x4_t vrev64_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vrev64.16 D0, D0' * uint8x8_t vrev64_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vrev64.8 D0, D0' * int32x2_t vrev64_s32 (int32x2_t) ! _Form of expected instruction(s):_ `vrev64.32 D0, D0' * int16x4_t vrev64_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vrev64.16 D0, D0' * int8x8_t vrev64_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vrev64.8 D0, D0' * float32x2_t vrev64_f32 (float32x2_t) ! _Form of expected instruction(s):_ `vrev64.32 D0, D0' * poly16x4_t vrev64_p16 (poly16x4_t) ! _Form of expected instruction(s):_ `vrev64.16 D0, D0' * poly8x8_t vrev64_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vrev64.8 D0, D0' * uint32x4_t vrev64q_u32 (uint32x4_t) ! _Form of expected instruction(s):_ `vrev64.32 Q0, Q0' * uint16x8_t vrev64q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vrev64.16 Q0, Q0' * uint8x16_t vrev64q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vrev64.8 Q0, Q0' * int32x4_t vrev64q_s32 (int32x4_t) ! _Form of expected instruction(s):_ `vrev64.32 Q0, Q0' * int16x8_t vrev64q_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vrev64.16 Q0, Q0' * int8x16_t vrev64q_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vrev64.8 Q0, Q0' * float32x4_t vrev64q_f32 (float32x4_t) ! _Form of expected instruction(s):_ `vrev64.32 Q0, Q0' * poly16x8_t vrev64q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ `vrev64.16 Q0, Q0' * poly8x16_t vrev64q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vrev64.8 Q0, Q0' * uint16x4_t vrev32_u16 (uint16x4_t) ! _Form of expected instruction(s):_ `vrev32.16 D0, D0' * int16x4_t vrev32_s16 (int16x4_t) ! _Form of expected instruction(s):_ `vrev32.16 D0, D0' * uint8x8_t vrev32_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vrev32.8 D0, D0' * int8x8_t vrev32_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vrev32.8 D0, D0' * poly16x4_t vrev32_p16 (poly16x4_t) ! _Form of expected instruction(s):_ `vrev32.16 D0, D0' * poly8x8_t vrev32_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vrev32.8 D0, D0' * uint16x8_t vrev32q_u16 (uint16x8_t) ! _Form of expected instruction(s):_ `vrev32.16 Q0, Q0' * int16x8_t vrev32q_s16 (int16x8_t) ! _Form of expected instruction(s):_ `vrev32.16 Q0, Q0' * uint8x16_t vrev32q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vrev32.8 Q0, Q0' * int8x16_t vrev32q_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vrev32.8 Q0, Q0' * poly16x8_t vrev32q_p16 (poly16x8_t) ! _Form of expected instruction(s):_ `vrev32.16 Q0, Q0' * poly8x16_t vrev32q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vrev32.8 Q0, Q0' * uint8x8_t vrev16_u8 (uint8x8_t) ! _Form of expected instruction(s):_ `vrev16.8 D0, D0' * int8x8_t vrev16_s8 (int8x8_t) ! _Form of expected instruction(s):_ `vrev16.8 D0, D0' * poly8x8_t vrev16_p8 (poly8x8_t) ! _Form of expected instruction(s):_ `vrev16.8 D0, D0' * uint8x16_t vrev16q_u8 (uint8x16_t) ! _Form of expected instruction(s):_ `vrev16.8 Q0, Q0' * int8x16_t vrev16q_s8 (int8x16_t) ! _Form of expected instruction(s):_ `vrev16.8 Q0, Q0' * poly8x16_t vrev16q_p8 (poly8x16_t) ! _Form of expected instruction(s):_ `vrev16.8 Q0, Q0' 6.57.6.71 Bit selection ....................... * poly64x1_t vbsl_p64 (uint64x1_t, poly64x1_t, poly64x1_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint32x2_t vbsl_u32 (uint32x2_t, uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint16x4_t vbsl_u16 (uint16x4_t, uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint8x8_t vbsl_u8 (uint8x8_t, uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int32x2_t vbsl_s32 (uint32x2_t, int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int16x4_t vbsl_s16 (uint16x4_t, int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int8x8_t vbsl_s8 (uint8x8_t, int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * uint64x1_t vbsl_u64 (uint64x1_t, uint64x1_t, uint64x1_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * int64x1_t vbsl_s64 (uint64x1_t, int64x1_t, int64x1_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * float32x2_t vbsl_f32 (uint32x2_t, float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * poly16x4_t vbsl_p16 (uint16x4_t, poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * poly8x8_t vbsl_p8 (uint8x8_t, poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vbsl D0, D0, D0' _or_ `vbit ! D0, D0, D0' _or_ `vbif D0, D0, D0' * poly64x2_t vbslq_p64 (uint64x2_t, poly64x2_t, poly64x2_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * uint32x4_t vbslq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * uint16x8_t vbslq_u16 (uint16x8_t, uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * uint8x16_t vbslq_u8 (uint8x16_t, uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int32x4_t vbslq_s32 (uint32x4_t, int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int16x8_t vbslq_s16 (uint16x8_t, int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int8x16_t vbslq_s8 (uint8x16_t, int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * uint64x2_t vbslq_u64 (uint64x2_t, uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * int64x2_t vbslq_s64 (uint64x2_t, int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * float32x4_t vbslq_f32 (uint32x4_t, float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * poly16x8_t vbslq_p16 (uint16x8_t, poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' * poly8x16_t vbslq_p8 (uint8x16_t, poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vbsl Q0, Q0, Q0' _or_ `vbit ! Q0, Q0, Q0' _or_ `vbif Q0, Q0, Q0' 6.57.6.72 Transpose elements ............................ * uint16x4x2_t vtrn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vtrn.16 D0, D1' * uint8x8x2_t vtrn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vtrn.8 D0, D1' * int16x4x2_t vtrn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vtrn.16 D0, D1' * int8x8x2_t vtrn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vtrn.8 D0, D1' * poly16x4x2_t vtrn_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vtrn.16 D0, D1' * poly8x8x2_t vtrn_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vtrn.8 D0, D1' * float32x2x2_t vtrn_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x2x2_t vtrn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * int32x2x2_t vtrn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x4x2_t vtrnq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vtrn.32 Q0, Q1' * uint16x8x2_t vtrnq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vtrn.16 Q0, Q1' * uint8x16x2_t vtrnq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vtrn.8 Q0, Q1' * int32x4x2_t vtrnq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vtrn.32 Q0, Q1' * int16x8x2_t vtrnq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vtrn.16 Q0, Q1' * int8x16x2_t vtrnq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vtrn.8 Q0, Q1' * float32x4x2_t vtrnq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vtrn.32 Q0, Q1' * poly16x8x2_t vtrnq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vtrn.16 Q0, Q1' * poly8x16x2_t vtrnq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vtrn.8 Q0, Q1' 6.57.6.73 Zip elements ...................... * uint16x4x2_t vzip_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vzip.16 D0, D1' * uint8x8x2_t vzip_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vzip.8 D0, D1' * int16x4x2_t vzip_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vzip.16 D0, D1' * int8x8x2_t vzip_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vzip.8 D0, D1' * poly16x4x2_t vzip_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vzip.16 D0, D1' * poly8x8x2_t vzip_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vzip.8 D0, D1' * float32x2x2_t vzip_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x2x2_t vzip_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * int32x2x2_t vzip_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint32x4x2_t vzipq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vzip.32 Q0, Q1' * uint16x8x2_t vzipq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vzip.16 Q0, Q1' * uint8x16x2_t vzipq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vzip.8 Q0, Q1' * int32x4x2_t vzipq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vzip.32 Q0, Q1' * int16x8x2_t vzipq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vzip.16 Q0, Q1' * int8x16x2_t vzipq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vzip.8 Q0, Q1' * float32x4x2_t vzipq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vzip.32 Q0, Q1' * poly16x8x2_t vzipq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vzip.16 Q0, Q1' * poly8x16x2_t vzipq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vzip.8 Q0, Q1' 6.57.6.74 Unzip elements ........................ * uint32x2x2_t vuzp_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * uint16x4x2_t vuzp_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vuzp.16 D0, D1' * uint8x8x2_t vuzp_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vuzp.8 D0, D1' * int32x2x2_t vuzp_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * int16x4x2_t vuzp_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vuzp.16 D0, D1' * int8x8x2_t vuzp_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vuzp.8 D0, D1' * float32x2x2_t vuzp_f32 (float32x2_t, float32x2_t) ! _Form of expected instruction(s):_ `vuzp.32 D0, D1' * poly16x4x2_t vuzp_p16 (poly16x4_t, poly16x4_t) ! _Form of expected instruction(s):_ `vuzp.16 D0, D1' * poly8x8x2_t vuzp_p8 (poly8x8_t, poly8x8_t) ! _Form of expected instruction(s):_ `vuzp.8 D0, D1' * uint32x4x2_t vuzpq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vuzp.32 Q0, Q1' * uint16x8x2_t vuzpq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vuzp.16 Q0, Q1' * uint8x16x2_t vuzpq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vuzp.8 Q0, Q1' * int32x4x2_t vuzpq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vuzp.32 Q0, Q1' * int16x8x2_t vuzpq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vuzp.16 Q0, Q1' * int8x16x2_t vuzpq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vuzp.8 Q0, Q1' * float32x4x2_t vuzpq_f32 (float32x4_t, float32x4_t) ! _Form of expected instruction(s):_ `vuzp.32 Q0, Q1' * poly16x8x2_t vuzpq_p16 (poly16x8_t, poly16x8_t) ! _Form of expected instruction(s):_ `vuzp.16 Q0, Q1' * poly8x16x2_t vuzpq_p8 (poly8x16_t, poly8x16_t) ! _Form of expected instruction(s):_ `vuzp.8 Q0, Q1' 6.57.6.75 Element/structure loads, VLD1 variants ................................................ * poly64x1_t vld1_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint32x2_t vld1_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0}, [R0]' * uint16x4_t vld1_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0}, [R0]' * uint8x8_t vld1_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0}, [R0]' * int32x2_t vld1_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0}, [R0]' * int16x4_t vld1_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0}, [R0]' * int8x8_t vld1_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0}, [R0]' * uint64x1_t vld1_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x1_t vld1_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * float32x2_t vld1_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0}, [R0]' * poly16x4_t vld1_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0}, [R0]' * poly8x8_t vld1_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0}, [R0]' * poly64x2_t vld1q_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * uint32x4_t vld1q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0, D1}, [R0]' * uint16x8_t vld1q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0, D1}, [R0]' * uint8x16_t vld1q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0, D1}, [R0]' * int32x4_t vld1q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0, D1}, [R0]' * int16x8_t vld1q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0, D1}, [R0]' * int8x16_t vld1q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0, D1}, [R0]' * uint64x2_t vld1q_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * int64x2_t vld1q_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * float32x4_t vld1q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0, D1}, [R0]' * poly16x8_t vld1q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0, D1}, [R0]' * poly8x16_t vld1q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0, D1}, [R0]' * uint32x2_t vld1_lane_u32 (const uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * uint16x4_t vld1_lane_u16 (const uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * uint8x8_t vld1_lane_u8 (const uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * int32x2_t vld1_lane_s32 (const int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * int16x4_t vld1_lane_s16 (const int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * int8x8_t vld1_lane_s8 (const int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * float32x2_t vld1_lane_f32 (const float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * poly16x4_t vld1_lane_p16 (const poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * poly8x8_t vld1_lane_p8 (const poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * poly64x1_t vld1_lane_p64 (const poly64_t *, poly64x1_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint64x1_t vld1_lane_u64 (const uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x1_t vld1_lane_s64 (const int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint32x4_t vld1q_lane_u32 (const uint32_t *, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * uint16x8_t vld1q_lane_u16 (const uint16_t *, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * uint8x16_t vld1q_lane_u8 (const uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * int32x4_t vld1q_lane_s32 (const int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * int16x8_t vld1q_lane_s16 (const int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * int8x16_t vld1q_lane_s8 (const int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * float32x4_t vld1q_lane_f32 (const float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ `vld1.32 {D0[0]}, [R0]' * poly16x8_t vld1q_lane_p16 (const poly16_t *, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vld1.16 {D0[0]}, [R0]' * poly8x16_t vld1q_lane_p8 (const poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vld1.8 {D0[0]}, [R0]' * poly64x2_t vld1q_lane_p64 (const poly64_t *, poly64x2_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint64x2_t vld1q_lane_u64 (const uint64_t *, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x2_t vld1q_lane_s64 (const int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint32x2_t vld1_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[]}, [R0]' * uint16x4_t vld1_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[]}, [R0]' * uint8x8_t vld1_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[]}, [R0]' * int32x2_t vld1_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[]}, [R0]' * int16x4_t vld1_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[]}, [R0]' * int8x8_t vld1_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[]}, [R0]' * float32x2_t vld1_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[]}, [R0]' * poly16x4_t vld1_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[]}, [R0]' * poly8x8_t vld1_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[]}, [R0]' * poly64x1_t vld1_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint64x1_t vld1_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x1_t vld1_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint32x4_t vld1q_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[], D1[]}, [R0]' * uint16x8_t vld1q_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[], D1[]}, [R0]' * uint8x16_t vld1q_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[], D1[]}, [R0]' * int32x4_t vld1q_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[], D1[]}, [R0]' * int16x8_t vld1q_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[], D1[]}, [R0]' * int8x16_t vld1q_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[], D1[]}, [R0]' * float32x4_t vld1q_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld1.32 {D0[], D1[]}, [R0]' * poly16x8_t vld1q_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld1.16 {D0[], D1[]}, [R0]' * poly8x16_t vld1q_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld1.8 {D0[], D1[]}, [R0]' * poly64x2_t vld1q_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * uint64x2_t vld1q_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' * int64x2_t vld1q_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0}, [R0]' 6.57.6.76 Element/structure stores, VST1 variants ................................................. * void vst1_p64 (poly64_t *, poly64x1_t) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_u32 (uint32_t *, uint32x2_t) ! _Form of expected instruction(s):_ `vst1.32 {D0}, [R0]' * void vst1_u16 (uint16_t *, uint16x4_t) ! _Form of expected instruction(s):_ `vst1.16 {D0}, [R0]' * void vst1_u8 (uint8_t *, uint8x8_t) ! _Form of expected instruction(s):_ `vst1.8 {D0}, [R0]' * void vst1_s32 (int32_t *, int32x2_t) ! _Form of expected instruction(s):_ `vst1.32 {D0}, [R0]' * void vst1_s16 (int16_t *, int16x4_t) ! _Form of expected instruction(s):_ `vst1.16 {D0}, [R0]' * void vst1_s8 (int8_t *, int8x8_t) ! _Form of expected instruction(s):_ `vst1.8 {D0}, [R0]' * void vst1_u64 (uint64_t *, uint64x1_t) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_s64 (int64_t *, int64x1_t) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_f32 (float32_t *, float32x2_t) ! _Form of expected instruction(s):_ `vst1.32 {D0}, [R0]' * void vst1_p16 (poly16_t *, poly16x4_t) ! _Form of expected instruction(s):_ `vst1.16 {D0}, [R0]' * void vst1_p8 (poly8_t *, poly8x8_t) ! _Form of expected instruction(s):_ `vst1.8 {D0}, [R0]' * void vst1q_p64 (poly64_t *, poly64x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst1q_u32 (uint32_t *, uint32x4_t) ! _Form of expected instruction(s):_ `vst1.32 {D0, D1}, [R0]' * void vst1q_u16 (uint16_t *, uint16x8_t) ! _Form of expected instruction(s):_ `vst1.16 {D0, D1}, [R0]' * void vst1q_u8 (uint8_t *, uint8x16_t) ! _Form of expected instruction(s):_ `vst1.8 {D0, D1}, [R0]' * void vst1q_s32 (int32_t *, int32x4_t) ! _Form of expected instruction(s):_ `vst1.32 {D0, D1}, [R0]' * void vst1q_s16 (int16_t *, int16x8_t) ! _Form of expected instruction(s):_ `vst1.16 {D0, D1}, [R0]' * void vst1q_s8 (int8_t *, int8x16_t) ! _Form of expected instruction(s):_ `vst1.8 {D0, D1}, [R0]' * void vst1q_u64 (uint64_t *, uint64x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst1q_s64 (int64_t *, int64x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst1q_f32 (float32_t *, float32x4_t) ! _Form of expected instruction(s):_ `vst1.32 {D0, D1}, [R0]' * void vst1q_p16 (poly16_t *, poly16x8_t) ! _Form of expected instruction(s):_ `vst1.16 {D0, D1}, [R0]' * void vst1q_p8 (poly8_t *, poly8x16_t) ! _Form of expected instruction(s):_ `vst1.8 {D0, D1}, [R0]' * void vst1_lane_u32 (uint32_t *, uint32x2_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1_lane_u16 (uint16_t *, uint16x4_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1_lane_u8 (uint8_t *, uint8x8_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1_lane_s32 (int32_t *, int32x2_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1_lane_s16 (int16_t *, int16x4_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1_lane_s8 (int8_t *, int8x8_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1_lane_f32 (float32_t *, float32x2_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1_lane_p16 (poly16_t *, poly16x4_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1_lane_p8 (poly8_t *, poly8x8_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1_lane_p64 (poly64_t *, poly64x1_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_lane_s64 (int64_t *, int64x1_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1_lane_u64 (uint64_t *, uint64x1_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1q_lane_u32 (uint32_t *, uint32x4_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1q_lane_u16 (uint16_t *, uint16x8_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1q_lane_u8 (uint8_t *, uint8x16_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1q_lane_s32 (int32_t *, int32x4_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1q_lane_s16 (int16_t *, int16x8_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1q_lane_s8 (int8_t *, int8x16_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1q_lane_f32 (float32_t *, float32x4_t, const int) ! _Form of expected instruction(s):_ `vst1.32 {D0[0]}, [R0]' * void vst1q_lane_p16 (poly16_t *, poly16x8_t, const int) ! _Form of expected instruction(s):_ `vst1.16 {D0[0]}, [R0]' * void vst1q_lane_p8 (poly8_t *, poly8x16_t, const int) ! _Form of expected instruction(s):_ `vst1.8 {D0[0]}, [R0]' * void vst1q_lane_p64 (poly64_t *, poly64x2_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1q_lane_s64 (int64_t *, int64x2_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' * void vst1q_lane_u64 (uint64_t *, uint64x2_t, const int) ! _Form of expected instruction(s):_ `vst1.64 {D0}, [R0]' 6.57.6.77 Element/structure loads, VLD2 variants ................................................ * uint32x2x2_t vld2_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * uint16x4x2_t vld2_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * uint8x8x2_t vld2_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * int32x2x2_t vld2_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * int16x4x2_t vld2_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * int8x8x2_t vld2_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * float32x2x2_t vld2_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * poly16x4x2_t vld2_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * poly8x8x2_t vld2_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * poly64x1x2_t vld2_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * uint64x1x2_t vld2_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * uint32x4x2_t vld2q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * uint16x8x2_t vld2q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * uint8x16x2_t vld2q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * int32x4x2_t vld2q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * int16x8x2_t vld2q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * int8x16x2_t vld2q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * float32x4x2_t vld2q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0, D1}, [R0]' * poly16x8x2_t vld2q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0, D1}, [R0]' * poly8x16x2_t vld2q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0, D1}, [R0]' * uint32x2x2_t vld2_lane_u32 (const uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * uint16x4x2_t vld2_lane_u16 (const uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * uint8x8x2_t vld2_lane_u8 (const uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.8 {D0[0], D1[0]}, [R0]' * int32x2x2_t vld2_lane_s32 (const int32_t *, int32x2x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * int16x4x2_t vld2_lane_s16 (const int16_t *, int16x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * int8x8x2_t vld2_lane_s8 (const int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.8 {D0[0], D1[0]}, [R0]' * float32x2x2_t vld2_lane_f32 (const float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * poly16x4x2_t vld2_lane_p16 (const poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * poly8x8x2_t vld2_lane_p8 (const poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.8 {D0[0], D1[0]}, [R0]' * int32x4x2_t vld2q_lane_s32 (const int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * int16x8x2_t vld2q_lane_s16 (const int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * uint32x4x2_t vld2q_lane_u32 (const uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * uint16x8x2_t vld2q_lane_u16 (const uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * float32x4x2_t vld2q_lane_f32 (const float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ `vld2.32 {D0[0], D1[0]}, [R0]' * poly16x8x2_t vld2q_lane_p16 (const poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ `vld2.16 {D0[0], D1[0]}, [R0]' * uint32x2x2_t vld2_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0[], D1[]}, [R0]' * uint16x4x2_t vld2_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0[], D1[]}, [R0]' * uint8x8x2_t vld2_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0[], D1[]}, [R0]' * int32x2x2_t vld2_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0[], D1[]}, [R0]' * int16x4x2_t vld2_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0[], D1[]}, [R0]' * int8x8x2_t vld2_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0[], D1[]}, [R0]' * float32x2x2_t vld2_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld2.32 {D0[], D1[]}, [R0]' * poly16x4x2_t vld2_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld2.16 {D0[], D1[]}, [R0]' * poly8x8x2_t vld2_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld2.8 {D0[], D1[]}, [R0]' * poly64x1x2_t vld2_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * uint64x1x2_t vld2_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' * int64x1x2_t vld2_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1}, [R0]' 6.57.6.78 Element/structure stores, VST2 variants ................................................. * void vst2_u32 (uint32_t *, uint32x2x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2_u16 (uint16_t *, uint16x4x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2_u8 (uint8_t *, uint8x8x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_s32 (int32_t *, int32x2x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2_s16 (int16_t *, int16x4x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2_s8 (int8_t *, int8x8x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_f32 (float32_t *, float32x2x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2_p16 (poly16_t *, poly16x4x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2_p8 (poly8_t *, poly8x8x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_p64 (poly64_t *, poly64x1x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst2_u64 (uint64_t *, uint64x1x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst2_s64 (int64_t *, int64x1x2_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1}, [R0]' * void vst2q_u32 (uint32_t *, uint32x4x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2q_u16 (uint16_t *, uint16x8x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2q_u8 (uint8_t *, uint8x16x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2q_s32 (int32_t *, int32x4x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2q_s16 (int16_t *, int16x8x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2q_s8 (int8_t *, int8x16x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2q_f32 (float32_t *, float32x4x2_t) ! _Form of expected instruction(s):_ `vst2.32 {D0, D1}, [R0]' * void vst2q_p16 (poly16_t *, poly16x8x2_t) ! _Form of expected instruction(s):_ `vst2.16 {D0, D1}, [R0]' * void vst2q_p8 (poly8_t *, poly8x16x2_t) ! _Form of expected instruction(s):_ `vst2.8 {D0, D1}, [R0]' * void vst2_lane_u32 (uint32_t *, uint32x2x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_u16 (uint16_t *, uint16x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_u8 (uint8_t *, uint8x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_s32 (int32_t *, int32x2x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_s16 (int16_t *, int16x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_s8 (int8_t *, int8x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.8 {D0[0], D1[0]}, [R0]' * void vst2_lane_f32 (float32_t *, float32x2x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2_lane_p16 (poly16_t *, poly16x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2_lane_p8 (poly8_t *, poly8x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.8 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s32 (int32_t *, int32x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_s16 (int16_t *, int16x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u32 (uint32_t *, uint32x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_u16 (uint16_t *, uint16x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' * void vst2q_lane_f32 (float32_t *, float32x4x2_t, const int) ! _Form of expected instruction(s):_ `vst2.32 {D0[0], D1[0]}, [R0]' * void vst2q_lane_p16 (poly16_t *, poly16x8x2_t, const int) ! _Form of expected instruction(s):_ `vst2.16 {D0[0], D1[0]}, [R0]' 6.57.6.79 Element/structure loads, VLD3 variants ................................................ * uint32x2x3_t vld3_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * uint16x4x3_t vld3_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * uint8x8x3_t vld3_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * int32x2x3_t vld3_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * int16x4x3_t vld3_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * int8x8x3_t vld3_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * float32x2x3_t vld3_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * poly16x4x3_t vld3_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * poly8x8x3_t vld3_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * poly64x1x3_t vld3_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * uint64x1x3_t vld3_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * uint32x4x3_t vld3q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * uint16x8x3_t vld3q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * uint8x16x3_t vld3q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * int32x4x3_t vld3q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * int16x8x3_t vld3q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * int8x16x3_t vld3q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * float32x4x3_t vld3q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0, D1, D2}, [R0]' * poly16x8x3_t vld3q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0, D1, D2}, [R0]' * poly8x16x3_t vld3q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0, D1, D2}, [R0]' * uint32x2x3_t vld3_lane_u32 (const uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x4x3_t vld3_lane_u16 (const uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint8x8x3_t vld3_lane_u8 (const uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x2x3_t vld3_lane_s32 (const int32_t *, int32x2x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x4x3_t vld3_lane_s16 (const int16_t *, int16x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * int8x8x3_t vld3_lane_s8 (const int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * float32x2x3_t vld3_lane_f32 (const float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x4x3_t vld3_lane_p16 (const poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * poly8x8x3_t vld3_lane_p8 (const poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.8 {D0[0], D1[0], D2[0]}, [R0]' * int32x4x3_t vld3q_lane_s32 (const int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * int16x8x3_t vld3q_lane_s16 (const int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x4x3_t vld3q_lane_u32 (const uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * uint16x8x3_t vld3q_lane_u16 (const uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * float32x4x3_t vld3q_lane_f32 (const float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ `vld3.32 {D0[0], D1[0], D2[0]}, [R0]' * poly16x8x3_t vld3q_lane_p16 (const poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ `vld3.16 {D0[0], D1[0], D2[0]}, [R0]' * uint32x2x3_t vld3_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0[], D1[], D2[]}, [R0]' * uint16x4x3_t vld3_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0[], D1[], D2[]}, [R0]' * uint8x8x3_t vld3_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0[], D1[], D2[]}, [R0]' * int32x2x3_t vld3_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0[], D1[], D2[]}, [R0]' * int16x4x3_t vld3_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0[], D1[], D2[]}, [R0]' * int8x8x3_t vld3_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0[], D1[], D2[]}, [R0]' * float32x2x3_t vld3_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld3.32 {D0[], D1[], D2[]}, [R0]' * poly16x4x3_t vld3_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld3.16 {D0[], D1[], D2[]}, [R0]' * poly8x8x3_t vld3_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld3.8 {D0[], D1[], D2[]}, [R0]' * poly64x1x3_t vld3_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * uint64x1x3_t vld3_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' * int64x1x3_t vld3_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2}, [R0]' 6.57.6.80 Element/structure stores, VST3 variants ................................................. * void vst3_u32 (uint32_t *, uint32x2x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_u16 (uint16_t *, uint16x4x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_u8 (uint8_t *, uint8x8x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_s32 (int32_t *, int32x2x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_s16 (int16_t *, int16x4x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_s8 (int8_t *, int8x8x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_f32 (float32_t *, float32x2x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2, D3}, [R0]' * void vst3_p16 (poly16_t *, poly16x4x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2, D3}, [R0]' * void vst3_p8 (poly8_t *, poly8x8x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2, D3}, [R0]' * void vst3_p64 (poly64_t *, poly64x1x3_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3_u64 (uint64_t *, uint64x1x3_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3_s64 (int64_t *, int64x1x3_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst3q_u32 (uint32_t *, uint32x4x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2}, [R0]' * void vst3q_u16 (uint16_t *, uint16x8x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2}, [R0]' * void vst3q_u8 (uint8_t *, uint8x16x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2}, [R0]' * void vst3q_s32 (int32_t *, int32x4x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2}, [R0]' * void vst3q_s16 (int16_t *, int16x8x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2}, [R0]' * void vst3q_s8 (int8_t *, int8x16x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2}, [R0]' * void vst3q_f32 (float32_t *, float32x4x3_t) ! _Form of expected instruction(s):_ `vst3.32 {D0, D1, D2}, [R0]' * void vst3q_p16 (poly16_t *, poly16x8x3_t) ! _Form of expected instruction(s):_ `vst3.16 {D0, D1, D2}, [R0]' * void vst3q_p8 (poly8_t *, poly8x16x3_t) ! _Form of expected instruction(s):_ `vst3.8 {D0, D1, D2}, [R0]' * void vst3_lane_u32 (uint32_t *, uint32x2x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u16 (uint16_t *, uint16x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_u8 (uint8_t *, uint8x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s32 (int32_t *, int32x2x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s16 (int16_t *, int16x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_s8 (int8_t *, int8x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_f32 (float32_t *, float32x2x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p16 (poly16_t *, poly16x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3_lane_p8 (poly8_t *, poly8x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.8 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s32 (int32_t *, int32x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_s16 (int16_t *, int16x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u32 (uint32_t *, uint32x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_u16 (uint16_t *, uint16x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_f32 (float32_t *, float32x4x3_t, const int) ! _Form of expected instruction(s):_ `vst3.32 {D0[0], D1[0], D2[0]}, [R0]' * void vst3q_lane_p16 (poly16_t *, poly16x8x3_t, const int) ! _Form of expected instruction(s):_ `vst3.16 {D0[0], D1[0], D2[0]}, [R0]' 6.57.6.81 Element/structure loads, VLD4 variants ................................................ * uint32x2x4_t vld4_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x4x4_t vld4_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x8x4_t vld4_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * int32x2x4_t vld4_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * int16x4x4_t vld4_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * int8x8x4_t vld4_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * float32x2x4_t vld4_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x4x4_t vld4_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x8x4_t vld4_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * poly64x1x4_t vld4_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * uint64x1x4_t vld4_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * uint32x4x4_t vld4q_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * uint16x8x4_t vld4q_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * uint8x16x4_t vld4q_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * int32x4x4_t vld4q_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * int16x8x4_t vld4q_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * int8x16x4_t vld4q_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * float32x4x4_t vld4q_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0, D1, D2, D3}, [R0]' * poly16x8x4_t vld4q_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0, D1, D2, D3}, [R0]' * poly8x16x4_t vld4q_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0, D1, D2, D3}, [R0]' * uint32x2x4_t vld4_lane_u32 (const uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x4x4_t vld4_lane_u16 (const uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint8x8x4_t vld4_lane_u8 (const uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x2x4_t vld4_lane_s32 (const int32_t *, int32x2x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x4x4_t vld4_lane_s16 (const int16_t *, int16x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int8x8x4_t vld4_lane_s8 (const int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x2x4_t vld4_lane_f32 (const float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x4x4_t vld4_lane_p16 (const poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly8x8x4_t vld4_lane_p8 (const poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int32x4x4_t vld4q_lane_s32 (const int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * int16x8x4_t vld4q_lane_s16 (const int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x4x4_t vld4q_lane_u32 (const uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint16x8x4_t vld4q_lane_u16 (const uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * float32x4x4_t vld4q_lane_f32 (const float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ `vld4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * poly16x8x4_t vld4q_lane_p16 (const poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ `vld4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * uint32x2x4_t vld4_dup_u32 (const uint32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * uint16x4x4_t vld4_dup_u16 (const uint16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * uint8x8x4_t vld4_dup_u8 (const uint8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * int32x2x4_t vld4_dup_s32 (const int32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * int16x4x4_t vld4_dup_s16 (const int16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * int8x8x4_t vld4_dup_s8 (const int8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * float32x2x4_t vld4_dup_f32 (const float32_t *) ! _Form of expected instruction(s):_ `vld4.32 {D0[], D1[], D2[], D3[]}, [R0]' * poly16x4x4_t vld4_dup_p16 (const poly16_t *) ! _Form of expected instruction(s):_ `vld4.16 {D0[], D1[], D2[], D3[]}, [R0]' * poly8x8x4_t vld4_dup_p8 (const poly8_t *) ! _Form of expected instruction(s):_ `vld4.8 {D0[], D1[], D2[], D3[]}, [R0]' * poly64x1x4_t vld4_dup_p64 (const poly64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * uint64x1x4_t vld4_dup_u64 (const uint64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' * int64x1x4_t vld4_dup_s64 (const int64_t *) ! _Form of expected instruction(s):_ `vld1.64 {D0, D1, D2, D3}, [R0]' 6.57.6.82 Element/structure stores, VST4 variants ................................................. * void vst4_u32 (uint32_t *, uint32x2x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_u16 (uint16_t *, uint16x4x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_u8 (uint8_t *, uint8x8x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_s32 (int32_t *, int32x2x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_s16 (int16_t *, int16x4x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_s8 (int8_t *, int8x8x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_f32 (float32_t *, float32x2x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4_p16 (poly16_t *, poly16x4x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4_p8 (poly8_t *, poly8x8x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_p64 (poly64_t *, poly64x1x4_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4_u64 (uint64_t *, uint64x1x4_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4_s64 (int64_t *, int64x1x4_t) ! _Form of expected instruction(s):_ `vst1.64 {D0, D1, D2, D3}, [R0]' * void vst4q_u32 (uint32_t *, uint32x4x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_u16 (uint16_t *, uint16x8x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_u8 (uint8_t *, uint8x16x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_s32 (int32_t *, int32x4x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_s16 (int16_t *, int16x8x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_s8 (int8_t *, int8x16x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4q_f32 (float32_t *, float32x4x4_t) ! _Form of expected instruction(s):_ `vst4.32 {D0, D1, D2, D3}, [R0]' * void vst4q_p16 (poly16_t *, poly16x8x4_t) ! _Form of expected instruction(s):_ `vst4.16 {D0, D1, D2, D3}, [R0]' * void vst4q_p8 (poly8_t *, poly8x16x4_t) ! _Form of expected instruction(s):_ `vst4.8 {D0, D1, D2, D3}, [R0]' * void vst4_lane_u32 (uint32_t *, uint32x2x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u16 (uint16_t *, uint16x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_u8 (uint8_t *, uint8x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s32 (int32_t *, int32x2x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s16 (int16_t *, int16x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_s8 (int8_t *, int8x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_f32 (float32_t *, float32x2x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p16 (poly16_t *, poly16x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4_lane_p8 (poly8_t *, poly8x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.8 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s32 (int32_t *, int32x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_s16 (int16_t *, int16x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u32 (uint32_t *, uint32x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_u16 (uint16_t *, uint16x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_f32 (float32_t *, float32x4x4_t, const int) ! _Form of expected instruction(s):_ `vst4.32 {D0[0], D1[0], D2[0], D3[0]}, [R0]' * void vst4q_lane_p16 (poly16_t *, poly16x8x4_t, const int) ! _Form of expected instruction(s):_ `vst4.16 {D0[0], D1[0], D2[0], D3[0]}, [R0]' 6.57.6.83 Logical operations (AND) .................................. * uint32x2_t vand_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * uint16x4_t vand_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * uint8x8_t vand_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * int32x2_t vand_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * int16x4_t vand_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * int8x8_t vand_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vand D0, D0, D0' * uint64x1_t vand_u64 (uint64x1_t, uint64x1_t) * int64x1_t vand_s64 (int64x1_t, int64x1_t) * uint32x4_t vandq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * uint16x8_t vandq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * uint8x16_t vandq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int32x4_t vandq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int16x8_t vandq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int8x16_t vandq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * uint64x2_t vandq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' * int64x2_t vandq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vand Q0, Q0, Q0' 6.57.6.84 Logical operations (OR) ................................. * uint32x2_t vorr_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * uint16x4_t vorr_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * uint8x8_t vorr_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * int32x2_t vorr_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * int16x4_t vorr_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * int8x8_t vorr_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vorr D0, D0, D0' * uint64x1_t vorr_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorr_s64 (int64x1_t, int64x1_t) * uint32x4_t vorrq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * uint16x8_t vorrq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * uint8x16_t vorrq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int32x4_t vorrq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int16x8_t vorrq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int8x16_t vorrq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * uint64x2_t vorrq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' * int64x2_t vorrq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vorr Q0, Q0, Q0' 6.57.6.85 Logical operations (exclusive OR) ........................................... * uint32x2_t veor_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * uint16x4_t veor_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * uint8x8_t veor_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * int32x2_t veor_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * int16x4_t veor_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * int8x8_t veor_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `veor D0, D0, D0' * uint64x1_t veor_u64 (uint64x1_t, uint64x1_t) * int64x1_t veor_s64 (int64x1_t, int64x1_t) * uint32x4_t veorq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * uint16x8_t veorq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * uint8x16_t veorq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int32x4_t veorq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int16x8_t veorq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int8x16_t veorq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * uint64x2_t veorq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' * int64x2_t veorq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `veor Q0, Q0, Q0' 6.57.6.86 Logical operations (AND-NOT) ...................................... * uint32x2_t vbic_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * uint16x4_t vbic_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * uint8x8_t vbic_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * int32x2_t vbic_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * int16x4_t vbic_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * int8x8_t vbic_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vbic D0, D0, D0' * uint64x1_t vbic_u64 (uint64x1_t, uint64x1_t) * int64x1_t vbic_s64 (int64x1_t, int64x1_t) * uint32x4_t vbicq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * uint16x8_t vbicq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * uint8x16_t vbicq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int32x4_t vbicq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int16x8_t vbicq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int8x16_t vbicq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * uint64x2_t vbicq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' * int64x2_t vbicq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vbic Q0, Q0, Q0' 6.57.6.87 Logical operations (OR-NOT) ..................................... * uint32x2_t vorn_u32 (uint32x2_t, uint32x2_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * uint16x4_t vorn_u16 (uint16x4_t, uint16x4_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * uint8x8_t vorn_u8 (uint8x8_t, uint8x8_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * int32x2_t vorn_s32 (int32x2_t, int32x2_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * int16x4_t vorn_s16 (int16x4_t, int16x4_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * int8x8_t vorn_s8 (int8x8_t, int8x8_t) ! _Form of expected instruction(s):_ `vorn D0, D0, D0' * uint64x1_t vorn_u64 (uint64x1_t, uint64x1_t) * int64x1_t vorn_s64 (int64x1_t, int64x1_t) * uint32x4_t vornq_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * uint16x8_t vornq_u16 (uint16x8_t, uint16x8_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * uint8x16_t vornq_u8 (uint8x16_t, uint8x16_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int32x4_t vornq_s32 (int32x4_t, int32x4_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int16x8_t vornq_s16 (int16x8_t, int16x8_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int8x16_t vornq_s8 (int8x16_t, int8x16_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * uint64x2_t vornq_u64 (uint64x2_t, uint64x2_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' * int64x2_t vornq_s64 (int64x2_t, int64x2_t) ! _Form of expected instruction(s):_ `vorn Q0, Q0, Q0' 6.57.6.88 Reinterpret casts ........................... *************** available when the '-mfpu=neon' switch i *** 38923,38962 **** * uint64x1_t vtst_p64 (poly64x1_t, poly64x1_t) * uint32_t vsha1h_u32 (uint32_t) ! _Form of expected instruction(s):_ 'sha1h.32 Q0, Q1' * uint32x4_t vsha1cq_u32 (uint32x4_t, uint32_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha1c.32 Q0, Q1, Q2' * uint32x4_t vsha1pq_u32 (uint32x4_t, uint32_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha1p.32 Q0, Q1, Q2' * uint32x4_t vsha1mq_u32 (uint32x4_t, uint32_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha1m.32 Q0, Q1, Q2' * uint32x4_t vsha1su0q_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha1su0.32 Q0, Q1, Q2' * uint32x4_t vsha1su1q_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha1su1.32 Q0, Q1, Q2' * uint32x4_t vsha256hq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha256h.32 Q0, Q1, Q2' * uint32x4_t vsha256h2q_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha256h2.32 Q0, Q1, Q2' * uint32x4_t vsha256su0q_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha256su0.32 Q0, Q1' * uint32x4_t vsha256su1q_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ 'sha256su1.32 Q0, Q1, Q2' * poly128_t vmull_p64 (poly64_t a, poly64_t b) ! _Form of expected instruction(s):_ 'vmull.p64 Q0, D1, D2' * poly128_t vmull_high_p64 (poly64x2_t a, poly64x2_t b) ! _Form of expected instruction(s):_ 'vmull.p64 Q0, D1, D2'  File: gcc.info, Node: ARM ACLE Intrinsics, Next: AVR Built-in Functions, Prev: ARM NEON Intrinsics, Up: Target Builtins --- 39292,39331 ---- * uint64x1_t vtst_p64 (poly64x1_t, poly64x1_t) * uint32_t vsha1h_u32 (uint32_t) ! _Form of expected instruction(s):_ `sha1h.32 Q0, Q1' * uint32x4_t vsha1cq_u32 (uint32x4_t, uint32_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha1c.32 Q0, Q1, Q2' * uint32x4_t vsha1pq_u32 (uint32x4_t, uint32_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha1p.32 Q0, Q1, Q2' * uint32x4_t vsha1mq_u32 (uint32x4_t, uint32_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha1m.32 Q0, Q1, Q2' * uint32x4_t vsha1su0q_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha1su0.32 Q0, Q1, Q2' * uint32x4_t vsha1su1q_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha1su1.32 Q0, Q1, Q2' * uint32x4_t vsha256hq_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha256h.32 Q0, Q1, Q2' * uint32x4_t vsha256h2q_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha256h2.32 Q0, Q1, Q2' * uint32x4_t vsha256su0q_u32 (uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha256su0.32 Q0, Q1' * uint32x4_t vsha256su1q_u32 (uint32x4_t, uint32x4_t, uint32x4_t) ! _Form of expected instruction(s):_ `sha256su1.32 Q0, Q1, Q2' * poly128_t vmull_p64 (poly64_t a, poly64_t b) ! _Form of expected instruction(s):_ `vmull.p64 Q0, D1, D2' * poly128_t vmull_high_p64 (poly64x2_t a, poly64x2_t b) ! _Form of expected instruction(s):_ `vmull.p64 Q0, D1, D2'  File: gcc.info, Node: ARM ACLE Intrinsics, Next: AVR Built-in Functions, Prev: ARM NEON Intrinsics, Up: Target Builtins *************** File: gcc.info, Node: ARM ACLE Intrinsi *** 38968,39000 **** ......................... These intrinsics are available when the CRC32 architecture extension is ! specified, e.g. when the '-march=armv8-a+crc' switch is used, or when ! the target processor specified with '-mcpu' supports it. * uint32_t __crc32b (uint32_t, uint8_t) ! _Form of expected instruction(s):_ 'crc32b R0, R0, R0' * uint32_t __crc32h (uint32_t, uint16_t) ! _Form of expected instruction(s):_ 'crc32h R0, R0, R0' * uint32_t __crc32w (uint32_t, uint32_t) ! _Form of expected instruction(s):_ 'crc32w R0, R0, R0' * uint32_t __crc32d (uint32_t, uint64_t) ! _Form of expected instruction(s):_ Two 'crc32w R0, R0, R0' instructions. * uint32_t __crc32cb (uint32_t, uint8_t) ! _Form of expected instruction(s):_ 'crc32cb R0, R0, R0' * uint32_t __crc32ch (uint32_t, uint16_t) ! _Form of expected instruction(s):_ 'crc32ch R0, R0, R0' * uint32_t __crc32cw (uint32_t, uint32_t) ! _Form of expected instruction(s):_ 'crc32cw R0, R0, R0' * uint32_t __crc32cd (uint32_t, uint64_t) ! _Form of expected instruction(s):_ Two 'crc32cw R0, R0, R0' instructions.  --- 39337,39369 ---- ......................... These intrinsics are available when the CRC32 architecture extension is ! specified, e.g. when the `-march=armv8-a+crc' switch is used, or when ! the target processor specified with `-mcpu' supports it. * uint32_t __crc32b (uint32_t, uint8_t) ! _Form of expected instruction(s):_ `crc32b R0, R0, R0' * uint32_t __crc32h (uint32_t, uint16_t) ! _Form of expected instruction(s):_ `crc32h R0, R0, R0' * uint32_t __crc32w (uint32_t, uint32_t) ! _Form of expected instruction(s):_ `crc32w R0, R0, R0' * uint32_t __crc32d (uint32_t, uint64_t) ! _Form of expected instruction(s):_ Two `crc32w R0, R0, R0' instructions. * uint32_t __crc32cb (uint32_t, uint8_t) ! _Form of expected instruction(s):_ `crc32cb R0, R0, R0' * uint32_t __crc32ch (uint32_t, uint16_t) ! _Form of expected instruction(s):_ `crc32ch R0, R0, R0' * uint32_t __crc32cw (uint32_t, uint32_t) ! _Form of expected instruction(s):_ `crc32cw R0, R0, R0' * uint32_t __crc32cd (uint32_t, uint64_t) ! _Form of expected instruction(s):_ Two `crc32cw R0, R0, R0' instructions.  *************** File: gcc.info, Node: AVR Built-in Func *** 39003,39017 **** 6.57.8 AVR Built-in Functions ----------------------------- ! For each built-in function for AVR, there is an equally named, uppercase ! built-in macro defined. That way users can easily query if or if not a ! specific built-in is implemented or not. For example, if ! '__builtin_avr_nop' is available the macro '__BUILTIN_AVR_NOP' is ! defined to '1' and undefined otherwise. The following built-in functions map to the respective machine ! instruction, i.e. 'nop', 'sei', 'cli', 'sleep', 'wdr', 'swap', 'fmul', ! 'fmuls' resp. 'fmulsu'. The three 'fmul*' built-ins are implemented as library call if no hardware multiplier is available. void __builtin_avr_nop (void) --- 39372,39386 ---- 6.57.8 AVR Built-in Functions ----------------------------- ! For each built-in function for AVR, there is an equally named, ! uppercase built-in macro defined. That way users can easily query if or ! if not a specific built-in is implemented or not. For example, if ! `__builtin_avr_nop' is available the macro `__BUILTIN_AVR_NOP' is ! defined to `1' and undefined otherwise. The following built-in functions map to the respective machine ! instruction, i.e. `nop', `sei', `cli', `sleep', `wdr', `swap', `fmul', ! `fmuls' resp. `fmulsu'. The three `fmul*' built-ins are implemented as library call if no hardware multiplier is available. void __builtin_avr_nop (void) *************** library call if no hardware multiplier i *** 39028,39060 **** implements void __builtin_avr_delay_cycles (unsigned long ticks) ! 'ticks' is the number of ticks to delay execution. Note that this built-in does not take into account the effect of interrupts that might ! increase delay time. 'ticks' must be a compile-time integer constant; delays with a variable number of cycles are not supported. char __builtin_avr_flash_segment (const __memx void*) This built-in takes a byte address to the 24-bit *note address space: ! AVR Named Address Spaces. '__memx' and returns the number of the flash ! segment (the 64 KiB chunk) where the address points to. Counting starts ! at '0'. If the address does not point to flash memory, return '-1'. unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val) ! Insert bits from BITS into VAL and return the resulting value. The nibbles of MAP determine how the insertion is performed: Let X be the N-th nibble of MAP ! 1. If X is '0xf', then the N-th bit of VAL is returned unaltered. 2. If X is in the range 0...7, then the N-th result bit is set to the X-th bit of BITS ! 3. If X is in the range 8...'0xe', then the N-th result bit is undefined. One typical use case for this built-in is adjusting input and output ! values to non-contiguous port layouts. Some examples: // same as val, bits is unused __builtin_avr_insert_bits (0xffffffff, bits, val) --- 39397,39430 ---- implements void __builtin_avr_delay_cycles (unsigned long ticks) ! `ticks' is the number of ticks to delay execution. Note that this built-in does not take into account the effect of interrupts that might ! increase delay time. `ticks' must be a compile-time integer constant; delays with a variable number of cycles are not supported. char __builtin_avr_flash_segment (const __memx void*) This built-in takes a byte address to the 24-bit *note address space: ! AVR Named Address Spaces. `__memx' and returns the number of the flash ! segment (the 64 KiB chunk) where the address points to. Counting ! starts at `0'. If the address does not point to flash memory, return ! `-1'. unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val) ! Insert bits from BITS into VAL and return the resulting value. The nibbles of MAP determine how the insertion is performed: Let X be the N-th nibble of MAP ! 1. If X is `0xf', then the N-th bit of VAL is returned unaltered. 2. If X is in the range 0...7, then the N-th result bit is set to the X-th bit of BITS ! 3. If X is in the range 8...`0xe', then the N-th result bit is undefined. One typical use case for this built-in is adjusting input and output ! values to non-contiguous port layouts. Some examples: // same as val, bits is unused __builtin_avr_insert_bits (0xffffffff, bits, val) *************** File: gcc.info, Node: Blackfin Built-in *** 39079,39085 **** ---------------------------------- Currently, there are two Blackfin-specific built-in functions. These ! are used for generating 'CSYNC' and 'SSYNC' machine insns without using inline assembly; by using these built-in functions the compiler can automatically add workarounds for hardware errata involving these instructions. These functions are named as follows: --- 39449,39455 ---- ---------------------------------- Currently, there are two Blackfin-specific built-in functions. These ! are used for generating `CSYNC' and `SSYNC' machine insns without using inline assembly; by using these built-in functions the compiler can automatically add workarounds for hardware errata involving these instructions. These functions are named as follows: *************** File: gcc.info, Node: FR-V Built-in Fun *** 39094,39107 **** ------------------------------- GCC provides many FR-V-specific built-in functions. In general, these ! functions are intended to be compatible with those described by 'FR-V ! Family, Softune C/C++ Compiler Manual (V6), Fujitsu Semiconductor'. The ! two exceptions are '__MDUNPACKH' and '__MBTOHE', the GCC forms of which ! pass 128-bit values by pointer rather than by value. ! Most of the functions are named after specific FR-V instructions. Such ! functions are said to be "directly mapped" and are summarized here in ! tabular form. * Menu: --- 39464,39477 ---- ------------------------------- GCC provides many FR-V-specific built-in functions. In general, these ! functions are intended to be compatible with those described by `FR-V ! Family, Softune C/C++ Compiler Manual (V6), Fujitsu Semiconductor'. ! The two exceptions are `__MDUNPACKH' and `__MBTOHE', the GCC forms of ! which pass 128-bit values by pointer rather than by value. ! Most of the functions are named after specific FR-V instructions. ! Such functions are said to be "directly mapped" and are summarized here ! in tabular form. * Menu: *************** In order to make this classification cle *** 39123,39152 **** and return values are given the following pseudo types: Pseudo type Real C type Constant? Description ! 'uh' 'unsigned short' No an unsigned halfword ! 'uw1' 'unsigned int' No an unsigned word ! 'sw1' 'int' No a signed word ! 'uw2' 'unsigned long long' No an unsigned doubleword ! 'sw2' 'long long' No a signed doubleword ! 'const' 'int' Yes an integer constant ! 'acc' 'int' Yes an ACC register number ! 'iacc' 'int' Yes an IACC register number These pseudo types are not defined by GCC, they are simply a notational convenience used in this manual. ! Arguments of type 'uh', 'uw1', 'sw1', 'uw2' and 'sw2' are evaluated at run time. They correspond to register operands in the underlying FR-V instructions. ! 'const' arguments represent immediate operands in the underlying FR-V instructions. They must be compile-time constants. ! 'acc' arguments are evaluated at compile time and specify the number of ! an accumulator register. For example, an 'acc' argument of 2 selects ! the ACC2 register. ! 'iacc' arguments are similar to 'acc' arguments but specify the number of an IACC register. See *note Other Built-in Functions:: for more details. --- 39493,39522 ---- and return values are given the following pseudo types: Pseudo type Real C type Constant? Description ! `uh' `unsigned short' No an unsigned halfword ! `uw1' `unsigned int' No an unsigned word ! `sw1' `int' No a signed word ! `uw2' `unsigned long long' No an unsigned doubleword ! `sw2' `long long' No a signed doubleword ! `const' `int' Yes an integer constant ! `acc' `int' Yes an ACC register number ! `iacc' `int' Yes an IACC register number These pseudo types are not defined by GCC, they are simply a notational convenience used in this manual. ! Arguments of type `uh', `uw1', `sw1', `uw2' and `sw2' are evaluated at run time. They correspond to register operands in the underlying FR-V instructions. ! `const' arguments represent immediate operands in the underlying FR-V instructions. They must be compile-time constants. ! `acc' arguments are evaluated at compile time and specify the number ! of an accumulator register. For example, an `acc' argument of 2 ! selects the ACC2 register. ! `iacc' arguments are similar to `acc' arguments but specify the number of an IACC register. See *note Other Built-in Functions:: for more details. *************** File: gcc.info, Node: Directly-mapped I *** 39159,39174 **** The functions listed below map directly to FR-V I-type instructions. Function prototype Example usage Assembly output ! 'sw1 __ADDSS (sw1, sw1)' 'C = __ADDSS (A, B)' 'ADDSS A,B,C' ! 'sw1 __SCAN (sw1, sw1)' 'C = __SCAN (A, B)' 'SCAN A,B,C' ! 'sw1 __SCUTSS (sw1)' 'B = __SCUTSS (A)' 'SCUTSS A,B' ! 'sw1 __SLASS (sw1, sw1)' 'C = __SLASS (A, B)' 'SLASS A,B,C' ! 'void __SMASS (sw1, sw1)' '__SMASS (A, B)' 'SMASS A,B' ! 'void __SMSSS (sw1, sw1)' '__SMSSS (A, B)' 'SMSSS A,B' ! 'void __SMU (sw1, sw1)' '__SMU (A, B)' 'SMU A,B' ! 'sw2 __SMUL (sw1, sw1)' 'C = __SMUL (A, B)' 'SMUL A,B,C' ! 'sw1 __SUBSS (sw1, sw1)' 'C = __SUBSS (A, B)' 'SUBSS A,B,C' ! 'uw2 __UMUL (uw1, uw1)' 'C = __UMUL (A, B)' 'UMUL A,B,C'  File: gcc.info, Node: Directly-mapped Media Functions, Next: Raw read/write Functions, Prev: Directly-mapped Integer Functions, Up: FR-V Built-in Functions --- 39529,39544 ---- The functions listed below map directly to FR-V I-type instructions. Function prototype Example usage Assembly output ! `sw1 __ADDSS (sw1, sw1)' `C = __ADDSS (A, B)' `ADDSS A,B,C' ! `sw1 __SCAN (sw1, sw1)' `C = __SCAN (A, B)' `SCAN A,B,C' ! `sw1 __SCUTSS (sw1)' `B = __SCUTSS (A)' `SCUTSS A,B' ! `sw1 __SLASS (sw1, sw1)' `C = __SLASS (A, B)' `SLASS A,B,C' ! `void __SMASS (sw1, sw1)' `__SMASS (A, B)' `SMASS A,B' ! `void __SMSSS (sw1, sw1)' `__SMSSS (A, B)' `SMSSS A,B' ! `void __SMU (sw1, sw1)' `__SMU (A, B)' `SMU A,B' ! `sw2 __SMUL (sw1, sw1)' `C = __SMUL (A, B)' `SMUL A,B,C' ! `sw1 __SUBSS (sw1, sw1)' `C = __SUBSS (A, B)' `SUBSS A,B,C' ! `uw2 __UMUL (uw1, uw1)' `C = __UMUL (A, B)' `UMUL A,B,C'  File: gcc.info, Node: Directly-mapped Media Functions, Next: Raw read/write Functions, Prev: Directly-mapped Integer Functions, Up: FR-V Built-in Functions *************** File: gcc.info, Node: Directly-mapped M *** 39179,39321 **** The functions listed below map directly to FR-V M-type instructions. Function prototype Example usage Assembly output ! 'uw1 __MABSHS (sw1)' 'B = __MABSHS (A)' 'MABSHS A,B' ! 'void __MADDACCS (acc, acc)' '__MADDACCS (B, A)' 'MADDACCS A,B' ! 'sw1 __MADDHSS (sw1, sw1)' 'C = __MADDHSS (A, 'MADDHSS A,B,C' ! B)' ! 'uw1 __MADDHUS (uw1, uw1)' 'C = __MADDHUS (A, 'MADDHUS A,B,C' ! B)' ! 'uw1 __MAND (uw1, uw1)' 'C = __MAND (A, B)' 'MAND A,B,C' ! 'void __MASACCS (acc, acc)' '__MASACCS (B, A)' 'MASACCS A,B' ! 'uw1 __MAVEH (uw1, uw1)' 'C = __MAVEH (A, B)' 'MAVEH A,B,C' ! 'uw2 __MBTOH (uw1)' 'B = __MBTOH (A)' 'MBTOH A,B' ! 'void __MBTOHE (uw1 *, uw1)' '__MBTOHE (&B, A)' 'MBTOHE A,B' ! 'void __MCLRACC (acc)' '__MCLRACC (A)' 'MCLRACC A' ! 'void __MCLRACCA (void)' '__MCLRACCA ()' 'MCLRACCA' ! 'uw1 __Mcop1 (uw1, uw1)' 'C = __Mcop1 (A, B)' 'Mcop1 A,B,C' ! 'uw1 __Mcop2 (uw1, uw1)' 'C = __Mcop2 (A, B)' 'Mcop2 A,B,C' ! 'uw1 __MCPLHI (uw2, const)' 'C = __MCPLHI (A, B)' 'MCPLHI A,#B,C' ! 'uw1 __MCPLI (uw2, const)' 'C = __MCPLI (A, B)' 'MCPLI A,#B,C' ! 'void __MCPXIS (acc, sw1, '__MCPXIS (C, A, B)' 'MCPXIS A,B,C' ! sw1)' ! 'void __MCPXIU (acc, uw1, '__MCPXIU (C, A, B)' 'MCPXIU A,B,C' ! uw1)' ! 'void __MCPXRS (acc, sw1, '__MCPXRS (C, A, B)' 'MCPXRS A,B,C' ! sw1)' ! 'void __MCPXRU (acc, uw1, '__MCPXRU (C, A, B)' 'MCPXRU A,B,C' ! uw1)' ! 'uw1 __MCUT (acc, uw1)' 'C = __MCUT (A, B)' 'MCUT A,B,C' ! 'uw1 __MCUTSS (acc, sw1)' 'C = __MCUTSS (A, B)' 'MCUTSS A,B,C' ! 'void __MDADDACCS (acc, acc)' '__MDADDACCS (B, A)' 'MDADDACCS A,B' ! 'void __MDASACCS (acc, acc)' '__MDASACCS (B, A)' 'MDASACCS A,B' ! 'uw2 __MDCUTSSI (acc, const)' 'C = __MDCUTSSI (A, 'MDCUTSSI ! B)' A,#B,C' ! 'uw2 __MDPACKH (uw2, uw2)' 'C = __MDPACKH (A, 'MDPACKH A,B,C' ! B)' ! 'uw2 __MDROTLI (uw2, const)' 'C = __MDROTLI (A, 'MDROTLI ! B)' A,#B,C' ! 'void __MDSUBACCS (acc, acc)' '__MDSUBACCS (B, A)' 'MDSUBACCS A,B' ! 'void __MDUNPACKH (uw1 *, '__MDUNPACKH (&B, A)' 'MDUNPACKH A,B' ! uw2)' ! 'uw2 __MEXPDHD (uw1, const)' 'C = __MEXPDHD (A, 'MEXPDHD ! B)' A,#B,C' ! 'uw1 __MEXPDHW (uw1, const)' 'C = __MEXPDHW (A, 'MEXPDHW ! B)' A,#B,C' ! 'uw1 __MHDSETH (uw1, const)' 'C = __MHDSETH (A, 'MHDSETH ! B)' A,#B,C' ! 'sw1 __MHDSETS (const)' 'B = __MHDSETS (A)' 'MHDSETS #A,B' ! 'uw1 __MHSETHIH (uw1, const)' 'B = __MHSETHIH (B, 'MHSETHIH #A,B' ! A)' ! 'sw1 __MHSETHIS (sw1, const)' 'B = __MHSETHIS (B, 'MHSETHIS #A,B' ! A)' ! 'uw1 __MHSETLOH (uw1, const)' 'B = __MHSETLOH (B, 'MHSETLOH #A,B' ! A)' ! 'sw1 __MHSETLOS (sw1, const)' 'B = __MHSETLOS (B, 'MHSETLOS #A,B' ! A)' ! 'uw1 __MHTOB (uw2)' 'B = __MHTOB (A)' 'MHTOB A,B' ! 'void __MMACHS (acc, sw1, '__MMACHS (C, A, B)' 'MMACHS A,B,C' ! sw1)' ! 'void __MMACHU (acc, uw1, '__MMACHU (C, A, B)' 'MMACHU A,B,C' ! uw1)' ! 'void __MMRDHS (acc, sw1, '__MMRDHS (C, A, B)' 'MMRDHS A,B,C' ! sw1)' ! 'void __MMRDHU (acc, uw1, '__MMRDHU (C, A, B)' 'MMRDHU A,B,C' ! uw1)' ! 'void __MMULHS (acc, sw1, '__MMULHS (C, A, B)' 'MMULHS A,B,C' ! sw1)' ! 'void __MMULHU (acc, uw1, '__MMULHU (C, A, B)' 'MMULHU A,B,C' ! uw1)' ! 'void __MMULXHS (acc, sw1, '__MMULXHS (C, A, B)' 'MMULXHS A,B,C' ! sw1)' ! 'void __MMULXHU (acc, uw1, '__MMULXHU (C, A, B)' 'MMULXHU A,B,C' ! uw1)' ! 'uw1 __MNOT (uw1)' 'B = __MNOT (A)' 'MNOT A,B' ! 'uw1 __MOR (uw1, uw1)' 'C = __MOR (A, B)' 'MOR A,B,C' ! 'uw1 __MPACKH (uh, uh)' 'C = __MPACKH (A, B)' 'MPACKH A,B,C' ! 'sw2 __MQADDHSS (sw2, sw2)' 'C = __MQADDHSS (A, 'MQADDHSS ! B)' A,B,C' ! 'uw2 __MQADDHUS (uw2, uw2)' 'C = __MQADDHUS (A, 'MQADDHUS ! B)' A,B,C' ! 'void __MQCPXIS (acc, sw2, '__MQCPXIS (C, A, B)' 'MQCPXIS A,B,C' ! sw2)' ! 'void __MQCPXIU (acc, uw2, '__MQCPXIU (C, A, B)' 'MQCPXIU A,B,C' ! uw2)' ! 'void __MQCPXRS (acc, sw2, '__MQCPXRS (C, A, B)' 'MQCPXRS A,B,C' ! sw2)' ! 'void __MQCPXRU (acc, uw2, '__MQCPXRU (C, A, B)' 'MQCPXRU A,B,C' ! uw2)' ! 'sw2 __MQLCLRHS (sw2, sw2)' 'C = __MQLCLRHS (A, 'MQLCLRHS ! B)' A,B,C' ! 'sw2 __MQLMTHS (sw2, sw2)' 'C = __MQLMTHS (A, 'MQLMTHS A,B,C' ! B)' ! 'void __MQMACHS (acc, sw2, '__MQMACHS (C, A, B)' 'MQMACHS A,B,C' ! sw2)' ! 'void __MQMACHU (acc, uw2, '__MQMACHU (C, A, B)' 'MQMACHU A,B,C' ! uw2)' ! 'void __MQMACXHS (acc, sw2, '__MQMACXHS (C, A, 'MQMACXHS ! sw2)' B)' A,B,C' ! 'void __MQMULHS (acc, sw2, '__MQMULHS (C, A, B)' 'MQMULHS A,B,C' ! sw2)' ! 'void __MQMULHU (acc, uw2, '__MQMULHU (C, A, B)' 'MQMULHU A,B,C' ! uw2)' ! 'void __MQMULXHS (acc, sw2, '__MQMULXHS (C, A, 'MQMULXHS ! sw2)' B)' A,B,C' ! 'void __MQMULXHU (acc, uw2, '__MQMULXHU (C, A, 'MQMULXHU ! uw2)' B)' A,B,C' ! 'sw2 __MQSATHS (sw2, sw2)' 'C = __MQSATHS (A, 'MQSATHS A,B,C' ! B)' ! 'uw2 __MQSLLHI (uw2, int)' 'C = __MQSLLHI (A, 'MQSLLHI A,B,C' ! B)' ! 'sw2 __MQSRAHI (sw2, int)' 'C = __MQSRAHI (A, 'MQSRAHI A,B,C' ! B)' ! 'sw2 __MQSUBHSS (sw2, sw2)' 'C = __MQSUBHSS (A, 'MQSUBHSS ! B)' A,B,C' ! 'uw2 __MQSUBHUS (uw2, uw2)' 'C = __MQSUBHUS (A, 'MQSUBHUS ! B)' A,B,C' ! 'void __MQXMACHS (acc, sw2, '__MQXMACHS (C, A, 'MQXMACHS ! sw2)' B)' A,B,C' ! 'void __MQXMACXHS (acc, sw2, '__MQXMACXHS (C, A, 'MQXMACXHS ! sw2)' B)' A,B,C' ! 'uw1 __MRDACC (acc)' 'B = __MRDACC (A)' 'MRDACC A,B' ! 'uw1 __MRDACCG (acc)' 'B = __MRDACCG (A)' 'MRDACCG A,B' ! 'uw1 __MROTLI (uw1, const)' 'C = __MROTLI (A, B)' 'MROTLI A,#B,C' ! 'uw1 __MROTRI (uw1, const)' 'C = __MROTRI (A, B)' 'MROTRI A,#B,C' ! 'sw1 __MSATHS (sw1, sw1)' 'C = __MSATHS (A, B)' 'MSATHS A,B,C' ! 'uw1 __MSATHU (uw1, uw1)' 'C = __MSATHU (A, B)' 'MSATHU A,B,C' ! 'uw1 __MSLLHI (uw1, const)' 'C = __MSLLHI (A, B)' 'MSLLHI A,#B,C' ! 'sw1 __MSRAHI (sw1, const)' 'C = __MSRAHI (A, B)' 'MSRAHI A,#B,C' ! 'uw1 __MSRLHI (uw1, const)' 'C = __MSRLHI (A, B)' 'MSRLHI A,#B,C' ! 'void __MSUBACCS (acc, acc)' '__MSUBACCS (B, A)' 'MSUBACCS A,B' ! 'sw1 __MSUBHSS (sw1, sw1)' 'C = __MSUBHSS (A, 'MSUBHSS A,B,C' ! B)' ! 'uw1 __MSUBHUS (uw1, uw1)' 'C = __MSUBHUS (A, 'MSUBHUS A,B,C' ! B)' ! 'void __MTRAP (void)' '__MTRAP ()' 'MTRAP' ! 'uw2 __MUNPACKH (uw1)' 'B = __MUNPACKH (A)' 'MUNPACKH A,B' ! 'uw1 __MWCUT (uw2, uw1)' 'C = __MWCUT (A, B)' 'MWCUT A,B,C' ! 'void __MWTACC (acc, uw1)' '__MWTACC (B, A)' 'MWTACC A,B' ! 'void __MWTACCG (acc, uw1)' '__MWTACCG (B, A)' 'MWTACCG A,B' ! 'uw1 __MXOR (uw1, uw1)' 'C = __MXOR (A, B)' 'MXOR A,B,C'  File: gcc.info, Node: Raw read/write Functions, Next: Other Built-in Functions, Prev: Directly-mapped Media Functions, Up: FR-V Built-in Functions --- 39549,39647 ---- The functions listed below map directly to FR-V M-type instructions. Function prototype Example usage Assembly output ! `uw1 __MABSHS (sw1)' `B = __MABSHS (A)' `MABSHS A,B' ! `void __MADDACCS (acc, acc)' `__MADDACCS (B, A)' `MADDACCS A,B' ! `sw1 __MADDHSS (sw1, sw1)' `C = __MADDHSS (A, B)' `MADDHSS A,B,C' ! `uw1 __MADDHUS (uw1, uw1)' `C = __MADDHUS (A, B)' `MADDHUS A,B,C' ! `uw1 __MAND (uw1, uw1)' `C = __MAND (A, B)' `MAND A,B,C' ! `void __MASACCS (acc, acc)' `__MASACCS (B, A)' `MASACCS A,B' ! `uw1 __MAVEH (uw1, uw1)' `C = __MAVEH (A, B)' `MAVEH A,B,C' ! `uw2 __MBTOH (uw1)' `B = __MBTOH (A)' `MBTOH A,B' ! `void __MBTOHE (uw1 *, uw1)' `__MBTOHE (&B, A)' `MBTOHE A,B' ! `void __MCLRACC (acc)' `__MCLRACC (A)' `MCLRACC A' ! `void __MCLRACCA (void)' `__MCLRACCA ()' `MCLRACCA' ! `uw1 __Mcop1 (uw1, uw1)' `C = __Mcop1 (A, B)' `Mcop1 A,B,C' ! `uw1 __Mcop2 (uw1, uw1)' `C = __Mcop2 (A, B)' `Mcop2 A,B,C' ! `uw1 __MCPLHI (uw2, const)' `C = __MCPLHI (A, B)' `MCPLHI A,#B,C' ! `uw1 __MCPLI (uw2, const)' `C = __MCPLI (A, B)' `MCPLI A,#B,C' ! `void __MCPXIS (acc, sw1, sw1)' `__MCPXIS (C, A, B)' `MCPXIS A,B,C' ! `void __MCPXIU (acc, uw1, uw1)' `__MCPXIU (C, A, B)' `MCPXIU A,B,C' ! `void __MCPXRS (acc, sw1, sw1)' `__MCPXRS (C, A, B)' `MCPXRS A,B,C' ! `void __MCPXRU (acc, uw1, uw1)' `__MCPXRU (C, A, B)' `MCPXRU A,B,C' ! `uw1 __MCUT (acc, uw1)' `C = __MCUT (A, B)' `MCUT A,B,C' ! `uw1 __MCUTSS (acc, sw1)' `C = __MCUTSS (A, B)' `MCUTSS A,B,C' ! `void __MDADDACCS (acc, acc)' `__MDADDACCS (B, A)' `MDADDACCS A,B' ! `void __MDASACCS (acc, acc)' `__MDASACCS (B, A)' `MDASACCS A,B' ! `uw2 __MDCUTSSI (acc, const)' `C = __MDCUTSSI (A, B)' `MDCUTSSI A,#B,C' ! `uw2 __MDPACKH (uw2, uw2)' `C = __MDPACKH (A, B)' `MDPACKH A,B,C' ! `uw2 __MDROTLI (uw2, const)' `C = __MDROTLI (A, B)' `MDROTLI A,#B,C' ! `void __MDSUBACCS (acc, acc)' `__MDSUBACCS (B, A)' `MDSUBACCS A,B' ! `void __MDUNPACKH (uw1 *, uw2)' `__MDUNPACKH (&B, A)' `MDUNPACKH A,B' ! `uw2 __MEXPDHD (uw1, const)' `C = __MEXPDHD (A, B)' `MEXPDHD A,#B,C' ! `uw1 __MEXPDHW (uw1, const)' `C = __MEXPDHW (A, B)' `MEXPDHW A,#B,C' ! `uw1 __MHDSETH (uw1, const)' `C = __MHDSETH (A, B)' `MHDSETH A,#B,C' ! `sw1 __MHDSETS (const)' `B = __MHDSETS (A)' `MHDSETS #A,B' ! `uw1 __MHSETHIH (uw1, const)' `B = __MHSETHIH (B, A)' `MHSETHIH #A,B' ! `sw1 __MHSETHIS (sw1, const)' `B = __MHSETHIS (B, A)' `MHSETHIS #A,B' ! `uw1 __MHSETLOH (uw1, const)' `B = __MHSETLOH (B, A)' `MHSETLOH #A,B' ! `sw1 __MHSETLOS (sw1, const)' `B = __MHSETLOS (B, A)' `MHSETLOS #A,B' ! `uw1 __MHTOB (uw2)' `B = __MHTOB (A)' `MHTOB A,B' ! `void __MMACHS (acc, sw1, sw1)' `__MMACHS (C, A, B)' `MMACHS A,B,C' ! `void __MMACHU (acc, uw1, uw1)' `__MMACHU (C, A, B)' `MMACHU A,B,C' ! `void __MMRDHS (acc, sw1, sw1)' `__MMRDHS (C, A, B)' `MMRDHS A,B,C' ! `void __MMRDHU (acc, uw1, uw1)' `__MMRDHU (C, A, B)' `MMRDHU A,B,C' ! `void __MMULHS (acc, sw1, sw1)' `__MMULHS (C, A, B)' `MMULHS A,B,C' ! `void __MMULHU (acc, uw1, uw1)' `__MMULHU (C, A, B)' `MMULHU A,B,C' ! `void __MMULXHS (acc, sw1, sw1)' `__MMULXHS (C, A, B)' `MMULXHS A,B,C' ! `void __MMULXHU (acc, uw1, uw1)' `__MMULXHU (C, A, B)' `MMULXHU A,B,C' ! `uw1 __MNOT (uw1)' `B = __MNOT (A)' `MNOT A,B' ! `uw1 __MOR (uw1, uw1)' `C = __MOR (A, B)' `MOR A,B,C' ! `uw1 __MPACKH (uh, uh)' `C = __MPACKH (A, B)' `MPACKH A,B,C' ! `sw2 __MQADDHSS (sw2, sw2)' `C = __MQADDHSS (A, B)' `MQADDHSS A,B,C' ! `uw2 __MQADDHUS (uw2, uw2)' `C = __MQADDHUS (A, B)' `MQADDHUS A,B,C' ! `void __MQCPXIS (acc, sw2, sw2)' `__MQCPXIS (C, A, B)' `MQCPXIS A,B,C' ! `void __MQCPXIU (acc, uw2, uw2)' `__MQCPXIU (C, A, B)' `MQCPXIU A,B,C' ! `void __MQCPXRS (acc, sw2, sw2)' `__MQCPXRS (C, A, B)' `MQCPXRS A,B,C' ! `void __MQCPXRU (acc, uw2, uw2)' `__MQCPXRU (C, A, B)' `MQCPXRU A,B,C' ! `sw2 __MQLCLRHS (sw2, sw2)' `C = __MQLCLRHS (A, B)' `MQLCLRHS A,B,C' ! `sw2 __MQLMTHS (sw2, sw2)' `C = __MQLMTHS (A, B)' `MQLMTHS A,B,C' ! `void __MQMACHS (acc, sw2, sw2)' `__MQMACHS (C, A, B)' `MQMACHS A,B,C' ! `void __MQMACHU (acc, uw2, uw2)' `__MQMACHU (C, A, B)' `MQMACHU A,B,C' ! `void __MQMACXHS (acc, sw2, `__MQMACXHS (C, A, B)' `MQMACXHS A,B,C' ! sw2)' ! `void __MQMULHS (acc, sw2, sw2)' `__MQMULHS (C, A, B)' `MQMULHS A,B,C' ! `void __MQMULHU (acc, uw2, uw2)' `__MQMULHU (C, A, B)' `MQMULHU A,B,C' ! `void __MQMULXHS (acc, sw2, `__MQMULXHS (C, A, B)' `MQMULXHS A,B,C' ! sw2)' ! `void __MQMULXHU (acc, uw2, `__MQMULXHU (C, A, B)' `MQMULXHU A,B,C' ! uw2)' ! `sw2 __MQSATHS (sw2, sw2)' `C = __MQSATHS (A, B)' `MQSATHS A,B,C' ! `uw2 __MQSLLHI (uw2, int)' `C = __MQSLLHI (A, B)' `MQSLLHI A,B,C' ! `sw2 __MQSRAHI (sw2, int)' `C = __MQSRAHI (A, B)' `MQSRAHI A,B,C' ! `sw2 __MQSUBHSS (sw2, sw2)' `C = __MQSUBHSS (A, B)' `MQSUBHSS A,B,C' ! `uw2 __MQSUBHUS (uw2, uw2)' `C = __MQSUBHUS (A, B)' `MQSUBHUS A,B,C' ! `void __MQXMACHS (acc, sw2, `__MQXMACHS (C, A, B)' `MQXMACHS A,B,C' ! sw2)' ! `void __MQXMACXHS (acc, sw2, `__MQXMACXHS (C, A, B)' `MQXMACXHS A,B,C' ! sw2)' ! `uw1 __MRDACC (acc)' `B = __MRDACC (A)' `MRDACC A,B' ! `uw1 __MRDACCG (acc)' `B = __MRDACCG (A)' `MRDACCG A,B' ! `uw1 __MROTLI (uw1, const)' `C = __MROTLI (A, B)' `MROTLI A,#B,C' ! `uw1 __MROTRI (uw1, const)' `C = __MROTRI (A, B)' `MROTRI A,#B,C' ! `sw1 __MSATHS (sw1, sw1)' `C = __MSATHS (A, B)' `MSATHS A,B,C' ! `uw1 __MSATHU (uw1, uw1)' `C = __MSATHU (A, B)' `MSATHU A,B,C' ! `uw1 __MSLLHI (uw1, const)' `C = __MSLLHI (A, B)' `MSLLHI A,#B,C' ! `sw1 __MSRAHI (sw1, const)' `C = __MSRAHI (A, B)' `MSRAHI A,#B,C' ! `uw1 __MSRLHI (uw1, const)' `C = __MSRLHI (A, B)' `MSRLHI A,#B,C' ! `void __MSUBACCS (acc, acc)' `__MSUBACCS (B, A)' `MSUBACCS A,B' ! `sw1 __MSUBHSS (sw1, sw1)' `C = __MSUBHSS (A, B)' `MSUBHSS A,B,C' ! `uw1 __MSUBHUS (uw1, uw1)' `C = __MSUBHUS (A, B)' `MSUBHUS A,B,C' ! `void __MTRAP (void)' `__MTRAP ()' `MTRAP' ! `uw2 __MUNPACKH (uw1)' `B = __MUNPACKH (A)' `MUNPACKH A,B' ! `uw1 __MWCUT (uw2, uw1)' `C = __MWCUT (A, B)' `MWCUT A,B,C' ! `void __MWTACC (acc, uw1)' `__MWTACC (B, A)' `MWTACC A,B' ! `void __MWTACCG (acc, uw1)' `__MWTACCG (B, A)' `MWTACCG A,B' ! `uw1 __MXOR (uw1, uw1)' `C = __MXOR (A, B)' `MXOR A,B,C'  File: gcc.info, Node: Raw read/write Functions, Next: Other Built-in Functions, Prev: Directly-mapped Media Functions, Up: FR-V Built-in Functions *************** File: gcc.info, Node: Raw read/write Fu *** 39324,39342 **** .................................. This sections describes built-in functions related to read and write ! instructions to access memory. These functions generate 'membar' instructions to flush the I/O load and stores where appropriate, as described in Fujitsu's manual described above. ! 'unsigned char __builtin_read8 (void *DATA)' ! 'unsigned short __builtin_read16 (void *DATA)' ! 'unsigned long __builtin_read32 (void *DATA)' ! 'unsigned long long __builtin_read64 (void *DATA)' ! 'void __builtin_write8 (void *DATA, unsigned char DATUM)' ! 'void __builtin_write16 (void *DATA, unsigned short DATUM)' ! 'void __builtin_write32 (void *DATA, unsigned long DATUM)' ! 'void __builtin_write64 (void *DATA, unsigned long long DATUM)'  File: gcc.info, Node: Other Built-in Functions, Prev: Raw read/write Functions, Up: FR-V Built-in Functions --- 39650,39674 ---- .................................. This sections describes built-in functions related to read and write ! instructions to access memory. These functions generate `membar' instructions to flush the I/O load and stores where appropriate, as described in Fujitsu's manual described above. ! `unsigned char __builtin_read8 (void *DATA)' ! `unsigned short __builtin_read16 (void *DATA)' ! ! `unsigned long __builtin_read32 (void *DATA)' ! ! `unsigned long long __builtin_read64 (void *DATA)' ! ! `void __builtin_write8 (void *DATA, unsigned char DATUM)' ! ! `void __builtin_write16 (void *DATA, unsigned short DATUM)' ! ! `void __builtin_write32 (void *DATA, unsigned long DATUM)' ! ! `void __builtin_write64 (void *DATA, unsigned long long DATUM)'  File: gcc.info, Node: Other Built-in Functions, Prev: Raw read/write Functions, Up: FR-V Built-in Functions *************** File: gcc.info, Node: Other Built-in Fu *** 39347,39374 **** This section describes built-in functions that are not named after a specific FR-V instruction. ! 'sw2 __IACCreadll (iacc REG)' Return the full 64-bit value of IACC0. The REG argument is reserved for future expansion and must be 0. ! 'sw1 __IACCreadl (iacc REG)' Return the value of IACC0H if REG is 0 and IACC0L if REG is 1. Other values of REG are rejected as invalid. ! 'void __IACCsetll (iacc REG, sw2 X)' Set the full 64-bit value of IACC0 to X. The REG argument is reserved for future expansion and must be 0. ! 'void __IACCsetl (iacc REG, sw1 X)' Set IACC0H to X if REG is 0 and IACC0L to X if REG is 1. Other values of REG are rejected as invalid. ! 'void __data_prefetch0 (const void *X)' ! Use the 'dcpl' instruction to load the contents of address X into the data cache. ! 'void __data_prefetch (const void *X)' ! Use the 'nldub' instruction to load the contents of address X into the data cache. The instruction is issued in slot I1.  --- 39679,39706 ---- This section describes built-in functions that are not named after a specific FR-V instruction. ! `sw2 __IACCreadll (iacc REG)' Return the full 64-bit value of IACC0. The REG argument is reserved for future expansion and must be 0. ! `sw1 __IACCreadl (iacc REG)' Return the value of IACC0H if REG is 0 and IACC0L if REG is 1. Other values of REG are rejected as invalid. ! `void __IACCsetll (iacc REG, sw2 X)' Set the full 64-bit value of IACC0 to X. The REG argument is reserved for future expansion and must be 0. ! `void __IACCsetl (iacc REG, sw1 X)' Set IACC0H to X if REG is 0 and IACC0L to X if REG is 1. Other values of REG are rejected as invalid. ! `void __data_prefetch0 (const void *X)' ! Use the `dcpl' instruction to load the contents of address X into the data cache. ! `void __data_prefetch (const void *X)' ! Use the `nldub' instruction to load the contents of address X into the data cache. The instruction is issued in slot I1.  *************** File: gcc.info, Node: X86 Built-in Func *** 39377,39412 **** 6.57.11 X86 Built-in Functions ------------------------------ ! These built-in functions are available for the i386 and x86-64 family of ! computers, depending on the command-line switches used. ! If you specify command-line switches such as '-msse', the compiler could use the extended instruction sets even if the built-ins are not used explicitly in the program. For this reason, applications that perform run-time CPU detection must compile separate files for each ! supported architecture, using the appropriate flags. In particular, the ! file containing the CPU detection code should be compiled without these ! options. The following machine modes are available for use with MMX built-in ! functions (*note Vector Extensions::): 'V2SI' for a vector of two 32-bit ! integers, 'V4HI' for a vector of four 16-bit integers, and 'V8QI' for a ! vector of eight 8-bit integers. Some of the built-in functions operate ! on MMX registers as a whole 64-bit entity, these use 'V1DI' as their ! mode. ! If 3DNow! extensions are enabled, 'V2SF' is used as a mode for a vector of two 32-bit floating-point values. ! If SSE extensions are enabled, 'V4SF' is used for a vector of four 32-bit floating-point values. Some instructions use a vector of four ! 32-bit integers, these use 'V4SI'. Finally, some instructions operate on an entire vector register, interpreting it as a 128-bit integer, ! these use mode 'TI'. In 64-bit mode, the x86-64 family of processors uses additional ! built-in functions for efficient use of 'TF' ('__float128') 128-bit ! floating point and 'TC' 128-bit complex floating-point values. The following floating-point built-in functions are available in 64-bit mode. All of them implement the function that is part of the name. --- 39709,39744 ---- 6.57.11 X86 Built-in Functions ------------------------------ ! These built-in functions are available for the i386 and x86-64 family ! of computers, depending on the command-line switches used. ! If you specify command-line switches such as `-msse', the compiler could use the extended instruction sets even if the built-ins are not used explicitly in the program. For this reason, applications that perform run-time CPU detection must compile separate files for each ! supported architecture, using the appropriate flags. In particular, ! the file containing the CPU detection code should be compiled without ! these options. The following machine modes are available for use with MMX built-in ! functions (*note Vector Extensions::): `V2SI' for a vector of two ! 32-bit integers, `V4HI' for a vector of four 16-bit integers, and ! `V8QI' for a vector of eight 8-bit integers. Some of the built-in ! functions operate on MMX registers as a whole 64-bit entity, these use ! `V1DI' as their mode. ! If 3DNow! extensions are enabled, `V2SF' is used as a mode for a vector of two 32-bit floating-point values. ! If SSE extensions are enabled, `V4SF' is used for a vector of four 32-bit floating-point values. Some instructions use a vector of four ! 32-bit integers, these use `V4SI'. Finally, some instructions operate on an entire vector register, interpreting it as a 128-bit integer, ! these use mode `TI'. In 64-bit mode, the x86-64 family of processors uses additional ! built-in functions for efficient use of `TF' (`__float128') 128-bit ! floating point and `TC' 128-bit complex floating-point values. The following floating-point built-in functions are available in 64-bit mode. All of them implement the function that is part of the name. *************** mode. All of them implement the functio *** 39416,39434 **** The following built-in function is always available. ! 'void __builtin_ia32_pause (void)' ! Generates the 'pause' machine instruction with a compiler memory barrier. The following floating-point built-in functions are made available in the 64-bit mode. ! '__float128 __builtin_infq (void)' ! Similar to '__builtin_inf', except the return type is '__float128'. ! '__float128 __builtin_huge_valq (void)' ! Similar to '__builtin_huge_val', except the return type is ! '__float128'. The following built-in functions are always available and can be used to check the target platform type. --- 39748,39766 ---- The following built-in function is always available. ! `void __builtin_ia32_pause (void)' ! Generates the `pause' machine instruction with a compiler memory barrier. The following floating-point built-in functions are made available in the 64-bit mode. ! `__float128 __builtin_infq (void)' ! Similar to `__builtin_inf', except the return type is `__float128'. ! `__float128 __builtin_huge_valq (void)' ! Similar to `__builtin_huge_val', except the return type is ! `__float128'. The following built-in functions are always available and can be used to check the target platform type. *************** to check the target platform type. *** 39437,39450 **** This function runs the CPU detection code to check the type of CPU and the features supported. This built-in function needs to be invoked along with the built-in functions to check CPU type and ! features, '__builtin_cpu_is' and '__builtin_cpu_supports', only when used in a function that is executed before any constructors are called. The CPU detection code is automatically executed in a very high priority constructor. ! For example, this function has to be used in 'ifunc' resolvers that ! check for CPU type using the built-in functions '__builtin_cpu_is' ! and '__builtin_cpu_supports', or in constructors on targets that don't support constructor priority. static void (*resolve_memcpy (void)) (void) --- 39769,39782 ---- This function runs the CPU detection code to check the type of CPU and the features supported. This built-in function needs to be invoked along with the built-in functions to check CPU type and ! features, `__builtin_cpu_is' and `__builtin_cpu_supports', only when used in a function that is executed before any constructors are called. The CPU detection code is automatically executed in a very high priority constructor. ! For example, this function has to be used in `ifunc' resolvers that ! check for CPU type using the built-in functions `__builtin_cpu_is' ! and `__builtin_cpu_supports', or in constructors on targets that don't support constructor priority. static void (*resolve_memcpy (void)) (void) *************** to check the target platform type. *** 39461,39526 **** void *memcpy (void *, const void *, size_t) __attribute__ ((ifunc ("resolve_memcpy"))); -- Built-in Function: int __builtin_cpu_is (const char *CPUNAME) This function returns a positive integer if the run-time CPU is of ! type CPUNAME and returns '0' otherwise. The following CPU names can be detected: ! 'intel' Intel CPU. ! 'atom' Intel Atom CPU. ! 'core2' Intel Core 2 CPU. ! 'corei7' Intel Core i7 CPU. ! 'nehalem' Intel Core i7 Nehalem CPU. ! 'westmere' Intel Core i7 Westmere CPU. ! 'sandybridge' Intel Core i7 Sandy Bridge CPU. ! 'amd' AMD CPU. ! 'amdfam10h' AMD Family 10h CPU. ! 'barcelona' AMD Family 10h Barcelona CPU. ! 'shanghai' AMD Family 10h Shanghai CPU. ! 'istanbul' AMD Family 10h Istanbul CPU. ! 'btver1' AMD Family 14h CPU. ! 'amdfam15h' AMD Family 15h CPU. ! 'bdver1' AMD Family 15h Bulldozer version 1. ! 'bdver2' AMD Family 15h Bulldozer version 2. ! 'bdver3' AMD Family 15h Bulldozer version 3. ! 'bdver4' AMD Family 15h Bulldozer version 4. ! 'btver2' AMD Family 16h CPU. Here is an example: --- 39793,39859 ---- void *memcpy (void *, const void *, size_t) __attribute__ ((ifunc ("resolve_memcpy"))); + -- Built-in Function: int __builtin_cpu_is (const char *CPUNAME) This function returns a positive integer if the run-time CPU is of ! type CPUNAME and returns `0' otherwise. The following CPU names can be detected: ! `intel' Intel CPU. ! `atom' Intel Atom CPU. ! `core2' Intel Core 2 CPU. ! `corei7' Intel Core i7 CPU. ! `nehalem' Intel Core i7 Nehalem CPU. ! `westmere' Intel Core i7 Westmere CPU. ! `sandybridge' Intel Core i7 Sandy Bridge CPU. ! `amd' AMD CPU. ! `amdfam10h' AMD Family 10h CPU. ! `barcelona' AMD Family 10h Barcelona CPU. ! `shanghai' AMD Family 10h Shanghai CPU. ! `istanbul' AMD Family 10h Istanbul CPU. ! `btver1' AMD Family 14h CPU. ! `amdfam15h' AMD Family 15h CPU. ! `bdver1' AMD Family 15h Bulldozer version 1. ! `bdver2' AMD Family 15h Bulldozer version 2. ! `bdver3' AMD Family 15h Bulldozer version 3. ! `bdver4' AMD Family 15h Bulldozer version 4. ! `btver2' AMD Family 16h CPU. Here is an example: *************** to check the target platform type. *** 39535,39564 **** -- Built-in Function: int __builtin_cpu_supports (const char *FEATURE) This function returns a positive integer if the run-time CPU ! supports FEATURE and returns '0' otherwise. The following features can be detected: ! 'cmov' CMOV instruction. ! 'mmx' MMX instructions. ! 'popcnt' POPCNT instruction. ! 'sse' SSE instructions. ! 'sse2' SSE2 instructions. ! 'sse3' SSE3 instructions. ! 'ssse3' SSSE3 instructions. ! 'sse4.1' SSE4.1 instructions. ! 'sse4.2' SSE4.2 instructions. ! 'avx' AVX instructions. ! 'avx2' AVX2 instructions. Here is an example: --- 39868,39907 ---- -- Built-in Function: int __builtin_cpu_supports (const char *FEATURE) This function returns a positive integer if the run-time CPU ! supports FEATURE and returns `0' otherwise. The following features can be detected: ! `cmov' CMOV instruction. ! ! `mmx' MMX instructions. ! ! `popcnt' POPCNT instruction. ! ! `sse' SSE instructions. ! ! `sse2' SSE2 instructions. ! ! `sse3' SSE3 instructions. ! ! `ssse3' SSSE3 instructions. ! ! `sse4.1' SSE4.1 instructions. ! ! `sse4.2' SSE4.2 instructions. ! ! `avx' AVX instructions. ! ! `avx2' AVX2 instructions. Here is an example: *************** to check the target platform type. *** 39571,39578 **** count = generic_countbits (n); //generic implementation. } ! The following built-in functions are made available by '-mmmx'. All of ! them generate the machine instruction that is part of the name. v8qi __builtin_ia32_paddb (v8qi, v8qi) v4hi __builtin_ia32_paddw (v4hi, v4hi) --- 39914,39921 ---- count = generic_countbits (n); //generic implementation. } ! The following built-in functions are made available by `-mmmx'. All ! of them generate the machine instruction that is part of the name. v8qi __builtin_ia32_paddb (v8qi, v8qi) v4hi __builtin_ia32_paddw (v4hi, v4hi) *************** them generate the machine instruction th *** 39627,39636 **** v4hi __builtin_ia32_psrawi (v4hi, int) v2si __builtin_ia32_psradi (v2si, int) - The following built-in functions are made available either with ! '-msse', or with a combination of '-m3dnow' and '-march=athlon'. All of ! them generate the machine instruction that is part of the name. v4hi __builtin_ia32_pmulhuw (v4hi, v4hi) v8qi __builtin_ia32_pavgb (v8qi, v8qi) --- 39970,39978 ---- v4hi __builtin_ia32_psrawi (v4hi, int) v2si __builtin_ia32_psradi (v2si, int) The following built-in functions are made available either with ! `-msse', or with a combination of `-m3dnow' and `-march=athlon'. All ! of them generate the machine instruction that is part of the name. v4hi __builtin_ia32_pmulhuw (v4hi, v4hi) v8qi __builtin_ia32_pavgb (v8qi, v8qi) *************** them generate the machine instruction th *** 39645,39651 **** void __builtin_ia32_movntq (di *, di) void __builtin_ia32_sfence (void) ! The following built-in functions are available when '-msse' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comieq (v4sf, v4sf) --- 39987,39993 ---- void __builtin_ia32_movntq (di *, di) void __builtin_ia32_sfence (void) ! The following built-in functions are available when `-msse' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comieq (v4sf, v4sf) *************** All of them generate the machine instruc *** 39717,39740 **** void __builtin_ia32_movntps (float *, v4sf) int __builtin_ia32_movmskps (v4sf) ! The following built-in functions are available when '-msse' is used. ! 'v4sf __builtin_ia32_loadups (float *)' ! Generates the 'movups' machine instruction as a load from memory. ! 'void __builtin_ia32_storeups (float *, v4sf)' ! Generates the 'movups' machine instruction as a store to memory. ! 'v4sf __builtin_ia32_loadss (float *)' ! Generates the 'movss' machine instruction as a load from memory. ! 'v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)' ! Generates the 'movhps' machine instruction as a load from memory. ! 'v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)' ! Generates the 'movlps' machine instruction as a load from memory ! 'void __builtin_ia32_storehps (v2sf *, v4sf)' ! Generates the 'movhps' machine instruction as a store to memory. ! 'void __builtin_ia32_storelps (v2sf *, v4sf)' ! Generates the 'movlps' machine instruction as a store to memory. ! The following built-in functions are available when '-msse2' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comisdeq (v2df, v2df) --- 40059,40088 ---- void __builtin_ia32_movntps (float *, v4sf) int __builtin_ia32_movmskps (v4sf) ! The following built-in functions are available when `-msse' is used. ! `v4sf __builtin_ia32_loadups (float *)' ! Generates the `movups' machine instruction as a load from memory. ! `void __builtin_ia32_storeups (float *, v4sf)' ! Generates the `movups' machine instruction as a store to memory. ! ! `v4sf __builtin_ia32_loadss (float *)' ! Generates the `movss' machine instruction as a load from memory. ! ! `v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)' ! Generates the `movhps' machine instruction as a load from memory. ! ! `v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)' ! Generates the `movlps' machine instruction as a load from memory ! ! `void __builtin_ia32_storehps (v2sf *, v4sf)' ! Generates the `movhps' machine instruction as a store to memory. ! ! `void __builtin_ia32_storelps (v2sf *, v4sf)' ! Generates the `movlps' machine instruction as a store to memory. ! ! The following built-in functions are available when `-msse2' is used. All of them generate the machine instruction that is part of the name. int __builtin_ia32_comisdeq (v2df, v2df) *************** All of them generate the machine instruc *** 39893,39899 **** v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi) v2di __builtin_ia32_movq128 (v2di) ! The following built-in functions are available when '-msse3' is used. All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_addsubpd (v2df, v2df) --- 40241,40247 ---- v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi) v2di __builtin_ia32_movq128 (v2di) ! The following built-in functions are available when `-msse3' is used. All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_addsubpd (v2df, v2df) *************** All of them generate the machine instruc *** 39908,39914 **** v4sf __builtin_ia32_movsldup (v4sf) void __builtin_ia32_mwait (unsigned int, unsigned int) ! The following built-in functions are available when '-mssse3' is used. All of them generate the machine instruction that is part of the name. v2si __builtin_ia32_phaddd (v2si, v2si) --- 40256,40262 ---- v4sf __builtin_ia32_movsldup (v4sf) void __builtin_ia32_mwait (unsigned int, unsigned int) ! The following built-in functions are available when `-mssse3' is used. All of them generate the machine instruction that is part of the name. v2si __builtin_ia32_phaddd (v2si, v2si) *************** All of them generate the machine instruc *** 39928,39934 **** v2si __builtin_ia32_pabsd (v2si) v4hi __builtin_ia32_pabsw (v4hi) ! The following built-in functions are available when '-mssse3' is used. All of them generate the machine instruction that is part of the name. v4si __builtin_ia32_phaddd128 (v4si, v4si) --- 40276,40282 ---- v2si __builtin_ia32_pabsd (v2si) v4hi __builtin_ia32_pabsw (v4hi) ! The following built-in functions are available when `-mssse3' is used. All of them generate the machine instruction that is part of the name. v4si __builtin_ia32_phaddd128 (v4si, v4si) *************** All of them generate the machine instruc *** 39948,39955 **** v4si __builtin_ia32_pabsd128 (v4si) v8hi __builtin_ia32_pabsw128 (v8hi) ! The following built-in functions are available when '-msse4.1' is used. ! All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_blendpd (v2df, v2df, const int) v4sf __builtin_ia32_blendps (v4sf, v4sf, const int) --- 40296,40304 ---- v4si __builtin_ia32_pabsd128 (v4si) v8hi __builtin_ia32_pabsw128 (v8hi) ! The following built-in functions are available when `-msse4.1' is ! used. All of them generate the machine instruction that is part of the ! name. v2df __builtin_ia32_blendpd (v2df, v2df, const int) v4sf __builtin_ia32_blendps (v4sf, v4sf, const int) *************** All of them generate the machine instruc *** 39995,40025 **** v2df __builtin_ia32_roundsd (v2df, v2df, const int) v4sf __builtin_ia32_roundss (v4sf, v4sf, const int) ! The following built-in functions are available when '-msse4.1' is used. ! 'v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)' ! Generates the 'insertps' machine instruction. ! 'int __builtin_ia32_vec_ext_v16qi (v16qi, const int)' ! Generates the 'pextrb' machine instruction. ! 'v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)' ! Generates the 'pinsrb' machine instruction. ! 'v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)' ! Generates the 'pinsrd' machine instruction. ! 'v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)' ! Generates the 'pinsrq' machine instruction in 64bit mode. The following built-in functions are changed to generate new SSE4.1 ! instructions when '-msse4.1' is used. ! 'float __builtin_ia32_vec_ext_v4sf (v4sf, const int)' ! Generates the 'extractps' machine instruction. ! 'int __builtin_ia32_vec_ext_v4si (v4si, const int)' ! Generates the 'pextrd' machine instruction. ! 'long long __builtin_ia32_vec_ext_v2di (v2di, const int)' ! Generates the 'pextrq' machine instruction in 64bit mode. ! The following built-in functions are available when '-msse4.2' is used. ! All of them generate the machine instruction that is part of the name. v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int) int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int) --- 40344,40381 ---- v2df __builtin_ia32_roundsd (v2df, v2df, const int) v4sf __builtin_ia32_roundss (v4sf, v4sf, const int) ! The following built-in functions are available when `-msse4.1' is used. ! `v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)' ! Generates the `insertps' machine instruction. ! ! `int __builtin_ia32_vec_ext_v16qi (v16qi, const int)' ! Generates the `pextrb' machine instruction. ! ! `v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)' ! Generates the `pinsrb' machine instruction. ! ! `v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)' ! Generates the `pinsrd' machine instruction. ! ! `v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)' ! Generates the `pinsrq' machine instruction in 64bit mode. The following built-in functions are changed to generate new SSE4.1 ! instructions when `-msse4.1' is used. ! `float __builtin_ia32_vec_ext_v4sf (v4sf, const int)' ! Generates the `extractps' machine instruction. ! `int __builtin_ia32_vec_ext_v4si (v4si, const int)' ! Generates the `pextrd' machine instruction. ! ! `long long __builtin_ia32_vec_ext_v2di (v2di, const int)' ! Generates the `pextrq' machine instruction in 64bit mode. ! ! The following built-in functions are available when `-msse4.2' is ! used. All of them generate the machine instruction that is part of the ! name. v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int) int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int) *************** All of them generate the machine instruc *** 40037,40065 **** int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int) v2di __builtin_ia32_pcmpgtq (v2di, v2di) ! The following built-in functions are available when '-msse4.2' is used. ! 'unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)' ! Generates the 'crc32b' machine instruction. ! 'unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)' ! Generates the 'crc32w' machine instruction. ! 'unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)' ! Generates the 'crc32l' machine instruction. ! 'unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)' ! Generates the 'crc32q' machine instruction. The following built-in functions are changed to generate new SSE4.2 ! instructions when '-msse4.2' is used. ! 'int __builtin_popcount (unsigned int)' ! Generates the 'popcntl' machine instruction. ! 'int __builtin_popcountl (unsigned long)' ! Generates the 'popcntl' or 'popcntq' machine instruction, depending ! on the size of 'unsigned long'. ! 'int __builtin_popcountll (unsigned long long)' ! Generates the 'popcntq' machine instruction. ! The following built-in functions are available when '-mavx' is used. All of them generate the machine instruction that is part of the name. v4df __builtin_ia32_addpd256 (v4df,v4df) --- 40393,40426 ---- int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int) v2di __builtin_ia32_pcmpgtq (v2di, v2di) ! The following built-in functions are available when `-msse4.2' is used. ! `unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)' ! Generates the `crc32b' machine instruction. ! ! `unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)' ! Generates the `crc32w' machine instruction. ! ! `unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)' ! Generates the `crc32l' machine instruction. ! ! `unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)' ! Generates the `crc32q' machine instruction. The following built-in functions are changed to generate new SSE4.2 ! instructions when `-msse4.2' is used. ! `int __builtin_popcount (unsigned int)' ! Generates the `popcntl' machine instruction. ! `int __builtin_popcountl (unsigned long)' ! Generates the `popcntl' or `popcntq' machine instruction, ! depending on the size of `unsigned long'. ! ! `int __builtin_popcountll (unsigned long long)' ! Generates the `popcntq' machine instruction. ! ! The following built-in functions are available when `-mavx' is used. All of them generate the machine instruction that is part of the name. v4df __builtin_ia32_addpd256 (v4df,v4df) *************** All of them generate the machine instruc *** 40191,40197 **** v4df __builtin_ia32_xorpd256 (v4df,v4df) v8sf __builtin_ia32_xorps256 (v8sf,v8sf) ! The following built-in functions are available when '-mavx2' is used. All of them generate the machine instruction that is part of the name. v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int) --- 40552,40558 ---- v4df __builtin_ia32_xorpd256 (v4df,v4df) v8sf __builtin_ia32_xorps256 (v8sf,v8sf) ! The following built-in functions are available when `-mavx2' is used. All of them generate the machine instruction that is part of the name. v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int) *************** All of them generate the machine instruc *** 40366,40372 **** v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int) v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int) ! The following built-in functions are available when '-maes' is used. All of them generate the machine instruction that is part of the name. v2di __builtin_ia32_aesenc128 (v2di, v2di) --- 40727,40733 ---- v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int) v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int) ! The following built-in functions are available when `-maes' is used. All of them generate the machine instruction that is part of the name. v2di __builtin_ia32_aesenc128 (v2di, v2di) *************** All of them generate the machine instruc *** 40376,40388 **** v2di __builtin_ia32_aeskeygenassist128 (v2di, const int) v2di __builtin_ia32_aesimc128 (v2di) ! The following built-in function is available when '-mpclmul' is used. ! 'v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)' ! Generates the 'pclmulqdq' machine instruction. ! The following built-in function is available when '-mfsgsbase' is used. ! All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_rdfsbase32 (void) unsigned long long __builtin_ia32_rdfsbase64 (void) --- 40737,40750 ---- v2di __builtin_ia32_aeskeygenassist128 (v2di, const int) v2di __builtin_ia32_aesimc128 (v2di) ! The following built-in function is available when `-mpclmul' is used. ! `v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)' ! Generates the `pclmulqdq' machine instruction. ! The following built-in function is available when `-mfsgsbase' is ! used. All of them generate the machine instruction that is part of the ! name. unsigned int __builtin_ia32_rdfsbase32 (void) unsigned long long __builtin_ia32_rdfsbase64 (void) *************** All of them generate the machine instruc *** 40393,40406 **** void _writegsbase_u32 (unsigned int) void _writegsbase_u64 (unsigned long long) ! The following built-in function is available when '-mrdrnd' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_rdrand16_step (unsigned short *) unsigned int __builtin_ia32_rdrand32_step (unsigned int *) unsigned int __builtin_ia32_rdrand64_step (unsigned long long *) ! The following built-in functions are available when '-msse4a' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_movntsd (double *, v2df) --- 40755,40768 ---- void _writegsbase_u32 (unsigned int) void _writegsbase_u64 (unsigned long long) ! The following built-in function is available when `-mrdrnd' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_rdrand16_step (unsigned short *) unsigned int __builtin_ia32_rdrand32_step (unsigned int *) unsigned int __builtin_ia32_rdrand64_step (unsigned long long *) ! The following built-in functions are available when `-msse4a' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_movntsd (double *, v2df) *************** All of them generate the machine instruc *** 40410,40416 **** v2di __builtin_ia32_insertq (v2di, v2di) v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int) ! The following built-in functions are available when '-mxop' is used. v2df __builtin_ia32_vfrczpd (v2df) v4sf __builtin_ia32_vfrczps (v4sf) v2df __builtin_ia32_vfrczsd (v2df) --- 40772,40778 ---- v2di __builtin_ia32_insertq (v2di, v2di) v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int) ! The following built-in functions are available when `-mxop' is used. v2df __builtin_ia32_vfrczpd (v2df) v4sf __builtin_ia32_vfrczps (v4sf) v2df __builtin_ia32_vfrczsd (v2df) *************** All of them generate the machine instruc *** 40536,40542 **** v2di __builtin_ia32_vpshlq (v2di, v2di) v8hi __builtin_ia32_vpshlw (v8hi, v8hi) ! The following built-in functions are available when '-mfma4' is used. All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df) --- 40898,40904 ---- v2di __builtin_ia32_vpshlq (v2di, v2di) v8hi __builtin_ia32_vpshlw (v8hi, v8hi) ! The following built-in functions are available when `-mfma4' is used. All of them generate the machine instruction that is part of the name. v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df) *************** All of them generate the machine instruc *** 40572,40579 **** v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df) v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf) ! ! The following built-in functions are available when '-mlwp' is used. void __builtin_ia32_llwpcb16 (void *); void __builtin_ia32_llwpcb32 (void *); --- 40934,40940 ---- v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df) v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf) ! The following built-in functions are available when `-mlwp' is used. void __builtin_ia32_llwpcb16 (void *); void __builtin_ia32_llwpcb32 (void *); *************** All of them generate the machine instruc *** 40588,40599 **** unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int) unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int) ! The following built-in functions are available when '-mbmi' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int); unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long); ! The following built-in functions are available when '-mbmi2' is used. All of them generate the machine instruction that is part of the name. unsigned int _bzhi_u32 (unsigned int, unsigned int) unsigned int _pdep_u32 (unsigned int, unsigned int) --- 40949,40960 ---- unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int) unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int) ! The following built-in functions are available when `-mbmi' is used. All of them generate the machine instruction that is part of the name. unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int); unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long); ! The following built-in functions are available when `-mbmi2' is used. All of them generate the machine instruction that is part of the name. unsigned int _bzhi_u32 (unsigned int, unsigned int) unsigned int _pdep_u32 (unsigned int, unsigned int) *************** All of them generate the machine instruc *** 40602,40640 **** unsigned long long _pdep_u64 (unsigned long long, unsigned long long) unsigned long long _pext_u64 (unsigned long long, unsigned long long) ! The following built-in functions are available when '-mlzcnt' is used. All of them generate the machine instruction that is part of the name. unsigned short __builtin_ia32_lzcnt_16(unsigned short); unsigned int __builtin_ia32_lzcnt_u32(unsigned int); unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long); ! The following built-in functions are available when '-mfxsr' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_fxsave (void *) void __builtin_ia32_fxrstor (void *) void __builtin_ia32_fxsave64 (void *) void __builtin_ia32_fxrstor64 (void *) ! The following built-in functions are available when '-mxsave' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_xsave (void *, long long) void __builtin_ia32_xrstor (void *, long long) void __builtin_ia32_xsave64 (void *, long long) void __builtin_ia32_xrstor64 (void *, long long) ! The following built-in functions are available when '-mxsaveopt' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_xsaveopt (void *, long long) void __builtin_ia32_xsaveopt64 (void *, long long) ! The following built-in functions are available when '-mtbm' is used. Both of them generate the immediate form of the bextr machine instruction. unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int); unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long); ! The following built-in functions are available when '-m3dnow' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_femms (void) --- 40963,41001 ---- unsigned long long _pdep_u64 (unsigned long long, unsigned long long) unsigned long long _pext_u64 (unsigned long long, unsigned long long) ! The following built-in functions are available when `-mlzcnt' is used. All of them generate the machine instruction that is part of the name. unsigned short __builtin_ia32_lzcnt_16(unsigned short); unsigned int __builtin_ia32_lzcnt_u32(unsigned int); unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long); ! The following built-in functions are available when `-mfxsr' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_fxsave (void *) void __builtin_ia32_fxrstor (void *) void __builtin_ia32_fxsave64 (void *) void __builtin_ia32_fxrstor64 (void *) ! The following built-in functions are available when `-mxsave' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_xsave (void *, long long) void __builtin_ia32_xrstor (void *, long long) void __builtin_ia32_xsave64 (void *, long long) void __builtin_ia32_xrstor64 (void *, long long) ! The following built-in functions are available when `-mxsaveopt' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_xsaveopt (void *, long long) void __builtin_ia32_xsaveopt64 (void *, long long) ! The following built-in functions are available when `-mtbm' is used. Both of them generate the immediate form of the bextr machine instruction. unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int); unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long); ! The following built-in functions are available when `-m3dnow' is used. All of them generate the machine instruction that is part of the name. void __builtin_ia32_femms (void) *************** All of them generate the machine instruc *** 40657,40664 **** v2sf __builtin_ia32_pi2fd (v2si) v4hi __builtin_ia32_pmulhrw (v4hi, v4hi) ! The following built-in functions are available when both '-m3dnow' and ! '-march=athlon' are used. All of them generate the machine instruction that is part of the name. v2si __builtin_ia32_pf2iw (v2sf) --- 41018,41025 ---- v2sf __builtin_ia32_pi2fd (v2si) v4hi __builtin_ia32_pmulhrw (v4hi, v4hi) ! The following built-in functions are available when both `-m3dnow' and ! `-march=athlon' are used. All of them generate the machine instruction that is part of the name. v2si __builtin_ia32_pf2iw (v2sf) *************** that is part of the name. *** 40668,40676 **** v2sf __builtin_ia32_pswapdsf (v2sf) v2si __builtin_ia32_pswapdsi (v2si) ! The following built-in functions are available when '-mrtm' is used ! They are used for restricted transactional memory. These are the ! internal low level functions. Normally the functions in *note X86 transactional memory intrinsics:: should be used instead. int __builtin_ia32_xbegin () --- 41029,41037 ---- v2sf __builtin_ia32_pswapdsf (v2sf) v2si __builtin_ia32_pswapdsi (v2si) ! The following built-in functions are available when `-mrtm' is used ! They are used for restricted transactional memory. These are the ! internal low level functions. Normally the functions in *note X86 transactional memory intrinsics:: should be used instead. int __builtin_ia32_xbegin () *************** File: gcc.info, Node: X86 transactional *** 40684,40709 **** 6.57.12 X86 transaction memory intrinsics ----------------------------------------- ! Hardware transactional memory intrinsics for i386. These allow to use memory transactions with RTM (Restricted Transactional Memory). For using HLE (Hardware Lock Elision) see *note x86 specific memory model extensions for transactional memory:: instead. This support is enabled ! with the '-mrtm' option. ! A memory transaction commits all changes to memory in an atomic way, as ! visible to other threads. If the transaction fails it is rolled back and all side effects discarded. Generally there is no guarantee that a memory transaction ever succeeds and suitable fallback code always needs to be supplied. -- RTM Function: unsigned _xbegin () ! Start a RTM (Restricted Transactional Memory) transaction. Returns ! _XBEGIN_STARTED when the transaction started successfully (note ! this is not 0, so the constant has to be explicitely tested). When ! the transaction aborts all side effects are undone and an abort ! code is returned. There is no guarantee any transaction ever ! succeeds, so there always needs to be a valid tested fallback path. #include --- 41045,41071 ---- 6.57.12 X86 transaction memory intrinsics ----------------------------------------- ! Hardware transactional memory intrinsics for i386. These allow to use memory transactions with RTM (Restricted Transactional Memory). For using HLE (Hardware Lock Elision) see *note x86 specific memory model extensions for transactional memory:: instead. This support is enabled ! with the `-mrtm' option. ! A memory transaction commits all changes to memory in an atomic way, ! as visible to other threads. If the transaction fails it is rolled back and all side effects discarded. Generally there is no guarantee that a memory transaction ever succeeds and suitable fallback code always needs to be supplied. -- RTM Function: unsigned _xbegin () ! Start a RTM (Restricted Transactional Memory) transaction. ! Returns _XBEGIN_STARTED when the transaction started successfully ! (note this is not 0, so the constant has to be explicitely ! tested). When the transaction aborts all side effects are undone ! and an abort code is returned. There is no guarantee any ! transaction ever succeeds, so there always needs to be a valid ! tested fallback path. #include *************** and suitable fallback code always needs *** 40714,40738 **** ... non transactional fallback path... } ! Valid abort status bits (when the value is not '_XBEGIN_STARTED') are: ! '_XABORT_EXPLICIT' ! Transaction explicitely aborted with '_xabort'. The parameter ! passed to '_xabort' is available with '_XABORT_CODE(status)' ! '_XABORT_RETRY' Transaction retry is possible. ! '_XABORT_CONFLICT' Transaction abort due to a memory conflict with another thread ! '_XABORT_CAPACITY' Transaction abort due to the transaction using too much memory ! '_XABORT_DEBUG' Transaction abort due to a debug trap ! '_XABORT_NESTED' Transaction abort in a inner nested transaction -- RTM Function: void _xend () ! Commit the current transaction. When no transaction is active this ! will fault. All memory side effects of the transactions will become visible to other threads in an atomic matter. -- RTM Function: int _xtest () --- 41076,41105 ---- ... non transactional fallback path... } ! Valid abort status bits (when the value is not `_XBEGIN_STARTED') are: ! `_XABORT_EXPLICIT' ! Transaction explicitely aborted with `_xabort'. The parameter ! passed to `_xabort' is available with `_XABORT_CODE(status)' ! ! `_XABORT_RETRY' Transaction retry is possible. ! ! `_XABORT_CONFLICT' Transaction abort due to a memory conflict with another thread ! ! `_XABORT_CAPACITY' Transaction abort due to the transaction using too much memory ! ! `_XABORT_DEBUG' Transaction abort due to a debug trap ! ! `_XABORT_NESTED' Transaction abort in a inner nested transaction -- RTM Function: void _xend () ! Commit the current transaction. When no transaction is active this ! will fault. All memory side effects of the transactions will become visible to other threads in an atomic matter. -- RTM Function: int _xtest () *************** and suitable fallback code always needs *** 40740,40748 **** otherwise 0. -- RTM Function: void _xabort (status) ! Abort the current transaction. When no transaction is active this is a no-op. status must be a 8bit constant, that is included in ! the status code returned by '_xbegin'  File: gcc.info, Node: MIPS DSP Built-in Functions, Next: MIPS Paired-Single Support, Prev: X86 transactional memory intrinsics, Up: Target Builtins --- 41107,41115 ---- otherwise 0. -- RTM Function: void _xabort (status) ! Abort the current transaction. When no transaction is active this is a no-op. status must be a 8bit constant, that is included in ! the status code returned by `_xbegin'  File: gcc.info, Node: MIPS DSP Built-in Functions, Next: MIPS Paired-Single Support, Prev: X86 transactional memory intrinsics, Up: Target Builtins *************** media applications. It provides instruc *** 40756,40789 **** 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data. GCC supports MIPS DSP operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of MIPS-specific ! built-in functions. Both kinds of support are enabled by the '-mdsp' ! command-line option. Revision 2 of the ASE was introduced in the second half of 2006. This revision adds extra instructions to the original ASE, but is otherwise backwards-compatible with it. You can select revision 2 using the ! command-line option '-mdspr2'; this option implies '-mdsp'. The SCOUNT and POS bits of the DSP control register are global. The ! WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and POS ! bits. During optimization, the compiler does not delete these instructions and it does not delete calls to functions containing these instructions. ! At present, GCC only provides support for operations on 32-bit vectors. ! The vector type associated with 8-bit integer data is usually called ! 'v4i8', the vector type associated with Q7 is usually called 'v4q7', the ! vector type associated with 16-bit integer data is usually called ! 'v2i16', and the vector type associated with Q15 is usually called ! 'v2q15'. They can be defined in C as follows: typedef signed char v4i8 __attribute__ ((vector_size(4))); typedef signed char v4q7 __attribute__ ((vector_size(4))); typedef short v2i16 __attribute__ ((vector_size(4))); typedef short v2q15 __attribute__ ((vector_size(4))); ! 'v4i8', 'v4q7', 'v2i16' and 'v2q15' values are initialized in the same way as aggregates. For example: v4i8 a = {1, 2, 3, 4}; --- 41123,41156 ---- 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data. GCC supports MIPS DSP operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of ! MIPS-specific built-in functions. Both kinds of support are enabled by ! the `-mdsp' command-line option. Revision 2 of the ASE was introduced in the second half of 2006. This revision adds extra instructions to the original ASE, but is otherwise backwards-compatible with it. You can select revision 2 using the ! command-line option `-mdspr2'; this option implies `-mdsp'. The SCOUNT and POS bits of the DSP control register are global. The ! WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and ! POS bits. During optimization, the compiler does not delete these instructions and it does not delete calls to functions containing these instructions. ! At present, GCC only provides support for operations on 32-bit ! vectors. The vector type associated with 8-bit integer data is usually ! called `v4i8', the vector type associated with Q7 is usually called ! `v4q7', the vector type associated with 16-bit integer data is usually ! called `v2i16', and the vector type associated with Q15 is usually ! called `v2q15'. They can be defined in C as follows: typedef signed char v4i8 __attribute__ ((vector_size(4))); typedef signed char v4q7 __attribute__ ((vector_size(4))); typedef short v2i16 __attribute__ ((vector_size(4))); typedef short v2q15 __attribute__ ((vector_size(4))); ! `v4i8', `v4q7', `v2i16' and `v2q15' values are initialized in the same way as aggregates. For example: v4i8 a = {1, 2, 3, 4}; *************** way as aggregates. For example: *** 40798,40827 **** packed. On little-endian targets, the first value is the least significant and the last value is the most significant. The opposite order applies to big-endian targets. For example, the code above sets ! the lowest byte of 'a' to '1' on little-endian targets and '4' on big-endian targets. _Note:_ Q7, Q15 and Q31 values must be initialized with their integer ! representation. As shown in this example, the integer representation of ! a Q7 value can be obtained by multiplying the fractional value by ! '0x1.0p7'. The equivalent for Q15 values is to multiply by '0x1.0p15'. ! The equivalent for Q31 values is to multiply by '0x1.0p31'. ! The table below lists the 'v4i8' and 'v2q15' operations for which ! hardware support exists. 'a' and 'b' are 'v4i8' values, and 'c' and 'd' ! are 'v2q15' values. C code MIPS instruction ! 'a + b' 'addu.qb' ! 'c + d' 'addq.ph' ! 'a - b' 'subu.qb' ! 'c - d' 'subq.ph' ! The table below lists the 'v2i16' operation for which hardware support ! exists for the DSP ASE REV 2. 'e' and 'f' are 'v2i16' values. C code MIPS instruction ! 'e * f' 'mul.ph' It is easier to describe the DSP built-in functions if we first define the following types: --- 41165,41194 ---- packed. On little-endian targets, the first value is the least significant and the last value is the most significant. The opposite order applies to big-endian targets. For example, the code above sets ! the lowest byte of `a' to `1' on little-endian targets and `4' on big-endian targets. _Note:_ Q7, Q15 and Q31 values must be initialized with their integer ! representation. As shown in this example, the integer representation ! of a Q7 value can be obtained by multiplying the fractional value by ! `0x1.0p7'. The equivalent for Q15 values is to multiply by `0x1.0p15'. ! The equivalent for Q31 values is to multiply by `0x1.0p31'. ! The table below lists the `v4i8' and `v2q15' operations for which ! hardware support exists. `a' and `b' are `v4i8' values, and `c' and ! `d' are `v2q15' values. C code MIPS instruction ! `a + b' `addu.qb' ! `c + d' `addq.ph' ! `a - b' `subu.qb' ! `c - d' `subq.ph' ! The table below lists the `v2i16' operation for which hardware support ! exists for the DSP ASE REV 2. `e' and `f' are `v2i16' values. C code MIPS instruction ! `e * f' `mul.ph' It is easier to describe the DSP built-in functions if we first define the following types: *************** the following types: *** 40831,40841 **** typedef unsigned int ui32; typedef long long a64; ! 'q31' and 'i32' are actually the same as 'int', but we use 'q31' to ! indicate a Q31 fractional value and 'i32' to indicate a 32-bit integer ! value. Similarly, 'a64' is the same as 'long long', but we use 'a64' to ! indicate values that are placed in one of the four DSP accumulators ! ('$ac0', '$ac1', '$ac2' or '$ac3'). Also, some built-in functions prefer or require immediate numbers as parameters, because the corresponding DSP instructions accept both --- 41198,41208 ---- typedef unsigned int ui32; typedef long long a64; ! `q31' and `i32' are actually the same as `int', but we use `q31' to ! indicate a Q31 fractional value and `i32' to indicate a 32-bit integer ! value. Similarly, `a64' is the same as `long long', but we use `a64' ! to indicate values that are placed in one of the four DSP accumulators ! (`$ac0', `$ac1', `$ac2' or `$ac3'). Also, some built-in functions prefer or require immediate numbers as parameters, because the corresponding DSP instructions accept both *************** only. The immediate parameters are list *** 40852,40859 **** imm_n512_511: -512 to 511. The following built-in functions map directly to a particular MIPS DSP ! instruction. Please refer to the architecture specification for details ! on what each instruction does. v2q15 __builtin_mips_addq_ph (v2q15, v2q15) v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15) --- 41219,41226 ---- imm_n512_511: -512 to 511. The following built-in functions map directly to a particular MIPS DSP ! instruction. Please refer to the architecture specification for ! details on what each instruction does. v2q15 __builtin_mips_addq_ph (v2q15, v2q15) v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15) *************** File: gcc.info, Node: MIPS Paired-Singl *** 41024,41044 **** ---------------------------------- The MIPS64 architecture includes a number of instructions that operate ! on pairs of single-precision floating-point values. Each pair is packed ! into a 64-bit floating-point register, with one element being designated ! the "upper half" and the other being designated the "lower half". GCC supports paired-single operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of MIPS-specific ! built-in functions. Both kinds of support are enabled by the ! '-mpaired-single' command-line option. The vector type associated with paired-single values is usually called ! 'v2sf'. It can be defined in C as follows: typedef float v2sf __attribute__ ((vector_size (8))); ! 'v2sf' values are initialized in the same way as aggregates. For example: v2sf a = {1.5, 9.1}; --- 41391,41412 ---- ---------------------------------- The MIPS64 architecture includes a number of instructions that operate ! on pairs of single-precision floating-point values. Each pair is ! packed into a 64-bit floating-point register, with one element being ! designated the "upper half" and the other being designated the "lower ! half". GCC supports paired-single operations using both the generic vector ! extensions (*note Vector Extensions::) and a collection of ! MIPS-specific built-in functions. Both kinds of support are enabled by ! the `-mpaired-single' command-line option. The vector type associated with paired-single values is usually called ! `v2sf'. It can be defined in C as follows: typedef float v2sf __attribute__ ((vector_size (8))); ! `v2sf' values are initialized in the same way as aggregates. For example: v2sf a = {1.5, 9.1}; *************** example: *** 41049,41057 **** _Note:_ The CPU's endianness determines which value is stored in the upper half of a register and which value is stored in the lower half. On little-endian targets, the first value is the lower one and the ! second value is the upper one. The opposite order applies to big-endian ! targets. For example, the code above sets the lower half of 'a' to ! '1.5' on little-endian targets and '9.1' on big-endian targets.  File: gcc.info, Node: MIPS Loongson Built-in Functions, Next: Other MIPS Built-in Functions, Prev: MIPS Paired-Single Support, Up: Target Builtins --- 41417,41425 ---- _Note:_ The CPU's endianness determines which value is stored in the upper half of a register and which value is stored in the lower half. On little-endian targets, the first value is the lower one and the ! second value is the upper one. The opposite order applies to ! big-endian targets. For example, the code above sets the lower half of ! `a' to `1.5' on little-endian targets and `9.1' on big-endian targets.  File: gcc.info, Node: MIPS Loongson Built-in Functions, Next: Other MIPS Built-in Functions, Prev: MIPS Paired-Single Support, Up: Target Builtins *************** File: gcc.info, Node: MIPS Loongson Bui *** 41061,41075 **** GCC provides intrinsics to access the SIMD instructions provided by the ST Microelectronics Loongson-2E and -2F processors. These intrinsics, ! available after inclusion of the 'loongson.h' header file, operate on the following 64-bit vector types: ! * 'uint8x8_t', a vector of eight unsigned 8-bit integers; ! * 'uint16x4_t', a vector of four unsigned 16-bit integers; ! * 'uint32x2_t', a vector of two unsigned 32-bit integers; ! * 'int8x8_t', a vector of eight signed 8-bit integers; ! * 'int16x4_t', a vector of four signed 16-bit integers; ! * 'int32x2_t', a vector of two signed 32-bit integers. The intrinsics provided are listed below; each is named after the machine instruction to which it corresponds, with suffixes added as --- 41429,41448 ---- GCC provides intrinsics to access the SIMD instructions provided by the ST Microelectronics Loongson-2E and -2F processors. These intrinsics, ! available after inclusion of the `loongson.h' header file, operate on the following 64-bit vector types: ! * `uint8x8_t', a vector of eight unsigned 8-bit integers; ! ! * `uint16x4_t', a vector of four unsigned 16-bit integers; ! ! * `uint32x2_t', a vector of two unsigned 32-bit integers; ! ! * `int8x8_t', a vector of eight signed 8-bit integers; ! ! * `int16x4_t', a vector of four signed 16-bit integers; ! ! * `int32x2_t', a vector of two signed 32-bit integers. The intrinsics provided are listed below; each is named after the machine instruction to which it corresponds, with suffixes added as *************** File: gcc.info, Node: Paired-Single Ari *** 41190,41212 **** 6.57.15.1 Paired-Single Arithmetic .................................. ! The table below lists the 'v2sf' operations for which hardware support ! exists. 'a', 'b' and 'c' are 'v2sf' values and 'x' is an integral value. C code MIPS instruction ! 'a + b' 'add.ps' ! 'a - b' 'sub.ps' ! '-a' 'neg.ps' ! 'a * b' 'mul.ps' ! 'a * b + c' 'madd.ps' ! 'a * b - c' 'msub.ps' ! '-(a * b + c)' 'nmadd.ps' ! '-(a * b - c)' 'nmsub.ps' ! 'x ? a : b' 'movn.ps'/'movz.ps' Note that the multiply-accumulate instructions can be disabled using ! the command-line option '-mno-fused-madd'.  File: gcc.info, Node: Paired-Single Built-in Functions, Next: MIPS-3D Built-in Functions, Prev: Paired-Single Arithmetic, Up: MIPS Loongson Built-in Functions --- 41563,41585 ---- 6.57.15.1 Paired-Single Arithmetic .................................. ! The table below lists the `v2sf' operations for which hardware support ! exists. `a', `b' and `c' are `v2sf' values and `x' is an integral value. C code MIPS instruction ! `a + b' `add.ps' ! `a - b' `sub.ps' ! `-a' `neg.ps' ! `a * b' `mul.ps' ! `a * b + c' `madd.ps' ! `a * b - c' `msub.ps' ! `-(a * b + c)' `nmadd.ps' ! `-(a * b - c)' `nmsub.ps' ! `x ? a : b' `movn.ps'/`movz.ps' Note that the multiply-accumulate instructions can be disabled using ! the command-line option `-mno-fused-madd'.  File: gcc.info, Node: Paired-Single Built-in Functions, Next: MIPS-3D Built-in Functions, Prev: Paired-Single Arithmetic, Up: MIPS Loongson Built-in Functions *************** File: gcc.info, Node: Paired-Single Bui *** 41215,41280 **** .......................................... The following paired-single functions map directly to a particular MIPS ! instruction. Please refer to the architecture specification for details ! on what each instruction does. ! 'v2sf __builtin_mips_pll_ps (v2sf, v2sf)' ! Pair lower lower ('pll.ps'). ! 'v2sf __builtin_mips_pul_ps (v2sf, v2sf)' ! Pair upper lower ('pul.ps'). ! 'v2sf __builtin_mips_plu_ps (v2sf, v2sf)' ! Pair lower upper ('plu.ps'). ! 'v2sf __builtin_mips_puu_ps (v2sf, v2sf)' ! Pair upper upper ('puu.ps'). ! 'v2sf __builtin_mips_cvt_ps_s (float, float)' ! Convert pair to paired single ('cvt.ps.s'). ! 'float __builtin_mips_cvt_s_pl (v2sf)' ! Convert pair lower to single ('cvt.s.pl'). ! 'float __builtin_mips_cvt_s_pu (v2sf)' ! Convert pair upper to single ('cvt.s.pu'). ! 'v2sf __builtin_mips_abs_ps (v2sf)' ! Absolute value ('abs.ps'). ! 'v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)' ! Align variable ('alnv.ps'). _Note:_ The value of the third parameter must be 0 or 4 modulo 8, ! otherwise the result is unpredictable. Please read the instruction ! description for details. The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: 'f', 'un', ! 'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl', ! 'lt', 'nge', 'le' or 'ngt'. ! 'v2sf __builtin_mips_movt_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'v2sf __builtin_mips_movf_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on floating-point comparison ('c.COND.ps', ! 'movt.ps'/'movf.ps'). ! The 'movt' functions return the value X computed by: c.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The 'movf' functions are similar but use 'movf.ps' instead of ! 'movt.ps'. ! 'int __builtin_mips_upper_c_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_lower_c_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values ('c.COND.ps', ! 'bc1t'/'bc1f'). ! These functions compare A and B using 'c.COND.ps' and return either ! the upper or lower half of the result. For example: v2sf a, b; if (__builtin_mips_upper_c_eq_ps (a, b)) --- 41588,41653 ---- .......................................... The following paired-single functions map directly to a particular MIPS ! instruction. Please refer to the architecture specification for ! details on what each instruction does. ! `v2sf __builtin_mips_pll_ps (v2sf, v2sf)' ! Pair lower lower (`pll.ps'). ! `v2sf __builtin_mips_pul_ps (v2sf, v2sf)' ! Pair upper lower (`pul.ps'). ! `v2sf __builtin_mips_plu_ps (v2sf, v2sf)' ! Pair lower upper (`plu.ps'). ! `v2sf __builtin_mips_puu_ps (v2sf, v2sf)' ! Pair upper upper (`puu.ps'). ! `v2sf __builtin_mips_cvt_ps_s (float, float)' ! Convert pair to paired single (`cvt.ps.s'). ! `float __builtin_mips_cvt_s_pl (v2sf)' ! Convert pair lower to single (`cvt.s.pl'). ! `float __builtin_mips_cvt_s_pu (v2sf)' ! Convert pair upper to single (`cvt.s.pu'). ! `v2sf __builtin_mips_abs_ps (v2sf)' ! Absolute value (`abs.ps'). ! `v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)' ! Align variable (`alnv.ps'). _Note:_ The value of the third parameter must be 0 or 4 modulo 8, ! otherwise the result is unpredictable. Please read the ! instruction description for details. The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: `f', `un', ! `eq', `ueq', `olt', `ult', `ole', `ule', `sf', `ngle', `seq', `ngl', ! `lt', `nge', `le' or `ngt'. ! `v2sf __builtin_mips_movt_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! `v2sf __builtin_mips_movf_c_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on floating-point comparison (`c.COND.ps', ! `movt.ps'/`movf.ps'). ! The `movt' functions return the value X computed by: c.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The `movf' functions are similar but use `movf.ps' instead of ! `movt.ps'. ! `int __builtin_mips_upper_c_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_lower_c_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values (`c.COND.ps', ! `bc1t'/`bc1f'). ! These functions compare A and B using `c.COND.ps' and return ! either the upper or lower half of the result. For example: v2sf a, b; if (__builtin_mips_upper_c_eq_ps (a, b)) *************** File: gcc.info, Node: MIPS-3D Built-in *** 41296,41353 **** The MIPS-3D Application-Specific Extension (ASE) includes additional paired-single instructions that are designed to improve the performance of 3D graphics operations. Support for these instructions is controlled ! by the '-mips3d' command-line option. The functions listed below map directly to a particular MIPS-3D instruction. Please refer to the architecture specification for more details on what each instruction does. ! 'v2sf __builtin_mips_addr_ps (v2sf, v2sf)' ! Reduction add ('addr.ps'). ! 'v2sf __builtin_mips_mulr_ps (v2sf, v2sf)' ! Reduction multiply ('mulr.ps'). ! 'v2sf __builtin_mips_cvt_pw_ps (v2sf)' ! Convert paired single to paired word ('cvt.pw.ps'). ! 'v2sf __builtin_mips_cvt_ps_pw (v2sf)' ! Convert paired word to paired single ('cvt.ps.pw'). ! 'float __builtin_mips_recip1_s (float)' ! 'double __builtin_mips_recip1_d (double)' ! 'v2sf __builtin_mips_recip1_ps (v2sf)' ! Reduced-precision reciprocal (sequence step 1) ('recip1.FMT'). ! 'float __builtin_mips_recip2_s (float, float)' ! 'double __builtin_mips_recip2_d (double, double)' ! 'v2sf __builtin_mips_recip2_ps (v2sf, v2sf)' ! Reduced-precision reciprocal (sequence step 2) ('recip2.FMT'). ! 'float __builtin_mips_rsqrt1_s (float)' ! 'double __builtin_mips_rsqrt1_d (double)' ! 'v2sf __builtin_mips_rsqrt1_ps (v2sf)' Reduced-precision reciprocal square root (sequence step 1) ! ('rsqrt1.FMT'). ! 'float __builtin_mips_rsqrt2_s (float, float)' ! 'double __builtin_mips_rsqrt2_d (double, double)' ! 'v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)' Reduced-precision reciprocal square root (sequence step 2) ! ('rsqrt2.FMT'). The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: 'f', 'un', ! 'eq', 'ueq', 'olt', 'ult', 'ole', 'ule', 'sf', 'ngle', 'seq', 'ngl', ! 'lt', 'nge', 'le' or 'ngt'. ! 'int __builtin_mips_cabs_COND_s (float A, float B)' ! 'int __builtin_mips_cabs_COND_d (double A, double B)' ! Absolute comparison of two scalar values ('cabs.COND.FMT', ! 'bc1t'/'bc1f'). ! These functions compare A and B using 'cabs.COND.s' or ! 'cabs.COND.d' and return the result as a boolean value. For example: float a, b; --- 41669,41726 ---- The MIPS-3D Application-Specific Extension (ASE) includes additional paired-single instructions that are designed to improve the performance of 3D graphics operations. Support for these instructions is controlled ! by the `-mips3d' command-line option. The functions listed below map directly to a particular MIPS-3D instruction. Please refer to the architecture specification for more details on what each instruction does. ! `v2sf __builtin_mips_addr_ps (v2sf, v2sf)' ! Reduction add (`addr.ps'). ! `v2sf __builtin_mips_mulr_ps (v2sf, v2sf)' ! Reduction multiply (`mulr.ps'). ! `v2sf __builtin_mips_cvt_pw_ps (v2sf)' ! Convert paired single to paired word (`cvt.pw.ps'). ! `v2sf __builtin_mips_cvt_ps_pw (v2sf)' ! Convert paired word to paired single (`cvt.ps.pw'). ! `float __builtin_mips_recip1_s (float)' ! `double __builtin_mips_recip1_d (double)' ! `v2sf __builtin_mips_recip1_ps (v2sf)' ! Reduced-precision reciprocal (sequence step 1) (`recip1.FMT'). ! `float __builtin_mips_recip2_s (float, float)' ! `double __builtin_mips_recip2_d (double, double)' ! `v2sf __builtin_mips_recip2_ps (v2sf, v2sf)' ! Reduced-precision reciprocal (sequence step 2) (`recip2.FMT'). ! `float __builtin_mips_rsqrt1_s (float)' ! `double __builtin_mips_rsqrt1_d (double)' ! `v2sf __builtin_mips_rsqrt1_ps (v2sf)' Reduced-precision reciprocal square root (sequence step 1) ! (`rsqrt1.FMT'). ! `float __builtin_mips_rsqrt2_s (float, float)' ! `double __builtin_mips_rsqrt2_d (double, double)' ! `v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)' Reduced-precision reciprocal square root (sequence step 2) ! (`rsqrt2.FMT'). The following multi-instruction functions are also available. In each ! case, COND can be any of the 16 floating-point conditions: `f', `un', ! `eq', `ueq', `olt', `ult', `ole', `ule', `sf', `ngle', `seq', `ngl', ! `lt', `nge', `le' or `ngt'. ! `int __builtin_mips_cabs_COND_s (float A, float B)' ! `int __builtin_mips_cabs_COND_d (double A, double B)' ! Absolute comparison of two scalar values (`cabs.COND.FMT', ! `bc1t'/`bc1f'). ! These functions compare A and B using `cabs.COND.s' or ! `cabs.COND.d' and return the result as a boolean value. For example: float a, b; *************** case, COND can be any of the 16 floating *** 41356,41367 **** else false (); ! 'int __builtin_mips_upper_cabs_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_lower_cabs_COND_ps (v2sf A, v2sf B)' ! Absolute comparison of two paired-single values ('cabs.COND.ps', ! 'bc1t'/'bc1f'). ! These functions compare A and B using 'cabs.COND.ps' and return either the upper or lower half of the result. For example: v2sf a, b; --- 41729,41740 ---- else false (); ! `int __builtin_mips_upper_cabs_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_lower_cabs_COND_ps (v2sf A, v2sf B)' ! Absolute comparison of two paired-single values (`cabs.COND.ps', ! `bc1t'/`bc1f'). ! These functions compare A and B using `cabs.COND.ps' and return either the upper or lower half of the result. For example: v2sf a, b; *************** case, COND can be any of the 16 floating *** 41375,41405 **** else lower_halves_are_unequal (); ! 'v2sf __builtin_mips_movt_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'v2sf __builtin_mips_movf_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on absolute comparison ('cabs.COND.ps', ! 'movt.ps'/'movf.ps'). ! The 'movt' functions return the value X computed by: cabs.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The 'movf' functions are similar but use 'movf.ps' instead of ! 'movt.ps'. ! 'int __builtin_mips_any_c_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_all_c_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_any_cabs_COND_ps (v2sf A, v2sf B)' ! 'int __builtin_mips_all_cabs_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values ('c.COND.ps'/'cabs.COND.ps', ! 'bc1any2t'/'bc1any2f'). ! These functions compare A and B using 'c.COND.ps' or ! 'cabs.COND.ps'. The 'any' forms return true if either result is ! true and the 'all' forms return true if both results are true. For ! example: v2sf a, b; if (__builtin_mips_any_c_eq_ps (a, b)) --- 41748,41778 ---- else lower_halves_are_unequal (); ! `v2sf __builtin_mips_movt_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! `v2sf __builtin_mips_movf_cabs_COND_ps (v2sf A, v2sf B, v2sf C, v2sf D)' ! Conditional move based on absolute comparison (`cabs.COND.ps', ! `movt.ps'/`movf.ps'). ! The `movt' functions return the value X computed by: cabs.COND.ps CC,A,B mov.ps X,C movt.ps X,D,CC ! The `movf' functions are similar but use `movf.ps' instead of ! `movt.ps'. ! `int __builtin_mips_any_c_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_all_c_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_any_cabs_COND_ps (v2sf A, v2sf B)' ! `int __builtin_mips_all_cabs_COND_ps (v2sf A, v2sf B)' ! Comparison of two paired-single values (`c.COND.ps'/`cabs.COND.ps', ! `bc1any2t'/`bc1any2f'). ! These functions compare A and B using `c.COND.ps' or ! `cabs.COND.ps'. The `any' forms return true if either result is ! true and the `all' forms return true if both results are true. ! For example: v2sf a, b; if (__builtin_mips_any_c_eq_ps (a, b)) *************** case, COND can be any of the 16 floating *** 41412,41428 **** else one_is_false (); ! 'int __builtin_mips_any_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'int __builtin_mips_all_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'int __builtin_mips_any_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! 'int __builtin_mips_all_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' Comparison of four paired-single values ! ('c.COND.ps'/'cabs.COND.ps', 'bc1any4t'/'bc1any4f'). ! These functions use 'c.COND.ps' or 'cabs.COND.ps' to compare A with ! B and to compare C with D. The 'any' forms return true if any of ! the four results are true and the 'all' forms return true if all ! four results are true. For example: v2sf a, b, c, d; if (__builtin_mips_any_c_eq_4s (a, b, c, d)) --- 41785,41801 ---- else one_is_false (); ! `int __builtin_mips_any_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! `int __builtin_mips_all_c_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! `int __builtin_mips_any_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' ! `int __builtin_mips_all_cabs_COND_4s (v2sf A, v2sf B, v2sf C, v2sf D)' Comparison of four paired-single values ! (`c.COND.ps'/`cabs.COND.ps', `bc1any4t'/`bc1any4f'). ! These functions use `c.COND.ps' or `cabs.COND.ps' to compare A ! with B and to compare C with D. The `any' forms return true if ! any of the four results are true and the `all' forms return true ! if all four results are true. For example: v2sf a, b, c, d; if (__builtin_mips_any_c_eq_4s (a, b, c, d)) *************** File: gcc.info, Node: Other MIPS Built- *** 41443,41461 **** GCC provides other MIPS-specific built-in functions: ! 'void __builtin_mips_cache (int OP, const volatile void *ADDR)' ! Insert a 'cache' instruction with operands OP and ADDR. GCC ! defines the preprocessor macro '___GCC_HAVE_BUILTIN_MIPS_CACHE' when this function is available. ! 'unsigned int __builtin_mips_get_fcsr (void)' ! 'void __builtin_mips_set_fcsr (unsigned int VALUE)' Get and set the contents of the floating-point control and status register (FPU control register 31). These functions are only available in hard-float code but can be called in both MIPS16 and non-MIPS16 contexts. ! '__builtin_mips_set_fcsr' can be used to change any bit of the register except the condition codes, which GCC assumes are preserved. --- 41816,41834 ---- GCC provides other MIPS-specific built-in functions: ! `void __builtin_mips_cache (int OP, const volatile void *ADDR)' ! Insert a `cache' instruction with operands OP and ADDR. GCC ! defines the preprocessor macro `___GCC_HAVE_BUILTIN_MIPS_CACHE' when this function is available. ! `unsigned int __builtin_mips_get_fcsr (void)' ! `void __builtin_mips_set_fcsr (unsigned int VALUE)' Get and set the contents of the floating-point control and status register (FPU control register 31). These functions are only available in hard-float code but can be called in both MIPS16 and non-MIPS16 contexts. ! `__builtin_mips_set_fcsr' can be used to change any bit of the register except the condition codes, which GCC assumes are preserved. *************** File: gcc.info, Node: MSP430 Built-in F *** 41465,41484 **** 6.57.17 MSP430 Built-in Functions --------------------------------- ! GCC provides a couple of special builtin functions to aid in the writing ! of interrupt handlers in C. ! '__bic_SR_register_on_exit (int MASK)' This clears the indicated bits in the saved copy of the status register currently residing on the stack. This only works inside ! interrupt handlers and the changes to the status register will only ! take affect once the handler returns. ! '__bis_SR_register_on_exit (int MASK)' This sets the indicated bits in the saved copy of the status register currently residing on the stack. This only works inside ! interrupt handlers and the changes to the status register will only ! take affect once the handler returns.  File: gcc.info, Node: NDS32 Built-in Functions, Next: picoChip Built-in Functions, Prev: MSP430 Built-in Functions, Up: Target Builtins --- 41838,41857 ---- 6.57.17 MSP430 Built-in Functions --------------------------------- ! GCC provides a couple of special builtin functions to aid in the ! writing of interrupt handlers in C. ! `__bic_SR_register_on_exit (int MASK)' This clears the indicated bits in the saved copy of the status register currently residing on the stack. This only works inside ! interrupt handlers and the changes to the status register will ! only take affect once the handler returns. ! `__bis_SR_register_on_exit (int MASK)' This sets the indicated bits in the saved copy of the status register currently residing on the stack. This only works inside ! interrupt handlers and the changes to the status register will ! only take affect once the handler returns.  File: gcc.info, Node: NDS32 Built-in Functions, Next: picoChip Built-in Functions, Prev: MSP430 Built-in Functions, Up: Target Builtins *************** File: gcc.info, Node: picoChip Built-in *** 41522,41554 **** GCC provides an interface to selected machine instructions from the picoChip instruction set. ! 'int __builtin_sbc (int VALUE)' Sign bit count. Return the number of consecutive bits in VALUE ! that have the same value as the sign bit. The result is the number ! of leading sign bits minus one, giving the number of redundant sign ! bits in VALUE. ! 'int __builtin_byteswap (int VALUE)' ! Byte swap. Return the result of swapping the upper and lower bytes ! of VALUE. ! 'int __builtin_brev (int VALUE)' Bit reversal. Return the result of reversing the bits in VALUE. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1, and so on. ! 'int __builtin_adds (int X, int Y)' Saturating addition. Return the result of adding X and Y, storing the value 32767 if the result overflows. ! 'int __builtin_subs (int X, int Y)' ! Saturating subtraction. Return the result of subtracting Y from X, ! storing the value -32768 if the result overflows. ! 'void __builtin_halt (void)' Halt. The processor stops execution. This built-in is useful for implementing assertions.  File: gcc.info, Node: PowerPC Built-in Functions, Next: PowerPC AltiVec/VSX Built-in Functions, Prev: picoChip Built-in Functions, Up: Target Builtins --- 41895,41928 ---- GCC provides an interface to selected machine instructions from the picoChip instruction set. ! `int __builtin_sbc (int VALUE)' Sign bit count. Return the number of consecutive bits in VALUE ! that have the same value as the sign bit. The result is the ! number of leading sign bits minus one, giving the number of ! redundant sign bits in VALUE. ! `int __builtin_byteswap (int VALUE)' ! Byte swap. Return the result of swapping the upper and lower ! bytes of VALUE. ! `int __builtin_brev (int VALUE)' Bit reversal. Return the result of reversing the bits in VALUE. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1, and so on. ! `int __builtin_adds (int X, int Y)' Saturating addition. Return the result of adding X and Y, storing the value 32767 if the result overflows. ! `int __builtin_subs (int X, int Y)' ! Saturating subtraction. Return the result of subtracting Y from ! X, storing the value -32768 if the result overflows. ! `void __builtin_halt (void)' Halt. The processor stops execution. This built-in is useful for implementing assertions. +  File: gcc.info, Node: PowerPC Built-in Functions, Next: PowerPC AltiVec/VSX Built-in Functions, Prev: picoChip Built-in Functions, Up: Target Builtins *************** processors: *** 41566,41590 **** double __builtin_unpack_longdouble (long double, int); long double __builtin_pack_longdouble (double, double); ! The 'vec_rsqrt', '__builtin_rsqrt', and '__builtin_rsqrtf' functions generate multiple instructions to implement the reciprocal sqrt functionality using reciprocal sqrt estimate instructions. ! The '__builtin_recipdiv', and '__builtin_recipdivf' functions generate multiple instructions to implement division using the reciprocal estimate instructions. ! The '__builtin_ppc_get_timebase' and '__builtin_ppc_mftb' functions generate instructions to read the Time Base Register. The ! '__builtin_ppc_get_timebase' function may generate multiple instructions ! and always returns the 64 bits of the Time Base Register. The ! '__builtin_ppc_mftb' function always generates one instruction and returns the Time Base Register value as an unsigned long, throwing away the most significant word on 32-bit environments. The following built-in functions are available for the PowerPC family ! of processors, starting with ISA 2.06 or later ('-mcpu=power7' or ! '-mpopcntd'): long __builtin_bpermd (long, long); int __builtin_divwe (int, int); int __builtin_divweo (int, int); --- 41940,41964 ---- double __builtin_unpack_longdouble (long double, int); long double __builtin_pack_longdouble (double, double); ! The `vec_rsqrt', `__builtin_rsqrt', and `__builtin_rsqrtf' functions generate multiple instructions to implement the reciprocal sqrt functionality using reciprocal sqrt estimate instructions. ! The `__builtin_recipdiv', and `__builtin_recipdivf' functions generate multiple instructions to implement division using the reciprocal estimate instructions. ! The `__builtin_ppc_get_timebase' and `__builtin_ppc_mftb' functions generate instructions to read the Time Base Register. The ! `__builtin_ppc_get_timebase' function may generate multiple ! instructions and always returns the 64 bits of the Time Base Register. ! The `__builtin_ppc_mftb' function always generates one instruction and returns the Time Base Register value as an unsigned long, throwing away the most significant word on 32-bit environments. The following built-in functions are available for the PowerPC family ! of processors, starting with ISA 2.06 or later (`-mcpu=power7' or ! `-mpopcntd'): long __builtin_bpermd (long, long); int __builtin_divwe (int, int); int __builtin_divweo (int, int); *************** of processors, starting with ISA 2.06 or *** 41598,41609 **** unsigned int cbcdtd (unsigned int); unsigned int addg6s (unsigned int, unsigned int); ! The '__builtin_divde', '__builtin_divdeo', '__builitin_divdeu', ! '__builtin_divdeou' functions require a 64-bit environment support ISA 2.06 or later. The following built-in functions are available for the PowerPC family ! of processors when hardware decimal floating point ('-mhard-dfp') is available: _Decimal64 __builtin_dxex (_Decimal64); _Decimal128 __builtin_dxexq (_Decimal128); --- 41972,41983 ---- unsigned int cbcdtd (unsigned int); unsigned int addg6s (unsigned int, unsigned int); ! The `__builtin_divde', `__builtin_divdeo', `__builitin_divdeu', ! `__builtin_divdeou' functions require a 64-bit environment support ISA 2.06 or later. The following built-in functions are available for the PowerPC family ! of processors when hardware decimal floating point (`-mhard-dfp') is available: _Decimal64 __builtin_dxex (_Decimal64); _Decimal128 __builtin_dxexq (_Decimal128); *************** File: gcc.info, Node: PowerPC AltiVec/V *** 41635,41641 **** GCC provides an interface for the PowerPC family of processors to access the AltiVec operations described in Motorola's AltiVec Programming Interface Manual. The interface is made available by including ! '' and using '-maltivec' and '-mabi=altivec'. The interface supports the following vector types. vector unsigned char --- 42009,42015 ---- GCC provides an interface for the PowerPC family of processors to access the AltiVec operations described in Motorola's AltiVec Programming Interface Manual. The interface is made available by including ! `' and using `-maltivec' and `-mabi=altivec'. The interface supports the following vector types. vector unsigned char *************** supports the following vector types. *** 41652,41666 **** vector bool int vector float ! If '-mvsx' is used the following additional vector types are implemented. vector unsigned long vector signed long vector double ! The long types are only implemented for 64-bit code generation, and the ! long type is only used in the floating point/integer conversion instructions. GCC's implementation of the high-level language interface available --- 42026,42040 ---- vector bool int vector float ! If `-mvsx' is used the following additional vector types are implemented. vector unsigned long vector signed long vector double ! The long types are only implemented for 64-bit code generation, and ! the long type is only used in the floating point/integer conversion instructions. GCC's implementation of the high-level language interface available *************** ways. *** 41673,41690 **** * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If 'signed' or 'unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * Compiling with '-maltivec' adds keywords '__vector', 'vector', ! '__pixel', 'pixel', '__bool' and 'bool'. When compiling ISO C, the ! context-sensitive substitution of the keywords 'vector', 'pixel' ! and 'bool' is disabled. To use them, you must include ! '' instead. ! * GCC allows using a 'typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the --- 42047,42064 ---- * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If `signed' or `unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * Compiling with `-maltivec' adds keywords `__vector', `vector', ! `__pixel', `pixel', `__bool' and `bool'. When compiling ISO C, ! the context-sensitive substitution of the keywords `vector', ! `pixel' and `bool' is disabled. To use them, you must include ! `' instead. ! * GCC allows using a `typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the *************** ways. *** 41692,41703 **** vec_add ((vector signed int){1, 2, 3, 4}, foo); ! Since 'vec_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! _Note:_ Only the '' interface is supported. Internally, GCC ! uses built-in functions to achieve the functionality in the aforementioned header file, but they are not supported and are subject to change without notice. --- 42066,42077 ---- vec_add ((vector signed int){1, 2, 3, 4}, foo); ! Since `vec_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! _Note:_ Only the `' interface is supported. Internally, ! GCC uses built-in functions to achieve the functionality in the aforementioned header file, but they are not supported and are subject to change without notice. *************** a direct mapping between generic and spe *** 41707,41713 **** generic names are shown here, although the specific operations can also be used. ! Arguments that are documented as 'const int' require literal integral values within the range required for that operation. vector signed char vec_abs (vector signed char); --- 42081,42087 ---- generic names are shown here, although the specific operations can also be used. ! Arguments that are documented as `const int' require literal integral values within the range required for that operation. vector signed char vec_abs (vector signed char); *************** additional functions are available: *** 43767,43776 **** vector unsigned char vec_xxsldi (vector unsigned char, vector unsigned char, int); ! Note that the 'vec_ld' and 'vec_st' built-in functions always generate ! the AltiVec 'LVX' and 'STVX' instructions even if the VSX instruction ! set is available. The 'vec_vsx_ld' and 'vec_vsx_st' built-in functions ! always generate the VSX 'LXVD2X', 'LXVW4X', 'STXVD2X', and 'STXVW4X' instructions. If the ISA 2.07 additions to the vector/scalar (power8-vector) --- 44141,44150 ---- vector unsigned char vec_xxsldi (vector unsigned char, vector unsigned char, int); ! Note that the `vec_ld' and `vec_st' built-in functions always generate ! the AltiVec `LVX' and `STVX' instructions even if the VSX instruction ! set is available. The `vec_vsx_ld' and `vec_vsx_st' built-in functions ! always generate the VSX `LXVD2X', `LXVW4X', `STXVD2X', and `STXVW4X' instructions. If the ISA 2.07 additions to the vector/scalar (power8-vector) *************** VECTOR UNSIGNED LONG LONG. *** 44087,44097 **** If the ISA 2.07 additions to the vector/scalar (power8-vector) instruction set is available, the following additional functions are available for 64-bit targets. New vector types (VECTOR __INT128_T and ! VECTOR __UINT128_T) are available to hold the __INT128_T and __UINT128_T ! types to use these builtins. ! The normal vector extract, and set operations work on VECTOR __INT128_T ! and VECTOR __UINT128_T types, but the index value must be 0. vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t); vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t); --- 44461,44471 ---- If the ISA 2.07 additions to the vector/scalar (power8-vector) instruction set is available, the following additional functions are available for 64-bit targets. New vector types (VECTOR __INT128_T and ! VECTOR __UINT128_T) are available to hold the __INT128_T and ! __UINT128_T types to use these builtins. ! The normal vector extract, and set operations work on VECTOR ! __INT128_T and VECTOR __UINT128_T types, but the index value must be 0. vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t); vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t); *************** and VECTOR __UINT128_T types, but the in *** 44136,44143 **** int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t); int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t); ! If the cryptographic instructions are enabled ('-mcrypto' or ! '-mcpu=power8'), the following builtins are enabled. vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long); --- 44510,44517 ---- int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t); int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t); ! If the cryptographic instructions are enabled (`-mcrypto' or ! `-mcpu=power8'), the following builtins are enabled. vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long); *************** and VECTOR __UINT128_T types, but the in *** 44190,44198 **** int, int); The second argument to the __BUILTIN_CRYPTO_VSHASIGMAD and ! __BUILTIN_CRYPTO_VSHASIGMAW builtin functions must be a constant integer ! that is 0 or 1. The third argument to these builtin functions must be a ! constant integer in the range of 0 to 15.  File: gcc.info, Node: PowerPC Hardware Transactional Memory Built-in Functions, Next: RX Built-in Functions, Prev: PowerPC AltiVec/VSX Built-in Functions, Up: Target Builtins --- 44564,44572 ---- int, int); The second argument to the __BUILTIN_CRYPTO_VSHASIGMAD and ! __BUILTIN_CRYPTO_VSHASIGMAW builtin functions must be a constant ! integer that is 0 or 1. The third argument to these builtin functions ! must be a constant integer in the range of 0 to 15.  File: gcc.info, Node: PowerPC Hardware Transactional Memory Built-in Functions, Next: RX Built-in Functions, Prev: PowerPC AltiVec/VSX Built-in Functions, Up: Target Builtins *************** between PowerPC and S/390. *** 44210,44229 **** 6.57.22.1 PowerPC HTM Low Level Built-in Functions .................................................. ! The following low level built-in functions are available with '-mhtm' or ! '-mcpu=CPU' where CPU is 'power8' or later. They all generate the machine instruction that is part of the name. ! The HTM builtins (with the exception of '__builtin_tbegin') return the full 4-bit condition register value set by their associated hardware ! instruction. The header file 'htmintrin.h' defines some macros that can ! be used to decipher the return value. The '__builtin_tbegin' builtin returns a simple true or false value depending on whether a transaction was successfully started or not. The arguments of the builtins match exactly the type and order of the associated hardware instruction's ! operands, except for the '__builtin_tcheck' builtin, which does not take ! any input arguments. Refer to the ISA manual for a description of each ! instruction's operands. unsigned int __builtin_tbegin (unsigned int) unsigned int __builtin_tend (unsigned int) --- 44584,44603 ---- 6.57.22.1 PowerPC HTM Low Level Built-in Functions .................................................. ! The following low level built-in functions are available with `-mhtm' ! or `-mcpu=CPU' where CPU is `power8' or later. They all generate the machine instruction that is part of the name. ! The HTM builtins (with the exception of `__builtin_tbegin') return the full 4-bit condition register value set by their associated hardware ! instruction. The header file `htmintrin.h' defines some macros that can ! be used to decipher the return value. The `__builtin_tbegin' builtin returns a simple true or false value depending on whether a transaction was successfully started or not. The arguments of the builtins match exactly the type and order of the associated hardware instruction's ! operands, except for the `__builtin_tcheck' builtin, which does not ! take any input arguments. Refer to the ISA manual for a description of ! each instruction's operands. unsigned int __builtin_tbegin (unsigned int) unsigned int __builtin_tend (unsigned int) *************** some common extended mnemonics of the HT *** 44246,44253 **** unsigned int __builtin_tresume (void) unsigned int __builtin_tsuspend (void) ! The following set of built-in functions are available to gain access to ! the HTM specific special purpose registers. unsigned long __builtin_get_texasr (void) unsigned long __builtin_get_texasru (void) --- 44620,44651 ---- unsigned int __builtin_tresume (void) unsigned int __builtin_tsuspend (void) ! Note that the semantics of the above HTM builtins are required to mimic ! the locking semantics used for critical sections. Builtins that are ! used to create a new transaction or restart a suspended transaction ! must have lock acquisition like semantics while those builtins that end ! or suspend a transaction must have lock release like semantics. ! Specifically, this must mimic lock semantics as specified by C++11, for ! example: Lock acquisition is as-if an execution of ! __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE) that returns 0, and ! lock release is as-if an execution of ! __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an ! implicit implementation-defined lock used for all transactions. The HTM ! instructions associated with with the builtins inherently provide the ! correct acquisition and release hardware barriers required. However, ! the compiler must also be prohibited from moving loads and stores across ! the builtins in a way that would violate their semantics. This has been ! accomplished by adding memory barriers to the associated HTM ! instructions (which is a conservative approach to provide acquire and ! release semantics). Earlier versions of the compiler did not treat the ! HTM instructions as memory barriers. A `__TM_FENCE__' macro has been ! added, which can be used to determine whether the current compiler ! treats HTM instructions as memory barriers or not. This allows the ! user to explicitly add memory barriers to their code when using an ! older version of the compiler. ! ! The following set of built-in functions are available to gain access ! to the HTM specific special purpose registers. unsigned long __builtin_get_texasr (void) unsigned long __builtin_get_texasru (void) *************** the HTM specific special purpose registe *** 44293,44299 **** One final built-in function has been added that returns the value of the 2-bit Transaction State field of the Machine Status Register (MSR) ! as stored in 'CR0'. unsigned long __builtin_ttest (void) --- 44691,44697 ---- One final built-in function has been added that returns the value of the 2-bit Transaction State field of the Machine Status Register (MSR) ! as stored in `CR0'. unsigned long __builtin_ttest (void) *************** using the following code example: *** 44321,44330 **** ................................................. The following high level HTM interface is made available by including ! '' and using '-mhtm' or '-mcpu=CPU' where CPU is 'power8' ! or later. This interface is common between PowerPC and S/390, allowing ! users to write one HTM source implementation that can be compiled and ! executed on either system. long __TM_simple_begin (void) long __TM_begin (void* const TM_buff) --- 44719,44728 ---- ................................................. The following high level HTM interface is made available by including ! `' and using `-mhtm' or `-mcpu=CPU' where CPU is ! `power8' or later. This interface is common between PowerPC and S/390, ! allowing users to write one HTM source implementation that can be ! compiled and executed on either system. long __TM_simple_begin (void) long __TM_begin (void* const TM_buff) *************** the C programming language via the use o *** 44391,44482 **** following functions are supported: -- Built-in Function: void __builtin_rx_brk (void) ! Generates the 'brk' machine instruction. -- Built-in Function: void __builtin_rx_clrpsw (int) ! Generates the 'clrpsw' machine instruction to clear the specified bit in the processor status word. -- Built-in Function: void __builtin_rx_int (int) ! Generates the 'int' machine instruction to generate an interrupt with the specified value. -- Built-in Function: void __builtin_rx_machi (int, int) ! Generates the 'machi' machine instruction to add the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_maclo (int, int) ! Generates the 'maclo' machine instruction to add the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mulhi (int, int) ! Generates the 'mulhi' machine instruction to place the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mullo (int, int) ! Generates the 'mullo' machine instruction to place the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: int __builtin_rx_mvfachi (void) ! Generates the 'mvfachi' machine instruction to read the top 32 bits ! of the accumulator. -- Built-in Function: int __builtin_rx_mvfacmi (void) ! Generates the 'mvfacmi' machine instruction to read the middle 32 bits of the accumulator. -- Built-in Function: int __builtin_rx_mvfc (int) ! Generates the 'mvfc' machine instruction which reads the control register specified in its argument and returns its value. -- Built-in Function: void __builtin_rx_mvtachi (int) ! Generates the 'mvtachi' machine instruction to set the top 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtaclo (int) ! Generates the 'mvtaclo' machine instruction to set the bottom 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtc (int reg, int val) ! Generates the 'mvtc' machine instruction which sets control ! register number 'reg' to 'val'. -- Built-in Function: void __builtin_rx_mvtipl (int) ! Generates the 'mvtipl' machine instruction set the interrupt priority level. -- Built-in Function: void __builtin_rx_racw (int) ! Generates the 'racw' machine instruction to round the accumulator according to the specified mode. -- Built-in Function: int __builtin_rx_revw (int) ! Generates the 'revw' machine instruction which swaps the bytes in the argument so that bits 0-7 now occupy bits 8-15 and vice versa, and also bits 16-23 occupy bits 24-31 and vice versa. -- Built-in Function: void __builtin_rx_rmpa (void) ! Generates the 'rmpa' machine instruction which initiates a repeated ! multiply and accumulate sequence. -- Built-in Function: void __builtin_rx_round (float) ! Generates the 'round' machine instruction which returns the floating-point argument rounded according to the current rounding mode set in the floating-point status word register. -- Built-in Function: int __builtin_rx_sat (int) ! Generates the 'sat' machine instruction which returns the saturated ! value of the argument. -- Built-in Function: void __builtin_rx_setpsw (int) ! Generates the 'setpsw' machine instruction to set the specified bit ! in the processor status word. -- Built-in Function: void __builtin_rx_wait (void) ! Generates the 'wait' machine instruction.  File: gcc.info, Node: S/390 System z Built-in Functions, Next: SH Built-in Functions, Prev: RX Built-in Functions, Up: Target Builtins --- 44789,44880 ---- following functions are supported: -- Built-in Function: void __builtin_rx_brk (void) ! Generates the `brk' machine instruction. -- Built-in Function: void __builtin_rx_clrpsw (int) ! Generates the `clrpsw' machine instruction to clear the specified bit in the processor status word. -- Built-in Function: void __builtin_rx_int (int) ! Generates the `int' machine instruction to generate an interrupt with the specified value. -- Built-in Function: void __builtin_rx_machi (int, int) ! Generates the `machi' machine instruction to add the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_maclo (int, int) ! Generates the `maclo' machine instruction to add the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mulhi (int, int) ! Generates the `mulhi' machine instruction to place the result of multiplying the top 16 bits of the two arguments into the accumulator. -- Built-in Function: void __builtin_rx_mullo (int, int) ! Generates the `mullo' machine instruction to place the result of multiplying the bottom 16 bits of the two arguments into the accumulator. -- Built-in Function: int __builtin_rx_mvfachi (void) ! Generates the `mvfachi' machine instruction to read the top 32 ! bits of the accumulator. -- Built-in Function: int __builtin_rx_mvfacmi (void) ! Generates the `mvfacmi' machine instruction to read the middle 32 bits of the accumulator. -- Built-in Function: int __builtin_rx_mvfc (int) ! Generates the `mvfc' machine instruction which reads the control register specified in its argument and returns its value. -- Built-in Function: void __builtin_rx_mvtachi (int) ! Generates the `mvtachi' machine instruction to set the top 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtaclo (int) ! Generates the `mvtaclo' machine instruction to set the bottom 32 bits of the accumulator. -- Built-in Function: void __builtin_rx_mvtc (int reg, int val) ! Generates the `mvtc' machine instruction which sets control ! register number `reg' to `val'. -- Built-in Function: void __builtin_rx_mvtipl (int) ! Generates the `mvtipl' machine instruction set the interrupt priority level. -- Built-in Function: void __builtin_rx_racw (int) ! Generates the `racw' machine instruction to round the accumulator according to the specified mode. -- Built-in Function: int __builtin_rx_revw (int) ! Generates the `revw' machine instruction which swaps the bytes in the argument so that bits 0-7 now occupy bits 8-15 and vice versa, and also bits 16-23 occupy bits 24-31 and vice versa. -- Built-in Function: void __builtin_rx_rmpa (void) ! Generates the `rmpa' machine instruction which initiates a ! repeated multiply and accumulate sequence. -- Built-in Function: void __builtin_rx_round (float) ! Generates the `round' machine instruction which returns the floating-point argument rounded according to the current rounding mode set in the floating-point status word register. -- Built-in Function: int __builtin_rx_sat (int) ! Generates the `sat' machine instruction which returns the ! saturated value of the argument. -- Built-in Function: void __builtin_rx_setpsw (int) ! Generates the `setpsw' machine instruction to set the specified ! bit in the processor status word. -- Built-in Function: void __builtin_rx_wait (void) ! Generates the `wait' machine instruction.  File: gcc.info, Node: S/390 System z Built-in Functions, Next: SH Built-in Functions, Prev: RX Built-in Functions, Up: Target Builtins *************** File: gcc.info, Node: S/390 System z Bu *** 44485,44505 **** ----------------------------------------- -- Built-in Function: int __builtin_tbegin (void*) ! Generates the 'tbegin' machine instruction starting a non-constraint hardware transaction. If the parameter is non-NULL the memory area is used to store the transaction diagnostic buffer ! and will be passed as first operand to 'tbegin'. This buffer can ! be defined using the 'struct __htm_tdb' C struct defined in ! 'htmintrin.h' and must reside on a double-word boundary. The ! second tbegin operand is set to '0xff0c'. This enables save/restore of all GPRs and disables aborts for FPR and AR manipulations inside the transaction body. The condition code set by the tbegin instruction is returned as integer value. The tbegin instruction by definition overwrites the content of all FPRs. The compiler will generate code which saves and restores the FPRs. For ! soft-float code it is recommended to used the '*_nofloat' variant. ! In order to prevent a TDB from being written it is required to pass ! an constant zero value as parameter. Passing the zero value through a variable is not sufficient. Although modifications of access registers inside the transaction will not trigger an transaction abort it is not supported to actually modify them. --- 44883,44903 ---- ----------------------------------------- -- Built-in Function: int __builtin_tbegin (void*) ! Generates the `tbegin' machine instruction starting a non-constraint hardware transaction. If the parameter is non-NULL the memory area is used to store the transaction diagnostic buffer ! and will be passed as first operand to `tbegin'. This buffer can ! be defined using the `struct __htm_tdb' C struct defined in ! `htmintrin.h' and must reside on a double-word boundary. The ! second tbegin operand is set to `0xff0c'. This enables save/restore of all GPRs and disables aborts for FPR and AR manipulations inside the transaction body. The condition code set by the tbegin instruction is returned as integer value. The tbegin instruction by definition overwrites the content of all FPRs. The compiler will generate code which saves and restores the FPRs. For ! soft-float code it is recommended to used the `*_nofloat' variant. ! In order to prevent a TDB from being written it is required to ! pass an constant zero value as parameter. Passing the zero value through a variable is not sufficient. Although modifications of access registers inside the transaction will not trigger an transaction abort it is not supported to actually modify them. *************** File: gcc.info, Node: S/390 System z Bu *** 44507,44585 **** They will have undefined state when reaching the abort code. Macros for the possible return codes of tbegin are defined in the ! 'htmintrin.h' header file: ! '_HTM_TBEGIN_STARTED' ! 'tbegin' has been executed as part of normal processing. The transaction body is supposed to be executed. ! '_HTM_TBEGIN_INDETERMINATE' The transaction was aborted due to an indeterminate condition which might be persistent. ! '_HTM_TBEGIN_TRANSIENT' The transaction aborted due to a transient failure. The transaction should be re-executed in that case. ! '_HTM_TBEGIN_PERSISTENT' The transaction aborted due to a persistent failure. Re-execution under same circumstances will not be productive. -- Macro: _HTM_FIRST_USER_ABORT_CODE ! The '_HTM_FIRST_USER_ABORT_CODE' defined in 'htmintrin.h' specifies ! the first abort code which can be used for '__builtin_tabort'. ! Values below this threshold are reserved for machine use. -- Data type: struct __htm_tdb ! The 'struct __htm_tdb' defined in 'htmintrin.h' describes the structure of the transaction diagnostic block as specified in the Principles of Operation manual chapter 5-91. -- Built-in Function: int __builtin_tbegin_nofloat (void*) ! Same as '__builtin_tbegin' but without FPR saves and restores. Using this variant in code making use of FPRs will leave the FPRs in undefined state when entering the transaction abort handler code. -- Built-in Function: int __builtin_tbegin_retry (void*, int) ! In addition to '__builtin_tbegin' a loop for transient failures is generated. If tbegin returns a condition code of 2 the transaction will be retried as often as specified in the second argument. The perform processor assist instruction is used to tell the CPU about the number of fails so far. -- Built-in Function: int __builtin_tbegin_retry_nofloat (void*, int) ! Same as '__builtin_tbegin_retry' but without FPR saves and restores. Using this variant in code making use of FPRs will leave the FPRs in undefined state when entering the transaction abort handler code. -- Built-in Function: void __builtin_tbeginc (void) ! Generates the 'tbeginc' machine instruction starting a constraint ! hardware transaction. The second operand is set to '0xff08'. -- Built-in Function: int __builtin_tend (void) ! Generates the 'tend' machine instruction finishing a transaction and making the changes visible to other threads. The condition code generated by tend is returned as integer value. -- Built-in Function: void __builtin_tabort (int) ! Generates the 'tabort' machine instruction with the specified abort ! code. Abort codes from 0 through 255 are reserved and will result ! in an error message. -- Built-in Function: void __builtin_tx_assist (int) ! Generates the 'ppa rX,rY,1' machine instruction. Where the integer ! parameter is loaded into rX and a value of zero is loaded into rY. ! The integer parameter specifies the number of times the transaction ! repeatedly aborted. -- Built-in Function: int __builtin_tx_nesting_depth (void) ! Generates the 'etnd' machine instruction. The current nesting depth is returned as integer value. For a nesting depth of 0 the code is not executed as part of an transaction. -- Built-in Function: void __builtin_non_tx_store (uint64_t *, uint64_t) ! ! Generates the 'ntstg' machine instruction. The second argument is written to the first arguments location. The store operation will not be rolled-back in case of an transaction abort. --- 44905,44986 ---- They will have undefined state when reaching the abort code. Macros for the possible return codes of tbegin are defined in the ! `htmintrin.h' header file: ! `_HTM_TBEGIN_STARTED' ! `tbegin' has been executed as part of normal processing. The transaction body is supposed to be executed. ! ! `_HTM_TBEGIN_INDETERMINATE' The transaction was aborted due to an indeterminate condition which might be persistent. ! ! `_HTM_TBEGIN_TRANSIENT' The transaction aborted due to a transient failure. The transaction should be re-executed in that case. ! ! `_HTM_TBEGIN_PERSISTENT' The transaction aborted due to a persistent failure. Re-execution under same circumstances will not be productive. -- Macro: _HTM_FIRST_USER_ABORT_CODE ! The `_HTM_FIRST_USER_ABORT_CODE' defined in `htmintrin.h' ! specifies the first abort code which can be used for ! `__builtin_tabort'. Values below this threshold are reserved for ! machine use. -- Data type: struct __htm_tdb ! The `struct __htm_tdb' defined in `htmintrin.h' describes the structure of the transaction diagnostic block as specified in the Principles of Operation manual chapter 5-91. -- Built-in Function: int __builtin_tbegin_nofloat (void*) ! Same as `__builtin_tbegin' but without FPR saves and restores. Using this variant in code making use of FPRs will leave the FPRs in undefined state when entering the transaction abort handler code. -- Built-in Function: int __builtin_tbegin_retry (void*, int) ! In addition to `__builtin_tbegin' a loop for transient failures is generated. If tbegin returns a condition code of 2 the transaction will be retried as often as specified in the second argument. The perform processor assist instruction is used to tell the CPU about the number of fails so far. -- Built-in Function: int __builtin_tbegin_retry_nofloat (void*, int) ! Same as `__builtin_tbegin_retry' but without FPR saves and restores. Using this variant in code making use of FPRs will leave the FPRs in undefined state when entering the transaction abort handler code. -- Built-in Function: void __builtin_tbeginc (void) ! Generates the `tbeginc' machine instruction starting a constraint ! hardware transaction. The second operand is set to `0xff08'. -- Built-in Function: int __builtin_tend (void) ! Generates the `tend' machine instruction finishing a transaction and making the changes visible to other threads. The condition code generated by tend is returned as integer value. -- Built-in Function: void __builtin_tabort (int) ! Generates the `tabort' machine instruction with the specified ! abort code. Abort codes from 0 through 255 are reserved and will ! result in an error message. -- Built-in Function: void __builtin_tx_assist (int) ! Generates the `ppa rX,rY,1' machine instruction. Where the ! integer parameter is loaded into rX and a value of zero is loaded ! into rY. The integer parameter specifies the number of times the ! transaction repeatedly aborted. -- Built-in Function: int __builtin_tx_nesting_depth (void) ! Generates the `etnd' machine instruction. The current nesting depth is returned as integer value. For a nesting depth of 0 the code is not executed as part of an transaction. -- Built-in Function: void __builtin_non_tx_store (uint64_t *, uint64_t) ! Generates the `ntstg' machine instruction. The second argument is written to the first arguments location. The store operation will not be rolled-back in case of an transaction abort. *************** The following built-in functions are sup *** 44593,44610 **** SH4 families of processors: -- Built-in Function: void __builtin_set_thread_pointer (void *PTR) ! Sets the 'GBR' register to the specified value PTR. This is usually used by system code that manages threads and execution contexts. The compiler normally does not generate code that ! modifies the contents of 'GBR' and thus the value is preserved ! across function calls. Changing the 'GBR' value in user code must ! be done with caution, since the compiler might use 'GBR' in order to access thread local variables. -- Built-in Function: void * __builtin_thread_pointer (void) ! Returns the value that is currently set in the 'GBR' register. Memory loads and stores that use the thread pointer as a base ! address are turned into 'GBR' based displacement loads and stores, if possible. For example: struct my_tcb { --- 44994,45012 ---- SH4 families of processors: -- Built-in Function: void __builtin_set_thread_pointer (void *PTR) ! Sets the `GBR' register to the specified value PTR. This is usually used by system code that manages threads and execution contexts. The compiler normally does not generate code that ! modifies the contents of `GBR' and thus the value is preserved ! across function calls. Changing the `GBR' value in user code must ! be done with caution, since the compiler might use `GBR' in order to access thread local variables. + -- Built-in Function: void * __builtin_thread_pointer (void) ! Returns the value that is currently set in the `GBR' register. Memory loads and stores that use the thread pointer as a base ! address are turned into `GBR' based displacement loads and stores, if possible. For example: struct my_tcb { *************** SH4 families of processors: *** 44613,44623 **** int get_tcb_value (void) { ! // Generate 'mov.l @(8,gbr),r0' instruction return ((my_tcb*)__builtin_thread_pointer ())->c; } -  File: gcc.info, Node: SPARC VIS Built-in Functions, Next: SPU Built-in Functions, Prev: SH Built-in Functions, Up: Target Builtins --- 45015,45024 ---- int get_tcb_value (void) { ! // Generate `mov.l @(8,gbr),r0' instruction return ((my_tcb*)__builtin_thread_pointer ())->c; }  File: gcc.info, Node: SPARC VIS Built-in Functions, Next: SPU Built-in Functions, Prev: SH Built-in Functions, Up: Target Builtins *************** File: gcc.info, Node: SPARC VIS Built-i *** 44626,44633 **** GCC supports SIMD operations on the SPARC using both the generic vector extensions (*note Vector Extensions::) as well as built-in functions for ! the SPARC Visual Instruction Set (VIS). When you use the '-mvis' switch, ! the VIS extension is exposed as the following built-in functions: typedef int v1si __attribute__ ((vector_size (4))); typedef int v2si __attribute__ ((vector_size (8))); --- 45027,45035 ---- GCC supports SIMD operations on the SPARC using both the generic vector extensions (*note Vector Extensions::) as well as built-in functions for ! the SPARC Visual Instruction Set (VIS). When you use the `-mvis' ! switch, the VIS extension is exposed as the following built-in ! functions: typedef int v1si __attribute__ ((vector_size (4))); typedef int v2si __attribute__ ((vector_size (8))); *************** the VIS extension is exposed as the foll *** 44692,44698 **** long __builtin_vis_array16 (long, long); long __builtin_vis_array32 (long, long); ! When you use the '-mvis2' switch, the VIS version 2.0 built-in functions also become available: long __builtin_vis_bmask (long, long); --- 45094,45100 ---- long __builtin_vis_array16 (long, long); long __builtin_vis_array32 (long, long); ! When you use the `-mvis2' switch, the VIS version 2.0 built-in functions also become available: long __builtin_vis_bmask (long, long); *************** functions also become available: *** 44708,44714 **** long __builtin_vis_edge32n (void *, void *); long __builtin_vis_edge32ln (void *, void *); ! When you use the '-mvis3' switch, the VIS version 3.0 built-in functions also become available: void __builtin_vis_cmask8 (long); --- 45110,45116 ---- long __builtin_vis_edge32n (void *, void *); long __builtin_vis_edge32ln (void *, void *); ! When you use the `-mvis3' switch, the VIS version 3.0 built-in functions also become available: void __builtin_vis_cmask8 (long); *************** File: gcc.info, Node: SPU Built-in Func *** 44766,44773 **** GCC provides extensions for the SPU processor as described in the Sony/Toshiba/IBM SPU Language Extensions Specification, which can be ! found at or ! . GCC's implementation differs in several ways. * The optional extension of specifying vector constants in --- 45168,45175 ---- GCC provides extensions for the SPU processor as described in the Sony/Toshiba/IBM SPU Language Extensions Specification, which can be ! found at `http://cell.scei.co.jp/' or ! `http://www.ibm.com/developerworks/power/cell/'. GCC's implementation differs in several ways. * The optional extension of specifying vector constants in *************** differs in several ways. *** 44776,44790 **** * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If 'signed' or 'unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * By default, the keyword '__vector' is added. The macro 'vector' is ! defined in '' and can be undefined. ! * GCC allows using a 'typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the --- 45178,45192 ---- * A vector initializer requires no cast if the vector constant is of the same type as the variable it is initializing. ! * If `signed' or `unsigned' is omitted, the signedness of the vector type is the default signedness of the base type. The default varies depending on the operating system, so a portable program should always specify the signedness. ! * By default, the keyword `__vector' is added. The macro `vector' is ! defined in `' and can be undefined. ! * GCC allows using a `typedef' name as the type specifier for a vector type. * For C, overloaded functions are implemented with macros so the *************** differs in several ways. *** 44792,44805 **** spu_add ((vector signed int){1, 2, 3, 4}, foo); ! Since 'spu_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! * The extended version of '__builtin_expect' is not supported. _Note:_ Only the interface described in the aforementioned ! specification is supported. Internally, GCC uses built-in functions to implement the required functionality, but these are not supported and are subject to change without notice. --- 45194,45208 ---- spu_add ((vector signed int){1, 2, 3, 4}, foo); ! Since `spu_add' is a macro, the vector constant in the example is treated as four separate arguments. Wrap the entire argument in parentheses for this to work. ! * The extended version of `__builtin_expect' is not supported. ! _Note:_ Only the interface described in the aforementioned ! specification is supported. Internally, GCC uses built-in functions to implement the required functionality, but these are not supported and are subject to change without notice. *************** File: gcc.info, Node: TI C6X Built-in F *** 44811,44817 **** GCC provides intrinsics to access certain instructions of the TI C6X processors. These intrinsics, listed below, are available after ! inclusion of the 'c6x_intrinsics.h' header file. They map directly to C6X instructions. --- 45214,45220 ---- GCC provides intrinsics to access certain instructions of the TI C6X processors. These intrinsics, listed below, are available after ! inclusion of the `c6x_intrinsics.h' header file. They map directly to C6X instructions. *************** C6X instructions. *** 44842,44848 **** int _abs (int) int _abs2 (int) -  File: gcc.info, Node: TILE-Gx Built-in Functions, Next: TILEPro Built-in Functions, Prev: TI C6X Built-in Functions, Up: Target Builtins --- 45245,45250 ---- *************** processor. The intrinsics are of the fo *** 44855,44861 **** unsigned long long __insn_OP (...) - Where OP is the name of the instruction. Refer to the ISA manual for the complete list of instructions. --- 45257,45262 ---- *************** The intrinsics are: *** 44872,44880 **** void __tile_idn_send (unsigned long long) void __tile_udn_send (unsigned long long) ! ! The intrinsic 'void __tile_network_barrier (void)' is used to guarantee ! that no network operations before it are reordered with those after it.  File: gcc.info, Node: TILEPro Built-in Functions, Prev: TILE-Gx Built-in Functions, Up: Target Builtins --- 45273,45281 ---- void __tile_idn_send (unsigned long long) void __tile_udn_send (unsigned long long) ! The intrinsic `void __tile_network_barrier (void)' is used to ! guarantee that no network operations before it are reordered with those ! after it.  File: gcc.info, Node: TILEPro Built-in Functions, Prev: TILE-Gx Built-in Functions, Up: Target Builtins *************** processor. The intrinsics are of the fo *** 44888,44894 **** unsigned __insn_OP (...) - where OP is the name of the instruction. Refer to the ISA manual for the complete list of instructions. --- 45289,45294 ---- *************** The intrinsics are: *** 44907,44915 **** void __tile_sn_send (unsigned) void __tile_udn_send (unsigned) ! ! The intrinsic 'void __tile_network_barrier (void)' is used to guarantee ! that no network operations before it are reordered with those after it.  File: gcc.info, Node: Target Format Checks, Next: Pragmas, Prev: Target Builtins, Up: C Extensions --- 45307,45315 ---- void __tile_sn_send (unsigned) void __tile_udn_send (unsigned) ! The intrinsic `void __tile_network_barrier (void)' is used to ! guarantee that no network operations before it are reordered with those ! after it.  File: gcc.info, Node: Target Format Checks, Next: Pragmas, Prev: Target Builtins, Up: C Extensions *************** File: gcc.info, Node: Solaris Format Ch *** 44932,44941 **** 6.58.1 Solaris Format Checks ---------------------------- ! Solaris targets support the 'cmn_err' (or '__cmn_err__') format check. ! 'cmn_err' accepts a subset of the standard 'printf' conversions, and the ! two-argument '%b' conversion for displaying bit-fields. See the Solaris ! man page for 'cmn_err' for more information.  File: gcc.info, Node: Darwin Format Checks, Prev: Solaris Format Checks, Up: Target Format Checks --- 45332,45341 ---- 6.58.1 Solaris Format Checks ---------------------------- ! Solaris targets support the `cmn_err' (or `__cmn_err__') format check. ! `cmn_err' accepts a subset of the standard `printf' conversions, and ! the two-argument `%b' conversion for displaying bit-fields. See the ! Solaris man page for `cmn_err' for more information.  File: gcc.info, Node: Darwin Format Checks, Prev: Solaris Format Checks, Up: Target Format Checks *************** File: gcc.info, Node: Darwin Format Che *** 44943,44959 **** 6.58.2 Darwin Format Checks --------------------------- ! Darwin targets support the 'CFString' (or '__CFString__') in the format attribute context. Declarations made with such attribution are parsed for correct syntax and format argument types. However, parsing of the format string itself is currently undefined and is not carried out by this version of the compiler. ! Additionally, 'CFStringRefs' (defined by the 'CoreFoundation' headers) may also be used as format arguments. Note that the relevant headers are only likely to be available on Darwin (OSX) installations. On such installations, the XCode and system documentation provide descriptions ! of 'CFString', 'CFStringRefs' and associated functions.  File: gcc.info, Node: Pragmas, Next: Unnamed Fields, Prev: Target Format Checks, Up: C Extensions --- 45343,45359 ---- 6.58.2 Darwin Format Checks --------------------------- ! Darwin targets support the `CFString' (or `__CFString__') in the format attribute context. Declarations made with such attribution are parsed for correct syntax and format argument types. However, parsing of the format string itself is currently undefined and is not carried out by this version of the compiler. ! Additionally, `CFStringRefs' (defined by the `CoreFoundation' headers) may also be used as format arguments. Note that the relevant headers are only likely to be available on Darwin (OSX) installations. On such installations, the XCode and system documentation provide descriptions ! of `CFString', `CFStringRefs' and associated functions.  File: gcc.info, Node: Pragmas, Next: Unnamed Fields, Prev: Target Format Checks, Up: C Extensions *************** File: gcc.info, Node: Pragmas, Next: U *** 44962,44969 **** ============================ GCC supports several types of pragmas, primarily in order to compile ! code originally written for other compilers. Note that in general we do ! not recommend the use of pragmas; *Note Function Attributes::, for further explanation. * Menu: --- 45362,45369 ---- ============================ GCC supports several types of pragmas, primarily in order to compile ! code originally written for other compilers. Note that in general we ! do not recommend the use of pragmas; *Note Function Attributes::, for further explanation. * Menu: *************** File: gcc.info, Node: ARM Pragmas, Nex *** 44990,45006 **** ------------------ The ARM target defines pragmas for controlling the default addition of ! 'long_call' and 'short_call' attributes to functions. *Note Function Attributes::, for information about the effects of these attributes. ! 'long_calls' ! Set all subsequent functions to have the 'long_call' attribute. ! 'no_long_calls' ! Set all subsequent functions to have the 'short_call' attribute. ! 'long_calls_off' ! Do not affect the 'long_call' or 'short_call' attributes of subsequent functions.  --- 45390,45406 ---- ------------------ The ARM target defines pragmas for controlling the default addition of ! `long_call' and `short_call' attributes to functions. *Note Function Attributes::, for information about the effects of these attributes. ! `long_calls' ! Set all subsequent functions to have the `long_call' attribute. ! `no_long_calls' ! Set all subsequent functions to have the `short_call' attribute. ! `long_calls_off' ! Do not affect the `long_call' or `short_call' attributes of subsequent functions.  *************** File: gcc.info, Node: M32C Pragmas, Ne *** 45009,45054 **** 6.59.2 M32C Pragmas ------------------- ! 'GCC memregs NUMBER' ! Overrides the command-line option '-memregs=' for the current file. ! Use with care! This pragma must be before any function in the ! file, and mixing different memregs values in different objects may ! make them incompatible. This pragma is useful when a performance-critical function uses a memreg for temporary values, as it may allow you to reduce the number of memregs used. ! 'ADDRESS NAME ADDRESS' For any declared symbols matching NAME, this does three things to that symbol: it forces the symbol to be located at the given address (a number), it forces the symbol to be volatile, and it changes the symbol's scope to be static. This pragma exists for compatibility with other compilers, but note that the common ! '1234H' numeric syntax is not supported (use '0x1234' instead). Example: #pragma ADDRESS port3 0x103 char port3;  File: gcc.info, Node: MeP Pragmas, Next: RS/6000 and PowerPC Pragmas, Prev: M32C Pragmas, Up: Pragmas 6.59.3 MeP Pragmas ------------------ ! 'custom io_volatile (on|off)' ! Overrides the command-line option '-mio-volatile' for the current file. Note that for compatibility with future GCC releases, this ! option should only be used once before any 'io' variables in each file. ! 'GCC coprocessor available REGISTERS' Specifies which coprocessor registers are available to the register allocator. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: #pragma GCC coprocessor available $c0...$c10, $c28 ! 'GCC coprocessor call_saved REGISTERS' Specifies which coprocessor registers are to be saved and restored by any function using them. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of --- 45409,45455 ---- 6.59.2 M32C Pragmas ------------------- ! `GCC memregs NUMBER' ! Overrides the command-line option `-memregs=' for the current ! file. Use with care! This pragma must be before any function in ! the file, and mixing different memregs values in different objects ! may make them incompatible. This pragma is useful when a performance-critical function uses a memreg for temporary values, as it may allow you to reduce the number of memregs used. ! `ADDRESS NAME ADDRESS' For any declared symbols matching NAME, this does three things to that symbol: it forces the symbol to be located at the given address (a number), it forces the symbol to be volatile, and it changes the symbol's scope to be static. This pragma exists for compatibility with other compilers, but note that the common ! `1234H' numeric syntax is not supported (use `0x1234' instead). Example: #pragma ADDRESS port3 0x103 char port3; +  File: gcc.info, Node: MeP Pragmas, Next: RS/6000 and PowerPC Pragmas, Prev: M32C Pragmas, Up: Pragmas 6.59.3 MeP Pragmas ------------------ ! `custom io_volatile (on|off)' ! Overrides the command-line option `-mio-volatile' for the current file. Note that for compatibility with future GCC releases, this ! option should only be used once before any `io' variables in each file. ! `GCC coprocessor available REGISTERS' Specifies which coprocessor registers are available to the register allocator. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: #pragma GCC coprocessor available $c0...$c10, $c28 ! `GCC coprocessor call_saved REGISTERS' Specifies which coprocessor registers are to be saved and restored by any function using them. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of *************** File: gcc.info, Node: MeP Pragmas, Nex *** 45056,45064 **** #pragma GCC coprocessor call_saved $c4...$c6, $c31 ! 'GCC coprocessor subclass '(A|B|C|D)' = REGISTERS' Creates and defines a register class. These register classes can ! be used by inline 'asm' constructs. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: --- 45457,45465 ---- #pragma GCC coprocessor call_saved $c4...$c6, $c31 ! `GCC coprocessor subclass '(A|B|C|D)' = REGISTERS' Creates and defines a register class. These register classes can ! be used by inline `asm' constructs. REGISTERS may be a single register, register range separated by ellipses, or comma-separated list of those. Example: *************** File: gcc.info, Node: MeP Pragmas, Nex *** 45066,45072 **** asm ("cpfoo %0" : "=B" (x)); ! 'GCC disinterrupt NAME , NAME ...' For the named functions, the compiler adds code to disable interrupts for the duration of those functions. If any functions so named are not encountered in the source, a warning is emitted --- 45467,45473 ---- asm ("cpfoo %0" : "=B" (x)); ! `GCC disinterrupt NAME , NAME ...' For the named functions, the compiler adds code to disable interrupts for the duration of those functions. If any functions so named are not encountered in the source, a warning is emitted *************** File: gcc.info, Node: MeP Pragmas, Nex *** 45076,45082 **** #pragma disinterrupt bar, grill int foo () { ... } ! 'GCC call NAME , NAME ...' For the named functions, the compiler always uses a register-indirect call model when calling the named functions. Examples: --- 45477,45483 ---- #pragma disinterrupt bar, grill int foo () { ... } ! `GCC call NAME , NAME ...' For the named functions, the compiler always uses a register-indirect call model when calling the named functions. Examples: *************** File: gcc.info, Node: MeP Pragmas, Nex *** 45084,45089 **** --- 45485,45491 ---- extern int foo (); #pragma call foo +  File: gcc.info, Node: RS/6000 and PowerPC Pragmas, Next: Darwin Pragmas, Prev: MeP Pragmas, Up: Pragmas *************** File: gcc.info, Node: RS/6000 and Power *** 45091,45108 **** ---------------------------------- The RS/6000 and PowerPC targets define one pragma for controlling ! whether or not the 'longcall' attribute is added to function ! declarations by default. This pragma overrides the '-mlongcall' option, ! but not the 'longcall' and 'shortcall' attributes. *Note RS/6000 and ! PowerPC Options::, for more information about when long calls are and ! are not necessary. ! 'longcall (1)' ! Apply the 'longcall' attribute to all subsequent function declarations. ! 'longcall (0)' ! Do not apply the 'longcall' attribute to subsequent function declarations.  --- 45493,45510 ---- ---------------------------------- The RS/6000 and PowerPC targets define one pragma for controlling ! whether or not the `longcall' attribute is added to function ! declarations by default. This pragma overrides the `-mlongcall' ! option, but not the `longcall' and `shortcall' attributes. *Note ! RS/6000 and PowerPC Options::, for more information about when long ! calls are and are not necessary. ! `longcall (1)' ! Apply the `longcall' attribute to all subsequent function declarations. ! `longcall (0)' ! Do not apply the `longcall' attribute to subsequent function declarations.  *************** The following pragmas are available for *** 45115,45137 **** Darwin operating system. These are useful for compatibility with other Mac OS compilers. ! 'mark TOKENS...' This pragma is accepted, but has no effect. ! 'options align=ALIGNMENT' ! This pragma sets the alignment of fields in structures. The values ! of ALIGNMENT may be 'mac68k', to emulate m68k alignment, or ! 'power', to emulate PowerPC alignment. Uses of this pragma nest ! properly; to restore the previous setting, use 'reset' for the ALIGNMENT. ! 'segment TOKENS...' This pragma is accepted, but has no effect. ! 'unused (VAR [, VAR]...)' This pragma declares variables to be possibly unused. GCC does not produce warnings for the listed variables. The effect is similar ! to that of the 'unused' attribute, except that this pragma may appear anywhere within the variables' scopes.  --- 45517,45539 ---- Darwin operating system. These are useful for compatibility with other Mac OS compilers. ! `mark TOKENS...' This pragma is accepted, but has no effect. ! `options align=ALIGNMENT' ! This pragma sets the alignment of fields in structures. The ! values of ALIGNMENT may be `mac68k', to emulate m68k alignment, or ! `power', to emulate PowerPC alignment. Uses of this pragma nest ! properly; to restore the previous setting, use `reset' for the ALIGNMENT. ! `segment TOKENS...' This pragma is accepted, but has no effect. ! `unused (VAR [, VAR]...)' This pragma declares variables to be possibly unused. GCC does not produce warnings for the listed variables. The effect is similar ! to that of the `unused' attribute, except that this pragma may appear anywhere within the variables' scopes.  *************** File: gcc.info, Node: Solaris Pragmas, *** 45140,45169 **** 6.59.6 Solaris Pragmas ---------------------- ! The Solaris target supports '#pragma redefine_extname' (*note ! Symbol-Renaming Pragmas::). It also supports additional '#pragma' directives for compatibility with the system compiler. ! 'align ALIGNMENT (VARIABLE [, VARIABLE]...)' ! ! Increase the minimum alignment of each VARIABLE to ALIGNMENT. This ! is the same as GCC's 'aligned' attribute *note Variable Attributes::). Macro expansion occurs on the arguments to this pragma when compiling C and Objective-C. It does not currently ! occur when compiling C++, but this is a bug which may be fixed in a ! future release. ! ! 'fini (FUNCTION [, FUNCTION]...)' ! This pragma causes each listed FUNCTION to be called after main, or ! during shared module unloading, by adding a call to the '.fini' section. ! 'init (FUNCTION [, FUNCTION]...)' ! This pragma causes each listed FUNCTION to be called during ! initialization (before 'main') or during shared module loading, by ! adding a call to the '.init' section.  File: gcc.info, Node: Symbol-Renaming Pragmas, Next: Structure-Packing Pragmas, Prev: Solaris Pragmas, Up: Pragmas --- 45542,45569 ---- 6.59.6 Solaris Pragmas ---------------------- ! The Solaris target supports `#pragma redefine_extname' (*note ! Symbol-Renaming Pragmas::). It also supports additional `#pragma' directives for compatibility with the system compiler. ! `align ALIGNMENT (VARIABLE [, VARIABLE]...)' ! Increase the minimum alignment of each VARIABLE to ALIGNMENT. ! This is the same as GCC's `aligned' attribute *note Variable Attributes::). Macro expansion occurs on the arguments to this pragma when compiling C and Objective-C. It does not currently ! occur when compiling C++, but this is a bug which may be fixed in ! a future release. ! `fini (FUNCTION [, FUNCTION]...)' ! This pragma causes each listed FUNCTION to be called after main, ! or during shared module unloading, by adding a call to the `.fini' section. ! `init (FUNCTION [, FUNCTION]...)' This pragma causes each listed FUNCTION to be called during ! initialization (before `main') or during shared module loading, by ! adding a call to the `.init' section. !  File: gcc.info, Node: Symbol-Renaming Pragmas, Next: Structure-Packing Pragmas, Prev: Solaris Pragmas, Up: Pragmas *************** File: gcc.info, Node: Symbol-Renaming P *** 45172,45185 **** ------------------------------ For compatibility with the Solaris system headers, GCC supports two ! '#pragma' directives that change the name used in assembly for a given ! declaration. To get this effect on all platforms supported by GCC, use the asm labels extension (*note Asm Labels::). ! 'redefine_extname OLDNAME NEWNAME' ! This pragma gives the C function OLDNAME the assembly symbol ! NEWNAME. The preprocessor macro '__PRAGMA_REDEFINE_EXTNAME' is defined if this pragma is available (currently on all platforms). This pragma and the asm labels extension interact in a complicated --- 45572,45584 ---- ------------------------------ For compatibility with the Solaris system headers, GCC supports two ! `#pragma' directives that change the name used in assembly for a given ! declaration. To get this effect on all platforms supported by GCC, use the asm labels extension (*note Asm Labels::). ! `redefine_extname OLDNAME NEWNAME' This pragma gives the C function OLDNAME the assembly symbol ! NEWNAME. The preprocessor macro `__PRAGMA_REDEFINE_EXTNAME' is defined if this pragma is available (currently on all platforms). This pragma and the asm labels extension interact in a complicated *************** manner. Here are some corner cases you *** 45194,45204 **** 3. If any of the three ways of changing the assembly name of a declaration is applied to a declaration whose assembly name has already been determined (either by a previous use of one of these ! features, or because the compiler needed the assembly name in order ! to generate code), and the new name is different, a warning issues ! and the name does not change. ! 4. The OLDNAME used by '#pragma redefine_extname' is always the C-language name.  --- 45593,45603 ---- 3. If any of the three ways of changing the assembly name of a declaration is applied to a declaration whose assembly name has already been determined (either by a previous use of one of these ! features, or because the compiler needed the assembly name in ! order to generate code), and the new name is different, a warning ! issues and the name does not change. ! 4. The OLDNAME used by `#pragma redefine_extname' is always the C-language name.  *************** File: gcc.info, Node: Structure-Packing *** 45208,45238 **** -------------------------------- For compatibility with Microsoft Windows compilers, GCC supports a set ! of '#pragma' directives that change the maximum alignment of members of structures (other than zero-width bit-fields), unions, and classes ! subsequently defined. The N value below always is required to be a small power of two and specifies the new alignment in bytes. ! 1. '#pragma pack(N)' simply sets the new alignment. ! 2. '#pragma pack()' sets the alignment to the one that was in effect when compilation started (see also command-line option ! '-fpack-struct[=N]' *note Code Gen Options::). ! 3. '#pragma pack(push[,N])' pushes the current alignment setting on an ! internal stack and then optionally sets the new alignment. ! 4. '#pragma pack(pop)' restores the alignment setting to the one saved ! at the top of the internal stack (and removes that stack entry). ! Note that '#pragma pack([N])' does not influence this internal ! stack; thus it is possible to have '#pragma pack(push)' followed by ! multiple '#pragma pack(N)' instances and finalized by a single ! '#pragma pack(pop)'. ! Some targets, e.g. i386 and PowerPC, support the 'ms_struct' '#pragma' ! which lays out a structure as the documented '__attribute__ ((ms_struct))'. ! 1. '#pragma ms_struct on' turns on the layout for structures declared. ! 2. '#pragma ms_struct off' turns off the layout for structures declared. ! 3. '#pragma ms_struct reset' goes back to the default layout.  File: gcc.info, Node: Weak Pragmas, Next: Diagnostic Pragmas, Prev: Structure-Packing Pragmas, Up: Pragmas --- 45607,45642 ---- -------------------------------- For compatibility with Microsoft Windows compilers, GCC supports a set ! of `#pragma' directives that change the maximum alignment of members of structures (other than zero-width bit-fields), unions, and classes ! subsequently defined. The N value below always is required to be a small power of two and specifies the new alignment in bytes. ! 1. `#pragma pack(N)' simply sets the new alignment. ! ! 2. `#pragma pack()' sets the alignment to the one that was in effect when compilation started (see also command-line option ! `-fpack-struct[=N]' *note Code Gen Options::). ! 3. `#pragma pack(push[,N])' pushes the current alignment setting on ! an internal stack and then optionally sets the new alignment. ! ! 4. `#pragma pack(pop)' restores the alignment setting to the one ! saved at the top of the internal stack (and removes that stack ! entry). Note that `#pragma pack([N])' does not influence this ! internal stack; thus it is possible to have `#pragma pack(push)' ! followed by multiple `#pragma pack(N)' instances and finalized by ! a single `#pragma pack(pop)'. ! ! Some targets, e.g. i386 and PowerPC, support the `ms_struct' `#pragma' ! which lays out a structure as the documented `__attribute__ ((ms_struct))'. ! 1. `#pragma ms_struct on' turns on the layout for structures declared. ! ! 2. `#pragma ms_struct off' turns off the layout for structures declared. ! ! 3. `#pragma ms_struct reset' goes back to the default layout.  File: gcc.info, Node: Weak Pragmas, Next: Diagnostic Pragmas, Prev: Structure-Packing Pragmas, Up: Pragmas *************** File: gcc.info, Node: Weak Pragmas, Ne *** 45240,45255 **** 6.59.9 Weak Pragmas ------------------- ! For compatibility with SVR4, GCC supports a set of '#pragma' directives for declaring symbols to be weak, and defining weak aliases. ! '#pragma weak SYMBOL' This pragma declares SYMBOL to be weak, as if the declaration had the attribute of the same name. The pragma may appear before or after the declaration of SYMBOL. It is not an error for SYMBOL to never be defined at all. ! '#pragma weak SYMBOL1 = SYMBOL2' This pragma declares SYMBOL1 to be a weak alias of SYMBOL2. It is an error if SYMBOL2 is not defined in the current translation unit. --- 45644,45659 ---- 6.59.9 Weak Pragmas ------------------- ! For compatibility with SVR4, GCC supports a set of `#pragma' directives for declaring symbols to be weak, and defining weak aliases. ! `#pragma weak SYMBOL' This pragma declares SYMBOL to be weak, as if the declaration had the attribute of the same name. The pragma may appear before or after the declaration of SYMBOL. It is not an error for SYMBOL to never be defined at all. ! `#pragma weak SYMBOL1 = SYMBOL2' This pragma declares SYMBOL1 to be a weak alias of SYMBOL2. It is an error if SYMBOL2 is not defined in the current translation unit. *************** File: gcc.info, Node: Diagnostic Pragma *** 45261,45282 **** GCC allows the user to selectively enable or disable certain types of diagnostics, and change the kind of the diagnostic. For example, a ! project's policy might require that all sources compile with '-Werror' but certain files might have exceptions allowing specific types of warnings. Or, a project might selectively enable diagnostics and treat them as errors depending on which preprocessor macros are defined. ! '#pragma GCC diagnostic KIND OPTION' ! Modifies the disposition of a diagnostic. Note that not all diagnostics are modifiable; at the moment only warnings (normally ! controlled by '-W...') can be controlled, and not all of them. Use ! '-fdiagnostics-show-option' to determine which diagnostics are controllable and which option controls them. ! KIND is 'error' to treat this diagnostic as an error, 'warning' to ! treat it like a warning (even if '-Werror' is in effect), or ! 'ignored' if the diagnostic is to be ignored. OPTION is a double quoted string that matches the command-line option. #pragma GCC diagnostic warning "-Wformat" --- 45665,45685 ---- GCC allows the user to selectively enable or disable certain types of diagnostics, and change the kind of the diagnostic. For example, a ! project's policy might require that all sources compile with `-Werror' but certain files might have exceptions allowing specific types of warnings. Or, a project might selectively enable diagnostics and treat them as errors depending on which preprocessor macros are defined. ! `#pragma GCC diagnostic KIND OPTION' Modifies the disposition of a diagnostic. Note that not all diagnostics are modifiable; at the moment only warnings (normally ! controlled by `-W...') can be controlled, and not all of them. ! Use `-fdiagnostics-show-option' to determine which diagnostics are controllable and which option controls them. ! KIND is `error' to treat this diagnostic as an error, `warning' to ! treat it like a warning (even if `-Werror' is in effect), or ! `ignored' if the diagnostic is to be ignored. OPTION is a double quoted string that matches the command-line option. #pragma GCC diagnostic warning "-Wformat" *************** them as errors depending on which prepro *** 45289,45300 **** pragmas occurring after a line do not affect diagnostics caused by that line. ! '#pragma GCC diagnostic push' ! '#pragma GCC diagnostic pop' ! Causes GCC to remember the state of the diagnostics as of each ! 'push', and restore to that point at each 'pop'. If a 'pop' has no ! matching 'push', the command-line options are restored. #pragma GCC diagnostic error "-Wuninitialized" foo(a); /* error is given for this one */ --- 45692,45702 ---- pragmas occurring after a line do not affect diagnostics caused by that line. ! `#pragma GCC diagnostic push' ! `#pragma GCC diagnostic pop' Causes GCC to remember the state of the diagnostics as of each ! `push', and restore to that point at each `pop'. If a `pop' has ! no matching `push', the command-line options are restored. #pragma GCC diagnostic error "-Wuninitialized" foo(a); /* error is given for this one */ *************** them as errors depending on which prepro *** 45306,45318 **** #pragma GCC diagnostic pop foo(d); /* depends on command-line options */ GCC also offers a simple mechanism for printing messages during compilation. ! '#pragma message STRING' ! ! Prints STRING as a compiler message on compilation. The message is ! informational only, and is neither a compilation warning nor an error. #pragma message "Compiling " __FILE__ "..." --- 45708,45720 ---- #pragma GCC diagnostic pop foo(d); /* depends on command-line options */ + GCC also offers a simple mechanism for printing messages during compilation. ! `#pragma message STRING' ! Prints STRING as a compiler message on compilation. The message ! is informational only, and is neither a compilation warning nor an error. #pragma message "Compiling " __FILE__ "..." *************** compilation. *** 45325,45352 **** TODO(Remember to fix this) ! prints '/tmp/file.c:4: note: #pragma message: TODO - Remember to fix this'.  File: gcc.info, Node: Visibility Pragmas, Next: Push/Pop Macro Pragmas, Prev: Diagnostic Pragmas, Up: Pragmas 6.59.11 Visibility Pragmas -------------------------- ! '#pragma GCC visibility push(VISIBILITY)' ! '#pragma GCC visibility pop' ! This pragma allows the user to set the visibility for multiple declarations without having to give each a visibility attribute *Note Function Attributes::, for more information about visibility and the attribute syntax. ! In C++, '#pragma GCC visibility' affects only namespace-scope declarations. Class members and template specializations are not affected; if you want to override the visibility for a particular member or instantiation, you must use an attribute.  File: gcc.info, Node: Push/Pop Macro Pragmas, Next: Function Specific Option Pragmas, Prev: Visibility Pragmas, Up: Pragmas --- 45727,45755 ---- TODO(Remember to fix this) ! prints `/tmp/file.c:4: note: #pragma message: TODO - Remember to fix this'. +  File: gcc.info, Node: Visibility Pragmas, Next: Push/Pop Macro Pragmas, Prev: Diagnostic Pragmas, Up: Pragmas 6.59.11 Visibility Pragmas -------------------------- ! `#pragma GCC visibility push(VISIBILITY)' ! `#pragma GCC visibility pop' This pragma allows the user to set the visibility for multiple declarations without having to give each a visibility attribute *Note Function Attributes::, for more information about visibility and the attribute syntax. ! In C++, `#pragma GCC visibility' affects only namespace-scope declarations. Class members and template specializations are not affected; if you want to override the visibility for a particular member or instantiation, you must use an attribute. +  File: gcc.info, Node: Push/Pop Macro Pragmas, Next: Function Specific Option Pragmas, Prev: Visibility Pragmas, Up: Pragmas *************** File: gcc.info, Node: Push/Pop Macro Pr *** 45354,45369 **** ------------------------------ For compatibility with Microsoft Windows compilers, GCC supports ! '#pragma push_macro("MACRO_NAME")' and '#pragma pop_macro("MACRO_NAME")'. ! '#pragma push_macro("MACRO_NAME")' ! This pragma saves the value of the macro named as MACRO_NAME to the ! top of the stack for this macro. ! '#pragma pop_macro("MACRO_NAME")' This pragma sets the value of the macro named as MACRO_NAME to the ! value on top of the stack for this macro. If the stack for MACRO_NAME is empty, the value of the macro remains unchanged. For example: --- 45757,45772 ---- ------------------------------ For compatibility with Microsoft Windows compilers, GCC supports ! `#pragma push_macro("MACRO_NAME")' and `#pragma pop_macro("MACRO_NAME")'. ! `#pragma push_macro("MACRO_NAME")' ! This pragma saves the value of the macro named as MACRO_NAME to ! the top of the stack for this macro. ! `#pragma pop_macro("MACRO_NAME")' This pragma sets the value of the macro named as MACRO_NAME to the ! value on top of the stack for this macro. If the stack for MACRO_NAME is empty, the value of the macro remains unchanged. For example: *************** pop_macro("MACRO_NAME")'. *** 45375,45382 **** #pragma pop_macro("X") int x [X]; ! In this example, the definition of X as 1 is saved by '#pragma ! push_macro' and restored by '#pragma pop_macro'.  File: gcc.info, Node: Function Specific Option Pragmas, Next: Loop-Specific Pragmas, Prev: Push/Pop Macro Pragmas, Up: Pragmas --- 45778,45785 ---- #pragma pop_macro("X") int x [X]; ! In this example, the definition of X as 1 is saved by `#pragma ! push_macro' and restored by `#pragma pop_macro'.  File: gcc.info, Node: Function Specific Option Pragmas, Next: Loop-Specific Pragmas, Prev: Push/Pop Macro Pragmas, Up: Pragmas *************** File: gcc.info, Node: Function Specific *** 45384,45434 **** 6.59.13 Function Specific Option Pragmas ---------------------------------------- ! '#pragma GCC target ("STRING"...)' ! This pragma allows you to set target specific options for functions defined later in the source file. One or more strings can be ! specified. Each function that is defined after this point is as if ! 'attribute((target("STRING")))' was specified for that function. ! The parenthesis around the options is optional. *Note Function ! Attributes::, for more information about the 'target' attribute and ! the attribute syntax. ! The '#pragma GCC target' pragma is presently implemented for i386/x86_64, PowerPC, and Nios II targets only. ! '#pragma GCC optimize ("STRING"...)' ! This pragma allows you to set global optimization options for functions defined later in the source file. One or more strings can be specified. Each function that is defined after this point ! is as if 'attribute((optimize("STRING")))' was specified for that function. The parenthesis around the options is optional. *Note ! Function Attributes::, for more information about the 'optimize' attribute and the attribute syntax. ! The '#pragma GCC optimize' pragma is not implemented in GCC versions earlier than 4.4. ! '#pragma GCC push_options' ! '#pragma GCC pop_options' ! These pragmas maintain a stack of the current target and optimization options. It is intended for include files where you ! temporarily want to switch to using a different '#pragma GCC ! target' or '#pragma GCC optimize' and then to pop back to the previous options. ! The '#pragma GCC push_options' and '#pragma GCC pop_options' pragmas are not implemented in GCC versions earlier than 4.4. ! '#pragma GCC reset_options' ! ! This pragma clears the current '#pragma GCC target' and '#pragma GCC optimize' to use the default switches as specified on the command line. ! The '#pragma GCC reset_options' pragma is not implemented in GCC versions earlier than 4.4.  --- 45787,45833 ---- 6.59.13 Function Specific Option Pragmas ---------------------------------------- ! `#pragma GCC target ("STRING"...)' This pragma allows you to set target specific options for functions defined later in the source file. One or more strings can be ! specified. Each function that is defined after this point is as ! if `attribute((target("STRING")))' was specified for that ! function. The parenthesis around the options is optional. *Note ! Function Attributes::, for more information about the `target' ! attribute and the attribute syntax. ! The `#pragma GCC target' pragma is presently implemented for i386/x86_64, PowerPC, and Nios II targets only. ! `#pragma GCC optimize ("STRING"...)' This pragma allows you to set global optimization options for functions defined later in the source file. One or more strings can be specified. Each function that is defined after this point ! is as if `attribute((optimize("STRING")))' was specified for that function. The parenthesis around the options is optional. *Note ! Function Attributes::, for more information about the `optimize' attribute and the attribute syntax. ! The `#pragma GCC optimize' pragma is not implemented in GCC versions earlier than 4.4. ! `#pragma GCC push_options' ! `#pragma GCC pop_options' These pragmas maintain a stack of the current target and optimization options. It is intended for include files where you ! temporarily want to switch to using a different `#pragma GCC ! target' or `#pragma GCC optimize' and then to pop back to the previous options. ! The `#pragma GCC push_options' and `#pragma GCC pop_options' pragmas are not implemented in GCC versions earlier than 4.4. ! `#pragma GCC reset_options' ! This pragma clears the current `#pragma GCC target' and `#pragma GCC optimize' to use the default switches as specified on the command line. ! The `#pragma GCC reset_options' pragma is not implemented in GCC versions earlier than 4.4.  *************** File: gcc.info, Node: Loop-Specific Pra *** 45437,45443 **** 6.59.14 Loop-Specific Pragmas ----------------------------- ! '#pragma GCC ivdep' With this pragma, the programmer asserts that there are no loop-carried dependencies which would prevent that consecutive iterations of the --- 45836,45842 ---- 6.59.14 Loop-Specific Pragmas ----------------------------- ! `#pragma GCC ivdep' With this pragma, the programmer asserts that there are no loop-carried dependencies which would prevent that consecutive iterations of the *************** following loop with the pragma: *** 45455,45463 **** a[i] = b[i] + c[i]; } ! In this example, using the 'restrict' qualifier had the same effect. In ! the following example, that would not be possible. Assume k < -m or k ! >= m. Only with the pragma, the compiler knows that it can unconditionally vectorize the following loop: void ignore_vec_dep (int *a, int k, int c, int m) --- 45854,45862 ---- a[i] = b[i] + c[i]; } ! In this example, using the `restrict' qualifier had the same effect. In ! the following example, that would not be possible. Assume k < -m or k ! >= m. Only with the pragma, the compiler knows that it can unconditionally vectorize the following loop: void ignore_vec_dep (int *a, int k, int c, int m) *************** structures and unions without names. Fo *** 45487,45494 **** } foo; In this example, you are able to access members of the unnamed union ! with code like 'foo.b'. Note that only unnamed structs and unions are ! allowed, you may not have, for example, an unnamed 'int'. You must never create such structures that cause ambiguous field definitions. For example, in this structure: --- 45886,45893 ---- } foo; In this example, you are able to access members of the unnamed union ! with code like `foo.b'. Note that only unnamed structs and unions are ! allowed, you may not have, for example, an unnamed `int'. You must never create such structures that cause ambiguous field definitions. For example, in this structure: *************** definitions. For example, in this struc *** 45500,45516 **** }; } foo; ! it is ambiguous which 'a' is being referred to with 'foo.a'. The compiler gives errors for such constructs. ! Unless '-fms-extensions' is used, the unnamed field must be a structure ! or union definition without a tag (for example, 'struct { int a; };'). ! If '-fms-extensions' is used, the field may also be a definition with a ! tag such as 'struct foo { int a; };', a reference to a previously ! defined structure or union such as 'struct foo;', or a reference to a ! 'typedef' name for a previously defined structure or union type. ! The option '-fplan9-extensions' enables '-fms-extensions' as well as two other extensions. First, a pointer to a structure is automatically converted to a pointer to an anonymous field for assignments and function calls. For example: --- 45899,45916 ---- }; } foo; ! it is ambiguous which `a' is being referred to with `foo.a'. The compiler gives errors for such constructs. ! Unless `-fms-extensions' is used, the unnamed field must be a ! structure or union definition without a tag (for example, `struct { int ! a; };'). If `-fms-extensions' is used, the field may also be a ! definition with a tag such as `struct foo { int a; };', a reference to ! a previously defined structure or union such as `struct foo;', or a ! reference to a `typedef' name for a previously defined structure or ! union type. ! The option `-fplan9-extensions' enables `-fms-extensions' as well as two other extensions. First, a pointer to a structure is automatically converted to a pointer to an anonymous field for assignments and function calls. For example: *************** function calls. For example: *** 45520,45531 **** extern void f1 (struct s1 *); void f2 (struct s2 *p) { f1 (p); } ! In the call to 'f1' inside 'f2', the pointer 'p' is converted into a pointer to the anonymous field. ! Second, when the type of an anonymous field is a 'typedef' for a ! 'struct' or 'union', code may refer to the field using the name of the ! 'typedef'. typedef struct { int a; } s1; struct s2 { s1; }; --- 45920,45931 ---- extern void f1 (struct s1 *); void f2 (struct s2 *p) { f1 (p); } ! In the call to `f1' inside `f2', the pointer `p' is converted into a pointer to the anonymous field. ! Second, when the type of an anonymous field is a `typedef' for a ! `struct' or `union', code may refer to the field using the name of the ! `typedef'. typedef struct { int a; } s1; struct s2 { s1; }; *************** allocated such that there is one instanc *** 45544,45565 **** thread. The runtime model GCC uses to implement this originates in the IA-64 processor-specific ABI, but has since been migrated to other processors as well. It requires significant support from the linker ! ('ld'), dynamic linker ('ld.so'), and system libraries ('libc.so' and ! 'libpthread.so'), so it is not available everywhere. At the user level, the extension is visible with a new storage class ! keyword: '__thread'. For example: __thread int i; extern __thread struct state s; static __thread char *p; ! The '__thread' specifier may be used alone, with the 'extern' or ! 'static' specifiers, but with no other storage class specifier. When ! used with 'extern' or 'static', '__thread' must appear immediately after ! the other storage class specifier. ! The '__thread' specifier may be applied to any global, file-scoped static, function-scoped static, or static data member of a class. It may not be applied to block-scoped automatic or non-static data member. --- 45944,45965 ---- thread. The runtime model GCC uses to implement this originates in the IA-64 processor-specific ABI, but has since been migrated to other processors as well. It requires significant support from the linker ! (`ld'), dynamic linker (`ld.so'), and system libraries (`libc.so' and ! `libpthread.so'), so it is not available everywhere. At the user level, the extension is visible with a new storage class ! keyword: `__thread'. For example: __thread int i; extern __thread struct state s; static __thread char *p; ! The `__thread' specifier may be used alone, with the `extern' or ! `static' specifiers, but with no other storage class specifier. When ! used with `extern' or `static', `__thread' must appear immediately ! after the other storage class specifier. ! The `__thread' specifier may be applied to any global, file-scoped static, function-scoped static, or static data member of a class. It may not be applied to block-scoped automatic or non-static data member. *************** File: gcc.info, Node: C99 Thread-Local *** 45595,45601 **** The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the exact semantics of the language extension. ! * '5.1.2 Execution environments' Add new text after paragraph 1 --- 45995,46001 ---- The following are a set of changes to ISO/IEC 9899:1999 (aka C99) that document the exact semantics of the language extension. ! * `5.1.2 Execution environments' Add new text after paragraph 1 *************** document the exact semantics of the lang *** 45608,45644 **** terminated. However, objects with thread storage duration shall be initialized before thread startup. ! * '6.2.4 Storage durations of objects' Add new text before paragraph 3 An object whose identifier is declared with the storage-class ! specifier '__thread' has "thread storage duration". Its ! lifetime is the entire execution of the thread, and its stored ! value is initialized only once, prior to thread startup. ! * '6.4.1 Keywords' ! Add '__thread'. ! * '6.7.1 Storage-class specifiers' ! Add '__thread' to the list of storage class specifiers in paragraph ! 1. Change paragraph 2 to ! With the exception of '__thread', at most one storage-class ! specifier may be given [...]. The '__thread' specifier may be ! used alone, or immediately following 'extern' or 'static'. Add new text after paragraph 6 ! The declaration of an identifier for a variable that has block ! scope that specifies '__thread' shall also specify either ! 'extern' or 'static'. ! The '__thread' specifier shall be used only with variables.  File: gcc.info, Node: C++98 Thread-Local Edits, Prev: C99 Thread-Local Edits, Up: Thread-Local --- 46008,46045 ---- terminated. However, objects with thread storage duration shall be initialized before thread startup. ! * `6.2.4 Storage durations of objects' Add new text before paragraph 3 An object whose identifier is declared with the storage-class ! specifier `__thread' has "thread storage duration". Its ! lifetime is the entire execution of the thread, and its ! stored value is initialized only once, prior to thread ! startup. ! * `6.4.1 Keywords' ! Add `__thread'. ! * `6.7.1 Storage-class specifiers' ! Add `__thread' to the list of storage class specifiers in ! paragraph 1. Change paragraph 2 to ! With the exception of `__thread', at most one storage-class ! specifier may be given [...]. The `__thread' specifier may ! be used alone, or immediately following `extern' or `static'. Add new text after paragraph 6 ! The declaration of an identifier for a variable that has ! block scope that specifies `__thread' shall also specify ! either `extern' or `static'. ! The `__thread' specifier shall be used only with variables.  File: gcc.info, Node: C++98 Thread-Local Edits, Prev: C99 Thread-Local Edits, Up: Thread-Local *************** that document the exact semantics of the *** 45665,45684 **** * [lex.key] ! Add '__thread'. * [basic.start.main] Add after paragraph 5 ! The thread that begins execution at the 'main' function is called the "main thread". It is implementation defined how functions beginning threads other than the main thread are ! designated or typed. A function so designated, as well as the ! 'main' function, is called a "thread startup function". It is ! implementation defined what happens if a thread startup function returns. It is implementation defined what happens ! to other threads when any thread calls 'exit'. * [basic.start.init] --- 46066,46085 ---- * [lex.key] ! Add `__thread'. * [basic.start.main] Add after paragraph 5 ! The thread that begins execution at the `main' function is called the "main thread". It is implementation defined how functions beginning threads other than the main thread are ! designated or typed. A function so designated, as well as ! the `main' function, is called a "thread startup function". ! It is implementation defined what happens if a thread startup function returns. It is implementation defined what happens ! to other threads when any thread calls `exit'. * [basic.start.init] *************** that document the exact semantics of the *** 45686,45693 **** The storage for an object of thread storage duration shall be statically initialized before the first statement of the ! thread startup function. An object of thread storage duration ! shall not require dynamic initialization. * [basic.start.term] --- 46087,46094 ---- The storage for an object of thread storage duration shall be statically initialized before the first statement of the ! thread startup function. An object of thread storage ! duration shall not require dynamic initialization. * [basic.start.term] *************** that document the exact semantics of the *** 45704,45723 **** Change paragraph 2 ! Thread, static, and automatic storage durations are associated ! with objects introduced by declarations [...]. ! Add '__thread' to the list of specifiers in paragraph 3. * [basic.stc.thread] New section before [basic.stc.static] ! The keyword '__thread' applied to a non-local object gives the object thread storage duration. ! A local variable or class data member declared both 'static' ! and '__thread' gives the variable or member thread storage duration. * [basic.stc.static] --- 46105,46124 ---- Change paragraph 2 ! Thread, static, and automatic storage durations are ! associated with objects introduced by declarations [...]. ! Add `__thread' to the list of specifiers in paragraph 3. * [basic.stc.thread] New section before [basic.stc.static] ! The keyword `__thread' applied to a non-local object gives the object thread storage duration. ! A local variable or class data member declared both `static' ! and `__thread' gives the variable or member thread storage duration. * [basic.stc.static] *************** that document the exact semantics of the *** 45729,45763 **** * [dcl.stc] ! Add '__thread' to the list in paragraph 1. Change paragraph 1 ! With the exception of '__thread', at most one STORAGE-CLASS-SPECIFIER shall appear in a given ! DECL-SPECIFIER-SEQ. The '__thread' specifier may be used ! alone, or immediately following the 'extern' or 'static' specifiers. [...] Add after paragraph 5 ! The '__thread' specifier can be applied only to the names of objects and to anonymous unions. * [class.mem] Add after paragraph 6 ! Non-'static' members shall not be '__thread'.  File: gcc.info, Node: Binary constants, Prev: Thread-Local, Up: C Extensions ! 6.62 Binary constants using the '0b' prefix =========================================== Integer constants can be written as binary constants, consisting of a ! sequence of '0' and '1' digits, prefixed by '0b' or '0B'. This is particularly useful in environments that operate a lot on the bit level (like microcontrollers). --- 46130,46164 ---- * [dcl.stc] ! Add `__thread' to the list in paragraph 1. Change paragraph 1 ! With the exception of `__thread', at most one STORAGE-CLASS-SPECIFIER shall appear in a given ! DECL-SPECIFIER-SEQ. The `__thread' specifier may be used ! alone, or immediately following the `extern' or `static' specifiers. [...] Add after paragraph 5 ! The `__thread' specifier can be applied only to the names of objects and to anonymous unions. * [class.mem] Add after paragraph 6 ! Non-`static' members shall not be `__thread'.  File: gcc.info, Node: Binary constants, Prev: Thread-Local, Up: C Extensions ! 6.62 Binary constants using the `0b' prefix =========================================== Integer constants can be written as binary constants, consisting of a ! sequence of `0' and `1' digits, prefixed by `0b' or `0B'. This is particularly useful in environments that operate a lot on the bit level (like microcontrollers). *************** particularly useful in environments that *** 45769,45775 **** i = 0b101010; The type of these constants follows the same rules as for octal or ! hexadecimal integer constants, so suffixes like 'L' or 'UL' can be applied.  --- 46170,46176 ---- i = 0b101010; The type of these constants follows the same rules as for octal or ! hexadecimal integer constants, so suffixes like `L' or `UL' can be applied.  *************** The GNU compiler provides these extensio *** 45782,45789 **** can also use most of the C language extensions in your C++ programs). If you want to write code that checks whether these features are available, you can test for the GNU compiler the same way as for C ! programs: check for a predefined macro '__GNUC__'. You can also use ! '__GNUG__' to test specifically for GNU C++ (*note Predefined Macros: (cpp)Common Predefined Macros.). * Menu: --- 46183,46190 ---- can also use most of the C language extensions in your C++ programs). If you want to write code that checks whether these features are available, you can test for the GNU compiler the same way as for C ! programs: check for a predefined macro `__GNUC__'. You can also use ! `__GNUG__' to test specifically for GNU C++ (*note Predefined Macros: (cpp)Common Predefined Macros.). * Menu: *************** programs: check for a predefined macro ' *** 45796,45802 **** * Template Instantiation:: Methods for ensuring that exactly one copy of each needed template instantiation is emitted. * Bound member functions:: You can extract a function pointer to the ! method denoted by a '->*' or '.*' expression. * C++ Attributes:: Variable, function, and type attributes for C++ only. * Function Multiversioning:: Declaring multiple function versions. * Namespace Association:: Strong using-directives for namespace association. --- 46197,46203 ---- * Template Instantiation:: Methods for ensuring that exactly one copy of each needed template instantiation is emitted. * Bound member functions:: You can extract a function pointer to the ! method denoted by a `->*' or `.*' expression. * C++ Attributes:: Variable, function, and type attributes for C++ only. * Function Multiversioning:: Declaring multiple function versions. * Namespace Association:: Strong using-directives for namespace association. *************** lvalueness of expressions between C and *** 45819,45826 **** G++ behaves the same as GCC for volatile access, *Note Volatiles: C Extensions, for a description of GCC's behavior. ! The C and C++ language specifications differ when an object is accessed ! in a void context: volatile int *src = SOMEVALUE; *src; --- 46220,46227 ---- G++ behaves the same as GCC for volatile access, *Note Volatiles: C Extensions, for a description of GCC's behavior. ! The C and C++ language specifications differ when an object is ! accessed in a void context: volatile int *src = SOMEVALUE; *src; *************** File: gcc.info, Node: Restricted Pointe *** 45862,45870 **** ================================ As with the C front end, G++ understands the C99 feature of restricted ! pointers, specified with the '__restrict__', or '__restrict' type ! qualifier. Because you cannot compile C++ by specifying the '-std=c99' ! language flag, 'restrict' is not a keyword in C++. In addition to allowing restricted pointers, you can specify restricted references, which indicate that the reference is not aliased in the --- 46263,46271 ---- ================================ As with the C front end, G++ understands the C99 feature of restricted ! pointers, specified with the `__restrict__', or `__restrict' type ! qualifier. Because you cannot compile C++ by specifying the `-std=c99' ! language flag, `restrict' is not a keyword in C++. In addition to allowing restricted pointers, you can specify restricted references, which indicate that the reference is not aliased in the *************** local context. *** 45875,45901 **** /* ... */ } ! In the body of 'fn', RPTR points to an unaliased integer and RREF refers ! to a (different) unaliased integer. You may also specify whether a member function's THIS pointer is ! unaliased by using '__restrict__' as a member function qualifier. void T::fn () __restrict__ { /* ... */ } ! Within the body of 'T::fn', THIS has the effective definition 'T *__restrict__ const this'. Notice that the interpretation of a ! '__restrict__' member function qualifier is different to that of 'const' ! or 'volatile' qualifier, in that it is applied to the pointer rather ! than the object. This is consistent with other compilers that implement ! restricted pointers. ! As with all outermost parameter qualifiers, '__restrict__' is ignored in function definition matching. This means you only need to specify ! '__restrict__' in a function definition, rather than in a function prototype as well.  --- 46276,46302 ---- /* ... */ } ! In the body of `fn', RPTR points to an unaliased integer and RREF ! refers to a (different) unaliased integer. You may also specify whether a member function's THIS pointer is ! unaliased by using `__restrict__' as a member function qualifier. void T::fn () __restrict__ { /* ... */ } ! Within the body of `T::fn', THIS has the effective definition `T *__restrict__ const this'. Notice that the interpretation of a ! `__restrict__' member function qualifier is different to that of ! `const' or `volatile' qualifier, in that it is applied to the pointer ! rather than the object. This is consistent with other compilers that ! implement restricted pointers. ! As with all outermost parameter qualifiers, `__restrict__' is ignored in function definition matching. This means you only need to specify ! `__restrict__' in a function definition, rather than in a function prototype as well.  *************** clever. *** 45913,45928 **** Inline Functions Inline functions are typically defined in a header file which can be included in many different compilations. Hopefully they can ! usually be inlined, but sometimes an out-of-line copy is necessary, ! if the address of the function is taken or if inlining fails. In ! general, we emit an out-of-line copy in all translation units where ! one is needed. As an exception, we only emit inline virtual ! functions with the vtable, since it always requires a copy. Local static variables and string constants used in an inline ! function are also considered to have vague linkage, since they must ! be shared between all inlined and out-of-line instances of the ! function. VTables C++ virtual functions are implemented in most compilers using a --- 46314,46329 ---- Inline Functions Inline functions are typically defined in a header file which can be included in many different compilations. Hopefully they can ! usually be inlined, but sometimes an out-of-line copy is ! necessary, if the address of the function is taken or if inlining ! fails. In general, we emit an out-of-line copy in all translation ! units where one is needed. As an exception, we only emit inline ! virtual functions with the vtable, since it always requires a copy. Local static variables and string constants used in an inline ! function are also considered to have vague linkage, since they ! must be shared between all inlined and out-of-line instances of ! the function. VTables C++ virtual functions are implemented in most compilers using a *************** VTables *** 45939,45959 **** Make sure that any inline virtuals are declared inline in the class body, even if they are not defined there. ! 'type_info' objects C++ requires information about types to be written out in order to ! implement 'dynamic_cast', 'typeid' and exception handling. For polymorphic classes (classes with virtual functions), the ! 'type_info' object is written out along with the vtable so that ! 'dynamic_cast' can determine the dynamic type of a class object at ! run time. For all other types, we write out the 'type_info' object ! when it is used: when applying 'typeid' to an expression, throwing ! an object, or referring to a type in a catch clause or exception ! specification. Template Instantiations Most everything in this section also applies to template ! instantiations, but there are other options as well. *Note Where's ! the Template?: Template Instantiation. When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of --- 46340,46361 ---- Make sure that any inline virtuals are declared inline in the class body, even if they are not defined there. ! `type_info' objects C++ requires information about types to be written out in order to ! implement `dynamic_cast', `typeid' and exception handling. For polymorphic classes (classes with virtual functions), the ! `type_info' object is written out along with the vtable so that ! `dynamic_cast' can determine the dynamic type of a class object at ! run time. For all other types, we write out the `type_info' ! object when it is used: when applying `typeid' to an expression, ! throwing an object, or referring to a type in a catch clause or ! exception specification. Template Instantiations Most everything in this section also applies to template ! instantiations, but there are other options as well. *Note ! Where's the Template?: Template Instantiation. ! When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of *************** File: gcc.info, Node: C++ Interface, N *** 45979,46065 **** 7.4 #pragma interface and implementation ======================================== ! '#pragma interface' and '#pragma implementation' provide the user with a ! way of explicitly directing the compiler to emit entities with vague linkage (and debugging information) in a particular translation unit. ! _Note:_ As of GCC 2.7.2, these '#pragma's are not useful in most cases, ! because of COMDAT support and the "key method" heuristic mentioned in ! *note Vague Linkage::. Using them can actually cause your program to ! grow due to unnecessary out-of-line copies of inline functions. ! Currently (3.4) the only benefit of these '#pragma's is reduced ! duplication of debugging information, and that should be addressed soon ! on DWARF 2 targets with the use of COMDAT groups. ! '#pragma interface' ! '#pragma interface "SUBDIR/OBJECTS.h"' ! Use this directive in _header files_ that define object classes, to ! save space in most of the object files that use those classes. Normally, local copies of certain information (backup copies of inline member functions, debugging information, and the internal tables that implement virtual functions) must be kept in each object file that includes class definitions. You can use this pragma to avoid such duplication. When a header file containing ! '#pragma interface' is included in a compilation, this auxiliary information is not generated (unless the main input source file ! itself uses '#pragma implementation'). Instead, the object files contain references to be resolved at link time. The second form of this directive is useful for the case where you have multiple headers with the same name in different directories. ! If you use this form, you must specify the same string to '#pragma implementation'. ! '#pragma implementation' ! '#pragma implementation "OBJECTS.h"' Use this pragma in a _main input file_, when you want full output from included header files to be generated (and made globally ! visible). The included header file, in turn, should use '#pragma interface'. Backup copies of inline member functions, debugging information, and the internal tables used to implement virtual functions are all generated in implementation files. ! If you use '#pragma implementation' with no argument, it applies to ! an include file with the same basename(1) as your source file. For ! example, in 'allclass.cc', giving just '#pragma implementation' by ! itself is equivalent to '#pragma implementation "allclass.h"'. ! In versions of GNU C++ prior to 2.6.0 'allclass.h' was treated as an implementation file whenever you would include it from ! 'allclass.cc' even if you never specified '#pragma implementation'. ! This was deemed to be more trouble than it was worth, however, and ! disabled. Use the string argument if you want a single implementation file to include code from multiple header files. (You must also use ! '#include' to include the header file; '#pragma implementation' only specifies how to use the file--it doesn't actually include it.) There is no way to split up the contents of a single header file into multiple implementation files. ! '#pragma implementation' and '#pragma interface' also have an effect on ! function inlining. ! If you define a class in a header file marked with '#pragma interface', ! the effect on an inline function defined in that class is similar to an ! explicit 'extern' declaration--the compiler emits no code at all to ! define an independent version of the function. Its definition is used ! only for inlining with its callers. Conversely, when you include the same header file in a main source file ! that declares it as '#pragma implementation', the compiler emits code ! for the function itself; this defines a version of the function that can ! be found via pointers (or by callers compiled without inlining). If all ! calls to the function can be inlined, you can avoid emitting the ! function by compiling with '-fno-implement-inlines'. If any calls are not inlined, you will get linker errors. ! ---------- Footnotes ---------- ! (1) A file's "basename" is the name stripped of all leading path ! information and of trailing suffixes, such as '.h' or '.C' or '.cc'.  File: gcc.info, Node: Template Instantiation, Next: Bound member functions, Prev: C++ Interface, Up: C++ Extensions --- 46381,46467 ---- 7.4 #pragma interface and implementation ======================================== ! `#pragma interface' and `#pragma implementation' provide the user with ! a way of explicitly directing the compiler to emit entities with vague linkage (and debugging information) in a particular translation unit. ! _Note:_ As of GCC 2.7.2, these `#pragma's are not useful in most ! cases, because of COMDAT support and the "key method" heuristic ! mentioned in *note Vague Linkage::. Using them can actually cause your ! program to grow due to unnecessary out-of-line copies of inline ! functions. Currently (3.4) the only benefit of these `#pragma's is ! reduced duplication of debugging information, and that should be ! addressed soon on DWARF 2 targets with the use of COMDAT groups. ! `#pragma interface' ! `#pragma interface "SUBDIR/OBJECTS.h"' ! Use this directive in _header files_ that define object classes, ! to save space in most of the object files that use those classes. Normally, local copies of certain information (backup copies of inline member functions, debugging information, and the internal tables that implement virtual functions) must be kept in each object file that includes class definitions. You can use this pragma to avoid such duplication. When a header file containing ! `#pragma interface' is included in a compilation, this auxiliary information is not generated (unless the main input source file ! itself uses `#pragma implementation'). Instead, the object files contain references to be resolved at link time. The second form of this directive is useful for the case where you have multiple headers with the same name in different directories. ! If you use this form, you must specify the same string to `#pragma implementation'. ! `#pragma implementation' ! `#pragma implementation "OBJECTS.h"' Use this pragma in a _main input file_, when you want full output from included header files to be generated (and made globally ! visible). The included header file, in turn, should use `#pragma interface'. Backup copies of inline member functions, debugging information, and the internal tables used to implement virtual functions are all generated in implementation files. ! If you use `#pragma implementation' with no argument, it applies to ! an include file with the same basename(1) as your source file. ! For example, in `allclass.cc', giving just `#pragma implementation' ! by itself is equivalent to `#pragma implementation "allclass.h"'. ! In versions of GNU C++ prior to 2.6.0 `allclass.h' was treated as an implementation file whenever you would include it from ! `allclass.cc' even if you never specified `#pragma ! implementation'. This was deemed to be more trouble than it was ! worth, however, and disabled. Use the string argument if you want a single implementation file to include code from multiple header files. (You must also use ! `#include' to include the header file; `#pragma implementation' only specifies how to use the file--it doesn't actually include it.) There is no way to split up the contents of a single header file into multiple implementation files. ! `#pragma implementation' and `#pragma interface' also have an effect ! on function inlining. ! If you define a class in a header file marked with `#pragma ! interface', the effect on an inline function defined in that class is ! similar to an explicit `extern' declaration--the compiler emits no code ! at all to define an independent version of the function. Its ! definition is used only for inlining with its callers. Conversely, when you include the same header file in a main source file ! that declares it as `#pragma implementation', the compiler emits code ! for the function itself; this defines a version of the function that ! can be found via pointers (or by callers compiled without inlining). ! If all calls to the function can be inlined, you can avoid emitting the ! function by compiling with `-fno-implement-inlines'. If any calls are not inlined, you will get linker errors. ! ---------- Footnotes ---------- ! (1) A file's "basename" is the name stripped of all leading path ! information and of trailing suffixes, such as `.h' or `.C' or `.cc'.  File: gcc.info, Node: Template Instantiation, Next: Bound member functions, Prev: C++ Interface, Up: C++ Extensions *************** problem, which are referred to as the Bo *** 46076,46083 **** model. Borland model ! Borland C++ solved the template instantiation problem by adding the ! code equivalent of common blocks to their linker; the compiler emits template instances in each translation unit that uses them, and the linker collapses them together. The advantage of this model is that the linker only has to consider the object files --- 46478,46485 ---- model. Borland model ! Borland C++ solved the template instantiation problem by adding ! the code equivalent of common blocks to their linker; the compiler emits template instances in each translation unit that uses them, and the linker collapses them together. The advantage of this model is that the linker only has to consider the object files *************** Borland model *** 46090,46111 **** Cfront model The AT&T C++ translator, Cfront, solved the template instantiation problem by creating the notion of a template repository, an ! automatically maintained place where template instances are stored. ! A more modern version of the repository works as follows: As ! individual object files are built, the compiler places any template ! definitions and instantiations encountered in the repository. At ! link time, the link wrapper adds in the objects in the repository ! and compiles any needed instances that were not previously emitted. ! The advantages of this model are more optimal compilation speed and ! the ability to use the system linker; to implement the Borland ! model a compiler vendor also needs to replace the linker. The ! disadvantages are vastly increased complexity, and thus potential ! for error; for some code this can be just as transparent, but in ! practice it can been very difficult to build multiple programs in ! one directory and one program in multiple directories. Code ! written for this model tends to separate definitions of non-inline ! member templates into a separate file, which should be compiled ! separately. When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the --- 46492,46513 ---- Cfront model The AT&T C++ translator, Cfront, solved the template instantiation problem by creating the notion of a template repository, an ! automatically maintained place where template instances are ! stored. A more modern version of the repository works as follows: ! As individual object files are built, the compiler places any ! template definitions and instantiations encountered in the ! repository. At link time, the link wrapper adds in the objects in ! the repository and compiles any needed instances that were not ! previously emitted. The advantages of this model are more optimal ! compilation speed and the ability to use the system linker; to ! implement the Borland model a compiler vendor also needs to ! replace the linker. The disadvantages are vastly increased ! complexity, and thus potential for error; for some code this can be ! just as transparent, but in practice it can been very difficult to ! build multiple programs in one directory and one program in ! multiple directories. Code written for this model tends to ! separate definitions of non-inline member templates into a ! separate file, which should be compiled separately. When used with GNU ld version 2.8 or later on an ELF system such as GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the *************** model. *** 46115,46145 **** You have the following options for dealing with template instantiations: ! 1. Compile your template-using code with '-frepo'. The compiler ! generates files with the extension '.rpo' listing all of the template instantiations used in the corresponding object files that ! could be instantiated there; the link wrapper, 'collect2', then ! updates the '.rpo' files to tell the compiler where to place those instantiations and rebuild any affected object files. The link-time overhead is negligible after the first pass, as the compiler continues to place the instantiations in the same files. This is your best option for application code written for the Borland model, as it just works. Code written for the Cfront model ! needs to be modified so that the template definitions are available ! at one or more points of instantiation; usually this is as simple ! as adding '#include ' to the end of each template ! header. For library code, if you want the library to provide all of the template instantiations it needs, just try to link all of its object files together; the link will fail, but cause the instantiations to be generated as a side effect. Be warned, ! however, that this may cause conflicts if multiple libraries try to ! provide the same instantiations. For greater control, use explicit ! instantiation as described in the next option. ! 2. Compile your code with '-fno-implicit-templates' to disable the implicit generation of template instances, and explicitly instantiate all the ones you use. This approach requires more knowledge of exactly which instances you need than do the others, --- 46517,46547 ---- You have the following options for dealing with template instantiations: ! 1. Compile your template-using code with `-frepo'. The compiler ! generates files with the extension `.rpo' listing all of the template instantiations used in the corresponding object files that ! could be instantiated there; the link wrapper, `collect2', then ! updates the `.rpo' files to tell the compiler where to place those instantiations and rebuild any affected object files. The link-time overhead is negligible after the first pass, as the compiler continues to place the instantiations in the same files. This is your best option for application code written for the Borland model, as it just works. Code written for the Cfront model ! needs to be modified so that the template definitions are ! available at one or more points of instantiation; usually this is ! as simple as adding `#include ' to the end of each ! template header. For library code, if you want the library to provide all of the template instantiations it needs, just try to link all of its object files together; the link will fail, but cause the instantiations to be generated as a side effect. Be warned, ! however, that this may cause conflicts if multiple libraries try ! to provide the same instantiations. For greater control, use ! explicit instantiation as described in the next option. ! 2. Compile your code with `-fno-implicit-templates' to disable the implicit generation of template instances, and explicitly instantiate all the ones you use. This approach requires more knowledge of exactly which instances you need than do the others, *************** instantiations: *** 46147,46154 **** scatter the explicit instantiations throughout your program, perhaps putting them in the translation units where the instances are used or the translation units that define the templates ! themselves; you can put all of the explicit instantiations you need ! into one big file; or you can create small files like #include "Foo.h" #include "Foo.cc" --- 46549,46556 ---- scatter the explicit instantiations throughout your program, perhaps putting them in the translation units where the instances are used or the translation units that define the templates ! themselves; you can put all of the explicit instantiations you ! need into one big file; or you can create small files like #include "Foo.h" #include "Foo.cc" *************** instantiations: *** 46161,46182 **** instantiation library from those. If you are using Cfront-model code, you can probably get away with ! not using '-fno-implicit-templates' when compiling files that don't ! '#include' the member template definitions. If you use one big file to do the instantiations, you may want to ! compile it without '-fno-implicit-templates' so you get all of the instances required by your explicit instantiations (but not by any other files) without having to specify them as well. The ISO C++ 2011 standard allows forward declaration of explicit ! instantiations (with 'extern'). G++ supports explicit ! instantiation declarations in C++98 mode and has extended the ! template instantiation syntax to support instantiation of the ! compiler support data for a template class (i.e. the vtable) ! without instantiating any of its members (with 'inline'), and instantiation of only the static data members of a template class, ! without the support data or member functions (with ('static'): extern template int max (int, int); inline template class Foo; --- 46563,46584 ---- instantiation library from those. If you are using Cfront-model code, you can probably get away with ! not using `-fno-implicit-templates' when compiling files that don't ! `#include' the member template definitions. If you use one big file to do the instantiations, you may want to ! compile it without `-fno-implicit-templates' so you get all of the instances required by your explicit instantiations (but not by any other files) without having to specify them as well. The ISO C++ 2011 standard allows forward declaration of explicit ! instantiations (with `extern'). G++ supports explicit instantiation ! declarations in C++98 mode and has extended the template ! instantiation syntax to support instantiation of the compiler ! support data for a template class (i.e. the vtable) without ! instantiating any of its members (with `inline'), and instantiation of only the static data members of a template class, ! without the support data or member functions (with (`static'): extern template int max (int, int); inline template class Foo; *************** File: gcc.info, Node: Bound member func *** 46196,46202 **** In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts to handle all the possible call mechanisms; the PMF ! needs to store information about how to adjust the 'this' pointer, and if the function pointed to is virtual, where to find the vtable, and where in the vtable to look for the member function. If you are using PMFs in an inner loop, you should really reconsider that decision. If --- 46598,46604 ---- In C++, pointer to member functions (PMFs) are implemented using a wide pointer of sorts to handle all the possible call mechanisms; the PMF ! needs to store information about how to adjust the `this' pointer, and if the function pointed to is virtual, where to find the vtable, and where in the vtable to look for the member function. If you are using PMFs in an inner loop, you should really reconsider that decision. If *************** function calls. *** 46217,46229 **** fptr p = (fptr)(a.*fp); ! For PMF constants (i.e. expressions of the form '&Klasse::Member'), no object is needed to obtain the address of the function. They can be converted to function pointers directly: fptr p1 = (fptr)(&A::foo); ! You must specify '-Wno-pmf-conversions' to use this extension.  File: gcc.info, Node: C++ Attributes, Next: Function Multiversioning, Prev: Bound member functions, Up: C++ Extensions --- 46619,46631 ---- fptr p = (fptr)(a.*fp); ! For PMF constants (i.e. expressions of the form `&Klasse::Member'), no object is needed to obtain the address of the function. They can be converted to function pointers directly: fptr p1 = (fptr)(&A::foo); ! You must specify `-Wno-pmf-conversions' to use this extension.  File: gcc.info, Node: C++ Attributes, Next: Function Multiversioning, Prev: Bound member functions, Up: C++ Extensions *************** File: gcc.info, Node: C++ Attributes, *** 46233,46245 **** Some attributes only make sense for C++ programs. ! 'abi_tag ("TAG", ...)' ! The 'abi_tag' attribute can be applied to a function or class ! declaration. It modifies the mangled name of the function or class ! to incorporate the tag name, in order to distinguish the function ! or class from an earlier version with a different ABI; perhaps the ! class has changed size, or the function has a different return type ! that is not encoded in the mangled name. The argument can be a list of strings of arbitrary length. The strings are sorted on output, so the order of the list is --- 46635,46647 ---- Some attributes only make sense for C++ programs. ! `abi_tag ("TAG", ...)' ! The `abi_tag' attribute can be applied to a function or class ! declaration. It modifies the mangled name of the function or ! class to incorporate the tag name, in order to distinguish the ! function or class from an earlier version with a different ABI; ! perhaps the class has changed size, or the function has a ! different return type that is not encoded in the mangled name. The argument can be a list of strings of arbitrary length. The strings are sorted on output, so the order of the list is *************** Some attributes only make sense for C++ *** 46253,46278 **** will be ignored if applied to an explicit specialization or instantiation. ! The '-Wabi-tag' flag enables a warning about a class which does not ! have all the ABI tags used by its subobjects and virtual functions; ! for users with code that needs to coexist with an earlier ABI, ! using this option can help to find all affected types that need to ! be tagged. ! ! 'init_priority (PRIORITY)' In Standard C++, objects defined at namespace scope are guaranteed to be initialized in an order in strict accordance with that of their definitions _in a given translation unit_. No guarantee is made for initializations across translation units. However, GNU C++ allows users to control the order of initialization of objects ! defined at namespace scope with the 'init_priority' attribute by specifying a relative PRIORITY, a constant integral expression currently bounded between 101 and 65535 inclusive. Lower numbers indicate a higher priority. ! In the following example, 'A' would normally be created before 'B', ! but the 'init_priority' attribute reverses that order: Some_Class A __attribute__ ((init_priority (2000))); Some_Class B __attribute__ ((init_priority (543))); --- 46655,46679 ---- will be ignored if applied to an explicit specialization or instantiation. ! The `-Wabi-tag' flag enables a warning about a class which does ! not have all the ABI tags used by its subobjects and virtual ! functions; for users with code that needs to coexist with an ! earlier ABI, using this option can help to find all affected types ! that need to be tagged. + `init_priority (PRIORITY)' In Standard C++, objects defined at namespace scope are guaranteed to be initialized in an order in strict accordance with that of their definitions _in a given translation unit_. No guarantee is made for initializations across translation units. However, GNU C++ allows users to control the order of initialization of objects ! defined at namespace scope with the `init_priority' attribute by specifying a relative PRIORITY, a constant integral expression currently bounded between 101 and 65535 inclusive. Lower numbers indicate a higher priority. ! In the following example, `A' would normally be created before ! `B', but the `init_priority' attribute reverses that order: Some_Class A __attribute__ ((init_priority (2000))); Some_Class B __attribute__ ((init_priority (543))); *************** Some attributes only make sense for C++ *** 46280,46308 **** Note that the particular values of PRIORITY do not matter; only their relative ordering. ! 'java_interface' ! ! This type attribute informs C++ that the class is a Java interface. ! It may only be applied to classes declared within an 'extern ! "Java"' block. Calls to methods declared in this interface are ! dispatched using GCJ's interface table mechanism, instead of ! regular virtual table dispatch. ! ! 'warn_unused' For C++ types with non-trivial constructors and/or destructors it is impossible for the compiler to determine whether a variable of ! this type is truly unused if it is not referenced. This type attribute informs the compiler that variables of this type should ! be warned about if they appear to be unused, just like variables of ! fundamental types. This attribute is appropriate for types which just represent a ! value, such as 'std::string'; it is not appropriate for types which ! control a resource, such as 'std::mutex'. - This attribute is also accepted in C, but it is unnecessary because - C does not have constructors or destructors. See also *note Namespace Association::. --- 46681,46708 ---- Note that the particular values of PRIORITY do not matter; only their relative ordering. ! `java_interface' ! This type attribute informs C++ that the class is a Java ! interface. It may only be applied to classes declared within an ! `extern "Java"' block. Calls to methods declared in this ! interface are dispatched using GCJ's interface table mechanism, ! instead of regular virtual table dispatch. + `warn_unused' For C++ types with non-trivial constructors and/or destructors it is impossible for the compiler to determine whether a variable of ! this type is truly unused if it is not referenced. This type attribute informs the compiler that variables of this type should ! be warned about if they appear to be unused, just like variables ! of fundamental types. This attribute is appropriate for types which just represent a ! value, such as `std::string'; it is not appropriate for types which ! control a resource, such as `std::mutex'. ! ! This attribute is also accepted in C, but it is unnecessary ! because C does not have constructors or destructors. See also *note Namespace Association::. *************** the execution platform. Here is an exam *** 46353,46367 **** return 0; } ! In the above example, four versions of function foo are created. The first version of foo with the target attribute "default" is the default version. This version gets executed when no other target specific ! version qualifies for execution on a particular platform. A new version of foo is created by using the same function signature but with a different target string. Function foo is called or a pointer to it is taken just like a regular function. GCC takes care of doing the ! dispatching to call the right version at runtime. Refer to the GCC wiki ! on Function Multiversioning (http://gcc.gnu.org/wiki/FunctionMultiVersioning) for more details.  --- 46753,46767 ---- return 0; } ! In the above example, four versions of function foo are created. The first version of foo with the target attribute "default" is the default version. This version gets executed when no other target specific ! version qualifies for execution on a particular platform. A new version of foo is created by using the same function signature but with a different target string. Function foo is called or a pointer to it is taken just like a regular function. GCC takes care of doing the ! dispatching to call the right version at runtime. Refer to the GCC ! wiki on Function Multiversioning (http://gcc.gnu.org/wiki/FunctionMultiVersioning) for more details.  *************** File: gcc.info, Node: Namespace Associa *** 46374,46380 **** inline namespaces. Users should use inline namespaces instead as this extension will be removed in future versions of G++. ! A using-directive with '__attribute ((strong))' is stronger than a normal using-directive in two ways: * Templates from the used namespace can be specialized and explicitly --- 46774,46780 ---- inline namespaces. Users should use inline namespaces instead as this extension will be removed in future versions of G++. ! A using-directive with `__attribute ((strong))' is stronger than a normal using-directive in two ways: * Templates from the used namespace can be specialized and explicitly *************** The C++ front end implements syntactic e *** 46416,46547 **** compile-time determination of various characteristics of a type (or of a pair of types). ! '__has_nothrow_assign (type)' ! If 'type' is const qualified or is a reference type then the trait ! is false. Otherwise if '__has_trivial_assign (type)' is true then ! the trait is true, else if 'type' is a cv class or union type with copy assignment operators that are known not to throw an exception ! then the trait is true, else it is false. Requires: 'type' shall ! be a complete type, (possibly cv-qualified) 'void', or an array of unknown bound. ! '__has_nothrow_copy (type)' ! If '__has_trivial_copy (type)' is true then the trait is true, else ! if 'type' is a cv class or union type with copy constructors that ! are known not to throw an exception then the trait is true, else it ! is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__has_nothrow_constructor (type)' ! If '__has_trivial_constructor (type)' is true then the trait is ! true, else if 'type' is a cv class or union type (or array thereof) ! with a default constructor that is known not to throw an exception ! then the trait is true, else it is false. Requires: 'type' shall ! be a complete type, (possibly cv-qualified) 'void', or an array of ! unknown bound. ! '__has_trivial_assign (type)' ! If 'type' is const qualified or is a reference type then the trait ! is false. Otherwise if '__is_pod (type)' is true then the trait is ! true, else if 'type' is a cv class or union type with a trivial copy assignment ([class.copy]) then the trait is true, else it is ! false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__has_trivial_copy (type)' ! If '__is_pod (type)' is true or 'type' is a reference type then the ! trait is true, else if 'type' is a cv class or union type with a ! trivial copy constructor ([class.copy]) then the trait is true, ! else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__has_trivial_constructor (type)' ! If '__is_pod (type)' is true then the trait is true, else if 'type' ! is a cv class or union type (or array thereof) with a trivial ! default constructor ([class.ctor]) then the trait is true, else it ! is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__has_trivial_destructor (type)' ! If '__is_pod (type)' is true or 'type' is a reference type then the ! trait is true, else if 'type' is a cv class or union type (or array ! thereof) with a trivial destructor ([class.dtor]) then the trait is ! true, else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__has_virtual_destructor (type)' ! If 'type' is a class type with a virtual destructor ([class.dtor]) ! then the trait is true, else it is false. Requires: 'type' shall ! be a complete type, (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_abstract (type)' ! If 'type' is an abstract class ([class.abstract]) then the trait is ! true, else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_base_of (base_type, derived_type)' ! If 'base_type' is a base class of 'derived_type' ([class.derived]) then the trait is true, otherwise it is false. Top-level cv ! qualifications of 'base_type' and 'derived_type' are ignored. For ! the purposes of this trait, a class type is considered is own base. ! Requires: if '__is_class (base_type)' and '__is_class ! (derived_type)' are true and 'base_type' and 'derived_type' are not ! the same type (disregarding cv-qualifiers), 'derived_type' shall be ! a complete type. Diagnostic is produced if this requirement is not ! met. ! '__is_class (type)' ! If 'type' is a cv class type, and not a union type ([basic.compound]) the trait is true, else it is false. ! '__is_empty (type)' ! If '__is_class (type)' is false then the trait is false. Otherwise ! 'type' is considered empty if and only if: 'type' has no non-static ! data members, or all non-static data members, if any, are ! bit-fields of length 0, and 'type' has no virtual members, and ! 'type' has no virtual base classes, and 'type' has no base classes ! 'base_type' for which '__is_empty (base_type)' is false. Requires: ! 'type' shall be a complete type, (possibly cv-qualified) 'void', or ! an array of unknown bound. ! '__is_enum (type)' ! If 'type' is a cv enumeration type ([basic.compound]) the trait is true, else it is false. ! '__is_literal_type (type)' ! If 'type' is a literal type ([basic.types]) the trait is true, else ! it is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__is_pod (type)' ! If 'type' is a cv POD type ([basic.types]) then the trait is true, ! else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_polymorphic (type)' ! If 'type' is a polymorphic class ([class.virtual]) then the trait ! is true, else it is false. Requires: 'type' shall be a complete ! type, (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_standard_layout (type)' ! If 'type' is a standard-layout type ([basic.types]) the trait is ! true, else it is false. Requires: 'type' shall be a complete type, ! (possibly cv-qualified) 'void', or an array of unknown bound. ! '__is_trivial (type)' ! If 'type' is a trivial type ([basic.types]) the trait is true, else ! it is false. Requires: 'type' shall be a complete type, (possibly ! cv-qualified) 'void', or an array of unknown bound. ! '__is_union (type)' ! If 'type' is a cv union type ([basic.compound]) the trait is true, else it is false. ! '__underlying_type (type)' ! The underlying type of 'type'. Requires: 'type' shall be an enumeration type ([dcl.enum]).  File: gcc.info, Node: Java Exceptions, Next: Deprecated Features, Prev: Type Traits, Up: C++ Extensions --- 46816,46949 ---- compile-time determination of various characteristics of a type (or of a pair of types). ! `__has_nothrow_assign (type)' ! If `type' is const qualified or is a reference type then the trait ! is false. Otherwise if `__has_trivial_assign (type)' is true then ! the trait is true, else if `type' is a cv class or union type with copy assignment operators that are known not to throw an exception ! then the trait is true, else it is false. Requires: `type' shall ! be a complete type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_nothrow_copy (type)' ! If `__has_trivial_copy (type)' is true then the trait is true, ! else if `type' is a cv class or union type with copy constructors ! that are known not to throw an exception then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_nothrow_constructor (type)' ! If `__has_trivial_constructor (type)' is true then the trait is ! true, else if `type' is a cv class or union type (or array ! thereof) with a default constructor that is known not to throw an ! exception then the trait is true, else it is false. Requires: ! `type' shall be a complete type, (possibly cv-qualified) `void', ! or an array of unknown bound. ! `__has_trivial_assign (type)' ! If `type' is const qualified or is a reference type then the trait ! is false. Otherwise if `__is_pod (type)' is true then the trait is ! true, else if `type' is a cv class or union type with a trivial copy assignment ([class.copy]) then the trait is true, else it is ! false. Requires: `type' shall be a complete type, (possibly ! cv-qualified) `void', or an array of unknown bound. ! `__has_trivial_copy (type)' ! If `__is_pod (type)' is true or `type' is a reference type then ! the trait is true, else if `type' is a cv class or union type with ! a trivial copy constructor ([class.copy]) then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_trivial_constructor (type)' ! If `__is_pod (type)' is true then the trait is true, else if ! `type' is a cv class or union type (or array thereof) with a ! trivial default constructor ([class.ctor]) then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__has_trivial_destructor (type)' ! If `__is_pod (type)' is true or `type' is a reference type then ! the trait is true, else if `type' is a cv class or union type (or ! array thereof) with a trivial destructor ([class.dtor]) then the ! trait is true, else it is false. Requires: `type' shall be a ! complete type, (possibly cv-qualified) `void', or an array of ! unknown bound. ! `__has_virtual_destructor (type)' ! If `type' is a class type with a virtual destructor ([class.dtor]) ! then the trait is true, else it is false. Requires: `type' shall ! be a complete type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_abstract (type)' ! If `type' is an abstract class ([class.abstract]) then the trait ! is true, else it is false. Requires: `type' shall be a complete ! type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_base_of (base_type, derived_type)' ! If `base_type' is a base class of `derived_type' ([class.derived]) then the trait is true, otherwise it is false. Top-level cv ! qualifications of `base_type' and `derived_type' are ignored. For ! the purposes of this trait, a class type is considered is own ! base. Requires: if `__is_class (base_type)' and `__is_class ! (derived_type)' are true and `base_type' and `derived_type' are ! not the same type (disregarding cv-qualifiers), `derived_type' ! shall be a complete type. Diagnostic is produced if this ! requirement is not met. ! `__is_class (type)' ! If `type' is a cv class type, and not a union type ([basic.compound]) the trait is true, else it is false. ! `__is_empty (type)' ! If `__is_class (type)' is false then the trait is false. ! Otherwise `type' is considered empty if and only if: `type' has no ! non-static data members, or all non-static data members, if any, ! are bit-fields of length 0, and `type' has no virtual members, and ! `type' has no virtual base classes, and `type' has no base classes ! `base_type' for which `__is_empty (base_type)' is false. ! Requires: `type' shall be a complete type, (possibly cv-qualified) ! `void', or an array of unknown bound. ! `__is_enum (type)' ! If `type' is a cv enumeration type ([basic.compound]) the trait is true, else it is false. ! `__is_literal_type (type)' ! If `type' is a literal type ([basic.types]) the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_pod (type)' ! If `type' is a cv POD type ([basic.types]) then the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_polymorphic (type)' ! If `type' is a polymorphic class ([class.virtual]) then the trait ! is true, else it is false. Requires: `type' shall be a complete ! type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_standard_layout (type)' ! If `type' is a standard-layout type ([basic.types]) the trait is ! true, else it is false. Requires: `type' shall be a complete ! type, (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_trivial (type)' ! If `type' is a trivial type ([basic.types]) the trait is true, ! else it is false. Requires: `type' shall be a complete type, ! (possibly cv-qualified) `void', or an array of unknown bound. ! `__is_union (type)' ! If `type' is a cv union type ([basic.compound]) the trait is true, else it is false. ! `__underlying_type (type)' ! The underlying type of `type'. Requires: `type' shall be an enumeration type ([dcl.enum]). +  File: gcc.info, Node: Java Exceptions, Next: Deprecated Features, Prev: Type Traits, Up: C++ Extensions *************** problematic code is: *** 46564,46574 **** } The usual effect of an incorrect guess is a link failure, complaining of ! a missing routine called '__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! '#pragma GCC java_exceptions' at the head of the file. This '#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. --- 46966,46976 ---- } The usual effect of an incorrect guess is a link failure, complaining of ! a missing routine called `__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! `#pragma GCC java_exceptions' at the head of the file. This `#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. *************** cases, the feature might be gone already *** 46593,46623 **** While the list below is not exhaustive, it documents some of the options that are now deprecated: ! '-fexternal-templates' ! '-falt-external-templates' These are two of the many ways for G++ to implement template instantiation. *Note Template Instantiation::. The C++ standard clearly defines how template definitions have to be organized across implementation units. G++ has an implicit instantiation mechanism that should work just fine for standard-conforming code. ! '-fstrict-prototype' ! '-fno-strict-prototype' ! Previously it was possible to use an empty prototype parameter list ! to indicate an unspecified number of parameters (like C), rather ! than no parameters, as C++ demands. This feature has been removed, ! except where it is required for backwards compatibility. *Note ! Backwards Compatibility::. ! G++ allows a virtual function returning 'void *' to be overridden by ! one returning a different pointer type. This extension to the covariant ! return type rules is now deprecated and will be removed from a future ! version. ! The G++ minimum and maximum operators ('?') and their ! compound forms ('?=') have been deprecated and are now removed from G++. Code using these operators should be modified to use ! 'std::min' and 'std::max' instead. The named return value extension has been deprecated, and is now removed from G++. --- 46995,47025 ---- While the list below is not exhaustive, it documents some of the options that are now deprecated: ! `-fexternal-templates' ! `-falt-external-templates' These are two of the many ways for G++ to implement template instantiation. *Note Template Instantiation::. The C++ standard clearly defines how template definitions have to be organized across implementation units. G++ has an implicit instantiation mechanism that should work just fine for standard-conforming code. ! `-fstrict-prototype' ! `-fno-strict-prototype' ! Previously it was possible to use an empty prototype parameter ! list to indicate an unspecified number of parameters (like C), ! rather than no parameters, as C++ demands. This feature has been ! removed, except where it is required for backwards compatibility. ! *Note Backwards Compatibility::. ! G++ allows a virtual function returning `void *' to be overridden by ! one returning a different pointer type. This extension to the ! covariant return type rules is now deprecated and will be removed from a ! future version. ! The G++ minimum and maximum operators (`?') and their ! compound forms (`?=') have been deprecated and are now removed from G++. Code using these operators should be modified to use ! `std::min' and `std::max' instead. The named return value extension has been deprecated, and is now removed from G++. *************** and other places where they are not perm *** 46636,46646 **** deprecated and will be removed from a future version of G++. G++ allows floating-point literals to appear in integral constant ! expressions, e.g. ' enum E { e = int(2.2 * 3.7) } ' This extension is deprecated and will be removed from a future version. G++ allows static data members of const floating-point type to be ! declared with an initializer in a class definition. The standard only allows initializers for static members of const integral types and const enumeration types so this extension has been deprecated and will be removed from a future version. --- 47038,47048 ---- deprecated and will be removed from a future version of G++. G++ allows floating-point literals to appear in integral constant ! expressions, e.g. ` enum E { e = int(2.2 * 3.7) } ' This extension is deprecated and will be removed from a future version. G++ allows static data members of const floating-point type to be ! declared with an initializer in a class definition. The standard only allows initializers for static members of const integral types and const enumeration types so this extension has been deprecated and will be removed from a future version. *************** used to be acceptable in previous drafts *** 46657,46676 **** ARM [Annotated C++ Reference Manual], are no longer accepted. In order to allow compilation of C++ written to such drafts, G++ contains some backwards compatibilities. _All such backwards compatibility features ! are liable to disappear in future versions of G++._ They should be ! considered deprecated. *Note Deprecated Features::. ! 'For scope' If a variable is declared at for scope, it used to remain in scope ! until the end of the scope that contained the for statement (rather ! than just within the for scope). G++ retains this, but issues a ! warning, if such a variable is accessed outside the for scope. ! 'Implicit C language' ! Old C system header files did not contain an 'extern "C" {...}' scope to set the language. On such systems, all header files are implicitly scoped inside a C language scope. Also, an empty ! prototype '()' is treated as an unspecified number of arguments, rather than no arguments, as C++ demands.  --- 47059,47079 ---- ARM [Annotated C++ Reference Manual], are no longer accepted. In order to allow compilation of C++ written to such drafts, G++ contains some backwards compatibilities. _All such backwards compatibility features ! are liable to disappear in future versions of G++._ They should be ! considered deprecated. *Note Deprecated Features::. ! `For scope' If a variable is declared at for scope, it used to remain in scope ! until the end of the scope that contained the for statement ! (rather than just within the for scope). G++ retains this, but ! issues a warning, if such a variable is accessed outside the for ! scope. ! `Implicit C language' ! Old C system header files did not contain an `extern "C" {...}' scope to set the language. On such systems, all header files are implicitly scoped inside a C language scope. Also, an empty ! prototype `()' is treated as an unspecified number of arguments, rather than no arguments, as C++ demands.  *************** File: gcc.info, Node: Objective-C, Nex *** 46679,46687 **** 8 GNU Objective-C features ************************** ! This document is meant to describe some of the GNU Objective-C features. ! It is not intended to teach you Objective-C. There are several resources ! on the Internet that present the language. * Menu: --- 47082,47090 ---- 8 GNU Objective-C features ************************** ! This document is meant to describe some of the GNU Objective-C ! features. It is not intended to teach you Objective-C. There are ! several resources on the Internet that present the language. * Menu: *************** File: gcc.info, Node: GNU Objective-C r *** 46705,46712 **** This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. ! The GNU Objective-C runtime provides an API that allows you to interact ! with the Objective-C runtime system, querying the live runtime structures and even manipulating them. This allows you for example to inspect and navigate classes, methods and protocols; to define new classes or new methods, and even to modify existing classes or --- 47108,47115 ---- This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. ! The GNU Objective-C runtime provides an API that allows you to ! interact with the Objective-C runtime system, querying the live runtime structures and even manipulating them. This allows you for example to inspect and navigate classes, methods and protocols; to define new classes or new methods, and even to modify existing classes or *************** provided by the "Objective-C 2.0" Apple/ *** 46733,46774 **** API is documented in the public header files of the GNU Objective-C runtime: ! * 'objc/objc.h': this is the basic Objective-C header file, defining ! the basic Objective-C types such as 'id', 'Class' and 'BOOL'. You have to include this header to do almost anything with Objective-C. ! * 'objc/runtime.h': this header declares most of the public runtime API functions allowing you to inspect and manipulate the Objective-C runtime data structures. These functions are fairly standardized across Objective-C runtimes and are almost identical to the Apple/NeXT Objective-C runtime ones. It does not declare functions in some specialized areas (constructing and forwarding message invocations, threading) which are in the other headers ! below. You have to include 'objc/objc.h' and 'objc/runtime.h' to ! use any of the functions, such as 'class_getName()', declared in ! 'objc/runtime.h'. ! * 'objc/message.h': this header declares public functions used to construct, deconstruct and forward message invocations. Because messaging is done in quite a different way on different runtimes, functions in this header are specific to the GNU Objective-C runtime implementation. ! * 'objc/objc-exception.h': this header declares some public functions ! related to Objective-C exceptions. For example functions in this ! header allow you to throw an Objective-C exception from plain C/C++ ! code. ! * 'objc/objc-sync.h': this header declares some public functions ! related to the Objective-C '@synchronized()' syntax, allowing you ! to emulate an Objective-C '@synchronized()' block in plain C/C++ code. ! * 'objc/thr.h': this header declares a public runtime API threading layer that is only provided by the GNU Objective-C runtime. It ! declares functions such as 'objc_mutex_lock()', which provide a platform-independent set of threading functions. The header files contain detailed documentation for each function in the GNU Objective-C runtime API. --- 47136,47178 ---- API is documented in the public header files of the GNU Objective-C runtime: ! * `objc/objc.h': this is the basic Objective-C header file, defining ! the basic Objective-C types such as `id', `Class' and `BOOL'. You have to include this header to do almost anything with Objective-C. ! * `objc/runtime.h': this header declares most of the public runtime API functions allowing you to inspect and manipulate the Objective-C runtime data structures. These functions are fairly standardized across Objective-C runtimes and are almost identical to the Apple/NeXT Objective-C runtime ones. It does not declare functions in some specialized areas (constructing and forwarding message invocations, threading) which are in the other headers ! below. You have to include `objc/objc.h' and `objc/runtime.h' to ! use any of the functions, such as `class_getName()', declared in ! `objc/runtime.h'. ! * `objc/message.h': this header declares public functions used to construct, deconstruct and forward message invocations. Because messaging is done in quite a different way on different runtimes, functions in this header are specific to the GNU Objective-C runtime implementation. ! * `objc/objc-exception.h': this header declares some public ! functions related to Objective-C exceptions. For example ! functions in this header allow you to throw an Objective-C ! exception from plain C/C++ code. ! * `objc/objc-sync.h': this header declares some public functions ! related to the Objective-C `@synchronized()' syntax, allowing you ! to emulate an Objective-C `@synchronized()' block in plain C/C++ code. ! * `objc/thr.h': this header declares a public runtime API threading layer that is only provided by the GNU Objective-C runtime. It ! declares functions such as `objc_mutex_lock()', which provide a platform-independent set of threading functions. + The header files contain detailed documentation for each function in the GNU Objective-C runtime API. *************** File: gcc.info, Node: Traditional GNU O *** 46779,46789 **** --------------------------------------------- The GNU Objective-C runtime used to provide a different API, which we ! call the "traditional" GNU Objective-C runtime API. Functions belonging ! to this API are easy to recognize because they use a different naming ! convention, such as 'class_get_super_class()' (traditional API) instead ! of 'class_getSuperclass()' (modern API). Software using this API ! includes the file 'objc/objc-api.h' where it is declared. Starting with GCC 4.7.0, the traditional GNU runtime API is no longer available. --- 47183,47194 ---- --------------------------------------------- The GNU Objective-C runtime used to provide a different API, which we ! call the "traditional" GNU Objective-C runtime API. Functions ! belonging to this API are easy to recognize because they use a ! different naming convention, such as `class_get_super_class()' ! (traditional API) instead of `class_getSuperclass()' (modern API). ! Software using this API includes the file `objc/objc-api.h' where it is ! declared. Starting with GCC 4.7.0, the traditional GNU runtime API is no longer available. *************** available. *** 46791,46816 ****  File: gcc.info, Node: Executing code before main, Next: Type encoding, Prev: GNU Objective-C runtime API, Up: Objective-C ! 8.2 '+load': Executing code before main ======================================= This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. The GNU Objective-C runtime provides a way that allows you to execute ! code before the execution of the program enters the 'main' function. The code is executed on a per-class and a per-category basis, through a ! special class method '+load'. This facility is very useful if you want to initialize global variables which can be accessed by the program directly, without sending a message to the class first. The usual way to initialize global variables, in ! the '+initialize' method, might not be useful because '+initialize' is only called when the first message is sent to a class object, which in some cases could be too late. ! Suppose for example you have a 'FileStream' class that declares ! 'Stdin', 'Stdout' and 'Stderr' as global variables, like below: FileStream *Stdin = nil; --- 47196,47221 ----  File: gcc.info, Node: Executing code before main, Next: Type encoding, Prev: GNU Objective-C runtime API, Up: Objective-C ! 8.2 `+load': Executing code before main ======================================= This section is specific for the GNU Objective-C runtime. If you are using a different runtime, you can skip it. The GNU Objective-C runtime provides a way that allows you to execute ! code before the execution of the program enters the `main' function. The code is executed on a per-class and a per-category basis, through a ! special class method `+load'. This facility is very useful if you want to initialize global variables which can be accessed by the program directly, without sending a message to the class first. The usual way to initialize global variables, in ! the `+initialize' method, might not be useful because `+initialize' is only called when the first message is sent to a class object, which in some cases could be too late. ! Suppose for example you have a `FileStream' class that declares ! `Stdin', `Stdout' and `Stderr' as global variables, like below: FileStream *Stdin = nil; *************** some cases could be too late. *** 46829,46845 **** /* Other methods here */ @end ! In this example, the initialization of 'Stdin', 'Stdout' and 'Stderr' ! in '+initialize' occurs too late. The programmer can send a message to ! one of these objects before the variables are actually initialized, thus ! sending messages to the 'nil' object. The '+initialize' method which ! actually initializes the global variables is not invoked until the first ! message is sent to the class object. The solution would require these ! variables to be initialized just before entering 'main'. ! ! The correct solution of the above problem is to use the '+load' method ! instead of '+initialize': @implementation FileStream --- 47234,47249 ---- /* Other methods here */ @end + In this example, the initialization of `Stdin', `Stdout' and `Stderr' + in `+initialize' occurs too late. The programmer can send a message to + one of these objects before the variables are actually initialized, + thus sending messages to the `nil' object. The `+initialize' method + which actually initializes the global variables is not invoked until + the first message is sent to the class object. The solution would + require these variables to be initialized just before entering `main'. ! The correct solution of the above problem is to use the `+load' method ! instead of `+initialize': @implementation FileStream *************** instead of '+initialize': *** 46854,46868 **** /* Other methods here */ @end ! ! The '+load' is a method that is not overridden by categories. If a ! class and a category of it both implement '+load', both methods are invoked. This allows some additional initializations to be performed in a category. ! This mechanism is not intended to be a replacement for '+initialize'. ! You should be aware of its limitations when you decide to use it instead ! of '+initialize'. * Menu: --- 47258,47271 ---- /* Other methods here */ @end ! The `+load' is a method that is not overridden by categories. If a ! class and a category of it both implement `+load', both methods are invoked. This allows some additional initializations to be performed in a category. ! This mechanism is not intended to be a replacement for `+initialize'. ! You should be aware of its limitations when you decide to use it ! instead of `+initialize'. * Menu: *************** of '+initialize'. *** 46871,46885 ****  File: gcc.info, Node: What you can and what you cannot do in +load, Up: Executing code before main ! 8.2.1 What you can and what you cannot do in '+load' ---------------------------------------------------- ! '+load' is to be used only as a last resort. Because it is executed very early, most of the Objective-C runtime machinery will not be ready ! when '+load' is executed; hence '+load' works best for executing C code that is independent on the Objective-C runtime. ! The '+load' implementation in the GNU runtime guarantees you the following things: * you can write whatever C code you like; --- 47274,47288 ----  File: gcc.info, Node: What you can and what you cannot do in +load, Up: Executing code before main ! 8.2.1 What you can and what you cannot do in `+load' ---------------------------------------------------- ! `+load' is to be used only as a last resort. Because it is executed very early, most of the Objective-C runtime machinery will not be ready ! when `+load' is executed; hence `+load' works best for executing C code that is independent on the Objective-C runtime. ! The `+load' implementation in the GNU runtime guarantees you the following things: * you can write whatever C code you like; *************** following things: *** 46887,46897 **** * you can allocate and send messages to objects whose class is implemented in the same file; ! * the '+load' implementation of all super classes of a class are ! executed before the '+load' of that class is executed; - * the '+load' implementation of a class is executed before the - '+load' implementation of any category. In particular, the following things, even if they can work in a particular case, are not guaranteed: --- 47290,47301 ---- * you can allocate and send messages to objects whose class is implemented in the same file; ! * the `+load' implementation of all super classes of a class are ! executed before the `+load' of that class is executed; ! ! * the `+load' implementation of a class is executed before the ! `+load' implementation of any category. In particular, the following things, even if they can work in a particular case, are not guaranteed: *************** particular case, are not guaranteed: *** 46901,46925 **** * allocation of or sending messages to objects whose classes have a category implemented in the same file; ! * sending messages to Objective-C constant strings ('@"this is a constant string"'); - You should make no assumptions about receiving '+load' in sibling - classes when you write '+load' of a class. The order in which sibling - classes receive '+load' is not guaranteed. ! The order in which '+load' and '+initialize' are called could be problematic if this matters. If you don't allocate objects inside ! '+load', it is guaranteed that '+load' is called before '+initialize'. ! If you create an object inside '+load' the '+initialize' method of ! object's class is invoked even if '+load' was not invoked. Note if you ! explicitly call '+load' on a class, '+initialize' will be called first. To avoid possible problems try to implement only one of these methods. ! The '+load' method is also invoked when a bundle is dynamically loaded into your running program. This happens automatically without any intervening operation from you. When you write bundles and you need to ! write '+load' you can safely create and send messages to objects whose classes already exist in the running program. The same restrictions as above apply to classes defined in bundle. --- 47305,47330 ---- * allocation of or sending messages to objects whose classes have a category implemented in the same file; ! * sending messages to Objective-C constant strings (`@"this is a constant string"'); ! You should make no assumptions about receiving `+load' in sibling ! classes when you write `+load' of a class. The order in which sibling ! classes receive `+load' is not guaranteed. ! ! The order in which `+load' and `+initialize' are called could be problematic if this matters. If you don't allocate objects inside ! `+load', it is guaranteed that `+load' is called before `+initialize'. ! If you create an object inside `+load' the `+initialize' method of ! object's class is invoked even if `+load' was not invoked. Note if you ! explicitly call `+load' on a class, `+initialize' will be called first. To avoid possible problems try to implement only one of these methods. ! The `+load' method is also invoked when a bundle is dynamically loaded into your running program. This happens automatically without any intervening operation from you. When you write bundles and you need to ! write `+load' you can safely create and send messages to objects whose classes already exist in the running program. The same restrictions as above apply to classes defined in bundle. *************** File: gcc.info, Node: Type encoding, N *** 46929,46937 **** 8.3 Type encoding ================= ! This is an advanced section. Type encodings are used extensively by the ! compiler and by the runtime, but you generally do not need to know about ! them to use Objective-C. The Objective-C compiler generates type encodings for all the types. These type encodings are used at runtime to find out information about --- 47334,47342 ---- 8.3 Type encoding ================= ! This is an advanced section. Type encodings are used extensively by ! the compiler and by the runtime, but you generally do not need to know ! about them to use Objective-C. The Objective-C compiler generates type encodings for all the types. These type encodings are used at runtime to find out information about *************** selectors and methods and about objects *** 46939,46972 **** The types are encoded in the following way: ! '_Bool' 'B' ! 'char' 'c' ! 'unsigned char' 'C' ! 'short' 's' ! 'unsigned short' 'S' ! 'int' 'i' ! 'unsigned int' 'I' ! 'long' 'l' ! 'unsigned long' 'L' ! 'long long' 'q' ! 'unsigned long 'Q' ! long' ! 'float' 'f' ! 'double' 'd' ! 'long double' 'D' ! 'void' 'v' ! 'id' '@' ! 'Class' '#' ! 'SEL' ':' ! 'char*' '*' ! 'enum' an 'enum' is encoded exactly as the integer type ! that the compiler uses for it, which depends on the enumeration values. Often the compiler users ! 'unsigned int', which is then encoded as 'I'. ! unknown type '?' ! Complex types 'j' followed by the inner type. For example ! '_Complex double' is encoded as "jd". ! bit-fields 'b' followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT's compiler encoding, see below) --- 47344,47377 ---- The types are encoded in the following way: ! `_Bool' `B' ! `char' `c' ! `unsigned char' `C' ! `short' `s' ! `unsigned short' `S' ! `int' `i' ! `unsigned int' `I' ! `long' `l' ! `unsigned long' `L' ! `long long' `q' ! `unsigned long `Q' ! long' ! `float' `f' ! `double' `d' ! `long double' `D' ! `void' `v' ! `id' `@' ! `Class' `#' ! `SEL' `:' ! `char*' `*' ! `enum' an `enum' is encoded exactly as the integer type that ! the compiler uses for it, which depends on the enumeration values. Often the compiler users ! `unsigned int', which is then encoded as `I'. ! unknown type `?' ! Complex types `j' followed by the inner type. For example ! `_Complex double' is encoded as "jd". ! bit-fields `b' followed by the starting position of the bit-field, the type of the bit-field and the size of the bit-field (the bit-fields encoding was changed from the NeXT's compiler encoding, see below) *************** bit closest to the beginning of the stru *** 46987,47063 **** The non-atomic types are encoded as follows: ! pointers '^' followed by the pointed type. ! arrays '[' followed by the number of elements in the array ! followed by the type of the elements followed by ']' ! structures '{' followed by the name of the structure (or '?' if the ! structure is unnamed), the '=' sign, the type of the ! members and by '}' ! unions '(' followed by the name of the structure (or '?' if the ! union is unnamed), the '=' sign, the type of the members ! followed by ')' ! vectors '![' followed by the vector_size (the number of bytes composing the vector) followed by a comma, followed by the alignment (in bytes) of the vector, followed by the ! type of the elements followed by ']' Here are some types and their encodings, as they are generated by the compiler on an i386 machine: Objective-C type Compiler encoding ! int a[10]; '[10i]' ! struct { '{?=i[3f]b128i3b131i2c}' ! int i; ! float f[3]; ! int a:3; ! int b:2; ! char c; ! } ! int a __attribute__ ((vector_size (16)));'![16,16i]' (alignment would depend on the machine) ! In addition to the types the compiler also encodes the type specifiers. ! The table below describes the encoding of the current Objective-C type ! specifiers: Specifier Encoding ! 'const' 'r' ! 'in' 'n' ! 'inout' 'N' ! 'out' 'o' ! 'bycopy' 'O' ! 'byref' 'R' ! 'oneway' 'V' The type specifiers are encoded just before the type. Unlike types however, the type specifiers are only encoded when they appear in method argument types. ! Note how 'const' interacts with pointers: Objective-C type Compiler encoding ! const int 'ri' ! const int* '^ri' ! int *const 'r^i' ! 'const int*' is a pointer to a 'const int', and so is encoded as '^ri'. ! 'int* const', instead, is a 'const' pointer to an 'int', and so is ! encoded as 'r^i'. ! Finally, there is a complication when encoding 'const char *' versus ! 'char * const'. Because 'char *' is encoded as '*' and not as '^c', ! there is no way to express the fact that 'r' applies to the pointer or to the pointee. ! Hence, it is assumed as a convention that 'r*' means 'const char *' (since it is what is most often meant), and there is no way to encode ! 'char *const'. 'char *const' would simply be encoded as '*', and the ! 'const' is lost. * Menu: --- 47392,47468 ---- The non-atomic types are encoded as follows: ! pointers `^' followed by the pointed type. ! arrays `[' followed by the number of elements in the array ! followed by the type of the elements followed by `]' ! structures `{' followed by the name of the structure (or `?' if the ! structure is unnamed), the `=' sign, the type of the ! members and by `}' ! unions `(' followed by the name of the structure (or `?' if the ! union is unnamed), the `=' sign, the type of the members ! followed by `)' ! vectors `![' followed by the vector_size (the number of bytes composing the vector) followed by a comma, followed by the alignment (in bytes) of the vector, followed by the ! type of the elements followed by `]' Here are some types and their encodings, as they are generated by the compiler on an i386 machine: Objective-C type Compiler encoding ! int a[10]; `[10i]' ! struct { `{?=i[3f]b128i3b131i2c}' ! int i; ! float f[3]; ! int a:3; ! int b:2; ! char c; ! } ! int a __attribute__ ((vector_size (16)));`![16,16i]' (alignment would depend on the machine) ! In addition to the types the compiler also encodes the type ! specifiers. The table below describes the encoding of the current ! Objective-C type specifiers: Specifier Encoding ! `const' `r' ! `in' `n' ! `inout' `N' ! `out' `o' ! `bycopy' `O' ! `byref' `R' ! `oneway' `V' The type specifiers are encoded just before the type. Unlike types however, the type specifiers are only encoded when they appear in method argument types. ! Note how `const' interacts with pointers: Objective-C type Compiler encoding ! const int `ri' ! const int* `^ri' ! int *const `r^i' ! `const int*' is a pointer to a `const int', and so is encoded as ! `^ri'. `int* const', instead, is a `const' pointer to an `int', and so ! is encoded as `r^i'. ! Finally, there is a complication when encoding `const char *' versus ! `char * const'. Because `char *' is encoded as `*' and not as `^c', ! there is no way to express the fact that `r' applies to the pointer or to the pointee. ! Hence, it is assumed as a convention that `r*' means `const char *' (since it is what is most often meant), and there is no way to encode ! `char *const'. `char *const' would simply be encoded as `*', and the ! `const' is lost. * Menu: *************** File: gcc.info, Node: Legacy type encod *** 47073,47080 **** Unfortunately, historically GCC used to have a number of bugs in its encoding code. The NeXT runtime expects GCC to emit type encodings in ! this historical format (compatible with GCC-3.3), so when using the NeXT ! runtime, GCC will introduce on purpose a number of incorrect encodings: * the read-only qualifier of the pointee gets emitted before the '^'. The read-only qualifier of the pointer itself gets ignored, unless --- 47478,47486 ---- Unfortunately, historically GCC used to have a number of bugs in its encoding code. The NeXT runtime expects GCC to emit type encodings in ! this historical format (compatible with GCC-3.3), so when using the ! NeXT runtime, GCC will introduce on purpose a number of incorrect ! encodings: * the read-only qualifier of the pointee gets emitted before the '^'. The read-only qualifier of the pointer itself gets ignored, unless *************** runtime, GCC will introduce on purpose a *** 47082,47095 **** type. * 32-bit longs are encoded as 'l' or 'L', but not always. For ! typedefs, the compiler uses 'i' or 'I' instead if encoding a struct ! field or a pointer. ! * 'enum's are always encoded as 'i' (int) even if they are actually unsigned or long. In addition to that, the NeXT runtime uses a different encoding for ! bitfields. It encodes them as 'b' followed by the size, without a bit offset or the underlying field type.  --- 47488,47502 ---- type. * 32-bit longs are encoded as 'l' or 'L', but not always. For ! typedefs, the compiler uses 'i' or 'I' instead if encoding a ! struct field or a pointer. ! * `enum's are always encoded as 'i' (int) even if they are actually unsigned or long. + In addition to that, the NeXT runtime uses a different encoding for ! bitfields. It encodes them as `b' followed by the size, without a bit offset or the underlying field type.  *************** File: gcc.info, Node: @encode, Next: M *** 47098,47110 **** 8.3.2 @encode ------------- ! GNU Objective-C supports the '@encode' syntax that allows you to create ! a type encoding from a C/Objective-C type. For example, '@encode(int)' ! is compiled by the compiler into '"i"'. ! '@encode' does not support type qualifiers other than 'const'. For ! example, '@encode(const char*)' is valid and is compiled into '"r*"', ! while '@encode(bycopy char *)' is invalid and will cause a compilation error.  --- 47505,47517 ---- 8.3.2 @encode ------------- ! GNU Objective-C supports the `@encode' syntax that allows you to create ! a type encoding from a C/Objective-C type. For example, `@encode(int)' ! is compiled by the compiler into `"i"'. ! `@encode' does not support type qualifiers other than `const'. For ! example, `@encode(const char*)' is valid and is compiled into `"r*"', ! while `@encode(bycopy char *)' is invalid and will cause a compilation error.  *************** File: gcc.info, Node: Method signatures *** 47114,47120 **** ----------------------- This section documents the encoding of method types, which is rarely ! needed to use Objective-C. You should skip it at a first reading; the runtime provides functions that will work on methods and can walk through the list of parameters and interpret them for you. These functions are part of the public "API" and are the preferred way to --- 47521,47527 ---- ----------------------- This section documents the encoding of method types, which is rarely ! needed to use Objective-C. You should skip it at a first reading; the runtime provides functions that will work on methods and can walk through the list of parameters and interpret them for you. These functions are part of the public "API" and are the preferred way to *************** arguments. *** 47131,47156 **** The "signature" is a null-terminated string, composed of the following: * The return type, including type qualifiers. For example, a method ! returning 'int' would have 'i' here. * The total size (in bytes) required to pass all the parameters. ! This includes the two hidden parameters (the object 'self' and the ! method selector '_cmd'). * Each argument, with the type encoding, followed by the offset (in bytes) of the argument in the list of parameters. ! For example, a method with no arguments and returning 'int' would have ! the signature 'i8@0:4' if the size of a pointer is 4. The signature is ! interpreted as follows: the 'i' is the return type (an 'int'), the '8' is the total size of the parameters in bytes (two pointers each of size ! 4), the '@0' is the first parameter (an object at byte offset '0') and ! ':4' is the second parameter (a 'SEL' at byte offset '4'). You can easily find more examples by running the "strings" program on ! an Objective-C object file compiled by GCC. You'll see a lot of strings ! that look very much like 'i8@0:4'. They are signatures of Objective-C ! methods.  File: gcc.info, Node: Garbage Collection, Next: Constant string objects, Prev: Type encoding, Up: Objective-C --- 47538,47564 ---- The "signature" is a null-terminated string, composed of the following: * The return type, including type qualifiers. For example, a method ! returning `int' would have `i' here. * The total size (in bytes) required to pass all the parameters. ! This includes the two hidden parameters (the object `self' and the ! method selector `_cmd'). * Each argument, with the type encoding, followed by the offset (in bytes) of the argument in the list of parameters. ! ! For example, a method with no arguments and returning `int' would have ! the signature `i8@0:4' if the size of a pointer is 4. The signature is ! interpreted as follows: the `i' is the return type (an `int'), the `8' is the total size of the parameters in bytes (two pointers each of size ! 4), the `@0' is the first parameter (an object at byte offset `0') and ! `:4' is the second parameter (a `SEL' at byte offset `4'). You can easily find more examples by running the "strings" program on ! an Objective-C object file compiled by GCC. You'll see a lot of ! strings that look very much like `i8@0:4'. They are signatures of ! Objective-C methods.  File: gcc.info, Node: Garbage Collection, Next: Constant string objects, Prev: Type encoding, Up: Objective-C *************** using a powerful conservative garbage co *** 47166,47175 **** Boehm-Demers-Weiser conservative garbage collector. To enable the support for it you have to configure the compiler using ! an additional argument, '--enable-objc-gc'. This will build the boehm-gc library, and build an additional runtime library which has several enhancements to support the garbage collector. The new library ! has a new name, 'libobjc_gc.a' to not conflict with the non-garbage-collected library. When the garbage collector is used, the objects are allocated using the --- 47574,47583 ---- Boehm-Demers-Weiser conservative garbage collector. To enable the support for it you have to configure the compiler using ! an additional argument, `--enable-objc-gc'. This will build the boehm-gc library, and build an additional runtime library which has several enhancements to support the garbage collector. The new library ! has a new name, `libobjc_gc.a' to not conflict with the non-garbage-collected library. When the garbage collector is used, the objects are allocated using the *************** on where pointers are located inside obj *** 47179,47192 **** computed once per class, immediately after the class has been initialized. ! There is a new runtime function 'class_ivar_set_gcinvisible()' which can be used to declare a so-called "weak pointer" reference. Such a pointer is basically hidden for the garbage collector; this can be useful in certain situations, especially when you want to keep track of the allocated objects, yet allow them to be collected. This kind of pointers can only be members of objects, you cannot declare a global pointer as a weak reference. Every type which is a pointer type can be ! declared a weak pointer, including 'id', 'Class' and 'SEL'. Here is an example of how to use this feature. Suppose you want to implement a class whose instances hold a weak pointer reference; the --- 47587,47600 ---- computed once per class, immediately after the class has been initialized. ! There is a new runtime function `class_ivar_set_gcinvisible()' which can be used to declare a so-called "weak pointer" reference. Such a pointer is basically hidden for the garbage collector; this can be useful in certain situations, especially when you want to keep track of the allocated objects, yet allow them to be collected. This kind of pointers can only be members of objects, you cannot declare a global pointer as a weak reference. Every type which is a pointer type can be ! declared a weak pointer, including `id', `Class' and `SEL'. Here is an example of how to use this feature. Suppose you want to implement a class whose instances hold a weak pointer reference; the *************** following class does this: *** 47224,47232 **** @end - Weak pointers are supported through a new type character specifier ! represented by the '!' character. The 'class_ivar_set_gcinvisible()' function adds or removes this specifier to the string type description of the instance variable named as argument. --- 47632,47639 ---- @end Weak pointers are supported through a new type character specifier ! represented by the `!' character. The `class_ivar_set_gcinvisible()' function adds or removes this specifier to the string type description of the instance variable named as argument. *************** File: gcc.info, Node: Constant string o *** 47238,47257 **** GNU Objective-C provides constant string objects that are generated directly by the compiler. You declare a constant string object by ! prefixing a C constant string with the character '@': id myString = @"this is a constant string object"; The constant string objects are by default instances of the ! 'NXConstantString' class which is provided by the GNU Objective-C runtime. To get the definition of this class you must include the ! 'objc/NXConstStr.h' header file. User defined libraries may want to implement their own constant string class. To be able to support them, the GNU Objective-C compiler provides a new command line options ! '-fconstant-string-class=CLASS-NAME'. The provided class should adhere ! to a strict structure, the same as 'NXConstantString''s structure: @interface MyConstantStringClass --- 47645,47664 ---- GNU Objective-C provides constant string objects that are generated directly by the compiler. You declare a constant string object by ! prefixing a C constant string with the character `@': id myString = @"this is a constant string object"; The constant string objects are by default instances of the ! `NXConstantString' class which is provided by the GNU Objective-C runtime. To get the definition of this class you must include the ! `objc/NXConstStr.h' header file. User defined libraries may want to implement their own constant string class. To be able to support them, the GNU Objective-C compiler provides a new command line options ! `-fconstant-string-class=CLASS-NAME'. The provided class should adhere ! to a strict structure, the same as `NXConstantString''s structure: @interface MyConstantStringClass *************** to a strict structure, the same as 'NXCo *** 47262,47292 **** } @end ! ! 'NXConstantString' inherits from 'Object'; user class libraries may choose to inherit the customized constant string class from a different ! class than 'Object'. There is no requirement in the methods the ! constant string class has to implement, but the final ivar layout of the ! class must be the compatible with the given structure. When the compiler creates the statically allocated constant string ! object, the 'c_string' field will be filled by the compiler with the ! string; the 'length' field will be filled by the compiler with the ! string length; the 'isa' pointer will be filled with 'NULL' by the compiler, and it will later be fixed up automatically at runtime by the GNU Objective-C runtime library to point to the class which was set by ! the '-fconstant-string-class' option when the object file is loaded (if ! you wonder how it works behind the scenes, the name of the class to use, ! and the list of static objects to fixup, are stored by the compiler in ! the object file in a place where the GNU runtime library will find them ! at runtime). ! As a result, when a file is compiled with the '-fconstant-string-class' ! option, all the constant string objects will be instances of the class ! specified as argument to this option. It is possible to have multiple ! compilation units referring to different constant string classes, ! neither the compiler nor the linker impose any restrictions in doing ! this.  File: gcc.info, Node: compatibility_alias, Next: Exceptions, Prev: Constant string objects, Up: Objective-C --- 47669,47698 ---- } @end ! `NXConstantString' inherits from `Object'; user class libraries may choose to inherit the customized constant string class from a different ! class than `Object'. There is no requirement in the methods the ! constant string class has to implement, but the final ivar layout of ! the class must be the compatible with the given structure. When the compiler creates the statically allocated constant string ! object, the `c_string' field will be filled by the compiler with the ! string; the `length' field will be filled by the compiler with the ! string length; the `isa' pointer will be filled with `NULL' by the compiler, and it will later be fixed up automatically at runtime by the GNU Objective-C runtime library to point to the class which was set by ! the `-fconstant-string-class' option when the object file is loaded (if ! you wonder how it works behind the scenes, the name of the class to ! use, and the list of static objects to fixup, are stored by the ! compiler in the object file in a place where the GNU runtime library ! will find them at runtime). ! As a result, when a file is compiled with the ! `-fconstant-string-class' option, all the constant string objects will ! be instances of the class specified as argument to this option. It is ! possible to have multiple compilation units referring to different ! constant string classes, neither the compiler nor the linker impose any ! restrictions in doing this.  File: gcc.info, Node: compatibility_alias, Next: Exceptions, Prev: Constant string objects, Up: Objective-C *************** File: gcc.info, Node: compatibility_ali *** 47294,47313 **** 8.6 compatibility_alias ======================= ! The keyword '@compatibility_alias' allows you to define a class name as equivalent to another class name. For example: @compatibility_alias WOApplication GSWApplication; ! tells the compiler that each time it encounters 'WOApplication' as a ! class name, it should replace it with 'GSWApplication' (that is, ! 'WOApplication' is just an alias for 'GSWApplication'). There are some constraints on how this can be used-- ! * 'WOApplication' (the alias) must not be an existing class; - * 'GSWApplication' (the real class) must be an existing class.  File: gcc.info, Node: Exceptions, Next: Synchronization, Prev: compatibility_alias, Up: Objective-C --- 47700,47720 ---- 8.6 compatibility_alias ======================= ! The keyword `@compatibility_alias' allows you to define a class name as equivalent to another class name. For example: @compatibility_alias WOApplication GSWApplication; ! tells the compiler that each time it encounters `WOApplication' as a ! class name, it should replace it with `GSWApplication' (that is, ! `WOApplication' is just an alias for `GSWApplication'). There are some constraints on how this can be used-- ! * `WOApplication' (the alias) must not be an existing class; ! ! * `GSWApplication' (the real class) must be an existing class.  File: gcc.info, Node: Exceptions, Next: Synchronization, Prev: compatibility_alias, Up: Objective-C *************** in the following example: *** 47342,47386 **** ... } ! The '@throw' statement may appear anywhere in an Objective-C or ! Objective-C++ program; when used inside of a '@catch' block, the ! '@throw' may appear without an argument (as shown above), in which case ! the object caught by the '@catch' will be rethrown. Note that only (pointers to) Objective-C objects may be thrown and caught using this scheme. When an object is thrown, it will be caught ! by the nearest '@catch' clause capable of handling objects of that type, ! analogously to how 'catch' blocks work in C++ and Java. A '@catch(id ! ...)' clause (as shown above) may also be provided to catch any and all ! Objective-C exceptions not caught by previous '@catch' clauses (if any). ! The '@finally' clause, if present, will be executed upon exit from the ! immediately preceding '@try ... @catch' section. This will happen regardless of whether any exceptions are thrown, caught or rethrown ! inside the '@try ... @catch' section, analogously to the behavior of the ! 'finally' clause in Java. There are several caveats to using the new exception mechanism: ! * The '-fobjc-exceptions' command line option must be used when compiling Objective-C files that use exceptions. * With the GNU runtime, exceptions are always implemented as "native" ! exceptions and it is recommended that the '-fexceptions' and ! '-shared-libgcc' options are used when linking. * With the NeXT runtime, although currently designed to be binary ! compatible with 'NS_HANDLER'-style idioms provided by the ! 'NSException' class, the new exceptions can only be used on Mac OS X 10.3 (Panther) and later systems, due to additional functionality needed in the NeXT Objective-C runtime. * As mentioned above, the new exceptions do not support handling ! types other than Objective-C objects. Furthermore, when used from Objective-C++, the Objective-C exception model does not interoperate with C++ exceptions at this time. This means you ! cannot '@throw' an exception from Objective-C and 'catch' it in ! C++, or vice versa (i.e., 'throw ... @catch').  File: gcc.info, Node: Synchronization, Next: Fast enumeration, Prev: Exceptions, Up: Objective-C --- 47749,47794 ---- ... } ! The `@throw' statement may appear anywhere in an Objective-C or ! Objective-C++ program; when used inside of a `@catch' block, the ! `@throw' may appear without an argument (as shown above), in which case ! the object caught by the `@catch' will be rethrown. Note that only (pointers to) Objective-C objects may be thrown and caught using this scheme. When an object is thrown, it will be caught ! by the nearest `@catch' clause capable of handling objects of that ! type, analogously to how `catch' blocks work in C++ and Java. A ! `@catch(id ...)' clause (as shown above) may also be provided to catch ! any and all Objective-C exceptions not caught by previous `@catch' ! clauses (if any). ! The `@finally' clause, if present, will be executed upon exit from the ! immediately preceding `@try ... @catch' section. This will happen regardless of whether any exceptions are thrown, caught or rethrown ! inside the `@try ... @catch' section, analogously to the behavior of ! the `finally' clause in Java. There are several caveats to using the new exception mechanism: ! * The `-fobjc-exceptions' command line option must be used when compiling Objective-C files that use exceptions. * With the GNU runtime, exceptions are always implemented as "native" ! exceptions and it is recommended that the `-fexceptions' and ! `-shared-libgcc' options are used when linking. * With the NeXT runtime, although currently designed to be binary ! compatible with `NS_HANDLER'-style idioms provided by the ! `NSException' class, the new exceptions can only be used on Mac OS X 10.3 (Panther) and later systems, due to additional functionality needed in the NeXT Objective-C runtime. * As mentioned above, the new exceptions do not support handling ! types other than Objective-C objects. Furthermore, when used from Objective-C++, the Objective-C exception model does not interoperate with C++ exceptions at this time. This means you ! cannot `@throw' an exception from Objective-C and `catch' it in ! C++, or vice versa (i.e., `throw ... @catch').  File: gcc.info, Node: Synchronization, Next: Fast enumeration, Prev: Exceptions, Up: Objective-C *************** GNU Objective-C provides support for syn *** 47394,47416 **** ... } ! Upon entering the '@synchronized' block, a thread of execution shall ! first check whether a lock has been placed on the corresponding 'guard' object by another thread. If it has, the current thread shall wait ! until the other thread relinquishes its lock. Once 'guard' becomes ! available, the current thread will place its own lock on it, execute the ! code contained in the '@synchronized' block, and finally relinquish the ! lock (thereby making 'guard' available to other threads). ! Unlike Java, Objective-C does not allow for entire methods to be marked ! '@synchronized'. Note that throwing exceptions out of '@synchronized' ! blocks is allowed, and will cause the guarding object to be unlocked ! properly. Because of the interactions between synchronization and exception ! handling, you can only use '@synchronized' when compiling with exceptions enabled, that is with the command line option ! '-fobjc-exceptions'.  File: gcc.info, Node: Fast enumeration, Next: Messaging with the GNU Objective-C runtime, Prev: Synchronization, Up: Objective-C --- 47802,47824 ---- ... } ! Upon entering the `@synchronized' block, a thread of execution shall ! first check whether a lock has been placed on the corresponding `guard' object by another thread. If it has, the current thread shall wait ! until the other thread relinquishes its lock. Once `guard' becomes ! available, the current thread will place its own lock on it, execute ! the code contained in the `@synchronized' block, and finally relinquish ! the lock (thereby making `guard' available to other threads). ! Unlike Java, Objective-C does not allow for entire methods to be ! marked `@synchronized'. Note that throwing exceptions out of ! `@synchronized' blocks is allowed, and will cause the guarding object ! to be unlocked properly. Because of the interactions between synchronization and exception ! handling, you can only use `@synchronized' when compiling with exceptions enabled, that is with the command line option ! `-fobjc-exceptions'.  File: gcc.info, Node: Fast enumeration, Next: Messaging with the GNU Objective-C runtime, Prev: Synchronization, Up: Objective-C *************** GNU Objective-C provides support for the *** 47441,47459 **** /* Do something with 'object' */ } ! 'array' needs to be an Objective-C object (usually a collection object, ! for example an array, a dictionary or a set) which implements the "Fast ! Enumeration Protocol" (see below). If you are using a Foundation ! library such as GNUstep Base or Apple Cocoa Foundation, all collection ! objects in the library implement this protocol and can be used in this ! way. ! The code above would iterate over all objects in 'array'. For each of ! them, it assigns it to 'object', then executes the 'Do something with 'object'' statements. Here is a fully worked-out example using a Foundation library (which ! provides the implementation of 'NSArray', 'NSString' and 'NSLog'): NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil]; NSString *object; --- 47849,47867 ---- /* Do something with 'object' */ } ! `array' needs to be an Objective-C object (usually a collection ! object, for example an array, a dictionary or a set) which implements ! the "Fast Enumeration Protocol" (see below). If you are using a ! Foundation library such as GNUstep Base or Apple Cocoa Foundation, all ! collection objects in the library implement this protocol and can be ! used in this way. ! The code above would iterate over all objects in `array'. For each of ! them, it assigns it to `object', then executes the `Do something with 'object'' statements. Here is a fully worked-out example using a Foundation library (which ! provides the implementation of `NSArray', `NSString' and `NSLog'): NSArray *array = [NSArray arrayWithObjects: @"1", @"2", @"3", nil]; NSString *object; *************** A c99-like declaration syntax is also al *** 47490,47497 **** but can save some typing. ! Note that the option '-std=c99' is not required to allow this syntax in ! Objective-C.  File: gcc.info, Node: Fast enumeration details, Next: Fast enumeration protocol, Prev: c99-like fast enumeration syntax, Up: Fast enumeration --- 47898,47905 ---- but can save some typing. ! Note that the option `-std=c99' is not required to allow this syntax ! in Objective-C.  File: gcc.info, Node: Fast enumeration details, Next: Fast enumeration protocol, Prev: c99-like fast enumeration syntax, Up: Fast enumeration *************** the code *** 47509,47517 **** here is what happens when you run it: ! * 'COLLECTION EXPRESSION' is evaluated exactly once and the result is ! used as the collection object to iterate over. This means it is ! safe to write code such as 'for (object in [NSDictionary keyEnumerator]) ...'. * the iteration is implemented by the compiler by repeatedly getting --- 47917,47925 ---- here is what happens when you run it: ! * `COLLECTION EXPRESSION' is evaluated exactly once and the result ! is used as the collection object to iterate over. This means it ! is safe to write code such as `for (object in [NSDictionary keyEnumerator]) ...'. * the iteration is implemented by the compiler by repeatedly getting *************** the code *** 47521,47552 **** objects are retrieved one by one (hence the name "fast enumeration"). ! * if there are no objects in the collection, then 'OBJECT EXPRESSION' ! is set to 'nil' and the loop immediately terminates. * if there are objects in the collection, then for each object in the ! collection (in the order they are returned) 'OBJECT EXPRESSION' is ! set to the object, then 'STATEMENTS' are executed. ! * 'STATEMENTS' can contain 'break' and 'continue' commands, which will abort the iteration or skip to the next loop iteration as expected. * when the iteration ends because there are no more objects to ! iterate over, 'OBJECT EXPRESSION' is set to 'nil'. This allows you ! to determine whether the iteration finished because a 'break' ! command was used (in which case 'OBJECT EXPRESSION' will remain set ! to the last object that was iterated over) or because it iterated ! over all the objects (in which case 'OBJECT EXPRESSION' will be set ! to 'nil'). ! * 'STATEMENTS' must not make any changes to the collection object; if ! they do, it is a hard error and the fast enumeration terminates by ! invoking 'objc_enumerationMutation', a runtime function that normally aborts the program but which can be customized by ! Foundation libraries via 'objc_set_mutation_handler' to do something different, such as raising an exception.  File: gcc.info, Node: Fast enumeration protocol, Prev: Fast enumeration details, Up: Fast enumeration --- 47929,47961 ---- objects are retrieved one by one (hence the name "fast enumeration"). ! * if there are no objects in the collection, then `OBJECT ! EXPRESSION' is set to `nil' and the loop immediately terminates. * if there are objects in the collection, then for each object in the ! collection (in the order they are returned) `OBJECT EXPRESSION' is ! set to the object, then `STATEMENTS' are executed. ! * `STATEMENTS' can contain `break' and `continue' commands, which will abort the iteration or skip to the next loop iteration as expected. * when the iteration ends because there are no more objects to ! iterate over, `OBJECT EXPRESSION' is set to `nil'. This allows ! you to determine whether the iteration finished because a `break' ! command was used (in which case `OBJECT EXPRESSION' will remain ! set to the last object that was iterated over) or because it ! iterated over all the objects (in which case `OBJECT EXPRESSION' ! will be set to `nil'). ! * `STATEMENTS' must not make any changes to the collection object; ! if they do, it is a hard error and the fast enumeration terminates ! by invoking `objc_enumerationMutation', a runtime function that normally aborts the program but which can be customized by ! Foundation libraries via `objc_set_mutation_handler' to do something different, such as raising an exception. +  File: gcc.info, Node: Fast enumeration protocol, Prev: Fast enumeration details, Up: Fast enumeration *************** enumeration, you need to have it impleme *** 47560,47566 **** objects: (id *)objects count: (unsigned long)len; ! where 'NSFastEnumerationState' must be defined in your code as follows: typedef struct { --- 47969,47975 ---- objects: (id *)objects count: (unsigned long)len; ! where `NSFastEnumerationState' must be defined in your code as follows: typedef struct { *************** enumeration, you need to have it impleme *** 47570,47580 **** unsigned long extra[5]; } NSFastEnumerationState; ! If no 'NSFastEnumerationState' is defined in your code, the compiler ! will automatically replace 'NSFastEnumerationState *' with 'struct __objcFastEnumerationState *', where that type is silently defined by the compiler in an identical way. This can be confusing and we ! recommend that you define 'NSFastEnumerationState' (as shown above) instead. The method is called repeatedly during a fast enumeration to retrieve --- 47979,47989 ---- unsigned long extra[5]; } NSFastEnumerationState; ! If no `NSFastEnumerationState' is defined in your code, the compiler ! will automatically replace `NSFastEnumerationState *' with `struct __objcFastEnumerationState *', where that type is silently defined by the compiler in an identical way. This can be confusing and we ! recommend that you define `NSFastEnumerationState' (as shown above) instead. The method is called repeatedly during a fast enumeration to retrieve *************** batches of objects. Each invocation of *** 47582,47619 **** next batch of objects. The return value of the method is the number of objects in the current ! batch; this should not exceed 'len', which is the maximum size of a batch as requested by the caller. The batch itself is returned in the ! 'itemsPtr' field of the 'NSFastEnumerationState' struct. ! To help with returning the objects, the 'objects' array is a C array ! preallocated by the caller (on the stack) of size 'len'. In many cases ! you can put the objects you want to return in that 'objects' array, then ! do 'itemsPtr = objects'. But you don't have to; if your collection ! already has the objects to return in some form of C array, it could ! return them from there instead. ! The 'state' and 'extra' fields of the 'NSFastEnumerationState' structure allows your collection object to keep track of the state of ! the enumeration. In a simple array implementation, 'state' may keep ! track of the index of the last object that was returned, and 'extra' may ! be unused. ! The 'mutationsPtr' field of the 'NSFastEnumerationState' is used to ! keep track of mutations. It should point to a number; before working on ! each object, the fast enumeration loop will check that this number has ! not changed. If it has, a mutation has happened and the fast ! enumeration will abort. So, 'mutationsPtr' could be set to point to some sort of version number of your collection, which is increased by ! one every time there is a change (for example when an object is added or ! removed). Or, if you are content with less strict mutation checks, it ! could point to the number of objects in your collection or some other ! value that can be checked to perform an approximate check that the ! collection has not been mutated. ! Finally, note how we declared the 'len' argument and the return value ! to be of type 'unsigned long'. They could also be declared to be of ! type 'unsigned int' and everything would still work.  File: gcc.info, Node: Messaging with the GNU Objective-C runtime, Prev: Fast enumeration, Up: Objective-C --- 47991,48028 ---- next batch of objects. The return value of the method is the number of objects in the current ! batch; this should not exceed `len', which is the maximum size of a batch as requested by the caller. The batch itself is returned in the ! `itemsPtr' field of the `NSFastEnumerationState' struct. ! To help with returning the objects, the `objects' array is a C array ! preallocated by the caller (on the stack) of size `len'. In many cases ! you can put the objects you want to return in that `objects' array, ! then do `itemsPtr = objects'. But you don't have to; if your ! collection already has the objects to return in some form of C array, ! it could return them from there instead. ! The `state' and `extra' fields of the `NSFastEnumerationState' structure allows your collection object to keep track of the state of ! the enumeration. In a simple array implementation, `state' may keep ! track of the index of the last object that was returned, and `extra' ! may be unused. ! The `mutationsPtr' field of the `NSFastEnumerationState' is used to ! keep track of mutations. It should point to a number; before working ! on each object, the fast enumeration loop will check that this number ! has not changed. If it has, a mutation has happened and the fast ! enumeration will abort. So, `mutationsPtr' could be set to point to some sort of version number of your collection, which is increased by ! one every time there is a change (for example when an object is added ! or removed). Or, if you are content with less strict mutation checks, ! it could point to the number of objects in your collection or some ! other value that can be checked to perform an approximate check that ! the collection has not been mutated. ! Finally, note how we declared the `len' argument and the return value ! to be of type `unsigned long'. They could also be declared to be of ! type `unsigned int' and everything would still work.  File: gcc.info, Node: Messaging with the GNU Objective-C runtime, Prev: Fast enumeration, Up: Objective-C *************** designed to be portable, and so is based *** 47629,47646 **** Sending a message in the GNU Objective-C runtime is composed of two separate steps. First, there is a call to the lookup function, ! 'objc_msg_lookup ()' (or, in the case of messages to super, ! 'objc_msg_lookup_super ()'). This runtime function takes as argument ! the receiver and the selector of the method to be called; it returns the ! 'IMP', that is a pointer to the function implementing the method. The ! second step of method invocation consists of casting this pointer function to the appropriate function pointer type, and calling the function pointed to it with the right arguments. For example, when the compiler encounters a method invocation such as ! '[object init]', it compiles it into a call to 'objc_msg_lookup (object, ! @selector(init))' followed by a cast of the returned value to the ! appropriate function pointer type, and then it calls it. * Menu: --- 48038,48055 ---- Sending a message in the GNU Objective-C runtime is composed of two separate steps. First, there is a call to the lookup function, ! `objc_msg_lookup ()' (or, in the case of messages to super, ! `objc_msg_lookup_super ()'). This runtime function takes as argument ! the receiver and the selector of the method to be called; it returns ! the `IMP', that is a pointer to the function implementing the method. ! The second step of method invocation consists of casting this pointer function to the appropriate function pointer type, and calling the function pointed to it with the right arguments. For example, when the compiler encounters a method invocation such as ! `[object init]', it compiles it into a call to `objc_msg_lookup ! (object, @selector(init))' followed by a cast of the returned value to ! the appropriate function pointer type, and then it calls it. * Menu: *************** File: gcc.info, Node: Dynamically regis *** 47653,47661 **** 8.10.1 Dynamically registering methods -------------------------------------- ! If 'objc_msg_lookup()' does not find a suitable method implementation, ! because the receiver does not implement the required method, it tries to ! see if the class can dynamically register the method. To do so, the runtime checks if the class of the receiver implements the method --- 48062,48070 ---- 8.10.1 Dynamically registering methods -------------------------------------- ! If `objc_msg_lookup()' does not find a suitable method implementation, ! because the receiver does not implement the required method, it tries ! to see if the class can dynamically register the method. To do so, the runtime checks if the class of the receiver implements the method *************** the method *** 47666,47689 **** + (BOOL) resolveClassMethod: (SEL)selector; ! in the case of a class method. If the class implements it, the runtime ! invokes it, passing as argument the selector of the original method, and ! if it returns 'YES', the runtime tries the lookup again, which could now ! succeed if a matching method was added dynamically by ! '+resolveInstanceMethod:' or '+resolveClassMethod:'. This allows classes to dynamically register methods (by adding them to ! the class using 'class_addMethod') when they are first called. To do ! so, a class should implement '+resolveInstanceMethod:' (or, depending on ! the case, '+resolveClassMethod:') and have it recognize the selectors of ! methods that can be registered dynamically at runtime, register them, ! and return 'YES'. It should return 'NO' for methods that it does not ! dynamically registered at runtime. ! If '+resolveInstanceMethod:' (or '+resolveClassMethod:') is not ! implemented or returns 'NO', the runtime then tries the forwarding hook. ! Support for '+resolveInstanceMethod:' and 'resolveClassMethod:' was added to the GNU Objective-C runtime in GCC version 4.6.  --- 48075,48098 ---- + (BOOL) resolveClassMethod: (SEL)selector; ! in the case of a class method. If the class implements it, the ! runtime invokes it, passing as argument the selector of the original ! method, and if it returns `YES', the runtime tries the lookup again, ! which could now succeed if a matching method was added dynamically by ! `+resolveInstanceMethod:' or `+resolveClassMethod:'. This allows classes to dynamically register methods (by adding them to ! the class using `class_addMethod') when they are first called. To do ! so, a class should implement `+resolveInstanceMethod:' (or, depending ! on the case, `+resolveClassMethod:') and have it recognize the ! selectors of methods that can be registered dynamically at runtime, ! register them, and return `YES'. It should return `NO' for methods ! that it does not dynamically registered at runtime. ! If `+resolveInstanceMethod:' (or `+resolveClassMethod:') is not ! implemented or returns `NO', the runtime then tries the forwarding hook. ! Support for `+resolveInstanceMethod:' and `resolveClassMethod:' was added to the GNU Objective-C runtime in GCC version 4.6.  *************** File: gcc.info, Node: Forwarding hook, *** 47693,47745 **** ---------------------- The GNU Objective-C runtime provides a hook, called ! '__objc_msg_forward2', which is called by 'objc_msg_lookup()' when it can't find a method implementation in the runtime tables and after ! calling '+resolveInstanceMethod:' and '+resolveClassMethod:' has been attempted and did not succeed in dynamically registering the method. To configure the hook, you set the global variable ! '__objc_msg_forward2' to a function with the same argument and return ! types of 'objc_msg_lookup()'. When 'objc_msg_lookup()' can not find a method implementation, it invokes the hook function you provided to get a method implementation to return. So, in practice ! '__objc_msg_forward2' allows you to extend 'objc_msg_lookup()' by adding ! some custom code that is called to do a further lookup when no standard ! method implementation can be found using the normal lookup. This hook is generally reserved for "Foundation" libraries such as GNUstep Base, which use it to implement their high-level method ! forwarding API, typically based around the 'forwardInvocation:' method. So, unless you are implementing your own "Foundation" library, you should not set this hook. ! In a typical forwarding implementation, the '__objc_msg_forward2' hook function determines the argument and return type of the method that is being looked up, and then creates a function that takes these arguments and has that return type, and returns it to the caller. Creating this function is non-trivial and is typically performed using a dedicated ! library such as 'libffi'. The forwarding method implementation thus created is returned by ! 'objc_msg_lookup()' and is executed as if it was a normal method ! implementation. When the forwarding method implementation is called, it ! is usually expected to pack all arguments into some sort of object ! (typically, an 'NSInvocation' in a "Foundation" library), and hand it ! over to the programmer ('forwardInvocation:') who is then allowed to manipulate the method invocation using a high-level API provided by the "Foundation" library. For example, the programmer may want to examine the method invocation arguments and name and potentially change them before forwarding the method invocation to one or more local objects ! ('performInvocation:') or even to remote objects (by using Distributed Objects or some other mechanism). When all this completes, the return value is passed back and must be returned correctly to the original caller. ! Note that the GNU Objective-C runtime currently provides no support for ! method forwarding or method invocations other than the ! '__objc_msg_forward2' hook. ! If the forwarding hook does not exist or returns 'NULL', the runtime currently attempts forwarding using an older, deprecated API, and if that fails, it aborts the program. In future versions of the GNU Objective-C runtime, the runtime will immediately abort. --- 48102,48154 ---- ---------------------- The GNU Objective-C runtime provides a hook, called ! `__objc_msg_forward2', which is called by `objc_msg_lookup()' when it can't find a method implementation in the runtime tables and after ! calling `+resolveInstanceMethod:' and `+resolveClassMethod:' has been attempted and did not succeed in dynamically registering the method. To configure the hook, you set the global variable ! `__objc_msg_forward2' to a function with the same argument and return ! types of `objc_msg_lookup()'. When `objc_msg_lookup()' can not find a method implementation, it invokes the hook function you provided to get a method implementation to return. So, in practice ! `__objc_msg_forward2' allows you to extend `objc_msg_lookup()' by ! adding some custom code that is called to do a further lookup when no ! standard method implementation can be found using the normal lookup. This hook is generally reserved for "Foundation" libraries such as GNUstep Base, which use it to implement their high-level method ! forwarding API, typically based around the `forwardInvocation:' method. So, unless you are implementing your own "Foundation" library, you should not set this hook. ! In a typical forwarding implementation, the `__objc_msg_forward2' hook function determines the argument and return type of the method that is being looked up, and then creates a function that takes these arguments and has that return type, and returns it to the caller. Creating this function is non-trivial and is typically performed using a dedicated ! library such as `libffi'. The forwarding method implementation thus created is returned by ! `objc_msg_lookup()' and is executed as if it was a normal method ! implementation. When the forwarding method implementation is called, ! it is usually expected to pack all arguments into some sort of object ! (typically, an `NSInvocation' in a "Foundation" library), and hand it ! over to the programmer (`forwardInvocation:') who is then allowed to manipulate the method invocation using a high-level API provided by the "Foundation" library. For example, the programmer may want to examine the method invocation arguments and name and potentially change them before forwarding the method invocation to one or more local objects ! (`performInvocation:') or even to remote objects (by using Distributed Objects or some other mechanism). When all this completes, the return value is passed back and must be returned correctly to the original caller. ! Note that the GNU Objective-C runtime currently provides no support ! for method forwarding or method invocations other than the ! `__objc_msg_forward2' hook. ! If the forwarding hook does not exist or returns `NULL', the runtime currently attempts forwarding using an older, deprecated API, and if that fails, it aborts the program. In future versions of the GNU Objective-C runtime, the runtime will immediately abort. *************** Binary compatibility encompasses several *** 47754,47769 **** "application binary interface (ABI)" The set of runtime conventions followed by all of the tools that ! deal with binary representations of a program, including compilers, ! assemblers, linkers, and language runtime support. Some ABIs are ! formal with a written specification, possibly designed by multiple ! interested parties. Others are simply the way things are actually ! done by a particular set of tools. "ABI conformance" ! A compiler conforms to an ABI if it generates code that follows all ! of the specifications enumerated by that ABI. A library conforms ! to an ABI if it is implemented according to that ABI. An application conforms to an ABI if it is built using tools that conform to that ABI and does not contain source code that specifically changes behavior specified by the ABI. --- 48163,48178 ---- "application binary interface (ABI)" The set of runtime conventions followed by all of the tools that ! deal with binary representations of a program, including ! compilers, assemblers, linkers, and language runtime support. ! Some ABIs are formal with a written specification, possibly ! designed by multiple interested parties. Others are simply the ! way things are actually done by a particular set of tools. "ABI conformance" ! A compiler conforms to an ABI if it generates code that follows ! all of the specifications enumerated by that ABI. A library ! conforms to an ABI if it is implemented according to that ABI. An application conforms to an ABI if it is built using tools that conform to that ABI and does not contain source code that specifically changes behavior specified by the ABI. *************** Binary compatibility encompasses several *** 47776,47785 **** Different sets of tools are interoperable if they generate files that can be used in the same program. The set of tools includes compilers, assemblers, linkers, libraries, header files, startup ! files, and debuggers. Binaries produced by different sets of tools ! are not interoperable unless they implement the same ABI. This ! applies to different versions of the same tools as well as tools ! from different vendors. "intercallability" Whether a function in a binary built by one set of tools can call a --- 48185,48194 ---- Different sets of tools are interoperable if they generate files that can be used in the same program. The set of tools includes compilers, assemblers, linkers, libraries, header files, startup ! files, and debuggers. Binaries produced by different sets of ! tools are not interoperable unless they implement the same ABI. ! This applies to different versions of the same tools as well as ! tools from different vendors. "intercallability" Whether a function in a binary built by one set of tools can call a *************** Binary compatibility encompasses several *** 47787,47797 **** of interoperability. "implementation-defined features" ! Language standards include lists of implementation-defined features ! whose behavior can vary from one implementation to another. Some ! of these features are normally covered by a platform's ABI and ! others are not. The features that are not covered by an ABI ! generally affect how a program behaves, but not intercallability. "compatibility" Conformance to the same ABI and the same behavior of --- 48196,48207 ---- of interoperability. "implementation-defined features" ! Language standards include lists of implementation-defined ! features whose behavior can vary from one implementation to ! another. Some of these features are normally covered by a ! platform's ABI and others are not. The features that are not ! covered by an ABI generally affect how a program behaves, but not ! intercallability. "compatibility" Conformance to the same ABI and the same behavior of *************** Binary compatibility encompasses several *** 47802,47819 **** --- 48212,48238 ---- affects code generation and runtime support for: * size and alignment of data types + * layout of structured types + * calling conventions + * register usage conventions + * interfaces for runtime arithmetic support + * object file formats In addition, the application binary interface implemented by a C++ compiler affects code generation and runtime support for: * name mangling + * exception handling + * invoking constructors and destructors + * layout, alignment, and padding of classes + * layout and alignment of virtual tables Some GCC compilation options cause the compiler to generate code that *************** GCC releases, but it is possible that we *** 47837,47843 **** make this difficult. Such problems could include different interpretations of the C++ ABI by different vendors, bugs in the ABI, or bugs in the implementation of the ABI in different compilers. GCC's ! '-Wabi' switch warns when G++ generates code that is probably not compatible with the C++ ABI. The C++ library used with a C++ compiler includes the Standard C++ --- 48256,48262 ---- make this difficult. Such problems could include different interpretations of the C++ ABI by different vendors, bugs in the ABI, or bugs in the implementation of the ABI in different compilers. GCC's ! `-Wabi' switch warns when G++ generates code that is probably not compatible with the C++ ABI. The C++ library used with a C++ compiler includes the Standard C++ *************** compiler and runtime support. *** 47851,47864 **** When G++ and another C++ compiler conform to the same C++ ABI, but the implementations of the Standard C++ Library that they normally use do ! not follow the same ABI for the Standard C++ Library, object files built ! with those compilers can be used in the same program only if they use ! the same C++ library. This requires specifying the location of the C++ ! library header files when invoking the compiler whose usual library is ! not being used. The location of GCC's C++ header files depends on how ! the GCC build was configured, but can be seen by using the G++ '-v' ! option. With default configuration options for G++ 3.3 the compile line ! for a different C++ compiler needs to include -IGCC_INSTALL_DIRECTORY/include/c++/3.3 --- 48270,48283 ---- When G++ and another C++ compiler conform to the same C++ ABI, but the implementations of the Standard C++ Library that they normally use do ! not follow the same ABI for the Standard C++ Library, object files ! built with those compilers can be used in the same program only if they ! use the same C++ library. This requires specifying the location of the ! C++ library header files when invoking the compiler whose usual library ! is not being used. The location of GCC's C++ header files depends on ! how the GCC build was configured, but can be seen by using the G++ `-v' ! option. With default configuration options for G++ 3.3 the compile ! line for a different C++ compiler needs to include -IGCC_INSTALL_DIRECTORY/include/c++/3.3 *************** files for that other library. *** 47868,47892 **** The most straightforward way to link a program to use a particular C++ library is to use a C++ driver that specifies that C++ library by ! default. The 'g++' driver, for example, tells the linker where to find ! GCC's C++ library ('libstdc++') plus the other libraries and startup files it needs, in the proper order. If a program must use a different C++ library and it's not possible to do the final link using a C++ driver that uses that library by default, ! it is necessary to tell 'g++' the location and name of that library. It ! might also be necessary to specify different startup files and other runtime support libraries, and to suppress the use of GCC's support ! libraries with one or more of the options '-nostdlib', '-nostartfiles', ! and '-nodefaultlibs'.  File: gcc.info, Node: Gcov, Next: Trouble, Prev: Compatibility, Up: Top ! 10 'gcov'--a Test Coverage Program ********************************** ! 'gcov' is a tool you can use in conjunction with GCC to test code coverage in your programs. * Menu: --- 48287,48311 ---- The most straightforward way to link a program to use a particular C++ library is to use a C++ driver that specifies that C++ library by ! default. The `g++' driver, for example, tells the linker where to find ! GCC's C++ library (`libstdc++') plus the other libraries and startup files it needs, in the proper order. If a program must use a different C++ library and it's not possible to do the final link using a C++ driver that uses that library by default, ! it is necessary to tell `g++' the location and name of that library. ! It might also be necessary to specify different startup files and other runtime support libraries, and to suppress the use of GCC's support ! libraries with one or more of the options `-nostdlib', `-nostartfiles', ! and `-nodefaultlibs'.  File: gcc.info, Node: Gcov, Next: Trouble, Prev: Compatibility, Up: Top ! 10 `gcov'--a Test Coverage Program ********************************** ! `gcov' is a tool you can use in conjunction with GCC to test code coverage in your programs. * Menu: *************** coverage in your programs. *** 47900,47918 ****  File: gcc.info, Node: Gcov Intro, Next: Invoking Gcov, Up: Gcov ! 10.1 Introduction to 'gcov' =========================== ! 'gcov' is a test coverage program. Use it in concert with GCC to ! analyze your programs to help create more efficient, faster running code ! and to discover untested parts of your program. You can use 'gcov' as a ! profiling tool to help discover where your optimization efforts will ! best affect your code. You can also use 'gcov' along with the other ! profiling tool, 'gprof', to assess which parts of your code use the ! greatest amount of computing time. Profiling tools help you analyze your code's performance. Using a ! profiler such as 'gcov' or 'gprof', you can find out some basic performance statistics, such as: * how often each line of code executes --- 48319,48337 ----  File: gcc.info, Node: Gcov Intro, Next: Invoking Gcov, Up: Gcov ! 10.1 Introduction to `gcov' =========================== ! `gcov' is a test coverage program. Use it in concert with GCC to ! analyze your programs to help create more efficient, faster running ! code and to discover untested parts of your program. You can use ! `gcov' as a profiling tool to help discover where your optimization ! efforts will best affect your code. You can also use `gcov' along with ! the other profiling tool, `gprof', to assess which parts of your code ! use the greatest amount of computing time. Profiling tools help you analyze your code's performance. Using a ! profiler such as `gcov' or `gprof', you can find out some basic performance statistics, such as: * how often each line of code executes *************** performance statistics, such as: *** 47923,47929 **** Once you know these things about how your code works when compiled, you can look at each module to see which modules should be optimized. ! 'gcov' helps you determine where to work on optimization. Software developers also use coverage testing in concert with testsuites, to make sure software is actually good enough for a release. --- 48342,48348 ---- Once you know these things about how your code works when compiled, you can look at each module to see which modules should be optimized. ! `gcov' helps you determine where to work on optimization. Software developers also use coverage testing in concert with testsuites, to make sure software is actually good enough for a release. *************** to be added to the testsuites to create *** 47934,48046 **** final product. You should compile your code without optimization if you plan to use ! 'gcov' because the optimization, by combining some lines of code into one function, may not give you as much information as you need to look ! for 'hot spots' where the code is using a great deal of computer time. ! Likewise, because 'gcov' accumulates statistics by line (at the lowest ! resolution), it works best with a programming style that places only one ! statement on each line. If you use complicated macros that expand to ! loops or to other control structures, the statistics are less helpful--they only report on the line where the macro call appears. If your complex macros behave like functions, you can replace them with inline functions to solve this problem. ! 'gcov' creates a logfile called 'SOURCEFILE.gcov' which indicates how ! many times each line of a source file 'SOURCEFILE.c' has executed. You ! can use these logfiles along with 'gprof' to aid in fine-tuning the ! performance of your programs. 'gprof' gives timing information you can ! use along with the information you get from 'gcov'. ! 'gcov' works only on code compiled with GCC. It is not compatible with ! any other profiling or test coverage mechanism.  File: gcc.info, Node: Invoking Gcov, Next: Gcov and Optimization, Prev: Gcov Intro, Up: Gcov ! 10.2 Invoking 'gcov' ==================== gcov [OPTIONS] FILES ! 'gcov' accepts the following options: ! '-h' ! '--help' ! Display help about using 'gcov' (on the standard output), and exit without doing any further processing. ! '-v' ! '--version' ! Display the 'gcov' version number (on the standard output), and exit without doing any further processing. ! '-a' ! '--all-blocks' Write individual execution counts for every basic block. Normally gcov outputs execution counts only for the main blocks of a line. With this option you can determine if blocks within a single line are not being executed. ! '-b' ! '--branch-probabilities' Write branch frequencies to the output file, and write branch ! summary info to the standard output. This option allows you to see ! how often each branch in your program was taken. Unconditional ! branches will not be shown, unless the '-u' option is given. ! '-c' ! '--branch-counts' Write branch frequencies as the number of branches taken, rather than the percentage of branches taken. ! '-n' ! '--no-output' ! Do not create the 'gcov' output file. ! '-l' ! '--long-file-names' Create long file names for included source files. For example, if ! the header file 'x.h' contains code, and was included in the file ! 'a.c', then running 'gcov' on the file 'a.c' will produce an output ! file called 'a.c##x.h.gcov' instead of 'x.h.gcov'. This can be ! useful if 'x.h' is included in multiple source files and you want ! to see the individual contributions. If you use the '-p' option, ! both the including and included file names will be complete path ! names. ! '-p' ! '--preserve-paths' Preserve complete path information in the names of generated ! '.gcov' files. Without this option, just the filename component is ! used. With this option, all directories are used, with '/' ! characters translated to '#' characters, '.' directory components ! removed and unremoveable '..' components renamed to '^'. This is useful if sourcefiles are in several different directories. ! '-r' ! '--relative-only' Only output information about source files with a relative pathname (after source prefix elision). Absolute paths are usually system header files and coverage of any inline functions therein is normally uninteresting. ! '-f' ! '--function-summaries' Output summaries for each function in addition to the file level summary. ! '-o DIRECTORY|FILE' ! '--object-directory DIRECTORY' ! '--object-file FILE' Specify either the directory containing the gcov data files, or the ! object path name. The '.gcno', and '.gcda' data files are searched ! for using this option. If a directory is specified, the data files ! are in that directory and named after the input file name, without ! its extension. If a file is specified here, the data files are ! named after that file, without its extension. ! '-s DIRECTORY' ! '--source-prefix DIRECTORY' A prefix for source file names to remove when generating the output coverage files. This option is useful when building in a separate directory, and the pathname to the source directory is not wanted --- 48353,48466 ---- final product. You should compile your code without optimization if you plan to use ! `gcov' because the optimization, by combining some lines of code into one function, may not give you as much information as you need to look ! for `hot spots' where the code is using a great deal of computer time. ! Likewise, because `gcov' accumulates statistics by line (at the lowest ! resolution), it works best with a programming style that places only ! one statement on each line. If you use complicated macros that expand ! to loops or to other control structures, the statistics are less helpful--they only report on the line where the macro call appears. If your complex macros behave like functions, you can replace them with inline functions to solve this problem. ! `gcov' creates a logfile called `SOURCEFILE.gcov' which indicates how ! many times each line of a source file `SOURCEFILE.c' has executed. You ! can use these logfiles along with `gprof' to aid in fine-tuning the ! performance of your programs. `gprof' gives timing information you can ! use along with the information you get from `gcov'. ! `gcov' works only on code compiled with GCC. It is not compatible ! with any other profiling or test coverage mechanism.  File: gcc.info, Node: Invoking Gcov, Next: Gcov and Optimization, Prev: Gcov Intro, Up: Gcov ! 10.2 Invoking `gcov' ==================== gcov [OPTIONS] FILES ! `gcov' accepts the following options: ! `-h' ! `--help' ! Display help about using `gcov' (on the standard output), and exit without doing any further processing. ! `-v' ! `--version' ! Display the `gcov' version number (on the standard output), and exit without doing any further processing. ! `-a' ! `--all-blocks' Write individual execution counts for every basic block. Normally gcov outputs execution counts only for the main blocks of a line. With this option you can determine if blocks within a single line are not being executed. ! `-b' ! `--branch-probabilities' Write branch frequencies to the output file, and write branch ! summary info to the standard output. This option allows you to ! see how often each branch in your program was taken. ! Unconditional branches will not be shown, unless the `-u' option ! is given. ! `-c' ! `--branch-counts' Write branch frequencies as the number of branches taken, rather than the percentage of branches taken. ! `-n' ! `--no-output' ! Do not create the `gcov' output file. ! `-l' ! `--long-file-names' Create long file names for included source files. For example, if ! the header file `x.h' contains code, and was included in the file ! `a.c', then running `gcov' on the file `a.c' will produce an ! output file called `a.c##x.h.gcov' instead of `x.h.gcov'. This ! can be useful if `x.h' is included in multiple source files and ! you want to see the individual contributions. If you use the `-p' ! option, both the including and included file names will be ! complete path names. ! `-p' ! `--preserve-paths' Preserve complete path information in the names of generated ! `.gcov' files. Without this option, just the filename component is ! used. With this option, all directories are used, with `/' ! characters translated to `#' characters, `.' directory components ! removed and unremoveable `..' components renamed to `^'. This is useful if sourcefiles are in several different directories. ! `-r' ! `--relative-only' Only output information about source files with a relative pathname (after source prefix elision). Absolute paths are usually system header files and coverage of any inline functions therein is normally uninteresting. ! `-f' ! `--function-summaries' Output summaries for each function in addition to the file level summary. ! `-o DIRECTORY|FILE' ! `--object-directory DIRECTORY' ! `--object-file FILE' Specify either the directory containing the gcov data files, or the ! object path name. The `.gcno', and `.gcda' data files are ! searched for using this option. If a directory is specified, the ! data files are in that directory and named after the input file ! name, without its extension. If a file is specified here, the ! data files are named after that file, without its extension. ! `-s DIRECTORY' ! `--source-prefix DIRECTORY' A prefix for source file names to remove when generating the output coverage files. This option is useful when building in a separate directory, and the pathname to the source directory is not wanted *************** File: gcc.info, Node: Invoking Gcov, N *** 48048,48069 **** detection is applied before determining whether the source file is absolute. ! '-u' ! '--unconditional-branches' ! When branch probabilities are given, include those of unconditional ! branches. Unconditional branches are normally not interesting. ! '-d' ! '--display-progress' Display the progress on the standard output. ! '-i' ! '--intermediate-format' Output gcov file in an easy-to-parse intermediate text format that ! can be used by 'lcov' or other tools. The output is a single ! '.gcov' file per '.gcda' file. No source code is required. ! The format of the intermediate '.gcov' file is plain text with one entry per line file:SOURCE_FILE_NAME --- 48468,48490 ---- detection is applied before determining whether the source file is absolute. ! `-u' ! `--unconditional-branches' ! When branch probabilities are given, include those of ! unconditional branches. Unconditional branches are normally not ! interesting. ! `-d' ! `--display-progress' Display the progress on the standard output. ! `-i' ! `--intermediate-format' Output gcov file in an easy-to-parse intermediate text format that ! can be used by `lcov' or other tools. The output is a single ! `.gcov' file per `.gcda' file. No source code is required. ! The format of the intermediate `.gcov' file is plain text with one entry per line file:SOURCE_FILE_NAME *************** File: gcc.info, Node: Invoking Gcov, N *** 48080,48086 **** file. All entries following a FILE pertain to that source file until the next FILE entry. ! Here is a sample when '-i' is used in conjunction with '-b' option: file:array.cc function:11,1,_Z3sumRKSt6vectorIPiSaIS0_EE --- 48501,48507 ---- file. All entries following a FILE pertain to that source file until the next FILE entry. ! Here is a sample when `-i' is used in conjunction with `-b' option: file:array.cc function:11,1,_Z3sumRKSt6vectorIPiSaIS0_EE *************** File: gcc.info, Node: Invoking Gcov, N *** 48092,48164 **** lcount:26,1 branch:28,nottaken ! '-m' ! '--demangled-names' ! Display demangled function names in output. The default is to show mangled function names. ! 'gcov' should be run with the current directory the same as that when you invoked the compiler. Otherwise it will not be able to locate the ! source files. 'gcov' produces files called 'MANGLEDNAME.gcov' in the ! current directory. These contain the coverage information of the source ! file they correspond to. One '.gcov' file is produced for each source ! (or header) file containing code, which was compiled to produce the data ! files. The MANGLEDNAME part of the output file name is usually simply ! the source file name, but can be something more complicated if the '-l' ! or '-p' options are given. Refer to those options for details. ! If you invoke 'gcov' with multiple input files, the contributions from ! each input file are summed. Typically you would invoke it with the same ! list of files as the final link of your executable. ! The '.gcov' files contain the ':' separated fields along with program source code. The format is EXECUTION_COUNT:LINE_NUMBER:SOURCE LINE TEXT Additional block information may succeed each line, when requested by ! command line option. The EXECUTION_COUNT is '-' for lines containing no ! code. Unexecuted lines are marked '#####' or '====', depending on whether they are reachable by non-exceptional paths or only exceptional paths such as C++ exception handlers, respectively. ! Some lines of information at the start have LINE_NUMBER of zero. These ! preamble lines are of the form -:0:TAG:VALUE The ordering and number of these preamble lines will be augmented as ! 'gcov' development progresses -- do not rely on them remaining unchanged. Use TAG to locate a particular preamble line. The additional block information is of the form TAG INFORMATION ! The INFORMATION is human readable, but designed to be simple enough for ! machine parsing too. When printing percentages, 0% and 100% are only printed when the values are _exactly_ 0% and 100% respectively. Other values which would conventionally be rounded to 0% or 100% are instead printed as the nearest non-boundary value. ! When using 'gcov', you must first compile your program with two special ! GCC options: '-fprofile-arcs -ftest-coverage'. This tells the compiler ! to generate additional information needed by gcov (basically a flow ! graph of the program) and also includes additional code in the object ! files for generating the extra profiling information needed by gcov. ! These additional files are placed in the directory where the object file ! is located. Running the program will cause profile output to be generated. For ! each source file compiled with '-fprofile-arcs', an accompanying '.gcda' ! file will be placed in the object file directory. ! Running 'gcov' with your program's source file names as arguments will now produce a listing of the code along with frequency of execution for ! each line. For example, if your program is called 'tmp.c', this is what ! you see when you use the basic 'gcov' facility: $ gcc -fprofile-arcs -ftest-coverage tmp.c $ a.out --- 48513,48587 ---- lcount:26,1 branch:28,nottaken ! `-m' ! `--demangled-names' ! Display demangled function names in output. The default is to show mangled function names. ! ! `gcov' should be run with the current directory the same as that when you invoked the compiler. Otherwise it will not be able to locate the ! source files. `gcov' produces files called `MANGLEDNAME.gcov' in the ! current directory. These contain the coverage information of the ! source file they correspond to. One `.gcov' file is produced for each ! source (or header) file containing code, which was compiled to produce ! the data files. The MANGLEDNAME part of the output file name is ! usually simply the source file name, but can be something more ! complicated if the `-l' or `-p' options are given. Refer to those ! options for details. ! If you invoke `gcov' with multiple input files, the contributions from ! each input file are summed. Typically you would invoke it with the ! same list of files as the final link of your executable. ! The `.gcov' files contain the `:' separated fields along with program source code. The format is EXECUTION_COUNT:LINE_NUMBER:SOURCE LINE TEXT Additional block information may succeed each line, when requested by ! command line option. The EXECUTION_COUNT is `-' for lines containing ! no code. Unexecuted lines are marked `#####' or `====', depending on whether they are reachable by non-exceptional paths or only exceptional paths such as C++ exception handlers, respectively. ! Some lines of information at the start have LINE_NUMBER of zero. ! These preamble lines are of the form -:0:TAG:VALUE The ordering and number of these preamble lines will be augmented as ! `gcov' development progresses -- do not rely on them remaining unchanged. Use TAG to locate a particular preamble line. The additional block information is of the form TAG INFORMATION ! The INFORMATION is human readable, but designed to be simple enough ! for machine parsing too. When printing percentages, 0% and 100% are only printed when the values are _exactly_ 0% and 100% respectively. Other values which would conventionally be rounded to 0% or 100% are instead printed as the nearest non-boundary value. ! When using `gcov', you must first compile your program with two ! special GCC options: `-fprofile-arcs -ftest-coverage'. This tells the ! compiler to generate additional information needed by gcov (basically a ! flow graph of the program) and also includes additional code in the ! object files for generating the extra profiling information needed by ! gcov. These additional files are placed in the directory where the ! object file is located. Running the program will cause profile output to be generated. For ! each source file compiled with `-fprofile-arcs', an accompanying ! `.gcda' file will be placed in the object file directory. ! Running `gcov' with your program's source file names as arguments will now produce a listing of the code along with frequency of execution for ! each line. For example, if your program is called `tmp.c', this is ! what you see when you use the basic `gcov' facility: $ gcc -fprofile-arcs -ftest-coverage tmp.c $ a.out *************** you see when you use the basic 'gcov' fa *** 48166,48172 **** 90.00% of 10 source lines executed in file tmp.c Creating tmp.c.gcov. ! The file 'tmp.c.gcov' contains output from 'gcov'. Here is a sample: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno --- 48589,48595 ---- 90.00% of 10 source lines executed in file tmp.c Creating tmp.c.gcov. ! The file `tmp.c.gcov' contains output from `gcov'. Here is a sample: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno *************** you see when you use the basic 'gcov' fa *** 48191,48198 **** 1: 16: return 0; -: 17:} ! When you use the '-a' option, you will get individual block counts, and ! the output looks like this: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno --- 48614,48621 ---- 1: 16: return 0; -: 17:} ! When you use the `-a' option, you will get individual block counts, ! and the output looks like this: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno *************** contain code, unless previous blocks end *** 48231,48243 **** execution count of a line is shown and subsequent lines show the execution counts for individual blocks that end on that line. After each block, the branch and call counts of the block will be shown, if ! the '-b' option is given. Because of the way GCC instruments calls, a call count can be shown after a line with no individual blocks. As you can see, line 13 contains a basic block that was not executed. ! When you use the '-b' option, your output looks like this: $ gcov -b tmp.c 90.00% of 10 source lines executed in file tmp.c --- 48654,48666 ---- execution count of a line is shown and subsequent lines show the execution counts for individual blocks that end on that line. After each block, the branch and call counts of the block will be shown, if ! the `-b' option is given. Because of the way GCC instruments calls, a call count can be shown after a line with no individual blocks. As you can see, line 13 contains a basic block that was not executed. ! When you use the `-b' option, your output looks like this: $ gcov -b tmp.c 90.00% of 10 source lines executed in file tmp.c *************** contains a basic block that was not exec *** 48246,48252 **** 50.00% of 2 calls executed in file tmp.c Creating tmp.c.gcov. ! Here is a sample of a resulting 'tmp.c.gcov' file: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno --- 48669,48675 ---- 50.00% of 2 calls executed in file tmp.c Creating tmp.c.gcov. ! Here is a sample of a resulting `tmp.c.gcov' file: -: 0:Source:tmp.c -: 0:Graph:tmp.gcno *************** function's blocks were executed. *** 48284,48295 **** For each basic block, a line is printed after the last line of the basic block describing the branch or call that ends the basic block. ! There can be multiple branches and calls listed for a single source line ! if there are multiple basic blocks that end on that line. In this case, ! the branches and calls are each given a number. There is no simple way ! to map these branches and calls back to source constructs. In general, ! though, the lowest numbered branch or call will correspond to the ! leftmost construct on the source line. For a branch, if it was executed at least once, then a percentage indicating the number of times the branch was taken divided by the --- 48707,48718 ---- For each basic block, a line is printed after the last line of the basic block describing the branch or call that ends the basic block. ! There can be multiple branches and calls listed for a single source ! line if there are multiple basic blocks that end on that line. In this ! case, the branches and calls are each given a number. There is no ! simple way to map these branches and calls back to source constructs. ! In general, though, the lowest numbered branch or call will correspond ! to the leftmost construct on the source line. For a branch, if it was executed at least once, then a percentage indicating the number of times the branch was taken divided by the *************** message "never executed" is printed. *** 48299,48309 **** For a call, if it was executed at least once, then a percentage indicating the number of times the call returned divided by the number of times the call was executed will be printed. This will usually be ! 100%, but may be less for functions that call 'exit' or 'longjmp', and thus may not return every time they are called. The execution counts are cumulative. If the example program were ! executed again without removing the '.gcda' file, the count for the number of times each line in the source was executed would be added to the results of the previous run(s). This is potentially useful in several ways. For example, it could be used to accumulate data over a --- 48722,48732 ---- For a call, if it was executed at least once, then a percentage indicating the number of times the call returned divided by the number of times the call was executed will be printed. This will usually be ! 100%, but may be less for functions that call `exit' or `longjmp', and thus may not return every time they are called. The execution counts are cumulative. If the example program were ! executed again without removing the `.gcda' file, the count for the number of times each line in the source was executed would be added to the results of the previous run(s). This is potentially useful in several ways. For example, it could be used to accumulate data over a *************** number of program runs as part of a test *** 48311,48319 **** provide more accurate long-term information over a large number of program runs. ! The data in the '.gcda' files is saved immediately before the program ! exits. For each source file compiled with '-fprofile-arcs', the ! profiling code first attempts to read in an existing '.gcda' file; if the file doesn't match the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in the new execution counts and finally writes the data to the file. --- 48734,48742 ---- provide more accurate long-term information over a large number of program runs. ! The data in the `.gcda' files is saved immediately before the program ! exits. For each source file compiled with `-fprofile-arcs', the ! profiling code first attempts to read in an existing `.gcda' file; if the file doesn't match the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in the new execution counts and finally writes the data to the file. *************** new execution counts and finally writes *** 48321,48335 ****  File: gcc.info, Node: Gcov and Optimization, Next: Gcov Data Files, Prev: Invoking Gcov, Up: Gcov ! 10.3 Using 'gcov' with GCC Optimization ======================================= ! If you plan to use 'gcov' to help optimize your code, you must first ! compile your program with two special GCC options: '-fprofile-arcs -ftest-coverage'. Aside from that, you can use any other GCC options; but if you want to prove that every single line in your program was ! executed, you should not compile with optimization at the same time. On ! some machines the optimizer can eliminate some simple code lines by combining them with other lines. For example, code like this: if (a != b) --- 48744,48758 ----  File: gcc.info, Node: Gcov and Optimization, Next: Gcov Data Files, Prev: Invoking Gcov, Up: Gcov ! 10.3 Using `gcov' with GCC Optimization ======================================= ! If you plan to use `gcov' to help optimize your code, you must first ! compile your program with two special GCC options: `-fprofile-arcs -ftest-coverage'. Aside from that, you can use any other GCC options; but if you want to prove that every single line in your program was ! executed, you should not compile with optimization at the same time. ! On some machines the optimizer can eliminate some simple code lines by combining them with other lines. For example, code like this: if (a != b) *************** combining them with other lines. For ex *** 48338,48346 **** c = 0; can be compiled into one instruction on some machines. In this case, ! there is no way for 'gcov' to calculate separate execution counts for each line because there isn't separate code for each line. Hence the ! 'gcov' output looks like this if you compiled the program with optimization: 100: 12:if (a != b) --- 48761,48769 ---- c = 0; can be compiled into one instruction on some machines. In this case, ! there is no way for `gcov' to calculate separate execution counts for each line because there isn't separate code for each line. Hence the ! `gcov' output looks like this if you compiled the program with optimization: 100: 12:if (a != b) *************** shown depends on where the function is i *** 48360,48374 **** at all. If the function is not inlined, the compiler must emit an out of line ! copy of the function, in any object file that needs it. If 'fileA.o' ! and 'fileB.o' both contain out of line bodies of a particular inlineable ! function, they will also both contain coverage counts for that function. ! When 'fileA.o' and 'fileB.o' are linked together, the linker will, on ! many systems, select one of those out of line bodies for all calls to ! that function, and remove or ignore the other. Unfortunately, it will ! not remove the coverage counters for the unused function body. Hence ! when instrumented, all but one use of that function will show zero ! counts. If the function is inlined in several places, the block structure in each location might not be the same. For instance, a condition might --- 48783,48797 ---- at all. If the function is not inlined, the compiler must emit an out of line ! copy of the function, in any object file that needs it. If `fileA.o' ! and `fileB.o' both contain out of line bodies of a particular ! inlineable function, they will also both contain coverage counts for ! that function. When `fileA.o' and `fileB.o' are linked together, the ! linker will, on many systems, select one of those out of line bodies ! for all calls to that function, and remove or ignore the other. ! Unfortunately, it will not remove the coverage counters for the unused ! function body. Hence when instrumented, all but one use of that ! function will show zero counts. If the function is inlined in several places, the block structure in each location might not be the same. For instance, a condition might *************** now be calculable at compile time in som *** 48376,48415 **** coverage of all the uses of the inline function will be shown for the same source lines, the line counts themselves might seem inconsistent. ! Long-running applications can use the '_gcov_reset' and '_gcov_dump' facilities to restrict profile collection to the program region of ! interest. Calling '_gcov_reset(void)' will clear all profile counters ! to zero, and calling '_gcov_dump(void)' will cause the profile ! information collected at that point to be dumped to '.gcda' output files.  File: gcc.info, Node: Gcov Data Files, Next: Cross-profiling, Prev: Gcov and Optimization, Up: Gcov ! 10.4 Brief description of 'gcov' data files =========================================== ! 'gcov' uses two files for profiling. The names of these files are derived from the original _object_ file by substituting the file suffix ! with either '.gcno', or '.gcda'. The files contain coverage and profile ! data stored in a platform-independent format. The '.gcno' files are ! placed in the same directory as the object file. By default, the ! '.gcda' files are also stored in the same directory as the object file, ! but the GCC '-fprofile-dir' option may be used to store the '.gcda' ! files in a separate directory. ! The '.gcno' notes file is generated when the source file is compiled ! with the GCC '-ftest-coverage' option. It contains information to reconstruct the basic block graphs and assign source line numbers to blocks. ! The '.gcda' count data file is generated when a program containing ! object files built with the GCC '-fprofile-arcs' option is executed. A ! separate '.gcda' file is created for each object file compiled with this ! option. It contains arc transition counts, value profile counts, and ! some summary information. ! The full details of the file format is specified in 'gcov-io.h', and functions provided in that header file should be used to access the coverage files. --- 48799,48838 ---- coverage of all the uses of the inline function will be shown for the same source lines, the line counts themselves might seem inconsistent. ! Long-running applications can use the `_gcov_reset' and `_gcov_dump' facilities to restrict profile collection to the program region of ! interest. Calling `_gcov_reset(void)' will clear all profile counters ! to zero, and calling `_gcov_dump(void)' will cause the profile ! information collected at that point to be dumped to `.gcda' output files.  File: gcc.info, Node: Gcov Data Files, Next: Cross-profiling, Prev: Gcov and Optimization, Up: Gcov ! 10.4 Brief description of `gcov' data files =========================================== ! `gcov' uses two files for profiling. The names of these files are derived from the original _object_ file by substituting the file suffix ! with either `.gcno', or `.gcda'. The files contain coverage and ! profile data stored in a platform-independent format. The `.gcno' ! files are placed in the same directory as the object file. By default, ! the `.gcda' files are also stored in the same directory as the object ! file, but the GCC `-fprofile-dir' option may be used to store the ! `.gcda' files in a separate directory. ! The `.gcno' notes file is generated when the source file is compiled ! with the GCC `-ftest-coverage' option. It contains information to reconstruct the basic block graphs and assign source line numbers to blocks. ! The `.gcda' count data file is generated when a program containing ! object files built with the GCC `-fprofile-arcs' option is executed. A ! separate `.gcda' file is created for each object file compiled with ! this option. It contains arc transition counts, value profile counts, ! and some summary information. ! The full details of the file format is specified in `gcov-io.h', and functions provided in that header file should be used to access the coverage files. *************** File: gcc.info, Node: Cross-profiling, *** 48420,48457 **** ==================================================== Running the program will cause profile output to be generated. For each ! source file compiled with '-fprofile-arcs', an accompanying '.gcda' file ! will be placed in the object file directory. That implicitly requires ! running the program on the same system as it was built or having the ! same absolute directory structure on the target system. The program ! will try to create the needed directory structure, if it is not already ! present. ! To support cross-profiling, a program compiled with '-fprofile-arcs' can relocate the data files based on two environment variables: ! * GCOV_PREFIX contains the prefix to add to the absolute paths in the ! object file. Prefix can be absolute, or relative. The default is ! no prefix. ! * GCOV_PREFIX_STRIP indicates the how many initial directory names to ! strip off the hardwired absolute paths. Default value is 0. _Note:_ If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is ! undefined, then a relative path is made out of the hardwired absolute paths. ! For example, if the object file '/user/build/foo.o' was built with ! '-fprofile-arcs', the final executable will try to create the data file ! '/user/build/foo.gcda' when running on the target system. This will fail if the corresponding directory does not exist and it is unable to create it. This can be overcome by, for example, setting the ! environment as 'GCOV_PREFIX=/target/run' and 'GCOV_PREFIX_STRIP=1'. ! Such a setting will name the data file '/target/run/build/foo.gcda'. You must move the data files to the expected directory tree in order to ! use them for profile directed optimizations ('--use-profile'), or to use ! the 'gcov' tool.  File: gcc.info, Node: Trouble, Next: Bugs, Prev: Gcov, Up: Top --- 48843,48880 ---- ==================================================== Running the program will cause profile output to be generated. For each ! source file compiled with `-fprofile-arcs', an accompanying `.gcda' ! file will be placed in the object file directory. That implicitly ! requires running the program on the same system as it was built or ! having the same absolute directory structure on the target system. The ! program will try to create the needed directory structure, if it is not ! already present. ! To support cross-profiling, a program compiled with `-fprofile-arcs' can relocate the data files based on two environment variables: ! * GCOV_PREFIX contains the prefix to add to the absolute paths in ! the object file. Prefix can be absolute, or relative. The default ! is no prefix. ! * GCOV_PREFIX_STRIP indicates the how many initial directory names ! to strip off the hardwired absolute paths. Default value is 0. _Note:_ If GCOV_PREFIX_STRIP is set without GCOV_PREFIX is ! undefined, then a relative path is made out of the hardwired absolute paths. ! For example, if the object file `/user/build/foo.o' was built with ! `-fprofile-arcs', the final executable will try to create the data file ! `/user/build/foo.gcda' when running on the target system. This will fail if the corresponding directory does not exist and it is unable to create it. This can be overcome by, for example, setting the ! environment as `GCOV_PREFIX=/target/run' and `GCOV_PREFIX_STRIP=1'. ! Such a setting will name the data file `/target/run/build/foo.gcda'. You must move the data files to the expected directory tree in order to ! use them for profile directed optimizations (`--use-profile'), or to ! use the `gcov' tool.  File: gcc.info, Node: Trouble, Next: Bugs, Prev: Gcov, Up: Top *************** File: gcc.info, Node: Trouble, Next: B *** 48459,48467 **** 11 Known Causes of Trouble with GCC *********************************** ! This section describes known problems that affect users of GCC. Most of ! these are not GCC bugs per se--if they were, we would fix them. But the ! result for a user may be like the result of a bug. Some of these problems are due to bugs in other software, some are missing features that are too much work to add, and some are places --- 48882,48890 ---- 11 Known Causes of Trouble with GCC *********************************** ! This section describes known problems that affect users of GCC. Most ! of these are not GCC bugs per se--if they were, we would fix them. But ! the result for a user may be like the result of a bug. Some of these problems are due to bugs in other software, some are missing features that are too much work to add, and some are places *************** File: gcc.info, Node: Actual Bugs, Nex *** 48489,48497 **** 11.1 Actual Bugs We Haven't Fixed Yet ===================================== ! * The 'fixincludes' script interacts badly with automounters; if the directory of system header files is automounted, it tends to be ! unmounted while 'fixincludes' is running. This would seem to be a bug in the automounter. We don't know any good way to work around it. --- 48912,48920 ---- 11.1 Actual Bugs We Haven't Fixed Yet ===================================== ! * The `fixincludes' script interacts badly with automounters; if the directory of system header files is automounted, it tends to be ! unmounted while `fixincludes' is running. This would seem to be a bug in the automounter. We don't know any good way to work around it. *************** File: gcc.info, Node: Interoperation, *** 48502,48513 **** =================== This section lists various difficulties encountered in using GCC ! together with other compilers or with the assemblers, linkers, libraries ! and debuggers on certain systems. * On many platforms, GCC supports a different ABI for C++ than do ! other compilers, so the object files compiled by GCC cannot be used ! with object files generated by another C++ compiler. An area where the difference is most apparent is name mangling. The use of different name mangling is intentional, to protect you --- 48925,48936 ---- =================== This section lists various difficulties encountered in using GCC ! together with other compilers or with the assemblers, linkers, ! libraries and debuggers on certain systems. * On many platforms, GCC supports a different ABI for C++ than do ! other compilers, so the object files compiled by GCC cannot be ! used with object files generated by another C++ compiler. An area where the difference is most apparent is name mangling. The use of different name mangling is intentional, to protect you *************** and debuggers on certain systems. *** 48524,48537 **** profiling causes static variable destructors (currently used only in C++) not to be run. ! * On a SPARC, GCC aligns all values of type 'double' on an 8-byte ! boundary, and it expects every 'double' to be so aligned. The Sun ! compiler usually gives 'double' values 8-byte alignment, with one ! exception: function arguments of type 'double' may not be aligned. As a result, if a function compiled with Sun CC takes the address ! of an argument of type 'double' and passes this pointer of type ! 'double *' to a function compiled with GCC, dereferencing the pointer may cause a fatal signal. One way to solve this problem is to compile your entire program --- 48947,48960 ---- profiling causes static variable destructors (currently used only in C++) not to be run. ! * On a SPARC, GCC aligns all values of type `double' on an 8-byte ! boundary, and it expects every `double' to be so aligned. The Sun ! compiler usually gives `double' values 8-byte alignment, with one ! exception: function arguments of type `double' may not be aligned. As a result, if a function compiled with Sun CC takes the address ! of an argument of type `double' and passes this pointer of type ! `double *' to a function compiled with GCC, dereferencing the pointer may cause a fatal signal. One way to solve this problem is to compile your entire program *************** and debuggers on certain systems. *** 48539,48546 **** compiled with Sun CC to copy the argument into a local variable; local variables are always properly aligned. A third solution is to modify the function that uses the pointer to dereference it via ! the following function 'access_double' instead of directly with ! '*': inline double access_double (double *unaligned_ptr) --- 48962,48969 ---- compiled with Sun CC to copy the argument into a local variable; local variables are always properly aligned. A third solution is to modify the function that uses the pointer to dereference it via ! the following function `access_double' instead of directly with ! `*': inline double access_double (double *unaligned_ptr) *************** and debuggers on certain systems. *** 48558,48584 **** Storing into the pointer can be done likewise with the same union. ! * On Solaris, the 'malloc' function in the 'libmalloc.a' library may allocate memory that is only 4 byte aligned. Since GCC on the SPARC assumes that doubles are 8 byte aligned, this may result in a fatal signal if doubles are stored in memory allocated by the ! 'libmalloc.a' library. ! The solution is to not use the 'libmalloc.a' library. Use instead ! 'malloc' and related functions from 'libc.a'; they do not have this ! problem. * On the HP PA machine, ADB sometimes fails to work on functions compiled with GCC. Specifically, it fails to work on functions ! that use 'alloca' or variable-size arrays. This is because GCC doesn't generate HP-UX unwind descriptors for such functions. It may even be impossible to generate them. ! * Debugging ('-g') is not supported on the HP PA machine, unless you use the preliminary GNU tools. ! * Taking the address of a label may generate errors from the HP-UX PA ! assembler. GAS for the PA does not have this problem. * Using floating point parameters for indirect calls to static functions will not work when using the HP assembler. There simply --- 48981,49007 ---- Storing into the pointer can be done likewise with the same union. ! * On Solaris, the `malloc' function in the `libmalloc.a' library may allocate memory that is only 4 byte aligned. Since GCC on the SPARC assumes that doubles are 8 byte aligned, this may result in a fatal signal if doubles are stored in memory allocated by the ! `libmalloc.a' library. ! The solution is to not use the `libmalloc.a' library. Use instead ! `malloc' and related functions from `libc.a'; they do not have ! this problem. * On the HP PA machine, ADB sometimes fails to work on functions compiled with GCC. Specifically, it fails to work on functions ! that use `alloca' or variable-size arrays. This is because GCC doesn't generate HP-UX unwind descriptors for such functions. It may even be impossible to generate them. ! * Debugging (`-g') is not supported on the HP PA machine, unless you use the preliminary GNU tools. ! * Taking the address of a label may generate errors from the HP-UX ! PA assembler. GAS for the PA does not have this problem. * Using floating point parameters for indirect calls to static functions will not work when using the HP assembler. There simply *************** and debuggers on certain systems. *** 48589,48600 **** * In extremely rare cases involving some very large functions you may receive errors from the HP linker complaining about an out of bounds unconditional branch offset. This used to occur more often ! in previous versions of GCC, but is now exceptionally rare. If you ! should run into it, you can work around by making your function ! smaller. ! * GCC compiled code sometimes emits warnings from the HP-UX assembler ! of the form: (warning) Use of GR3 when frame >= 8192 may cause conflict. --- 49012,49023 ---- * In extremely rare cases involving some very large functions you may receive errors from the HP linker complaining about an out of bounds unconditional branch offset. This used to occur more often ! in previous versions of GCC, but is now exceptionally rare. If ! you should run into it, you can work around by making your ! function smaller. ! * GCC compiled code sometimes emits warnings from the HP-UX ! assembler of the form: (warning) Use of GR3 when frame >= 8192 may cause conflict. *************** and debuggers on certain systems. *** 48603,48645 **** * In extremely rare cases involving some very large functions you may receive errors from the AIX Assembler complaining about a ! displacement that is too large. If you should run into it, you can ! work around by making your function smaller. ! * The 'libstdc++.a' library in GCC relies on the SVR4 dynamic linker semantics which merges global symbols between libraries and applications, especially necessary for C++ streams functionality. This is not the default behavior of AIX shared libraries and ! dynamic linking. 'libstdc++.a' is built on AIX with "runtime-linking" enabled so that symbol merging can occur. To ! utilize this feature, the application linked with 'libstdc++.a' ! must include the '-Wl,-brtl' flag on the link line. G++ cannot ! impose this because this option may interfere with the semantics of ! the user program and users may not always use 'g++' to link his or ! her application. Applications are not required to use the ! '-Wl,-brtl' flag on the link line--the rest of the 'libstdc++.a' ! library which is not dependent on the symbol merging semantics will ! continue to function correctly. * An application can interpose its own definition of functions for ! functions invoked by 'libstdc++.a' with "runtime-linking" enabled on AIX. To accomplish this the application must be linked with "runtime-linking" option and the functions explicitly must be ! exported by the application ('-Wl,-brtl,-bE:exportfile'). * AIX on the RS/6000 provides support (NLS) for environments outside of the United States. Compilers and assemblers use NLS to support locale-specific representations of various objects including ! floating-point numbers ('.' vs ',' for separating decimal fractions). There have been problems reported where the library linked with GCC does not produce the same floating-point formats that the assembler accepts. If you have this problem, set the ! 'LANG' environment variable to 'C' or 'En_US'. ! * Even if you specify '-fdollars-in-identifiers', you cannot ! successfully use '$' in identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports these identifiers.  File: gcc.info, Node: Incompatibilities, Next: Fixed Headers, Prev: Interoperation, Up: Trouble --- 49026,49069 ---- * In extremely rare cases involving some very large functions you may receive errors from the AIX Assembler complaining about a ! displacement that is too large. If you should run into it, you ! can work around by making your function smaller. ! * The `libstdc++.a' library in GCC relies on the SVR4 dynamic linker semantics which merges global symbols between libraries and applications, especially necessary for C++ streams functionality. This is not the default behavior of AIX shared libraries and ! dynamic linking. `libstdc++.a' is built on AIX with "runtime-linking" enabled so that symbol merging can occur. To ! utilize this feature, the application linked with `libstdc++.a' ! must include the `-Wl,-brtl' flag on the link line. G++ cannot ! impose this because this option may interfere with the semantics ! of the user program and users may not always use `g++' to link his ! or her application. Applications are not required to use the ! `-Wl,-brtl' flag on the link line--the rest of the `libstdc++.a' ! library which is not dependent on the symbol merging semantics ! will continue to function correctly. * An application can interpose its own definition of functions for ! functions invoked by `libstdc++.a' with "runtime-linking" enabled on AIX. To accomplish this the application must be linked with "runtime-linking" option and the functions explicitly must be ! exported by the application (`-Wl,-brtl,-bE:exportfile'). * AIX on the RS/6000 provides support (NLS) for environments outside of the United States. Compilers and assemblers use NLS to support locale-specific representations of various objects including ! floating-point numbers (`.' vs `,' for separating decimal fractions). There have been problems reported where the library linked with GCC does not produce the same floating-point formats that the assembler accepts. If you have this problem, set the ! `LANG' environment variable to `C' or `En_US'. ! * Even if you specify `-fdollars-in-identifiers', you cannot ! successfully use `$' in identifiers on the RS/6000 due to a restriction in the IBM assembler. GAS supports these identifiers. +  File: gcc.info, Node: Incompatibilities, Next: Fixed Headers, Prev: Interoperation, Up: Trouble *************** There are several noteworthy incompatibi *** 48653,48675 **** identical-looking string constants are used, GCC stores only one copy of the string. ! One consequence is that you cannot call 'mktemp' with a string ! constant argument. The function 'mktemp' always alters the string its argument points to. ! Another consequence is that 'sscanf' does not work on some very old ! systems when passed a string constant as its format control string ! or input. This is because 'sscanf' incorrectly tries to write into ! the string constant. Likewise 'fscanf' and 'scanf'. The solution to these problems is to change the program to use ! 'char'-array variables with initialization strings for these purposes instead of string constants. ! * '-2147483648' is positive. ! This is because 2147483648 cannot fit in the type 'int', so ! (following the ISO C rules) its data type is 'unsigned long int'. Negating this value yields 2147483648 again. * GCC does not substitute macro arguments when they appear inside of --- 49077,49099 ---- identical-looking string constants are used, GCC stores only one copy of the string. ! One consequence is that you cannot call `mktemp' with a string ! constant argument. The function `mktemp' always alters the string its argument points to. ! Another consequence is that `sscanf' does not work on some very ! old systems when passed a string constant as its format control ! string or input. This is because `sscanf' incorrectly tries to ! write into the string constant. Likewise `fscanf' and `scanf'. The solution to these problems is to change the program to use ! `char'-array variables with initialization strings for these purposes instead of string constants. ! * `-2147483648' is positive. ! This is because 2147483648 cannot fit in the type `int', so ! (following the ISO C rules) its data type is `unsigned long int'. Negating this value yields 2147483648 again. * GCC does not substitute macro arguments when they appear inside of *************** There are several noteworthy incompatibi *** 48677,48686 **** #define foo(a) "a" ! will produce output '"a"' regardless of what the argument A is. ! * When you use 'setjmp' and 'longjmp', the only automatic variables ! guaranteed to remain valid are those declared 'volatile'. This is a consequence of automatic register allocation. Consider this function: --- 49101,49110 ---- #define foo(a) "a" ! will produce output `"a"' regardless of what the argument A is. ! * When you use `setjmp' and `longjmp', the only automatic variables ! guaranteed to remain valid are those declared `volatile'. This is a consequence of automatic register allocation. Consider this function: *************** There are several noteworthy incompatibi *** 48695,48710 **** return a; a = fun2 (); ! /* 'longjmp (j)' may occur in 'fun3'. */ return a + fun3 (); } ! Here 'a' may or may not be restored to its first value when the ! 'longjmp' occurs. If 'a' is allocated in a register, then its first value is restored; otherwise, it keeps the last value stored in it. ! If you use the '-W' option with the '-O' option, you will get a warning when GCC thinks such a problem might be possible. * Programs that use preprocessing directives in the middle of macro --- 49119,49134 ---- return a; a = fun2 (); ! /* `longjmp (j)' may occur in `fun3'. */ return a + fun3 (); } ! Here `a' may or may not be restored to its first value when the ! `longjmp' occurs. If `a' is allocated in a register, then its first value is restored; otherwise, it keeps the last value stored in it. ! If you use the `-W' option with the `-O' option, you will get a warning when GCC thinks such a problem might be possible. * Programs that use preprocessing directives in the middle of macro *************** There are several noteworthy incompatibi *** 48725,48741 **** words, they have the same scope as any other declaration in the same place. ! In some other C compilers, an 'extern' declaration affects all the rest of the file even if it happens within a block. ! * In traditional C, you can combine 'long', etc., with a typedef name, as shown here: typedef int foo; typedef long foo bar; ! In ISO C, this is not allowed: 'long' and other type modifiers ! require an explicit 'int'. * PCC allows typedef names to be used as function parameters. --- 49149,49165 ---- words, they have the same scope as any other declaration in the same place. ! In some other C compilers, an `extern' declaration affects all the rest of the file even if it happens within a block. ! * In traditional C, you can combine `long', etc., with a typedef name, as shown here: typedef int foo; typedef long foo bar; ! In ISO C, this is not allowed: `long' and other type modifiers ! require an explicit `int'. * PCC allows typedef names to be used as function parameters. *************** There are several noteworthy incompatibi *** 48745,48759 **** typedef int foo; typedef foo foo; ! * GCC treats all characters of identifiers as significant. According ! to K&R-1 (2.2), "No more than the first eight characters are ! significant, although more may be used.". Also according to K&R-1 ! (2.2), "An identifier is a sequence of letters and digits; the ! first character must be a letter. The underscore _ counts as a ! letter.", but GCC also allows dollar signs in identifiers. * PCC allows whitespace in the middle of compound assignment ! operators such as '+='. GCC, following the ISO standard, does not allow this. * GCC complains about unterminated character constants inside of --- 49169,49183 ---- typedef int foo; typedef foo foo; ! * GCC treats all characters of identifiers as significant. ! According to K&R-1 (2.2), "No more than the first eight characters ! are significant, although more may be used.". Also according to ! K&R-1 (2.2), "An identifier is a sequence of letters and digits; ! the first character must be a letter. The underscore _ counts as ! a letter.", but GCC also allows dollar signs in identifiers. * PCC allows whitespace in the middle of compound assignment ! operators such as `+='. GCC, following the ISO standard, does not allow this. * GCC complains about unterminated character constants inside of *************** There are several noteworthy incompatibi *** 48767,48790 **** #endif The best solution to such a problem is to put the text into an ! actual C comment delimited by '/*...*/'. ! * Many user programs contain the declaration 'long time ();'. In the past, the system header files on many systems did not actually ! declare 'time', so it did not matter what type your program ! declared it to return. But in systems with ISO C headers, 'time' ! is declared to return 'time_t', and if that is not the same as ! 'long', then 'long time ();' is erroneous. The solution is to change your program to use appropriate system ! headers ('' on systems with ISO C headers) and not to ! declare 'time' if the system header files declare it, or failing ! that to use 'time_t' as the return type of 'time'. ! * When compiling functions that return 'float', PCC converts it to a ! double. GCC actually returns a 'float'. If you are concerned with ! PCC compatibility, you should declare your functions to return ! 'double'; you might as well say what you mean. * When compiling functions that return structures or unions, GCC output code normally uses a method different from that used on most --- 49191,49214 ---- #endif The best solution to such a problem is to put the text into an ! actual C comment delimited by `/*...*/'. ! * Many user programs contain the declaration `long time ();'. In the past, the system header files on many systems did not actually ! declare `time', so it did not matter what type your program ! declared it to return. But in systems with ISO C headers, `time' ! is declared to return `time_t', and if that is not the same as ! `long', then `long time ();' is erroneous. The solution is to change your program to use appropriate system ! headers (`' on systems with ISO C headers) and not to ! declare `time' if the system header files declare it, or failing ! that to use `time_t' as the return type of `time'. ! * When compiling functions that return `float', PCC converts it to a ! double. GCC actually returns a `float'. If you are concerned ! with PCC compatibility, you should declare your functions to return ! `double'; you might as well say what you mean. * When compiling functions that return structures or unions, GCC output code normally uses a method different from that used on most *************** There are several noteworthy incompatibi *** 48793,48802 **** The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or ! union with any other size is stored into an address supplied by the ! caller (usually in a special, fixed register, but on some machines ! it is passed on the stack). The target hook ! 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static --- 49217,49226 ---- The method used by GCC is as follows: a structure or union which is 1, 2, 4 or 8 bytes long is returned like a scalar. A structure or ! union with any other size is stored into an address supplied by ! the caller (usually in a special, fixed register, but on some ! machines it is passed on the stack). The target hook ! `TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static *************** There are several noteworthy incompatibi *** 48811,48835 **** memory, but still returns small structures and unions in registers. You can tell GCC to use a compatible convention for all structure ! and union returning with the option '-fpcc-struct-return'. ! * GCC complains about program fragments such as '0x74ae-0x4000' which ! appear to be two hexadecimal constants separated by the minus operator. Actually, this string is a single "preprocessing token". ! Each such token must correspond to one token in C. Since this does ! not, GCC prints an error message. Although it may appear obvious ! that what is meant is an operator and two values, the ISO C ! standard specifically requires that this be treated as erroneous. A "preprocessing token" is a "preprocessing number" if it begins with a digit and is followed by letters, underscores, digits, ! periods and 'e+', 'e-', 'E+', 'E-', 'p+', 'p-', 'P+', or 'P-' ! character sequences. (In strict C90 mode, the sequences 'p+', ! 'p-', 'P+' and 'P-' cannot appear in preprocessing numbers.) ! To make the above program fragment valid, place whitespace in front ! of the minus sign. This whitespace will end the preprocessing ! number.  File: gcc.info, Node: Fixed Headers, Next: Standard Libraries, Prev: Incompatibilities, Up: Trouble --- 49235,49259 ---- memory, but still returns small structures and unions in registers. You can tell GCC to use a compatible convention for all structure ! and union returning with the option `-fpcc-struct-return'. ! * GCC complains about program fragments such as `0x74ae-0x4000' ! which appear to be two hexadecimal constants separated by the minus operator. Actually, this string is a single "preprocessing token". ! Each such token must correspond to one token in C. Since this ! does not, GCC prints an error message. Although it may appear ! obvious that what is meant is an operator and two values, the ISO ! C standard specifically requires that this be treated as erroneous. A "preprocessing token" is a "preprocessing number" if it begins with a digit and is followed by letters, underscores, digits, ! periods and `e+', `e-', `E+', `E-', `p+', `p-', `P+', or `P-' ! character sequences. (In strict C90 mode, the sequences `p+', ! `p-', `P+' and `P-' cannot appear in preprocessing numbers.) ! To make the above program fragment valid, place whitespace in ! front of the minus sign. This whitespace will end the ! preprocessing number.  File: gcc.info, Node: Fixed Headers, Next: Standard Libraries, Prev: Incompatibilities, Up: Trouble *************** incompatible with ISO C, and some depend *** 48844,48857 **** compilers. Installing GCC automatically creates and installs the fixed header ! files, by running a program called 'fixincludes'. Normally, you don't need to pay attention to this. But there are cases where it doesn't do the right thing automatically. * If you update the system's header files, such as by installing a new system version, the fixed header files of GCC are not ! automatically updated. They can be updated using the 'mkheaders' ! script installed in 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On some systems, header file directories contain machine-specific symbolic links in certain places. This makes it possible to share --- 49268,49281 ---- compilers. Installing GCC automatically creates and installs the fixed header ! files, by running a program called `fixincludes'. Normally, you don't need to pay attention to this. But there are cases where it doesn't do the right thing automatically. * If you update the system's header files, such as by installing a new system version, the fixed header files of GCC are not ! automatically updated. They can be updated using the `mkheaders' ! script installed in `LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On some systems, header file directories contain machine-specific symbolic links in certain places. This makes it possible to share *************** the right thing automatically. *** 48860,48871 **** The programs that fix the header files do not understand this special way of using symbolic links; therefore, the directory of ! fixed header files is good only for the machine model used to build ! it. It is possible to make separate sets of fixed header files for the ! different machine models, and arrange a structure of symbolic links ! so as to use the proper set, but you'll have to do this by hand.  File: gcc.info, Node: Standard Libraries, Next: Disappointments, Prev: Fixed Headers, Up: Trouble --- 49284,49296 ---- The programs that fix the header files do not understand this special way of using symbolic links; therefore, the directory of ! fixed header files is good only for the machine model used to ! build it. It is possible to make separate sets of fixed header files for the ! different machine models, and arrange a structure of symbolic ! links so as to use the proper set, but you'll have to do this by ! hand.  File: gcc.info, Node: Standard Libraries, Next: Disappointments, Prev: Fixed Headers, Up: Trouble *************** what this means. Beyond the library fac *** 48879,48899 **** implementation, the rest of the C library is supplied by the vendor of the operating system. If that C library doesn't conform to the C standards, then your programs might get warnings (especially when using ! '-Wall') that you don't expect. ! For example, the 'sprintf' function on SunOS 4.1.3 returns 'char *' ! while the C standard says that 'sprintf' returns an 'int'. The ! 'fixincludes' program could make the prototype for this function match the Standard, but that would be wrong, since the function will still ! return 'char *'. If you need a Standard compliant library, then you need to find one, as ! GCC does not provide one. The GNU C library (called 'glibc') provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version of it supports other systems, though some very old versions did. Version 2.2 of the GNU C library ! includes nearly complete C99 support. You could also ask your operating ! system vendor if newer libraries are available.  File: gcc.info, Node: Disappointments, Next: C++ Misunderstandings, Prev: Standard Libraries, Up: Trouble --- 49304,49324 ---- implementation, the rest of the C library is supplied by the vendor of the operating system. If that C library doesn't conform to the C standards, then your programs might get warnings (especially when using ! `-Wall') that you don't expect. ! For example, the `sprintf' function on SunOS 4.1.3 returns `char *' ! while the C standard says that `sprintf' returns an `int'. The ! `fixincludes' program could make the prototype for this function match the Standard, but that would be wrong, since the function will still ! return `char *'. If you need a Standard compliant library, then you need to find one, as ! GCC does not provide one. The GNU C library (called `glibc') provides ISO C, POSIX, BSD, SystemV and X/Open compatibility for GNU/Linux and HURD-based GNU systems; no recent version of it supports other systems, though some very old versions did. Version 2.2 of the GNU C library ! includes nearly complete C99 support. You could also ask your ! operating system vendor if newer libraries are available.  File: gcc.info, Node: Disappointments, Next: C++ Misunderstandings, Prev: Standard Libraries, Up: Trouble *************** way around them. *** 48926,48952 **** int foo (struct mumble *x) { ... } ! This code really is erroneous, because the scope of 'struct mumble' ! in the prototype is limited to the argument list containing it. It ! does not refer to the 'struct mumble' defined with file scope ! immediately below--they are two unrelated types with similar names ! in different scopes. ! But in the definition of 'foo', the file-scope type is used because ! that is available to be inherited. Thus, the definition and the ! prototype do not match, and you get an error. This behavior may seem silly, but it's what the ISO standard specifies. It is easy enough for you to make your code work by ! moving the definition of 'struct mumble' above the prototype. It's ! not worth being incompatible with ISO C just to avoid an error for ! the example shown above. * Accesses to bit-fields even in volatile objects works by accessing larger objects, such as a byte or a word. You cannot rely on what ! size of object is accessed in order to read or write the bit-field; ! it may even vary for a given bit-field according to the precise ! usage. If you care about controlling the amount of memory that is accessed, use volatile but do not use bit-fields. --- 49351,49377 ---- int foo (struct mumble *x) { ... } ! This code really is erroneous, because the scope of `struct ! mumble' in the prototype is limited to the argument list ! containing it. It does not refer to the `struct mumble' defined ! with file scope immediately below--they are two unrelated types ! with similar names in different scopes. ! But in the definition of `foo', the file-scope type is used ! because that is available to be inherited. Thus, the definition ! and the prototype do not match, and you get an error. This behavior may seem silly, but it's what the ISO standard specifies. It is easy enough for you to make your code work by ! moving the definition of `struct mumble' above the prototype. ! It's not worth being incompatible with ISO C just to avoid an ! error for the example shown above. * Accesses to bit-fields even in volatile objects works by accessing larger objects, such as a byte or a word. You cannot rely on what ! size of object is accessed in order to read or write the ! bit-field; it may even vary for a given bit-field according to the ! precise usage. If you care about controlling the amount of memory that is accessed, use volatile but do not use bit-fields. *************** way around them. *** 48959,48978 **** about. If new system header files are installed, nothing automatically ! arranges to update the corrected header files. They can be updated ! using the 'mkheaders' script installed in ! 'LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On 68000 and x86 systems, for instance, you can get paradoxical results if you test the precise values of floating point numbers. For example, you can find that a floating point value which is not a NaN is not equal to itself. This results from the fact that the ! floating point registers hold a few more bits of precision than fit ! in a 'double' in memory. Compiled code moves values between memory ! and floating point registers at its convenience, and moving them ! into memory truncates them. ! You can partially avoid this problem by using the '-ffloat-store' option (*note Optimize Options::). * On AIX and other platforms without weak symbol support, templates --- 49384,49403 ---- about. If new system header files are installed, nothing automatically ! arranges to update the corrected header files. They can be ! updated using the `mkheaders' script installed in ! `LIBEXECDIR/gcc/TARGET/VERSION/install-tools/'. * On 68000 and x86 systems, for instance, you can get paradoxical results if you test the precise values of floating point numbers. For example, you can find that a floating point value which is not a NaN is not equal to itself. This results from the fact that the ! floating point registers hold a few more bits of precision than ! fit in a `double' in memory. Compiled code moves values between ! memory and floating point registers at its convenience, and moving ! them into memory truncates them. ! You can partially avoid this problem by using the `-ffloat-store' option (*note Optimize Options::). * On AIX and other platforms without weak symbol support, templates *************** static member; you must also _define_ it *** 49024,49042 **** static int bar; }; ! This declaration only establishes that the class 'Foo' has an 'int' ! named 'Foo::bar', and a member function named 'Foo::method'. But you ! still need to define _both_ 'method' and 'bar' elsewhere. According to the ISO standard, you must supply an initializer in one (and only one) source file, such as: int Foo::bar = 0; Other C++ compilers may not correctly implement the standard behavior. ! As a result, when you switch to 'g++' from one of these compilers, you ! may discover that a program that appeared to work correctly in fact does ! not conform to the standard: 'g++' reports as undefined symbols any ! static data members that lack definitions.  File: gcc.info, Node: Name lookup, Next: Temporaries, Prev: Static Definitions, Up: C++ Misunderstandings --- 49449,49467 ---- static int bar; }; ! This declaration only establishes that the class `Foo' has an `int' ! named `Foo::bar', and a member function named `Foo::method'. But you ! still need to define _both_ `method' and `bar' elsewhere. According to the ISO standard, you must supply an initializer in one (and only one) source file, such as: int Foo::bar = 0; Other C++ compilers may not correctly implement the standard behavior. ! As a result, when you switch to `g++' from one of these compilers, you ! may discover that a program that appeared to work correctly in fact ! does not conform to the standard: `g++' reports as undefined symbols ! any static data members that lack definitions.  File: gcc.info, Node: Name lookup, Next: Temporaries, Prev: Static Definitions, Up: C++ Misunderstandings *************** looked up at the point of instantiation. *** 49064,49083 **** static const int N; }; ! Here, the names 'foo' and 'N' appear in a context that does not depend ! on the type of 'T'. The compiler will thus require that they are ! defined in the context of use in the template, not only before the point ! of instantiation, and will here use '::foo(double)' and 'A::N', respectively. In particular, it will convert the integer value to a ! 'double' when passing it to '::foo(double)'. ! Conversely, 'bar' and the call to 'foo' in the fourth marked line are ! used in contexts that do depend on the type of 'T', so they are only looked up at the point of instantiation, and you can provide declarations for them after declaring the template, but before ! instantiating it. In particular, if you instantiate 'A::f', the ! last line will call an overloaded '::foo(int)' if one was provided, even ! if after the declaration of 'struct A'. This distinction between lookup of dependent and non-dependent names is called two-stage (or dependent) name lookup. G++ implements it since --- 49489,49508 ---- static const int N; }; ! Here, the names `foo' and `N' appear in a context that does not depend ! on the type of `T'. The compiler will thus require that they are ! defined in the context of use in the template, not only before the ! point of instantiation, and will here use `::foo(double)' and `A::N', respectively. In particular, it will convert the integer value to a ! `double' when passing it to `::foo(double)'. ! Conversely, `bar' and the call to `foo' in the fourth marked line are ! used in contexts that do depend on the type of `T', so they are only looked up at the point of instantiation, and you can provide declarations for them after declaring the template, but before ! instantiating it. In particular, if you instantiate `A::f', the ! last line will call an overloaded `::foo(int)' if one was provided, ! even if after the declaration of `struct A'. This distinction between lookup of dependent and non-dependent names is called two-stage (or dependent) name lookup. G++ implements it since *************** different from non-template codes. The *** 49094,49114 **** int get_i() { return i; } }; ! In 'get_i()', 'i' is not used in a dependent context, so the compiler ! will look for a name declared at the enclosing namespace scope (which is ! the global scope here). It will not look into the base class, since ! that is dependent and you may declare specializations of 'Base' even ! after declaring 'Derived', so the compiler can't really know what 'i' ! would refer to. If there is no global variable 'i', then you will get an error message. In order to make it clear that you want the member of the base class, you need to defer lookup until instantiation time, at which the base ! class is known. For this, you need to access 'i' in a dependent ! context, by either using 'this->i' (remember that 'this' is of type ! 'Derived*', so is obviously dependent), or using 'Base::i'. ! Alternatively, 'Base::i' might be brought into scope by a ! 'using'-declaration. Another, similar example involves calling member functions of a base class: --- 49519,49539 ---- int get_i() { return i; } }; ! In `get_i()', `i' is not used in a dependent context, so the compiler ! will look for a name declared at the enclosing namespace scope (which ! is the global scope here). It will not look into the base class, since ! that is dependent and you may declare specializations of `Base' even ! after declaring `Derived', so the compiler can't really know what `i' ! would refer to. If there is no global variable `i', then you will get an error message. In order to make it clear that you want the member of the base class, you need to defer lookup until instantiation time, at which the base ! class is known. For this, you need to access `i' in a dependent ! context, by either using `this->i' (remember that `this' is of type ! `Derived*', so is obviously dependent), or using `Base::i'. ! Alternatively, `Base::i' might be brought into scope by a ! `using'-declaration. Another, similar example involves calling member functions of a base class: *************** class: *** 49121,49128 **** int g() { return f(); }; }; ! Again, the call to 'f()' is not dependent on template arguments (there ! are no arguments that depend on the type 'T', and it is also not otherwise specified that the call should be in a dependent context). Thus a global declaration of such a function must be available, since the one in the base class is not visible until instantiation time. The --- 49546,49553 ---- int g() { return f(); }; }; ! Again, the call to `f()' is not dependent on template arguments (there ! are no arguments that depend on the type `T', and it is also not otherwise specified that the call should be in a dependent context). Thus a global declaration of such a function must be available, since the one in the base class is not visible until instantiation time. The *************** compiler will consequently produce the f *** 49134,49155 **** x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but allowing the use of an undeclared name is deprecated) ! To make the code valid either use 'this->f()', or 'Base::f()'. ! Using the '-fpermissive' flag will also let the compiler accept the code, by marking all function calls for which no declaration is visible at the time of definition of the template for later lookup at ! instantiation time, as if it were a dependent call. We do not recommend ! using '-fpermissive' to work around invalid code, and it will also only ! catch cases where functions in base classes are called, not where ! variables in base classes are used (as in the example above). Note that some compilers (including G++ versions prior to 3.4) get these examples wrong and accept above code without an error. Those compilers do not implement two-stage name lookup correctly. ! ---------- Footnotes ---------- ! (1) The C++ standard just uses the term "dependent" for names that depend on the type or value of template parameters. This shorter term will also be used in the rest of this section. --- 49559,49580 ---- x.cc:6: error: (if you use `-fpermissive', G++ will accept your code, but allowing the use of an undeclared name is deprecated) ! To make the code valid either use `this->f()', or `Base::f()'. ! Using the `-fpermissive' flag will also let the compiler accept the code, by marking all function calls for which no declaration is visible at the time of definition of the template for later lookup at ! instantiation time, as if it were a dependent call. We do not ! recommend using `-fpermissive' to work around invalid code, and it will ! also only catch cases where functions in base classes are called, not ! where variables in base classes are used (as in the example above). Note that some compilers (including G++ versions prior to 3.4) get these examples wrong and accept above code without an error. Those compilers do not implement two-stage name lookup correctly. ! ---------- Footnotes ---------- ! (1) The C++ standard just uses the term "dependent" for names that depend on the type or value of template parameters. This shorter term will also be used in the rest of this section. *************** It is dangerous to use pointers or refer *** 49163,49177 **** temporary object. The compiler may very well delete the object before you expect it to, leaving a pointer to garbage. The most common place where this problem crops up is in classes like string classes, ! especially ones that define a conversion function to type 'char *' or ! 'const char *'--which is one reason why the standard 'string' class ! requires you to call the 'c_str' member function. However, any class ! that returns a pointer to some internal structure is potentially subject ! to this problem. ! For example, a program may use a function 'strfunc' that returns ! 'string' objects, and another function 'charfunc' that operates on ! pointers to 'char': string strfunc (); void charfunc (const char *); --- 49588,49602 ---- temporary object. The compiler may very well delete the object before you expect it to, leaving a pointer to garbage. The most common place where this problem crops up is in classes like string classes, ! especially ones that define a conversion function to type `char *' or ! `const char *'--which is one reason why the standard `string' class ! requires you to call the `c_str' member function. However, any class ! that returns a pointer to some internal structure is potentially ! subject to this problem. ! For example, a program may use a function `strfunc' that returns ! `string' objects, and another function `charfunc' that operates on ! pointers to `char': string strfunc (); void charfunc (const char *); *************** pointers to 'char': *** 49187,49196 **** } In this situation, it may seem reasonable to save a pointer to the C ! string returned by the 'c_str' member function and use that rather than ! call 'c_str' repeatedly. However, the temporary string created by the ! call to 'strfunc' is destroyed after 'p' is initialized, at which point ! 'p' is left pointing to freed memory. Code like this may run successfully under some other compilers, particularly obsolete cfront-based compilers that delete temporaries --- 49612,49621 ---- } In this situation, it may seem reasonable to save a pointer to the C ! string returned by the `c_str' member function and use that rather than ! call `c_str' repeatedly. However, the temporary string created by the ! call to `strfunc' is destroyed after `p' is initialized, at which point ! `p' is left pointing to freed memory. Code like this may run successfully under some other compilers, particularly obsolete cfront-based compilers that delete temporaries *************** such objects behave unspecified when bei *** 49244,49260 **** d1 = d2; } ! The C++ standard specifies that 'Base::Base' is only called once when constructing or copy-constructing a Derived object. It is unspecified ! whether 'Base::operator=' is called more than once when the implicit ! copy-assignment for Derived objects is invoked (as it is inside 'func' in the example). G++ implements the "intuitive" algorithm for copy-assignment: assign all direct bases, then assign all members. In that algorithm, the virtual base subobject can be encountered more than once. In the ! example, copying proceeds in the following order: 'val', 'name' (via ! 'strdup'), 'bval', and 'name' again. If application code relies on copy-assignment, a user-defined copy-assignment operator removes any uncertainties. With such an --- 49669,49685 ---- d1 = d2; } ! The C++ standard specifies that `Base::Base' is only called once when constructing or copy-constructing a Derived object. It is unspecified ! whether `Base::operator=' is called more than once when the implicit ! copy-assignment for Derived objects is invoked (as it is inside `func' in the example). G++ implements the "intuitive" algorithm for copy-assignment: assign all direct bases, then assign all members. In that algorithm, the virtual base subobject can be encountered more than once. In the ! example, copying proceeds in the following order: `val', `name' (via ! `strdup'), `bval', and `name' again. If application code relies on copy-assignment, a user-defined copy-assignment operator removes any uncertainties. With such an *************** do not make because we think GCC is bett *** 49293,49309 **** * Warning when a non-void function value is ignored. C contains many standard functions that return a value that most ! programs choose to ignore. One obvious example is 'printf'. Warning about this practice only leads the defensive programmer to ! clutter programs with dozens of casts to 'void'. Such casts are required so frequently that they become visual noise. Writing those casts becomes so automatic that they no longer convey useful information about the intentions of the programmer. For functions where the return value should never be ignored, use the ! 'warn_unused_result' function attribute (*note Function Attributes::). ! * Making '-fshort-enums' the default. This would cause storage layout to be incompatible with most other C compilers. And it doesn't seem very important, given that you --- 49718,49734 ---- * Warning when a non-void function value is ignored. C contains many standard functions that return a value that most ! programs choose to ignore. One obvious example is `printf'. Warning about this practice only leads the defensive programmer to ! clutter programs with dozens of casts to `void'. Such casts are required so frequently that they become visual noise. Writing those casts becomes so automatic that they no longer convey useful information about the intentions of the programmer. For functions where the return value should never be ignored, use the ! `warn_unused_result' function attribute (*note Function Attributes::). ! * Making `-fshort-enums' the default. This would cause storage layout to be incompatible with most other C compilers. And it doesn't seem very important, given that you *************** do not make because we think GCC is bett *** 49315,49330 **** "the ABI standard" says to do so. The ISO C standard leaves it up to the implementation whether a ! bit-field declared plain 'int' is signed or not. This in effect creates two alternative dialects of C. The GNU C compiler supports both dialects; you can specify the ! signed dialect with '-fsigned-bitfields' and the unsigned dialect ! with '-funsigned-bitfields'. However, this leaves open the question of which dialect to use by default. Currently, the preferred dialect makes plain bit-fields signed, ! because this is simplest. Since 'int' is the same as 'signed int' in every other context, it is cleanest for them to be the same in bit-fields as well. --- 49740,49755 ---- "the ABI standard" says to do so. The ISO C standard leaves it up to the implementation whether a ! bit-field declared plain `int' is signed or not. This in effect creates two alternative dialects of C. The GNU C compiler supports both dialects; you can specify the ! signed dialect with `-fsigned-bitfields' and the unsigned dialect ! with `-funsigned-bitfields'. However, this leaves open the question of which dialect to use by default. Currently, the preferred dialect makes plain bit-fields signed, ! because this is simplest. Since `int' is the same as `signed int' in every other context, it is cleanest for them to be the same in bit-fields as well. *************** do not make because we think GCC is bett *** 49345,49359 **** Many users appreciate the GNU C compiler because it provides an environment that is uniform across machines. These users would be ! inconvenienced if the compiler treated plain bit-fields differently ! on certain machines. Occasionally users write programs intended only for a particular machine type. On these occasions, the users would benefit if the GNU C compiler were to support by default the same dialect as the other compilers on that machine. But such applications are rare. ! And users writing a program to run on more than one type of machine ! cannot possibly benefit from this kind of compatibility. This is why GCC does and will treat plain bit-fields in the same fashion on all types of machines (by default). --- 49770,49784 ---- Many users appreciate the GNU C compiler because it provides an environment that is uniform across machines. These users would be ! inconvenienced if the compiler treated plain bit-fields ! differently on certain machines. Occasionally users write programs intended only for a particular machine type. On these occasions, the users would benefit if the GNU C compiler were to support by default the same dialect as the other compilers on that machine. But such applications are rare. ! And users writing a program to run on more than one type of ! machine cannot possibly benefit from this kind of compatibility. This is why GCC does and will treat plain bit-fields in the same fashion on all types of machines (by default). *************** do not make because we think GCC is bett *** 49368,49427 **** In this way, they write programs which have the same meaning in both C dialects.) ! * Undefining '__STDC__' when '-ansi' is not used. ! Currently, GCC defines '__STDC__' unconditionally. This provides good results in practice. ! Programmers normally use conditionals on '__STDC__' to ask whether it is safe to use certain features of ISO C, such as function ! prototypes or ISO token concatenation. Since plain 'gcc' supports all the features of ISO C, the correct answer to these questions is "yes". ! Some users try to use '__STDC__' to check for the availability of ! certain library facilities. This is actually incorrect usage in an ! ISO C program, because the ISO C standard says that a conforming ! freestanding implementation should define '__STDC__' even though it ! does not have the library facilities. 'gcc -ansi -pedantic' is a conforming freestanding implementation, and it is therefore ! required to define '__STDC__', even though it does not come with an ! ISO C library. ! Sometimes people say that defining '__STDC__' in a compiler that does not completely conform to the ISO C standard somehow violates the standard. This is illogical. The standard is a standard for ! compilers that claim to support ISO C, such as 'gcc -ansi'--not for ! other compilers such as plain 'gcc'. Whatever the ISO C standard ! says is relevant to the design of plain 'gcc' without '-ansi' only ! for pragmatic reasons, not as a requirement. ! GCC normally defines '__STDC__' to be 1, and in addition defines ! '__STRICT_ANSI__' if you specify the '-ansi' option, or a '-std' option for strict conformance to some version of ISO C. On some hosts, system include files use a different convention, where ! '__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC follows the host convention when processing system include files, but when processing user files it follows the usual GNU C convention. ! * Undefining '__STDC__' in C++. ! Programs written to compile with C++-to-C translators get the value ! of '__STDC__' that goes with the C compiler that is subsequently ! used. These programs must test '__STDC__' to determine what kind ! of C preprocessor that compiler uses: whether they should ! concatenate tokens in the ISO C fashion or in the traditional ! fashion. ! These programs work properly with GNU C++ if '__STDC__' is defined. They would not work otherwise. ! In addition, many header files are written to provide prototypes in ! ISO C but not in traditional C. Many of these header files can ! work without change in C++ provided '__STDC__' is defined. If ! '__STDC__' is not defined, they will all fail, and will all need to ! be changed to test explicitly for C++ as well. * Deleting "empty" loops. --- 49793,49852 ---- In this way, they write programs which have the same meaning in both C dialects.) ! * Undefining `__STDC__' when `-ansi' is not used. ! Currently, GCC defines `__STDC__' unconditionally. This provides good results in practice. ! Programmers normally use conditionals on `__STDC__' to ask whether it is safe to use certain features of ISO C, such as function ! prototypes or ISO token concatenation. Since plain `gcc' supports all the features of ISO C, the correct answer to these questions is "yes". ! Some users try to use `__STDC__' to check for the availability of ! certain library facilities. This is actually incorrect usage in ! an ISO C program, because the ISO C standard says that a conforming ! freestanding implementation should define `__STDC__' even though it ! does not have the library facilities. `gcc -ansi -pedantic' is a conforming freestanding implementation, and it is therefore ! required to define `__STDC__', even though it does not come with ! an ISO C library. ! Sometimes people say that defining `__STDC__' in a compiler that does not completely conform to the ISO C standard somehow violates the standard. This is illogical. The standard is a standard for ! compilers that claim to support ISO C, such as `gcc -ansi'--not ! for other compilers such as plain `gcc'. Whatever the ISO C ! standard says is relevant to the design of plain `gcc' without ! `-ansi' only for pragmatic reasons, not as a requirement. ! GCC normally defines `__STDC__' to be 1, and in addition defines ! `__STRICT_ANSI__' if you specify the `-ansi' option, or a `-std' option for strict conformance to some version of ISO C. On some hosts, system include files use a different convention, where ! `__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. GCC follows the host convention when processing system include files, but when processing user files it follows the usual GNU C convention. ! * Undefining `__STDC__' in C++. ! Programs written to compile with C++-to-C translators get the ! value of `__STDC__' that goes with the C compiler that is ! subsequently used. These programs must test `__STDC__' to ! determine what kind of C preprocessor that compiler uses: whether ! they should concatenate tokens in the ISO C fashion or in the ! traditional fashion. ! These programs work properly with GNU C++ if `__STDC__' is defined. They would not work otherwise. ! In addition, many header files are written to provide prototypes ! in ISO C but not in traditional C. Many of these header files can ! work without change in C++ provided `__STDC__' is defined. If ! `__STDC__' is not defined, they will all fail, and will all need ! to be changed to test explicitly for C++ as well. * Deleting "empty" loops. *************** do not make because we think GCC is bett *** 49431,49437 **** programs run any faster. However, the rationale here is that optimization of a nonempty loop ! cannot produce an empty one. This held for carefully written C compiled with less powerful optimizers but is not always the case for carefully written C++ or with more powerful optimizers. Thus GCC will remove operations from loops whenever it can determine --- 49856,49862 ---- programs run any faster. However, the rationale here is that optimization of a nonempty loop ! cannot produce an empty one. This held for carefully written C compiled with less powerful optimizers but is not always the case for carefully written C++ or with more powerful optimizers. Thus GCC will remove operations from loops whenever it can determine *************** do not make because we think GCC is bett *** 49441,49447 **** Be aware of this when performing timing tests, for instance the following loop can be completely removed, provided ! 'some_expression' can provably not change any global state. { int sum = 0; --- 49866,49872 ---- Be aware of this when performing timing tests, for instance the following loop can be completely removed, provided ! `some_expression' can provably not change any global state. { int sum = 0; *************** do not make because we think GCC is bett *** 49451,49457 **** sum += some_expression; } ! Even though 'sum' is accumulated in the loop, no use is made of that summation, so the accumulation can be removed. * Making side effects happen in the same order as in some other --- 49876,49882 ---- sum += some_expression; } ! Even though `sum' is accumulated in the loop, no use is made of that summation, so the accumulation can be removed. * Making side effects happen in the same order as in some other *************** do not make because we think GCC is bett *** 49468,49476 **** There is no guarantee (in either the C or the C++ standard language definitions) that the increments will be evaluated in any ! particular order. Either increment might happen first. 'func' ! might get the arguments '2, 3', or it might get '3, 2', or even '2, ! 2'. * Making certain warnings into errors by default. --- 49893,49901 ---- There is no guarantee (in either the C or the C++ standard language definitions) that the increments will be evaluated in any ! particular order. Either increment might happen first. `func' ! might get the arguments `2, 3', or it might get `3, 2', or even ! `2, 2'. * Making certain warnings into errors by default. *************** do not make because we think GCC is bett *** 49478,49488 **** produce an error message for a certain program. ISO C requires a "diagnostic" message for certain kinds of invalid ! programs, but a warning is defined by GCC to count as a diagnostic. ! If GCC produces a warning but not an error, that is correct ISO C ! support. If testsuites call this "failure", they should be run ! with the GCC option '-pedantic-errors', which will turn these ! warnings into errors.  File: gcc.info, Node: Warnings and Errors, Prev: Non-bugs, Up: Trouble --- 49903,49914 ---- produce an error message for a certain program. ISO C requires a "diagnostic" message for certain kinds of invalid ! programs, but a warning is defined by GCC to count as a ! diagnostic. If GCC produces a warning but not an error, that is ! correct ISO C support. If testsuites call this "failure", they ! should be run with the GCC option `-pedantic-errors', which will ! turn these warnings into errors. !  File: gcc.info, Node: Warnings and Errors, Prev: Non-bugs, Up: Trouble *************** warnings. Each kind has a different pur *** 49500,49522 **** "Warnings" report other unusual conditions in your code that _may_ indicate a problem, although compilation can (and does) proceed. Warning messages also report the source file name and line number, ! but include the text 'warning:' to distinguish them from error messages. Warnings may indicate danger points where you should check to make sure that your program really does what you intend; or the use of obsolete features; or the use of nonstandard features of GNU C or C++. Many ! warnings are issued only if you ask for them, with one of the '-W' ! options (for instance, '-Wall' requests a variety of useful warnings). GCC always tries to compile your program if possible; it never gratuitously rejects a program whose meaning is clear merely because (for instance) it fails to conform to a standard. In some cases, however, the C and C++ standards specify that certain extensions are forbidden, and a diagnostic _must_ be issued by a conforming compiler. ! The '-pedantic' option tells GCC to issue warnings in such cases; ! '-pedantic-errors' says to make them errors instead. This does not mean ! that _all_ non-ISO constructs get warnings or errors. *Note Options to Request or Suppress Warnings: Warning Options, for more detail on these and related command-line options. --- 49926,49948 ---- "Warnings" report other unusual conditions in your code that _may_ indicate a problem, although compilation can (and does) proceed. Warning messages also report the source file name and line number, ! but include the text `warning:' to distinguish them from error messages. Warnings may indicate danger points where you should check to make sure that your program really does what you intend; or the use of obsolete features; or the use of nonstandard features of GNU C or C++. Many ! warnings are issued only if you ask for them, with one of the `-W' ! options (for instance, `-Wall' requests a variety of useful warnings). GCC always tries to compile your program if possible; it never gratuitously rejects a program whose meaning is clear merely because (for instance) it fails to conform to a standard. In some cases, however, the C and C++ standards specify that certain extensions are forbidden, and a diagnostic _must_ be issued by a conforming compiler. ! The `-pedantic' option tells GCC to issue warnings in such cases; ! `-pedantic-errors' says to make them errors instead. This does not ! mean that _all_ non-ISO constructs get warnings or errors. *Note Options to Request or Suppress Warnings: Warning Options, for more detail on these and related command-line options. *************** guidelines: *** 49551,49557 **** is a compiler bug. Reliable compilers never crash. * If the compiler produces invalid assembly code, for any input ! whatever (except an 'asm' statement), that is a compiler bug, unless the compiler reports errors (not just warnings) which would ordinarily prevent the assembler from being run. --- 49977,49983 ---- is a compiler bug. Reliable compilers never crash. * If the compiler produces invalid assembly code, for any input ! whatever (except an `asm' statement), that is a compiler bug, unless the compiler reports errors (not just warnings) which would ordinarily prevent the assembler from being run. *************** guidelines: *** 49562,49574 **** program whose behavior is undefined, which happened by chance to give the desired results with another C or C++ compiler. ! For example, in many nonoptimizing compilers, you can write 'x;' at ! the end of a function instead of 'return x;', with the same ! results. But the value of the function is undefined if 'return' is ! omitted; it is not a bug when GCC produces different results. Problems often result from expressions with two increment ! operators, as in 'f (*p++, *p++)'. Your previous compiler might have interpreted that expression the way you intended; GCC might interpret it another way. Neither compiler is wrong. The bug is in your code. --- 49988,50000 ---- program whose behavior is undefined, which happened by chance to give the desired results with another C or C++ compiler. ! For example, in many nonoptimizing compilers, you can write `x;' ! at the end of a function instead of `return x;', with the same ! results. But the value of the function is undefined if `return' ! is omitted; it is not a bug when GCC produces different results. Problems often result from expressions with two increment ! operators, as in `f (*p++, *p++)'. Your previous compiler might have interpreted that expression the way you intended; GCC might interpret it another way. Neither compiler is wrong. The bug is in your code. *************** File: gcc.info, Node: Bug Reporting, P *** 49596,49602 **** ================================= Bugs should be reported to the bug database at ! .  File: gcc.info, Node: Service, Next: Contributing, Prev: Bugs, Up: Top --- 50022,50028 ---- ================================= Bugs should be reported to the bug database at ! `http://gcc.gnu.org/bugs.html'.  File: gcc.info, Node: Service, Next: Contributing, Prev: Bugs, Up: Top *************** to find it: *** 49616,49624 **** * Look in the service directory for someone who might help you for a fee. The service directory is found at ! . ! For further information, see .  File: gcc.info, Node: Contributing, Next: Funding, Prev: Service, Up: Top --- 50042,50050 ---- * Look in the service directory for someone who might help you for a fee. The service directory is found at ! `http://www.fsf.org/resources/service'. ! For further information, see `http://gcc.gnu.org/faq.html#support'.  File: gcc.info, Node: Contributing, Next: Funding, Prev: Service, Up: Top *************** File: gcc.info, Node: Contributing, Ne *** 49628,49645 **** If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! ). Source and binary snapshots are also ! available for FTP; see . If you would like to work on improvements to GCC, please read the advice at these URLs: ! ! for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! .  File: gcc.info, Node: Funding, Next: GNU Project, Prev: Contributing, Up: Top --- 50054,50071 ---- If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! `http://gcc.gnu.org/svn.html'). Source and binary snapshots are also ! available for FTP; see `http://gcc.gnu.org/snapshots.html'. If you would like to work on improvements to GCC, please read the advice at these URLs: ! `http://gcc.gnu.org/contribute.html' ! `http://gcc.gnu.org/contributewhy.html' for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! `http://gcc.gnu.org/projects/'.  File: gcc.info, Node: Funding, Next: GNU Project, Prev: Contributing, Up: Top *************** to free software developers--the Free So *** 49658,49665 **** The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors they ! must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project --- 50084,50091 ---- The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors ! they must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project *************** for comparison. *** 49669,49676 **** Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. If ! the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful --- 50095,50102 ---- Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. ! If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful *************** difference than others. For example, ma *** 49680,49687 **** a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection contribute ! more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can --- 50106,50113 ---- a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection ! contribute more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can *************** now widely used; though these systems ar *** 49705,49712 **** they are more accurately called GNU/Linux systems. For more information, see: ! !  File: gcc.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top --- 50131,50138 ---- they are more accurately called GNU/Linux systems. For more information, see: ! `http://www.gnu.org/' ! `http://www.gnu.org/gnu/linux-and-gnu.html'  File: gcc.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top *************** GNU General Public License *** 49716,49722 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 50142,50148 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU General Public License for most of o *** 49736,49762 **** any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not price. ! Our General Public Licenses are designed to make sure that you have the ! freedom to distribute copies of free software (and charge for them if ! you wish), that you receive source code or can get it if you want it, ! that you can change the software or use pieces of it in new free ! programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether gratis ! or for a fee, you must pass on to the recipients the same freedoms that ! you received. You must make sure that they, too, receive or can get the ! source code. And you must show them these terms so they know their ! rights. ! Developers that use the GNU GPL protect your rights with two steps: (1) ! assert copyright on the software, and (2) offer you this License giving ! you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and --- 50162,50188 ---- any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not ! price. Our General Public Licenses are designed to make sure that you ! have the freedom to distribute copies of free software (and charge for ! them if you wish), that you receive source code or can get it if you ! want it, that you can change the software or use pieces of it in new ! free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether ! gratis or for a fee, you must pass on to the recipients the same ! freedoms that you received. You must make sure that they, too, receive ! or can get the source code. And you must show them these terms so they ! know their rights. ! Developers that use the GNU GPL protect your rights with two steps: ! (1) assert copyright on the software, and (2) offer you this License ! giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and *************** changed, so that their problems will not *** 49765,49779 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 50191,50206 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 49810,49817 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 50237,50244 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 49825,49832 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 50252,50259 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 49834,49841 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 50261,50268 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 49846,49855 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 50273,50282 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 49857,49871 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 50284,50298 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 49882,49903 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 50309,50330 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 49914,49921 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 50341,50348 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 49985,49992 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 50412,50419 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 49996,50026 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 50423,50454 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. + A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 50028,50035 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 50456,50463 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 50060,50070 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 50488,50498 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 50094,50101 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 50522,50529 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 50105,50112 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 50533,50541 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 50125,50134 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 50554,50564 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 50144,50156 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 50574,50586 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 50162,50171 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 50592,50601 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 50179,50185 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 50609,50615 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 50193,50213 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 50623,50643 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 50227,50241 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 50657,50671 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 50265,50299 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 50695,50730 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 50304,50324 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 50735,50756 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 50330,50353 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 50762,50785 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 50355,50361 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 50787,50793 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 50364,50369 **** --- 50796,50802 ---- connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. + END OF TERMS AND CONDITIONS =========================== *************** possible use to the public, the best way *** 50375,50383 **** free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest to ! attach them to the start of each source file to most effectively state ! the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. --- 50808,50816 ---- free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest ! to attach them to the start of each source file to most effectively ! state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. *************** the exclusion of warranty; and each file *** 50394,50413 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short notice ! like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 50827,50846 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short ! notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 50415,50428 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gcc.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top --- 50848,50861 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gcc.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 50433,50439 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 50866,50872 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 50458,50478 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 50891,50911 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 50490,50501 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 50923,50934 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 50506,50532 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 50939,50965 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 50564,50571 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 50997,51004 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 50579,50589 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 51012,51023 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 50591,50629 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 51025,51064 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 50653,50682 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 51088,51118 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 50689,50699 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 51125,51135 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 50702,50716 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 51138,51152 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 50720,50727 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 51156,51163 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 50748,50767 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 51184,51203 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 50806,50813 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 51242,51249 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 50819,50851 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 51255,51287 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 50875,50880 **** --- 51311,51317 ---- site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. + ADDENDUM: How to use this License for your documents ==================================================== *************** notices just after the title page: *** 50891,50897 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 51328,51334 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 50902,50910 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gcc.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 51339,51347 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gcc.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** File: gcc.info, Node: Contributors, Ne *** 50912,50920 **** Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without them ! the project would not have been nearly as successful as it has been. ! Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. --- 51349,51357 ---- Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without ! them the project would not have been nearly as successful as it has ! been. Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. *************** alphabetical order. *** 51044,51050 **** * The GNU Classpath project for all of their merged runtime code. * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work, ! '--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. --- 51481,51487 ---- * The GNU Classpath project for all of their merged runtime code. * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work, ! `--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. *************** alphabetical order. *** 51064,51071 **** * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs that ! print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. --- 51501,51508 ---- * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs ! that print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. *************** alphabetical order. *** 51080,51098 **** * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including 'valarray<>', 'complex<>', maintaining the numerics ! library (including that pesky '' :-) and keeping up-to-date ! anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the C++ ! runtime libraries including for all kinds of C interface issues, ! contributing and maintaining 'complex<>', sanity checking and ! disbursement, configuration architecture, libio maintenance, and ! early math work. * Franc,ois Dumont for his work on libstdc++-v3, especially ! maintaining and improving 'debug-mode' and associative and unordered containers. * Zdenek Dvorak for a new loop unroller and various fixes. --- 51517,51535 ---- * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including `valarray<>', `complex<>', maintaining the numerics ! library (including that pesky `' :-) and keeping ! up-to-date anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the ! C++ runtime libraries including for all kinds of C interface ! issues, contributing and maintaining `complex<>', sanity checking ! and disbursement, configuration architecture, libio maintenance, ! and early math work. * Franc,ois Dumont for his work on libstdc++-v3, especially ! maintaining and improving `debug-mode' and associative and unordered containers. * Zdenek Dvorak for a new loop unroller and various fixes. *************** alphabetical order. *** 51144,51153 **** * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC ! on a plethora of platforms. Kaveh extends his gratitude to the ! CAIP Center at Rutgers University for providing him with computing ! resources to work on Free Software from the late 1980s to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. --- 51581,51591 ---- * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make `-W -Wall -W* -Werror' useful, and testing ! GCC on a plethora of platforms. Kaveh extends his gratitude to ! the CAIP Center at Rutgers University for providing him with ! computing resources to work on Free Software from the late 1980s ! to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. *************** alphabetical order. *** 51159,51176 **** support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his '-Os' contributions, the moxie port, and Java ! front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java ! code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Biener for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. --- 51597,51614 ---- support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his `-Os' contributions, the moxie port, and ! Java front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug ! Java code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Biener for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the `protoize' and `unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. *************** alphabetical order. *** 51189,51196 **** series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll improvements ! and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. --- 51627,51634 ---- series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll ! improvements and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. *************** alphabetical order. *** 51224,51231 **** * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ColdFire ! improvements and uClinux support. * Christian Iseli for various bug fixes. --- 51662,51669 ---- * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ! ColdFire improvements and uClinux support. * Christian Iseli for various bug fixes. *************** alphabetical order. *** 51273,51285 **** * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to better ! support RISC processors including changes to common subexpression ! elimination, strength reduction, function calling sequence ! handling, and condition code support, in addition to generalizing ! the code for frame pointer elimination and delay slot scheduling. ! Richard Kenner was also the head maintainer of GCC for several ! years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, --- 51711,51723 ---- * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to ! better support RISC processors including changes to common ! subexpression elimination, strength reduction, function calling ! sequence handling, and condition code support, in addition to ! generalizing the code for frame pointer elimination and delay slot ! scheduling. Richard Kenner was also the head maintainer of GCC ! for several years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, *************** alphabetical order. *** 51302,51312 **** * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, coordinating ! the entire egcs project and GCC 2.95, rolling out snapshots and ! releases, handling merges from GCC2, reviewing tons of patches that ! might have fallen through the cracks else, and random but extensive ! hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. --- 51740,51750 ---- * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, ! coordinating the entire egcs project and GCC 2.95, rolling out ! snapshots and releases, handling merges from GCC2, reviewing tons ! of patches that might have fallen through the cracks else, and ! random but extensive hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. *************** alphabetical order. *** 51335,51341 **** * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving '-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and --- 51773,51779 ---- * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving `-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and *************** alphabetical order. *** 51352,51364 **** * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global optimizer, ! etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall knowledge ! and direction in the area of instruction scheduling, and design and ! implementation of the automaton based instruction scheduler. * Bob Manson for his behind the scenes work on dejagnu. --- 51790,51803 ---- * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global ! optimizer, etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall ! knowledge and direction in the area of instruction scheduling, and ! design and implementation of the automaton based instruction ! scheduler. * Bob Manson for his behind the scenes work on dejagnu. *************** alphabetical order. *** 51391,51397 **** * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C 'restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. --- 51830,51836 ---- * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C `restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. *************** alphabetical order. *** 51401,51409 **** * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all this ! work on scrap paper and the backs of envelopes would have been... ! difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC --- 51840,51848 ---- * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all ! this work on scrap paper and the backs of envelopes would have ! been... difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC *************** alphabetical order. *** 51415,51422 **** initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating point ! numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. --- 51854,51861 ---- initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating ! point numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. *************** alphabetical order. *** 51439,51447 **** * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the ! search engine setup, various documentation fixes and other small ! fixes. * Geoff Noer for his work on getting cygwin native builds working. --- 51878,51886 ---- * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to ! the search engine setup, various documentation fixes and other ! small fixes. * Geoff Noer for his work on getting cygwin native builds working. *************** alphabetical order. *** 51449,51456 **** tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related ! infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues --- 51888,51895 ---- tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and ! related infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues *************** alphabetical order. *** 51462,51469 **** * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the IRIX, ! Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. --- 51901,51908 ---- * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the ! IRIX, Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. *************** alphabetical order. *** 51513,51519 **** * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old 'g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. --- 51952,51958 ---- * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old `g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. *************** alphabetical order. *** 51543,51550 **** * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC 2.95.3, ! and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for --- 51982,51989 ---- * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC ! 2.95.3, and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for *************** alphabetical order. *** 51559,51565 **** * Dodji Seketeli for numerous C++ bug fixes and debug info improvements. ! * Tim Shen for major work on ''. * Joel Sherrill for his direction via the steering committee, RTEMS contributions and RTEMS testing. --- 51998,52004 ---- * Dodji Seketeli for numerous C++ bug fixes and debug info improvements. ! * Tim Shen for major work on `'. * Joel Sherrill for his direction via the steering committee, RTEMS contributions and RTEMS testing. *************** alphabetical order. *** 51574,51581 **** from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable for ! GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. --- 52013,52020 ---- from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable ! for GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. *************** alphabetical order. *** 51588,51599 **** * Randy Smith finished the Sun FPA support. * Ed Smith-Rowland for his continuous work on libstdc++-v3, special ! functions, '', and various improvements to C++11 features. * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and ! 'LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. --- 52027,52038 ---- * Randy Smith finished the Sun FPA support. * Ed Smith-Rowland for his continuous work on libstdc++-v3, special ! functions, `', and various improvements to C++11 features. * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for `INTEGER*1', `INTEGER*2', and ! `LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. *************** alphabetical order. *** 51617,51624 **** * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years and ! more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. --- 52056,52063 ---- * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years ! and more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. *************** alphabetical order. *** 51672,51679 **** * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML to ! texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. --- 52111,52118 ---- * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML ! to texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. *************** alphabetical order. *** 51681,51688 **** * Stephen M. Webb for time and effort on making libstdc++ shadow files work with the tricky Solaris 8+ headers, and for pushing the ! build-time header tree. Also, for starting and driving the ! '' effort. * John Wehle for various improvements for the x86 code generator, related infrastructure improvements to help x86 code generation, --- 52120,52127 ---- * Stephen M. Webb for time and effort on making libstdc++ shadow files work with the tricky Solaris 8+ headers, and for pushing the ! build-time header tree. Also, for starting and driving the ! `' effort. * John Wehle for various improvements for the x86 code generator, related infrastructure improvements to help x86 code generation, *************** alphabetical order. *** 51704,51711 **** * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work on, ! strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. --- 52143,52150 ---- * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work ! on, strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. *************** alphabetical order. *** 51728,51733 **** --- 52167,52173 ---- * Gilles Zunino for help porting Java to Irix. + The following people are recognized for their contributions to GNAT, the Ada front end of GCC: * Bernard Banner *************** the Ada front end of GCC: *** 51824,51925 **** * Samuel Tardieu The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for 'JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for 'GapContent' bug fixes. ! * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including 'JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for 'HTTPURLConnection' fixes. ! * Gary Benson for 'MessageFormat' fixes. ! * Daniel Bonniot for 'Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX' ! and 'DOM xml:id' support. ! * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! 'URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better 'SocketTimeoutException'. ! * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and ! improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization ! fixes, better 'Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for 'AccessControlContext' fixes. ! * Nicolas Geoffray for 'VMClassLoader' and 'AccessController' improvements. ! * David Gilbert for 'basic' and 'metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! 'MetalIconFactory' implementation. ! * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers. ! * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for 'JFileChooser' implementation. ! * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates, ! 'Serialization' fixes, 'Properties' XML support and generic branch ! work, VMIntegration guide update. ! * Bastiaan Huisman for 'TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better '-Werror' support. ! * Ito Kazumitsu for 'NetworkInterface' implementation and updates. ! * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for 'String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, 'Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native 'Pointer' updates. Logger bug ! fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and 'TextLayout' ! fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock, ! 'SystemLogger' and 'FileHandler' rotate implementations, NIO ! 'FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. --- 52264,52365 ---- * Samuel Tardieu + The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for `JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for `GapContent' bug fixes. ! * Anthony Balkissoon for `JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including `JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for `HTTPURLConnection' fixes. ! * Gary Benson for `MessageFormat' fixes. ! * Daniel Bonniot for `Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, `StAX' ! and `DOM xml:id' support. ! * Ka-Hing Cheung for `TreePath' and `TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! `URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better `SocketTimeoutException'. ! * David Daney for `BitSet' bug fixes, `HttpURLConnection' rewrite ! and improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for `ClassLoader' and nio cleanups, serialization ! fixes, better `Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for `AccessControlContext' fixes. ! * Nicolas Geoffray for `VMClassLoader' and `AccessController' improvements. ! * David Gilbert for `basic' and `metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! `MetalIconFactory' implementation. ! * Anthony Green for `MIDI' framework, `ALSA' and `DSSI' providers. ! * Andrew Haley for `Serialization' and `URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for `JFileChooser' implementation. ! * Andrew John Hughes for `Locale' and net fixes, URI RFC2986 ! updates, `Serialization' fixes, `Properties' XML support and ! generic branch work, VMIntegration guide update. ! * Bastiaan Huisman for `TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better `-Werror' support. ! * Ito Kazumitsu for `NetworkInterface' implementation and updates. ! * Roman Kennke for `BoxLayout', `GrayFilter' and `SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for `String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, `Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native `Pointer' updates. Logger bug fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for `Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and `TextLayout' ! fixes. `GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, `FileChannel' lock, ! `SystemLogger' and `FileHandler' rotate implementations, NIO ! `FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. *************** GCC version 4.1: *** 51930,51974 **** * Rainer Orth for build fixes. ! * Andrew Overholt for 'File' locking fixes. ! * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates. ! * Olga Rodimina for 'MenuSelectionManager' implementation. ! * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and 'CACAO' integration, 'fdlibm' updates. ! * Gael Thomas for 'VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4' ! support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates. ! * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe ! integration. 'Qt4' build infrastructure, 'SHA1PRNG' and ! 'GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! 'Clipboard' implementation, system call interrupts and network ! timeouts and 'GdkPixpufDecoder' fixes. ! In addition to the above, all of which also contributed time and energy ! in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek --- 52370,52415 ---- * Rainer Orth for build fixes. ! * Andrew Overholt for `File' locking fixes. ! * Ingo Proetel for `Image', `Logger' and `URLClassLoader' updates. ! * Olga Rodimina for `MenuSelectionManager' implementation. ! * Jan Roehrich for `BasicTreeUI' and `JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! `TreeNode' enumerations and `ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and `CACAO' integration, `fdlibm' updates. ! * Gael Thomas for `VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, `Qt4' ! support for Darwin/OS X, `Graphics2D' support, `gtk+' updates. ! * Dalibor Topic for better `DEBUG' support, build cleanups and Kaffe ! integration. `Qt4' build infrastructure, `SHA1PRNG' and ! `GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! `Clipboard' implementation, system call interrupts and network ! timeouts and `GdkPixpufDecoder' fixes. ! ! In addition to the above, all of which also contributed time and ! energy in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek *************** File: gcc.info, Node: Option Index, Ne *** 52137,52145 **** Option Index ************ ! GCC's command line options are indexed here without any initial '-' or ! '--'. Where an option has both positive and negative forms (such as ! '-fOPTION' and '-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. --- 52578,52586 ---- Option Index ************ ! GCC's command line options are indexed here without any initial `-' or ! `--'. Where an option has both positive and negative forms (such as ! `-fOPTION' and `-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. *************** look up both forms. *** 52148,52288 **** * ###: Overall Options. (line 209) * (fvtv-debug): C++ Dialect Options. ! (line 362) ! * -fno-keep-inline-dllexport: Optimize Options. (line 309) * -mcpu: RX Options. (line 30) * -mcpu=: MSP430 Options. (line 35) * -mfix-cortex-a53-835769: AArch64 Options. (line 67) * -mno-fix-cortex-a53-835769: AArch64 Options. (line 67) * -mpointer-size=SIZE: VMS Options. (line 20) * 8bit-idiv: i386 and x86-64 Options. ! (line 917) * A: Preprocessor Options. ! (line 596) ! * allowable_client: Darwin Options. (line 196) * all_load: Darwin Options. (line 110) * ansi: Standards. (line 16) - * ansi <1>: C Dialect Options. (line 11) - * ansi <2>: Preprocessor Options. - (line 340) - * ansi <3>: Other Builtins. (line 21) - * ansi <4>: Non-bugs. (line 107) * arch_errors_fatal: Darwin Options. (line 114) ! * aux-info: C Dialect Options. (line 173) * avx256-split-unaligned-load: i386 and x86-64 Options. ! (line 925) * avx256-split-unaligned-store: i386 and x86-64 Options. ! (line 925) ! * B: Directory Options. (line 44) * Bdynamic: VxWorks Options. (line 22) * bind_at_load: Darwin Options. (line 118) * Bstatic: VxWorks Options. (line 22) * bundle: Darwin Options. (line 123) * bundle_loader: Darwin Options. (line 127) ! * c: Overall Options. (line 164) * C: Preprocessor Options. ! (line 653) ! * c <1>: Link Options. (line 20) * client_name: Darwin Options. (line 196) * compatibility_version: Darwin Options. (line 196) ! * coverage: Debugging Options. (line 496) * current_version: Darwin Options. (line 196) - * d: Debugging Options. (line 628) * D: Preprocessor Options. (line 46) ! * da: Debugging Options. (line 831) * dA: Debugging Options. (line 834) ! * dD: Debugging Options. (line 838) * dD <1>: Preprocessor Options. ! (line 627) * dead_strip: Darwin Options. (line 196) * dependency-file: Darwin Options. (line 196) * dH: Debugging Options. (line 842) * dI: Preprocessor Options. ! (line 636) * dM: Preprocessor Options. ! (line 612) * dN: Preprocessor Options. ! (line 633) ! * dp: Debugging Options. (line 845) * dP: Debugging Options. (line 850) * dU: Preprocessor Options. ! (line 640) ! * dumpmachine: Debugging Options. (line 1416) ! * dumpspecs: Debugging Options. (line 1424) ! * dumpversion: Debugging Options. (line 1420) * dx: Debugging Options. (line 854) * dylib_file: Darwin Options. (line 196) * dylinker_install_name: Darwin Options. (line 196) * dynamic: Darwin Options. (line 196) * dynamiclib: Darwin Options. (line 131) - * E: Overall Options. (line 185) * E <1>: Link Options. (line 20) ! * EB: ARC Options. (line 345) * EB <1>: MIPS Options. (line 7) ! * EL: ARC Options. (line 354) * EL <1>: MIPS Options. (line 10) * exported_symbols_list: Darwin Options. (line 196) * F: Darwin Options. (line 31) * fabi-version: C++ Dialect Options. ! (line 19) ! * fada-spec-parent: Overall Options. (line 367) ! * faggressive-loop-optimizations: Optimize Options. (line 478) ! * falign-functions: Optimize Options. (line 1481) ! * falign-jumps: Optimize Options. (line 1530) ! * falign-labels: Optimize Options. (line 1499) ! * falign-loops: Optimize Options. (line 1517) * fallow-parameterless-variadic-functions: C Dialect Options. ! (line 189) ! * fassociative-math: Optimize Options. (line 2009) * fasynchronous-unwind-tables: Code Gen Options. (line 146) ! * fauto-inc-dec: Optimize Options. (line 502) * fbounds-check: Code Gen Options. (line 15) ! * fbranch-probabilities: Optimize Options. (line 2137) ! * fbranch-target-load-optimize: Optimize Options. (line 2252) ! * fbranch-target-load-optimize2: Optimize Options. (line 2258) ! * fbtr-bb-exclusive: Optimize Options. (line 2262) ! * fcall-saved: Code Gen Options. (line 356) ! * fcall-used: Code Gen Options. (line 342) ! * fcaller-saves: Optimize Options. (line 819) ! * fcheck-data-deps: Optimize Options. (line 1098) * fcheck-new: C++ Dialect Options. ! (line 54) ! * fcilkplus: C Dialect Options. (line 276) ! * fcombine-stack-adjustments: Optimize Options. (line 831) * fcommon: Variable Attributes. ! (line 104) ! * fcompare-debug: Debugging Options. (line 287) ! * fcompare-debug-second: Debugging Options. (line 313) ! * fcompare-elim: Optimize Options. (line 1845) * fcond-mismatch: C Dialect Options. (line 339) ! * fconserve-stack: Optimize Options. (line 837) * fconstant-string-class: Objective-C and Objective-C++ Dialect Options. (line 30) * fconstexpr-depth: C++ Dialect Options. ! (line 64) ! * fcprop-registers: Optimize Options. (line 1863) ! * fcrossjumping: Optimize Options. (line 495) ! * fcse-follow-jumps: Optimize Options. (line 414) ! * fcse-skip-blocks: Optimize Options. (line 423) ! * fcx-fortran-rules: Optimize Options. (line 2124) ! * fcx-limited-range: Optimize Options. (line 2112) ! * fdata-sections: Optimize Options. (line 2233) * fdbg-cnt: Debugging Options. (line 548) * fdbg-cnt-list: Debugging Options. (line 545) ! * fdce: Optimize Options. (line 508) * fdebug-cpp: Preprocessor Options. ! (line 527) ! * fdebug-prefix-map: Debugging Options. (line 407) * fdebug-types-section: Debugging Options. (line 79) ! * fdeclone-ctor-dtor: Optimize Options. (line 531) * fdeduce-init-list: C++ Dialect Options. ! (line 70) ! * fdelayed-branch: Optimize Options. (line 666) * fdelete-dead-exceptions: Code Gen Options. (line 131) ! * fdelete-null-pointer-checks: Optimize Options. (line 542) ! * fdevirtualize: Optimize Options. (line 560) ! * fdevirtualize-speculatively: Optimize Options. (line 567) * fdiagnostics-color: Language Independent Options. (line 35) * fdiagnostics-show-caret: Language Independent Options. --- 52589,52729 ---- * ###: Overall Options. (line 209) * (fvtv-debug): C++ Dialect Options. ! (line 364) ! * -fno-keep-inline-dllexport: Optimize Options. (line 313) * -mcpu: RX Options. (line 30) * -mcpu=: MSP430 Options. (line 35) * -mfix-cortex-a53-835769: AArch64 Options. (line 67) * -mno-fix-cortex-a53-835769: AArch64 Options. (line 67) * -mpointer-size=SIZE: VMS Options. (line 20) * 8bit-idiv: i386 and x86-64 Options. ! (line 925) * A: Preprocessor Options. ! (line 597) * all_load: Darwin Options. (line 110) + * allowable_client: Darwin Options. (line 196) + * ansi <1>: Non-bugs. (line 107) + * ansi <2>: Other Builtins. (line 22) + * ansi <3>: Preprocessor Options. + (line 338) + * ansi <4>: C Dialect Options. (line 11) * ansi: Standards. (line 16) * arch_errors_fatal: Darwin Options. (line 114) ! * aux-info: C Dialect Options. (line 175) * avx256-split-unaligned-load: i386 and x86-64 Options. ! (line 933) * avx256-split-unaligned-store: i386 and x86-64 Options. ! (line 933) ! * B: Directory Options. (line 46) * Bdynamic: VxWorks Options. (line 22) * bind_at_load: Darwin Options. (line 118) * Bstatic: VxWorks Options. (line 22) * bundle: Darwin Options. (line 123) * bundle_loader: Darwin Options. (line 127) ! * c: Link Options. (line 20) * C: Preprocessor Options. ! (line 655) ! * c: Overall Options. (line 164) * client_name: Darwin Options. (line 196) * compatibility_version: Darwin Options. (line 196) ! * coverage: Debugging Options. (line 495) * current_version: Darwin Options. (line 196) * D: Preprocessor Options. (line 46) ! * d: Debugging Options. (line 627) * dA: Debugging Options. (line 834) ! * da: Debugging Options. (line 831) * dD <1>: Preprocessor Options. ! (line 629) ! * dD: Debugging Options. (line 838) * dead_strip: Darwin Options. (line 196) * dependency-file: Darwin Options. (line 196) * dH: Debugging Options. (line 842) * dI: Preprocessor Options. ! (line 638) * dM: Preprocessor Options. ! (line 613) * dN: Preprocessor Options. ! (line 635) * dP: Debugging Options. (line 850) + * dp: Debugging Options. (line 845) * dU: Preprocessor Options. ! (line 642) ! * dumpmachine: Debugging Options. (line 1442) ! * dumpspecs: Debugging Options. (line 1450) ! * dumpversion: Debugging Options. (line 1446) * dx: Debugging Options. (line 854) * dylib_file: Darwin Options. (line 196) * dylinker_install_name: Darwin Options. (line 196) * dynamic: Darwin Options. (line 196) * dynamiclib: Darwin Options. (line 131) * E <1>: Link Options. (line 20) ! * E: Overall Options. (line 185) * EB <1>: MIPS Options. (line 7) ! * EB: ARC Options. (line 350) * EL <1>: MIPS Options. (line 10) + * EL: ARC Options. (line 357) * exported_symbols_list: Darwin Options. (line 196) * F: Darwin Options. (line 31) * fabi-version: C++ Dialect Options. ! (line 20) ! * fada-spec-parent: Overall Options. (line 369) ! * faggressive-loop-optimizations: Optimize Options. (line 482) ! * falign-functions: Optimize Options. (line 1487) ! * falign-jumps: Optimize Options. (line 1536) ! * falign-labels: Optimize Options. (line 1505) ! * falign-loops: Optimize Options. (line 1523) * fallow-parameterless-variadic-functions: C Dialect Options. ! (line 191) ! * fassociative-math: Optimize Options. (line 2015) * fasynchronous-unwind-tables: Code Gen Options. (line 146) ! * fauto-inc-dec: Optimize Options. (line 506) * fbounds-check: Code Gen Options. (line 15) ! * fbranch-probabilities: Optimize Options. (line 2142) ! * fbranch-target-load-optimize: Optimize Options. (line 2257) ! * fbranch-target-load-optimize2: Optimize Options. (line 2263) ! * fbtr-bb-exclusive: Optimize Options. (line 2267) ! * fcall-saved: Code Gen Options. (line 358) ! * fcall-used: Code Gen Options. (line 344) ! * fcaller-saves: Optimize Options. (line 825) ! * fcheck-data-deps: Optimize Options. (line 1104) * fcheck-new: C++ Dialect Options. ! (line 55) ! * fcilkplus: C Dialect Options. (line 275) ! * fcombine-stack-adjustments: Optimize Options. (line 837) * fcommon: Variable Attributes. ! (line 105) ! * fcompare-debug: Debugging Options. (line 283) ! * fcompare-debug-second: Debugging Options. (line 309) ! * fcompare-elim: Optimize Options. (line 1854) * fcond-mismatch: C Dialect Options. (line 339) ! * fconserve-stack: Optimize Options. (line 843) * fconstant-string-class: Objective-C and Objective-C++ Dialect Options. (line 30) * fconstexpr-depth: C++ Dialect Options. ! (line 65) ! * fcprop-registers: Optimize Options. (line 1872) ! * fcrossjumping: Optimize Options. (line 499) ! * fcse-follow-jumps: Optimize Options. (line 418) ! * fcse-skip-blocks: Optimize Options. (line 427) ! * fcx-fortran-rules: Optimize Options. (line 2128) ! * fcx-limited-range: Optimize Options. (line 2116) ! * fdata-sections: Optimize Options. (line 2238) * fdbg-cnt: Debugging Options. (line 548) * fdbg-cnt-list: Debugging Options. (line 545) ! * fdce: Optimize Options. (line 512) * fdebug-cpp: Preprocessor Options. ! (line 526) ! * fdebug-prefix-map: Debugging Options. (line 403) * fdebug-types-section: Debugging Options. (line 79) ! * fdeclone-ctor-dtor: Optimize Options. (line 535) * fdeduce-init-list: C++ Dialect Options. ! (line 71) ! * fdelayed-branch: Optimize Options. (line 672) * fdelete-dead-exceptions: Code Gen Options. (line 131) ! * fdelete-null-pointer-checks: Optimize Options. (line 546) ! * fdevirtualize: Optimize Options. (line 564) ! * fdevirtualize-speculatively: Optimize Options. (line 571) * fdiagnostics-color: Language Independent Options. (line 35) * fdiagnostics-show-caret: Language Independent Options. *************** look up both forms. *** 52292,52369 **** * fdiagnostics-show-option: Language Independent Options. (line 86) * fdirectives-only: Preprocessor Options. ! (line 475) * fdisable-: Debugging Options. (line 558) - * fdollars-in-identifiers: Preprocessor Options. - (line 496) * fdollars-in-identifiers <1>: Interoperation. (line 141) ! * fdse: Optimize Options. (line 512) ! * fdump-ada-spec: Overall Options. (line 362) * fdump-class-hierarchy: Debugging Options. (line 885) ! * fdump-final-insns: Debugging Options. (line 281) ! * fdump-go-spec: Overall Options. (line 371) * fdump-ipa: Debugging Options. (line 893) * fdump-noaddr: Debugging Options. (line 858) ! * fdump-passes: Debugging Options. (line 910) ! * fdump-rtl-alignments: Debugging Options. (line 649) * fdump-rtl-all: Debugging Options. (line 831) ! * fdump-rtl-asmcons: Debugging Options. (line 652) ! * fdump-rtl-auto_inc_dec: Debugging Options. (line 656) ! * fdump-rtl-barriers: Debugging Options. (line 660) ! * fdump-rtl-bbpart: Debugging Options. (line 663) ! * fdump-rtl-bbro: Debugging Options. (line 666) ! * fdump-rtl-btl2: Debugging Options. (line 670) ! * fdump-rtl-btl2 <1>: Debugging Options. (line 670) ! * fdump-rtl-bypass: Debugging Options. (line 674) ! * fdump-rtl-ce1: Debugging Options. (line 685) ! * fdump-rtl-ce2: Debugging Options. (line 685) ! * fdump-rtl-ce3: Debugging Options. (line 685) ! * fdump-rtl-combine: Debugging Options. (line 677) ! * fdump-rtl-compgotos: Debugging Options. (line 680) ! * fdump-rtl-cprop_hardreg: Debugging Options. (line 689) ! * fdump-rtl-csa: Debugging Options. (line 692) ! * fdump-rtl-cse1: Debugging Options. (line 696) ! * fdump-rtl-cse2: Debugging Options. (line 696) ! * fdump-rtl-dbr: Debugging Options. (line 703) ! * fdump-rtl-dce: Debugging Options. (line 700) ! * fdump-rtl-dce1: Debugging Options. (line 707) ! * fdump-rtl-dce2: Debugging Options. (line 707) * fdump-rtl-dfinish: Debugging Options. (line 827) * fdump-rtl-dfinit: Debugging Options. (line 827) ! * fdump-rtl-eh: Debugging Options. (line 711) ! * fdump-rtl-eh_ranges: Debugging Options. (line 714) ! * fdump-rtl-expand: Debugging Options. (line 717) ! * fdump-rtl-fwprop1: Debugging Options. (line 721) ! * fdump-rtl-fwprop2: Debugging Options. (line 721) ! * fdump-rtl-gcse1: Debugging Options. (line 726) ! * fdump-rtl-gcse2: Debugging Options. (line 726) ! * fdump-rtl-init-regs: Debugging Options. (line 730) ! * fdump-rtl-initvals: Debugging Options. (line 733) ! * fdump-rtl-into_cfglayout: Debugging Options. (line 736) ! * fdump-rtl-ira: Debugging Options. (line 739) ! * fdump-rtl-jump: Debugging Options. (line 742) ! * fdump-rtl-loop2: Debugging Options. (line 745) ! * fdump-rtl-mach: Debugging Options. (line 749) ! * fdump-rtl-mode_sw: Debugging Options. (line 753) ! * fdump-rtl-outof_cfglayout: Debugging Options. (line 759) ! * fdump-rtl-PASS: Debugging Options. (line 628) ! * fdump-rtl-peephole2: Debugging Options. (line 762) ! * fdump-rtl-postreload: Debugging Options. (line 765) ! * fdump-rtl-pro_and_epilogue: Debugging Options. (line 768) ! * fdump-rtl-ree: Debugging Options. (line 776) * fdump-rtl-regclass: Debugging Options. (line 827) ! * fdump-rtl-rnreg: Debugging Options. (line 756) ! * fdump-rtl-sched1: Debugging Options. (line 772) ! * fdump-rtl-sched2: Debugging Options. (line 772) ! * fdump-rtl-seqabstr: Debugging Options. (line 779) ! * fdump-rtl-shorten: Debugging Options. (line 782) ! * fdump-rtl-sibling: Debugging Options. (line 785) * fdump-rtl-sms: Debugging Options. (line 797) ! * fdump-rtl-split1: Debugging Options. (line 792) ! * fdump-rtl-split2: Debugging Options. (line 792) ! * fdump-rtl-split3: Debugging Options. (line 792) ! * fdump-rtl-split4: Debugging Options. (line 792) ! * fdump-rtl-split5: Debugging Options. (line 792) * fdump-rtl-stack: Debugging Options. (line 801) * fdump-rtl-subreg1: Debugging Options. (line 807) * fdump-rtl-subreg2: Debugging Options. (line 807) --- 52733,52809 ---- * fdiagnostics-show-option: Language Independent Options. (line 86) * fdirectives-only: Preprocessor Options. ! (line 473) * fdisable-: Debugging Options. (line 558) * fdollars-in-identifiers <1>: Interoperation. (line 141) ! * fdollars-in-identifiers: Preprocessor Options. ! (line 495) ! * fdse: Optimize Options. (line 516) ! * fdump-ada-spec: Overall Options. (line 363) * fdump-class-hierarchy: Debugging Options. (line 885) ! * fdump-final-insns: Debugging Options. (line 277) ! * fdump-go-spec: Overall Options. (line 373) * fdump-ipa: Debugging Options. (line 893) * fdump-noaddr: Debugging Options. (line 858) ! * fdump-passes: Debugging Options. (line 911) ! * fdump-rtl-alignments: Debugging Options. (line 648) * fdump-rtl-all: Debugging Options. (line 831) ! * fdump-rtl-asmcons: Debugging Options. (line 651) ! * fdump-rtl-auto_inc_dec: Debugging Options. (line 655) ! * fdump-rtl-barriers: Debugging Options. (line 659) ! * fdump-rtl-bbpart: Debugging Options. (line 662) ! * fdump-rtl-bbro: Debugging Options. (line 665) ! * fdump-rtl-btl2: Debugging Options. (line 669) ! * fdump-rtl-bypass: Debugging Options. (line 673) ! * fdump-rtl-ce1: Debugging Options. (line 684) ! * fdump-rtl-ce2: Debugging Options. (line 684) ! * fdump-rtl-ce3: Debugging Options. (line 684) ! * fdump-rtl-combine: Debugging Options. (line 676) ! * fdump-rtl-compgotos: Debugging Options. (line 679) ! * fdump-rtl-cprop_hardreg: Debugging Options. (line 688) ! * fdump-rtl-csa: Debugging Options. (line 691) ! * fdump-rtl-cse1: Debugging Options. (line 695) ! * fdump-rtl-cse2: Debugging Options. (line 695) ! * fdump-rtl-dbr: Debugging Options. (line 702) ! * fdump-rtl-dce: Debugging Options. (line 699) ! * fdump-rtl-dce1: Debugging Options. (line 706) ! * fdump-rtl-dce2: Debugging Options. (line 706) * fdump-rtl-dfinish: Debugging Options. (line 827) * fdump-rtl-dfinit: Debugging Options. (line 827) ! * fdump-rtl-eh: Debugging Options. (line 710) ! * fdump-rtl-eh_ranges: Debugging Options. (line 713) ! * fdump-rtl-expand: Debugging Options. (line 716) ! * fdump-rtl-fwprop1: Debugging Options. (line 720) ! * fdump-rtl-fwprop2: Debugging Options. (line 720) ! * fdump-rtl-gcse1: Debugging Options. (line 725) ! * fdump-rtl-gcse2: Debugging Options. (line 725) ! * fdump-rtl-init-regs: Debugging Options. (line 729) ! * fdump-rtl-initvals: Debugging Options. (line 732) ! * fdump-rtl-into_cfglayout: Debugging Options. (line 735) ! * fdump-rtl-ira: Debugging Options. (line 738) ! * fdump-rtl-jump: Debugging Options. (line 741) ! * fdump-rtl-loop2: Debugging Options. (line 744) ! * fdump-rtl-mach: Debugging Options. (line 748) ! * fdump-rtl-mode_sw: Debugging Options. (line 752) ! * fdump-rtl-outof_cfglayout: Debugging Options. (line 758) ! * fdump-rtl-PASS: Debugging Options. (line 627) ! * fdump-rtl-peephole2: Debugging Options. (line 761) ! * fdump-rtl-postreload: Debugging Options. (line 764) ! * fdump-rtl-pro_and_epilogue: Debugging Options. (line 767) ! * fdump-rtl-ree: Debugging Options. (line 775) * fdump-rtl-regclass: Debugging Options. (line 827) ! * fdump-rtl-rnreg: Debugging Options. (line 755) ! * fdump-rtl-sched1: Debugging Options. (line 771) ! * fdump-rtl-sched2: Debugging Options. (line 771) ! * fdump-rtl-seqabstr: Debugging Options. (line 778) ! * fdump-rtl-shorten: Debugging Options. (line 781) ! * fdump-rtl-sibling: Debugging Options. (line 784) * fdump-rtl-sms: Debugging Options. (line 797) ! * fdump-rtl-split1: Debugging Options. (line 791) ! * fdump-rtl-split2: Debugging Options. (line 791) ! * fdump-rtl-split3: Debugging Options. (line 791) ! * fdump-rtl-split4: Debugging Options. (line 791) ! * fdump-rtl-split5: Debugging Options. (line 791) * fdump-rtl-stack: Debugging Options. (line 801) * fdump-rtl-subreg1: Debugging Options. (line 807) * fdump-rtl-subreg2: Debugging Options. (line 807) *************** look up both forms. *** 52373,52616 **** * fdump-rtl-vartrack: Debugging Options. (line 814) * fdump-rtl-vregs: Debugging Options. (line 817) * fdump-rtl-web: Debugging Options. (line 820) ! * fdump-statistics: Debugging Options. (line 914) * fdump-translation-unit: Debugging Options. (line 876) ! * fdump-tree: Debugging Options. (line 926) ! * fdump-tree-alias: Debugging Options. (line 1048) ! * fdump-tree-all: Debugging Options. (line 1132) ! * fdump-tree-ccp: Debugging Options. (line 1052) ! * fdump-tree-cfg: Debugging Options. (line 1036) ! * fdump-tree-ch: Debugging Options. (line 1040) ! * fdump-tree-copyprop: Debugging Options. (line 1068) ! * fdump-tree-copyrename: Debugging Options. (line 1108) ! * fdump-tree-dce: Debugging Options. (line 1076) ! * fdump-tree-dom: Debugging Options. (line 1089) ! * fdump-tree-dse: Debugging Options. (line 1094) ! * fdump-tree-forwprop: Debugging Options. (line 1103) ! * fdump-tree-fre: Debugging Options. (line 1064) ! * fdump-tree-gimple: Debugging Options. (line 1031) ! * fdump-tree-nrv: Debugging Options. (line 1113) ! * fdump-tree-optimized: Debugging Options. (line 1028) ! * fdump-tree-original: Debugging Options. (line 1025) ! * fdump-tree-phiopt: Debugging Options. (line 1098) ! * fdump-tree-pre: Debugging Options. (line 1060) ! * fdump-tree-sink: Debugging Options. (line 1085) ! * fdump-tree-slp: Debugging Options. (line 1123) ! * fdump-tree-sra: Debugging Options. (line 1080) ! * fdump-tree-ssa: Debugging Options. (line 1044) ! * fdump-tree-storeccp: Debugging Options. (line 1056) ! * fdump-tree-store_copyprop: Debugging Options. (line 1072) ! * fdump-tree-vect: Debugging Options. (line 1118) ! * fdump-tree-vrp: Debugging Options. (line 1128) * fdump-unnumbered: Debugging Options. (line 864) * fdump-unnumbered-links: Debugging Options. (line 870) ! * fdwarf2-cfi-asm: Debugging Options. (line 411) ! * fearly-inlining: Optimize Options. (line 268) ! * feliminate-dwarf2-dups: Debugging Options. (line 326) * feliminate-unused-debug-symbols: Debugging Options. (line 67) ! * feliminate-unused-debug-types: Debugging Options. (line 1428) ! * femit-struct-debug-baseonly: Debugging Options. (line 331) ! * femit-struct-debug-reduced: Debugging Options. (line 344) * fenable-: Debugging Options. (line 558) ! * fexceptions: Code Gen Options. (line 109) ! * fexcess-precision: Optimize Options. (line 1936) * fexec-charset: Preprocessor Options. (line 554) ! * fexpensive-optimizations: Optimize Options. (line 576) * fext-numeric-literals: C++ Dialect Options. ! (line 587) * fextended-identifiers: Preprocessor Options. ! (line 499) * fextern-tls-init: C++ Dialect Options. ! (line 120) ! * ffast-math: Optimize Options. (line 1959) ! * ffat-lto-objects: Optimize Options. (line 1827) ! * ffinite-math-only: Optimize Options. (line 2036) * ffix-and-continue: Darwin Options. (line 104) ! * ffixed: Code Gen Options. (line 330) ! * ffloat-store: Optimize Options. (line 1922) * ffloat-store <1>: Disappointments. (line 77) * ffor-scope: C++ Dialect Options. ! (line 141) ! * fforward-propagate: Optimize Options. (line 178) ! * ffp-contract: Optimize Options. (line 187) ! * ffreestanding: Standards. (line 92) ! * ffreestanding <1>: C Dialect Options. (line 252) ! * ffreestanding <2>: Warning Options. (line 254) ! * ffreestanding <3>: Function Attributes. ! (line 493) * ffriend-injection: C++ Dialect Options. ! (line 91) ! * ffunction-sections: Optimize Options. (line 2233) ! * fgcse: Optimize Options. (line 437) ! * fgcse-after-reload: Optimize Options. (line 473) ! * fgcse-las: Optimize Options. (line 466) ! * fgcse-lm: Optimize Options. (line 448) ! * fgcse-sm: Optimize Options. (line 457) * fgnu-runtime: Objective-C and Objective-C++ Dialect Options. (line 39) ! * fgnu-tm: C Dialect Options. (line 286) ! * fgnu89-inline: C Dialect Options. (line 152) ! * fgraphite-identity: Optimize Options. (line 1078) ! * fhosted: C Dialect Options. (line 244) ! * fif-conversion: Optimize Options. (line 516) ! * fif-conversion2: Optimize Options. (line 525) * filelist: Darwin Options. (line 196) * findirect-data: Darwin Options. (line 104) ! * findirect-inlining: Optimize Options. (line 241) ! * finhibit-size-directive: Code Gen Options. (line 251) ! * finline-functions: Optimize Options. (line 249) ! * finline-functions-called-once: Optimize Options. (line 260) ! * finline-limit: Optimize Options. (line 284) ! * finline-small-functions: Optimize Options. (line 232) * finput-charset: Preprocessor Options. (line 567) - * finstrument-functions: Code Gen Options. (line 386) * finstrument-functions <1>: Function Attributes. ! (line 1089) ! * finstrument-functions-exclude-file-list: Code Gen Options. (line 421) * finstrument-functions-exclude-function-list: Code Gen Options. ! (line 442) ! * fipa-cp: Optimize Options. (line 903) ! * fipa-cp-clone: Optimize Options. (line 911) ! * fipa-profile: Optimize Options. (line 895) ! * fipa-pta: Optimize Options. (line 889) ! * fipa-pure-const: Optimize Options. (line 881) ! * fipa-reference: Optimize Options. (line 885) ! * fipa-sra: Optimize Options. (line 277) ! * fira-hoist-pressure: Optimize Options. (line 633) ! * fira-loop-pressure: Optimize Options. (line 640) ! * fira-verbose: Optimize Options. (line 660) ! * fivopts: Optimize Options. (line 1174) ! * fkeep-inline-functions: Optimize Options. (line 315) * fkeep-inline-functions <1>: Inline. (line 51) ! * fkeep-static-consts: Optimize Options. (line 322) * flat_namespace: Darwin Options. (line 196) * flax-vector-conversions: C Dialect Options. (line 344) ! * fleading-underscore: Code Gen Options. (line 524) ! * flive-range-shrinkage: Optimize Options. (line 599) ! * floop-block: Optimize Options. (line 1049) ! * floop-interchange: Optimize Options. (line 1004) ! * floop-nest-optimize: Optimize Options. (line 1086) ! * floop-parallelize-all: Optimize Options. (line 1092) ! * floop-strip-mine: Optimize Options. (line 1028) ! * flto: Optimize Options. (line 1584) ! * flto-partition: Optimize Options. (line 1778) * fmax-errors: Warning Options. (line 18) ! * fmem-report: Debugging Options. (line 435) ! * fmem-report-wpa: Debugging Options. (line 439) ! * fmerge-all-constants: Optimize Options. (line 341) ! * fmerge-constants: Optimize Options. (line 331) ! * fmerge-debug-strings: Debugging Options. (line 400) * fmessage-length: Language Independent Options. (line 14) ! * fmodulo-sched: Optimize Options. (line 352) ! * fmodulo-sched-allow-regmoves: Optimize Options. (line 357) ! * fmove-loop-invariants: Optimize Options. (line 2223) ! * fms-extensions: C Dialect Options. (line 301) ! * fms-extensions <1>: C++ Dialect Options. ! (line 175) ! * fms-extensions <2>: Unnamed Fields. (line 36) * fnext-runtime: Objective-C and Objective-C++ Dialect Options. (line 43) * fno-access-control: C++ Dialect Options. ! (line 50) ! * fno-asm: C Dialect Options. (line 196) ! * fno-branch-count-reg: Optimize Options. (line 364) ! * fno-builtin: C Dialect Options. (line 210) ! * fno-builtin <1>: Warning Options. (line 254) * fno-builtin <2>: Function Attributes. ! (line 493) ! * fno-builtin <3>: Other Builtins. (line 14) * fno-canonical-system-headers: Preprocessor Options. ! (line 504) ! * fno-common: Code Gen Options. (line 229) * fno-common <1>: Variable Attributes. ! (line 104) ! * fno-compare-debug: Debugging Options. (line 287) * fno-debug-types-section: Debugging Options. (line 79) * fno-default-inline: Inline. (line 71) ! * fno-defer-pop: Optimize Options. (line 170) * fno-diagnostics-show-caret: Language Independent Options. (line 92) * fno-diagnostics-show-option: Language Independent Options. (line 86) ! * fno-dwarf2-cfi-asm: Debugging Options. (line 411) * fno-elide-constructors: C++ Dialect Options. ! (line 104) ! * fno-eliminate-unused-debug-types: Debugging Options. (line 1428) * fno-enforce-eh-specs: C++ Dialect Options. ! (line 110) * fno-ext-numeric-literals: C++ Dialect Options. ! (line 587) * fno-extern-tls-init: C++ Dialect Options. ! (line 120) * fno-for-scope: C++ Dialect Options. ! (line 141) ! * fno-function-cse: Optimize Options. (line 374) * fno-gnu-keywords: C++ Dialect Options. ! (line 153) * fno-gnu-unique: Code Gen Options. (line 152) ! * fno-guess-branch-probability: Optimize Options. (line 1351) ! * fno-ident: Code Gen Options. (line 248) ! * fno-implement-inlines: C++ Dialect Options. ! (line 170) * fno-implement-inlines <1>: C++ Interface. (line 75) * fno-implicit-inline-templates: C++ Dialect Options. ! (line 164) ! * fno-implicit-templates: C++ Dialect Options. ! (line 158) * fno-implicit-templates <1>: Template Instantiation. (line 78) ! * fno-inline: Optimize Options. (line 224) ! * fno-ira-share-save-slots: Optimize Options. (line 648) ! * fno-ira-share-spill-slots: Optimize Options. (line 654) ! * fno-jump-tables: Code Gen Options. (line 322) ! * fno-lifetime-dse: Optimize Options. (line 590) ! * fno-math-errno: Optimize Options. (line 1973) ! * fno-merge-debug-strings: Debugging Options. (line 400) * fno-nil-receivers: Objective-C and Objective-C++ Dialect Options. (line 49) * fno-nonansi-builtins: C++ Dialect Options. ! (line 180) * fno-operator-names: C++ Dialect Options. ! (line 196) * fno-optional-diags: C++ Dialect Options. ! (line 200) ! * fno-peephole: Optimize Options. (line 1342) ! * fno-peephole2: Optimize Options. (line 1342) * fno-pretty-templates: C++ Dialect Options. ! (line 210) * fno-rtti: C++ Dialect Options. ! (line 227) ! * fno-sched-interblock: Optimize Options. (line 692) ! * fno-sched-spec: Optimize Options. (line 697) * fno-set-stack-executable: i386 and x86-64 Windows Options. (line 46) * fno-show-column: Preprocessor Options. ! (line 591) * fno-signed-bitfields: C Dialect Options. (line 377) ! * fno-signed-zeros: Optimize Options. (line 2048) ! * fno-stack-limit: Code Gen Options. (line 492) * fno-threadsafe-statics: C++ Dialect Options. ! (line 264) ! * fno-toplevel-reorder: Optimize Options. (line 1550) ! * fno-trapping-math: Optimize Options. (line 2058) * fno-unsigned-bitfields: C Dialect Options. (line 377) * fno-use-cxa-get-exception-ptr: C++ Dialect Options. ! (line 277) ! * fno-var-tracking-assignments: Debugging Options. (line 1336) ! * fno-var-tracking-assignments-toggle: Debugging Options. (line 1345) * fno-weak: C++ Dialect Options. ! (line 389) * fno-working-directory: Preprocessor Options. (line 577) * fno-writable-relocated-rdata: i386 and x86-64 Windows Options. (line 53) ! * fno-zero-initialized-in-bss: Optimize Options. (line 385) ! * fnon-call-exceptions: Code Gen Options. (line 123) * fnothrow-opt: C++ Dialect Options. ! (line 185) * fobjc-abi-version: Objective-C and Objective-C++ Dialect Options. (line 56) * fobjc-call-cxx-cdtors: Objective-C and Objective-C++ Dialect Options. --- 52813,53056 ---- * fdump-rtl-vartrack: Debugging Options. (line 814) * fdump-rtl-vregs: Debugging Options. (line 817) * fdump-rtl-web: Debugging Options. (line 820) ! * fdump-statistics: Debugging Options. (line 915) * fdump-translation-unit: Debugging Options. (line 876) ! * fdump-tree: Debugging Options. (line 927) ! * fdump-tree-alias: Debugging Options. (line 1066) ! * fdump-tree-all: Debugging Options. (line 1151) ! * fdump-tree-ccp: Debugging Options. (line 1070) ! * fdump-tree-cfg: Debugging Options. (line 1054) ! * fdump-tree-ch: Debugging Options. (line 1058) ! * fdump-tree-copyprop: Debugging Options. (line 1086) ! * fdump-tree-copyrename: Debugging Options. (line 1127) ! * fdump-tree-dce: Debugging Options. (line 1094) ! * fdump-tree-dom: Debugging Options. (line 1107) ! * fdump-tree-dse: Debugging Options. (line 1112) ! * fdump-tree-forwprop: Debugging Options. (line 1122) ! * fdump-tree-fre: Debugging Options. (line 1082) ! * fdump-tree-gimple: Debugging Options. (line 1049) ! * fdump-tree-nrv: Debugging Options. (line 1132) ! * fdump-tree-optimized: Debugging Options. (line 1046) ! * fdump-tree-original: Debugging Options. (line 1043) ! * fdump-tree-phiopt: Debugging Options. (line 1117) ! * fdump-tree-pre: Debugging Options. (line 1078) ! * fdump-tree-sink: Debugging Options. (line 1103) ! * fdump-tree-slp: Debugging Options. (line 1142) ! * fdump-tree-sra: Debugging Options. (line 1098) ! * fdump-tree-ssa: Debugging Options. (line 1062) ! * fdump-tree-store_copyprop: Debugging Options. (line 1090) ! * fdump-tree-storeccp: Debugging Options. (line 1074) ! * fdump-tree-vect: Debugging Options. (line 1137) ! * fdump-tree-vrp: Debugging Options. (line 1147) * fdump-unnumbered: Debugging Options. (line 864) * fdump-unnumbered-links: Debugging Options. (line 870) ! * fdwarf2-cfi-asm: Debugging Options. (line 407) ! * fearly-inlining: Optimize Options. (line 270) ! * feliminate-dwarf2-dups: Debugging Options. (line 322) * feliminate-unused-debug-symbols: Debugging Options. (line 67) ! * feliminate-unused-debug-types: Debugging Options. (line 1454) ! * femit-struct-debug-baseonly: Debugging Options. (line 327) ! * femit-struct-debug-reduced: Debugging Options. (line 340) * fenable-: Debugging Options. (line 558) ! * fexceptions: Code Gen Options. (line 108) ! * fexcess-precision: Optimize Options. (line 1943) * fexec-charset: Preprocessor Options. (line 554) ! * fexpensive-optimizations: Optimize Options. (line 581) * fext-numeric-literals: C++ Dialect Options. ! (line 592) * fextended-identifiers: Preprocessor Options. ! (line 498) * fextern-tls-init: C++ Dialect Options. ! (line 122) ! * ffast-math: Optimize Options. (line 1966) ! * ffat-lto-objects: Optimize Options. (line 1835) ! * ffinite-math-only: Optimize Options. (line 2040) * ffix-and-continue: Darwin Options. (line 104) ! * ffixed: Code Gen Options. (line 332) * ffloat-store <1>: Disappointments. (line 77) + * ffloat-store: Optimize Options. (line 1929) * ffor-scope: C++ Dialect Options. ! (line 143) ! * fforward-propagate: Optimize Options. (line 179) ! * ffp-contract: Optimize Options. (line 188) ! * ffreestanding <1>: Function Attributes. ! (line 498) ! * ffreestanding <2>: Warning Options. (line 256) ! * ffreestanding <3>: C Dialect Options. (line 253) ! * ffreestanding: Standards. (line 93) * ffriend-injection: C++ Dialect Options. ! (line 92) ! * ffunction-sections: Optimize Options. (line 2238) ! * fgcse: Optimize Options. (line 441) ! * fgcse-after-reload: Optimize Options. (line 477) ! * fgcse-las: Optimize Options. (line 470) ! * fgcse-lm: Optimize Options. (line 452) ! * fgcse-sm: Optimize Options. (line 461) * fgnu-runtime: Objective-C and Objective-C++ Dialect Options. (line 39) ! * fgnu-tm: C Dialect Options. (line 285) ! * fgnu89-inline: C Dialect Options. (line 154) ! * fgraphite-identity: Optimize Options. (line 1084) ! * fhosted: C Dialect Options. (line 246) ! * fif-conversion: Optimize Options. (line 520) ! * fif-conversion2: Optimize Options. (line 529) * filelist: Darwin Options. (line 196) * findirect-data: Darwin Options. (line 104) ! * findirect-inlining: Optimize Options. (line 243) ! * finhibit-size-directive: Code Gen Options. (line 252) ! * finline-functions: Optimize Options. (line 251) ! * finline-functions-called-once: Optimize Options. (line 262) ! * finline-limit: Optimize Options. (line 287) ! * finline-small-functions: Optimize Options. (line 234) * finput-charset: Preprocessor Options. (line 567) * finstrument-functions <1>: Function Attributes. ! (line 1094) ! * finstrument-functions: Code Gen Options. (line 388) ! * finstrument-functions-exclude-file-list: Code Gen Options. (line 424) * finstrument-functions-exclude-function-list: Code Gen Options. ! (line 444) ! * fipa-cp: Optimize Options. (line 909) ! * fipa-cp-clone: Optimize Options. (line 917) ! * fipa-profile: Optimize Options. (line 901) ! * fipa-pta: Optimize Options. (line 895) ! * fipa-pure-const: Optimize Options. (line 887) ! * fipa-reference: Optimize Options. (line 891) ! * fipa-sra: Optimize Options. (line 280) ! * fira-hoist-pressure: Optimize Options. (line 639) ! * fira-loop-pressure: Optimize Options. (line 646) ! * fira-verbose: Optimize Options. (line 666) ! * fivopts: Optimize Options. (line 1180) * fkeep-inline-functions <1>: Inline. (line 51) ! * fkeep-inline-functions: Optimize Options. (line 319) ! * fkeep-static-consts: Optimize Options. (line 326) * flat_namespace: Darwin Options. (line 196) * flax-vector-conversions: C Dialect Options. (line 344) ! * fleading-underscore: Code Gen Options. (line 527) ! * flive-range-shrinkage: Optimize Options. (line 604) ! * floop-block: Optimize Options. (line 1055) ! * floop-interchange: Optimize Options. (line 1010) ! * floop-nest-optimize: Optimize Options. (line 1092) ! * floop-parallelize-all: Optimize Options. (line 1098) ! * floop-strip-mine: Optimize Options. (line 1034) ! * flto: Optimize Options. (line 1590) ! * flto-partition: Optimize Options. (line 1786) * fmax-errors: Warning Options. (line 18) ! * fmem-report: Debugging Options. (line 431) ! * fmem-report-wpa: Debugging Options. (line 435) ! * fmerge-all-constants: Optimize Options. (line 345) ! * fmerge-constants: Optimize Options. (line 335) ! * fmerge-debug-strings: Debugging Options. (line 396) * fmessage-length: Language Independent Options. (line 14) ! * fmodulo-sched: Optimize Options. (line 356) ! * fmodulo-sched-allow-regmoves: Optimize Options. (line 361) ! * fmove-loop-invariants: Optimize Options. (line 2228) ! * fms-extensions <1>: Unnamed Fields. (line 36) ! * fms-extensions <2>: C++ Dialect Options. ! (line 177) ! * fms-extensions: C Dialect Options. (line 300) * fnext-runtime: Objective-C and Objective-C++ Dialect Options. (line 43) * fno-access-control: C++ Dialect Options. ! (line 51) ! * fno-asm: C Dialect Options. (line 198) ! * fno-branch-count-reg: Optimize Options. (line 368) ! * fno-builtin <1>: Other Builtins. (line 14) * fno-builtin <2>: Function Attributes. ! (line 498) ! * fno-builtin <3>: Warning Options. (line 256) ! * fno-builtin: C Dialect Options. (line 212) * fno-canonical-system-headers: Preprocessor Options. ! (line 503) * fno-common <1>: Variable Attributes. ! (line 105) ! * fno-common: Code Gen Options. (line 229) ! * fno-compare-debug: Debugging Options. (line 283) * fno-debug-types-section: Debugging Options. (line 79) * fno-default-inline: Inline. (line 71) ! * fno-defer-pop: Optimize Options. (line 171) * fno-diagnostics-show-caret: Language Independent Options. (line 92) * fno-diagnostics-show-option: Language Independent Options. (line 86) ! * fno-dwarf2-cfi-asm: Debugging Options. (line 407) * fno-elide-constructors: C++ Dialect Options. ! (line 105) ! * fno-eliminate-unused-debug-types: Debugging Options. (line 1454) * fno-enforce-eh-specs: C++ Dialect Options. ! (line 111) * fno-ext-numeric-literals: C++ Dialect Options. ! (line 592) * fno-extern-tls-init: C++ Dialect Options. ! (line 122) * fno-for-scope: C++ Dialect Options. ! (line 143) ! * fno-function-cse: Optimize Options. (line 378) * fno-gnu-keywords: C++ Dialect Options. ! (line 155) * fno-gnu-unique: Code Gen Options. (line 152) ! * fno-guess-branch-probability: Optimize Options. (line 1357) ! * fno-ident: Code Gen Options. (line 249) * fno-implement-inlines <1>: C++ Interface. (line 75) + * fno-implement-inlines: C++ Dialect Options. + (line 172) * fno-implicit-inline-templates: C++ Dialect Options. ! (line 166) * fno-implicit-templates <1>: Template Instantiation. (line 78) ! * fno-implicit-templates: C++ Dialect Options. ! (line 160) ! * fno-inline: Optimize Options. (line 226) ! * fno-ira-share-save-slots: Optimize Options. (line 654) ! * fno-ira-share-spill-slots: Optimize Options. (line 660) ! * fno-jump-tables: Code Gen Options. (line 324) ! * fno-lifetime-dse: Optimize Options. (line 595) ! * fno-math-errno: Optimize Options. (line 1980) ! * fno-merge-debug-strings: Debugging Options. (line 396) * fno-nil-receivers: Objective-C and Objective-C++ Dialect Options. (line 49) * fno-nonansi-builtins: C++ Dialect Options. ! (line 182) * fno-operator-names: C++ Dialect Options. ! (line 198) * fno-optional-diags: C++ Dialect Options. ! (line 202) ! * fno-peephole: Optimize Options. (line 1348) ! * fno-peephole2: Optimize Options. (line 1348) * fno-pretty-templates: C++ Dialect Options. ! (line 212) * fno-rtti: C++ Dialect Options. ! (line 229) ! * fno-sched-interblock: Optimize Options. (line 698) ! * fno-sched-spec: Optimize Options. (line 703) * fno-set-stack-executable: i386 and x86-64 Windows Options. (line 46) * fno-show-column: Preprocessor Options. ! (line 592) * fno-signed-bitfields: C Dialect Options. (line 377) ! * fno-signed-zeros: Optimize Options. (line 2052) ! * fno-stack-limit: Code Gen Options. (line 495) * fno-threadsafe-statics: C++ Dialect Options. ! (line 266) ! * fno-toplevel-reorder: Optimize Options. (line 1556) ! * fno-trapping-math: Optimize Options. (line 2062) * fno-unsigned-bitfields: C Dialect Options. (line 377) * fno-use-cxa-get-exception-ptr: C++ Dialect Options. ! (line 279) ! * fno-var-tracking-assignments: Debugging Options. (line 1362) ! * fno-var-tracking-assignments-toggle: Debugging Options. (line 1371) * fno-weak: C++ Dialect Options. ! (line 391) * fno-working-directory: Preprocessor Options. (line 577) * fno-writable-relocated-rdata: i386 and x86-64 Windows Options. (line 53) ! * fno-zero-initialized-in-bss: Optimize Options. (line 389) ! * fnon-call-exceptions: Code Gen Options. (line 122) * fnothrow-opt: C++ Dialect Options. ! (line 187) * fobjc-abi-version: Objective-C and Objective-C++ Dialect Options. (line 56) * fobjc-call-cxx-cdtors: Objective-C and Objective-C++ Dialect Options. *************** look up both forms. *** 52625,52857 **** (line 111) * fobjc-std: Objective-C and Objective-C++ Dialect Options. (line 120) ! * fomit-frame-pointer: Optimize Options. (line 198) * fopenmp: C Dialect Options. (line 263) ! * fopenmp-simd: C Dialect Options. (line 272) ! * fopt-info: Debugging Options. (line 1138) ! * foptimize-sibling-calls: Optimize Options. (line 219) * force_cpusubtype_ALL: Darwin Options. (line 135) * force_flat_namespace: Darwin Options. (line 196) ! * fpack-struct: Code Gen Options. (line 373) ! * fpartial-inlining: Optimize Options. (line 1317) ! * fpcc-struct-return: Code Gen Options. (line 165) * fpcc-struct-return <1>: Incompatibilities. (line 170) * fpch-deps: Preprocessor Options. ! (line 296) * fpch-preprocess: Preprocessor Options. ! (line 304) ! * fpeel-loops: Optimize Options. (line 2215) * fpermissive: C++ Dialect Options. ! (line 205) ! * fpic: Code Gen Options. (line 279) ! * fPIC: Code Gen Options. (line 300) ! * fpie: Code Gen Options. (line 313) ! * fPIE: Code Gen Options. (line 313) ! * fplan9-extensions: Unnamed Fields. (line 43) * fplugin: Overall Options. (line 351) ! * fplugin-arg: Overall Options. (line 358) ! * fpost-ipa-mem-report: Debugging Options. (line 444) ! * fpre-ipa-mem-report: Debugging Options. (line 443) ! * fpredictive-commoning: Optimize Options. (line 1324) ! * fprefetch-loop-arrays: Optimize Options. (line 1331) * fpreprocessed: Preprocessor Options. ! (line 508) ! * fprofile-arcs: Debugging Options. (line 481) ! * fprofile-arcs <1>: Other Builtins. (line 253) ! * fprofile-correction: Optimize Options. (line 1870) ! * fprofile-dir: Optimize Options. (line 1877) ! * fprofile-generate: Optimize Options. (line 1888) ! * fprofile-reorder-functions: Optimize Options. (line 2165) ! * fprofile-report: Debugging Options. (line 448) ! * fprofile-use: Optimize Options. (line 1902) ! * fprofile-values: Optimize Options. (line 2156) * fpu: RX Options. (line 17) ! * frandom-seed: Debugging Options. (line 1230) ! * freciprocal-math: Optimize Options. (line 2026) ! * frecord-gcc-switches: Code Gen Options. (line 267) ! * free: Optimize Options. (line 582) * freg-struct-return: Code Gen Options. (line 183) ! * frename-registers: Optimize Options. (line 2182) ! * freorder-blocks: Optimize Options. (line 1368) ! * freorder-blocks-and-partition: Optimize Options. (line 1374) ! * freorder-functions: Optimize Options. (line 1387) * freplace-objc-classes: Objective-C and Objective-C++ Dialect Options. (line 131) - * frepo: C++ Dialect Options. - (line 222) * frepo <1>: Template Instantiation. (line 54) ! * frerun-cse-after-loop: Optimize Options. (line 431) ! * freschedule-modulo-scheduled-loops: Optimize Options. (line 791) ! * frounding-math: Optimize Options. (line 2073) * fsanitize=address: Debugging Options. (line 187) ! * fsanitize=integer-divide-by-zero: Debugging Options. (line 233) ! * fsanitize=kernel-address: Debugging Options. (line 197) ! * fsanitize=leak: Debugging Options. (line 211) ! * fsanitize=null: Debugging Options. (line 252) ! * fsanitize=return: Debugging Options. (line 260) ! * fsanitize=shift: Debugging Options. (line 226) ! * fsanitize=signed-integer-overflow: Debugging Options. (line 267) ! * fsanitize=thread: Debugging Options. (line 202) ! * fsanitize=undefined: Debugging Options. (line 221) * fsanitize=unreachable: Debugging Options. (line 238) ! * fsanitize=vla-bound: Debugging Options. (line 245) ! * fsched-critical-path-heuristic: Optimize Options. (line 757) ! * fsched-dep-count-heuristic: Optimize Options. (line 784) ! * fsched-group-heuristic: Optimize Options. (line 751) ! * fsched-last-insn-heuristic: Optimize Options. (line 777) ! * fsched-pressure: Optimize Options. (line 702) ! * fsched-rank-heuristic: Optimize Options. (line 770) ! * fsched-spec-insn-heuristic: Optimize Options. (line 763) ! * fsched-spec-load: Optimize Options. (line 711) ! * fsched-spec-load-dangerous: Optimize Options. (line 716) ! * fsched-stalled-insns: Optimize Options. (line 722) ! * fsched-stalled-insns-dep: Optimize Options. (line 732) ! * fsched-verbose: Debugging Options. (line 1240) ! * fsched2-use-superblocks: Optimize Options. (line 741) ! * fschedule-insns: Optimize Options. (line 673) ! * fschedule-insns2: Optimize Options. (line 683) ! * fsection-anchors: Optimize Options. (line 2283) ! * fsel-sched-pipelining: Optimize Options. (line 804) ! * fsel-sched-pipelining-outer-loops: Optimize Options. (line 809) ! * fselective-scheduling: Optimize Options. (line 796) ! * fselective-scheduling2: Optimize Options. (line 800) * fshort-double: Code Gen Options. (line 211) ! * fshort-enums: Code Gen Options. (line 201) ! * fshort-enums <1>: Structures unions enumerations and bit-fields implementation. ! (line 48) * fshort-enums <2>: Type Attributes. (line 113) ! * fshort-enums <3>: Non-bugs. (line 42) * fshort-wchar: Code Gen Options. (line 219) ! * fshrink-wrap: Optimize Options. (line 814) ! * fsignaling-nans: Optimize Options. (line 2093) ! * fsigned-bitfields: C Dialect Options. (line 377) * fsigned-bitfields <1>: Non-bugs. (line 57) ! * fsigned-char: C Dialect Options. (line 367) * fsigned-char <1>: Characters implementation. (line 31) ! * fsimd-cost-model: Optimize Options. (line 1265) ! * fsingle-precision-constant: Optimize Options. (line 2108) ! * fsplit-ivs-in-unroller: Optimize Options. (line 1298) ! * fsplit-stack: Code Gen Options. (line 506) * fsplit-stack <1>: Function Attributes. ! (line 1094) ! * fsplit-wide-types: Optimize Options. (line 406) ! * fstack-check: Code Gen Options. (line 454) ! * fstack-limit-register: Code Gen Options. (line 492) ! * fstack-limit-symbol: Code Gen Options. (line 492) ! * fstack-protector: Optimize Options. (line 2266) ! * fstack-protector-all: Optimize Options. (line 2275) ! * fstack-protector-strong: Optimize Options. (line 2278) ! * fstack-usage: Debugging Options. (line 452) * fstack_reuse: Code Gen Options. (line 21) * fstats: C++ Dialect Options. ! (line 237) ! * fstrict-aliasing: Optimize Options. (line 1400) * fstrict-enums: C++ Dialect Options. ! (line 242) ! * fstrict-overflow: Optimize Options. (line 1446) ! * fstrict-volatile-bitfields: Code Gen Options. (line 612) ! * fsync-libcalls: Code Gen Options. (line 644) * fsyntax-only: Warning Options. (line 14) * ftabstop: Preprocessor Options. ! (line 521) * ftemplate-backtrace-limit: C++ Dialect Options. ! (line 251) * ftemplate-depth: C++ Dialect Options. ! (line 255) * ftest-coverage: Debugging Options. (line 536) ! * fthread-jumps: Optimize Options. (line 397) ! * ftime-report: Debugging Options. (line 431) ! * ftls-model: Code Gen Options. (line 535) ! * ftracer: Optimize Options. (line 1281) ! * ftracer <1>: Optimize Options. (line 2192) * ftrack-macro-expansion: Preprocessor Options. (line 536) ! * ftrapv: Code Gen Options. (line 97) ! * ftree-bit-ccp: Optimize Options. (line 939) ! * ftree-builtin-call-dce: Optimize Options. (line 967) ! * ftree-ccp: Optimize Options. (line 945) ! * ftree-ch: Optimize Options. (line 987) ! * ftree-coalesce-inlined-vars: Optimize Options. (line 1205) ! * ftree-coalesce-vars: Optimize Options. (line 1215) ! * ftree-copy-prop: Optimize Options. (line 876) ! * ftree-copyrename: Optimize Options. (line 1198) ! * ftree-dce: Optimize Options. (line 963) ! * ftree-dominator-opts: Optimize Options. (line 973) ! * ftree-dse: Optimize Options. (line 980) ! * ftree-forwprop: Optimize Options. (line 855) ! * ftree-fre: Optimize Options. (line 859) ! * ftree-loop-im: Optimize Options. (line 1159) ! * ftree-loop-ivcanon: Optimize Options. (line 1168) ! * ftree-loop-linear: Optimize Options. (line 998) ! * ftree-loop-optimize: Optimize Options. (line 994) ! * ftree-loop-vectorize: Optimize Options. (line 1243) ! * ftree-parallelize-loops: Optimize Options. (line 1179) ! * ftree-partial-pre: Optimize Options. (line 851) ! * ftree-phiprop: Optimize Options. (line 866) ! * ftree-pre: Optimize Options. (line 847) ! * ftree-pta: Optimize Options. (line 1188) ! * ftree-reassoc: Optimize Options. (line 843) ! * ftree-sink: Optimize Options. (line 935) ! * ftree-slp-vectorize: Optimize Options. (line 1247) ! * ftree-slsr: Optimize Options. (line 1232) ! * ftree-sra: Optimize Options. (line 1192) ! * ftree-ter: Optimize Options. (line 1224) ! * ftree-vectorize: Optimize Options. (line 1238) ! * ftree-vrp: Optimize Options. (line 1272) ! * funit-at-a-time: Optimize Options. (line 1543) ! * funroll-all-loops: Optimize Options. (line 1292) ! * funroll-all-loops <1>: Optimize Options. (line 2209) ! * funroll-loops: Optimize Options. (line 1286) ! * funroll-loops <1>: Optimize Options. (line 2199) ! * funsafe-loop-optimizations: Optimize Options. (line 487) ! * funsafe-math-optimizations: Optimize Options. (line 1991) ! * funsigned-bitfields: C Dialect Options. (line 377) ! * funsigned-bitfields <1>: Structures unions enumerations and bit-fields implementation. (line 17) ! * funsigned-bitfields <2>: Non-bugs. (line 57) ! * funsigned-char: C Dialect Options. (line 349) * funsigned-char <1>: Characters implementation. (line 31) ! * funswitch-loops: Optimize Options. (line 2227) * funwind-tables: Code Gen Options. (line 139) * fuse-cxa-atexit: C++ Dialect Options. ! (line 270) ! * fuse-ld=bfd: Optimize Options. (line 1857) ! * fuse-ld=gold: Optimize Options. (line 1860) ! * fvar-tracking: Debugging Options. (line 1326) ! * fvar-tracking-assignments: Debugging Options. (line 1336) ! * fvar-tracking-assignments-toggle: Debugging Options. (line 1345) ! * fvariable-expansion-in-unroller: Optimize Options. (line 1312) ! * fvect-cost-model: Optimize Options. (line 1251) ! * fverbose-asm: Code Gen Options. (line 258) ! * fvisibility: Code Gen Options. (line 546) * fvisibility-inlines-hidden: C++ Dialect Options. ! (line 282) * fvisibility-ms-compat: C++ Dialect Options. ! (line 310) ! * fvpt: Optimize Options. (line 2172) * fvtable-verify: C++ Dialect Options. ! (line 339) * fvtv-counts: C++ Dialect Options. ! (line 374) ! * fweb: Optimize Options. (line 1562) ! * fwhole-program: Optimize Options. (line 1573) * fwide-exec-charset: Preprocessor Options. (line 559) * fworking-directory: Preprocessor Options. (line 577) ! * fwrapv: Code Gen Options. (line 101) * fzero-link: Objective-C and Objective-C++ Dialect Options. (line 141) ! * g: Debugging Options. (line 10) * G: M32R/D Options. (line 57) ! * G <1>: MIPS Options. (line 393) ! * G <2>: Nios II Options. (line 9) ! * G <3>: RS/6000 and PowerPC Options. ! (line 742) ! * G <4>: System V Options. (line 10) * gcoff: Debugging Options. (line 94) * gdwarf-VERSION: Debugging Options. (line 112) * gen-decls: Objective-C and Objective-C++ Dialect Options. --- 53065,53294 ---- (line 111) * fobjc-std: Objective-C and Objective-C++ Dialect Options. (line 120) ! * fomit-frame-pointer: Optimize Options. (line 199) * fopenmp: C Dialect Options. (line 263) ! * fopenmp-simd: C Dialect Options. (line 271) ! * fopt-info: Debugging Options. (line 1157) ! * foptimize-sibling-calls: Optimize Options. (line 221) * force_cpusubtype_ALL: Darwin Options. (line 135) * force_flat_namespace: Darwin Options. (line 196) ! * fpack-struct: Code Gen Options. (line 375) ! * fpartial-inlining: Optimize Options. (line 1323) * fpcc-struct-return <1>: Incompatibilities. (line 170) + * fpcc-struct-return: Code Gen Options. (line 165) * fpch-deps: Preprocessor Options. ! (line 294) * fpch-preprocess: Preprocessor Options. ! (line 302) ! * fpeel-loops: Optimize Options. (line 2220) * fpermissive: C++ Dialect Options. ! (line 207) ! * fPIC: Code Gen Options. (line 301) ! * fpic: Code Gen Options. (line 280) ! * fPIE: Code Gen Options. (line 314) ! * fpie: Code Gen Options. (line 314) ! * fplan9-extensions: Unnamed Fields. (line 44) * fplugin: Overall Options. (line 351) ! * fplugin-arg: Overall Options. (line 359) ! * fpost-ipa-mem-report: Debugging Options. (line 441) ! * fpre-ipa-mem-report: Debugging Options. (line 439) ! * fpredictive-commoning: Optimize Options. (line 1330) ! * fprefetch-loop-arrays: Optimize Options. (line 1337) * fpreprocessed: Preprocessor Options. ! (line 507) ! * fprofile-arcs <1>: Other Builtins. (line 257) ! * fprofile-arcs: Debugging Options. (line 480) ! * fprofile-correction: Optimize Options. (line 1879) ! * fprofile-dir: Optimize Options. (line 1886) ! * fprofile-generate: Optimize Options. (line 1896) ! * fprofile-reorder-functions: Optimize Options. (line 2170) ! * fprofile-report: Debugging Options. (line 445) ! * fprofile-use: Optimize Options. (line 1909) ! * fprofile-values: Optimize Options. (line 2161) * fpu: RX Options. (line 17) ! * frandom-seed: Debugging Options. (line 1256) ! * freciprocal-math: Optimize Options. (line 2031) ! * frecord-gcc-switches: Code Gen Options. (line 268) ! * free: Optimize Options. (line 587) * freg-struct-return: Code Gen Options. (line 183) ! * frename-registers: Optimize Options. (line 2187) ! * freorder-blocks: Optimize Options. (line 1374) ! * freorder-blocks-and-partition: Optimize Options. (line 1380) ! * freorder-functions: Optimize Options. (line 1393) * freplace-objc-classes: Objective-C and Objective-C++ Dialect Options. (line 131) * frepo <1>: Template Instantiation. (line 54) ! * frepo: C++ Dialect Options. ! (line 224) ! * frerun-cse-after-loop: Optimize Options. (line 435) ! * freschedule-modulo-scheduled-loops: Optimize Options. (line 797) ! * frounding-math: Optimize Options. (line 2077) * fsanitize=address: Debugging Options. (line 187) ! * fsanitize=integer-divide-by-zero: Debugging Options. (line 234) ! * fsanitize=kernel-address: Debugging Options. (line 199) ! * fsanitize=leak: Debugging Options. (line 213) ! * fsanitize=null: Debugging Options. (line 250) ! * fsanitize=return: Debugging Options. (line 257) ! * fsanitize=shift: Debugging Options. (line 228) ! * fsanitize=signed-integer-overflow: Debugging Options. (line 263) ! * fsanitize=thread: Debugging Options. (line 204) ! * fsanitize=undefined: Debugging Options. (line 223) * fsanitize=unreachable: Debugging Options. (line 238) ! * fsanitize=vla-bound: Debugging Options. (line 244) ! * fsched-critical-path-heuristic: Optimize Options. (line 763) ! * fsched-dep-count-heuristic: Optimize Options. (line 790) ! * fsched-group-heuristic: Optimize Options. (line 757) ! * fsched-last-insn-heuristic: Optimize Options. (line 783) ! * fsched-pressure: Optimize Options. (line 708) ! * fsched-rank-heuristic: Optimize Options. (line 776) ! * fsched-spec-insn-heuristic: Optimize Options. (line 769) ! * fsched-spec-load: Optimize Options. (line 717) ! * fsched-spec-load-dangerous: Optimize Options. (line 722) ! * fsched-stalled-insns: Optimize Options. (line 728) ! * fsched-stalled-insns-dep: Optimize Options. (line 738) ! * fsched-verbose: Debugging Options. (line 1266) ! * fsched2-use-superblocks: Optimize Options. (line 747) ! * fschedule-insns: Optimize Options. (line 679) ! * fschedule-insns2: Optimize Options. (line 689) ! * fsection-anchors: Optimize Options. (line 2288) ! * fsel-sched-pipelining: Optimize Options. (line 810) ! * fsel-sched-pipelining-outer-loops: Optimize Options. (line 815) ! * fselective-scheduling: Optimize Options. (line 802) ! * fselective-scheduling2: Optimize Options. (line 806) * fshort-double: Code Gen Options. (line 211) ! * fshort-enums <1>: Non-bugs. (line 42) * fshort-enums <2>: Type Attributes. (line 113) ! * fshort-enums <3>: Structures unions enumerations and bit-fields implementation. ! (line 48) ! * fshort-enums: Code Gen Options. (line 201) * fshort-wchar: Code Gen Options. (line 219) ! * fshrink-wrap: Optimize Options. (line 820) ! * fsignaling-nans: Optimize Options. (line 2097) * fsigned-bitfields <1>: Non-bugs. (line 57) ! * fsigned-bitfields: C Dialect Options. (line 377) * fsigned-char <1>: Characters implementation. (line 31) ! * fsigned-char: C Dialect Options. (line 367) ! * fsimd-cost-model: Optimize Options. (line 1271) ! * fsingle-precision-constant: Optimize Options. (line 2112) ! * fsplit-ivs-in-unroller: Optimize Options. (line 1304) * fsplit-stack <1>: Function Attributes. ! (line 1099) ! * fsplit-stack: Code Gen Options. (line 509) ! * fsplit-wide-types: Optimize Options. (line 410) ! * fstack-check: Code Gen Options. (line 456) ! * fstack-limit-register: Code Gen Options. (line 495) ! * fstack-limit-symbol: Code Gen Options. (line 495) ! * fstack-protector: Optimize Options. (line 2271) ! * fstack-protector-all: Optimize Options. (line 2280) ! * fstack-protector-strong: Optimize Options. (line 2283) ! * fstack-usage: Debugging Options. (line 449) * fstack_reuse: Code Gen Options. (line 21) * fstats: C++ Dialect Options. ! (line 239) ! * fstrict-aliasing: Optimize Options. (line 1406) * fstrict-enums: C++ Dialect Options. ! (line 244) ! * fstrict-overflow: Optimize Options. (line 1452) ! * fstrict-volatile-bitfields: Code Gen Options. (line 615) ! * fsync-libcalls: Code Gen Options. (line 648) * fsyntax-only: Warning Options. (line 14) * ftabstop: Preprocessor Options. ! (line 520) * ftemplate-backtrace-limit: C++ Dialect Options. ! (line 253) * ftemplate-depth: C++ Dialect Options. ! (line 257) * ftest-coverage: Debugging Options. (line 536) ! * fthread-jumps: Optimize Options. (line 401) ! * ftime-report: Debugging Options. (line 427) ! * ftls-model: Code Gen Options. (line 538) ! * ftracer: Optimize Options. (line 1287) * ftrack-macro-expansion: Preprocessor Options. (line 536) ! * ftrapv: Code Gen Options. (line 96) ! * ftree-bit-ccp: Optimize Options. (line 945) ! * ftree-builtin-call-dce: Optimize Options. (line 973) ! * ftree-ccp: Optimize Options. (line 951) ! * ftree-ch: Optimize Options. (line 993) ! * ftree-coalesce-inlined-vars: Optimize Options. (line 1211) ! * ftree-coalesce-vars: Optimize Options. (line 1221) ! * ftree-copy-prop: Optimize Options. (line 882) ! * ftree-copyrename: Optimize Options. (line 1204) ! * ftree-dce: Optimize Options. (line 969) ! * ftree-dominator-opts: Optimize Options. (line 979) ! * ftree-dse: Optimize Options. (line 986) ! * ftree-forwprop: Optimize Options. (line 861) ! * ftree-fre: Optimize Options. (line 865) ! * ftree-loop-im: Optimize Options. (line 1165) ! * ftree-loop-ivcanon: Optimize Options. (line 1174) ! * ftree-loop-linear: Optimize Options. (line 1004) ! * ftree-loop-optimize: Optimize Options. (line 1000) ! * ftree-loop-vectorize: Optimize Options. (line 1249) ! * ftree-parallelize-loops: Optimize Options. (line 1185) ! * ftree-partial-pre: Optimize Options. (line 857) ! * ftree-phiprop: Optimize Options. (line 872) ! * ftree-pre: Optimize Options. (line 853) ! * ftree-pta: Optimize Options. (line 1194) ! * ftree-reassoc: Optimize Options. (line 849) ! * ftree-sink: Optimize Options. (line 941) ! * ftree-slp-vectorize: Optimize Options. (line 1253) ! * ftree-slsr: Optimize Options. (line 1238) ! * ftree-sra: Optimize Options. (line 1198) ! * ftree-ter: Optimize Options. (line 1230) ! * ftree-vectorize: Optimize Options. (line 1244) ! * ftree-vrp: Optimize Options. (line 1278) ! * funit-at-a-time: Optimize Options. (line 1549) ! * funroll-all-loops: Optimize Options. (line 1298) ! * funroll-loops: Optimize Options. (line 1292) ! * funsafe-loop-optimizations: Optimize Options. (line 491) ! * funsafe-math-optimizations: Optimize Options. (line 1998) ! * funsigned-bitfields <1>: Non-bugs. (line 57) ! * funsigned-bitfields <2>: Structures unions enumerations and bit-fields implementation. (line 17) ! * funsigned-bitfields: C Dialect Options. (line 377) * funsigned-char <1>: Characters implementation. (line 31) ! * funsigned-char: C Dialect Options. (line 349) ! * funswitch-loops: Optimize Options. (line 2232) * funwind-tables: Code Gen Options. (line 139) * fuse-cxa-atexit: C++ Dialect Options. ! (line 272) ! * fuse-ld=bfd: Optimize Options. (line 1866) ! * fuse-ld=gold: Optimize Options. (line 1869) ! * fvar-tracking: Debugging Options. (line 1352) ! * fvar-tracking-assignments: Debugging Options. (line 1362) ! * fvar-tracking-assignments-toggle: Debugging Options. (line 1371) ! * fvariable-expansion-in-unroller: Optimize Options. (line 1318) ! * fvect-cost-model: Optimize Options. (line 1257) ! * fverbose-asm: Code Gen Options. (line 259) ! * fvisibility: Code Gen Options. (line 549) * fvisibility-inlines-hidden: C++ Dialect Options. ! (line 284) * fvisibility-ms-compat: C++ Dialect Options. ! (line 312) ! * fvpt: Optimize Options. (line 2177) * fvtable-verify: C++ Dialect Options. ! (line 341) * fvtv-counts: C++ Dialect Options. ! (line 376) ! * fweb: Optimize Options. (line 1568) ! * fwhole-program: Optimize Options. (line 1579) * fwide-exec-charset: Preprocessor Options. (line 559) * fworking-directory: Preprocessor Options. (line 577) ! * fwrapv: Code Gen Options. (line 100) * fzero-link: Objective-C and Objective-C++ Dialect Options. (line 141) ! * G <1>: System V Options. (line 10) ! * G <2>: RS/6000 and PowerPC Options. ! (line 751) ! * G <3>: Nios II Options. (line 9) ! * G <4>: MIPS Options. (line 395) * G: M32R/D Options. (line 57) ! * g: Debugging Options. (line 10) * gcoff: Debugging Options. (line 94) * gdwarf-VERSION: Debugging Options. (line 112) * gen-decls: Objective-C and Objective-C++ Dialect Options. *************** look up both forms. *** 52873,52934 **** * gxcoff: Debugging Options. (line 99) * gxcoff+: Debugging Options. (line 104) * H: Preprocessor Options. ! (line 707) * headerpad_max_install_names: Darwin Options. (line 196) - * help: Overall Options. (line 221) * help <1>: Preprocessor Options. ! (line 699) ! * hoist-adjacent-loads: Optimize Options. (line 870) * I: Preprocessor Options. (line 77) ! * I <1>: Directory Options. (line 10) * I-: Preprocessor Options. ! (line 389) ! * I- <1>: Directory Options. (line 116) * idirafter: Preprocessor Options. ! (line 431) * iframework: Darwin Options. (line 57) * imacros: Preprocessor Options. ! (line 422) * image_base: Darwin Options. (line 196) * imultilib: Preprocessor Options. ! (line 456) * include: Preprocessor Options. ! (line 411) * init: Darwin Options. (line 196) * install_name: Darwin Options. (line 196) ! * iplugindir=: Directory Options. (line 29) * iprefix: Preprocessor Options. ! (line 438) * iquote: Preprocessor Options. ! (line 468) ! * iquote <1>: Directory Options. (line 34) * isysroot: Preprocessor Options. ! (line 450) * isystem: Preprocessor Options. ! (line 460) * iwithprefix: Preprocessor Options. ! (line 444) * iwithprefixbefore: Preprocessor Options. ! (line 444) * keep_private_externs: Darwin Options. (line 196) * l: Link Options. (line 26) - * L: Directory Options. (line 40) * lobjc: Link Options. (line 53) * M: Preprocessor Options. (line 185) - * m: RS/6000 and PowerPC Options. - (line 584) * m1: SH Options. (line 9) * m10: PDP-11 Options. (line 29) * m128bit-long-double: i386 and x86-64 Options. ! (line 381) * m16: i386 and x86-64 Options. ! (line 940) ! * m16-bit: CRIS Options. (line 64) * m16-bit <1>: NDS32 Options. (line 39) * m1reg-: Adapteva Epiphany Options. ! (line 131) * m2: SH Options. (line 12) * m210: MCore Options. (line 43) * m2a: SH Options. (line 30) --- 53310,53371 ---- * gxcoff: Debugging Options. (line 99) * gxcoff+: Debugging Options. (line 104) * H: Preprocessor Options. ! (line 710) * headerpad_max_install_names: Darwin Options. (line 196) * help <1>: Preprocessor Options. ! (line 702) ! * help: Overall Options. (line 221) ! * hoist-adjacent-loads: Optimize Options. (line 876) ! * I <1>: Directory Options. (line 10) * I: Preprocessor Options. (line 77) ! * I- <1>: Directory Options. (line 118) * I-: Preprocessor Options. ! (line 387) * idirafter: Preprocessor Options. ! (line 429) * iframework: Darwin Options. (line 57) * imacros: Preprocessor Options. ! (line 420) * image_base: Darwin Options. (line 196) * imultilib: Preprocessor Options. ! (line 454) * include: Preprocessor Options. ! (line 409) * init: Darwin Options. (line 196) * install_name: Darwin Options. (line 196) ! * iplugindir=: Directory Options. (line 31) * iprefix: Preprocessor Options. ! (line 436) ! * iquote <1>: Directory Options. (line 36) * iquote: Preprocessor Options. ! (line 466) * isysroot: Preprocessor Options. ! (line 448) * isystem: Preprocessor Options. ! (line 458) * iwithprefix: Preprocessor Options. ! (line 442) * iwithprefixbefore: Preprocessor Options. ! (line 442) * keep_private_externs: Darwin Options. (line 196) + * L: Directory Options. (line 42) * l: Link Options. (line 26) * lobjc: Link Options. (line 53) + * m: RS/6000 and PowerPC Options. + (line 592) * M: Preprocessor Options. (line 185) * m1: SH Options. (line 9) * m10: PDP-11 Options. (line 29) * m128bit-long-double: i386 and x86-64 Options. ! (line 389) * m16: i386 and x86-64 Options. ! (line 950) * m16-bit <1>: NDS32 Options. (line 39) + * m16-bit: CRIS Options. (line 64) * m1reg-: Adapteva Epiphany Options. ! (line 132) * m2: SH Options. (line 12) * m210: MCore Options. (line 43) * m2a: SH Options. (line 30) *************** look up both forms. *** 52937,52950 **** * m2a-single-only: SH Options. (line 22) * m3: SH Options. (line 34) * m31: S/390 and zSeries Options. ! (line 86) * m32: i386 and x86-64 Options. ! (line 940) ! * m32 <1>: RS/6000 and PowerPC Options. ! (line 277) ! * m32 <2>: SPARC Options. (line 256) ! * m32 <3>: TILE-Gx Options. (line 23) ! * m32 <4>: TILEPro Options. (line 13) * m32-bit: CRIS Options. (line 64) * m32bit-doubles: RX Options. (line 10) * m32r: M32R/D Options. (line 15) --- 53374,53387 ---- * m2a-single-only: SH Options. (line 22) * m3: SH Options. (line 34) * m31: S/390 and zSeries Options. ! (line 87) ! * m32 <1>: TILEPro Options. (line 13) ! * m32 <2>: TILE-Gx Options. (line 23) ! * m32 <3>: SPARC Options. (line 257) ! * m32 <4>: RS/6000 and PowerPC Options. ! (line 284) * m32: i386 and x86-64 Options. ! (line 950) * m32-bit: CRIS Options. (line 64) * m32bit-doubles: RX Options. (line 10) * m32r: M32R/D Options. (line 15) *************** look up both forms. *** 52952,52958 **** * m32rx: M32R/D Options. (line 12) * m340: MCore Options. (line 43) * m3dnow: i386 and x86-64 Options. ! (line 629) * m3e: SH Options. (line 37) * m4: SH Options. (line 51) * m4-100: SH Options. (line 54) --- 53389,53395 ---- * m32rx: M32R/D Options. (line 12) * m340: MCore Options. (line 43) * m3dnow: i386 and x86-64 Options. ! (line 636) * m3e: SH Options. (line 37) * m4: SH Options. (line 51) * m4-100: SH Options. (line 54) *************** look up both forms. *** 52986,53251 **** * m5-64media-nofpu: SH Options. (line 136) * m5-compact: SH Options. (line 140) * m5-compact-nofpu: SH Options. (line 143) ! * m5200: M680x0 Options. (line 144) ! * m5206e: M680x0 Options. (line 153) ! * m528x: M680x0 Options. (line 157) ! * m5307: M680x0 Options. (line 161) ! * m5407: M680x0 Options. (line 165) * m64: i386 and x86-64 Options. ! (line 940) ! * m64 <1>: RS/6000 and PowerPC Options. ! (line 277) ! * m64 <2>: S/390 and zSeries Options. ! (line 86) ! * m64 <3>: SPARC Options. (line 256) ! * m64 <4>: TILE-Gx Options. (line 23) * m64bit-doubles: RX Options. (line 10) ! * m68000: M680x0 Options. (line 93) ! * m68010: M680x0 Options. (line 101) ! * m68020: M680x0 Options. (line 107) ! * m68020-40: M680x0 Options. (line 175) ! * m68020-60: M680x0 Options. (line 184) ! * m68030: M680x0 Options. (line 112) ! * m68040: M680x0 Options. (line 117) ! * m68060: M680x0 Options. (line 126) ! * m68881: M680x0 Options. (line 194) * m8-bit: CRIS Options. (line 64) * m8byte-align: V850 Options. (line 170) * m96bit-long-double: i386 and x86-64 Options. ! (line 381) * mA6: ARC Options. (line 19) * mA7: ARC Options. (line 26) ! * mabi: AArch64 Options. (line 9) ! * mabi <1>: ARM Options. (line 10) * mabi <2>: i386 and x86-64 Options. ! (line 799) ! * mabi <3>: RS/6000 and PowerPC Options. ! (line 611) ! * mabi=32: MIPS Options. (line 138) ! * mabi=64: MIPS Options. (line 138) ! * mabi=eabi: MIPS Options. (line 138) * mabi=elfv1: RS/6000 and PowerPC Options. ! (line 632) * mabi=elfv2: RS/6000 and PowerPC Options. ! (line 638) * mabi=gnu: MMIX Options. (line 20) * mabi=ibmlongdouble: RS/6000 and PowerPC Options. ! (line 624) * mabi=ieeelongdouble: RS/6000 and PowerPC Options. ! (line 628) * mabi=mmixware: MMIX Options. (line 20) ! * mabi=n32: MIPS Options. (line 138) * mabi=no-spe: RS/6000 and PowerPC Options. ! (line 621) ! * mabi=o64: MIPS Options. (line 138) * mabi=spe: RS/6000 and PowerPC Options. ! (line 616) ! * mabicalls: MIPS Options. (line 162) * mabort-on-noreturn: ARM Options. (line 196) ! * mabs=2008: MIPS Options. (line 260) ! * mabs=legacy: MIPS Options. (line 260) * mabsdiff: MeP Options. (line 7) * mabshi: PDP-11 Options. (line 55) * mac0: PDP-11 Options. (line 16) ! * macc-4: FRV Options. (line 139) ! * macc-8: FRV Options. (line 143) ! * maccumulate-args: AVR Options. (line 137) * maccumulate-outgoing-args: i386 and x86-64 Options. ! (line 822) ! * maccumulate-outgoing-args <1>: SH Options. (line 395) * maddress-mode=long: i386 and x86-64 Options. ! (line 987) * maddress-mode=short: i386 and x86-64 Options. ! (line 992) ! * maddress-space-conversion: SPU Options. (line 68) * mads: RS/6000 and PowerPC Options. ! (line 666) * maix-struct-return: RS/6000 and PowerPC Options. ! (line 604) * maix32: RS/6000 and PowerPC Options. ! (line 315) * maix64: RS/6000 and PowerPC Options. ! (line 315) * malign-300: H8/300 Options. (line 41) ! * malign-call: ARC Options. (line 192) * malign-double: i386 and x86-64 Options. ! (line 366) ! * malign-int: M680x0 Options. (line 263) ! * malign-labels: FRV Options. (line 128) * malign-loops: M32R/D Options. (line 73) * malign-natural: RS/6000 and PowerPC Options. ! (line 353) * malign-power: RS/6000 and PowerPC Options. ! (line 353) * mall-opts: MeP Options. (line 11) ! * malloc-cc: FRV Options. (line 31) * maltivec: RS/6000 and PowerPC Options. ! (line 135) * maltivec=be: RS/6000 and PowerPC Options. ! (line 151) * maltivec=le: RS/6000 and PowerPC Options. ! (line 161) * mam33: MN10300 Options. (line 17) * mam33-2: MN10300 Options. (line 24) * mam34: MN10300 Options. (line 27) * mandroid: GNU/Linux Options. (line 21) ! * mannotate-align: ARC Options. (line 133) * mapcs: ARM Options. (line 22) * mapcs-frame: ARM Options. (line 14) - * mapp-regs: SPARC Options. (line 10) * mapp-regs <1>: V850 Options. (line 181) * mARC600: ARC Options. (line 19) * mARC601: ARC Options. (line 23) * mARC700: ARC Options. (line 26) ! * march: AArch64 Options. (line 79) ! * march <1>: ARM Options. (line 75) ! * march <2>: C6X Options. (line 7) ! * march <3>: CRIS Options. (line 10) ! * march <4>: HPPA Options. (line 9) ! * march <5>: HPPA Options. (line 156) ! * march <6>: i386 and x86-64 Options. (line 10) ! * march <7>: M680x0 Options. (line 12) ! * march <8>: MIPS Options. (line 14) ! * march <9>: NDS32 Options. (line 58) ! * march <10>: S/390 and zSeries Options. ! (line 114) ! * marclinux: ARC Options. (line 139) ! * marclinux_prof: ARC Options. (line 146) ! * margonaut: ARC Options. (line 341) * marm: ARM Options. (line 266) * mas100-syntax: RX Options. (line 76) * masm-hex: MSP430 Options. (line 9) * masm=DIALECT: i386 and x86-64 Options. ! (line 322) * matomic-model=MODEL: SH Options. (line 214) ! * matomic-updates: SPU Options. (line 83) ! * mauto-modify-reg: ARC Options. (line 195) * mauto-pic: IA-64 Options. (line 50) * maverage: MeP Options. (line 16) * mavoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 423) * max-vect-align: Adapteva Epiphany Options. ! (line 119) * mb: SH Options. (line 147) * mbackchain: S/390 and zSeries Options. (line 35) * mbarrel-shift-enabled: LM32 Options. (line 9) * mbarrel-shifter: ARC Options. (line 10) ! * mbarrel_shifter: ARC Options. (line 361) ! * mbase-addresses: MMIX Options. (line 53) * mbased=: MeP Options. (line 20) ! * mbbit-peephole: ARC Options. (line 198) * mbcopy: PDP-11 Options. (line 36) * mbcopy-builtin: PDP-11 Options. (line 32) * mbig: RS/6000 and PowerPC Options. ! (line 503) ! * mbig-endian: AArch64 Options. (line 20) ! * mbig-endian <1>: ARC Options. (line 344) ! * mbig-endian <2>: ARM Options. (line 62) ! * mbig-endian <3>: C6X Options. (line 13) ! * mbig-endian <4>: IA-64 Options. (line 9) * mbig-endian <5>: MCore Options. (line 39) ! * mbig-endian <6>: MicroBlaze Options. (line 57) ! * mbig-endian <7>: NDS32 Options. (line 9) ! * mbig-endian <8>: RS/6000 and PowerPC Options. ! (line 503) ! * mbig-endian <9>: TILE-Gx Options. (line 29) * mbig-endian-data: RX Options. (line 42) * mbig-switch: V850 Options. (line 176) * mbigtable: SH Options. (line 162) * mbionic: GNU/Linux Options. (line 17) * mbit-align: RS/6000 and PowerPC Options. ! (line 455) * mbit-ops: CR16 Options. (line 25) ! * mbitfield: M680x0 Options. (line 231) ! * mbitops: MeP Options. (line 26) * mbitops <1>: SH Options. (line 166) * mblock-move-inline-limit: RS/6000 and PowerPC Options. ! (line 736) * mbranch-cheap: PDP-11 Options. (line 65) * mbranch-cost: Adapteva Epiphany Options. (line 18) ! * mbranch-cost <1>: AVR Options. (line 152) ! * mbranch-cost <2>: MIPS Options. (line 701) ! * mbranch-cost=NUM: SH Options. (line 459) * mbranch-cost=NUMBER: M32R/D Options. (line 82) * mbranch-expensive: PDP-11 Options. (line 61) ! * mbranch-hints: SPU Options. (line 29) ! * mbranch-likely: MIPS Options. (line 708) ! * mbranch-predict: MMIX Options. (line 48) * mbss-plt: RS/6000 and PowerPC Options. ! (line 188) * mbuild-constants: DEC Alpha Options. (line 141) * mbwx: DEC Alpha Options. (line 163) * mbypass-cache: Nios II Options. (line 34) ! * mc68000: M680x0 Options. (line 93) ! * mc68020: M680x0 Options. (line 107) * mc=: MeP Options. (line 31) * mcache-block-size: NDS32 Options. (line 54) ! * mcache-size: SPU Options. (line 75) * mcache-volatile: Nios II Options. (line 40) * mcall-eabi: RS/6000 and PowerPC Options. ! (line 578) * mcall-freebsd: RS/6000 and PowerPC Options. ! (line 592) * mcall-linux: RS/6000 and PowerPC Options. - (line 588) - * mcall-netbsd: RS/6000 and PowerPC Options. (line 596) ! * mcall-netbsd <1>: RS/6000 and PowerPC Options. ! (line 600) ! * mcall-prologues: AVR Options. (line 157) * mcall-sysv: RS/6000 and PowerPC Options. - (line 570) - * mcall-sysv-eabi: RS/6000 and PowerPC Options. (line 578) * mcall-sysv-noeabi: RS/6000 and PowerPC Options. ! (line 581) ! * mcallee-super-interworking: ARM Options. (line 285) ! * mcaller-super-interworking: ARM Options. (line 292) * mcallgraph-data: MCore Options. (line 31) ! * mcase-vector-pcrel: ARC Options. (line 206) ! * mcbcond: SPARC Options. (line 223) ! * mcc-init: CRIS Options. (line 42) ! * mcfv4e: M680x0 Options. (line 169) ! * mcheck-zero-division: MIPS Options. (line 503) * mcix: DEC Alpha Options. (line 163) * mcld: i386 and x86-64 Options. ! (line 672) * mclear-hwcap: Solaris 2 Options. (line 9) * mclip: MeP Options. (line 35) ! * mcmodel: SPARC Options. (line 261) * mcmodel=kernel: i386 and x86-64 Options. ! (line 971) ! * mcmodel=large: AArch64 Options. (line 44) ! * mcmodel=large <1>: i386 and x86-64 Options. ! (line 983) * mcmodel=large <2>: RS/6000 and PowerPC Options. ! (line 129) ! * mcmodel=large <3>: TILE-Gx Options. (line 14) ! * mcmodel=medium: i386 and x86-64 Options. ! (line 976) * mcmodel=medium <1>: RS/6000 and PowerPC Options. ! (line 125) ! * mcmodel=small: AArch64 Options. (line 38) ! * mcmodel=small <1>: i386 and x86-64 Options. ! (line 965) * mcmodel=small <2>: RS/6000 and PowerPC Options. ! (line 121) ! * mcmodel=small <3>: TILE-Gx Options. (line 9) * mcmodel=tiny: AArch64 Options. (line 31) * mcmov: NDS32 Options. (line 21) * mcmove: Adapteva Epiphany Options. (line 23) * mcmpb: RS/6000 and PowerPC Options. (line 27) ! * mcode-readable: MIPS Options. (line 463) ! * mcompact-casesi: ARC Options. (line 210) * mcompat-align-parm: RS/6000 and PowerPC Options. ! (line 892) ! * mcond-exec: FRV Options. (line 187) ! * mcond-move: FRV Options. (line 159) * mconfig=: MeP Options. (line 39) * mconsole: i386 and x86-64 Windows Options. (line 9) --- 53423,53685 ---- * m5-64media-nofpu: SH Options. (line 136) * m5-compact: SH Options. (line 140) * m5-compact-nofpu: SH Options. (line 143) ! * m5200: M680x0 Options. (line 147) ! * m5206e: M680x0 Options. (line 156) ! * m528x: M680x0 Options. (line 160) ! * m5307: M680x0 Options. (line 164) ! * m5407: M680x0 Options. (line 168) ! * m64 <1>: TILE-Gx Options. (line 23) ! * m64 <2>: SPARC Options. (line 257) ! * m64 <3>: S/390 and zSeries Options. ! (line 87) ! * m64 <4>: RS/6000 and PowerPC Options. ! (line 284) * m64: i386 and x86-64 Options. ! (line 950) * m64bit-doubles: RX Options. (line 10) ! * m68000: M680x0 Options. (line 95) ! * m68010: M680x0 Options. (line 103) ! * m68020: M680x0 Options. (line 109) ! * m68020-40: M680x0 Options. (line 178) ! * m68020-60: M680x0 Options. (line 187) ! * m68030: M680x0 Options. (line 114) ! * m68040: M680x0 Options. (line 119) ! * m68060: M680x0 Options. (line 128) ! * m68881: M680x0 Options. (line 197) * m8-bit: CRIS Options. (line 64) * m8byte-align: V850 Options. (line 170) * m96bit-long-double: i386 and x86-64 Options. ! (line 389) * mA6: ARC Options. (line 19) * mA7: ARC Options. (line 26) ! * mabi <1>: RS/6000 and PowerPC Options. ! (line 619) * mabi <2>: i386 and x86-64 Options. ! (line 806) ! * mabi <3>: ARM Options. (line 10) ! * mabi: AArch64 Options. (line 9) ! * mabi=32: MIPS Options. (line 140) ! * mabi=64: MIPS Options. (line 140) ! * mabi=eabi: MIPS Options. (line 140) * mabi=elfv1: RS/6000 and PowerPC Options. ! (line 640) * mabi=elfv2: RS/6000 and PowerPC Options. ! (line 646) * mabi=gnu: MMIX Options. (line 20) * mabi=ibmlongdouble: RS/6000 and PowerPC Options. ! (line 632) * mabi=ieeelongdouble: RS/6000 and PowerPC Options. ! (line 636) * mabi=mmixware: MMIX Options. (line 20) ! * mabi=n32: MIPS Options. (line 140) * mabi=no-spe: RS/6000 and PowerPC Options. ! (line 629) ! * mabi=o64: MIPS Options. (line 140) * mabi=spe: RS/6000 and PowerPC Options. ! (line 624) ! * mabicalls: MIPS Options. (line 164) * mabort-on-noreturn: ARM Options. (line 196) ! * mabs=2008: MIPS Options. (line 262) ! * mabs=legacy: MIPS Options. (line 262) * mabsdiff: MeP Options. (line 7) * mabshi: PDP-11 Options. (line 55) * mac0: PDP-11 Options. (line 16) ! * macc-4: FRV Options. (line 113) ! * macc-8: FRV Options. (line 116) ! * maccumulate-args: AVR Options. (line 135) ! * maccumulate-outgoing-args <1>: SH Options. (line 401) * maccumulate-outgoing-args: i386 and x86-64 Options. ! (line 829) * maddress-mode=long: i386 and x86-64 Options. ! (line 997) * maddress-mode=short: i386 and x86-64 Options. ! (line 1002) ! * maddress-space-conversion: SPU Options. (line 63) * mads: RS/6000 and PowerPC Options. ! (line 674) * maix-struct-return: RS/6000 and PowerPC Options. ! (line 612) * maix32: RS/6000 and PowerPC Options. ! (line 322) * maix64: RS/6000 and PowerPC Options. ! (line 322) * malign-300: H8/300 Options. (line 41) ! * malign-call: ARC Options. (line 194) * malign-double: i386 and x86-64 Options. ! (line 373) ! * malign-int: M680x0 Options. (line 267) ! * malign-labels: FRV Options. (line 104) * malign-loops: M32R/D Options. (line 73) * malign-natural: RS/6000 and PowerPC Options. ! (line 361) * malign-power: RS/6000 and PowerPC Options. ! (line 361) * mall-opts: MeP Options. (line 11) ! * malloc-cc: FRV Options. (line 25) * maltivec: RS/6000 and PowerPC Options. ! (line 136) * maltivec=be: RS/6000 and PowerPC Options. ! (line 152) * maltivec=le: RS/6000 and PowerPC Options. ! (line 162) * mam33: MN10300 Options. (line 17) * mam33-2: MN10300 Options. (line 24) * mam34: MN10300 Options. (line 27) * mandroid: GNU/Linux Options. (line 21) ! * mannotate-align: ARC Options. (line 135) * mapcs: ARM Options. (line 22) * mapcs-frame: ARM Options. (line 14) * mapp-regs <1>: V850 Options. (line 181) + * mapp-regs: SPARC Options. (line 10) * mARC600: ARC Options. (line 19) * mARC601: ARC Options. (line 23) * mARC700: ARC Options. (line 26) ! * march <1>: S/390 and zSeries Options. ! (line 116) ! * march <2>: NDS32 Options. (line 58) ! * march <3>: MIPS Options. (line 14) ! * march <4>: M680x0 Options. (line 12) ! * march <5>: i386 and x86-64 Options. (line 10) ! * march <6>: HPPA Options. (line 9) ! * march <7>: CRIS Options. (line 10) ! * march <8>: C6X Options. (line 7) ! * march <9>: ARM Options. (line 75) ! * march: AArch64 Options. (line 79) ! * marclinux: ARC Options. (line 142) ! * marclinux_prof: ARC Options. (line 148) ! * margonaut: ARC Options. (line 346) * marm: ARM Options. (line 266) * mas100-syntax: RX Options. (line 76) * masm-hex: MSP430 Options. (line 9) * masm=DIALECT: i386 and x86-64 Options. ! (line 328) * matomic-model=MODEL: SH Options. (line 214) ! * matomic-updates: SPU Options. (line 78) ! * mauto-modify-reg: ARC Options. (line 197) * mauto-pic: IA-64 Options. (line 50) * maverage: MeP Options. (line 16) * mavoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 431) * max-vect-align: Adapteva Epiphany Options. ! (line 120) * mb: SH Options. (line 147) * mbackchain: S/390 and zSeries Options. (line 35) * mbarrel-shift-enabled: LM32 Options. (line 9) * mbarrel-shifter: ARC Options. (line 10) ! * mbarrel_shifter: ARC Options. (line 363) ! * mbase-addresses: MMIX Options. (line 54) * mbased=: MeP Options. (line 20) ! * mbbit-peephole: ARC Options. (line 200) * mbcopy: PDP-11 Options. (line 36) * mbcopy-builtin: PDP-11 Options. (line 32) * mbig: RS/6000 and PowerPC Options. ! (line 511) ! * mbig-endian <1>: TILE-Gx Options. (line 29) ! * mbig-endian <2>: RS/6000 and PowerPC Options. ! (line 511) ! * mbig-endian <3>: NDS32 Options. (line 9) ! * mbig-endian <4>: MicroBlaze Options. (line 57) * mbig-endian <5>: MCore Options. (line 39) ! * mbig-endian <6>: IA-64 Options. (line 9) ! * mbig-endian <7>: C6X Options. (line 13) ! * mbig-endian <8>: ARM Options. (line 62) ! * mbig-endian <9>: ARC Options. (line 349) ! * mbig-endian: AArch64 Options. (line 20) * mbig-endian-data: RX Options. (line 42) * mbig-switch: V850 Options. (line 176) * mbigtable: SH Options. (line 162) * mbionic: GNU/Linux Options. (line 17) * mbit-align: RS/6000 and PowerPC Options. ! (line 463) * mbit-ops: CR16 Options. (line 25) ! * mbitfield: M680x0 Options. (line 235) * mbitops <1>: SH Options. (line 166) + * mbitops: MeP Options. (line 26) * mblock-move-inline-limit: RS/6000 and PowerPC Options. ! (line 745) * mbranch-cheap: PDP-11 Options. (line 65) + * mbranch-cost <1>: MIPS Options. (line 712) + * mbranch-cost <2>: AVR Options. (line 150) * mbranch-cost: Adapteva Epiphany Options. (line 18) ! * mbranch-cost=NUM: SH Options. (line 467) * mbranch-cost=NUMBER: M32R/D Options. (line 82) * mbranch-expensive: PDP-11 Options. (line 61) ! * mbranch-hints: SPU Options. (line 27) ! * mbranch-likely: MIPS Options. (line 719) ! * mbranch-predict: MMIX Options. (line 49) * mbss-plt: RS/6000 and PowerPC Options. ! (line 189) * mbuild-constants: DEC Alpha Options. (line 141) * mbwx: DEC Alpha Options. (line 163) * mbypass-cache: Nios II Options. (line 34) ! * mc68000: M680x0 Options. (line 95) ! * mc68020: M680x0 Options. (line 109) * mc=: MeP Options. (line 31) * mcache-block-size: NDS32 Options. (line 54) ! * mcache-size: SPU Options. (line 70) * mcache-volatile: Nios II Options. (line 40) * mcall-eabi: RS/6000 and PowerPC Options. ! (line 586) * mcall-freebsd: RS/6000 and PowerPC Options. ! (line 600) * mcall-linux: RS/6000 and PowerPC Options. (line 596) ! * mcall-netbsd: RS/6000 and PowerPC Options. ! (line 604) ! * mcall-prologues: AVR Options. (line 155) * mcall-sysv: RS/6000 and PowerPC Options. (line 578) + * mcall-sysv-eabi: RS/6000 and PowerPC Options. + (line 586) * mcall-sysv-noeabi: RS/6000 and PowerPC Options. ! (line 589) ! * mcallee-super-interworking: ARM Options. (line 284) ! * mcaller-super-interworking: ARM Options. (line 291) * mcallgraph-data: MCore Options. (line 31) ! * mcase-vector-pcrel: ARC Options. (line 208) ! * mcbcond: SPARC Options. (line 224) ! * mcc-init: CRIS Options. (line 41) ! * mcfv4e: M680x0 Options. (line 172) ! * mcheck-zero-division: MIPS Options. (line 506) * mcix: DEC Alpha Options. (line 163) * mcld: i386 and x86-64 Options. ! (line 679) * mclear-hwcap: Solaris 2 Options. (line 9) * mclip: MeP Options. (line 35) ! * mcmodel: SPARC Options. (line 262) * mcmodel=kernel: i386 and x86-64 Options. ! (line 981) ! * mcmodel=large <1>: TILE-Gx Options. (line 14) * mcmodel=large <2>: RS/6000 and PowerPC Options. ! (line 130) ! * mcmodel=large <3>: i386 and x86-64 Options. ! (line 993) ! * mcmodel=large: AArch64 Options. (line 44) * mcmodel=medium <1>: RS/6000 and PowerPC Options. ! (line 126) ! * mcmodel=medium: i386 and x86-64 Options. ! (line 986) ! * mcmodel=small <1>: TILE-Gx Options. (line 9) * mcmodel=small <2>: RS/6000 and PowerPC Options. ! (line 122) ! * mcmodel=small <3>: i386 and x86-64 Options. ! (line 975) ! * mcmodel=small: AArch64 Options. (line 38) * mcmodel=tiny: AArch64 Options. (line 31) * mcmov: NDS32 Options. (line 21) * mcmove: Adapteva Epiphany Options. (line 23) * mcmpb: RS/6000 and PowerPC Options. (line 27) ! * mcode-readable: MIPS Options. (line 466) ! * mcompact-casesi: ARC Options. (line 212) * mcompat-align-parm: RS/6000 and PowerPC Options. ! (line 903) ! * mcond-exec: FRV Options. (line 152) ! * mcond-move: FRV Options. (line 128) * mconfig=: MeP Options. (line 39) * mconsole: i386 and x86-64 Windows Options. (line 9) *************** look up both forms. *** 53255,53934 **** * mcop: MeP Options. (line 48) * mcop32: MeP Options. (line 53) * mcop64: MeP Options. (line 56) ! * mcorea: Blackfin Options. (line 156) ! * mcoreb: Blackfin Options. (line 163) ! * mcpu: AArch64 Options. (line 111) ! * mcpu <1>: ARC Options. (line 14) ! * mcpu <2>: ARM Options. (line 136) ! * mcpu <3>: CRIS Options. (line 10) ! * mcpu <4>: DEC Alpha Options. (line 215) ! * mcpu <5>: FRV Options. (line 258) ! * mcpu <6>: i386 and x86-64 Options. ! (line 270) ! * mcpu <7>: M680x0 Options. (line 28) ! * mcpu <8>: picoChip Options. (line 9) ! * mcpu <9>: RS/6000 and PowerPC Options. ! (line 68) ! * mcpu <10>: SPARC Options. (line 101) ! * mcpu <11>: TILE-Gx Options. (line 18) ! * mcpu <12>: TILEPro Options. (line 9) ! * mcpu32: M680x0 Options. (line 135) * mcpu=: Blackfin Options. (line 7) - * mcpu= <1>: M32C Options. (line 7) - * mcpu= <2>: MicroBlaze Options. (line 20) * mcr16c: CR16 Options. (line 14) * mcr16cplus: CR16 Options. (line 14) * mcrc32: i386 and x86-64 Options. ! (line 719) * mcrypto: RS/6000 and PowerPC Options. ! (line 223) ! * mcsync-anomaly: Blackfin Options. (line 59) * mctor-dtor: NDS32 Options. (line 73) ! * mcustom-fpu-cfg: Nios II Options. (line 175) * mcustom-INSN: Nios II Options. (line 61) * mcx16: i386 and x86-64 Options. ! (line 696) * MD: Preprocessor Options. ! (line 276) * mdalign: SH Options. (line 153) * mdata-align: CRIS Options. (line 55) * mdata-model: CR16 Options. (line 28) * mdc: MeP Options. (line 62) - * mdebug: M32R/D Options. (line 69) * mdebug <1>: S/390 and zSeries Options. ! (line 110) * mdebug-main=PREFIX: VMS Options. (line 13) * mdec-asm: PDP-11 Options. (line 72) * mdirect-move: RS/6000 and PowerPC Options. ! (line 229) * mdisable-callt: V850 Options. (line 92) * mdisable-fpregs: HPPA Options. (line 28) * mdisable-indexing: HPPA Options. (line 34) ! * mdiv: M680x0 Options. (line 206) ! * mdiv <1>: MCore Options. (line 15) ! * mdiv <2>: MeP Options. (line 65) ! * mdiv=STRATEGY: SH Options. (line 306) ! * mdivide-breaks: MIPS Options. (line 509) * mdivide-enabled: LM32 Options. (line 12) ! * mdivide-traps: MIPS Options. (line 509) ! * mdivsi3_libfunc=NAME: SH Options. (line 401) * mdll: i386 and x86-64 Windows Options. (line 16) * mdlmzb: RS/6000 and PowerPC Options. ! (line 448) ! * mdmx: MIPS Options. (line 336) ! * mdouble: FRV Options. (line 48) ! * mdouble-float: MIPS Options. (line 255) * mdouble-float <1>: RS/6000 and PowerPC Options. ! (line 371) * mdpfp: ARC Options. (line 30) * mdpfp-compact: ARC Options. (line 31) * mdpfp-fast: ARC Options. (line 35) ! * mdpfp_compact: ARC Options. (line 364) ! * mdpfp_fast: ARC Options. (line 367) ! * mdsp: MIPS Options. (line 313) ! * mdsp-packa: ARC Options. (line 88) ! * mdspr2: MIPS Options. (line 319) ! * mdsp_packa: ARC Options. (line 370) ! * mdual-nops: SPU Options. (line 95) * mdump-tune-features: i386 and x86-64 Options. ! (line 653) ! * mdvbf: ARC Options. (line 92) * mdwarf2-asm: IA-64 Options. (line 94) ! * mdword: FRV Options. (line 40) * mdynamic-no-pic: RS/6000 and PowerPC Options. ! (line 508) * mea: ARC Options. (line 43) ! * mEA: ARC Options. (line 373) ! * mea32: SPU Options. (line 60) ! * mea64: SPU Options. (line 60) * meabi: RS/6000 and PowerPC Options. ! (line 685) ! * mearly-cbranchsi: ARC Options. (line 229) * mearly-stop-bits: IA-64 Options. (line 100) ! * meb: MeP Options. (line 68) ! * meb <1>: Moxie Options. (line 7) * meb <2>: Nios II Options. (line 29) ! * meb <3>: Score Options. (line 9) ! * mel: MeP Options. (line 71) ! * mel <1>: Moxie Options. (line 11) * mel <2>: Nios II Options. (line 29) ! * mel <3>: Score Options. (line 12) * melf: CRIS Options. (line 87) - * melf <1>: MMIX Options. (line 43) * memb: RS/6000 and PowerPC Options. ! (line 680) ! * membedded-data: MIPS Options. (line 450) * memregs=: M32C Options. (line 21) * mep: V850 Options. (line 16) ! * mepilogue-cfi: ARC Options. (line 155) * mepsilon: MMIX Options. (line 15) * merror-reloc: SPU Options. (line 10) * mesa: S/390 and zSeries Options. ! (line 94) ! * metrax100: CRIS Options. (line 27) ! * metrax4: CRIS Options. (line 27) ! * meva: MIPS Options. (line 363) * mex9: NDS32 Options. (line 70) ! * mexpand-adddi: ARC Options. (line 232) * mexplicit-relocs: DEC Alpha Options. (line 176) - * mexplicit-relocs <1>: MIPS Options. (line 494) * mexr: H8/300 Options. (line 28) ! * mextern-sdata: MIPS Options. (line 413) * MF: Preprocessor Options. (line 220) ! * mfast-fp: Blackfin Options. (line 132) * mfast-indirect-calls: HPPA Options. (line 46) * mfast-sw-div: Nios II Options. (line 46) ! * mfaster-structs: SPARC Options. (line 91) ! * mfdpic: FRV Options. (line 72) * mfentry: i386 and x86-64 Options. ! (line 910) * mfix: DEC Alpha Options. (line 163) ! * mfix-24k: MIPS Options. (line 567) * mfix-and-continue: Darwin Options. (line 104) ! * mfix-at697f: SPARC Options. (line 243) * mfix-cortex-a53-843419: AArch64 Options. (line 74) ! * mfix-cortex-m3-ldrd: ARM Options. (line 325) ! * mfix-r10000: MIPS Options. (line 589) ! * mfix-r4000: MIPS Options. (line 573) ! * mfix-r4400: MIPS Options. (line 583) ! * mfix-rm7000: MIPS Options. (line 600) ! * mfix-sb1: MIPS Options. (line 625) ! * mfix-ut699: SPARC Options. (line 248) ! * mfix-vr4120: MIPS Options. (line 605) ! * mfix-vr4130: MIPS Options. (line 618) ! * mfixed-cc: FRV Options. (line 35) * mfixed-range: HPPA Options. (line 53) - * mfixed-range <1>: IA-64 Options. (line 105) - * mfixed-range <2>: SH Options. (line 408) - * mfixed-range <3>: SPU Options. (line 52) * mflat: SPARC Options. (line 22) ! * mflip-mips16: MIPS Options. (line 110) * mfloat-abi: ARM Options. (line 42) * mfloat-gprs: RS/6000 and PowerPC Options. ! (line 260) * mfloat-ieee: DEC Alpha Options. (line 171) * mfloat-vax: DEC Alpha Options. (line 171) * mfloat32: PDP-11 Options. (line 52) * mfloat64: PDP-11 Options. (line 48) ! * mflush-func: MIPS Options. (line 692) * mflush-func=NAME: M32R/D Options. (line 93) * mflush-trap=NUMBER: M32R/D Options. (line 86) ! * mfmaf: SPARC Options. (line 237) * mfmovd: SH Options. (line 169) * mforbid-fp-as-gp: NDS32 Options. (line 65) * mforce-fp-as-gp: NDS32 Options. (line 61) * mforce-no-pic: Xtensa Options. (line 41) ! * mfp-exceptions: MIPS Options. (line 719) * mfp-mode: Adapteva Epiphany Options. ! (line 71) * mfp-reg: DEC Alpha Options. (line 25) * mfp-rounding-mode: DEC Alpha Options. (line 85) * mfp-trap-mode: DEC Alpha Options. (line 63) * mfp16-format: ARM Options. (line 176) ! * mfp32: MIPS Options. (line 228) ! * mfp64: MIPS Options. (line 231) ! * mfpmath: Optimize Options. (line 1951) * mfpmath <1>: i386 and x86-64 Options. ! (line 273) ! * mfpr-32: FRV Options. (line 15) ! * mfpr-64: FRV Options. (line 19) * mfprnd: RS/6000 and PowerPC Options. (line 27) ! * mfpu: ARM Options. (line 156) ! * mfpu <1>: PDP-11 Options. (line 9) * mfpu <2>: RS/6000 and PowerPC Options. ! (line 379) ! * mfpu <3>: SPARC Options. (line 34) * mfriz: RS/6000 and PowerPC Options. ! (line 863) ! * mfsca: SH Options. (line 484) ! * mfsrra: SH Options. (line 493) * mfull-regs: NDS32 Options. (line 18) * mfull-toc: RS/6000 and PowerPC Options. ! (line 288) ! * mfused-madd: IA-64 Options. (line 88) ! * mfused-madd <1>: MIPS Options. (line 550) ! * mfused-madd <2>: RS/6000 and PowerPC Options. ! (line 432) * mfused-madd <3>: S/390 and zSeries Options. ! (line 135) ! * mfused-madd <4>: SH Options. (line 475) ! * mfused-madd <5>: Xtensa Options. (line 19) * MG: Preprocessor Options. (line 229) - * mg: VAX Options. (line 17) * mgas: HPPA Options. (line 69) * mgcc-abi: V850 Options. (line 148) * mgen-cell-microcode: RS/6000 and PowerPC Options. ! (line 176) * mgeneral-regs-only: AArch64 Options. (line 24) ! * mgettrcost=NUMBER: SH Options. (line 425) * mghs: V850 Options. (line 127) * mglibc: GNU/Linux Options. (line 9) * mgnu: VAX Options. (line 13) * mgnu-as: IA-64 Options. (line 18) - * mgnu-ld: HPPA Options. (line 105) * mgnu-ld <1>: IA-64 Options. (line 23) * mgotplt: CRIS Options. (line 81) * mgp-direct: NDS32 Options. (line 45) ! * mgp32: MIPS Options. (line 222) ! * mgp64: MIPS Options. (line 225) ! * mgpopt: MIPS Options. (line 435) * mgpopt <1>: Nios II Options. (line 15) * mgpr-32: FRV Options. (line 7) ! * mgpr-64: FRV Options. (line 11) ! * mgprel-ro: FRV Options. (line 99) * mh: H8/300 Options. (line 14) ! * mhal: Nios II Options. (line 220) * mhalf-reg-file: Adapteva Epiphany Options. (line 9) - * mhard-dfp: RS/6000 and PowerPC Options. - (line 27) * mhard-dfp <1>: S/390 and zSeries Options. (line 20) ! * mhard-float: FRV Options. (line 23) ! * mhard-float <1>: M680x0 Options. (line 194) ! * mhard-float <2>: MicroBlaze Options. (line 10) ! * mhard-float <3>: MIPS Options. (line 234) ! * mhard-float <4>: RS/6000 and PowerPC Options. ! (line 365) ! * mhard-float <5>: S/390 and zSeries Options. (line 11) ! * mhard-float <6>: SPARC Options. (line 34) ! * mhard-float <7>: V850 Options. (line 113) ! * mhard-quad-float: SPARC Options. (line 55) * mhardlit: MCore Options. (line 10) ! * mhint-max-distance: SPU Options. (line 107) ! * mhint-max-nops: SPU Options. (line 101) * mhotpatch: S/390 and zSeries Options. ! (line 170) * mhp-ld: HPPA Options. (line 117) * mhw-div: Nios II Options. (line 55) * mhw-mul: Nios II Options. (line 55) * mhw-mulx: Nios II Options. (line 55) * mhwmult=: MSP430 Options. (line 56) ! * micplb: Blackfin Options. (line 177) ! * mid-shared-library: Blackfin Options. (line 80) ! * mieee: DEC Alpha Options. (line 39) * mieee <1>: SH Options. (line 186) * mieee-conformant: DEC Alpha Options. (line 134) * mieee-fp: i386 and x86-64 Options. ! (line 328) * mieee-with-inexact: DEC Alpha Options. (line 52) * milp32: IA-64 Options. (line 121) ! * mimadd: MIPS Options. (line 543) ! * mimpure-text: Solaris 2 Options. (line 15) * mincoming-stack-boundary: i386 and x86-64 Options. ! (line 535) ! * mindexed-addressing: SH Options. (line 415) ! * mindexed-loads: ARC Options. (line 236) * minline-all-stringops: i386 and x86-64 Options. ! (line 842) * minline-float-divide-max-throughput: IA-64 Options. (line 58) * minline-float-divide-min-latency: IA-64 Options. (line 54) * minline-ic_invalidate: SH Options. (line 195) * minline-int-divide-max-throughput: IA-64 Options. (line 69) * minline-int-divide-min-latency: IA-64 Options. (line 65) ! * minline-plt: Blackfin Options. (line 137) ! * minline-plt <1>: FRV Options. (line 81) * minline-sqrt-max-throughput: IA-64 Options. (line 80) * minline-sqrt-min-latency: IA-64 Options. (line 76) * minline-stringops-dynamically: i386 and x86-64 Options. ! (line 849) ! * minrt: MSP430 Options. (line 77) * minsert-sched-nops: RS/6000 and PowerPC Options. ! (line 548) * mint-register: RX Options. (line 100) * mint16: PDP-11 Options. (line 40) * mint32: CR16 Options. (line 22) ! * mint32 <1>: H8/300 Options. (line 38) ! * mint32 <2>: PDP-11 Options. (line 44) ! * mint8: AVR Options. (line 161) ! * minterlink-compressed: MIPS Options. (line 117) ! * minterlink-mips16: MIPS Options. (line 129) ! * minvalid-symbols: SH Options. (line 449) * mio-volatile: MeP Options. (line 74) ! * mips1: MIPS Options. (line 77) ! * mips16: MIPS Options. (line 102) ! * mips2: MIPS Options. (line 80) ! * mips3: MIPS Options. (line 83) ! * mips32: MIPS Options. (line 89) ! * mips32r2: MIPS Options. (line 92) ! * mips3d: MIPS Options. (line 342) ! * mips4: MIPS Options. (line 86) ! * mips64: MIPS Options. (line 95) ! * mips64r2: MIPS Options. (line 98) * misel: RS/6000 and PowerPC Options. ! (line 194) ! * misize: ARC Options. (line 130) * misize <1>: SH Options. (line 207) * misr-vector-size: NDS32 Options. (line 51) * missue-rate=NUMBER: M32R/D Options. (line 79) * mivc2: MeP Options. (line 59) * mjump-in-delay: HPPA Options. (line 23) * mkernel: Darwin Options. (line 82) ! * mknuthdiv: MMIX Options. (line 32) ! * ml: MeP Options. (line 78) * ml <1>: SH Options. (line 150) * mlarge: MSP430 Options. (line 45) * mlarge-data: DEC Alpha Options. (line 187) * mlarge-data-threshold: i386 and x86-64 Options. ! (line 421) ! * mlarge-mem: SPU Options. (line 38) * mlarge-text: DEC Alpha Options. (line 205) * mleadz: MeP Options. (line 81) ! * mleaf-id-shared-library: Blackfin Options. (line 91) * mlibfuncs: MMIX Options. (line 10) ! * mlibrary-pic: FRV Options. (line 135) ! * mlinked-fp: FRV Options. (line 116) * mlinker-opt: HPPA Options. (line 79) * mlinux: CRIS Options. (line 91) * mlittle: RS/6000 and PowerPC Options. ! (line 497) ! * mlittle-endian: AArch64 Options. (line 27) ! * mlittle-endian <1>: ARC Options. (line 353) ! * mlittle-endian <2>: ARM Options. (line 58) ! * mlittle-endian <3>: C6X Options. (line 16) ! * mlittle-endian <4>: IA-64 Options. (line 13) * mlittle-endian <5>: MCore Options. (line 39) ! * mlittle-endian <6>: MicroBlaze Options. (line 60) ! * mlittle-endian <7>: NDS32 Options. (line 12) ! * mlittle-endian <8>: RS/6000 and PowerPC Options. ! (line 497) ! * mlittle-endian <9>: TILE-Gx Options. (line 29) * mlittle-endian-data: RX Options. (line 42) * mliw: MN10300 Options. (line 54) ! * mllsc: MIPS Options. (line 299) ! * mlocal-sdata: MIPS Options. (line 401) ! * mlock: ARC Options. (line 96) * mlong-calls: Adapteva Epiphany Options. (line 55) - * mlong-calls <1>: ARC Options. (line 161) - * mlong-calls <2>: ARM Options. (line 201) - * mlong-calls <3>: Blackfin Options. (line 120) - * mlong-calls <4>: FRV Options. (line 122) - * mlong-calls <5>: MIPS Options. (line 529) - * mlong-calls <6>: V850 Options. (line 10) - * mlong-double-128: i386 and x86-64 Options. - (line 407) * mlong-double-128 <1>: S/390 and zSeries Options. (line 29) ! * mlong-double-64: i386 and x86-64 Options. ! (line 407) * mlong-double-64 <1>: S/390 and zSeries Options. (line 29) * mlong-double-80: i386 and x86-64 Options. ! (line 407) * mlong-jumps: V850 Options. (line 108) * mlong-load-store: HPPA Options. (line 60) ! * mlong32: MIPS Options. (line 376) ! * mlong64: MIPS Options. (line 371) * mlongcall: RS/6000 and PowerPC Options. ! (line 756) * mlongcalls: Xtensa Options. (line 72) * mloop: V850 Options. (line 121) ! * mlow-64k: Blackfin Options. (line 69) * mlp64: IA-64 Options. (line 121) ! * mlra: ARC Options. (line 241) ! * mlra-priority-compact: ARC Options. (line 249) ! * mlra-priority-noncompact: ARC Options. (line 252) ! * mlra-priority-none: ARC Options. (line 246) * MM: Preprocessor Options. (line 210) - * mm: MeP Options. (line 84) - * mmac: CR16 Options. (line 9) * mmac <1>: Score Options. (line 21) ! * mmac-24: ARC Options. (line 105) ! * mmac-d16: ARC Options. (line 101) ! * mmac_24: ARC Options. (line 376) ! * mmac_d16: ARC Options. (line 379) ! * mmad: MIPS Options. (line 538) * mmalloc64: VMS Options. (line 17) * mmax: DEC Alpha Options. (line 163) * mmax-constant-size: RX Options. (line 82) ! * mmax-stack-frame: CRIS Options. (line 23) ! * mmcount-ra-address: MIPS Options. (line 768) * mmcu: AVR Options. (line 9) - * mmcu <1>: MIPS Options. (line 359) * mmcu=: MSP430 Options. (line 14) * MMD: Preprocessor Options. ! (line 292) ! * mmedia: FRV Options. (line 56) ! * mmedium-calls: ARC Options. (line 165) * mmemcpy: MicroBlaze Options. (line 13) - * mmemcpy <1>: MIPS Options. (line 523) * mmemcpy-strategy=STRATEGY: i386 and x86-64 Options. ! (line 871) * mmemory-latency: DEC Alpha Options. (line 268) ! * mmemory-model: SPARC Options. (line 289) * mmemset-strategy=STRATEGY: i386 and x86-64 Options. ! (line 883) * mmfcrf: RS/6000 and PowerPC Options. (line 27) * mmfpgpr: RS/6000 and PowerPC Options. (line 27) ! * mmicromips: MIPS Options. (line 347) * mminimal-toc: RS/6000 and PowerPC Options. ! (line 288) * mminmax: MeP Options. (line 87) ! * mmixed-code: ARC Options. (line 264) * mmmx: i386 and x86-64 Options. ! (line 629) * mmodel=large: M32R/D Options. (line 33) * mmodel=medium: M32R/D Options. (line 27) * mmodel=small: M32R/D Options. (line 18) * mmovbe: i386 and x86-64 Options. ! (line 715) ! * mmt: MIPS Options. (line 355) * mmul: RL78 Options. (line 13) ! * mmul-bug-workaround: CRIS Options. (line 32) * mmul32x16: ARC Options. (line 51) * mmul64: ARC Options. (line 54) ! * mmuladd: FRV Options. (line 64) * mmulhw: RS/6000 and PowerPC Options. ! (line 441) * mmult: MeP Options. (line 90) * mmult-bug: MN10300 Options. (line 9) ! * mmultcost: ARC Options. (line 326) ! * mmulti-cond-exec: FRV Options. (line 215) ! * mmulticore: Blackfin Options. (line 141) * mmultiple: RS/6000 and PowerPC Options. ! (line 391) * mmvcle: S/390 and zSeries Options. ! (line 104) * mmvme: RS/6000 and PowerPC Options. ! (line 661) * mn: H8/300 Options. (line 20) ! * mnan=2008: MIPS Options. (line 280) ! * mnan=legacy: MIPS Options. (line 280) ! * mneon-for-64bits: ARM Options. (line 345) ! * mnested-cond-exec: FRV Options. (line 230) * mnhwloop: Score Options. (line 15) * mno-16-bit: NDS32 Options. (line 42) * mno-3dnow: i386 and x86-64 Options. ! (line 629) * mno-4byte-functions: MCore Options. (line 27) * mno-8byte-align: V850 Options. (line 170) ! * mno-abicalls: MIPS Options. (line 162) * mno-abshi: PDP-11 Options. (line 58) * mno-ac0: PDP-11 Options. (line 20) ! * mno-address-space-conversion: SPU Options. (line 68) * mno-align-double: i386 and x86-64 Options. ! (line 366) ! * mno-align-int: M680x0 Options. (line 263) * mno-align-loops: M32R/D Options. (line 76) * mno-align-stringops: i386 and x86-64 Options. ! (line 837) * mno-altivec: RS/6000 and PowerPC Options. ! (line 135) * mno-am33: MN10300 Options. (line 20) - * mno-app-regs: SPARC Options. (line 10) * mno-app-regs <1>: V850 Options. (line 185) * mno-as100-syntax: RX Options. (line 76) ! * mno-atomic-updates: SPU Options. (line 83) * mno-avoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 423) * mno-backchain: S/390 and zSeries Options. (line 35) ! * mno-base-addresses: MMIX Options. (line 53) * mno-bit-align: RS/6000 and PowerPC Options. ! (line 455) ! * mno-bitfield: M680x0 Options. (line 227) ! * mno-branch-likely: MIPS Options. (line 708) ! * mno-branch-predict: MMIX Options. (line 48) ! * mno-brcc: ARC Options. (line 201) * mno-bwx: DEC Alpha Options. (line 163) * mno-bypass-cache: Nios II Options. (line 34) * mno-cache-volatile: Nios II Options. (line 40) * mno-callgraph-data: MCore Options. (line 31) ! * mno-cbcond: SPARC Options. (line 223) ! * mno-check-zero-division: MIPS Options. (line 503) * mno-cix: DEC Alpha Options. (line 163) * mno-clearbss: MicroBlaze Options. (line 16) * mno-cmov: NDS32 Options. (line 24) * mno-cmpb: RS/6000 and PowerPC Options. (line 27) ! * mno-cond-exec: ARC Options. (line 213) ! * mno-cond-exec <1>: FRV Options. (line 194) ! * mno-cond-move: FRV Options. (line 166) * mno-const-align: CRIS Options. (line 55) * mno-const16: Xtensa Options. (line 10) - * mno-crt0: MN10300 Options. (line 43) * mno-crt0 <1>: Moxie Options. (line 14) * mno-crypto: RS/6000 and PowerPC Options. ! (line 223) ! * mno-csync-anomaly: Blackfin Options. (line 65) * mno-custom-INSN: Nios II Options. (line 61) * mno-data-align: CRIS Options. (line 55) * mno-debug: S/390 and zSeries Options. ! (line 110) * mno-default: i386 and x86-64 Options. ! (line 668) * mno-direct-move: RS/6000 and PowerPC Options. ! (line 229) * mno-disable-callt: V850 Options. (line 92) - * mno-div: M680x0 Options. (line 206) * mno-div <1>: MCore Options. (line 15) * mno-dlmzb: RS/6000 and PowerPC Options. ! (line 448) ! * mno-double: FRV Options. (line 52) * mno-dpfp-lrsr: ARC Options. (line 39) ! * mno-dsp: MIPS Options. (line 313) ! * mno-dspr2: MIPS Options. (line 319) * mno-dwarf2-asm: IA-64 Options. (line 94) ! * mno-dword: FRV Options. (line 44) * mno-eabi: RS/6000 and PowerPC Options. ! (line 685) * mno-early-stop-bits: IA-64 Options. (line 100) ! * mno-eflags: FRV Options. (line 155) ! * mno-embedded-data: MIPS Options. (line 450) * mno-ep: V850 Options. (line 16) ! * mno-epilogue-cfi: ARC Options. (line 158) * mno-epsilon: MMIX Options. (line 15) ! * mno-eva: MIPS Options. (line 363) * mno-explicit-relocs: DEC Alpha Options. (line 176) - * mno-explicit-relocs <1>: MIPS Options. (line 494) * mno-exr: H8/300 Options. (line 33) ! * mno-extern-sdata: MIPS Options. (line 413) * mno-fancy-math-387: i386 and x86-64 Options. ! (line 356) * mno-fast-sw-div: Nios II Options. (line 46) ! * mno-faster-structs: SPARC Options. (line 91) * mno-fix: DEC Alpha Options. (line 163) ! * mno-fix-24k: MIPS Options. (line 567) * mno-fix-cortex-a53-843419: AArch64 Options. (line 74) ! * mno-fix-r10000: MIPS Options. (line 589) ! * mno-fix-r4000: MIPS Options. (line 573) ! * mno-fix-r4400: MIPS Options. (line 583) * mno-flat: SPARC Options. (line 22) ! * mno-float: MIPS Options. (line 241) * mno-float32: PDP-11 Options. (line 48) * mno-float64: PDP-11 Options. (line 52) * mno-flush-func: M32R/D Options. (line 98) * mno-flush-trap: M32R/D Options. (line 90) ! * mno-fmaf: SPARC Options. (line 237) * mno-fp-in-toc: RS/6000 and PowerPC Options. ! (line 288) * mno-fp-regs: DEC Alpha Options. (line 25) * mno-fp-ret-in-387: i386 and x86-64 Options. ! (line 346) * mno-fprnd: RS/6000 and PowerPC Options. (line 27) ! * mno-fpu: SPARC Options. (line 39) ! * mno-fsca: SH Options. (line 484) ! * mno-fsrra: SH Options. (line 493) ! * mno-fused-madd: IA-64 Options. (line 88) ! * mno-fused-madd <1>: MIPS Options. (line 550) ! * mno-fused-madd <2>: RS/6000 and PowerPC Options. ! (line 432) * mno-fused-madd <3>: S/390 and zSeries Options. ! (line 135) ! * mno-fused-madd <4>: SH Options. (line 475) ! * mno-fused-madd <5>: Xtensa Options. (line 19) * mno-gnu-as: IA-64 Options. (line 18) * mno-gnu-ld: IA-64 Options. (line 23) * mno-gotplt: CRIS Options. (line 81) * mno-gp-direct: NDS32 Options. (line 48) - * mno-gpopt: MIPS Options. (line 435) * mno-gpopt <1>: Nios II Options. (line 15) ! * mno-hard-dfp: RS/6000 and PowerPC Options. ! (line 27) * mno-hard-dfp <1>: S/390 and zSeries Options. (line 20) * mno-hardlit: MCore Options. (line 10) * mno-hw-div: Nios II Options. (line 55) * mno-hw-mul: Nios II Options. (line 55) * mno-hw-mulx: Nios II Options. (line 55) ! * mno-id-shared-library: Blackfin Options. (line 87) * mno-ieee: SH Options. (line 186) * mno-ieee-fp: i386 and x86-64 Options. ! (line 328) ! * mno-imadd: MIPS Options. (line 543) * mno-inline-float-divide: IA-64 Options. (line 62) * mno-inline-int-divide: IA-64 Options. (line 73) * mno-inline-sqrt: IA-64 Options. (line 84) * mno-int16: PDP-11 Options. (line 44) * mno-int32: PDP-11 Options. (line 40) ! * mno-interlink-compressed: MIPS Options. (line 117) ! * mno-interlink-mips16: MIPS Options. (line 129) ! * mno-interrupts: AVR Options. (line 167) * mno-isel: RS/6000 and PowerPC Options. ! (line 194) ! * mno-knuthdiv: MMIX Options. (line 32) ! * mno-leaf-id-shared-library: Blackfin Options. (line 97) * mno-libfuncs: MMIX Options. (line 10) ! * mno-llsc: MIPS Options. (line 299) ! * mno-local-sdata: MIPS Options. (line 401) * mno-long-calls: ARM Options. (line 201) - * mno-long-calls <1>: Blackfin Options. (line 120) - * mno-long-calls <2>: HPPA Options. (line 130) - * mno-long-calls <3>: MIPS Options. (line 529) - * mno-long-calls <4>: V850 Options. (line 10) * mno-long-jumps: V850 Options. (line 108) * mno-longcall: RS/6000 and PowerPC Options. ! (line 756) * mno-longcalls: Xtensa Options. (line 72) ! * mno-low-64k: Blackfin Options. (line 73) ! * mno-lsim: FR30 Options. (line 14) * mno-lsim <1>: MCore Options. (line 46) ! * mno-mad: MIPS Options. (line 538) * mno-max: DEC Alpha Options. (line 163) ! * mno-mcount-ra-address: MIPS Options. (line 768) ! * mno-mcu: MIPS Options. (line 359) ! * mno-mdmx: MIPS Options. (line 336) ! * mno-media: FRV Options. (line 60) ! * mno-memcpy: MIPS Options. (line 523) * mno-mfcrf: RS/6000 and PowerPC Options. (line 27) * mno-mfpgpr: RS/6000 and PowerPC Options. (line 27) ! * mno-millicode: ARC Options. (line 255) ! * mno-mips16: MIPS Options. (line 102) ! * mno-mips3d: MIPS Options. (line 342) ! * mno-mmicromips: MIPS Options. (line 347) * mno-mmx: i386 and x86-64 Options. ! (line 629) * mno-mpy: ARC Options. (line 48) ! * mno-mt: MIPS Options. (line 355) ! * mno-mul-bug-workaround: CRIS Options. (line 32) ! * mno-muladd: FRV Options. (line 68) * mno-mulhw: RS/6000 and PowerPC Options. ! (line 441) * mno-mult-bug: MN10300 Options. (line 13) ! * mno-multi-cond-exec: FRV Options. (line 223) * mno-multiple: RS/6000 and PowerPC Options. ! (line 391) * mno-mvcle: S/390 and zSeries Options. ! (line 104) ! * mno-nested-cond-exec: FRV Options. (line 237) * mno-omit-leaf-frame-pointer: AArch64 Options. (line 54) ! * mno-optimize-membar: FRV Options. (line 249) * mno-opts: MeP Options. (line 93) ! * mno-pack: FRV Options. (line 151) * mno-packed-stack: S/390 and zSeries Options. (line 54) * mno-paired: RS/6000 and PowerPC Options. ! (line 208) ! * mno-paired-single: MIPS Options. (line 330) * mno-perf-ext: NDS32 Options. (line 30) * mno-pic: IA-64 Options. (line 26) * mno-pid: RX Options. (line 117) ! * mno-plt: MIPS Options. (line 189) ! * mno-popc: SPARC Options. (line 230) * mno-popcntb: RS/6000 and PowerPC Options. (line 27) * mno-popcntd: RS/6000 and PowerPC Options. (line 27) * mno-postinc: Adapteva Epiphany Options. ! (line 109) * mno-postmodify: Adapteva Epiphany Options. ! (line 109) * mno-power8-fusion: RS/6000 and PowerPC Options. ! (line 235) * mno-power8-vector: RS/6000 and PowerPC Options. ! (line 241) * mno-powerpc-gfxopt: RS/6000 and PowerPC Options. (line 27) * mno-powerpc-gpopt: RS/6000 and PowerPC Options. --- 53689,54372 ---- * mcop: MeP Options. (line 48) * mcop32: MeP Options. (line 53) * mcop64: MeP Options. (line 56) ! * mcorea: Blackfin Options. (line 157) ! * mcoreb: Blackfin Options. (line 164) ! * mcpu <1>: TILEPro Options. (line 9) ! * mcpu <2>: TILE-Gx Options. (line 18) ! * mcpu <3>: SPARC Options. (line 102) ! * mcpu <4>: RS/6000 and PowerPC Options. ! (line 69) ! * mcpu <5>: picoChip Options. (line 9) ! * mcpu <6>: M680x0 Options. (line 28) ! * mcpu <7>: i386 and x86-64 Options. ! (line 276) ! * mcpu <8>: FRV Options. (line 212) ! * mcpu <9>: DEC Alpha Options. (line 215) ! * mcpu <10>: CRIS Options. (line 10) ! * mcpu <11>: ARM Options. (line 136) ! * mcpu <12>: ARC Options. (line 14) ! * mcpu: AArch64 Options. (line 112) ! * mcpu32: M680x0 Options. (line 138) ! * mcpu= <1>: MicroBlaze Options. (line 20) ! * mcpu= <2>: M32C Options. (line 7) * mcpu=: Blackfin Options. (line 7) * mcr16c: CR16 Options. (line 14) * mcr16cplus: CR16 Options. (line 14) * mcrc32: i386 and x86-64 Options. ! (line 726) * mcrypto: RS/6000 and PowerPC Options. ! (line 224) ! * mcsync-anomaly: Blackfin Options. (line 60) * mctor-dtor: NDS32 Options. (line 73) ! * mcustom-fpu-cfg: Nios II Options. (line 176) * mcustom-INSN: Nios II Options. (line 61) * mcx16: i386 and x86-64 Options. ! (line 703) * MD: Preprocessor Options. ! (line 274) * mdalign: SH Options. (line 153) * mdata-align: CRIS Options. (line 55) * mdata-model: CR16 Options. (line 28) * mdc: MeP Options. (line 62) * mdebug <1>: S/390 and zSeries Options. ! (line 112) ! * mdebug: M32R/D Options. (line 69) * mdebug-main=PREFIX: VMS Options. (line 13) * mdec-asm: PDP-11 Options. (line 72) * mdirect-move: RS/6000 and PowerPC Options. ! (line 230) * mdisable-callt: V850 Options. (line 92) * mdisable-fpregs: HPPA Options. (line 28) * mdisable-indexing: HPPA Options. (line 34) ! * mdiv <1>: MeP Options. (line 65) ! * mdiv <2>: MCore Options. (line 15) ! * mdiv: M680x0 Options. (line 209) ! * mdiv=STRATEGY: SH Options. (line 309) ! * mdivide-breaks: MIPS Options. (line 512) * mdivide-enabled: LM32 Options. (line 12) ! * mdivide-traps: MIPS Options. (line 512) ! * mdivsi3_libfunc=NAME: SH Options. (line 407) * mdll: i386 and x86-64 Windows Options. (line 16) * mdlmzb: RS/6000 and PowerPC Options. ! (line 456) ! * mdmx: MIPS Options. (line 338) ! * mdouble: FRV Options. (line 38) * mdouble-float <1>: RS/6000 and PowerPC Options. ! (line 379) ! * mdouble-float: MIPS Options. (line 257) * mdpfp: ARC Options. (line 30) * mdpfp-compact: ARC Options. (line 31) * mdpfp-fast: ARC Options. (line 35) ! * mdpfp_compact: ARC Options. (line 366) ! * mdpfp_fast: ARC Options. (line 369) ! * mdsp: MIPS Options. (line 315) ! * mdsp-packa: ARC Options. (line 89) ! * mdsp_packa: ARC Options. (line 372) ! * mdspr2: MIPS Options. (line 321) ! * mdual-nops: SPU Options. (line 90) * mdump-tune-features: i386 and x86-64 Options. ! (line 660) ! * mdvbf: ARC Options. (line 93) * mdwarf2-asm: IA-64 Options. (line 94) ! * mdword: FRV Options. (line 32) * mdynamic-no-pic: RS/6000 and PowerPC Options. ! (line 516) ! * mEA: ARC Options. (line 375) * mea: ARC Options. (line 43) ! * mea32: SPU Options. (line 55) ! * mea64: SPU Options. (line 55) * meabi: RS/6000 and PowerPC Options. ! (line 693) ! * mearly-cbranchsi: ARC Options. (line 231) * mearly-stop-bits: IA-64 Options. (line 100) ! * meb <1>: Score Options. (line 9) * meb <2>: Nios II Options. (line 29) ! * meb <3>: Moxie Options. (line 7) ! * meb: MeP Options. (line 68) ! * mel <1>: Score Options. (line 12) * mel <2>: Nios II Options. (line 29) ! * mel <3>: Moxie Options. (line 11) ! * mel: MeP Options. (line 71) ! * melf <1>: MMIX Options. (line 44) * melf: CRIS Options. (line 87) * memb: RS/6000 and PowerPC Options. ! (line 688) ! * membedded-data: MIPS Options. (line 453) * memregs=: M32C Options. (line 21) * mep: V850 Options. (line 16) ! * mepilogue-cfi: ARC Options. (line 157) * mepsilon: MMIX Options. (line 15) * merror-reloc: SPU Options. (line 10) * mesa: S/390 and zSeries Options. ! (line 95) ! * metrax100: CRIS Options. (line 26) ! * metrax4: CRIS Options. (line 26) ! * meva: MIPS Options. (line 365) * mex9: NDS32 Options. (line 70) ! * mexpand-adddi: ARC Options. (line 234) ! * mexplicit-relocs <1>: MIPS Options. (line 497) * mexplicit-relocs: DEC Alpha Options. (line 176) * mexr: H8/300 Options. (line 28) ! * mextern-sdata: MIPS Options. (line 415) * MF: Preprocessor Options. (line 220) ! * mfast-fp: Blackfin Options. (line 133) * mfast-indirect-calls: HPPA Options. (line 46) * mfast-sw-div: Nios II Options. (line 46) ! * mfaster-structs: SPARC Options. (line 92) ! * mfdpic: FRV Options. (line 56) * mfentry: i386 and x86-64 Options. ! (line 918) * mfix: DEC Alpha Options. (line 163) ! * mfix-24k: MIPS Options. (line 572) * mfix-and-continue: Darwin Options. (line 104) ! * mfix-at697f: SPARC Options. (line 244) * mfix-cortex-a53-843419: AArch64 Options. (line 74) ! * mfix-cortex-m3-ldrd: ARM Options. (line 324) ! * mfix-r10000: MIPS Options. (line 599) ! * mfix-r4000: MIPS Options. (line 578) ! * mfix-r4400: MIPS Options. (line 592) ! * mfix-rm7000: MIPS Options. (line 610) ! * mfix-sb1: MIPS Options. (line 636) ! * mfix-ut699: SPARC Options. (line 249) ! * mfix-vr4120: MIPS Options. (line 615) ! * mfix-vr4130: MIPS Options. (line 629) ! * mfixed-cc: FRV Options. (line 28) ! * mfixed-range <1>: SPU Options. (line 47) ! * mfixed-range <2>: SH Options. (line 414) ! * mfixed-range <3>: IA-64 Options. (line 105) * mfixed-range: HPPA Options. (line 53) * mflat: SPARC Options. (line 22) ! * mflip-mips16: MIPS Options. (line 111) * mfloat-abi: ARM Options. (line 42) * mfloat-gprs: RS/6000 and PowerPC Options. ! (line 267) * mfloat-ieee: DEC Alpha Options. (line 171) * mfloat-vax: DEC Alpha Options. (line 171) * mfloat32: PDP-11 Options. (line 52) * mfloat64: PDP-11 Options. (line 48) ! * mflush-func: MIPS Options. (line 703) * mflush-func=NAME: M32R/D Options. (line 93) * mflush-trap=NUMBER: M32R/D Options. (line 86) ! * mfmaf: SPARC Options. (line 238) * mfmovd: SH Options. (line 169) * mforbid-fp-as-gp: NDS32 Options. (line 65) * mforce-fp-as-gp: NDS32 Options. (line 61) * mforce-no-pic: Xtensa Options. (line 41) ! * mfp-exceptions: MIPS Options. (line 730) * mfp-mode: Adapteva Epiphany Options. ! (line 72) * mfp-reg: DEC Alpha Options. (line 25) * mfp-rounding-mode: DEC Alpha Options. (line 85) * mfp-trap-mode: DEC Alpha Options. (line 63) * mfp16-format: ARM Options. (line 176) ! * mfp32: MIPS Options. (line 230) ! * mfp64: MIPS Options. (line 233) * mfpmath <1>: i386 and x86-64 Options. ! (line 279) ! * mfpmath: Optimize Options. (line 1958) ! * mfpr-32: FRV Options. (line 13) ! * mfpr-64: FRV Options. (line 16) * mfprnd: RS/6000 and PowerPC Options. (line 27) ! * mfpu <1>: SPARC Options. (line 35) * mfpu <2>: RS/6000 and PowerPC Options. ! (line 387) ! * mfpu <3>: PDP-11 Options. (line 9) ! * mfpu: ARM Options. (line 156) * mfriz: RS/6000 and PowerPC Options. ! (line 874) ! * mfsca: SH Options. (line 492) ! * mfsrra: SH Options. (line 501) * mfull-regs: NDS32 Options. (line 18) * mfull-toc: RS/6000 and PowerPC Options. ! (line 295) ! * mfused-madd <1>: Xtensa Options. (line 19) ! * mfused-madd <2>: SH Options. (line 483) * mfused-madd <3>: S/390 and zSeries Options. ! (line 137) ! * mfused-madd <4>: RS/6000 and PowerPC Options. ! (line 440) ! * mfused-madd <5>: MIPS Options. (line 554) ! * mfused-madd: IA-64 Options. (line 88) ! * mg: VAX Options. (line 17) * MG: Preprocessor Options. (line 229) * mgas: HPPA Options. (line 69) * mgcc-abi: V850 Options. (line 148) * mgen-cell-microcode: RS/6000 and PowerPC Options. ! (line 177) * mgeneral-regs-only: AArch64 Options. (line 24) ! * mgettrcost=NUMBER: SH Options. (line 431) * mghs: V850 Options. (line 127) * mglibc: GNU/Linux Options. (line 9) * mgnu: VAX Options. (line 13) * mgnu-as: IA-64 Options. (line 18) * mgnu-ld <1>: IA-64 Options. (line 23) + * mgnu-ld: HPPA Options. (line 105) * mgotplt: CRIS Options. (line 81) * mgp-direct: NDS32 Options. (line 45) ! * mgp32: MIPS Options. (line 224) ! * mgp64: MIPS Options. (line 227) * mgpopt <1>: Nios II Options. (line 15) + * mgpopt: MIPS Options. (line 438) * mgpr-32: FRV Options. (line 7) ! * mgpr-64: FRV Options. (line 10) ! * mgprel-ro: FRV Options. (line 79) * mh: H8/300 Options. (line 14) ! * mhal: Nios II Options. (line 222) * mhalf-reg-file: Adapteva Epiphany Options. (line 9) * mhard-dfp <1>: S/390 and zSeries Options. (line 20) ! * mhard-dfp: RS/6000 and PowerPC Options. ! (line 27) ! * mhard-float <1>: V850 Options. (line 113) ! * mhard-float <2>: SPARC Options. (line 35) ! * mhard-float <3>: S/390 and zSeries Options. (line 11) ! * mhard-float <4>: RS/6000 and PowerPC Options. ! (line 373) ! * mhard-float <5>: MIPS Options. (line 236) ! * mhard-float <6>: MicroBlaze Options. (line 10) ! * mhard-float <7>: M680x0 Options. (line 197) ! * mhard-float: FRV Options. (line 19) ! * mhard-quad-float: SPARC Options. (line 56) * mhardlit: MCore Options. (line 10) ! * mhint-max-distance: SPU Options. (line 102) ! * mhint-max-nops: SPU Options. (line 96) * mhotpatch: S/390 and zSeries Options. ! (line 173) * mhp-ld: HPPA Options. (line 117) + * mhtm: RS/6000 and PowerPC Options. + (line 236) * mhw-div: Nios II Options. (line 55) * mhw-mul: Nios II Options. (line 55) * mhw-mulx: Nios II Options. (line 55) * mhwmult=: MSP430 Options. (line 56) ! * micplb: Blackfin Options. (line 178) ! * mid-shared-library: Blackfin Options. (line 81) * mieee <1>: SH Options. (line 186) + * mieee: DEC Alpha Options. (line 39) * mieee-conformant: DEC Alpha Options. (line 134) * mieee-fp: i386 and x86-64 Options. ! (line 334) * mieee-with-inexact: DEC Alpha Options. (line 52) * milp32: IA-64 Options. (line 121) ! * mimadd: MIPS Options. (line 547) ! * mimpure-text: Solaris 2 Options. (line 16) * mincoming-stack-boundary: i386 and x86-64 Options. ! (line 542) ! * mindexed-addressing: SH Options. (line 421) ! * mindexed-loads: ARC Options. (line 238) * minline-all-stringops: i386 and x86-64 Options. ! (line 850) * minline-float-divide-max-throughput: IA-64 Options. (line 58) * minline-float-divide-min-latency: IA-64 Options. (line 54) * minline-ic_invalidate: SH Options. (line 195) * minline-int-divide-max-throughput: IA-64 Options. (line 69) * minline-int-divide-min-latency: IA-64 Options. (line 65) ! * minline-plt <1>: FRV Options. (line 64) ! * minline-plt: Blackfin Options. (line 138) * minline-sqrt-max-throughput: IA-64 Options. (line 80) * minline-sqrt-min-latency: IA-64 Options. (line 76) * minline-stringops-dynamically: i386 and x86-64 Options. ! (line 857) ! * minrt: MSP430 Options. (line 78) * minsert-sched-nops: RS/6000 and PowerPC Options. ! (line 556) * mint-register: RX Options. (line 100) * mint16: PDP-11 Options. (line 40) + * mint32 <1>: PDP-11 Options. (line 44) + * mint32 <2>: H8/300 Options. (line 38) * mint32: CR16 Options. (line 22) ! * mint8: AVR Options. (line 159) ! * minterlink-compressed: MIPS Options. (line 119) ! * minterlink-mips16: MIPS Options. (line 131) ! * minvalid-symbols: SH Options. (line 457) * mio-volatile: MeP Options. (line 74) ! * mips1: MIPS Options. (line 78) ! * mips16: MIPS Options. (line 103) ! * mips2: MIPS Options. (line 81) ! * mips3: MIPS Options. (line 84) ! * mips32: MIPS Options. (line 90) ! * mips32r2: MIPS Options. (line 93) ! * mips3d: MIPS Options. (line 344) ! * mips4: MIPS Options. (line 87) ! * mips64: MIPS Options. (line 96) ! * mips64r2: MIPS Options. (line 99) * misel: RS/6000 and PowerPC Options. ! (line 195) * misize <1>: SH Options. (line 207) + * misize: ARC Options. (line 132) * misr-vector-size: NDS32 Options. (line 51) * missue-rate=NUMBER: M32R/D Options. (line 79) * mivc2: MeP Options. (line 59) * mjump-in-delay: HPPA Options. (line 23) * mkernel: Darwin Options. (line 82) ! * mknuthdiv: MMIX Options. (line 33) * ml <1>: SH Options. (line 150) + * ml: MeP Options. (line 78) * mlarge: MSP430 Options. (line 45) * mlarge-data: DEC Alpha Options. (line 187) * mlarge-data-threshold: i386 and x86-64 Options. ! (line 428) ! * mlarge-mem: SPU Options. (line 35) * mlarge-text: DEC Alpha Options. (line 205) * mleadz: MeP Options. (line 81) ! * mleaf-id-shared-library: Blackfin Options. (line 92) * mlibfuncs: MMIX Options. (line 10) ! * mlibrary-pic: FRV Options. (line 110) ! * mlinked-fp: FRV Options. (line 94) * mlinker-opt: HPPA Options. (line 79) * mlinux: CRIS Options. (line 91) * mlittle: RS/6000 and PowerPC Options. ! (line 505) ! * mlittle-endian <1>: TILE-Gx Options. (line 29) ! * mlittle-endian <2>: RS/6000 and PowerPC Options. ! (line 505) ! * mlittle-endian <3>: NDS32 Options. (line 12) ! * mlittle-endian <4>: MicroBlaze Options. (line 60) * mlittle-endian <5>: MCore Options. (line 39) ! * mlittle-endian <6>: IA-64 Options. (line 13) ! * mlittle-endian <7>: C6X Options. (line 16) ! * mlittle-endian <8>: ARM Options. (line 58) ! * mlittle-endian <9>: ARC Options. (line 356) ! * mlittle-endian: AArch64 Options. (line 27) * mlittle-endian-data: RX Options. (line 42) * mliw: MN10300 Options. (line 54) ! * mllsc: MIPS Options. (line 301) ! * mlocal-sdata: MIPS Options. (line 403) ! * mlock: ARC Options. (line 97) ! * mlong-calls <1>: V850 Options. (line 10) ! * mlong-calls <2>: MIPS Options. (line 533) ! * mlong-calls <3>: FRV Options. (line 99) ! * mlong-calls <4>: Blackfin Options. (line 121) ! * mlong-calls <5>: ARM Options. (line 201) ! * mlong-calls <6>: ARC Options. (line 163) * mlong-calls: Adapteva Epiphany Options. (line 55) * mlong-double-128 <1>: S/390 and zSeries Options. (line 29) ! * mlong-double-128: i386 and x86-64 Options. ! (line 415) * mlong-double-64 <1>: S/390 and zSeries Options. (line 29) + * mlong-double-64: i386 and x86-64 Options. + (line 415) * mlong-double-80: i386 and x86-64 Options. ! (line 415) * mlong-jumps: V850 Options. (line 108) * mlong-load-store: HPPA Options. (line 60) ! * mlong32: MIPS Options. (line 378) ! * mlong64: MIPS Options. (line 373) * mlongcall: RS/6000 and PowerPC Options. ! (line 765) * mlongcalls: Xtensa Options. (line 72) * mloop: V850 Options. (line 121) ! * mlow-64k: Blackfin Options. (line 70) * mlp64: IA-64 Options. (line 121) ! * mlra: ARC Options. (line 243) ! * mlra-priority-compact: ARC Options. (line 251) ! * mlra-priority-noncompact: ARC Options. (line 254) ! * mlra-priority-none: ARC Options. (line 248) ! * mm: MeP Options. (line 84) * MM: Preprocessor Options. (line 210) * mmac <1>: Score Options. (line 21) ! * mmac: CR16 Options. (line 9) ! * mmac-24: ARC Options. (line 106) ! * mmac-d16: ARC Options. (line 102) ! * mmac_24: ARC Options. (line 378) ! * mmac_d16: ARC Options. (line 381) ! * mmad: MIPS Options. (line 542) * mmalloc64: VMS Options. (line 17) * mmax: DEC Alpha Options. (line 163) * mmax-constant-size: RX Options. (line 82) ! * mmax-stack-frame: CRIS Options. (line 22) ! * mmcount-ra-address: MIPS Options. (line 779) ! * mmcu <1>: MIPS Options. (line 361) * mmcu: AVR Options. (line 9) * mmcu=: MSP430 Options. (line 14) * MMD: Preprocessor Options. ! (line 290) ! * mmedia: FRV Options. (line 44) ! * mmedium-calls: ARC Options. (line 167) ! * mmemcpy <1>: MIPS Options. (line 527) * mmemcpy: MicroBlaze Options. (line 13) * mmemcpy-strategy=STRATEGY: i386 and x86-64 Options. ! (line 879) * mmemory-latency: DEC Alpha Options. (line 268) ! * mmemory-model: SPARC Options. (line 290) * mmemset-strategy=STRATEGY: i386 and x86-64 Options. ! (line 891) * mmfcrf: RS/6000 and PowerPC Options. (line 27) * mmfpgpr: RS/6000 and PowerPC Options. (line 27) ! * mmicromips: MIPS Options. (line 349) * mminimal-toc: RS/6000 and PowerPC Options. ! (line 295) * mminmax: MeP Options. (line 87) ! * mmixed-code: ARC Options. (line 266) * mmmx: i386 and x86-64 Options. ! (line 636) * mmodel=large: M32R/D Options. (line 33) * mmodel=medium: M32R/D Options. (line 27) * mmodel=small: M32R/D Options. (line 18) * mmovbe: i386 and x86-64 Options. ! (line 722) ! * mmt: MIPS Options. (line 357) * mmul: RL78 Options. (line 13) ! * mmul-bug-workaround: CRIS Options. (line 31) * mmul32x16: ARC Options. (line 51) * mmul64: ARC Options. (line 54) ! * mmuladd: FRV Options. (line 50) * mmulhw: RS/6000 and PowerPC Options. ! (line 449) * mmult: MeP Options. (line 90) * mmult-bug: MN10300 Options. (line 9) ! * mmultcost: ARC Options. (line 330) ! * mmulti-cond-exec: FRV Options. (line 176) ! * mmulticore: Blackfin Options. (line 142) * mmultiple: RS/6000 and PowerPC Options. ! (line 399) * mmvcle: S/390 and zSeries Options. ! (line 105) * mmvme: RS/6000 and PowerPC Options. ! (line 669) * mn: H8/300 Options. (line 20) ! * mnan=2008: MIPS Options. (line 282) ! * mnan=legacy: MIPS Options. (line 282) ! * mneon-for-64bits: ARM Options. (line 344) ! * mnested-cond-exec: FRV Options. (line 189) * mnhwloop: Score Options. (line 15) * mno-16-bit: NDS32 Options. (line 42) * mno-3dnow: i386 and x86-64 Options. ! (line 636) * mno-4byte-functions: MCore Options. (line 27) * mno-8byte-align: V850 Options. (line 170) ! * mno-abicalls: MIPS Options. (line 164) * mno-abshi: PDP-11 Options. (line 58) * mno-ac0: PDP-11 Options. (line 20) ! * mno-address-space-conversion: SPU Options. (line 63) * mno-align-double: i386 and x86-64 Options. ! (line 373) ! * mno-align-int: M680x0 Options. (line 267) * mno-align-loops: M32R/D Options. (line 76) * mno-align-stringops: i386 and x86-64 Options. ! (line 845) * mno-altivec: RS/6000 and PowerPC Options. ! (line 136) * mno-am33: MN10300 Options. (line 20) * mno-app-regs <1>: V850 Options. (line 185) + * mno-app-regs: SPARC Options. (line 10) * mno-as100-syntax: RX Options. (line 76) ! * mno-atomic-updates: SPU Options. (line 78) * mno-avoid-indexed-addresses: RS/6000 and PowerPC Options. ! (line 431) * mno-backchain: S/390 and zSeries Options. (line 35) ! * mno-base-addresses: MMIX Options. (line 54) * mno-bit-align: RS/6000 and PowerPC Options. ! (line 463) ! * mno-bitfield: M680x0 Options. (line 231) ! * mno-branch-likely: MIPS Options. (line 719) ! * mno-branch-predict: MMIX Options. (line 49) ! * mno-brcc: ARC Options. (line 203) * mno-bwx: DEC Alpha Options. (line 163) * mno-bypass-cache: Nios II Options. (line 34) * mno-cache-volatile: Nios II Options. (line 40) * mno-callgraph-data: MCore Options. (line 31) ! * mno-cbcond: SPARC Options. (line 224) ! * mno-check-zero-division: MIPS Options. (line 506) * mno-cix: DEC Alpha Options. (line 163) * mno-clearbss: MicroBlaze Options. (line 16) * mno-cmov: NDS32 Options. (line 24) * mno-cmpb: RS/6000 and PowerPC Options. (line 27) ! * mno-cond-exec <1>: FRV Options. (line 158) ! * mno-cond-exec: ARC Options. (line 215) ! * mno-cond-move: FRV Options. (line 134) * mno-const-align: CRIS Options. (line 55) * mno-const16: Xtensa Options. (line 10) * mno-crt0 <1>: Moxie Options. (line 14) + * mno-crt0: MN10300 Options. (line 43) * mno-crypto: RS/6000 and PowerPC Options. ! (line 224) ! * mno-csync-anomaly: Blackfin Options. (line 66) * mno-custom-INSN: Nios II Options. (line 61) * mno-data-align: CRIS Options. (line 55) * mno-debug: S/390 and zSeries Options. ! (line 112) * mno-default: i386 and x86-64 Options. ! (line 675) * mno-direct-move: RS/6000 and PowerPC Options. ! (line 230) * mno-disable-callt: V850 Options. (line 92) * mno-div <1>: MCore Options. (line 15) + * mno-div: M680x0 Options. (line 209) * mno-dlmzb: RS/6000 and PowerPC Options. ! (line 456) ! * mno-double: FRV Options. (line 41) * mno-dpfp-lrsr: ARC Options. (line 39) ! * mno-dsp: MIPS Options. (line 315) ! * mno-dspr2: MIPS Options. (line 321) * mno-dwarf2-asm: IA-64 Options. (line 94) ! * mno-dword: FRV Options. (line 35) * mno-eabi: RS/6000 and PowerPC Options. ! (line 693) * mno-early-stop-bits: IA-64 Options. (line 100) ! * mno-eflags: FRV Options. (line 125) ! * mno-embedded-data: MIPS Options. (line 453) * mno-ep: V850 Options. (line 16) ! * mno-epilogue-cfi: ARC Options. (line 160) * mno-epsilon: MMIX Options. (line 15) ! * mno-eva: MIPS Options. (line 365) ! * mno-explicit-relocs <1>: MIPS Options. (line 497) * mno-explicit-relocs: DEC Alpha Options. (line 176) * mno-exr: H8/300 Options. (line 33) ! * mno-extern-sdata: MIPS Options. (line 415) * mno-fancy-math-387: i386 and x86-64 Options. ! (line 362) * mno-fast-sw-div: Nios II Options. (line 46) ! * mno-faster-structs: SPARC Options. (line 92) * mno-fix: DEC Alpha Options. (line 163) ! * mno-fix-24k: MIPS Options. (line 572) * mno-fix-cortex-a53-843419: AArch64 Options. (line 74) ! * mno-fix-r10000: MIPS Options. (line 599) ! * mno-fix-r4000: MIPS Options. (line 578) ! * mno-fix-r4400: MIPS Options. (line 592) * mno-flat: SPARC Options. (line 22) ! * mno-float: MIPS Options. (line 243) * mno-float32: PDP-11 Options. (line 48) * mno-float64: PDP-11 Options. (line 52) * mno-flush-func: M32R/D Options. (line 98) * mno-flush-trap: M32R/D Options. (line 90) ! * mno-fmaf: SPARC Options. (line 238) * mno-fp-in-toc: RS/6000 and PowerPC Options. ! (line 295) * mno-fp-regs: DEC Alpha Options. (line 25) * mno-fp-ret-in-387: i386 and x86-64 Options. ! (line 352) * mno-fprnd: RS/6000 and PowerPC Options. (line 27) ! * mno-fpu: SPARC Options. (line 40) ! * mno-fsca: SH Options. (line 492) ! * mno-fsrra: SH Options. (line 501) ! * mno-fused-madd <1>: Xtensa Options. (line 19) ! * mno-fused-madd <2>: SH Options. (line 483) * mno-fused-madd <3>: S/390 and zSeries Options. ! (line 137) ! * mno-fused-madd <4>: RS/6000 and PowerPC Options. ! (line 440) ! * mno-fused-madd <5>: MIPS Options. (line 554) ! * mno-fused-madd: IA-64 Options. (line 88) * mno-gnu-as: IA-64 Options. (line 18) * mno-gnu-ld: IA-64 Options. (line 23) * mno-gotplt: CRIS Options. (line 81) * mno-gp-direct: NDS32 Options. (line 48) * mno-gpopt <1>: Nios II Options. (line 15) ! * mno-gpopt: MIPS Options. (line 438) * mno-hard-dfp <1>: S/390 and zSeries Options. (line 20) + * mno-hard-dfp: RS/6000 and PowerPC Options. + (line 27) * mno-hardlit: MCore Options. (line 10) + * mno-htm: RS/6000 and PowerPC Options. + (line 236) * mno-hw-div: Nios II Options. (line 55) * mno-hw-mul: Nios II Options. (line 55) * mno-hw-mulx: Nios II Options. (line 55) ! * mno-id-shared-library: Blackfin Options. (line 88) * mno-ieee: SH Options. (line 186) * mno-ieee-fp: i386 and x86-64 Options. ! (line 334) ! * mno-imadd: MIPS Options. (line 547) * mno-inline-float-divide: IA-64 Options. (line 62) * mno-inline-int-divide: IA-64 Options. (line 73) * mno-inline-sqrt: IA-64 Options. (line 84) * mno-int16: PDP-11 Options. (line 44) * mno-int32: PDP-11 Options. (line 40) ! * mno-interlink-compressed: MIPS Options. (line 119) ! * mno-interlink-mips16: MIPS Options. (line 131) ! * mno-interrupts: AVR Options. (line 165) * mno-isel: RS/6000 and PowerPC Options. ! (line 195) ! * mno-knuthdiv: MMIX Options. (line 33) ! * mno-leaf-id-shared-library: Blackfin Options. (line 98) * mno-libfuncs: MMIX Options. (line 10) ! * mno-llsc: MIPS Options. (line 301) ! * mno-local-sdata: MIPS Options. (line 403) ! * mno-long-calls <1>: V850 Options. (line 10) ! * mno-long-calls <2>: MIPS Options. (line 533) ! * mno-long-calls <3>: HPPA Options. (line 130) ! * mno-long-calls <4>: Blackfin Options. (line 121) * mno-long-calls: ARM Options. (line 201) * mno-long-jumps: V850 Options. (line 108) * mno-longcall: RS/6000 and PowerPC Options. ! (line 765) * mno-longcalls: Xtensa Options. (line 72) ! * mno-low-64k: Blackfin Options. (line 74) * mno-lsim <1>: MCore Options. (line 46) ! * mno-lsim: FR30 Options. (line 14) ! * mno-mad: MIPS Options. (line 542) * mno-max: DEC Alpha Options. (line 163) ! * mno-mcount-ra-address: MIPS Options. (line 779) ! * mno-mcu: MIPS Options. (line 361) ! * mno-mdmx: MIPS Options. (line 338) ! * mno-media: FRV Options. (line 47) ! * mno-memcpy: MIPS Options. (line 527) * mno-mfcrf: RS/6000 and PowerPC Options. (line 27) * mno-mfpgpr: RS/6000 and PowerPC Options. (line 27) ! * mno-millicode: ARC Options. (line 257) ! * mno-mips16: MIPS Options. (line 103) ! * mno-mips3d: MIPS Options. (line 344) ! * mno-mmicromips: MIPS Options. (line 349) * mno-mmx: i386 and x86-64 Options. ! (line 636) * mno-mpy: ARC Options. (line 48) ! * mno-mt: MIPS Options. (line 357) ! * mno-mul-bug-workaround: CRIS Options. (line 31) ! * mno-muladd: FRV Options. (line 53) * mno-mulhw: RS/6000 and PowerPC Options. ! (line 449) * mno-mult-bug: MN10300 Options. (line 13) ! * mno-multi-cond-exec: FRV Options. (line 183) * mno-multiple: RS/6000 and PowerPC Options. ! (line 399) * mno-mvcle: S/390 and zSeries Options. ! (line 105) ! * mno-nested-cond-exec: FRV Options. (line 195) * mno-omit-leaf-frame-pointer: AArch64 Options. (line 54) ! * mno-optimize-membar: FRV Options. (line 205) * mno-opts: MeP Options. (line 93) ! * mno-pack: FRV Options. (line 122) * mno-packed-stack: S/390 and zSeries Options. (line 54) * mno-paired: RS/6000 and PowerPC Options. ! (line 209) ! * mno-paired-single: MIPS Options. (line 332) * mno-perf-ext: NDS32 Options. (line 30) * mno-pic: IA-64 Options. (line 26) * mno-pid: RX Options. (line 117) ! * mno-plt: MIPS Options. (line 191) ! * mno-popc: SPARC Options. (line 231) * mno-popcntb: RS/6000 and PowerPC Options. (line 27) * mno-popcntd: RS/6000 and PowerPC Options. (line 27) * mno-postinc: Adapteva Epiphany Options. ! (line 110) * mno-postmodify: Adapteva Epiphany Options. ! (line 110) * mno-power8-fusion: RS/6000 and PowerPC Options. ! (line 242) * mno-power8-vector: RS/6000 and PowerPC Options. ! (line 248) * mno-powerpc-gfxopt: RS/6000 and PowerPC Options. (line 27) * mno-powerpc-gpopt: RS/6000 and PowerPC Options. *************** look up both forms. *** 53938,53966 **** * mno-prolog-function: V850 Options. (line 23) * mno-prologue-epilogue: CRIS Options. (line 71) * mno-prototype: RS/6000 and PowerPC Options. ! (line 645) * mno-push-args: i386 and x86-64 Options. ! (line 815) * mno-quad-memory: RS/6000 and PowerPC Options. ! (line 248) * mno-quad-memory-atomic: RS/6000 and PowerPC Options. ! (line 254) * mno-red-zone: i386 and x86-64 Options. ! (line 957) * mno-register-names: IA-64 Options. (line 37) * mno-regnames: RS/6000 and PowerPC Options. ! (line 750) * mno-relax: V850 Options. (line 103) * mno-relax-immediate: MCore Options. (line 19) * mno-relocatable: RS/6000 and PowerPC Options. ! (line 471) * mno-relocatable-lib: RS/6000 and PowerPC Options. ! (line 482) * mno-renesas: SH Options. (line 176) * mno-round-nearest: Adapteva Epiphany Options. (line 51) ! * mno-rtd: M680x0 Options. (line 258) ! * mno-scc: FRV Options. (line 180) * mno-sched-ar-data-spec: IA-64 Options. (line 134) * mno-sched-ar-in-data-spec: IA-64 Options. (line 155) * mno-sched-br-data-spec: IA-64 Options. (line 128) --- 54376,54404 ---- * mno-prolog-function: V850 Options. (line 23) * mno-prologue-epilogue: CRIS Options. (line 71) * mno-prototype: RS/6000 and PowerPC Options. ! (line 653) * mno-push-args: i386 and x86-64 Options. ! (line 822) * mno-quad-memory: RS/6000 and PowerPC Options. ! (line 255) * mno-quad-memory-atomic: RS/6000 and PowerPC Options. ! (line 261) * mno-red-zone: i386 and x86-64 Options. ! (line 967) * mno-register-names: IA-64 Options. (line 37) * mno-regnames: RS/6000 and PowerPC Options. ! (line 759) * mno-relax: V850 Options. (line 103) * mno-relax-immediate: MCore Options. (line 19) * mno-relocatable: RS/6000 and PowerPC Options. ! (line 479) * mno-relocatable-lib: RS/6000 and PowerPC Options. ! (line 490) * mno-renesas: SH Options. (line 176) * mno-round-nearest: Adapteva Epiphany Options. (line 51) ! * mno-rtd: M680x0 Options. (line 262) ! * mno-scc: FRV Options. (line 146) * mno-sched-ar-data-spec: IA-64 Options. (line 134) * mno-sched-ar-in-data-spec: IA-64 Options. (line 155) * mno-sched-br-data-spec: IA-64 Options. (line 128) *************** look up both forms. *** 53971,54050 **** * mno-sched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * mno-sched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * mno-sched-prolog: ARM Options. (line 33) ! * mno-sdata: ARC Options. (line 174) ! * mno-sdata <1>: IA-64 Options. (line 42) ! * mno-sdata <2>: RS/6000 and PowerPC Options. ! (line 731) ! * mno-sep-data: Blackfin Options. (line 115) * mno-serialize-volatile: Xtensa Options. (line 35) ! * mno-short: M680x0 Options. (line 222) * mno-side-effects: CRIS Options. (line 46) * mno-sim: RX Options. (line 71) ! * mno-single-exit: MMIX Options. (line 65) * mno-slow-bytes: MCore Options. (line 35) * mno-small-exec: S/390 and zSeries Options. ! (line 79) ! * mno-smartmips: MIPS Options. (line 326) * mno-soft-cmpsf: Adapteva Epiphany Options. (line 29) * mno-soft-float: DEC Alpha Options. (line 10) * mno-space-regs: HPPA Options. (line 39) * mno-spe: RS/6000 and PowerPC Options. ! (line 203) ! * mno-specld-anomaly: Blackfin Options. (line 55) ! * mno-split-addresses: MIPS Options. (line 488) * mno-sse: i386 and x86-64 Options. ! (line 629) * mno-stack-align: CRIS Options. (line 55) ! * mno-stack-bias: SPARC Options. (line 313) ! * mno-strict-align: M680x0 Options. (line 283) * mno-strict-align <1>: RS/6000 and PowerPC Options. ! (line 466) * mno-string: RS/6000 and PowerPC Options. ! (line 402) * mno-sum-in-toc: RS/6000 and PowerPC Options. ! (line 288) ! * mno-sym32: MIPS Options. (line 386) * mno-target-align: Xtensa Options. (line 59) * mno-text-section-literals: Xtensa Options. (line 47) * mno-tls-markers: RS/6000 and PowerPC Options. ! (line 788) * mno-toc: RS/6000 and PowerPC Options. ! (line 491) ! * mno-toplevel-symbols: MMIX Options. (line 39) * mno-tpf-trace: S/390 and zSeries Options. ! (line 129) ! * mno-unaligned-access: ARM Options. (line 332) ! * mno-unaligned-doubles: SPARC Options. (line 73) ! * mno-uninit-const-in-rodata: MIPS Options. (line 458) * mno-update: RS/6000 and PowerPC Options. ! (line 413) ! * mno-user-mode: SPARC Options. (line 85) ! * mno-usermode: SH Options. (line 296) * mno-v3push: NDS32 Options. (line 36) ! * mno-v8plus: SPARC Options. (line 194) * mno-vect-double: Adapteva Epiphany Options. ! (line 115) ! * mno-virt: MIPS Options. (line 367) ! * mno-vis: SPARC Options. (line 201) ! * mno-vis2: SPARC Options. (line 207) ! * mno-vis3: SPARC Options. (line 215) ! * mno-vliw-branch: FRV Options. (line 208) * mno-volatile-asm-stop: IA-64 Options. (line 32) ! * mno-volatile-cache: ARC Options. (line 188) * mno-vrsave: RS/6000 and PowerPC Options. ! (line 173) * mno-vsx: RS/6000 and PowerPC Options. ! (line 217) * mno-warn-multiple-fast-interrupts: RX Options. (line 143) * mno-wide-bitfields: MCore Options. (line 23) ! * mno-xgot: M680x0 Options. (line 315) ! * mno-xgot <1>: MIPS Options. (line 199) * mno-xl-compat: RS/6000 and PowerPC Options. ! (line 323) ! * mno-zdcbranch: SH Options. (line 466) ! * mno-zero-extend: MMIX Options. (line 26) ! * mnobitfield: M680x0 Options. (line 227) * mnoliw: MN10300 Options. (line 59) * mnomacsave: SH Options. (line 181) * mnop-fun-dllimport: i386 and x86-64 Windows Options. --- 54409,54488 ---- * mno-sched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * mno-sched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * mno-sched-prolog: ARM Options. (line 33) ! * mno-sdata <1>: RS/6000 and PowerPC Options. ! (line 740) ! * mno-sdata <2>: IA-64 Options. (line 42) ! * mno-sdata: ARC Options. (line 175) ! * mno-sep-data: Blackfin Options. (line 116) * mno-serialize-volatile: Xtensa Options. (line 35) ! * mno-short: M680x0 Options. (line 226) * mno-side-effects: CRIS Options. (line 46) * mno-sim: RX Options. (line 71) ! * mno-single-exit: MMIX Options. (line 66) * mno-slow-bytes: MCore Options. (line 35) * mno-small-exec: S/390 and zSeries Options. ! (line 80) ! * mno-smartmips: MIPS Options. (line 328) * mno-soft-cmpsf: Adapteva Epiphany Options. (line 29) * mno-soft-float: DEC Alpha Options. (line 10) * mno-space-regs: HPPA Options. (line 39) * mno-spe: RS/6000 and PowerPC Options. ! (line 204) ! * mno-specld-anomaly: Blackfin Options. (line 56) ! * mno-split-addresses: MIPS Options. (line 491) * mno-sse: i386 and x86-64 Options. ! (line 636) * mno-stack-align: CRIS Options. (line 55) ! * mno-stack-bias: SPARC Options. (line 314) * mno-strict-align <1>: RS/6000 and PowerPC Options. ! (line 474) ! * mno-strict-align: M680x0 Options. (line 287) * mno-string: RS/6000 and PowerPC Options. ! (line 410) * mno-sum-in-toc: RS/6000 and PowerPC Options. ! (line 295) ! * mno-sym32: MIPS Options. (line 388) * mno-target-align: Xtensa Options. (line 59) * mno-text-section-literals: Xtensa Options. (line 47) * mno-tls-markers: RS/6000 and PowerPC Options. ! (line 798) * mno-toc: RS/6000 and PowerPC Options. ! (line 499) ! * mno-toplevel-symbols: MMIX Options. (line 40) * mno-tpf-trace: S/390 and zSeries Options. ! (line 131) ! * mno-unaligned-access: ARM Options. (line 331) ! * mno-unaligned-doubles: SPARC Options. (line 74) ! * mno-uninit-const-in-rodata: MIPS Options. (line 461) * mno-update: RS/6000 and PowerPC Options. ! (line 421) ! * mno-user-mode: SPARC Options. (line 86) ! * mno-usermode: SH Options. (line 298) * mno-v3push: NDS32 Options. (line 36) ! * mno-v8plus: SPARC Options. (line 195) * mno-vect-double: Adapteva Epiphany Options. ! (line 116) ! * mno-virt: MIPS Options. (line 369) ! * mno-vis: SPARC Options. (line 202) ! * mno-vis2: SPARC Options. (line 208) ! * mno-vis3: SPARC Options. (line 216) ! * mno-vliw-branch: FRV Options. (line 170) * mno-volatile-asm-stop: IA-64 Options. (line 32) ! * mno-volatile-cache: ARC Options. (line 189) * mno-vrsave: RS/6000 and PowerPC Options. ! (line 174) * mno-vsx: RS/6000 and PowerPC Options. ! (line 218) * mno-warn-multiple-fast-interrupts: RX Options. (line 143) * mno-wide-bitfields: MCore Options. (line 23) ! * mno-xgot <1>: MIPS Options. (line 201) ! * mno-xgot: M680x0 Options. (line 319) * mno-xl-compat: RS/6000 and PowerPC Options. ! (line 330) ! * mno-zdcbranch: SH Options. (line 474) ! * mno-zero-extend: MMIX Options. (line 27) ! * mnobitfield: M680x0 Options. (line 231) * mnoliw: MN10300 Options. (line 59) * mnomacsave: SH Options. (line 181) * mnop-fun-dllimport: i386 and x86-64 Windows Options. *************** look up both forms. *** 54054,54108 **** * mnorm: ARC Options. (line 58) * mnosetlb: MN10300 Options. (line 69) * mnosplit-lohi: Adapteva Epiphany Options. ! (line 109) * momit-leaf-frame-pointer: AArch64 Options. (line 54) - * momit-leaf-frame-pointer <1>: Blackfin Options. (line 43) - * momit-leaf-frame-pointer <2>: i386 and x86-64 Options. - (line 887) * mone-byte-bool: Darwin Options. (line 90) ! * moptimize-membar: FRV Options. (line 244) * MP: Preprocessor Options. (line 239) * mpa-risc-1-0: HPPA Options. (line 19) * mpa-risc-1-1: HPPA Options. (line 19) * mpa-risc-2-0: HPPA Options. (line 19) ! * mpack: FRV Options. (line 147) * mpacked-stack: S/390 and zSeries Options. (line 54) * mpadstruct: SH Options. (line 210) * mpaired: RS/6000 and PowerPC Options. ! (line 208) ! * mpaired-single: MIPS Options. (line 330) * mpc32: i386 and x86-64 Options. ! (line 484) * mpc64: i386 and x86-64 Options. ! (line 484) * mpc80: i386 and x86-64 Options. ! (line 484) ! * mpcrel: M680x0 Options. (line 275) ! * mpdebug: CRIS Options. (line 36) * mpe: RS/6000 and PowerPC Options. ! (line 342) * mpe-aligned-commons: i386 and x86-64 Windows Options. (line 59) * mperf-ext: NDS32 Options. (line 27) * mpic-data-is-text-relative: ARM Options. (line 238) * mpic-register: ARM Options. (line 231) * mpid: RX Options. (line 117) ! * mplt: MIPS Options. (line 189) * mpointers-to-nested-functions: RS/6000 and PowerPC Options. ! (line 871) * mpoke-function-name: ARM Options. (line 244) ! * mpopc: SPARC Options. (line 230) * mpopcntb: RS/6000 and PowerPC Options. (line 27) * mpopcntd: RS/6000 and PowerPC Options. (line 27) * mportable-runtime: HPPA Options. (line 65) * mpower8-fusion: RS/6000 and PowerPC Options. ! (line 235) * mpower8-vector: RS/6000 and PowerPC Options. ! (line 241) * mpowerpc-gfxopt: RS/6000 and PowerPC Options. (line 27) * mpowerpc-gpopt: RS/6000 and PowerPC Options. --- 54492,54546 ---- * mnorm: ARC Options. (line 58) * mnosetlb: MN10300 Options. (line 69) * mnosplit-lohi: Adapteva Epiphany Options. ! (line 110) ! * momit-leaf-frame-pointer <1>: i386 and x86-64 Options. ! (line 895) ! * momit-leaf-frame-pointer <2>: Blackfin Options. (line 44) * momit-leaf-frame-pointer: AArch64 Options. (line 54) * mone-byte-bool: Darwin Options. (line 90) ! * moptimize-membar: FRV Options. (line 201) * MP: Preprocessor Options. (line 239) * mpa-risc-1-0: HPPA Options. (line 19) * mpa-risc-1-1: HPPA Options. (line 19) * mpa-risc-2-0: HPPA Options. (line 19) ! * mpack: FRV Options. (line 119) * mpacked-stack: S/390 and zSeries Options. (line 54) * mpadstruct: SH Options. (line 210) * mpaired: RS/6000 and PowerPC Options. ! (line 209) ! * mpaired-single: MIPS Options. (line 332) * mpc32: i386 and x86-64 Options. ! (line 491) * mpc64: i386 and x86-64 Options. ! (line 491) * mpc80: i386 and x86-64 Options. ! (line 491) ! * mpcrel: M680x0 Options. (line 279) ! * mpdebug: CRIS Options. (line 35) * mpe: RS/6000 and PowerPC Options. ! (line 350) * mpe-aligned-commons: i386 and x86-64 Windows Options. (line 59) * mperf-ext: NDS32 Options. (line 27) * mpic-data-is-text-relative: ARM Options. (line 238) * mpic-register: ARM Options. (line 231) * mpid: RX Options. (line 117) ! * mplt: MIPS Options. (line 191) * mpointers-to-nested-functions: RS/6000 and PowerPC Options. ! (line 882) * mpoke-function-name: ARM Options. (line 244) ! * mpopc: SPARC Options. (line 231) * mpopcntb: RS/6000 and PowerPC Options. (line 27) * mpopcntd: RS/6000 and PowerPC Options. (line 27) * mportable-runtime: HPPA Options. (line 65) * mpower8-fusion: RS/6000 and PowerPC Options. ! (line 242) * mpower8-vector: RS/6000 and PowerPC Options. ! (line 248) * mpowerpc-gfxopt: RS/6000 and PowerPC Options. (line 27) * mpowerpc-gpopt: RS/6000 and PowerPC Options. *************** look up both forms. *** 54110,54202 **** * mpowerpc64: RS/6000 and PowerPC Options. (line 27) * mprefer-avx128: i386 and x86-64 Options. ! (line 692) * mprefer-short-insn-regs: Adapteva Epiphany Options. (line 13) ! * mprefergot: SH Options. (line 290) * mpreferred-stack-boundary: i386 and x86-64 Options. ! (line 514) ! * mpretend-cmove: SH Options. (line 502) * mprioritize-restricted-insns: RS/6000 and PowerPC Options. ! (line 520) * mprolog-function: V850 Options. (line 23) * mprologue-epilogue: CRIS Options. (line 71) * mprototype: RS/6000 and PowerPC Options. ! (line 645) ! * mpt-fixed: SH Options. (line 429) * mpush-args: i386 and x86-64 Options. ! (line 815) * MQ: Preprocessor Options. ! (line 266) ! * mq-class: ARC Options. (line 269) * mquad-memory: RS/6000 and PowerPC Options. ! (line 248) * mquad-memory-atomic: RS/6000 and PowerPC Options. ! (line 254) ! * mr10k-cache-barrier: MIPS Options. (line 630) ! * mRcq: ARC Options. (line 273) ! * mRcw: ARC Options. (line 277) ! * mrecip: i386 and x86-64 Options. ! (line 725) * mrecip <1>: RS/6000 and PowerPC Options. ! (line 800) * mrecip-precision: RS/6000 and PowerPC Options. ! (line 835) ! * mrecip=opt: i386 and x86-64 Options. ! (line 747) * mrecip=opt <1>: RS/6000 and PowerPC Options. ! (line 813) * mreduced-regs: NDS32 Options. (line 15) * mregister-names: IA-64 Options. (line 37) * mregnames: RS/6000 and PowerPC Options. ! (line 750) * mregparm: i386 and x86-64 Options. ! (line 451) ! * mrelax: AVR Options. (line 171) ! * mrelax <1>: H8/300 Options. (line 9) ! * mrelax <2>: MN10300 Options. (line 46) ! * mrelax <3>: MSP430 Options. (line 51) * mrelax <4>: NDS32 Options. (line 76) ! * mrelax <5>: RX Options. (line 95) ! * mrelax <6>: SH Options. (line 158) ! * mrelax <7>: V850 Options. (line 103) * mrelax-immediate: MCore Options. (line 19) ! * mrelax-pic-calls: MIPS Options. (line 755) * mrelocatable: RS/6000 and PowerPC Options. ! (line 471) * mrelocatable-lib: RS/6000 and PowerPC Options. ! (line 482) * mrenesas: SH Options. (line 173) * mrepeat: MeP Options. (line 96) ! * mrestrict-it: ARM Options. (line 356) * mreturn-pointer-on-d0: MN10300 Options. (line 36) * mrh850-abi: V850 Options. (line 127) * mrtd: i386 and x86-64 Options. ! (line 427) ! * mrtd <1>: M680x0 Options. (line 236) ! * mrtd <2>: Function Attributes. ! (line 209) * mrtp: VxWorks Options. (line 11) ! * mrtsc: ARC Options. (line 109) ! * ms: H8/300 Options. (line 17) * ms <1>: MeP Options. (line 100) * ms2600: H8/300 Options. (line 24) ! * msafe-dma: SPU Options. (line 18) ! * msafe-hints: SPU Options. (line 112) * msahf: i386 and x86-64 Options. ! (line 705) * msatur: MeP Options. (line 105) * msave-acc-in-interrupts: RX Options. (line 109) * msave-toc-indirect: RS/6000 and PowerPC Options. ! (line 883) ! * mscc: FRV Options. (line 173) * msched-ar-data-spec: IA-64 Options. (line 134) * msched-ar-in-data-spec: IA-64 Options. (line 155) * msched-br-data-spec: IA-64 Options. (line 128) * msched-br-in-data-spec: IA-64 Options. (line 148) * msched-control-spec: IA-64 Options. (line 140) * msched-costly-dep: RS/6000 and PowerPC Options. ! (line 527) * msched-count-spec-in-critical-path: IA-64 Options. (line 182) * msched-fp-mem-deps-zero-cost: IA-64 Options. (line 198) * msched-in-control-spec: IA-64 Options. (line 162) --- 54548,54640 ---- * mpowerpc64: RS/6000 and PowerPC Options. (line 27) * mprefer-avx128: i386 and x86-64 Options. ! (line 699) * mprefer-short-insn-regs: Adapteva Epiphany Options. (line 13) ! * mprefergot: SH Options. (line 292) * mpreferred-stack-boundary: i386 and x86-64 Options. ! (line 521) ! * mpretend-cmove: SH Options. (line 510) * mprioritize-restricted-insns: RS/6000 and PowerPC Options. ! (line 528) * mprolog-function: V850 Options. (line 23) * mprologue-epilogue: CRIS Options. (line 71) * mprototype: RS/6000 and PowerPC Options. ! (line 653) ! * mpt-fixed: SH Options. (line 435) * mpush-args: i386 and x86-64 Options. ! (line 822) * MQ: Preprocessor Options. ! (line 265) ! * mq-class: ARC Options. (line 271) * mquad-memory: RS/6000 and PowerPC Options. ! (line 255) * mquad-memory-atomic: RS/6000 and PowerPC Options. ! (line 261) ! * mr10k-cache-barrier: MIPS Options. (line 641) ! * mRcq: ARC Options. (line 275) ! * mRcw: ARC Options. (line 279) * mrecip <1>: RS/6000 and PowerPC Options. ! (line 810) ! * mrecip: i386 and x86-64 Options. ! (line 732) * mrecip-precision: RS/6000 and PowerPC Options. ! (line 846) * mrecip=opt <1>: RS/6000 and PowerPC Options. ! (line 823) ! * mrecip=opt: i386 and x86-64 Options. ! (line 754) * mreduced-regs: NDS32 Options. (line 15) * mregister-names: IA-64 Options. (line 37) * mregnames: RS/6000 and PowerPC Options. ! (line 759) * mregparm: i386 and x86-64 Options. ! (line 458) ! * mrelax <1>: V850 Options. (line 103) ! * mrelax <2>: SH Options. (line 158) ! * mrelax <3>: RX Options. (line 95) * mrelax <4>: NDS32 Options. (line 76) ! * mrelax <5>: MSP430 Options. (line 51) ! * mrelax <6>: MN10300 Options. (line 46) ! * mrelax <7>: H8/300 Options. (line 9) ! * mrelax: AVR Options. (line 169) * mrelax-immediate: MCore Options. (line 19) ! * mrelax-pic-calls: MIPS Options. (line 766) * mrelocatable: RS/6000 and PowerPC Options. ! (line 479) * mrelocatable-lib: RS/6000 and PowerPC Options. ! (line 490) * mrenesas: SH Options. (line 173) * mrepeat: MeP Options. (line 96) ! * mrestrict-it: ARM Options. (line 355) * mreturn-pointer-on-d0: MN10300 Options. (line 36) * mrh850-abi: V850 Options. (line 127) + * mrtd <1>: Function Attributes. + (line 211) + * mrtd <2>: M680x0 Options. (line 240) * mrtd: i386 and x86-64 Options. ! (line 434) * mrtp: VxWorks Options. (line 11) ! * mrtsc: ARC Options. (line 110) * ms <1>: MeP Options. (line 100) + * ms: H8/300 Options. (line 17) * ms2600: H8/300 Options. (line 24) ! * msafe-dma: SPU Options. (line 17) ! * msafe-hints: SPU Options. (line 107) * msahf: i386 and x86-64 Options. ! (line 712) * msatur: MeP Options. (line 105) * msave-acc-in-interrupts: RX Options. (line 109) * msave-toc-indirect: RS/6000 and PowerPC Options. ! (line 894) ! * mscc: FRV Options. (line 140) * msched-ar-data-spec: IA-64 Options. (line 134) * msched-ar-in-data-spec: IA-64 Options. (line 155) * msched-br-data-spec: IA-64 Options. (line 128) * msched-br-in-data-spec: IA-64 Options. (line 148) * msched-control-spec: IA-64 Options. (line 140) * msched-costly-dep: RS/6000 and PowerPC Options. ! (line 535) * msched-count-spec-in-critical-path: IA-64 Options. (line 182) * msched-fp-mem-deps-zero-cost: IA-64 Options. (line 198) * msched-in-control-spec: IA-64 Options. (line 162) *************** look up both forms. *** 54205,54437 **** * msched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * msched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * msched-spec-ldc: IA-64 Options. (line 187) - * msched-spec-ldc <1>: IA-64 Options. (line 190) * msched-stop-bits-after-every-cycle: IA-64 Options. (line 194) * mschedule: HPPA Options. (line 72) * mscore5: Score Options. (line 25) * mscore5u: Score Options. (line 28) * mscore7: Score Options. (line 31) ! * mscore7d: Score Options. (line 35) * msda: V850 Options. (line 40) - * msdata: IA-64 Options. (line 42) * msdata <1>: RS/6000 and PowerPC Options. ! (line 718) * msdata=all: C6X Options. (line 30) * msdata=data: RS/6000 and PowerPC Options. ! (line 723) ! * msdata=default: C6X Options. (line 22) * msdata=default <1>: RS/6000 and PowerPC Options. ! (line 718) * msdata=eabi: RS/6000 and PowerPC Options. ! (line 699) * msdata=none: C6X Options. (line 35) - * msdata=none <1>: M32R/D Options. (line 40) - * msdata=none <2>: RS/6000 and PowerPC Options. - (line 731) * msdata=sdata: M32R/D Options. (line 49) * msdata=sysv: RS/6000 and PowerPC Options. ! (line 709) * msdata=use: M32R/D Options. (line 53) - * msdram: Blackfin Options. (line 171) * msdram <1>: MeP Options. (line 110) * msecure-plt: RS/6000 and PowerPC Options. ! (line 183) * msel-sched-dont-check-control-spec: IA-64 Options. (line 203) ! * msep-data: Blackfin Options. (line 109) * mserialize-volatile: Xtensa Options. (line 35) * msetlb: MN10300 Options. (line 64) ! * mshared-library-id: Blackfin Options. (line 102) ! * mshort: M680x0 Options. (line 216) * msign-extend-enabled: LM32 Options. (line 18) ! * msim: Blackfin Options. (line 36) ! * msim <1>: C6X Options. (line 19) ! * msim <2>: CR16 Options. (line 18) ! * msim <3>: M32C Options. (line 13) ! * msim <4>: MeP Options. (line 114) * msim <5>: MSP430 Options. (line 40) ! * msim <6>: RL78 Options. (line 7) ! * msim <7>: RS/6000 and PowerPC Options. ! (line 655) ! * msim <8>: RX Options. (line 71) ! * msim <9>: Xstormy16 Options. (line 9) * msimd: ARC Options. (line 71) * msimnovec: MeP Options. (line 117) * msimple-fpu: RS/6000 and PowerPC Options. ! (line 375) ! * msingle-exit: MMIX Options. (line 65) ! * msingle-float: MIPS Options. (line 251) * msingle-float <1>: RS/6000 and PowerPC Options. ! (line 371) ! * msingle-pic-base: ARM Options. (line 225) * msingle-pic-base <1>: RS/6000 and PowerPC Options. ! (line 514) * msio: HPPA Options. (line 99) ! * msize-level: ARC Options. (line 281) * mslow-bytes: MCore Options. (line 35) ! * mslow-flash-data: ARM Options. (line 350) * msmall: MSP430 Options. (line 48) * msmall-data: DEC Alpha Options. (line 187) * msmall-data-limit: RX Options. (line 47) * msmall-divides: MicroBlaze Options. (line 39) * msmall-exec: S/390 and zSeries Options. ! (line 79) ! * msmall-mem: SPU Options. (line 38) * msmall-model: FR30 Options. (line 9) * msmall-text: DEC Alpha Options. (line 205) * msmall16: Adapteva Epiphany Options. ! (line 66) ! * msmallc: Nios II Options. (line 226) ! * msmartmips: MIPS Options. (line 326) ! * msoft-float: ARC Options. (line 75) ! * msoft-float <1>: DEC Alpha Options. (line 10) ! * msoft-float <2>: FRV Options. (line 27) ! * msoft-float <3>: HPPA Options. (line 85) ! * msoft-float <4>: i386 and x86-64 Options. ! (line 333) ! * msoft-float <5>: M680x0 Options. (line 200) ! * msoft-float <6>: MicroBlaze Options. (line 7) ! * msoft-float <7>: MIPS Options. (line 237) ! * msoft-float <8>: PDP-11 Options. (line 13) ! * msoft-float <9>: RS/6000 and PowerPC Options. ! (line 365) ! * msoft-float <10>: S/390 and zSeries Options. (line 11) ! * msoft-float <11>: SPARC Options. (line 39) ! * msoft-float <12>: V850 Options. (line 113) ! * msoft-quad-float: SPARC Options. (line 59) ! * msp8: AVR Options. (line 185) * mspace: V850 Options. (line 30) * mspe: RS/6000 and PowerPC Options. ! (line 203) ! * mspecld-anomaly: Blackfin Options. (line 50) * mspfp: ARC Options. (line 62) * mspfp-compact: ARC Options. (line 63) * mspfp-fast: ARC Options. (line 67) ! * mspfp_compact: ARC Options. (line 382) ! * mspfp_fast: ARC Options. (line 385) ! * msplit-addresses: MIPS Options. (line 488) * msplit-vecmove-early: Adapteva Epiphany Options. ! (line 126) * msse: i386 and x86-64 Options. ! (line 629) * msse2avx: i386 and x86-64 Options. ! (line 905) * msseregparm: i386 and x86-64 Options. ! (line 462) * mstack-align: CRIS Options. (line 55) ! * mstack-bias: SPARC Options. (line 313) ! * mstack-check-l1: Blackfin Options. (line 76) * mstack-guard: S/390 and zSeries Options. ! (line 154) * mstack-increment: MCore Options. (line 50) * mstack-offset: Adapteva Epiphany Options. (line 37) * mstack-protector-guard=GUARD: i386 and x86-64 Options. ! (line 928) * mstack-size: S/390 and zSeries Options. ! (line 154) * mstackrealign: i386 and x86-64 Options. ! (line 505) ! * mstdmain: SPU Options. (line 44) * mstrict-align: AArch64 Options. (line 49) ! * mstrict-align <1>: M680x0 Options. (line 283) ! * mstrict-align <2>: RS/6000 and PowerPC Options. ! (line 466) ! * mstrict-X: AVR Options. (line 198) * mstring: RS/6000 and PowerPC Options. ! (line 402) * mstringop-strategy=ALG: i386 and x86-64 Options. ! (line 853) * mstructure-size-boundary: ARM Options. (line 182) * msvr4-struct-return: RS/6000 and PowerPC Options. ! (line 607) * mswap: ARC Options. (line 82) ! * mswape: ARC Options. (line 114) ! * msym32: MIPS Options. (line 386) ! * msynci: MIPS Options. (line 740) ! * msys-crt0: Nios II Options. (line 230) ! * msys-lib: Nios II Options. (line 234) * MT: Preprocessor Options. (line 251) * mtarget-align: Xtensa Options. (line 59) ! * mtas: SH Options. (line 281) * mtda: V850 Options. (line 34) ! * mtelephony: ARC Options. (line 119) * mtext-section-literals: Xtensa Options. (line 47) * mtf: MeP Options. (line 121) * mthread: i386 and x86-64 Windows Options. (line 26) * mthreads: i386 and x86-64 Options. ! (line 830) * mthumb: ARM Options. (line 266) * mthumb-interwork: ARM Options. (line 25) ! * mtiny-stack: AVR Options. (line 212) * mtiny=: MeP Options. (line 125) ! * mTLS: FRV Options. (line 90) ! * mtls: FRV Options. (line 94) ! * mtls-dialect: ARM Options. (line 308) * mtls-dialect <1>: i386 and x86-64 Options. ! (line 808) * mtls-dialect=desc: AArch64 Options. (line 58) * mtls-dialect=traditional: AArch64 Options. (line 62) * mtls-direct-seg-refs: i386 and x86-64 Options. ! (line 895) * mtls-markers: RS/6000 and PowerPC Options. ! (line 788) * mtls-size: IA-64 Options. (line 112) * mtoc: RS/6000 and PowerPC Options. ! (line 491) ! * mtomcat-stats: FRV Options. (line 254) ! * mtoplevel-symbols: MMIX Options. (line 39) ! * mtp: ARM Options. (line 300) ! * mtpcs-frame: ARM Options. (line 273) ! * mtpcs-leaf-frame: ARM Options. (line 279) * mtpf-trace: S/390 and zSeries Options. ! (line 129) * mtrap-precision: DEC Alpha Options. (line 109) ! * mtune: AArch64 Options. (line 96) ! * mtune <1>: ARC Options. (line 302) ! * mtune <2>: ARC Options. (line 388) ! * mtune <3>: ARM Options. (line 97) ! * mtune <4>: CRIS Options. (line 17) ! * mtune <5>: DEC Alpha Options. (line 259) ! * mtune <6>: i386 and x86-64 Options. ! (line 216) * mtune <7>: IA-64 Options. (line 116) ! * mtune <8>: M680x0 Options. (line 68) ! * mtune <9>: MIPS Options. (line 63) ! * mtune <10>: MN10300 Options. (line 30) ! * mtune <11>: RS/6000 and PowerPC Options. ! (line 113) ! * mtune <12>: S/390 and zSeries Options. ! (line 122) ! * mtune <13>: SPARC Options. (line 180) * mtune-ctrl=FEATURE-LIST: i386 and x86-64 Options. ! (line 658) ! * mucb-mcount: ARC Options. (line 179) * muclibc: GNU/Linux Options. (line 13) * muls: Score Options. (line 18) ! * multcost: ARC Options. (line 393) ! * multcost=NUMBER: SH Options. (line 303) ! * multilib-library-pic: FRV Options. (line 110) * multiply-enabled: LM32 Options. (line 15) * multiply_defined: Darwin Options. (line 196) * multiply_defined_unused: Darwin Options. (line 196) ! * multi_module: Darwin Options. (line 196) ! * munalign-prob-threshold: ARC Options. (line 330) ! * munaligned-access: ARM Options. (line 332) ! * munaligned-doubles: SPARC Options. (line 73) * municode: i386 and x86-64 Windows Options. (line 30) ! * muninit-const-in-rodata: MIPS Options. (line 458) * munix: VAX Options. (line 9) * munix-asm: PDP-11 Options. (line 68) ! * munsafe-dma: SPU Options. (line 18) * mupdate: RS/6000 and PowerPC Options. ! (line 413) * muser-enabled: LM32 Options. (line 21) ! * muser-mode: SPARC Options. (line 85) ! * musermode: SH Options. (line 296) * mv3push: NDS32 Options. (line 33) * mv850: V850 Options. (line 49) * mv850e: V850 Options. (line 79) --- 54643,54873 ---- * msched-prefer-non-control-spec-insns: IA-64 Options. (line 175) * msched-prefer-non-data-spec-insns: IA-64 Options. (line 168) * msched-spec-ldc: IA-64 Options. (line 187) * msched-stop-bits-after-every-cycle: IA-64 Options. (line 194) * mschedule: HPPA Options. (line 72) * mscore5: Score Options. (line 25) * mscore5u: Score Options. (line 28) * mscore7: Score Options. (line 31) ! * mscore7d: Score Options. (line 34) * msda: V850 Options. (line 40) * msdata <1>: RS/6000 and PowerPC Options. ! (line 727) ! * msdata: IA-64 Options. (line 42) * msdata=all: C6X Options. (line 30) * msdata=data: RS/6000 and PowerPC Options. ! (line 732) * msdata=default <1>: RS/6000 and PowerPC Options. ! (line 727) ! * msdata=default: C6X Options. (line 22) * msdata=eabi: RS/6000 and PowerPC Options. ! (line 707) ! * msdata=none <1>: RS/6000 and PowerPC Options. ! (line 740) ! * msdata=none <2>: M32R/D Options. (line 40) * msdata=none: C6X Options. (line 35) * msdata=sdata: M32R/D Options. (line 49) * msdata=sysv: RS/6000 and PowerPC Options. ! (line 718) * msdata=use: M32R/D Options. (line 53) * msdram <1>: MeP Options. (line 110) + * msdram: Blackfin Options. (line 172) * msecure-plt: RS/6000 and PowerPC Options. ! (line 184) * msel-sched-dont-check-control-spec: IA-64 Options. (line 203) ! * msep-data: Blackfin Options. (line 110) * mserialize-volatile: Xtensa Options. (line 35) * msetlb: MN10300 Options. (line 64) ! * mshared-library-id: Blackfin Options. (line 103) ! * mshort: M680x0 Options. (line 220) * msign-extend-enabled: LM32 Options. (line 18) ! * msim <1>: Xstormy16 Options. (line 9) ! * msim <2>: RX Options. (line 71) ! * msim <3>: RS/6000 and PowerPC Options. ! (line 663) ! * msim <4>: RL78 Options. (line 7) * msim <5>: MSP430 Options. (line 40) ! * msim <6>: MeP Options. (line 114) ! * msim <7>: M32C Options. (line 13) ! * msim <8>: CR16 Options. (line 18) ! * msim <9>: C6X Options. (line 19) ! * msim: Blackfin Options. (line 37) * msimd: ARC Options. (line 71) * msimnovec: MeP Options. (line 117) * msimple-fpu: RS/6000 and PowerPC Options. ! (line 383) ! * msingle-exit: MMIX Options. (line 66) * msingle-float <1>: RS/6000 and PowerPC Options. ! (line 379) ! * msingle-float: MIPS Options. (line 253) * msingle-pic-base <1>: RS/6000 and PowerPC Options. ! (line 522) ! * msingle-pic-base: ARM Options. (line 225) * msio: HPPA Options. (line 99) ! * msize-level: ARC Options. (line 283) * mslow-bytes: MCore Options. (line 35) ! * mslow-flash-data: ARM Options. (line 349) * msmall: MSP430 Options. (line 48) * msmall-data: DEC Alpha Options. (line 187) * msmall-data-limit: RX Options. (line 47) * msmall-divides: MicroBlaze Options. (line 39) * msmall-exec: S/390 and zSeries Options. ! (line 80) ! * msmall-mem: SPU Options. (line 35) * msmall-model: FR30 Options. (line 9) * msmall-text: DEC Alpha Options. (line 205) * msmall16: Adapteva Epiphany Options. ! (line 67) ! * msmallc: Nios II Options. (line 228) ! * msmartmips: MIPS Options. (line 328) ! * msoft-float <1>: V850 Options. (line 113) ! * msoft-float <2>: SPARC Options. (line 40) ! * msoft-float <3>: S/390 and zSeries Options. (line 11) ! * msoft-float <4>: RS/6000 and PowerPC Options. ! (line 373) ! * msoft-float <5>: PDP-11 Options. (line 13) ! * msoft-float <6>: MIPS Options. (line 239) ! * msoft-float <7>: MicroBlaze Options. (line 7) ! * msoft-float <8>: M680x0 Options. (line 203) ! * msoft-float <9>: i386 and x86-64 Options. ! (line 339) ! * msoft-float <10>: HPPA Options. (line 85) ! * msoft-float <11>: FRV Options. (line 22) ! * msoft-float <12>: DEC Alpha Options. (line 10) ! * msoft-float: ARC Options. (line 75) ! * msoft-quad-float: SPARC Options. (line 60) ! * msp8: AVR Options. (line 183) * mspace: V850 Options. (line 30) * mspe: RS/6000 and PowerPC Options. ! (line 204) ! * mspecld-anomaly: Blackfin Options. (line 51) * mspfp: ARC Options. (line 62) * mspfp-compact: ARC Options. (line 63) * mspfp-fast: ARC Options. (line 67) ! * mspfp_compact: ARC Options. (line 384) ! * mspfp_fast: ARC Options. (line 387) ! * msplit-addresses: MIPS Options. (line 491) * msplit-vecmove-early: Adapteva Epiphany Options. ! (line 127) * msse: i386 and x86-64 Options. ! (line 636) * msse2avx: i386 and x86-64 Options. ! (line 913) * msseregparm: i386 and x86-64 Options. ! (line 469) * mstack-align: CRIS Options. (line 55) ! * mstack-bias: SPARC Options. (line 314) ! * mstack-check-l1: Blackfin Options. (line 77) * mstack-guard: S/390 and zSeries Options. ! (line 156) * mstack-increment: MCore Options. (line 50) * mstack-offset: Adapteva Epiphany Options. (line 37) * mstack-protector-guard=GUARD: i386 and x86-64 Options. ! (line 936) * mstack-size: S/390 and zSeries Options. ! (line 156) * mstackrealign: i386 and x86-64 Options. ! (line 512) ! * mstdmain: SPU Options. (line 40) ! * mstrict-align <1>: RS/6000 and PowerPC Options. ! (line 474) ! * mstrict-align <2>: M680x0 Options. (line 287) * mstrict-align: AArch64 Options. (line 49) ! * mstrict-X: AVR Options. (line 196) * mstring: RS/6000 and PowerPC Options. ! (line 410) * mstringop-strategy=ALG: i386 and x86-64 Options. ! (line 861) * mstructure-size-boundary: ARM Options. (line 182) * msvr4-struct-return: RS/6000 and PowerPC Options. ! (line 615) * mswap: ARC Options. (line 82) ! * mswape: ARC Options. (line 115) ! * msym32: MIPS Options. (line 388) ! * msynci: MIPS Options. (line 751) ! * msys-crt0: Nios II Options. (line 232) ! * msys-lib: Nios II Options. (line 236) * MT: Preprocessor Options. (line 251) * mtarget-align: Xtensa Options. (line 59) ! * mtas: SH Options. (line 283) * mtda: V850 Options. (line 34) ! * mtelephony: ARC Options. (line 120) * mtext-section-literals: Xtensa Options. (line 47) * mtf: MeP Options. (line 121) * mthread: i386 and x86-64 Windows Options. (line 26) * mthreads: i386 and x86-64 Options. ! (line 837) * mthumb: ARM Options. (line 266) * mthumb-interwork: ARM Options. (line 25) ! * mtiny-stack: AVR Options. (line 210) * mtiny=: MeP Options. (line 125) ! * mtls: FRV Options. (line 75) ! * mTLS: FRV Options. (line 72) * mtls-dialect <1>: i386 and x86-64 Options. ! (line 815) ! * mtls-dialect: ARM Options. (line 307) * mtls-dialect=desc: AArch64 Options. (line 58) * mtls-dialect=traditional: AArch64 Options. (line 62) * mtls-direct-seg-refs: i386 and x86-64 Options. ! (line 903) * mtls-markers: RS/6000 and PowerPC Options. ! (line 798) * mtls-size: IA-64 Options. (line 112) * mtoc: RS/6000 and PowerPC Options. ! (line 499) ! * mtomcat-stats: FRV Options. (line 209) ! * mtoplevel-symbols: MMIX Options. (line 40) ! * mtp: ARM Options. (line 299) ! * mtpcs-frame: ARM Options. (line 272) ! * mtpcs-leaf-frame: ARM Options. (line 278) * mtpf-trace: S/390 and zSeries Options. ! (line 131) * mtrap-precision: DEC Alpha Options. (line 109) ! * mtune <1>: SPARC Options. (line 181) ! * mtune <2>: S/390 and zSeries Options. ! (line 124) ! * mtune <3>: RS/6000 and PowerPC Options. ! (line 114) ! * mtune <4>: MN10300 Options. (line 30) ! * mtune <5>: MIPS Options. (line 63) ! * mtune <6>: M680x0 Options. (line 70) * mtune <7>: IA-64 Options. (line 116) ! * mtune <8>: i386 and x86-64 Options. ! (line 221) ! * mtune <9>: DEC Alpha Options. (line 259) ! * mtune <10>: CRIS Options. (line 16) ! * mtune <11>: ARM Options. (line 97) ! * mtune <12>: ARC Options. (line 305) ! * mtune: AArch64 Options. (line 97) * mtune-ctrl=FEATURE-LIST: i386 and x86-64 Options. ! (line 665) ! * mucb-mcount: ARC Options. (line 180) * muclibc: GNU/Linux Options. (line 13) * muls: Score Options. (line 18) ! * multcost: ARC Options. (line 395) ! * multcost=NUMBER: SH Options. (line 306) ! * multi_module: Darwin Options. (line 196) ! * multilib-library-pic: FRV Options. (line 89) * multiply-enabled: LM32 Options. (line 15) * multiply_defined: Darwin Options. (line 196) * multiply_defined_unused: Darwin Options. (line 196) ! * munalign-prob-threshold: ARC Options. (line 334) ! * munaligned-access: ARM Options. (line 331) ! * munaligned-doubles: SPARC Options. (line 74) * municode: i386 and x86-64 Windows Options. (line 30) ! * muninit-const-in-rodata: MIPS Options. (line 461) * munix: VAX Options. (line 9) * munix-asm: PDP-11 Options. (line 68) ! * munsafe-dma: SPU Options. (line 17) * mupdate: RS/6000 and PowerPC Options. ! (line 421) * muser-enabled: LM32 Options. (line 21) ! * muser-mode: SPARC Options. (line 86) ! * musermode: SH Options. (line 298) * mv3push: NDS32 Options. (line 33) * mv850: V850 Options. (line 49) * mv850e: V850 Options. (line 79) *************** look up both forms. *** 54441,54476 **** * mv850e2v4: V850 Options. (line 57) * mv850e3v5: V850 Options. (line 52) * mv850es: V850 Options. (line 75) ! * mv8plus: SPARC Options. (line 194) ! * mveclibabi: i386 and x86-64 Options. ! (line 776) * mveclibabi <1>: RS/6000 and PowerPC Options. ! (line 844) * mvect8-ret-in-mem: i386 and x86-64 Options. ! (line 472) ! * mvirt: MIPS Options. (line 367) ! * mvis: SPARC Options. (line 201) ! * mvis2: SPARC Options. (line 207) ! * mvis3: SPARC Options. (line 215) ! * mvliw-branch: FRV Options. (line 201) * mvms-return-codes: VMS Options. (line 9) * mvolatile-asm-stop: IA-64 Options. (line 32) ! * mvolatile-cache: ARC Options. (line 184) ! * mvr4130-align: MIPS Options. (line 729) * mvrsave: RS/6000 and PowerPC Options. ! (line 173) * mvsx: RS/6000 and PowerPC Options. ! (line 217) * mvxworks: RS/6000 and PowerPC Options. ! (line 676) * mvzeroupper: i386 and x86-64 Options. ! (line 686) * mwarn-cell-microcode: RS/6000 and PowerPC Options. ! (line 179) * mwarn-dynamicstack: S/390 and zSeries Options. ! (line 148) * mwarn-framesize: S/390 and zSeries Options. ! (line 140) * mwarn-multiple-fast-interrupts: RX Options. (line 143) * mwarn-reloc: SPU Options. (line 10) * mwide-bitfields: MCore Options. (line 23) --- 54877,54912 ---- * mv850e2v4: V850 Options. (line 57) * mv850e3v5: V850 Options. (line 52) * mv850es: V850 Options. (line 75) ! * mv8plus: SPARC Options. (line 195) * mveclibabi <1>: RS/6000 and PowerPC Options. ! (line 855) ! * mveclibabi: i386 and x86-64 Options. ! (line 783) * mvect8-ret-in-mem: i386 and x86-64 Options. ! (line 479) ! * mvirt: MIPS Options. (line 369) ! * mvis: SPARC Options. (line 202) ! * mvis2: SPARC Options. (line 208) ! * mvis3: SPARC Options. (line 216) ! * mvliw-branch: FRV Options. (line 164) * mvms-return-codes: VMS Options. (line 9) * mvolatile-asm-stop: IA-64 Options. (line 32) ! * mvolatile-cache: ARC Options. (line 185) ! * mvr4130-align: MIPS Options. (line 740) * mvrsave: RS/6000 and PowerPC Options. ! (line 174) * mvsx: RS/6000 and PowerPC Options. ! (line 218) * mvxworks: RS/6000 and PowerPC Options. ! (line 684) * mvzeroupper: i386 and x86-64 Options. ! (line 693) * mwarn-cell-microcode: RS/6000 and PowerPC Options. ! (line 180) * mwarn-dynamicstack: S/390 and zSeries Options. ! (line 150) * mwarn-framesize: S/390 and zSeries Options. ! (line 142) * mwarn-multiple-fast-interrupts: RX Options. (line 143) * mwarn-reloc: SPU Options. (line 10) * mwide-bitfields: MCore Options. (line 23) *************** look up both forms. *** 54478,54494 **** (line 35) * mwindows: i386 and x86-64 Windows Options. (line 41) ! * mword-relocations: ARM Options. (line 319) * mwords-little-endian: ARM Options. (line 66) * mx32: i386 and x86-64 Options. ! (line 940) ! * mxgot: M680x0 Options. (line 315) ! * mxgot <1>: MIPS Options. (line 199) * mxilinx-fpu: RS/6000 and PowerPC Options. ! (line 386) * mxl-barrel-shift: MicroBlaze Options. (line 33) * mxl-compat: RS/6000 and PowerPC Options. ! (line 323) * mxl-float-convert: MicroBlaze Options. (line 51) * mxl-float-sqrt: MicroBlaze Options. (line 54) * mxl-gp-opt: MicroBlaze Options. (line 45) --- 54914,54930 ---- (line 35) * mwindows: i386 and x86-64 Windows Options. (line 41) ! * mword-relocations: ARM Options. (line 318) * mwords-little-endian: ARM Options. (line 66) * mx32: i386 and x86-64 Options. ! (line 950) ! * mxgot <1>: MIPS Options. (line 201) ! * mxgot: M680x0 Options. (line 319) * mxilinx-fpu: RS/6000 and PowerPC Options. ! (line 394) * mxl-barrel-shift: MicroBlaze Options. (line 33) * mxl-compat: RS/6000 and PowerPC Options. ! (line 330) * mxl-float-convert: MicroBlaze Options. (line 51) * mxl-float-sqrt: MicroBlaze Options. (line 54) * mxl-gp-opt: MicroBlaze Options. (line 45) *************** look up both forms. *** 54498,54517 **** * mxl-soft-div: MicroBlaze Options. (line 30) * mxl-soft-mul: MicroBlaze Options. (line 27) * mxl-stack-check: MicroBlaze Options. (line 42) ! * mxy: ARC Options. (line 124) * myellowknife: RS/6000 and PowerPC Options. ! (line 671) * mzarch: S/390 and zSeries Options. ! (line 94) * mzda: V850 Options. (line 45) ! * mzdcbranch: SH Options. (line 466) ! * mzero-extend: MMIX Options. (line 26) * no-canonical-prefixes: Overall Options. (line 334) * no-integrated-cpp: Preprocessor Options. (line 34) ! * no-sysroot-suffix: Directory Options. (line 109) * noall_load: Darwin Options. (line 196) ! * nocpp: MIPS Options. (line 562) * nodefaultlibs: Link Options. (line 62) * nofixprebinding: Darwin Options. (line 196) * nofpu: RX Options. (line 17) --- 54934,54954 ---- * mxl-soft-div: MicroBlaze Options. (line 30) * mxl-soft-mul: MicroBlaze Options. (line 27) * mxl-stack-check: MicroBlaze Options. (line 42) ! * mxy: ARC Options. (line 125) * myellowknife: RS/6000 and PowerPC Options. ! (line 679) * mzarch: S/390 and zSeries Options. ! (line 95) * mzda: V850 Options. (line 45) ! * mzdcbranch: SH Options. (line 474) ! * mzero-extend: MMIX Options. (line 27) * no-canonical-prefixes: Overall Options. (line 334) * no-integrated-cpp: Preprocessor Options. (line 34) ! * no-sysroot-suffix: Directory Options. (line 111) ! * no_dead_strip_inits_and_terms: Darwin Options. (line 196) * noall_load: Darwin Options. (line 196) ! * nocpp: MIPS Options. (line 566) * nodefaultlibs: Link Options. (line 62) * nofixprebinding: Darwin Options. (line 196) * nofpu: RX Options. (line 17) *************** look up both forms. *** 54522,55084 **** * noseglinkedit: Darwin Options. (line 196) * nostartfiles: Link Options. (line 57) * nostdinc: Preprocessor Options. ! (line 401) ! * nostdinc++: C++ Dialect Options. ! (line 396) * nostdinc++ <1>: Preprocessor Options. ! (line 406) * nostdlib: Link Options. (line 74) ! * no_dead_strip_inits_and_terms: Darwin Options. (line 196) ! * o: Overall Options. (line 192) ! * O: Optimize Options. (line 39) ! * o <1>: Preprocessor Options. (line 87) * O0: Optimize Options. (line 129) * O1: Optimize Options. (line 39) * O2: Optimize Options. (line 83) * O3: Optimize Options. (line 121) * Ofast: Optimize Options. (line 143) ! * Og: Optimize Options. (line 149) * Os: Optimize Options. (line 133) - * p: Debugging Options. (line 415) * P: Preprocessor Options. ! (line 647) * pagezero_size: Darwin Options. (line 196) ! * param: Optimize Options. (line 2307) * pass-exit-codes: Overall Options. (line 150) ! * pedantic: Standards. (line 16) ! * pedantic <1>: Warning Options. (line 71) ! * pedantic <2>: Preprocessor Options. ! (line 175) * pedantic <3>: C Extensions. (line 6) ! * pedantic <4>: Alternate Keywords. (line 30) ! * pedantic <5>: Warnings and Errors. (line 25) ! * pedantic-errors: Standards. (line 16) ! * pedantic-errors <1>: Warning Options. (line 112) ! * pedantic-errors <2>: Preprocessor Options. (line 180) ! * pedantic-errors <3>: Non-bugs. (line 216) ! * pedantic-errors <4>: Warnings and Errors. ! (line 25) ! * pg: Debugging Options. (line 421) * pie: Link Options. (line 99) * pipe: Overall Options. (line 215) * prebind: Darwin Options. (line 196) * prebind_all_twolevel_modules: Darwin Options. (line 196) ! * print-file-name: Debugging Options. (line 1349) ! * print-libgcc-file-name: Debugging Options. (line 1383) ! * print-multi-directory: Debugging Options. (line 1355) ! * print-multi-lib: Debugging Options. (line 1360) ! * print-multi-os-directory: Debugging Options. (line 1367) ! * print-multiarch: Debugging Options. (line 1376) * print-objc-runtime-info: Objective-C and Objective-C++ Dialect Options. (line 203) ! * print-prog-name: Debugging Options. (line 1380) ! * print-search-dirs: Debugging Options. (line 1391) ! * print-sysroot: Debugging Options. (line 1404) ! * print-sysroot-headers-suffix: Debugging Options. (line 1411) * private_bundle: Darwin Options. (line 196) * pthread: RS/6000 and PowerPC Options. ! (line 795) ! * pthread <1>: Solaris 2 Options. (line 36) ! * pthreads: Solaris 2 Options. (line 30) ! * Q: Debugging Options. (line 427) * Qn: System V Options. (line 18) * Qy: System V Options. (line 14) * rdynamic: Link Options. (line 105) * read_only_relocs: Darwin Options. (line 196) * remap: Preprocessor Options. ! (line 694) ! * S: Overall Options. (line 175) ! * S <1>: Link Options. (line 20) * s: Link Options. (line 112) ! * save-temps: Debugging Options. (line 1258) ! * save-temps=obj: Debugging Options. (line 1284) * sectalign: Darwin Options. (line 196) * sectcreate: Darwin Options. (line 196) * sectobjectsymbols: Darwin Options. (line 196) - * sectobjectsymbols <1>: Darwin Options. (line 196) * sectorder: Darwin Options. (line 196) * seg1addr: Darwin Options. (line 196) * segaddr: Darwin Options. (line 196) * seglinkedit: Darwin Options. (line 196) * segprot: Darwin Options. (line 196) * segs_read_only_addr: Darwin Options. (line 196) - * segs_read_only_addr <1>: Darwin Options. (line 196) * segs_read_write_addr: Darwin Options. (line 196) ! * segs_read_write_addr <1>: Darwin Options. (line 196) ! * seg_addr_table: Darwin Options. (line 196) ! * seg_addr_table_filename: Darwin Options. (line 196) ! * shared: Link Options. (line 120) ! * shared-libgcc: Link Options. (line 128) * short-calls: Adapteva Epiphany Options. (line 61) * sim: CRIS Options. (line 95) * sim2: CRIS Options. (line 101) * single_module: Darwin Options. (line 196) ! * specs: Directory Options. (line 86) * static: Link Options. (line 116) ! * static <1>: Darwin Options. (line 196) ! * static <2>: HPPA Options. (line 186) ! * static-libasan: Link Options. (line 163) ! * static-libgcc: Link Options. (line 128) ! * static-liblsan: Link Options. (line 179) ! * static-libstdc++: Link Options. (line 196) ! * static-libtsan: Link Options. (line 171) ! * static-libubsan: Link Options. (line 187) * std: Standards. (line 16) - * std <1>: C Dialect Options. (line 46) - * std <2>: Other Builtins. (line 21) - * std <3>: Non-bugs. (line 107) * std=: Preprocessor Options. ! (line 340) * sub_library: Darwin Options. (line 196) * sub_umbrella: Darwin Options. (line 196) ! * symbolic: Link Options. (line 207) ! * sysroot: Directory Options. (line 94) ! * T: Link Options. (line 213) ! * target-help: Overall Options. (line 230) * target-help <1>: Preprocessor Options. ! (line 699) * threads: HPPA Options. (line 199) ! * time: Debugging Options. (line 1299) * tno-android-cc: GNU/Linux Options. (line 31) * tno-android-ld: GNU/Linux Options. (line 35) - * traditional: C Dialect Options. (line 333) * traditional <1>: Incompatibilities. (line 6) ! * traditional-cpp: C Dialect Options. (line 333) * traditional-cpp <1>: Preprocessor Options. ! (line 677) ! * trigraphs: C Dialect Options. (line 328) * trigraphs <1>: Preprocessor Options. ! (line 681) * twolevel_namespace: Darwin Options. (line 196) * U: Preprocessor Options. (line 69) - * u: Link Options. (line 245) * umbrella: Darwin Options. (line 196) * undef: Preprocessor Options. (line 73) * undefined: Darwin Options. (line 196) * unexported_symbols_list: Darwin Options. (line 196) - * v: Overall Options. (line 203) * v <1>: Preprocessor Options. ! (line 703) ! * version: Overall Options. (line 338) * version <1>: Preprocessor Options. ! (line 715) ! * w: Warning Options. (line 25) ! * W: Warning Options. (line 167) ! * W <1>: Warning Options. (line 1267) ! * W <2>: Warning Options. (line 1351) ! * w <1>: Preprocessor Options. (line 171) ! * W <3>: Incompatibilities. (line 64) * Wa: Assembler Options. (line 9) * Wabi: C++ Dialect Options. ! (line 404) ! * Waddr-space-convert: AVR Options. (line 215) ! * Waddress: Warning Options. (line 1184) ! * Waggregate-return: Warning Options. (line 1202) ! * Waggressive-loop-optimizations: Warning Options. (line 1207) ! * Wall: Warning Options. (line 116) ! * Wall <1>: Preprocessor Options. (line 93) ! * Wall <2>: Standard Libraries. (line 6) ! * Warray-bounds: Warning Options. (line 826) * Wassign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wattributes: Warning Options. (line 1212) ! * Wbad-function-cast: Warning Options. (line 1041) ! * Wbuiltin-macro-redefined: Warning Options. (line 1218) ! * Wcast-align: Warning Options. (line 1072) ! * Wcast-qual: Warning Options. (line 1056) ! * Wchar-subscripts: Warning Options. (line 206) ! * Wclobbered: Warning Options. (line 1091) ! * Wcomment: Warning Options. (line 211) * Wcomment <1>: Preprocessor Options. (line 101) * Wcomments: Preprocessor Options. (line 101) ! * Wconditionally-supported: Warning Options. (line 1095) ! * Wconversion: Warning Options. (line 1098) ! * Wconversion-null: Warning Options. (line 1116) * Wctor-dtor-privacy: C++ Dialect Options. ! (line 511) ! * Wdate-time: Warning Options. (line 1124) ! * Wdeclaration-after-statement: Warning Options. (line 958) ! * Wdelete-incomplete: Warning Options. (line 1129) * Wdelete-non-virtual-dtor: C++ Dialect Options. ! (line 518) ! * Wdeprecated: Warning Options. (line 1333) ! * Wdeprecated-declarations: Warning Options. (line 1337) ! * Wdisabled-optimization: Warning Options. (line 1497) ! * Wdiv-by-zero: Warning Options. (line 831) ! * Wdouble-promotion: Warning Options. (line 235) * weak_reference_mismatches: Darwin Options. (line 196) * Weffc++: C++ Dialect Options. ! (line 598) ! * Wempty-body: Warning Options. (line 1136) ! * Wendif-labels: Warning Options. (line 968) * Wendif-labels <1>: Preprocessor Options. (line 148) ! * Wenum-compare: Warning Options. (line 1140) ! * Werror: Warning Options. (line 28) * Werror <1>: Preprocessor Options. (line 161) * Werror=: Warning Options. (line 31) ! * Wextra: Warning Options. (line 167) ! * Wextra <1>: Warning Options. (line 1267) ! * Wextra <2>: Warning Options. (line 1351) * Wfatal-errors: Warning Options. (line 48) ! * Wfloat-conversion: Warning Options. (line 1170) ! * Wfloat-equal: Warning Options. (line 858) ! * Wformat: Warning Options. (line 254) ! * Wformat <1>: Warning Options. (line 279) ! * Wformat <2>: Warning Options. (line 805) ! * Wformat <3>: Function Attributes. ! (line 453) ! * Wformat-contains-nul: Warning Options. (line 288) ! * Wformat-extra-args: Warning Options. (line 292) ! * Wformat-nonliteral: Warning Options. (line 316) * Wformat-nonliteral <1>: Function Attributes. ! (line 518) ! * Wformat-security: Warning Options. (line 321) ! * Wformat-y2k: Warning Options. (line 333) ! * Wformat-zero-length: Warning Options. (line 306) ! * Wformat=: Warning Options. (line 254) ! * Wformat=1: Warning Options. (line 279) ! * Wformat=2: Warning Options. (line 311) ! * Wframe-larger-than: Warning Options. (line 982) ! * Wfree-nonheap-object: Warning Options. (line 991) * whatsloaded: Darwin Options. (line 196) * whyload: Darwin Options. (line 196) ! * Wignored-qualifiers: Warning Options. (line 373) ! * Wimplicit: Warning Options. (line 369) ! * Wimplicit-function-declaration: Warning Options. (line 363) ! * Wimplicit-int: Warning Options. (line 359) ! * Winherited-variadic-ctor: Warning Options. (line 1407) ! * Winit-self: Warning Options. (line 344) ! * Winline: Warning Options. (line 1412) * Winline <1>: Inline. (line 63) ! * Wint-to-pointer-cast: Warning Options. (line 1439) ! * Winvalid-offsetof: Warning Options. (line 1425) ! * Winvalid-pch: Warning Options. (line 1448) ! * Wjump-misses-init: Warning Options. (line 1146) ! * Wl: Link Options. (line 237) ! * Wlarger-than-LEN: Warning Options. (line 979) ! * Wlarger-than=LEN: Warning Options. (line 979) * Wliteral-suffix: C++ Dialect Options. ! (line 525) ! * Wlogical-op: Warning Options. (line 1197) ! * Wlong-long: Warning Options. (line 1452) ! * Wmain: Warning Options. (line 384) ! * Wmaybe-uninitialized: Warning Options. (line 642) ! * Wmissing-braces: Warning Options. (line 391) ! * Wmissing-declarations: Warning Options. (line 1257) ! * Wmissing-field-initializers: Warning Options. (line 1267) ! * Wmissing-format-attribute: Warning Options. (line 805) ! * Wmissing-include-dirs: Warning Options. (line 402) ! * Wmissing-parameter-type: Warning Options. (line 1239) ! * Wmissing-prototypes: Warning Options. (line 1247) ! * Wmultichar: Warning Options. (line 1285) * Wnarrowing: C++ Dialect Options. ! (line 546) ! * Wnested-externs: Warning Options. (line 1404) * Wno-abi: C++ Dialect Options. ! (line 404) ! * Wno-address: Warning Options. (line 1184) ! * Wno-aggregate-return: Warning Options. (line 1202) ! * Wno-aggressive-loop-optimizations: Warning Options. (line 1207) ! * Wno-all: Warning Options. (line 116) ! * Wno-array-bounds: Warning Options. (line 826) * Wno-assign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wno-attributes: Warning Options. (line 1212) ! * Wno-bad-function-cast: Warning Options. (line 1041) ! * Wno-builtin-macro-redefined: Warning Options. (line 1218) ! * Wno-cast-align: Warning Options. (line 1072) ! * Wno-cast-qual: Warning Options. (line 1056) ! * Wno-char-subscripts: Warning Options. (line 206) ! * Wno-clobbered: Warning Options. (line 1091) ! * Wno-comment: Warning Options. (line 211) ! * Wno-conditionally-supported: Warning Options. (line 1095) ! * Wno-conversion: Warning Options. (line 1098) ! * Wno-conversion-null: Warning Options. (line 1116) ! * Wno-coverage-mismatch: Warning Options. (line 216) * Wno-ctor-dtor-privacy: C++ Dialect Options. ! (line 511) ! * Wno-date-time: Warning Options. (line 1124) ! * Wno-declaration-after-statement: Warning Options. (line 958) ! * Wno-delete-incomplete: Warning Options. (line 1129) * Wno-delete-non-virtual-dtor: C++ Dialect Options. ! (line 518) ! * Wno-deprecated: Warning Options. (line 1333) ! * Wno-deprecated-declarations: Warning Options. (line 1337) ! * Wno-disabled-optimization: Warning Options. (line 1497) ! * Wno-div-by-zero: Warning Options. (line 831) ! * Wno-double-promotion: Warning Options. (line 235) * Wno-effc++: C++ Dialect Options. ! (line 598) ! * Wno-empty-body: Warning Options. (line 1136) ! * Wno-endif-labels: Warning Options. (line 968) ! * Wno-enum-compare: Warning Options. (line 1140) * Wno-error: Warning Options. (line 28) * Wno-error=: Warning Options. (line 31) ! * Wno-extra: Warning Options. (line 167) ! * Wno-extra <1>: Warning Options. (line 1267) ! * Wno-extra <2>: Warning Options. (line 1351) * Wno-fatal-errors: Warning Options. (line 48) ! * Wno-float-conversion: Warning Options. (line 1170) ! * Wno-float-equal: Warning Options. (line 858) ! * Wno-format: Warning Options. (line 254) ! * Wno-format <1>: Warning Options. (line 805) ! * Wno-format-contains-nul: Warning Options. (line 288) ! * Wno-format-extra-args: Warning Options. (line 292) ! * Wno-format-nonliteral: Warning Options. (line 316) ! * Wno-format-security: Warning Options. (line 321) ! * Wno-format-y2k: Warning Options. (line 333) ! * Wno-format-zero-length: Warning Options. (line 306) ! * Wno-free-nonheap-object: Warning Options. (line 991) ! * Wno-ignored-qualifiers: Warning Options. (line 373) ! * Wno-implicit: Warning Options. (line 369) ! * Wno-implicit-function-declaration: Warning Options. (line 363) ! * Wno-implicit-int: Warning Options. (line 359) ! * Wno-inherited-variadic-ctor: Warning Options. (line 1407) ! * Wno-init-self: Warning Options. (line 344) ! * Wno-inline: Warning Options. (line 1412) ! * Wno-int-to-pointer-cast: Warning Options. (line 1439) ! * Wno-invalid-offsetof: Warning Options. (line 1425) ! * Wno-invalid-pch: Warning Options. (line 1448) ! * Wno-jump-misses-init: Warning Options. (line 1146) * Wno-literal-suffix: C++ Dialect Options. ! (line 525) ! * Wno-logical-op: Warning Options. (line 1197) ! * Wno-long-long: Warning Options. (line 1452) ! * Wno-main: Warning Options. (line 384) ! * Wno-maybe-uninitialized: Warning Options. (line 642) ! * Wno-missing-braces: Warning Options. (line 391) ! * Wno-missing-declarations: Warning Options. (line 1257) ! * Wno-missing-field-initializers: Warning Options. (line 1267) ! * Wno-missing-format-attribute: Warning Options. (line 805) ! * Wno-missing-include-dirs: Warning Options. (line 402) ! * Wno-missing-parameter-type: Warning Options. (line 1239) ! * Wno-missing-prototypes: Warning Options. (line 1247) ! * Wno-multichar: Warning Options. (line 1285) * Wno-narrowing: C++ Dialect Options. ! (line 546) ! * Wno-nested-externs: Warning Options. (line 1404) * Wno-noexcept: C++ Dialect Options. ! (line 559) * Wno-non-template-friend: C++ Dialect Options. ! (line 633) * Wno-non-virtual-dtor: C++ Dialect Options. ! (line 565) ! * Wno-nonnull: Warning Options. (line 337) * Wno-old-style-cast: C++ Dialect Options. ! (line 649) ! * Wno-old-style-declaration: Warning Options. (line 1229) ! * Wno-old-style-definition: Warning Options. (line 1235) ! * Wno-overflow: Warning Options. (line 1343) ! * Wno-overlength-strings: Warning Options. (line 1517) * Wno-overloaded-virtual: C++ Dialect Options. ! (line 655) ! * Wno-override-init: Warning Options. (line 1351) ! * Wno-packed: Warning Options. (line 1359) ! * Wno-packed-bitfield-compat: Warning Options. (line 1376) ! * Wno-padded: Warning Options. (line 1393) ! * Wno-parentheses: Warning Options. (line 405) ! * Wno-pedantic-ms-format: Warning Options. (line 1021) ! * Wno-pmf-conversions: C++ Dialect Options. ! (line 674) * Wno-pmf-conversions <1>: Bound member functions. (line 35) ! * Wno-pointer-arith: Warning Options. (line 1027) ! * Wno-pointer-sign: Warning Options. (line 1506) ! * Wno-pointer-to-int-cast: Warning Options. (line 1444) ! * Wno-pragmas: Warning Options. (line 692) * Wno-protocol: Objective-C and Objective-C++ Dialect Options. (line 161) ! * Wno-redundant-decls: Warning Options. (line 1400) * Wno-reorder: C++ Dialect Options. ! (line 573) ! * Wno-return-local-addr: Warning Options. (line 500) ! * Wno-return-type: Warning Options. (line 504) * Wno-selector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wno-sequence-point: Warning Options. (line 454) ! * Wno-shadow: Warning Options. (line 972) ! * Wno-sign-compare: Warning Options. (line 1157) ! * Wno-sign-conversion: Warning Options. (line 1164) * Wno-sign-promo: C++ Dialect Options. ! (line 678) ! * Wno-sizeof-pointer-memaccess: Warning Options. (line 1176) ! * Wno-stack-protector: Warning Options. (line 1512) ! * Wno-strict-aliasing: Warning Options. (line 697) * Wno-strict-null-sentinel: C++ Dialect Options. ! (line 626) ! * Wno-strict-overflow: Warning Options. (line 736) ! * Wno-strict-prototypes: Warning Options. (line 1223) * Wno-strict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wno-suggest-attribute=: Warning Options. (line 785) ! * Wno-suggest-attribute=const: Warning Options. (line 791) ! * Wno-suggest-attribute=format: Warning Options. (line 805) ! * Wno-suggest-attribute=noreturn: Warning Options. (line 791) ! * Wno-suggest-attribute=pure: Warning Options. (line 791) ! * Wno-switch: Warning Options. (line 518) ! * Wno-switch-default: Warning Options. (line 526) ! * Wno-switch-enum: Warning Options. (line 529) ! * Wno-sync-nand: Warning Options. (line 538) ! * Wno-system-headers: Warning Options. (line 836) ! * Wno-traditional: Warning Options. (line 873) ! * Wno-traditional-conversion: Warning Options. (line 950) ! * Wno-trampolines: Warning Options. (line 847) ! * Wno-trigraphs: Warning Options. (line 543) ! * Wno-type-limits: Warning Options. (line 1034) * Wno-undeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) ! * Wno-undef: Warning Options. (line 965) ! * Wno-uninitialized: Warning Options. (line 620) ! * Wno-unknown-pragmas: Warning Options. (line 685) ! * Wno-unsafe-loop-optimizations: Warning Options. (line 1015) ! * Wno-unused: Warning Options. (line 613) ! * Wno-unused-but-set-parameter: Warning Options. (line 548) ! * Wno-unused-but-set-variable: Warning Options. (line 557) ! * Wno-unused-function: Warning Options. (line 567) ! * Wno-unused-label: Warning Options. (line 572) ! * Wno-unused-parameter: Warning Options. (line 583) ! * Wno-unused-result: Warning Options. (line 590) ! * Wno-unused-value: Warning Options. (line 603) ! * Wno-unused-variable: Warning Options. (line 595) ! * Wno-useless-cast: Warning Options. (line 1133) ! * Wno-varargs: Warning Options. (line 1463) ! * Wno-variadic-macros: Warning Options. (line 1457) ! * Wno-vector-operation-performance: Warning Options. (line 1468) ! * Wno-virtual-move-assign: Warning Options. (line 1478) ! * Wno-vla: Warning Options. (line 1487) ! * Wno-volatile-register-var: Warning Options. (line 1491) ! * Wno-write-strings: Warning Options. (line 1078) ! * Wno-zero-as-null-pointer-constant: Warning Options. (line 1120) * Wnoexcept: C++ Dialect Options. ! (line 559) * Wnon-template-friend: C++ Dialect Options. ! (line 633) * Wnon-virtual-dtor: C++ Dialect Options. ! (line 565) ! * Wnonnull: Warning Options. (line 337) ! * Wnormalized=: Warning Options. (line 1291) * Wold-style-cast: C++ Dialect Options. ! (line 649) ! * Wold-style-declaration: Warning Options. (line 1229) ! * Wold-style-definition: Warning Options. (line 1235) ! * Wopenm-simd: Warning Options. (line 1346) ! * Woverflow: Warning Options. (line 1343) ! * Woverlength-strings: Warning Options. (line 1517) * Woverloaded-virtual: C++ Dialect Options. ! (line 655) ! * Woverride-init: Warning Options. (line 1351) * Wp: Preprocessor Options. (line 14) ! * Wpacked: Warning Options. (line 1359) ! * Wpacked-bitfield-compat: Warning Options. (line 1376) ! * Wpadded: Warning Options. (line 1393) ! * Wparentheses: Warning Options. (line 405) ! * Wpedantic: Warning Options. (line 71) ! * Wpedantic-ms-format: Warning Options. (line 1021) * Wpmf-conversions: C++ Dialect Options. ! (line 674) ! * Wpointer-arith: Warning Options. (line 1027) * Wpointer-arith <1>: Pointer Arith. (line 13) ! * Wpointer-sign: Warning Options. (line 1506) ! * Wpointer-to-int-cast: Warning Options. (line 1444) ! * Wpragmas: Warning Options. (line 692) * Wprotocol: Objective-C and Objective-C++ Dialect Options. (line 161) * wrapper: Overall Options. (line 341) ! * Wredundant-decls: Warning Options. (line 1400) * Wreorder: C++ Dialect Options. ! (line 573) ! * Wreturn-local-addr: Warning Options. (line 500) ! * Wreturn-type: Warning Options. (line 504) * Wselector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wsequence-point: Warning Options. (line 454) ! * Wshadow: Warning Options. (line 972) ! * Wsign-compare: Warning Options. (line 1157) ! * Wsign-conversion: Warning Options. (line 1164) * Wsign-promo: C++ Dialect Options. ! (line 678) ! * Wsizeof-pointer-memaccess: Warning Options. (line 1176) ! * Wstack-protector: Warning Options. (line 1512) ! * Wstack-usage: Warning Options. (line 995) ! * Wstrict-aliasing: Warning Options. (line 697) ! * Wstrict-aliasing=n: Warning Options. (line 704) * Wstrict-null-sentinel: C++ Dialect Options. ! (line 626) ! * Wstrict-overflow: Warning Options. (line 736) ! * Wstrict-prototypes: Warning Options. (line 1223) * Wstrict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wsuggest-attribute=: Warning Options. (line 785) ! * Wsuggest-attribute=const: Warning Options. (line 791) ! * Wsuggest-attribute=format: Warning Options. (line 805) ! * Wsuggest-attribute=noreturn: Warning Options. (line 791) ! * Wsuggest-attribute=pure: Warning Options. (line 791) ! * Wswitch: Warning Options. (line 518) ! * Wswitch-default: Warning Options. (line 526) ! * Wswitch-enum: Warning Options. (line 529) ! * Wsync-nand: Warning Options. (line 538) ! * Wsystem-headers: Warning Options. (line 836) * Wsystem-headers <1>: Preprocessor Options. (line 165) ! * Wtraditional: Warning Options. (line 873) * Wtraditional <1>: Preprocessor Options. (line 118) ! * Wtraditional-conversion: Warning Options. (line 950) ! * Wtrampolines: Warning Options. (line 847) ! * Wtrigraphs: Warning Options. (line 543) * Wtrigraphs <1>: Preprocessor Options. (line 106) ! * Wtype-limits: Warning Options. (line 1034) * Wundeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) - * Wundef: Warning Options. (line 965) * Wundef <1>: Preprocessor Options. (line 124) ! * Wuninitialized: Warning Options. (line 620) ! * Wunknown-pragmas: Warning Options. (line 685) ! * Wunsafe-loop-optimizations: Warning Options. (line 1015) ! * Wunsuffixed-float-constants: Warning Options. (line 1532) ! * Wunused: Warning Options. (line 613) ! * Wunused-but-set-parameter: Warning Options. (line 548) ! * Wunused-but-set-variable: Warning Options. (line 557) ! * Wunused-function: Warning Options. (line 567) ! * Wunused-label: Warning Options. (line 572) ! * Wunused-local-typedefs: Warning Options. (line 579) * Wunused-macros: Preprocessor Options. (line 129) ! * Wunused-parameter: Warning Options. (line 583) ! * Wunused-result: Warning Options. (line 590) ! * Wunused-value: Warning Options. (line 603) ! * Wunused-variable: Warning Options. (line 595) ! * Wuseless-cast: Warning Options. (line 1133) ! * Wvarargs: Warning Options. (line 1463) ! * Wvariadic-macros: Warning Options. (line 1457) ! * Wvector-operation-performance: Warning Options. (line 1468) ! * Wvirtual-move-assign: Warning Options. (line 1478) ! * Wvla: Warning Options. (line 1487) ! * Wvolatile-register-var: Warning Options. (line 1491) ! * Wwrite-strings: Warning Options. (line 1078) ! * Wzero-as-null-pointer-constant: Warning Options. (line 1120) ! * x: Overall Options. (line 126) * x <1>: Preprocessor Options. ! (line 324) * Xassembler: Assembler Options. (line 13) * Xbind-lazy: VxWorks Options. (line 26) * Xbind-now: VxWorks Options. (line 30) ! * Xlinker: Link Options. (line 219) * Xpreprocessor: Preprocessor Options. (line 25) * Ym: System V Options. (line 26) --- 54959,55508 ---- * noseglinkedit: Darwin Options. (line 196) * nostartfiles: Link Options. (line 57) * nostdinc: Preprocessor Options. ! (line 399) * nostdinc++ <1>: Preprocessor Options. ! (line 404) ! * nostdinc++: C++ Dialect Options. ! (line 398) * nostdlib: Link Options. (line 74) ! * o: Preprocessor Options. (line 87) + * O: Optimize Options. (line 39) + * o: Overall Options. (line 192) * O0: Optimize Options. (line 129) * O1: Optimize Options. (line 39) * O2: Optimize Options. (line 83) * O3: Optimize Options. (line 121) * Ofast: Optimize Options. (line 143) ! * Og: Optimize Options. (line 150) * Os: Optimize Options. (line 133) * P: Preprocessor Options. ! (line 649) ! * p: Debugging Options. (line 411) * pagezero_size: Darwin Options. (line 196) ! * param: Optimize Options. (line 2312) * pass-exit-codes: Overall Options. (line 150) ! * pedantic <1>: Warnings and Errors. ! (line 25) ! * pedantic <2>: Alternate Keywords. (line 30) * pedantic <3>: C Extensions. (line 6) ! * pedantic <4>: Preprocessor Options. ! (line 175) ! * pedantic <5>: Warning Options. (line 73) ! * pedantic: Standards. (line 16) ! * pedantic-errors <1>: Warnings and Errors. (line 25) ! * pedantic-errors <2>: Non-bugs. (line 216) ! * pedantic-errors <3>: Preprocessor Options. (line 180) ! * pedantic-errors <4>: Warning Options. (line 115) ! * pedantic-errors: Standards. (line 16) ! * pg: Debugging Options. (line 417) * pie: Link Options. (line 99) * pipe: Overall Options. (line 215) * prebind: Darwin Options. (line 196) * prebind_all_twolevel_modules: Darwin Options. (line 196) ! * print-file-name: Debugging Options. (line 1375) ! * print-libgcc-file-name: Debugging Options. (line 1409) ! * print-multi-directory: Debugging Options. (line 1381) ! * print-multi-lib: Debugging Options. (line 1386) ! * print-multi-os-directory: Debugging Options. (line 1393) ! * print-multiarch: Debugging Options. (line 1402) * print-objc-runtime-info: Objective-C and Objective-C++ Dialect Options. (line 203) ! * print-prog-name: Debugging Options. (line 1406) ! * print-search-dirs: Debugging Options. (line 1417) ! * print-sysroot: Debugging Options. (line 1430) ! * print-sysroot-headers-suffix: Debugging Options. (line 1437) * private_bundle: Darwin Options. (line 196) + * pthread <1>: Solaris 2 Options. (line 38) * pthread: RS/6000 and PowerPC Options. ! (line 805) ! * pthreads: Solaris 2 Options. (line 32) ! * Q: Debugging Options. (line 423) * Qn: System V Options. (line 18) * Qy: System V Options. (line 14) * rdynamic: Link Options. (line 105) * read_only_relocs: Darwin Options. (line 196) * remap: Preprocessor Options. ! (line 697) * s: Link Options. (line 112) ! * S <1>: Link Options. (line 20) ! * S: Overall Options. (line 175) ! * save-temps: Debugging Options. (line 1284) ! * save-temps=obj: Debugging Options. (line 1310) * sectalign: Darwin Options. (line 196) * sectcreate: Darwin Options. (line 196) * sectobjectsymbols: Darwin Options. (line 196) * sectorder: Darwin Options. (line 196) * seg1addr: Darwin Options. (line 196) + * seg_addr_table: Darwin Options. (line 196) + * seg_addr_table_filename: Darwin Options. (line 196) * segaddr: Darwin Options. (line 196) * seglinkedit: Darwin Options. (line 196) * segprot: Darwin Options. (line 196) * segs_read_only_addr: Darwin Options. (line 196) * segs_read_write_addr: Darwin Options. (line 196) ! * shared: Link Options. (line 121) ! * shared-libgcc: Link Options. (line 129) * short-calls: Adapteva Epiphany Options. (line 61) * sim: CRIS Options. (line 95) * sim2: CRIS Options. (line 101) * single_module: Darwin Options. (line 196) ! * specs: Directory Options. (line 88) ! * static <1>: HPPA Options. (line 186) ! * static <2>: Darwin Options. (line 196) * static: Link Options. (line 116) ! * static-libasan: Link Options. (line 164) ! * static-libgcc: Link Options. (line 129) ! * static-liblsan: Link Options. (line 182) ! * static-libstdc++: Link Options. (line 200) ! * static-libtsan: Link Options. (line 173) ! * static-libubsan: Link Options. (line 191) ! * std <1>: Non-bugs. (line 107) ! * std <2>: Other Builtins. (line 22) ! * std <3>: C Dialect Options. (line 47) * std: Standards. (line 16) * std=: Preprocessor Options. ! (line 338) * sub_library: Darwin Options. (line 196) * sub_umbrella: Darwin Options. (line 196) ! * symbolic: Link Options. (line 211) ! * sysroot: Directory Options. (line 96) ! * T: Link Options. (line 217) * target-help <1>: Preprocessor Options. ! (line 702) ! * target-help: Overall Options. (line 230) * threads: HPPA Options. (line 199) ! * time: Debugging Options. (line 1325) * tno-android-cc: GNU/Linux Options. (line 31) * tno-android-ld: GNU/Linux Options. (line 35) * traditional <1>: Incompatibilities. (line 6) ! * traditional: C Dialect Options. (line 333) * traditional-cpp <1>: Preprocessor Options. ! (line 680) ! * traditional-cpp: C Dialect Options. (line 333) * trigraphs <1>: Preprocessor Options. ! (line 684) ! * trigraphs: C Dialect Options. (line 328) * twolevel_namespace: Darwin Options. (line 196) + * u: Link Options. (line 249) * U: Preprocessor Options. (line 69) * umbrella: Darwin Options. (line 196) * undef: Preprocessor Options. (line 73) * undefined: Darwin Options. (line 196) * unexported_symbols_list: Darwin Options. (line 196) * v <1>: Preprocessor Options. ! (line 706) ! * v: Overall Options. (line 203) * version <1>: Preprocessor Options. ! (line 719) ! * version: Overall Options. (line 338) ! * W: Incompatibilities. (line 64) ! * w: Preprocessor Options. (line 171) ! * W: Warning Options. (line 169) ! * w: Warning Options. (line 25) * Wa: Assembler Options. (line 9) * Wabi: C++ Dialect Options. ! (line 406) ! * Waddr-space-convert: AVR Options. (line 213) ! * Waddress: Warning Options. (line 1196) ! * Waggregate-return: Warning Options. (line 1214) ! * Waggressive-loop-optimizations: Warning Options. (line 1219) ! * Wall <1>: Standard Libraries. (line 6) ! * Wall <2>: Preprocessor Options. (line 93) ! * Wall: Warning Options. (line 119) ! * Warray-bounds: Warning Options. (line 834) * Wassign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wattributes: Warning Options. (line 1224) ! * Wbad-function-cast: Warning Options. (line 1052) ! * Wbuiltin-macro-redefined: Warning Options. (line 1230) ! * Wcast-align: Warning Options. (line 1083) ! * Wcast-qual: Warning Options. (line 1067) ! * Wchar-subscripts: Warning Options. (line 208) ! * Wclobbered: Warning Options. (line 1103) * Wcomment <1>: Preprocessor Options. (line 101) + * Wcomment: Warning Options. (line 213) * Wcomments: Preprocessor Options. (line 101) ! * Wconditionally-supported: Warning Options. (line 1107) ! * Wconversion: Warning Options. (line 1110) ! * Wconversion-null: Warning Options. (line 1128) * Wctor-dtor-privacy: C++ Dialect Options. ! (line 516) ! * Wdate-time: Warning Options. (line 1136) ! * Wdeclaration-after-statement: Warning Options. (line 967) ! * Wdelete-incomplete: Warning Options. (line 1141) * Wdelete-non-virtual-dtor: C++ Dialect Options. ! (line 523) ! * Wdeprecated: Warning Options. (line 1345) ! * Wdeprecated-declarations: Warning Options. (line 1349) ! * Wdisabled-optimization: Warning Options. (line 1510) ! * Wdiv-by-zero: Warning Options. (line 839) ! * Wdouble-promotion: Warning Options. (line 237) * weak_reference_mismatches: Darwin Options. (line 196) * Weffc++: C++ Dialect Options. ! (line 603) ! * Wempty-body: Warning Options. (line 1148) * Wendif-labels <1>: Preprocessor Options. (line 148) ! * Wendif-labels: Warning Options. (line 977) ! * Wenum-compare: Warning Options. (line 1152) * Werror <1>: Preprocessor Options. (line 161) + * Werror: Warning Options. (line 28) * Werror=: Warning Options. (line 31) ! * Wextra: Warning Options. (line 169) * Wfatal-errors: Warning Options. (line 48) ! * Wfloat-conversion: Warning Options. (line 1182) ! * Wfloat-equal: Warning Options. (line 866) ! * Wformat <1>: Function Attributes. ! (line 458) ! * Wformat: Warning Options. (line 256) ! * Wformat-contains-nul: Warning Options. (line 293) ! * Wformat-extra-args: Warning Options. (line 297) * Wformat-nonliteral <1>: Function Attributes. ! (line 524) ! * Wformat-nonliteral: Warning Options. (line 321) ! * Wformat-security: Warning Options. (line 326) ! * Wformat-y2k: Warning Options. (line 338) ! * Wformat-zero-length: Warning Options. (line 311) ! * Wformat=: Warning Options. (line 256) ! * Wformat=1: Warning Options. (line 283) ! * Wformat=2: Warning Options. (line 316) ! * Wframe-larger-than: Warning Options. (line 991) ! * Wfree-nonheap-object: Warning Options. (line 1000) * whatsloaded: Darwin Options. (line 196) * whyload: Darwin Options. (line 196) ! * Wignored-qualifiers: Warning Options. (line 378) ! * Wimplicit: Warning Options. (line 374) ! * Wimplicit-function-declaration: Warning Options. (line 368) ! * Wimplicit-int: Warning Options. (line 364) ! * Winherited-variadic-ctor: Warning Options. (line 1420) ! * Winit-self: Warning Options. (line 349) * Winline <1>: Inline. (line 63) ! * Winline: Warning Options. (line 1425) ! * Wint-to-pointer-cast: Warning Options. (line 1452) ! * Winvalid-offsetof: Warning Options. (line 1438) ! * Winvalid-pch: Warning Options. (line 1461) ! * Wjump-misses-init: Warning Options. (line 1158) ! * Wl: Link Options. (line 241) ! * Wlarger-than-LEN: Warning Options. (line 988) ! * Wlarger-than=LEN: Warning Options. (line 988) * Wliteral-suffix: C++ Dialect Options. ! (line 530) ! * Wlogical-op: Warning Options. (line 1209) ! * Wlong-long: Warning Options. (line 1465) ! * Wmain: Warning Options. (line 389) ! * Wmaybe-uninitialized: Warning Options. (line 649) ! * Wmissing-braces: Warning Options. (line 396) ! * Wmissing-declarations: Warning Options. (line 1269) ! * Wmissing-field-initializers: Warning Options. (line 1279) ! * Wmissing-format-attribute: Warning Options. (line 813) ! * Wmissing-include-dirs: Warning Options. (line 407) ! * Wmissing-parameter-type: Warning Options. (line 1251) ! * Wmissing-prototypes: Warning Options. (line 1259) ! * Wmultichar: Warning Options. (line 1297) * Wnarrowing: C++ Dialect Options. ! (line 551) ! * Wnested-externs: Warning Options. (line 1417) * Wno-abi: C++ Dialect Options. ! (line 406) ! * Wno-address: Warning Options. (line 1196) ! * Wno-aggregate-return: Warning Options. (line 1214) ! * Wno-aggressive-loop-optimizations: Warning Options. (line 1219) ! * Wno-all: Warning Options. (line 119) ! * Wno-array-bounds: Warning Options. (line 834) * Wno-assign-intercept: Objective-C and Objective-C++ Dialect Options. (line 157) ! * Wno-attributes: Warning Options. (line 1224) ! * Wno-bad-function-cast: Warning Options. (line 1052) ! * Wno-builtin-macro-redefined: Warning Options. (line 1230) ! * Wno-cast-align: Warning Options. (line 1083) ! * Wno-cast-qual: Warning Options. (line 1067) ! * Wno-char-subscripts: Warning Options. (line 208) ! * Wno-clobbered: Warning Options. (line 1103) ! * Wno-comment: Warning Options. (line 213) ! * Wno-conditionally-supported: Warning Options. (line 1107) ! * Wno-conversion: Warning Options. (line 1110) ! * Wno-conversion-null: Warning Options. (line 1128) ! * Wno-coverage-mismatch: Warning Options. (line 218) * Wno-ctor-dtor-privacy: C++ Dialect Options. ! (line 516) ! * Wno-date-time: Warning Options. (line 1136) ! * Wno-declaration-after-statement: Warning Options. (line 967) ! * Wno-delete-incomplete: Warning Options. (line 1141) * Wno-delete-non-virtual-dtor: C++ Dialect Options. ! (line 523) ! * Wno-deprecated: Warning Options. (line 1345) ! * Wno-deprecated-declarations: Warning Options. (line 1349) ! * Wno-disabled-optimization: Warning Options. (line 1510) ! * Wno-div-by-zero: Warning Options. (line 839) ! * Wno-double-promotion: Warning Options. (line 237) * Wno-effc++: C++ Dialect Options. ! (line 603) ! * Wno-empty-body: Warning Options. (line 1148) ! * Wno-endif-labels: Warning Options. (line 977) ! * Wno-enum-compare: Warning Options. (line 1152) * Wno-error: Warning Options. (line 28) * Wno-error=: Warning Options. (line 31) ! * Wno-extra: Warning Options. (line 169) * Wno-fatal-errors: Warning Options. (line 48) ! * Wno-float-conversion: Warning Options. (line 1182) ! * Wno-float-equal: Warning Options. (line 866) ! * Wno-format: Warning Options. (line 256) ! * Wno-format-contains-nul: Warning Options. (line 293) ! * Wno-format-extra-args: Warning Options. (line 297) ! * Wno-format-nonliteral: Warning Options. (line 321) ! * Wno-format-security: Warning Options. (line 326) ! * Wno-format-y2k: Warning Options. (line 338) ! * Wno-format-zero-length: Warning Options. (line 311) ! * Wno-free-nonheap-object: Warning Options. (line 1000) ! * Wno-ignored-qualifiers: Warning Options. (line 378) ! * Wno-implicit: Warning Options. (line 374) ! * Wno-implicit-function-declaration: Warning Options. (line 368) ! * Wno-implicit-int: Warning Options. (line 364) ! * Wno-inherited-variadic-ctor: Warning Options. (line 1420) ! * Wno-init-self: Warning Options. (line 349) ! * Wno-inline: Warning Options. (line 1425) ! * Wno-int-to-pointer-cast: Warning Options. (line 1452) ! * Wno-invalid-offsetof: Warning Options. (line 1438) ! * Wno-invalid-pch: Warning Options. (line 1461) ! * Wno-jump-misses-init: Warning Options. (line 1158) * Wno-literal-suffix: C++ Dialect Options. ! (line 530) ! * Wno-logical-op: Warning Options. (line 1209) ! * Wno-long-long: Warning Options. (line 1465) ! * Wno-main: Warning Options. (line 389) ! * Wno-maybe-uninitialized: Warning Options. (line 649) ! * Wno-missing-braces: Warning Options. (line 396) ! * Wno-missing-declarations: Warning Options. (line 1269) ! * Wno-missing-field-initializers: Warning Options. (line 1279) ! * Wno-missing-format-attribute: Warning Options. (line 813) ! * Wno-missing-include-dirs: Warning Options. (line 407) ! * Wno-missing-parameter-type: Warning Options. (line 1251) ! * Wno-missing-prototypes: Warning Options. (line 1259) ! * Wno-multichar: Warning Options. (line 1297) * Wno-narrowing: C++ Dialect Options. ! (line 551) ! * Wno-nested-externs: Warning Options. (line 1417) * Wno-noexcept: C++ Dialect Options. ! (line 564) * Wno-non-template-friend: C++ Dialect Options. ! (line 640) * Wno-non-virtual-dtor: C++ Dialect Options. ! (line 570) ! * Wno-nonnull: Warning Options. (line 342) * Wno-old-style-cast: C++ Dialect Options. ! (line 656) ! * Wno-old-style-declaration: Warning Options. (line 1241) ! * Wno-old-style-definition: Warning Options. (line 1247) ! * Wno-overflow: Warning Options. (line 1355) ! * Wno-overlength-strings: Warning Options. (line 1530) * Wno-overloaded-virtual: C++ Dialect Options. ! (line 662) ! * Wno-override-init: Warning Options. (line 1363) ! * Wno-packed: Warning Options. (line 1371) ! * Wno-packed-bitfield-compat: Warning Options. (line 1388) ! * Wno-padded: Warning Options. (line 1405) ! * Wno-parentheses: Warning Options. (line 410) ! * Wno-pedantic-ms-format: Warning Options. (line 1032) * Wno-pmf-conversions <1>: Bound member functions. (line 35) ! * Wno-pmf-conversions: C++ Dialect Options. ! (line 681) ! * Wno-pointer-arith: Warning Options. (line 1038) ! * Wno-pointer-sign: Warning Options. (line 1519) ! * Wno-pointer-to-int-cast: Warning Options. (line 1457) ! * Wno-pragmas: Warning Options. (line 699) * Wno-protocol: Objective-C and Objective-C++ Dialect Options. (line 161) ! * Wno-redundant-decls: Warning Options. (line 1412) * Wno-reorder: C++ Dialect Options. ! (line 578) ! * Wno-return-local-addr: Warning Options. (line 505) ! * Wno-return-type: Warning Options. (line 509) * Wno-selector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wno-sequence-point: Warning Options. (line 459) ! * Wno-shadow: Warning Options. (line 981) ! * Wno-sign-compare: Warning Options. (line 1169) ! * Wno-sign-conversion: Warning Options. (line 1176) * Wno-sign-promo: C++ Dialect Options. ! (line 685) ! * Wno-sizeof-pointer-memaccess: Warning Options. (line 1188) ! * Wno-stack-protector: Warning Options. (line 1525) ! * Wno-strict-aliasing: Warning Options. (line 704) * Wno-strict-null-sentinel: C++ Dialect Options. ! (line 632) ! * Wno-strict-overflow: Warning Options. (line 744) ! * Wno-strict-prototypes: Warning Options. (line 1235) * Wno-strict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wno-suggest-attribute=: Warning Options. (line 794) ! * Wno-suggest-attribute=const: Warning Options. (line 800) ! * Wno-suggest-attribute=format: Warning Options. (line 813) ! * Wno-suggest-attribute=noreturn: Warning Options. (line 800) ! * Wno-suggest-attribute=pure: Warning Options. (line 800) ! * Wno-switch: Warning Options. (line 524) ! * Wno-switch-default: Warning Options. (line 532) ! * Wno-switch-enum: Warning Options. (line 535) ! * Wno-sync-nand: Warning Options. (line 544) ! * Wno-system-headers: Warning Options. (line 844) ! * Wno-traditional: Warning Options. (line 881) ! * Wno-traditional-conversion: Warning Options. (line 959) ! * Wno-trampolines: Warning Options. (line 855) ! * Wno-trigraphs: Warning Options. (line 549) ! * Wno-type-limits: Warning Options. (line 1045) * Wno-undeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) ! * Wno-undef: Warning Options. (line 974) ! * Wno-uninitialized: Warning Options. (line 626) ! * Wno-unknown-pragmas: Warning Options. (line 692) ! * Wno-unsafe-loop-optimizations: Warning Options. (line 1026) ! * Wno-unused: Warning Options. (line 619) ! * Wno-unused-but-set-parameter: Warning Options. (line 554) ! * Wno-unused-but-set-variable: Warning Options. (line 563) ! * Wno-unused-function: Warning Options. (line 573) ! * Wno-unused-label: Warning Options. (line 578) ! * Wno-unused-parameter: Warning Options. (line 589) ! * Wno-unused-result: Warning Options. (line 596) ! * Wno-unused-value: Warning Options. (line 609) ! * Wno-unused-variable: Warning Options. (line 601) ! * Wno-useless-cast: Warning Options. (line 1145) ! * Wno-varargs: Warning Options. (line 1476) ! * Wno-variadic-macros: Warning Options. (line 1470) ! * Wno-vector-operation-performance: Warning Options. (line 1481) ! * Wno-virtual-move-assign: Warning Options. (line 1491) ! * Wno-vla: Warning Options. (line 1500) ! * Wno-volatile-register-var: Warning Options. (line 1504) ! * Wno-write-strings: Warning Options. (line 1089) ! * Wno-zero-as-null-pointer-constant: Warning Options. (line 1132) * Wnoexcept: C++ Dialect Options. ! (line 564) * Wnon-template-friend: C++ Dialect Options. ! (line 640) * Wnon-virtual-dtor: C++ Dialect Options. ! (line 570) ! * Wnonnull: Warning Options. (line 342) ! * Wnormalized=: Warning Options. (line 1303) * Wold-style-cast: C++ Dialect Options. ! (line 656) ! * Wold-style-declaration: Warning Options. (line 1241) ! * Wold-style-definition: Warning Options. (line 1247) ! * Wopenm-simd: Warning Options. (line 1358) ! * Woverflow: Warning Options. (line 1355) ! * Woverlength-strings: Warning Options. (line 1530) * Woverloaded-virtual: C++ Dialect Options. ! (line 662) ! * Woverride-init: Warning Options. (line 1363) * Wp: Preprocessor Options. (line 14) ! * Wpacked: Warning Options. (line 1371) ! * Wpacked-bitfield-compat: Warning Options. (line 1388) ! * Wpadded: Warning Options. (line 1405) ! * Wparentheses: Warning Options. (line 410) ! * Wpedantic: Warning Options. (line 73) ! * Wpedantic-ms-format: Warning Options. (line 1032) * Wpmf-conversions: C++ Dialect Options. ! (line 681) * Wpointer-arith <1>: Pointer Arith. (line 13) ! * Wpointer-arith: Warning Options. (line 1038) ! * Wpointer-sign: Warning Options. (line 1519) ! * Wpointer-to-int-cast: Warning Options. (line 1457) ! * Wpragmas: Warning Options. (line 699) * Wprotocol: Objective-C and Objective-C++ Dialect Options. (line 161) * wrapper: Overall Options. (line 341) ! * Wredundant-decls: Warning Options. (line 1412) * Wreorder: C++ Dialect Options. ! (line 578) ! * Wreturn-local-addr: Warning Options. (line 505) ! * Wreturn-type: Warning Options. (line 509) * Wselector: Objective-C and Objective-C++ Dialect Options. (line 171) ! * Wsequence-point: Warning Options. (line 459) ! * Wshadow: Warning Options. (line 981) ! * Wsign-compare: Warning Options. (line 1169) ! * Wsign-conversion: Warning Options. (line 1176) * Wsign-promo: C++ Dialect Options. ! (line 685) ! * Wsizeof-pointer-memaccess: Warning Options. (line 1188) ! * Wstack-protector: Warning Options. (line 1525) ! * Wstack-usage: Warning Options. (line 1004) ! * Wstrict-aliasing: Warning Options. (line 704) ! * Wstrict-aliasing=n: Warning Options. (line 712) * Wstrict-null-sentinel: C++ Dialect Options. ! (line 632) ! * Wstrict-overflow: Warning Options. (line 744) ! * Wstrict-prototypes: Warning Options. (line 1235) * Wstrict-selector-match: Objective-C and Objective-C++ Dialect Options. (line 183) ! * Wsuggest-attribute=: Warning Options. (line 794) ! * Wsuggest-attribute=const: Warning Options. (line 800) ! * Wsuggest-attribute=format: Warning Options. (line 813) ! * Wsuggest-attribute=noreturn: Warning Options. (line 800) ! * Wsuggest-attribute=pure: Warning Options. (line 800) ! * Wswitch: Warning Options. (line 524) ! * Wswitch-default: Warning Options. (line 532) ! * Wswitch-enum: Warning Options. (line 535) ! * Wsync-nand: Warning Options. (line 544) * Wsystem-headers <1>: Preprocessor Options. (line 165) ! * Wsystem-headers: Warning Options. (line 844) * Wtraditional <1>: Preprocessor Options. (line 118) ! * Wtraditional: Warning Options. (line 881) ! * Wtraditional-conversion: Warning Options. (line 959) ! * Wtrampolines: Warning Options. (line 855) * Wtrigraphs <1>: Preprocessor Options. (line 106) ! * Wtrigraphs: Warning Options. (line 549) ! * Wtype-limits: Warning Options. (line 1045) * Wundeclared-selector: Objective-C and Objective-C++ Dialect Options. (line 191) * Wundef <1>: Preprocessor Options. (line 124) ! * Wundef: Warning Options. (line 974) ! * Wuninitialized: Warning Options. (line 626) ! * Wunknown-pragmas: Warning Options. (line 692) ! * Wunsafe-loop-optimizations: Warning Options. (line 1026) ! * Wunsuffixed-float-constants: Warning Options. (line 1545) ! * Wunused: Warning Options. (line 619) ! * Wunused-but-set-parameter: Warning Options. (line 554) ! * Wunused-but-set-variable: Warning Options. (line 563) ! * Wunused-function: Warning Options. (line 573) ! * Wunused-label: Warning Options. (line 578) ! * Wunused-local-typedefs: Warning Options. (line 585) * Wunused-macros: Preprocessor Options. (line 129) ! * Wunused-parameter: Warning Options. (line 589) ! * Wunused-result: Warning Options. (line 596) ! * Wunused-value: Warning Options. (line 609) ! * Wunused-variable: Warning Options. (line 601) ! * Wuseless-cast: Warning Options. (line 1145) ! * Wvarargs: Warning Options. (line 1476) ! * Wvariadic-macros: Warning Options. (line 1470) ! * Wvector-operation-performance: Warning Options. (line 1481) ! * Wvirtual-move-assign: Warning Options. (line 1491) ! * Wvla: Warning Options. (line 1500) ! * Wvolatile-register-var: Warning Options. (line 1504) ! * Wwrite-strings: Warning Options. (line 1089) ! * Wzero-as-null-pointer-constant: Warning Options. (line 1132) * x <1>: Preprocessor Options. ! (line 322) ! * x: Overall Options. (line 126) * Xassembler: Assembler Options. (line 13) * Xbind-lazy: VxWorks Options. (line 26) * Xbind-now: VxWorks Options. (line 30) ! * Xlinker: Link Options. (line 223) * Xpreprocessor: Preprocessor Options. (line 25) * Ym: System V Options. (line 26) *************** Keyword Index *** 55093,55462 **** [index] * Menu: ! * '!' in constraint: Multi-Alternative. (line 33) ! * '#' in constraint: Modifiers. (line 57) ! * '#pragma': Pragmas. (line 6) * #pragma implementation: C++ Interface. (line 39) ! * '#pragma implementation', implied: C++ Interface. (line 46) * #pragma interface: C++ Interface. (line 20) ! * '#pragma', reason for not using: Function Attributes. ! (line 2059) * $: Dollar Signs. (line 6) ! * '%' in constraint: Modifiers. (line 45) ! * '%include': Spec Files. (line 26) ! * '%include_noerr': Spec Files. (line 30) ! * '%rename': Spec Files. (line 34) ! * '&' in constraint: Modifiers. (line 25) ! * ''': Incompatibilities. (line 116) ! * '*' in constraint: Modifiers. (line 62) ! * *__builtin_assume_aligned: Other Builtins. (line 332) ! * '+' in constraint: Modifiers. (line 12) ! * '-lgcc', use with '-nodefaultlibs': Link Options. (line 85) ! * '-lgcc', use with '-nostdlib': Link Options. (line 85) ! * '-march' feature modifiers: AArch64 Options. (line 132) ! * '-mcpu' feature modifiers: AArch64 Options. (line 132) ! * '-nodefaultlibs' and unresolved references: Link Options. (line 85) ! * '-nostdlib' and unresolved references: Link Options. (line 85) * .sdata/.sdata2 references (PowerPC): RS/6000 and PowerPC Options. ! (line 742) ! * '//': C++ Comments. (line 6) ! * '0' in constraint: Simple Constraints. (line 125) ! * '<' in constraint: Simple Constraints. (line 47) ! * '=' in constraint: Modifiers. (line 8) ! * '>' in constraint: Simple Constraints. (line 59) ! * '?' in constraint: Multi-Alternative. (line 27) ! * '?:' extensions: Conditionals. (line 6) ! * '?:' side effect: Conditionals. (line 20) ! * '_' in variables in macros: Typeof. (line 46) ! * '_Accum' data type: Fixed-Point. (line 6) ! * '_Complex' keyword: Complex. (line 6) ! * '_Decimal128' data type: Decimal Float. (line 6) ! * '_Decimal32' data type: Decimal Float. (line 6) ! * '_Decimal64' data type: Decimal Float. (line 6) ! * _Exit: Other Builtins. (line 6) ! * _exit: Other Builtins. (line 6) ! * '_Fract' data type: Fixed-Point. (line 6) ! * _HTM_FIRST_USER_ABORT_CODE: S/390 System z Built-in Functions. ! (line 44) ! * '_Sat' data type: Fixed-Point. (line 6) ! * _xabort: X86 transactional memory intrinsics. ! (line 61) ! * _xbegin: X86 transactional memory intrinsics. ! (line 19) ! * _xend: X86 transactional memory intrinsics. ! (line 52) ! * _xtest: X86 transactional memory intrinsics. ! (line 57) ! * __atomic_add_fetch: __atomic Builtins. (line 153) ! * __atomic_always_lock_free: __atomic Builtins. (line 230) ! * __atomic_and_fetch: __atomic Builtins. (line 157) ! * __atomic_clear: __atomic Builtins. (line 204) ! * __atomic_compare_exchange: __atomic Builtins. (line 145) ! * __atomic_compare_exchange_n: __atomic Builtins. (line 124) ! * __atomic_exchange: __atomic Builtins. (line 118) ! * __atomic_exchange_n: __atomic Builtins. (line 108) ! * __atomic_fetch_add: __atomic Builtins. (line 172) ! * __atomic_fetch_and: __atomic Builtins. (line 176) ! * __atomic_fetch_nand: __atomic Builtins. (line 182) ! * __atomic_fetch_or: __atomic Builtins. (line 180) ! * __atomic_fetch_sub: __atomic Builtins. (line 174) ! * __atomic_fetch_xor: __atomic Builtins. (line 178) ! * __atomic_is_lock_free: __atomic Builtins. (line 244) ! * __atomic_load: __atomic Builtins. (line 90) ! * __atomic_load_n: __atomic Builtins. (line 83) ! * __atomic_nand_fetch: __atomic Builtins. (line 163) ! * __atomic_or_fetch: __atomic Builtins. (line 161) ! * __atomic_signal_fence: __atomic Builtins. (line 223) ! * __atomic_store: __atomic Builtins. (line 103) ! * __atomic_store_n: __atomic Builtins. (line 95) ! * __atomic_sub_fetch: __atomic Builtins. (line 155) ! * __atomic_test_and_set: __atomic Builtins. (line 192) ! * __atomic_thread_fence: __atomic Builtins. (line 216) ! * __atomic_xor_fetch: __atomic Builtins. (line 159) ! * __builtin_apply: Constructing Calls. (line 29) ! * __builtin_apply_args: Constructing Calls. (line 19) * __builtin_arc_aligned: ARC Built-in Functions. ! (line 18) * __builtin_arc_brk: ARC Built-in Functions. ! (line 28) * __builtin_arc_core_read: ARC Built-in Functions. ! (line 32) * __builtin_arc_core_write: ARC Built-in Functions. ! (line 39) * __builtin_arc_divaw: ARC Built-in Functions. ! (line 46) * __builtin_arc_flag: ARC Built-in Functions. ! (line 53) * __builtin_arc_lr: ARC Built-in Functions. ! (line 57) * __builtin_arc_mul64: ARC Built-in Functions. ! (line 64) * __builtin_arc_mulu64: ARC Built-in Functions. ! (line 68) * __builtin_arc_nop: ARC Built-in Functions. ! (line 73) * __builtin_arc_norm: ARC Built-in Functions. ! (line 77) * __builtin_arc_normw: ARC Built-in Functions. ! (line 84) * __builtin_arc_rtie: ARC Built-in Functions. ! (line 91) * __builtin_arc_sleep: ARC Built-in Functions. ! (line 95) * __builtin_arc_sr: ARC Built-in Functions. ! (line 99) * __builtin_arc_swap: ARC Built-in Functions. ! (line 106) * __builtin_arc_swi: ARC Built-in Functions. ! (line 112) * __builtin_arc_sync: ARC Built-in Functions. ! (line 116) * __builtin_arc_trap_s: ARC Built-in Functions. ! (line 120) * __builtin_arc_unimp_s: ARC Built-in Functions. ! (line 124) ! * __builtin_bswap16: Other Builtins. (line 599) ! * __builtin_bswap32: Other Builtins. (line 603) ! * __builtin_bswap64: Other Builtins. (line 607) ! * __builtin_choose_expr: Other Builtins. (line 154) ! * __builtin_clrsb: Other Builtins. (line 529) ! * __builtin_clrsbl: Other Builtins. (line 551) ! * __builtin_clrsbll: Other Builtins. (line 574) ! * __builtin_clz: Other Builtins. (line 521) ! * __builtin_clzl: Other Builtins. (line 543) ! * __builtin_clzll: Other Builtins. (line 566) ! * __builtin_complex: Other Builtins. (line 194) ! * __builtin_constant_p: Other Builtins. (line 203) * __builtin_cpu_init: X86 Built-in Functions. ! (line 62) * __builtin_cpu_is: X86 Built-in Functions. ! (line 90) * __builtin_cpu_supports: X86 Built-in Functions. ! (line 162) ! * __builtin_ctz: Other Builtins. (line 525) ! * __builtin_ctzl: Other Builtins. (line 547) ! * __builtin_ctzll: Other Builtins. (line 570) ! * __builtin_expect: Other Builtins. (line 252) ! * __builtin_extract_return_addr: Return Address. (line 35) ! * __builtin_ffs: Other Builtins. (line 517) ! * __builtin_ffsl: Other Builtins. (line 540) ! * __builtin_ffsll: Other Builtins. (line 562) ! * __builtin_FILE: Other Builtins. (line 361) * __builtin_fpclassify: Other Builtins. (line 6) ! * __builtin_fpclassify <1>: Other Builtins. (line 431) ! * __builtin_frame_address: Return Address. (line 47) ! * __builtin_frob_return_address: Return Address. (line 44) ! * __builtin_FUNCTION: Other Builtins. (line 356) ! * __builtin_huge_val: Other Builtins. (line 419) ! * __builtin_huge_valf: Other Builtins. (line 424) ! * __builtin_huge_vall: Other Builtins. (line 427) * __builtin_huge_valq: X86 Built-in Functions. (line 57) ! * __builtin_inf: Other Builtins. (line 442) ! * __builtin_infd128: Other Builtins. (line 452) ! * __builtin_infd32: Other Builtins. (line 446) ! * __builtin_infd64: Other Builtins. (line 449) ! * __builtin_inff: Other Builtins. (line 456) ! * __builtin_infl: Other Builtins. (line 461) * __builtin_infq: X86 Built-in Functions. ! (line 54) * __builtin_isfinite: Other Builtins. (line 6) * __builtin_isgreater: Other Builtins. (line 6) * __builtin_isgreaterequal: Other Builtins. (line 6) * __builtin_isinf_sign: Other Builtins. (line 6) - * __builtin_isinf_sign <1>: Other Builtins. (line 465) * __builtin_isless: Other Builtins. (line 6) * __builtin_islessequal: Other Builtins. (line 6) * __builtin_islessgreater: Other Builtins. (line 6) * __builtin_isnormal: Other Builtins. (line 6) * __builtin_isunordered: Other Builtins. (line 6) ! * __builtin_LINE: Other Builtins. (line 350) ! * __builtin_nan: Other Builtins. (line 473) ! * __builtin_nand128: Other Builtins. (line 495) ! * __builtin_nand32: Other Builtins. (line 489) ! * __builtin_nand64: Other Builtins. (line 492) ! * __builtin_nanf: Other Builtins. (line 499) ! * __builtin_nanl: Other Builtins. (line 502) ! * __builtin_nans: Other Builtins. (line 506) ! * __builtin_nansf: Other Builtins. (line 510) ! * __builtin_nansl: Other Builtins. (line 513) * __builtin_nds32_isb: NDS32 Built-in Functions. ! (line 12) * __builtin_nds32_isync: NDS32 Built-in Functions. ! (line 8) * __builtin_nds32_mfsr: NDS32 Built-in Functions. ! (line 15) * __builtin_nds32_mfusr: NDS32 Built-in Functions. ! (line 18) * __builtin_nds32_mtsr: NDS32 Built-in Functions. ! (line 21) * __builtin_nds32_mtusr: NDS32 Built-in Functions. ! (line 24) * __builtin_nds32_setgie_dis: NDS32 Built-in Functions. ! (line 30) * __builtin_nds32_setgie_en: NDS32 Built-in Functions. ! (line 27) * __builtin_non_tx_store: S/390 System z Built-in Functions. ! (line 98) * __builtin_object_size: Object Size Checking. (line 6) - * __builtin_object_size <1>: Object Size Checking. - (line 9) * __builtin_offsetof: Offsetof. (line 6) ! * __builtin_parity: Other Builtins. (line 537) ! * __builtin_parityl: Other Builtins. (line 558) ! * __builtin_parityll: Other Builtins. (line 582) ! * __builtin_popcount: Other Builtins. (line 534) ! * __builtin_popcountl: Other Builtins. (line 554) ! * __builtin_popcountll: Other Builtins. (line 578) * __builtin_powi: Other Builtins. (line 6) - * __builtin_powi <1>: Other Builtins. (line 586) * __builtin_powif: Other Builtins. (line 6) - * __builtin_powif <1>: Other Builtins. (line 591) * __builtin_powil: Other Builtins. (line 6) ! * __builtin_powil <1>: Other Builtins. (line 595) ! * __builtin_prefetch: Other Builtins. (line 380) ! * __builtin_return: Constructing Calls. (line 47) ! * __builtin_return_address: Return Address. (line 9) * __builtin_rx_brk: RX Built-in Functions. ! (line 10) * __builtin_rx_clrpsw: RX Built-in Functions. ! (line 13) * __builtin_rx_int: RX Built-in Functions. ! (line 17) * __builtin_rx_machi: RX Built-in Functions. ! (line 21) * __builtin_rx_maclo: RX Built-in Functions. ! (line 26) * __builtin_rx_mulhi: RX Built-in Functions. ! (line 31) * __builtin_rx_mullo: RX Built-in Functions. ! (line 36) * __builtin_rx_mvfachi: RX Built-in Functions. ! (line 41) * __builtin_rx_mvfacmi: RX Built-in Functions. ! (line 45) * __builtin_rx_mvfc: RX Built-in Functions. ! (line 49) * __builtin_rx_mvtachi: RX Built-in Functions. ! (line 53) * __builtin_rx_mvtaclo: RX Built-in Functions. ! (line 57) * __builtin_rx_mvtc: RX Built-in Functions. ! (line 61) * __builtin_rx_mvtipl: RX Built-in Functions. ! (line 65) * __builtin_rx_racw: RX Built-in Functions. ! (line 69) * __builtin_rx_revw: RX Built-in Functions. ! (line 73) * __builtin_rx_rmpa: RX Built-in Functions. ! (line 78) * __builtin_rx_round: RX Built-in Functions. ! (line 82) * __builtin_rx_sat: RX Built-in Functions. ! (line 87) * __builtin_rx_setpsw: RX Built-in Functions. ! (line 91) * __builtin_rx_wait: RX Built-in Functions. ! (line 95) * __builtin_set_thread_pointer: SH Built-in Functions. ! (line 9) * __builtin_tabort: S/390 System z Built-in Functions. ! (line 82) * __builtin_tbegin: S/390 System z Built-in Functions. ! (line 6) ! * __builtin_tbeginc: S/390 System z Built-in Functions. ! (line 73) * __builtin_tbegin_nofloat: S/390 System z Built-in Functions. ! (line 54) * __builtin_tbegin_retry: S/390 System z Built-in Functions. ! (line 60) * __builtin_tbegin_retry_nofloat: S/390 System z Built-in Functions. ! (line 67) * __builtin_tend: S/390 System z Built-in Functions. ! (line 77) * __builtin_thread_pointer: SH Built-in Functions. ! (line 18) ! * __builtin_trap: Other Builtins. (line 276) * __builtin_tx_assist: S/390 System z Built-in Functions. ! (line 87) * __builtin_tx_nesting_depth: S/390 System z Built-in Functions. ! (line 93) ! * __builtin_types_compatible_p: Other Builtins. (line 109) ! * __builtin_unreachable: Other Builtins. (line 283) ! * __builtin_va_arg_pack: Constructing Calls. (line 52) ! * __builtin_va_arg_pack_len: Constructing Calls. (line 75) ! * __builtin___clear_cache: Other Builtins. (line 367) ! * __builtin___fprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___memcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memmove_chk: Object Size Checking. ! (line 6) ! * __builtin___mempcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memset_chk: Object Size Checking. ! (line 6) ! * __builtin___printf_chk: Object Size Checking. ! (line 6) ! * __builtin___snprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___sprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___stpcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strcat_chk: Object Size Checking. ! (line 6) ! * __builtin___strcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strncat_chk: Object Size Checking. ! (line 6) ! * __builtin___strncpy_chk: Object Size Checking. ! (line 6) ! * __builtin___vfprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsnprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsprintf_chk: Object Size Checking. ! (line 6) ! * '__complex__' keyword: Complex. (line 6) ! * '__declspec(dllexport)': Function Attributes. ! (line 290) ! * '__declspec(dllimport)': Function Attributes. ! (line 323) ! * '__ea' SPU Named Address Spaces: Named Address Spaces. (line 155) * __extension__: Alternate Keywords. (line 30) ! * '__far' M32C Named Address Spaces: Named Address Spaces. ! (line 138) ! * '__far' RL78 Named Address Spaces: Named Address Spaces. (line 147) ! * '__flash' AVR Named Address Spaces: Named Address Spaces. (line 31) ! * '__flash1' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash2' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash3' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash4' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__flash5' AVR Named Address Spaces: Named Address Spaces. (line 40) ! * '__float128' data type: Floating Types. (line 6) ! * '__float80' data type: Floating Types. (line 6) ! * '__fp16' data type: Half-Precision. (line 6) ! * '__FUNCTION__' identifier: Function Names. (line 6) ! * '__func__' identifier: Function Names. (line 6) ! * '__imag__' keyword: Complex. (line 27) ! * '__int128' data types: __int128. (line 6) ! * '__memx' AVR Named Address Spaces: Named Address Spaces. (line 46) ! * '__PRETTY_FUNCTION__' identifier: Function Names. (line 6) ! * '__real__' keyword: Complex. (line 27) * __STDC_HOSTED__: Standards. (line 13) * __sync_add_and_fetch: __sync Builtins. (line 60) * __sync_and_and_fetch: __sync Builtins. (line 60) --- 55517,55860 ---- [index] * Menu: ! * ! in constraint: Multi-Alternative. (line 33) ! * # in constraint: Modifiers. (line 57) ! * #pragma: Pragmas. (line 6) * #pragma implementation: C++ Interface. (line 39) ! * #pragma implementation, implied: C++ Interface. (line 46) * #pragma interface: C++ Interface. (line 20) ! * #pragma, reason for not using: Function Attributes. ! (line 2067) * $: Dollar Signs. (line 6) ! * % in constraint: Modifiers. (line 45) ! * %include: Spec Files. (line 27) ! * %include_noerr: Spec Files. (line 31) ! * %rename: Spec Files. (line 35) ! * & in constraint: Modifiers. (line 25) ! * ': Incompatibilities. (line 116) ! * * in constraint: Modifiers. (line 62) ! * *__builtin_assume_aligned: Other Builtins. (line 339) ! * + in constraint: Modifiers. (line 12) ! * -lgcc, use with -nodefaultlibs: Link Options. (line 85) ! * -lgcc, use with -nostdlib: Link Options. (line 85) ! * -march feature modifiers: AArch64 Options. (line 133) ! * -mcpu feature modifiers: AArch64 Options. (line 133) ! * -nodefaultlibs and unresolved references: Link Options. (line 85) ! * -nostdlib and unresolved references: Link Options. (line 85) * .sdata/.sdata2 references (PowerPC): RS/6000 and PowerPC Options. ! (line 751) ! * //: C++ Comments. (line 6) ! * 0 in constraint: Simple Constraints. (line 127) ! * < in constraint: Simple Constraints. (line 48) ! * = in constraint: Modifiers. (line 8) ! * > in constraint: Simple Constraints. (line 61) ! * ? in constraint: Multi-Alternative. (line 27) ! * ?: extensions: Conditionals. (line 6) ! * ?: side effect: Conditionals. (line 20) ! * _ in variables in macros: Typeof. (line 46) ! * __atomic_add_fetch: __atomic Builtins. (line 169) ! * __atomic_always_lock_free: __atomic Builtins. (line 247) ! * __atomic_and_fetch: __atomic Builtins. (line 173) ! * __atomic_clear: __atomic Builtins. (line 221) ! * __atomic_compare_exchange: __atomic Builtins. (line 161) ! * __atomic_compare_exchange_n: __atomic Builtins. (line 138) ! * __atomic_exchange: __atomic Builtins. (line 130) ! * __atomic_exchange_n: __atomic Builtins. (line 119) ! * __atomic_fetch_add: __atomic Builtins. (line 189) ! * __atomic_fetch_and: __atomic Builtins. (line 193) ! * __atomic_fetch_nand: __atomic Builtins. (line 199) ! * __atomic_fetch_or: __atomic Builtins. (line 197) ! * __atomic_fetch_sub: __atomic Builtins. (line 191) ! * __atomic_fetch_xor: __atomic Builtins. (line 195) ! * __atomic_is_lock_free: __atomic Builtins. (line 261) ! * __atomic_load: __atomic Builtins. (line 98) ! * __atomic_load_n: __atomic Builtins. (line 89) ! * __atomic_nand_fetch: __atomic Builtins. (line 179) ! * __atomic_or_fetch: __atomic Builtins. (line 177) ! * __atomic_signal_fence: __atomic Builtins. (line 239) ! * __atomic_store: __atomic Builtins. (line 113) ! * __atomic_store_n: __atomic Builtins. (line 104) ! * __atomic_sub_fetch: __atomic Builtins. (line 171) ! * __atomic_test_and_set: __atomic Builtins. (line 210) ! * __atomic_thread_fence: __atomic Builtins. (line 232) ! * __atomic_xor_fetch: __atomic Builtins. (line 175) ! * __builtin___clear_cache: Other Builtins. (line 374) ! * __builtin___fprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___memcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memmove_chk: Object Size Checking. ! (line 6) ! * __builtin___mempcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___memset_chk: Object Size Checking. ! (line 6) ! * __builtin___printf_chk: Object Size Checking. ! (line 6) ! * __builtin___snprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___sprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___stpcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strcat_chk: Object Size Checking. ! (line 6) ! * __builtin___strcpy_chk: Object Size Checking. ! (line 6) ! * __builtin___strncat_chk: Object Size Checking. ! (line 6) ! * __builtin___strncpy_chk: Object Size Checking. ! (line 6) ! * __builtin___vfprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsnprintf_chk: Object Size Checking. ! (line 6) ! * __builtin___vsprintf_chk: Object Size Checking. ! (line 6) ! * __builtin_apply: Constructing Calls. (line 31) ! * __builtin_apply_args: Constructing Calls. (line 20) * __builtin_arc_aligned: ARC Built-in Functions. ! (line 20) * __builtin_arc_brk: ARC Built-in Functions. ! (line 29) * __builtin_arc_core_read: ARC Built-in Functions. ! (line 34) * __builtin_arc_core_write: ARC Built-in Functions. ! (line 41) * __builtin_arc_divaw: ARC Built-in Functions. ! (line 47) * __builtin_arc_flag: ARC Built-in Functions. ! (line 54) * __builtin_arc_lr: ARC Built-in Functions. ! (line 58) * __builtin_arc_mul64: ARC Built-in Functions. ! (line 65) * __builtin_arc_mulu64: ARC Built-in Functions. ! (line 70) * __builtin_arc_nop: ARC Built-in Functions. ! (line 74) * __builtin_arc_norm: ARC Built-in Functions. ! (line 78) * __builtin_arc_normw: ARC Built-in Functions. ! (line 85) * __builtin_arc_rtie: ARC Built-in Functions. ! (line 92) * __builtin_arc_sleep: ARC Built-in Functions. ! (line 96) * __builtin_arc_sr: ARC Built-in Functions. ! (line 101) * __builtin_arc_swap: ARC Built-in Functions. ! (line 107) * __builtin_arc_swi: ARC Built-in Functions. ! (line 113) * __builtin_arc_sync: ARC Built-in Functions. ! (line 117) * __builtin_arc_trap_s: ARC Built-in Functions. ! (line 121) * __builtin_arc_unimp_s: ARC Built-in Functions. ! (line 125) ! * __builtin_bswap16: Other Builtins. (line 605) ! * __builtin_bswap32: Other Builtins. (line 609) ! * __builtin_bswap64: Other Builtins. (line 613) ! * __builtin_choose_expr: Other Builtins. (line 157) ! * __builtin_clrsb: Other Builtins. (line 535) ! * __builtin_clrsbl: Other Builtins. (line 557) ! * __builtin_clrsbll: Other Builtins. (line 580) ! * __builtin_clz: Other Builtins. (line 527) ! * __builtin_clzl: Other Builtins. (line 549) ! * __builtin_clzll: Other Builtins. (line 572) ! * __builtin_complex: Other Builtins. (line 197) ! * __builtin_constant_p: Other Builtins. (line 207) * __builtin_cpu_init: X86 Built-in Functions. ! (line 63) * __builtin_cpu_is: X86 Built-in Functions. ! (line 92) * __builtin_cpu_supports: X86 Built-in Functions. ! (line 164) ! * __builtin_ctz: Other Builtins. (line 531) ! * __builtin_ctzl: Other Builtins. (line 553) ! * __builtin_ctzll: Other Builtins. (line 576) ! * __builtin_expect: Other Builtins. (line 257) ! * __builtin_extract_return_addr: Return Address. (line 36) ! * __builtin_ffs: Other Builtins. (line 523) ! * __builtin_ffsl: Other Builtins. (line 546) ! * __builtin_ffsll: Other Builtins. (line 568) ! * __builtin_FILE: Other Builtins. (line 367) * __builtin_fpclassify: Other Builtins. (line 6) ! * __builtin_frame_address: Return Address. (line 49) ! * __builtin_frob_return_address: Return Address. (line 45) ! * __builtin_FUNCTION: Other Builtins. (line 362) ! * __builtin_huge_val: Other Builtins. (line 425) ! * __builtin_huge_valf: Other Builtins. (line 430) ! * __builtin_huge_vall: Other Builtins. (line 433) * __builtin_huge_valq: X86 Built-in Functions. (line 57) ! * __builtin_inf: Other Builtins. (line 448) ! * __builtin_infd128: Other Builtins. (line 458) ! * __builtin_infd32: Other Builtins. (line 452) ! * __builtin_infd64: Other Builtins. (line 455) ! * __builtin_inff: Other Builtins. (line 462) ! * __builtin_infl: Other Builtins. (line 467) * __builtin_infq: X86 Built-in Functions. ! (line 53) * __builtin_isfinite: Other Builtins. (line 6) * __builtin_isgreater: Other Builtins. (line 6) * __builtin_isgreaterequal: Other Builtins. (line 6) * __builtin_isinf_sign: Other Builtins. (line 6) * __builtin_isless: Other Builtins. (line 6) * __builtin_islessequal: Other Builtins. (line 6) * __builtin_islessgreater: Other Builtins. (line 6) * __builtin_isnormal: Other Builtins. (line 6) * __builtin_isunordered: Other Builtins. (line 6) ! * __builtin_LINE: Other Builtins. (line 356) ! * __builtin_nan: Other Builtins. (line 479) ! * __builtin_nand128: Other Builtins. (line 501) ! * __builtin_nand32: Other Builtins. (line 495) ! * __builtin_nand64: Other Builtins. (line 498) ! * __builtin_nanf: Other Builtins. (line 505) ! * __builtin_nanl: Other Builtins. (line 508) ! * __builtin_nans: Other Builtins. (line 512) ! * __builtin_nansf: Other Builtins. (line 516) ! * __builtin_nansl: Other Builtins. (line 519) * __builtin_nds32_isb: NDS32 Built-in Functions. ! (line 13) * __builtin_nds32_isync: NDS32 Built-in Functions. ! (line 9) * __builtin_nds32_mfsr: NDS32 Built-in Functions. ! (line 16) * __builtin_nds32_mfusr: NDS32 Built-in Functions. ! (line 19) * __builtin_nds32_mtsr: NDS32 Built-in Functions. ! (line 22) * __builtin_nds32_mtusr: NDS32 Built-in Functions. ! (line 25) * __builtin_nds32_setgie_dis: NDS32 Built-in Functions. ! (line 31) * __builtin_nds32_setgie_en: NDS32 Built-in Functions. ! (line 28) * __builtin_non_tx_store: S/390 System z Built-in Functions. ! (line 104) * __builtin_object_size: Object Size Checking. (line 6) * __builtin_offsetof: Offsetof. (line 6) ! * __builtin_parity: Other Builtins. (line 543) ! * __builtin_parityl: Other Builtins. (line 564) ! * __builtin_parityll: Other Builtins. (line 588) ! * __builtin_popcount: Other Builtins. (line 540) ! * __builtin_popcountl: Other Builtins. (line 560) ! * __builtin_popcountll: Other Builtins. (line 584) * __builtin_powi: Other Builtins. (line 6) * __builtin_powif: Other Builtins. (line 6) * __builtin_powil: Other Builtins. (line 6) ! * __builtin_prefetch: Other Builtins. (line 386) ! * __builtin_return: Constructing Calls. (line 48) ! * __builtin_return_address: Return Address. (line 11) * __builtin_rx_brk: RX Built-in Functions. ! (line 11) * __builtin_rx_clrpsw: RX Built-in Functions. ! (line 14) * __builtin_rx_int: RX Built-in Functions. ! (line 18) * __builtin_rx_machi: RX Built-in Functions. ! (line 22) * __builtin_rx_maclo: RX Built-in Functions. ! (line 27) * __builtin_rx_mulhi: RX Built-in Functions. ! (line 32) * __builtin_rx_mullo: RX Built-in Functions. ! (line 37) * __builtin_rx_mvfachi: RX Built-in Functions. ! (line 42) * __builtin_rx_mvfacmi: RX Built-in Functions. ! (line 46) * __builtin_rx_mvfc: RX Built-in Functions. ! (line 50) * __builtin_rx_mvtachi: RX Built-in Functions. ! (line 54) * __builtin_rx_mvtaclo: RX Built-in Functions. ! (line 58) * __builtin_rx_mvtc: RX Built-in Functions. ! (line 62) * __builtin_rx_mvtipl: RX Built-in Functions. ! (line 66) * __builtin_rx_racw: RX Built-in Functions. ! (line 70) * __builtin_rx_revw: RX Built-in Functions. ! (line 74) * __builtin_rx_rmpa: RX Built-in Functions. ! (line 79) * __builtin_rx_round: RX Built-in Functions. ! (line 83) * __builtin_rx_sat: RX Built-in Functions. ! (line 88) * __builtin_rx_setpsw: RX Built-in Functions. ! (line 92) * __builtin_rx_wait: RX Built-in Functions. ! (line 96) * __builtin_set_thread_pointer: SH Built-in Functions. ! (line 10) * __builtin_tabort: S/390 System z Built-in Functions. ! (line 87) * __builtin_tbegin: S/390 System z Built-in Functions. ! (line 7) * __builtin_tbegin_nofloat: S/390 System z Built-in Functions. ! (line 59) * __builtin_tbegin_retry: S/390 System z Built-in Functions. ! (line 65) * __builtin_tbegin_retry_nofloat: S/390 System z Built-in Functions. ! (line 72) ! * __builtin_tbeginc: S/390 System z Built-in Functions. ! (line 78) * __builtin_tend: S/390 System z Built-in Functions. ! (line 82) * __builtin_thread_pointer: SH Built-in Functions. ! (line 20) ! * __builtin_trap: Other Builtins. (line 281) * __builtin_tx_assist: S/390 System z Built-in Functions. ! (line 92) * __builtin_tx_nesting_depth: S/390 System z Built-in Functions. ! (line 98) ! * __builtin_types_compatible_p: Other Builtins. (line 111) ! * __builtin_unreachable: Other Builtins. (line 288) ! * __builtin_va_arg_pack: Constructing Calls. (line 53) ! * __builtin_va_arg_pack_len: Constructing Calls. (line 76) ! * __complex__ keyword: Complex. (line 6) ! * __declspec(dllexport): Function Attributes. ! (line 292) ! * __declspec(dllimport): Function Attributes. ! (line 327) ! * __ea SPU Named Address Spaces: Named Address Spaces. (line 155) * __extension__: Alternate Keywords. (line 30) ! * __far M32C Named Address Spaces: Named Address Spaces. ! (line 139) ! * __far RL78 Named Address Spaces: Named Address Spaces. (line 147) ! * __flash AVR Named Address Spaces: Named Address Spaces. (line 31) ! * __flash1 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash2 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash3 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash4 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __flash5 AVR Named Address Spaces: Named Address Spaces. (line 40) ! * __float128 data type: Floating Types. (line 6) ! * __float80 data type: Floating Types. (line 6) ! * __fp16 data type: Half-Precision. (line 6) ! * __func__ identifier: Function Names. (line 6) ! * __FUNCTION__ identifier: Function Names. (line 6) ! * __imag__ keyword: Complex. (line 27) ! * __int128 data types: __int128. (line 6) ! * __memx AVR Named Address Spaces: Named Address Spaces. (line 46) ! * __PRETTY_FUNCTION__ identifier: Function Names. (line 6) ! * __real__ keyword: Complex. (line 27) * __STDC_HOSTED__: Standards. (line 13) * __sync_add_and_fetch: __sync Builtins. (line 60) * __sync_and_and_fetch: __sync Builtins. (line 60) *************** Keyword Index *** 55475,55488 **** * __sync_synchronize: __sync Builtins. (line 80) * __sync_val_compare_and_swap: __sync Builtins. (line 71) * __sync_xor_and_fetch: __sync Builtins. (line 60) ! * '__thread': Thread-Local. (line 6) * AArch64 Options: AArch64 Options. (line 6) * ABI: Compatibility. (line 6) ! * 'abi_tag' attribute: C++ Attributes. (line 9) * abort: Other Builtins. (line 6) * abs: Other Builtins. (line 6) - * accessing volatiles: Volatiles. (line 6) * accessing volatiles <1>: C++ Volatiles. (line 6) * acos: Other Builtins. (line 6) * acosf: Other Builtins. (line 6) * acosh: Other Builtins. (line 6) --- 55873,55905 ---- * __sync_synchronize: __sync Builtins. (line 80) * __sync_val_compare_and_swap: __sync Builtins. (line 71) * __sync_xor_and_fetch: __sync Builtins. (line 60) ! * __thread: Thread-Local. (line 6) ! * _Accum data type: Fixed-Point. (line 6) ! * _Complex keyword: Complex. (line 6) ! * _Decimal128 data type: Decimal Float. (line 6) ! * _Decimal32 data type: Decimal Float. (line 6) ! * _Decimal64 data type: Decimal Float. (line 6) ! * _exit: Other Builtins. (line 6) ! * _Exit: Other Builtins. (line 6) ! * _Fract data type: Fixed-Point. (line 6) ! * _HTM_FIRST_USER_ABORT_CODE: S/390 System z Built-in Functions. ! (line 48) ! * _Sat data type: Fixed-Point. (line 6) ! * _xabort: X86 transactional memory intrinsics. ! (line 68) ! * _xbegin: X86 transactional memory intrinsics. ! (line 20) ! * _xend: X86 transactional memory intrinsics. ! (line 59) ! * _xtest: X86 transactional memory intrinsics. ! (line 64) * AArch64 Options: AArch64 Options. (line 6) * ABI: Compatibility. (line 6) ! * abi_tag attribute: C++ Attributes. (line 9) * abort: Other Builtins. (line 6) * abs: Other Builtins. (line 6) * accessing volatiles <1>: C++ Volatiles. (line 6) + * accessing volatiles: Volatiles. (line 6) * acos: Other Builtins. (line 6) * acosf: Other Builtins. (line 6) * acosh: Other Builtins. (line 6) *************** Keyword Index *** 55490,55519 **** * acoshl: Other Builtins. (line 6) * acosl: Other Builtins. (line 6) * Ada: G++ and GCC. (line 6) - * Ada <1>: G++ and GCC. (line 30) * additional floating types: Floating Types. (line 6) ! * address constraints: Simple Constraints. (line 152) * address of a label: Labels as Values. (line 6) ! * address_operand: Simple Constraints. (line 156) ! * 'alias' attribute: Function Attributes. (line 39) ! * 'aligned' attribute: Function Attributes. ! (line 52) ! * 'aligned' attribute <1>: Variable Attributes. (line 23) ! * 'aligned' attribute <2>: Type Attributes. (line 31) * alignment: Alignment. (line 6) ! * alloca: Other Builtins. (line 6) ! * 'alloca' vs variable-length arrays: Variable Length. (line 35) ! * 'alloc_align' attribute: Function Attributes. (line 93) ! * 'alloc_size' attribute: Function Attributes. (line 72) * Allow nesting in an interrupt handler on the Blackfin processor.: Function Attributes. ! (line 1072) * Altera Nios II options: Nios II Options. (line 6) * alternate keywords: Alternate Keywords. (line 6) ! * 'always_inline' function attribute: Function Attributes. (line 125) * AMD x86-64 Options: i386 and x86-64 Options. (line 6) --- 55907,55935 ---- * acoshl: Other Builtins. (line 6) * acosl: Other Builtins. (line 6) * Ada: G++ and GCC. (line 6) * additional floating types: Floating Types. (line 6) ! * address constraints: Simple Constraints. (line 154) * address of a label: Labels as Values. (line 6) ! * address_operand: Simple Constraints. (line 158) ! * alias attribute: Function Attributes. (line 39) ! * aligned attribute <1>: Type Attributes. (line 31) ! * aligned attribute <2>: Variable Attributes. (line 23) ! * aligned attribute: Function Attributes. ! (line 52) * alignment: Alignment. (line 6) ! * alloc_align attribute: Function Attributes. (line 93) ! * alloc_size attribute: Function Attributes. (line 72) + * alloca: Other Builtins. (line 6) + * alloca vs variable-length arrays: Variable Length. (line 35) * Allow nesting in an interrupt handler on the Blackfin processor.: Function Attributes. ! (line 1077) * Altera Nios II options: Nios II Options. (line 6) * alternate keywords: Alternate Keywords. (line 6) ! * always_inline function attribute: Function Attributes. (line 125) * AMD x86-64 Options: i386 and x86-64 Options. (line 6) *************** Keyword Index *** 55526,55551 **** * apostrophes: Incompatibilities. (line 116) * application binary interface: Compatibility. (line 6) * ARC options: ARC Options. (line 6) - * ARM options: ARM Options. (line 6) * ARM [Annotated C++ Reference Manual]: Backwards Compatibility. (line 6) * arrays of length zero: Zero Length. (line 6) * arrays of variable length: Variable Length. (line 6) * arrays, non-lvalue: Subscripting. (line 6) ! * 'artificial' function attribute: Function Attributes. ! (line 166) * asin: Other Builtins. (line 6) * asinf: Other Builtins. (line 6) * asinh: Other Builtins. (line 6) * asinhf: Other Builtins. (line 6) * asinhl: Other Builtins. (line 6) * asinl: Other Builtins. (line 6) ! * 'asm' constraints: Constraints. (line 6) ! * 'asm' expressions: Extended Asm. (line 6) * assembler instructions: Extended Asm. (line 6) * assembler names for identifiers: Asm Labels. (line 6) * assembly code, invalid: Bug Criteria. (line 12) ! * 'assume_aligned' attribute: Function Attributes. (line 110) * atan: Other Builtins. (line 6) * atan2: Other Builtins. (line 6) --- 55942,55967 ---- * apostrophes: Incompatibilities. (line 116) * application binary interface: Compatibility. (line 6) * ARC options: ARC Options. (line 6) * ARM [Annotated C++ Reference Manual]: Backwards Compatibility. (line 6) + * ARM options: ARM Options. (line 6) * arrays of length zero: Zero Length. (line 6) * arrays of variable length: Variable Length. (line 6) * arrays, non-lvalue: Subscripting. (line 6) ! * artificial function attribute: Function Attributes. ! (line 168) * asin: Other Builtins. (line 6) * asinf: Other Builtins. (line 6) * asinh: Other Builtins. (line 6) * asinhf: Other Builtins. (line 6) * asinhl: Other Builtins. (line 6) * asinl: Other Builtins. (line 6) ! * asm constraints: Constraints. (line 6) ! * asm expressions: Extended Asm. (line 6) * assembler instructions: Extended Asm. (line 6) * assembler names for identifiers: Asm Labels. (line 6) * assembly code, invalid: Bug Criteria. (line 12) ! * assume_aligned attribute: Function Attributes. (line 110) * atan: Other Builtins. (line 6) * atan2: Other Builtins. (line 6) *************** Keyword Index *** 55561,55584 **** (line 6) * attribute syntax: Attribute Syntax. (line 6) * autoincrement/decrement addressing: Simple Constraints. (line 30) ! * automatic 'inline' for C++ member fns: Inline. (line 71) * AVR Options: AVR Options. (line 6) * Backwards Compatibility: Backwards Compatibility. (line 6) * base class members: Name lookup. (line 6) * bcmp: Other Builtins. (line 6) ! * 'below100' attribute: Variable Attributes. ! (line 578) * binary compatibility: Compatibility. (line 6) ! * Binary constants using the '0b' prefix: Binary constants. (line 6) * Blackfin Options: Blackfin Options. (line 6) * bound pointer to member function: Bound member functions. (line 6) * bug criteria: Bug Criteria. (line 6) * bugs: Bugs. (line 6) * bugs, known: Trouble. (line 6) - * built-in functions: C Dialect Options. (line 210) * built-in functions <1>: Other Builtins. (line 6) * bzero: Other Builtins. (line 6) * C compilation options: Invoking GCC. (line 17) * C intermediate output, nonexistent: G++ and GCC. (line 35) --- 55977,56000 ---- (line 6) * attribute syntax: Attribute Syntax. (line 6) * autoincrement/decrement addressing: Simple Constraints. (line 30) ! * automatic inline for C++ member fns: Inline. (line 71) * AVR Options: AVR Options. (line 6) * Backwards Compatibility: Backwards Compatibility. (line 6) * base class members: Name lookup. (line 6) * bcmp: Other Builtins. (line 6) ! * below100 attribute: Variable Attributes. ! (line 584) * binary compatibility: Compatibility. (line 6) ! * Binary constants using the 0b prefix: Binary constants. (line 6) * Blackfin Options: Blackfin Options. (line 6) * bound pointer to member function: Bound member functions. (line 6) * bug criteria: Bug Criteria. (line 6) * bugs: Bugs. (line 6) * bugs, known: Trouble. (line 6) * built-in functions <1>: Other Builtins. (line 6) + * built-in functions: C Dialect Options. (line 212) * bzero: Other Builtins. (line 6) * C compilation options: Invoking GCC. (line 17) * C intermediate output, nonexistent: G++ and GCC. (line 35) *************** Keyword Index *** 55592,55598 **** * C++ compilation options: Invoking GCC. (line 23) * C++ interface and implementation headers: C++ Interface. (line 6) * C++ language extensions: C++ Extensions. (line 6) ! * C++ member fns, automatically 'inline': Inline. (line 71) * C++ misunderstandings: C++ Misunderstandings. (line 6) * C++ options, command-line: C++ Dialect Options. --- 56008,56014 ---- * C++ compilation options: Invoking GCC. (line 23) * C++ interface and implementation headers: C++ Interface. (line 6) * C++ language extensions: C++ Extensions. (line 6) ! * C++ member fns, automatically inline: Inline. (line 71) * C++ misunderstandings: C++ Misunderstandings. (line 6) * C++ options, command-line: C++ Dialect Options. *************** Keyword Index *** 55610,55615 **** --- 56026,56033 ---- * C95: Standards. (line 13) * C99: Standards. (line 13) * C9X: Standards. (line 13) + * C_INCLUDE_PATH: Environment Variables. + (line 130) * cabs: Other Builtins. (line 6) * cabsf: Other Builtins. (line 6) * cabsl: Other Builtins. (line 6) *************** Keyword Index *** 55619,55628 **** * cacoshf: Other Builtins. (line 6) * cacoshl: Other Builtins. (line 6) * cacosl: Other Builtins. (line 6) ! * 'callee_pop_aggregate_return' attribute: Function Attributes. ! (line 1016) * calling functions through the function vector on H8/300, M16C, M32C and SH2A processors: Function Attributes. ! (line 564) * calloc: Other Builtins. (line 6) * caret GCC_COLORS capability: Language Independent Options. (line 76) --- 56037,56046 ---- * cacoshf: Other Builtins. (line 6) * cacoshl: Other Builtins. (line 6) * cacosl: Other Builtins. (line 6) ! * callee_pop_aggregate_return attribute: Function Attributes. ! (line 1023) * calling functions through the function vector on H8/300, M16C, M32C and SH2A processors: Function Attributes. ! (line 571) * calloc: Other Builtins. (line 6) * caret GCC_COLORS capability: Language Independent Options. (line 76) *************** Keyword Index *** 55663,55675 **** (line 554) * character set, input: Preprocessor Options. (line 567) ! * character set, input normalization: Warning Options. (line 1291) * character set, wide execution: Preprocessor Options. (line 559) * cimag: Other Builtins. (line 6) * cimagf: Other Builtins. (line 6) * cimagl: Other Builtins. (line 6) ! * 'cleanup' attribute: Variable Attributes. (line 89) * clog: Other Builtins. (line 6) * clogf: Other Builtins. (line 6) --- 56081,56093 ---- (line 554) * character set, input: Preprocessor Options. (line 567) ! * character set, input normalization: Warning Options. (line 1303) * character set, wide execution: Preprocessor Options. (line 559) * cimag: Other Builtins. (line 6) * cimagf: Other Builtins. (line 6) * cimagl: Other Builtins. (line 6) ! * cleanup attribute: Variable Attributes. (line 89) * clog: Other Builtins. (line 6) * clogf: Other Builtins. (line 6) *************** Keyword Index *** 55677,55692 **** * COBOL: G++ and GCC. (line 23) * code generation conventions: Code Gen Options. (line 6) * code, mixed with declarations: Mixed Declarations. (line 6) ! * 'cold' function attribute: Function Attributes. ! (line 1311) ! * 'cold' label attribute: Function Attributes. ! (line 1329) * command options: Invoking GCC. (line 6) * comments, C++ style: C++ Comments. (line 6) ! * 'common' attribute: Variable Attributes. ! (line 104) * comparison of signed and unsigned values, warning: Warning Options. ! (line 1157) * compiler bugs, reporting: Bug Reporting. (line 6) * compiler compared to C++ preprocessor: G++ and GCC. (line 35) * compiler options, C++: C++ Dialect Options. --- 56095,56110 ---- * COBOL: G++ and GCC. (line 23) * code generation conventions: Code Gen Options. (line 6) * code, mixed with declarations: Mixed Declarations. (line 6) ! * cold function attribute: Function Attributes. ! (line 1316) ! * cold label attribute: Function Attributes. ! (line 1334) * command options: Invoking GCC. (line 6) * comments, C++ style: C++ Comments. (line 6) ! * common attribute: Variable Attributes. ! (line 105) * comparison of signed and unsigned values, warning: Warning Options. ! (line 1169) * compiler bugs, reporting: Bug Reporting. (line 6) * compiler compared to C++ preprocessor: G++ and GCC. (line 35) * compiler options, C++: C++ Dialect Options. *************** Keyword Index *** 55705,55724 **** * conj: Other Builtins. (line 6) * conjf: Other Builtins. (line 6) * conjl: Other Builtins. (line 6) ! * 'const' applied to function: Function Attributes. (line 6) ! * 'const' function attribute: Function Attributes. ! (line 215) ! * constants in constraints: Simple Constraints. (line 68) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 137) ! * constraints, 'asm': Constraints. (line 6) * constraints, machine specific: Machine Constraints. (line 6) * constructing calls: Constructing Calls. (line 6) * constructor expressions: Compound Literals. (line 6) ! * 'constructor' function attribute: Function Attributes. ! (line 243) * contributors: Contributors. (line 6) * copysign: Other Builtins. (line 6) * copysignf: Other Builtins. (line 6) --- 56123,56142 ---- * conj: Other Builtins. (line 6) * conjf: Other Builtins. (line 6) * conjl: Other Builtins. (line 6) ! * const applied to function: Function Attributes. (line 6) ! * const function attribute: Function Attributes. ! (line 217) ! * constants in constraints: Simple Constraints. (line 70) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 139) ! * constraints, asm: Constraints. (line 6) * constraints, machine specific: Machine Constraints. (line 6) * constructing calls: Constructing Calls. (line 6) * constructor expressions: Compound Literals. (line 6) ! * constructor function attribute: Function Attributes. ! (line 245) * contributors: Contributors. (line 6) * copysign: Other Builtins. (line 6) * copysignf: Other Builtins. (line 6) *************** Keyword Index *** 55731,55739 **** * coshl: Other Builtins. (line 6) * cosl: Other Builtins. (line 6) * CPATH: Environment Variables. - (line 127) - * CPLUS_INCLUDE_PATH: Environment Variables. (line 129) * cpow: Other Builtins. (line 6) * cpowf: Other Builtins. (line 6) * cpowl: Other Builtins. (line 6) --- 56149,56157 ---- * coshl: Other Builtins. (line 6) * cosl: Other Builtins. (line 6) * CPATH: Environment Variables. (line 129) + * CPLUS_INCLUDE_PATH: Environment Variables. + (line 131) * cpow: Other Builtins. (line 6) * cpowf: Other Builtins. (line 6) * cpowl: Other Builtins. (line 6) *************** Keyword Index *** 55745,55752 **** * crealf: Other Builtins. (line 6) * creall: Other Builtins. (line 6) * CRIS Options: CRIS Options. (line 6) ! * 'critical' attribute: Function Attributes. ! (line 717) * cross compiling: Target Options. (line 6) * csin: Other Builtins. (line 6) * csinf: Other Builtins. (line 6) --- 56163,56170 ---- * crealf: Other Builtins. (line 6) * creall: Other Builtins. (line 6) * CRIS Options: CRIS Options. (line 6) ! * critical attribute: Function Attributes. ! (line 724) * cross compiling: Target Options. (line 6) * csin: Other Builtins. (line 6) * csinf: Other Builtins. (line 6) *************** Keyword Index *** 55763,55774 **** * ctanhf: Other Builtins. (line 6) * ctanhl: Other Builtins. (line 6) * ctanl: Other Builtins. (line 6) - * C_INCLUDE_PATH: Environment Variables. - (line 128) * Darwin options: Darwin Options. (line 6) * dcgettext: Other Builtins. (line 6) ! * 'dd' integer suffix: Decimal Float. (line 6) ! * 'DD' integer suffix: Decimal Float. (line 6) * deallocating variable length arrays: Variable Length. (line 22) * debugging information options: Debugging Options. (line 6) * decimal floating types: Decimal Float. (line 6) --- 56181,56190 ---- * ctanhf: Other Builtins. (line 6) * ctanhl: Other Builtins. (line 6) * ctanl: Other Builtins. (line 6) * Darwin options: Darwin Options. (line 6) * dcgettext: Other Builtins. (line 6) ! * DD integer suffix: Decimal Float. (line 6) ! * dd integer suffix: Decimal Float. (line 6) * deallocating variable length arrays: Variable Length. (line 22) * debugging information options: Debugging Options. (line 6) * decimal floating types: Decimal Float. (line 6) *************** Keyword Index *** 55780,55827 **** * declaring static data in C++: Static Definitions. (line 6) * defining static data in C++: Static Definitions. (line 6) * dependencies for make as output: Environment Variables. ! (line 155) ! * dependencies for make as output <1>: Environment Variables. ! (line 171) ! * dependencies, 'make': Preprocessor Options. (line 185) * DEPENDENCIES_OUTPUT: Environment Variables. ! (line 154) * dependent name lookup: Name lookup. (line 6) ! * 'deprecated' attribute: Variable Attributes. ! (line 113) ! * 'deprecated' attribute.: Function Attributes. ! (line 265) * designated initializers: Designated Inits. (line 6) ! * designator lists: Designated Inits. (line 96) * designators: Designated Inits. (line 64) ! * 'destructor' function attribute: Function Attributes. ! (line 243) ! * 'df' integer suffix: Decimal Float. (line 6) ! * 'DF' integer suffix: Decimal Float. (line 6) * dgettext: Other Builtins. (line 6) * diagnostic messages: Language Independent Options. (line 6) * dialect options: C Dialect Options. (line 6) ! * digits in constraint: Simple Constraints. (line 125) * directory options: Directory Options. (line 6) ! * 'disinterrupt' attribute: Function Attributes. ! (line 285) ! * 'dl' integer suffix: Decimal Float. (line 6) ! * 'DL' integer suffix: Decimal Float. (line 6) * dollar signs in identifier names: Dollar Signs. (line 6) * double-word arithmetic: Long Long. (line 6) * downward funargs: Nested Functions. (line 6) * drem: Other Builtins. (line 6) * dremf: Other Builtins. (line 6) * dreml: Other Builtins. (line 6) ! * 'E' in constraint: Simple Constraints. (line 87) * earlyclobber operand: Modifiers. (line 25) * eight-bit data on the H8/300, H8/300H, and H8S: Function Attributes. ! (line 375) ! * 'EIND': AVR Options. (line 222) * empty structures: Empty Structures. (line 6) ! * Enable Cilk Plus: C Dialect Options. (line 276) * environment variables: Environment Variables. (line 6) * erf: Other Builtins. (line 6) --- 56196,56241 ---- * declaring static data in C++: Static Definitions. (line 6) * defining static data in C++: Static Definitions. (line 6) * dependencies for make as output: Environment Variables. ! (line 157) ! * dependencies, make: Preprocessor Options. (line 185) * DEPENDENCIES_OUTPUT: Environment Variables. ! (line 156) * dependent name lookup: Name lookup. (line 6) ! * deprecated attribute: Variable Attributes. ! (line 114) ! * deprecated attribute.: Function Attributes. ! (line 267) * designated initializers: Designated Inits. (line 6) ! * designator lists: Designated Inits. (line 97) * designators: Designated Inits. (line 64) ! * destructor function attribute: Function Attributes. ! (line 245) ! * DF integer suffix: Decimal Float. (line 6) ! * df integer suffix: Decimal Float. (line 6) * dgettext: Other Builtins. (line 6) * diagnostic messages: Language Independent Options. (line 6) * dialect options: C Dialect Options. (line 6) ! * digits in constraint: Simple Constraints. (line 127) * directory options: Directory Options. (line 6) ! * disinterrupt attribute: Function Attributes. ! (line 287) ! * DL integer suffix: Decimal Float. (line 6) ! * dl integer suffix: Decimal Float. (line 6) * dollar signs in identifier names: Dollar Signs. (line 6) * double-word arithmetic: Long Long. (line 6) * downward funargs: Nested Functions. (line 6) * drem: Other Builtins. (line 6) * dremf: Other Builtins. (line 6) * dreml: Other Builtins. (line 6) ! * E in constraint: Simple Constraints. (line 89) * earlyclobber operand: Modifiers. (line 25) * eight-bit data on the H8/300, H8/300H, and H8S: Function Attributes. ! (line 380) ! * EIND: AVR Options. (line 220) * empty structures: Empty Structures. (line 6) ! * Enable Cilk Plus: C Dialect Options. (line 275) * environment variables: Environment Variables. (line 6) * erf: Other Builtins. (line 6) *************** Keyword Index *** 55830,55846 **** * erfcl: Other Builtins. (line 6) * erff: Other Builtins. (line 6) * erfl: Other Builtins. (line 6) ! * 'error' function attribute: Function Attributes. ! (line 185) * error GCC_COLORS capability: Language Independent Options. (line 67) * error messages: Warnings and Errors. (line 6) * escaped newlines: Escaped Newlines. (line 6) * exception handler functions: Function Attributes. - (line 385) - * exception handler functions on the Blackfin processor: Function Attributes. (line 390) * exclamation point: Multi-Alternative. (line 33) * exit: Other Builtins. (line 6) * exp: Other Builtins. (line 6) --- 56244,56260 ---- * erfcl: Other Builtins. (line 6) * erff: Other Builtins. (line 6) * erfl: Other Builtins. (line 6) ! * error function attribute: Function Attributes. ! (line 187) * error GCC_COLORS capability: Language Independent Options. (line 67) * error messages: Warnings and Errors. (line 6) * escaped newlines: Escaped Newlines. (line 6) * exception handler functions: Function Attributes. (line 390) + * exception handler functions on the Blackfin processor: Function Attributes. + (line 395) * exclamation point: Multi-Alternative. (line 33) * exit: Other Builtins. (line 6) * exp: Other Builtins. (line 6) *************** Keyword Index *** 55858,55872 **** * expm1l: Other Builtins. (line 6) * expressions containing statements: Statement Exprs. (line 6) * expressions, constructor: Compound Literals. (line 6) ! * extended 'asm': Extended Asm. (line 6) ! * extensible constraints: Simple Constraints. (line 161) ! * extensions, '?:': Conditionals. (line 6) * extensions, C language: C Extensions. (line 6) * extensions, C++ language: C++ Extensions. (line 6) * external declaration scope: Incompatibilities. (line 80) ! * 'externally_visible' attribute.: Function Attributes. ! (line 396) ! * 'F' in constraint: Simple Constraints. (line 92) * fabs: Other Builtins. (line 6) * fabsf: Other Builtins. (line 6) * fabsl: Other Builtins. (line 6) --- 56272,56286 ---- * expm1l: Other Builtins. (line 6) * expressions containing statements: Statement Exprs. (line 6) * expressions, constructor: Compound Literals. (line 6) ! * extended asm: Extended Asm. (line 6) ! * extensible constraints: Simple Constraints. (line 163) ! * extensions, ?:: Conditionals. (line 6) * extensions, C language: C Extensions. (line 6) * extensions, C++ language: C++ Extensions. (line 6) * external declaration scope: Incompatibilities. (line 80) ! * externally_visible attribute.: Function Attributes. ! (line 401) ! * F in constraint: Simple Constraints. (line 94) * fabs: Other Builtins. (line 6) * fabsf: Other Builtins. (line 6) * fabsl: Other Builtins. (line 6) *************** Keyword Index *** 55880,55891 **** * file name suffix: Overall Options. (line 14) * file names: Link Options. (line 10) * fixed-point types: Fixed-Point. (line 6) ! * 'flatten' function attribute: Function Attributes. ! (line 178) * flexible array members: Zero Length. (line 6) ! * 'float' as function value type: Incompatibilities. (line 141) * floating point precision: Disappointments. (line 68) ! * floating-point precision: Optimize Options. (line 1926) * floor: Other Builtins. (line 6) * floorf: Other Builtins. (line 6) * floorl: Other Builtins. (line 6) --- 56294,56305 ---- * file name suffix: Overall Options. (line 14) * file names: Link Options. (line 10) * fixed-point types: Fixed-Point. (line 6) ! * flatten function attribute: Function Attributes. ! (line 180) * flexible array members: Zero Length. (line 6) ! * float as function value type: Incompatibilities. (line 141) * floating point precision: Disappointments. (line 68) ! * floating-point precision: Optimize Options. (line 1933) * floor: Other Builtins. (line 6) * floorf: Other Builtins. (line 6) * floorl: Other Builtins. (line 6) *************** Keyword Index *** 55901,55915 **** * fmod: Other Builtins. (line 6) * fmodf: Other Builtins. (line 6) * fmodl: Other Builtins. (line 6) ! * 'force_align_arg_pointer' attribute: Function Attributes. ! (line 1388) ! * 'format' function attribute: Function Attributes. ! (line 453) ! * 'format_arg' function attribute: Function Attributes. ! (line 518) * Fortran: G++ and GCC. (line 6) ! * 'forwarder_section' attribute: Function Attributes. ! (line 756) * forwarding calls: Constructing Calls. (line 6) * fprintf: Other Builtins. (line 6) * fprintf_unlocked: Other Builtins. (line 6) --- 56315,56329 ---- * fmod: Other Builtins. (line 6) * fmodf: Other Builtins. (line 6) * fmodl: Other Builtins. (line 6) ! * force_align_arg_pointer attribute: Function Attributes. ! (line 1394) ! * format function attribute: Function Attributes. ! (line 458) ! * format_arg function attribute: Function Attributes. ! (line 524) * Fortran: G++ and GCC. (line 6) ! * forwarder_section attribute: Function Attributes. ! (line 762) * forwarding calls: Constructing Calls. (line 6) * fprintf: Other Builtins. (line 6) * fprintf_unlocked: Other Builtins. (line 6) *************** Keyword Index *** 55923,55931 **** * frexpl: Other Builtins. (line 6) * FRV Options: FRV Options. (line 6) * fscanf: Other Builtins. (line 6) ! * 'fscanf', and constant strings: Incompatibilities. (line 17) * function addressability on the M32R/D: Function Attributes. ! (line 974) * function attributes: Function Attributes. (line 6) * function pointers, arithmetic: Pointer Arith. (line 6) --- 56337,56345 ---- * frexpl: Other Builtins. (line 6) * FRV Options: FRV Options. (line 6) * fscanf: Other Builtins. (line 6) ! * fscanf, and constant strings: Incompatibilities. (line 17) * function addressability on the M32R/D: Function Attributes. ! (line 983) * function attributes: Function Attributes. (line 6) * function pointers, arithmetic: Pointer Arith. (line 6) *************** Keyword Index *** 55934,55961 **** * function versions: Function Multiversioning. (line 6) * function without a prologue/epilogue code: Function Attributes. ! (line 1050) * function, size of pointer to: Pointer Arith. (line 6) * functions called via pointer on the RS/6000 and PowerPC: Function Attributes. ! (line 911) * functions in arbitrary sections: Function Attributes. (line 6) * functions that are dynamically resolved: Function Attributes. (line 6) * functions that are passed arguments in registers on the 386: Function Attributes. (line 6) - * functions that are passed arguments in registers on the 386 <1>: Function Attributes. - (line 1353) * functions that behave like malloc: Function Attributes. (line 6) * functions that do not handle memory bank switching on 68HC11/68HC12: Function Attributes. ! (line 1062) * functions that do not pop the argument stack on the 386: Function Attributes. (line 6) * functions that do pop the argument stack on the 386: Function Attributes. ! (line 209) * functions that handle memory bank switching: Function Attributes. ! (line 409) * functions that have different compilation options on the 386: Function Attributes. (line 6) * functions that have different optimization options: Function Attributes. --- 56348,56373 ---- * function versions: Function Multiversioning. (line 6) * function without a prologue/epilogue code: Function Attributes. ! (line 1054) * function, size of pointer to: Pointer Arith. (line 6) * functions called via pointer on the RS/6000 and PowerPC: Function Attributes. ! (line 922) * functions in arbitrary sections: Function Attributes. (line 6) * functions that are dynamically resolved: Function Attributes. (line 6) * functions that are passed arguments in registers on the 386: Function Attributes. (line 6) * functions that behave like malloc: Function Attributes. (line 6) * functions that do not handle memory bank switching on 68HC11/68HC12: Function Attributes. ! (line 1067) * functions that do not pop the argument stack on the 386: Function Attributes. (line 6) * functions that do pop the argument stack on the 386: Function Attributes. ! (line 211) * functions that handle memory bank switching: Function Attributes. ! (line 414) * functions that have different compilation options on the 386: Function Attributes. (line 6) * functions that have different optimization options: Function Attributes. *************** Keyword Index *** 55966,55993 **** (line 6) * functions that pop the argument stack on the 386: Function Attributes. (line 6) - * functions that pop the argument stack on the 386 <1>: Function Attributes. - (line 435) - * functions that pop the argument stack on the 386 <2>: Function Attributes. - (line 443) - * functions that pop the argument stack on the 386 <3>: Function Attributes. - (line 1511) * functions that return more than once: Function Attributes. (line 6) * functions with non-null pointer arguments: Function Attributes. (line 6) ! * functions with 'printf', 'scanf', 'strftime' or 'strfmon' style arguments: Function Attributes. (line 6) ! * 'G' in constraint: Simple Constraints. (line 96) ! * 'g' in constraint: Simple Constraints. (line 118) * g++: Invoking G++. (line 14) * G++: G++ and GCC. (line 30) * gamma: Other Builtins. (line 6) * gammaf: Other Builtins. (line 6) * gammaf_r: Other Builtins. (line 6) * gammal: Other Builtins. (line 6) * gammal_r: Other Builtins. (line 6) - * gamma_r: Other Builtins. (line 6) * GCC: G++ and GCC. (line 6) * GCC command options: Invoking GCC. (line 6) * GCC_COLORS environment variable: Language Independent Options. --- 56378,56399 ---- (line 6) * functions that pop the argument stack on the 386: Function Attributes. (line 6) * functions that return more than once: Function Attributes. (line 6) * functions with non-null pointer arguments: Function Attributes. (line 6) ! * functions with printf, scanf, strftime or strfmon style arguments: Function Attributes. (line 6) ! * g in constraint: Simple Constraints. (line 120) ! * G in constraint: Simple Constraints. (line 98) * g++: Invoking G++. (line 14) * G++: G++ and GCC. (line 30) * gamma: Other Builtins. (line 6) + * gamma_r: Other Builtins. (line 6) * gammaf: Other Builtins. (line 6) * gammaf_r: Other Builtins. (line 6) * gammal: Other Builtins. (line 6) * gammal_r: Other Builtins. (line 6) * GCC: G++ and GCC. (line 6) * GCC command options: Invoking GCC. (line 6) * GCC_COLORS environment variable: Language Independent Options. *************** Keyword Index *** 55996,56045 **** (line 52) * GCC_EXEC_PREFIX: Environment Variables. (line 57) ! * 'gcc_struct': Type Attributes. (line 323) ! * 'gcc_struct' attribute: Variable Attributes. ! (line 438) ! * 'gcov': Debugging Options. (line 495) * gettext: Other Builtins. (line 6) ! * global offset table: Code Gen Options. (line 279) ! * global register after 'longjmp': Global Reg Vars. (line 65) * global register variables: Global Reg Vars. (line 6) * GNAT: G++ and GCC. (line 30) * GNU C Compiler: G++ and GCC. (line 6) * GNU Compiler Collection: G++ and GCC. (line 6) ! * 'gnu_inline' function attribute: Function Attributes. (line 130) * Go: G++ and GCC. (line 6) * goto with computed label: Labels as Values. (line 6) ! * 'gprof': Debugging Options. (line 420) * grouping options: Invoking GCC. (line 26) ! * 'H' in constraint: Simple Constraints. (line 96) * half-precision floating point: Half-Precision. (line 6) * hardware models and configurations, specifying: Submodel Options. (line 6) * hex floats: Hex Floats. (line 6) * highlight, color, colour: Language Independent Options. (line 35) ! * 'hk' fixed-suffix: Fixed-Point. (line 6) ! * 'HK' fixed-suffix: Fixed-Point. (line 6) * hosted environment: Standards. (line 13) - * hosted environment <1>: C Dialect Options. (line 244) - * hosted environment <2>: C Dialect Options. (line 252) * hosted implementation: Standards. (line 13) ! * 'hot' function attribute: Function Attributes. ! (line 1289) ! * 'hot' label attribute: Function Attributes. ! (line 1301) ! * 'hotpatch' attribute: Function Attributes. ! (line 1037) * HPPA Options: HPPA Options. (line 6) ! * 'hr' fixed-suffix: Fixed-Point. (line 6) ! * 'HR' fixed-suffix: Fixed-Point. (line 6) * hypot: Other Builtins. (line 6) * hypotf: Other Builtins. (line 6) * hypotl: Other Builtins. (line 6) ! * 'i' in constraint: Simple Constraints. (line 68) ! * 'I' in constraint: Simple Constraints. (line 79) * i386 and x86-64 Windows Options: i386 and x86-64 Windows Options. (line 6) * i386 Options: i386 and x86-64 Options. --- 56402,56450 ---- (line 52) * GCC_EXEC_PREFIX: Environment Variables. (line 57) ! * gcc_struct: Type Attributes. (line 324) ! * gcc_struct attribute: Variable Attributes. ! (line 445) ! * gcov: Debugging Options. (line 494) * gettext: Other Builtins. (line 6) ! * global offset table: Code Gen Options. (line 280) ! * global register after longjmp: Global Reg Vars. (line 65) * global register variables: Global Reg Vars. (line 6) * GNAT: G++ and GCC. (line 30) * GNU C Compiler: G++ and GCC. (line 6) * GNU Compiler Collection: G++ and GCC. (line 6) ! * gnu_inline function attribute: Function Attributes. (line 130) * Go: G++ and GCC. (line 6) * goto with computed label: Labels as Values. (line 6) ! * gprof: Debugging Options. (line 416) * grouping options: Invoking GCC. (line 26) ! * H in constraint: Simple Constraints. (line 98) * half-precision floating point: Half-Precision. (line 6) * hardware models and configurations, specifying: Submodel Options. (line 6) * hex floats: Hex Floats. (line 6) * highlight, color, colour: Language Independent Options. (line 35) ! * HK fixed-suffix: Fixed-Point. (line 6) ! * hk fixed-suffix: Fixed-Point. (line 6) ! * hosted environment <1>: C Dialect Options. (line 246) * hosted environment: Standards. (line 13) * hosted implementation: Standards. (line 13) ! * hot function attribute: Function Attributes. ! (line 1294) ! * hot label attribute: Function Attributes. ! (line 1306) ! * hotpatch attribute: Function Attributes. ! (line 1042) * HPPA Options: HPPA Options. (line 6) ! * HR fixed-suffix: Fixed-Point. (line 6) ! * hr fixed-suffix: Fixed-Point. (line 6) * hypot: Other Builtins. (line 6) * hypotf: Other Builtins. (line 6) * hypotl: Other Builtins. (line 6) ! * I in constraint: Simple Constraints. (line 81) ! * i in constraint: Simple Constraints. (line 70) * i386 and x86-64 Windows Options: i386 and x86-64 Windows Options. (line 6) * i386 Options: i386 and x86-64 Options. *************** Keyword Index *** 56049,56056 **** (line 6) * identifier names, dollar signs in: Dollar Signs. (line 6) * identifiers, names in assembler code: Asm Labels. (line 6) ! * 'ifunc' attribute: Function Attributes. ! (line 625) * ilogb: Other Builtins. (line 6) * ilogbf: Other Builtins. (line 6) * ilogbl: Other Builtins. (line 6) --- 56454,56461 ---- (line 6) * identifier names, dollar signs in: Dollar Signs. (line 6) * identifiers, names in assembler code: Asm Labels. (line 6) ! * ifunc attribute: Function Attributes. ! (line 632) * ilogb: Other Builtins. (line 6) * ilogbf: Other Builtins. (line 6) * ilogbl: Other Builtins. (line 6) *************** Keyword Index *** 56059,56081 **** (line 6) * implementation-defined behavior, C++ language: C++ Implementation. (line 6) ! * implied '#pragma implementation': C++ Interface. (line 46) * incompatibilities of GCC: Incompatibilities. (line 6) * increment operators: Bug Criteria. (line 17) * index: Other Builtins. (line 6) * indirect calls on ARC: Function Attributes. ! (line 888) * indirect calls on ARM: Function Attributes. ! (line 888) * indirect calls on Epiphany: Function Attributes. ! (line 888) * indirect calls on MIPS: Function Attributes. ! (line 923) * initializations in expressions: Compound Literals. (line 6) * initializers with labeled elements: Designated Inits. (line 6) * initializers, non-constant: Initializers. (line 6) ! * 'init_priority' attribute: C++ Attributes. (line 35) ! * 'inline' automatic for C++ member fns: Inline. (line 71) * inline functions: Inline. (line 6) * inline functions, omission of: Inline. (line 51) * inlining and C++ pragmas: C++ Interface. (line 66) --- 56464,56486 ---- (line 6) * implementation-defined behavior, C++ language: C++ Implementation. (line 6) ! * implied #pragma implementation: C++ Interface. (line 46) * incompatibilities of GCC: Incompatibilities. (line 6) * increment operators: Bug Criteria. (line 17) * index: Other Builtins. (line 6) * indirect calls on ARC: Function Attributes. ! (line 899) * indirect calls on ARM: Function Attributes. ! (line 899) * indirect calls on Epiphany: Function Attributes. ! (line 899) * indirect calls on MIPS: Function Attributes. ! (line 934) ! * init_priority attribute: C++ Attributes. (line 35) * initializations in expressions: Compound Literals. (line 6) * initializers with labeled elements: Designated Inits. (line 6) * initializers, non-constant: Initializers. (line 6) ! * inline automatic for C++ member fns: Inline. (line 71) * inline functions: Inline. (line 6) * inline functions, omission of: Inline. (line 51) * inlining and C++ pragmas: C++ Interface. (line 66) *************** Keyword Index *** 56086,56108 **** * interface and implementation headers, C++: C++ Interface. (line 6) * intermediate C version, nonexistent: G++ and GCC. (line 35) * interrupt handler functions: Function Attributes. ! (line 173) ! * interrupt handler functions <1>: Function Attributes. ! (line 429) ! * interrupt handler functions <2>: Function Attributes. ! (line 665) * interrupt handler functions on the AVR processors: Function Attributes. ! (line 1483) * interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors: Function Attributes. ! (line 826) * interrupt service routines on ARM: Function Attributes. ! (line 840) * interrupt thread functions on fido: Function Attributes. ! (line 832) * introduction: Top. (line 6) * invalid assembly code: Bug Criteria. (line 12) * invalid input: Bug Criteria. (line 42) ! * invoking 'g++': Invoking G++. (line 22) * isalnum: Other Builtins. (line 6) * isalpha: Other Builtins. (line 6) * isascii: Other Builtins. (line 6) --- 56491,56509 ---- * interface and implementation headers, C++: C++ Interface. (line 6) * intermediate C version, nonexistent: G++ and GCC. (line 35) * interrupt handler functions: Function Attributes. ! (line 175) * interrupt handler functions on the AVR processors: Function Attributes. ! (line 1489) * interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors: Function Attributes. ! (line 836) * interrupt service routines on ARM: Function Attributes. ! (line 851) * interrupt thread functions on fido: Function Attributes. ! (line 843) * introduction: Top. (line 6) * invalid assembly code: Bug Criteria. (line 12) * invalid input: Bug Criteria. (line 42) ! * invoking g++: Invoking G++. (line 22) * isalnum: Other Builtins. (line 6) * isalpha: Other Builtins. (line 6) * isascii: Other Builtins. (line 6) *************** Keyword Index *** 56147,56181 **** * j1f: Other Builtins. (line 6) * j1l: Other Builtins. (line 6) * Java: G++ and GCC. (line 6) ! * 'java_interface' attribute: C++ Attributes. (line 56) * jn: Other Builtins. (line 6) * jnf: Other Builtins. (line 6) * jnl: Other Builtins. (line 6) ! * 'k' fixed-suffix: Fixed-Point. (line 6) ! * 'K' fixed-suffix: Fixed-Point. (line 6) ! * 'keep_interrupts_masked' attribute: Function Attributes. ! (line 778) * keywords, alternate: Alternate Keywords. (line 6) * known causes of trouble: Trouble. (line 6) ! * 'l1_data' variable attribute: Variable Attributes. ! (line 352) ! * 'l1_data_A' variable attribute: Variable Attributes. ! (line 352) ! * 'l1_data_B' variable attribute: Variable Attributes. ! (line 352) ! * 'l1_text' function attribute: Function Attributes. ! (line 849) ! * 'l2' function attribute: Function Attributes. ! (line 855) ! * 'l2' variable attribute: Variable Attributes. ! (line 360) * labeled elements in initializers: Designated Inits. (line 6) * labels as values: Labels as Values. (line 6) * labs: Other Builtins. (line 6) * LANG: Environment Variables. (line 21) - * LANG <1>: Environment Variables. - (line 106) * language dialect options: C Dialect Options. (line 6) * LC_ALL: Environment Variables. (line 21) --- 56548,56580 ---- * j1f: Other Builtins. (line 6) * j1l: Other Builtins. (line 6) * Java: G++ and GCC. (line 6) ! * java_interface attribute: C++ Attributes. (line 55) * jn: Other Builtins. (line 6) * jnf: Other Builtins. (line 6) * jnl: Other Builtins. (line 6) ! * K fixed-suffix: Fixed-Point. (line 6) ! * k fixed-suffix: Fixed-Point. (line 6) ! * keep_interrupts_masked attribute: Function Attributes. ! (line 784) * keywords, alternate: Alternate Keywords. (line 6) * known causes of trouble: Trouble. (line 6) ! * l1_data variable attribute: Variable Attributes. ! (line 356) ! * l1_data_A variable attribute: Variable Attributes. ! (line 356) ! * l1_data_B variable attribute: Variable Attributes. ! (line 356) ! * l1_text function attribute: Function Attributes. ! (line 860) ! * l2 function attribute: Function Attributes. ! (line 866) ! * l2 variable attribute: Variable Attributes. ! (line 364) * labeled elements in initializers: Designated Inits. (line 6) * labels as values: Labels as Values. (line 6) * labs: Other Builtins. (line 6) * LANG: Environment Variables. (line 21) * language dialect options: C Dialect Options. (line 6) * LC_ALL: Environment Variables. (line 21) *************** Keyword Index *** 56186,56213 **** * ldexp: Other Builtins. (line 6) * ldexpf: Other Builtins. (line 6) * ldexpl: Other Builtins. (line 6) ! * 'leaf' function attribute: Function Attributes. ! (line 861) * length-zero arrays: Zero Length. (line 6) * lgamma: Other Builtins. (line 6) * lgammaf: Other Builtins. (line 6) * lgammaf_r: Other Builtins. (line 6) * lgammal: Other Builtins. (line 6) * lgammal_r: Other Builtins. (line 6) - * lgamma_r: Other Builtins. (line 6) * Libraries: Link Options. (line 24) * LIBRARY_PATH: Environment Variables. (line 97) * link options: Link Options. (line 6) ! * linker script: Link Options. (line 213) ! * 'lk' fixed-suffix: Fixed-Point. (line 6) ! * 'LK' fixed-suffix: Fixed-Point. (line 6) ! * 'LL' integer suffix: Long Long. (line 6) * llabs: Other Builtins. (line 6) ! * 'llk' fixed-suffix: Fixed-Point. (line 6) ! * 'LLK' fixed-suffix: Fixed-Point. (line 6) ! * 'llr' fixed-suffix: Fixed-Point. (line 6) ! * 'LLR' fixed-suffix: Fixed-Point. (line 6) * llrint: Other Builtins. (line 6) * llrintf: Other Builtins. (line 6) * llrintl: Other Builtins. (line 6) --- 56585,56612 ---- * ldexp: Other Builtins. (line 6) * ldexpf: Other Builtins. (line 6) * ldexpl: Other Builtins. (line 6) ! * leaf function attribute: Function Attributes. ! (line 872) * length-zero arrays: Zero Length. (line 6) * lgamma: Other Builtins. (line 6) + * lgamma_r: Other Builtins. (line 6) * lgammaf: Other Builtins. (line 6) * lgammaf_r: Other Builtins. (line 6) * lgammal: Other Builtins. (line 6) * lgammal_r: Other Builtins. (line 6) * Libraries: Link Options. (line 24) * LIBRARY_PATH: Environment Variables. (line 97) * link options: Link Options. (line 6) ! * linker script: Link Options. (line 217) ! * LK fixed-suffix: Fixed-Point. (line 6) ! * lk fixed-suffix: Fixed-Point. (line 6) ! * LL integer suffix: Long Long. (line 6) * llabs: Other Builtins. (line 6) ! * LLK fixed-suffix: Fixed-Point. (line 6) ! * llk fixed-suffix: Fixed-Point. (line 6) ! * LLR fixed-suffix: Fixed-Point. (line 6) ! * llr fixed-suffix: Fixed-Point. (line 6) * llrint: Other Builtins. (line 6) * llrintf: Other Builtins. (line 6) * llrintl: Other Builtins. (line 6) *************** Keyword Index *** 56215,56221 **** * llroundf: Other Builtins. (line 6) * llroundl: Other Builtins. (line 6) * LM32 options: LM32 Options. (line 6) ! * load address instruction: Simple Constraints. (line 152) * local labels: Local Labels. (line 6) * local variables in macros: Typeof. (line 46) * local variables, specifying registers: Local Reg Vars. (line 6) --- 56614,56620 ---- * llroundf: Other Builtins. (line 6) * llroundl: Other Builtins. (line 6) * LM32 options: LM32 Options. (line 6) ! * load address instruction: Simple Constraints. (line 154) * local labels: Local Labels. (line 6) * local variables in macros: Typeof. (line 46) * local variables, specifying registers: Local Reg Vars. (line 6) *************** Keyword Index *** 56240,56258 **** * logbl: Other Builtins. (line 6) * logf: Other Builtins. (line 6) * logl: Other Builtins. (line 6) ! * 'long long' data types: Long Long. (line 6) * longjmp: Global Reg Vars. (line 65) ! * 'longjmp' incompatibilities: Incompatibilities. (line 39) ! * 'longjmp' warnings: Warning Options. (line 668) ! * 'lr' fixed-suffix: Fixed-Point. (line 6) ! * 'LR' fixed-suffix: Fixed-Point. (line 6) * lrint: Other Builtins. (line 6) * lrintf: Other Builtins. (line 6) * lrintl: Other Builtins. (line 6) * lround: Other Builtins. (line 6) * lroundf: Other Builtins. (line 6) * lroundl: Other Builtins. (line 6) ! * 'm' in constraint: Simple Constraints. (line 17) * M32C options: M32C Options. (line 6) * M32R/D options: M32R/D Options. (line 6) * M680x0 options: M680x0 Options. (line 6) --- 56639,56657 ---- * logbl: Other Builtins. (line 6) * logf: Other Builtins. (line 6) * logl: Other Builtins. (line 6) ! * long long data types: Long Long. (line 6) * longjmp: Global Reg Vars. (line 65) ! * longjmp incompatibilities: Incompatibilities. (line 39) ! * longjmp warnings: Warning Options. (line 675) ! * LR fixed-suffix: Fixed-Point. (line 6) ! * lr fixed-suffix: Fixed-Point. (line 6) * lrint: Other Builtins. (line 6) * lrintf: Other Builtins. (line 6) * lrintl: Other Builtins. (line 6) * lround: Other Builtins. (line 6) * lroundf: Other Builtins. (line 6) * lroundl: Other Builtins. (line 6) ! * m in constraint: Simple Constraints. (line 17) * M32C options: M32C Options. (line 6) * M32R/D options: M32R/D Options. (line 6) * M680x0 options: M680x0 Options. (line 6) *************** Keyword Index *** 56260,56279 **** * machine specific constraints: Machine Constraints. (line 6) * macro with variable arguments: Variadic Macros. (line 6) ! * macros containing 'asm': Extended Asm. (line 237) * macros, inline alternative: Inline. (line 6) * macros, local labels: Local Labels. (line 6) * macros, local variables in: Typeof. (line 46) * macros, statements in expressions: Statement Exprs. (line 6) * macros, types of arguments: Typeof. (line 6) ! * 'make': Preprocessor Options. (line 185) * malloc: Other Builtins. (line 6) ! * 'malloc' attribute: Function Attributes. ! (line 933) ! * matching constraint: Simple Constraints. (line 137) * MCore options: MCore Options. (line 6) ! * member fns, automatically 'inline': Inline. (line 71) * memchr: Other Builtins. (line 6) * memcmp: Other Builtins. (line 6) * memcpy: Other Builtins. (line 6) --- 56659,56678 ---- * machine specific constraints: Machine Constraints. (line 6) * macro with variable arguments: Variadic Macros. (line 6) ! * macros containing asm: Extended Asm. (line 238) * macros, inline alternative: Inline. (line 6) * macros, local labels: Local Labels. (line 6) * macros, local variables in: Typeof. (line 46) * macros, statements in expressions: Statement Exprs. (line 6) * macros, types of arguments: Typeof. (line 6) ! * make: Preprocessor Options. (line 185) * malloc: Other Builtins. (line 6) ! * malloc attribute: Function Attributes. ! (line 944) ! * matching constraint: Simple Constraints. (line 139) * MCore options: MCore Options. (line 6) ! * member fns, automatically inline: Inline. (line 71) * memchr: Other Builtins. (line 6) * memcmp: Other Builtins. (line 6) * memcpy: Other Builtins. (line 6) *************** Keyword Index *** 56288,56323 **** * messages, warning and error: Warnings and Errors. (line 6) * MicroBlaze Options: MicroBlaze Options. (line 6) ! * 'micromips' attribute: Function Attributes. ! (line 957) * middle-operands, omitted: Conditionals. (line 6) * MIPS options: MIPS Options. (line 6) ! * 'mips16' attribute: Function Attributes. ! (line 942) * misunderstandings in C++: C++ Misunderstandings. (line 6) * mixed declarations and code: Mixed Declarations. (line 6) ! * 'mktemp', and constant strings: Incompatibilities. (line 13) * MMIX Options: MMIX Options. (line 6) * MN10300 options: MN10300 Options. (line 6) ! * 'mode' attribute: Variable Attributes. ! (line 133) * modf: Other Builtins. (line 6) * modff: Other Builtins. (line 6) * modfl: Other Builtins. (line 6) * modifiers in constraints: Modifiers. (line 6) * Moxie Options: Moxie Options. (line 6) * MSP430 Options: MSP430 Options. (line 6) - * 'ms_abi' attribute: Function Attributes. - (line 1003) - * 'ms_hook_prologue' attribute: Function Attributes. - (line 1030) - * 'ms_struct': Type Attributes. (line 323) - * 'ms_struct' attribute: Variable Attributes. - (line 438) * multiple alternative constraints: Multi-Alternative. (line 6) * multiprecision arithmetic: Long Long. (line 6) ! * 'n' in constraint: Simple Constraints. (line 73) * Named Address Spaces: Named Address Spaces. (line 6) * names used in assembler code: Asm Labels. (line 6) --- 56687,56722 ---- * messages, warning and error: Warnings and Errors. (line 6) * MicroBlaze Options: MicroBlaze Options. (line 6) ! * micromips attribute: Function Attributes. ! (line 967) * middle-operands, omitted: Conditionals. (line 6) * MIPS options: MIPS Options. (line 6) ! * mips16 attribute: Function Attributes. ! (line 953) * misunderstandings in C++: C++ Misunderstandings. (line 6) * mixed declarations and code: Mixed Declarations. (line 6) ! * mktemp, and constant strings: Incompatibilities. (line 13) * MMIX Options: MMIX Options. (line 6) * MN10300 options: MN10300 Options. (line 6) ! * mode attribute: Variable Attributes. ! (line 134) * modf: Other Builtins. (line 6) * modff: Other Builtins. (line 6) * modfl: Other Builtins. (line 6) * modifiers in constraints: Modifiers. (line 6) * Moxie Options: Moxie Options. (line 6) + * ms_abi attribute: Function Attributes. + (line 1011) + * ms_hook_prologue attribute: Function Attributes. + (line 1036) + * ms_struct: Type Attributes. (line 324) + * ms_struct attribute: Variable Attributes. + (line 445) * MSP430 Options: MSP430 Options. (line 6) * multiple alternative constraints: Multi-Alternative. (line 6) * multiprecision arithmetic: Long Long. (line 6) ! * n in constraint: Simple Constraints. (line 75) * Named Address Spaces: Named Address Spaces. (line 6) * names used in assembler code: Asm Labels. (line 6) *************** Keyword Index *** 56326,56336 **** * nearbyint: Other Builtins. (line 6) * nearbyintf: Other Builtins. (line 6) * nearbyintl: Other Builtins. (line 6) ! * 'nested' attribute: Function Attributes. ! (line 806) * nested functions: Nested Functions. (line 6) ! * 'nested_ready' attribute: Function Attributes. ! (line 810) * newlines (escaped): Escaped Newlines. (line 6) * nextafter: Other Builtins. (line 6) * nextafterf: Other Builtins. (line 6) --- 56725,56735 ---- * nearbyint: Other Builtins. (line 6) * nearbyintf: Other Builtins. (line 6) * nearbyintl: Other Builtins. (line 6) ! * nested attribute: Function Attributes. ! (line 812) * nested functions: Nested Functions. (line 6) ! * nested_ready attribute: Function Attributes. ! (line 818) * newlines (escaped): Escaped Newlines. (line 6) * nextafter: Other Builtins. (line 6) * nextafterf: Other Builtins. (line 6) *************** Keyword Index *** 56338,56403 **** * nexttoward: Other Builtins. (line 6) * nexttowardf: Other Builtins. (line 6) * nexttowardl: Other Builtins. (line 6) ! * NFC: Warning Options. (line 1291) ! * NFKC: Warning Options. (line 1291) * Nios II options: Nios II Options. (line 6) ! * 'nmi' attribute: Function Attributes. ! (line 1375) * NMI handler functions on the Blackfin processor: Function Attributes. ! (line 1077) ! * 'noclone' function attribute: Function Attributes. ! (line 1111) ! * 'nocommon' attribute: Variable Attributes. ! (line 104) ! * 'nocompression' attribute: Function Attributes. ! (line 1083) ! * 'noinline' function attribute: Function Attributes. ! (line 1100) ! * 'nomicromips' attribute: Function Attributes. ! (line 957) ! * 'nomips16' attribute: Function Attributes. ! (line 942) * non-constant initializers: Initializers. (line 6) * non-static inline function: Inline. (line 85) ! * 'nonnull' function attribute: Function Attributes. ! (line 1117) ! * 'noreturn' function attribute: Function Attributes. ! (line 1151) ! * 'nosave_low_regs' attribute: Function Attributes. ! (line 1201) * note GCC_COLORS capability: Language Independent Options. (line 73) ! * 'nothrow' function attribute: Function Attributes. ! (line 1193) ! * 'not_nested' attribute: Function Attributes. ! (line 808) ! * 'no_instrument_function' function attribute: Function Attributes. ! (line 1089) ! * 'no_sanitize_address' function attribute: Function Attributes. ! (line 1339) ! * 'no_sanitize_undefined' function attribute: Function Attributes. ! (line 1347) ! * 'no_split_stack' function attribute: Function Attributes. ! (line 1094) ! * 'o' in constraint: Simple Constraints. (line 23) * OBJC_INCLUDE_PATH: Environment Variables. ! (line 130) * Objective-C: G++ and GCC. (line 6) - * Objective-C <1>: Standards. (line 162) * Objective-C and Objective-C++ options, command-line: Objective-C and Objective-C++ Dialect Options. (line 6) * Objective-C++: G++ and GCC. (line 6) - * Objective-C++ <1>: Standards. (line 162) * offsettable address: Simple Constraints. (line 23) * old-style function definitions: Function Prototypes. (line 6) * omitted middle-operands: Conditionals. (line 6) * open coding: Inline. (line 6) * OpenMP parallel: C Dialect Options. (line 263) ! * OpenMP SIMD: C Dialect Options. (line 272) ! * operand constraints, 'asm': Constraints. (line 6) ! * 'optimize' function attribute: Function Attributes. ! (line 1207) * optimize options: Optimize Options. (line 6) * options to control diagnostics formatting: Language Independent Options. (line 6) --- 56737,56802 ---- * nexttoward: Other Builtins. (line 6) * nexttowardf: Other Builtins. (line 6) * nexttowardl: Other Builtins. (line 6) ! * NFC: Warning Options. (line 1303) ! * NFKC: Warning Options. (line 1303) * Nios II options: Nios II Options. (line 6) ! * nmi attribute: Function Attributes. ! (line 1380) * NMI handler functions on the Blackfin processor: Function Attributes. ! (line 1082) ! * no_instrument_function function attribute: Function Attributes. ! (line 1094) ! * no_sanitize_address function attribute: Function Attributes. ! (line 1344) ! * no_sanitize_undefined function attribute: Function Attributes. ! (line 1352) ! * no_split_stack function attribute: Function Attributes. ! (line 1099) ! * noclone function attribute: Function Attributes. ! (line 1116) ! * nocommon attribute: Variable Attributes. ! (line 105) ! * nocompression attribute: Function Attributes. ! (line 1088) ! * noinline function attribute: Function Attributes. ! (line 1105) ! * nomicromips attribute: Function Attributes. ! (line 967) ! * nomips16 attribute: Function Attributes. ! (line 953) * non-constant initializers: Initializers. (line 6) * non-static inline function: Inline. (line 85) ! * nonnull function attribute: Function Attributes. ! (line 1122) ! * noreturn function attribute: Function Attributes. ! (line 1156) ! * nosave_low_regs attribute: Function Attributes. ! (line 1206) ! * not_nested attribute: Function Attributes. ! (line 815) * note GCC_COLORS capability: Language Independent Options. (line 73) ! * nothrow function attribute: Function Attributes. ! (line 1198) ! * o in constraint: Simple Constraints. (line 23) * OBJC_INCLUDE_PATH: Environment Variables. ! (line 132) ! * Objective-C <1>: Standards. (line 164) * Objective-C: G++ and GCC. (line 6) * Objective-C and Objective-C++ options, command-line: Objective-C and Objective-C++ Dialect Options. (line 6) + * Objective-C++ <1>: Standards. (line 164) * Objective-C++: G++ and GCC. (line 6) * offsettable address: Simple Constraints. (line 23) * old-style function definitions: Function Prototypes. (line 6) * omitted middle-operands: Conditionals. (line 6) * open coding: Inline. (line 6) * OpenMP parallel: C Dialect Options. (line 263) ! * OpenMP SIMD: C Dialect Options. (line 271) ! * operand constraints, asm: Constraints. (line 6) ! * optimize function attribute: Function Attributes. ! (line 1212) * optimize options: Optimize Options. (line 6) * options to control diagnostics formatting: Language Independent Options. (line 6) *************** Keyword Index *** 56419,56448 **** (line 6) * order of evaluation, side effects: Non-bugs. (line 196) * order of options: Invoking GCC. (line 30) ! * 'OS_main' AVR function attribute: Function Attributes. ! (line 1224) ! * 'OS_task' AVR function attribute: Function Attributes. ! (line 1224) ! * other register constraints: Simple Constraints. (line 161) * output file option: Overall Options. (line 191) * overloaded virtual function, warning: C++ Dialect Options. ! (line 655) ! * 'p' in constraint: Simple Constraints. (line 152) ! * 'packed' attribute: Variable Attributes. ! (line 144) * parameter forward declaration: Variable Length. (line 68) ! * 'partial_save' attribute: Function Attributes. ! (line 818) * Pascal: G++ and GCC. (line 23) ! * 'pcs' function attribute: Function Attributes. ! (line 1248) * PDP-11 Options: PDP-11 Options. (line 6) ! * PIC: Code Gen Options. (line 279) * picoChip options: picoChip Options. (line 6) * pmf: Bound member functions. (line 6) * pointer arguments: Function Attributes. ! (line 220) * pointer to member function: Bound member functions. (line 6) * portions of temporary objects, pointers to: Temporaries. (line 6) --- 56818,56847 ---- (line 6) * order of evaluation, side effects: Non-bugs. (line 196) * order of options: Invoking GCC. (line 30) ! * OS_main AVR function attribute: Function Attributes. ! (line 1229) ! * OS_task AVR function attribute: Function Attributes. ! (line 1229) ! * other register constraints: Simple Constraints. (line 163) * output file option: Overall Options. (line 191) * overloaded virtual function, warning: C++ Dialect Options. ! (line 662) ! * p in constraint: Simple Constraints. (line 154) ! * packed attribute: Variable Attributes. ! (line 145) * parameter forward declaration: Variable Length. (line 68) ! * partial_save attribute: Function Attributes. ! (line 828) * Pascal: G++ and GCC. (line 23) ! * pcs function attribute: Function Attributes. ! (line 1254) * PDP-11 Options: PDP-11 Options. (line 6) ! * PIC: Code Gen Options. (line 280) * picoChip options: picoChip Options. (line 6) * pmf: Bound member functions. (line 6) * pointer arguments: Function Attributes. ! (line 222) * pointer to member function: Bound member functions. (line 6) * portions of temporary objects, pointers to: Temporaries. (line 6) *************** Keyword Index *** 56456,56468 **** * pragma GCC ivdep: Loop-Specific Pragmas. (line 7) * pragma GCC optimize: Function Specific Option Pragmas. ! (line 20) * pragma GCC pop_options: Function Specific Option Pragmas. ! (line 34) * pragma GCC push_options: Function Specific Option Pragmas. ! (line 34) * pragma GCC reset_options: Function Specific Option Pragmas. ! (line 45) * pragma GCC target: Function Specific Option Pragmas. (line 7) * pragma, address: M32C Pragmas. (line 15) --- 56855,56867 ---- * pragma GCC ivdep: Loop-Specific Pragmas. (line 7) * pragma GCC optimize: Function Specific Option Pragmas. ! (line 19) * pragma GCC pop_options: Function Specific Option Pragmas. ! (line 32) * pragma GCC push_options: Function Specific Option Pragmas. ! (line 32) * pragma GCC reset_options: Function Specific Option Pragmas. ! (line 42) * pragma GCC target: Function Specific Option Pragmas. (line 7) * pragma, address: M32C Pragmas. (line 15) *************** Keyword Index *** 56473,56486 **** * pragma, coprocessor subclass: MeP Pragmas. (line 28) * pragma, custom io_volatile: MeP Pragmas. (line 7) * pragma, diagnostic: Diagnostic Pragmas. (line 14) - * pragma, diagnostic <1>: Diagnostic Pragmas. (line 57) * pragma, disinterrupt: MeP Pragmas. (line 38) ! * pragma, fini: Solaris Pragmas. (line 20) ! * pragma, init: Solaris Pragmas. (line 26) ! * pragma, longcall: RS/6000 and PowerPC Pragmas. ! (line 14) * pragma, long_calls: ARM Pragmas. (line 11) * pragma, long_calls_off: ARM Pragmas. (line 17) * pragma, mark: Darwin Pragmas. (line 11) * pragma, memregs: M32C Pragmas. (line 7) * pragma, no_long_calls: ARM Pragmas. (line 14) --- 56872,56884 ---- * pragma, coprocessor subclass: MeP Pragmas. (line 28) * pragma, custom io_volatile: MeP Pragmas. (line 7) * pragma, diagnostic: Diagnostic Pragmas. (line 14) * pragma, disinterrupt: MeP Pragmas. (line 38) ! * pragma, fini: Solaris Pragmas. (line 19) ! * pragma, init: Solaris Pragmas. (line 24) * pragma, long_calls: ARM Pragmas. (line 11) * pragma, long_calls_off: ARM Pragmas. (line 17) + * pragma, longcall: RS/6000 and PowerPC Pragmas. + (line 14) * pragma, mark: Darwin Pragmas. (line 11) * pragma, memregs: M32C Pragmas. (line 7) * pragma, no_long_calls: ARM Pragmas. (line 14) *************** Keyword Index *** 56490,56496 **** * pragma, push_macro: Push/Pop Macro Pragmas. (line 11) * pragma, reason for not using: Function Attributes. ! (line 2059) * pragma, redefine_extname: Symbol-Renaming Pragmas. (line 12) * pragma, segment: Darwin Pragmas. (line 21) --- 56888,56894 ---- * pragma, push_macro: Push/Pop Macro Pragmas. (line 11) * pragma, reason for not using: Function Attributes. ! (line 2067) * pragma, redefine_extname: Symbol-Renaming Pragmas. (line 12) * pragma, segment: Darwin Pragmas. (line 21) *************** Keyword Index *** 56500,56506 **** * pragmas: Pragmas. (line 6) * pragmas in C++, effect on inlining: C++ Interface. (line 66) * pragmas, interface and implementation: C++ Interface. (line 6) ! * pragmas, warning of unknown: Warning Options. (line 685) * precompiled headers: Precompiled Headers. (line 6) * preprocessing numbers: Incompatibilities. (line 173) --- 56898,56904 ---- * pragmas: Pragmas. (line 6) * pragmas in C++, effect on inlining: C++ Interface. (line 66) * pragmas, interface and implementation: C++ Interface. (line 6) ! * pragmas, warning of unknown: Warning Options. (line 692) * precompiled headers: Precompiled Headers. (line 6) * preprocessing numbers: Incompatibilities. (line 173) *************** Keyword Index *** 56509,56566 **** (line 6) * printf: Other Builtins. (line 6) * printf_unlocked: Other Builtins. (line 6) ! * 'prof': Debugging Options. (line 414) ! * 'progmem' AVR variable attribute: Variable Attributes. ! (line 314) * promotion of formal parameters: Function Prototypes. (line 6) ! * 'pure' function attribute: Function Attributes. ! (line 1267) ! * push address instruction: Simple Constraints. (line 152) * putchar: Other Builtins. (line 6) * puts: Other Builtins. (line 6) ! * 'q' floating point suffix: Floating Types. (line 6) ! * 'Q' floating point suffix: Floating Types. (line 6) ! * 'qsort', and global register variables: Global Reg Vars. (line 41) * question mark: Multi-Alternative. (line 27) * quote GCC_COLORS capability: Language Independent Options. (line 83) ! * 'r' fixed-suffix: Fixed-Point. (line 6) ! * 'R' fixed-suffix: Fixed-Point. (line 6) ! * 'r' in constraint: Simple Constraints. (line 64) ! * 'RAMPD': AVR Options. (line 333) ! * 'RAMPX': AVR Options. (line 333) ! * 'RAMPY': AVR Options. (line 333) ! * 'RAMPZ': AVR Options. (line 333) * ranges in case statements: Case Ranges. (line 6) * read-only strings: Incompatibilities. (line 9) ! * 'reentrant' attribute: Function Attributes. ! (line 723) ! * register variable after 'longjmp': Global Reg Vars. (line 65) * registers: Extended Asm. (line 6) * registers for local variables: Local Reg Vars. (line 6) ! * registers in constraints: Simple Constraints. (line 64) * registers, global allocation: Explicit Reg Vars. (line 6) * registers, global variables in: Global Reg Vars. (line 6) ! * 'regparm' attribute: Function Attributes. ! (line 1353) ! * relocation truncated to fit (ColdFire): M680x0 Options. (line 325) ! * relocation truncated to fit (MIPS): MIPS Options. (line 207) * remainder: Other Builtins. (line 6) * remainderf: Other Builtins. (line 6) * remainderl: Other Builtins. (line 6) * remquo: Other Builtins. (line 6) * remquof: Other Builtins. (line 6) * remquol: Other Builtins. (line 6) ! * 'renesas' attribute: Function Attributes. ! (line 1396) * reordering, warning: C++ Dialect Options. ! (line 573) * reporting bugs: Bugs. (line 6) ! * 'resbank' attribute: Function Attributes. ! (line 1400) * reset handler functions: Function Attributes. ! (line 1370) * rest argument (in macro): Variadic Macros. (line 6) * restricted pointers: Restricted Pointers. (line 6) --- 56907,56964 ---- (line 6) * printf: Other Builtins. (line 6) * printf_unlocked: Other Builtins. (line 6) ! * prof: Debugging Options. (line 410) ! * progmem AVR variable attribute: Variable Attributes. ! (line 318) * promotion of formal parameters: Function Prototypes. (line 6) ! * pure function attribute: Function Attributes. ! (line 1272) ! * push address instruction: Simple Constraints. (line 154) * putchar: Other Builtins. (line 6) * puts: Other Builtins. (line 6) ! * Q floating point suffix: Floating Types. (line 6) ! * q floating point suffix: Floating Types. (line 6) ! * qsort, and global register variables: Global Reg Vars. (line 41) * question mark: Multi-Alternative. (line 27) * quote GCC_COLORS capability: Language Independent Options. (line 83) ! * R fixed-suffix: Fixed-Point. (line 6) ! * r fixed-suffix: Fixed-Point. (line 6) ! * r in constraint: Simple Constraints. (line 66) ! * RAMPD: AVR Options. (line 336) ! * RAMPX: AVR Options. (line 336) ! * RAMPY: AVR Options. (line 336) ! * RAMPZ: AVR Options. (line 336) * ranges in case statements: Case Ranges. (line 6) * read-only strings: Incompatibilities. (line 9) ! * reentrant attribute: Function Attributes. ! (line 730) ! * register variable after longjmp: Global Reg Vars. (line 65) * registers: Extended Asm. (line 6) * registers for local variables: Local Reg Vars. (line 6) ! * registers in constraints: Simple Constraints. (line 66) * registers, global allocation: Explicit Reg Vars. (line 6) * registers, global variables in: Global Reg Vars. (line 6) ! * regparm attribute: Function Attributes. ! (line 1358) ! * relocation truncated to fit (ColdFire): M680x0 Options. (line 329) ! * relocation truncated to fit (MIPS): MIPS Options. (line 209) * remainder: Other Builtins. (line 6) * remainderf: Other Builtins. (line 6) * remainderl: Other Builtins. (line 6) * remquo: Other Builtins. (line 6) * remquof: Other Builtins. (line 6) * remquol: Other Builtins. (line 6) ! * renesas attribute: Function Attributes. ! (line 1402) * reordering, warning: C++ Dialect Options. ! (line 578) * reporting bugs: Bugs. (line 6) ! * resbank attribute: Function Attributes. ! (line 1406) * reset handler functions: Function Attributes. ! (line 1375) * rest argument (in macro): Variadic Macros. (line 6) * restricted pointers: Restricted Pointers. (line 6) *************** Keyword Index *** 56568,56577 **** (line 6) * restricted this pointer: Restricted Pointers. (line 6) ! * 'returns_nonnull' function attribute: Function Attributes. ! (line 1141) ! * 'returns_twice' attribute: Function Attributes. ! (line 1414) * rindex: Other Builtins. (line 6) * rint: Other Builtins. (line 6) * rintf: Other Builtins. (line 6) --- 56966,56975 ---- (line 6) * restricted this pointer: Restricted Pointers. (line 6) ! * returns_nonnull function attribute: Function Attributes. ! (line 1146) ! * returns_twice attribute: Function Attributes. ! (line 1420) * rindex: Other Builtins. (line 6) * rint: Other Builtins. (line 6) * rintf: Other Builtins. (line 6) *************** Keyword Index *** 56585,56626 **** * RTTI: Vague Linkage. (line 42) * run-time options: Code Gen Options. (line 6) * RX Options: RX Options. (line 6) ! * 's' in constraint: Simple Constraints. (line 100) * S/390 and zSeries Options: S/390 and zSeries Options. (line 6) * save all registers on the Blackfin, H8/300, H8/300H, and H8S: Function Attributes. ! (line 1423) * save volatile registers on the MicroBlaze: Function Attributes. ! (line 1428) ! * 'save_all' attribute: Function Attributes. ! (line 815) * scalb: Other Builtins. (line 6) * scalbf: Other Builtins. (line 6) * scalbl: Other Builtins. (line 6) * scalbln: Other Builtins. (line 6) * scalblnf: Other Builtins. (line 6) - * scalblnf <1>: Other Builtins. (line 6) * scalbn: Other Builtins. (line 6) * scalbnf: Other Builtins. (line 6) ! * 'scanf', and constant strings: Incompatibilities. (line 17) * scanfnl: Other Builtins. (line 6) * scope of a variable length array: Variable Length. (line 22) * scope of declaration: Disappointments. (line 21) * scope of external declarations: Incompatibilities. (line 80) * Score Options: Score Options. (line 6) * search path: Directory Options. (line 6) ! * 'section' function attribute: Function Attributes. ! (line 1436) ! * 'section' variable attribute: Variable Attributes. ! (line 165) ! * 'sentinel' function attribute: Function Attributes. ! (line 1452) * setjmp: Global Reg Vars. (line 65) ! * 'setjmp' incompatibilities: Incompatibilities. (line 39) * shared strings: Incompatibilities. (line 9) ! * 'shared' variable attribute: Variable Attributes. ! (line 210) ! * side effect in '?:': Conditionals. (line 20) * side effects, macro argument: Statement Exprs. (line 35) * side effects, order of evaluation: Non-bugs. (line 196) * signbit: Other Builtins. (line 6) --- 56983,57023 ---- * RTTI: Vague Linkage. (line 42) * run-time options: Code Gen Options. (line 6) * RX Options: RX Options. (line 6) ! * s in constraint: Simple Constraints. (line 102) * S/390 and zSeries Options: S/390 and zSeries Options. (line 6) * save all registers on the Blackfin, H8/300, H8/300H, and H8S: Function Attributes. ! (line 1429) * save volatile registers on the MicroBlaze: Function Attributes. ! (line 1434) ! * save_all attribute: Function Attributes. ! (line 824) * scalb: Other Builtins. (line 6) * scalbf: Other Builtins. (line 6) * scalbl: Other Builtins. (line 6) * scalbln: Other Builtins. (line 6) * scalblnf: Other Builtins. (line 6) * scalbn: Other Builtins. (line 6) * scalbnf: Other Builtins. (line 6) ! * scanf, and constant strings: Incompatibilities. (line 17) * scanfnl: Other Builtins. (line 6) * scope of a variable length array: Variable Length. (line 22) * scope of declaration: Disappointments. (line 21) * scope of external declarations: Incompatibilities. (line 80) * Score Options: Score Options. (line 6) * search path: Directory Options. (line 6) ! * section function attribute: Function Attributes. ! (line 1442) ! * section variable attribute: Variable Attributes. ! (line 166) ! * sentinel function attribute: Function Attributes. ! (line 1458) * setjmp: Global Reg Vars. (line 65) ! * setjmp incompatibilities: Incompatibilities. (line 39) * shared strings: Incompatibilities. (line 9) ! * shared variable attribute: Variable Attributes. ! (line 211) ! * side effect in ?:: Conditionals. (line 20) * side effects, macro argument: Statement Exprs. (line 35) * side effects, order of evaluation: Non-bugs. (line 196) * signbit: Other Builtins. (line 6) *************** Keyword Index *** 56630,56640 **** * signbitf: Other Builtins. (line 6) * signbitl: Other Builtins. (line 6) * signed and unsigned values, comparison warning: Warning Options. ! (line 1157) * significand: Other Builtins. (line 6) * significandf: Other Builtins. (line 6) * significandl: Other Builtins. (line 6) ! * SIMD: C Dialect Options. (line 272) * simple constraints: Simple Constraints. (line 6) * sin: Other Builtins. (line 6) * sincos: Other Builtins. (line 6) --- 57027,57037 ---- * signbitf: Other Builtins. (line 6) * signbitl: Other Builtins. (line 6) * signed and unsigned values, comparison warning: Warning Options. ! (line 1169) * significand: Other Builtins. (line 6) * significandf: Other Builtins. (line 6) * significandl: Other Builtins. (line 6) ! * SIMD: C Dialect Options. (line 271) * simple constraints: Simple Constraints. (line 6) * sin: Other Builtins. (line 6) * sincos: Other Builtins. (line 6) *************** Keyword Index *** 56646,56657 **** * sinhl: Other Builtins. (line 6) * sinl: Other Builtins. (line 6) * sizeof: Typeof. (line 6) - * smaller data references: M32R/D Options. (line 57) * smaller data references <1>: Nios II Options. (line 9) * smaller data references (PowerPC): RS/6000 and PowerPC Options. ! (line 742) * snprintf: Other Builtins. (line 6) * Solaris 2 options: Solaris 2 Options. (line 6) * SPARC options: SPARC Options. (line 6) * Spec Files: Spec Files. (line 6) * specified registers: Explicit Reg Vars. (line 6) --- 57043,57056 ---- * sinhl: Other Builtins. (line 6) * sinl: Other Builtins. (line 6) * sizeof: Typeof. (line 6) * smaller data references <1>: Nios II Options. (line 9) + * smaller data references: M32R/D Options. (line 57) * smaller data references (PowerPC): RS/6000 and PowerPC Options. ! (line 751) * snprintf: Other Builtins. (line 6) * Solaris 2 options: Solaris 2 Options. (line 6) + * sp_switch attribute: Function Attributes. + (line 1507) * SPARC options: SPARC Options. (line 6) * Spec Files: Spec Files. (line 6) * specified registers: Explicit Reg Vars. (line 6) *************** Keyword Index *** 56664,56678 **** (line 6) * sprintf: Other Builtins. (line 6) * SPU options: SPU Options. (line 6) - * 'sp_switch' attribute: Function Attributes. - (line 1501) * sqrt: Other Builtins. (line 6) * sqrtf: Other Builtins. (line 6) * sqrtl: Other Builtins. (line 6) * sscanf: Other Builtins. (line 6) ! * 'sscanf', and constant strings: Incompatibilities. (line 17) ! * 'sseregparm' attribute: Function Attributes. ! (line 1381) * statements inside expressions: Statement Exprs. (line 6) * static data in C++, declaring and defining: Static Definitions. (line 6) --- 57063,57075 ---- (line 6) * sprintf: Other Builtins. (line 6) * SPU options: SPU Options. (line 6) * sqrt: Other Builtins. (line 6) * sqrtf: Other Builtins. (line 6) * sqrtl: Other Builtins. (line 6) * sscanf: Other Builtins. (line 6) ! * sscanf, and constant strings: Incompatibilities. (line 17) ! * sseregparm attribute: Function Attributes. ! (line 1387) * statements inside expressions: Statement Exprs. (line 6) * static data in C++, declaring and defining: Static Definitions. (line 6) *************** Keyword Index *** 56698,56706 **** * strrchr: Other Builtins. (line 6) * strspn: Other Builtins. (line 6) * strstr: Other Builtins. (line 6) ! * 'struct': Unnamed Fields. (line 6) * struct __htm_tdb: S/390 System z Built-in Functions. ! (line 49) * structures: Incompatibilities. (line 146) * structures, constructor expression: Compound Literals. (line 6) * submodel options: Submodel Options. (line 6) --- 57095,57103 ---- * strrchr: Other Builtins. (line 6) * strspn: Other Builtins. (line 6) * strstr: Other Builtins. (line 6) ! * struct: Unnamed Fields. (line 6) * struct __htm_tdb: S/390 System z Built-in Functions. ! (line 54) * structures: Incompatibilities. (line 146) * structures, constructor expression: Compound Literals. (line 6) * submodel options: Submodel Options. (line 6) *************** Keyword Index *** 56708,56843 **** * subscripting and function values: Subscripting. (line 6) * suffixes for C++ source: Invoking G++. (line 6) * SUNPRO_DEPENDENCIES: Environment Variables. ! (line 170) * suppressing warnings: Warning Options. (line 6) * surprises in C++: C++ Misunderstandings. (line 6) * syntax checking: Warning Options. (line 13) ! * 'syscall_linkage' attribute: Function Attributes. ! (line 1516) ! * system headers, warnings from: Warning Options. (line 836) ! * 'sysv_abi' attribute: Function Attributes. ! (line 1003) * tan: Other Builtins. (line 6) * tanf: Other Builtins. (line 6) * tanh: Other Builtins. (line 6) * tanhf: Other Builtins. (line 6) * tanhl: Other Builtins. (line 6) * tanl: Other Builtins. (line 6) ! * 'target' function attribute: Function Attributes. ! (line 1523) * target machine, specifying: Target Options. (line 6) * target options: Target Options. (line 6) ! * 'target("abm")' attribute: Function Attributes. ! (line 1556) ! * 'target("aes")' attribute: Function Attributes. ! (line 1561) ! * 'target("align-stringops")' attribute: Function Attributes. ! (line 1655) ! * 'target("altivec")' attribute: Function Attributes. ! (line 1681) ! * 'target("arch=ARCH")' attribute: Function Attributes. ! (line 1664) ! * 'target("avoid-indexed-addresses")' attribute: Function Attributes. ! (line 1802) ! * 'target("cld")' attribute: Function Attributes. ! (line 1626) ! * 'target("cmpb")' attribute: Function Attributes. (line 1687) ! * 'target("cpu=CPU")' attribute: Function Attributes. ! (line 1817) ! * 'target("custom-fpu-cfg=NAME")' attribute: Function Attributes. ! (line 1843) ! * 'target("custom-INSN=N")' attribute: Function Attributes. ! (line 1834) ! * 'target("default")' attribute: Function Attributes. ! (line 1564) ! * 'target("dlmzb")' attribute: Function Attributes. (line 1693) ! * 'target("fancy-math-387")' attribute: Function Attributes. ! (line 1630) ! * 'target("fma4")' attribute: Function Attributes. ! (line 1610) ! * 'target("fpmath=FPMATH")' attribute: Function Attributes. ! (line 1672) ! * 'target("fprnd")' attribute: Function Attributes. ! (line 1700) ! * 'target("friz")' attribute: Function Attributes. ! (line 1793) ! * 'target("fused-madd")' attribute: Function Attributes. ! (line 1635) ! * 'target("hard-dfp")' attribute: Function Attributes. (line 1706) ! * 'target("ieee-fp")' attribute: Function Attributes. ! (line 1640) ! * 'target("inline-all-stringops")' attribute: Function Attributes. ! (line 1645) ! * 'target("inline-stringops-dynamically")' attribute: Function Attributes. ! (line 1649) ! * 'target("isel")' attribute: Function Attributes. (line 1712) ! * 'target("longcall")' attribute: Function Attributes. ! (line 1812) ! * 'target("lwp")' attribute: Function Attributes. ! (line 1618) ! * 'target("mfcrf")' attribute: Function Attributes. ! (line 1716) ! * 'target("mfpgpr")' attribute: Function Attributes. ! (line 1723) ! * 'target("mmx")' attribute: Function Attributes. ! (line 1569) ! * 'target("mulhw")' attribute: Function Attributes. ! (line 1730) ! * 'target("multiple")' attribute: Function Attributes. ! (line 1737) ! * 'target("no-custom-INSN")' attribute: Function Attributes. ! (line 1834) ! * 'target("paired")' attribute: Function Attributes. ! (line 1807) ! * 'target("pclmul")' attribute: Function Attributes. ! (line 1573) ! * 'target("popcnt")' attribute: Function Attributes. ! (line 1577) ! * 'target("popcntb")' attribute: Function Attributes. ! (line 1748) ! * 'target("popcntd")' attribute: Function Attributes. ! (line 1755) ! * 'target("powerpc-gfxopt")' attribute: Function Attributes. (line 1761) ! * 'target("powerpc-gpopt")' attribute: Function Attributes. (line 1767) ! * 'target("recip")' attribute: Function Attributes. ! (line 1659) ! * 'target("recip-precision")' attribute: Function Attributes. (line 1773) ! * 'target("sse")' attribute: Function Attributes. ! (line 1581) ! * 'target("sse2")' attribute: Function Attributes. ! (line 1585) ! * 'target("sse3")' attribute: Function Attributes. ! (line 1589) ! * 'target("sse4")' attribute: Function Attributes. ! (line 1593) ! * 'target("sse4.1")' attribute: Function Attributes. ! (line 1598) ! * 'target("sse4.2")' attribute: Function Attributes. ! (line 1602) ! * 'target("sse4a")' attribute: Function Attributes. ! (line 1606) ! * 'target("ssse3")' attribute: Function Attributes. ! (line 1622) ! * 'target("string")' attribute: Function Attributes. (line 1779) ! * 'target("tune=TUNE")' attribute: Function Attributes. ! (line 1668) ! * 'target("tune=TUNE")' attribute <1>: Function Attributes. ! (line 1824) ! * 'target("update")' attribute: Function Attributes. ! (line 1742) ! * 'target("vsx")' attribute: Function Attributes. (line 1785) ! * 'target("xop")' attribute: Function Attributes. ! (line 1614) * TC1: Standards. (line 13) * TC2: Standards. (line 13) * TC3: Standards. (line 13) --- 57105,57238 ---- * subscripting and function values: Subscripting. (line 6) * suffixes for C++ source: Invoking G++. (line 6) * SUNPRO_DEPENDENCIES: Environment Variables. ! (line 172) * suppressing warnings: Warning Options. (line 6) * surprises in C++: C++ Misunderstandings. (line 6) * syntax checking: Warning Options. (line 13) ! * syscall_linkage attribute: Function Attributes. ! (line 1522) ! * system headers, warnings from: Warning Options. (line 844) ! * sysv_abi attribute: Function Attributes. ! (line 1011) * tan: Other Builtins. (line 6) * tanf: Other Builtins. (line 6) * tanh: Other Builtins. (line 6) * tanhf: Other Builtins. (line 6) * tanhl: Other Builtins. (line 6) * tanl: Other Builtins. (line 6) ! * target function attribute: Function Attributes. ! (line 1529) * target machine, specifying: Target Options. (line 6) * target options: Target Options. (line 6) ! * target("abm") attribute: Function Attributes. ! (line 1562) ! * target("aes") attribute: Function Attributes. ! (line 1567) ! * target("align-stringops") attribute: Function Attributes. ! (line 1661) ! * target("altivec") attribute: Function Attributes. (line 1687) ! * target("arch=ARCH") attribute: Function Attributes. ! (line 1670) ! * target("avoid-indexed-addresses") attribute: Function Attributes. ! (line 1808) ! * target("cld") attribute: Function Attributes. ! (line 1632) ! * target("cmpb") attribute: Function Attributes. (line 1693) ! * target("cpu=CPU") attribute: Function Attributes. ! (line 1823) ! * target("custom-fpu-cfg=NAME") attribute: Function Attributes. ! (line 1849) ! * target("custom-INSN=N") attribute: Function Attributes. ! (line 1840) ! * target("default") attribute: Function Attributes. ! (line 1570) ! * target("dlmzb") attribute: Function Attributes. ! (line 1699) ! * target("fancy-math-387") attribute: Function Attributes. ! (line 1636) ! * target("fma4") attribute: Function Attributes. ! (line 1616) ! * target("fpmath=FPMATH") attribute: Function Attributes. ! (line 1678) ! * target("fprnd") attribute: Function Attributes. (line 1706) ! * target("friz") attribute: Function Attributes. ! (line 1799) ! * target("fused-madd") attribute: Function Attributes. ! (line 1641) ! * target("hard-dfp") attribute: Function Attributes. (line 1712) ! * target("ieee-fp") attribute: Function Attributes. ! (line 1646) ! * target("inline-all-stringops") attribute: Function Attributes. ! (line 1651) ! * target("inline-stringops-dynamically") attribute: Function Attributes. ! (line 1655) ! * target("isel") attribute: Function Attributes. ! (line 1718) ! * target("longcall") attribute: Function Attributes. ! (line 1818) ! * target("lwp") attribute: Function Attributes. ! (line 1624) ! * target("mfcrf") attribute: Function Attributes. ! (line 1722) ! * target("mfpgpr") attribute: Function Attributes. ! (line 1729) ! * target("mmx") attribute: Function Attributes. ! (line 1575) ! * target("mulhw") attribute: Function Attributes. ! (line 1736) ! * target("multiple") attribute: Function Attributes. ! (line 1743) ! * target("no-custom-INSN") attribute: Function Attributes. ! (line 1840) ! * target("paired") attribute: Function Attributes. ! (line 1813) ! * target("pclmul") attribute: Function Attributes. ! (line 1579) ! * target("popcnt") attribute: Function Attributes. ! (line 1583) ! * target("popcntb") attribute: Function Attributes. ! (line 1754) ! * target("popcntd") attribute: Function Attributes. (line 1761) ! * target("powerpc-gfxopt") attribute: Function Attributes. (line 1767) ! * target("powerpc-gpopt") attribute: Function Attributes. (line 1773) ! * target("recip") attribute: Function Attributes. ! (line 1665) ! * target("recip-precision") attribute: Function Attributes. (line 1779) ! * target("sse") attribute: Function Attributes. ! (line 1587) ! * target("sse2") attribute: Function Attributes. ! (line 1591) ! * target("sse3") attribute: Function Attributes. ! (line 1595) ! * target("sse4") attribute: Function Attributes. ! (line 1599) ! * target("sse4.1") attribute: Function Attributes. ! (line 1604) ! * target("sse4.2") attribute: Function Attributes. ! (line 1608) ! * target("sse4a") attribute: Function Attributes. ! (line 1612) ! * target("ssse3") attribute: Function Attributes. ! (line 1628) ! * target("string") attribute: Function Attributes. (line 1785) ! * target("tune=TUNE") attribute: Function Attributes. ! (line 1674) ! * target("update") attribute: Function Attributes. ! (line 1748) ! * target("vsx") attribute: Function Attributes. ! (line 1791) ! * target("xop") attribute: Function Attributes. ! (line 1620) * TC1: Standards. (line 13) * TC2: Standards. (line 13) * TC3: Standards. (line 13) *************** Keyword Index *** 56856,56865 **** * TILE-Gx options: TILE-Gx Options. (line 6) * TILEPro options: TILEPro Options. (line 6) * tiny data section on the H8/300H and H8S: Function Attributes. ! (line 1856) * TLS: Thread-Local. (line 6) ! * 'tls_model' attribute: Variable Attributes. ! (line 233) * TMPDIR: Environment Variables. (line 45) * toascii: Other Builtins. (line 6) --- 57251,57260 ---- * TILE-Gx options: TILE-Gx Options. (line 6) * TILEPro options: TILEPro Options. (line 6) * tiny data section on the H8/300H and H8S: Function Attributes. ! (line 1862) * TLS: Thread-Local. (line 6) ! * tls_model attribute: Variable Attributes. ! (line 235) * TMPDIR: Environment Variables. (line 45) * toascii: Other Builtins. (line 6) *************** Keyword Index *** 56868,56930 **** * towlower: Other Builtins. (line 6) * towupper: Other Builtins. (line 6) * traditional C language: C Dialect Options. (line 331) ! * 'trapa_handler' attribute: Function Attributes. ! (line 1868) ! * 'trap_exit' attribute: Function Attributes. ! (line 1863) * trunc: Other Builtins. (line 6) * truncf: Other Builtins. (line 6) * truncl: Other Builtins. (line 6) * two-stage name lookup: Name lookup. (line 6) * type alignment: Alignment. (line 6) * type attributes: Type Attributes. (line 6) * typedef names as function parameters: Incompatibilities. (line 97) * typeof: Typeof. (line 6) ! * 'type_info': Vague Linkage. (line 42) ! * 'uhk' fixed-suffix: Fixed-Point. (line 6) ! * 'UHK' fixed-suffix: Fixed-Point. (line 6) ! * 'uhr' fixed-suffix: Fixed-Point. (line 6) ! * 'UHR' fixed-suffix: Fixed-Point. (line 6) ! * 'uk' fixed-suffix: Fixed-Point. (line 6) ! * 'UK' fixed-suffix: Fixed-Point. (line 6) ! * 'ulk' fixed-suffix: Fixed-Point. (line 6) ! * 'ULK' fixed-suffix: Fixed-Point. (line 6) ! * 'ULL' integer suffix: Long Long. (line 6) ! * 'ullk' fixed-suffix: Fixed-Point. (line 6) ! * 'ULLK' fixed-suffix: Fixed-Point. (line 6) ! * 'ullr' fixed-suffix: Fixed-Point. (line 6) ! * 'ULLR' fixed-suffix: Fixed-Point. (line 6) ! * 'ulr' fixed-suffix: Fixed-Point. (line 6) ! * 'ULR' fixed-suffix: Fixed-Point. (line 6) * undefined behavior: Bug Criteria. (line 17) * undefined function value: Bug Criteria. (line 17) * underscores in variables in macros: Typeof. (line 46) ! * 'union': Unnamed Fields. (line 6) * union, casting to a: Cast to Union. (line 6) * unions: Incompatibilities. (line 146) ! * unknown pragmas, warning: Warning Options. (line 685) ! * unresolved references and '-nodefaultlibs': Link Options. (line 85) ! * unresolved references and '-nostdlib': Link Options. (line 85) ! * 'unused' attribute.: Function Attributes. ! (line 1872) ! * 'ur' fixed-suffix: Fixed-Point. (line 6) ! * 'UR' fixed-suffix: Fixed-Point. (line 6) ! * 'used' attribute.: Function Attributes. ! (line 1877) * User stack pointer in interrupts on the Blackfin: Function Attributes. ! (line 844) ! * 'use_debug_exception_return' attribute: Function Attributes. ! (line 783) ! * 'use_shadow_register_set' attribute: Function Attributes. ! (line 774) ! * 'V' in constraint: Simple Constraints. (line 43) * V850 Options: V850 Options. (line 6) * vague linkage: Vague Linkage. (line 6) ! * value after 'longjmp': Global Reg Vars. (line 65) * variable addressability on the IA-64: Function Attributes. ! (line 974) * variable addressability on the M32R/D: Variable Attributes. ! (line 370) * variable alignment: Alignment. (line 6) * variable attributes: Variable Attributes. (line 6) --- 57263,57325 ---- * towlower: Other Builtins. (line 6) * towupper: Other Builtins. (line 6) * traditional C language: C Dialect Options. (line 331) ! * trap_exit attribute: Function Attributes. ! (line 1869) ! * trapa_handler attribute: Function Attributes. ! (line 1874) * trunc: Other Builtins. (line 6) * truncf: Other Builtins. (line 6) * truncl: Other Builtins. (line 6) * two-stage name lookup: Name lookup. (line 6) * type alignment: Alignment. (line 6) * type attributes: Type Attributes. (line 6) + * type_info: Vague Linkage. (line 42) * typedef names as function parameters: Incompatibilities. (line 97) * typeof: Typeof. (line 6) ! * UHK fixed-suffix: Fixed-Point. (line 6) ! * uhk fixed-suffix: Fixed-Point. (line 6) ! * UHR fixed-suffix: Fixed-Point. (line 6) ! * uhr fixed-suffix: Fixed-Point. (line 6) ! * UK fixed-suffix: Fixed-Point. (line 6) ! * uk fixed-suffix: Fixed-Point. (line 6) ! * ULK fixed-suffix: Fixed-Point. (line 6) ! * ulk fixed-suffix: Fixed-Point. (line 6) ! * ULL integer suffix: Long Long. (line 6) ! * ULLK fixed-suffix: Fixed-Point. (line 6) ! * ullk fixed-suffix: Fixed-Point. (line 6) ! * ULLR fixed-suffix: Fixed-Point. (line 6) ! * ullr fixed-suffix: Fixed-Point. (line 6) ! * ULR fixed-suffix: Fixed-Point. (line 6) ! * ulr fixed-suffix: Fixed-Point. (line 6) * undefined behavior: Bug Criteria. (line 17) * undefined function value: Bug Criteria. (line 17) * underscores in variables in macros: Typeof. (line 46) ! * union: Unnamed Fields. (line 6) * union, casting to a: Cast to Union. (line 6) * unions: Incompatibilities. (line 146) ! * unknown pragmas, warning: Warning Options. (line 692) ! * unresolved references and -nodefaultlibs: Link Options. (line 85) ! * unresolved references and -nostdlib: Link Options. (line 85) ! * unused attribute.: Function Attributes. ! (line 1878) ! * UR fixed-suffix: Fixed-Point. (line 6) ! * ur fixed-suffix: Fixed-Point. (line 6) ! * use_debug_exception_return attribute: Function Attributes. ! (line 789) ! * use_shadow_register_set attribute: Function Attributes. ! (line 780) ! * used attribute.: Function Attributes. ! (line 1883) * User stack pointer in interrupts on the Blackfin: Function Attributes. ! (line 855) ! * V in constraint: Simple Constraints. (line 43) * V850 Options: V850 Options. (line 6) * vague linkage: Vague Linkage. (line 6) ! * value after longjmp: Global Reg Vars. (line 65) * variable addressability on the IA-64: Function Attributes. ! (line 983) * variable addressability on the M32R/D: Variable Attributes. ! (line 374) * variable alignment: Alignment. (line 6) * variable attributes: Variable Attributes. (line 6) *************** Keyword Index *** 56936,56960 **** * variables, local, in macros: Typeof. (line 46) * variadic macros: Variadic Macros. (line 6) * VAX options: VAX Options. (line 6) ! * 'version_id' attribute: Function Attributes. ! (line 1887) * vfprintf: Other Builtins. (line 6) * vfscanf: Other Builtins. (line 6) ! * 'visibility' attribute: Function Attributes. ! (line 1897) * VLAs: Variable Length. (line 6) ! * 'vliw' attribute: Function Attributes. ! (line 1993) * void pointers, arithmetic: Pointer Arith. (line 6) * void, size of pointer to: Pointer Arith. (line 6) - * volatile access: Volatiles. (line 6) * volatile access <1>: C++ Volatiles. (line 6) ! * 'volatile' applied to function: Function Attributes. (line 6) - * volatile read: Volatiles. (line 6) * volatile read <1>: C++ Volatiles. (line 6) ! * volatile write: Volatiles. (line 6) * volatile write <1>: C++ Volatiles. (line 6) * vprintf: Other Builtins. (line 6) * vscanf: Other Builtins. (line 6) * vsnprintf: Other Builtins. (line 6) --- 57331,57355 ---- * variables, local, in macros: Typeof. (line 46) * variadic macros: Variadic Macros. (line 6) * VAX options: VAX Options. (line 6) ! * version_id attribute: Function Attributes. ! (line 1893) * vfprintf: Other Builtins. (line 6) * vfscanf: Other Builtins. (line 6) ! * visibility attribute: Function Attributes. ! (line 1903) * VLAs: Variable Length. (line 6) ! * vliw attribute: Function Attributes. ! (line 2000) * void pointers, arithmetic: Pointer Arith. (line 6) * void, size of pointer to: Pointer Arith. (line 6) * volatile access <1>: C++ Volatiles. (line 6) ! * volatile access: Volatiles. (line 6) ! * volatile applied to function: Function Attributes. (line 6) * volatile read <1>: C++ Volatiles. (line 6) ! * volatile read: Volatiles. (line 6) * volatile write <1>: C++ Volatiles. (line 6) + * volatile write: Volatiles. (line 6) * vprintf: Other Builtins. (line 6) * vscanf: Other Builtins. (line 6) * vsnprintf: Other Builtins. (line 6) *************** Keyword Index *** 56962,57001 **** * vsscanf: Other Builtins. (line 6) * vtable: Vague Linkage. (line 27) * VxWorks Options: VxWorks Options. (line 6) ! * 'w' floating point suffix: Floating Types. (line 6) ! * 'W' floating point suffix: Floating Types. (line 6) ! * 'wakeup' attribute: Function Attributes. ! (line 729) ! * 'warm' attribute: Function Attributes. ! (line 1377) * warning for comparison of signed and unsigned values: Warning Options. ! (line 1157) * warning for overloaded virtual function: C++ Dialect Options. ! (line 655) * warning for reordering of member initializers: C++ Dialect Options. ! (line 573) ! * warning for unknown pragmas: Warning Options. (line 685) ! * 'warning' function attribute: Function Attributes. ! (line 198) * warning GCC_COLORS capability: Language Independent Options. (line 70) * warning messages: Warning Options. (line 6) ! * warnings from system headers: Warning Options. (line 836) * warnings vs errors: Warnings and Errors. (line 6) ! * 'warn_unused' attribute: C++ Attributes. (line 64) ! * 'warn_unused_result' attribute: Function Attributes. ! (line 1999) ! * 'weak' attribute: Function Attributes. ! (line 2016) ! * 'weakref' attribute: Function Attributes. ! (line 2025) * whitespace: Incompatibilities. (line 112) ! * 'X' in constraint: Simple Constraints. (line 122) * X3.159-1989: Standards. (line 13) * x86-64 Options: i386 and x86-64 Options. (line 6) - * x86-64 options: x86-64 Options. (line 6) * Xstormy16 Options: Xstormy16 Options. (line 6) * Xtensa Options: Xtensa Options. (line 6) * y0: Other Builtins. (line 6) --- 57357,57396 ---- * vsscanf: Other Builtins. (line 6) * vtable: Vague Linkage. (line 27) * VxWorks Options: VxWorks Options. (line 6) ! * W floating point suffix: Floating Types. (line 6) ! * w floating point suffix: Floating Types. (line 6) ! * wakeup attribute: Function Attributes. ! (line 736) ! * warm attribute: Function Attributes. ! (line 1383) ! * warn_unused attribute: C++ Attributes. (line 62) ! * warn_unused_result attribute: Function Attributes. ! (line 2006) * warning for comparison of signed and unsigned values: Warning Options. ! (line 1169) * warning for overloaded virtual function: C++ Dialect Options. ! (line 662) * warning for reordering of member initializers: C++ Dialect Options. ! (line 578) ! * warning for unknown pragmas: Warning Options. (line 692) ! * warning function attribute: Function Attributes. ! (line 200) * warning GCC_COLORS capability: Language Independent Options. (line 70) * warning messages: Warning Options. (line 6) ! * warnings from system headers: Warning Options. (line 844) * warnings vs errors: Warnings and Errors. (line 6) ! * weak attribute: Function Attributes. ! (line 2023) ! * weakref attribute: Function Attributes. ! (line 2032) * whitespace: Incompatibilities. (line 112) ! * X in constraint: Simple Constraints. (line 124) * X3.159-1989: Standards. (line 13) + * x86-64 options: x86-64 Options. (line 6) * x86-64 Options: i386 and x86-64 Options. (line 6) * Xstormy16 Options: Xstormy16 Options. (line 6) * Xtensa Options: Xtensa Options. (line 6) * y0: Other Builtins. (line 6) *************** Keyword Index *** 57014,57332 ****  Tag Table: ! Node: Top1881 ! Node: G++ and GCC3629 ! Node: Standards5686 ! Node: Invoking GCC17845 ! Node: Option Summary21590 ! Node: Overall Options63490 ! Node: Invoking G++77677 ! Node: C Dialect Options79200 ! Node: C++ Dialect Options96198 ! Node: Objective-C and Objective-C++ Dialect Options126743 ! Node: Language Independent Options137250 ! Node: Warning Options141750 ! Node: Debugging Options211791 ! Node: Optimize Options272038 ! Ref: Type-punning332105 ! Node: Preprocessor Options416155 ! Ref: Wtrigraphs420938 ! Ref: dashMF425688 ! Ref: fdollars-in-identifiers436569 ! Node: Assembler Options446794 ! Node: Link Options447485 ! Ref: Link Options-Footnote-1459625 ! Node: Directory Options459961 ! Node: Spec Files466505 ! Node: Target Options488334 ! Node: Submodel Options488733 ! Node: AArch64 Options490499 ! Node: Adapteva Epiphany Options496165 ! Node: ARC Options502113 ! Node: ARM Options514557 ! Node: AVR Options531867 ! Node: Blackfin Options552092 ! Node: C6X Options560110 ! Node: CRIS Options561653 ! Node: CR16 Options565392 ! Node: Darwin Options566303 ! Node: DEC Alpha Options573741 ! Node: FR30 Options585357 ! Node: FRV Options585921 ! Node: GNU/Linux Options592685 ! Node: H8/300 Options593945 ! Node: HPPA Options595397 ! Node: i386 and x86-64 Options604699 ! Node: i386 and x86-64 Windows Options646770 ! Node: IA-64 Options649623 ! Node: LM32 Options657689 ! Node: M32C Options658212 ! Node: M32R/D Options659485 ! Node: M680x0 Options663030 ! Node: MCore Options677065 ! Node: MeP Options678567 ! Node: MicroBlaze Options682527 ! Node: MIPS Options685329 ! Node: MMIX Options717214 ! Node: MN10300 Options719691 ! Node: Moxie Options722232 ! Node: MSP430 Options722602 ! Node: NDS32 Options726127 ! Node: Nios II Options728007 ! Node: PDP-11 Options736472 ! Node: picoChip Options738166 ! Node: PowerPC Options740304 ! Node: RL78 Options740525 ! Node: RS/6000 and PowerPC Options741186 ! Node: RX Options780224 ! Node: S/390 and zSeries Options787556 ! Node: Score Options796093 ! Node: SH Options796942 ! Node: Solaris 2 Options817561 ! Node: SPARC Options819083 ! Node: SPU Options832372 ! Node: System V Options837311 ! Node: TILE-Gx Options838137 ! Node: TILEPro Options839155 ! Node: V850 Options839659 ! Node: VAX Options846367 ! Node: VMS Options846902 ! Node: VxWorks Options847715 ! Node: x86-64 Options848870 ! Node: Xstormy16 Options849088 ! Node: Xtensa Options849377 ! Node: zSeries Options853688 ! Node: Code Gen Options853884 ! Node: Environment Variables884753 ! Node: Precompiled Headers892756 ! Node: C Implementation898759 ! Node: Translation implementation900449 ! Node: Environment implementation901040 ! Node: Identifiers implementation901594 ! Node: Characters implementation902680 ! Node: Integers implementation906330 ! Node: Floating point implementation908215 ! Node: Arrays and pointers implementation911278 ! Ref: Arrays and pointers implementation-Footnote-1912738 ! Node: Hints implementation912864 ! Node: Structures unions enumerations and bit-fields implementation914349 ! Node: Qualifiers implementation916573 ! Node: Declarators implementation918353 ! Node: Statements implementation918694 ! Node: Preprocessing directives implementation919020 ! Node: Library functions implementation921341 ! Node: Architecture implementation921990 ! Node: Locale-specific behavior implementation923635 ! Node: C++ Implementation923940 ! Node: Conditionally-supported behavior925223 ! Node: Exception handling925732 ! Node: C Extensions926140 ! Node: Statement Exprs931210 ! Node: Local Labels935687 ! Node: Labels as Values938660 ! Ref: Labels as Values-Footnote-1941187 ! Node: Nested Functions941372 ! Node: Constructing Calls945330 ! Node: Typeof950047 ! Node: Conditionals954429 ! Node: __int128955318 ! Node: Long Long955843 ! Node: Complex957319 ! Node: Floating Types959907 ! Node: Half-Precision961035 ! Node: Decimal Float963220 ! Node: Hex Floats965076 ! Node: Fixed-Point966113 ! Node: Named Address Spaces969373 ! Ref: AVR Named Address Spaces970054 ! Node: Zero Length975262 ! Node: Empty Structures978549 ! Node: Variable Length978955 ! Node: Variadic Macros981811 ! Node: Escaped Newlines984189 ! Node: Subscripting985028 ! Node: Pointer Arith985753 ! Node: Initializers986321 ! Node: Compound Literals986817 ! Node: Designated Inits990178 ! Node: Case Ranges993916 ! Node: Cast to Union994597 ! Node: Mixed Declarations995687 ! Node: Function Attributes996197 ! Node: Attribute Syntax1091008 ! Node: Function Prototypes1101398 ! Node: C++ Comments1103178 ! Node: Dollar Signs1103697 ! Node: Character Escapes1104162 ! Node: Variable Attributes1104456 ! Ref: AVR Variable Attributes1118131 ! Ref: MeP Variable Attributes1120793 ! Ref: i386 Variable Attributes1122729 ! Node: Type Attributes1128390 ! Ref: MeP Type Attributes1142278 ! Ref: i386 Type Attributes1142552 ! Ref: PowerPC Type Attributes1143244 ! Ref: SPU Type Attributes1144106 ! Node: Alignment1144397 ! Node: Inline1145767 ! Node: Volatiles1150743 ! Node: Extended Asm1153624 ! Ref: Example of asm with clobbered asm reg1159528 ! Ref: Extended asm with goto1169241 ! Node: Constraints1177091 ! Node: Simple Constraints1178175 ! Node: Multi-Alternative1185485 ! Node: Modifiers1187202 ! Node: Machine Constraints1190215 ! Node: Asm Labels1248272 ! Node: Explicit Reg Vars1249948 ! Node: Global Reg Vars1251546 ! Node: Local Reg Vars1256042 ! Node: Alternate Keywords1258458 ! Node: Incomplete Enums1259944 ! Node: Function Names1260700 ! Node: Return Address1262861 ! Node: Vector Extensions1266368 ! Node: Offsetof1273297 ! Node: __sync Builtins1274102 ! Node: __atomic Builtins1279571 ! Node: x86 specific memory model extensions for transactional memory1291205 ! Node: Object Size Checking1292467 ! Node: Cilk Plus Builtins1297960 ! Node: Other Builtins1298829 ! Node: Target Builtins1328136 ! Node: Alpha Built-in Functions1329555 ! Node: Altera Nios II Built-in Functions1332568 ! Node: ARC Built-in Functions1336555 ! Node: ARC SIMD Built-in Functions1341767 ! Node: ARM iWMMXt Built-in Functions1350663 ! Node: ARM NEON Intrinsics1357646 ! Node: ARM ACLE Intrinsics1575140 ! Node: AVR Built-in Functions1576468 ! Node: Blackfin Built-in Functions1579546 ! Node: FR-V Built-in Functions1580163 ! Node: Argument Types1581026 ! Node: Directly-mapped Integer Functions1582780 ! Node: Directly-mapped Media Functions1583864 ! Node: Raw read/write Functions1592070 ! Node: Other Built-in Functions1592978 ! Node: X86 Built-in Functions1594164 ! Node: X86 transactional memory intrinsics1653357 ! Node: MIPS DSP Built-in Functions1656033 ! Node: MIPS Paired-Single Support1668542 ! Node: MIPS Loongson Built-in Functions1670041 ! Node: Paired-Single Arithmetic1676556 ! Node: Paired-Single Built-in Functions1677504 ! Node: MIPS-3D Built-in Functions1680171 ! Node: Other MIPS Built-in Functions1685549 ! Node: MSP430 Built-in Functions1686554 ! Node: NDS32 Built-in Functions1687458 ! Node: picoChip Built-in Functions1688751 ! Node: PowerPC Built-in Functions1690094 ! Node: PowerPC AltiVec/VSX Built-in Functions1693803 ! Node: PowerPC Hardware Transactional Memory Built-in Functions1833594 ! Node: RX Built-in Functions1840567 ! Node: S/390 System z Built-in Functions1844600 ! Node: SH Built-in Functions1849829 ! Node: SPARC VIS Built-in Functions1851222 ! Node: SPU Built-in Functions1856825 ! Node: TI C6X Built-in Functions1858642 ! Node: TILE-Gx Built-in Functions1859667 ! Node: TILEPro Built-in Functions1860786 ! Node: Target Format Checks1861855 ! Node: Solaris Format Checks1862287 ! Node: Darwin Format Checks1862713 ! Node: Pragmas1863531 ! Node: ARM Pragmas1864267 ! Node: M32C Pragmas1864870 ! Node: MeP Pragmas1865942 ! Node: RS/6000 and PowerPC Pragmas1868010 ! Node: Darwin Pragmas1868751 ! Node: Solaris Pragmas1869818 ! Node: Symbol-Renaming Pragmas1870982 ! Node: Structure-Packing Pragmas1872538 ! Node: Weak Pragmas1874183 ! Node: Diagnostic Pragmas1874917 ! Node: Visibility Pragmas1878026 ! Node: Push/Pop Macro Pragmas1878778 ! Node: Function Specific Option Pragmas1879751 ! Node: Loop-Specific Pragmas1881942 ! Node: Unnamed Fields1883041 ! Node: Thread-Local1885268 ! Node: C99 Thread-Local Edits1887373 ! Node: C++98 Thread-Local Edits1889371 ! Node: Binary constants1892816 ! Node: C++ Extensions1893487 ! Node: C++ Volatiles1895198 ! Node: Restricted Pointers1897546 ! Node: Vague Linkage1899137 ! Node: C++ Interface1902760 ! Ref: C++ Interface-Footnote-11907048 ! Node: Template Instantiation1907186 ! Node: Bound member functions1913772 ! Node: C++ Attributes1915304 ! Node: Function Multiversioning1918883 ! Node: Namespace Association1920700 ! Node: Type Traits1922080 ! Node: Java Exceptions1928563 ! Node: Deprecated Features1929953 ! Node: Backwards Compatibility1932920 ! Node: Objective-C1934267 ! Node: GNU Objective-C runtime API1934874 ! Node: Modern GNU Objective-C runtime API1935881 ! Node: Traditional GNU Objective-C runtime API1938317 ! Node: Executing code before main1939044 ! Node: What you can and what you cannot do in +load1941784 ! Node: Type encoding1944172 ! Node: Legacy type encoding1949199 ! Node: @encode1950289 ! Node: Method signatures1950830 ! Node: Garbage Collection1952822 ! Node: Constant string objects1955512 ! Node: compatibility_alias1958021 ! Node: Exceptions1958742 ! Node: Synchronization1961452 ! Node: Fast enumeration1962636 ! Node: Using fast enumeration1962948 ! Node: c99-like fast enumeration syntax1964159 ! Node: Fast enumeration details1964862 ! Node: Fast enumeration protocol1967202 ! Node: Messaging with the GNU Objective-C runtime1970354 ! Node: Dynamically registering methods1971726 ! Node: Forwarding hook1973417 ! Node: Compatibility1976457 ! Node: Gcov1983013 ! Node: Gcov Intro1983546 ! Node: Invoking Gcov1986264 ! Node: Gcov and Optimization2000504 ! Node: Gcov Data Files2003506 ! Node: Cross-profiling2004901 ! Node: Trouble2006755 ! Node: Actual Bugs2008167 ! Node: Interoperation2008614 ! Node: Incompatibilities2015505 ! Node: Fixed Headers2023657 ! Node: Standard Libraries2025315 ! Node: Disappointments2026687 ! Node: C++ Misunderstandings2031046 ! Node: Static Definitions2031857 ! Node: Name lookup2032910 ! Ref: Name lookup-Footnote-12037690 ! Node: Temporaries2037879 ! Node: Copy Assignment2039855 ! Node: Non-bugs2041662 ! Node: Warnings and Errors2052168 ! Node: Bugs2053930 ! Node: Bug Criteria2054397 ! Node: Bug Reporting2056607 ! Node: Service2056828 ! Node: Contributing2057647 ! Node: Funding2058387 ! Node: GNU Project2060877 ! Node: Copying2061523 ! Node: GNU Free Documentation License2099032 ! Node: Contributors2124150 ! Node: Option Index2162019 ! Node: Keyword Index2374276  End Tag Table --- 57409,57727 ----  Tag Table: ! Node: Top1934 ! Node: G++ and GCC3683 ! Node: Standards5752 ! Node: Invoking GCC17909 ! Node: Option Summary21654 ! Node: Overall Options63570 ! Node: Invoking G++77808 ! Node: C Dialect Options79331 ! Node: C++ Dialect Options96335 ! Node: Objective-C and Objective-C++ Dialect Options126903 ! Node: Language Independent Options137411 ! Node: Warning Options141905 ! Node: Debugging Options212001 ! Node: Optimize Options272283 ! Ref: Type-punning332364 ! Node: Preprocessor Options416269 ! Ref: Wtrigraphs421051 ! Ref: dashMF425799 ! Ref: fdollars-in-identifiers436663 ! Node: Assembler Options446930 ! Node: Link Options447622 ! Ref: Link Options-Footnote-1459778 ! Node: Directory Options460112 ! Node: Spec Files466665 ! Node: Target Options488548 ! Node: Submodel Options488947 ! Node: AArch64 Options490713 ! Node: Adapteva Epiphany Options496387 ! Node: ARC Options502338 ! Node: ARM Options514777 ! Node: AVR Options532083 ! Node: Blackfin Options552286 ! Node: C6X Options560301 ! Node: CRIS Options561844 ! Node: CR16 Options565588 ! Node: Darwin Options566495 ! Node: DEC Alpha Options573934 ! Node: FR30 Options585522 ! Node: FRV Options586087 ! Node: GNU/Linux Options592806 ! Node: H8/300 Options594067 ! Node: HPPA Options595517 ! Node: i386 and x86-64 Options604818 ! Node: i386 and x86-64 Windows Options646859 ! Node: IA-64 Options649715 ! Node: LM32 Options657779 ! Node: M32C Options658303 ! Node: M32R/D Options659577 ! Node: M680x0 Options663123 ! Node: MCore Options677169 ! Node: MeP Options678672 ! Node: MicroBlaze Options682632 ! Node: MIPS Options685428 ! Node: MMIX Options717366 ! Node: MN10300 Options719848 ! Node: Moxie Options722391 ! Node: MSP430 Options722762 ! Node: NDS32 Options726292 ! Node: Nios II Options728173 ! Node: PDP-11 Options736620 ! Node: picoChip Options738314 ! Node: PowerPC Options740455 ! Node: RL78 Options740676 ! Node: RS/6000 and PowerPC Options741338 ! Node: RX Options780620 ! Node: S/390 and zSeries Options787954 ! Node: Score Options796504 ! Node: SH Options797346 ! Node: Solaris 2 Options817988 ! Node: SPARC Options819516 ! Node: SPU Options832785 ! Node: System V Options837722 ! Node: TILE-Gx Options838548 ! Node: TILEPro Options839566 ! Node: V850 Options840070 ! Node: VAX Options846783 ! Node: VMS Options847318 ! Node: VxWorks Options848129 ! Node: x86-64 Options849284 ! Node: Xstormy16 Options849502 ! Node: Xtensa Options849791 ! Node: zSeries Options854102 ! Node: Code Gen Options854298 ! Node: Environment Variables885207 ! Node: Precompiled Headers893208 ! Node: C Implementation899216 ! Node: Translation implementation900905 ! Node: Environment implementation901497 ! Node: Identifiers implementation902052 ! Node: Characters implementation903139 ! Node: Integers implementation906790 ! Node: Floating point implementation908676 ! Node: Arrays and pointers implementation911741 ! Ref: Arrays and pointers implementation-Footnote-1913200 ! Node: Hints implementation913324 ! Node: Structures unions enumerations and bit-fields implementation914811 ! Node: Qualifiers implementation917036 ! Node: Declarators implementation918816 ! Node: Statements implementation919158 ! Node: Preprocessing directives implementation919485 ! Node: Library functions implementation921807 ! Node: Architecture implementation922457 ! Node: Locale-specific behavior implementation924099 ! Node: C++ Implementation924404 ! Node: Conditionally-supported behavior925686 ! Node: Exception handling926196 ! Node: C Extensions926605 ! Node: Statement Exprs931679 ! Node: Local Labels936155 ! Node: Labels as Values939128 ! Ref: Labels as Values-Footnote-1941653 ! Node: Nested Functions941836 ! Node: Constructing Calls945794 ! Node: Typeof950512 ! Node: Conditionals954893 ! Node: __int128955783 ! Node: Long Long956307 ! Node: Complex957783 ! Node: Floating Types960372 ! Node: Half-Precision961500 ! Node: Decimal Float963682 ! Node: Hex Floats965537 ! Node: Fixed-Point966573 ! Node: Named Address Spaces969855 ! Ref: AVR Named Address Spaces970536 ! Node: Zero Length975742 ! Node: Empty Structures979029 ! Node: Variable Length979435 ! Node: Variadic Macros982291 ! Node: Escaped Newlines984669 ! Node: Subscripting985508 ! Node: Pointer Arith986234 ! Node: Initializers986802 ! Node: Compound Literals987298 ! Node: Designated Inits990659 ! Node: Case Ranges994397 ! Node: Cast to Union995078 ! Node: Mixed Declarations996169 ! Node: Function Attributes996679 ! Node: Attribute Syntax1091412 ! Node: Function Prototypes1101803 ! Node: C++ Comments1103584 ! Node: Dollar Signs1104103 ! Node: Character Escapes1104568 ! Node: Variable Attributes1104862 ! Ref: AVR Variable Attributes1118553 ! Ref: MeP Variable Attributes1121214 ! Ref: i386 Variable Attributes1123160 ! Node: Type Attributes1128824 ! Ref: MeP Type Attributes1142712 ! Ref: i386 Type Attributes1142986 ! Ref: PowerPC Type Attributes1143677 ! Ref: SPU Type Attributes1144539 ! Node: Alignment1144830 ! Node: Inline1146200 ! Node: Volatiles1151175 ! Node: Extended Asm1154057 ! Ref: Example of asm with clobbered asm reg1159961 ! Ref: Extended asm with goto1169673 ! Node: Constraints1177524 ! Node: Simple Constraints1178608 ! Node: Multi-Alternative1185929 ! Node: Modifiers1187646 ! Node: Machine Constraints1190660 ! Node: Asm Labels1248125 ! Node: Explicit Reg Vars1249801 ! Node: Global Reg Vars1251404 ! Node: Local Reg Vars1255900 ! Node: Alternate Keywords1258317 ! Node: Incomplete Enums1259803 ! Node: Function Names1260559 ! Node: Return Address1262720 ! Node: Vector Extensions1266227 ! Node: Offsetof1273146 ! Node: __sync Builtins1273959 ! Node: __atomic Builtins1279429 ! Node: x86 specific memory model extensions for transactional memory1291068 ! Node: Object Size Checking1292330 ! Node: Cilk Plus Builtins1297823 ! Node: Other Builtins1298703 ! Node: Target Builtins1328027 ! Node: Alpha Built-in Functions1329446 ! Node: Altera Nios II Built-in Functions1332459 ! Node: ARC Built-in Functions1336444 ! Node: ARC SIMD Built-in Functions1341655 ! Node: ARM iWMMXt Built-in Functions1350551 ! Node: ARM NEON Intrinsics1357534 ! Node: ARM ACLE Intrinsics1575017 ! Node: AVR Built-in Functions1576344 ! Node: Blackfin Built-in Functions1579414 ! Node: FR-V Built-in Functions1580031 ! Node: Argument Types1580892 ! Node: Directly-mapped Integer Functions1582646 ! Node: Directly-mapped Media Functions1583730 ! Node: Raw read/write Functions1590764 ! Node: Other Built-in Functions1591678 ! Node: X86 Built-in Functions1592864 ! Node: X86 transactional memory intrinsics1652056 ! Node: MIPS DSP Built-in Functions1654733 ! Node: MIPS Paired-Single Support1667243 ! Node: MIPS Loongson Built-in Functions1668742 ! Node: Paired-Single Arithmetic1675262 ! Node: Paired-Single Built-in Functions1676210 ! Node: MIPS-3D Built-in Functions1678877 ! Node: Other MIPS Built-in Functions1684254 ! Node: MSP430 Built-in Functions1685259 ! Node: NDS32 Built-in Functions1686163 ! Node: picoChip Built-in Functions1687456 ! Node: PowerPC Built-in Functions1688800 ! Node: PowerPC AltiVec/VSX Built-in Functions1692508 ! Node: PowerPC Hardware Transactional Memory Built-in Functions1832299 ! Node: RX Built-in Functions1840790 ! Node: S/390 System z Built-in Functions1844823 ! Node: SH Built-in Functions1850060 ! Node: SPARC VIS Built-in Functions1851453 ! Node: SPU Built-in Functions1857057 ! Node: TI C6X Built-in Functions1858873 ! Node: TILE-Gx Built-in Functions1859897 ! Node: TILEPro Built-in Functions1861014 ! Node: Target Format Checks1862081 ! Node: Solaris Format Checks1862513 ! Node: Darwin Format Checks1862939 ! Node: Pragmas1863757 ! Node: ARM Pragmas1864493 ! Node: M32C Pragmas1865096 ! Node: MeP Pragmas1866170 ! Node: RS/6000 and PowerPC Pragmas1868239 ! Node: Darwin Pragmas1868980 ! Node: Solaris Pragmas1870047 ! Node: Symbol-Renaming Pragmas1871208 ! Node: Structure-Packing Pragmas1872762 ! Node: Weak Pragmas1874412 ! Node: Diagnostic Pragmas1875146 ! Node: Visibility Pragmas1878253 ! Node: Push/Pop Macro Pragmas1879005 ! Node: Function Specific Option Pragmas1879977 ! Node: Loop-Specific Pragmas1882165 ! Node: Unnamed Fields1883261 ! Node: Thread-Local1885489 ! Node: C99 Thread-Local Edits1887594 ! Node: C++98 Thread-Local Edits1889606 ! Node: Binary constants1893050 ! Node: C++ Extensions1893721 ! Node: C++ Volatiles1895432 ! Node: Restricted Pointers1897780 ! Node: Vague Linkage1899371 ! Node: C++ Interface1902995 ! Ref: C++ Interface-Footnote-11907281 ! Node: Template Instantiation1907417 ! Node: Bound member functions1914004 ! Node: C++ Attributes1915536 ! Node: Function Multiversioning1919113 ! Node: Namespace Association1920928 ! Node: Type Traits1922308 ! Node: Java Exceptions1928796 ! Node: Deprecated Features1930186 ! Node: Backwards Compatibility1933151 ! Node: Objective-C1934503 ! Node: GNU Objective-C runtime API1935112 ! Node: Modern GNU Objective-C runtime API1936119 ! Node: Traditional GNU Objective-C runtime API1938556 ! Node: Executing code before main1939284 ! Node: What you can and what you cannot do in +load1942022 ! Node: Type encoding1944412 ! Node: Legacy type encoding1949488 ! Node: @encode1950579 ! Node: Method signatures1951120 ! Node: Garbage Collection1953115 ! Node: Constant string objects1955804 ! Node: compatibility_alias1958312 ! Node: Exceptions1959034 ! Node: Synchronization1961745 ! Node: Fast enumeration1962929 ! Node: Using fast enumeration1963241 ! Node: c99-like fast enumeration syntax1964452 ! Node: Fast enumeration details1965155 ! Node: Fast enumeration protocol1967496 ! Node: Messaging with the GNU Objective-C runtime1970648 ! Node: Dynamically registering methods1972019 ! Node: Forwarding hook1973710 ! Node: Compatibility1976750 ! Node: Gcov1983317 ! Node: Gcov Intro1983850 ! Node: Invoking Gcov1986568 ! Node: Gcov and Optimization2000814 ! Node: Gcov Data Files2003814 ! Node: Cross-profiling2005209 ! Node: Trouble2007060 ! Node: Actual Bugs2008472 ! Node: Interoperation2008919 ! Node: Incompatibilities2015811 ! Node: Fixed Headers2023962 ! Node: Standard Libraries2025625 ! Node: Disappointments2026997 ! Node: C++ Misunderstandings2031355 ! Node: Static Definitions2032166 ! Node: Name lookup2033219 ! Ref: Name lookup-Footnote-12037997 ! Node: Temporaries2038184 ! Node: Copy Assignment2040160 ! Node: Non-bugs2041967 ! Node: Warnings and Errors2052474 ! Node: Bugs2054236 ! Node: Bug Criteria2054703 ! Node: Bug Reporting2056913 ! Node: Service2057134 ! Node: Contributing2057953 ! Node: Funding2058693 ! Node: GNU Project2061182 ! Node: Copying2061828 ! Node: GNU Free Documentation License2099356 ! Node: Contributors2124493 ! Node: Option Index2162365 ! Node: Keyword Index2373378  End Tag Table diff -Nrcpad gcc-4.9.3/gcc/doc/gccinstall.info gcc-4.9.4/gcc/doc/gccinstall.info *** gcc-4.9.3/gcc/doc/gccinstall.info Fri Jun 26 18:49:02 2015 --- gcc-4.9.4/gcc/doc/gccinstall.info Wed Aug 3 06:14:13 2016 *************** *** 1,5 **** ! This is gccinstall.info, produced by makeinfo version 5.2 from ! install.texi. Copyright (C) 1988-2015 Free Software Foundation, Inc. --- 1,5 ---- ! This is doc/gccinstall.info, produced by makeinfo version 4.12 from ! /space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/doc/install.texi. Copyright (C) 1988-2015 Free Software Foundation, Inc. *************** is included in the section entitled "GNU *** 17,28 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. ! INFO-DIR-SECTION Software development ! START-INFO-DIR-ENTRY ! * gccinstall: (gccinstall). Installing the GNU Compiler Collection. ! END-INFO-DIR-ENTRY Copyright (C) 1988-2015 Free Software Foundation, Inc. --- 17,24 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. Copyright (C) 1988-2015 Free Software Foundation, Inc. *************** is included in the section entitled "GNU *** 40,47 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: gccinstall.info, Node: Top, Up: (dir) --- 36,48 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! ! INFO-DIR-SECTION Software development ! START-INFO-DIR-ENTRY ! * gccinstall: (gccinstall). Installing the GNU Compiler Collection. ! END-INFO-DIR-ENTRY  File: gccinstall.info, Node: Top, Up: (dir) *************** File: gccinstall.info, Node: Installing *** 66,78 **** 1 Installing GCC **************** ! The latest version of this document is always available at http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. ! This document describes the generic installation procedure for GCC as ! well as detailing some target specific installation instructions. GCC includes several components that previously were separate distributions with their own installation instructions. This document --- 67,79 ---- 1 Installing GCC **************** ! The latest version of this document is always available at http://gcc.gnu.org/install/. It refers to the current development sources, instructions for specific released versions are included with the sources. ! This document describes the generic installation procedure for GCC ! as well as detailing some target specific installation instructions. GCC includes several components that previously were separate distributions with their own installation instructions. This document *************** supersedes all package-specific installa *** 82,90 **** host/target specific installation notes: Specific. We recommend you browse the entire generic installation instructions before you proceed. ! Lists of successful builds for released versions of GCC are available ! at . These lists are updated as new ! information becomes available. The installation procedure itself is broken into five steps. --- 83,91 ---- host/target specific installation notes: Specific. We recommend you browse the entire generic installation instructions before you proceed. ! Lists of successful builds for released versions of GCC are ! available at `http://gcc.gnu.org/buildstat.html'. These lists are ! updated as new information becomes available. The installation procedure itself is broken into five steps. *************** information becomes available. *** 97,108 **** * Testing:: (optional) * Final install:: ! Please note that GCC does not support 'make uninstall' and probably won't do so in the near future as this would open a can of worms. ! Instead, we suggest that you install GCC into a directory of its own and ! simply remove that directory when you do not need that specific version ! of GCC any longer, and, if shared libraries are installed there as well, ! no more binaries exist that use them.  File: gccinstall.info, Node: Prerequisites, Next: Downloading the source, Up: Installing GCC --- 98,109 ---- * Testing:: (optional) * Final install:: ! Please note that GCC does not support `make uninstall' and probably won't do so in the near future as this would open a can of worms. ! Instead, we suggest that you install GCC into a directory of its own ! and simply remove that directory when you do not need that specific ! version of GCC any longer, and, if shared libraries are installed there ! as well, no more binaries exist that use them.  File: gccinstall.info, Node: Prerequisites, Next: Downloading the source, Up: Installing GCC *************** File: gccinstall.info, Node: Prerequisi *** 110,117 **** 2 Prerequisites *************** ! GCC requires that various tools and packages be available for use in the ! build procedure. Modifying GCC sources requires additional tools described below. Tools/packages necessary for building GCC --- 111,118 ---- 2 Prerequisites *************** ! GCC requires that various tools and packages be available for use in ! the build procedure. Modifying GCC sources requires additional tools described below. Tools/packages necessary for building GCC *************** ISO C++98 compiler *** 124,402 **** C compiler. To build all languages in a cross-compiler or other configuration ! where 3-stage bootstrap is not performed, you need to start with an ! existing GCC binary (version 3.4 or later) because source code for ! language frontends other than C might use GCC extensions. Note that to bootstrap GCC with versions of GCC earlier than 3.4, ! you may need to use '--disable-stage1-checking', though bootstrapping the compiler with such earlier compilers is strongly discouraged. C standard library and headers - In order to build GCC, the C standard library and headers must be present for all target variants for which target libraries will be built (and not only the variant of the host C++ compiler). ! This affects the popular 'x86_64-unknown-linux-gnu' platform (among ! other multilib targets), for which 64-bit ('x86_64') and 32-bit ! ('i386') libc headers are usually packaged separately. If you do a ! build of a native compiler on 'x86_64-unknown-linux-gnu', make sure ! you either have the 32-bit libc developer package properly ! installed (the exact name of the package depends on your distro) or ! you must build GCC as a 64-bit only compiler by configuring with ! the option '--disable-multilib'. Otherwise, you may encounter an ! error such as 'fatal error: gnu/stubs-32.h: No such file' GNAT - In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. A "working" POSIX compatible shell, or GNU bash ! ! Necessary when running 'configure' because some '/bin/sh' shells have bugs and may crash when configuring the target libraries. In ! other cases, '/bin/sh' or 'ksh' have disastrous corner-case ! performance problems. This can cause target 'configure' runs to literally take days to complete in some cases. ! So on some platforms '/bin/ksh' is sufficient, on others it isn't. ! See the host/target specific instructions for your platform, or use ! 'bash' to be sure. Then set 'CONFIG_SHELL' in your environment to ! your "good" shell prior to running 'configure'/'make'. ! 'zsh' is not a fully compliant POSIX shell and will not work when configuring GCC. A POSIX or SVR4 awk - Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. GNU binutils - Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. gzip version 1.2.4 (or later) or bzip2 version 1.0.2 (or later) ! ! Necessary to uncompress GCC 'tar' files when source code is obtained via FTP mirror sites. GNU make version 3.80 (or later) - You must have GNU make installed to build GCC. GNU tar version 1.14 (or later) - Necessary (only on some platforms) to untar the source code. Many ! systems' 'tar' programs will also work, only try GNU 'tar' if you have problems. Perl version 5.6.1 (or later) ! Necessary when targeting Darwin, building 'libstdc++', and not ! using '--disable-symvers'. Necessary when targeting Solaris 2 with ! Sun 'ld' and not using '--disable-symvers'. The bundled 'perl' in ! Solaris 8 and up works. ! ! Necessary when regenerating 'Makefile' dependencies in libiberty. ! Necessary when regenerating 'libiberty/functions.texi'. Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. ! 'jar', or InfoZIP ('zip' and 'unzip') ! Necessary to build libgcj, the GCJ runtime. Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer versions may work in some cases, but it's safer to use ! the exact versions documented. We appreciate bug reports about problems ! with newer versions, though. If your OS vendor provides packages for ! the support libraries then using those packages may be the simplest way ! to install the libraries. GNU Multiple Precision Library (GMP) version 4.3.2 (or later) - Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named 'gmp', it will be built ! together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure ! with the '--with-gmp' configure option. See also '--with-gmp-lib' ! and '--with-gmp-include'. MPFR Library version 2.4.2 (or later) - Necessary to build GCC. It can be downloaded from ! . If an MPFR source distribution is found in ! a subdirectory of your GCC sources named 'mpfr', it will be built ! together with GCC. Alternatively, if MPFR is already installed but ! it is not in your default library search path, the '--with-mpfr' ! configure option should be used. See also '--with-mpfr-lib' and ! '--with-mpfr-include'. MPC Library version 0.8.1 (or later) - Necessary to build GCC. It can be downloaded from ! . If an MPC source distribution is ! found in a subdirectory of your GCC sources named 'mpc', it will be ! built together with GCC. Alternatively, if MPC is already installed ! but it is not in your default library search path, the '--with-mpc' ! configure option should be used. See also '--with-mpc-lib' and ! '--with-mpc-include'. ISL Library version 0.12.2 - Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from ! as 'isl-0.12.2.tar.bz2'. If an ISL source distribution is found in ! a subdirectory of your GCC sources named 'isl', it will be built ! together with GCC. Alternatively, the '--with-isl' configure option ! should be used if ISL is not installed in your default library ! search path. CLooG 0.18.1 - Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from ! as 'cloog-0.18.1.tar.gz'. If a CLooG source distribution is found ! in a subdirectory of your GCC sources named 'cloog', it will be ! built together with GCC. Alternatively, the '--with-cloog' configure option should be used if CLooG is not installed in your default library search path. If you want to install CLooG separately it needs to be built ! against ISL 0.12.2 by using the '--with-isl=system' to direct CLooG ! to pick up an already installed ISL. Using the ISL library as ! bundled with CLooG is not supported. Tools/packages necessary for modifying GCC ========================================== autoconf version 2.64 GNU m4 version 1.4.6 (or later) ! ! Necessary when modifying 'configure.ac', 'aclocal.m4', etc. to ! regenerate 'configure' and 'config.in' files. automake version 1.11.1 ! ! Necessary when modifying a 'Makefile.am' file to regenerate its ! associated 'Makefile.in'. Much of GCC does not use automake, so directly edit the ! 'Makefile.in' file. Specifically this applies to the 'gcc', ! 'intl', 'libcpp', 'libiberty', 'libobjc' directories as well as any ! of their subdirectories. For directories that use automake, GCC requires the latest release ! in the 1.11 series, which is currently 1.11.1. When regenerating a ! directory to a newer version, please update all the directories using an older 1.11 to the latest released version. gettext version 0.14.5 (or later) ! ! Needed to regenerate 'gcc.pot'. gperf version 2.7.2 (or later) ! ! Necessary when modifying 'gperf' input files, e.g. ! 'gcc/cp/cfns.gperf' to regenerate its associated header file, e.g. ! 'gcc/cp/cfns.h'. DejaGnu 1.4.4 Expect Tcl - Necessary to run the GCC testsuite; see the section on testing for details. Tcl 8.6 has a known regression in RE pattern handling that make parts of the testsuite fail. See ! for more information. autogen version 5.5.4 (or later) and guile version 1.4.1 (or later) ! Necessary to regenerate 'fixinc/fixincl.x' from ! 'fixinc/inclhack.def' and 'fixinc/*.tpl'. ! ! Necessary to run 'make check' for 'fixinc'. ! Necessary to regenerate the top level 'Makefile.in' file from ! 'Makefile.tpl' and 'Makefile.def'. Flex version 2.5.4 (or later) ! ! Necessary when modifying '*.l' files. Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. Texinfo version 4.7 (or later) ! ! Necessary for running 'makeinfo' when modifying '*.texi' files to test your changes. ! Necessary for running 'make dvi' or 'make pdf' to create printable documentation in DVI or PDF format. Texinfo version 4.8 or later ! is required for 'make pdf'. Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. TeX (any working version) ! ! Necessary for running 'texi2dvi' and 'texi2pdf', which are used ! when running 'make dvi' or 'make pdf' to create DVI or PDF files, respectively. SVN (any version) SSH (any version) - Necessary to access the SVN repository. Public releases and weekly snapshots of the development sources are also available via FTP. GNU diffutils version 2.7 (or later) - Useful when submitting patches for the GCC source code. patch version 2.5.4 (or later) ! ! Necessary when applying patches, created with 'diff', to one's own sources. ecj1 gjavah ! ! If you wish to modify '.java' files in libjava, you will need to ! configure with '--enable-java-maintainer-mode', and you will need ! to have executables named 'ecj1' and 'gjavah' in your path. The ! 'ecj1' executable should run the Eclipse Java compiler via the GCC-specific entry point. You can download a suitable jar from ! , or by running the script ! 'contrib/download_ecj'. antlr.jar version 2.7.1 (or later) antlr binary ! ! If you wish to build the 'gjdoc' binary in libjava, you will need ! to have an 'antlr.jar' library available. The library is searched for in system locations but can be specified with ! '--with-antlr-jar=' instead. When configuring with ! '--enable-java-maintainer-mode', you will need to have one of the ! executables named 'cantlr', 'runantlr' or 'antlr' in your path.  File: gccinstall.info, Node: Downloading the source, Next: Configuration, Prev: Prerequisites, Up: Installing GCC --- 125,379 ---- C compiler. To build all languages in a cross-compiler or other configuration ! where 3-stage bootstrap is not performed, you need to start with ! an existing GCC binary (version 3.4 or later) because source code ! for language frontends other than C might use GCC extensions. Note that to bootstrap GCC with versions of GCC earlier than 3.4, ! you may need to use `--disable-stage1-checking', though bootstrapping the compiler with such earlier compilers is strongly discouraged. C standard library and headers In order to build GCC, the C standard library and headers must be present for all target variants for which target libraries will be built (and not only the variant of the host C++ compiler). ! This affects the popular `x86_64-unknown-linux-gnu' platform (among ! other multilib targets), for which 64-bit (`x86_64') and 32-bit ! (`i386') libc headers are usually packaged separately. If you do a ! build of a native compiler on `x86_64-unknown-linux-gnu', make ! sure you either have the 32-bit libc developer package properly ! installed (the exact name of the package depends on your distro) ! or you must build GCC as a 64-bit only compiler by configuring ! with the option `--disable-multilib'. Otherwise, you may ! encounter an error such as `fatal error: gnu/stubs-32.h: No such ! file' GNAT In order to build the Ada compiler (GNAT) you must already have GNAT installed because portions of the Ada frontend are written in Ada (with GNAT extensions.) Refer to the Ada installation instructions for more specific information. A "working" POSIX compatible shell, or GNU bash ! Necessary when running `configure' because some `/bin/sh' shells have bugs and may crash when configuring the target libraries. In ! other cases, `/bin/sh' or `ksh' have disastrous corner-case ! performance problems. This can cause target `configure' runs to literally take days to complete in some cases. ! So on some platforms `/bin/ksh' is sufficient, on others it isn't. ! See the host/target specific instructions for your platform, or ! use `bash' to be sure. Then set `CONFIG_SHELL' in your ! environment to your "good" shell prior to running ! `configure'/`make'. ! `zsh' is not a fully compliant POSIX shell and will not work when configuring GCC. A POSIX or SVR4 awk Necessary for creating some of the generated source files for GCC. If in doubt, use a recent GNU awk version, as some of the older ones are broken. GNU awk version 3.1.5 is known to work. GNU binutils Necessary in some circumstances, optional in others. See the host/target specific instructions for your platform for the exact requirements. gzip version 1.2.4 (or later) or bzip2 version 1.0.2 (or later) ! Necessary to uncompress GCC `tar' files when source code is obtained via FTP mirror sites. GNU make version 3.80 (or later) You must have GNU make installed to build GCC. GNU tar version 1.14 (or later) Necessary (only on some platforms) to untar the source code. Many ! systems' `tar' programs will also work, only try GNU `tar' if you have problems. Perl version 5.6.1 (or later) + Necessary when targeting Darwin, building `libstdc++', and not + using `--disable-symvers'. Necessary when targeting Solaris 2 + with Sun `ld' and not using `--disable-symvers'. The bundled + `perl' in Solaris 8 and up works. ! Necessary when regenerating `Makefile' dependencies in libiberty. ! Necessary when regenerating `libiberty/functions.texi'. Necessary when generating manpages from Texinfo manuals. Used by various scripts to generate some files included in SVN (mainly Unicode-related and rarely changing) from source tables. ! `jar', or InfoZIP (`zip' and `unzip') Necessary to build libgcj, the GCJ runtime. + Several support libraries are necessary to build GCC, some are required, others optional. While any sufficiently new version of required tools usually work, library requirements are generally stricter. Newer versions may work in some cases, but it's safer to use ! the exact versions documented. We appreciate bug reports about ! problems with newer versions, though. If your OS vendor provides ! packages for the support libraries then using those packages may be the ! simplest way to install the libraries. GNU Multiple Precision Library (GMP) version 4.3.2 (or later) Necessary to build GCC. If a GMP source distribution is found in a ! subdirectory of your GCC sources named `gmp', it will be built ! together with GCC. Alternatively, if GMP is already installed but it is not in your library search path, you will have to configure ! with the `--with-gmp' configure option. See also `--with-gmp-lib' ! and `--with-gmp-include'. MPFR Library version 2.4.2 (or later) Necessary to build GCC. It can be downloaded from ! `http://www.mpfr.org/'. If an MPFR source distribution is found ! in a subdirectory of your GCC sources named `mpfr', it will be ! built together with GCC. Alternatively, if MPFR is already ! installed but it is not in your default library search path, the ! `--with-mpfr' configure option should be used. See also ! `--with-mpfr-lib' and `--with-mpfr-include'. MPC Library version 0.8.1 (or later) Necessary to build GCC. It can be downloaded from ! `http://www.multiprecision.org/'. If an MPC source distribution ! is found in a subdirectory of your GCC sources named `mpc', it ! will be built together with GCC. Alternatively, if MPC is already ! installed but it is not in your default library search path, the ! `--with-mpc' configure option should be used. See also ! `--with-mpc-lib' and `--with-mpc-include'. ISL Library version 0.12.2 Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from `ftp://gcc.gnu.org/pub/gcc/infrastructure/' ! as `isl-0.12.2.tar.bz2'. If an ISL source distribution is found ! in a subdirectory of your GCC sources named `isl', it will be ! built together with GCC. Alternatively, the `--with-isl' configure ! option should be used if ISL is not installed in your default ! library search path. CLooG 0.18.1 Necessary to build GCC with the Graphite loop optimizations. It ! can be downloaded from `ftp://gcc.gnu.org/pub/gcc/infrastructure/' ! as `cloog-0.18.1.tar.gz'. If a CLooG source distribution is found ! in a subdirectory of your GCC sources named `cloog', it will be ! built together with GCC. Alternatively, the `--with-cloog' configure option should be used if CLooG is not installed in your default library search path. If you want to install CLooG separately it needs to be built ! against ISL 0.12.2 by using the `--with-isl=system' to direct ! CLooG to pick up an already installed ISL. Using the ISL library ! as bundled with CLooG is not supported. ! Tools/packages necessary for modifying GCC ========================================== autoconf version 2.64 GNU m4 version 1.4.6 (or later) ! Necessary when modifying `configure.ac', `aclocal.m4', etc. to ! regenerate `configure' and `config.in' files. automake version 1.11.1 ! Necessary when modifying a `Makefile.am' file to regenerate its ! associated `Makefile.in'. Much of GCC does not use automake, so directly edit the ! `Makefile.in' file. Specifically this applies to the `gcc', ! `intl', `libcpp', `libiberty', `libobjc' directories as well as ! any of their subdirectories. For directories that use automake, GCC requires the latest release ! in the 1.11 series, which is currently 1.11.1. When regenerating ! a directory to a newer version, please update all the directories using an older 1.11 to the latest released version. gettext version 0.14.5 (or later) ! Needed to regenerate `gcc.pot'. gperf version 2.7.2 (or later) ! Necessary when modifying `gperf' input files, e.g. ! `gcc/cp/cfns.gperf' to regenerate its associated header file, e.g. ! `gcc/cp/cfns.h'. DejaGnu 1.4.4 Expect Tcl Necessary to run the GCC testsuite; see the section on testing for details. Tcl 8.6 has a known regression in RE pattern handling that make parts of the testsuite fail. See ! `http://core.tcl.tk/tcl/tktview/267b7e2334ee2e9de34c4b00d6e72e2f1997085f' for more information. autogen version 5.5.4 (or later) and guile version 1.4.1 (or later) + Necessary to regenerate `fixinc/fixincl.x' from + `fixinc/inclhack.def' and `fixinc/*.tpl'. ! Necessary to run `make check' for `fixinc'. ! Necessary to regenerate the top level `Makefile.in' file from ! `Makefile.tpl' and `Makefile.def'. Flex version 2.5.4 (or later) ! Necessary when modifying `*.l' files. Necessary to build GCC during development because the generated output files are not included in the SVN repository. They are included in releases. Texinfo version 4.7 (or later) ! Necessary for running `makeinfo' when modifying `*.texi' files to test your changes. ! Necessary for running `make dvi' or `make pdf' to create printable documentation in DVI or PDF format. Texinfo version 4.8 or later ! is required for `make pdf'. Necessary to build GCC documentation during development because the generated output files are not included in the SVN repository. They are included in releases. TeX (any working version) ! Necessary for running `texi2dvi' and `texi2pdf', which are used ! when running `make dvi' or `make pdf' to create DVI or PDF files, respectively. SVN (any version) SSH (any version) Necessary to access the SVN repository. Public releases and weekly snapshots of the development sources are also available via FTP. GNU diffutils version 2.7 (or later) Useful when submitting patches for the GCC source code. patch version 2.5.4 (or later) ! Necessary when applying patches, created with `diff', to one's own sources. ecj1 gjavah ! If you wish to modify `.java' files in libjava, you will need to ! configure with `--enable-java-maintainer-mode', and you will need ! to have executables named `ecj1' and `gjavah' in your path. The ! `ecj1' executable should run the Eclipse Java compiler via the GCC-specific entry point. You can download a suitable jar from ! `ftp://sourceware.org/pub/java/', or by running the script ! `contrib/download_ecj'. antlr.jar version 2.7.1 (or later) antlr binary ! If you wish to build the `gjdoc' binary in libjava, you will need ! to have an `antlr.jar' library available. The library is searched for in system locations but can be specified with ! `--with-antlr-jar=' instead. When configuring with ! `--enable-java-maintainer-mode', you will need to have one of the ! executables named `cantlr', `runantlr' or `antlr' in your path. !  File: gccinstall.info, Node: Downloading the source, Next: Configuration, Prev: Prerequisites, Up: Installing GCC *************** File: gccinstall.info, Node: Downloadin *** 404,436 **** 3 Downloading GCC ***************** ! GCC is distributed via SVN and FTP tarballs compressed with 'gzip' or ! 'bzip2'. Please refer to the releases web page for information on how to obtain GCC. The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For previous ! versions these were downloadable as separate components such as the core ! GCC distribution, which included the C language front end and shared ! components, and language-specific distributions including the language ! front end and the language runtime (where appropriate). If you also intend to build binutils (either to upgrade an existing ! installation or for use in place of the corresponding tools of your OS), ! unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components ! of the binutils you intend to build alongside the compiler ('bfd', ! 'binutils', 'gas', 'gprof', 'ld', 'opcodes', ...) to the directory containing the GCC sources. Likewise the GMP, MPFR and MPC libraries can be automatically built ! together with GCC. Unpack the GMP, MPFR and/or MPC source distributions ! in the directory containing the GCC sources and rename their directories ! to 'gmp', 'mpfr' and 'mpc', respectively (or use symbolic links with the ! same name).  File: gccinstall.info, Node: Configuration, Next: Building, Prev: Downloading the source, Up: Installing GCC --- 381,413 ---- 3 Downloading GCC ***************** ! GCC is distributed via SVN and FTP tarballs compressed with `gzip' or ! `bzip2'. Please refer to the releases web page for information on how to obtain GCC. The source distribution includes the C, C++, Objective-C, Fortran, Java, and Ada (in the case of GCC 3.1 and later) compilers, as well as ! runtime libraries for C++, Objective-C, Fortran, and Java. For ! previous versions these were downloadable as separate components such ! as the core GCC distribution, which included the C language front end ! and shared components, and language-specific distributions including the ! language front end and the language runtime (where appropriate). If you also intend to build binutils (either to upgrade an existing ! installation or for use in place of the corresponding tools of your ! OS), unpack the binutils distribution either in the same directory or a separate one. In the latter case, add symbolic links to any components ! of the binutils you intend to build alongside the compiler (`bfd', ! `binutils', `gas', `gprof', `ld', `opcodes', ...) to the directory containing the GCC sources. Likewise the GMP, MPFR and MPC libraries can be automatically built ! together with GCC. Unpack the GMP, MPFR and/or MPC source ! distributions in the directory containing the GCC sources and rename ! their directories to `gmp', `mpfr' and `mpc', respectively (or use ! symbolic links with the same name).  File: gccinstall.info, Node: Configuration, Next: Building, Prev: Downloading the source, Up: Installing GCC *************** File: gccinstall.info, Node: Configurat *** 438,459 **** 4 Installing GCC: Configuration ******************************* ! Like most GNU software, GCC must be configured before it can be built. ! This document describes the recommended configuration procedure for both ! native and cross targets. We use SRCDIR to refer to the toplevel source directory for GCC; we use OBJDIR to refer to the toplevel build/object directory. If you obtained the sources via SVN, SRCDIR must refer to the top ! 'gcc' directory, the one where the 'MAINTAINERS' file can be found, and ! not its 'gcc' subdirectory, otherwise the build will fail. If either SRCDIR or OBJDIR is located on an automounted NFS file ! system, the shell's built-in 'pwd' command will return temporary ! pathnames. Using these can lead to various sorts of build problems. To ! avoid this issue, set the 'PWDCMD' environment variable to an ! automounter-aware 'pwd' command, e.g., 'pawd' or 'amq -w', during the configuration and build phases. First, we *highly* recommend that GCC be built into a separate --- 415,436 ---- 4 Installing GCC: Configuration ******************************* ! Like most GNU software, GCC must be configured before it can be ! built. This document describes the recommended configuration procedure ! for both native and cross targets. We use SRCDIR to refer to the toplevel source directory for GCC; we use OBJDIR to refer to the toplevel build/object directory. If you obtained the sources via SVN, SRCDIR must refer to the top ! `gcc' directory, the one where the `MAINTAINERS' file can be found, and ! not its `gcc' subdirectory, otherwise the build will fail. If either SRCDIR or OBJDIR is located on an automounted NFS file ! system, the shell's built-in `pwd' command will return temporary ! pathnames. Using these can lead to various sorts of build problems. ! To avoid this issue, set the `PWDCMD' environment variable to an ! automounter-aware `pwd' command, e.g., `pawd' or `amq -w', during the configuration and build phases. First, we *highly* recommend that GCC be built into a separate *************** OBJDIR should still work, but doesn't ge *** 463,478 **** where OBJDIR is a subdirectory of SRCDIR is unsupported. If you have previously built GCC in the same directory for a ! different target machine, do 'make distclean' to delete all files that ! might be invalid. One of the files this deletes is 'Makefile'; if 'make ! distclean' complains that 'Makefile' does not exist or issues a message ! like "don't know how to make distclean" it probably means that the ! directory is already suitably clean. However, with the recommended method of building in a separate OBJDIR, you should simply use a different OBJDIR for each target. ! Second, when configuring a native system, either 'cc' or 'gcc' must ! be in your path or you must set 'CC' in your environment before running configure. Otherwise the configuration scripts may fail. To configure GCC: --- 440,455 ---- where OBJDIR is a subdirectory of SRCDIR is unsupported. If you have previously built GCC in the same directory for a ! different target machine, do `make distclean' to delete all files that ! might be invalid. One of the files this deletes is `Makefile'; if ! `make distclean' complains that `Makefile' does not exist or issues a ! message like "don't know how to make distclean" it probably means that ! the directory is already suitably clean. However, with the recommended method of building in a separate OBJDIR, you should simply use a different OBJDIR for each target. ! Second, when configuring a native system, either `cc' or `gcc' must ! be in your path or you must set `CC' in your environment before running configure. Otherwise the configuration scripts may fail. To configure GCC: *************** Distributor options *** 485,502 **** =================== If you will be distributing binary versions of GCC, with modifications ! to the source code, you should use the options described in this section ! to make clear that your version contains modifications. ! '--with-pkgversion=VERSION' Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of 'gcc --version'. This suffix does not ! replace the default version string, only the 'GCC' part. ! The default value is 'GCC'. ! '--with-bugurl=URL' Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your --- 462,479 ---- =================== If you will be distributing binary versions of GCC, with modifications ! to the source code, you should use the options described in this ! section to make clear that your version contains modifications. ! `--with-pkgversion=VERSION' Specify a string that identifies your package. You may wish to include a build number or build date. This version string will be ! included in the output of `gcc --version'. This suffix does not ! replace the default version string, only the `GCC' part. ! The default value is `GCC'. ! `--with-bugurl=URL' Specify the URL that users should visit if they wish to report a bug. You are of course welcome to forward bugs reported to you to the FSF, if you determine that they are not bugs in your *************** to make clear that your version contains *** 504,509 **** --- 481,487 ---- The default value refers to the FSF's GCC bug tracker. + Target specification ==================== *************** Target specification *** 512,646 **** do not provide a configure target when configuring a native compiler. ! * TARGET must be specified as '--target=TARGET' when configuring a cross compiler; examples of valid targets would be m68k-elf, sh-elf, etc. ! * Specifying just TARGET instead of '--target=TARGET' implies that the host defaults to TARGET. Options specification ===================== Use OPTIONS to override several configure time options for GCC. A list ! of supported OPTIONS follows; 'configure --help' may list other options, ! but those not listed below may not work and should not normally be used. ! Note that each '--enable' option has a corresponding '--disable' ! option and that each '--with' option has a corresponding '--without' option. ! '--prefix=DIRNAME' Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! '/usr/local'. We *highly* recommend against DIRNAME being the same or a subdirectory of OBJDIR or vice versa. If specifying a directory beneath a user's home directory tree, some shells will not expand ! DIRNAME correctly if it contains the '~' metacharacter; use '$HOME' ! instead. ! The following standard 'autoconf' options are supported. Normally you should not need to use these options. ! '--exec-prefix=DIRNAME' Specify the toplevel installation directory for ! architecture-dependent files. The default is 'PREFIX'. ! '--bindir=DIRNAME' Specify the installation directory for the executables called ! by users (such as 'gcc' and 'g++'). The default is ! 'EXEC-PREFIX/bin'. ! '--libdir=DIRNAME' Specify the installation directory for object code libraries and internal data files of GCC. The default is ! 'EXEC-PREFIX/lib'. ! '--libexecdir=DIRNAME' ! Specify the installation directory for internal executables of ! GCC. The default is 'EXEC-PREFIX/libexec'. ! '--with-slibdir=DIRNAME' Specify the installation directory for the shared libgcc ! library. The default is 'LIBDIR'. ! '--datarootdir=DIRNAME' Specify the root of the directory tree for read-only architecture-independent data files referenced by GCC. The ! default is 'PREFIX/share'. ! '--infodir=DIRNAME' Specify the installation directory for documentation in info ! format. The default is 'DATAROOTDIR/info'. ! '--datadir=DIRNAME' Specify the installation directory for some architecture-independent data files referenced by GCC. The ! default is 'DATAROOTDIR'. ! '--docdir=DIRNAME' Specify the installation directory for documentation files ! (other than Info) for GCC. The default is 'DATAROOTDIR/doc'. ! '--htmldir=DIRNAME' Specify the installation directory for HTML documentation ! files. The default is 'DOCDIR'. ! '--pdfdir=DIRNAME' Specify the installation directory for PDF documentation ! files. The default is 'DOCDIR'. ! '--mandir=DIRNAME' Specify the installation directory for manual pages. The ! default is 'DATAROOTDIR/man'. (Note that the manual pages are ! only extracts from the full GCC manuals, which are provided in ! Texinfo format. The manpages are derived by an automatic ! conversion process from parts of the full manual.) ! '--with-gxx-include-dir=DIRNAME' Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. ! '--with-specs=SPECS' ! Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by default without modifying the compiler's source code, for instance ! '--with-specs=%{!fcommon:%{!fno-common:-fno-common}}'. *Note Specifying subprocesses and the switches to pass to them: (gcc)Spec Files, ! '--program-prefix=PREFIX' GCC supports some transformations of the names of its programs when installing them. This option prepends PREFIX to the names of programs to install in BINDIR (see above). For example, specifying ! '--program-prefix=foo-' would result in 'gcc' being installed as ! '/usr/local/bin/foo-gcc'. ! '--program-suffix=SUFFIX' Appends SUFFIX to the names of programs to install in BINDIR (see ! above). For example, specifying '--program-suffix=-3.1' would ! result in 'gcc' being installed as '/usr/local/bin/gcc-3.1'. ! '--program-transform-name=PATTERN' ! Applies the 'sed' script PATTERN to be applied to the names of programs to install in BINDIR (see above). PATTERN has to consist ! of one or more basic 'sed' editing commands, separated by ! semicolons. For example, if you want the 'gcc' program name to be ! transformed to the installed program '/usr/local/bin/myowngcc' and ! the 'g++' program name to be transformed to ! '/usr/local/bin/gspecial++' without changing other program names, you could use the pattern ! '--program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/'' to achieve this effect. All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, PREFIX (and ! SUFFIX) are prepended (appended) before further transformations can ! happen with a special transformation script PATTERN. As currently implemented, this option only takes effect for native builds; cross compiler binaries' names are not transformed even --- 490,626 ---- do not provide a configure target when configuring a native compiler. ! * TARGET must be specified as `--target=TARGET' when configuring a cross compiler; examples of valid targets would be m68k-elf, sh-elf, etc. ! * Specifying just TARGET instead of `--target=TARGET' implies that the host defaults to TARGET. Options specification ===================== Use OPTIONS to override several configure time options for GCC. A list ! of supported OPTIONS follows; `configure --help' may list other ! options, but those not listed below may not work and should not ! normally be used. ! Note that each `--enable' option has a corresponding `--disable' ! option and that each `--with' option has a corresponding `--without' option. ! `--prefix=DIRNAME' Specify the toplevel installation directory. This is the recommended way to install the tools into a directory other than the default. The toplevel installation directory defaults to ! `/usr/local'. We *highly* recommend against DIRNAME being the same or a subdirectory of OBJDIR or vice versa. If specifying a directory beneath a user's home directory tree, some shells will not expand ! DIRNAME correctly if it contains the `~' metacharacter; use ! `$HOME' instead. ! The following standard `autoconf' options are supported. Normally you should not need to use these options. ! `--exec-prefix=DIRNAME' Specify the toplevel installation directory for ! architecture-dependent files. The default is `PREFIX'. ! `--bindir=DIRNAME' Specify the installation directory for the executables called ! by users (such as `gcc' and `g++'). The default is ! `EXEC-PREFIX/bin'. ! `--libdir=DIRNAME' Specify the installation directory for object code libraries and internal data files of GCC. The default is ! `EXEC-PREFIX/lib'. ! `--libexecdir=DIRNAME' ! Specify the installation directory for internal executables ! of GCC. The default is `EXEC-PREFIX/libexec'. ! `--with-slibdir=DIRNAME' Specify the installation directory for the shared libgcc ! library. The default is `LIBDIR'. ! `--datarootdir=DIRNAME' Specify the root of the directory tree for read-only architecture-independent data files referenced by GCC. The ! default is `PREFIX/share'. ! `--infodir=DIRNAME' Specify the installation directory for documentation in info ! format. The default is `DATAROOTDIR/info'. ! `--datadir=DIRNAME' Specify the installation directory for some architecture-independent data files referenced by GCC. The ! default is `DATAROOTDIR'. ! `--docdir=DIRNAME' Specify the installation directory for documentation files ! (other than Info) for GCC. The default is `DATAROOTDIR/doc'. ! `--htmldir=DIRNAME' Specify the installation directory for HTML documentation ! files. The default is `DOCDIR'. ! `--pdfdir=DIRNAME' Specify the installation directory for PDF documentation ! files. The default is `DOCDIR'. ! `--mandir=DIRNAME' Specify the installation directory for manual pages. The ! default is `DATAROOTDIR/man'. (Note that the manual pages ! are only extracts from the full GCC manuals, which are ! provided in Texinfo format. The manpages are derived by an ! automatic conversion process from parts of the full manual.) ! `--with-gxx-include-dir=DIRNAME' Specify the installation directory for G++ header files. The default depends on other configuration options, and differs between cross and native configurations. ! `--with-specs=SPECS' ! Specify additional command line driver SPECS. This can be useful if you need to turn on a non-standard feature by default without modifying the compiler's source code, for instance ! `--with-specs=%{!fcommon:%{!fno-common:-fno-common}}'. *Note Specifying subprocesses and the switches to pass to them: (gcc)Spec Files, ! ! `--program-prefix=PREFIX' GCC supports some transformations of the names of its programs when installing them. This option prepends PREFIX to the names of programs to install in BINDIR (see above). For example, specifying ! `--program-prefix=foo-' would result in `gcc' being installed as ! `/usr/local/bin/foo-gcc'. ! `--program-suffix=SUFFIX' Appends SUFFIX to the names of programs to install in BINDIR (see ! above). For example, specifying `--program-suffix=-3.1' would ! result in `gcc' being installed as `/usr/local/bin/gcc-3.1'. ! `--program-transform-name=PATTERN' ! Applies the `sed' script PATTERN to be applied to the names of programs to install in BINDIR (see above). PATTERN has to consist ! of one or more basic `sed' editing commands, separated by ! semicolons. For example, if you want the `gcc' program name to be ! transformed to the installed program `/usr/local/bin/myowngcc' and ! the `g++' program name to be transformed to ! `/usr/local/bin/gspecial++' without changing other program names, you could use the pattern ! `--program-transform-name='s/^gcc$/myowngcc/; s/^g++$/gspecial++/'' to achieve this effect. All three options can be combined and used together, resulting in more complex conversion patterns. As a basic rule, PREFIX (and ! SUFFIX) are prepended (appended) before further transformations ! can happen with a special transformation script PATTERN. As currently implemented, this option only takes effect for native builds; cross compiler binaries' names are not transformed even *************** option. *** 649,743 **** For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! 'i686-pc-linux-gnu-gcc'. All of the above transformations happen before the target alias is prepended to the name--so, specifying ! '--program-prefix=foo-' and 'program-suffix=-3.1', the resulting binary would be installed as ! '/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1'. As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. ! '--with-local-prefix=DIRNAME' Specify the installation directory for local include files. The ! default is '/usr/local'. Specify this option if you want the ! compiler to search directory 'DIRNAME/include' for locally ! installed header files _instead_ of '/usr/local/include'. ! You should specify '--with-local-prefix' *only* if your site has a ! different convention (not '/usr/local') for where to put site-specific files. ! The default value for '--with-local-prefix' is '/usr/local' ! regardless of the value of '--prefix'. Specifying '--prefix' has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. ! The purpose of '--prefix' is to specify where to _install GCC_. The ! local header files in '/usr/local/include'--if you put any in that ! directory--are not part of GCC. They are part of other programs--perhaps many others. (GCC installs its own header files ! in another directory which is based on the '--prefix' value.) Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC's "system include" directories. Although ! these two directories are not fixed, they need to be searched in ! the proper order for the correct processing of the include_next ! directive. The local-prefix include directory is searched before ! the GCC-prefix include directory. Another characteristic of system ! include directories is that pedantic warnings are turned off for ! headers in these directories. ! Some autoconf macros add '-I DIRECTORY' options to the compiler command line, to ensure that directories containing installed packages' headers are searched. When DIRECTORY is one of GCC's system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. ! This may result in a search order different from what was specified ! but the directory will still be searched. GCC automatically searches for ordinary libraries using ! 'GCC_EXEC_PREFIX'. Thus, when the same installation prefix is used ! for both GCC and packages, GCC will automatically search for both ! headers and libraries. This provides a configuration that is easy ! to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in '/usr'. Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! '--program-prefix', '--program-suffix' and ! '--program-transform-name' options to install multiple versions into a single directory, but it may be simpler to use different ! prefixes and the '--with-local-prefix' option to specify the ! location of the site-specific files for each version. It will then ! be necessary for users to specify explicitly the location of local ! site libraries (e.g., with 'LIBRARY_PATH'). ! The same value can be used for both '--with-local-prefix' and ! '--prefix' provided it is not '/usr'. This can be used to avoid ! the default search of '/usr/local/include'. ! *Do not* specify '/usr' as the '--with-local-prefix'! The ! directory you use for '--with-local-prefix' *must not* contain any of the system's standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the ! header file corrections made by the 'fixincludes' script. Indications are that people who use this option use it based on ! mistaken ideas of what it is for. People use it as if it specified ! where to install part of GCC. Perhaps they make this assumption ! because installing GCC creates the directory. ! '--with-native-system-header-dir=DIRNAME' Specifies that DIRNAME is the directory that contains native system ! header files, rather than '/usr/include'. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! '--with-sysroot' option and will cause GCC to search DIRNAME inside ! the system root specified by that option. ! '--enable-shared[=PACKAGE[,...]]' Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that --- 629,723 ---- For native builds, some of the installed programs are also installed with the target alias in front of their name, as in ! `i686-pc-linux-gnu-gcc'. All of the above transformations happen before the target alias is prepended to the name--so, specifying ! `--program-prefix=foo-' and `program-suffix=-3.1', the resulting binary would be installed as ! `/usr/local/bin/i686-pc-linux-gnu-foo-gcc-3.1'. As a last shortcoming, none of the installed Ada programs are transformed yet, which will be fixed in some time. ! `--with-local-prefix=DIRNAME' Specify the installation directory for local include files. The ! default is `/usr/local'. Specify this option if you want the ! compiler to search directory `DIRNAME/include' for locally ! installed header files _instead_ of `/usr/local/include'. ! You should specify `--with-local-prefix' *only* if your site has a ! different convention (not `/usr/local') for where to put site-specific files. ! The default value for `--with-local-prefix' is `/usr/local' ! regardless of the value of `--prefix'. Specifying `--prefix' has no effect on which directory GCC searches for local header files. This may seem counterintuitive, but actually it is logical. ! The purpose of `--prefix' is to specify where to _install GCC_. ! The local header files in `/usr/local/include'--if you put any in ! that directory--are not part of GCC. They are part of other programs--perhaps many others. (GCC installs its own header files ! in another directory which is based on the `--prefix' value.) Both the local-prefix include directory and the GCC-prefix include ! directory are part of GCC's "system include" directories. ! Although these two directories are not fixed, they need to be ! searched in the proper order for the correct processing of the ! include_next directive. The local-prefix include directory is ! searched before the GCC-prefix include directory. Another ! characteristic of system include directories is that pedantic ! warnings are turned off for headers in these directories. ! Some autoconf macros add `-I DIRECTORY' options to the compiler command line, to ensure that directories containing installed packages' headers are searched. When DIRECTORY is one of GCC's system include directories, GCC will ignore the option so that system directories continue to be processed in the correct order. ! This may result in a search order different from what was ! specified but the directory will still be searched. GCC automatically searches for ordinary libraries using ! `GCC_EXEC_PREFIX'. Thus, when the same installation prefix is ! used for both GCC and packages, GCC will automatically search for ! both headers and libraries. This provides a configuration that is ! easy to use. GCC behaves in a manner similar to that when it is ! installed as a system compiler in `/usr'. Sites that need to install multiple versions of GCC may not want to use the above simple configuration. It is possible to use the ! `--program-prefix', `--program-suffix' and ! `--program-transform-name' options to install multiple versions into a single directory, but it may be simpler to use different ! prefixes and the `--with-local-prefix' option to specify the ! location of the site-specific files for each version. It will ! then be necessary for users to specify explicitly the location of ! local site libraries (e.g., with `LIBRARY_PATH'). ! The same value can be used for both `--with-local-prefix' and ! `--prefix' provided it is not `/usr'. This can be used to avoid ! the default search of `/usr/local/include'. ! *Do not* specify `/usr' as the `--with-local-prefix'! The ! directory you use for `--with-local-prefix' *must not* contain any of the system's standard header files. If it did contain them, certain programs would be miscompiled (including GNU Emacs, on certain targets), because this would override and nullify the ! header file corrections made by the `fixincludes' script. Indications are that people who use this option use it based on ! mistaken ideas of what it is for. People use it as if it ! specified where to install part of GCC. Perhaps they make this ! assumption because installing GCC creates the directory. ! `--with-native-system-header-dir=DIRNAME' Specifies that DIRNAME is the directory that contains native system ! header files, rather than `/usr/include'. This option is most useful if you are creating a compiler that should be isolated from the system as much as possible. It is most commonly used with the ! `--with-sysroot' option and will cause GCC to search DIRNAME ! inside the system root specified by that option. ! `--enable-shared[=PACKAGE[,...]]' Build shared versions of libraries, if shared libraries are supported on the target platform. Unlike GCC 2.95.x and earlier, shared libraries are enabled by default on all platforms that *************** option. *** 745,763 **** If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only ! static libraries will be built. Package names currently recognized ! in the GCC tree are 'libgcc' (also known as 'gcc'), 'libstdc++' ! (not 'libstdc++-v3'), 'libffi', 'zlib', 'boehm-gc', 'ada', ! 'libada', 'libjava', 'libgo', and 'libobjc'. Note 'libiberty' does ! not support shared libraries at all. ! Use '--disable-shared' to build only static libraries. Note that ! '--disable-shared' does not accept a list of package names as ! argument, only '--enable-shared' does. ! Contrast with '--enable-host-shared', which affects _host_ code. ! '--enable-host-shared' Specify that the _host_ code should be built into position-independent machine code (with -fPIC), allowing it to be used within shared libraries, but yielding a slightly slower --- 725,743 ---- If a list of packages is given as an argument, build shared libraries only for the listed packages. For other packages, only ! static libraries will be built. Package names currently ! recognized in the GCC tree are `libgcc' (also known as `gcc'), ! `libstdc++' (not `libstdc++-v3'), `libffi', `zlib', `boehm-gc', ! `ada', `libada', `libjava', `libgo', and `libobjc'. Note ! `libiberty' does not support shared libraries at all. ! Use `--disable-shared' to build only static libraries. Note that ! `--disable-shared' does not accept a list of package names as ! argument, only `--enable-shared' does. ! Contrast with `--enable-host-shared', which affects _host_ code. ! `--enable-host-shared' Specify that the _host_ code should be built into position-independent machine code (with -fPIC), allowing it to be used within shared libraries, but yielding a slightly slower *************** option. *** 766,930 **** Currently this option is only of use to people developing GCC itself. ! Contrast with '--enable-shared', which affects _target_ libraries. ! '--with-gnu-as' ! Specify that the compiler should assume that the assembler it finds ! is the GNU assembler. However, this does not modify the rules to ! find an assembler and will result in confusion if the assembler ! found is not actually the GNU assembler. (Confusion may also ! result if the compiler finds the GNU assembler but has not been ! configured with '--with-gnu-as'.) If you have more than one ! assembler installed on your system, you may want to use this option ! in connection with '--with-as=PATHNAME' or ! '--with-build-time-tools=PATHNAME'. The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! '--with-gnu-as' has no effect. ! * 'hppa1.0-ANY-ANY' ! * 'hppa1.1-ANY-ANY' ! * 'sparc-sun-solaris2.ANY' ! * 'sparc64-ANY-solaris2.ANY' ! '--with-as=PATHNAME' Specify that the compiler should use the assembler pointed to by PATHNAME, rather than the one found by the standard rules to find an assembler, which are: * Unless GCC is being built with a cross compiler, check the ! 'LIBEXEC/gcc/TARGET/VERSION' directory. LIBEXEC defaults to ! 'EXEC-PREFIX/libexec'; EXEC-PREFIX defaults to PREFIX, which ! defaults to '/usr/local' unless overridden by the ! '--prefix=PATHNAME' switch described above. TARGET is the ! target system triple, such as 'sparc-sun-solaris2.7', and VERSION denotes the GCC version, such as 3.0. * If the target system is the same that you are building on, check operating system specific directories (e.g. ! '/usr/ccs/bin' on Sun Solaris 2). ! * Check in the 'PATH' for a tool whose name is prefixed by the target system triple. ! * Check in the 'PATH' for a tool whose name is not prefixed by ! the target system triple, if the host and target system triple ! are the same (in other words, we use a host tool if it can be ! used for the target as well). ! You may want to use '--with-as' if no assembler is installed in the ! directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. ! '--with-gnu-ld' ! Same as '--with-gnu-as' but for the linker. ! '--with-ld=PATHNAME' ! Same as '--with-as' but for the linker. ! '--with-stabs' Specify that stabs debugging information should be used instead of ! whatever format the host normally uses. Normally GCC uses the same ! debug format as the host system. On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ! ECOFF debug format cannot fully handle languages other than C. BSD ! stabs format can handle other languages, but it only works with the ! GNU debugger GDB. Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify '--with-stabs' when you configure GCC. No matter which default you choose when you configure GCC, the user ! can use the '-gcoff' and '-gstabs+' options to specify explicitly the debug format for a particular compilation. ! '--with-stabs' is meaningful on the ISC system on the 386, also, if ! '--with-gas' is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. ! '--with-stabs' is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. ! '--with-tls=DIALECT' Specify the default TLS dialect, for systems were there is a ! choice. For ARM targets, possible values for DIALECT are 'gnu' or ! 'gnu2', which select between the original GNU dialect and the GNU TLS descriptor-based dialect. ! '--enable-multiarch' Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, and for cross builds configured with ! '--with-sysroot', and without '--with-native-system-header-dir'. More documentation about multiarch can be found at ! . ! '--enable-vtable-verify' Specify whether to enable or disable the vtable verification feature. Enabling this feature causes libstdc++ to be built with ! its virtual calls in verifiable mode. This means that, when linked ! with libvtv, every virtual call in libstdc++ will verify the vtable ! pointer through which the call will be made before actually making ! the call. If not linked with libvtv, the verifier will call stub ! functions (in libstdc++ itself) and do nothing. If vtable ! verification is disabled, then libstdc++ is not built with its ! virtual calls in verifiable mode at all. However the libvtv ! library will still be built (see '--disable-libvtv' to turn off ! building libvtv). '--disable-vtable-verify' is the default. ! '--disable-multilib' Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. ! Some targets provide finer-grained control over which multilibs are ! built (e.g., '--disable-softfloat'): ! 'arm-*-*' fpu, 26bit, underscore, interwork, biendian, nofmult. ! 'm68*-*-*' softfloat, m68881, m68000, m68020. ! 'mips*-*-*' single-float, biendian, softfloat. ! 'powerpc*-*-*, rs6000*-*-*' aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. ! '--with-multilib-list=LIST' ! '--without-multilib-list' Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. ! 'sh*-*-*' ! LIST is a comma separated list of CPU names. These must be of ! the form 'sh*' or 'm*' (in which case they match the compiler ! option for that processor). The list should not contain any ! endian options - these are handled by '--with-endian'. If LIST is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. ! As a special case, if an entry in the list starts with a '!' (exclamation point), then it is added to the list of excluded multilibs. Entries of this sort should be compatible with ! 'MULTILIB_EXCLUDES' (once the leading '!' has been stripped). ! If '--with-multilib-list' is not given, then a default set of ! multilibs is selected based on the value of '--target'. This is usually the complete set of libraries, but some targets imply a more specialized subset. --- 746,915 ---- Currently this option is only of use to people developing GCC itself. ! Contrast with `--enable-shared', which affects _target_ libraries. ! `--with-gnu-as' ! Specify that the compiler should assume that the assembler it ! finds is the GNU assembler. However, this does not modify the ! rules to find an assembler and will result in confusion if the ! assembler found is not actually the GNU assembler. (Confusion may ! also result if the compiler finds the GNU assembler but has not ! been configured with `--with-gnu-as'.) If you have more than one ! assembler installed on your system, you may want to use this ! option in connection with `--with-as=PATHNAME' or ! `--with-build-time-tools=PATHNAME'. The following systems are the only ones where it makes a difference whether you use the GNU assembler. On any other system, ! `--with-gnu-as' has no effect. ! * `hppa1.0-ANY-ANY' ! * `hppa1.1-ANY-ANY' ! ! * `sparc-sun-solaris2.ANY' ! ! * `sparc64-ANY-solaris2.ANY' ! ! `--with-as=PATHNAME' Specify that the compiler should use the assembler pointed to by PATHNAME, rather than the one found by the standard rules to find an assembler, which are: * Unless GCC is being built with a cross compiler, check the ! `LIBEXEC/gcc/TARGET/VERSION' directory. LIBEXEC defaults to ! `EXEC-PREFIX/libexec'; EXEC-PREFIX defaults to PREFIX, which ! defaults to `/usr/local' unless overridden by the ! `--prefix=PATHNAME' switch described above. TARGET is the ! target system triple, such as `sparc-sun-solaris2.7', and VERSION denotes the GCC version, such as 3.0. * If the target system is the same that you are building on, check operating system specific directories (e.g. ! `/usr/ccs/bin' on Sun Solaris 2). ! * Check in the `PATH' for a tool whose name is prefixed by the target system triple. ! * Check in the `PATH' for a tool whose name is not prefixed by ! the target system triple, if the host and target system ! triple are the same (in other words, we use a host tool if it ! can be used for the target as well). ! You may want to use `--with-as' if no assembler is installed in ! the directories listed above, or if you have multiple assemblers installed and want to choose one that is not found by the above rules. ! `--with-gnu-ld' ! Same as `--with-gnu-as' but for the linker. ! `--with-ld=PATHNAME' ! Same as `--with-as' but for the linker. ! `--with-stabs' Specify that stabs debugging information should be used instead of ! whatever format the host normally uses. Normally GCC uses the ! same debug format as the host system. On MIPS based systems and on Alphas, you must specify whether you want GCC to create the normal ECOFF debugging format, or to use BSD-style stabs passed through the ECOFF symbol table. The normal ! ECOFF debug format cannot fully handle languages other than C. ! BSD stabs format can handle other languages, but it only works ! with the GNU debugger GDB. Normally, GCC uses the ECOFF debugging format by default; if you ! prefer BSD stabs, specify `--with-stabs' when you configure GCC. No matter which default you choose when you configure GCC, the user ! can use the `-gcoff' and `-gstabs+' options to specify explicitly the debug format for a particular compilation. ! `--with-stabs' is meaningful on the ISC system on the 386, also, if ! `--with-gas' is used. It selects use of stabs debugging information embedded in COFF output. This kind of debugging information supports C++ well; ordinary COFF debugging information does not. ! `--with-stabs' is also meaningful on 386 systems running SVR4. It selects use of stabs debugging information embedded in ELF output. The C++ compiler currently (2.6.0) does not support the DWARF debugging information normally used on 386 SVR4 platforms; stabs provide a workable alternative. This requires gas and gdb, as the normal SVR4 tools can not generate or interpret stabs. ! `--with-tls=DIALECT' Specify the default TLS dialect, for systems were there is a ! choice. For ARM targets, possible values for DIALECT are `gnu' or ! `gnu2', which select between the original GNU dialect and the GNU TLS descriptor-based dialect. ! `--enable-multiarch' Specify whether to enable or disable multiarch support. The default is to check for glibc start files in a multiarch location, and enable it if the files are found. The auto detection is enabled for native builds, and for cross builds configured with ! `--with-sysroot', and without `--with-native-system-header-dir'. More documentation about multiarch can be found at ! `http://wiki.debian.org/Multiarch'. ! `--enable-vtable-verify' Specify whether to enable or disable the vtable verification feature. Enabling this feature causes libstdc++ to be built with ! its virtual calls in verifiable mode. This means that, when ! linked with libvtv, every virtual call in libstdc++ will verify ! the vtable pointer through which the call will be made before ! actually making the call. If not linked with libvtv, the verifier ! will call stub functions (in libstdc++ itself) and do nothing. If ! vtable verification is disabled, then libstdc++ is not built with ! its virtual calls in verifiable mode at all. However the libvtv ! library will still be built (see `--disable-libvtv' to turn off ! building libvtv). `--disable-vtable-verify' is the default. ! `--disable-multilib' Specify that multiple target libraries to support different target variants, calling conventions, etc. should not be built. The default is to build a predefined set of them. ! Some targets provide finer-grained control over which multilibs ! are built (e.g., `--disable-softfloat'): ! `arm-*-*' fpu, 26bit, underscore, interwork, biendian, nofmult. ! `m68*-*-*' softfloat, m68881, m68000, m68020. ! `mips*-*-*' single-float, biendian, softfloat. ! `powerpc*-*-*, rs6000*-*-*' aix64, pthread, softfloat, powercpu, powerpccpu, powerpcos, biendian, sysv, aix. ! ! `--with-multilib-list=LIST' ! `--without-multilib-list' Specify what multilibs to build. Currently only implemented for sh*-*-* and x86-64-*-linux*. ! `sh*-*-*' ! LIST is a comma separated list of CPU names. These must be ! of the form `sh*' or `m*' (in which case they match the ! compiler option for that processor). The list should not ! contain any endian options - these are handled by ! `--with-endian'. If LIST is empty, then there will be no multilibs for extra processors. The multilib for the secondary endian remains enabled. ! As a special case, if an entry in the list starts with a `!' (exclamation point), then it is added to the list of excluded multilibs. Entries of this sort should be compatible with ! `MULTILIB_EXCLUDES' (once the leading `!' has been stripped). ! If `--with-multilib-list' is not given, then a default set of ! multilibs is selected based on the value of `--target'. This is usually the complete set of libraries, but some targets imply a more specialized subset. *************** option. *** 937,969 **** --with-cpu=sh4a --with-endian=little,big \ --with-multilib-list=sh4al,!mb/m4al ! 'x86-64-*-linux*' ! LIST is a comma separated list of 'm32', 'm64' and 'mx32' to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If LIST is empty, then there will be no multilibs and only the default run-time library will be enabled. ! If '--with-multilib-list' is not given, then only 32-bit and 64-bit run-time libraries will be enabled. ! '--with-endian=ENDIANS' Specify what endians to use. Currently only implemented for sh*-*-*. ENDIANS may be one of the following: ! 'big' Use big endian exclusively. ! 'little' Use little endian exclusively. ! 'big,little' Use big endian by default. Provide a multilib for little endian. ! 'little,big' Use little endian by default. Provide a multilib for big endian. ! '--enable-threads' Specify that the target supports threads. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. On some systems, this is --- 922,957 ---- --with-cpu=sh4a --with-endian=little,big \ --with-multilib-list=sh4al,!mb/m4al ! `x86-64-*-linux*' ! LIST is a comma separated list of `m32', `m64' and `mx32' to enable 32-bit, 64-bit and x32 run-time libraries, respectively. If LIST is empty, then there will be no multilibs and only the default run-time library will be enabled. ! If `--with-multilib-list' is not given, then only 32-bit and 64-bit run-time libraries will be enabled. ! `--with-endian=ENDIANS' Specify what endians to use. Currently only implemented for sh*-*-*. ENDIANS may be one of the following: ! `big' Use big endian exclusively. ! ! `little' Use little endian exclusively. ! ! `big,little' Use big endian by default. Provide a multilib for little endian. ! ! `little,big' Use little endian by default. Provide a multilib for big endian. ! `--enable-threads' Specify that the target supports threads. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. On some systems, this is *************** option. *** 973,1177 **** model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally available for the system. In this case, ! '--enable-threads' is an alias for '--enable-threads=single'. ! '--disable-threads' Specify that threading support should be disabled for the system. ! This is an alias for '--enable-threads=single'. ! '--enable-threads=LIB' Specify that LIB is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for LIB are: ! 'aix' AIX thread support. ! 'dce' DCE thread support. ! 'lynx' LynxOS thread support. ! 'mipssde' MIPS SDE thread support. ! 'no' ! This is an alias for 'single'. ! 'posix' Generic POSIX/Unix98 thread support. ! 'rtems' RTEMS thread support. ! 'single' Disable thread support, should work for all platforms. ! 'tpf' TPF thread support. ! 'vxworks' VxWorks thread support. ! 'win32' Microsoft Win32 API thread support. ! '--enable-tls' Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled ! or disabled with '--enable-tls' or '--disable-tls'. This can ! happen if the assembler supports TLS but the C library does not, or ! if the assumptions made by the configure test are incorrect. ! '--disable-tls' ! Specify that the target does not support TLS. This is an alias for ! '--enable-tls=no'. ! '--with-cpu=CPU' ! '--with-cpu-32=CPU' ! '--with-cpu-64=CPU' Specify which cpu variant the compiler should generate code for by ! default. CPU will be used as the default value of the '-mcpu=' switch. This option is only supported on some targets, including ! ARC, ARM, i386, M68k, PowerPC, and SPARC. It is mandatory for ARC. ! The '--with-cpu-32' and '--with-cpu-64' options specify separate ! default CPUs for 32-bit and 64-bit modes; these options are only ! supported for i386, x86-64 and PowerPC. ! '--with-schedule=CPU' ! '--with-arch=CPU' ! '--with-arch-32=CPU' ! '--with-arch-64=CPU' ! '--with-tune=CPU' ! '--with-tune-32=CPU' ! '--with-tune-64=CPU' ! '--with-abi=ABI' ! '--with-fpu=TYPE' ! '--with-float=TYPE' These configure options provide default values for the ! '-mschedule=', '-march=', '-mtune=', '-mabi=', and '-mfpu=' options ! and for '-mhard-float' or '-msoft-float'. As with '--with-cpu', ! which switches will be accepted and acceptable values of the ! arguments depend on the target. ! '--with-mode=MODE' ! Specify if the compiler should default to '-marm' or '-mthumb'. This option is only supported on ARM targets. ! '--with-stack-offset=NUM' ! This option sets the default for the -mstack-offset=NUM option, and ! will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. ! '--with-fpmath=ISA' ! This options sets '-mfpmath=sse' by default and specifies the default ISA for floating-point arithmetics. You can select either ! 'sse' which enables '-msse2' or 'avx' which enables '-mavx' by default. This option is only supported on i386 and x86-64 targets. ! '--with-nan=ENCODING' On MIPS targets, set the default encoding convention to use for the special not-a-number (NaN) IEEE 754 floating-point data. The possibilities for ENCODING are: ! 'legacy' ! Use the legacy encoding, as with the '-mnan=legacy' command-line option. ! '2008' ! Use the 754-2008 encoding, as with the '-mnan=2008' command-line option. To use this configuration option you must have an assembler version ! installed that supports the '-mnan=' command-line option too. In the absence of this configuration option the default convention is ! the legacy encoding, as when neither of the '-mnan=2008' and ! '-mnan=legacy' command-line options has been used. ! '--with-divide=TYPE' Specify how the compiler should generate code for checking for division by zero. This option is only supported on the MIPS target. The possibilities for TYPE are: ! 'traps' Division by zero checks use conditional traps (this is the default on systems that support conditional traps). ! 'breaks' Division by zero checks use the break instruction. ! '--with-llsc' ! On MIPS targets, make '-mllsc' the default when no '-mno-llsc' option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. ! '--without-llsc' ! On MIPS targets, make '-mno-llsc' the default when no '-mllsc' option is passed. ! '--with-synci' ! On MIPS targets, make '-msynci' the default when no '-mno-synci' option is passed. ! '--without-synci' ! On MIPS targets, make '-mno-synci' the default when no '-msynci' option is passed. This is the default. ! '--with-mips-plt' On MIPS targets, make use of copy relocations and PLTs. These ! features are extensions to the traditional SVR4-based MIPS ABIs and ! require support from GNU binutils and the runtime C library. ! '--enable-__cxa_atexit' Define if you want to use __cxa_atexit, rather than atexit, to register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, ! this will cause '-fuse-cxa-atexit' to be passed by default. ! '--enable-gnu-indirect-function' ! Define if you want to enable the 'ifunc' attribute. This option is currently only available on systems with GNU libc on certain targets. ! '--enable-target-optspace' Specify that target libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. ! '--with-cpp-install-dir=DIRNAME' ! Specify that the user visible 'cpp' program should be installed in ! 'PREFIX/DIRNAME/cpp', in addition to BINDIR. ! '--enable-comdat' Enable COMDAT group support. This is primarily used to override the automatically detected value. ! '--enable-initfini-array' ! Force the use of sections '.init_array' and '.fini_array' (instead ! of '.init' and '.fini') for constructors and destructors. Option ! '--disable-initfini-array' has the opposite effect. If neither ! option is specified, the configure script will try to guess whether ! the '.init_array' and '.fini_array' sections are supported and, if ! they are, use them. ! '--enable-link-mutex' When building GCC, use a mutex to avoid linking the compilers for multiple languages at the same time, to avoid thrashing on build ! systems with limited free memory. The default is not to use such a ! mutex. ! '--enable-maintainer-mode' The build rules that regenerate the Autoconf and Automake output ! files as well as the GCC master message catalog 'gcc.pot' are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the catalog, configuring with ! '--enable-maintainer-mode' will enable this. Note that you need a ! recent version of the 'gettext' tools to do so. ! '--disable-bootstrap' For a native build, the default configuration is to perform a ! 3-stage bootstrap of the compiler when 'make' is invoked, testing ! that GCC can compile itself correctly. If you want to disable this ! process, you can configure with '--disable-bootstrap'. ! '--enable-bootstrap' In special cases, you may want to perform a 3-stage build even if the target and host triplets are different. This is possible when the host can run code compiled for the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do ! this you have to configure explicitly with '--enable-bootstrap'. ! '--enable-generated-files-in-srcdir' Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC --- 961,1177 ---- model available will be configured for use. Beware that on some systems, GCC has not been taught what threading models are generally available for the system. In this case, ! `--enable-threads' is an alias for `--enable-threads=single'. ! `--disable-threads' Specify that threading support should be disabled for the system. ! This is an alias for `--enable-threads=single'. ! `--enable-threads=LIB' Specify that LIB is the thread support library. This affects the Objective-C compiler and runtime library, and exception handling for other languages like C++ and Java. The possibilities for LIB are: ! `aix' AIX thread support. ! ! `dce' DCE thread support. ! ! `lynx' LynxOS thread support. ! ! `mipssde' MIPS SDE thread support. ! ! `no' ! This is an alias for `single'. ! ! `posix' Generic POSIX/Unix98 thread support. ! ! `rtems' RTEMS thread support. ! ! `single' Disable thread support, should work for all platforms. ! ! `tpf' TPF thread support. ! ! `vxworks' VxWorks thread support. ! ! `win32' Microsoft Win32 API thread support. ! `--enable-tls' Specify that the target supports TLS (Thread Local Storage). Usually configure can correctly determine if TLS is supported. In cases where it guesses incorrectly, TLS can be explicitly enabled ! or disabled with `--enable-tls' or `--disable-tls'. This can ! happen if the assembler supports TLS but the C library does not, ! or if the assumptions made by the configure test are incorrect. ! `--disable-tls' ! Specify that the target does not support TLS. This is an alias ! for `--enable-tls=no'. ! `--with-cpu=CPU' ! `--with-cpu-32=CPU' ! `--with-cpu-64=CPU' Specify which cpu variant the compiler should generate code for by ! default. CPU will be used as the default value of the `-mcpu=' switch. This option is only supported on some targets, including ! ARC, ARM, i386, M68k, PowerPC, and SPARC. It is mandatory for ! ARC. The `--with-cpu-32' and `--with-cpu-64' options specify ! separate default CPUs for 32-bit and 64-bit modes; these options ! are only supported for i386, x86-64 and PowerPC. ! `--with-schedule=CPU' ! `--with-arch=CPU' ! `--with-arch-32=CPU' ! `--with-arch-64=CPU' ! `--with-tune=CPU' ! `--with-tune-32=CPU' ! `--with-tune-64=CPU' ! `--with-abi=ABI' ! `--with-fpu=TYPE' ! `--with-float=TYPE' These configure options provide default values for the ! `-mschedule=', `-march=', `-mtune=', `-mabi=', and `-mfpu=' ! options and for `-mhard-float' or `-msoft-float'. As with ! `--with-cpu', which switches will be accepted and acceptable values ! of the arguments depend on the target. ! `--with-mode=MODE' ! Specify if the compiler should default to `-marm' or `-mthumb'. This option is only supported on ARM targets. ! `--with-stack-offset=NUM' ! This option sets the default for the -mstack-offset=NUM option, ! and will thus generally also control the setting of this option for libraries. This option is only supported on Epiphany targets. ! `--with-fpmath=ISA' ! This options sets `-mfpmath=sse' by default and specifies the default ISA for floating-point arithmetics. You can select either ! `sse' which enables `-msse2' or `avx' which enables `-mavx' by default. This option is only supported on i386 and x86-64 targets. ! `--with-nan=ENCODING' On MIPS targets, set the default encoding convention to use for the special not-a-number (NaN) IEEE 754 floating-point data. The possibilities for ENCODING are: ! `legacy' ! Use the legacy encoding, as with the `-mnan=legacy' command-line option. ! ! `2008' ! Use the 754-2008 encoding, as with the `-mnan=2008' command-line option. To use this configuration option you must have an assembler version ! installed that supports the `-mnan=' command-line option too. In the absence of this configuration option the default convention is ! the legacy encoding, as when neither of the `-mnan=2008' and ! `-mnan=legacy' command-line options has been used. ! `--with-divide=TYPE' Specify how the compiler should generate code for checking for division by zero. This option is only supported on the MIPS target. The possibilities for TYPE are: ! `traps' Division by zero checks use conditional traps (this is the default on systems that support conditional traps). ! ! `breaks' Division by zero checks use the break instruction. ! `--with-llsc' ! On MIPS targets, make `-mllsc' the default when no `-mno-llsc' option is passed. This is the default for Linux-based targets, as the kernel will emulate them if the ISA does not provide them. ! `--without-llsc' ! On MIPS targets, make `-mno-llsc' the default when no `-mllsc' option is passed. ! `--with-synci' ! On MIPS targets, make `-msynci' the default when no `-mno-synci' option is passed. ! `--without-synci' ! On MIPS targets, make `-mno-synci' the default when no `-msynci' option is passed. This is the default. ! `--with-mips-plt' On MIPS targets, make use of copy relocations and PLTs. These ! features are extensions to the traditional SVR4-based MIPS ABIs ! and require support from GNU binutils and the runtime C library. ! `--enable-__cxa_atexit' Define if you want to use __cxa_atexit, rather than atexit, to register C++ destructors for local statics and global objects. This is essential for fully standards-compliant handling of destructors, but requires __cxa_atexit in libc. This option is currently only available on systems with GNU libc. When enabled, ! this will cause `-fuse-cxa-atexit' to be passed by default. ! `--enable-gnu-indirect-function' ! Define if you want to enable the `ifunc' attribute. This option is currently only available on systems with GNU libc on certain targets. ! `--enable-target-optspace' Specify that target libraries should be optimized for code space instead of code speed. This is the default for the m32r platform. ! `--with-cpp-install-dir=DIRNAME' ! Specify that the user visible `cpp' program should be installed in ! `PREFIX/DIRNAME/cpp', in addition to BINDIR. ! `--enable-comdat' Enable COMDAT group support. This is primarily used to override the automatically detected value. ! `--enable-initfini-array' ! Force the use of sections `.init_array' and `.fini_array' (instead ! of `.init' and `.fini') for constructors and destructors. Option ! `--disable-initfini-array' has the opposite effect. If neither ! option is specified, the configure script will try to guess ! whether the `.init_array' and `.fini_array' sections are supported ! and, if they are, use them. ! `--enable-link-mutex' When building GCC, use a mutex to avoid linking the compilers for multiple languages at the same time, to avoid thrashing on build ! systems with limited free memory. The default is not to use such ! a mutex. ! `--enable-maintainer-mode' The build rules that regenerate the Autoconf and Automake output ! files as well as the GCC master message catalog `gcc.pot' are normally disabled. This is because it can only be rebuilt if the complete source tree is present. If you have changed the sources and want to rebuild the catalog, configuring with ! `--enable-maintainer-mode' will enable this. Note that you need a ! recent version of the `gettext' tools to do so. ! `--disable-bootstrap' For a native build, the default configuration is to perform a ! 3-stage bootstrap of the compiler when `make' is invoked, testing ! that GCC can compile itself correctly. If you want to disable ! this process, you can configure with `--disable-bootstrap'. ! `--enable-bootstrap' In special cases, you may want to perform a 3-stage build even if the target and host triplets are different. This is possible when the host can run code compiled for the target (e.g. host is i686-linux, target is i486-linux). Starting from GCC 4.2, to do ! this you have to configure explicitly with `--enable-bootstrap'. ! `--enable-generated-files-in-srcdir' Neither the .c and .h files that are generated from Bison and flex nor the info manuals and man pages that are built from the .texi files are present in the SVN development tree. When building GCC *************** option. *** 1179,1267 **** generated files are placed in your build directory, which allows for the source to be in a readonly directory. ! If you configure with '--enable-generated-files-in-srcdir' then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. ! '--enable-version-specific-runtime-libs' Specify that runtime libraries should be installed in the compiler ! specific subdirectory ('LIBDIR/gcc') rather than the usual places. ! In addition, 'libstdc++''s include files will be installed into ! 'LIBDIR' unless you overruled it by using ! '--with-gxx-include-dir=DIRNAME'. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by 'libgfortran', 'libjava', ! 'libstdc++', and 'libobjc'. ! '--enable-languages=LANG1,LANG2,...' Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for ! LANGN you can issue the following command in the 'gcc' directory of ! your GCC source tree: grep language= */config-lang.in ! Currently, you can use any of the following: 'all', 'ada', 'c', ! 'c++', 'fortran', 'go', 'java', 'objc', 'obj-c++'. Building the Ada compiler has special requirements, see below. If you do not ! pass this flag, or specify the option 'all', then all default ! languages available in the 'gcc' sub-tree will be configured. Ada, ! Go and Objective-C++ are not default languages; the rest are. ! '--enable-stage1-languages=LANG1,LANG2,...' Specify that a particular subset of compilers and their runtime ! libraries should be built with the system C compiler during stage 1 ! of the bootstrap process, rather than only in later stages with the ! bootstrapped C compiler. The list of valid values is the same as ! for '--enable-languages', and the option 'all' will select all of ! the languages enabled by '--enable-languages'. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to ! compiler bugs, or when one is debugging front ends other than the C ! front end. When this option is used, one can then build the target ! libraries for the specified languages with the stage-1 compiler by ! using 'make stage1-bubble all-target', or run the testsuite on the ! stage-1 compiler for the specified languages using 'make ! stage1-start check-gcc'. ! '--disable-libada' Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was ! required to explicitly do a 'make -C gcc gnatlib_and_tools'. ! '--disable-libsanitizer' Specify that the run-time libraries for the various sanitizers should not be built. ! '--disable-libssp' Specify that the run-time libraries for stack smashing protection should not be built. ! '--disable-libquadmath' Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building the Fortran front end, unless ! '--disable-libquadmath-support' is used. ! '--disable-libquadmath-support' ! Specify that the Fortran front end and 'libgfortran' do not add ! support for 'libquadmath' on systems supporting it. ! '--disable-libgomp' Specify that the run-time libraries used by GOMP should not be built. ! '--disable-libvtv' Specify that the run-time libraries used by vtable verification should not be built. ! '--with-dwarf2' Specify that the compiler should use DWARF 2 debugging information as the default. ! '--enable-targets=all' ! '--enable-targets=TARGET_LIST' Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit code. Typically, the corresponding 32-bit target, e.g. --- 1179,1267 ---- generated files are placed in your build directory, which allows for the source to be in a readonly directory. ! If you configure with `--enable-generated-files-in-srcdir' then those generated files will go into the source directory. This is mainly intended for generating release or prerelease tarballs of the GCC sources, since it is not a requirement that the users of source releases to have flex, Bison, or makeinfo. ! `--enable-version-specific-runtime-libs' Specify that runtime libraries should be installed in the compiler ! specific subdirectory (`LIBDIR/gcc') rather than the usual places. ! In addition, `libstdc++''s include files will be installed into ! `LIBDIR' unless you overruled it by using ! `--with-gxx-include-dir=DIRNAME'. Using this option is particularly useful if you intend to use several versions of GCC in ! parallel. This is currently supported by `libgfortran', ! `libjava', `libstdc++', and `libobjc'. ! `--enable-languages=LANG1,LANG2,...' Specify that only a particular subset of compilers and their runtime libraries should be built. For a list of valid values for ! LANGN you can issue the following command in the `gcc' directory ! of your GCC source tree: grep language= */config-lang.in ! Currently, you can use any of the following: `all', `ada', `c', ! `c++', `fortran', `go', `java', `objc', `obj-c++'. Building the Ada compiler has special requirements, see below. If you do not ! pass this flag, or specify the option `all', then all default ! languages available in the `gcc' sub-tree will be configured. ! Ada, Go and Objective-C++ are not default languages; the rest are. ! `--enable-stage1-languages=LANG1,LANG2,...' Specify that a particular subset of compilers and their runtime ! libraries should be built with the system C compiler during stage ! 1 of the bootstrap process, rather than only in later stages with ! the bootstrapped C compiler. The list of valid values is the same ! as for `--enable-languages', and the option `all' will select all ! of the languages enabled by `--enable-languages'. This option is primarily useful for GCC development; for instance, when a development version of the compiler cannot bootstrap due to ! compiler bugs, or when one is debugging front ends other than the ! C front end. When this option is used, one can then build the ! target libraries for the specified languages with the stage-1 ! compiler by using `make stage1-bubble all-target', or run the ! testsuite on the stage-1 compiler for the specified languages ! using `make stage1-start check-gcc'. ! `--disable-libada' Specify that the run-time libraries and tools used by GNAT should not be built. This can be useful for debugging, or for compatibility with previous Ada build procedures, when it was ! required to explicitly do a `make -C gcc gnatlib_and_tools'. ! `--disable-libsanitizer' Specify that the run-time libraries for the various sanitizers should not be built. ! `--disable-libssp' Specify that the run-time libraries for stack smashing protection should not be built. ! `--disable-libquadmath' Specify that the GCC quad-precision math library should not be built. On some systems, the library is required to be linkable when building the Fortran front end, unless ! `--disable-libquadmath-support' is used. ! `--disable-libquadmath-support' ! Specify that the Fortran front end and `libgfortran' do not add ! support for `libquadmath' on systems supporting it. ! `--disable-libgomp' Specify that the run-time libraries used by GOMP should not be built. ! `--disable-libvtv' Specify that the run-time libraries used by vtable verification should not be built. ! `--with-dwarf2' Specify that the compiler should use DWARF 2 debugging information as the default. ! `--enable-targets=all' ! `--enable-targets=TARGET_LIST' Some GCC targets, e.g. powerpc64-linux, build bi-arch compilers. These are compilers that are able to generate either 64-bit or 32-bit code. Typically, the corresponding 32-bit target, e.g. *************** option. *** 1274,1574 **** affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. ! '--enable-secureplt' ! This option enables '-msecure-plt' by default for powerpc-linux. *Note RS/6000 and PowerPC Options: (gcc)RS/6000 and PowerPC Options, ! '--enable-cld' ! This option enables '-mcld' by default for 32-bit x86 targets. *Note i386 and x86-64 Options: (gcc)i386 and x86-64 Options, ! '--enable-win32-registry' ! '--enable-win32-registry=KEY' ! '--disable-win32-registry' ! The '--enable-win32-registry' option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: ! HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\KEY KEY defaults to GCC version number, and can be overridden by the ! '--enable-win32-registry=KEY' option. Vendors and distributors who ! use custom installers are encouraged to provide a different key, ! perhaps one comprised of vendor name and GCC version number, to ! avoid conflict with existing installations. This feature is enabled by default, and can be disabled by ! '--disable-win32-registry' option. This option has no effect on the other hosts. ! '--nfp' Specify that the machine does not have a floating point unit. This ! option only applies to 'm68k-sun-sunosN'. On any other system, ! '--nfp' has no effect. ! '--enable-werror' ! '--disable-werror' ! '--enable-werror=yes' ! '--enable-werror=no' When you specify this option, it controls whether certain files in ! the compiler are built with '-Werror' in bootstrap stage2 and ! later. If you don't specify it, '-Werror' is turned on for the main development trunk. However it defaults to off for release branches and final releases. The specific files which get ! '-Werror' are controlled by the Makefiles. ! '--enable-checking' ! '--enable-checking=LIST' When you specify this option, the compiler is built to perform ! internal consistency checks of the requested complexity. This does ! not change the generated code, but adds error checking within the ! compiler. This will slow down the compiler and may only work ! properly if you are building the compiler with GCC. This is 'yes' ! by default when building from SVN or snapshots, but 'release' for ! releases. The default for building the stage1 compiler is 'yes'. More control over the checks may be had by specifying LIST. The ! categories of checks available are 'yes' (most common checks ! 'assert,misc,tree,gc,rtlflag,runtime'), 'no' (no checks at all), ! 'all' (all but 'valgrind'), 'release' (cheapest checks ! 'assert,runtime') or 'none' (same as 'no'). Individual checks can ! be enabled with these flags 'assert', 'df', 'fold', 'gc', 'gcac' ! 'misc', 'rtl', 'rtlflag', 'runtime', 'tree', and 'valgrind'. ! The 'valgrind' check requires the external 'valgrind' simulator, ! available from . The 'df', 'rtl', 'gcac' and ! 'valgrind' checks are very expensive. To disable all checking, ! '--disable-checking' or '--enable-checking=none' must be explicitly ! requested. Disabling assertions will make the compiler and runtime ! slightly faster but increase the risk of undetected internal errors ! causing wrong code to be generated. ! '--disable-stage1-checking' ! '--enable-stage1-checking' ! '--enable-stage1-checking=LIST' ! If no '--enable-checking' option is specified the stage1 compiler ! will be built with 'yes' checking enabled, otherwise the stage1 ! checking flags are the same as specified by '--enable-checking'. To build the stage1 compiler with different checking options use ! '--enable-stage1-checking'. The list of checking options is the ! same as for '--enable-checking'. If your system is too slow or too ! small to bootstrap a released compiler with checking for stage1 ! enabled, you can use '--disable-stage1-checking' to disable checking for the stage1 compiler. ! '--enable-coverage' ! '--enable-coverage=LEVEL' With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The LEVEL argument controls whether the compiler ! is built optimized or not, values are 'opt' and 'noopt'. For ! coverage analysis you want to disable optimization, for performance ! analysis you want to enable optimization. When coverage is ! enabled, the default level is without optimization. ! '--enable-gather-detailed-mem-stats' When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! '-fmem-report'. ! '--enable-nls' ! '--disable-nls' ! The '--enable-nls' option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not ! doing a canadian cross build. The '--disable-nls' option disables NLS. ! '--with-included-gettext' ! If NLS is enabled, the '--with-included-gettext' option causes the ! build procedure to prefer its copy of GNU 'gettext'. ! '--with-catgets' ! If NLS is enabled, and if the host lacks 'gettext' but has the ! inferior 'catgets' interface, the GCC build procedure normally ! ignores 'catgets' and instead uses GCC's copy of the GNU 'gettext' ! library. The '--with-catgets' option causes the build procedure to ! use the host's 'catgets' in this situation. ! '--with-libiconv-prefix=DIR' ! Search for libiconv header files in 'DIR/include' and libiconv ! library files in 'DIR/lib'. ! '--enable-obsolete' Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. ! All support for systems which have been obsoleted in one release of ! GCC is removed entirely in the next major release, unless someone ! steps forward to maintain the port. ! '--enable-decimal-float' ! '--enable-decimal-float=yes' ! '--enable-decimal-float=no' ! '--enable-decimal-float=bid' ! '--enable-decimal-float=dpd' ! '--disable-decimal-float' Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal ! floating point format is used (either 'bid' or 'dpd'). The 'bid' (binary integer decimal) format is default on i386 and x86_64 ! systems, and the 'dpd' (densely packed decimal) format is default on PowerPC systems. ! '--enable-fixed-point' ! '--disable-fixed-point' Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. ! '--with-long-double-128' ! Specify if 'long double' type should be 128-bit by default on selected GNU/Linux architectures. If using ! '--without-long-double-128', 'long double' will be by default ! 64-bit, the same as 'double' type. When neither of these configure ! options are used, the default will be 128-bit 'long double' when ! built against GNU C Library 2.4 and later, 64-bit 'long double' ! otherwise. ! '--with-gmp=PATHNAME' ! '--with-gmp-include=PATHNAME' ! '--with-gmp-lib=PATHNAME' ! '--with-mpfr=PATHNAME' ! '--with-mpfr-include=PATHNAME' ! '--with-mpfr-lib=PATHNAME' ! '--with-mpc=PATHNAME' ! '--with-mpc-include=PATHNAME' ! '--with-mpc-lib=PATHNAME' If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! ('--with-gmp=GMPINSTALLDIR', '--with-mpfr=MPFRINSTALLDIR', ! '--with-mpc=MPCINSTALLDIR'). The '--with-gmp=GMPINSTALLDIR' option ! is shorthand for '--with-gmp-lib=GMPINSTALLDIR/lib' and ! '--with-gmp-include=GMPINSTALLDIR/include'. Likewise the ! '--with-mpfr=MPFRINSTALLDIR' option is shorthand for ! '--with-mpfr-lib=MPFRINSTALLDIR/lib' and ! '--with-mpfr-include=MPFRINSTALLDIR/include', also the ! '--with-mpc=MPCINSTALLDIR' option is shorthand for ! '--with-mpc-lib=MPCINSTALLDIR/lib' and ! '--with-mpc-include=MPCINSTALLDIR/include'. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable ('LD_LIBRARY_PATH' on GNU/Linux and Solaris systems). These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! '--with-isl=PATHNAME' ! '--with-isl-include=PATHNAME' ! '--with-isl-lib=PATHNAME' ! '--with-cloog=PATHNAME' ! '--with-cloog-include=PATHNAME' ! '--with-cloog-lib=PATHNAME' If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! ('--with-isl=ISLINSTALLDIR', '--with-cloog=CLOOGINSTALLDIR'). The ! '--with-isl=ISLINSTALLDIR' option is shorthand for ! '--with-isl-lib=ISLINSTALLDIR/lib' and ! '--with-isl-include=ISLINSTALLDIR/include'. Likewise the ! '--with-cloog=CLOOGINSTALLDIR' option is shorthand for ! '--with-cloog-lib=CLOOGINSTALLDIR/lib' and ! '--with-cloog-include=CLOOGINSTALLDIR/include'. If these shorthand ! assumptions are not correct, you can use the explicit include and ! lib options directly. These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! '--with-host-libstdcxx=LINKER-ARGS' If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ ! library used internally by PPL. Typical values of LINKER-ARGS might ! be '-lstdc++' or '-Wl,-Bstatic,-lstdc++,-Bdynamic -lm'. If you are ! linking with a shared copy of PPL, you probably do not need this ! option; shared library dependencies will cause the linker to search ! for the standard C++ library automatically. ! '--with-stage1-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 1 of GCC. These are also used when linking GCC if configured ! with '--disable-bootstrap'. By default no special flags are used. ! '--with-stage1-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 1 of GCC. These are also used when linking GCC if configured ! with '--disable-bootstrap'. The default is the argument to ! '--with-host-libstdcxx', if specified. ! '--with-boot-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 2 and later when bootstrapping GCC. If neither -with-boot-libs nor -with-host-libstdcxx is set to a value, then ! the default is '-static-libstdc++ -static-libgcc'. ! '--with-boot-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 2 and later when bootstrapping GCC. The default is the ! argument to '--with-host-libstdcxx', if specified. ! '--with-debug-prefix-map=MAP' ! Convert source directory names using '-fdebug-prefix-map' when ! building runtime libraries. 'MAP' is a space-separated list of ! maps of the form 'OLD=NEW'. ! '--enable-linker-build-id' ! Tells GCC to pass '--build-id' option to the linker for all final ! links (links performed without the '-r' or '--relocatable' option), ! if the linker supports it. If you specify ! '--enable-linker-build-id', but your linker does not support ! '--build-id' option, a warning is issued and the ! '--enable-linker-build-id' option is ignored. The default is off. ! '--with-linker-hash-style=CHOICE' ! Tells GCC to pass '--hash-style=CHOICE' option to the linker for ! all final links. CHOICE can be one of 'sysv', 'gnu', and 'both' ! where 'sysv' is the default. ! '--enable-gnu-unique-object' ! '--disable-gnu-unique-object' Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by ! default for a toolchain with an assembler that accepts it and GLIBC ! 2.11 or above, otherwise disabled. ! '--enable-lto' ! '--disable-lto' ! Enable support for link-time optimization (LTO). This is enabled by ! default, and may be disabled using '--disable-lto'. ! '--with-plugin-ld=PATHNAME' Enable an alternate linker to be used at link-time optimization ! (LTO) link time when '-fuse-linker-plugin' is enabled. This linker ! should have plugin support such as gold starting with version 2.20 ! or GNU ld starting with version 2.21. See '-fuse-linker-plugin' ! for details. ! '--enable-canonical-system-headers' ! '--disable-canonical-system-headers' ! Enable system header path canonicalization for 'libcpp'. This can produce shorter header file paths in diagnostics and dependency ! output files, but these changed header paths may conflict with some ! compilation environments. Enabled by default, and may be disabled ! using '--disable-canonical-system-headers'. ! '--with-glibc-version=MAJOR.MINOR' Tell GCC that when the GNU C Library (glibc) is used on the target it will be version MAJOR.MINOR or later. Normally this can be detected from the C library's header files, but this option may be --- 1274,1575 ---- affects sparc-linux, powerpc-linux, x86-linux, mips-linux and s390-linux. ! `--enable-secureplt' ! This option enables `-msecure-plt' by default for powerpc-linux. *Note RS/6000 and PowerPC Options: (gcc)RS/6000 and PowerPC Options, ! `--enable-cld' ! This option enables `-mcld' by default for 32-bit x86 targets. *Note i386 and x86-64 Options: (gcc)i386 and x86-64 Options, ! `--enable-win32-registry' ! `--enable-win32-registry=KEY' ! `--disable-win32-registry' ! The `--enable-win32-registry' option enables Microsoft Windows-hosted GCC to look up installations paths in the registry using the following key: ! `HKEY_LOCAL_MACHINE\SOFTWARE\Free Software Foundation\KEY' KEY defaults to GCC version number, and can be overridden by the ! `--enable-win32-registry=KEY' option. Vendors and distributors ! who use custom installers are encouraged to provide a different ! key, perhaps one comprised of vendor name and GCC version number, ! to avoid conflict with existing installations. This feature is enabled by default, and can be disabled by ! `--disable-win32-registry' option. This option has no effect on the other hosts. ! `--nfp' Specify that the machine does not have a floating point unit. This ! option only applies to `m68k-sun-sunosN'. On any other system, ! `--nfp' has no effect. ! `--enable-werror' ! `--disable-werror' ! `--enable-werror=yes' ! `--enable-werror=no' When you specify this option, it controls whether certain files in ! the compiler are built with `-Werror' in bootstrap stage2 and ! later. If you don't specify it, `-Werror' is turned on for the main development trunk. However it defaults to off for release branches and final releases. The specific files which get ! `-Werror' are controlled by the Makefiles. ! `--enable-checking' ! `--enable-checking=LIST' When you specify this option, the compiler is built to perform ! internal consistency checks of the requested complexity. This ! does not change the generated code, but adds error checking within ! the compiler. This will slow down the compiler and may only work ! properly if you are building the compiler with GCC. This is `yes' ! by default when building from SVN or snapshots, but `release' for ! releases. The default for building the stage1 compiler is `yes'. More control over the checks may be had by specifying LIST. The ! categories of checks available are `yes' (most common checks ! `assert,misc,tree,gc,rtlflag,runtime'), `no' (no checks at all), ! `all' (all but `valgrind'), `release' (cheapest checks ! `assert,runtime') or `none' (same as `no'). Individual checks can ! be enabled with these flags `assert', `df', `fold', `gc', `gcac' ! `misc', `rtl', `rtlflag', `runtime', `tree', and `valgrind'. ! The `valgrind' check requires the external `valgrind' simulator, ! available from `http://valgrind.org/'. The `df', `rtl', `gcac' ! and `valgrind' checks are very expensive. To disable all ! checking, `--disable-checking' or `--enable-checking=none' must be ! explicitly requested. Disabling assertions will make the compiler ! and runtime slightly faster but increase the risk of undetected ! internal errors causing wrong code to be generated. ! `--disable-stage1-checking' ! `--enable-stage1-checking' ! `--enable-stage1-checking=LIST' ! If no `--enable-checking' option is specified the stage1 compiler ! will be built with `yes' checking enabled, otherwise the stage1 ! checking flags are the same as specified by `--enable-checking'. To build the stage1 compiler with different checking options use ! `--enable-stage1-checking'. The list of checking options is the ! same as for `--enable-checking'. If your system is too slow or ! too small to bootstrap a released compiler with checking for ! stage1 enabled, you can use `--disable-stage1-checking' to disable checking for the stage1 compiler. ! `--enable-coverage' ! `--enable-coverage=LEVEL' With this option, the compiler is built to collect self coverage information, every time it is run. This is for internal development purposes, and only works when the compiler is being built with gcc. The LEVEL argument controls whether the compiler ! is built optimized or not, values are `opt' and `noopt'. For ! coverage analysis you want to disable optimization, for ! performance analysis you want to enable optimization. When ! coverage is enabled, the default level is without optimization. ! `--enable-gather-detailed-mem-stats' When this option is specified more detailed information on memory allocation is gathered. This information is printed when using ! `-fmem-report'. ! `--enable-nls' ! `--disable-nls' ! The `--enable-nls' option enables Native Language Support (NLS), which lets GCC output diagnostics in languages other than American English. Native Language Support is enabled by default if not ! doing a canadian cross build. The `--disable-nls' option disables NLS. ! `--with-included-gettext' ! If NLS is enabled, the `--with-included-gettext' option causes the ! build procedure to prefer its copy of GNU `gettext'. ! `--with-catgets' ! If NLS is enabled, and if the host lacks `gettext' but has the ! inferior `catgets' interface, the GCC build procedure normally ! ignores `catgets' and instead uses GCC's copy of the GNU `gettext' ! library. The `--with-catgets' option causes the build procedure ! to use the host's `catgets' in this situation. ! `--with-libiconv-prefix=DIR' ! Search for libiconv header files in `DIR/include' and libiconv ! library files in `DIR/lib'. ! `--enable-obsolete' Enable configuration for an obsoleted system. If you attempt to configure GCC for a system (build, host, or target) which has been obsoleted, and you do not specify this flag, configure will halt with an error message. ! All support for systems which have been obsoleted in one release ! of GCC is removed entirely in the next major release, unless ! someone steps forward to maintain the port. ! `--enable-decimal-float' ! `--enable-decimal-float=yes' ! `--enable-decimal-float=no' ! `--enable-decimal-float=bid' ! `--enable-decimal-float=dpd' ! `--disable-decimal-float' Enable (or disable) support for the C decimal floating point extension that is in the IEEE 754-2008 standard. This is enabled by default only on PowerPC, i386, and x86_64 GNU/Linux systems. Other systems may also support it, but require the user to specifically enable it. You can optionally control which decimal ! floating point format is used (either `bid' or `dpd'). The `bid' (binary integer decimal) format is default on i386 and x86_64 ! systems, and the `dpd' (densely packed decimal) format is default on PowerPC systems. ! `--enable-fixed-point' ! `--disable-fixed-point' Enable (or disable) support for C fixed-point arithmetic. This option is enabled by default for some targets (such as MIPS) which have hardware-support for fixed-point operations. On other targets, you may enable this option manually. ! `--with-long-double-128' ! Specify if `long double' type should be 128-bit by default on selected GNU/Linux architectures. If using ! `--without-long-double-128', `long double' will be by default ! 64-bit, the same as `double' type. When neither of these ! configure options are used, the default will be 128-bit `long ! double' when built against GNU C Library 2.4 and later, 64-bit ! `long double' otherwise. ! `--with-gmp=PATHNAME' ! `--with-gmp-include=PATHNAME' ! `--with-gmp-lib=PATHNAME' ! `--with-mpfr=PATHNAME' ! `--with-mpfr-include=PATHNAME' ! `--with-mpfr-lib=PATHNAME' ! `--with-mpc=PATHNAME' ! `--with-mpc-include=PATHNAME' ! `--with-mpc-lib=PATHNAME' If you want to build GCC but do not have the GMP library, the MPFR library and/or the MPC library installed in a standard location and do not have their sources present in the GCC source tree then you can explicitly specify the directory where they are installed ! (`--with-gmp=GMPINSTALLDIR', `--with-mpfr=MPFRINSTALLDIR', ! `--with-mpc=MPCINSTALLDIR'). The `--with-gmp=GMPINSTALLDIR' ! option is shorthand for `--with-gmp-lib=GMPINSTALLDIR/lib' and ! `--with-gmp-include=GMPINSTALLDIR/include'. Likewise the ! `--with-mpfr=MPFRINSTALLDIR' option is shorthand for ! `--with-mpfr-lib=MPFRINSTALLDIR/lib' and ! `--with-mpfr-include=MPFRINSTALLDIR/include', also the ! `--with-mpc=MPCINSTALLDIR' option is shorthand for ! `--with-mpc-lib=MPCINSTALLDIR/lib' and ! `--with-mpc-include=MPCINSTALLDIR/include'. If these shorthand assumptions are not correct, you can use the explicit include and lib options directly. You might also need to ensure the shared libraries can be found by the dynamic linker when building and using GCC, for example by setting the runtime shared library path ! variable (`LD_LIBRARY_PATH' on GNU/Linux and Solaris systems). These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! `--with-isl=PATHNAME' ! `--with-isl-include=PATHNAME' ! `--with-isl-lib=PATHNAME' ! `--with-cloog=PATHNAME' ! `--with-cloog-include=PATHNAME' ! `--with-cloog-lib=PATHNAME' If you do not have ISL and the CLooG libraries installed in a standard location and you want to build GCC, you can explicitly specify the directory where they are installed ! (`--with-isl=ISLINSTALLDIR', `--with-cloog=CLOOGINSTALLDIR'). The ! `--with-isl=ISLINSTALLDIR' option is shorthand for ! `--with-isl-lib=ISLINSTALLDIR/lib' and ! `--with-isl-include=ISLINSTALLDIR/include'. Likewise the ! `--with-cloog=CLOOGINSTALLDIR' option is shorthand for ! `--with-cloog-lib=CLOOGINSTALLDIR/lib' and ! `--with-cloog-include=CLOOGINSTALLDIR/include'. If these ! shorthand assumptions are not correct, you can use the explicit ! include and lib options directly. These flags are applicable to the host platform only. When building a cross compiler, they will not be used to configure target libraries. ! `--with-host-libstdcxx=LINKER-ARGS' If you are linking with a static copy of PPL, you can use this option to specify how the linker should find the standard C++ ! library used internally by PPL. Typical values of LINKER-ARGS ! might be `-lstdc++' or `-Wl,-Bstatic,-lstdc++,-Bdynamic -lm'. If ! you are linking with a shared copy of PPL, you probably do not ! need this option; shared library dependencies will cause the ! linker to search for the standard C++ library automatically. ! `--with-stage1-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 1 of GCC. These are also used when linking GCC if ! configured with `--disable-bootstrap'. By default no special ! flags are used. ! `--with-stage1-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 1 of GCC. These are also used when linking GCC if ! configured with `--disable-bootstrap'. The default is the ! argument to `--with-host-libstdcxx', if specified. ! `--with-boot-ldflags=FLAGS' This option may be used to set linker flags to be used when linking ! stage 2 and later when bootstrapping GCC. If neither -with-boot-libs nor -with-host-libstdcxx is set to a value, then ! the default is `-static-libstdc++ -static-libgcc'. ! `--with-boot-libs=LIBS' This option may be used to set libraries to be used when linking ! stage 2 and later when bootstrapping GCC. The default is the ! argument to `--with-host-libstdcxx', if specified. ! `--with-debug-prefix-map=MAP' ! Convert source directory names using `-fdebug-prefix-map' when ! building runtime libraries. `MAP' is a space-separated list of ! maps of the form `OLD=NEW'. ! `--enable-linker-build-id' ! Tells GCC to pass `--build-id' option to the linker for all final ! links (links performed without the `-r' or `--relocatable' ! option), if the linker supports it. If you specify ! `--enable-linker-build-id', but your linker does not support ! `--build-id' option, a warning is issued and the ! `--enable-linker-build-id' option is ignored. The default is off. ! `--with-linker-hash-style=CHOICE' ! Tells GCC to pass `--hash-style=CHOICE' option to the linker for ! all final links. CHOICE can be one of `sysv', `gnu', and `both' ! where `sysv' is the default. ! `--enable-gnu-unique-object' ! `--disable-gnu-unique-object' Tells GCC to use the gnu_unique_object relocation for C++ template static data members and inline function local statics. Enabled by ! default for a toolchain with an assembler that accepts it and ! GLIBC 2.11 or above, otherwise disabled. ! `--enable-lto' ! `--disable-lto' ! Enable support for link-time optimization (LTO). This is enabled ! by default, and may be disabled using `--disable-lto'. ! `--with-plugin-ld=PATHNAME' Enable an alternate linker to be used at link-time optimization ! (LTO) link time when `-fuse-linker-plugin' is enabled. This ! linker should have plugin support such as gold starting with ! version 2.20 or GNU ld starting with version 2.21. See ! `-fuse-linker-plugin' for details. ! `--enable-canonical-system-headers' ! `--disable-canonical-system-headers' ! Enable system header path canonicalization for `libcpp'. This can produce shorter header file paths in diagnostics and dependency ! output files, but these changed header paths may conflict with ! some compilation environments. Enabled by default, and may be ! disabled using `--disable-canonical-system-headers'. ! `--with-glibc-version=MAJOR.MINOR' Tell GCC that when the GNU C Library (glibc) is used on the target it will be version MAJOR.MINOR or later. Normally this can be detected from the C library's header files, but this option may be *************** Cross-Compiler-Specific Options *** 1585,1947 **** The following options only apply to building cross compilers. ! '--with-sysroot' ! '--with-sysroot=DIR' Tells GCC to consider DIR as the root of a tree that contains (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! '--sysroot=DIR' was added to the default options of the built compiler. The specified directory is not copied into the install ! tree, unlike the options '--with-headers' and '--with-libs' that ! this option obsoletes. The default value, in case '--with-sysroot' ! is not given an argument, is '${gcc_tooldir}/sys-root'. If the ! specified directory is a subdirectory of '${exec_prefix}', then it ! will be found relative to the GCC binaries if the installation tree ! is moved. This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler ! newly installed with 'make install'; it does not affect the compiler which is used to build GCC itself. ! If you specify the '--with-native-system-header-dir=DIRNAME' option ! then the compiler will search that directory within DIRNAME for ! native system headers rather than the default '/usr/include'. ! '--with-build-sysroot' ! '--with-build-sysroot=DIR' ! Tells GCC to consider DIR as the system root (see '--with-sysroot') ! while building target libraries, instead of the directory specified ! with '--with-sysroot'. This option is only useful when you are ! already using '--with-sysroot'. You can use '--with-build-sysroot' ! when you are configuring with '--prefix' set to a directory that is ! different from the one in which you are installing GCC and your ! target libraries. This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. ! If you specify the '--with-native-system-header-dir=DIRNAME' option ! then the compiler will search that directory within DIRNAME for ! native system headers rather than the default '/usr/include'. ! '--with-headers' ! '--with-headers=DIR' ! Deprecated in favor of '--with-sysroot'. Specifies that target headers are available when building a cross compiler. The DIR argument specifies a directory which has the target include files. ! These include files will be copied into the 'gcc' install directory. _This option with the DIR argument is required_ when ! building a cross compiler, if 'PREFIX/TARGET/sys-include' doesn't ! pre-exist. If 'PREFIX/TARGET/sys-include' does pre-exist, the DIR ! argument may be omitted. 'fixincludes' will be run on these files to make them compatible with GCC. ! '--without-headers' Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. ! '--with-libs' ! '--with-libs="DIR1 DIR2 ... DIRN"' ! Deprecated in favor of '--with-sysroot'. Specifies a list of directories which contain the target runtime libraries. These ! libraries will be copied into the 'gcc' install directory. If the directory list is omitted, this option has no effect. ! '--with-newlib' ! Specifies that 'newlib' is being used as the target C library. ! This causes '__eprintf' to be omitted from 'libgcc.a' on the ! assumption that it will be provided by 'newlib'. ! '--with-avrlibc' ! Specifies that 'AVR-Libc' is being used as the target C library. ! This causes float support functions like '__addsf3' to be omitted ! from 'libgcc.a' on the assumption that it will be provided by ! 'libm.a'. For more technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. ! '--with-nds32-lib=LIBRARY' ! Specifies that LIBRARY setting is used for building 'libgcc.a'. ! Currently, the valid LIBRARY is 'newlib' or 'mculib'. This option is only supported for the NDS32 target. ! '--with-build-time-tools=DIR' ! Specifies where to find the set of target tools (assembler, linker, ! etc.) that will be used while building GCC itself. This option ! can be useful if the directory layouts are different between the ! system you are building GCC on, and the system where you will ! deploy it. ! For example, on an 'ia64-hp-hpux' system, you may have the GNU ! assembler and linker in '/usr/bin', and the native tools in a different path, and build a toolchain that expects to find the ! native tools in '/usr/bin'. ! When you use this option, you should ensure that DIR includes 'ar', ! 'as', 'ld', 'nm', 'ranlib' and 'strip' if necessary, and possibly ! 'objdump'. Otherwise, GCC may use an inconsistent set of tools. Java-Specific Options --------------------- The following option applies to the build of the Java front end. ! '--disable-libgcj' Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend to use GCJ with some other run-time, or you're going to install it separately, or it just happens not to build on your particular machine. In general, ! if the Java front end is enabled, the GCJ libraries will be enabled ! too, unless they're known to not work on the target platform. If ! GCJ is enabled but 'libgcj' isn't built, you may need to port it; ! in this case, before modifying the top-level 'configure.in' so that ! 'libgcj' is enabled by default on this platform, you may use ! '--enable-libgcj' to override the default. ! The following options apply to building 'libgcj'. General Options ............... ! '--enable-java-maintainer-mode' ! By default the 'libjava' build will not attempt to compile the ! '.java' source files to '.class'. Instead, it will use the ! '.class' files from the source tree. If you use this option you ! must have executables named 'ecj1' and 'gjavah' in your path for ! use by the build. You must use this option if you intend to modify ! any '.java' files in 'libjava'. ! '--with-java-home=DIRNAME' ! This 'libjava' option overrides the default value of the ! 'java.home' system property. It is also used to set ! 'sun.boot.class.path' to 'DIRNAME/lib/rt.jar'. By default ! 'java.home' is set to 'PREFIX' and 'sun.boot.class.path' to ! 'DATADIR/java/libgcj-VERSION.jar'. ! '--with-ecj-jar=FILENAME' This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by 'gcj' to parse '.java' source ! files. If this option is given, the 'libjava' build will create ! and install an 'ecj1' executable which uses this jar file at runtime. ! If this option is not given, but an 'ecj.jar' file is found in the ! topmost source tree at configure time, then the 'libgcj' build will ! create and install 'ecj1', and will also install the discovered ! 'ecj.jar' into a suitable place in the install tree. ! If 'ecj1' is not installed, then the user will have to supply one ! on his path in order for 'gcj' to properly parse '.java' source files. A suitable jar is available from ! . ! '--disable-getenv-properties' ! Don't set system properties from 'GCJ_PROPERTIES'. ! '--enable-hash-synchronization' ! Use a global hash table for monitor locks. Ordinarily, 'libgcj''s ! 'configure' script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. ! '--enable-interpreter' Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option ! is really only useful if you want to disable the interpreter (using ! '--disable-interpreter'). ! '--disable-java-net' Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. ! '--disable-jvmpi' Disable JVMPI support. ! '--disable-libgcj-bc' Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with '-findirect-dispatch' and ! '-fno-indirect-classes', allowing them to be overridden at run-time. ! If '--disable-libgcj-bc' is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. ! '--enable-reduced-reflection' ! Build most of libgcj with '-freduced-reflection'. This reduces the ! size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). ! '--with-ecos' Enable runtime eCos target support. ! '--without-libffi' ! Don't use 'libffi'. This will disable the interpreter and JNI ! support as well, as these require 'libffi' to work. ! '--enable-libgcj-debug' Enable runtime debugging code. ! '--enable-libgcj-multifile' ! If specified, causes all '.java' source files to be compiled into ! '.class' files in one invocation of 'gcj'. This can speed up build ! time, but is more resource-intensive. If this option is ! unspecified or disabled, 'gcj' is invoked once for each '.java' ! file to compile into a '.class' file. ! '--with-libiconv-prefix=DIR' ! Search for libiconv in 'DIR/include' and 'DIR/lib'. ! '--enable-sjlj-exceptions' ! Force use of the 'setjmp'/'longjmp'-based scheme for exceptions. ! 'configure' ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. ! '--with-system-zlib' ! Use installed 'zlib' rather than that included with GCC. ! '--with-win32-nlsapi=ansi, unicows or unicode' ! Indicates how MinGW 'libgcj' translates between UNICODE characters and the Win32 API. ! '--enable-java-home' If enabled, this creates a JPackage compatible SDK environment during install. Note that if -enable-java-home is used, -with-arch-directory=ARCH must also be specified. ! '--with-arch-directory=ARCH' ! Specifies the name to use for the 'jre/lib/ARCH' directory in the ! SDK environment created when -enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. ! '--with-os-directory=DIR' ! Specifies the OS directory for the SDK include directory. This is set to auto detect, and is typically 'linux'. ! '--with-origin-name=NAME' ! Specifies the JPackage origin name. This defaults to the 'gcj' in java-1.5.0-gcj. ! '--with-arch-suffix=SUFFIX' ! Specifies the suffix for the sdk directory. Defaults to the empty string. Examples include '.x86_64' in 'java-1.5.0-gcj-1.5.0.0.x86_64'. ! '--with-jvm-root-dir=DIR' Specifies where to install the SDK. Default is $(prefix)/lib/jvm. ! '--with-jvm-jar-dir=DIR' ! Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. ! '--with-python-dir=DIR' ! Specifies where to install the Python modules used for aot-compile. ! DIR should not include the prefix used in installation. For ! example, if the Python modules are to be installed in ! /usr/lib/python2.5/site-packages, then ! -with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. ! '--enable-aot-compile-rpm' Adds aot-compile-rpm to the list of installed scripts. ! '--enable-browser-plugin' Build the gcjwebplugin web browser plugin. ! '--enable-static-libjava' ! Build static libraries in libjava. The default is to only build shared libraries. ! 'ansi' ! Use the single-byte 'char' and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. ! 'unicows' ! Use the 'WCHAR' and Win32 W functions natively. Adds ! '-lunicows' to 'libgcj.spec' to link with 'libunicows'. ! 'unicows.dll' needs to be deployed on Microsoft Windows 9X ! machines running built executables. 'libunicows.a', an ! open-source import library around Microsoft's 'unicows.dll', ! is obtained from , which ! also gives details on getting 'unicows.dll' from Microsoft. ! 'unicode' ! Use the 'WCHAR' and Win32 W functions natively. Does _not_ ! add '-lunicows' to 'libgcj.spec'. The built executables will only run on Microsoft Windows NT and above. AWT-Specific Options .................... ! '--with-x' Use the X Window System. ! '--enable-java-awt=PEER(S)' Specifies the AWT peer library or libraries to build alongside ! 'libgcj'. If this option is unspecified or disabled, AWT will be ! non-functional. Current valid values are 'gtk' and 'xlib'. Multiple libraries should be separated by a comma (i.e. ! '--enable-java-awt=gtk,xlib'). ! '--enable-gtk-cairo' Build the cairo Graphics2D implementation on GTK. ! '--enable-java-gc=TYPE' ! Choose garbage collector. Defaults to 'boehm' if unspecified. ! '--disable-gtktest' Do not try to compile and run a test GTK+ program. ! '--disable-glibtest' Do not try to compile and run a test GLIB program. ! '--with-libart-prefix=PFX' Prefix where libart is installed (optional). ! '--with-libart-exec-prefix=PFX' Exec prefix where libart is installed (optional). ! '--disable-libarttest' Do not try to compile and run a test libart program. ! Overriding 'configure' test results ................................... Sometimes, it might be necessary to override the result of some ! 'configure' test, for example in order to ease porting to a new system ! or work around a bug in a test. The toplevel 'configure' script provides three variables for this: ! 'build_configargs' ! The contents of this variable is passed to all build 'configure' scripts. ! 'host_configargs' ! The contents of this variable is passed to all host 'configure' scripts. ! 'target_configargs' ! The contents of this variable is passed to all target 'configure' scripts. ! In order to avoid shell and 'make' quoting issues for complex ! overrides, you can pass a setting for 'CONFIG_SITE' and set variables in ! the site file.  File: gccinstall.info, Node: Building, Next: Testing, Prev: Configuration, Up: Installing GCC --- 1586,1952 ---- The following options only apply to building cross compilers. ! `--with-sysroot' ! `--with-sysroot=DIR' Tells GCC to consider DIR as the root of a tree that contains (a subset of) the root filesystem of the target operating system. Target system headers, libraries and run-time object files will be searched for in there. More specifically, this acts as if ! `--sysroot=DIR' was added to the default options of the built compiler. The specified directory is not copied into the install ! tree, unlike the options `--with-headers' and `--with-libs' that ! this option obsoletes. The default value, in case ! `--with-sysroot' is not given an argument, is ! `${gcc_tooldir}/sys-root'. If the specified directory is a ! subdirectory of `${exec_prefix}', then it will be found relative to ! the GCC binaries if the installation tree is moved. This option affects the system root for the compiler used to build target libraries (which runs on the build system) and the compiler ! newly installed with `make install'; it does not affect the compiler which is used to build GCC itself. ! If you specify the `--with-native-system-header-dir=DIRNAME' ! option then the compiler will search that directory within DIRNAME ! for native system headers rather than the default `/usr/include'. ! `--with-build-sysroot' ! `--with-build-sysroot=DIR' ! Tells GCC to consider DIR as the system root (see ! `--with-sysroot') while building target libraries, instead of the ! directory specified with `--with-sysroot'. This option is only ! useful when you are already using `--with-sysroot'. You can use ! `--with-build-sysroot' when you are configuring with `--prefix' ! set to a directory that is different from the one in which you are ! installing GCC and your target libraries. This option affects the system root for the compiler used to build target libraries (which runs on the build system); it does not affect the compiler which is used to build GCC itself. ! If you specify the `--with-native-system-header-dir=DIRNAME' ! option then the compiler will search that directory within DIRNAME ! for native system headers rather than the default `/usr/include'. ! `--with-headers' ! `--with-headers=DIR' ! Deprecated in favor of `--with-sysroot'. Specifies that target headers are available when building a cross compiler. The DIR argument specifies a directory which has the target include files. ! These include files will be copied into the `gcc' install directory. _This option with the DIR argument is required_ when ! building a cross compiler, if `PREFIX/TARGET/sys-include' doesn't ! pre-exist. If `PREFIX/TARGET/sys-include' does pre-exist, the DIR ! argument may be omitted. `fixincludes' will be run on these files to make them compatible with GCC. ! `--without-headers' Tells GCC not use any target headers from a libc when building a cross compiler. When crossing to GNU/Linux, you need the headers so GCC can build the exception handling for libgcc. ! `--with-libs' ! `--with-libs="DIR1 DIR2 ... DIRN"' ! Deprecated in favor of `--with-sysroot'. Specifies a list of directories which contain the target runtime libraries. These ! libraries will be copied into the `gcc' install directory. If the directory list is omitted, this option has no effect. ! `--with-newlib' ! Specifies that `newlib' is being used as the target C library. ! This causes `__eprintf' to be omitted from `libgcc.a' on the ! assumption that it will be provided by `newlib'. ! `--with-avrlibc' ! Specifies that `AVR-Libc' is being used as the target C library. ! This causes float support functions like `__addsf3' to be omitted ! from `libgcc.a' on the assumption that it will be provided by ! `libm.a'. For more technical details, cf. PR54461. This option is only supported for the AVR target. It is not supported for RTEMS configurations, which currently use newlib. The option is supported since version 4.7.2 and is the default in 4.8.0 and newer. ! `--with-nds32-lib=LIBRARY' ! Specifies that LIBRARY setting is used for building `libgcc.a'. ! Currently, the valid LIBRARY is `newlib' or `mculib'. This option is only supported for the NDS32 target. ! `--with-build-time-tools=DIR' ! Specifies where to find the set of target tools (assembler, ! linker, etc.) that will be used while building GCC itself. This ! option can be useful if the directory layouts are different ! between the system you are building GCC on, and the system where ! you will deploy it. ! For example, on an `ia64-hp-hpux' system, you may have the GNU ! assembler and linker in `/usr/bin', and the native tools in a different path, and build a toolchain that expects to find the ! native tools in `/usr/bin'. ! When you use this option, you should ensure that DIR includes ! `ar', `as', `ld', `nm', `ranlib' and `strip' if necessary, and ! possibly `objdump'. Otherwise, GCC may use an inconsistent set of ! tools. Java-Specific Options --------------------- The following option applies to the build of the Java front end. ! `--disable-libgcj' Specify that the run-time libraries used by GCJ should not be built. This is useful in case you intend to use GCJ with some other run-time, or you're going to install it separately, or it just happens not to build on your particular machine. In general, ! if the Java front end is enabled, the GCJ libraries will be ! enabled too, unless they're known to not work on the target ! platform. If GCJ is enabled but `libgcj' isn't built, you may ! need to port it; in this case, before modifying the top-level ! `configure.in' so that `libgcj' is enabled by default on this ! platform, you may use `--enable-libgcj' to override the default. ! ! The following options apply to building `libgcj'. General Options ............... ! `--enable-java-maintainer-mode' ! By default the `libjava' build will not attempt to compile the ! `.java' source files to `.class'. Instead, it will use the ! `.class' files from the source tree. If you use this option you ! must have executables named `ecj1' and `gjavah' in your path for ! use by the build. You must use this option if you intend to ! modify any `.java' files in `libjava'. ! `--with-java-home=DIRNAME' ! This `libjava' option overrides the default value of the ! `java.home' system property. It is also used to set ! `sun.boot.class.path' to `DIRNAME/lib/rt.jar'. By default ! `java.home' is set to `PREFIX' and `sun.boot.class.path' to ! `DATADIR/java/libgcj-VERSION.jar'. ! `--with-ecj-jar=FILENAME' This option can be used to specify the location of an external jar file containing the Eclipse Java compiler. A specially modified ! version of this compiler is used by `gcj' to parse `.java' source ! files. If this option is given, the `libjava' build will create ! and install an `ecj1' executable which uses this jar file at runtime. ! If this option is not given, but an `ecj.jar' file is found in the ! topmost source tree at configure time, then the `libgcj' build ! will create and install `ecj1', and will also install the ! discovered `ecj.jar' into a suitable place in the install tree. ! If `ecj1' is not installed, then the user will have to supply one ! on his path in order for `gcj' to properly parse `.java' source files. A suitable jar is available from ! `ftp://sourceware.org/pub/java/'. ! `--disable-getenv-properties' ! Don't set system properties from `GCJ_PROPERTIES'. ! `--enable-hash-synchronization' ! Use a global hash table for monitor locks. Ordinarily, `libgcj''s ! `configure' script automatically makes the correct choice for this option for your platform. Only use this if you know you need the library to be configured differently. ! `--enable-interpreter' Enable the Java interpreter. The interpreter is automatically enabled by default on all platforms that support it. This option ! is really only useful if you want to disable the interpreter ! (using `--disable-interpreter'). ! `--disable-java-net' Disable java.net. This disables the native part of java.net only, using non-functional stubs for native method implementations. ! `--disable-jvmpi' Disable JVMPI support. ! `--disable-libgcj-bc' Disable BC ABI compilation of certain parts of libgcj. By default, ! some portions of libgcj are compiled with `-findirect-dispatch' ! and `-fno-indirect-classes', allowing them to be overridden at run-time. ! If `--disable-libgcj-bc' is specified, libgcj is built without these options. This allows the compile-time linker to resolve dependencies when statically linking to libgcj. However it makes it impossible to override the affected portions of libgcj at run-time. ! `--enable-reduced-reflection' ! Build most of libgcj with `-freduced-reflection'. This reduces ! the size of libgcj at the expense of not being able to do accurate reflection on the classes it contains. This option is safe if you know that code using libgcj will never use reflection on the standard runtime classes in libgcj (including using serialization, RMI or CORBA). ! `--with-ecos' Enable runtime eCos target support. ! `--without-libffi' ! Don't use `libffi'. This will disable the interpreter and JNI ! support as well, as these require `libffi' to work. ! `--enable-libgcj-debug' Enable runtime debugging code. ! `--enable-libgcj-multifile' ! If specified, causes all `.java' source files to be compiled into ! `.class' files in one invocation of `gcj'. This can speed up ! build time, but is more resource-intensive. If this option is ! unspecified or disabled, `gcj' is invoked once for each `.java' ! file to compile into a `.class' file. ! `--with-libiconv-prefix=DIR' ! Search for libiconv in `DIR/include' and `DIR/lib'. ! `--enable-sjlj-exceptions' ! Force use of the `setjmp'/`longjmp'-based scheme for exceptions. ! `configure' ordinarily picks the correct value based on the platform. Only use this option if you are sure you need a different setting. ! `--with-system-zlib' ! Use installed `zlib' rather than that included with GCC. ! `--with-win32-nlsapi=ansi, unicows or unicode' ! Indicates how MinGW `libgcj' translates between UNICODE characters and the Win32 API. ! `--enable-java-home' If enabled, this creates a JPackage compatible SDK environment during install. Note that if -enable-java-home is used, -with-arch-directory=ARCH must also be specified. ! `--with-arch-directory=ARCH' ! Specifies the name to use for the `jre/lib/ARCH' directory in the ! SDK environment created when -enable-java-home is passed. Typical names for this directory include i386, amd64, ia64, etc. ! `--with-os-directory=DIR' ! Specifies the OS directory for the SDK include directory. This is set to auto detect, and is typically 'linux'. ! `--with-origin-name=NAME' ! Specifies the JPackage origin name. This defaults to the 'gcj' in java-1.5.0-gcj. ! `--with-arch-suffix=SUFFIX' ! Specifies the suffix for the sdk directory. Defaults to the empty string. Examples include '.x86_64' in 'java-1.5.0-gcj-1.5.0.0.x86_64'. ! `--with-jvm-root-dir=DIR' Specifies where to install the SDK. Default is $(prefix)/lib/jvm. ! `--with-jvm-jar-dir=DIR' ! Specifies where to install jars. Default is $(prefix)/lib/jvm-exports. ! `--with-python-dir=DIR' ! Specifies where to install the Python modules used for ! aot-compile. DIR should not include the prefix used in ! installation. For example, if the Python modules are to be ! installed in /usr/lib/python2.5/site-packages, then ! -with-python-dir=/lib/python2.5/site-packages should be passed. If this is not specified, then the Python modules are installed in $(prefix)/share/python. ! `--enable-aot-compile-rpm' Adds aot-compile-rpm to the list of installed scripts. ! `--enable-browser-plugin' Build the gcjwebplugin web browser plugin. ! `--enable-static-libjava' ! Build static libraries in libjava. The default is to only build shared libraries. ! `ansi' ! Use the single-byte `char' and the Win32 A functions natively, translating to and from UNICODE when using these functions. If unspecified, this is the default. ! `unicows' ! Use the `WCHAR' and Win32 W functions natively. Adds ! `-lunicows' to `libgcj.spec' to link with `libunicows'. ! `unicows.dll' needs to be deployed on Microsoft Windows 9X ! machines running built executables. `libunicows.a', an ! open-source import library around Microsoft's `unicows.dll', ! is obtained from `http://libunicows.sourceforge.net/', which ! also gives details on getting `unicows.dll' from Microsoft. ! `unicode' ! Use the `WCHAR' and Win32 W functions natively. Does _not_ ! add `-lunicows' to `libgcj.spec'. The built executables will only run on Microsoft Windows NT and above. AWT-Specific Options .................... ! `--with-x' Use the X Window System. ! `--enable-java-awt=PEER(S)' Specifies the AWT peer library or libraries to build alongside ! `libgcj'. If this option is unspecified or disabled, AWT will be ! non-functional. Current valid values are `gtk' and `xlib'. Multiple libraries should be separated by a comma (i.e. ! `--enable-java-awt=gtk,xlib'). ! `--enable-gtk-cairo' Build the cairo Graphics2D implementation on GTK. ! `--enable-java-gc=TYPE' ! Choose garbage collector. Defaults to `boehm' if unspecified. ! `--disable-gtktest' Do not try to compile and run a test GTK+ program. ! `--disable-glibtest' Do not try to compile and run a test GLIB program. ! `--with-libart-prefix=PFX' Prefix where libart is installed (optional). ! `--with-libart-exec-prefix=PFX' Exec prefix where libart is installed (optional). ! `--disable-libarttest' Do not try to compile and run a test libart program. ! ! Overriding `configure' test results ................................... Sometimes, it might be necessary to override the result of some ! `configure' test, for example in order to ease porting to a new system ! or work around a bug in a test. The toplevel `configure' script provides three variables for this: ! `build_configargs' ! The contents of this variable is passed to all build `configure' scripts. ! `host_configargs' ! The contents of this variable is passed to all host `configure' scripts. ! `target_configargs' ! The contents of this variable is passed to all target `configure' scripts. ! ! In order to avoid shell and `make' quoting issues for complex ! overrides, you can pass a setting for `CONFIG_SITE' and set variables ! in the site file.  File: gccinstall.info, Node: Building, Next: Testing, Prev: Configuration, Up: Installing GCC *************** File: gccinstall.info, Node: Building, *** 1949,1959 **** 5 Building ********** ! Now that GCC is configured, you are ready to build the compiler and runtime libraries. Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by 'make'. These failures, which are often due to files that were not found, are expected, and can safely be ignored. --- 1954,1964 ---- 5 Building ********** ! Now that GCC is configured, you are ready to build the compiler and runtime libraries. Some commands executed when making the compiler may fail (return a ! nonzero status) and be ignored by `make'. These failures, which are often due to files that were not found, are expected, and can safely be ignored. *************** ignored. *** 1961,1970 **** Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past ! warnings-as-errors by specifying the configure flag '--disable-werror'. On certain old systems, defining certain environment variables such ! as 'CC' can interfere with the functioning of 'make'. If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be --- 1966,1975 ---- Unless you are a GCC developer, you can generally ignore these warnings unless they cause compilation to fail. Developers should attempt to fix any warnings encountered, however they can temporarily continue past ! warnings-as-errors by specifying the configure flag `--disable-werror'. On certain old systems, defining certain environment variables such ! as `CC' can interfere with the functioning of `make'. If you encounter seemingly strange errors when trying to build the compiler in a directory other than the source directory, it could be *************** because you have previously configured t *** 1972,1991 **** directory. Make sure you have done all the necessary preparations. If you build GCC on a BSD system using a directory stored in an old ! System V file system, problems may occur in running 'fixincludes' if the System V file system doesn't support symbolic links. These problems ! result in a failure to fix the declaration of 'size_t' in 'sys/types.h'. ! If you find that 'size_t' is a signed type and that type mismatches ! occur, this could be the cause. The solution is not to use such a directory for building GCC. Similarly, when building from SVN or snapshots, or if you modify ! '*.l' files, you need the Flex lexical analyzer generator installed. If ! you do not modify '*.l' files, releases contain the Flex-generated files ! and you do not need Flex installed to build them. There is still one ! Flex-based lexical analyzer (part of the build machinery, not of GCC ! itself) that is used even if you only build the C front end. When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you --- 1977,1996 ---- directory. Make sure you have done all the necessary preparations. If you build GCC on a BSD system using a directory stored in an old ! System V file system, problems may occur in running `fixincludes' if the System V file system doesn't support symbolic links. These problems ! result in a failure to fix the declaration of `size_t' in ! `sys/types.h'. If you find that `size_t' is a signed type and that ! type mismatches occur, this could be the cause. The solution is not to use such a directory for building GCC. Similarly, when building from SVN or snapshots, or if you modify ! `*.l' files, you need the Flex lexical analyzer generator installed. ! If you do not modify `*.l' files, releases contain the Flex-generated ! files and you do not need Flex installed to build them. There is still ! one Flex-based lexical analyzer (part of the build machinery, not of ! GCC itself) that is used even if you only build the C front end. When building from SVN or snapshots, or if you modify Texinfo documentation, you need version 4.7 or later of Texinfo installed if you *************** documentation pre-built for the unmodifi *** 1996,2005 **** ============================== For a native build, the default configuration is to perform a 3-stage ! bootstrap of the compiler when 'make' is invoked. This will build the entire GCC system and ensure that it compiles itself correctly. It can ! be disabled with the '--disable-bootstrap' parameter to 'configure', but ! bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. The bootstrapping process will complete the following steps: --- 2001,2010 ---- ============================== For a native build, the default configuration is to perform a 3-stage ! bootstrap of the compiler when `make' is invoked. This will build the entire GCC system and ensure that it compiles itself correctly. It can ! be disabled with the `--disable-bootstrap' parameter to `configure', ! but bootstrapping is suggested because the compiler will be tested more completely and could also have better performance. The bootstrapping process will complete the following steps: *************** completely and could also have better pe *** 2014,2031 **** * Perform a comparison test of the stage2 and stage3 compilers. ! * Build runtime libraries using the stage3 compiler from the previous ! step. ! If you are short on disk space you might consider 'make bootstrap-lean' instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. If you wish to use non-default GCC flags when compiling the stage2 ! and stage3 compilers, set 'BOOT_CFLAGS' on the command line when doing ! 'make'. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the --- 2019,2037 ---- * Perform a comparison test of the stage2 and stage3 compilers. ! * Build runtime libraries using the stage3 compiler from the ! previous step. ! ! If you are short on disk space you might consider `make bootstrap-lean' instead. The sequence of compilation is the same described above, but object files from the stage1 and stage2 of the 3-stage bootstrap of the compiler are deleted as soon as they are no longer needed. If you wish to use non-default GCC flags when compiling the stage2 ! and stage3 compilers, set `BOOT_CFLAGS' on the command line when doing ! `make'. For example, if you want to save additional space during the bootstrap and in the final installation as well, you can build the compiler binaries without debugging information as in the following example. This will save roughly 40% of disk space both for the *************** debugging information.) *** 2034,2150 **** make BOOT_CFLAGS='-O' bootstrap ! You can place non-default optimization flags into 'BOOT_CFLAGS'; they ! are less well tested here than the default of '-g -O2', but should still ! work. In a few cases, you may find that you need to specify special ! flags such as '-msoft-float' here to complete the bootstrap; or, if the ! native compiler miscompiles the stage1 compiler, you may need to work ! around this, by choosing 'BOOT_CFLAGS' to avoid the parts of the stage1 ! compiler that were miscompiled, or by using 'make bootstrap4' to increase the number of stages of bootstrap. ! 'BOOT_CFLAGS' does not apply to bootstrapped target libraries. Since ! these are always compiled with the compiler currently being ! bootstrapped, you can use 'CFLAGS_FOR_TARGET' to modify their compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. ! Use 'STAGE1_TFLAGS' to this end. ! If you used the flag '--enable-languages=...' to restrict the ! compilers to be built, only those you've actually enabled will be built. ! This will of course only build those runtime libraries, for which the ! particular compiler has been built. Please note, that re-defining ! 'LANGUAGES' when calling 'make' *does not* work anymore! If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they ! always appear "different". If you encounter this problem, you will need ! to disable comparison in the 'Makefile'.) If you do not want to bootstrap your compiler, you can configure with ! '--disable-bootstrap'. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a ! 'powerpc-unknown-linux-gnu' toolchain on a 'powerpc64-unknown-linux-gnu' ! host. In this case, pass '--enable-bootstrap' to the configure script. ! 'BUILD_CONFIG' can be used to bring in additional customization to the build. It can be set to a whitespace-separated list of names. For ! each such 'NAME', top-level 'config/NAME.mk' will be included by the ! top-level 'Makefile', bringing in any settings it contains. The default ! 'BUILD_CONFIG' can be set using the configure option ! '--with-build-config=NAME...'. Some examples of supported build configurations are: ! 'bootstrap-O1' ! Removes any '-O'-started option from 'BOOT_CFLAGS', and adds '-O1' ! to it. 'BUILD_CONFIG=bootstrap-O1' is equivalent to ! 'BOOT_CFLAGS='-g -O1''. ! 'bootstrap-O3' ! Analogous to 'bootstrap-O1'. ! 'bootstrap-lto' Enables Link-Time Optimization for host tools during bootstrapping. ! 'BUILD_CONFIG=bootstrap-lto' is equivalent to adding '-flto' to ! 'BOOT_CFLAGS'. ! 'bootstrap-debug' Verifies that the compiler generates the same executable code, ! whether or not it is asked to emit debug information. To this end, ! this option builds stage2 host programs without debug information, ! and uses 'contrib/compare-debug' to compare them with the stripped ! stage3 object files. If 'BOOT_CFLAGS' is overridden so as to not ! enable debug information, stage2 will have it, and stage3 won't. ! This option is enabled by default when GCC bootstrapping is ! enabled, if 'strip' can turn object files compiled with and without ! debug info into identical object files. In addition to better test ! coverage, this option makes default bootstraps faster and leaner. ! 'bootstrap-debug-big' Rather than comparing stripped object files, as in ! 'bootstrap-debug', this option saves internal compiler dumps during ! stage2 and stage3 and compares them as well, which helps catch ! additional potential problems, but at a great cost in terms of disk ! space. It can be specified in addition to 'bootstrap-debug'. ! 'bootstrap-debug-lean' ! This option saves disk space compared with 'bootstrap-debug-big', but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! '-fcompare-debug' to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. ! 'bootstrap-debug-lib' This option tests executable code invariance over debug information ! generation on target libraries, just like 'bootstrap-debug-lean' tests it on host programs. It builds stage3 libraries with ! '-fcompare-debug', and it can be used along with any of the ! 'bootstrap-debug' options above. ! There aren't '-lean' or '-big' counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built in stage2 are used in stage3 host programs, so we wouldn't want to compile stage2 libraries with different options for comparison purposes. ! 'bootstrap-debug-ckovw' Arranges for error messages to be issued if the compiler built on ! any stage is run without the option '-fcompare-debug'. This is ! useful to verify the full '-fcompare-debug' testing coverage. It ! must be used along with 'bootstrap-debug-lean' and ! 'bootstrap-debug-lib'. ! 'bootstrap-time' Arranges for the run time of each program started by the GCC ! driver, built in any stage, to be logged to 'time.log', in the top level of the build tree. 5.2 Building a cross compiler ============================= --- 2040,2160 ---- make BOOT_CFLAGS='-O' bootstrap ! You can place non-default optimization flags into `BOOT_CFLAGS'; they ! are less well tested here than the default of `-g -O2', but should ! still work. In a few cases, you may find that you need to specify ! special flags such as `-msoft-float' here to complete the bootstrap; or, ! if the native compiler miscompiles the stage1 compiler, you may need to ! work around this, by choosing `BOOT_CFLAGS' to avoid the parts of the ! stage1 compiler that were miscompiled, or by using `make bootstrap4' to increase the number of stages of bootstrap. ! `BOOT_CFLAGS' does not apply to bootstrapped target libraries. ! Since these are always compiled with the compiler currently being ! bootstrapped, you can use `CFLAGS_FOR_TARGET' to modify their compilation flags, as for non-bootstrapped target libraries. Again, if the native compiler miscompiles the stage1 compiler, you may need to work around this by avoiding non-working parts of the stage1 compiler. ! Use `STAGE1_TFLAGS' to this end. ! If you used the flag `--enable-languages=...' to restrict the ! compilers to be built, only those you've actually enabled will be ! built. This will of course only build those runtime libraries, for ! which the particular compiler has been built. Please note, that ! re-defining `LANGUAGES' when calling `make' *does not* work anymore! If the comparison of stage2 and stage3 fails, this normally indicates that the stage2 compiler has compiled GCC incorrectly, and is therefore a potentially serious bug which you should investigate and report. (On a few systems, meaningful comparison of object files is impossible; they ! always appear "different". If you encounter this problem, you will ! need to disable comparison in the `Makefile'.) If you do not want to bootstrap your compiler, you can configure with ! `--disable-bootstrap'. In particular cases, you may want to bootstrap your compiler even if the target system is not the same as the one you are building on: for example, you could build a ! `powerpc-unknown-linux-gnu' toolchain on a ! `powerpc64-unknown-linux-gnu' host. In this case, pass ! `--enable-bootstrap' to the configure script. ! `BUILD_CONFIG' can be used to bring in additional customization to the build. It can be set to a whitespace-separated list of names. For ! each such `NAME', top-level `config/`NAME'.mk' will be included by the ! top-level `Makefile', bringing in any settings it contains. The ! default `BUILD_CONFIG' can be set using the configure option ! `--with-build-config=`NAME'...'. Some examples of supported build configurations are: ! `bootstrap-O1' ! Removes any `-O'-started option from `BOOT_CFLAGS', and adds `-O1' ! to it. `BUILD_CONFIG=bootstrap-O1' is equivalent to ! `BOOT_CFLAGS='-g -O1''. ! `bootstrap-O3' ! Analogous to `bootstrap-O1'. ! `bootstrap-lto' Enables Link-Time Optimization for host tools during bootstrapping. ! `BUILD_CONFIG=bootstrap-lto' is equivalent to adding `-flto' to ! `BOOT_CFLAGS'. ! `bootstrap-debug' Verifies that the compiler generates the same executable code, ! whether or not it is asked to emit debug information. To this ! end, this option builds stage2 host programs without debug ! information, and uses `contrib/compare-debug' to compare them with ! the stripped stage3 object files. If `BOOT_CFLAGS' is overridden ! so as to not enable debug information, stage2 will have it, and ! stage3 won't. This option is enabled by default when GCC ! bootstrapping is enabled, if `strip' can turn object files ! compiled with and without debug info into identical object files. ! In addition to better test coverage, this option makes default ! bootstraps faster and leaner. ! `bootstrap-debug-big' Rather than comparing stripped object files, as in ! `bootstrap-debug', this option saves internal compiler dumps ! during stage2 and stage3 and compares them as well, which helps ! catch additional potential problems, but at a great cost in terms ! of disk space. It can be specified in addition to ! `bootstrap-debug'. ! `bootstrap-debug-lean' ! This option saves disk space compared with `bootstrap-debug-big', but at the expense of some recompilation. Instead of saving the dumps of stage2 and stage3 until the final compare, it uses ! `-fcompare-debug' to generate, compare and remove the dumps during stage3, repeating the compilation that already took place in stage2, whose dumps were not saved. ! `bootstrap-debug-lib' This option tests executable code invariance over debug information ! generation on target libraries, just like `bootstrap-debug-lean' tests it on host programs. It builds stage3 libraries with ! `-fcompare-debug', and it can be used along with any of the ! `bootstrap-debug' options above. ! There aren't `-lean' or `-big' counterparts to this option because most libraries are only build in stage3, so bootstrap compares would not get significant coverage. Moreover, the few libraries built in stage2 are used in stage3 host programs, so we wouldn't want to compile stage2 libraries with different options for comparison purposes. ! `bootstrap-debug-ckovw' Arranges for error messages to be issued if the compiler built on ! any stage is run without the option `-fcompare-debug'. This is ! useful to verify the full `-fcompare-debug' testing coverage. It ! must be used along with `bootstrap-debug-lean' and ! `bootstrap-debug-lib'. ! `bootstrap-time' Arranges for the run time of each program started by the GCC ! driver, built in any stage, to be logged to `time.log', in the top level of the build tree. + 5.2 Building a cross compiler ============================= *************** When building a cross compiler, it is no *** 2152,2171 **** 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. ! To build a cross compiler, we recommend first building and installing ! a native compiler. You can then use the native GCC compiler to build ! the cross compiler. The installed native compiler needs to be GCC ! version 2.95 or later. If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler ! needs to be the same GCC version as the cross compiler. In addition the ! cross compiler needs to be configured with '--with-ecj-jar=...'. Assuming you have already installed a native copy of GCC and ! configured your cross compiler, issue the command 'make', which performs ! the following steps: * Build host tools necessary to build the compiler. --- 2162,2181 ---- 3-stage bootstrap of the compiler. This makes for an interesting problem as parts of GCC can only be built with GCC. ! To build a cross compiler, we recommend first building and ! installing a native compiler. You can then use the native GCC compiler ! to build the cross compiler. The installed native compiler needs to be ! GCC version 2.95 or later. If the cross compiler is to be built with support for the Java programming language and the ability to compile .java source files is desired, the installed native compiler used to build the cross compiler ! needs to be the same GCC version as the cross compiler. In addition ! the cross compiler needs to be configured with `--with-ecj-jar=...'. Assuming you have already installed a native copy of GCC and ! configured your cross compiler, issue the command `make', which ! performs the following steps: * Build host tools necessary to build the compiler. *************** the following steps: *** 2182,2201 **** If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before ! configuring GCC. Put them in the directory 'PREFIX/TARGET/bin'. Here is a table of the tools you should put in this directory: ! 'as' This should be the cross-assembler. ! 'ld' This should be the cross-linker. ! 'ar' This should be the cross-archiver: a program which can manipulate archive files (linker libraries) in the target machine's format. ! 'ranlib' This should be a program to construct a symbol table in an archive file. --- 2192,2211 ---- If you are not building GNU binutils in the same source tree as GCC, you will need a cross-assembler and cross-linker installed before ! configuring GCC. Put them in the directory `PREFIX/TARGET/bin'. Here is a table of the tools you should put in this directory: ! `as' This should be the cross-assembler. ! `ld' This should be the cross-linker. ! `ar' This should be the cross-archiver: a program which can manipulate archive files (linker libraries) in the target machine's format. ! `ranlib' This should be a program to construct a symbol table in an archive file. *************** and copy or link them to the proper plac *** 2204,2275 **** find them when run later. The easiest way to provide these files is to build the Binutils ! package. Configure it with the same '--host' and '--target' options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before ! configuring GCC, specifying the directories with '--with-sysroot' or ! '--with-headers' and '--with-libs'. Many targets also require "start ! files" such as 'crt0.o' and 'crtn.o' which are linked into each ! executable. There may be several alternatives for 'crt0.o', for use with profiling or other compilation options. Check your target's ! definition of 'STARTFILE_SPEC' to find out what start files it uses. 5.3 Building in parallel ======================== GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use 'make -j 2' instead ! of 'make'. You can also specify a bigger number, and in most cases ! using a value greater than the number of processors in your machine will ! result in fewer and shorter I/O latency hits, thus improving overall ! throughput; this is especially true for slow drives and network ! filesystems. 5.4 Building the Ada compiler ============================= In order to build GNAT, the Ada compiler, you need a working GNAT compiler (GCC version 4.0 or later). This includes GNAT tools such as ! 'gnatmake' and 'gnatlink', since the Ada front end is written in Ada and uses some GNAT-specific extensions. In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. ! 'configure' does not test whether the GNAT installation works and has ! a sufficiently recent version; if too old a GNAT version is installed, ! the build will fail unless '--enable-languages' is used to disable ! building the Ada front end. ! 'ADA_INCLUDE_PATH' and 'ADA_OBJECT_PATH' environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada ! runtime libraries. You can check that your build environment is clean ! by verifying that 'gnatls -v' lists only one explicit path in each section. 5.5 Building with profile feedback ================================== It is possible to use profile feedback to optimize the compiler itself. ! This should result in a faster compiler binary. Experiments done on x86 ! using gcc 3.3 showed approximately 7 percent speedup on compiling C ! programs. To bootstrap the compiler with profile feedback, use 'make profiledbootstrap'. ! When 'make profiledbootstrap' is run, it will first build a 'stage1' ! compiler. This compiler is used to build a 'stageprofile' compiler instrumented to collect execution counts of instruction and branch probabilities. Then runtime libraries are compiled with profile ! collected. Finally a 'stagefeedback' compiler is built using the information collected. Unlike standard bootstrap, several additional restrictions apply. ! The compiler used to build 'stage1' needs to support a 64-bit integral type. It is recommended to only use GCC for this.  --- 2214,2285 ---- find them when run later. The easiest way to provide these files is to build the Binutils ! package. Configure it with the same `--host' and `--target' options that you use for configuring GCC, then build and install them. They install their executables automatically into the proper directory. Alas, they do not support all the targets that GCC supports. If you are not building a C library in the same source tree as GCC, you should also provide the target libraries and headers before ! configuring GCC, specifying the directories with `--with-sysroot' or ! `--with-headers' and `--with-libs'. Many targets also require "start ! files" such as `crt0.o' and `crtn.o' which are linked into each ! executable. There may be several alternatives for `crt0.o', for use with profiling or other compilation options. Check your target's ! definition of `STARTFILE_SPEC' to find out what start files it uses. 5.3 Building in parallel ======================== GNU Make 3.80 and above, which is necessary to build GCC, support ! building in parallel. To activate this, you can use `make -j 2' ! instead of `make'. You can also specify a bigger number, and in most ! cases using a value greater than the number of processors in your ! machine will result in fewer and shorter I/O latency hits, thus ! improving overall throughput; this is especially true for slow drives ! and network filesystems. 5.4 Building the Ada compiler ============================= In order to build GNAT, the Ada compiler, you need a working GNAT compiler (GCC version 4.0 or later). This includes GNAT tools such as ! `gnatmake' and `gnatlink', since the Ada front end is written in Ada and uses some GNAT-specific extensions. In order to build a cross compiler, it is suggested to install the new compiler as native first, and then use it to build the cross compiler. ! `configure' does not test whether the GNAT installation works and ! has a sufficiently recent version; if too old a GNAT version is ! installed, the build will fail unless `--enable-languages' is used to ! disable building the Ada front end. ! `ADA_INCLUDE_PATH' and `ADA_OBJECT_PATH' environment variables must not be set when building the Ada compiler, the Ada tools, or the Ada ! runtime libraries. You can check that your build environment is clean ! by verifying that `gnatls -v' lists only one explicit path in each section. 5.5 Building with profile feedback ================================== It is possible to use profile feedback to optimize the compiler itself. ! This should result in a faster compiler binary. Experiments done on ! x86 using gcc 3.3 showed approximately 7 percent speedup on compiling C ! programs. To bootstrap the compiler with profile feedback, use `make profiledbootstrap'. ! When `make profiledbootstrap' is run, it will first build a `stage1' ! compiler. This compiler is used to build a `stageprofile' compiler instrumented to collect execution counts of instruction and branch probabilities. Then runtime libraries are compiled with profile ! collected. Finally a `stagefeedback' compiler is built using the information collected. Unlike standard bootstrap, several additional restrictions apply. ! The compiler used to build `stage1' needs to support a 64-bit integral type. It is recommended to only use GCC for this.  *************** File: gccinstall.info, Node: Testing, *** 2278,2291 **** 6 Installing GCC: Testing ************************* ! Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the gcc-testresults mailing list. Some of these archived results are linked from the build status lists at ! , although not everyone who reports a ! successful build runs the testsuites and submits the results. This step ! is optional and may require you to download additional software, but it ! can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. First, you must have downloaded the testsuites. These are part of --- 2288,2301 ---- 6 Installing GCC: Testing ************************* ! Before you install GCC, we encourage you to run the testsuites and to compare your results with results from a similar configuration that have been submitted to the gcc-testresults mailing list. Some of these archived results are linked from the build status lists at ! `http://gcc.gnu.org/buildstat.html', although not everyone who reports ! a successful build runs the testsuites and submits the results. This ! step is optional and may require you to download additional software, ! but it can give you confidence in your new GCC installation or point out problems before you install and start using your new GCC. First, you must have downloaded the testsuites. These are part of *************** any front ends, you must download the te *** 2295,2304 **** Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. ! If the directories where 'runtest' and 'expect' were installed are ! not in the 'PATH', you may need to set the following environment ! variables appropriately, as in the following example (which assumes that ! DejaGnu has been installed under '/usr/local'): TCL_LIBRARY = /usr/local/share/tcl8.0 DEJAGNULIBS = /usr/local/share/dejagnu --- 2305,2314 ---- Second, you must have the testing tools installed. This includes DejaGnu, Tcl, and Expect; the DejaGnu site has links to these. ! If the directories where `runtest' and `expect' were installed are ! not in the `PATH', you may need to set the following environment ! variables appropriately, as in the following example (which assumes ! that DejaGnu has been installed under `/usr/local'): TCL_LIBRARY = /usr/local/share/tcl8.0 DEJAGNULIBS = /usr/local/share/dejagnu *************** portability in the DejaGnu code.) *** 2310,2364 **** Finally, you can run the testsuite (which may take a long time): cd OBJDIR; make -k check ! This will test various components of GCC, such as compiler front ends ! and runtime libraries. While running the testsuite, DejaGnu might emit ! some harmless messages resembling 'WARNING: Couldn't find the global ! config file.' or 'WARNING: Couldn't find tool init file' that can be ! ignored. If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at ! . 6.1 How can you run the testsuite on selected tests? ==================================================== ! In order to run sets of tests selectively, there are targets 'make ! check-gcc' and language specific 'make check-c', 'make check-c++', 'make ! check-fortran', 'make check-java', 'make check-ada', 'make check-objc', ! 'make check-obj-c++', 'make check-lto' in the 'gcc' subdirectory of the ! object directory. You can also just run 'make check' in a subdirectory ! of the object directory. ! A more selective way to just run all 'gcc' execute tests in the testsuite is to use make check-gcc RUNTESTFLAGS="execute.exp OTHER-OPTIONS" ! Likewise, in order to run only the 'g++' "old-deja" tests in the ! testsuite with filenames matching '9805*', you would use make check-g++ RUNTESTFLAGS="old-deja.exp=9805* OTHER-OPTIONS" ! The '*.exp' files are located in the testsuite directories of the GCC ! source, the most important ones being 'compile.exp', 'execute.exp', ! 'dg.exp' and 'old-deja.exp'. To get a list of the possible '*.exp' ! files, pipe the output of 'make check' into a file and look at the ! 'Running ... .exp' lines. 6.2 Passing options and running multiple testsuites =================================================== You can pass multiple options to the testsuite using the ! '--target_board' option of DejaGNU, either passed as part of ! 'RUNTESTFLAGS', or directly to 'runtest' if you prefer to work outside the makefiles. For example, make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants" ! will run the standard 'g++' testsuites ("unix" is the target name for ! a standard native testsuite situation), passing '-O3 -fmerge-constants' ! to the compiler on every test, i.e., slashes separate options. You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: --- 2320,2375 ---- Finally, you can run the testsuite (which may take a long time): cd OBJDIR; make -k check ! This will test various components of GCC, such as compiler front ! ends and runtime libraries. While running the testsuite, DejaGnu might ! emit some harmless messages resembling `WARNING: Couldn't find the ! global config file.' or `WARNING: Couldn't find tool init file' that ! can be ignored. If you are testing a cross-compiler, you may want to run the testsuite on a simulator as described at ! `http://gcc.gnu.org/simtest-howto.html'. 6.1 How can you run the testsuite on selected tests? ==================================================== ! In order to run sets of tests selectively, there are targets `make ! check-gcc' and language specific `make check-c', `make check-c++', ! `make check-fortran', `make check-java', `make check-ada', `make ! check-objc', `make check-obj-c++', `make check-lto' in the `gcc' ! subdirectory of the object directory. You can also just run `make ! check' in a subdirectory of the object directory. ! A more selective way to just run all `gcc' execute tests in the testsuite is to use make check-gcc RUNTESTFLAGS="execute.exp OTHER-OPTIONS" ! Likewise, in order to run only the `g++' "old-deja" tests in the ! testsuite with filenames matching `9805*', you would use make check-g++ RUNTESTFLAGS="old-deja.exp=9805* OTHER-OPTIONS" ! The `*.exp' files are located in the testsuite directories of the GCC ! source, the most important ones being `compile.exp', `execute.exp', ! `dg.exp' and `old-deja.exp'. To get a list of the possible `*.exp' ! files, pipe the output of `make check' into a file and look at the ! `Running ... .exp' lines. 6.2 Passing options and running multiple testsuites =================================================== You can pass multiple options to the testsuite using the ! `--target_board' option of DejaGNU, either passed as part of ! `RUNTESTFLAGS', or directly to `runtest' if you prefer to work outside the makefiles. For example, make check-g++ RUNTESTFLAGS="--target_board=unix/-O3/-fmerge-constants" ! will run the standard `g++' testsuites ("unix" is the target name ! for a standard native testsuite situation), passing `-O3 ! -fmerge-constants' to the compiler on every test, i.e., slashes ! separate options. You can run the testsuites multiple times using combinations of options with a syntax similar to the brace expansion of popular shells: *************** options with a syntax similar to the bra *** 2367,2373 **** (Note the empty option caused by the trailing comma in the final group.) The following will run each testsuite eight times using the ! 'arm-sim' target, as if you had specified all possible combinations yourself: --target_board='arm-sim/-mhard-float/-O1 \ --- 2378,2384 ---- (Note the empty option caused by the trailing comma in the final group.) The following will run each testsuite eight times using the ! `arm-sim' target, as if you had specified all possible combinations yourself: --target_board='arm-sim/-mhard-float/-O1 \ *************** This list: *** 2384,2396 **** ..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}" ! will generate four combinations, all involving '-Wextra'. The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in parallel by having the shell perform the combinations and ! 'make' do the parallel runs. Instead of using '--target_board', use a special makefile target: make -jN check-TESTSUITE//TEST-TARGET/OPTION1/OPTION2/... --- 2395,2407 ---- ..."--target_board=unix/-Wextra\{-O3,-fno-strength\}\{-fomit-frame,\}" ! will generate four combinations, all involving `-Wextra'. The disadvantage to this method is that the testsuites are run in serial, which is a waste on multiprocessor systems. For users with GNU Make and a shell which performs brace expansion, you can run the testsuites in parallel by having the shell perform the combinations and ! `make' do the parallel runs. Instead of using `--target_board', use a special makefile target: make -jN check-TESTSUITE//TEST-TARGET/OPTION1/OPTION2/... *************** special makefile target: *** 2401,2436 **** will run three concurrent "make-gcc" testsuites, eventually testing all ten combinations as described above. Note that this is currently ! only supported in the 'gcc' subdirectory. (To see how this works, try ! typing 'echo' before the example given here.) 6.3 Additional testing for Java Class Libraries =============================================== ! The Java runtime tests can be executed via 'make check' in the ! 'TARGET/libjava/testsuite' directory in the build tree. The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava testsuite at ! 'libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking 'make', as in 'make MAUVEDIR=~/mauve check'. 6.4 How to interpret test results ================================= ! The result of running the testsuite are various '*.sum' and '*.log' ! files in the testsuite subdirectories. The '*.log' files contain a detailed log of the compiler invocations and the corresponding results, ! the '*.sum' files summarize the results. These summaries contain status ! codes for all tests: * PASS: the test passed as expected * XPASS: the test unexpectedly passed * FAIL: the test unexpectedly failed * XFAIL: the test failed as expected * UNSUPPORTED: the test is not supported on this platform * ERROR: the testsuite detected an error * WARNING: the testsuite detected a possible problem It is normal for some tests to report unexpected failures. At the --- 2412,2453 ---- will run three concurrent "make-gcc" testsuites, eventually testing all ten combinations as described above. Note that this is currently ! only supported in the `gcc' subdirectory. (To see how this works, try ! typing `echo' before the example given here.) 6.3 Additional testing for Java Class Libraries =============================================== ! The Java runtime tests can be executed via `make check' in the ! `TARGET/libjava/testsuite' directory in the build tree. The Mauve Project provides a suite of tests for the Java Class Libraries. This suite can be run as part of libgcj testing by placing the Mauve tree within the libjava testsuite at ! `libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking `make', as in `make MAUVEDIR=~/mauve check'. 6.4 How to interpret test results ================================= ! The result of running the testsuite are various `*.sum' and `*.log' ! files in the testsuite subdirectories. The `*.log' files contain a detailed log of the compiler invocations and the corresponding results, ! the `*.sum' files summarize the results. These summaries contain ! status codes for all tests: * PASS: the test passed as expected + * XPASS: the test unexpectedly passed + * FAIL: the test unexpectedly failed + * XFAIL: the test failed as expected + * UNSUPPORTED: the test is not supported on this platform + * ERROR: the testsuite detected an error + * WARNING: the testsuite detected a possible problem It is normal for some tests to report unexpected failures. At the *************** fixed in future releases. *** 2442,2456 **** =========================== If you want to report the results to the GCC project, use the ! 'contrib/test_summary' shell script. Start it in the OBJDIR with SRCDIR/contrib/test_summary -p your_commentary.txt \ -m gcc-testresults@gcc.gnu.org |sh ! This script uses the 'Mail' program to send the results, so make sure ! it is in your 'PATH'. The file 'your_commentary.txt' is prepended to ! the testsuite summary and should contain any special remarks you have on ! your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. --- 2459,2473 ---- =========================== If you want to report the results to the GCC project, use the ! `contrib/test_summary' shell script. Start it in the OBJDIR with SRCDIR/contrib/test_summary -p your_commentary.txt \ -m gcc-testresults@gcc.gnu.org |sh ! This script uses the `Mail' program to send the results, so make ! sure it is in your `PATH'. The file `your_commentary.txt' is prepended ! to the testsuite summary and should contain any special remarks you ! have on your results or your build environment. Please do not edit the testsuite result block or the subject line, as these messages may be automatically processed. *************** File: gccinstall.info, Node: Final inst *** 2460,2467 **** 7 Installing GCC: Final installation ************************************ ! Now that GCC has been built (and optionally tested), you can install it ! with cd OBJDIR && make install We strongly recommend to install into a target directory where there --- 2477,2484 ---- 7 Installing GCC: Final installation ************************************ ! Now that GCC has been built (and optionally tested), you can install ! it with cd OBJDIR && make install We strongly recommend to install into a target directory where there *************** that depend on this debugging informatio *** 2471,2508 **** instance). That step completes the installation of GCC; user level binaries can ! be found in 'PREFIX/bin' where PREFIX is the value you specified with ! the '--prefix' to configure (or '/usr/local' by default). (If you ! specified '--bindir', that directory will be used instead; otherwise, if ! you specified '--exec-prefix', 'EXEC-PREFIX/bin' will be used.) Headers ! for the C++ and Java libraries are installed in 'PREFIX/include'; ! libraries in 'LIBDIR' (normally 'PREFIX/lib'); internal parts of the ! compiler in 'LIBDIR/gcc' and 'LIBEXECDIR/gcc'; documentation in info ! format in 'INFODIR' (normally 'PREFIX/info'). When installing cross-compilers, GCC's executables are not only ! installed into 'BINDIR', that is, 'EXEC-PREFIX/bin', but additionally ! into 'EXEC-PREFIX/TARGET-ALIAS/bin', if that directory exists. Typically, such "tooldirs" hold target-specific binutils, including assembler and linker. ! Installation into a temporary staging area or into a 'chroot' jail can be achieved with the command make DESTDIR=PATH-TO-ROOTDIR install where PATH-TO-ROOTDIR is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the ! directory specified by 'DESTDIR' need not exist yet; it will be created if necessary. ! There is a subtle point with tooldirs and 'DESTDIR': If you relocate ! a cross-compiler installation with e.g. 'DESTDIR=ROOTDIR', then the ! directory 'ROOTDIR/EXEC-PREFIX/TARGET-ALIAS/bin' will be filled with duplicated GCC executables only if it already exists, it will not be ! created otherwise. This is regarded as a feature, not as a bug, because ! it gives slightly more control to the packagers using the 'DESTDIR' ! feature. You can install stripped programs and libraries with --- 2488,2525 ---- instance). That step completes the installation of GCC; user level binaries can ! be found in `PREFIX/bin' where PREFIX is the value you specified with ! the `--prefix' to configure (or `/usr/local' by default). (If you ! specified `--bindir', that directory will be used instead; otherwise, ! if you specified `--exec-prefix', `EXEC-PREFIX/bin' will be used.) ! Headers for the C++ and Java libraries are installed in ! `PREFIX/include'; libraries in `LIBDIR' (normally `PREFIX/lib'); ! internal parts of the compiler in `LIBDIR/gcc' and `LIBEXECDIR/gcc'; ! documentation in info format in `INFODIR' (normally `PREFIX/info'). When installing cross-compilers, GCC's executables are not only ! installed into `BINDIR', that is, `EXEC-PREFIX/bin', but additionally ! into `EXEC-PREFIX/TARGET-ALIAS/bin', if that directory exists. Typically, such "tooldirs" hold target-specific binutils, including assembler and linker. ! Installation into a temporary staging area or into a `chroot' jail can be achieved with the command make DESTDIR=PATH-TO-ROOTDIR install where PATH-TO-ROOTDIR is the absolute path of a directory relative to which all installation paths will be interpreted. Note that the ! directory specified by `DESTDIR' need not exist yet; it will be created if necessary. ! There is a subtle point with tooldirs and `DESTDIR': If you relocate ! a cross-compiler installation with e.g. `DESTDIR=ROOTDIR', then the ! directory `ROOTDIR/EXEC-PREFIX/TARGET-ALIAS/bin' will be filled with duplicated GCC executables only if it already exists, it will not be ! created otherwise. This is regarded as a feature, not as a bug, ! because it gives slightly more control to the packagers using the ! `DESTDIR' feature. You can install stripped programs and libraries with *************** feature. *** 2510,2574 **** If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! . If your system is not listed for the version of GCC that you built, send a note to indicating that you successfully built and installed GCC. Include the following information: ! * Output from running 'SRCDIR/config.guess'. Do not send that file itself, just the one-line output from running it. ! * The output of 'gcc -v' for your newly installed 'gcc'. This tells us which version of GCC you built and the options you passed to configure. ! * Whether you enabled all languages or a subset of them. If you used ! a full distribution then this information is part of the configure ! options in the output of 'gcc -v', but if you downloaded the "core" ! compiler plus additional front ends then it isn't apparent which ! ones you built unless you tell us about it. * If the build was for GNU/Linux, also include: ! * The distribution name and version (e.g., Red Hat 7.1 or Debian ! 2.2.3); this information should be available from ! '/etc/issue'. ! * The version of the Linux kernel, available from 'uname ! --version' or 'uname -a'. * The version of glibc you used; for RPM-based systems like Red ! Hat, Mandrake, and SuSE type 'rpm -q glibc' to get the glibc ! version, and on systems like Debian and Progeny use 'dpkg -l libc6'. ! For other systems, you can include similar information if you think ! it is relevant. * Any other information that you think would be useful to people ! building GCC on the same configuration. The new entry in the build ! status list will include a link to the archived copy of your message. ! We'd also like to know if the *note host/target specific installation ! notes: Specific. didn't include your host/target information or if that ! information is incomplete or out of date. Send a note to ! detailing how the information should be changed. If you find a bug, please report it following the bug reporting guidelines. ! If you want to print the GCC manuals, do 'cd OBJDIR; make dvi'. You ! will need to have 'texi2dvi' (version at least 4.7) and TeX installed. ! This creates a number of '.dvi' files in subdirectories of 'OBJDIR'; ! these may be converted for printing with programs such as 'dvips'. ! Alternately, by using 'make pdf' in place of 'make dvi', you can create ! documentation in the form of '.pdf' files; this requires 'texi2pdf', which is included with Texinfo version 4.8 and later. You can also buy printed manuals from the Free Software Foundation, though such manuals may not be for the most recent version of GCC. ! If you would like to generate online HTML documentation, do 'cd OBJDIR; make html' and HTML will be generated for the gcc manuals in ! 'OBJDIR/gcc/HTML'.  File: gccinstall.info, Node: Binaries, Next: Specific, Prev: Installing GCC, Up: Top --- 2527,2592 ---- If you are bootstrapping a released version of GCC then please quickly review the build status page for your release, available from ! `http://gcc.gnu.org/buildstat.html'. If your system is not listed for the version of GCC that you built, send a note to indicating that you successfully built and installed GCC. Include the following information: ! * Output from running `SRCDIR/config.guess'. Do not send that file itself, just the one-line output from running it. ! * The output of `gcc -v' for your newly installed `gcc'. This tells us which version of GCC you built and the options you passed to configure. ! * Whether you enabled all languages or a subset of them. If you ! used a full distribution then this information is part of the ! configure options in the output of `gcc -v', but if you downloaded ! the "core" compiler plus additional front ends then it isn't ! apparent which ones you built unless you tell us about it. * If the build was for GNU/Linux, also include: ! * The distribution name and version (e.g., Red Hat 7.1 or ! Debian 2.2.3); this information should be available from ! `/etc/issue'. ! * The version of the Linux kernel, available from `uname ! --version' or `uname -a'. * The version of glibc you used; for RPM-based systems like Red ! Hat, Mandrake, and SuSE type `rpm -q glibc' to get the glibc ! version, and on systems like Debian and Progeny use `dpkg -l libc6'. ! For other systems, you can include similar information if you ! think it is relevant. * Any other information that you think would be useful to people ! building GCC on the same configuration. The new entry in the ! build status list will include a link to the archived copy of your message. ! We'd also like to know if the *note host/target specific ! installation notes: Specific. didn't include your host/target ! information or if that information is incomplete or out of date. Send ! a note to detailing how the information should be ! changed. If you find a bug, please report it following the bug reporting guidelines. ! If you want to print the GCC manuals, do `cd OBJDIR; make dvi'. You ! will need to have `texi2dvi' (version at least 4.7) and TeX installed. ! This creates a number of `.dvi' files in subdirectories of `OBJDIR'; ! these may be converted for printing with programs such as `dvips'. ! Alternately, by using `make pdf' in place of `make dvi', you can create ! documentation in the form of `.pdf' files; this requires `texi2pdf', which is included with Texinfo version 4.8 and later. You can also buy printed manuals from the Free Software Foundation, though such manuals may not be for the most recent version of GCC. ! If you would like to generate online HTML documentation, do `cd OBJDIR; make html' and HTML will be generated for the gcc manuals in ! `OBJDIR/gcc/HTML'.  File: gccinstall.info, Node: Binaries, Next: Specific, Prev: Installing GCC, Up: Top *************** File: gccinstall.info, Node: Binaries, *** 2576,2585 **** 8 Installing GCC: Binaries ************************** ! We are often asked about pre-compiled versions of GCC. While we cannot ! provide these for all platforms, below you'll find links to binaries for ! various platforms where creating them by yourself is not easy due to ! various reasons. Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their --- 2594,2603 ---- 8 Installing GCC: Binaries ************************** ! We are often asked about pre-compiled versions of GCC. While we ! cannot provide these for all platforms, below you'll find links to ! binaries for various platforms where creating them by yourself is not ! easy due to various reasons. Please note that we did not create these binaries, nor do we support them. If you have any problems installing them, please contact their *************** makers. *** 2612,2617 **** --- 2630,2636 ---- * Microsoft Windows: * The Cygwin project; + * The MinGW project. * The Written Word offers binaries for AIX 4.3.3, 5.1 and 5.2, *************** File: gccinstall.info, Node: Specific, *** 2629,2636 **** 9 Host/target specific installation notes for GCC ************************************************* ! Please read this document carefully _before_ installing the GNU Compiler ! Collection on your machine. Note that this list of install notes is _not_ a list of supported hosts or targets. Not all supported hosts and targets are listed here, --- 2648,2655 ---- 9 Host/target specific installation notes for GCC ************************************************* ! Please read this document carefully _before_ installing the GNU ! Compiler Collection on your machine. Note that this list of install notes is _not_ a list of supported hosts or targets. Not all supported hosts and targets are listed here, *************** systems. *** 2659,2683 **** Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC ! 3.2, versions before 'alpha*-dec-osf4' are no longer supported. (These are the versions which identify themselves as DEC OSF/1.) amd64-*-solaris2.1[0-9]* ======================== ! This is a synonym for 'x86_64-*-solaris2.1[0-9]*'. arc-*-elf32 =========== ! Use 'configure --target=arc-elf32 --with-cpu=CPU --enable-languages="c,c++"' to configure GCC, with CPU being one of ! 'arc600', 'arc601', or 'arc700'. arc-linux-uclibc ================ ! Use 'configure --target=arc-linux-uclibc --with-cpu=arc700 --enable-languages="c,c++"' to configure GCC. arm-*-eabi --- 2678,2702 ---- Support for Tru64 UNIX V5.1 has been removed in GCC 4.8. As of GCC 4.6, support for Tru64 UNIX V4.0 and V5.0 has been removed. As of GCC ! 3.2, versions before `alpha*-dec-osf4' are no longer supported. (These are the versions which identify themselves as DEC OSF/1.) amd64-*-solaris2.1[0-9]* ======================== ! This is a synonym for `x86_64-*-solaris2.1[0-9]*'. arc-*-elf32 =========== ! Use `configure --target=arc-elf32 --with-cpu=CPU --enable-languages="c,c++"' to configure GCC, with CPU being one of ! `arc600', `arc601', or `arc700'. arc-linux-uclibc ================ ! Use `configure --target=arc-linux-uclibc --with-cpu=arc700 --enable-languages="c,c++"' to configure GCC. arm-*-eabi *************** arm-*-eabi *** 2685,2691 **** ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: ! 'arm-*-netbsdelf', 'arm-*-*linux-*' and 'arm-*-rtemseabi'. avr === --- 2704,2710 ---- ARM-family processors. Subtargets that use the ELF object format require GNU binutils 2.13 or newer. Such subtargets include: ! `arm-*-netbsdelf', `arm-*-*linux-*' and `arm-*-rtemseabi'. avr === *************** ATMEL AVR-family micro controllers. The *** 2694,2705 **** applications. There are no standard Unix configurations. *Note AVR Options: (gcc)AVR Options, for the list of supported MCU types. ! Use 'configure --target=avr --enable-languages="c"' to configure GCC. Further installation notes and other useful information about AVR tools can also be obtained from: * http://www.nongnu.org/avr/ * http://www.amelek.gda.pl/avr/ We _strongly_ recommend using binutils 2.13 or newer. --- 2713,2725 ---- applications. There are no standard Unix configurations. *Note AVR Options: (gcc)AVR Options, for the list of supported MCU types. ! Use `configure --target=avr --enable-languages="c"' to configure GCC. Further installation notes and other useful information about AVR tools can also be obtained from: * http://www.nongnu.org/avr/ + * http://www.amelek.gda.pl/avr/ We _strongly_ recommend using binutils 2.13 or newer. *************** tools can also be obtained from: *** 2712,2735 **** Blackfin ======== ! The Blackfin processor, an Analog Devices DSP. *Note Blackfin Options: (gcc)Blackfin Options, More information, and a version of binutils with support for this ! processor, is available at CR16 ==== ! The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. *Note CR16 Options: (gcc)CR16 Options, ! Use 'configure --target=cr16-elf --enable-languages=c,c++' to configure GCC for building a CR16 elf cross-compiler. ! Use 'configure --target=cr16-uclinux --enable-languages=c,c++' to configure GCC for building a CR16 uclinux cross-compiler. CRIS --- 2732,2755 ---- Blackfin ======== ! The Blackfin processor, an Analog Devices DSP. *Note Blackfin Options: (gcc)Blackfin Options, More information, and a version of binutils with support for this ! processor, is available at `http://blackfin.uclinux.org' CR16 ==== ! The CR16 CompactRISC architecture is a 16-bit architecture. This architecture is used in embedded applications. *Note CR16 Options: (gcc)CR16 Options, ! Use `configure --target=cr16-elf --enable-languages=c,c++' to configure GCC for building a CR16 elf cross-compiler. ! Use `configure --target=cr16-uclinux --enable-languages=c,c++' to configure GCC for building a CR16 uclinux cross-compiler. CRIS *************** system-on-a-chip series. These are used *** 2742,2761 **** options. There are a few different CRIS targets: ! 'cris-axis-elf' Mainly for monolithic embedded systems. Includes a multilib for ! the 'v10' core used in 'ETRAX 100 LX'. ! 'cris-axis-linux-gnu' A GNU/Linux port for the CRIS architecture, currently targeting ! 'ETRAX 100 LX' by default. ! For 'cris-axis-elf' you need binutils 2.11 or newer. For ! 'cris-axis-linux-gnu' you need binutils 2.12 or newer. Pre-packaged tools can be obtained from ! . More information about this platform is available at ! . DOS === --- 2762,2782 ---- options. There are a few different CRIS targets: ! `cris-axis-elf' Mainly for monolithic embedded systems. Includes a multilib for ! the `v10' core used in `ETRAX 100 LX'. ! ! `cris-axis-linux-gnu' A GNU/Linux port for the CRIS architecture, currently targeting ! `ETRAX 100 LX' by default. ! For `cris-axis-elf' you need binutils 2.11 or newer. For ! `cris-axis-linux-gnu' you need binutils 2.12 or newer. Pre-packaged tools can be obtained from ! `ftp://ftp.axis.com/pub/axis/tools/cris/compiler-kit/'. More information about this platform is available at ! `http://developer.axis.com/'. DOS === *************** Support for FreeBSD 1 was discontinued i *** 2782,2811 **** In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is ! present on FreeBSD 7 or later) and the use of '__cxa_atexit' by default ! (on FreeBSD 6 or later). The use of 'dl_iterate_phdr' inside ! 'libgcc_s.so.1' and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use '-gstabs' instead of '-g', if you really want the old debugging format. There are no known issues ! with mixing object files and libraries with different debugging formats. ! Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of GCC. In ! particular, '--enable-threads' is now configured by default. However, as a general user, do not attempt to replace the system compiler with ! this release. Known to bootstrap and check with good results on FreeBSD ! 7.2-STABLE. In the past, known to bootstrap and check with good results ! on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and 5-CURRENT. ! The version of binutils installed in '/usr/bin' probably works with this release of GCC. Bootstrapping against the latest GNU binutils ! and/or the version found in '/usr/ports/devel/binutils' has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required ! for java) may not configure properly on FreeBSD prior to the FreeBSD 7.0 ! release with GNU binutils after 2.16.1. h8300-hms ========= --- 2803,2833 ---- In order to better utilize FreeBSD base system functionality and match the configuration of the system compiler, GCC 4.5 and above as well as GCC 4.4 past 2010-06-20 leverage SSP support in libc (which is ! present on FreeBSD 7 or later) and the use of `__cxa_atexit' by default ! (on FreeBSD 6 or later). The use of `dl_iterate_phdr' inside ! `libgcc_s.so.1' and boehm-gc (on FreeBSD 7 or later) is enabled by GCC 4.5 and above. We support FreeBSD using the ELF file format with DWARF 2 debugging ! for all CPU architectures. You may use `-gstabs' instead of `-g', if you really want the old debugging format. There are no known issues ! with mixing object files and libraries with different debugging ! formats. Otherwise, this release of GCC should now match more of the configuration used in the stock FreeBSD configuration of GCC. In ! particular, `--enable-threads' is now configured by default. However, as a general user, do not attempt to replace the system compiler with ! this release. Known to bootstrap and check with good results on ! FreeBSD 7.2-STABLE. In the past, known to bootstrap and check with ! good results on FreeBSD 3.0, 3.4, 4.0, 4.2, 4.3, 4.4, 4.5, 4.8, 4.9 and ! 5-CURRENT. ! The version of binutils installed in `/usr/bin' probably works with this release of GCC. Bootstrapping against the latest GNU binutils ! and/or the version found in `/usr/ports/devel/binutils' has been known to enable additional features and improve overall testsuite results. However, it is currently known that boehm-gc (which itself is required ! for java) may not configure properly on FreeBSD prior to the FreeBSD ! 7.0 release with GNU binutils after 2.16.1. h8300-hms ========= *************** Support for HP-UX version 9 and older wa *** 2827,2844 **** We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. ! It may be helpful to configure GCC with the '--with-gnu-as' and ! '--with-as=...' options to ensure that GCC can find GAS. ! The HP assembler should not be used with GCC. It is rarely tested and ! may not work. It shouldn't be used with any languages other than C due ! to its many limitations. ! Specifically, '-g' does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into ! each object file it creates, causing the 3-stage comparison test to fail ! during a bootstrap. You should be able to continue by saying 'make ! all-host all-target' after getting the failure from 'make'. Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit --- 2849,2866 ---- We require using gas/binutils on all hppa platforms. Version 2.19 or later is recommended. ! It may be helpful to configure GCC with the `--with-gnu-as' and ! `--with-as=...' options to ensure that GCC can find GAS. ! The HP assembler should not be used with GCC. It is rarely tested ! and may not work. It shouldn't be used with any languages other than C ! due to its many limitations. ! Specifically, `-g' does not work (HP-UX uses a peculiar debugging format which GCC does not know about). It also inserts timestamps into ! each object file it creates, causing the 3-stage comparison test to ! fail during a bootstrap. You should be able to continue by saying ! `make all-host all-target' after getting the failure from `make'. Various GCC features are not supported. For example, it does not support weak symbols or alias definitions. As a result, explicit *************** difficult if not impossible to build man *** 2849,2855 **** PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when the ! target is a 'hppa1*' machine. The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture --- 2871,2877 ---- PROCESSOR_7100LC and PROCESSOR_8000. They are selected from the pa-risc architecture specified for the target machine when configuring. PROCESSOR_8000 is the default. PROCESSOR_7100LC is selected when the ! target is a `hppa1*' machine. The PROCESSOR_8000 model is not well suited to older processors. Thus, it is important to completely specify the machine architecture *************** when configuring if you want a model oth *** 2857,2879 **** macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. ! As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 through ! 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. This ! namespace change might cause problems when bootstrapping with an earlier ! version of GCC or the HP compiler as essentially the same namespace is ! required for an entire build. This problem can be avoided in a number ! of ways. With HP cc, 'UNIX_STD' can be set to '95' or '98'. Another ! way is to add an appropriate set of predefines to 'CC'. The description ! for the 'munix=' option contains a list of the predefines used with each ! standard. ! More specific information to 'hppa*-hp-hpux*' targets follows. hppa*-hp-hpux10 =============== For hpux10.20, we _highly_ recommend you pick up the latest sed patch ! 'PHCO_19798' from HP. The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous --- 2879,2901 ---- macro TARGET_SCHED_DEFAULT can be defined in BOOT_CFLAGS if a different default scheduling model is desired. ! As of GCC 4.0, GCC uses the UNIX 95 namespace for HP-UX 10.10 ! through 11.00, and the UNIX 98 namespace for HP-UX 11.11 and later. ! This namespace change might cause problems when bootstrapping with an ! earlier version of GCC or the HP compiler as essentially the same ! namespace is required for an entire build. This problem can be avoided ! in a number of ways. With HP cc, `UNIX_STD' can be set to `95' or ! `98'. Another way is to add an appropriate set of predefines to `CC'. ! The description for the `munix=' option contains a list of the ! predefines used with each standard. ! More specific information to `hppa*-hp-hpux*' targets follows. hppa*-hp-hpux10 =============== For hpux10.20, we _highly_ recommend you pick up the latest sed patch ! `PHCO_19798' from HP. The C++ ABI has changed incompatibly in GCC 4.0. COMDAT subspaces are used for one-only code and data. This resolves many of the previous *************** hppa*-hp-hpux11 *** 2887,2899 **** GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. ! The libffi and libjava libraries haven't been ported to 64-bit ! HP-UX and don't build. Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained to build the ! Ada language as it can't be bootstrapped using C. Ada is only available ! for the 32-bit PA-RISC runtime. Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler supports only traditional C; you will need either --- 2909,2921 ---- GCC 3.0 and up support HP-UX 11. GCC 2.95.x is not supported and cannot be used to compile GCC 3.0 and up. ! The libffi and libjava libraries haven't been ported to 64-bit HP-UX ! and don't build. Refer to binaries for information about obtaining precompiled GCC binaries for HP-UX. Precompiled binaries must be obtained to build the ! Ada language as it can't be bootstrapped using C. Ada is only ! available for the 32-bit PA-RISC runtime. Starting with GCC 3.4 an ISO C compiler is required to bootstrap. The bundled compiler supports only traditional C; you will need either *************** compiler, but the process requires sever *** 2904,2910 **** used to build later versions. The fastjar program contains ISO C code and can't be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! '--enable-languages="c,c++,f77,objc"' option in your configure command. There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC --- 2926,2932 ---- used to build later versions. The fastjar program contains ISO C code and can't be built with the HP bundled compiler. This problem can be avoided by not building the Java language. For example, use the ! `--enable-languages="c,c++,f77,objc"' option in your configure command. There are several possible approaches to building the distribution. Binutils can be built first using the HP tools. Then, the GCC *************** start from a binary distribution. *** 2915,2993 **** On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on the ! same system. The 'hppa[1-2]*-hp-hpux11*' target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker. The ! 'hppa64-hp-hpux11*' target generates 64-bit code for the PA-RISC 2.0 architecture. The script config.guess now selects the target type based on the ! compiler detected during configuration. You must define 'PATH' or 'CC' so that configure finds an appropriate compiler for the initial ! bootstrap. When 'CC' is used, the definition should contain the options ! that are needed whenever 'CC' is used. Specifically, options that determine the runtime architecture must be ! in 'CC' to correctly select the target for the build. It is also ! convenient to place many other compiler options in 'CC'. For example, ! 'CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE"' can be ! used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit ! K&R/bundled mode. The '+DA2.0W' option will result in the automatic ! selection of the 'hppa64-hp-hpux11*' target. The macro definition table ! of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when ! building with the bundled compiler, or when using the '-Ac' option. ! These defines aren't necessary with '-Ae'. ! It is best to explicitly configure the 'hppa64-hp-hpux11*' target ! with the '--with-ld=...' option. This overrides the standard search for ! ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a result, it's not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. A recent linker patch must be installed for the correct operation of ! GCC 3.3 and later. 'PHSS_26559' and 'PHSS_24304' are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, ! respectively. 'PHSS_24303', the companion to 'PHSS_24304', might be usable but it hasn't been tested. These patches have been superseded. ! Consult the HP patch database to obtain the currently recommended linker ! patch for your system. The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared ! libraries containing secondary symbols, as well as various other linking ! issues involving secondary symbols. GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker '+init' and '+fini' options for the same purpose. The ! patches correct various problems with the +init/+fini options, including ! program core dumps. Binutils 2.14 corrects a problem on the 64-bit port ! resulting from HP's non-standard use of the .init and .fini sections for ! array initializers and finalizers. Although the HP and GNU linkers are both supported for the ! 'hppa64-hp-hpux11*' target, it is strongly recommended that the HP linker be used for link editing on this target. At this time, the GNU linker does not support the creation of long branch stubs. As a result, it can't successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables with ! '-static', and with dwarf2 unwind and exception support. It also doesn't provide stubs for internal calls to global functions in shared libraries, so these calls can't be overloaded. The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable ! symbol versioning with '--disable-symvers' when using GNU ld. POSIX threads are the default. The optional DCE thread library is ! not supported, so '--enable-threads=dce' does not work. *-*-linux-gnu ============= --- 2937,3015 ---- On 64-bit capable systems, there are two distinct targets. Different installation prefixes must be used if both are to be installed on the ! same system. The `hppa[1-2]*-hp-hpux11*' target generates code for the 32-bit PA-RISC runtime architecture and uses the HP linker. The ! `hppa64-hp-hpux11*' target generates 64-bit code for the PA-RISC 2.0 architecture. The script config.guess now selects the target type based on the ! compiler detected during configuration. You must define `PATH' or `CC' so that configure finds an appropriate compiler for the initial ! bootstrap. When `CC' is used, the definition should contain the ! options that are needed whenever `CC' is used. Specifically, options that determine the runtime architecture must be ! in `CC' to correctly select the target for the build. It is also ! convenient to place many other compiler options in `CC'. For example, ! `CC="cc -Ac +DA2.0W -Wp,-H16376 -D_CLASSIC_TYPES -D_HPUX_SOURCE"' can ! be used to bootstrap the GCC 3.3 branch with the HP compiler in 64-bit ! K&R/bundled mode. The `+DA2.0W' option will result in the automatic ! selection of the `hppa64-hp-hpux11*' target. The macro definition ! table of cpp needs to be increased for a successful build with the HP compiler. _CLASSIC_TYPES and _HPUX_SOURCE need to be defined when ! building with the bundled compiler, or when using the `-Ac' option. ! These defines aren't necessary with `-Ae'. ! It is best to explicitly configure the `hppa64-hp-hpux11*' target ! with the `--with-ld=...' option. This overrides the standard search ! for ld. The two linkers supported on this target require different commands. The default linker is determined during configuration. As a result, it's not possible to switch linkers in the middle of a GCC build. This has been reported to sometimes occur in unified builds of binutils and GCC. A recent linker patch must be installed for the correct operation of ! GCC 3.3 and later. `PHSS_26559' and `PHSS_24304' are the oldest linker patches that are known to work. They are for HP-UX 11.00 and 11.11, ! respectively. `PHSS_24303', the companion to `PHSS_24304', might be usable but it hasn't been tested. These patches have been superseded. ! Consult the HP patch database to obtain the currently recommended ! linker patch for your system. The patches are necessary for the support of weak symbols on the 32-bit port, and for the running of initializers and finalizers. Weak symbols are implemented using SOM secondary definition symbols. Prior to HP-UX 11, there are bugs in the linker support for secondary symbols. The patches correct a problem of linker core dumps creating shared ! libraries containing secondary symbols, as well as various other ! linking issues involving secondary symbols. GCC 3.3 uses the ELF DT_INIT_ARRAY and DT_FINI_ARRAY capabilities to run initializers and finalizers on the 64-bit port. The 32-bit port ! uses the linker `+init' and `+fini' options for the same purpose. The ! patches correct various problems with the +init/+fini options, ! including program core dumps. Binutils 2.14 corrects a problem on the ! 64-bit port resulting from HP's non-standard use of the .init and .fini ! sections for array initializers and finalizers. Although the HP and GNU linkers are both supported for the ! `hppa64-hp-hpux11*' target, it is strongly recommended that the HP linker be used for link editing on this target. At this time, the GNU linker does not support the creation of long branch stubs. As a result, it can't successfully link binaries containing branch offsets larger than 8 megabytes. In addition, there are problems linking shared libraries, linking executables with ! `-static', and with dwarf2 unwind and exception support. It also doesn't provide stubs for internal calls to global functions in shared libraries, so these calls can't be overloaded. The HP dynamic loader does not support GNU symbol versioning, so symbol versioning is not supported. It may be necessary to disable ! symbol versioning with `--disable-symvers' when using GNU ld. POSIX threads are the default. The optional DCE thread library is ! not supported, so `--enable-threads=dce' does not work. *-*-linux-gnu ============= *************** work. *** 3017,3112 **** Solaris 2/x86 doesn't support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will ! receive 'SIGILL' if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! '-march' defaults to 'pentiumpro' on Solaris 9. If you have the patch ! installed, you can configure GCC with an appropriate '--with-arch' ! option, but need GNU 'as' for SSE2 support. i?86-*-solaris2.10 ================== Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit 'amd64-*-solaris2.1[0-9]*' or ! 'x86_64-*-solaris2.1[0-9]*' configuration that corresponds to ! 'sparcv9-sun-solaris2*'. It is recommended that you configure GCC to use the GNU assembler, in ! '/usr/sfw/bin/gas'. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, ! too. Recent versions of the Sun assembler in '/usr/ccs/bin/as' work almost as well, though. For linking, the Sun linker, is preferred. If you want to use the ! GNU linker instead, which is available in '/usr/sfw/bin/gld', note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. ! To use GNU 'as', configure with the options '--with-gnu-as --with-as=/usr/sfw/bin/gas'. It may be necessary to configure with ! '--without-gnu-ld --with-ld=/usr/ccs/bin/ld' to guarantee use of Sun ! 'ld'. ia64-*-linux ============ ! IA-64 processor (also known as IPF, or Itanium Processor Family) running ! GNU/Linux. If you are using the installed system libunwind library with ! '--with-system-libunwind', then you must use libunwind 0.98 or later. None of the following versions of GCC has an ABI that is compatible ! with any of the other versions in this list, with the exception that Red ! Hat 2.96 and Trillian 000171 are compatible with each other: 3.1, 3.0.2, ! 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This primarily affects ! C++ programs and programs that create shared libraries. GCC 3.1 or ! later is recommended for compiling linux, the kernel. As of version 3.1 ! GCC is believed to be fully ABI compliant, and hence no more major ABI ! changes are expected. ia64-*-hpux* ============ Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option '--with-gnu-as' may be necessary. The GCC libunwind library has not been ported to HPUX. This means ! that for GCC versions 3.2.3 and earlier, '--enable-libunwind-exceptions' is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, '--enable-libunwind-exceptions' is removed and the system libunwind library will always be used. aarch64*-*-* ============ ! Binutils pre 2.24 does not have support for selecting '-mabi' and does not support ILP32. If it is used to build GCC 4.9 or later, GCC will ! not support option '-mabi=ilp32'. To enable a workaround for the Cortex-A53 erratum number 835769 by default (for all CPUs regardless of -mcpu option given) at configure ! time use the '--enable-fix-cortex-a53-835769' option. This will enable the fix by default and can be explicitly disabled during compilation by ! passing the '-mno-fix-cortex-a53-835769' option. Conversely, ! '--disable-fix-cortex-a53-835769' will disable the workaround by default. The workaround is disabled by default if neither of ! '--enable-fix-cortex-a53-835769' or '--disable-fix-cortex-a53-835769' is ! given at configure time. To enable a workaround for the Cortex-A53 erratum number 843419 by default (for all CPUs regardless of -mcpu option given) at configure ! time use the '--enable-fix-cortex-a53-843419' option. This workaround ! is applied at link time. Enabling the workaround will cause GCC to pass ! the relevant option to the linker. It can be explicitly disabled during ! compilation by passing the '-mno-fix-cortex-a53-843419' option. ! Conversely, '--disable-fix-cortex-a53-843419' will disable the ! workaround by default. The workaround is disabled by default if neither ! of '--enable-fix-cortex-a53-843419' or '--disable-fix-cortex-a53-843419' ! is given at configure time. *-ibm-aix* ========== --- 3039,3134 ---- Solaris 2/x86 doesn't support the execution of SSE/SSE2 instructions before Solaris 9 4/04, even if the CPU supports them. Programs will ! receive `SIGILL' if they try. The fix is available both in Solaris 9 Update 6 and kernel patch 112234-12 or newer. To avoid this problem, ! `-march' defaults to `pentiumpro' on Solaris 9. If you have the patch ! installed, you can configure GCC with an appropriate `--with-arch' ! option, but need GNU `as' for SSE2 support. i?86-*-solaris2.10 ================== Use this for Solaris 10 or later on x86 and x86-64 systems. Starting ! with GCC 4.7, there is also a 64-bit `amd64-*-solaris2.1[0-9]*' or ! `x86_64-*-solaris2.1[0-9]*' configuration that corresponds to ! `sparcv9-sun-solaris2*'. It is recommended that you configure GCC to use the GNU assembler, in ! `/usr/sfw/bin/gas'. The versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils 2.19, work fine, although the current version, from GNU binutils 2.22, is known to work, ! too. Recent versions of the Sun assembler in `/usr/ccs/bin/as' work almost as well, though. For linking, the Sun linker, is preferred. If you want to use the ! GNU linker instead, which is available in `/usr/sfw/bin/gld', note that due to a packaging bug the version in Solaris 10, from GNU binutils 2.15, cannot be used, while the version in Solaris 11, from GNU binutils 2.19, works, as does the latest version, from GNU binutils 2.22. ! To use GNU `as', configure with the options `--with-gnu-as --with-as=/usr/sfw/bin/gas'. It may be necessary to configure with ! `--without-gnu-ld --with-ld=/usr/ccs/bin/ld' to guarantee use of Sun ! `ld'. ia64-*-linux ============ ! IA-64 processor (also known as IPF, or Itanium Processor Family) ! running GNU/Linux. If you are using the installed system libunwind library with ! `--with-system-libunwind', then you must use libunwind 0.98 or later. None of the following versions of GCC has an ABI that is compatible ! with any of the other versions in this list, with the exception that ! Red Hat 2.96 and Trillian 000171 are compatible with each other: 3.1, ! 3.0.2, 3.0.1, 3.0, Red Hat 2.96, and Trillian 000717. This primarily ! affects C++ programs and programs that create shared libraries. GCC ! 3.1 or later is recommended for compiling linux, the kernel. As of ! version 3.1 GCC is believed to be fully ABI compliant, and hence no ! more major ABI changes are expected. ia64-*-hpux* ============ Building GCC on this target requires the GNU Assembler. The bundled HP assembler will not work. To prevent GCC from using the wrong assembler, ! the option `--with-gnu-as' may be necessary. The GCC libunwind library has not been ported to HPUX. This means ! that for GCC versions 3.2.3 and earlier, `--enable-libunwind-exceptions' is required to build GCC. For GCC 3.3 and later, this is the default. ! For gcc 3.4.3 and later, `--enable-libunwind-exceptions' is removed and the system libunwind library will always be used. aarch64*-*-* ============ ! Binutils pre 2.24 does not have support for selecting `-mabi' and does not support ILP32. If it is used to build GCC 4.9 or later, GCC will ! not support option `-mabi=ilp32'. To enable a workaround for the Cortex-A53 erratum number 835769 by default (for all CPUs regardless of -mcpu option given) at configure ! time use the `--enable-fix-cortex-a53-835769' option. This will enable the fix by default and can be explicitly disabled during compilation by ! passing the `-mno-fix-cortex-a53-835769' option. Conversely, ! `--disable-fix-cortex-a53-835769' will disable the workaround by default. The workaround is disabled by default if neither of ! `--enable-fix-cortex-a53-835769' or `--disable-fix-cortex-a53-835769' ! is given at configure time. To enable a workaround for the Cortex-A53 erratum number 843419 by default (for all CPUs regardless of -mcpu option given) at configure ! time use the `--enable-fix-cortex-a53-843419' option. This workaround ! is applied at link time. Enabling the workaround will cause GCC to ! pass the relevant option to the linker. It can be explicitly disabled ! during compilation by passing the `-mno-fix-cortex-a53-843419' option. ! Conversely, `--disable-fix-cortex-a53-843419' will disable the ! workaround by default. The workaround is disabled by default if ! neither of `--enable-fix-cortex-a53-843419' or ! `--disable-fix-cortex-a53-843419' is given at configure time. *-ibm-aix* ========== *************** Support for AIX version 4.2 and older wa *** 3116,3122 **** "out of memory" bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! '/etc/security/limits' system configuration file. GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC --- 3138,3144 ---- "out of memory" bootstrap failures may indicate a problem with process resource limits (ulimit). Hard limits are configured in the ! `/etc/security/limits' system configuration file. GCC can bootstrap with recent versions of IBM XLC, but bootstrapping with an earlier release of GCC is recommended. Bootstrapping with XLC *************** LDR_CNTRL environment variable, e.g., *** 3127,3137 **** % export LDR_CNTRL One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC's "fixed" header files when starting with a ! version of GCC built for an earlier release of AIX. To speed up the configuration phases of bootstrapping and installing ! GCC, one may use GNU Bash instead of AIX '/bin/sh', e.g., % CONFIG_SHELL=/opt/freeware/bin/bash % export CONFIG_SHELL --- 3149,3159 ---- % export LDR_CNTRL One can start with a pre-compiled version of GCC to build from ! sources. One may delete GCC's "fixed" header files when starting with ! a version of GCC built for an earlier release of AIX. To speed up the configuration phases of bootstrapping and installing ! GCC, one may use GNU Bash instead of AIX `/bin/sh', e.g., % CONFIG_SHELL=/opt/freeware/bin/bash % export CONFIG_SHELL *************** SRCDIR/configure. *** 3142,3161 **** Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries ! required by gfortran must be 32-bit libraries. Building GMP and MPFR as ! static archive libraries works better than shared libraries. ! Errors involving 'alloca' when building GCC generally are due to an ! incorrect definition of 'CC' in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of the ! build, the native AIX compiler *must* be invoked as 'cc' (not 'xlc'). ! Once 'configure' has been informed of 'xlc', one needs to use 'make ! distclean' to remove the configure cache files and ensure that 'CC' environment variable does not provide a definition that will confuse ! 'configure'. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). ! The native 'as' and 'ld' are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do --- 3164,3183 ---- Because GCC on AIX is built as a 32-bit executable by default, (although it can generate 64-bit programs) the GMP and MPFR libraries ! required by gfortran must be 32-bit libraries. Building GMP and MPFR ! as static archive libraries works better than shared libraries. ! Errors involving `alloca' when building GCC generally are due to an ! incorrect definition of `CC' in the Makefile or mixing files compiled with the native C compiler and GCC. During the stage1 phase of the ! build, the native AIX compiler *must* be invoked as `cc' (not `xlc'). ! Once `configure' has been informed of `xlc', one needs to use `make ! distclean' to remove the configure cache files and ensure that `CC' environment variable does not provide a definition that will confuse ! `configure'. If this error occurs during stage2 or later, then the problem most likely is the version of Make (see above). ! The native `as' and `ld' are recommended for bootstrapping on AIX. The GNU Assembler, GNU Linker, and GNU Binutils version 2.20 is the minimum level that supports bootstrap on AIX 5. The GNU Assembler has not been updated to support AIX 6 or AIX 7. The native AIX tools do *************** assembler change that sometimes produces *** 3166,3200 **** AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An AIX iFix for AIX 5.3 is available (APAR IZ98385 for AIX 5.3 TL10, APAR IZ98477 for ! AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 ! TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX 6.1 ! TL07 and AIX 7.1 TL01 should include the fix. ! Building 'libstdc++.a' requires a fix for an AIX Assembler bug APAR ! IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix for ! another AIX Assembler bug and a co-dependent AIX Archiver fix referenced ! as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) ! 'libstdc++' in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the 'libstdc++.a' shared library in a common location which will overwrite the and GCC 3.3 ! version of the shared library. Applications either need to be re-linked ! against the new shared library or the GCC 3.1 and GCC 3.3 versions of ! the 'libstdc++' shared object needs to be available to the AIX runtime ! loader. The GCC 3.1 'libstdc++.so.4', if present, and GCC 3.3 ! 'libstdc++.so.5' shared objects can be installed for runtime dynamic ! loading using the following steps to set the 'F_LOADONLY' flag in the ! shared object for _each_ multilib 'libstdc++.a' installed: ! Extract the shared objects from the currently installed 'libstdc++.a' ! archive: % ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5 ! Enable the 'F_LOADONLY' flag so that the shared object will be available for runtime dynamic loading, but not linking: % strip -e libstdc++.so.4 libstdc++.so.5 ! Archive the runtime-only shared object in the GCC 3.4 'libstdc++.a' archive: % ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5 --- 3188,3222 ---- AIX linker errors. The bug breaks GCC bootstrap on AIX and can cause compilation failures with existing GCC installations. An AIX iFix for AIX 5.3 is available (APAR IZ98385 for AIX 5.3 TL10, APAR IZ98477 for ! AIX 5.3 TL11 and IZ98134 for AIX 5.3 TL12). AIX 5.3 TL11 SP8, AIX 5.3 ! TL12 SP5, AIX 6.1 TL04 SP11, AIX 6.1 TL05 SP7, AIX 6.1 TL06 SP6, AIX ! 6.1 TL07 and AIX 7.1 TL01 should include the fix. ! Building `libstdc++.a' requires a fix for an AIX Assembler bug APAR ! IY26685 (AIX 4.3) or APAR IY25528 (AIX 5.1). It also requires a fix ! for another AIX Assembler bug and a co-dependent AIX Archiver fix ! referenced as APAR IY53606 (AIX 5.2) or as APAR IY54774 (AIX 5.1) ! `libstdc++' in GCC 3.4 increments the major version number of the ! shared object and GCC installation places the `libstdc++.a' shared library in a common location which will overwrite the and GCC 3.3 ! version of the shared library. Applications either need to be ! re-linked against the new shared library or the GCC 3.1 and GCC 3.3 ! versions of the `libstdc++' shared object needs to be available to the ! AIX runtime loader. The GCC 3.1 `libstdc++.so.4', if present, and GCC ! 3.3 `libstdc++.so.5' shared objects can be installed for runtime ! dynamic loading using the following steps to set the `F_LOADONLY' flag ! in the shared object for _each_ multilib `libstdc++.a' installed: ! Extract the shared objects from the currently installed ! `libstdc++.a' archive: % ar -x libstdc++.a libstdc++.so.4 libstdc++.so.5 ! Enable the `F_LOADONLY' flag so that the shared object will be available for runtime dynamic loading, but not linking: % strip -e libstdc++.so.4 libstdc++.so.5 ! Archive the runtime-only shared object in the GCC 3.4 `libstdc++.a' archive: % ar -q libstdc++.a libstdc++.so.4 libstdc++.so.5 *************** executable. *** 3210,3222 **** to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as "not a COFF file". The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The '-g' option of ! the archive command may be used to create archives of 32-bit objects ! using the original "small format". A correct version of the routines is ! shipped with AIX 4.3.2 and above. Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the '-bbigtoc' option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its --- 3232,3244 ---- to parse archive libraries did not handle the new format correctly. These routines are used by GCC and result in error messages during linking such as "not a COFF file". The version of the routines shipped ! with AIX 4.3.1 should work for a 32-bit environment. The `-g' option ! of the archive command may be used to create archives of 32-bit objects ! using the original "small format". A correct version of the routines ! is shipped with AIX 4.3.2 and above. Some versions of the AIX binder (linker) can fail with a relocation ! overflow severe error when the `-bbigtoc' option is used to link GCC-produced object files into an executable that overflows the TOC. A fix for APAR IX75823 (OVERFLOW DURING LINK WHEN USING GCC AND -BBIGTOC) is available from IBM Customer Support and from its *************** and from its techsupport.services.ibm.co *** 3235,3249 **** fix is incorporated in AIX 4.3.1 and above. AIX provides National Language Support (NLS). Compilers and ! assemblers use NLS to support locale-specific representations of various ! data formats including floating-point numbers (e.g., '.' vs ',' for ! separating decimal fractions). There have been problems reported where ! GCC does not produce the same floating-point formats that the assembler ! expects. If one encounters this problem, set the 'LANG' environment ! variable to 'C' or 'En_US'. ! A default can be specified with the '-mcpu=CPU_TYPE' switch and using ! the configure option '--with-cpu-CPU_TYPE'. iq2000-*-elf ============ --- 3257,3271 ---- fix is incorporated in AIX 4.3.1 and above. AIX provides National Language Support (NLS). Compilers and ! assemblers use NLS to support locale-specific representations of ! various data formats including floating-point numbers (e.g., `.' vs ! `,' for separating decimal fractions). There have been problems ! reported where GCC does not produce the same floating-point formats ! that the assembler expects. If one encounters this problem, set the ! `LANG' environment variable to `C' or `En_US'. ! A default can be specified with the `-mcpu=CPU_TYPE' switch and ! using the configure option `--with-cpu-CPU_TYPE'. iq2000-*-elf ============ *************** systems. *** 3278,3299 **** m68k-*-* ======== ! By default, 'm68k-*-elf*', 'm68k-*-rtems', 'm68k-*-uclinux' and ! 'm68k-*-linux' build libraries for both M680x0 and ColdFire processors. ! If you only need the M680x0 libraries, you can omit the ColdFire ones by ! passing '--with-arch=m68k' to 'configure'. Alternatively, you can omit ! the M680x0 libraries by passing '--with-arch=cf' to 'configure'. These ! targets default to 5206 or 5475 code as appropriate for the target ! system when configured with '--with-arch=cf' and 68020 code otherwise. ! The 'm68k-*-netbsd' and 'm68k-*-openbsd' targets also support the ! '--with-arch' option. They will generate ColdFire CFV4e code when ! configured with '--with-arch=cf' and 68020 code otherwise. You can override the default processors listed above by configuring ! with '--with-cpu=TARGET'. This TARGET can either be a '-mcpu' argument ! or one of the following values: 'm68000', 'm68010', 'm68020', 'm68030', ! 'm68040', 'm68060', 'm68020-40' and 'm68020-60'. GCC requires at least binutils version 2.17 on these targets. --- 3300,3322 ---- m68k-*-* ======== ! By default, `m68k-*-elf*', `m68k-*-rtems', `m68k-*-uclinux' and ! `m68k-*-linux' build libraries for both M680x0 and ColdFire processors. ! If you only need the M680x0 libraries, you can omit the ColdFire ones ! by passing `--with-arch=m68k' to `configure'. Alternatively, you can ! omit the M680x0 libraries by passing `--with-arch=cf' to `configure'. ! These targets default to 5206 or 5475 code as appropriate for the ! target system when configured with `--with-arch=cf' and 68020 code ! otherwise. ! The `m68k-*-netbsd' and `m68k-*-openbsd' targets also support the ! `--with-arch' option. They will generate ColdFire CFV4e code when ! configured with `--with-arch=cf' and 68020 code otherwise. You can override the default processors listed above by configuring ! with `--with-cpu=TARGET'. This TARGET can either be a `-mcpu' argument ! or one of the following values: `m68000', `m68010', `m68020', `m68030', ! `m68040', `m68060', `m68020-40' and `m68020-60'. GCC requires at least binutils version 2.17 on these targets. *************** m68k-*-uclinux *** 3301,3307 **** ============== GCC 4.3 changed the uClinux configuration so that it uses the ! 'm68k-linux-gnu' ABI rather than the 'm68k-elf' ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. --- 3324,3330 ---- ============== GCC 4.3 changed the uClinux configuration so that it uses the ! `m68k-linux-gnu' ABI rather than the `m68k-elf' ABI. It also added improved support for C++ and flat shared libraries, both of which were ABI changes. *************** optional, and there should not be a warn *** 3331,3366 **** The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to make ! 'mips*-*-*' use the generic implementation instead. You can also ! configure for 'mipsel-elf' as a workaround. The 'mips*-*-linux*' target ! continues to use the MIPS II routines. More work on this is expected in ! future releases. ! The built-in '__sync_*' functions are available on MIPS II and later ! systems and others that support the 'll', 'sc' and 'sync' instructions. ! This can be overridden by passing '--with-llsc' or '--without-llsc' when ! configuring GCC. Since the Linux kernel emulates these instructions if ! they are missing, the default for 'mips*-*-linux*' targets is ! '--with-llsc'. The '--with-llsc' and '--without-llsc' configure options ! may be overridden at compile time by passing the '-mllsc' or '-mno-llsc' ! options to the compiler. MIPS systems check for division by zero (unless ! '-mno-check-zero-division' is passed to the compiler) by generating ! either a conditional trap or a break instruction. Using trap results in ! smaller code, but is only supported on MIPS II and later. Also, some ! versions of the Linux kernel have a bug that prevents trap from ! generating the proper signal ('SIGFPE'). To enable the use of break, ! use the '--with-divide=breaks' 'configure' option when configuring GCC. The default is to use traps on systems that support them. The assembler from GNU binutils 2.17 and earlier has a bug in the way ! it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the runtime ! linker stubs in very large programs, like 'libgcj.so', to be incorrectly ! generated. GNU Binutils 2.18 and later (and snapshots made after Nov. ! 9, 2006) should be free from both of these problems. mips-sgi-irix5 ============== --- 3354,3389 ---- The libstdc++ atomic locking routines for MIPS targets requires MIPS II and later. A patch went in just after the GCC 3.3 release to make ! `mips*-*-*' use the generic implementation instead. You can also ! configure for `mipsel-elf' as a workaround. The `mips*-*-linux*' ! target continues to use the MIPS II routines. More work on this is ! expected in future releases. ! The built-in `__sync_*' functions are available on MIPS II and later ! systems and others that support the `ll', `sc' and `sync' instructions. ! This can be overridden by passing `--with-llsc' or `--without-llsc' ! when configuring GCC. Since the Linux kernel emulates these ! instructions if they are missing, the default for `mips*-*-linux*' ! targets is `--with-llsc'. The `--with-llsc' and `--without-llsc' ! configure options may be overridden at compile time by passing the ! `-mllsc' or `-mno-llsc' options to the compiler. MIPS systems check for division by zero (unless ! `-mno-check-zero-division' is passed to the compiler) by generating ! either a conditional trap or a break instruction. Using trap results ! in smaller code, but is only supported on MIPS II and later. Also, ! some versions of the Linux kernel have a bug that prevents trap from ! generating the proper signal (`SIGFPE'). To enable the use of break, ! use the `--with-divide=breaks' `configure' option when configuring GCC. The default is to use traps on systems that support them. The assembler from GNU binutils 2.17 and earlier has a bug in the way ! it sorts relocations for REL targets (o32, o64, EABI). This can cause bad code to be generated for simple C++ programs. Also the linker from GNU binutils versions prior to 2.17 has a bug which causes the runtime ! linker stubs in very large programs, like `libgcj.so', to be ! incorrectly generated. GNU Binutils 2.18 and later (and snapshots made ! after Nov. 9, 2006) should be free from both of these problems. mips-sgi-irix5 ============== *************** Andes NDS32 target in big endian mode. *** 3398,3405 **** powerpc-*-* =========== ! You can specify a default version for the '-mcpu=CPU_TYPE' switch by ! using the configure option '--with-cpu-CPU_TYPE'. You will need binutils 2.15 or newer for a working GCC. --- 3421,3428 ---- powerpc-*-* =========== ! You can specify a default version for the `-mcpu=CPU_TYPE' switch by ! using the configure option `--with-cpu-CPU_TYPE'. You will need binutils 2.15 or newer for a working GCC. *************** PowerPC running Darwin (Mac OS X kernel) *** 3410,3420 **** Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool ! binaries are available at . This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from ! will not work on systems older than 10.3.9 (aka darwin7.9.0). powerpc-*-elf --- 3433,3443 ---- Pre-installed versions of Mac OS X may not include any developer tools, meaning that you will not be able to build GCC from source. Tool ! binaries are available at `http://opensource.apple.com/'. This version of GCC requires at least cctools-590.36. The cctools-590.36 package referenced from ! `http://gcc.gnu.org/ml/gcc/2006-03/msg00507.html' will not work on systems older than 10.3.9 (aka darwin7.9.0). powerpc-*-elf *************** Embedded PowerPC system in little endian *** 3462,3475 **** rl78-*-elf ========== ! The Renesas RL78 processor. This configuration is intended for embedded ! systems. rx-*-elf ======== The Renesas RX processor. See ! for more information about this processor. s390-*-linux* --- 3485,3498 ---- rl78-*-elf ========== ! The Renesas RL78 processor. This configuration is intended for ! embedded systems. rx-*-elf ======== The Renesas RX processor. See ! `http://eu.renesas.com/fmwk.jsp?cnt=rx600_series_landing.jsp&fp=/products/mpumcu/rx_family/rx600_series' for more information about this processor. s390-*-linux* *************** cross-compilation target only. *** 3492,3510 **** ============= Support for Solaris 9 has been obsoleted in GCC 4.9, but can still be ! enabled by configuring with '--enable-obsolete'. Support will be removed in GCC 4.10. Support for Solaris 8 has removed in GCC 4.8. Support for Solaris 7 has been removed in GCC 4.6. Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris ! 10 and 11, GCC 3.4.3 is available as '/usr/sfw/bin/gcc'. Solaris 11 ! also provides GCC 4.5.2 as '/usr/gcc/4.5/bin/gcc'. Alternatively, you ! can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. ! The Solaris 2 '/bin/sh' will often fail to configure 'libstdc++-v3', ! 'boehm-gc' or 'libjava'. We therefore recommend using the following initial sequence of commands % CONFIG_SHELL=/bin/ksh --- 3515,3533 ---- ============= Support for Solaris 9 has been obsoleted in GCC 4.9, but can still be ! enabled by configuring with `--enable-obsolete'. Support will be removed in GCC 4.10. Support for Solaris 8 has removed in GCC 4.8. Support for Solaris 7 has been removed in GCC 4.6. Sun does not ship a C compiler with Solaris 2 before Solaris 10, though you can download the Sun Studio compilers for free. In Solaris ! 10 and 11, GCC 3.4.3 is available as `/usr/sfw/bin/gcc'. Solaris 11 ! also provides GCC 4.5.2 as `/usr/gcc/4.5/bin/gcc'. Alternatively, you ! can install a pre-built GCC to bootstrap and install GCC. See the binaries page for details. ! The Solaris 2 `/bin/sh' will often fail to configure `libstdc++-v3', ! `boehm-gc' or `libjava'. We therefore recommend using the following initial sequence of commands % CONFIG_SHELL=/bin/ksh *************** initial sequence of commands *** 3512,3593 **** and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! 'SRCDIR/configure'. Solaris 2 comes with a number of optional OS packages. Some of these ! are needed to use GCC fully, namely 'SUNWarc', 'SUNWbtool', 'SUNWesu', ! 'SUNWhea', 'SUNWlibm', 'SUNWsprot', and 'SUNWtoo'. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. ! To check whether an optional package is installed, use the 'pkginfo' ! command. To add an optional package, use the 'pkgadd' command. For further details, see the Solaris 2 documentation. ! Trying to use the linker and other tools in '/usr/ucb' to install GCC ! has been observed to cause trouble. For example, the linker may hang ! indefinitely. The fix is to remove '/usr/ucb' from your 'PATH'. The build process works more smoothly with the legacy Sun tools so, ! if you have '/usr/xpg4/bin' in your 'PATH', we recommend that you place ! '/usr/bin' before '/usr/xpg4/bin' for the duration of the build. We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU 'as' versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils ! 2.19, are known to work. They can be found in '/usr/sfw/bin/gas'. ! Current versions of GNU binutils (2.22) are known to work as well. Note ! that your mileage may vary if you use a combination of the GNU tools and ! the Sun tools: while the combination GNU 'as' + Sun 'ld' should ! reasonably work, the reverse combination Sun 'as' + GNU 'ld' may fail to ! build or cause memory corruption at runtime in some cases for C++ ! programs. GNU 'ld' usually works as well, although the version included ! in Solaris 10 cannot be used due to several bugs. Again, the current ! version (2.22) is known to work, but generally lacks platform specific ! features, so better stay with Sun 'ld'. To use the LTO linker plugin ! ('-fuse-linker-plugin') with GNU 'ld', GNU binutils _must_ be configured ! with '--enable-largefile'. ! To enable symbol versioning in 'libstdc++' with Sun 'ld', you need to ! have any version of GNU 'c++filt', which is part of GNU binutils. ! 'libstdc++' symbol versioning will be disabled if no appropriate version ! is found. Sun 'c++filt' from the Sun Studio compilers does _not_ work. Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: 'g++' will complain that types are missing. These headers assume ! that omitting the type means 'int'; this assumption worked for C90 but ! is wrong for C++, and is now wrong for C99 also. Sun bug 4927647 sometimes causes random spurious testsuite failures related to missing diagnostic output. This bug doesn't affect GCC ! itself, rather it is a kernel bug triggered by the 'expect' program ! which is used only by the GCC testsuite driver. When the bug causes the ! 'expect' program to miss anticipated output, extra testsuite failures ! appear. There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The 'libthread' patches provide the '__tls_get_addr' ! (SPARC, 64-bit x86) resp. '___tls_get_addr' (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on ! Solaris 9/x86, patch 113986-02 or newer is required for the Sun 'ld' and ! runtime linker ('ld.so.1') support, while Solaris 9/SPARC works since ! FCS. The linker patches must be installed even if GNU 'ld' is used. Sun ! 'as' in Solaris 9 doesn't support the necessary relocations, so GNU 'as' ! must be used. The 'configure' script checks for those prerequisites and ! automatically enables TLS support if they are met. Although those ! minimal patch versions should work, it is recommended to use the latest ! patch versions which include additional bug fixes. sparc*-*-* ========== This section contains general configuration information for all ! SPARC-based platforms. In addition to reading this section, please read ! all other sections that match your target. Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier --- 3535,3617 ---- and proceed as described in the configure instructions. In addition we strongly recommend specifying an absolute path to invoke ! `SRCDIR/configure'. Solaris 2 comes with a number of optional OS packages. Some of these ! are needed to use GCC fully, namely `SUNWarc', `SUNWbtool', `SUNWesu', ! `SUNWhea', `SUNWlibm', `SUNWsprot', and `SUNWtoo'. If you did not install all optional packages when installing Solaris 2, you will need to verify that the packages that GCC needs are installed. ! To check whether an optional package is installed, use the `pkginfo' ! command. To add an optional package, use the `pkgadd' command. For further details, see the Solaris 2 documentation. ! Trying to use the linker and other tools in `/usr/ucb' to install ! GCC has been observed to cause trouble. For example, the linker may ! hang indefinitely. The fix is to remove `/usr/ucb' from your `PATH'. The build process works more smoothly with the legacy Sun tools so, ! if you have `/usr/xpg4/bin' in your `PATH', we recommend that you place ! `/usr/bin' before `/usr/xpg4/bin' for the duration of the build. We recommend the use of the Sun assembler or the GNU assembler, in ! conjunction with the Sun linker. The GNU `as' versions included in Solaris 10, from GNU binutils 2.15, and Solaris 11, from GNU binutils ! 2.19, are known to work. They can be found in `/usr/sfw/bin/gas'. ! Current versions of GNU binutils (2.22) are known to work as well. ! Note that your mileage may vary if you use a combination of the GNU ! tools and the Sun tools: while the combination GNU `as' + Sun `ld' ! should reasonably work, the reverse combination Sun `as' + GNU `ld' may ! fail to build or cause memory corruption at runtime in some cases for ! C++ programs. GNU `ld' usually works as well, although the version ! included in Solaris 10 cannot be used due to several bugs. Again, the ! current version (2.22) is known to work, but generally lacks platform ! specific features, so better stay with Sun `ld'. To use the LTO linker ! plugin (`-fuse-linker-plugin') with GNU `ld', GNU binutils _must_ be ! configured with `--enable-largefile'. ! To enable symbol versioning in `libstdc++' with Sun `ld', you need ! to have any version of GNU `c++filt', which is part of GNU binutils. ! `libstdc++' symbol versioning will be disabled if no appropriate ! version is found. Sun `c++filt' from the Sun Studio compilers does ! _not_ work. Sun bug 4296832 turns up when compiling X11 headers with GCC 2.95 or ! newer: `g++' will complain that types are missing. These headers ! assume that omitting the type means `int'; this assumption worked for ! C90 but is wrong for C++, and is now wrong for C99 also. Sun bug 4927647 sometimes causes random spurious testsuite failures related to missing diagnostic output. This bug doesn't affect GCC ! itself, rather it is a kernel bug triggered by the `expect' program ! which is used only by the GCC testsuite driver. When the bug causes ! the `expect' program to miss anticipated output, extra testsuite ! failures appear. There are patches for Solaris 9 (117171-11 or newer for SPARC, 117172-11 or newer for Intel) that address this problem. Thread-local storage (TLS) is supported in Solaris 9, but requires ! some patches. The `libthread' patches provide the `__tls_get_addr' ! (SPARC, 64-bit x86) resp. `___tls_get_addr' (32-bit x86) functions. On Solaris 9, the necessary support on SPARC is present since FCS, while 114432-05 or newer is required on Intel. Additionally, on ! Solaris 9/x86, patch 113986-02 or newer is required for the Sun `ld' ! and runtime linker (`ld.so.1') support, while Solaris 9/SPARC works ! since FCS. The linker patches must be installed even if GNU `ld' is ! used. Sun `as' in Solaris 9 doesn't support the necessary relocations, ! so GNU `as' must be used. The `configure' script checks for those ! prerequisites and automatically enables TLS support if they are met. ! Although those minimal patch versions should work, it is recommended to ! use the latest patch versions which include additional bug fixes. sparc*-*-* ========== This section contains general configuration information for all ! SPARC-based platforms. In addition to reading this section, please ! read all other sections that match your target. Newer versions of the GNU Multiple Precision Library (GMP), the MPFR library and the MPC library are known to be miscompiled by earlier *************** this difference is quite significant for *** 3604,3618 **** information. Starting with Solaris 7, the operating system is capable of executing ! 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports this; the ! '-m64' option enables 64-bit code generation. However, if all you want ! is code tuned for the UltraSPARC CPU, you should try the ! '-mtune=ultrasparc' option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! '--disable-multilib', since we will not be able to build the 64-bit target libraries. GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions --- 3628,3642 ---- information. Starting with Solaris 7, the operating system is capable of executing ! 64-bit SPARC V9 binaries. GCC 3.1 and later properly supports this; ! the `-m64' option enables 64-bit code generation. However, if all you ! want is code tuned for the UltraSPARC CPU, you should try the ! `-mtune=ultrasparc' option instead, which produces code that, unlike full 64-bit code, can still run on non-UltraSPARC machines. When configuring on a Solaris 7 or later system that is running a kernel that supports only 32-bit binaries, one must configure with ! `--disable-multilib', since we will not be able to build the 64-bit target libraries. GCC 3.3 and GCC 3.4 trigger code generation bugs in earlier versions *************** stage, i.e. to bootstrap that compiler w *** 3623,3654 **** use it to bootstrap the final compiler. GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE ! Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes a ! bootstrap failure in form of a miscompilation of the stage1 compiler by ! the Sun compiler. This is Sun bug 4974440. This is fixed with patch ! 112760-07. GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ ! programs like 'groff' 1.19.1 without getting messages similar to the following: ld: warning: relocation error: R_SPARC_UA32: ... external symbolic relocation against non-allocatable section .debug_info cannot be processed at runtime: relocation ignored. ! To work around this problem, compile with '-gstabs+' instead of plain ! '-g'. When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the 'build' parameter on the configure line. This target triplet can be obtained by invoking ! './config.guess' in the toplevel source directory of GCC (and not that ! of GMP or MPFR or MPC). For example on a Solaris 9 system: % ./configure --build=sparc-sun-solaris2.9 --prefix=xxx --- 3647,3678 ---- use it to bootstrap the final compiler. GCC 3.4 triggers a code generation bug in versions 5.4 (Sun ONE ! Studio 7) and 5.5 (Sun ONE Studio 8) of the Sun compiler, which causes ! a bootstrap failure in form of a miscompilation of the stage1 compiler ! by the Sun compiler. This is Sun bug 4974440. This is fixed with ! patch 112760-07. GCC 3.4 changed the default debugging format from Stabs to DWARF-2 for 32-bit code on Solaris 7 and later. If you use the Sun assembler, this change apparently runs afoul of Sun bug 4910101 (which is referenced as an x86-only problem by Sun, probably because they do not use DWARF-2). A symptom of the problem is that you cannot compile C++ ! programs like `groff' 1.19.1 without getting messages similar to the following: ld: warning: relocation error: R_SPARC_UA32: ... external symbolic relocation against non-allocatable section .debug_info cannot be processed at runtime: relocation ignored. ! To work around this problem, compile with `-gstabs+' instead of plain ! `-g'. When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library on a Solaris 7 or later system, the canonical ! target triplet must be specified as the `build' parameter on the configure line. This target triplet can be obtained by invoking ! `./config.guess' in the toplevel source directory of GCC (and not that ! of GMP or MPFR or MPC). For example on a Solaris 9 system: % ./configure --build=sparc-sun-solaris2.9 --prefix=xxx *************** sparc-sun-solaris2.10 *** 3656,3662 **** ===================== There is a bug in older versions of the Sun assembler which breaks ! thread-local storage (TLS). A typical error message is ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o: symbol : bad symbol type SECT: symbol type must be TLS --- 3680,3686 ---- ===================== There is a bug in older versions of the Sun assembler which breaks ! thread-local storage (TLS). A typical error message is ld: fatal: relocation error: R_SPARC_TLS_LE_HIX22: file /var/tmp//ccamPA1v.o: symbol : bad symbol type SECT: symbol type must be TLS *************** sparc-*-linux* *** 3668,3681 **** GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases ! mishandled unaligned relocations on 'sparc-*-*' targets. sparc64-*-solaris2* =================== When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be ! specified as the 'build' parameter on the configure line. For example on a Solaris 9 system: % ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx --- 3692,3705 ---- GCC versions 3.0 and higher require binutils 2.11.2 and glibc 2.2.4 or newer on this platform. All earlier binutils and glibc releases ! mishandled unaligned relocations on `sparc-*-*' targets. sparc64-*-solaris2* =================== When configuring the GNU Multiple Precision Library (GMP), the MPFR library or the MPC library, the canonical target triplet must be ! specified as the `build' parameter on the configure line. For example on a Solaris 9 system: % ./configure --build=sparc64-sun-solaris2.9 --prefix=xxx *************** in order to bootstrap this target with t *** 3685,3703 **** % CC="cc -xarch=v9 -xildoff" SRCDIR/configure [OPTIONS] [TARGET] ! '-xarch=v9' specifies the SPARC-V9 architecture to the Sun toolchain and ! '-xildoff' turns off the incremental linker. sparcv9-*-solaris2* =================== ! This is a synonym for 'sparc64-*-solaris2*'. c6x-*-* ======= ! The C6X family of processors. This port requires binutils-2.22 or ! newer. tilegx-*-linux* =============== --- 3709,3726 ---- % CC="cc -xarch=v9 -xildoff" SRCDIR/configure [OPTIONS] [TARGET] ! `-xarch=v9' specifies the SPARC-V9 architecture to the Sun toolchain ! and `-xildoff' turns off the incremental linker. sparcv9-*-solaris2* =================== ! This is a synonym for `sparc64-*-solaris2*'. c6x-*-* ======= ! The C6X family of processors. This port requires binutils-2.22 or newer. tilegx-*-linux* =============== *************** binutils-2.22 or newer. *** 3720,3750 **** *-*-vxworks* ============ ! Support for VxWorks is in flux. At present GCC supports _only_ the very ! recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. We ! welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate "configlette" (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. VxWorks comes with an older version of GCC installed in ! '$WIND_BASE/host'; we recommend you do not overwrite it. Choose an installation PREFIX entirely outside $WIND_BASE. Before running ! 'configure', create the directories 'PREFIX' and 'PREFIX/bin'. Link or ! copy the appropriate assembler, linker, etc. into 'PREFIX/bin', and set ! your PATH to include that directory while running both 'configure' and ! 'make'. ! You must give 'configure' the '--with-headers=$WIND_BASE/target/h' ! switch so that it can find the VxWorks system headers. Since VxWorks is ! a cross compilation target only, you must also specify ! '--target=TARGET'. 'configure' will attempt to create the directory ! 'PREFIX/TARGET/sys-include' and copy files into it; make sure the user ! running 'configure' has sufficient privilege to do so. GCC's exception handling runtime requires a special "configlette" ! module, 'contrib/gthr_supp_vxw_5x.c'. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) --- 3743,3773 ---- *-*-vxworks* ============ ! Support for VxWorks is in flux. At present GCC supports _only_ the ! very recent VxWorks 5.5 (aka Tornado 2.2) release, and only on PowerPC. ! We welcome patches for other architectures supported by VxWorks 5.5. Support for VxWorks AE would also be welcome; we believe this is merely a matter of writing an appropriate "configlette" (see below). We are not interested in supporting older, a.out or COFF-based, versions of VxWorks in GCC 3. VxWorks comes with an older version of GCC installed in ! `$WIND_BASE/host'; we recommend you do not overwrite it. Choose an installation PREFIX entirely outside $WIND_BASE. Before running ! `configure', create the directories `PREFIX' and `PREFIX/bin'. Link or ! copy the appropriate assembler, linker, etc. into `PREFIX/bin', and set ! your PATH to include that directory while running both `configure' and ! `make'. ! You must give `configure' the `--with-headers=$WIND_BASE/target/h' ! switch so that it can find the VxWorks system headers. Since VxWorks ! is a cross compilation target only, you must also specify ! `--target=TARGET'. `configure' will attempt to create the directory ! `PREFIX/TARGET/sys-include' and copy files into it; make sure the user ! running `configure' has sufficient privilege to do so. GCC's exception handling runtime requires a special "configlette" ! module, `contrib/gthr_supp_vxw_5x.c'. Follow the instructions in that file to add the module to your kernel build. (Future versions of VxWorks will incorporate this module.) *************** x86_64-*-*, amd64-*-* *** 3754,3797 **** GCC supports the x86-64 architecture implemented by the AMD64 processor (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the '-m32' switch). x86_64-*-solaris2.1[0-9]* ========================= GCC also supports the x86-64 architecture implemented by the AMD64 ! processor ('amd64-*-*' is an alias for 'x86_64-*-*') on Solaris 10 or ! later. Unlike other systems, without special options a bi-arch compiler ! is built which generates 32-bit code by default, but can generate 64-bit ! x86-64 code with the '-m64' switch. Since GCC 4.7, there is also ! configuration that defaults to 64-bit code, but can generate 32-bit code ! with '-m32'. To configure and build this way, you have to provide all ! support libraries like 'libgmp' as 64-bit code, configure with ! '--target=x86_64-pc-solaris2.1x' and 'CC=gcc -m64'. xtensa*-*-elf ============= ! This target is intended for embedded Xtensa systems using the 'newlib' C ! library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. The Xtensa configuration information must be specified prior to ! building GCC. The 'include/xtensa-config.h' header file contains the ! configuration information. If you created your own Xtensa configuration ! with the Xtensa Processor Generator, the downloaded files include a ! customized copy of this header file, which you can use to replace the ! default header file. xtensa*-*-linux* ================ This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates ! position-independent code (PIC) regardless of whether the '-fpic' or ! '-fPIC' options are used. In other respects, this target is the same as ! the 'xtensa*-*-elf' target. Microsoft Windows ================= --- 3777,3820 ---- GCC supports the x86-64 architecture implemented by the AMD64 processor (amd64-*-* is an alias for x86_64-*-*) on GNU/Linux, FreeBSD and NetBSD. On GNU/Linux the default is a bi-arch compiler which is able to generate ! both 64-bit x86-64 and 32-bit x86 code (via the `-m32' switch). x86_64-*-solaris2.1[0-9]* ========================= GCC also supports the x86-64 architecture implemented by the AMD64 ! processor (`amd64-*-*' is an alias for `x86_64-*-*') on Solaris 10 or ! later. Unlike other systems, without special options a bi-arch ! compiler is built which generates 32-bit code by default, but can ! generate 64-bit x86-64 code with the `-m64' switch. Since GCC 4.7, ! there is also configuration that defaults to 64-bit code, but can ! generate 32-bit code with `-m32'. To configure and build this way, you ! have to provide all support libraries like `libgmp' as 64-bit code, ! configure with `--target=x86_64-pc-solaris2.1x' and `CC=gcc -m64'. xtensa*-*-elf ============= ! This target is intended for embedded Xtensa systems using the `newlib' ! C library. It uses ELF but does not support shared objects. Designed-defined instructions specified via the Tensilica Instruction Extension (TIE) language are only supported through inline assembly. The Xtensa configuration information must be specified prior to ! building GCC. The `include/xtensa-config.h' header file contains the ! configuration information. If you created your own Xtensa ! configuration with the Xtensa Processor Generator, the downloaded files ! include a customized copy of this header file, which you can use to ! replace the default header file. xtensa*-*-linux* ================ This target is for Xtensa systems running GNU/Linux. It supports ELF shared objects and the GNU C library (glibc). It also generates ! position-independent code (PIC) regardless of whether the `-fpic' or ! `-fPIC' options are used. In other respects, this target is the same ! as the `xtensa*-*-elf' target. Microsoft Windows ================= *************** Windows XP, and Windows Vista, are suppo *** 3813,3833 **** platforms. These targets differ in which Windows subsystem they target and which C libraries are used. ! * Cygwin *-*-cygwin: Cygwin provides a user-space Linux API emulation ! layer in the Win32 subsystem. * Interix *-*-interix: The Interix subsystem provides native support for POSIX. * MinGW *-*-mingw32: MinGW is a native GCC port for the Win32 subsystem that provides a subset of POSIX. ! * MKS i386-pc-mks: NuTCracker from MKS. See ! for more information. Intel 64-bit versions --------------------- GCC contains support for x86-64 using the mingw-w64 runtime library, ! available from . This library should ! be used with the target triple x86_64-pc-mingw32. Presently Windows for Itanium is not supported. --- 3836,3859 ---- platforms. These targets differ in which Windows subsystem they target and which C libraries are used. ! * Cygwin *-*-cygwin: Cygwin provides a user-space Linux API ! emulation layer in the Win32 subsystem. ! * Interix *-*-interix: The Interix subsystem provides native support for POSIX. + * MinGW *-*-mingw32: MinGW is a native GCC port for the Win32 subsystem that provides a subset of POSIX. ! ! * MKS i386-pc-mks: NuTCracker from MKS. See ! `http://www.mkssoftware.com/' for more information. Intel 64-bit versions --------------------- GCC contains support for x86-64 using the mingw-w64 runtime library, ! available from `http://mingw-w64.sourceforge.net/'. This library ! should be used with the target triple x86_64-pc-mingw32. Presently Windows for Itanium is not supported. *************** support the Interix subsystem. See abov *** 3849,3855 **** used. PW32 (i386-pc-pw32) support was never completed, and the project ! seems to be inactive. See for more information. UWIN support has been removed due to a lack of maintenance. --- 3875,3881 ---- used. PW32 (i386-pc-pw32) support was never completed, and the project ! seems to be inactive. See `http://pw32.sourceforge.net/' for more information. UWIN support has been removed due to a lack of maintenance. *************** version 2.20 or above if building your o *** 3872,3878 **** =========== The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), ! and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. --- 3898,3904 ---- =========== The Interix target is used by OpenNT, Interix, Services For UNIX (SFU), ! and Subsystem for UNIX-based Applications (SUA). Applications compiled with this target run in the Interix subsystem, which is separate from the Win32 subsystem. This target was last known to work in GCC 3.3. *************** the Win32 subsystem. This target was la *** 3881,3887 **** GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default ! semantics of 'extern inline' in '-std=c99' and '-std=gnu99' modes. Older systems ============= --- 3907,3913 ---- GCC will build with and support only MinGW runtime 3.12 and later. Earlier versions of headers are incompatible with the new default ! semantics of `extern inline' in `-std=c99' and `-std=gnu99' modes. Older systems ============= *************** and may suffer from bitrot. *** 3893,3899 **** Starting with GCC 3.1, each release has a list of "obsoleted" systems. Support for these systems is still present in that release, ! but 'configure' will fail unless the '--enable-obsolete' option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. --- 3919,3925 ---- Starting with GCC 3.1, each release has a list of "obsoleted" systems. Support for these systems is still present in that release, ! but `configure' will fail unless the `--enable-obsolete' option is given. Unless a maintainer steps forward, support for these systems will be removed from the next release of GCC. *************** bring GCC up on such a system, if still *** 3904,3936 **** require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! 'old-releases' directory on the GCC mirror sites. Header bugs may ! generally be avoided using 'fixincludes', but bugs or deficiencies in libraries and the operating system may still cause problems. Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of ! the targets that never worked with GCC 2, starting from the last version ! before they were removed), patches following the usual requirements ! would be likely to be accepted, since they should not affect the support ! for more modern targets. For some systems, old versions of GNU binutils may also be useful, ! and are available from 'pub/binutils/old-releases' on sourceware.org mirror sites. Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems ! (which may no longer be applicable to current GCC) is to be found in the ! GCC texinfo manual. all ELF targets (SVR4, Solaris 2, etc.) ======================================= C++ support is significantly better on ELF targets if you use the GNU ! linker; duplicate copies of inlines, vtables and template instantiations ! will be discarded automatically.  File: gccinstall.info, Node: Old, Next: GNU Free Documentation License, Prev: Specific, Up: Top --- 3930,3962 ---- require first installing an old version of GCC which did work on that system, and using it to compile a more recent GCC, to avoid bugs in the vendor compiler. Old releases of GCC 1 and GCC 2 are available in the ! `old-releases' directory on the GCC mirror sites. Header bugs may ! generally be avoided using `fixincludes', but bugs or deficiencies in libraries and the operating system may still cause problems. Support for older systems as targets for cross-compilation is less problematic than support for them as hosts for GCC; if an enthusiast wishes to make such a target work again (including resurrecting any of ! the targets that never worked with GCC 2, starting from the last ! version before they were removed), patches following the usual ! requirements would be likely to be accepted, since they should not ! affect the support for more modern targets. For some systems, old versions of GNU binutils may also be useful, ! and are available from `pub/binutils/old-releases' on sourceware.org mirror sites. Some of the information on specific systems above relates to such older systems, but much of the information about GCC on such systems ! (which may no longer be applicable to current GCC) is to be found in ! the GCC texinfo manual. all ELF targets (SVR4, Solaris 2, etc.) ======================================= C++ support is significantly better on ELF targets if you use the GNU ! linker; duplicate copies of inlines, vtables and template ! instantiations will be discarded automatically.  File: gccinstall.info, Node: Old, Next: GNU Free Documentation License, Prev: Specific, Up: Top *************** File: gccinstall.info, Node: Old, Next *** 3938,3944 **** 10 Old installation documentation ********************************* ! Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. --- 3964,3970 ---- 10 Old installation documentation ********************************* ! Note most of this information is out of date and superseded by the previous chapters of this manual. It is provided for historical reference only, because of a lack of volunteers to merge it into the main manual. *************** main manual. *** 3952,3965 **** 1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory ! under the names 'as', 'ld' or whatever is appropriate. Alternatively, you can do subsequent compilation using a value of ! the 'PATH' environment variable such that the necessary GNU tools come before the standard system tools. 2. Specify the host, build and target machine configurations. You do ! this when you run the 'configure' script. The "build" machine is the system which you are using, the "host" machine is the system where you want to run the resulting compiler --- 3978,3991 ---- 1. If you have chosen a configuration for GCC which requires other GNU tools (such as GAS or the GNU linker) instead of the standard system tools, install the required tools in the build directory ! under the names `as', `ld' or whatever is appropriate. Alternatively, you can do subsequent compilation using a value of ! the `PATH' environment variable such that the necessary GNU tools come before the standard system tools. 2. Specify the host, build and target machine configurations. You do ! this when you run the `configure' script. The "build" machine is the system which you are using, the "host" machine is the system where you want to run the resulting compiler *************** main manual. *** 3968,3981 **** If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify ! any operands to 'configure'; it will try to guess the type of machine you are on and use that as the build, host and target machines. So you don't need to specify a configuration when ! building a native compiler unless 'configure' cannot figure out what your configuration is or guesses wrong. In those cases, specify the build machine's "configuration name" ! with the '--host' option; the host and target will default to be the same as the host machine. Here is an example: --- 3994,4007 ---- If you are building a compiler to produce code for the machine it runs on (a native compiler), you normally do not need to specify ! any operands to `configure'; it will try to guess the type of machine you are on and use that as the build, host and target machines. So you don't need to specify a configuration when ! building a native compiler unless `configure' cannot figure out what your configuration is or guesses wrong. In those cases, specify the build machine's "configuration name" ! with the `--host' option; the host and target will default to be the same as the host machine. Here is an example: *************** main manual. *** 3986,4036 **** abbreviated. A canonical configuration name has three parts, separated by ! dashes. It looks like this: 'CPU-COMPANY-SYSTEM'. (The three ! parts may themselves contain dashes; 'configure' can figure out which dashes serve which purpose.) For example, ! 'm68k-sun-sunos4.1' specifies a Sun 3. You can also replace parts of the configuration by nicknames or ! aliases. For example, 'sun3' stands for 'm68k-sun', so ! 'sun3-sunos4.1' is another way to specify a Sun 3. ! You can specify a version number after any of the system types, and ! some of the CPU types. In most cases, the version is irrelevant, ! and will be ignored. So you might as well specify the version if ! you know it. See *note Configurations::, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC.  File: gccinstall.info, Node: Configurations, Up: Old 10.1 Configurations Supported by GCC ==================================== ! Here are the possible CPU types: 1750a, a29k, alpha, arm, avr, cN, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, ! mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, romp, ! rs6000, sh, sparc, sparclite, sparc64, v850, vax, we32k. Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, ! convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, hp, ! ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus, ! sequent, sgi, sony, sun, tti, unicom, wrs. The company name is meaningful only to disambiguate when the rest of ! the information supplied is insufficient. You can omit it, writing just ! 'CPU-SYSTEM', if it is not needed. For example, 'vax-ultrix4.2' is ! equivalent to 'vax-dec-ultrix4.2'. Here is a list of system types: --- 4012,4063 ---- abbreviated. A canonical configuration name has three parts, separated by ! dashes. It looks like this: `CPU-COMPANY-SYSTEM'. (The three ! parts may themselves contain dashes; `configure' can figure out which dashes serve which purpose.) For example, ! `m68k-sun-sunos4.1' specifies a Sun 3. You can also replace parts of the configuration by nicknames or ! aliases. For example, `sun3' stands for `m68k-sun', so ! `sun3-sunos4.1' is another way to specify a Sun 3. ! You can specify a version number after any of the system types, ! and some of the CPU types. In most cases, the version is ! irrelevant, and will be ignored. So you might as well specify the ! version if you know it. See *note Configurations::, for a list of supported configuration names and notes on many of the configurations. You should check the notes in that section before proceeding any further with the installation of GCC. +  File: gccinstall.info, Node: Configurations, Up: Old 10.1 Configurations Supported by GCC ==================================== ! Here are the possible CPU types: 1750a, a29k, alpha, arm, avr, cN, clipper, dsp16xx, elxsi, fr30, h8300, hppa1.0, hppa1.1, i370, i386, i486, i586, i686, i786, i860, i960, ip2k, m32r, m68000, m68k, m88k, mcore, mips, mipsel, mips64, ! mips64el, mn10200, mn10300, ns32k, pdp11, powerpc, powerpcle, ! romp, rs6000, sh, sparc, sparclite, sparc64, v850, vax, we32k. Here are the recognized company names. As you can see, customary abbreviations are used rather than the longer official names. acorn, alliant, altos, apollo, apple, att, bull, cbm, convergent, ! convex, crds, dec, dg, dolphin, elxsi, encore, harris, hitachi, ! hp, ibm, intergraph, isi, mips, motorola, ncr, next, ns, omron, ! plexus, sequent, sgi, sony, sun, tti, unicom, wrs. The company name is meaningful only to disambiguate when the rest of ! the information supplied is insufficient. You can omit it, writing ! just `CPU-SYSTEM', if it is not needed. For example, `vax-ultrix4.2' ! is equivalent to `vax-dec-ultrix4.2'. Here is a list of system types: *************** equivalent to 'vax-dec-ultrix4.2'. *** 4042,4070 **** sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix. ! You can omit the system type; then 'configure' guesses the operating system from the CPU and company. You can add a version number to the system type; this may or may not ! make a difference. For example, you can write 'bsd4.3' or 'bsd4.4' to distinguish versions of BSD. In practice, the version number is most ! needed for 'sysv3' and 'sysv4', which are often treated differently. ! 'linux-gnu' is the canonical name for the GNU/Linux target; however ! GCC will also accept 'linux'. The version of the kernel in use is not ! relevant on these systems. A suffix such as 'libc1' or 'aout' distinguishes major versions of the C library; all of the suffixed versions are obsolete. ! If you specify an impossible combination such as 'i860-dg-vms', then ! you may get an error message from 'configure', or it may ignore part of ! the information and do the best it can with the rest. 'configure' always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the ! machine name 'sun3', mentioned above, is an alias for 'm68k-sun'. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: --- 4069,4097 ---- sysv, udi, ultrix, unicos, uniplus, unos, vms, vsta, vxworks, winnt, xenix. ! You can omit the system type; then `configure' guesses the operating system from the CPU and company. You can add a version number to the system type; this may or may not ! make a difference. For example, you can write `bsd4.3' or `bsd4.4' to distinguish versions of BSD. In practice, the version number is most ! needed for `sysv3' and `sysv4', which are often treated differently. ! `linux-gnu' is the canonical name for the GNU/Linux target; however ! GCC will also accept `linux'. The version of the kernel in use is not ! relevant on these systems. A suffix such as `libc1' or `aout' distinguishes major versions of the C library; all of the suffixed versions are obsolete. ! If you specify an impossible combination such as `i860-dg-vms', then ! you may get an error message from `configure', or it may ignore part of ! the information and do the best it can with the rest. `configure' always prints the canonical name for the alternative that it used. GCC does not support all possible alternatives. Often a particular model of machine has a name. Many machine names are recognized as aliases for CPU/company combinations. Thus, the ! machine name `sun3', mentioned above, is an alias for `m68k-sun'. Sometimes we accept a company name as a machine name, when the name is popularly used for a particular machine. Here is a table of the known machine names: *************** machine names: *** 4074,4081 **** encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN, hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, ! powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, sun4, ! symmetry, tower-32, tower. Remember that a machine name specifies both the cpu type and the company name. --- 4101,4108 ---- encore, fx2800, gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN, hp9k8NN, iris4d, iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, powerpc, ! powerpcle, ps2, risc-news, rtpc, sun2, sun386i, sun386, sun3, ! sun4, symmetry, tower-32, tower. Remember that a machine name specifies both the cpu type and the company name. *************** GNU Free Documentation License *** 4089,4095 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 4116,4122 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 4114,4134 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 4141,4161 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 4146,4157 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 4173,4184 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 4162,4188 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 4189,4215 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 4220,4227 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 4247,4254 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 4235,4245 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 4262,4273 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 4247,4285 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 4275,4314 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 4309,4338 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 4338,4368 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 4345,4355 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 4375,4385 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 4358,4372 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 4388,4402 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 4376,4383 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 4406,4413 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 4404,4423 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 4434,4453 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 4462,4469 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 4492,4499 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 4475,4507 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 4505,4537 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 4531,4536 **** --- 4561,4567 ---- site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. + ADDENDUM: How to use this License for your documents ==================================================== *************** notices just after the title page: *** 4547,4553 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 4578,4584 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 4558,4566 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gccinstall.info, Node: Concept Index, Prev: GNU Free Documentation License, Up: Top --- 4589,4597 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gccinstall.info, Node: Concept Index, Prev: GNU Free Documentation License, Up: Top *************** Concept Index *** 4572,4578 **** * Menu: * Binaries: Binaries. (line 6) ! * 'build_configargs': Configuration. (line 1496) * Configuration: Configuration. (line 6) * configurations supported by GCC: Configurations. (line 6) * Downloading GCC: Downloading the source. --- 4603,4609 ---- * Menu: * Binaries: Binaries. (line 6) ! * build_configargs: Configuration. (line 1523) * Configuration: Configuration. (line 6) * configurations supported by GCC: Configurations. (line 6) * Downloading GCC: Downloading the source. *************** Concept Index *** 4582,4588 **** * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * Host specific installation: Specific. (line 6) ! * 'host_configargs': Configuration. (line 1500) * Installing GCC: Binaries: Binaries. (line 6) * Installing GCC: Building: Building. (line 6) * Installing GCC: Configuration: Configuration. (line 6) --- 4613,4619 ---- * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * Host specific installation: Specific. (line 6) ! * host_configargs: Configuration. (line 1527) * Installing GCC: Binaries: Binaries. (line 6) * Installing GCC: Building: Building. (line 6) * Installing GCC: Configuration: Configuration. (line 6) *************** Concept Index *** 4592,4698 **** * Specific installation notes: Specific. (line 6) * Target specific installation: Specific. (line 6) * Target specific installation notes: Specific. (line 6) ! * 'target_configargs': Configuration. (line 1504) * Testing: Testing. (line 6) * Testsuite: Testing. (line 6)  Tag Table: ! Node: Top1696 ! Node: Installing GCC2254 ! Node: Prerequisites3888 ! Node: Downloading the source15564 ! Node: Configuration17114 ! Ref: with-gnu-as32585 ! Ref: with-as33480 ! Ref: with-gnu-ld34893 ! Node: Building84705 ! Node: Testing100075 ! Node: Final install107937 ! Node: Binaries113248 ! Node: Specific114712 ! Ref: alpha-x-x115219 ! Ref: alpha-dec-osf51115708 ! Ref: amd64-x-solaris210116233 ! Ref: arc-x-elf32116336 ! Ref: arc-linux-uclibc116512 ! Ref: arm-x-eabi116653 ! Ref: avr116864 ! Ref: bfin117503 ! Ref: cr16117744 ! Ref: cris118160 ! Ref: dos118975 ! Ref: epiphany-x-elf119298 ! Ref: x-x-freebsd119403 ! Ref: h8300-hms121239 ! Ref: hppa-hp-hpux121591 ! Ref: hppa-hp-hpux10123963 ! Ref: hppa-hp-hpux11124376 ! Ref: x-x-linux-gnu130035 ! Ref: ix86-x-linux130228 ! Ref: ix86-x-solaris29130541 ! Ref: ix86-x-solaris210131320 ! Ref: ia64-x-linux132511 ! Ref: ia64-x-hpux133281 ! Ref: aarch64-x-x133836 ! Ref: x-ibm-aix135268 ! Ref: iq2000-x-elf142131 ! Ref: lm32-x-elf142271 ! Ref: lm32-x-uclinux142375 ! Ref: m32c-x-elf142503 ! Ref: m32r-x-elf142605 ! Ref: m68k-x-x142707 ! Ref: m68k-x-uclinux143745 ! Ref: mep-x-elf143990 ! Ref: microblaze-x-elf144100 ! Ref: mips-x-x144219 ! Ref: mips-sgi-irix5146613 ! Ref: mips-sgi-irix6146693 ! Ref: moxie-x-elf146880 ! Ref: msp430-x-elf146927 ! Ref: nds32le-x-elf147030 ! Ref: nds32be-x-elf147102 ! Ref: powerpc-x-x147171 ! Ref: powerpc-x-darwin147376 ! Ref: powerpc-x-elf147870 ! Ref: powerpc-x-linux-gnu147955 ! Ref: powerpc-x-netbsd148050 ! Ref: powerpc-x-eabisim148138 ! Ref: powerpc-x-eabi148264 ! Ref: powerpcle-x-elf148340 ! Ref: powerpcle-x-eabisim148432 ! Ref: powerpcle-x-eabi148565 ! Ref: rl78-x-elf148648 ! Ref: rx-x-elf148754 ! Ref: s390-x-linux148953 ! Ref: s390x-x-linux149025 ! Ref: s390x-ibm-tpf149112 ! Ref: x-x-solaris2149243 ! Ref: sparc-x-x154164 ! Ref: sparc-sun-solaris2154666 ! Ref: sparc-sun-solaris210157419 ! Ref: sparc-x-linux157794 ! Ref: sparc64-x-solaris2158019 ! Ref: sparcv9-x-solaris2158672 ! Ref: c6x-x-x158759 ! Ref: tilegx-*-linux158851 ! Ref: tilegxbe-*-linux158993 ! Ref: tilepro-*-linux159136 ! Ref: x-x-vxworks159257 ! Ref: x86-64-x-x160780 ! Ref: x86-64-x-solaris210161108 ! Ref: xtensa-x-elf161770 ! Ref: xtensa-x-linux162441 ! Ref: windows162782 ! Ref: x-x-cygwin164715 ! Ref: x-x-interix165268 ! Ref: x-x-mingw32165576 ! Ref: older165802 ! Ref: elf167919 ! Node: Old168177 ! Node: Configurations171310 ! Node: GNU Free Documentation License174848 ! Node: Concept Index199976  End Tag Table --- 4623,4729 ---- * Specific installation notes: Specific. (line 6) * Target specific installation: Specific. (line 6) * Target specific installation notes: Specific. (line 6) ! * target_configargs: Configuration. (line 1531) * Testing: Testing. (line 6) * Testsuite: Testing. (line 6)  Tag Table: ! Node: Top1747 ! Node: Installing GCC2305 ! Node: Prerequisites3942 ! Node: Downloading the source15610 ! Node: Configuration17164 ! Ref: with-gnu-as32626 ! Ref: with-as33524 ! Ref: with-gnu-ld34937 ! Node: Building84757 ! Node: Testing100145 ! Node: Final install108017 ! Node: Binaries113331 ! Node: Specific114799 ! Ref: alpha-x-x115309 ! Ref: alpha-dec-osf51115798 ! Ref: amd64-x-solaris210116323 ! Ref: arc-x-elf32116426 ! Ref: arc-linux-uclibc116602 ! Ref: arm-x-eabi116743 ! Ref: avr116954 ! Ref: bfin117594 ! Ref: cr16117836 ! Ref: cris118251 ! Ref: dos119067 ! Ref: epiphany-x-elf119390 ! Ref: x-x-freebsd119495 ! Ref: h8300-hms121332 ! Ref: hppa-hp-hpux121684 ! Ref: hppa-hp-hpux10124055 ! Ref: hppa-hp-hpux11124468 ! Ref: x-x-linux-gnu130127 ! Ref: ix86-x-linux130320 ! Ref: ix86-x-solaris29130633 ! Ref: ix86-x-solaris210131412 ! Ref: ia64-x-linux132603 ! Ref: ia64-x-hpux133373 ! Ref: aarch64-x-x133928 ! Ref: x-ibm-aix135360 ! Ref: iq2000-x-elf142223 ! Ref: lm32-x-elf142363 ! Ref: lm32-x-uclinux142467 ! Ref: m32c-x-elf142595 ! Ref: m32r-x-elf142697 ! Ref: m68k-x-x142799 ! Ref: m68k-x-uclinux143837 ! Ref: mep-x-elf144083 ! Ref: microblaze-x-elf144193 ! Ref: mips-x-x144312 ! Ref: mips-sgi-irix5146708 ! Ref: mips-sgi-irix6146788 ! Ref: moxie-x-elf146975 ! Ref: msp430-x-elf147022 ! Ref: nds32le-x-elf147125 ! Ref: nds32be-x-elf147197 ! Ref: powerpc-x-x147266 ! Ref: powerpc-x-darwin147471 ! Ref: powerpc-x-elf147965 ! Ref: powerpc-x-linux-gnu148050 ! Ref: powerpc-x-netbsd148145 ! Ref: powerpc-x-eabisim148233 ! Ref: powerpc-x-eabi148359 ! Ref: powerpcle-x-elf148435 ! Ref: powerpcle-x-eabisim148527 ! Ref: powerpcle-x-eabi148660 ! Ref: rl78-x-elf148743 ! Ref: rx-x-elf148849 ! Ref: s390-x-linux149048 ! Ref: s390x-x-linux149120 ! Ref: s390x-ibm-tpf149207 ! Ref: x-x-solaris2149338 ! Ref: sparc-x-x154258 ! Ref: sparc-sun-solaris2154760 ! Ref: sparc-sun-solaris210157514 ! Ref: sparc-x-linux157890 ! Ref: sparc64-x-solaris2158115 ! Ref: sparcv9-x-solaris2158768 ! Ref: c6x-x-x158855 ! Ref: tilegx-*-linux158946 ! Ref: tilegxbe-*-linux159088 ! Ref: tilepro-*-linux159231 ! Ref: x-x-vxworks159352 ! Ref: x86-64-x-x160874 ! Ref: x86-64-x-solaris210161202 ! Ref: xtensa-x-elf161864 ! Ref: xtensa-x-linux162535 ! Ref: windows162876 ! Ref: x-x-cygwin164813 ! Ref: x-x-interix165366 ! Ref: x-x-mingw32165675 ! Ref: older165901 ! Ref: elf168018 ! Node: Old168276 ! Node: Configurations171413 ! Node: GNU Free Documentation License174954 ! Node: Concept Index200101  End Tag Table diff -Nrcpad gcc-4.9.3/gcc/doc/gccint.info gcc-4.9.4/gcc/doc/gccint.info *** gcc-4.9.3/gcc/doc/gccint.info Fri Jun 26 18:49:01 2015 --- gcc-4.9.4/gcc/doc/gccint.info Wed Aug 3 06:14:13 2016 *************** *** 1,4 **** ! This is gccint.info, produced by makeinfo version 5.2 from gccint.texi. Copyright (C) 1988-2015 Free Software Foundation, Inc. --- 1,5 ---- ! This is doc/gccint.info, produced by makeinfo version 4.12 from ! /space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/doc/gccint.texi. Copyright (C) 1988-2015 Free Software Foundation, Inc. *************** Free Documentation License". *** 16,29 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gccint: (gccint). Internals of the GNU Compiler Collection. END-INFO-DIR-ENTRY - This file documents the internals of the GNU compilers. Copyright (C) 1988-2015 Free Software Foundation, Inc. --- 17,30 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gccint: (gccint). Internals of the GNU Compiler Collection. END-INFO-DIR-ENTRY This file documents the internals of the GNU compilers. Copyright (C) 1988-2015 Free Software Foundation, Inc. *************** Free Documentation License". *** 42,50 **** (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU software. ! Copies published by the Free Software Foundation raise funds for GNU ! development.  File: gccint.info, Node: Top, Next: Contributing, Up: (DIR) --- 43,52 ---- (b) The FSF's Back-Cover Text is: ! You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. !  File: gccint.info, Node: Top, Next: Contributing, Up: (DIR) *************** Introduction *** 54,62 **** This manual documents the internals of the GNU compilers, including how to port them to new targets and some information about how to write ! front ends for new languages. It corresponds to the compilers (GCC) ! version 4.9.3. The use of the GNU compilers is documented in a separate ! manual. *Note Introduction: (gcc)Top. This manual is mainly a reference manual rather than a tutorial. It discusses how to contribute to GCC (*note Contributing::), the --- 56,64 ---- This manual documents the internals of the GNU compilers, including how to port them to new targets and some information about how to write ! front ends for new languages. It corresponds to the compilers ! (GCC) version 4.9.4. The use of the GNU compilers is documented in a ! separate manual. *Note Introduction: (gcc)Top. This manual is mainly a reference manual rather than a tutorial. It discusses how to contribute to GCC (*note Contributing::), the *************** GCC front ends, and how support for a ta *** 69,75 **** GCC. Additional tutorial information is linked to from ! . * Menu: --- 71,77 ---- GCC. Additional tutorial information is linked to from ! `http://gcc.gnu.org/readings.html'. * Menu: *************** GCC. *** 90,98 **** * Loop Analysis and Representation:: Analysis and representation of loops * Machine Desc:: How to write machine description instruction patterns. * Target Macros:: How to write the machine description C macros and functions. ! * Host Config:: Writing the 'xm-MACHINE.h' file. ! * Fragments:: Writing the 't-TARGET' and 'x-HOST' files. ! * Collect2:: How 'collect2' works; how it finds 'ld'. * Header Dirs:: Understanding the standard header file directories. * Type Information:: GCC's memory management; generating type information. * Plugins:: Extending the compiler with plugins. --- 92,100 ---- * Loop Analysis and Representation:: Analysis and representation of loops * Machine Desc:: How to write machine description instruction patterns. * Target Macros:: How to write the machine description C macros and functions. ! * Host Config:: Writing the `xm-MACHINE.h' file. ! * Fragments:: Writing the `t-TARGET' and `x-HOST' files. ! * Collect2:: How `collect2' works; how it finds `ld'. * Header Dirs:: Understanding the standard header file directories. * Type Information:: GCC's memory management; generating type information. * Plugins:: Extending the compiler with plugins. *************** GCC. *** 110,134 **** * Concept Index:: Index of concepts and symbol names.  ! File: gccint.info, Node: Contributing, Next: Portability, Up: Top 1 Contributing to GCC Development ********************************* If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! ). Source and binary snapshots are also ! available for FTP; see . If you would like to work on improvements to GCC, please read the advice at these URLs: ! ! for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! .  File: gccint.info, Node: Portability, Next: Interface, Prev: Contributing, Up: Top --- 112,136 ---- * Concept Index:: Index of concepts and symbol names.  ! File: gccint.info, Node: Contributing, Next: Portability, Prev: Top, Up: Top 1 Contributing to GCC Development ********************************* If you would like to help pretest GCC releases to assure they work well, current development sources are available by SVN (see ! `http://gcc.gnu.org/svn.html'). Source and binary snapshots are also ! available for FTP; see `http://gcc.gnu.org/snapshots.html'. If you would like to work on improvements to GCC, please read the advice at these URLs: ! `http://gcc.gnu.org/contribute.html' ! `http://gcc.gnu.org/contributewhy.html' for information on how to make useful contributions and avoid duplication of effort. Suggested projects are listed at ! `http://gcc.gnu.org/projects/'.  File: gccint.info, Node: Portability, Next: Interface, Prev: Contributing, Up: Top *************** File: gccint.info, Node: Portability, *** 136,154 **** 2 GCC and Portability ********************* ! GCC itself aims to be portable to any machine where 'int' is at least a 32-bit type. It aims to target machines with a flat (non-segmented) byte addressed data address space (the code address space can be ! separate). Target ABIs may have 8, 16, 32 or 64-bit 'int' type. 'char' can be wider than 8 bits. GCC gets most of the information about the target machine from a machine description which gives an algebraic formula for each of the machine's instructions. This is a very clean way to describe the target. But when the compiler needs information that is difficult to ! express in this fashion, ad-hoc parameters have been defined for machine ! descriptions. The purpose of portability is to reduce the total work ! needed on the compiler; it was not of interest for its own sake. GCC does not contain machine dependent code, but it does contain code that depends on machine parameters such as endianness (whether the most --- 138,157 ---- 2 GCC and Portability ********************* ! GCC itself aims to be portable to any machine where `int' is at least a 32-bit type. It aims to target machines with a flat (non-segmented) byte addressed data address space (the code address space can be ! separate). Target ABIs may have 8, 16, 32 or 64-bit `int' type. `char' can be wider than 8 bits. GCC gets most of the information about the target machine from a machine description which gives an algebraic formula for each of the machine's instructions. This is a very clean way to describe the target. But when the compiler needs information that is difficult to ! express in this fashion, ad-hoc parameters have been defined for ! machine descriptions. The purpose of portability is to reduce the ! total work needed on the compiler; it was not of interest for its own ! sake. GCC does not contain machine dependent code, but it does contain code that depends on machine parameters such as endianness (whether the most *************** word) and the availability of autoincrem *** 157,168 **** RTL-generation pass, it is often necessary to have multiple strategies for generating code for a particular kind of syntax tree, strategies that are usable for different combinations of parameters. Often, not ! all possible cases have been addressed, but only the common ones or only ! the ones that have been encountered. As a result, a new target may ! require additional strategies. You will know if this happens because ! the compiler will call 'abort'. Fortunately, the new strategies can be ! added in a machine-independent fashion, and will affect only the target ! machines that need them.  File: gccint.info, Node: Interface, Next: Libgcc, Prev: Portability, Up: Top --- 160,171 ---- RTL-generation pass, it is often necessary to have multiple strategies for generating code for a particular kind of syntax tree, strategies that are usable for different combinations of parameters. Often, not ! all possible cases have been addressed, but only the common ones or ! only the ones that have been encountered. As a result, a new target ! may require additional strategies. You will know if this happens ! because the compiler will call `abort'. Fortunately, the new ! strategies can be added in a machine-independent fashion, and will ! affect only the target machines that need them.  File: gccint.info, Node: Interface, Next: Libgcc, Prev: Portability, Up: Top *************** returning such types cannot be called fr *** 180,191 **** vice versa. This does not cause trouble often because few Unix library routines return structures or unions. ! GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long ! in the same registers used for 'int' or 'double' return values. (GCC ! typically allocates variables of such types in registers also.) Structures and unions of other sizes are returned by storing them into an address passed by the caller (usually in a register). The target ! hook 'TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static storage, and then --- 183,194 ---- vice versa. This does not cause trouble often because few Unix library routines return structures or unions. ! GCC code returns structures and unions that are 1, 2, 4 or 8 bytes ! long in the same registers used for `int' or `double' return values. ! (GCC typically allocates variables of such types in registers also.) Structures and unions of other sizes are returned by storing them into an address passed by the caller (usually in a register). The target ! hook `TARGET_STRUCT_VALUE_RTX' tells GCC where to pass this address. By contrast, PCC on most target machines returns structures and unions of any size by copying the data into an area of static storage, and then *************** are passed "by invisible reference". Th *** 216,227 **** stored in memory, and the address of the memory location is passed to the subroutine. ! If you use 'longjmp', beware of automatic variables. ISO C says that ! automatic variables that are not declared 'volatile' have undefined ! values after a 'longjmp'. And this is all GCC promises to do, because ! it is very difficult to restore register variables correctly, and one of ! GCC's features is that it can put variables in registers without your ! asking it to.  File: gccint.info, Node: Libgcc, Next: Languages, Prev: Interface, Up: Top --- 219,230 ---- stored in memory, and the address of the memory location is passed to the subroutine. ! If you use `longjmp', beware of automatic variables. ISO C says that ! automatic variables that are not declared `volatile' have undefined ! values after a `longjmp'. And this is all GCC promises to do, because ! it is very difficult to restore register variables correctly, and one ! of GCC's features is that it can put variables in registers without ! your asking it to.  File: gccint.info, Node: Libgcc, Next: Languages, Prev: Interface, Up: Top *************** File: gccint.info, Node: Libgcc, Next: *** 229,262 **** 4 The GCC low-level runtime library *********************************** ! GCC provides a low-level runtime library, 'libgcc.a' or 'libgcc_s.so.1' on some platforms. GCC generates calls to routines in this library automatically, whenever it needs to perform some operation that is too complicated to emit inline code for. ! Most of the routines in 'libgcc' handle arithmetic operations that the target processor cannot perform directly. This includes integer multiply and divide on some machines, and all floating-point and ! fixed-point operations on other machines. 'libgcc' also includes routines for exception handling, and a handful of miscellaneous operations. Some of these routines can be defined in mostly machine-independent C. ! Others must be hand-written in assembly language for each processor that ! needs them. ! GCC will also generate calls to C library routines, such as 'memcpy' ! and 'memset', in some cases. The set of routines that GCC may possibly ! use is documented in *note (gcc)Other Builtins::. These routines take arguments and return values of a specific machine mode, not a specific C type. *Note Machine Modes::, for an explanation of this concept. For illustrative purposes, in this chapter the ! floating point type 'float' is assumed to correspond to 'SFmode'; ! 'double' to 'DFmode'; and 'long double' to both 'TFmode' and 'XFmode'. ! Similarly, the integer types 'int' and 'unsigned int' correspond to ! 'SImode'; 'long' and 'unsigned long' to 'DImode'; and 'long long' and ! 'unsigned long long' to 'TImode'. * Menu: --- 232,265 ---- 4 The GCC low-level runtime library *********************************** ! GCC provides a low-level runtime library, `libgcc.a' or `libgcc_s.so.1' on some platforms. GCC generates calls to routines in this library automatically, whenever it needs to perform some operation that is too complicated to emit inline code for. ! Most of the routines in `libgcc' handle arithmetic operations that the target processor cannot perform directly. This includes integer multiply and divide on some machines, and all floating-point and ! fixed-point operations on other machines. `libgcc' also includes routines for exception handling, and a handful of miscellaneous operations. Some of these routines can be defined in mostly machine-independent C. ! Others must be hand-written in assembly language for each processor ! that needs them. ! GCC will also generate calls to C library routines, such as `memcpy' ! and `memset', in some cases. The set of routines that GCC may possibly ! use is documented in *note Other Builtins: (gcc)Other Builtins. These routines take arguments and return values of a specific machine mode, not a specific C type. *Note Machine Modes::, for an explanation of this concept. For illustrative purposes, in this chapter the ! floating point type `float' is assumed to correspond to `SFmode'; ! `double' to `DFmode'; and `long double' to both `TFmode' and `XFmode'. ! Similarly, the integer types `int' and `unsigned int' correspond to ! `SImode'; `long' and `unsigned long' to `DImode'; and `long long' and ! `unsigned long long' to `TImode'. * Menu: *************** hardware support for arithmetic operatio *** 319,326 **** -- Runtime Function: unsigned int __udivsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __udivdi3 (unsigned long A, unsigned ! long B) -- Runtime Function: unsigned long long __udivti3 (unsigned long long A, unsigned long long B) These functions return the quotient of the unsigned division of A --- 322,329 ---- -- Runtime Function: unsigned int __udivsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __udivdi3 (unsigned long A, ! unsigned long B) -- Runtime Function: unsigned long long __udivti3 (unsigned long long A, unsigned long long B) These functions return the quotient of the unsigned division of A *************** hardware support for arithmetic operatio *** 336,343 **** -- Runtime Function: unsigned int __umodsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __umoddi3 (unsigned long A, unsigned ! long B) -- Runtime Function: unsigned long long __umodti3 (unsigned long long A, unsigned long long B) These functions return the remainder of the unsigned division of A --- 339,346 ---- -- Runtime Function: unsigned int __umodsi3 (unsigned int A, unsigned int B) ! -- Runtime Function: unsigned long __umoddi3 (unsigned long A, ! unsigned long B) -- Runtime Function: unsigned long long __umodti3 (unsigned long long A, unsigned long long B) These functions return the remainder of the unsigned division of A *************** result using either signed or unsigned c *** 360,376 **** and if A and B are equal they return 1. -- Runtime Function: int __ucmpdi2 (unsigned long A, unsigned long B) ! -- Runtime Function: int __ucmpti2 (unsigned long long A, unsigned long ! long B) ! These functions perform an unsigned comparison of A and B. If A is ! less than B, they return 0; if A is greater than B, they return 2; ! and if A and B are equal they return 1. 4.1.3 Trapping arithmetic functions ----------------------------------- The following functions implement trapping arithmetic. These functions ! call the libc function 'abort' upon signed arithmetic overflow. -- Runtime Function: int __absvsi2 (int A) -- Runtime Function: long __absvdi2 (long A) --- 363,379 ---- and if A and B are equal they return 1. -- Runtime Function: int __ucmpdi2 (unsigned long A, unsigned long B) ! -- Runtime Function: int __ucmpti2 (unsigned long long A, unsigned ! long long B) ! These functions perform an unsigned comparison of A and B. If A ! is less than B, they return 0; if A is greater than B, they return ! 2; and if A and B are equal they return 1. 4.1.3 Trapping arithmetic functions ----------------------------------- The following functions implement trapping arithmetic. These functions ! call the libc function `abort' upon signed arithmetic overflow. -- Runtime Function: int __absvsi2 (int A) -- Runtime Function: long __absvdi2 (long A) *************** call the libc function 'abort' upon sign *** 378,397 **** -- Runtime Function: int __addvsi3 (int A, int B) -- Runtime Function: long __addvdi3 (long A, long B) ! These functions return the sum of A and B; that is 'A + B'. -- Runtime Function: int __mulvsi3 (int A, int B) -- Runtime Function: long __mulvdi3 (long A, long B) ! The functions return the product of A and B; that is 'A * B'. -- Runtime Function: int __negvsi2 (int A) -- Runtime Function: long __negvdi2 (long A) ! These functions return the negation of A; that is '-A'. -- Runtime Function: int __subvsi3 (int A, int B) -- Runtime Function: long __subvdi3 (long A, long B) ! These functions return the difference between B and A; that is 'A - ! B'. 4.1.4 Bit operations -------------------- --- 381,400 ---- -- Runtime Function: int __addvsi3 (int A, int B) -- Runtime Function: long __addvdi3 (long A, long B) ! These functions return the sum of A and B; that is `A + B'. -- Runtime Function: int __mulvsi3 (int A, int B) -- Runtime Function: long __mulvdi3 (long A, long B) ! The functions return the product of A and B; that is `A * B'. -- Runtime Function: int __negvsi2 (int A) -- Runtime Function: long __negvdi2 (long A) ! These functions return the negation of A; that is `-A'. -- Runtime Function: int __subvsi3 (int A, int B) -- Runtime Function: long __subvdi3 (long A, long B) ! These functions return the difference between B and A; that is `A ! - B'. 4.1.4 Bit operations -------------------- *************** File: gccint.info, Node: Soft float lib *** 439,453 **** The software floating point library is used on machines which do not have hardware support for floating point. It is also used whenever ! '-msoft-float' is used to disable generation of floating point instructions. (Not all targets support this switch.) For compatibility with other compilers, the floating point emulation ! routines can be renamed with the 'DECLARE_LIBRARY_RENAMES' macro (*note Library Calls::). In this section, the default names are used. ! Presently the library does not support 'XFmode', which is used for ! 'long double' on some architectures. 4.2.1 Arithmetic functions -------------------------- --- 442,456 ---- The software floating point library is used on machines which do not have hardware support for floating point. It is also used whenever ! `-msoft-float' is used to disable generation of floating point instructions. (Not all targets support this switch.) For compatibility with other compilers, the floating point emulation ! routines can be renamed with the `DECLARE_LIBRARY_RENAMES' macro (*note Library Calls::). In this section, the default names are used. ! Presently the library does not support `XFmode', which is used for ! `long double' on some architectures. 4.2.1 Arithmetic functions -------------------------- *************** Library Calls::). In this section, the *** 548,555 **** -- Runtime Function: unsigned long long __fixunsdfti (double A) -- Runtime Function: unsigned long long __fixunstfti (long double A) -- Runtime Function: unsigned long long __fixunsxfti (long double A) ! These functions convert A to an unsigned long long, rounding toward ! zero. Negative values all become zero. -- Runtime Function: float __floatsisf (int I) -- Runtime Function: double __floatsidf (int I) --- 551,558 ---- -- Runtime Function: unsigned long long __fixunsdfti (double A) -- Runtime Function: unsigned long long __fixunstfti (long double A) -- Runtime Function: unsigned long long __fixunsxfti (long double A) ! These functions convert A to an unsigned long long, rounding ! toward zero. Negative values all become zero. -- Runtime Function: float __floatsisf (int I) -- Runtime Function: double __floatsidf (int I) *************** There are two sets of basic comparison f *** 597,606 **** -- Runtime Function: int __cmpdf2 (double A, double B) -- Runtime Function: int __cmptf2 (long double A, long double B) These functions calculate a <=> b. That is, if A is less than B, ! they return -1; if A is greater than B, they return 1; and if A and ! B are equal they return 0. If either argument is NaN they return ! 1, but you should not rely on this; if NaN is a possibility, use ! one of the higher-level comparison functions. -- Runtime Function: int __unordsf2 (float A, float B) -- Runtime Function: int __unorddf2 (double A, double B) --- 600,609 ---- -- Runtime Function: int __cmpdf2 (double A, double B) -- Runtime Function: int __cmptf2 (long double A, long double B) These functions calculate a <=> b. That is, if A is less than B, ! they return -1; if A is greater than B, they return 1; and if A ! and B are equal they return 0. If either argument is NaN they ! return 1, but you should not rely on this; if NaN is a ! possibility, use one of the higher-level comparison functions. -- Runtime Function: int __unordsf2 (float A, float B) -- Runtime Function: int __unorddf2 (double A, double B) *************** hood, all of these routines are implemen *** 618,633 **** return E; return __cmpXf2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. Thus, ! the meaning of the return value is different for each set. Do not rely ! on this implementation; only the semantics documented below are ! guaranteed. -- Runtime Function: int __eqsf2 (float A, float B) -- Runtime Function: int __eqdf2 (double A, double B) -- Runtime Function: int __eqtf2 (long double A, long double B) ! These functions return zero if neither argument is NaN, and A and B ! are equal. -- Runtime Function: int __nesf2 (float A, float B) -- Runtime Function: int __nedf2 (double A, double B) --- 621,636 ---- return E; return __cmpXf2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. ! Thus, the meaning of the return value is different for each set. Do ! not rely on this implementation; only the semantics documented below ! are guaranteed. -- Runtime Function: int __eqsf2 (float A, float B) -- Runtime Function: int __eqdf2 (double A, double B) -- Runtime Function: int __eqtf2 (long double A, long double B) ! These functions return zero if neither argument is NaN, and A and ! B are equal. -- Runtime Function: int __nesf2 (float A, float B) -- Runtime Function: int __nedf2 (double A, double B) *************** guaranteed. *** 668,675 **** -- Runtime Function: long double __powixf2 (long double A, int B) These functions convert raise A to the power B. ! -- Runtime Function: complex float __mulsc3 (float A, float B, float C, ! float D) -- Runtime Function: complex double __muldc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __multc3 (long double A, long --- 671,678 ---- -- Runtime Function: long double __powixf2 (long double A, int B) These functions convert raise A to the power B. ! -- Runtime Function: complex float __mulsc3 (float A, float B, float ! C, float D) -- Runtime Function: complex double __muldc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __multc3 (long double A, long *************** guaranteed. *** 679,686 **** These functions return the product of A + iB and C + iD, following the rules of C99 Annex G. ! -- Runtime Function: complex float __divsc3 (float A, float B, float C, ! float D) -- Runtime Function: complex double __divdc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __divtc3 (long double A, long --- 682,689 ---- These functions return the product of A + iB and C + iD, following the rules of C99 Annex G. ! -- Runtime Function: complex float __divsc3 (float A, float B, float ! C, float D) -- Runtime Function: complex double __divdc3 (double A, double B, double C, double D) -- Runtime Function: complex long double __divtc3 (long double A, long *************** selected at configure time. *** 879,886 **** -- Runtime Function: unsigned long __bid_fixunsdddi (_Decimal64 A) -- Runtime Function: unsigned long __dpd_fixunstddi (_Decimal128 A) -- Runtime Function: unsigned long __bid_fixunstddi (_Decimal128 A) ! These functions convert A to an unsigned long. Negative values all ! become zero. -- Runtime Function: _Decimal32 __dpd_floatsisd (int I) -- Runtime Function: _Decimal32 __bid_floatsisd (int I) --- 882,889 ---- -- Runtime Function: unsigned long __bid_fixunsdddi (_Decimal64 A) -- Runtime Function: unsigned long __dpd_fixunstddi (_Decimal128 A) -- Runtime Function: unsigned long __bid_fixunstddi (_Decimal128 A) ! These functions convert A to an unsigned long. Negative values ! all become zero. -- Runtime Function: _Decimal32 __dpd_floatsisd (int I) -- Runtime Function: _Decimal32 __bid_floatsisd (int I) *************** selected at configure time. *** 906,913 **** -- Runtime Function: _Decimal64 __bid_floatunssidd (unsigned int I) -- Runtime Function: _Decimal128 __dpd_floatunssitd (unsigned int I) -- Runtime Function: _Decimal128 __bid_floatunssitd (unsigned int I) ! These functions convert I, an unsigned integer, to decimal floating ! point. -- Runtime Function: _Decimal32 __dpd_floatunsdisd (unsigned long I) -- Runtime Function: _Decimal32 __bid_floatunsdisd (unsigned long I) --- 909,916 ---- -- Runtime Function: _Decimal64 __bid_floatunssidd (unsigned int I) -- Runtime Function: _Decimal128 __dpd_floatunssitd (unsigned int I) -- Runtime Function: _Decimal128 __bid_floatunssitd (unsigned int I) ! These functions convert I, an unsigned integer, to decimal ! floating point. -- Runtime Function: _Decimal32 __dpd_floatunsdisd (unsigned long I) -- Runtime Function: _Decimal32 __bid_floatunsdisd (unsigned long I) *************** hood, all of these routines are implemen *** 940,949 **** return E; return __bid_cmpXd2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. Thus, ! the meaning of the return value is different for each set. Do not rely ! on this implementation; only the semantics documented below are ! guaranteed. -- Runtime Function: int __dpd_eqsd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_eqsd2 (_Decimal32 A, _Decimal32 B) --- 943,952 ---- return E; return __bid_cmpXd2 (a, b); ! where E is a constant chosen to give the proper behavior for NaN. ! Thus, the meaning of the return value is different for each set. Do ! not rely on this implementation; only the semantics documented below ! are guaranteed. -- Runtime Function: int __dpd_eqsd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_eqsd2 (_Decimal32 A, _Decimal32 B) *************** guaranteed. *** 951,958 **** -- Runtime Function: int __bid_eqdd2 (_Decimal64 A, _Decimal64 B) -- Runtime Function: int __dpd_eqtd2 (_Decimal128 A, _Decimal128 B) -- Runtime Function: int __bid_eqtd2 (_Decimal128 A, _Decimal128 B) ! These functions return zero if neither argument is NaN, and A and B ! are equal. -- Runtime Function: int __dpd_nesd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_nesd2 (_Decimal32 A, _Decimal32 B) --- 954,961 ---- -- Runtime Function: int __bid_eqdd2 (_Decimal64 A, _Decimal64 B) -- Runtime Function: int __dpd_eqtd2 (_Decimal128 A, _Decimal128 B) -- Runtime Function: int __bid_eqtd2 (_Decimal128 A, _Decimal128 B) ! These functions return zero if neither argument is NaN, and A and ! B are equal. -- Runtime Function: int __dpd_nesd2 (_Decimal32 A, _Decimal32 B) -- Runtime Function: int __bid_nesd2 (_Decimal32 A, _Decimal32 B) *************** File: gccint.info, Node: Fixed-point fr *** 1008,1027 **** The software fixed-point library implements fixed-point fractional arithmetic, and is only activated on selected targets. ! For ease of comprehension 'fract' is an alias for the '_Fract' type, ! 'accum' an alias for '_Accum', and 'sat' an alias for '_Sat'. For illustrative purposes, in this section the fixed-point fractional ! type 'short fract' is assumed to correspond to machine mode 'QQmode'; ! 'unsigned short fract' to 'UQQmode'; 'fract' to 'HQmode'; ! 'unsigned fract' to 'UHQmode'; 'long fract' to 'SQmode'; ! 'unsigned long fract' to 'USQmode'; 'long long fract' to 'DQmode'; and ! 'unsigned long long fract' to 'UDQmode'. Similarly the fixed-point ! accumulator type 'short accum' corresponds to 'HAmode'; ! 'unsigned short accum' to 'UHAmode'; 'accum' to 'SAmode'; ! 'unsigned accum' to 'USAmode'; 'long accum' to 'DAmode'; ! 'unsigned long accum' to 'UDAmode'; 'long long accum' to 'TAmode'; and ! 'unsigned long long accum' to 'UTAmode'. 4.4.1 Arithmetic functions -------------------------- --- 1011,1030 ---- The software fixed-point library implements fixed-point fractional arithmetic, and is only activated on selected targets. ! For ease of comprehension `fract' is an alias for the `_Fract' type, ! `accum' an alias for `_Accum', and `sat' an alias for `_Sat'. For illustrative purposes, in this section the fixed-point fractional ! type `short fract' is assumed to correspond to machine mode `QQmode'; ! `unsigned short fract' to `UQQmode'; `fract' to `HQmode'; ! `unsigned fract' to `UHQmode'; `long fract' to `SQmode'; ! `unsigned long fract' to `USQmode'; `long long fract' to `DQmode'; and ! `unsigned long long fract' to `UDQmode'. Similarly the fixed-point ! accumulator type `short accum' corresponds to `HAmode'; ! `unsigned short accum' to `UHAmode'; `accum' to `SAmode'; ! `unsigned accum' to `USAmode'; `long accum' to `DAmode'; ! `unsigned long accum' to `UDAmode'; `long long accum' to `TAmode'; and ! `unsigned long long accum' to `UTAmode'. 4.4.1 Arithmetic functions -------------------------- *************** accumulator type 'short accum' correspon *** 1036,1043 **** fract A, unsigned short fract B) -- Runtime Function: unsigned fract __adduhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __addusq3 (unsigned long fract ! A, unsigned long fract B) -- Runtime Function: unsigned long long fract __addudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __addha3 (short accum A, short accum --- 1039,1046 ---- fract A, unsigned short fract B) -- Runtime Function: unsigned fract __adduhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __addusq3 (unsigned long ! fract A, unsigned long fract B) -- Runtime Function: unsigned long long fract __addudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __addha3 (short accum A, short accum *************** accumulator type 'short accum' correspon *** 1050,1069 **** accum A, unsigned short accum B) -- Runtime Function: unsigned accum __addusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __adduda3 (unsigned long accum ! A, unsigned long accum B) -- Runtime Function: unsigned long long accum __adduta3 (unsigned long long accum A, unsigned long long accum B) These functions return the sum of A and B. ! -- Runtime Function: short fract __ssaddqq3 (short fract A, short fract ! B) -- Runtime Function: fract __ssaddhq3 (fract A, fract B) -- Runtime Function: long fract __ssaddsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssadddq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssaddha3 (short accum A, short accum ! B) -- Runtime Function: accum __ssaddsa3 (accum A, accum B) -- Runtime Function: long accum __ssaddda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssaddta3 (long long accum A, --- 1053,1072 ---- accum A, unsigned short accum B) -- Runtime Function: unsigned accum __addusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __adduda3 (unsigned long ! accum A, unsigned long accum B) -- Runtime Function: unsigned long long accum __adduta3 (unsigned long long accum A, unsigned long long accum B) These functions return the sum of A and B. ! -- Runtime Function: short fract __ssaddqq3 (short fract A, short ! fract B) -- Runtime Function: fract __ssaddhq3 (fract A, fract B) -- Runtime Function: long fract __ssaddsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssadddq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssaddha3 (short accum A, short ! accum B) -- Runtime Function: accum __ssaddsa3 (accum A, accum B) -- Runtime Function: long accum __ssaddda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssaddta3 (long long accum A, *************** accumulator type 'short accum' correspon *** 1098,1105 **** fract A, unsigned short fract B) -- Runtime Function: unsigned fract __subuhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __subusq3 (unsigned long fract ! A, unsigned long fract B) -- Runtime Function: unsigned long long fract __subudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __subha3 (short accum A, short accum --- 1101,1108 ---- fract A, unsigned short fract B) -- Runtime Function: unsigned fract __subuhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __subusq3 (unsigned long ! fract A, unsigned long fract B) -- Runtime Function: unsigned long long fract __subudq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __subha3 (short accum A, short accum *************** accumulator type 'short accum' correspon *** 1112,1137 **** accum A, unsigned short accum B) -- Runtime Function: unsigned accum __subusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __subuda3 (unsigned long accum ! A, unsigned long accum B) -- Runtime Function: unsigned long long accum __subuta3 (unsigned long long accum A, unsigned long long accum B) ! These functions return the difference of A and B; that is, 'A - B'. ! -- Runtime Function: short fract __sssubqq3 (short fract A, short fract ! B) -- Runtime Function: fract __sssubhq3 (fract A, fract B) -- Runtime Function: long fract __sssubsq3 (long fract A, long fract B) -- Runtime Function: long long fract __sssubdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __sssubha3 (short accum A, short accum ! B) -- Runtime Function: accum __sssubsa3 (accum A, accum B) -- Runtime Function: long accum __sssubda3 (long accum A, long accum B) -- Runtime Function: long long accum __sssubta3 (long long accum A, long long accum B) These functions return the difference of A and B with signed ! saturation; that is, 'A - B'. -- Runtime Function: unsigned short fract __ussubuqq3 (unsigned short fract A, unsigned short fract B) --- 1115,1140 ---- accum A, unsigned short accum B) -- Runtime Function: unsigned accum __subusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __subuda3 (unsigned long ! accum A, unsigned long accum B) -- Runtime Function: unsigned long long accum __subuta3 (unsigned long long accum A, unsigned long long accum B) ! These functions return the difference of A and B; that is, `A - B'. ! -- Runtime Function: short fract __sssubqq3 (short fract A, short ! fract B) -- Runtime Function: fract __sssubhq3 (fract A, fract B) -- Runtime Function: long fract __sssubsq3 (long fract A, long fract B) -- Runtime Function: long long fract __sssubdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __sssubha3 (short accum A, short ! accum B) -- Runtime Function: accum __sssubsa3 (accum A, accum B) -- Runtime Function: long accum __sssubda3 (long accum A, long accum B) -- Runtime Function: long long accum __sssubta3 (long long accum A, long long accum B) These functions return the difference of A and B with signed ! saturation; that is, `A - B'. -- Runtime Function: unsigned short fract __ussubuqq3 (unsigned short fract A, unsigned short fract B) *************** accumulator type 'short accum' correspon *** 1150,1156 **** -- Runtime Function: unsigned long long accum __ussubuta3 (unsigned long long accum A, unsigned long long accum B) These functions return the difference of A and B with unsigned ! saturation; that is, 'A - B'. -- Runtime Function: short fract __mulqq3 (short fract A, short fract B) --- 1153,1159 ---- -- Runtime Function: unsigned long long accum __ussubuta3 (unsigned long long accum A, unsigned long long accum B) These functions return the difference of A and B with unsigned ! saturation; that is, `A - B'. -- Runtime Function: short fract __mulqq3 (short fract A, short fract B) *************** accumulator type 'short accum' correspon *** 1162,1169 **** fract A, unsigned short fract B) -- Runtime Function: unsigned fract __muluhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __mulusq3 (unsigned long fract ! A, unsigned long fract B) -- Runtime Function: unsigned long long fract __muludq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __mulha3 (short accum A, short accum --- 1165,1172 ---- fract A, unsigned short fract B) -- Runtime Function: unsigned fract __muluhq3 (unsigned fract A, unsigned fract B) ! -- Runtime Function: unsigned long fract __mulusq3 (unsigned long ! fract A, unsigned long fract B) -- Runtime Function: unsigned long long fract __muludq3 (unsigned long long fract A, unsigned long long fract B) -- Runtime Function: short accum __mulha3 (short accum A, short accum *************** accumulator type 'short accum' correspon *** 1176,1195 **** accum A, unsigned short accum B) -- Runtime Function: unsigned accum __mulusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __muluda3 (unsigned long accum ! A, unsigned long accum B) -- Runtime Function: unsigned long long accum __muluta3 (unsigned long long accum A, unsigned long long accum B) These functions return the product of A and B. ! -- Runtime Function: short fract __ssmulqq3 (short fract A, short fract ! B) -- Runtime Function: fract __ssmulhq3 (fract A, fract B) -- Runtime Function: long fract __ssmulsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssmuldq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssmulha3 (short accum A, short accum ! B) -- Runtime Function: accum __ssmulsa3 (accum A, accum B) -- Runtime Function: long accum __ssmulda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssmulta3 (long long accum A, --- 1179,1198 ---- accum A, unsigned short accum B) -- Runtime Function: unsigned accum __mulusa3 (unsigned accum A, unsigned accum B) ! -- Runtime Function: unsigned long accum __muluda3 (unsigned long ! accum A, unsigned long accum B) -- Runtime Function: unsigned long long accum __muluta3 (unsigned long long accum A, unsigned long long accum B) These functions return the product of A and B. ! -- Runtime Function: short fract __ssmulqq3 (short fract A, short ! fract B) -- Runtime Function: fract __ssmulhq3 (fract A, fract B) -- Runtime Function: long fract __ssmulsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssmuldq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssmulha3 (short accum A, short ! accum B) -- Runtime Function: accum __ssmulsa3 (accum A, accum B) -- Runtime Function: long accum __ssmulda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssmulta3 (long long accum A, *************** accumulator type 'short accum' correspon *** 1228,1235 **** -- Runtime Function: long accum __divda3 (long accum A, long accum B) -- Runtime Function: long long accum __divta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A and ! B. -- Runtime Function: unsigned short fract __udivuqq3 (unsigned short fract A, unsigned short fract B) --- 1231,1238 ---- -- Runtime Function: long accum __divda3 (long accum A, long accum B) -- Runtime Function: long long accum __divta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A ! and B. -- Runtime Function: unsigned short fract __udivuqq3 (unsigned short fract A, unsigned short fract B) *************** accumulator type 'short accum' correspon *** 1237,1269 **** unsigned fract B) -- Runtime Function: unsigned long fract __udivusq3 (unsigned long fract A, unsigned long fract B) ! -- Runtime Function: unsigned long long fract __udivudq3 (unsigned long ! long fract A, unsigned long long fract B) -- Runtime Function: unsigned short accum __udivuha3 (unsigned short accum A, unsigned short accum B) -- Runtime Function: unsigned accum __udivusa3 (unsigned accum A, unsigned accum B) -- Runtime Function: unsigned long accum __udivuda3 (unsigned long accum A, unsigned long accum B) ! -- Runtime Function: unsigned long long accum __udivuta3 (unsigned long ! long accum A, unsigned long long accum B) These functions return the quotient of the unsigned division of A and B. ! -- Runtime Function: short fract __ssdivqq3 (short fract A, short fract ! B) -- Runtime Function: fract __ssdivhq3 (fract A, fract B) -- Runtime Function: long fract __ssdivsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssdivdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssdivha3 (short accum A, short accum ! B) -- Runtime Function: accum __ssdivsa3 (accum A, accum B) -- Runtime Function: long accum __ssdivda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssdivta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A and ! B with signed saturation. -- Runtime Function: unsigned short fract __usdivuqq3 (unsigned short fract A, unsigned short fract B) --- 1240,1272 ---- unsigned fract B) -- Runtime Function: unsigned long fract __udivusq3 (unsigned long fract A, unsigned long fract B) ! -- Runtime Function: unsigned long long fract __udivudq3 (unsigned ! long long fract A, unsigned long long fract B) -- Runtime Function: unsigned short accum __udivuha3 (unsigned short accum A, unsigned short accum B) -- Runtime Function: unsigned accum __udivusa3 (unsigned accum A, unsigned accum B) -- Runtime Function: unsigned long accum __udivuda3 (unsigned long accum A, unsigned long accum B) ! -- Runtime Function: unsigned long long accum __udivuta3 (unsigned ! long long accum A, unsigned long long accum B) These functions return the quotient of the unsigned division of A and B. ! -- Runtime Function: short fract __ssdivqq3 (short fract A, short ! fract B) -- Runtime Function: fract __ssdivhq3 (fract A, fract B) -- Runtime Function: long fract __ssdivsq3 (long fract A, long fract B) -- Runtime Function: long long fract __ssdivdq3 (long long fract A, long long fract B) ! -- Runtime Function: short accum __ssdivha3 (short accum A, short ! accum B) -- Runtime Function: accum __ssdivsa3 (accum A, accum B) -- Runtime Function: long accum __ssdivda3 (long accum A, long accum B) -- Runtime Function: long long accum __ssdivta3 (long long accum A, long long accum B) ! These functions return the quotient of the signed division of A ! and B with signed saturation. -- Runtime Function: unsigned short fract __usdivuqq3 (unsigned short fract A, unsigned short fract B) *************** accumulator type 'short accum' correspon *** 1291,1298 **** -- Runtime Function: unsigned short fract __neguqq2 (unsigned short fract A) -- Runtime Function: unsigned fract __neguhq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __negusq2 (unsigned long fract ! A) -- Runtime Function: unsigned long long fract __negudq2 (unsigned long long fract A) -- Runtime Function: short accum __negha2 (short accum A) --- 1294,1301 ---- -- Runtime Function: unsigned short fract __neguqq2 (unsigned short fract A) -- Runtime Function: unsigned fract __neguhq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __negusq2 (unsigned long ! fract A) -- Runtime Function: unsigned long long fract __negudq2 (unsigned long long fract A) -- Runtime Function: short accum __negha2 (short accum A) *************** accumulator type 'short accum' correspon *** 1302,1309 **** -- Runtime Function: unsigned short accum __neguha2 (unsigned short accum A) -- Runtime Function: unsigned accum __negusa2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __neguda2 (unsigned long accum ! A) -- Runtime Function: unsigned long long accum __neguta2 (unsigned long long accum A) These functions return the negation of A. --- 1305,1312 ---- -- Runtime Function: unsigned short accum __neguha2 (unsigned short accum A) -- Runtime Function: unsigned accum __negusa2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __neguda2 (unsigned long ! accum A) -- Runtime Function: unsigned long long accum __neguta2 (unsigned long long accum A) These functions return the negation of A. *************** accumulator type 'short accum' correspon *** 1345,1352 **** B) -- Runtime Function: unsigned long fract __ashlusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __ashludq3 (unsigned long ! long fract A, int B) -- Runtime Function: short accum __ashlha3 (short accum A, int B) -- Runtime Function: accum __ashlsa3 (accum A, int B) -- Runtime Function: long accum __ashlda3 (long accum A, int B) --- 1348,1355 ---- B) -- Runtime Function: unsigned long fract __ashlusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __ashludq3 (unsigned ! long long fract A, int B) -- Runtime Function: short accum __ashlha3 (short accum A, int B) -- Runtime Function: accum __ashlsa3 (accum A, int B) -- Runtime Function: long accum __ashlda3 (long accum A, int B) *************** accumulator type 'short accum' correspon *** 1358,1365 **** B) -- Runtime Function: unsigned long accum __ashluda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __ashluta3 (unsigned long ! long accum A, int B) These functions return the result of shifting A left by B bits. -- Runtime Function: short fract __ashrqq3 (short fract A, int B) --- 1361,1368 ---- B) -- Runtime Function: unsigned long accum __ashluda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __ashluta3 (unsigned ! long long accum A, int B) These functions return the result of shifting A left by B bits. -- Runtime Function: short fract __ashrqq3 (short fract A, int B) *************** accumulator type 'short accum' correspon *** 1381,1396 **** B) -- Runtime Function: unsigned long fract __lshrusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __lshrudq3 (unsigned long ! long fract A, int B) -- Runtime Function: unsigned short accum __lshruha3 (unsigned short accum A, int B) -- Runtime Function: unsigned accum __lshrusa3 (unsigned accum A, int B) -- Runtime Function: unsigned long accum __lshruda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __lshruta3 (unsigned long ! long accum A, int B) These functions return the result of logically shifting A right by B bits. --- 1384,1399 ---- B) -- Runtime Function: unsigned long fract __lshrusq3 (unsigned long fract A, int B) ! -- Runtime Function: unsigned long long fract __lshrudq3 (unsigned ! long long fract A, int B) -- Runtime Function: unsigned short accum __lshruha3 (unsigned short accum A, int B) -- Runtime Function: unsigned accum __lshrusa3 (unsigned accum A, int B) -- Runtime Function: unsigned long accum __lshruda3 (unsigned long accum A, int B) ! -- Runtime Function: unsigned long long accum __lshruta3 (unsigned ! long long accum A, int B) These functions return the result of logically shifting A right by B bits. *************** accumulator type 'short accum' correspon *** 1403,1429 **** -- Runtime Function: long accum __ssashlda3 (long accum A, int B) -- Runtime Function: long long accum __ssashlta3 (long long accum A, int B) ! These functions return the result of shifting A left by B bits with ! signed saturation. -- Runtime Function: unsigned short fract __usashluqq3 (unsigned short fract A, int B) ! -- Runtime Function: unsigned fract __usashluhq3 (unsigned fract A, int ! B) -- Runtime Function: unsigned long fract __usashlusq3 (unsigned long fract A, int B) -- Runtime Function: unsigned long long fract __usashludq3 (unsigned long long fract A, int B) -- Runtime Function: unsigned short accum __usashluha3 (unsigned short accum A, int B) ! -- Runtime Function: unsigned accum __usashlusa3 (unsigned accum A, int ! B) -- Runtime Function: unsigned long accum __usashluda3 (unsigned long accum A, int B) -- Runtime Function: unsigned long long accum __usashluta3 (unsigned long long accum A, int B) ! These functions return the result of shifting A left by B bits with ! unsigned saturation. 4.4.2 Comparison functions -------------------------- --- 1406,1432 ---- -- Runtime Function: long accum __ssashlda3 (long accum A, int B) -- Runtime Function: long long accum __ssashlta3 (long long accum A, int B) ! These functions return the result of shifting A left by B bits ! with signed saturation. -- Runtime Function: unsigned short fract __usashluqq3 (unsigned short fract A, int B) ! -- Runtime Function: unsigned fract __usashluhq3 (unsigned fract A, ! int B) -- Runtime Function: unsigned long fract __usashlusq3 (unsigned long fract A, int B) -- Runtime Function: unsigned long long fract __usashludq3 (unsigned long long fract A, int B) -- Runtime Function: unsigned short accum __usashluha3 (unsigned short accum A, int B) ! -- Runtime Function: unsigned accum __usashlusa3 (unsigned accum A, ! int B) -- Runtime Function: unsigned long accum __usashluda3 (unsigned long accum A, int B) -- Runtime Function: unsigned long long accum __usashluta3 (unsigned long long accum A, int B) ! These functions return the result of shifting A left by B bits ! with unsigned saturation. 4.4.2 Comparison functions -------------------------- *************** returned result using either signed or u *** 1477,1489 **** -- Runtime Function: unsigned short fract __fractqquqq (short fract A) -- Runtime Function: unsigned fract __fractqquhq (short fract A) -- Runtime Function: unsigned long fract __fractqqusq (short fract A) ! -- Runtime Function: unsigned long long fract __fractqqudq (short fract ! A) -- Runtime Function: unsigned short accum __fractqquha (short fract A) -- Runtime Function: unsigned accum __fractqqusa (short fract A) -- Runtime Function: unsigned long accum __fractqquda (short fract A) ! -- Runtime Function: unsigned long long accum __fractqquta (short fract ! A) -- Runtime Function: signed char __fractqqqi (short fract A) -- Runtime Function: short __fractqqhi (short fract A) -- Runtime Function: int __fractqqsi (short fract A) --- 1480,1492 ---- -- Runtime Function: unsigned short fract __fractqquqq (short fract A) -- Runtime Function: unsigned fract __fractqquhq (short fract A) -- Runtime Function: unsigned long fract __fractqqusq (short fract A) ! -- Runtime Function: unsigned long long fract __fractqqudq (short ! fract A) -- Runtime Function: unsigned short accum __fractqquha (short fract A) -- Runtime Function: unsigned accum __fractqqusa (short fract A) -- Runtime Function: unsigned long accum __fractqquda (short fract A) ! -- Runtime Function: unsigned long long accum __fractqquta (short ! fract A) -- Runtime Function: signed char __fractqqqi (short fract A) -- Runtime Function: short __fractqqhi (short fract A) -- Runtime Function: int __fractqqsi (short fract A) *************** returned result using either signed or u *** 1544,1558 **** -- Runtime Function: accum __fractdqsa (long long fract A) -- Runtime Function: long accum __fractdqda (long long fract A) -- Runtime Function: long long accum __fractdqta (long long fract A) ! -- Runtime Function: unsigned short fract __fractdquqq (long long fract ! A) -- Runtime Function: unsigned fract __fractdquhq (long long fract A) -- Runtime Function: unsigned long fract __fractdqusq (long long fract A) -- Runtime Function: unsigned long long fract __fractdqudq (long long fract A) ! -- Runtime Function: unsigned short accum __fractdquha (long long fract ! A) -- Runtime Function: unsigned accum __fractdqusa (long long fract A) -- Runtime Function: unsigned long accum __fractdquda (long long fract A) --- 1547,1561 ---- -- Runtime Function: accum __fractdqsa (long long fract A) -- Runtime Function: long accum __fractdqda (long long fract A) -- Runtime Function: long long accum __fractdqta (long long fract A) ! -- Runtime Function: unsigned short fract __fractdquqq (long long ! fract A) -- Runtime Function: unsigned fract __fractdquhq (long long fract A) -- Runtime Function: unsigned long fract __fractdqusq (long long fract A) -- Runtime Function: unsigned long long fract __fractdqudq (long long fract A) ! -- Runtime Function: unsigned short accum __fractdquha (long long ! fract A) -- Runtime Function: unsigned accum __fractdqusa (long long fract A) -- Runtime Function: unsigned long accum __fractdquda (long long fract A) *************** returned result using either signed or u *** 1575,1587 **** -- Runtime Function: unsigned short fract __fracthauqq (short accum A) -- Runtime Function: unsigned fract __fracthauhq (short accum A) -- Runtime Function: unsigned long fract __fracthausq (short accum A) ! -- Runtime Function: unsigned long long fract __fracthaudq (short accum ! A) -- Runtime Function: unsigned short accum __fracthauha (short accum A) -- Runtime Function: unsigned accum __fracthausa (short accum A) -- Runtime Function: unsigned long accum __fracthauda (short accum A) ! -- Runtime Function: unsigned long long accum __fracthauta (short accum ! A) -- Runtime Function: signed char __fracthaqi (short accum A) -- Runtime Function: short __fracthahi (short accum A) -- Runtime Function: int __fracthasi (short accum A) --- 1578,1590 ---- -- Runtime Function: unsigned short fract __fracthauqq (short accum A) -- Runtime Function: unsigned fract __fracthauhq (short accum A) -- Runtime Function: unsigned long fract __fracthausq (short accum A) ! -- Runtime Function: unsigned long long fract __fracthaudq (short ! accum A) -- Runtime Function: unsigned short accum __fracthauha (short accum A) -- Runtime Function: unsigned accum __fracthausa (short accum A) -- Runtime Function: unsigned long accum __fracthauda (short accum A) ! -- Runtime Function: unsigned long long accum __fracthauta (short ! accum A) -- Runtime Function: signed char __fracthaqi (short accum A) -- Runtime Function: short __fracthahi (short accum A) -- Runtime Function: int __fracthasi (short accum A) *************** returned result using either signed or u *** 1642,1656 **** -- Runtime Function: short accum __fracttaha2 (long long accum A) -- Runtime Function: accum __fracttasa2 (long long accum A) -- Runtime Function: long accum __fracttada2 (long long accum A) ! -- Runtime Function: unsigned short fract __fracttauqq (long long accum ! A) -- Runtime Function: unsigned fract __fracttauhq (long long accum A) -- Runtime Function: unsigned long fract __fracttausq (long long accum A) -- Runtime Function: unsigned long long fract __fracttaudq (long long accum A) ! -- Runtime Function: unsigned short accum __fracttauha (long long accum ! A) -- Runtime Function: unsigned accum __fracttausa (long long accum A) -- Runtime Function: unsigned long accum __fracttauda (long long accum A) --- 1645,1659 ---- -- Runtime Function: short accum __fracttaha2 (long long accum A) -- Runtime Function: accum __fracttasa2 (long long accum A) -- Runtime Function: long accum __fracttada2 (long long accum A) ! -- Runtime Function: unsigned short fract __fracttauqq (long long ! accum A) -- Runtime Function: unsigned fract __fracttauhq (long long accum A) -- Runtime Function: unsigned long fract __fracttausq (long long accum A) -- Runtime Function: unsigned long long fract __fracttaudq (long long accum A) ! -- Runtime Function: unsigned short accum __fracttauha (long long ! accum A) -- Runtime Function: unsigned accum __fracttausa (long long accum A) -- Runtime Function: unsigned long accum __fracttauda (long long accum A) *************** returned result using either signed or u *** 1666,1688 **** -- Runtime Function: short fract __fractuqqqq (unsigned short fract A) -- Runtime Function: fract __fractuqqhq (unsigned short fract A) -- Runtime Function: long fract __fractuqqsq (unsigned short fract A) ! -- Runtime Function: long long fract __fractuqqdq (unsigned short fract ! A) -- Runtime Function: short accum __fractuqqha (unsigned short fract A) -- Runtime Function: accum __fractuqqsa (unsigned short fract A) -- Runtime Function: long accum __fractuqqda (unsigned short fract A) ! -- Runtime Function: long long accum __fractuqqta (unsigned short fract ! A) ! -- Runtime Function: unsigned fract __fractuqquhq2 (unsigned short fract A) ! -- Runtime Function: unsigned long fract __fractuqqusq2 (unsigned short fract A) -- Runtime Function: unsigned long long fract __fractuqqudq2 (unsigned short fract A) ! -- Runtime Function: unsigned short accum __fractuqquha (unsigned short fract A) - -- Runtime Function: unsigned accum __fractuqqusa (unsigned short fract - A) -- Runtime Function: unsigned long accum __fractuqquda (unsigned short fract A) -- Runtime Function: unsigned long long accum __fractuqquta (unsigned --- 1669,1691 ---- -- Runtime Function: short fract __fractuqqqq (unsigned short fract A) -- Runtime Function: fract __fractuqqhq (unsigned short fract A) -- Runtime Function: long fract __fractuqqsq (unsigned short fract A) ! -- Runtime Function: long long fract __fractuqqdq (unsigned short ! fract A) -- Runtime Function: short accum __fractuqqha (unsigned short fract A) -- Runtime Function: accum __fractuqqsa (unsigned short fract A) -- Runtime Function: long accum __fractuqqda (unsigned short fract A) ! -- Runtime Function: long long accum __fractuqqta (unsigned short fract A) ! -- Runtime Function: unsigned fract __fractuqquhq2 (unsigned short fract A) + -- Runtime Function: unsigned long fract __fractuqqusq2 (unsigned + short fract A) -- Runtime Function: unsigned long long fract __fractuqqudq2 (unsigned short fract A) ! -- Runtime Function: unsigned short accum __fractuqquha (unsigned ! short fract A) ! -- Runtime Function: unsigned accum __fractuqqusa (unsigned short fract A) -- Runtime Function: unsigned long accum __fractuqquda (unsigned short fract A) -- Runtime Function: unsigned long long accum __fractuqquta (unsigned *************** returned result using either signed or u *** 1704,1715 **** -- Runtime Function: long long accum __fractuhqta (unsigned fract A) -- Runtime Function: unsigned short fract __fractuhquqq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __fractuhqusq2 (unsigned fract ! A) -- Runtime Function: unsigned long long fract __fractuhqudq2 (unsigned fract A) ! -- Runtime Function: unsigned short accum __fractuhquha (unsigned fract ! A) -- Runtime Function: unsigned accum __fractuhqusa (unsigned fract A) -- Runtime Function: unsigned long accum __fractuhquda (unsigned fract A) --- 1707,1718 ---- -- Runtime Function: long long accum __fractuhqta (unsigned fract A) -- Runtime Function: unsigned short fract __fractuhquqq2 (unsigned fract A) ! -- Runtime Function: unsigned long fract __fractuhqusq2 (unsigned ! fract A) -- Runtime Function: unsigned long long fract __fractuhqudq2 (unsigned fract A) ! -- Runtime Function: unsigned short accum __fractuhquha (unsigned ! fract A) -- Runtime Function: unsigned accum __fractuhqusa (unsigned fract A) -- Runtime Function: unsigned long accum __fractuhquda (unsigned fract A) *************** returned result using either signed or u *** 1732,1741 **** -- Runtime Function: long accum __fractusqda (unsigned long fract A) -- Runtime Function: long long accum __fractusqta (unsigned long fract A) ! -- Runtime Function: unsigned short fract __fractusquqq2 (unsigned long fract A) - -- Runtime Function: unsigned fract __fractusquhq2 (unsigned long fract - A) -- Runtime Function: unsigned long long fract __fractusqudq2 (unsigned long fract A) -- Runtime Function: unsigned short accum __fractusquha (unsigned long --- 1735,1744 ---- -- Runtime Function: long accum __fractusqda (unsigned long fract A) -- Runtime Function: long long accum __fractusqta (unsigned long fract A) ! -- Runtime Function: unsigned short fract __fractusquqq2 (unsigned ! long fract A) ! -- Runtime Function: unsigned fract __fractusquhq2 (unsigned long fract A) -- Runtime Function: unsigned long long fract __fractusqudq2 (unsigned long fract A) -- Runtime Function: unsigned short accum __fractusquha (unsigned long *************** returned result using either signed or u *** 1753,1774 **** -- Runtime Function: long long __fractusqti (unsigned long fract A) -- Runtime Function: float __fractusqsf (unsigned long fract A) -- Runtime Function: double __fractusqdf (unsigned long fract A) ! -- Runtime Function: short fract __fractudqqq (unsigned long long fract ! A) -- Runtime Function: fract __fractudqhq (unsigned long long fract A) -- Runtime Function: long fract __fractudqsq (unsigned long long fract A) -- Runtime Function: long long fract __fractudqdq (unsigned long long fract A) ! -- Runtime Function: short accum __fractudqha (unsigned long long fract ! A) -- Runtime Function: accum __fractudqsa (unsigned long long fract A) -- Runtime Function: long accum __fractudqda (unsigned long long fract A) -- Runtime Function: long long accum __fractudqta (unsigned long long fract A) ! -- Runtime Function: unsigned short fract __fractudquqq2 (unsigned long ! long fract A) -- Runtime Function: unsigned fract __fractudquhq2 (unsigned long long fract A) -- Runtime Function: unsigned long fract __fractudqusq2 (unsigned long --- 1756,1777 ---- -- Runtime Function: long long __fractusqti (unsigned long fract A) -- Runtime Function: float __fractusqsf (unsigned long fract A) -- Runtime Function: double __fractusqdf (unsigned long fract A) ! -- Runtime Function: short fract __fractudqqq (unsigned long long ! fract A) -- Runtime Function: fract __fractudqhq (unsigned long long fract A) -- Runtime Function: long fract __fractudqsq (unsigned long long fract A) -- Runtime Function: long long fract __fractudqdq (unsigned long long fract A) ! -- Runtime Function: short accum __fractudqha (unsigned long long ! fract A) -- Runtime Function: accum __fractudqsa (unsigned long long fract A) -- Runtime Function: long accum __fractudqda (unsigned long long fract A) -- Runtime Function: long long accum __fractudqta (unsigned long long fract A) ! -- Runtime Function: unsigned short fract __fractudquqq2 (unsigned ! long long fract A) -- Runtime Function: unsigned fract __fractudquhq2 (unsigned long long fract A) -- Runtime Function: unsigned long fract __fractudqusq2 (unsigned long *************** returned result using either signed or u *** 1781,1788 **** long fract A) -- Runtime Function: unsigned long long accum __fractudquta (unsigned long long fract A) ! -- Runtime Function: signed char __fractudqqi (unsigned long long fract ! A) -- Runtime Function: short __fractudqhi (unsigned long long fract A) -- Runtime Function: int __fractudqsi (unsigned long long fract A) -- Runtime Function: long __fractudqdi (unsigned long long fract A) --- 1784,1791 ---- long fract A) -- Runtime Function: unsigned long long accum __fractudquta (unsigned long long fract A) ! -- Runtime Function: signed char __fractudqqi (unsigned long long ! fract A) -- Runtime Function: short __fractudqhi (unsigned long long fract A) -- Runtime Function: int __fractudqsi (unsigned long long fract A) -- Runtime Function: long __fractudqdi (unsigned long long fract A) *************** returned result using either signed or u *** 1793,1817 **** -- Runtime Function: short fract __fractuhaqq (unsigned short accum A) -- Runtime Function: fract __fractuhahq (unsigned short accum A) -- Runtime Function: long fract __fractuhasq (unsigned short accum A) ! -- Runtime Function: long long fract __fractuhadq (unsigned short accum ! A) -- Runtime Function: short accum __fractuhaha (unsigned short accum A) -- Runtime Function: accum __fractuhasa (unsigned short accum A) -- Runtime Function: long accum __fractuhada (unsigned short accum A) ! -- Runtime Function: long long accum __fractuhata (unsigned short accum ! A) ! -- Runtime Function: unsigned short fract __fractuhauqq (unsigned short accum A) - -- Runtime Function: unsigned fract __fractuhauhq (unsigned short accum - A) -- Runtime Function: unsigned long fract __fractuhausq (unsigned short accum A) -- Runtime Function: unsigned long long fract __fractuhaudq (unsigned short accum A) -- Runtime Function: unsigned accum __fractuhausa2 (unsigned short accum A) ! -- Runtime Function: unsigned long accum __fractuhauda2 (unsigned short ! accum A) -- Runtime Function: unsigned long long accum __fractuhauta2 (unsigned short accum A) -- Runtime Function: signed char __fractuhaqi (unsigned short accum A) --- 1796,1820 ---- -- Runtime Function: short fract __fractuhaqq (unsigned short accum A) -- Runtime Function: fract __fractuhahq (unsigned short accum A) -- Runtime Function: long fract __fractuhasq (unsigned short accum A) ! -- Runtime Function: long long fract __fractuhadq (unsigned short ! accum A) -- Runtime Function: short accum __fractuhaha (unsigned short accum A) -- Runtime Function: accum __fractuhasa (unsigned short accum A) -- Runtime Function: long accum __fractuhada (unsigned short accum A) ! -- Runtime Function: long long accum __fractuhata (unsigned short ! accum A) ! -- Runtime Function: unsigned short fract __fractuhauqq (unsigned ! short accum A) ! -- Runtime Function: unsigned fract __fractuhauhq (unsigned short accum A) -- Runtime Function: unsigned long fract __fractuhausq (unsigned short accum A) -- Runtime Function: unsigned long long fract __fractuhaudq (unsigned short accum A) -- Runtime Function: unsigned accum __fractuhausa2 (unsigned short accum A) ! -- Runtime Function: unsigned long accum __fractuhauda2 (unsigned ! short accum A) -- Runtime Function: unsigned long long accum __fractuhauta2 (unsigned short accum A) -- Runtime Function: signed char __fractuhaqi (unsigned short accum A) *************** returned result using either signed or u *** 1829,1836 **** -- Runtime Function: accum __fractusasa (unsigned accum A) -- Runtime Function: long accum __fractusada (unsigned accum A) -- Runtime Function: long long accum __fractusata (unsigned accum A) ! -- Runtime Function: unsigned short fract __fractusauqq (unsigned accum ! A) -- Runtime Function: unsigned fract __fractusauhq (unsigned accum A) -- Runtime Function: unsigned long fract __fractusausq (unsigned accum A) --- 1832,1839 ---- -- Runtime Function: accum __fractusasa (unsigned accum A) -- Runtime Function: long accum __fractusada (unsigned accum A) -- Runtime Function: long long accum __fractusata (unsigned accum A) ! -- Runtime Function: unsigned short fract __fractusauqq (unsigned ! accum A) -- Runtime Function: unsigned fract __fractusauhq (unsigned accum A) -- Runtime Function: unsigned long fract __fractusausq (unsigned accum A) *************** returned result using either signed or u *** 1838,1845 **** accum A) -- Runtime Function: unsigned short accum __fractusauha2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __fractusauda2 (unsigned accum ! A) -- Runtime Function: unsigned long long accum __fractusauta2 (unsigned accum A) -- Runtime Function: signed char __fractusaqi (unsigned accum A) --- 1841,1848 ---- accum A) -- Runtime Function: unsigned short accum __fractusauha2 (unsigned accum A) ! -- Runtime Function: unsigned long accum __fractusauda2 (unsigned ! accum A) -- Runtime Function: unsigned long long accum __fractusauta2 (unsigned accum A) -- Runtime Function: signed char __fractusaqi (unsigned accum A) *************** returned result using either signed or u *** 1867,1876 **** accum A) -- Runtime Function: unsigned long long fract __fractudaudq (unsigned long accum A) ! -- Runtime Function: unsigned short accum __fractudauha2 (unsigned long accum A) - -- Runtime Function: unsigned accum __fractudausa2 (unsigned long accum - A) -- Runtime Function: unsigned long long accum __fractudauta2 (unsigned long accum A) -- Runtime Function: signed char __fractudaqi (unsigned long accum A) --- 1870,1879 ---- accum A) -- Runtime Function: unsigned long long fract __fractudaudq (unsigned long accum A) ! -- Runtime Function: unsigned short accum __fractudauha2 (unsigned ! long accum A) ! -- Runtime Function: unsigned accum __fractudausa2 (unsigned long accum A) -- Runtime Function: unsigned long long accum __fractudauta2 (unsigned long accum A) -- Runtime Function: signed char __fractudaqi (unsigned long accum A) *************** returned result using either signed or u *** 1880,1894 **** -- Runtime Function: long long __fractudati (unsigned long accum A) -- Runtime Function: float __fractudasf (unsigned long accum A) -- Runtime Function: double __fractudadf (unsigned long accum A) ! -- Runtime Function: short fract __fractutaqq (unsigned long long accum ! A) -- Runtime Function: fract __fractutahq (unsigned long long accum A) -- Runtime Function: long fract __fractutasq (unsigned long long accum A) -- Runtime Function: long long fract __fractutadq (unsigned long long accum A) ! -- Runtime Function: short accum __fractutaha (unsigned long long accum ! A) -- Runtime Function: accum __fractutasa (unsigned long long accum A) -- Runtime Function: long accum __fractutada (unsigned long long accum A) --- 1883,1897 ---- -- Runtime Function: long long __fractudati (unsigned long accum A) -- Runtime Function: float __fractudasf (unsigned long accum A) -- Runtime Function: double __fractudadf (unsigned long accum A) ! -- Runtime Function: short fract __fractutaqq (unsigned long long ! accum A) -- Runtime Function: fract __fractutahq (unsigned long long accum A) -- Runtime Function: long fract __fractutasq (unsigned long long accum A) -- Runtime Function: long long fract __fractutadq (unsigned long long accum A) ! -- Runtime Function: short accum __fractutaha (unsigned long long ! accum A) -- Runtime Function: accum __fractutasa (unsigned long long accum A) -- Runtime Function: long accum __fractutada (unsigned long long accum A) *************** returned result using either signed or u *** 1902,1915 **** long accum A) -- Runtime Function: unsigned long long fract __fractutaudq (unsigned long long accum A) ! -- Runtime Function: unsigned short accum __fractutauha2 (unsigned long ! long accum A) -- Runtime Function: unsigned accum __fractutausa2 (unsigned long long accum A) -- Runtime Function: unsigned long accum __fractutauda2 (unsigned long long accum A) ! -- Runtime Function: signed char __fractutaqi (unsigned long long accum ! A) -- Runtime Function: short __fractutahi (unsigned long long accum A) -- Runtime Function: int __fractutasi (unsigned long long accum A) -- Runtime Function: long __fractutadi (unsigned long long accum A) --- 1905,1918 ---- long accum A) -- Runtime Function: unsigned long long fract __fractutaudq (unsigned long long accum A) ! -- Runtime Function: unsigned short accum __fractutauha2 (unsigned ! long long accum A) -- Runtime Function: unsigned accum __fractutausa2 (unsigned long long accum A) -- Runtime Function: unsigned long accum __fractutauda2 (unsigned long long accum A) ! -- Runtime Function: signed char __fractutaqi (unsigned long long ! accum A) -- Runtime Function: short __fractutahi (unsigned long long accum A) -- Runtime Function: int __fractutasi (unsigned long long accum A) -- Runtime Function: long __fractutadi (unsigned long long accum A) *************** returned result using either signed or u *** 1928,1940 **** -- Runtime Function: unsigned short fract __fractqiuqq (signed char A) -- Runtime Function: unsigned fract __fractqiuhq (signed char A) -- Runtime Function: unsigned long fract __fractqiusq (signed char A) ! -- Runtime Function: unsigned long long fract __fractqiudq (signed char ! A) -- Runtime Function: unsigned short accum __fractqiuha (signed char A) -- Runtime Function: unsigned accum __fractqiusa (signed char A) -- Runtime Function: unsigned long accum __fractqiuda (signed char A) ! -- Runtime Function: unsigned long long accum __fractqiuta (signed char ! A) -- Runtime Function: short fract __fracthiqq (short A) -- Runtime Function: fract __fracthihq (short A) -- Runtime Function: long fract __fracthisq (short A) --- 1931,1943 ---- -- Runtime Function: unsigned short fract __fractqiuqq (signed char A) -- Runtime Function: unsigned fract __fractqiuhq (signed char A) -- Runtime Function: unsigned long fract __fractqiusq (signed char A) ! -- Runtime Function: unsigned long long fract __fractqiudq (signed ! char A) -- Runtime Function: unsigned short accum __fractqiuha (signed char A) -- Runtime Function: unsigned accum __fractqiusa (signed char A) -- Runtime Function: unsigned long accum __fractqiuda (signed char A) ! -- Runtime Function: unsigned long long accum __fractqiuta (signed ! char A) -- Runtime Function: short fract __fracthiqq (short A) -- Runtime Function: fract __fracthihq (short A) -- Runtime Function: long fract __fracthisq (short A) *************** returned result using either signed or u *** 2538,2545 **** -- Runtime Function: unsigned short __fractunsdqhi (long long fract A) -- Runtime Function: unsigned int __fractunsdqsi (long long fract A) -- Runtime Function: unsigned long __fractunsdqdi (long long fract A) ! -- Runtime Function: unsigned long long __fractunsdqti (long long fract ! A) -- Runtime Function: unsigned char __fractunshaqi (short accum A) -- Runtime Function: unsigned short __fractunshahi (short accum A) -- Runtime Function: unsigned int __fractunshasi (short accum A) --- 2541,2548 ---- -- Runtime Function: unsigned short __fractunsdqhi (long long fract A) -- Runtime Function: unsigned int __fractunsdqsi (long long fract A) -- Runtime Function: unsigned long __fractunsdqdi (long long fract A) ! -- Runtime Function: unsigned long long __fractunsdqti (long long ! fract A) -- Runtime Function: unsigned char __fractunshaqi (short accum A) -- Runtime Function: unsigned short __fractunshahi (short accum A) -- Runtime Function: unsigned int __fractunshasi (short accum A) *************** returned result using either signed or u *** 2559,2596 **** -- Runtime Function: unsigned short __fractunstahi (long long accum A) -- Runtime Function: unsigned int __fractunstasi (long long accum A) -- Runtime Function: unsigned long __fractunstadi (long long accum A) ! -- Runtime Function: unsigned long long __fractunstati (long long accum ! A) -- Runtime Function: unsigned char __fractunsuqqqi (unsigned short fract A) -- Runtime Function: unsigned short __fractunsuqqhi (unsigned short fract A) ! -- Runtime Function: unsigned int __fractunsuqqsi (unsigned short fract ! A) ! -- Runtime Function: unsigned long __fractunsuqqdi (unsigned short fract A) ! -- Runtime Function: unsigned long long __fractunsuqqti (unsigned short fract A) -- Runtime Function: unsigned char __fractunsuhqqi (unsigned fract A) -- Runtime Function: unsigned short __fractunsuhqhi (unsigned fract A) -- Runtime Function: unsigned int __fractunsuhqsi (unsigned fract A) -- Runtime Function: unsigned long __fractunsuhqdi (unsigned fract A) ! -- Runtime Function: unsigned long long __fractunsuhqti (unsigned fract ! A) ! -- Runtime Function: unsigned char __fractunsusqqi (unsigned long fract ! A) -- Runtime Function: unsigned short __fractunsusqhi (unsigned long fract A) -- Runtime Function: unsigned int __fractunsusqsi (unsigned long fract A) ! -- Runtime Function: unsigned long __fractunsusqdi (unsigned long fract ! A) -- Runtime Function: unsigned long long __fractunsusqti (unsigned long fract A) -- Runtime Function: unsigned char __fractunsudqqi (unsigned long long fract A) ! -- Runtime Function: unsigned short __fractunsudqhi (unsigned long long ! fract A) -- Runtime Function: unsigned int __fractunsudqsi (unsigned long long fract A) -- Runtime Function: unsigned long __fractunsudqdi (unsigned long long --- 2562,2599 ---- -- Runtime Function: unsigned short __fractunstahi (long long accum A) -- Runtime Function: unsigned int __fractunstasi (long long accum A) -- Runtime Function: unsigned long __fractunstadi (long long accum A) ! -- Runtime Function: unsigned long long __fractunstati (long long ! accum A) -- Runtime Function: unsigned char __fractunsuqqqi (unsigned short fract A) -- Runtime Function: unsigned short __fractunsuqqhi (unsigned short fract A) ! -- Runtime Function: unsigned int __fractunsuqqsi (unsigned short fract A) ! -- Runtime Function: unsigned long __fractunsuqqdi (unsigned short fract A) + -- Runtime Function: unsigned long long __fractunsuqqti (unsigned + short fract A) -- Runtime Function: unsigned char __fractunsuhqqi (unsigned fract A) -- Runtime Function: unsigned short __fractunsuhqhi (unsigned fract A) -- Runtime Function: unsigned int __fractunsuhqsi (unsigned fract A) -- Runtime Function: unsigned long __fractunsuhqdi (unsigned fract A) ! -- Runtime Function: unsigned long long __fractunsuhqti (unsigned ! fract A) ! -- Runtime Function: unsigned char __fractunsusqqi (unsigned long ! fract A) -- Runtime Function: unsigned short __fractunsusqhi (unsigned long fract A) -- Runtime Function: unsigned int __fractunsusqsi (unsigned long fract A) ! -- Runtime Function: unsigned long __fractunsusqdi (unsigned long ! fract A) -- Runtime Function: unsigned long long __fractunsusqti (unsigned long fract A) -- Runtime Function: unsigned char __fractunsudqqi (unsigned long long fract A) ! -- Runtime Function: unsigned short __fractunsudqhi (unsigned long ! long fract A) -- Runtime Function: unsigned int __fractunsudqsi (unsigned long long fract A) -- Runtime Function: unsigned long __fractunsudqdi (unsigned long long *************** returned result using either signed or u *** 2601,2632 **** accum A) -- Runtime Function: unsigned short __fractunsuhahi (unsigned short accum A) ! -- Runtime Function: unsigned int __fractunsuhasi (unsigned short accum ! A) ! -- Runtime Function: unsigned long __fractunsuhadi (unsigned short accum A) ! -- Runtime Function: unsigned long long __fractunsuhati (unsigned short accum A) -- Runtime Function: unsigned char __fractunsusaqi (unsigned accum A) -- Runtime Function: unsigned short __fractunsusahi (unsigned accum A) -- Runtime Function: unsigned int __fractunsusasi (unsigned accum A) -- Runtime Function: unsigned long __fractunsusadi (unsigned accum A) ! -- Runtime Function: unsigned long long __fractunsusati (unsigned accum ! A) ! -- Runtime Function: unsigned char __fractunsudaqi (unsigned long accum ! A) -- Runtime Function: unsigned short __fractunsudahi (unsigned long accum A) -- Runtime Function: unsigned int __fractunsudasi (unsigned long accum A) ! -- Runtime Function: unsigned long __fractunsudadi (unsigned long accum ! A) -- Runtime Function: unsigned long long __fractunsudati (unsigned long accum A) -- Runtime Function: unsigned char __fractunsutaqi (unsigned long long accum A) ! -- Runtime Function: unsigned short __fractunsutahi (unsigned long long ! accum A) -- Runtime Function: unsigned int __fractunsutasi (unsigned long long accum A) -- Runtime Function: unsigned long __fractunsutadi (unsigned long long --- 2604,2635 ---- accum A) -- Runtime Function: unsigned short __fractunsuhahi (unsigned short accum A) ! -- Runtime Function: unsigned int __fractunsuhasi (unsigned short accum A) ! -- Runtime Function: unsigned long __fractunsuhadi (unsigned short accum A) + -- Runtime Function: unsigned long long __fractunsuhati (unsigned + short accum A) -- Runtime Function: unsigned char __fractunsusaqi (unsigned accum A) -- Runtime Function: unsigned short __fractunsusahi (unsigned accum A) -- Runtime Function: unsigned int __fractunsusasi (unsigned accum A) -- Runtime Function: unsigned long __fractunsusadi (unsigned accum A) ! -- Runtime Function: unsigned long long __fractunsusati (unsigned ! accum A) ! -- Runtime Function: unsigned char __fractunsudaqi (unsigned long ! accum A) -- Runtime Function: unsigned short __fractunsudahi (unsigned long accum A) -- Runtime Function: unsigned int __fractunsudasi (unsigned long accum A) ! -- Runtime Function: unsigned long __fractunsudadi (unsigned long ! accum A) -- Runtime Function: unsigned long long __fractunsudati (unsigned long accum A) -- Runtime Function: unsigned char __fractunsutaqi (unsigned long long accum A) ! -- Runtime Function: unsigned short __fractunsutahi (unsigned long ! long accum A) -- Runtime Function: unsigned int __fractunsutasi (unsigned long long accum A) -- Runtime Function: unsigned long __fractunsutadi (unsigned long long *************** returned result using either signed or u *** 2644,2660 **** -- Runtime Function: unsigned short fract __fractunsqiuqq (unsigned char A) -- Runtime Function: unsigned fract __fractunsqiuhq (unsigned char A) ! -- Runtime Function: unsigned long fract __fractunsqiusq (unsigned char ! A) ! -- Runtime Function: unsigned long long fract __fractunsqiudq (unsigned char A) -- Runtime Function: unsigned short accum __fractunsqiuha (unsigned char A) -- Runtime Function: unsigned accum __fractunsqiusa (unsigned char A) ! -- Runtime Function: unsigned long accum __fractunsqiuda (unsigned char ! A) ! -- Runtime Function: unsigned long long accum __fractunsqiuta (unsigned char A) -- Runtime Function: short fract __fractunshiqq (unsigned short A) -- Runtime Function: fract __fractunshihq (unsigned short A) -- Runtime Function: long fract __fractunshisq (unsigned short A) --- 2647,2663 ---- -- Runtime Function: unsigned short fract __fractunsqiuqq (unsigned char A) -- Runtime Function: unsigned fract __fractunsqiuhq (unsigned char A) ! -- Runtime Function: unsigned long fract __fractunsqiusq (unsigned char A) + -- Runtime Function: unsigned long long fract __fractunsqiudq + (unsigned char A) -- Runtime Function: unsigned short accum __fractunsqiuha (unsigned char A) -- Runtime Function: unsigned accum __fractunsqiusa (unsigned char A) ! -- Runtime Function: unsigned long accum __fractunsqiuda (unsigned char A) + -- Runtime Function: unsigned long long accum __fractunsqiuta + (unsigned char A) -- Runtime Function: short fract __fractunshiqq (unsigned short A) -- Runtime Function: fract __fractunshihq (unsigned short A) -- Runtime Function: long fract __fractunshisq (unsigned short A) *************** returned result using either signed or u *** 2668,2682 **** -- Runtime Function: unsigned fract __fractunshiuhq (unsigned short A) -- Runtime Function: unsigned long fract __fractunshiusq (unsigned short A) ! -- Runtime Function: unsigned long long fract __fractunshiudq (unsigned ! short A) -- Runtime Function: unsigned short accum __fractunshiuha (unsigned short A) -- Runtime Function: unsigned accum __fractunshiusa (unsigned short A) -- Runtime Function: unsigned long accum __fractunshiuda (unsigned short A) ! -- Runtime Function: unsigned long long accum __fractunshiuta (unsigned ! short A) -- Runtime Function: short fract __fractunssiqq (unsigned int A) -- Runtime Function: fract __fractunssihq (unsigned int A) -- Runtime Function: long fract __fractunssisq (unsigned int A) --- 2671,2685 ---- -- Runtime Function: unsigned fract __fractunshiuhq (unsigned short A) -- Runtime Function: unsigned long fract __fractunshiusq (unsigned short A) ! -- Runtime Function: unsigned long long fract __fractunshiudq ! (unsigned short A) -- Runtime Function: unsigned short accum __fractunshiuha (unsigned short A) -- Runtime Function: unsigned accum __fractunshiusa (unsigned short A) -- Runtime Function: unsigned long accum __fractunshiuda (unsigned short A) ! -- Runtime Function: unsigned long long accum __fractunshiuta ! (unsigned short A) -- Runtime Function: short fract __fractunssiqq (unsigned int A) -- Runtime Function: fract __fractunssihq (unsigned int A) -- Runtime Function: long fract __fractunssisq (unsigned int A) *************** returned result using either signed or u *** 2685,2704 **** -- Runtime Function: accum __fractunssisa (unsigned int A) -- Runtime Function: long accum __fractunssida (unsigned int A) -- Runtime Function: long long accum __fractunssita (unsigned int A) ! -- Runtime Function: unsigned short fract __fractunssiuqq (unsigned int ! A) -- Runtime Function: unsigned fract __fractunssiuhq (unsigned int A) -- Runtime Function: unsigned long fract __fractunssiusq (unsigned int A) ! -- Runtime Function: unsigned long long fract __fractunssiudq (unsigned int A) - -- Runtime Function: unsigned short accum __fractunssiuha (unsigned int - A) -- Runtime Function: unsigned accum __fractunssiusa (unsigned int A) -- Runtime Function: unsigned long accum __fractunssiuda (unsigned int A) ! -- Runtime Function: unsigned long long accum __fractunssiuta (unsigned ! int A) -- Runtime Function: short fract __fractunsdiqq (unsigned long A) -- Runtime Function: fract __fractunsdihq (unsigned long A) -- Runtime Function: long fract __fractunsdisq (unsigned long A) --- 2688,2707 ---- -- Runtime Function: accum __fractunssisa (unsigned int A) -- Runtime Function: long accum __fractunssida (unsigned int A) -- Runtime Function: long long accum __fractunssita (unsigned int A) ! -- Runtime Function: unsigned short fract __fractunssiuqq (unsigned ! int A) -- Runtime Function: unsigned fract __fractunssiuhq (unsigned int A) -- Runtime Function: unsigned long fract __fractunssiusq (unsigned int A) ! -- Runtime Function: unsigned long long fract __fractunssiudq ! (unsigned int A) ! -- Runtime Function: unsigned short accum __fractunssiuha (unsigned int A) -- Runtime Function: unsigned accum __fractunssiusa (unsigned int A) -- Runtime Function: unsigned long accum __fractunssiuda (unsigned int A) ! -- Runtime Function: unsigned long long accum __fractunssiuta ! (unsigned int A) -- Runtime Function: short fract __fractunsdiqq (unsigned long A) -- Runtime Function: fract __fractunsdihq (unsigned long A) -- Runtime Function: long fract __fractunsdisq (unsigned long A) *************** returned result using either signed or u *** 2710,2752 **** -- Runtime Function: unsigned short fract __fractunsdiuqq (unsigned long A) -- Runtime Function: unsigned fract __fractunsdiuhq (unsigned long A) ! -- Runtime Function: unsigned long fract __fractunsdiusq (unsigned long ! A) ! -- Runtime Function: unsigned long long fract __fractunsdiudq (unsigned long A) -- Runtime Function: unsigned short accum __fractunsdiuha (unsigned long A) -- Runtime Function: unsigned accum __fractunsdiusa (unsigned long A) ! -- Runtime Function: unsigned long accum __fractunsdiuda (unsigned long ! A) ! -- Runtime Function: unsigned long long accum __fractunsdiuta (unsigned long A) -- Runtime Function: short fract __fractunstiqq (unsigned long long A) -- Runtime Function: fract __fractunstihq (unsigned long long A) -- Runtime Function: long fract __fractunstisq (unsigned long long A) ! -- Runtime Function: long long fract __fractunstidq (unsigned long long ! A) -- Runtime Function: short accum __fractunstiha (unsigned long long A) -- Runtime Function: accum __fractunstisa (unsigned long long A) -- Runtime Function: long accum __fractunstida (unsigned long long A) ! -- Runtime Function: long long accum __fractunstita (unsigned long long ! A) -- Runtime Function: unsigned short fract __fractunstiuqq (unsigned long long A) ! -- Runtime Function: unsigned fract __fractunstiuhq (unsigned long long ! A) ! -- Runtime Function: unsigned long fract __fractunstiusq (unsigned long long A) ! -- Runtime Function: unsigned long long fract __fractunstiudq (unsigned long long A) -- Runtime Function: unsigned short accum __fractunstiuha (unsigned long long A) ! -- Runtime Function: unsigned accum __fractunstiusa (unsigned long long ! A) ! -- Runtime Function: unsigned long accum __fractunstiuda (unsigned long long A) ! -- Runtime Function: unsigned long long accum __fractunstiuta (unsigned long long A) These functions convert from fractionals to unsigned non-fractionals; and from unsigned non-fractionals to fractionals, without saturation. --- 2713,2755 ---- -- Runtime Function: unsigned short fract __fractunsdiuqq (unsigned long A) -- Runtime Function: unsigned fract __fractunsdiuhq (unsigned long A) ! -- Runtime Function: unsigned long fract __fractunsdiusq (unsigned long A) + -- Runtime Function: unsigned long long fract __fractunsdiudq + (unsigned long A) -- Runtime Function: unsigned short accum __fractunsdiuha (unsigned long A) -- Runtime Function: unsigned accum __fractunsdiusa (unsigned long A) ! -- Runtime Function: unsigned long accum __fractunsdiuda (unsigned long A) + -- Runtime Function: unsigned long long accum __fractunsdiuta + (unsigned long A) -- Runtime Function: short fract __fractunstiqq (unsigned long long A) -- Runtime Function: fract __fractunstihq (unsigned long long A) -- Runtime Function: long fract __fractunstisq (unsigned long long A) ! -- Runtime Function: long long fract __fractunstidq (unsigned long ! long A) -- Runtime Function: short accum __fractunstiha (unsigned long long A) -- Runtime Function: accum __fractunstisa (unsigned long long A) -- Runtime Function: long accum __fractunstida (unsigned long long A) ! -- Runtime Function: long long accum __fractunstita (unsigned long ! long A) -- Runtime Function: unsigned short fract __fractunstiuqq (unsigned long long A) ! -- Runtime Function: unsigned fract __fractunstiuhq (unsigned long long A) ! -- Runtime Function: unsigned long fract __fractunstiusq (unsigned long long A) + -- Runtime Function: unsigned long long fract __fractunstiudq + (unsigned long long A) -- Runtime Function: unsigned short accum __fractunstiuha (unsigned long long A) ! -- Runtime Function: unsigned accum __fractunstiusa (unsigned long long A) ! -- Runtime Function: unsigned long accum __fractunstiuda (unsigned long long A) + -- Runtime Function: unsigned long long accum __fractunstiuta + (unsigned long long A) These functions convert from fractionals to unsigned non-fractionals; and from unsigned non-fractionals to fractionals, without saturation. *************** File: gccint.info, Node: Miscellaneous *** 2939,2945 **** -- Runtime Function: void * __splitstack_find (void *SEGMENT_ARG, void *SP, size_t LEN, void **NEXT_SEGMENT, void **NEXT_SP, void **INITIAL_SP) ! When using '-fsplit-stack', this call may be used to iterate over the stack segments. It may be called like this: void *next_segment = NULL; void *next_sp = NULL; --- 2942,2948 ---- -- Runtime Function: void * __splitstack_find (void *SEGMENT_ARG, void *SP, size_t LEN, void **NEXT_SEGMENT, void **NEXT_SP, void **INITIAL_SP) ! When using `-fsplit-stack', this call may be used to iterate over the stack segments. It may be called like this: void *next_segment = NULL; void *next_sp = NULL; *************** File: gccint.info, Node: Miscellaneous *** 2960,2974 **** with the SEGMENT_ARG and SP arguments NULL, to pass NEXT_SEGMENT, NEXT_SP, and INITIAL_SP to a different thread, and then to suspend one way or another. A different thread may run the subsequent ! '__splitstack_find' iterations. Of course, this will only work if the first thread is suspended while the second thread is calling ! '__splitstack_find'. If not, the second thread could be looking at ! the stack while it is changing, and anything could happen. -- Variable: __morestack_segments -- Variable: __morestack_current_segment -- Variable: __morestack_initial_sp ! Internal variables used by the '-fsplit-stack' implementation.  File: gccint.info, Node: Languages, Next: Source Tree, Prev: Libgcc, Up: Top --- 2963,2977 ---- with the SEGMENT_ARG and SP arguments NULL, to pass NEXT_SEGMENT, NEXT_SP, and INITIAL_SP to a different thread, and then to suspend one way or another. A different thread may run the subsequent ! `__splitstack_find' iterations. Of course, this will only work if the first thread is suspended while the second thread is calling ! `__splitstack_find'. If not, the second thread could be looking ! at the stack while it is changing, and anything could happen. -- Variable: __morestack_segments -- Variable: __morestack_current_segment -- Variable: __morestack_initial_sp ! Internal variables used by the `-fsplit-stack' implementation.  File: gccint.info, Node: Languages, Next: Source Tree, Prev: Libgcc, Up: Top *************** File: gccint.info, Node: Languages, Ne *** 2977,2983 **** **************************** The interface to front ends for languages in GCC, and in particular the ! 'tree' structure (*note GENERIC::), was initially designed for C, and many aspects of it are still somewhat biased towards C and C-like languages. It is, however, reasonably well suited to other procedural languages, and front ends for many such languages have been written for --- 2980,2986 ---- **************************** The interface to front ends for languages in GCC, and in particular the ! `tree' structure (*note GENERIC::), was initially designed for C, and many aspects of it are still somewhat biased towards C and C-like languages. It is, however, reasonably well suited to other procedural languages, and front ends for many such languages have been written for *************** GCC, has several advantages: *** 2989,3003 **** * GCC front ends benefit from the support for many different target machines already present in GCC. * GCC front ends benefit from all the optimizations in GCC. Some of these, such as alias analysis, may work better when GCC is compiling directly from source code then when it is compiling from generated C code. * Better debugging information is generated when compiling directly from source code than when going via intermediate generated C code. ! Because of the advantages of writing a compiler as a GCC front end, GCC ! front ends have also been created for languages very different from those for which GCC was designed, such as the declarative logic/functional language Mercury. For these reasons, it may also be useful to implement compilers created for specialized purposes (for --- 2992,3008 ---- * GCC front ends benefit from the support for many different target machines already present in GCC. + * GCC front ends benefit from all the optimizations in GCC. Some of these, such as alias analysis, may work better when GCC is compiling directly from source code then when it is compiling from generated C code. + * Better debugging information is generated when compiling directly from source code than when going via intermediate generated C code. ! Because of the advantages of writing a compiler as a GCC front end, ! GCC front ends have also been created for languages very different from those for which GCC was designed, such as the declarative logic/functional language Mercury. For these reasons, it may also be useful to implement compilers created for specialized purposes (for *************** File: gccint.info, Node: Source Tree, *** 3009,3024 **** 6 Source Tree Structure and Build System **************************************** ! This chapter describes the structure of the GCC source tree, and how GCC ! is built. The user documentation for building and installing GCC is in ! a separate manual (), with which it is ! presumed that you are familiar. * Menu: * Configure Terms:: Configuration terminology and history. * Top Level:: The top level source directory. ! * gcc Directory:: The 'gcc' subdirectory.  File: gccint.info, Node: Configure Terms, Next: Top Level, Up: Source Tree --- 3014,3029 ---- 6 Source Tree Structure and Build System **************************************** ! This chapter describes the structure of the GCC source tree, and how ! GCC is built. The user documentation for building and installing GCC ! is in a separate manual (`http://gcc.gnu.org/install/'), with which it ! is presumed that you are familiar. * Menu: * Configure Terms:: Configuration terminology and history. * Top Level:: The top level source directory. ! * gcc Directory:: The `gcc' subdirectory.  File: gccint.info, Node: Configure Terms, Next: Top Level, Up: Source Tree *************** know. *** 3035,3080 **** There are three system names that the build knows about: the machine you are building on ("build"), the machine that you are building for ("host"), and the machine that GCC will produce code for ("target"). ! When you configure GCC, you specify these with '--build=', '--host=', ! and '--target='. Specifying the host without specifying the build should be avoided, as ! 'configure' may (and once did) assume that the host you specify is also the build, which may not be true. ! If build, host, and target are all the same, this is called a "native". ! If build and host are the same but target is different, this is called a ! "cross". If build, host, and target are all different this is called a ! "canadian" (for obscure reasons dealing with Canada's political party ! and the background of the person working on the build at that time). If ! host and target are the same, but build is different, you are using a ! cross-compiler to build a native for a different system. Some people ! call this a "host-x-host", "crossed native", or "cross-built native". ! If build and target are the same, but host is different, you are using a ! cross compiler to build a cross compiler that produces code for the ! machine you're building on. This is rare, so there is no common way of ! describing it. There is a proposal to call this a "crossback". If build and host are the same, the GCC you are building will also be ! used to build the target libraries (like 'libstdc++'). If build and host are different, you must have already built and installed a cross compiler that will be used to build the target libraries (if you ! configured with '--target=foo-bar', this compiler will be called ! 'foo-bar-gcc'). In the case of target libraries, the machine you're building for is the ! machine you specified with '--target'. So, build is the machine you're building on (no change there), host is the machine you're building for (the target libraries are built for the target, so host is the target you specified), and target doesn't apply (because you're not building a compiler, you're building libraries). The configure/make process will ! adjust these variables as needed. It also sets '$with_cross_host' to ! the original '--host' value in case you need it. ! The 'libiberty' support library is built up to three times: once for the host, once for the target (even if they are the same), and once for ! the build if build and host are different. This allows it to be used by ! all programs which are generated in the course of the build process.  File: gccint.info, Node: Top Level, Next: gcc Directory, Prev: Configure Terms, Up: Source Tree --- 3040,3086 ---- There are three system names that the build knows about: the machine you are building on ("build"), the machine that you are building for ("host"), and the machine that GCC will produce code for ("target"). ! When you configure GCC, you specify these with `--build=', `--host=', ! and `--target='. Specifying the host without specifying the build should be avoided, as ! `configure' may (and once did) assume that the host you specify is also the build, which may not be true. ! If build, host, and target are all the same, this is called a ! "native". If build and host are the same but target is different, this ! is called a "cross". If build, host, and target are all different this ! is called a "canadian" (for obscure reasons dealing with Canada's ! political party and the background of the person working on the build ! at that time). If host and target are the same, but build is ! different, you are using a cross-compiler to build a native for a ! different system. Some people call this a "host-x-host", "crossed ! native", or "cross-built native". If build and target are the same, ! but host is different, you are using a cross compiler to build a cross ! compiler that produces code for the machine you're building on. This ! is rare, so there is no common way of describing it. There is a ! proposal to call this a "crossback". If build and host are the same, the GCC you are building will also be ! used to build the target libraries (like `libstdc++'). If build and host are different, you must have already built and installed a cross compiler that will be used to build the target libraries (if you ! configured with `--target=foo-bar', this compiler will be called ! `foo-bar-gcc'). In the case of target libraries, the machine you're building for is the ! machine you specified with `--target'. So, build is the machine you're building on (no change there), host is the machine you're building for (the target libraries are built for the target, so host is the target you specified), and target doesn't apply (because you're not building a compiler, you're building libraries). The configure/make process will ! adjust these variables as needed. It also sets `$with_cross_host' to ! the original `--host' value in case you need it. ! The `libiberty' support library is built up to three times: once for the host, once for the target (even if they are the same), and once for ! the build if build and host are different. This allows it to be used ! by all programs which are generated in the course of the build process.  File: gccint.info, Node: Top Level, Next: gcc Directory, Prev: Configure Terms, Up: Source Tree *************** files and directories that are shared wi *** 3087,3216 **** such as that of GNU Binutils. It also contains several subdirectories that contain parts of GCC and its runtime libraries: ! 'boehm-gc' The Boehm conservative garbage collector, used as part of the Java runtime library. ! 'config' Autoconf macros and Makefile fragments used throughout the tree. ! 'contrib' Contributed scripts that may be found useful in conjunction with ! GCC. One of these, 'contrib/texi2pod.pl', is used to generate man pages from Texinfo manuals as part of the GCC build process. ! 'fixincludes' The support for fixing system headers to work with GCC. See ! 'fixincludes/README' for more information. The headers fixed by ! this mechanism are installed in 'LIBSUBDIR/include-fixed'. Along ! with those headers, 'README-fixinc' is also installed, as ! 'LIBSUBDIR/include-fixed/README'. ! 'gcc' The main sources of GCC itself (except for runtime libraries), including optimizers, support for different target architectures, ! language front ends, and testsuites. *Note The 'gcc' Subdirectory: ! gcc Directory, for details. ! 'gnattools' Support tools for GNAT. ! 'include' ! Headers for the 'libiberty' library. ! 'intl' ! GNU 'libintl', from GNU 'gettext', for systems which do not include ! it in 'libc'. ! 'libada' The Ada runtime library. ! 'libatomic' ! The runtime support library for atomic operations (e.g. for ! '__sync' and '__atomic'). ! 'libcpp' The C preprocessor library. ! 'libdecnumber' The Decimal Float support library. ! 'libffi' ! The 'libffi' library, used as part of the Java runtime library. ! 'libgcc' The GCC runtime library. ! 'libgfortran' The Fortran runtime library. ! 'libgo' The Go runtime library. The bulk of this library is mirrored from the master Go repository (http://code.google.com/p/go/). ! 'libgomp' The GNU OpenMP runtime library. ! 'libiberty' ! The 'libiberty' library, used for portability and for some generally useful data structures and algorithms. *Note Introduction: (libiberty)Top, for more information about this library. ! 'libitm' The runtime support library for transactional memory. ! 'libjava' The Java runtime library. ! 'libobjc' The Objective-C and Objective-C++ runtime library. ! 'libquadmath' The runtime support library for quad-precision math operations. ! 'libssp' The Stack protector runtime library. ! 'libstdc++-v3' The C++ runtime library. ! 'lto-plugin' Plugin used by the linker if link-time optimizations are enabled. ! 'maintainer-scripts' ! Scripts used by the 'gccadmin' account on 'gcc.gnu.org'. ! 'zlib' ! The 'zlib' compression library, used by the Java front end, as part ! of the Java runtime library, and for compressing and uncompressing ! GCC's intermediate language in LTO object files. The build system in the top level directory, including how recursion into subdirectories works and how building runtime libraries for multilibs is handled, is documented in a separate manual, included with ! GNU Binutils. *Note GNU configure and build system: (configure)Top, for ! details.  File: gccint.info, Node: gcc Directory, Prev: Top Level, Up: Source Tree ! 6.3 The 'gcc' Subdirectory ========================== ! The 'gcc' directory contains many files that are part of the C sources ! of GCC, other files used as part of the configuration and build process, ! and subdirectories including documentation and a testsuite. The files ! that are sources of GCC are documented in a separate chapter. *Note ! Passes and Files of the Compiler: Passes. * Menu: ! * Subdirectories:: Subdirectories of 'gcc'. * Configuration:: The configuration process, and the files it uses. ! * Build:: The build system in the 'gcc' directory. ! * Makefile:: Targets in 'gcc/Makefile'. ! * Library Files:: Library source files and headers under 'gcc/'. * Headers:: Headers installed by GCC. * Documentation:: Building documentation in GCC. * Front End:: Anatomy of a language front end. --- 3093,3222 ---- such as that of GNU Binutils. It also contains several subdirectories that contain parts of GCC and its runtime libraries: ! `boehm-gc' The Boehm conservative garbage collector, used as part of the Java runtime library. ! `config' Autoconf macros and Makefile fragments used throughout the tree. ! `contrib' Contributed scripts that may be found useful in conjunction with ! GCC. One of these, `contrib/texi2pod.pl', is used to generate man pages from Texinfo manuals as part of the GCC build process. ! `fixincludes' The support for fixing system headers to work with GCC. See ! `fixincludes/README' for more information. The headers fixed by ! this mechanism are installed in `LIBSUBDIR/include-fixed'. Along ! with those headers, `README-fixinc' is also installed, as ! `LIBSUBDIR/include-fixed/README'. ! `gcc' The main sources of GCC itself (except for runtime libraries), including optimizers, support for different target architectures, ! language front ends, and testsuites. *Note The `gcc' ! Subdirectory: gcc Directory, for details. ! `gnattools' Support tools for GNAT. ! `include' ! Headers for the `libiberty' library. ! `intl' ! GNU `libintl', from GNU `gettext', for systems which do not ! include it in `libc'. ! `libada' The Ada runtime library. ! `libatomic' ! The runtime support library for atomic operations (e.g. for ! `__sync' and `__atomic'). ! `libcpp' The C preprocessor library. ! `libdecnumber' The Decimal Float support library. ! `libffi' ! The `libffi' library, used as part of the Java runtime library. ! `libgcc' The GCC runtime library. ! `libgfortran' The Fortran runtime library. ! `libgo' The Go runtime library. The bulk of this library is mirrored from the master Go repository (http://code.google.com/p/go/). ! `libgomp' The GNU OpenMP runtime library. ! `libiberty' ! The `libiberty' library, used for portability and for some generally useful data structures and algorithms. *Note Introduction: (libiberty)Top, for more information about this library. ! `libitm' The runtime support library for transactional memory. ! `libjava' The Java runtime library. ! `libobjc' The Objective-C and Objective-C++ runtime library. ! `libquadmath' The runtime support library for quad-precision math operations. ! `libssp' The Stack protector runtime library. ! `libstdc++-v3' The C++ runtime library. ! `lto-plugin' Plugin used by the linker if link-time optimizations are enabled. ! `maintainer-scripts' ! Scripts used by the `gccadmin' account on `gcc.gnu.org'. ! `zlib' ! The `zlib' compression library, used by the Java front end, as ! part of the Java runtime library, and for compressing and ! uncompressing GCC's intermediate language in LTO object files. The build system in the top level directory, including how recursion into subdirectories works and how building runtime libraries for multilibs is handled, is documented in a separate manual, included with ! GNU Binutils. *Note GNU configure and build system: (configure)Top, ! for details.  File: gccint.info, Node: gcc Directory, Prev: Top Level, Up: Source Tree ! 6.3 The `gcc' Subdirectory ========================== ! The `gcc' directory contains many files that are part of the C sources ! of GCC, other files used as part of the configuration and build ! process, and subdirectories including documentation and a testsuite. ! The files that are sources of GCC are documented in a separate chapter. ! *Note Passes and Files of the Compiler: Passes. * Menu: ! * Subdirectories:: Subdirectories of `gcc'. * Configuration:: The configuration process, and the files it uses. ! * Build:: The build system in the `gcc' directory. ! * Makefile:: Targets in `gcc/Makefile'. ! * Library Files:: Library source files and headers under `gcc/'. * Headers:: Headers installed by GCC. * Documentation:: Building documentation in GCC. * Front End:: Anatomy of a language front end. *************** Passes and Files of the Compiler: Passes *** 3219,3339 ****  File: gccint.info, Node: Subdirectories, Next: Configuration, Up: gcc Directory ! 6.3.1 Subdirectories of 'gcc' ----------------------------- ! The 'gcc' directory contains the following subdirectories: ! 'LANGUAGE' Subdirectories for various languages. Directories containing a ! file 'config-lang.in' are language subdirectories. The contents of ! the subdirectories 'c' (for C), 'cp' (for C++), 'objc' (for ! Objective-C), 'objcp' (for Objective-C++), and 'lto' (for LTO) are documented in this manual (*note Passes and Files of the Compiler: Passes.); those for other languages are not. *Note Anatomy of a Language Front End: Front End, for details of the files in these directories. ! 'common' ! Source files shared between the compiler drivers (such as 'gcc') ! and the compilers proper (such as 'cc1'). If an architecture defines target hooks shared between those places, it also has a ! subdirectory in 'common/config'. *Note Target Structure::. ! 'config' Configuration files for supported architectures and operating ! systems. *Note Anatomy of a Target Back End: Back End, for details ! of the files in this directory. ! 'doc' Texinfo documentation for GCC, together with automatically generated man pages and support for converting the installation manual to HTML. *Note Documentation::. ! 'ginclude' System headers installed by GCC, mainly those required by the C standard of freestanding implementations. *Note Headers Installed by GCC: Headers, for details of when these and other headers are installed. ! 'po' Message catalogs with translations of messages produced by GCC into ! various languages, 'LANGUAGE.po'. This directory also contains ! 'gcc.pot', the template for these message catalogues, 'exgettext', ! a wrapper around 'gettext' to extract the messages from the GCC ! sources and create 'gcc.pot', which is run by 'make gcc.pot', and ! 'EXCLUDES', a list of files from which messages should not be extracted. ! 'testsuite' ! The GCC testsuites (except for those for runtime libraries). *Note ! Testsuites::.  File: gccint.info, Node: Configuration, Next: Build, Prev: Subdirectories, Up: gcc Directory ! 6.3.2 Configuration in the 'gcc' Directory ------------------------------------------ ! The 'gcc' directory is configured with an Autoconf-generated script ! 'configure'. The 'configure' script is generated from 'configure.ac' ! and 'aclocal.m4'. From the files 'configure.ac' and 'acconfig.h', ! Autoheader generates the file 'config.in'. The file 'cstamp-h.in' is used as a timestamp. * Menu: ! * Config Fragments:: Scripts used by 'configure'. ! * System Config:: The 'config.build', 'config.host', and ! 'config.gcc' files. ! * Configuration Files:: Files created by running 'configure'.  File: gccint.info, Node: Config Fragments, Next: System Config, Up: Configuration ! 6.3.2.1 Scripts Used by 'configure' ................................... ! 'configure' uses some other scripts to help in its work: ! * The standard GNU 'config.sub' and 'config.guess' files, kept in the ! top level directory, are used. ! * The file 'config.gcc' is used to handle configuration specific to ! the particular target machine. The file 'config.build' is used to ! handle configuration specific to the particular build machine. The ! file 'config.host' is used to handle configuration specific to the ! particular host machine. (In general, these should only be used ! for features that cannot reasonably be tested in Autoconf feature ! tests.) *Note The 'config.build'; 'config.host'; and 'config.gcc' ! Files: System Config, for details of the contents of these files. ! * Each language subdirectory has a file 'LANGUAGE/config-lang.in' ! that is used for front-end-specific configuration. *Note The Front ! End 'config-lang.in' File: Front End Config, for details of this ! file. ! * A helper script 'configure.frag' is used as part of creating the ! output of 'configure'.  File: gccint.info, Node: System Config, Next: Configuration Files, Prev: Config Fragments, Up: Configuration ! 6.3.2.2 The 'config.build'; 'config.host'; and 'config.gcc' Files ................................................................. ! The 'config.build' file contains specific rules for particular systems which GCC is built on. This should be used as rarely as possible, as the behavior of the build system can always be detected by autoconf. ! The 'config.host' file contains specific rules for particular systems which GCC will run on. This is rarely needed. ! The 'config.gcc' file contains specific rules for particular systems which GCC will generate code for. This is usually needed. ! Each file has a list of the shell variables it sets, with descriptions, ! at the top of the file. FIXME: document the contents of these files, and what variables should be set to control build, host and target configuration. --- 3225,3346 ----  File: gccint.info, Node: Subdirectories, Next: Configuration, Up: gcc Directory ! 6.3.1 Subdirectories of `gcc' ----------------------------- ! The `gcc' directory contains the following subdirectories: ! `LANGUAGE' Subdirectories for various languages. Directories containing a ! file `config-lang.in' are language subdirectories. The contents of ! the subdirectories `c' (for C), `cp' (for C++), `objc' (for ! Objective-C), `objcp' (for Objective-C++), and `lto' (for LTO) are documented in this manual (*note Passes and Files of the Compiler: Passes.); those for other languages are not. *Note Anatomy of a Language Front End: Front End, for details of the files in these directories. ! `common' ! Source files shared between the compiler drivers (such as `gcc') ! and the compilers proper (such as `cc1'). If an architecture defines target hooks shared between those places, it also has a ! subdirectory in `common/config'. *Note Target Structure::. ! `config' Configuration files for supported architectures and operating ! systems. *Note Anatomy of a Target Back End: Back End, for ! details of the files in this directory. ! `doc' Texinfo documentation for GCC, together with automatically generated man pages and support for converting the installation manual to HTML. *Note Documentation::. ! `ginclude' System headers installed by GCC, mainly those required by the C standard of freestanding implementations. *Note Headers Installed by GCC: Headers, for details of when these and other headers are installed. ! `po' Message catalogs with translations of messages produced by GCC into ! various languages, `LANGUAGE.po'. This directory also contains ! `gcc.pot', the template for these message catalogues, `exgettext', ! a wrapper around `gettext' to extract the messages from the GCC ! sources and create `gcc.pot', which is run by `make gcc.pot', and ! `EXCLUDES', a list of files from which messages should not be extracted. ! `testsuite' ! The GCC testsuites (except for those for runtime libraries). ! *Note Testsuites::.  File: gccint.info, Node: Configuration, Next: Build, Prev: Subdirectories, Up: gcc Directory ! 6.3.2 Configuration in the `gcc' Directory ------------------------------------------ ! The `gcc' directory is configured with an Autoconf-generated script ! `configure'. The `configure' script is generated from `configure.ac' ! and `aclocal.m4'. From the files `configure.ac' and `acconfig.h', ! Autoheader generates the file `config.in'. The file `cstamp-h.in' is used as a timestamp. * Menu: ! * Config Fragments:: Scripts used by `configure'. ! * System Config:: The `config.build', `config.host', and ! `config.gcc' files. ! * Configuration Files:: Files created by running `configure'.  File: gccint.info, Node: Config Fragments, Next: System Config, Up: Configuration ! 6.3.2.1 Scripts Used by `configure' ................................... ! `configure' uses some other scripts to help in its work: ! * The standard GNU `config.sub' and `config.guess' files, kept in ! the top level directory, are used. ! * The file `config.gcc' is used to handle configuration specific to ! the particular target machine. The file `config.build' is used to ! handle configuration specific to the particular build machine. ! The file `config.host' is used to handle configuration specific to ! the particular host machine. (In general, these should only be ! used for features that cannot reasonably be tested in Autoconf ! feature tests.) *Note The `config.build'; `config.host'; and ! `config.gcc' Files: System Config, for details of the contents of ! these files. ! * Each language subdirectory has a file `LANGUAGE/config-lang.in' ! that is used for front-end-specific configuration. *Note The ! Front End `config-lang.in' File: Front End Config, for details of ! this file. ! * A helper script `configure.frag' is used as part of creating the ! output of `configure'.  File: gccint.info, Node: System Config, Next: Configuration Files, Prev: Config Fragments, Up: Configuration ! 6.3.2.2 The `config.build'; `config.host'; and `config.gcc' Files ................................................................. ! The `config.build' file contains specific rules for particular systems which GCC is built on. This should be used as rarely as possible, as the behavior of the build system can always be detected by autoconf. ! The `config.host' file contains specific rules for particular systems which GCC will run on. This is rarely needed. ! The `config.gcc' file contains specific rules for particular systems which GCC will generate code for. This is usually needed. ! Each file has a list of the shell variables it sets, with ! descriptions, at the top of the file. FIXME: document the contents of these files, and what variables should be set to control build, host and target configuration. *************** be set to control build, host and target *** 3341,3401 ****  File: gccint.info, Node: Configuration Files, Prev: System Config, Up: Configuration ! 6.3.2.3 Files Created by 'configure' .................................... ! Here we spell out what files will be set up by 'configure' in the 'gcc' directory. Some other files are created as temporary files in the configuration process, and are not used in the subsequent build; these are not documented. ! * 'Makefile' is constructed from 'Makefile.in', together with the host and target fragments (*note Makefile Fragments: Fragments.) ! 't-TARGET' and 'x-HOST' from 'config', if any, and language ! Makefile fragments 'LANGUAGE/Make-lang.in'. ! * 'auto-host.h' contains information about the host machine ! determined by 'configure'. If the host machine is different from ! the build machine, then 'auto-build.h' is also created, containing such information about the build machine. ! * 'config.status' is a script that may be run to recreate the current ! configuration. ! * 'configargs.h' is a header containing details of the arguments ! passed to 'configure' to configure GCC, and of the thread model used. ! * 'cstamp-h' is used as a timestamp. ! * If a language 'config-lang.in' file (*note The Front End ! 'config-lang.in' File: Front End Config.) sets 'outputs', then the ! files listed in 'outputs' there are also generated. The following configuration headers are created from the Makefile, ! using 'mkconfig.sh', rather than directly by 'configure'. 'config.h', ! 'bconfig.h' and 'tconfig.h' all contain the 'xm-MACHINE.h' header, if any, appropriate to the host, build and target machines respectively, the configuration headers for the target, and some definitions; for the host and build machines, these include the autoconfigured headers ! generated by 'configure'. The other configuration headers are ! determined by 'config.gcc'. They also contain the typedefs for 'rtx', ! 'rtvec' and 'tree'. ! * 'config.h', for use in programs that run on the host machine. ! * 'bconfig.h', for use in programs that run on the build machine. ! * 'tconfig.h', for use in programs and libraries for the target machine. ! * 'tm_p.h', which includes the header 'MACHINE-protos.h' that ! contains prototypes for functions in the target 'MACHINE.c' file. ! The header 'MACHINE-protos.h' can include prototypes of functions ! that use rtl and tree data structures inside appropriate '#ifdef ! RTX_CODE' and '#ifdef TREE_CODE' conditional code segements. The ! 'MACHINE-protos.h' is included after the 'rtl.h' and/or 'tree.h' ! would have been included. The 'tm_p.h' also includes the header ! 'tm-preds.h' which is generated by 'genpreds' program during the build to define the declarations and inline functions for the predicate functions.  File: gccint.info, Node: Build, Next: Makefile, Prev: Configuration, Up: gcc Directory ! 6.3.3 Build System in the 'gcc' Directory ----------------------------------------- FIXME: describe the build system, including what is built in what --- 3348,3416 ----  File: gccint.info, Node: Configuration Files, Prev: System Config, Up: Configuration ! 6.3.2.3 Files Created by `configure' .................................... ! Here we spell out what files will be set up by `configure' in the `gcc' directory. Some other files are created as temporary files in the configuration process, and are not used in the subsequent build; these are not documented. ! * `Makefile' is constructed from `Makefile.in', together with the host and target fragments (*note Makefile Fragments: Fragments.) ! `t-TARGET' and `x-HOST' from `config', if any, and language ! Makefile fragments `LANGUAGE/Make-lang.in'. ! ! * `auto-host.h' contains information about the host machine ! determined by `configure'. If the host machine is different from ! the build machine, then `auto-build.h' is also created, containing such information about the build machine. ! ! * `config.status' is a script that may be run to recreate the ! current configuration. ! ! * `configargs.h' is a header containing details of the arguments ! passed to `configure' to configure GCC, and of the thread model used. ! ! * `cstamp-h' is used as a timestamp. ! ! * If a language `config-lang.in' file (*note The Front End ! `config-lang.in' File: Front End Config.) sets `outputs', then the ! files listed in `outputs' there are also generated. The following configuration headers are created from the Makefile, ! using `mkconfig.sh', rather than directly by `configure'. `config.h', ! `bconfig.h' and `tconfig.h' all contain the `xm-MACHINE.h' header, if any, appropriate to the host, build and target machines respectively, the configuration headers for the target, and some definitions; for the host and build machines, these include the autoconfigured headers ! generated by `configure'. The other configuration headers are ! determined by `config.gcc'. They also contain the typedefs for `rtx', ! `rtvec' and `tree'. ! * `config.h', for use in programs that run on the host machine. ! ! * `bconfig.h', for use in programs that run on the build machine. ! ! * `tconfig.h', for use in programs and libraries for the target machine. ! ! * `tm_p.h', which includes the header `MACHINE-protos.h' that ! contains prototypes for functions in the target `MACHINE.c' file. ! The header `MACHINE-protos.h' can include prototypes of functions ! that use rtl and tree data structures inside appropriate `#ifdef ! RTX_CODE' and `#ifdef TREE_CODE' conditional code segements. The ! `MACHINE-protos.h' is included after the `rtl.h' and/or `tree.h' ! would have been included. The `tm_p.h' also includes the header ! `tm-preds.h' which is generated by `genpreds' program during the build to define the declarations and inline functions for the predicate functions.  File: gccint.info, Node: Build, Next: Makefile, Prev: Configuration, Up: gcc Directory ! 6.3.3 Build System in the `gcc' Directory ----------------------------------------- FIXME: describe the build system, including what is built in what *************** File: gccint.info, Node: Makefile, Nex *** 3409,3476 **** 6.3.4 Makefile Targets ---------------------- ! These targets are available from the 'gcc' directory: ! 'all' This is the default target. Depending on what your build/host/target configuration is, it coordinates all the things that need to be built. ! 'doc' Produce info-formatted documentation and man pages. Essentially it ! calls 'make man' and 'make info'. ! 'dvi' Produce DVI-formatted documentation. ! 'pdf' Produce PDF-formatted documentation. ! 'html' Produce HTML-formatted documentation. ! 'man' Generate man pages. ! 'info' Generate info-formatted pages. ! 'mostlyclean' Delete the files made while building the compiler. ! 'clean' ! That, and all the other files built by 'make all'. ! 'distclean' ! That, and all the files created by 'configure'. ! 'maintainer-clean' Distclean plus any file that can be generated from other files. Note that additional tools may be required beyond what is normally needed to build GCC. ! 'srcextra' Generates files in the source directory that are not version-controlled but should go into a release tarball. ! 'srcinfo' ! 'srcman' Copies the info-formatted and manpage documentation into the source directory usually for the purpose of generating a release tarball. ! 'install' Installs GCC. ! 'uninstall' Deletes installed files, though this is not supported. ! 'check' ! Run the testsuite. This creates a 'testsuite' subdirectory that ! has various '.sum' and '.log' files containing the results of the ! testing. You can run subsets with, for example, 'make check-gcc'. ! You can specify specific tests by setting 'RUNTESTFLAGS' to be the ! name of the '.exp' file, optionally followed by (for some tests) an ! equals and a file wildcard, like: make check-gcc RUNTESTFLAGS="execute.exp=19980413-*" --- 3424,3491 ---- 6.3.4 Makefile Targets ---------------------- ! These targets are available from the `gcc' directory: ! `all' This is the default target. Depending on what your build/host/target configuration is, it coordinates all the things that need to be built. ! `doc' Produce info-formatted documentation and man pages. Essentially it ! calls `make man' and `make info'. ! `dvi' Produce DVI-formatted documentation. ! `pdf' Produce PDF-formatted documentation. ! `html' Produce HTML-formatted documentation. ! `man' Generate man pages. ! `info' Generate info-formatted pages. ! `mostlyclean' Delete the files made while building the compiler. ! `clean' ! That, and all the other files built by `make all'. ! `distclean' ! That, and all the files created by `configure'. ! `maintainer-clean' Distclean plus any file that can be generated from other files. Note that additional tools may be required beyond what is normally needed to build GCC. ! `srcextra' Generates files in the source directory that are not version-controlled but should go into a release tarball. ! `srcinfo' ! `srcman' Copies the info-formatted and manpage documentation into the source directory usually for the purpose of generating a release tarball. ! `install' Installs GCC. ! `uninstall' Deletes installed files, though this is not supported. ! `check' ! Run the testsuite. This creates a `testsuite' subdirectory that ! has various `.sum' and `.log' files containing the results of the ! testing. You can run subsets with, for example, `make check-gcc'. ! You can specify specific tests by setting `RUNTESTFLAGS' to be the ! name of the `.exp' file, optionally followed by (for some tests) ! an equals and a file wildcard, like: make check-gcc RUNTESTFLAGS="execute.exp=19980413-*" *************** steps of the build, including bootstrapp *** 3483,3573 **** new compiler to build target libraries. When GCC is configured for a native configuration, the default action ! for 'make' is to do a full three-stage bootstrap. This means that GCC is built three times--once with the native compiler, once with the ! native-built compiler it just built, and once with the compiler it built ! the second time. In theory, the last two should produce the same ! results, which 'make compare' can check. Each stage is configured separately and compiled into a separate directory, to minimize problems due to ABI incompatibilities between the native compiler and GCC. ! If you do a change, rebuilding will also start from the first stage and ! "bubble" up the change through the three stages. Each stage is taken ! from its build directory (if it had been built previously), rebuilt, and ! copied to its subdirectory. This will allow you to, for example, ! continue a bootstrap after fixing a bug which causes the stage2 build to ! crash. It does not provide as good coverage of the compiler as ! bootstrapping from scratch, but it ensures that the new code is ! syntactically correct (e.g., that you did not use GCC extensions by ! mistake), and avoids spurious bootstrap comparison failures(1). Other targets available from the top level include: ! 'bootstrap-lean' ! Like 'bootstrap', except that the various stages are removed once they're no longer needed. This saves disk space. ! 'bootstrap2' ! 'bootstrap2-lean' Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap, this does not perform a comparison to test that the compiler is running properly. Note that the disk space required by a "lean" bootstrap is approximately independent of the number of stages. ! 'stageN-bubble (N = 1...4, profile, feedback)' Rebuild all the stages up to N, with the appropriate flags, "bubbling" the changes as described above. ! 'all-stageN (N = 1...4, profile, feedback)' Assuming that stage N has already been built, rebuild it with the appropriate flags. This is rarely needed. ! 'cleanstrap' ! Remove everything ('make clean') and rebuilds ('make bootstrap'). ! 'compare' Compares the results of stages 2 and 3. This ensures that the compiler is running properly, since it should produce the same object files regardless of how it itself was compiled. ! 'profiledbootstrap' Builds a compiler with profiling feedback information. In this ! case, the second and third stages are named 'profile' and ! 'feedback', respectively. For more information, see *note Building ! with profile feedback: (gccinstall)Building. ! 'restrap' ! Restart a bootstrap, so that everything that was not built with the ! system compiler is rebuilt. ! 'stageN-start (N = 1...4, profile, feedback)' For each package that is bootstrapped, rename directories so that, ! for example, 'gcc' points to the stageN GCC, compiled with the stageN-1 GCC(2). ! You will invoke this target if you need to test or debug the stageN ! GCC. If you only need to execute GCC (but you need not run 'make' ! either to rebuild it or to run test suites), you should be able to ! work directly in the 'stageN-gcc' directory. This makes it easier ! to debug multiple stages in parallel. ! 'stage' For each package that is bootstrapped, relocate its build directory ! to indicate its stage. For example, if the 'gcc' directory points ! to the stage2 GCC, after invoking this target it will be renamed to ! 'stage2-gcc'. If you wish to use non-default GCC flags when compiling the stage2 and ! stage3 compilers, set 'BOOT_CFLAGS' on the command line when doing ! 'make'. ! Usually, the first stage only builds the languages that the compiler is ! written in: typically, C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for example, of the Fortran front-end), you may want to have front-ends for other languages ! in the first stage as well. To do so, set 'STAGE1_LANGUAGES' on the ! command line when doing 'make'. For example, in the aforementioned scenario of debugging a Fortran front-end miscompilation caused by the stage1 compiler, you may need a --- 3498,3589 ---- new compiler to build target libraries. When GCC is configured for a native configuration, the default action ! for `make' is to do a full three-stage bootstrap. This means that GCC is built three times--once with the native compiler, once with the ! native-built compiler it just built, and once with the compiler it ! built the second time. In theory, the last two should produce the same ! results, which `make compare' can check. Each stage is configured separately and compiled into a separate directory, to minimize problems due to ABI incompatibilities between the native compiler and GCC. ! If you do a change, rebuilding will also start from the first stage ! and "bubble" up the change through the three stages. Each stage is ! taken from its build directory (if it had been built previously), ! rebuilt, and copied to its subdirectory. This will allow you to, for ! example, continue a bootstrap after fixing a bug which causes the ! stage2 build to crash. It does not provide as good coverage of the ! compiler as bootstrapping from scratch, but it ensures that the new ! code is syntactically correct (e.g., that you did not use GCC extensions ! by mistake), and avoids spurious bootstrap comparison failures(1). Other targets available from the top level include: ! `bootstrap-lean' ! Like `bootstrap', except that the various stages are removed once they're no longer needed. This saves disk space. ! `bootstrap2' ! `bootstrap2-lean' Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap, this does not perform a comparison to test that the compiler is running properly. Note that the disk space required by a "lean" bootstrap is approximately independent of the number of stages. ! `stageN-bubble (N = 1...4, profile, feedback)' Rebuild all the stages up to N, with the appropriate flags, "bubbling" the changes as described above. ! `all-stageN (N = 1...4, profile, feedback)' Assuming that stage N has already been built, rebuild it with the appropriate flags. This is rarely needed. ! `cleanstrap' ! Remove everything (`make clean') and rebuilds (`make bootstrap'). ! `compare' Compares the results of stages 2 and 3. This ensures that the compiler is running properly, since it should produce the same object files regardless of how it itself was compiled. ! `profiledbootstrap' Builds a compiler with profiling feedback information. In this ! case, the second and third stages are named `profile' and ! `feedback', respectively. For more information, see *note ! Building with profile feedback: (gccinstall)Building. ! `restrap' ! Restart a bootstrap, so that everything that was not built with ! the system compiler is rebuilt. ! `stageN-start (N = 1...4, profile, feedback)' For each package that is bootstrapped, rename directories so that, ! for example, `gcc' points to the stageN GCC, compiled with the stageN-1 GCC(2). ! You will invoke this target if you need to test or debug the ! stageN GCC. If you only need to execute GCC (but you need not run ! `make' either to rebuild it or to run test suites), you should be ! able to work directly in the `stageN-gcc' directory. This makes ! it easier to debug multiple stages in parallel. ! `stage' For each package that is bootstrapped, relocate its build directory ! to indicate its stage. For example, if the `gcc' directory points ! to the stage2 GCC, after invoking this target it will be renamed ! to `stage2-gcc'. ! If you wish to use non-default GCC flags when compiling the stage2 and ! stage3 compilers, set `BOOT_CFLAGS' on the command line when doing ! `make'. ! Usually, the first stage only builds the languages that the compiler ! is written in: typically, C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for example, of the Fortran front-end), you may want to have front-ends for other languages ! in the first stage as well. To do so, set `STAGE1_LANGUAGES' on the ! command line when doing `make'. For example, in the aforementioned scenario of debugging a Fortran front-end miscompilation caused by the stage1 compiler, you may need a *************** command like *** 3576,3603 **** make stage2-bubble STAGE1_LANGUAGES=c,fortran Alternatively, you can use per-language targets to build and test ! languages that are not enabled by default in stage1. For example, 'make ! f951' will build a Fortran compiler even in the stage1 build directory. ! ---------- Footnotes ---------- ! (1) Except if the compiler was buggy and miscompiled some of the ! files that were not modified. In this case, it's best to use 'make ! restrap'. ! (2) Customarily, the system compiler is also termed the 'stage0' GCC.  File: gccint.info, Node: Library Files, Next: Headers, Prev: Makefile, Up: gcc Directory ! 6.3.5 Library Source Files and Headers under the 'gcc' Directory ---------------------------------------------------------------- FIXME: list here, with explanation, all the C source files and headers ! under the 'gcc' directory that aren't built into the GCC executable but rather are part of runtime libraries and object files, such as ! 'crtstuff.c' and 'unwind-dw2.c'. *Note Headers Installed by GCC: ! Headers, for more information about the 'ginclude' directory.  File: gccint.info, Node: Headers, Next: Documentation, Prev: Library Files, Up: gcc Directory --- 3592,3619 ---- make stage2-bubble STAGE1_LANGUAGES=c,fortran Alternatively, you can use per-language targets to build and test ! languages that are not enabled by default in stage1. For example, ! `make f951' will build a Fortran compiler even in the stage1 build ! directory. ! ---------- Footnotes ---------- ! (1) Except if the compiler was buggy and miscompiled some of the files ! that were not modified. In this case, it's best to use `make restrap'. ! (2) Customarily, the system compiler is also termed the `stage0' GCC.  File: gccint.info, Node: Library Files, Next: Headers, Prev: Makefile, Up: gcc Directory ! 6.3.5 Library Source Files and Headers under the `gcc' Directory ---------------------------------------------------------------- FIXME: list here, with explanation, all the C source files and headers ! under the `gcc' directory that aren't built into the GCC executable but rather are part of runtime libraries and object files, such as ! `crtstuff.c' and `unwind-dw2.c'. *Note Headers Installed by GCC: ! Headers, for more information about the `ginclude' directory.  File: gccint.info, Node: Headers, Next: Documentation, Prev: Library Files, Up: gcc Directory *************** In general, GCC expects the system C lib *** 3609,3646 **** headers to be used with it. However, GCC will fix those headers if necessary to make them work with GCC, and will install some headers required of freestanding implementations. These headers are installed ! in 'LIBSUBDIR/include'. Headers for non-C runtime libraries are also installed by GCC; these are not documented here. (FIXME: document them somewhere.) ! Several of the headers GCC installs are in the 'ginclude' directory. ! These headers, 'iso646.h', 'stdarg.h', 'stdbool.h', and 'stddef.h', are ! installed in 'LIBSUBDIR/include', unless the target Makefile fragment ! (*note Target Fragment::) overrides this by setting 'USER_H'. In addition to these headers and those generated by fixing system headers to work with GCC, some other headers may also be installed in ! 'LIBSUBDIR/include'. 'config.gcc' may set 'extra_headers'; this ! specifies additional headers under 'config' to be installed on some systems. ! GCC installs its own version of '', from 'ginclude/float.h'. This is done to cope with command-line options that change the representation of floating point numbers. ! GCC also installs its own version of ''; this is generated ! from 'glimits.h', together with 'limitx.h' and 'limity.h' if the system ! also has its own version of ''. (GCC provides its own header because it is required of ISO C freestanding implementations, but needs to include the system header from its own header as well because other standards such as POSIX specify additional values to be defined in ! ''.) The system's '' header is used via ! 'LIBSUBDIR/include/syslimits.h', which is copied from 'gsyslimits.h' if it does not need fixing to work with GCC; if it needs fixing, ! 'syslimits.h' is the fixed copy. ! GCC can also install ''. It will do this when 'config.gcc' ! sets 'use_gcc_tgmath' to 'yes'.  File: gccint.info, Node: Documentation, Next: Front End, Prev: Headers, Up: gcc Directory --- 3625,3662 ---- headers to be used with it. However, GCC will fix those headers if necessary to make them work with GCC, and will install some headers required of freestanding implementations. These headers are installed ! in `LIBSUBDIR/include'. Headers for non-C runtime libraries are also installed by GCC; these are not documented here. (FIXME: document them somewhere.) ! Several of the headers GCC installs are in the `ginclude' directory. ! These headers, `iso646.h', `stdarg.h', `stdbool.h', and `stddef.h', are ! installed in `LIBSUBDIR/include', unless the target Makefile fragment ! (*note Target Fragment::) overrides this by setting `USER_H'. In addition to these headers and those generated by fixing system headers to work with GCC, some other headers may also be installed in ! `LIBSUBDIR/include'. `config.gcc' may set `extra_headers'; this ! specifies additional headers under `config' to be installed on some systems. ! GCC installs its own version of `', from `ginclude/float.h'. This is done to cope with command-line options that change the representation of floating point numbers. ! GCC also installs its own version of `'; this is generated ! from `glimits.h', together with `limitx.h' and `limity.h' if the system ! also has its own version of `'. (GCC provides its own header because it is required of ISO C freestanding implementations, but needs to include the system header from its own header as well because other standards such as POSIX specify additional values to be defined in ! `'.) The system's `' header is used via ! `LIBSUBDIR/include/syslimits.h', which is copied from `gsyslimits.h' if it does not need fixing to work with GCC; if it needs fixing, ! `syslimits.h' is the fixed copy. ! GCC can also install `'. It will do this when `config.gcc' ! sets `use_gcc_tgmath' to `yes'.  File: gccint.info, Node: Documentation, Next: Front End, Prev: Headers, Up: gcc Directory *************** File: gccint.info, Node: Documentation, *** 3650,3660 **** The main GCC documentation is in the form of manuals in Texinfo format. These are installed in Info format; DVI versions may be generated by ! 'make dvi', PDF versions by 'make pdf', and HTML versions by 'make html'. In addition, some man pages are generated from the Texinfo manuals, there are some other text files with miscellaneous documentation, and runtime libraries have their own documentation ! outside the 'gcc' directory. FIXME: document the documentation for runtime libraries somewhere. * Menu: --- 3666,3676 ---- The main GCC documentation is in the form of manuals in Texinfo format. These are installed in Info format; DVI versions may be generated by ! `make dvi', PDF versions by `make pdf', and HTML versions by `make html'. In addition, some man pages are generated from the Texinfo manuals, there are some other text files with miscellaneous documentation, and runtime libraries have their own documentation ! outside the `gcc' directory. FIXME: document the documentation for runtime libraries somewhere. * Menu: *************** File: gccint.info, Node: Texinfo Manual *** 3670,3718 **** ....................... The manuals for GCC as a whole, and the C and C++ front ends, are in ! files 'doc/*.texi'. Other front ends have their own manuals in files ! 'LANGUAGE/*.texi'. Common files 'doc/include/*.texi' are provided which ! may be included in multiple manuals; the following files are in ! 'doc/include': ! 'fdl.texi' The GNU Free Documentation License. ! 'funding.texi' The section "Funding Free Software". ! 'gcc-common.texi' Common definitions for manuals. ! 'gpl_v3.texi' The GNU General Public License. - 'texinfo.tex' - A copy of 'texinfo.tex' known to work with the GCC manuals. ! DVI-formatted manuals are generated by 'make dvi', which uses ! 'texi2dvi' (via the Makefile macro '$(TEXI2DVI)'). PDF-formatted ! manuals are generated by 'make pdf', which uses 'texi2pdf' (via the ! Makefile macro '$(TEXI2PDF)'). HTML formatted manuals are generated by ! 'make html'. Info manuals are generated by 'make info' (which is run as ! part of a bootstrap); this generates the manuals in the source ! directory, using 'makeinfo' via the Makefile macro '$(MAKEINFO)', and they are included in release distributions. Manuals are also provided on the GCC web site, in both HTML and PostScript forms. This is done via the script ! 'maintainer-scripts/update_web_docs_svn'. Each manual to be provided ! online must be listed in the definition of 'MANUALS' in that file; a ! file 'NAME.texi' must only appear once in the source tree, and the output manual must have the same name as the source file. (However, other Texinfo files, included in manuals but not themselves the root files of manuals, may have names that appear more than once in the ! source tree.) The manual file 'NAME.texi' should only include other ! files in its own directory or in 'doc/include'. HTML manuals will be ! generated by 'makeinfo --html', PostScript manuals by 'texi2dvi' and ! 'dvips', and PDF manuals by 'texi2pdf'. All Texinfo files that are parts of manuals must be version-controlled, even if they are generated files, for the generation of online manuals to work. ! The installation manual, 'doc/install.texi', is also provided on the GCC web site. The HTML version is generated by the script ! 'doc/install.texi2html'.  File: gccint.info, Node: Man Page Generation, Next: Miscellaneous Docs, Prev: Texinfo Manuals, Up: Documentation --- 3686,3738 ---- ....................... The manuals for GCC as a whole, and the C and C++ front ends, are in ! files `doc/*.texi'. Other front ends have their own manuals in files ! `LANGUAGE/*.texi'. Common files `doc/include/*.texi' are provided ! which may be included in multiple manuals; the following files are in ! `doc/include': ! `fdl.texi' The GNU Free Documentation License. ! ! `funding.texi' The section "Funding Free Software". ! ! `gcc-common.texi' Common definitions for manuals. ! ! `gpl_v3.texi' The GNU General Public License. ! `texinfo.tex' ! A copy of `texinfo.tex' known to work with the GCC manuals. ! ! DVI-formatted manuals are generated by `make dvi', which uses ! `texi2dvi' (via the Makefile macro `$(TEXI2DVI)'). PDF-formatted ! manuals are generated by `make pdf', which uses `texi2pdf' (via the ! Makefile macro `$(TEXI2PDF)'). HTML formatted manuals are generated by ! `make html'. Info manuals are generated by `make info' (which is run ! as part of a bootstrap); this generates the manuals in the source ! directory, using `makeinfo' via the Makefile macro `$(MAKEINFO)', and they are included in release distributions. Manuals are also provided on the GCC web site, in both HTML and PostScript forms. This is done via the script ! `maintainer-scripts/update_web_docs_svn'. Each manual to be provided ! online must be listed in the definition of `MANUALS' in that file; a ! file `NAME.texi' must only appear once in the source tree, and the output manual must have the same name as the source file. (However, other Texinfo files, included in manuals but not themselves the root files of manuals, may have names that appear more than once in the ! source tree.) The manual file `NAME.texi' should only include other ! files in its own directory or in `doc/include'. HTML manuals will be ! generated by `makeinfo --html', PostScript manuals by `texi2dvi' and ! `dvips', and PDF manuals by `texi2pdf'. All Texinfo files that are parts of manuals must be version-controlled, even if they are generated files, for the generation of online manuals to work. ! The installation manual, `doc/install.texi', is also provided on the GCC web site. The HTML version is generated by the script ! `doc/install.texi2html'.  File: gccint.info, Node: Man Page Generation, Next: Miscellaneous Docs, Prev: Texinfo Manuals, Up: Documentation *************** File: gccint.info, Node: Man Page Gener *** 3721,3758 **** ........................... Because of user demand, in addition to full Texinfo manuals, man pages ! are provided which contain extracts from those manuals. These man pages ! are generated from the Texinfo manuals using 'contrib/texi2pod.pl' and ! 'pod2man'. (The man page for 'g++', 'cp/g++.1', just contains a '.so' ! reference to 'gcc.1', but all the other man pages are generated from ! Texinfo manuals.) Because many systems may not have the necessary tools installed to ! generate the man pages, they are only generated if the 'configure' ! script detects that recent enough tools are installed, and the Makefiles ! allow generating man pages to fail without aborting the build. Man ! pages are also included in release distributions. They are generated in ! the source directory. ! Magic comments in Texinfo files starting '@c man' control what parts of ! a Texinfo file go into a man page. Only a subset of Texinfo is ! supported by 'texi2pod.pl', and it may be necessary to add support for more Texinfo features to this script when generating new man pages. To ! improve the man page output, some special Texinfo macros are provided in ! 'doc/include/gcc-common.texi' which 'texi2pod.pl' understands: ! '@gcctabopt' ! Use in the form '@table @gcctabopt' for tables of options, where ! for printed output the effect of '@code' is better than that of ! '@option' but for man page output a different effect is wanted. ! '@gccoptlist' Use for summary lists of options in manuals. ! '@gol' ! Use at the end of each line inside '@gccoptlist'. This is necessary to avoid problems with differences in how the ! '@gccoptlist' macro is handled by different Texinfo formatters. ! FIXME: describe the 'texi2pod.pl' input language and magic comments in more detail.  --- 3741,3780 ---- ........................... Because of user demand, in addition to full Texinfo manuals, man pages ! are provided which contain extracts from those manuals. These man ! pages are generated from the Texinfo manuals using ! `contrib/texi2pod.pl' and `pod2man'. (The man page for `g++', ! `cp/g++.1', just contains a `.so' reference to `gcc.1', but all the ! other man pages are generated from Texinfo manuals.) Because many systems may not have the necessary tools installed to ! generate the man pages, they are only generated if the `configure' ! script detects that recent enough tools are installed, and the ! Makefiles allow generating man pages to fail without aborting the ! build. Man pages are also included in release distributions. They are ! generated in the source directory. ! Magic comments in Texinfo files starting `@c man' control what parts ! of a Texinfo file go into a man page. Only a subset of Texinfo is ! supported by `texi2pod.pl', and it may be necessary to add support for more Texinfo features to this script when generating new man pages. To ! improve the man page output, some special Texinfo macros are provided ! in `doc/include/gcc-common.texi' which `texi2pod.pl' understands: ! `@gcctabopt' ! Use in the form `@table @gcctabopt' for tables of options, where ! for printed output the effect of `@code' is better than that of ! `@option' but for man page output a different effect is wanted. ! ! `@gccoptlist' Use for summary lists of options in manuals. ! ! `@gol' ! Use at the end of each line inside `@gccoptlist'. This is necessary to avoid problems with differences in how the ! `@gccoptlist' macro is handled by different Texinfo formatters. ! FIXME: describe the `texi2pod.pl' input language and magic comments in more detail.  *************** File: gccint.info, Node: Miscellaneous *** 3762,3798 **** ................................... In addition to the formal documentation that is installed by GCC, there ! are several other text files in the 'gcc' subdirectory with miscellaneous documentation: ! 'ABOUT-GCC-NLS' ! Notes on GCC's Native Language Support. FIXME: this should be part ! of this manual rather than a separate file. ! 'ABOUT-NLS' Notes on the Free Translation Project. ! 'COPYING' ! 'COPYING3' The GNU General Public License, Versions 2 and 3. ! 'COPYING.LIB' ! 'COPYING3.LIB' The GNU Lesser General Public License, Versions 2.1 and 3. ! '*ChangeLog*' ! '*/ChangeLog*' Change log files for various parts of GCC. ! 'LANGUAGES' Details of a few changes to the GCC front-end interface. FIXME: the information in this file should be part of general documentation of the front-end interface in this manual. ! 'ONEWS' Information about new features in old versions of GCC. (For recent versions, the information is on the GCC web site.) ! 'README.Portability' Information about portability issues when writing code in GCC. FIXME: why isn't this part of this manual or of the GCC Coding Conventions? ! FIXME: document such files in subdirectories, at least 'config', 'c', ! 'cp', 'objc', 'testsuite'.  File: gccint.info, Node: Front End, Next: Back End, Prev: Documentation, Up: gcc Directory --- 3784,3827 ---- ................................... In addition to the formal documentation that is installed by GCC, there ! are several other text files in the `gcc' subdirectory with miscellaneous documentation: ! `ABOUT-GCC-NLS' ! Notes on GCC's Native Language Support. FIXME: this should be ! part of this manual rather than a separate file. ! ! `ABOUT-NLS' Notes on the Free Translation Project. ! ! `COPYING' ! `COPYING3' The GNU General Public License, Versions 2 and 3. ! ! `COPYING.LIB' ! `COPYING3.LIB' The GNU Lesser General Public License, Versions 2.1 and 3. ! ! `*ChangeLog*' ! `*/ChangeLog*' Change log files for various parts of GCC. ! ! `LANGUAGES' Details of a few changes to the GCC front-end interface. FIXME: the information in this file should be part of general documentation of the front-end interface in this manual. ! ! `ONEWS' Information about new features in old versions of GCC. (For recent versions, the information is on the GCC web site.) ! ! `README.Portability' Information about portability issues when writing code in GCC. FIXME: why isn't this part of this manual or of the GCC Coding Conventions? ! FIXME: document such files in subdirectories, at least `config', `c', ! `cp', `objc', `testsuite'.  File: gccint.info, Node: Front End, Next: Back End, Prev: Documentation, Up: gcc Directory *************** File: gccint.info, Node: Front End, Ne *** 3802,3838 **** A front end for a language in GCC has the following parts: ! * A directory 'LANGUAGE' under 'gcc' containing source files for that ! front end. *Note The Front End 'LANGUAGE' Directory: Front End ! Directory, for details. * A mention of the language in the list of supported languages in ! 'gcc/doc/install.texi'. * A mention of the name under which the language's runtime library is ! recognized by '--enable-shared=PACKAGE' in the documentation of ! that option in 'gcc/doc/install.texi'. * A mention of any special prerequisites for building the front end ! in the documentation of prerequisites in 'gcc/doc/install.texi'. * Details of contributors to that front end in ! 'gcc/doc/contrib.texi'. If the details are in that front end's own ! manual then there should be a link to that manual's list in ! 'contrib.texi'. * Information about support for that language in ! 'gcc/doc/frontends.texi'. * Information about standards for that language, and the front end's ! support for them, in 'gcc/doc/standards.texi'. This may be a link to such information in the front end's own manual. ! * Details of source file suffixes for that language and '-x LANG' ! options supported, in 'gcc/doc/invoke.texi'. ! * Entries in 'default_compilers' in 'gcc.c' for source file suffixes for that language. ! * Preferably testsuites, which may be under 'gcc/testsuite' or runtime library directories. FIXME: document somewhere how to write testsuite harnesses. ! * Probably a runtime library for the language, outside the 'gcc' directory. FIXME: document this further. * Details of the directories of any runtime libraries in ! 'gcc/doc/sourcebuild.texi'. ! * Check targets in 'Makefile.def' for the top-level 'Makefile' to check just the compiler or the compiler and runtime library for the language. --- 3831,3879 ---- A front end for a language in GCC has the following parts: ! * A directory `LANGUAGE' under `gcc' containing source files for ! that front end. *Note The Front End `LANGUAGE' Directory: Front ! End Directory, for details. ! * A mention of the language in the list of supported languages in ! `gcc/doc/install.texi'. ! * A mention of the name under which the language's runtime library is ! recognized by `--enable-shared=PACKAGE' in the documentation of ! that option in `gcc/doc/install.texi'. ! * A mention of any special prerequisites for building the front end ! in the documentation of prerequisites in `gcc/doc/install.texi'. ! * Details of contributors to that front end in ! `gcc/doc/contrib.texi'. If the details are in that front end's ! own manual then there should be a link to that manual's list in ! `contrib.texi'. ! * Information about support for that language in ! `gcc/doc/frontends.texi'. ! * Information about standards for that language, and the front end's ! support for them, in `gcc/doc/standards.texi'. This may be a link to such information in the front end's own manual. ! ! * Details of source file suffixes for that language and `-x LANG' ! options supported, in `gcc/doc/invoke.texi'. ! ! * Entries in `default_compilers' in `gcc.c' for source file suffixes for that language. ! ! * Preferably testsuites, which may be under `gcc/testsuite' or runtime library directories. FIXME: document somewhere how to write testsuite harnesses. ! ! * Probably a runtime library for the language, outside the `gcc' directory. FIXME: document this further. + * Details of the directories of any runtime libraries in ! `gcc/doc/sourcebuild.texi'. ! ! * Check targets in `Makefile.def' for the top-level `Makefile' to check just the compiler or the compiler and runtime library for the language. *************** A front end for a language in GCC has th *** 3840,4048 **** following are also necessary: * At least one Bugzilla component for bugs in that front end and ! runtime libraries. This category needs to be added to the Bugzilla ! database. * Normally, one or more maintainers of that front end listed in ! 'MAINTAINERS'. ! * Mentions on the GCC web site in 'index.html' and 'frontends.html', ! with any relevant links on 'readings.html'. (Front ends that are ! not an official part of GCC may also be listed on 'frontends.html', ! with relevant links.) ! * A news item on 'index.html', and possibly an announcement on the mailing list. * The front end's manuals should be mentioned in ! 'maintainer-scripts/update_web_docs_svn' (*note Texinfo Manuals::) and the online manuals should be linked to from ! 'onlinedocs/index.html'. * Any old releases or CVS repositories of the front end, before its inclusion in GCC, should be made available on the GCC FTP site ! . ! * The release and snapshot script 'maintainer-scripts/gcc_release' should be updated to generate appropriate tarballs for this front end. * If this front end includes its own version files that include the ! current date, 'maintainer-scripts/update_version' should be updated ! accordingly. * Menu: ! * Front End Directory:: The front end 'LANGUAGE' directory. ! * Front End Config:: The front end 'config-lang.in' file. ! * Front End Makefile:: The front end 'Make-lang.in' file.  File: gccint.info, Node: Front End Directory, Next: Front End Config, Up: Front End ! 6.3.8.1 The Front End 'LANGUAGE' Directory .......................................... ! A front end 'LANGUAGE' directory contains the source files of that front ! end (but not of any runtime libraries, which should be outside the 'gcc' ! directory). This includes documentation, and possibly some subsidiary ! programs built alongside the front end. Certain files are special and ! other parts of the compiler depend on their names: ! 'config-lang.in' This file is required in all language subdirectories. *Note The ! Front End 'config-lang.in' File: Front End Config, for details of its contents ! 'Make-lang.in' This file is required in all language subdirectories. *Note The ! Front End 'Make-lang.in' File: Front End Makefile, for details of its contents. ! 'lang.opt' This file registers the set of switches that the front end accepts ! on the command line, and their '--help' text. *Note Options::. ! 'lang-specs.h' ! This file provides entries for 'default_compilers' in 'gcc.c' which ! override the default of giving an error that a compiler for that ! language is not installed. ! 'LANGUAGE-tree.def' This file, which need not exist, defines any language-specific tree codes.  File: gccint.info, Node: Front End Config, Next: Front End Makefile, Prev: Front End Directory, Up: Front End ! 6.3.8.2 The Front End 'config-lang.in' File ........................................... ! Each language subdirectory contains a 'config-lang.in' file. This file is a shell script that may define some variables describing the language: ! 'language' This definition must be present, and gives the name of the language ! for some purposes such as arguments to '--enable-languages'. ! 'lang_requires' If defined, this variable lists (space-separated) language front ends other than C that this front end requires to be enabled (with ! the names given being their 'language' settings). For example, the Java front end depends on the C++ front end, so sets ! 'lang_requires=c++'. ! 'subdir_requires' If defined, this variable lists (space-separated) front end directories other than C that this front end requires to be present. For example, the Objective-C++ front end uses source files from the C++ and Objective-C front ends, so sets ! 'subdir_requires="cp objc"'. ! 'target_libs' If defined, this variable lists (space-separated) targets in the ! top level 'Makefile' to build the runtime libraries for this ! language, such as 'target-libobjc'. ! 'lang_dirs' If defined, this variable lists (space-separated) top level ! directories (parallel to 'gcc'), apart from the runtime libraries, that should not be configured if this front end is not built. ! 'build_by_default' ! If defined to 'no', this language front end is not built unless ! enabled in a '--enable-languages' argument. Otherwise, front ends are built by default, subject to any special logic in ! 'configure.ac' (as is present to disable the Ada front end if the Ada compiler is not already installed). ! 'boot_language' ! If defined to 'yes', this front end is built in stage1 of the bootstrap. This is only relevant to front ends written in their own languages. ! 'compilers' If defined, a space-separated list of compiler executables that will be run by the driver. The names here will each end with ! '\$(exeext)'. ! 'outputs' If defined, a space-separated list of files that should be ! generated by 'configure' substituting values in them. This ! mechanism can be used to create a file 'LANGUAGE/Makefile' from ! 'LANGUAGE/Makefile.in', but this is deprecated, building everything ! from the single 'gcc/Makefile' is preferred. ! 'gtfiles' If defined, a space-separated list of files that should be scanned ! by 'gengtype.c' to generate the garbage collection tables and routines for this language. This excludes the files that are common to all front ends. *Note Type Information::.  File: gccint.info, Node: Front End Makefile, Prev: Front End Config, Up: Front End ! 6.3.8.3 The Front End 'Make-lang.in' File ......................................... ! Each language subdirectory contains a 'Make-lang.in' file. It contains ! targets 'LANG.HOOK' (where 'LANG' is the setting of 'language' in ! 'config-lang.in') for the following values of 'HOOK', and any other Makefile rules required to build those targets (which may if necessary ! use other Makefiles specified in 'outputs' in 'config-lang.in', although ! this is deprecated). It also adds any testsuite targets that can use ! the standard rule in 'gcc/Makefile.in' to the variable 'lang_checks'. ! 'all.cross' ! 'start.encap' ! 'rest.encap' FIXME: exactly what goes in each of these targets? ! 'tags' ! Build an 'etags' 'TAGS' file in the language subdirectory in the source tree. ! 'info' Build info documentation for the front end, in the build directory. ! This target is only called by 'make bootstrap' if a suitable ! version of 'makeinfo' is available, so does not need to check for this, and should fail if an error occurs. ! 'dvi' Build DVI documentation for the front end, in the build directory. ! This should be done using '$(TEXI2DVI)', with appropriate '-I' arguments pointing to directories of included files. ! 'pdf' Build PDF documentation for the front end, in the build directory. ! This should be done using '$(TEXI2PDF)', with appropriate '-I' arguments pointing to directories of included files. ! 'html' Build HTML documentation for the front end, in the build directory. ! 'man' Build generated man pages for the front end from Texinfo manuals (*note Man Page Generation::), in the build directory. This target is only called if the necessary tools are available, but should ignore errors so as not to stop the build if errors occur; man pages are optional and the tools involved may be installed in a broken way. ! 'install-common' Install everything that is part of the front end, apart from the ! compiler executables listed in 'compilers' in 'config-lang.in'. ! 'install-info' Install info documentation for the front end, if it is present in ! the source directory. This target should have dependencies on info ! files that should be installed. ! 'install-man' Install man pages for the front end. This target should ignore errors. ! 'install-plugin' Install headers needed for plugins. ! 'srcextra' Copies its dependencies into the source directory. This generally ! should be used for generated files such as Bison output files which ! are not version-controlled, but should be included in any release ! tarballs. This target will be executed during a bootstrap if ! '--enable-generated-files-in-srcdir' was specified as a 'configure' ! option. ! 'srcinfo' ! 'srcman' Copies its dependencies into the source directory. These targets will be executed during a bootstrap if ! '--enable-generated-files-in-srcdir' was specified as a 'configure' ! option. ! 'uninstall' Uninstall files installed by installing the compiler. This is currently documented not to be supported, so the hook need not do anything. ! 'mostlyclean' ! 'clean' ! 'distclean' ! 'maintainer-clean' ! The language parts of the standard GNU '*clean' targets. *Note Standard Targets for Users: (standards)Standard Targets, for ! details of the standard targets. For GCC, 'maintainer-clean' should delete all generated files in the source directory that are not version-controlled, but should not delete anything that is. ! 'Make-lang.in' must also define a variable 'LANG_OBJS' to a list of host object files that are used by that language.  --- 3881,4125 ---- following are also necessary: * At least one Bugzilla component for bugs in that front end and ! runtime libraries. This category needs to be added to the ! Bugzilla database. ! * Normally, one or more maintainers of that front end listed in ! `MAINTAINERS'. ! ! * Mentions on the GCC web site in `index.html' and `frontends.html', ! with any relevant links on `readings.html'. (Front ends that are ! not an official part of GCC may also be listed on ! `frontends.html', with relevant links.) ! ! * A news item on `index.html', and possibly an announcement on the mailing list. + * The front end's manuals should be mentioned in ! `maintainer-scripts/update_web_docs_svn' (*note Texinfo Manuals::) and the online manuals should be linked to from ! `onlinedocs/index.html'. ! * Any old releases or CVS repositories of the front end, before its inclusion in GCC, should be made available on the GCC FTP site ! `ftp://gcc.gnu.org/pub/gcc/old-releases/'. ! ! * The release and snapshot script `maintainer-scripts/gcc_release' should be updated to generate appropriate tarballs for this front end. + * If this front end includes its own version files that include the ! current date, `maintainer-scripts/update_version' should be ! updated accordingly. * Menu: ! * Front End Directory:: The front end `LANGUAGE' directory. ! * Front End Config:: The front end `config-lang.in' file. ! * Front End Makefile:: The front end `Make-lang.in' file.  File: gccint.info, Node: Front End Directory, Next: Front End Config, Up: Front End ! 6.3.8.1 The Front End `LANGUAGE' Directory .......................................... ! A front end `LANGUAGE' directory contains the source files of that ! front end (but not of any runtime libraries, which should be outside ! the `gcc' directory). This includes documentation, and possibly some ! subsidiary programs built alongside the front end. Certain files are ! special and other parts of the compiler depend on their names: ! `config-lang.in' This file is required in all language subdirectories. *Note The ! Front End `config-lang.in' File: Front End Config, for details of its contents ! ! `Make-lang.in' This file is required in all language subdirectories. *Note The ! Front End `Make-lang.in' File: Front End Makefile, for details of its contents. ! ! `lang.opt' This file registers the set of switches that the front end accepts ! on the command line, and their `--help' text. *Note Options::. ! ! `lang-specs.h' ! This file provides entries for `default_compilers' in `gcc.c' ! which override the default of giving an error that a compiler for ! that language is not installed. ! ! `LANGUAGE-tree.def' This file, which need not exist, defines any language-specific tree codes.  File: gccint.info, Node: Front End Config, Next: Front End Makefile, Prev: Front End Directory, Up: Front End ! 6.3.8.2 The Front End `config-lang.in' File ........................................... ! Each language subdirectory contains a `config-lang.in' file. This file is a shell script that may define some variables describing the language: ! `language' This definition must be present, and gives the name of the language ! for some purposes such as arguments to `--enable-languages'. ! ! `lang_requires' If defined, this variable lists (space-separated) language front ends other than C that this front end requires to be enabled (with ! the names given being their `language' settings). For example, the Java front end depends on the C++ front end, so sets ! `lang_requires=c++'. ! ! `subdir_requires' If defined, this variable lists (space-separated) front end directories other than C that this front end requires to be present. For example, the Objective-C++ front end uses source files from the C++ and Objective-C front ends, so sets ! `subdir_requires="cp objc"'. ! ! `target_libs' If defined, this variable lists (space-separated) targets in the ! top level `Makefile' to build the runtime libraries for this ! language, such as `target-libobjc'. ! ! `lang_dirs' If defined, this variable lists (space-separated) top level ! directories (parallel to `gcc'), apart from the runtime libraries, that should not be configured if this front end is not built. ! ! `build_by_default' ! If defined to `no', this language front end is not built unless ! enabled in a `--enable-languages' argument. Otherwise, front ends are built by default, subject to any special logic in ! `configure.ac' (as is present to disable the Ada front end if the Ada compiler is not already installed). ! ! `boot_language' ! If defined to `yes', this front end is built in stage1 of the bootstrap. This is only relevant to front ends written in their own languages. ! ! `compilers' If defined, a space-separated list of compiler executables that will be run by the driver. The names here will each end with ! `\$(exeext)'. ! ! `outputs' If defined, a space-separated list of files that should be ! generated by `configure' substituting values in them. This ! mechanism can be used to create a file `LANGUAGE/Makefile' from ! `LANGUAGE/Makefile.in', but this is deprecated, building ! everything from the single `gcc/Makefile' is preferred. ! ! `gtfiles' If defined, a space-separated list of files that should be scanned ! by `gengtype.c' to generate the garbage collection tables and routines for this language. This excludes the files that are common to all front ends. *Note Type Information::. +  File: gccint.info, Node: Front End Makefile, Prev: Front End Config, Up: Front End ! 6.3.8.3 The Front End `Make-lang.in' File ......................................... ! Each language subdirectory contains a `Make-lang.in' file. It contains ! targets `LANG.HOOK' (where `LANG' is the setting of `language' in ! `config-lang.in') for the following values of `HOOK', and any other Makefile rules required to build those targets (which may if necessary ! use other Makefiles specified in `outputs' in `config-lang.in', ! although this is deprecated). It also adds any testsuite targets that ! can use the standard rule in `gcc/Makefile.in' to the variable ! `lang_checks'. ! `all.cross' ! `start.encap' ! `rest.encap' FIXME: exactly what goes in each of these targets? ! ! `tags' ! Build an `etags' `TAGS' file in the language subdirectory in the source tree. ! ! `info' Build info documentation for the front end, in the build directory. ! This target is only called by `make bootstrap' if a suitable ! version of `makeinfo' is available, so does not need to check for this, and should fail if an error occurs. ! ! `dvi' Build DVI documentation for the front end, in the build directory. ! This should be done using `$(TEXI2DVI)', with appropriate `-I' arguments pointing to directories of included files. ! ! `pdf' Build PDF documentation for the front end, in the build directory. ! This should be done using `$(TEXI2PDF)', with appropriate `-I' arguments pointing to directories of included files. ! ! `html' Build HTML documentation for the front end, in the build directory. ! ! `man' Build generated man pages for the front end from Texinfo manuals (*note Man Page Generation::), in the build directory. This target is only called if the necessary tools are available, but should ignore errors so as not to stop the build if errors occur; man pages are optional and the tools involved may be installed in a broken way. ! ! `install-common' Install everything that is part of the front end, apart from the ! compiler executables listed in `compilers' in `config-lang.in'. ! ! `install-info' Install info documentation for the front end, if it is present in ! the source directory. This target should have dependencies on ! info files that should be installed. ! ! `install-man' Install man pages for the front end. This target should ignore errors. ! ! `install-plugin' Install headers needed for plugins. ! ! `srcextra' Copies its dependencies into the source directory. This generally ! should be used for generated files such as Bison output files ! which are not version-controlled, but should be included in any ! release tarballs. This target will be executed during a bootstrap ! if `--enable-generated-files-in-srcdir' was specified as a ! `configure' option. ! ! `srcinfo' ! `srcman' Copies its dependencies into the source directory. These targets will be executed during a bootstrap if ! `--enable-generated-files-in-srcdir' was specified as a ! `configure' option. ! ! `uninstall' Uninstall files installed by installing the compiler. This is currently documented not to be supported, so the hook need not do anything. ! ! `mostlyclean' ! `clean' ! `distclean' ! `maintainer-clean' ! The language parts of the standard GNU `*clean' targets. *Note Standard Targets for Users: (standards)Standard Targets, for ! details of the standard targets. For GCC, `maintainer-clean' should delete all generated files in the source directory that are not version-controlled, but should not delete anything that is. ! `Make-lang.in' must also define a variable `LANG_OBJS' to a list of host object files that are used by that language.  *************** File: gccint.info, Node: Back End, Pre *** 4053,4120 **** A back end for a target architecture in GCC has the following parts: ! * A directory 'MACHINE' under 'gcc/config', containing a machine ! description 'MACHINE.md' file (*note Machine Descriptions: Machine ! Desc.), header files 'MACHINE.h' and 'MACHINE-protos.h' and a ! source file 'MACHINE.c' (*note Target Description Macros and Functions: Target Macros.), possibly a target Makefile fragment ! 't-MACHINE' (*note The Target Makefile Fragment: Target Fragment.), ! and maybe some other files. The names of these files may be ! changed from the defaults given by explicit specifications in ! 'config.gcc'. ! * If necessary, a file 'MACHINE-modes.def' in the 'MACHINE' directory, containing additional machine modes to represent condition codes. *Note Condition Code::, for further details. ! * An optional 'MACHINE.opt' file in the 'MACHINE' directory, containing a list of target-specific options. You can also add ! other option files using the 'extra_options' variable in ! 'config.gcc'. *Note Options::. ! * Entries in 'config.gcc' (*note The 'config.gcc' File: System Config.) for the systems with this target architecture. ! * Documentation in 'gcc/doc/invoke.texi' for any command-line options ! supported by this target (*note Run-time Target Specification: ! Run-time Target.). This means both entries in the summary table of ! options and details of the individual options. ! * Documentation in 'gcc/doc/extend.texi' for any target-specific attributes supported (*note Defining target-specific uses of ! '__attribute__': Target Attributes.), including where the same attribute is already supported on some targets, which are enumerated in the manual. ! * Documentation in 'gcc/doc/extend.texi' for any target-specific pragmas supported. ! * Documentation in 'gcc/doc/extend.texi' of any target-specific built-in functions supported. ! * Documentation in 'gcc/doc/extend.texi' of any target-specific format checking styles supported. ! * Documentation in 'gcc/doc/md.texi' of any target-specific constraint letters (*note Constraints for Particular Machines: Machine Constraints.). ! * A note in 'gcc/doc/contrib.texi' under the person or people who contributed the target support. ! * Entries in 'gcc/doc/install.texi' for all target triplets supported ! with this target architecture, giving details of any special notes ! about installation for this target, or saying that there are no ! special notes if there are none. ! * Possibly other support outside the 'gcc' directory for runtime ! libraries. FIXME: reference docs for this. The 'libstdc++' porting manual needs to be installed as info for this to work, or to be a chapter of this manual. If the back end is added to the official GCC source repository, the following are also necessary: ! * An entry for the target architecture in 'readings.html' on the GCC web site, with any relevant links. * Details of the properties of the back end and target architecture ! in 'backends.html' on the GCC web site. * A news item about the contribution of support for that target ! architecture, in 'index.html' on the GCC web site. * Normally, one or more maintainers of that target listed in ! 'MAINTAINERS'. Some existing architectures may be unmaintained, but it would be unusual to add support for a target that does not have a maintainer when support is added. ! * Target triplets covering all 'config.gcc' stanzas for the target, ! in the list in 'contrib/config-list.mk'.  File: gccint.info, Node: Testsuites, Next: Options, Prev: Source Tree, Up: Top --- 4130,4213 ---- A back end for a target architecture in GCC has the following parts: ! * A directory `MACHINE' under `gcc/config', containing a machine ! description `MACHINE.md' file (*note Machine Descriptions: Machine ! Desc.), header files `MACHINE.h' and `MACHINE-protos.h' and a ! source file `MACHINE.c' (*note Target Description Macros and Functions: Target Macros.), possibly a target Makefile fragment ! `t-MACHINE' (*note The Target Makefile Fragment: Target ! Fragment.), and maybe some other files. The names of these files ! may be changed from the defaults given by explicit specifications ! in `config.gcc'. ! ! * If necessary, a file `MACHINE-modes.def' in the `MACHINE' directory, containing additional machine modes to represent condition codes. *Note Condition Code::, for further details. ! ! * An optional `MACHINE.opt' file in the `MACHINE' directory, containing a list of target-specific options. You can also add ! other option files using the `extra_options' variable in ! `config.gcc'. *Note Options::. ! ! * Entries in `config.gcc' (*note The `config.gcc' File: System Config.) for the systems with this target architecture. ! ! * Documentation in `gcc/doc/invoke.texi' for any command-line ! options supported by this target (*note Run-time Target ! Specification: Run-time Target.). This means both entries in the ! summary table of options and details of the individual options. ! ! * Documentation in `gcc/doc/extend.texi' for any target-specific attributes supported (*note Defining target-specific uses of ! `__attribute__': Target Attributes.), including where the same attribute is already supported on some targets, which are enumerated in the manual. ! ! * Documentation in `gcc/doc/extend.texi' for any target-specific pragmas supported. ! ! * Documentation in `gcc/doc/extend.texi' of any target-specific built-in functions supported. ! ! * Documentation in `gcc/doc/extend.texi' of any target-specific format checking styles supported. ! ! * Documentation in `gcc/doc/md.texi' of any target-specific constraint letters (*note Constraints for Particular Machines: Machine Constraints.). ! ! * A note in `gcc/doc/contrib.texi' under the person or people who contributed the target support. ! ! * Entries in `gcc/doc/install.texi' for all target triplets ! supported with this target architecture, giving details of any ! special notes about installation for this target, or saying that ! there are no special notes if there are none. ! ! * Possibly other support outside the `gcc' directory for runtime ! libraries. FIXME: reference docs for this. The `libstdc++' porting manual needs to be installed as info for this to work, or to be a chapter of this manual. If the back end is added to the official GCC source repository, the following are also necessary: ! * An entry for the target architecture in `readings.html' on the GCC web site, with any relevant links. + * Details of the properties of the back end and target architecture ! in `backends.html' on the GCC web site. ! * A news item about the contribution of support for that target ! architecture, in `index.html' on the GCC web site. ! * Normally, one or more maintainers of that target listed in ! `MAINTAINERS'. Some existing architectures may be unmaintained, but it would be unusual to add support for a target that does not have a maintainer when support is added. ! ! * Target triplets covering all `config.gcc' stanzas for the target, ! in the list in `contrib/config-list.mk'.  File: gccint.info, Node: Testsuites, Next: Options, Prev: Source Tree, Up: Top *************** File: gccint.info, Node: Testsuites, N *** 4122,4131 **** 7 Testsuites ************ ! GCC contains several testsuites to help maintain compiler quality. Most ! of the runtime libraries and language front ends in GCC have testsuites. ! Currently only the C language testsuites are documented here; FIXME: ! document the others. * Menu: --- 4215,4224 ---- 7 Testsuites ************ ! GCC contains several testsuites to help maintain compiler quality. ! Most of the runtime libraries and language front ends in GCC have ! testsuites. Currently only the C language testsuites are documented ! here; FIXME: document the others. * Menu: *************** File: gccint.info, Node: Test Idioms, *** 4146,4187 **** 7.1 Idioms Used in Testsuite Code ================================= ! In general, C testcases have a trailing '-N.c', starting with '-1.c', in ! case other testcases with similar names are added later. If the test is ! a test of some well-defined feature, it should have a name referring to ! that feature such as 'FEATURE-1.c'. If it does not test a well-defined ! feature but just happens to exercise a bug somewhere in the compiler, ! and a bug report has been filed for this bug in the GCC bug database, ! 'prBUG-NUMBER-1.c' is the appropriate form of name. Otherwise (for ! miscellaneous bugs not filed in the GCC bug database), and previously ! more generally, test cases are named after the date on which they were ! added. This allows people to tell at a glance whether a test failure is ! because of a recently found bug that has not yet been fixed, or whether ! it may be a regression, but does not give any other information about ! the bug or where discussion of it may be found. Some other language ! testsuites follow similar conventions. ! In the 'gcc.dg' testsuite, it is often necessary to test that an error is indeed a hard error and not just a warning--for example, where it is a constraint violation in the C standard, which must become an error ! with '-pedantic-errors'. The following idiom, where the first line ! shown is line LINE of the file and the line that generates the error, is ! used for this: /* { dg-bogus "warning" "warning in place of error" } */ /* { dg-error "REGEXP" "MESSAGE" { target *-*-* } LINE } */ It may be necessary to check that an expression is an integer constant ! expression and has a certain value. To check that 'E' has value 'V', an ! idiom similar to the following is used: char x[((E) == (V) ? 1 : -1)]; ! In 'gcc.dg' tests, '__typeof__' is sometimes used to make assertions about the types of expressions. See, for example, ! 'gcc.dg/c99-condexpr-1.c'. The more subtle uses depend on the exact rules for the types of conditional expressions in the C standard; see, ! for example, 'gcc.dg/c99-intconst-1.c'. It is useful to be able to test that optimizations are being made properly. This cannot be done in all cases, but it can be done where --- 4239,4280 ---- 7.1 Idioms Used in Testsuite Code ================================= ! In general, C testcases have a trailing `-N.c', starting with `-1.c', ! in case other testcases with similar names are added later. If the ! test is a test of some well-defined feature, it should have a name ! referring to that feature such as `FEATURE-1.c'. If it does not test a ! well-defined feature but just happens to exercise a bug somewhere in ! the compiler, and a bug report has been filed for this bug in the GCC ! bug database, `prBUG-NUMBER-1.c' is the appropriate form of name. ! Otherwise (for miscellaneous bugs not filed in the GCC bug database), ! and previously more generally, test cases are named after the date on ! which they were added. This allows people to tell at a glance whether ! a test failure is because of a recently found bug that has not yet been ! fixed, or whether it may be a regression, but does not give any other ! information about the bug or where discussion of it may be found. Some ! other language testsuites follow similar conventions. ! In the `gcc.dg' testsuite, it is often necessary to test that an error is indeed a hard error and not just a warning--for example, where it is a constraint violation in the C standard, which must become an error ! with `-pedantic-errors'. The following idiom, where the first line ! shown is line LINE of the file and the line that generates the error, ! is used for this: /* { dg-bogus "warning" "warning in place of error" } */ /* { dg-error "REGEXP" "MESSAGE" { target *-*-* } LINE } */ It may be necessary to check that an expression is an integer constant ! expression and has a certain value. To check that `E' has value `V', ! an idiom similar to the following is used: char x[((E) == (V) ? 1 : -1)]; ! In `gcc.dg' tests, `__typeof__' is sometimes used to make assertions about the types of expressions. See, for example, ! `gcc.dg/c99-condexpr-1.c'. The more subtle uses depend on the exact rules for the types of conditional expressions in the C standard; see, ! for example, `gcc.dg/c99-intconst-1.c'. It is useful to be able to test that optimizations are being made properly. This cannot be done in all cases, but it can be done where *************** the optimization will lead to code being *** 4189,4196 **** where flow analysis or alias analysis should show that certain code cannot be called) or to functions not being called because they have been expanded as built-in functions. Such tests go in ! 'gcc.c-torture/execute'. Where code should be optimized away, a call to ! a nonexistent function such as 'link_failure ()' may be inserted; a definition #ifndef __OPTIMIZE__ --- 4282,4289 ---- where flow analysis or alias analysis should show that certain code cannot be called) or to functions not being called because they have been expanded as built-in functions. Such tests go in ! `gcc.c-torture/execute'. Where code should be optimized away, a call ! to a nonexistent function such as `link_failure ()' may be inserted; a definition #ifndef __OPTIMIZE__ *************** definition *** 4202,4212 **** #endif will also be needed so that linking still succeeds when the test is run ! without optimization. When all calls to a built-in function should have ! been optimized and no calls to the non-built-in version of the function ! should remain, that function may be defined as 'static' to call 'abort ! ()' (although redeclaring a function as static may not work on all ! targets). All testcases must be portable. Target-specific testcases must have appropriate code to avoid causing failures on unsupported systems; --- 4295,4305 ---- #endif will also be needed so that linking still succeeds when the test is run ! without optimization. When all calls to a built-in function should ! have been optimized and no calls to the non-built-in version of the ! function should remain, that function may be defined as `static' to ! call `abort ()' (although redeclaring a function as static may not work ! on all targets). All testcases must be portable. Target-specific testcases must have appropriate code to avoid causing failures on unsupported systems; *************** File: gccint.info, Node: Test Directive *** 4225,4233 **** * Directives:: Syntax and descriptions of test directives. * Selectors:: Selecting targets to which a test applies. * Effective-Target Keywords:: Keywords describing target attributes. ! * Add Options:: Features for 'dg-add-options' ! * Require Support:: Variants of 'dg-require-SUPPORT' ! * Final Actions:: Commands for use in 'dg-final'  File: gccint.info, Node: Directives, Next: Selectors, Up: Test Directives --- 4318,4326 ---- * Directives:: Syntax and descriptions of test directives. * Selectors:: Selecting targets to which a test applies. * Effective-Target Keywords:: Keywords describing target attributes. ! * Add Options:: Features for `dg-add-options' ! * Require Support:: Variants of `dg-require-SUPPORT' ! * Final Actions:: Commands for use in `dg-final'  File: gccint.info, Node: Directives, Next: Selectors, Up: Test Directives *************** File: gccint.info, Node: Directives, N *** 4236,4242 **** ------------------------------------------------ Test directives appear within comments in a test source file and begin ! with 'dg-'. Some of these are defined within DejaGnu and others are local to the GCC testsuite. The order in which test directives appear in a test can be important: --- 4329,4335 ---- ------------------------------------------------ Test directives appear within comments in a test source file and begin ! with `dg-'. Some of these are defined within DejaGnu and others are local to the GCC testsuite. The order in which test directives appear in a test can be important: *************** directives local to GCC sometimes overri *** 4244,4299 **** DejaGnu directives, which know nothing about the GCC directives, so the DejaGnu directives must precede GCC directives. ! Several test directives include selectors (*note Selectors::) which are ! usually preceded by the keyword 'target' or 'xfail'. 7.2.1.1 Specify how to build the test ..................................... ! '{ dg-do DO-WHAT-KEYWORD [{ target/xfail SELECTOR }] }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! 'preprocess' ! Compile with '-E' to run only the preprocessor. ! 'compile' ! Compile with '-S' to produce an assembly code file. ! 'assemble' ! Compile with '-c' to produce a relocatable object file. ! 'link' Compile, assemble, and link to produce an executable file. ! 'run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is 'compile'. That can be overridden for a set of ! tests by redefining 'dg-do-what-default' within the '.exp' file for ! those tests. ! If the directive includes the optional '{ target SELECTOR }' then the test is skipped unless the target system matches the SELECTOR. ! If DO-WHAT-KEYWORD is 'run' and the directive includes the optional ! '{ xfail SELECTOR }' and the selector is met then the test is ! expected to fail. The 'xfail' clause is ignored for other values ! of DO-WHAT-KEYWORD; those tests can use directive 'dg-xfail-if'. 7.2.1.2 Specify additional compiler options ........................................... ! '{ dg-options OPTIONS [{ target SELECTOR }] }' This DejaGnu directive provides a list of compiler options, to be used if the target system matches SELECTOR, that replace the default options used for this set of tests. ! '{ dg-add-options FEATURE ... }' Add any compiler options that are needed to access certain features. This directive does nothing on targets that enable the features by default, or that don't provide them at all. It must ! come after all 'dg-options' directives. For supported values of FEATURE see *note Add Options::. ! '{ dg-additional-options OPTIONS [{ target SELECTOR }] }' This directive provides a list of compiler options, to be used if the target system matches SELECTOR, that are added to the default options used for this set of tests. --- 4337,4397 ---- DejaGnu directives, which know nothing about the GCC directives, so the DejaGnu directives must precede GCC directives. ! Several test directives include selectors (*note Selectors::) which ! are usually preceded by the keyword `target' or `xfail'. 7.2.1.1 Specify how to build the test ..................................... ! `{ dg-do DO-WHAT-KEYWORD [{ target/xfail SELECTOR }] }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! `preprocess' ! Compile with `-E' to run only the preprocessor. ! ! `compile' ! Compile with `-S' to produce an assembly code file. ! ! `assemble' ! Compile with `-c' to produce a relocatable object file. ! ! `link' Compile, assemble, and link to produce an executable file. ! ! `run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is `compile'. That can be overridden for a set of ! tests by redefining `dg-do-what-default' within the `.exp' file ! for those tests. ! If the directive includes the optional `{ target SELECTOR }' then the test is skipped unless the target system matches the SELECTOR. ! If DO-WHAT-KEYWORD is `run' and the directive includes the ! optional `{ xfail SELECTOR }' and the selector is met then the ! test is expected to fail. The `xfail' clause is ignored for other ! values of DO-WHAT-KEYWORD; those tests can use directive ! `dg-xfail-if'. 7.2.1.2 Specify additional compiler options ........................................... ! `{ dg-options OPTIONS [{ target SELECTOR }] }' This DejaGnu directive provides a list of compiler options, to be used if the target system matches SELECTOR, that replace the default options used for this set of tests. ! `{ dg-add-options FEATURE ... }' Add any compiler options that are needed to access certain features. This directive does nothing on targets that enable the features by default, or that don't provide them at all. It must ! come after all `dg-options' directives. For supported values of FEATURE see *note Add Options::. ! `{ dg-additional-options OPTIONS [{ target SELECTOR }] }' This directive provides a list of compiler options, to be used if the target system matches SELECTOR, that are added to the default options used for this set of tests. *************** usually preceded by the keyword 'target' *** 4304,4310 **** The normal timeout limit, in seconds, is found by searching the following in order: ! * the value defined by an earlier 'dg-timeout' directive in the test * variable TOOL_TIMEOUT defined by the set of tests --- 4402,4408 ---- The normal timeout limit, in seconds, is found by searching the following in order: ! * the value defined by an earlier `dg-timeout' directive in the test * variable TOOL_TIMEOUT defined by the set of tests *************** following in order: *** 4312,4329 **** * 300 ! '{ dg-timeout N [{target SELECTOR }] }' ! Set the time limit for the compilation and for the execution of the ! test to the specified number of seconds. ! '{ dg-timeout-factor X [{ target SELECTOR }] }' ! Multiply the normal time limit for compilation and execution of the ! test by the specified floating-point factor. 7.2.1.4 Skip a test for some targets .................................... ! '{ dg-skip-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Arguments INCLUDE-OPTS and EXCLUDE-OPTS are lists in which each element is a string of zero or more GCC options. Skip the test if all of the following conditions are met: --- 4410,4427 ---- * 300 ! `{ dg-timeout N [{target SELECTOR }] }' ! Set the time limit for the compilation and for the execution of ! the test to the specified number of seconds. ! `{ dg-timeout-factor X [{ target SELECTOR }] }' ! Multiply the normal time limit for compilation and execution of ! the test by the specified floating-point factor. 7.2.1.4 Skip a test for some targets .................................... ! `{ dg-skip-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Arguments INCLUDE-OPTS and EXCLUDE-OPTS are lists in which each element is a string of zero or more GCC options. Skip the test if all of the following conditions are met: *************** following in order: *** 4331,4380 **** * for at least one of the option strings in INCLUDE-OPTS, every option from that string is in the set of options with which ! the test would be compiled; use '"*"' for an INCLUDE-OPTS list that matches any options; that is the default if INCLUDE-OPTS is not specified * for each of the option strings in EXCLUDE-OPTS, at least one option from that string is not in the set of options with ! which the test would be compiled; use '""' for an empty EXCLUDE-OPTS list; that is the default if EXCLUDE-OPTS is not specified ! For example, to skip a test if option '-Os' is present: /* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */ ! To skip a test if both options '-O2' and '-g' are present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */ ! To skip a test if either '-O2' or '-O3' is present: /* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */ ! To skip a test unless option '-Os' is present: /* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */ ! To skip a test if either '-O2' or '-O3' is used with '-g' but not ! if '-fpic' is also present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */ ! '{ dg-require-effective-target KEYWORD [{ SELECTOR }] }' Skip the test if the test target, including current multilib flags, is not covered by the effective-target keyword. If the directive ! includes the optional '{ SELECTOR }' then the effective-target test ! is only performed if the target system matches the SELECTOR. This ! directive must appear after any 'dg-do' directive in the test and ! before any 'dg-additional-sources' directive. *Note Effective-Target Keywords::. ! '{ dg-require-SUPPORT args }' Skip the test if the target does not provide the required support. ! These directives must appear after any 'dg-do' directive in the ! test and before any 'dg-additional-sources' directive. They require at least one argument, which can be an empty string if the specific procedure does not examine the argument. *Note Require Support::, for a complete list of these directives. --- 4429,4478 ---- * for at least one of the option strings in INCLUDE-OPTS, every option from that string is in the set of options with which ! the test would be compiled; use `"*"' for an INCLUDE-OPTS list that matches any options; that is the default if INCLUDE-OPTS is not specified * for each of the option strings in EXCLUDE-OPTS, at least one option from that string is not in the set of options with ! which the test would be compiled; use `""' for an empty EXCLUDE-OPTS list; that is the default if EXCLUDE-OPTS is not specified ! For example, to skip a test if option `-Os' is present: /* { dg-skip-if "" { *-*-* } { "-Os" } { "" } } */ ! To skip a test if both options `-O2' and `-g' are present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" } { "" } } */ ! To skip a test if either `-O2' or `-O3' is present: /* { dg-skip-if "" { *-*-* } { "-O2" "-O3" } { "" } } */ ! To skip a test unless option `-Os' is present: /* { dg-skip-if "" { *-*-* } { "*" } { "-Os" } } */ ! To skip a test if either `-O2' or `-O3' is used with `-g' but not ! if `-fpic' is also present: /* { dg-skip-if "" { *-*-* } { "-O2 -g" "-O3 -g" } { "-fpic" } } */ ! `{ dg-require-effective-target KEYWORD [{ SELECTOR }] }' Skip the test if the test target, including current multilib flags, is not covered by the effective-target keyword. If the directive ! includes the optional `{ SELECTOR }' then the effective-target ! test is only performed if the target system matches the SELECTOR. ! This directive must appear after any `dg-do' directive in the test ! and before any `dg-additional-sources' directive. *Note Effective-Target Keywords::. ! `{ dg-require-SUPPORT args }' Skip the test if the target does not provide the required support. ! These directives must appear after any `dg-do' directive in the ! test and before any `dg-additional-sources' directive. They require at least one argument, which can be an empty string if the specific procedure does not examine the argument. *Note Require Support::, for a complete list of these directives. *************** following in order: *** 4382,4470 **** 7.2.1.5 Expect a test to fail for some targets .............................................. ! '{ dg-xfail-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the test to fail if the conditions (which are the same as ! for 'dg-skip-if') are met. This does not affect the execute step. ! '{ dg-xfail-run-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the execute step of a test to fail if the conditions (which ! are the same as for 'dg-skip-if') are met. 7.2.1.6 Expect the test executable to fail .......................................... ! '{ dg-shouldfail COMMENT [{ SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]]] }' Expect the test executable to return a nonzero exit status if the ! conditions (which are the same as for 'dg-skip-if') are met. 7.2.1.7 Verify compiler messages ................................ ! '{ dg-error REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected to ! get an error message, or else specifies the source line associated ! with the message. If there is no message for that line or if the ! text of that message is not matched by REGEXP then the check fails ! and COMMENT is included in the 'FAIL' message. The check does not ! look for the string 'error' unless it is part of REGEXP. ! '{ dg-warning REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected to ! get a warning message, or else specifies the source line associated ! with the message. If there is no message for that line or if the ! text of that message is not matched by REGEXP then the check fails ! and COMMENT is included in the 'FAIL' message. The check does not ! look for the string 'warning' unless it is part of REGEXP. ! '{ dg-message REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' The line is expected to get a message other than an error or warning. If there is no message for that line or if the text of that message is not matched by REGEXP then the check fails and ! COMMENT is included in the 'FAIL' message. ! '{ dg-bogus REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that should not get ! a message matching REGEXP, or else specifies the source line ! associated with the bogus message. It is usually used with 'xfail' to indicate that the message is a known problem for a particular set of targets. ! '{ dg-excess-errors COMMENT [{ target/xfail SELECTOR }] }' This DejaGnu directive indicates that the test is expected to fail ! due to compiler messages that are not handled by 'dg-error', ! 'dg-warning' or 'dg-bogus'. For this directive 'xfail' has the ! same effect as 'target'. ! '{ dg-prune-output REGEXP }' Prune messages matching REGEXP from the test output. 7.2.1.8 Verify output of the test executable ............................................ ! '{ dg-output REGEXP [{ target/xfail SELECTOR }] }' This DejaGnu directive compares REGEXP to the combined output that ! the test executable writes to 'stdout' and 'stderr'. 7.2.1.9 Specify additional files for a test ........................................... ! '{ dg-additional-files "FILELIST" }' Specify additional files, other than source files, that must be copied to the system where the compiler runs. ! '{ dg-additional-sources "FILELIST" }' Specify additional source files to appear in the compile line following the main test file. 7.2.1.10 Add checks at the end of a test ........................................ ! '{ dg-final { LOCAL-DIRECTIVE } }' This DejaGnu directive is placed within a comment anywhere in the source file and is processed after the test has been compiled and ! run. Multiple 'dg-final' commands are processed in the order in ! which they appear in the source file. *Note Final Actions::, for a ! list of directives that can be used within 'dg-final'.  File: gccint.info, Node: Selectors, Next: Effective-Target Keywords, Prev: Directives, Up: Test Directives --- 4480,4570 ---- 7.2.1.5 Expect a test to fail for some targets .............................................. ! `{ dg-xfail-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the test to fail if the conditions (which are the same as ! for `dg-skip-if') are met. This does not affect the execute step. ! `{ dg-xfail-run-if COMMENT { SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]] }' Expect the execute step of a test to fail if the conditions (which ! are the same as for `dg-skip-if') are met. 7.2.1.6 Expect the test executable to fail .......................................... ! `{ dg-shouldfail COMMENT [{ SELECTOR } [{ INCLUDE-OPTS } [{ EXCLUDE-OPTS }]]] }' Expect the test executable to return a nonzero exit status if the ! conditions (which are the same as for `dg-skip-if') are met. 7.2.1.7 Verify compiler messages ................................ ! `{ dg-error REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected ! to get an error message, or else specifies the source line ! associated with the message. If there is no message for that line ! or if the text of that message is not matched by REGEXP then the ! check fails and COMMENT is included in the `FAIL' message. The ! check does not look for the string `error' unless it is part of ! REGEXP. ! `{ dg-warning REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that is expected ! to get a warning message, or else specifies the source line ! associated with the message. If there is no message for that line ! or if the text of that message is not matched by REGEXP then the ! check fails and COMMENT is included in the `FAIL' message. The ! check does not look for the string `warning' unless it is part of ! REGEXP. ! `{ dg-message REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' The line is expected to get a message other than an error or warning. If there is no message for that line or if the text of that message is not matched by REGEXP then the check fails and ! COMMENT is included in the `FAIL' message. ! `{ dg-bogus REGEXP [COMMENT [{ target/xfail SELECTOR } [LINE] }]] }' ! This DejaGnu directive appears on a source line that should not ! get a message matching REGEXP, or else specifies the source line ! associated with the bogus message. It is usually used with `xfail' to indicate that the message is a known problem for a particular set of targets. ! `{ dg-excess-errors COMMENT [{ target/xfail SELECTOR }] }' This DejaGnu directive indicates that the test is expected to fail ! due to compiler messages that are not handled by `dg-error', ! `dg-warning' or `dg-bogus'. For this directive `xfail' has the ! same effect as `target'. ! `{ dg-prune-output REGEXP }' Prune messages matching REGEXP from the test output. 7.2.1.8 Verify output of the test executable ............................................ ! `{ dg-output REGEXP [{ target/xfail SELECTOR }] }' This DejaGnu directive compares REGEXP to the combined output that ! the test executable writes to `stdout' and `stderr'. 7.2.1.9 Specify additional files for a test ........................................... ! `{ dg-additional-files "FILELIST" }' Specify additional files, other than source files, that must be copied to the system where the compiler runs. ! `{ dg-additional-sources "FILELIST" }' Specify additional source files to appear in the compile line following the main test file. 7.2.1.10 Add checks at the end of a test ........................................ ! `{ dg-final { LOCAL-DIRECTIVE } }' This DejaGnu directive is placed within a comment anywhere in the source file and is processed after the test has been compiled and ! run. Multiple `dg-final' commands are processed in the order in ! which they appear in the source file. *Note Final Actions::, for ! a list of directives that can be used within `dg-final'.  File: gccint.info, Node: Selectors, Next: Effective-Target Keywords, Prev: Directives, Up: Test Directives *************** File: gccint.info, Node: Selectors, Ne *** 4472,4496 **** 7.2.2 Selecting targets to which a test applies ----------------------------------------------- ! Several test directives include SELECTORs to limit the targets for which ! a test is run or to declare that a test is expected to fail on particular targets. A selector is: * one or more target triplets, possibly including wildcard ! characters; use '*-*-*' to match any target * a single effective-target keyword (*note Effective-Target Keywords::) * a logical expression Depending on the context, the selector specifies whether a test is skipped and reported as unsupported or is expected to fail. A context ! that allows either 'target' or 'xfail' also allows '{ target SELECTOR1 xfail SELECTOR2 }' to skip the test for targets that don't match SELECTOR1 and the test to fail for targets that match SELECTOR2. A selector expression appears within curly braces and uses a single ! logical operator: one of '!', '&&', or '||'. An operand is another selector expression, an effective-target keyword, a single target triplet, or a list of target triplets within quotes or curly braces. For example: --- 4572,4598 ---- 7.2.2 Selecting targets to which a test applies ----------------------------------------------- ! Several test directives include SELECTORs to limit the targets for ! which a test is run or to declare that a test is expected to fail on particular targets. A selector is: * one or more target triplets, possibly including wildcard ! characters; use `*-*-*' to match any target ! * a single effective-target keyword (*note Effective-Target Keywords::) + * a logical expression Depending on the context, the selector specifies whether a test is skipped and reported as unsupported or is expected to fail. A context ! that allows either `target' or `xfail' also allows `{ target SELECTOR1 xfail SELECTOR2 }' to skip the test for targets that don't match SELECTOR1 and the test to fail for targets that match SELECTOR2. A selector expression appears within curly braces and uses a single ! logical operator: one of `!', `&&', or `||'. An operand is another selector expression, an effective-target keyword, a single target triplet, or a list of target triplets within quotes or curly braces. For example: *************** particular functionality. They are used *** 4510,5426 **** for particular targets, or to specify that particular sets of targets are expected to fail some tests. ! Effective-target keywords are defined in 'lib/target-supports.exp' in the GCC testsuite, with the exception of those that are documented as being local to a particular test directory. ! The 'effective target' takes into account all of the compiler options with which the test will be compiled, including the multilib options. ! By convention, keywords ending in '_nocache' can also include options ! specified for the particular test in an earlier 'dg-options' or ! 'dg-add-options' directive. 7.2.3.1 Data type sizes ....................... ! 'ilp32' ! Target has 32-bit 'int', 'long', and pointers. ! 'lp64' ! Target has 32-bit 'int', 64-bit 'long' and pointers. ! 'llp64' ! Target has 32-bit 'int' and 'long', 64-bit 'long long' and pointers. ! 'double64' ! Target has 64-bit 'double'. ! 'double64plus' ! Target has 'double' that is 64 bits or longer. ! 'longdouble128' ! Target has 128-bit 'long double'. ! 'int32plus' ! Target has 'int' that is at 32 bits or longer. ! 'int16' ! Target has 'int' that is 16 bits or shorter. ! 'long_neq_int' ! Target has 'int' and 'long' with different sizes. ! 'large_double' ! Target supports 'double' that is longer than 'float'. ! 'large_long_double' ! Target supports 'long double' that is longer than 'double'. ! 'ptr32plus' Target has pointers that are 32 bits or longer. ! 'size32plus' Target supports array and structure sizes that are 32 bits or longer. ! '4byte_wchar_t' ! Target has 'wchar_t' that is at least 4 bytes. 7.2.3.2 Fortran-specific attributes ................................... ! 'fortran_integer_16' ! Target supports Fortran 'integer' that is 16 bytes or longer. ! 'fortran_large_int' ! Target supports Fortran 'integer' kinds larger than 'integer(8)'. ! 'fortran_large_real' ! Target supports Fortran 'real' kinds larger than 'real(8)'. 7.2.3.3 Vector-specific attributes .................................. ! 'vect_condition' Target supports vector conditional operations. ! 'vect_double' ! Target supports hardware vectors of 'double'. ! 'vect_float' ! Target supports hardware vectors of 'float'. ! 'vect_int' ! Target supports hardware vectors of 'int'. ! 'vect_long' ! Target supports hardware vectors of 'long'. ! 'vect_long_long' ! Target supports hardware vectors of 'long long'. ! 'vect_aligned_arrays' Target aligns arrays to vector alignment boundary. ! 'vect_hw_misalign' Target supports a vector misalign access. ! 'vect_no_align' Target does not support a vector alignment mechanism. ! 'vect_no_int_max' ! Target does not support a vector max instruction on 'int'. ! 'vect_no_int_add' ! Target does not support a vector add instruction on 'int'. ! 'vect_no_bitwise' Target does not support vector bitwise instructions. ! 'vect_char_mult' ! Target supports 'vector char' multiplication. ! 'vect_short_mult' ! Target supports 'vector short' multiplication. ! 'vect_int_mult' ! Target supports 'vector int' multiplication. ! 'vect_extract_even_odd' Target supports vector even/odd element extraction. ! 'vect_extract_even_odd_wide' Target supports vector even/odd element extraction of vectors with ! elements 'SImode' or larger. ! 'vect_interleave' Target supports vector interleaving. ! 'vect_strided' Target supports vector interleaving and extract even/odd. ! 'vect_strided_wide' Target supports vector interleaving and extract even/odd for wide element types. ! 'vect_perm' Target supports vector permutation. ! 'vect_shift' Target supports a hardware vector shift operation. ! 'vect_widen_sum_hi_to_si' ! Target supports a vector widening summation of 'short' operands ! into 'int' results, or can promote (unpack) from 'short' to 'int'. ! 'vect_widen_sum_qi_to_hi' ! Target supports a vector widening summation of 'char' operands into ! 'short' results, or can promote (unpack) from 'char' to 'short'. ! 'vect_widen_sum_qi_to_si' ! Target supports a vector widening summation of 'char' operands into ! 'int' results. ! 'vect_widen_mult_qi_to_hi' ! Target supports a vector widening multiplication of 'char' operands ! into 'short' results, or can promote (unpack) from 'char' to ! 'short' and perform non-widening multiplication of 'short'. ! 'vect_widen_mult_hi_to_si' ! Target supports a vector widening multiplication of 'short' ! operands into 'int' results, or can promote (unpack) from 'short' ! to 'int' and perform non-widening multiplication of 'int'. ! 'vect_widen_mult_si_to_di_pattern' ! Target supports a vector widening multiplication of 'int' operands ! into 'long' results. ! 'vect_sdot_qi' ! Target supports a vector dot-product of 'signed char'. ! 'vect_udot_qi' ! Target supports a vector dot-product of 'unsigned char'. ! 'vect_sdot_hi' ! Target supports a vector dot-product of 'signed short'. ! 'vect_udot_hi' ! Target supports a vector dot-product of 'unsigned short'. ! 'vect_pack_trunc' ! Target supports a vector demotion (packing) of 'short' to 'char' ! and from 'int' to 'short' using modulo arithmetic. ! 'vect_unpack' ! Target supports a vector promotion (unpacking) of 'char' to 'short' ! and from 'char' to 'int'. ! 'vect_intfloat_cvt' ! Target supports conversion from 'signed int' to 'float'. ! 'vect_uintfloat_cvt' ! Target supports conversion from 'unsigned int' to 'float'. ! 'vect_floatint_cvt' ! Target supports conversion from 'float' to 'signed int'. ! 'vect_floatuint_cvt' ! Target supports conversion from 'float' to 'unsigned int'. 7.2.3.4 Thread Local Storage attributes ....................................... ! 'tls' Target supports thread-local storage. ! 'tls_native' Target supports native (rather than emulated) thread-local storage. ! 'tls_runtime' Test system supports executing TLS executables. 7.2.3.5 Decimal floating point attributes ......................................... ! 'dfp' Targets supports compiling decimal floating point extension to C. ! 'dfp_nocache' Including the options used to compile this particular test, the target supports compiling decimal floating point extension to C. ! 'dfprt' Test system can execute decimal floating point tests. ! 'dfprt_nocache' Including the options used to compile this particular test, the test system can execute decimal floating point tests. ! 'hard_dfp' Target generates decimal floating point instructions with current options. 7.2.3.6 ARM-specific attributes ............................... ! 'arm32' ARM target generates 32-bit code. ! 'arm_eabi' ARM target adheres to the ABI for the ARM Architecture. ! 'arm_hf_eabi' ARM target adheres to the VFP and Advanced SIMD Register Arguments variant of the ABI for the ARM Architecture (as selected with ! '-mfloat-abi=hard'). ! 'arm_hard_vfp_ok' ! ARM target supports '-mfpu=vfp -mfloat-abi=hard'. Some multilibs may be incompatible with these options. ! 'arm_iwmmxt_ok' ! ARM target supports '-mcpu=iwmmxt'. Some multilibs may be incompatible with this option. ! 'arm_neon' ARM target supports generating NEON instructions. ! 'arm_neon_hw' Test system supports executing NEON instructions. ! 'arm_neonv2_hw' Test system supports executing NEON v2 instructions. ! 'arm_neon_ok' ! ARM Target supports '-mfpu=neon -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! 'arm_neonv2_ok' ! ARM Target supports '-mfpu=neon-vfpv4 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! 'arm_neon_fp16_ok' ! ARM Target supports '-mfpu=neon-fp16 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! 'arm_thumb1_ok' ! ARM target generates Thumb-1 code for '-mthumb'. ! ! 'arm_thumb2_ok' ! ARM target generates Thumb-2 code for '-mthumb'. ! 'arm_vfp_ok' ! ARM target supports '-mfpu=vfp -mfloat-abi=softfp'. Some multilibs ! may be incompatible with these options. ! 'arm_vfp3_ok' ! ARM target supports '-mfpu=vfp3 -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! 'arm_v8_vfp_ok' ! ARM target supports '-mfpu=fp-armv8 -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! 'arm_v8_neon_ok' ! ARM target supports '-mfpu=neon-fp-armv8 -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! 'arm_prefer_ldrd_strd' ! ARM target prefers 'LDRD' and 'STRD' instructions over 'LDM' and ! 'STM' instructions. 7.2.3.7 MIPS-specific attributes ................................ ! 'mips64' MIPS target supports 64-bit instructions. ! 'nomips16' MIPS target does not produce MIPS16 code. ! 'mips16_attribute' MIPS target can generate MIPS16 code. ! 'mips_loongson' MIPS target is a Loongson-2E or -2F target using an ABI that supports the Loongson vector modes. ! 'mips_newabi_large_long_double' ! MIPS target supports 'long double' larger than 'double' when using the new ABI. ! 'mpaired_single' ! MIPS target supports '-mpaired-single'. 7.2.3.8 PowerPC-specific attributes ................................... ! 'dfp_hw' PowerPC target supports executing hardware DFP instructions. ! 'p8vector_hw' PowerPC target supports executing VSX instructions (ISA 2.07). ! 'powerpc64' Test system supports executing 64-bit instructions. ! 'powerpc_altivec' PowerPC target supports AltiVec. ! 'powerpc_altivec_ok' ! PowerPC target supports '-maltivec'. ! 'powerpc_eabi_ok' ! PowerPC target supports '-meabi'. ! 'powerpc_elfv2' ! PowerPC target supports '-mabi=elfv2'. ! 'powerpc_fprs' PowerPC target supports floating-point registers. ! 'powerpc_hard_double' PowerPC target supports hardware double-precision floating-point. ! 'powerpc_htm_ok' ! PowerPC target supports '-mhtm' ! 'powerpc_p8vector_ok' ! PowerPC target supports '-mpower8-vector' ! 'powerpc_ppu_ok' ! PowerPC target supports '-mcpu=cell'. ! 'powerpc_spe' PowerPC target supports PowerPC SPE. ! 'powerpc_spe_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC SPE. ! 'powerpc_spu' PowerPC target supports PowerPC SPU. ! 'powerpc_vsx_ok' ! PowerPC target supports '-mvsx'. ! 'powerpc_405_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC 405. ! 'ppc_recip_hw' PowerPC target supports executing reciprocal estimate instructions. ! 'spu_auto_overlay' SPU target has toolchain that supports automatic overlay generation. ! 'vmx_hw' PowerPC target supports executing AltiVec instructions. ! 'vsx_hw' PowerPC target supports executing VSX instructions (ISA 2.06). 7.2.3.9 Other hardware attributes ................................. ! 'avx' ! Target supports compiling 'avx' instructions. ! 'avx_runtime' ! Target supports the execution of 'avx' instructions. ! 'cell_hw' Test system can execute AltiVec and Cell PPU instructions. ! 'coldfire_fpu' Target uses a ColdFire FPU. ! 'hard_float' Target supports FPU instructions. ! 'sse' ! Target supports compiling 'sse' instructions. ! 'sse_runtime' ! Target supports the execution of 'sse' instructions. ! 'sse2' ! Target supports compiling 'sse2' instructions. ! 'sse2_runtime' ! Target supports the execution of 'sse2' instructions. ! 'sync_char_short' ! Target supports atomic operations on 'char' and 'short'. ! 'sync_int_long' ! Target supports atomic operations on 'int' and 'long'. ! 'ultrasparc_hw' Test environment appears to run executables on a simulator that ! accepts only 'EM_SPARC' executables and chokes on 'EM_SPARC32PLUS' ! or 'EM_SPARCV9' executables. ! 'vect_cmdline_needed' Target requires a command line argument to enable a SIMD instruction set. 7.2.3.10 Environment attributes ............................... ! 'c' The language for the compiler under test is C. ! 'c++' The language for the compiler under test is C++. ! 'c99_runtime' Target provides a full C99 runtime. ! 'correct_iso_cpp_string_wchar_protos' ! Target 'string.h' and 'wchar.h' headers provide C++ required ! overloads for 'strchr' etc. functions. ! 'dummy_wcsftime' ! Target uses a dummy 'wcsftime' function that always returns zero. ! 'fd_truncate' Target can truncate a file from a file descriptor, as used by ! 'libgfortran/io/unix.c:fd_truncate'; i.e. 'ftruncate' or 'chsize'. ! 'freestanding' ! Target is 'freestanding' as defined in section 4 of the C99 standard. Effectively, it is a target which supports no extra headers or libraries other than what is considered essential. ! 'init_priority' Target supports constructors with initialization priority arguments. ! 'inttypes_types' ! Target has the basic signed and unsigned types in 'inttypes.h'. This is for tests that GCC's notions of these types agree with ! those in the header, as some systems have only 'inttypes.h'. ! 'lax_strtofp' Target might have errors of a few ULP in string to floating-point conversion functions and overflow is not always detected correctly by those functions. ! 'mmap' ! Target supports 'mmap'. ! 'newlib' Target supports Newlib. ! 'pow10' ! Target provides 'pow10' function. ! 'pthread' ! Target can compile using 'pthread.h' with no errors or warnings. ! 'pthread_h' ! Target has 'pthread.h'. ! 'run_expensive_tests' Expensive testcases (usually those that consume excessive amounts of CPU time) should be run on this target. This can be enabled by ! setting the 'GCC_TEST_RUN_EXPENSIVE' environment variable to a non-empty string. ! 'simulator' ! Test system runs executables on a simulator (i.e. slowly) rather ! than hardware (i.e. fast). ! 'stdint_types' ! Target has the basic signed and unsigned C types in 'stdint.h'. ! This will be obsolete when GCC ensures a working 'stdint.h' for all ! targets. ! 'trampolines' Target supports trampolines. ! 'uclibc' Target supports uClibc. ! 'unwrapped' Target does not use a status wrapper. ! 'vxworks_kernel' Target is a VxWorks kernel. ! 'vxworks_rtp' Target is a VxWorks RTP. ! 'wchar' Target supports wide characters. 7.2.3.11 Other attributes ......................... ! 'automatic_stack_alignment' Target supports automatic stack alignment. ! 'cxa_atexit' ! Target uses '__cxa_atexit'. ! 'default_packed' Target has packed layout of structure members by default. ! 'fgraphite' Target supports Graphite optimizations. ! 'fixed_point' Target supports fixed-point extension to C. ! 'fopenmp' ! Target supports OpenMP via '-fopenmp'. ! 'fpic' ! Target supports '-fpic' and '-fPIC'. ! 'freorder' ! Target supports '-freorder-blocks-and-partition'. ! 'fstack_protector' ! Target supports '-fstack-protector'. ! 'gas' ! Target uses GNU 'as'. ! 'gc_sections' ! Target supports '--gc-sections'. ! 'gld' ! Target uses GNU 'ld'. ! 'keeps_null_pointer_checks' Target keeps null pointer checks, either due to the use of ! '-fno-delete-null-pointer-checks' or hardwired into the target. ! 'lto' Compiler has been configured to support link-time optimization (LTO). ! 'naked_functions' ! Target supports the 'naked' function attribute. ! 'named_sections' Target supports named sections. ! 'natural_alignment_32' Target uses natural alignment (aligned to type size) for types of 32 bits or less. ! 'target_natural_alignment_64' Target uses natural alignment (aligned to type size) for types of 64 bits or less. ! 'nonpic' Target does not generate PIC by default. ! 'pcc_bitfield_type_matters' ! Target defines 'PCC_BITFIELD_TYPE_MATTERS'. ! 'pe_aligned_commons' ! Target supports '-mpe-aligned-commons'. ! 'pie' ! Target supports '-pie', '-fpie' and '-fPIE'. ! 'section_anchors' Target supports section anchors. ! 'short_enums' Target defaults to short enums. ! 'static' ! Target supports '-static'. ! 'static_libgfortran' ! Target supports statically linking 'libgfortran'. ! 'string_merging' Target supports merging string constants at link time. ! 'ucn' Target supports compiling and assembling UCN. ! 'ucn_nocache' Including the options used to compile this particular test, the target supports compiling and assembling UCN. ! 'unaligned_stack' ! Target does not guarantee that its 'STACK_BOUNDARY' is greater than or equal to the required vector alignment. ! 'vector_alignment_reachable' Vector alignment is reachable for types of 32 bits or less. ! 'vector_alignment_reachable_for_64bit' Vector alignment is reachable for types of 64 bits or less. ! 'wchar_t_char16_t_compatible' ! Target supports 'wchar_t' that is compatible with 'char16_t'. ! 'wchar_t_char32_t_compatible' ! Target supports 'wchar_t' that is compatible with 'char32_t'. ! 7.2.3.12 Local to tests in 'gcc.target/i386' ............................................ ! '3dnow' ! Target supports compiling '3dnow' instructions. ! 'aes' ! Target supports compiling 'aes' instructions. ! 'fma4' ! Target supports compiling 'fma4' instructions. ! 'ms_hook_prologue' ! Target supports attribute 'ms_hook_prologue'. ! 'pclmul' ! Target supports compiling 'pclmul' instructions. ! 'sse3' ! Target supports compiling 'sse3' instructions. ! 'sse4' ! Target supports compiling 'sse4' instructions. ! 'sse4a' ! Target supports compiling 'sse4a' instructions. ! 'ssse3' ! Target supports compiling 'ssse3' instructions. ! 'vaes' ! Target supports compiling 'vaes' instructions. ! 'vpclmul' ! Target supports compiling 'vpclmul' instructions. ! 'xop' ! Target supports compiling 'xop' instructions. ! 7.2.3.13 Local to tests in 'gcc.target/spu/ea' .............................................. ! 'ealib' ! Target '__ea' library functions are available. ! 7.2.3.14 Local to tests in 'gcc.test-framework' ............................................... ! 'no' Always returns 0. ! 'yes' Always returns 1.  File: gccint.info, Node: Add Options, Next: Require Support, Prev: Effective-Target Keywords, Up: Test Directives ! 7.2.4 Features for 'dg-add-options' ----------------------------------- ! The supported values of FEATURE for directive 'dg-add-options' are: ! 'arm_neon' NEON support. Only ARM targets support this feature, and only then in certain modes; see the *note arm_neon_ok effective target keyword: arm_neon_ok. ! 'arm_neon_fp16' NEON and half-precision floating point support. Only ARM targets ! support this feature, and only then in certain modes; see the *note ! arm_neon_fp16_ok effective target keyword: arm_neon_ok. ! 'arm_vfp3' arm vfp3 floating point support; see the *note arm_vfp3_ok effective target keyword: arm_vfp3_ok. ! 'bind_pic_locally' Add the target-specific flags needed to enable functions to bind locally when using pic/PIC passes in the testsuite. ! 'c99_runtime' Add the target-specific flags needed to access the C99 runtime. ! 'ieee' ! Add the target-specific flags needed to enable full IEEE compliance ! mode. ! 'mips16_attribute' ! 'mips16' function attributes. Only MIPS targets support this feature, and only then in certain modes. ! 'tls' Add the target-specific flags needed to use thread-local storage.  File: gccint.info, Node: Require Support, Next: Final Actions, Prev: Add Options, Up: Test Directives ! 7.2.5 Variants of 'dg-require-SUPPORT' -------------------------------------- ! A few of the 'dg-require' directives take arguments. ! 'dg-require-iconv CODESET' ! Skip the test if the target does not support iconv. CODESET is the ! codeset to convert to. ! 'dg-require-profiling PROFOPT' Skip the test if the target does not support profiling with option PROFOPT. ! 'dg-require-visibility VIS' ! Skip the test if the target does not support the 'visibility' ! attribute. If VIS is '""', support for 'visibility("hidden")' is ! checked, for 'visibility("VIS")' otherwise. ! The original 'dg-require' directives were defined before there was support for effective-target keywords. The directives that do not take arguments could be replaced with effective-target keywords. ! 'dg-require-alias ""' ! Skip the test if the target does not support the 'alias' attribute. ! 'dg-require-ascii-locale ""' Skip the test if the host does not support an ASCII locale. ! 'dg-require-compat-dfp ""' ! Skip this test unless both compilers in a 'compat' testsuite support decimal floating point. ! 'dg-require-cxa-atexit ""' ! Skip the test if the target does not support '__cxa_atexit'. This ! is equivalent to 'dg-require-effective-target cxa_atexit'. ! 'dg-require-dll ""' Skip the test if the target does not support DLL attributes. ! 'dg-require-fork ""' ! Skip the test if the target does not support 'fork'. ! 'dg-require-gc-sections ""' Skip the test if the target's linker does not support the ! '--gc-sections' flags. This is equivalent to ! 'dg-require-effective-target gc-sections'. ! 'dg-require-host-local ""' Skip the test if the host is remote, rather than the same as the build system. Some tests are incompatible with DejaGnu's handling ! of remote hosts, which involves copying the source file to the host ! and compiling it with a relative path and "'-o a.out'". ! 'dg-require-mkfifo ""' ! Skip the test if the target does not support 'mkfifo'. ! 'dg-require-named-sections ""' Skip the test is the target does not support named sections. This ! is equivalent to 'dg-require-effective-target named_sections'. ! 'dg-require-weak ""' Skip the test if the target does not support weak symbols. ! 'dg-require-weak-override ""' Skip the test if the target does not support overriding weak symbols.  File: gccint.info, Node: Final Actions, Prev: Require Support, Up: Test Directives ! 7.2.6 Commands for use in 'dg-final' ------------------------------------ The GCC testsuite defines the following directives to be used within ! 'dg-final'. 7.2.6.1 Scan a particular file .............................. ! 'scan-file FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches text in FILENAME. ! 'scan-file-not FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP does not match text in FILENAME. ! 'scan-module MODULE REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches in Fortran module MODULE. 7.2.6.2 Scan the assembly output ................................ ! 'scan-assembler REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's assembler output. ! 'scan-assembler-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's assembler output. ! 'scan-assembler-times REGEX NUM [{ target/xfail SELECTOR }]' Passes if REGEX is matched exactly NUM times in the test's assembler output. ! 'scan-assembler-dem REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's demangled assembler output. ! 'scan-assembler-dem-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's demangled assembler output. ! 'scan-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is defined as a hidden symbol in the test's assembly output. ! 'scan-not-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is not defined as a hidden symbol in the test's assembly output. 7.2.6.3 Scan optimization dump files .................................... ! These commands are available for KIND of 'tree', 'rtl', and 'ipa'. ! 'scan-KIND-dump REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the dump file with suffix SUFFIX. ! 'scan-KIND-dump-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the dump file with suffix SUFFIX. ! 'scan-KIND-dump-times REGEX NUM SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX is found exactly NUM times in the dump file with suffix SUFFIX. ! 'scan-KIND-dump-dem REGEX SUFFIX [{ target/xfail SELECTOR }]' ! Passes if REGEX matches demangled text in the dump file with suffix ! SUFFIX. ! 'scan-KIND-dump-dem-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match demangled text in the dump file with suffix SUFFIX. 7.2.6.4 Verify that an output files exists or not ................................................. ! 'output-exists [{ target/xfail SELECTOR }]' Passes if compiler output file exists. ! 'output-exists-not [{ target/xfail SELECTOR }]' Passes if compiler output file does not exist. 7.2.6.5 Check for LTO tests ........................... ! 'scan-symbol REGEXP [{ target/xfail SELECTOR }]' Passes if the pattern is present in the final executable. ! 7.2.6.6 Checks for 'gcov' tests ............................... ! 'run-gcov SOURCEFILE' ! Check line counts in 'gcov' tests. ! 'run-gcov [branches] [calls] { OPTS SOURCEFILE }' Check branch and/or call counts, in addition to line counts, in ! 'gcov' tests. 7.2.6.7 Clean up generated test files ..................................... ! 'cleanup-coverage-files' Removes coverage data files generated for this test. ! 'cleanup-ipa-dump SUFFIX' Removes IPA dump files generated for this test. ! 'cleanup-modules "LIST-OF-EXTRA-MODULES"' Removes Fortran module files generated for this test, excluding the module names listed in keep-modules. Cleaning up module files is usually done automatically by the testsuite by looking at the --- 4612,5535 ---- for particular targets, or to specify that particular sets of targets are expected to fail some tests. ! Effective-target keywords are defined in `lib/target-supports.exp' in the GCC testsuite, with the exception of those that are documented as being local to a particular test directory. ! The `effective target' takes into account all of the compiler options with which the test will be compiled, including the multilib options. ! By convention, keywords ending in `_nocache' can also include options ! specified for the particular test in an earlier `dg-options' or ! `dg-add-options' directive. 7.2.3.1 Data type sizes ....................... ! `ilp32' ! Target has 32-bit `int', `long', and pointers. ! `lp64' ! Target has 32-bit `int', 64-bit `long' and pointers. ! `llp64' ! Target has 32-bit `int' and `long', 64-bit `long long' and pointers. ! `double64' ! Target has 64-bit `double'. ! `double64plus' ! Target has `double' that is 64 bits or longer. ! `longdouble128' ! Target has 128-bit `long double'. ! `int32plus' ! Target has `int' that is at 32 bits or longer. ! `int16' ! Target has `int' that is 16 bits or shorter. ! `long_neq_int' ! Target has `int' and `long' with different sizes. ! `large_double' ! Target supports `double' that is longer than `float'. ! `large_long_double' ! Target supports `long double' that is longer than `double'. ! `ptr32plus' Target has pointers that are 32 bits or longer. ! `size32plus' Target supports array and structure sizes that are 32 bits or longer. ! `4byte_wchar_t' ! Target has `wchar_t' that is at least 4 bytes. 7.2.3.2 Fortran-specific attributes ................................... ! `fortran_integer_16' ! Target supports Fortran `integer' that is 16 bytes or longer. ! `fortran_large_int' ! Target supports Fortran `integer' kinds larger than `integer(8)'. ! `fortran_large_real' ! Target supports Fortran `real' kinds larger than `real(8)'. 7.2.3.3 Vector-specific attributes .................................. ! `vect_condition' Target supports vector conditional operations. ! `vect_double' ! Target supports hardware vectors of `double'. ! `vect_float' ! Target supports hardware vectors of `float'. ! `vect_int' ! Target supports hardware vectors of `int'. ! `vect_long' ! Target supports hardware vectors of `long'. ! `vect_long_long' ! Target supports hardware vectors of `long long'. ! `vect_aligned_arrays' Target aligns arrays to vector alignment boundary. ! `vect_hw_misalign' Target supports a vector misalign access. ! `vect_no_align' Target does not support a vector alignment mechanism. ! `vect_no_int_max' ! Target does not support a vector max instruction on `int'. ! `vect_no_int_add' ! Target does not support a vector add instruction on `int'. ! `vect_no_bitwise' Target does not support vector bitwise instructions. ! `vect_char_mult' ! Target supports `vector char' multiplication. ! `vect_short_mult' ! Target supports `vector short' multiplication. ! `vect_int_mult' ! Target supports `vector int' multiplication. ! `vect_extract_even_odd' Target supports vector even/odd element extraction. ! `vect_extract_even_odd_wide' Target supports vector even/odd element extraction of vectors with ! elements `SImode' or larger. ! `vect_interleave' Target supports vector interleaving. ! `vect_strided' Target supports vector interleaving and extract even/odd. ! `vect_strided_wide' Target supports vector interleaving and extract even/odd for wide element types. ! `vect_perm' Target supports vector permutation. ! `vect_shift' Target supports a hardware vector shift operation. ! `vect_widen_sum_hi_to_si' ! Target supports a vector widening summation of `short' operands ! into `int' results, or can promote (unpack) from `short' to `int'. ! `vect_widen_sum_qi_to_hi' ! Target supports a vector widening summation of `char' operands ! into `short' results, or can promote (unpack) from `char' to ! `short'. ! `vect_widen_sum_qi_to_si' ! Target supports a vector widening summation of `char' operands ! into `int' results. ! `vect_widen_mult_qi_to_hi' ! Target supports a vector widening multiplication of `char' operands ! into `short' results, or can promote (unpack) from `char' to ! `short' and perform non-widening multiplication of `short'. ! `vect_widen_mult_hi_to_si' ! Target supports a vector widening multiplication of `short' ! operands into `int' results, or can promote (unpack) from `short' ! to `int' and perform non-widening multiplication of `int'. ! `vect_widen_mult_si_to_di_pattern' ! Target supports a vector widening multiplication of `int' operands ! into `long' results. ! `vect_sdot_qi' ! Target supports a vector dot-product of `signed char'. ! `vect_udot_qi' ! Target supports a vector dot-product of `unsigned char'. ! `vect_sdot_hi' ! Target supports a vector dot-product of `signed short'. ! `vect_udot_hi' ! Target supports a vector dot-product of `unsigned short'. ! `vect_pack_trunc' ! Target supports a vector demotion (packing) of `short' to `char' ! and from `int' to `short' using modulo arithmetic. ! `vect_unpack' ! Target supports a vector promotion (unpacking) of `char' to `short' ! and from `char' to `int'. ! `vect_intfloat_cvt' ! Target supports conversion from `signed int' to `float'. ! `vect_uintfloat_cvt' ! Target supports conversion from `unsigned int' to `float'. ! `vect_floatint_cvt' ! Target supports conversion from `float' to `signed int'. ! `vect_floatuint_cvt' ! Target supports conversion from `float' to `unsigned int'. 7.2.3.4 Thread Local Storage attributes ....................................... ! `tls' Target supports thread-local storage. ! `tls_native' Target supports native (rather than emulated) thread-local storage. ! `tls_runtime' Test system supports executing TLS executables. 7.2.3.5 Decimal floating point attributes ......................................... ! `dfp' Targets supports compiling decimal floating point extension to C. ! `dfp_nocache' Including the options used to compile this particular test, the target supports compiling decimal floating point extension to C. ! `dfprt' Test system can execute decimal floating point tests. ! `dfprt_nocache' Including the options used to compile this particular test, the test system can execute decimal floating point tests. ! `hard_dfp' Target generates decimal floating point instructions with current options. 7.2.3.6 ARM-specific attributes ............................... ! `arm32' ARM target generates 32-bit code. ! `arm_eabi' ARM target adheres to the ABI for the ARM Architecture. ! `arm_hf_eabi' ARM target adheres to the VFP and Advanced SIMD Register Arguments variant of the ABI for the ARM Architecture (as selected with ! `-mfloat-abi=hard'). ! `arm_hard_vfp_ok' ! ARM target supports `-mfpu=vfp -mfloat-abi=hard'. Some multilibs may be incompatible with these options. ! `arm_iwmmxt_ok' ! ARM target supports `-mcpu=iwmmxt'. Some multilibs may be incompatible with this option. ! `arm_neon' ARM target supports generating NEON instructions. ! `arm_neon_hw' Test system supports executing NEON instructions. ! `arm_neonv2_hw' Test system supports executing NEON v2 instructions. ! `arm_neon_ok' ! ARM Target supports `-mfpu=neon -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! `arm_neonv2_ok' ! ARM Target supports `-mfpu=neon-vfpv4 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! `arm_neon_fp16_ok' ! ARM Target supports `-mfpu=neon-fp16 -mfloat-abi=softfp' or compatible options. Some multilibs may be incompatible with these options. ! `arm_thumb1_ok' ! ARM target generates Thumb-1 code for `-mthumb'. ! `arm_thumb2_ok' ! ARM target generates Thumb-2 code for `-mthumb'. ! `arm_vfp_ok' ! ARM target supports `-mfpu=vfp -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! `arm_vfp3_ok' ! ARM target supports `-mfpu=vfp3 -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! `arm_v8_vfp_ok' ! ARM target supports `-mfpu=fp-armv8 -mfloat-abi=softfp'. Some multilibs may be incompatible with these options. ! `arm_v8_neon_ok' ! ARM target supports `-mfpu=neon-fp-armv8 -mfloat-abi=softfp'. ! Some multilibs may be incompatible with these options. ! ! `arm_prefer_ldrd_strd' ! ARM target prefers `LDRD' and `STRD' instructions over `LDM' and ! `STM' instructions. ! 7.2.3.7 MIPS-specific attributes ................................ ! `mips64' MIPS target supports 64-bit instructions. ! `nomips16' MIPS target does not produce MIPS16 code. ! `mips16_attribute' MIPS target can generate MIPS16 code. ! `mips_loongson' MIPS target is a Loongson-2E or -2F target using an ABI that supports the Loongson vector modes. ! `mips_newabi_large_long_double' ! MIPS target supports `long double' larger than `double' when using the new ABI. ! `mpaired_single' ! MIPS target supports `-mpaired-single'. 7.2.3.8 PowerPC-specific attributes ................................... ! `dfp_hw' PowerPC target supports executing hardware DFP instructions. ! `p8vector_hw' PowerPC target supports executing VSX instructions (ISA 2.07). ! `powerpc64' Test system supports executing 64-bit instructions. ! `powerpc_altivec' PowerPC target supports AltiVec. ! `powerpc_altivec_ok' ! PowerPC target supports `-maltivec'. ! `powerpc_eabi_ok' ! PowerPC target supports `-meabi'. ! `powerpc_elfv2' ! PowerPC target supports `-mabi=elfv2'. ! `powerpc_fprs' PowerPC target supports floating-point registers. ! `powerpc_hard_double' PowerPC target supports hardware double-precision floating-point. ! `powerpc_htm_ok' ! PowerPC target supports `-mhtm' ! `powerpc_p8vector_ok' ! PowerPC target supports `-mpower8-vector' ! `powerpc_ppu_ok' ! PowerPC target supports `-mcpu=cell'. ! `powerpc_spe' PowerPC target supports PowerPC SPE. ! `powerpc_spe_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC SPE. ! `powerpc_spu' PowerPC target supports PowerPC SPU. ! `powerpc_vsx_ok' ! PowerPC target supports `-mvsx'. ! `powerpc_405_nocache' Including the options used to compile this particular test, the PowerPC target supports PowerPC 405. ! `ppc_recip_hw' PowerPC target supports executing reciprocal estimate instructions. ! `spu_auto_overlay' SPU target has toolchain that supports automatic overlay generation. ! `vmx_hw' PowerPC target supports executing AltiVec instructions. ! `vsx_hw' PowerPC target supports executing VSX instructions (ISA 2.06). 7.2.3.9 Other hardware attributes ................................. ! `avx' ! Target supports compiling `avx' instructions. ! `avx_runtime' ! Target supports the execution of `avx' instructions. ! `cell_hw' Test system can execute AltiVec and Cell PPU instructions. ! `coldfire_fpu' Target uses a ColdFire FPU. ! `hard_float' Target supports FPU instructions. ! `sse' ! Target supports compiling `sse' instructions. ! `sse_runtime' ! Target supports the execution of `sse' instructions. ! `sse2' ! Target supports compiling `sse2' instructions. ! `sse2_runtime' ! Target supports the execution of `sse2' instructions. ! `sync_char_short' ! Target supports atomic operations on `char' and `short'. ! `sync_int_long' ! Target supports atomic operations on `int' and `long'. ! `ultrasparc_hw' Test environment appears to run executables on a simulator that ! accepts only `EM_SPARC' executables and chokes on `EM_SPARC32PLUS' ! or `EM_SPARCV9' executables. ! `vect_cmdline_needed' Target requires a command line argument to enable a SIMD instruction set. 7.2.3.10 Environment attributes ............................... ! `c' The language for the compiler under test is C. ! `c++' The language for the compiler under test is C++. ! `c99_runtime' Target provides a full C99 runtime. ! `correct_iso_cpp_string_wchar_protos' ! Target `string.h' and `wchar.h' headers provide C++ required ! overloads for `strchr' etc. functions. ! `dummy_wcsftime' ! Target uses a dummy `wcsftime' function that always returns zero. ! `fd_truncate' Target can truncate a file from a file descriptor, as used by ! `libgfortran/io/unix.c:fd_truncate'; i.e. `ftruncate' or `chsize'. ! `freestanding' ! Target is `freestanding' as defined in section 4 of the C99 standard. Effectively, it is a target which supports no extra headers or libraries other than what is considered essential. ! `init_priority' Target supports constructors with initialization priority arguments. ! `inttypes_types' ! Target has the basic signed and unsigned types in `inttypes.h'. This is for tests that GCC's notions of these types agree with ! those in the header, as some systems have only `inttypes.h'. ! `lax_strtofp' Target might have errors of a few ULP in string to floating-point conversion functions and overflow is not always detected correctly by those functions. ! `mmap' ! Target supports `mmap'. ! `newlib' Target supports Newlib. ! `pow10' ! Target provides `pow10' function. ! `pthread' ! Target can compile using `pthread.h' with no errors or warnings. ! `pthread_h' ! Target has `pthread.h'. ! `run_expensive_tests' Expensive testcases (usually those that consume excessive amounts of CPU time) should be run on this target. This can be enabled by ! setting the `GCC_TEST_RUN_EXPENSIVE' environment variable to a non-empty string. ! `simulator' ! Test system runs executables on a simulator (i.e. slowly) rather ! than hardware (i.e. fast). ! `stabs' ! Target supports the stabs debugging format. ! `stdint_types' ! Target has the basic signed and unsigned C types in `stdint.h'. ! This will be obsolete when GCC ensures a working `stdint.h' for ! all targets. ! ! `trampolines' Target supports trampolines. ! `uclibc' Target supports uClibc. ! `unwrapped' Target does not use a status wrapper. ! `vxworks_kernel' Target is a VxWorks kernel. ! `vxworks_rtp' Target is a VxWorks RTP. ! `wchar' Target supports wide characters. 7.2.3.11 Other attributes ......................... ! `automatic_stack_alignment' Target supports automatic stack alignment. ! `cxa_atexit' ! Target uses `__cxa_atexit'. ! `default_packed' Target has packed layout of structure members by default. ! `fgraphite' Target supports Graphite optimizations. ! `fixed_point' Target supports fixed-point extension to C. ! `fopenmp' ! Target supports OpenMP via `-fopenmp'. ! `fpic' ! Target supports `-fpic' and `-fPIC'. ! `freorder' ! Target supports `-freorder-blocks-and-partition'. ! `fstack_protector' ! Target supports `-fstack-protector'. ! `gas' ! Target uses GNU `as'. ! `gc_sections' ! Target supports `--gc-sections'. ! `gld' ! Target uses GNU `ld'. ! `keeps_null_pointer_checks' Target keeps null pointer checks, either due to the use of ! `-fno-delete-null-pointer-checks' or hardwired into the target. ! `lto' Compiler has been configured to support link-time optimization (LTO). ! `naked_functions' ! Target supports the `naked' function attribute. ! `named_sections' Target supports named sections. ! `natural_alignment_32' Target uses natural alignment (aligned to type size) for types of 32 bits or less. ! `target_natural_alignment_64' Target uses natural alignment (aligned to type size) for types of 64 bits or less. ! `nonpic' Target does not generate PIC by default. ! `pcc_bitfield_type_matters' ! Target defines `PCC_BITFIELD_TYPE_MATTERS'. ! `pe_aligned_commons' ! Target supports `-mpe-aligned-commons'. ! `pie' ! Target supports `-pie', `-fpie' and `-fPIE'. ! `section_anchors' Target supports section anchors. ! `short_enums' Target defaults to short enums. ! `static' ! Target supports `-static'. ! `static_libgfortran' ! Target supports statically linking `libgfortran'. ! `string_merging' Target supports merging string constants at link time. ! `ucn' Target supports compiling and assembling UCN. ! `ucn_nocache' Including the options used to compile this particular test, the target supports compiling and assembling UCN. ! `unaligned_stack' ! Target does not guarantee that its `STACK_BOUNDARY' is greater than or equal to the required vector alignment. ! `vector_alignment_reachable' Vector alignment is reachable for types of 32 bits or less. ! `vector_alignment_reachable_for_64bit' Vector alignment is reachable for types of 64 bits or less. ! `wchar_t_char16_t_compatible' ! Target supports `wchar_t' that is compatible with `char16_t'. ! `wchar_t_char32_t_compatible' ! Target supports `wchar_t' that is compatible with `char32_t'. ! 7.2.3.12 Local to tests in `gcc.target/i386' ............................................ ! `3dnow' ! Target supports compiling `3dnow' instructions. ! `aes' ! Target supports compiling `aes' instructions. ! `fma4' ! Target supports compiling `fma4' instructions. ! `ms_hook_prologue' ! Target supports attribute `ms_hook_prologue'. ! `pclmul' ! Target supports compiling `pclmul' instructions. ! `sse3' ! Target supports compiling `sse3' instructions. ! `sse4' ! Target supports compiling `sse4' instructions. ! `sse4a' ! Target supports compiling `sse4a' instructions. ! `ssse3' ! Target supports compiling `ssse3' instructions. ! `vaes' ! Target supports compiling `vaes' instructions. ! `vpclmul' ! Target supports compiling `vpclmul' instructions. ! `xop' ! Target supports compiling `xop' instructions. ! 7.2.3.13 Local to tests in `gcc.target/spu/ea' .............................................. ! `ealib' ! Target `__ea' library functions are available. ! 7.2.3.14 Local to tests in `gcc.test-framework' ............................................... ! `no' Always returns 0. ! `yes' Always returns 1.  File: gccint.info, Node: Add Options, Next: Require Support, Prev: Effective-Target Keywords, Up: Test Directives ! 7.2.4 Features for `dg-add-options' ----------------------------------- ! The supported values of FEATURE for directive `dg-add-options' are: ! `arm_neon' NEON support. Only ARM targets support this feature, and only then in certain modes; see the *note arm_neon_ok effective target keyword: arm_neon_ok. ! `arm_neon_fp16' NEON and half-precision floating point support. Only ARM targets ! support this feature, and only then in certain modes; see the ! *note arm_neon_fp16_ok effective target keyword: arm_neon_ok. ! `arm_vfp3' arm vfp3 floating point support; see the *note arm_vfp3_ok effective target keyword: arm_vfp3_ok. ! `bind_pic_locally' Add the target-specific flags needed to enable functions to bind locally when using pic/PIC passes in the testsuite. ! `c99_runtime' Add the target-specific flags needed to access the C99 runtime. ! `ieee' ! Add the target-specific flags needed to enable full IEEE ! compliance mode. ! `mips16_attribute' ! `mips16' function attributes. Only MIPS targets support this feature, and only then in certain modes. ! `tls' Add the target-specific flags needed to use thread-local storage.  File: gccint.info, Node: Require Support, Next: Final Actions, Prev: Add Options, Up: Test Directives ! 7.2.5 Variants of `dg-require-SUPPORT' -------------------------------------- ! A few of the `dg-require' directives take arguments. ! `dg-require-iconv CODESET' ! Skip the test if the target does not support iconv. CODESET is ! the codeset to convert to. ! `dg-require-profiling PROFOPT' Skip the test if the target does not support profiling with option PROFOPT. ! `dg-require-visibility VIS' ! Skip the test if the target does not support the `visibility' ! attribute. If VIS is `""', support for `visibility("hidden")' is ! checked, for `visibility("VIS")' otherwise. ! The original `dg-require' directives were defined before there was support for effective-target keywords. The directives that do not take arguments could be replaced with effective-target keywords. ! `dg-require-alias ""' ! Skip the test if the target does not support the `alias' attribute. ! `dg-require-ascii-locale ""' Skip the test if the host does not support an ASCII locale. ! `dg-require-compat-dfp ""' ! Skip this test unless both compilers in a `compat' testsuite support decimal floating point. ! `dg-require-cxa-atexit ""' ! Skip the test if the target does not support `__cxa_atexit'. This ! is equivalent to `dg-require-effective-target cxa_atexit'. ! `dg-require-dll ""' Skip the test if the target does not support DLL attributes. ! `dg-require-fork ""' ! Skip the test if the target does not support `fork'. ! `dg-require-gc-sections ""' Skip the test if the target's linker does not support the ! `--gc-sections' flags. This is equivalent to ! `dg-require-effective-target gc-sections'. ! `dg-require-host-local ""' Skip the test if the host is remote, rather than the same as the build system. Some tests are incompatible with DejaGnu's handling ! of remote hosts, which involves copying the source file to the ! host and compiling it with a relative path and "`-o a.out'". ! `dg-require-mkfifo ""' ! Skip the test if the target does not support `mkfifo'. ! `dg-require-named-sections ""' Skip the test is the target does not support named sections. This ! is equivalent to `dg-require-effective-target named_sections'. ! `dg-require-weak ""' Skip the test if the target does not support weak symbols. ! `dg-require-weak-override ""' Skip the test if the target does not support overriding weak symbols.  File: gccint.info, Node: Final Actions, Prev: Require Support, Up: Test Directives ! 7.2.6 Commands for use in `dg-final' ------------------------------------ The GCC testsuite defines the following directives to be used within ! `dg-final'. 7.2.6.1 Scan a particular file .............................. ! `scan-file FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches text in FILENAME. ! ! `scan-file-not FILENAME REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP does not match text in FILENAME. ! ! `scan-module MODULE REGEXP [{ target/xfail SELECTOR }]' Passes if REGEXP matches in Fortran module MODULE. 7.2.6.2 Scan the assembly output ................................ ! `scan-assembler REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's assembler output. ! `scan-assembler-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's assembler output. ! `scan-assembler-times REGEX NUM [{ target/xfail SELECTOR }]' Passes if REGEX is matched exactly NUM times in the test's assembler output. ! `scan-assembler-dem REGEX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the test's demangled assembler output. ! `scan-assembler-dem-not REGEX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the test's demangled assembler output. ! `scan-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is defined as a hidden symbol in the test's assembly output. ! `scan-not-hidden SYMBOL [{ target/xfail SELECTOR }]' Passes if SYMBOL is not defined as a hidden symbol in the test's assembly output. 7.2.6.3 Scan optimization dump files .................................... ! These commands are available for KIND of `tree', `rtl', and `ipa'. ! `scan-KIND-dump REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX matches text in the dump file with suffix SUFFIX. ! `scan-KIND-dump-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match text in the dump file with suffix SUFFIX. ! `scan-KIND-dump-times REGEX NUM SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX is found exactly NUM times in the dump file with suffix SUFFIX. ! `scan-KIND-dump-dem REGEX SUFFIX [{ target/xfail SELECTOR }]' ! Passes if REGEX matches demangled text in the dump file with ! suffix SUFFIX. ! `scan-KIND-dump-dem-not REGEX SUFFIX [{ target/xfail SELECTOR }]' Passes if REGEX does not match demangled text in the dump file with suffix SUFFIX. 7.2.6.4 Verify that an output files exists or not ................................................. ! `output-exists [{ target/xfail SELECTOR }]' Passes if compiler output file exists. ! `output-exists-not [{ target/xfail SELECTOR }]' Passes if compiler output file does not exist. 7.2.6.5 Check for LTO tests ........................... ! `scan-symbol REGEXP [{ target/xfail SELECTOR }]' Passes if the pattern is present in the final executable. ! 7.2.6.6 Checks for `gcov' tests ............................... ! `run-gcov SOURCEFILE' ! Check line counts in `gcov' tests. ! `run-gcov [branches] [calls] { OPTS SOURCEFILE }' Check branch and/or call counts, in addition to line counts, in ! `gcov' tests. 7.2.6.7 Clean up generated test files ..................................... ! `cleanup-coverage-files' Removes coverage data files generated for this test. ! `cleanup-ipa-dump SUFFIX' Removes IPA dump files generated for this test. ! `cleanup-modules "LIST-OF-EXTRA-MODULES"' Removes Fortran module files generated for this test, excluding the module names listed in keep-modules. Cleaning up module files is usually done automatically by the testsuite by looking at the *************** These commands are available for KIND of *** 5437,5443 **** ! { dg-final { cleanup-modules "mod1 mod2" } } ! redundant ! { dg-final { keep-modules "mod3 mod4" } } ! 'keep-modules "LIST-OF-MODULES-NOT-TO-DELETE"' Whitespace separated list of module names that should not be deleted by cleanup-modules. If the list of modules is empty, all modules defined in this file are kept. --- 5546,5552 ---- ! { dg-final { cleanup-modules "mod1 mod2" } } ! redundant ! { dg-final { keep-modules "mod3 mod4" } } ! `keep-modules "LIST-OF-MODULES-NOT-TO-DELETE"' Whitespace separated list of module names that should not be deleted by cleanup-modules. If the list of modules is empty, all modules defined in this file are kept. *************** These commands are available for KIND of *** 5450,5469 **** ! { dg-final { keep-modules "keep1 keep2" } } ! just keep these two ! { dg-final { keep-modules "" } } ! keep all ! 'cleanup-profile-file' Removes profiling files generated for this test. ! 'cleanup-repo-files' ! Removes files generated for this test for '-frepo'. ! 'cleanup-rtl-dump SUFFIX' Removes RTL dump files generated for this test. ! 'cleanup-saved-temps' Removes files for the current test which were kept for ! '-save-temps'. ! 'cleanup-tree-dump SUFFIX' Removes tree dump files matching SUFFIX which were generated for this test. --- 5559,5578 ---- ! { dg-final { keep-modules "keep1 keep2" } } ! just keep these two ! { dg-final { keep-modules "" } } ! keep all ! `cleanup-profile-file' Removes profiling files generated for this test. ! `cleanup-repo-files' ! Removes files generated for this test for `-frepo'. ! `cleanup-rtl-dump SUFFIX' Removes RTL dump files generated for this test. ! `cleanup-saved-temps' Removes files for the current test which were kept for ! `-save-temps'. ! `cleanup-tree-dump SUFFIX' Removes tree dump files matching SUFFIX which were generated for this test. *************** File: gccint.info, Node: Ada Tests, Ne *** 5474,5505 **** =========================== The Ada testsuite includes executable tests from the ACATS testsuite, ! publicly available at . ! These tests are integrated in the GCC testsuite in the 'ada/acats' ! directory, and enabled automatically when running 'make check', assuming the Ada language has been enabled when configuring GCC. ! You can also run the Ada testsuite independently, using 'make check-ada', or run a subset of the tests by specifying which chapter to run, e.g.: $ make check-ada CHAPTERS="c3 c9" ! The tests are organized by directory, each directory corresponding to a ! chapter of the Ada Reference Manual. So for example, 'c9' corresponds to chapter 9, which deals with tasking features of the language. ! There is also an extra chapter called 'gcc' containing a template for creating new executable tests, although this is deprecated in favor of ! the 'gnat.dg' testsuite. ! The tests are run using two 'sh' scripts: 'run_acats' and 'run_all.sh'. ! To run the tests using a simulator or a cross target, see the small ! customization section at the top of 'run_all.sh'. These tests are run using the build tree: they can be run without doing ! a 'make install'.  File: gccint.info, Node: C Tests, Next: libgcj Tests, Prev: Ada Tests, Up: Testsuites --- 5583,5614 ---- =========================== The Ada testsuite includes executable tests from the ACATS testsuite, ! publicly available at `http://www.ada-auth.org/acats.html'. ! These tests are integrated in the GCC testsuite in the `ada/acats' ! directory, and enabled automatically when running `make check', assuming the Ada language has been enabled when configuring GCC. ! You can also run the Ada testsuite independently, using `make check-ada', or run a subset of the tests by specifying which chapter to run, e.g.: $ make check-ada CHAPTERS="c3 c9" ! The tests are organized by directory, each directory corresponding to ! a chapter of the Ada Reference Manual. So for example, `c9' corresponds to chapter 9, which deals with tasking features of the language. ! There is also an extra chapter called `gcc' containing a template for creating new executable tests, although this is deprecated in favor of ! the `gnat.dg' testsuite. ! The tests are run using two `sh' scripts: `run_acats' and ! `run_all.sh'. To run the tests using a simulator or a cross target, ! see the small customization section at the top of `run_all.sh'. These tests are run using the build tree: they can be run without doing ! a `make install'.  File: gccint.info, Node: C Tests, Next: libgcj Tests, Prev: Ada Tests, Up: Testsuites *************** File: gccint.info, Node: C Tests, Next *** 5507,5607 **** 7.4 C Language Testsuites ========================= ! GCC contains the following C language testsuites, in the 'gcc/testsuite' ! directory: ! 'gcc.dg' ! This contains tests of particular features of the C compiler, using ! the more modern 'dg' harness. Correctness tests for various compiler features should go here if possible. Magic comments determine whether the file is preprocessed, ! compiled, linked or run. In these tests, error and warning message ! texts are compared against expected texts or regular expressions ! given in comments. These tests are run with the options '-ansi ! -pedantic' unless other options are given in the test. Except as ! noted below they are not run with multiple optimization options. ! 'gcc.dg/compat' This subdirectory contains tests for binary compatibility using ! 'lib/compat.exp', which in turn uses the language-independent support (*note Support for testing binary compatibility: compat Testing.). ! 'gcc.dg/cpp' This subdirectory contains tests of the preprocessor. ! 'gcc.dg/debug' This subdirectory contains tests for debug formats. Tests in this subdirectory are run for each debug format that the compiler supports. ! 'gcc.dg/format' ! This subdirectory contains tests of the '-Wformat' format checking. ! Tests in this directory are run with and without '-DWIDE'. ! 'gcc.dg/noncompile' This subdirectory contains tests of code that should not compile and does not need any special compilation options. They are run with multiple optimization options, since sometimes invalid code crashes the compiler with optimization. ! 'gcc.dg/special' FIXME: describe this. ! 'gcc.c-torture' This contains particular code fragments which have historically broken easily. These tests are run with multiple optimization options, so tests for features which only break at some ! optimization levels belong here. This also contains tests to check ! that certain optimizations occur. It might be worthwhile to ! separate the correctness tests cleanly from the code quality tests, ! but it hasn't been done yet. ! 'gcc.c-torture/compat' FIXME: describe this. This directory should probably not be used for new tests. ! 'gcc.c-torture/compile' This testsuite contains test cases that should compile, but do not need to link or run. These test cases are compiled with several different combinations of optimization options. All warnings are disabled for these test cases, so this directory is not suitable if you wish to test for the presence or absence of compiler warnings. While special options can be set, and tests disabled on specific ! platforms, by the use of '.x' files, mostly these test cases should ! not contain platform dependencies. FIXME: discuss how defines such ! as 'NO_LABEL_VALUES' and 'STACK_SIZE' are used. ! 'gcc.c-torture/execute' This testsuite contains test cases that should compile, link and ! run; otherwise the same comments as for 'gcc.c-torture/compile' apply. ! 'gcc.c-torture/execute/ieee' This contains tests which are specific to IEEE floating point. ! 'gcc.c-torture/unsorted' FIXME: describe this. This directory should probably not be used for new tests. ! 'gcc.misc-tests' This directory contains C tests that require special handling. Some of these tests have individual expect files, and others share special-purpose expect files: ! 'bprob*.c' ! Test '-fbranch-probabilities' using ! 'gcc.misc-tests/bprob.exp', which in turn uses the generic, language-independent framework (*note Support for testing profile-directed optimizations: profopt Testing.). ! 'gcov*.c' ! Test 'gcov' output using 'gcov.exp', which in turn uses the language-independent support (*note Support for testing gcov: gcov Testing.). ! 'i386-pf-*.c' Test i386-specific support for data prefetch using ! 'i386-prefetch.exp'. ! 'gcc.test-framework' ! 'dg-*.c' Test the testsuite itself using ! 'gcc.test-framework/test-framework.exp'. ! FIXME: merge in 'testsuite/README.gcc' and discuss the format of test cases and magic comments more.  --- 5616,5731 ---- 7.4 C Language Testsuites ========================= ! GCC contains the following C language testsuites, in the ! `gcc/testsuite' directory: ! `gcc.dg' ! This contains tests of particular features of the C compiler, ! using the more modern `dg' harness. Correctness tests for various compiler features should go here if possible. Magic comments determine whether the file is preprocessed, ! compiled, linked or run. In these tests, error and warning ! message texts are compared against expected texts or regular ! expressions given in comments. These tests are run with the ! options `-ansi -pedantic' unless other options are given in the ! test. Except as noted below they are not run with multiple ! optimization options. ! ! `gcc.dg/compat' This subdirectory contains tests for binary compatibility using ! `lib/compat.exp', which in turn uses the language-independent support (*note Support for testing binary compatibility: compat Testing.). ! ! `gcc.dg/cpp' This subdirectory contains tests of the preprocessor. ! ! `gcc.dg/debug' This subdirectory contains tests for debug formats. Tests in this subdirectory are run for each debug format that the compiler supports. ! ! `gcc.dg/format' ! This subdirectory contains tests of the `-Wformat' format ! checking. Tests in this directory are run with and without ! `-DWIDE'. ! ! `gcc.dg/noncompile' This subdirectory contains tests of code that should not compile and does not need any special compilation options. They are run with multiple optimization options, since sometimes invalid code crashes the compiler with optimization. ! ! `gcc.dg/special' FIXME: describe this. ! `gcc.c-torture' This contains particular code fragments which have historically broken easily. These tests are run with multiple optimization options, so tests for features which only break at some ! optimization levels belong here. This also contains tests to ! check that certain optimizations occur. It might be worthwhile to ! separate the correctness tests cleanly from the code quality ! tests, but it hasn't been done yet. ! `gcc.c-torture/compat' FIXME: describe this. This directory should probably not be used for new tests. ! ! `gcc.c-torture/compile' This testsuite contains test cases that should compile, but do not need to link or run. These test cases are compiled with several different combinations of optimization options. All warnings are disabled for these test cases, so this directory is not suitable if you wish to test for the presence or absence of compiler warnings. While special options can be set, and tests disabled on specific ! platforms, by the use of `.x' files, mostly these test cases ! should not contain platform dependencies. FIXME: discuss how ! defines such as `NO_LABEL_VALUES' and `STACK_SIZE' are used. ! ! `gcc.c-torture/execute' This testsuite contains test cases that should compile, link and ! run; otherwise the same comments as for `gcc.c-torture/compile' apply. ! ! `gcc.c-torture/execute/ieee' This contains tests which are specific to IEEE floating point. ! ! `gcc.c-torture/unsorted' FIXME: describe this. This directory should probably not be used for new tests. ! ! `gcc.misc-tests' This directory contains C tests that require special handling. Some of these tests have individual expect files, and others share special-purpose expect files: ! ``bprob*.c'' ! Test `-fbranch-probabilities' using ! `gcc.misc-tests/bprob.exp', which in turn uses the generic, language-independent framework (*note Support for testing profile-directed optimizations: profopt Testing.). ! ``gcov*.c'' ! Test `gcov' output using `gcov.exp', which in turn uses the language-independent support (*note Support for testing gcov: gcov Testing.). ! ``i386-pf-*.c'' Test i386-specific support for data prefetch using ! `i386-prefetch.exp'. ! `gcc.test-framework' ! ! ``dg-*.c'' Test the testsuite itself using ! `gcc.test-framework/test-framework.exp'. ! ! FIXME: merge in `testsuite/README.gcc' and discuss the format of test cases and magic comments more.  *************** File: gccint.info, Node: libgcj Tests, *** 5610,5629 **** 7.5 The Java library testsuites. ================================ ! Runtime tests are executed via 'make check' in the ! 'TARGET/libjava/testsuite' directory in the build tree. Additional runtime tests can be checked into this testsuite. Regression testing of the core packages in libgcj is also covered by the Mauve testsuite. The Mauve Project develops tests for the Java Class Libraries. These tests are run as part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at ! 'libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking 'make', as in 'make MAUVEDIR=~/mauve check'. ! To detect regressions, a mechanism in 'mauve.exp' compares the failures ! for a test run against the list of expected failures in ! 'libjava/testsuite/libjava.mauve/xfails' from the source hierarchy. Update this file when adding new failing tests to Mauve, or when fixing bugs in libgcj that had caused Mauve test failures. --- 5734,5753 ---- 7.5 The Java library testsuites. ================================ ! Runtime tests are executed via `make check' in the ! `TARGET/libjava/testsuite' directory in the build tree. Additional runtime tests can be checked into this testsuite. Regression testing of the core packages in libgcj is also covered by the Mauve testsuite. The Mauve Project develops tests for the Java Class Libraries. These tests are run as part of libgcj testing by placing the Mauve tree within the libjava testsuite sources at ! `libjava/testsuite/libjava.mauve/mauve', or by specifying the location ! of that tree when invoking `make', as in `make MAUVEDIR=~/mauve check'. ! To detect regressions, a mechanism in `mauve.exp' compares the ! failures for a test run against the list of expected failures in ! `libjava/testsuite/libjava.mauve/xfails' from the source hierarchy. Update this file when adding new failing tests to Mauve, or when fixing bugs in libgcj that had caused Mauve test failures. *************** Tests for link-time optimizations usuall *** 5639,5716 **** that are compiled separately, perhaps with different sets of options. There are several special-purpose test directives used for these tests. ! '{ dg-lto-do DO-WHAT-KEYWORD }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! 'assemble' ! Compile with '-c' to produce a relocatable object file. ! 'link' Compile, assemble, and link to produce an executable file. ! 'run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is 'assemble'. That can be overridden for a set of ! tests by redefining 'dg-do-what-default' within the '.exp' file for ! those tests. ! Unlike 'dg-do', 'dg-lto-do' does not support an optional 'target' ! or 'xfail' list. Use 'dg-skip-if', 'dg-xfail-if', or ! 'dg-xfail-run-if'. ! '{ dg-lto-options { { OPTIONS } [{ OPTIONS }] } [{ target SELECTOR }]}' This directive provides a list of one or more sets of compiler options to override LTO_OPTIONS. Each test will be compiled and run with each of these sets of options. ! '{ dg-extra-ld-options OPTIONS [{ target SELECTOR }]}' This directive adds OPTIONS to the linker options used. ! '{ dg-suppress-ld-options OPTIONS [{ target SELECTOR }]}' This directive removes OPTIONS from the set of linker options used.  File: gccint.info, Node: gcov Testing, Next: profopt Testing, Prev: LTO Testing, Up: Testsuites ! 7.7 Support for testing 'gcov' ============================== ! Language-independent support for testing 'gcov', and for checking that branch profiling produces expected values, is provided by the expect ! file 'lib/gcov.exp'. 'gcov' tests also rely on procedures in ! 'lib/gcc-dg.exp' to compile and run the test program. A typical 'gcov' test contains the following DejaGnu commands within comments: { dg-options "-fprofile-arcs -ftest-coverage" } { dg-do run { target native } } { dg-final { run-gcov sourcefile } } ! Checks of 'gcov' output can include line counts, branch percentages, and call return percentages. All of these checks are requested via ! commands that appear in comments in the test's source file. Commands to ! check line counts are processed by default. Commands to check branch ! percentages and call return percentages are processed if the 'run-gcov' ! command has arguments 'branches' or 'calls', respectively. For example, ! the following specifies checking both, as well as passing '-b' to ! 'gcov': { dg-final { run-gcov branches calls { -b sourcefile } } } A line count command appears within a comment on the source line that ! is expected to get the specified count and has the form 'count(CNT)'. A ! test should only check line counts for lines that will get the same count for any architecture. ! Commands to check branch percentages ('branch') and call return ! percentages ('returns') are very similar to each other. A beginning command appears on or before the first of a range of lines that will report the percentage, and the ending command follows that range of lines. The beginning command can include a list of percentages, all of which are expected to be found within the range. A range is terminated ! by the next command of the same kind. A command 'branch(end)' or ! 'returns(end)' marks the end of a range without starting a new one. For ! example: if (i > 10 && j > i && j < 20) /* branch(27 50 75) */ /* branch(end) */ --- 5763,5842 ---- that are compiled separately, perhaps with different sets of options. There are several special-purpose test directives used for these tests. ! `{ dg-lto-do DO-WHAT-KEYWORD }' DO-WHAT-KEYWORD specifies how the test is compiled and whether it is executed. It is one of: ! `assemble' ! Compile with `-c' to produce a relocatable object file. ! ! `link' Compile, assemble, and link to produce an executable file. ! ! `run' Produce and run an executable file, which is expected to return an exit code of 0. ! The default is `assemble'. That can be overridden for a set of ! tests by redefining `dg-do-what-default' within the `.exp' file ! for those tests. ! Unlike `dg-do', `dg-lto-do' does not support an optional `target' ! or `xfail' list. Use `dg-skip-if', `dg-xfail-if', or ! `dg-xfail-run-if'. ! `{ dg-lto-options { { OPTIONS } [{ OPTIONS }] } [{ target SELECTOR }]}' This directive provides a list of one or more sets of compiler options to override LTO_OPTIONS. Each test will be compiled and run with each of these sets of options. ! `{ dg-extra-ld-options OPTIONS [{ target SELECTOR }]}' This directive adds OPTIONS to the linker options used. ! `{ dg-suppress-ld-options OPTIONS [{ target SELECTOR }]}' This directive removes OPTIONS from the set of linker options used.  File: gccint.info, Node: gcov Testing, Next: profopt Testing, Prev: LTO Testing, Up: Testsuites ! 7.7 Support for testing `gcov' ============================== ! Language-independent support for testing `gcov', and for checking that branch profiling produces expected values, is provided by the expect ! file `lib/gcov.exp'. `gcov' tests also rely on procedures in ! `lib/gcc-dg.exp' to compile and run the test program. A typical `gcov' test contains the following DejaGnu commands within comments: { dg-options "-fprofile-arcs -ftest-coverage" } { dg-do run { target native } } { dg-final { run-gcov sourcefile } } ! Checks of `gcov' output can include line counts, branch percentages, and call return percentages. All of these checks are requested via ! commands that appear in comments in the test's source file. Commands ! to check line counts are processed by default. Commands to check ! branch percentages and call return percentages are processed if the ! `run-gcov' command has arguments `branches' or `calls', respectively. ! For example, the following specifies checking both, as well as passing ! `-b' to `gcov': { dg-final { run-gcov branches calls { -b sourcefile } } } A line count command appears within a comment on the source line that ! is expected to get the specified count and has the form `count(CNT)'. ! A test should only check line counts for lines that will get the same count for any architecture. ! Commands to check branch percentages (`branch') and call return ! percentages (`returns') are very similar to each other. A beginning command appears on or before the first of a range of lines that will report the percentage, and the ending command follows that range of lines. The beginning command can include a list of percentages, all of which are expected to be found within the range. A range is terminated ! by the next command of the same kind. A command `branch(end)' or ! `returns(end)' marks the end of a range without starting a new one. ! For example: if (i > 10 && j > i && j < 20) /* branch(27 50 75) */ /* branch(end) */ *************** calls reported to return. For a branch *** 5721,5730 **** the expected percentage or 100 minus that value, since the direction of a branch can differ depending on the target or the optimization level. ! Not all branches and calls need to be checked. A test should not check ! for branches that might be optimized away or replaced with predicated ! instructions. Don't check for calls inserted by the compiler or ones ! that might be inlined or optimized away. A single test can check for combinations of line counts, branch percentages, and call return percentages. The command to check a line --- 5847,5856 ---- the expected percentage or 100 minus that value, since the direction of a branch can differ depending on the target or the optimization level. ! Not all branches and calls need to be checked. A test should not ! check for branches that might be optimized away or replaced with ! predicated instructions. Don't check for calls inserted by the ! compiler or ones that might be inlined or optimized away. A single test can check for combinations of line counts, branch percentages, and call return percentages. The command to check a line *************** File: gccint.info, Node: profopt Testin *** 5738,5781 **** 7.8 Support for testing profile-directed optimizations ====================================================== ! The file 'profopt.exp' provides language-independent support for checking correct execution of a test built with profile-directed optimization. This testing requires that a test program be built and ! executed twice. The first time it is compiled to generate profile data, ! and the second time it is compiled to use the data that was generated ! during the first execution. The second execution is to verify that the ! test produces the expected results. To check that the optimization actually generated better code, a test can be built and run a third time with normal optimizations to verify that the performance is better with the profile-directed optimizations. ! 'profopt.exp' has the beginnings of this kind of support. ! 'profopt.exp' provides generic support for profile-directed optimizations. Each set of tests that uses it provides information about a specific optimization: ! 'tool' ! tool being tested, e.g., 'gcc' ! 'profile_option' options used to generate profile data ! 'feedback_option' options used to optimize using that profile data ! 'prof_ext' suffix of profile data files ! 'PROFOPT_OPTIONS' list of options with which to run each test, similar to the lists for torture tests ! '{ dg-final-generate { LOCAL-DIRECTIVE } }' ! This directive is similar to 'dg-final', but the LOCAL-DIRECTIVE is ! run after the generation of profile data. ! '{ dg-final-use { LOCAL-DIRECTIVE } }' The LOCAL-DIRECTIVE is run after the profile data have been used.  --- 5864,5907 ---- 7.8 Support for testing profile-directed optimizations ====================================================== ! The file `profopt.exp' provides language-independent support for checking correct execution of a test built with profile-directed optimization. This testing requires that a test program be built and ! executed twice. The first time it is compiled to generate profile ! data, and the second time it is compiled to use the data that was ! generated during the first execution. The second execution is to ! verify that the test produces the expected results. To check that the optimization actually generated better code, a test can be built and run a third time with normal optimizations to verify that the performance is better with the profile-directed optimizations. ! `profopt.exp' has the beginnings of this kind of support. ! `profopt.exp' provides generic support for profile-directed optimizations. Each set of tests that uses it provides information about a specific optimization: ! `tool' ! tool being tested, e.g., `gcc' ! `profile_option' options used to generate profile data ! `feedback_option' options used to optimize using that profile data ! `prof_ext' suffix of profile data files ! `PROFOPT_OPTIONS' list of options with which to run each test, similar to the lists for torture tests ! `{ dg-final-generate { LOCAL-DIRECTIVE } }' ! This directive is similar to `dg-final', but the LOCAL-DIRECTIVE ! is run after the generation of profile data. ! `{ dg-final-use { LOCAL-DIRECTIVE } }' The LOCAL-DIRECTIVE is run after the profile data have been used.  *************** File: gccint.info, Node: compat Testing *** 5784,5808 **** 7.9 Support for testing binary compatibility ============================================ ! The file 'compat.exp' provides language-independent support for binary compatibility testing. It supports testing interoperability of two compilers that follow the same ABI, or of multiple sets of compiler options that should not affect binary compatibility. It is intended to be used for testsuites that complement ABI testsuites. A test supported by this framework has three parts, each in a separate ! source file: a main program and two pieces that interact with each other ! to split up the functionality being tested. ! 'TESTNAME_main.SUFFIX' Contains the main program, which calls a function in file ! 'TESTNAME_x.SUFFIX'. ! 'TESTNAME_x.SUFFIX' ! Contains at least one call to a function in 'TESTNAME_y.SUFFIX'. ! 'TESTNAME_y.SUFFIX' ! Shares data with, or gets arguments from, 'TESTNAME_x.SUFFIX'. Within each test, the main program and one functional piece are compiled by the GCC under test. The other piece can be compiled by an --- 5910,5934 ---- 7.9 Support for testing binary compatibility ============================================ ! The file `compat.exp' provides language-independent support for binary compatibility testing. It supports testing interoperability of two compilers that follow the same ABI, or of multiple sets of compiler options that should not affect binary compatibility. It is intended to be used for testsuites that complement ABI testsuites. A test supported by this framework has three parts, each in a separate ! source file: a main program and two pieces that interact with each ! other to split up the functionality being tested. ! `TESTNAME_main.SUFFIX' Contains the main program, which calls a function in file ! `TESTNAME_x.SUFFIX'. ! `TESTNAME_x.SUFFIX' ! Contains at least one call to a function in `TESTNAME_y.SUFFIX'. ! `TESTNAME_y.SUFFIX' ! Shares data with, or gets arguments from, `TESTNAME_x.SUFFIX'. Within each test, the main program and one functional piece are compiled by the GCC under test. The other piece can be compiled by an *************** pair specifies options used with the GCC *** 5813,5845 **** element of the pair specifies options used with the alternate compiler. Each test is compiled with each pair of options. ! 'compat.exp' defines default pairs of compiler options. These can be ! overridden by defining the environment variable 'COMPAT_OPTIONS' as: COMPAT_OPTIONS="[list [list {TST1} {ALT1}] ...[list {TSTN} {ALTN}]]" where TSTI and ALTI are lists of options, with TSTI used by the compiler under test and ALTI used by the alternate compiler. For ! example, with '[list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]]', ! the test is first built with '-g -O0' by the compiler under test and ! with '-O3' by the alternate compiler. The test is built a second time ! using '-fpic' by the compiler under test and '-fPIC -O2' by the alternate compiler. An alternate compiler is specified by defining an environment variable to be the full pathname of an installed compiler; for C define ! 'ALT_CC_UNDER_TEST', and for C++ define 'ALT_CXX_UNDER_TEST'. These ! will be written to the 'site.exp' file used by DejaGnu. The default is to build each test with the compiler under test using the first of each ! pair of compiler options from 'COMPAT_OPTIONS'. When ! 'ALT_CC_UNDER_TEST' or 'ALT_CXX_UNDER_TEST' is 'same', each test is ! built using the compiler under test but with combinations of the options ! from 'COMPAT_OPTIONS'. To run only the C++ compatibility suite using the compiler under test and another version of GCC using specific compiler options, do the ! following from 'OBJDIR/gcc': rm site.exp make -k \ --- 5939,5971 ---- element of the pair specifies options used with the alternate compiler. Each test is compiled with each pair of options. ! `compat.exp' defines default pairs of compiler options. These can be ! overridden by defining the environment variable `COMPAT_OPTIONS' as: COMPAT_OPTIONS="[list [list {TST1} {ALT1}] ...[list {TSTN} {ALTN}]]" where TSTI and ALTI are lists of options, with TSTI used by the compiler under test and ALTI used by the alternate compiler. For ! example, with `[list [list {-g -O0} {-O3}] [list {-fpic} {-fPIC -O2}]]', ! the test is first built with `-g -O0' by the compiler under test and ! with `-O3' by the alternate compiler. The test is built a second time ! using `-fpic' by the compiler under test and `-fPIC -O2' by the alternate compiler. An alternate compiler is specified by defining an environment variable to be the full pathname of an installed compiler; for C define ! `ALT_CC_UNDER_TEST', and for C++ define `ALT_CXX_UNDER_TEST'. These ! will be written to the `site.exp' file used by DejaGnu. The default is to build each test with the compiler under test using the first of each ! pair of compiler options from `COMPAT_OPTIONS'. When ! `ALT_CC_UNDER_TEST' or `ALT_CXX_UNDER_TEST' is `same', each test is ! built using the compiler under test but with combinations of the ! options from `COMPAT_OPTIONS'. To run only the C++ compatibility suite using the compiler under test and another version of GCC using specific compiler options, do the ! following from `OBJDIR/gcc': rm site.exp make -k \ *************** compiler under test but is present in th *** 5858,5874 **** The binary compatibility tests support a small number of test framework commands that appear within comments in a test file. ! 'dg-require-*' ! These commands can be used in 'TESTNAME_main.SUFFIX' to skip the test if specific support is not available on the target. ! 'dg-options' The specified options are used for compiling this particular source ! file, appended to the options from 'COMPAT_OPTIONS'. When this ! command appears in 'TESTNAME_main.SUFFIX' the options are also used ! to link the test program. ! 'dg-xfail-if' This command can be used in a secondary source file to specify that compilation is expected to fail for particular options on particular targets. --- 5984,6000 ---- The binary compatibility tests support a small number of test framework commands that appear within comments in a test file. ! `dg-require-*' ! These commands can be used in `TESTNAME_main.SUFFIX' to skip the test if specific support is not available on the target. ! `dg-options' The specified options are used for compiling this particular source ! file, appended to the options from `COMPAT_OPTIONS'. When this ! command appears in `TESTNAME_main.SUFFIX' the options are also ! used to link the test program. ! `dg-xfail-if' This command can be used in a secondary source file to specify that compilation is expected to fail for particular options on particular targets. *************** File: gccint.info, Node: Torture Tests, *** 5881,5916 **** Throughout the compiler testsuite there are several directories whose tests are run multiple times, each with a different set of options. ! These are known as torture tests. 'lib/torture-options.exp' defines procedures to set up these lists: ! 'torture-init' Initialize use of torture lists. ! 'set-torture-options' Set lists of torture options to use for tests with and without loops. Optionally combine a set of torture options with a set of other options, as is done with Objective-C runtime options. ! 'torture-finish' Finalize use of torture lists. ! The '.exp' file for a set of tests that use torture options must include calls to these three procedures if: ! * It calls 'gcc-dg-runtest' and overrides DG_TORTURE_OPTIONS. ! * It calls ${TOOL}'-torture' or ${TOOL}'-torture-execute', where TOOL ! is 'c', 'fortran', or 'objc'. ! * It calls 'dg-pch'. ! It is not necessary for a '.exp' file that calls 'gcc-dg-runtest' to call the torture procedures if the tests should use the list in ! DG_TORTURE_OPTIONS defined in 'gcc-dg.exp'. Most uses of torture options can override the default lists by defining TORTURE_OPTIONS or add to the default list by defining ! ADDITIONAL_TORTURE_OPTIONS. Define these in a '.dejagnurc' file or add ! them to the 'site.exp' file; for example set ADDITIONAL_TORTURE_OPTIONS [list \ { -O2 -ftree-loop-linear } \ --- 6007,6044 ---- Throughout the compiler testsuite there are several directories whose tests are run multiple times, each with a different set of options. ! These are known as torture tests. `lib/torture-options.exp' defines procedures to set up these lists: ! `torture-init' Initialize use of torture lists. ! ! `set-torture-options' Set lists of torture options to use for tests with and without loops. Optionally combine a set of torture options with a set of other options, as is done with Objective-C runtime options. ! ! `torture-finish' Finalize use of torture lists. ! The `.exp' file for a set of tests that use torture options must include calls to these three procedures if: ! * It calls `gcc-dg-runtest' and overrides DG_TORTURE_OPTIONS. ! * It calls ${TOOL}`-torture' or ${TOOL}`-torture-execute', where ! TOOL is `c', `fortran', or `objc'. ! * It calls `dg-pch'. ! It is not necessary for a `.exp' file that calls `gcc-dg-runtest' to call the torture procedures if the tests should use the list in ! DG_TORTURE_OPTIONS defined in `gcc-dg.exp'. Most uses of torture options can override the default lists by defining TORTURE_OPTIONS or add to the default list by defining ! ADDITIONAL_TORTURE_OPTIONS. Define these in a `.dejagnurc' file or add ! them to the `site.exp' file; for example set ADDITIONAL_TORTURE_OPTIONS [list \ { -O2 -ftree-loop-linear } \ *************** File: gccint.info, Node: Options, Next *** 5922,5930 **** 8 Option specification files **************************** ! Most GCC command-line options are described by special option definition ! files, the names of which conventionally end in '.opt'. This chapter ! describes the format of these files. * Menu: --- 6050,6058 ---- 8 Option specification files **************************** ! Most GCC command-line options are described by special option ! definition files, the names of which conventionally end in `.opt'. ! This chapter describes the format of these files. * Menu: *************** semicolon. *** 5946,6071 **** The files can contain the following types of record: * A language definition record. These records have two fields: the ! string 'Language' and the name of the language. Once a language has been declared in this way, it can be used as an option property. *Note Option properties::. ! * A target specific save record to save additional information. ! These records have two fields: the string 'TargetSave', and a ! declaration type to go in the 'cl_target_option' structure. * A variable record to define a variable used to store option ! information. These records have two fields: the string 'Variable', ! and a declaration of the type and name of the variable, optionally ! with an initializer (but without any trailing ';'). These records ! may be used for variables used for many options where declaring the ! initializer in a single option definition record, or duplicating it ! in many records, would be inappropriate, or for variables set in ! option handlers rather than referenced by 'Var' properties. * A variable record to define a variable used to store option information. These records have two fields: the string ! 'TargetVariable', and a declaration of the type and name of the variable, optionally with an initializer (but without any trailing ! ';'). 'TargetVariable' is a combination of 'Variable' and ! 'TargetSave' records in that the variable is defined in the ! 'gcc_options' structure, but these variables are also stored in the ! 'cl_target_option' structure. The variables are saved in the target save code and restored in the target restore code. * A variable record to record any additional files that the ! 'options.h' file should include. This is useful to provide enumeration or structure definitions needed for target variables. ! These records have two fields: the string 'HeaderInclude' and the name of the include file. * A variable record to record any additional files that the ! 'options.c' or 'options-save.c' file should include. This is useful to provide inline functions needed for target variables ! and/or '#ifdef' sequences to properly set up the initialization. ! These records have two fields: the string 'SourceInclude' and the name of the include file. * An enumeration record to define a set of strings that may be used as arguments to an option or options. These records have three ! fields: the string 'Enum', a space-separated list of properties and ! help text used to describe the set of strings in '--help' output. ! Properties use the same format as option properties; the following ! are valid: ! 'Name(NAME)' This property is required; NAME must be a name (suitable for use in C identifiers) used to identify the set of strings in ! 'Enum' option properties. ! 'Type(TYPE)' This property is required; TYPE is the C type for variables ! set by options using this enumeration together with 'Var'. ! 'UnknownError(MESSAGE)' The message MESSAGE will be used as an error message if the ! argument is invalid; for enumerations without 'UnknownError', a generic error message is used. MESSAGE should contain a ! single '%qs' format, which will be used to format the invalid argument. * An enumeration value record to define one of the strings in a set ! given in an 'Enum' record. These records have two fields: the ! string 'EnumValue' and a space-separated list of properties. Properties use the same format as option properties; the following are valid: ! 'Enum(NAME)' ! This property is required; NAME says which 'Enum' record this ! 'EnumValue' record corresponds to. ! 'String(STRING)' This property is required; STRING is the string option argument being described by this record. ! 'Value(VALUE)' This property is required; it says what value (representable ! as 'int') should be used for the given string. ! 'Canonical' This property is optional. If present, it says the present string is the canonical one among all those with the given value. Other strings yielding that value will be mapped to this one so specs do not need to handle them. ! 'DriverOnly' This property is optional. If present, the present string will only be accepted by the driver. This is used for cases ! such as '-march=native' that are processed by the driver so ! that 'gcc -v' shows how the options chosen depended on the system on which the compiler was run. * An option definition record. These records have the following fields: 1. the name of the option, with the leading "-" removed 2. a space-separated list of option properties (*note Option properties::) ! 3. the help text to use for '--help' (omitted if the second field ! contains the 'Undocumented' property). By default, all options beginning with "f", "W" or "m" are implicitly assumed to take a "no-" form. This form should not be listed separately. If an option beginning with one of these letters does not have a "no-" form, you can use the ! 'RejectNegative' property to reject it. The help text is automatically line-wrapped before being displayed. Normally the name of the option is printed on the left-hand side of the output and the help text is printed on the right. However, if ! the help text contains a tab character, the text to the left of the ! tab is used instead of the option's name and the text to the right ! of the tab forms the help text. This allows you to elaborate on ! what type of argument the option takes. * A target mask record. These records have one field of the form ! 'Mask(X)'. The options-processing script will automatically ! allocate a bit in 'target_flags' (*note Run-time Target::) for each ! mask name X and set the macro 'MASK_X' to the appropriate bitmask. ! It will also declare a 'TARGET_X' macro that has the value 1 when ! bit 'MASK_X' is set and 0 otherwise. They are primarily intended to declare target masks that are not associated with user options, either because these masks represent --- 6074,6202 ---- The files can contain the following types of record: * A language definition record. These records have two fields: the ! string `Language' and the name of the language. Once a language has been declared in this way, it can be used as an option property. *Note Option properties::. ! * A target specific save record to save additional information. These ! records have two fields: the string `TargetSave', and a ! declaration type to go in the `cl_target_option' structure. * A variable record to define a variable used to store option ! information. These records have two fields: the string ! `Variable', and a declaration of the type and name of the ! variable, optionally with an initializer (but without any trailing ! `;'). These records may be used for variables used for many ! options where declaring the initializer in a single option ! definition record, or duplicating it in many records, would be ! inappropriate, or for variables set in option handlers rather than ! referenced by `Var' properties. * A variable record to define a variable used to store option information. These records have two fields: the string ! `TargetVariable', and a declaration of the type and name of the variable, optionally with an initializer (but without any trailing ! `;'). `TargetVariable' is a combination of `Variable' and ! `TargetSave' records in that the variable is defined in the ! `gcc_options' structure, but these variables are also stored in ! the `cl_target_option' structure. The variables are saved in the target save code and restored in the target restore code. * A variable record to record any additional files that the ! `options.h' file should include. This is useful to provide enumeration or structure definitions needed for target variables. ! These records have two fields: the string `HeaderInclude' and the name of the include file. * A variable record to record any additional files that the ! `options.c' or `options-save.c' file should include. This is useful to provide inline functions needed for target variables ! and/or `#ifdef' sequences to properly set up the initialization. ! These records have two fields: the string `SourceInclude' and the name of the include file. * An enumeration record to define a set of strings that may be used as arguments to an option or options. These records have three ! fields: the string `Enum', a space-separated list of properties ! and help text used to describe the set of strings in `--help' ! output. Properties use the same format as option properties; the ! following are valid: ! `Name(NAME)' This property is required; NAME must be a name (suitable for use in C identifiers) used to identify the set of strings in ! `Enum' option properties. ! `Type(TYPE)' This property is required; TYPE is the C type for variables ! set by options using this enumeration together with `Var'. ! `UnknownError(MESSAGE)' The message MESSAGE will be used as an error message if the ! argument is invalid; for enumerations without `UnknownError', a generic error message is used. MESSAGE should contain a ! single `%qs' format, which will be used to format the invalid argument. * An enumeration value record to define one of the strings in a set ! given in an `Enum' record. These records have two fields: the ! string `EnumValue' and a space-separated list of properties. Properties use the same format as option properties; the following are valid: ! `Enum(NAME)' ! This property is required; NAME says which `Enum' record this ! `EnumValue' record corresponds to. ! `String(STRING)' This property is required; STRING is the string option argument being described by this record. ! `Value(VALUE)' This property is required; it says what value (representable ! as `int') should be used for the given string. ! `Canonical' This property is optional. If present, it says the present string is the canonical one among all those with the given value. Other strings yielding that value will be mapped to this one so specs do not need to handle them. ! `DriverOnly' This property is optional. If present, the present string will only be accepted by the driver. This is used for cases ! such as `-march=native' that are processed by the driver so ! that `gcc -v' shows how the options chosen depended on the system on which the compiler was run. * An option definition record. These records have the following fields: 1. the name of the option, with the leading "-" removed + 2. a space-separated list of option properties (*note Option properties::) ! ! 3. the help text to use for `--help' (omitted if the second field ! contains the `Undocumented' property). By default, all options beginning with "f", "W" or "m" are implicitly assumed to take a "no-" form. This form should not be listed separately. If an option beginning with one of these letters does not have a "no-" form, you can use the ! `RejectNegative' property to reject it. The help text is automatically line-wrapped before being displayed. Normally the name of the option is printed on the left-hand side of the output and the help text is printed on the right. However, if ! the help text contains a tab character, the text to the left of ! the tab is used instead of the option's name and the text to the ! right of the tab forms the help text. This allows you to ! elaborate on what type of argument the option takes. * A target mask record. These records have one field of the form ! `Mask(X)'. The options-processing script will automatically ! allocate a bit in `target_flags' (*note Run-time Target::) for ! each mask name X and set the macro `MASK_X' to the appropriate ! bitmask. It will also declare a `TARGET_X' macro that has the ! value 1 when bit `MASK_X' is set and 0 otherwise. They are primarily intended to declare target masks that are not associated with user options, either because these masks represent *************** File: gccint.info, Node: Option propert *** 6080,6372 **** The second field of an option record can specify any of the following properties. When an option takes an argument, it is enclosed in ! parentheses following the option property name. The parser that handles ! option files is quite simplistic, and will be tricked by any nested ! parentheses within the argument text itself; in this case, the entire ! option argument can be wrapped in curly braces within the parentheses to ! demarcate it, e.g.: Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)}) ! 'Common' The option is available for all languages and targets. ! 'Target' The option is available for all languages but is target-specific. ! 'Driver' The option is handled by the compiler driver using code not shared ! with the compilers proper ('cc1' etc.). ! 'LANGUAGE' The option is available when compiling for the given language. It is possible to specify several different languages for the same option. Each LANGUAGE must have been declared by an earlier ! 'Language' record. *Note Option file format::. ! 'RejectDriver' ! The option is only handled by the compilers proper ('cc1' etc.) and ! should not be accepted by the driver. ! 'RejectNegative' The option does not have a "no-" form. All options beginning with "f", "W" or "m" are assumed to have a "no-" form unless this property is used. ! 'Negative(OTHERNAME)' The option will turn off another option OTHERNAME, which is the option name with the leading "-" removed. This chain action will ! propagate through the 'Negative' property of the option to be turned off. As a consequence, if you have a group of mutually-exclusive ! options, their 'Negative' properties should form a circular chain. ! For example, if options '-A', '-B' and '-C' are mutually exclusive, ! their respective 'Negative' properties should be 'Negative(B)', ! 'Negative(C)' and 'Negative(A)'. ! 'Joined' ! 'Separate' ! The option takes a mandatory argument. 'Joined' indicates that the ! option and argument can be included in the same 'argv' entry (as ! with '-mflush-func=NAME', for example). 'Separate' indicates that ! the option and argument can be separate 'argv' entries (as with ! '-o'). An option is allowed to have both of these properties. ! 'JoinedOrMissing' The option takes an optional argument. If the argument is given, ! it will be part of the same 'argv' entry as the option itself. ! This property cannot be used alongside 'Joined' or 'Separate'. ! 'MissingArgError(MESSAGE)' ! For an option marked 'Joined' or 'Separate', the message MESSAGE will be used as an error message if the mandatory argument is ! missing; for options without 'MissingArgError', a generic error ! message is used. MESSAGE should contain a single '%qs' format, which will be used to format the name of the option passed. ! 'Args(N)' ! For an option marked 'Separate', indicate that it takes N arguments. The default is 1. ! 'UInteger' The option's argument is a non-negative integer. The option parser will check and convert the argument before passing it to the ! relevant option handler. 'UInteger' should also be used on options ! like '-falign-loops' where both '-falign-loops' and ! '-falign-loops'=N are supported to make sure the saved options are given a full integer. ! 'ToLower' The option's argument should be converted to lowercase as part of putting it in canonical form, and before comparing with the strings ! indicated by any 'Enum' property. ! 'NoDriverArg' ! For an option marked 'Separate', the option only takes an argument in the compiler proper, not in the driver. This is for compatibility with existing options that are used both directly and ! via '-Wp,'; new options should not have this property. ! 'Var(VAR)' ! The state of this option should be stored in variable VAR (actually ! a macro for 'global_options.x_VAR'). The way that the state is ! stored depends on the type of option: ! * If the option uses the 'Mask' or 'InverseMask' properties, VAR ! is the integer variable that contains the mask. * If the option is a normal on/off switch, VAR is an integer variable that is nonzero when the option is enabled. The options parser will set the variable to 1 when the positive form of the option is used and 0 when the "no-" form is used. ! * If the option takes an argument and has the 'UInteger' property, VAR is an integer variable that stores the value of the argument. ! * If the option takes an argument and has the 'Enum' property, ! VAR is a variable (type given in the 'Type' property of the ! 'Enum' record whose 'Name' property has the same argument as ! the 'Enum' property of this option) that stores the value of the argument. ! * If the option has the 'Defer' property, VAR is a pointer to a ! 'VEC(cl_deferred_option,heap)' that stores the option for ! later processing. (VAR is declared with type 'void *' and ! needs to be cast to 'VEC(cl_deferred_option,heap)' before use.) * Otherwise, if the option takes an argument, VAR is a pointer to the argument string. The pointer will be null if the argument is optional and wasn't given. ! The option-processing script will usually zero-initialize VAR. You ! can modify this behavior using 'Init'. ! 'Var(VAR, SET)' The option controls an integer variable VAR and is active when VAR equals SET. The option parser will set VAR to SET when the ! positive form of the option is used and '!SET' when the "no-" form is used. VAR is declared in the same way as for the single-argument form described above. ! 'Init(VALUE)' ! The variable specified by the 'Var' property should be statically initialized to VALUE. If more than one option using the same ! variable specifies 'Init', all must specify the same initializer. ! 'Mask(NAME)' ! The option is associated with a bit in the 'target_flags' variable (*note Run-time Target::) and is active when that bit is set. You ! may also specify 'Var' to select a variable other than ! 'target_flags'. The options-processing script will automatically allocate a unique ! bit for the option. If the option is attached to 'target_flags', ! the script will set the macro 'MASK_NAME' to the appropriate ! bitmask. It will also declare a 'TARGET_NAME' macro that has the value 1 when the option is active and 0 otherwise. If you use ! 'Var' to attach the option to a different variable, the bitmask ! macro with be called 'OPTION_MASK_NAME'. ! 'InverseMask(OTHERNAME)' ! 'InverseMask(OTHERNAME, THISNAME)' The option is the inverse of another option that has the ! 'Mask(OTHERNAME)' property. If THISNAME is given, the ! options-processing script will declare a 'TARGET_THISNAME' macro that is 1 when the option is active and 0 otherwise. ! 'Enum(NAME)' The option's argument is a string from the set of strings ! associated with the corresponding 'Enum' record. The string is checked and converted to the integer specified in the corresponding ! 'EnumValue' record before being passed to option handlers. ! 'Defer' ! The option should be stored in a vector, specified with 'Var', for later processing. ! 'Alias(OPT)' ! 'Alias(OPT, ARG)' ! 'Alias(OPT, POSARG, NEGARG)' ! The option is an alias for '-OPT' (or the negative form of that ! option, depending on 'NegativeAlias'). In the first form, any ! argument passed to the alias is considered to be passed to '-OPT', ! and '-OPT' is considered to be negated if the alias is used in negated form. In the second form, the alias may not be negated or have an argument, and POSARG is considered to be passed as an ! argument to '-OPT'. In the third form, the alias may not have an argument, if the alias is used in the positive form then POSARG is ! considered to be passed to '-OPT', and if the alias is used in the ! negative form then NEGARG is considered to be passed to '-OPT'. ! Aliases should not specify 'Var' or 'Mask' or 'UInteger'. Aliases should normally specify the same languages as the target of the alias; the flags on the target will be used to determine any ! diagnostic for use of an option for the wrong language, while those ! on the alias will be used to identify what command-line text is the ! option and what text is any argument to that option. ! When an 'Alias' definition is used for an option, driver specs do ! not need to handle it and no 'OPT_' enumeration value is defined for it; only the canonical form of the option will be seen in those places. ! 'NegativeAlias' ! For an option marked with 'Alias(OPT)', the option is considered to ! be an alias for the positive form of '-OPT' if negated and for the ! negative form of '-OPT' if not negated. 'NegativeAlias' may not be ! used with the forms of 'Alias' taking more than one argument. ! 'Ignore' This option is ignored apart from printing any warning specified ! using 'Warn'. The option will not be seen by specs and no 'OPT_' enumeration value is defined for it. ! 'SeparateAlias' ! For an option marked with 'Joined', 'Separate' and 'Alias', the option only acts as an alias when passed a separate argument; with ! a joined argument it acts as a normal option, with an 'OPT_' ! enumeration value. This is for compatibility with the Java '-d' option and should not be used for new options. ! 'Warn(MESSAGE)' If this option is used, output the warning MESSAGE. MESSAGE is a ! format string, either taking a single operand with a '%qs' format which is the option name, or not taking any operands, which is ! passed to the 'warning' function. If an alias is marked 'Warn', ! the target of the alias must not also be marked 'Warn'. ! 'Report' ! The state of the option should be printed by '-fverbose-asm'. ! 'Warning' ! This is a warning option and should be shown as such in '--help' output. This flag does not currently affect anything other than ! '--help'. ! 'Optimization' This is an optimization option. It should be shown as such in ! '--help' output, and any associated variable named using 'Var' ! should be saved and restored when the optimization level is changed ! with 'optimize' attributes. ! 'Undocumented' The option is deliberately missing documentation and should not be ! included in the '--help' output. ! 'Condition(COND)' The option should only be accepted if preprocessor condition COND is true. Note that any C declarations associated with the option ! will be present even if COND is false; COND simply controls whether ! the option is accepted and whether it is printed in the '--help' ! output. ! 'Save' ! Build the 'cl_target_option' structure to hold a copy of the ! option, add the functions 'cl_target_option_save' and ! 'cl_target_option_restore' to save and restore the options. ! 'SetByCombined' The option may also be set by a combined option such as ! '-ffast-math'. This causes the 'gcc_options' struct to have a ! field 'frontend_set_NAME', where 'NAME' is the name of the field ! holding the value of this option (without the leading 'x_'). This gives the front end a way to indicate that the value has been set explicitly and should not be changed by the combined option. For ! example, some front ends use this to prevent '-ffast-math' and ! '-fno-fast-math' from changing the value of '-fmath-errno' for ! languages that do not use 'errno'. ! 'EnabledBy(OPT)' ! 'EnabledBy(OPT && OPT2)' ! If not explicitly set, the option is set to the value of '-OPT'. The second form specifies that the option is only set if both OPT and OPT2 are set. ! 'LangEnabledBy(LANGUAGE, OPT)' ! 'LangEnabledBy(LANGUAGE, OPT, POSARG, NEGARG)' When compiling for the given language, the option is set to the ! value of '-OPT', if not explicitly set. In the second form, if OPT ! is used in the positive form then POSARG is considered to be passed ! to the option, and if OPT is used in the negative form then NEGARG ! is considered to be passed to the option. It is possible to ! specify several different languages. Each LANGUAGE must have been ! declared by an earlier 'Language' record. *Note Option file format::. ! 'NoDWARFRecord' The option is omitted from the producer string written by ! '-grecord-gcc-switches'. ! 'PchIgnore' ! Even if this is a target option, this option will not be recorded / ! compared to determine if a precompiled header file matches.  File: gccint.info, Node: Passes, Next: GENERIC, Prev: Options, Up: Top --- 6211,6504 ---- The second field of an option record can specify any of the following properties. When an option takes an argument, it is enclosed in ! parentheses following the option property name. The parser that ! handles option files is quite simplistic, and will be tricked by any ! nested parentheses within the argument text itself; in this case, the ! entire option argument can be wrapped in curly braces within the ! parentheses to demarcate it, e.g.: Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)}) ! `Common' The option is available for all languages and targets. ! `Target' The option is available for all languages but is target-specific. ! `Driver' The option is handled by the compiler driver using code not shared ! with the compilers proper (`cc1' etc.). ! `LANGUAGE' The option is available when compiling for the given language. It is possible to specify several different languages for the same option. Each LANGUAGE must have been declared by an earlier ! `Language' record. *Note Option file format::. ! `RejectDriver' ! The option is only handled by the compilers proper (`cc1' etc.) ! and should not be accepted by the driver. ! `RejectNegative' The option does not have a "no-" form. All options beginning with "f", "W" or "m" are assumed to have a "no-" form unless this property is used. ! `Negative(OTHERNAME)' The option will turn off another option OTHERNAME, which is the option name with the leading "-" removed. This chain action will ! propagate through the `Negative' property of the option to be turned off. As a consequence, if you have a group of mutually-exclusive ! options, their `Negative' properties should form a circular chain. ! For example, if options `-A', `-B' and `-C' are mutually ! exclusive, their respective `Negative' properties should be ! `Negative(B)', `Negative(C)' and `Negative(A)'. ! `Joined' ! `Separate' ! The option takes a mandatory argument. `Joined' indicates that ! the option and argument can be included in the same `argv' entry ! (as with `-mflush-func=NAME', for example). `Separate' indicates ! that the option and argument can be separate `argv' entries (as ! with `-o'). An option is allowed to have both of these properties. ! `JoinedOrMissing' The option takes an optional argument. If the argument is given, ! it will be part of the same `argv' entry as the option itself. ! This property cannot be used alongside `Joined' or `Separate'. ! `MissingArgError(MESSAGE)' ! For an option marked `Joined' or `Separate', the message MESSAGE will be used as an error message if the mandatory argument is ! missing; for options without `MissingArgError', a generic error ! message is used. MESSAGE should contain a single `%qs' format, which will be used to format the name of the option passed. ! `Args(N)' ! For an option marked `Separate', indicate that it takes N arguments. The default is 1. ! `UInteger' The option's argument is a non-negative integer. The option parser will check and convert the argument before passing it to the ! relevant option handler. `UInteger' should also be used on ! options like `-falign-loops' where both `-falign-loops' and ! `-falign-loops'=N are supported to make sure the saved options are given a full integer. ! `ToLower' The option's argument should be converted to lowercase as part of putting it in canonical form, and before comparing with the strings ! indicated by any `Enum' property. ! `NoDriverArg' ! For an option marked `Separate', the option only takes an argument in the compiler proper, not in the driver. This is for compatibility with existing options that are used both directly and ! via `-Wp,'; new options should not have this property. ! `Var(VAR)' ! The state of this option should be stored in variable VAR ! (actually a macro for `global_options.x_VAR'). The way that the ! state is stored depends on the type of option: ! * If the option uses the `Mask' or `InverseMask' properties, ! VAR is the integer variable that contains the mask. * If the option is a normal on/off switch, VAR is an integer variable that is nonzero when the option is enabled. The options parser will set the variable to 1 when the positive form of the option is used and 0 when the "no-" form is used. ! * If the option takes an argument and has the `UInteger' property, VAR is an integer variable that stores the value of the argument. ! * If the option takes an argument and has the `Enum' property, ! VAR is a variable (type given in the `Type' property of the ! `Enum' record whose `Name' property has the same argument as ! the `Enum' property of this option) that stores the value of the argument. ! * If the option has the `Defer' property, VAR is a pointer to a ! `VEC(cl_deferred_option,heap)' that stores the option for ! later processing. (VAR is declared with type `void *' and ! needs to be cast to `VEC(cl_deferred_option,heap)' before use.) * Otherwise, if the option takes an argument, VAR is a pointer to the argument string. The pointer will be null if the argument is optional and wasn't given. ! The option-processing script will usually zero-initialize VAR. ! You can modify this behavior using `Init'. ! `Var(VAR, SET)' The option controls an integer variable VAR and is active when VAR equals SET. The option parser will set VAR to SET when the ! positive form of the option is used and `!SET' when the "no-" form is used. VAR is declared in the same way as for the single-argument form described above. ! `Init(VALUE)' ! The variable specified by the `Var' property should be statically initialized to VALUE. If more than one option using the same ! variable specifies `Init', all must specify the same initializer. ! `Mask(NAME)' ! The option is associated with a bit in the `target_flags' variable (*note Run-time Target::) and is active when that bit is set. You ! may also specify `Var' to select a variable other than ! `target_flags'. The options-processing script will automatically allocate a unique ! bit for the option. If the option is attached to `target_flags', ! the script will set the macro `MASK_NAME' to the appropriate ! bitmask. It will also declare a `TARGET_NAME' macro that has the value 1 when the option is active and 0 otherwise. If you use ! `Var' to attach the option to a different variable, the bitmask ! macro with be called `OPTION_MASK_NAME'. ! `InverseMask(OTHERNAME)' ! `InverseMask(OTHERNAME, THISNAME)' The option is the inverse of another option that has the ! `Mask(OTHERNAME)' property. If THISNAME is given, the ! options-processing script will declare a `TARGET_THISNAME' macro that is 1 when the option is active and 0 otherwise. ! `Enum(NAME)' The option's argument is a string from the set of strings ! associated with the corresponding `Enum' record. The string is checked and converted to the integer specified in the corresponding ! `EnumValue' record before being passed to option handlers. ! `Defer' ! The option should be stored in a vector, specified with `Var', for later processing. ! `Alias(OPT)' ! `Alias(OPT, ARG)' ! `Alias(OPT, POSARG, NEGARG)' ! The option is an alias for `-OPT' (or the negative form of that ! option, depending on `NegativeAlias'). In the first form, any ! argument passed to the alias is considered to be passed to `-OPT', ! and `-OPT' is considered to be negated if the alias is used in negated form. In the second form, the alias may not be negated or have an argument, and POSARG is considered to be passed as an ! argument to `-OPT'. In the third form, the alias may not have an argument, if the alias is used in the positive form then POSARG is ! considered to be passed to `-OPT', and if the alias is used in the ! negative form then NEGARG is considered to be passed to `-OPT'. ! Aliases should not specify `Var' or `Mask' or `UInteger'. Aliases should normally specify the same languages as the target of the alias; the flags on the target will be used to determine any ! diagnostic for use of an option for the wrong language, while ! those on the alias will be used to identify what command-line text ! is the option and what text is any argument to that option. ! When an `Alias' definition is used for an option, driver specs do ! not need to handle it and no `OPT_' enumeration value is defined for it; only the canonical form of the option will be seen in those places. ! `NegativeAlias' ! For an option marked with `Alias(OPT)', the option is considered ! to be an alias for the positive form of `-OPT' if negated and for ! the negative form of `-OPT' if not negated. `NegativeAlias' may ! not be used with the forms of `Alias' taking more than one ! argument. ! `Ignore' This option is ignored apart from printing any warning specified ! using `Warn'. The option will not be seen by specs and no `OPT_' enumeration value is defined for it. ! `SeparateAlias' ! For an option marked with `Joined', `Separate' and `Alias', the option only acts as an alias when passed a separate argument; with ! a joined argument it acts as a normal option, with an `OPT_' ! enumeration value. This is for compatibility with the Java `-d' option and should not be used for new options. ! `Warn(MESSAGE)' If this option is used, output the warning MESSAGE. MESSAGE is a ! format string, either taking a single operand with a `%qs' format which is the option name, or not taking any operands, which is ! passed to the `warning' function. If an alias is marked `Warn', ! the target of the alias must not also be marked `Warn'. ! `Report' ! The state of the option should be printed by `-fverbose-asm'. ! `Warning' ! This is a warning option and should be shown as such in `--help' output. This flag does not currently affect anything other than ! `--help'. ! `Optimization' This is an optimization option. It should be shown as such in ! `--help' output, and any associated variable named using `Var' ! should be saved and restored when the optimization level is ! changed with `optimize' attributes. ! `Undocumented' The option is deliberately missing documentation and should not be ! included in the `--help' output. ! `Condition(COND)' The option should only be accepted if preprocessor condition COND is true. Note that any C declarations associated with the option ! will be present even if COND is false; COND simply controls ! whether the option is accepted and whether it is printed in the ! `--help' output. ! `Save' ! Build the `cl_target_option' structure to hold a copy of the ! option, add the functions `cl_target_option_save' and ! `cl_target_option_restore' to save and restore the options. ! `SetByCombined' The option may also be set by a combined option such as ! `-ffast-math'. This causes the `gcc_options' struct to have a ! field `frontend_set_NAME', where `NAME' is the name of the field ! holding the value of this option (without the leading `x_'). This gives the front end a way to indicate that the value has been set explicitly and should not be changed by the combined option. For ! example, some front ends use this to prevent `-ffast-math' and ! `-fno-fast-math' from changing the value of `-fmath-errno' for ! languages that do not use `errno'. ! `EnabledBy(OPT)' ! `EnabledBy(OPT && OPT2)' ! If not explicitly set, the option is set to the value of `-OPT'. The second form specifies that the option is only set if both OPT and OPT2 are set. ! `LangEnabledBy(LANGUAGE, OPT)' ! `LangEnabledBy(LANGUAGE, OPT, POSARG, NEGARG)' When compiling for the given language, the option is set to the ! value of `-OPT', if not explicitly set. In the second form, if OPT ! is used in the positive form then POSARG is considered to be ! passed to the option, and if OPT is used in the negative form then ! NEGARG is considered to be passed to the option. It is possible ! to specify several different languages. Each LANGUAGE must have ! been declared by an earlier `Language' record. *Note Option file format::. ! `NoDWARFRecord' The option is omitted from the producer string written by ! `-grecord-gcc-switches'. ! `PchIgnore' ! Even if this is a target option, this option will not be recorded ! / compared to determine if a precompiled header file matches.  File: gccint.info, Node: Passes, Next: GENERIC, Prev: Options, Up: Top *************** File: gccint.info, Node: Parsing pass, *** 6396,6433 **** ================ The language front end is invoked only once, via ! 'lang_hooks.parse_file', to parse the entire input. The language front ! end may use any intermediate language representation deemed appropriate. ! The C front end uses GENERIC trees (*note GENERIC::), plus a double ! handful of language specific tree codes defined in 'c-common.def'. The ! Fortran front end uses a completely different private representation. At some point the front end must translate the representation used in the front end to a representation understood by the language-independent ! portions of the compiler. Current practice takes one of two forms. The ! C front end manually invokes the gimplifier (*note GIMPLE::) on each ! function, and uses the gimplifier callbacks to convert the language-specific tree nodes directly to GIMPLE before passing the function off to be compiled. The Fortran front end converts from a ! private representation to GENERIC, which is later lowered to GIMPLE when ! the function is compiled. Which route to choose probably depends on how ! well GENERIC (plus extensions) can be made to match up with the source ! language and necessary parsing data structures. BUG: Gimplification must occur before nested function lowering, and nested function lowering must be done by the front end before passing the data off to cgraph. ! TODO: Cgraph should control nested function lowering. It would only be ! invoked when it is certain that the outer-most function is used. TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is certain that the function is used, (2) warning flags specified by the user require some amount of compilation in order to ! honor, (3) the language indicates that semantic analysis is not complete ! until gimplification occurs. Hum... this sounds overly complicated. ! Perhaps we should just have the front end gimplify always; in most cases ! it's only one function call. The front end needs to pass all function definitions and top level declarations off to the middle-end so that they can be compiled and --- 6528,6566 ---- ================ The language front end is invoked only once, via ! `lang_hooks.parse_file', to parse the entire input. The language front ! end may use any intermediate language representation deemed ! appropriate. The C front end uses GENERIC trees (*note GENERIC::), plus ! a double handful of language specific tree codes defined in ! `c-common.def'. The Fortran front end uses a completely different ! private representation. At some point the front end must translate the representation used in the front end to a representation understood by the language-independent ! portions of the compiler. Current practice takes one of two forms. ! The C front end manually invokes the gimplifier (*note GIMPLE::) on ! each function, and uses the gimplifier callbacks to convert the language-specific tree nodes directly to GIMPLE before passing the function off to be compiled. The Fortran front end converts from a ! private representation to GENERIC, which is later lowered to GIMPLE ! when the function is compiled. Which route to choose probably depends ! on how well GENERIC (plus extensions) can be made to match up with the ! source language and necessary parsing data structures. BUG: Gimplification must occur before nested function lowering, and nested function lowering must be done by the front end before passing the data off to cgraph. ! TODO: Cgraph should control nested function lowering. It would only ! be invoked when it is certain that the outer-most function is used. TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is certain that the function is used, (2) warning flags specified by the user require some amount of compilation in order to ! honor, (3) the language indicates that semantic analysis is not ! complete until gimplification occurs. Hum... this sounds overly ! complicated. Perhaps we should just have the front end gimplify ! always; in most cases it's only one function call. The front end needs to pass all function definitions and top level declarations off to the middle-end so that they can be compiled and *************** all be passed as well. *** 6442,6457 **** In any case, the front end needs each complete top-level function or data declaration, and each data definition should be passed to ! 'rest_of_decl_compilation'. Each complete type definition should be ! passed to 'rest_of_type_compilation'. Each function definition should ! be passed to 'cgraph_finalize_function'. TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics. I plan to move all code generation bits (both ! Tree and RTL) to compile_function. Should we hide cgraph from the front ! ends and move back to rest_of_compilation as the official interface? ! Possibly we should rename all three interfaces such that the names match ! in some meaningful way and that is more descriptive than "rest_of". The middle-end will, at its option, emit the function and data definitions immediately or queue them for later processing. --- 6575,6591 ---- In any case, the front end needs each complete top-level function or data declaration, and each data definition should be passed to ! `rest_of_decl_compilation'. Each complete type definition should be ! passed to `rest_of_type_compilation'. Each function definition should ! be passed to `cgraph_finalize_function'. TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics. I plan to move all code generation bits (both ! Tree and RTL) to compile_function. Should we hide cgraph from the ! front ends and move back to rest_of_compilation as the official ! interface? Possibly we should rename all three interfaces such that ! the names match in some meaningful way and that is more descriptive ! than "rest_of". The middle-end will, at its option, emit the function and data definitions immediately or queue them for later processing. *************** File: gccint.info, Node: Cilk Plus Tran *** 6462,6520 **** 9.2 Cilk Plus Transformation ============================ ! If Cilk Plus generation (flag '-fcilkplus') is enabled, all the Cilk Plus code is transformed into equivalent C and C++ functions. Majority of this transformation occurs toward the end of the parsing and right before the gimplification pass. These are the major components to the Cilk Plus language extension: * Array Notations: During parsing phase, all the array notation ! specific information is stored in 'ARRAY_NOTATION_REF' tree using ! the function 'c_parser_array_notation'. During the end of parsing, ! we check the entire function to see if there are any array notation ! specific code (using the function 'contains_array_notation_expr'). ! If this function returns true, then we expand them using either ! 'expand_array_notation_exprs' or 'build_array_notation_expr'. For ! the cases where array notations are inside conditions, they are ! transformed using the function 'fix_conditional_array_notations'. ! The C language-specific routines are located in ! 'c/c-array-notation.c' and the equivalent C++ routines are in the ! file 'cp/cp-array-notation.c'. Common routines such as functions ! to initialize built-in functions are stored in ! 'array-notation-common.c'. * Cilk keywords: ! * '_Cilk_spawn': The '_Cilk_spawn' keyword is parsed and the function it contains is marked as a spawning function. The spawning function is called the spawner. At the end of the ! parsing phase, appropriate built-in functions are added to the ! spawner that are defined in the Cilk runtime. The appropriate ! locations of these functions, and the internal structures are ! detailed in 'cilk_init_builtins' in the file 'cilk-common.c'. ! The pointers to Cilk functions and fields of internal ! structures are described in 'cilk.h'. The built-in functions ! are described in 'cilk-builtins.def'. During gimplification, a new "spawn-helper" function is ! created. The spawned function is replaced with a spawn helper ! function in the spawner. The spawned function-call is moved ! into the spawn helper. The main function that does these ! transformations is 'gimplify_cilk_spawn' in 'c-family/cilk.c'. ! In the spawn-helper, the gimplification function ! 'gimplify_call_expr', inserts a function call ! '__cilkrts_detach'. This function is expanded by ! 'builtin_expand_cilk_detach' located in 'c-family/cilk.c'. ! * '_Cilk_sync': '_Cilk_sync' is parsed like a keyword. During ! gimplification, the function 'gimplify_cilk_sync' in ! 'c-family/cilk.c', will replace this keyword with a set of functions that are stored in the Cilk runtime. One of the internal functions inserted during gimplification, ! '__cilkrts_pop_frame' must be expanded by the compiler and is ! done by 'builtin_expand_cilk_pop_frame' in 'cilk-common.c'. Documentation about Cilk Plus and language specification is provided ! under the "Learn" section in . It is worth mentioning that the current implementation follows ABI 1.1.  --- 6596,6655 ---- 9.2 Cilk Plus Transformation ============================ ! If Cilk Plus generation (flag `-fcilkplus') is enabled, all the Cilk Plus code is transformed into equivalent C and C++ functions. Majority of this transformation occurs toward the end of the parsing and right before the gimplification pass. These are the major components to the Cilk Plus language extension: * Array Notations: During parsing phase, all the array notation ! specific information is stored in `ARRAY_NOTATION_REF' tree using ! the function `c_parser_array_notation'. During the end of ! parsing, we check the entire function to see if there are any ! array notation specific code (using the function ! `contains_array_notation_expr'). If this function returns true, ! then we expand them using either `expand_array_notation_exprs' or ! `build_array_notation_expr'. For the cases where array notations ! are inside conditions, they are transformed using the function ! `fix_conditional_array_notations'. The C language-specific ! routines are located in `c/c-array-notation.c' and the equivalent ! C++ routines are in the file `cp/cp-array-notation.c'. Common ! routines such as functions to initialize built-in functions are ! stored in `array-notation-common.c'. * Cilk keywords: ! * `_Cilk_spawn': The `_Cilk_spawn' keyword is parsed and the function it contains is marked as a spawning function. The spawning function is called the spawner. At the end of the ! parsing phase, appropriate built-in functions are added to ! the spawner that are defined in the Cilk runtime. The ! appropriate locations of these functions, and the internal ! structures are detailed in `cilk_init_builtins' in the file ! `cilk-common.c'. The pointers to Cilk functions and fields ! of internal structures are described in `cilk.h'. The ! built-in functions are described in `cilk-builtins.def'. During gimplification, a new "spawn-helper" function is ! created. The spawned function is replaced with a spawn ! helper function in the spawner. The spawned function-call is ! moved into the spawn helper. The main function that does ! these transformations is `gimplify_cilk_spawn' in ! `c-family/cilk.c'. In the spawn-helper, the gimplification ! function `gimplify_call_expr', inserts a function call ! `__cilkrts_detach'. This function is expanded by ! `builtin_expand_cilk_detach' located in `c-family/cilk.c'. ! * `_Cilk_sync': `_Cilk_sync' is parsed like a keyword. During ! gimplification, the function `gimplify_cilk_sync' in ! `c-family/cilk.c', will replace this keyword with a set of functions that are stored in the Cilk runtime. One of the internal functions inserted during gimplification, ! `__cilkrts_pop_frame' must be expanded by the compiler and is ! done by `builtin_expand_cilk_pop_frame' in `cilk-common.c'. ! Documentation about Cilk Plus and language specification is provided ! under the "Learn" section in `http://www.cilkplus.org/'. It is worth mentioning that the current implementation follows ABI 1.1.  *************** intermediate language used by the front *** 6535,6557 **** Usually it is easier to generate GENERIC trees plus extensions and let the language-independent gimplifier do most of the work. ! The main entry point to this pass is 'gimplify_function_tree' located ! in 'gimplify.c'. From here we process the entire function gimplifying each statement in turn. The main workhorse for this pass is ! 'gimplify_expr'. Approximately everything passes through here at least ! once, and it is from here that we invoke the 'lang_hooks.gimplify_expr' callback. The callback should examine the expression in question and return ! 'GS_UNHANDLED' if the expression is not a language specific construct that requires attention. Otherwise it should alter the expression in some way to such that forward progress is made toward producing valid GIMPLE. If the callback is certain that the transformation is complete ! and the expression is valid GIMPLE, it should return 'GS_ALL_DONE'. ! Otherwise it should return 'GS_OK', which will cause the expression to be processed again. If the callback encounters an error during the transformation (because the front end is relying on the gimplification ! process to finish semantic checks), it should return 'GS_ERROR'.  File: gccint.info, Node: Pass manager, Next: Tree SSA passes, Prev: Gimplification pass, Up: Passes --- 6670,6692 ---- Usually it is easier to generate GENERIC trees plus extensions and let the language-independent gimplifier do most of the work. ! The main entry point to this pass is `gimplify_function_tree' located ! in `gimplify.c'. From here we process the entire function gimplifying each statement in turn. The main workhorse for this pass is ! `gimplify_expr'. Approximately everything passes through here at least ! once, and it is from here that we invoke the `lang_hooks.gimplify_expr' callback. The callback should examine the expression in question and return ! `GS_UNHANDLED' if the expression is not a language specific construct that requires attention. Otherwise it should alter the expression in some way to such that forward progress is made toward producing valid GIMPLE. If the callback is certain that the transformation is complete ! and the expression is valid GIMPLE, it should return `GS_ALL_DONE'. ! Otherwise it should return `GS_OK', which will cause the expression to be processed again. If the callback encounters an error during the transformation (because the front end is relying on the gimplification ! process to finish semantic checks), it should return `GS_ERROR'.  File: gccint.info, Node: Pass manager, Next: Tree SSA passes, Prev: Gimplification pass, Up: Passes *************** File: gccint.info, Node: Pass manager, *** 6559,6578 **** 9.4 Pass manager ================ ! The pass manager is located in 'passes.c', 'tree-optimize.c' and ! 'tree-pass.h'. It processes passes as described in 'passes.def'. Its job is to run all of the individual passes in the correct order, and take care of standard bookkeeping that applies to every pass. The theory of operation is that each pass defines a structure that ! represents everything we need to know about that pass--when it should be ! run, how it should be run, what intermediate language form or ! on-the-side data structures it needs. We register the pass to be run in ! some particular order, and the pass manager arranges for everything to ! happen in the correct order. The actuality doesn't completely live up to the theory at present. ! Command-line switches and 'timevar_id_t' enumerations must still be defined elsewhere. The pass manager validates constraints but does not attempt to (re-)generate data structures or lower intermediate language form based on the requirements of the next pass. Nevertheless, what is --- 6694,6713 ---- 9.4 Pass manager ================ ! The pass manager is located in `passes.c', `tree-optimize.c' and ! `tree-pass.h'. It processes passes as described in `passes.def'. Its job is to run all of the individual passes in the correct order, and take care of standard bookkeeping that applies to every pass. The theory of operation is that each pass defines a structure that ! represents everything we need to know about that pass--when it should ! be run, how it should be run, what intermediate language form or ! on-the-side data structures it needs. We register the pass to be run ! in some particular order, and the pass manager arranges for everything ! to happen in the correct order. The actuality doesn't completely live up to the theory at present. ! Command-line switches and `timevar_id_t' enumerations must still be defined elsewhere. The pass manager validates constraints but does not attempt to (re-)generate data structures or lower intermediate language form based on the requirements of the next pass. Nevertheless, what is *************** present is useful, and a far sight bette *** 6582,6590 **** file (for GCC debugging purposes). Passes with a name starting with a star do not dump anything. Sometimes passes are supposed to share a dump file / option name. To still give these unique names, you can use ! a prefix that is delimited by a space from the part that is used for the ! dump file / option name. E.g. When the pass name is "ud dce", the name ! used for dump file/options is "dce". TODO: describe the global variables set up by the pass manager, and a brief description of how a new pass should use it. I need to look at --- 6717,6725 ---- file (for GCC debugging purposes). Passes with a name starting with a star do not dump anything. Sometimes passes are supposed to share a dump file / option name. To still give these unique names, you can use ! a prefix that is delimited by a space from the part that is used for ! the dump file / option name. E.g. When the pass name is "ud dce", the ! name used for dump file/options is "dce". TODO: describe the global variables set up by the pass manager, and a brief description of how a new pass should use it. I need to look at *************** run after gimplification and what source *** 6603,6757 **** This pass is an extremely simple sweep across the gimple code in which we identify obviously dead code and remove it. Here we do ! things like simplify 'if' statements with constant conditions, remove exception handling constructs surrounding code that obviously cannot throw, remove lexical bindings that contain no variables, and other assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather than wait until later when it's more work to get rid of it. This pass is located in ! 'tree-cfg.c' and described by 'pass_remove_useless_stmts'. * OpenMP lowering ! If OpenMP generation ('-fopenmp') is enabled, this pass lowers OpenMP constructs into GIMPLE. Lowering of OpenMP constructs involves creating replacement expressions for local variables that have been mapped using data sharing clauses, exposing the control flow of most synchronization directives and adding region markers to facilitate the creation of ! the control flow graph. The pass is located in 'omp-low.c' and is ! described by 'pass_lower_omp'. * OpenMP expansion ! If OpenMP generation ('-fopenmp') is enabled, this pass expands parallel regions into their own functions to be invoked by the ! thread library. The pass is located in 'omp-low.c' and is ! described by 'pass_expand_omp'. * Lower control flow ! This pass flattens 'if' statements ('COND_EXPR') and moves lexical ! bindings ('BIND_EXPR') out of line. After this pass, all 'if' ! statements will have exactly two 'goto' statements in its 'then' ! and 'else' arms. Lexical binding information for each statement ! will be found in 'TREE_BLOCK' rather than being inferred from its ! position under a 'BIND_EXPR'. This pass is found in 'gimple-low.c' ! and is described by 'pass_lower_cf'. * Lower exception handling control flow This pass decomposes high-level exception handling constructs ! ('TRY_FINALLY_EXPR' and 'TRY_CATCH_EXPR') into a form that explicitly represents the control flow involved. After this pass, ! 'lookup_stmt_eh_region' will return a non-negative number for any statement that may have EH control flow semantics; examine ! 'tree_can_throw_internal' or 'tree_can_throw_external' for exact semantics. Exact control flow may be extracted from ! 'foreach_reachable_handler'. The EH region nesting tree is defined ! in 'except.h' and built in 'except.c'. The lowering pass itself is ! in 'tree-eh.c' and is described by 'pass_lower_eh'. * Build the control flow graph This pass decomposes a function into basic blocks and creates all ! of the edges that connect them. It is located in 'tree-cfg.c' and ! is described by 'pass_build_cfg'. * Find all referenced variables This pass walks the entire function and collects an array of all ! variables referenced in the function, 'referenced_vars'. The index ! at which a variable is found in the array is used as a UID for the ! variable within this function. This data is needed by the SSA ! rewriting routines. The pass is located in 'tree-dfa.c' and is ! described by 'pass_referenced_vars'. * Enter static single assignment form This pass rewrites the function such that it is in SSA form. After ! this pass, all 'is_gimple_reg' variables will be referenced by ! 'SSA_NAME', and all occurrences of other variables will be ! annotated with 'VDEFS' and 'VUSES'; PHI nodes will have been inserted as necessary for each basic block. This pass is located ! in 'tree-ssa.c' and is described by 'pass_build_ssa'. * Warn for uninitialized variables ! This pass scans the function for uses of 'SSA_NAME's that are fed by default definition. For non-parameter variables, such uses are uninitialized. The pass is run twice, before and after optimization (if turned on). In the first pass we only warn for uses that are positively uninitialized; in the second pass we warn for uses that are possibly uninitialized. The pass is located in ! 'tree-ssa.c' and is defined by 'pass_early_warn_uninitialized' and ! 'pass_late_warn_uninitialized'. * Dead code elimination This pass scans the function for statements without side effects whose result is unused. It does not do memory life analysis, so ! any value that is stored in memory is considered used. The pass is ! run multiple times throughout the optimization process. It is ! located in 'tree-ssa-dce.c' and is described by 'pass_dce'. * Dominator optimizations This pass performs trivial dominator-based copy and constant propagation, expression simplification, and jump threading. It is run multiple times throughout the optimization process. It is ! located in 'tree-ssa-dom.c' and is described by 'pass_dominator'. * Forward propagation of single-use variables This pass attempts to remove redundant computation by substituting variables that are used once into the expression that uses them and seeing if the result can be simplified. It is located in ! 'tree-ssa-forwprop.c' and is described by 'pass_forwprop'. * Copy Renaming This pass attempts to change the name of compiler temporaries involved in copy operations such that SSA->normal can coalesce the ! copy away. When compiler temporaries are copies of user variables, ! it also renames the compiler temporary to the user variable ! resulting in better use of user symbols. It is located in ! 'tree-ssa-copyrename.c' and is described by 'pass_copyrename'. * PHI node optimizations This pass recognizes forms of PHI inputs that can be represented as conditional expressions and rewrites them into straight line code. ! It is located in 'tree-ssa-phiopt.c' and is described by ! 'pass_phiopt'. * May-alias optimization This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-alias, must-alias, and escape analysis ! information is used to promote variables from in-memory addressable ! objects to non-aliased variables that can be renamed into SSA form. ! We also update the 'VDEF'/'VUSE' memory tags for non-renameable ! aggregates so that we get fewer false kills. The pass is located ! in 'tree-ssa-alias.c' and is described by 'pass_may_alias'. Interprocedural points-to information is located in ! 'tree-ssa-structalias.c' and described by 'pass_ipa_pta'. * Profiling This pass rewrites the function in order to collect runtime block and value profiling data. Such data may be fed back into the compiler on a subsequent run so as to allow optimization based on ! expected execution frequencies. The pass is located in 'predict.c' ! and is described by 'pass_profile'. * Lower complex arithmetic This pass rewrites complex arithmetic operations into their component scalar arithmetic operations. The pass is located in ! 'tree-complex.c' and is described by 'pass_lower_complex'. * Scalar replacement of aggregates --- 6738,6893 ---- This pass is an extremely simple sweep across the gimple code in which we identify obviously dead code and remove it. Here we do ! things like simplify `if' statements with constant conditions, remove exception handling constructs surrounding code that obviously cannot throw, remove lexical bindings that contain no variables, and other assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather than wait until later when it's more work to get rid of it. This pass is located in ! `tree-cfg.c' and described by `pass_remove_useless_stmts'. * OpenMP lowering ! If OpenMP generation (`-fopenmp') is enabled, this pass lowers OpenMP constructs into GIMPLE. Lowering of OpenMP constructs involves creating replacement expressions for local variables that have been mapped using data sharing clauses, exposing the control flow of most synchronization directives and adding region markers to facilitate the creation of ! the control flow graph. The pass is located in `omp-low.c' and is ! described by `pass_lower_omp'. * OpenMP expansion ! If OpenMP generation (`-fopenmp') is enabled, this pass expands parallel regions into their own functions to be invoked by the ! thread library. The pass is located in `omp-low.c' and is ! described by `pass_expand_omp'. * Lower control flow ! This pass flattens `if' statements (`COND_EXPR') and moves lexical ! bindings (`BIND_EXPR') out of line. After this pass, all `if' ! statements will have exactly two `goto' statements in its `then' ! and `else' arms. Lexical binding information for each statement ! will be found in `TREE_BLOCK' rather than being inferred from its ! position under a `BIND_EXPR'. This pass is found in ! `gimple-low.c' and is described by `pass_lower_cf'. * Lower exception handling control flow This pass decomposes high-level exception handling constructs ! (`TRY_FINALLY_EXPR' and `TRY_CATCH_EXPR') into a form that explicitly represents the control flow involved. After this pass, ! `lookup_stmt_eh_region' will return a non-negative number for any statement that may have EH control flow semantics; examine ! `tree_can_throw_internal' or `tree_can_throw_external' for exact semantics. Exact control flow may be extracted from ! `foreach_reachable_handler'. The EH region nesting tree is defined ! in `except.h' and built in `except.c'. The lowering pass itself ! is in `tree-eh.c' and is described by `pass_lower_eh'. * Build the control flow graph This pass decomposes a function into basic blocks and creates all ! of the edges that connect them. It is located in `tree-cfg.c' and ! is described by `pass_build_cfg'. * Find all referenced variables This pass walks the entire function and collects an array of all ! variables referenced in the function, `referenced_vars'. The ! index at which a variable is found in the array is used as a UID ! for the variable within this function. This data is needed by the ! SSA rewriting routines. The pass is located in `tree-dfa.c' and ! is described by `pass_referenced_vars'. * Enter static single assignment form This pass rewrites the function such that it is in SSA form. After ! this pass, all `is_gimple_reg' variables will be referenced by ! `SSA_NAME', and all occurrences of other variables will be ! annotated with `VDEFS' and `VUSES'; PHI nodes will have been inserted as necessary for each basic block. This pass is located ! in `tree-ssa.c' and is described by `pass_build_ssa'. * Warn for uninitialized variables ! This pass scans the function for uses of `SSA_NAME's that are fed by default definition. For non-parameter variables, such uses are uninitialized. The pass is run twice, before and after optimization (if turned on). In the first pass we only warn for uses that are positively uninitialized; in the second pass we warn for uses that are possibly uninitialized. The pass is located in ! `tree-ssa.c' and is defined by `pass_early_warn_uninitialized' and ! `pass_late_warn_uninitialized'. * Dead code elimination This pass scans the function for statements without side effects whose result is unused. It does not do memory life analysis, so ! any value that is stored in memory is considered used. The pass ! is run multiple times throughout the optimization process. It is ! located in `tree-ssa-dce.c' and is described by `pass_dce'. * Dominator optimizations This pass performs trivial dominator-based copy and constant propagation, expression simplification, and jump threading. It is run multiple times throughout the optimization process. It is ! located in `tree-ssa-dom.c' and is described by `pass_dominator'. * Forward propagation of single-use variables This pass attempts to remove redundant computation by substituting variables that are used once into the expression that uses them and seeing if the result can be simplified. It is located in ! `tree-ssa-forwprop.c' and is described by `pass_forwprop'. * Copy Renaming This pass attempts to change the name of compiler temporaries involved in copy operations such that SSA->normal can coalesce the ! copy away. When compiler temporaries are copies of user ! variables, it also renames the compiler temporary to the user ! variable resulting in better use of user symbols. It is located ! in `tree-ssa-copyrename.c' and is described by `pass_copyrename'. * PHI node optimizations This pass recognizes forms of PHI inputs that can be represented as conditional expressions and rewrites them into straight line code. ! It is located in `tree-ssa-phiopt.c' and is described by ! `pass_phiopt'. * May-alias optimization This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-alias, must-alias, and escape analysis ! information is used to promote variables from in-memory ! addressable objects to non-aliased variables that can be renamed ! into SSA form. We also update the `VDEF'/`VUSE' memory tags for ! non-renameable aggregates so that we get fewer false kills. The ! pass is located in `tree-ssa-alias.c' and is described by ! `pass_may_alias'. Interprocedural points-to information is located in ! `tree-ssa-structalias.c' and described by `pass_ipa_pta'. * Profiling This pass rewrites the function in order to collect runtime block and value profiling data. Such data may be fed back into the compiler on a subsequent run so as to allow optimization based on ! expected execution frequencies. The pass is located in ! `predict.c' and is described by `pass_profile'. * Lower complex arithmetic This pass rewrites complex arithmetic operations into their component scalar arithmetic operations. The pass is located in ! `tree-complex.c' and is described by `pass_lower_complex'. * Scalar replacement of aggregates *************** run after gimplification and what source *** 6759,6871 **** into a set of scalar variables. The resulting scalar variables are rewritten into SSA form, which allows subsequent optimization passes to do a significantly better job with them. The pass is ! located in 'tree-sra.c' and is described by 'pass_sra'. * Dead store elimination This pass eliminates stores to memory that are subsequently overwritten by another store, without any intervening loads. The ! pass is located in 'tree-ssa-dse.c' and is described by 'pass_dse'. * Tail recursion elimination This pass transforms tail recursion into a loop. It is located in ! 'tree-tailcall.c' and is described by 'pass_tail_recursion'. * Forward store motion ! This pass sinks stores and assignments down the flowgraph closer to ! their use point. The pass is located in 'tree-ssa-sink.c' and is ! described by 'pass_sink_code'. * Partial redundancy elimination This pass eliminates partially redundant computations, as well as ! performing load motion. The pass is located in 'tree-ssa-pre.c' ! and is described by 'pass_pre'. Just before partial redundancy elimination, if ! '-funsafe-math-optimizations' is on, GCC tries to convert divisions ! to multiplications by the reciprocal. The pass is located in ! 'tree-ssa-math-opts.c' and is described by 'pass_cse_reciprocal'. * Full redundancy elimination This is a simpler form of PRE that only eliminates redundancies ! that occur on all paths. It is located in 'tree-ssa-pre.c' and ! described by 'pass_fre'. * Loop optimization ! The main driver of the pass is placed in 'tree-ssa-loop.c' and ! described by 'pass_loop'. The optimizations performed by this pass are: Loop invariant motion. This pass moves only invariants that would be hard to handle on RTL level (function calls, operations that ! expand to nontrivial sequences of insns). With '-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. The pass ! is implemented in 'tree-ssa-loop-im.c'. Canonical induction variable creation. This pass creates a simple counter for number of iterations of the loop and replaces the exit ! condition of the loop using it, in case when a complicated analysis ! is necessary to determine the number of iterations. Later ! optimizations then may determine the number easily. The pass is ! implemented in 'tree-ssa-loop-ivcanon.c'. Induction variable optimizations. This pass performs standard induction variable optimizations, including strength reduction, ! induction variable merging and induction variable elimination. The ! pass is implemented in 'tree-ssa-loop-ivopts.c'. Loop unswitching. This pass moves the conditional jumps that are invariant out of the loops. To achieve this, a duplicate of the loop is created for each possible outcome of conditional jump(s). ! The pass is implemented in 'tree-ssa-loop-unswitch.c'. This pass should eventually replace the RTL level loop unswitching in ! 'loop-unswitch.c', but currently the RTL level pass is not completely redundant yet due to deficiencies in tree level alias analysis. The optimizations also use various utility functions contained in ! 'tree-ssa-loop-manip.c', 'cfgloop.c', 'cfgloopanal.c' and ! 'cfgloopmanip.c'. Vectorization. This pass transforms loops to operate on vector types instead of scalar types. Data parallelism across loop iterations is exploited to group data elements from consecutive iterations into a vector and operate on them in parallel. Depending on available target support the loop is conceptually ! unrolled by a factor 'VF' (vectorization factor), which is the ! number of elements operated upon in parallel in each iteration, and ! the 'VF' copies of each scalar operation are fused to form a vector ! operation. Additional loop transformations such as peeling and ! versioning may take place to align the number of iterations, and to ! align the memory accesses in the loop. The pass is implemented in ! 'tree-vectorizer.c' (the main driver), 'tree-vect-loop.c' and ! 'tree-vect-loop-manip.c' (loop specific parts and general loop ! utilities), 'tree-vect-slp' (loop-aware SLP functionality), ! 'tree-vect-stmts.c' and 'tree-vect-data-refs.c'. Analysis of data ! references is in 'tree-data-ref.c'. SLP Vectorization. This pass performs vectorization of ! straight-line code. The pass is implemented in 'tree-vectorizer.c' ! (the main driver), 'tree-vect-slp.c', 'tree-vect-stmts.c' and ! 'tree-vect-data-refs.c'. Autoparallelization. This pass splits the loop iteration space to run into several threads. The pass is implemented in ! 'tree-parloops.c'. Graphite is a loop transformation framework based on the polyhedral model. Graphite stands for Gimple Represented as Polyhedra. The internals of this infrastructure are documented in ! . The passes working on this ! representation are implemented in the various 'graphite-*' files. * Tree level if-conversion for vectorizer --- 6895,7008 ---- into a set of scalar variables. The resulting scalar variables are rewritten into SSA form, which allows subsequent optimization passes to do a significantly better job with them. The pass is ! located in `tree-sra.c' and is described by `pass_sra'. * Dead store elimination This pass eliminates stores to memory that are subsequently overwritten by another store, without any intervening loads. The ! pass is located in `tree-ssa-dse.c' and is described by `pass_dse'. * Tail recursion elimination This pass transforms tail recursion into a loop. It is located in ! `tree-tailcall.c' and is described by `pass_tail_recursion'. * Forward store motion ! This pass sinks stores and assignments down the flowgraph closer ! to their use point. The pass is located in `tree-ssa-sink.c' and ! is described by `pass_sink_code'. * Partial redundancy elimination This pass eliminates partially redundant computations, as well as ! performing load motion. The pass is located in `tree-ssa-pre.c' ! and is described by `pass_pre'. Just before partial redundancy elimination, if ! `-funsafe-math-optimizations' is on, GCC tries to convert ! divisions to multiplications by the reciprocal. The pass is ! located in `tree-ssa-math-opts.c' and is described by ! `pass_cse_reciprocal'. * Full redundancy elimination This is a simpler form of PRE that only eliminates redundancies ! that occur on all paths. It is located in `tree-ssa-pre.c' and ! described by `pass_fre'. * Loop optimization ! The main driver of the pass is placed in `tree-ssa-loop.c' and ! described by `pass_loop'. The optimizations performed by this pass are: Loop invariant motion. This pass moves only invariants that would be hard to handle on RTL level (function calls, operations that ! expand to nontrivial sequences of insns). With `-funswitch-loops' it also moves operands of conditions that are invariant out of the loop, so that we can use just trivial invariantness analysis in loop unswitching. The pass also includes store motion. The pass ! is implemented in `tree-ssa-loop-im.c'. Canonical induction variable creation. This pass creates a simple counter for number of iterations of the loop and replaces the exit ! condition of the loop using it, in case when a complicated ! analysis is necessary to determine the number of iterations. ! Later optimizations then may determine the number easily. The ! pass is implemented in `tree-ssa-loop-ivcanon.c'. Induction variable optimizations. This pass performs standard induction variable optimizations, including strength reduction, ! induction variable merging and induction variable elimination. ! The pass is implemented in `tree-ssa-loop-ivopts.c'. Loop unswitching. This pass moves the conditional jumps that are invariant out of the loops. To achieve this, a duplicate of the loop is created for each possible outcome of conditional jump(s). ! The pass is implemented in `tree-ssa-loop-unswitch.c'. This pass should eventually replace the RTL level loop unswitching in ! `loop-unswitch.c', but currently the RTL level pass is not completely redundant yet due to deficiencies in tree level alias analysis. The optimizations also use various utility functions contained in ! `tree-ssa-loop-manip.c', `cfgloop.c', `cfgloopanal.c' and ! `cfgloopmanip.c'. Vectorization. This pass transforms loops to operate on vector types instead of scalar types. Data parallelism across loop iterations is exploited to group data elements from consecutive iterations into a vector and operate on them in parallel. Depending on available target support the loop is conceptually ! unrolled by a factor `VF' (vectorization factor), which is the ! number of elements operated upon in parallel in each iteration, ! and the `VF' copies of each scalar operation are fused to form a ! vector operation. Additional loop transformations such as peeling ! and versioning may take place to align the number of iterations, ! and to align the memory accesses in the loop. The pass is ! implemented in `tree-vectorizer.c' (the main driver), ! `tree-vect-loop.c' and `tree-vect-loop-manip.c' (loop specific ! parts and general loop utilities), `tree-vect-slp' (loop-aware SLP ! functionality), `tree-vect-stmts.c' and `tree-vect-data-refs.c'. ! Analysis of data references is in `tree-data-ref.c'. SLP Vectorization. This pass performs vectorization of ! straight-line code. The pass is implemented in `tree-vectorizer.c' ! (the main driver), `tree-vect-slp.c', `tree-vect-stmts.c' and ! `tree-vect-data-refs.c'. Autoparallelization. This pass splits the loop iteration space to run into several threads. The pass is implemented in ! `tree-parloops.c'. Graphite is a loop transformation framework based on the polyhedral model. Graphite stands for Gimple Represented as Polyhedra. The internals of this infrastructure are documented in ! `http://gcc.gnu.org/wiki/Graphite'. The passes working on this ! representation are implemented in the various `graphite-*' files. * Tree level if-conversion for vectorizer *************** run after gimplification and what source *** 6874,6902 **** basic blocks in one big block. The idea is to present loop in such form so that vectorizer can have one to one mapping between statements and available vector operations. This pass is located ! in 'tree-if-conv.c' and is described by 'pass_if_conversion'. * Conditional constant propagation This pass relaxes a lattice of values in order to identify those that must be constant even in the presence of conditional branches. ! The pass is located in 'tree-ssa-ccp.c' and is described by ! 'pass_ccp'. A related pass that works on memory loads and stores, and not just ! register values, is located in 'tree-ssa-ccp.c' and described by ! 'pass_store_ccp'. * Conditional copy propagation This is similar to constant propagation but the lattice of values is the "copy-of" relation. It eliminates redundant copies from the ! code. The pass is located in 'tree-ssa-copy.c' and described by ! 'pass_copy_prop'. A related pass that works on memory copies, and not just register ! copies, is located in 'tree-ssa-copy.c' and described by ! 'pass_store_copy_prop'. * Value range propagation --- 7011,7039 ---- basic blocks in one big block. The idea is to present loop in such form so that vectorizer can have one to one mapping between statements and available vector operations. This pass is located ! in `tree-if-conv.c' and is described by `pass_if_conversion'. * Conditional constant propagation This pass relaxes a lattice of values in order to identify those that must be constant even in the presence of conditional branches. ! The pass is located in `tree-ssa-ccp.c' and is described by ! `pass_ccp'. A related pass that works on memory loads and stores, and not just ! register values, is located in `tree-ssa-ccp.c' and described by ! `pass_store_ccp'. * Conditional copy propagation This is similar to constant propagation but the lattice of values is the "copy-of" relation. It eliminates redundant copies from the ! code. The pass is located in `tree-ssa-copy.c' and described by ! `pass_copy_prop'. A related pass that works on memory copies, and not just register ! copies, is located in `tree-ssa-copy.c' and described by ! `pass_store_copy_prop'. * Value range propagation *************** run after gimplification and what source *** 6907,6933 **** Range Propagation, J. R. C. Patterson, PLDI '95). In contrast to Patterson's algorithm, this implementation does not propagate branch probabilities nor it uses more than a single range per SSA ! name. This means that the current implementation cannot be used for branch prediction (though adapting it would not be difficult). ! The pass is located in 'tree-vrp.c' and is described by 'pass_vrp'. * Folding built-in functions This pass simplifies built-in functions, as applicable, with ! constant arguments or with inferable string lengths. It is located ! in 'tree-ssa-ccp.c' and is described by 'pass_fold_builtins'. * Split critical edges This pass identifies critical edges and inserts empty basic blocks such that the edge is no longer critical. The pass is located in ! 'tree-cfg.c' and is described by 'pass_split_crit_edges'. * Control dependence dead code elimination This pass is a stronger form of dead code elimination that can ! eliminate unnecessary control flow statements. It is located in ! 'tree-ssa-dce.c' and is described by 'pass_cd_dce'. * Tail call elimination --- 7044,7071 ---- Range Propagation, J. R. C. Patterson, PLDI '95). In contrast to Patterson's algorithm, this implementation does not propagate branch probabilities nor it uses more than a single range per SSA ! name. This means that the current implementation cannot be used for branch prediction (though adapting it would not be difficult). ! The pass is located in `tree-vrp.c' and is described by `pass_vrp'. * Folding built-in functions This pass simplifies built-in functions, as applicable, with ! constant arguments or with inferable string lengths. It is ! located in `tree-ssa-ccp.c' and is described by ! `pass_fold_builtins'. * Split critical edges This pass identifies critical edges and inserts empty basic blocks such that the edge is no longer critical. The pass is located in ! `tree-cfg.c' and is described by `pass_split_crit_edges'. * Control dependence dead code elimination This pass is a stronger form of dead code elimination that can ! eliminate unnecessary control flow statements. It is located in ! `tree-ssa-dce.c' and is described by `pass_cd_dce'. * Tail call elimination *************** run after gimplification and what source *** 6935,6944 **** jumps. No code transformation is actually applied here, but the data and control flow problem is solved. The code transformation requires target support, and so is delayed until RTL. In the ! meantime 'CALL_EXPR_TAILCALL' is set indicating the possibility. ! The pass is located in 'tree-tailcall.c' and is described by ! 'pass_tail_calls'. The RTL transformation is handled by ! 'fixup_tail_calls' in 'calls.c'. * Warn for function return without value --- 7073,7082 ---- jumps. No code transformation is actually applied here, but the data and control flow problem is solved. The code transformation requires target support, and so is delayed until RTL. In the ! meantime `CALL_EXPR_TAILCALL' is set indicating the possibility. ! The pass is located in `tree-tailcall.c' and is described by ! `pass_tail_calls'. The RTL transformation is handled by ! `fixup_tail_calls' in `calls.c'. * Warn for function return without value *************** run after gimplification and what source *** 6946,6998 **** not specify a value and issues a warning. Such a statement may have been injected by falling off the end of the function. This pass is run last so that we have as much time as possible to prove ! that the statement is not reachable. It is located in 'tree-cfg.c' ! and is described by 'pass_warn_function_return'. * Leave static single assignment form This pass rewrites the function such that it is in normal form. At the same time, we eliminate as many single-use temporaries as possible, so the intermediate language is no longer GIMPLE, but ! GENERIC. The pass is located in 'tree-outof-ssa.c' and is ! described by 'pass_del_ssa'. * Merge PHI nodes that feed into one another This is part of the CFG cleanup passes. It attempts to join PHI ! nodes from a forwarder CFG block into another block with PHI nodes. ! The pass is located in 'tree-cfgcleanup.c' and is described by ! 'pass_merge_phi'. * Return value optimization If a function always returns the same local variable, and that local variable is an aggregate type, then the variable is replaced with the return value for the function (i.e., the function's ! DECL_RESULT). This is equivalent to the C++ named return value optimization applied to GIMPLE. The pass is located in ! 'tree-nrv.c' and is described by 'pass_nrv'. * Return slot optimization ! If a function returns a memory object and is called as 'var = foo()', this pass tries to change the call so that the address of ! 'var' is sent to the caller to avoid an extra memory copy. This ! pass is located in 'tree-nrv.c' and is described by ! 'pass_return_slot'. ! * Optimize calls to '__builtin_object_size' This is a propagation pass similar to CCP that tries to remove ! calls to '__builtin_object_size' when the size of the object can be computed at compile-time. This pass is located in ! 'tree-object-size.c' and is described by 'pass_object_sizes'. * Loop invariant motion This pass removes expensive loop-invariant computations out of ! loops. The pass is located in 'tree-ssa-loop.c' and described by ! 'pass_lim'. * Loop nest optimizations --- 7084,7136 ---- not specify a value and issues a warning. Such a statement may have been injected by falling off the end of the function. This pass is run last so that we have as much time as possible to prove ! that the statement is not reachable. It is located in ! `tree-cfg.c' and is described by `pass_warn_function_return'. * Leave static single assignment form This pass rewrites the function such that it is in normal form. At the same time, we eliminate as many single-use temporaries as possible, so the intermediate language is no longer GIMPLE, but ! GENERIC. The pass is located in `tree-outof-ssa.c' and is ! described by `pass_del_ssa'. * Merge PHI nodes that feed into one another This is part of the CFG cleanup passes. It attempts to join PHI ! nodes from a forwarder CFG block into another block with PHI ! nodes. The pass is located in `tree-cfgcleanup.c' and is ! described by `pass_merge_phi'. * Return value optimization If a function always returns the same local variable, and that local variable is an aggregate type, then the variable is replaced with the return value for the function (i.e., the function's ! DECL_RESULT). This is equivalent to the C++ named return value optimization applied to GIMPLE. The pass is located in ! `tree-nrv.c' and is described by `pass_nrv'. * Return slot optimization ! If a function returns a memory object and is called as `var = foo()', this pass tries to change the call so that the address of ! `var' is sent to the caller to avoid an extra memory copy. This ! pass is located in `tree-nrv.c' and is described by ! `pass_return_slot'. ! * Optimize calls to `__builtin_object_size' This is a propagation pass similar to CCP that tries to remove ! calls to `__builtin_object_size' when the size of the object can be computed at compile-time. This pass is located in ! `tree-object-size.c' and is described by `pass_object_sizes'. * Loop invariant motion This pass removes expensive loop-invariant computations out of ! loops. The pass is located in `tree-ssa-loop.c' and described by ! `pass_lim'. * Loop nest optimizations *************** run after gimplification and what source *** 7001,7055 **** they are all geared to the optimization of data locality in array traversals and the removal of dependencies that hamper optimizations such as loop parallelization and vectorization. The ! pass is located in 'tree-loop-linear.c' and described by ! 'pass_linear_transform'. * Removal of empty loops This pass removes loops with no code in them. The pass is located ! in 'tree-ssa-loop-ivcanon.c' and described by 'pass_empty_loop'. * Unrolling of small loops This pass completely unrolls loops with few iterations. The pass ! is located in 'tree-ssa-loop-ivcanon.c' and described by ! 'pass_complete_unroll'. * Predictive commoning This pass makes the code reuse the computations from the previous ! iterations of the loops, especially loads and stores to memory. It ! does so by storing the values of these computations to a bank of ! temporary variables that are rotated at the end of loop. To avoid ! the need for this rotation, the loop is then unrolled and the ! copies of the loop body are rewritten to use the appropriate version of the temporary variable. This pass is located in ! 'tree-predcom.c' and described by 'pass_predcom'. * Array prefetching This pass issues prefetch instructions for array references inside ! loops. The pass is located in 'tree-ssa-loop-prefetch.c' and ! described by 'pass_loop_prefetch'. * Reassociation This pass rewrites arithmetic expressions to enable optimizations that operate on them, like redundancy elimination and ! vectorization. The pass is located in 'tree-ssa-reassoc.c' and ! described by 'pass_reassoc'. ! * Optimization of 'stdarg' functions This pass tries to avoid the saving of register arguments into the ! stack on entry to 'stdarg' functions. If the function doesn't use ! any 'va_start' macros, no registers need to be saved. If ! 'va_start' macros are used, the 'va_list' variables don't escape the function, it is only necessary to save registers that will be ! used in 'va_arg' macros. For instance, if 'va_arg' is only used ! with integral types in the function, floating point registers don't ! need to be saved. This pass is located in 'tree-stdarg.c' and ! described by 'pass_stdarg'.  File: gccint.info, Node: RTL passes, Next: Optimization info, Prev: Tree SSA passes, Up: Passes --- 7139,7194 ---- they are all geared to the optimization of data locality in array traversals and the removal of dependencies that hamper optimizations such as loop parallelization and vectorization. The ! pass is located in `tree-loop-linear.c' and described by ! `pass_linear_transform'. * Removal of empty loops This pass removes loops with no code in them. The pass is located ! in `tree-ssa-loop-ivcanon.c' and described by `pass_empty_loop'. * Unrolling of small loops This pass completely unrolls loops with few iterations. The pass ! is located in `tree-ssa-loop-ivcanon.c' and described by ! `pass_complete_unroll'. * Predictive commoning This pass makes the code reuse the computations from the previous ! iterations of the loops, especially loads and stores to memory. ! It does so by storing the values of these computations to a bank ! of temporary variables that are rotated at the end of loop. To ! avoid the need for this rotation, the loop is then unrolled and ! the copies of the loop body are rewritten to use the appropriate version of the temporary variable. This pass is located in ! `tree-predcom.c' and described by `pass_predcom'. * Array prefetching This pass issues prefetch instructions for array references inside ! loops. The pass is located in `tree-ssa-loop-prefetch.c' and ! described by `pass_loop_prefetch'. * Reassociation This pass rewrites arithmetic expressions to enable optimizations that operate on them, like redundancy elimination and ! vectorization. The pass is located in `tree-ssa-reassoc.c' and ! described by `pass_reassoc'. ! * Optimization of `stdarg' functions This pass tries to avoid the saving of register arguments into the ! stack on entry to `stdarg' functions. If the function doesn't use ! any `va_start' macros, no registers need to be saved. If ! `va_start' macros are used, the `va_list' variables don't escape the function, it is only necessary to save registers that will be ! used in `va_arg' macros. For instance, if `va_arg' is only used ! with integral types in the function, floating point registers ! don't need to be saved. This pass is located in `tree-stdarg.c' ! and described by `pass_stdarg'. !  File: gccint.info, Node: RTL passes, Next: Optimization info, Prev: Tree SSA passes, Up: Passes *************** passes that are run after the Tree optim *** 7062,7095 **** * RTL generation ! The source files for RTL generation include 'stmt.c', 'calls.c', ! 'expr.c', 'explow.c', 'expmed.c', 'function.c', 'optabs.c' and ! 'emit-rtl.c'. Also, the file 'insn-emit.c', generated from the ! machine description by the program 'genemit', is used in this pass. ! The header file 'expr.h' is used for communication within this ! pass. ! The header files 'insn-flags.h' and 'insn-codes.h', generated from ! the machine description by the programs 'genflags' and 'gencodes', ! tell this pass which standard names are available for use and which ! patterns correspond to them. * Generation of exception landing pads This pass generates the glue that handles communication between the exception handling library routines and the exception handlers ! within the function. Entry points in the function that are invoked ! by the exception handling library are called "landing pads". The ! code for this pass is located in 'except.c'. * Control flow graph cleanup ! This pass removes unreachable code, simplifies jumps to next, jumps ! to jump, jumps across jumps, etc. The pass is run multiple times. ! For historical reasons, it is occasionally referred to as the "jump ! optimization pass". The bulk of the code for this pass is in ! 'cfgcleanup.c', and there are support routines in 'cfgrtl.c' and ! 'jump.c'. * Forward propagation of single-def values --- 7201,7234 ---- * RTL generation ! The source files for RTL generation include `stmt.c', `calls.c', ! `expr.c', `explow.c', `expmed.c', `function.c', `optabs.c' and ! `emit-rtl.c'. Also, the file `insn-emit.c', generated from the ! machine description by the program `genemit', is used in this ! pass. The header file `expr.h' is used for communication within ! this pass. ! The header files `insn-flags.h' and `insn-codes.h', generated from ! the machine description by the programs `genflags' and `gencodes', ! tell this pass which standard names are available for use and ! which patterns correspond to them. * Generation of exception landing pads This pass generates the glue that handles communication between the exception handling library routines and the exception handlers ! within the function. Entry points in the function that are ! invoked by the exception handling library are called "landing ! pads". The code for this pass is located in `except.c'. * Control flow graph cleanup ! This pass removes unreachable code, simplifies jumps to next, ! jumps to jump, jumps across jumps, etc. The pass is run multiple ! times. For historical reasons, it is occasionally referred to as ! the "jump optimization pass". The bulk of the code for this pass ! is in `cfgcleanup.c', and there are support routines in `cfgrtl.c' ! and `jump.c'. * Forward propagation of single-def values *************** passes that are run after the Tree optim *** 7098,7146 **** result can be simplified. It performs copy propagation and addressing mode selection. The pass is run twice, with values being propagated into loops only on the second run. The code is ! located in 'fwprop.c'. * Common subexpression elimination This pass removes redundant computation within basic blocks, and optimizes addressing modes based on cost. The pass is run twice. ! The code for this pass is located in 'cse.c'. * Global common subexpression elimination ! This pass performs two different types of GCSE depending on whether ! you are optimizing for size or not (LCM based GCSE tends to ! increase code size for a gain in speed, while Morel-Renvoise based ! GCSE does not). When optimizing for size, GCSE is done using ! Morel-Renvoise Partial Redundancy Elimination, with the exception ! that it does not try to move invariants out of loops--that is left ! to the loop optimization pass. If MR PRE GCSE is done, code ! hoisting (aka unification) is also done, as well as load motion. ! If you are optimizing for speed, LCM (lazy code motion) based GCSE ! is done. LCM is based on the work of Knoop, Ruthing, and Steffen. ! LCM based GCSE also does loop invariant code motion. We also ! perform load and store motion when optimizing for speed. ! Regardless of which type of GCSE is used, the GCSE pass also ! performs global constant and copy propagation. The source file for ! this pass is 'gcse.c', and the LCM routines are in 'lcm.c'. * Loop optimization This pass performs several loop related optimizations. The source ! files 'cfgloopanal.c' and 'cfgloopmanip.c' contain generic loop ! analysis and manipulation code. Initialization and finalization of ! loop structures is handled by 'loop-init.c'. A loop invariant ! motion pass is implemented in 'loop-invariant.c'. Basic block ! level optimizations--unrolling, peeling and unswitching loops-- are ! implemented in 'loop-unswitch.c' and 'loop-unroll.c'. Replacing of ! the exit condition of loops by special machine-dependent ! instructions is handled by 'loop-doloop.c'. * Jump bypassing This pass is an aggressive form of GCSE that transforms the control flow graph of a function by propagating constants into conditional ! branch instructions. The source file for this pass is 'gcse.c'. * If conversion --- 7237,7286 ---- result can be simplified. It performs copy propagation and addressing mode selection. The pass is run twice, with values being propagated into loops only on the second run. The code is ! located in `fwprop.c'. * Common subexpression elimination This pass removes redundant computation within basic blocks, and optimizes addressing modes based on cost. The pass is run twice. ! The code for this pass is located in `cse.c'. * Global common subexpression elimination ! This pass performs two different types of GCSE depending on ! whether you are optimizing for size or not (LCM based GCSE tends ! to increase code size for a gain in speed, while Morel-Renvoise ! based GCSE does not). When optimizing for size, GCSE is done ! using Morel-Renvoise Partial Redundancy Elimination, with the ! exception that it does not try to move invariants out of ! loops--that is left to the loop optimization pass. If MR PRE ! GCSE is done, code hoisting (aka unification) is also done, as ! well as load motion. If you are optimizing for speed, LCM (lazy ! code motion) based GCSE is done. LCM is based on the work of ! Knoop, Ruthing, and Steffen. LCM based GCSE also does loop ! invariant code motion. We also perform load and store motion when ! optimizing for speed. Regardless of which type of GCSE is used, ! the GCSE pass also performs global constant and copy propagation. ! The source file for this pass is `gcse.c', and the LCM routines ! are in `lcm.c'. * Loop optimization This pass performs several loop related optimizations. The source ! files `cfgloopanal.c' and `cfgloopmanip.c' contain generic loop ! analysis and manipulation code. Initialization and finalization ! of loop structures is handled by `loop-init.c'. A loop invariant ! motion pass is implemented in `loop-invariant.c'. Basic block ! level optimizations--unrolling, peeling and unswitching loops-- ! are implemented in `loop-unswitch.c' and `loop-unroll.c'. ! Replacing of the exit condition of loops by special ! machine-dependent instructions is handled by `loop-doloop.c'. * Jump bypassing This pass is an aggressive form of GCSE that transforms the control flow graph of a function by propagating constants into conditional ! branch instructions. The source file for this pass is `gcse.c'. * If conversion *************** passes that are run after the Tree optim *** 7149,7197 **** instructions, and conditional move instructions. In the very last invocation after reload/LRA, it will generate predicated instructions when supported by the target. The code is located in ! 'ifcvt.c'. * Web construction This pass splits independent uses of each pseudo-register. This can improve effect of the other transformation, such as CSE or ! register allocation. The code for this pass is located in 'web.c'. * Instruction combination This pass attempts to combine groups of two or three instructions that are related by data flow into single instructions. It combines the RTL expressions for the instructions by substitution, ! simplifies the result using algebra, and then attempts to match the ! result against the machine description. The code is located in ! 'combine.c'. * Mode switching optimization This pass looks for instructions that require the processor to be in a specific "mode" and minimizes the number of mode changes ! required to satisfy all users. What these modes are, and what they ! apply to are completely target-specific. The code for this pass is ! located in 'mode-switching.c'. * Modulo scheduling This pass looks at innermost loops and reorders their instructions by overlapping different iterations. Modulo scheduling is performed immediately before instruction scheduling. The code for ! this pass is located in 'modulo-sched.c'. * Instruction scheduling ! This pass looks for instructions whose output will not be available ! by the time that it is used in subsequent instructions. Memory ! loads and floating point instructions often have this behavior on ! RISC machines. It re-orders instructions within a basic block to ! try to separate the definition and use of items that otherwise ! would cause pipeline stalls. This pass is performed twice, before ! and after register allocation. The code for this pass is located ! in 'haifa-sched.c', 'sched-deps.c', 'sched-ebb.c', 'sched-rgn.c' ! and 'sched-vis.c'. * Register allocation --- 7289,7337 ---- instructions, and conditional move instructions. In the very last invocation after reload/LRA, it will generate predicated instructions when supported by the target. The code is located in ! `ifcvt.c'. * Web construction This pass splits independent uses of each pseudo-register. This can improve effect of the other transformation, such as CSE or ! register allocation. The code for this pass is located in `web.c'. * Instruction combination This pass attempts to combine groups of two or three instructions that are related by data flow into single instructions. It combines the RTL expressions for the instructions by substitution, ! simplifies the result using algebra, and then attempts to match ! the result against the machine description. The code is located ! in `combine.c'. * Mode switching optimization This pass looks for instructions that require the processor to be in a specific "mode" and minimizes the number of mode changes ! required to satisfy all users. What these modes are, and what ! they apply to are completely target-specific. The code for this ! pass is located in `mode-switching.c'. * Modulo scheduling This pass looks at innermost loops and reorders their instructions by overlapping different iterations. Modulo scheduling is performed immediately before instruction scheduling. The code for ! this pass is located in `modulo-sched.c'. * Instruction scheduling ! This pass looks for instructions whose output will not be ! available by the time that it is used in subsequent instructions. ! Memory loads and floating point instructions often have this ! behavior on RISC machines. It re-orders instructions within a ! basic block to try to separate the definition and use of items ! that otherwise would cause pipeline stalls. This pass is ! performed twice, before and after register allocation. The code ! for this pass is located in `haifa-sched.c', `sched-deps.c', ! `sched-ebb.c', `sched-rgn.c' and `sched-vis.c'. * Register allocation *************** passes that are run after the Tree optim *** 7215,7225 **** regions using register pressure but the user can force it to use one region or regions corresponding to all loops. ! Source files of the allocator are 'ira.c', 'ira-build.c', ! 'ira-costs.c', 'ira-conflicts.c', 'ira-color.c', 'ira-emit.c', ! 'ira-lives', plus header files 'ira.h' and 'ira-int.h' used ! for the communication between the allocator and the rest of ! the compiler and between the IRA files. * Reloading. This pass renumbers pseudo registers with the hardware registers numbers they were allocated. Pseudo --- 7355,7365 ---- regions using register pressure but the user can force it to use one region or regions corresponding to all loops. ! Source files of the allocator are `ira.c', `ira-build.c', ! `ira-costs.c', `ira-conflicts.c', `ira-color.c', ! `ira-emit.c', `ira-lives', plus header files `ira.h' and ! `ira-int.h' used for the communication between the allocator ! and the rest of the compiler and between the IRA files. * Reloading. This pass renumbers pseudo registers with the hardware registers numbers they were allocated. Pseudo *************** passes that are run after the Tree optim *** 7227,7255 **** stack slots. Then it finds instructions that are invalid because a value has failed to end up in a register, or has ended up in a register of the wrong kind. It fixes up these ! instructions by reloading the problematical values temporarily ! into registers. Additional instructions are generated to do ! the copying. The reload pass also optionally eliminates the frame pointer and inserts instructions to save and restore call-clobbered registers around calls. ! Source files are 'reload.c' and 'reload1.c', plus the header ! 'reload.h' used for communication between them. * This pass is a modern replacement of the reload pass. Source ! files are 'lra.c', 'lra-assign.c', 'lra-coalesce.c', ! 'lra-constraints.c', 'lra-eliminations.c', 'lra-equivs.c', ! 'lra-lives.c', 'lra-saves.c', 'lra-spills.c', the header ! 'lra-int.h' used for communication between them, and the ! header 'lra.h' used for communication between LRA and the rest ! of compiler. Unlike the reload pass, intermediate LRA decisions are ! reflected in RTL as much as possible. This reduces the number ! of target-dependent macros and hooks, leaving instruction ! constraints as the primary source of control. LRA is run on targets for which TARGET_LRA_P returns true. --- 7367,7395 ---- stack slots. Then it finds instructions that are invalid because a value has failed to end up in a register, or has ended up in a register of the wrong kind. It fixes up these ! instructions by reloading the problematical values ! temporarily into registers. Additional instructions are ! generated to do the copying. The reload pass also optionally eliminates the frame pointer and inserts instructions to save and restore call-clobbered registers around calls. ! Source files are `reload.c' and `reload1.c', plus the header ! `reload.h' used for communication between them. * This pass is a modern replacement of the reload pass. Source ! files are `lra.c', `lra-assign.c', `lra-coalesce.c', ! `lra-constraints.c', `lra-eliminations.c', `lra-equivs.c', ! `lra-lives.c', `lra-saves.c', `lra-spills.c', the header ! `lra-int.h' used for communication between them, and the ! header `lra.h' used for communication between LRA and the ! rest of compiler. Unlike the reload pass, intermediate LRA decisions are ! reflected in RTL as much as possible. This reduces the ! number of target-dependent macros and hooks, leaving ! instruction constraints as the primary source of control. LRA is run on targets for which TARGET_LRA_P returns true. *************** passes that are run after the Tree optim *** 7259,7266 **** information is not available, various types of static analysis are performed to make the predictions normally coming from the profile feedback (IE execution frequency, branch probability, etc). It is ! implemented in the file 'bb-reorder.c', and the various prediction ! routines are in 'predict.c'. * Variable tracking --- 7399,7406 ---- information is not available, various types of static analysis are performed to make the predictions normally coming from the profile feedback (IE execution frequency, branch probability, etc). It is ! implemented in the file `bb-reorder.c', and the various prediction ! routines are in `predict.c'. * Variable tracking *************** passes that are run after the Tree optim *** 7268,7314 **** in code and generates notes describing the variable locations to RTL code. The location lists are then generated according to these notes to debug information if the debugging information format ! supports location lists. The code is located in 'var-tracking.c'. * Delayed branch scheduling This optional pass attempts to find instructions that can go into the delay slots of other instructions, usually jumps and calls. ! The code for this pass is located in 'reorg.c'. * Branch shortening On many RISC machines, branch instructions have a limited range. Thus, longer sequences of instructions must be used for long ! branches. In this pass, the compiler figures out what how far each ! instruction will be from each other instruction, and therefore ! whether the usual instructions, or the longer sequences, must be ! used for each branch. The code for this pass is located in ! 'final.c'. * Register-to-stack conversion Conversion from usage of some hard registers to usage of a register stack may be done at this point. Currently, this is supported only for the floating-point registers of the Intel 80387 coprocessor. ! The code for this pass is located in 'reg-stack.c'. * Final This pass outputs the assembler code for the function. The source ! files are 'final.c' plus 'insn-output.c'; the latter is generated ! automatically from the machine description by the tool 'genoutput'. ! The header file 'conditions.h' is used for communication between these files. * Debugging information output This is run after final because it must output the stack slot offsets for pseudo registers that did not get hard registers. ! Source files are 'dbxout.c' for DBX symbol table format, 'sdbout.c' ! for SDB symbol table format, 'dwarfout.c' for DWARF symbol table ! format, files 'dwarf2out.c' and 'dwarf2asm.c' for DWARF2 symbol ! table format, and 'vmsdbgout.c' for VMS debug symbol table format.  File: gccint.info, Node: Optimization info, Prev: RTL passes, Up: Passes --- 7408,7456 ---- in code and generates notes describing the variable locations to RTL code. The location lists are then generated according to these notes to debug information if the debugging information format ! supports location lists. The code is located in `var-tracking.c'. * Delayed branch scheduling This optional pass attempts to find instructions that can go into the delay slots of other instructions, usually jumps and calls. ! The code for this pass is located in `reorg.c'. * Branch shortening On many RISC machines, branch instructions have a limited range. Thus, longer sequences of instructions must be used for long ! branches. In this pass, the compiler figures out what how far ! each instruction will be from each other instruction, and ! therefore whether the usual instructions, or the longer sequences, ! must be used for each branch. The code for this pass is located ! in `final.c'. * Register-to-stack conversion Conversion from usage of some hard registers to usage of a register stack may be done at this point. Currently, this is supported only for the floating-point registers of the Intel 80387 coprocessor. ! The code for this pass is located in `reg-stack.c'. * Final This pass outputs the assembler code for the function. The source ! files are `final.c' plus `insn-output.c'; the latter is generated ! automatically from the machine description by the tool `genoutput'. ! The header file `conditions.h' is used for communication between these files. * Debugging information output This is run after final because it must output the stack slot offsets for pseudo registers that did not get hard registers. ! Source files are `dbxout.c' for DBX symbol table format, ! `sdbout.c' for SDB symbol table format, `dwarfout.c' for DWARF ! symbol table format, files `dwarf2out.c' and `dwarf2asm.c' for ! DWARF2 symbol table format, and `vmsdbgout.c' for VMS debug symbol ! table format. !  File: gccint.info, Node: Optimization info, Prev: RTL passes, Up: Passes *************** File: gccint.info, Node: Optimization i *** 7317,7323 **** ===================== This section is describes dump infrastructure which is common to both ! pass dumps as well as optimization dumps. The goal for this infrastructure is to provide both gcc developers and users detailed information about various compiler transformations and optimizations. --- 7459,7465 ---- ===================== This section is describes dump infrastructure which is common to both ! pass dumps as well as optimization dumps. The goal for this infrastructure is to provide both gcc developers and users detailed information about various compiler transformations and optimizations. *************** File: gccint.info, Node: Dump setup, N *** 7336,7359 **** 9.7.1 Dump setup ---------------- ! A dump_manager class is defined in 'dumpfile.h'. Various passes ! register dumping pass-specific information via 'dump_register' in ! 'passes.c'. During the registration, an optimization pass can select ! its optimization group (*note Optimization groups::). After that optimization information corresponding to the entire group (presumably ! from multiple passes) can be output via command-line switches. Note that if a pass does not fit into any of the pre-defined groups, it can ! select 'OPTGROUP_NONE'. Note that in general, a pass need not know its dump output file name, ! whether certain flags are enabled, etc. However, for legacy reasons, ! passes could also call 'dump_begin' which returns a stream in case the ! particular pass has optimization dumps enabled. A pass could call ! 'dump_end' when the dump has ended. These methods should go away once all the passes are converted to use the new dump infrastructure. ! The recommended way to setup the dump output is via 'dump_start' and ! 'dump_end'.  File: gccint.info, Node: Optimization groups, Next: Dump files and streams, Prev: Dump setup, Up: Optimization info --- 7478,7501 ---- 9.7.1 Dump setup ---------------- ! A dump_manager class is defined in `dumpfile.h'. Various passes ! register dumping pass-specific information via `dump_register' in ! `passes.c'. During the registration, an optimization pass can select ! its optimization group (*note Optimization groups::). After that optimization information corresponding to the entire group (presumably ! from multiple passes) can be output via command-line switches. Note that if a pass does not fit into any of the pre-defined groups, it can ! select `OPTGROUP_NONE'. Note that in general, a pass need not know its dump output file name, ! whether certain flags are enabled, etc. However, for legacy reasons, ! passes could also call `dump_begin' which returns a stream in case the ! particular pass has optimization dumps enabled. A pass could call ! `dump_end' when the dump has ended. These methods should go away once all the passes are converted to use the new dump infrastructure. ! The recommended way to setup the dump output is via `dump_start' and ! `dump_end'.  File: gccint.info, Node: Optimization groups, Next: Dump files and streams, Prev: Dump setup, Up: Optimization info *************** File: gccint.info, Node: Optimization g *** 7361,7390 **** 9.7.2 Optimization groups ------------------------- ! The optimization passes are grouped into several categories. Currently ! defined categories in 'dumpfile.h' are ! 'OPTGROUP_IPA' ! IPA optimization passes. Enabled by '-ipa' ! 'OPTGROUP_LOOP' ! Loop optimization passes. Enabled by '-loop'. ! 'OPTGROUP_INLINE' ! Inlining passes. Enabled by '-inline'. ! 'OPTGROUP_VEC' ! Vectorization passes. Enabled by '-vec'. ! 'OPTGROUP_OTHER' All other optimization passes which do not fall into one of the above. ! 'OPTGROUP_ALL' ! All optimization passes. Enabled by '-all'. By using groups a user could selectively enable optimization ! information only for a group of passes. By default, the optimization information for all the passes is dumped.  --- 7503,7533 ---- 9.7.2 Optimization groups ------------------------- ! The optimization passes are grouped into several categories. Currently ! defined categories in `dumpfile.h' are ! `OPTGROUP_IPA' ! IPA optimization passes. Enabled by `-ipa' ! `OPTGROUP_LOOP' ! Loop optimization passes. Enabled by `-loop'. ! `OPTGROUP_INLINE' ! Inlining passes. Enabled by `-inline'. ! `OPTGROUP_VEC' ! Vectorization passes. Enabled by `-vec'. ! `OPTGROUP_OTHER' All other optimization passes which do not fall into one of the above. ! `OPTGROUP_ALL' ! All optimization passes. Enabled by `-all'. ! By using groups a user could selectively enable optimization ! information only for a group of passes. By default, the optimization information for all the passes is dumped.  *************** File: gccint.info, Node: Dump files and *** 7394,7418 **** ---------------------------- There are two separate output streams available for outputting ! optimization information from passes. Note that both these streams ! accept 'stderr' and 'stdout' as valid streams and thus it is possible to ! dump output to standard output or error. This is specially handy for outputting all available information in a single file by redirecting ! 'stderr'. ! 'pstream' ! This stream is for pass-specific dump output. For example, ! '-fdump-tree-vect=foo.v' dumps tree vectorization pass output into ! the given file name 'foo.v'. If the file name is not provided, the ! default file name is based on the source file and pass number. ! Note that one could also use special file names 'stdout' and ! 'stderr' for dumping to standard output and standard error ! respectively. ! 'alt_stream' This steam is used for printing optimization specific output in ! response to the '-fopt-info'. Again a file name can be given. If ! the file name is not given, it defaults to 'stderr'.  File: gccint.info, Node: Dump output verbosity, Next: Dump types, Prev: Dump files and streams, Up: Optimization info --- 7537,7560 ---- ---------------------------- There are two separate output streams available for outputting ! optimization information from passes. Note that both these streams ! accept `stderr' and `stdout' as valid streams and thus it is possible ! to dump output to standard output or error. This is specially handy for outputting all available information in a single file by redirecting ! `stderr'. ! ``pstream'' ! This stream is for pass-specific dump output. For example, ! `-fdump-tree-vect=foo.v' dumps tree vectorization pass output into ! the given file name `foo.v'. If the file name is not provided, the ! default file name is based on the source file and pass number. Note ! that one could also use special file names `stdout' and `stderr' ! for dumping to standard output and standard error respectively. ! ``alt_stream'' This steam is used for printing optimization specific output in ! response to the `-fopt-info'. Again a file name can be given. If ! the file name is not given, it defaults to `stderr'.  File: gccint.info, Node: Dump output verbosity, Next: Dump types, Prev: Dump files and streams, Up: Optimization info *************** File: gccint.info, Node: Dump output ve *** 7422,7448 **** The dump verbosity has the following options ! 'optimized' ! Print information when an optimization is successfully applied. It ! is up to a pass to decide which information is relevant. For example, the vectorizer passes print the source location of loops which got successfully vectorized. ! 'missed' ! Print information about missed optimizations. Individual passes ! control which information to include in the output. For example, gcc -O2 -ftree-vectorize -fopt-info-vec-missed will print information about missed optimization opportunities from vectorization passes on stderr. ! 'note' Print verbose information about optimizations, such as certain transformations, more detailed messages about decisions etc. ! 'all' ! Print detailed optimization information. This includes OPTIMIZED, MISSED, and NOTE.  --- 7564,7590 ---- The dump verbosity has the following options ! `optimized' ! Print information when an optimization is successfully applied. It ! is up to a pass to decide which information is relevant. For example, the vectorizer passes print the source location of loops which got successfully vectorized. ! `missed' ! Print information about missed optimizations. Individual passes ! control which information to include in the output. For example, gcc -O2 -ftree-vectorize -fopt-info-vec-missed will print information about missed optimization opportunities from vectorization passes on stderr. ! `note' Print verbose information about optimizations, such as certain transformations, more detailed messages about decisions etc. ! `all' ! Print detailed optimization information. This includes OPTIMIZED, MISSED, and NOTE.  *************** File: gccint.info, Node: Dump types, N *** 7451,7490 **** 9.7.5 Dump types ---------------- ! 'dump_printf' ! ! This is a generic method for doing formatted output. It takes an ! additional argument 'dump_kind' which signifies the type of dump. ! This method outputs information only when the dumps are enabled for ! this particular 'dump_kind'. Note that the caller doesn't need to ! know if the particular dump is enabled or not, or even the file ! name. The caller only needs to decide which dump output ! information is relevant, and under what conditions. This ! determines the associated flags. ! Consider the following example from 'loop-unroll.c' where an informative message about a loop (along with its location) is printed when any of the following flags is enabled - - optimization messages - RTL dumps - detailed dumps int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS; dump_printf_loc (report_flags, locus, "loop turned into non-loop; it never loops.\n"); ! 'dump_basic_block' Output basic block. ! 'dump_generic_expr' Output generic expression. ! 'dump_gimple_stmt' Output gimple statement. Note that the above methods also have variants prefixed with ! '_loc', such as 'dump_printf_loc', which are similar except they also output the source location information.  File: gccint.info, Node: Dump examples, Prev: Dump types, Up: Optimization info --- 7593,7636 ---- 9.7.5 Dump types ---------------- ! `dump_printf' ! This is a generic method for doing formatted output. It takes an ! additional argument `dump_kind' which signifies the type of dump. ! This method outputs information only when the dumps are enabled ! for this particular `dump_kind'. Note that the caller doesn't need ! to know if the particular dump is enabled or not, or even the file ! name. The caller only needs to decide which dump output ! information is relevant, and under what conditions. This determines ! the associated flags. ! Consider the following example from `loop-unroll.c' where an informative message about a loop (along with its location) is printed when any of the following flags is enabled - optimization messages + - RTL dumps + - detailed dumps + int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS; dump_printf_loc (report_flags, locus, "loop turned into non-loop; it never loops.\n"); ! `dump_basic_block' Output basic block. ! ! `dump_generic_expr' Output generic expression. ! ! `dump_gimple_stmt' Output gimple statement. Note that the above methods also have variants prefixed with ! `_loc', such as `dump_printf_loc', which are similar except they also output the source location information. +  File: gccint.info, Node: Dump examples, Prev: Dump types, Up: Optimization info *************** File: gccint.info, Node: Dump examples, *** 7494,7527 **** gcc -O3 -fopt-info-missed=missed.all outputs missed optimization report from all the passes into ! 'missed.all'. As another example, gcc -O3 -fopt-info-inline-optimized-missed=inline.txt ! will output information about missed optimizations as well as optimized ! locations from all the inlining passes into 'inline.txt'. If the FILENAME is provided, then the dumps from all the applicable ! optimizations are concatenated into the 'filename'. Otherwise the dump ! is output onto 'stderr'. If OPTIONS is omitted, it defaults to ! 'all-all', which means dump all available optimization info from all the ! passes. In the following example, all optimization info is output on to ! 'stderr'. gcc -O3 -fopt-info ! Note that '-fopt-info-vec-missed' behaves the same as ! '-fopt-info-missed-vec'. As another example, consider gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt ! Here the two output file names 'vec.miss' and 'loop.opt' are in ! conflict since only one output file is allowed. In this case, only the ! first option takes effect and the subsequent options are ignored. Thus ! only the 'vec.miss' is produced which containts dumps from the vectorizer about missed opportunities.  --- 7640,7673 ---- gcc -O3 -fopt-info-missed=missed.all outputs missed optimization report from all the passes into ! `missed.all'. As another example, gcc -O3 -fopt-info-inline-optimized-missed=inline.txt ! will output information about missed optimizations as well as ! optimized locations from all the inlining passes into `inline.txt'. If the FILENAME is provided, then the dumps from all the applicable ! optimizations are concatenated into the `filename'. Otherwise the dump ! is output onto `stderr'. If OPTIONS is omitted, it defaults to ! `all-all', which means dump all available optimization info from all ! the passes. In the following example, all optimization info is output ! on to `stderr'. gcc -O3 -fopt-info ! Note that `-fopt-info-vec-missed' behaves the same as ! `-fopt-info-missed-vec'. As another example, consider gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt ! Here the two output file names `vec.miss' and `loop.opt' are in ! conflict since only one output file is allowed. In this case, only the ! first option takes effect and the subsequent options are ignored. Thus ! only the `vec.miss' is produced which containts dumps from the vectorizer about missed opportunities.  *************** The purpose of GENERIC is simply to prov *** 7534,7559 **** of representing an entire function in trees. To this end, it was necessary to add a few new tree codes to the back end, but almost everything was already there. If you can express it with the codes in ! 'gcc/tree.def', it's GENERIC. Early on, there was a great deal of debate about how to think about statements in a tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is ignored. A statement will always ! have 'TREE_SIDE_EFFECTS' set (or it will be discarded), but a ! non-statement expression may also have side effects. A 'CALL_EXPR', for ! instance. It would be possible for some local optimizations to work on the GENERIC form of a function; indeed, the adapted tree inliner works fine ! on GENERIC, but the current compiler performs inlining after lowering to ! GIMPLE (a restricted form described in the next section). Indeed, currently the frontends perform this lowering before handing off to ! 'tree_rest_of_compilation', but this seems inelegant. * Menu: * Deficiencies:: Topics net yet covered in this document. ! * Tree overview:: All about 'tree's. * Types:: Fundamental and aggregate types. * Declarations:: Type declarations and variables. * Attributes:: Declaration and type attributes. --- 7680,7705 ---- of representing an entire function in trees. To this end, it was necessary to add a few new tree codes to the back end, but almost everything was already there. If you can express it with the codes in ! `gcc/tree.def', it's GENERIC. Early on, there was a great deal of debate about how to think about statements in a tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is ignored. A statement will always ! have `TREE_SIDE_EFFECTS' set (or it will be discarded), but a ! non-statement expression may also have side effects. A `CALL_EXPR', ! for instance. It would be possible for some local optimizations to work on the GENERIC form of a function; indeed, the adapted tree inliner works fine ! on GENERIC, but the current compiler performs inlining after lowering ! to GIMPLE (a restricted form described in the next section). Indeed, currently the frontends perform this lowering before handing off to ! `tree_rest_of_compilation', but this seems inelegant. * Menu: * Deficiencies:: Topics net yet covered in this document. ! * Tree overview:: All about `tree's. * Types:: Fundamental and aggregate types. * Declarations:: Type declarations and variables. * Attributes:: Declaration and type attributes. *************** File: gccint.info, Node: Tree overview, *** 7580,7617 **** ============= The central data structure used by the internal representation is the ! 'tree'. These nodes, while all of the C type 'tree', are of many ! varieties. A 'tree' is a pointer type, but the object to which it points may be of a variety of types. From this point forward, we will ! refer to trees in ordinary type, rather than in 'this font', except when ! talking about the actual C type 'tree'. You can tell what kind of node a particular tree is by using the ! 'TREE_CODE' macro. Many, many macros take trees as input and return trees as output. However, most macros require a certain kind of tree ! node as input. In other words, there is a type-system for trees, but it ! is not reflected in the C type-system. ! For safety, it is useful to configure GCC with '--enable-checking'. Although this results in a significant performance penalty (since all tree types are checked at run-time), and is therefore inappropriate in a release version, it is extremely helpful during the development process. Many macros behave as predicates. Many, although not all, of these ! predicates end in '_P'. Do not rely on the result type of these macros being of any particular type. You may, however, rely on the fact that ! the type can be compared to '0', so that statements like if (TEST_P (t) && !TEST_P (y)) x = 1; ! and int i = (TEST_P (t) != 0); ! are legal. Macros that return 'int' values now may be changed to return ! 'tree' values, or other pointers in the future. Even those that ! continue to return 'int' may return multiple nonzero codes where previously they returned only zero and one. Therefore, you should not write code like if (TEST_P (t) == 1) ! as this code is not guaranteed to work correctly in the future. You should not take the address of values returned by the macros or functions described here. In particular, no guarantee is given that the --- 7726,7763 ---- ============= The central data structure used by the internal representation is the ! `tree'. These nodes, while all of the C type `tree', are of many ! varieties. A `tree' is a pointer type, but the object to which it points may be of a variety of types. From this point forward, we will ! refer to trees in ordinary type, rather than in `this font', except ! when talking about the actual C type `tree'. You can tell what kind of node a particular tree is by using the ! `TREE_CODE' macro. Many, many macros take trees as input and return trees as output. However, most macros require a certain kind of tree ! node as input. In other words, there is a type-system for trees, but ! it is not reflected in the C type-system. ! For safety, it is useful to configure GCC with `--enable-checking'. Although this results in a significant performance penalty (since all tree types are checked at run-time), and is therefore inappropriate in a release version, it is extremely helpful during the development process. Many macros behave as predicates. Many, although not all, of these ! predicates end in `_P'. Do not rely on the result type of these macros being of any particular type. You may, however, rely on the fact that ! the type can be compared to `0', so that statements like if (TEST_P (t) && !TEST_P (y)) x = 1; ! and int i = (TEST_P (t) != 0); ! are legal. Macros that return `int' values now may be changed to ! return `tree' values, or other pointers in the future. Even those that ! continue to return `int' may return multiple nonzero codes where previously they returned only zero and one. Therefore, you should not write code like if (TEST_P (t) == 1) ! as this code is not guaranteed to work correctly in the future. You should not take the address of values returned by the macros or functions described here. In particular, no guarantee is given that the *************** made up entirely of uppercase letters ma *** 7624,7648 **** than once. You may assume that a macro or function whose name is made up entirely of lowercase letters will evaluate its arguments only once. ! The 'error_mark_node' is a special tree. Its tree code is ! 'ERROR_MARK', but since there is only ever one node with that code, the ! usual practice is to compare the tree against 'error_mark_node'. (This test is just a test for pointer equality.) If an error has occurred ! during front-end processing the flag 'errorcount' will be set. If the ! front end has encountered code it cannot handle, it will issue a message ! to the user and set 'sorrycount'. When these flags are set, any macro ! or function which normally returns a tree of a particular kind may ! instead return the 'error_mark_node'. Thus, if you intend to do any ! processing of erroneous code, you must be prepared to deal with the ! 'error_mark_node'. Occasionally, a particular tree slot (like an operand to an expression, ! or a particular field in a declaration) will be referred to as "reserved ! for the back end". These slots are used to store RTL when the tree is ! converted to RTL for use by the GCC back end. However, if that process ! is not taking place (e.g., if the front end is being hooked up to an ! intelligent editor), then those slots may be used by the back end ! presently in use. If you encounter situations that do not match this documentation, such as tree nodes of types not mentioned here, or macros documented to --- 7770,7794 ---- than once. You may assume that a macro or function whose name is made up entirely of lowercase letters will evaluate its arguments only once. ! The `error_mark_node' is a special tree. Its tree code is ! `ERROR_MARK', but since there is only ever one node with that code, the ! usual practice is to compare the tree against `error_mark_node'. (This test is just a test for pointer equality.) If an error has occurred ! during front-end processing the flag `errorcount' will be set. If the ! front end has encountered code it cannot handle, it will issue a ! message to the user and set `sorrycount'. When these flags are set, ! any macro or function which normally returns a tree of a particular ! kind may instead return the `error_mark_node'. Thus, if you intend to ! do any processing of erroneous code, you must be prepared to deal with ! the `error_mark_node'. Occasionally, a particular tree slot (like an operand to an expression, ! or a particular field in a declaration) will be referred to as ! "reserved for the back end". These slots are used to store RTL when ! the tree is converted to RTL for use by the GCC back end. However, if ! that process is not taking place (e.g., if the front end is being hooked ! up to an intelligent editor), then those slots may be used by the back ! end presently in use. If you encounter situations that do not match this documentation, such as tree nodes of types not mentioned here, or macros documented to *************** File: gccint.info, Node: Macros and Fun *** 7662,7730 **** 10.2.1 Trees ------------ ! All GENERIC trees have two fields in common. First, 'TREE_CHAIN' is a pointer that can be used as a singly-linked list to other trees. The ! other is 'TREE_TYPE'. Many trees store the type of an expression or declaration in this field. These are some other functions for handling trees: ! 'tree_size' Return the number of bytes a tree takes. ! 'build0' ! 'build1' ! 'build2' ! 'build3' ! 'build4' ! 'build5' ! 'build6' ! These functions build a tree and supply values to put in each ! parameter. The basic signature is 'code, type, [operands]'. ! 'code' is the 'TREE_CODE', and 'type' is a tree representing the ! 'TREE_TYPE'. These are followed by the operands, each of which is also a tree.  File: gccint.info, Node: Identifiers, Next: Containers, Prev: Macros and Functions, Up: Tree overview 10.2.2 Identifiers ------------------ ! An 'IDENTIFIER_NODE' represents a slightly more general concept than the ! standard C or C++ concept of identifier. In particular, an ! 'IDENTIFIER_NODE' may contain a '$', or other extraordinary characters. ! There are never two distinct 'IDENTIFIER_NODE's representing the same identifier. Therefore, you may use pointer equality to compare ! 'IDENTIFIER_NODE's, rather than using a routine like 'strcmp'. Use ! 'get_identifier' to obtain the unique 'IDENTIFIER_NODE' for a supplied string. You can use the following macros to access identifiers: ! 'IDENTIFIER_POINTER' ! The string represented by the identifier, represented as a 'char*'. ! This string is always 'NUL'-terminated, and contains no embedded ! 'NUL' characters. ! 'IDENTIFIER_LENGTH' ! The length of the string returned by 'IDENTIFIER_POINTER', not ! including the trailing 'NUL'. This value of 'IDENTIFIER_LENGTH ! (x)' is always the same as 'strlen (IDENTIFIER_POINTER (x))'. ! 'IDENTIFIER_OPNAME_P' This predicate holds if the identifier represents the name of an overloaded operator. In this case, you should not depend on the ! contents of either the 'IDENTIFIER_POINTER' or the ! 'IDENTIFIER_LENGTH'. ! 'IDENTIFIER_TYPENAME_P' This predicate holds if the identifier represents the name of a ! user-defined conversion operator. In this case, the 'TREE_TYPE' of ! the 'IDENTIFIER_NODE' holds the type to which the conversion operator converts.  File: gccint.info, Node: Containers, Prev: Identifiers, Up: Tree overview --- 7808,7877 ---- 10.2.1 Trees ------------ ! All GENERIC trees have two fields in common. First, `TREE_CHAIN' is a pointer that can be used as a singly-linked list to other trees. The ! other is `TREE_TYPE'. Many trees store the type of an expression or declaration in this field. These are some other functions for handling trees: ! `tree_size' Return the number of bytes a tree takes. ! `build0' ! `build1' ! `build2' ! `build3' ! `build4' ! `build5' ! `build6' These functions build a tree and supply values to put in each ! parameter. The basic signature is `code, type, [operands]'. ! `code' is the `TREE_CODE', and `type' is a tree representing the ! `TREE_TYPE'. These are followed by the operands, each of which is also a tree. +  File: gccint.info, Node: Identifiers, Next: Containers, Prev: Macros and Functions, Up: Tree overview 10.2.2 Identifiers ------------------ ! An `IDENTIFIER_NODE' represents a slightly more general concept than ! the standard C or C++ concept of identifier. In particular, an ! `IDENTIFIER_NODE' may contain a `$', or other extraordinary characters. ! There are never two distinct `IDENTIFIER_NODE's representing the same identifier. Therefore, you may use pointer equality to compare ! `IDENTIFIER_NODE's, rather than using a routine like `strcmp'. Use ! `get_identifier' to obtain the unique `IDENTIFIER_NODE' for a supplied string. You can use the following macros to access identifiers: ! `IDENTIFIER_POINTER' ! The string represented by the identifier, represented as a ! `char*'. This string is always `NUL'-terminated, and contains no ! embedded `NUL' characters. ! `IDENTIFIER_LENGTH' ! The length of the string returned by `IDENTIFIER_POINTER', not ! including the trailing `NUL'. This value of `IDENTIFIER_LENGTH ! (x)' is always the same as `strlen (IDENTIFIER_POINTER (x))'. ! `IDENTIFIER_OPNAME_P' This predicate holds if the identifier represents the name of an overloaded operator. In this case, you should not depend on the ! contents of either the `IDENTIFIER_POINTER' or the ! `IDENTIFIER_LENGTH'. ! `IDENTIFIER_TYPENAME_P' This predicate holds if the identifier represents the name of a ! user-defined conversion operator. In this case, the `TREE_TYPE' of ! the `IDENTIFIER_NODE' holds the type to which the conversion operator converts. +  File: gccint.info, Node: Containers, Prev: Identifiers, Up: Tree overview *************** File: gccint.info, Node: Containers, P *** 7732,7753 **** ----------------- Two common container data structures can be represented directly with ! tree nodes. A 'TREE_LIST' is a singly linked list containing two trees ! per node. These are the 'TREE_PURPOSE' and 'TREE_VALUE' of each node. ! (Often, the 'TREE_PURPOSE' contains some kind of tag, or additional ! information, while the 'TREE_VALUE' contains the majority of the ! payload. In other cases, the 'TREE_PURPOSE' is simply 'NULL_TREE', ! while in still others both the 'TREE_PURPOSE' and 'TREE_VALUE' are of ! equal stature.) Given one 'TREE_LIST' node, the next node is found by ! following the 'TREE_CHAIN'. If the 'TREE_CHAIN' is 'NULL_TREE', then you have reached the end of the list. ! A 'TREE_VEC' is a simple vector. The 'TREE_VEC_LENGTH' is an integer (not a tree) giving the number of nodes in the vector. The nodes ! themselves are accessed using the 'TREE_VEC_ELT' macro, which takes two ! arguments. The first is the 'TREE_VEC' in question; the second is an ! integer indicating which element in the vector is desired. The elements ! are indexed from zero.  File: gccint.info, Node: Types, Next: Declarations, Prev: Tree overview, Up: GENERIC --- 7879,7900 ---- ----------------- Two common container data structures can be represented directly with ! tree nodes. A `TREE_LIST' is a singly linked list containing two trees ! per node. These are the `TREE_PURPOSE' and `TREE_VALUE' of each node. ! (Often, the `TREE_PURPOSE' contains some kind of tag, or additional ! information, while the `TREE_VALUE' contains the majority of the ! payload. In other cases, the `TREE_PURPOSE' is simply `NULL_TREE', ! while in still others both the `TREE_PURPOSE' and `TREE_VALUE' are of ! equal stature.) Given one `TREE_LIST' node, the next node is found by ! following the `TREE_CHAIN'. If the `TREE_CHAIN' is `NULL_TREE', then you have reached the end of the list. ! A `TREE_VEC' is a simple vector. The `TREE_VEC_LENGTH' is an integer (not a tree) giving the number of nodes in the vector. The nodes ! themselves are accessed using the `TREE_VEC_ELT' macro, which takes two ! arguments. The first is the `TREE_VEC' in question; the second is an ! integer indicating which element in the vector is desired. The ! elements are indexed from zero.  File: gccint.info, Node: Types, Next: Declarations, Prev: Tree overview, Up: GENERIC *************** that there is exactly one tree node corr *** 7760,8004 **** are often multiple nodes corresponding to the same type. For the most part, different kinds of types have different tree codes. ! (For example, pointer types use a 'POINTER_TYPE' code while arrays use ! an 'ARRAY_TYPE' code.) However, pointers to member functions use the ! 'RECORD_TYPE' code. Therefore, when writing a 'switch' statement that depends on the code associated with a particular type, you should take ! care to handle pointers to member functions under the 'RECORD_TYPE' case ! label. The following functions and macros deal with cv-qualification of types: ! 'TYPE_MAIN_VARIANT' This macro returns the unqualified version of a type. It may be applied to an unqualified type, but it is not always the identity function in that case. A few other macros and functions are usable with all types: ! 'TYPE_SIZE' The number of bits required to represent the type, represented as ! an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be ! 'NULL_TREE'. ! 'TYPE_ALIGN' ! The alignment of the type, in bits, represented as an 'int'. ! 'TYPE_NAME' ! This macro returns a declaration (in the form of a 'TYPE_DECL') for ! the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE', ! as you might expect, given its name!) You can look at the ! 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the ! type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a ! built-in type, the result of a typedef, or a named class type. ! 'TYPE_CANONICAL' This macro returns the "canonical" type for the given type node. Canonical types are used to improve performance in the C++ and Objective-C++ front ends by allowing efficient comparison between ! two type nodes in 'same_type_p': if the 'TYPE_CANONICAL' values of the types are equal, the types are equivalent; otherwise, the types ! are not equivalent. The notion of equivalence for canonical types is the same as the notion of type equivalence in the language ! itself. For instance, ! When 'TYPE_CANONICAL' is 'NULL_TREE', there is no canonical type ! for the given type node. In this case, comparison between this type and any other type requires the compiler to perform a deep, "structural" comparison to see if the two type nodes have the same form and properties. The canonical type for a node is always the most fundamental type ! in the equivalence class of types. For instance, 'int' is its own ! canonical type. A typedef 'I' of 'int' will have 'int' as its ! canonical type. Similarly, 'I*' and a typedef 'IP' (defined to ! 'I*') will has 'int*' as their canonical type. When building a new ! type node, be sure to set 'TYPE_CANONICAL' to the appropriate ! canonical type. If the new type is a compound type (built from other types), and any of those other types require structural ! equality, use 'SET_TYPE_STRUCTURAL_EQUALITY' to ensure that the new ! type also requires structural equality. Finally, if for some ! reason you cannot guarantee that 'TYPE_CANONICAL' will point to the ! canonical type, use 'SET_TYPE_STRUCTURAL_EQUALITY' to make sure ! that the new type-and any type constructed based on it-requires ! structural equality. If you suspect that the canonical type system ! is miscomparing types, pass '--param verify-canonical-types=1' to ! the compiler or configure with '--enable-checking' to force the ! compiler to verify its canonical-type comparisons against the ! structural comparisons; the compiler will then print any warnings ! if the canonical types miscompare. ! 'TYPE_STRUCTURAL_EQUALITY_P' This predicate holds when the node requires structural equality ! checks, e.g., when 'TYPE_CANONICAL' is 'NULL_TREE'. ! 'SET_TYPE_STRUCTURAL_EQUALITY' This macro states that the type node it is given requires ! structural equality checks, e.g., it sets 'TYPE_CANONICAL' to ! 'NULL_TREE'. ! 'same_type_p' This predicate takes two types as input, and holds if they are the ! same type. For example, if one type is a 'typedef' for the other, ! or both are 'typedef's for the same type. This predicate also holds if the two trees given as input are simply copies of one another; i.e., there is no difference between them at the source level, but, for whatever reason, a duplicate has been made in the ! representation. You should never use '==' (pointer equality) to ! compare types; always use 'same_type_p' instead. Detailed below are the various kinds of types, and the macros that can be used to access them. Although other kinds of types are used elsewhere in G++, the types described here are the only ones that you will encounter while examining the intermediate representation. ! 'VOID_TYPE' ! Used to represent the 'void' type. ! 'INTEGER_TYPE' ! Used to represent the various integral types, including 'char', ! 'short', 'int', 'long', and 'long long'. This code is not used for ! enumeration types, nor for the 'bool' type. The 'TYPE_PRECISION' ! is the number of bits used in the representation, represented as an ! 'unsigned int'. (Note that in the general case this is not the ! same value as 'TYPE_SIZE'; suppose that there were a 24-bit integer ! type, but that alignment requirements for the ABI required 32-bit ! alignment. Then, 'TYPE_SIZE' would be an 'INTEGER_CST' for 32, ! while 'TYPE_PRECISION' would be 24.) The integer type is unsigned ! if 'TYPE_UNSIGNED' holds; otherwise, it is signed. ! The 'TYPE_MIN_VALUE' is an 'INTEGER_CST' for the smallest integer that may be represented by this type. Similarly, the ! 'TYPE_MAX_VALUE' is an 'INTEGER_CST' for the largest integer that may be represented by this type. ! 'REAL_TYPE' ! Used to represent the 'float', 'double', and 'long double' types. ! The number of bits in the floating-point representation is given by ! 'TYPE_PRECISION', as in the 'INTEGER_TYPE' case. ! 'FIXED_POINT_TYPE' ! Used to represent the 'short _Fract', '_Fract', 'long _Fract', ! 'long long _Fract', 'short _Accum', '_Accum', 'long _Accum', and ! 'long long _Accum' types. The number of bits in the fixed-point ! representation is given by 'TYPE_PRECISION', as in the ! 'INTEGER_TYPE' case. There may be padding bits, fractional bits and integral bits. The number of fractional bits is given by ! 'TYPE_FBIT', and the number of integral bits is given by ! 'TYPE_IBIT'. The fixed-point type is unsigned if 'TYPE_UNSIGNED' ! holds; otherwise, it is signed. The fixed-point type is saturating ! if 'TYPE_SATURATING' holds; otherwise, it is not saturating. ! 'COMPLEX_TYPE' ! Used to represent GCC built-in '__complex__' data types. The ! 'TREE_TYPE' is the type of the real and imaginary parts. ! 'ENUMERAL_TYPE' ! Used to represent an enumeration type. The 'TYPE_PRECISION' gives ! (as an 'int'), the number of bits used to represent the type. If ! there are no negative enumeration constants, 'TYPE_UNSIGNED' will hold. The minimum and maximum enumeration constants may be ! obtained with 'TYPE_MIN_VALUE' and 'TYPE_MAX_VALUE', respectively; ! each of these macros returns an 'INTEGER_CST'. The actual enumeration constants themselves may be obtained by ! looking at the 'TYPE_VALUES'. This macro will return a ! 'TREE_LIST', containing the constants. The 'TREE_PURPOSE' of each ! node will be an 'IDENTIFIER_NODE' giving the name of the constant; ! the 'TREE_VALUE' will be an 'INTEGER_CST' giving the value assigned ! to that constant. These constants will appear in the order in ! which they were declared. The 'TREE_TYPE' of each of these ! constants will be the type of enumeration type itself. ! 'BOOLEAN_TYPE' ! Used to represent the 'bool' type. ! 'POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! The 'TREE_TYPE' gives the type to which this type points. ! 'REFERENCE_TYPE' ! Used to represent reference types. The 'TREE_TYPE' gives the type to which this type refers. ! 'FUNCTION_TYPE' Used to represent the type of non-member functions and of static ! member functions. The 'TREE_TYPE' gives the return type of the ! function. The 'TYPE_ARG_TYPES' are a 'TREE_LIST' of the argument ! types. The 'TREE_VALUE' of each node in this list is the type of ! the corresponding argument; the 'TREE_PURPOSE' is an expression for ! the default argument value, if any. If the last node in the list ! is 'void_list_node' (a 'TREE_LIST' node whose 'TREE_VALUE' is the ! 'void_type_node'), then functions of this type do not take variable ! arguments. Otherwise, they do take a variable number of arguments. ! Note that in C (but not in C++) a function declared like 'void f()' is an unprototyped function taking a variable number of arguments; ! the 'TYPE_ARG_TYPES' of such a function will be 'NULL'. ! 'METHOD_TYPE' Used to represent the type of a non-static member function. Like a ! 'FUNCTION_TYPE', the return type is given by the 'TREE_TYPE'. The ! type of '*this', i.e., the class of which functions of this type ! are a member, is given by the 'TYPE_METHOD_BASETYPE'. The ! 'TYPE_ARG_TYPES' is the parameter list, as for a 'FUNCTION_TYPE', ! and includes the 'this' argument. ! 'ARRAY_TYPE' ! Used to represent array types. The 'TREE_TYPE' gives the type of the elements in the array. If the array-bound is present in the ! type, the 'TYPE_DOMAIN' is an 'INTEGER_TYPE' whose 'TYPE_MIN_VALUE' ! and 'TYPE_MAX_VALUE' will be the lower and upper bounds of the ! array, respectively. The 'TYPE_MIN_VALUE' will always be an ! 'INTEGER_CST' for zero, while the 'TYPE_MAX_VALUE' will be one less ! than the number of elements in the array, i.e., the highest value ! which may be used to index an element in the array. ! 'RECORD_TYPE' ! Used to represent 'struct' and 'class' types, as well as pointers to member functions and similar constructs in other languages. ! 'TYPE_FIELDS' contains the items contained in this type, each of ! which can be a 'FIELD_DECL', 'VAR_DECL', 'CONST_DECL', or ! 'TYPE_DECL'. You may not make any assumptions about the ordering of the fields in the type or whether one or more of them overlap. ! 'UNION_TYPE' ! Used to represent 'union' types. Similar to 'RECORD_TYPE' except ! that all 'FIELD_DECL' nodes in 'TYPE_FIELD' start at bit position zero. ! 'QUAL_UNION_TYPE' Used to represent part of a variant record in Ada. Similar to ! 'UNION_TYPE' except that each 'FIELD_DECL' has a 'DECL_QUALIFIER' field, which contains a boolean expression that indicates whether the field is present in the object. The type will only have one ! field, so each field's 'DECL_QUALIFIER' is only evaluated if none ! of the expressions in the previous fields in 'TYPE_FIELDS' are nonzero. Normally these expressions will reference a field in the ! outer object using a 'PLACEHOLDER_EXPR'. ! 'LANG_TYPE' This node is used to represent a language-specific type. The front end must handle it. ! 'OFFSET_TYPE' This node is used to represent a pointer-to-data member. For a ! data member 'X::m' the 'TYPE_OFFSET_BASETYPE' is 'X' and the ! 'TREE_TYPE' is the type of 'm'. There are variables whose values represent some of the basic types. These include: ! 'void_type_node' ! A node for 'void'. ! 'integer_type_node' ! A node for 'int'. ! 'unsigned_type_node.' ! A node for 'unsigned int'. ! 'char_type_node.' ! A node for 'char'. ! It may sometimes be useful to compare one of these variables with a type ! in hand, using 'same_type_p'.  File: gccint.info, Node: Declarations, Next: Attributes, Prev: Types, Up: GENERIC --- 7907,8158 ---- are often multiple nodes corresponding to the same type. For the most part, different kinds of types have different tree codes. ! (For example, pointer types use a `POINTER_TYPE' code while arrays use ! an `ARRAY_TYPE' code.) However, pointers to member functions use the ! `RECORD_TYPE' code. Therefore, when writing a `switch' statement that depends on the code associated with a particular type, you should take ! care to handle pointers to member functions under the `RECORD_TYPE' ! case label. The following functions and macros deal with cv-qualification of types: ! `TYPE_MAIN_VARIANT' This macro returns the unqualified version of a type. It may be applied to an unqualified type, but it is not always the identity function in that case. A few other macros and functions are usable with all types: ! `TYPE_SIZE' The number of bits required to represent the type, represented as ! an `INTEGER_CST'. For an incomplete type, `TYPE_SIZE' will be ! `NULL_TREE'. ! `TYPE_ALIGN' ! The alignment of the type, in bits, represented as an `int'. ! `TYPE_NAME' ! This macro returns a declaration (in the form of a `TYPE_DECL') for ! the type. (Note this macro does _not_ return an ! `IDENTIFIER_NODE', as you might expect, given its name!) You can ! look at the `DECL_NAME' of the `TYPE_DECL' to obtain the actual ! name of the type. The `TYPE_NAME' will be `NULL_TREE' for a type ! that is not a built-in type, the result of a typedef, or a named ! class type. ! `TYPE_CANONICAL' This macro returns the "canonical" type for the given type node. Canonical types are used to improve performance in the C++ and Objective-C++ front ends by allowing efficient comparison between ! two type nodes in `same_type_p': if the `TYPE_CANONICAL' values of the types are equal, the types are equivalent; otherwise, the types ! are not equivalent. The notion of equivalence for canonical types is the same as the notion of type equivalence in the language ! itself. For instance, ! When `TYPE_CANONICAL' is `NULL_TREE', there is no canonical type ! for the given type node. In this case, comparison between this type and any other type requires the compiler to perform a deep, "structural" comparison to see if the two type nodes have the same form and properties. The canonical type for a node is always the most fundamental type ! in the equivalence class of types. For instance, `int' is its own ! canonical type. A typedef `I' of `int' will have `int' as its ! canonical type. Similarly, `I*' and a typedef `IP' (defined to ! `I*') will has `int*' as their canonical type. When building a new ! type node, be sure to set `TYPE_CANONICAL' to the appropriate ! canonical type. If the new type is a compound type (built from other types), and any of those other types require structural ! equality, use `SET_TYPE_STRUCTURAL_EQUALITY' to ensure that the ! new type also requires structural equality. Finally, if for some ! reason you cannot guarantee that `TYPE_CANONICAL' will point to ! the canonical type, use `SET_TYPE_STRUCTURAL_EQUALITY' to make ! sure that the new type-and any type constructed based on ! it-requires structural equality. If you suspect that the canonical ! type system is miscomparing types, pass `--param ! verify-canonical-types=1' to the compiler or configure with ! `--enable-checking' to force the compiler to verify its ! canonical-type comparisons against the structural comparisons; the ! compiler will then print any warnings if the canonical types ! miscompare. ! `TYPE_STRUCTURAL_EQUALITY_P' This predicate holds when the node requires structural equality ! checks, e.g., when `TYPE_CANONICAL' is `NULL_TREE'. ! `SET_TYPE_STRUCTURAL_EQUALITY' This macro states that the type node it is given requires ! structural equality checks, e.g., it sets `TYPE_CANONICAL' to ! `NULL_TREE'. ! `same_type_p' This predicate takes two types as input, and holds if they are the ! same type. For example, if one type is a `typedef' for the other, ! or both are `typedef's for the same type. This predicate also holds if the two trees given as input are simply copies of one another; i.e., there is no difference between them at the source level, but, for whatever reason, a duplicate has been made in the ! representation. You should never use `==' (pointer equality) to ! compare types; always use `same_type_p' instead. Detailed below are the various kinds of types, and the macros that can be used to access them. Although other kinds of types are used elsewhere in G++, the types described here are the only ones that you will encounter while examining the intermediate representation. ! `VOID_TYPE' ! Used to represent the `void' type. ! `INTEGER_TYPE' ! Used to represent the various integral types, including `char', ! `short', `int', `long', and `long long'. This code is not used ! for enumeration types, nor for the `bool' type. The ! `TYPE_PRECISION' is the number of bits used in the representation, ! represented as an `unsigned int'. (Note that in the general case ! this is not the same value as `TYPE_SIZE'; suppose that there were ! a 24-bit integer type, but that alignment requirements for the ABI ! required 32-bit alignment. Then, `TYPE_SIZE' would be an ! `INTEGER_CST' for 32, while `TYPE_PRECISION' would be 24.) The ! integer type is unsigned if `TYPE_UNSIGNED' holds; otherwise, it ! is signed. ! The `TYPE_MIN_VALUE' is an `INTEGER_CST' for the smallest integer that may be represented by this type. Similarly, the ! `TYPE_MAX_VALUE' is an `INTEGER_CST' for the largest integer that may be represented by this type. ! `REAL_TYPE' ! Used to represent the `float', `double', and `long double' types. ! The number of bits in the floating-point representation is given ! by `TYPE_PRECISION', as in the `INTEGER_TYPE' case. ! `FIXED_POINT_TYPE' ! Used to represent the `short _Fract', `_Fract', `long _Fract', ! `long long _Fract', `short _Accum', `_Accum', `long _Accum', and ! `long long _Accum' types. The number of bits in the fixed-point ! representation is given by `TYPE_PRECISION', as in the ! `INTEGER_TYPE' case. There may be padding bits, fractional bits and integral bits. The number of fractional bits is given by ! `TYPE_FBIT', and the number of integral bits is given by ! `TYPE_IBIT'. The fixed-point type is unsigned if `TYPE_UNSIGNED' ! holds; otherwise, it is signed. The fixed-point type is ! saturating if `TYPE_SATURATING' holds; otherwise, it is not ! saturating. ! `COMPLEX_TYPE' ! Used to represent GCC built-in `__complex__' data types. The ! `TREE_TYPE' is the type of the real and imaginary parts. ! `ENUMERAL_TYPE' ! Used to represent an enumeration type. The `TYPE_PRECISION' gives ! (as an `int'), the number of bits used to represent the type. If ! there are no negative enumeration constants, `TYPE_UNSIGNED' will hold. The minimum and maximum enumeration constants may be ! obtained with `TYPE_MIN_VALUE' and `TYPE_MAX_VALUE', respectively; ! each of these macros returns an `INTEGER_CST'. The actual enumeration constants themselves may be obtained by ! looking at the `TYPE_VALUES'. This macro will return a ! `TREE_LIST', containing the constants. The `TREE_PURPOSE' of each ! node will be an `IDENTIFIER_NODE' giving the name of the constant; ! the `TREE_VALUE' will be an `INTEGER_CST' giving the value ! assigned to that constant. These constants will appear in the ! order in which they were declared. The `TREE_TYPE' of each of ! these constants will be the type of enumeration type itself. ! `BOOLEAN_TYPE' ! Used to represent the `bool' type. ! `POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! The `TREE_TYPE' gives the type to which this type points. ! `REFERENCE_TYPE' ! Used to represent reference types. The `TREE_TYPE' gives the type to which this type refers. ! `FUNCTION_TYPE' Used to represent the type of non-member functions and of static ! member functions. The `TREE_TYPE' gives the return type of the ! function. The `TYPE_ARG_TYPES' are a `TREE_LIST' of the argument ! types. The `TREE_VALUE' of each node in this list is the type of ! the corresponding argument; the `TREE_PURPOSE' is an expression ! for the default argument value, if any. If the last node in the ! list is `void_list_node' (a `TREE_LIST' node whose `TREE_VALUE' is ! the `void_type_node'), then functions of this type do not take ! variable arguments. Otherwise, they do take a variable number of ! arguments. ! Note that in C (but not in C++) a function declared like `void f()' is an unprototyped function taking a variable number of arguments; ! the `TYPE_ARG_TYPES' of such a function will be `NULL'. ! `METHOD_TYPE' Used to represent the type of a non-static member function. Like a ! `FUNCTION_TYPE', the return type is given by the `TREE_TYPE'. The ! type of `*this', i.e., the class of which functions of this type ! are a member, is given by the `TYPE_METHOD_BASETYPE'. The ! `TYPE_ARG_TYPES' is the parameter list, as for a `FUNCTION_TYPE', ! and includes the `this' argument. ! `ARRAY_TYPE' ! Used to represent array types. The `TREE_TYPE' gives the type of the elements in the array. If the array-bound is present in the ! type, the `TYPE_DOMAIN' is an `INTEGER_TYPE' whose ! `TYPE_MIN_VALUE' and `TYPE_MAX_VALUE' will be the lower and upper ! bounds of the array, respectively. The `TYPE_MIN_VALUE' will ! always be an `INTEGER_CST' for zero, while the `TYPE_MAX_VALUE' ! will be one less than the number of elements in the array, i.e., ! the highest value which may be used to index an element in the ! array. ! `RECORD_TYPE' ! Used to represent `struct' and `class' types, as well as pointers to member functions and similar constructs in other languages. ! `TYPE_FIELDS' contains the items contained in this type, each of ! which can be a `FIELD_DECL', `VAR_DECL', `CONST_DECL', or ! `TYPE_DECL'. You may not make any assumptions about the ordering of the fields in the type or whether one or more of them overlap. ! `UNION_TYPE' ! Used to represent `union' types. Similar to `RECORD_TYPE' except ! that all `FIELD_DECL' nodes in `TYPE_FIELD' start at bit position zero. ! `QUAL_UNION_TYPE' Used to represent part of a variant record in Ada. Similar to ! `UNION_TYPE' except that each `FIELD_DECL' has a `DECL_QUALIFIER' field, which contains a boolean expression that indicates whether the field is present in the object. The type will only have one ! field, so each field's `DECL_QUALIFIER' is only evaluated if none ! of the expressions in the previous fields in `TYPE_FIELDS' are nonzero. Normally these expressions will reference a field in the ! outer object using a `PLACEHOLDER_EXPR'. ! `LANG_TYPE' This node is used to represent a language-specific type. The front end must handle it. ! `OFFSET_TYPE' This node is used to represent a pointer-to-data member. For a ! data member `X::m' the `TYPE_OFFSET_BASETYPE' is `X' and the ! `TREE_TYPE' is the type of `m'. ! There are variables whose values represent some of the basic types. These include: ! `void_type_node' ! A node for `void'. ! `integer_type_node' ! A node for `int'. ! `unsigned_type_node.' ! A node for `unsigned int'. ! `char_type_node.' ! A node for `char'. ! It may sometimes be useful to compare one of these variables with a ! type in hand, using `same_type_p'.  File: gccint.info, Node: Declarations, Next: Attributes, Prev: Types, Up: GENERIC *************** File: gccint.info, Node: Declarations, *** 8008,8014 **** This section covers the various kinds of declarations that appear in the internal representation, except for declarations of functions ! (represented by 'FUNCTION_DECL' nodes), which are described in *note Functions::. * Menu: --- 8162,8168 ---- This section covers the various kinds of declarations that appear in the internal representation, except for declarations of functions ! (represented by `FUNCTION_DECL' nodes), which are described in *note Functions::. * Menu: *************** File: gccint.info, Node: Working with d *** 8024,8146 **** -------------------------------- Some macros can be used with any kind of declaration. These include: ! 'DECL_NAME' ! This macro returns an 'IDENTIFIER_NODE' giving the name of the entity. ! 'TREE_TYPE' This macro returns the type of the entity declared. ! 'EXPR_FILENAME' This macro returns the name of the file in which the entity was ! declared, as a 'char*'. For an entity declared implicitly by the ! compiler (like '__builtin_memcpy'), this will be the string ! '""'. ! 'EXPR_LINENO' This macro returns the line number at which the entity was ! declared, as an 'int'. ! 'DECL_ARTIFICIAL' ! This predicate holds if the declaration was implicitly generated by ! the compiler. For example, this predicate will hold of an ! implicitly declared member function, or of the 'TYPE_DECL' implicitly generated for a class type. Recall that in C++ code like: struct S {}; is roughly equivalent to C code like: struct S {}; typedef struct S S; ! The implicitly generated 'typedef' declaration is represented by a ! 'TYPE_DECL' for which 'DECL_ARTIFICIAL' holds. The various kinds of declarations include: ! 'LABEL_DECL' These nodes are used to represent labels in function bodies. For more information, see *note Functions::. These nodes only appear in block scopes. ! 'CONST_DECL' ! These nodes are used to represent enumeration constants. The value ! of the constant is given by 'DECL_INITIAL' which will be an ! 'INTEGER_CST' with the same type as the 'TREE_TYPE' of the ! 'CONST_DECL', i.e., an 'ENUMERAL_TYPE'. ! 'RESULT_DECL' These nodes represent the value returned by a function. When a ! value is assigned to a 'RESULT_DECL', that indicates that the value ! should be returned, via bitwise copy, by the function. You can use ! 'DECL_SIZE' and 'DECL_ALIGN' on a 'RESULT_DECL', just as with a ! 'VAR_DECL'. ! 'TYPE_DECL' ! These nodes represent 'typedef' declarations. The 'TREE_TYPE' is ! the type declared to have the name given by 'DECL_NAME'. In some cases, there is no associated name. ! 'VAR_DECL' These nodes represent variables with namespace or block scope, as ! well as static data members. The 'DECL_SIZE' and 'DECL_ALIGN' are ! analogous to 'TYPE_SIZE' and 'TYPE_ALIGN'. For a declaration, you ! should always use the 'DECL_SIZE' and 'DECL_ALIGN' rather than the ! 'TYPE_SIZE' and 'TYPE_ALIGN' given by the 'TREE_TYPE', since ! special attributes may have been applied to the variable to give it ! a particular size and alignment. You may use the predicates ! 'DECL_THIS_STATIC' or 'DECL_THIS_EXTERN' to test whether the ! storage class specifiers 'static' or 'extern' were used to declare a variable. If this variable is initialized (but does not require a ! constructor), the 'DECL_INITIAL' will be an expression for the initializer. The initializer should be evaluated, and a bitwise ! copy into the variable performed. If the 'DECL_INITIAL' is the ! 'error_mark_node', there is an initializer, but it is given by an explicit statement later in the code; no bitwise copy is required. GCC provides an extension that allows either automatic variables, or global variables, to be placed in particular registers. This ! extension is being used for a particular 'VAR_DECL' if ! 'DECL_REGISTER' holds for the 'VAR_DECL', and if ! 'DECL_ASSEMBLER_NAME' is not equal to 'DECL_NAME'. In that case, ! 'DECL_ASSEMBLER_NAME' is the name of the register into which the variable will be placed. ! 'PARM_DECL' Used to represent a parameter to a function. Treat these nodes ! similarly to 'VAR_DECL' nodes. These nodes only appear in the ! 'DECL_ARGUMENTS' for a 'FUNCTION_DECL'. ! The 'DECL_ARG_TYPE' for a 'PARM_DECL' is the type that will actually be used when a value is passed to this function. It may ! be a wider type than the 'TREE_TYPE' of the parameter; for example, ! the ordinary type might be 'short' while the 'DECL_ARG_TYPE' is ! 'int'. ! 'DEBUG_EXPR_DECL' Used to represent an anonymous debug-information temporary created to hold an expression as it is optimized away, so that its value can be referenced in debug bind statements. ! 'FIELD_DECL' ! These nodes represent non-static data members. The 'DECL_SIZE' and ! 'DECL_ALIGN' behave as for 'VAR_DECL' nodes. The position of the field within the parent record is specified by a combination of ! three attributes. 'DECL_FIELD_OFFSET' is the position, counting in ! bytes, of the 'DECL_OFFSET_ALIGN'-bit sized word containing the bit ! of the field closest to the beginning of the structure. ! 'DECL_FIELD_BIT_OFFSET' is the bit offset of the first bit of the field within this word; this may be nonzero even for fields that ! are not bit-fields, since 'DECL_OFFSET_ALIGN' may be greater than the natural alignment of the field's type. ! If 'DECL_C_BIT_FIELD' holds, this field is a bit-field. In a ! bit-field, 'DECL_BIT_FIELD_TYPE' also contains the type that was ! originally specified for it, while DECL_TYPE may be a modified type ! with lesser precision, according to the size of the bit field. ! 'NAMESPACE_DECL' Namespaces provide a name hierarchy for other declarations. They ! appear in the 'DECL_CONTEXT' of other '_DECL' nodes.  File: gccint.info, Node: Internal structure, Prev: Working with declarations, Up: Declarations --- 8178,8302 ---- -------------------------------- Some macros can be used with any kind of declaration. These include: ! `DECL_NAME' ! This macro returns an `IDENTIFIER_NODE' giving the name of the entity. ! `TREE_TYPE' This macro returns the type of the entity declared. ! `EXPR_FILENAME' This macro returns the name of the file in which the entity was ! declared, as a `char*'. For an entity declared implicitly by the ! compiler (like `__builtin_memcpy'), this will be the string ! `""'. ! `EXPR_LINENO' This macro returns the line number at which the entity was ! declared, as an `int'. ! `DECL_ARTIFICIAL' ! This predicate holds if the declaration was implicitly generated ! by the compiler. For example, this predicate will hold of an ! implicitly declared member function, or of the `TYPE_DECL' implicitly generated for a class type. Recall that in C++ code like: struct S {}; is roughly equivalent to C code like: struct S {}; typedef struct S S; ! The implicitly generated `typedef' declaration is represented by a ! `TYPE_DECL' for which `DECL_ARTIFICIAL' holds. ! The various kinds of declarations include: ! `LABEL_DECL' These nodes are used to represent labels in function bodies. For more information, see *note Functions::. These nodes only appear in block scopes. ! `CONST_DECL' ! These nodes are used to represent enumeration constants. The ! value of the constant is given by `DECL_INITIAL' which will be an ! `INTEGER_CST' with the same type as the `TREE_TYPE' of the ! `CONST_DECL', i.e., an `ENUMERAL_TYPE'. ! `RESULT_DECL' These nodes represent the value returned by a function. When a ! value is assigned to a `RESULT_DECL', that indicates that the ! value should be returned, via bitwise copy, by the function. You ! can use `DECL_SIZE' and `DECL_ALIGN' on a `RESULT_DECL', just as ! with a `VAR_DECL'. ! `TYPE_DECL' ! These nodes represent `typedef' declarations. The `TREE_TYPE' is ! the type declared to have the name given by `DECL_NAME'. In some cases, there is no associated name. ! `VAR_DECL' These nodes represent variables with namespace or block scope, as ! well as static data members. The `DECL_SIZE' and `DECL_ALIGN' are ! analogous to `TYPE_SIZE' and `TYPE_ALIGN'. For a declaration, you ! should always use the `DECL_SIZE' and `DECL_ALIGN' rather than the ! `TYPE_SIZE' and `TYPE_ALIGN' given by the `TREE_TYPE', since ! special attributes may have been applied to the variable to give ! it a particular size and alignment. You may use the predicates ! `DECL_THIS_STATIC' or `DECL_THIS_EXTERN' to test whether the ! storage class specifiers `static' or `extern' were used to declare a variable. If this variable is initialized (but does not require a ! constructor), the `DECL_INITIAL' will be an expression for the initializer. The initializer should be evaluated, and a bitwise ! copy into the variable performed. If the `DECL_INITIAL' is the ! `error_mark_node', there is an initializer, but it is given by an explicit statement later in the code; no bitwise copy is required. GCC provides an extension that allows either automatic variables, or global variables, to be placed in particular registers. This ! extension is being used for a particular `VAR_DECL' if ! `DECL_REGISTER' holds for the `VAR_DECL', and if ! `DECL_ASSEMBLER_NAME' is not equal to `DECL_NAME'. In that case, ! `DECL_ASSEMBLER_NAME' is the name of the register into which the variable will be placed. ! `PARM_DECL' Used to represent a parameter to a function. Treat these nodes ! similarly to `VAR_DECL' nodes. These nodes only appear in the ! `DECL_ARGUMENTS' for a `FUNCTION_DECL'. ! The `DECL_ARG_TYPE' for a `PARM_DECL' is the type that will actually be used when a value is passed to this function. It may ! be a wider type than the `TREE_TYPE' of the parameter; for ! example, the ordinary type might be `short' while the ! `DECL_ARG_TYPE' is `int'. ! `DEBUG_EXPR_DECL' Used to represent an anonymous debug-information temporary created to hold an expression as it is optimized away, so that its value can be referenced in debug bind statements. ! `FIELD_DECL' ! These nodes represent non-static data members. The `DECL_SIZE' and ! `DECL_ALIGN' behave as for `VAR_DECL' nodes. The position of the field within the parent record is specified by a combination of ! three attributes. `DECL_FIELD_OFFSET' is the position, counting ! in bytes, of the `DECL_OFFSET_ALIGN'-bit sized word containing the ! bit of the field closest to the beginning of the structure. ! `DECL_FIELD_BIT_OFFSET' is the bit offset of the first bit of the field within this word; this may be nonzero even for fields that ! are not bit-fields, since `DECL_OFFSET_ALIGN' may be greater than the natural alignment of the field's type. ! If `DECL_C_BIT_FIELD' holds, this field is a bit-field. In a ! bit-field, `DECL_BIT_FIELD_TYPE' also contains the type that was ! originally specified for it, while DECL_TYPE may be a modified ! type with lesser precision, according to the size of the bit field. ! `NAMESPACE_DECL' Namespaces provide a name hierarchy for other declarations. They ! appear in the `DECL_CONTEXT' of other `_DECL' nodes. !  File: gccint.info, Node: Internal structure, Prev: Working with declarations, Up: Declarations *************** File: gccint.info, Node: Internal struc *** 8148,8154 **** 10.4.2 Internal structure ------------------------- ! 'DECL' nodes are represented internally as a hierarchy of structures. * Menu: --- 8304,8310 ---- 10.4.2 Internal structure ------------------------- ! `DECL' nodes are represented internally as a hierarchy of structures. * Menu: *************** File: gccint.info, Node: Current struct *** 8163,8219 **** 10.4.2.1 Current structure hierarchy .................................... ! 'struct tree_decl_minimal' This is the minimal structure to inherit from in order for common ! 'DECL' macros to work. The fields it contains are a unique ID, source location, context, and name. ! 'struct tree_decl_common' ! This structure inherits from 'struct tree_decl_minimal'. It ! contains fields that most 'DECL' nodes need, such as a field to store alignment, machine mode, size, and attributes. ! 'struct tree_field_decl' ! This structure inherits from 'struct tree_decl_common'. It is used ! to represent 'FIELD_DECL'. ! 'struct tree_label_decl' ! This structure inherits from 'struct tree_decl_common'. It is used ! to represent 'LABEL_DECL'. ! 'struct tree_translation_unit_decl' ! This structure inherits from 'struct tree_decl_common'. It is used ! to represent 'TRANSLATION_UNIT_DECL'. ! 'struct tree_decl_with_rtl' ! This structure inherits from 'struct tree_decl_common'. It contains a field to store the low-level RTL associated with a ! 'DECL' node. ! 'struct tree_result_decl' ! This structure inherits from 'struct tree_decl_with_rtl'. It is ! used to represent 'RESULT_DECL'. ! 'struct tree_const_decl' ! This structure inherits from 'struct tree_decl_with_rtl'. It is ! used to represent 'CONST_DECL'. ! 'struct tree_parm_decl' ! This structure inherits from 'struct tree_decl_with_rtl'. It is ! used to represent 'PARM_DECL'. ! 'struct tree_decl_with_vis' ! This structure inherits from 'struct tree_decl_with_rtl'. It contains fields necessary to store visibility information, as well as a section name and assembler name. ! 'struct tree_var_decl' ! This structure inherits from 'struct tree_decl_with_vis'. It is ! used to represent 'VAR_DECL'. - 'struct tree_function_decl' - This structure inherits from 'struct tree_decl_with_vis'. It is - used to represent 'FUNCTION_DECL'.  File: gccint.info, Node: Adding new DECL node types, Prev: Current structure hierarchy, Up: Internal structure --- 8319,8376 ---- 10.4.2.1 Current structure hierarchy .................................... ! `struct tree_decl_minimal' This is the minimal structure to inherit from in order for common ! `DECL' macros to work. The fields it contains are a unique ID, source location, context, and name. ! `struct tree_decl_common' ! This structure inherits from `struct tree_decl_minimal'. It ! contains fields that most `DECL' nodes need, such as a field to store alignment, machine mode, size, and attributes. ! `struct tree_field_decl' ! This structure inherits from `struct tree_decl_common'. It is ! used to represent `FIELD_DECL'. ! `struct tree_label_decl' ! This structure inherits from `struct tree_decl_common'. It is ! used to represent `LABEL_DECL'. ! `struct tree_translation_unit_decl' ! This structure inherits from `struct tree_decl_common'. It is ! used to represent `TRANSLATION_UNIT_DECL'. ! `struct tree_decl_with_rtl' ! This structure inherits from `struct tree_decl_common'. It contains a field to store the low-level RTL associated with a ! `DECL' node. ! `struct tree_result_decl' ! This structure inherits from `struct tree_decl_with_rtl'. It is ! used to represent `RESULT_DECL'. ! `struct tree_const_decl' ! This structure inherits from `struct tree_decl_with_rtl'. It is ! used to represent `CONST_DECL'. ! `struct tree_parm_decl' ! This structure inherits from `struct tree_decl_with_rtl'. It is ! used to represent `PARM_DECL'. ! `struct tree_decl_with_vis' ! This structure inherits from `struct tree_decl_with_rtl'. It contains fields necessary to store visibility information, as well as a section name and assembler name. ! `struct tree_var_decl' ! This structure inherits from `struct tree_decl_with_vis'. It is ! used to represent `VAR_DECL'. ! ! `struct tree_function_decl' ! This structure inherits from `struct tree_decl_with_vis'. It is ! used to represent `FUNCTION_DECL'.  File: gccint.info, Node: Adding new DECL node types, Prev: Current structure hierarchy, Up: Internal structure *************** File: gccint.info, Node: Adding new DEC *** 8221,8297 **** 10.4.2.2 Adding new DECL node types ................................... ! Adding a new 'DECL' tree consists of the following steps ! Add a new tree code for the 'DECL' node ! For language specific 'DECL' nodes, there is a '.def' file in each ! frontend directory where the tree code should be added. For 'DECL' ! nodes that are part of the middle-end, the code should be added to ! 'tree.def'. ! Create a new structure type for the 'DECL' node ! These structures should inherit from one of the existing structures ! in the language hierarchy by using that structure as the first ! member. struct tree_foo_decl { struct tree_decl_with_vis common; } ! Would create a structure name 'tree_foo_decl' that inherits from ! 'struct tree_decl_with_vis'. ! For language specific 'DECL' nodes, this new structure type should ! go in the appropriate '.h' file. For 'DECL' nodes that are part of ! the middle-end, the structure type should go in 'tree.h'. Add a member to the tree structure enumerator for the node ! For garbage collection and dynamic checking purposes, each 'DECL' node structure type is required to have a unique enumerator value ! specified with it. For language specific 'DECL' nodes, this new ! enumerator value should go in the appropriate '.def' file. For ! 'DECL' nodes that are part of the middle-end, the enumerator values ! are specified in 'treestruct.def'. ! Update 'union tree_node' In order to make your new structure type usable, it must be added ! to 'union tree_node'. For language specific 'DECL' nodes, a new ! entry should be added to the appropriate '.h' file of the form struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl; ! For 'DECL' nodes that are part of the middle-end, the additional ! member goes directly into 'union tree_node' in 'tree.h'. Update dynamic checking info In order to be able to check whether accessing a named portion of ! 'union tree_node' is legal, and whether a certain 'DECL' node ! contains one of the enumerated 'DECL' node structures in the hierarchy, a simple lookup table is used. This lookup table needs to be kept up to date with the tree structure hierarchy, or else checking and containment macros will fail inappropriately. ! For language specific 'DECL' nodes, their is an 'init_ts' function ! in an appropriate '.c' file, which initializes the lookup table. ! Code setting up the table for new 'DECL' nodes should be added ! there. For each 'DECL' tree code and enumerator value representing ! a member of the inheritance hierarchy, the table should contain 1 ! if that tree code inherits (directly or indirectly) from that ! member. Thus, a 'FOO_DECL' node derived from 'struct ! decl_with_rtl', and enumerator value 'TS_FOO_DECL', would be set up ! as follows tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1; tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1; ! For 'DECL' nodes that are part of the middle-end, the setup code ! goes into 'tree.c'. Add macros to access any new fields and flags - Each added field or flag should have a macro that is used to access it, that performs appropriate checking to ensure only the right ! type of 'DECL' nodes access the field. These macros generally take the following form #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname --- 8378,8453 ---- 10.4.2.2 Adding new DECL node types ................................... ! Adding a new `DECL' tree consists of the following steps ! Add a new tree code for the `DECL' node ! For language specific `DECL' nodes, there is a `.def' file in each ! frontend directory where the tree code should be added. For ! `DECL' nodes that are part of the middle-end, the code should be ! added to `tree.def'. ! Create a new structure type for the `DECL' node ! These structures should inherit from one of the existing ! structures in the language hierarchy by using that structure as ! the first member. struct tree_foo_decl { struct tree_decl_with_vis common; } ! Would create a structure name `tree_foo_decl' that inherits from ! `struct tree_decl_with_vis'. ! For language specific `DECL' nodes, this new structure type should ! go in the appropriate `.h' file. For `DECL' nodes that are part ! of the middle-end, the structure type should go in `tree.h'. Add a member to the tree structure enumerator for the node ! For garbage collection and dynamic checking purposes, each `DECL' node structure type is required to have a unique enumerator value ! specified with it. For language specific `DECL' nodes, this new ! enumerator value should go in the appropriate `.def' file. For ! `DECL' nodes that are part of the middle-end, the enumerator ! values are specified in `treestruct.def'. ! Update `union tree_node' In order to make your new structure type usable, it must be added ! to `union tree_node'. For language specific `DECL' nodes, a new ! entry should be added to the appropriate `.h' file of the form struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl; ! For `DECL' nodes that are part of the middle-end, the additional ! member goes directly into `union tree_node' in `tree.h'. Update dynamic checking info In order to be able to check whether accessing a named portion of ! `union tree_node' is legal, and whether a certain `DECL' node ! contains one of the enumerated `DECL' node structures in the hierarchy, a simple lookup table is used. This lookup table needs to be kept up to date with the tree structure hierarchy, or else checking and containment macros will fail inappropriately. ! For language specific `DECL' nodes, their is an `init_ts' function ! in an appropriate `.c' file, which initializes the lookup table. ! Code setting up the table for new `DECL' nodes should be added ! there. For each `DECL' tree code and enumerator value ! representing a member of the inheritance hierarchy, the table ! should contain 1 if that tree code inherits (directly or ! indirectly) from that member. Thus, a `FOO_DECL' node derived ! from `struct decl_with_rtl', and enumerator value `TS_FOO_DECL', ! would be set up as follows tree_contains_struct[FOO_DECL][TS_FOO_DECL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_WRTL] = 1; tree_contains_struct[FOO_DECL][TS_DECL_COMMON] = 1; tree_contains_struct[FOO_DECL][TS_DECL_MINIMAL] = 1; ! For `DECL' nodes that are part of the middle-end, the setup code ! goes into `tree.c'. Add macros to access any new fields and flags Each added field or flag should have a macro that is used to access it, that performs appropriate checking to ensure only the right ! type of `DECL' nodes access the field. These macros generally take the following form #define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname *************** Add macros to access any new fields and *** 8301,8309 **** #define BASE_STRUCT_FIELDNAME(NODE) \ (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname ! Reading them from the generated 'all-tree.def' file (which in turn ! includes all the 'tree.def' files), 'gencheck.c' is used during ! GCC's build to generate the '*_CHECK' macros for all tree codes.  File: gccint.info, Node: Attributes, Next: Expression trees, Prev: Declarations, Up: GENERIC --- 8457,8466 ---- #define BASE_STRUCT_FIELDNAME(NODE) \ (BASE_STRUCT_CHECK(NODE)->base_struct.fieldname ! Reading them from the generated `all-tree.def' file (which in turn ! includes all the `tree.def' files), `gencheck.c' is used during ! GCC's build to generate the `*_CHECK' macros for all tree codes. !  File: gccint.info, Node: Attributes, Next: Expression trees, Prev: Declarations, Up: GENERIC *************** File: gccint.info, Node: Attributes, N *** 8311,8325 **** 10.5 Attributes in trees ======================== ! Attributes, as specified using the '__attribute__' keyword, are ! represented internally as a 'TREE_LIST'. The 'TREE_PURPOSE' is the name ! of the attribute, as an 'IDENTIFIER_NODE'. The 'TREE_VALUE' is a ! 'TREE_LIST' of the arguments of the attribute, if any, or 'NULL_TREE' if ! there are no arguments; the arguments are stored as the 'TREE_VALUE' of ! successive entries in the list, and may be identifiers or expressions. ! The 'TREE_CHAIN' of the attribute is the next attribute in a list of ! attributes applying to the same declaration or type, or 'NULL_TREE' if ! there are no further attributes in the list. Attributes may be attached to declarations and to types; these attributes may be accessed with the following macros. All attributes --- 8468,8482 ---- 10.5 Attributes in trees ======================== ! Attributes, as specified using the `__attribute__' keyword, are ! represented internally as a `TREE_LIST'. The `TREE_PURPOSE' is the ! name of the attribute, as an `IDENTIFIER_NODE'. The `TREE_VALUE' is a ! `TREE_LIST' of the arguments of the attribute, if any, or `NULL_TREE' ! if there are no arguments; the arguments are stored as the `TREE_VALUE' ! of successive entries in the list, and may be identifiers or ! expressions. The `TREE_CHAIN' of the attribute is the next attribute ! in a list of attributes applying to the same declaration or type, or ! `NULL_TREE' if there are no further attributes in the list. Attributes may be attached to declarations and to types; these attributes may be accessed with the following macros. All attributes *************** mind. In particular, the expression "tr *** 8344,8361 **** acyclic graph. (For example there may be many references to the integer constant zero throughout the source program; many of these will be represented by the same expression node.) You should not rely on ! certain kinds of node being shared, nor should you rely on certain kinds ! of nodes being unshared. The following macros can be used with all expression nodes: ! 'TREE_TYPE' Returns the type of the expression. This value may not be precisely the same type that would be given the expression in the original program. In what follows, some nodes that one might expect to always have type ! 'bool' are documented to have either integral or boolean type. At some point in the future, the C front end may also make use of this same intermediate representation, and at this point these nodes will certainly have integral type. The previous sentence is not meant to --- 8501,8518 ---- acyclic graph. (For example there may be many references to the integer constant zero throughout the source program; many of these will be represented by the same expression node.) You should not rely on ! certain kinds of node being shared, nor should you rely on certain ! kinds of nodes being unshared. The following macros can be used with all expression nodes: ! `TREE_TYPE' Returns the type of the expression. This value may not be precisely the same type that would be given the expression in the original program. In what follows, some nodes that one might expect to always have type ! `bool' are documented to have either integral or boolean type. At some point in the future, the C front end may also make use of this same intermediate representation, and at this point these nodes will certainly have integral type. The previous sentence is not meant to *************** integral type. *** 8364,8374 **** Below, we list the various kinds of expression nodes. Except where noted otherwise, the operands to an expression are accessed using the ! 'TREE_OPERAND' macro. For example, to access the first operand to a ! binary plus expression 'expr', use: TREE_OPERAND (expr, 0) - As this example indicates, the operands are zero-indexed. * Menu: --- 8521,8530 ---- Below, we list the various kinds of expression nodes. Except where noted otherwise, the operands to an expression are accessed using the ! `TREE_OPERAND' macro. For example, to access the first operand to a ! binary plus expression `expr', use: TREE_OPERAND (expr, 0) As this example indicates, the operands are zero-indexed. * Menu: *************** The table below begins with constants, m *** 8388,8478 **** then proceeds to binary expressions, and concludes with various other kinds of expressions: ! 'INTEGER_CST' These nodes represent integer constants. Note that the type of ! these constants is obtained with 'TREE_TYPE'; they are not always ! of type 'int'. In particular, 'char' constants are represented ! with 'INTEGER_CST' nodes. The value of the integer constant 'e' is given by ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT) + TREE_INST_CST_LOW (e)) HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. ! Both 'TREE_INT_CST_HIGH' and 'TREE_INT_CST_LOW' return a ! 'HOST_WIDE_INT'. The value of an 'INTEGER_CST' is interpreted as a ! signed or unsigned quantity depending on the type of the constant. ! In general, the expression given above will overflow, so it should ! not be used to calculate the value of the constant. ! ! The variable 'integer_zero_node' is an integer constant with value ! zero. Similarly, 'integer_one_node' is an integer constant with ! value one. The 'size_zero_node' and 'size_one_node' variables are ! analogous, but have type 'size_t' rather than 'int'. ! The function 'tree_int_cst_lt' is a predicate which holds if its ! first argument is less than its second. Both constants are assumed ! to have the same signedness (i.e., either both should be signed or ! both should be unsigned.) The full width of the constant is used ! when doing the comparison; the usual rules about promotions and ! conversions are ignored. Similarly, 'tree_int_cst_equal' holds if ! the two constants are equal. The 'tree_int_cst_sgn' function ! returns the sign of a constant. The value is '1', '0', or '-1' ! according on whether the constant is greater than, equal to, or ! less than zero. Again, the signedness of the constant's type is ! taken into account; an unsigned constant is never less than zero, ! no matter what its bit-pattern. ! 'REAL_CST' FIXME: Talk about how to obtain representations of this constant, do comparisons, and so forth. ! 'FIXED_CST' ! These nodes represent fixed-point constants. The type of these ! constants is obtained with 'TREE_TYPE'. 'TREE_FIXED_CST_PTR' ! points to a 'struct fixed_value'; 'TREE_FIXED_CST' returns the ! structure itself. 'struct fixed_value' contains 'data' with the ! size of two 'HOST_BITS_PER_WIDE_INT' and 'mode' as the associated ! fixed-point machine mode for 'data'. ! 'COMPLEX_CST' ! These nodes are used to represent complex number constants, that is ! a '__complex__' whose parts are constant nodes. The ! 'TREE_REALPART' and 'TREE_IMAGPART' return the real and the imaginary parts respectively. ! 'VECTOR_CST' These nodes are used to represent vector constants, whose parts are ! constant nodes. Each individual constant node is either an integer ! or a double constant node. The first operand is a 'TREE_LIST' of ! the constant nodes and is accessed through 'TREE_VECTOR_CST_ELTS'. ! 'STRING_CST' ! These nodes represent string-constants. The 'TREE_STRING_LENGTH' ! returns the length of the string, as an 'int'. The ! 'TREE_STRING_POINTER' is a 'char*' containing the string itself. ! The string may not be 'NUL'-terminated, and it may contain embedded ! 'NUL' characters. Therefore, the 'TREE_STRING_LENGTH' includes the ! trailing 'NUL' if it is present. ! For wide string constants, the 'TREE_STRING_LENGTH' is the number ! of bytes in the string, and the 'TREE_STRING_POINTER' points to an array of the bytes of the string, as represented on the target system (that is, as integers in the target endianness). Wide and ! non-wide string constants are distinguished only by the 'TREE_TYPE' ! of the 'STRING_CST'. FIXME: The formats of string constants are not well-defined when the target system bytes are not the same width as host system bytes.  File: gccint.info, Node: Storage References, Next: Unary and Binary Expressions, Prev: Constant expressions, Up: Expression trees 10.6.2 References to storage ---------------------------- ! 'ARRAY_REF' These nodes represent array accesses. The first operand is the array; the second is the index. To calculate the address of the memory accessed, you must scale the index by the size of the type --- 8544,8634 ---- then proceeds to binary expressions, and concludes with various other kinds of expressions: ! `INTEGER_CST' These nodes represent integer constants. Note that the type of ! these constants is obtained with `TREE_TYPE'; they are not always ! of type `int'. In particular, `char' constants are represented ! with `INTEGER_CST' nodes. The value of the integer constant `e' is given by ((TREE_INT_CST_HIGH (e) << HOST_BITS_PER_WIDE_INT) + TREE_INST_CST_LOW (e)) HOST_BITS_PER_WIDE_INT is at least thirty-two on all platforms. ! Both `TREE_INT_CST_HIGH' and `TREE_INT_CST_LOW' return a ! `HOST_WIDE_INT'. The value of an `INTEGER_CST' is interpreted as ! a signed or unsigned quantity depending on the type of the ! constant. In general, the expression given above will overflow, ! so it should not be used to calculate the value of the constant. ! The variable `integer_zero_node' is an integer constant with value ! zero. Similarly, `integer_one_node' is an integer constant with ! value one. The `size_zero_node' and `size_one_node' variables are ! analogous, but have type `size_t' rather than `int'. ! The function `tree_int_cst_lt' is a predicate which holds if its ! first argument is less than its second. Both constants are ! assumed to have the same signedness (i.e., either both should be ! signed or both should be unsigned.) The full width of the ! constant is used when doing the comparison; the usual rules about ! promotions and conversions are ignored. Similarly, ! `tree_int_cst_equal' holds if the two constants are equal. The ! `tree_int_cst_sgn' function returns the sign of a constant. The ! value is `1', `0', or `-1' according on whether the constant is ! greater than, equal to, or less than zero. Again, the signedness ! of the constant's type is taken into account; an unsigned constant ! is never less than zero, no matter what its bit-pattern. + `REAL_CST' FIXME: Talk about how to obtain representations of this constant, do comparisons, and so forth. ! `FIXED_CST' These nodes represent fixed-point constants. The type of these ! constants is obtained with `TREE_TYPE'. `TREE_FIXED_CST_PTR' ! points to a `struct fixed_value'; `TREE_FIXED_CST' returns the ! structure itself. `struct fixed_value' contains `data' with the ! size of two `HOST_BITS_PER_WIDE_INT' and `mode' as the associated ! fixed-point machine mode for `data'. ! `COMPLEX_CST' ! These nodes are used to represent complex number constants, that ! is a `__complex__' whose parts are constant nodes. The ! `TREE_REALPART' and `TREE_IMAGPART' return the real and the imaginary parts respectively. ! `VECTOR_CST' These nodes are used to represent vector constants, whose parts are ! constant nodes. Each individual constant node is either an ! integer or a double constant node. The first operand is a ! `TREE_LIST' of the constant nodes and is accessed through ! `TREE_VECTOR_CST_ELTS'. ! `STRING_CST' ! These nodes represent string-constants. The `TREE_STRING_LENGTH' ! returns the length of the string, as an `int'. The ! `TREE_STRING_POINTER' is a `char*' containing the string itself. ! The string may not be `NUL'-terminated, and it may contain ! embedded `NUL' characters. Therefore, the `TREE_STRING_LENGTH' ! includes the trailing `NUL' if it is present. ! For wide string constants, the `TREE_STRING_LENGTH' is the number ! of bytes in the string, and the `TREE_STRING_POINTER' points to an array of the bytes of the string, as represented on the target system (that is, as integers in the target endianness). Wide and ! non-wide string constants are distinguished only by the `TREE_TYPE' ! of the `STRING_CST'. FIXME: The formats of string constants are not well-defined when the target system bytes are not the same width as host system bytes. +  File: gccint.info, Node: Storage References, Next: Unary and Binary Expressions, Prev: Constant expressions, Up: Expression trees 10.6.2 References to storage ---------------------------- ! `ARRAY_REF' These nodes represent array accesses. The first operand is the array; the second is the index. To calculate the address of the memory accessed, you must scale the index by the size of the type *************** File: gccint.info, Node: Storage Refere *** 8480,8543 **** type of a component of the array. The third and fourth operands are used after gimplification to represent the lower bound and component size but should not be used directly; call ! 'array_ref_low_bound' and 'array_ref_element_size' instead. ! 'ARRAY_RANGE_REF' These nodes represent access to a range (or "slice") of an array. ! The operands are the same as that for 'ARRAY_REF' and have the same meanings. The type of these expressions must be an array whose ! component type is the same as that of the first operand. The range ! of that array type determines the amount of data these expressions ! access. ! 'TARGET_MEM_REF' These nodes represent memory accesses whose address directly map to an addressing mode of the target architecture. The first argument ! is 'TMR_SYMBOL' and must be a 'VAR_DECL' of an object with a fixed ! address. The second argument is 'TMR_BASE' and the third one is ! 'TMR_INDEX'. The fourth argument is 'TMR_STEP' and must be an ! 'INTEGER_CST'. The fifth argument is 'TMR_OFFSET' and must be an ! 'INTEGER_CST'. Any of the arguments may be NULL if the appropriate ! component does not appear in the address. Address of the ! 'TARGET_MEM_REF' is determined in the following way. &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET The sixth argument is the reference to the original memory access, ! which is preserved for the purposes of the RTL alias analysis. The ! seventh argument is a tag representing the results of tree level ! alias analysis. ! 'ADDR_EXPR' These nodes are used to represent the address of an object. (These expressions will always have pointer or reference type.) The operand may be another expression, or it may be a declaration. As an extension, GCC allows users to take the address of a label. ! In this case, the operand of the 'ADDR_EXPR' will be a ! 'LABEL_DECL'. The type of such an expression is 'void*'. If the object addressed is not an lvalue, a temporary is created, and the address of the temporary is used. ! 'INDIRECT_REF' These nodes are used to represent the object pointed to by a pointer. The operand is the pointer being dereferenced; it will always have pointer or reference type. ! 'MEM_REF' These nodes are used to represent the object pointed to by a pointer offset by a constant. The first operand is the pointer being dereferenced; it will always have pointer or reference type. The second operand is a pointer constant. Its type is specifying the type to be used for type-based alias analysis. ! 'COMPONENT_REF' These nodes represent non-static data member accesses. The first operand is the object (rather than a pointer to it); the second ! operand is the 'FIELD_DECL' for the data member. The third operand ! represents the byte offset of the field, but should not be used ! directly; call 'component_ref_field_offset' instead.  File: gccint.info, Node: Unary and Binary Expressions, Next: Vectors, Prev: Storage References, Up: Expression trees --- 8636,8700 ---- type of a component of the array. The third and fourth operands are used after gimplification to represent the lower bound and component size but should not be used directly; call ! `array_ref_low_bound' and `array_ref_element_size' instead. ! `ARRAY_RANGE_REF' These nodes represent access to a range (or "slice") of an array. ! The operands are the same as that for `ARRAY_REF' and have the same meanings. The type of these expressions must be an array whose ! component type is the same as that of the first operand. The ! range of that array type determines the amount of data these ! expressions access. ! `TARGET_MEM_REF' These nodes represent memory accesses whose address directly map to an addressing mode of the target architecture. The first argument ! is `TMR_SYMBOL' and must be a `VAR_DECL' of an object with a fixed ! address. The second argument is `TMR_BASE' and the third one is ! `TMR_INDEX'. The fourth argument is `TMR_STEP' and must be an ! `INTEGER_CST'. The fifth argument is `TMR_OFFSET' and must be an ! `INTEGER_CST'. Any of the arguments may be NULL if the ! appropriate component does not appear in the address. Address of ! the `TARGET_MEM_REF' is determined in the following way. &TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET The sixth argument is the reference to the original memory access, ! which is preserved for the purposes of the RTL alias analysis. ! The seventh argument is a tag representing the results of tree ! level alias analysis. ! `ADDR_EXPR' These nodes are used to represent the address of an object. (These expressions will always have pointer or reference type.) The operand may be another expression, or it may be a declaration. As an extension, GCC allows users to take the address of a label. ! In this case, the operand of the `ADDR_EXPR' will be a ! `LABEL_DECL'. The type of such an expression is `void*'. If the object addressed is not an lvalue, a temporary is created, and the address of the temporary is used. ! `INDIRECT_REF' These nodes are used to represent the object pointed to by a pointer. The operand is the pointer being dereferenced; it will always have pointer or reference type. ! `MEM_REF' These nodes are used to represent the object pointed to by a pointer offset by a constant. The first operand is the pointer being dereferenced; it will always have pointer or reference type. The second operand is a pointer constant. Its type is specifying the type to be used for type-based alias analysis. ! `COMPONENT_REF' These nodes represent non-static data member accesses. The first operand is the object (rather than a pointer to it); the second ! operand is the `FIELD_DECL' for the data member. The third ! operand represents the byte offset of the field, but should not be ! used directly; call `component_ref_field_offset' instead. !  File: gccint.info, Node: Unary and Binary Expressions, Next: Vectors, Prev: Storage References, Up: Expression trees *************** File: gccint.info, Node: Unary and Bina *** 8545,8704 **** 10.6.3 Unary and Binary Expressions ----------------------------------- ! 'NEGATE_EXPR' These nodes represent unary negation of the single operand, for both integer and floating-point types. The type of negation can be determined by looking at the type of the expression. The behavior of this operation on signed arithmetic overflow is ! controlled by the 'flag_wrapv' and 'flag_trapv' variables. ! 'ABS_EXPR' These nodes represent the absolute value of the single operand, for both integer and floating-point types. This is typically used to ! implement the 'abs', 'labs' and 'llabs' builtins for integer types, ! and the 'fabs', 'fabsf' and 'fabsl' builtins for floating point ! types. The type of abs operation can be determined by looking at ! the type of the expression. This node is not used for complex types. To represent the modulus ! or complex abs of a complex value, use the 'BUILT_IN_CABS', ! 'BUILT_IN_CABSF' or 'BUILT_IN_CABSL' builtins, as used to implement ! the C99 'cabs', 'cabsf' and 'cabsl' built-in functions. ! 'BIT_NOT_EXPR' These nodes represent bitwise complement, and will always have integral type. The only operand is the value to be complemented. ! 'TRUTH_NOT_EXPR' These nodes represent logical negation, and will always have integral (or boolean) type. The operand is the value being ! negated. The type of the operand and that of the result are always ! of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'. ! 'PREDECREMENT_EXPR' ! 'PREINCREMENT_EXPR' ! 'POSTDECREMENT_EXPR' ! 'POSTINCREMENT_EXPR' These nodes represent increment and decrement expressions. The value of the single operand is computed, and the operand ! incremented or decremented. In the case of 'PREDECREMENT_EXPR' and ! 'PREINCREMENT_EXPR', the value of the expression is the value resulting after the increment or decrement; in the case of ! 'POSTDECREMENT_EXPR' and 'POSTINCREMENT_EXPR' is the value before the increment or decrement occurs. The type of the operand, like that of the result, will be either integral, boolean, or floating-point. ! 'FIX_TRUNC_EXPR' These nodes represent conversion of a floating-point value to an integer. The single operand will have a floating-point type, while the complete expression will have an integral (or boolean) type. The operand is rounded towards zero. ! 'FLOAT_EXPR' These nodes represent conversion of an integral (or boolean) value to a floating-point value. The single operand will have integral type, while the complete expression will have a floating-point type. FIXME: How is the operand supposed to be rounded? Is this ! dependent on '-mieee'? ! 'COMPLEX_EXPR' These nodes are used to represent complex numbers constructed from two expressions of the same (integer or real) type. The first operand is the real part and the second operand is the imaginary part. ! 'CONJ_EXPR' These nodes represent the conjugate of their operand. ! 'REALPART_EXPR' ! 'IMAGPART_EXPR' These nodes represent respectively the real and the imaginary parts of complex numbers (their sole argument). ! 'NON_LVALUE_EXPR' These nodes indicate that their one and only operand is not an lvalue. A back end can treat these identically to the single operand. ! 'NOP_EXPR' These nodes are used to represent conversions that do not require ! any code-generation. For example, conversion of a 'char*' to an ! 'int*' does not require any code be generated; such a conversion is ! represented by a 'NOP_EXPR'. The single operand is the expression to be converted. The conversion from a pointer to a reference is ! also represented with a 'NOP_EXPR'. ! 'CONVERT_EXPR' ! These nodes are similar to 'NOP_EXPR's, but are used in those situations where code may need to be generated. For example, if an ! 'int*' is converted to an 'int' code may need to be generated on some platforms. These nodes are never used for C++-specific ! conversions, like conversions between pointers to different classes ! in an inheritance hierarchy. Any adjustments that need to be made ! in such cases are always indicated explicitly. Similarly, a ! user-defined conversion is never represented by a 'CONVERT_EXPR'; ! instead, the function calls are made explicit. ! 'FIXED_CONVERT_EXPR' These nodes are used to represent conversions that involve fixed-point values. For example, from a fixed-point value to another fixed-point value, from an integer to a fixed-point value, ! from a fixed-point value to an integer, from a floating-point value ! to a fixed-point value, or from a fixed-point value to a floating-point value. ! 'LSHIFT_EXPR' ! 'RSHIFT_EXPR' These nodes represent left and right shifts, respectively. The first operand is the value to shift; it will always be of integral type. The second operand is an expression for the number of bits by which to shift. Right shift should be treated as arithmetic, ! i.e., the high-order bits should be zero-filled when the expression ! has unsigned type and filled with the sign bit when the expression ! has signed type. Note that the result is undefined if the second ! operand is larger than or equal to the first operand's type size. ! Unlike most nodes, these can have a vector as first operand and a ! scalar as second operand. ! 'BIT_IOR_EXPR' ! 'BIT_XOR_EXPR' ! 'BIT_AND_EXPR' These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise and, respectively. Both operands will always have integral type. ! 'TRUTH_ANDIF_EXPR' ! 'TRUTH_ORIF_EXPR' These nodes represent logical "and" and logical "or", respectively. These operators are not strict; i.e., the second operand is evaluated only if the value of the expression is not determined by ! evaluation of the first operand. The type of the operands and that ! of the result are always of 'BOOLEAN_TYPE' or 'INTEGER_TYPE'. ! 'TRUTH_AND_EXPR' ! 'TRUTH_OR_EXPR' ! 'TRUTH_XOR_EXPR' These nodes represent logical and, logical or, and logical exclusive or. They are strict; both arguments are always evaluated. There are no corresponding operators in C or C++, but the front end will sometimes generate these expressions anyhow, if it can tell that strictness does not matter. The type of the ! operands and that of the result are always of 'BOOLEAN_TYPE' or ! 'INTEGER_TYPE'. ! 'POINTER_PLUS_EXPR' This node represents pointer arithmetic. The first operand is always a pointer/reference type. The second operand is always an unsigned integer type compatible with sizetype. This is the only binary arithmetic operand that can operate on pointer types. ! 'PLUS_EXPR' ! 'MINUS_EXPR' ! 'MULT_EXPR' These nodes represent various binary arithmetic operations. Respectively, these operations are addition, subtraction (of the second operand from the first) and multiplication. Their operands --- 8702,8861 ---- 10.6.3 Unary and Binary Expressions ----------------------------------- ! `NEGATE_EXPR' These nodes represent unary negation of the single operand, for both integer and floating-point types. The type of negation can be determined by looking at the type of the expression. The behavior of this operation on signed arithmetic overflow is ! controlled by the `flag_wrapv' and `flag_trapv' variables. ! `ABS_EXPR' These nodes represent the absolute value of the single operand, for both integer and floating-point types. This is typically used to ! implement the `abs', `labs' and `llabs' builtins for integer ! types, and the `fabs', `fabsf' and `fabsl' builtins for floating ! point types. The type of abs operation can be determined by ! looking at the type of the expression. This node is not used for complex types. To represent the modulus ! or complex abs of a complex value, use the `BUILT_IN_CABS', ! `BUILT_IN_CABSF' or `BUILT_IN_CABSL' builtins, as used to ! implement the C99 `cabs', `cabsf' and `cabsl' built-in functions. ! `BIT_NOT_EXPR' These nodes represent bitwise complement, and will always have integral type. The only operand is the value to be complemented. ! `TRUTH_NOT_EXPR' These nodes represent logical negation, and will always have integral (or boolean) type. The operand is the value being ! negated. The type of the operand and that of the result are ! always of `BOOLEAN_TYPE' or `INTEGER_TYPE'. ! `PREDECREMENT_EXPR' ! `PREINCREMENT_EXPR' ! `POSTDECREMENT_EXPR' ! `POSTINCREMENT_EXPR' These nodes represent increment and decrement expressions. The value of the single operand is computed, and the operand ! incremented or decremented. In the case of `PREDECREMENT_EXPR' and ! `PREINCREMENT_EXPR', the value of the expression is the value resulting after the increment or decrement; in the case of ! `POSTDECREMENT_EXPR' and `POSTINCREMENT_EXPR' is the value before the increment or decrement occurs. The type of the operand, like that of the result, will be either integral, boolean, or floating-point. ! `FIX_TRUNC_EXPR' These nodes represent conversion of a floating-point value to an integer. The single operand will have a floating-point type, while the complete expression will have an integral (or boolean) type. The operand is rounded towards zero. ! `FLOAT_EXPR' These nodes represent conversion of an integral (or boolean) value to a floating-point value. The single operand will have integral type, while the complete expression will have a floating-point type. FIXME: How is the operand supposed to be rounded? Is this ! dependent on `-mieee'? ! `COMPLEX_EXPR' These nodes are used to represent complex numbers constructed from two expressions of the same (integer or real) type. The first operand is the real part and the second operand is the imaginary part. ! `CONJ_EXPR' These nodes represent the conjugate of their operand. ! `REALPART_EXPR' ! `IMAGPART_EXPR' These nodes represent respectively the real and the imaginary parts of complex numbers (their sole argument). ! `NON_LVALUE_EXPR' These nodes indicate that their one and only operand is not an lvalue. A back end can treat these identically to the single operand. ! `NOP_EXPR' These nodes are used to represent conversions that do not require ! any code-generation. For example, conversion of a `char*' to an ! `int*' does not require any code be generated; such a conversion is ! represented by a `NOP_EXPR'. The single operand is the expression to be converted. The conversion from a pointer to a reference is ! also represented with a `NOP_EXPR'. ! `CONVERT_EXPR' ! These nodes are similar to `NOP_EXPR's, but are used in those situations where code may need to be generated. For example, if an ! `int*' is converted to an `int' code may need to be generated on some platforms. These nodes are never used for C++-specific ! conversions, like conversions between pointers to different ! classes in an inheritance hierarchy. Any adjustments that need to ! be made in such cases are always indicated explicitly. Similarly, ! a user-defined conversion is never represented by a ! `CONVERT_EXPR'; instead, the function calls are made explicit. ! `FIXED_CONVERT_EXPR' These nodes are used to represent conversions that involve fixed-point values. For example, from a fixed-point value to another fixed-point value, from an integer to a fixed-point value, ! from a fixed-point value to an integer, from a floating-point ! value to a fixed-point value, or from a fixed-point value to a floating-point value. ! `LSHIFT_EXPR' ! `RSHIFT_EXPR' These nodes represent left and right shifts, respectively. The first operand is the value to shift; it will always be of integral type. The second operand is an expression for the number of bits by which to shift. Right shift should be treated as arithmetic, ! i.e., the high-order bits should be zero-filled when the ! expression has unsigned type and filled with the sign bit when the ! expression has signed type. Note that the result is undefined if ! the second operand is larger than or equal to the first operand's ! type size. Unlike most nodes, these can have a vector as first ! operand and a scalar as second operand. ! `BIT_IOR_EXPR' ! `BIT_XOR_EXPR' ! `BIT_AND_EXPR' These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise and, respectively. Both operands will always have integral type. ! `TRUTH_ANDIF_EXPR' ! `TRUTH_ORIF_EXPR' These nodes represent logical "and" and logical "or", respectively. These operators are not strict; i.e., the second operand is evaluated only if the value of the expression is not determined by ! evaluation of the first operand. The type of the operands and ! that of the result are always of `BOOLEAN_TYPE' or `INTEGER_TYPE'. ! `TRUTH_AND_EXPR' ! `TRUTH_OR_EXPR' ! `TRUTH_XOR_EXPR' These nodes represent logical and, logical or, and logical exclusive or. They are strict; both arguments are always evaluated. There are no corresponding operators in C or C++, but the front end will sometimes generate these expressions anyhow, if it can tell that strictness does not matter. The type of the ! operands and that of the result are always of `BOOLEAN_TYPE' or ! `INTEGER_TYPE'. ! `POINTER_PLUS_EXPR' This node represents pointer arithmetic. The first operand is always a pointer/reference type. The second operand is always an unsigned integer type compatible with sizetype. This is the only binary arithmetic operand that can operate on pointer types. ! `PLUS_EXPR' ! `MINUS_EXPR' ! `MULT_EXPR' These nodes represent various binary arithmetic operations. Respectively, these operations are addition, subtraction (of the second operand from the first) and multiplication. Their operands *************** File: gccint.info, Node: Unary and Bina *** 8707,8780 **** integral type. The behavior of these operations on signed arithmetic overflow is ! controlled by the 'flag_wrapv' and 'flag_trapv' variables. ! 'MULT_HIGHPART_EXPR' This node represents the "high-part" of a widening multiplication. For an integral type with B bits of precision, the result is the most significant B bits of the full 2B product. ! 'RDIV_EXPR' This node represents a floating point division operation. ! 'TRUNC_DIV_EXPR' ! 'FLOOR_DIV_EXPR' ! 'CEIL_DIV_EXPR' ! 'ROUND_DIV_EXPR' These nodes represent integer division operations that return an ! integer result. 'TRUNC_DIV_EXPR' rounds towards zero, ! 'FLOOR_DIV_EXPR' rounds towards negative infinity, 'CEIL_DIV_EXPR' ! rounds towards positive infinity and 'ROUND_DIV_EXPR' rounds to the ! closest integer. Integer division in C and C++ is truncating, i.e. ! 'TRUNC_DIV_EXPR'. The behavior of these operations on signed arithmetic overflow, when dividing the minimum signed integer by minus one, is ! controlled by the 'flag_wrapv' and 'flag_trapv' variables. ! 'TRUNC_MOD_EXPR' ! 'FLOOR_MOD_EXPR' ! 'CEIL_MOD_EXPR' ! 'ROUND_MOD_EXPR' These nodes represent the integer remainder or modulus operation. ! The integer modulus of two operands 'a' and 'b' is defined as 'a - (a/b)*b' where the division calculated using the corresponding ! division operator. Hence for 'TRUNC_MOD_EXPR' this definition assumes division using truncation towards zero, i.e. ! 'TRUNC_DIV_EXPR'. Integer remainder in C and C++ uses truncating ! division, i.e. 'TRUNC_MOD_EXPR'. ! 'EXACT_DIV_EXPR' ! The 'EXACT_DIV_EXPR' code is used to represent integer divisions where the numerator is known to be an exact multiple of the denominator. This allows the backend to choose between the faster ! of 'TRUNC_DIV_EXPR', 'CEIL_DIV_EXPR' and 'FLOOR_DIV_EXPR' for the current target. ! 'LT_EXPR' ! 'LE_EXPR' ! 'GT_EXPR' ! 'GE_EXPR' ! 'EQ_EXPR' ! 'NE_EXPR' These nodes represent the less than, less than or equal to, greater than, greater than or equal to, equal, and not equal comparison operators. The first and second operands will either be both of integral type, both of floating type or both of vector type. The result type of these expressions will always be of integral, boolean or signed integral vector type. These operations return ! the result type's zero value for false, the result type's one value ! for true, and a vector whose elements are zero (false) or minus one ! (true) for vectors. For floating point comparisons, if we honor IEEE NaNs and either ! operand is NaN, then 'NE_EXPR' always returns true and the remaining operators always return false. On some targets, comparisons against an IEEE NaN, other than equality and inequality, may generate a floating point exception. ! 'ORDERED_EXPR' ! 'UNORDERED_EXPR' These nodes represent non-trapping ordered and unordered comparison operators. These operations take two floating point operands and determine whether they are ordered or unordered relative to each --- 8864,8937 ---- integral type. The behavior of these operations on signed arithmetic overflow is ! controlled by the `flag_wrapv' and `flag_trapv' variables. ! `MULT_HIGHPART_EXPR' This node represents the "high-part" of a widening multiplication. For an integral type with B bits of precision, the result is the most significant B bits of the full 2B product. ! `RDIV_EXPR' This node represents a floating point division operation. ! `TRUNC_DIV_EXPR' ! `FLOOR_DIV_EXPR' ! `CEIL_DIV_EXPR' ! `ROUND_DIV_EXPR' These nodes represent integer division operations that return an ! integer result. `TRUNC_DIV_EXPR' rounds towards zero, ! `FLOOR_DIV_EXPR' rounds towards negative infinity, `CEIL_DIV_EXPR' ! rounds towards positive infinity and `ROUND_DIV_EXPR' rounds to ! the closest integer. Integer division in C and C++ is truncating, ! i.e. `TRUNC_DIV_EXPR'. The behavior of these operations on signed arithmetic overflow, when dividing the minimum signed integer by minus one, is ! controlled by the `flag_wrapv' and `flag_trapv' variables. ! `TRUNC_MOD_EXPR' ! `FLOOR_MOD_EXPR' ! `CEIL_MOD_EXPR' ! `ROUND_MOD_EXPR' These nodes represent the integer remainder or modulus operation. ! The integer modulus of two operands `a' and `b' is defined as `a - (a/b)*b' where the division calculated using the corresponding ! division operator. Hence for `TRUNC_MOD_EXPR' this definition assumes division using truncation towards zero, i.e. ! `TRUNC_DIV_EXPR'. Integer remainder in C and C++ uses truncating ! division, i.e. `TRUNC_MOD_EXPR'. ! `EXACT_DIV_EXPR' ! The `EXACT_DIV_EXPR' code is used to represent integer divisions where the numerator is known to be an exact multiple of the denominator. This allows the backend to choose between the faster ! of `TRUNC_DIV_EXPR', `CEIL_DIV_EXPR' and `FLOOR_DIV_EXPR' for the current target. ! `LT_EXPR' ! `LE_EXPR' ! `GT_EXPR' ! `GE_EXPR' ! `EQ_EXPR' ! `NE_EXPR' These nodes represent the less than, less than or equal to, greater than, greater than or equal to, equal, and not equal comparison operators. The first and second operands will either be both of integral type, both of floating type or both of vector type. The result type of these expressions will always be of integral, boolean or signed integral vector type. These operations return ! the result type's zero value for false, the result type's one ! value for true, and a vector whose elements are zero (false) or ! minus one (true) for vectors. For floating point comparisons, if we honor IEEE NaNs and either ! operand is NaN, then `NE_EXPR' always returns true and the remaining operators always return false. On some targets, comparisons against an IEEE NaN, other than equality and inequality, may generate a floating point exception. ! `ORDERED_EXPR' ! `UNORDERED_EXPR' These nodes represent non-trapping ordered and unordered comparison operators. These operations take two floating point operands and determine whether they are ordered or unordered relative to each *************** File: gccint.info, Node: Unary and Bina *** 8785,8834 **** type's zero value for false, and the result type's one value for true. ! 'UNLT_EXPR' ! 'UNLE_EXPR' ! 'UNGT_EXPR' ! 'UNGE_EXPR' ! 'UNEQ_EXPR' ! 'LTGT_EXPR' These nodes represent the unordered comparison operators. These operations take two floating point operands and determine whether the operands are unordered or are less than, less than or equal to, greater than, greater than or equal to, or equal respectively. For ! example, 'UNLT_EXPR' returns true if either operand is an IEEE NaN or the first operand is less than the second. With the possible ! exception of 'LTGT_EXPR', all of these operations are guaranteed not to generate a floating point exception. The result type of these expressions will always be of integral or boolean type. ! These operations return the result type's zero value for false, and ! the result type's one value for true. ! 'MODIFY_EXPR' These nodes represent assignment. The left-hand side is the first operand; the right-hand side is the second operand. The left-hand ! side will be a 'VAR_DECL', 'INDIRECT_REF', 'COMPONENT_REF', or other lvalue. ! These nodes are used to represent not only assignment with '=' but ! also compound assignments (like '+='), by reduction to '=' ! assignment. In other words, the representation for 'i += 3' looks ! just like that for 'i = i + 3'. ! 'INIT_EXPR' ! These nodes are just like 'MODIFY_EXPR', but are used only when a variable is initialized, rather than assigned to subsequently. ! This means that we can assume that the target of the initialization ! is not used in computing its own value; any reference to the lhs in ! computing the rhs is undefined. ! 'COMPOUND_EXPR' These nodes represent comma-expressions. The first operand is an expression whose value is computed and thrown away prior to the evaluation of the second operand. The value of the entire expression is the value of the second operand. ! 'COND_EXPR' ! These nodes represent '?:' expressions. The first operand is of boolean or integral type. If it evaluates to a nonzero value, the second operand should be evaluated, and returned as the value of the expression. Otherwise, the third operand is evaluated, and --- 8942,8991 ---- type's zero value for false, and the result type's one value for true. ! `UNLT_EXPR' ! `UNLE_EXPR' ! `UNGT_EXPR' ! `UNGE_EXPR' ! `UNEQ_EXPR' ! `LTGT_EXPR' These nodes represent the unordered comparison operators. These operations take two floating point operands and determine whether the operands are unordered or are less than, less than or equal to, greater than, greater than or equal to, or equal respectively. For ! example, `UNLT_EXPR' returns true if either operand is an IEEE NaN or the first operand is less than the second. With the possible ! exception of `LTGT_EXPR', all of these operations are guaranteed not to generate a floating point exception. The result type of these expressions will always be of integral or boolean type. ! These operations return the result type's zero value for false, ! and the result type's one value for true. ! `MODIFY_EXPR' These nodes represent assignment. The left-hand side is the first operand; the right-hand side is the second operand. The left-hand ! side will be a `VAR_DECL', `INDIRECT_REF', `COMPONENT_REF', or other lvalue. ! These nodes are used to represent not only assignment with `=' but ! also compound assignments (like `+='), by reduction to `=' ! assignment. In other words, the representation for `i += 3' looks ! just like that for `i = i + 3'. ! `INIT_EXPR' ! These nodes are just like `MODIFY_EXPR', but are used only when a variable is initialized, rather than assigned to subsequently. ! This means that we can assume that the target of the ! initialization is not used in computing its own value; any ! reference to the lhs in computing the rhs is undefined. ! `COMPOUND_EXPR' These nodes represent comma-expressions. The first operand is an expression whose value is computed and thrown away prior to the evaluation of the second operand. The value of the entire expression is the value of the second operand. ! `COND_EXPR' ! These nodes represent `?:' expressions. The first operand is of boolean or integral type. If it evaluates to a nonzero value, the second operand should be evaluated, and returned as the value of the expression. Otherwise, the third operand is evaluated, and *************** File: gccint.info, Node: Unary and Bina *** 8838,8869 **** expression, unless it unconditionally throws an exception or calls a noreturn function, in which case it should have void type. The same constraints apply to the third operand. This allows array ! bounds checks to be represented conveniently as '(i >= 0 && i < 10) ! ? i : abort()'. As a GNU extension, the C language front-ends allow the second ! operand of the '?:' operator may be omitted in the source. For ! example, 'x ? : 3' is equivalent to 'x ? x : 3', assuming that 'x' ! is an expression without side-effects. In the tree representation, ! however, the second operand is always present, possibly protected ! by 'SAVE_EXPR' if the first argument does cause side-effects. ! 'CALL_EXPR' These nodes are used to represent calls to functions, including ! non-static member functions. 'CALL_EXPR's are implemented as expression nodes with a variable number of operands. Rather than ! using 'TREE_OPERAND' to extract them, it is preferable to use the ! specialized accessor macros and functions that operate specifically ! on 'CALL_EXPR' nodes. ! 'CALL_EXPR_FN' returns a pointer to the function to call; it is ! always an expression whose type is a 'POINTER_TYPE'. The number of arguments to the call is returned by ! 'call_expr_nargs', while the arguments themselves can be accessed ! with the 'CALL_EXPR_ARG' macro. The arguments are zero-indexed and ! numbered left-to-right. You can iterate over the arguments using ! 'FOR_EACH_CALL_EXPR_ARG', as in: tree call, arg; call_expr_arg_iterator iter; --- 8995,9027 ---- expression, unless it unconditionally throws an exception or calls a noreturn function, in which case it should have void type. The same constraints apply to the third operand. This allows array ! bounds checks to be represented conveniently as `(i >= 0 && i < ! 10) ? i : abort()'. As a GNU extension, the C language front-ends allow the second ! operand of the `?:' operator may be omitted in the source. For ! example, `x ? : 3' is equivalent to `x ? x : 3', assuming that `x' ! is an expression without side-effects. In the tree ! representation, however, the second operand is always present, ! possibly protected by `SAVE_EXPR' if the first argument does cause ! side-effects. ! `CALL_EXPR' These nodes are used to represent calls to functions, including ! non-static member functions. `CALL_EXPR's are implemented as expression nodes with a variable number of operands. Rather than ! using `TREE_OPERAND' to extract them, it is preferable to use the ! specialized accessor macros and functions that operate ! specifically on `CALL_EXPR' nodes. ! `CALL_EXPR_FN' returns a pointer to the function to call; it is ! always an expression whose type is a `POINTER_TYPE'. The number of arguments to the call is returned by ! `call_expr_nargs', while the arguments themselves can be accessed ! with the `CALL_EXPR_ARG' macro. The arguments are zero-indexed ! and numbered left-to-right. You can iterate over the arguments ! using `FOR_EACH_CALL_EXPR_ARG', as in: tree call, arg; call_expr_arg_iterator iter; *************** File: gccint.info, Node: Unary and Bina *** 8872,8975 **** ...; For non-static member functions, there will be an operand ! corresponding to the 'this' pointer. There will always be expressions corresponding to all of the arguments, even if the function is declared with default arguments and some arguments are not explicitly provided at the call sites. ! 'CALL_EXPR's also have a 'CALL_EXPR_STATIC_CHAIN' operand that is used to implement nested functions. This operand is otherwise null. ! 'CLEANUP_POINT_EXPR' These nodes represent full-expressions. The single operand is an expression to evaluate. Any destructor calls engendered by the creation of temporaries during the evaluation of that expression should be performed immediately after the expression is evaluated. ! 'CONSTRUCTOR' These nodes represent the brace-enclosed initializers for a ! structure or an array. They contain a sequence of component values ! made out of a vector of constructor_elt, which is a ('INDEX', ! 'VALUE') pair. ! If the 'TREE_TYPE' of the 'CONSTRUCTOR' is a 'RECORD_TYPE', ! 'UNION_TYPE' or 'QUAL_UNION_TYPE' then the 'INDEX' of each node in ! the sequence will be a 'FIELD_DECL' and the 'VALUE' will be the expression used to initialize that field. ! If the 'TREE_TYPE' of the 'CONSTRUCTOR' is an 'ARRAY_TYPE', then ! the 'INDEX' of each node in the sequence will be an 'INTEGER_CST' ! or a 'RANGE_EXPR' of two 'INTEGER_CST's. A single 'INTEGER_CST' indicates which element of the array is being assigned to. A ! 'RANGE_EXPR' indicates an inclusive range of elements to ! initialize. In both cases the 'VALUE' is the corresponding initializer. It is re-evaluated for each element of a ! 'RANGE_EXPR'. If the 'INDEX' is 'NULL_TREE', then the initializer is for the next available array element. In the front end, you should not depend on the fields appearing in any particular order. However, in the middle end, fields must ! appear in declaration order. You should not assume that all fields ! will be represented. Unrepresented fields will be cleared (zeroed), unless the CONSTRUCTOR_NO_CLEARING flag is set, in which case their value becomes undefined. ! 'COMPOUND_LITERAL_EXPR' These nodes represent ISO C99 compound literals. The ! 'COMPOUND_LITERAL_EXPR_DECL_EXPR' is a 'DECL_EXPR' containing an ! anonymous 'VAR_DECL' for the unnamed object represented by the ! compound literal; the 'DECL_INITIAL' of that 'VAR_DECL' is a ! 'CONSTRUCTOR' representing the brace-enclosed list of initializers ! in the compound literal. That anonymous 'VAR_DECL' can also be ! accessed directly by the 'COMPOUND_LITERAL_EXPR_DECL' macro. ! ! 'SAVE_EXPR' ! A 'SAVE_EXPR' represents an expression (possibly involving side-effects) that is used more than once. The side-effects should occur only the first time the expression is evaluated. Subsequent uses should just reuse the computed value. The first operand to ! the 'SAVE_EXPR' is the expression to evaluate. The side-effects ! should be executed where the 'SAVE_EXPR' is first encountered in a depth-first preorder traversal of the expression tree. ! 'TARGET_EXPR' ! A 'TARGET_EXPR' represents a temporary object. The first operand ! is a 'VAR_DECL' for the temporary variable. The second operand is the initializer for the temporary. The initializer is evaluated and, if non-void, copied (bitwise) into the temporary. If the initializer is void, that means that it will perform the initialization itself. ! Often, a 'TARGET_EXPR' occurs on the right-hand side of an assignment, or as the second operand to a comma-expression which is ! itself the right-hand side of an assignment, etc. In this case, we ! say that the 'TARGET_EXPR' is "normal"; otherwise, we say it is ! "orphaned". For a normal 'TARGET_EXPR' the temporary variable should be treated as an alias for the left-hand side of the assignment, rather than as a new temporary variable. ! The third operand to the 'TARGET_EXPR', if present, is a cleanup-expression (i.e., destructor call) for the temporary. If this expression is orphaned, then this expression must be executed when the statement containing this expression is complete. These cleanups must always be executed in the order opposite to that in which they were encountered. Note that if a temporary is created on one branch of a conditional operator (i.e., in the second or ! third operand to a 'COND_EXPR'), the cleanup must be run only if that branch is actually executed. ! 'VA_ARG_EXPR' This node is used to implement support for the C/C++ variable ! argument-list mechanism. It represents expressions like 'va_arg ! (ap, type)'. Its 'TREE_TYPE' yields the tree representation for ! 'type' and its sole argument yields the representation for 'ap'. ! 'ANNOTATE_EXPR' ! This node is used to attach markers to an expression. The first ! operand is the annotated expression, the second is an 'INTEGER_CST' ! with a value from 'enum annot_expr_kind'.  File: gccint.info, Node: Vectors, Prev: Unary and Binary Expressions, Up: Expression trees --- 9030,9132 ---- ...; For non-static member functions, there will be an operand ! corresponding to the `this' pointer. There will always be expressions corresponding to all of the arguments, even if the function is declared with default arguments and some arguments are not explicitly provided at the call sites. ! `CALL_EXPR's also have a `CALL_EXPR_STATIC_CHAIN' operand that is used to implement nested functions. This operand is otherwise null. ! `CLEANUP_POINT_EXPR' These nodes represent full-expressions. The single operand is an expression to evaluate. Any destructor calls engendered by the creation of temporaries during the evaluation of that expression should be performed immediately after the expression is evaluated. ! `CONSTRUCTOR' These nodes represent the brace-enclosed initializers for a ! structure or an array. They contain a sequence of component ! values made out of a vector of constructor_elt, which is a ! (`INDEX', `VALUE') pair. ! If the `TREE_TYPE' of the `CONSTRUCTOR' is a `RECORD_TYPE', ! `UNION_TYPE' or `QUAL_UNION_TYPE' then the `INDEX' of each node in ! the sequence will be a `FIELD_DECL' and the `VALUE' will be the expression used to initialize that field. ! If the `TREE_TYPE' of the `CONSTRUCTOR' is an `ARRAY_TYPE', then ! the `INDEX' of each node in the sequence will be an `INTEGER_CST' ! or a `RANGE_EXPR' of two `INTEGER_CST's. A single `INTEGER_CST' indicates which element of the array is being assigned to. A ! `RANGE_EXPR' indicates an inclusive range of elements to ! initialize. In both cases the `VALUE' is the corresponding initializer. It is re-evaluated for each element of a ! `RANGE_EXPR'. If the `INDEX' is `NULL_TREE', then the initializer is for the next available array element. In the front end, you should not depend on the fields appearing in any particular order. However, in the middle end, fields must ! appear in declaration order. You should not assume that all ! fields will be represented. Unrepresented fields will be cleared (zeroed), unless the CONSTRUCTOR_NO_CLEARING flag is set, in which case their value becomes undefined. ! `COMPOUND_LITERAL_EXPR' These nodes represent ISO C99 compound literals. The ! `COMPOUND_LITERAL_EXPR_DECL_EXPR' is a `DECL_EXPR' containing an ! anonymous `VAR_DECL' for the unnamed object represented by the ! compound literal; the `DECL_INITIAL' of that `VAR_DECL' is a ! `CONSTRUCTOR' representing the brace-enclosed list of initializers ! in the compound literal. That anonymous `VAR_DECL' can also be ! accessed directly by the `COMPOUND_LITERAL_EXPR_DECL' macro. ! `SAVE_EXPR' ! A `SAVE_EXPR' represents an expression (possibly involving side-effects) that is used more than once. The side-effects should occur only the first time the expression is evaluated. Subsequent uses should just reuse the computed value. The first operand to ! the `SAVE_EXPR' is the expression to evaluate. The side-effects ! should be executed where the `SAVE_EXPR' is first encountered in a depth-first preorder traversal of the expression tree. ! `TARGET_EXPR' ! A `TARGET_EXPR' represents a temporary object. The first operand ! is a `VAR_DECL' for the temporary variable. The second operand is the initializer for the temporary. The initializer is evaluated and, if non-void, copied (bitwise) into the temporary. If the initializer is void, that means that it will perform the initialization itself. ! Often, a `TARGET_EXPR' occurs on the right-hand side of an assignment, or as the second operand to a comma-expression which is ! itself the right-hand side of an assignment, etc. In this case, ! we say that the `TARGET_EXPR' is "normal"; otherwise, we say it is ! "orphaned". For a normal `TARGET_EXPR' the temporary variable should be treated as an alias for the left-hand side of the assignment, rather than as a new temporary variable. ! The third operand to the `TARGET_EXPR', if present, is a cleanup-expression (i.e., destructor call) for the temporary. If this expression is orphaned, then this expression must be executed when the statement containing this expression is complete. These cleanups must always be executed in the order opposite to that in which they were encountered. Note that if a temporary is created on one branch of a conditional operator (i.e., in the second or ! third operand to a `COND_EXPR'), the cleanup must be run only if that branch is actually executed. ! `VA_ARG_EXPR' This node is used to implement support for the C/C++ variable ! argument-list mechanism. It represents expressions like `va_arg ! (ap, type)'. Its `TREE_TYPE' yields the tree representation for ! `type' and its sole argument yields the representation for `ap'. ! `ANNOTATE_EXPR' ! This node is used to attach markers to an expression. The first ! operand is the annotated expression, the second is an ! `INTEGER_CST' with a value from `enum annot_expr_kind'.  File: gccint.info, Node: Vectors, Prev: Unary and Binary Expressions, Up: Expression trees *************** File: gccint.info, Node: Vectors, Prev *** 8977,8984 **** 10.6.4 Vectors -------------- ! 'VEC_LSHIFT_EXPR' ! 'VEC_RSHIFT_EXPR' These nodes represent whole vector left and right shifts, respectively. The first operand is the vector to shift; it will always be of vector type. The second operand is an expression for --- 9134,9141 ---- 10.6.4 Vectors -------------- ! `VEC_LSHIFT_EXPR' ! `VEC_RSHIFT_EXPR' These nodes represent whole vector left and right shifts, respectively. The first operand is the vector to shift; it will always be of vector type. The second operand is an expression for *************** File: gccint.info, Node: Vectors, Prev *** 8986,9038 **** undefined if the second operand is larger than or equal to the first operand's type size. ! 'VEC_WIDEN_MULT_HI_EXPR' ! 'VEC_WIDEN_MULT_LO_EXPR' These nodes represent widening vector multiplication of the high and low parts of the two input vectors, respectively. Their ! operands are vectors that contain the same number of elements ('N') ! of the same integral type. The result is a vector that contains ! half as many elements, of an integral type whose size is twice as ! wide. In the case of 'VEC_WIDEN_MULT_HI_EXPR' the high 'N/2' ! elements of the two vector are multiplied to produce the vector of ! 'N/2' products. In the case of 'VEC_WIDEN_MULT_LO_EXPR' the low ! 'N/2' elements of the two vector are multiplied to produce the ! vector of 'N/2' products. ! 'VEC_UNPACK_HI_EXPR' ! 'VEC_UNPACK_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, respectively. The single operand is a vector that ! contains 'N' elements of the same integral or floating point type. The result is a vector that contains half as many elements, of an integral or floating point type whose size is twice as wide. In ! the case of 'VEC_UNPACK_HI_EXPR' the high 'N/2' elements of the vector are extracted and widened (promoted). In the case of ! 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the vector are extracted and widened (promoted). ! 'VEC_UNPACK_FLOAT_HI_EXPR' ! 'VEC_UNPACK_FLOAT_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, where the values are converted from fixed point to ! floating point. The single operand is a vector that contains 'N' elements of the same integral type. The result is a vector that contains half as many elements of a floating point type whose size ! is twice as wide. In the case of 'VEC_UNPACK_HI_EXPR' the high ! 'N/2' elements of the vector are extracted, converted and widened. ! In the case of 'VEC_UNPACK_LO_EXPR' the low 'N/2' elements of the vector are extracted, converted and widened. ! 'VEC_PACK_TRUNC_EXPR' ! This node represents packing of truncated elements of the two input ! vectors into the output vector. Input operands are vectors that ! contain the same number of elements of the same integral or ! floating point type. The result is a vector that contains twice as ! many elements of an integral or floating point type whose size is ! half as wide. The elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! 'VEC_PACK_SAT_EXPR' This node represents packing of elements of the two input vectors into the output vector using saturation. Input operands are vectors that contain the same number of elements of the same --- 9143,9195 ---- undefined if the second operand is larger than or equal to the first operand's type size. ! `VEC_WIDEN_MULT_HI_EXPR' ! `VEC_WIDEN_MULT_LO_EXPR' These nodes represent widening vector multiplication of the high and low parts of the two input vectors, respectively. Their ! operands are vectors that contain the same number of elements ! (`N') of the same integral type. The result is a vector that ! contains half as many elements, of an integral type whose size is ! twice as wide. In the case of `VEC_WIDEN_MULT_HI_EXPR' the high ! `N/2' elements of the two vector are multiplied to produce the ! vector of `N/2' products. In the case of `VEC_WIDEN_MULT_LO_EXPR' ! the low `N/2' elements of the two vector are multiplied to produce ! the vector of `N/2' products. ! `VEC_UNPACK_HI_EXPR' ! `VEC_UNPACK_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, respectively. The single operand is a vector that ! contains `N' elements of the same integral or floating point type. The result is a vector that contains half as many elements, of an integral or floating point type whose size is twice as wide. In ! the case of `VEC_UNPACK_HI_EXPR' the high `N/2' elements of the vector are extracted and widened (promoted). In the case of ! `VEC_UNPACK_LO_EXPR' the low `N/2' elements of the vector are extracted and widened (promoted). ! `VEC_UNPACK_FLOAT_HI_EXPR' ! `VEC_UNPACK_FLOAT_LO_EXPR' These nodes represent unpacking of the high and low parts of the input vector, where the values are converted from fixed point to ! floating point. The single operand is a vector that contains `N' elements of the same integral type. The result is a vector that contains half as many elements of a floating point type whose size ! is twice as wide. In the case of `VEC_UNPACK_HI_EXPR' the high ! `N/2' elements of the vector are extracted, converted and widened. ! In the case of `VEC_UNPACK_LO_EXPR' the low `N/2' elements of the vector are extracted, converted and widened. ! `VEC_PACK_TRUNC_EXPR' ! This node represents packing of truncated elements of the two ! input vectors into the output vector. Input operands are vectors ! that contain the same number of elements of the same integral or ! floating point type. The result is a vector that contains twice ! as many elements of an integral or floating point type whose size ! is half as wide. The elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! `VEC_PACK_SAT_EXPR' This node represents packing of elements of the two input vectors into the output vector using saturation. Input operands are vectors that contain the same number of elements of the same *************** File: gccint.info, Node: Vectors, Prev *** 9041,9047 **** elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! 'VEC_PACK_FIX_TRUNC_EXPR' This node represents packing of elements of the two input vectors into the output vector, where the values are converted from floating point to fixed point. Input operands are vectors that --- 9198,9204 ---- elements of the two vectors are demoted and merged (concatenated) to form the output vector. ! `VEC_PACK_FIX_TRUNC_EXPR' This node represents packing of elements of the two input vectors into the output vector, where the values are converted from floating point to fixed point. Input operands are vectors that *************** File: gccint.info, Node: Vectors, Prev *** 9050,9066 **** integral type whose size is half as wide. The elements of the two vectors are merged (concatenated) to form the output vector. ! 'VEC_COND_EXPR' ! These nodes represent '?:' expressions. The three operands must be vectors of the same size and number of elements. The second and third operands must have the same type as the entire expression. ! The first operand is of signed integral vector type. If an element ! of the first operand evaluates to a zero value, the corresponding ! element of the result is taken from the third operand. If it ! evaluates to a minus one value, it is taken from the second ! operand. It should never evaluate to any other value currently, ! but optimizations should not rely on that property. In contrast ! with a 'COND_EXPR', all operands are always evaluated.  File: gccint.info, Node: Statements, Next: Functions, Prev: Expression trees, Up: GENERIC --- 9207,9223 ---- integral type whose size is half as wide. The elements of the two vectors are merged (concatenated) to form the output vector. ! `VEC_COND_EXPR' ! These nodes represent `?:' expressions. The three operands must be vectors of the same size and number of elements. The second and third operands must have the same type as the entire expression. ! The first operand is of signed integral vector type. If an ! element of the first operand evaluates to a zero value, the ! corresponding element of the result is taken from the third ! operand. If it evaluates to a minus one value, it is taken from ! the second operand. It should never evaluate to any other value ! currently, but optimizations should not rely on that property. In ! contrast with a `COND_EXPR', all operands are always evaluated.  File: gccint.info, Node: Statements, Next: Functions, Prev: Expression trees, Up: GENERIC *************** File: gccint.info, Node: Statements, N *** 9069,9076 **** =============== Most statements in GIMPLE are assignment statements, represented by ! 'GIMPLE_ASSIGN'. No other C expressions can appear at statement level; ! a reference to a volatile object is converted into a 'GIMPLE_ASSIGN'. There are also several varieties of complex statements. --- 9226,9233 ---- =============== Most statements in GIMPLE are assignment statements, represented by ! `GIMPLE_ASSIGN'. No other C expressions can appear at statement level; ! a reference to a volatile object is converted into a `GIMPLE_ASSIGN'. There are also several varieties of complex statements. *************** File: gccint.info, Node: Basic Statemen *** 9090,9190 **** 10.7.1 Basic Statements ----------------------- ! 'ASM_EXPR' ! Used to represent an inline assembly statement. For an inline assembly statement like: asm ("mov x, y"); ! The 'ASM_STRING' macro will return a 'STRING_CST' node for '"mov x, ! y"'. If the original statement made use of the extended-assembly ! syntax, then 'ASM_OUTPUTS', 'ASM_INPUTS', and 'ASM_CLOBBERS' will ! be the outputs, inputs, and clobbers for the statement, represented ! as 'STRING_CST' nodes. The extended-assembly syntax looks like: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! The first string is the 'ASM_STRING', containing the instruction template. The next two strings are the output and inputs, respectively; this statement has no clobbers. As this example ! indicates, "plain" assembly statements are merely a special case of ! extended assembly statements; they have no cv-qualifiers, outputs, ! inputs, or clobbers. All of the strings will be 'NUL'-terminated, ! and will contain no embedded 'NUL'-characters. ! If the assembly statement is declared 'volatile', or if the statement was not an extended assembly statement, and is therefore ! implicitly volatile, then the predicate 'ASM_VOLATILE_P' will hold ! of the 'ASM_EXPR'. ! ! 'DECL_EXPR' ! Used to represent a local declaration. The 'DECL_EXPR_DECL' macro ! can be used to obtain the entity declared. This declaration may be ! a 'LABEL_DECL', indicating that the label declared is a local ! label. (As an extension, GCC allows the declaration of labels with ! scope.) In C, this declaration may be a 'FUNCTION_DECL', indicating the use of the GCC nested function extension. For more information, *note Functions::. ! 'LABEL_EXPR' ! ! Used to represent a label. The 'LABEL_DECL' declared by this ! statement can be obtained with the 'LABEL_EXPR_LABEL' macro. The ! 'IDENTIFIER_NODE' giving the name of the label can be obtained from ! the 'LABEL_DECL' with 'DECL_NAME'. ! ! 'GOTO_EXPR' ! Used to represent a 'goto' statement. The 'GOTO_DESTINATION' will ! usually be a 'LABEL_DECL'. However, if the "computed goto" ! extension has been used, the 'GOTO_DESTINATION' will be an arbitrary expression indicating the destination. This expression will always have pointer type. ! 'RETURN_EXPR' ! ! Used to represent a 'return' statement. Operand 0 represents the ! value to return. It should either be the 'RESULT_DECL' for the ! containing function, or a 'MODIFY_EXPR' or 'INIT_EXPR' setting the ! function's 'RESULT_DECL'. It will be 'NULL_TREE' if the statement was just return; ! 'LOOP_EXPR' ! These nodes represent "infinite" loops. The 'LOOP_EXPR_BODY' represents the body of the loop. It should be executed forever, ! unless an 'EXIT_EXPR' is encountered. ! 'EXIT_EXPR' These nodes represent conditional exits from the nearest enclosing ! 'LOOP_EXPR'. The single operand is the condition; if it is ! nonzero, then the loop should be exited. An 'EXIT_EXPR' will only ! appear within a 'LOOP_EXPR'. ! ! 'SWITCH_STMT' ! Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an 'IF_STMT' for more information on the ! representation used for the condition. The 'SWITCH_STMT_BODY' is ! the body of the switch statement. The 'SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! 'CASE_LABEL_EXPR' ! ! Use to represent a 'case' label, range of 'case' labels, or a ! 'default' label. If 'CASE_LOW' is 'NULL_TREE', then this is a ! 'default' label. Otherwise, if 'CASE_HIGH' is 'NULL_TREE', then ! this is an ordinary 'case' label. In this case, 'CASE_LOW' is an ! expression giving the value of the label. Both 'CASE_LOW' and ! 'CASE_HIGH' are 'INTEGER_CST' nodes. These values will have the same type as the condition expression in the switch statement. ! Otherwise, if both 'CASE_LOW' and 'CASE_HIGH' are defined, the statement is a range of case labels. Such statements originate with the extension that allows users to write things of the form: case 2 ... 5: ! The first value will be 'CASE_LOW', while the second will be ! 'CASE_HIGH'.  File: gccint.info, Node: Blocks, Next: Statement Sequences, Prev: Basic Statements, Up: Statements --- 9247,9342 ---- 10.7.1 Basic Statements ----------------------- ! `ASM_EXPR' Used to represent an inline assembly statement. For an inline assembly statement like: asm ("mov x, y"); ! The `ASM_STRING' macro will return a `STRING_CST' node for `"mov ! x, y"'. If the original statement made use of the ! extended-assembly syntax, then `ASM_OUTPUTS', `ASM_INPUTS', and ! `ASM_CLOBBERS' will be the outputs, inputs, and clobbers for the ! statement, represented as `STRING_CST' nodes. The ! extended-assembly syntax looks like: asm ("fsinx %1,%0" : "=f" (result) : "f" (angle)); ! The first string is the `ASM_STRING', containing the instruction template. The next two strings are the output and inputs, respectively; this statement has no clobbers. As this example ! indicates, "plain" assembly statements are merely a special case ! of extended assembly statements; they have no cv-qualifiers, ! outputs, inputs, or clobbers. All of the strings will be ! `NUL'-terminated, and will contain no embedded `NUL'-characters. ! If the assembly statement is declared `volatile', or if the statement was not an extended assembly statement, and is therefore ! implicitly volatile, then the predicate `ASM_VOLATILE_P' will hold ! of the `ASM_EXPR'. ! `DECL_EXPR' ! Used to represent a local declaration. The `DECL_EXPR_DECL' macro ! can be used to obtain the entity declared. This declaration may ! be a `LABEL_DECL', indicating that the label declared is a local ! label. (As an extension, GCC allows the declaration of labels ! with scope.) In C, this declaration may be a `FUNCTION_DECL', indicating the use of the GCC nested function extension. For more information, *note Functions::. ! `LABEL_EXPR' ! Used to represent a label. The `LABEL_DECL' declared by this ! statement can be obtained with the `LABEL_EXPR_LABEL' macro. The ! `IDENTIFIER_NODE' giving the name of the label can be obtained from ! the `LABEL_DECL' with `DECL_NAME'. ! `GOTO_EXPR' ! Used to represent a `goto' statement. The `GOTO_DESTINATION' will ! usually be a `LABEL_DECL'. However, if the "computed goto" ! extension has been used, the `GOTO_DESTINATION' will be an arbitrary expression indicating the destination. This expression will always have pointer type. ! `RETURN_EXPR' ! Used to represent a `return' statement. Operand 0 represents the ! value to return. It should either be the `RESULT_DECL' for the ! containing function, or a `MODIFY_EXPR' or `INIT_EXPR' setting the ! function's `RESULT_DECL'. It will be `NULL_TREE' if the statement was just return; ! `LOOP_EXPR' ! These nodes represent "infinite" loops. The `LOOP_EXPR_BODY' represents the body of the loop. It should be executed forever, ! unless an `EXIT_EXPR' is encountered. ! `EXIT_EXPR' These nodes represent conditional exits from the nearest enclosing ! `LOOP_EXPR'. The single operand is the condition; if it is ! nonzero, then the loop should be exited. An `EXIT_EXPR' will only ! appear within a `LOOP_EXPR'. ! `SWITCH_STMT' ! Used to represent a `switch' statement. The `SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an `IF_STMT' for more information on the ! representation used for the condition. The `SWITCH_STMT_BODY' is ! the body of the switch statement. The `SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! `CASE_LABEL_EXPR' ! Use to represent a `case' label, range of `case' labels, or a ! `default' label. If `CASE_LOW' is `NULL_TREE', then this is a ! `default' label. Otherwise, if `CASE_HIGH' is `NULL_TREE', then ! this is an ordinary `case' label. In this case, `CASE_LOW' is an ! expression giving the value of the label. Both `CASE_LOW' and ! `CASE_HIGH' are `INTEGER_CST' nodes. These values will have the same type as the condition expression in the switch statement. ! Otherwise, if both `CASE_LOW' and `CASE_HIGH' are defined, the statement is a range of case labels. Such statements originate with the extension that allows users to write things of the form: case 2 ... 5: ! The first value will be `CASE_LOW', while the second will be ! `CASE_HIGH'. !  File: gccint.info, Node: Blocks, Next: Statement Sequences, Prev: Basic Statements, Up: Statements *************** File: gccint.info, Node: Blocks, Next: *** 9193,9219 **** ------------- Block scopes and the variables they declare in GENERIC are expressed ! using the 'BIND_EXPR' code, which in previous versions of GCC was primarily used for the C statement-expression extension. ! Variables in a block are collected into 'BIND_EXPR_VARS' in declaration ! order through their 'TREE_CHAIN' field. Any runtime initialization is ! moved out of 'DECL_INITIAL' and into a statement in the controlled ! block. When gimplifying from C or C++, this initialization replaces the ! 'DECL_STMT'. These variables will never require cleanups. The scope of ! these variables is just the body Variable-length arrays (VLAs) complicate this process, as their size often refers to variables initialized earlier in the block. To handle this, we currently split the block at that point, and move the VLA into ! a new, inner 'BIND_EXPR'. This strategy may change in the future. ! A C++ program will usually contain more 'BIND_EXPR's than there are syntactic blocks in the source code, since several C++ constructs have implicit scopes associated with them. On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for objects with destructors, these don't translate into the GIMPLE form; multiple ! declarations at the same level use the same 'BIND_EXPR'.  File: gccint.info, Node: Statement Sequences, Next: Empty Statements, Prev: Blocks, Up: Statements --- 9345,9371 ---- ------------- Block scopes and the variables they declare in GENERIC are expressed ! using the `BIND_EXPR' code, which in previous versions of GCC was primarily used for the C statement-expression extension. ! Variables in a block are collected into `BIND_EXPR_VARS' in ! declaration order through their `TREE_CHAIN' field. Any runtime ! initialization is moved out of `DECL_INITIAL' and into a statement in ! the controlled block. When gimplifying from C or C++, this ! initialization replaces the `DECL_STMT'. These variables will never ! require cleanups. The scope of these variables is just the body Variable-length arrays (VLAs) complicate this process, as their size often refers to variables initialized earlier in the block. To handle this, we currently split the block at that point, and move the VLA into ! a new, inner `BIND_EXPR'. This strategy may change in the future. ! A C++ program will usually contain more `BIND_EXPR's than there are syntactic blocks in the source code, since several C++ constructs have implicit scopes associated with them. On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for objects with destructors, these don't translate into the GIMPLE form; multiple ! declarations at the same level use the same `BIND_EXPR'.  File: gccint.info, Node: Statement Sequences, Next: Empty Statements, Prev: Blocks, Up: Statements *************** File: gccint.info, Node: Statement Sequ *** 9222,9229 **** -------------------------- Multiple statements at the same nesting level are collected into a ! 'STATEMENT_LIST'. Statement lists are modified and traversed using the ! interface in 'tree-iterator.h'.  File: gccint.info, Node: Empty Statements, Next: Jumps, Prev: Statement Sequences, Up: Statements --- 9374,9381 ---- -------------------------- Multiple statements at the same nesting level are collected into a ! `STATEMENT_LIST'. Statement lists are modified and traversed using the ! interface in `tree-iterator.h'.  File: gccint.info, Node: Empty Statements, Next: Jumps, Prev: Statement Sequences, Up: Statements *************** File: gccint.info, Node: Empty Statemen *** 9231,9244 **** 10.7.4 Empty Statements ----------------------- ! Whenever possible, statements with no effect are discarded. But if they ! are nested within another construct which cannot be discarded for some ! reason, they are instead replaced with an empty statement, generated by ! 'build_empty_stmt'. Initially, all empty statements were shared, after ! the pattern of the Java front end, but this caused a lot of trouble in ! practice. ! An empty statement is represented as '(void)0'.  File: gccint.info, Node: Jumps, Next: Cleanups, Prev: Empty Statements, Up: Statements --- 9383,9396 ---- 10.7.4 Empty Statements ----------------------- ! Whenever possible, statements with no effect are discarded. But if ! they are nested within another construct which cannot be discarded for ! some reason, they are instead replaced with an empty statement, ! generated by `build_empty_stmt'. Initially, all empty statements were ! shared, after the pattern of the Java front end, but this caused a lot ! of trouble in practice. ! An empty statement is represented as `(void)0'.  File: gccint.info, Node: Jumps, Next: Cleanups, Prev: Empty Statements, Up: Statements *************** File: gccint.info, Node: Jumps, Next: *** 9246,9262 **** 10.7.5 Jumps ------------ ! Other jumps are expressed by either 'GOTO_EXPR' or 'RETURN_EXPR'. ! The operand of a 'GOTO_EXPR' must be either a label or a variable containing the address to jump to. ! The operand of a 'RETURN_EXPR' is either 'NULL_TREE', 'RESULT_DECL', or ! a 'MODIFY_EXPR' which sets the return value. It would be nice to move ! the 'MODIFY_EXPR' into a separate statement, but the special return ! semantics in 'expand_return' make that difficult. It may still happen ! in the future, perhaps by moving most of that logic into ! 'expand_assignment'.  File: gccint.info, Node: Cleanups, Next: OpenMP, Prev: Jumps, Up: Statements --- 9398,9414 ---- 10.7.5 Jumps ------------ ! Other jumps are expressed by either `GOTO_EXPR' or `RETURN_EXPR'. ! The operand of a `GOTO_EXPR' must be either a label or a variable containing the address to jump to. ! The operand of a `RETURN_EXPR' is either `NULL_TREE', `RESULT_DECL', ! or a `MODIFY_EXPR' which sets the return value. It would be nice to ! move the `MODIFY_EXPR' into a separate statement, but the special ! return semantics in `expand_return' make that difficult. It may still ! happen in the future, perhaps by moving most of that logic into ! `expand_assignment'.  File: gccint.info, Node: Cleanups, Next: OpenMP, Prev: Jumps, Up: Statements *************** File: gccint.info, Node: Cleanups, Nex *** 9265,9271 **** --------------- Destructors for local C++ objects and similar dynamic cleanups are ! represented in GIMPLE by a 'TRY_FINALLY_EXPR'. 'TRY_FINALLY_EXPR' has two operands, both of which are a sequence of statements to execute. The first sequence is executed. When it completes the second sequence is executed. --- 9417,9423 ---- --------------- Destructors for local C++ objects and similar dynamic cleanups are ! represented in GIMPLE by a `TRY_FINALLY_EXPR'. `TRY_FINALLY_EXPR' has two operands, both of which are a sequence of statements to execute. The first sequence is executed. When it completes the second sequence is executed. *************** is executed. *** 9274,9304 **** 1. Execute the last statement in the sequence and fall off the end. ! 2. Execute a goto statement ('GOTO_EXPR') to an ordinary label outside ! the sequence. ! 3. Execute a return statement ('RETURN_EXPR'). 4. Throw an exception. This is currently not explicitly represented in GIMPLE. The second sequence is not executed if the first sequence completes by ! calling 'setjmp' or 'exit' or any other function that does not return. ! The second sequence is also not executed if the first sequence completes ! via a non-local goto or a computed goto (in general the compiler does ! not know whether such a goto statement exits the first sequence or not, ! so we assume that it doesn't). After the second sequence is executed, if it completes normally by falling off the end, execution continues wherever the first sequence would have continued, by falling off the end, or doing a goto, etc. ! 'TRY_FINALLY_EXPR' complicates the flow graph, since the cleanup needs to appear on every edge out of the controlled block; this reduces the freedom to move code across these edges. Therefore, the EH lowering pass which runs before most of the optimization passes eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing ! the exception is represented using 'RESX_EXPR'.  File: gccint.info, Node: OpenMP, Prev: Cleanups, Up: Statements --- 9426,9457 ---- 1. Execute the last statement in the sequence and fall off the end. ! 2. Execute a goto statement (`GOTO_EXPR') to an ordinary label ! outside the sequence. ! 3. Execute a return statement (`RETURN_EXPR'). 4. Throw an exception. This is currently not explicitly represented in GIMPLE. + The second sequence is not executed if the first sequence completes by ! calling `setjmp' or `exit' or any other function that does not return. ! The second sequence is also not executed if the first sequence ! completes via a non-local goto or a computed goto (in general the ! compiler does not know whether such a goto statement exits the first ! sequence or not, so we assume that it doesn't). After the second sequence is executed, if it completes normally by falling off the end, execution continues wherever the first sequence would have continued, by falling off the end, or doing a goto, etc. ! `TRY_FINALLY_EXPR' complicates the flow graph, since the cleanup needs to appear on every edge out of the controlled block; this reduces the freedom to move code across these edges. Therefore, the EH lowering pass which runs before most of the optimization passes eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing ! the exception is represented using `RESX_EXPR'.  File: gccint.info, Node: OpenMP, Prev: Cleanups, Up: Statements *************** File: gccint.info, Node: OpenMP, Prev: *** 9306,9437 **** 10.7.7 OpenMP ------------- ! All the statements starting with 'OMP_' represent directives and clauses ! used by the OpenMP API . ! ! 'OMP_PARALLEL' ! Represents '#pragma omp parallel [clause1 ... clauseN]'. It has four operands: ! Operand 'OMP_PARALLEL_BODY' is valid while in GENERIC and High GIMPLE forms. It contains the body of code to be executed by all ! the threads. During GIMPLE lowering, this operand becomes 'NULL' ! and the body is emitted linearly after 'OMP_PARALLEL'. ! Operand 'OMP_PARALLEL_CLAUSES' is the list of clauses associated with the directive. ! Operand 'OMP_PARALLEL_FN' is created by 'pass_lower_omp', it ! contains the 'FUNCTION_DECL' for the function that will contain the ! body of the parallel region. ! Operand 'OMP_PARALLEL_DATA_ARG' is also created by ! 'pass_lower_omp'. If there are shared variables to be communicated ! to the children threads, this operand will contain the 'VAR_DECL' that contains all the shared values and variables. ! 'OMP_FOR' ! ! Represents '#pragma omp for [clause1 ... clauseN]'. It has 5 operands: ! Operand 'OMP_FOR_BODY' contains the loop body. ! Operand 'OMP_FOR_CLAUSES' is the list of clauses associated with the directive. ! Operand 'OMP_FOR_INIT' is the loop initialization code of the form ! 'VAR = N1'. ! Operand 'OMP_FOR_COND' is the loop conditional expression of the ! form 'VAR {<,>,<=,>=} N2'. ! Operand 'OMP_FOR_INCR' is the loop index increment of the form 'VAR ! {+=,-=} INCR'. ! Operand 'OMP_FOR_PRE_BODY' contains side-effect code from operands ! 'OMP_FOR_INIT', 'OMP_FOR_COND' and 'OMP_FOR_INC'. These ! side-effects are part of the 'OMP_FOR' block but must be evaluated before the start of loop body. ! The loop index variable 'VAR' must be a signed integer variable, ! which is implicitly private to each thread. Bounds 'N1' and 'N2' ! and the increment expression 'INCR' are required to be loop invariant integer expressions that are evaluated without any ! synchronization. The evaluation order, frequency of evaluation and side-effects are unspecified by the standard. ! 'OMP_SECTIONS' ! ! Represents '#pragma omp sections [clause1 ... clauseN]'. ! Operand 'OMP_SECTIONS_BODY' contains the sections body, which in ! turn contains a set of 'OMP_SECTION' nodes for each of the ! concurrent sections delimited by '#pragma omp section'. ! Operand 'OMP_SECTIONS_CLAUSES' is the list of clauses associated with the directive. ! 'OMP_SECTION' ! ! Section delimiter for 'OMP_SECTIONS'. ! ! 'OMP_SINGLE' ! Represents '#pragma omp single'. ! Operand 'OMP_SINGLE_BODY' contains the body of code to be executed by a single thread. ! Operand 'OMP_SINGLE_CLAUSES' is the list of clauses associated with ! the directive. ! ! 'OMP_MASTER' ! Represents '#pragma omp master'. ! Operand 'OMP_MASTER_BODY' contains the body of code to be executed by the master thread. ! 'OMP_ORDERED' ! ! Represents '#pragma omp ordered'. ! ! Operand 'OMP_ORDERED_BODY' contains the body of code to be executed ! in the sequential order dictated by the loop index variable. ! 'OMP_CRITICAL' ! Represents '#pragma omp critical [name]'. ! Operand 'OMP_CRITICAL_BODY' is the critical section. ! Operand 'OMP_CRITICAL_NAME' is an optional identifier to label the critical section. ! 'OMP_RETURN' ! This does not represent any OpenMP directive, it is an artificial ! marker to indicate the end of the body of an OpenMP. It is used by ! the flow graph ('tree-cfg.c') and OpenMP region building code ! ('omp-low.c'). ! ! 'OMP_CONTINUE' ! Similarly, this instruction does not represent an OpenMP directive, ! it is used by 'OMP_FOR' and 'OMP_SECTIONS' to mark the place where ! the code needs to loop to the next iteration (in the case of ! 'OMP_FOR') or the next section (in the case of 'OMP_SECTIONS'). ! In some cases, 'OMP_CONTINUE' is placed right before 'OMP_RETURN'. But if there are cleanups that need to occur right after the ! looping body, it will be emitted between 'OMP_CONTINUE' and ! 'OMP_RETURN'. ! ! 'OMP_ATOMIC' ! Represents '#pragma omp atomic'. Operand 0 is the address at which the atomic operation is to be performed. --- 9459,9581 ---- 10.7.7 OpenMP ------------- ! All the statements starting with `OMP_' represent directives and ! clauses used by the OpenMP API `http://www.openmp.org/'. ! `OMP_PARALLEL' ! Represents `#pragma omp parallel [clause1 ... clauseN]'. It has four operands: ! Operand `OMP_PARALLEL_BODY' is valid while in GENERIC and High GIMPLE forms. It contains the body of code to be executed by all ! the threads. During GIMPLE lowering, this operand becomes `NULL' ! and the body is emitted linearly after `OMP_PARALLEL'. ! Operand `OMP_PARALLEL_CLAUSES' is the list of clauses associated with the directive. ! Operand `OMP_PARALLEL_FN' is created by `pass_lower_omp', it ! contains the `FUNCTION_DECL' for the function that will contain ! the body of the parallel region. ! Operand `OMP_PARALLEL_DATA_ARG' is also created by ! `pass_lower_omp'. If there are shared variables to be communicated ! to the children threads, this operand will contain the `VAR_DECL' that contains all the shared values and variables. ! `OMP_FOR' ! Represents `#pragma omp for [clause1 ... clauseN]'. It has 5 operands: ! Operand `OMP_FOR_BODY' contains the loop body. ! Operand `OMP_FOR_CLAUSES' is the list of clauses associated with the directive. ! Operand `OMP_FOR_INIT' is the loop initialization code of the form ! `VAR = N1'. ! Operand `OMP_FOR_COND' is the loop conditional expression of the ! form `VAR {<,>,<=,>=} N2'. ! Operand `OMP_FOR_INCR' is the loop index increment of the form ! `VAR {+=,-=} INCR'. ! Operand `OMP_FOR_PRE_BODY' contains side-effect code from operands ! `OMP_FOR_INIT', `OMP_FOR_COND' and `OMP_FOR_INC'. These ! side-effects are part of the `OMP_FOR' block but must be evaluated before the start of loop body. ! The loop index variable `VAR' must be a signed integer variable, ! which is implicitly private to each thread. Bounds `N1' and `N2' ! and the increment expression `INCR' are required to be loop invariant integer expressions that are evaluated without any ! synchronization. The evaluation order, frequency of evaluation and side-effects are unspecified by the standard. ! `OMP_SECTIONS' ! Represents `#pragma omp sections [clause1 ... clauseN]'. ! Operand `OMP_SECTIONS_BODY' contains the sections body, which in ! turn contains a set of `OMP_SECTION' nodes for each of the ! concurrent sections delimited by `#pragma omp section'. ! Operand `OMP_SECTIONS_CLAUSES' is the list of clauses associated with the directive. ! `OMP_SECTION' ! Section delimiter for `OMP_SECTIONS'. ! `OMP_SINGLE' ! Represents `#pragma omp single'. ! Operand `OMP_SINGLE_BODY' contains the body of code to be executed by a single thread. ! Operand `OMP_SINGLE_CLAUSES' is the list of clauses associated ! with the directive. ! `OMP_MASTER' ! Represents `#pragma omp master'. ! Operand `OMP_MASTER_BODY' contains the body of code to be executed by the master thread. ! `OMP_ORDERED' ! Represents `#pragma omp ordered'. ! Operand `OMP_ORDERED_BODY' contains the body of code to be ! executed in the sequential order dictated by the loop index ! variable. ! `OMP_CRITICAL' ! Represents `#pragma omp critical [name]'. ! Operand `OMP_CRITICAL_BODY' is the critical section. ! Operand `OMP_CRITICAL_NAME' is an optional identifier to label the critical section. ! `OMP_RETURN' This does not represent any OpenMP directive, it is an artificial ! marker to indicate the end of the body of an OpenMP. It is used by ! the flow graph (`tree-cfg.c') and OpenMP region building code ! (`omp-low.c'). ! `OMP_CONTINUE' ! Similarly, this instruction does not represent an OpenMP ! directive, it is used by `OMP_FOR' and `OMP_SECTIONS' to mark the ! place where the code needs to loop to the next iteration (in the ! case of `OMP_FOR') or the next section (in the case of ! `OMP_SECTIONS'). ! In some cases, `OMP_CONTINUE' is placed right before `OMP_RETURN'. But if there are cleanups that need to occur right after the ! looping body, it will be emitted between `OMP_CONTINUE' and ! `OMP_RETURN'. ! `OMP_ATOMIC' ! Represents `#pragma omp atomic'. Operand 0 is the address at which the atomic operation is to be performed. *************** used by the OpenMP API '. The value of 'DECL_NAME' is undefined when used on a constructor, destructor, overloaded operator, or type-conversion operator, or any function that is implicitly generated by the compiler. See below for macros that can be used to distinguish these cases. ! 'DECL_ASSEMBLER_NAME' This macro returns the mangled name of the function, also an ! 'IDENTIFIER_NODE'. This name does not contain leading underscores on systems that prefix all identifiers with underscores. The mangled name is computed in the same way on all platforms; if special processing is required to deal with the object file format ! used on a particular platform, it is the responsibility of the back ! end to perform those modifications. (Of course, the back end ! should not modify 'DECL_ASSEMBLER_NAME' itself.) ! Using 'DECL_ASSEMBLER_NAME' will cause additional memory to be allocated (for the mangled name of the entity) so it should be used only when emitting assembly code. It should not be used within the optimizers to determine whether or not two declarations are the ! same, even though some of the existing optimizers do use it in that ! way. These uses will be removed over time. ! 'DECL_ARGUMENTS' ! This macro returns the 'PARM_DECL' for the first argument to the ! function. Subsequent 'PARM_DECL' nodes can be obtained by ! following the 'TREE_CHAIN' links. ! 'DECL_RESULT' ! This macro returns the 'RESULT_DECL' for the function. ! 'DECL_SAVED_TREE' This macro returns the complete body of the function. ! 'TREE_TYPE' ! This macro returns the 'FUNCTION_TYPE' or 'METHOD_TYPE' for the function. ! 'DECL_INITIAL' A function that has a definition in the current translation unit ! will have a non-'NULL' 'DECL_INITIAL'. However, back ends should ! not make use of the particular value given by 'DECL_INITIAL'. ! It should contain a tree of 'BLOCK' nodes that mirrors the scopes that variables are bound in the function. Each block contains a list of decls declared in a basic block, a pointer to a chain of blocks at the next lower scope level, then a pointer to the next ! block at the same level and a backpointer to the parent 'BLOCK' or ! 'FUNCTION_DECL'. So given a function as follows: void foo() { --- 9631,9690 ---- A function has four core parts: the name, the parameters, the result, and the body. The following macros and functions access these parts of ! a `FUNCTION_DECL' as well as other basic features: ! `DECL_NAME' This macro returns the unqualified name of the function, as an ! `IDENTIFIER_NODE'. For an instantiation of a function template, ! the `DECL_NAME' is the unqualified name of the template, not ! something like `f'. The value of `DECL_NAME' is undefined when used on a constructor, destructor, overloaded operator, or type-conversion operator, or any function that is implicitly generated by the compiler. See below for macros that can be used to distinguish these cases. ! `DECL_ASSEMBLER_NAME' This macro returns the mangled name of the function, also an ! `IDENTIFIER_NODE'. This name does not contain leading underscores on systems that prefix all identifiers with underscores. The mangled name is computed in the same way on all platforms; if special processing is required to deal with the object file format ! used on a particular platform, it is the responsibility of the ! back end to perform those modifications. (Of course, the back end ! should not modify `DECL_ASSEMBLER_NAME' itself.) ! Using `DECL_ASSEMBLER_NAME' will cause additional memory to be allocated (for the mangled name of the entity) so it should be used only when emitting assembly code. It should not be used within the optimizers to determine whether or not two declarations are the ! same, even though some of the existing optimizers do use it in ! that way. These uses will be removed over time. ! `DECL_ARGUMENTS' ! This macro returns the `PARM_DECL' for the first argument to the ! function. Subsequent `PARM_DECL' nodes can be obtained by ! following the `TREE_CHAIN' links. ! `DECL_RESULT' ! This macro returns the `RESULT_DECL' for the function. ! `DECL_SAVED_TREE' This macro returns the complete body of the function. ! `TREE_TYPE' ! This macro returns the `FUNCTION_TYPE' or `METHOD_TYPE' for the function. ! `DECL_INITIAL' A function that has a definition in the current translation unit ! will have a non-`NULL' `DECL_INITIAL'. However, back ends should ! not make use of the particular value given by `DECL_INITIAL'. ! It should contain a tree of `BLOCK' nodes that mirrors the scopes that variables are bound in the function. Each block contains a list of decls declared in a basic block, a pointer to a chain of blocks at the next lower scope level, then a pointer to the next ! block at the same level and a backpointer to the parent `BLOCK' or ! `FUNCTION_DECL'. So given a function as follows: void foo() { *************** a 'FUNCTION_DECL' as well as other basic *** 9570,9623 **** BLOCK_SUPERCONTEXT(block_c) = foo; DECL_INITIAL(foo) = block_a;  File: gccint.info, Node: Function Properties, Prev: Function Basics, Up: Functions 10.8.2 Function Properties -------------------------- ! To determine the scope of a function, you can use the 'DECL_CONTEXT' ! macro. This macro will return the class (either a 'RECORD_TYPE' or a ! 'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is ! a member. For a virtual function, this macro returns the class in which ! the function was actually defined, not the base class in which the ! virtual declaration occurred. ! In C, the 'DECL_CONTEXT' for a function maybe another function. This representation indicates that the GNU nested function extension is in use. For details on the semantics of nested functions, see the GCC Manual. The nested function can refer to local variables in its containing function. Such references are not explicitly marked in the ! tree structure; back ends must look at the 'DECL_CONTEXT' for the ! referenced 'VAR_DECL'. If the 'DECL_CONTEXT' for the referenced ! 'VAR_DECL' is not the same as the function currently being processed, ! and neither 'DECL_EXTERNAL' nor 'TREE_STATIC' hold, then the reference is to a local variable in a containing function, and the back end must take appropriate action. ! 'DECL_EXTERNAL' This predicate holds if the function is undefined. ! 'TREE_PUBLIC' This predicate holds if the function has external linkage. ! 'TREE_STATIC' This predicate holds if the function has been defined. ! 'TREE_THIS_VOLATILE' This predicate holds if the function does not return normally. ! 'TREE_READONLY' This predicate holds if the function can only read its arguments. ! 'DECL_PURE_P' This predicate holds if the function can only read its arguments, but may also read global memory. ! 'DECL_VIRTUAL_P' This predicate holds if the function is virtual. ! 'DECL_ARTIFICIAL' This macro holds if the function was implicitly generated by the compiler, rather than explicitly declared. In addition to implicitly generated class member functions, this macro holds for --- 9714,9768 ---- BLOCK_SUPERCONTEXT(block_c) = foo; DECL_INITIAL(foo) = block_a; +  File: gccint.info, Node: Function Properties, Prev: Function Basics, Up: Functions 10.8.2 Function Properties -------------------------- ! To determine the scope of a function, you can use the `DECL_CONTEXT' ! macro. This macro will return the class (either a `RECORD_TYPE' or a ! `UNION_TYPE') or namespace (a `NAMESPACE_DECL') of which the function ! is a member. For a virtual function, this macro returns the class in ! which the function was actually defined, not the base class in which ! the virtual declaration occurred. ! In C, the `DECL_CONTEXT' for a function maybe another function. This representation indicates that the GNU nested function extension is in use. For details on the semantics of nested functions, see the GCC Manual. The nested function can refer to local variables in its containing function. Such references are not explicitly marked in the ! tree structure; back ends must look at the `DECL_CONTEXT' for the ! referenced `VAR_DECL'. If the `DECL_CONTEXT' for the referenced ! `VAR_DECL' is not the same as the function currently being processed, ! and neither `DECL_EXTERNAL' nor `TREE_STATIC' hold, then the reference is to a local variable in a containing function, and the back end must take appropriate action. ! `DECL_EXTERNAL' This predicate holds if the function is undefined. ! `TREE_PUBLIC' This predicate holds if the function has external linkage. ! `TREE_STATIC' This predicate holds if the function has been defined. ! `TREE_THIS_VOLATILE' This predicate holds if the function does not return normally. ! `TREE_READONLY' This predicate holds if the function can only read its arguments. ! `DECL_PURE_P' This predicate holds if the function can only read its arguments, but may also read global memory. ! `DECL_VIRTUAL_P' This predicate holds if the function is virtual. ! `DECL_ARTIFICIAL' This macro holds if the function was implicitly generated by the compiler, rather than explicitly declared. In addition to implicitly generated class member functions, this macro holds for *************** take appropriate action. *** 9625,9641 **** and destruction, to compute run-time type information, and so forth. ! 'DECL_FUNCTION_SPECIFIC_TARGET' This macro returns a tree node that holds the target options that ! are to be used to compile this particular function or 'NULL_TREE' ! if the function is to be compiled with the target options specified ! on the command line. ! 'DECL_FUNCTION_SPECIFIC_OPTIMIZATION' This macro returns a tree node that holds the optimization options that are to be used to compile this particular function or ! 'NULL_TREE' if the function is to be compiled with the optimization ! options specified on the command line.  File: gccint.info, Node: Language-dependent trees, Next: C and C++ Trees, Prev: Functions, Up: GENERIC --- 9770,9787 ---- and destruction, to compute run-time type information, and so forth. ! `DECL_FUNCTION_SPECIFIC_TARGET' This macro returns a tree node that holds the target options that ! are to be used to compile this particular function or `NULL_TREE' ! if the function is to be compiled with the target options ! specified on the command line. ! `DECL_FUNCTION_SPECIFIC_OPTIMIZATION' This macro returns a tree node that holds the optimization options that are to be used to compile this particular function or ! `NULL_TREE' if the function is to be compiled with the ! optimization options specified on the command line. !  File: gccint.info, Node: Language-dependent trees, Next: C and C++ Trees, Prev: Functions, Up: GENERIC *************** File: gccint.info, Node: Language-depen *** 9644,9660 **** ============================= Front ends may wish to keep some state associated with various GENERIC ! trees while parsing. To support this, trees provide a set of flags that ! may be used by the front end. They are accessed using ! 'TREE_LANG_FLAG_n' where 'n' is currently 0 through 6. ! If necessary, a front end can use some language-dependent tree codes in ! its GENERIC representation, so long as it provides a hook for converting ! them to GIMPLE and doesn't expect them to work with any (hypothetical) ! optimizers that run before the conversion to GIMPLE. The intermediate ! representation used while parsing C and C++ looks very little like ! GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take ! it as input and spit out GIMPLE.  File: gccint.info, Node: C and C++ Trees, Next: Java Trees, Prev: Language-dependent trees, Up: GENERIC --- 9790,9806 ---- ============================= Front ends may wish to keep some state associated with various GENERIC ! trees while parsing. To support this, trees provide a set of flags ! that may be used by the front end. They are accessed using ! `TREE_LANG_FLAG_n' where `n' is currently 0 through 6. ! If necessary, a front end can use some language-dependent tree codes ! in its GENERIC representation, so long as it provides a hook for ! converting them to GIMPLE and doesn't expect them to work with any ! (hypothetical) optimizers that run before the conversion to GIMPLE. The ! intermediate representation used while parsing C and C++ looks very ! little like GENERIC, but the C and C++ gimplifier hooks are perfectly ! happy to take it as input and spit out GIMPLE.  File: gccint.info, Node: C and C++ Trees, Next: Java Trees, Prev: Language-dependent trees, Up: GENERIC *************** submit your patches for inclusion in GCC *** 9710,9716 **** * Classes:: Classes. * Functions for C++:: Overloading and accessors for C++. * Statements for C++:: Statements specific to C and C++. ! * C++ Expressions:: From 'typeid' to 'throw'.  File: gccint.info, Node: Types for C++, Next: Namespaces, Up: C and C++ Trees --- 9856,9862 ---- * Classes:: Classes. * Functions for C++:: Overloading and accessors for C++. * Statements for C++:: Statements specific to C and C++. ! * C++ Expressions:: From `typeid' to `throw'.  File: gccint.info, Node: Types for C++, Next: Namespaces, Up: C and C++ Trees *************** representation. The macros described he *** 9724,9837 **** qualification of the underlying element type when applied to an array type. (If the element type is itself an array, then the recursion continues until a non-array type is found, and the qualification of this ! type is examined.) So, for example, 'CP_TYPE_CONST_P' will hold of the ! type 'const int ()[7]', denoting an array of seven 'int's. The following functions and macros deal with cv-qualification of types: ! 'cp_type_quals' This function returns the set of type qualifiers applied to this ! type. This value is 'TYPE_UNQUALIFIED' if no qualifiers have been ! applied. The 'TYPE_QUAL_CONST' bit is set if the type is ! 'const'-qualified. The 'TYPE_QUAL_VOLATILE' bit is set if the type ! is 'volatile'-qualified. The 'TYPE_QUAL_RESTRICT' bit is set if ! the type is 'restrict'-qualified. ! 'CP_TYPE_CONST_P' ! This macro holds if the type is 'const'-qualified. ! 'CP_TYPE_VOLATILE_P' ! This macro holds if the type is 'volatile'-qualified. ! 'CP_TYPE_RESTRICT_P' ! This macro holds if the type is 'restrict'-qualified. - 'CP_TYPE_CONST_NON_VOLATILE_P' - This predicate holds for a type that is 'const'-qualified, but - _not_ 'volatile'-qualified; other cv-qualifiers are ignored as - well: only the 'const'-ness is tested. A few other macros and functions are usable with all types: ! 'TYPE_SIZE' The number of bits required to represent the type, represented as ! an 'INTEGER_CST'. For an incomplete type, 'TYPE_SIZE' will be ! 'NULL_TREE'. ! 'TYPE_ALIGN' ! The alignment of the type, in bits, represented as an 'int'. ! 'TYPE_NAME' ! This macro returns a declaration (in the form of a 'TYPE_DECL') for ! the type. (Note this macro does _not_ return an 'IDENTIFIER_NODE', ! as you might expect, given its name!) You can look at the ! 'DECL_NAME' of the 'TYPE_DECL' to obtain the actual name of the ! type. The 'TYPE_NAME' will be 'NULL_TREE' for a type that is not a ! built-in type, the result of a typedef, or a named class type. ! 'CP_INTEGRAL_TYPE' This predicate holds if the type is an integral type. Notice that in C++, enumerations are _not_ integral types. ! 'ARITHMETIC_TYPE_P' This predicate holds if the type is an integral type (in the C++ sense) or a floating point type. ! 'CLASS_TYPE_P' This predicate holds for a class-type. ! 'TYPE_BUILT_IN' This predicate holds for a built-in type. ! 'TYPE_PTRDATAMEM_P' This predicate holds if the type is a pointer to data member. ! 'TYPE_PTR_P' ! This predicate holds if the type is a pointer type, and the pointee ! is not a data member. ! 'TYPE_PTRFN_P' This predicate holds for a pointer to function type. ! 'TYPE_PTROB_P' This predicate holds for a pointer to object type. Note however ! that it does not hold for the generic pointer to object type 'void ! *'. You may use 'TYPE_PTROBV_P' to test for a pointer to object ! type as well as 'void *'. The table below describes types specific to C and C++ as well as language-dependent info about GENERIC types. ! 'POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! If 'TREE_TYPE' is a pointer to data member type, then ! 'TYPE_PTRDATAMEM_P' will hold. For a pointer to data member type ! of the form 'T X::*', 'TYPE_PTRMEM_CLASS_TYPE' will be the type ! 'X', while 'TYPE_PTRMEM_POINTED_TO_TYPE' will be the type 'T'. ! 'RECORD_TYPE' ! Used to represent 'struct' and 'class' types in C and C++. If ! 'TYPE_PTRMEMFUNC_P' holds, then this type is a pointer-to-member ! type. In that case, the 'TYPE_PTRMEMFUNC_FN_TYPE' is a ! 'POINTER_TYPE' pointing to a 'METHOD_TYPE'. The 'METHOD_TYPE' is the type of a function pointed to by the pointer-to-member ! function. If 'TYPE_PTRMEMFUNC_P' does not hold, this type is a class type. For more information, *note Classes::. ! 'UNKNOWN_TYPE' This node is used to represent a type the knowledge of which is insufficient for a sound processing. ! 'TYPENAME_TYPE' ! Used to represent a construct of the form 'typename T::A'. The ! 'TYPE_CONTEXT' is 'T'; the 'TYPE_NAME' is an 'IDENTIFIER_NODE' for ! 'A'. If the type is specified via a template-id, then ! 'TYPENAME_TYPE_FULLNAME' yields a 'TEMPLATE_ID_EXPR'. The ! 'TREE_TYPE' is non-'NULL' if the node is implicitly generated in support for the implicit typename extension; in which case the ! 'TREE_TYPE' is a type node for the base-class. - 'TYPEOF_TYPE' - Used to represent the '__typeof__' extension. The 'TYPE_FIELDS' is - the expression the type of which is being represented.  File: gccint.info, Node: Namespaces, Next: Classes, Prev: Types for C++, Up: C and C++ Trees --- 9870,9987 ---- qualification of the underlying element type when applied to an array type. (If the element type is itself an array, then the recursion continues until a non-array type is found, and the qualification of this ! type is examined.) So, for example, `CP_TYPE_CONST_P' will hold of the ! type `const int ()[7]', denoting an array of seven `int's. The following functions and macros deal with cv-qualification of types: ! `cp_type_quals' This function returns the set of type qualifiers applied to this ! type. This value is `TYPE_UNQUALIFIED' if no qualifiers have been ! applied. The `TYPE_QUAL_CONST' bit is set if the type is ! `const'-qualified. The `TYPE_QUAL_VOLATILE' bit is set if the ! type is `volatile'-qualified. The `TYPE_QUAL_RESTRICT' bit is set ! if the type is `restrict'-qualified. ! `CP_TYPE_CONST_P' ! This macro holds if the type is `const'-qualified. ! `CP_TYPE_VOLATILE_P' ! This macro holds if the type is `volatile'-qualified. ! `CP_TYPE_RESTRICT_P' ! This macro holds if the type is `restrict'-qualified. ! ! `CP_TYPE_CONST_NON_VOLATILE_P' ! This predicate holds for a type that is `const'-qualified, but ! _not_ `volatile'-qualified; other cv-qualifiers are ignored as ! well: only the `const'-ness is tested. A few other macros and functions are usable with all types: ! `TYPE_SIZE' The number of bits required to represent the type, represented as ! an `INTEGER_CST'. For an incomplete type, `TYPE_SIZE' will be ! `NULL_TREE'. ! `TYPE_ALIGN' ! The alignment of the type, in bits, represented as an `int'. ! `TYPE_NAME' ! This macro returns a declaration (in the form of a `TYPE_DECL') for ! the type. (Note this macro does _not_ return an ! `IDENTIFIER_NODE', as you might expect, given its name!) You can ! look at the `DECL_NAME' of the `TYPE_DECL' to obtain the actual ! name of the type. The `TYPE_NAME' will be `NULL_TREE' for a type ! that is not a built-in type, the result of a typedef, or a named ! class type. ! `CP_INTEGRAL_TYPE' This predicate holds if the type is an integral type. Notice that in C++, enumerations are _not_ integral types. ! `ARITHMETIC_TYPE_P' This predicate holds if the type is an integral type (in the C++ sense) or a floating point type. ! `CLASS_TYPE_P' This predicate holds for a class-type. ! `TYPE_BUILT_IN' This predicate holds for a built-in type. ! `TYPE_PTRDATAMEM_P' This predicate holds if the type is a pointer to data member. ! `TYPE_PTR_P' ! This predicate holds if the type is a pointer type, and the ! pointee is not a data member. ! `TYPE_PTRFN_P' This predicate holds for a pointer to function type. ! `TYPE_PTROB_P' This predicate holds for a pointer to object type. Note however ! that it does not hold for the generic pointer to object type `void ! *'. You may use `TYPE_PTROBV_P' to test for a pointer to object ! type as well as `void *'. ! The table below describes types specific to C and C++ as well as language-dependent info about GENERIC types. ! `POINTER_TYPE' Used to represent pointer types, and pointer to data member types. ! If `TREE_TYPE' is a pointer to data member type, then ! `TYPE_PTRDATAMEM_P' will hold. For a pointer to data member type ! of the form `T X::*', `TYPE_PTRMEM_CLASS_TYPE' will be the type ! `X', while `TYPE_PTRMEM_POINTED_TO_TYPE' will be the type `T'. ! `RECORD_TYPE' ! Used to represent `struct' and `class' types in C and C++. If ! `TYPE_PTRMEMFUNC_P' holds, then this type is a pointer-to-member ! type. In that case, the `TYPE_PTRMEMFUNC_FN_TYPE' is a ! `POINTER_TYPE' pointing to a `METHOD_TYPE'. The `METHOD_TYPE' is the type of a function pointed to by the pointer-to-member ! function. If `TYPE_PTRMEMFUNC_P' does not hold, this type is a class type. For more information, *note Classes::. ! `UNKNOWN_TYPE' This node is used to represent a type the knowledge of which is insufficient for a sound processing. ! `TYPENAME_TYPE' ! Used to represent a construct of the form `typename T::A'. The ! `TYPE_CONTEXT' is `T'; the `TYPE_NAME' is an `IDENTIFIER_NODE' for ! `A'. If the type is specified via a template-id, then ! `TYPENAME_TYPE_FULLNAME' yields a `TEMPLATE_ID_EXPR'. The ! `TREE_TYPE' is non-`NULL' if the node is implicitly generated in support for the implicit typename extension; in which case the ! `TREE_TYPE' is a type node for the base-class. ! ! `TYPEOF_TYPE' ! Used to represent the `__typeof__' extension. The `TYPE_FIELDS' ! is the expression the type of which is being represented.  File: gccint.info, Node: Namespaces, Next: Classes, Prev: Types for C++, Up: C and C++ Trees *************** File: gccint.info, Node: Namespaces, N *** 9840,9846 **** ------------------ The root of the entire intermediate representation is the variable ! 'global_namespace'. This is the namespace specified with '::' in C++ source code. All other namespaces, types, variables, functions, and so forth can be found starting with this namespace. --- 9990,9996 ---- ------------------ The root of the entire intermediate representation is the variable ! `global_namespace'. This is the namespace specified with `::' in C++ source code. All other namespaces, types, variables, functions, and so forth can be found starting with this namespace. *************** the representation, the global namespace *** 9849,9908 **** namespace. Thus, in what follows, we describe namespaces generally, rather than the global namespace in particular. ! A namespace is represented by a 'NAMESPACE_DECL' node. ! The following macros and functions can be used on a 'NAMESPACE_DECL': ! 'DECL_NAME' ! This macro is used to obtain the 'IDENTIFIER_NODE' corresponding to the unqualified name of the name of the namespace (*note ! Identifiers::). The name of the global namespace is '::', even ! though in C++ the global namespace is unnamed. However, you should ! use comparison with 'global_namespace', rather than 'DECL_NAME' to ! determine whether or not a namespace is the global one. An unnamed ! namespace will have a 'DECL_NAME' equal to ! 'anonymous_namespace_name'. Within a single translation unit, all unnamed namespaces will have the same name. ! 'DECL_CONTEXT' ! This macro returns the enclosing namespace. The 'DECL_CONTEXT' for ! the 'global_namespace' is 'NULL_TREE'. ! 'DECL_NAMESPACE_ALIAS' If this declaration is for a namespace alias, then ! 'DECL_NAMESPACE_ALIAS' is the namespace for which this one is an alias. ! Do not attempt to use 'cp_namespace_decls' for a namespace which is ! an alias. Instead, follow 'DECL_NAMESPACE_ALIAS' links until you reach an ordinary, non-alias, namespace, and call ! 'cp_namespace_decls' there. ! 'DECL_NAMESPACE_STD_P' ! This predicate holds if the namespace is the special '::std' namespace. ! 'cp_namespace_decls' This function will return the declarations contained in the ! namespace, including types, overloaded functions, other namespaces, ! and so forth. If there are no declarations, this function will ! return 'NULL_TREE'. The declarations are connected through their ! 'TREE_CHAIN' fields. Although most entries on this list will be declarations, ! 'TREE_LIST' nodes may also appear. In this case, the 'TREE_VALUE' ! will be an 'OVERLOAD'. The value of the 'TREE_PURPOSE' is ! unspecified; back ends should ignore this value. As with the other ! kinds of declarations returned by 'cp_namespace_decls', the ! 'TREE_CHAIN' will point to the next declaration in this list. ! For more information on the kinds of declarations that can occur on ! this list, *Note Declarations::. Some declarations will not appear ! on this list. In particular, no 'FIELD_DECL', 'LABEL_DECL', or ! 'PARM_DECL' nodes will appear here. This function cannot be used with namespaces that have ! 'DECL_NAMESPACE_ALIAS' set.  File: gccint.info, Node: Classes, Next: Functions for C++, Prev: Namespaces, Up: C and C++ Trees --- 9999,10059 ---- namespace. Thus, in what follows, we describe namespaces generally, rather than the global namespace in particular. ! A namespace is represented by a `NAMESPACE_DECL' node. ! The following macros and functions can be used on a `NAMESPACE_DECL': ! `DECL_NAME' ! This macro is used to obtain the `IDENTIFIER_NODE' corresponding to the unqualified name of the name of the namespace (*note ! Identifiers::). The name of the global namespace is `::', even ! though in C++ the global namespace is unnamed. However, you ! should use comparison with `global_namespace', rather than ! `DECL_NAME' to determine whether or not a namespace is the global ! one. An unnamed namespace will have a `DECL_NAME' equal to ! `anonymous_namespace_name'. Within a single translation unit, all unnamed namespaces will have the same name. ! `DECL_CONTEXT' ! This macro returns the enclosing namespace. The `DECL_CONTEXT' for ! the `global_namespace' is `NULL_TREE'. ! `DECL_NAMESPACE_ALIAS' If this declaration is for a namespace alias, then ! `DECL_NAMESPACE_ALIAS' is the namespace for which this one is an alias. ! Do not attempt to use `cp_namespace_decls' for a namespace which is ! an alias. Instead, follow `DECL_NAMESPACE_ALIAS' links until you reach an ordinary, non-alias, namespace, and call ! `cp_namespace_decls' there. ! `DECL_NAMESPACE_STD_P' ! This predicate holds if the namespace is the special `::std' namespace. ! `cp_namespace_decls' This function will return the declarations contained in the ! namespace, including types, overloaded functions, other ! namespaces, and so forth. If there are no declarations, this ! function will return `NULL_TREE'. The declarations are connected ! through their `TREE_CHAIN' fields. Although most entries on this list will be declarations, ! `TREE_LIST' nodes may also appear. In this case, the `TREE_VALUE' ! will be an `OVERLOAD'. The value of the `TREE_PURPOSE' is ! unspecified; back ends should ignore this value. As with the ! other kinds of declarations returned by `cp_namespace_decls', the ! `TREE_CHAIN' will point to the next declaration in this list. ! For more information on the kinds of declarations that can occur ! on this list, *Note Declarations::. Some declarations will not ! appear on this list. In particular, no `FIELD_DECL', ! `LABEL_DECL', or `PARM_DECL' nodes will appear here. This function cannot be used with namespaces that have ! `DECL_NAMESPACE_ALIAS' set. !  File: gccint.info, Node: Classes, Next: Functions for C++, Prev: Namespaces, Up: C and C++ Trees *************** File: gccint.info, Node: Classes, Next *** 9913,10148 **** Besides namespaces, the other high-level scoping construct in C++ is the class. (Throughout this manual the term "class" is used to mean the types referred to in the ANSI/ISO C++ Standard as classes; these include ! types defined with the 'class', 'struct', and 'union' keywords.) ! A class type is represented by either a 'RECORD_TYPE' or a ! 'UNION_TYPE'. A class declared with the 'union' tag is represented by a ! 'UNION_TYPE', while classes declared with either the 'struct' or the ! 'class' tag are represented by 'RECORD_TYPE's. You can use the ! 'CLASSTYPE_DECLARED_CLASS' macro to discern whether or not a particular ! type is a 'class' as opposed to a 'struct'. This macro will be true ! only for classes declared with the 'class' tag. ! Almost all non-function members are available on the 'TYPE_FIELDS' list. Given one member, the next can be found by following the ! 'TREE_CHAIN'. You should not depend in any way on the order in which ! fields appear on this list. All nodes on this list will be 'DECL' ! nodes. A 'FIELD_DECL' is used to represent a non-static data member, a ! 'VAR_DECL' is used to represent a static data member, and a 'TYPE_DECL' ! is used to represent a type. Note that the 'CONST_DECL' for an enumeration constant will appear on this list, if the enumeration type ! was declared in the class. (Of course, the 'TYPE_DECL' for the enumeration type will appear here as well.) There are no entries for ! base classes on this list. In particular, there is no 'FIELD_DECL' for the "base-class portion" of an object. ! The 'TYPE_VFIELD' is a compiler-generated field used to point to ! virtual function tables. It may or may not appear on the 'TYPE_FIELDS' ! list. However, back ends should handle the 'TYPE_VFIELD' just like all ! the entries on the 'TYPE_FIELDS' list. ! The function members are available on the 'TYPE_METHODS' list. Again, ! subsequent members are found by following the 'TREE_CHAIN' field. If a function is overloaded, each of the overloaded functions appears; no ! 'OVERLOAD' nodes appear on the 'TYPE_METHODS' list. Implicitly declared ! functions (including default constructors, copy constructors, assignment ! operators, and destructors) will appear on this list as well. Every class has an associated "binfo", which can be obtained with ! 'TYPE_BINFO'. Binfos are used to represent base-classes. The binfo ! given by 'TYPE_BINFO' is the degenerate case, whereby every class is considered to be its own base-class. The base binfos for a particular binfo are held in a vector, whose length is obtained with ! 'BINFO_N_BASE_BINFOS'. The base binfos themselves are obtained with ! 'BINFO_BASE_BINFO' and 'BINFO_BASE_ITERATE'. To add a new binfo, use ! 'BINFO_BASE_APPEND'. The vector of base binfos can be obtained with ! 'BINFO_BASE_BINFOS', but normally you do not need to use that. The ! class type associated with a binfo is given by 'BINFO_TYPE'. It is not ! always the case that 'BINFO_TYPE (TYPE_BINFO (x))', because of typedefs ! and qualified types. Neither is it the case that 'TYPE_BINFO ! (BINFO_TYPE (y))' is the same binfo as 'y'. The reason is that if 'y' ! is a binfo representing a base-class 'B' of a derived class 'D', then ! 'BINFO_TYPE (y)' will be 'B', and 'TYPE_BINFO (BINFO_TYPE (y))' will be ! 'B' as its own base-class, rather than as a base-class of 'D'. ! The access to a base type can be found with 'BINFO_BASE_ACCESS'. This ! will produce 'access_public_node', 'access_private_node' or ! 'access_protected_node'. If bases are always public, ! 'BINFO_BASE_ACCESSES' may be 'NULL'. ! 'BINFO_VIRTUAL_P' is used to specify whether the binfo is inherited ! virtually or not. The other flags, 'BINFO_MARKED_P' and 'BINFO_FLAG_1' ! to 'BINFO_FLAG_6' can be used for language specific use. The following macros can be used on a tree node representing a class-type. ! 'LOCAL_CLASS_P' This predicate holds if the class is local class _i.e._ declared inside a function body. ! 'TYPE_POLYMORPHIC_P' This predicate holds if the class has at least one virtual function (declared or inherited). ! 'TYPE_HAS_DEFAULT_CONSTRUCTOR' This predicate holds whenever its argument represents a class-type with default constructor. ! 'CLASSTYPE_HAS_MUTABLE' ! 'TYPE_HAS_MUTABLE_P' These predicates hold for a class-type having a mutable data member. ! 'CLASSTYPE_NON_POD_P' This predicate holds only for class-types that are not PODs. ! 'TYPE_HAS_NEW_OPERATOR' ! This predicate holds for a class-type that defines 'operator new'. ! 'TYPE_HAS_ARRAY_NEW_OPERATOR' ! This predicate holds for a class-type for which 'operator new[]' is ! defined. ! 'TYPE_OVERLOADS_CALL_EXPR' This predicate holds for class-type for which the function call ! 'operator()' is overloaded. ! 'TYPE_OVERLOADS_ARRAY_REF' ! This predicate holds for a class-type that overloads 'operator[]' ! 'TYPE_OVERLOADS_ARROW' ! This predicate holds for a class-type for which 'operator->' is overloaded.  File: gccint.info, Node: Functions for C++, Next: Statements for C++, Prev: Classes, Up: C and C++ Trees 10.10.4 Functions for C++ ------------------------- ! A function is represented by a 'FUNCTION_DECL' node. A set of ! overloaded functions is sometimes represented by an 'OVERLOAD' node. ! An 'OVERLOAD' node is not a declaration, so none of the 'DECL_' macros ! should be used on an 'OVERLOAD'. An 'OVERLOAD' node is similar to a ! 'TREE_LIST'. Use 'OVL_CURRENT' to get the function associated with an ! 'OVERLOAD' node; use 'OVL_NEXT' to get the next 'OVERLOAD' node in the ! list of overloaded functions. The macros 'OVL_CURRENT' and 'OVL_NEXT' ! are actually polymorphic; you can use them to work with 'FUNCTION_DECL' ! nodes as well as with overloads. In the case of a 'FUNCTION_DECL', ! 'OVL_CURRENT' will always return the function itself, and 'OVL_NEXT' ! will always be 'NULL_TREE'. ! To determine the scope of a function, you can use the 'DECL_CONTEXT' ! macro. This macro will return the class (either a 'RECORD_TYPE' or a ! 'UNION_TYPE') or namespace (a 'NAMESPACE_DECL') of which the function is ! a member. For a virtual function, this macro returns the class in which ! the function was actually defined, not the base class in which the ! virtual declaration occurred. If a friend function is defined in a class scope, the ! 'DECL_FRIEND_CONTEXT' macro can be used to determine the class in which it was defined. For example, in class C { friend void f() {} }; ! the 'DECL_CONTEXT' for 'f' will be the 'global_namespace', but the ! 'DECL_FRIEND_CONTEXT' will be the 'RECORD_TYPE' for 'C'. ! The following macros and functions can be used on a 'FUNCTION_DECL': ! 'DECL_MAIN_P' This predicate holds for a function that is the program entry point ! '::code'. ! 'DECL_LOCAL_FUNCTION_P' This predicate holds if the function was declared at block scope, even though it has a global scope. ! 'DECL_ANTICIPATED' This predicate holds if the function is a built-in function but its prototype is not yet explicitly declared. ! 'DECL_EXTERN_C_FUNCTION_P' ! This predicate holds if the function is declared as an ''extern "C"'' function. ! 'DECL_LINKONCE_P' ! This macro holds if multiple copies of this function may be emitted ! in various translation units. It is the responsibility of the ! linker to merge the various copies. Template instantiations are ! the most common example of functions for which 'DECL_LINKONCE_P' ! holds; G++ instantiates needed templates in all translation units ! which require them, and then relies on the linker to remove ! duplicate instantiations. FIXME: This macro is not yet implemented. ! 'DECL_FUNCTION_MEMBER_P' This macro holds if the function is a member of a class, rather than a member of a namespace. ! 'DECL_STATIC_FUNCTION_P' This predicate holds if the function a static member function. ! 'DECL_NONSTATIC_MEMBER_FUNCTION_P' This macro holds for a non-static member function. ! 'DECL_CONST_MEMFUNC_P' ! This predicate holds for a 'const'-member function. ! 'DECL_VOLATILE_MEMFUNC_P' ! This predicate holds for a 'volatile'-member function. ! 'DECL_CONSTRUCTOR_P' This macro holds if the function is a constructor. ! 'DECL_NONCONVERTING_P' This predicate holds if the constructor is a non-converting constructor. ! 'DECL_COMPLETE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for an object of a complete type. ! 'DECL_BASE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for a base class sub-object. ! 'DECL_COPY_CONSTRUCTOR_P' This predicate holds for a function which is a copy-constructor. ! 'DECL_DESTRUCTOR_P' This macro holds if the function is a destructor. ! 'DECL_COMPLETE_DESTRUCTOR_P' This predicate holds if the function is the destructor for an object a complete type. ! 'DECL_OVERLOADED_OPERATOR_P' This macro holds if the function is an overloaded operator. ! 'DECL_CONV_FN_P' This macro holds if the function is a type-conversion operator. ! 'DECL_GLOBAL_CTOR_P' This predicate holds if the function is a file-scope initialization function. ! 'DECL_GLOBAL_DTOR_P' This predicate holds if the function is a file-scope finalization function. ! 'DECL_THUNK_P' This predicate holds if the function is a thunk. ! These functions represent stub code that adjusts the 'this' pointer and then jumps to another function. When the jumped-to function returns, control is transferred directly to the caller, without ! returning to the thunk. The first parameter to the thunk is always ! the 'this' pointer; the thunk should add 'THUNK_DELTA' to this ! value. (The 'THUNK_DELTA' is an 'int', not an 'INTEGER_CST'.) ! Then, if 'THUNK_VCALL_OFFSET' (an 'INTEGER_CST') is nonzero the ! adjusted 'this' pointer must be adjusted again. The complete calculation is given by the following pseudo-code: this += THUNK_DELTA --- 10064,10300 ---- Besides namespaces, the other high-level scoping construct in C++ is the class. (Throughout this manual the term "class" is used to mean the types referred to in the ANSI/ISO C++ Standard as classes; these include ! types defined with the `class', `struct', and `union' keywords.) ! A class type is represented by either a `RECORD_TYPE' or a ! `UNION_TYPE'. A class declared with the `union' tag is represented by ! a `UNION_TYPE', while classes declared with either the `struct' or the ! `class' tag are represented by `RECORD_TYPE's. You can use the ! `CLASSTYPE_DECLARED_CLASS' macro to discern whether or not a particular ! type is a `class' as opposed to a `struct'. This macro will be true ! only for classes declared with the `class' tag. ! Almost all non-function members are available on the `TYPE_FIELDS' list. Given one member, the next can be found by following the ! `TREE_CHAIN'. You should not depend in any way on the order in which ! fields appear on this list. All nodes on this list will be `DECL' ! nodes. A `FIELD_DECL' is used to represent a non-static data member, a ! `VAR_DECL' is used to represent a static data member, and a `TYPE_DECL' ! is used to represent a type. Note that the `CONST_DECL' for an enumeration constant will appear on this list, if the enumeration type ! was declared in the class. (Of course, the `TYPE_DECL' for the enumeration type will appear here as well.) There are no entries for ! base classes on this list. In particular, there is no `FIELD_DECL' for the "base-class portion" of an object. ! The `TYPE_VFIELD' is a compiler-generated field used to point to ! virtual function tables. It may or may not appear on the `TYPE_FIELDS' ! list. However, back ends should handle the `TYPE_VFIELD' just like all ! the entries on the `TYPE_FIELDS' list. ! The function members are available on the `TYPE_METHODS' list. Again, ! subsequent members are found by following the `TREE_CHAIN' field. If a function is overloaded, each of the overloaded functions appears; no ! `OVERLOAD' nodes appear on the `TYPE_METHODS' list. Implicitly ! declared functions (including default constructors, copy constructors, ! assignment operators, and destructors) will appear on this list as well. Every class has an associated "binfo", which can be obtained with ! `TYPE_BINFO'. Binfos are used to represent base-classes. The binfo ! given by `TYPE_BINFO' is the degenerate case, whereby every class is considered to be its own base-class. The base binfos for a particular binfo are held in a vector, whose length is obtained with ! `BINFO_N_BASE_BINFOS'. The base binfos themselves are obtained with ! `BINFO_BASE_BINFO' and `BINFO_BASE_ITERATE'. To add a new binfo, use ! `BINFO_BASE_APPEND'. The vector of base binfos can be obtained with ! `BINFO_BASE_BINFOS', but normally you do not need to use that. The ! class type associated with a binfo is given by `BINFO_TYPE'. It is not ! always the case that `BINFO_TYPE (TYPE_BINFO (x))', because of typedefs ! and qualified types. Neither is it the case that `TYPE_BINFO ! (BINFO_TYPE (y))' is the same binfo as `y'. The reason is that if `y' ! is a binfo representing a base-class `B' of a derived class `D', then ! `BINFO_TYPE (y)' will be `B', and `TYPE_BINFO (BINFO_TYPE (y))' will be ! `B' as its own base-class, rather than as a base-class of `D'. ! The access to a base type can be found with `BINFO_BASE_ACCESS'. This ! will produce `access_public_node', `access_private_node' or ! `access_protected_node'. If bases are always public, ! `BINFO_BASE_ACCESSES' may be `NULL'. ! `BINFO_VIRTUAL_P' is used to specify whether the binfo is inherited ! virtually or not. The other flags, `BINFO_MARKED_P' and `BINFO_FLAG_1' ! to `BINFO_FLAG_6' can be used for language specific use. The following macros can be used on a tree node representing a class-type. ! `LOCAL_CLASS_P' This predicate holds if the class is local class _i.e._ declared inside a function body. ! `TYPE_POLYMORPHIC_P' This predicate holds if the class has at least one virtual function (declared or inherited). ! `TYPE_HAS_DEFAULT_CONSTRUCTOR' This predicate holds whenever its argument represents a class-type with default constructor. ! `CLASSTYPE_HAS_MUTABLE' ! `TYPE_HAS_MUTABLE_P' These predicates hold for a class-type having a mutable data member. ! `CLASSTYPE_NON_POD_P' This predicate holds only for class-types that are not PODs. ! `TYPE_HAS_NEW_OPERATOR' ! This predicate holds for a class-type that defines `operator new'. ! `TYPE_HAS_ARRAY_NEW_OPERATOR' ! This predicate holds for a class-type for which `operator new[]' ! is defined. ! `TYPE_OVERLOADS_CALL_EXPR' This predicate holds for class-type for which the function call ! `operator()' is overloaded. ! `TYPE_OVERLOADS_ARRAY_REF' ! This predicate holds for a class-type that overloads `operator[]' ! `TYPE_OVERLOADS_ARROW' ! This predicate holds for a class-type for which `operator->' is overloaded. +  File: gccint.info, Node: Functions for C++, Next: Statements for C++, Prev: Classes, Up: C and C++ Trees 10.10.4 Functions for C++ ------------------------- ! A function is represented by a `FUNCTION_DECL' node. A set of ! overloaded functions is sometimes represented by an `OVERLOAD' node. ! An `OVERLOAD' node is not a declaration, so none of the `DECL_' macros ! should be used on an `OVERLOAD'. An `OVERLOAD' node is similar to a ! `TREE_LIST'. Use `OVL_CURRENT' to get the function associated with an ! `OVERLOAD' node; use `OVL_NEXT' to get the next `OVERLOAD' node in the ! list of overloaded functions. The macros `OVL_CURRENT' and `OVL_NEXT' ! are actually polymorphic; you can use them to work with `FUNCTION_DECL' ! nodes as well as with overloads. In the case of a `FUNCTION_DECL', ! `OVL_CURRENT' will always return the function itself, and `OVL_NEXT' ! will always be `NULL_TREE'. ! To determine the scope of a function, you can use the `DECL_CONTEXT' ! macro. This macro will return the class (either a `RECORD_TYPE' or a ! `UNION_TYPE') or namespace (a `NAMESPACE_DECL') of which the function ! is a member. For a virtual function, this macro returns the class in ! which the function was actually defined, not the base class in which ! the virtual declaration occurred. If a friend function is defined in a class scope, the ! `DECL_FRIEND_CONTEXT' macro can be used to determine the class in which it was defined. For example, in class C { friend void f() {} }; ! the `DECL_CONTEXT' for `f' will be the `global_namespace', but the ! `DECL_FRIEND_CONTEXT' will be the `RECORD_TYPE' for `C'. ! The following macros and functions can be used on a `FUNCTION_DECL': ! `DECL_MAIN_P' This predicate holds for a function that is the program entry point ! `::code'. ! `DECL_LOCAL_FUNCTION_P' This predicate holds if the function was declared at block scope, even though it has a global scope. ! `DECL_ANTICIPATED' This predicate holds if the function is a built-in function but its prototype is not yet explicitly declared. ! `DECL_EXTERN_C_FUNCTION_P' ! This predicate holds if the function is declared as an ``extern "C"'' function. ! `DECL_LINKONCE_P' ! This macro holds if multiple copies of this function may be ! emitted in various translation units. It is the responsibility of ! the linker to merge the various copies. Template instantiations ! are the most common example of functions for which ! `DECL_LINKONCE_P' holds; G++ instantiates needed templates in all ! translation units which require them, and then relies on the ! linker to remove duplicate instantiations. FIXME: This macro is not yet implemented. ! `DECL_FUNCTION_MEMBER_P' This macro holds if the function is a member of a class, rather than a member of a namespace. ! `DECL_STATIC_FUNCTION_P' This predicate holds if the function a static member function. ! `DECL_NONSTATIC_MEMBER_FUNCTION_P' This macro holds for a non-static member function. ! `DECL_CONST_MEMFUNC_P' ! This predicate holds for a `const'-member function. ! `DECL_VOLATILE_MEMFUNC_P' ! This predicate holds for a `volatile'-member function. ! `DECL_CONSTRUCTOR_P' This macro holds if the function is a constructor. ! `DECL_NONCONVERTING_P' This predicate holds if the constructor is a non-converting constructor. ! `DECL_COMPLETE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for an object of a complete type. ! `DECL_BASE_CONSTRUCTOR_P' This predicate holds for a function which is a constructor for a base class sub-object. ! `DECL_COPY_CONSTRUCTOR_P' This predicate holds for a function which is a copy-constructor. ! `DECL_DESTRUCTOR_P' This macro holds if the function is a destructor. ! `DECL_COMPLETE_DESTRUCTOR_P' This predicate holds if the function is the destructor for an object a complete type. ! `DECL_OVERLOADED_OPERATOR_P' This macro holds if the function is an overloaded operator. ! `DECL_CONV_FN_P' This macro holds if the function is a type-conversion operator. ! `DECL_GLOBAL_CTOR_P' This predicate holds if the function is a file-scope initialization function. ! `DECL_GLOBAL_DTOR_P' This predicate holds if the function is a file-scope finalization function. ! `DECL_THUNK_P' This predicate holds if the function is a thunk. ! These functions represent stub code that adjusts the `this' pointer and then jumps to another function. When the jumped-to function returns, control is transferred directly to the caller, without ! returning to the thunk. The first parameter to the thunk is ! always the `this' pointer; the thunk should add `THUNK_DELTA' to ! this value. (The `THUNK_DELTA' is an `int', not an `INTEGER_CST'.) ! Then, if `THUNK_VCALL_OFFSET' (an `INTEGER_CST') is nonzero the ! adjusted `this' pointer must be adjusted again. The complete calculation is given by the following pseudo-code: this += THUNK_DELTA *************** the 'DECL_CONTEXT' for 'f' will be the ' *** 10150,10182 **** this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET] Finally, the thunk should jump to the location given by ! 'DECL_INITIAL'; this will always be an expression for the address of a function. ! 'DECL_NON_THUNK_FUNCTION_P' This predicate holds if the function is _not_ a thunk function. ! 'GLOBAL_INIT_PRIORITY' ! If either 'DECL_GLOBAL_CTOR_P' or 'DECL_GLOBAL_DTOR_P' holds, then this gives the initialization priority for the function. The linker will arrange that all functions for which ! 'DECL_GLOBAL_CTOR_P' holds are run in increasing order of priority ! before 'main' is called. When the program exits, all functions for ! which 'DECL_GLOBAL_DTOR_P' holds are run in the reverse order. ! 'TYPE_RAISES_EXCEPTIONS' This macro returns the list of exceptions that a (member-)function ! can raise. The returned list, if non 'NULL', is comprised of nodes ! whose 'TREE_VALUE' represents a type. ! 'TYPE_NOTHROW_P' This predicate holds when the exception-specification of its ! arguments is of the form ''()''. ! 'DECL_ARRAY_DELETE_OPERATOR_P' ! This predicate holds if the function an overloaded 'operator delete[]'.  File: gccint.info, Node: Statements for C++, Next: C++ Expressions, Prev: Functions for C++, Up: C and C++ Trees --- 10302,10335 ---- this += (*((ptrdiff_t **) this))[THUNK_VCALL_OFFSET] Finally, the thunk should jump to the location given by ! `DECL_INITIAL'; this will always be an expression for the address of a function. ! `DECL_NON_THUNK_FUNCTION_P' This predicate holds if the function is _not_ a thunk function. ! `GLOBAL_INIT_PRIORITY' ! If either `DECL_GLOBAL_CTOR_P' or `DECL_GLOBAL_DTOR_P' holds, then this gives the initialization priority for the function. The linker will arrange that all functions for which ! `DECL_GLOBAL_CTOR_P' holds are run in increasing order of priority ! before `main' is called. When the program exits, all functions for ! which `DECL_GLOBAL_DTOR_P' holds are run in the reverse order. ! `TYPE_RAISES_EXCEPTIONS' This macro returns the list of exceptions that a (member-)function ! can raise. The returned list, if non `NULL', is comprised of nodes ! whose `TREE_VALUE' represents a type. ! `TYPE_NOTHROW_P' This predicate holds when the exception-specification of its ! arguments is of the form ``()''. ! `DECL_ARRAY_DELETE_OPERATOR_P' ! This predicate holds if the function an overloaded `operator delete[]'. +  File: gccint.info, Node: Statements for C++, Next: C++ Expressions, Prev: Functions for C++, Up: C and C++ Trees *************** File: gccint.info, Node: Statements for *** 10184,10193 **** -------------------------- A function that has a definition in the current translation unit will ! have a non-'NULL' 'DECL_INITIAL'. However, back ends should not make ! use of the particular value given by 'DECL_INITIAL'. ! The 'DECL_SAVED_TREE' macro will give the complete body of the function. 10.10.5.1 Statements --- 10337,10346 ---- -------------------------- A function that has a definition in the current translation unit will ! have a non-`NULL' `DECL_INITIAL'. However, back ends should not make ! use of the particular value given by `DECL_INITIAL'. ! The `DECL_SAVED_TREE' macro will give the complete body of the function. 10.10.5.1 Statements *************** here, together with a list of the variou *** 10199,10212 **** obtain information about them. There are a few macros that can be used with all statements: ! 'STMT_IS_FULL_EXPR_P' In C++, statements normally constitute "full expressions"; temporaries created during a statement are destroyed when the statement is complete. However, G++ sometimes represents expressions by statements; these statements will not have ! 'STMT_IS_FULL_EXPR_P' set. Temporaries created during such statements should be destroyed when the innermost enclosing ! statement with 'STMT_IS_FULL_EXPR_P' set is exited. Here is the list of the various statement nodes, and the macros used to access them. This documentation describes the use of these nodes in --- 10352,10366 ---- obtain information about them. There are a few macros that can be used with all statements: ! `STMT_IS_FULL_EXPR_P' In C++, statements normally constitute "full expressions"; temporaries created during a statement are destroyed when the statement is complete. However, G++ sometimes represents expressions by statements; these statements will not have ! `STMT_IS_FULL_EXPR_P' set. Temporaries created during such statements should be destroyed when the innermost enclosing ! statement with `STMT_IS_FULL_EXPR_P' set is exited. ! Here is the list of the various statement nodes, and the macros used to access them. This documentation describes the use of these nodes in *************** non-template functions (including instan *** 10214,10225 **** In template functions, the same nodes are used, but sometimes in slightly different ways. ! Many of the statements have substatements. For example, a 'while' loop ! will have a body, which is itself a statement. If the substatement is ! 'NULL_TREE', it is considered equivalent to a statement consisting of a ! single ';', i.e., an expression statement in which the expression has ! been omitted. A substatement may in fact be a list of statements, ! connected via their 'TREE_CHAIN's. So, you should always process the statement tree by looping over substatements, like this: void process_stmt (stmt) tree stmt; --- 10368,10379 ---- In template functions, the same nodes are used, but sometimes in slightly different ways. ! Many of the statements have substatements. For example, a `while' ! loop will have a body, which is itself a statement. If the substatement ! is `NULL_TREE', it is considered equivalent to a statement consisting ! of a single `;', i.e., an expression statement in which the expression ! has been omitted. A substatement may in fact be a list of statements, ! connected via their `TREE_CHAIN's. So, you should always process the statement tree by looping over substatements, like this: void process_stmt (stmt) tree stmt; *************** statement tree by looping over substatem *** 10239,10346 **** stmt = TREE_CHAIN (stmt); } } ! In other words, while the 'then' clause of an 'if' statement in C++ can ! be only one statement (although that one statement may be a compound ! statement), the intermediate representation will sometimes use several ! statements chained together. ! ! 'BREAK_STMT' ! Used to represent a 'break' statement. There are no additional fields. ! 'CILK_SPAWN_STMT' ! Used to represent a spawning function in the Cilk Plus language extension. This tree has one field that holds the name of the ! spawning function. '_Cilk_spawn' can be written in C in the following way: ! _Cilk_spawn (); ! Detailed description for usage and functionality of '_Cilk_spawn' can be found at http://www.cilkplus.org ! 'CILK_SYNC_STMT' ! This statement is part of the Cilk Plus language extension. It indicates that the current function cannot continue in parallel with its spawned children. There are no additional fields. ! '_Cilk_sync' can be written in C in the following way: ! ! _Cilk_sync; ! 'CLEANUP_STMT' Used to represent an action that should take place upon exit from the enclosing scope. Typically, these actions are calls to destructors for local objects, but back ends cannot rely on this fact. If these nodes are in fact representing such destructors, ! 'CLEANUP_DECL' will be the 'VAR_DECL' destroyed. Otherwise, ! 'CLEANUP_DECL' will be 'NULL_TREE'. In any case, the ! 'CLEANUP_EXPR' is the expression to execute. The cleanups executed ! on exit from a scope should be run in the reverse order of the ! order in which the associated 'CLEANUP_STMT's were encountered. ! ! 'CONTINUE_STMT' ! Used to represent a 'continue' statement. There are no additional fields. ! 'CTOR_STMT' ! ! Used to mark the beginning (if 'CTOR_BEGIN_P' holds) or end (if ! 'CTOR_END_P' holds of the main body of a constructor. See also ! 'SUBOBJECT' for more information on how to use these nodes. ! ! 'DO_STMT' ! Used to represent a 'do' loop. The body of the loop is given by ! 'DO_BODY' while the termination condition for the loop is given by ! 'DO_COND'. The condition for a 'do'-statement is always an expression. ! 'EMPTY_CLASS_EXPR' ! Used to represent a temporary object of a class with no data whose address is never taken. (All such objects are interchangeable.) ! The 'TREE_TYPE' represents the type of the object. ! ! 'EXPR_STMT' ! Used to represent an expression statement. Use 'EXPR_STMT_EXPR' to obtain the expression. ! 'FOR_STMT' ! ! Used to represent a 'for' statement. The 'FOR_INIT_STMT' is the ! initialization statement for the loop. The 'FOR_COND' is the ! termination condition. The 'FOR_EXPR' is the expression executed ! right before the 'FOR_COND' on each loop iteration; often, this expression increments a counter. The body of the loop is given by ! 'FOR_BODY'. Note that 'FOR_INIT_STMT' and 'FOR_BODY' return ! statements, while 'FOR_COND' and 'FOR_EXPR' return expressions. ! ! 'HANDLER' ! Used to represent a C++ 'catch' block. The 'HANDLER_TYPE' is the type of exception that will be caught by this handler; it is equal ! (by pointer equality) to 'NULL' if this handler is for all types. ! 'HANDLER_PARMS' is the 'DECL_STMT' for the catch parameter, and ! 'HANDLER_BODY' is the code for the block itself. ! ! 'IF_STMT' ! Used to represent an 'if' statement. The 'IF_COND' is the expression. ! If the condition is a 'TREE_LIST', then the 'TREE_PURPOSE' is a ! statement (usually a 'DECL_STMT'). Each time the condition is evaluated, the statement should be executed. Then, the ! 'TREE_VALUE' should be used as the conditional expression itself. This representation is used to handle C++ code like this: ! C++ distinguishes between this and 'COND_EXPR' for handling templates. if (int i = 7) ... --- 10393,10489 ---- stmt = TREE_CHAIN (stmt); } } ! In other words, while the `then' clause of an `if' statement in C++ ! can be only one statement (although that one statement may be a ! compound statement), the intermediate representation will sometimes use ! several statements chained together. ! `BREAK_STMT' ! Used to represent a `break' statement. There are no additional fields. ! `CILK_SPAWN_STMT' Used to represent a spawning function in the Cilk Plus language extension. This tree has one field that holds the name of the ! spawning function. `_Cilk_spawn' can be written in C in the following way: ! `_Cilk_spawn' (); ! Detailed description for usage and functionality of `_Cilk_spawn' can be found at http://www.cilkplus.org ! `CILK_SYNC_STMT' This statement is part of the Cilk Plus language extension. It indicates that the current function cannot continue in parallel with its spawned children. There are no additional fields. ! `_Cilk_sync' can be written in C in the following way: ! `_Cilk_sync'; + `CLEANUP_STMT' Used to represent an action that should take place upon exit from the enclosing scope. Typically, these actions are calls to destructors for local objects, but back ends cannot rely on this fact. If these nodes are in fact representing such destructors, ! `CLEANUP_DECL' will be the `VAR_DECL' destroyed. Otherwise, ! `CLEANUP_DECL' will be `NULL_TREE'. In any case, the ! `CLEANUP_EXPR' is the expression to execute. The cleanups ! executed on exit from a scope should be run in the reverse order ! of the order in which the associated `CLEANUP_STMT's were ! encountered. ! `CONTINUE_STMT' ! Used to represent a `continue' statement. There are no additional fields. ! `CTOR_STMT' ! Used to mark the beginning (if `CTOR_BEGIN_P' holds) or end (if ! `CTOR_END_P' holds of the main body of a constructor. See also ! `SUBOBJECT' for more information on how to use these nodes. ! `DO_STMT' ! Used to represent a `do' loop. The body of the loop is given by ! `DO_BODY' while the termination condition for the loop is given by ! `DO_COND'. The condition for a `do'-statement is always an expression. ! `EMPTY_CLASS_EXPR' Used to represent a temporary object of a class with no data whose address is never taken. (All such objects are interchangeable.) ! The `TREE_TYPE' represents the type of the object. ! `EXPR_STMT' ! Used to represent an expression statement. Use `EXPR_STMT_EXPR' to obtain the expression. ! `FOR_STMT' ! Used to represent a `for' statement. The `FOR_INIT_STMT' is the ! initialization statement for the loop. The `FOR_COND' is the ! termination condition. The `FOR_EXPR' is the expression executed ! right before the `FOR_COND' on each loop iteration; often, this expression increments a counter. The body of the loop is given by ! `FOR_BODY'. Note that `FOR_INIT_STMT' and `FOR_BODY' return ! statements, while `FOR_COND' and `FOR_EXPR' return expressions. ! `HANDLER' ! Used to represent a C++ `catch' block. The `HANDLER_TYPE' is the type of exception that will be caught by this handler; it is equal ! (by pointer equality) to `NULL' if this handler is for all types. ! `HANDLER_PARMS' is the `DECL_STMT' for the catch parameter, and ! `HANDLER_BODY' is the code for the block itself. ! `IF_STMT' ! Used to represent an `if' statement. The `IF_COND' is the expression. ! If the condition is a `TREE_LIST', then the `TREE_PURPOSE' is a ! statement (usually a `DECL_STMT'). Each time the condition is evaluated, the statement should be executed. Then, the ! `TREE_VALUE' should be used as the conditional expression itself. This representation is used to handle C++ code like this: ! C++ distinguishes between this and `COND_EXPR' for handling templates. if (int i = 7) ... *************** statements chained together. *** 10348,10405 **** where there is a new local variable (or variables) declared within the condition. ! The 'THEN_CLAUSE' represents the statement given by the 'then' ! condition, while the 'ELSE_CLAUSE' represents the statement given ! by the 'else' condition. ! ! 'SUBOBJECT' In a constructor, these nodes are used to mark the point at which a ! subobject of 'this' is fully constructed. If, after this point, an ! exception is thrown before a 'CTOR_STMT' with 'CTOR_END_P' set is ! encountered, the 'SUBOBJECT_CLEANUP' must be executed. The cleanups must be executed in the reverse order in which they appear. ! 'SWITCH_STMT' ! ! Used to represent a 'switch' statement. The 'SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an 'IF_STMT' for more information on the ! representation used for the condition. The 'SWITCH_STMT_BODY' is ! the body of the switch statement. The 'SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! 'TRY_BLOCK' ! Used to represent a 'try' block. The body of the try block is ! given by 'TRY_STMTS'. Each of the catch blocks is a 'HANDLER' ! node. The first handler is given by 'TRY_HANDLERS'. Subsequent ! handlers are obtained by following the 'TREE_CHAIN' link from one handler to the next. The body of the handler is given by ! 'HANDLER_BODY'. ! If 'CLEANUP_P' holds of the 'TRY_BLOCK', then the 'TRY_HANDLERS' ! will not be a 'HANDLER' node. Instead, it will be an expression ! that should be executed if an exception is thrown in the try block. ! It must rethrow the exception after executing that code. And, if ! an exception is thrown while the expression is executing, ! 'terminate' must be called. ! 'USING_STMT' ! Used to represent a 'using' directive. The namespace is given by ! 'USING_STMT_NAMESPACE', which will be a NAMESPACE_DECL. This node is needed inside template functions, to implement using directives during instantiation. ! 'WHILE_STMT' ! ! Used to represent a 'while' loop. The 'WHILE_COND' is the termination condition for the loop. See the documentation for an ! 'IF_STMT' for more information on the representation used for the condition. ! The 'WHILE_BODY' is the body of the loop.  File: gccint.info, Node: C++ Expressions, Prev: Statements for C++, Up: C and C++ Trees --- 10491,10546 ---- where there is a new local variable (or variables) declared within the condition. ! The `THEN_CLAUSE' represents the statement given by the `then' ! condition, while the `ELSE_CLAUSE' represents the statement given ! by the `else' condition. + `SUBOBJECT' In a constructor, these nodes are used to mark the point at which a ! subobject of `this' is fully constructed. If, after this point, an ! exception is thrown before a `CTOR_STMT' with `CTOR_END_P' set is ! encountered, the `SUBOBJECT_CLEANUP' must be executed. The cleanups must be executed in the reverse order in which they appear. ! `SWITCH_STMT' ! Used to represent a `switch' statement. The `SWITCH_STMT_COND' is the expression on which the switch is occurring. See the ! documentation for an `IF_STMT' for more information on the ! representation used for the condition. The `SWITCH_STMT_BODY' is ! the body of the switch statement. The `SWITCH_STMT_TYPE' is the original type of switch expression as given in the source, before any compiler conversions. ! `TRY_BLOCK' ! Used to represent a `try' block. The body of the try block is ! given by `TRY_STMTS'. Each of the catch blocks is a `HANDLER' ! node. The first handler is given by `TRY_HANDLERS'. Subsequent ! handlers are obtained by following the `TREE_CHAIN' link from one handler to the next. The body of the handler is given by ! `HANDLER_BODY'. ! If `CLEANUP_P' holds of the `TRY_BLOCK', then the `TRY_HANDLERS' ! will not be a `HANDLER' node. Instead, it will be an expression ! that should be executed if an exception is thrown in the try ! block. It must rethrow the exception after executing that code. ! And, if an exception is thrown while the expression is executing, ! `terminate' must be called. ! `USING_STMT' ! Used to represent a `using' directive. The namespace is given by ! `USING_STMT_NAMESPACE', which will be a NAMESPACE_DECL. This node is needed inside template functions, to implement using directives during instantiation. ! `WHILE_STMT' ! Used to represent a `while' loop. The `WHILE_COND' is the termination condition for the loop. See the documentation for an ! `IF_STMT' for more information on the representation used for the condition. ! The `WHILE_BODY' is the body of the loop. !  File: gccint.info, Node: C++ Expressions, Prev: Statements for C++, Up: C and C++ Trees *************** File: gccint.info, Node: C++ Expression *** 10409,10454 **** This section describes expressions specific to the C and C++ front ends. ! 'TYPEID_EXPR' ! ! Used to represent a 'typeid' expression. ! ! 'NEW_EXPR' ! 'VEC_NEW_EXPR' ! ! Used to represent a call to 'new' and 'new[]' respectively. ! ! 'DELETE_EXPR' ! 'VEC_DELETE_EXPR' ! Used to represent a call to 'delete' and 'delete[]' respectively. ! 'MEMBER_REF' Represents a reference to a member of a class. ! 'THROW_EXPR' ! ! Represents an instance of 'throw' in the program. Operand 0, which ! is the expression to throw, may be 'NULL_TREE'. ! 'AGGR_INIT_EXPR' ! An 'AGGR_INIT_EXPR' represents the initialization as the return value of a function call, or as the result of a constructor. An ! 'AGGR_INIT_EXPR' will only appear as a full-expression, or as the ! second operand of a 'TARGET_EXPR'. 'AGGR_INIT_EXPR's have a ! representation similar to that of 'CALL_EXPR's. You can use the ! 'AGGR_INIT_EXPR_FN' and 'AGGR_INIT_EXPR_ARG' macros to access the function to call and the arguments to pass. ! If 'AGGR_INIT_VIA_CTOR_P' holds of the 'AGGR_INIT_EXPR', then the initialization is via a constructor call. The address of the ! 'AGGR_INIT_EXPR_SLOT' operand, which is always a 'VAR_DECL', is taken, and this value replaces the first argument in the argument list. In either case, the expression is void.  File: gccint.info, Node: Java Trees, Prev: C and C++ Trees, Up: GENERIC --- 10550,10591 ---- This section describes expressions specific to the C and C++ front ends. ! `TYPEID_EXPR' ! Used to represent a `typeid' expression. ! `NEW_EXPR' ! `VEC_NEW_EXPR' ! Used to represent a call to `new' and `new[]' respectively. ! `DELETE_EXPR' ! `VEC_DELETE_EXPR' ! Used to represent a call to `delete' and `delete[]' respectively. + `MEMBER_REF' Represents a reference to a member of a class. ! `THROW_EXPR' ! Represents an instance of `throw' in the program. Operand 0, ! which is the expression to throw, may be `NULL_TREE'. ! `AGGR_INIT_EXPR' ! An `AGGR_INIT_EXPR' represents the initialization as the return value of a function call, or as the result of a constructor. An ! `AGGR_INIT_EXPR' will only appear as a full-expression, or as the ! second operand of a `TARGET_EXPR'. `AGGR_INIT_EXPR's have a ! representation similar to that of `CALL_EXPR's. You can use the ! `AGGR_INIT_EXPR_FN' and `AGGR_INIT_EXPR_ARG' macros to access the function to call and the arguments to pass. ! If `AGGR_INIT_VIA_CTOR_P' holds of the `AGGR_INIT_EXPR', then the initialization is via a constructor call. The address of the ! `AGGR_INIT_EXPR_SLOT' operand, which is always a `VAR_DECL', is taken, and this value replaces the first argument in the argument list. In either case, the expression is void. +  File: gccint.info, Node: Java Trees, Prev: C and C++ Trees, Up: GENERIC *************** File: gccint.info, Node: GIMPLE, Next: *** 10462,10523 **** ********* GIMPLE is a three-address representation derived from GENERIC by ! breaking down GENERIC expressions into tuples of no more than 3 operands ! (with some exceptions like function calls). GIMPLE was heavily ! influenced by the SIMPLE IL used by the McCAT compiler project at McGill ! University, though we have made some different choices. For one thing, ! SIMPLE doesn't support 'goto'. Temporaries are introduced to hold intermediate values needed to ! compute complex expressions. Additionally, all the control structures used in GENERIC are lowered into conditional jumps, lexical scopes are removed and exception regions are converted into an on the side exception region tree. The compiler pass which converts GENERIC into GIMPLE is referred to as ! the 'gimplifier'. The gimplifier works recursively, generating GIMPLE tuples out of the original GENERIC expressions. One of the early implementation strategies used for the GIMPLE representation was to use the same internal data structures used by ! front ends to represent parse trees. This simplified implementation because we could leverage existing functionality and interfaces. However, GIMPLE is a much more restrictive representation than abstract syntax trees (AST), therefore it does not require the full structural complexity provided by the main tree data structure. The GENERIC representation of a function is stored in the ! 'DECL_SAVED_TREE' field of the associated 'FUNCTION_DECL' tree node. It ! is converted to GIMPLE by a call to 'gimplify_function_tree'. If a front end wants to include language-specific tree codes in the tree representation which it provides to the back end, it must provide a ! definition of 'LANG_HOOKS_GIMPLIFY_EXPR' which knows how to convert the ! front end trees to GIMPLE. Usually such a hook will involve much of the ! same code for expanding front end trees to RTL. This function can return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is known as "High GIMPLE" and consists ! of the IL before the pass 'pass_lower_cf'. High GIMPLE contains some ! container statements like lexical scopes (represented by 'GIMPLE_BIND') ! and nested expressions (e.g., 'GIMPLE_TRY'), while "Low GIMPLE" exposes ! all of the implicit jumps for control and exception expressions directly ! in the IL and EH region trees. The C and C++ front ends currently convert directly from front end trees to GIMPLE, and hand that off to the back end rather than first converting to GENERIC. Their gimplifier hooks know about all the ! '_STMT' nodes and how to convert them to GENERIC forms. There was some work done on a genericization pass which would run first, but the ! existence of 'STMT_EXPR' meant that in order to convert all of the C statements into GENERIC equivalents would involve walking the entire tree anyway, so it was simpler to lower all the way. This might change in the future if someone writes an optimization pass which would work better with higher-level trees, but currently the optimizers all expect GIMPLE. ! You can request to dump a C-like representation of the GIMPLE form with ! the flag '-fdump-tree-gimple'. * Menu: --- 10599,10660 ---- ********* GIMPLE is a three-address representation derived from GENERIC by ! breaking down GENERIC expressions into tuples of no more than 3 ! operands (with some exceptions like function calls). GIMPLE was ! heavily influenced by the SIMPLE IL used by the McCAT compiler project ! at McGill University, though we have made some different choices. For ! one thing, SIMPLE doesn't support `goto'. Temporaries are introduced to hold intermediate values needed to ! compute complex expressions. Additionally, all the control structures used in GENERIC are lowered into conditional jumps, lexical scopes are removed and exception regions are converted into an on the side exception region tree. The compiler pass which converts GENERIC into GIMPLE is referred to as ! the `gimplifier'. The gimplifier works recursively, generating GIMPLE tuples out of the original GENERIC expressions. One of the early implementation strategies used for the GIMPLE representation was to use the same internal data structures used by ! front ends to represent parse trees. This simplified implementation because we could leverage existing functionality and interfaces. However, GIMPLE is a much more restrictive representation than abstract syntax trees (AST), therefore it does not require the full structural complexity provided by the main tree data structure. The GENERIC representation of a function is stored in the ! `DECL_SAVED_TREE' field of the associated `FUNCTION_DECL' tree node. ! It is converted to GIMPLE by a call to `gimplify_function_tree'. If a front end wants to include language-specific tree codes in the tree representation which it provides to the back end, it must provide a ! definition of `LANG_HOOKS_GIMPLIFY_EXPR' which knows how to convert the ! front end trees to GIMPLE. Usually such a hook will involve much of ! the same code for expanding front end trees to RTL. This function can return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is known as "High GIMPLE" and consists ! of the IL before the pass `pass_lower_cf'. High GIMPLE contains some ! container statements like lexical scopes (represented by `GIMPLE_BIND') ! and nested expressions (e.g., `GIMPLE_TRY'), while "Low GIMPLE" exposes ! all of the implicit jumps for control and exception expressions ! directly in the IL and EH region trees. The C and C++ front ends currently convert directly from front end trees to GIMPLE, and hand that off to the back end rather than first converting to GENERIC. Their gimplifier hooks know about all the ! `_STMT' nodes and how to convert them to GENERIC forms. There was some work done on a genericization pass which would run first, but the ! existence of `STMT_EXPR' meant that in order to convert all of the C statements into GENERIC equivalents would involve walking the entire tree anyway, so it was simpler to lower all the way. This might change in the future if someone writes an optimization pass which would work better with higher-level trees, but currently the optimizers all expect GIMPLE. ! You can request to dump a C-like representation of the GIMPLE form ! with the flag `-fdump-tree-gimple'. * Menu: *************** File: gccint.info, Node: Tuple represen *** 10539,10711 **** 11.1 Tuple representation ========================= ! GIMPLE instructions are tuples of variable size divided in two groups: a ! header describing the instruction and its locations, and a variable ! length body with all the operands. Tuples are organized into a hierarchy with 3 main classes of tuples. ! 11.1.1 'gimple_statement_base' (gsbase) --------------------------------------- This is the root of the hierarchy, it holds basic information needed by ! most GIMPLE statements. There are some fields that may not be relevant to every GIMPLE statement, but those were moved into the base structure to take advantage of holes left by other fields (thus making the structure more compact). The structure takes 4 words (32 bytes) on 64 bit hosts: Field Size (bits) ! 'code' 8 ! 'subcode' 16 ! 'no_warning' 1 ! 'visited' 1 ! 'nontemporal_move' 1 ! 'plf' 2 ! 'modified' 1 ! 'has_volatile_ops' 1 ! 'references_memory_p' 1 ! 'uid' 32 ! 'location' 32 ! 'num_ops' 32 ! 'bb' 64 ! 'block' 63 Total size 32 bytes ! * 'code' Main identifier for a GIMPLE instruction. ! * 'subcode' Used to distinguish different variants of the same basic ! instruction or provide flags applicable to a given code. The ! 'subcode' flags field has different uses depending on the code of the instruction, but mostly it distinguishes instructions of the ! same family. The most prominent use of this field is in assignments, where subcode indicates the operation done on the RHS ! of the assignment. For example, a = b + c is encoded as ! 'GIMPLE_ASSIGN '. ! * 'no_warning' Bitflag to indicate whether a warning has already been ! issued on this statement. ! * 'visited' General purpose "visited" marker. Set and cleared by each pass when needed. ! * 'nontemporal_move' Bitflag used in assignments that represent non-temporal moves. Although this bitflag is only used in assignments, it was moved into the base to take advantage of the bit holes left by the previous fields. ! * 'plf' Pass Local Flags. This 2-bit mask can be used as general ! purpose markers by any pass. Passes are responsible for clearing and setting these two flags accordingly. ! * 'modified' Bitflag to indicate whether the statement has been modified. Used mainly by the operand scanner to determine when to re-scan a statement for operands. ! * 'has_volatile_ops' Bitflag to indicate whether this statement contains operands that have been marked volatile. ! * 'references_memory_p' Bitflag to indicate whether this statement contains memory references (i.e., its operands are either global variables, or pointer dereferences or anything that must reside in memory). ! * 'uid' This is an unsigned integer used by passes that want to ! assign IDs to every statement. These IDs must be assigned and used by each pass. ! * 'location' This is a 'location_t' identifier to specify source code ! location for this statement. It is inherited from the front end. ! * 'num_ops' Number of operands that this statement has. This specifies the size of the operand vector embedded in the tuple. Only used in some tuples, but it is declared in the base tuple to take advantage of the 32-bit hole left by the previous fields. ! * 'bb' Basic block holding the instruction. ! * 'block' Lexical block holding this statement. Also used for debug information generation. ! 11.1.2 'gimple_statement_with_ops' ---------------------------------- ! This tuple is actually split in two: 'gimple_statement_with_ops_base' ! and 'gimple_statement_with_ops'. This is needed to accommodate the way ! the operand vector is allocated. The operand vector is defined to be an ! array of 1 element. So, to allocate a dynamic number of operands, the ! memory allocator ('gimple_alloc') simply allocates enough memory to hold ! the structure itself plus 'N - 1' operands which run "off the end" of ! the structure. For example, to allocate space for a tuple with 3 ! operands, 'gimple_alloc' reserves 'sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree)' bytes. On the other hand, several fields in this tuple need to be shared with ! the 'gimple_statement_with_memory_ops' tuple. So, these common fields ! are placed in 'gimple_statement_with_ops_base' which is then inherited from the other two tuples. ! 'gsbase' 256 ! 'def_ops' 64 ! 'use_ops' 64 ! 'op' 'num_ops' * 64 ! Total 48 + 8 * 'num_ops' bytes ! size ! * 'gsbase' Inherited from 'struct gimple_statement_base'. ! * 'def_ops' Array of pointers into the operand array indicating all the slots that contain a variable written-to by the statement. ! This array is also used for immediate use chaining. Note that it would be possible to not rely on this array, but the changes required to implement this are pretty invasive. ! * 'use_ops' Similar to 'def_ops' but for variables read by the statement. ! * 'op' Array of trees with 'num_ops' slots. ! 11.1.3 'gimple_statement_with_memory_ops' ----------------------------------------- ! This tuple is essentially identical to 'gimple_statement_with_ops', except that it contains 4 additional fields to hold vectors related ! memory stores and loads. Similar to the previous case, the structure is ! split in two to accommodate for the operand vector ! ('gimple_statement_with_memory_ops_base' and ! 'gimple_statement_with_memory_ops'). Field Size (bits) ! 'gsbase' 256 ! 'def_ops' 64 ! 'use_ops' 64 ! 'vdef_ops' 64 ! 'vuse_ops' 64 ! 'stores' 64 ! 'loads' 64 ! 'op' 'num_ops' * 64 ! Total size 80 + 8 * 'num_ops' bytes ! * 'vdef_ops' Similar to 'def_ops' but for 'VDEF' operators. There is ! one entry per memory symbol written by this statement. This is used to maintain the memory SSA use-def and def-def chains. ! * 'vuse_ops' Similar to 'use_ops' but for 'VUSE' operators. There is ! one entry per memory symbol loaded by this statement. This is used to maintain the memory SSA use-def chains. ! * 'stores' Bitset with all the UIDs for the symbols written-to by the ! statement. This is different than 'vdef_ops' in that all the ! affected symbols are mentioned in this set. If memory partitioning ! is enabled, the 'vdef_ops' vector will refer to memory partitions. ! Furthermore, no SSA information is stored in this set. ! * 'loads' Similar to 'stores', but for memory loads. (Note that ! there is some amount of redundancy here, it should be possible to ! reduce memory utilization further by removing these sets). All the other tuples are defined in terms of these three basic ones. ! Each tuple will add some fields. The main gimple type is defined to be ! the union of all these structures ('GTY' markers elided for clarity): union gimple_statement_d { --- 10676,10847 ---- 11.1 Tuple representation ========================= ! GIMPLE instructions are tuples of variable size divided in two groups: ! a header describing the instruction and its locations, and a variable ! length body with all the operands. Tuples are organized into a hierarchy with 3 main classes of tuples. ! 11.1.1 `gimple_statement_base' (gsbase) --------------------------------------- This is the root of the hierarchy, it holds basic information needed by ! most GIMPLE statements. There are some fields that may not be relevant to every GIMPLE statement, but those were moved into the base structure to take advantage of holes left by other fields (thus making the structure more compact). The structure takes 4 words (32 bytes) on 64 bit hosts: Field Size (bits) ! `code' 8 ! `subcode' 16 ! `no_warning' 1 ! `visited' 1 ! `nontemporal_move' 1 ! `plf' 2 ! `modified' 1 ! `has_volatile_ops' 1 ! `references_memory_p' 1 ! `uid' 32 ! `location' 32 ! `num_ops' 32 ! `bb' 64 ! `block' 63 Total size 32 bytes ! * `code' Main identifier for a GIMPLE instruction. ! * `subcode' Used to distinguish different variants of the same basic ! instruction or provide flags applicable to a given code. The ! `subcode' flags field has different uses depending on the code of the instruction, but mostly it distinguishes instructions of the ! same family. The most prominent use of this field is in assignments, where subcode indicates the operation done on the RHS ! of the assignment. For example, a = b + c is encoded as ! `GIMPLE_ASSIGN '. ! * `no_warning' Bitflag to indicate whether a warning has already ! been issued on this statement. ! * `visited' General purpose "visited" marker. Set and cleared by each pass when needed. ! * `nontemporal_move' Bitflag used in assignments that represent non-temporal moves. Although this bitflag is only used in assignments, it was moved into the base to take advantage of the bit holes left by the previous fields. ! * `plf' Pass Local Flags. This 2-bit mask can be used as general ! purpose markers by any pass. Passes are responsible for clearing and setting these two flags accordingly. ! * `modified' Bitflag to indicate whether the statement has been modified. Used mainly by the operand scanner to determine when to re-scan a statement for operands. ! * `has_volatile_ops' Bitflag to indicate whether this statement contains operands that have been marked volatile. ! * `references_memory_p' Bitflag to indicate whether this statement contains memory references (i.e., its operands are either global variables, or pointer dereferences or anything that must reside in memory). ! * `uid' This is an unsigned integer used by passes that want to ! assign IDs to every statement. These IDs must be assigned and used by each pass. ! * `location' This is a `location_t' identifier to specify source code ! location for this statement. It is inherited from the front end. ! * `num_ops' Number of operands that this statement has. This specifies the size of the operand vector embedded in the tuple. Only used in some tuples, but it is declared in the base tuple to take advantage of the 32-bit hole left by the previous fields. ! * `bb' Basic block holding the instruction. ! * `block' Lexical block holding this statement. Also used for debug information generation. ! 11.1.2 `gimple_statement_with_ops' ---------------------------------- ! This tuple is actually split in two: `gimple_statement_with_ops_base' ! and `gimple_statement_with_ops'. This is needed to accommodate the way ! the operand vector is allocated. The operand vector is defined to be an ! array of 1 element. So, to allocate a dynamic number of operands, the ! memory allocator (`gimple_alloc') simply allocates enough memory to ! hold the structure itself plus `N - 1' operands which run "off the end" ! of the structure. For example, to allocate space for a tuple with 3 ! operands, `gimple_alloc' reserves `sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree)' bytes. On the other hand, several fields in this tuple need to be shared with ! the `gimple_statement_with_memory_ops' tuple. So, these common fields ! are placed in `gimple_statement_with_ops_base' which is then inherited from the other two tuples. ! `gsbase' 256 ! `def_ops' 64 ! `use_ops' 64 ! `op' `num_ops' * 64 ! Total size 48 + 8 * `num_ops' bytes ! * `gsbase' Inherited from `struct gimple_statement_base'. ! * `def_ops' Array of pointers into the operand array indicating all the slots that contain a variable written-to by the statement. ! This array is also used for immediate use chaining. Note that it would be possible to not rely on this array, but the changes required to implement this are pretty invasive. ! * `use_ops' Similar to `def_ops' but for variables read by the statement. ! * `op' Array of trees with `num_ops' slots. ! 11.1.3 `gimple_statement_with_memory_ops' ----------------------------------------- ! This tuple is essentially identical to `gimple_statement_with_ops', except that it contains 4 additional fields to hold vectors related ! memory stores and loads. Similar to the previous case, the structure ! is split in two to accommodate for the operand vector ! (`gimple_statement_with_memory_ops_base' and ! `gimple_statement_with_memory_ops'). Field Size (bits) ! `gsbase' 256 ! `def_ops' 64 ! `use_ops' 64 ! `vdef_ops' 64 ! `vuse_ops' 64 ! `stores' 64 ! `loads' 64 ! `op' `num_ops' * 64 ! Total size 80 + 8 * `num_ops' bytes ! * `vdef_ops' Similar to `def_ops' but for `VDEF' operators. There is ! one entry per memory symbol written by this statement. This is used to maintain the memory SSA use-def and def-def chains. ! * `vuse_ops' Similar to `use_ops' but for `VUSE' operators. There is ! one entry per memory symbol loaded by this statement. This is used to maintain the memory SSA use-def chains. ! * `stores' Bitset with all the UIDs for the symbols written-to by the ! statement. This is different than `vdef_ops' in that all the ! affected symbols are mentioned in this set. If memory ! partitioning is enabled, the `vdef_ops' vector will refer to memory ! partitions. Furthermore, no SSA information is stored in this set. ! * `loads' Similar to `stores', but for memory loads. (Note that there ! is some amount of redundancy here, it should be possible to reduce ! memory utilization further by removing these sets). All the other tuples are defined in terms of these three basic ones. ! Each tuple will add some fields. The main gimple type is defined to be ! the union of all these structures (`GTY' markers elided for clarity): union gimple_statement_d { *************** File: gccint.info, Node: GIMPLE instruc *** 10741,10775 **** The following table briefly describes the GIMPLE instruction set. Instruction High GIMPLE Low GIMPLE ! 'GIMPLE_ASM' x x ! 'GIMPLE_ASSIGN' x x ! 'GIMPLE_BIND' x ! 'GIMPLE_CALL' x x ! 'GIMPLE_CATCH' x ! 'GIMPLE_COND' x x ! 'GIMPLE_DEBUG' x x ! 'GIMPLE_EH_FILTER' x ! 'GIMPLE_GOTO' x x ! 'GIMPLE_LABEL' x x ! 'GIMPLE_NOP' x x ! 'GIMPLE_OMP_ATOMIC_LOAD' x x ! 'GIMPLE_OMP_ATOMIC_STORE' x x ! 'GIMPLE_OMP_CONTINUE' x x ! 'GIMPLE_OMP_CRITICAL' x x ! 'GIMPLE_OMP_FOR' x x ! 'GIMPLE_OMP_MASTER' x x ! 'GIMPLE_OMP_ORDERED' x x ! 'GIMPLE_OMP_PARALLEL' x x ! 'GIMPLE_OMP_RETURN' x x ! 'GIMPLE_OMP_SECTION' x x ! 'GIMPLE_OMP_SECTIONS' x x ! 'GIMPLE_OMP_SECTIONS_SWITCH' x x ! 'GIMPLE_OMP_SINGLE' x x ! 'GIMPLE_PHI' x ! 'GIMPLE_RESX' x ! 'GIMPLE_RETURN' x x ! 'GIMPLE_SWITCH' x x ! 'GIMPLE_TRY' x  File: gccint.info, Node: GIMPLE Exception Handling, Next: Temporaries, Prev: GIMPLE instruction set, Up: GIMPLE --- 10877,10911 ---- The following table briefly describes the GIMPLE instruction set. Instruction High GIMPLE Low GIMPLE ! `GIMPLE_ASM' x x ! `GIMPLE_ASSIGN' x x ! `GIMPLE_BIND' x ! `GIMPLE_CALL' x x ! `GIMPLE_CATCH' x ! `GIMPLE_COND' x x ! `GIMPLE_DEBUG' x x ! `GIMPLE_EH_FILTER' x ! `GIMPLE_GOTO' x x ! `GIMPLE_LABEL' x x ! `GIMPLE_NOP' x x ! `GIMPLE_OMP_ATOMIC_LOAD' x x ! `GIMPLE_OMP_ATOMIC_STORE' x x ! `GIMPLE_OMP_CONTINUE' x x ! `GIMPLE_OMP_CRITICAL' x x ! `GIMPLE_OMP_FOR' x x ! `GIMPLE_OMP_MASTER' x x ! `GIMPLE_OMP_ORDERED' x x ! `GIMPLE_OMP_PARALLEL' x x ! `GIMPLE_OMP_RETURN' x x ! `GIMPLE_OMP_SECTION' x x ! `GIMPLE_OMP_SECTIONS' x x ! `GIMPLE_OMP_SECTIONS_SWITCH' x x ! `GIMPLE_OMP_SINGLE' x x ! `GIMPLE_PHI' x ! `GIMPLE_RESX' x ! `GIMPLE_RETURN' x x ! `GIMPLE_SWITCH' x x ! `GIMPLE_TRY' x  File: gccint.info, Node: GIMPLE Exception Handling, Next: Temporaries, Prev: GIMPLE instruction set, Up: GIMPLE *************** File: gccint.info, Node: GIMPLE Excepti *** 10778,10815 **** ======================= Other exception handling constructs are represented using ! 'GIMPLE_TRY_CATCH'. 'GIMPLE_TRY_CATCH' has two operands. The first operand is a sequence of statements to execute. If executing these statements does not throw an exception, then the second operand is ignored. Otherwise, if an exception is thrown, then the second operand ! of the 'GIMPLE_TRY_CATCH' is checked. The second operand may have the following forms: 1. A sequence of statements to execute. When an exception occurs, these statements are executed, and then the exception is rethrown. ! 2. A sequence of 'GIMPLE_CATCH' statements. Each 'GIMPLE_CATCH' has a ! list of applicable exception types and handler code. If the thrown ! exception matches one of the caught types, the associated handler ! code is executed. If the handler code falls off the bottom, ! execution continues after the original 'GIMPLE_TRY_CATCH'. ! 3. A 'GIMPLE_EH_FILTER' statement. This has a list of permitted ! exception types, and code to handle a match failure. If the thrown ! exception does not match one of the allowed types, the associated ! match failure code is executed. If the thrown exception does ! match, it continues unwinding the stack looking for the next handler. Currently throwing an exception is not directly represented in GIMPLE, since it is implemented by calling a function. At some point in the future we will want to add some way to express that the call will throw an exception of a known type. Just before running the optimizers, the compiler lowers the high-level ! EH constructs above into a set of 'goto's, magic labels, and EH regions. ! Continuing to unwind at the end of a cleanup is represented with a ! 'GIMPLE_RESX'.  File: gccint.info, Node: Temporaries, Next: Operands, Prev: GIMPLE Exception Handling, Up: GIMPLE --- 10914,10952 ---- ======================= Other exception handling constructs are represented using ! `GIMPLE_TRY_CATCH'. `GIMPLE_TRY_CATCH' has two operands. The first operand is a sequence of statements to execute. If executing these statements does not throw an exception, then the second operand is ignored. Otherwise, if an exception is thrown, then the second operand ! of the `GIMPLE_TRY_CATCH' is checked. The second operand may have the following forms: 1. A sequence of statements to execute. When an exception occurs, these statements are executed, and then the exception is rethrown. ! 2. A sequence of `GIMPLE_CATCH' statements. Each `GIMPLE_CATCH' has ! a list of applicable exception types and handler code. If the ! thrown exception matches one of the caught types, the associated ! handler code is executed. If the handler code falls off the ! bottom, execution continues after the original `GIMPLE_TRY_CATCH'. ! 3. A `GIMPLE_EH_FILTER' statement. This has a list of permitted ! exception types, and code to handle a match failure. If the ! thrown exception does not match one of the allowed types, the ! associated match failure code is executed. If the thrown exception ! does match, it continues unwinding the stack looking for the next handler. + Currently throwing an exception is not directly represented in GIMPLE, since it is implemented by calling a function. At some point in the future we will want to add some way to express that the call will throw an exception of a known type. Just before running the optimizers, the compiler lowers the high-level ! EH constructs above into a set of `goto's, magic labels, and EH ! regions. Continuing to unwind at the end of a cleanup is represented ! with a `GIMPLE_RESX'.  File: gccint.info, Node: Temporaries, Next: Operands, Prev: GIMPLE Exception Handling, Up: GIMPLE *************** File: gccint.info, Node: Temporaries, *** 10818,10836 **** ================ When gimplification encounters a subexpression that is too complex, it ! creates a new temporary variable to hold the value of the subexpression, ! and adds a new statement to initialize it before the current statement. ! These special temporaries are known as 'expression temporaries', and are ! allocated using 'get_formal_tmp_var'. The compiler tries to always ! evaluate identical expressions into the same temporary, to simplify ! elimination of redundant calculations. ! We can only use expression temporaries when we know that it will not be ! reevaluated before its value is used, and that it will not be otherwise ! modified(1). Other temporaries can be allocated using ! 'get_initialized_tmp_var' or 'create_tmp_var'. ! Currently, an expression like 'a = b + 5' is not reduced any further. We tried converting it to something like T1 = b + 5; a = T1; --- 10955,10973 ---- ================ When gimplification encounters a subexpression that is too complex, it ! creates a new temporary variable to hold the value of the ! subexpression, and adds a new statement to initialize it before the ! current statement. These special temporaries are known as `expression ! temporaries', and are allocated using `get_formal_tmp_var'. The ! compiler tries to always evaluate identical expressions into the same ! temporary, to simplify elimination of redundant calculations. ! We can only use expression temporaries when we know that it will not ! be reevaluated before its value is used, and that it will not be ! otherwise modified(1). Other temporaries can be allocated using ! `get_initialized_tmp_var' or `create_tmp_var'. ! Currently, an expression like `a = b + 5' is not reduced any further. We tried converting it to something like T1 = b + 5; a = T1; *************** value is explicitly loaded into a tempor *** 10840,10848 **** the value of an expression to a memory variable goes through a temporary. ! ---------- Footnotes ---------- ! (1) These restrictions are derived from those in Morgan 4.8.  File: gccint.info, Node: Operands, Next: Manipulating GIMPLE statements, Prev: Temporaries, Up: GIMPLE --- 10977,10985 ---- the value of an expression to a memory variable goes through a temporary. ! ---------- Footnotes ---------- ! (1) These restrictions are derived from those in Morgan 4.8.  File: gccint.info, Node: Operands, Next: Manipulating GIMPLE statements, Prev: Temporaries, Up: GIMPLE *************** File: gccint.info, Node: Operands, Nex *** 10852,10868 **** In general, expressions in GIMPLE consist of an operation and the appropriate number of simple operands; these operands must either be a ! GIMPLE rvalue ('is_gimple_val'), i.e. a constant or a register variable. ! More complex operands are factored out into temporaries, so that a = b + c + d becomes T1 = b + c; a = T1 + d; ! The same rule holds for arguments to a 'GIMPLE_CALL'. The target of an assignment is usually a variable, but can also be a ! 'MEM_REF' or a compound lvalue as described below. * Menu: --- 10989,11006 ---- In general, expressions in GIMPLE consist of an operation and the appropriate number of simple operands; these operands must either be a ! GIMPLE rvalue (`is_gimple_val'), i.e. a constant or a register ! variable. More complex operands are factored out into temporaries, so ! that a = b + c + d becomes T1 = b + c; a = T1 + d; ! The same rule holds for arguments to a `GIMPLE_CALL'. The target of an assignment is usually a variable, but can also be a ! `MEM_REF' or a compound lvalue as described below. * Menu: *************** File: gccint.info, Node: Compound Lvalu *** 10887,10893 **** ----------------------- Currently compound lvalues involving array and structure field ! references are not broken down; an expression like 'a.b[2] = 42' is not reduced any further (though complex array subscripts are). This restriction is a workaround for limitations in later optimizers; if we were to convert this to --- 11025,11031 ---- ----------------------- Currently compound lvalues involving array and structure field ! references are not broken down; an expression like `a.b[2] = 42' is not reduced any further (though complex array subscripts are). This restriction is a workaround for limitations in later optimizers; if we were to convert this to *************** were to convert this to *** 10895,10903 **** T1 = &a.b; T1[2] = 42; ! alias analysis would not remember that the reference to 'T1[2]' came by ! way of 'a.b', so it would think that the assignment could alias another ! member of 'a'; this broke 'struct-alias-1.c'. Future optimizer improvements may make this limitation unnecessary.  --- 11033,11041 ---- T1 = &a.b; T1[2] = 42; ! alias analysis would not remember that the reference to `T1[2]' came ! by way of `a.b', so it would think that the assignment could alias ! another member of `a'; this broke `struct-alias-1.c'. Future optimizer improvements may make this limitation unnecessary.  *************** File: gccint.info, Node: Conditional Ex *** 10906,10913 **** 11.5.3 Conditional Expressions ------------------------------ ! A C '?:' expression is converted into an 'if' statement with each branch ! assigning to the same temporary. So, a = b ? c : d; becomes --- 11044,11051 ---- 11.5.3 Conditional Expressions ------------------------------ ! A C `?:' expression is converted into an `if' statement with each ! branch assigning to the same temporary. So, a = b ? c : d; becomes *************** assigning to the same temporary. So, *** 10917,10928 **** T1 = d; a = T1; ! The GIMPLE level if-conversion pass re-introduces '?:' expression, if ! appropriate. It is used to vectorize loops with conditions using vector conditional operations. ! Note that in GIMPLE, 'if' statements are represented using ! 'GIMPLE_COND', as described below.  File: gccint.info, Node: Logical Operators, Prev: Conditional Expressions, Up: Operands --- 11055,11066 ---- T1 = d; a = T1; ! The GIMPLE level if-conversion pass re-introduces `?:' expression, if ! appropriate. It is used to vectorize loops with conditions using vector conditional operations. ! Note that in GIMPLE, `if' statements are represented using ! `GIMPLE_COND', as described below.  File: gccint.info, Node: Logical Operators, Prev: Conditional Expressions, Up: Operands *************** File: gccint.info, Node: Logical Operat *** 10930,10982 **** 11.5.4 Logical Operators ------------------------ ! Except when they appear in the condition operand of a 'GIMPLE_COND', ! logical 'and' and 'or' operators are simplified as follows: 'a = b && c' ! becomes T1 = (bool)b; if (T1 == true) T1 = (bool)c; a = T1; ! Note that 'T1' in this example cannot be an expression temporary, because it has two different assignments. 11.5.5 Manipulating operands ---------------------------- ! All gimple operands are of type 'tree'. But only certain types of trees ! are allowed to be used as operand tuples. Basic validation is ! controlled by the function 'get_gimple_rhs_class', which given a tree ! code, returns an 'enum' with the following values of type 'enum gimple_rhs_class' ! * 'GIMPLE_INVALID_RHS' The tree cannot be used as a GIMPLE operand. ! * 'GIMPLE_TERNARY_RHS' The tree is a valid GIMPLE ternary operation. ! * 'GIMPLE_BINARY_RHS' The tree is a valid GIMPLE binary operation. ! * 'GIMPLE_UNARY_RHS' The tree is a valid GIMPLE unary operation. ! * 'GIMPLE_SINGLE_RHS' The tree is a single object, that cannot be ! split into simpler operands (for instance, 'SSA_NAME', 'VAR_DECL', ! 'COMPONENT_REF', etc). ! This operand class also acts as an escape hatch for tree nodes that ! may be flattened out into the operand vector, but would need more ! than two slots on the RHS. For instance, a 'COND_EXPR' expression ! of the form '(a op b) ? x : y' could be flattened out on the ! operand vector using 4 slots, but it would also require additional ! processing to distinguish 'c = a op b' from 'c = a op b ? x : y'. ! Something similar occurs with 'ASSERT_EXPR'. In time, these ! special case tree expressions should be flattened into the operand ! vector. ! For tree nodes in the categories 'GIMPLE_TERNARY_RHS', ! 'GIMPLE_BINARY_RHS' and 'GIMPLE_UNARY_RHS', they cannot be stored inside ! tuples directly. They first need to be flattened and separated into ! individual components. For instance, given the GENERIC expression a = b + c --- 11068,11120 ---- 11.5.4 Logical Operators ------------------------ ! Except when they appear in the condition operand of a `GIMPLE_COND', ! logical `and' and `or' operators are simplified as follows: `a = b && ! c' becomes T1 = (bool)b; if (T1 == true) T1 = (bool)c; a = T1; ! Note that `T1' in this example cannot be an expression temporary, because it has two different assignments. 11.5.5 Manipulating operands ---------------------------- ! All gimple operands are of type `tree'. But only certain types of ! trees are allowed to be used as operand tuples. Basic validation is ! controlled by the function `get_gimple_rhs_class', which given a tree ! code, returns an `enum' with the following values of type `enum gimple_rhs_class' ! * `GIMPLE_INVALID_RHS' The tree cannot be used as a GIMPLE operand. ! * `GIMPLE_TERNARY_RHS' The tree is a valid GIMPLE ternary operation. ! * `GIMPLE_BINARY_RHS' The tree is a valid GIMPLE binary operation. ! * `GIMPLE_UNARY_RHS' The tree is a valid GIMPLE unary operation. ! * `GIMPLE_SINGLE_RHS' The tree is a single object, that cannot be ! split into simpler operands (for instance, `SSA_NAME', `VAR_DECL', ! `COMPONENT_REF', etc). ! This operand class also acts as an escape hatch for tree nodes ! that may be flattened out into the operand vector, but would need ! more than two slots on the RHS. For instance, a `COND_EXPR' ! expression of the form `(a op b) ? x : y' could be flattened out ! on the operand vector using 4 slots, but it would also require ! additional processing to distinguish `c = a op b' from `c = a op b ! ? x : y'. Something similar occurs with `ASSERT_EXPR'. In time, ! these special case tree expressions should be flattened into the ! operand vector. ! For tree nodes in the categories `GIMPLE_TERNARY_RHS', ! `GIMPLE_BINARY_RHS' and `GIMPLE_UNARY_RHS', they cannot be stored ! inside tuples directly. They first need to be flattened and separated ! into individual components. For instance, given the GENERIC expression a = b + c *************** individual components. For instance, gi *** 10984,11025 **** MODIFY_EXPR , PLUS_EXPR , VAR_DECL >> ! In this case, the GIMPLE form for this statement is logically identical ! to its GENERIC form but in GIMPLE, the 'PLUS_EXPR' on the RHS of the ! assignment is not represented as a tree, instead the two operands are ! taken out of the 'PLUS_EXPR' sub-tree and flattened into the GIMPLE ! tuple as follows: GIMPLE_ASSIGN , VAR_DECL , VAR_DECL > 11.5.6 Operand vector allocation -------------------------------- ! The operand vector is stored at the bottom of the three tuple structures ! that accept operands. This means, that depending on the code of a given ! statement, its operand vector will be at different offsets from the base ! of the structure. To access tuple operands use the following accessors -- GIMPLE function: unsigned gimple_num_ops (gimple g) Returns the number of operands in statement G. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Returns operand 'I' from statement 'G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Returns a pointer into the operand vector for statement 'G'. This ! is computed using an internal table called 'gimple_ops_offset_'[]. ! This table is indexed by the gimple code of 'G'. ! When the compiler is built, this table is filled-in using the sizes ! of the structures used by each statement code defined in gimple.def. Since the operand vector is at the bottom of the ! structure, for a gimple code 'C' the offset is computed as sizeof ! (struct-of 'C') - sizeof (tree). This mechanism adds one memory indirection to every access when ! using 'gimple_op'(), if this becomes a bottleneck, a pass can ! choose to memoize the result from 'gimple_ops'() and use that to access the operands. 11.5.7 Operand validation --- 11122,11164 ---- MODIFY_EXPR , PLUS_EXPR , VAR_DECL >> ! In this case, the GIMPLE form for this statement is logically ! identical to its GENERIC form but in GIMPLE, the `PLUS_EXPR' on the RHS ! of the assignment is not represented as a tree, instead the two ! operands are taken out of the `PLUS_EXPR' sub-tree and flattened into ! the GIMPLE tuple as follows: GIMPLE_ASSIGN , VAR_DECL , VAR_DECL > 11.5.6 Operand vector allocation -------------------------------- ! The operand vector is stored at the bottom of the three tuple ! structures that accept operands. This means, that depending on the code ! of a given statement, its operand vector will be at different offsets ! from the base of the structure. To access tuple operands use the ! following accessors -- GIMPLE function: unsigned gimple_num_ops (gimple g) Returns the number of operands in statement G. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Returns operand `I' from statement `G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Returns a pointer into the operand vector for statement `G'. This ! is computed using an internal table called `gimple_ops_offset_'[]. ! This table is indexed by the gimple code of `G'. ! When the compiler is built, this table is filled-in using the ! sizes of the structures used by each statement code defined in gimple.def. Since the operand vector is at the bottom of the ! structure, for a gimple code `C' the offset is computed as sizeof ! (struct-of `C') - sizeof (tree). This mechanism adds one memory indirection to every access when ! using `gimple_op'(), if this becomes a bottleneck, a pass can ! choose to memoize the result from `gimple_ops'() and use that to access the operands. 11.5.7 Operand validation *************** of the structure. To access tuple opera *** 11027,11093 **** When adding a new operand to a gimple statement, the operand will be validated according to what each tuple accepts in its operand vector. ! These predicates are called by the 'gimple_NAME_set_...()'. Each tuple will use one of the following predicates (Note, this list is not exhaustive): -- GIMPLE function: bool is_gimple_val (tree t) Returns true if t is a "GIMPLE value", which are all the non-addressable stack variables (variables for which ! 'is_gimple_reg' returns true) and constants (expressions for which ! 'is_gimple_min_invariant' returns true). -- GIMPLE function: bool is_gimple_addressable (tree t) ! Returns true if t is a symbol or memory reference whose address can ! be taken. -- GIMPLE function: bool is_gimple_asm_val (tree t) ! Similar to 'is_gimple_val' but it also accepts hard registers. -- GIMPLE function: bool is_gimple_call_addr (tree t) Return true if t is a valid expression to use as the function ! called by a 'GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_mem_ref_addr (tree t) ! Return true if t is a valid expression to use as first operand of a ! 'MEM_REF' expression. -- GIMPLE function: bool is_gimple_constant (tree t) Return true if t is a valid gimple constant. -- GIMPLE function: bool is_gimple_min_invariant (tree t) Return true if t is a valid minimal invariant. This is different ! from constants, in that the specific value of t may not be known at ! compile time, but it is known that it doesn't change (e.g., the address of a function local variable). -- GIMPLE function: bool is_gimple_ip_invariant (tree t) Return true if t is an interprocedural invariant. This means that ! t is a valid invariant in all functions (e.g. it can be an address of a global variable but not of a local one). -- GIMPLE function: bool is_gimple_ip_invariant_address (tree t) ! Return true if t is an 'ADDR_EXPR' that does not change once the program is running (and which is valid in all functions). 11.5.8 Statement validation --------------------------- -- GIMPLE function: bool is_gimple_assign (gimple g) ! Return true if the code of g is 'GIMPLE_ASSIGN'. -- GIMPLE function: bool is_gimple_call (gimple g) ! Return true if the code of g is 'GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_debug (gimple g) ! Return true if the code of g is 'GIMPLE_DEBUG'. -- GIMPLE function: bool gimple_assign_cast_p (gimple g) ! Return true if g is a 'GIMPLE_ASSIGN' that performs a type cast operation. -- GIMPLE function: bool gimple_debug_bind_p (gimple g) ! Return true if g is a 'GIMPLE_DEBUG' that binds the value of an expression to a variable. -- GIMPLE function: bool is_gimple_omp (gimple g) --- 11166,11232 ---- When adding a new operand to a gimple statement, the operand will be validated according to what each tuple accepts in its operand vector. ! These predicates are called by the `gimple_NAME_set_...()'. Each tuple will use one of the following predicates (Note, this list is not exhaustive): -- GIMPLE function: bool is_gimple_val (tree t) Returns true if t is a "GIMPLE value", which are all the non-addressable stack variables (variables for which ! `is_gimple_reg' returns true) and constants (expressions for which ! `is_gimple_min_invariant' returns true). -- GIMPLE function: bool is_gimple_addressable (tree t) ! Returns true if t is a symbol or memory reference whose address ! can be taken. -- GIMPLE function: bool is_gimple_asm_val (tree t) ! Similar to `is_gimple_val' but it also accepts hard registers. -- GIMPLE function: bool is_gimple_call_addr (tree t) Return true if t is a valid expression to use as the function ! called by a `GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_mem_ref_addr (tree t) ! Return true if t is a valid expression to use as first operand of ! a `MEM_REF' expression. -- GIMPLE function: bool is_gimple_constant (tree t) Return true if t is a valid gimple constant. -- GIMPLE function: bool is_gimple_min_invariant (tree t) Return true if t is a valid minimal invariant. This is different ! from constants, in that the specific value of t may not be known ! at compile time, but it is known that it doesn't change (e.g., the address of a function local variable). -- GIMPLE function: bool is_gimple_ip_invariant (tree t) Return true if t is an interprocedural invariant. This means that ! t is a valid invariant in all functions (e.g. it can be an address of a global variable but not of a local one). -- GIMPLE function: bool is_gimple_ip_invariant_address (tree t) ! Return true if t is an `ADDR_EXPR' that does not change once the program is running (and which is valid in all functions). 11.5.8 Statement validation --------------------------- -- GIMPLE function: bool is_gimple_assign (gimple g) ! Return true if the code of g is `GIMPLE_ASSIGN'. -- GIMPLE function: bool is_gimple_call (gimple g) ! Return true if the code of g is `GIMPLE_CALL'. -- GIMPLE function: bool is_gimple_debug (gimple g) ! Return true if the code of g is `GIMPLE_DEBUG'. -- GIMPLE function: bool gimple_assign_cast_p (gimple g) ! Return true if g is a `GIMPLE_ASSIGN' that performs a type cast operation. -- GIMPLE function: bool gimple_debug_bind_p (gimple g) ! Return true if g is a `GIMPLE_DEBUG' that binds the value of an expression to a variable. -- GIMPLE function: bool is_gimple_omp (gimple g) *************** File: gccint.info, Node: Manipulating G *** 11099,11106 **** 11.6 Manipulating GIMPLE statements =================================== ! This section documents all the functions available to handle each of the ! GIMPLE instructions. 11.6.1 Common accessors ----------------------- --- 11238,11245 ---- 11.6 Manipulating GIMPLE statements =================================== ! This section documents all the functions available to handle each of ! the GIMPLE instructions. 11.6.1 Common accessors ----------------------- *************** GIMPLE instructions. *** 11108,11246 **** The following are common accessors for gimple statements. -- GIMPLE function: enum gimple_code gimple_code (gimple g) ! Return the code for statement 'G'. -- GIMPLE function: basic_block gimple_bb (gimple g) ! Return the basic block to which statement 'G' belongs to. -- GIMPLE function: tree gimple_block (gimple g) ! Return the lexical scope block holding statement 'G'. -- GIMPLE function: tree gimple_expr_type (gimple stmt) ! Return the type of the main expression computed by 'STMT'. Return ! 'void_type_node' if 'STMT' computes nothing. This will only return ! something meaningful for 'GIMPLE_ASSIGN', 'GIMPLE_COND' and ! 'GIMPLE_CALL'. For all other tuple codes, it will return ! 'void_type_node'. -- GIMPLE function: enum tree_code gimple_expr_code (gimple stmt) ! Return the tree code for the expression computed by 'STMT'. This ! is only meaningful for 'GIMPLE_CALL', 'GIMPLE_ASSIGN' and ! 'GIMPLE_COND'. If 'STMT' is 'GIMPLE_CALL', it will return ! 'CALL_EXPR'. For 'GIMPLE_COND', it returns the code of the ! comparison predicate. For 'GIMPLE_ASSIGN' it returns the code of ! the operation performed by the 'RHS' of the assignment. -- GIMPLE function: void gimple_set_block (gimple g, tree block) ! Set the lexical scope block of 'G' to 'BLOCK'. -- GIMPLE function: location_t gimple_locus (gimple g) ! Return locus information for statement 'G'. -- GIMPLE function: void gimple_set_locus (gimple g, location_t locus) ! Set locus information for statement 'G'. -- GIMPLE function: bool gimple_locus_empty_p (gimple g) ! Return true if 'G' does not have locus information. -- GIMPLE function: bool gimple_no_warning_p (gimple stmt) ! Return true if no warnings should be emitted for statement 'STMT'. -- GIMPLE function: void gimple_set_visited (gimple stmt, bool visited_p) ! Set the visited status on statement 'STMT' to 'VISITED_P'. -- GIMPLE function: bool gimple_visited_p (gimple stmt) ! Return the visited status on statement 'STMT'. -- GIMPLE function: void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p) ! Set pass local flag 'PLF' on statement 'STMT' to 'VAL_P'. ! -- GIMPLE function: unsigned int gimple_plf (gimple stmt, enum plf_mask ! plf) ! Return the value of pass local flag 'PLF' on statement 'STMT'. -- GIMPLE function: bool gimple_has_ops (gimple g) ! Return true if statement 'G' has register or memory operands. -- GIMPLE function: bool gimple_has_mem_ops (gimple g) ! Return true if statement 'G' has memory operands. -- GIMPLE function: unsigned gimple_num_ops (gimple g) ! Return the number of operands for statement 'G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Return the array of operands for statement 'G'. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Return operand 'I' for statement 'G'. -- GIMPLE function: tree * gimple_op_ptr (gimple g, unsigned i) ! Return a pointer to operand 'I' for statement 'G'. -- GIMPLE function: void gimple_set_op (gimple g, unsigned i, tree op) ! Set operand 'I' of statement 'G' to 'OP'. -- GIMPLE function: bitmap gimple_addresses_taken (gimple stmt) Return the set of symbols that have had their address taken by ! 'STMT'. -- GIMPLE function: struct def_optype_d * gimple_def_ops (gimple g) ! Return the set of 'DEF' operands for statement 'G'. -- GIMPLE function: void gimple_set_def_ops (gimple g, struct def_optype_d *def) ! Set 'DEF' to be the set of 'DEF' operands for statement 'G'. -- GIMPLE function: struct use_optype_d * gimple_use_ops (gimple g) ! Return the set of 'USE' operands for statement 'G'. -- GIMPLE function: void gimple_set_use_ops (gimple g, struct use_optype_d *use) ! Set 'USE' to be the set of 'USE' operands for statement 'G'. -- GIMPLE function: struct voptype_d * gimple_vuse_ops (gimple g) ! Return the set of 'VUSE' operands for statement 'G'. -- GIMPLE function: void gimple_set_vuse_ops (gimple g, struct voptype_d *ops) ! Set 'OPS' to be the set of 'VUSE' operands for statement 'G'. -- GIMPLE function: struct voptype_d * gimple_vdef_ops (gimple g) ! Return the set of 'VDEF' operands for statement 'G'. -- GIMPLE function: void gimple_set_vdef_ops (gimple g, struct voptype_d *ops) ! Set 'OPS' to be the set of 'VDEF' operands for statement 'G'. -- GIMPLE function: bitmap gimple_loaded_syms (gimple g) ! Return the set of symbols loaded by statement 'G'. Each element of ! the set is the 'DECL_UID' of the corresponding symbol. -- GIMPLE function: bitmap gimple_stored_syms (gimple g) ! Return the set of symbols stored by statement 'G'. Each element of ! the set is the 'DECL_UID' of the corresponding symbol. -- GIMPLE function: bool gimple_modified_p (gimple g) ! Return true if statement 'G' has operands and the modified field has been set. -- GIMPLE function: bool gimple_has_volatile_ops (gimple stmt) ! Return true if statement 'STMT' contains volatile operands. ! -- GIMPLE function: void gimple_set_has_volatile_ops (gimple stmt, bool ! volatilep) ! Return true if statement 'STMT' contains volatile operands. -- GIMPLE function: void update_stmt (gimple s) ! Mark statement 'S' as modified, and update it. -- GIMPLE function: void update_stmt_if_modified (gimple s) ! Update statement 'S' if it has been marked modified. -- GIMPLE function: gimple gimple_copy (gimple stmt) ! Return a deep copy of statement 'STMT'.  File: gccint.info, Node: Tuple specific accessors, Next: GIMPLE sequences, Prev: Manipulating GIMPLE statements, Up: GIMPLE --- 11247,11385 ---- The following are common accessors for gimple statements. -- GIMPLE function: enum gimple_code gimple_code (gimple g) ! Return the code for statement `G'. -- GIMPLE function: basic_block gimple_bb (gimple g) ! Return the basic block to which statement `G' belongs to. -- GIMPLE function: tree gimple_block (gimple g) ! Return the lexical scope block holding statement `G'. -- GIMPLE function: tree gimple_expr_type (gimple stmt) ! Return the type of the main expression computed by `STMT'. Return ! `void_type_node' if `STMT' computes nothing. This will only return ! something meaningful for `GIMPLE_ASSIGN', `GIMPLE_COND' and ! `GIMPLE_CALL'. For all other tuple codes, it will return ! `void_type_node'. -- GIMPLE function: enum tree_code gimple_expr_code (gimple stmt) ! Return the tree code for the expression computed by `STMT'. This ! is only meaningful for `GIMPLE_CALL', `GIMPLE_ASSIGN' and ! `GIMPLE_COND'. If `STMT' is `GIMPLE_CALL', it will return ! `CALL_EXPR'. For `GIMPLE_COND', it returns the code of the ! comparison predicate. For `GIMPLE_ASSIGN' it returns the code of ! the operation performed by the `RHS' of the assignment. -- GIMPLE function: void gimple_set_block (gimple g, tree block) ! Set the lexical scope block of `G' to `BLOCK'. -- GIMPLE function: location_t gimple_locus (gimple g) ! Return locus information for statement `G'. -- GIMPLE function: void gimple_set_locus (gimple g, location_t locus) ! Set locus information for statement `G'. -- GIMPLE function: bool gimple_locus_empty_p (gimple g) ! Return true if `G' does not have locus information. -- GIMPLE function: bool gimple_no_warning_p (gimple stmt) ! Return true if no warnings should be emitted for statement `STMT'. -- GIMPLE function: void gimple_set_visited (gimple stmt, bool visited_p) ! Set the visited status on statement `STMT' to `VISITED_P'. -- GIMPLE function: bool gimple_visited_p (gimple stmt) ! Return the visited status on statement `STMT'. -- GIMPLE function: void gimple_set_plf (gimple stmt, enum plf_mask plf, bool val_p) ! Set pass local flag `PLF' on statement `STMT' to `VAL_P'. ! -- GIMPLE function: unsigned int gimple_plf (gimple stmt, enum ! plf_mask plf) ! Return the value of pass local flag `PLF' on statement `STMT'. -- GIMPLE function: bool gimple_has_ops (gimple g) ! Return true if statement `G' has register or memory operands. -- GIMPLE function: bool gimple_has_mem_ops (gimple g) ! Return true if statement `G' has memory operands. -- GIMPLE function: unsigned gimple_num_ops (gimple g) ! Return the number of operands for statement `G'. -- GIMPLE function: tree * gimple_ops (gimple g) ! Return the array of operands for statement `G'. -- GIMPLE function: tree gimple_op (gimple g, unsigned i) ! Return operand `I' for statement `G'. -- GIMPLE function: tree * gimple_op_ptr (gimple g, unsigned i) ! Return a pointer to operand `I' for statement `G'. -- GIMPLE function: void gimple_set_op (gimple g, unsigned i, tree op) ! Set operand `I' of statement `G' to `OP'. -- GIMPLE function: bitmap gimple_addresses_taken (gimple stmt) Return the set of symbols that have had their address taken by ! `STMT'. -- GIMPLE function: struct def_optype_d * gimple_def_ops (gimple g) ! Return the set of `DEF' operands for statement `G'. -- GIMPLE function: void gimple_set_def_ops (gimple g, struct def_optype_d *def) ! Set `DEF' to be the set of `DEF' operands for statement `G'. -- GIMPLE function: struct use_optype_d * gimple_use_ops (gimple g) ! Return the set of `USE' operands for statement `G'. -- GIMPLE function: void gimple_set_use_ops (gimple g, struct use_optype_d *use) ! Set `USE' to be the set of `USE' operands for statement `G'. -- GIMPLE function: struct voptype_d * gimple_vuse_ops (gimple g) ! Return the set of `VUSE' operands for statement `G'. -- GIMPLE function: void gimple_set_vuse_ops (gimple g, struct voptype_d *ops) ! Set `OPS' to be the set of `VUSE' operands for statement `G'. -- GIMPLE function: struct voptype_d * gimple_vdef_ops (gimple g) ! Return the set of `VDEF' operands for statement `G'. -- GIMPLE function: void gimple_set_vdef_ops (gimple g, struct voptype_d *ops) ! Set `OPS' to be the set of `VDEF' operands for statement `G'. -- GIMPLE function: bitmap gimple_loaded_syms (gimple g) ! Return the set of symbols loaded by statement `G'. Each element of ! the set is the `DECL_UID' of the corresponding symbol. -- GIMPLE function: bitmap gimple_stored_syms (gimple g) ! Return the set of symbols stored by statement `G'. Each element of ! the set is the `DECL_UID' of the corresponding symbol. -- GIMPLE function: bool gimple_modified_p (gimple g) ! Return true if statement `G' has operands and the modified field has been set. -- GIMPLE function: bool gimple_has_volatile_ops (gimple stmt) ! Return true if statement `STMT' contains volatile operands. ! -- GIMPLE function: void gimple_set_has_volatile_ops (gimple stmt, ! bool volatilep) ! Return true if statement `STMT' contains volatile operands. -- GIMPLE function: void update_stmt (gimple s) ! Mark statement `S' as modified, and update it. -- GIMPLE function: void update_stmt_if_modified (gimple s) ! Update statement `S' if it has been marked modified. -- GIMPLE function: gimple gimple_copy (gimple stmt) ! Return a deep copy of statement `STMT'.  File: gccint.info, Node: Tuple specific accessors, Next: GIMPLE sequences, Prev: Manipulating GIMPLE statements, Up: GIMPLE *************** File: gccint.info, Node: Tuple specific *** 11250,11298 **** * Menu: ! * 'GIMPLE_ASM':: ! * 'GIMPLE_ASSIGN':: ! * 'GIMPLE_BIND':: ! * 'GIMPLE_CALL':: ! * 'GIMPLE_CATCH':: ! * 'GIMPLE_COND':: ! * 'GIMPLE_DEBUG':: ! * 'GIMPLE_EH_FILTER':: ! * 'GIMPLE_LABEL':: ! * 'GIMPLE_NOP':: ! * 'GIMPLE_OMP_ATOMIC_LOAD':: ! * 'GIMPLE_OMP_ATOMIC_STORE':: ! * 'GIMPLE_OMP_CONTINUE':: ! * 'GIMPLE_OMP_CRITICAL':: ! * 'GIMPLE_OMP_FOR':: ! * 'GIMPLE_OMP_MASTER':: ! * 'GIMPLE_OMP_ORDERED':: ! * 'GIMPLE_OMP_PARALLEL':: ! * 'GIMPLE_OMP_RETURN':: ! * 'GIMPLE_OMP_SECTION':: ! * 'GIMPLE_OMP_SECTIONS':: ! * 'GIMPLE_OMP_SINGLE':: ! * 'GIMPLE_PHI':: ! * 'GIMPLE_RESX':: ! * 'GIMPLE_RETURN':: ! * 'GIMPLE_SWITCH':: ! * 'GIMPLE_TRY':: ! * 'GIMPLE_WITH_CLEANUP_EXPR'::  ! File: gccint.info, Node: 'GIMPLE_ASM', Next: 'GIMPLE_ASSIGN', Up: Tuple specific accessors ! 11.7.1 'GIMPLE_ASM' ------------------- -- GIMPLE function: gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...) ! Build a 'GIMPLE_ASM' statement. This statement is used for ! building in-line assembly constructs. 'STRING' is the assembly ! code. 'NINPUT' is the number of register inputs. 'NOUTPUT' is the ! number of register outputs. 'NCLOBBERS' is the number of clobbered ! registers. The rest of the arguments trees for each input, output, ! and clobbered registers. -- GIMPLE function: gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *) --- 11389,11437 ---- * Menu: ! * `GIMPLE_ASM':: ! * `GIMPLE_ASSIGN':: ! * `GIMPLE_BIND':: ! * `GIMPLE_CALL':: ! * `GIMPLE_CATCH':: ! * `GIMPLE_COND':: ! * `GIMPLE_DEBUG':: ! * `GIMPLE_EH_FILTER':: ! * `GIMPLE_LABEL':: ! * `GIMPLE_NOP':: ! * `GIMPLE_OMP_ATOMIC_LOAD':: ! * `GIMPLE_OMP_ATOMIC_STORE':: ! * `GIMPLE_OMP_CONTINUE':: ! * `GIMPLE_OMP_CRITICAL':: ! * `GIMPLE_OMP_FOR':: ! * `GIMPLE_OMP_MASTER':: ! * `GIMPLE_OMP_ORDERED':: ! * `GIMPLE_OMP_PARALLEL':: ! * `GIMPLE_OMP_RETURN':: ! * `GIMPLE_OMP_SECTION':: ! * `GIMPLE_OMP_SECTIONS':: ! * `GIMPLE_OMP_SINGLE':: ! * `GIMPLE_PHI':: ! * `GIMPLE_RESX':: ! * `GIMPLE_RETURN':: ! * `GIMPLE_SWITCH':: ! * `GIMPLE_TRY':: ! * `GIMPLE_WITH_CLEANUP_EXPR'::  ! File: gccint.info, Node: `GIMPLE_ASM', Next: `GIMPLE_ASSIGN', Up: Tuple specific accessors ! 11.7.1 `GIMPLE_ASM' ------------------- -- GIMPLE function: gimple gimple_build_asm (const char *string, ninputs, noutputs, nclobbers, ...) ! Build a `GIMPLE_ASM' statement. This statement is used for ! building in-line assembly constructs. `STRING' is the assembly ! code. `NINPUT' is the number of register inputs. `NOUTPUT' is the ! number of register outputs. `NCLOBBERS' is the number of clobbered ! registers. The rest of the arguments trees for each input, ! output, and clobbered registers. -- GIMPLE function: gimple gimple_build_asm_vec (const char *, VEC(tree,gc) *, VEC(tree,gc) *, VEC(tree,gc) *) *************** File: gccint.info, Node: 'GIMPLE_ASM', *** 11300,11872 **** VECs. -- GIMPLE function: unsigned gimple_asm_ninputs (gimple g) ! Return the number of input operands for 'GIMPLE_ASM' 'G'. -- GIMPLE function: unsigned gimple_asm_noutputs (gimple g) ! Return the number of output operands for 'GIMPLE_ASM' 'G'. -- GIMPLE function: unsigned gimple_asm_nclobbers (gimple g) ! Return the number of clobber operands for 'GIMPLE_ASM' 'G'. -- GIMPLE function: tree gimple_asm_input_op (gimple g, unsigned index) ! Return input operand 'INDEX' of 'GIMPLE_ASM' 'G'. -- GIMPLE function: void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op) ! Set 'IN_OP' to be input operand 'INDEX' in 'GIMPLE_ASM' 'G'. -- GIMPLE function: tree gimple_asm_output_op (gimple g, unsigned index) ! Return output operand 'INDEX' of 'GIMPLE_ASM' 'G'. -- GIMPLE function: void gimple_asm_set_output_op (gimple g, unsigned index, tree out_op) ! Set 'OUT_OP' to be output operand 'INDEX' in 'GIMPLE_ASM' 'G'. -- GIMPLE function: tree gimple_asm_clobber_op (gimple g, unsigned index) ! Return clobber operand 'INDEX' of 'GIMPLE_ASM' 'G'. -- GIMPLE function: void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op) ! Set 'CLOBBER_OP' to be clobber operand 'INDEX' in 'GIMPLE_ASM' 'G'. -- GIMPLE function: const char * gimple_asm_string (gimple g) Return the string representing the assembly instruction in ! 'GIMPLE_ASM' 'G'. -- GIMPLE function: bool gimple_asm_volatile_p (gimple g) ! Return true if 'G' is an asm statement marked volatile. -- GIMPLE function: void gimple_asm_set_volatile (gimple g) ! Mark asm statement 'G' as volatile.  ! File: gccint.info, Node: 'GIMPLE_ASSIGN', Next: 'GIMPLE_BIND', Prev: 'GIMPLE_ASM', Up: Tuple specific accessors ! 11.7.2 'GIMPLE_ASSIGN' ---------------------- -- GIMPLE function: gimple gimple_build_assign (tree lhs, tree rhs) ! Build a 'GIMPLE_ASSIGN' statement. The left-hand side is an lvalue ! passed in lhs. The right-hand side can be either a unary or binary ! tree expression. The expression tree rhs will be flattened and its ! operands assigned to the corresponding operand slots in the new ! statement. This function is useful when you already have a tree ! expression that you want to convert into a tuple. However, try to ! avoid building expression trees for the sole purpose of calling ! this function. If you already have the operands in separate trees, ! it is better to use 'gimple_build_assign_with_ops'. -- GIMPLE function: gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p) ! Build a new 'GIMPLE_ASSIGN' tuple and append it to the end of ! '*SEQ_P'. ! 'DST'/'SRC' are the destination and source respectively. You can pass ! ungimplified trees in 'DST' or 'SRC', in which case they will be converted to a gimple operand if necessary. ! This function returns the newly created 'GIMPLE_ASSIGN' tuple. ! -- GIMPLE function: gimple gimple_build_assign_with_ops (enum tree_code ! subcode, tree lhs, tree op1, tree op2) ! This function is similar to 'gimple_build_assign', but is used to ! build a 'GIMPLE_ASSIGN' statement when the operands of the right-hand side of the assignment are already split into different operands. The left-hand side is an lvalue passed in lhs. Subcode is the ! 'tree_code' for the right-hand side of the assignment. Op1 and op2 ! are the operands. If op2 is null, subcode must be a 'tree_code' for a unary expression. -- GIMPLE function: enum tree_code gimple_assign_rhs_code (gimple g) ! Return the code of the expression computed on the 'RHS' of ! assignment statement 'G'. -- GIMPLE function: enum gimple_rhs_class gimple_assign_rhs_class (gimple g) ! Return the gimple rhs class of the code for the expression computed ! on the rhs of assignment statement 'G'. This will never return ! 'GIMPLE_INVALID_RHS'. -- GIMPLE function: tree gimple_assign_lhs (gimple g) ! Return the 'LHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_lhs_ptr (gimple g) ! Return a pointer to the 'LHS' of assignment statement 'G'. -- GIMPLE function: tree gimple_assign_rhs1 (gimple g) ! Return the first operand on the 'RHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_rhs1_ptr (gimple g) ! Return the address of the first operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: tree gimple_assign_rhs2 (gimple g) ! Return the second operand on the 'RHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_rhs2_ptr (gimple g) ! Return the address of the second operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: tree gimple_assign_rhs3 (gimple g) ! Return the third operand on the 'RHS' of assignment statement 'G'. -- GIMPLE function: tree * gimple_assign_rhs3_ptr (gimple g) ! Return the address of the third operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: void gimple_assign_set_lhs (gimple g, tree lhs) ! Set 'LHS' to be the 'LHS' operand of assignment statement 'G'. -- GIMPLE function: void gimple_assign_set_rhs1 (gimple g, tree rhs) ! Set 'RHS' to be the first operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: void gimple_assign_set_rhs2 (gimple g, tree rhs) ! Set 'RHS' to be the second operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: void gimple_assign_set_rhs3 (gimple g, tree rhs) ! Set 'RHS' to be the third operand on the 'RHS' of assignment ! statement 'G'. -- GIMPLE function: bool gimple_assign_cast_p (gimple s) ! Return true if 'S' is a type-cast assignment.  ! File: gccint.info, Node: 'GIMPLE_BIND', Next: 'GIMPLE_CALL', Prev: 'GIMPLE_ASSIGN', Up: Tuple specific accessors ! 11.7.3 'GIMPLE_BIND' -------------------- -- GIMPLE function: gimple gimple_build_bind (tree vars, gimple_seq body) ! Build a 'GIMPLE_BIND' statement with a list of variables in 'VARS' ! and a body of statements in sequence 'BODY'. -- GIMPLE function: tree gimple_bind_vars (gimple g) ! Return the variables declared in the 'GIMPLE_BIND' statement 'G'. -- GIMPLE function: void gimple_bind_set_vars (gimple g, tree vars) ! Set 'VARS' to be the set of variables declared in the 'GIMPLE_BIND' ! statement 'G'. -- GIMPLE function: void gimple_bind_append_vars (gimple g, tree vars) ! Append 'VARS' to the set of variables declared in the 'GIMPLE_BIND' ! statement 'G'. -- GIMPLE function: gimple_seq gimple_bind_body (gimple g) ! Return the GIMPLE sequence contained in the 'GIMPLE_BIND' statement ! 'G'. -- GIMPLE function: void gimple_bind_set_body (gimple g, gimple_seq seq) ! Set 'SEQ' to be sequence contained in the 'GIMPLE_BIND' statement ! 'G'. -- GIMPLE function: void gimple_bind_add_stmt (gimple gs, gimple stmt) ! Append a statement to the end of a 'GIMPLE_BIND''s body. -- GIMPLE function: void gimple_bind_add_seq (gimple gs, gimple_seq seq) ! Append a sequence of statements to the end of a 'GIMPLE_BIND''s body. -- GIMPLE function: tree gimple_bind_block (gimple g) ! Return the 'TREE_BLOCK' node associated with 'GIMPLE_BIND' ! statement 'G'. This is analogous to the 'BIND_EXPR_BLOCK' field in trees. -- GIMPLE function: void gimple_bind_set_block (gimple g, tree block) ! Set 'BLOCK' to be the 'TREE_BLOCK' node associated with ! 'GIMPLE_BIND' statement 'G'.  ! File: gccint.info, Node: 'GIMPLE_CALL', Next: 'GIMPLE_CATCH', Prev: 'GIMPLE_BIND', Up: Tuple specific accessors ! 11.7.4 'GIMPLE_CALL' -------------------- -- GIMPLE function: gimple gimple_build_call (tree fn, unsigned nargs, ...) ! Build a 'GIMPLE_CALL' statement to function 'FN'. The argument ! 'FN' must be either a 'FUNCTION_DECL' or a gimple call address as ! determined by 'is_gimple_call_addr'. 'NARGS' are the number of ! arguments. The rest of the arguments follow the argument 'NARGS', and must be trees that are valid as rvalues in gimple (i.e., each ! operand is validated with 'is_gimple_operand'). -- GIMPLE function: gimple gimple_build_call_from_tree (tree call_expr) ! Build a 'GIMPLE_CALL' from a 'CALL_EXPR' node. The arguments and the function are taken from the expression directly. This routine ! assumes that 'call_expr' is already in GIMPLE form. That is, its operands are GIMPLE values and the function call needs no further ! simplification. All the call flags in 'call_expr' are copied over ! to the new 'GIMPLE_CALL'. ! -- GIMPLE function: gimple gimple_build_call_vec (tree fn, 'VEC'(tree, heap) *args) ! Identical to 'gimple_build_call' but the arguments are stored in a ! 'VEC'(). -- GIMPLE function: tree gimple_call_lhs (gimple g) ! Return the 'LHS' of call statement 'G'. -- GIMPLE function: tree * gimple_call_lhs_ptr (gimple g) ! Return a pointer to the 'LHS' of call statement 'G'. -- GIMPLE function: void gimple_call_set_lhs (gimple g, tree lhs) ! Set 'LHS' to be the 'LHS' operand of call statement 'G'. -- GIMPLE function: tree gimple_call_fn (gimple g) Return the tree node representing the function called by call ! statement 'G'. -- GIMPLE function: void gimple_call_set_fn (gimple g, tree fn) ! Set 'FN' to be the function called by call statement 'G'. This has to be a gimple value specifying the address of the called function. -- GIMPLE function: tree gimple_call_fndecl (gimple g) ! If a given 'GIMPLE_CALL''s callee is a 'FUNCTION_DECL', return it. ! Otherwise return 'NULL'. This function is analogous to ! 'get_callee_fndecl' in 'GENERIC'. -- GIMPLE function: tree gimple_call_set_fndecl (gimple g, tree fndecl) ! Set the called function to 'FNDECL'. -- GIMPLE function: tree gimple_call_return_type (gimple g) ! Return the type returned by call statement 'G'. -- GIMPLE function: tree gimple_call_chain (gimple g) ! Return the static chain for call statement 'G'. -- GIMPLE function: void gimple_call_set_chain (gimple g, tree chain) ! Set 'CHAIN' to be the static chain for call statement 'G'. -- GIMPLE function: unsigned gimple_call_num_args (gimple g) ! Return the number of arguments used by call statement 'G'. -- GIMPLE function: tree gimple_call_arg (gimple g, unsigned index) ! Return the argument at position 'INDEX' for call statement 'G'. The first argument is 0. -- GIMPLE function: tree * gimple_call_arg_ptr (gimple g, unsigned index) ! Return a pointer to the argument at position 'INDEX' for call ! statement 'G'. ! -- GIMPLE function: void gimple_call_set_arg (gimple g, unsigned index, ! tree arg) ! Set 'ARG' to be the argument at position 'INDEX' for call statement ! 'G'. -- GIMPLE function: void gimple_call_set_tail (gimple s) ! Mark call statement 'S' as being a tail call (i.e., a call just ! before the exit of a function). These calls are candidate for tail call optimization. -- GIMPLE function: bool gimple_call_tail_p (gimple s) ! Return true if 'GIMPLE_CALL' 'S' is marked as a tail call. -- GIMPLE function: void gimple_call_mark_uninlinable (gimple s) ! Mark 'GIMPLE_CALL' 'S' as being uninlinable. -- GIMPLE function: bool gimple_call_cannot_inline_p (gimple s) ! Return true if 'GIMPLE_CALL' 'S' cannot be inlined. -- GIMPLE function: bool gimple_call_noreturn_p (gimple s) ! Return true if 'S' is a noreturn call. -- GIMPLE function: gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) ! Build a 'GIMPLE_CALL' identical to 'STMT' but skipping the ! arguments in the positions marked by the set 'ARGS_TO_SKIP'.  ! File: gccint.info, Node: 'GIMPLE_CATCH', Next: 'GIMPLE_COND', Prev: 'GIMPLE_CALL', Up: Tuple specific accessors ! 11.7.5 'GIMPLE_CATCH' --------------------- -- GIMPLE function: gimple gimple_build_catch (tree types, gimple_seq handler) ! Build a 'GIMPLE_CATCH' statement. 'TYPES' are the tree types this ! catch handles. 'HANDLER' is a sequence of statements with the code for the handler. -- GIMPLE function: tree gimple_catch_types (gimple g) ! Return the types handled by 'GIMPLE_CATCH' statement 'G'. -- GIMPLE function: tree * gimple_catch_types_ptr (gimple g) ! Return a pointer to the types handled by 'GIMPLE_CATCH' statement ! 'G'. -- GIMPLE function: gimple_seq gimple_catch_handler (gimple g) Return the GIMPLE sequence representing the body of the handler of ! 'GIMPLE_CATCH' statement 'G'. -- GIMPLE function: void gimple_catch_set_types (gimple g, tree t) ! Set 'T' to be the set of types handled by 'GIMPLE_CATCH' 'G'. ! -- GIMPLE function: void gimple_catch_set_handler (gimple g, gimple_seq ! handler) ! Set 'HANDLER' to be the body of 'GIMPLE_CATCH' 'G'.  ! File: gccint.info, Node: 'GIMPLE_COND', Next: 'GIMPLE_DEBUG', Prev: 'GIMPLE_CATCH', Up: Tuple specific accessors ! 11.7.6 'GIMPLE_COND' -------------------- ! -- GIMPLE function: gimple gimple_build_cond (enum tree_code pred_code, ! tree lhs, tree rhs, tree t_label, tree f_label) ! Build a 'GIMPLE_COND' statement. 'A' 'GIMPLE_COND' statement ! compares 'LHS' and 'RHS' and if the condition in 'PRED_CODE' is ! true, jump to the label in 't_label', otherwise jump to the label ! in 'f_label'. 'PRED_CODE' are relational operator tree codes like ! 'EQ_EXPR', 'LT_EXPR', 'LE_EXPR', 'NE_EXPR', etc. ! -- GIMPLE function: gimple gimple_build_cond_from_tree (tree cond, tree ! t_label, tree f_label) ! Build a 'GIMPLE_COND' statement from the conditional expression ! tree 'COND'. 'T_LABEL' and 'F_LABEL' are as in ! 'gimple_build_cond'. -- GIMPLE function: enum tree_code gimple_cond_code (gimple g) Return the code of the predicate computed by conditional statement ! 'G'. ! -- GIMPLE function: void gimple_cond_set_code (gimple g, enum tree_code ! code) ! Set 'CODE' to be the predicate code for the conditional statement ! 'G'. -- GIMPLE function: tree gimple_cond_lhs (gimple g) ! Return the 'LHS' of the predicate computed by conditional statement ! 'G'. -- GIMPLE function: void gimple_cond_set_lhs (gimple g, tree lhs) ! Set 'LHS' to be the 'LHS' operand of the predicate computed by ! conditional statement 'G'. -- GIMPLE function: tree gimple_cond_rhs (gimple g) ! Return the 'RHS' operand of the predicate computed by conditional ! 'G'. -- GIMPLE function: void gimple_cond_set_rhs (gimple g, tree rhs) ! Set 'RHS' to be the 'RHS' operand of the predicate computed by ! conditional statement 'G'. -- GIMPLE function: tree gimple_cond_true_label (gimple g) ! Return the label used by conditional statement 'G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_true_label (gimple g, tree label) ! Set 'LABEL' to be the label used by conditional statement 'G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_false_label (gimple g, tree label) ! Set 'LABEL' to be the label used by conditional statement 'G' when its predicate evaluates to false. -- GIMPLE function: tree gimple_cond_false_label (gimple g) ! Return the label used by conditional statement 'G' when its predicate evaluates to false. -- GIMPLE function: void gimple_cond_make_false (gimple g) ! Set the conditional 'COND_STMT' to be of the form 'if (1 == 0)'. -- GIMPLE function: void gimple_cond_make_true (gimple g) ! Set the conditional 'COND_STMT' to be of the form 'if (1 == 1)'.  ! File: gccint.info, Node: 'GIMPLE_DEBUG', Next: 'GIMPLE_EH_FILTER', Prev: 'GIMPLE_COND', Up: Tuple specific accessors ! 11.7.7 'GIMPLE_DEBUG' --------------------- -- GIMPLE function: gimple gimple_build_debug_bind (tree var, tree value, gimple stmt) ! Build a 'GIMPLE_DEBUG' statement with 'GIMPLE_DEBUG_BIND' of ! 'subcode'. The effect of this statement is to tell debug information generation machinery that the value of user variable ! 'var' is given by 'value' at that point, and to remain with that ! value until 'var' runs out of scope, a dynamically-subsequent debug ! bind statement overrides the binding, or conflicting values reach a ! control flow merge point. Even if components of the 'value' ! expression change afterwards, the variable is supposed to retain ! the same value, though not necessarily the same location. ! It is expected that 'var' be most often a tree for automatic user ! variables ('VAR_DECL' or 'PARM_DECL') that satisfy the requirements ! for gimple registers, but it may also be a tree for a scalarized ! component of a user variable ('ARRAY_REF', 'COMPONENT_REF'), or a ! debug temporary ('DEBUG_EXPR_DECL'). ! As for 'value', it can be an arbitrary tree expression, but it is recommended that it be in a suitable form for a gimple assignment ! 'RHS'. It is not expected that user variables that could appear as ! 'var' ever appear in 'value', because in the latter we'd have their ! 'SSA_NAME's instead, but even if they were not in SSA form, user ! variables appearing in 'value' are to be regarded as part of the ! executable code space, whereas those in 'var' are to be regarded as ! part of the source code space. There is no way to refer to the ! value bound to a user variable within a 'value' expression. ! If 'value' is 'GIMPLE_DEBUG_BIND_NOVALUE', debug information ! generation machinery is informed that the variable 'var' is unbound, i.e., that its value is indeterminate, which sometimes means it is really unavailable, and other times that the compiler could not keep track of it. ! Block and location information for the newly-created stmt are taken ! from 'stmt', if given. -- GIMPLE function: tree gimple_debug_bind_get_var (gimple stmt) ! Return the user variable VAR that is bound at 'stmt'. -- GIMPLE function: tree gimple_debug_bind_get_value (gimple stmt) Return the value expression that is bound to a user variable at ! 'stmt'. -- GIMPLE function: tree * gimple_debug_bind_get_value_ptr (gimple stmt) Return a pointer to the value expression that is bound to a user ! variable at 'stmt'. -- GIMPLE function: void gimple_debug_bind_set_var (gimple stmt, tree var) ! Modify the user variable bound at 'stmt' to VAR. ! -- GIMPLE function: void gimple_debug_bind_set_value (gimple stmt, tree ! var) ! Modify the value bound to the user variable bound at 'stmt' to VALUE. -- GIMPLE function: void gimple_debug_bind_reset_value (gimple stmt) ! Modify the value bound to the user variable bound at 'stmt' so that ! the variable becomes unbound. -- GIMPLE function: bool gimple_debug_bind_has_value_p (gimple stmt) ! Return 'TRUE' if 'stmt' binds a user variable to a value, and ! 'FALSE' if it unbinds the variable.  ! File: gccint.info, Node: 'GIMPLE_EH_FILTER', Next: 'GIMPLE_LABEL', Prev: 'GIMPLE_DEBUG', Up: Tuple specific accessors ! 11.7.8 'GIMPLE_EH_FILTER' ------------------------- -- GIMPLE function: gimple gimple_build_eh_filter (tree types, gimple_seq failure) ! Build a 'GIMPLE_EH_FILTER' statement. 'TYPES' are the filter's ! types. 'FAILURE' is a sequence with the filter's failure action. -- GIMPLE function: tree gimple_eh_filter_types (gimple g) ! Return the types handled by 'GIMPLE_EH_FILTER' statement 'G'. -- GIMPLE function: tree * gimple_eh_filter_types_ptr (gimple g) ! Return a pointer to the types handled by 'GIMPLE_EH_FILTER' ! statement 'G'. -- GIMPLE function: gimple_seq gimple_eh_filter_failure (gimple g) ! Return the sequence of statement to execute when 'GIMPLE_EH_FILTER' statement fails. -- GIMPLE function: void gimple_eh_filter_set_types (gimple g, tree types) ! Set 'TYPES' to be the set of types handled by 'GIMPLE_EH_FILTER' ! 'G'. -- GIMPLE function: void gimple_eh_filter_set_failure (gimple g, gimple_seq failure) ! Set 'FAILURE' to be the sequence of statements to execute on ! failure for 'GIMPLE_EH_FILTER' 'G'. -- GIMPLE function: bool gimple_eh_filter_must_not_throw (gimple g) ! Return the 'EH_FILTER_MUST_NOT_THROW' flag. ! -- GIMPLE function: void gimple_eh_filter_set_must_not_throw (gimple g, ! bool mntp) ! Set the 'EH_FILTER_MUST_NOT_THROW' flag.  ! File: gccint.info, Node: 'GIMPLE_LABEL', Next: 'GIMPLE_NOP', Prev: 'GIMPLE_EH_FILTER', Up: Tuple specific accessors ! 11.7.9 'GIMPLE_LABEL' --------------------- -- GIMPLE function: gimple gimple_build_label (tree label) ! Build a 'GIMPLE_LABEL' statement with corresponding to the tree ! label, 'LABEL'. -- GIMPLE function: tree gimple_label_label (gimple g) ! Return the 'LABEL_DECL' node used by 'GIMPLE_LABEL' statement 'G'. -- GIMPLE function: void gimple_label_set_label (gimple g, tree label) ! Set 'LABEL' to be the 'LABEL_DECL' node used by 'GIMPLE_LABEL' ! statement 'G'. -- GIMPLE function: gimple gimple_build_goto (tree dest) ! Build a 'GIMPLE_GOTO' statement to label 'DEST'. -- GIMPLE function: tree gimple_goto_dest (gimple g) ! Return the destination of the unconditional jump 'G'. -- GIMPLE function: void gimple_goto_set_dest (gimple g, tree dest) ! Set 'DEST' to be the destination of the unconditional jump 'G'.  ! File: gccint.info, Node: 'GIMPLE_NOP', Next: 'GIMPLE_OMP_ATOMIC_LOAD', Prev: 'GIMPLE_LABEL', Up: Tuple specific accessors ! 11.7.10 'GIMPLE_NOP' -------------------- -- GIMPLE function: gimple gimple_build_nop (void) ! Build a 'GIMPLE_NOP' statement. -- GIMPLE function: bool gimple_nop_p (gimple g) ! Returns 'TRUE' if statement 'G' is a 'GIMPLE_NOP'.  ! File: gccint.info, Node: 'GIMPLE_OMP_ATOMIC_LOAD', Next: 'GIMPLE_OMP_ATOMIC_STORE', Prev: 'GIMPLE_NOP', Up: Tuple specific accessors ! 11.7.11 'GIMPLE_OMP_ATOMIC_LOAD' -------------------------------- ! -- GIMPLE function: gimple gimple_build_omp_atomic_load (tree lhs, tree ! rhs) ! Build a 'GIMPLE_OMP_ATOMIC_LOAD' statement. 'LHS' is the left-hand ! side of the assignment. 'RHS' is the right-hand side of the assignment. ! -- GIMPLE function: void gimple_omp_atomic_load_set_lhs (gimple g, tree ! lhs) ! Set the 'LHS' of an atomic load. -- GIMPLE function: tree gimple_omp_atomic_load_lhs (gimple g) ! Get the 'LHS' of an atomic load. ! -- GIMPLE function: void gimple_omp_atomic_load_set_rhs (gimple g, tree ! rhs) ! Set the 'RHS' of an atomic set. -- GIMPLE function: tree gimple_omp_atomic_load_rhs (gimple g) ! Get the 'RHS' of an atomic set.  ! File: gccint.info, Node: 'GIMPLE_OMP_ATOMIC_STORE', Next: 'GIMPLE_OMP_CONTINUE', Prev: 'GIMPLE_OMP_ATOMIC_LOAD', Up: Tuple specific accessors ! 11.7.12 'GIMPLE_OMP_ATOMIC_STORE' --------------------------------- -- GIMPLE function: gimple gimple_build_omp_atomic_store (tree val) ! Build a 'GIMPLE_OMP_ATOMIC_STORE' statement. 'VAL' is the value to be stored. -- GIMPLE function: void gimple_omp_atomic_store_set_val (gimple g, --- 11439,12012 ---- VECs. -- GIMPLE function: unsigned gimple_asm_ninputs (gimple g) ! Return the number of input operands for `GIMPLE_ASM' `G'. -- GIMPLE function: unsigned gimple_asm_noutputs (gimple g) ! Return the number of output operands for `GIMPLE_ASM' `G'. -- GIMPLE function: unsigned gimple_asm_nclobbers (gimple g) ! Return the number of clobber operands for `GIMPLE_ASM' `G'. -- GIMPLE function: tree gimple_asm_input_op (gimple g, unsigned index) ! Return input operand `INDEX' of `GIMPLE_ASM' `G'. -- GIMPLE function: void gimple_asm_set_input_op (gimple g, unsigned index, tree in_op) ! Set `IN_OP' to be input operand `INDEX' in `GIMPLE_ASM' `G'. -- GIMPLE function: tree gimple_asm_output_op (gimple g, unsigned index) ! Return output operand `INDEX' of `GIMPLE_ASM' `G'. -- GIMPLE function: void gimple_asm_set_output_op (gimple g, unsigned index, tree out_op) ! Set `OUT_OP' to be output operand `INDEX' in `GIMPLE_ASM' `G'. -- GIMPLE function: tree gimple_asm_clobber_op (gimple g, unsigned index) ! Return clobber operand `INDEX' of `GIMPLE_ASM' `G'. -- GIMPLE function: void gimple_asm_set_clobber_op (gimple g, unsigned index, tree clobber_op) ! Set `CLOBBER_OP' to be clobber operand `INDEX' in `GIMPLE_ASM' `G'. -- GIMPLE function: const char * gimple_asm_string (gimple g) Return the string representing the assembly instruction in ! `GIMPLE_ASM' `G'. -- GIMPLE function: bool gimple_asm_volatile_p (gimple g) ! Return true if `G' is an asm statement marked volatile. -- GIMPLE function: void gimple_asm_set_volatile (gimple g) ! Mark asm statement `G' as volatile.  ! File: gccint.info, Node: `GIMPLE_ASSIGN', Next: `GIMPLE_BIND', Prev: `GIMPLE_ASM', Up: Tuple specific accessors ! 11.7.2 `GIMPLE_ASSIGN' ---------------------- -- GIMPLE function: gimple gimple_build_assign (tree lhs, tree rhs) ! Build a `GIMPLE_ASSIGN' statement. The left-hand side is an lvalue ! passed in lhs. The right-hand side can be either a unary or ! binary tree expression. The expression tree rhs will be flattened ! and its operands assigned to the corresponding operand slots in ! the new statement. This function is useful when you already have ! a tree expression that you want to convert into a tuple. However, ! try to avoid building expression trees for the sole purpose of ! calling this function. If you already have the operands in ! separate trees, it is better to use `gimple_build_assign_with_ops'. -- GIMPLE function: gimple gimplify_assign (tree dst, tree src, gimple_seq *seq_p) ! Build a new `GIMPLE_ASSIGN' tuple and append it to the end of ! `*SEQ_P'. ! `DST'/`SRC' are the destination and source respectively. You can pass ! ungimplified trees in `DST' or `SRC', in which case they will be converted to a gimple operand if necessary. ! This function returns the newly created `GIMPLE_ASSIGN' tuple. ! -- GIMPLE function: gimple gimple_build_assign_with_ops (enum ! tree_code subcode, tree lhs, tree op1, tree op2) ! This function is similar to `gimple_build_assign', but is used to ! build a `GIMPLE_ASSIGN' statement when the operands of the right-hand side of the assignment are already split into different operands. The left-hand side is an lvalue passed in lhs. Subcode is the ! `tree_code' for the right-hand side of the assignment. Op1 and op2 ! are the operands. If op2 is null, subcode must be a `tree_code' for a unary expression. -- GIMPLE function: enum tree_code gimple_assign_rhs_code (gimple g) ! Return the code of the expression computed on the `RHS' of ! assignment statement `G'. -- GIMPLE function: enum gimple_rhs_class gimple_assign_rhs_class (gimple g) ! Return the gimple rhs class of the code for the expression ! computed on the rhs of assignment statement `G'. This will never ! return `GIMPLE_INVALID_RHS'. -- GIMPLE function: tree gimple_assign_lhs (gimple g) ! Return the `LHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_lhs_ptr (gimple g) ! Return a pointer to the `LHS' of assignment statement `G'. -- GIMPLE function: tree gimple_assign_rhs1 (gimple g) ! Return the first operand on the `RHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_rhs1_ptr (gimple g) ! Return the address of the first operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: tree gimple_assign_rhs2 (gimple g) ! Return the second operand on the `RHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_rhs2_ptr (gimple g) ! Return the address of the second operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: tree gimple_assign_rhs3 (gimple g) ! Return the third operand on the `RHS' of assignment statement `G'. -- GIMPLE function: tree * gimple_assign_rhs3_ptr (gimple g) ! Return the address of the third operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: void gimple_assign_set_lhs (gimple g, tree lhs) ! Set `LHS' to be the `LHS' operand of assignment statement `G'. -- GIMPLE function: void gimple_assign_set_rhs1 (gimple g, tree rhs) ! Set `RHS' to be the first operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: void gimple_assign_set_rhs2 (gimple g, tree rhs) ! Set `RHS' to be the second operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: void gimple_assign_set_rhs3 (gimple g, tree rhs) ! Set `RHS' to be the third operand on the `RHS' of assignment ! statement `G'. -- GIMPLE function: bool gimple_assign_cast_p (gimple s) ! Return true if `S' is a type-cast assignment.  ! File: gccint.info, Node: `GIMPLE_BIND', Next: `GIMPLE_CALL', Prev: `GIMPLE_ASSIGN', Up: Tuple specific accessors ! 11.7.3 `GIMPLE_BIND' -------------------- -- GIMPLE function: gimple gimple_build_bind (tree vars, gimple_seq body) ! Build a `GIMPLE_BIND' statement with a list of variables in `VARS' ! and a body of statements in sequence `BODY'. -- GIMPLE function: tree gimple_bind_vars (gimple g) ! Return the variables declared in the `GIMPLE_BIND' statement `G'. -- GIMPLE function: void gimple_bind_set_vars (gimple g, tree vars) ! Set `VARS' to be the set of variables declared in the `GIMPLE_BIND' ! statement `G'. -- GIMPLE function: void gimple_bind_append_vars (gimple g, tree vars) ! Append `VARS' to the set of variables declared in the `GIMPLE_BIND' ! statement `G'. -- GIMPLE function: gimple_seq gimple_bind_body (gimple g) ! Return the GIMPLE sequence contained in the `GIMPLE_BIND' statement ! `G'. -- GIMPLE function: void gimple_bind_set_body (gimple g, gimple_seq seq) ! Set `SEQ' to be sequence contained in the `GIMPLE_BIND' statement ! `G'. -- GIMPLE function: void gimple_bind_add_stmt (gimple gs, gimple stmt) ! Append a statement to the end of a `GIMPLE_BIND''s body. -- GIMPLE function: void gimple_bind_add_seq (gimple gs, gimple_seq seq) ! Append a sequence of statements to the end of a `GIMPLE_BIND''s body. -- GIMPLE function: tree gimple_bind_block (gimple g) ! Return the `TREE_BLOCK' node associated with `GIMPLE_BIND' ! statement `G'. This is analogous to the `BIND_EXPR_BLOCK' field in trees. -- GIMPLE function: void gimple_bind_set_block (gimple g, tree block) ! Set `BLOCK' to be the `TREE_BLOCK' node associated with ! `GIMPLE_BIND' statement `G'.  ! File: gccint.info, Node: `GIMPLE_CALL', Next: `GIMPLE_CATCH', Prev: `GIMPLE_BIND', Up: Tuple specific accessors ! 11.7.4 `GIMPLE_CALL' -------------------- -- GIMPLE function: gimple gimple_build_call (tree fn, unsigned nargs, ...) ! Build a `GIMPLE_CALL' statement to function `FN'. The argument ! `FN' must be either a `FUNCTION_DECL' or a gimple call address as ! determined by `is_gimple_call_addr'. `NARGS' are the number of ! arguments. The rest of the arguments follow the argument `NARGS', and must be trees that are valid as rvalues in gimple (i.e., each ! operand is validated with `is_gimple_operand'). -- GIMPLE function: gimple gimple_build_call_from_tree (tree call_expr) ! Build a `GIMPLE_CALL' from a `CALL_EXPR' node. The arguments and the function are taken from the expression directly. This routine ! assumes that `call_expr' is already in GIMPLE form. That is, its operands are GIMPLE values and the function call needs no further ! simplification. All the call flags in `call_expr' are copied over ! to the new `GIMPLE_CALL'. ! -- GIMPLE function: gimple gimple_build_call_vec (tree fn, `VEC'(tree, heap) *args) ! Identical to `gimple_build_call' but the arguments are stored in a ! `VEC'(). -- GIMPLE function: tree gimple_call_lhs (gimple g) ! Return the `LHS' of call statement `G'. -- GIMPLE function: tree * gimple_call_lhs_ptr (gimple g) ! Return a pointer to the `LHS' of call statement `G'. -- GIMPLE function: void gimple_call_set_lhs (gimple g, tree lhs) ! Set `LHS' to be the `LHS' operand of call statement `G'. -- GIMPLE function: tree gimple_call_fn (gimple g) Return the tree node representing the function called by call ! statement `G'. -- GIMPLE function: void gimple_call_set_fn (gimple g, tree fn) ! Set `FN' to be the function called by call statement `G'. This has to be a gimple value specifying the address of the called function. -- GIMPLE function: tree gimple_call_fndecl (gimple g) ! If a given `GIMPLE_CALL''s callee is a `FUNCTION_DECL', return it. ! Otherwise return `NULL'. This function is analogous to ! `get_callee_fndecl' in `GENERIC'. -- GIMPLE function: tree gimple_call_set_fndecl (gimple g, tree fndecl) ! Set the called function to `FNDECL'. -- GIMPLE function: tree gimple_call_return_type (gimple g) ! Return the type returned by call statement `G'. -- GIMPLE function: tree gimple_call_chain (gimple g) ! Return the static chain for call statement `G'. -- GIMPLE function: void gimple_call_set_chain (gimple g, tree chain) ! Set `CHAIN' to be the static chain for call statement `G'. -- GIMPLE function: unsigned gimple_call_num_args (gimple g) ! Return the number of arguments used by call statement `G'. -- GIMPLE function: tree gimple_call_arg (gimple g, unsigned index) ! Return the argument at position `INDEX' for call statement `G'. The first argument is 0. -- GIMPLE function: tree * gimple_call_arg_ptr (gimple g, unsigned index) ! Return a pointer to the argument at position `INDEX' for call ! statement `G'. ! -- GIMPLE function: void gimple_call_set_arg (gimple g, unsigned ! index, tree arg) ! Set `ARG' to be the argument at position `INDEX' for call statement ! `G'. -- GIMPLE function: void gimple_call_set_tail (gimple s) ! Mark call statement `S' as being a tail call (i.e., a call just ! before the exit of a function). These calls are candidate for tail call optimization. -- GIMPLE function: bool gimple_call_tail_p (gimple s) ! Return true if `GIMPLE_CALL' `S' is marked as a tail call. -- GIMPLE function: void gimple_call_mark_uninlinable (gimple s) ! Mark `GIMPLE_CALL' `S' as being uninlinable. -- GIMPLE function: bool gimple_call_cannot_inline_p (gimple s) ! Return true if `GIMPLE_CALL' `S' cannot be inlined. -- GIMPLE function: bool gimple_call_noreturn_p (gimple s) ! Return true if `S' is a noreturn call. -- GIMPLE function: gimple gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip) ! Build a `GIMPLE_CALL' identical to `STMT' but skipping the ! arguments in the positions marked by the set `ARGS_TO_SKIP'.  ! File: gccint.info, Node: `GIMPLE_CATCH', Next: `GIMPLE_COND', Prev: `GIMPLE_CALL', Up: Tuple specific accessors ! 11.7.5 `GIMPLE_CATCH' --------------------- -- GIMPLE function: gimple gimple_build_catch (tree types, gimple_seq handler) ! Build a `GIMPLE_CATCH' statement. `TYPES' are the tree types this ! catch handles. `HANDLER' is a sequence of statements with the code for the handler. -- GIMPLE function: tree gimple_catch_types (gimple g) ! Return the types handled by `GIMPLE_CATCH' statement `G'. -- GIMPLE function: tree * gimple_catch_types_ptr (gimple g) ! Return a pointer to the types handled by `GIMPLE_CATCH' statement ! `G'. -- GIMPLE function: gimple_seq gimple_catch_handler (gimple g) Return the GIMPLE sequence representing the body of the handler of ! `GIMPLE_CATCH' statement `G'. -- GIMPLE function: void gimple_catch_set_types (gimple g, tree t) ! Set `T' to be the set of types handled by `GIMPLE_CATCH' `G'. ! -- GIMPLE function: void gimple_catch_set_handler (gimple g, ! gimple_seq handler) ! Set `HANDLER' to be the body of `GIMPLE_CATCH' `G'.  ! File: gccint.info, Node: `GIMPLE_COND', Next: `GIMPLE_DEBUG', Prev: `GIMPLE_CATCH', Up: Tuple specific accessors ! 11.7.6 `GIMPLE_COND' -------------------- ! -- GIMPLE function: gimple gimple_build_cond (enum tree_code ! pred_code, tree lhs, tree rhs, tree t_label, tree f_label) ! Build a `GIMPLE_COND' statement. `A' `GIMPLE_COND' statement ! compares `LHS' and `RHS' and if the condition in `PRED_CODE' is ! true, jump to the label in `t_label', otherwise jump to the label ! in `f_label'. `PRED_CODE' are relational operator tree codes like ! `EQ_EXPR', `LT_EXPR', `LE_EXPR', `NE_EXPR', etc. ! -- GIMPLE function: gimple gimple_build_cond_from_tree (tree cond, ! tree t_label, tree f_label) ! Build a `GIMPLE_COND' statement from the conditional expression ! tree `COND'. `T_LABEL' and `F_LABEL' are as in ! `gimple_build_cond'. -- GIMPLE function: enum tree_code gimple_cond_code (gimple g) Return the code of the predicate computed by conditional statement ! `G'. ! -- GIMPLE function: void gimple_cond_set_code (gimple g, enum ! tree_code code) ! Set `CODE' to be the predicate code for the conditional statement ! `G'. -- GIMPLE function: tree gimple_cond_lhs (gimple g) ! Return the `LHS' of the predicate computed by conditional statement ! `G'. -- GIMPLE function: void gimple_cond_set_lhs (gimple g, tree lhs) ! Set `LHS' to be the `LHS' operand of the predicate computed by ! conditional statement `G'. -- GIMPLE function: tree gimple_cond_rhs (gimple g) ! Return the `RHS' operand of the predicate computed by conditional ! `G'. -- GIMPLE function: void gimple_cond_set_rhs (gimple g, tree rhs) ! Set `RHS' to be the `RHS' operand of the predicate computed by ! conditional statement `G'. -- GIMPLE function: tree gimple_cond_true_label (gimple g) ! Return the label used by conditional statement `G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_true_label (gimple g, tree label) ! Set `LABEL' to be the label used by conditional statement `G' when its predicate evaluates to true. -- GIMPLE function: void gimple_cond_set_false_label (gimple g, tree label) ! Set `LABEL' to be the label used by conditional statement `G' when its predicate evaluates to false. -- GIMPLE function: tree gimple_cond_false_label (gimple g) ! Return the label used by conditional statement `G' when its predicate evaluates to false. -- GIMPLE function: void gimple_cond_make_false (gimple g) ! Set the conditional `COND_STMT' to be of the form 'if (1 == 0)'. -- GIMPLE function: void gimple_cond_make_true (gimple g) ! Set the conditional `COND_STMT' to be of the form 'if (1 == 1)'.  ! File: gccint.info, Node: `GIMPLE_DEBUG', Next: `GIMPLE_EH_FILTER', Prev: `GIMPLE_COND', Up: Tuple specific accessors ! 11.7.7 `GIMPLE_DEBUG' --------------------- -- GIMPLE function: gimple gimple_build_debug_bind (tree var, tree value, gimple stmt) ! Build a `GIMPLE_DEBUG' statement with `GIMPLE_DEBUG_BIND' of ! `subcode'. The effect of this statement is to tell debug information generation machinery that the value of user variable ! `var' is given by `value' at that point, and to remain with that ! value until `var' runs out of scope, a dynamically-subsequent ! debug bind statement overrides the binding, or conflicting values ! reach a control flow merge point. Even if components of the ! `value' expression change afterwards, the variable is supposed to ! retain the same value, though not necessarily the same location. ! It is expected that `var' be most often a tree for automatic user ! variables (`VAR_DECL' or `PARM_DECL') that satisfy the ! requirements for gimple registers, but it may also be a tree for a ! scalarized component of a user variable (`ARRAY_REF', ! `COMPONENT_REF'), or a debug temporary (`DEBUG_EXPR_DECL'). ! As for `value', it can be an arbitrary tree expression, but it is recommended that it be in a suitable form for a gimple assignment ! `RHS'. It is not expected that user variables that could appear ! as `var' ever appear in `value', because in the latter we'd have ! their `SSA_NAME's instead, but even if they were not in SSA form, ! user variables appearing in `value' are to be regarded as part of ! the executable code space, whereas those in `var' are to be ! regarded as part of the source code space. There is no way to ! refer to the value bound to a user variable within a `value' ! expression. ! If `value' is `GIMPLE_DEBUG_BIND_NOVALUE', debug information ! generation machinery is informed that the variable `var' is unbound, i.e., that its value is indeterminate, which sometimes means it is really unavailable, and other times that the compiler could not keep track of it. ! Block and location information for the newly-created stmt are ! taken from `stmt', if given. -- GIMPLE function: tree gimple_debug_bind_get_var (gimple stmt) ! Return the user variable VAR that is bound at `stmt'. -- GIMPLE function: tree gimple_debug_bind_get_value (gimple stmt) Return the value expression that is bound to a user variable at ! `stmt'. -- GIMPLE function: tree * gimple_debug_bind_get_value_ptr (gimple stmt) Return a pointer to the value expression that is bound to a user ! variable at `stmt'. -- GIMPLE function: void gimple_debug_bind_set_var (gimple stmt, tree var) ! Modify the user variable bound at `stmt' to VAR. ! -- GIMPLE function: void gimple_debug_bind_set_value (gimple stmt, ! tree var) ! Modify the value bound to the user variable bound at `stmt' to VALUE. -- GIMPLE function: void gimple_debug_bind_reset_value (gimple stmt) ! Modify the value bound to the user variable bound at `stmt' so ! that the variable becomes unbound. -- GIMPLE function: bool gimple_debug_bind_has_value_p (gimple stmt) ! Return `TRUE' if `stmt' binds a user variable to a value, and ! `FALSE' if it unbinds the variable.  ! File: gccint.info, Node: `GIMPLE_EH_FILTER', Next: `GIMPLE_LABEL', Prev: `GIMPLE_DEBUG', Up: Tuple specific accessors ! 11.7.8 `GIMPLE_EH_FILTER' ------------------------- -- GIMPLE function: gimple gimple_build_eh_filter (tree types, gimple_seq failure) ! Build a `GIMPLE_EH_FILTER' statement. `TYPES' are the filter's ! types. `FAILURE' is a sequence with the filter's failure action. -- GIMPLE function: tree gimple_eh_filter_types (gimple g) ! Return the types handled by `GIMPLE_EH_FILTER' statement `G'. -- GIMPLE function: tree * gimple_eh_filter_types_ptr (gimple g) ! Return a pointer to the types handled by `GIMPLE_EH_FILTER' ! statement `G'. -- GIMPLE function: gimple_seq gimple_eh_filter_failure (gimple g) ! Return the sequence of statement to execute when `GIMPLE_EH_FILTER' statement fails. -- GIMPLE function: void gimple_eh_filter_set_types (gimple g, tree types) ! Set `TYPES' to be the set of types handled by `GIMPLE_EH_FILTER' ! `G'. -- GIMPLE function: void gimple_eh_filter_set_failure (gimple g, gimple_seq failure) ! Set `FAILURE' to be the sequence of statements to execute on ! failure for `GIMPLE_EH_FILTER' `G'. -- GIMPLE function: bool gimple_eh_filter_must_not_throw (gimple g) ! Return the `EH_FILTER_MUST_NOT_THROW' flag. ! -- GIMPLE function: void gimple_eh_filter_set_must_not_throw (gimple ! g, bool mntp) ! Set the `EH_FILTER_MUST_NOT_THROW' flag.  ! File: gccint.info, Node: `GIMPLE_LABEL', Next: `GIMPLE_NOP', Prev: `GIMPLE_EH_FILTER', Up: Tuple specific accessors ! 11.7.9 `GIMPLE_LABEL' --------------------- -- GIMPLE function: gimple gimple_build_label (tree label) ! Build a `GIMPLE_LABEL' statement with corresponding to the tree ! label, `LABEL'. -- GIMPLE function: tree gimple_label_label (gimple g) ! Return the `LABEL_DECL' node used by `GIMPLE_LABEL' statement `G'. -- GIMPLE function: void gimple_label_set_label (gimple g, tree label) ! Set `LABEL' to be the `LABEL_DECL' node used by `GIMPLE_LABEL' ! statement `G'. -- GIMPLE function: gimple gimple_build_goto (tree dest) ! Build a `GIMPLE_GOTO' statement to label `DEST'. -- GIMPLE function: tree gimple_goto_dest (gimple g) ! Return the destination of the unconditional jump `G'. -- GIMPLE function: void gimple_goto_set_dest (gimple g, tree dest) ! Set `DEST' to be the destination of the unconditional jump `G'.  ! File: gccint.info, Node: `GIMPLE_NOP', Next: `GIMPLE_OMP_ATOMIC_LOAD', Prev: `GIMPLE_LABEL', Up: Tuple specific accessors ! 11.7.10 `GIMPLE_NOP' -------------------- -- GIMPLE function: gimple gimple_build_nop (void) ! Build a `GIMPLE_NOP' statement. -- GIMPLE function: bool gimple_nop_p (gimple g) ! Returns `TRUE' if statement `G' is a `GIMPLE_NOP'.  ! File: gccint.info, Node: `GIMPLE_OMP_ATOMIC_LOAD', Next: `GIMPLE_OMP_ATOMIC_STORE', Prev: `GIMPLE_NOP', Up: Tuple specific accessors ! 11.7.11 `GIMPLE_OMP_ATOMIC_LOAD' -------------------------------- ! -- GIMPLE function: gimple gimple_build_omp_atomic_load (tree lhs, ! tree rhs) ! Build a `GIMPLE_OMP_ATOMIC_LOAD' statement. `LHS' is the left-hand ! side of the assignment. `RHS' is the right-hand side of the assignment. ! -- GIMPLE function: void gimple_omp_atomic_load_set_lhs (gimple g, ! tree lhs) ! Set the `LHS' of an atomic load. -- GIMPLE function: tree gimple_omp_atomic_load_lhs (gimple g) ! Get the `LHS' of an atomic load. ! -- GIMPLE function: void gimple_omp_atomic_load_set_rhs (gimple g, ! tree rhs) ! Set the `RHS' of an atomic set. -- GIMPLE function: tree gimple_omp_atomic_load_rhs (gimple g) ! Get the `RHS' of an atomic set.  ! File: gccint.info, Node: `GIMPLE_OMP_ATOMIC_STORE', Next: `GIMPLE_OMP_CONTINUE', Prev: `GIMPLE_OMP_ATOMIC_LOAD', Up: Tuple specific accessors ! 11.7.12 `GIMPLE_OMP_ATOMIC_STORE' --------------------------------- -- GIMPLE function: gimple gimple_build_omp_atomic_store (tree val) ! Build a `GIMPLE_OMP_ATOMIC_STORE' statement. `VAL' is the value to be stored. -- GIMPLE function: void gimple_omp_atomic_store_set_val (gimple g, *************** File: gccint.info, Node: 'GIMPLE_OMP_AT *** 11877,12311 **** Return the value being stored in an atomic store.  ! File: gccint.info, Node: 'GIMPLE_OMP_CONTINUE', Next: 'GIMPLE_OMP_CRITICAL', Prev: 'GIMPLE_OMP_ATOMIC_STORE', Up: Tuple specific accessors ! 11.7.13 'GIMPLE_OMP_CONTINUE' ----------------------------- ! -- GIMPLE function: gimple gimple_build_omp_continue (tree control_def, ! tree control_use) ! Build a 'GIMPLE_OMP_CONTINUE' statement. 'CONTROL_DEF' is the ! definition of the control variable. 'CONTROL_USE' is the use of the control variable. -- GIMPLE function: tree gimple_omp_continue_control_def (gimple s) Return the definition of the control variable on a ! 'GIMPLE_OMP_CONTINUE' in 'S'. -- GIMPLE function: tree gimple_omp_continue_control_def_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_def (gimple s) ! Set the control variable definition for a 'GIMPLE_OMP_CONTINUE' ! statement in 'S'. -- GIMPLE function: tree gimple_omp_continue_control_use (gimple s) ! Return the use of the control variable on a 'GIMPLE_OMP_CONTINUE' ! in 'S'. -- GIMPLE function: tree gimple_omp_continue_control_use_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_use (gimple s) ! Set the control variable use for a 'GIMPLE_OMP_CONTINUE' statement ! in 'S'.  ! File: gccint.info, Node: 'GIMPLE_OMP_CRITICAL', Next: 'GIMPLE_OMP_FOR', Prev: 'GIMPLE_OMP_CONTINUE', Up: Tuple specific accessors ! 11.7.14 'GIMPLE_OMP_CRITICAL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_critical (gimple_seq body, tree name) ! Build a 'GIMPLE_OMP_CRITICAL' statement. 'BODY' is the sequence of ! statements for which only one thread can execute. 'NAME' is an optional identifier for this critical block. -- GIMPLE function: tree gimple_omp_critical_name (gimple g) ! Return the name associated with 'OMP_CRITICAL' statement 'G'. -- GIMPLE function: tree * gimple_omp_critical_name_ptr (gimple g) ! Return a pointer to the name associated with 'OMP' critical ! statement 'G'. -- GIMPLE function: void gimple_omp_critical_set_name (gimple g, tree name) ! Set 'NAME' to be the name associated with 'OMP' critical statement ! 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_FOR', Next: 'GIMPLE_OMP_MASTER', Prev: 'GIMPLE_OMP_CRITICAL', Up: Tuple specific accessors ! 11.7.15 'GIMPLE_OMP_FOR' ------------------------ -- GIMPLE function: gimple gimple_build_omp_for (gimple_seq body, tree clauses, tree index, tree initial, tree final, tree incr, gimple_seq pre_body, enum tree_code omp_for_cond) ! Build a 'GIMPLE_OMP_FOR' statement. 'BODY' is sequence of ! statements inside the for loop. 'CLAUSES', are any of the 'OMP' ! loop construct's clauses: private, firstprivate, lastprivate, ! reductions, ordered, schedule, and nowait. 'PRE_BODY' is the ! sequence of statements that are loop invariant. 'INDEX' is the ! index variable. 'INITIAL' is the initial value of 'INDEX'. ! 'FINAL' is final value of 'INDEX'. OMP_FOR_COND is the predicate ! used to compare 'INDEX' and 'FINAL'. 'INCR' is the increment expression. -- GIMPLE function: tree gimple_omp_for_clauses (gimple g) ! Return the clauses associated with 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_clauses_ptr (gimple g) ! Return a pointer to the 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the list of clauses associated with 'OMP_FOR' ! 'G'. -- GIMPLE function: tree gimple_omp_for_index (gimple g) ! Return the index variable for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_index_ptr (gimple g) ! Return a pointer to the index variable for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_index (gimple g, tree index) ! Set 'INDEX' to be the index variable for 'OMP_FOR' 'G'. -- GIMPLE function: tree gimple_omp_for_initial (gimple g) ! Return the initial value for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_initial_ptr (gimple g) ! Return a pointer to the initial value for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_initial (gimple g, tree initial) ! Set 'INITIAL' to be the initial value for 'OMP_FOR' 'G'. -- GIMPLE function: tree gimple_omp_for_final (gimple g) ! Return the final value for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_final_ptr (gimple g) ! turn a pointer to the final value for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_final (gimple g, tree final) ! Set 'FINAL' to be the final value for 'OMP_FOR' 'G'. -- GIMPLE function: tree gimple_omp_for_incr (gimple g) ! Return the increment value for 'OMP_FOR' 'G'. -- GIMPLE function: tree * gimple_omp_for_incr_ptr (gimple g) ! Return a pointer to the increment value for 'OMP_FOR' 'G'. -- GIMPLE function: void gimple_omp_for_set_incr (gimple g, tree incr) ! Set 'INCR' to be the increment value for 'OMP_FOR' 'G'. -- GIMPLE function: gimple_seq gimple_omp_for_pre_body (gimple g) ! Return the sequence of statements to execute before the 'OMP_FOR' ! statement 'G' starts. -- GIMPLE function: void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body) ! Set 'PRE_BODY' to be the sequence of statements to execute before ! the 'OMP_FOR' statement 'G' starts. -- GIMPLE function: void gimple_omp_for_set_cond (gimple g, enum tree_code cond) ! Set 'COND' to be the condition code for 'OMP_FOR' 'G'. -- GIMPLE function: enum tree_code gimple_omp_for_cond (gimple g) ! Return the condition code associated with 'OMP_FOR' 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_MASTER', Next: 'GIMPLE_OMP_ORDERED', Prev: 'GIMPLE_OMP_FOR', Up: Tuple specific accessors ! 11.7.16 'GIMPLE_OMP_MASTER' --------------------------- -- GIMPLE function: gimple gimple_build_omp_master (gimple_seq body) ! Build a 'GIMPLE_OMP_MASTER' statement. 'BODY' is the sequence of statements to be executed by just the master.  ! File: gccint.info, Node: 'GIMPLE_OMP_ORDERED', Next: 'GIMPLE_OMP_PARALLEL', Prev: 'GIMPLE_OMP_MASTER', Up: Tuple specific accessors ! 11.7.17 'GIMPLE_OMP_ORDERED' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_ordered (gimple_seq body) ! Build a 'GIMPLE_OMP_ORDERED' statement. ! 'BODY' is the sequence of statements inside a loop that will executed in sequence.  ! File: gccint.info, Node: 'GIMPLE_OMP_PARALLEL', Next: 'GIMPLE_OMP_RETURN', Prev: 'GIMPLE_OMP_ORDERED', Up: Tuple specific accessors ! 11.7.18 'GIMPLE_OMP_PARALLEL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg) ! Build a 'GIMPLE_OMP_PARALLEL' statement. ! 'BODY' is sequence of statements which are executed in parallel. ! 'CLAUSES', are the 'OMP' parallel construct's clauses. 'CHILD_FN' is ! the function created for the parallel threads to execute. 'DATA_ARG' are the shared data argument(s). -- GIMPLE function: bool gimple_omp_parallel_combined_p (gimple g) ! Return true if 'OMP' parallel statement 'G' has the ! 'GF_OMP_PARALLEL_COMBINED' flag set. -- GIMPLE function: void gimple_omp_parallel_set_combined_p (gimple g) ! Set the 'GF_OMP_PARALLEL_COMBINED' field in 'OMP' parallel ! statement 'G'. -- GIMPLE function: gimple_seq gimple_omp_body (gimple g) ! Return the body for the 'OMP' statement 'G'. -- GIMPLE function: void gimple_omp_set_body (gimple g, gimple_seq body) ! Set 'BODY' to be the body for the 'OMP' statement 'G'. -- GIMPLE function: tree gimple_omp_parallel_clauses (gimple g) ! Return the clauses associated with 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree * gimple_omp_parallel_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with 'OMP_PARALLEL' 'G'. -- GIMPLE function: void gimple_omp_parallel_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the list of clauses associated with ! 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree gimple_omp_parallel_child_fn (gimple g) ! Return the child function used to hold the body of 'OMP_PARALLEL' ! 'G'. -- GIMPLE function: tree * gimple_omp_parallel_child_fn_ptr (gimple g) Return a pointer to the child function used to hold the body of ! 'OMP_PARALLEL' 'G'. -- GIMPLE function: void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn) ! Set 'CHILD_FN' to be the child function for 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree gimple_omp_parallel_data_arg (gimple g) Return the artificial argument used to send variables and values ! from the parent to the children threads in 'OMP_PARALLEL' 'G'. -- GIMPLE function: tree * gimple_omp_parallel_data_arg_ptr (gimple g) ! Return a pointer to the data argument for 'OMP_PARALLEL' 'G'. -- GIMPLE function: void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg) ! Set 'DATA_ARG' to be the data argument for 'OMP_PARALLEL' 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_RETURN', Next: 'GIMPLE_OMP_SECTION', Prev: 'GIMPLE_OMP_PARALLEL', Up: Tuple specific accessors ! 11.7.19 'GIMPLE_OMP_RETURN' --------------------------- -- GIMPLE function: gimple gimple_build_omp_return (bool wait_p) ! Build a 'GIMPLE_OMP_RETURN' statement. 'WAIT_P' is true if this is a non-waiting return. -- GIMPLE function: void gimple_omp_return_set_nowait (gimple s) ! Set the nowait flag on 'GIMPLE_OMP_RETURN' statement 'S'. -- GIMPLE function: bool gimple_omp_return_nowait_p (gimple g) ! Return true if 'OMP' return statement 'G' has the ! 'GF_OMP_RETURN_NOWAIT' flag set.  ! File: gccint.info, Node: 'GIMPLE_OMP_SECTION', Next: 'GIMPLE_OMP_SECTIONS', Prev: 'GIMPLE_OMP_RETURN', Up: Tuple specific accessors ! 11.7.20 'GIMPLE_OMP_SECTION' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_section (gimple_seq body) ! Build a 'GIMPLE_OMP_SECTION' statement for a sections statement. ! 'BODY' is the sequence of statements in the section. -- GIMPLE function: bool gimple_omp_section_last_p (gimple g) ! Return true if 'OMP' section statement 'G' has the ! 'GF_OMP_SECTION_LAST' flag set. -- GIMPLE function: void gimple_omp_section_set_last (gimple g) ! Set the 'GF_OMP_SECTION_LAST' flag on 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_SECTIONS', Next: 'GIMPLE_OMP_SINGLE', Prev: 'GIMPLE_OMP_SECTION', Up: Tuple specific accessors ! 11.7.21 'GIMPLE_OMP_SECTIONS' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_sections (gimple_seq body, tree clauses) ! Build a 'GIMPLE_OMP_SECTIONS' statement. 'BODY' is a sequence of ! section statements. 'CLAUSES' are any of the 'OMP' sections ! construct's clauses: private, firstprivate, lastprivate, reduction, ! and nowait. -- GIMPLE function: gimple gimple_build_omp_sections_switch (void) ! Build a 'GIMPLE_OMP_SECTIONS_SWITCH' statement. -- GIMPLE function: tree gimple_omp_sections_control (gimple g) Return the control variable associated with the ! 'GIMPLE_OMP_SECTIONS' in 'G'. -- GIMPLE function: tree * gimple_omp_sections_control_ptr (gimple g) Return a pointer to the clauses associated with the ! 'GIMPLE_OMP_SECTIONS' in 'G'. -- GIMPLE function: void gimple_omp_sections_set_control (gimple g, tree control) ! Set 'CONTROL' to be the set of clauses associated with the ! 'GIMPLE_OMP_SECTIONS' in 'G'. -- GIMPLE function: tree gimple_omp_sections_clauses (gimple g) ! Return the clauses associated with 'OMP_SECTIONS' 'G'. -- GIMPLE function: tree * gimple_omp_sections_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with 'OMP_SECTIONS' 'G'. -- GIMPLE function: void gimple_omp_sections_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the set of clauses associated with ! 'OMP_SECTIONS' 'G'.  ! File: gccint.info, Node: 'GIMPLE_OMP_SINGLE', Next: 'GIMPLE_PHI', Prev: 'GIMPLE_OMP_SECTIONS', Up: Tuple specific accessors ! 11.7.22 'GIMPLE_OMP_SINGLE' --------------------------- -- GIMPLE function: gimple gimple_build_omp_single (gimple_seq body, tree clauses) ! Build a 'GIMPLE_OMP_SINGLE' statement. 'BODY' is the sequence of ! statements that will be executed once. 'CLAUSES' are any of the ! 'OMP' single construct's clauses: private, firstprivate, copyprivate, nowait. -- GIMPLE function: tree gimple_omp_single_clauses (gimple g) ! Return the clauses associated with 'OMP_SINGLE' 'G'. -- GIMPLE function: tree * gimple_omp_single_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with 'OMP_SINGLE' 'G'. -- GIMPLE function: void gimple_omp_single_set_clauses (gimple g, tree clauses) ! Set 'CLAUSES' to be the clauses associated with 'OMP_SINGLE' 'G'.  ! File: gccint.info, Node: 'GIMPLE_PHI', Next: 'GIMPLE_RESX', Prev: 'GIMPLE_OMP_SINGLE', Up: Tuple specific accessors ! 11.7.23 'GIMPLE_PHI' -------------------- -- GIMPLE function: unsigned gimple_phi_capacity (gimple g) ! Return the maximum number of arguments supported by 'GIMPLE_PHI' ! 'G'. -- GIMPLE function: unsigned gimple_phi_num_args (gimple g) ! Return the number of arguments in 'GIMPLE_PHI' 'G'. This must always be exactly the number of incoming edges for the basic block ! holding 'G'. -- GIMPLE function: tree gimple_phi_result (gimple g) ! Return the 'SSA' name created by 'GIMPLE_PHI' 'G'. -- GIMPLE function: tree * gimple_phi_result_ptr (gimple g) ! Return a pointer to the 'SSA' name created by 'GIMPLE_PHI' 'G'. -- GIMPLE function: void gimple_phi_set_result (gimple g, tree result) ! Set 'RESULT' to be the 'SSA' name created by 'GIMPLE_PHI' 'G'. -- GIMPLE function: struct phi_arg_d * gimple_phi_arg (gimple g, index) ! Return the 'PHI' argument corresponding to incoming edge 'INDEX' ! for 'GIMPLE_PHI' 'G'. -- GIMPLE function: void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg) ! Set 'PHIARG' to be the argument corresponding to incoming edge ! 'INDEX' for 'GIMPLE_PHI' 'G'.  ! File: gccint.info, Node: 'GIMPLE_RESX', Next: 'GIMPLE_RETURN', Prev: 'GIMPLE_PHI', Up: Tuple specific accessors ! 11.7.24 'GIMPLE_RESX' --------------------- -- GIMPLE function: gimple gimple_build_resx (int region) ! Build a 'GIMPLE_RESX' statement which is a statement. This statement is a placeholder for _Unwind_Resume before we know if a ! function call or a branch is needed. 'REGION' is the exception region from which control is flowing. -- GIMPLE function: int gimple_resx_region (gimple g) ! Return the region number for 'GIMPLE_RESX' 'G'. -- GIMPLE function: void gimple_resx_set_region (gimple g, int region) ! Set 'REGION' to be the region number for 'GIMPLE_RESX' 'G'.  ! File: gccint.info, Node: 'GIMPLE_RETURN', Next: 'GIMPLE_SWITCH', Prev: 'GIMPLE_RESX', Up: Tuple specific accessors ! 11.7.25 'GIMPLE_RETURN' ----------------------- -- GIMPLE function: gimple gimple_build_return (tree retval) ! Build a 'GIMPLE_RETURN' statement whose return value is retval. -- GIMPLE function: tree gimple_return_retval (gimple g) ! Return the return value for 'GIMPLE_RETURN' 'G'. -- GIMPLE function: void gimple_return_set_retval (gimple g, tree retval) ! Set 'RETVAL' to be the return value for 'GIMPLE_RETURN' 'G'.  ! File: gccint.info, Node: 'GIMPLE_SWITCH', Next: 'GIMPLE_TRY', Prev: 'GIMPLE_RETURN', Up: Tuple specific accessors ! 11.7.26 'GIMPLE_SWITCH' ----------------------- -- GIMPLE function: gimple gimple_build_switch (tree index, tree ! default_label, 'VEC'(tree,heap) *args) ! Build a 'GIMPLE_SWITCH' statement. 'INDEX' is the index variable ! to switch on, and 'DEFAULT_LABEL' represents the default label. ! 'ARGS' is a vector of 'CASE_LABEL_EXPR' trees that contain the non-default case labels. Each label is a tree of code ! 'CASE_LABEL_EXPR'. -- GIMPLE function: unsigned gimple_switch_num_labels (gimple g) Return the number of labels associated with the switch statement ! 'G'. -- GIMPLE function: void gimple_switch_set_num_labels (gimple g, unsigned nlabels) ! Set 'NLABELS' to be the number of labels for the switch statement ! 'G'. -- GIMPLE function: tree gimple_switch_index (gimple g) ! Return the index variable used by the switch statement 'G'. -- GIMPLE function: void gimple_switch_set_index (gimple g, tree index) ! Set 'INDEX' to be the index variable for switch statement 'G'. -- GIMPLE function: tree gimple_switch_label (gimple g, unsigned index) ! Return the label numbered 'INDEX'. The default label is 0, ! followed by any labels in a switch statement. -- GIMPLE function: void gimple_switch_set_label (gimple g, unsigned index, tree label) ! Set the label number 'INDEX' to 'LABEL'. 0 is always the default label. -- GIMPLE function: tree gimple_switch_default_label (gimple g) --- 12017,12451 ---- Return the value being stored in an atomic store.  ! File: gccint.info, Node: `GIMPLE_OMP_CONTINUE', Next: `GIMPLE_OMP_CRITICAL', Prev: `GIMPLE_OMP_ATOMIC_STORE', Up: Tuple specific accessors ! 11.7.13 `GIMPLE_OMP_CONTINUE' ----------------------------- ! -- GIMPLE function: gimple gimple_build_omp_continue (tree ! control_def, tree control_use) ! Build a `GIMPLE_OMP_CONTINUE' statement. `CONTROL_DEF' is the ! definition of the control variable. `CONTROL_USE' is the use of the control variable. -- GIMPLE function: tree gimple_omp_continue_control_def (gimple s) Return the definition of the control variable on a ! `GIMPLE_OMP_CONTINUE' in `S'. -- GIMPLE function: tree gimple_omp_continue_control_def_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_def (gimple s) ! Set the control variable definition for a `GIMPLE_OMP_CONTINUE' ! statement in `S'. -- GIMPLE function: tree gimple_omp_continue_control_use (gimple s) ! Return the use of the control variable on a `GIMPLE_OMP_CONTINUE' ! in `S'. -- GIMPLE function: tree gimple_omp_continue_control_use_ptr (gimple s) Same as above, but return the pointer. -- GIMPLE function: tree gimple_omp_continue_set_control_use (gimple s) ! Set the control variable use for a `GIMPLE_OMP_CONTINUE' statement ! in `S'.  ! File: gccint.info, Node: `GIMPLE_OMP_CRITICAL', Next: `GIMPLE_OMP_FOR', Prev: `GIMPLE_OMP_CONTINUE', Up: Tuple specific accessors ! 11.7.14 `GIMPLE_OMP_CRITICAL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_critical (gimple_seq body, tree name) ! Build a `GIMPLE_OMP_CRITICAL' statement. `BODY' is the sequence of ! statements for which only one thread can execute. `NAME' is an optional identifier for this critical block. -- GIMPLE function: tree gimple_omp_critical_name (gimple g) ! Return the name associated with `OMP_CRITICAL' statement `G'. -- GIMPLE function: tree * gimple_omp_critical_name_ptr (gimple g) ! Return a pointer to the name associated with `OMP' critical ! statement `G'. -- GIMPLE function: void gimple_omp_critical_set_name (gimple g, tree name) ! Set `NAME' to be the name associated with `OMP' critical statement ! `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_FOR', Next: `GIMPLE_OMP_MASTER', Prev: `GIMPLE_OMP_CRITICAL', Up: Tuple specific accessors ! 11.7.15 `GIMPLE_OMP_FOR' ------------------------ -- GIMPLE function: gimple gimple_build_omp_for (gimple_seq body, tree clauses, tree index, tree initial, tree final, tree incr, gimple_seq pre_body, enum tree_code omp_for_cond) ! Build a `GIMPLE_OMP_FOR' statement. `BODY' is sequence of ! statements inside the for loop. `CLAUSES', are any of the `OMP' ! loop construct's clauses: private, firstprivate, lastprivate, ! reductions, ordered, schedule, and nowait. `PRE_BODY' is the ! sequence of statements that are loop invariant. `INDEX' is the ! index variable. `INITIAL' is the initial value of `INDEX'. ! `FINAL' is final value of `INDEX'. OMP_FOR_COND is the predicate ! used to compare `INDEX' and `FINAL'. `INCR' is the increment expression. -- GIMPLE function: tree gimple_omp_for_clauses (gimple g) ! Return the clauses associated with `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_clauses_ptr (gimple g) ! Return a pointer to the `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the list of clauses associated with `OMP_FOR' ! `G'. -- GIMPLE function: tree gimple_omp_for_index (gimple g) ! Return the index variable for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_index_ptr (gimple g) ! Return a pointer to the index variable for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_index (gimple g, tree index) ! Set `INDEX' to be the index variable for `OMP_FOR' `G'. -- GIMPLE function: tree gimple_omp_for_initial (gimple g) ! Return the initial value for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_initial_ptr (gimple g) ! Return a pointer to the initial value for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_initial (gimple g, tree initial) ! Set `INITIAL' to be the initial value for `OMP_FOR' `G'. -- GIMPLE function: tree gimple_omp_for_final (gimple g) ! Return the final value for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_final_ptr (gimple g) ! turn a pointer to the final value for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_final (gimple g, tree final) ! Set `FINAL' to be the final value for `OMP_FOR' `G'. -- GIMPLE function: tree gimple_omp_for_incr (gimple g) ! Return the increment value for `OMP_FOR' `G'. -- GIMPLE function: tree * gimple_omp_for_incr_ptr (gimple g) ! Return a pointer to the increment value for `OMP_FOR' `G'. -- GIMPLE function: void gimple_omp_for_set_incr (gimple g, tree incr) ! Set `INCR' to be the increment value for `OMP_FOR' `G'. -- GIMPLE function: gimple_seq gimple_omp_for_pre_body (gimple g) ! Return the sequence of statements to execute before the `OMP_FOR' ! statement `G' starts. -- GIMPLE function: void gimple_omp_for_set_pre_body (gimple g, gimple_seq pre_body) ! Set `PRE_BODY' to be the sequence of statements to execute before ! the `OMP_FOR' statement `G' starts. -- GIMPLE function: void gimple_omp_for_set_cond (gimple g, enum tree_code cond) ! Set `COND' to be the condition code for `OMP_FOR' `G'. -- GIMPLE function: enum tree_code gimple_omp_for_cond (gimple g) ! Return the condition code associated with `OMP_FOR' `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_MASTER', Next: `GIMPLE_OMP_ORDERED', Prev: `GIMPLE_OMP_FOR', Up: Tuple specific accessors ! 11.7.16 `GIMPLE_OMP_MASTER' --------------------------- -- GIMPLE function: gimple gimple_build_omp_master (gimple_seq body) ! Build a `GIMPLE_OMP_MASTER' statement. `BODY' is the sequence of statements to be executed by just the master.  ! File: gccint.info, Node: `GIMPLE_OMP_ORDERED', Next: `GIMPLE_OMP_PARALLEL', Prev: `GIMPLE_OMP_MASTER', Up: Tuple specific accessors ! 11.7.17 `GIMPLE_OMP_ORDERED' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_ordered (gimple_seq body) ! Build a `GIMPLE_OMP_ORDERED' statement. ! `BODY' is the sequence of statements inside a loop that will executed in sequence.  ! File: gccint.info, Node: `GIMPLE_OMP_PARALLEL', Next: `GIMPLE_OMP_RETURN', Prev: `GIMPLE_OMP_ORDERED', Up: Tuple specific accessors ! 11.7.18 `GIMPLE_OMP_PARALLEL' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn, tree data_arg) ! Build a `GIMPLE_OMP_PARALLEL' statement. ! `BODY' is sequence of statements which are executed in parallel. ! `CLAUSES', are the `OMP' parallel construct's clauses. `CHILD_FN' is ! the function created for the parallel threads to execute. `DATA_ARG' are the shared data argument(s). -- GIMPLE function: bool gimple_omp_parallel_combined_p (gimple g) ! Return true if `OMP' parallel statement `G' has the ! `GF_OMP_PARALLEL_COMBINED' flag set. -- GIMPLE function: void gimple_omp_parallel_set_combined_p (gimple g) ! Set the `GF_OMP_PARALLEL_COMBINED' field in `OMP' parallel ! statement `G'. -- GIMPLE function: gimple_seq gimple_omp_body (gimple g) ! Return the body for the `OMP' statement `G'. -- GIMPLE function: void gimple_omp_set_body (gimple g, gimple_seq body) ! Set `BODY' to be the body for the `OMP' statement `G'. -- GIMPLE function: tree gimple_omp_parallel_clauses (gimple g) ! Return the clauses associated with `OMP_PARALLEL' `G'. -- GIMPLE function: tree * gimple_omp_parallel_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with `OMP_PARALLEL' `G'. -- GIMPLE function: void gimple_omp_parallel_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the list of clauses associated with ! `OMP_PARALLEL' `G'. -- GIMPLE function: tree gimple_omp_parallel_child_fn (gimple g) ! Return the child function used to hold the body of `OMP_PARALLEL' ! `G'. -- GIMPLE function: tree * gimple_omp_parallel_child_fn_ptr (gimple g) Return a pointer to the child function used to hold the body of ! `OMP_PARALLEL' `G'. -- GIMPLE function: void gimple_omp_parallel_set_child_fn (gimple g, tree child_fn) ! Set `CHILD_FN' to be the child function for `OMP_PARALLEL' `G'. -- GIMPLE function: tree gimple_omp_parallel_data_arg (gimple g) Return the artificial argument used to send variables and values ! from the parent to the children threads in `OMP_PARALLEL' `G'. -- GIMPLE function: tree * gimple_omp_parallel_data_arg_ptr (gimple g) ! Return a pointer to the data argument for `OMP_PARALLEL' `G'. -- GIMPLE function: void gimple_omp_parallel_set_data_arg (gimple g, tree data_arg) ! Set `DATA_ARG' to be the data argument for `OMP_PARALLEL' `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_RETURN', Next: `GIMPLE_OMP_SECTION', Prev: `GIMPLE_OMP_PARALLEL', Up: Tuple specific accessors ! 11.7.19 `GIMPLE_OMP_RETURN' --------------------------- -- GIMPLE function: gimple gimple_build_omp_return (bool wait_p) ! Build a `GIMPLE_OMP_RETURN' statement. `WAIT_P' is true if this is a non-waiting return. -- GIMPLE function: void gimple_omp_return_set_nowait (gimple s) ! Set the nowait flag on `GIMPLE_OMP_RETURN' statement `S'. -- GIMPLE function: bool gimple_omp_return_nowait_p (gimple g) ! Return true if `OMP' return statement `G' has the ! `GF_OMP_RETURN_NOWAIT' flag set.  ! File: gccint.info, Node: `GIMPLE_OMP_SECTION', Next: `GIMPLE_OMP_SECTIONS', Prev: `GIMPLE_OMP_RETURN', Up: Tuple specific accessors ! 11.7.20 `GIMPLE_OMP_SECTION' ---------------------------- -- GIMPLE function: gimple gimple_build_omp_section (gimple_seq body) ! Build a `GIMPLE_OMP_SECTION' statement for a sections statement. ! `BODY' is the sequence of statements in the section. -- GIMPLE function: bool gimple_omp_section_last_p (gimple g) ! Return true if `OMP' section statement `G' has the ! `GF_OMP_SECTION_LAST' flag set. -- GIMPLE function: void gimple_omp_section_set_last (gimple g) ! Set the `GF_OMP_SECTION_LAST' flag on `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_SECTIONS', Next: `GIMPLE_OMP_SINGLE', Prev: `GIMPLE_OMP_SECTION', Up: Tuple specific accessors ! 11.7.21 `GIMPLE_OMP_SECTIONS' ----------------------------- -- GIMPLE function: gimple gimple_build_omp_sections (gimple_seq body, tree clauses) ! Build a `GIMPLE_OMP_SECTIONS' statement. `BODY' is a sequence of ! section statements. `CLAUSES' are any of the `OMP' sections ! construct's clauses: private, firstprivate, lastprivate, ! reduction, and nowait. -- GIMPLE function: gimple gimple_build_omp_sections_switch (void) ! Build a `GIMPLE_OMP_SECTIONS_SWITCH' statement. -- GIMPLE function: tree gimple_omp_sections_control (gimple g) Return the control variable associated with the ! `GIMPLE_OMP_SECTIONS' in `G'. -- GIMPLE function: tree * gimple_omp_sections_control_ptr (gimple g) Return a pointer to the clauses associated with the ! `GIMPLE_OMP_SECTIONS' in `G'. -- GIMPLE function: void gimple_omp_sections_set_control (gimple g, tree control) ! Set `CONTROL' to be the set of clauses associated with the ! `GIMPLE_OMP_SECTIONS' in `G'. -- GIMPLE function: tree gimple_omp_sections_clauses (gimple g) ! Return the clauses associated with `OMP_SECTIONS' `G'. -- GIMPLE function: tree * gimple_omp_sections_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with `OMP_SECTIONS' `G'. -- GIMPLE function: void gimple_omp_sections_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the set of clauses associated with ! `OMP_SECTIONS' `G'.  ! File: gccint.info, Node: `GIMPLE_OMP_SINGLE', Next: `GIMPLE_PHI', Prev: `GIMPLE_OMP_SECTIONS', Up: Tuple specific accessors ! 11.7.22 `GIMPLE_OMP_SINGLE' --------------------------- -- GIMPLE function: gimple gimple_build_omp_single (gimple_seq body, tree clauses) ! Build a `GIMPLE_OMP_SINGLE' statement. `BODY' is the sequence of ! statements that will be executed once. `CLAUSES' are any of the ! `OMP' single construct's clauses: private, firstprivate, copyprivate, nowait. -- GIMPLE function: tree gimple_omp_single_clauses (gimple g) ! Return the clauses associated with `OMP_SINGLE' `G'. -- GIMPLE function: tree * gimple_omp_single_clauses_ptr (gimple g) ! Return a pointer to the clauses associated with `OMP_SINGLE' `G'. -- GIMPLE function: void gimple_omp_single_set_clauses (gimple g, tree clauses) ! Set `CLAUSES' to be the clauses associated with `OMP_SINGLE' `G'.  ! File: gccint.info, Node: `GIMPLE_PHI', Next: `GIMPLE_RESX', Prev: `GIMPLE_OMP_SINGLE', Up: Tuple specific accessors ! 11.7.23 `GIMPLE_PHI' -------------------- -- GIMPLE function: unsigned gimple_phi_capacity (gimple g) ! Return the maximum number of arguments supported by `GIMPLE_PHI' ! `G'. -- GIMPLE function: unsigned gimple_phi_num_args (gimple g) ! Return the number of arguments in `GIMPLE_PHI' `G'. This must always be exactly the number of incoming edges for the basic block ! holding `G'. -- GIMPLE function: tree gimple_phi_result (gimple g) ! Return the `SSA' name created by `GIMPLE_PHI' `G'. -- GIMPLE function: tree * gimple_phi_result_ptr (gimple g) ! Return a pointer to the `SSA' name created by `GIMPLE_PHI' `G'. -- GIMPLE function: void gimple_phi_set_result (gimple g, tree result) ! Set `RESULT' to be the `SSA' name created by `GIMPLE_PHI' `G'. -- GIMPLE function: struct phi_arg_d * gimple_phi_arg (gimple g, index) ! Return the `PHI' argument corresponding to incoming edge `INDEX' ! for `GIMPLE_PHI' `G'. -- GIMPLE function: void gimple_phi_set_arg (gimple g, index, struct phi_arg_d * phiarg) ! Set `PHIARG' to be the argument corresponding to incoming edge ! `INDEX' for `GIMPLE_PHI' `G'.  ! File: gccint.info, Node: `GIMPLE_RESX', Next: `GIMPLE_RETURN', Prev: `GIMPLE_PHI', Up: Tuple specific accessors ! 11.7.24 `GIMPLE_RESX' --------------------- -- GIMPLE function: gimple gimple_build_resx (int region) ! Build a `GIMPLE_RESX' statement which is a statement. This statement is a placeholder for _Unwind_Resume before we know if a ! function call or a branch is needed. `REGION' is the exception region from which control is flowing. -- GIMPLE function: int gimple_resx_region (gimple g) ! Return the region number for `GIMPLE_RESX' `G'. -- GIMPLE function: void gimple_resx_set_region (gimple g, int region) ! Set `REGION' to be the region number for `GIMPLE_RESX' `G'.  ! File: gccint.info, Node: `GIMPLE_RETURN', Next: `GIMPLE_SWITCH', Prev: `GIMPLE_RESX', Up: Tuple specific accessors ! 11.7.25 `GIMPLE_RETURN' ----------------------- -- GIMPLE function: gimple gimple_build_return (tree retval) ! Build a `GIMPLE_RETURN' statement whose return value is retval. -- GIMPLE function: tree gimple_return_retval (gimple g) ! Return the return value for `GIMPLE_RETURN' `G'. -- GIMPLE function: void gimple_return_set_retval (gimple g, tree retval) ! Set `RETVAL' to be the return value for `GIMPLE_RETURN' `G'.  ! File: gccint.info, Node: `GIMPLE_SWITCH', Next: `GIMPLE_TRY', Prev: `GIMPLE_RETURN', Up: Tuple specific accessors ! 11.7.26 `GIMPLE_SWITCH' ----------------------- -- GIMPLE function: gimple gimple_build_switch (tree index, tree ! default_label, `VEC'(tree,heap) *args) ! Build a `GIMPLE_SWITCH' statement. `INDEX' is the index variable ! to switch on, and `DEFAULT_LABEL' represents the default label. ! `ARGS' is a vector of `CASE_LABEL_EXPR' trees that contain the non-default case labels. Each label is a tree of code ! `CASE_LABEL_EXPR'. -- GIMPLE function: unsigned gimple_switch_num_labels (gimple g) Return the number of labels associated with the switch statement ! `G'. -- GIMPLE function: void gimple_switch_set_num_labels (gimple g, unsigned nlabels) ! Set `NLABELS' to be the number of labels for the switch statement ! `G'. -- GIMPLE function: tree gimple_switch_index (gimple g) ! Return the index variable used by the switch statement `G'. -- GIMPLE function: void gimple_switch_set_index (gimple g, tree index) ! Set `INDEX' to be the index variable for switch statement `G'. -- GIMPLE function: tree gimple_switch_label (gimple g, unsigned index) ! Return the label numbered `INDEX'. The default label is 0, followed ! by any labels in a switch statement. -- GIMPLE function: void gimple_switch_set_label (gimple g, unsigned index, tree label) ! Set the label number `INDEX' to `LABEL'. 0 is always the default label. -- GIMPLE function: tree gimple_switch_default_label (gimple g) *************** File: gccint.info, Node: 'GIMPLE_SWITCH *** 12316,12387 **** Set the default label for a switch statement.  ! File: gccint.info, Node: 'GIMPLE_TRY', Next: 'GIMPLE_WITH_CLEANUP_EXPR', Prev: 'GIMPLE_SWITCH', Up: Tuple specific accessors ! 11.7.27 'GIMPLE_TRY' -------------------- -- GIMPLE function: gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind) ! Build a 'GIMPLE_TRY' statement. 'EVAL' is a sequence with the ! expression to evaluate. 'CLEANUP' is a sequence of statements to ! run at clean-up time. 'KIND' is the enumeration value ! 'GIMPLE_TRY_CATCH' if this statement denotes a try/catch construct ! or 'GIMPLE_TRY_FINALLY' if this statement denotes a try/finally construct. -- GIMPLE function: enum gimple_try_flags gimple_try_kind (gimple g) ! Return the kind of try block represented by 'GIMPLE_TRY' 'G'. This ! is either 'GIMPLE_TRY_CATCH' or 'GIMPLE_TRY_FINALLY'. -- GIMPLE function: bool gimple_try_catch_is_cleanup (gimple g) ! Return the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: gimple_seq gimple_try_eval (gimple g) ! Return the sequence of statements used as the body for 'GIMPLE_TRY' ! 'G'. -- GIMPLE function: gimple_seq gimple_try_cleanup (gimple g) Return the sequence of statements used as the cleanup body for ! 'GIMPLE_TRY' 'G'. -- GIMPLE function: void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup) ! Set the 'GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: void gimple_try_set_eval (gimple g, gimple_seq eval) ! Set 'EVAL' to be the sequence of statements to use as the body for ! 'GIMPLE_TRY' 'G'. -- GIMPLE function: void gimple_try_set_cleanup (gimple g, gimple_seq cleanup) ! Set 'CLEANUP' to be the sequence of statements to use as the ! cleanup body for 'GIMPLE_TRY' 'G'.  ! File: gccint.info, Node: 'GIMPLE_WITH_CLEANUP_EXPR', Prev: 'GIMPLE_TRY', Up: Tuple specific accessors ! 11.7.28 'GIMPLE_WITH_CLEANUP_EXPR' ---------------------------------- -- GIMPLE function: gimple gimple_build_wce (gimple_seq cleanup) ! Build a 'GIMPLE_WITH_CLEANUP_EXPR' statement. 'CLEANUP' is the clean-up expression. -- GIMPLE function: gimple_seq gimple_wce_cleanup (gimple g) ! Return the cleanup sequence for cleanup statement 'G'. -- GIMPLE function: void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup) ! Set 'CLEANUP' to be the cleanup sequence for 'G'. -- GIMPLE function: bool gimple_wce_cleanup_eh_only (gimple g) ! Return the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple. ! -- GIMPLE function: void gimple_wce_set_cleanup_eh_only (gimple g, bool ! eh_only_p) ! Set the 'CLEANUP_EH_ONLY' flag for a 'WCE' tuple.  File: gccint.info, Node: GIMPLE sequences, Next: Sequence iterators, Prev: Tuple specific accessors, Up: GIMPLE --- 12456,12527 ---- Set the default label for a switch statement.  ! File: gccint.info, Node: `GIMPLE_TRY', Next: `GIMPLE_WITH_CLEANUP_EXPR', Prev: `GIMPLE_SWITCH', Up: Tuple specific accessors ! 11.7.27 `GIMPLE_TRY' -------------------- -- GIMPLE function: gimple gimple_build_try (gimple_seq eval, gimple_seq cleanup, unsigned int kind) ! Build a `GIMPLE_TRY' statement. `EVAL' is a sequence with the ! expression to evaluate. `CLEANUP' is a sequence of statements to ! run at clean-up time. `KIND' is the enumeration value ! `GIMPLE_TRY_CATCH' if this statement denotes a try/catch construct ! or `GIMPLE_TRY_FINALLY' if this statement denotes a try/finally construct. -- GIMPLE function: enum gimple_try_flags gimple_try_kind (gimple g) ! Return the kind of try block represented by `GIMPLE_TRY' `G'. This ! is either `GIMPLE_TRY_CATCH' or `GIMPLE_TRY_FINALLY'. -- GIMPLE function: bool gimple_try_catch_is_cleanup (gimple g) ! Return the `GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: gimple_seq gimple_try_eval (gimple g) ! Return the sequence of statements used as the body for `GIMPLE_TRY' ! `G'. -- GIMPLE function: gimple_seq gimple_try_cleanup (gimple g) Return the sequence of statements used as the cleanup body for ! `GIMPLE_TRY' `G'. -- GIMPLE function: void gimple_try_set_catch_is_cleanup (gimple g, bool catch_is_cleanup) ! Set the `GIMPLE_TRY_CATCH_IS_CLEANUP' flag. -- GIMPLE function: void gimple_try_set_eval (gimple g, gimple_seq eval) ! Set `EVAL' to be the sequence of statements to use as the body for ! `GIMPLE_TRY' `G'. -- GIMPLE function: void gimple_try_set_cleanup (gimple g, gimple_seq cleanup) ! Set `CLEANUP' to be the sequence of statements to use as the ! cleanup body for `GIMPLE_TRY' `G'.  ! File: gccint.info, Node: `GIMPLE_WITH_CLEANUP_EXPR', Prev: `GIMPLE_TRY', Up: Tuple specific accessors ! 11.7.28 `GIMPLE_WITH_CLEANUP_EXPR' ---------------------------------- -- GIMPLE function: gimple gimple_build_wce (gimple_seq cleanup) ! Build a `GIMPLE_WITH_CLEANUP_EXPR' statement. `CLEANUP' is the clean-up expression. -- GIMPLE function: gimple_seq gimple_wce_cleanup (gimple g) ! Return the cleanup sequence for cleanup statement `G'. -- GIMPLE function: void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup) ! Set `CLEANUP' to be the cleanup sequence for `G'. -- GIMPLE function: bool gimple_wce_cleanup_eh_only (gimple g) ! Return the `CLEANUP_EH_ONLY' flag for a `WCE' tuple. ! -- GIMPLE function: void gimple_wce_set_cleanup_eh_only (gimple g, ! bool eh_only_p) ! Set the `CLEANUP_EH_ONLY' flag for a `WCE' tuple.  File: gccint.info, Node: GIMPLE sequences, Next: Sequence iterators, Prev: Tuple specific accessors, Up: GIMPLE *************** File: gccint.info, Node: GIMPLE sequenc *** 12389,12406 **** 11.8 GIMPLE sequences ===================== ! GIMPLE sequences are the tuple equivalent of 'STATEMENT_LIST''s used in ! 'GENERIC'. They are used to chain statements together, and when used in ! conjunction with sequence iterators, provide a framework for iterating ! through statements. ! GIMPLE sequences are of type struct 'gimple_sequence', but are more commonly passed by reference to functions dealing with sequences. The ! type for a sequence pointer is 'gimple_seq' which is the same as struct ! 'gimple_sequence' *. When declaring a local sequence, you can define a ! local variable of type struct 'gimple_sequence'. When declaring a sequence allocated on the garbage collected heap, use the function ! 'gimple_seq_alloc' documented below. There are convenience functions for iterating through sequences in the section entitled Sequence Iterators. --- 12529,12546 ---- 11.8 GIMPLE sequences ===================== ! GIMPLE sequences are the tuple equivalent of `STATEMENT_LIST''s used in ! `GENERIC'. They are used to chain statements together, and when used ! in conjunction with sequence iterators, provide a framework for ! iterating through statements. ! GIMPLE sequences are of type struct `gimple_sequence', but are more commonly passed by reference to functions dealing with sequences. The ! type for a sequence pointer is `gimple_seq' which is the same as struct ! `gimple_sequence' *. When declaring a local sequence, you can define a ! local variable of type struct `gimple_sequence'. When declaring a sequence allocated on the garbage collected heap, use the function ! `gimple_seq_alloc' documented below. There are convenience functions for iterating through sequences in the section entitled Sequence Iterators. *************** section entitled Sequence Iterators. *** 12409,12448 **** -- GIMPLE function: void gimple_seq_add_stmt (gimple_seq *seq, gimple g) ! Link a gimple statement to the end of the sequence *'SEQ' if 'G' is ! not 'NULL'. If *'SEQ' is 'NULL', allocate a sequence before linking. -- GIMPLE function: void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src) ! Append sequence 'SRC' to the end of sequence *'DEST' if 'SRC' is ! not 'NULL'. If *'DEST' is 'NULL', allocate a new sequence before appending. -- GIMPLE function: gimple_seq gimple_seq_deep_copy (gimple_seq src) ! Perform a deep copy of sequence 'SRC' and return the result. -- GIMPLE function: gimple_seq gimple_seq_reverse (gimple_seq seq) ! Reverse the order of the statements in the sequence 'SEQ'. Return ! 'SEQ'. -- GIMPLE function: gimple gimple_seq_first (gimple_seq s) ! Return the first statement in sequence 'S'. -- GIMPLE function: gimple gimple_seq_last (gimple_seq s) ! Return the last statement in sequence 'S'. -- GIMPLE function: void gimple_seq_set_last (gimple_seq s, gimple last) ! Set the last statement in sequence 'S' to the statement in 'LAST'. -- GIMPLE function: void gimple_seq_set_first (gimple_seq s, gimple first) ! Set the first statement in sequence 'S' to the statement in ! 'FIRST'. -- GIMPLE function: void gimple_seq_init (gimple_seq s) ! Initialize sequence 'S' to an empty sequence. -- GIMPLE function: gimple_seq gimple_seq_alloc (void) Allocate a new sequence in the garbage collected store and return --- 12549,12588 ---- -- GIMPLE function: void gimple_seq_add_stmt (gimple_seq *seq, gimple g) ! Link a gimple statement to the end of the sequence *`SEQ' if `G' is ! not `NULL'. If *`SEQ' is `NULL', allocate a sequence before linking. -- GIMPLE function: void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src) ! Append sequence `SRC' to the end of sequence *`DEST' if `SRC' is ! not `NULL'. If *`DEST' is `NULL', allocate a new sequence before appending. -- GIMPLE function: gimple_seq gimple_seq_deep_copy (gimple_seq src) ! Perform a deep copy of sequence `SRC' and return the result. -- GIMPLE function: gimple_seq gimple_seq_reverse (gimple_seq seq) ! Reverse the order of the statements in the sequence `SEQ'. Return ! `SEQ'. -- GIMPLE function: gimple gimple_seq_first (gimple_seq s) ! Return the first statement in sequence `S'. -- GIMPLE function: gimple gimple_seq_last (gimple_seq s) ! Return the last statement in sequence `S'. -- GIMPLE function: void gimple_seq_set_last (gimple_seq s, gimple last) ! Set the last statement in sequence `S' to the statement in `LAST'. -- GIMPLE function: void gimple_seq_set_first (gimple_seq s, gimple first) ! Set the first statement in sequence `S' to the statement in ! `FIRST'. -- GIMPLE function: void gimple_seq_init (gimple_seq s) ! Initialize sequence `S' to an empty sequence. -- GIMPLE function: gimple_seq gimple_seq_alloc (void) Allocate a new sequence in the garbage collected store and return *************** section entitled Sequence Iterators. *** 12450,12468 **** -- GIMPLE function: void gimple_seq_copy (gimple_seq dest, gimple_seq src) ! Copy the sequence 'SRC' into the sequence 'DEST'. -- GIMPLE function: bool gimple_seq_empty_p (gimple_seq s) ! Return true if the sequence 'S' is empty. -- GIMPLE function: gimple_seq bb_seq (basic_block bb) ! Returns the sequence of statements in 'BB'. -- GIMPLE function: void set_bb_seq (basic_block bb, gimple_seq seq) ! Sets the sequence of statements in 'BB' to 'SEQ'. -- GIMPLE function: bool gimple_seq_singleton_p (gimple_seq seq) ! Determine whether 'SEQ' contains exactly one statement.  File: gccint.info, Node: Sequence iterators, Next: Adding a new GIMPLE statement code, Prev: GIMPLE sequences, Up: GIMPLE --- 12590,12608 ---- -- GIMPLE function: void gimple_seq_copy (gimple_seq dest, gimple_seq src) ! Copy the sequence `SRC' into the sequence `DEST'. -- GIMPLE function: bool gimple_seq_empty_p (gimple_seq s) ! Return true if the sequence `S' is empty. -- GIMPLE function: gimple_seq bb_seq (basic_block bb) ! Returns the sequence of statements in `BB'. -- GIMPLE function: void set_bb_seq (basic_block bb, gimple_seq seq) ! Sets the sequence of statements in `BB' to `SEQ'. -- GIMPLE function: bool gimple_seq_singleton_p (gimple_seq seq) ! Determine whether `SEQ' contains exactly one statement.  File: gccint.info, Node: Sequence iterators, Next: Adding a new GIMPLE statement code, Prev: GIMPLE sequences, Up: GIMPLE *************** File: gccint.info, Node: Sequence itera *** 12471,12485 **** ======================= Sequence iterators are convenience constructs for iterating through ! statements in a sequence. Given a sequence 'SEQ', here is a typical use ! of gimple sequence iterators: gimple_stmt_iterator gsi; for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple g = gsi_stmt (gsi); ! /* Do something with gimple statement G. */ } Backward iterations are possible: --- 12611,12625 ---- ======================= Sequence iterators are convenience constructs for iterating through ! statements in a sequence. Given a sequence `SEQ', here is a typical ! use of gimple sequence iterators: gimple_stmt_iterator gsi; for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi)) { gimple g = gsi_stmt (gsi); ! /* Do something with gimple statement `G'. */ } Backward iterations are possible: *************** of gimple sequence iterators: *** 12487,12533 **** for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi)) Forward and backward iterations on basic blocks are possible with ! 'gsi_start_bb' and 'gsi_last_bb'. In the documentation below we sometimes refer to enum ! 'gsi_iterator_update'. The valid options for this enumeration are: ! * 'GSI_NEW_STMT' Only valid when a single statement is added. Move the iterator to it. ! * 'GSI_SAME_STMT' Leave the iterator at the same statement. ! * 'GSI_CONTINUE_LINKING' Move iterator to whatever position is suitable for linking other statements in the same direction. Below is a list of the functions used to manipulate and use statement iterators. -- GIMPLE function: gimple_stmt_iterator gsi_start (gimple_seq seq) ! Return a new iterator pointing to the sequence 'SEQ''s first ! statement. If 'SEQ' is empty, the iterator's basic block is ! 'NULL'. Use 'gsi_start_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_start_bb (basic_block bb) Return a new iterator pointing to the first statement in basic ! block 'BB'. -- GIMPLE function: gimple_stmt_iterator gsi_last (gimple_seq seq) Return a new iterator initially pointing to the last statement of ! sequence 'SEQ'. If 'SEQ' is empty, the iterator's basic block is ! 'NULL'. Use 'gsi_last_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_last_bb (basic_block bb) ! Return a new iterator pointing to the last statement in basic block ! 'BB'. -- GIMPLE function: bool gsi_end_p (gimple_stmt_iterator i) ! Return 'TRUE' if at the end of 'I'. -- GIMPLE function: bool gsi_one_before_end_p (gimple_stmt_iterator i) ! Return 'TRUE' if we're one statement before the end of 'I'. -- GIMPLE function: void gsi_next (gimple_stmt_iterator *i) Advance the iterator to the next gimple statement. --- 12627,12673 ---- for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi)) Forward and backward iterations on basic blocks are possible with ! `gsi_start_bb' and `gsi_last_bb'. In the documentation below we sometimes refer to enum ! `gsi_iterator_update'. The valid options for this enumeration are: ! * `GSI_NEW_STMT' Only valid when a single statement is added. Move the iterator to it. ! * `GSI_SAME_STMT' Leave the iterator at the same statement. ! * `GSI_CONTINUE_LINKING' Move iterator to whatever position is suitable for linking other statements in the same direction. Below is a list of the functions used to manipulate and use statement iterators. -- GIMPLE function: gimple_stmt_iterator gsi_start (gimple_seq seq) ! Return a new iterator pointing to the sequence `SEQ''s first ! statement. If `SEQ' is empty, the iterator's basic block is ! `NULL'. Use `gsi_start_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_start_bb (basic_block bb) Return a new iterator pointing to the first statement in basic ! block `BB'. -- GIMPLE function: gimple_stmt_iterator gsi_last (gimple_seq seq) Return a new iterator initially pointing to the last statement of ! sequence `SEQ'. If `SEQ' is empty, the iterator's basic block is ! `NULL'. Use `gsi_last_bb' instead when the iterator needs to always have the correct basic block set. -- GIMPLE function: gimple_stmt_iterator gsi_last_bb (basic_block bb) ! Return a new iterator pointing to the last statement in basic ! block `BB'. -- GIMPLE function: bool gsi_end_p (gimple_stmt_iterator i) ! Return `TRUE' if at the end of `I'. -- GIMPLE function: bool gsi_one_before_end_p (gimple_stmt_iterator i) ! Return `TRUE' if we're one statement before the end of `I'. -- GIMPLE function: void gsi_next (gimple_stmt_iterator *i) Advance the iterator to the next gimple statement. *************** iterators. *** 12541,12547 **** -- GIMPLE function: gimple_stmt_iterator gsi_after_labels (basic_block bb) Return a block statement iterator that points to the first ! non-label statement in block 'BB'. -- GIMPLE function: gimple * gsi_stmt_ptr (gimple_stmt_iterator *i) Return a pointer to the current stmt. --- 12681,12687 ---- -- GIMPLE function: gimple_stmt_iterator gsi_after_labels (basic_block bb) Return a block statement iterator that points to the first ! non-label statement in block `BB'. -- GIMPLE function: gimple * gsi_stmt_ptr (gimple_stmt_iterator *i) Return a pointer to the current stmt. *************** iterators. *** 12554,12661 **** -- GIMPLE function: void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info) ! Remove the current stmt from the sequence. The iterator is updated ! to point to the next statement. When 'REMOVE_EH_INFO' is true we ! remove the statement pointed to by iterator 'I' from the 'EH' ! tables. Otherwise we do not modify the 'EH' tables. Generally, ! 'REMOVE_EH_INFO' should be true when the statement is going to be ! removed from the 'IL' and not reinserted elsewhere. -- GIMPLE function: void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links the sequence of statements 'SEQ' before the statement pointed ! by iterator 'I'. 'MODE' indicates what to do with the iterator ! after insertion (see 'enum gsi_iterator_update' above). -- GIMPLE function: void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement 'G' before the statement pointed-to by iterator ! 'I'. Updates iterator 'I' according to 'MODE'. -- GIMPLE function: void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links sequence 'SEQ' after the statement pointed-to by iterator ! 'I'. 'MODE' is as in 'gsi_insert_after'. -- GIMPLE function: void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement 'G' after the statement pointed-to by iterator 'I'. ! 'MODE' is as in 'gsi_insert_after'. -- GIMPLE function: gimple_seq gsi_split_seq_after (gimple_stmt_iterator i) ! Move all statements in the sequence after 'I' to a new sequence. Return this new sequence. -- GIMPLE function: gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i) ! Move all statements in the sequence before 'I' to a new sequence. Return this new sequence. -- GIMPLE function: void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info) ! Replace the statement pointed-to by 'I' to 'STMT'. If ! 'UPDATE_EH_INFO' is true, the exception handling information of the ! original statement is moved to the new statement. -- GIMPLE function: void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement 'STMT' before the statement pointed-to by iterator ! 'I', update 'STMT''s basic block and scan it for new operands. ! 'MODE' specifies how to update iterator 'I' after insertion (see ! enum 'gsi_iterator_update'). -- GIMPLE function: void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Like 'gsi_insert_before', but for all the statements in 'SEQ'. -- GIMPLE function: void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement 'STMT' after the statement pointed-to by iterator ! 'I', update 'STMT''s basic block and scan it for new operands. ! 'MODE' specifies how to update iterator 'I' after insertion (see ! enum 'gsi_iterator_update'). ! -- GIMPLE function: void gsi_insert_seq_after (gimple_stmt_iterator *i, ! gimple_seq seq, enum gsi_iterator_update mode) ! Like 'gsi_insert_after', but for all the statements in 'SEQ'. -- GIMPLE function: gimple_stmt_iterator gsi_for_stmt (gimple stmt) ! Finds iterator for 'STMT'. -- GIMPLE function: void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at 'FROM' so it comes right after the statement ! at 'TO'. -- GIMPLE function: void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at 'FROM' so it comes right before the statement ! at 'TO'. -- GIMPLE function: void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb) ! Move the statement at 'FROM' to the end of basic block 'BB'. -- GIMPLE function: void gsi_insert_on_edge (edge e, gimple stmt) ! Add 'STMT' to the pending list of edge 'E'. No actual insertion is ! made until a call to 'gsi_commit_edge_inserts'() is made. -- GIMPLE function: void gsi_insert_seq_on_edge (edge e, gimple_seq seq) ! Add the sequence of statements in 'SEQ' to the pending list of edge ! 'E'. No actual insertion is made until a call to ! 'gsi_commit_edge_inserts'() is made. -- GIMPLE function: basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt) ! Similar to 'gsi_insert_on_edge'+'gsi_commit_edge_inserts'. If a new block has to be created, it is returned. -- GIMPLE function: void gsi_commit_one_edge_insert (edge e, basic_block *new_bb) ! Commit insertions pending at edge 'E'. If a new block is created, ! set 'NEW_BB' to this block, otherwise set it to 'NULL'. -- GIMPLE function: void gsi_commit_edge_inserts (void) This routine will commit all pending edge insertions, creating any --- 12694,12801 ---- -- GIMPLE function: void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info) ! Remove the current stmt from the sequence. The iterator is ! updated to point to the next statement. When `REMOVE_EH_INFO' is ! true we remove the statement pointed to by iterator `I' from the ! `EH' tables. Otherwise we do not modify the `EH' tables. ! Generally, `REMOVE_EH_INFO' should be true when the statement is ! going to be removed from the `IL' and not reinserted elsewhere. -- GIMPLE function: void gsi_link_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links the sequence of statements `SEQ' before the statement pointed ! by iterator `I'. `MODE' indicates what to do with the iterator ! after insertion (see `enum gsi_iterator_update' above). -- GIMPLE function: void gsi_link_before (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement `G' before the statement pointed-to by iterator ! `I'. Updates iterator `I' according to `MODE'. -- GIMPLE function: void gsi_link_seq_after (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Links sequence `SEQ' after the statement pointed-to by iterator ! `I'. `MODE' is as in `gsi_insert_after'. -- GIMPLE function: void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum gsi_iterator_update mode) ! Links statement `G' after the statement pointed-to by iterator `I'. ! `MODE' is as in `gsi_insert_after'. -- GIMPLE function: gimple_seq gsi_split_seq_after (gimple_stmt_iterator i) ! Move all statements in the sequence after `I' to a new sequence. Return this new sequence. -- GIMPLE function: gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i) ! Move all statements in the sequence before `I' to a new sequence. Return this new sequence. -- GIMPLE function: void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool update_eh_info) ! Replace the statement pointed-to by `I' to `STMT'. If ! `UPDATE_EH_INFO' is true, the exception handling information of ! the original statement is moved to the new statement. -- GIMPLE function: void gsi_insert_before (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement `STMT' before the statement pointed-to by iterator ! `I', update `STMT''s basic block and scan it for new operands. ! `MODE' specifies how to update iterator `I' after insertion (see ! enum `gsi_iterator_update'). -- GIMPLE function: void gsi_insert_seq_before (gimple_stmt_iterator *i, gimple_seq seq, enum gsi_iterator_update mode) ! Like `gsi_insert_before', but for all the statements in `SEQ'. -- GIMPLE function: void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, enum gsi_iterator_update mode) ! Insert statement `STMT' after the statement pointed-to by iterator ! `I', update `STMT''s basic block and scan it for new operands. ! `MODE' specifies how to update iterator `I' after insertion (see ! enum `gsi_iterator_update'). ! -- GIMPLE function: void gsi_insert_seq_after (gimple_stmt_iterator ! *i, gimple_seq seq, enum gsi_iterator_update mode) ! Like `gsi_insert_after', but for all the statements in `SEQ'. -- GIMPLE function: gimple_stmt_iterator gsi_for_stmt (gimple stmt) ! Finds iterator for `STMT'. -- GIMPLE function: void gsi_move_after (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at `FROM' so it comes right after the statement ! at `TO'. -- GIMPLE function: void gsi_move_before (gimple_stmt_iterator *from, gimple_stmt_iterator *to) ! Move the statement at `FROM' so it comes right before the statement ! at `TO'. -- GIMPLE function: void gsi_move_to_bb_end (gimple_stmt_iterator *from, basic_block bb) ! Move the statement at `FROM' to the end of basic block `BB'. -- GIMPLE function: void gsi_insert_on_edge (edge e, gimple stmt) ! Add `STMT' to the pending list of edge `E'. No actual insertion is ! made until a call to `gsi_commit_edge_inserts'() is made. -- GIMPLE function: void gsi_insert_seq_on_edge (edge e, gimple_seq seq) ! Add the sequence of statements in `SEQ' to the pending list of edge ! `E'. No actual insertion is made until a call to ! `gsi_commit_edge_inserts'() is made. -- GIMPLE function: basic_block gsi_insert_on_edge_immediate (edge e, gimple stmt) ! Similar to `gsi_insert_on_edge'+`gsi_commit_edge_inserts'. If a new block has to be created, it is returned. -- GIMPLE function: void gsi_commit_one_edge_insert (edge e, basic_block *new_bb) ! Commit insertions pending at edge `E'. If a new block is created, ! set `NEW_BB' to this block, otherwise set it to `NULL'. -- GIMPLE function: void gsi_commit_edge_inserts (void) This routine will commit all pending edge insertions, creating any *************** File: gccint.info, Node: Adding a new G *** 12668,12692 **** ======================================== The first step in adding a new GIMPLE statement code, is modifying the ! file 'gimple.def', which contains all the GIMPLE codes. Then you must ! add a corresponding structure, and an entry in 'union ! gimple_statement_d', both of which are located in 'gimple.h'. This in ! turn, will require you to add a corresponding 'GTY' tag in ! 'gsstruct.def', and code to handle this tag in 'gss_for_code' which is ! located in 'gimple.c'. In order for the garbage collector to know the size of the structure ! you created in 'gimple.h', you need to add a case to handle your new ! GIMPLE statement in 'gimple_size' which is located in 'gimple.c'. You will probably want to create a function to build the new gimple ! statement in 'gimple.c'. The function should be called ! 'gimple_build_NEW-TUPLE-NAME', and should return the new tuple of type gimple. ! If your new statement requires accessors for any members or operands it ! may have, put simple inline accessors in 'gimple.h' and any non-trivial ! accessors in 'gimple.c' with a corresponding prototype in 'gimple.h'.  File: gccint.info, Node: Statement and operand traversals, Prev: Adding a new GIMPLE statement code, Up: GIMPLE --- 12808,12833 ---- ======================================== The first step in adding a new GIMPLE statement code, is modifying the ! file `gimple.def', which contains all the GIMPLE codes. Then you must ! add a corresponding structure, and an entry in `union ! gimple_statement_d', both of which are located in `gimple.h'. This in ! turn, will require you to add a corresponding `GTY' tag in ! `gsstruct.def', and code to handle this tag in `gss_for_code' which is ! located in `gimple.c'. In order for the garbage collector to know the size of the structure ! you created in `gimple.h', you need to add a case to handle your new ! GIMPLE statement in `gimple_size' which is located in `gimple.c'. You will probably want to create a function to build the new gimple ! statement in `gimple.c'. The function should be called ! `gimple_build_NEW-TUPLE-NAME', and should return the new tuple of type gimple. ! If your new statement requires accessors for any members or operands ! it may have, put simple inline accessors in `gimple.h' and any ! non-trivial accessors in `gimple.c' with a corresponding prototype in ! `gimple.h'.  File: gccint.info, Node: Statement and operand traversals, Prev: Adding a new GIMPLE statement code, Up: GIMPLE *************** File: gccint.info, Node: Statement and *** 12695,12748 **** ====================================== There are two functions available for walking statements and sequences: ! 'walk_gimple_stmt' and 'walk_gimple_seq', accordingly, and a third ! function for walking the operands in a statement: 'walk_gimple_op'. -- GIMPLE function: tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! This function is used to walk the current statement in 'GSI', ! optionally using traversal state stored in 'WI'. If 'WI' is ! 'NULL', no state is kept during the traversal. ! The callback 'CALLBACK_STMT' is called. If 'CALLBACK_STMT' returns true, it means that the callback function has handled all the operands of the statement and it is not necessary to walk its operands. ! If 'CALLBACK_STMT' is 'NULL' or it returns false, 'CALLBACK_OP' is ! called on each operand of the statement via 'walk_gimple_op'. If ! 'walk_gimple_op' returns non-'NULL' for any operand, the remaining operands are not scanned. The return value is that returned by the last call to ! 'walk_gimple_op', or 'NULL_TREE' if no 'CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! Use this function to walk the operands of statement 'STMT'. Every ! operand is walked via 'walk_tree' with optional state information ! in 'WI'. ! 'CALLBACK_OP' is called on each operand of 'STMT' via 'walk_tree'. ! Additional parameters to 'walk_tree' must be stored in 'WI'. For ! each operand 'OP', 'walk_tree' is called as: ! walk_tree (&OP, CALLBACK_OP, WI, PSET) ! If 'CALLBACK_OP' returns non-'NULL' for an operand, the remaining ! operands are not scanned. The return value is that returned by the ! last call to 'walk_tree', or 'NULL_TREE' if no 'CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn ! callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info ! *wi) ! This function walks all the statements in the sequence 'SEQ' ! calling 'walk_gimple_stmt' on each one. 'WI' is as in ! 'walk_gimple_stmt'. If 'walk_gimple_stmt' returns non-'NULL', the walk is stopped and the value returned. Otherwise, all the ! statements are walked and 'NULL_TREE' returned.  File: gccint.info, Node: Tree SSA, Next: RTL, Prev: GIMPLE, Up: Top --- 12836,12889 ---- ====================================== There are two functions available for walking statements and sequences: ! `walk_gimple_stmt' and `walk_gimple_seq', accordingly, and a third ! function for walking the operands in a statement: `walk_gimple_op'. -- GIMPLE function: tree walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! This function is used to walk the current statement in `GSI', ! optionally using traversal state stored in `WI'. If `WI' is ! `NULL', no state is kept during the traversal. ! The callback `CALLBACK_STMT' is called. If `CALLBACK_STMT' returns true, it means that the callback function has handled all the operands of the statement and it is not necessary to walk its operands. ! If `CALLBACK_STMT' is `NULL' or it returns false, `CALLBACK_OP' is ! called on each operand of the statement via `walk_gimple_op'. If ! `walk_gimple_op' returns non-`NULL' for any operand, the remaining operands are not scanned. The return value is that returned by the last call to ! `walk_gimple_op', or `NULL_TREE' if no `CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi) ! Use this function to walk the operands of statement `STMT'. Every ! operand is walked via `walk_tree' with optional state information ! in `WI'. ! `CALLBACK_OP' is called on each operand of `STMT' via `walk_tree'. ! Additional parameters to `walk_tree' must be stored in `WI'. For ! each operand `OP', `walk_tree' is called as: ! walk_tree (&`OP', `CALLBACK_OP', `WI', `PSET') ! If `CALLBACK_OP' returns non-`NULL' for an operand, the remaining ! operands are not scanned. The return value is that returned by ! the last call to `walk_tree', or `NULL_TREE' if no `CALLBACK_OP' is specified. -- GIMPLE function: tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn ! callback_stmt, walk_tree_fn callback_op, struct ! walk_stmt_info *wi) ! This function walks all the statements in the sequence `SEQ' ! calling `walk_gimple_stmt' on each one. `WI' is as in ! `walk_gimple_stmt'. If `walk_gimple_stmt' returns non-`NULL', the walk is stopped and the value returned. Otherwise, all the ! statements are walked and `NULL_TREE' returned.  File: gccint.info, Node: Tree SSA, Next: RTL, Prev: GIMPLE, Up: Top *************** File: gccint.info, Node: Tree SSA, Nex *** 12753,12777 **** GCC uses three main intermediate languages to represent the program during compilation: GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation generated by each front end. It is ! used to serve as an interface between the parser and optimizer. GENERIC ! is a common representation that is able to represent programs written in ! all the languages supported by GCC. GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and language independent optimizations (e.g., inlining, constant propagation, tail call elimination, redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent, tree based representation. However, it differs from GENERIC in that the GIMPLE ! grammar is more restrictive: expressions contain no more than 3 operands ! (except function calls), it has no control flow structures and ! expressions with side-effects are only allowed on the right hand side of ! assignments. See the chapter describing GENERIC and GIMPLE for more details. This chapter describes the data structures and functions used in the ! GIMPLE optimizers (also known as "tree optimizers" or "middle end"). In ! particular, it focuses on all the macros, data structures, functions and ! programming constructs needed to implement optimization passes for GIMPLE. * Menu: --- 12894,12918 ---- GCC uses three main intermediate languages to represent the program during compilation: GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation generated by each front end. It is ! used to serve as an interface between the parser and optimizer. ! GENERIC is a common representation that is able to represent programs ! written in all the languages supported by GCC. GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and language independent optimizations (e.g., inlining, constant propagation, tail call elimination, redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent, tree based representation. However, it differs from GENERIC in that the GIMPLE ! grammar is more restrictive: expressions contain no more than 3 ! operands (except function calls), it has no control flow structures and ! expressions with side-effects are only allowed on the right hand side ! of assignments. See the chapter describing GENERIC and GIMPLE for more details. This chapter describes the data structures and functions used in the ! GIMPLE optimizers (also known as "tree optimizers" or "middle end"). ! In particular, it focuses on all the macros, data structures, functions ! and programming constructs needed to implement optimization passes for GIMPLE. * Menu: *************** File: gccint.info, Node: Annotations, *** 12791,12797 **** The optimizers need to associate attributes with variables during the optimization process. For instance, we need to know whether a variable has aliases. All these attributes are stored in data structures called ! annotations which are then linked to the field 'ann' in 'struct tree_common'.  --- 12932,12938 ---- The optimizers need to associate attributes with variables during the optimization process. For instance, we need to know whether a variable has aliases. All these attributes are stored in data structures called ! annotations which are then linked to the field `ann' in `struct tree_common'.  *************** their operands are going to be located a *** 12806,12847 **** statement's tree. To facilitate access to the statement's operands, they are organized into lists associated inside each statement's annotation. Each element in an operand list is a pointer to a ! 'VAR_DECL', 'PARM_DECL' or 'SSA_NAME' tree node. This provides a very convenient way of examining and replacing operands. Data flow analysis and optimization is done on all tree nodes ! representing variables. Any node for which 'SSA_VAR_P' returns nonzero is considered when scanning statement operands. However, not all ! 'SSA_VAR_P' variables are processed in the same way. For the purposes of optimization, we need to distinguish between references to local ! scalar variables and references to globals, statics, structures, arrays, ! aliased variables, etc. The reason is simple, the compiler can gather ! complete data flow information for a local scalar. On the other hand, a ! global variable may be modified by a function call, it may not be ! possible to keep track of all the elements of an array or the fields of ! a structure, etc. The operand scanner gathers two kinds of operands: "real" and ! "virtual". An operand for which 'is_gimple_reg' returns true is ! considered real, otherwise it is a virtual operand. We also distinguish ! between uses and definitions. An operand is used if its value is loaded ! by the statement (e.g., the operand at the RHS of an assignment). If ! the statement assigns a new value to the operand, the operand is ! considered a definition (e.g., the operand at the LHS of an assignment). Virtual and real operands also have very different data flow ! properties. Real operands are unambiguous references to the full object ! that they represent. For instance, given { int a, b; a = b } ! Since 'a' and 'b' are non-aliased locals, the statement 'a = b' will ! have one real definition and one real use because variable 'a' is ! completely modified with the contents of variable 'b'. Real definition ! are also known as "killing definitions". Similarly, the use of 'b' reads all its bits. In contrast, virtual operands are used with variables that can have a --- 12947,12989 ---- statement's tree. To facilitate access to the statement's operands, they are organized into lists associated inside each statement's annotation. Each element in an operand list is a pointer to a ! `VAR_DECL', `PARM_DECL' or `SSA_NAME' tree node. This provides a very convenient way of examining and replacing operands. Data flow analysis and optimization is done on all tree nodes ! representing variables. Any node for which `SSA_VAR_P' returns nonzero is considered when scanning statement operands. However, not all ! `SSA_VAR_P' variables are processed in the same way. For the purposes of optimization, we need to distinguish between references to local ! scalar variables and references to globals, statics, structures, ! arrays, aliased variables, etc. The reason is simple, the compiler can ! gather complete data flow information for a local scalar. On the other ! hand, a global variable may be modified by a function call, it may not ! be possible to keep track of all the elements of an array or the fields ! of a structure, etc. The operand scanner gathers two kinds of operands: "real" and ! "virtual". An operand for which `is_gimple_reg' returns true is ! considered real, otherwise it is a virtual operand. We also ! distinguish between uses and definitions. An operand is used if its ! value is loaded by the statement (e.g., the operand at the RHS of an ! assignment). If the statement assigns a new value to the operand, the ! operand is considered a definition (e.g., the operand at the LHS of an ! assignment). Virtual and real operands also have very different data flow ! properties. Real operands are unambiguous references to the full ! object that they represent. For instance, given { int a, b; a = b } ! Since `a' and `b' are non-aliased locals, the statement `a = b' will ! have one real definition and one real use because variable `a' is ! completely modified with the contents of variable `b'. Real definition ! are also known as "killing definitions". Similarly, the use of `b' reads all its bits. In contrast, virtual operands are used with variables that can have a *************** definitions. For globals, structures, a *** 12851,12860 **** a statement whether a variable of these types has a killing definition. If the variable does, then the statement is marked as having a "must definition" of that variable. However, if a statement is only defining ! a part of the variable (i.e. a field in a structure), or if we know that ! a statement might define the variable but we cannot say for sure, then ! we mark that statement as having a "may definition". For instance, ! given { int a, b, *p; --- 12993,13002 ---- a statement whether a variable of these types has a killing definition. If the variable does, then the statement is marked as having a "must definition" of that variable. However, if a statement is only defining ! a part of the variable (i.e. a field in a structure), or if we know ! that a statement might define the variable but we cannot say for sure, ! then we mark that statement as having a "may definition". For ! instance, given { int a, b, *p; *************** given *** 12867,12879 **** return *p; } ! The assignment '*p = 5' may be a definition of 'a' or 'b'. If we ! cannot determine statically where 'p' is pointing to at the time of the ! store operation, we create virtual definitions to mark that statement as ! a potential definition site for 'a' and 'b'. Memory loads are similarly ! marked with virtual use operands. Virtual operands are shown in tree ! dumps right before the statement that contains them. To request a tree ! dump with virtual operands, use the '-vops' option to '-fdump-tree': { int a, b, *p; --- 13009,13022 ---- return *p; } ! The assignment `*p = 5' may be a definition of `a' or `b'. If we ! cannot determine statically where `p' is pointing to at the time of the ! store operation, we create virtual definitions to mark that statement ! as a potential definition site for `a' and `b'. Memory loads are ! similarly marked with virtual use operands. Virtual operands are shown ! in tree dumps right before the statement that contains them. To ! request a tree dump with virtual operands, use the `-vops' option to ! `-fdump-tree': { int a, b, *p; *************** dump with virtual operands, use the '-vo *** 12891,12944 **** return *p; } ! Notice that 'VDEF' operands have two copies of the referenced variable. ! This indicates that this is not a killing definition of that variable. ! In this case we refer to it as a "may definition" or "aliased store". ! The presence of the second copy of the variable in the 'VDEF' operand ! will become important when the function is converted into SSA form. ! This will be used to link all the non-killing definitions to prevent ! optimizations from making incorrect assumptions about them. ! Operands are updated as soon as the statement is finished via a call to ! 'update_stmt'. If statement elements are changed via 'SET_USE' or ! 'SET_DEF', then no further action is required (i.e., those macros take care of updating the statement). If changes are made by manipulating ! the statement's tree directly, then a call must be made to 'update_stmt' ! when complete. Calling one of the 'bsi_insert' routines or ! 'bsi_replace' performs an implicit call to 'update_stmt'. 12.2.1 Operand Iterators And Access Routines -------------------------------------------- ! Operands are collected by 'tree-ssa-operands.c'. They are stored inside ! each statement's annotation and can be accessed through either the ! operand iterators or an access routine. The following access routines are available for examining operands: ! 1. 'SINGLE_SSA_{USE,DEF,TREE}_OPERAND': These accessors will return NULL unless there is exactly one operand matching the specified ! flags. If there is exactly one operand, the operand is returned as ! either a 'tree', 'def_operand_p', or 'use_operand_p'. tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags); use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES); def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS); ! 2. 'ZERO_SSA_OPERANDS': This macro returns true if there are no operands matching the specified flags. if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)) return; ! 3. 'NUM_SSA_OPERANDS': This macro Returns the number of operands matching 'flags'. This actually executes a loop to perform the count, so only use this if it is really needed. int count = NUM_SSA_OPERANDS (stmt, flags) If you wish to iterate over some or all operands, use the ! 'FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND' iterator. For example, to print all the operands for a statement: void --- 13034,13088 ---- return *p; } ! Notice that `VDEF' operands have two copies of the referenced ! variable. This indicates that this is not a killing definition of that ! variable. In this case we refer to it as a "may definition" or ! "aliased store". The presence of the second copy of the variable in ! the `VDEF' operand will become important when the function is converted ! into SSA form. This will be used to link all the non-killing ! definitions to prevent optimizations from making incorrect assumptions ! about them. ! Operands are updated as soon as the statement is finished via a call ! to `update_stmt'. If statement elements are changed via `SET_USE' or ! `SET_DEF', then no further action is required (i.e., those macros take care of updating the statement). If changes are made by manipulating ! the statement's tree directly, then a call must be made to ! `update_stmt' when complete. Calling one of the `bsi_insert' routines ! or `bsi_replace' performs an implicit call to `update_stmt'. 12.2.1 Operand Iterators And Access Routines -------------------------------------------- ! Operands are collected by `tree-ssa-operands.c'. They are stored ! inside each statement's annotation and can be accessed through either ! the operand iterators or an access routine. The following access routines are available for examining operands: ! 1. `SINGLE_SSA_{USE,DEF,TREE}_OPERAND': These accessors will return NULL unless there is exactly one operand matching the specified ! flags. If there is exactly one operand, the operand is returned ! as either a `tree', `def_operand_p', or `use_operand_p'. tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags); use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES); def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS); ! 2. `ZERO_SSA_OPERANDS': This macro returns true if there are no operands matching the specified flags. if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)) return; ! 3. `NUM_SSA_OPERANDS': This macro Returns the number of operands matching 'flags'. This actually executes a loop to perform the count, so only use this if it is really needed. int count = NUM_SSA_OPERANDS (stmt, flags) If you wish to iterate over some or all operands, use the ! `FOR_EACH_SSA_{USE,DEF,TREE}_OPERAND' iterator. For example, to print all the operands for a statement: void *************** all the operands for a statement: *** 12953,12960 **** How to choose the appropriate iterator: ! 1. Determine whether you are need to see the operand pointers, or just ! the trees, and choose the appropriate macro: Need Macro: ---- ------- --- 13097,13104 ---- How to choose the appropriate iterator: ! 1. Determine whether you are need to see the operand pointers, or ! just the trees, and choose the appropriate macro: Need Macro: ---- ------- *************** all the operands for a statement: *** 12968,12974 **** 3. Determine which operands you wish to use, and specify the flags of those you are interested in. They are documented in ! 'tree-ssa-operands.h': #define SSA_OP_USE 0x01 /* Real USE operands. */ #define SSA_OP_DEF 0x02 /* Real DEF operands. */ --- 13112,13118 ---- 3. Determine which operands you wish to use, and specify the flags of those you are interested in. They are documented in ! `tree-ssa-operands.h': #define SSA_OP_USE 0x01 /* Real USE operands. */ #define SSA_OP_DEF 0x02 /* Real DEF operands. */ *************** all the operands for a statement: *** 12983,12990 **** #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF) #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS) ! So if you want to look at the use pointers for all the 'USE' and 'VUSE' ! operands, you would do something like: use_operand_p use_p; ssa_op_iter iter; --- 13127,13134 ---- #define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF) #define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS) ! So if you want to look at the use pointers for all the `USE' and ! `VUSE' operands, you would do something like: use_operand_p use_p; ssa_op_iter iter; *************** operands, you would do something like: *** 12994,13003 **** process_use_ptr (use_p); } ! The 'TREE' macro is basically the same as the 'USE' and 'DEF' macros, ! only with the use or def dereferenced via 'USE_FROM_PTR (use_p)' and ! 'DEF_FROM_PTR (def_p)'. Since we aren't using operand pointers, use and ! defs flags can be mixed. tree var; ssa_op_iter iter; --- 13138,13147 ---- process_use_ptr (use_p); } ! The `TREE' macro is basically the same as the `USE' and `DEF' macros, ! only with the use or def dereferenced via `USE_FROM_PTR (use_p)' and ! `DEF_FROM_PTR (def_p)'. Since we aren't using operand pointers, use ! and defs flags can be mixed. tree var; ssa_op_iter iter; *************** defs flags can be mixed. *** 13007,13023 **** print_generic_expr (stderr, var, TDF_SLIM); } ! 'VDEF's are broken into two flags, one for the 'DEF' portion ! ('SSA_OP_VDEF') and one for the USE portion ('SSA_OP_VUSE'). There are many examples in the code, in addition to the documentation ! in 'tree-ssa-operands.h' and 'ssa-iterators.h'. There are also a couple of variants on the stmt iterators regarding PHI nodes. ! 'FOR_EACH_PHI_ARG' Works exactly like 'FOR_EACH_SSA_USE_OPERAND', ! except it works over 'PHI' arguments instead of statement operands. /* Look at every virtual PHI use. */ FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES) --- 13151,13167 ---- print_generic_expr (stderr, var, TDF_SLIM); } ! `VDEF's are broken into two flags, one for the `DEF' portion ! (`SSA_OP_VDEF') and one for the USE portion (`SSA_OP_VUSE'). There are many examples in the code, in addition to the documentation ! in `tree-ssa-operands.h' and `ssa-iterators.h'. There are also a couple of variants on the stmt iterators regarding PHI nodes. ! `FOR_EACH_PHI_ARG' Works exactly like `FOR_EACH_SSA_USE_OPERAND', ! except it works over `PHI' arguments instead of statement operands. /* Look at every virtual PHI use. */ FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES) *************** except it works over 'PHI' arguments ins *** 13033,13043 **** FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES) my_code; ! 'FOR_EACH_PHI_OR_STMT_{USE,DEF}' works exactly like ! 'FOR_EACH_SSA_{USE,DEF}_OPERAND', except it will function on either a ! statement or a 'PHI' node. These should be used when it is appropriate ! but they are not quite as efficient as the individual 'FOR_EACH_PHI' and ! 'FOR_EACH_SSA' routines. FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags) { --- 13177,13187 ---- FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES) my_code; ! `FOR_EACH_PHI_OR_STMT_{USE,DEF}' works exactly like ! `FOR_EACH_SSA_{USE,DEF}_OPERAND', except it will function on either a ! statement or a `PHI' node. These should be used when it is appropriate ! but they are not quite as efficient as the individual `FOR_EACH_PHI' ! and `FOR_EACH_SSA' routines. FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags) { *************** but they are not quite as efficient as t *** 13053,13060 **** --------------------- Immediate use information is now always available. Using the immediate ! use iterators, you may examine every use of any 'SSA_NAME'. For ! instance, to change each use of 'ssa_var' to 'ssa_var2' and call fold_stmt on each stmt after that is done: use_operand_p imm_use_p; --- 13197,13204 ---- --------------------- Immediate use information is now always available. Using the immediate ! use iterators, you may examine every use of any `SSA_NAME'. For ! instance, to change each use of `ssa_var' to `ssa_var2' and call fold_stmt on each stmt after that is done: use_operand_p imm_use_p; *************** fold_stmt on each stmt after that is don *** 13069,13089 **** fold_stmt (stmt); } ! There are 2 iterators which can be used. 'FOR_EACH_IMM_USE_FAST' is used when the immediate uses are not changed, i.e., you are looking at the uses, but not setting them. If they do get changed, then care must be taken that things are not ! changed under the iterators, so use the 'FOR_EACH_IMM_USE_STMT' and ! 'FOR_EACH_IMM_USE_ON_STMT' iterators. They attempt to preserve the sanity of the use list by moving all the uses for a statement into a controlled position, and then iterating over those uses. Then the optimization can manipulate the stmt when all the uses have been processed. This is a little slower than the FAST version since it adds a placeholder element and must sort through the list a bit for each ! statement. This placeholder element must be also be removed if the loop ! is terminated early. The macro 'BREAK_FROM_IMM_USE_SAFE' is provided to ! do this : FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var) { --- 13213,13233 ---- fold_stmt (stmt); } ! There are 2 iterators which can be used. `FOR_EACH_IMM_USE_FAST' is used when the immediate uses are not changed, i.e., you are looking at the uses, but not setting them. If they do get changed, then care must be taken that things are not ! changed under the iterators, so use the `FOR_EACH_IMM_USE_STMT' and ! `FOR_EACH_IMM_USE_ON_STMT' iterators. They attempt to preserve the sanity of the use list by moving all the uses for a statement into a controlled position, and then iterating over those uses. Then the optimization can manipulate the stmt when all the uses have been processed. This is a little slower than the FAST version since it adds a placeholder element and must sort through the list a bit for each ! statement. This placeholder element must be also be removed if the ! loop is terminated early. The macro `BREAK_FROM_IMM_USE_SAFE' is ! provided to do this : FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var) { *************** do this : *** 13095,13125 **** fold_stmt (stmt); } ! There are checks in 'verify_ssa' which verify that the immediate use list is up to date, as well as checking that an optimization didn't break from the loop without using this macro. It is safe to simply ! 'break'; from a 'FOR_EACH_IMM_USE_FAST' traverse. Some useful functions and macros: ! 1. 'has_zero_uses (ssa_var)' : Returns true if there are no uses of ! 'ssa_var'. ! 2. 'has_single_use (ssa_var)' : Returns true if there is only a single ! use of 'ssa_var'. ! 3. 'single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)' : ! Returns true if there is only a single use of 'ssa_var', and also returns the use pointer and statement it occurs in, in the second and third parameters. ! 4. 'num_imm_uses (ssa_var)' : Returns the number of immediate uses of ! 'ssa_var'. It is better not to use this if possible since it ! simply utilizes a loop to count the uses. ! 5. 'PHI_ARG_INDEX_FROM_USE (use_p)' : Given a use within a 'PHI' node, ! return the index number for the use. An assert is triggered if the ! use isn't located in a 'PHI' node. ! 6. 'USE_STMT (use_p)' : Return the statement a use occurs in. Note that uses are not put into an immediate use list until their ! statement is actually inserted into the instruction stream via a 'bsi_*' ! routine. It is also still possible to utilize lazy updating of statements, but this should be used only when absolutely required. Both alias analysis --- 13239,13274 ---- fold_stmt (stmt); } ! There are checks in `verify_ssa' which verify that the immediate use list is up to date, as well as checking that an optimization didn't break from the loop without using this macro. It is safe to simply ! 'break'; from a `FOR_EACH_IMM_USE_FAST' traverse. Some useful functions and macros: ! 1. `has_zero_uses (ssa_var)' : Returns true if there are no uses of ! `ssa_var'. ! ! 2. `has_single_use (ssa_var)' : Returns true if there is only a ! single use of `ssa_var'. ! ! 3. `single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt)' : ! Returns true if there is only a single use of `ssa_var', and also returns the use pointer and statement it occurs in, in the second and third parameters. ! ! 4. `num_imm_uses (ssa_var)' : Returns the number of immediate uses of ! `ssa_var'. It is better not to use this if possible since it simply ! utilizes a loop to count the uses. ! ! 5. `PHI_ARG_INDEX_FROM_USE (use_p)' : Given a use within a `PHI' ! node, return the index number for the use. An assert is triggered ! if the use isn't located in a `PHI' node. ! ! 6. `USE_STMT (use_p)' : Return the statement a use occurs in. Note that uses are not put into an immediate use list until their ! statement is actually inserted into the instruction stream via a ! `bsi_*' routine. It is also still possible to utilize lazy updating of statements, but this should be used only when absolutely required. Both alias analysis *************** and the dominator optimizations currentl *** 13127,13137 **** When lazy updating is being used, the immediate use information is out of date and cannot be used reliably. Lazy updating is achieved by ! simply marking statements modified via calls to 'mark_stmt_modified' ! instead of 'update_stmt'. When lazy updating is no longer required, all ! the modified statements must have 'update_stmt' called in order to bring ! them up to date. This must be done before the optimization is finished, ! or 'verify_ssa' will trigger an abort. This is done with a simple loop over the instruction stream: block_stmt_iterator bsi; --- 13276,13286 ---- When lazy updating is being used, the immediate use information is out of date and cannot be used reliably. Lazy updating is achieved by ! simply marking statements modified via calls to `mark_stmt_modified' ! instead of `update_stmt'. When lazy updating is no longer required, ! all the modified statements must have `update_stmt' called in order to ! bring them up to date. This must be done before the optimization is ! finished, or `verify_ssa' will trigger an abort. This is done with a simple loop over the instruction stream: block_stmt_iterator bsi; *************** File: gccint.info, Node: SSA, Next: Al *** 13150,13159 **** Most of the tree optimizers rely on the data flow information provided by the Static Single Assignment (SSA) form. We implement the SSA form ! as described in 'R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. ! Zadeck. Efficiently Computing Static Single Assignment Form and the ! Control Dependence Graph. ACM Transactions on Programming Languages and ! Systems, 13(4):451-490, October 1991'. The SSA form is based on the premise that program variables are assigned in exactly one location in the program. Multiple assignments --- 13299,13308 ---- Most of the tree optimizers rely on the data flow information provided by the Static Single Assignment (SSA) form. We implement the SSA form ! as described in `R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. ! Zadeck. Efficiently Computing Static Single Assignment Form and the ! Control Dependence Graph. ACM Transactions on Programming Languages ! and Systems, 13(4):451-490, October 1991'. The SSA form is based on the premise that program variables are assigned in exactly one location in the program. Multiple assignments *************** representation so that every time a vari *** 13164,13177 **** new version of the variable is created. Different versions of the same variable are distinguished by subscripting the variable name with its version number. Variables used in the right-hand side of expressions ! are renamed so that their version number matches that of the most recent ! assignment. ! We represent variable versions using 'SSA_NAME' nodes. The renaming ! process in 'tree-ssa.c' wraps every real and virtual operand with an ! 'SSA_NAME' node which contains the version number and the statement that ! created the 'SSA_NAME'. Only definitions and virtual definitions may ! create new 'SSA_NAME' nodes. Sometimes, flow of control makes it impossible to determine the most recent version of a variable. In these cases, the compiler inserts an --- 13313,13326 ---- new version of the variable is created. Different versions of the same variable are distinguished by subscripting the variable name with its version number. Variables used in the right-hand side of expressions ! are renamed so that their version number matches that of the most ! recent assignment. ! We represent variable versions using `SSA_NAME' nodes. The renaming ! process in `tree-ssa.c' wraps every real and virtual operand with an ! `SSA_NAME' node which contains the version number and the statement ! that created the `SSA_NAME'. Only definitions and virtual definitions ! may create new `SSA_NAME' nodes. Sometimes, flow of control makes it impossible to determine the most recent version of a variable. In these cases, the compiler inserts an *************** variable to create a new name for it. F *** 13190,13208 **** return a_4; Since it is not possible to determine which of the three branches will ! be taken at runtime, we don't know which of 'a_1', 'a_2' or 'a_3' to use ! at the return statement. So, the SSA renamer creates a new version ! 'a_4' which is assigned the result of "merging" 'a_1', 'a_2' and 'a_3'. Hence, PHI nodes mean "one of these operands. I don't know which". The following functions can be used to examine PHI nodes -- Function: gimple_phi_result (PHI) ! Returns the 'SSA_NAME' created by PHI node PHI (i.e., PHI's LHS). -- Function: gimple_phi_num_args (PHI) ! Returns the number of arguments in PHI. This number is exactly the ! number of incoming edges to the basic block holding PHI. -- Function: gimple_phi_arg (PHI, I) Returns Ith argument of PHI. --- 13339,13357 ---- return a_4; Since it is not possible to determine which of the three branches will ! be taken at runtime, we don't know which of `a_1', `a_2' or `a_3' to ! use at the return statement. So, the SSA renamer creates a new version ! `a_4' which is assigned the result of "merging" `a_1', `a_2' and `a_3'. Hence, PHI nodes mean "one of these operands. I don't know which". The following functions can be used to examine PHI nodes -- Function: gimple_phi_result (PHI) ! Returns the `SSA_NAME' created by PHI node PHI (i.e., PHI's LHS). -- Function: gimple_phi_num_args (PHI) ! Returns the number of arguments in PHI. This number is exactly ! the number of incoming edges to the basic block holding PHI. -- Function: gimple_phi_arg (PHI, I) Returns Ith argument of PHI. *************** Hence, PHI nodes mean "one of these oper *** 13211,13217 **** Returns the incoming edge for the Ith argument of PHI. -- Function: gimple_phi_arg_def (PHI, I) ! Returns the 'SSA_NAME' for the Ith argument of PHI. 12.3.1 Preserving the SSA form ------------------------------ --- 13360,13366 ---- Returns the incoming edge for the Ith argument of PHI. -- Function: gimple_phi_arg_def (PHI, I) ! Returns the `SSA_NAME' for the Ith argument of PHI. 12.3.1 Preserving the SSA form ------------------------------ *************** SSA form. *** 13228,13235 **** variables, keeping the SSA form up to date depends on whether you are updating register or virtual names. In both cases, the general idea behind incremental SSA updates is similar: when new SSA names are ! created, they typically are meant to replace other existing names in the ! program. For instance, given the following code: --- 13377,13384 ---- variables, keeping the SSA form up to date depends on whether you are updating register or virtual names. In both cases, the general idea behind incremental SSA updates is similar: when new SSA names are ! created, they typically are meant to replace other existing names in ! the program. For instance, given the following code: *************** program. *** 13245,13251 **** 10 goto L0; 11 endif ! Suppose that we insert new names 'x_10' and 'x_11' (lines '4' and '8'). 1 L0: 2 x_1 = PHI (0, x_5) --- 13394,13400 ---- 10 goto L0; 11 endif ! Suppose that we insert new names `x_10' and `x_11' (lines `4' and `8'). 1 L0: 2 x_1 = PHI (0, x_5) *************** program. *** 13261,13325 **** 12 goto L0; 13 endif ! We want to replace all the uses of 'x_1' with the new definitions of ! 'x_10' and 'x_11'. Note that the only uses that should be replaced are ! those at lines '5', '9' and '11'. Also, the use of 'x_7' at line '9' ! should _not_ be replaced (this is why we cannot just mark symbol 'x' for renaming). ! Additionally, we may need to insert a PHI node at line '11' because ! that is a merge point for 'x_10' and 'x_11'. So the use of 'x_1' at ! line '11' will be replaced with the new PHI node. The insertion of PHI nodes is optional. They are not strictly necessary to preserve the SSA form, and depending on what the caller inserted, they may not even be useful for the optimizers. Updating the SSA form is a two step process. First, the pass has to identify which names need to be updated and/or which symbols need to be ! renamed into SSA form for the first time. When new names are introduced ! to replace existing names in the program, the mapping between the old ! and the new names are registered by calling 'register_new_name_mapping' ! (note that if your pass creates new code by duplicating basic blocks, ! the call to 'tree_duplicate_bb' will set up the necessary mappings ! automatically). After the replacement mappings have been registered and new symbols ! marked for renaming, a call to 'update_ssa' makes the registered ! changes. This can be done with an explicit call or by creating 'TODO' ! flags in the 'tree_opt_pass' structure for your pass. There are several ! 'TODO' flags that control the behavior of 'update_ssa': ! * 'TODO_update_ssa'. Update the SSA form inserting PHI nodes for newly exposed symbols and virtual names marked for updating. When ! updating real names, only insert PHI nodes for a real name 'O_j' in ! blocks reached by all the new and old definitions for 'O_j'. If ! the iterated dominance frontier for 'O_j' is not pruned, we may end ! up inserting PHI nodes in blocks that have one or more edges with ! no incoming definition for 'O_j'. This would lead to uninitialized ! warnings for 'O_j''s symbol. ! * 'TODO_update_ssa_no_phi'. Update the SSA form without inserting any new PHI nodes at all. This is used by passes that have either inserted all the PHI nodes themselves or passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE). ! * 'TODO_update_ssa_full_phi'. Insert PHI nodes everywhere they are needed. No pruning of the IDF is done. This is used by passes ! that need the PHI nodes for 'O_j' even if it means that some ! arguments will come from the default definition of 'O_j''s symbol ! (e.g., 'pass_linear_transform'). WARNING: If you need to use this flag, chances are that your pass may be doing something wrong. Inserting PHI nodes for an old name where not all edges carry a new replacement may lead to silent codegen errors or spurious uninitialized warnings. ! * 'TODO_update_ssa_only_virtuals'. Passes that update the SSA form on their own may want to delegate the updating of virtual names to ! the generic updater. Since FUD chains are easier to maintain, this ! simplifies the work they need to do. NOTE: If this flag is used, ! any OLD->NEW mappings for real names are explicitly destroyed and ! only the symbols marked for renaming are processed. 12.3.2 Preserving the virtual SSA form -------------------------------------- --- 13410,13474 ---- 12 goto L0; 13 endif ! We want to replace all the uses of `x_1' with the new definitions of ! `x_10' and `x_11'. Note that the only uses that should be replaced are ! those at lines `5', `9' and `11'. Also, the use of `x_7' at line `9' ! should _not_ be replaced (this is why we cannot just mark symbol `x' for renaming). ! Additionally, we may need to insert a PHI node at line `11' because ! that is a merge point for `x_10' and `x_11'. So the use of `x_1' at ! line `11' will be replaced with the new PHI node. The insertion of PHI nodes is optional. They are not strictly necessary to preserve the SSA form, and depending on what the caller inserted, they may not even be useful for the optimizers. Updating the SSA form is a two step process. First, the pass has to identify which names need to be updated and/or which symbols need to be ! renamed into SSA form for the first time. When new names are ! introduced to replace existing names in the program, the mapping ! between the old and the new names are registered by calling ! `register_new_name_mapping' (note that if your pass creates new code by ! duplicating basic blocks, the call to `tree_duplicate_bb' will set up ! the necessary mappings automatically). After the replacement mappings have been registered and new symbols ! marked for renaming, a call to `update_ssa' makes the registered ! changes. This can be done with an explicit call or by creating `TODO' ! flags in the `tree_opt_pass' structure for your pass. There are ! several `TODO' flags that control the behavior of `update_ssa': ! * `TODO_update_ssa'. Update the SSA form inserting PHI nodes for newly exposed symbols and virtual names marked for updating. When ! updating real names, only insert PHI nodes for a real name `O_j' ! in blocks reached by all the new and old definitions for `O_j'. ! If the iterated dominance frontier for `O_j' is not pruned, we may ! end up inserting PHI nodes in blocks that have one or more edges ! with no incoming definition for `O_j'. This would lead to ! uninitialized warnings for `O_j''s symbol. ! * `TODO_update_ssa_no_phi'. Update the SSA form without inserting any new PHI nodes at all. This is used by passes that have either inserted all the PHI nodes themselves or passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE). ! * `TODO_update_ssa_full_phi'. Insert PHI nodes everywhere they are needed. No pruning of the IDF is done. This is used by passes ! that need the PHI nodes for `O_j' even if it means that some ! arguments will come from the default definition of `O_j''s symbol ! (e.g., `pass_linear_transform'). WARNING: If you need to use this flag, chances are that your pass may be doing something wrong. Inserting PHI nodes for an old name where not all edges carry a new replacement may lead to silent codegen errors or spurious uninitialized warnings. ! * `TODO_update_ssa_only_virtuals'. Passes that update the SSA form on their own may want to delegate the updating of virtual names to ! the generic updater. Since FUD chains are easier to maintain, ! this simplifies the work they need to do. NOTE: If this flag is ! used, any OLD->NEW mappings for real names are explicitly ! destroyed and only the symbols marked for renaming are processed. 12.3.2 Preserving the virtual SSA form -------------------------------------- *************** flags in the 'tree_opt_pass' structure f *** 13327,13334 **** The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because the set of virtual operands for a statement may change at what some would consider unexpected times. In general, statement ! modifications should be bracketed between calls to 'push_stmt_changes' ! and 'pop_stmt_changes'. For example, munge_stmt (tree stmt) { --- 13476,13483 ---- The virtual SSA form is harder to preserve than the non-virtual SSA form mainly because the set of virtual operands for a statement may change at what some would consider unexpected times. In general, statement ! modifications should be bracketed between calls to `push_stmt_changes' ! and `pop_stmt_changes'. For example, munge_stmt (tree stmt) { *************** and 'pop_stmt_changes'. For example, *** 13337,13379 **** pop_stmt_changes (&stmt); } ! The call to 'push_stmt_changes' saves the current state of the ! statement operands and the call to 'pop_stmt_changes' compares the saved ! state with the current one and does the appropriate symbol marking for ! the SSA renamer. It is possible to modify several statements at a time, provided that ! 'push_stmt_changes' and 'pop_stmt_changes' are called in LIFO order, as when processing a stack of statements. Additionally, if the pass discovers that it did not need to make ! changes to the statement after calling 'push_stmt_changes', it can simply discard the topmost change buffer by calling ! 'discard_stmt_changes'. This will avoid the expensive operand re-scan operation and the buffer comparison that determines if symbols need to be marked for renaming. ! 12.3.3 Examining 'SSA_NAME' nodes --------------------------------- ! The following macros can be used to examine 'SSA_NAME' nodes -- Macro: SSA_NAME_DEF_STMT (VAR) ! Returns the statement S that creates the 'SSA_NAME' VAR. If S is ! an empty statement (i.e., 'IS_EMPTY_STMT (S)' returns 'true'), it means that the first reference to this variable is a USE or a VUSE. -- Macro: SSA_NAME_VERSION (VAR) ! Returns the version number of the 'SSA_NAME' object VAR. 12.3.4 Walking the dominator tree --------------------------------- -- Tree SSA function: void walk_dominator_tree (WALK_DATA, BB) - This function walks the dominator tree for the current CFG calling a set of callback functions defined in STRUCT DOM_WALK_DATA in ! 'domwalk.h'. The call back functions you need to define give you hooks to execute custom code at various points during traversal: 1. Once to initialize any local data needed while processing BB --- 13486,13527 ---- pop_stmt_changes (&stmt); } ! The call to `push_stmt_changes' saves the current state of the ! statement operands and the call to `pop_stmt_changes' compares the ! saved state with the current one and does the appropriate symbol ! marking for the SSA renamer. It is possible to modify several statements at a time, provided that ! `push_stmt_changes' and `pop_stmt_changes' are called in LIFO order, as when processing a stack of statements. Additionally, if the pass discovers that it did not need to make ! changes to the statement after calling `push_stmt_changes', it can simply discard the topmost change buffer by calling ! `discard_stmt_changes'. This will avoid the expensive operand re-scan operation and the buffer comparison that determines if symbols need to be marked for renaming. ! 12.3.3 Examining `SSA_NAME' nodes --------------------------------- ! The following macros can be used to examine `SSA_NAME' nodes -- Macro: SSA_NAME_DEF_STMT (VAR) ! Returns the statement S that creates the `SSA_NAME' VAR. If S is ! an empty statement (i.e., `IS_EMPTY_STMT (S)' returns `true'), it means that the first reference to this variable is a USE or a VUSE. -- Macro: SSA_NAME_VERSION (VAR) ! Returns the version number of the `SSA_NAME' object VAR. 12.3.4 Walking the dominator tree --------------------------------- -- Tree SSA function: void walk_dominator_tree (WALK_DATA, BB) This function walks the dominator tree for the current CFG calling a set of callback functions defined in STRUCT DOM_WALK_DATA in ! `domwalk.h'. The call back functions you need to define give you hooks to execute custom code at various points during traversal: 1. Once to initialize any local data needed while processing BB *************** disambiguate explicit and implicit memor *** 13412,13420 **** 1. Memory SSA form. ! All statements that may use memory have exactly one accompanied use ! of a virtual SSA name that represents the state of memory at the ! given point in the IL. All statements that may define memory have exactly one accompanied definition of a virtual SSA name using the previous state of memory --- 13560,13568 ---- 1. Memory SSA form. ! All statements that may use memory have exactly one accompanied ! use of a virtual SSA name that represents the state of memory at ! the given point in the IL. All statements that may define memory have exactly one accompanied definition of a virtual SSA name using the previous state of memory *************** disambiguate explicit and implicit memor *** 13430,13438 **** return i; } ! The virtual SSA names in this case are '.MEM_2(D)' and '.MEM_3'. ! The store to the global variable 'i' defines '.MEM_3' invalidating ! '.MEM_2(D)'. The load from 'i' uses that new state '.MEM_3'. The virtual SSA web serves as constraints to SSA optimizers preventing illegitimate code-motion and optimization. It also --- 13578,13586 ---- return i; } ! The virtual SSA names in this case are `.MEM_2(D)' and `.MEM_3'. ! The store to the global variable `i' defines `.MEM_3' invalidating ! `.MEM_2(D)'. The load from `i' uses that new state `.MEM_3'. The virtual SSA web serves as constraints to SSA optimizers preventing illegitimate code-motion and optimization. It also *************** disambiguate explicit and implicit memor *** 13448,13475 **** what it may possibly point to. This points-to solution for a given SSA name pointer is stored in ! the 'pt_solution' sub-structure of the 'SSA_NAME_PTR_INFO' record. The following accessor functions are available: ! * 'pt_solution_includes' ! * 'pt_solutions_intersect' Points-to analysis also computes the solution for two special set ! of pointers, 'ESCAPED' and 'CALLUSED'. Those represent all memory that has escaped the scope of analysis or that is used by pure or nested const calls. 3. Type-based alias analysis Type-based alias analysis is frontend dependent though generic ! support is provided by the middle-end in 'alias.c'. TBAA code is used by both tree optimizers and RTL optimizers. Every language that wishes to perform language-specific alias ! analysis should define a function that computes, given a 'tree' ! node, an alias set for the node. Nodes in different alias sets are ! not allowed to alias. For an example, see the C front-end function ! 'c_get_alias_set'. 4. Tree alias-oracle --- 13596,13624 ---- what it may possibly point to. This points-to solution for a given SSA name pointer is stored in ! the `pt_solution' sub-structure of the `SSA_NAME_PTR_INFO' record. The following accessor functions are available: ! * `pt_solution_includes' ! ! * `pt_solutions_intersect' Points-to analysis also computes the solution for two special set ! of pointers, `ESCAPED' and `CALLUSED'. Those represent all memory that has escaped the scope of analysis or that is used by pure or nested const calls. 3. Type-based alias analysis Type-based alias analysis is frontend dependent though generic ! support is provided by the middle-end in `alias.c'. TBAA code is used by both tree optimizers and RTL optimizers. Every language that wishes to perform language-specific alias ! analysis should define a function that computes, given a `tree' ! node, an alias set for the node. Nodes in different alias sets ! are not allowed to alias. For an example, see the C front-end ! function `c_get_alias_set'. 4. Tree alias-oracle *************** disambiguate explicit and implicit memor *** 13477,13496 **** references and memory references against statements. The following queries are available: ! * 'refs_may_alias_p' ! * 'ref_maybe_used_by_stmt_p' ! * 'stmt_may_clobber_ref_p' In addition to those two kind of statement walkers are available walking statements related to a reference ref. ! 'walk_non_aliased_vuses' walks over dominating memory defining statements and calls back if the statement does not clobber ref ! providing the non-aliased VUSE. The walk stops at the first ! clobbering statement or if asked to. 'walk_aliased_vdefs' walks over dominating memory defining statements and calls back on each ! statement clobbering ref providing its aliasing VDEF. The walk stops if asked to.  File: gccint.info, Node: Memory model, Prev: Alias analysis, Up: Tree SSA --- 13626,13648 ---- references and memory references against statements. The following queries are available: ! * `refs_may_alias_p' ! ! * `ref_maybe_used_by_stmt_p' ! ! * `stmt_may_clobber_ref_p' In addition to those two kind of statement walkers are available walking statements related to a reference ref. ! `walk_non_aliased_vuses' walks over dominating memory defining statements and calls back if the statement does not clobber ref ! providing the non-aliased VUSE. The walk stops at the first ! clobbering statement or if asked to. `walk_aliased_vdefs' walks over dominating memory defining statements and calls back on each ! statement clobbering ref providing its aliasing VDEF. The walk stops if asked to. +  File: gccint.info, Node: Memory model, Prev: Alias analysis, Up: Tree SSA *************** effective type to objects with a declare *** 13511,13517 **** an lvalue having a type that is not a character type, then the type of the lvalue becomes the effective type of the object for that access and for subsequent accesses that do not modify the stored value. ! If a value is copied into an object using memcpy or memmove, or is copied as an array of character type, then the effective type of the modified object for that access and for subsequent accesses that do not modify the value is undetermined. For all other accesses to an --- 13663,13669 ---- an lvalue having a type that is not a character type, then the type of the lvalue becomes the effective type of the object for that access and for subsequent accesses that do not modify the stored value. ! If a value is copied into an object using `memcpy' or `memmove', or is copied as an array of character type, then the effective type of the modified object for that access and for subsequent accesses that do not modify the value is undetermined. For all other accesses to an *************** instructions to be output are described, *** 13530,13537 **** algebraic form that describes what the instruction does. RTL is inspired by Lisp lists. It has both an internal form, made up ! of structures that point at other structures, and a textual form that is ! used in the machine description and in printed debugging dumps. The textual form uses nested parentheses to indicate the pointers in the internal form. --- 13682,13689 ---- algebraic form that describes what the instruction does. RTL is inspired by Lisp lists. It has both an internal form, made up ! of structures that point at other structures, and a textual form that ! is used in the machine description and in printed debugging dumps. The textual form uses nested parentheses to indicate the pointers in the internal form. *************** internal form. *** 13553,13559 **** * RTL Declarations:: Declaring volatility, constancy, etc. * Side Effects:: Expressions for storing in registers, etc. * Incdec:: Embedded side-effects for autoincrement addressing. ! * Assembler:: Representing 'asm' with operands. * Debug Information:: Expressions representing debugging information. * Insns:: Expression types for entire insns. * Calls:: RTL representation of function call insns. --- 13705,13711 ---- * RTL Declarations:: Declaring volatility, constancy, etc. * Side Effects:: Expressions for storing in registers, etc. * Incdec:: Embedded side-effects for autoincrement addressing. ! * Assembler:: Representing `asm' with operands. * Debug Information:: Expressions representing debugging information. * Insns:: Expression types for entire insns. * Calls:: RTL representation of function call insns. *************** File: gccint.info, Node: RTL Objects, *** 13569,13588 **** RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expressions are the most important ones. An RTL expression ("RTX", for short) is a C structure, but it is usually ! referred to with a pointer; a type that is given the typedef name 'rtx'. ! An integer is simply an 'int'; their written form uses decimal digits. ! A wide integer is an integral object whose type is 'HOST_WIDE_INT'; their written form uses decimal digits. A string is a sequence of characters. In core it is represented as a ! 'char *' in usual C fashion, and it is written in C syntax as well. ! However, strings in RTL may never be null. If you write an empty string ! in a machine description, it is represented in core as a null pointer ! rather than as a pointer to a null character. In certain contexts, ! these null pointers instead of strings are valid. Within RTL code, ! strings are most commonly found inside 'symbol_ref' expressions, but ! they appear in other contexts in the RTL expressions that make up machine descriptions. In a machine description, strings are normally written with double --- 13721,13740 ---- RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expressions are the most important ones. An RTL expression ("RTX", for short) is a C structure, but it is usually ! referred to with a pointer; a type that is given the typedef name `rtx'. ! An integer is simply an `int'; their written form uses decimal digits. ! A wide integer is an integral object whose type is `HOST_WIDE_INT'; their written form uses decimal digits. A string is a sequence of characters. In core it is represented as a ! `char *' in usual C fashion, and it is written in C syntax as well. ! However, strings in RTL may never be null. If you write an empty ! string in a machine description, it is represented in core as a null ! pointer rather than as a pointer to a null character. In certain ! contexts, these null pointers instead of strings are valid. Within RTL ! code, strings are most commonly found inside `symbol_ref' expressions, ! but they appear in other contexts in the RTL expressions that make up machine descriptions. In a machine description, strings are normally written with double *************** need not escape each quote character wit *** 13602,13640 **** A vector contains an arbitrary number of pointers to expressions. The number of elements in the vector is explicitly present in the vector. ! The written form of a vector consists of square brackets ('[...]') surrounding the elements, in sequence and with whitespace separating them. Vectors of length zero are not created; null pointers are used instead. Expressions are classified by "expression codes" (also called RTX ! codes). The expression code is a name defined in 'rtl.def', which is also (in uppercase) a C enumeration constant. The possible expression codes and their meanings are machine-independent. The code of an RTX ! can be extracted with the macro 'GET_CODE (X)' and altered with ! 'PUT_CODE (X, NEWCODE)'. The expression code determines how many operands the expression contains, and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of object it is. ! Instead, you must know from its context--from the expression code of the ! containing expression. For example, in an expression of code 'subreg', ! the first operand is to be regarded as an expression and the second ! operand as an integer. In an expression of code 'plus', there are two ! operands, both of which are to be regarded as expressions. In a ! 'symbol_ref' expression, there is one operand, which is to be regarded ! as a string. Expressions are written as parentheses containing the name of the expression type, its flags and machine mode if any, and then the operands of the expression (separated by spaces). ! Expression code names in the 'md' file are written in lowercase, but when they appear in C code they are written in uppercase. In this ! manual, they are shown as follows: 'const_int'. In a few contexts a null pointer is valid where an expression is ! normally wanted. The written form of this is '(nil)'.  File: gccint.info, Node: RTL Classes, Next: Accessors, Prev: RTL Objects, Up: RTL --- 13754,13792 ---- A vector contains an arbitrary number of pointers to expressions. The number of elements in the vector is explicitly present in the vector. ! The written form of a vector consists of square brackets (`[...]') surrounding the elements, in sequence and with whitespace separating them. Vectors of length zero are not created; null pointers are used instead. Expressions are classified by "expression codes" (also called RTX ! codes). The expression code is a name defined in `rtl.def', which is also (in uppercase) a C enumeration constant. The possible expression codes and their meanings are machine-independent. The code of an RTX ! can be extracted with the macro `GET_CODE (X)' and altered with ! `PUT_CODE (X, NEWCODE)'. The expression code determines how many operands the expression contains, and what kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of object it is. ! Instead, you must know from its context--from the expression code of ! the containing expression. For example, in an expression of code ! `subreg', the first operand is to be regarded as an expression and the ! second operand as an integer. In an expression of code `plus', there ! are two operands, both of which are to be regarded as expressions. In ! a `symbol_ref' expression, there is one operand, which is to be ! regarded as a string. Expressions are written as parentheses containing the name of the expression type, its flags and machine mode if any, and then the operands of the expression (separated by spaces). ! Expression code names in the `md' file are written in lowercase, but when they appear in C code they are written in uppercase. In this ! manual, they are shown as follows: `const_int'. In a few contexts a null pointer is valid where an expression is ! normally wanted. The written form of this is `(nil)'.  File: gccint.info, Node: RTL Classes, Next: Accessors, Prev: RTL Objects, Up: RTL *************** File: gccint.info, Node: RTL Classes, *** 13643,13798 **** ============================ The various expression codes are divided into several "classes", which ! are represented by single characters. You can determine the class of an ! RTX code with the macro 'GET_RTX_CLASS (CODE)'. Currently, 'rtl.def' ! defines these classes: ! 'RTX_OBJ' An RTX code that represents an actual object, such as a register ! ('REG') or a memory location ('MEM', 'SYMBOL_REF'). 'LO_SUM') is ! also included; instead, 'SUBREG' and 'STRICT_LOW_PART' are not in ! this class, but in class 'x'. ! 'RTX_CONST_OBJ' ! An RTX code that represents a constant object. 'HIGH' is also included in this class. ! 'RTX_COMPARE' ! An RTX code for a non-symmetric comparison, such as 'GEU' or 'LT'. ! 'RTX_COMM_COMPARE' ! An RTX code for a symmetric (commutative) comparison, such as 'EQ' ! or 'ORDERED'. ! 'RTX_UNARY' ! An RTX code for a unary arithmetic operation, such as 'NEG', 'NOT', ! or 'ABS'. This category also includes value extension (sign or ! zero) and conversions between integer and floating point. ! 'RTX_COMM_ARITH' ! An RTX code for a commutative binary operation, such as 'PLUS' or ! 'AND'. 'NE' and 'EQ' are comparisons, so they have class '<'. ! 'RTX_BIN_ARITH' An RTX code for a non-commutative binary operation, such as ! 'MINUS', 'DIV', or 'ASHIFTRT'. ! 'RTX_BITFIELD_OPS' An RTX code for a bit-field operation. Currently only ! 'ZERO_EXTRACT' and 'SIGN_EXTRACT'. These have three inputs and are ! lvalues (so they can be used for insertion as well). *Note Bit-Fields::. ! 'RTX_TERNARY' An RTX code for other three input operations. Currently only ! 'IF_THEN_ELSE', 'VEC_MERGE', 'SIGN_EXTRACT', 'ZERO_EXTRACT', and ! 'FMA'. ! 'RTX_INSN' ! An RTX code for an entire instruction: 'INSN', 'JUMP_INSN', and ! 'CALL_INSN'. *Note Insns::. ! 'RTX_MATCH' An RTX code for something that matches in insns, such as ! 'MATCH_DUP'. These only occur in machine descriptions. ! 'RTX_AUTOINC' An RTX code for an auto-increment addressing mode, such as ! 'POST_INC'. ! 'RTX_EXTRA' All other RTX codes. This category includes the remaining codes ! used only in machine descriptions ('DEFINE_*', etc.). It also ! includes all the codes describing side effects ('SET', 'USE', ! 'CLOBBER', etc.) and the non-insns that may appear on an insn ! chain, such as 'NOTE', 'BARRIER', and 'CODE_LABEL'. 'SUBREG' is also part of this class. ! For each expression code, 'rtl.def' specifies the number of contained objects and their kinds using a sequence of characters called the ! "format" of the expression code. For example, the format of 'subreg' is ! 'ei'. These are the most commonly used format characters: ! 'e' An expression (actually a pointer to an expression). ! 'i' An integer. ! 'w' A wide integer. ! 's' A string. ! 'E' A vector of expressions. A few other format characters are used occasionally: ! 'u' ! 'u' is equivalent to 'e' except that it is printed differently in debugging dumps. It is used for pointers to insns. ! 'n' ! 'n' is equivalent to 'i' except that it is printed differently in debugging dumps. It is used for the line number or code number of ! a 'note' insn. ! 'S' ! 'S' indicates a string which is optional. In the RTL objects in ! core, 'S' is equivalent to 's', but when the object is read, from ! an 'md' file, the string value of this operand may be omitted. An omitted string is taken to be the null string. ! 'V' ! 'V' indicates a vector which is optional. In the RTL objects in ! core, 'V' is equivalent to 'E', but when the object is read from an ! 'md' file, the vector value of this operand may be omitted. An omitted vector is effectively the same as a vector of no elements. ! 'B' ! 'B' indicates a pointer to basic block structure. ! '0' ! '0' means a slot whose contents do not fit any normal category. ! '0' slots are not printed at all in dumps, and are often used in special ways by small parts of the compiler. There are macros to get the number of operands and the format of an expression code: ! 'GET_RTX_LENGTH (CODE)' Number of operands of an RTX of code CODE. ! 'GET_RTX_FORMAT (CODE)' The format of an RTX of code CODE, as a C string. Some classes of RTX codes always have the same format. For example, it ! is safe to assume that all comparison operations have format 'ee'. ! '1' ! All codes of this class have format 'e'. ! '<' ! 'c' ! '2' ! All codes of these classes have format 'ee'. ! 'b' ! '3' ! All codes of these classes have format 'eee'. ! 'i' ! All codes of this class have formats that begin with 'iuueiee'. *Note Insns::. Note that not all RTL objects linked onto an insn ! chain are of class 'i'. ! 'o' ! 'm' ! 'x' You can make no assumptions about the format of these codes.  --- 13795,13950 ---- ============================ The various expression codes are divided into several "classes", which ! are represented by single characters. You can determine the class of ! an RTX code with the macro `GET_RTX_CLASS (CODE)'. Currently, ! `rtl.def' defines these classes: ! `RTX_OBJ' An RTX code that represents an actual object, such as a register ! (`REG') or a memory location (`MEM', `SYMBOL_REF'). `LO_SUM') is ! also included; instead, `SUBREG' and `STRICT_LOW_PART' are not in ! this class, but in class `x'. ! `RTX_CONST_OBJ' ! An RTX code that represents a constant object. `HIGH' is also included in this class. ! `RTX_COMPARE' ! An RTX code for a non-symmetric comparison, such as `GEU' or `LT'. ! `RTX_COMM_COMPARE' ! An RTX code for a symmetric (commutative) comparison, such as `EQ' ! or `ORDERED'. ! `RTX_UNARY' ! An RTX code for a unary arithmetic operation, such as `NEG', ! `NOT', or `ABS'. This category also includes value extension ! (sign or zero) and conversions between integer and floating point. ! `RTX_COMM_ARITH' ! An RTX code for a commutative binary operation, such as `PLUS' or ! `AND'. `NE' and `EQ' are comparisons, so they have class `<'. ! `RTX_BIN_ARITH' An RTX code for a non-commutative binary operation, such as ! `MINUS', `DIV', or `ASHIFTRT'. ! `RTX_BITFIELD_OPS' An RTX code for a bit-field operation. Currently only ! `ZERO_EXTRACT' and `SIGN_EXTRACT'. These have three inputs and ! are lvalues (so they can be used for insertion as well). *Note Bit-Fields::. ! `RTX_TERNARY' An RTX code for other three input operations. Currently only ! `IF_THEN_ELSE', `VEC_MERGE', `SIGN_EXTRACT', `ZERO_EXTRACT', and ! `FMA'. ! `RTX_INSN' ! An RTX code for an entire instruction: `INSN', `JUMP_INSN', and ! `CALL_INSN'. *Note Insns::. ! `RTX_MATCH' An RTX code for something that matches in insns, such as ! `MATCH_DUP'. These only occur in machine descriptions. ! `RTX_AUTOINC' An RTX code for an auto-increment addressing mode, such as ! `POST_INC'. ! `RTX_EXTRA' All other RTX codes. This category includes the remaining codes ! used only in machine descriptions (`DEFINE_*', etc.). It also ! includes all the codes describing side effects (`SET', `USE', ! `CLOBBER', etc.) and the non-insns that may appear on an insn ! chain, such as `NOTE', `BARRIER', and `CODE_LABEL'. `SUBREG' is also part of this class. ! For each expression code, `rtl.def' specifies the number of contained objects and their kinds using a sequence of characters called the ! "format" of the expression code. For example, the format of `subreg' ! is `ei'. These are the most commonly used format characters: ! `e' An expression (actually a pointer to an expression). ! `i' An integer. ! `w' A wide integer. ! `s' A string. ! `E' A vector of expressions. A few other format characters are used occasionally: ! `u' ! `u' is equivalent to `e' except that it is printed differently in debugging dumps. It is used for pointers to insns. ! `n' ! `n' is equivalent to `i' except that it is printed differently in debugging dumps. It is used for the line number or code number of ! a `note' insn. ! `S' ! `S' indicates a string which is optional. In the RTL objects in ! core, `S' is equivalent to `s', but when the object is read, from ! an `md' file, the string value of this operand may be omitted. An omitted string is taken to be the null string. ! `V' ! `V' indicates a vector which is optional. In the RTL objects in ! core, `V' is equivalent to `E', but when the object is read from ! an `md' file, the vector value of this operand may be omitted. An omitted vector is effectively the same as a vector of no elements. ! `B' ! `B' indicates a pointer to basic block structure. ! `0' ! `0' means a slot whose contents do not fit any normal category. ! `0' slots are not printed at all in dumps, and are often used in special ways by small parts of the compiler. There are macros to get the number of operands and the format of an expression code: ! `GET_RTX_LENGTH (CODE)' Number of operands of an RTX of code CODE. ! `GET_RTX_FORMAT (CODE)' The format of an RTX of code CODE, as a C string. Some classes of RTX codes always have the same format. For example, it ! is safe to assume that all comparison operations have format `ee'. ! `1' ! All codes of this class have format `e'. ! `<' ! `c' ! `2' ! All codes of these classes have format `ee'. ! `b' ! `3' ! All codes of these classes have format `eee'. ! `i' ! All codes of this class have formats that begin with `iuueiee'. *Note Insns::. Note that not all RTL objects linked onto an insn ! chain are of class `i'. ! `o' ! `m' ! `x' You can make no assumptions about the format of these codes.  *************** File: gccint.info, Node: Accessors, Ne *** 13801,13808 **** 13.3 Access to Operands ======================= ! Operands of expressions are accessed using the macros 'XEXP', 'XINT', ! 'XWINT' and 'XSTR'. Each of these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting from zero). Thus, --- 13953,13960 ---- 13.3 Access to Operands ======================= ! Operands of expressions are accessed using the macros `XEXP', `XINT', ! `XWINT' and `XSTR'. Each of these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting from zero). Thus, *************** accesses operand 2 of expression X, as a *** 13812,13818 **** XINT (X, 2) ! accesses the same operand as an integer. 'XSTR', used in the same fashion, would access it as a string. Any operand can be accessed as an integer, as an expression or as a --- 13964,13970 ---- XINT (X, 2) ! accesses the same operand as an integer. `XSTR', used in the same fashion, would access it as a string. Any operand can be accessed as an integer, as an expression or as a *************** value actually stored in the operand. Y *** 13821,13854 **** expression code of the containing expression. That is also how you would know how many operands there are. ! For example, if X is a 'subreg' expression, you know that it has two ! operands which can be correctly accessed as 'XEXP (X, 0)' and 'XINT (X, ! 1)'. If you did 'XINT (X, 0)', you would get the address of the expression operand but cast as an integer; that might occasionally be ! useful, but it would be cleaner to write '(int) XEXP (X, 0)'. 'XEXP (X, ! 1)' would also compile without error, and would return the second, integer operand cast as an expression pointer, which would probably ! result in a crash when accessed. Nothing stops you from writing 'XEXP (X, 28)' either, but this will access memory past the end of the expression with unpredictable results. Access to operands which are vectors is more complicated. You can use ! the macro 'XVEC' to get the vector-pointer itself, or the macros ! 'XVECEXP' and 'XVECLEN' to access the elements and length of a vector. ! 'XVEC (EXP, IDX)' Access the vector-pointer which is operand number IDX in EXP. ! 'XVECLEN (EXP, IDX)' Access the length (number of elements) in the vector which is in ! operand number IDX in EXP. This value is an 'int'. ! 'XVECEXP (EXP, IDX, ELTNUM)' Access element number ELTNUM in the vector which is in operand number IDX in EXP. This value is an RTX. It is up to you to make sure that ELTNUM is not negative and is ! less than 'XVECLEN (EXP, IDX)'. All the macros defined in this section expand into lvalues and therefore can be used to assign the operands, lengths and vector --- 13973,14006 ---- expression code of the containing expression. That is also how you would know how many operands there are. ! For example, if X is a `subreg' expression, you know that it has two ! operands which can be correctly accessed as `XEXP (X, 0)' and `XINT (X, ! 1)'. If you did `XINT (X, 0)', you would get the address of the expression operand but cast as an integer; that might occasionally be ! useful, but it would be cleaner to write `(int) XEXP (X, 0)'. `XEXP ! (X, 1)' would also compile without error, and would return the second, integer operand cast as an expression pointer, which would probably ! result in a crash when accessed. Nothing stops you from writing `XEXP (X, 28)' either, but this will access memory past the end of the expression with unpredictable results. Access to operands which are vectors is more complicated. You can use ! the macro `XVEC' to get the vector-pointer itself, or the macros ! `XVECEXP' and `XVECLEN' to access the elements and length of a vector. ! `XVEC (EXP, IDX)' Access the vector-pointer which is operand number IDX in EXP. ! `XVECLEN (EXP, IDX)' Access the length (number of elements) in the vector which is in ! operand number IDX in EXP. This value is an `int'. ! `XVECEXP (EXP, IDX, ELTNUM)' Access element number ELTNUM in the vector which is in operand number IDX in EXP. This value is an RTX. It is up to you to make sure that ELTNUM is not negative and is ! less than `XVECLEN (EXP, IDX)'. All the macros defined in this section expand into lvalues and therefore can be used to assign the operands, lengths and vector *************** File: gccint.info, Node: Special Access *** 13862,13999 **** Some RTL nodes have special annotations associated with them. ! 'MEM' ! 'MEM_ALIAS_SET (X)' If 0, X is not in any alias set, and may alias anything. ! Otherwise, X can only alias 'MEM's in a conflicting alias set. ! This value is set in a language-dependent manner in the ! front-end, and should not be altered in the back-end. In some ! front-ends, these numbers may correspond in some way to types, ! or other language-level entities, but they need not, and the ! back-end makes no such assumptions. These set numbers are ! tested with 'alias_sets_conflict_p'. ! 'MEM_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. It may also be a ! 'COMPONENT_REF', in which case this is some field reference, ! and 'TREE_OPERAND (X, 0)' contains the declaration, or another ! 'COMPONENT_REF', or null if there is no compile-time object ! associated with the reference. ! 'MEM_OFFSET_KNOWN_P (X)' ! True if the offset of the memory reference from 'MEM_EXPR' is ! known. 'MEM_OFFSET (X)' provides the offset if so. ! 'MEM_OFFSET (X)' ! The offset from the start of 'MEM_EXPR'. The value is only ! valid if 'MEM_OFFSET_KNOWN_P (X)' is true. ! 'MEM_SIZE_KNOWN_P (X)' ! True if the size of the memory reference is known. 'MEM_SIZE (X)' provides its size if so. ! 'MEM_SIZE (X)' The size in bytes of the memory reference. This is mostly ! relevant for 'BLKmode' references as otherwise the size is implied by the mode. The value is only valid if ! 'MEM_SIZE_KNOWN_P (X)' is true. ! 'MEM_ALIGN (X)' The known alignment in bits of the memory reference. ! 'MEM_ADDR_SPACE (X)' ! The address space of the memory reference. This will commonly ! be zero for the generic address space. ! 'REG' ! 'ORIGINAL_REGNO (X)' ! This field holds the number the register "originally" had; for ! a pseudo register turned into a hard reg this will hold the ! old pseudo register number. ! 'REG_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. ! 'REG_OFFSET (X)' If this register is known to hold the value of some user-level declaration, this is the offset into that logical storage. ! 'SYMBOL_REF' ! 'SYMBOL_REF_DECL (X)' ! If the 'symbol_ref' X was created for a 'VAR_DECL' or a ! 'FUNCTION_DECL', that tree is recorded here. If this value is null, then X was created by back end code generation routines, and there is no associated front end symbol table entry. ! 'SYMBOL_REF_DECL' may also point to a tree of class ''c'', that is, some sort of constant. In this case, the ! 'symbol_ref' is an entry in the per-file constant pool; again, ! there is no associated front end symbol table entry. ! 'SYMBOL_REF_CONSTANT (X)' ! If 'CONSTANT_POOL_ADDRESS_P (X)' is true, this is the constant pool entry for X. It is null otherwise. ! 'SYMBOL_REF_DATA (X)' ! A field of opaque type used to store 'SYMBOL_REF_DECL' or ! 'SYMBOL_REF_CONSTANT'. ! 'SYMBOL_REF_FLAGS (X)' ! In a 'symbol_ref', this is used to communicate various predicates about the symbol. Some of these are common enough to be computed by common code, some are specific to the target. The common bits are: ! 'SYMBOL_FLAG_FUNCTION' Set if the symbol refers to a function. ! 'SYMBOL_FLAG_LOCAL' Set if the symbol is local to this "module". See ! 'TARGET_BINDS_LOCAL_P'. ! 'SYMBOL_FLAG_EXTERNAL' Set if this symbol is not defined in this translation unit. Note that this is not the inverse of ! 'SYMBOL_FLAG_LOCAL'. ! 'SYMBOL_FLAG_SMALL' Set if the symbol is located in the small data section. ! See 'TARGET_IN_SMALL_DATA_P'. ! 'SYMBOL_REF_TLS_MODEL (X)' This is a multi-bit field accessor that returns the ! 'tls_model' to be used for a thread-local storage symbol. ! It returns zero for non-thread-local symbols. ! 'SYMBOL_FLAG_HAS_BLOCK_INFO' ! Set if the symbol has 'SYMBOL_REF_BLOCK' and ! 'SYMBOL_REF_BLOCK_OFFSET' fields. ! 'SYMBOL_FLAG_ANCHOR' Set if the symbol is used as a section anchor. "Section ! anchors" are symbols that have a known position within an ! 'object_block' and that can be used to access nearby members of that block. They are used to implement ! '-fsection-anchors'. ! If this flag is set, then 'SYMBOL_FLAG_HAS_BLOCK_INFO' will be too. ! Bits beginning with 'SYMBOL_FLAG_MACH_DEP' are available for the target's use. ! 'SYMBOL_REF_BLOCK (X)' ! If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the 'object_block' ! structure to which the symbol belongs, or 'NULL' if it has not been ! assigned a block. ! 'SYMBOL_REF_BLOCK_OFFSET (X)' ! If 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the offset of X from ! the first object in 'SYMBOL_REF_BLOCK (X)'. The value is negative ! if X has not yet been assigned to a block, or it has not been given ! an offset within that block.  File: gccint.info, Node: Flags, Next: Machine Modes, Prev: Special Accessors, Up: RTL --- 14014,14154 ---- Some RTL nodes have special annotations associated with them. ! `MEM' ! ! `MEM_ALIAS_SET (X)' If 0, X is not in any alias set, and may alias anything. ! Otherwise, X can only alias `MEM's in a conflicting alias ! set. This value is set in a language-dependent manner in the ! front-end, and should not be altered in the back-end. In ! some front-ends, these numbers may correspond in some way to ! types, or other language-level entities, but they need not, ! and the back-end makes no such assumptions. These set ! numbers are tested with `alias_sets_conflict_p'. ! `MEM_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. It may also be a ! `COMPONENT_REF', in which case this is some field reference, ! and `TREE_OPERAND (X, 0)' contains the declaration, or ! another `COMPONENT_REF', or null if there is no compile-time ! object associated with the reference. ! `MEM_OFFSET_KNOWN_P (X)' ! True if the offset of the memory reference from `MEM_EXPR' is ! known. `MEM_OFFSET (X)' provides the offset if so. ! `MEM_OFFSET (X)' ! The offset from the start of `MEM_EXPR'. The value is only ! valid if `MEM_OFFSET_KNOWN_P (X)' is true. ! `MEM_SIZE_KNOWN_P (X)' ! True if the size of the memory reference is known. `MEM_SIZE (X)' provides its size if so. ! `MEM_SIZE (X)' The size in bytes of the memory reference. This is mostly ! relevant for `BLKmode' references as otherwise the size is implied by the mode. The value is only valid if ! `MEM_SIZE_KNOWN_P (X)' is true. ! `MEM_ALIGN (X)' The known alignment in bits of the memory reference. ! `MEM_ADDR_SPACE (X)' ! The address space of the memory reference. This will ! commonly be zero for the generic address space. ! `REG' ! `ORIGINAL_REGNO (X)' ! This field holds the number the register "originally" had; ! for a pseudo register turned into a hard reg this will hold ! the old pseudo register number. ! ! `REG_EXPR (X)' If this register is known to hold the value of some user-level declaration, this is that tree node. ! `REG_OFFSET (X)' If this register is known to hold the value of some user-level declaration, this is the offset into that logical storage. ! `SYMBOL_REF' ! ! `SYMBOL_REF_DECL (X)' ! If the `symbol_ref' X was created for a `VAR_DECL' or a ! `FUNCTION_DECL', that tree is recorded here. If this value is null, then X was created by back end code generation routines, and there is no associated front end symbol table entry. ! `SYMBOL_REF_DECL' may also point to a tree of class `'c'', that is, some sort of constant. In this case, the ! `symbol_ref' is an entry in the per-file constant pool; ! again, there is no associated front end symbol table entry. ! `SYMBOL_REF_CONSTANT (X)' ! If `CONSTANT_POOL_ADDRESS_P (X)' is true, this is the constant pool entry for X. It is null otherwise. ! `SYMBOL_REF_DATA (X)' ! A field of opaque type used to store `SYMBOL_REF_DECL' or ! `SYMBOL_REF_CONSTANT'. ! `SYMBOL_REF_FLAGS (X)' ! In a `symbol_ref', this is used to communicate various predicates about the symbol. Some of these are common enough to be computed by common code, some are specific to the target. The common bits are: ! `SYMBOL_FLAG_FUNCTION' Set if the symbol refers to a function. ! `SYMBOL_FLAG_LOCAL' Set if the symbol is local to this "module". See ! `TARGET_BINDS_LOCAL_P'. ! `SYMBOL_FLAG_EXTERNAL' Set if this symbol is not defined in this translation unit. Note that this is not the inverse of ! `SYMBOL_FLAG_LOCAL'. ! `SYMBOL_FLAG_SMALL' Set if the symbol is located in the small data section. ! See `TARGET_IN_SMALL_DATA_P'. ! `SYMBOL_REF_TLS_MODEL (X)' This is a multi-bit field accessor that returns the ! `tls_model' to be used for a thread-local storage ! symbol. It returns zero for non-thread-local symbols. ! `SYMBOL_FLAG_HAS_BLOCK_INFO' ! Set if the symbol has `SYMBOL_REF_BLOCK' and ! `SYMBOL_REF_BLOCK_OFFSET' fields. ! `SYMBOL_FLAG_ANCHOR' Set if the symbol is used as a section anchor. "Section ! anchors" are symbols that have a known position within ! an `object_block' and that can be used to access nearby members of that block. They are used to implement ! `-fsection-anchors'. ! If this flag is set, then `SYMBOL_FLAG_HAS_BLOCK_INFO' will be too. ! Bits beginning with `SYMBOL_FLAG_MACH_DEP' are available for the target's use. ! `SYMBOL_REF_BLOCK (X)' ! If `SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the `object_block' ! structure to which the symbol belongs, or `NULL' if it has not ! been assigned a block. ! `SYMBOL_REF_BLOCK_OFFSET (X)' ! If `SYMBOL_REF_HAS_BLOCK_INFO_P (X)', this is the offset of X from ! the first object in `SYMBOL_REF_BLOCK (X)'. The value is negative ! if X has not yet been assigned to a block, or it has not been ! given an offset within that block.  File: gccint.info, Node: Flags, Next: Machine Modes, Prev: Special Accessors, Up: RTL *************** File: gccint.info, Node: Flags, Next: *** 14001,14114 **** 13.5 Flags in an RTL Expression =============================== ! RTL expressions contain several flags (one-bit bit-fields) that are used ! in certain types of expression. Most often they are accessed with the ! following macros, which expand into lvalues. ! 'CONSTANT_POOL_ADDRESS_P (X)' ! Nonzero in a 'symbol_ref' if it refers to part of the current function's constant pool. For most targets these addresses are in ! a '.rodata' section entirely separate from the function, but for some targets the addresses are close to the beginning of the function. In either case GCC assumes these addresses can be addressed directly, perhaps with the help of base registers. ! Stored in the 'unchanging' field and printed as '/u'. ! 'RTL_CONST_CALL_P (X)' ! In a 'call_insn' indicates that the insn represents a call to a ! const function. Stored in the 'unchanging' field and printed as ! '/u'. ! 'RTL_PURE_CALL_P (X)' ! In a 'call_insn' indicates that the insn represents a call to a ! pure function. Stored in the 'return_val' field and printed as ! '/i'. ! 'RTL_CONST_OR_PURE_CALL_P (X)' ! In a 'call_insn', true if 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P' is true. ! 'RTL_LOOPING_CONST_OR_PURE_CALL_P (X)' ! In a 'call_insn' indicates that the insn represents a possibly infinite looping call to a const or pure function. Stored in the ! 'call' field and printed as '/c'. Only true if one of ! 'RTL_CONST_CALL_P' or 'RTL_PURE_CALL_P' is true. ! 'INSN_ANNULLED_BRANCH_P (X)' ! In a 'jump_insn', 'call_insn', or 'insn' indicates that the branch ! is an annulling one. See the discussion under 'sequence' below. ! Stored in the 'unchanging' field and printed as '/u'. ! 'INSN_DELETED_P (X)' ! In an 'insn', 'call_insn', 'jump_insn', 'code_label', ! 'jump_table_data', 'barrier', or 'note', nonzero if the insn has ! been deleted. Stored in the 'volatil' field and printed as '/v'. ! 'INSN_FROM_TARGET_P (X)' ! In an 'insn' or 'jump_insn' or 'call_insn' in a delay slot of a branch, indicates that the insn is from the target of the branch. ! If the branch insn has 'INSN_ANNULLED_BRANCH_P' set, this insn will ! only be executed if the branch is taken. For annulled branches ! with 'INSN_FROM_TARGET_P' clear, the insn will be executed only if ! the branch is not taken. When 'INSN_ANNULLED_BRANCH_P' is not set, ! this insn will always be executed. Stored in the 'in_struct' field ! and printed as '/s'. ! 'LABEL_PRESERVE_P (X)' ! In a 'code_label' or 'note', indicates that the label is referenced ! by code or data not visible to the RTL of a given function. Labels ! referenced by a non-local goto will have this bit set. Stored in ! the 'in_struct' field and printed as '/s'. ! 'LABEL_REF_NONLOCAL_P (X)' ! In 'label_ref' and 'reg_label' expressions, nonzero if this is a ! reference to a non-local label. Stored in the 'volatil' field and ! printed as '/v'. ! 'MEM_KEEP_ALIAS_SET_P (X)' ! In 'mem' expressions, 1 if we should keep the alias set for this mem unchanged when we access a component. Set to 1, for example, when we are already in a non-addressable component of an aggregate. ! Stored in the 'jump' field and printed as '/j'. ! 'MEM_VOLATILE_P (X)' ! In 'mem', 'asm_operands', and 'asm_input' expressions, nonzero for ! volatile memory references. Stored in the 'volatil' field and ! printed as '/v'. ! 'MEM_NOTRAP_P (X)' ! In 'mem', nonzero for memory references that will not trap. Stored ! in the 'call' field and printed as '/c'. ! 'MEM_POINTER (X)' ! Nonzero in a 'mem' if the memory reference holds a pointer. Stored ! in the 'frame_related' field and printed as '/f'. ! 'REG_FUNCTION_VALUE_P (X)' ! Nonzero in a 'reg' if it is the place in which this function's value is going to be returned. (This happens only in a hard ! register.) Stored in the 'return_val' field and printed as '/i'. ! 'REG_POINTER (X)' ! Nonzero in a 'reg' if the register holds a pointer. Stored in the ! 'frame_related' field and printed as '/f'. ! 'REG_USERVAR_P (X)' ! In a 'reg', nonzero if it corresponds to a variable present in the user's source code. Zero for temporaries generated internally by ! the compiler. Stored in the 'volatil' field and printed as '/v'. The same hard register may be used also for collecting the values ! of functions called by this one, but 'REG_FUNCTION_VALUE_P' is zero in this kind of use. ! 'RTX_FRAME_RELATED_P (X)' ! Nonzero in an 'insn', 'call_insn', 'jump_insn', 'barrier', or 'set' ! which is part of a function prologue and sets the stack pointer, ! sets the frame pointer, or saves a register. This flag should also ! be set on an instruction that sets up a temporary register to use ! in place of the frame pointer. Stored in the 'frame_related' field ! and printed as '/f'. In particular, on RISC targets where there are limits on the sizes of immediate constants, it is sometimes impossible to reach the --- 14156,14269 ---- 13.5 Flags in an RTL Expression =============================== ! RTL expressions contain several flags (one-bit bit-fields) that are ! used in certain types of expression. Most often they are accessed with ! the following macros, which expand into lvalues. ! `CONSTANT_POOL_ADDRESS_P (X)' ! Nonzero in a `symbol_ref' if it refers to part of the current function's constant pool. For most targets these addresses are in ! a `.rodata' section entirely separate from the function, but for some targets the addresses are close to the beginning of the function. In either case GCC assumes these addresses can be addressed directly, perhaps with the help of base registers. ! Stored in the `unchanging' field and printed as `/u'. ! `RTL_CONST_CALL_P (X)' ! In a `call_insn' indicates that the insn represents a call to a ! const function. Stored in the `unchanging' field and printed as ! `/u'. ! `RTL_PURE_CALL_P (X)' ! In a `call_insn' indicates that the insn represents a call to a ! pure function. Stored in the `return_val' field and printed as ! `/i'. ! `RTL_CONST_OR_PURE_CALL_P (X)' ! In a `call_insn', true if `RTL_CONST_CALL_P' or `RTL_PURE_CALL_P' is true. ! `RTL_LOOPING_CONST_OR_PURE_CALL_P (X)' ! In a `call_insn' indicates that the insn represents a possibly infinite looping call to a const or pure function. Stored in the ! `call' field and printed as `/c'. Only true if one of ! `RTL_CONST_CALL_P' or `RTL_PURE_CALL_P' is true. ! `INSN_ANNULLED_BRANCH_P (X)' ! In a `jump_insn', `call_insn', or `insn' indicates that the branch ! is an annulling one. See the discussion under `sequence' below. ! Stored in the `unchanging' field and printed as `/u'. ! `INSN_DELETED_P (X)' ! In an `insn', `call_insn', `jump_insn', `code_label', ! `jump_table_data', `barrier', or `note', nonzero if the insn has ! been deleted. Stored in the `volatil' field and printed as `/v'. ! `INSN_FROM_TARGET_P (X)' ! In an `insn' or `jump_insn' or `call_insn' in a delay slot of a branch, indicates that the insn is from the target of the branch. ! If the branch insn has `INSN_ANNULLED_BRANCH_P' set, this insn ! will only be executed if the branch is taken. For annulled ! branches with `INSN_FROM_TARGET_P' clear, the insn will be ! executed only if the branch is not taken. When ! `INSN_ANNULLED_BRANCH_P' is not set, this insn will always be ! executed. Stored in the `in_struct' field and printed as `/s'. ! `LABEL_PRESERVE_P (X)' ! In a `code_label' or `note', indicates that the label is ! referenced by code or data not visible to the RTL of a given ! function. Labels referenced by a non-local goto will have this ! bit set. Stored in the `in_struct' field and printed as `/s'. ! `LABEL_REF_NONLOCAL_P (X)' ! In `label_ref' and `reg_label' expressions, nonzero if this is a ! reference to a non-local label. Stored in the `volatil' field and ! printed as `/v'. ! `MEM_KEEP_ALIAS_SET_P (X)' ! In `mem' expressions, 1 if we should keep the alias set for this mem unchanged when we access a component. Set to 1, for example, when we are already in a non-addressable component of an aggregate. ! Stored in the `jump' field and printed as `/j'. ! `MEM_VOLATILE_P (X)' ! In `mem', `asm_operands', and `asm_input' expressions, nonzero for ! volatile memory references. Stored in the `volatil' field and ! printed as `/v'. ! `MEM_NOTRAP_P (X)' ! In `mem', nonzero for memory references that will not trap. ! Stored in the `call' field and printed as `/c'. ! `MEM_POINTER (X)' ! Nonzero in a `mem' if the memory reference holds a pointer. ! Stored in the `frame_related' field and printed as `/f'. ! `REG_FUNCTION_VALUE_P (X)' ! Nonzero in a `reg' if it is the place in which this function's value is going to be returned. (This happens only in a hard ! register.) Stored in the `return_val' field and printed as `/i'. ! `REG_POINTER (X)' ! Nonzero in a `reg' if the register holds a pointer. Stored in the ! `frame_related' field and printed as `/f'. ! `REG_USERVAR_P (X)' ! In a `reg', nonzero if it corresponds to a variable present in the user's source code. Zero for temporaries generated internally by ! the compiler. Stored in the `volatil' field and printed as `/v'. The same hard register may be used also for collecting the values ! of functions called by this one, but `REG_FUNCTION_VALUE_P' is zero in this kind of use. ! `RTX_FRAME_RELATED_P (X)' ! Nonzero in an `insn', `call_insn', `jump_insn', `barrier', or ! `set' which is part of a function prologue and sets the stack ! pointer, sets the frame pointer, or saves a register. This flag ! should also be set on an instruction that sets up a temporary ! register to use in place of the frame pointer. Stored in the ! `frame_related' field and printed as `/f'. In particular, on RISC targets where there are limits on the sizes of immediate constants, it is sometimes impossible to reach the *************** following macros, which expand into lval *** 14117,14136 **** save area, and the Canonical Frame Address, i.e., DWARF2's logical frame pointer, register must (temporarily) be changed to be this temporary register. So, the instruction that sets this temporary ! register must be marked as 'RTX_FRAME_RELATED_P'. If the marked instruction is overly complex (defined in terms of ! what 'dwarf2out_frame_debug_expr' can handle), you will also have ! to create a 'REG_FRAME_RELATED_EXPR' note and attach it to the instruction. This note should contain a simple expression of the computation performed by this instruction, i.e., one that ! 'dwarf2out_frame_debug_expr' can handle. This flag is required for exception handling support on targets with RTL prologues. ! 'MEM_READONLY_P (X)' ! Nonzero in a 'mem', if the memory is statically allocated and read-only. Read-only in this context means never modified during the lifetime --- 14272,14291 ---- save area, and the Canonical Frame Address, i.e., DWARF2's logical frame pointer, register must (temporarily) be changed to be this temporary register. So, the instruction that sets this temporary ! register must be marked as `RTX_FRAME_RELATED_P'. If the marked instruction is overly complex (defined in terms of ! what `dwarf2out_frame_debug_expr' can handle), you will also have ! to create a `REG_FRAME_RELATED_EXPR' note and attach it to the instruction. This note should contain a simple expression of the computation performed by this instruction, i.e., one that ! `dwarf2out_frame_debug_expr' can handle. This flag is required for exception handling support on targets with RTL prologues. ! `MEM_READONLY_P (X)' ! Nonzero in a `mem', if the memory is statically allocated and read-only. Read-only in this context means never modified during the lifetime *************** following macros, which expand into lval *** 14141,14348 **** from the runtime loader to the application, this memory will never be subsequently modified. ! Stored in the 'unchanging' field and printed as '/u'. ! 'SCHED_GROUP_P (X)' ! During instruction scheduling, in an 'insn', 'call_insn', ! 'jump_insn' or 'jump_table_data', indicates that the previous insn must be scheduled together with this insn. This is used to ensure that certain groups of instructions will not be split up by the ! instruction scheduling pass, for example, 'use' insns before a ! 'call_insn' may not be separated from the 'call_insn'. Stored in ! the 'in_struct' field and printed as '/s'. ! 'SET_IS_RETURN_P (X)' ! For a 'set', nonzero if it is for a return. Stored in the 'jump' ! field and printed as '/j'. ! 'SIBLING_CALL_P (X)' ! For a 'call_insn', nonzero if the insn is a sibling call. Stored ! in the 'jump' field and printed as '/j'. ! 'STRING_POOL_ADDRESS_P (X)' ! For a 'symbol_ref' expression, nonzero if it addresses this ! function's string constant pool. Stored in the 'frame_related' ! field and printed as '/f'. ! 'SUBREG_PROMOTED_UNSIGNED_P (X)' ! Returns a value greater then zero for a 'subreg' that has ! 'SUBREG_PROMOTED_VAR_P' nonzero if the object being referenced is ! kept zero-extended, zero if it is kept sign-extended, and less then ! zero if it is extended some other way via the 'ptr_extend' ! instruction. Stored in the 'unchanging' field and 'volatil' field, ! printed as '/u' and '/v'. This macro may only be used to get the ! value it may not be used to change the value. Use ! 'SUBREG_PROMOTED_UNSIGNED_SET' to change the value. ! 'SUBREG_PROMOTED_UNSIGNED_SET (X)' ! Set the 'unchanging' and 'volatil' fields in a 'subreg' to reflect ! zero, sign, or other extension. If 'volatil' is zero, then ! 'unchanging' as nonzero means zero extension and as zero means sign ! extension. If 'volatil' is nonzero then some other type of ! extension was done via the 'ptr_extend' instruction. ! 'SUBREG_PROMOTED_VAR_P (X)' ! Nonzero in a 'subreg' if it was made when accessing an object that ! was promoted to a wider mode in accord with the 'PROMOTED_MODE' machine description macro (*note Storage Layout::). In this case, ! the mode of the 'subreg' is the declared mode of the object and the ! mode of 'SUBREG_REG' is the mode of the register that holds the ! object. Promoted variables are always either sign- or ! zero-extended to the wider mode on every assignment. Stored in the ! 'in_struct' field and printed as '/s'. ! 'SYMBOL_REF_USED (X)' ! In a 'symbol_ref', indicates that X has been used. This is ! normally only used to ensure that X is only declared external once. ! Stored in the 'used' field. ! 'SYMBOL_REF_WEAK (X)' ! In a 'symbol_ref', indicates that X has been declared weak. Stored ! in the 'return_val' field and printed as '/i'. ! 'SYMBOL_REF_FLAG (X)' ! In a 'symbol_ref', this is used as a flag for machine-specific ! purposes. Stored in the 'volatil' field and printed as '/v'. ! Most uses of 'SYMBOL_REF_FLAG' are historic and may be subsumed by ! 'SYMBOL_REF_FLAGS'. Certainly use of 'SYMBOL_REF_FLAGS' is mandatory if the target requires more than one bit of storage. ! 'PREFETCH_SCHEDULE_BARRIER_P (X)' ! In a 'prefetch', indicates that the prefetch is a scheduling barrier. No other INSNs will be moved over it. Stored in the ! 'volatil' field and printed as '/v'. These are the fields to which the above macros refer: ! 'call' ! In a 'mem', 1 means that the memory reference will not trap. ! In a 'call', 1 means that this pure or const call may possibly infinite loop. ! In an RTL dump, this flag is represented as '/c'. ! 'frame_related' ! In an 'insn' or 'set' expression, 1 means that it is part of a function prologue and sets the stack pointer, sets the frame pointer, saves a register, or sets up a temporary register to use in place of the frame pointer. ! In 'reg' expressions, 1 means that the register holds a pointer. ! In 'mem' expressions, 1 means that the memory reference holds a pointer. ! In 'symbol_ref' expressions, 1 means that the reference addresses this function's string constant pool. ! In an RTL dump, this flag is represented as '/f'. ! 'in_struct' ! In 'reg' expressions, it is 1 if the register has its entire life contained within the test expression of some loop. ! In 'subreg' expressions, 1 means that the 'subreg' is accessing an object that has had its mode promoted from a wider mode. ! In 'label_ref' expressions, 1 means that the referenced label is outside the innermost loop containing the insn in which the ! 'label_ref' was found. ! In 'code_label' expressions, it is 1 if the label may never be ! deleted. This is used for labels which are the target of non-local ! gotos. Such a label that would have been deleted is replaced with ! a 'note' of type 'NOTE_INSN_DELETED_LABEL'. ! In an 'insn' during dead-code elimination, 1 means that the insn is dead code. ! In an 'insn' or 'jump_insn' during reorg for an insn in the delay slot of a branch, 1 means that this insn is from the target of the branch. ! In an 'insn' during instruction scheduling, 1 means that this insn must be scheduled as part of a group together with the previous insn. ! In an RTL dump, this flag is represented as '/s'. ! 'return_val' ! In 'reg' expressions, 1 means the register contains the value to be ! returned by the current function. On machines that pass parameters ! in registers, the same register number may be used for parameters ! as well, but this flag is not set on such uses. ! In 'symbol_ref' expressions, 1 means the referenced symbol is weak. ! In 'call' expressions, 1 means the call is pure. ! In an RTL dump, this flag is represented as '/i'. ! 'jump' ! In a 'mem' expression, 1 means we should keep the alias set for this mem unchanged when we access a component. ! In a 'set', 1 means it is for a return. ! In a 'call_insn', 1 means it is a sibling call. ! In an RTL dump, this flag is represented as '/j'. ! 'unchanging' ! In 'reg' and 'mem' expressions, 1 means that the value of the expression never changes. ! In 'subreg' expressions, it is 1 if the 'subreg' references an unsigned object whose mode has been promoted to a wider mode. ! In an 'insn' or 'jump_insn' in the delay slot of a branch instruction, 1 means an annulling branch should be used. ! In a 'symbol_ref' expression, 1 means that this symbol addresses something in the per-function constant pool. ! In a 'call_insn' 1 means that this instruction is a call to a const function. ! In an RTL dump, this flag is represented as '/u'. ! 'used' This flag is used directly (without an access macro) at the end of RTL generation for a function, to count the number of times an expression appears in insns. Expressions that appear more than ! once are copied, according to the rules for shared structure (*note ! Sharing::). ! For a 'reg', it is used directly (without an access macro) by the leaf register renumbering code to ensure that each register is only renumbered once. ! In a 'symbol_ref', it indicates that an external declaration for the symbol has already been written. ! 'volatil' ! In a 'mem', 'asm_operands', or 'asm_input' expression, it is 1 if the memory reference is volatile. Volatile memory references may not be deleted, reordered or combined. ! In a 'symbol_ref' expression, it is used for machine-specific purposes. ! In a 'reg' expression, it is 1 if the value is a user-level variable. 0 indicates an internal compiler temporary. ! In an 'insn', 1 means the insn has been deleted. ! In 'label_ref' and 'reg_label' expressions, 1 means a reference to a non-local label. ! In 'prefetch' expressions, 1 means that the containing insn is a scheduling barrier. ! In an RTL dump, this flag is represented as '/v'.  File: gccint.info, Node: Machine Modes, Next: Constants, Prev: Flags, Up: RTL --- 14296,14503 ---- from the runtime loader to the application, this memory will never be subsequently modified. ! Stored in the `unchanging' field and printed as `/u'. ! `SCHED_GROUP_P (X)' ! During instruction scheduling, in an `insn', `call_insn', ! `jump_insn' or `jump_table_data', indicates that the previous insn must be scheduled together with this insn. This is used to ensure that certain groups of instructions will not be split up by the ! instruction scheduling pass, for example, `use' insns before a ! `call_insn' may not be separated from the `call_insn'. Stored in ! the `in_struct' field and printed as `/s'. ! `SET_IS_RETURN_P (X)' ! For a `set', nonzero if it is for a return. Stored in the `jump' ! field and printed as `/j'. ! `SIBLING_CALL_P (X)' ! For a `call_insn', nonzero if the insn is a sibling call. Stored ! in the `jump' field and printed as `/j'. ! `STRING_POOL_ADDRESS_P (X)' ! For a `symbol_ref' expression, nonzero if it addresses this ! function's string constant pool. Stored in the `frame_related' ! field and printed as `/f'. ! `SUBREG_PROMOTED_UNSIGNED_P (X)' ! Returns a value greater then zero for a `subreg' that has ! `SUBREG_PROMOTED_VAR_P' nonzero if the object being referenced is ! kept zero-extended, zero if it is kept sign-extended, and less ! then zero if it is extended some other way via the `ptr_extend' ! instruction. Stored in the `unchanging' field and `volatil' ! field, printed as `/u' and `/v'. This macro may only be used to ! get the value it may not be used to change the value. Use ! `SUBREG_PROMOTED_UNSIGNED_SET' to change the value. ! `SUBREG_PROMOTED_UNSIGNED_SET (X)' ! Set the `unchanging' and `volatil' fields in a `subreg' to reflect ! zero, sign, or other extension. If `volatil' is zero, then ! `unchanging' as nonzero means zero extension and as zero means ! sign extension. If `volatil' is nonzero then some other type of ! extension was done via the `ptr_extend' instruction. ! `SUBREG_PROMOTED_VAR_P (X)' ! Nonzero in a `subreg' if it was made when accessing an object that ! was promoted to a wider mode in accord with the `PROMOTED_MODE' machine description macro (*note Storage Layout::). In this case, ! the mode of the `subreg' is the declared mode of the object and ! the mode of `SUBREG_REG' is the mode of the register that holds ! the object. Promoted variables are always either sign- or ! zero-extended to the wider mode on every assignment. Stored in ! the `in_struct' field and printed as `/s'. ! `SYMBOL_REF_USED (X)' ! In a `symbol_ref', indicates that X has been used. This is ! normally only used to ensure that X is only declared external ! once. Stored in the `used' field. ! `SYMBOL_REF_WEAK (X)' ! In a `symbol_ref', indicates that X has been declared weak. ! Stored in the `return_val' field and printed as `/i'. ! `SYMBOL_REF_FLAG (X)' ! In a `symbol_ref', this is used as a flag for machine-specific ! purposes. Stored in the `volatil' field and printed as `/v'. ! Most uses of `SYMBOL_REF_FLAG' are historic and may be subsumed by ! `SYMBOL_REF_FLAGS'. Certainly use of `SYMBOL_REF_FLAGS' is mandatory if the target requires more than one bit of storage. ! `PREFETCH_SCHEDULE_BARRIER_P (X)' ! In a `prefetch', indicates that the prefetch is a scheduling barrier. No other INSNs will be moved over it. Stored in the ! `volatil' field and printed as `/v'. These are the fields to which the above macros refer: ! `call' ! In a `mem', 1 means that the memory reference will not trap. ! In a `call', 1 means that this pure or const call may possibly infinite loop. ! In an RTL dump, this flag is represented as `/c'. ! `frame_related' ! In an `insn' or `set' expression, 1 means that it is part of a function prologue and sets the stack pointer, sets the frame pointer, saves a register, or sets up a temporary register to use in place of the frame pointer. ! In `reg' expressions, 1 means that the register holds a pointer. ! In `mem' expressions, 1 means that the memory reference holds a pointer. ! In `symbol_ref' expressions, 1 means that the reference addresses this function's string constant pool. ! In an RTL dump, this flag is represented as `/f'. ! `in_struct' ! In `reg' expressions, it is 1 if the register has its entire life contained within the test expression of some loop. ! In `subreg' expressions, 1 means that the `subreg' is accessing an object that has had its mode promoted from a wider mode. ! In `label_ref' expressions, 1 means that the referenced label is outside the innermost loop containing the insn in which the ! `label_ref' was found. ! In `code_label' expressions, it is 1 if the label may never be ! deleted. This is used for labels which are the target of ! non-local gotos. Such a label that would have been deleted is ! replaced with a `note' of type `NOTE_INSN_DELETED_LABEL'. ! In an `insn' during dead-code elimination, 1 means that the insn is dead code. ! In an `insn' or `jump_insn' during reorg for an insn in the delay slot of a branch, 1 means that this insn is from the target of the branch. ! In an `insn' during instruction scheduling, 1 means that this insn must be scheduled as part of a group together with the previous insn. ! In an RTL dump, this flag is represented as `/s'. ! `return_val' ! In `reg' expressions, 1 means the register contains the value to ! be returned by the current function. On machines that pass ! parameters in registers, the same register number may be used for ! parameters as well, but this flag is not set on such uses. ! In `symbol_ref' expressions, 1 means the referenced symbol is weak. ! In `call' expressions, 1 means the call is pure. ! In an RTL dump, this flag is represented as `/i'. ! `jump' ! In a `mem' expression, 1 means we should keep the alias set for this mem unchanged when we access a component. ! In a `set', 1 means it is for a return. ! In a `call_insn', 1 means it is a sibling call. ! In an RTL dump, this flag is represented as `/j'. ! `unchanging' ! In `reg' and `mem' expressions, 1 means that the value of the expression never changes. ! In `subreg' expressions, it is 1 if the `subreg' references an unsigned object whose mode has been promoted to a wider mode. ! In an `insn' or `jump_insn' in the delay slot of a branch instruction, 1 means an annulling branch should be used. ! In a `symbol_ref' expression, 1 means that this symbol addresses something in the per-function constant pool. ! In a `call_insn' 1 means that this instruction is a call to a const function. ! In an RTL dump, this flag is represented as `/u'. ! `used' This flag is used directly (without an access macro) at the end of RTL generation for a function, to count the number of times an expression appears in insns. Expressions that appear more than ! once are copied, according to the rules for shared structure ! (*note Sharing::). ! For a `reg', it is used directly (without an access macro) by the leaf register renumbering code to ensure that each register is only renumbered once. ! In a `symbol_ref', it indicates that an external declaration for the symbol has already been written. ! `volatil' ! In a `mem', `asm_operands', or `asm_input' expression, it is 1 if the memory reference is volatile. Volatile memory references may not be deleted, reordered or combined. ! In a `symbol_ref' expression, it is used for machine-specific purposes. ! In a `reg' expression, it is 1 if the value is a user-level variable. 0 indicates an internal compiler temporary. ! In an `insn', 1 means the insn has been deleted. ! In `label_ref' and `reg_label' expressions, 1 means a reference to a non-local label. ! In `prefetch' expressions, 1 means that the containing insn is a scheduling barrier. ! In an RTL dump, this flag is represented as `/v'.  File: gccint.info, Node: Machine Modes, Next: Constants, Prev: Flags, Up: RTL *************** File: gccint.info, Node: Machine Modes, *** 14352,14711 **** A machine mode describes a size of data object and the representation used for it. In the C code, machine modes are represented by an ! enumeration type, 'enum machine_mode', defined in 'machmode.def'. Each RTL expression has room for a machine mode and so do certain kinds of tree expressions (declarations and types, to be precise). In debugging dumps and machine descriptions, the machine mode of an RTL expression is written after the expression code with a colon to separate ! them. The letters 'mode' which appear at the end of each machine mode ! name are omitted. For example, '(reg:SI 38)' is a 'reg' expression with ! machine mode 'SImode'. If the mode is 'VOIDmode', it is not written at ! all. Here is a table of machine modes. The term "byte" below refers to an ! object of 'BITS_PER_UNIT' bits (*note Storage Layout::). ! 'BImode' "Bit" mode represents a single bit, for predicate registers. ! 'QImode' "Quarter-Integer" mode represents a single byte treated as an integer. ! 'HImode' "Half-Integer" mode represents a two-byte integer. ! 'PSImode' "Partial Single Integer" mode represents an integer which occupies four bytes but which doesn't really use all four. On some machines, this is the right mode to use for pointers. ! 'SImode' "Single Integer" mode represents a four-byte integer. ! 'PDImode' "Partial Double Integer" mode represents an integer which occupies eight bytes but which doesn't really use all eight. On some machines, this is the right mode to use for certain pointers. ! 'DImode' "Double Integer" mode represents an eight-byte integer. ! 'TImode' ! "Tetra Integer" (?) mode represents a sixteen-byte integer. ! 'OImode' ! "Octa Integer" (?) mode represents a thirty-two-byte integer. ! 'XImode' ! "Hexadeca Integer" (?) mode represents a sixty-four-byte integer. ! 'QFmode' "Quarter-Floating" mode represents a quarter-precision (single byte) floating point number. ! 'HFmode' "Half-Floating" mode represents a half-precision (two byte) floating point number. ! 'TQFmode' ! "Three-Quarter-Floating" (?) mode represents a three-quarter-precision (three byte) floating point number. ! 'SFmode' "Single Floating" mode represents a four byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a single-precision IEEE floating point number; it can also be used for double-precision (on processors with 16-bit bytes) and single-precision VAX and IBM types. ! 'DFmode' "Double Floating" mode represents an eight byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a double-precision IEEE floating point number. ! 'XFmode' "Extended Floating" mode represents an IEEE extended floating point number. This mode only has 80 meaningful bits (ten bytes). Some processors require such numbers to be padded to twelve bytes, others to sixteen; this mode is used for either. ! 'SDmode' "Single Decimal Floating" mode represents a four byte decimal floating point number (as distinct from conventional binary floating point). ! 'DDmode' "Double Decimal Floating" mode represents an eight byte decimal floating point number. ! 'TDmode' "Tetra Decimal Floating" mode represents a sixteen byte decimal floating point number all 128 of whose bits are meaningful. ! 'TFmode' "Tetra Floating" mode represents a sixteen byte floating point number all 128 of whose bits are meaningful. One common use is the IEEE quad-precision format. ! 'QQmode' "Quarter-Fractional" mode represents a single byte treated as a signed fractional number. The default format is "s.7". ! 'HQmode' "Half-Fractional" mode represents a two-byte signed fractional number. The default format is "s.15". ! 'SQmode' "Single Fractional" mode represents a four-byte signed fractional number. The default format is "s.31". ! 'DQmode' ! "Double Fractional" mode represents an eight-byte signed fractional ! number. The default format is "s.63". ! 'TQmode' ! "Tetra Fractional" mode represents a sixteen-byte signed fractional ! number. The default format is "s.127". ! 'UQQmode' ! "Unsigned Quarter-Fractional" mode represents a single byte treated ! as an unsigned fractional number. The default format is ".8". ! 'UHQmode' "Unsigned Half-Fractional" mode represents a two-byte unsigned fractional number. The default format is ".16". ! 'USQmode' "Unsigned Single Fractional" mode represents a four-byte unsigned fractional number. The default format is ".32". ! 'UDQmode' "Unsigned Double Fractional" mode represents an eight-byte unsigned fractional number. The default format is ".64". ! 'UTQmode' "Unsigned Tetra Fractional" mode represents a sixteen-byte unsigned fractional number. The default format is ".128". ! 'HAmode' "Half-Accumulator" mode represents a two-byte signed accumulator. The default format is "s8.7". ! 'SAmode' "Single Accumulator" mode represents a four-byte signed accumulator. The default format is "s16.15". ! 'DAmode' "Double Accumulator" mode represents an eight-byte signed accumulator. The default format is "s32.31". ! 'TAmode' "Tetra Accumulator" mode represents a sixteen-byte signed accumulator. The default format is "s64.63". ! 'UHAmode' "Unsigned Half-Accumulator" mode represents a two-byte unsigned accumulator. The default format is "8.8". ! 'USAmode' "Unsigned Single Accumulator" mode represents a four-byte unsigned accumulator. The default format is "16.16". ! 'UDAmode' "Unsigned Double Accumulator" mode represents an eight-byte unsigned accumulator. The default format is "32.32". ! 'UTAmode' "Unsigned Tetra Accumulator" mode represents a sixteen-byte unsigned accumulator. The default format is "64.64". ! 'CCmode' "Condition Code" mode represents the value of a condition code, which is a machine-specific set of bits used to represent the ! result of a comparison operation. Other machine-specific modes may ! also be used for the condition code. These modes are not used on ! machines that use 'cc0' (*note Condition Code::). ! 'BLKmode' "Block" mode represents values that are aggregates to which none of the other modes apply. In RTL, only memory references can have this mode, and only if they appear in string-move or vector instructions. On machines which have no such instructions, ! 'BLKmode' will not appear in RTL. ! 'VOIDmode' Void mode means the absence of a mode or an unspecified mode. For ! example, RTL expressions of code 'const_int' have mode 'VOIDmode' because they can be taken to have whatever mode the context ! requires. In debugging dumps of RTL, 'VOIDmode' is expressed by the absence of any mode. ! 'QCmode, HCmode, SCmode, DCmode, XCmode, TCmode' These modes stand for a complex number represented as a pair of ! floating point values. The floating point values are in 'QFmode', ! 'HFmode', 'SFmode', 'DFmode', 'XFmode', and 'TFmode', respectively. ! 'CQImode, CHImode, CSImode, CDImode, CTImode, COImode' These modes stand for a complex number represented as a pair of ! integer values. The integer values are in 'QImode', 'HImode', ! 'SImode', 'DImode', 'TImode', and 'OImode', respectively. ! The machine description defines 'Pmode' as a C macro which expands into ! the machine mode used for addresses. Normally this is the mode whose ! size is 'BITS_PER_WORD', 'SImode' on 32-bit machines. ! The only modes which a machine description must support are 'QImode', ! and the modes corresponding to 'BITS_PER_WORD', 'FLOAT_TYPE_SIZE' and ! 'DOUBLE_TYPE_SIZE'. The compiler will attempt to use 'DImode' for 8-byte structures and unions, but this can be prevented by overriding ! the definition of 'MAX_FIXED_MODE_SIZE'. Alternatively, you can have ! the compiler use 'TImode' for 16-byte structures and unions. Likewise, ! you can arrange for the C type 'short int' to avoid using 'HImode'. Very few explicit references to machine modes remain in the compiler and these few references will soon be removed. Instead, the machine modes are divided into mode classes. These are represented by the ! enumeration type 'enum mode_class' defined in 'machmode.h'. The possible mode classes are: ! 'MODE_INT' ! Integer modes. By default these are 'BImode', 'QImode', 'HImode', ! 'SImode', 'DImode', 'TImode', and 'OImode'. ! 'MODE_PARTIAL_INT' ! The "partial integer" modes, 'PQImode', 'PHImode', 'PSImode' and ! 'PDImode'. ! 'MODE_FLOAT' ! Floating point modes. By default these are 'QFmode', 'HFmode', ! 'TQFmode', 'SFmode', 'DFmode', 'XFmode' and 'TFmode'. ! 'MODE_DECIMAL_FLOAT' ! Decimal floating point modes. By default these are 'SDmode', ! 'DDmode' and 'TDmode'. ! 'MODE_FRACT' ! Signed fractional modes. By default these are 'QQmode', 'HQmode', ! 'SQmode', 'DQmode' and 'TQmode'. ! 'MODE_UFRACT' ! Unsigned fractional modes. By default these are 'UQQmode', ! 'UHQmode', 'USQmode', 'UDQmode' and 'UTQmode'. ! 'MODE_ACCUM' ! Signed accumulator modes. By default these are 'HAmode', 'SAmode', ! 'DAmode' and 'TAmode'. ! 'MODE_UACCUM' ! Unsigned accumulator modes. By default these are 'UHAmode', ! 'USAmode', 'UDAmode' and 'UTAmode'. ! 'MODE_COMPLEX_INT' Complex integer modes. (These are not currently implemented). ! 'MODE_COMPLEX_FLOAT' ! Complex floating point modes. By default these are 'QCmode', ! 'HCmode', 'SCmode', 'DCmode', 'XCmode', and 'TCmode'. ! 'MODE_FUNCTION' Algol or Pascal function variables including a static chain. (These are not currently implemented). ! 'MODE_CC' ! Modes representing condition code values. These are 'CCmode' plus ! any 'CC_MODE' modes listed in the 'MACHINE-modes.def'. *Note Jump Patterns::, also see *note Condition Code::. ! 'MODE_RANDOM' This is a catchall mode class for modes which don't fit into the ! above classes. Currently 'VOIDmode' and 'BLKmode' are in ! 'MODE_RANDOM'. Here are some C macros that relate to machine modes: ! 'GET_MODE (X)' Returns the machine mode of the RTX X. ! 'PUT_MODE (X, NEWMODE)' Alters the machine mode of the RTX X to be NEWMODE. ! 'NUM_MACHINE_MODES' Stands for the number of machine modes available on the target machine. This is one greater than the largest numeric value of any machine mode. ! 'GET_MODE_NAME (M)' Returns the name of mode M as a string. ! 'GET_MODE_CLASS (M)' Returns the mode class of mode M. ! 'GET_MODE_WIDER_MODE (M)' Returns the next wider natural mode. For example, the expression ! 'GET_MODE_WIDER_MODE (QImode)' returns 'HImode'. ! 'GET_MODE_SIZE (M)' Returns the size in bytes of a datum of mode M. ! 'GET_MODE_BITSIZE (M)' Returns the size in bits of a datum of mode M. ! 'GET_MODE_IBIT (M)' Returns the number of integral bits of a datum of fixed-point mode M. ! 'GET_MODE_FBIT (M)' Returns the number of fractional bits of a datum of fixed-point mode M. ! 'GET_MODE_MASK (M)' Returns a bitmask containing 1 for all bits in a word that fit ! within mode M. This macro can only be used for modes whose bitsize ! is less than or equal to 'HOST_BITS_PER_INT'. ! 'GET_MODE_ALIGNMENT (M)' Return the required alignment, in bits, for an object of mode M. ! 'GET_MODE_UNIT_SIZE (M)' Returns the size in bytes of the subunits of a datum of mode M. ! This is the same as 'GET_MODE_SIZE' except in the case of complex modes. For them, the unit size is the size of the real or imaginary part. ! 'GET_MODE_NUNITS (M)' Returns the number of units contained in a mode, i.e., ! 'GET_MODE_SIZE' divided by 'GET_MODE_UNIT_SIZE'. ! 'GET_CLASS_NARROWEST_MODE (C)' Returns the narrowest mode in mode class C. ! The following 3 variables are defined on every target. They can be used to allocate buffers that are guaranteed to be large enough to hold ! any value that can be represented on the target. The first two can be overridden by defining them in the target's mode.def file, however, the value must be a constant that can determined very early in the ! compilation process. The third symbol cannot be overridden. ! 'BITS_PER_UNIT' The number of bits in an addressable storage unit (byte). If you do not define this, the default is 8. ! 'MAX_BITSIZE_MODE_ANY_INT' The maximum bitsize of any mode that is used in integer math. This should be overridden by the target if it uses large integers as ! containers for larger vectors but otherwise never uses the contents ! to compute integer values. ! 'MAX_BITSIZE_MODE_ANY_MODE' The bitsize of the largest mode on the target. ! The global variables 'byte_mode' and 'word_mode' contain modes whose ! classes are 'MODE_INT' and whose bitsizes are either 'BITS_PER_UNIT' or ! 'BITS_PER_WORD', respectively. On 32-bit machines, these are 'QImode' ! and 'SImode', respectively.  File: gccint.info, Node: Constants, Next: Regs and Memory, Prev: Machine Modes, Up: RTL --- 14507,14867 ---- A machine mode describes a size of data object and the representation used for it. In the C code, machine modes are represented by an ! enumeration type, `enum machine_mode', defined in `machmode.def'. Each RTL expression has room for a machine mode and so do certain kinds of tree expressions (declarations and types, to be precise). In debugging dumps and machine descriptions, the machine mode of an RTL expression is written after the expression code with a colon to separate ! them. The letters `mode' which appear at the end of each machine mode ! name are omitted. For example, `(reg:SI 38)' is a `reg' expression ! with machine mode `SImode'. If the mode is `VOIDmode', it is not ! written at all. Here is a table of machine modes. The term "byte" below refers to an ! object of `BITS_PER_UNIT' bits (*note Storage Layout::). ! `BImode' "Bit" mode represents a single bit, for predicate registers. ! `QImode' "Quarter-Integer" mode represents a single byte treated as an integer. ! `HImode' "Half-Integer" mode represents a two-byte integer. ! `PSImode' "Partial Single Integer" mode represents an integer which occupies four bytes but which doesn't really use all four. On some machines, this is the right mode to use for pointers. ! `SImode' "Single Integer" mode represents a four-byte integer. ! `PDImode' "Partial Double Integer" mode represents an integer which occupies eight bytes but which doesn't really use all eight. On some machines, this is the right mode to use for certain pointers. ! `DImode' "Double Integer" mode represents an eight-byte integer. ! `TImode' ! "Tetra Integer" (?) mode represents a sixteen-byte integer. ! `OImode' ! "Octa Integer" (?) mode represents a thirty-two-byte integer. ! `XImode' ! "Hexadeca Integer" (?) mode represents a sixty-four-byte integer. ! `QFmode' "Quarter-Floating" mode represents a quarter-precision (single byte) floating point number. ! `HFmode' "Half-Floating" mode represents a half-precision (two byte) floating point number. ! `TQFmode' ! "Three-Quarter-Floating" (?) mode represents a three-quarter-precision (three byte) floating point number. ! `SFmode' "Single Floating" mode represents a four byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a single-precision IEEE floating point number; it can also be used for double-precision (on processors with 16-bit bytes) and single-precision VAX and IBM types. ! `DFmode' "Double Floating" mode represents an eight byte floating point number. In the common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a double-precision IEEE floating point number. ! `XFmode' "Extended Floating" mode represents an IEEE extended floating point number. This mode only has 80 meaningful bits (ten bytes). Some processors require such numbers to be padded to twelve bytes, others to sixteen; this mode is used for either. ! `SDmode' "Single Decimal Floating" mode represents a four byte decimal floating point number (as distinct from conventional binary floating point). ! `DDmode' "Double Decimal Floating" mode represents an eight byte decimal floating point number. ! `TDmode' "Tetra Decimal Floating" mode represents a sixteen byte decimal floating point number all 128 of whose bits are meaningful. ! `TFmode' "Tetra Floating" mode represents a sixteen byte floating point number all 128 of whose bits are meaningful. One common use is the IEEE quad-precision format. ! `QQmode' "Quarter-Fractional" mode represents a single byte treated as a signed fractional number. The default format is "s.7". ! `HQmode' "Half-Fractional" mode represents a two-byte signed fractional number. The default format is "s.15". ! `SQmode' "Single Fractional" mode represents a four-byte signed fractional number. The default format is "s.31". ! `DQmode' ! "Double Fractional" mode represents an eight-byte signed ! fractional number. The default format is "s.63". ! `TQmode' ! "Tetra Fractional" mode represents a sixteen-byte signed ! fractional number. The default format is "s.127". ! `UQQmode' ! "Unsigned Quarter-Fractional" mode represents a single byte ! treated as an unsigned fractional number. The default format is ! ".8". ! `UHQmode' "Unsigned Half-Fractional" mode represents a two-byte unsigned fractional number. The default format is ".16". ! `USQmode' "Unsigned Single Fractional" mode represents a four-byte unsigned fractional number. The default format is ".32". ! `UDQmode' "Unsigned Double Fractional" mode represents an eight-byte unsigned fractional number. The default format is ".64". ! `UTQmode' "Unsigned Tetra Fractional" mode represents a sixteen-byte unsigned fractional number. The default format is ".128". ! `HAmode' "Half-Accumulator" mode represents a two-byte signed accumulator. The default format is "s8.7". ! `SAmode' "Single Accumulator" mode represents a four-byte signed accumulator. The default format is "s16.15". ! `DAmode' "Double Accumulator" mode represents an eight-byte signed accumulator. The default format is "s32.31". ! `TAmode' "Tetra Accumulator" mode represents a sixteen-byte signed accumulator. The default format is "s64.63". ! `UHAmode' "Unsigned Half-Accumulator" mode represents a two-byte unsigned accumulator. The default format is "8.8". ! `USAmode' "Unsigned Single Accumulator" mode represents a four-byte unsigned accumulator. The default format is "16.16". ! `UDAmode' "Unsigned Double Accumulator" mode represents an eight-byte unsigned accumulator. The default format is "32.32". ! `UTAmode' "Unsigned Tetra Accumulator" mode represents a sixteen-byte unsigned accumulator. The default format is "64.64". ! `CCmode' "Condition Code" mode represents the value of a condition code, which is a machine-specific set of bits used to represent the ! result of a comparison operation. Other machine-specific modes ! may also be used for the condition code. These modes are not used ! on machines that use `cc0' (*note Condition Code::). ! `BLKmode' "Block" mode represents values that are aggregates to which none of the other modes apply. In RTL, only memory references can have this mode, and only if they appear in string-move or vector instructions. On machines which have no such instructions, ! `BLKmode' will not appear in RTL. ! `VOIDmode' Void mode means the absence of a mode or an unspecified mode. For ! example, RTL expressions of code `const_int' have mode `VOIDmode' because they can be taken to have whatever mode the context ! requires. In debugging dumps of RTL, `VOIDmode' is expressed by the absence of any mode. ! `QCmode, HCmode, SCmode, DCmode, XCmode, TCmode' These modes stand for a complex number represented as a pair of ! floating point values. The floating point values are in `QFmode', ! `HFmode', `SFmode', `DFmode', `XFmode', and `TFmode', respectively. ! `CQImode, CHImode, CSImode, CDImode, CTImode, COImode' These modes stand for a complex number represented as a pair of ! integer values. The integer values are in `QImode', `HImode', ! `SImode', `DImode', `TImode', and `OImode', respectively. ! The machine description defines `Pmode' as a C macro which expands ! into the machine mode used for addresses. Normally this is the mode ! whose size is `BITS_PER_WORD', `SImode' on 32-bit machines. ! The only modes which a machine description must support are `QImode', ! and the modes corresponding to `BITS_PER_WORD', `FLOAT_TYPE_SIZE' and ! `DOUBLE_TYPE_SIZE'. The compiler will attempt to use `DImode' for 8-byte structures and unions, but this can be prevented by overriding ! the definition of `MAX_FIXED_MODE_SIZE'. Alternatively, you can have ! the compiler use `TImode' for 16-byte structures and unions. Likewise, ! you can arrange for the C type `short int' to avoid using `HImode'. Very few explicit references to machine modes remain in the compiler and these few references will soon be removed. Instead, the machine modes are divided into mode classes. These are represented by the ! enumeration type `enum mode_class' defined in `machmode.h'. The possible mode classes are: ! `MODE_INT' ! Integer modes. By default these are `BImode', `QImode', `HImode', ! `SImode', `DImode', `TImode', and `OImode'. ! `MODE_PARTIAL_INT' ! The "partial integer" modes, `PQImode', `PHImode', `PSImode' and ! `PDImode'. ! `MODE_FLOAT' ! Floating point modes. By default these are `QFmode', `HFmode', ! `TQFmode', `SFmode', `DFmode', `XFmode' and `TFmode'. ! `MODE_DECIMAL_FLOAT' ! Decimal floating point modes. By default these are `SDmode', ! `DDmode' and `TDmode'. ! `MODE_FRACT' ! Signed fractional modes. By default these are `QQmode', `HQmode', ! `SQmode', `DQmode' and `TQmode'. ! `MODE_UFRACT' ! Unsigned fractional modes. By default these are `UQQmode', ! `UHQmode', `USQmode', `UDQmode' and `UTQmode'. ! `MODE_ACCUM' ! Signed accumulator modes. By default these are `HAmode', ! `SAmode', `DAmode' and `TAmode'. ! `MODE_UACCUM' ! Unsigned accumulator modes. By default these are `UHAmode', ! `USAmode', `UDAmode' and `UTAmode'. ! `MODE_COMPLEX_INT' Complex integer modes. (These are not currently implemented). ! `MODE_COMPLEX_FLOAT' ! Complex floating point modes. By default these are `QCmode', ! `HCmode', `SCmode', `DCmode', `XCmode', and `TCmode'. ! `MODE_FUNCTION' Algol or Pascal function variables including a static chain. (These are not currently implemented). ! `MODE_CC' ! Modes representing condition code values. These are `CCmode' plus ! any `CC_MODE' modes listed in the `MACHINE-modes.def'. *Note Jump Patterns::, also see *note Condition Code::. ! `MODE_RANDOM' This is a catchall mode class for modes which don't fit into the ! above classes. Currently `VOIDmode' and `BLKmode' are in ! `MODE_RANDOM'. Here are some C macros that relate to machine modes: ! `GET_MODE (X)' Returns the machine mode of the RTX X. ! `PUT_MODE (X, NEWMODE)' Alters the machine mode of the RTX X to be NEWMODE. ! `NUM_MACHINE_MODES' Stands for the number of machine modes available on the target machine. This is one greater than the largest numeric value of any machine mode. ! `GET_MODE_NAME (M)' Returns the name of mode M as a string. ! `GET_MODE_CLASS (M)' Returns the mode class of mode M. ! `GET_MODE_WIDER_MODE (M)' Returns the next wider natural mode. For example, the expression ! `GET_MODE_WIDER_MODE (QImode)' returns `HImode'. ! `GET_MODE_SIZE (M)' Returns the size in bytes of a datum of mode M. ! `GET_MODE_BITSIZE (M)' Returns the size in bits of a datum of mode M. ! `GET_MODE_IBIT (M)' Returns the number of integral bits of a datum of fixed-point mode M. ! `GET_MODE_FBIT (M)' Returns the number of fractional bits of a datum of fixed-point mode M. ! `GET_MODE_MASK (M)' Returns a bitmask containing 1 for all bits in a word that fit ! within mode M. This macro can only be used for modes whose ! bitsize is less than or equal to `HOST_BITS_PER_INT'. ! `GET_MODE_ALIGNMENT (M)' Return the required alignment, in bits, for an object of mode M. ! `GET_MODE_UNIT_SIZE (M)' Returns the size in bytes of the subunits of a datum of mode M. ! This is the same as `GET_MODE_SIZE' except in the case of complex modes. For them, the unit size is the size of the real or imaginary part. ! `GET_MODE_NUNITS (M)' Returns the number of units contained in a mode, i.e., ! `GET_MODE_SIZE' divided by `GET_MODE_UNIT_SIZE'. ! `GET_CLASS_NARROWEST_MODE (C)' Returns the narrowest mode in mode class C. ! The following 3 variables are defined on every target. They can be used to allocate buffers that are guaranteed to be large enough to hold ! any value that can be represented on the target. The first two can be overridden by defining them in the target's mode.def file, however, the value must be a constant that can determined very early in the ! compilation process. The third symbol cannot be overridden. ! `BITS_PER_UNIT' The number of bits in an addressable storage unit (byte). If you do not define this, the default is 8. ! `MAX_BITSIZE_MODE_ANY_INT' The maximum bitsize of any mode that is used in integer math. This should be overridden by the target if it uses large integers as ! containers for larger vectors but otherwise never uses the ! contents to compute integer values. ! `MAX_BITSIZE_MODE_ANY_MODE' The bitsize of the largest mode on the target. ! The global variables `byte_mode' and `word_mode' contain modes whose ! classes are `MODE_INT' and whose bitsizes are either `BITS_PER_UNIT' or ! `BITS_PER_WORD', respectively. On 32-bit machines, these are `QImode' ! and `SImode', respectively.  File: gccint.info, Node: Constants, Next: Regs and Memory, Prev: Machine Modes, Up: RTL *************** File: gccint.info, Node: Constants, Ne *** 14715,14848 **** The simplest RTL expressions are those that represent constant values. ! '(const_int I)' This type of expression represents the integer value I. I is ! customarily accessed with the macro 'INTVAL' as in 'INTVAL (EXP)', ! which is equivalent to 'XWINT (EXP, 0)'. Constants generated for modes with fewer bits than in ! 'HOST_WIDE_INT' must be sign extended to full width (e.g., with ! 'gen_int_mode'). For constants for modes with more bits than in ! 'HOST_WIDE_INT' the implied high order bits of that constant are copies of the top bit. Note however that values are neither inherently signed nor inherently unsigned; where necessary, signedness is determined by the rtl operation instead. There is only one expression object for the integer value zero; it ! is the value of the variable 'const0_rtx'. Likewise, the only ! expression for integer value one is found in 'const1_rtx', the only ! expression for integer value two is found in 'const2_rtx', and the only expression for integer value negative one is found in ! 'constm1_rtx'. Any attempt to create an expression of code ! 'const_int' and value zero, one, two or negative one will return ! 'const0_rtx', 'const1_rtx', 'const2_rtx' or 'constm1_rtx' as appropriate. Similarly, there is only one object for the integer whose value is ! 'STORE_FLAG_VALUE'. It is found in 'const_true_rtx'. If ! 'STORE_FLAG_VALUE' is one, 'const_true_rtx' and 'const1_rtx' will ! point to the same object. If 'STORE_FLAG_VALUE' is -1, ! 'const_true_rtx' and 'constm1_rtx' will point to the same object. ! '(const_double:M I0 I1 ...)' ! Represents either a floating-point constant of mode M or an integer ! constant too large to fit into 'HOST_BITS_PER_WIDE_INT' bits but ! small enough to fit within twice that number of bits (GCC does not ! provide a mechanism to represent even larger constants). In the ! latter case, M will be 'VOIDmode'. For integral values constants ! for modes with more bits than twice the number in 'HOST_WIDE_INT' ! the implied high order bits of that constant are copies of the top ! bit of 'CONST_DOUBLE_HIGH'. Note however that integral values are ! neither inherently signed nor inherently unsigned; where necessary, ! signedness is determined by the rtl operation instead. ! If M is 'VOIDmode', the bits of the value are stored in I0 and I1. ! I0 is customarily accessed with the macro 'CONST_DOUBLE_LOW' and I1 ! with 'CONST_DOUBLE_HIGH'. If the constant is floating point (regardless of its precision), then the number of integers used to store the value depends on the ! size of 'REAL_VALUE_TYPE' (*note Floating Point::). The integers represent a floating point number, but not precisely in the target ! machine's or host machine's floating point format. To convert them ! to the precise bit pattern used by the target machine, use the ! macro 'REAL_VALUE_TO_TARGET_DOUBLE' and friends (*note Data Output::). ! '(const_fixed:M ...)' ! Represents a fixed-point constant of mode M. The operand is a data ! structure of type 'struct fixed_value' and is accessed with the ! macro 'CONST_FIXED_VALUE'. The high part of data is accessed with ! 'CONST_FIXED_VALUE_HIGH'; the low part is accessed with ! 'CONST_FIXED_VALUE_LOW'. ! '(const_vector:M [X0 X1 ...])' Represents a vector constant. The square brackets stand for the vector containing the constant elements. X0, X1 and so on are the ! 'const_int', 'const_double' or 'const_fixed' elements. ! The number of units in a 'const_vector' is obtained with the macro ! 'CONST_VECTOR_NUNITS' as in 'CONST_VECTOR_NUNITS (V)'. Individual elements in a vector constant are accessed with the ! macro 'CONST_VECTOR_ELT' as in 'CONST_VECTOR_ELT (V, N)' where V is ! the vector constant and N is the element desired. ! '(const_string STR)' Represents a constant string with value STR. Currently this is used only for insn attributes (*note Insn Attributes::) since constant strings in C are placed in memory. ! '(symbol_ref:MODE SYMBOL)' Represents the value of an assembler label for data. SYMBOL is a string that describes the name of the assembler label. If it ! starts with a '*', the label is the rest of SYMBOL not including ! the '*'. Otherwise, the label is SYMBOL, usually prefixed with ! '_'. ! The 'symbol_ref' contains a mode, which is usually 'Pmode'. Usually that is the only mode for which a symbol is directly valid. ! '(label_ref:MODE LABEL)' Represents the value of an assembler label for code. It contains ! one operand, an expression, which must be a 'code_label' or a ! 'note' of type 'NOTE_INSN_DELETED_LABEL' that appears in the instruction sequence to identify the place where the label should go. The reason for using a distinct expression type for code label references is so that jump optimization can distinguish them. ! The 'label_ref' contains a mode, which is usually 'Pmode'. Usually ! that is the only mode for which a label is directly valid. ! '(const:M EXP)' Represents a constant that is the result of an assembly-time arithmetic computation. The operand, EXP, is an expression that ! contains only constants ('const_int', 'symbol_ref' and 'label_ref' ! expressions) combined with 'plus' and 'minus'. However, not all combinations are valid, since the assembler cannot do arbitrary arithmetic on relocatable symbols. ! M should be 'Pmode'. ! '(high:M EXP)' ! Represents the high-order bits of EXP, usually a 'symbol_ref'. The ! number of bits is machine-dependent and is normally the number of ! bits specified in an instruction that initializes the high order ! bits of a register. It is used with 'lo_sum' to represent the ! typical two-instruction sequence used in RISC machines to reference ! a global memory location. ! M should be 'Pmode'. ! The macro 'CONST0_RTX (MODE)' refers to an expression with value 0 in ! mode MODE. If mode MODE is of mode class 'MODE_INT', it returns ! 'const0_rtx'. If mode MODE is of mode class 'MODE_FLOAT', it returns a ! 'CONST_DOUBLE' expression in mode MODE. Otherwise, it returns a ! 'CONST_VECTOR' expression in mode MODE. Similarly, the macro ! 'CONST1_RTX (MODE)' refers to an expression with value 1 in mode MODE ! and similarly for 'CONST2_RTX'. The 'CONST1_RTX' and 'CONST2_RTX' macros are undefined for vector modes.  --- 14871,15005 ---- The simplest RTL expressions are those that represent constant values. ! `(const_int I)' This type of expression represents the integer value I. I is ! customarily accessed with the macro `INTVAL' as in `INTVAL (EXP)', ! which is equivalent to `XWINT (EXP, 0)'. Constants generated for modes with fewer bits than in ! `HOST_WIDE_INT' must be sign extended to full width (e.g., with ! `gen_int_mode'). For constants for modes with more bits than in ! `HOST_WIDE_INT' the implied high order bits of that constant are copies of the top bit. Note however that values are neither inherently signed nor inherently unsigned; where necessary, signedness is determined by the rtl operation instead. There is only one expression object for the integer value zero; it ! is the value of the variable `const0_rtx'. Likewise, the only ! expression for integer value one is found in `const1_rtx', the only ! expression for integer value two is found in `const2_rtx', and the only expression for integer value negative one is found in ! `constm1_rtx'. Any attempt to create an expression of code ! `const_int' and value zero, one, two or negative one will return ! `const0_rtx', `const1_rtx', `const2_rtx' or `constm1_rtx' as appropriate. Similarly, there is only one object for the integer whose value is ! `STORE_FLAG_VALUE'. It is found in `const_true_rtx'. If ! `STORE_FLAG_VALUE' is one, `const_true_rtx' and `const1_rtx' will ! point to the same object. If `STORE_FLAG_VALUE' is -1, ! `const_true_rtx' and `constm1_rtx' will point to the same object. ! `(const_double:M I0 I1 ...)' ! Represents either a floating-point constant of mode M or an ! integer constant too large to fit into `HOST_BITS_PER_WIDE_INT' ! bits but small enough to fit within twice that number of bits (GCC ! does not provide a mechanism to represent even larger constants). ! In the latter case, M will be `VOIDmode'. For integral values ! constants for modes with more bits than twice the number in ! `HOST_WIDE_INT' the implied high order bits of that constant are ! copies of the top bit of `CONST_DOUBLE_HIGH'. Note however that ! integral values are neither inherently signed nor inherently ! unsigned; where necessary, signedness is determined by the rtl ! operation instead. ! If M is `VOIDmode', the bits of the value are stored in I0 and I1. ! I0 is customarily accessed with the macro `CONST_DOUBLE_LOW' and ! I1 with `CONST_DOUBLE_HIGH'. If the constant is floating point (regardless of its precision), then the number of integers used to store the value depends on the ! size of `REAL_VALUE_TYPE' (*note Floating Point::). The integers represent a floating point number, but not precisely in the target ! machine's or host machine's floating point format. To convert ! them to the precise bit pattern used by the target machine, use ! the macro `REAL_VALUE_TO_TARGET_DOUBLE' and friends (*note Data Output::). ! `(const_fixed:M ...)' ! Represents a fixed-point constant of mode M. The operand is a ! data structure of type `struct fixed_value' and is accessed with ! the macro `CONST_FIXED_VALUE'. The high part of data is accessed ! with `CONST_FIXED_VALUE_HIGH'; the low part is accessed with ! `CONST_FIXED_VALUE_LOW'. ! `(const_vector:M [X0 X1 ...])' Represents a vector constant. The square brackets stand for the vector containing the constant elements. X0, X1 and so on are the ! `const_int', `const_double' or `const_fixed' elements. ! The number of units in a `const_vector' is obtained with the macro ! `CONST_VECTOR_NUNITS' as in `CONST_VECTOR_NUNITS (V)'. Individual elements in a vector constant are accessed with the ! macro `CONST_VECTOR_ELT' as in `CONST_VECTOR_ELT (V, N)' where V ! is the vector constant and N is the element desired. ! `(const_string STR)' Represents a constant string with value STR. Currently this is used only for insn attributes (*note Insn Attributes::) since constant strings in C are placed in memory. ! `(symbol_ref:MODE SYMBOL)' Represents the value of an assembler label for data. SYMBOL is a string that describes the name of the assembler label. If it ! starts with a `*', the label is the rest of SYMBOL not including ! the `*'. Otherwise, the label is SYMBOL, usually prefixed with ! `_'. ! The `symbol_ref' contains a mode, which is usually `Pmode'. Usually that is the only mode for which a symbol is directly valid. ! `(label_ref:MODE LABEL)' Represents the value of an assembler label for code. It contains ! one operand, an expression, which must be a `code_label' or a ! `note' of type `NOTE_INSN_DELETED_LABEL' that appears in the instruction sequence to identify the place where the label should go. The reason for using a distinct expression type for code label references is so that jump optimization can distinguish them. ! The `label_ref' contains a mode, which is usually `Pmode'. ! Usually that is the only mode for which a label is directly valid. ! `(const:M EXP)' Represents a constant that is the result of an assembly-time arithmetic computation. The operand, EXP, is an expression that ! contains only constants (`const_int', `symbol_ref' and `label_ref' ! expressions) combined with `plus' and `minus'. However, not all combinations are valid, since the assembler cannot do arbitrary arithmetic on relocatable symbols. ! M should be `Pmode'. ! `(high:M EXP)' ! Represents the high-order bits of EXP, usually a `symbol_ref'. ! The number of bits is machine-dependent and is normally the number ! of bits specified in an instruction that initializes the high ! order bits of a register. It is used with `lo_sum' to represent ! the typical two-instruction sequence used in RISC machines to ! reference a global memory location. ! M should be `Pmode'. ! The macro `CONST0_RTX (MODE)' refers to an expression with value 0 in ! mode MODE. If mode MODE is of mode class `MODE_INT', it returns ! `const0_rtx'. If mode MODE is of mode class `MODE_FLOAT', it returns a ! `CONST_DOUBLE' expression in mode MODE. Otherwise, it returns a ! `CONST_VECTOR' expression in mode MODE. Similarly, the macro ! `CONST1_RTX (MODE)' refers to an expression with value 1 in mode MODE ! and similarly for `CONST2_RTX'. The `CONST1_RTX' and `CONST2_RTX' macros are undefined for vector modes.  *************** File: gccint.info, Node: Regs and Memor *** 14854,14862 **** Here are the RTL expression types for describing access to machine registers and to main memory. ! '(reg:M N)' For small values of the integer N (those that are less than ! 'FIRST_PSEUDO_REGISTER'), this stands for a reference to machine register number N: a "hard register". For larger values of N, it stands for a temporary value or "pseudo register". The compiler's strategy is to generate code assuming an unlimited number of such --- 15011,15019 ---- Here are the RTL expression types for describing access to machine registers and to main memory. ! `(reg:M N)' For small values of the integer N (those that are less than ! `FIRST_PSEUDO_REGISTER'), this stands for a reference to machine register number N: a "hard register". For larger values of N, it stands for a temporary value or "pseudo register". The compiler's strategy is to generate code assuming an unlimited number of such *************** registers and to main memory. *** 14873,14879 **** Even for a register that the machine can access in only one mode, the mode must always be specified. ! The symbol 'FIRST_PSEUDO_REGISTER' is defined by the machine description, since the number of hard registers on the machine is an invariant characteristic of the machine. Note, however, that not all of the machine registers must be general registers. All --- 15030,15036 ---- Even for a register that the machine can access in only one mode, the mode must always be specified. ! The symbol `FIRST_PSEUDO_REGISTER' is defined by the machine description, since the number of hard registers on the machine is an invariant characteristic of the machine. Note, however, that not all of the machine registers must be general registers. All *************** registers and to main memory. *** 14884,15025 **** A hard register may be accessed in various modes throughout one function, but each pseudo register is given a natural mode and is accessed only in that mode. When it is necessary to describe an ! access to a pseudo register using a nonnatural mode, a 'subreg' expression is used. ! A 'reg' expression with a machine mode that specifies more than one ! word of data may actually stand for several consecutive registers. ! If in addition the register number specifies a hardware register, ! then it actually represents several consecutive hardware registers ! starting with the specified one. Each pseudo register number used in a function's RTL code is ! represented by a unique 'reg' expression. Some pseudo register numbers, those within the range of ! 'FIRST_VIRTUAL_REGISTER' to 'LAST_VIRTUAL_REGISTER' only appear during the RTL generation phase and are eliminated before the optimization phases. These represent locations in the stack frame ! that cannot be determined until RTL generation for the function has ! been completed. The following virtual register numbers are defined: ! 'VIRTUAL_INCOMING_ARGS_REGNUM' ! This points to the first word of the incoming arguments passed ! on the stack. Normally these arguments are placed there by ! the caller, but the callee may have pushed some arguments that ! were previously passed in registers. When RTL generation is complete, this virtual register is replaced by the sum of the register given by ! 'ARG_POINTER_REGNUM' and the value of 'FIRST_PARM_OFFSET'. ! 'VIRTUAL_STACK_VARS_REGNUM' ! If 'FRAME_GROWS_DOWNWARD' is defined to a nonzero value, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack. ! 'VIRTUAL_STACK_VARS_REGNUM' is replaced with the sum of the ! register given by 'FRAME_POINTER_REGNUM' and the value ! 'STARTING_FRAME_OFFSET'. ! 'VIRTUAL_STACK_DYNAMIC_REGNUM' ! This points to the location of dynamically allocated memory on ! the stack immediately after the stack pointer has been adjusted by the amount of memory desired. This virtual register is replaced by the sum of the register ! given by 'STACK_POINTER_REGNUM' and the value ! 'STACK_DYNAMIC_OFFSET'. ! 'VIRTUAL_OUTGOING_ARGS_REGNUM' This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns should always use ! 'STACK_POINTER_REGNUM'). This virtual register is replaced by the sum of the register ! given by 'STACK_POINTER_REGNUM' and the value ! 'STACK_POINTER_OFFSET'. ! ! '(subreg:M1 REG:M2 BYTENUM)' ! 'subreg' expressions are used to refer to a register in a machine mode other than its natural one, or to refer to one register of a ! multi-part 'reg' that actually refers to several registers. Each pseudo register has a natural mode. If it is necessary to ! operate on it in a different mode, the register must be enclosed in ! a 'subreg'. There are currently three supported types for the first operand of ! a 'subreg': ! * pseudo registers This is the most common case. Most 'subreg's ! have pseudo 'reg's as their first operand. ! * mem 'subreg's of 'mem' were common in earlier versions of GCC and are still supported. During the reload pass these are ! replaced by plain 'mem's. On machines that do not do ! instruction scheduling, use of 'subreg's of 'mem' are still ! used, but this is no longer recommended. Such 'subreg's are ! considered to be 'register_operand's rather than ! 'memory_operand's before and during reload. Because of this, the scheduling passes cannot properly schedule instructions ! with 'subreg's of 'mem', so for machines that do scheduling, ! 'subreg's of 'mem' should never be used. To support this, the ! combine and recog passes have explicit code to inhibit the ! creation of 'subreg's of 'mem' when 'INSN_SCHEDULING' is defined. ! The use of 'subreg's of 'mem' after the reload pass is an area that is not well understood and should be avoided. There is ! still some code in the compiler to support this, but this code ! has possibly rotted. This use of 'subreg's is discouraged and ! will most likely not be supported in the future. * hard registers It is seldom necessary to wrap hard registers ! in 'subreg's; such registers would normally reduce to a single ! 'reg' rtx. This use of 'subreg's is discouraged and may not ! be supported in the future. - 'subreg's of 'subreg's are not supported. Using - 'simplify_gen_subreg' is the recommended way to avoid this problem. ! 'subreg's come in two distinct flavors, each having its own usage and rules: ! Paradoxical subregs ! When M1 is strictly wider than M2, the 'subreg' expression is called "paradoxical". The canonical test for this class of ! 'subreg' is: GET_MODE_SIZE (M1) > GET_MODE_SIZE (M2) ! Paradoxical 'subreg's can be used as both lvalues and rvalues. When used as an lvalue, the low-order bits of the source value ! are stored in REG and the high-order bits are discarded. When ! used as an rvalue, the low-order bits of the 'subreg' are taken from REG while the high-order bits may or may not be defined. The high-order bits of rvalues are in the following circumstances: ! * 'subreg's of 'mem' When M2 is smaller than a word, the ! macro 'LOAD_EXTEND_OP', can control how the high-order bits are defined. ! * 'subreg' of 'reg's The upper bits are defined when ! 'SUBREG_PROMOTED_VAR_P' is true. ! 'SUBREG_PROMOTED_UNSIGNED_P' describes what the upper bits hold. Such subregs usually represent local variables, register variables and parameter pseudo variables that have been promoted to a wider mode. ! BYTENUM is always zero for a paradoxical 'subreg', even on big-endian targets. ! For example, the paradoxical 'subreg': (set (subreg:SI (reg:HI X) 0) Y) --- 15041,15184 ---- A hard register may be accessed in various modes throughout one function, but each pseudo register is given a natural mode and is accessed only in that mode. When it is necessary to describe an ! access to a pseudo register using a nonnatural mode, a `subreg' expression is used. ! A `reg' expression with a machine mode that specifies more than ! one word of data may actually stand for several consecutive ! registers. If in addition the register number specifies a ! hardware register, then it actually represents several consecutive ! hardware registers starting with the specified one. Each pseudo register number used in a function's RTL code is ! represented by a unique `reg' expression. Some pseudo register numbers, those within the range of ! `FIRST_VIRTUAL_REGISTER' to `LAST_VIRTUAL_REGISTER' only appear during the RTL generation phase and are eliminated before the optimization phases. These represent locations in the stack frame ! that cannot be determined until RTL generation for the function ! has been completed. The following virtual register numbers are defined: ! `VIRTUAL_INCOMING_ARGS_REGNUM' ! This points to the first word of the incoming arguments ! passed on the stack. Normally these arguments are placed ! there by the caller, but the callee may have pushed some ! arguments that were previously passed in registers. When RTL generation is complete, this virtual register is replaced by the sum of the register given by ! `ARG_POINTER_REGNUM' and the value of `FIRST_PARM_OFFSET'. ! `VIRTUAL_STACK_VARS_REGNUM' ! If `FRAME_GROWS_DOWNWARD' is defined to a nonzero value, this points to immediately above the first variable on the stack. Otherwise, it points to the first variable on the stack. ! `VIRTUAL_STACK_VARS_REGNUM' is replaced with the sum of the ! register given by `FRAME_POINTER_REGNUM' and the value ! `STARTING_FRAME_OFFSET'. ! `VIRTUAL_STACK_DYNAMIC_REGNUM' ! This points to the location of dynamically allocated memory ! on the stack immediately after the stack pointer has been adjusted by the amount of memory desired. This virtual register is replaced by the sum of the register ! given by `STACK_POINTER_REGNUM' and the value ! `STACK_DYNAMIC_OFFSET'. ! `VIRTUAL_OUTGOING_ARGS_REGNUM' This points to the location in the stack at which outgoing arguments should be written when the stack is pre-pushed (arguments pushed using push insns should always use ! `STACK_POINTER_REGNUM'). This virtual register is replaced by the sum of the register ! given by `STACK_POINTER_REGNUM' and the value ! `STACK_POINTER_OFFSET'. ! `(subreg:M1 REG:M2 BYTENUM)' ! `subreg' expressions are used to refer to a register in a machine mode other than its natural one, or to refer to one register of a ! multi-part `reg' that actually refers to several registers. Each pseudo register has a natural mode. If it is necessary to ! operate on it in a different mode, the register must be enclosed ! in a `subreg'. There are currently three supported types for the first operand of ! a `subreg': ! * pseudo registers This is the most common case. Most ! `subreg's have pseudo `reg's as their first operand. ! * mem `subreg's of `mem' were common in earlier versions of GCC and are still supported. During the reload pass these are ! replaced by plain `mem's. On machines that do not do ! instruction scheduling, use of `subreg's of `mem' are still ! used, but this is no longer recommended. Such `subreg's are ! considered to be `register_operand's rather than ! `memory_operand's before and during reload. Because of this, the scheduling passes cannot properly schedule instructions ! with `subreg's of `mem', so for machines that do scheduling, ! `subreg's of `mem' should never be used. To support this, ! the combine and recog passes have explicit code to inhibit ! the creation of `subreg's of `mem' when `INSN_SCHEDULING' is defined. ! The use of `subreg's of `mem' after the reload pass is an area that is not well understood and should be avoided. There is ! still some code in the compiler to support this, but this ! code has possibly rotted. This use of `subreg's is ! discouraged and will most likely not be supported in the ! future. * hard registers It is seldom necessary to wrap hard registers ! in `subreg's; such registers would normally reduce to a ! single `reg' rtx. This use of `subreg's is discouraged and ! may not be supported in the future. ! `subreg's of `subreg's are not supported. Using ! `simplify_gen_subreg' is the recommended way to avoid this problem. ! ! `subreg's come in two distinct flavors, each having its own usage and rules: ! Paradoxical subregs ! When M1 is strictly wider than M2, the `subreg' expression is called "paradoxical". The canonical test for this class of ! `subreg' is: GET_MODE_SIZE (M1) > GET_MODE_SIZE (M2) ! Paradoxical `subreg's can be used as both lvalues and rvalues. When used as an lvalue, the low-order bits of the source value ! are stored in REG and the high-order bits are discarded. ! When used as an rvalue, the low-order bits of the `subreg' are taken from REG while the high-order bits may or may not be defined. The high-order bits of rvalues are in the following circumstances: ! * `subreg's of `mem' When M2 is smaller than a word, the ! macro `LOAD_EXTEND_OP', can control how the high-order bits are defined. ! * `subreg' of `reg's The upper bits are defined when ! `SUBREG_PROMOTED_VAR_P' is true. ! `SUBREG_PROMOTED_UNSIGNED_P' describes what the upper bits hold. Such subregs usually represent local variables, register variables and parameter pseudo variables that have been promoted to a wider mode. ! ! BYTENUM is always zero for a paradoxical `subreg', even on big-endian targets. ! For example, the paradoxical `subreg': (set (subreg:SI (reg:HI X) 0) Y) *************** registers and to main memory. *** 15029,15154 **** (set Z (subreg:SI (reg:HI X) 0)) would set the lower two bytes of Z to Y and set the upper two ! bytes to an unknown value assuming 'SUBREG_PROMOTED_VAR_P' is false. ! Normal subregs ! When M1 is at least as narrow as M2 the 'subreg' expression is ! called "normal". ! Normal 'subreg's restrict consideration to certain bits of REG. There are two cases. If M1 is smaller than a word, the ! 'subreg' refers to the least-significant part (or "lowpart") of one word of REG. If M1 is word-sized or greater, the ! 'subreg' refers to one or more complete words. ! When used as an lvalue, 'subreg' is a word-based accessor. ! Storing to a 'subreg' modifies all the words of REG that ! overlap the 'subreg', but it leaves the other words of REG alone. ! When storing to a normal 'subreg' that is smaller than a word, the other bits of the referenced word are usually left in an undefined state. This laxity makes it easier to generate efficient code for such instructions. To represent an instruction that preserves all the bits outside of those in ! the 'subreg', use 'strict_low_part' or 'zero_extract' around ! the 'subreg'. BYTENUM must identify the offset of the first byte of the ! 'subreg' from the start of REG, assuming that REG is laid out in memory order. The memory order of bytes is defined by two ! target macros, 'WORDS_BIG_ENDIAN' and 'BYTES_BIG_ENDIAN': ! * 'WORDS_BIG_ENDIAN', if set to 1, says that byte number zero is part of the most significant word; otherwise, it is part of the least significant word. ! * 'BYTES_BIG_ENDIAN', if set to 1, says that byte number zero is the most significant byte within a word; otherwise, it is the least significant byte within a word. ! On a few targets, 'FLOAT_WORDS_BIG_ENDIAN' disagrees with ! 'WORDS_BIG_ENDIAN'. However, most parts of the compiler treat floating point values as if they had the same endianness as ! integer values. This works because they handle them solely as ! a collection of integer values, with no particular numerical ! value. Only real.c and the runtime libraries care about ! 'FLOAT_WORDS_BIG_ENDIAN'. Thus, (subreg:HI (reg:SI X) 2) ! on a 'BYTES_BIG_ENDIAN', 'UNITS_PER_WORD == 4' target is the same as (subreg:HI (reg:SI X) 0) ! on a little-endian, 'UNITS_PER_WORD == 4' target. Both ! 'subreg's access the lower two bytes of register X. ! A 'MODE_PARTIAL_INT' mode behaves as if it were as wide as the ! corresponding 'MODE_INT' mode, except that it has an unknown number ! of undefined bits. For example: (subreg:PSI (reg:SI 0) 0) ! accesses the whole of '(reg:SI 0)', but the exact relationship ! between the 'PSImode' value and the 'SImode' value is not defined. ! If we assume 'UNITS_PER_WORD <= 4', then the following two ! 'subreg's: (subreg:PSI (reg:DI 0) 0) (subreg:PSI (reg:DI 0) 4) ! represent independent 4-byte accesses to the two halves of '(reg:DI ! 0)'. Both 'subreg's have an unknown number of undefined bits. ! If 'UNITS_PER_WORD <= 2' then these two 'subreg's: (subreg:HI (reg:PSI 0) 0) (subreg:HI (reg:PSI 0) 2) represent independent 2-byte accesses that together span the whole ! of '(reg:PSI 0)'. Storing to the first 'subreg' does not affect ! the value of the second, and vice versa. '(reg:PSI 0)' has an unknown number of undefined bits, so the assignment: (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4)) ! does not guarantee that '(subreg:HI (reg:PSI 0) 0)' has the value ! '(reg:HI 4)'. The rules above apply to both pseudo REGs and hard REGs. If the ! semantics are not correct for particular combinations of M1, M2 and ! hard REG, the target-specific code must ensure that those combinations are never used. For example: CANNOT_CHANGE_MODE_CLASS (M2, M1, CLASS) must be true for every class CLASS that includes REG. ! The first operand of a 'subreg' expression is customarily accessed ! with the 'SUBREG_REG' macro and the second operand is customarily ! accessed with the 'SUBREG_BYTE' macro. It has been several years since a platform in which ! 'BYTES_BIG_ENDIAN' not equal to 'WORDS_BIG_ENDIAN' has been tested. ! Anyone wishing to support such a platform in the future may be ! confronted with code rot. ! '(scratch:M)' This represents a scratch register that will be required for the execution of a single instruction and not used subsequently. It is ! converted into a 'reg' by either the local register allocator or the reload pass. ! 'scratch' is usually present inside a 'clobber' operation (*note Side Effects::). ! '(cc0)' This refers to the machine's condition code register. It has no operands and may not have a machine mode. There are two ways to use it: --- 15188,15315 ---- (set Z (subreg:SI (reg:HI X) 0)) would set the lower two bytes of Z to Y and set the upper two ! bytes to an unknown value assuming `SUBREG_PROMOTED_VAR_P' is false. ! Normal subregs ! When M1 is at least as narrow as M2 the `subreg' expression ! is called "normal". ! Normal `subreg's restrict consideration to certain bits of REG. There are two cases. If M1 is smaller than a word, the ! `subreg' refers to the least-significant part (or "lowpart") of one word of REG. If M1 is word-sized or greater, the ! `subreg' refers to one or more complete words. ! When used as an lvalue, `subreg' is a word-based accessor. ! Storing to a `subreg' modifies all the words of REG that ! overlap the `subreg', but it leaves the other words of REG alone. ! When storing to a normal `subreg' that is smaller than a word, the other bits of the referenced word are usually left in an undefined state. This laxity makes it easier to generate efficient code for such instructions. To represent an instruction that preserves all the bits outside of those in ! the `subreg', use `strict_low_part' or `zero_extract' around ! the `subreg'. BYTENUM must identify the offset of the first byte of the ! `subreg' from the start of REG, assuming that REG is laid out in memory order. The memory order of bytes is defined by two ! target macros, `WORDS_BIG_ENDIAN' and `BYTES_BIG_ENDIAN': ! * `WORDS_BIG_ENDIAN', if set to 1, says that byte number zero is part of the most significant word; otherwise, it is part of the least significant word. ! * `BYTES_BIG_ENDIAN', if set to 1, says that byte number zero is the most significant byte within a word; otherwise, it is the least significant byte within a word. ! On a few targets, `FLOAT_WORDS_BIG_ENDIAN' disagrees with ! `WORDS_BIG_ENDIAN'. However, most parts of the compiler treat floating point values as if they had the same endianness as ! integer values. This works because they handle them solely ! as a collection of integer values, with no particular ! numerical value. Only real.c and the runtime libraries care ! about `FLOAT_WORDS_BIG_ENDIAN'. Thus, (subreg:HI (reg:SI X) 2) ! on a `BYTES_BIG_ENDIAN', `UNITS_PER_WORD == 4' target is the same as (subreg:HI (reg:SI X) 0) ! on a little-endian, `UNITS_PER_WORD == 4' target. Both ! `subreg's access the lower two bytes of register X. ! ! A `MODE_PARTIAL_INT' mode behaves as if it were as wide as the ! corresponding `MODE_INT' mode, except that it has an unknown ! number of undefined bits. For example: (subreg:PSI (reg:SI 0) 0) ! accesses the whole of `(reg:SI 0)', but the exact relationship ! between the `PSImode' value and the `SImode' value is not defined. ! If we assume `UNITS_PER_WORD <= 4', then the following two ! `subreg's: (subreg:PSI (reg:DI 0) 0) (subreg:PSI (reg:DI 0) 4) ! represent independent 4-byte accesses to the two halves of ! `(reg:DI 0)'. Both `subreg's have an unknown number of undefined ! bits. ! If `UNITS_PER_WORD <= 2' then these two `subreg's: (subreg:HI (reg:PSI 0) 0) (subreg:HI (reg:PSI 0) 2) represent independent 2-byte accesses that together span the whole ! of `(reg:PSI 0)'. Storing to the first `subreg' does not affect ! the value of the second, and vice versa. `(reg:PSI 0)' has an unknown number of undefined bits, so the assignment: (set (subreg:HI (reg:PSI 0) 0) (reg:HI 4)) ! does not guarantee that `(subreg:HI (reg:PSI 0) 0)' has the value ! `(reg:HI 4)'. The rules above apply to both pseudo REGs and hard REGs. If the ! semantics are not correct for particular combinations of M1, M2 ! and hard REG, the target-specific code must ensure that those combinations are never used. For example: CANNOT_CHANGE_MODE_CLASS (M2, M1, CLASS) must be true for every class CLASS that includes REG. ! The first operand of a `subreg' expression is customarily accessed ! with the `SUBREG_REG' macro and the second operand is customarily ! accessed with the `SUBREG_BYTE' macro. It has been several years since a platform in which ! `BYTES_BIG_ENDIAN' not equal to `WORDS_BIG_ENDIAN' has been ! tested. Anyone wishing to support such a platform in the future ! may be confronted with code rot. ! `(scratch:M)' This represents a scratch register that will be required for the execution of a single instruction and not used subsequently. It is ! converted into a `reg' by either the local register allocator or the reload pass. ! `scratch' is usually present inside a `clobber' operation (*note Side Effects::). ! `(cc0)' This refers to the machine's condition code register. It has no operands and may not have a machine mode. There are two ways to use it: *************** registers and to main memory. *** 15157,15195 **** best on most machines, where each comparison sets the entire series of flags. ! With this technique, '(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) and in comparison operators comparing ! against zero ('const_int' with value zero; that is to say, ! 'const0_rtx'). * To stand for a single flag that is the result of a single ! condition. This is useful on machines that have only a single ! flag bit, and in which comparison instructions must specify ! the condition to test. ! With this technique, '(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) where the source is a comparison ! operator, and as the first operand of 'if_then_else' (in a conditional branch). ! There is only one expression object of code 'cc0'; it is the value ! of the variable 'cc0_rtx'. Any attempt to create an expression of ! code 'cc0' will return 'cc0_rtx'. Instructions can set the condition code implicitly. On many machines, nearly all instructions set the condition code based on the value that they compute or store. It is not necessary to record these actions explicitly in the RTL because the machine description includes a prescription for recognizing the ! instructions that do so (by means of the macro 'NOTICE_UPDATE_CC'). ! *Note Condition Code::. Only instructions whose sole purpose is to ! set the condition code, and instructions that use the condition ! code, need mention '(cc0)'. On some machines, the condition code register is given a register ! number and a 'reg' is used instead of '(cc0)'. This is usually the preferable approach if only a small subset of instructions modify the condition code. Other machines store condition codes in general registers; in such cases a pseudo register should be used. --- 15318,15356 ---- best on most machines, where each comparison sets the entire series of flags. ! With this technique, `(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) and in comparison operators comparing ! against zero (`const_int' with value zero; that is to say, ! `const0_rtx'). * To stand for a single flag that is the result of a single ! condition. This is useful on machines that have only a ! single flag bit, and in which comparison instructions must ! specify the condition to test. ! With this technique, `(cc0)' may be validly used in only two contexts: as the destination of an assignment (in test and compare instructions) where the source is a comparison ! operator, and as the first operand of `if_then_else' (in a conditional branch). ! There is only one expression object of code `cc0'; it is the value ! of the variable `cc0_rtx'. Any attempt to create an expression of ! code `cc0' will return `cc0_rtx'. Instructions can set the condition code implicitly. On many machines, nearly all instructions set the condition code based on the value that they compute or store. It is not necessary to record these actions explicitly in the RTL because the machine description includes a prescription for recognizing the ! instructions that do so (by means of the macro ! `NOTICE_UPDATE_CC'). *Note Condition Code::. Only instructions ! whose sole purpose is to set the condition code, and instructions ! that use the condition code, need mention `(cc0)'. On some machines, the condition code register is given a register ! number and a `reg' is used instead of `(cc0)'. This is usually the preferable approach if only a small subset of instructions modify the condition code. Other machines store condition codes in general registers; in such cases a pseudo register should be used. *************** registers and to main memory. *** 15199,15240 **** the condition code. This is best handled by normally generating the instruction that does not set the condition code, and making a pattern that both performs the arithmetic and sets the condition ! code register (which would not be '(cc0)' in this case). For ! examples, search for 'addcc' and 'andcc' in 'sparc.md'. ! '(pc)' This represents the machine's program counter. It has no operands ! and may not have a machine mode. '(pc)' may be validly used only in certain specific contexts in jump instructions. ! There is only one expression object of code 'pc'; it is the value ! of the variable 'pc_rtx'. Any attempt to create an expression of ! code 'pc' will return 'pc_rtx'. All instructions that do not jump alter the program counter ! implicitly by incrementing it, but there is no need to mention this ! in the RTL. ! '(mem:M ADDR ALIAS)' This RTX represents a reference to main memory at an address represented by the expression ADDR. M specifies how large a unit of memory is accessed. ALIAS specifies an alias set for the reference. In general two items are in different alias sets if they cannot reference the same memory address. ! The construct '(mem:BLK (scratch))' is considered to alias all other memories. Thus it may be used as a memory barrier in epilogue stack deallocation patterns. ! '(concatM RTX RTX)' This RTX represents the concatenation of two other RTXs. This is ! used for complex values. It should only appear in the RTL attached ! to declarations and during RTL generation. It should not appear in ! the ordinary insn chain. ! '(concatnM [RTX ...])' This RTX represents the concatenation of all the RTX to make a ! single value. Like 'concat', this should only appear in declarations, and not in the insn chain.  --- 15360,15401 ---- the condition code. This is best handled by normally generating the instruction that does not set the condition code, and making a pattern that both performs the arithmetic and sets the condition ! code register (which would not be `(cc0)' in this case). For ! examples, search for `addcc' and `andcc' in `sparc.md'. ! `(pc)' This represents the machine's program counter. It has no operands ! and may not have a machine mode. `(pc)' may be validly used only in certain specific contexts in jump instructions. ! There is only one expression object of code `pc'; it is the value ! of the variable `pc_rtx'. Any attempt to create an expression of ! code `pc' will return `pc_rtx'. All instructions that do not jump alter the program counter ! implicitly by incrementing it, but there is no need to mention ! this in the RTL. ! `(mem:M ADDR ALIAS)' This RTX represents a reference to main memory at an address represented by the expression ADDR. M specifies how large a unit of memory is accessed. ALIAS specifies an alias set for the reference. In general two items are in different alias sets if they cannot reference the same memory address. ! The construct `(mem:BLK (scratch))' is considered to alias all other memories. Thus it may be used as a memory barrier in epilogue stack deallocation patterns. ! `(concatM RTX RTX)' This RTX represents the concatenation of two other RTXs. This is ! used for complex values. It should only appear in the RTL ! attached to declarations and during RTL generation. It should not ! appear in the ordinary insn chain. ! `(concatnM [RTX ...])' This RTX represents the concatenation of all the RTX to make a ! single value. Like `concat', this should only appear in declarations, and not in the insn chain.  *************** File: gccint.info, Node: Arithmetic, N *** 15244,15342 **** =================================== Unless otherwise specified, all the operands of arithmetic expressions ! must be valid for mode M. An operand is valid for mode M if it has mode ! M, or if it is a 'const_int' or 'const_double' and M is a mode of class ! 'MODE_INT'. For commutative binary operations, constants should be placed in the second operand. ! '(plus:M X Y)' ! '(ss_plus:M X Y)' ! '(us_plus:M X Y)' ! These three expressions all represent the sum of the values represented by X and Y carried out in machine mode M. They differ ! in their behavior on overflow of integer modes. 'plus' wraps round ! modulo the width of M; 'ss_plus' saturates at the maximum signed ! value representable in M; 'us_plus' saturates at the maximum ! unsigned value. ! ! '(lo_sum:M X Y)' This expression represents the sum of X and the low-order bits of ! Y. It is used with 'high' (*note Constants::) to represent the ! typical two-instruction sequence used in RISC machines to reference ! a global memory location. The number of low order bits is machine-dependent but is normally ! the number of bits in a 'Pmode' item minus the number of bits set ! by 'high'. ! ! M should be 'Pmode'. ! '(minus:M X Y)' ! '(ss_minus:M X Y)' ! '(us_minus:M X Y)' These three expressions represent the result of subtracting Y from X, carried out in mode M. Behavior on overflow is the same as for ! the three variants of 'plus' (see above). ! '(compare:M X Y)' Represents the result of subtracting Y from X for purposes of comparison. The result is computed without overflow, as if with infinite precision. Of course, machines can't really subtract with infinite precision. ! However, they can pretend to do so when only the sign of the result ! will be used, which is the case when the result is stored in the ! condition code. And that is the _only_ way this kind of expression ! may validly be used: as a value to be stored in the condition ! codes, either '(cc0)' or a register. *Note Comparisons::. The mode M is not related to the modes of X and Y, but instead is ! the mode of the condition code value. If '(cc0)' is used, it is ! 'VOIDmode'. Otherwise it is some mode in class 'MODE_CC', often ! 'CCmode'. *Note Condition Code::. If M is 'VOIDmode' or 'CCmode', ! the operation returns sufficient information (in an unspecified ! format) so that any comparison operator can be applied to the ! result of the 'COMPARE' operation. For other modes in class ! 'MODE_CC', the operation only returns a subset of this information. ! Normally, X and Y must have the same mode. Otherwise, 'compare' is ! valid only if the mode of X is in class 'MODE_INT' and Y is a ! 'const_int' or 'const_double' with mode 'VOIDmode'. The mode of X determines what mode the comparison is to be done in; thus it must ! not be 'VOIDmode'. If one of the operands is a constant, it should be placed in the second operand and the comparison code adjusted as appropriate. ! A 'compare' specifying two 'VOIDmode' constants is not valid since there is no way to know in what mode the comparison is to be performed; the comparison must either be folded during the compilation or the first operand must be loaded into a register while its mode is still known. ! '(neg:M X)' ! '(ss_neg:M X)' ! '(us_neg:M X)' These two expressions represent the negation (subtraction from zero) of the value represented by X, carried out in mode M. They differ in the behavior on overflow of integer modes. In the case ! of 'neg', the negation of the operand may be a number not representable in mode M, in which case it is truncated to M. ! 'ss_neg' and 'us_neg' ensure that an out-of-bounds result saturates ! to the maximum or minimum signed or unsigned value. ! '(mult:M X Y)' ! '(ss_mult:M X Y)' ! '(us_mult:M X Y)' Represents the signed product of the values represented by X and Y ! carried out in machine mode M. 'ss_mult' and 'us_mult' ensure that ! an out-of-bounds result saturates to the maximum or minimum signed ! or unsigned value. Some machines support a multiplication that generates a product wider than the operands. Write the pattern for this as --- 15405,15502 ---- =================================== Unless otherwise specified, all the operands of arithmetic expressions ! must be valid for mode M. An operand is valid for mode M if it has ! mode M, or if it is a `const_int' or `const_double' and M is a mode of ! class `MODE_INT'. For commutative binary operations, constants should be placed in the second operand. ! `(plus:M X Y)' ! `(ss_plus:M X Y)' ! `(us_plus:M X Y)' These three expressions all represent the sum of the values represented by X and Y carried out in machine mode M. They differ ! in their behavior on overflow of integer modes. `plus' wraps ! round modulo the width of M; `ss_plus' saturates at the maximum ! signed value representable in M; `us_plus' saturates at the ! maximum unsigned value. + `(lo_sum:M X Y)' This expression represents the sum of X and the low-order bits of ! Y. It is used with `high' (*note Constants::) to represent the ! typical two-instruction sequence used in RISC machines to ! reference a global memory location. The number of low order bits is machine-dependent but is normally ! the number of bits in a `Pmode' item minus the number of bits set ! by `high'. ! M should be `Pmode'. + `(minus:M X Y)' + `(ss_minus:M X Y)' + `(us_minus:M X Y)' These three expressions represent the result of subtracting Y from X, carried out in mode M. Behavior on overflow is the same as for ! the three variants of `plus' (see above). ! `(compare:M X Y)' Represents the result of subtracting Y from X for purposes of comparison. The result is computed without overflow, as if with infinite precision. Of course, machines can't really subtract with infinite precision. ! However, they can pretend to do so when only the sign of the ! result will be used, which is the case when the result is stored ! in the condition code. And that is the _only_ way this kind of ! expression may validly be used: as a value to be stored in the ! condition codes, either `(cc0)' or a register. *Note ! Comparisons::. The mode M is not related to the modes of X and Y, but instead is ! the mode of the condition code value. If `(cc0)' is used, it is ! `VOIDmode'. Otherwise it is some mode in class `MODE_CC', often ! `CCmode'. *Note Condition Code::. If M is `VOIDmode' or ! `CCmode', the operation returns sufficient information (in an ! unspecified format) so that any comparison operator can be applied ! to the result of the `COMPARE' operation. For other modes in ! class `MODE_CC', the operation only returns a subset of this ! information. ! Normally, X and Y must have the same mode. Otherwise, `compare' ! is valid only if the mode of X is in class `MODE_INT' and Y is a ! `const_int' or `const_double' with mode `VOIDmode'. The mode of X determines what mode the comparison is to be done in; thus it must ! not be `VOIDmode'. If one of the operands is a constant, it should be placed in the second operand and the comparison code adjusted as appropriate. ! A `compare' specifying two `VOIDmode' constants is not valid since there is no way to know in what mode the comparison is to be performed; the comparison must either be folded during the compilation or the first operand must be loaded into a register while its mode is still known. ! `(neg:M X)' ! `(ss_neg:M X)' ! `(us_neg:M X)' These two expressions represent the negation (subtraction from zero) of the value represented by X, carried out in mode M. They differ in the behavior on overflow of integer modes. In the case ! of `neg', the negation of the operand may be a number not representable in mode M, in which case it is truncated to M. ! `ss_neg' and `us_neg' ensure that an out-of-bounds result ! saturates to the maximum or minimum signed or unsigned value. ! `(mult:M X Y)' ! `(ss_mult:M X Y)' ! `(us_mult:M X Y)' Represents the signed product of the values represented by X and Y ! carried out in machine mode M. `ss_mult' and `us_mult' ensure ! that an out-of-bounds result saturates to the maximum or minimum ! signed or unsigned value. Some machines support a multiplication that generates a product wider than the operands. Write the pattern for this as *************** second operand. *** 15347,15493 **** same. For unsigned widening multiplication, use the same idiom, but with ! 'zero_extend' instead of 'sign_extend'. ! '(fma:M X Y Z)' ! Represents the 'fma', 'fmaf', and 'fmal' builtin functions that do ! a combined multiply of X and Y and then adding toZ without doing an ! intermediate rounding step. ! '(div:M X Y)' ! '(ss_div:M X Y)' Represents the quotient in signed division of X by Y, carried out in machine mode M. If M is a floating point mode, it represents ! the exact quotient; otherwise, the integerized quotient. 'ss_div' ensures that an out-of-bounds result saturates to the maximum or minimum signed value. Some machines have division instructions in which the operands and quotient widths are not all the same; you should represent such ! instructions using 'truncate' and 'sign_extend' as in, (truncate:M1 (div:M2 X (sign_extend:M2 Y))) ! '(udiv:M X Y)' ! '(us_div:M X Y)' ! Like 'div' but represents unsigned division. 'us_div' ensures that ! an out-of-bounds result saturates to the maximum or minimum unsigned value. ! '(mod:M X Y)' ! '(umod:M X Y)' ! Like 'div' and 'udiv' but represent the remainder instead of the quotient. ! '(smin:M X Y)' ! '(smax:M X Y)' ! Represents the smaller (for 'smin') or larger (for 'smax') of X and ! Y, interpreted as signed values in mode M. When used with floating ! point, if both operands are zeros, or if either operand is 'NaN', ! then it is unspecified which of the two operands is returned as the ! result. ! '(umin:M X Y)' ! '(umax:M X Y)' ! Like 'smin' and 'smax', but the values are interpreted as unsigned integers. ! '(not:M X)' Represents the bitwise complement of the value represented by X, carried out in mode M, which must be a fixed-point machine mode. ! '(and:M X Y)' Represents the bitwise logical-and of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point machine mode. ! '(ior:M X Y)' Represents the bitwise inclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! '(xor:M X Y)' Represents the bitwise exclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! '(ashift:M X C)' ! '(ss_ashift:M X C)' ! '(us_ashift:M X C)' These three expressions represent the result of arithmetically shifting X left by C places. They differ in their behavior on ! overflow of integer modes. An 'ashift' operation is a plain shift with no special behavior in case of a change in the sign bit; ! 'ss_ashift' and 'us_ashift' saturates to the minimum or maximum ! representable value if any of the bits shifted out differs from the ! final sign bit. ! X have mode M, a fixed-point machine mode. C be a fixed-point mode ! or be a constant with mode 'VOIDmode'; which mode is determined by ! the mode called for in the machine description entry for the ! left-shift instruction. For example, on the VAX, the mode of C is ! 'QImode' regardless of M. ! '(lshiftrt:M X C)' ! '(ashiftrt:M X C)' ! Like 'ashift' but for right shift. Unlike the case for left shift, these two operations are distinct. ! '(rotate:M X C)' ! '(rotatert:M X C)' Similar but represent left and right rotate. If C is a constant, ! use 'rotate'. ! '(abs:M X)' ! '(ss_abs:M X)' ! Represents the absolute value of X, computed in mode M. 'ss_abs' ensures that an out-of-bounds result saturates to the maximum signed value. ! '(sqrt:M X)' Represents the square root of X, computed in mode M. Most often M will be a floating point mode. ! '(ffs:M X)' Represents one plus the index of the least significant 1-bit in X, represented as an integer of mode M. (The value is zero if X is ! zero.) The mode of X must be M or 'VOIDmode'. ! '(clrsb:M X)' Represents the number of redundant leading sign bits in X, represented as an integer of mode M, starting at the most significant bit position. This is one less than the number of ! leading sign bits (either 0 or 1), with no special cases. The mode ! of X must be M or 'VOIDmode'. ! '(clz:M X)' Represents the number of leading 0-bits in X, represented as an integer of mode M, starting at the most significant bit position. If X is zero, the value is determined by ! 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Note that this is one of the few expressions that is not invariant under widening. The ! mode of X must be M or 'VOIDmode'. ! '(ctz:M X)' Represents the number of trailing 0-bits in X, represented as an integer of mode M, starting at the least significant bit position. If X is zero, the value is determined by ! 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Except for this case, ! 'ctz(x)' is equivalent to 'ffs(X) - 1'. The mode of X must be M or ! 'VOIDmode'. ! '(popcount:M X)' Represents the number of 1-bits in X, represented as an integer of ! mode M. The mode of X must be M or 'VOIDmode'. ! '(parity:M X)' Represents the number of 1-bits modulo 2 in X, represented as an ! integer of mode M. The mode of X must be M or 'VOIDmode'. ! '(bswap:M X)' Represents the value X with the order of bytes reversed, carried out in mode M, which must be a fixed-point machine mode. The mode ! of X must be M or 'VOIDmode'.  File: gccint.info, Node: Comparisons, Next: Bit-Fields, Prev: Arithmetic, Up: RTL --- 15507,15654 ---- same. For unsigned widening multiplication, use the same idiom, but with ! `zero_extend' instead of `sign_extend'. ! `(fma:M X Y Z)' ! Represents the `fma', `fmaf', and `fmal' builtin functions that do ! a combined multiply of X and Y and then adding toZ without doing ! an intermediate rounding step. ! `(div:M X Y)' ! `(ss_div:M X Y)' Represents the quotient in signed division of X by Y, carried out in machine mode M. If M is a floating point mode, it represents ! the exact quotient; otherwise, the integerized quotient. `ss_div' ensures that an out-of-bounds result saturates to the maximum or minimum signed value. Some machines have division instructions in which the operands and quotient widths are not all the same; you should represent such ! instructions using `truncate' and `sign_extend' as in, (truncate:M1 (div:M2 X (sign_extend:M2 Y))) ! `(udiv:M X Y)' ! `(us_div:M X Y)' ! Like `div' but represents unsigned division. `us_div' ensures ! that an out-of-bounds result saturates to the maximum or minimum unsigned value. ! `(mod:M X Y)' ! `(umod:M X Y)' ! Like `div' and `udiv' but represent the remainder instead of the quotient. ! `(smin:M X Y)' ! `(smax:M X Y)' ! Represents the smaller (for `smin') or larger (for `smax') of X ! and Y, interpreted as signed values in mode M. When used with ! floating point, if both operands are zeros, or if either operand ! is `NaN', then it is unspecified which of the two operands is ! returned as the result. ! `(umin:M X Y)' ! `(umax:M X Y)' ! Like `smin' and `smax', but the values are interpreted as unsigned integers. ! `(not:M X)' Represents the bitwise complement of the value represented by X, carried out in mode M, which must be a fixed-point machine mode. ! `(and:M X Y)' Represents the bitwise logical-and of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point machine mode. ! `(ior:M X Y)' Represents the bitwise inclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! `(xor:M X Y)' Represents the bitwise exclusive-or of the values represented by X and Y, carried out in machine mode M, which must be a fixed-point mode. ! `(ashift:M X C)' ! `(ss_ashift:M X C)' ! `(us_ashift:M X C)' These three expressions represent the result of arithmetically shifting X left by C places. They differ in their behavior on ! overflow of integer modes. An `ashift' operation is a plain shift with no special behavior in case of a change in the sign bit; ! `ss_ashift' and `us_ashift' saturates to the minimum or maximum ! representable value if any of the bits shifted out differs from ! the final sign bit. ! X have mode M, a fixed-point machine mode. C be a fixed-point ! mode or be a constant with mode `VOIDmode'; which mode is ! determined by the mode called for in the machine description entry ! for the left-shift instruction. For example, on the VAX, the mode ! of C is `QImode' regardless of M. ! `(lshiftrt:M X C)' ! `(ashiftrt:M X C)' ! Like `ashift' but for right shift. Unlike the case for left shift, these two operations are distinct. ! `(rotate:M X C)' ! `(rotatert:M X C)' Similar but represent left and right rotate. If C is a constant, ! use `rotate'. ! `(abs:M X)' ! ! `(ss_abs:M X)' ! Represents the absolute value of X, computed in mode M. `ss_abs' ensures that an out-of-bounds result saturates to the maximum signed value. ! `(sqrt:M X)' Represents the square root of X, computed in mode M. Most often M will be a floating point mode. ! `(ffs:M X)' Represents one plus the index of the least significant 1-bit in X, represented as an integer of mode M. (The value is zero if X is ! zero.) The mode of X must be M or `VOIDmode'. ! `(clrsb:M X)' Represents the number of redundant leading sign bits in X, represented as an integer of mode M, starting at the most significant bit position. This is one less than the number of ! leading sign bits (either 0 or 1), with no special cases. The ! mode of X must be M or `VOIDmode'. ! `(clz:M X)' Represents the number of leading 0-bits in X, represented as an integer of mode M, starting at the most significant bit position. If X is zero, the value is determined by ! `CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Note that this is one of the few expressions that is not invariant under widening. The ! mode of X must be M or `VOIDmode'. ! `(ctz:M X)' Represents the number of trailing 0-bits in X, represented as an integer of mode M, starting at the least significant bit position. If X is zero, the value is determined by ! `CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::). Except for this case, ! `ctz(x)' is equivalent to `ffs(X) - 1'. The mode of X must be M ! or `VOIDmode'. ! `(popcount:M X)' Represents the number of 1-bits in X, represented as an integer of ! mode M. The mode of X must be M or `VOIDmode'. ! `(parity:M X)' Represents the number of 1-bits modulo 2 in X, represented as an ! integer of mode M. The mode of X must be M or `VOIDmode'. ! `(bswap:M X)' Represents the value X with the order of bytes reversed, carried out in mode M, which must be a fixed-point machine mode. The mode ! of X must be M or `VOIDmode'.  File: gccint.info, Node: Comparisons, Next: Bit-Fields, Prev: Arithmetic, Up: RTL *************** File: gccint.info, Node: Comparisons, *** 15497,15521 **** Comparison operators test a relation on two operands and are considered to represent a machine-dependent nonzero value described by, but not ! necessarily equal to, 'STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators whose results ! have a 'MODE_INT' mode, 'FLOAT_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators that return floating-point values, and a vector of either ! 'VECTOR_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or of zeros if it does not, for comparison operators that return vector results. The mode of the comparison operation is independent of the mode of the data being compared. If the comparison operation is being ! tested (e.g., the first operand of an 'if_then_else'), the mode must be ! 'VOIDmode'. There are two ways that comparison operations may be used. The ! comparison operators may be used to compare the condition codes '(cc0)' ! against zero, as in '(eq (cc0) (const_int 0))'. Such a construct actually refers to the result of the preceding instruction in which the condition codes were set. The instruction setting the condition code must be adjacent to the instruction using the condition code; only ! 'note' insns may separate them. Alternatively, a comparison operation may directly compare two data objects. The mode of the comparison is determined by the operands; they --- 15658,15682 ---- Comparison operators test a relation on two operands and are considered to represent a machine-dependent nonzero value described by, but not ! necessarily equal to, `STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators whose results ! have a `MODE_INT' mode, `FLOAT_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or zero if it does not, for comparison operators that return floating-point values, and a vector of either ! `VECTOR_STORE_FLAG_VALUE' (*note Misc::) if the relation holds, or of zeros if it does not, for comparison operators that return vector results. The mode of the comparison operation is independent of the mode of the data being compared. If the comparison operation is being ! tested (e.g., the first operand of an `if_then_else'), the mode must be ! `VOIDmode'. There are two ways that comparison operations may be used. The ! comparison operators may be used to compare the condition codes `(cc0)' ! against zero, as in `(eq (cc0) (const_int 0))'. Such a construct actually refers to the result of the preceding instruction in which the condition codes were set. The instruction setting the condition code must be adjacent to the instruction using the condition code; only ! `note' insns may separate them. Alternatively, a comparison operation may directly compare two data objects. The mode of the comparison is determined by the operands; they *************** operands constant would be invalid as th *** 15524,15589 **** deduced from it, but such a comparison should never exist in RTL due to constant folding. ! In the example above, if '(cc0)' were last set to '(compare X Y)', the ! comparison operation is identical to '(eq X Y)'. Usually only one style of comparisons is supported on a particular machine, but the combine ! pass will try to merge the operations to produce the 'eq' shown in case it exists in the context of the particular insn involved. Inequality comparisons come in two flavors, signed and unsigned. Thus, ! there are distinct expression codes 'gt' and 'gtu' for signed and unsigned greater-than. These can produce different results for the same pair of integer values: for example, 1 is signed greater-than -1 but not unsigned greater-than, because -1 when regarded as unsigned is actually ! '0xffffffff' which is greater than 1. The signed comparisons are also used for floating point values. ! Floating point comparisons are distinguished by the machine modes of the ! operands. ! '(eq:M X Y)' ! 'STORE_FLAG_VALUE' if the values represented by X and Y are equal, otherwise 0. ! '(ne:M X Y)' ! 'STORE_FLAG_VALUE' if the values represented by X and Y are not equal, otherwise 0. ! '(gt:M X Y)' ! 'STORE_FLAG_VALUE' if the X is greater than Y. If they are fixed-point, the comparison is done in a signed sense. ! '(gtu:M X Y)' ! Like 'gt' but does unsigned comparison, on fixed-point numbers only. ! '(lt:M X Y)' ! '(ltu:M X Y)' ! Like 'gt' and 'gtu' but test for "less than". ! '(ge:M X Y)' ! '(geu:M X Y)' ! Like 'gt' and 'gtu' but test for "greater than or equal". ! '(le:M X Y)' ! '(leu:M X Y)' ! Like 'gt' and 'gtu' but test for "less than or equal". ! '(if_then_else COND THEN ELSE)' This is not a comparison operation but is listed here because it is always used in conjunction with a comparison operation. To be precise, COND is a comparison expression. This expression represents a choice, according to COND, between the value represented by THEN and the one represented by ELSE. ! On most machines, 'if_then_else' expressions are valid only to express conditional jumps. ! '(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)' ! Similar to 'if_then_else', but more general. Each of TEST1, TEST2, ! ... is performed in turn. The result of this expression is the ! VALUE corresponding to the first nonzero test, or DEFAULT if none ! of the tests are nonzero expressions. This is currently not valid for instruction patterns and is supported only for insn attributes. *Note Insn Attributes::. --- 15685,15750 ---- deduced from it, but such a comparison should never exist in RTL due to constant folding. ! In the example above, if `(cc0)' were last set to `(compare X Y)', the ! comparison operation is identical to `(eq X Y)'. Usually only one style of comparisons is supported on a particular machine, but the combine ! pass will try to merge the operations to produce the `eq' shown in case it exists in the context of the particular insn involved. Inequality comparisons come in two flavors, signed and unsigned. Thus, ! there are distinct expression codes `gt' and `gtu' for signed and unsigned greater-than. These can produce different results for the same pair of integer values: for example, 1 is signed greater-than -1 but not unsigned greater-than, because -1 when regarded as unsigned is actually ! `0xffffffff' which is greater than 1. The signed comparisons are also used for floating point values. ! Floating point comparisons are distinguished by the machine modes of ! the operands. ! `(eq:M X Y)' ! `STORE_FLAG_VALUE' if the values represented by X and Y are equal, otherwise 0. ! `(ne:M X Y)' ! `STORE_FLAG_VALUE' if the values represented by X and Y are not equal, otherwise 0. ! `(gt:M X Y)' ! `STORE_FLAG_VALUE' if the X is greater than Y. If they are fixed-point, the comparison is done in a signed sense. ! `(gtu:M X Y)' ! Like `gt' but does unsigned comparison, on fixed-point numbers only. ! `(lt:M X Y)' ! `(ltu:M X Y)' ! Like `gt' and `gtu' but test for "less than". ! `(ge:M X Y)' ! `(geu:M X Y)' ! Like `gt' and `gtu' but test for "greater than or equal". ! `(le:M X Y)' ! `(leu:M X Y)' ! Like `gt' and `gtu' but test for "less than or equal". ! `(if_then_else COND THEN ELSE)' This is not a comparison operation but is listed here because it is always used in conjunction with a comparison operation. To be precise, COND is a comparison expression. This expression represents a choice, according to COND, between the value represented by THEN and the one represented by ELSE. ! On most machines, `if_then_else' expressions are valid only to express conditional jumps. ! `(cond [TEST1 VALUE1 TEST2 VALUE2 ...] DEFAULT)' ! Similar to `if_then_else', but more general. Each of TEST1, ! TEST2, ... is performed in turn. The result of this expression is ! the VALUE corresponding to the first nonzero test, or DEFAULT if ! none of the tests are nonzero expressions. This is currently not valid for instruction patterns and is supported only for insn attributes. *Note Insn Attributes::. *************** File: gccint.info, Node: Bit-Fields, N *** 15596,15629 **** Special expression codes exist to represent bit-field instructions. ! '(sign_extract:M LOC SIZE POS)' This represents a reference to a sign-extended bit-field contained or starting in LOC (a memory or register reference). The bit-field is SIZE bits wide and starts at bit POS. The compilation option ! 'BITS_BIG_ENDIAN' says which end of the memory unit POS counts from. If LOC is in memory, its mode must be a single-byte integer mode. If LOC is in a register, the mode to use is specified by the ! operand of the 'insv' or 'extv' pattern (*note Standard Names::) and is usually a full-word integer mode, which is the default if none is specified. The mode of POS is machine-specific and is also specified in the ! 'insv' or 'extv' pattern. ! The mode M is the same as the mode that would be used for LOC if it ! were a register. ! A 'sign_extract' can not appear as an lvalue, or part thereof, in RTL. ! '(zero_extract:M LOC SIZE POS)' ! Like 'sign_extract' but refers to an unsigned or zero-extended bit-field. The same sequence of bits are extracted, but they are filled to an entire word with zeros instead of by sign-extension. ! Unlike 'sign_extract', this type of expressions can be lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value into the specified bit-field. --- 15757,15790 ---- Special expression codes exist to represent bit-field instructions. ! `(sign_extract:M LOC SIZE POS)' This represents a reference to a sign-extended bit-field contained or starting in LOC (a memory or register reference). The bit-field is SIZE bits wide and starts at bit POS. The compilation option ! `BITS_BIG_ENDIAN' says which end of the memory unit POS counts from. If LOC is in memory, its mode must be a single-byte integer mode. If LOC is in a register, the mode to use is specified by the ! operand of the `insv' or `extv' pattern (*note Standard Names::) and is usually a full-word integer mode, which is the default if none is specified. The mode of POS is machine-specific and is also specified in the ! `insv' or `extv' pattern. ! The mode M is the same as the mode that would be used for LOC if ! it were a register. ! A `sign_extract' can not appear as an lvalue, or part thereof, in RTL. ! `(zero_extract:M LOC SIZE POS)' ! Like `sign_extract' but refers to an unsigned or zero-extended bit-field. The same sequence of bits are extracted, but they are filled to an entire word with zeros instead of by sign-extension. ! Unlike `sign_extract', this type of expressions can be lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value into the specified bit-field. *************** interpreted as operating on each part of *** 15638,15671 **** Additionally, there are a few new expressions to describe specific vector operations. ! '(vec_merge:M VEC1 VEC2 ITEMS)' This describes a merge operation between two vectors. The result is a vector of mode M; its elements are selected from either VEC1 or VEC2. Which elements are selected is described by ITEMS, which ! is a bit mask represented by a 'const_int'; a zero bit indicates the corresponding element in the result vector is taken from VEC2 while a set bit indicates it is taken from VEC1. ! '(vec_select:M VEC1 SELECTION)' This describes an operation that selects parts of a vector. VEC1 ! is the source vector, and SELECTION is a 'parallel' that contains a ! 'const_int' for each of the subparts of the result vector, giving the number of the source subpart that should be stored into it. The result mode M is either the submode for a single element of ! VEC1 (if only one subpart is selected), or another vector mode with ! that element submode (if multiple subparts are selected). ! '(vec_concat:M X1 X2)' ! Describes a vector concat operation. The result is a concatenation ! of the vectors or scalars X1 and X2; its length is the sum of the ! lengths of the two inputs. ! '(vec_duplicate:M X)' This operation converts a scalar into a vector or a small vector into a larger one by duplicating the input values. The output ! vector mode must have the same submodes as the input vector mode or ! the scalar modes, and the number of output parts must be an integer ! multiple of the number of input parts.  File: gccint.info, Node: Conversions, Next: RTL Declarations, Prev: Vector Operations, Up: RTL --- 15799,15833 ---- Additionally, there are a few new expressions to describe specific vector operations. ! `(vec_merge:M VEC1 VEC2 ITEMS)' This describes a merge operation between two vectors. The result is a vector of mode M; its elements are selected from either VEC1 or VEC2. Which elements are selected is described by ITEMS, which ! is a bit mask represented by a `const_int'; a zero bit indicates the corresponding element in the result vector is taken from VEC2 while a set bit indicates it is taken from VEC1. ! `(vec_select:M VEC1 SELECTION)' This describes an operation that selects parts of a vector. VEC1 ! is the source vector, and SELECTION is a `parallel' that contains a ! `const_int' for each of the subparts of the result vector, giving the number of the source subpart that should be stored into it. The result mode M is either the submode for a single element of ! VEC1 (if only one subpart is selected), or another vector mode ! with that element submode (if multiple subparts are selected). ! `(vec_concat:M X1 X2)' ! Describes a vector concat operation. The result is a ! concatenation of the vectors or scalars X1 and X2; its length is ! the sum of the lengths of the two inputs. ! `(vec_duplicate:M X)' This operation converts a scalar into a vector or a small vector into a larger one by duplicating the input values. The output ! vector mode must have the same submodes as the input vector mode ! or the scalar modes, and the number of output parts must be an ! integer multiple of the number of input parts. !  File: gccint.info, Node: Conversions, Next: RTL Declarations, Prev: Vector Operations, Up: RTL *************** File: gccint.info, Node: Conversions, *** 15674,15683 **** ================= All conversions between machine modes must be represented by explicit ! conversion operations. For example, an expression which is the sum of a ! byte and a full word cannot be written as '(plus:SI (reg:QI 34) (reg:SI ! 80))' because the 'plus' operation requires two operands of the same ! machine mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80)) --- 15836,15845 ---- ================= All conversions between machine modes must be represented by explicit ! conversion operations. For example, an expression which is the sum of ! a byte and a full word cannot be written as `(plus:SI (reg:QI 34) ! (reg:SI 80))' because the `plus' operation requires two operands of the ! same machine mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in (plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80)) *************** conversion operation, as in *** 15686,15755 **** be more than one way of converting from a given starting mode to the desired final mode. The conversion operation code says how to do it. ! For all conversion operations, X must not be 'VOIDmode' because the mode in which to do the conversion would not be known. The conversion must either be done at compile-time or X must be placed into a register. ! '(sign_extend:M X)' ! Represents the result of sign-extending the value X to machine mode ! M. M must be a fixed-point mode and X a fixed-point value of a ! mode narrower than M. ! '(zero_extend:M X)' ! Represents the result of zero-extending the value X to machine mode ! M. M must be a fixed-point mode and X a fixed-point value of a ! mode narrower than M. ! '(float_extend:M X)' Represents the result of extending the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode narrower than M. ! '(truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a fixed-point mode and X a fixed-point value of a mode wider than M. ! '(ss_truncate:M X)' Represents the result of truncating the value X to machine mode M, using signed saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! '(us_truncate:M X)' Represents the result of truncating the value X to machine mode M, using unsigned saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! '(float_truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode wider than M. ! '(float:M X)' Represents the result of converting fixed point value X, regarded as signed, to floating point mode M. ! '(unsigned_float:M X)' Represents the result of converting fixed point value X, regarded as unsigned, to floating point mode M. ! '(fix:M X)' When M is a floating-point mode, represents the result of ! converting floating point value X (valid for mode M) to an integer, ! still represented in floating point mode M, by rounding towards ! zero. When M is a fixed-point mode, represents the result of converting ! floating point value X to mode M, regarded as signed. How rounding ! is done is not specified, so this operation may be used validly in ! compiling C code only for integer-valued operands. ! '(unsigned_fix:M X)' ! Represents the result of converting floating point value X to fixed ! point mode M, regarded as unsigned. How rounding is done is not ! specified. ! '(fract_convert:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, floating-point value X to fixed-point mode M, fixed-point value X --- 15848,15917 ---- be more than one way of converting from a given starting mode to the desired final mode. The conversion operation code says how to do it. ! For all conversion operations, X must not be `VOIDmode' because the mode in which to do the conversion would not be known. The conversion must either be done at compile-time or X must be placed into a register. ! `(sign_extend:M X)' ! Represents the result of sign-extending the value X to machine ! mode M. M must be a fixed-point mode and X a fixed-point value of ! a mode narrower than M. ! `(zero_extend:M X)' ! Represents the result of zero-extending the value X to machine ! mode M. M must be a fixed-point mode and X a fixed-point value of ! a mode narrower than M. ! `(float_extend:M X)' Represents the result of extending the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode narrower than M. ! `(truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a fixed-point mode and X a fixed-point value of a mode wider than M. ! `(ss_truncate:M X)' Represents the result of truncating the value X to machine mode M, using signed saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! `(us_truncate:M X)' Represents the result of truncating the value X to machine mode M, using unsigned saturation in the case of overflow. Both M and the mode of X must be fixed-point modes. ! `(float_truncate:M X)' Represents the result of truncating the value X to machine mode M. M must be a floating point mode and X a floating point value of a mode wider than M. ! `(float:M X)' Represents the result of converting fixed point value X, regarded as signed, to floating point mode M. ! `(unsigned_float:M X)' Represents the result of converting fixed point value X, regarded as unsigned, to floating point mode M. ! `(fix:M X)' When M is a floating-point mode, represents the result of ! converting floating point value X (valid for mode M) to an ! integer, still represented in floating point mode M, by rounding ! towards zero. When M is a fixed-point mode, represents the result of converting ! floating point value X to mode M, regarded as signed. How ! rounding is done is not specified, so this operation may be used ! validly in compiling C code only for integer-valued operands. ! `(unsigned_fix:M X)' ! Represents the result of converting floating point value X to ! fixed point mode M, regarded as unsigned. How rounding is done is ! not specified. ! `(fract_convert:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, floating-point value X to fixed-point mode M, fixed-point value X *************** must either be done at compile-time or X *** 15757,15776 **** floating-point mode M. When overflows or underflows happen, the results are undefined. ! '(sat_fract:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, ! or floating-point value X to fixed-point mode M. When overflows or ! underflows happen, the results are saturated to the maximum or the ! minimum. ! '(unsigned_fract_convert:M X)' Represents the result of converting fixed-point value X to integer mode M regarded as unsigned, or unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are undefined. ! '(unsigned_sat_fract:M X)' Represents the result of converting unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are saturated to the maximum or the minimum. --- 15919,15938 ---- floating-point mode M. When overflows or underflows happen, the results are undefined. ! `(sat_fract:M X)' Represents the result of converting fixed-point value X to fixed-point mode M, signed integer value X to fixed-point mode M, ! or floating-point value X to fixed-point mode M. When overflows ! or underflows happen, the results are saturated to the maximum or ! the minimum. ! `(unsigned_fract_convert:M X)' Represents the result of converting fixed-point value X to integer mode M regarded as unsigned, or unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are undefined. ! `(unsigned_sat_fract:M X)' Represents the result of converting unsigned integer value X to fixed-point mode M. When overflows or underflows happen, the results are saturated to the maximum or the minimum. *************** File: gccint.info, Node: RTL Declaratio *** 15784,15796 **** Declaration expression codes do not represent arithmetic operations but rather state assertions about their operands. ! '(strict_low_part (subreg:M (reg:N R) 0))' This expression code is used in only one context: as the ! destination operand of a 'set' expression. In addition, the ! operand of this expression must be a non-paradoxical 'subreg' expression. ! The presence of 'strict_low_part' says that the part of the register which is meaningful in mode N, but is not part of mode M, is not to be altered. Normally, an assignment to such a subreg is allowed to have undefined effects on the rest of the register when --- 15946,15958 ---- Declaration expression codes do not represent arithmetic operations but rather state assertions about their operands. ! `(strict_low_part (subreg:M (reg:N R) 0))' This expression code is used in only one context: as the ! destination operand of a `set' expression. In addition, the ! operand of this expression must be a non-paradoxical `subreg' expression. ! The presence of `strict_low_part' says that the part of the register which is meaningful in mode N, but is not part of mode M, is not to be altered. Normally, an assignment to such a subreg is allowed to have undefined effects on the rest of the register when *************** codes are used to represent side effects *** 15811,15935 **** the codes described above, which represent values, appear only as the operands of these. ! '(set LVAL X)' Represents the action of storing the value of X into the place represented by LVAL. LVAL must be an expression representing a ! place that can be stored in: 'reg' (or 'subreg', 'strict_low_part' ! or 'zero_extract'), 'mem', 'pc', 'parallel', or 'cc0'. ! If LVAL is a 'reg', 'subreg' or 'mem', it has a machine mode; then X must be valid for that mode. ! If LVAL is a 'reg' whose machine mode is less than the full width of the register, then it means that the part of the register specified by the machine mode is given the specified value and the rest of the register receives an undefined value. Likewise, if ! LVAL is a 'subreg' whose machine mode is narrower than the mode of the register, the rest of the register can be changed in an undefined way. ! If LVAL is a 'strict_low_part' of a subreg, then the part of the ! register specified by the machine mode of the 'subreg' is given the ! value X and the rest of the register is not changed. ! If LVAL is a 'zero_extract', then the referenced part of the bit-field (a memory or register reference) specified by the ! 'zero_extract' is given the value X and the rest of the bit-field ! is not changed. Note that 'sign_extract' can not appear in LVAL. ! If LVAL is '(cc0)', it has no machine mode, and X may be either a ! 'compare' expression or a value that may have any mode. The latter ! case represents a "test" instruction. The expression '(set (cc0) ! (reg:M N))' is equivalent to '(set (cc0) (compare (reg:M N) (const_int 0)))'. Use the former expression to save space during the compilation. ! If LVAL is a 'parallel', it is used to represent the case of a function returning a structure in multiple registers. Each element ! of the 'parallel' is an 'expr_list' whose first operand is a 'reg' ! and whose second operand is a 'const_int' representing the offset (in bytes) into the structure at which the data in that register corresponds. The first element may be null to indicate that the structure is also passed partly in memory. ! If LVAL is '(pc)', we have a jump instruction, and the ! possibilities for X are very limited. It may be a 'label_ref' ! expression (unconditional jump). It may be an 'if_then_else' (conditional jump), in which case either the second or the third ! operand must be '(pc)' (for the case which does not jump) and the ! other of the two must be a 'label_ref' (for the case which does ! jump). X may also be a 'mem' or '(plus:SI (pc) Y)', where Y may be ! a 'reg' or a 'mem'; these unusual patterns are used to represent ! jumps through branch tables. ! If LVAL is neither '(cc0)' nor '(pc)', the mode of LVAL must not be ! 'VOIDmode' and the mode of X must be valid for the mode of LVAL. ! LVAL is customarily accessed with the 'SET_DEST' macro and X with ! the 'SET_SRC' macro. ! '(return)' As the sole expression in a pattern, represents a return from the current function, on machines where this can be done with one instruction, such as VAXen. On machines where a multi-instruction "epilogue" must be executed in order to return from the function, returning is done by jumping to a label which precedes the ! epilogue, and the 'return' expression code is never used. ! Inside an 'if_then_else' expression, represents the value to be ! placed in 'pc' to return to the caller. ! Note that an insn pattern of '(return)' is logically equivalent to ! '(set (pc) (return))', but the latter form is never used. ! '(simple_return)' ! Like '(return)', but truly represents only a function return, while ! '(return)' may represent an insn that also performs other functions ! of the function epilogue. Like '(return)', this may also occur in conditional jumps. ! '(call FUNCTION NARGS)' ! Represents a function call. FUNCTION is a 'mem' expression whose address is the address of the function to be called. NARGS is an expression which can be used for two purposes: on some machines it represents the number of bytes of stack argument; on others, it represents the number of argument registers. Each machine has a standard machine mode which FUNCTION must have. ! The machine description defines macro 'FUNCTION_MODE' to expand into the requisite mode name. The purpose of this mode is to specify what kind of addressing is allowed, on machines where the allowed kinds of addressing depend on the machine mode being addressed. ! '(clobber X)' Represents the storing or possible storing of an unpredictable, ! undescribed value into X, which must be a 'reg', 'scratch', ! 'parallel' or 'mem' expression. One place this is used is in string instructions that store standard values into particular hard registers. It may not be ! worth the trouble to describe the values that are stored, but it is ! essential to inform the compiler that the registers will be altered, lest it attempt to keep data in them across the string instruction. ! If X is '(mem:BLK (const_int 0))' or '(mem:BLK (scratch))', it means that all memory locations must be presumed clobbered. If X ! is a 'parallel', it has the same meaning as a 'parallel' in a 'set' ! expression. ! Note that the machine description classifies certain hard registers ! as "call-clobbered". All function call instructions are assumed by ! default to clobber these registers, so there is no need to use ! 'clobber' expressions to indicate this fact. Also, each function ! call is assumed to have the potential to alter any memory location, ! unless the function is declared 'const'. ! If the last group of expressions in a 'parallel' are each a ! 'clobber' expression whose arguments are 'reg' or 'match_scratch' (*note RTL Template::) expressions, the combiner phase can add the ! appropriate 'clobber' expressions to an insn it has constructed when doing so will cause a pattern to be matched. This feature can be used, for example, on a machine that whose --- 15973,16097 ---- the codes described above, which represent values, appear only as the operands of these. ! `(set LVAL X)' Represents the action of storing the value of X into the place represented by LVAL. LVAL must be an expression representing a ! place that can be stored in: `reg' (or `subreg', `strict_low_part' ! or `zero_extract'), `mem', `pc', `parallel', or `cc0'. ! If LVAL is a `reg', `subreg' or `mem', it has a machine mode; then X must be valid for that mode. ! If LVAL is a `reg' whose machine mode is less than the full width of the register, then it means that the part of the register specified by the machine mode is given the specified value and the rest of the register receives an undefined value. Likewise, if ! LVAL is a `subreg' whose machine mode is narrower than the mode of the register, the rest of the register can be changed in an undefined way. ! If LVAL is a `strict_low_part' of a subreg, then the part of the ! register specified by the machine mode of the `subreg' is given ! the value X and the rest of the register is not changed. ! If LVAL is a `zero_extract', then the referenced part of the bit-field (a memory or register reference) specified by the ! `zero_extract' is given the value X and the rest of the bit-field ! is not changed. Note that `sign_extract' can not appear in LVAL. ! If LVAL is `(cc0)', it has no machine mode, and X may be either a ! `compare' expression or a value that may have any mode. The ! latter case represents a "test" instruction. The expression `(set ! (cc0) (reg:M N))' is equivalent to `(set (cc0) (compare (reg:M N) (const_int 0)))'. Use the former expression to save space during the compilation. ! If LVAL is a `parallel', it is used to represent the case of a function returning a structure in multiple registers. Each element ! of the `parallel' is an `expr_list' whose first operand is a `reg' ! and whose second operand is a `const_int' representing the offset (in bytes) into the structure at which the data in that register corresponds. The first element may be null to indicate that the structure is also passed partly in memory. ! If LVAL is `(pc)', we have a jump instruction, and the ! possibilities for X are very limited. It may be a `label_ref' ! expression (unconditional jump). It may be an `if_then_else' (conditional jump), in which case either the second or the third ! operand must be `(pc)' (for the case which does not jump) and the ! other of the two must be a `label_ref' (for the case which does ! jump). X may also be a `mem' or `(plus:SI (pc) Y)', where Y may ! be a `reg' or a `mem'; these unusual patterns are used to ! represent jumps through branch tables. ! If LVAL is neither `(cc0)' nor `(pc)', the mode of LVAL must not ! be `VOIDmode' and the mode of X must be valid for the mode of LVAL. ! LVAL is customarily accessed with the `SET_DEST' macro and X with ! the `SET_SRC' macro. ! `(return)' As the sole expression in a pattern, represents a return from the current function, on machines where this can be done with one instruction, such as VAXen. On machines where a multi-instruction "epilogue" must be executed in order to return from the function, returning is done by jumping to a label which precedes the ! epilogue, and the `return' expression code is never used. ! Inside an `if_then_else' expression, represents the value to be ! placed in `pc' to return to the caller. ! Note that an insn pattern of `(return)' is logically equivalent to ! `(set (pc) (return))', but the latter form is never used. ! `(simple_return)' ! Like `(return)', but truly represents only a function return, while ! `(return)' may represent an insn that also performs other functions ! of the function epilogue. Like `(return)', this may also occur in conditional jumps. ! `(call FUNCTION NARGS)' ! Represents a function call. FUNCTION is a `mem' expression whose address is the address of the function to be called. NARGS is an expression which can be used for two purposes: on some machines it represents the number of bytes of stack argument; on others, it represents the number of argument registers. Each machine has a standard machine mode which FUNCTION must have. ! The machine description defines macro `FUNCTION_MODE' to expand into the requisite mode name. The purpose of this mode is to specify what kind of addressing is allowed, on machines where the allowed kinds of addressing depend on the machine mode being addressed. ! `(clobber X)' Represents the storing or possible storing of an unpredictable, ! undescribed value into X, which must be a `reg', `scratch', ! `parallel' or `mem' expression. One place this is used is in string instructions that store standard values into particular hard registers. It may not be ! worth the trouble to describe the values that are stored, but it ! is essential to inform the compiler that the registers will be altered, lest it attempt to keep data in them across the string instruction. ! If X is `(mem:BLK (const_int 0))' or `(mem:BLK (scratch))', it means that all memory locations must be presumed clobbered. If X ! is a `parallel', it has the same meaning as a `parallel' in a ! `set' expression. ! Note that the machine description classifies certain hard ! registers as "call-clobbered". All function call instructions are ! assumed by default to clobber these registers, so there is no need ! to use `clobber' expressions to indicate this fact. Also, each ! function call is assumed to have the potential to alter any memory ! location, unless the function is declared `const'. ! If the last group of expressions in a `parallel' are each a ! `clobber' expression whose arguments are `reg' or `match_scratch' (*note RTL Template::) expressions, the combiner phase can add the ! appropriate `clobber' expressions to an insn it has constructed when doing so will cause a pattern to be matched. This feature can be used, for example, on a machine that whose *************** operands of these. *** 15938,15980 **** register. Similarly, a combined instruction might require a temporary register while the constituent instructions might not. ! When a 'clobber' expression for a register appears inside a ! 'parallel' with other side effects, the register allocator guarantees that the register is unoccupied both before and after that insn if it is a hard register clobber. For pseudo-register clobber, the register allocator and the reload pass do not assign the same hard register to the clobber and the input operands if ! there is an insn alternative containing the '&' constraint (*note Modifiers::) for the clobber and the hard register is in register classes of the clobber in the alternative. You can clobber either ! a specific hard register, a pseudo register, or a 'scratch' expression; in the latter two cases, GCC will allocate a hard register that is available there for use as a temporary. For instructions that require a temporary register, you should use ! 'scratch' instead of a pseudo-register because this will allow the ! combiner phase to add the 'clobber' when required. You do this by ! coding ('clobber' ('match_scratch' ...)). If you do clobber a ! pseudo register, use one which appears nowhere else--generate a new ! one each time. Otherwise, you may confuse CSE. There is one other known use for clobbering a pseudo register in a ! 'parallel': when one of the input operands of the insn is also clobbered by the insn. In this case, using the same pseudo register in the clobber and elsewhere in the insn produces the expected results. ! '(use X)' Represents the use of the value of X. It indicates that the value ! in X at this point in the program is needed, even though it may not ! be apparent why this is so. Therefore, the compiler will not attempt to delete previous instructions whose only effect is to ! store a value in X. X must be a 'reg' expression. ! In some situations, it may be tempting to add a 'use' of a register ! in a 'parallel' to describe a situation where the value of a ! special register will modify the behavior of the instruction. A ! hypothetical example might be a pattern for an addition that can either wrap around or use saturating addition depending on the value of a special control register: --- 16100,16142 ---- register. Similarly, a combined instruction might require a temporary register while the constituent instructions might not. ! When a `clobber' expression for a register appears inside a ! `parallel' with other side effects, the register allocator guarantees that the register is unoccupied both before and after that insn if it is a hard register clobber. For pseudo-register clobber, the register allocator and the reload pass do not assign the same hard register to the clobber and the input operands if ! there is an insn alternative containing the `&' constraint (*note Modifiers::) for the clobber and the hard register is in register classes of the clobber in the alternative. You can clobber either ! a specific hard register, a pseudo register, or a `scratch' expression; in the latter two cases, GCC will allocate a hard register that is available there for use as a temporary. For instructions that require a temporary register, you should use ! `scratch' instead of a pseudo-register because this will allow the ! combiner phase to add the `clobber' when required. You do this by ! coding (`clobber' (`match_scratch' ...)). If you do clobber a ! pseudo register, use one which appears nowhere else--generate a ! new one each time. Otherwise, you may confuse CSE. There is one other known use for clobbering a pseudo register in a ! `parallel': when one of the input operands of the insn is also clobbered by the insn. In this case, using the same pseudo register in the clobber and elsewhere in the insn produces the expected results. ! `(use X)' Represents the use of the value of X. It indicates that the value ! in X at this point in the program is needed, even though it may ! not be apparent why this is so. Therefore, the compiler will not attempt to delete previous instructions whose only effect is to ! store a value in X. X must be a `reg' expression. ! In some situations, it may be tempting to add a `use' of a ! register in a `parallel' to describe a situation where the value ! of a special register will modify the behavior of the instruction. ! A hypothetical example might be a pattern for an addition that can either wrap around or use saturating addition depending on the value of a special control register: *************** operands of these. *** 15984,16016 **** This will not work, several of the optimizers only look at expressions locally; it is very likely that if you have multiple ! insns with identical inputs to the 'unspec', they will be optimized ! away even if register 1 changes in between. ! This means that 'use' can _only_ be used to describe that the ! register is live. You should think twice before adding 'use' ! statements, more often you will want to use 'unspec' instead. The ! 'use' RTX is most commonly useful to describe that a fixed register ! is implicitly used in an insn. It is also safe to use in patterns ! where the compiler knows for other reasons that the result of the ! whole pattern is variable, such as 'movmemM' or 'call' patterns. ! During the reload phase, an insn that has a 'use' as pattern can ! carry a reg_equal note. These 'use' insns will be deleted before the reload phase exits. ! During the delayed branch scheduling phase, X may be an insn. This ! indicates that X previously was located at this place in the code ! and its data dependencies need to be taken into account. These ! 'use' insns will be deleted before the delayed branch scheduling ! phase exits. ! '(parallel [X0 X1 ...])' Represents several side effects performed in parallel. The square ! brackets stand for a vector; the operand of 'parallel' is a vector of expressions. X0, X1 and so on are individual side effect ! expressions--expressions of code 'set', 'call', 'return', ! 'simple_return', 'clobber' or 'use'. "In parallel" means that first all the values used in the individual side-effects are computed, and second all the actual --- 16146,16179 ---- This will not work, several of the optimizers only look at expressions locally; it is very likely that if you have multiple ! insns with identical inputs to the `unspec', they will be ! optimized away even if register 1 changes in between. ! This means that `use' can _only_ be used to describe that the ! register is live. You should think twice before adding `use' ! statements, more often you will want to use `unspec' instead. The ! `use' RTX is most commonly useful to describe that a fixed ! register is implicitly used in an insn. It is also safe to use in ! patterns where the compiler knows for other reasons that the result ! of the whole pattern is variable, such as `movmemM' or `call' ! patterns. ! During the reload phase, an insn that has a `use' as pattern can ! carry a reg_equal note. These `use' insns will be deleted before the reload phase exits. ! During the delayed branch scheduling phase, X may be an insn. ! This indicates that X previously was located at this place in the ! code and its data dependencies need to be taken into account. ! These `use' insns will be deleted before the delayed branch ! scheduling phase exits. ! `(parallel [X0 X1 ...])' Represents several side effects performed in parallel. The square ! brackets stand for a vector; the operand of `parallel' is a vector of expressions. X0, X1 and so on are individual side effect ! expressions--expressions of code `set', `call', `return', ! `simple_return', `clobber' or `use'. "In parallel" means that first all the values used in the individual side-effects are computed, and second all the actual *************** operands of these. *** 16021,16033 **** says unambiguously that the values of hard register 1 and the memory location addressed by it are interchanged. In both places ! where '(reg:SI 1)' appears as a memory address it refers to the value in register 1 _before_ the execution of the insn. ! It follows that it is _incorrect_ to use 'parallel' and expect the ! result of one 'set' to be available for the next one. For example, ! people sometimes attempt to represent a jump-if-zero instruction ! this way: (parallel [(set (cc0) (reg:SI 34)) (set (pc) (if_then_else --- 16184,16196 ---- says unambiguously that the values of hard register 1 and the memory location addressed by it are interchanged. In both places ! where `(reg:SI 1)' appears as a memory address it refers to the value in register 1 _before_ the execution of the insn. ! It follows that it is _incorrect_ to use `parallel' and expect the ! result of one `set' to be available for the next one. For ! example, people sometimes attempt to represent a jump-if-zero ! instruction this way: (parallel [(set (cc0) (reg:SI 34)) (set (pc) (if_then_else *************** operands of these. *** 16040,16117 **** on the new value that is set by this instruction. Peephole optimization, which takes place together with final ! assembly code output, can produce insns whose patterns consist of a ! 'parallel' whose elements are the operands needed to output the ! resulting assembler code--often 'reg', 'mem' or constant expressions. This would not be well-formed RTL at any other stage in compilation, but it is OK then because no further optimization remains to be done. However, the definition of the macro ! 'NOTICE_UPDATE_CC', if any, must deal with such insns if you define ! any peephole optimizations. ! '(cond_exec [COND EXPR])' Represents a conditionally executed expression. The EXPR is ! executed only if the COND is nonzero. The COND expression must not ! have side-effects, but the EXPR may very well have side-effects. ! '(sequence [INSNS ...])' ! Represents a sequence of insns. If a 'sequence' appears in the chain of insns, then each of the INSNS that appears in the sequence ! must be suitable for appearing in the chain of insns, i.e. must ! satisfy the 'INSN_P' predicate. ! After delay-slot scheduling is completed, an insn and all the insns ! that reside in its delay slots are grouped together into a ! 'sequence'. The insn requiring the delay slot is the first insn in ! the vector; subsequent insns are to be placed in the delay slot. ! 'INSN_ANNULLED_BRANCH_P' is set on an insn in a delay slot to indicate that a branch insn should be used that will conditionally annul the effect of the insns in the delay slots. In such a case, ! 'INSN_FROM_TARGET_P' indicates that the insn is from the target of the branch and should be executed only if the branch is taken; otherwise the insn should be executed only if the branch is not taken. *Note Delay Slots::. ! Some back ends also use 'sequence' objects for purposes other than delay-slot groups. This is not supported in the common parts of the compiler, which treat such sequences as delay-slot groups. DWARF2 Call Frame Address (CFA) adjustments are sometimes also ! expressed using 'sequence' objects as the value of a ! 'RTX_FRAME_RELATED_P' note. This only happens if the CFA adjustments cannot be easily derived from the pattern of the instruction to which the note is attached. In such cases, the value of the note is used instead of best-guesing the semantics of the instruction. The back end can attach notes containing a ! 'sequence' of 'set' patterns that express the effect of the parent instruction. These expression codes appear in place of a side effect, as the body of an insn, though strictly speaking they do not always describe side effects as such: ! '(asm_input S)' Represents literal assembler code as described by the string S. ! '(unspec [OPERANDS ...] INDEX)' ! '(unspec_volatile [OPERANDS ...] INDEX)' ! Represents a machine-specific operation on OPERANDS. INDEX selects ! between multiple machine-specific operations. 'unspec_volatile' is ! used for volatile operations and operations that may trap; 'unspec' ! is used for other operations. ! These codes may appear inside a 'pattern' of an insn, inside a ! 'parallel', or inside an expression. ! '(addr_vec:M [LR0 LR1 ...])' Represents a table of jump addresses. The vector elements LR0, ! etc., are 'label_ref' expressions. The mode M specifies how much ! space is given to each address; normally M would be 'Pmode'. ! '(addr_diff_vec:M BASE [LR0 LR1 ...] MIN MAX FLAGS)' Represents a table of jump addresses expressed as offsets from ! BASE. The vector elements LR0, etc., are 'label_ref' expressions and so is BASE. The mode M specifies how much space is given to each address-difference. MIN and MAX are set up by branch shortening and hold a label with a minimum and a maximum address, --- 16203,16281 ---- on the new value that is set by this instruction. Peephole optimization, which takes place together with final ! assembly code output, can produce insns whose patterns consist of ! a `parallel' whose elements are the operands needed to output the ! resulting assembler code--often `reg', `mem' or constant expressions. This would not be well-formed RTL at any other stage in compilation, but it is OK then because no further optimization remains to be done. However, the definition of the macro ! `NOTICE_UPDATE_CC', if any, must deal with such insns if you ! define any peephole optimizations. ! `(cond_exec [COND EXPR])' Represents a conditionally executed expression. The EXPR is ! executed only if the COND is nonzero. The COND expression must ! not have side-effects, but the EXPR may very well have ! side-effects. ! `(sequence [INSNS ...])' ! Represents a sequence of insns. If a `sequence' appears in the chain of insns, then each of the INSNS that appears in the sequence ! must be suitable for appearing in the chain of insns, i.e. must ! satisfy the `INSN_P' predicate. ! After delay-slot scheduling is completed, an insn and all the ! insns that reside in its delay slots are grouped together into a ! `sequence'. The insn requiring the delay slot is the first insn ! in the vector; subsequent insns are to be placed in the delay slot. ! `INSN_ANNULLED_BRANCH_P' is set on an insn in a delay slot to indicate that a branch insn should be used that will conditionally annul the effect of the insns in the delay slots. In such a case, ! `INSN_FROM_TARGET_P' indicates that the insn is from the target of the branch and should be executed only if the branch is taken; otherwise the insn should be executed only if the branch is not taken. *Note Delay Slots::. ! Some back ends also use `sequence' objects for purposes other than delay-slot groups. This is not supported in the common parts of the compiler, which treat such sequences as delay-slot groups. DWARF2 Call Frame Address (CFA) adjustments are sometimes also ! expressed using `sequence' objects as the value of a ! `RTX_FRAME_RELATED_P' note. This only happens if the CFA adjustments cannot be easily derived from the pattern of the instruction to which the note is attached. In such cases, the value of the note is used instead of best-guesing the semantics of the instruction. The back end can attach notes containing a ! `sequence' of `set' patterns that express the effect of the parent instruction. These expression codes appear in place of a side effect, as the body of an insn, though strictly speaking they do not always describe side effects as such: ! `(asm_input S)' Represents literal assembler code as described by the string S. ! `(unspec [OPERANDS ...] INDEX)' ! `(unspec_volatile [OPERANDS ...] INDEX)' ! Represents a machine-specific operation on OPERANDS. INDEX ! selects between multiple machine-specific operations. ! `unspec_volatile' is used for volatile operations and operations ! that may trap; `unspec' is used for other operations. ! These codes may appear inside a `pattern' of an insn, inside a ! `parallel', or inside an expression. ! `(addr_vec:M [LR0 LR1 ...])' Represents a table of jump addresses. The vector elements LR0, ! etc., are `label_ref' expressions. The mode M specifies how much ! space is given to each address; normally M would be `Pmode'. ! `(addr_diff_vec:M BASE [LR0 LR1 ...] MIN MAX FLAGS)' Represents a table of jump addresses expressed as offsets from ! BASE. The vector elements LR0, etc., are `label_ref' expressions and so is BASE. The mode M specifies how much space is given to each address-difference. MIN and MAX are set up by branch shortening and hold a label with a minimum and a maximum address, *************** effects as such: *** 16119,16131 **** and MAX to the containing insn and of MIN and MAX to BASE. See rtl.def for details. ! '(prefetch:M ADDR RW LOCALITY)' Represents prefetch of memory at address ADDR. Operand RW is 1 if the prefetch is for data to be written, 0 otherwise; targets that do not support write prefetches should treat this as a normal prefetch. Operand LOCALITY specifies the amount of temporal ! locality; 0 if there is none or 1, 2, or 3 for increasing levels of ! temporal locality; targets that do not support locality hints should ignore this. This insn is used to minimize cache-miss latency by moving data --- 16283,16295 ---- and MAX to the containing insn and of MIN and MAX to BASE. See rtl.def for details. ! `(prefetch:M ADDR RW LOCALITY)' Represents prefetch of memory at address ADDR. Operand RW is 1 if the prefetch is for data to be written, 0 otherwise; targets that do not support write prefetches should treat this as a normal prefetch. Operand LOCALITY specifies the amount of temporal ! locality; 0 if there is none or 1, 2, or 3 for increasing levels ! of temporal locality; targets that do not support locality hints should ignore this. This insn is used to minimize cache-miss latency by moving data *************** File: gccint.info, Node: Incdec, Next: *** 16140,16179 **** Six special side-effect expression codes appear as memory addresses. ! '(pre_dec:M X)' Represents the side effect of decrementing X by a standard amount and represents also the value that X has after being decremented. ! X must be a 'reg' or 'mem', but most machines allow only a 'reg'. ! M must be the machine mode for pointers on the machine in use. The ! amount X is decremented by is the length in bytes of the machine ! mode of the containing memory reference of which this expression ! serves as the address. Here is an example of its use: (mem:DF (pre_dec:SI (reg:SI 39))) This says to decrement pseudo register 39 by the length of a ! 'DFmode' value and use the result to address a 'DFmode' value. ! '(pre_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! '(post_dec:M X)' ! Represents the same side effect as 'pre_dec' but a different value. ! The value represented here is the value X has before being decremented. ! '(post_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! '(post_modify:M X Y)' ! Represents the side effect of setting X to Y and represents X ! before X is modified. X must be a 'reg' or 'mem', but most ! machines allow only a 'reg'. M must be the machine mode for pointers on the machine in use. ! The expression Y must be one of three forms: '(plus:M X Z)', ! '(minus:M X Z)', or '(plus:M X I)', where Z is an index register and I is a constant. Here is an example of its use: --- 16304,16342 ---- Six special side-effect expression codes appear as memory addresses. ! `(pre_dec:M X)' Represents the side effect of decrementing X by a standard amount and represents also the value that X has after being decremented. ! X must be a `reg' or `mem', but most machines allow only a `reg'. ! M must be the machine mode for pointers on the machine in use. ! The amount X is decremented by is the length in bytes of the ! machine mode of the containing memory reference of which this ! expression serves as the address. Here is an example of its use: (mem:DF (pre_dec:SI (reg:SI 39))) This says to decrement pseudo register 39 by the length of a ! `DFmode' value and use the result to address a `DFmode' value. ! `(pre_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! `(post_dec:M X)' ! Represents the same side effect as `pre_dec' but a different ! value. The value represented here is the value X has before being decremented. ! `(post_inc:M X)' Similar, but specifies incrementing X instead of decrementing it. ! `(post_modify:M X Y)' Represents the side effect of setting X to Y and represents X ! before X is modified. X must be a `reg' or `mem', but most ! machines allow only a `reg'. M must be the machine mode for pointers on the machine in use. ! The expression Y must be one of three forms: `(plus:M X Z)', ! `(minus:M X Z)', or `(plus:M X I)', where Z is an index register and I is a constant. Here is an example of its use: *************** Six special side-effect expression codes *** 16184,16198 **** This says to modify pseudo register 42 by adding the contents of pseudo register 48 to it, after the use of what ever 42 points to. ! '(pre_modify:M X EXPR)' Similar except side effects happen before the use. These embedded side effect expressions must be used with care. ! Instruction patterns may not use them. Until the 'flow' pass of the compiler, they may occur only to represent pushes onto the stack. The ! 'flow' pass finds cases where registers are incremented or decremented ! in one instruction and used as an address shortly before or after; these ! cases are then transformed to use pre- or post-increment or -decrement. If a register used as the operand of these expressions is used in another address in an insn, the original value of the register is used. --- 16347,16362 ---- This says to modify pseudo register 42 by adding the contents of pseudo register 48 to it, after the use of what ever 42 points to. ! `(pre_modify:M X EXPR)' Similar except side effects happen before the use. These embedded side effect expressions must be used with care. ! Instruction patterns may not use them. Until the `flow' pass of the compiler, they may occur only to represent pushes onto the stack. The ! `flow' pass finds cases where registers are incremented or decremented ! in one instruction and used as an address shortly before or after; ! these cases are then transformed to use pre- or post-increment or ! -decrement. If a register used as the operand of these expressions is used in another address in an insn, the original value of the register is used. *************** insns behave differently on different ma *** 16202,16213 **** as ambiguous and disallowed. An instruction that can be represented with an embedded side effect ! could also be represented using 'parallel' containing an additional ! 'set' to describe how the address register is altered. This is not done ! because machines that allow these operations at all typically allow them ! wherever a memory address is called for. Describing them as additional ! parallel stores would require doubling the number of entries in the ! machine description.  File: gccint.info, Node: Assembler, Next: Debug Information, Prev: Incdec, Up: RTL --- 16366,16377 ---- as ambiguous and disallowed. An instruction that can be represented with an embedded side effect ! could also be represented using `parallel' containing an additional ! `set' to describe how the address register is altered. This is not ! done because machines that allow these operations at all typically ! allow them wherever a memory address is called for. Describing them as ! additional parallel stores would require doubling the number of entries ! in the machine description.  File: gccint.info, Node: Assembler, Next: Debug Information, Prev: Incdec, Up: RTL *************** File: gccint.info, Node: Assembler, Ne *** 16215,16229 **** 13.17 Assembler Instructions as Expressions =========================================== ! The RTX code 'asm_operands' represents a value produced by a ! user-specified assembler instruction. It is used to represent an 'asm' ! statement with arguments. An 'asm' statement with a single output operand, like this: asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z)); ! is represented using a single 'asm_operands' RTX which represents the ! value that is stored in 'outputvar': (set RTX-FOR-OUTPUTVAR (asm_operands "foo %1,%2,%0" "a" 0 --- 16379,16393 ---- 13.17 Assembler Instructions as Expressions =========================================== ! The RTX code `asm_operands' represents a value produced by a ! user-specified assembler instruction. It is used to represent an `asm' ! statement with arguments. An `asm' statement with a single output operand, like this: asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z)); ! is represented using a single `asm_operands' RTX which represents the ! value that is stored in `outputvar': (set RTX-FOR-OUTPUTVAR (asm_operands "foo %1,%2,%0" "a" 0 *************** value that is stored in 'outputvar': *** 16231,16245 **** [(asm_input:M1 "g") (asm_input:M2 "di")])) ! Here the operands of the 'asm_operands' RTX are the assembler template string, the output-operand's constraint, the index-number of the output operand among the output operands specified, a vector of input operand ! RTX's, and a vector of input-operand modes and constraints. The mode M1 ! is the mode of the sum 'x+y'; M2 is that of '*z'. ! When an 'asm' statement has multiple output values, its insn has ! several such 'set' RTX's inside of a 'parallel'. Each 'set' contains an ! 'asm_operands'; all of these share the same assembler template and vectors, but each contains the constraint for the respective output operand. They are also distinguished by the output-operand index number, which is 0, 1, ... for successive output operands. --- 16395,16409 ---- [(asm_input:M1 "g") (asm_input:M2 "di")])) ! Here the operands of the `asm_operands' RTX are the assembler template string, the output-operand's constraint, the index-number of the output operand among the output operands specified, a vector of input operand ! RTX's, and a vector of input-operand modes and constraints. The mode ! M1 is the mode of the sum `x+y'; M2 is that of `*z'. ! When an `asm' statement has multiple output values, its insn has ! several such `set' RTX's inside of a `parallel'. Each `set' contains ! an `asm_operands'; all of these share the same assembler template and vectors, but each contains the constraint for the respective output operand. They are also distinguished by the output-operand index number, which is 0, 1, ... for successive output operands. *************** File: gccint.info, Node: Debug Informat *** 16250,16276 **** 13.18 Variable Location Debug Information in RTL ================================================ ! Variable tracking relies on 'MEM_EXPR' and 'REG_EXPR' annotations to determine what user variables memory and register references refer to. Variable tracking at assignments uses these notes only when they refer to variables that live at fixed locations (e.g., addressable variables, ! global non-automatic variables). For variables whose location may vary, ! it relies on the following types of notes. ! '(var_location:MODE VAR EXP STAT)' ! Binds variable 'var', a tree, to value EXP, an RTL expression. It ! appears only in 'NOTE_INSN_VAR_LOCATION' and 'DEBUG_INSN's, with ! slightly different meanings. MODE, if present, represents the mode ! of EXP, which is useful if it is a modeless expression. STAT is ! only meaningful in notes, indicating whether the variable is known ! to be initialized or uninitialized. ! '(debug_expr:MODE DECL)' ! Stands for the value bound to the 'DEBUG_EXPR_DECL' DECL, that ! points back to it, within value expressions in 'VAR_LOCATION' nodes.  File: gccint.info, Node: Insns, Next: Calls, Prev: Debug Information, Up: RTL --- 16414,16441 ---- 13.18 Variable Location Debug Information in RTL ================================================ ! Variable tracking relies on `MEM_EXPR' and `REG_EXPR' annotations to determine what user variables memory and register references refer to. Variable tracking at assignments uses these notes only when they refer to variables that live at fixed locations (e.g., addressable variables, ! global non-automatic variables). For variables whose location may ! vary, it relies on the following types of notes. ! `(var_location:MODE VAR EXP STAT)' ! Binds variable `var', a tree, to value EXP, an RTL expression. It ! appears only in `NOTE_INSN_VAR_LOCATION' and `DEBUG_INSN's, with ! slightly different meanings. MODE, if present, represents the ! mode of EXP, which is useful if it is a modeless expression. STAT ! is only meaningful in notes, indicating whether the variable is ! known to be initialized or uninitialized. ! `(debug_expr:MODE DECL)' ! Stands for the value bound to the `DEBUG_EXPR_DECL' DECL, that ! points back to it, within value expressions in `VAR_LOCATION' nodes. +  File: gccint.info, Node: Insns, Next: Calls, Prev: Debug Information, Up: RTL *************** File: gccint.info, Node: Insns, Next: *** 16280,16286 **** The RTL representation of the code for a function is a doubly-linked chain of objects called "insns". Insns are expressions with special codes that are used for no other purpose. Some insns are actual ! instructions; others represent dispatch tables for 'switch' statements; others represent labels to jump to or various sorts of declarative information. --- 16445,16451 ---- The RTL representation of the code for a function is a doubly-linked chain of objects called "insns". Insns are expressions with special codes that are used for no other purpose. Some insns are actual ! instructions; others represent dispatch tables for `switch' statements; others represent labels to jump to or various sorts of declarative information. *************** id-number that distinguishes it from all *** 16289,16313 **** function (after delayed branch scheduling, copies of an insn with the same id-number may be present in multiple places in a function, but these copies will always be identical and will only appear inside a ! 'sequence'), and chain pointers to the preceding and following insns. These three fields occupy the same position in every insn, independent ! of the expression code of the insn. They could be accessed with 'XEXP' ! and 'XINT', but instead three special macros are always used: ! 'INSN_UID (I)' Accesses the unique id of insn I. ! 'PREV_INSN (I)' Accesses the chain pointer to the insn preceding I. If I is the first insn, this is a null pointer. ! 'NEXT_INSN (I)' Accesses the chain pointer to the insn following I. If I is the last insn, this is a null pointer. ! The first insn in the chain is obtained by calling 'get_insns'; the ! last insn is the result of calling 'get_last_insn'. Within the chain ! delimited by these insns, the 'NEXT_INSN' and 'PREV_INSN' pointers must always correspond: if INSN is not the first insn, NEXT_INSN (PREV_INSN (INSN)) == INSN --- 16454,16478 ---- function (after delayed branch scheduling, copies of an insn with the same id-number may be present in multiple places in a function, but these copies will always be identical and will only appear inside a ! `sequence'), and chain pointers to the preceding and following insns. These three fields occupy the same position in every insn, independent ! of the expression code of the insn. They could be accessed with `XEXP' ! and `XINT', but instead three special macros are always used: ! `INSN_UID (I)' Accesses the unique id of insn I. ! `PREV_INSN (I)' Accesses the chain pointer to the insn preceding I. If I is the first insn, this is a null pointer. ! `NEXT_INSN (I)' Accesses the chain pointer to the insn following I. If I is the last insn, this is a null pointer. ! The first insn in the chain is obtained by calling `get_insns'; the ! last insn is the result of calling `get_last_insn'. Within the chain ! delimited by these insns, the `NEXT_INSN' and `PREV_INSN' pointers must always correspond: if INSN is not the first insn, NEXT_INSN (PREV_INSN (INSN)) == INSN *************** is always true and if INSN is not the la *** 16319,16608 **** is always true. After delay slot scheduling, some of the insns in the chain might be ! 'sequence' expressions, which contain a vector of insns. The value of ! 'NEXT_INSN' in all but the last of these insns is the next insn in the ! vector; the value of 'NEXT_INSN' of the last insn in the vector is the ! same as the value of 'NEXT_INSN' for the 'sequence' in which it is ! contained. Similar rules apply for 'PREV_INSN'. This means that the above invariants are not necessarily true for insns ! inside 'sequence' expressions. Specifically, if INSN is the first insn ! in a 'sequence', 'NEXT_INSN (PREV_INSN (INSN))' is the insn containing ! the 'sequence' expression, as is the value of 'PREV_INSN (NEXT_INSN ! (INSN))' if INSN is the last insn in the 'sequence' expression. You can ! use these expressions to find the containing 'sequence' expression. Every insn has one of the following expression codes: ! 'insn' ! The expression code 'insn' is used for instructions that do not ! jump and do not do function calls. 'sequence' expressions are ! always contained in insns with code 'insn' even if one of those insns should jump or do function calls. ! Insns with code 'insn' have four additional fields beyond the three mandatory ones listed above. These four are described in a table below. ! 'jump_insn' ! The expression code 'jump_insn' is used for instructions that may ! jump (or, more generally, may contain 'label_ref' expressions to ! which 'pc' can be set in that instruction). If there is an instruction to return from the current function, it is recorded as ! a 'jump_insn'. ! 'jump_insn' insns have the same extra fields as 'insn' insns, accessed in the same way and in addition contain a field ! 'JUMP_LABEL' which is defined once jump optimization has completed. For simple conditional and unconditional jumps, this field contains ! the 'code_label' to which this insn will (possibly conditionally) ! branch. In a more complex jump, 'JUMP_LABEL' records one of the labels that the insn refers to; other jump target labels are ! recorded as 'REG_LABEL_TARGET' notes. The exception is 'addr_vec' ! and 'addr_diff_vec', where 'JUMP_LABEL' is 'NULL_RTX' and the only way to find the labels is to scan the entire body of the insn. Return insns count as jumps, but since they do not refer to any ! labels, their 'JUMP_LABEL' is 'NULL_RTX'. ! 'call_insn' ! The expression code 'call_insn' is used for instructions that may do function calls. It is important to distinguish these instructions because they imply that certain registers and memory locations may be altered unpredictably. ! 'call_insn' insns have the same extra fields as 'insn' insns, accessed in the same way and in addition contain a field ! 'CALL_INSN_FUNCTION_USAGE', which contains a list (chain of ! 'expr_list' expressions) containing 'use', 'clobber' and sometimes ! 'set' expressions that denote hard registers and 'mem's used or clobbered by the called function. ! A 'mem' generally points to a stack slot in which arguments passed to the libcall by reference (*note TARGET_PASS_BY_REFERENCE: Register Arguments.) are stored. If the argument is caller-copied (*note TARGET_CALLEE_COPIES: Register Arguments.), the stack slot ! will be mentioned in 'clobber' and 'use' entries; if it's ! callee-copied, only a 'use' will appear, and the 'mem' may point to ! addresses that are not stack slots. ! Registers occurring inside a 'clobber' in this list augment ! registers specified in 'CALL_USED_REGISTERS' (*note Register Basics::). ! If the list contains a 'set' involving two registers, it indicates ! that the function returns one of its arguments. Such a 'set' may look like a no-op if the same register holds the argument and the return value. ! 'code_label' ! A 'code_label' insn represents a label that a jump insn can jump to. It contains two special fields of data in addition to the ! three standard ones. 'CODE_LABEL_NUMBER' is used to hold the "label number", a number that identifies this label uniquely among all the labels in the compilation (not just in the current function). Ultimately, the label is represented in the assembler ! output as an assembler label, usually of the form 'LN' where N is the label number. ! When a 'code_label' appears in an RTL expression, it normally ! appears within a 'label_ref' which represents the address of the label, as a number. ! Besides as a 'code_label', a label can also be represented as a ! 'note' of type 'NOTE_INSN_DELETED_LABEL'. ! The field 'LABEL_NUSES' is only defined once the jump optimization phase is completed. It contains the number of times this label is referenced in the current function. ! The field 'LABEL_KIND' differentiates four different types of ! labels: 'LABEL_NORMAL', 'LABEL_STATIC_ENTRY', 'LABEL_GLOBAL_ENTRY', ! and 'LABEL_WEAK_ENTRY'. The only labels that do not have type ! 'LABEL_NORMAL' are "alternate entry points" to the current ! function. These may be static (visible only in the containing ! translation unit), global (exposed to all translation units), or ! weak (global, but can be overridden by another symbol with the same ! name). Much of the compiler treats all four kinds of label identically. Some of it needs to know whether or not a label is an alternate ! entry point; for this purpose, the macro 'LABEL_ALT_ENTRY_P' is ! provided. It is equivalent to testing whether 'LABEL_KIND (label) == LABEL_NORMAL'. The only place that cares about the distinction between static, global, and weak alternate entry points, besides the front-end code that creates them, is the function ! 'output_alternate_entry_point', in 'final.c'. ! To set the kind of a label, use the 'SET_LABEL_KIND' macro. ! 'jump_table_data' ! A 'jump_table_data' insn is a placeholder for the jump-table data ! of a 'casesi' or 'tablejump' insn. They are placed after a ! 'tablejump_p' insn. A 'jump_table_data' insn is not part o a basic ! blockm but it is associated with the basic block that ends with the ! 'tablejump_p' insn. The 'PATTERN' of a 'jump_table_data' is always ! either an 'addr_vec' or an 'addr_diff_vec', and a 'jump_table_data' ! insn is always preceded by a 'code_label'. The 'tablejump_p' insn ! refers to that 'code_label' via its 'JUMP_LABEL'. ! 'barrier' Barriers are placed in the instruction stream when control cannot flow past them. They are placed after unconditional jump ! instructions to indicate that the jumps are unconditional and after ! calls to 'volatile' functions, which do not return (e.g., 'exit'). ! They contain no information beyond the three standard fields. ! 'note' ! 'note' insns are used to represent additional debugging and declarative information. They contain two nonstandard fields, an ! integer which is accessed with the macro 'NOTE_LINE_NUMBER' and a ! string accessed with 'NOTE_SOURCE_FILE'. ! If 'NOTE_LINE_NUMBER' is positive, the note represents the position ! of a source line and 'NOTE_SOURCE_FILE' is the source file name ! that the line came from. These notes control generation of line ! number data in the assembler output. ! Otherwise, 'NOTE_LINE_NUMBER' is not really a line number but a ! code with one of the following values (and 'NOTE_SOURCE_FILE' must contain a null pointer): ! 'NOTE_INSN_DELETED' Such a note is completely ignorable. Some passes of the compiler delete insns by altering them into notes of this kind. ! 'NOTE_INSN_DELETED_LABEL' ! This marks what used to be a 'code_label', but was not used ! for other purposes than taking its address and was transformed ! to mark that no code jumps to it. ! 'NOTE_INSN_BLOCK_BEG' ! 'NOTE_INSN_BLOCK_END' These types of notes indicate the position of the beginning ! and end of a level of scoping of variable names. They control ! the output of debugging information. ! 'NOTE_INSN_EH_REGION_BEG' ! 'NOTE_INSN_EH_REGION_END' These types of notes indicate the position of the beginning and end of a level of scoping for exception handling. ! 'NOTE_EH_HANDLER' identifies which region is associated with these notes. ! 'NOTE_INSN_FUNCTION_BEG' Appears at the start of the function body, after the function prologue. ! 'NOTE_INSN_VAR_LOCATION' This note is used to generate variable location debugging information. It indicates that the user variable in its ! 'VAR_LOCATION' operand is at the location given in the RTL expression, or holds a value that can be computed by evaluating the RTL expression from that static point in the program up to the next such note for the same user variable. These codes are printed symbolically when they appear in debugging dumps. ! 'debug_insn' ! The expression code 'debug_insn' is used for pseudo-instructions that hold debugging information for variable tracking at ! assignments (see '-fvar-tracking-assignments' option). They are ! the RTL representation of 'GIMPLE_DEBUG' statements (*note ! 'GIMPLE_DEBUG'::), with a 'VAR_LOCATION' operand that binds a user ! variable tree to an RTL representation of the 'value' in the ! corresponding statement. A 'DEBUG_EXPR' in it stands for the value ! bound to the corresponding 'DEBUG_EXPR_DECL'. Throughout optimization passes, binding information is kept in pseudo-instruction form, so that, unlike notes, it gets the same treatment and adjustments that regular instructions would. It is the variable tracking pass that turns these pseudo-instructions ! into var location notes, analyzing control flow, value equivalences ! and changes to registers and memory referenced in value ! expressions, propagating the values of debug temporaries and determining expressions that can be used to compute the value of each user variable at as many points (ranges, actually) in the program as possible. ! Unlike 'NOTE_INSN_VAR_LOCATION', the value expression in an ! 'INSN_VAR_LOCATION' denotes a value at that specific point in the program, rather than an expression that can be evaluated at any ! later point before an overriding 'VAR_LOCATION' is encountered. ! E.g., if a user variable is bound to a 'REG' and then a subsequent ! insn modifies the 'REG', the note location would keep mapping the user variable to the register across the insn, whereas the insn location would keep the variable bound to the value, so that the variable tracking pass would emit another location note for the variable at the point in which the register is modified. ! The machine mode of an insn is normally 'VOIDmode', but some phases use ! the mode for various purposes. The common subexpression elimination pass sets the mode of an insn to ! 'QImode' when it is the first insn in a block that has already been processed. The second Haifa scheduling pass, for targets that can multiple issue, ! sets the mode of an insn to 'TImode' when it is believed that the ! instruction begins an issue group. That is, when the instruction cannot ! issue simultaneously with the previous. This may be relied on by later ! passes, in particular machine-dependent reorg. ! Here is a table of the extra fields of 'insn', 'jump_insn' and ! 'call_insn' insns: ! 'PATTERN (I)' An expression for the side effect performed by this insn. This ! must be one of the following codes: 'set', 'call', 'use', ! 'clobber', 'return', 'simple_return', 'asm_input', 'asm_output', ! 'addr_vec', 'addr_diff_vec', 'trap_if', 'unspec', ! 'unspec_volatile', 'parallel', 'cond_exec', or 'sequence'. If it ! is a 'parallel', each element of the 'parallel' must be one these ! codes, except that 'parallel' expressions cannot be nested and ! 'addr_vec' and 'addr_diff_vec' are not permitted inside a ! 'parallel' expression. ! 'INSN_CODE (I)' An integer that says which pattern in the machine description matches this insn, or -1 if the matching has not yet been attempted. Such matching is never attempted and this field remains -1 on an ! insn whose pattern consists of a single 'use', 'clobber', ! 'asm_input', 'addr_vec' or 'addr_diff_vec' expression. ! Matching is also never attempted on insns that result from an 'asm' ! statement. These contain at least one 'asm_operands' expression. ! The function 'asm_noperands' returns a non-negative value for such insns. ! In the debugging output, this field is printed as a number followed ! by a symbolic representation that locates the pattern in the 'md' ! file as some small positive or negative offset from a named ! pattern. ! 'LOG_LINKS (I)' ! A list (chain of 'insn_list' expressions) giving information about dependencies between instructions within a basic block. Neither a jump nor a label may come between the related insns. These are only used by the schedulers and by combine. This is a deprecated data structure. Def-use and use-def chains are now preferred. ! 'REG_NOTES (I)' ! A list (chain of 'expr_list', 'insn_list' and 'int_list' expressions) giving miscellaneous information about the insn. It is often information pertaining to the registers used in this insn. ! The 'LOG_LINKS' field of an insn is a chain of 'insn_list' expressions. ! Each of these has two operands: the first is an insn, and the second is ! another 'insn_list' expression (the next one in the chain). The last ! 'insn_list' in the chain has a null pointer as second operand. The ! significant thing about the chain is which insns appear in it (as first ! operands of 'insn_list' expressions). Their order is not significant. This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow only adds links for those data dependencies --- 16484,16778 ---- is always true. After delay slot scheduling, some of the insns in the chain might be ! `sequence' expressions, which contain a vector of insns. The value of ! `NEXT_INSN' in all but the last of these insns is the next insn in the ! vector; the value of `NEXT_INSN' of the last insn in the vector is the ! same as the value of `NEXT_INSN' for the `sequence' in which it is ! contained. Similar rules apply for `PREV_INSN'. This means that the above invariants are not necessarily true for insns ! inside `sequence' expressions. Specifically, if INSN is the first insn ! in a `sequence', `NEXT_INSN (PREV_INSN (INSN))' is the insn containing ! the `sequence' expression, as is the value of `PREV_INSN (NEXT_INSN ! (INSN))' if INSN is the last insn in the `sequence' expression. You ! can use these expressions to find the containing `sequence' expression. Every insn has one of the following expression codes: ! `insn' ! The expression code `insn' is used for instructions that do not ! jump and do not do function calls. `sequence' expressions are ! always contained in insns with code `insn' even if one of those insns should jump or do function calls. ! Insns with code `insn' have four additional fields beyond the three mandatory ones listed above. These four are described in a table below. ! `jump_insn' ! The expression code `jump_insn' is used for instructions that may ! jump (or, more generally, may contain `label_ref' expressions to ! which `pc' can be set in that instruction). If there is an instruction to return from the current function, it is recorded as ! a `jump_insn'. ! `jump_insn' insns have the same extra fields as `insn' insns, accessed in the same way and in addition contain a field ! `JUMP_LABEL' which is defined once jump optimization has completed. For simple conditional and unconditional jumps, this field contains ! the `code_label' to which this insn will (possibly conditionally) ! branch. In a more complex jump, `JUMP_LABEL' records one of the labels that the insn refers to; other jump target labels are ! recorded as `REG_LABEL_TARGET' notes. The exception is `addr_vec' ! and `addr_diff_vec', where `JUMP_LABEL' is `NULL_RTX' and the only way to find the labels is to scan the entire body of the insn. Return insns count as jumps, but since they do not refer to any ! labels, their `JUMP_LABEL' is `NULL_RTX'. ! `call_insn' ! The expression code `call_insn' is used for instructions that may do function calls. It is important to distinguish these instructions because they imply that certain registers and memory locations may be altered unpredictably. ! `call_insn' insns have the same extra fields as `insn' insns, accessed in the same way and in addition contain a field ! `CALL_INSN_FUNCTION_USAGE', which contains a list (chain of ! `expr_list' expressions) containing `use', `clobber' and sometimes ! `set' expressions that denote hard registers and `mem's used or clobbered by the called function. ! A `mem' generally points to a stack slot in which arguments passed to the libcall by reference (*note TARGET_PASS_BY_REFERENCE: Register Arguments.) are stored. If the argument is caller-copied (*note TARGET_CALLEE_COPIES: Register Arguments.), the stack slot ! will be mentioned in `clobber' and `use' entries; if it's ! callee-copied, only a `use' will appear, and the `mem' may point ! to addresses that are not stack slots. ! Registers occurring inside a `clobber' in this list augment ! registers specified in `CALL_USED_REGISTERS' (*note Register Basics::). ! If the list contains a `set' involving two registers, it indicates ! that the function returns one of its arguments. Such a `set' may look like a no-op if the same register holds the argument and the return value. ! `code_label' ! A `code_label' insn represents a label that a jump insn can jump to. It contains two special fields of data in addition to the ! three standard ones. `CODE_LABEL_NUMBER' is used to hold the "label number", a number that identifies this label uniquely among all the labels in the compilation (not just in the current function). Ultimately, the label is represented in the assembler ! output as an assembler label, usually of the form `LN' where N is the label number. ! When a `code_label' appears in an RTL expression, it normally ! appears within a `label_ref' which represents the address of the label, as a number. ! Besides as a `code_label', a label can also be represented as a ! `note' of type `NOTE_INSN_DELETED_LABEL'. ! The field `LABEL_NUSES' is only defined once the jump optimization phase is completed. It contains the number of times this label is referenced in the current function. ! The field `LABEL_KIND' differentiates four different types of ! labels: `LABEL_NORMAL', `LABEL_STATIC_ENTRY', ! `LABEL_GLOBAL_ENTRY', and `LABEL_WEAK_ENTRY'. The only labels ! that do not have type `LABEL_NORMAL' are "alternate entry points" ! to the current function. These may be static (visible only in the ! containing translation unit), global (exposed to all translation ! units), or weak (global, but can be overridden by another symbol ! with the same name). Much of the compiler treats all four kinds of label identically. Some of it needs to know whether or not a label is an alternate ! entry point; for this purpose, the macro `LABEL_ALT_ENTRY_P' is ! provided. It is equivalent to testing whether `LABEL_KIND (label) == LABEL_NORMAL'. The only place that cares about the distinction between static, global, and weak alternate entry points, besides the front-end code that creates them, is the function ! `output_alternate_entry_point', in `final.c'. ! To set the kind of a label, use the `SET_LABEL_KIND' macro. ! `jump_table_data' ! A `jump_table_data' insn is a placeholder for the jump-table data ! of a `casesi' or `tablejump' insn. They are placed after a ! `tablejump_p' insn. A `jump_table_data' insn is not part o a ! basic blockm but it is associated with the basic block that ends ! with the `tablejump_p' insn. The `PATTERN' of a `jump_table_data' ! is always either an `addr_vec' or an `addr_diff_vec', and a ! `jump_table_data' insn is always preceded by a `code_label'. The ! `tablejump_p' insn refers to that `code_label' via its ! `JUMP_LABEL'. ! `barrier' Barriers are placed in the instruction stream when control cannot flow past them. They are placed after unconditional jump ! instructions to indicate that the jumps are unconditional and ! after calls to `volatile' functions, which do not return (e.g., ! `exit'). They contain no information beyond the three standard ! fields. ! `note' ! `note' insns are used to represent additional debugging and declarative information. They contain two nonstandard fields, an ! integer which is accessed with the macro `NOTE_LINE_NUMBER' and a ! string accessed with `NOTE_SOURCE_FILE'. ! If `NOTE_LINE_NUMBER' is positive, the note represents the ! position of a source line and `NOTE_SOURCE_FILE' is the source ! file name that the line came from. These notes control generation ! of line number data in the assembler output. ! Otherwise, `NOTE_LINE_NUMBER' is not really a line number but a ! code with one of the following values (and `NOTE_SOURCE_FILE' must contain a null pointer): ! `NOTE_INSN_DELETED' Such a note is completely ignorable. Some passes of the compiler delete insns by altering them into notes of this kind. ! `NOTE_INSN_DELETED_LABEL' ! This marks what used to be a `code_label', but was not used ! for other purposes than taking its address and was ! transformed to mark that no code jumps to it. ! `NOTE_INSN_BLOCK_BEG' ! `NOTE_INSN_BLOCK_END' These types of notes indicate the position of the beginning ! and end of a level of scoping of variable names. They ! control the output of debugging information. ! `NOTE_INSN_EH_REGION_BEG' ! `NOTE_INSN_EH_REGION_END' These types of notes indicate the position of the beginning and end of a level of scoping for exception handling. ! `NOTE_EH_HANDLER' identifies which region is associated with these notes. ! `NOTE_INSN_FUNCTION_BEG' Appears at the start of the function body, after the function prologue. ! `NOTE_INSN_VAR_LOCATION' This note is used to generate variable location debugging information. It indicates that the user variable in its ! `VAR_LOCATION' operand is at the location given in the RTL expression, or holds a value that can be computed by evaluating the RTL expression from that static point in the program up to the next such note for the same user variable. + These codes are printed symbolically when they appear in debugging dumps. ! `debug_insn' ! The expression code `debug_insn' is used for pseudo-instructions that hold debugging information for variable tracking at ! assignments (see `-fvar-tracking-assignments' option). They are ! the RTL representation of `GIMPLE_DEBUG' statements (*note ! `GIMPLE_DEBUG'::), with a `VAR_LOCATION' operand that binds a user ! variable tree to an RTL representation of the `value' in the ! corresponding statement. A `DEBUG_EXPR' in it stands for the ! value bound to the corresponding `DEBUG_EXPR_DECL'. Throughout optimization passes, binding information is kept in pseudo-instruction form, so that, unlike notes, it gets the same treatment and adjustments that regular instructions would. It is the variable tracking pass that turns these pseudo-instructions ! into var location notes, analyzing control flow, value ! equivalences and changes to registers and memory referenced in ! value expressions, propagating the values of debug temporaries and determining expressions that can be used to compute the value of each user variable at as many points (ranges, actually) in the program as possible. ! Unlike `NOTE_INSN_VAR_LOCATION', the value expression in an ! `INSN_VAR_LOCATION' denotes a value at that specific point in the program, rather than an expression that can be evaluated at any ! later point before an overriding `VAR_LOCATION' is encountered. ! E.g., if a user variable is bound to a `REG' and then a subsequent ! insn modifies the `REG', the note location would keep mapping the user variable to the register across the insn, whereas the insn location would keep the variable bound to the value, so that the variable tracking pass would emit another location note for the variable at the point in which the register is modified. ! ! The machine mode of an insn is normally `VOIDmode', but some phases ! use the mode for various purposes. The common subexpression elimination pass sets the mode of an insn to ! `QImode' when it is the first insn in a block that has already been processed. The second Haifa scheduling pass, for targets that can multiple issue, ! sets the mode of an insn to `TImode' when it is believed that the ! instruction begins an issue group. That is, when the instruction ! cannot issue simultaneously with the previous. This may be relied on ! by later passes, in particular machine-dependent reorg. ! Here is a table of the extra fields of `insn', `jump_insn' and ! `call_insn' insns: ! `PATTERN (I)' An expression for the side effect performed by this insn. This ! must be one of the following codes: `set', `call', `use', ! `clobber', `return', `simple_return', `asm_input', `asm_output', ! `addr_vec', `addr_diff_vec', `trap_if', `unspec', ! `unspec_volatile', `parallel', `cond_exec', or `sequence'. If it ! is a `parallel', each element of the `parallel' must be one these ! codes, except that `parallel' expressions cannot be nested and ! `addr_vec' and `addr_diff_vec' are not permitted inside a ! `parallel' expression. ! `INSN_CODE (I)' An integer that says which pattern in the machine description matches this insn, or -1 if the matching has not yet been attempted. Such matching is never attempted and this field remains -1 on an ! insn whose pattern consists of a single `use', `clobber', ! `asm_input', `addr_vec' or `addr_diff_vec' expression. ! Matching is also never attempted on insns that result from an `asm' ! statement. These contain at least one `asm_operands' expression. ! The function `asm_noperands' returns a non-negative value for such insns. ! In the debugging output, this field is printed as a number ! followed by a symbolic representation that locates the pattern in ! the `md' file as some small positive or negative offset from a ! named pattern. ! `LOG_LINKS (I)' ! A list (chain of `insn_list' expressions) giving information about dependencies between instructions within a basic block. Neither a jump nor a label may come between the related insns. These are only used by the schedulers and by combine. This is a deprecated data structure. Def-use and use-def chains are now preferred. ! `REG_NOTES (I)' ! A list (chain of `expr_list', `insn_list' and `int_list' expressions) giving miscellaneous information about the insn. It is often information pertaining to the registers used in this insn. ! The `LOG_LINKS' field of an insn is a chain of `insn_list' ! expressions. Each of these has two operands: the first is an insn, and ! the second is another `insn_list' expression (the next one in the ! chain). The last `insn_list' in the chain has a null pointer as second ! operand. The significant thing about the chain is which insns appear ! in it (as first operands of `insn_list' expressions). Their order is ! not significant. This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow only adds links for those data dependencies *************** which can be used for instruction combin *** 16610,16634 **** analysis pass adds a link to insns which store into registers values that are used for the first time in this insn. ! The 'REG_NOTES' field of an insn is a chain similar to the 'LOG_LINKS' ! field but it includes 'expr_list' and 'int_list' expressions in addition ! to 'insn_list' expressions. There are several kinds of register notes, ! which are distinguished by the machine mode, which in a register note is ! really understood as being an 'enum reg_note'. The first operand OP of ! the note is data whose meaning depends on the kind of note. ! The macro 'REG_NOTE_KIND (X)' returns the kind of register note. Its ! counterpart, the macro 'PUT_REG_NOTE_KIND (X, NEWKIND)' sets the register note type of X to be NEWKIND. Register notes are of three classes: They may say something about an input to an insn, they may say something about an output of an insn, or they may create a linkage between two insns. There are also a set of ! values that are only used in 'LOG_LINKS'. These register notes annotate inputs to an insn: ! 'REG_DEAD' The value in OP dies in this insn; that is to say, altering the value immediately after this insn would not affect the future behavior of the program. --- 16780,16805 ---- analysis pass adds a link to insns which store into registers values that are used for the first time in this insn. ! The `REG_NOTES' field of an insn is a chain similar to the `LOG_LINKS' ! field but it includes `expr_list' and `int_list' expressions in ! addition to `insn_list' expressions. There are several kinds of ! register notes, which are distinguished by the machine mode, which in a ! register note is really understood as being an `enum reg_note'. The ! first operand OP of the note is data whose meaning depends on the kind ! of note. ! The macro `REG_NOTE_KIND (X)' returns the kind of register note. Its ! counterpart, the macro `PUT_REG_NOTE_KIND (X, NEWKIND)' sets the register note type of X to be NEWKIND. Register notes are of three classes: They may say something about an input to an insn, they may say something about an output of an insn, or they may create a linkage between two insns. There are also a set of ! values that are only used in `LOG_LINKS'. These register notes annotate inputs to an insn: ! `REG_DEAD' The value in OP dies in this insn; that is to say, altering the value immediately after this insn would not affect the future behavior of the program. *************** values that are only used in 'LOG_LINKS' *** 16637,16708 **** this insn since OP is not necessarily modified by this insn. Rather, no subsequent instruction uses the contents of OP. ! 'REG_UNUSED' The register OP being set by this insn will not be used in a ! subsequent insn. This differs from a 'REG_DEAD' note, which indicates that the value in an input will not be used subsequently. These two notes are independent; both may be present for the same register. ! 'REG_INC' ! The register OP is incremented (or decremented; at this level there ! is no distinction) by an embedded side effect inside this insn. ! This means it appears in a 'post_inc', 'pre_inc', 'post_dec' or ! 'pre_dec' expression. ! 'REG_NONNEG' ! The register OP is known to have a nonnegative value when this insn ! is reached. This is used so that decrement and branch until zero ! instructions, such as the m68k dbra, can be matched. ! The 'REG_NONNEG' note is added to insns only if the machine ! description has a 'decrement_and_branch_until_zero' pattern. ! 'REG_LABEL_OPERAND' ! This insn uses OP, a 'code_label' or a 'note' of type ! 'NOTE_INSN_DELETED_LABEL', but is not a 'jump_insn', or it is a ! 'jump_insn' that refers to the operand as an ordinary operand. The ! label may still eventually be a jump target, but if so in an indirect jump in a subsequent insn. The presence of this note allows jump optimization to be aware that OP is, in fact, being used, and flow optimization to build an accurate flow graph. ! 'REG_LABEL_TARGET' ! This insn is a 'jump_insn' but not an 'addr_vec' or ! 'addr_diff_vec'. It uses OP, a 'code_label' as a direct or indirect jump target. Its purpose is similar to that of ! 'REG_LABEL_OPERAND'. This note is only present if the insn has multiple targets; the last label in the insn (in the highest ! numbered insn-field) goes into the 'JUMP_LABEL' field and does not ! have a 'REG_LABEL_TARGET' note. *Note JUMP_LABEL: Insns. ! 'REG_CROSSING_JUMP' This insn is a branching instruction (either an unconditional jump or an indirect jump) which crosses between hot and cold sections, which could potentially be very far apart in the executable. The presence of this note indicates to other optimizations that this branching instruction should not be "collapsed" into a simpler ! branching construct. It is used when the optimization to partition ! basic blocks into hot and cold sections is turned on. ! 'REG_SETJMP' ! Appears attached to each 'CALL_INSN' to 'setjmp' or a related function. The following notes describe attributes of outputs of an insn: ! 'REG_EQUIV' ! 'REG_EQUAL' This note is only valid on an insn that sets only one register and indicates that that register will be equal to OP at run time; the scope of this equivalence differs between the two types of notes. The value which the insn explicitly copies into the register may look different from OP, but they will be equal at run time. If the ! output of the single 'set' is a 'strict_low_part' expression, the ! note refers to the register that is contained in 'SUBREG_REG' of ! the 'subreg' expression. ! For 'REG_EQUIV', the register is equivalent to OP throughout the entire function, and could validly be replaced in all its occurrences by OP. ("Validly" here refers to the data flow of the program; simple replacement may make some insns invalid.) For --- 16808,16879 ---- this insn since OP is not necessarily modified by this insn. Rather, no subsequent instruction uses the contents of OP. ! `REG_UNUSED' The register OP being set by this insn will not be used in a ! subsequent insn. This differs from a `REG_DEAD' note, which indicates that the value in an input will not be used subsequently. These two notes are independent; both may be present for the same register. ! `REG_INC' ! The register OP is incremented (or decremented; at this level ! there is no distinction) by an embedded side effect inside this ! insn. This means it appears in a `post_inc', `pre_inc', ! `post_dec' or `pre_dec' expression. ! `REG_NONNEG' ! The register OP is known to have a nonnegative value when this ! insn is reached. This is used so that decrement and branch until ! zero instructions, such as the m68k dbra, can be matched. ! The `REG_NONNEG' note is added to insns only if the machine ! description has a `decrement_and_branch_until_zero' pattern. ! `REG_LABEL_OPERAND' ! This insn uses OP, a `code_label' or a `note' of type ! `NOTE_INSN_DELETED_LABEL', but is not a `jump_insn', or it is a ! `jump_insn' that refers to the operand as an ordinary operand. ! The label may still eventually be a jump target, but if so in an indirect jump in a subsequent insn. The presence of this note allows jump optimization to be aware that OP is, in fact, being used, and flow optimization to build an accurate flow graph. ! `REG_LABEL_TARGET' ! This insn is a `jump_insn' but not an `addr_vec' or ! `addr_diff_vec'. It uses OP, a `code_label' as a direct or indirect jump target. Its purpose is similar to that of ! `REG_LABEL_OPERAND'. This note is only present if the insn has multiple targets; the last label in the insn (in the highest ! numbered insn-field) goes into the `JUMP_LABEL' field and does not ! have a `REG_LABEL_TARGET' note. *Note JUMP_LABEL: Insns. ! `REG_CROSSING_JUMP' This insn is a branching instruction (either an unconditional jump or an indirect jump) which crosses between hot and cold sections, which could potentially be very far apart in the executable. The presence of this note indicates to other optimizations that this branching instruction should not be "collapsed" into a simpler ! branching construct. It is used when the optimization to ! partition basic blocks into hot and cold sections is turned on. ! `REG_SETJMP' ! Appears attached to each `CALL_INSN' to `setjmp' or a related function. The following notes describe attributes of outputs of an insn: ! `REG_EQUIV' ! `REG_EQUAL' This note is only valid on an insn that sets only one register and indicates that that register will be equal to OP at run time; the scope of this equivalence differs between the two types of notes. The value which the insn explicitly copies into the register may look different from OP, but they will be equal at run time. If the ! output of the single `set' is a `strict_low_part' expression, the ! note refers to the register that is contained in `SUBREG_REG' of ! the `subreg' expression. ! For `REG_EQUIV', the register is equivalent to OP throughout the entire function, and could validly be replaced in all its occurrences by OP. ("Validly" here refers to the data flow of the program; simple replacement may make some insns invalid.) For *************** values that are only used in 'LOG_LINKS' *** 16712,16733 **** When a parameter is copied into a pseudo-register at entry to a function, a note of this kind records that the register is equivalent to the stack slot where the parameter was passed. ! Although in this case the register may be set by other insns, it is ! still valid to replace the register by the stack slot throughout ! the function. ! A 'REG_EQUIV' note is also used on an instruction which copies a register parameter into a pseudo-register at entry to a function, if there is a stack slot where that parameter could be stored. Although other insns may set the pseudo-register, it is valid for the compiler to replace the pseudo-register by stack slot throughout the function, provided the compiler ensures that the ! stack slot is properly initialized by making the replacement in the ! initial copy instruction as well. This is used on machines for ! which the calling convention allocates stack space for register ! parameters. See 'REG_PARM_STACK_SPACE' in *note Stack Arguments::. ! In the case of 'REG_EQUAL', the register that is set by this insn will be equal to OP at run time at the end of this insn but not necessarily elsewhere in the function. In this case, OP is typically an arithmetic expression. For example, when a sequence --- 16883,16905 ---- When a parameter is copied into a pseudo-register at entry to a function, a note of this kind records that the register is equivalent to the stack slot where the parameter was passed. ! Although in this case the register may be set by other insns, it ! is still valid to replace the register by the stack slot ! throughout the function. ! A `REG_EQUIV' note is also used on an instruction which copies a register parameter into a pseudo-register at entry to a function, if there is a stack slot where that parameter could be stored. Although other insns may set the pseudo-register, it is valid for the compiler to replace the pseudo-register by stack slot throughout the function, provided the compiler ensures that the ! stack slot is properly initialized by making the replacement in ! the initial copy instruction as well. This is used on machines ! for which the calling convention allocates stack space for ! register parameters. See `REG_PARM_STACK_SPACE' in *note Stack ! Arguments::. ! In the case of `REG_EQUAL', the register that is set by this insn will be equal to OP at run time at the end of this insn but not necessarily elsewhere in the function. In this case, OP is typically an arithmetic expression. For example, when a sequence *************** values that are only used in 'LOG_LINKS' *** 16736,16821 **** or copies the final value. These two notes are used in different ways by the compiler passes. ! 'REG_EQUAL' is used by passes prior to register allocation (such as common subexpression elimination and loop optimization) to tell ! them how to think of that value. 'REG_EQUIV' notes are used by register allocation to indicate that there is an available ! substitute expression (either a constant or a 'mem' expression for ! the location of a parameter on the stack) that may be used in place ! of a register if insufficient registers are available. Except for stack homes for parameters, which are indicated by a ! 'REG_EQUIV' note and are not useful to the early optimization passes and pseudo registers that are equivalent to a memory location throughout their entire life, which is not detected until later in the compilation, all equivalences are initially indicated ! by an attached 'REG_EQUAL' note. In the early stages of register ! allocation, a 'REG_EQUAL' note is changed into a 'REG_EQUIV' note if OP is a constant and the insn represents the only set of its destination register. Thus, compiler passes prior to register allocation need only check ! for 'REG_EQUAL' notes and passes subsequent to register allocation ! need only check for 'REG_EQUIV' notes. These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of notes that points to a second insn, which has the inverse note pointing back to the first insn. ! 'REG_CC_SETTER' ! 'REG_CC_USER' ! On machines that use 'cc0', the insns which set and use 'cc0' set ! and use 'cc0' are adjacent. However, when branch delay slot filling is done, this may no longer be true. In this case a ! 'REG_CC_USER' note will be placed on the insn setting 'cc0' to ! point to the insn using 'cc0' and a 'REG_CC_SETTER' note will be ! placed on the insn using 'cc0' to point to the insn setting 'cc0'. ! These values are only used in the 'LOG_LINKS' field, and indicate the type of dependency that each link represents. Links which indicate a data dependence (a read after write dependence) do not use any code, ! they simply have mode 'VOIDmode', and are printed without any descriptive text. ! 'REG_DEP_TRUE' This indicates a true dependence (a read after write dependence). ! 'REG_DEP_OUTPUT' This indicates an output dependence (a write after write dependence). ! 'REG_DEP_ANTI' This indicates an anti dependence (a write after read dependence). These notes describe information gathered from gcov profile data. They ! are stored in the 'REG_NOTES' field of an insn. ! 'REG_BR_PROB' This is used to specify the ratio of branches to non-branches of a branch insn according to the profile data. The note is represented ! as an 'int_list' expression whose integer value is between 0 and ! REG_BR_PROB_BASE. Larger values indicate a higher probability that the branch will be taken. ! 'REG_BR_PRED' These notes are found in JUMP insns after delayed branch scheduling has taken place. They indicate both the direction and the likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_* values. ! 'REG_FRAME_RELATED_EXPR' This is used on an RTX_FRAME_RELATED_P insn wherein the attached expression is used in place of the actual insn pattern. This is done in cases where the pattern is either complex or misleading. ! For convenience, the machine mode in an 'insn_list' or 'expr_list' is printed using these symbolic codes in debugging dumps. ! The only difference between the expression codes 'insn_list' and ! 'expr_list' is that the first operand of an 'insn_list' is assumed to be ! an insn and is printed in debugging dumps as the insn's unique id; the ! first operand of an 'expr_list' is printed in the ordinary way as an ! expression.  File: gccint.info, Node: Calls, Next: Sharing, Prev: Insns, Up: RTL --- 16908,16994 ---- or copies the final value. These two notes are used in different ways by the compiler passes. ! `REG_EQUAL' is used by passes prior to register allocation (such as common subexpression elimination and loop optimization) to tell ! them how to think of that value. `REG_EQUIV' notes are used by register allocation to indicate that there is an available ! substitute expression (either a constant or a `mem' expression for ! the location of a parameter on the stack) that may be used in ! place of a register if insufficient registers are available. Except for stack homes for parameters, which are indicated by a ! `REG_EQUIV' note and are not useful to the early optimization passes and pseudo registers that are equivalent to a memory location throughout their entire life, which is not detected until later in the compilation, all equivalences are initially indicated ! by an attached `REG_EQUAL' note. In the early stages of register ! allocation, a `REG_EQUAL' note is changed into a `REG_EQUIV' note if OP is a constant and the insn represents the only set of its destination register. Thus, compiler passes prior to register allocation need only check ! for `REG_EQUAL' notes and passes subsequent to register allocation ! need only check for `REG_EQUIV' notes. These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of notes that points to a second insn, which has the inverse note pointing back to the first insn. ! `REG_CC_SETTER' ! `REG_CC_USER' ! On machines that use `cc0', the insns which set and use `cc0' set ! and use `cc0' are adjacent. However, when branch delay slot filling is done, this may no longer be true. In this case a ! `REG_CC_USER' note will be placed on the insn setting `cc0' to ! point to the insn using `cc0' and a `REG_CC_SETTER' note will be ! placed on the insn using `cc0' to point to the insn setting `cc0'. ! These values are only used in the `LOG_LINKS' field, and indicate the type of dependency that each link represents. Links which indicate a data dependence (a read after write dependence) do not use any code, ! they simply have mode `VOIDmode', and are printed without any descriptive text. ! `REG_DEP_TRUE' This indicates a true dependence (a read after write dependence). ! `REG_DEP_OUTPUT' This indicates an output dependence (a write after write dependence). ! `REG_DEP_ANTI' This indicates an anti dependence (a write after read dependence). + These notes describe information gathered from gcov profile data. They ! are stored in the `REG_NOTES' field of an insn. ! `REG_BR_PROB' This is used to specify the ratio of branches to non-branches of a branch insn according to the profile data. The note is represented ! as an `int_list' expression whose integer value is between 0 and ! REG_BR_PROB_BASE. Larger values indicate a higher probability that the branch will be taken. ! `REG_BR_PRED' These notes are found in JUMP insns after delayed branch scheduling has taken place. They indicate both the direction and the likelihood of the JUMP. The format is a bitmask of ATTR_FLAG_* values. ! `REG_FRAME_RELATED_EXPR' This is used on an RTX_FRAME_RELATED_P insn wherein the attached expression is used in place of the actual insn pattern. This is done in cases where the pattern is either complex or misleading. ! For convenience, the machine mode in an `insn_list' or `expr_list' is printed using these symbolic codes in debugging dumps. ! The only difference between the expression codes `insn_list' and ! `expr_list' is that the first operand of an `insn_list' is assumed to ! be an insn and is printed in debugging dumps as the insn's unique id; ! the first operand of an `expr_list' is printed in the ordinary way as ! an expression.  File: gccint.info, Node: Calls, Next: Sharing, Prev: Insns, Up: RTL *************** File: gccint.info, Node: Calls, Next: *** 16823,16846 **** 13.20 RTL Representation of Function-Call Insns =============================================== ! Insns that call subroutines have the RTL expression code 'call_insn'. These insns must satisfy special rules, and their bodies must use a ! special RTL expression code, 'call'. ! A 'call' expression has two operands, as follows: (call (mem:FM ADDR) NBYTES) Here NBYTES is an operand that represents the number of bytes of argument data being passed to the subroutine, FM is a machine mode ! (which must equal as the definition of the 'FUNCTION_MODE' macro in the machine description) and ADDR represents the address of the subroutine. ! For a subroutine that returns no value, the 'call' expression as shown above is the entire body of the insn, except that the insn might also ! contain 'use' or 'clobber' expressions. ! For a subroutine that returns a value whose mode is not 'BLKmode', the value is returned in a hard register. If this register's number is R, then the body of the call insn looks like this: --- 16996,17019 ---- 13.20 RTL Representation of Function-Call Insns =============================================== ! Insns that call subroutines have the RTL expression code `call_insn'. These insns must satisfy special rules, and their bodies must use a ! special RTL expression code, `call'. ! A `call' expression has two operands, as follows: (call (mem:FM ADDR) NBYTES) Here NBYTES is an operand that represents the number of bytes of argument data being passed to the subroutine, FM is a machine mode ! (which must equal as the definition of the `FUNCTION_MODE' macro in the machine description) and ADDR represents the address of the subroutine. ! For a subroutine that returns no value, the `call' expression as shown above is the entire body of the insn, except that the insn might also ! contain `use' or `clobber' expressions. ! For a subroutine that returns a value whose mode is not `BLKmode', the value is returned in a hard register. If this register's number is R, then the body of the call insn looks like this: *************** then the body of the call insn looks lik *** 16850,16879 **** This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives a useful value in this insn. ! When a subroutine returns a 'BLKmode' value, it is handled by passing to the subroutine the address of a place to store the value. So the call insn itself does not "return" any value, and it has the same RTL form as a call that returns nothing. On some machines, the call instruction itself clobbers some register, ! for example to contain the return address. 'call_insn' insns on these ! machines should have a body which is a 'parallel' that contains both the ! 'call' expression and 'clobber' expressions that indicate which registers are destroyed. Similarly, if the call instruction requires some register other than the stack pointer that is not explicitly ! mentioned in its RTL, a 'use' subexpression should mention that register. Functions that are called are assumed to modify all registers listed in ! the configuration macro 'CALL_USED_REGISTERS' (*note Register Basics::) ! and, with the exception of 'const' functions and library calls, to modify all of memory. ! Insns containing just 'use' expressions directly precede the ! 'call_insn' insn to indicate which registers contain inputs to the function. Similarly, if registers other than those in ! 'CALL_USED_REGISTERS' are clobbered by the called function, insns ! containing a single 'clobber' follow immediately after the call to indicate which registers.  --- 17023,17052 ---- This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives a useful value in this insn. ! When a subroutine returns a `BLKmode' value, it is handled by passing to the subroutine the address of a place to store the value. So the call insn itself does not "return" any value, and it has the same RTL form as a call that returns nothing. On some machines, the call instruction itself clobbers some register, ! for example to contain the return address. `call_insn' insns on these ! machines should have a body which is a `parallel' that contains both ! the `call' expression and `clobber' expressions that indicate which registers are destroyed. Similarly, if the call instruction requires some register other than the stack pointer that is not explicitly ! mentioned in its RTL, a `use' subexpression should mention that register. Functions that are called are assumed to modify all registers listed in ! the configuration macro `CALL_USED_REGISTERS' (*note Register Basics::) ! and, with the exception of `const' functions and library calls, to modify all of memory. ! Insns containing just `use' expressions directly precede the ! `call_insn' insn to indicate which registers contain inputs to the function. Similarly, if registers other than those in ! `CALL_USED_REGISTERS' are clobbered by the called function, insns ! containing a single `clobber' follow immediately after the call to indicate which registers.  *************** File: gccint.info, Node: Sharing, Next *** 16883,16931 **** =================================== The compiler assumes that certain kinds of RTL expressions are unique; ! there do not exist two distinct objects representing the same value. In ! other cases, it makes an opposite assumption: that no RTL expression object of a certain kind appears in more than one place in the containing structure. These assumptions refer to a single function; except for the RTL ! objects that describe global variables and external functions, and a few ! standard objects such as small integer constants, no RTL objects are ! common to two functions. ! * Each pseudo-register has only a single 'reg' object to represent it, and therefore only a single machine mode. ! * For any symbolic label, there is only one 'symbol_ref' object referring to it. ! * All 'const_int' expressions with equal values are shared. ! * There is only one 'pc' expression. ! * There is only one 'cc0' expression. ! * There is only one 'const_double' expression with value 0 for each floating point mode. Likewise for values 1 and 2. ! * There is only one 'const_vector' expression with value 0 for each vector mode, be it an integer or a double constant vector. ! * No 'label_ref' or 'scratch' appears in more than one place in the RTL structure; in other words, it is safe to do a tree-walk of all ! the insns in the function and assume that each time a 'label_ref' ! or 'scratch' is seen it is distinct from all others that are seen. ! * Only one 'mem' object is normally created for each static variable or stack slot, so these objects are frequently shared in all the places they appear. However, separate but equal objects for these variables are occasionally made. ! * When a single 'asm' statement has multiple output operands, a ! distinct 'asm_operands' expression is made for each output operand. However, these all share the vector which contains the sequence of input operands. This sharing is used later on to test whether two ! 'asm_operands' expressions come from the same statement, so all optimizations must carefully preserve the sharing if they copy the vector at all. --- 17056,17104 ---- =================================== The compiler assumes that certain kinds of RTL expressions are unique; ! there do not exist two distinct objects representing the same value. ! In other cases, it makes an opposite assumption: that no RTL expression object of a certain kind appears in more than one place in the containing structure. These assumptions refer to a single function; except for the RTL ! objects that describe global variables and external functions, and a ! few standard objects such as small integer constants, no RTL objects ! are common to two functions. ! * Each pseudo-register has only a single `reg' object to represent it, and therefore only a single machine mode. ! * For any symbolic label, there is only one `symbol_ref' object referring to it. ! * All `const_int' expressions with equal values are shared. ! * There is only one `pc' expression. ! * There is only one `cc0' expression. ! * There is only one `const_double' expression with value 0 for each floating point mode. Likewise for values 1 and 2. ! * There is only one `const_vector' expression with value 0 for each vector mode, be it an integer or a double constant vector. ! * No `label_ref' or `scratch' appears in more than one place in the RTL structure; in other words, it is safe to do a tree-walk of all ! the insns in the function and assume that each time a `label_ref' ! or `scratch' is seen it is distinct from all others that are seen. ! * Only one `mem' object is normally created for each static variable or stack slot, so these objects are frequently shared in all the places they appear. However, separate but equal objects for these variables are occasionally made. ! * When a single `asm' statement has multiple output operands, a ! distinct `asm_operands' expression is made for each output operand. However, these all share the vector which contains the sequence of input operands. This sharing is used later on to test whether two ! `asm_operands' expressions come from the same statement, so all optimizations must carefully preserve the sharing if they copy the vector at all. *************** common to two functions. *** 16936,16949 **** * During initial RTL generation, shared structure is freely introduced. After all the RTL for a function has been generated, ! all shared structure is copied by 'unshare_all_rtl' in ! 'emit-rtl.c', after which the above rules are guaranteed to be followed. * During the combiner pass, shared structure within an insn can exist temporarily. However, the shared structure is copied before the combiner is finished with the insn. This is done by calling ! 'copy_rtx_if_shared', which is a subroutine of 'unshare_all_rtl'.  File: gccint.info, Node: Reading RTL, Prev: Sharing, Up: RTL --- 17109,17122 ---- * During initial RTL generation, shared structure is freely introduced. After all the RTL for a function has been generated, ! all shared structure is copied by `unshare_all_rtl' in ! `emit-rtl.c', after which the above rules are guaranteed to be followed. * During the combiner pass, shared structure within an insn can exist temporarily. However, the shared structure is copied before the combiner is finished with the insn. This is done by calling ! `copy_rtx_if_shared', which is a subroutine of `unshare_all_rtl'.  File: gccint.info, Node: Reading RTL, Prev: Sharing, Up: RTL *************** File: gccint.info, Node: Reading RTL, *** 16951,16961 **** 13.22 Reading RTL ================= ! To read an RTL object from a file, call 'read_rtx'. It takes one argument, a stdio stream, and returns a single RTL object. This routine ! is defined in 'read-rtl.c'. It is not available in the compiler itself, ! only the various programs that generate the compiler back end from the ! machine description. People frequently have the idea of using RTL stored as text in a file as an interface between a language front end and the bulk of GCC. This --- 17124,17134 ---- 13.22 Reading RTL ================= ! To read an RTL object from a file, call `read_rtx'. It takes one argument, a stdio stream, and returns a single RTL object. This routine ! is defined in `read-rtl.c'. It is not available in the compiler ! itself, only the various programs that generate the compiler back end ! from the machine description. People frequently have the idea of using RTL stored as text in a file as an interface between a language front end and the bulk of GCC. This *************** idea is not feasible. *** 16965,16973 **** program is very dependent on the particular target machine. And the RTL does not contain all the information about the program. ! The proper way to interface GCC to a new language front end is with the ! "tree" data structure, described in the files 'tree.h' and 'tree.def'. ! The documentation for this structure (*note GENERIC::) is incomplete.  File: gccint.info, Node: Control Flow, Next: Loop Analysis and Representation, Prev: RTL, Up: Top --- 17138,17147 ---- program is very dependent on the particular target machine. And the RTL does not contain all the information about the program. ! The proper way to interface GCC to a new language front end is with ! the "tree" data structure, described in the files `tree.h' and ! `tree.def'. The documentation for this structure (*note GENERIC::) is ! incomplete.  File: gccint.info, Node: Control Flow, Next: Loop Analysis and Representation, Prev: RTL, Up: Top *************** File: gccint.info, Node: Control Flow, *** 16976,16996 **** ********************* A control flow graph (CFG) is a data structure built on top of the ! intermediate code representation (the RTL or 'GIMPLE' instruction stream) abstracting the control flow behavior of a function that is being compiled. The CFG is a directed graph where the vertices represent basic blocks and edges represent possible transfer of control flow from one basic block to another. The data structures used to ! represent the control flow graph are defined in 'basic-block.h'. ! In GCC, the representation of control flow is maintained throughout the ! compilation process, from constructing the CFG early in 'pass_build_cfg' ! to 'pass_free_cfg' (see 'passes.def'). The CFG takes various different ! modes and may undergo extensive manipulations, but the graph is always ! valid between its construction and its release. This way, transfer of ! information such as data flow, a measured profile, or the loop tree, can ! be propagated through the passes pipeline, and even from 'GIMPLE' to ! 'RTL'. Often the CFG may be better viewed as integral part of instruction chain, than structure built on the top of it. Updating the compiler's --- 17150,17170 ---- ********************* A control flow graph (CFG) is a data structure built on top of the ! intermediate code representation (the RTL or `GIMPLE' instruction stream) abstracting the control flow behavior of a function that is being compiled. The CFG is a directed graph where the vertices represent basic blocks and edges represent possible transfer of control flow from one basic block to another. The data structures used to ! represent the control flow graph are defined in `basic-block.h'. ! In GCC, the representation of control flow is maintained throughout ! the compilation process, from constructing the CFG early in ! `pass_build_cfg' to `pass_free_cfg' (see `passes.def'). The CFG takes ! various different modes and may undergo extensive manipulations, but ! the graph is always valid between its construction and its release. ! This way, transfer of information such as data flow, a measured ! profile, or the loop tree, can be propagated through the passes ! pipeline, and even from `GIMPLE' to `RTL'. Often the CFG may be better viewed as integral part of instruction chain, than structure built on the top of it. Updating the compiler's *************** File: gccint.info, Node: Basic Blocks, *** 17012,17061 **** ================= A basic block is a straight-line sequence of code with only one entry ! point and only one exit. In GCC, basic blocks are represented using the ! 'basic_block' data type. Special basic blocks represent possible entry and exit points of a ! function. These blocks are called 'ENTRY_BLOCK_PTR' and ! 'EXIT_BLOCK_PTR'. These blocks do not contain any code. ! The 'BASIC_BLOCK' array contains all basic blocks in an unspecified ! order. Each 'basic_block' structure has a field that holds a unique ! integer identifier 'index' that is the index of the block in the ! 'BASIC_BLOCK' array. The total number of basic blocks in the function ! is 'n_basic_blocks'. Both the basic block indices and the total number of basic blocks may vary during the compilation process, as passes ! reorder, create, duplicate, and destroy basic blocks. The index for any ! block should never be greater than 'last_basic_block'. The indices 0 ! and 1 are special codes reserved for 'ENTRY_BLOCK' and 'EXIT_BLOCK', the ! indices of 'ENTRY_BLOCK_PTR' and 'EXIT_BLOCK_PTR'. ! Two pointer members of the 'basic_block' structure are the pointers ! 'next_bb' and 'prev_bb'. These are used to keep doubly linked chain of basic blocks in the same order as the underlying instruction stream. The chain of basic blocks is updated transparently by the provided API ! for manipulating the CFG. The macro 'FOR_EACH_BB' can be used to visit ! all the basic blocks in lexicographical order, except 'ENTRY_BLOCK' and ! 'EXIT_BLOCK'. The macro 'FOR_ALL_BB' also visits all basic blocks in ! lexicographical order, including 'ENTRY_BLOCK' and 'EXIT_BLOCK'. ! The functions 'post_order_compute' and 'inverted_post_order_compute' ! can be used to compute topological orders of the CFG. The orders are ! stored as vectors of basic block indices. The 'BASIC_BLOCK' array can be used to iterate each basic block by index. Dominator traversals are ! also possible using 'walk_dominator_tree'. Given two basic blocks A and ! B, block A dominates block B if A is _always_ executed before B. ! Each 'basic_block' also contains pointers to the first instruction (the ! "head") and the last instruction (the "tail") or "end" of the instruction stream contained in a basic block. In fact, since the ! 'basic_block' data type is used to represent blocks in both major ! intermediate representations of GCC ('GIMPLE' and RTL), there are pointers to the head and end of a basic block for both representations, ! stored in intermediate representation specific data in the 'il' field of ! 'struct basic_block_def'. ! For RTL, these pointers are 'BB_HEAD' and 'BB_END'. In the RTL representation of a function, the instruction stream contains not only the "real" instructions, but also "notes" or "insn --- 17186,17235 ---- ================= A basic block is a straight-line sequence of code with only one entry ! point and only one exit. In GCC, basic blocks are represented using ! the `basic_block' data type. Special basic blocks represent possible entry and exit points of a ! function. These blocks are called `ENTRY_BLOCK_PTR' and ! `EXIT_BLOCK_PTR'. These blocks do not contain any code. ! The `BASIC_BLOCK' array contains all basic blocks in an unspecified ! order. Each `basic_block' structure has a field that holds a unique ! integer identifier `index' that is the index of the block in the ! `BASIC_BLOCK' array. The total number of basic blocks in the function ! is `n_basic_blocks'. Both the basic block indices and the total number of basic blocks may vary during the compilation process, as passes ! reorder, create, duplicate, and destroy basic blocks. The index for ! any block should never be greater than `last_basic_block'. The indices ! 0 and 1 are special codes reserved for `ENTRY_BLOCK' and `EXIT_BLOCK', ! the indices of `ENTRY_BLOCK_PTR' and `EXIT_BLOCK_PTR'. ! Two pointer members of the `basic_block' structure are the pointers ! `next_bb' and `prev_bb'. These are used to keep doubly linked chain of basic blocks in the same order as the underlying instruction stream. The chain of basic blocks is updated transparently by the provided API ! for manipulating the CFG. The macro `FOR_EACH_BB' can be used to visit ! all the basic blocks in lexicographical order, except `ENTRY_BLOCK' and ! `EXIT_BLOCK'. The macro `FOR_ALL_BB' also visits all basic blocks in ! lexicographical order, including `ENTRY_BLOCK' and `EXIT_BLOCK'. ! The functions `post_order_compute' and `inverted_post_order_compute' ! can be used to compute topological orders of the CFG. The orders are ! stored as vectors of basic block indices. The `BASIC_BLOCK' array can be used to iterate each basic block by index. Dominator traversals are ! also possible using `walk_dominator_tree'. Given two basic blocks A ! and B, block A dominates block B if A is _always_ executed before B. ! Each `basic_block' also contains pointers to the first instruction ! (the "head") and the last instruction (the "tail") or "end" of the instruction stream contained in a basic block. In fact, since the ! `basic_block' data type is used to represent blocks in both major ! intermediate representations of GCC (`GIMPLE' and RTL), there are pointers to the head and end of a basic block for both representations, ! stored in intermediate representation specific data in the `il' field ! of `struct basic_block_def'. ! For RTL, these pointers are `BB_HEAD' and `BB_END'. In the RTL representation of a function, the instruction stream contains not only the "real" instructions, but also "notes" or "insn *************** notes" (to distinguish them from "reg no *** 17063,17096 **** or duplicates the basic blocks needs to take care of updating of these notes. Many of these notes expect that the instruction stream consists of linear regions, so updating can sometimes be tedious. All types of ! insn notes are defined in 'insn-notes.def'. In the RTL function representation, the instructions contained in a ! basic block always follow a 'NOTE_INSN_BASIC_BLOCK', but zero or more ! 'CODE_LABEL' nodes can precede the block note. A basic block ends with a control flow instruction or with the last instruction before the next ! 'CODE_LABEL' or 'NOTE_INSN_BASIC_BLOCK'. By definition, a 'CODE_LABEL' cannot appear in the middle of the instruction stream of a basic block. In addition to notes, the jump table vectors are also represented as "pseudo-instructions" inside the insn stream. These vectors never appear in the basic block and should always be placed just after the ! table jump instructions referencing them. After removing the table-jump ! it is often difficult to eliminate the code computing the address and ! referencing the vector, so cleaning up these vectors is postponed until ! after liveness analysis. Thus the jump table vectors may appear in the ! insn stream unreferenced and without any purpose. Before any edge is ! made "fall-thru", the existence of such construct in the way needs to be ! checked by calling 'can_fallthru' function. ! For the 'GIMPLE' representation, the PHI nodes and statements contained ! in a basic block are in a 'gimple_seq' pointed to by the basic block ! intermediate language specific pointers. Abstract containers and ! iterators are used to access the PHI nodes and statements in a basic ! blocks. These iterators are called "GIMPLE statement iterators" (GSIs). ! Grep for '^gsi' in the various 'gimple-*' and 'tree-*' files. The ! following snippet will pretty-print all PHI nodes the statements of the ! current function in the GIMPLE representation. basic_block bb; --- 17237,17271 ---- or duplicates the basic blocks needs to take care of updating of these notes. Many of these notes expect that the instruction stream consists of linear regions, so updating can sometimes be tedious. All types of ! insn notes are defined in `insn-notes.def'. In the RTL function representation, the instructions contained in a ! basic block always follow a `NOTE_INSN_BASIC_BLOCK', but zero or more ! `CODE_LABEL' nodes can precede the block note. A basic block ends with a control flow instruction or with the last instruction before the next ! `CODE_LABEL' or `NOTE_INSN_BASIC_BLOCK'. By definition, a `CODE_LABEL' cannot appear in the middle of the instruction stream of a basic block. In addition to notes, the jump table vectors are also represented as "pseudo-instructions" inside the insn stream. These vectors never appear in the basic block and should always be placed just after the ! table jump instructions referencing them. After removing the ! table-jump it is often difficult to eliminate the code computing the ! address and referencing the vector, so cleaning up these vectors is ! postponed until after liveness analysis. Thus the jump table vectors ! may appear in the insn stream unreferenced and without any purpose. ! Before any edge is made "fall-thru", the existence of such construct in ! the way needs to be checked by calling `can_fallthru' function. ! For the `GIMPLE' representation, the PHI nodes and statements ! contained in a basic block are in a `gimple_seq' pointed to by the ! basic block intermediate language specific pointers. Abstract ! containers and iterators are used to access the PHI nodes and ! statements in a basic blocks. These iterators are called "GIMPLE ! statement iterators" (GSIs). Grep for `^gsi' in the various `gimple-*' ! and `tree-*' files. The following snippet will pretty-print all PHI ! nodes the statements of the current function in the GIMPLE ! representation. basic_block bb; *************** File: gccint.info, Node: Edges, Next: *** 17119,17170 **** Edges represent possible control flow transfers from the end of some basic block A to the head of another basic block B. We say that A is a predecessor of B, and B is a successor of A. Edges are represented in ! GCC with the 'edge' data type. Each 'edge' acts as a link between two ! basic blocks: The 'src' member of an edge points to the predecessor ! basic block of the 'dest' basic block. The members 'preds' and 'succs' ! of the 'basic_block' data type point to type-safe vectors of edges to the predecessors and successors of the block. When walking the edges in an edge vector, "edge iterators" should be ! used. Edge iterators are constructed using the 'edge_iterator' data structure and several methods are available to operate on them: ! 'ei_start' ! This function initializes an 'edge_iterator' that points to the first edge in a vector of edges. ! 'ei_last' ! This function initializes an 'edge_iterator' that points to the last edge in a vector of edges. ! 'ei_end_p' ! This predicate is 'true' if an 'edge_iterator' represents the last edge in an edge vector. ! 'ei_one_before_end_p' ! This predicate is 'true' if an 'edge_iterator' represents the second last edge in an edge vector. ! 'ei_next' ! This function takes a pointer to an 'edge_iterator' and makes it point to the next edge in the sequence. ! 'ei_prev' ! This function takes a pointer to an 'edge_iterator' and makes it point to the previous edge in the sequence. ! 'ei_edge' ! This function returns the 'edge' currently pointed to by an ! 'edge_iterator'. ! 'ei_safe_safe' ! This function returns the 'edge' currently pointed to by an ! 'edge_iterator', but returns 'NULL' if the iterator is pointing at the end of the sequence. This function has been provided for ! existing code makes the assumption that a 'NULL' edge indicates the ! end of the sequence. ! The convenience macro 'FOR_EACH_EDGE' can be used to visit all of the edges in a sequence of predecessor or successor edges. It must not be used when an element might be removed during the traversal, otherwise elements will be missed. Here is an example of how to use the macro: --- 17294,17346 ---- Edges represent possible control flow transfers from the end of some basic block A to the head of another basic block B. We say that A is a predecessor of B, and B is a successor of A. Edges are represented in ! GCC with the `edge' data type. Each `edge' acts as a link between two ! basic blocks: The `src' member of an edge points to the predecessor ! basic block of the `dest' basic block. The members `preds' and `succs' ! of the `basic_block' data type point to type-safe vectors of edges to the predecessors and successors of the block. When walking the edges in an edge vector, "edge iterators" should be ! used. Edge iterators are constructed using the `edge_iterator' data structure and several methods are available to operate on them: ! `ei_start' ! This function initializes an `edge_iterator' that points to the first edge in a vector of edges. ! `ei_last' ! This function initializes an `edge_iterator' that points to the last edge in a vector of edges. ! `ei_end_p' ! This predicate is `true' if an `edge_iterator' represents the last edge in an edge vector. ! `ei_one_before_end_p' ! This predicate is `true' if an `edge_iterator' represents the second last edge in an edge vector. ! `ei_next' ! This function takes a pointer to an `edge_iterator' and makes it point to the next edge in the sequence. ! `ei_prev' ! This function takes a pointer to an `edge_iterator' and makes it point to the previous edge in the sequence. ! `ei_edge' ! This function returns the `edge' currently pointed to by an ! `edge_iterator'. ! `ei_safe_safe' ! This function returns the `edge' currently pointed to by an ! `edge_iterator', but returns `NULL' if the iterator is pointing at the end of the sequence. This function has been provided for ! existing code makes the assumption that a `NULL' edge indicates ! the end of the sequence. ! ! The convenience macro `FOR_EACH_EDGE' can be used to visit all of the edges in a sequence of predecessor or successor edges. It must not be used when an element might be removed during the traversal, otherwise elements will be missed. Here is an example of how to use the macro: *************** elements will be missed. Here is an exa *** 17180,17191 **** There are various reasons why control flow may transfer from one block to another. One possibility is that some instruction, for example a ! 'CODE_LABEL', in a linearized instruction stream just always starts a new basic block. In this case a "fall-thru" edge links the basic block ! to the first following basic block. But there are several other reasons ! why edges may be created. The 'flags' field of the 'edge' data type is ! used to store information about the type of edge we are dealing with. ! Each edge is of one of the following types: _jump_ No type flags are set for edges corresponding to jump instructions. --- 17356,17367 ---- There are various reasons why control flow may transfer from one block to another. One possibility is that some instruction, for example a ! `CODE_LABEL', in a linearized instruction stream just always starts a new basic block. In this case a "fall-thru" edge links the basic block ! to the first following basic block. But there are several other ! reasons why edges may be created. The `flags' field of the `edge' data ! type is used to store information about the type of edge we are dealing ! with. Each edge is of one of the following types: _jump_ No type flags are set for edges corresponding to jump instructions. *************** _jump_ *** 17197,17208 **** _fall-thru_ Fall-thru edges are present in case where the basic block may continue execution to the following one without branching. These ! edges have the 'EDGE_FALLTHRU' flag set. Unlike other types of edges, these edges must come into the basic block immediately following in the instruction stream. The function ! 'force_nonfallthru' is available to insert an unconditional jump in ! the case that redirection is needed. Note that this may require ! creation of a new basic block. _exception handling_ Exception handling edges represent possible control transfers from --- 17373,17384 ---- _fall-thru_ Fall-thru edges are present in case where the basic block may continue execution to the following one without branching. These ! edges have the `EDGE_FALLTHRU' flag set. Unlike other types of edges, these edges must come into the basic block immediately following in the instruction stream. The function ! `force_nonfallthru' is available to insert an unconditional jump ! in the case that redirection is needed. Note that this may ! require creation of a new basic block. _exception handling_ Exception handling edges represent possible control transfers from *************** _exception handling_ *** 17211,17244 **** Java and Ada, exceptions like division by zero or segmentation fault are defined and thus each instruction possibly throwing this kind of exception needs to be handled as control flow instruction. ! Exception edges have the 'EDGE_ABNORMAL' and 'EDGE_EH' flags set. When updating the instruction stream it is easy to change possibly trapping instruction to non-trapping, by simply removing the exception edge. The opposite conversion is difficult, but should not happen anyway. The edges can be eliminated via ! 'purge_dead_edges' call. In the RTL representation, the destination of an exception edge is ! specified by 'REG_EH_REGION' note attached to the insn. In case of ! a trapping call the 'EDGE_ABNORMAL_CALL' flag is set too. In the ! 'GIMPLE' representation, this extra flag is not set. ! In the RTL representation, the predicate 'may_trap_p' may be used to check whether instruction still may trap or not. For the tree ! representation, the 'tree_could_trap_p' predicate is available, but ! this predicate only checks for possible memory traps, as in dereferencing an invalid pointer location. _sibling calls_ Sibling calls or tail calls terminate the function in a non-standard way and thus an edge to the exit must be present. ! 'EDGE_SIBCALL' and 'EDGE_ABNORMAL' are set in such case. These edges only exist in the RTL representation. _computed jumps_ Computed jumps contain edges to all labels in the function ! referenced from the code. All those edges have 'EDGE_ABNORMAL' flag set. The edges used to represent computed jumps often cause compile time performance problems, since functions consisting of many taken labels and many computed jumps may have _very_ dense --- 17387,17420 ---- Java and Ada, exceptions like division by zero or segmentation fault are defined and thus each instruction possibly throwing this kind of exception needs to be handled as control flow instruction. ! Exception edges have the `EDGE_ABNORMAL' and `EDGE_EH' flags set. When updating the instruction stream it is easy to change possibly trapping instruction to non-trapping, by simply removing the exception edge. The opposite conversion is difficult, but should not happen anyway. The edges can be eliminated via ! `purge_dead_edges' call. In the RTL representation, the destination of an exception edge is ! specified by `REG_EH_REGION' note attached to the insn. In case ! of a trapping call the `EDGE_ABNORMAL_CALL' flag is set too. In ! the `GIMPLE' representation, this extra flag is not set. ! In the RTL representation, the predicate `may_trap_p' may be used to check whether instruction still may trap or not. For the tree ! representation, the `tree_could_trap_p' predicate is available, ! but this predicate only checks for possible memory traps, as in dereferencing an invalid pointer location. _sibling calls_ Sibling calls or tail calls terminate the function in a non-standard way and thus an edge to the exit must be present. ! `EDGE_SIBCALL' and `EDGE_ABNORMAL' are set in such case. These edges only exist in the RTL representation. _computed jumps_ Computed jumps contain edges to all labels in the function ! referenced from the code. All those edges have `EDGE_ABNORMAL' flag set. The edges used to represent computed jumps often cause compile time performance problems, since functions consisting of many taken labels and many computed jumps may have _very_ dense *************** _computed jumps_ *** 17275,17302 **** has a runtime cost in there resulting code: An extra jump. Therefore, the computed jumps are un-factored in the later passes of the compiler (in the pass called ! 'pass_duplicate_computed_gotos'). Be aware of that when you work on passes in that area. There have been numerous examples already where the compile time for code with unfactored computed jumps caused some serious headaches. _nonlocal goto handlers_ ! GCC allows nested functions to return into caller using a 'goto' to ! a label passed to as an argument to the callee. The labels passed ! to nested functions contain special code to cleanup after function ! call. Such sections of code are referred to as "nonlocal goto ! receivers". If a function contains such nonlocal goto receivers, ! an edge from the call to the label is created with the ! 'EDGE_ABNORMAL' and 'EDGE_ABNORMAL_CALL' flags set. _function entry points_ By definition, execution of function starts at basic block 0, so ! there is always an edge from the 'ENTRY_BLOCK_PTR' to basic block ! 0. There is no 'GIMPLE' representation for alternate entry points at this moment. In RTL, alternate entry points are specified by ! 'CODE_LABEL' with 'LABEL_ALTERNATE_NAME' defined. This feature is ! currently used for multiple entry point prologues and is limited to ! post-reload passes only. This can be used by back-ends to emit alternate prologues for functions called from different contexts. In future full support for multiple entry functions defined by Fortran 90 needs to be implemented. --- 17451,17478 ---- has a runtime cost in there resulting code: An extra jump. Therefore, the computed jumps are un-factored in the later passes of the compiler (in the pass called ! `pass_duplicate_computed_gotos'). Be aware of that when you work on passes in that area. There have been numerous examples already where the compile time for code with unfactored computed jumps caused some serious headaches. _nonlocal goto handlers_ ! GCC allows nested functions to return into caller using a `goto' ! to a label passed to as an argument to the callee. The labels ! passed to nested functions contain special code to cleanup after ! function call. Such sections of code are referred to as "nonlocal ! goto receivers". If a function contains such nonlocal goto ! receivers, an edge from the call to the label is created with the ! `EDGE_ABNORMAL' and `EDGE_ABNORMAL_CALL' flags set. _function entry points_ By definition, execution of function starts at basic block 0, so ! there is always an edge from the `ENTRY_BLOCK_PTR' to basic block ! 0. There is no `GIMPLE' representation for alternate entry points at this moment. In RTL, alternate entry points are specified by ! `CODE_LABEL' with `LABEL_ALTERNATE_NAME' defined. This feature is ! currently used for multiple entry point prologues and is limited ! to post-reload passes only. This can be used by back-ends to emit alternate prologues for functions called from different contexts. In future full support for multiple entry functions defined by Fortran 90 needs to be implemented. *************** _function entry points_ *** 17304,17313 **** _function exits_ In the pre-reload representation a function terminates after the last instruction in the insn chain and no explicit return ! instructions are used. This corresponds to the fall-thru edge into ! exit block. After reload, optimal RTL epilogues are used that use ! explicit (conditional) return instructions that are represented by ! edges with no flags set.  File: gccint.info, Node: Profile information, Next: Maintaining the CFG, Prev: Edges, Up: Control Flow --- 17480,17490 ---- _function exits_ In the pre-reload representation a function terminates after the last instruction in the insn chain and no explicit return ! instructions are used. This corresponds to the fall-thru edge ! into exit block. After reload, optimal RTL epilogues are used ! that use explicit (conditional) return instructions that are ! represented by edges with no flags set. !  File: gccint.info, Node: Profile information, Next: Maintaining the CFG, Prev: Edges, Up: Control Flow *************** instrumentation, executing it on a train *** 17328,17359 **** executions of basic blocks and edges back to the compiler while re-compiling the program to produce the final executable. This method provides very accurate information about where a program spends most of ! its time on the train run. Whether it matches the average run of course ! depends on the choice of train data set, but several studies have shown ! that the behavior of a program usually changes just marginally over ! different data sets. When profile feedback is not available, the compiler may be asked to attempt to predict the behavior of each branch in the program using a ! set of heuristics (see 'predict.def' for details) and compute estimated frequencies of each basic block by propagating the probabilities over the graph. ! Each 'basic_block' contains two integer fields to represent profile ! information: 'frequency' and 'count'. The 'frequency' is an estimation how often is basic block executed within a function. It is represented ! as an integer scaled in the range from 0 to 'BB_FREQ_BASE'. The most frequently executed basic block in function is initially set to ! 'BB_FREQ_BASE' and the rest of frequencies are scaled accordingly. During optimization, the frequency of the most frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance by cross-jumping optimization), so scaling sometimes has to be performed multiple times. ! The 'count' contains hard-counted numbers of execution measured during training runs and is nonzero only when profile feedback is available. This value is represented as the host's widest integer (typically a 64 ! bit integer) of the special type 'gcov_type'. Most optimization passes can use only the frequency information of a basic block, but a few passes may want to know hard execution counts. --- 17505,17536 ---- executions of basic blocks and edges back to the compiler while re-compiling the program to produce the final executable. This method provides very accurate information about where a program spends most of ! its time on the train run. Whether it matches the average run of ! course depends on the choice of train data set, but several studies ! have shown that the behavior of a program usually changes just ! marginally over different data sets. When profile feedback is not available, the compiler may be asked to attempt to predict the behavior of each branch in the program using a ! set of heuristics (see `predict.def' for details) and compute estimated frequencies of each basic block by propagating the probabilities over the graph. ! Each `basic_block' contains two integer fields to represent profile ! information: `frequency' and `count'. The `frequency' is an estimation how often is basic block executed within a function. It is represented ! as an integer scaled in the range from 0 to `BB_FREQ_BASE'. The most frequently executed basic block in function is initially set to ! `BB_FREQ_BASE' and the rest of frequencies are scaled accordingly. During optimization, the frequency of the most frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance by cross-jumping optimization), so scaling sometimes has to be performed multiple times. ! The `count' contains hard-counted numbers of execution measured during training runs and is nonzero only when profile feedback is available. This value is represented as the host's widest integer (typically a 64 ! bit integer) of the special type `gcov_type'. Most optimization passes can use only the frequency information of a basic block, but a few passes may want to know hard execution counts. *************** during updating of the profile informati *** 17362,17377 **** accumulate into quite large errors. Each edge also contains a branch probability field: an integer in the ! range from 0 to 'REG_BR_PROB_BASE'. It represents probability of ! passing control from the end of the 'src' basic block to the 'dest' basic block, i.e. the probability that control will flow along this ! edge. The 'EDGE_FREQUENCY' macro is available to compute how frequently ! a given edge is taken. There is a 'count' field for each edge as well, ! representing same information as for a basic block. The basic block frequencies are not represented in the instruction stream, but in the RTL representation the edge frequencies are ! represented for conditional jumps (via the 'REG_BR_PROB' macro) since they are used when instructions are output to the assembly file and the flow graph is no longer maintained. --- 17539,17554 ---- accumulate into quite large errors. Each edge also contains a branch probability field: an integer in the ! range from 0 to `REG_BR_PROB_BASE'. It represents probability of ! passing control from the end of the `src' basic block to the `dest' basic block, i.e. the probability that control will flow along this ! edge. The `EDGE_FREQUENCY' macro is available to compute how ! frequently a given edge is taken. There is a `count' field for each ! edge as well, representing same information as for a basic block. The basic block frequencies are not represented in the instruction stream, but in the RTL representation the edge frequencies are ! represented for conditional jumps (via the `REG_BR_PROB' macro) since they are used when instructions are output to the assembly file and the flow graph is no longer maintained. *************** basic blocks. *** 17383,17401 **** Updating profile information is a delicate task that can unfortunately not be easily integrated with the CFG manipulation API. Many of the functions and hooks to modify the CFG, such as ! 'redirect_edge_and_branch', do not have enough information to easily update the profile, so updating it is in the majority of cases left up to the caller. It is difficult to uncover bugs in the profile updating ! code, because they manifest themselves only by producing worse code, and ! checking profile consistency is not possible because of numeric error ! accumulation. Hence special attention needs to be given to this issue ! in each pass that modifies the CFG. ! It is important to point out that 'REG_BR_PROB_BASE' and 'BB_FREQ_BASE' ! are both set low enough to be possible to compute second power of any ! frequency or probability in the flow graph, it is not possible to even ! square the 'count' field, as modern CPUs are fast enough to execute ! $2^32$ operations quickly.  File: gccint.info, Node: Maintaining the CFG, Next: Liveness information, Prev: Profile information, Up: Control Flow --- 17560,17578 ---- Updating profile information is a delicate task that can unfortunately not be easily integrated with the CFG manipulation API. Many of the functions and hooks to modify the CFG, such as ! `redirect_edge_and_branch', do not have enough information to easily update the profile, so updating it is in the majority of cases left up to the caller. It is difficult to uncover bugs in the profile updating ! code, because they manifest themselves only by producing worse code, ! and checking profile consistency is not possible because of numeric ! error accumulation. Hence special attention needs to be given to this ! issue in each pass that modifies the CFG. ! It is important to point out that `REG_BR_PROB_BASE' and ! `BB_FREQ_BASE' are both set low enough to be possible to compute second ! power of any frequency or probability in the flow graph, it is not ! possible to even square the `count' field, as modern CPUs are fast ! enough to execute $2^32$ operations quickly.  File: gccint.info, Node: Maintaining the CFG, Next: Liveness information, Prev: Profile information, Up: Control Flow *************** File: gccint.info, Node: Maintaining th *** 17403,17520 **** 14.4 Maintaining the CFG ======================== ! An important task of each compiler pass is to keep both the control flow ! graph and all profile information up-to-date. Reconstruction of the ! control flow graph after each pass is not an option, since it may be very expensive and lost profile information cannot be reconstructed at all. GCC has two major intermediate representations, and both use the ! 'basic_block' and 'edge' data types to represent control flow. Both representations share as much of the CFG maintenance code as possible. For each representation, a set of "hooks" is defined so that each representation can provide its own implementation of CFG manipulation ! routines when necessary. These hooks are defined in 'cfghooks.h'. ! There are hooks for almost all common CFG manipulations, including block ! splitting and merging, edge redirection and creating and deleting basic ! blocks. These hooks should provide everything you need to maintain and ! manipulate the CFG in both the RTL and 'GIMPLE' representation. At the moment, the basic block boundaries are maintained transparently when modifying instructions, so there rarely is a need to move them manually (such as in case someone wants to output instruction outside basic block explicitly). ! In the RTL representation, each instruction has a 'BLOCK_FOR_INSN' value that represents pointer to the basic block that contains the ! instruction. In the 'GIMPLE' representation, the function 'gimple_bb' returns a pointer to the basic block containing the queried statement. ! When changes need to be applied to a function in its 'GIMPLE' representation, "GIMPLE statement iterators" should be used. These iterators provide an integrated abstraction of the flow graph and the ! instruction stream. Block statement iterators are constructed using the ! 'gimple_stmt_iterator' data structure and several modifier are available, including the following: ! 'gsi_start' ! This function initializes a 'gimple_stmt_iterator' that points to the first non-empty statement in a basic block. ! 'gsi_last' ! This function initializes a 'gimple_stmt_iterator' that points to the last statement in a basic block. ! 'gsi_end_p' ! This predicate is 'true' if a 'gimple_stmt_iterator' represents the ! end of a basic block. ! 'gsi_next' ! This function takes a 'gimple_stmt_iterator' and makes it point to its successor. ! 'gsi_prev' ! This function takes a 'gimple_stmt_iterator' and makes it point to its predecessor. ! 'gsi_insert_after' ! This function inserts a statement after the 'gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or left pointing to the original statement. ! 'gsi_insert_before' ! This function inserts a statement before the 'gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or ! left pointing to the original statement. ! 'gsi_remove' ! This function removes the 'gimple_stmt_iterator' passed in and rechains the remaining statements in a basic block, if any. ! In the RTL representation, the macros 'BB_HEAD' and 'BB_END' may be ! used to get the head and end 'rtx' of a basic block. No abstract iterators are defined for traversing the insn chain, but you can just ! use 'NEXT_INSN' and 'PREV_INSN' instead. *Note Insns::. Usually a code manipulating pass simplifies the instruction stream and the flow of control, possibly eliminating some edges. This may for ! example happen when a conditional jump is replaced with an unconditional ! jump, but also when simplifying possibly trapping instruction to ! non-trapping while compiling Java. Updating of edges is not transparent ! and each optimization pass is required to do so manually. However only ! few cases occur in practice. The pass may call 'purge_dead_edges' on a ! given basic block to remove superfluous edges, if any. ! Another common scenario is redirection of branch instructions, but this ! is best modeled as redirection of edges in the control flow graph and ! thus use of 'redirect_edge_and_branch' is preferred over more low level ! functions, such as 'redirect_jump' that operate on RTL chain only. The ! CFG hooks defined in 'cfghooks.h' should provide the complete API ! required for manipulating and maintaining the CFG. It is also possible that a pass has to insert control flow instruction into the middle of a basic block, thus creating an entry point in the middle of the basic block, which is impossible by definition: The block ! must be split to make sure it only has one entry point, i.e. the head of ! the basic block. The CFG hook 'split_block' may be used when an ! instruction in the middle of a basic block has to become the target of a ! jump or branch instruction. For a global optimizer, a common operation is to split edges in the flow graph and insert instructions on them. In the RTL representation, ! this can be easily done using the 'insert_insn_on_edge' function that emits an instruction "on the edge", caching it for a later ! 'commit_edge_insertions' call that will take care of moving the inserted ! instructions off the edge into the instruction stream contained in a ! basic block. This includes the creation of new basic blocks where ! needed. In the 'GIMPLE' representation, the equivalent functions are ! 'gsi_insert_on_edge' which inserts a block statement iterator on an ! edge, and 'gsi_commit_edge_inserts' which flushes the instruction to ! actual instruction stream. ! While debugging the optimization pass, the 'verify_flow_info' function may be useful to find bugs in the control flow graph updating code.  --- 17580,17699 ---- 14.4 Maintaining the CFG ======================== ! An important task of each compiler pass is to keep both the control ! flow graph and all profile information up-to-date. Reconstruction of ! the control flow graph after each pass is not an option, since it may be very expensive and lost profile information cannot be reconstructed at all. GCC has two major intermediate representations, and both use the ! `basic_block' and `edge' data types to represent control flow. Both representations share as much of the CFG maintenance code as possible. For each representation, a set of "hooks" is defined so that each representation can provide its own implementation of CFG manipulation ! routines when necessary. These hooks are defined in `cfghooks.h'. ! There are hooks for almost all common CFG manipulations, including ! block splitting and merging, edge redirection and creating and deleting ! basic blocks. These hooks should provide everything you need to ! maintain and manipulate the CFG in both the RTL and `GIMPLE' ! representation. At the moment, the basic block boundaries are maintained transparently when modifying instructions, so there rarely is a need to move them manually (such as in case someone wants to output instruction outside basic block explicitly). ! In the RTL representation, each instruction has a `BLOCK_FOR_INSN' value that represents pointer to the basic block that contains the ! instruction. In the `GIMPLE' representation, the function `gimple_bb' returns a pointer to the basic block containing the queried statement. ! When changes need to be applied to a function in its `GIMPLE' representation, "GIMPLE statement iterators" should be used. These iterators provide an integrated abstraction of the flow graph and the ! instruction stream. Block statement iterators are constructed using ! the `gimple_stmt_iterator' data structure and several modifier are available, including the following: ! `gsi_start' ! This function initializes a `gimple_stmt_iterator' that points to the first non-empty statement in a basic block. ! `gsi_last' ! This function initializes a `gimple_stmt_iterator' that points to the last statement in a basic block. ! `gsi_end_p' ! This predicate is `true' if a `gimple_stmt_iterator' represents ! the end of a basic block. ! `gsi_next' ! This function takes a `gimple_stmt_iterator' and makes it point to its successor. ! `gsi_prev' ! This function takes a `gimple_stmt_iterator' and makes it point to its predecessor. ! `gsi_insert_after' ! This function inserts a statement after the `gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or left pointing to the original statement. ! `gsi_insert_before' ! This function inserts a statement before the `gimple_stmt_iterator' passed in. The final parameter determines whether the statement iterator is updated to point to the newly inserted statement, or ! left pointing to the original statement. ! `gsi_remove' ! This function removes the `gimple_stmt_iterator' passed in and rechains the remaining statements in a basic block, if any. ! In the RTL representation, the macros `BB_HEAD' and `BB_END' may be ! used to get the head and end `rtx' of a basic block. No abstract iterators are defined for traversing the insn chain, but you can just ! use `NEXT_INSN' and `PREV_INSN' instead. *Note Insns::. Usually a code manipulating pass simplifies the instruction stream and the flow of control, possibly eliminating some edges. This may for ! example happen when a conditional jump is replaced with an ! unconditional jump, but also when simplifying possibly trapping ! instruction to non-trapping while compiling Java. Updating of edges is ! not transparent and each optimization pass is required to do so ! manually. However only few cases occur in practice. The pass may call ! `purge_dead_edges' on a given basic block to remove superfluous edges, ! if any. ! Another common scenario is redirection of branch instructions, but ! this is best modeled as redirection of edges in the control flow graph ! and thus use of `redirect_edge_and_branch' is preferred over more low ! level functions, such as `redirect_jump' that operate on RTL chain ! only. The CFG hooks defined in `cfghooks.h' should provide the ! complete API required for manipulating and maintaining the CFG. It is also possible that a pass has to insert control flow instruction into the middle of a basic block, thus creating an entry point in the middle of the basic block, which is impossible by definition: The block ! must be split to make sure it only has one entry point, i.e. the head ! of the basic block. The CFG hook `split_block' may be used when an ! instruction in the middle of a basic block has to become the target of ! a jump or branch instruction. For a global optimizer, a common operation is to split edges in the flow graph and insert instructions on them. In the RTL representation, ! this can be easily done using the `insert_insn_on_edge' function that emits an instruction "on the edge", caching it for a later ! `commit_edge_insertions' call that will take care of moving the ! inserted instructions off the edge into the instruction stream ! contained in a basic block. This includes the creation of new basic ! blocks where needed. In the `GIMPLE' representation, the equivalent ! functions are `gsi_insert_on_edge' which inserts a block statement ! iterator on an edge, and `gsi_commit_edge_inserts' which flushes the ! instruction to actual instruction stream. ! While debugging the optimization pass, the `verify_flow_info' function may be useful to find bugs in the control flow graph updating code.  *************** File: gccint.info, Node: Liveness infor *** 17524,17559 **** ========================= Liveness information is useful to determine whether some register is ! "live" at given point of program, i.e. that it contains a value that may ! be used at a later point in the program. This information is used, for ! instance, during register allocation, as the pseudo registers only need ! to be assigned to a unique hard register or to a stack slot if they are ! live. The hard registers and stack slots may be freely reused for other ! values when a register is dead. Liveness information is available in the back end starting with ! 'pass_df_initialize' and ending with 'pass_df_finish'. Three flavors of ! live analysis are available: With 'LR', it is possible to determine at ! any point 'P' in the function if the register may be used on some path ! from 'P' to the end of the function. With 'UR', it is possible to ! determine if there is a path from the beginning of the function to 'P' ! that defines the variable. 'LIVE' is the intersection of the 'LR' and ! 'UR' and a variable is live at 'P' if there is both an assignment that reaches it from the beginning of the function and a use that can be ! reached on some path from 'P' to the end of the function. ! In general 'LIVE' is the most useful of the three. The macros ! 'DF_[LR,UR,LIVE]_[IN,OUT]' can be used to access this information. The macros take a basic block number and return a bitmap that is indexed by the register number. This information is only guaranteed to be up to ! date after calls are made to 'df_analyze'. See the file 'df-core.c' for ! details on using the dataflow. The liveness information is stored partly in the RTL instruction stream and partly in the flow graph. Local information is stored in the ! instruction stream: Each instruction may contain 'REG_DEAD' notes representing that the value of a given register is no longer needed, or ! 'REG_UNUSED' notes representing that the value computed by the instruction is never used. The second is useful for instructions computing multiple values at once. --- 17703,17738 ---- ========================= Liveness information is useful to determine whether some register is ! "live" at given point of program, i.e. that it contains a value that ! may be used at a later point in the program. This information is used, ! for instance, during register allocation, as the pseudo registers only ! need to be assigned to a unique hard register or to a stack slot if ! they are live. The hard registers and stack slots may be freely reused ! for other values when a register is dead. Liveness information is available in the back end starting with ! `pass_df_initialize' and ending with `pass_df_finish'. Three flavors ! of live analysis are available: With `LR', it is possible to determine ! at any point `P' in the function if the register may be used on some ! path from `P' to the end of the function. With `UR', it is possible to ! determine if there is a path from the beginning of the function to `P' ! that defines the variable. `LIVE' is the intersection of the `LR' and ! `UR' and a variable is live at `P' if there is both an assignment that reaches it from the beginning of the function and a use that can be ! reached on some path from `P' to the end of the function. ! In general `LIVE' is the most useful of the three. The macros ! `DF_[LR,UR,LIVE]_[IN,OUT]' can be used to access this information. The macros take a basic block number and return a bitmap that is indexed by the register number. This information is only guaranteed to be up to ! date after calls are made to `df_analyze'. See the file `df-core.c' ! for details on using the dataflow. The liveness information is stored partly in the RTL instruction stream and partly in the flow graph. Local information is stored in the ! instruction stream: Each instruction may contain `REG_DEAD' notes representing that the value of a given register is no longer needed, or ! `REG_UNUSED' notes representing that the value computed by the instruction is never used. The second is useful for instructions computing multiple values at once. *************** File: gccint.info, Node: Loop represent *** 17589,17597 **** This chapter describes the representation of loops in GCC, and functions that can be used to build, modify and analyze this representation. Most ! of the interfaces and data structures are declared in 'cfgloop.h'. Loop ! structures are analyzed and this information disposed or updated at the ! discretion of individual passes. Still most of the generic CFG manipulation routines are aware of loop structures and try to keep them up-to-date. By this means an increasing part of the compilation pipeline is setup to maintain loop structure across passes to allow --- 17768,17776 ---- This chapter describes the representation of loops in GCC, and functions that can be used to build, modify and analyze this representation. Most ! of the interfaces and data structures are declared in `cfgloop.h'. ! Loop structures are analyzed and this information disposed or updated ! at the discretion of individual passes. Still most of the generic CFG manipulation routines are aware of loop structures and try to keep them up-to-date. By this means an increasing part of the compilation pipeline is setup to maintain loop structure across passes to allow *************** correspond to sub-loops or to control fl *** 17611,17617 **** that the analysis sometimes changes the CFG, and if you run it in the middle of an optimization pass, you must be able to deal with the new blocks. You may avoid CFG changes by passing ! 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES' flag to the loop discovery, note however that most other loop manipulation functions will not work correctly for loops with multiple latch edges (the functions that only query membership of blocks to loops and subloop relationships, or --- 17790,17796 ---- that the analysis sometimes changes the CFG, and if you run it in the middle of an optimization pass, you must be able to deal with the new blocks. You may avoid CFG changes by passing ! `LOOPS_MAY_HAVE_MULTIPLE_LATCHES' flag to the loop discovery, note however that most other loop manipulation functions will not work correctly for loops with multiple latch edges (the functions that only query membership of blocks to loops and subloop relationships, or *************** enumerate and test loop exits, can be ex *** 17621,17677 **** and reachable from its latch against the direction of edges in CFG. The loops are organized in a containment hierarchy (tree) such that all the loops immediately contained inside loop L are the children of L in the ! tree. This tree is represented by the 'struct loops' structure. The root of this tree is a fake loop that contains all blocks in the ! function. Each of the loops is represented in a 'struct loop' ! structure. Each loop is assigned an index ('num' field of the 'struct loop' structure), and the pointer to the loop is stored in the ! corresponding field of the 'larray' vector in the loops structure. The ! indices do not have to be continuous, there may be empty ('NULL') ! entries in the 'larray' created by deleting loops. Also, there is no guarantee on the relative order of a loop and its subloops in the numbering. The index of a loop never changes. ! The entries of the 'larray' field should not be accessed directly. The ! function 'get_loop' returns the loop description for a loop with the ! given index. 'number_of_loops' function returns number of loops in the ! function. To traverse all loops, use 'FOR_EACH_LOOP' macro. The ! 'flags' argument of the macro is used to determine the direction of traversal and the set of loops visited. Each loop is guaranteed to be visited exactly once, regardless of the changes to the loop tree, and the loops may be removed during the traversal. The newly created loops are never traversed, if they need to be visited, this must be done ! separately after their creation. The 'FOR_EACH_LOOP' macro allocates ! temporary variables. If the 'FOR_EACH_LOOP' loop were ended using break ! or goto, they would not be released; 'FOR_EACH_LOOP_BREAK' macro must be ! used instead. Each basic block contains the reference to the innermost loop it ! belongs to ('loop_father'). For this reason, it is only possible to ! have one 'struct loops' structure initialized at the same time for each ! CFG. The global variable 'current_loops' contains the 'struct loops' structure. Many of the loop manipulation functions assume that dominance information is up-to-date. ! The loops are analyzed through 'loop_optimizer_init' function. The argument of this function is a set of flags represented in an integer bitmask. These flags specify what other properties of the loop structures should be calculated/enforced and preserved later: ! * 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES': If this flag is set, no changes ! to CFG will be performed in the loop analysis, in particular, loops ! with multiple latch edges will not be disambiguated. If a loop has ! multiple latches, its latch block is set to NULL. Most of the loop ! manipulation functions will not work for loops in this shape. No ! other flags that require CFG changes can be passed to loop_optimizer_init. ! * 'LOOPS_HAVE_PREHEADERS': Forwarder blocks are created in such a way ! that each loop has only one entry edge, and additionally, the source block of this entry edge has only one successor. This creates a natural place where the code can be moved out of the loop, and ensures that the entry edge of the loop leads from its immediate super-loop. ! * 'LOOPS_HAVE_SIMPLE_LATCHES': Forwarder blocks are created to force the latch block of each loop to have only one successor. This ensures that the latch of the loop does not belong to any of its sub-loops, and makes manipulation with the loops significantly --- 17800,17858 ---- and reachable from its latch against the direction of edges in CFG. The loops are organized in a containment hierarchy (tree) such that all the loops immediately contained inside loop L are the children of L in the ! tree. This tree is represented by the `struct loops' structure. The root of this tree is a fake loop that contains all blocks in the ! function. Each of the loops is represented in a `struct loop' ! structure. Each loop is assigned an index (`num' field of the `struct loop' structure), and the pointer to the loop is stored in the ! corresponding field of the `larray' vector in the loops structure. The ! indices do not have to be continuous, there may be empty (`NULL') ! entries in the `larray' created by deleting loops. Also, there is no guarantee on the relative order of a loop and its subloops in the numbering. The index of a loop never changes. ! The entries of the `larray' field should not be accessed directly. ! The function `get_loop' returns the loop description for a loop with ! the given index. `number_of_loops' function returns number of loops in ! the function. To traverse all loops, use `FOR_EACH_LOOP' macro. The ! `flags' argument of the macro is used to determine the direction of traversal and the set of loops visited. Each loop is guaranteed to be visited exactly once, regardless of the changes to the loop tree, and the loops may be removed during the traversal. The newly created loops are never traversed, if they need to be visited, this must be done ! separately after their creation. The `FOR_EACH_LOOP' macro allocates ! temporary variables. If the `FOR_EACH_LOOP' loop were ended using ! break or goto, they would not be released; `FOR_EACH_LOOP_BREAK' macro ! must be used instead. Each basic block contains the reference to the innermost loop it ! belongs to (`loop_father'). For this reason, it is only possible to ! have one `struct loops' structure initialized at the same time for each ! CFG. The global variable `current_loops' contains the `struct loops' structure. Many of the loop manipulation functions assume that dominance information is up-to-date. ! The loops are analyzed through `loop_optimizer_init' function. The argument of this function is a set of flags represented in an integer bitmask. These flags specify what other properties of the loop structures should be calculated/enforced and preserved later: ! * `LOOPS_MAY_HAVE_MULTIPLE_LATCHES': If this flag is set, no changes ! to CFG will be performed in the loop analysis, in particular, ! loops with multiple latch edges will not be disambiguated. If a ! loop has multiple latches, its latch block is set to NULL. Most of ! the loop manipulation functions will not work for loops in this ! shape. No other flags that require CFG changes can be passed to loop_optimizer_init. ! ! * `LOOPS_HAVE_PREHEADERS': Forwarder blocks are created in such a ! way that each loop has only one entry edge, and additionally, the source block of this entry edge has only one successor. This creates a natural place where the code can be moved out of the loop, and ensures that the entry edge of the loop leads from its immediate super-loop. ! ! * `LOOPS_HAVE_SIMPLE_LATCHES': Forwarder blocks are created to force the latch block of each loop to have only one successor. This ensures that the latch of the loop does not belong to any of its sub-loops, and makes manipulation with the loops significantly *************** structures should be calculated/enforced *** 17679,17716 **** loops are in this shape. Note that with this flag, the "normal" loop without any control flow inside and with one exit consists of two basic blocks. ! * 'LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS': Basic blocks and edges in the strongly connected components that are not natural loops (have ! more than one entry block) are marked with 'BB_IRREDUCIBLE_LOOP' ! and 'EDGE_IRREDUCIBLE_LOOP' flags. The flag is not set for blocks and edges that belong to natural loops that are in such an irreducible region (but it is set for the entry and exit edges of such a loop, if they lead to/from this region). ! * 'LOOPS_HAVE_RECORDED_EXITS': The lists of exits are recorded and updated for each loop. This makes some functions (e.g., ! 'get_loop_exit_edges') more efficient. Some functions (e.g., ! 'single_exit') can be used only if the lists of exits are recorded. These properties may also be computed/enforced later, using functions ! 'create_preheaders', 'force_single_succ_latches', ! 'mark_irreducible_loops' and 'record_loop_exits'. The properties can be ! queried using 'loops_state_satisfies_p'. The memory occupied by the loops structures should be freed with ! 'loop_optimizer_finalize' function. When loop structures are setup to be preserved across passes this function reduces the information to be ! kept up-to-date to a minimum (only 'LOOPS_MAY_HAVE_MULTIPLE_LATCHES' set). The CFG manipulation functions in general do not update loop structures. Specialized versions that additionally do so are provided ! for the most common tasks. On GIMPLE, 'cleanup_tree_cfg_loop' function can be used to cleanup CFG while updating the loops structures if ! 'current_loops' is set. ! At the moment loop structure is preserved from the start of GIMPLE loop ! optimizations until the end of RTL loop optimizations. During this time ! a loop can be tracked by its 'struct loop' and number.  File: gccint.info, Node: Loop querying, Next: Loop manipulation, Prev: Loop representation, Up: Loop Analysis and Representation --- 17860,17899 ---- loops are in this shape. Note that with this flag, the "normal" loop without any control flow inside and with one exit consists of two basic blocks. ! ! * `LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS': Basic blocks and edges in the strongly connected components that are not natural loops (have ! more than one entry block) are marked with `BB_IRREDUCIBLE_LOOP' ! and `EDGE_IRREDUCIBLE_LOOP' flags. The flag is not set for blocks and edges that belong to natural loops that are in such an irreducible region (but it is set for the entry and exit edges of such a loop, if they lead to/from this region). ! ! * `LOOPS_HAVE_RECORDED_EXITS': The lists of exits are recorded and updated for each loop. This makes some functions (e.g., ! `get_loop_exit_edges') more efficient. Some functions (e.g., ! `single_exit') can be used only if the lists of exits are recorded. These properties may also be computed/enforced later, using functions ! `create_preheaders', `force_single_succ_latches', ! `mark_irreducible_loops' and `record_loop_exits'. The properties can ! be queried using `loops_state_satisfies_p'. The memory occupied by the loops structures should be freed with ! `loop_optimizer_finalize' function. When loop structures are setup to be preserved across passes this function reduces the information to be ! kept up-to-date to a minimum (only `LOOPS_MAY_HAVE_MULTIPLE_LATCHES' set). The CFG manipulation functions in general do not update loop structures. Specialized versions that additionally do so are provided ! for the most common tasks. On GIMPLE, `cleanup_tree_cfg_loop' function can be used to cleanup CFG while updating the loops structures if ! `current_loops' is set. ! At the moment loop structure is preserved from the start of GIMPLE ! loop optimizations until the end of RTL loop optimizations. During ! this time a loop can be tracked by its `struct loop' and number.  File: gccint.info, Node: Loop querying, Next: Loop manipulation, Prev: Loop representation, Up: Loop Analysis and Representation *************** File: gccint.info, Node: Loop querying, *** 17719,17735 **** ================== The functions to query the information about loops are declared in ! 'cfgloop.h'. Some of the information can be taken directly from the ! structures. 'loop_father' field of each basic block contains the innermost loop to that the block belongs. The most useful fields of loop structure (that are kept up-to-date at all times) are: ! * 'header', 'latch': Header and latch basic blocks of the loop. ! * 'num_nodes': Number of basic blocks in the loop (including the basic blocks of the sub-loops). ! * 'depth': The depth of the loop in the loops tree, i.e., the number of super-loops of the loop. ! * 'outer', 'inner', 'next': The super-loop, the first sub-loop, and the sibling of the loop in the loops tree. There are other fields in the loop structures, many of them used only --- 17902,17921 ---- ================== The functions to query the information about loops are declared in ! `cfgloop.h'. Some of the information can be taken directly from the ! structures. `loop_father' field of each basic block contains the innermost loop to that the block belongs. The most useful fields of loop structure (that are kept up-to-date at all times) are: ! * `header', `latch': Header and latch basic blocks of the loop. ! ! * `num_nodes': Number of basic blocks in the loop (including the basic blocks of the sub-loops). ! ! * `depth': The depth of the loop in the loops tree, i.e., the number of super-loops of the loop. ! ! * `outer', `inner', `next': The super-loop, the first sub-loop, and the sibling of the loop in the loops tree. There are other fields in the loop structures, many of them used only *************** they should not be accessed directly. *** 17738,17769 **** The most important functions to query loop structures are: ! * 'flow_loops_dump': Dumps the information about loops to a file. ! * 'verify_loop_structure': Checks consistency of the loop structures. ! * 'loop_latch_edge': Returns the latch edge of a loop. ! * 'loop_preheader_edge': If loops have preheaders, returns the preheader edge of a loop. ! * 'flow_loop_nested_p': Tests whether loop is a sub-loop of another loop. ! * 'flow_bb_inside_loop_p': Tests whether a basic block belongs to a loop (including its sub-loops). ! * 'find_common_loop': Finds the common super-loop of two loops. ! * 'superloop_at_depth': Returns the super-loop of a loop with the given depth. ! * 'tree_num_loop_insns', 'num_loop_insns': Estimates the number of insns in the loop, on GIMPLE and on RTL. ! * 'loop_exit_edge_p': Tests whether edge is an exit from a loop. ! * 'mark_loop_exit_edges': Marks all exit edges of all loops with ! 'EDGE_LOOP_EXIT' flag. ! * 'get_loop_body', 'get_loop_body_in_dom_order', ! 'get_loop_body_in_bfs_order': Enumerates the basic blocks in the loop in depth-first search order in reversed CFG, ordered by dominance relation, and breath-first search order, respectively. ! * 'single_exit': Returns the single exit edge of the loop, or 'NULL' ! if the loop has more than one exit. You can only use this function ! if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used. ! * 'get_loop_exit_edges': Enumerates the exit edges of a loop. ! * 'just_once_each_iteration_p': Returns true if the basic block is executed exactly once during each iteration of a loop (that is, it does not belong to a sub-loop, and it dominates the latch of the loop). --- 17924,17969 ---- The most important functions to query loop structures are: ! * `flow_loops_dump': Dumps the information about loops to a file. ! ! * `verify_loop_structure': Checks consistency of the loop structures. ! ! * `loop_latch_edge': Returns the latch edge of a loop. ! ! * `loop_preheader_edge': If loops have preheaders, returns the preheader edge of a loop. ! ! * `flow_loop_nested_p': Tests whether loop is a sub-loop of another loop. ! ! * `flow_bb_inside_loop_p': Tests whether a basic block belongs to a loop (including its sub-loops). ! ! * `find_common_loop': Finds the common super-loop of two loops. ! ! * `superloop_at_depth': Returns the super-loop of a loop with the given depth. ! ! * `tree_num_loop_insns', `num_loop_insns': Estimates the number of insns in the loop, on GIMPLE and on RTL. ! ! * `loop_exit_edge_p': Tests whether edge is an exit from a loop. ! ! * `mark_loop_exit_edges': Marks all exit edges of all loops with ! `EDGE_LOOP_EXIT' flag. ! ! * `get_loop_body', `get_loop_body_in_dom_order', ! `get_loop_body_in_bfs_order': Enumerates the basic blocks in the loop in depth-first search order in reversed CFG, ordered by dominance relation, and breath-first search order, respectively. ! ! * `single_exit': Returns the single exit edge of the loop, or `NULL' ! if the loop has more than one exit. You can only use this ! function if LOOPS_HAVE_MARKED_SINGLE_EXITS property is used. ! ! * `get_loop_exit_edges': Enumerates the exit edges of a loop. ! ! * `just_once_each_iteration_p': Returns true if the basic block is executed exactly once during each iteration of a loop (that is, it does not belong to a sub-loop, and it dominates the latch of the loop). *************** File: gccint.info, Node: Loop manipulat *** 17776,17792 **** The loops tree can be manipulated using the following functions: ! * 'flow_loop_tree_node_add': Adds a node to the tree. ! * 'flow_loop_tree_node_remove': Removes a node from the tree. ! * 'add_bb_to_loop': Adds a basic block to a loop. ! * 'remove_bb_from_loops': Removes a basic block from loops. Most low-level CFG functions update loops automatically. The following functions handle some more complicated cases of CFG manipulations: ! * 'remove_path': Removes an edge and all blocks it dominates. ! * 'split_loop_exit_edge': Splits exit edge of the loop, ensuring that ! PHI node arguments remain in the loop (this ensures that loop-closed SSA form is preserved). Only useful on GIMPLE. Finally, there are some higher-level loop transformations implemented. --- 17976,17996 ---- The loops tree can be manipulated using the following functions: ! * `flow_loop_tree_node_add': Adds a node to the tree. ! ! * `flow_loop_tree_node_remove': Removes a node from the tree. ! ! * `add_bb_to_loop': Adds a basic block to a loop. ! ! * `remove_bb_from_loops': Removes a basic block from loops. Most low-level CFG functions update loops automatically. The following functions handle some more complicated cases of CFG manipulations: ! * `remove_path': Removes an edge and all blocks it dominates. ! ! * `split_loop_exit_edge': Splits exit edge of the loop, ensuring ! that PHI node arguments remain in the loop (this ensures that loop-closed SSA form is preserved). Only useful on GIMPLE. Finally, there are some higher-level loop transformations implemented. *************** While some of them are written so that t *** 17794,17816 **** loops, they are mostly untested in that case, and at the moment, they are only reliable for the innermost loops: ! * 'create_iv': Creates a new induction variable. Only works on ! GIMPLE. 'standard_iv_increment_position' can be used to find a suitable place for the iv increment. ! * 'duplicate_loop_to_header_edge', ! 'tree_duplicate_loop_to_header_edge': These functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number of times on one of the edges entering loop header, thus performing ! either loop unrolling or loop peeling. 'can_duplicate_loop_p' ! ('can_unroll_loop_p' on GIMPLE) must be true for the duplicated loop. ! * 'loop_version', 'tree_ssa_loop_version': These function create a copy of a loop, and a branch before them that selects one of them depending on the prescribed condition. This is useful for optimizations that need to verify some assumptions in runtime (one of the copies of the loop is usually left unchanged, while the other one is transformed in some way). ! * 'tree_unroll_loop': Unrolls the loop, including peeling the extra iterations to make the number of iterations divisible by unroll factor, updating the exit condition, and removing the exits that now cannot be taken. Works only on GIMPLE. --- 17998,18023 ---- loops, they are mostly untested in that case, and at the moment, they are only reliable for the innermost loops: ! * `create_iv': Creates a new induction variable. Only works on ! GIMPLE. `standard_iv_increment_position' can be used to find a suitable place for the iv increment. ! ! * `duplicate_loop_to_header_edge', ! `tree_duplicate_loop_to_header_edge': These functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number of times on one of the edges entering loop header, thus performing ! either loop unrolling or loop peeling. `can_duplicate_loop_p' ! (`can_unroll_loop_p' on GIMPLE) must be true for the duplicated loop. ! ! * `loop_version', `tree_ssa_loop_version': These function create a copy of a loop, and a branch before them that selects one of them depending on the prescribed condition. This is useful for optimizations that need to verify some assumptions in runtime (one of the copies of the loop is usually left unchanged, while the other one is transformed in some way). ! ! * `tree_unroll_loop': Unrolls the loop, including peeling the extra iterations to make the number of iterations divisible by unroll factor, updating the exit condition, and removing the exits that now cannot be taken. Works only on GIMPLE. *************** File: gccint.info, Node: LCSSA, Next: *** 17822,17828 **** ========================= Throughout the loop optimizations on tree level, one extra condition is ! enforced on the SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form satisfying this condition is called "loop-closed SSA form" - LCSSA. To enforce LCSSA, PHI nodes must be created at the exits of the loops for the SSA names that are used --- 18029,18035 ---- ========================= Throughout the loop optimizations on tree level, one extra condition is ! enforced on the SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form satisfying this condition is called "loop-closed SSA form" - LCSSA. To enforce LCSSA, PHI nodes must be created at the exits of the loops for the SSA names that are used *************** held in LCSSA, in order to save memory. *** 17835,17859 **** are interested in the values that are defined in the loop and used outside of it, i.e., exactly those for that we create new PHI nodes. * In induction variable analysis, it is not necessary to specify the loop in that the analysis should be performed - the scalar evolution analysis always returns the results with respect to the loop in that the SSA name is defined. * It makes updating of SSA form during loop transformations simpler. ! Without LCSSA, operations like loop unrolling may force creation of ! PHI nodes arbitrarily far from the loop, while in LCSSA, the SSA ! form can be updated locally. However, since we only keep real operands in LCSSA, we cannot use this advantage (we could have local updating of real operands, but it is not much more efficient ! than to use generic SSA form updating for it as well; the amount of ! changes to SSA is the same). However, it also means LCSSA must be updated. This is usually straightforward, unless you create a new value in loop and use it outside, or unless you manipulate loop exit edges (functions are provided to make these manipulations simple). ! 'rewrite_into_loop_closed_ssa' is used to rewrite SSA form to LCSSA, and ! 'verify_loop_closed_ssa' to check that the invariant of LCSSA is preserved.  --- 18042,18068 ---- are interested in the values that are defined in the loop and used outside of it, i.e., exactly those for that we create new PHI nodes. + * In induction variable analysis, it is not necessary to specify the loop in that the analysis should be performed - the scalar evolution analysis always returns the results with respect to the loop in that the SSA name is defined. + * It makes updating of SSA form during loop transformations simpler. ! Without LCSSA, operations like loop unrolling may force creation ! of PHI nodes arbitrarily far from the loop, while in LCSSA, the ! SSA form can be updated locally. However, since we only keep real operands in LCSSA, we cannot use this advantage (we could have local updating of real operands, but it is not much more efficient ! than to use generic SSA form updating for it as well; the amount ! of changes to SSA is the same). However, it also means LCSSA must be updated. This is usually straightforward, unless you create a new value in loop and use it outside, or unless you manipulate loop exit edges (functions are provided to make these manipulations simple). ! `rewrite_into_loop_closed_ssa' is used to rewrite SSA form to LCSSA, ! and `verify_loop_closed_ssa' to check that the invariant of LCSSA is preserved.  *************** variable analysis on GIMPLE. They enabl *** 17867,17903 **** complicated behavior in a simple and consistent way (we only use it to express values of polynomial induction variables, but it is possible to extend it). The interfaces to SCEV analysis are declared in ! 'tree-scalar-evolution.h'. To use scalar evolutions analysis, ! 'scev_initialize' must be used. To stop using SCEV, 'scev_finalize' should be used. SCEV analysis caches results in order to save time and memory. This cache however is made invalid by most of the loop ! transformations, including removal of code. If such a transformation is ! performed, 'scev_reset' must be called to clean the caches. Given an SSA name, its behavior in loops can be analyzed using the ! 'analyze_scalar_evolution' function. The returned SCEV however does not ! have to be fully analyzed and it may contain references to other SSA ! names defined in the loop. To resolve these (potentially recursive) ! references, 'instantiate_parameters' or 'resolve_mixers' functions must ! be used. 'instantiate_parameters' is useful when you use the results of ! SCEV only for some analysis, and when you work with whole nest of loops ! at once. It will try replacing all SSA names by their SCEV in all ! loops, including the super-loops of the current loop, thus providing a ! complete information about the behavior of the variable in the loop ! nest. 'resolve_mixers' is useful if you work with only one loop at a ! time, and if you possibly need to create code based on the value of the ! induction variable. It will only resolve the SSA names defined in the ! current loop, leaving the SSA names defined outside unchanged, even if ! their evolution in the outer loops is known. The SCEV is a normal tree expression, except for the fact that it may ! contain several special tree nodes. One of them is 'SCEV_NOT_KNOWN', used for SSA names whose value cannot be expressed. The other one is ! 'POLYNOMIAL_CHREC'. Polynomial chrec has three arguments - base, step and loop (both base and step may contain further polynomial chrecs). Type of the expression and of base and step must be the same. A ! variable has evolution 'POLYNOMIAL_CHREC(base, step, loop)' if it is (in ! the specified loop) equivalent to 'x_1' in the following example while (...) { --- 18076,18112 ---- complicated behavior in a simple and consistent way (we only use it to express values of polynomial induction variables, but it is possible to extend it). The interfaces to SCEV analysis are declared in ! `tree-scalar-evolution.h'. To use scalar evolutions analysis, ! `scev_initialize' must be used. To stop using SCEV, `scev_finalize' should be used. SCEV analysis caches results in order to save time and memory. This cache however is made invalid by most of the loop ! transformations, including removal of code. If such a transformation ! is performed, `scev_reset' must be called to clean the caches. Given an SSA name, its behavior in loops can be analyzed using the ! `analyze_scalar_evolution' function. The returned SCEV however does ! not have to be fully analyzed and it may contain references to other ! SSA names defined in the loop. To resolve these (potentially ! recursive) references, `instantiate_parameters' or `resolve_mixers' ! functions must be used. `instantiate_parameters' is useful when you ! use the results of SCEV only for some analysis, and when you work with ! whole nest of loops at once. It will try replacing all SSA names by ! their SCEV in all loops, including the super-loops of the current loop, ! thus providing a complete information about the behavior of the ! variable in the loop nest. `resolve_mixers' is useful if you work with ! only one loop at a time, and if you possibly need to create code based ! on the value of the induction variable. It will only resolve the SSA ! names defined in the current loop, leaving the SSA names defined ! outside unchanged, even if their evolution in the outer loops is known. The SCEV is a normal tree expression, except for the fact that it may ! contain several special tree nodes. One of them is `SCEV_NOT_KNOWN', used for SSA names whose value cannot be expressed. The other one is ! `POLYNOMIAL_CHREC'. Polynomial chrec has three arguments - base, step and loop (both base and step may contain further polynomial chrecs). Type of the expression and of base and step must be the same. A ! variable has evolution `POLYNOMIAL_CHREC(base, step, loop)' if it is ! (in the specified loop) equivalent to `x_1' in the following example while (...) { *************** the specified loop) equivalent to 'x_1' *** 17906,17912 **** } Note that this includes the language restrictions on the operations. ! For example, if we compile C code and 'x' has signed type, then the overflow in addition would cause undefined behavior, and we may assume that this does not happen. Hence, the value with this SCEV cannot overflow (which restricts the number of iterations of such a loop). --- 18115,18121 ---- } Note that this includes the language restrictions on the operations. ! For example, if we compile C code and `x' has signed type, then the overflow in addition would cause undefined behavior, and we may assume that this does not happen. Hence, the value with this SCEV cannot overflow (which restricts the number of iterations of such a loop). *************** overflow (which restricts the number of *** 17914,17920 **** In many cases, one wants to restrict the attention just to affine induction variables. In this case, the extra expressive power of SCEV is not useful, and may complicate the optimizations. In this case, ! 'simple_iv' function may be used to analyze a value - the result is a loop-invariant base and step.  --- 18123,18129 ---- In many cases, one wants to restrict the attention just to affine induction variables. In this case, the extra expressive power of SCEV is not useful, and may complicate the optimizations. In this case, ! `simple_iv' function may be used to analyze a value - the result is a loop-invariant base and step.  *************** File: gccint.info, Node: loop-iv, Next *** 17925,17962 **** The induction variable on RTL is simple and only allows analysis of affine induction variables, and only in one loop at once. The interface ! is declared in 'cfgloop.h'. Before analyzing induction variables in a ! loop L, 'iv_analysis_loop_init' function must be called on L. After the ! analysis (possibly calling 'iv_analysis_loop_init' for several loops) is ! finished, 'iv_analysis_done' should be called. The following functions ! can be used to access the results of the analysis: ! * 'iv_analyze': Analyzes a single register used in the given insn. If no use of the register in this insn is found, the following insns are scanned, so that this function can be called on the insn returned by get_condition. - * 'iv_analyze_result': Analyzes result of the assignment in the given - insn. - * 'iv_analyze_expr': Analyzes a more complicated expression. All its - operands are analyzed by 'iv_analyze', and hence they must be used - in the specified insn or one of the following insns. ! The description of the induction variable is provided in 'struct rtx_iv'. In order to handle subregs, the representation is a bit ! complicated; if the value of the 'extend' field is not 'UNKNOWN', the value of the induction variable in the i-th iteration is delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)), ! with the following exception: if 'first_special' is true, then the ! value in the first iteration (when 'i' is zero) is 'delta + mult * ! base'. However, if 'extend' is equal to 'UNKNOWN', then 'first_special' ! must be false, 'delta' 0, 'mult' 1 and the value in the i-th iteration ! is subreg_{mode} (base + i * step) ! The function 'get_iv_value' can be used to perform these calculations.  File: gccint.info, Node: Number of iterations, Next: Dependency analysis, Prev: loop-iv, Up: Loop Analysis and Representation --- 18134,18173 ---- The induction variable on RTL is simple and only allows analysis of affine induction variables, and only in one loop at once. The interface ! is declared in `cfgloop.h'. Before analyzing induction variables in a ! loop L, `iv_analysis_loop_init' function must be called on L. After ! the analysis (possibly calling `iv_analysis_loop_init' for several ! loops) is finished, `iv_analysis_done' should be called. The following ! functions can be used to access the results of the analysis: ! * `iv_analyze': Analyzes a single register used in the given insn. If no use of the register in this insn is found, the following insns are scanned, so that this function can be called on the insn returned by get_condition. ! * `iv_analyze_result': Analyzes result of the assignment in the ! given insn. ! ! * `iv_analyze_expr': Analyzes a more complicated expression. All ! its operands are analyzed by `iv_analyze', and hence they must be ! used in the specified insn or one of the following insns. ! ! The description of the induction variable is provided in `struct rtx_iv'. In order to handle subregs, the representation is a bit ! complicated; if the value of the `extend' field is not `UNKNOWN', the value of the induction variable in the i-th iteration is delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)), ! with the following exception: if `first_special' is true, then the ! value in the first iteration (when `i' is zero) is `delta + mult * ! base'. However, if `extend' is equal to `UNKNOWN', then ! `first_special' must be false, `delta' 0, `mult' 1 and the value in the ! i-th iteration is subreg_{mode} (base + i * step) ! The function `get_iv_value' can be used to perform these calculations.  File: gccint.info, Node: Number of iterations, Next: Dependency analysis, Prev: loop-iv, Up: Loop Analysis and Representation *************** program; if it fails, the conditions are *** 17975,18013 **** result. The following information and conditions are provided by the analysis: ! * 'assumptions': If this condition is false, the rest of the information is invalid. ! * 'noloop_assumptions' on RTL, 'may_be_zero' on GIMPLE: If this condition is true, the loop exits in the first iteration. ! * 'infinite': If this condition is true, the loop is infinite. This condition is only available on RTL. On GIMPLE, conditions for ! finiteness of the loop are included in 'assumptions'. ! * 'niter_expr' on RTL, 'niter' on GIMPLE: The expression that gives number of iterations. The number of iterations is defined as the number of executions of the loop latch. Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL). ! On GIMPLE, the results are stored to 'struct tree_niter_desc' structure. ! Number of iterations before the loop is exited through a given exit can ! be determined using 'number_of_iterations_exit' function. On RTL, the ! results are returned in 'struct niter_desc' structure. The ! corresponding function is named 'check_simple_exit'. There are also ! functions that pass through all the exits of a loop and try to find one ! with easy to determine number of iterations - 'find_loop_niter' on ! GIMPLE and 'find_simple_exit' on RTL. Finally, there are functions that ! provide the same information, but additionally cache it, so that ! repeated calls to number of iterations are not so costly - ! 'number_of_latch_executions' on GIMPLE and 'get_simple_loop_desc' on ! RTL. Note that some of these functions may behave slightly differently than others - some of them return only the expression for the number of iterations, and fail if there are some assumptions. The function ! 'number_of_latch_executions' works only for single-exit loops. The ! function 'number_of_cond_exit_executions' can be used to determine number of executions of the exit condition of a single-exit loop (i.e., ! the 'number_of_latch_executions' increased by one).  File: gccint.info, Node: Dependency analysis, Next: Omega, Prev: Number of iterations, Up: Loop Analysis and Representation --- 18186,18227 ---- result. The following information and conditions are provided by the analysis: ! * `assumptions': If this condition is false, the rest of the information is invalid. ! ! * `noloop_assumptions' on RTL, `may_be_zero' on GIMPLE: If this condition is true, the loop exits in the first iteration. ! ! * `infinite': If this condition is true, the loop is infinite. This condition is only available on RTL. On GIMPLE, conditions for ! finiteness of the loop are included in `assumptions'. ! ! * `niter_expr' on RTL, `niter' on GIMPLE: The expression that gives number of iterations. The number of iterations is defined as the number of executions of the loop latch. Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework to be initialized (SCEV on GIMPLE, loop-iv on RTL). ! On GIMPLE, the results are stored to `struct tree_niter_desc' ! structure. Number of iterations before the loop is exited through a ! given exit can be determined using `number_of_iterations_exit' ! function. On RTL, the results are returned in `struct niter_desc' ! structure. The corresponding function is named `check_simple_exit'. ! There are also functions that pass through all the exits of a loop and ! try to find one with easy to determine number of iterations - ! `find_loop_niter' on GIMPLE and `find_simple_exit' on RTL. Finally, ! there are functions that provide the same information, but additionally ! cache it, so that repeated calls to number of iterations are not so ! costly - `number_of_latch_executions' on GIMPLE and ! `get_simple_loop_desc' on RTL. Note that some of these functions may behave slightly differently than others - some of them return only the expression for the number of iterations, and fail if there are some assumptions. The function ! `number_of_latch_executions' works only for single-exit loops. The ! function `number_of_cond_exit_executions' can be used to determine number of executions of the exit condition of a single-exit loop (i.e., ! the `number_of_latch_executions' increased by one).  File: gccint.info, Node: Dependency analysis, Next: Omega, Prev: Number of iterations, Up: Loop Analysis and Representation *************** File: gccint.info, Node: Dependency ana *** 18016,18036 **** ============================= The code for the data dependence analysis can be found in ! 'tree-data-ref.c' and its interface and data structures are described in ! 'tree-data-ref.h'. The function that computes the data dependences for ! all the array and pointer references for a given loop is ! 'compute_data_dependences_for_loop'. This function is currently used by ! the linear loop transform and the vectorization passes. Before calling ! this function, one has to allocate two vectors: a first vector will ! contain the set of data references that are contained in the analyzed ! loop body, and the second vector will contain the dependence relations ! between the data references. Thus if the vector of data references is ! of size 'n', the vector containing the dependence relations will contain ! 'n*n' elements. However if the analyzed loop contains side effects, ! such as calls that potentially can interfere with the data references in ! the current analyzed loop, the analysis stops while scanning the loop ! body for data references, and inserts a single 'chrec_dont_know' in the ! dependence relation array. The data references are discovered in a particular order during the scanning of the loop body: the loop body is analyzed in execution order, --- 18230,18250 ---- ============================= The code for the data dependence analysis can be found in ! `tree-data-ref.c' and its interface and data structures are described ! in `tree-data-ref.h'. The function that computes the data dependences ! for all the array and pointer references for a given loop is ! `compute_data_dependences_for_loop'. This function is currently used ! by the linear loop transform and the vectorization passes. Before ! calling this function, one has to allocate two vectors: a first vector ! will contain the set of data references that are contained in the ! analyzed loop body, and the second vector will contain the dependence ! relations between the data references. Thus if the vector of data ! references is of size `n', the vector containing the dependence ! relations will contain `n*n' elements. However if the analyzed loop ! contains side effects, such as calls that potentially can interfere ! with the data references in the current analyzed loop, the analysis ! stops while scanning the loop body for data references, and inserts a ! single `chrec_dont_know' in the dependence relation array. The data references are discovered in a particular order during the scanning of the loop body: the loop body is analyzed in execution order, *************** and mapping this order to the elements o *** 18042,18077 **** queries to the loop body representation. Three types of data references are currently handled: ARRAY_REF, ! INDIRECT_REF and COMPONENT_REF. The data structure for the data ! reference is 'data_reference', where 'data_reference_p' is a name of a ! pointer to the data reference structure. The structure contains the following elements: ! * 'base_object_info': Provides information about the base object of ! the data reference and its access functions. These access ! functions represent the evolution of the data reference in the loop ! relative to its base, in keeping with the classical meaning of the ! data reference access function for the support of arrays. For ! example, for a reference 'a.b[i][j]', the base object is 'a.b' and ! the access functions, one for each array subscript, are: '{i_init, ! + i_step}_1, {j_init, +, j_step}_2'. ! * 'first_location_in_loop': Provides information about the first location accessed by the data reference in the loop and about the access function used to represent evolution relative to this ! location. This data is used to support pointers, and is not used ! for arrays (for which we have base objects). Pointer accesses are represented as a one-dimensional access that starts from the first ! location accessed in the loop. For example: for1 i for2 j *((int *)p + i + j) = a[i][j]; ! The access function of the pointer access is '{0, + 4B}_for2' ! relative to 'p + i'. The access functions of the array are ! '{i_init, + i_step}_for1' and '{j_init, +, j_step}_for2' relative ! to 'a'. Usually, the object the pointer refers to is either unknown, or we can't prove that the access is confined to the boundaries of a --- 18256,18291 ---- queries to the loop body representation. Three types of data references are currently handled: ARRAY_REF, ! INDIRECT_REF and COMPONENT_REF. The data structure for the data ! reference is `data_reference', where `data_reference_p' is a name of a ! pointer to the data reference structure. The structure contains the following elements: ! * `base_object_info': Provides information about the base object of ! the data reference and its access functions. These access functions ! represent the evolution of the data reference in the loop relative ! to its base, in keeping with the classical meaning of the data ! reference access function for the support of arrays. For example, ! for a reference `a.b[i][j]', the base object is `a.b' and the ! access functions, one for each array subscript, are: `{i_init, + ! i_step}_1, {j_init, +, j_step}_2'. ! * `first_location_in_loop': Provides information about the first location accessed by the data reference in the loop and about the access function used to represent evolution relative to this ! location. This data is used to support pointers, and is not used ! for arrays (for which we have base objects). Pointer accesses are represented as a one-dimensional access that starts from the first ! location accessed in the loop. For example: for1 i for2 j *((int *)p + i + j) = a[i][j]; ! The access function of the pointer access is `{0, + 4B}_for2' ! relative to `p + i'. The access functions of the array are ! `{i_init, + i_step}_for1' and `{j_init, +, j_step}_for2' relative ! to `a'. Usually, the object the pointer refers to is either unknown, or we can't prove that the access is confined to the boundaries of a *************** following elements: *** 18082,18131 **** references. The current strategy for data dependence tests is as follows: If ! both 'a' and 'b' are represented as arrays, compare 'a.base_object' ! and 'b.base_object'; if they are equal, apply dependence tests (use ! access functions based on base_objects). Else if both 'a' and 'b' ! are represented as pointers, compare 'a.first_location' and ! 'b.first_location'; if they are equal, apply dependence tests (use ! access functions based on first location). However, if 'a' and 'b' ! are represented differently, only try to prove that the bases are ! definitely different. * Aliasing information. * Alignment information. The structure describing the relation between two data references is ! 'data_dependence_relation' and the shorter name for a pointer to such a ! structure is 'ddr_p'. This structure contains: * a pointer to each data reference, ! * a tree node 'are_dependent' that is set to 'chrec_known' if the analysis has proved that there is no dependence between these two ! data references, 'chrec_dont_know' if the analysis was not able to determine any useful result and potentially there could exist a ! dependence between these data references, and 'are_dependent' is ! set to 'NULL_TREE' if there exist a dependence relation between the data references, and the description of this dependence relation is ! given in the 'subscripts', 'dir_vects', and 'dist_vects' arrays, * a boolean that determines whether the dependence relation can be represented by a classical distance vector, ! * an array 'subscripts' that contains a description of each subscript ! of the data references. Given two array accesses a subscript is ! the tuple composed of the access functions for a given dimension. ! For example, given 'A[f1][f2][f3]' and 'B[g1][g2][g3]', there are ! three subscripts: '(f1, g1), (f2, g2), (f3, g3)'. ! * two arrays 'dir_vects' and 'dist_vects' that contain classical ! representations of the data dependences under the form of direction ! and distance dependence vectors, ! * an array of loops 'loop_nest' that contains the loops to which the distance and direction vectors refer to. Several functions for pretty printing the information extracted by the ! data dependence analysis are available: 'dump_ddrs' prints with a maximum verbosity the details of a data dependence relations array, ! 'dump_dist_dir_vectors' prints only the classical distance and direction ! vectors for a data dependence relations array, and ! 'dump_data_references' prints the details of the data references contained in a data reference array.  --- 18296,18352 ---- references. The current strategy for data dependence tests is as follows: If ! both `a' and `b' are represented as arrays, compare ! `a.base_object' and `b.base_object'; if they are equal, apply ! dependence tests (use access functions based on base_objects). ! Else if both `a' and `b' are represented as pointers, compare ! `a.first_location' and `b.first_location'; if they are equal, ! apply dependence tests (use access functions based on first ! location). However, if `a' and `b' are represented differently, ! only try to prove that the bases are definitely different. * Aliasing information. + * Alignment information. The structure describing the relation between two data references is ! `data_dependence_relation' and the shorter name for a pointer to such a ! structure is `ddr_p'. This structure contains: * a pointer to each data reference, ! ! * a tree node `are_dependent' that is set to `chrec_known' if the analysis has proved that there is no dependence between these two ! data references, `chrec_dont_know' if the analysis was not able to determine any useful result and potentially there could exist a ! dependence between these data references, and `are_dependent' is ! set to `NULL_TREE' if there exist a dependence relation between the data references, and the description of this dependence relation is ! given in the `subscripts', `dir_vects', and `dist_vects' arrays, ! * a boolean that determines whether the dependence relation can be represented by a classical distance vector, ! ! * an array `subscripts' that contains a description of each ! subscript of the data references. Given two array accesses a ! subscript is the tuple composed of the access functions for a given ! dimension. For example, given `A[f1][f2][f3]' and ! `B[g1][g2][g3]', there are three subscripts: `(f1, g1), (f2, g2), ! (f3, g3)'. ! ! * two arrays `dir_vects' and `dist_vects' that contain classical ! representations of the data dependences under the form of ! direction and distance dependence vectors, ! ! * an array of loops `loop_nest' that contains the loops to which the distance and direction vectors refer to. Several functions for pretty printing the information extracted by the ! data dependence analysis are available: `dump_ddrs' prints with a maximum verbosity the details of a data dependence relations array, ! `dump_dist_dir_vectors' prints only the classical distance and ! direction vectors for a data dependence relations array, and ! `dump_data_references' prints the details of the data references contained in a data reference array.  *************** ensuring the consistency of the results *** 18140,18163 **** dependence check pass has been implemented based on two different solvers. The second method that has been integrated to GCC is based on the Omega dependence solver, written in the 1990's by William Pugh and ! David Wonnacott. Data dependence tests can be formulated using a subset ! of the Presburger arithmetics that can be translated to linear constraint systems. These linear constraint systems can then be solved using the Omega solver. The Omega solver is using Fourier-Motzkin's algorithm for variable ! elimination: a linear constraint system containing 'n' variables is ! reduced to a linear constraint system with 'n-1' variables. The Omega ! solver can also be used for solving other problems that can be expressed ! under the form of a system of linear equalities and inequalities. The ! Omega solver is known to have an exponential worst case, also known ! under the name of "omega nightmare" in the literature, but in practice, ! the omega test is known to be efficient for the common data dependence ! tests. The interface used by the Omega solver for describing the linear ! programming problems is described in 'omega.h', and the solver is ! 'omega_solve_problem'.  File: gccint.info, Node: Machine Desc, Next: Target Macros, Prev: Loop Analysis and Representation, Up: Top --- 18361,18384 ---- dependence check pass has been implemented based on two different solvers. The second method that has been integrated to GCC is based on the Omega dependence solver, written in the 1990's by William Pugh and ! David Wonnacott. Data dependence tests can be formulated using a ! subset of the Presburger arithmetics that can be translated to linear constraint systems. These linear constraint systems can then be solved using the Omega solver. The Omega solver is using Fourier-Motzkin's algorithm for variable ! elimination: a linear constraint system containing `n' variables is ! reduced to a linear constraint system with `n-1' variables. The Omega ! solver can also be used for solving other problems that can be ! expressed under the form of a system of linear equalities and ! inequalities. The Omega solver is known to have an exponential worst ! case, also known under the name of "omega nightmare" in the literature, ! but in practice, the omega test is known to be efficient for the common ! data dependence tests. The interface used by the Omega solver for describing the linear ! programming problems is described in `omega.h', and the solver is ! `omega_solve_problem'.  File: gccint.info, Node: Machine Desc, Next: Target Macros, Prev: Loop Analysis and Representation, Up: Top *************** File: gccint.info, Node: Machine Desc, *** 18166,18174 **** *********************** A machine description has two parts: a file of instruction patterns ! ('.md' file) and a C header file of macro definitions. ! The '.md' file for a target machine contains a pattern for each instruction that the target machine supports (or at least each instruction that is worth telling the compiler about). It may also contain comments. A semicolon causes the rest of the line to be a --- 18387,18395 ---- *********************** A machine description has two parts: a file of instruction patterns ! (`.md' file) and a C header file of macro definitions. ! The `.md' file for a target machine contains a pattern for each instruction that the target machine supports (or at least each instruction that is worth telling the compiler about). It may also contain comments. A semicolon causes the rest of the line to be a *************** comment, unless the semicolon is inside *** 18180,18186 **** * Overview:: How the machine description is used. * Patterns:: How to write instruction patterns. ! * Example:: An explained example of a 'define_insn' pattern. * RTL Template:: The RTL template defines what insns match a pattern. * Output Template:: The output template says how to make assembler code from such an insn. --- 18401,18407 ---- * Overview:: How the machine description is used. * Patterns:: How to write instruction patterns. ! * Example:: An explained example of a `define_insn' pattern. * RTL Template:: The RTL template defines what insns match a pattern. * Output Template:: The output template says how to make assembler code from such an insn. *************** comment, unless the semicolon is inside *** 18201,18209 **** * Including Patterns:: Including Patterns in Machine Descriptions. * Peephole Definitions::Defining machine-specific peephole optimizations. * Insn Attributes:: Specifying the value of attributes for generated insns. ! * Conditional Execution::Generating 'define_insn' patterns for predication. ! * Define Subst:: Generating 'define_insn' and 'define_expand' patterns from other patterns. * Constant Definitions::Defining symbolic constants that can be used in the md file. --- 18422,18430 ---- * Including Patterns:: Including Patterns in Machine Descriptions. * Peephole Definitions::Defining machine-specific peephole optimizations. * Insn Attributes:: Specifying the value of attributes for generated insns. ! * Conditional Execution::Generating `define_insn' patterns for predication. ! * Define Subst:: Generating `define_insn' and `define_expand' patterns from other patterns. * Constant Definitions::Defining symbolic constants that can be used in the md file. *************** There are three main conversions that ha *** 18225,18255 **** 3. The insn list is matched against the RTL templates to produce assembler code. For the generate pass, only the names of the insns matter, from either ! a named 'define_insn' or a 'define_expand'. The compiler will choose the pattern with the right name and apply the operands according to the ! documentation later in this chapter, without regard for the RTL template ! or operand constraints. Note that the names the compiler looks for are ! hard-coded in the compiler--it will ignore unnamed patterns and patterns ! with names it doesn't know about, but if you don't provide a named ! pattern it needs, it will abort. ! If a 'define_insn' is used, the template given is inserted into the ! insn list. If a 'define_expand' is used, one of three things happens, based on the condition logic. The condition logic may manually create ! new insns for the insn list, say via 'emit_insn()', and invoke 'DONE'. ! For certain named patterns, it may invoke 'FAIL' to tell the compiler to ! use an alternate way of performing that task. If it invokes neither ! 'DONE' nor 'FAIL', the template given in the pattern is inserted, as if ! the 'define_expand' were a 'define_insn'. Once the insn list is generated, various optimization passes convert, replace, and rearrange the insns in the insn list. This is where the ! 'define_split' and 'define_peephole' patterns get used, for example. Finally, the insn list's RTL is matched up with the RTL templates in ! the 'define_insn' patterns, and those patterns are used to emit the ! final assembly code. For this purpose, each named 'define_insn' acts like it's unnamed, since the names are ignored.  --- 18446,18477 ---- 3. The insn list is matched against the RTL templates to produce assembler code. + For the generate pass, only the names of the insns matter, from either ! a named `define_insn' or a `define_expand'. The compiler will choose the pattern with the right name and apply the operands according to the ! documentation later in this chapter, without regard for the RTL ! template or operand constraints. Note that the names the compiler looks ! for are hard-coded in the compiler--it will ignore unnamed patterns and ! patterns with names it doesn't know about, but if you don't provide a ! named pattern it needs, it will abort. ! If a `define_insn' is used, the template given is inserted into the ! insn list. If a `define_expand' is used, one of three things happens, based on the condition logic. The condition logic may manually create ! new insns for the insn list, say via `emit_insn()', and invoke `DONE'. ! For certain named patterns, it may invoke `FAIL' to tell the compiler ! to use an alternate way of performing that task. If it invokes neither ! `DONE' nor `FAIL', the template given in the pattern is inserted, as if ! the `define_expand' were a `define_insn'. Once the insn list is generated, various optimization passes convert, replace, and rearrange the insns in the insn list. This is where the ! `define_split' and `define_peephole' patterns get used, for example. Finally, the insn list's RTL is matched up with the RTL templates in ! the `define_insn' patterns, and those patterns are used to emit the ! final assembly code. For this purpose, each named `define_insn' acts like it's unnamed, since the names are ignored.  *************** File: gccint.info, Node: Patterns, Nex *** 18260,18298 **** Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later, operand constraints that restrict how the ! pieces can be filled in, and an output pattern or C code to generate the ! assembler output, all wrapped up in a 'define_insn' expression. ! A 'define_insn' is an RTL expression containing four or five operands: 1. An optional name. The presence of a name indicate that this instruction pattern can perform a certain standard job for the ! RTL-generation pass of the compiler. This pass knows certain names ! and will use the instruction patterns with those names, if the ! names are defined in the machine description. ! The absence of a name is indicated by writing an empty string where ! the name should go. Nameless instruction patterns are never used ! for generating RTL code, but they may permit several simpler insns ! to be combined later on. Names that are not thus known and used in RTL-generation have no effect; they are equivalent to no name at all. For the purpose of debugging the compiler, you may also specify a ! name beginning with the '*' character. Such a name is used only for identifying the instruction in RTL dumps; it is entirely equivalent to having a nameless pattern for all other purposes. 2. The "RTL template" (*note RTL Template::) is a vector of incomplete RTL expressions which show what the instruction should look like. ! It is incomplete because it may contain 'match_operand', ! 'match_operator', and 'match_dup' expressions that stand for operands of the instruction. If the vector has only one element, that element is the template for the instruction pattern. If the vector has multiple elements, ! then the instruction pattern is a 'parallel' expression containing the elements described. 3. A condition. This is a string which contains a C expression that --- 18482,18520 ---- Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later, operand constraints that restrict how the ! pieces can be filled in, and an output pattern or C code to generate ! the assembler output, all wrapped up in a `define_insn' expression. ! A `define_insn' is an RTL expression containing four or five operands: 1. An optional name. The presence of a name indicate that this instruction pattern can perform a certain standard job for the ! RTL-generation pass of the compiler. This pass knows certain ! names and will use the instruction patterns with those names, if ! the names are defined in the machine description. ! The absence of a name is indicated by writing an empty string ! where the name should go. Nameless instruction patterns are never ! used for generating RTL code, but they may permit several simpler ! insns to be combined later on. Names that are not thus known and used in RTL-generation have no effect; they are equivalent to no name at all. For the purpose of debugging the compiler, you may also specify a ! name beginning with the `*' character. Such a name is used only for identifying the instruction in RTL dumps; it is entirely equivalent to having a nameless pattern for all other purposes. 2. The "RTL template" (*note RTL Template::) is a vector of incomplete RTL expressions which show what the instruction should look like. ! It is incomplete because it may contain `match_operand', ! `match_operator', and `match_dup' expressions that stand for operands of the instruction. If the vector has only one element, that element is the template for the instruction pattern. If the vector has multiple elements, ! then the instruction pattern is a `parallel' expression containing the elements described. 3. A condition. This is a string which contains a C expression that *************** assembler output, all wrapped up in a 'd *** 18308,18320 **** For nameless patterns, the condition is applied only when matching an individual insn, and only after the insn has matched the pattern's recognition template. The insn's operands may be found ! in the vector 'operands'. For an insn where the condition has once ! matched, it can't be used to control register allocation, for example by excluding certain hard registers or hard register combinations. 4. The "output template": a string that says how to output matching ! insns as assembler code. '%' in this string specifies where to substitute the value of an operand. *Note Output Template::. When simple substitution isn't general enough, you can specify a --- 18530,18542 ---- For nameless patterns, the condition is applied only when matching an individual insn, and only after the insn has matched the pattern's recognition template. The insn's operands may be found ! in the vector `operands'. For an insn where the condition has ! once matched, it can't be used to control register allocation, for example by excluding certain hard registers or hard register combinations. 4. The "output template": a string that says how to output matching ! insns as assembler code. `%' in this string specifies where to substitute the value of an operand. *Note Output Template::. When simple substitution isn't general enough, you can specify a *************** assembler output, all wrapped up in a 'd *** 18326,18332 ****  File: gccint.info, Node: Example, Next: RTL Template, Prev: Patterns, Up: Machine Desc ! 16.3 Example of 'define_insn' ============================= Here is an actual example of an instruction pattern, for the --- 18548,18554 ----  File: gccint.info, Node: Example, Next: RTL Template, Prev: Patterns, Up: Machine Desc ! 16.3 Example of `define_insn' ============================= Here is an actual example of an instruction pattern, for the *************** This can also be written using braced st *** 18355,18372 **** return "cmpl #0,%0"; }) ! This is an instruction that sets the condition codes based on the value ! of a general operand. It has no condition, so any insn whose RTL ! description has the form shown may be handled according to this pattern. ! The name 'tstsi' means "test a 'SImode' value" and tells the RTL ! generation pass that, when it is necessary to test such a value, an insn ! to do so can be constructed using this pattern. The output control string is a piece of C code which chooses which output template to return based on the kind of operand and the specific type of CPU for which code is being generated. ! '"rm"' is an operand constraint. Its meaning is explained below.  File: gccint.info, Node: RTL Template, Next: Output Template, Prev: Example, Up: Machine Desc --- 18577,18594 ---- return "cmpl #0,%0"; }) ! This is an instruction that sets the condition codes based on the ! value of a general operand. It has no condition, so any insn whose RTL ! description has the form shown may be handled according to this ! pattern. The name `tstsi' means "test a `SImode' value" and tells the ! RTL generation pass that, when it is necessary to test such a value, an ! insn to do so can be constructed using this pattern. The output control string is a piece of C code which chooses which output template to return based on the kind of operand and the specific type of CPU for which code is being generated. ! `"rm"' is an operand constraint. Its meaning is explained below.  File: gccint.info, Node: RTL Template, Next: Output Template, Prev: Example, Up: Machine Desc *************** the operands in the insn being matched. *** 18384,18481 **** controlled by special expression types that direct matching and substitution of the operands. ! '(match_operand:M N PREDICATE CONSTRAINT)' This expression is a placeholder for operand number N of the insn. When constructing an insn, operand number N will be substituted at this point. When matching an insn, whatever appears at this ! position in the insn will be taken as operand number N; but it must ! satisfy PREDICATE or this instruction pattern will not match at ! all. Operand numbers must be chosen consecutively counting from zero in ! each instruction pattern. There may be only one 'match_operand' expression in the pattern for each operand number. Usually ! operands are numbered in the order of appearance in 'match_operand' ! expressions. In the case of a 'define_expand', any operand numbers ! used only in 'match_dup' expressions have higher values than all other operand numbers. PREDICATE is a string that is the name of a function that accepts two arguments, an expression and a machine mode. *Note Predicates::. During matching, the function will be called with the putative operand as the expression and M as the mode argument ! (if M is not specified, 'VOIDmode' will be used, which normally causes PREDICATE to accept any mode). If it returns zero, this instruction pattern fails to match. PREDICATE may be an empty string; then it means no test is to be done on the operand, so anything which occurs in this position is valid. ! Most of the time, PREDICATE will reject modes other than M--but not ! always. For example, the predicate 'address_operand' uses M as the ! mode of memory ref that the address should be valid for. Many ! predicates accept 'const_int' nodes even though their mode is ! 'VOIDmode'. CONSTRAINT controls reloading and the choice of the best register class to use for a value, as explained later (*note Constraints::). If the constraint would be an empty string, it can be omitted. People are often unclear on the difference between the constraint ! and the predicate. The predicate helps decide whether a given insn ! matches the pattern. The constraint plays no role in this decision; instead, it controls various decisions in the case of an insn which does match. ! '(match_scratch:M N CONSTRAINT)' This expression is also a placeholder for operand number N and ! indicates that operand must be a 'scratch' or 'reg' expression. When matching patterns, this is equivalent to (match_operand:M N "scratch_operand" PRED) ! but, when generating RTL, it produces a ('scratch':M) expression. ! If the last few expressions in a 'parallel' are 'clobber' expressions whose operands are either a hard register or ! 'match_scratch', the combiner can add or delete them when necessary. *Note Side Effects::. ! '(match_dup N)' This expression is also a placeholder for operand number N. It is used when the operand needs to appear more than once in the insn. ! In construction, 'match_dup' acts just like 'match_operand': the operand is substituted into the insn being constructed. But in ! matching, 'match_dup' behaves differently. It assumes that operand ! number N has already been determined by a 'match_operand' appearing ! earlier in the recognition template, and it matches only an ! identical-looking expression. ! Note that 'match_dup' should not be used to tell the compiler that a particular register is being used for two operands (example: ! 'add' that adds one register to another; the second register is both an input operand and the output operand). Use a matching ! constraint (*note Simple Constraints::) for those. 'match_dup' is for the cases where one operand is used in two places in the template, such as an instruction that computes both a quotient and a remainder, where the opcode takes two input operands but the RTL ! template has to refer to each of those twice; once for the quotient ! pattern and once for the remainder pattern. ! '(match_operator:M N PREDICATE [OPERANDS...])' This pattern is a kind of placeholder for a variable RTL expression code. When constructing an insn, it stands for an RTL expression whose ! expression code is taken from that of operand N, and whose operands ! are constructed from the patterns OPERANDS. When matching an expression, it matches an expression if the function PREDICATE returns nonzero on that expression _and_ the patterns OPERANDS match the operands of the expression. ! Suppose that the function 'commutative_operator' is defined as follows, to match any expression whose operator is one of the commutative arithmetic operators of RTL and whose mode is MODE: --- 18606,18703 ---- controlled by special expression types that direct matching and substitution of the operands. ! `(match_operand:M N PREDICATE CONSTRAINT)' This expression is a placeholder for operand number N of the insn. When constructing an insn, operand number N will be substituted at this point. When matching an insn, whatever appears at this ! position in the insn will be taken as operand number N; but it ! must satisfy PREDICATE or this instruction pattern will not match ! at all. Operand numbers must be chosen consecutively counting from zero in ! each instruction pattern. There may be only one `match_operand' expression in the pattern for each operand number. Usually ! operands are numbered in the order of appearance in `match_operand' ! expressions. In the case of a `define_expand', any operand numbers ! used only in `match_dup' expressions have higher values than all other operand numbers. PREDICATE is a string that is the name of a function that accepts two arguments, an expression and a machine mode. *Note Predicates::. During matching, the function will be called with the putative operand as the expression and M as the mode argument ! (if M is not specified, `VOIDmode' will be used, which normally causes PREDICATE to accept any mode). If it returns zero, this instruction pattern fails to match. PREDICATE may be an empty string; then it means no test is to be done on the operand, so anything which occurs in this position is valid. ! Most of the time, PREDICATE will reject modes other than M--but ! not always. For example, the predicate `address_operand' uses M ! as the mode of memory ref that the address should be valid for. ! Many predicates accept `const_int' nodes even though their mode is ! `VOIDmode'. CONSTRAINT controls reloading and the choice of the best register class to use for a value, as explained later (*note Constraints::). If the constraint would be an empty string, it can be omitted. People are often unclear on the difference between the constraint ! and the predicate. The predicate helps decide whether a given ! insn matches the pattern. The constraint plays no role in this decision; instead, it controls various decisions in the case of an insn which does match. ! `(match_scratch:M N CONSTRAINT)' This expression is also a placeholder for operand number N and ! indicates that operand must be a `scratch' or `reg' expression. When matching patterns, this is equivalent to (match_operand:M N "scratch_operand" PRED) ! but, when generating RTL, it produces a (`scratch':M) expression. ! If the last few expressions in a `parallel' are `clobber' expressions whose operands are either a hard register or ! `match_scratch', the combiner can add or delete them when necessary. *Note Side Effects::. ! `(match_dup N)' This expression is also a placeholder for operand number N. It is used when the operand needs to appear more than once in the insn. ! In construction, `match_dup' acts just like `match_operand': the operand is substituted into the insn being constructed. But in ! matching, `match_dup' behaves differently. It assumes that operand ! number N has already been determined by a `match_operand' ! appearing earlier in the recognition template, and it matches only ! an identical-looking expression. ! Note that `match_dup' should not be used to tell the compiler that a particular register is being used for two operands (example: ! `add' that adds one register to another; the second register is both an input operand and the output operand). Use a matching ! constraint (*note Simple Constraints::) for those. `match_dup' is for the cases where one operand is used in two places in the template, such as an instruction that computes both a quotient and a remainder, where the opcode takes two input operands but the RTL ! template has to refer to each of those twice; once for the ! quotient pattern and once for the remainder pattern. ! `(match_operator:M N PREDICATE [OPERANDS...])' This pattern is a kind of placeholder for a variable RTL expression code. When constructing an insn, it stands for an RTL expression whose ! expression code is taken from that of operand N, and whose ! operands are constructed from the patterns OPERANDS. When matching an expression, it matches an expression if the function PREDICATE returns nonzero on that expression _and_ the patterns OPERANDS match the operands of the expression. ! Suppose that the function `commutative_operator' is defined as follows, to match any expression whose operator is one of the commutative arithmetic operators of RTL and whose mode is MODE: *************** substitution of the operands. *** 18498,18563 **** [(match_operand:SI 1 "general_operand" "g") (match_operand:SI 2 "general_operand" "g")]) ! Here the vector '[OPERANDS...]' contains two patterns because the expressions to be matched all contain two operands. When this pattern does match, the two operands of the commutative operator are recorded as operands 1 and 2 of the insn. (This is ! done by the two instances of 'match_operand'.) Operand 3 of the ! insn will be the entire commutative expression: use 'GET_CODE (operands[3])' to see which commutative operator was used. ! The machine mode M of 'match_operator' works like that of ! 'match_operand': it is passed as the second argument to the predicate function, and that function is solely responsible for deciding whether the expression to be matched "has" that mode. When constructing an insn, argument 3 of the gen-function will ! specify the operation (i.e. the expression code) for the expression ! to be made. It should be an RTL expression, whose expression code ! is copied into a new expression whose operands are arguments 1 and ! 2 of the gen-function. The subexpressions of argument 3 are not ! used; only its expression code matters. ! When 'match_operator' is used in a pattern for matching an insn, it ! usually best if the operand number of the 'match_operator' is higher than that of the actual operands of the insn. This improves register allocation because the register allocator often looks at operands 1 and 2 of insns to see if it can do register tying. ! There is no way to specify constraints in 'match_operator'. The ! operand of the insn which corresponds to the 'match_operator' never ! has any constraints because it is never reloaded as a whole. ! However, if parts of its OPERANDS are matched by 'match_operand' patterns, those parts may have constraints of their own. ! '(match_op_dup:M N[OPERANDS...])' ! Like 'match_dup', except that it applies to operators instead of operands. When constructing an insn, operand number N will be ! substituted at this point. But in matching, 'match_op_dup' behaves differently. It assumes that operand number N has already been ! determined by a 'match_operator' appearing earlier in the recognition template, and it matches only an identical-looking expression. ! '(match_parallel N PREDICATE [SUBPAT...])' This pattern is a placeholder for an insn that consists of a ! 'parallel' expression with a variable number of elements. This expression should only appear at the top level of an insn pattern. When constructing an insn, operand number N will be substituted at this point. When matching an insn, it matches if the body of the ! insn is a 'parallel' expression with at least as many elements as ! the vector of SUBPAT expressions in the 'match_parallel', if each ! SUBPAT matches the corresponding element of the 'parallel', _and_ ! the function PREDICATE returns nonzero on the 'parallel' that is ! the body of the insn. It is the responsibility of the predicate to ! validate elements of the 'parallel' beyond those listed in the ! 'match_parallel'. ! A typical use of 'match_parallel' is to match load and store multiple expressions, which can contain a variable number of ! elements in a 'parallel'. For example, (define_insn "" [(match_parallel 0 "load_multiple_operation" --- 18720,18785 ---- [(match_operand:SI 1 "general_operand" "g") (match_operand:SI 2 "general_operand" "g")]) ! Here the vector `[OPERANDS...]' contains two patterns because the expressions to be matched all contain two operands. When this pattern does match, the two operands of the commutative operator are recorded as operands 1 and 2 of the insn. (This is ! done by the two instances of `match_operand'.) Operand 3 of the ! insn will be the entire commutative expression: use `GET_CODE (operands[3])' to see which commutative operator was used. ! The machine mode M of `match_operator' works like that of ! `match_operand': it is passed as the second argument to the predicate function, and that function is solely responsible for deciding whether the expression to be matched "has" that mode. When constructing an insn, argument 3 of the gen-function will ! specify the operation (i.e. the expression code) for the ! expression to be made. It should be an RTL expression, whose ! expression code is copied into a new expression whose operands are ! arguments 1 and 2 of the gen-function. The subexpressions of ! argument 3 are not used; only its expression code matters. ! When `match_operator' is used in a pattern for matching an insn, ! it usually best if the operand number of the `match_operator' is higher than that of the actual operands of the insn. This improves register allocation because the register allocator often looks at operands 1 and 2 of insns to see if it can do register tying. ! There is no way to specify constraints in `match_operator'. The ! operand of the insn which corresponds to the `match_operator' ! never has any constraints because it is never reloaded as a whole. ! However, if parts of its OPERANDS are matched by `match_operand' patterns, those parts may have constraints of their own. ! `(match_op_dup:M N[OPERANDS...])' ! Like `match_dup', except that it applies to operators instead of operands. When constructing an insn, operand number N will be ! substituted at this point. But in matching, `match_op_dup' behaves differently. It assumes that operand number N has already been ! determined by a `match_operator' appearing earlier in the recognition template, and it matches only an identical-looking expression. ! `(match_parallel N PREDICATE [SUBPAT...])' This pattern is a placeholder for an insn that consists of a ! `parallel' expression with a variable number of elements. This expression should only appear at the top level of an insn pattern. When constructing an insn, operand number N will be substituted at this point. When matching an insn, it matches if the body of the ! insn is a `parallel' expression with at least as many elements as ! the vector of SUBPAT expressions in the `match_parallel', if each ! SUBPAT matches the corresponding element of the `parallel', _and_ ! the function PREDICATE returns nonzero on the `parallel' that is ! the body of the insn. It is the responsibility of the predicate ! to validate elements of the `parallel' beyond those listed in the ! `match_parallel'. ! A typical use of `match_parallel' is to match load and store multiple expressions, which can contain a variable number of ! elements in a `parallel'. For example, (define_insn "" [(match_parallel 0 "load_multiple_operation" *************** substitution of the operands. *** 18568,18576 **** "" "loadm 0,0,%1,%2") ! This example comes from 'a29k.md'. The function ! 'load_multiple_operation' is defined in 'a29k.c' and checks that ! subsequent elements in the 'parallel' are the same as the 'set' in the pattern, except that they are referencing subsequent registers and memory locations. --- 18790,18798 ---- "" "loadm 0,0,%1,%2") ! This example comes from `a29k.md'. The function ! `load_multiple_operation' is defined in `a29k.c' and checks that ! subsequent elements in the `parallel' are the same as the `set' in the pattern, except that they are referencing subsequent registers and memory locations. *************** substitution of the operands. *** 18587,18595 **** (mem:SI (plus:SI (reg:SI 100) (const_int 8))))]) ! '(match_par_dup N [SUBPAT...])' ! Like 'match_op_dup', but for 'match_parallel' instead of ! 'match_operator'.  File: gccint.info, Node: Output Template, Next: Output Statement, Prev: RTL Template, Up: Machine Desc --- 18809,18818 ---- (mem:SI (plus:SI (reg:SI 100) (const_int 8))))]) ! `(match_par_dup N [SUBPAT...])' ! Like `match_op_dup', but for `match_parallel' instead of ! `match_operator'. !  File: gccint.info, Node: Output Template, Next: Output Statement, Prev: RTL Template, Up: Machine Desc *************** File: gccint.info, Node: Output Templat *** 18599,18673 **** The "output template" is a string which specifies how to output the assembler code for an instruction pattern. Most of the template is a ! fixed string which is output literally. The character '%' is used to specify where to substitute an operand; it can also be used to identify places where different variants of the assembler require different syntax. ! In the simplest case, a '%' followed by a digit N says to output operand N at that point in the string. ! '%' followed by a letter and a digit says to output an operand in an alternate fashion. Four letters have standard, built-in meanings ! described below. The machine description macro 'PRINT_OPERAND' can define additional letters with nonstandard meanings. ! '%cDIGIT' can be used to substitute an operand that is a constant value ! without the syntax that normally indicates an immediate operand. ! '%nDIGIT' is like '%cDIGIT' except that the value of the constant is negated before printing. ! '%aDIGIT' can be used to substitute an operand as if it were a memory reference, with the actual operand treated as the address. This may be useful when outputting a "load address" instruction, because often the assembler syntax for such an instruction requires you to write the operand as if it were a memory reference. ! '%lDIGIT' is used to substitute a 'label_ref' into a jump instruction. ! '%=' outputs a number which is unique to each instruction in the entire ! compilation. This is useful for making local labels to be referred to ! more than once in a single template that generates multiple assembler ! instructions. ! '%' followed by a punctuation character specifies a substitution that ! does not use an operand. Only one case is standard: '%%' outputs a '%' into the assembler code. Other nonstandard cases can be defined in the ! 'PRINT_OPERAND' macro. You must also define which punctuation ! characters are valid with the 'PRINT_OPERAND_PUNCT_VALID_P' macro. The template may generate multiple assembler instructions. Write the ! text for the instructions, with '\;' between them. When the RTL contains two operands which are required by constraint to match each other, the output template must refer only to the ! lower-numbered operand. Matching operands are not always identical, and ! the rest of the compiler arranges to put the proper RTL expression for ! printing into the lower-numbered operand. ! One use of nonstandard letters or punctuation following '%' is to distinguish between different assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for the 68000. Motorola ! syntax requires periods in most opcode names, while MIT syntax does not. ! For example, the opcode 'movel' in MIT syntax is 'move.l' in Motorola ! syntax. The same file of patterns is used for both kinds of output ! syntax, but the character sequence '%.' is used in each place where ! Motorola syntax wants a period. The 'PRINT_OPERAND' macro for Motorola ! syntax defines the sequence to output a period; the macro for MIT syntax ! defines it to do nothing. ! As a special case, a template consisting of the single character '#' instructs the compiler to first split the insn, and then output the resulting instructions separately. This helps eliminate redundancy in ! the output templates. If you have a 'define_insn' that needs to emit ! multiple assembler instructions, and there is a matching 'define_split' ! already defined, then you can simply use '#' as the output template instead of writing an output template that emits the multiple assembler instructions. ! If the macro 'ASSEMBLER_DIALECT' is defined, you can use construct of ! the form '{option0|option1|option2}' in the templates. These describe multiple variants of assembler language syntax. *Note Instruction Output::. --- 18822,18896 ---- The "output template" is a string which specifies how to output the assembler code for an instruction pattern. Most of the template is a ! fixed string which is output literally. The character `%' is used to specify where to substitute an operand; it can also be used to identify places where different variants of the assembler require different syntax. ! In the simplest case, a `%' followed by a digit N says to output operand N at that point in the string. ! `%' followed by a letter and a digit says to output an operand in an alternate fashion. Four letters have standard, built-in meanings ! described below. The machine description macro `PRINT_OPERAND' can define additional letters with nonstandard meanings. ! `%cDIGIT' can be used to substitute an operand that is a constant ! value without the syntax that normally indicates an immediate operand. ! `%nDIGIT' is like `%cDIGIT' except that the value of the constant is negated before printing. ! `%aDIGIT' can be used to substitute an operand as if it were a memory reference, with the actual operand treated as the address. This may be useful when outputting a "load address" instruction, because often the assembler syntax for such an instruction requires you to write the operand as if it were a memory reference. ! `%lDIGIT' is used to substitute a `label_ref' into a jump instruction. ! `%=' outputs a number which is unique to each instruction in the ! entire compilation. This is useful for making local labels to be ! referred to more than once in a single template that generates multiple ! assembler instructions. ! `%' followed by a punctuation character specifies a substitution that ! does not use an operand. Only one case is standard: `%%' outputs a `%' into the assembler code. Other nonstandard cases can be defined in the ! `PRINT_OPERAND' macro. You must also define which punctuation ! characters are valid with the `PRINT_OPERAND_PUNCT_VALID_P' macro. The template may generate multiple assembler instructions. Write the ! text for the instructions, with `\;' between them. When the RTL contains two operands which are required by constraint to match each other, the output template must refer only to the ! lower-numbered operand. Matching operands are not always identical, ! and the rest of the compiler arranges to put the proper RTL expression ! for printing into the lower-numbered operand. ! One use of nonstandard letters or punctuation following `%' is to distinguish between different assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for the 68000. Motorola ! syntax requires periods in most opcode names, while MIT syntax does ! not. For example, the opcode `movel' in MIT syntax is `move.l' in ! Motorola syntax. The same file of patterns is used for both kinds of ! output syntax, but the character sequence `%.' is used in each place ! where Motorola syntax wants a period. The `PRINT_OPERAND' macro for ! Motorola syntax defines the sequence to output a period; the macro for ! MIT syntax defines it to do nothing. ! As a special case, a template consisting of the single character `#' instructs the compiler to first split the insn, and then output the resulting instructions separately. This helps eliminate redundancy in ! the output templates. If you have a `define_insn' that needs to emit ! multiple assembler instructions, and there is a matching `define_split' ! already defined, then you can simply use `#' as the output template instead of writing an output template that emits the multiple assembler instructions. ! If the macro `ASSEMBLER_DIALECT' is defined, you can use construct of ! the form `{option0|option1|option2}' in the templates. These describe multiple variants of assembler language syntax. *Note Instruction Output::. *************** single instruction pattern. For example *** 18683,18695 **** kinds of operands; or some unfortunate combinations of operands may require extra machine instructions. ! If the output control string starts with a '@', then it is actually a series of templates, each on a separate line. (Blank lines and leading ! spaces and tabs are ignored.) The templates correspond to the pattern's ! constraint alternatives (*note Multi-Alternative::). For example, if a ! target machine has a two-address add instruction 'addr' to add into a ! register and another 'addm' to add a register to memory, you might write ! this pattern: (define_insn "addsi3" [(set (match_operand:SI 0 "general_operand" "=r,m") --- 18906,18918 ---- kinds of operands; or some unfortunate combinations of operands may require extra machine instructions. ! If the output control string starts with a `@', then it is actually a series of templates, each on a separate line. (Blank lines and leading ! spaces and tabs are ignored.) The templates correspond to the ! pattern's constraint alternatives (*note Multi-Alternative::). For ! example, if a target machine has a two-address add instruction `addr' ! to add into a register and another `addm' to add a register to memory, ! you might write this pattern: (define_insn "addsi3" [(set (match_operand:SI 0 "general_operand" "=r,m") *************** this pattern: *** 18700,18744 **** addr %2,%0 addm %2,%0") ! If the output control string starts with a '*', then it is not an output template but rather a piece of C program that should compute a ! template. It should execute a 'return' statement to return the template-string you want. Most such templates use C string literals, which require doublequote characters to delimit them. To include these ! doublequote characters in the string, prefix each one with '\'. If the output control string is written as a brace block instead of a double-quoted string, it is automatically assumed to be C code. In that case, it is not necessary to put in a leading asterisk, or to escape the doublequotes surrounding C string literals. ! The operands may be found in the array 'operands', whose C data type is ! 'rtx []'. It is very common to select different ways of generating assembler code based on whether an immediate operand is within a certain range. Be ! careful when doing this, because the result of 'INTVAL' is an integer on ! the host machine. If the host machine has more bits in an 'int' than ! the target machine has in the mode in which the constant will be used, ! then some of the bits you get from 'INTVAL' will be superfluous. For ! proper results, you must carefully disregard the values of those bits. It is possible to output an assembler instruction and then go on to ! output or compute more of them, using the subroutine 'output_asm_insn'. ! This receives two arguments: a template-string and a vector of operands. ! The vector may be 'operands', or it may be another array of 'rtx' that ! you declare locally and initialize yourself. When an insn pattern has multiple alternatives in its constraints, ! often the appearance of the assembler code is determined mostly by which ! alternative was matched. When this is so, the C code can test the ! variable 'which_alternative', which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.). ! For example, suppose there are two opcodes for storing zero, 'clrreg' ! for registers and 'clrmem' for memory locations. Here is how a pattern ! could use 'which_alternative' to choose between them: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") --- 18923,18968 ---- addr %2,%0 addm %2,%0") ! If the output control string starts with a `*', then it is not an output template but rather a piece of C program that should compute a ! template. It should execute a `return' statement to return the template-string you want. Most such templates use C string literals, which require doublequote characters to delimit them. To include these ! doublequote characters in the string, prefix each one with `\'. If the output control string is written as a brace block instead of a double-quoted string, it is automatically assumed to be C code. In that case, it is not necessary to put in a leading asterisk, or to escape the doublequotes surrounding C string literals. ! The operands may be found in the array `operands', whose C data type ! is `rtx []'. It is very common to select different ways of generating assembler code based on whether an immediate operand is within a certain range. Be ! careful when doing this, because the result of `INTVAL' is an integer ! on the host machine. If the host machine has more bits in an `int' ! than the target machine has in the mode in which the constant will be ! used, then some of the bits you get from `INTVAL' will be superfluous. ! For proper results, you must carefully disregard the values of those ! bits. It is possible to output an assembler instruction and then go on to ! output or compute more of them, using the subroutine `output_asm_insn'. ! This receives two arguments: a template-string and a vector of ! operands. The vector may be `operands', or it may be another array of ! `rtx' that you declare locally and initialize yourself. When an insn pattern has multiple alternatives in its constraints, ! often the appearance of the assembler code is determined mostly by ! which alternative was matched. When this is so, the C code can test ! the variable `which_alternative', which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.). ! For example, suppose there are two opcodes for storing zero, `clrreg' ! for registers and `clrmem' for memory locations. Here is how a pattern ! could use `which_alternative' to choose between them: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") *************** could use 'which_alternative' to choose *** 18751,18757 **** The example above, where the assembler code to generate was _solely_ determined by the alternative, could also have been specified as ! follows, having the output control string start with a '@': (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") --- 18975,18981 ---- The example above, where the assembler code to generate was _solely_ determined by the alternative, could also have been specified as ! follows, having the output control string start with a `@': (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,m") *************** follows, having the output control strin *** 18762,18768 **** clrmem %0") If you just need a little bit of C code in one (or a few) alternatives, ! you can use '*' inside of a '@' multi-alternative template: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,<,m") --- 18986,18992 ---- clrmem %0") If you just need a little bit of C code in one (or a few) alternatives, ! you can use `*' inside of a `@' multi-alternative template: (define_insn "" [(set (match_operand:SI 0 "general_operand" "=r,<,m") *************** File: gccint.info, Node: Predicates, N *** 18779,18796 **** 16.7 Predicates =============== ! A predicate determines whether a 'match_operand' or 'match_operator' expression matches, and therefore whether the surrounding instruction ! pattern will be used for that combination of operands. GCC has a number ! of machine-independent predicates, and you can define machine-specific ! predicates as needed. By convention, predicates used with ! 'match_operand' have names that end in '_operand', and those used with ! 'match_operator' have names that end in '_operator'. ! All predicates are Boolean functions (in the mathematical sense) of two ! arguments: the RTL expression that is being considered at that position ! in the instruction pattern, and the machine mode that the ! 'match_operand' or 'match_operator' specifies. In this section, the first argument is called OP and the second argument MODE. Predicates can be called from C as ordinary two-argument functions; this can be useful in output templates or other machine-specific code. --- 19003,19020 ---- 16.7 Predicates =============== ! A predicate determines whether a `match_operand' or `match_operator' expression matches, and therefore whether the surrounding instruction ! pattern will be used for that combination of operands. GCC has a ! number of machine-independent predicates, and you can define ! machine-specific predicates as needed. By convention, predicates used ! with `match_operand' have names that end in `_operand', and those used ! with `match_operator' have names that end in `_operator'. ! All predicates are Boolean functions (in the mathematical sense) of ! two arguments: the RTL expression that is being considered at that ! position in the instruction pattern, and the machine mode that the ! `match_operand' or `match_operator' specifies. In this section, the first argument is called OP and the second argument MODE. Predicates can be called from C as ordinary two-argument functions; this can be useful in output templates or other machine-specific code. *************** useful in output templates or other mach *** 18799,18828 **** to the hardware, as long as the constraints give reload the ability to fix them up (*note Constraints::). However, GCC will usually generate better code if the predicates specify the requirements of the machine ! instructions as closely as possible. Reload cannot fix up operands that ! must be constants ("immediate operands"); you must use a predicate that ! allows only constants, or else enforce the requirement in the extra ! condition. Most predicates handle their MODE argument in a uniform manner. If ! MODE is 'VOIDmode' (unspecified), then OP can have any mode. If MODE is ! anything else, then OP must have the same mode, unless OP is a ! 'CONST_INT' or integer 'CONST_DOUBLE'. These RTL expressions always ! have 'VOIDmode', so it would be counterproductive to check that their ! mode matches. Instead, predicates that accept 'CONST_INT' and/or ! integer 'CONST_DOUBLE' check that the value stored in the constant will fit in the requested mode. ! Predicates with this behavior are called "normal". 'genrecog' can optimize the instruction recognizer based on knowledge of how normal predicates treat modes. It can also diagnose certain kinds of common errors in the use of normal predicates; for instance, it is almost always an error to use a normal predicate without specifying a mode. Predicates that do something different with their MODE argument are ! called "special". The generic predicates 'address_operand' and ! 'pmode_register_operand' are special predicates. 'genrecog' does not do ! any optimizations or diagnosis when special predicates are used. * Menu: --- 19023,19052 ---- to the hardware, as long as the constraints give reload the ability to fix them up (*note Constraints::). However, GCC will usually generate better code if the predicates specify the requirements of the machine ! instructions as closely as possible. Reload cannot fix up operands ! that must be constants ("immediate operands"); you must use a predicate ! that allows only constants, or else enforce the requirement in the ! extra condition. Most predicates handle their MODE argument in a uniform manner. If ! MODE is `VOIDmode' (unspecified), then OP can have any mode. If MODE ! is anything else, then OP must have the same mode, unless OP is a ! `CONST_INT' or integer `CONST_DOUBLE'. These RTL expressions always ! have `VOIDmode', so it would be counterproductive to check that their ! mode matches. Instead, predicates that accept `CONST_INT' and/or ! integer `CONST_DOUBLE' check that the value stored in the constant will fit in the requested mode. ! Predicates with this behavior are called "normal". `genrecog' can optimize the instruction recognizer based on knowledge of how normal predicates treat modes. It can also diagnose certain kinds of common errors in the use of normal predicates; for instance, it is almost always an error to use a normal predicate without specifying a mode. Predicates that do something different with their MODE argument are ! called "special". The generic predicates `address_operand' and ! `pmode_register_operand' are special predicates. `genrecog' does not ! do any optimizations or diagnosis when special predicates are used. * Menu: *************** File: gccint.info, Node: Machine-Indepe *** 18837,18843 **** ------------------------------------- These are the generic predicates available to all back ends. They are ! defined in 'recog.c'. The first category of predicates allow only constant, or "immediate", operands. -- Function: immediate_operand --- 19061,19067 ---- ------------------------------------- These are the generic predicates available to all back ends. They are ! defined in `recog.c'. The first category of predicates allow only constant, or "immediate", operands. -- Function: immediate_operand *************** constant, or "immediate", operands. *** 18846,18872 **** must be constant. -- Function: const_int_operand ! This predicate allows any 'CONST_INT' expression that fits in MODE. ! It is an appropriate choice for an immediate operand that does not ! allow a symbol or label. -- Function: const_double_operand ! This predicate accepts any 'CONST_DOUBLE' expression that has ! exactly MODE. If MODE is 'VOIDmode', it will also accept ! 'CONST_INT'. It is intended for immediate floating point constants. The second category of predicates allow only some kind of machine register. -- Function: register_operand ! This predicate allows any 'REG' or 'SUBREG' expression that is valid for MODE. It is often suitable for arithmetic instruction operands on a RISC machine. -- Function: pmode_register_operand ! This is a slight variant on 'register_operand' which works around a ! limitation in the machine-description reader. (match_operand N "pmode_register_operand" CONSTRAINT) --- 19070,19096 ---- must be constant. -- Function: const_int_operand ! This predicate allows any `CONST_INT' expression that fits in ! MODE. It is an appropriate choice for an immediate operand that ! does not allow a symbol or label. -- Function: const_double_operand ! This predicate accepts any `CONST_DOUBLE' expression that has ! exactly MODE. If MODE is `VOIDmode', it will also accept ! `CONST_INT'. It is intended for immediate floating point constants. The second category of predicates allow only some kind of machine register. -- Function: register_operand ! This predicate allows any `REG' or `SUBREG' expression that is valid for MODE. It is often suitable for arithmetic instruction operands on a RISC machine. -- Function: pmode_register_operand ! This is a slight variant on `register_operand' which works around ! a limitation in the machine-description reader. (match_operand N "pmode_register_operand" CONSTRAINT) *************** register. *** 18874,18888 **** (match_operand:P N "register_operand" CONSTRAINT) ! would mean, if the machine-description reader accepted ':P' mode ! suffixes. Unfortunately, it cannot, because 'Pmode' is an alias for some other mode, and might vary with machine-specific options. *Note Misc::. -- Function: scratch_operand ! This predicate allows hard registers and 'SCRATCH' expressions, but ! not pseudo-registers. It is used internally by 'match_scratch'; it ! should not be used directly. The third category of predicates allow only some kind of memory reference. --- 19098,19112 ---- (match_operand:P N "register_operand" CONSTRAINT) ! would mean, if the machine-description reader accepted `:P' mode ! suffixes. Unfortunately, it cannot, because `Pmode' is an alias for some other mode, and might vary with machine-specific options. *Note Misc::. -- Function: scratch_operand ! This predicate allows hard registers and `SCRATCH' expressions, ! but not pseudo-registers. It is used internally by ! `match_scratch'; it should not be used directly. The third category of predicates allow only some kind of memory reference. *************** reference. *** 18890,18927 **** -- Function: memory_operand This predicate allows any valid reference to a quantity of mode MODE in memory, as determined by the weak form of ! 'GO_IF_LEGITIMATE_ADDRESS' (*note Addressing Modes::). -- Function: address_operand This predicate is a little unusual; it allows any operand that is a valid expression for the _address_ of a quantity of mode MODE, ! again determined by the weak form of 'GO_IF_LEGITIMATE_ADDRESS'. ! To first order, if '(mem:MODE (EXP))' is acceptable to ! 'memory_operand', then EXP is acceptable to 'address_operand'. Note that EXP does not necessarily have the mode MODE. -- Function: indirect_operand ! This is a stricter form of 'memory_operand' which allows only ! memory references with a 'general_operand' as the address expression. New uses of this predicate are discouraged, because ! 'general_operand' is very permissive, so it's hard to tell what an ! 'indirect_operand' does or does not allow. If a target has different requirements for memory operands for different instructions, it is better to define target-specific predicates which enforce the hardware's requirements explicitly. -- Function: push_operand This predicate allows a memory reference suitable for pushing a ! value onto the stack. This will be a 'MEM' which refers to ! 'stack_pointer_rtx', with a side-effect in its address expression ! (*note Incdec::); which one is determined by the 'STACK_PUSH_CODE' macro (*note Frame Layout::). -- Function: pop_operand This predicate allows a memory reference suitable for popping a ! value off the stack. Again, this will be a 'MEM' referring to ! 'stack_pointer_rtx', with a side-effect in its address expression. ! However, this time 'STACK_POP_CODE' is expected. The fourth category of predicates allow some combination of the above operands. --- 19114,19151 ---- -- Function: memory_operand This predicate allows any valid reference to a quantity of mode MODE in memory, as determined by the weak form of ! `GO_IF_LEGITIMATE_ADDRESS' (*note Addressing Modes::). -- Function: address_operand This predicate is a little unusual; it allows any operand that is a valid expression for the _address_ of a quantity of mode MODE, ! again determined by the weak form of `GO_IF_LEGITIMATE_ADDRESS'. ! To first order, if `(mem:MODE (EXP))' is acceptable to ! `memory_operand', then EXP is acceptable to `address_operand'. Note that EXP does not necessarily have the mode MODE. -- Function: indirect_operand ! This is a stricter form of `memory_operand' which allows only ! memory references with a `general_operand' as the address expression. New uses of this predicate are discouraged, because ! `general_operand' is very permissive, so it's hard to tell what an ! `indirect_operand' does or does not allow. If a target has different requirements for memory operands for different instructions, it is better to define target-specific predicates which enforce the hardware's requirements explicitly. -- Function: push_operand This predicate allows a memory reference suitable for pushing a ! value onto the stack. This will be a `MEM' which refers to ! `stack_pointer_rtx', with a side-effect in its address expression ! (*note Incdec::); which one is determined by the `STACK_PUSH_CODE' macro (*note Frame Layout::). -- Function: pop_operand This predicate allows a memory reference suitable for popping a ! value off the stack. Again, this will be a `MEM' referring to ! `stack_pointer_rtx', with a side-effect in its address expression. ! However, this time `STACK_POP_CODE' is expected. The fourth category of predicates allow some combination of the above operands. *************** Finally, there are two generic operator *** 18942,18955 **** -- Function: comparison_operator This predicate matches any expression which performs an arithmetic ! comparison in MODE; that is, 'COMPARISON_P' is true for the expression code. -- Function: ordered_comparison_operator This predicate matches any expression which performs an arithmetic comparison in MODE and whose expression code is valid for integer ! modes; that is, the expression code will be one of 'eq', 'ne', ! 'lt', 'ltu', 'le', 'leu', 'gt', 'gtu', 'ge', 'geu'.  File: gccint.info, Node: Defining Predicates, Prev: Machine-Independent Predicates, Up: Predicates --- 19166,19179 ---- -- Function: comparison_operator This predicate matches any expression which performs an arithmetic ! comparison in MODE; that is, `COMPARISON_P' is true for the expression code. -- Function: ordered_comparison_operator This predicate matches any expression which performs an arithmetic comparison in MODE and whose expression code is valid for integer ! modes; that is, the expression code will be one of `eq', `ne', ! `lt', `ltu', `le', `leu', `gt', `gtu', `ge', `geu'.  File: gccint.info, Node: Defining Predicates, Prev: Machine-Independent Predicates, Up: Predicates *************** File: gccint.info, Node: Defining Predi *** 18959,18990 **** Many machines have requirements for their operands that cannot be expressed precisely using the generic predicates. You can define ! additional predicates using 'define_predicate' and ! 'define_special_predicate' expressions. These expressions have three operands: * The name of the predicate, as it will be referred to in ! 'match_operand' or 'match_operator' expressions. * An RTL expression which evaluates to true if the predicate allows the operand OP, false if it does not. This expression can only use the following RTL codes: ! 'MATCH_OPERAND' ! When written inside a predicate expression, a 'MATCH_OPERAND' expression evaluates to true if the predicate it names would ! allow OP. The operand number and constraint are ignored. Due ! to limitations in 'genrecog', you can only refer to generic ! predicates and predicates that have already been defined. ! 'MATCH_CODE' This expression evaluates to true if OP or a specified subexpression of OP has one of a given list of RTX codes. The first operand of this expression is a string constant containing a comma-separated list of RTX code names (in lower ! case). These are the codes for which the 'MATCH_CODE' will be ! true. The second operand is a string constant which indicates what subexpression of OP to examine. If it is absent or the empty --- 19183,19215 ---- Many machines have requirements for their operands that cannot be expressed precisely using the generic predicates. You can define ! additional predicates using `define_predicate' and ! `define_special_predicate' expressions. These expressions have three operands: * The name of the predicate, as it will be referred to in ! `match_operand' or `match_operator' expressions. * An RTL expression which evaluates to true if the predicate allows the operand OP, false if it does not. This expression can only use the following RTL codes: ! `MATCH_OPERAND' ! When written inside a predicate expression, a `MATCH_OPERAND' expression evaluates to true if the predicate it names would ! allow OP. The operand number and constraint are ignored. ! Due to limitations in `genrecog', you can only refer to ! generic predicates and predicates that have already been ! defined. ! `MATCH_CODE' This expression evaluates to true if OP or a specified subexpression of OP has one of a given list of RTX codes. The first operand of this expression is a string constant containing a comma-separated list of RTX code names (in lower ! case). These are the codes for which the `MATCH_CODE' will ! be true. The second operand is a string constant which indicates what subexpression of OP to examine. If it is absent or the empty *************** operands: *** 18993,19045 **** character indicates a subexpression to extract from the current expression; for the first character this is OP, for the second and subsequent characters it is the result of the ! previous character. A digit N extracts 'XEXP (E, N)'; a ! letter L extracts 'XVECEXP (E, 0, N)' where N is the ! alphabetic ordinal of L (0 for 'a', 1 for 'b', and so on). ! The 'MATCH_CODE' then examines the RTX code of the subexpression extracted by the complete string. It is not ! possible to extract components of an 'rtvec' that is not at position 0 within its RTX object. ! 'MATCH_TEST' This expression has one operand, a string constant containing a C expression. The predicate's arguments, OP and MODE, are available with those names in the C expression. The ! 'MATCH_TEST' evaluates to true if the C expression evaluates ! to a nonzero value. 'MATCH_TEST' expressions must not have side effects. ! 'AND' ! 'IOR' ! 'NOT' ! 'IF_THEN_ELSE' ! The basic 'MATCH_' expressions can be combined using these logical operators, which have the semantics of the C operators ! '&&', '||', '!', and '? :' respectively. As in Common Lisp, ! you may give an 'AND' or 'IOR' expression an arbitrary number of arguments; this has exactly the same effect as writing a ! chain of two-argument 'AND' or 'IOR' expressions. ! * An optional block of C code, which should execute 'return true' if ! the predicate is found to match and 'return false' if it does not. ! It must not have any side effects. The predicate arguments, OP and ! MODE, are available with those names. If a code block is present in a predicate definition, then the RTL expression must evaluate to true _and_ the code block must execute ! 'return true' for the predicate to allow the operand. The RTL ! expression is evaluated first; do not re-check anything in the code ! block that was checked in the RTL expression. ! The program 'genrecog' scans 'define_predicate' and ! 'define_special_predicate' expressions to determine which RTX codes are possibly allowed. You should always make this explicit in the RTL ! predicate expression, using 'MATCH_OPERAND' and 'MATCH_CODE'. Here is an example of a simple predicate definition, from the IA64 machine description: ! ;; True if OP is a 'SYMBOL_REF' which refers to the sdata section. (define_predicate "small_addr_symbolic_operand" (and (match_code "symbol_ref") (match_test "SYMBOL_REF_SMALL_ADDR_P (op)"))) --- 19218,19270 ---- character indicates a subexpression to extract from the current expression; for the first character this is OP, for the second and subsequent characters it is the result of the ! previous character. A digit N extracts `XEXP (E, N)'; a ! letter L extracts `XVECEXP (E, 0, N)' where N is the ! alphabetic ordinal of L (0 for `a', 1 for 'b', and so on). ! The `MATCH_CODE' then examines the RTX code of the subexpression extracted by the complete string. It is not ! possible to extract components of an `rtvec' that is not at position 0 within its RTX object. ! `MATCH_TEST' This expression has one operand, a string constant containing a C expression. The predicate's arguments, OP and MODE, are available with those names in the C expression. The ! `MATCH_TEST' evaluates to true if the C expression evaluates ! to a nonzero value. `MATCH_TEST' expressions must not have side effects. ! `AND' ! `IOR' ! `NOT' ! `IF_THEN_ELSE' ! The basic `MATCH_' expressions can be combined using these logical operators, which have the semantics of the C operators ! `&&', `||', `!', and `? :' respectively. As in Common Lisp, ! you may give an `AND' or `IOR' expression an arbitrary number of arguments; this has exactly the same effect as writing a ! chain of two-argument `AND' or `IOR' expressions. ! * An optional block of C code, which should execute `return true' if ! the predicate is found to match and `return false' if it does not. ! It must not have any side effects. The predicate arguments, OP ! and MODE, are available with those names. If a code block is present in a predicate definition, then the RTL expression must evaluate to true _and_ the code block must execute ! `return true' for the predicate to allow the operand. The RTL ! expression is evaluated first; do not re-check anything in the ! code block that was checked in the RTL expression. ! The program `genrecog' scans `define_predicate' and ! `define_special_predicate' expressions to determine which RTX codes are possibly allowed. You should always make this explicit in the RTL ! predicate expression, using `MATCH_OPERAND' and `MATCH_CODE'. Here is an example of a simple predicate definition, from the IA64 machine description: ! ;; True if OP is a `SYMBOL_REF' which refers to the sdata section. (define_predicate "small_addr_symbolic_operand" (and (match_code "symbol_ref") (match_test "SYMBOL_REF_SMALL_ADDR_P (op)"))) *************** And here is another, showing the use of *** 19058,19082 **** return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno)); }) ! Predicates written with 'define_predicate' automatically include a test ! that MODE is 'VOIDmode', or OP has the same mode as MODE, or OP is a ! 'CONST_INT' or 'CONST_DOUBLE'. They do _not_ check specifically for ! integer 'CONST_DOUBLE', nor do they test that the value of either kind ! of constant fits in the requested mode. This is because target-specific ! predicates that take constants usually have to do more stringent value ! checks anyway. If you need the exact same treatment of 'CONST_INT' or ! 'CONST_DOUBLE' that the generic predicates provide, use a ! 'MATCH_OPERAND' subexpression to call 'const_int_operand', ! 'const_double_operand', or 'immediate_operand'. ! Predicates written with 'define_special_predicate' do not get any automatic mode checks, and are treated as having special mode handling ! by 'genrecog'. ! The program 'genpreds' is responsible for generating code to test predicates. It also writes a header file containing function declarations for all machine-specific predicates. It is not necessary ! to declare these predicates in 'CPU-protos.h'.  File: gccint.info, Node: Constraints, Next: Standard Names, Prev: Predicates, Up: Machine Desc --- 19283,19307 ---- return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno)); }) ! Predicates written with `define_predicate' automatically include a ! test that MODE is `VOIDmode', or OP has the same mode as MODE, or OP is ! a `CONST_INT' or `CONST_DOUBLE'. They do _not_ check specifically for ! integer `CONST_DOUBLE', nor do they test that the value of either kind ! of constant fits in the requested mode. This is because ! target-specific predicates that take constants usually have to do more ! stringent value checks anyway. If you need the exact same treatment of ! `CONST_INT' or `CONST_DOUBLE' that the generic predicates provide, use ! a `MATCH_OPERAND' subexpression to call `const_int_operand', ! `const_double_operand', or `immediate_operand'. ! Predicates written with `define_special_predicate' do not get any automatic mode checks, and are treated as having special mode handling ! by `genrecog'. ! The program `genpreds' is responsible for generating code to test predicates. It also writes a header file containing function declarations for all machine-specific predicates. It is not necessary ! to declare these predicates in `CPU-protos.h'.  File: gccint.info, Node: Constraints, Next: Standard Names, Prev: Predicates, Up: Machine Desc *************** File: gccint.info, Node: Constraints, *** 19084,19090 **** 16.8 Operand Constraints ======================== ! Each 'match_operand' in an instruction pattern can specify constraints for the operands allowed. The constraints allow you to fine-tune matching within the set of operands allowed by the predicate. --- 19309,19315 ---- 16.8 Operand Constraints ======================== ! Each `match_operand' in an instruction pattern can specify constraints for the operands allowed. The constraints allow you to fine-tune matching within the set of operands allowed by the predicate. *************** kinds of register; whether the operand c *** 19093,19099 **** which kinds of address; whether the operand may be an immediate constant, and which possible values it may have. Constraints can also require two operands to match. Side-effects aren't allowed in operands ! of inline 'asm', unless '<' or '>' constraints are used, because there is no guarantee that the side-effects will happen exactly once in an instruction that can update the addressing register. --- 19318,19324 ---- which kinds of address; whether the operand may be an immediate constant, and which possible values it may have. Constraints can also require two operands to match. Side-effects aren't allowed in operands ! of inline `asm', unless `<' or `>' constraints are used, because there is no guarantee that the side-effects will happen exactly once in an instruction that can update the addressing register. *************** instruction that can update the addressi *** 19104,19110 **** * Class Preferences:: Constraints guide which hard register to put things in. * Modifiers:: More precise control over effects of constraints. * Machine Constraints:: Existing constraints for some particular machines. ! * Disable Insn Alternatives:: Disable insn alternatives using the 'enabled' attribute. * Define Constraints:: How to define machine-specific constraints. * C Constraint Interface:: How to test constraints from C code. --- 19329,19335 ---- * Class Preferences:: Constraints guide which hard register to put things in. * Modifiers:: More precise control over effects of constraints. * Machine Constraints:: Existing constraints for some particular machines. ! * Disable Insn Alternatives:: Disable insn alternatives using the `enabled' attribute. * Define Constraints:: How to define machine-specific constraints. * C Constraint Interface:: How to test constraints from C code. *************** whitespace *** 19125,19137 **** description even if they have different number of constraints and modifiers. ! 'm' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using the ! 'TARGET_MEM_CONSTRAINT' macro. ! 'o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine --- 19350,19362 ---- description even if they have different number of constraints and modifiers. ! `m' A memory operand is allowed, with any kind of address that the machine supports in general. Note that the letter used for the ! general memory constraint can be re-defined by a back end using ! the `TARGET_MEM_CONSTRAINT' macro. ! `o' A memory operand is allowed, but only if the address is "offsettable". This means that adding a small integer (actually, the width in bytes of the operand, as determined by its machine *************** whitespace *** 19147,19252 **** on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter 'o' is valid only when accompanied ! by both '<' (if the target machine has predecrement addressing) and ! '>' (if the target machine has preincrement addressing). ! 'V' ! A memory operand that is not offsettable. In other words, anything ! that would fit the 'm' constraint but not the 'o' constraint. ! '<' ! A memory operand with autodecrement addressing (either predecrement ! or postdecrement) is allowed. In inline 'asm' this constraint is ! only allowed if the operand is used exactly once in an instruction ! that can handle the side-effects. Not using an operand with '<' in ! constraint string in the inline 'asm' pattern at all or using it in ! multiple instructions isn't valid, because the side-effects ! wouldn't be performed or would be performed more than once. ! Furthermore, on some targets the operand with '<' in constraint ! string must be accompanied by special instruction suffixes like ! '%U0' instruction suffix on PowerPC or '%P0' on IA-64. ! '>' ! A memory operand with autoincrement addressing (either preincrement ! or postincrement) is allowed. In inline 'asm' the same ! restrictions as for '<' apply. ! 'r' A register operand is allowed provided that it is in a general register. ! 'i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! 'n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! 'n' rather than 'i'. ! 'I', 'J', 'K', ... 'P' ! Other letters in the range 'I' through 'P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, 'I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! 'E' ! An immediate floating operand (expression code 'const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! 'F' ! An immediate floating operand (expression code 'const_double' or ! 'const_vector') is allowed. ! 'G', 'H' ! 'G' and 'H' may be defined in a machine-dependent fashion to permit ! immediate floating operands in particular ranges of values. ! 's' ! An immediate integer operand whose value is not an explicit integer ! is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow any ! known value. So why use 's' instead of 'i'? Sometimes it allows ! better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into the ! register can be done with a 'moveq' instruction. We arrange for ! this to happen by defining the letter 'K' to mean "any integer ! outside the range -128 to 127", and then specifying 'Ks' in the operand constraints. ! 'g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! 'X' Any operand whatsoever is allowed, even if it does not satisfy ! 'general_operand'. This is normally used in the constraint of a ! 'match_scratch' when certain alternatives will not actually require ! a scratch register. ! '0', '1', '2', ... '9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, since ! to-date it has never been desirable that '10' be interpreted as ! matching either operand 1 _or_ operand 0. Should this be desired, ! one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles --- 19372,19479 ---- on the other addressing modes that the machine supports. Note that in an output operand which can be matched by another ! operand, the constraint letter `o' is valid only when accompanied ! by both `<' (if the target machine has predecrement addressing) ! and `>' (if the target machine has preincrement addressing). ! `V' ! A memory operand that is not offsettable. In other words, ! anything that would fit the `m' constraint but not the `o' ! constraint. ! `<' ! A memory operand with autodecrement addressing (either ! predecrement or postdecrement) is allowed. In inline `asm' this ! constraint is only allowed if the operand is used exactly once in ! an instruction that can handle the side-effects. Not using an ! operand with `<' in constraint string in the inline `asm' pattern ! at all or using it in multiple instructions isn't valid, because ! the side-effects wouldn't be performed or would be performed more ! than once. Furthermore, on some targets the operand with `<' in ! constraint string must be accompanied by special instruction ! suffixes like `%U0' instruction suffix on PowerPC or `%P0' on ! IA-64. ! `>' ! A memory operand with autoincrement addressing (either ! preincrement or postincrement) is allowed. In inline `asm' the ! same restrictions as for `<' apply. ! `r' A register operand is allowed provided that it is in a general register. ! `i' An immediate integer operand (one with constant value) is allowed. This includes symbolic constants whose values will be known only at assembly time or later. ! `n' An immediate integer operand with a known numeric value is allowed. Many systems cannot support assembly-time constants for operands less than a word wide. Constraints for these operands should use ! `n' rather than `i'. ! `I', `J', `K', ... `P' ! Other letters in the range `I' through `P' may be defined in a machine-dependent fashion to permit immediate integer operands with explicit integer values in specified ranges. For example, on the ! 68000, `I' is defined to stand for the range of values 1 to 8. This is the range permitted as a shift count in the shift instructions. ! `E' ! An immediate floating operand (expression code `const_double') is allowed, but only if the target floating point format is the same as that of the host machine (on which the compiler is running). ! `F' ! An immediate floating operand (expression code `const_double' or ! `const_vector') is allowed. ! `G', `H' ! `G' and `H' may be defined in a machine-dependent fashion to ! permit immediate floating operands in particular ranges of values. ! `s' ! An immediate integer operand whose value is not an explicit ! integer is allowed. This might appear strange; if an insn allows a constant operand ! with a value not known at compile time, it certainly must allow ! any known value. So why use `s' instead of `i'? Sometimes it ! allows better code to be generated. For example, on the 68000 in a fullword instruction it is possible to use an immediate operand; but if the immediate value is between -128 and 127, better code results from loading the value into a ! register and using the register. This is because the load into ! the register can be done with a `moveq' instruction. We arrange ! for this to happen by defining the letter `K' to mean "any integer ! outside the range -128 to 127", and then specifying `Ks' in the operand constraints. ! `g' Any register, memory or immediate integer operand is allowed, except for registers that are not general registers. ! `X' Any operand whatsoever is allowed, even if it does not satisfy ! `general_operand'. This is normally used in the constraint of a ! `match_scratch' when certain alternatives will not actually ! require a scratch register. ! `0', `1', `2', ... `9' An operand that matches the specified operand number is allowed. If a digit is used together with letters within the same alternative, the digit should come last. This number is allowed to be more than a single digit. If multiple digits are encountered consecutively, they are interpreted as a ! single decimal integer. There is scant chance for ambiguity, ! since to-date it has never been desirable that `10' be interpreted ! as matching either operand 1 _or_ operand 0. Should this be ! desired, one can use multiple alternatives instead. This is called a "matching constraint" and what it really means is that the assembler has only a single operand that fills two roles *************** whitespace *** 19265,19288 **** For operands to match in a particular case usually means that they are identical-looking RTL expressions. But in a few special cases ! specific kinds of dissimilarity are allowed. For example, '*x' as ! an input operand will match '*x++' as an output operand. For ! proper results in such cases, the output template should always use ! the output-operand's number when printing the operand. ! 'p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! 'p' in the constraint must be accompanied by 'address_operand' as ! the predicate in the 'match_operand'. This predicate interprets ! the mode specified in the 'match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. 'd', 'a' and 'f' are defined on the 68000/68020 to stand for data, address and floating point registers. In order to have valid assembler code, each operand must satisfy its --- 19492,19515 ---- For operands to match in a particular case usually means that they are identical-looking RTL expressions. But in a few special cases ! specific kinds of dissimilarity are allowed. For example, `*x' as ! an input operand will match `*x++' as an output operand. For ! proper results in such cases, the output template should always ! use the output-operand's number when printing the operand. ! `p' An operand that is a valid memory address is allowed. This is for "load address" and "push address" instructions. ! `p' in the constraint must be accompanied by `address_operand' as ! the predicate in the `match_operand'. This predicate interprets ! the mode specified in the `match_operand' as the mode of the memory reference for which the address would be valid. OTHER-LETTERS Other letters can be defined in machine-dependent fashion to stand for particular classes of registers or other arbitrary operand ! types. `d', `a' and `f' are defined on the 68000/68020 to stand for data, address and floating point registers. In order to have valid assembler code, each operand must satisfy its *************** the first pattern would not apply at all *** 19321,19329 **** contain two identical subexpressions in the right place. The pattern would say, "That does not look like an add instruction; try other patterns". The second pattern would say, "Yes, that's an add ! instruction, but there is something wrong with it". It would direct the ! reload pass of the compiler to generate additional insns to make the ! constraint true. The results might look like this: (insn N2 PREV N (set (reg:SI 3) (reg:SI 6)) --- 19548,19556 ---- contain two identical subexpressions in the right place. The pattern would say, "That does not look like an add instruction; try other patterns". The second pattern would say, "Yes, that's an add ! instruction, but there is something wrong with it". It would direct ! the reload pass of the compiler to generate additional insns to make ! the constraint true. The results might look like this: (insn N2 PREV N (set (reg:SI 3) (reg:SI 6)) *************** reloading any possible operand so that i *** 19350,19395 **** registers is safe provided its predicate rejects registers. An operand whose predicate accepts only constant values is safe ! provided its constraints include the letter 'i'. If any possible ! constant value is accepted, then nothing less than 'i' will do; if the predicate is more selective, then the constraints may also be more selective. * Any operand expression can be reloaded by copying it into a register. So if an operand's constraints allow some kind of ! register, it is certain to be safe. It need not permit all classes ! of registers; the compiler knows how to copy a register into ! another register of the proper class in order to make an instruction valid. * A nonoffsettable memory reference can be reloaded by copying the ! address into a register. So if the constraint uses the letter 'o', ! all memory references are taken care of. * A constant operand can be reloaded by allocating space in memory to hold it as preinitialized data. Then the memory reference can be used in place of the constant. So if the constraint uses the ! letters 'o' or 'm', constant operands are not a problem. * If the constraint permits a constant and a pseudo register used in ! an insn was not allocated to a hard register and is equivalent to a ! constant, the register will be replaced with the constant. If the ! predicate does not permit a constant and the insn is re-recognized ! for some reason, the compiler will crash. Thus the predicate must ! always recognize any objects allowed by the constraint. If the operand's predicate can recognize registers, but the constraint ! does not permit them, it can make the compiler crash. When this operand ! happens to be a register, the reload pass will be stymied, because it ! does not know how to copy a register temporarily into memory. If the predicate accepts a unary operator, the constraint applies to the operand. For example, the MIPS processor at ISA level 3 supports an ! instruction which adds two registers in 'SImode' to produce a 'DImode' result, but only if the registers are correctly sign extended. This ! predicate for the input operands accepts a 'sign_extend' of an 'SImode' ! register. Write the constraint to indicate the type of register that is ! required for the operand of the 'sign_extend'.  File: gccint.info, Node: Multi-Alternative, Next: Class Preferences, Prev: Simple Constraints, Up: Constraints --- 19577,19623 ---- registers is safe provided its predicate rejects registers. An operand whose predicate accepts only constant values is safe ! provided its constraints include the letter `i'. If any possible ! constant value is accepted, then nothing less than `i' will do; if the predicate is more selective, then the constraints may also be more selective. * Any operand expression can be reloaded by copying it into a register. So if an operand's constraints allow some kind of ! register, it is certain to be safe. It need not permit all ! classes of registers; the compiler knows how to copy a register ! into another register of the proper class in order to make an instruction valid. * A nonoffsettable memory reference can be reloaded by copying the ! address into a register. So if the constraint uses the letter ! `o', all memory references are taken care of. * A constant operand can be reloaded by allocating space in memory to hold it as preinitialized data. Then the memory reference can be used in place of the constant. So if the constraint uses the ! letters `o' or `m', constant operands are not a problem. * If the constraint permits a constant and a pseudo register used in ! an insn was not allocated to a hard register and is equivalent to ! a constant, the register will be replaced with the constant. If ! the predicate does not permit a constant and the insn is ! re-recognized for some reason, the compiler will crash. Thus the ! predicate must always recognize any objects allowed by the ! constraint. If the operand's predicate can recognize registers, but the constraint ! does not permit them, it can make the compiler crash. When this ! operand happens to be a register, the reload pass will be stymied, ! because it does not know how to copy a register temporarily into memory. If the predicate accepts a unary operator, the constraint applies to the operand. For example, the MIPS processor at ISA level 3 supports an ! instruction which adds two registers in `SImode' to produce a `DImode' result, but only if the registers are correctly sign extended. This ! predicate for the input operands accepts a `sign_extend' of an `SImode' ! register. Write the constraint to indicate the type of register that ! is required for the operand of the `sign_extend'.  File: gccint.info, Node: Multi-Alternative, Next: Class Preferences, Prev: Simple Constraints, Up: Constraints *************** alternative. Here is how it is done for *** 19417,19454 **** (match_operand:SI 2 "general_operand" "dKs,dmKs")))] ...) ! The first alternative has 'm' (memory) for operand 0, '0' for operand 1 ! (meaning it must match operand 0), and 'dKs' for operand 2. The second ! alternative has 'd' (data register) for operand 0, '0' for operand 1, ! and 'dmKs' for operand 2. The '=' and '%' in the constraints apply to ! all the alternatives; their meaning is explained in the next section ! (*note Class Preferences::). If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that alternative ! applies. The alternative requiring the least copying is chosen. If two ! alternatives need the same amount of copying, the one that comes first ! is chosen. These choices can be altered with the '?' and '!' ! characters: ! '?' ! Disparage slightly the alternative that the '?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each '?' that appears in it. ! '!' ! Disparage severely the alternative that the '!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code for writing the ! assembler code can use the variable 'which_alternative', which is the ! ordinal number of the alternative that was actually satisfied (0 for the ! first, 1 for the second alternative, etc.). *Note Output Statement::.  File: gccint.info, Node: Class Preferences, Next: Modifiers, Prev: Multi-Alternative, Up: Constraints --- 19645,19683 ---- (match_operand:SI 2 "general_operand" "dKs,dmKs")))] ...) ! The first alternative has `m' (memory) for operand 0, `0' for operand ! 1 (meaning it must match operand 0), and `dKs' for operand 2. The ! second alternative has `d' (data register) for operand 0, `0' for ! operand 1, and `dmKs' for operand 2. The `=' and `%' in the ! constraints apply to all the alternatives; their meaning is explained ! in the next section (*note Class Preferences::). If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative, the compiler counts how many ! instructions must be added to copy the operands so that that ! alternative applies. The alternative requiring the least copying is ! chosen. If two alternatives need the same amount of copying, the one ! that comes first is chosen. These choices can be altered with the `?' ! and `!' characters: ! `?' ! Disparage slightly the alternative that the `?' appears in, as a choice when no alternative applies exactly. The compiler regards ! this alternative as one unit more costly for each `?' that appears in it. ! `!' ! Disparage severely the alternative that the `!' appears in. This alternative can still be used if it fits without reloading, but if reloading is needed, some other alternative will be used. When an insn pattern has multiple alternatives in its constraints, often the appearance of the assembler code is determined mostly by which alternative was matched. When this is so, the C code for writing the ! assembler code can use the variable `which_alternative', which is the ! ordinal number of the alternative that was actually satisfied (0 for ! the first, 1 for the second alternative, etc.). *Note Output ! Statement::.  File: gccint.info, Node: Class Preferences, Next: Modifiers, Prev: Multi-Alternative, Up: Constraints *************** The operand constraints have another fun *** 19460,19468 **** to decide which kind of hardware register a pseudo register is best allocated to. The compiler examines the constraints that apply to the insns that use the pseudo register, looking for the machine-dependent ! letters such as 'd' and 'a' that specify classes of registers. The pseudo register is put in whichever class gets the most "votes". The ! constraint letters 'g' and 'r' also vote: they vote in favor of a general register. The machine description says which registers are considered general. --- 19689,19697 ---- to decide which kind of hardware register a pseudo register is best allocated to. The compiler examines the constraints that apply to the insns that use the pseudo register, looking for the machine-dependent ! letters such as `d' and `a' that specify classes of registers. The pseudo register is put in whichever class gets the most "votes". The ! constraint letters `g' and `r' also vote: they vote in favor of a general register. The machine description says which registers are considered general. *************** File: gccint.info, Node: Modifiers, Ne *** 19477,19526 **** Here are constraint modifier characters. ! '=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! '+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. '=' identifies an output; '+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify '=' or '+' in a constraint, you put it in the first character of the constraint string. ! '&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may not ! lie in a register that is used as an input operand or as part of ! any memory address. ! '&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires '&' while others do not. See, for example, the 'movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the 'mulsi3' insn of the ARM. ! '&' does not obviate the need to write '='. ! '%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. This is often used in patterns for addition ! instructions that really have only two operands: the result must go ! in one of the arguments. Here for example, is how the 68000 halfword-add instruction is defined: (define_insn "addhi3" --- 19706,19755 ---- Here are constraint modifier characters. ! `=' Means that this operand is write-only for this instruction: the previous value is discarded and replaced by output data. ! `+' Means that this operand is both read and written by the instruction. When the compiler fixes up the operands to satisfy the constraints, it needs to know which operands are inputs to the instruction and ! which are outputs from it. `=' identifies an output; `+' identifies an operand that is both input and output; all other operands are assumed to be input only. ! If you specify `=' or `+' in a constraint, you put it in the first character of the constraint string. ! `&' Means (in a particular alternative) that this operand is an "earlyclobber" operand, which is modified before the instruction is ! finished using the input operands. Therefore, this operand may ! not lie in a register that is used as an input operand or as part ! of any memory address. ! `&' applies only to the alternative in which it is written. In constraints with multiple alternatives, sometimes one alternative ! requires `&' while others do not. See, for example, the `movdf' insn of the 68000. An input operand can be tied to an earlyclobber operand if its only use as an input occurs before the early result is written. Adding alternatives of this form often allows GCC to produce better code when only some of the inputs can be affected by the earlyclobber. ! See, for example, the `mulsi3' insn of the ARM. ! `&' does not obviate the need to write `='. ! `%' Declares the instruction to be commutative for this operand and the following operand. This means that the compiler may interchange the two operands if that is the cheapest way to make all operands fit the constraints. This is often used in patterns for addition ! instructions that really have only two operands: the result must ! go in one of the arguments. Here for example, is how the 68000 halfword-add instruction is defined: (define_insn "addhi3" *************** Here are constraint modifier characters. *** 19530,19561 **** ...) GCC can only handle one commutative pair in an asm; if you use more, the compiler may fail. Note that you need not use the ! modifier if the two alternatives are strictly identical; this would ! only waste time in the reload pass. The modifier is not operational after register allocation, so the result of ! 'define_peephole2' and 'define_split's performed after reload ! cannot rely on '%' to make the intended insn match. ! '#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! '*' Says that the following character should be ignored when choosing ! register preferences. '*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! '*' additionally disparages slightly the alternative if the following character matches the operand. Here is an example: the 68000 has an instruction to sign-extend a halfword in a data register, and can also sign-extend a value by ! copying it into an address register. While either kind of register ! is acceptable, the constraints on an address-register destination ! are less strict, so it is best if register allocation makes an ! address register its goal. Therefore, '*' is used so that the 'd' ! constraint letter (for data register) is ignored when computing ! register preferences. (define_insn "extendhisi2" [(set (match_operand:SI 0 "general_operand" "=*d,a") --- 19759,19790 ---- ...) GCC can only handle one commutative pair in an asm; if you use more, the compiler may fail. Note that you need not use the ! modifier if the two alternatives are strictly identical; this ! would only waste time in the reload pass. The modifier is not operational after register allocation, so the result of ! `define_peephole2' and `define_split's performed after reload ! cannot rely on `%' to make the intended insn match. ! `#' Says that all following characters, up to the next comma, are to be ignored as a constraint. They are significant only for choosing register preferences. ! `*' Says that the following character should be ignored when choosing ! register preferences. `*' has no effect on the meaning of the constraint as a constraint, and no effect on reloading. For LRA ! `*' additionally disparages slightly the alternative if the following character matches the operand. Here is an example: the 68000 has an instruction to sign-extend a halfword in a data register, and can also sign-extend a value by ! copying it into an address register. While either kind of ! register is acceptable, the constraints on an address-register ! destination are less strict, so it is best if register allocation ! makes an address register its goal. Therefore, `*' is used so ! that the `d' constraint letter (for data register) is ignored when ! computing register preferences. (define_insn "extendhisi2" [(set (match_operand:SI 0 "general_operand" "=*d,a") *************** File: gccint.info, Node: Machine Constr *** 19570,20038 **** ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in 'asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters that ! usually have very similar meanings across architectures. The most ! commonly used constraints are 'm' and 'r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! 'I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for 'asm' statements; therefore, some of the constraints are not ! particularly useful for 'asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for 'asm' and constraints that ! aren't. The compiler source file mentioned in the table heading for ! each architecture is the definitive reference for the meanings of that ! architecture's constraints. ! _AArch64 family--'config/aarch64/constraints.md'_ ! 'k' ! The stack pointer register ('SP') ! 'w' Floating point or SIMD vector register ! 'I' Integer constant that is valid as an immediate operand in an ! 'ADD' instruction ! 'J' Integer constant that is valid as an immediate operand in a ! 'SUB' instruction (once negated) ! 'K' Integer constant that can be used with a 32-bit logical instruction ! 'L' Integer constant that can be used with a 64-bit logical instruction ! 'M' Integer constant that is valid as an immediate operand in a ! 32-bit 'MOV' pseudo instruction. The 'MOV' may be assembled to one of several different machine instructions depending on the value ! 'N' Integer constant that is valid as an immediate operand in a ! 64-bit 'MOV' pseudo instruction ! 'S' An absolute symbolic address or a label reference ! 'Y' Floating point constant zero ! 'Z' Integer constant zero ! 'Ush' ! The high part (bits 12 and upwards) of the pc-relative address ! of a symbol within 4GB of the instruction ! 'Q' A memory address which uses a single base register with no offset ! 'Ump' ! A memory address suitable for a load/store pair instruction in ! SI, DI, SF and DF modes ! _ARC --'config/arc/constraints.md'_ ! 'q' ! Registers usable in ARCompact 16-bit instructions: 'r0'-'r3', ! 'r12'-'r15'. This constraint can only match when the '-mq' option is in effect. ! 'e' ! Registers usable as base-regs of memory addresses in ARCompact ! 16-bit memory instructions: 'r0'-'r3', 'r12'-'r15', 'sp'. ! This constraint can only match when the '-mq' option is in ! effect. ! 'D' ! ARC FPX (dpfp) 64-bit registers. 'D0', 'D1'. ! 'I' A signed 12-bit integer constant. ! 'Cal' ! constant for arithmetic/logical operations. This might be any ! constant that can be put into a long immediate by the assmbler ! or linker without involving a PIC relocation. ! 'K' A 3-bit unsigned integer constant. ! 'L' A 6-bit unsigned integer constant. ! 'CnL' One's complement of a 6-bit unsigned integer constant. ! 'CmL' Two's complement of a 6-bit unsigned integer constant. ! 'M' A 5-bit unsigned integer constant. ! 'O' A 7-bit unsigned integer constant. ! 'P' A 8-bit unsigned integer constant. ! 'H' Any const_double value. ! _ARM family--'config/arm/constraints.md'_ ! 'w' VFP floating-point register ! 'G' The floating-point constant 0.0 ! 'I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 to ! 255 rotated by a multiple of 2 ! 'J' Integer in the range -4095 to 4095 ! 'K' ! Integer that satisfies constraint 'I' when inverted (ones complement) ! 'L' ! Integer that satisfies constraint 'I' when negated (twos complement) ! 'M' Integer in the range 0 to 32 ! 'Q' A memory reference where the exact address is in a single ! register (''m'' is preferable for 'asm' statements) ! 'R' An item in the constant pool ! 'S' A symbol in the text segment of the current file ! 'Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! 'Uy' A memory reference suitable for iWMMXt load/store instructions. ! 'Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--'config/avr/constraints.md'_ ! 'l' Registers from r0 to r15 ! 'a' Registers from r16 to r23 ! 'd' Registers from r16 to r31 ! 'w' Registers from r24 to r31. These registers can be used in ! 'adiw' command ! 'e' Pointer register (r26-r31) ! 'b' Base pointer register (r28-r31) ! 'q' Stack pointer register (SPH:SPL) ! 't' Temporary register r0 ! 'x' Register pair X (r27:r26) ! 'y' Register pair Y (r29:r28) ! 'z' Register pair Z (r31:r30) ! 'I' Constant greater than -1, less than 64 ! 'J' Constant greater than -64, less than 1 ! 'K' Constant integer 2 ! 'L' Constant integer 0 ! 'M' Constant that fits in 8 bits ! 'N' Constant integer -1 ! 'O' Constant integer 8, 16, or 24 ! 'P' Constant integer 1 ! 'G' A floating point constant 0.0 ! 'Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--'config/epiphany/constraints.md'_ ! 'U16' An unsigned 16-bit constant. ! 'K' An unsigned 5-bit constant. ! 'L' A signed 11-bit constant. ! 'Cm1' ! A signed 11-bit constant added to -1. Can only match when the ! '-m1reg-REG' option is active. ! 'Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the '-m1reg-REG' option is active. ! 'Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! '-m1reg-REG' option is active. ! 'Cal' ! Constant for arithmetic/logical operations. This is like 'i', ! except that for position independent code, no symbols / expressions needing relocations are allowed. ! 'Csy' Symbolic constant for call/jump instruction. ! 'Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless '-mprefer-short-insn-regs' is in effect. ! 'Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! 'Rct' Core control register class. ! 'Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! 'Car' Constant suitable for the addsi3_r pattern. This is a valid offset For byte, halfword, or word addressing. ! 'Rra' ! Matches the return address if it can be replaced with the link ! register. ! 'Rcc' Matches the integer condition code register. ! 'Sra' Matches the return address if it is in a stack slot. ! 'Cfm' Matches control register values to switch fp mode, which are ! encapsulated in 'UNSPEC_FP_MODE'. ! _CR16 Architecture--'config/cr16/cr16.h'_ ! 'b' Registers from r0 to r14 (registers without stack pointer) ! 't' Register from r0 to r11 (all 16-bit registers) ! 'p' Register from r12 to r15 (all 32-bit registers) ! 'I' Signed constant that fits in 4 bits ! 'J' Signed constant that fits in 5 bits ! 'K' Signed constant that fits in 6 bits ! 'L' Unsigned constant that fits in 4 bits ! 'M' Signed constant that fits in 32 bits ! 'N' Check for 64 bits wide constants for add/sub instructions ! 'G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--'config/pa/pa.h'_ ! 'a' General register 1 ! 'f' Floating point register ! 'q' Shift amount register ! 'x' Floating point register (deprecated) ! 'y' Upper floating point register (32-bit), floating point register (64-bit) ! 'Z' Any register ! 'I' Signed 11-bit integer constant ! 'J' Signed 14-bit integer constant ! 'K' ! Integer constant that can be deposited with a 'zdepi' instruction ! 'L' Signed 5-bit integer constant ! 'M' Integer constant 0 ! 'N' ! Integer constant that can be loaded with a 'ldil' instruction ! 'O' Integer constant whose value plus one is a power of 2 ! 'P' ! Integer constant that can be used for 'and' operations in ! 'depi' and 'extru' instructions ! 'S' Integer constant 31 ! 'U' Integer constant 63 ! 'G' Floating-point constant 0.0 ! 'A' ! A 'lo_sum' data-linkage-table memory operand ! 'Q' A memory operand that can be used as the destination operand of an integer store instruction ! 'R' A scaled or unscaled indexed memory operand ! 'T' A memory operand for floating-point loads and stores ! 'W' A register indirect memory operand ! _picoChip family--'picochip.h'_ ! 'k' Stack register. ! 'f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can be ! used to access memory, but will need a constant offset. In ! the case of the offset being zero, it is more efficient to use ! a pointer register, since this reduces code size. ! 't' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! 'a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! 'I' 4-bit signed integer. ! 'J' 4-bit unsigned integer. ! 'K' 8-bit signed integer. ! 'M' Any constant whose absolute value is no greater than 4-bits. ! 'N' 10-bit signed integer ! 'O' 16-bit signed integer. ! _PowerPC and IBM RS6000--'config/rs6000/constraints.md'_ ! 'b' Address base register ! 'd' Floating point register (containing 64-bit value) ! 'f' Floating point register (containing 32-bit value) ! 'v' Altivec vector register ! 'wa' Any VSX register if the -mvsx option was used or NO_REGS. ! When using any of the register constraints ('wa', 'wd', 'wf', ! 'wg', 'wh', 'wi', 'wj', 'wk', 'wl', 'wm', 'ws', 'wt', 'wu', ! 'wv', 'ww', or 'wy') that take VSX registers, you must use ! '%x' in the template so that the correct register is used. ! Otherwise the register number output in the assembly file will ! be incorrect if an Altivec register is an operand of a VSX ! instruction that expects VSX register numbering. asm ("xvadddp %x0,%x1,%x2" : "=wa" (v1) : "wa" (v2), "wa" (v3)); --- 19799,20278 ---- ------------------------------------------ Whenever possible, you should use the general-purpose constraint letters ! in `asm' arguments, since they will convey meaning more readily to ! people reading your code. Failing that, use the constraint letters ! that usually have very similar meanings across architectures. The most ! commonly used constraints are `m' and `r' (for memory and general-purpose registers respectively; *note Simple Constraints::), and ! `I', usually the letter indicating the most common immediate-constant format. Each architecture defines additional constraints. These constraints are used by the compiler itself for instruction generation, as well as ! for `asm' statements; therefore, some of the constraints are not ! particularly useful for `asm'. Here is a summary of some of the machine-dependent constraints available on some particular machines; it ! includes both constraints that are useful for `asm' and constraints ! that aren't. The compiler source file mentioned in the table heading ! for each architecture is the definitive reference for the meanings of ! that architecture's constraints. ! _AArch64 family--`config/aarch64/constraints.md'_ ! `k' ! The stack pointer register (`SP') ! ! `w' Floating point or SIMD vector register ! `I' Integer constant that is valid as an immediate operand in an ! `ADD' instruction ! `J' Integer constant that is valid as an immediate operand in a ! `SUB' instruction (once negated) ! `K' Integer constant that can be used with a 32-bit logical instruction ! `L' Integer constant that can be used with a 64-bit logical instruction ! `M' Integer constant that is valid as an immediate operand in a ! 32-bit `MOV' pseudo instruction. The `MOV' may be assembled to one of several different machine instructions depending on the value ! `N' Integer constant that is valid as an immediate operand in a ! 64-bit `MOV' pseudo instruction ! `S' An absolute symbolic address or a label reference ! `Y' Floating point constant zero ! `Z' Integer constant zero ! `Ush' ! The high part (bits 12 and upwards) of the pc-relative ! address of a symbol within 4GB of the instruction ! `Q' A memory address which uses a single base register with no offset ! `Ump' ! A memory address suitable for a load/store pair instruction ! in SI, DI, SF and DF modes ! ! _ARC --`config/arc/constraints.md'_ ! ! `q' ! Registers usable in ARCompact 16-bit instructions: `r0'-`r3', ! `r12'-`r15'. This constraint can only match when the `-mq' option is in effect. ! `e' ! Registers usable as base-regs of memory addresses in ! ARCompact 16-bit memory instructions: `r0'-`r3', `r12'-`r15', ! `sp'. This constraint can only match when the `-mq' option ! is in effect. ! `D' ! ARC FPX (dpfp) 64-bit registers. `D0', `D1'. ! ! `I' A signed 12-bit integer constant. ! `Cal' ! constant for arithmetic/logical operations. This might be ! any constant that can be put into a long immediate by the ! assmbler or linker without involving a PIC relocation. ! `K' A 3-bit unsigned integer constant. ! `L' A 6-bit unsigned integer constant. ! `CnL' One's complement of a 6-bit unsigned integer constant. ! `CmL' Two's complement of a 6-bit unsigned integer constant. ! `M' A 5-bit unsigned integer constant. ! `O' A 7-bit unsigned integer constant. ! `P' A 8-bit unsigned integer constant. ! `H' Any const_double value. ! _ARM family--`config/arm/constraints.md'_ ! ! `w' VFP floating-point register ! `G' The floating-point constant 0.0 ! `I' Integer that is valid as an immediate operand in a data ! processing instruction. That is, an integer in the range 0 ! to 255 rotated by a multiple of 2 ! `J' Integer in the range -4095 to 4095 ! `K' ! Integer that satisfies constraint `I' when inverted (ones complement) ! `L' ! Integer that satisfies constraint `I' when negated (twos complement) ! `M' Integer in the range 0 to 32 ! `Q' A memory reference where the exact address is in a single ! register (``m'' is preferable for `asm' statements) ! `R' An item in the constant pool ! `S' A symbol in the text segment of the current file ! `Uv' A memory reference suitable for VFP load/store insns (reg+constant offset) ! `Uy' A memory reference suitable for iWMMXt load/store instructions. ! `Uq' A memory reference suitable for the ARMv4 ldrsb instruction. ! _AVR family--`config/avr/constraints.md'_ ! ! `l' Registers from r0 to r15 ! `a' Registers from r16 to r23 ! `d' Registers from r16 to r31 ! `w' Registers from r24 to r31. These registers can be used in ! `adiw' command ! `e' Pointer register (r26-r31) ! `b' Base pointer register (r28-r31) ! `q' Stack pointer register (SPH:SPL) ! `t' Temporary register r0 ! `x' Register pair X (r27:r26) ! `y' Register pair Y (r29:r28) ! `z' Register pair Z (r31:r30) ! `I' Constant greater than -1, less than 64 ! `J' Constant greater than -64, less than 1 ! `K' Constant integer 2 ! `L' Constant integer 0 ! `M' Constant that fits in 8 bits ! `N' Constant integer -1 ! `O' Constant integer 8, 16, or 24 ! `P' Constant integer 1 ! `G' A floating point constant 0.0 ! `Q' A memory address based on Y or Z pointer with displacement. ! _Epiphany--`config/epiphany/constraints.md'_ ! ! `U16' An unsigned 16-bit constant. ! `K' An unsigned 5-bit constant. ! `L' A signed 11-bit constant. ! `Cm1' ! A signed 11-bit constant added to -1. Can only match when ! the `-m1reg-REG' option is active. ! `Cl1' Left-shift of -1, i.e., a bit mask with a block of leading ones, the rest being a block of trailing zeroes. Can only ! match when the `-m1reg-REG' option is active. ! `Cr1' Right-shift of -1, i.e., a bit mask with a trailing block of ones, the rest being zeroes. Or to put it another way, one less than a power of two. Can only match when the ! `-m1reg-REG' option is active. ! `Cal' ! Constant for arithmetic/logical operations. This is like ! `i', except that for position independent code, no symbols / expressions needing relocations are allowed. ! `Csy' Symbolic constant for call/jump instruction. ! `Rcs' The register class usable in short insns. This is a register class constraint, and can thus drive register allocation. ! This constraint won't match unless `-mprefer-short-insn-regs' is in effect. ! `Rsc' The the register class of registers that can be used to hold a sibcall call address. I.e., a caller-saved register. ! `Rct' Core control register class. ! `Rgs' The register group usable in short insns. This constraint does not use a register class, so that it only passively matches suitable registers, and doesn't drive register allocation. ! `Car' Constant suitable for the addsi3_r pattern. This is a valid offset For byte, halfword, or word addressing. ! `Rra' ! Matches the return address if it can be replaced with the ! link register. ! `Rcc' Matches the integer condition code register. ! `Sra' Matches the return address if it is in a stack slot. ! `Cfm' Matches control register values to switch fp mode, which are ! encapsulated in `UNSPEC_FP_MODE'. ! _CR16 Architecture--`config/cr16/cr16.h'_ ! `b' Registers from r0 to r14 (registers without stack pointer) ! `t' Register from r0 to r11 (all 16-bit registers) ! `p' Register from r12 to r15 (all 32-bit registers) ! `I' Signed constant that fits in 4 bits ! `J' Signed constant that fits in 5 bits ! `K' Signed constant that fits in 6 bits ! `L' Unsigned constant that fits in 4 bits ! `M' Signed constant that fits in 32 bits ! `N' Check for 64 bits wide constants for add/sub instructions ! `G' Floating point constant that is legal for store immediate ! _Hewlett-Packard PA-RISC--`config/pa/pa.h'_ ! ! `a' General register 1 ! `f' Floating point register ! `q' Shift amount register ! `x' Floating point register (deprecated) ! `y' Upper floating point register (32-bit), floating point register (64-bit) ! `Z' Any register ! `I' Signed 11-bit integer constant ! `J' Signed 14-bit integer constant ! `K' ! Integer constant that can be deposited with a `zdepi' instruction ! `L' Signed 5-bit integer constant ! `M' Integer constant 0 ! `N' ! Integer constant that can be loaded with a `ldil' instruction ! `O' Integer constant whose value plus one is a power of 2 ! `P' ! Integer constant that can be used for `and' operations in ! `depi' and `extru' instructions ! `S' Integer constant 31 ! `U' Integer constant 63 ! `G' Floating-point constant 0.0 ! `A' ! A `lo_sum' data-linkage-table memory operand ! `Q' A memory operand that can be used as the destination operand of an integer store instruction ! `R' A scaled or unscaled indexed memory operand ! `T' A memory operand for floating-point loads and stores ! `W' A register indirect memory operand ! _picoChip family--`picochip.h'_ ! ! `k' Stack register. ! `f' Pointer register. A register which can be used to access ! memory without supplying an offset. Any other register can ! be used to access memory, but will need a constant offset. ! In the case of the offset being zero, it is more efficient to ! use a pointer register, since this reduces code size. ! `t' A twin register. A register which may be paired with an adjacent register to create a 32-bit register. ! `a' Any absolute memory address (e.g., symbolic constant, symbolic constant + offset). ! `I' 4-bit signed integer. ! `J' 4-bit unsigned integer. ! `K' 8-bit signed integer. ! `M' Any constant whose absolute value is no greater than 4-bits. ! `N' 10-bit signed integer ! `O' 16-bit signed integer. ! ! _PowerPC and IBM RS6000--`config/rs6000/constraints.md'_ ! ! `b' Address base register ! `d' Floating point register (containing 64-bit value) ! `f' Floating point register (containing 32-bit value) ! `v' Altivec vector register ! `wa' Any VSX register if the -mvsx option was used or NO_REGS. ! When using any of the register constraints (`wa', `wd', `wf', ! `wg', `wh', `wi', `wj', `wk', `wl', `wm', `ws', `wt', `wu', ! `wv', `ww', or `wy') that take VSX registers, you must use ! `%x' in the template so that the correct register is used. ! Otherwise the register number output in the assembly file ! will be incorrect if an Altivec register is an operand of a ! VSX instruction that expects VSX register numbering. asm ("xvadddp %x0,%x1,%x2" : "=wa" (v1) : "wa" (v2), "wa" (v3)); *************** _PowerPC and IBM RS6000--'config/rs6000/ *** 20042,20184 **** is not correct. ! 'wd' VSX vector register to hold vector double data or NO_REGS. ! 'wf' VSX vector register to hold vector float data or NO_REGS. ! 'wg' ! If '-mmfpgpr' was used, a floating point register or NO_REGS. ! 'wh' Floating point register if direct moves are available, or NO_REGS. ! 'wi' FP or VSX register to hold 64-bit integers for VSX insns or NO_REGS. ! 'wj' ! FP or VSX register to hold 64-bit integers for direct moves or ! NO_REGS. ! 'wk' FP or VSX register to hold 64-bit doubles for direct moves or NO_REGS. ! 'wl' Floating point register if the LFIWAX instruction is enabled or NO_REGS. ! 'wm' VSX register if direct move instructions are enabled, or NO_REGS. ! 'wn' No register (NO_REGS). ! 'wr' ! General purpose register if 64-bit instructions are enabled or ! NO_REGS. ! 'ws' VSX vector register to hold scalar double values or NO_REGS. ! 'wt' VSX vector register to hold 128 bit integer or NO_REGS. ! 'wu' ! Altivec register to use for float/32-bit int loads/stores or NO_REGS. ! 'wv' ! Altivec register to use for double loads/stores or NO_REGS. ! 'ww' ! FP or VSX register to perform float operations under '-mvsx' or NO_REGS. ! 'wx' Floating point register if the STFIWX instruction is enabled or NO_REGS. ! 'wy' FP or VSX register to perform ISA 2.07 float ops or NO_REGS. ! 'wz' Floating point register if the LFIWZX instruction is enabled or NO_REGS. ! 'wD' Int constant that is the element number of the 64-bit scalar in a vector. ! 'wQ' ! A memory address that will work with the 'lq' and 'stq' instructions. ! 'h' ! 'MQ', 'CTR', or 'LINK' register ! 'q' ! 'MQ' register ! 'c' ! 'CTR' register ! 'l' ! 'LINK' register ! 'x' ! 'CR' register (condition register) number 0 ! 'y' ! 'CR' register (condition register) ! 'z' ! 'XER[CA]' carry bit (part of the XER register) ! 'I' Signed 16-bit constant ! 'J' ! Unsigned 16-bit constant shifted left 16 bits (use 'L' instead ! for 'SImode' constants) ! 'K' Unsigned 16-bit constant ! 'L' Signed 16-bit constant shifted left 16 bits ! 'M' Constant larger than 31 ! 'N' Exact power of 2 ! 'O' Zero ! 'P' Constant whose negation is a signed 16-bit constant ! 'G' Floating point constant that can be loaded into a register with one instruction per word ! 'H' Integer/Floating point constant that can be loaded into a register using three instructions ! 'm' ! Memory operand. Normally, 'm' does not allow addresses that ! update the base register. If '<' or '>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use 'm<>' in an 'asm' statement ! if that 'asm' statement accesses the operand exactly once. ! The 'asm' statement must also use '%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: --- 20282,20424 ---- is not correct. ! `wd' VSX vector register to hold vector double data or NO_REGS. ! `wf' VSX vector register to hold vector float data or NO_REGS. ! `wg' ! If `-mmfpgpr' was used, a floating point register or NO_REGS. ! `wh' Floating point register if direct moves are available, or NO_REGS. ! `wi' FP or VSX register to hold 64-bit integers for VSX insns or NO_REGS. ! `wj' ! FP or VSX register to hold 64-bit integers for direct moves ! or NO_REGS. ! `wk' FP or VSX register to hold 64-bit doubles for direct moves or NO_REGS. ! `wl' Floating point register if the LFIWAX instruction is enabled or NO_REGS. ! `wm' VSX register if direct move instructions are enabled, or NO_REGS. ! `wn' No register (NO_REGS). ! `wr' ! General purpose register if 64-bit instructions are enabled ! or NO_REGS. ! `ws' VSX vector register to hold scalar double values or NO_REGS. ! `wt' VSX vector register to hold 128 bit integer or NO_REGS. ! `wu' ! Altivec register to use for float/32-bit int loads/stores or NO_REGS. ! `wv' ! Altivec register to use for double loads/stores or NO_REGS. ! `ww' ! FP or VSX register to perform float operations under `-mvsx' or NO_REGS. ! `wx' Floating point register if the STFIWX instruction is enabled or NO_REGS. ! `wy' FP or VSX register to perform ISA 2.07 float ops or NO_REGS. ! `wz' Floating point register if the LFIWZX instruction is enabled or NO_REGS. ! `wD' Int constant that is the element number of the 64-bit scalar in a vector. ! `wQ' ! A memory address that will work with the `lq' and `stq' instructions. ! `h' ! `MQ', `CTR', or `LINK' register ! `q' ! `MQ' register ! `c' ! `CTR' register ! `l' ! `LINK' register ! `x' ! `CR' register (condition register) number 0 ! `y' ! `CR' register (condition register) ! `z' ! `XER[CA]' carry bit (part of the XER register) ! `I' Signed 16-bit constant ! `J' ! Unsigned 16-bit constant shifted left 16 bits (use `L' ! instead for `SImode' constants) ! `K' Unsigned 16-bit constant ! `L' Signed 16-bit constant shifted left 16 bits ! `M' Constant larger than 31 ! `N' Exact power of 2 ! `O' Zero ! `P' Constant whose negation is a signed 16-bit constant ! `G' Floating point constant that can be loaded into a register with one instruction per word ! `H' Integer/Floating point constant that can be loaded into a register using three instructions ! `m' ! Memory operand. Normally, `m' does not allow addresses that ! update the base register. If `<' or `>' constraint is also used, they are allowed and therefore on PowerPC targets in ! that case it is only safe to use `m<>' in an `asm' statement ! if that `asm' statement accesses the operand exactly once. ! The `asm' statement must also use `%U' as a placeholder for the "update" flag in the corresponding load or store instruction. For example: *************** _PowerPC and IBM RS6000--'config/rs6000/ *** 20190,20277 **** is not. ! 'es' ! A "stable" memory operand; that is, one which does not include ! any automodification of the base register. This used to be ! useful when 'm' allowed automodification of the base register, ! but as those are now only allowed when '<' or '>' is used, ! 'es' is basically the same as 'm' without '<' and '>'. ! 'Q' Memory operand that is an offset from a register (it is ! usually better to use 'm' or 'es' in 'asm' statements) ! 'Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use 'm' or 'es' in 'asm' statements) ! 'R' AIX TOC entry ! 'a' ! Address operand that is an indexed or indirect from a register ! ('p' is preferable for 'asm' statements) ! 'S' Constant suitable as a 64-bit mask operand ! 'T' Constant suitable as a 32-bit mask operand ! 'U' System V Release 4 small data area reference ! 't' AND masks that can be performed by two rldic{l, r} instructions ! 'W' Vector constant that does not require memory ! 'j' Vector constant that is all zeros. ! _Intel 386--'config/i386/constraints.md'_ ! 'R' Legacy register--the eight integer registers available on all ! i386 processors ('a', 'b', 'c', 'd', 'si', 'di', 'bp', 'sp'). ! 'q' ! Any register accessible as 'Rl'. In 32-bit mode, 'a', 'b', ! 'c', and 'd'; in 64-bit mode, any integer register. ! 'Q' ! Any register accessible as 'Rh': 'a', 'b', 'c', and 'd'. ! 'l' Any register that can be used as the index in a base+index memory access: that is, any general register except the stack pointer. ! 'a' ! The 'a' register. ! 'b' ! The 'b' register. ! 'c' ! The 'c' register. ! 'd' ! The 'd' register. ! 'S' ! The 'si' register. ! 'D' ! The 'di' register. ! 'A' ! The 'a' and 'd' registers. This class is used for ! instructions that return double word results in the 'ax:dx' ! register pair. Single word values will be allocated either in ! 'ax' or 'dx'. For example on i386 the following implements ! 'rdtsc': unsigned long long rdtsc (void) { --- 20430,20520 ---- is not. ! `es' ! A "stable" memory operand; that is, one which does not ! include any automodification of the base register. This used ! to be useful when `m' allowed automodification of the base ! register, but as those are now only allowed when `<' or `>' ! is used, `es' is basically the same as `m' without `<' and ! `>'. ! `Q' Memory operand that is an offset from a register (it is ! usually better to use `m' or `es' in `asm' statements) ! `Z' Memory operand that is an indexed or indirect from a register ! (it is usually better to use `m' or `es' in `asm' statements) ! `R' AIX TOC entry ! `a' ! Address operand that is an indexed or indirect from a ! register (`p' is preferable for `asm' statements) ! `S' Constant suitable as a 64-bit mask operand ! `T' Constant suitable as a 32-bit mask operand ! `U' System V Release 4 small data area reference ! `t' AND masks that can be performed by two rldic{l, r} instructions ! `W' Vector constant that does not require memory ! `j' Vector constant that is all zeros. ! ! _Intel 386--`config/i386/constraints.md'_ ! ! `R' Legacy register--the eight integer registers available on all ! i386 processors (`a', `b', `c', `d', `si', `di', `bp', `sp'). ! `q' ! Any register accessible as `Rl'. In 32-bit mode, `a', `b', ! `c', and `d'; in 64-bit mode, any integer register. ! `Q' ! Any register accessible as `Rh': `a', `b', `c', and `d'. ! `l' Any register that can be used as the index in a base+index memory access: that is, any general register except the stack pointer. ! `a' ! The `a' register. ! `b' ! The `b' register. ! `c' ! The `c' register. ! `d' ! The `d' register. ! `S' ! The `si' register. ! `D' ! The `di' register. ! `A' ! The `a' and `d' registers. This class is used for ! instructions that return double word results in the `ax:dx' ! register pair. Single word values will be allocated either ! in `ax' or `dx'. For example on i386 the following ! implements `rdtsc': unsigned long long rdtsc (void) { *************** _Intel 386--'config/i386/constraints.md' *** 20281,20287 **** } This is not correct on x86_64 as it would allocate tick in ! either 'ax' or 'dx'. You have to use the following variant instead: unsigned long long rdtsc (void) --- 20524,20530 ---- } This is not correct on x86_64 as it would allocate tick in ! either `ax' or `dx'. You have to use the following variant instead: unsigned long long rdtsc (void) *************** _Intel 386--'config/i386/constraints.md' *** 20291,22025 **** return ((unsigned long long)tickh << 32)|tickl; } ! 'f' Any 80387 floating-point (stack) register. ! 't' ! Top of 80387 floating-point stack ('%st(0)'). ! 'u' ! Second from top of 80387 floating-point stack ('%st(1)'). ! 'y' Any MMX register. ! 'x' Any SSE register. ! 'Yz' ! First SSE register ('%xmm0'). ! 'Y2' Any SSE register, when SSE2 is enabled. ! 'Yi' Any SSE register, when SSE2 and inter-unit moves are enabled. ! 'Ym' Any MMX register, when inter-unit moves are enabled. ! 'I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! 'J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! 'K' Signed 8-bit integer constant. ! 'L' ! '0xFF' or '0xFFFF', for andsi as a zero-extending move. ! 'M' ! 0, 1, 2, or 3 (shifts for the 'lea' instruction). ! 'N' ! Unsigned 8-bit integer constant (for 'in' and 'out' instructions). ! 'O' Integer constant in the range 0 ... 127, for 128-bit shifts. ! 'G' Standard 80387 floating point constant. ! 'C' ! Standard SSE floating point constant. ! 'e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! 'Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). - _Intel IA-64--'config/ia64/ia64.h'_ - 'a' - General register 'r0' to 'r3' for 'addl' instruction ! 'b' Branch register ! 'c' ! Predicate register ('c' as in "conditional") ! 'd' Application register residing in M-unit ! 'e' Application register residing in I-unit ! 'f' Floating-point register ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement and postdecrement which require ! printing with '%Pn' on IA-64. ! 'G' Floating-point constant 0.0 or 1.0 ! 'I' 14-bit signed integer constant ! 'J' 22-bit signed integer constant ! 'K' 8-bit signed integer constant for logical instructions ! 'L' 8-bit adjusted signed integer constant for compare pseudo-ops ! 'M' 6-bit unsigned integer constant for shift counts ! 'N' 9-bit signed integer constant for load and store postincrements ! 'O' The constant zero ! 'P' ! 0 or -1 for 'dep' instruction ! 'Q' Non-volatile memory for floating-point loads and stores ! 'R' ! Integer constant in the range 1 to 4 for 'shladd' instruction ! 'S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as 'm' when not used together with '<' ! or '>'. ! _FRV--'config/frv/frv.h'_ ! 'a' ! Register in the class 'ACC_REGS' ('acc0' to 'acc7'). ! 'b' ! Register in the class 'EVEN_ACC_REGS' ('acc0' to 'acc7'). ! 'c' ! Register in the class 'CC_REGS' ('fcc0' to 'fcc3' and 'icc0' ! to 'icc3'). ! 'd' ! Register in the class 'GPR_REGS' ('gr0' to 'gr63'). ! 'e' ! Register in the class 'EVEN_REGS' ('gr0' to 'gr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'f' ! Register in the class 'FPR_REGS' ('fr0' to 'fr63'). ! 'h' ! Register in the class 'FEVEN_REGS' ('fr0' to 'fr63'). Odd ! registers are excluded not in the class but through the use of ! a machine mode larger than 4 bytes. ! 'l' ! Register in the class 'LR_REG' (the 'lr' register). ! 'q' ! Register in the class 'QUAD_REGS' ('gr2' to 'gr63'). Register ! numbers not divisible by 4 are excluded not in the class but ! through the use of a machine mode larger than 8 bytes. ! 't' ! Register in the class 'ICC_REGS' ('icc0' to 'icc3'). ! 'u' ! Register in the class 'FCC_REGS' ('fcc0' to 'fcc3'). ! 'v' ! Register in the class 'ICR_REGS' ('cc4' to 'cc7'). ! 'w' ! Register in the class 'FCR_REGS' ('cc0' to 'cc3'). ! 'x' ! Register in the class 'QUAD_FPR_REGS' ('fr0' to 'fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! 'z' ! Register in the class 'SPR_REGS' ('lcr' and 'lr'). ! 'A' ! Register in the class 'QUAD_ACC_REGS' ('acc0' to 'acc7'). ! 'B' ! Register in the class 'ACCG_REGS' ('accg0' to 'accg7'). ! 'C' ! Register in the class 'CR_REGS' ('cc0' to 'cc7'). ! 'G' Floating point constant zero ! 'I' 6-bit signed integer constant ! 'J' 10-bit signed integer constant ! 'L' 16-bit signed integer constant ! 'M' 16-bit unsigned integer constant ! 'N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! 'O' Constant zero ! 'P' ! 12-bit signed integer constant that is greater than zero--i.e. ! in the range of 1 to 2047. ! _Blackfin family--'config/bfin/constraints.md'_ ! 'a' P register ! 'd' D register ! 'z' A call clobbered P register. ! 'qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is 'A', then the register P0. ! 'D' Even-numbered D register ! 'W' Odd-numbered D register ! 'e' Accumulator register. ! 'A' Even-numbered accumulator register. ! 'B' Odd-numbered accumulator register. ! 'b' I register ! 'v' B register ! 'f' M register ! 'c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! 'C' The CC register. ! 't' LT0 or LT1. ! 'k' LC0 or LC1. ! 'u' LB0 or LB1. ! 'x' Any D, P, B, M, I or L register. ! 'y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! 'w' Any register except accumulators or CC. ! 'Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! 'Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! 'Ks7' Signed 7 bit integer (in the range -64 to 63) ! 'Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! 'Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! 'Ks4' Signed 4 bit integer (in the range -8 to 7) ! 'Ks3' Signed 3 bit integer (in the range -3 to 4) ! 'Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! 'PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! 'PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! 'PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! 'M1' Constant 255. ! 'M2' Constant 65535. ! 'J' An integer constant with exactly a single bit set. ! 'L' An integer constant with all bits set except exactly one. ! 'H' ! 'Q' Any SYMBOL_REF. ! _M32C--'config/m32c/m32c.c'_ ! 'Rsp' ! 'Rfb' ! 'Rsb' ! '$sp', '$fb', '$sb'. ! 'Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! 'Rcl' Any control register, when they're 24 bits wide. ! 'R0w' ! 'R1w' ! 'R2w' ! 'R3w' $r0, $r1, $r2, $r3. ! 'R02' $r0 or $r2, or $r2r0 for 32 bit values. ! 'R13' $r1 or $r3, or $r3r1 for 32 bit values. ! 'Rdi' A register that can hold a 64 bit value. ! 'Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! 'R23' $r2 or $r3 ! 'Raa' Address registers ! 'Raw' Address registers when they're 16 bits wide. ! 'Ral' Address registers when they're 24 bits wide. ! 'Rqi' Registers that can hold QI values. ! 'Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! 'Rsi' Registers that can hold 32 bit values. ! 'Rhi' Registers that can hold 16 bit values. ! 'Rhc' Registers chat can hold 16 bit values, including all control registers. ! 'Rra' $r0 through R1, plus $a0 and $a1. ! 'Rfl' The flags register. ! 'Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! 'Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! 'Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! 'Is3' -8 ... 7 ! 'IS1' -128 ... 127 ! 'IS2' -32768 ... 32767 ! 'IU2' 0 ... 65535 ! 'In4' -8 ... -1 or 1 ... 8 ! 'In5' -16 ... -1 or 1 ... 16 ! 'In6' -32 ... -1 or 1 ... 32 ! 'IM2' -65536 ... -1 ! 'Ilb' An 8 bit value with exactly one bit set. ! 'Ilw' A 16 bit value with exactly one bit set. ! 'Sd' The common src/dest memory addressing modes. ! 'Sa' Memory addressed using $a0 or $a1. ! 'Si' Memory addressed with immediate addresses. ! 'Ss' Memory addressed using the stack pointer ($sp). ! 'Sf' Memory addressed using the frame base register ($fb). ! 'Ss' Memory addressed using the small base register ($sb). ! 'S1' $r1h ! _MeP--'config/mep/constraints.md'_ ! 'a' The $sp register. ! 'b' The $tp register. ! 'c' Any control register. ! 'd' Either the $hi or the $lo register. ! 'em' Coprocessor registers that can be directly loaded ($c0-$c15). ! 'ex' Coprocessor registers that can be moved to each other. ! 'er' Coprocessor registers that can be moved to core registers. ! 'h' The $hi register. ! 'j' The $rpc register. ! 'l' The $lo register. ! 't' Registers which can be used in $tp-relative addressing. ! 'v' The $gp register. ! 'x' The coprocessor registers. ! 'y' The coprocessor control registers. ! 'z' The $0 register. ! 'A' User-defined register set A. ! 'B' User-defined register set B. ! 'C' User-defined register set C. ! 'D' User-defined register set D. ! 'I' Offsets for $gp-rel addressing. ! 'J' Constants that can be used directly with boolean insns. ! 'K' Constants that can be moved directly to registers. ! 'L' Small constants that can be added to registers. ! 'M' Long shift counts. ! 'N' Small constants that can be compared to registers. ! 'O' Constants that can be loaded into the top half of registers. ! 'S' Signed 8-bit immediates. ! 'T' Symbols encoded for $tp-rel or $gp-rel addressing. ! 'U' Non-constant addresses for loading/saving coprocessor registers. ! 'W' The top half of a symbol's value. ! 'Y' A register indirect address without offset. ! 'Z' Symbolic references to the control bus. - _MicroBlaze--'config/microblaze/constraints.md'_ - 'd' - A general register ('r0' to 'r31'). ! 'z' ! A status register ('rmsr', '$fcc1' to '$fcc7'). ! _MIPS--'config/mips/constraints.md'_ ! 'd' ! An address register. This is equivalent to 'r' unless generating MIPS16 code. ! 'f' A floating-point register (if available). ! 'h' ! Formerly the 'hi' register. This constraint is no longer supported. ! 'l' ! The 'lo' register. Use this register to store values that are no bigger than a word. ! 'x' ! The concatenated 'hi' and 'lo' registers. Use this register to store doubleword values. ! 'c' A register suitable for use in an indirect jump. This will ! always be '$25' for '-mabicalls'. ! 'v' ! Register '$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! 'y' ! Equivalent to 'r'; retained for backwards compatibility. ! 'z' A floating-point condition code register. ! 'I' A signed 16-bit constant (for arithmetic instructions). ! 'J' Integer zero. ! 'K' An unsigned 16-bit constant (for logic instructions). ! 'L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using 'lui'. ! 'M' ! A constant that cannot be loaded using 'lui', 'addiu' or ! 'ori'. ! 'N' A constant in the range -65535 to -1 (inclusive). ! 'O' A signed 15-bit constant. ! 'P' A constant in the range 1 to 65535 (inclusive). ! 'G' Floating-point zero. ! 'R' An address that can be used in a non-macro load or store. ! 'ZC' When compiling microMIPS code, this constraint matches a memory operand whose address is formed from a base register ! and a 12-bit offset. These operands can be used for microMIPS ! instructions such as 'll' and 'sc'. When not compiling for ! microMIPS code, 'ZC' is equivalent to 'R'. ! 'ZD' When compiling microMIPS code, this constraint matches an address operand that is formed from a base register and a 12-bit offset. These operands can be used for microMIPS ! instructions such as 'prefetch'. When not compiling for ! microMIPS code, 'ZD' is equivalent to 'p'. ! _Motorola 680x0--'config/m68k/constraints.md'_ ! 'a' Address register ! 'd' Data register ! 'f' 68881 floating-point register, if available ! 'I' Integer in the range 1 to 8 ! 'J' 16-bit signed number ! 'K' Signed number whose magnitude is greater than 0x80 ! 'L' Integer in the range -8 to -1 ! 'M' Signed number whose magnitude is greater than 0x100 ! 'N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! 'O' 16 (for rotate using swap) ! 'P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! 'R' Numbers that mov3q can handle ! 'G' Floating point constant that is not a 68881 constant ! 'S' Operands that satisfy 'm' when -mpcrel is in effect ! 'T' Operands that satisfy 's' when -mpcrel is not in effect ! 'Q' Address register indirect addressing mode ! 'U' Register offset addressing ! 'W' const_call_operand ! 'Cs' symbol_ref or const ! 'Ci' const_int ! 'C0' const_int 0 ! 'Cj' Range of signed numbers that don't fit in 16 bits ! 'Cmvq' Integers valid for mvq ! 'Capsw' Integers valid for a moveq followed by a swap ! 'Cmvz' Integers valid for mvz ! 'Cmvs' Integers valid for mvs ! 'Ap' push_operand ! 'Ac' Non-register operands allowed in clr ! _Moxie--'config/moxie/constraints.md'_ ! 'A' An absolute address ! 'B' An offset address ! 'W' A register indirect memory operand ! 'I' A constant in the range of 0 to 255. ! 'N' A constant in the range of 0 to -255. - _MSP430-'config/msp430/constraints.md'_ ! 'R12' Register R12. ! 'R13' Register R13. ! 'K' Integer constant 1. ! 'L' Integer constant -1^20..1^19. ! 'M' Integer constant 1-4. ! 'Ya' Memory references which do not require an extended MOVX instruction. ! 'Yl' Memory reference, labels only. ! 'Ys' Memory reference, stack only. ! _NDS32--'config/nds32/constraints.md'_ ! 'w' LOW register class $r0 to $r7 constraint for V3/V3M ISA. ! 'l' LOW register class $r0 to $r7. ! 'd' MIDDLE register class $r0 to $r11, $r16 to $r19. ! 'h' HIGH register class $r12 to $r14, $r20 to $r31. ! 't' Temporary assist register $ta (i.e. $r15). ! 'k' Stack register $sp. ! 'Iu03' Unsigned immediate 3-bit value. ! 'In03' Negative immediate 3-bit value in the range of -7-0. ! 'Iu04' Unsigned immediate 4-bit value. ! 'Is05' Signed immediate 5-bit value. ! 'Iu05' Unsigned immediate 5-bit value. ! 'In05' Negative immediate 5-bit value in the range of -31-0. ! 'Ip05' Unsigned immediate 5-bit value for movpi45 instruction with range 16-47. ! 'Iu06' Unsigned immediate 6-bit value constraint for addri36.sp instruction. ! 'Iu08' Unsigned immediate 8-bit value. ! 'Iu09' Unsigned immediate 9-bit value. ! 'Is10' Signed immediate 10-bit value. ! 'Is11' Signed immediate 11-bit value. ! 'Is15' Signed immediate 15-bit value. ! 'Iu15' Unsigned immediate 15-bit value. ! 'Ic15' ! A constant which is not in the range of imm15u but ok for bclr ! instruction. ! 'Ie15' ! A constant which is not in the range of imm15u but ok for bset ! instruction. ! 'It15' ! A constant which is not in the range of imm15u but ok for btgl ! instruction. ! 'Ii15' A constant whose compliment value is in the range of imm15u and ok for bitci instruction. ! 'Is16' Signed immediate 16-bit value. ! 'Is17' Signed immediate 17-bit value. ! 'Is19' Signed immediate 19-bit value. ! 'Is20' Signed immediate 20-bit value. ! 'Ihig' The immediate value that can be simply set high 20-bit. ! 'Izeb' The immediate value 0xff. ! 'Izeh' The immediate value 0xffff. ! 'Ixls' The immediate value 0x01. ! 'Ix11' The immediate value 0x7ff. ! 'Ibms' The immediate value with power of 2. ! 'Ifex' The immediate value with power of 2 minus 1. ! 'U33' Memory constraint for 333 format. ! 'U45' Memory constraint for 45 format. ! 'U37' Memory constraint for 37 format. ! _Nios II family--'config/nios2/constraints.md'_ ! 'I' Integer that is valid as an immediate operand in an ! instruction taking a signed 16-bit number. Range -32768 to 32767. ! 'J' Integer that is valid as an immediate operand in an ! instruction taking an unsigned 16-bit number. Range 0 to 65535. ! 'K' Integer that is valid as an immediate operand in an instruction taking only the upper 16-bits of a 32-bit number. Range 32-bit numbers with the lower 16-bits being 0. ! 'L' Integer that is valid as an immediate operand for a shift ! instruction. Range 0 to 31. ! 'M' Integer that is valid as an immediate operand for only the ! value 0. Can be used in conjunction with the format modifier ! 'z' to use 'r0' instead of '0' in the assembly output. ! 'N' Integer that is valid as an immediate operand for a custom ! instruction opcode. Range 0 to 255. ! 'S' Matches immediates which are addresses in the small data ! section and therefore can be added to 'gp' as a 16-bit immediate to re-create their 32-bit value. ! 'T' ! A 'const' wrapped 'UNSPEC' expression, representing a supported PIC or TLS relocation. - _PDP-11--'config/pdp11/constraints.md'_ - 'a' - Floating point registers AC0 through AC3. These can be loaded - from/to memory with a single instruction. ! 'd' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! 'f' Any of the floating point registers (AC0 through AC5). ! 'G' Floating point constant 0. ! 'I' An integer constant that fits in 16 bits. ! 'J' An integer constant whose low order 16 bits are zero. ! 'K' An integer constant that does not meet the constraints for ! codes 'I' or 'J'. ! 'L' The integer constant 1. ! 'M' The integer constant -1. ! 'N' The integer constant 0. ! 'O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts rather ! than a single variable-length shift. ! 'Q' A memory reference which requires an additional word (address or offset) after the opcode. ! 'R' A memory reference that is encoded within the opcode. - _RL78--'config/rl78/constraints.md'_ ! 'Int3' An integer constant in the range 1 ... 7. ! 'Int8' An integer constant in the range 0 ... 255. ! 'J' An integer constant in the range -255 ... 0 ! 'K' The integer constant 1. ! 'L' The integer constant -1. ! 'M' The integer constant 0. ! 'N' The integer constant 2. ! 'O' The integer constant -2. ! 'P' An integer constant in the range 1 ... 15. ! 'Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! 'Qsc' The synthetic compare types-gt, lt, ge, and le. ! 'Wab' A memory reference with an absolute address. ! 'Wbc' ! A memory reference using 'BC' as a base register, with an optional offset. ! 'Wca' ! A memory reference using 'AX', 'BC', 'DE', or 'HL' for the address, for calls. ! 'Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! 'Wd2' ! A memory reference using 'DE' as a base register, with an optional offset. ! 'Wde' ! A memory reference using 'DE' as a base register, without any offset. ! 'Wfr' Any memory reference to an address in the far address space. ! 'Wh1' ! A memory reference using 'HL' as a base register, with an optional one-byte offset. ! 'Whb' ! A memory reference using 'HL' as a base register, with 'B' or ! 'C' as the index register. ! 'Whl' ! A memory reference using 'HL' as a base register, without any offset. ! 'Ws1' ! A memory reference using 'SP' as a base register, with an optional one-byte offset. ! 'Y' Any memory reference to an address in the near address space. ! 'A' ! The 'AX' register. ! 'B' ! The 'BC' register. ! 'D' ! The 'DE' register. ! 'R' ! 'A' through 'L' registers. ! 'S' ! The 'SP' register. ! 'T' ! The 'HL' register. ! 'Z08W' ! The 16-bit 'R8' register. ! 'Z10W' ! The 16-bit 'R10' register. ! 'Zint' ! The registers reserved for interrupts ('R24' to 'R31'). ! 'a' ! The 'A' register. ! 'b' ! The 'B' register. ! 'c' ! The 'C' register. ! 'd' ! The 'D' register. ! 'e' ! The 'E' register. ! 'h' ! The 'H' register. ! 'l' ! The 'L' register. ! 'v' The virtual registers. - 'w' - The 'PSW' register. - 'x' - The 'X' register. ! _RX--'config/rx/constraints.md'_ ! 'Q' ! An address which does not involve register indirect addressing ! or pre/post increment/decrement addressing. ! 'Symbol' A symbol reference. ! 'Int08' A constant in the range -256 to 255, inclusive. ! 'Sint08' A constant in the range -128 to 127, inclusive. ! 'Sint16' A constant in the range -32768 to 32767, inclusive. ! 'Sint24' A constant in the range -8388608 to 8388607, inclusive. ! 'Uint04' A constant in the range 0 to 15, inclusive. - _SPARC--'config/sparc/sparc.h'_ - 'f' - Floating-point register on the SPARC-V8 architecture and lower - floating-point register on the SPARC-V9 architecture. ! 'e' ! Floating-point register. It is equivalent to 'f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! 'c' Floating-point condition code register. ! 'd' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! 'h' 64-bit global or out register for the SPARC-V8+ architecture. ! 'C' The constant all-ones, for floating-point. ! 'A' Signed 5-bit constant ! 'D' A vector constant ! 'I' Signed 13-bit constant ! 'J' Zero ! 'K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the 'sethi' instruction) ! 'L' ! A constant in the range supported by 'movcc' instructions (11-bit signed immediate) ! 'M' ! A constant in the range supported by 'movrcc' instructions (10-bit signed immediate) ! 'N' ! Same as 'K', except that it verifies that bits that are not in ! the lower 32-bit range are all zero. Must be used instead of ! 'K' for modes wider than 'SImode' ! 'O' The constant 4096 ! 'G' Floating-point zero ! 'H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! 'P' The constant -1 ! 'Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! 'R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! 'S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum instruction ! sequence ! 'T' Memory address aligned to an 8-byte boundary ! 'U' Even register ! 'W' ! Memory address for 'e' constraint registers ! 'w' Memory address with only a base register ! 'Y' Vector zero ! _SPU--'config/spu/spu.h'_ ! 'a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! 'c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! 'd' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 64 bit value. ! 'f' ! An immediate which can be loaded with 'fsmbi'. ! 'A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! 'B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! 'C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! 'D' ! An immediate for the 'iohl' instruction. const_int is treated ! as a 32 bit value. ! 'I' A constant in the range [-64, 63] for shift/rotate instructions. ! 'J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! 'K' A signed 10-bit constant for most arithmetic instructions. ! 'M' ! A signed 16 bit immediate for 'stop'. ! 'N' ! An unsigned 16-bit constant for 'iohl' and 'fsmbi'. ! 'O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! 'P' An unsigned 3-bit constant for 16-byte rotates and shifts ! 'R' Call operand, reg, for indirect calls ! 'S' Call operand, symbol, for relative calls. ! 'T' Call operand, const_int, for absolute calls. ! 'U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! 'W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! 'Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! 'Z' ! An immediate for the 'iohl' instruction. const_int is sign extended to 128 bit. ! _S/390 and zSeries--'config/s390/s390.h'_ ! 'a' Address register (general purpose register except r0) ! 'c' Condition code register ! 'd' Data register (arbitrary general purpose register) ! 'f' Floating-point register ! 'I' Unsigned 8-bit constant (0-255) ! 'J' Unsigned 12-bit constant (0-4095) ! 'K' Signed 16-bit constant (-32768-32767) ! 'L' Value appropriate as displacement. ! '(0..4095)' for short displacement ! '(-524288..524287)' for long displacement ! 'M' Constant integer with a value of 0x7fffffff. ! 'N' Multiple letter constraint followed by 4 parameter letters. ! '0..9:' number of the part counting from most to least significant ! 'H,Q:' mode of the part ! 'D,S,H:' mode of the containing operand ! '0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant has ! a value different from its other parts. ! 'Q' Memory reference without index register and with short displacement. ! 'R' Memory reference with index register and short displacement. ! 'S' Memory reference without index register but with long displacement. ! 'T' Memory reference with index register and long displacement. ! 'U' Pointer with short displacement. ! 'W' Pointer with long displacement. ! 'Y' Shift count operand. ! _Score family--'config/score/score.h'_ ! 'd' Registers from r0 to r32. ! 'e' Registers from r0 to r16. ! 't' r8--r11 or r22--r27 registers. ! 'h' hi register. ! 'l' lo register. ! 'x' hi + lo register. ! 'q' cnt register. ! 'y' lcb register. ! 'z' scb register. ! 'a' cnt + lcb + scb register. ! 'c' cr0--cr15 register. ! 'b' cp1 registers. ! 'f' cp2 registers. ! 'i' cp3 registers. ! 'j' cp1 + cp2 + cp3 registers. ! 'I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! 'J' Unsigned 5 bit integer (in the range 0 to 31). ! 'K' Unsigned 16 bit integer (in the range 0 to 65535). ! 'L' Signed 16 bit integer (in the range -32768 to 32767). ! 'M' Unsigned 14 bit integer (in the range 0 to 16383). ! 'N' Signed 14 bit integer (in the range -8192 to 8191). ! 'Z' Any SYMBOL_REF. ! _Xstormy16--'config/stormy16/stormy16.h'_ ! 'a' Register r0. ! 'b' Register r1. ! 'c' Register r2. ! 'd' Register r8. ! 'e' Registers r0 through r7. ! 't' Registers r0 and r1. ! 'y' The carry register. ! 'z' Registers r8 and r9. ! 'I' A constant between 0 and 3 inclusive. ! 'J' A constant that has exactly one bit set. ! 'K' A constant that has exactly one bit clear. ! 'L' A constant between 0 and 255 inclusive. ! 'M' A constant between -255 and 0 inclusive. ! 'N' A constant between -3 and 0 inclusive. ! 'O' A constant between 1 and 4 inclusive. ! 'P' A constant between -4 and -1 inclusive. ! 'Q' A memory reference that is a stack push. ! 'R' A memory reference that is a stack pop. ! 'S' A memory reference that refers to a constant address of known value. ! 'T' The register indicated by Rx (not implemented yet). ! 'U' A constant that is not between 2 and 15 inclusive. ! 'Z' The constant 0. ! _TI C6X family--'config/c6x/constraints.md'_ ! 'a' Register file A (A0-A31). ! 'b' Register file B (B0-B31). ! 'A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! 'B' Predicate registers in register file B (B0-B2). ! 'C' A call-used register in register file B (B0-B9, B16-B31). ! 'Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! 'Db' Register file B, excluding predicate registers (B3-B31). ! 'Iu4' Integer constant in the range 0 ... 15. ! 'Iu5' Integer constant in the range 0 ... 31. ! 'In5' Integer constant in the range -31 ... 0. ! 'Is5' Integer constant in the range -16 ... 15. ! 'I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! 'IuB' Integer constant in the range 0 ... 65535. ! 'IsB' Integer constant in the range -32768 ... 32767. ! 'IsC' ! Integer constant in the range -2^{20} ... 2^{20} - 1. ! 'Jc' Integer constant that is a valid mask for the clr instruction. ! 'Js' Integer constant that is a valid mask for the set instruction. ! 'Q' Memory location with A base register. ! 'R' Memory location with B base register. ! 'S0' On C64x+ targets, a GP-relative small data reference. ! 'S1' ! Any kind of 'SYMBOL_REF', for use in a call address. ! 'Si' Any kind of immediate operand, unless it matches the S0 constraint. ! 'T' Memory location with B base register, but not using a long offset. ! 'W' A memory operand with an address that can't be used in an unaligned access. ! 'Z' Register B14 (aka DP). ! _TILE-Gx--'config/tilegx/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Unsigned 16-bit integer constant. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! 'M' A bit mask suitable for the BFINS instruction. ! 'N' Integer constant that is a byte tiled out eight times. ! 'O' The integer zero constant. ! 'P' Integer constant that is a sign-extended byte tiled out as four shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! 'T' A 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' An 8-element vector constant with identical elements. ! 'Y' A 4-element vector constant with identical elements. ! 'Z0' The integer constant 0xffffffff. ! 'Z1' The integer constant 0xffffffff00000000. ! _TILEPro--'config/tilepro/constraints.md'_ ! 'R00' ! 'R01' ! 'R02' ! 'R03' ! 'R04' ! 'R05' ! 'R06' ! 'R07' ! 'R08' ! 'R09' ! 'R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! 'I' Signed 8-bit integer constant. ! 'J' Signed 16-bit integer constant. ! 'K' Nonzero integer constant with low 16 bits zero. ! 'L' ! Integer constant that fits in one signed byte when incremented ! by one (-129 ... 126). ! 'm' ! Memory operand. If used together with '<' or '>', the operand ! can have postincrement which requires printing with '%In' and ! '%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! 'M' A bit mask suitable for the MM instruction. ! 'N' Integer constant that is a byte tiled out four times. ! 'O' The integer zero constant. ! 'P' ! Integer constant that is a sign-extended byte tiled out as two ! shorts. ! 'Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! 'T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! 'U' ! Memory operand except postincrement. This is roughly the same ! as 'm' when not used together with '<' or '>'. ! 'W' A 4-element vector constant with identical elements. ! 'Y' A 2-element vector constant with identical elements. ! _Xtensa--'config/xtensa/constraints.md'_ ! 'a' General-purpose 32-bit register ! 'b' One-bit boolean register ! 'A' MAC16 40-bit accumulator register ! 'I' Signed 12-bit integer constant, for use in MOVI instructions ! 'J' Signed 8-bit integer constant, for use in ADDI instructions ! 'K' Integer constant valid for BccI instructions ! 'L' Unsigned constant valid for BccUI instructions  File: gccint.info, Node: Disable Insn Alternatives, Next: Define Constraints, Prev: Machine Constraints, Up: Constraints ! 16.8.6 Disable insn alternatives using the 'enabled' attribute -------------------------------------------------------------- ! The 'enabled' insn attribute may be used to disable certain insn alternatives for machine-specific reasons. This is useful when adding new instructions to an existing pattern which are only available for ! certain cpu architecture levels as specified with the '-march=' option. If an insn alternative is disabled, then it will never be used. The compiler treats the constraints for the disabled alternative as unsatisfiable. ! In order to make use of the 'enabled' attribute a back end has to add in the machine description files: ! 1. A definition of the 'enabled' insn attribute. The attribute is ! defined as usual using the 'define_attr' command. This definition should be based on other insn attributes and/or target flags. The ! 'enabled' attribute is a numeric attribute and should evaluate to ! '(const_int 1)' for an enabled alternative and to '(const_int 0)' otherwise. 2. A definition of another insn attribute used to describe for what reason an insn alternative might be available or not. E.g. ! 'cpu_facility' as in the example below. 3. An assignment for the second attribute to each insn definition combining instructions which are not all available under the same circumstances. (Note: It obviously only makes sense for definitions with more than one alternative. Otherwise the insn pattern should be disabled or enabled using the insn condition.) ! E.g. the following two patterns could easily be merged using the ! 'enabled' attribute: (define_insn "*movdi_old" --- 20534,22393 ---- return ((unsigned long long)tickh << 32)|tickl; } ! `f' Any 80387 floating-point (stack) register. ! `t' ! Top of 80387 floating-point stack (`%st(0)'). ! `u' ! Second from top of 80387 floating-point stack (`%st(1)'). ! `y' Any MMX register. ! `x' Any SSE register. ! `Yz' ! First SSE register (`%xmm0'). ! `Y2' Any SSE register, when SSE2 is enabled. ! `Yi' Any SSE register, when SSE2 and inter-unit moves are enabled. ! `Ym' Any MMX register, when inter-unit moves are enabled. ! `I' Integer constant in the range 0 ... 31, for 32-bit shifts. ! `J' Integer constant in the range 0 ... 63, for 64-bit shifts. ! `K' Signed 8-bit integer constant. ! `L' ! `0xFF' or `0xFFFF', for andsi as a zero-extending move. ! `M' ! 0, 1, 2, or 3 (shifts for the `lea' instruction). ! `N' ! Unsigned 8-bit integer constant (for `in' and `out' instructions). ! `O' Integer constant in the range 0 ... 127, for 128-bit shifts. ! `G' Standard 80387 floating point constant. ! `C' ! SSE constant zero operand. ! `e' 32-bit signed integer constant, or a symbolic reference known to fit that range (for immediate operands in sign-extending x86-64 instructions). ! `Z' 32-bit unsigned integer constant, or a symbolic reference known to fit that range (for immediate operands in zero-extending x86-64 instructions). ! _Intel IA-64--`config/ia64/ia64.h'_ ! ! `a' ! General register `r0' to `r3' for `addl' instruction ! ! `b' Branch register ! `c' ! Predicate register (`c' as in "conditional") ! `d' Application register residing in M-unit ! `e' Application register residing in I-unit ! `f' Floating-point register ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement and postdecrement which ! require printing with `%Pn' on IA-64. ! `G' Floating-point constant 0.0 or 1.0 ! `I' 14-bit signed integer constant ! `J' 22-bit signed integer constant ! `K' 8-bit signed integer constant for logical instructions ! `L' 8-bit adjusted signed integer constant for compare pseudo-ops ! `M' 6-bit unsigned integer constant for shift counts ! `N' 9-bit signed integer constant for load and store postincrements ! `O' The constant zero ! `P' ! 0 or -1 for `dep' instruction ! `Q' Non-volatile memory for floating-point loads and stores ! `R' ! Integer constant in the range 1 to 4 for `shladd' instruction ! `S' Memory operand except postincrement and postdecrement. This ! is now roughly the same as `m' when not used together with `<' ! or `>'. ! _FRV--`config/frv/frv.h'_ ! `a' ! Register in the class `ACC_REGS' (`acc0' to `acc7'). ! `b' ! Register in the class `EVEN_ACC_REGS' (`acc0' to `acc7'). ! `c' ! Register in the class `CC_REGS' (`fcc0' to `fcc3' and `icc0' ! to `icc3'). ! `d' ! Register in the class `GPR_REGS' (`gr0' to `gr63'). ! `e' ! Register in the class `EVEN_REGS' (`gr0' to `gr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `f' ! Register in the class `FPR_REGS' (`fr0' to `fr63'). ! `h' ! Register in the class `FEVEN_REGS' (`fr0' to `fr63'). Odd ! registers are excluded not in the class but through the use ! of a machine mode larger than 4 bytes. ! `l' ! Register in the class `LR_REG' (the `lr' register). ! `q' ! Register in the class `QUAD_REGS' (`gr2' to `gr63'). ! Register numbers not divisible by 4 are excluded not in the ! class but through the use of a machine mode larger than 8 ! bytes. ! `t' ! Register in the class `ICC_REGS' (`icc0' to `icc3'). ! `u' ! Register in the class `FCC_REGS' (`fcc0' to `fcc3'). ! `v' ! Register in the class `ICR_REGS' (`cc4' to `cc7'). ! `w' ! Register in the class `FCR_REGS' (`cc0' to `cc3'). ! ! `x' ! Register in the class `QUAD_FPR_REGS' (`fr0' to `fr63'). Register numbers not divisible by 4 are excluded not in the class but through the use of a machine mode larger than 8 bytes. ! `z' ! Register in the class `SPR_REGS' (`lcr' and `lr'). ! `A' ! Register in the class `QUAD_ACC_REGS' (`acc0' to `acc7'). ! `B' ! Register in the class `ACCG_REGS' (`accg0' to `accg7'). ! `C' ! Register in the class `CR_REGS' (`cc0' to `cc7'). ! `G' Floating point constant zero ! `I' 6-bit signed integer constant ! `J' 10-bit signed integer constant ! `L' 16-bit signed integer constant ! `M' 16-bit unsigned integer constant ! `N' 12-bit signed integer constant that is negative--i.e. in the range of -2048 to -1 ! `O' Constant zero ! `P' ! 12-bit signed integer constant that is greater than ! zero--i.e. in the range of 1 to 2047. ! ! _Blackfin family--`config/bfin/constraints.md'_ ! ! `a' P register ! `d' D register ! `z' A call clobbered P register. ! `qN' A single register. If N is in the range 0 to 7, the ! corresponding D register. If it is `A', then the register P0. ! `D' Even-numbered D register ! `W' Odd-numbered D register ! `e' Accumulator register. ! `A' Even-numbered accumulator register. ! `B' Odd-numbered accumulator register. ! `b' I register ! `v' B register ! `f' M register ! `c' ! Registers used for circular buffering, i.e. I, B, or L registers. ! `C' The CC register. ! `t' LT0 or LT1. ! `k' LC0 or LC1. ! `u' LB0 or LB1. ! `x' Any D, P, B, M, I or L register. ! `y' Additional registers typically used only in prologues and epilogues: RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP. ! `w' Any register except accumulators or CC. ! `Ksh' Signed 16 bit integer (in the range -32768 to 32767) ! `Kuh' Unsigned 16 bit integer (in the range 0 to 65535) ! `Ks7' Signed 7 bit integer (in the range -64 to 63) ! `Ku7' Unsigned 7 bit integer (in the range 0 to 127) ! `Ku5' Unsigned 5 bit integer (in the range 0 to 31) ! `Ks4' Signed 4 bit integer (in the range -8 to 7) ! `Ks3' Signed 3 bit integer (in the range -3 to 4) ! `Ku3' Unsigned 3 bit integer (in the range 0 to 7) ! `PN' Constant N, where N is a single-digit constant in the range 0 to 4. ! `PA' An integer equal to one of the MACFLAG_XXX constants that is suitable for use with either accumulator. ! `PB' An integer equal to one of the MACFLAG_XXX constants that is suitable for use only with accumulator A1. ! `M1' Constant 255. ! `M2' Constant 65535. ! `J' An integer constant with exactly a single bit set. ! `L' An integer constant with all bits set except exactly one. ! `H' ! `Q' Any SYMBOL_REF. ! _M32C--`config/m32c/m32c.c'_ ! `Rsp' ! `Rfb' ! `Rsb' ! `$sp', `$fb', `$sb'. ! ! `Rcr' Any control register, when they're 16 bits wide (nothing if control registers are 24 bits wide) ! `Rcl' Any control register, when they're 24 bits wide. ! `R0w' ! `R1w' ! `R2w' ! `R3w' $r0, $r1, $r2, $r3. ! `R02' $r0 or $r2, or $r2r0 for 32 bit values. ! `R13' $r1 or $r3, or $r3r1 for 32 bit values. ! `Rdi' A register that can hold a 64 bit value. ! `Rhl' $r0 or $r1 (registers with addressable high/low bytes) ! `R23' $r2 or $r3 ! `Raa' Address registers ! `Raw' Address registers when they're 16 bits wide. ! `Ral' Address registers when they're 24 bits wide. ! `Rqi' Registers that can hold QI values. ! `Rad' Registers that can be used with displacements ($a0, $a1, $sb). ! `Rsi' Registers that can hold 32 bit values. ! `Rhi' Registers that can hold 16 bit values. ! `Rhc' Registers chat can hold 16 bit values, including all control registers. ! `Rra' $r0 through R1, plus $a0 and $a1. ! `Rfl' The flags register. ! `Rmm' The memory-based pseudo-registers $mem0 through $mem15. ! `Rpi' Registers that can hold pointers (16 bit registers for r8c, m16c; 24 bit registers for m32cm, m32c). ! `Rpa' Matches multiple registers in a PARALLEL to form a larger register. Used to match function return values. ! `Is3' -8 ... 7 ! `IS1' -128 ... 127 ! `IS2' -32768 ... 32767 ! `IU2' 0 ... 65535 ! `In4' -8 ... -1 or 1 ... 8 ! `In5' -16 ... -1 or 1 ... 16 ! `In6' -32 ... -1 or 1 ... 32 ! `IM2' -65536 ... -1 ! `Ilb' An 8 bit value with exactly one bit set. ! `Ilw' A 16 bit value with exactly one bit set. ! `Sd' The common src/dest memory addressing modes. ! `Sa' Memory addressed using $a0 or $a1. ! `Si' Memory addressed with immediate addresses. ! `Ss' Memory addressed using the stack pointer ($sp). ! `Sf' Memory addressed using the frame base register ($fb). ! `Ss' Memory addressed using the small base register ($sb). ! `S1' $r1h ! _MeP--`config/mep/constraints.md'_ ! `a' The $sp register. ! `b' The $tp register. ! `c' Any control register. ! `d' Either the $hi or the $lo register. ! `em' Coprocessor registers that can be directly loaded ($c0-$c15). ! `ex' Coprocessor registers that can be moved to each other. ! `er' Coprocessor registers that can be moved to core registers. ! `h' The $hi register. ! `j' The $rpc register. ! `l' The $lo register. ! `t' Registers which can be used in $tp-relative addressing. ! `v' The $gp register. ! `x' The coprocessor registers. ! `y' The coprocessor control registers. ! `z' The $0 register. ! `A' User-defined register set A. ! `B' User-defined register set B. ! `C' User-defined register set C. ! `D' User-defined register set D. ! `I' Offsets for $gp-rel addressing. ! `J' Constants that can be used directly with boolean insns. ! `K' Constants that can be moved directly to registers. ! `L' Small constants that can be added to registers. ! `M' Long shift counts. ! `N' Small constants that can be compared to registers. ! `O' Constants that can be loaded into the top half of registers. ! `S' Signed 8-bit immediates. ! `T' Symbols encoded for $tp-rel or $gp-rel addressing. ! `U' Non-constant addresses for loading/saving coprocessor registers. ! `W' The top half of a symbol's value. ! `Y' A register indirect address without offset. ! `Z' Symbolic references to the control bus. ! _MicroBlaze--`config/microblaze/constraints.md'_ ! `d' ! A general register (`r0' to `r31'). ! ! `z' ! A status register (`rmsr', `$fcc1' to `$fcc7'). ! ! ! _MIPS--`config/mips/constraints.md'_ ! ! `d' ! An address register. This is equivalent to `r' unless generating MIPS16 code. ! `f' A floating-point register (if available). ! `h' ! Formerly the `hi' register. This constraint is no longer supported. ! `l' ! The `lo' register. Use this register to store values that are no bigger than a word. ! `x' ! The concatenated `hi' and `lo' registers. Use this register to store doubleword values. ! `c' A register suitable for use in an indirect jump. This will ! always be `$25' for `-mabicalls'. ! `v' ! Register `$3'. Do not use this constraint in new code; it is retained only for compatibility with glibc. ! `y' ! Equivalent to `r'; retained for backwards compatibility. ! `z' A floating-point condition code register. ! `I' A signed 16-bit constant (for arithmetic instructions). ! `J' Integer zero. ! `K' An unsigned 16-bit constant (for logic instructions). ! `L' A signed 32-bit constant in which the lower 16 bits are zero. ! Such constants can be loaded using `lui'. ! `M' ! A constant that cannot be loaded using `lui', `addiu' or ! `ori'. ! `N' A constant in the range -65535 to -1 (inclusive). ! `O' A signed 15-bit constant. ! `P' A constant in the range 1 to 65535 (inclusive). ! `G' Floating-point zero. ! `R' An address that can be used in a non-macro load or store. ! `ZC' When compiling microMIPS code, this constraint matches a memory operand whose address is formed from a base register ! and a 12-bit offset. These operands can be used for ! microMIPS instructions such as `ll' and `sc'. When not ! compiling for microMIPS code, `ZC' is equivalent to `R'. ! `ZD' When compiling microMIPS code, this constraint matches an address operand that is formed from a base register and a 12-bit offset. These operands can be used for microMIPS ! instructions such as `prefetch'. When not compiling for ! microMIPS code, `ZD' is equivalent to `p'. ! _Motorola 680x0--`config/m68k/constraints.md'_ ! ! `a' Address register ! `d' Data register ! `f' 68881 floating-point register, if available ! `I' Integer in the range 1 to 8 ! `J' 16-bit signed number ! `K' Signed number whose magnitude is greater than 0x80 ! `L' Integer in the range -8 to -1 ! `M' Signed number whose magnitude is greater than 0x100 ! `N' Range 24 to 31, rotatert:SI 8 to 1 expressed as rotate ! `O' 16 (for rotate using swap) ! `P' Range 8 to 15, rotatert:HI 8 to 1 expressed as rotate ! `R' Numbers that mov3q can handle ! `G' Floating point constant that is not a 68881 constant ! `S' Operands that satisfy 'm' when -mpcrel is in effect ! `T' Operands that satisfy 's' when -mpcrel is not in effect ! `Q' Address register indirect addressing mode ! `U' Register offset addressing ! `W' const_call_operand ! `Cs' symbol_ref or const ! `Ci' const_int ! `C0' const_int 0 ! `Cj' Range of signed numbers that don't fit in 16 bits ! `Cmvq' Integers valid for mvq ! `Capsw' Integers valid for a moveq followed by a swap ! `Cmvz' Integers valid for mvz ! `Cmvs' Integers valid for mvs ! `Ap' push_operand ! `Ac' Non-register operands allowed in clr ! ! _Moxie--`config/moxie/constraints.md'_ ! ! `A' An absolute address ! `B' An offset address ! `W' A register indirect memory operand ! `I' A constant in the range of 0 to 255. ! `N' A constant in the range of 0 to -255. ! _MSP430-`config/msp430/constraints.md'_ ! ! `R12' Register R12. ! `R13' Register R13. ! `K' Integer constant 1. ! `L' Integer constant -1^20..1^19. ! `M' Integer constant 1-4. ! `Ya' Memory references which do not require an extended MOVX instruction. ! `Yl' Memory reference, labels only. ! `Ys' Memory reference, stack only. ! ! _NDS32--`config/nds32/constraints.md'_ ! ! `w' LOW register class $r0 to $r7 constraint for V3/V3M ISA. ! ! `l' LOW register class $r0 to $r7. ! ! `d' MIDDLE register class $r0 to $r11, $r16 to $r19. ! ! `h' HIGH register class $r12 to $r14, $r20 to $r31. ! ! `t' Temporary assist register $ta (i.e. $r15). ! ! `k' Stack register $sp. ! ! `Iu03' Unsigned immediate 3-bit value. ! ! `In03' Negative immediate 3-bit value in the range of -7-0. ! ! `Iu04' Unsigned immediate 4-bit value. ! ! `Is05' Signed immediate 5-bit value. ! ! `Iu05' Unsigned immediate 5-bit value. ! ! `In05' Negative immediate 5-bit value in the range of -31-0. ! ! `Ip05' Unsigned immediate 5-bit value for movpi45 instruction with range 16-47. ! ! `Iu06' Unsigned immediate 6-bit value constraint for addri36.sp instruction. ! ! `Iu08' Unsigned immediate 8-bit value. ! ! `Iu09' Unsigned immediate 9-bit value. ! ! `Is10' Signed immediate 10-bit value. ! ! `Is11' Signed immediate 11-bit value. ! ! `Is15' Signed immediate 15-bit value. ! ! `Iu15' Unsigned immediate 15-bit value. ! ! `Ic15' ! A constant which is not in the range of imm15u but ok for ! bclr instruction. ! ! `Ie15' ! A constant which is not in the range of imm15u but ok for ! bset instruction. ! ! `It15' ! A constant which is not in the range of imm15u but ok for ! btgl instruction. ! ! `Ii15' A constant whose compliment value is in the range of imm15u and ok for bitci instruction. ! ! `Is16' Signed immediate 16-bit value. ! ! `Is17' Signed immediate 17-bit value. ! ! `Is19' Signed immediate 19-bit value. ! ! `Is20' Signed immediate 20-bit value. ! ! `Ihig' The immediate value that can be simply set high 20-bit. ! ! `Izeb' The immediate value 0xff. ! ! `Izeh' The immediate value 0xffff. ! ! `Ixls' The immediate value 0x01. ! ! `Ix11' The immediate value 0x7ff. ! ! `Ibms' The immediate value with power of 2. ! ! `Ifex' The immediate value with power of 2 minus 1. ! ! `U33' Memory constraint for 333 format. ! ! `U45' Memory constraint for 45 format. ! ! `U37' Memory constraint for 37 format. ! _Nios II family--`config/nios2/constraints.md'_ ! `I' Integer that is valid as an immediate operand in an ! instruction taking a signed 16-bit number. Range -32768 to 32767. ! `J' Integer that is valid as an immediate operand in an ! instruction taking an unsigned 16-bit number. Range 0 to 65535. ! `K' Integer that is valid as an immediate operand in an instruction taking only the upper 16-bits of a 32-bit number. Range 32-bit numbers with the lower 16-bits being 0. ! `L' Integer that is valid as an immediate operand for a shift ! instruction. Range 0 to 31. ! `M' Integer that is valid as an immediate operand for only the ! value 0. Can be used in conjunction with the format modifier ! `z' to use `r0' instead of `0' in the assembly output. ! `N' Integer that is valid as an immediate operand for a custom ! instruction opcode. Range 0 to 255. ! `S' Matches immediates which are addresses in the small data ! section and therefore can be added to `gp' as a 16-bit immediate to re-create their 32-bit value. ! `T' ! A `const' wrapped `UNSPEC' expression, representing a supported PIC or TLS relocation. ! _PDP-11--`config/pdp11/constraints.md'_ ! ! `a' ! Floating point registers AC0 through AC3. These can be ! loaded from/to memory with a single instruction. ! ! `d' Odd numbered general registers (R1, R3, R5). These are used for 16-bit multiply operations. ! `f' Any of the floating point registers (AC0 through AC5). ! `G' Floating point constant 0. ! `I' An integer constant that fits in 16 bits. ! `J' An integer constant whose low order 16 bits are zero. ! `K' An integer constant that does not meet the constraints for ! codes `I' or `J'. ! `L' The integer constant 1. ! `M' The integer constant -1. ! `N' The integer constant 0. ! `O' Integer constants -4 through -1 and 1 through 4; shifts by ! these amounts are handled as multiple single-bit shifts ! rather than a single variable-length shift. ! `Q' A memory reference which requires an additional word (address or offset) after the opcode. ! `R' A memory reference that is encoded within the opcode. ! _RL78--`config/rl78/constraints.md'_ ! ! `Int3' An integer constant in the range 1 ... 7. ! ! `Int8' An integer constant in the range 0 ... 255. ! ! `J' An integer constant in the range -255 ... 0 ! ! `K' The integer constant 1. ! ! `L' The integer constant -1. ! ! `M' The integer constant 0. ! ! `N' The integer constant 2. ! ! `O' The integer constant -2. ! ! `P' An integer constant in the range 1 ... 15. ! ! `Qbi' The built-in compare types-eq, ne, gtu, ltu, geu, and leu. ! ! `Qsc' The synthetic compare types-gt, lt, ge, and le. ! ! `Wab' A memory reference with an absolute address. ! ! `Wbc' ! A memory reference using `BC' as a base register, with an optional offset. ! ! `Wca' ! A memory reference using `AX', `BC', `DE', or `HL' for the address, for calls. ! ! `Wcv' A memory reference using any 16-bit register pair for the address, for calls. ! ! `Wd2' ! A memory reference using `DE' as a base register, with an optional offset. ! ! `Wde' ! A memory reference using `DE' as a base register, without any offset. ! ! `Wfr' Any memory reference to an address in the far address space. ! ! `Wh1' ! A memory reference using `HL' as a base register, with an optional one-byte offset. ! ! `Whb' ! A memory reference using `HL' as a base register, with `B' or ! `C' as the index register. ! ! `Whl' ! A memory reference using `HL' as a base register, without any offset. ! ! `Ws1' ! A memory reference using `SP' as a base register, with an optional one-byte offset. ! ! `Y' Any memory reference to an address in the near address space. ! ! `A' ! The `AX' register. ! ! `B' ! The `BC' register. ! ! `D' ! The `DE' register. ! ! `R' ! `A' through `L' registers. ! ! `S' ! The `SP' register. ! ! `T' ! The `HL' register. ! ! `Z08W' ! The 16-bit `R8' register. ! ! `Z10W' ! The 16-bit `R10' register. ! ! `Zint' ! The registers reserved for interrupts (`R24' to `R31'). ! ! `a' ! The `A' register. ! ! `b' ! The `B' register. ! ! `c' ! The `C' register. ! ! `d' ! The `D' register. ! ! `e' ! The `E' register. ! ! `h' ! The `H' register. ! ! `l' ! The `L' register. ! ! `v' The virtual registers. ! `w' ! The `PSW' register. ! `x' ! The `X' register. ! ! ! _RX--`config/rx/constraints.md'_ ! ! `Q' ! An address which does not involve register indirect ! addressing or pre/post increment/decrement addressing. ! ! `Symbol' A symbol reference. ! `Int08' A constant in the range -256 to 255, inclusive. ! `Sint08' A constant in the range -128 to 127, inclusive. ! `Sint16' A constant in the range -32768 to 32767, inclusive. ! `Sint24' A constant in the range -8388608 to 8388607, inclusive. ! `Uint04' A constant in the range 0 to 15, inclusive. ! _SPARC--`config/sparc/sparc.h'_ ! ! `f' ! Floating-point register on the SPARC-V8 architecture and ! lower floating-point register on the SPARC-V9 architecture. ! ! `e' ! Floating-point register. It is equivalent to `f' on the SPARC-V8 architecture and contains both lower and upper floating-point registers on the SPARC-V9 architecture. ! `c' Floating-point condition code register. ! `d' Lower floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `b' Floating-point register. It is only valid on the SPARC-V9 architecture when the Visual Instruction Set is available. ! `h' 64-bit global or out register for the SPARC-V8+ architecture. ! `C' The constant all-ones, for floating-point. ! `A' Signed 5-bit constant ! `D' A vector constant ! `I' Signed 13-bit constant ! `J' Zero ! `K' 32-bit constant with the low 12 bits clear (a constant that ! can be loaded with the `sethi' instruction) ! `L' ! A constant in the range supported by `movcc' instructions (11-bit signed immediate) ! `M' ! A constant in the range supported by `movrcc' instructions (10-bit signed immediate) ! `N' ! Same as `K', except that it verifies that bits that are not ! in the lower 32-bit range are all zero. Must be used instead ! of `K' for modes wider than `SImode' ! `O' The constant 4096 ! `G' Floating-point zero ! `H' Signed 13-bit constant, sign-extended to 32 or 64 bits ! `P' The constant -1 ! `Q' Floating-point constant whose integral representation can be moved into an integer register using a single sethi instruction ! `R' Floating-point constant whose integral representation can be moved into an integer register using a single mov instruction ! `S' Floating-point constant whose integral representation can be ! moved into an integer register using a high/lo_sum ! instruction sequence ! `T' Memory address aligned to an 8-byte boundary ! `U' Even register ! `W' ! Memory address for `e' constraint registers ! `w' Memory address with only a base register ! `Y' Vector zero ! ! _SPU--`config/spu/spu.h'_ ! ! `a' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 64 bit value. ! `c' An immediate for and/xor/or instructions. const_int is treated as a 64 bit value. ! `d' ! An immediate for the `iohl' instruction. const_int is ! treated as a 64 bit value. ! `f' ! An immediate which can be loaded with `fsmbi'. ! `A' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is treated as a 32 bit value. ! `B' An immediate for most arithmetic instructions. const_int is treated as a 32 bit value. ! `C' An immediate for and/xor/or instructions. const_int is treated as a 32 bit value. ! `D' ! An immediate for the `iohl' instruction. const_int is ! treated as a 32 bit value. ! `I' A constant in the range [-64, 63] for shift/rotate instructions. ! `J' An unsigned 7-bit constant for conversion/nop/channel instructions. ! `K' A signed 10-bit constant for most arithmetic instructions. ! `M' ! A signed 16 bit immediate for `stop'. ! `N' ! An unsigned 16-bit constant for `iohl' and `fsmbi'. ! `O' An unsigned 7-bit constant whose 3 least significant bits are 0. ! `P' An unsigned 3-bit constant for 16-byte rotates and shifts ! `R' Call operand, reg, for indirect calls ! `S' Call operand, symbol, for relative calls. ! `T' Call operand, const_int, for absolute calls. ! `U' An immediate which can be loaded with the il/ila/ilh/ilhu instructions. const_int is sign extended to 128 bit. ! `W' An immediate for shift and rotate instructions. const_int is treated as a 32 bit value. ! `Y' An immediate for and/xor/or instructions. const_int is sign extended as a 128 bit. ! `Z' ! An immediate for the `iohl' instruction. const_int is sign extended to 128 bit. ! ! _S/390 and zSeries--`config/s390/s390.h'_ ! ! `a' Address register (general purpose register except r0) ! `c' Condition code register ! `d' Data register (arbitrary general purpose register) ! `f' Floating-point register ! `I' Unsigned 8-bit constant (0-255) ! `J' Unsigned 12-bit constant (0-4095) ! `K' Signed 16-bit constant (-32768-32767) ! `L' Value appropriate as displacement. ! `(0..4095)' for short displacement ! ! `(-524288..524287)' for long displacement ! `M' Constant integer with a value of 0x7fffffff. ! `N' Multiple letter constraint followed by 4 parameter letters. ! `0..9:' number of the part counting from most to least significant ! ! `H,Q:' mode of the part ! ! `D,S,H:' mode of the containing operand ! ! `0,F:' value of the other parts (F--all bits set) ! The constraint matches if the specified part of a constant ! has a value different from its other parts. ! `Q' Memory reference without index register and with short displacement. ! `R' Memory reference with index register and short displacement. ! `S' Memory reference without index register but with long displacement. ! `T' Memory reference with index register and long displacement. ! `U' Pointer with short displacement. ! `W' Pointer with long displacement. ! `Y' Shift count operand. ! ! _Score family--`config/score/score.h'_ ! ! `d' Registers from r0 to r32. ! `e' Registers from r0 to r16. ! `t' r8--r11 or r22--r27 registers. ! `h' hi register. ! `l' lo register. ! `x' hi + lo register. ! `q' cnt register. ! `y' lcb register. ! `z' scb register. ! `a' cnt + lcb + scb register. ! `c' cr0--cr15 register. ! `b' cp1 registers. ! `f' cp2 registers. ! `i' cp3 registers. ! `j' cp1 + cp2 + cp3 registers. ! `I' High 16-bit constant (32-bit constant with 16 LSBs zero). ! `J' Unsigned 5 bit integer (in the range 0 to 31). ! `K' Unsigned 16 bit integer (in the range 0 to 65535). ! `L' Signed 16 bit integer (in the range -32768 to 32767). ! `M' Unsigned 14 bit integer (in the range 0 to 16383). ! `N' Signed 14 bit integer (in the range -8192 to 8191). ! `Z' Any SYMBOL_REF. ! _Xstormy16--`config/stormy16/stormy16.h'_ ! ! `a' Register r0. ! `b' Register r1. ! `c' Register r2. ! `d' Register r8. ! `e' Registers r0 through r7. ! `t' Registers r0 and r1. ! `y' The carry register. ! `z' Registers r8 and r9. ! `I' A constant between 0 and 3 inclusive. ! `J' A constant that has exactly one bit set. ! `K' A constant that has exactly one bit clear. ! `L' A constant between 0 and 255 inclusive. ! `M' A constant between -255 and 0 inclusive. ! `N' A constant between -3 and 0 inclusive. ! `O' A constant between 1 and 4 inclusive. ! `P' A constant between -4 and -1 inclusive. ! `Q' A memory reference that is a stack push. ! `R' A memory reference that is a stack pop. ! `S' A memory reference that refers to a constant address of known value. ! `T' The register indicated by Rx (not implemented yet). ! `U' A constant that is not between 2 and 15 inclusive. ! `Z' The constant 0. ! ! _TI C6X family--`config/c6x/constraints.md'_ ! ! `a' Register file A (A0-A31). ! `b' Register file B (B0-B31). ! `A' Predicate registers in register file A (A0-A2 on C64X and higher, A1 and A2 otherwise). ! `B' Predicate registers in register file B (B0-B2). ! `C' A call-used register in register file B (B0-B9, B16-B31). ! `Da' Register file A, excluding predicate registers (A3-A31, plus A0 if not C64X or higher). ! `Db' Register file B, excluding predicate registers (B3-B31). ! `Iu4' Integer constant in the range 0 ... 15. ! `Iu5' Integer constant in the range 0 ... 31. ! `In5' Integer constant in the range -31 ... 0. ! `Is5' Integer constant in the range -16 ... 15. ! `I5x' Integer constant that can be the operand of an ADDA or a SUBA insn. ! `IuB' Integer constant in the range 0 ... 65535. ! `IsB' Integer constant in the range -32768 ... 32767. ! `IsC' ! Integer constant in the range -2^20 ... 2^20 - 1. ! `Jc' Integer constant that is a valid mask for the clr instruction. ! `Js' Integer constant that is a valid mask for the set instruction. ! `Q' Memory location with A base register. ! `R' Memory location with B base register. ! `S0' On C64x+ targets, a GP-relative small data reference. ! `S1' ! Any kind of `SYMBOL_REF', for use in a call address. ! `Si' Any kind of immediate operand, unless it matches the S0 constraint. ! `T' Memory location with B base register, but not using a long offset. ! `W' A memory operand with an address that can't be used in an unaligned access. ! `Z' Register B14 (aka DP). ! ! _TILE-Gx--`config/tilegx/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Unsigned 16-bit integer constant. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILE-Gx. For example: asm ("st_add %I0,%1,%i0" : "=m<>" (*mem) : "r" (val)); ! `M' A bit mask suitable for the BFINS instruction. ! `N' Integer constant that is a byte tiled out eight times. ! `O' The integer zero constant. ! `P' Integer constant that is a sign-extended byte tiled out as four shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `S' Integer constant that has all 1 bits consecutive and starting at bit 0. ! `T' A 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' An 8-element vector constant with identical elements. ! `Y' A 4-element vector constant with identical elements. ! `Z0' The integer constant 0xffffffff. ! `Z1' The integer constant 0xffffffff00000000. ! ! _TILEPro--`config/tilepro/constraints.md'_ ! ! `R00' ! `R01' ! `R02' ! `R03' ! `R04' ! `R05' ! `R06' ! `R07' ! `R08' ! `R09' ! `R10' Each of these represents a register constraint for an individual register, from r0 to r10. ! `I' Signed 8-bit integer constant. ! `J' Signed 16-bit integer constant. ! `K' Nonzero integer constant with low 16 bits zero. ! `L' ! Integer constant that fits in one signed byte when ! incremented by one (-129 ... 126). ! `m' ! Memory operand. If used together with `<' or `>', the ! operand can have postincrement which requires printing with ! `%In' and `%in' on TILEPro. For example: asm ("swadd %I0,%1,%i0" : "=m<>" (mem) : "r" (val)); ! `M' A bit mask suitable for the MM instruction. ! `N' Integer constant that is a byte tiled out four times. ! `O' The integer zero constant. ! `P' ! Integer constant that is a sign-extended byte tiled out as ! two shorts. ! `Q' Integer constant that fits in one signed byte when incremented (-129 ... 126), but excluding -1. ! `T' A symbolic operand, or a 16-bit fragment of a got, tls, or pc-relative reference. ! `U' ! Memory operand except postincrement. This is roughly the ! same as `m' when not used together with `<' or `>'. ! `W' A 4-element vector constant with identical elements. ! `Y' A 2-element vector constant with identical elements. ! ! _Xtensa--`config/xtensa/constraints.md'_ ! ! `a' General-purpose 32-bit register ! `b' One-bit boolean register ! `A' MAC16 40-bit accumulator register ! `I' Signed 12-bit integer constant, for use in MOVI instructions ! `J' Signed 8-bit integer constant, for use in ADDI instructions ! `K' Integer constant valid for BccI instructions ! `L' Unsigned constant valid for BccUI instructions + +  File: gccint.info, Node: Disable Insn Alternatives, Next: Define Constraints, Prev: Machine Constraints, Up: Constraints ! 16.8.6 Disable insn alternatives using the `enabled' attribute -------------------------------------------------------------- ! The `enabled' insn attribute may be used to disable certain insn alternatives for machine-specific reasons. This is useful when adding new instructions to an existing pattern which are only available for ! certain cpu architecture levels as specified with the `-march=' option. If an insn alternative is disabled, then it will never be used. The compiler treats the constraints for the disabled alternative as unsatisfiable. ! In order to make use of the `enabled' attribute a back end has to add in the machine description files: ! 1. A definition of the `enabled' insn attribute. The attribute is ! defined as usual using the `define_attr' command. This definition should be based on other insn attributes and/or target flags. The ! `enabled' attribute is a numeric attribute and should evaluate to ! `(const_int 1)' for an enabled alternative and to `(const_int 0)' otherwise. + 2. A definition of another insn attribute used to describe for what reason an insn alternative might be available or not. E.g. ! `cpu_facility' as in the example below. ! 3. An assignment for the second attribute to each insn definition combining instructions which are not all available under the same circumstances. (Note: It obviously only makes sense for definitions with more than one alternative. Otherwise the insn pattern should be disabled or enabled using the insn condition.) ! E.g. the following two patterns could easily be merged using the ! `enabled' attribute: (define_insn "*movdi_old" *************** in the machine description files: *** 22037,22043 **** ldgr %0,%1 lgdr %0,%1") - to: --- 22405,22410 ---- *************** in the machine description files: *** 22051,22058 **** lgdr %0,%1" [(set_attr "cpu_facility" "*,new,new")]) ! ! with the 'enabled' attribute defined like this: (define_attr "cpu_facility" "standard,new" (const_string "standard")) --- 22418,22424 ---- lgdr %0,%1" [(set_attr "cpu_facility" "*,new,new")]) ! with the `enabled' attribute defined like this: (define_attr "cpu_facility" "standard,new" (const_string "standard")) *************** in the machine description files: *** 22064,22070 **** (const_int 1)] (const_int 0))) -  File: gccint.info, Node: Define Constraints, Next: C Constraint Interface, Prev: Disable Insn Alternatives, Up: Constraints --- 22430,22435 ---- *************** File: gccint.info, Node: Define Constra *** 22072,22091 **** -------------------------------------------- Machine-specific constraints fall into two categories: register and ! non-register constraints. Within the latter category, constraints which ! allow subsets of all possible memory or address operands should be ! specially marked, to give 'reload' more information. Machine-specific constraints can be given names of arbitrary length, but they must be entirely composed of letters, digits, underscores ! ('_'), and angle brackets ('< >'). Like C identifiers, they must begin with a letter or underscore. In order to avoid ambiguity in operand constraint strings, no ! constraint can have a name that begins with any other constraint's name. ! For example, if 'x' is defined as a constraint name, 'xy' may not be, ! and vice versa. As a consequence of this rule, no constraint may begin ! with one of the generic constraint letters: 'E F V X g i m n o p r s'. Register constraints correspond directly to register classes. *Note Register Classes::. There is thus not much flexibility in their --- 22437,22457 ---- -------------------------------------------- Machine-specific constraints fall into two categories: register and ! non-register constraints. Within the latter category, constraints ! which allow subsets of all possible memory or address operands should ! be specially marked, to give `reload' more information. Machine-specific constraints can be given names of arbitrary length, but they must be entirely composed of letters, digits, underscores ! (`_'), and angle brackets (`< >'). Like C identifiers, they must begin with a letter or underscore. In order to avoid ambiguity in operand constraint strings, no ! constraint can have a name that begins with any other constraint's ! name. For example, if `x' is defined as a constraint name, `xy' may ! not be, and vice versa. As a consequence of this rule, no constraint ! may begin with one of the generic constraint letters: `E F V X g i m n ! o p r s'. Register constraints correspond directly to register classes. *Note Register Classes::. There is thus not much flexibility in their *************** definitions. *** 22093,22107 **** -- MD Expression: define_register_constraint name regclass docstring All three arguments are string constants. NAME is the name of the ! constraint, as it will appear in 'match_operand' expressions. If NAME is a multi-letter constraint its length shall be the same for all constraints starting with the same letter. REGCLASS can be ! either the name of the corresponding register class (*note Register ! Classes::), or a C expression which evaluates to the appropriate ! register class. If it is an expression, it must have no side ! effects, and it cannot look at the operand. The usual use of ! expressions is to map some register constraints to 'NO_REGS' when ! the register class is not available on a given subarchitecture. DOCSTRING is a sentence documenting the meaning of the constraint. Docstrings are explained further below. --- 22459,22474 ---- -- MD Expression: define_register_constraint name regclass docstring All three arguments are string constants. NAME is the name of the ! constraint, as it will appear in `match_operand' expressions. If NAME is a multi-letter constraint its length shall be the same for all constraints starting with the same letter. REGCLASS can be ! either the name of the corresponding register class (*note ! Register Classes::), or a C expression which evaluates to the ! appropriate register class. If it is an expression, it must have ! no side effects, and it cannot look at the operand. The usual use ! of expressions is to map some register constraints to `NO_REGS' ! when the register class is not available on a given ! subarchitecture. DOCSTRING is a sentence documenting the meaning of the constraint. Docstrings are explained further below. *************** constraint matches. *** 22112,22211 **** -- MD Expression: define_constraint name docstring exp The NAME and DOCSTRING arguments are the same as for ! 'define_register_constraint', but note that the docstring comes immediately after the name for these expressions. EXP is an RTL expression, obeying the same rules as the RTL expressions in predicate definitions. *Note Defining Predicates::, for details. If it evaluates true, the constraint matches; if it evaluates ! false, it doesn't. Constraint expressions should indicate which RTL codes they might match, just like predicate expressions. ! 'match_test' C expressions have access to the following variables: ! OP The RTL object defining the operand. ! MODE The machine mode of OP. ! IVAL ! 'INTVAL (OP)', if OP is a 'const_int'. ! HVAL ! 'CONST_DOUBLE_HIGH (OP)', if OP is an integer 'const_double'. ! LVAL ! 'CONST_DOUBLE_LOW (OP)', if OP is an integer 'const_double'. ! RVAL ! 'CONST_DOUBLE_REAL_VALUE (OP)', if OP is a floating-point ! 'const_double'. The *VAL variables should only be used once another piece of the expression has verified that OP is the appropriate kind of RTL object. Most non-register constraints should be defined with ! 'define_constraint'. The remaining two definition expressions are only ! appropriate for constraints that should be handled specially by 'reload' ! if they fail to match. -- MD Expression: define_memory_constraint name docstring exp Use this expression for constraints that match a subset of all ! memory operands: that is, 'reload' can make them match by ! converting the operand to the form '(mem (reg X))', where X is a base register (from the register class specified by ! 'BASE_REG_CLASS', *note Register Classes::). For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use of ! an index register. The constraint letter 'Q' is defined to ! represent a memory address of this type. If 'Q' is defined with ! 'define_memory_constraint', a 'Q' constraint can handle any memory ! operand, because 'reload' knows it can simply copy the memory ! address into a base register if required. This is analogous to the ! way an 'o' constraint can handle any memory operand. The syntax and semantics are otherwise identical to ! 'define_constraint'. -- MD Expression: define_address_constraint name docstring exp Use this expression for constraints that match a subset of all ! address operands: that is, 'reload' can make the constraint match ! by converting the operand to the form '(reg X)', again with X a base register. ! Constraints defined with 'define_address_constraint' can only be ! used with the 'address_operand' predicate, or machine-specific predicates that work the same way. They are treated analogously to ! the generic 'p' constraint. The syntax and semantics are otherwise identical to ! 'define_constraint'. ! For historical reasons, names beginning with the letters 'G H' are ! reserved for constraints that match only 'const_double's, and names ! beginning with the letters 'I J K L M N O P' are reserved for ! constraints that match only 'const_int's. This may change in the future. For the time being, constraints with these names must be ! written in a stylized form, so that 'genpreds' can tell you did it correctly: (define_constraint "[GHIJKLMNOP]..." "DOC..." ! (and (match_code "const_int") ; 'const_double' for G/H ! CONDITION...)) ; usually a 'match_test' It is fine to use names beginning with other letters for constraints ! that match 'const_double's or 'const_int's. Each docstring in a constraint definition should be one or more complete sentences, marked up in Texinfo format. _They are currently ! unused._ In the future they will be copied into the GCC manual, in *note Machine Constraints::, replacing the hand-maintained tables currently found in that section. Also, in the future the compiler may ! use this to give more helpful diagnostics when poor choice of 'asm' constraints causes a reload failure. ! If you put the pseudo-Texinfo directive '@internal' at the beginning of ! a docstring, then (in the future) it will appear only in the internals ! manual's version of the machine-specific constraint tables. Use this ! for constraints that should not appear in 'asm' statements.  File: gccint.info, Node: C Constraint Interface, Prev: Define Constraints, Up: Constraints --- 22479,22583 ---- -- MD Expression: define_constraint name docstring exp The NAME and DOCSTRING arguments are the same as for ! `define_register_constraint', but note that the docstring comes immediately after the name for these expressions. EXP is an RTL expression, obeying the same rules as the RTL expressions in predicate definitions. *Note Defining Predicates::, for details. If it evaluates true, the constraint matches; if it evaluates ! false, it doesn't. Constraint expressions should indicate which RTL codes they might match, just like predicate expressions. ! `match_test' C expressions have access to the following variables: ! OP The RTL object defining the operand. ! ! MODE The machine mode of OP. ! ! IVAL ! `INTVAL (OP)', if OP is a `const_int'. ! ! HVAL ! `CONST_DOUBLE_HIGH (OP)', if OP is an integer `const_double'. ! ! LVAL ! `CONST_DOUBLE_LOW (OP)', if OP is an integer `const_double'. ! ! RVAL ! `CONST_DOUBLE_REAL_VALUE (OP)', if OP is a floating-point ! `const_double'. The *VAL variables should only be used once another piece of the expression has verified that OP is the appropriate kind of RTL object. Most non-register constraints should be defined with ! `define_constraint'. The remaining two definition expressions are only ! appropriate for constraints that should be handled specially by ! `reload' if they fail to match. -- MD Expression: define_memory_constraint name docstring exp Use this expression for constraints that match a subset of all ! memory operands: that is, `reload' can make them match by ! converting the operand to the form `(mem (reg X))', where X is a base register (from the register class specified by ! `BASE_REG_CLASS', *note Register Classes::). For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use ! of an index register. The constraint letter `Q' is defined to ! represent a memory address of this type. If `Q' is defined with ! `define_memory_constraint', a `Q' constraint can handle any memory ! operand, because `reload' knows it can simply copy the memory ! address into a base register if required. This is analogous to ! the way an `o' constraint can handle any memory operand. The syntax and semantics are otherwise identical to ! `define_constraint'. -- MD Expression: define_address_constraint name docstring exp Use this expression for constraints that match a subset of all ! address operands: that is, `reload' can make the constraint match ! by converting the operand to the form `(reg X)', again with X a base register. ! Constraints defined with `define_address_constraint' can only be ! used with the `address_operand' predicate, or machine-specific predicates that work the same way. They are treated analogously to ! the generic `p' constraint. The syntax and semantics are otherwise identical to ! `define_constraint'. ! For historical reasons, names beginning with the letters `G H' are ! reserved for constraints that match only `const_double's, and names ! beginning with the letters `I J K L M N O P' are reserved for ! constraints that match only `const_int's. This may change in the future. For the time being, constraints with these names must be ! written in a stylized form, so that `genpreds' can tell you did it correctly: (define_constraint "[GHIJKLMNOP]..." "DOC..." ! (and (match_code "const_int") ; `const_double' for G/H ! CONDITION...)) ; usually a `match_test' It is fine to use names beginning with other letters for constraints ! that match `const_double's or `const_int's. Each docstring in a constraint definition should be one or more complete sentences, marked up in Texinfo format. _They are currently ! unused._ In the future they will be copied into the GCC manual, in *note Machine Constraints::, replacing the hand-maintained tables currently found in that section. Also, in the future the compiler may ! use this to give more helpful diagnostics when poor choice of `asm' constraints causes a reload failure. ! If you put the pseudo-Texinfo directive `@internal' at the beginning ! of a docstring, then (in the future) it will appear only in the ! internals manual's version of the machine-specific constraint tables. ! Use this for constraints that should not appear in `asm' statements.  File: gccint.info, Node: C Constraint Interface, Prev: Define Constraints, Up: Constraints *************** File: gccint.info, Node: C Constraint I *** 22214,22282 **** --------------------------------- It is occasionally useful to test a constraint from C code rather than ! implicitly via the constraint string in a 'match_operand'. The ! generated file 'tm_p.h' declares a few interfaces for working with machine-specific constraints. None of these interfaces work with the generic constraints described in *note Simple Constraints::. This may change in the future. ! *Warning:* 'tm_p.h' may declare other functions that operate on constraints, besides the ones documented here. Do not use those functions from machine-dependent code. They exist to implement the old ! constraint interface that machine-independent components of the compiler ! still expect. They will change or disappear in the future. Some valid constraint names are not valid C identifiers, so there is a mangling scheme for referring to them from C. Constraint names that do not contain angle brackets or underscores are left unchanged. ! Underscores are doubled, each '<' is replaced with '_l', and each '>' ! with '_g'. Here are some examples: ! *Original* *Mangled* ! x x ! P42x P42x ! P4_x P4__x ! P4>x P4_gx ! P4>> P4_g_g ! P4_g> P4__g_g Throughout this section, the variable C is either a constraint in the ! abstract sense, or a constant from 'enum constraint_num'; the variable M ! is a mangled constraint name (usually as part of a larger identifier). -- Enum: constraint_num For each machine-specific constraint, there is a corresponding ! enumeration constant: 'CONSTRAINT_' plus the mangled name of the ! constraint. Functions that take an 'enum constraint_num' as an argument expect one of these constants. Machine-independent constraints do not have associated constants. This may change in the future. ! -- Function: inline bool satisfies_constraint_ M (rtx EXP) For each machine-specific, non-register constraint M, there is one ! of these functions; it returns 'true' if EXP satisfies the ! constraint. These functions are only visible if 'rtl.h' was ! included before 'tm_p.h'. -- Function: bool constraint_satisfied_p (rtx EXP, enum constraint_num C) ! Like the 'satisfies_constraint_M' functions, but the constraint to test is given as an argument, C. If C specifies a register ! constraint, this function will always return 'false'. -- Function: enum reg_class regclass_for_constraint (enum constraint_num C) Returns the register class associated with C. If C is not a register constraint, or those registers are not available for the ! currently selected subtarget, returns 'NO_REGS'. ! Here is an example use of 'satisfies_constraint_M'. In peephole ! optimizations (*note Peephole Definitions::), operand constraint strings ! are ignored, so if there are relevant constraints, they must be tested ! in the C condition. In the example, the optimization is applied if ! operand 2 does _not_ satisfy the 'K' constraint. (This is a simplified ! version of a peephole definition from the i386 machine description.) (define_peephole2 [(match_scratch:SI 3 "r") --- 22586,22655 ---- --------------------------------- It is occasionally useful to test a constraint from C code rather than ! implicitly via the constraint string in a `match_operand'. The ! generated file `tm_p.h' declares a few interfaces for working with machine-specific constraints. None of these interfaces work with the generic constraints described in *note Simple Constraints::. This may change in the future. ! *Warning:* `tm_p.h' may declare other functions that operate on constraints, besides the ones documented here. Do not use those functions from machine-dependent code. They exist to implement the old ! constraint interface that machine-independent components of the ! compiler still expect. They will change or disappear in the future. Some valid constraint names are not valid C identifiers, so there is a mangling scheme for referring to them from C. Constraint names that do not contain angle brackets or underscores are left unchanged. ! Underscores are doubled, each `<' is replaced with `_l', and each `>' ! with `_g'. Here are some examples: ! *Original* *Mangled* ! `x' `x' ! `P42x' `P42x' ! `P4_x' `P4__x' ! `P4>x' `P4_gx' ! `P4>>' `P4_g_g' ! `P4_g>' `P4__g_g' Throughout this section, the variable C is either a constraint in the ! abstract sense, or a constant from `enum constraint_num'; the variable ! M is a mangled constraint name (usually as part of a larger identifier). -- Enum: constraint_num For each machine-specific constraint, there is a corresponding ! enumeration constant: `CONSTRAINT_' plus the mangled name of the ! constraint. Functions that take an `enum constraint_num' as an argument expect one of these constants. Machine-independent constraints do not have associated constants. This may change in the future. ! -- Function: inline bool satisfies_constraint_M (rtx EXP) For each machine-specific, non-register constraint M, there is one ! of these functions; it returns `true' if EXP satisfies the ! constraint. These functions are only visible if `rtl.h' was ! included before `tm_p.h'. -- Function: bool constraint_satisfied_p (rtx EXP, enum constraint_num C) ! Like the `satisfies_constraint_M' functions, but the constraint to test is given as an argument, C. If C specifies a register ! constraint, this function will always return `false'. -- Function: enum reg_class regclass_for_constraint (enum constraint_num C) Returns the register class associated with C. If C is not a register constraint, or those registers are not available for the ! currently selected subtarget, returns `NO_REGS'. ! Here is an example use of `satisfies_constraint_M'. In peephole ! optimizations (*note Peephole Definitions::), operand constraint ! strings are ignored, so if there are relevant constraints, they must be ! tested in the C condition. In the example, the optimization is applied ! if operand 2 does _not_ satisfy the `K' constraint. (This is a ! simplified version of a peephole definition from the i386 machine ! description.) (define_peephole2 [(match_scratch:SI 3 "r") *************** generation pass of the compiler. Giving *** 22302,22337 **** instruction pattern tells the RTL generation pass that it can use the pattern to accomplish a certain task. ! 'movM' Here M stands for a two-letter machine mode name, in lowercase. This instruction pattern moves data with that machine mode from ! operand 1 to operand 0. For example, 'movsi' moves full-word data. ! If operand 0 is a 'subreg' with mode M of a register whose own mode ! is wider than M, the effect of this instruction is to store the ! specified value in the part of the register that corresponds to ! mode M. Bits outside of M, but which are within the same target ! word as the 'subreg' are undefined. Bits which are outside the ! target word are left unchanged. This class of patterns is special in several ways. First of all, each of these names up to and including full word size _must_ be defined, because there is no other way to copy a datum from one place to another. If there are patterns accepting operands in ! larger modes, 'movM' must be defined for integer modes of those sizes. Second, these patterns are not used solely in the RTL generation pass. Even the reload pass can generate move insns to copy values ! from stack slots into temporary registers. When it does so, one of ! the operands is a hard register and the other is an operand that ! can need to be reloaded into a register. Therefore, when given such a pair of operands, the pattern must generate RTL which needs no reloading and needs no temporary registers--no registers other than the operands. For example, if ! you support the pattern with a 'define_expand', then in such a case ! the 'define_expand' mustn't call 'force_reg' or any other such function which might generate new pseudo registers. This requirement exists even for subword modes on a RISC machine --- 22675,22710 ---- instruction pattern tells the RTL generation pass that it can use the pattern to accomplish a certain task. ! `movM' Here M stands for a two-letter machine mode name, in lowercase. This instruction pattern moves data with that machine mode from ! operand 1 to operand 0. For example, `movsi' moves full-word data. ! If operand 0 is a `subreg' with mode M of a register whose own ! mode is wider than M, the effect of this instruction is to store ! the specified value in the part of the register that corresponds ! to mode M. Bits outside of M, but which are within the same ! target word as the `subreg' are undefined. Bits which are outside ! the target word are left unchanged. This class of patterns is special in several ways. First of all, each of these names up to and including full word size _must_ be defined, because there is no other way to copy a datum from one place to another. If there are patterns accepting operands in ! larger modes, `movM' must be defined for integer modes of those sizes. Second, these patterns are not used solely in the RTL generation pass. Even the reload pass can generate move insns to copy values ! from stack slots into temporary registers. When it does so, one ! of the operands is a hard register and the other is an operand ! that can need to be reloaded into a register. Therefore, when given such a pair of operands, the pattern must generate RTL which needs no reloading and needs no temporary registers--no registers other than the operands. For example, if ! you support the pattern with a `define_expand', then in such a ! case the `define_expand' mustn't call `force_reg' or any other such function which might generate new pseudo registers. This requirement exists even for subword modes on a RISC machine *************** pattern to accomplish a certain task. *** 22344,22354 **** be done with the address except to use it as it stands. If it is copied, it will not be replaced with a valid address. No attempt should be made to make such an address into a valid address and no ! routine (such as 'change_address') that will do so may be called. ! Note that 'general_operand' will fail when applied to such an address. ! The global variable 'reload_in_progress' (which must be explicitly declared if required) can be used to determine whether such special handling is required. --- 22717,22727 ---- be done with the address except to use it as it stands. If it is copied, it will not be replaced with a valid address. No attempt should be made to make such an address into a valid address and no ! routine (such as `change_address') that will do so may be called. ! Note that `general_operand' will fail when applied to such an address. ! The global variable `reload_in_progress' (which must be explicitly declared if required) can be used to determine whether such special handling is required. *************** pattern to accomplish a certain task. *** 22359,22433 **** reloads. If a scratch register is required to move an object to or from ! memory, it can be allocated using 'gen_reg_rtx' prior to life analysis. If there are cases which need scratch registers during or after reload, you must provide an appropriate secondary_reload target hook. ! The macro 'can_create_pseudo_p' can be used to determine if it is unsafe to create new pseudo registers. If this variable is ! nonzero, then it is unsafe to call 'gen_reg_rtx' to allocate a new pseudo. ! The constraints on a 'movM' must permit moving any hard register to ! any other hard register provided that 'HARD_REGNO_MODE_OK' permits ! mode M in both registers and 'TARGET_REGISTER_MOVE_COST' applied to ! their classes returns a value of 2. ! It is obligatory to support floating point 'movM' instructions into ! and out of any registers that can hold fixed point values, because ! unions and structures (which have modes 'SImode' or 'DImode') can ! be in those registers and they may have floating point members. ! There may also be a need to support fixed point 'movM' instructions ! in and out of floating point registers. Unfortunately, I have ! forgotten why this was so, and I don't know whether it is still ! true. If 'HARD_REGNO_MODE_OK' rejects fixed point values in ! floating point registers, then the constraints of the fixed point ! 'movM' instructions must be designed to avoid ever trying to reload ! into a floating point register. ! 'reload_inM' ! 'reload_outM' These named patterns have been obsoleted by the target hook ! 'secondary_reload'. ! Like 'movM', but used when a scratch register is required to move between operand 0 and operand 1. Operand 2 describes the scratch ! register. See the discussion of the 'SECONDARY_RELOAD_CLASS' macro ! in *note Register Classes::. ! There are special restrictions on the form of the 'match_operand's used in these patterns. First, only the predicate for the reload ! operand is examined, i.e., 'reload_in' examines operand 1, but not the predicates for operand 0 or 2. Second, there may be only one alternative in the constraints. Third, only a single register class letter may be used for the constraint; subsequent constraint letters are ignored. As a special exception, an empty constraint ! string matches the 'ALL_REGS' register class. This may relieve ! ports of the burden of defining an 'ALL_REGS' constraint letter just for these patterns. ! 'movstrictM' ! Like 'movM' except that if operand 0 is a 'subreg' with mode M of a ! register whose natural mode is wider, the 'movstrictM' instruction ! is guaranteed not to alter any of the register except the part ! which belongs to mode M. ! 'movmisalignM' This variant of a move pattern is designed to load or store a value from a memory address that is not naturally aligned for its mode. For a store, the memory will be in operand 0; for a load, the memory will be in operand 1. The other operand is guaranteed not ! to be a memory, so that it's easy to tell whether this is a load or ! store. This pattern is used by the autovectorizer, and when expanding a ! 'MISALIGNED_INDIRECT_REF' expression. ! 'load_multiple' Load several consecutive memory locations into consecutive registers. Operand 0 is the first of the consecutive registers, operand 1 is the first memory location, and operand 2 is a --- 22732,22807 ---- reloads. If a scratch register is required to move an object to or from ! memory, it can be allocated using `gen_reg_rtx' prior to life analysis. If there are cases which need scratch registers during or after reload, you must provide an appropriate secondary_reload target hook. ! The macro `can_create_pseudo_p' can be used to determine if it is unsafe to create new pseudo registers. If this variable is ! nonzero, then it is unsafe to call `gen_reg_rtx' to allocate a new pseudo. ! The constraints on a `movM' must permit moving any hard register ! to any other hard register provided that `HARD_REGNO_MODE_OK' ! permits mode M in both registers and `TARGET_REGISTER_MOVE_COST' ! applied to their classes returns a value of 2. ! It is obligatory to support floating point `movM' instructions ! into and out of any registers that can hold fixed point values, ! because unions and structures (which have modes `SImode' or ! `DImode') can be in those registers and they may have floating ! point members. ! There may also be a need to support fixed point `movM' ! instructions in and out of floating point registers. ! Unfortunately, I have forgotten why this was so, and I don't know ! whether it is still true. If `HARD_REGNO_MODE_OK' rejects fixed ! point values in floating point registers, then the constraints of ! the fixed point `movM' instructions must be designed to avoid ever ! trying to reload into a floating point register. ! `reload_inM' ! `reload_outM' These named patterns have been obsoleted by the target hook ! `secondary_reload'. ! Like `movM', but used when a scratch register is required to move between operand 0 and operand 1. Operand 2 describes the scratch ! register. See the discussion of the `SECONDARY_RELOAD_CLASS' ! macro in *note Register Classes::. ! There are special restrictions on the form of the `match_operand's used in these patterns. First, only the predicate for the reload ! operand is examined, i.e., `reload_in' examines operand 1, but not the predicates for operand 0 or 2. Second, there may be only one alternative in the constraints. Third, only a single register class letter may be used for the constraint; subsequent constraint letters are ignored. As a special exception, an empty constraint ! string matches the `ALL_REGS' register class. This may relieve ! ports of the burden of defining an `ALL_REGS' constraint letter just for these patterns. ! `movstrictM' ! Like `movM' except that if operand 0 is a `subreg' with mode M of ! a register whose natural mode is wider, the `movstrictM' ! instruction is guaranteed not to alter any of the register except ! the part which belongs to mode M. ! `movmisalignM' This variant of a move pattern is designed to load or store a value from a memory address that is not naturally aligned for its mode. For a store, the memory will be in operand 0; for a load, the memory will be in operand 1. The other operand is guaranteed not ! to be a memory, so that it's easy to tell whether this is a load ! or store. This pattern is used by the autovectorizer, and when expanding a ! `MISALIGNED_INDIRECT_REF' expression. ! `load_multiple' Load several consecutive memory locations into consecutive registers. Operand 0 is the first of the consecutive registers, operand 1 is the first memory location, and operand 2 is a *************** pattern to accomplish a certain task. *** 22441,22462 **** On some machines, there are restrictions as to which consecutive registers can be stored into memory, such as particular starting or ending register numbers or only a range of valid counts. For those ! machines, use a 'define_expand' (*note Expander Definitions::) and make the pattern fail if the restrictions are not met. ! Write the generated insn as a 'parallel' with elements being a ! 'set' of one register from the appropriate memory location (you may ! also need 'use' or 'clobber' elements). Use a 'match_parallel' ! (*note RTL Template::) to recognize the insn. See 'rs6000.md' for examples of the use of this insn pattern. ! 'store_multiple' ! Similar to 'load_multiple', but store several consecutive registers into consecutive memory locations. Operand 0 is the first of the consecutive memory locations, operand 1 is the first register, and operand 2 is a constant: the number of consecutive registers. ! 'vec_load_lanesMN' Perform an interleaved load of several vectors from memory operand 1 into register operand 0. Both operands have mode M. The register operand is viewed as holding consecutive vectors of mode --- 22815,22836 ---- On some machines, there are restrictions as to which consecutive registers can be stored into memory, such as particular starting or ending register numbers or only a range of valid counts. For those ! machines, use a `define_expand' (*note Expander Definitions::) and make the pattern fail if the restrictions are not met. ! Write the generated insn as a `parallel' with elements being a ! `set' of one register from the appropriate memory location (you may ! also need `use' or `clobber' elements). Use a `match_parallel' ! (*note RTL Template::) to recognize the insn. See `rs6000.md' for examples of the use of this insn pattern. ! `store_multiple' ! Similar to `load_multiple', but store several consecutive registers into consecutive memory locations. Operand 0 is the first of the consecutive memory locations, operand 1 is the first register, and operand 2 is a constant: the number of consecutive registers. ! `vec_load_lanesMN' Perform an interleaved load of several vectors from memory operand 1 into register operand 0. Both operands have mode M. The register operand is viewed as holding consecutive vectors of mode *************** pattern to accomplish a certain task. *** 22468,22476 **** for (i = 0; i < c; i++) operand0[i][j] = operand1[j * c + i]; ! For example, 'vec_load_lanestiv4hi' loads 8 16-bit values from ! memory into a register of mode 'TI'. The register contains two ! consecutive vectors of mode 'V4HI'. This pattern can only be used if: TARGET_ARRAY_MODE_SUPPORTED_P (N, C) --- 22842,22850 ---- for (i = 0; i < c; i++) operand0[i][j] = operand1[j * c + i]; ! For example, `vec_load_lanestiv4hi' loads 8 16-bit values from ! memory into a register of mode `TI'. The register contains two ! consecutive vectors of mode `V4HI'. This pattern can only be used if: TARGET_ARRAY_MODE_SUPPORTED_P (N, C) *************** pattern to accomplish a certain task. *** 22478,22485 **** instruction for some mode N, it also supports unaligned loads for vectors of mode N. ! 'vec_store_lanesMN' ! Equivalent to 'vec_load_lanesMN', with the memory and register operands reversed. That is, the instruction is equivalent to: int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N); --- 22852,22859 ---- instruction for some mode N, it also supports unaligned loads for vectors of mode N. ! `vec_store_lanesMN' ! Equivalent to `vec_load_lanesMN', with the memory and register operands reversed. That is, the instruction is equivalent to: int c = GET_MODE_SIZE (M) / GET_MODE_SIZE (N); *************** pattern to accomplish a certain task. *** 22489,22707 **** for a memory operand 0 and register operand 1. ! 'vec_setM' Set given field in the vector value. Operand 0 is the vector to modify, operand 1 is new value of field and operand 2 specify the field index. ! 'vec_extractM' Extract given field from the vector value. Operand 1 is the vector, operand 2 specify field index and operand 0 place to store value into. ! 'vec_initM' Initialize the vector to given values. Operand 0 is the vector to initialize and operand 1 is parallel containing values for individual fields. ! 'vcondMN' Output a conditional vector move. Operand 0 is the destination to ! receive a combination of operand 1 and operand 2, which are of mode ! M, dependent on the outcome of the predicate in operand 3 which is ! a vector comparison with operands of mode N in operands 4 and 5. ! The modes M and N should have the same size. Operand 0 will be set ! to the value OP1 & MSK | OP2 & ~MSK where MSK is computed by ! element-wise evaluation of the vector comparison with a truth value ! of all-ones and a false value of all-zeros. ! 'vec_permM' Output a (variable) vector permutation. Operand 0 is the ! destination to receive elements from operand 1 and operand 2, which ! are of mode M. Operand 3 is the "selector". It is an integral ! mode vector of the same width and number of elements as mode M. The input elements are numbered from 0 in operand 1 through 2*N-1 ! in operand 2. The elements of the selector must be computed modulo ! 2*N. Note that if 'rtx_equal_p(operand1, operand2)', this can be ! implemented with just operand 1 and selector elements modulo N. In order to make things easy for a number of targets, if there is ! no 'vec_perm' pattern for mode M, but there is for mode Q where Q ! is a vector of 'QImode' of the same width as M, the middle-end will ! lower the mode M 'VEC_PERM_EXPR' to mode Q. ! 'vec_perm_constM' ! Like 'vec_perm' except that the permutation is a compile-time ! constant. That is, operand 3, the "selector", is a 'CONST_VECTOR'. Some targets cannot perform a permutation with a variable selector, but can efficiently perform a constant permutation. Further, the ! target hook 'vec_perm_ok' is queried to determine if the specific ! constant permutation is available efficiently; the named pattern is ! never expanded without 'vec_perm_ok' returning true. ! There is no need for a target to supply both 'vec_permM' and ! 'vec_perm_constM' if the former can trivially implement the operation with, say, the vector constant loaded into a register. ! 'pushM1' Output a push instruction. Operand 0 is value to push. Used only ! when 'PUSH_ROUNDING' is defined. For historical reason, this ! pattern may be missing and in such case an 'mov' expander is used ! instead, with a 'MEM' expression forming the push operation. The ! 'mov' expander method is deprecated. ! 'addM3' Add operand 2 and operand 1, storing the result in operand 0. All operands must have mode M. This can be used even on two-address machines, by means of constraints requiring operands 1 and 0 to be the same location. ! 'addptrM3' ! Like 'addM3' but is guaranteed to only be used for address calculations. The expanded code is not allowed to clobber the ! condition code. It only needs to be defined if 'addM3' sets the condition code. If adds used for address calculations and normal ! adds are not compatible it is required to expand a distinct pattern ! (e.g. using an unspec). The pattern is used by LRA to emit ! address calculations. 'addM3' is used if 'addptrM3' is not defined. ! 'ssaddM3', 'usaddM3' ! 'subM3', 'sssubM3', 'ussubM3' ! 'mulM3', 'ssmulM3', 'usmulM3' ! 'divM3', 'ssdivM3' ! 'udivM3', 'usdivM3' ! 'modM3', 'umodM3' ! 'uminM3', 'umaxM3' ! 'andM3', 'iorM3', 'xorM3' Similar, for other arithmetic operations. ! 'fmaM4' Multiply operand 2 and operand 1, then add operand 3, storing the result in operand 0 without doing an intermediate rounding step. All operands must have mode M. This pattern is used to implement ! the 'fma', 'fmaf', and 'fmal' builtin functions from the ISO C99 standard. ! 'fmsM4' ! Like 'fmaM4', except operand 3 subtracted from the product instead of added to the product. This is represented in the rtl as (fma:M OP1 OP2 (neg:M OP3)) ! 'fnmaM4' ! Like 'fmaM4' except that the intermediate product is negated before ! being added to operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 OP3) ! 'fnmsM4' ! Like 'fmsM4' except that the intermediate product is negated before ! subtracting operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 (neg:M OP3)) ! 'sminM3', 'smaxM3' Signed minimum and maximum operations. When used with floating ! point, if both operands are zeros, or if either operand is 'NaN', ! then it is unspecified which of the two operands is returned as the ! result. ! 'reduc_smin_M', 'reduc_smax_M' ! Find the signed minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! 'reduc_umin_M', 'reduc_umax_M' ! Find the unsigned minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! 'reduc_splus_M' ! Compute the sum of the signed elements of a vector. The vector is ! operand 1, and the scalar result is stored in the least significant ! bits of operand 0 (also a vector). The output and input vector ! should have the same modes. ! 'reduc_uplus_M' ! Compute the sum of the unsigned elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! 'sdot_prodM' ! 'udot_prodM' Compute the sum of the products of two signed/unsigned elements. ! Operand 1 and operand 2 are of the same mode. Their product, which ! is of a wider mode, is computed and added to operand 3. Operand 3 ! is of a mode equal or wider than the mode of the product. The ! result is placed in operand 0, which is of the same mode as operand ! 3. ! 'ssum_widenM3' ! 'usum_widenM3' ! Operands 0 and 2 are of the same mode, which is wider than the mode ! of operand 1. Add operand 1 to operand 2 and place the widened ! result in operand 0. (This is used express accumulation of elements into an accumulator of a wider mode.) ! 'vec_shl_M', 'vec_shr_M' ! Whole vector left/right shift in bits. Operand 1 is a vector to be ! shifted. Operand 2 is an integer shift amount in bits. Operand 0 ! is where the resulting shifted vector is stored. The output and ! input vectors should have the same modes. ! 'vec_pack_trunc_M' ! Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral or floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated after narrowing them down using truncation. ! 'vec_pack_ssat_M', 'vec_pack_usat_M' Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral elements of ! size S. Operand 0 is the resulting vector in which the elements of ! the two input vectors are concatenated after narrowing them down ! using signed/unsigned saturating arithmetic. ! 'vec_pack_sfix_trunc_M', 'vec_pack_ufix_trunc_M' Narrow, convert to signed/unsigned integral type and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated. ! 'vec_unpacks_hi_M', 'vec_unpacks_lo_M' Extract and widen (promote) the high/low part of a vector of signed integral or floating point elements. The input vector (operand 1) ! has N elements of size S. Widen (promote) the high/low elements of ! the vector using signed or floating point extension and place the ! resulting N/2 values of size 2*S in the output vector (operand 0). ! 'vec_unpacku_hi_M', 'vec_unpacku_lo_M' Extract and widen (promote) the high/low part of a vector of unsigned integral elements. The input vector (operand 1) has N ! elements of size S. Widen (promote) the high/low elements of the vector using zero extension and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! 'vec_unpacks_float_hi_M', 'vec_unpacks_float_lo_M' ! 'vec_unpacku_float_hi_M', 'vec_unpacku_float_lo_M' ! Extract, convert to floating point type and widen the high/low part ! of a vector of signed/unsigned integral elements. The input vector ! (operand 1) has N elements of size S. Convert the high/low elements of the vector using floating point conversion and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! 'vec_widen_umult_hi_M', 'vec_widen_umult_lo_M' ! 'vec_widen_smult_hi_M', 'vec_widen_smult_lo_M' ! 'vec_widen_umult_even_M', 'vec_widen_umult_odd_M' ! 'vec_widen_smult_even_M', 'vec_widen_smult_odd_M' Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2) are vectors with N signed/unsigned elements of size S. Multiply the high/low or even/odd elements of the two vectors, and --- 22863,23086 ---- for a memory operand 0 and register operand 1. ! `vec_setM' Set given field in the vector value. Operand 0 is the vector to modify, operand 1 is new value of field and operand 2 specify the field index. ! `vec_extractM' Extract given field from the vector value. Operand 1 is the vector, operand 2 specify field index and operand 0 place to store value into. ! `vec_initM' Initialize the vector to given values. Operand 0 is the vector to initialize and operand 1 is parallel containing values for individual fields. ! `vcondMN' Output a conditional vector move. Operand 0 is the destination to ! receive a combination of operand 1 and operand 2, which are of ! mode M, dependent on the outcome of the predicate in operand 3 ! which is a vector comparison with operands of mode N in operands 4 ! and 5. The modes M and N should have the same size. Operand 0 ! will be set to the value OP1 & MSK | OP2 & ~MSK where MSK is ! computed by element-wise evaluation of the vector comparison with ! a truth value of all-ones and a false value of all-zeros. ! `vec_permM' Output a (variable) vector permutation. Operand 0 is the ! destination to receive elements from operand 1 and operand 2, ! which are of mode M. Operand 3 is the "selector". It is an ! integral mode vector of the same width and number of elements as ! mode M. The input elements are numbered from 0 in operand 1 through 2*N-1 ! in operand 2. The elements of the selector must be computed ! modulo 2*N. Note that if `rtx_equal_p(operand1, operand2)', this ! can be implemented with just operand 1 and selector elements ! modulo N. In order to make things easy for a number of targets, if there is ! no `vec_perm' pattern for mode M, but there is for mode Q where Q ! is a vector of `QImode' of the same width as M, the middle-end ! will lower the mode M `VEC_PERM_EXPR' to mode Q. ! `vec_perm_constM' ! Like `vec_perm' except that the permutation is a compile-time ! constant. That is, operand 3, the "selector", is a `CONST_VECTOR'. Some targets cannot perform a permutation with a variable selector, but can efficiently perform a constant permutation. Further, the ! target hook `vec_perm_ok' is queried to determine if the specific ! constant permutation is available efficiently; the named pattern ! is never expanded without `vec_perm_ok' returning true. ! There is no need for a target to supply both `vec_permM' and ! `vec_perm_constM' if the former can trivially implement the operation with, say, the vector constant loaded into a register. ! `pushM1' Output a push instruction. Operand 0 is value to push. Used only ! when `PUSH_ROUNDING' is defined. For historical reason, this ! pattern may be missing and in such case an `mov' expander is used ! instead, with a `MEM' expression forming the push operation. The ! `mov' expander method is deprecated. ! `addM3' Add operand 2 and operand 1, storing the result in operand 0. All operands must have mode M. This can be used even on two-address machines, by means of constraints requiring operands 1 and 0 to be the same location. ! `addptrM3' ! Like `addM3' but is guaranteed to only be used for address calculations. The expanded code is not allowed to clobber the ! condition code. It only needs to be defined if `addM3' sets the condition code. If adds used for address calculations and normal ! adds are not compatible it is required to expand a distinct ! pattern (e.g. using an unspec). The pattern is used by LRA to emit ! address calculations. `addM3' is used if `addptrM3' is not defined. ! `ssaddM3', `usaddM3' ! `subM3', `sssubM3', `ussubM3' ! `mulM3', `ssmulM3', `usmulM3' ! `divM3', `ssdivM3' ! `udivM3', `usdivM3' ! `modM3', `umodM3' ! `uminM3', `umaxM3' ! `andM3', `iorM3', `xorM3' Similar, for other arithmetic operations. ! `fmaM4' Multiply operand 2 and operand 1, then add operand 3, storing the result in operand 0 without doing an intermediate rounding step. All operands must have mode M. This pattern is used to implement ! the `fma', `fmaf', and `fmal' builtin functions from the ISO C99 standard. ! `fmsM4' ! Like `fmaM4', except operand 3 subtracted from the product instead of added to the product. This is represented in the rtl as (fma:M OP1 OP2 (neg:M OP3)) ! `fnmaM4' ! Like `fmaM4' except that the intermediate product is negated ! before being added to operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 OP3) ! `fnmsM4' ! Like `fmsM4' except that the intermediate product is negated ! before subtracting operand 3. This is represented in the rtl as (fma:M (neg:M OP1) OP2 (neg:M OP3)) ! `sminM3', `smaxM3' Signed minimum and maximum operations. When used with floating ! point, if both operands are zeros, or if either operand is `NaN', ! then it is unspecified which of the two operands is returned as ! the result. ! `reduc_smin_M', `reduc_smax_M' ! Find the signed minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! `reduc_umin_M', `reduc_umax_M' ! Find the unsigned minimum/maximum of the elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! `reduc_splus_M' ! Compute the sum of the signed elements of a vector. The vector is ! operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and ! input vector should have the same modes. ! `reduc_uplus_M' ! Compute the sum of the unsigned elements of a vector. The vector is operand 1, and the scalar result is stored in the least ! significant bits of operand 0 (also a vector). The output and input vector should have the same modes. ! `sdot_prodM' ! ! `udot_prodM' Compute the sum of the products of two signed/unsigned elements. ! Operand 1 and operand 2 are of the same mode. Their product, which ! is of a wider mode, is computed and added to operand 3. Operand 3 ! is of a mode equal or wider than the mode of the product. The ! result is placed in operand 0, which is of the same mode as ! operand 3. ! `ssum_widenM3' ! ! `usum_widenM3' ! Operands 0 and 2 are of the same mode, which is wider than the ! mode of operand 1. Add operand 1 to operand 2 and place the ! widened result in operand 0. (This is used express accumulation of elements into an accumulator of a wider mode.) ! `vec_shl_M', `vec_shr_M' ! Whole vector left/right shift in bits. Operand 1 is a vector to ! be shifted. Operand 2 is an integer shift amount in bits. ! Operand 0 is where the resulting shifted vector is stored. The ! output and input vectors should have the same modes. ! `vec_pack_trunc_M' ! Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral or floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated after narrowing them down using truncation. ! `vec_pack_ssat_M', `vec_pack_usat_M' Narrow (demote) and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N integral elements of ! size S. Operand 0 is the resulting vector in which the elements ! of the two input vectors are concatenated after narrowing them ! down using signed/unsigned saturating arithmetic. ! `vec_pack_sfix_trunc_M', `vec_pack_ufix_trunc_M' Narrow, convert to signed/unsigned integral type and merge the elements of two vectors. Operands 1 and 2 are vectors of the same mode having N floating point elements of size S. Operand 0 is the resulting vector in which 2*N elements of size N/2 are concatenated. ! `vec_unpacks_hi_M', `vec_unpacks_lo_M' Extract and widen (promote) the high/low part of a vector of signed integral or floating point elements. The input vector (operand 1) ! has N elements of size S. Widen (promote) the high/low elements ! of the vector using signed or floating point extension and place ! the resulting N/2 values of size 2*S in the output vector (operand ! 0). ! `vec_unpacku_hi_M', `vec_unpacku_lo_M' Extract and widen (promote) the high/low part of a vector of unsigned integral elements. The input vector (operand 1) has N ! elements of size S. Widen (promote) the high/low elements of the vector using zero extension and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! `vec_unpacks_float_hi_M', `vec_unpacks_float_lo_M' ! `vec_unpacku_float_hi_M', `vec_unpacku_float_lo_M' ! Extract, convert to floating point type and widen the high/low ! part of a vector of signed/unsigned integral elements. The input ! vector (operand 1) has N elements of size S. Convert the high/low elements of the vector using floating point conversion and place the resulting N/2 values of size 2*S in the output vector (operand 0). ! `vec_widen_umult_hi_M', `vec_widen_umult_lo_M' ! `vec_widen_smult_hi_M', `vec_widen_smult_lo_M' ! `vec_widen_umult_even_M', `vec_widen_umult_odd_M' ! `vec_widen_smult_even_M', `vec_widen_smult_odd_M' Signed/Unsigned widening multiplication. The two inputs (operands 1 and 2) are vectors with N signed/unsigned elements of size S. Multiply the high/low or even/odd elements of the two vectors, and *************** pattern to accomplish a certain task. *** 22709,23129 **** A target shouldn't implement even/odd pattern pair if it is less efficient than lo/hi one. ! 'vec_widen_ushiftl_hi_M', 'vec_widen_ushiftl_lo_M' ! 'vec_widen_sshiftl_hi_M', 'vec_widen_sshiftl_lo_M' Signed/Unsigned widening shift left. The first input (operand 1) is a vector with N signed/unsigned elements of size S. Operand 2 is a constant. Shift the high/low elements of operand 1, and put the N/2 results of size 2*S in the output vector (operand 0). ! 'mulhisi3' ! Multiply operands 1 and 2, which have mode 'HImode', and store a ! 'SImode' product in operand 0. ! 'mulqihi3', 'mulsidi3' Similar widening-multiplication instructions of other widths. ! 'umulqihi3', 'umulhisi3', 'umulsidi3' Similar widening-multiplication instructions that do unsigned multiplication. ! 'usmulqihi3', 'usmulhisi3', 'usmulsidi3' Similar widening-multiplication instructions that interpret the ! first operand as unsigned and the second operand as signed, then do ! a signed multiplication. ! 'smulM3_highpart' Perform a signed multiplication of operands 1 and 2, which have mode M, and store the most significant half of the product in operand 0. The least significant half of the product is discarded. ! 'umulM3_highpart' Similar, but the multiplication is unsigned. ! 'maddMN4' Multiply operands 1 and 2, sign-extend them to mode N, add operand ! 3, and store the result in operand 0. Operands 1 and 2 have mode M ! and operands 0 and 3 have mode N. Both modes must be integer or fixed-point modes and N must be twice the size of M. ! In other words, 'maddMN4' is like 'mulMN3' except that it also adds ! operand 3. ! These instructions are not allowed to 'FAIL'. ! 'umaddMN4' ! Like 'maddMN4', but zero-extend the multiplication operands instead ! of sign-extending them. ! 'ssmaddMN4' ! Like 'maddMN4', but all involved operations must be signed-saturating. ! 'usmaddMN4' ! Like 'umaddMN4', but all involved operations must be unsigned-saturating. ! 'msubMN4' Multiply operands 1 and 2, sign-extend them to mode N, subtract the ! result from operand 3, and store the result in operand 0. Operands ! 1 and 2 have mode M and operands 0 and 3 have mode N. Both modes ! must be integer or fixed-point modes and N must be twice the size ! of M. ! In other words, 'msubMN4' is like 'mulMN3' except that it also subtracts the result from operand 3. ! These instructions are not allowed to 'FAIL'. ! 'umsubMN4' ! Like 'msubMN4', but zero-extend the multiplication operands instead ! of sign-extending them. ! 'ssmsubMN4' ! Like 'msubMN4', but all involved operations must be signed-saturating. ! 'usmsubMN4' ! Like 'umsubMN4', but all involved operations must be unsigned-saturating. ! 'divmodM4' Signed division that produces both a quotient and a remainder. Operand 1 is divided by operand 2 to produce a quotient stored in operand 0 and a remainder stored in operand 3. For machines with an instruction that produces both a quotient and ! a remainder, provide a pattern for 'divmodM4' but do not provide ! patterns for 'divM3' and 'modM3'. This allows optimization in the relatively common case when both the quotient and remainder are computed. If an instruction that just produces a quotient or just a remainder exists and is more efficient than the instruction that produces ! both, write the output routine of 'divmodM4' to call ! 'find_reg_note' and look for a 'REG_UNUSED' note on the quotient or ! remainder and generate the appropriate instruction. ! 'udivmodM4' Similar, but does unsigned division. ! 'ashlM3', 'ssashlM3', 'usashlM3' Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store the result in operand 0. Here M is the mode of operand 0 and operand 1; operand 2's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. The meaning of out-of-range shift counts can optionally be specified by ! 'TARGET_SHIFT_TRUNCATION_MASK'. *Note TARGET_SHIFT_TRUNCATION_MASK::. Operand 2 is always a scalar type. ! 'ashrM3', 'lshrM3', 'rotlM3', 'rotrM3' ! Other shift and rotate instructions, analogous to the 'ashlM3' instructions. Operand 2 is always a scalar type. ! 'vashlM3', 'vashrM3', 'vlshrM3', 'vrotlM3', 'vrotrM3' Vector shift and rotate instructions that take vectors as operand 2 instead of a scalar type. ! 'bswapM2' Reverse the order of bytes of operand 1 and store the result in operand 0. ! 'negM2', 'ssnegM2', 'usnegM2' Negate operand 1 and store the result in operand 0. ! 'absM2' Store the absolute value of operand 1 into operand 0. ! 'sqrtM2' Store the square root of operand 1 into operand 0. ! The 'sqrt' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'sqrtf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'fmodM3' ! Store the remainder of dividing operand 1 by operand 2 into operand ! 0, rounded towards zero to an integer. ! The 'fmod' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'fmodf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'remainderM3' ! Store the remainder of dividing operand 1 by operand 2 into operand ! 0, rounded to the nearest integer. ! The 'remainder' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'remainderf' built-in function uses the mode which corresponds to the C data ! type 'float'. ! 'cosM2' Store the cosine of operand 1 into operand 0. ! The 'cos' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'cosf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'sinM2' Store the sine of operand 1 into operand 0. ! The 'sin' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'sinf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'sincosM3' Store the cosine of operand 2 into operand 0 and the sine of operand 2 into operand 1. ! The 'sin' and 'cos' built-in functions of C always use the mode ! which corresponds to the C data type 'double' and the 'sinf' and ! 'cosf' built-in function use the mode which corresponds to the C ! data type 'float'. Targets that can calculate the sine and cosine simultaneously can implement this pattern as opposed to ! implementing individual 'sinM2' and 'cosM2' patterns. The 'sin' ! and 'cos' built-in functions will then be expanded to the ! 'sincosM3' pattern, with one of the output values left unused. ! 'expM2' Store the exponential of operand 1 into operand 0. ! The 'exp' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'expf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'logM2' Store the natural logarithm of operand 1 into operand 0. ! The 'log' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'logf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'powM3' Store the value of operand 1 raised to the exponent operand 2 into operand 0. ! The 'pow' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'powf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'atan2M3' Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into operand 0, using the signs of both arguments to determine the quadrant of the result. ! The 'atan2' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'atan2f' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'floorM2' Store the largest integral value not greater than argument. ! The 'floor' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'floorf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'btruncM2' Store the argument rounded to integer towards zero. ! The 'trunc' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'truncf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'roundM2' Store the argument rounded to integer away from zero. ! The 'round' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'roundf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'ceilM2' Store the argument rounded to integer away from zero. ! The 'ceil' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'ceilf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'nearbyintM2' Store the argument rounded according to the default rounding mode ! The 'nearbyint' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'nearbyintf' built-in function uses the mode which corresponds to the C data ! type 'float'. ! 'rintM2' Store the argument rounded according to the default rounding mode and raise the inexact exception when the result differs in value from the argument ! The 'rint' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'rintf' built-in function uses the mode which corresponds to the C data type ! 'float'. ! 'lrintMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number according to the current rounding mode and store in operand 0 (which has mode N). ! 'lroundMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding to nearest and away from zero and store in operand 0 (which has mode N). ! 'lfloorMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding down and store in operand 0 (which has mode N). ! 'lceilMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as a signed number rounding up and store in operand 0 (which ! has mode N). ! 'copysignM3' Store a value with the magnitude of operand 1 and the sign of operand 2 into operand 0. ! The 'copysign' built-in function of C always uses the mode which ! corresponds to the C data type 'double' and the 'copysignf' built-in function uses the mode which corresponds to the C data ! type 'float'. ! 'ffsM2' Store into operand 0 one plus the index of the least significant 1-bit of operand 1. If operand 1 is zero, store zero. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! The 'ffs' built-in function of C always uses the mode which ! corresponds to the C data type 'int'. ! 'clzM2' ! Store into operand 0 the number of leading 0-bits in X, starting at ! the most significant bit position. If X is 0, the ! 'CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'ctzM2' Store into operand 0 the number of trailing 0-bits in X, starting at the least significant bit position. If X is 0, the ! 'CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'popcountM2' Store into operand 0 the number of 1-bits in X. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'parityM2' Store into operand 0 the parity of X, i.e. the number of 1-bits in X modulo 2. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! 'one_cmplM2' Store the bitwise-complement of operand 1 into operand 0. ! 'movmemM' Block move instruction. The destination and source blocks of ! memory are the first two operands, and both are 'mem:BLK's with an ! address in mode 'Pmode'. The number of bytes to move is the third operand, in mode M. ! Usually, you specify 'Pmode' for M. However, if you can generate better code knowing the range of valid lengths is smaller than those representable in a full Pmode pointer, you should provide a pattern with a mode corresponding to the range of values you can ! handle efficiently (e.g., 'QImode' for values in the range 0-127; ! note we avoid numbers that appear negative) and also a pattern with ! 'Pmode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a 'const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to '(const_int -1)'. ! Descriptions of multiple 'movmemM' patterns can only be beneficial if the patterns for smaller modes have fewer restrictions on their first, second and fourth operands. Note that the mode M in ! 'movmemM' does not impose any restriction on the mode of individually moved data units in the block. These patterns need not give special consideration to the possibility that the source and destination strings might overlap. ! 'movstr' ! String copy instruction, with 'stpcpy' semantics. Operand 0 is an ! output operand in mode 'Pmode'. The addresses of the destination ! and source strings are operands 1 and 2, and both are 'mem:BLK's ! with addresses in mode 'Pmode'. The execution of the expansion of this pattern should store in operand 0 the address in which the ! 'NUL' terminator was stored in the destination string. This patern has also several optional operands that are same as in ! 'setmem'. ! 'setmemM' Block set instruction. The destination string is the first ! operand, given as a 'mem:BLK' whose address is in mode 'Pmode'. The number of bytes to set is the second operand, in mode M. The ! value to initialize the memory with is the third operand. Targets that only support the clearing of memory should reject any value ! that is not the constant 0. See 'movmemM' for a discussion of the choice of mode. The fourth operand is the known alignment of the destination, in ! the form of a 'const_int' rtx. Thus, if the compiler knows that the destination is word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to '(const_int -1)'. Operand 7 is the minimal size of the block and operand 8 is the maximal size of the block (NULL if it ! can not be represented as CONST_INT). Operand 9 is the probable ! maximal size (i.e. we can not rely on it for correctness, but it can be used for choosing proper code sequence for a given size). ! The use for multiple 'setmemM' is as for 'movmemM'. ! 'cmpstrnM' String compare instruction, with five operands. Operand 0 is the output; it has mode M. The remaining four operands are like the ! operands of 'movmemM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The instruction is not allowed to prefetch more than one byte at a time since either string may end --- 23088,23508 ---- A target shouldn't implement even/odd pattern pair if it is less efficient than lo/hi one. ! `vec_widen_ushiftl_hi_M', `vec_widen_ushiftl_lo_M' ! `vec_widen_sshiftl_hi_M', `vec_widen_sshiftl_lo_M' Signed/Unsigned widening shift left. The first input (operand 1) is a vector with N signed/unsigned elements of size S. Operand 2 is a constant. Shift the high/low elements of operand 1, and put the N/2 results of size 2*S in the output vector (operand 0). ! `mulhisi3' ! Multiply operands 1 and 2, which have mode `HImode', and store a ! `SImode' product in operand 0. ! `mulqihi3', `mulsidi3' Similar widening-multiplication instructions of other widths. ! `umulqihi3', `umulhisi3', `umulsidi3' Similar widening-multiplication instructions that do unsigned multiplication. ! `usmulqihi3', `usmulhisi3', `usmulsidi3' Similar widening-multiplication instructions that interpret the ! first operand as unsigned and the second operand as signed, then ! do a signed multiplication. ! `smulM3_highpart' Perform a signed multiplication of operands 1 and 2, which have mode M, and store the most significant half of the product in operand 0. The least significant half of the product is discarded. ! `umulM3_highpart' Similar, but the multiplication is unsigned. ! `maddMN4' Multiply operands 1 and 2, sign-extend them to mode N, add operand ! 3, and store the result in operand 0. Operands 1 and 2 have mode ! M and operands 0 and 3 have mode N. Both modes must be integer or fixed-point modes and N must be twice the size of M. ! In other words, `maddMN4' is like `mulMN3' except that it also ! adds operand 3. ! These instructions are not allowed to `FAIL'. ! `umaddMN4' ! Like `maddMN4', but zero-extend the multiplication operands ! instead of sign-extending them. ! `ssmaddMN4' ! Like `maddMN4', but all involved operations must be signed-saturating. ! `usmaddMN4' ! Like `umaddMN4', but all involved operations must be unsigned-saturating. ! `msubMN4' Multiply operands 1 and 2, sign-extend them to mode N, subtract the ! result from operand 3, and store the result in operand 0. ! Operands 1 and 2 have mode M and operands 0 and 3 have mode N. ! Both modes must be integer or fixed-point modes and N must be twice ! the size of M. ! In other words, `msubMN4' is like `mulMN3' except that it also subtracts the result from operand 3. ! These instructions are not allowed to `FAIL'. ! `umsubMN4' ! Like `msubMN4', but zero-extend the multiplication operands ! instead of sign-extending them. ! `ssmsubMN4' ! Like `msubMN4', but all involved operations must be signed-saturating. ! `usmsubMN4' ! Like `umsubMN4', but all involved operations must be unsigned-saturating. ! `divmodM4' Signed division that produces both a quotient and a remainder. Operand 1 is divided by operand 2 to produce a quotient stored in operand 0 and a remainder stored in operand 3. For machines with an instruction that produces both a quotient and ! a remainder, provide a pattern for `divmodM4' but do not provide ! patterns for `divM3' and `modM3'. This allows optimization in the relatively common case when both the quotient and remainder are computed. If an instruction that just produces a quotient or just a remainder exists and is more efficient than the instruction that produces ! both, write the output routine of `divmodM4' to call ! `find_reg_note' and look for a `REG_UNUSED' note on the quotient ! or remainder and generate the appropriate instruction. ! `udivmodM4' Similar, but does unsigned division. ! `ashlM3', `ssashlM3', `usashlM3' Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store the result in operand 0. Here M is the mode of operand 0 and operand 1; operand 2's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. The meaning of out-of-range shift counts can optionally be specified by ! `TARGET_SHIFT_TRUNCATION_MASK'. *Note TARGET_SHIFT_TRUNCATION_MASK::. Operand 2 is always a scalar type. ! `ashrM3', `lshrM3', `rotlM3', `rotrM3' ! Other shift and rotate instructions, analogous to the `ashlM3' instructions. Operand 2 is always a scalar type. ! `vashlM3', `vashrM3', `vlshrM3', `vrotlM3', `vrotrM3' Vector shift and rotate instructions that take vectors as operand 2 instead of a scalar type. ! `bswapM2' Reverse the order of bytes of operand 1 and store the result in operand 0. ! `negM2', `ssnegM2', `usnegM2' Negate operand 1 and store the result in operand 0. ! `absM2' Store the absolute value of operand 1 into operand 0. ! `sqrtM2' Store the square root of operand 1 into operand 0. ! The `sqrt' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `sqrtf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `fmodM3' ! Store the remainder of dividing operand 1 by operand 2 into ! operand 0, rounded towards zero to an integer. ! The `fmod' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `fmodf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `remainderM3' ! Store the remainder of dividing operand 1 by operand 2 into ! operand 0, rounded to the nearest integer. ! The `remainder' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `remainderf' built-in function uses the mode which corresponds to the C data ! type `float'. ! `cosM2' Store the cosine of operand 1 into operand 0. ! The `cos' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `cosf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `sinM2' Store the sine of operand 1 into operand 0. ! The `sin' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `sinf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `sincosM3' Store the cosine of operand 2 into operand 0 and the sine of operand 2 into operand 1. ! The `sin' and `cos' built-in functions of C always use the mode ! which corresponds to the C data type `double' and the `sinf' and ! `cosf' built-in function use the mode which corresponds to the C ! data type `float'. Targets that can calculate the sine and cosine simultaneously can implement this pattern as opposed to ! implementing individual `sinM2' and `cosM2' patterns. The `sin' ! and `cos' built-in functions will then be expanded to the ! `sincosM3' pattern, with one of the output values left unused. ! `expM2' Store the exponential of operand 1 into operand 0. ! The `exp' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `expf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `logM2' Store the natural logarithm of operand 1 into operand 0. ! The `log' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `logf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `powM3' Store the value of operand 1 raised to the exponent operand 2 into operand 0. ! The `pow' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `powf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `atan2M3' Store the arc tangent (inverse tangent) of operand 1 divided by operand 2 into operand 0, using the signs of both arguments to determine the quadrant of the result. ! The `atan2' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `atan2f' built-in function uses the mode which corresponds to the C data type ! `float'. ! `floorM2' Store the largest integral value not greater than argument. ! The `floor' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `floorf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `btruncM2' Store the argument rounded to integer towards zero. ! The `trunc' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `truncf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `roundM2' Store the argument rounded to integer away from zero. ! The `round' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `roundf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `ceilM2' Store the argument rounded to integer away from zero. ! The `ceil' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `ceilf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `nearbyintM2' Store the argument rounded according to the default rounding mode ! The `nearbyint' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `nearbyintf' built-in function uses the mode which corresponds to the C data ! type `float'. ! `rintM2' Store the argument rounded according to the default rounding mode and raise the inexact exception when the result differs in value from the argument ! The `rint' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `rintf' built-in function uses the mode which corresponds to the C data type ! `float'. ! `lrintMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number according to the current rounding mode and store in operand 0 (which has mode N). ! `lroundMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding to nearest and away from zero and store in operand 0 (which has mode N). ! `lfloorMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number rounding down and store in operand 0 (which has mode N). ! `lceilMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as a signed number rounding up and store in operand 0 ! (which has mode N). ! `copysignM3' Store a value with the magnitude of operand 1 and the sign of operand 2 into operand 0. ! The `copysign' built-in function of C always uses the mode which ! corresponds to the C data type `double' and the `copysignf' built-in function uses the mode which corresponds to the C data ! type `float'. ! `ffsM2' Store into operand 0 one plus the index of the least significant 1-bit of operand 1. If operand 1 is zero, store zero. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! The `ffs' built-in function of C always uses the mode which ! corresponds to the C data type `int'. ! `clzM2' ! Store into operand 0 the number of leading 0-bits in X, starting ! at the most significant bit position. If X is 0, the ! `CLZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `ctzM2' Store into operand 0 the number of trailing 0-bits in X, starting at the least significant bit position. If X is 0, the ! `CTZ_DEFINED_VALUE_AT_ZERO' (*note Misc::) macro defines if the result is undefined or has a useful value. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `popcountM2' Store into operand 0 the number of 1-bits in X. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `parityM2' Store into operand 0 the parity of X, i.e. the number of 1-bits in X modulo 2. M is the mode of operand 0; operand 1's mode is specified by the instruction pattern, and the compiler will convert the operand to that mode before generating the instruction. ! `one_cmplM2' Store the bitwise-complement of operand 1 into operand 0. ! `movmemM' Block move instruction. The destination and source blocks of ! memory are the first two operands, and both are `mem:BLK's with an ! address in mode `Pmode'. The number of bytes to move is the third operand, in mode M. ! Usually, you specify `Pmode' for M. However, if you can generate better code knowing the range of valid lengths is smaller than those representable in a full Pmode pointer, you should provide a pattern with a mode corresponding to the range of values you can ! handle efficiently (e.g., `QImode' for values in the range 0-127; ! note we avoid numbers that appear negative) and also a pattern ! with `Pmode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a `const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to `(const_int -1)'. ! Descriptions of multiple `movmemM' patterns can only be beneficial if the patterns for smaller modes have fewer restrictions on their first, second and fourth operands. Note that the mode M in ! `movmemM' does not impose any restriction on the mode of individually moved data units in the block. These patterns need not give special consideration to the possibility that the source and destination strings might overlap. ! `movstr' ! String copy instruction, with `stpcpy' semantics. Operand 0 is an ! output operand in mode `Pmode'. The addresses of the destination ! and source strings are operands 1 and 2, and both are `mem:BLK's ! with addresses in mode `Pmode'. The execution of the expansion of this pattern should store in operand 0 the address in which the ! `NUL' terminator was stored in the destination string. This patern has also several optional operands that are same as in ! `setmem'. ! `setmemM' Block set instruction. The destination string is the first ! operand, given as a `mem:BLK' whose address is in mode `Pmode'. The number of bytes to set is the second operand, in mode M. The ! value to initialize the memory with is the third operand. Targets that only support the clearing of memory should reject any value ! that is not the constant 0. See `movmemM' for a discussion of the choice of mode. The fourth operand is the known alignment of the destination, in ! the form of a `const_int' rtx. Thus, if the compiler knows that the destination is word-aligned, it may provide the value 4 for this operand. Optional operands 5 and 6 specify expected alignment and size of block respectively. The expected alignment differs from alignment in operand 4 in a way that the blocks are not required to be ! aligned according to it in all cases. This expected alignment is also in bytes, just like operand 4. Expected size, when unknown, ! is set to `(const_int -1)'. Operand 7 is the minimal size of the block and operand 8 is the maximal size of the block (NULL if it ! can not be represented as CONST_INT). Operand 9 is the probable ! maximal size (i.e. we can not rely on it for correctness, but it can be used for choosing proper code sequence for a given size). ! The use for multiple `setmemM' is as for `movmemM'. ! `cmpstrnM' String compare instruction, with five operands. Operand 0 is the output; it has mode M. The remaining four operands are like the ! operands of `movmemM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The instruction is not allowed to prefetch more than one byte at a time since either string may end *************** pattern to accomplish a certain task. *** 23133,23315 **** effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! 'cmpstrM' String compare instruction, without known maximum length. Operand 0 is the output; it has mode M. The second and third operand are ! the blocks of memory to be compared; both are 'mem:BLK' with an ! address in mode 'Pmode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a 'const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The ! instruction is not allowed to prefetch more than one byte at a time ! since either string may end in the first byte and reading past that ! may access an invalid page or segment and cause a fault. The ! comparison will terminate when the fetched bytes are different or ! if they are equal to zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! 'cmpmemM' Block compare instruction, with five operands like the operands of ! 'cmpstrM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each ! block. Unlike 'cmpstrM' the instruction can prefetch any bytes in ! the two memory blocks. Also unlike 'cmpstrM' the comparison will not stop if both bytes are zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! 'strlenM' Compute the length of a string, with three operands. Operand 0 is ! the result (of mode M), operand 1 is a 'mem' referring to the first ! character of the string, operand 2 is the character to search for ! (normally zero), and operand 3 is a constant describing the known ! alignment of the beginning of the string. ! 'floatMN2' Convert signed integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! 'floatunsMN2' Convert unsigned integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! 'fixMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number and store in operand 0 (which has mode N). This instruction's result is defined only when the value of operand 1 is an integer. If the machine description defines this pattern, it also needs to ! define the 'ftrunc' pattern. ! 'fixunsMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as an unsigned number and store in operand 0 (which has mode ! N). This instruction's result is defined only when the value of ! operand 1 is an integer. ! 'ftruncM2' Convert operand 1 (valid for floating point mode M) to an integer value, still represented in floating point mode M, and store it in operand 0 (valid for floating point mode M). ! 'fix_truncMN2' ! Like 'fixMN2' but works for any floating point value of mode M by converting the value to an integer. ! 'fixuns_truncMN2' ! Like 'fixunsMN2' but works for any floating point value of mode M by converting the value to an integer. ! 'truncMN2' Truncate operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! 'extendMN2' Sign-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! 'zero_extendMN2' Zero-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point. ! 'fractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 (which ! has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, fixed-point to signed integer, floating-point to fixed-point, or fixed-point to floating-point. When overflows or underflows happen, the results are undefined. ! 'satfractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 (which ! has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, or floating-point to fixed-point. When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! 'fractunsMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 (which ! has mode N). Mode M and mode N could be unsigned integer to ! fixed-point, or fixed-point to unsigned integer. When overflows or ! underflows happen, the results are undefined. ! 'satfractunsMN2' Convert unsigned integer operand 1 of mode M to fixed-point mode N and store in operand 0 (which has mode N). When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! 'extvM' Extract a bit-field from register operand 1, sign-extend it, and store it in operand 0. Operand 2 specifies the width of the field in bits and operand 3 the starting bit, which counts from the most ! significant bit if 'BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 1 both have mode M. Operands 2 and 3 have a target-specific mode. ! 'extvmisalignM' Extract a bit-field from memory operand 1, sign extend it, and store it in operand 0. Operand 2 specifies the width in bits and operand 3 the starting bit. The starting bit is always somewhere ! in the first byte of operand 1; it counts from the most significant ! bit if 'BITS_BIG_ENDIAN' is true and from the least significant bit ! otherwise. ! Operand 0 has mode M while operand 1 has 'BLK' mode. Operands 2 and 3 have a target-specific mode. The instruction must not read beyond the last byte of the bit-field. ! 'extzvM' ! Like 'extvM' except that the bit-field value is zero-extended. ! 'extzvmisalignM' ! Like 'extvmisalignM' except that the bit-field value is zero-extended. ! 'insvM' Insert operand 3 into a bit-field of register operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the starting ! bit, which counts from the most significant bit if ! 'BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 3 both have mode M. Operands 1 and 2 have a target-specific mode. ! 'insvmisalignM' Insert operand 3 into a bit-field of memory operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the starting ! bit. The starting bit is always somewhere in the first byte of ! operand 0; it counts from the most significant bit if ! 'BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. ! Operand 3 has mode M while operand 0 has 'BLK' mode. Operands 1 and 2 have a target-specific mode. The instruction must not read or write beyond the last byte of the bit-field. ! 'extv' Extract a bit-field from operand 1 (a register or memory operand), where operand 2 specifies the width in bits and operand 3 the starting bit, and store it in operand 0. Operand 0 must have mode ! 'word_mode'. Operand 1 may have mode 'byte_mode' or 'word_mode'; ! often 'word_mode' is allowed only for registers. Operands 2 and 3 ! must be valid for 'word_mode'. The RTL generation pass generates this instruction only with constants for operands 2 and 3 and the constant is never zero for --- 23512,23694 ---- effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! `cmpstrM' String compare instruction, without known maximum length. Operand 0 is the output; it has mode M. The second and third operand are ! the blocks of memory to be compared; both are `mem:BLK' with an ! address in mode `Pmode'. The fourth operand is the known shared alignment of the source and ! destination, in the form of a `const_int' rtx. Thus, if the compiler knows that both source and destination are word-aligned, it may provide the value 4 for this operand. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each string. The ! instruction is not allowed to prefetch more than one byte at a ! time since either string may end in the first byte and reading ! past that may access an invalid page or segment and cause a fault. ! The comparison will terminate when the fetched bytes are different ! or if they are equal to zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! `cmpmemM' Block compare instruction, with five operands like the operands of ! `cmpstrM'. The two memory blocks specified are compared byte by byte in lexicographic order starting at the beginning of each ! block. Unlike `cmpstrM' the instruction can prefetch any bytes in ! the two memory blocks. Also unlike `cmpstrM' the comparison will not stop if both bytes are zero. The effect of the instruction is to store a value in operand 0 whose sign indicates the result of the comparison. ! `strlenM' Compute the length of a string, with three operands. Operand 0 is ! the result (of mode M), operand 1 is a `mem' referring to the ! first character of the string, operand 2 is the character to ! search for (normally zero), and operand 3 is a constant describing ! the known alignment of the beginning of the string. ! `floatMN2' Convert signed integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! `floatunsMN2' Convert unsigned integer operand 1 (valid for fixed point mode M) to floating point mode N and store in operand 0 (which has mode N). ! `fixMN2' Convert operand 1 (valid for floating point mode M) to fixed point mode N as a signed number and store in operand 0 (which has mode N). This instruction's result is defined only when the value of operand 1 is an integer. If the machine description defines this pattern, it also needs to ! define the `ftrunc' pattern. ! `fixunsMN2' Convert operand 1 (valid for floating point mode M) to fixed point ! mode N as an unsigned number and store in operand 0 (which has ! mode N). This instruction's result is defined only when the value ! of operand 1 is an integer. ! `ftruncM2' Convert operand 1 (valid for floating point mode M) to an integer value, still represented in floating point mode M, and store it in operand 0 (valid for floating point mode M). ! `fix_truncMN2' ! Like `fixMN2' but works for any floating point value of mode M by converting the value to an integer. ! `fixuns_truncMN2' ! Like `fixunsMN2' but works for any floating point value of mode M by converting the value to an integer. ! `truncMN2' Truncate operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! `extendMN2' Sign-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point or both floating point. ! `zero_extendMN2' Zero-extend operand 1 (valid for mode M) to mode N and store in operand 0 (which has mode N). Both modes must be fixed point. ! `fractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 ! (which has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, fixed-point to signed integer, floating-point to fixed-point, or fixed-point to floating-point. When overflows or underflows happen, the results are undefined. ! `satfractMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 ! (which has mode N). Mode M and mode N could be fixed-point to fixed-point, signed integer to fixed-point, or floating-point to fixed-point. When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! `fractunsMN2' ! Convert operand 1 of mode M to mode N and store in operand 0 ! (which has mode N). Mode M and mode N could be unsigned integer ! to fixed-point, or fixed-point to unsigned integer. When ! overflows or underflows happen, the results are undefined. ! `satfractunsMN2' Convert unsigned integer operand 1 of mode M to fixed-point mode N and store in operand 0 (which has mode N). When overflows or underflows happen, the instruction saturates the results to the maximum or the minimum. ! `extvM' Extract a bit-field from register operand 1, sign-extend it, and store it in operand 0. Operand 2 specifies the width of the field in bits and operand 3 the starting bit, which counts from the most ! significant bit if `BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 1 both have mode M. Operands 2 and 3 have a target-specific mode. ! `extvmisalignM' Extract a bit-field from memory operand 1, sign extend it, and store it in operand 0. Operand 2 specifies the width in bits and operand 3 the starting bit. The starting bit is always somewhere ! in the first byte of operand 1; it counts from the most ! significant bit if `BITS_BIG_ENDIAN' is true and from the least ! significant bit otherwise. ! Operand 0 has mode M while operand 1 has `BLK' mode. Operands 2 and 3 have a target-specific mode. The instruction must not read beyond the last byte of the bit-field. ! `extzvM' ! Like `extvM' except that the bit-field value is zero-extended. ! `extzvmisalignM' ! Like `extvmisalignM' except that the bit-field value is zero-extended. ! `insvM' Insert operand 3 into a bit-field of register operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the ! starting bit, which counts from the most significant bit if ! `BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. Operands 0 and 3 both have mode M. Operands 1 and 2 have a target-specific mode. ! `insvmisalignM' Insert operand 3 into a bit-field of memory operand 0. Operand 1 ! specifies the width of the field in bits and operand 2 the ! starting bit. The starting bit is always somewhere in the first ! byte of operand 0; it counts from the most significant bit if ! `BITS_BIG_ENDIAN' is true and from the least significant bit otherwise. ! Operand 3 has mode M while operand 0 has `BLK' mode. Operands 1 and 2 have a target-specific mode. The instruction must not read or write beyond the last byte of the bit-field. ! `extv' Extract a bit-field from operand 1 (a register or memory operand), where operand 2 specifies the width in bits and operand 3 the starting bit, and store it in operand 0. Operand 0 must have mode ! `word_mode'. Operand 1 may have mode `byte_mode' or `word_mode'; ! often `word_mode' is allowed only for registers. Operands 2 and 3 ! must be valid for `word_mode'. The RTL generation pass generates this instruction only with constants for operands 2 and 3 and the constant is never zero for *************** pattern to accomplish a certain task. *** 23318,23420 **** The bit-field value is sign-extended to a full word integer before it is stored in operand 0. ! This pattern is deprecated; please use 'extvM' and 'extvmisalignM' instead. ! 'extzv' ! Like 'extv' except that the bit-field value is zero-extended. ! This pattern is deprecated; please use 'extzvM' and ! 'extzvmisalignM' instead. ! 'insv' ! Store operand 3 (which must be valid for 'word_mode') into a ! bit-field in operand 0, where operand 1 specifies the width in bits ! and operand 2 the starting bit. Operand 0 may have mode ! 'byte_mode' or 'word_mode'; often 'word_mode' is allowed only for ! registers. Operands 1 and 2 must be valid for 'word_mode'. The RTL generation pass generates this instruction only with constants for operands 1 and 2 and the constant is never zero for operand 1. ! This pattern is deprecated; please use 'insvM' and 'insvmisalignM' instead. ! 'movMODEcc' Conditionally move operand 2 or operand 3 into operand 0 according ! to the comparison in operand 1. If the comparison is true, operand ! 2 is moved into operand 0, otherwise operand 3 is moved. ! The mode of the operands being compared need not be the same as the ! operands being moved. Some machines, sparc64 for example, have ! instructions that conditionally move an integer value based on the ! floating point condition codes and vice versa. If the machine does not have conditional move instructions, do not define these patterns. ! 'addMODEcc' ! Similar to 'movMODEcc' but for conditional addition. Conditionally ! move operand 2 or (operands 2 + operand 3) into operand 0 according ! to the comparison in operand 1. If the comparison is false, ! operand 2 is moved into operand 0, otherwise (operand 2 + operand ! 3) is moved. ! 'cstoreMODE4' Store zero or nonzero in operand 0 according to whether a ! comparison is true. Operand 1 is a comparison operator. Operand 2 ! and operand 3 are the first and second operand of the comparison, ! respectively. You specify the mode that operand 0 must have when ! you write the 'match_operand' expression. The compiler ! automatically sees which mode you have used and supplies an operand ! of that mode. The value stored for a true condition must have 1 as its low bit, or else must be negative. Otherwise the instruction is not suitable and you should omit it from the machine description. You describe to the compiler exactly which value is stored by defining ! the macro 'STORE_FLAG_VALUE' (*note Misc::). If a description cannot be found that can be used for all the possible comparison ! operators, you should pick one and use a 'define_expand' to map all ! results onto the one you chose. ! These operations may 'FAIL', but should do so only in relatively ! uncommon cases; if they would 'FAIL' for common cases involving integer comparisons, it is best to restrict the predicates to not allow these operands. Likewise if a given comparison operator will ! always fail, independent of the operands (for floating-point modes, ! the 'ordered_comparison_operator' predicate is often useful in this ! case). If this pattern is omitted, the compiler will generate a conditional branch--for example, it may copy a constant one to the ! target and branching around an assignment of zero to the target--or ! a libcall. If the predicate for operand 1 only rejects some ! operators, it will also try reordering the operands and/or ! inverting the result value (e.g. by an exclusive OR). These possibilities could be cheaper or equivalent to the instructions ! used for the 'cstoreMODE4' pattern followed by those required to ! convert a positive result from 'STORE_FLAG_VALUE' to 1; in this case, you can and should make operand 1's predicate reject some ! operators in the 'cstoreMODE4' pattern, or remove the pattern altogether from the machine description. ! 'cbranchMODE4' Conditional branch instruction combined with a compare instruction. Operand 0 is a comparison operator. Operand 1 and operand 2 are the first and second operands of the comparison, respectively. ! Operand 3 is a 'label_ref' that refers to the label to jump to. ! 'jump' A jump inside a function; an unconditional branch. Operand 0 is ! the 'label_ref' of the label to jump to. This pattern name is mandatory on all machines. ! 'call' Subroutine call instruction returning no value. Operand 0 is the function to call; operand 1 is the number of bytes of arguments ! pushed as a 'const_int'; operand 2 is the number of registers used as operands. On most machines, operand 2 is not actually stored into the RTL --- 23697,23799 ---- The bit-field value is sign-extended to a full word integer before it is stored in operand 0. ! This pattern is deprecated; please use `extvM' and `extvmisalignM' instead. ! `extzv' ! Like `extv' except that the bit-field value is zero-extended. ! This pattern is deprecated; please use `extzvM' and ! `extzvmisalignM' instead. ! `insv' ! Store operand 3 (which must be valid for `word_mode') into a ! bit-field in operand 0, where operand 1 specifies the width in ! bits and operand 2 the starting bit. Operand 0 may have mode ! `byte_mode' or `word_mode'; often `word_mode' is allowed only for ! registers. Operands 1 and 2 must be valid for `word_mode'. The RTL generation pass generates this instruction only with constants for operands 1 and 2 and the constant is never zero for operand 1. ! This pattern is deprecated; please use `insvM' and `insvmisalignM' instead. ! `movMODEcc' Conditionally move operand 2 or operand 3 into operand 0 according ! to the comparison in operand 1. If the comparison is true, ! operand 2 is moved into operand 0, otherwise operand 3 is moved. ! The mode of the operands being compared need not be the same as ! the operands being moved. Some machines, sparc64 for example, ! have instructions that conditionally move an integer value based ! on the floating point condition codes and vice versa. If the machine does not have conditional move instructions, do not define these patterns. ! `addMODEcc' ! Similar to `movMODEcc' but for conditional addition. Conditionally ! move operand 2 or (operands 2 + operand 3) into operand 0 ! according to the comparison in operand 1. If the comparison is ! false, operand 2 is moved into operand 0, otherwise (operand 2 + ! operand 3) is moved. ! `cstoreMODE4' Store zero or nonzero in operand 0 according to whether a ! comparison is true. Operand 1 is a comparison operator. Operand ! 2 and operand 3 are the first and second operand of the ! comparison, respectively. You specify the mode that operand 0 ! must have when you write the `match_operand' expression. The ! compiler automatically sees which mode you have used and supplies ! an operand of that mode. The value stored for a true condition must have 1 as its low bit, or else must be negative. Otherwise the instruction is not suitable and you should omit it from the machine description. You describe to the compiler exactly which value is stored by defining ! the macro `STORE_FLAG_VALUE' (*note Misc::). If a description cannot be found that can be used for all the possible comparison ! operators, you should pick one and use a `define_expand' to map ! all results onto the one you chose. ! These operations may `FAIL', but should do so only in relatively ! uncommon cases; if they would `FAIL' for common cases involving integer comparisons, it is best to restrict the predicates to not allow these operands. Likewise if a given comparison operator will ! always fail, independent of the operands (for floating-point ! modes, the `ordered_comparison_operator' predicate is often useful ! in this case). If this pattern is omitted, the compiler will generate a conditional branch--for example, it may copy a constant one to the ! target and branching around an assignment of zero to the ! target--or a libcall. If the predicate for operand 1 only rejects ! some operators, it will also try reordering the operands and/or ! inverting the result value (e.g. by an exclusive OR). These possibilities could be cheaper or equivalent to the instructions ! used for the `cstoreMODE4' pattern followed by those required to ! convert a positive result from `STORE_FLAG_VALUE' to 1; in this case, you can and should make operand 1's predicate reject some ! operators in the `cstoreMODE4' pattern, or remove the pattern altogether from the machine description. ! `cbranchMODE4' Conditional branch instruction combined with a compare instruction. Operand 0 is a comparison operator. Operand 1 and operand 2 are the first and second operands of the comparison, respectively. ! Operand 3 is a `label_ref' that refers to the label to jump to. ! `jump' A jump inside a function; an unconditional branch. Operand 0 is ! the `label_ref' of the label to jump to. This pattern name is mandatory on all machines. ! `call' Subroutine call instruction returning no value. Operand 0 is the function to call; operand 1 is the number of bytes of arguments ! pushed as a `const_int'; operand 2 is the number of registers used as operands. On most machines, operand 2 is not actually stored into the RTL *************** pattern to accomplish a certain task. *** 23422,23499 **** need to put this information into the assembler code; they can put it in the RTL instead of operand 1. ! Operand 0 should be a 'mem' RTX whose address is the address of the ! function. Note, however, that this address can be a 'symbol_ref' expression even if it would not be a legitimate memory address on the target machine. If it is also not a valid argument for a call instruction, the pattern for this operation should be a ! 'define_expand' (*note Expander Definitions::) that places the address into a register and uses that register in the call instruction. ! 'call_value' Subroutine call instruction returning a value. Operand 0 is the hard register in which the value is returned. There are three more ! operands, the same as the three operands of the 'call' instruction (but with numbers increased by one). ! Subroutines that return 'BLKmode' objects use the 'call' insn. ! 'call_pop', 'call_value_pop' ! Similar to 'call' and 'call_value', except used if defined and if ! 'RETURN_POPS_ARGS' is nonzero. They should emit a 'parallel' that ! contains both the function call and a 'set' to indicate the adjustment made to the frame pointer. ! For machines where 'RETURN_POPS_ARGS' can be nonzero, the use of these patterns increases the number of functions for which the frame pointer can be eliminated, if desired. ! 'untyped_call' ! Subroutine call instruction returning a value of any type. Operand ! 0 is the function to call; operand 1 is a memory location where the ! result of calling the function is to be stored; operand 2 is a ! 'parallel' expression where each element is a 'set' expression that ! indicates the saving of a function return value into the result ! block. This instruction pattern should be defined to support ! '__builtin_apply' on machines where special instructions are needed to call a subroutine with arbitrary arguments or to save the value returned. This instruction pattern is required on machines that have multiple registers that can hold a return value (i.e. ! 'FUNCTION_VALUE_REGNO_P' is true for more than one register). ! 'return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function. ! Like the 'movM' patterns, this pattern is also used after the RTL generation phase. In this case it is to support machines where ! multiple instructions are usually needed to return from a function, ! but some class of functions only requires one instruction to ! implement a return. Normally, the applicable functions are those ! which do not need to save any registers or allocate stack space. It is valid for this pattern to expand to an instruction using ! 'simple_return' if no epilogue is required. ! 'simple_return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function on a path where no epilogue is ! required. This pattern is very similar to the 'return' instruction ! pattern, but it is emitted only by the shrink-wrapping optimization ! on paths where the function prologue has not been executed, and a ! function return should occur without any of the effects of the ! epilogue. Additional uses may be introduced on paths where both ! the prologue and the epilogue have executed. For such machines, the condition specified in this pattern should ! only be true when 'reload_completed' is nonzero and the function's epilogue would only be a single instruction. For machines with ! register windows, the routine 'leaf_function_p' may be used to determine if a register window push is required. Machines that have conditional return instructions should define --- 23801,23879 ---- need to put this information into the assembler code; they can put it in the RTL instead of operand 1. ! Operand 0 should be a `mem' RTX whose address is the address of the ! function. Note, however, that this address can be a `symbol_ref' expression even if it would not be a legitimate memory address on the target machine. If it is also not a valid argument for a call instruction, the pattern for this operation should be a ! `define_expand' (*note Expander Definitions::) that places the address into a register and uses that register in the call instruction. ! `call_value' Subroutine call instruction returning a value. Operand 0 is the hard register in which the value is returned. There are three more ! operands, the same as the three operands of the `call' instruction (but with numbers increased by one). ! Subroutines that return `BLKmode' objects use the `call' insn. ! `call_pop', `call_value_pop' ! Similar to `call' and `call_value', except used if defined and if ! `RETURN_POPS_ARGS' is nonzero. They should emit a `parallel' that ! contains both the function call and a `set' to indicate the adjustment made to the frame pointer. ! For machines where `RETURN_POPS_ARGS' can be nonzero, the use of these patterns increases the number of functions for which the frame pointer can be eliminated, if desired. ! `untyped_call' ! Subroutine call instruction returning a value of any type. ! Operand 0 is the function to call; operand 1 is a memory location ! where the result of calling the function is to be stored; operand ! 2 is a `parallel' expression where each element is a `set' ! expression that indicates the saving of a function return value ! into the result block. This instruction pattern should be defined to support ! `__builtin_apply' on machines where special instructions are needed to call a subroutine with arbitrary arguments or to save the value returned. This instruction pattern is required on machines that have multiple registers that can hold a return value (i.e. ! `FUNCTION_VALUE_REGNO_P' is true for more than one register). ! `return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function. ! Like the `movM' patterns, this pattern is also used after the RTL generation phase. In this case it is to support machines where ! multiple instructions are usually needed to return from a ! function, but some class of functions only requires one ! instruction to implement a return. Normally, the applicable ! functions are those which do not need to save any registers or ! allocate stack space. It is valid for this pattern to expand to an instruction using ! `simple_return' if no epilogue is required. ! `simple_return' Subroutine return instruction. This instruction pattern name should be defined only if a single instruction can do all the work of returning from a function on a path where no epilogue is ! required. This pattern is very similar to the `return' ! instruction pattern, but it is emitted only by the shrink-wrapping ! optimization on paths where the function prologue has not been ! executed, and a function return should occur without any of the ! effects of the epilogue. Additional uses may be introduced on ! paths where both the prologue and the epilogue have executed. For such machines, the condition specified in this pattern should ! only be true when `reload_completed' is nonzero and the function's epilogue would only be a single instruction. For machines with ! register windows, the routine `leaf_function_p' may be used to determine if a register window push is required. Machines that have conditional return instructions should define *************** pattern to accomplish a certain task. *** 23510,23542 **** "...") where CONDITION would normally be the same condition specified on ! the named 'return' pattern. ! 'untyped_return' Untyped subroutine return instruction. This instruction pattern ! should be defined to support '__builtin_return' on machines where special instructions are needed to return a value of any type. Operand 0 is a memory location where the result of calling a ! function with '__builtin_apply' is stored; operand 1 is a ! 'parallel' expression where each element is a 'set' expression that ! indicates the restoring of a function return value from the result ! block. ! 'nop' No-op instruction. This instruction pattern name should always be ! defined to output a no-op in assembler code. '(const_int 0)' will do as an RTL pattern. ! 'indirect_jump' An instruction to jump to an address which is operand zero. This pattern name is mandatory on all machines. ! 'casesi' Instruction to jump through a dispatch table, including bounds checking. This instruction takes five operands: ! 1. The index to dispatch on, which has mode 'SImode'. 2. The lower bound for indices in the table, an integer constant. --- 23890,23922 ---- "...") where CONDITION would normally be the same condition specified on ! the named `return' pattern. ! `untyped_return' Untyped subroutine return instruction. This instruction pattern ! should be defined to support `__builtin_return' on machines where special instructions are needed to return a value of any type. Operand 0 is a memory location where the result of calling a ! function with `__builtin_apply' is stored; operand 1 is a ! `parallel' expression where each element is a `set' expression ! that indicates the restoring of a function return value from the ! result block. ! `nop' No-op instruction. This instruction pattern name should always be ! defined to output a no-op in assembler code. `(const_int 0)' will do as an RTL pattern. ! `indirect_jump' An instruction to jump to an address which is operand zero. This pattern name is mandatory on all machines. ! `casesi' Instruction to jump through a dispatch table, including bounds checking. This instruction takes five operands: ! 1. The index to dispatch on, which has mode `SImode'. 2. The lower bound for indices in the table, an integer constant. *************** pattern to accomplish a certain task. *** 23548,23612 **** 5. A label to jump to if the index has a value outside the bounds. ! The table is an 'addr_vec' or 'addr_diff_vec' inside of a ! 'jump_table_data'. The number of elements in the table is one plus ! the difference between the upper bound and the lower bound. ! 'tablejump' Instruction to jump to a variable address. This is a low-level capability which can be used to implement a dispatch table when ! there is no 'casesi' pattern. This pattern requires two operands: the address or offset, and a label which should immediately precede the jump table. If the ! macro 'CASE_VECTOR_PC_RELATIVE' evaluates to a nonzero value then ! the first operand is an offset which counts from the address of the ! table; otherwise, it is an absolute address to jump to. In either ! case, the first operand has mode 'Pmode'. ! The 'tablejump' insn is always the last insn before the jump table ! it uses. Its assembler code normally has no need to use the second ! operand, but you should incorporate it in the RTL pattern so that ! the jump optimizer will not delete the table as unreachable code. ! 'decrement_and_branch_until_zero' ! Conditional branch instruction that decrements a register and jumps ! if the register is nonzero. Operand 0 is the register to decrement ! and test; operand 1 is the label to jump to if the register is ! nonzero. *Note Looping Patterns::. This optional instruction pattern is only used by the combiner, typically for loops reversed by the loop optimizer when strength reduction is enabled. ! 'doloop_end' ! Conditional branch instruction that decrements a register and jumps ! if the register is nonzero. Operand 0 is the register to decrement ! and test; operand 1 is the label to jump to if the register is ! nonzero. *Note Looping Patterns::. This optional instruction pattern should be defined for machines with low-overhead looping instructions as the loop optimizer will try to modify suitable loops to utilize it. The target hook ! 'TARGET_CAN_USE_DOLOOP_P' controls the conditions under which low-overhead loops can be used. ! 'doloop_begin' ! Companion instruction to 'doloop_end' required for machines that need to perform some initialization, such as loading a special ! counter register. Operand 1 is the associated 'doloop_end' pattern ! and operand 0 is the register that it decrements. If initialization insns do not always need to be emitted, use a ! 'define_expand' (*note Expander Definitions::) and make it fail. ! 'canonicalize_funcptr_for_compare' Canonicalize the function pointer in operand 1 and store the result into operand 0. ! Operand 0 is always a 'reg' and has mode 'Pmode'; operand 1 may be ! a 'reg', 'mem', 'symbol_ref', 'const_int', etc and also has mode ! 'Pmode'. Canonicalization of a function pointer usually involves computing the address of the function which would be called if the function --- 23928,23993 ---- 5. A label to jump to if the index has a value outside the bounds. ! The table is an `addr_vec' or `addr_diff_vec' inside of a ! `jump_table_data'. The number of elements in the table is one ! plus the difference between the upper bound and the lower bound. ! `tablejump' Instruction to jump to a variable address. This is a low-level capability which can be used to implement a dispatch table when ! there is no `casesi' pattern. This pattern requires two operands: the address or offset, and a label which should immediately precede the jump table. If the ! macro `CASE_VECTOR_PC_RELATIVE' evaluates to a nonzero value then ! the first operand is an offset which counts from the address of ! the table; otherwise, it is an absolute address to jump to. In ! either case, the first operand has mode `Pmode'. ! The `tablejump' insn is always the last insn before the jump table ! it uses. Its assembler code normally has no need to use the ! second operand, but you should incorporate it in the RTL pattern so ! that the jump optimizer will not delete the table as unreachable ! code. ! `decrement_and_branch_until_zero' ! Conditional branch instruction that decrements a register and ! jumps if the register is nonzero. Operand 0 is the register to ! decrement and test; operand 1 is the label to jump to if the ! register is nonzero. *Note Looping Patterns::. This optional instruction pattern is only used by the combiner, typically for loops reversed by the loop optimizer when strength reduction is enabled. ! `doloop_end' ! Conditional branch instruction that decrements a register and ! jumps if the register is nonzero. Operand 0 is the register to ! decrement and test; operand 1 is the label to jump to if the ! register is nonzero. *Note Looping Patterns::. This optional instruction pattern should be defined for machines with low-overhead looping instructions as the loop optimizer will try to modify suitable loops to utilize it. The target hook ! `TARGET_CAN_USE_DOLOOP_P' controls the conditions under which low-overhead loops can be used. ! `doloop_begin' ! Companion instruction to `doloop_end' required for machines that need to perform some initialization, such as loading a special ! counter register. Operand 1 is the associated `doloop_end' ! pattern and operand 0 is the register that it decrements. If initialization insns do not always need to be emitted, use a ! `define_expand' (*note Expander Definitions::) and make it fail. ! `canonicalize_funcptr_for_compare' Canonicalize the function pointer in operand 1 and store the result into operand 0. ! Operand 0 is always a `reg' and has mode `Pmode'; operand 1 may be ! a `reg', `mem', `symbol_ref', `const_int', etc and also has mode ! `Pmode'. Canonicalization of a function pointer usually involves computing the address of the function which would be called if the function *************** pattern to accomplish a certain task. *** 23616,23652 **** can have different values but still call the same function when used in an indirect call. ! 'save_stack_block' ! 'save_stack_function' ! 'save_stack_nonlocal' ! 'restore_stack_block' ! 'restore_stack_function' ! 'restore_stack_nonlocal' Most machines save and restore the stack pointer by copying it to ! or from an object of mode 'Pmode'. Do not define these patterns on such machines. Some machines require special handling for stack pointer saves and restores. On those machines, define the patterns corresponding to ! the non-standard cases by using a 'define_expand' (*note Expander Definitions::) that produces the required insns. The three types of saves and restores are: ! 1. 'save_stack_block' saves the stack pointer at the start of a block that allocates a variable-sized object, and ! 'restore_stack_block' restores the stack pointer when the block is exited. ! 2. 'save_stack_function' and 'restore_stack_function' do a ! similar job for the outermost block of a function and are used ! when the function allocates variable-sized objects or calls ! 'alloca'. Only the epilogue uses the restored stack pointer, ! allowing a simpler save or restore sequence on some machines. ! 3. 'save_stack_nonlocal' is used in functions that contain labels branched to by nested functions. It saves the stack pointer in such a way that the inner function can use ! 'restore_stack_nonlocal' to restore the stack pointer. The compiler generates code to restore the frame and argument pointer registers, but some machines require saving and restoring additional data such as register window information --- 23997,24034 ---- can have different values but still call the same function when used in an indirect call. ! `save_stack_block' ! `save_stack_function' ! `save_stack_nonlocal' ! `restore_stack_block' ! `restore_stack_function' ! `restore_stack_nonlocal' Most machines save and restore the stack pointer by copying it to ! or from an object of mode `Pmode'. Do not define these patterns on such machines. Some machines require special handling for stack pointer saves and restores. On those machines, define the patterns corresponding to ! the non-standard cases by using a `define_expand' (*note Expander Definitions::) that produces the required insns. The three types of saves and restores are: ! 1. `save_stack_block' saves the stack pointer at the start of a block that allocates a variable-sized object, and ! `restore_stack_block' restores the stack pointer when the block is exited. ! 2. `save_stack_function' and `restore_stack_function' do a ! similar job for the outermost block of a function and are ! used when the function allocates variable-sized objects or ! calls `alloca'. Only the epilogue uses the restored stack ! pointer, allowing a simpler save or restore sequence on some ! machines. ! 3. `save_stack_nonlocal' is used in functions that contain labels branched to by nested functions. It saves the stack pointer in such a way that the inner function can use ! `restore_stack_nonlocal' to restore the stack pointer. The compiler generates code to restore the frame and argument pointer registers, but some machines require saving and restoring additional data such as register window information *************** pattern to accomplish a certain task. *** 23654,23682 **** and restore any such required data. When saving the stack pointer, operand 0 is the save area and ! operand 1 is the stack pointer. The mode used to allocate the save ! area defaults to 'Pmode' but you can override that choice by ! defining the 'STACK_SAVEAREA_MODE' macro (*note Storage Layout::). ! You must specify an integral mode, or 'VOIDmode' if no save area is ! needed for a particular type of save (either because no save is needed or because a machine-specific save area can be used). Operand 0 is the stack pointer and operand 1 is the save area for ! restore operations. If 'save_stack_block' is defined, operand 0 ! must not be 'VOIDmode' since these saves can be arbitrarily nested. ! A save area is a 'mem' that is at a constant offset from ! 'virtual_stack_vars_rtx' when the stack pointer is saved for use by ! nonlocal gotos and a 'reg' in the other two cases. ! 'allocate_stack' ! Subtract (or add if 'STACK_GROWS_DOWNWARD' is undefined) operand 1 from the stack pointer to create space for dynamically allocated data. Store the resultant pointer to this space into operand 0. If you are allocating space from the main stack, do this by emitting a ! move insn to copy 'virtual_stack_dynamic_rtx' to operand 0. If you ! are allocating the space elsewhere, generate code to copy the location of the space to operand 0. In the latter case, you must ensure this space gets freed when the corresponding space on the main stack is free. --- 24036,24064 ---- and restore any such required data. When saving the stack pointer, operand 0 is the save area and ! operand 1 is the stack pointer. The mode used to allocate the ! save area defaults to `Pmode' but you can override that choice by ! defining the `STACK_SAVEAREA_MODE' macro (*note Storage Layout::). ! You must specify an integral mode, or `VOIDmode' if no save area ! is needed for a particular type of save (either because no save is needed or because a machine-specific save area can be used). Operand 0 is the stack pointer and operand 1 is the save area for ! restore operations. If `save_stack_block' is defined, operand 0 ! must not be `VOIDmode' since these saves can be arbitrarily nested. ! A save area is a `mem' that is at a constant offset from ! `virtual_stack_vars_rtx' when the stack pointer is saved for use by ! nonlocal gotos and a `reg' in the other two cases. ! `allocate_stack' ! Subtract (or add if `STACK_GROWS_DOWNWARD' is undefined) operand 1 from the stack pointer to create space for dynamically allocated data. Store the resultant pointer to this space into operand 0. If you are allocating space from the main stack, do this by emitting a ! move insn to copy `virtual_stack_dynamic_rtx' to operand 0. If ! you are allocating the space elsewhere, generate code to copy the location of the space to operand 0. In the latter case, you must ensure this space gets freed when the corresponding space on the main stack is free. *************** pattern to accomplish a certain task. *** 23686,23692 **** probes or maintaining the back chain. Define this pattern to emit those operations in addition to updating the stack pointer. ! 'check_stack' If stack checking (*note Stack Checking::) cannot be done on your system by probing the stack, define this pattern to perform the needed check and signal an error if the stack has overflowed. The --- 24068,24074 ---- probes or maintaining the back chain. Define this pattern to emit those operations in addition to updating the stack pointer. ! `check_stack' If stack checking (*note Stack Checking::) cannot be done on your system by probing the stack, define this pattern to perform the needed check and signal an error if the stack has overflowed. The *************** pattern to accomplish a certain task. *** 23695,23708 **** platforms where this pattern is needed, you would obtain the stack limit from a global or thread-specific variable or register. ! 'probe_stack_address' If stack checking (*note Stack Checking::) can be done on your ! system by probing the stack but without the need to actually access ! it, define this pattern and signal an error if the stack has ! overflowed. The single operand is the memory address in the stack ! that needs to be probed. ! 'probe_stack' If stack checking (*note Stack Checking::) can be done on your system by probing the stack but doing it with a "store zero" instruction is not valid or optimal, define this pattern to do the --- 24077,24090 ---- platforms where this pattern is needed, you would obtain the stack limit from a global or thread-specific variable or register. ! `probe_stack_address' If stack checking (*note Stack Checking::) can be done on your ! system by probing the stack but without the need to actually ! access it, define this pattern and signal an error if the stack ! has overflowed. The single operand is the memory address in the ! stack that needs to be probed. ! `probe_stack' If stack checking (*note Stack Checking::) can be done on your system by probing the stack but doing it with a "store zero" instruction is not valid or optimal, define this pattern to do the *************** pattern to accomplish a certain task. *** 23710,23716 **** overflowed. The single operand is the memory reference in the stack that needs to be probed. ! 'nonlocal_goto' Emit code to generate a non-local goto, e.g., a jump from one function to a label in an outer function. This pattern has four arguments, each representing a value to be used in the jump. The --- 24092,24098 ---- overflowed. The single operand is the memory reference in the stack that needs to be probed. ! `nonlocal_goto' Emit code to generate a non-local goto, e.g., a jump from one function to a label in an outer function. This pattern has four arguments, each representing a value to be used in the jump. The *************** pattern to accomplish a certain task. *** 23723,23762 **** On most machines you need not define this pattern, since GCC will already generate the correct code, which is to load the frame pointer and static chain, restore the stack (using the ! 'restore_stack_nonlocal' pattern, if defined), and jump indirectly to the dispatcher. You need only define this pattern if this code will not work on your machine. ! 'nonlocal_goto_receiver' This pattern, if defined, contains code needed at the target of a nonlocal goto after the code already generated by GCC. You will ! not normally need to define this pattern. A typical reason why you ! might need this pattern is if some value, such as a pointer to a ! global table, must be restored when the frame pointer is restored. ! Note that a nonlocal goto only occurs within a unit-of-translation, ! so a global table pointer that is shared by all functions of a ! given module need not be restored. There are no arguments. ! 'exception_receiver' This pattern, if defined, contains code needed at the site of an ! exception handler that isn't needed at the site of a nonlocal goto. ! You will not normally need to define this pattern. A typical ! reason why you might need this pattern is if some value, such as a ! pointer to a global table, must be restored after control flow is ! branched to the handler of an exception. There are no arguments. ! 'builtin_setjmp_setup' This pattern, if defined, contains additional code needed to ! initialize the 'jmp_buf'. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored. Though it is preferred that the pointer value be recalculated if possible (given the address of a label for ! instance). The single argument is a pointer to the 'jmp_buf'. Note that the buffer is five words long and that the first three are normally used by the generic mechanism. ! 'builtin_setjmp_receiver' This pattern, if defined, contains code needed at the site of a built-in setjmp that isn't needed at the site of a nonlocal goto. You will not normally need to define this pattern. A typical --- 24105,24146 ---- On most machines you need not define this pattern, since GCC will already generate the correct code, which is to load the frame pointer and static chain, restore the stack (using the ! `restore_stack_nonlocal' pattern, if defined), and jump indirectly to the dispatcher. You need only define this pattern if this code will not work on your machine. ! `nonlocal_goto_receiver' This pattern, if defined, contains code needed at the target of a nonlocal goto after the code already generated by GCC. You will ! not normally need to define this pattern. A typical reason why ! you might need this pattern is if some value, such as a pointer to ! a global table, must be restored when the frame pointer is ! restored. Note that a nonlocal goto only occurs within a ! unit-of-translation, so a global table pointer that is shared by ! all functions of a given module need not be restored. There are ! no arguments. ! `exception_receiver' This pattern, if defined, contains code needed at the site of an ! exception handler that isn't needed at the site of a nonlocal ! goto. You will not normally need to define this pattern. A ! typical reason why you might need this pattern is if some value, ! such as a pointer to a global table, must be restored after ! control flow is branched to the handler of an exception. There ! are no arguments. ! `builtin_setjmp_setup' This pattern, if defined, contains additional code needed to ! initialize the `jmp_buf'. You will not normally need to define this pattern. A typical reason why you might need this pattern is if some value, such as a pointer to a global table, must be restored. Though it is preferred that the pointer value be recalculated if possible (given the address of a label for ! instance). The single argument is a pointer to the `jmp_buf'. Note that the buffer is five words long and that the first three are normally used by the generic mechanism. ! `builtin_setjmp_receiver' This pattern, if defined, contains code needed at the site of a built-in setjmp that isn't needed at the site of a nonlocal goto. You will not normally need to define this pattern. A typical *************** pattern to accomplish a certain task. *** 23766,23849 **** control; this pattern may be emitted at a small offset from that label. ! 'builtin_longjmp' This pattern, if defined, performs the entire action of the longjmp. You will not normally need to define this pattern unless ! you also define 'builtin_setjmp_setup'. The single argument is a ! pointer to the 'jmp_buf'. ! 'eh_return' ! This pattern, if defined, affects the way '__builtin_eh_return', and thence the call frame exception handling library routines, are built. It is intended to handle non-trivial actions needed along the abnormal return path. The address of the exception handler to which the function should ! return is passed as operand to this pattern. It will normally need ! to copied by the pattern to some special register or memory location. If the pattern needs to determine the location of the target call frame in order to do so, it may use ! 'EH_RETURN_STACKADJ_RTX', if defined; it will have already been assigned. If this pattern is not defined, the default action will be to ! simply copy the return address to 'EH_RETURN_HANDLER_RTX'. Either that macro or this pattern needs to be defined if call frame exception handling is to be used. ! 'prologue' This pattern, if defined, emits RTL for entry to a function. The function entry is responsible for setting up the stack frame, initializing the frame pointer register, saving callee saved registers, etc. Using a prologue pattern is generally preferred over defining ! 'TARGET_ASM_FUNCTION_PROLOGUE' to emit assembly code for the prologue. ! The 'prologue' pattern is particularly useful for targets which perform instruction scheduling. ! 'window_save' ! This pattern, if defined, emits RTL for a register window save. It ! should be defined if the target machine has register windows but ! the window events are decoupled from calls to subroutines. The ! canonical example is the SPARC architecture. ! 'epilogue' ! This pattern emits RTL for exit from a function. The function exit ! is responsible for deallocating the stack frame, restoring callee ! saved registers and emitting the return instruction. Using an epilogue pattern is generally preferred over defining ! 'TARGET_ASM_FUNCTION_EPILOGUE' to emit assembly code for the epilogue. ! The 'epilogue' pattern is particularly useful for targets which perform instruction scheduling or which have delay slots for their return instruction. ! 'sibcall_epilogue' This pattern, if defined, emits RTL for exit from a function without the final branch back to the calling function. This pattern will be emitted before any sibling call (aka tail call) sites. ! The 'sibcall_epilogue' pattern must not clobber any arguments used for parameter passing or any stack slots for arguments passed to the current function. ! 'trap' This pattern, if defined, signals an error, typically by causing some kind of signal to be raised. Among other places, it is used ! by the Java front end to signal 'invalid array index' exceptions. ! 'ctrapMM4' Conditional trap instruction. Operand 0 is a piece of RTL which performs a comparison, and operands 1 and 2 are the arms of the comparison. Operand 3 is the trap code, an integer. ! A typical 'ctrap' pattern looks like (define_insn "ctrapsi4" [(trap_if (match_operator 0 "trap_operator" --- 24150,24233 ---- control; this pattern may be emitted at a small offset from that label. ! `builtin_longjmp' This pattern, if defined, performs the entire action of the longjmp. You will not normally need to define this pattern unless ! you also define `builtin_setjmp_setup'. The single argument is a ! pointer to the `jmp_buf'. ! `eh_return' ! This pattern, if defined, affects the way `__builtin_eh_return', and thence the call frame exception handling library routines, are built. It is intended to handle non-trivial actions needed along the abnormal return path. The address of the exception handler to which the function should ! return is passed as operand to this pattern. It will normally ! need to copied by the pattern to some special register or memory location. If the pattern needs to determine the location of the target call frame in order to do so, it may use ! `EH_RETURN_STACKADJ_RTX', if defined; it will have already been assigned. If this pattern is not defined, the default action will be to ! simply copy the return address to `EH_RETURN_HANDLER_RTX'. Either that macro or this pattern needs to be defined if call frame exception handling is to be used. ! `prologue' This pattern, if defined, emits RTL for entry to a function. The function entry is responsible for setting up the stack frame, initializing the frame pointer register, saving callee saved registers, etc. Using a prologue pattern is generally preferred over defining ! `TARGET_ASM_FUNCTION_PROLOGUE' to emit assembly code for the prologue. ! The `prologue' pattern is particularly useful for targets which perform instruction scheduling. ! `window_save' ! This pattern, if defined, emits RTL for a register window save. ! It should be defined if the target machine has register windows ! but the window events are decoupled from calls to subroutines. ! The canonical example is the SPARC architecture. ! `epilogue' ! This pattern emits RTL for exit from a function. The function ! exit is responsible for deallocating the stack frame, restoring ! callee saved registers and emitting the return instruction. Using an epilogue pattern is generally preferred over defining ! `TARGET_ASM_FUNCTION_EPILOGUE' to emit assembly code for the epilogue. ! The `epilogue' pattern is particularly useful for targets which perform instruction scheduling or which have delay slots for their return instruction. ! `sibcall_epilogue' This pattern, if defined, emits RTL for exit from a function without the final branch back to the calling function. This pattern will be emitted before any sibling call (aka tail call) sites. ! The `sibcall_epilogue' pattern must not clobber any arguments used for parameter passing or any stack slots for arguments passed to the current function. ! `trap' This pattern, if defined, signals an error, typically by causing some kind of signal to be raised. Among other places, it is used ! by the Java front end to signal `invalid array index' exceptions. ! `ctrapMM4' Conditional trap instruction. Operand 0 is a piece of RTL which performs a comparison, and operands 1 and 2 are the arms of the comparison. Operand 3 is the trap code, an integer. ! A typical `ctrap' pattern looks like (define_insn "ctrapsi4" [(trap_if (match_operator 0 "trap_operator" *************** pattern to accomplish a certain task. *** 23853,23892 **** "" "...") ! 'prefetch' ! This pattern, if defined, emits code for a non-faulting data prefetch instruction. Operand 0 is the address of the memory to prefetch. Operand 1 is a constant 1 if the prefetch is preparing for a write to the memory address, or a constant 0 otherwise. Operand 2 is the expected degree of temporal locality of the data and is a value between 0 and 3, inclusive; 0 means that the data ! has no temporal locality, so it need not be left in the cache after ! the access; 3 means that the data has a high degree of temporal ! locality and should be left in all levels of cache possible; 1 and ! 2 mean, respectively, a low or moderate degree of temporal ! locality. Targets that do not support write prefetches or locality hints can ignore the values of operands 1 and 2. ! 'blockage' ! This pattern defines a pseudo insn that prevents the instruction scheduler and other passes from moving instructions and using register equivalences across the boundary defined by the blockage insn. This needs to be an UNSPEC_VOLATILE pattern or a volatile ASM. ! 'memory_barrier' ! If the target memory model is not fully synchronous, then this pattern should be defined to an instruction that orders both loads and stores before the instruction with respect to loads and stores after the instruction. This pattern has no operands. ! 'sync_compare_and_swapMODE' ! This pattern, if defined, emits code for an atomic compare-and-swap operation. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is the "old" value to be compared against --- 24237,24272 ---- "" "...") ! `prefetch' This pattern, if defined, emits code for a non-faulting data prefetch instruction. Operand 0 is the address of the memory to prefetch. Operand 1 is a constant 1 if the prefetch is preparing for a write to the memory address, or a constant 0 otherwise. Operand 2 is the expected degree of temporal locality of the data and is a value between 0 and 3, inclusive; 0 means that the data ! has no temporal locality, so it need not be left in the cache ! after the access; 3 means that the data has a high degree of ! temporal locality and should be left in all levels of cache ! possible; 1 and 2 mean, respectively, a low or moderate degree of ! temporal locality. Targets that do not support write prefetches or locality hints can ignore the values of operands 1 and 2. ! `blockage' This pattern defines a pseudo insn that prevents the instruction scheduler and other passes from moving instructions and using register equivalences across the boundary defined by the blockage insn. This needs to be an UNSPEC_VOLATILE pattern or a volatile ASM. ! `memory_barrier' If the target memory model is not fully synchronous, then this pattern should be defined to an instruction that orders both loads and stores before the instruction with respect to loads and stores after the instruction. This pattern has no operands. ! `sync_compare_and_swapMODE' This pattern, if defined, emits code for an atomic compare-and-swap operation. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is the "old" value to be compared against *************** pattern to accomplish a certain task. *** 23907,23935 **** For targets where the success or failure of the compare-and-swap operation is available via the status flags, it is possible to avoid a separate compare operation and issue the subsequent branch ! or store-flag operation immediately after the compare-and-swap. To ! this end, GCC will look for a 'MODE_CC' set in the output of ! 'sync_compare_and_swapMODE'; if the machine description includes ! such a set, the target should also define special 'cbranchcc4' ! and/or 'cstorecc4' instructions. GCC will then be able to take the ! destination of the 'MODE_CC' set and pass it to the 'cbranchcc4' or ! 'cstorecc4' pattern as the first operand of the comparison (the ! second will be '(const_int 0)'). For targets where the operating system may provide support for this ! operation via library calls, the 'sync_compare_and_swap_optab' may be initialized to a function with the same interface as the ! '__sync_val_compare_and_swap_N' built-in. If the entire set of __SYNC builtins are supported via library calls, the target can ! initialize all of the optabs at once with 'init_sync_libfuncs'. ! For the purposes of C++11 'std::atomic::is_lock_free', it is assumed that these library calls do _not_ use any kind of interruptable locking. ! 'sync_addMODE', 'sync_subMODE' ! 'sync_iorMODE', 'sync_andMODE' ! 'sync_xorMODE', 'sync_nandMODE' ! These patterns emit code for an atomic operation on memory. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. --- 24287,24314 ---- For targets where the success or failure of the compare-and-swap operation is available via the status flags, it is possible to avoid a separate compare operation and issue the subsequent branch ! or store-flag operation immediately after the compare-and-swap. ! To this end, GCC will look for a `MODE_CC' set in the output of ! `sync_compare_and_swapMODE'; if the machine description includes ! such a set, the target should also define special `cbranchcc4' ! and/or `cstorecc4' instructions. GCC will then be able to take ! the destination of the `MODE_CC' set and pass it to the ! `cbranchcc4' or `cstorecc4' pattern as the first operand of the ! comparison (the second will be `(const_int 0)'). For targets where the operating system may provide support for this ! operation via library calls, the `sync_compare_and_swap_optab' may be initialized to a function with the same interface as the ! `__sync_val_compare_and_swap_N' built-in. If the entire set of __SYNC builtins are supported via library calls, the target can ! initialize all of the optabs at once with `init_sync_libfuncs'. ! For the purposes of C++11 `std::atomic::is_lock_free', it is assumed that these library calls do _not_ use any kind of interruptable locking. ! `sync_addMODE', `sync_subMODE' ! `sync_iorMODE', `sync_andMODE' ! `sync_xorMODE', `sync_nandMODE' These patterns emit code for an atomic operation on memory. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. *************** pattern to accomplish a certain task. *** 23942,23951 **** If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! 'sync_old_addMODE', 'sync_old_subMODE' ! 'sync_old_iorMODE', 'sync_old_andMODE' ! 'sync_old_xorMODE', 'sync_old_nandMODE' ! These patterns emit code for an atomic operation on memory, and return the value that the memory contained before the operation. Operand 0 is the result value, operand 1 is the memory on which the --- 24321,24329 ---- If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! `sync_old_addMODE', `sync_old_subMODE' ! `sync_old_iorMODE', `sync_old_andMODE' ! `sync_old_xorMODE', `sync_old_nandMODE' These patterns emit code for an atomic operation on memory, and return the value that the memory contained before the operation. Operand 0 is the result value, operand 1 is the memory on which the *************** pattern to accomplish a certain task. *** 23960,23979 **** If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! 'sync_new_addMODE', 'sync_new_subMODE' ! 'sync_new_iorMODE', 'sync_new_andMODE' ! 'sync_new_xorMODE', 'sync_new_nandMODE' ! ! These patterns are like their 'sync_old_OP' counterparts, except ! that they return the value that exists in the memory location after ! the operation, rather than before the operation. ! ! 'sync_lock_test_and_setMODE' This pattern takes two forms, based on the capabilities of the target. In either case, operand 0 is the result of the operand, ! operand 1 is the memory on which the atomic operation is performed, ! and operand 2 is the value to set in the lock. In the ideal case, this operation is an atomic exchange operation, in which the previous value in memory operand is copied into the --- 24338,24355 ---- If these patterns are not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! `sync_new_addMODE', `sync_new_subMODE' ! `sync_new_iorMODE', `sync_new_andMODE' ! `sync_new_xorMODE', `sync_new_nandMODE' ! These patterns are like their `sync_old_OP' counterparts, except ! that they return the value that exists in the memory location ! after the operation, rather than before the operation. + `sync_lock_test_and_setMODE' This pattern takes two forms, based on the capabilities of the target. In either case, operand 0 is the result of the operand, ! operand 1 is the memory on which the atomic operation is ! performed, and operand 2 is the value to set in the lock. In the ideal case, this operation is an atomic exchange operation, in which the previous value in memory operand is copied into the *************** pattern to accomplish a certain task. *** 23981,23991 **** operand. For less capable targets, any value operand that is not the ! constant 1 should be rejected with 'FAIL'. In this case the target ! may use an atomic test-and-set bit operation. The result operand ! should contain 1 if the bit was previously set and 0 if the bit was ! previously clear. The true contents of the memory operand are ! implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as an acquire barrier, that is all --- 24357,24367 ---- operand. For less capable targets, any value operand that is not the ! constant 1 should be rejected with `FAIL'. In this case the ! target may use an atomic test-and-set bit operation. The result ! operand should contain 1 if the bit was previously set and 0 if ! the bit was previously clear. The true contents of the memory ! operand are implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as an acquire barrier, that is all *************** pattern to accomplish a certain task. *** 23995,24036 **** If this pattern is not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! 'sync_lock_releaseMODE' ! This pattern, if defined, releases a lock set by ! 'sync_lock_test_and_setMODE'. Operand 0 is the memory that contains the lock; operand 1 is the value to store in the lock. If the target doesn't implement full semantics for ! 'sync_lock_test_and_setMODE', any value operand which is not the ! constant 0 should be rejected with 'FAIL', and the true contents of ! the memory operand are implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as a release barrier, that is the lock is released only after all previous memory operations have completed. ! If this pattern is not defined, then a 'memory_barrier' pattern will be emitted, followed by a store of the value to the memory operand. ! 'atomic_compare_and_swapMODE' This pattern, if defined, emits code for an atomic compare-and-swap operation with memory model semantics. Operand 2 is the memory on which the atomic operation is performed. Operand 0 is an output operand which is set to true or false based on whether the operation succeeded. Operand 1 is an output operand which is set to the contents of the memory before the operation was attempted. ! Operand 3 is the value that is expected to be in memory. Operand 4 ! is the value to put in memory if the expected value is found there. ! Operand 5 is set to 1 if this compare and swap is to be treated as ! a weak operation. Operand 6 is the memory model to be used if the ! operation is a success. Operand 7 is the memory model to be used ! if the operation fails. ! If memory referred to in operand 2 contains the value in operand 3, ! then operand 4 is stored in memory pointed to by operand 2 and fencing based on the memory model in operand 6 is issued. If memory referred to in operand 2 does not contain the value in --- 24371,24411 ---- If this pattern is not defined, the operation will be constructed from a compare-and-swap operation, if defined. ! `sync_lock_releaseMODE' This pattern, if defined, releases a lock set by ! `sync_lock_test_and_setMODE'. Operand 0 is the memory that contains the lock; operand 1 is the value to store in the lock. If the target doesn't implement full semantics for ! `sync_lock_test_and_setMODE', any value operand which is not the ! constant 0 should be rejected with `FAIL', and the true contents ! of the memory operand are implementation defined. This pattern must issue any memory barrier instructions such that the pattern as a whole acts as a release barrier, that is the lock is released only after all previous memory operations have completed. ! If this pattern is not defined, then a `memory_barrier' pattern will be emitted, followed by a store of the value to the memory operand. ! `atomic_compare_and_swapMODE' This pattern, if defined, emits code for an atomic compare-and-swap operation with memory model semantics. Operand 2 is the memory on which the atomic operation is performed. Operand 0 is an output operand which is set to true or false based on whether the operation succeeded. Operand 1 is an output operand which is set to the contents of the memory before the operation was attempted. ! Operand 3 is the value that is expected to be in memory. Operand ! 4 is the value to put in memory if the expected value is found ! there. Operand 5 is set to 1 if this compare and swap is to be ! treated as a weak operation. Operand 6 is the memory model to be ! used if the operation is a success. Operand 7 is the memory model ! to be used if the operation fails. ! If memory referred to in operand 2 contains the value in operand ! 3, then operand 4 is stored in memory pointed to by operand 2 and fencing based on the memory model in operand 6 is issued. If memory referred to in operand 2 does not contain the value in *************** pattern to accomplish a certain task. *** 24042,24154 **** operand 5 can be ignored. Note a strong implementation must be provided. ! If this pattern is not provided, the '__atomic_compare_exchange' ! built-in functions will utilize the legacy 'sync_compare_and_swap' ! pattern with an '__ATOMIC_SEQ_CST' memory model. ! 'atomic_loadMODE' This pattern implements an atomic load operation with memory model semantics. Operand 1 is the memory address being loaded from. ! Operand 0 is the result of the load. Operand 2 is the memory model ! to be used for the load operation. ! If not present, the '__atomic_load' built-in function will either resort to a normal load with memory barriers, or a compare-and-swap operation if a normal load would not be atomic. ! 'atomic_storeMODE' This pattern implements an atomic store operation with memory model semantics. Operand 0 is the memory address being stored to. Operand 1 is the value to be written. Operand 2 is the memory model to be used for the operation. ! If not present, the '__atomic_store' built-in function will attempt ! to perform a normal store and surround it with any required memory ! fences. If the store would not be atomic, then an ! '__atomic_exchange' is attempted with the result being ignored. ! 'atomic_exchangeMODE' This pattern implements an atomic exchange operation with memory ! model semantics. Operand 1 is the memory location the operation is ! performed on. Operand 0 is an output operand which is set to the ! original value contained in the memory pointed to by operand 1. ! Operand 2 is the value to be stored. Operand 3 is the memory model ! to be used. If this pattern is not present, the built-in function ! '__atomic_exchange' will attempt to preform the operation with a compare and swap loop. ! 'atomic_addMODE', 'atomic_subMODE' ! 'atomic_orMODE', 'atomic_andMODE' ! 'atomic_xorMODE', 'atomic_nandMODE' ! These patterns emit code for an atomic operation on memory with ! memory model semantics. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. Operand 2 is the memory model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy 'sync' patterns, or equivalent patterns which return a result. If none of these are available a compare-and-swap loop will be used. ! 'atomic_fetch_addMODE', 'atomic_fetch_subMODE' ! 'atomic_fetch_orMODE', 'atomic_fetch_andMODE' ! 'atomic_fetch_xorMODE', 'atomic_fetch_nandMODE' ! These patterns emit code for an atomic operation on memory with ! memory model semantics, and return the original value. Operand 0 is an output operand which contains the value of the memory location before the operation was performed. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is ! the second operand to the binary operator. Operand 3 is the memory ! model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy 'sync' patterns. If none of these are available a compare-and-swap loop will be used. ! 'atomic_add_fetchMODE', 'atomic_sub_fetchMODE' ! 'atomic_or_fetchMODE', 'atomic_and_fetchMODE' ! 'atomic_xor_fetchMODE', 'atomic_nand_fetchMODE' ! These patterns emit code for an atomic operation on memory with ! memory model semantics and return the result after the operation is ! performed. Operand 0 is an output operand which contains the value ! after the operation. Operand 1 is the memory on which the atomic ! operation is performed. Operand 2 is the second operand to the ! binary operator. Operand 3 is the memory model to be used by the ! operation. If these patterns are not defined, attempts will be made to use ! legacy 'sync' patterns, or equivalent patterns which return the result before the operation followed by the arithmetic operation required to produce the result. If none of these are available a compare-and-swap loop will be used. ! 'atomic_test_and_set' ! ! This pattern emits code for '__builtin_atomic_test_and_set'. Operand 0 is an output operand which is set to true if the previous previous contents of the byte was "set", and false otherwise. ! Operand 1 is the 'QImode' memory to be modified. Operand 2 is the memory model to be used. The specific value that defines "set" is implementation defined, and is normally based on what is performed by the native atomic test and set instruction. ! 'mem_thread_fenceMODE' This pattern emits code required to implement a thread fence with memory model semantics. Operand 0 is the memory model to be used. If this pattern is not specified, all memory models except ! '__ATOMIC_RELAXED' will result in issuing a 'sync_synchronize' barrier pattern. ! 'mem_signal_fenceMODE' This pattern emits code required to implement a signal fence with memory model semantics. Operand 0 is the memory model to be used. --- 24417,24525 ---- operand 5 can be ignored. Note a strong implementation must be provided. ! If this pattern is not provided, the `__atomic_compare_exchange' ! built-in functions will utilize the legacy `sync_compare_and_swap' ! pattern with an `__ATOMIC_SEQ_CST' memory model. ! `atomic_loadMODE' This pattern implements an atomic load operation with memory model semantics. Operand 1 is the memory address being loaded from. ! Operand 0 is the result of the load. Operand 2 is the memory ! model to be used for the load operation. ! If not present, the `__atomic_load' built-in function will either resort to a normal load with memory barriers, or a compare-and-swap operation if a normal load would not be atomic. ! `atomic_storeMODE' This pattern implements an atomic store operation with memory model semantics. Operand 0 is the memory address being stored to. Operand 1 is the value to be written. Operand 2 is the memory model to be used for the operation. ! If not present, the `__atomic_store' built-in function will ! attempt to perform a normal store and surround it with any ! required memory fences. If the store would not be atomic, then an ! `__atomic_exchange' is attempted with the result being ignored. ! `atomic_exchangeMODE' This pattern implements an atomic exchange operation with memory ! model semantics. Operand 1 is the memory location the operation ! is performed on. Operand 0 is an output operand which is set to ! the original value contained in the memory pointed to by operand ! 1. Operand 2 is the value to be stored. Operand 3 is the memory ! model to be used. If this pattern is not present, the built-in function ! `__atomic_exchange' will attempt to preform the operation with a compare and swap loop. ! `atomic_addMODE', `atomic_subMODE' ! `atomic_orMODE', `atomic_andMODE' ! `atomic_xorMODE', `atomic_nandMODE' These patterns emit code for an atomic operation on memory with ! memory model semantics. Operand 0 is the memory on which the atomic operation is performed. Operand 1 is the second operand to the binary operator. Operand 2 is the memory model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy `sync' patterns, or equivalent patterns which return a result. If none of these are available a compare-and-swap loop will be used. ! `atomic_fetch_addMODE', `atomic_fetch_subMODE' ! `atomic_fetch_orMODE', `atomic_fetch_andMODE' ! `atomic_fetch_xorMODE', `atomic_fetch_nandMODE' These patterns emit code for an atomic operation on memory with ! memory model semantics, and return the original value. Operand 0 is an output operand which contains the value of the memory location before the operation was performed. Operand 1 is the memory on which the atomic operation is performed. Operand 2 is ! the second operand to the binary operator. Operand 3 is the ! memory model to be used by the operation. If these patterns are not defined, attempts will be made to use ! legacy `sync' patterns. If none of these are available a compare-and-swap loop will be used. ! `atomic_add_fetchMODE', `atomic_sub_fetchMODE' ! `atomic_or_fetchMODE', `atomic_and_fetchMODE' ! `atomic_xor_fetchMODE', `atomic_nand_fetchMODE' These patterns emit code for an atomic operation on memory with ! memory model semantics and return the result after the operation ! is performed. Operand 0 is an output operand which contains the ! value after the operation. Operand 1 is the memory on which the ! atomic operation is performed. Operand 2 is the second operand to ! the binary operator. Operand 3 is the memory model to be used by ! the operation. If these patterns are not defined, attempts will be made to use ! legacy `sync' patterns, or equivalent patterns which return the result before the operation followed by the arithmetic operation required to produce the result. If none of these are available a compare-and-swap loop will be used. ! `atomic_test_and_set' ! This pattern emits code for `__builtin_atomic_test_and_set'. Operand 0 is an output operand which is set to true if the previous previous contents of the byte was "set", and false otherwise. ! Operand 1 is the `QImode' memory to be modified. Operand 2 is the memory model to be used. The specific value that defines "set" is implementation defined, and is normally based on what is performed by the native atomic test and set instruction. ! `mem_thread_fenceMODE' This pattern emits code required to implement a thread fence with memory model semantics. Operand 0 is the memory model to be used. If this pattern is not specified, all memory models except ! `__ATOMIC_RELAXED' will result in issuing a `sync_synchronize' barrier pattern. ! `mem_signal_fenceMODE' This pattern emits code required to implement a signal fence with memory model semantics. Operand 0 is the memory model to be used. *************** pattern to accomplish a certain task. *** 24157,24178 **** barrier instructions. If this pattern is not specified, all memory models except ! '__ATOMIC_RELAXED' will result in issuing a 'sync_synchronize' barrier pattern. ! 'get_thread_pointerMODE' ! 'set_thread_pointerMODE' These patterns emit code that reads/sets the TLS thread pointer. Currently, these are only needed if the target needs to support the ! '__builtin_thread_pointer' and '__builtin_set_thread_pointer' builtins. The get/set patterns have a single output/input operand ! respectively, with MODE intended to be 'Pmode'. ! ! 'stack_protect_set' ! This pattern, if defined, moves a 'ptr_mode' value from the memory in operand 1 to the memory in operand 0 without leaving the value in a register afterward. This is to avoid leaking the value some place that an attacker might use to rewrite the stack guard slot --- 24528,24548 ---- barrier instructions. If this pattern is not specified, all memory models except ! `__ATOMIC_RELAXED' will result in issuing a `sync_synchronize' barrier pattern. ! `get_thread_pointerMODE' ! `set_thread_pointerMODE' These patterns emit code that reads/sets the TLS thread pointer. Currently, these are only needed if the target needs to support the ! `__builtin_thread_pointer' and `__builtin_set_thread_pointer' builtins. The get/set patterns have a single output/input operand ! respectively, with MODE intended to be `Pmode'. ! `stack_protect_set' ! This pattern, if defined, moves a `ptr_mode' value from the memory in operand 1 to the memory in operand 0 without leaving the value in a register afterward. This is to avoid leaking the value some place that an attacker might use to rewrite the stack guard slot *************** pattern to accomplish a certain task. *** 24181,24189 **** If this pattern is not defined, then a plain move pattern is generated. ! 'stack_protect_test' ! ! This pattern, if defined, compares a 'ptr_mode' value from the memory in operand 1 with the memory in operand 0 without leaving the value in a register afterward and branches to operand 2 if the values were equal. --- 24551,24558 ---- If this pattern is not defined, then a plain move pattern is generated. ! `stack_protect_test' ! This pattern, if defined, compares a `ptr_mode' value from the memory in operand 1 with the memory in operand 0 without leaving the value in a register afterward and branches to operand 2 if the values were equal. *************** pattern to accomplish a certain task. *** 24191,24204 **** If this pattern is not defined, then a plain compare pattern and conditional branch pattern is used. ! 'clear_cache' ! This pattern, if defined, flushes the instruction cache for a region of memory. The region is bounded to by the Pmode pointers in operand 0 inclusive and operand 1 exclusive. If this pattern is not defined, a call to the library function ! '__clear_cache' is used.  File: gccint.info, Node: Pattern Ordering, Next: Dependent Patterns, Prev: Standard Names, Up: Machine Desc --- 24560,24573 ---- If this pattern is not defined, then a plain compare pattern and conditional branch pattern is used. ! `clear_cache' This pattern, if defined, flushes the instruction cache for a region of memory. The region is bounded to by the Pmode pointers in operand 0 inclusive and operand 1 exclusive. If this pattern is not defined, a call to the library function ! `__clear_cache' is used. !  File: gccint.info, Node: Pattern Ordering, Next: Dependent Patterns, Prev: Standard Names, Up: Machine Desc *************** Therefore, more specific patterns (patte *** 24212,24227 **** things) and faster instructions (those that will produce better code when they do match) should usually go first in the description. ! In some cases the effect of ordering the patterns can be used to hide a ! pattern when it is not valid. For example, the 68000 has an instruction ! for converting a fullword to floating point and another for converting a ! byte to floating point. An instruction converting an integer to ! floating point could match either one. We put the pattern to convert ! the fullword first to make sure that one will be used rather than the ! other. (Otherwise a large integer might be generated as a single-byte ! immediate quantity, which would not work.) Instead of using this ! pattern ordering it would be possible to make the pattern for ! convert-a-byte smart enough to deal properly with any constant value.  File: gccint.info, Node: Dependent Patterns, Next: Jump Patterns, Prev: Pattern Ordering, Up: Machine Desc --- 24581,24597 ---- things) and faster instructions (those that will produce better code when they do match) should usually go first in the description. ! In some cases the effect of ordering the patterns can be used to hide ! a pattern when it is not valid. For example, the 68000 has an ! instruction for converting a fullword to floating point and another for ! converting a byte to floating point. An instruction converting an ! integer to floating point could match either one. We put the pattern ! to convert the fullword first to make sure that one will be used rather ! than the other. (Otherwise a large integer might be generated as a ! single-byte immediate quantity, which would not work.) Instead of ! using this pattern ordering it would be possible to make the pattern ! for convert-a-byte smart enough to deal properly with any constant ! value.  File: gccint.info, Node: Dependent Patterns, Next: Jump Patterns, Prev: Pattern Ordering, Up: Machine Desc *************** Constant integers do not specify a machi *** 24244,24255 **** extend a constant value could match either pattern. The pattern it actually will match is the one that appears first in the file. For correct results, this must be the one for the widest possible mode ! ('HImode', here). If the pattern matches the 'QImode' instruction, the results will be incorrect if the constant value does not actually fit that mode. ! Such instructions to extend constants are rarely generated because they ! are optimized away, but they do occasionally happen in nonoptimized compilations. If a constraint in a pattern allows a constant, the reload pass may --- 24614,24625 ---- extend a constant value could match either pattern. The pattern it actually will match is the one that appears first in the file. For correct results, this must be the one for the widest possible mode ! (`HImode', here). If the pattern matches the `QImode' instruction, the results will be incorrect if the constant value does not actually fit that mode. ! Such instructions to extend constants are rarely generated because ! they are optimized away, but they do occasionally happen in nonoptimized compilations. If a constraint in a pattern allows a constant, the reload pass may *************** File: gccint.info, Node: Jump Patterns, *** 24268,24295 **** GCC does not assume anything about how the machine realizes jumps. The machine description should define a single pattern, usually a ! 'define_expand', which expands to all the required insns. Usually, this would be a comparison insn to set the condition code and a separate branch insn testing the condition code and branching or not ! according to its value. For many machines, however, separating compares ! and branches is limiting, which is why the more flexible approach with ! one 'define_expand' is used in GCC. The machine description becomes ! clearer for architectures that have compare-and-branch instructions but ! no condition code. It also works better when different sets of ! comparison operators are supported by different kinds of conditional ! branches (e.g. integer vs. floating-point), or by conditional branches ! with respect to conditional stores. Two separate insns are always used if the machine description represents a condition code register using the legacy RTL expression ! '(cc0)', and on most machines that use a separate condition code ! register (*note Condition Code::). For machines that use '(cc0)', in fact, the set and use of the condition code must be separate and ! adjacent(1), thus allowing flags in 'cc_status' to be used (*note Condition Code::) and so that the comparison and branch insns could be ! located from each other by using the functions 'prev_cc0_setter' and ! 'next_cc0_user'. Even in this case having a single entry point for conditional branches is advantageous, because it handles equally well the case where a single --- 24638,24666 ---- GCC does not assume anything about how the machine realizes jumps. The machine description should define a single pattern, usually a ! `define_expand', which expands to all the required insns. Usually, this would be a comparison insn to set the condition code and a separate branch insn testing the condition code and branching or not ! according to its value. For many machines, however, separating ! compares and branches is limiting, which is why the more flexible ! approach with one `define_expand' is used in GCC. The machine ! description becomes clearer for architectures that have ! compare-and-branch instructions but no condition code. It also works ! better when different sets of comparison operators are supported by ! different kinds of conditional branches (e.g. integer vs. ! floating-point), or by conditional branches with respect to conditional ! stores. Two separate insns are always used if the machine description represents a condition code register using the legacy RTL expression ! `(cc0)', and on most machines that use a separate condition code ! register (*note Condition Code::). For machines that use `(cc0)', in fact, the set and use of the condition code must be separate and ! adjacent(1), thus allowing flags in `cc_status' to be used (*note Condition Code::) and so that the comparison and branch insns could be ! located from each other by using the functions `prev_cc0_setter' and ! `next_cc0_user'. Even in this case having a single entry point for conditional branches is advantageous, because it handles equally well the case where a single *************** distinct signed and unsigned flavors) as *** 24299,24307 **** case where there are distinct signed and unsigned compare instructions and only one set of conditional branch instructions as in the PowerPC. ! ---------- Footnotes ---------- ! (1) 'note' insns can separate them, though.  File: gccint.info, Node: Looping Patterns, Next: Insn Canonicalizations, Prev: Jump Patterns, Up: Machine Desc --- 24670,24678 ---- case where there are distinct signed and unsigned compare instructions and only one set of conditional branch instructions as in the PowerPC. ! ---------- Footnotes ---------- ! (1) `note' insns can separate them, though.  File: gccint.info, Node: Looping Patterns, Next: Insn Canonicalizations, Prev: Jump Patterns, Up: Machine Desc *************** File: gccint.info, Node: Looping Patter *** 24310,24316 **** =========================================== Some machines have special jump instructions that can be utilized to ! make loops more efficient. A common example is the 68000 'dbra' instruction which performs a decrement of a register and a branch if the result was greater than zero. Other machines, in particular digital signal processors (DSPs), have special block repeat instructions to --- 24681,24687 ---- =========================================== Some machines have special jump instructions that can be utilized to ! make loops more efficient. A common example is the 68000 `dbra' instruction which performs a decrement of a register and a branch if the result was greater than zero. Other machines, in particular digital signal processors (DSPs), have special block repeat instructions to *************** provide low-overhead loop support. For *** 24318,24337 **** DSPs have a block repeat instruction that loads special registers to mark the top and end of a loop and to count the number of loop iterations. This avoids the need for fetching and executing a ! 'dbra'-like instruction and avoids pipeline stalls associated with the jump. GCC has three special named patterns to support low overhead looping. ! They are 'decrement_and_branch_until_zero', 'doloop_begin', and ! 'doloop_end'. The first pattern, 'decrement_and_branch_until_zero', is not emitted during RTL generation but may be emitted during the ! instruction combination phase. This requires the assistance of the loop ! optimizer, using information collected during strength reduction, to ! reverse a loop to count down to zero. Some targets also require the ! loop optimizer to add a 'REG_NONNEG' note to indicate that the iteration ! count is always positive. This is needed if the target performs a ! signed loop termination test. For example, the 68000 uses a pattern ! similar to the following for its 'dbra' instruction: (define_insn "decrement_and_branch_until_zero" [(set (pc) --- 24689,24708 ---- DSPs have a block repeat instruction that loads special registers to mark the top and end of a loop and to count the number of loop iterations. This avoids the need for fetching and executing a ! `dbra'-like instruction and avoids pipeline stalls associated with the jump. GCC has three special named patterns to support low overhead looping. ! They are `decrement_and_branch_until_zero', `doloop_begin', and ! `doloop_end'. The first pattern, `decrement_and_branch_until_zero', is not emitted during RTL generation but may be emitted during the ! instruction combination phase. This requires the assistance of the ! loop optimizer, using information collected during strength reduction, ! to reverse a loop to count down to zero. Some targets also require the ! loop optimizer to add a `REG_NONNEG' note to indicate that the ! iteration count is always positive. This is needed if the target ! performs a signed loop termination test. For example, the 68000 uses a ! pattern similar to the following for its `dbra' instruction: (define_insn "decrement_and_branch_until_zero" [(set (pc) *************** similar to the following for its 'dbra' *** 24348,24354 **** "...") Note that since the insn is both a jump insn and has an output, it must ! deal with its own reloads, hence the 'm' constraints. Also note that since this insn is generated by the instruction combination phase combining two sequential insns together into an implicit parallel insn, the iteration counter needs to be biased by the same amount as the --- 24719,24725 ---- "...") Note that since the insn is both a jump insn and has an output, it must ! deal with its own reloads, hence the `m' constraints. Also note that since this insn is generated by the instruction combination phase combining two sequential insns together into an implicit parallel insn, the iteration counter needs to be biased by the same amount as the *************** pattern will not be matched by the combi *** 24368,24402 **** "find_reg_note (insn, REG_NONNEG, 0)" "...") ! The other two special looping patterns, 'doloop_begin' and ! 'doloop_end', are emitted by the loop optimizer for certain well-behaved ! loops with a finite number of loop iterations using information ! collected during strength reduction. ! The 'doloop_end' pattern describes the actual looping instruction (or ! the implicit looping operation) and the 'doloop_begin' pattern is an optional companion pattern that can be used for initialization needed for some low-overhead looping instructions. Note that some machines require the actual looping instruction to be emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping instruction at the top of the loop can cause ! problems with flow analysis. So instead, a dummy 'doloop' insn is emitted at the end of the loop. The machine dependent reorg pass checks ! for the presence of this 'doloop' insn and then searches back to the top ! of the loop, where it inserts the true looping insn (provided there are ! no instructions in the loop which would cause problems). Any additional ! labels can be emitted at this point. In addition, if the desired ! special iteration counter register was not allocated, this machine ! dependent reorg pass could emit a traditional compare and jump instruction pair. ! The essential difference between the 'decrement_and_branch_until_zero' ! and the 'doloop_end' patterns is that the loop optimizer allocates an ! additional pseudo register for the latter as an iteration counter. This ! pseudo register cannot be used within the loop (i.e., general induction ! variables cannot be derived from it), however, in many cases the loop ! induction variable may become redundant and removed by the flow pass.  File: gccint.info, Node: Insn Canonicalizations, Next: Expander Definitions, Prev: Looping Patterns, Up: Machine Desc --- 24739,24774 ---- "find_reg_note (insn, REG_NONNEG, 0)" "...") ! The other two special looping patterns, `doloop_begin' and ! `doloop_end', are emitted by the loop optimizer for certain ! well-behaved loops with a finite number of loop iterations using ! information collected during strength reduction. ! The `doloop_end' pattern describes the actual looping instruction (or ! the implicit looping operation) and the `doloop_begin' pattern is an optional companion pattern that can be used for initialization needed for some low-overhead looping instructions. Note that some machines require the actual looping instruction to be emitted at the top of the loop (e.g., the TMS320C3x/C4x DSPs). Emitting the true RTL for a looping instruction at the top of the loop can cause ! problems with flow analysis. So instead, a dummy `doloop' insn is emitted at the end of the loop. The machine dependent reorg pass checks ! for the presence of this `doloop' insn and then searches back to the ! top of the loop, where it inserts the true looping insn (provided there ! are no instructions in the loop which would cause problems). Any ! additional labels can be emitted at this point. In addition, if the ! desired special iteration counter register was not allocated, this ! machine dependent reorg pass could emit a traditional compare and jump instruction pair. ! The essential difference between the `decrement_and_branch_until_zero' ! and the `doloop_end' patterns is that the loop optimizer allocates an ! additional pseudo register for the latter as an iteration counter. ! This pseudo register cannot be used within the loop (i.e., general ! induction variables cannot be derived from it), however, in many cases ! the loop induction variable may become redundant and removed by the ! flow pass.  File: gccint.info, Node: Insn Canonicalizations, Next: Expander Definitions, Prev: Looping Patterns, Up: Machine Desc *************** number of insn patterns required. *** 24414,24457 **** In addition to algebraic simplifications, following canonicalizations are performed: ! * For commutative and comparison operators, a constant is always made ! the second operand. If a machine only supports a constant as the ! second operand, only patterns that match a constant in the second ! operand need be supplied. * For associative operators, a sequence of operators will always chain to the left; for instance, only the left operand of an ! integer 'plus' can itself be a 'plus'. 'and', 'ior', 'xor', ! 'plus', 'mult', 'smin', 'smax', 'umin', and 'umax' are associative when applied to integers, and sometimes to floating-point. ! * For these operators, if only one operand is a 'neg', 'not', 'mult', ! 'plus', or 'minus' expression, it will be the first operand. ! * In combinations of 'neg', 'mult', 'plus', and 'minus', the 'neg' operations (if any) will be moved inside the operations as far as ! possible. For instance, '(neg (mult A B))' is canonicalized as ! '(mult (neg A) B)', but '(plus (mult (neg B) C) A)' is ! canonicalized as '(minus A (mult B C))'. ! * For the 'compare' operator, a constant is always the second operand ! if the first argument is a condition code register or '(cc0)'. ! * An operand of 'neg', 'not', 'mult', 'plus', or 'minus' is made the first operand under the same conditions as above. ! * '(ltu (plus A B) B)' is converted to '(ltu (plus A B) A)'. ! Likewise with 'geu' instead of 'ltu'. ! * '(minus X (const_int N))' is converted to '(plus X (const_int -N))'. ! * Within address computations (i.e., inside 'mem'), a left shift is converted into the appropriate multiplication by a power of two. * De Morgan's Law is used to move bitwise negation inside a bitwise logical-and or logical-or operation. If this results in only one ! operand being a 'not' expression, it will be the first one. A machine that has an instruction that performs a bitwise logical-and of one operand with the bitwise negation of the other --- 24786,24830 ---- In addition to algebraic simplifications, following canonicalizations are performed: ! * For commutative and comparison operators, a constant is always ! made the second operand. If a machine only supports a constant as ! the second operand, only patterns that match a constant in the ! second operand need be supplied. * For associative operators, a sequence of operators will always chain to the left; for instance, only the left operand of an ! integer `plus' can itself be a `plus'. `and', `ior', `xor', ! `plus', `mult', `smin', `smax', `umin', and `umax' are associative when applied to integers, and sometimes to floating-point. ! * For these operators, if only one operand is a `neg', `not', ! `mult', `plus', or `minus' expression, it will be the first ! operand. ! * In combinations of `neg', `mult', `plus', and `minus', the `neg' operations (if any) will be moved inside the operations as far as ! possible. For instance, `(neg (mult A B))' is canonicalized as ! `(mult (neg A) B)', but `(plus (mult (neg B) C) A)' is ! canonicalized as `(minus A (mult B C))'. ! * For the `compare' operator, a constant is always the second operand ! if the first argument is a condition code register or `(cc0)'. ! * An operand of `neg', `not', `mult', `plus', or `minus' is made the first operand under the same conditions as above. ! * `(ltu (plus A B) B)' is converted to `(ltu (plus A B) A)'. ! Likewise with `geu' instead of `ltu'. ! * `(minus X (const_int N))' is converted to `(plus X (const_int -N))'. ! * Within address computations (i.e., inside `mem'), a left shift is converted into the appropriate multiplication by a power of two. * De Morgan's Law is used to move bitwise negation inside a bitwise logical-and or logical-or operation. If this results in only one ! operand being a `not' expression, it will be the first one. A machine that has an instruction that performs a bitwise logical-and of one operand with the bitwise negation of the other *************** are performed: *** 24477,24483 **** logically equivalent RTL expressions. * The only possible RTL expressions involving both bitwise ! exclusive-or and bitwise negation are '(xor:M X Y)' and '(not:M (xor:M X Y))'. * The sum of three items, one of which is a constant, will only --- 24850,24856 ---- logically equivalent RTL expressions. * The only possible RTL expressions involving both bitwise ! exclusive-or and bitwise negation are `(xor:M X Y)' and `(not:M (xor:M X Y))'. * The sum of three items, one of which is a constant, will only *************** are performed: *** 24485,24508 **** (plus:M (plus:M X Y) CONSTANT) ! * Equality comparisons of a group of bits (usually a single bit) with ! zero will be written using 'zero_extract' rather than the ! equivalent 'and' or 'sign_extract' operations. ! * '(sign_extend:M1 (mult:M2 (sign_extend:M2 X) (sign_extend:M2 Y)))' ! is converted to '(mult:M1 (sign_extend:M1 X) (sign_extend:M1 Y))', ! and likewise for 'zero_extend'. - * '(sign_extend:M1 (mult:M2 (ashiftrt:M2 X S) (sign_extend:M2 Y)))' - is converted to '(mult:M1 (sign_extend:M1 (ashiftrt:M2 X S)) - (sign_extend:M1 Y))', and likewise for patterns using 'zero_extend' - and 'lshiftrt'. If the second operand of 'mult' is also a shift, - then that is extended also. This transformation is only applied - when it can be proven that the original operation had sufficient - precision to prevent overflow. Further canonicalization rules are defined in the function ! 'commutative_operand_precedence' in 'gcc/rtlanal.c'.  File: gccint.info, Node: Expander Definitions, Next: Insn Splitting, Prev: Insn Canonicalizations, Up: Machine Desc --- 24858,24882 ---- (plus:M (plus:M X Y) CONSTANT) ! * Equality comparisons of a group of bits (usually a single bit) ! with zero will be written using `zero_extract' rather than the ! equivalent `and' or `sign_extract' operations. ! * `(sign_extend:M1 (mult:M2 (sign_extend:M2 X) (sign_extend:M2 Y)))' ! is converted to `(mult:M1 (sign_extend:M1 X) (sign_extend:M1 Y))', ! and likewise for `zero_extend'. ! ! * `(sign_extend:M1 (mult:M2 (ashiftrt:M2 X S) (sign_extend:M2 Y)))' ! is converted to `(mult:M1 (sign_extend:M1 (ashiftrt:M2 X S)) ! (sign_extend:M1 Y))', and likewise for patterns using ! `zero_extend' and `lshiftrt'. If the second operand of `mult' is ! also a shift, then that is extended also. This transformation is ! only applied when it can be proven that the original operation had ! sufficient precision to prevent overflow. Further canonicalization rules are defined in the function ! `commutative_operand_precedence' in `gcc/rtlanal.c'.  File: gccint.info, Node: Expander Definitions, Next: Insn Splitting, Prev: Insn Canonicalizations, Up: Machine Desc *************** File: gccint.info, Node: Expander Defin *** 24513,24542 **** On some target machines, some standard pattern names for RTL generation cannot be handled with single insn, but a sequence of RTL insns can represent them. For these target machines, you can write a ! 'define_expand' to specify how to generate the sequence of RTL. ! A 'define_expand' is an RTL expression that looks almost like a ! 'define_insn'; but, unlike the latter, a 'define_expand' is used only for RTL generation and it can produce more than one RTL insn. ! A 'define_expand' RTX has four operands: ! * The name. Each 'define_expand' must have a name, since the only use for it is to refer to it by name. * The RTL template. This is a vector of RTL expressions representing ! a sequence of separate instructions. Unlike 'define_insn', there ! is no implicit surrounding 'PARALLEL'. ! * The condition, a string containing a C expression. This expression ! is used to express how the availability of this pattern depends on ! subclasses of target machine, selected by command-line options when ! GCC is run. This is just like the condition of a 'define_insn' ! that has a standard name. Therefore, the condition (if present) ! may not depend on the data in the insn being matched, but only the ! target-machine-type flags. The compiler needs to test these ! conditions during initialization in order to learn exactly which ! named instructions are available in a particular run. * The preparation statements, a string containing zero or more C statements which are to be executed before RTL code is generated --- 24887,24916 ---- On some target machines, some standard pattern names for RTL generation cannot be handled with single insn, but a sequence of RTL insns can represent them. For these target machines, you can write a ! `define_expand' to specify how to generate the sequence of RTL. ! A `define_expand' is an RTL expression that looks almost like a ! `define_insn'; but, unlike the latter, a `define_expand' is used only for RTL generation and it can produce more than one RTL insn. ! A `define_expand' RTX has four operands: ! * The name. Each `define_expand' must have a name, since the only use for it is to refer to it by name. * The RTL template. This is a vector of RTL expressions representing ! a sequence of separate instructions. Unlike `define_insn', there ! is no implicit surrounding `PARALLEL'. ! * The condition, a string containing a C expression. This ! expression is used to express how the availability of this pattern ! depends on subclasses of target machine, selected by command-line ! options when GCC is run. This is just like the condition of a ! `define_insn' that has a standard name. Therefore, the condition ! (if present) may not depend on the data in the insn being matched, ! but only the target-machine-type flags. The compiler needs to ! test these conditions during initialization in order to learn ! exactly which named instructions are available in a particular run. * The preparation statements, a string containing zero or more C statements which are to be executed before RTL code is generated *************** for RTL generation and it can produce mo *** 24544,24557 **** Usually these statements prepare temporary registers for use as internal operands in the RTL template, but they can also generate ! RTL insns directly by calling routines such as 'emit_insn', etc. Any such insns precede the ones that come from the RTL template. ! * Optionally, a vector containing the values of attributes. *Note Insn Attributes::. ! Every RTL insn emitted by a 'define_expand' must match some ! 'define_insn' in the machine description. Otherwise, the compiler will crash when trying to generate code for the insn or trying to optimize it. --- 24918,24931 ---- Usually these statements prepare temporary registers for use as internal operands in the RTL template, but they can also generate ! RTL insns directly by calling routines such as `emit_insn', etc. Any such insns precede the ones that come from the RTL template. ! * Optionally, a vector containing the values of attributes. *Note Insn Attributes::. ! Every RTL insn emitted by a `define_expand' must match some ! `define_insn' in the machine description. Otherwise, the compiler will crash when trying to generate code for the insn or trying to optimize it. *************** also describes the operands that need to *** 24560,24610 **** is used. In particular, it gives a predicate for each operand. A true operand, which needs to be specified in order to generate RTL ! from the pattern, should be described with a 'match_operand' in its first occurrence in the RTL template. This enters information on the operand's predicate into the tables that record such things. GCC uses the information to preload the operand into a register if that is required for valid RTL code. If the operand is referred to more than ! once, subsequent references should use 'match_dup'. The RTL template may also refer to internal "operands" which are temporary registers or labels used only within the sequence made by the ! 'define_expand'. Internal operands are substituted into the RTL ! template with 'match_dup', never with 'match_operand'. The values of the internal operands are not passed in as arguments by the compiler ! when it requests use of this pattern. Instead, they are computed within ! the pattern, in the preparation statements. These statements compute ! the values and store them into the appropriate elements of 'operands' so ! that 'match_dup' can find them. There are two special macros defined for use in the preparation ! statements: 'DONE' and 'FAIL'. Use them with a following semicolon, as a statement. ! 'DONE' ! Use the 'DONE' macro to end RTL generation for the pattern. The only RTL insns resulting from the pattern on this occasion will be ! those already emitted by explicit calls to 'emit_insn' within the preparation statements; the RTL template will not be generated. ! 'FAIL' Make the pattern fail on this occasion. When a pattern fails, it means that the pattern was not truly available. The calling routines in the compiler will try other strategies for code generation using other patterns. Failure is currently supported only for binary (addition, ! multiplication, shifting, etc.) and bit-field ('extv', 'extzv', ! and 'insv') operations. ! If the preparation falls through (invokes neither 'DONE' nor 'FAIL'), ! then the 'define_expand' acts like a 'define_insn' in that the RTL template is used to generate the insn. The RTL template is not used for matching, only for generating the ! initial insn list. If the preparation statement always invokes 'DONE' ! or 'FAIL', the RTL template may be reduced to a simple list of operands, ! such as this example: (define_expand "addsi3" [(match_operand:SI 0 "register_operand" "") --- 24934,24984 ---- is used. In particular, it gives a predicate for each operand. A true operand, which needs to be specified in order to generate RTL ! from the pattern, should be described with a `match_operand' in its first occurrence in the RTL template. This enters information on the operand's predicate into the tables that record such things. GCC uses the information to preload the operand into a register if that is required for valid RTL code. If the operand is referred to more than ! once, subsequent references should use `match_dup'. The RTL template may also refer to internal "operands" which are temporary registers or labels used only within the sequence made by the ! `define_expand'. Internal operands are substituted into the RTL ! template with `match_dup', never with `match_operand'. The values of the internal operands are not passed in as arguments by the compiler ! when it requests use of this pattern. Instead, they are computed ! within the pattern, in the preparation statements. These statements ! compute the values and store them into the appropriate elements of ! `operands' so that `match_dup' can find them. There are two special macros defined for use in the preparation ! statements: `DONE' and `FAIL'. Use them with a following semicolon, as a statement. ! `DONE' ! Use the `DONE' macro to end RTL generation for the pattern. The only RTL insns resulting from the pattern on this occasion will be ! those already emitted by explicit calls to `emit_insn' within the preparation statements; the RTL template will not be generated. ! `FAIL' Make the pattern fail on this occasion. When a pattern fails, it means that the pattern was not truly available. The calling routines in the compiler will try other strategies for code generation using other patterns. Failure is currently supported only for binary (addition, ! multiplication, shifting, etc.) and bit-field (`extv', `extzv', ! and `insv') operations. ! If the preparation falls through (invokes neither `DONE' nor `FAIL'), ! then the `define_expand' acts like a `define_insn' in that the RTL template is used to generate the insn. The RTL template is not used for matching, only for generating the ! initial insn list. If the preparation statement always invokes `DONE' ! or `FAIL', the RTL template may be reduced to a simple list of ! operands, such as this example: (define_expand "addsi3" [(match_operand:SI 0 "register_operand" "") *************** such as this example: *** 24633,24648 **** FAIL; }") ! This example uses 'define_expand' so that it can generate an RTL insn for shifting when the shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns aren't available. When it fails, the compiler tries another strategy using different patterns (such as, a library call). If the compiler were able to handle nontrivial condition-strings in ! patterns with names, then it would be possible to use a 'define_insn' in ! that case. Here is another case (zero-extension on the 68000) which ! makes more use of the power of 'define_expand': (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "general_operand" "") --- 25007,25022 ---- FAIL; }") ! This example uses `define_expand' so that it can generate an RTL insn for shifting when the shift-count is in the supported range of 0 to 3 but fail in other cases where machine insns aren't available. When it fails, the compiler tries another strategy using different patterns (such as, a library call). If the compiler were able to handle nontrivial condition-strings in ! patterns with names, then it would be possible to use a `define_insn' ! in that case. Here is another case (zero-extension on the 68000) which ! makes more use of the power of `define_expand': (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "general_operand" "") *************** Here two RTL insns are generated, one to *** 24659,24674 **** and the other to copy the input operand into its low half. This sequence is incorrect if the input operand refers to [the old value of] the output operand, so the preparation statement makes sure this isn't ! so. The function 'make_safe_from' copies the 'operands[1]' into a ! temporary register if it refers to 'operands[0]'. It does this by emitting another RTL insn. Finally, a third example shows the use of an internal operand. ! Zero-extension on the SPUR chip is done by 'and'-ing the result against ! a halfword mask. But this mask cannot be represented by a 'const_int' because the constant value is too large to be legitimate on this ! machine. So it must be copied into a register with 'force_reg' and then ! the register used in the 'and'. (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "") --- 25033,25048 ---- and the other to copy the input operand into its low half. This sequence is incorrect if the input operand refers to [the old value of] the output operand, so the preparation statement makes sure this isn't ! so. The function `make_safe_from' copies the `operands[1]' into a ! temporary register if it refers to `operands[0]'. It does this by emitting another RTL insn. Finally, a third example shows the use of an internal operand. ! Zero-extension on the SPUR chip is done by `and'-ing the result against ! a halfword mask. But this mask cannot be represented by a `const_int' because the constant value is too large to be legitimate on this ! machine. So it must be copied into a register with `force_reg' and ! then the register used in the `and'. (define_expand "zero_extendhisi2" [(set (match_operand:SI 0 "register_operand" "") *************** the register used in the 'and'. *** 24680,24689 **** "operands[2] = force_reg (SImode, GEN_INT (65535)); ") ! _Note:_ If the 'define_expand' is used to serve a standard binary or unary arithmetic operation or a bit-field operation, then the last insn ! it generates must not be a 'code_label', 'barrier' or 'note'. It must ! be an 'insn', 'jump_insn' or 'call_insn'. If you don't need a real insn at the end, emit an insn to copy the result of the operation into itself. Such an insn will generate no code, but it can avoid problems in the compiler. --- 25054,25063 ---- "operands[2] = force_reg (SImode, GEN_INT (65535)); ") ! _Note:_ If the `define_expand' is used to serve a standard binary or unary arithmetic operation or a bit-field operation, then the last insn ! it generates must not be a `code_label', `barrier' or `note'. It must ! be an `insn', `jump_insn' or `call_insn'. If you don't need a real insn at the end, emit an insn to copy the result of the operation into itself. Such an insn will generate no code, but it can avoid problems in the compiler. *************** File: gccint.info, Node: Insn Splitting *** 24694,24705 **** 16.16 Defining How to Split Instructions ======================================== ! There are two cases where you should specify how to split a pattern into ! multiple insns. On machines that have instructions requiring delay ! slots (*note Delay Slots::) or that have instructions whose output is ! not available for multiple cycles (*note Processor pipeline ! description::), the compiler phases that optimize these cases need to be ! able to move insns into one-instruction delay slots. However, some insns may generate more than one machine instruction. These insns cannot be placed into a delay slot. --- 25068,25079 ---- 16.16 Defining How to Split Instructions ======================================== ! There are two cases where you should specify how to split a pattern ! into multiple insns. On machines that have instructions requiring ! delay slots (*note Delay Slots::) or that have instructions whose ! output is not available for multiple cycles (*note Processor pipeline ! description::), the compiler phases that optimize these cases need to ! be able to move insns into one-instruction delay slots. However, some insns may generate more than one machine instruction. These insns cannot be placed into a delay slot. *************** scheduling. *** 24713,24727 **** The insn combiner phase also splits putative insns. If three insns are merged into one insn with a complex expression that cannot be matched by ! some 'define_insn' pattern, the combiner phase attempts to split the complex pattern into two insns that are recognized. Usually it can break the complex pattern into two patterns by splitting out some subexpression. However, in some other cases, such as performing an addition of a large constant in two insns on a RISC machine, the way to split the addition into two insns is machine-dependent. ! The 'define_split' definition tells the compiler how to split a complex ! insn into several simpler insns. It looks like this: (define_split [INSN-PATTERN] --- 25087,25101 ---- The insn combiner phase also splits putative insns. If three insns are merged into one insn with a complex expression that cannot be matched by ! some `define_insn' pattern, the combiner phase attempts to split the complex pattern into two insns that are recognized. Usually it can break the complex pattern into two patterns by splitting out some subexpression. However, in some other cases, such as performing an addition of a large constant in two insns on a RISC machine, the way to split the addition into two insns is machine-dependent. ! The `define_split' definition tells the compiler how to split a ! complex insn into several simpler insns. It looks like this: (define_split [INSN-PATTERN] *************** insn into several simpler insns. It loo *** 24732,24762 **** "PREPARATION-STATEMENTS") INSN-PATTERN is a pattern that needs to be split and CONDITION is the ! final condition to be tested, as in a 'define_insn'. When an insn matching INSN-PATTERN and satisfying CONDITION is found, it is replaced in the insn list with the insns given by NEW-INSN-PATTERN-1, NEW-INSN-PATTERN-2, etc. The PREPARATION-STATEMENTS are similar to those statements that are ! specified for 'define_expand' (*note Expander Definitions::) and are executed before the new RTL is generated to prepare for the generated code or emit some insns whose pattern is not fixed. Unlike those in ! 'define_expand', however, these statements must not generate any new pseudo-registers. Once reload has completed, they also must not allocate any space in the stack frame. Patterns are matched against INSN-PATTERN in two different circumstances. If an insn needs to be split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means ! that it must have been matched by some 'define_insn' and, if ! 'reload_completed' is nonzero, is known to satisfy the constraints of ! that 'define_insn'. In that case, the new insn patterns must also be ! insns that are matched by some 'define_insn' and, if 'reload_completed' is nonzero, must also satisfy the constraints of those definitions. ! As an example of this usage of 'define_split', consider the following ! example from 'a29k.md', which splits a 'sign_extend' from 'HImode' to ! 'SImode' into a pair of shift insns: (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") --- 25106,25136 ---- "PREPARATION-STATEMENTS") INSN-PATTERN is a pattern that needs to be split and CONDITION is the ! final condition to be tested, as in a `define_insn'. When an insn matching INSN-PATTERN and satisfying CONDITION is found, it is replaced in the insn list with the insns given by NEW-INSN-PATTERN-1, NEW-INSN-PATTERN-2, etc. The PREPARATION-STATEMENTS are similar to those statements that are ! specified for `define_expand' (*note Expander Definitions::) and are executed before the new RTL is generated to prepare for the generated code or emit some insns whose pattern is not fixed. Unlike those in ! `define_expand', however, these statements must not generate any new pseudo-registers. Once reload has completed, they also must not allocate any space in the stack frame. Patterns are matched against INSN-PATTERN in two different circumstances. If an insn needs to be split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means ! that it must have been matched by some `define_insn' and, if ! `reload_completed' is nonzero, is known to satisfy the constraints of ! that `define_insn'. In that case, the new insn patterns must also be ! insns that are matched by some `define_insn' and, if `reload_completed' is nonzero, must also satisfy the constraints of those definitions. ! As an example of this usage of `define_split', consider the following ! example from `a29k.md', which splits a `sign_extend' from `HImode' to ! `SImode' into a pair of shift insns: (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") *************** example from 'a29k.md', which splits a ' *** 24772,24789 **** { operands[1] = gen_lowpart (SImode, operands[1]); }") When the combiner phase tries to split an insn pattern, it is always ! the case that the pattern is _not_ matched by any 'define_insn'. The ! combiner pass first tries to split a single 'set' expression and then ! the same 'set' expression inside a 'parallel', but followed by a ! 'clobber' of a pseudo-reg to use as a scratch register. In these cases, ! the combiner expects exactly two new insn patterns to be generated. It ! will verify that these patterns match some 'define_insn' definitions, so ! you need not do this test in the 'define_split' (of course, there is no ! point in writing a 'define_split' that will never produce insns that ! match). ! Here is an example of this use of 'define_split', taken from ! 'rs6000.md': (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") --- 25146,25163 ---- { operands[1] = gen_lowpart (SImode, operands[1]); }") When the combiner phase tries to split an insn pattern, it is always ! the case that the pattern is _not_ matched by any `define_insn'. The ! combiner pass first tries to split a single `set' expression and then ! the same `set' expression inside a `parallel', but followed by a ! `clobber' of a pseudo-reg to use as a scratch register. In these ! cases, the combiner expects exactly two new insn patterns to be ! generated. It will verify that these patterns match some `define_insn' ! definitions, so you need not do this test in the `define_split' (of ! course, there is no point in writing a `define_split' that will never ! produce insns that match). ! Here is an example of this use of `define_split', taken from ! `rs6000.md': (define_split [(set (match_operand:SI 0 "gen_reg_operand" "") *************** match). *** 24804,24813 **** operands[4] = GEN_INT (low); }") ! Here the predicate 'non_add_cint_operand' matches any 'const_int' that ! is _not_ a valid operand of a single add insn. The add with the smaller ! displacement is written so that it can be substituted into the address ! of a subsequent operation. An example that uses a scratch register, from the same file, generates an equality comparison of a register and a large constant: --- 25178,25187 ---- operands[4] = GEN_INT (low); }") ! Here the predicate `non_add_cint_operand' matches any `const_int' that ! is _not_ a valid operand of a single add insn. The add with the ! smaller displacement is written so that it can be substituted into the ! address of a subsequent operation. An example that uses a scratch register, from the same file, generates an equality comparison of a register and a large constant: *************** an equality comparison of a register and *** 24836,24844 **** operands[5] = GEN_INT (sextc); }") ! To avoid confusion, don't write a single 'define_split' that accepts ! some insns that match some 'define_insn' as well as some insns that ! don't. Instead, write two separate 'define_split' definitions, one for the insns that are valid and one for the insns that are not valid. The splitter is allowed to split jump instructions into sequence of --- 25210,25218 ---- operands[5] = GEN_INT (sextc); }") ! To avoid confusion, don't write a single `define_split' that accepts ! some insns that match some `define_insn' as well as some insns that ! don't. Instead, write two separate `define_split' definitions, one for the insns that are valid and one for the insns that are not valid. The splitter is allowed to split jump instructions into sequence of *************** instruction is always valid, as compiler *** 24851,24866 **** new jump. When new sequence contains multiple jump instructions or new labels, more assistance is needed. Splitter is required to create only unconditional jumps, or simple conditional jump instructions. ! Additionally it must attach a 'REG_BR_PROB' note to each conditional ! jump. A global variable 'split_branch_probability' holds the probability of the original branch in case it was a simple conditional jump, -1 otherwise. To simplify recomputing of edge frequencies, the ! new sequence is required to have only forward jumps to the newly created ! labels. ! For the common case where the pattern of a define_split exactly matches ! the pattern of a define_insn, use 'define_insn_and_split'. It looks ! like this: (define_insn_and_split [INSN-PATTERN] --- 25225,25240 ---- new jump. When new sequence contains multiple jump instructions or new labels, more assistance is needed. Splitter is required to create only unconditional jumps, or simple conditional jump instructions. ! Additionally it must attach a `REG_BR_PROB' note to each conditional ! jump. A global variable `split_branch_probability' holds the probability of the original branch in case it was a simple conditional jump, -1 otherwise. To simplify recomputing of edge frequencies, the ! new sequence is required to have only forward jumps to the newly ! created labels. ! For the common case where the pattern of a define_split exactly ! matches the pattern of a define_insn, use `define_insn_and_split'. It ! looks like this: (define_insn_and_split [INSN-PATTERN] *************** like this: *** 24873,24884 **** "PREPARATION-STATEMENTS" [INSN-ATTRIBUTES]) - INSN-PATTERN, CONDITION, OUTPUT-TEMPLATE, and INSN-ATTRIBUTES are used ! as in 'define_insn'. The NEW-INSN-PATTERN vector and the ! PREPARATION-STATEMENTS are used as in a 'define_split'. The ! SPLIT-CONDITION is also used as in 'define_split', with the additional ! behavior that if the condition starts with '&&', the condition used for the split will be the constructed as a logical "and" of the split condition with the insn condition. For example, from i386.md: --- 25247,25257 ---- "PREPARATION-STATEMENTS" [INSN-ATTRIBUTES]) INSN-PATTERN, CONDITION, OUTPUT-TEMPLATE, and INSN-ATTRIBUTES are used ! as in `define_insn'. The NEW-INSN-PATTERN vector and the ! PREPARATION-STATEMENTS are used as in a `define_split'. The ! SPLIT-CONDITION is also used as in `define_split', with the additional ! behavior that if the condition starts with `&&', the condition used for the split will be the constructed as a logical "and" of the split condition with the insn condition. For example, from i386.md: *************** condition with the insn condition. For *** 24895,24908 **** "" [(set_attr "type" "alu1")]) - In this case, the actual split condition will be ! 'TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed'. ! The 'define_insn_and_split' construction provides exactly the same ! functionality as two separate 'define_insn' and 'define_split' patterns. ! It exists for compactness, and as a maintenance tool to prevent having ! to ensure the two patterns' templates match.  File: gccint.info, Node: Including Patterns, Next: Peephole Definitions, Prev: Insn Splitting, Up: Machine Desc --- 25268,25280 ---- "" [(set_attr "type" "alu1")]) In this case, the actual split condition will be ! `TARGET_ZERO_EXTEND_WITH_AND && !optimize_size && reload_completed'. ! The `define_insn_and_split' construction provides exactly the same ! functionality as two separate `define_insn' and `define_split' ! patterns. It exists for compactness, and as a maintenance tool to ! prevent having to ensure the two patterns' templates match.  File: gccint.info, Node: Including Patterns, Next: Peephole Definitions, Prev: Insn Splitting, Up: Machine Desc *************** File: gccint.info, Node: Including Patt *** 24910,24917 **** 16.17 Including Patterns in Machine Descriptions. ================================================= ! The 'include' pattern tells the compiler tools where to look for ! patterns that are in files other than in the file '.md'. This is used only at build time and there is no preprocessing allowed. It looks like: --- 25282,25289 ---- 16.17 Including Patterns in Machine Descriptions. ================================================= ! The `include' pattern tells the compiler tools where to look for ! patterns that are in files other than in the file `.md'. This is used only at build time and there is no preprocessing allowed. It looks like: *************** only at build time and there is no prepr *** 24925,24934 **** (include "filestuff") - Where PATHNAME is a string that specifies the location of the file, ! specifies the include file to be in 'gcc/config/target/filestuff'. The ! directory 'gcc/config/target' is regarded as the default directory. Machine descriptions may be split up into smaller more manageable subsections and placed into subdirectories. --- 25297,25305 ---- (include "filestuff") Where PATHNAME is a string that specifies the location of the file, ! specifies the include file to be in `gcc/config/target/filestuff'. The ! directory `gcc/config/target' is regarded as the default directory. Machine descriptions may be split up into smaller more manageable subsections and placed into subdirectories. *************** subsections and placed into subdirectori *** 24938,24968 **** (include "BOGUS/filestuff") - the include file is specified to be in ! 'gcc/config/TARGET/BOGUS/filestuff'. Specifying an absolute path for the include file such as; (include "/u2/BOGUS/filestuff") - is permitted but is not encouraged. 16.17.1 RTL Generation Tool Options for Directory Search -------------------------------------------------------- ! The '-IDIR' option specifies directories to search for machine descriptions. For example: genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md - Add the directory DIR to the head of the list of directories to be searched for header files. This can be used to override a system machine definition file, substituting your own version, since these directories are searched before the default machine description file ! directories. If you use more than one '-I' option, the directories are scanned in left-to-right order; the standard default directory come after. --- 25309,25336 ---- (include "BOGUS/filestuff") the include file is specified to be in ! `gcc/config/TARGET/BOGUS/filestuff'. Specifying an absolute path for the include file such as; (include "/u2/BOGUS/filestuff") is permitted but is not encouraged. 16.17.1 RTL Generation Tool Options for Directory Search -------------------------------------------------------- ! The `-IDIR' option specifies directories to search for machine descriptions. For example: genrecog -I/p1/abc/proc1 -I/p2/abcd/pro2 target.md Add the directory DIR to the head of the list of directories to be searched for header files. This can be used to override a system machine definition file, substituting your own version, since these directories are searched before the default machine description file ! directories. If you use more than one `-I' option, the directories are scanned in left-to-right order; the standard default directory come after. *************** File: gccint.info, Node: Peephole Defin *** 24972,24978 **** 16.18 Machine-Specific Peephole Optimizers ========================================== ! In addition to instruction patterns the 'md' file may contain definitions of machine-specific peephole optimizations. The combiner does not notice certain peephole optimizations when the --- 25340,25346 ---- 16.18 Machine-Specific Peephole Optimizers ========================================== ! In addition to instruction patterns the `md' file may contain definitions of machine-specific peephole optimizations. The combiner does not notice certain peephole optimizations when the *************** computed in the first one. A machine-sp *** 24983,24993 **** detect such opportunities. There are two forms of peephole definitions that may be used. The ! original 'define_peephole' is run at assembly output time to match insns ! and substitute assembly text. Use of 'define_peephole' is deprecated. ! A newer 'define_peephole2' matches insns and substitutes new insns. ! The 'peephole2' pass is run after register allocation but before scheduling, which may result in much better code for targets that do scheduling. --- 25351,25362 ---- detect such opportunities. There are two forms of peephole definitions that may be used. The ! original `define_peephole' is run at assembly output time to match ! insns and substitute assembly text. Use of `define_peephole' is ! deprecated. ! A newer `define_peephole2' matches insns and substitutes new insns. ! The `peephole2' pass is run after register allocation but before scheduling, which may result in much better code for targets that do scheduling. *************** A definition looks like this: *** 25014,25020 **** The last string operand may be omitted if you are not using any machine-specific information in this machine description. If present, ! it must obey the same rules as in a 'define_insn'. In this skeleton, INSN-PATTERN-1 and so on are patterns to match consecutive insns. The optimization applies to a sequence of insns when --- 25383,25389 ---- The last string operand may be omitted if you are not using any machine-specific information in this machine description. If present, ! it must obey the same rules as in a `define_insn'. In this skeleton, INSN-PATTERN-1 and so on are patterns to match consecutive insns. The optimization applies to a sequence of insns when *************** INSN-PATTERN-1 matches the first one, IN *** 25022,25044 **** and so on. Each of the insns matched by a peephole must also match a ! 'define_insn'. Peepholes are checked only at the last stage just before ! code generation, and only optionally. Therefore, any insn which would ! match a peephole but no 'define_insn' will cause a crash in code generation in an unoptimized compilation, or at various optimization stages. ! The operands of the insns are matched with 'match_operands', ! 'match_operator', and 'match_dup', as usual. What is not usual is that the operand numbers apply to all the insn patterns in the definition. So, you can check for identical operands in two insns by using ! 'match_operand' in one insn and 'match_dup' in the other. ! The operand constraints used in 'match_operand' patterns do not have ! any direct effect on the applicability of the peephole, but they will be ! validated afterward, so make sure your constraints are general enough to ! apply whenever the peephole matches. If the peephole matches but the ! constraints are not satisfied, the compiler will crash. It is safe to omit constraints in all the operands of the peephole; or you can write constraints which serve as a double-check on the criteria --- 25391,25413 ---- and so on. Each of the insns matched by a peephole must also match a ! `define_insn'. Peepholes are checked only at the last stage just ! before code generation, and only optionally. Therefore, any insn which ! would match a peephole but no `define_insn' will cause a crash in code generation in an unoptimized compilation, or at various optimization stages. ! The operands of the insns are matched with `match_operands', ! `match_operator', and `match_dup', as usual. What is not usual is that the operand numbers apply to all the insn patterns in the definition. So, you can check for identical operands in two insns by using ! `match_operand' in one insn and `match_dup' in the other. ! The operand constraints used in `match_operand' patterns do not have ! any direct effect on the applicability of the peephole, but they will ! be validated afterward, so make sure your constraints are general enough ! to apply whenever the peephole matches. If the peephole matches but ! the constraints are not satisfied, the compiler will crash. It is safe to omit constraints in all the operands of the peephole; or you can write constraints which serve as a double-check on the criteria *************** allocation is complete. Therefore, the *** 25056,25077 **** which operands have ended up in which kinds of registers, just by looking at the operands. ! The way to refer to the operands in CONDITION is to write 'operands[I]' ! for operand number I (as matched by '(match_operand I ...)'). Use the ! variable 'insn' to refer to the last of the insns being matched; use ! 'prev_active_insn' to find the preceding insns. When optimizing computations with intermediate results, you can use CONDITION to match only when the intermediate results are not used ! elsewhere. Use the C expression 'dead_or_set_p (INSN, OP)', where INSN is the insn in which you expect the value to be used for the last time ! (from the value of 'insn', together with use of 'prev_nonnote_insn'), ! and OP is the intermediate value (from 'operands[I]'). Applying the optimization means replacing the sequence of insns with one new insn. The TEMPLATE controls ultimate output of assembler code for this combined insn. It works exactly like the template of a ! 'define_insn'. Operand numbers in this template are the same ones used in matching the original sequence of insns. The result of a defined peephole optimizer does not need to match any --- 25425,25446 ---- which operands have ended up in which kinds of registers, just by looking at the operands. ! The way to refer to the operands in CONDITION is to write ! `operands[I]' for operand number I (as matched by `(match_operand I ! ...)'). Use the variable `insn' to refer to the last of the insns ! being matched; use `prev_active_insn' to find the preceding insns. When optimizing computations with intermediate results, you can use CONDITION to match only when the intermediate results are not used ! elsewhere. Use the C expression `dead_or_set_p (INSN, OP)', where INSN is the insn in which you expect the value to be used for the last time ! (from the value of `insn', together with use of `prev_nonnote_insn'), ! and OP is the intermediate value (from `operands[I]'). Applying the optimization means replacing the sequence of insns with one new insn. The TEMPLATE controls ultimate output of assembler code for this combined insn. It works exactly like the template of a ! `define_insn'. Operand numbers in this template are the same ones used in matching the original sequence of insns. The result of a defined peephole optimizer does not need to match any *************** into *** 25119,25131 **** fmoved sp@+,fp0 INSN-PATTERN-1 and so on look _almost_ like the second operand of ! 'define_insn'. There is one important difference: the second operand of ! 'define_insn' consists of one or more RTX's enclosed in square brackets. ! Usually, there is only one: then the same action can be written as an ! element of a 'define_peephole'. But when there are multiple actions in ! a 'define_insn', they are implicitly enclosed in a 'parallel'. Then you ! must explicitly write the 'parallel', and the square brackets within it, ! in the 'define_peephole'. Thus, if an insn pattern looks like this, (define_insn "divmodsi4" [(set (match_operand:SI 0 "general_operand" "=d") --- 25488,25501 ---- fmoved sp@+,fp0 INSN-PATTERN-1 and so on look _almost_ like the second operand of ! `define_insn'. There is one important difference: the second operand ! of `define_insn' consists of one or more RTX's enclosed in square ! brackets. Usually, there is only one: then the same action can be ! written as an element of a `define_peephole'. But when there are ! multiple actions in a `define_insn', they are implicitly enclosed in a ! `parallel'. Then you must explicitly write the `parallel', and the ! square brackets within it, in the `define_peephole'. Thus, if an insn ! pattern looks like this, (define_insn "divmodsi4" [(set (match_operand:SI 0 "general_operand" "=d") *************** File: gccint.info, Node: define_peephol *** 25155,25161 **** 16.18.2 RTL to RTL Peephole Optimizers -------------------------------------- ! The 'define_peephole2' definition tells the compiler how to substitute one sequence of instructions for another sequence, what additional scratch registers may be needed and what their lifetimes must be. --- 25525,25531 ---- 16.18.2 RTL to RTL Peephole Optimizers -------------------------------------- ! The `define_peephole2' definition tells the compiler how to substitute one sequence of instructions for another sequence, what additional scratch registers may be needed and what their lifetimes must be. *************** scratch registers may be needed and what *** 25169,25175 **** ...] "PREPARATION-STATEMENTS") ! The definition is almost identical to 'define_split' (*note Insn Splitting::) except that the pattern to match is not a single instruction, but a sequence of instructions. --- 25539,25545 ---- ...] "PREPARATION-STATEMENTS") ! The definition is almost identical to `define_split' (*note Insn Splitting::) except that the pattern to match is not a single instruction, but a sequence of instructions. *************** instruction, but a sequence of instructi *** 25177,25186 **** output template. If appropriate registers are not free, the pattern will simply not match. ! Scratch registers are requested with a 'match_scratch' pattern at the top level of the input pattern. The allocated register (initially) will be dead at the point requested within the original sequence. If the ! scratch is used at more than a single point, a 'match_dup' pattern at the top level of the input pattern marks the last position in the input sequence at which the register must be available. --- 25547,25556 ---- output template. If appropriate registers are not free, the pattern will simply not match. ! Scratch registers are requested with a `match_scratch' pattern at the top level of the input pattern. The allocated register (initially) will be dead at the point requested within the original sequence. If the ! scratch is used at more than a single point, a `match_dup' pattern at the top level of the input pattern marks the last position in the input sequence at which the register must be available. *************** sequence at which the register must be a *** 25202,25208 **** This pattern tries to split a load from its use in the hopes that we'll be able to schedule around the memory load latency. It allocates a ! single 'SImode' register of class 'GENERAL_REGS' ('"r"') that needs to be live only at the point just before the arithmetic. A real example requiring extended scratch lifetimes is harder to come --- 25572,25578 ---- This pattern tries to split a load from its use in the hopes that we'll be able to schedule around the memory load latency. It allocates a ! single `SImode' register of class `GENERAL_REGS' (`"r"') that needs to be live only at the point just before the arithmetic. A real example requiring extended scratch lifetimes is harder to come *************** by, so here's a silly made-up example: *** 25221,25229 **** (set (match_dup 3) (match_dup 4))] "") ! If we had not added the '(match_dup 4)' in the middle of the input sequence, it might have been the case that the register we chose at the ! beginning of the sequence is killed by the first or second 'set'.  File: gccint.info, Node: Insn Attributes, Next: Conditional Execution, Prev: Peephole Definitions, Up: Machine Desc --- 25591,25599 ---- (set (match_dup 3) (match_dup 4))] "") ! If we had not added the `(match_dup 4)' in the middle of the input sequence, it might have been the case that the register we chose at the ! beginning of the sequence is killed by the first or second `set'.  File: gccint.info, Node: Insn Attributes, Next: Conditional Execution, Prev: Peephole Definitions, Up: Machine Desc *************** File: gccint.info, Node: Insn Attribute *** 25232,25242 **** ============================ In addition to describing the instruction supported by the target ! machine, the 'md' file also defines a group of "attributes" and a set of values for each. Every generated insn is assigned a value for each ! attribute. One possible attribute would be the effect that the insn has ! on the machine's condition code. This attribute can then be used by ! 'NOTICE_UPDATE_CC' to track the condition codes. * Menu: --- 25602,25612 ---- ============================ In addition to describing the instruction supported by the target ! machine, the `md' file also defines a group of "attributes" and a set of values for each. Every generated insn is assigned a value for each ! attribute. One possible attribute would be the effect that the insn ! has on the machine's condition code. This attribute can then be used ! by `NOTICE_UPDATE_CC' to track the condition codes. * Menu: *************** File: gccint.info, Node: Defining Attri *** 25256,25347 **** 16.19.1 Defining Attributes and their Values -------------------------------------------- ! The 'define_attr' expression is used to define each attribute required by the target machine. It looks like: (define_attr NAME LIST-OF-VALUES DEFAULT) NAME is a string specifying the name of the attribute being defined. Some attributes are used in a special way by the rest of the compiler. ! The 'enabled' attribute can be used to conditionally enable or disable ! insn alternatives (*note Disable Insn Alternatives::). The 'predicable' ! attribute, together with a suitable 'define_cond_exec' (*note Conditional Execution::), can be used to automatically generate ! conditional variants of instruction patterns. The 'mnemonic' attribute can be used to check for the instruction mnemonic (*note Mnemonic ! Attribute::). The compiler internally uses the names 'ce_enabled' and ! 'nonce_enabled', so they should not be used elsewhere as alternative names. ! LIST-OF-VALUES is either a string that specifies a comma-separated list ! of values that can be assigned to the attribute, or a null string to ! indicate that the attribute takes numeric values. DEFAULT is an attribute expression that gives the value of this attribute for insns that match patterns whose definition does not ! include an explicit value for this attribute. *Note Attr Example::, for ! more information on the handling of defaults. *Note Constant Attributes::, for information on attributes that do not depend on any particular insn. For each defined attribute, a number of definitions are written to the ! 'insn-attr.h' file. For cases where an explicit set of values is specified for an attribute, the following are defined: ! * A '#define' is written for the symbol 'HAVE_ATTR_NAME'. ! * An enumerated class is defined for 'attr_NAME' with elements of the ! form 'UPPER-NAME_UPPER-VALUE' where the attribute name and value ! are first converted to uppercase. ! * A function 'get_attr_NAME' is defined that is passed an insn and returns the attribute value for that insn. ! For example, if the following is present in the 'md' file: (define_attr "type" "branch,fp,load,store,arith" ...) ! the following lines will be written to the file 'insn-attr.h'. #define HAVE_ATTR_type 1 enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD, TYPE_STORE, TYPE_ARITH}; extern enum attr_type get_attr_type (); ! If the attribute takes numeric values, no 'enum' type will be defined ! and the function to obtain the attribute's value will return 'int'. There are attributes which are tied to a specific meaning. These attributes are not free to use for other purposes: ! 'length' ! The 'length' attribute is used to calculate the length of emitted code chunks. This is especially important when verifying branch ! distances. *Note Insn Lengths::. ! 'enabled' ! The 'enabled' attribute can be defined to prevent certain alternatives of an insn definition from being used during code ! generation. *Note Disable Insn Alternatives::. ! 'mnemonic' ! The 'mnemonic' attribute can be defined to implement instruction ! specific checks in e.g. the pipeline description. *Note Mnemonic Attribute::. For each of these special attributes, the corresponding ! 'HAVE_ATTR_NAME' '#define' is also written when the attribute is not ! defined; in that case, it is defined as '0'. Another way of defining an attribute is to use: (define_enum_attr "ATTR" "ENUM" DEFAULT) ! This works in just the same way as 'define_attr', except that the list of values is taken from a separate enumeration called ENUM (*note ! define_enum::). This form allows you to use the same list of values for ! several attributes without having to repeat the list each time. For ! example: (define_enum "processor" [ model_a --- 25626,25717 ---- 16.19.1 Defining Attributes and their Values -------------------------------------------- ! The `define_attr' expression is used to define each attribute required by the target machine. It looks like: (define_attr NAME LIST-OF-VALUES DEFAULT) NAME is a string specifying the name of the attribute being defined. Some attributes are used in a special way by the rest of the compiler. ! The `enabled' attribute can be used to conditionally enable or disable ! insn alternatives (*note Disable Insn Alternatives::). The `predicable' ! attribute, together with a suitable `define_cond_exec' (*note Conditional Execution::), can be used to automatically generate ! conditional variants of instruction patterns. The `mnemonic' attribute can be used to check for the instruction mnemonic (*note Mnemonic ! Attribute::). The compiler internally uses the names `ce_enabled' and ! `nonce_enabled', so they should not be used elsewhere as alternative names. ! LIST-OF-VALUES is either a string that specifies a comma-separated ! list of values that can be assigned to the attribute, or a null string ! to indicate that the attribute takes numeric values. DEFAULT is an attribute expression that gives the value of this attribute for insns that match patterns whose definition does not ! include an explicit value for this attribute. *Note Attr Example::, ! for more information on the handling of defaults. *Note Constant Attributes::, for information on attributes that do not depend on any particular insn. For each defined attribute, a number of definitions are written to the ! `insn-attr.h' file. For cases where an explicit set of values is specified for an attribute, the following are defined: ! * A `#define' is written for the symbol `HAVE_ATTR_NAME'. ! * An enumerated class is defined for `attr_NAME' with elements of ! the form `UPPER-NAME_UPPER-VALUE' where the attribute name and ! value are first converted to uppercase. ! * A function `get_attr_NAME' is defined that is passed an insn and returns the attribute value for that insn. ! For example, if the following is present in the `md' file: (define_attr "type" "branch,fp,load,store,arith" ...) ! the following lines will be written to the file `insn-attr.h'. #define HAVE_ATTR_type 1 enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD, TYPE_STORE, TYPE_ARITH}; extern enum attr_type get_attr_type (); ! If the attribute takes numeric values, no `enum' type will be defined ! and the function to obtain the attribute's value will return `int'. There are attributes which are tied to a specific meaning. These attributes are not free to use for other purposes: ! `length' ! The `length' attribute is used to calculate the length of emitted code chunks. This is especially important when verifying branch ! distances. *Note Insn Lengths::. ! `enabled' ! The `enabled' attribute can be defined to prevent certain alternatives of an insn definition from being used during code ! generation. *Note Disable Insn Alternatives::. ! `mnemonic' ! The `mnemonic' attribute can be defined to implement instruction ! specific checks in e.g. the pipeline description. *Note Mnemonic Attribute::. For each of these special attributes, the corresponding ! `HAVE_ATTR_NAME' `#define' is also written when the attribute is not ! defined; in that case, it is defined as `0'. Another way of defining an attribute is to use: (define_enum_attr "ATTR" "ENUM" DEFAULT) ! This works in just the same way as `define_attr', except that the list of values is taken from a separate enumeration called ENUM (*note ! define_enum::). This form allows you to use the same list of values ! for several attributes without having to repeat the list each time. ! For example: (define_enum "processor" [ model_a *************** example: *** 25360,25368 **** (define_attr "tune" "model_a,model_b,..." (const (symbol_ref "target_tune"))) ! but without duplicating the processor list. The second example defines ! two separate C enums ('attr_arch' and 'attr_tune') whereas the first ! defines a single C enum ('processor').  File: gccint.info, Node: Expressions, Next: Tagging Insns, Prev: Defining Attributes, Up: Insn Attributes --- 25730,25738 ---- (define_attr "tune" "model_a,model_b,..." (const (symbol_ref "target_tune"))) ! but without duplicating the processor list. The second example ! defines two separate C enums (`attr_arch' and `attr_tune') whereas the ! first defines a single C enum (`processor').  File: gccint.info, Node: Expressions, Next: Tagging Insns, Prev: Defining Attributes, Up: Insn Attributes *************** RTL expressions used to define attribute *** 25374,25481 **** plus a few specific to attribute definitions, to be discussed below. Attribute value expressions must have one of the following forms: ! '(const_int I)' The integer I specifies the value of a numeric attribute. I must be non-negative. The value of a numeric attribute can be specified either with a ! 'const_int', or as an integer represented as a string in ! 'const_string', 'eq_attr' (see below), 'attr', 'symbol_ref', simple ! arithmetic expressions, and 'set_attr' overrides on specific ! instructions (*note Tagging Insns::). ! '(const_string VALUE)' ! The string VALUE specifies a constant attribute value. If VALUE is ! specified as '"*"', it means that the default value of the attribute is to be used for the insn containing this expression. ! '"*"' obviously cannot be used in the DEFAULT expression of a ! 'define_attr'. If the attribute whose value is being specified is numeric, VALUE must be a string containing a non-negative integer (normally ! 'const_int' would be used in this case). Otherwise, it must contain one of the valid values for the attribute. ! '(if_then_else TEST TRUE-VALUE FALSE-VALUE)' TEST specifies an attribute test, whose format is defined below. The value of this expression is TRUE-VALUE if TEST is true, otherwise it is FALSE-VALUE. ! '(cond [TEST1 VALUE1 ...] DEFAULT)' The first operand of this expression is a vector containing an even number of expressions and consisting of pairs of TEST and VALUE ! expressions. The value of the 'cond' expression is that of the VALUE corresponding to the first true TEST expression. If none of ! the TEST expressions are true, the value of the 'cond' expression is that of the DEFAULT expression. TEST expressions can have one of the following forms: ! '(const_int I)' This test is true if I is nonzero and false otherwise. ! '(not TEST)' ! '(ior TEST1 TEST2)' ! '(and TEST1 TEST2)' These tests are true if the indicated logical function is true. ! '(match_operand:M N PRED CONSTRAINTS)' ! This test is true if operand N of the insn whose attribute value is ! being determined has mode M (this part of the test is ignored if M ! is 'VOIDmode') and the function specified by the string PRED ! returns a nonzero value when passed operand N and mode M (this part ! of the test is ignored if PRED is the null string). The CONSTRAINTS operand is ignored and should be the null string. ! '(match_test C-EXPR)' The test is true if C expression C-EXPR is true. In non-constant attributes, C-EXPR has access to the following variables: ! INSN The rtl instruction under test. ! WHICH_ALTERNATIVE ! The 'define_insn' alternative that INSN matches. *Note Output ! Statement::. ! OPERANDS An array of INSN's rtl operands. ! C-EXPR behaves like the condition in a C 'if' statement, so there ! is no need to explicitly convert the expression into a boolean 0 or ! 1 value. For example, the following two tests are equivalent: (match_test "x & 2") (match_test "(x & 2) != 0") ! '(le ARITH1 ARITH2)' ! '(leu ARITH1 ARITH2)' ! '(lt ARITH1 ARITH2)' ! '(ltu ARITH1 ARITH2)' ! '(gt ARITH1 ARITH2)' ! '(gtu ARITH1 ARITH2)' ! '(ge ARITH1 ARITH2)' ! '(geu ARITH1 ARITH2)' ! '(ne ARITH1 ARITH2)' ! '(eq ARITH1 ARITH2)' These tests are true if the indicated comparison of the two arithmetic expressions is true. Arithmetic expressions are formed ! with 'plus', 'minus', 'mult', 'div', 'mod', 'abs', 'neg', 'and', ! 'ior', 'xor', 'not', 'ashift', 'lshiftrt', and 'ashiftrt' expressions. ! 'const_int' and 'symbol_ref' are always valid terms (*note Insn ! Lengths::,for additional forms). 'symbol_ref' is a string denoting ! a C expression that yields an 'int' when evaluated by the ! 'get_attr_...' routine. It should normally be a global variable. ! '(eq_attr NAME VALUE)' NAME is a string specifying the name of an attribute. VALUE is a string that is either a valid value for attribute NAME, ! a comma-separated list of values, or '!' followed by a value or ! list. If VALUE does not begin with a '!', this test is true if the ! value of the NAME attribute of the current insn is in the list ! specified by VALUE. If VALUE begins with a '!', this test is true if the attribute's value is _not_ in the specified list. For example, --- 25744,25853 ---- plus a few specific to attribute definitions, to be discussed below. Attribute value expressions must have one of the following forms: ! `(const_int I)' The integer I specifies the value of a numeric attribute. I must be non-negative. The value of a numeric attribute can be specified either with a ! `const_int', or as an integer represented as a string in ! `const_string', `eq_attr' (see below), `attr', `symbol_ref', ! simple arithmetic expressions, and `set_attr' overrides on ! specific instructions (*note Tagging Insns::). ! `(const_string VALUE)' ! The string VALUE specifies a constant attribute value. If VALUE ! is specified as `"*"', it means that the default value of the attribute is to be used for the insn containing this expression. ! `"*"' obviously cannot be used in the DEFAULT expression of a ! `define_attr'. If the attribute whose value is being specified is numeric, VALUE must be a string containing a non-negative integer (normally ! `const_int' would be used in this case). Otherwise, it must contain one of the valid values for the attribute. ! `(if_then_else TEST TRUE-VALUE FALSE-VALUE)' TEST specifies an attribute test, whose format is defined below. The value of this expression is TRUE-VALUE if TEST is true, otherwise it is FALSE-VALUE. ! `(cond [TEST1 VALUE1 ...] DEFAULT)' The first operand of this expression is a vector containing an even number of expressions and consisting of pairs of TEST and VALUE ! expressions. The value of the `cond' expression is that of the VALUE corresponding to the first true TEST expression. If none of ! the TEST expressions are true, the value of the `cond' expression is that of the DEFAULT expression. TEST expressions can have one of the following forms: ! `(const_int I)' This test is true if I is nonzero and false otherwise. ! `(not TEST)' ! `(ior TEST1 TEST2)' ! `(and TEST1 TEST2)' These tests are true if the indicated logical function is true. ! `(match_operand:M N PRED CONSTRAINTS)' ! This test is true if operand N of the insn whose attribute value ! is being determined has mode M (this part of the test is ignored ! if M is `VOIDmode') and the function specified by the string PRED ! returns a nonzero value when passed operand N and mode M (this ! part of the test is ignored if PRED is the null string). The CONSTRAINTS operand is ignored and should be the null string. ! `(match_test C-EXPR)' The test is true if C expression C-EXPR is true. In non-constant attributes, C-EXPR has access to the following variables: ! INSN The rtl instruction under test. ! ! WHICH_ALTERNATIVE ! The `define_insn' alternative that INSN matches. *Note ! Output Statement::. ! ! OPERANDS An array of INSN's rtl operands. ! C-EXPR behaves like the condition in a C `if' statement, so there ! is no need to explicitly convert the expression into a boolean 0 ! or 1 value. For example, the following two tests are equivalent: (match_test "x & 2") (match_test "(x & 2) != 0") ! `(le ARITH1 ARITH2)' ! `(leu ARITH1 ARITH2)' ! `(lt ARITH1 ARITH2)' ! `(ltu ARITH1 ARITH2)' ! `(gt ARITH1 ARITH2)' ! `(gtu ARITH1 ARITH2)' ! `(ge ARITH1 ARITH2)' ! `(geu ARITH1 ARITH2)' ! `(ne ARITH1 ARITH2)' ! `(eq ARITH1 ARITH2)' These tests are true if the indicated comparison of the two arithmetic expressions is true. Arithmetic expressions are formed ! with `plus', `minus', `mult', `div', `mod', `abs', `neg', `and', ! `ior', `xor', `not', `ashift', `lshiftrt', and `ashiftrt' expressions. ! `const_int' and `symbol_ref' are always valid terms (*note Insn ! Lengths::,for additional forms). `symbol_ref' is a string ! denoting a C expression that yields an `int' when evaluated by the ! `get_attr_...' routine. It should normally be a global variable. ! `(eq_attr NAME VALUE)' NAME is a string specifying the name of an attribute. VALUE is a string that is either a valid value for attribute NAME, ! a comma-separated list of values, or `!' followed by a value or ! list. If VALUE does not begin with a `!', this test is true if ! the value of the NAME attribute of the current insn is in the list ! specified by VALUE. If VALUE begins with a `!', this test is true if the attribute's value is _not_ in the specified list. For example, *************** Attribute value expressions must have on *** 25486,25493 **** (ior (eq_attr "type" "load") (eq_attr "type" "store")) ! If NAME specifies an attribute of 'alternative', it refers to the ! value of the compiler variable 'which_alternative' (*note Output Statement::) and the values must be small integers. For example, (eq_attr "alternative" "2,3") --- 25858,25865 ---- (ior (eq_attr "type" "load") (eq_attr "type" "store")) ! If NAME specifies an attribute of `alternative', it refers to the ! value of the compiler variable `which_alternative' (*note Output Statement::) and the values must be small integers. For example, (eq_attr "alternative" "2,3") *************** Attribute value expressions must have on *** 25497,25518 **** (ior (eq (symbol_ref "which_alternative") (const_int 2)) (eq (symbol_ref "which_alternative") (const_int 3))) ! Note that, for most attributes, an 'eq_attr' test is simplified in cases where the value of the attribute being tested is known for all insns matching a particular pattern. This is by far the most common case. ! '(attr_flag NAME)' ! The value of an 'attr_flag' expression is true if the flag ! specified by NAME is true for the 'insn' currently being scheduled. NAME is a string specifying one of a fixed set of flags to test. ! Test the flags 'forward' and 'backward' to determine the direction of a conditional branch. ! This example describes a conditional branch delay slot which can be ! nullified for forward branches that are taken (annul-true) or for ! backward branches which are not taken (annul-false). (define_delay (eq_attr "type" "cbranch") [(eq_attr "in_branch_delay" "true") --- 25869,25890 ---- (ior (eq (symbol_ref "which_alternative") (const_int 2)) (eq (symbol_ref "which_alternative") (const_int 3))) ! Note that, for most attributes, an `eq_attr' test is simplified in cases where the value of the attribute being tested is known for all insns matching a particular pattern. This is by far the most common case. ! `(attr_flag NAME)' ! The value of an `attr_flag' expression is true if the flag ! specified by NAME is true for the `insn' currently being scheduled. NAME is a string specifying one of a fixed set of flags to test. ! Test the flags `forward' and `backward' to determine the direction of a conditional branch. ! This example describes a conditional branch delay slot which can ! be nullified for forward branches that are taken (annul-true) or ! for backward branches which are not taken (annul-false). (define_delay (eq_attr "type" "cbranch") [(eq_attr "in_branch_delay" "true") *************** Attribute value expressions must have on *** 25521,25535 **** (and (eq_attr "in_branch_delay" "true") (attr_flag "backward"))]) ! The 'forward' and 'backward' flags are false if the current 'insn' being scheduled is not a conditional branch. ! 'attr_flag' is only used during delay slot scheduling and has no meaning to other passes of the compiler. ! '(attr NAME)' The value of another attribute is returned. This is most useful ! for numeric attributes, as 'eq_attr' and 'attr_flag' produce more efficient code for non-numeric attributes.  --- 25893,25907 ---- (and (eq_attr "in_branch_delay" "true") (attr_flag "backward"))]) ! The `forward' and `backward' flags are false if the current `insn' being scheduled is not a conditional branch. ! `attr_flag' is only used during delay slot scheduling and has no meaning to other passes of the compiler. ! `(attr NAME)' The value of another attribute is returned. This is most useful ! for numeric attributes, as `eq_attr' and `attr_flag' produce more efficient code for non-numeric attributes.  *************** File: gccint.info, Node: Tagging Insns, *** 25539,25594 **** ------------------------------------------- The value assigned to an attribute of an insn is primarily determined by ! which pattern is matched by that insn (or which 'define_peephole' ! generated it). Every 'define_insn' and 'define_peephole' can have an optional last argument to specify the values of attributes for matching ! insns. The value of any attribute not specified in a particular insn is ! set to the default value for that attribute, as specified in its ! 'define_attr'. Extensive use of default values for attributes permits the specification of the values for only one or two attributes in the definition of most insn patterns, as seen in the example in the next section. ! The optional last argument of 'define_insn' and 'define_peephole' is a vector of expressions, each of which defines the value for a single ! attribute. The most general way of assigning an attribute's value is to ! use a 'set' expression whose first operand is an 'attr' expression giving the name of the attribute being set. The second operand of the ! 'set' is an attribute expression (*note Expressions::) giving the value of the attribute. ! When the attribute value depends on the 'alternative' attribute (i.e., which is the applicable alternative in the constraint of the insn), the ! 'set_attr_alternative' expression can be used. It allows the specification of a vector of attribute expressions, one for each alternative. When the generality of arbitrary attribute expressions is not required, ! the simpler 'set_attr' expression can be used, which allows specifying a ! string giving either a single attribute value or a list of attribute values, one for each alternative. The form of each of the above specifications is shown below. In each case, NAME is a string specifying the attribute to be set. ! '(set_attr NAME VALUE-STRING)' VALUE-STRING is either a string giving the desired attribute value, or a string containing a comma-separated list giving the values for succeeding alternatives. The number of elements must match the number of alternatives in the constraint of the insn pattern. ! Note that it may be useful to specify '*' for some alternative, in which case the attribute will assume its default value for insns matching that alternative. ! '(set_attr_alternative NAME [VALUE1 VALUE2 ...])' Depending on the alternative of the insn, the value will be one of ! the specified values. This is a shorthand for using a 'cond' with ! tests on the 'alternative' attribute. ! '(set (attr NAME) VALUE)' ! The first operand of this 'set' must be the special RTL expression ! 'attr', whose sole operand is a string giving the name of the attribute being set. VALUE is the value of the attribute. The following shows three different ways of representing the same --- 25911,25966 ---- ------------------------------------------- The value assigned to an attribute of an insn is primarily determined by ! which pattern is matched by that insn (or which `define_peephole' ! generated it). Every `define_insn' and `define_peephole' can have an optional last argument to specify the values of attributes for matching ! insns. The value of any attribute not specified in a particular insn ! is set to the default value for that attribute, as specified in its ! `define_attr'. Extensive use of default values for attributes permits the specification of the values for only one or two attributes in the definition of most insn patterns, as seen in the example in the next section. ! The optional last argument of `define_insn' and `define_peephole' is a vector of expressions, each of which defines the value for a single ! attribute. The most general way of assigning an attribute's value is ! to use a `set' expression whose first operand is an `attr' expression giving the name of the attribute being set. The second operand of the ! `set' is an attribute expression (*note Expressions::) giving the value of the attribute. ! When the attribute value depends on the `alternative' attribute (i.e., which is the applicable alternative in the constraint of the insn), the ! `set_attr_alternative' expression can be used. It allows the specification of a vector of attribute expressions, one for each alternative. When the generality of arbitrary attribute expressions is not required, ! the simpler `set_attr' expression can be used, which allows specifying ! a string giving either a single attribute value or a list of attribute values, one for each alternative. The form of each of the above specifications is shown below. In each case, NAME is a string specifying the attribute to be set. ! `(set_attr NAME VALUE-STRING)' VALUE-STRING is either a string giving the desired attribute value, or a string containing a comma-separated list giving the values for succeeding alternatives. The number of elements must match the number of alternatives in the constraint of the insn pattern. ! Note that it may be useful to specify `*' for some alternative, in which case the attribute will assume its default value for insns matching that alternative. ! `(set_attr_alternative NAME [VALUE1 VALUE2 ...])' Depending on the alternative of the insn, the value will be one of ! the specified values. This is a shorthand for using a `cond' with ! tests on the `alternative' attribute. ! `(set (attr NAME) VALUE)' ! The first operand of this `set' must be the special RTL expression ! `attr', whose sole operand is a string giving the name of the attribute being set. VALUE is the value of the attribute. The following shows three different ways of representing the same *************** attribute value specification: *** 25605,25629 **** (eq_attr "alternative" "2") (const_string "store")] (const_string "arith"))) ! The 'define_asm_attributes' expression provides a mechanism to specify ! the attributes assigned to insns produced from an 'asm' statement. It has the form: (define_asm_attributes [ATTR-SETS]) ! where ATTR-SETS is specified the same as for both the 'define_insn' and ! the 'define_peephole' expressions. These values will typically be the "worst case" attribute values. For example, they might indicate that the condition code will be clobbered. ! A specification for a 'length' attribute is handled specially. The way ! to compute the length of an 'asm' insn is to multiply the length ! specified in the expression 'define_asm_attributes' by the number of ! machine instructions specified in the 'asm' statement, determined by counting the number of semicolons and newlines in the string. ! Therefore, the value of the 'length' attribute specified in a ! 'define_asm_attributes' should be the maximum possible length of a single machine instruction.  --- 25977,26001 ---- (eq_attr "alternative" "2") (const_string "store")] (const_string "arith"))) ! The `define_asm_attributes' expression provides a mechanism to specify ! the attributes assigned to insns produced from an `asm' statement. It has the form: (define_asm_attributes [ATTR-SETS]) ! where ATTR-SETS is specified the same as for both the `define_insn' and ! the `define_peephole' expressions. These values will typically be the "worst case" attribute values. For example, they might indicate that the condition code will be clobbered. ! A specification for a `length' attribute is handled specially. The ! way to compute the length of an `asm' insn is to multiply the length ! specified in the expression `define_asm_attributes' by the number of ! machine instructions specified in the `asm' statement, determined by counting the number of semicolons and newlines in the string. ! Therefore, the value of the `length' attribute specified in a ! `define_asm_attributes' should be the maximum possible length of a single machine instruction.  *************** File: gccint.info, Node: Attr Example, *** 25634,25640 **** The judicious use of defaulting is important in the efficient use of insn attributes. Typically, insns are divided into "types" and an ! attribute, customarily called 'type', is used to represent this value. This attribute is normally used only to define the default value for other attributes. An example will clarify this usage. --- 26006,26012 ---- The judicious use of defaulting is important in the efficient use of insn attributes. Typically, insns are divided into "types" and an ! attribute, customarily called `type', is used to represent this value. This attribute is normally used only to define the default value for other attributes. An example will clarify this usage. *************** operations, floating point operations, a *** 25645,25656 **** Here we will concern ourselves with determining the effect of an insn on the condition code and will limit ourselves to the following possible ! effects: The condition code can be set unpredictably (clobbered), not be ! changed, be set to agree with the results of the operation, or only changed if the item previously set into the condition code has been modified. ! Here is part of a sample 'md' file for such a machine: (define_attr "type" "load,store,arith,fp,branch" (const_string "arith")) --- 26017,26028 ---- Here we will concern ourselves with determining the effect of an insn on the condition code and will limit ourselves to the following possible ! effects: The condition code can be set unpredictably (clobbered), not ! be changed, be set to agree with the results of the operation, or only changed if the item previously set into the condition code has been modified. ! Here is part of a sample `md' file for such a machine: (define_attr "type" "load,store,arith,fp,branch" (const_string "arith")) *************** File: gccint.info, Node: Insn Lengths, *** 25688,25713 **** For many machines, multiple types of branch instructions are provided, each for different length branch displacements. In most cases, the ! assembler will choose the correct instruction to use. However, when the ! assembler cannot do so, GCC can when a special attribute, the 'length' ! attribute, is defined. This attribute must be defined to have numeric ! values by specifying a null string in its 'define_attr'. ! In the case of the 'length' attribute, two additional forms of arithmetic terms are allowed in test expressions: ! '(match_dup N)' This refers to the address of operand N of the current insn, which ! must be a 'label_ref'. ! '(pc)' For non-branch instructions and backward branch instructions, this refers to the address of the current insn. But for forward branch instructions, this refers to the address of the next insn, because the length of the current insn is to be computed. For normal insns, the length will be determined by value of the ! 'length' attribute. In the case of 'addr_vec' and 'addr_diff_vec' insn patterns, the length is computed as the number of vectors multiplied by the size of each vector. --- 26060,26085 ---- For many machines, multiple types of branch instructions are provided, each for different length branch displacements. In most cases, the ! assembler will choose the correct instruction to use. However, when ! the assembler cannot do so, GCC can when a special attribute, the ! `length' attribute, is defined. This attribute must be defined to have ! numeric values by specifying a null string in its `define_attr'. ! In the case of the `length' attribute, two additional forms of arithmetic terms are allowed in test expressions: ! `(match_dup N)' This refers to the address of operand N of the current insn, which ! must be a `label_ref'. ! `(pc)' For non-branch instructions and backward branch instructions, this refers to the address of the current insn. But for forward branch instructions, this refers to the address of the next insn, because the length of the current insn is to be computed. For normal insns, the length will be determined by value of the ! `length' attribute. In the case of `addr_vec' and `addr_diff_vec' insn patterns, the length is computed as the number of vectors multiplied by the size of each vector. *************** the size of each vector. *** 25715,25732 **** The following macros can be used to refine the length computation: ! 'ADJUST_INSN_LENGTH (INSN, LENGTH)' If defined, modifies the length assigned to instruction INSN as a function of the context in which it is used. LENGTH is an lvalue that contains the initially computed length of the insn and should be updated with the correct length of the insn. This macro will normally not be required. A case in which it is ! required is the ROMP. On this machine, the size of an 'addr_vec' insn must be increased by two to compensate for the fact that alignment may be required. ! The routine that returns 'get_attr_length' (the value of the 'length' attribute) can be used by the output routine to determine the form of the branch instruction to be written, as the example below illustrates. --- 26087,26104 ---- The following macros can be used to refine the length computation: ! `ADJUST_INSN_LENGTH (INSN, LENGTH)' If defined, modifies the length assigned to instruction INSN as a function of the context in which it is used. LENGTH is an lvalue that contains the initially computed length of the insn and should be updated with the correct length of the insn. This macro will normally not be required. A case in which it is ! required is the ROMP. On this machine, the size of an `addr_vec' insn must be increased by two to compensate for the fact that alignment may be required. ! The routine that returns `get_attr_length' (the value of the `length' attribute) can be used by the output routine to determine the form of the branch instruction to be written, as the example below illustrates. *************** the branch instruction to be written, as *** 25734,25741 **** consider the IBM 360. If we adopt the convention that a register will be set to the starting address of a function, we can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we ! need a six-byte sequence to load the address from memory and then branch ! to it. On such a machine, a pattern for a branch instruction might be specified as follows: --- 26106,26113 ---- consider the IBM 360. If we adopt the convention that a register will be set to the starting address of a function, we can jump to labels within 4k of the start using a four-byte instruction. Otherwise, we ! need a six-byte sequence to load the address from memory and then ! branch to it. On such a machine, a pattern for a branch instruction might be specified as follows: *************** File: gccint.info, Node: Constant Attri *** 25759,25766 **** 16.19.6 Constant Attributes --------------------------- ! A special form of 'define_attr', where the expression for the default ! value is a 'const' expression, indicates an attribute that is constant for a given run of the compiler. Constant attributes may be used to specify which variety of processor is used. For example, --- 26131,26138 ---- 16.19.6 Constant Attributes --------------------------- ! A special form of `define_attr', where the expression for the default ! value is a `const' expression, indicates an attribute that is constant for a given run of the compiler. Constant attributes may be used to specify which variety of processor is used. For example, *************** specify which variety of processor is us *** 25778,25786 **** The routine generated for constant attributes has no parameters as it does not depend on any particular insn. RTL expressions used to define ! the value of a constant attribute may use the 'symbol_ref' form, but may ! not use either the 'match_operand' form or 'eq_attr' forms involving ! insn attributes.  File: gccint.info, Node: Mnemonic Attribute, Next: Delay Slots, Prev: Constant Attributes, Up: Insn Attributes --- 26150,26158 ---- The routine generated for constant attributes has no parameters as it does not depend on any particular insn. RTL expressions used to define ! the value of a constant attribute may use the `symbol_ref' form, but ! may not use either the `match_operand' form or `eq_attr' forms ! involving insn attributes.  File: gccint.info, Node: Mnemonic Attribute, Next: Delay Slots, Prev: Constant Attributes, Up: Insn Attributes *************** File: gccint.info, Node: Mnemonic Attri *** 25788,25815 **** 16.19.7 Mnemonic Attribute -------------------------- ! The 'mnemonic' attribute is a string type attribute holding the ! instruction mnemonic for an insn alternative. The attribute values will ! automatically be generated by the machine description parser if there is ! an attribute definition in the md file: (define_attr "mnemonic" "unknown" (const_string "unknown")) The default value can be freely chosen as long as it does not collide ! with any of the instruction mnemonics. This value will be used whenever ! the machine description parser is not able to determine the mnemonic ! string. This might be the case for output templates containing more ! than a single instruction as in '"mvcle\t%0,%1,0\;jo\t.-4"'. ! The 'mnemonic' attribute set is not generated automatically if the instruction string is generated via C code. ! An existing 'mnemonic' attribute set in an insn definition will not be overriden by the md file parser. That way it is possible to manually set the instruction mnemonics for the cases where the md file parser fails to determine it automatically. ! The 'mnemonic' attribute is useful for dealing with instruction specific properties in the pipeline description without defining additional insn attributes. --- 26160,26188 ---- 16.19.7 Mnemonic Attribute -------------------------- ! The `mnemonic' attribute is a string type attribute holding the ! instruction mnemonic for an insn alternative. The attribute values ! will automatically be generated by the machine description parser if ! there is an attribute definition in the md file: (define_attr "mnemonic" "unknown" (const_string "unknown")) The default value can be freely chosen as long as it does not collide ! with any of the instruction mnemonics. This value will be used ! whenever the machine description parser is not able to determine the ! mnemonic string. This might be the case for output templates ! containing more than a single instruction as in ! `"mvcle\t%0,%1,0\;jo\t.-4"'. ! The `mnemonic' attribute set is not generated automatically if the instruction string is generated via C code. ! An existing `mnemonic' attribute set in an insn definition will not be overriden by the md file parser. That way it is possible to manually set the instruction mnemonics for the cases where the md file parser fails to determine it automatically. ! The `mnemonic' attribute is useful for dealing with instruction specific properties in the pipeline description without defining additional insn attributes. *************** File: gccint.info, Node: Delay Slots, *** 25827,25841 **** The insn attribute mechanism can be used to specify the requirements for delay slots, if any, on a target machine. An instruction is said to require a "delay slot" if some instructions that are physically after ! the instruction are executed as if they were located before it. Classic ! examples are branch and call instructions, which often execute the ! following instruction before the branch or call is performed. On some machines, conditional branch instructions can optionally ! "annul" instructions in the delay slot. This means that the instruction ! will not be executed for certain branch outcomes. Both instructions ! that annul if the branch is true and instructions that annul if the ! branch is false are supported. Delay slot scheduling differs from instruction scheduling in that determining whether an instruction needs a delay slot is dependent only --- 26200,26214 ---- The insn attribute mechanism can be used to specify the requirements for delay slots, if any, on a target machine. An instruction is said to require a "delay slot" if some instructions that are physically after ! the instruction are executed as if they were located before it. ! Classic examples are branch and call instructions, which often execute ! the following instruction before the branch or call is performed. On some machines, conditional branch instructions can optionally ! "annul" instructions in the delay slot. This means that the ! instruction will not be executed for certain branch outcomes. Both ! instructions that annul if the branch is true and instructions that ! annul if the branch is false are supported. Delay slot scheduling differs from instruction scheduling in that determining whether an instruction needs a delay slot is dependent only *************** instructions. See the next section for *** 25844,25880 **** instruction scheduling. The requirement of an insn needing one or more delay slots is indicated ! via the 'define_delay' expression. It has the following form: (define_delay TEST [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1 DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2 ...]) ! TEST is an attribute test that indicates whether this 'define_delay' ! applies to a particular insn. If so, the number of required delay slots ! is determined by the length of the vector specified as the second argument. An insn placed in delay slot N must satisfy attribute test DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns may be annulled if the branch is true. Similarly, ANNUL-FALSE-N ! specifies which insns in the delay slot may be annulled if the branch is ! false. If annulling is not supported for that delay slot, '(nil)' should be coded. For example, in the common case where branch and call insns require a single delay slot, which may contain any insn other than a branch or ! call, the following would be placed in the 'md' file: (define_delay (eq_attr "type" "branch,call") [(eq_attr "type" "!branch,call") (nil) (nil)]) ! Multiple 'define_delay' expressions may be specified. In this case, each such expression specifies different delay slot requirements and ! there must be no insn for which tests in two 'define_delay' expressions are both true. For example, if we have a machine that requires one delay slot for ! branches but two for calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch can be annulled if the branch is true, we might represent this as follows: --- 26217,26253 ---- instruction scheduling. The requirement of an insn needing one or more delay slots is indicated ! via the `define_delay' expression. It has the following form: (define_delay TEST [DELAY-1 ANNUL-TRUE-1 ANNUL-FALSE-1 DELAY-2 ANNUL-TRUE-2 ANNUL-FALSE-2 ...]) ! TEST is an attribute test that indicates whether this `define_delay' ! applies to a particular insn. If so, the number of required delay ! slots is determined by the length of the vector specified as the second argument. An insn placed in delay slot N must satisfy attribute test DELAY-N. ANNUL-TRUE-N is an attribute test that specifies which insns may be annulled if the branch is true. Similarly, ANNUL-FALSE-N ! specifies which insns in the delay slot may be annulled if the branch ! is false. If annulling is not supported for that delay slot, `(nil)' should be coded. For example, in the common case where branch and call insns require a single delay slot, which may contain any insn other than a branch or ! call, the following would be placed in the `md' file: (define_delay (eq_attr "type" "branch,call") [(eq_attr "type" "!branch,call") (nil) (nil)]) ! Multiple `define_delay' expressions may be specified. In this case, each such expression specifies different delay slot requirements and ! there must be no insn for which tests in two `define_delay' expressions are both true. For example, if we have a machine that requires one delay slot for ! branches but two for calls, no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch can be annulled if the branch is true, we might represent this as follows: *************** superscalar RISC, and VLIW processors) h *** 25898,25906 **** which several instructions can be executed simultaneously. An instruction starts execution if its issue conditions are satisfied. If not, the instruction is stalled until its conditions are satisfied. ! Such "interlock (pipeline) delay" causes interruption of the fetching of ! successor instructions (or demands nop instructions, e.g. for some MIPS ! processors). There are two major kinds of interlock delays in modern processors. The first one is a data dependence delay determining "instruction --- 26271,26279 ---- which several instructions can be executed simultaneously. An instruction starts execution if its issue conditions are satisfied. If not, the instruction is stalled until its conditions are satisfied. ! Such "interlock (pipeline) delay" causes interruption of the fetching ! of successor instructions (or demands nop instructions, e.g. for some ! MIPS processors). There are two major kinds of interlock delays in modern processors. The first one is a data dependence delay determining "instruction *************** automatically generated from the process *** 25933,25940 **** pipeline hazard recognizer generated from the machine description is based on a deterministic finite state automaton (DFA): the instruction issue is possible if there is a transition from one automaton state to ! another one. This algorithm is very fast, and furthermore, its speed is ! not dependent on processor complexity(1). The rest of this section describes the directives that constitute an automaton-based processor pipeline description. The order of these --- 26306,26313 ---- pipeline hazard recognizer generated from the machine description is based on a deterministic finite state automaton (DFA): the instruction issue is possible if there is a transition from one automaton state to ! another one. This algorithm is very fast, and furthermore, its speed ! is not dependent on processor complexity(1). The rest of this section describes the directives that constitute an automaton-based processor pipeline description. The order of these *************** constructions within the machine descrip *** 25944,25959 **** generated and used for the pipeline hazards recognition. Sometimes the generated finite state automaton used by the pipeline hazard recognizer is large. If we use more than one automaton and bind functional units ! to the automata, the total size of the automata is usually less than the ! size of the single automaton. If there is no one such construction, ! only one finite state automaton is generated. (define_automaton AUTOMATA-NAMES) ! AUTOMATA-NAMES is a string giving names of the automata. The names are ! separated by commas. All the automata should have unique names. The ! automaton name is used in the constructions 'define_cpu_unit' and ! 'define_query_cpu_unit'. Each processor functional unit used in the description of instruction reservations should be described by the following construction. --- 26317,26332 ---- generated and used for the pipeline hazards recognition. Sometimes the generated finite state automaton used by the pipeline hazard recognizer is large. If we use more than one automaton and bind functional units ! to the automata, the total size of the automata is usually less than ! the size of the single automaton. If there is no one such ! construction, only one finite state automaton is generated. (define_automaton AUTOMATA-NAMES) ! AUTOMATA-NAMES is a string giving names of the automata. The names ! are separated by commas. All the automata should have unique names. ! The automaton name is used in the constructions `define_cpu_unit' and ! `define_query_cpu_unit'. Each processor functional unit used in the description of instruction reservations should be described by the following construction. *************** reservations should be described by the *** 25961,25988 **** (define_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) UNIT-NAMES is a string giving the names of the functional units ! separated by commas. Don't use name 'nothing', it is reserved for other ! goals. AUTOMATON-NAME is a string giving the name of the automaton with which the unit is bound. The automaton should be described in construction ! 'define_automaton'. You should give "automaton-name", if there is a defined automaton. The assignment of units to automata are constrained by the uses of the ! units in insn reservations. The most important constraint is: if a unit ! reservation is present on a particular cycle of an alternative for an ! insn reservation, then some unit from the same automaton must be present ! on the same cycle for the other alternatives of the insn reservation. ! The rest of the constraints are mentioned in the description of the ! subsequent constructions. The following construction describes CPU functional units analogously ! to 'define_cpu_unit'. The reservation of such units can be queried for ! an automaton state. The instruction scheduler never queries reservation ! of functional units for given automaton state. So as a rule, you don't ! need this construction. This construction could be used for future code ! generation goals (e.g. to generate VLIW insn templates). (define_query_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) --- 26334,26362 ---- (define_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) UNIT-NAMES is a string giving the names of the functional units ! separated by commas. Don't use name `nothing', it is reserved for ! other goals. AUTOMATON-NAME is a string giving the name of the automaton with which the unit is bound. The automaton should be described in construction ! `define_automaton'. You should give "automaton-name", if there is a defined automaton. The assignment of units to automata are constrained by the uses of the ! units in insn reservations. The most important constraint is: if a ! unit reservation is present on a particular cycle of an alternative for ! an insn reservation, then some unit from the same automaton must be ! present on the same cycle for the other alternatives of the insn ! reservation. The rest of the constraints are mentioned in the ! description of the subsequent constructions. The following construction describes CPU functional units analogously ! to `define_cpu_unit'. The reservation of such units can be queried for ! an automaton state. The instruction scheduler never queries ! reservation of functional units for given automaton state. So as a ! rule, you don't need this construction. This construction could be ! used for future code generation goals (e.g. to generate VLIW insn ! templates). (define_query_cpu_unit UNIT-NAMES [AUTOMATON-NAME]) *************** There is an important difference between *** 26003,26029 **** automaton based pipeline description. The latency time is used for all dependencies when we use the old description. In the automaton based pipeline description, the given latency time is only used for true ! dependencies. The cost of anti-dependencies is always zero and the cost ! of output dependencies is the difference between latency times of the ! producing and consuming insns (if the difference is negative, the cost ! is considered to be zero). You can always change the default costs for ! any description by using the target hook 'TARGET_SCHED_ADJUST_COST' ! (*note Scheduling::). INSN-NAME is a string giving the internal name of the insn. The ! internal names are used in constructions 'define_bypass' and in the automaton description file generated for debugging. The internal name ! has nothing in common with the names in 'define_insn'. It is a good practice to use insn classes described in the processor manual. CONDITION defines what RTL insns are described by this construction. You should remember that you will be in trouble if CONDITION for two or ! more different 'define_insn_reservation' constructions is TRUE for an insn. In this case what reservation will be used for the insn is not defined. Such cases are not checked during generation of the pipeline hazards recognizer because in general recognizing that two conditions may have the same value is quite difficult (especially if the conditions ! contain 'symbol_ref'). It is also not checked during the pipeline hazard recognizer work because it would slow down the recognizer considerably. --- 26377,26403 ---- automaton based pipeline description. The latency time is used for all dependencies when we use the old description. In the automaton based pipeline description, the given latency time is only used for true ! dependencies. The cost of anti-dependencies is always zero and the ! cost of output dependencies is the difference between latency times of ! the producing and consuming insns (if the difference is negative, the ! cost is considered to be zero). You can always change the default ! costs for any description by using the target hook ! `TARGET_SCHED_ADJUST_COST' (*note Scheduling::). INSN-NAME is a string giving the internal name of the insn. The ! internal names are used in constructions `define_bypass' and in the automaton description file generated for debugging. The internal name ! has nothing in common with the names in `define_insn'. It is a good practice to use insn classes described in the processor manual. CONDITION defines what RTL insns are described by this construction. You should remember that you will be in trouble if CONDITION for two or ! more different `define_insn_reservation' constructions is TRUE for an insn. In this case what reservation will be used for the insn is not defined. Such cases are not checked during generation of the pipeline hazards recognizer because in general recognizing that two conditions may have the same value is quite difficult (especially if the conditions ! contain `symbol_ref'). It is also not checked during the pipeline hazard recognizer work because it would slow down the recognizer considerably. *************** expression according to the following sy *** 26049,26076 **** | "nothing" | "(" regexp ")" ! * ',' is used for describing the start of the next cycle in the reservation. ! * '|' is used for describing a reservation described by the first regular expression *or* a reservation described by the second regular expression *or* etc. ! * '+' is used for describing a reservation described by the first regular expression *and* a reservation described by the second regular expression *and* etc. ! * '*' is used for convenience and simply means a sequence in which the regular expression are repeated NUMBER times with cycle ! advancing (see ','). ! * 'cpu_function_unit_name' denotes reservation of the named functional unit. ! * 'reservation_name' -- see description of construction ! 'define_reservation'. ! * 'nothing' denotes no unit reservations. Sometimes unit reservations for different insns contain common parts. In such case, you can simplify the pipeline description by describing --- 26423,26450 ---- | "nothing" | "(" regexp ")" ! * `,' is used for describing the start of the next cycle in the reservation. ! * `|' is used for describing a reservation described by the first regular expression *or* a reservation described by the second regular expression *or* etc. ! * `+' is used for describing a reservation described by the first regular expression *and* a reservation described by the second regular expression *and* etc. ! * `*' is used for convenience and simply means a sequence in which the regular expression are repeated NUMBER times with cycle ! advancing (see `,'). ! * `cpu_function_unit_name' denotes reservation of the named functional unit. ! * `reservation_name' -- see description of construction ! `define_reservation'. ! * `nothing' denotes no unit reservations. Sometimes unit reservations for different insns contain common parts. In such case, you can simplify the pipeline description by describing *************** the common part by the following constru *** 26080,26087 **** RESERVATION-NAME is a string giving name of REGEXP. Functional unit names and reservation names are in the same name space. So the ! reservation names should be different from the functional unit names and ! can not be the reserved name 'nothing'. The following construction is used to describe exceptions in the latency time for given instruction pair. This is so called bypasses. --- 26454,26461 ---- RESERVATION-NAME is a string giving name of REGEXP. Functional unit names and reservation names are in the same name space. So the ! reservation names should be different from the functional unit names ! and can not be the reserved name `nothing'. The following construction is used to describe exceptions in the latency time for given instruction pair. This is so called bypasses. *************** latency time for given instruction pair. *** 26090,26114 **** [GUARD]) NUMBER defines when the result generated by the instructions given in ! string OUT_INSN_NAMES will be ready for the instructions given in string ! IN_INSN_NAMES. Each of these strings is a comma-separated list of ! filename-style globs and they refer to the names of ! 'define_insn_reservation's. For example: (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*") ! defines a bypass between instructions that start with 'cpu1_load_' or ! 'cpu1_store_' and those that start with 'cpu1_load_'. GUARD is an optional string giving the name of a C function which defines an additional guard for the bypass. The function will get the two insns as parameters. If the function returns zero the bypass will be ignored for this case. The additional guard is necessary to recognize complicated bypasses, e.g. when the consumer is only an ! address of insn 'store' (not a stored value). If there are more one bypass with the same output and input insns, the chosen bypass is the first bypass with a guard in description whose ! guard function returns nonzero. If there is no such bypass, then bypass ! without the guard function is chosen. The following five constructions are usually used to describe VLIW processors, or more precisely, to describe a placement of small --- 26464,26488 ---- [GUARD]) NUMBER defines when the result generated by the instructions given in ! string OUT_INSN_NAMES will be ready for the instructions given in ! string IN_INSN_NAMES. Each of these strings is a comma-separated list ! of filename-style globs and they refer to the names of ! `define_insn_reservation's. For example: (define_bypass 1 "cpu1_load_*, cpu1_store_*" "cpu1_load_*") ! defines a bypass between instructions that start with `cpu1_load_' or ! `cpu1_store_' and those that start with `cpu1_load_'. GUARD is an optional string giving the name of a C function which defines an additional guard for the bypass. The function will get the two insns as parameters. If the function returns zero the bypass will be ignored for this case. The additional guard is necessary to recognize complicated bypasses, e.g. when the consumer is only an ! address of insn `store' (not a stored value). If there are more one bypass with the same output and input insns, the chosen bypass is the first bypass with a guard in description whose ! guard function returns nonzero. If there is no such bypass, then ! bypass without the guard function is chosen. The following five constructions are usually used to describe VLIW processors, or more precisely, to describe a placement of small *************** commas. *** 26128,26134 **** comma. Currently pattern is one unit or units separated by white-spaces. ! The first construction ('exclusion_set') means that each functional unit in the first string can not be reserved simultaneously with a unit whose name is in the second string and vice versa. For example, the construction is useful for describing processors (e.g. some SPARC --- 26502,26508 ---- comma. Currently pattern is one unit or units separated by white-spaces. ! The first construction (`exclusion_set') means that each functional unit in the first string can not be reserved simultaneously with a unit whose name is in the second string and vice versa. For example, the construction is useful for describing processors (e.g. some SPARC *************** processors) with a fully pipelined float *** 26136,26195 **** can execute simultaneously only single floating point insns or only double floating point insns. ! The second construction ('presence_set') means that each functional unit in the first string can not be reserved unless at least one of ! pattern of units whose names are in the second string is reserved. This ! is an asymmetric relation. For example, it is useful for description ! that VLIW 'slot1' is reserved after 'slot0' reservation. We could ! describe it by the following construction (presence_set "slot1" "slot0") ! Or 'slot1' is reserved only after 'slot0' and unit 'b0' reservation. In this case we could write (presence_set "slot1" "slot0 b0") ! The third construction ('final_presence_set') is analogous to ! 'presence_set'. The difference between them is when checking is done. When an instruction is issued in given automaton state reflecting all current and planned unit reservations, the automaton state is changed. The first state is a source state, the second one is a result state. ! Checking for 'presence_set' is done on the source state reservation, ! checking for 'final_presence_set' is done on the result reservation. This construction is useful to describe a reservation which is actually two subsequent reservations. For example, if we use (presence_set "slot1" "slot0") ! the following insn will be never issued (because 'slot1' requires ! 'slot0' which is absent in the source state). (define_reservation "insn_and_nop" "slot0 + slot1") ! but it can be issued if we use analogous 'final_presence_set'. ! The forth construction ('absence_set') means that each functional unit in the first string can be reserved only if each pattern of units whose names are in the second string is not reserved. This is an asymmetric ! relation (actually 'exclusion_set' is analogous to this one but it is ! symmetric). For example it might be useful in a VLIW description to say ! that 'slot0' cannot be reserved after either 'slot1' or 'slot2' have ! been reserved. This can be described as: (absence_set "slot0" "slot1, slot2") ! Or 'slot2' can not be reserved if 'slot0' and unit 'b0' are reserved or ! 'slot1' and unit 'b1' are reserved. In this case we could write (absence_set "slot2" "slot0 b0, slot1 b1") All functional units mentioned in a set should belong to the same automaton. ! The last construction ('final_absence_set') is analogous to ! 'absence_set' but checking is done on the result (state) reservation. ! See comments for 'final_presence_set'. You can control the generator of the pipeline hazard recognizer with the following construction. --- 26510,26569 ---- can execute simultaneously only single floating point insns or only double floating point insns. ! The second construction (`presence_set') means that each functional unit in the first string can not be reserved unless at least one of ! pattern of units whose names are in the second string is reserved. ! This is an asymmetric relation. For example, it is useful for ! description that VLIW `slot1' is reserved after `slot0' reservation. ! We could describe it by the following construction (presence_set "slot1" "slot0") ! Or `slot1' is reserved only after `slot0' and unit `b0' reservation. In this case we could write (presence_set "slot1" "slot0 b0") ! The third construction (`final_presence_set') is analogous to ! `presence_set'. The difference between them is when checking is done. When an instruction is issued in given automaton state reflecting all current and planned unit reservations, the automaton state is changed. The first state is a source state, the second one is a result state. ! Checking for `presence_set' is done on the source state reservation, ! checking for `final_presence_set' is done on the result reservation. This construction is useful to describe a reservation which is actually two subsequent reservations. For example, if we use (presence_set "slot1" "slot0") ! the following insn will be never issued (because `slot1' requires ! `slot0' which is absent in the source state). (define_reservation "insn_and_nop" "slot0 + slot1") ! but it can be issued if we use analogous `final_presence_set'. ! The forth construction (`absence_set') means that each functional unit in the first string can be reserved only if each pattern of units whose names are in the second string is not reserved. This is an asymmetric ! relation (actually `exclusion_set' is analogous to this one but it is ! symmetric). For example it might be useful in a VLIW description to ! say that `slot0' cannot be reserved after either `slot1' or `slot2' ! have been reserved. This can be described as: (absence_set "slot0" "slot1, slot2") ! Or `slot2' can not be reserved if `slot0' and unit `b0' are reserved ! or `slot1' and unit `b1' are reserved. In this case we could write (absence_set "slot2" "slot0 b0, slot1 b1") All functional units mentioned in a set should belong to the same automaton. ! The last construction (`final_absence_set') is analogous to ! `absence_set' but checking is done on the result (state) reservation. ! See comments for `final_presence_set'. You can control the generator of the pipeline hazard recognizer with the following construction. *************** Currently there are the following option *** 26206,26243 **** * "time" means printing time statistics about the generation of automata. ! * "stats" means printing statistics about the generated automata such ! as the number of DFA states, NDFA states and arcs. * "v" means a generation of the file describing the result automata. ! The file has suffix '.dfa' and can be used for the description verification and debugging. ! * "w" means a generation of warning instead of error for non-critical ! errors. ! * "no-comb-vect" prevents the automaton generator from generating two ! data structures and comparing them for space efficiency. Using a ! comb vector to represent transitions may be better, but it can be very expensive to construct. This option is useful if the build process spends an unacceptably long time in genautomata. * "ndfa" makes nondeterministic finite state automata. This affects ! the treatment of operator '|' in the regular expressions. The usual treatment of the operator is to try the first alternative and, if the reservation is not possible, the second alternative. The nondeterministic treatment means trying all alternatives, some of them may be rejected by reservations in the subsequent insns. * "collapse-ndfa" modifies the behaviour of the generator when ! producing an automaton. An additional state transition to collapse ! a nondeterministic NDFA state to a deterministic DFA state is ! generated. It can be triggered by passing 'const0_rtx' to state_transition. In such an automaton, cycle advance transitions are available only for these collapsed states. This option is ! useful for ports that want to use the 'ndfa' option, but also want ! to use 'define_query_cpu_unit' to assign units to insns issued in a ! cycle. * "progress" means output of a progress bar showing how many states were generated so far for automaton being processed. This is --- 26580,26617 ---- * "time" means printing time statistics about the generation of automata. ! * "stats" means printing statistics about the generated automata ! such as the number of DFA states, NDFA states and arcs. * "v" means a generation of the file describing the result automata. ! The file has suffix `.dfa' and can be used for the description verification and debugging. ! * "w" means a generation of warning instead of error for ! non-critical errors. ! * "no-comb-vect" prevents the automaton generator from generating ! two data structures and comparing them for space efficiency. Using ! a comb vector to represent transitions may be better, but it can be very expensive to construct. This option is useful if the build process spends an unacceptably long time in genautomata. * "ndfa" makes nondeterministic finite state automata. This affects ! the treatment of operator `|' in the regular expressions. The usual treatment of the operator is to try the first alternative and, if the reservation is not possible, the second alternative. The nondeterministic treatment means trying all alternatives, some of them may be rejected by reservations in the subsequent insns. * "collapse-ndfa" modifies the behaviour of the generator when ! producing an automaton. An additional state transition to ! collapse a nondeterministic NDFA state to a deterministic DFA ! state is generated. It can be triggered by passing `const0_rtx' to state_transition. In such an automaton, cycle advance transitions are available only for these collapsed states. This option is ! useful for ports that want to use the `ndfa' option, but also want ! to use `define_query_cpu_unit' to assign units to insns issued in ! a cycle. * "progress" means output of a progress bar showing how many states were generated so far for automaton being processed. This is *************** Currently there are the following option *** 26247,26254 **** the huge automaton. As an example, consider a superscalar RISC machine which can issue ! three insns (two integer insns and one floating point insn) on the cycle ! but can finish only two insns. To describe this, we define the following functional units. (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline") --- 26621,26628 ---- the huge automaton. As an example, consider a superscalar RISC machine which can issue ! three insns (two integer insns and one floating point insn) on the ! cycle but can finish only two insns. To describe this, we define the following functional units. (define_cpu_unit "i0_pipeline, i1_pipeline, f_pipeline") *************** following functional units. *** 26256,26271 **** All simple integer insns can be executed in any integer pipeline and their result is ready in two cycles. The simple integer insns are ! issued into the first pipeline unless it is reserved, otherwise they are ! issued into the second pipeline. Integer division and multiplication ! insns can be executed only in the second integer pipeline and their ! results are ready correspondingly in 8 and 4 cycles. The integer ! division is not pipelined, i.e. the subsequent integer division insn can ! not be issued until the current division insn finished. Floating point ! insns are fully pipelined and their results are ready in 3 cycles. ! Where the result of a floating point insn is used by an integer insn, an ! additional delay of one cycle is incurred. To describe all of this we ! could specify (define_cpu_unit "div") --- 26630,26645 ---- All simple integer insns can be executed in any integer pipeline and their result is ready in two cycles. The simple integer insns are ! issued into the first pipeline unless it is reserved, otherwise they ! are issued into the second pipeline. Integer division and ! multiplication insns can be executed only in the second integer ! pipeline and their results are ready correspondingly in 8 and 4 cycles. ! The integer division is not pipelined, i.e. the subsequent integer ! division insn can not be issued until the current division insn ! finished. Floating point insns are fully pipelined and their results ! are ready in 3 cycles. Where the result of a floating point insn is ! used by an integer insn, an additional delay of one cycle is incurred. ! To describe all of this we could specify (define_cpu_unit "div") *************** could specify *** 26287,26305 **** (define_reservation "finish" "port0|port1") ! and use it in all 'define_insn_reservation' as in the following construction (define_insn_reservation "simple" 2 (eq_attr "type" "int") "(i0_pipeline | i1_pipeline), finish") ! ---------- Footnotes ---------- ! (1) However, the size of the automaton depends on processor complexity. To limit this effect, machine descriptions can split orthogonal parts of the machine description among several automata: but ! then, since each of these must be stepped independently, this does cause ! a small decrease in the algorithm's performance.  File: gccint.info, Node: Conditional Execution, Next: Define Subst, Prev: Insn Attributes, Up: Machine Desc --- 26661,26679 ---- (define_reservation "finish" "port0|port1") ! and use it in all `define_insn_reservation' as in the following construction (define_insn_reservation "simple" 2 (eq_attr "type" "int") "(i0_pipeline | i1_pipeline), finish") ! ---------- Footnotes ---------- ! (1) However, the size of the automaton depends on processor complexity. To limit this effect, machine descriptions can split orthogonal parts of the machine description among several automata: but ! then, since each of these must be stepped independently, this does ! cause a small decrease in the algorithm's performance.  File: gccint.info, Node: Conditional Execution, Next: Define Subst, Prev: Insn Attributes, Up: Machine Desc *************** A number of architectures provide for so *** 26311,26318 **** execution, or predication. The hallmark of this feature is the ability to nullify most of the instructions in the instruction set. When the instruction set is large and not entirely symmetric, it can be quite ! tedious to describe these forms directly in the '.md' file. An ! alternative is the 'define_cond_exec' template. (define_cond_exec [PREDICATE-PATTERN] --- 26685,26692 ---- execution, or predication. The hallmark of this feature is the ability to nullify most of the instructions in the instruction set. When the instruction set is large and not entirely symmetric, it can be quite ! tedious to describe these forms directly in the `.md' file. An ! alternative is the `define_cond_exec' template. (define_cond_exec [PREDICATE-PATTERN] *************** alternative is the 'define_cond_exec' te *** 26320,26361 **** "OUTPUT-TEMPLATE" "OPTIONAL-INSN-ATTRIBUES") ! PREDICATE-PATTERN is the condition that must be true for the insn to be ! executed at runtime and should match a relational operator. One can use ! 'match_operator' to match several relational operators at once. Any ! 'match_operand' operands must have no more than one alternative. ! CONDITION is a C expression that must be true for the generated pattern ! to match. ! OUTPUT-TEMPLATE is a string similar to the 'define_insn' output ! template (*note Output Template::), except that the '*' and '@' special cases do not apply. This is only useful if the assembly text for the predicate is a simple prefix to the main insn. In order to handle the ! general case, there is a global variable 'current_insn_predicate' that ! will contain the entire predicate if the current insn is predicated, and ! will otherwise be 'NULL'. OPTIONAL-INSN-ATTRIBUTES is an optional vector of attributes that gets ! appended to the insn attributes of the produced cond_exec rtx. It can be used to add some distinguishing attribute to cond_exec rtxs produced ! that way. An example usage would be to use this attribute in ! conjunction with attributes on the main pattern to disable particular ! alternatives under certain conditions. ! When 'define_cond_exec' is used, an implicit reference to the ! 'predicable' instruction attribute is made. *Note Insn Attributes::. This attribute must be a boolean (i.e. have exactly two elements in its ! LIST-OF-VALUES), with the possible values being 'no' and 'yes'. The default and all uses in the insns must be a simple constant, not a complex expressions. It may, however, depend on the alternative, by using a comma-separated list of values. If that is the case, the port ! should also define an 'enabled' attribute (*note Disable Insn ! Alternatives::), which should also allow only 'no' and 'yes' as its values. ! For each 'define_insn' for which the 'predicable' attribute is true, a ! new 'define_insn' pattern will be generated that matches a predicated version of the instruction. For example, (define_insn "addsi" --- 26694,26735 ---- "OUTPUT-TEMPLATE" "OPTIONAL-INSN-ATTRIBUES") ! PREDICATE-PATTERN is the condition that must be true for the insn to ! be executed at runtime and should match a relational operator. One can ! use `match_operator' to match several relational operators at once. ! Any `match_operand' operands must have no more than one alternative. ! CONDITION is a C expression that must be true for the generated ! pattern to match. ! OUTPUT-TEMPLATE is a string similar to the `define_insn' output ! template (*note Output Template::), except that the `*' and `@' special cases do not apply. This is only useful if the assembly text for the predicate is a simple prefix to the main insn. In order to handle the ! general case, there is a global variable `current_insn_predicate' that ! will contain the entire predicate if the current insn is predicated, ! and will otherwise be `NULL'. OPTIONAL-INSN-ATTRIBUTES is an optional vector of attributes that gets ! appended to the insn attributes of the produced cond_exec rtx. It can be used to add some distinguishing attribute to cond_exec rtxs produced ! that way. An example usage would be to use this attribute in conjunction ! with attributes on the main pattern to disable particular alternatives ! under certain conditions. ! When `define_cond_exec' is used, an implicit reference to the ! `predicable' instruction attribute is made. *Note Insn Attributes::. This attribute must be a boolean (i.e. have exactly two elements in its ! LIST-OF-VALUES), with the possible values being `no' and `yes'. The default and all uses in the insns must be a simple constant, not a complex expressions. It may, however, depend on the alternative, by using a comma-separated list of values. If that is the case, the port ! should also define an `enabled' attribute (*note Disable Insn ! Alternatives::), which should also allow only `no' and `yes' as its values. ! For each `define_insn' for which the `predicable' attribute is true, a ! new `define_insn' pattern will be generated that matches a predicated version of the instruction. For example, (define_insn "addsi" *************** File: gccint.info, Node: Define Subst, *** 26390,26400 **** For some hardware architectures there are common cases when the RTL templates for the instructions can be derived from the other RTL ! templates using simple transformations. E.g., 'i386.md' contains an RTL ! template for the ordinary 'sub' instruction-- '*subsi_1', and for the ! 'sub' instruction with subsequent zero-extension--'*subsi_1_zext'. Such ! cases can be easily implemented by a single meta-template capable of ! generating a modified case based on the initial one: (define_subst "NAME" [INPUT-TEMPLATE] --- 26764,26774 ---- For some hardware architectures there are common cases when the RTL templates for the instructions can be derived from the other RTL ! templates using simple transformations. E.g., `i386.md' contains an ! RTL template for the ordinary `sub' instruction-- `*subsi_1', and for ! the `sub' instruction with subsequent zero-extension--`*subsi_1_zext'. ! Such cases can be easily implemented by a single meta-template capable ! of generating a modified case based on the initial one: (define_subst "NAME" [INPUT-TEMPLATE] *************** output-template. *** 26410,26447 **** OUTPUT-TEMPLATE is a pattern that will be used in the resulting template. ! 'define_subst' mechanism is tightly coupled with the notion of the ! subst attribute (*note Subst Iterators::). The use of 'define_subst' is ! triggered by a reference to a subst attribute in the transforming RTL ! template. This reference initiates duplication of the source RTL template and substitution of the attributes with their values. The source RTL template is left unchanged, while the copy is transformed by ! 'define_subst'. This transformation can fail in the case when the source RTL template is not matched against the input-template of the ! 'define_subst'. In such case the copy is deleted. ! 'define_subst' can be used only in 'define_insn' and 'define_expand', ! it cannot be used in other expressions (e.g. in ! 'define_insn_and_split'). * Menu: ! * Define Subst Example:: Example of 'define_subst' work. * Define Subst Pattern Matching:: Process of template comparison. * Define Subst Output Template:: Generation of output template.  File: gccint.info, Node: Define Subst Example, Next: Define Subst Pattern Matching, Up: Define Subst ! 16.21.1 'define_subst' Example ------------------------------ ! To illustrate how 'define_subst' works, let us examine a simple template ! transformation. Suppose there are two kinds of instructions: one that touches flags and the other that does not. The instructions of the second type could be ! generated with the following 'define_subst': (define_subst "add_clobber_subst" [(set (match_operand:SI 0 "" "") --- 26784,26821 ---- OUTPUT-TEMPLATE is a pattern that will be used in the resulting template. ! `define_subst' mechanism is tightly coupled with the notion of the ! subst attribute (*note Subst Iterators::). The use of `define_subst' ! is triggered by a reference to a subst attribute in the transforming ! RTL template. This reference initiates duplication of the source RTL template and substitution of the attributes with their values. The source RTL template is left unchanged, while the copy is transformed by ! `define_subst'. This transformation can fail in the case when the source RTL template is not matched against the input-template of the ! `define_subst'. In such case the copy is deleted. ! `define_subst' can be used only in `define_insn' and `define_expand', ! it cannot be used in other expressions (e.g. in ! `define_insn_and_split'). * Menu: ! * Define Subst Example:: Example of `define_subst' work. * Define Subst Pattern Matching:: Process of template comparison. * Define Subst Output Template:: Generation of output template.  File: gccint.info, Node: Define Subst Example, Next: Define Subst Pattern Matching, Up: Define Subst ! 16.21.1 `define_subst' Example ------------------------------ ! To illustrate how `define_subst' works, let us examine a simple ! template transformation. Suppose there are two kinds of instructions: one that touches flags and the other that does not. The instructions of the second type could be ! generated with the following `define_subst': (define_subst "add_clobber_subst" [(set (match_operand:SI 0 "" "") *************** generated with the following 'define_sub *** 26451,26461 **** (match_dup 1)) (clobber (reg:CC FLAGS_REG))] ! This 'define_subst' can be applied to any RTL pattern containing 'set' of mode SI and generates a copy with clobber when it is applied. ! Assume there is an RTL template for a 'max' instruction to be used in ! 'define_subst' mentioned above: (define_insn "maxsi" [(set (match_operand:SI 0 "register_operand" "=r") --- 26825,26835 ---- (match_dup 1)) (clobber (reg:CC FLAGS_REG))] ! This `define_subst' can be applied to any RTL pattern containing `set' of mode SI and generates a copy with clobber when it is applied. ! Assume there is an RTL template for a `max' instruction to be used in ! `define_subst' mentioned above: (define_insn "maxsi" [(set (match_operand:SI 0 "register_operand" "=r") *************** of mode SI and generates a copy with clo *** 26466,26485 **** "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! To mark the RTL template for 'define_subst' application, subst-attributes are used. They should be declared in advance: (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber") ! Here 'add_clobber_name' is the attribute name, 'add_clobber_subst' is ! the name of the corresponding 'define_subst', the third argument ! ('_noclobber') is the attribute value that would be substituted into the ! unchanged version of the source RTL template, and the last argument ! ('_clobber') is the value that would be substituted into the second, transformed, version of the RTL template. Once the subst-attribute has been defined, it should be used in RTL ! templates which need to be processed by the 'define_subst'. So, the original RTL template should be changed: (define_insn "maxsi" --- 26840,26859 ---- "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! To mark the RTL template for `define_subst' application, subst-attributes are used. They should be declared in advance: (define_subst_attr "add_clobber_name" "add_clobber_subst" "_noclobber" "_clobber") ! Here `add_clobber_name' is the attribute name, `add_clobber_subst' is ! the name of the corresponding `define_subst', the third argument ! (`_noclobber') is the attribute value that would be substituted into ! the unchanged version of the source RTL template, and the last argument ! (`_clobber') is the value that would be substituted into the second, transformed, version of the RTL template. Once the subst-attribute has been defined, it should be used in RTL ! templates which need to be processed by the `define_subst'. So, the original RTL template should be changed: (define_insn "maxsi" *************** original RTL template should be changed: *** 26491,26497 **** "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! The result of the 'define_subst' usage would look like the following: (define_insn "maxsi_noclobber" [(set (match_operand:SI 0 "register_operand" "=r") --- 26865,26871 ---- "max\t{%2, %1, %0|%0, %1, %2}" [...]) ! The result of the `define_subst' usage would look like the following: (define_insn "maxsi_noclobber" [(set (match_operand:SI 0 "register_operand" "=r") *************** original RTL template should be changed: *** 26514,26579 ****  File: gccint.info, Node: Define Subst Pattern Matching, Next: Define Subst Output Template, Prev: Define Subst Example, Up: Define Subst ! 16.21.2 Pattern Matching in 'define_subst' ------------------------------------------ ! All expressions, allowed in 'define_insn' or 'define_expand', are ! allowed in the input-template of 'define_subst', except 'match_par_dup', ! 'match_scratch', 'match_parallel'. The meanings of expressions in the ! input-template were changed: ! 'match_operand' matches any expression (possibly, a subtree in ! RTL-template), if modes of the 'match_operand' and this expression are ! the same, or mode of the 'match_operand' is 'VOIDmode', or this ! expression is 'match_dup', 'match_op_dup'. If the expression is ! 'match_operand' too, and predicate of 'match_operand' from the input pattern is not empty, then the predicates are compared. That can be used for more accurate filtering of accepted RTL-templates. ! 'match_operator' matches common operators (like 'plus', 'minus'), ! 'unspec', 'unspec_volatile' operators and 'match_operator's from the ! original pattern if the modes match and 'match_operator' from the input pattern has the same number of operands as the operator from the original pattern.  File: gccint.info, Node: Define Subst Output Template, Prev: Define Subst Pattern Matching, Up: Define Subst ! 16.21.3 Generation of output template in 'define_subst' ------------------------------------------------------- ! If all necessary checks for 'define_subst' application pass, a new RTL-pattern, based on the output-template, is created to replace the old template. Like in input-patterns, meanings of some RTL expressions are ! changed when they are used in output-patterns of a 'define_subst'. ! Thus, 'match_dup' is used for copying the whole expression from the ! original pattern, which matched corresponding 'match_operand' from the input pattern. ! 'match_dup N' is used in the output template to be replaced with the ! expression from the original pattern, which matched 'match_operand N' ! from the input pattern. As a consequence, 'match_dup' cannot be used to ! point to 'match_operand's from the output pattern, it should always ! refer to a 'match_operand' from the input pattern. In the output template one can refer to the expressions from the original pattern and create new ones. For instance, some operands could ! be added by means of standard 'match_operand'. ! After replacing 'match_dup' with some RTL-subtree from the original ! pattern, it could happen that several 'match_operand's in the output ! pattern have the same indexes. It is unknown, how many and what indexes ! would be used in the expression which would replace 'match_dup', so such ! conflicts in indexes are inevitable. To overcome this issue, ! 'match_operands' and 'match_operators', which were introduced into the ! output pattern, are renumerated when all 'match_dup's are replaced. ! Number of alternatives in 'match_operand's introduced into the output ! template 'M' could differ from the number of alternatives in the ! original pattern 'N', so in the resultant pattern there would be 'N*M' alternatives. Thus, constraints from the original pattern would be ! duplicated 'N' times, constraints from the output pattern would be ! duplicated 'M' times, producing all possible combinations.  File: gccint.info, Node: Constant Definitions, Next: Iterators, Prev: Define Subst, Up: Machine Desc --- 26888,26954 ----  File: gccint.info, Node: Define Subst Pattern Matching, Next: Define Subst Output Template, Prev: Define Subst Example, Up: Define Subst ! 16.21.2 Pattern Matching in `define_subst' ------------------------------------------ ! All expressions, allowed in `define_insn' or `define_expand', are ! allowed in the input-template of `define_subst', except ! `match_par_dup', `match_scratch', `match_parallel'. The meanings of ! expressions in the input-template were changed: ! `match_operand' matches any expression (possibly, a subtree in ! RTL-template), if modes of the `match_operand' and this expression are ! the same, or mode of the `match_operand' is `VOIDmode', or this ! expression is `match_dup', `match_op_dup'. If the expression is ! `match_operand' too, and predicate of `match_operand' from the input pattern is not empty, then the predicates are compared. That can be used for more accurate filtering of accepted RTL-templates. ! `match_operator' matches common operators (like `plus', `minus'), ! `unspec', `unspec_volatile' operators and `match_operator's from the ! original pattern if the modes match and `match_operator' from the input pattern has the same number of operands as the operator from the original pattern.  File: gccint.info, Node: Define Subst Output Template, Prev: Define Subst Pattern Matching, Up: Define Subst ! 16.21.3 Generation of output template in `define_subst' ------------------------------------------------------- ! If all necessary checks for `define_subst' application pass, a new RTL-pattern, based on the output-template, is created to replace the old template. Like in input-patterns, meanings of some RTL expressions are ! changed when they are used in output-patterns of a `define_subst'. ! Thus, `match_dup' is used for copying the whole expression from the ! original pattern, which matched corresponding `match_operand' from the input pattern. ! `match_dup N' is used in the output template to be replaced with the ! expression from the original pattern, which matched `match_operand N' ! from the input pattern. As a consequence, `match_dup' cannot be used ! to point to `match_operand's from the output pattern, it should always ! refer to a `match_operand' from the input pattern. In the output template one can refer to the expressions from the original pattern and create new ones. For instance, some operands could ! be added by means of standard `match_operand'. ! After replacing `match_dup' with some RTL-subtree from the original ! pattern, it could happen that several `match_operand's in the output ! pattern have the same indexes. It is unknown, how many and what ! indexes would be used in the expression which would replace ! `match_dup', so such conflicts in indexes are inevitable. To overcome ! this issue, `match_operands' and `match_operators', which were ! introduced into the output pattern, are renumerated when all ! `match_dup's are replaced. ! Number of alternatives in `match_operand's introduced into the output ! template `M' could differ from the number of alternatives in the ! original pattern `N', so in the resultant pattern there would be `N*M' alternatives. Thus, constraints from the original pattern would be ! duplicated `N' times, constraints from the output pattern would be ! duplicated `M' times, producing all possible combinations.  File: gccint.info, Node: Constant Definitions, Next: Iterators, Prev: Define Subst, Up: Machine Desc *************** File: gccint.info, Node: Constant Defin *** 26584,26594 **** Using literal constants inside instruction patterns reduces legibility and can be a maintenance problem. ! To overcome this problem, you may use the 'define_constants' expression. It contains a vector of name-value pairs. From that point on, wherever any of the names appears in the MD file, it is as if the corresponding value had been written instead. You may use ! 'define_constants' multiple times; each appearance adds more constants to the table. It is an error to redefine a constant with a different value. --- 26959,26969 ---- Using literal constants inside instruction patterns reduces legibility and can be a maintenance problem. ! To overcome this problem, you may use the `define_constants' expression. It contains a vector of name-value pairs. From that point on, wherever any of the names appears in the MD file, it is as if the corresponding value had been written instead. You may use ! `define_constants' multiple times; each appearance adds more constants to the table. It is an error to redefine a constant with a different value. *************** value. *** 26625,26631 **** in the insn-codes.h header file as #defines. You can also use the machine description file to define enumerations. ! Like the constants defined by 'define_constant', these enumerations are visible to both the machine description file and the main C code. The syntax is as follows: --- 27000,27006 ---- in the insn-codes.h header file as #defines. You can also use the machine description file to define enumerations. ! Like the constants defined by `define_constant', these enumerations are visible to both the machine description file and the main C code. The syntax is as follows: *************** visible to both the machine description *** 26638,26644 **** ]) This definition causes the equivalent of the following C code to appear ! in 'insn-constants.h': enum NAME { VALUE0 = 0, --- 27013,27019 ---- ]) This definition causes the equivalent of the following C code to appear ! in `insn-constants.h': enum NAME { VALUE0 = 0, *************** in 'insn-constants.h': *** 26648,26664 **** }; #define NUM_CNAME_VALUES (N + 1) ! where CNAME is the capitalized form of NAME. It also makes each VALUEI ! available in the machine description file, just as if it had been ! declared with: (define_constants [(VALUEI I)]) ! Each VALUEI is usually an upper-case identifier and usually begins with ! CNAME. ! You can split the enumeration definition into as many statements as you ! like. The above example is directly equivalent to: (define_c_enum "NAME" [VALUE0]) (define_c_enum "NAME" [VALUE1]) --- 27023,27039 ---- }; #define NUM_CNAME_VALUES (N + 1) ! where CNAME is the capitalized form of NAME. It also makes each ! VALUEI available in the machine description file, just as if it had ! been declared with: (define_constants [(VALUEI I)]) ! Each VALUEI is usually an upper-case identifier and usually begins ! with CNAME. ! You can split the enumeration definition into as many statements as ! you like. The above example is directly equivalent to: (define_c_enum "NAME" [VALUE0]) (define_c_enum "NAME" [VALUE1]) *************** like. The above example is directly equ *** 26666,26699 **** (define_c_enum "NAME" [VALUEN]) Splitting the enumeration helps to improve the modularity of each ! individual '.md' file. For example, if a port defines its ! synchronization instructions in a separate 'sync.md' file, it is convenient to define all synchronization-specific enumeration values in ! 'sync.md' rather than in the main '.md' file. Some enumeration names have special significance to GCC: ! 'unspecv' ! If an enumeration called 'unspecv' is defined, GCC will use it when ! printing out 'unspec_volatile' expressions. For example: (define_c_enum "unspecv" [ UNSPECV_BLOCKAGE ]) ! causes GCC to print '(unspec_volatile ... 0)' as: (unspec_volatile ... UNSPECV_BLOCKAGE) ! 'unspec' ! If an enumeration called 'unspec' is defined, GCC will use it when ! printing out 'unspec' expressions. GCC will also use it when ! printing out 'unspec_volatile' expressions unless an 'unspecv' enumeration is also defined. You can therefore decide whether to keep separate enumerations for volatile and non-volatile expressions or whether to use the same enumeration for both. ! Another way of defining an enumeration is to use 'define_enum': (define_enum "NAME" [ VALUE0 --- 27041,27074 ---- (define_c_enum "NAME" [VALUEN]) Splitting the enumeration helps to improve the modularity of each ! individual `.md' file. For example, if a port defines its ! synchronization instructions in a separate `sync.md' file, it is convenient to define all synchronization-specific enumeration values in ! `sync.md' rather than in the main `.md' file. Some enumeration names have special significance to GCC: ! `unspecv' ! If an enumeration called `unspecv' is defined, GCC will use it ! when printing out `unspec_volatile' expressions. For example: (define_c_enum "unspecv" [ UNSPECV_BLOCKAGE ]) ! causes GCC to print `(unspec_volatile ... 0)' as: (unspec_volatile ... UNSPECV_BLOCKAGE) ! `unspec' ! If an enumeration called `unspec' is defined, GCC will use it when ! printing out `unspec' expressions. GCC will also use it when ! printing out `unspec_volatile' expressions unless an `unspecv' enumeration is also defined. You can therefore decide whether to keep separate enumerations for volatile and non-volatile expressions or whether to use the same enumeration for both. ! Another way of defining an enumeration is to use `define_enum': (define_enum "NAME" [ VALUE0 *************** convenient to define all synchronization *** 26712,26718 **** ]) where CVALUEI is the capitalized form of VALUEI. However, unlike ! 'define_c_enum', the enumerations defined by 'define_enum' can be used in attribute specifications (*note define_enum_attr::).  --- 27087,27093 ---- ]) where CVALUEI is the capitalized form of VALUEI. However, unlike ! `define_c_enum', the enumerations defined by `define_enum' can be used in attribute specifications (*note define_enum_attr::).  *************** Ports often need to define similar patte *** 26742,26757 **** modes. For example: * If a processor has hardware support for both single and double ! floating-point arithmetic, the 'SFmode' patterns tend to be very ! similar to the 'DFmode' ones. ! * If a port uses 'SImode' pointers in one configuration and 'DImode' ! pointers in another, it will usually have very similar 'SImode' and ! 'DImode' patterns for manipulating pointers. ! Mode iterators allow several patterns to be instantiated from one '.md' ! file template. They can be used with any type of rtx-based construct, ! such as a 'define_insn', 'define_split', or 'define_peephole2'. * Menu: --- 27117,27133 ---- modes. For example: * If a processor has hardware support for both single and double ! floating-point arithmetic, the `SFmode' patterns tend to be very ! similar to the `DFmode' ones. ! * If a port uses `SImode' pointers in one configuration and `DImode' ! pointers in another, it will usually have very similar `SImode' ! and `DImode' patterns for manipulating pointers. ! Mode iterators allow several patterns to be instantiated from one ! `.md' file template. They can be used with any type of rtx-based ! construct, such as a `define_insn', `define_split', or ! `define_peephole2'. * Menu: *************** The syntax for defining a mode iterator *** 26769,26797 **** (define_mode_iterator NAME [(MODE1 "COND1") ... (MODEN "CONDN")]) ! This allows subsequent '.md' file constructs to use the mode suffix ! ':NAME'. Every construct that does so will be expanded N times, once ! with every use of ':NAME' replaced by ':MODE1', once with every use ! replaced by ':MODE2', and so on. In the expansion for a particular MODEI, every C condition will also require that CONDI be true. For example: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) ! defines a new mode suffix ':P'. Every construct that uses ':P' will be ! expanded twice, once with every ':P' replaced by ':SI' and once with ! every ':P' replaced by ':DI'. The ':SI' version will only apply if ! 'Pmode == SImode' and the ':DI' version will only apply if 'Pmode == DImode'. ! As with other '.md' conditions, an empty string is treated as "always ! true". '(MODE "")' can also be abbreviated to 'MODE'. For example: (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) ! means that the ':DI' expansion only applies if 'TARGET_64BIT' but that ! the ':SI' expansion has no such constraint. Iterators are applied in the order they are defined. This can be significant if two iterators are used in a construct that requires --- 27145,27173 ---- (define_mode_iterator NAME [(MODE1 "COND1") ... (MODEN "CONDN")]) ! This allows subsequent `.md' file constructs to use the mode suffix ! `:NAME'. Every construct that does so will be expanded N times, once ! with every use of `:NAME' replaced by `:MODE1', once with every use ! replaced by `:MODE2', and so on. In the expansion for a particular MODEI, every C condition will also require that CONDI be true. For example: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) ! defines a new mode suffix `:P'. Every construct that uses `:P' will ! be expanded twice, once with every `:P' replaced by `:SI' and once with ! every `:P' replaced by `:DI'. The `:SI' version will only apply if ! `Pmode == SImode' and the `:DI' version will only apply if `Pmode == DImode'. ! As with other `.md' conditions, an empty string is treated as "always ! true". `(MODE "")' can also be abbreviated to `MODE'. For example: (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) ! means that the `:DI' expansion only applies if `TARGET_64BIT' but that ! the `:SI' expansion has no such constraint. Iterators are applied in the order they are defined. This can be significant if two iterators are used in a construct that requires *************** File: gccint.info, Node: Substitutions, *** 26803,26827 **** 16.23.1.2 Substitution in Mode Iterators ........................................ ! If an '.md' file construct uses mode iterators, each version of the construct will often need slightly different strings or modes. For example: ! * When a 'define_expand' defines several 'addM3' patterns (*note Standard Names::), each expander will need to use the appropriate mode name for M. ! * When a 'define_insn' defines several instruction patterns, each instruction will often use a different assembler mnemonic. ! * When a 'define_insn' requires operands with different modes, using an iterator for one of the operand modes usually requires a specific mode for the other operand(s). GCC supports such variations through a system of "mode attributes". ! There are two standard attributes: 'mode', which is the name of the mode ! in lower case, and 'MODE', which is the same thing in upper case. You ! can define other attributes using: (define_mode_attr NAME [(MODE1 "VALUE1") ... (MODEN "VALUEN")]) --- 27179,27203 ---- 16.23.1.2 Substitution in Mode Iterators ........................................ ! If an `.md' file construct uses mode iterators, each version of the construct will often need slightly different strings or modes. For example: ! * When a `define_expand' defines several `addM3' patterns (*note Standard Names::), each expander will need to use the appropriate mode name for M. ! * When a `define_insn' defines several instruction patterns, each instruction will often use a different assembler mnemonic. ! * When a `define_insn' requires operands with different modes, using an iterator for one of the operand modes usually requires a specific mode for the other operand(s). GCC supports such variations through a system of "mode attributes". ! There are two standard attributes: `mode', which is the name of the ! mode in lower case, and `MODE', which is the same thing in upper case. ! You can define other attributes using: (define_mode_attr NAME [(MODE1 "VALUE1") ... (MODEN "VALUEN")]) *************** can define other attributes using: *** 26829,26847 **** associated with MODEI. When GCC replaces some :ITERATOR with :MODE, it will scan each string ! and mode in the pattern for sequences of the form '', ! where ATTR is the name of a mode attribute. If the attribute is defined ! for MODE, the whole '<...>' sequence will be replaced by the appropriate ! attribute value. ! For example, suppose an '.md' file has: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) (define_mode_attr load [(SI "lw") (DI "ld")]) ! If one of the patterns that uses ':P' contains the string ! '"\t%0,%1"', the 'SI' version of that pattern will use ! '"lw\t%0,%1"' and the 'DI' version will use '"ld\t%0,%1"'. Here is an example of using an attribute for a mode: --- 27205,27223 ---- associated with MODEI. When GCC replaces some :ITERATOR with :MODE, it will scan each string ! and mode in the pattern for sequences of the form `', ! where ATTR is the name of a mode attribute. If the attribute is ! defined for MODE, the whole `<...>' sequence will be replaced by the ! appropriate attribute value. ! For example, suppose an `.md' file has: (define_mode_iterator P [(SI "Pmode == SImode") (DI "Pmode == DImode")]) (define_mode_attr load [(SI "lw") (DI "ld")]) ! If one of the patterns that uses `:P' contains the string ! `"\t%0,%1"', the `SI' version of that pattern will use ! `"lw\t%0,%1"' and the `DI' version will use `"ld\t%0,%1"'. Here is an example of using an attribute for a mode: *************** attribute value. *** 26850,26856 **** (define_insn ... (sign_extend:LONG (match_operand: ...)) ...) ! The 'ITERATOR:' prefix may be omitted, in which case the substitution will be attempted for every iterator expansion.  --- 27226,27232 ---- (define_insn ... (sign_extend:LONG (match_operand: ...)) ...) ! The `ITERATOR:' prefix may be omitted, in which case the substitution will be attempted for every iterator expansion.  *************** and attributes (among others): *** 26865,26871 **** (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) (define_mode_attr d [(SI "") (DI "d")]) ! and uses the following template to define both 'subsi3' and 'subdi3': (define_insn "sub3" [(set (match_operand:GPR 0 "register_operand" "=d") --- 27241,27247 ---- (define_mode_iterator GPR [SI (DI "TARGET_64BIT")]) (define_mode_attr d [(SI "") (DI "d")]) ! and uses the following template to define both `subsi3' and `subdi3': (define_insn "sub3" [(set (match_operand:GPR 0 "register_operand" "=d") *************** times, once with all uses of NAME replac *** 26918,26925 **** replaced by CODE2, and so on. *Note Defining Mode Iterators::. It is possible to define attributes for codes as well as for modes. ! There are two standard code attributes: 'code', the name of the code in ! lower case, and 'CODE', the name of the code in upper case. Other attributes are defined using: (define_code_attr NAME [(CODE1 "VALUE1") ... (CODEN "VALUEN")]) --- 27294,27301 ---- replaced by CODE2, and so on. *Note Defining Mode Iterators::. It is possible to define attributes for codes as well as for modes. ! There are two standard code attributes: `code', the name of the code in ! lower case, and `CODE', the name of the code in upper case. Other attributes are defined using: (define_code_attr NAME [(CODE1 "VALUE1") ... (CODEN "VALUEN")]) *************** Iterators::. *** 26983,26997 **** (define_int_iterator NAME [(INT1 "COND1") ... (INTN "CONDN")]) ! defines a pseudo integer constant NAME that can be instantiated as INTI ! if condition CONDI is true. Each INT must have the same rtx format. ! *Note RTL Classes::. Int iterators can appear in only those rtx fields ! that have 'i' as the specifier. This means that each INT has to be a ! constant defined using define_constant or define_c_enum. As with mode and code iterators, each pattern that uses NAME will be ! expanded N times, once with all uses of NAME replaced by INT1, once with ! all uses replaced by INT2, and so on. *Note Defining Mode Iterators::. It is possible to define attributes for ints as well as for codes and modes. Attributes are defined using: --- 27359,27374 ---- (define_int_iterator NAME [(INT1 "COND1") ... (INTN "CONDN")]) ! defines a pseudo integer constant NAME that can be instantiated as ! INTI if condition CONDI is true. Each INT must have the same rtx ! format. *Note RTL Classes::. Int iterators can appear in only those ! rtx fields that have 'i' as the specifier. This means that each INT has ! to be a constant defined using define_constant or define_c_enum. As with mode and code iterators, each pattern that uses NAME will be ! expanded N times, once with all uses of NAME replaced by INT1, once ! with all uses replaced by INT2, and so on. *Note Defining Mode ! Iterators::. It is possible to define attributes for ints as well as for codes and modes. Attributes are defined using: *************** modes. Attributes are defined using: *** 27014,27020 **** [(set_attr "type" "neon_vqneg_vqabs")] ) - This is equivalent to: (define_insn "neon_vqabs" --- 27391,27396 ---- *************** modes. Attributes are defined using: *** 27037,27043 **** [(set_attr "type" "neon_vqneg_vqabs")] ) -  File: gccint.info, Node: Subst Iterators, Prev: Int Iterators, Up: Iterators --- 27413,27418 ---- *************** used in RTL-pattern. *** 27053,27066 **** Subst iterators transform templates in the following way: the templates are duplicated, the subst-attributes in these templates are replaced with the corresponding values, and a new attribute is implicitly added ! to the given 'define_insn'/'define_expand'. The name of the added ! attribute matches the name of 'define_subst'. Such attributes are ! declared implicitly, and it is not allowed to have a 'define_attr' named ! as a 'define_subst'. ! Each subst iterator is linked to a 'define_subst'. It is declared implicitly by the first appearance of the corresponding ! 'define_subst_attr', and it is not allowed to define it explicitly. Declarations of subst-attributes have the following syntax: --- 27428,27441 ---- Subst iterators transform templates in the following way: the templates are duplicated, the subst-attributes in these templates are replaced with the corresponding values, and a new attribute is implicitly added ! to the given `define_insn'/`define_expand'. The name of the added ! attribute matches the name of `define_subst'. Such attributes are ! declared implicitly, and it is not allowed to have a `define_attr' ! named as a `define_subst'. ! Each subst iterator is linked to a `define_subst'. It is declared implicitly by the first appearance of the corresponding ! `define_subst_attr', and it is not allowed to define it explicitly. Declarations of subst-attributes have the following syntax: *************** implicitly by the first appearance of th *** 27069,27078 **** "NO-SUBST-VALUE" "SUBST-APPLIED-VALUE") ! NAME is a string with which the given subst-attribute could be referred ! to. ! SUBST-NAME shows which 'define_subst' should be applied to an RTL-template if the given subst-attribute is present in the RTL-template. --- 27444,27453 ---- "NO-SUBST-VALUE" "SUBST-APPLIED-VALUE") ! NAME is a string with which the given subst-attribute could be ! referred to. ! SUBST-NAME shows which `define_subst' should be applied to an RTL-template if the given subst-attribute is present in the RTL-template. *************** File: gccint.info, Node: Target Macros, *** 27088,27111 **** 17 Target Description Macros and Functions ****************************************** ! In addition to the file 'MACHINE.md', a machine description includes a C ! header file conventionally given the name 'MACHINE.h' and a C source ! file named 'MACHINE.c'. The header file defines numerous macros that convey the information about the target machine that does not fit into ! the scheme of the '.md' file. The file 'tm.h' should be a link to ! 'MACHINE.h'. The header file 'config.h' includes 'tm.h' and most ! compiler source files include 'config.h'. The source file defines a ! variable 'targetm', which is a structure containing pointers to ! functions and data relating to the target machine. 'MACHINE.c' should also contain their definitions, if they are not defined elsewhere in ! GCC, and other functions called through the macros defined in the '.h' file. * Menu: ! * Target Structure:: The 'targetm' variable. * Driver:: Controlling how the driver runs the compilation passes. ! * Run-time Target:: Defining '-m' options like '-m68000' and '-m68020'. * Per-Function Data:: Defining data structures for per-function information. * Storage Layout:: Defining sizes and alignments of data. * Type Layout:: Defining sizes and properties of basic user data types. --- 27463,27486 ---- 17 Target Description Macros and Functions ****************************************** ! In addition to the file `MACHINE.md', a machine description includes a ! C header file conventionally given the name `MACHINE.h' and a C source ! file named `MACHINE.c'. The header file defines numerous macros that convey the information about the target machine that does not fit into ! the scheme of the `.md' file. The file `tm.h' should be a link to ! `MACHINE.h'. The header file `config.h' includes `tm.h' and most ! compiler source files include `config.h'. The source file defines a ! variable `targetm', which is a structure containing pointers to ! functions and data relating to the target machine. `MACHINE.c' should also contain their definitions, if they are not defined elsewhere in ! GCC, and other functions called through the macros defined in the `.h' file. * Menu: ! * Target Structure:: The `targetm' variable. * Driver:: Controlling how the driver runs the compilation passes. ! * Run-time Target:: Defining `-m' options like `-m68000' and `-m68020'. * Per-Function Data:: Defining data structures for per-function information. * Storage Layout:: Defining sizes and alignments of data. * Type Layout:: Defining sizes and properties of basic user data types. *************** file. *** 27117,27123 **** * Trampolines:: Code set up at run time to enter a nested function. * Library Calls:: Controlling how library routines are implicitly called. * Addressing Modes:: Defining addressing modes valid for memory operands. ! * Anchored Addresses:: Defining how '-fsection-anchors' should work. * Condition Code:: Defining how insns update the condition code. * Costs:: Defining relative costs of different operations. * Scheduling:: Adjusting the behavior of the instruction scheduler. --- 27492,27498 ---- * Trampolines:: Code set up at run time to enter a nested function. * Library Calls:: Controlling how library routines are implicitly called. * Addressing Modes:: Defining addressing modes valid for memory operands. ! * Anchored Addresses:: Defining how `-fsection-anchors' should work. * Condition Code:: Defining how insns update the condition code. * Costs:: Defining relative costs of different operations. * Scheduling:: Adjusting the behavior of the instruction scheduler. *************** file. *** 27127,27133 **** * Debugging Info:: Defining the format of debugging output. * Floating Point:: Handling floating point for cross-compilers. * Mode Switching:: Insertion of mode-switching instructions. ! * Target Attributes:: Defining target-specific uses of '__attribute__'. * Emulated TLS:: Emulated TLS support. * MIPS Coprocessors:: MIPS coprocessor support and how to customize it. * PCH Target:: Validity checking for precompiled headers. --- 27502,27508 ---- * Debugging Info:: Defining the format of debugging output. * Floating Point:: Handling floating point for cross-compilers. * Mode Switching:: Insertion of mode-switching instructions. ! * Target Attributes:: Defining target-specific uses of `__attribute__'. * Emulated TLS:: Emulated TLS support. * MIPS Coprocessors:: MIPS coprocessor support and how to customize it. * PCH Target:: Validity checking for precompiled headers. *************** file. *** 27138,27155 ****  File: gccint.info, Node: Target Structure, Next: Driver, Up: Target Macros ! 17.1 The Global 'targetm' Variable ================================== -- Variable: struct gcc_target targetm ! The target '.c' file must define the global 'targetm' variable which contains pointers to functions and data relating to the ! target machine. The variable is declared in 'target.h'; ! 'target-def.h' defines the macro 'TARGET_INITIALIZER' which is used ! to initialize the variable, and macros for the default initializers ! for elements of the structure. The '.c' file should override those ! macros for which the default definition is inappropriate. For ! example: #include "target.h" #include "target-def.h" --- 27513,27530 ----  File: gccint.info, Node: Target Structure, Next: Driver, Up: Target Macros ! 17.1 The Global `targetm' Variable ================================== -- Variable: struct gcc_target targetm ! The target `.c' file must define the global `targetm' variable which contains pointers to functions and data relating to the ! target machine. The variable is declared in `target.h'; ! `target-def.h' defines the macro `TARGET_INITIALIZER' which is ! used to initialize the variable, and macros for the default ! initializers for elements of the structure. The `.c' file should ! override those macros for which the default definition is ! inappropriate. For example: #include "target.h" #include "target-def.h" *************** File: gccint.info, Node: Target Structu *** 27160,27190 **** struct gcc_target targetm = TARGET_INITIALIZER; ! Where a macro should be defined in the '.c' file in this manner to form ! part of the 'targetm' structure, it is documented below as a "Target Hook" with a prototype. Many macros will change in future from being ! defined in the '.h' file to being part of the 'targetm' structure. ! Similarly, there is a 'targetcm' variable for hooks that are specific to front ends for C-family languages, documented as "C Target Hook". ! This is declared in 'c-family/c-target.h', the initializer ! 'TARGETCM_INITIALIZER' in 'c-family/c-target-def.h'. If targets ! initialize 'targetcm' themselves, they should set ! 'target_has_targetcm=yes' in 'config.gcc'; otherwise a default definition is used. ! Similarly, there is a 'targetm_common' variable for hooks that are shared between the compiler driver and the compilers proper, documented ! as "Common Target Hook". This is declared in 'common/common-target.h', ! the initializer 'TARGETM_COMMON_INITIALIZER' in ! 'common/common-target-def.h'. If targets initialize 'targetm_common' ! themselves, they should set 'target_has_targetm_common=yes' in ! 'config.gcc'; otherwise a default definition is used.  File: gccint.info, Node: Driver, Next: Run-time Target, Prev: Target Structure, Up: Target Macros ! 17.2 Controlling the Compilation Driver, 'gcc' ============================================== You can control the compilation driver. --- 27535,27565 ---- struct gcc_target targetm = TARGET_INITIALIZER; ! Where a macro should be defined in the `.c' file in this manner to form ! part of the `targetm' structure, it is documented below as a "Target Hook" with a prototype. Many macros will change in future from being ! defined in the `.h' file to being part of the `targetm' structure. ! Similarly, there is a `targetcm' variable for hooks that are specific to front ends for C-family languages, documented as "C Target Hook". ! This is declared in `c-family/c-target.h', the initializer ! `TARGETCM_INITIALIZER' in `c-family/c-target-def.h'. If targets ! initialize `targetcm' themselves, they should set ! `target_has_targetcm=yes' in `config.gcc'; otherwise a default definition is used. ! Similarly, there is a `targetm_common' variable for hooks that are shared between the compiler driver and the compilers proper, documented ! as "Common Target Hook". This is declared in `common/common-target.h', ! the initializer `TARGETM_COMMON_INITIALIZER' in ! `common/common-target-def.h'. If targets initialize `targetm_common' ! themselves, they should set `target_has_targetm_common=yes' in ! `config.gcc'; otherwise a default definition is used.  File: gccint.info, Node: Driver, Next: Run-time Target, Prev: Target Structure, Up: Target Macros ! 17.2 Controlling the Compilation Driver, `gcc' ============================================== You can control the compilation driver. *************** You can control the compilation driver. *** 27194,27204 **** initializer for an array of strings, with no surrounding braces. The driver applies these specs to its own command line between ! loading default 'specs' files (but not command-line specified ones) ! and choosing the multilib directory or running any subcommands. It ! applies them in the order given, so each spec can depend on the ! options added by earlier ones. It is also possible to remove ! options using '%' in such a case, the header provided may not conform to C99, depending on the type in question. The defaults for all of these macros are null pointers. --- 29081,29099 ---- -- Macro: UINT_FAST64_TYPE -- Macro: INTPTR_TYPE -- Macro: UINTPTR_TYPE ! C expressions for the standard types `sig_atomic_t', `int8_t', ! `int16_t', `int32_t', `int64_t', `uint8_t', `uint16_t', ! `uint32_t', `uint64_t', `int_least8_t', `int_least16_t', ! `int_least32_t', `int_least64_t', `uint_least8_t', ! `uint_least16_t', `uint_least32_t', `uint_least64_t', ! `int_fast8_t', `int_fast16_t', `int_fast32_t', `int_fast64_t', ! `uint_fast8_t', `uint_fast16_t', `uint_fast32_t', `uint_fast64_t', ! `intptr_t', and `uintptr_t'. See `SIZE_TYPE' above for more ! information. If any of these macros evaluates to a null pointer, the corresponding type is not supported; if GCC is configured to ! provide `' in such a case, the header provided may not conform to C99, depending on the type in question. The defaults for all of these macros are null pointers. *************** languages, rather than to fundamental as *** 28733,28754 **** vtable_index is odd, we can distinguish which variant of the union is in use. But, on some platforms function pointers can be odd, and so this doesn't work. In that case, we use the low-order bit ! of the 'delta' field, and shift the remainder of the 'delta' field to the left. GCC will automatically make the right selection about where to ! store this bit using the 'FUNCTION_BOUNDARY' setting for your platform. However, some platforms such as ARM/Thumb have ! 'FUNCTION_BOUNDARY' set such that functions always start at even addresses, but the lowest bit of pointers to functions indicate whether the function at that address is in ARM or Thumb mode. If ! this is the case of your architecture, you should define this macro ! to 'ptrmemfunc_vbit_in_delta'. In general, you should not have to define this macro. On architectures in which function addresses are always even, ! according to 'FUNCTION_BOUNDARY', GCC will automatically define ! this macro to 'ptrmemfunc_vbit_in_pfn'. -- Macro: TARGET_VTABLE_USES_DESCRIPTORS Normally, the C++ compiler uses function pointers in vtables. This --- 29116,29137 ---- vtable_index is odd, we can distinguish which variant of the union is in use. But, on some platforms function pointers can be odd, and so this doesn't work. In that case, we use the low-order bit ! of the `delta' field, and shift the remainder of the `delta' field to the left. GCC will automatically make the right selection about where to ! store this bit using the `FUNCTION_BOUNDARY' setting for your platform. However, some platforms such as ARM/Thumb have ! `FUNCTION_BOUNDARY' set such that functions always start at even addresses, but the lowest bit of pointers to functions indicate whether the function at that address is in ARM or Thumb mode. If ! this is the case of your architecture, you should define this ! macro to `ptrmemfunc_vbit_in_delta'. In general, you should not have to define this macro. On architectures in which function addresses are always even, ! according to `FUNCTION_BOUNDARY', GCC will automatically define ! this macro to `ptrmemfunc_vbit_in_pfn'. -- Macro: TARGET_VTABLE_USES_DESCRIPTORS Normally, the C++ compiler uses function pointers in vtables. This *************** languages, rather than to fundamental as *** 28765,28776 **** By default, the vtable entries are void pointers, the so the alignment is the same as pointer alignment. The value of this macro specifies the alignment of the vtable entry in bits. It ! should be defined only when special alignment is necessary. */ -- Macro: TARGET_VTABLE_DATA_ENTRY_DISTANCE There are a few non-descriptor entries in the vtable at offsets below zero. If these entries must be padded (say, to preserve the ! alignment specified by 'TARGET_VTABLE_ENTRY_ALIGN'), set this to the number of words in each data entry.  --- 29148,29159 ---- By default, the vtable entries are void pointers, the so the alignment is the same as pointer alignment. The value of this macro specifies the alignment of the vtable entry in bits. It ! should be defined only when special alignment is necessary. */ -- Macro: TARGET_VTABLE_DATA_ENTRY_DISTANCE There are a few non-descriptor entries in the vtable at offsets below zero. If these entries must be padded (say, to preserve the ! alignment specified by `TARGET_VTABLE_ENTRY_ALIGN'), set this to the number of words in each data entry.  *************** Registers have various characteristics. *** 28807,28815 **** -- Macro: FIRST_PSEUDO_REGISTER Number of hardware registers known to the compiler. They receive ! numbers 0 through 'FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo ! register's number really is assigned the number ! 'FIRST_PSEUDO_REGISTER'. -- Macro: FIXED_REGISTERS An initializer that says which registers are used for fixed --- 29190,29198 ---- -- Macro: FIRST_PSEUDO_REGISTER Number of hardware registers known to the compiler. They receive ! numbers 0 through `FIRST_PSEUDO_REGISTER-1'; thus, the first ! pseudo register's number really is assigned the number ! `FIRST_PSEUDO_REGISTER'. -- Macro: FIXED_REGISTERS An initializer that says which registers are used for fixed *************** Registers have various characteristics. *** 28828,28853 **** The table initialized from this macro, and the table initialized by the following one, may be overridden at run time either automatically, by the actions of the macro ! 'CONDITIONAL_REGISTER_USAGE', or by the user with the command ! options '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG'. -- Macro: CALL_USED_REGISTERS ! Like 'FIXED_REGISTERS' but has 1 for each register that is clobbered (in general) by function calls as well as for fixed registers. This macro therefore identifies the registers that are not available for general allocation of values that must live across function calls. ! If a register has 0 in 'CALL_USED_REGISTERS', the compiler automatically saves it on function entry and restores it on function exit, if the register is used within the function. -- Macro: CALL_REALLY_USED_REGISTERS ! Like 'CALL_USED_REGISTERS' except this macro doesn't require that ! the entire set of 'FIXED_REGISTERS' be included. ! ('CALL_USED_REGISTERS' must be a superset of 'FIXED_REGISTERS'). This macro is optional. If not specified, it defaults to the value ! of 'CALL_USED_REGISTERS'. -- Macro: HARD_REGNO_CALL_PART_CLOBBERED (REGNO, MODE) A C expression that is nonzero if it is not permissible to store a --- 29211,29236 ---- The table initialized from this macro, and the table initialized by the following one, may be overridden at run time either automatically, by the actions of the macro ! `CONDITIONAL_REGISTER_USAGE', or by the user with the command ! options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. -- Macro: CALL_USED_REGISTERS ! Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in general) by function calls as well as for fixed registers. This macro therefore identifies the registers that are not available for general allocation of values that must live across function calls. ! If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically saves it on function entry and restores it on function exit, if the register is used within the function. -- Macro: CALL_REALLY_USED_REGISTERS ! Like `CALL_USED_REGISTERS' except this macro doesn't require that ! the entire set of `FIXED_REGISTERS' be included. ! (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS'). This macro is optional. If not specified, it defaults to the value ! of `CALL_USED_REGISTERS'. -- Macro: HARD_REGNO_CALL_PART_CLOBBERED (REGNO, MODE) A C expression that is nonzero if it is not permissible to store a *************** Registers have various characteristics. *** 28857,28907 **** do not preserve the entire contents of a register across a call. -- Target Hook: void TARGET_CONDITIONAL_REGISTER_USAGE (void) ! This hook may conditionally modify five variables 'fixed_regs', ! 'call_used_regs', 'global_regs', 'reg_names', and ! 'reg_class_contents', to take into account any dependence of these register sets on target flags. The first three of these are of ! type 'char []' (interpreted as Boolean vectors). 'global_regs' is ! a 'const char *[]', and 'reg_class_contents' is a 'HARD_REG_SET'. ! Before the macro is called, 'fixed_regs', 'call_used_regs', ! 'reg_class_contents', and 'reg_names' have been initialized from ! 'FIXED_REGISTERS', 'CALL_USED_REGISTERS', 'REG_CLASS_CONTENTS', and ! 'REGISTER_NAMES', respectively. 'global_regs' has been cleared, ! and any '-ffixed-REG', '-fcall-used-REG' and '-fcall-saved-REG' ! command options have been applied. If the usage of an entire class of registers depends on the target flags, you may indicate this to GCC by using this macro to modify ! 'fixed_regs' and 'call_used_regs' to 1 for each of the registers in ! the classes which should not be used by GCC. Also define the macro ! 'REG_CLASS_FROM_LETTER' / 'REG_CLASS_FROM_CONSTRAINT' to return ! 'NO_REGS' if it is called with a letter for a class that shouldn't ! be used. ! (However, if this class is not included in 'GENERAL_REGS' and all of the insn patterns whose constraints permit this class are controlled by target switches, then GCC will automatically avoid using these registers when the target switches are opposed to them.) -- Macro: INCOMING_REGNO (OUT) ! Define this macro if the target machine has register windows. This ! C expression returns the register number as seen by the called ! function corresponding to the register number OUT as seen by the ! calling function. Return OUT if register number OUT is not an ! outbound register. -- Macro: OUTGOING_REGNO (IN) ! Define this macro if the target machine has register windows. This ! C expression returns the register number as seen by the calling ! function corresponding to the register number IN as seen by the ! called function. Return IN if register number IN is not an inbound ! register. -- Macro: LOCAL_REGNO (REGNO) ! Define this macro if the target machine has register windows. This ! C expression returns true if the register is call-saved but is in ! the register window. Unlike most call-saved registers, such registers need not be explicitly restored on function exit or during non-local gotos. --- 29240,29290 ---- do not preserve the entire contents of a register across a call. -- Target Hook: void TARGET_CONDITIONAL_REGISTER_USAGE (void) ! This hook may conditionally modify five variables `fixed_regs', ! `call_used_regs', `global_regs', `reg_names', and ! `reg_class_contents', to take into account any dependence of these register sets on target flags. The first three of these are of ! type `char []' (interpreted as Boolean vectors). `global_regs' is ! a `const char *[]', and `reg_class_contents' is a `HARD_REG_SET'. ! Before the macro is called, `fixed_regs', `call_used_regs', ! `reg_class_contents', and `reg_names' have been initialized from ! `FIXED_REGISTERS', `CALL_USED_REGISTERS', `REG_CLASS_CONTENTS', ! and `REGISTER_NAMES', respectively. `global_regs' has been ! cleared, and any `-ffixed-REG', `-fcall-used-REG' and ! `-fcall-saved-REG' command options have been applied. If the usage of an entire class of registers depends on the target flags, you may indicate this to GCC by using this macro to modify ! `fixed_regs' and `call_used_regs' to 1 for each of the registers ! in the classes which should not be used by GCC. Also define the ! macro `REG_CLASS_FROM_LETTER' / `REG_CLASS_FROM_CONSTRAINT' to ! return `NO_REGS' if it is called with a letter for a class that ! shouldn't be used. ! (However, if this class is not included in `GENERAL_REGS' and all of the insn patterns whose constraints permit this class are controlled by target switches, then GCC will automatically avoid using these registers when the target switches are opposed to them.) -- Macro: INCOMING_REGNO (OUT) ! Define this macro if the target machine has register windows. ! This C expression returns the register number as seen by the ! called function corresponding to the register number OUT as seen ! by the calling function. Return OUT if register number OUT is not ! an outbound register. -- Macro: OUTGOING_REGNO (IN) ! Define this macro if the target machine has register windows. ! This C expression returns the register number as seen by the ! calling function corresponding to the register number IN as seen ! by the called function. Return IN if register number IN is not an ! inbound register. -- Macro: LOCAL_REGNO (REGNO) ! Define this macro if the target machine has register windows. ! This C expression returns true if the register is call-saved but ! is in the register window. Unlike most call-saved registers, such registers need not be explicitly restored on function exit or during non-local gotos. *************** Registers are allocated in order. *** 28928,28934 **** One use of this macro is on machines where the highest numbered registers must always be saved and the save-multiple-registers instruction supports only sequences of consecutive registers. On ! such machines, define 'REG_ALLOC_ORDER' to be an initializer that lists the highest numbered allocable register first. -- Macro: ADJUST_REG_ALLOC_ORDER --- 29311,29317 ---- One use of this macro is on machines where the highest numbered registers must always be saved and the save-multiple-registers instruction supports only sequences of consecutive registers. On ! such machines, define `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered allocable register first. -- Macro: ADJUST_REG_ALLOC_ORDER *************** Registers are allocated in order. *** 28936,28957 **** allocate hard registers for pseudo-registers local to a basic block. ! Store the desired register order in the array 'reg_alloc_order'. Element 0 should be the register to allocate first; element 1, the next register; and so on. The macro body should not assume anything about the contents of ! 'reg_alloc_order' before execution of the macro. On most machines, it is not necessary to define this macro. -- Macro: HONOR_REG_ALLOC_ORDER Normally, IRA tries to estimate the costs for saving a register in ! the prologue and restoring it in the epilogue. This discourages it ! from using call-saved registers. If a machine wants to ensure that ! IRA allocates registers in the order given by REG_ALLOC_ORDER even ! if some call-saved registers appear earlier than call-used ones, ! this macro should be defined. -- Macro: IRA_HARD_REGNO_ADD_COST_MULTIPLIER (REGNO) In some case register allocation order is not enough for the --- 29319,29340 ---- allocate hard registers for pseudo-registers local to a basic block. ! Store the desired register order in the array `reg_alloc_order'. Element 0 should be the register to allocate first; element 1, the next register; and so on. The macro body should not assume anything about the contents of ! `reg_alloc_order' before execution of the macro. On most machines, it is not necessary to define this macro. -- Macro: HONOR_REG_ALLOC_ORDER Normally, IRA tries to estimate the costs for saving a register in ! the prologue and restoring it in the epilogue. This discourages ! it from using call-saved registers. If a machine wants to ensure ! that IRA allocates registers in the order given by REG_ALLOC_ORDER ! even if some call-saved registers appear earlier than call-used ! ones, this macro should be defined. -- Macro: IRA_HARD_REGNO_ADD_COST_MULTIPLIER (REGNO) In some case register allocation order is not enough for the *************** Registers are allocated in order. *** 28960,28966 **** based on REGNO. The cost of using REGNO for a pseudo will be increased by approximately the pseudo's usage frequency times the value returned by this macro. Not defining this macro is ! equivalent to having it always return '0.0'. On most machines, it is not necessary to define this macro. --- 29343,29349 ---- based on REGNO. The cost of using REGNO for a pseudo will be increased by approximately the pseudo's usage frequency times the value returned by this macro. Not defining this macro is ! equivalent to having it always return `0.0'. On most machines, it is not necessary to define this macro. *************** consecutive registers are needed for a g *** 28977,28985 **** -- Macro: HARD_REGNO_NREGS (REGNO, MODE) A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode ! MODE. This macro must never return zero, even if a register cannot ! hold the requested mode - indicate that with HARD_REGNO_MODE_OK ! and/or CANNOT_CHANGE_MODE_CLASS instead. On a machine where all registers are exactly one word, a suitable definition of this macro is --- 29360,29368 ---- -- Macro: HARD_REGNO_NREGS (REGNO, MODE) A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode ! MODE. This macro must never return zero, even if a register ! cannot hold the requested mode - indicate that with ! HARD_REGNO_MODE_OK and/or CANNOT_CHANGE_MODE_CLASS instead. On a machine where all registers are exactly one word, a suitable definition of this macro is *************** consecutive registers are needed for a g *** 28994,29017 **** in registers starting at register number REGNO (as determined by multiplying GCC's notion of the size of the register when containing this mode by the number of registers returned by ! 'HARD_REGNO_NREGS'). By default this is zero. For example, if a floating-point value is stored in three 32-bit registers but takes up 128 bits in memory, then this would be nonzero. This macros only needs to be defined if there are cases where ! 'subreg_get_info' would otherwise wrongly determine that a 'subreg' ! can be represented by an offset to the register number, when in ! fact such a 'subreg' would contain some of the padding not stored ! in registers and so not be representable. -- Macro: HARD_REGNO_NREGS_WITH_PADDING (REGNO, MODE) For values of REGNO and MODE for which ! 'HARD_REGNO_NREGS_HAS_PADDING' returns nonzero, a C expression returning the greater number of registers required to hold the ! value including any padding. In the example above, the value would ! be four. -- Macro: REGMODE_NATURAL_SIZE (MODE) Define this macro if the natural size of registers that hold values --- 29377,29400 ---- in registers starting at register number REGNO (as determined by multiplying GCC's notion of the size of the register when containing this mode by the number of registers returned by ! `HARD_REGNO_NREGS'). By default this is zero. For example, if a floating-point value is stored in three 32-bit registers but takes up 128 bits in memory, then this would be nonzero. This macros only needs to be defined if there are cases where ! `subreg_get_info' would otherwise wrongly determine that a ! `subreg' can be represented by an offset to the register number, ! when in fact such a `subreg' would contain some of the padding not ! stored in registers and so not be representable. -- Macro: HARD_REGNO_NREGS_WITH_PADDING (REGNO, MODE) For values of REGNO and MODE for which ! `HARD_REGNO_NREGS_HAS_PADDING' returns nonzero, a C expression returning the greater number of registers required to hold the ! value including any padding. In the example above, the value ! would be four. -- Macro: REGMODE_NATURAL_SIZE (MODE) Define this macro if the natural size of registers that hold values *************** consecutive registers are needed for a g *** 29038,29085 **** reject odd register numbers for such modes. The minimum requirement for a mode to be OK in a register is that ! the 'movMODE' instruction pattern support moves between the register and other hard register in the same class and that moving a value into the register and back out not alter it. ! Since the same instruction used to move 'word_mode' will work for all narrower integer modes, it is not necessary on any machine for ! 'HARD_REGNO_MODE_OK' to distinguish between these modes, provided ! you define patterns 'movhi', etc., to take advantage of this. This ! is useful because of the interaction between 'HARD_REGNO_MODE_OK' ! and 'MODES_TIEABLE_P'; it is very desirable for all integer modes to be tieable. Many machines have special registers for floating point arithmetic. Often people assume that floating point machine modes are allowed ! only in floating point registers. This is not true. Any registers ! that can hold integers can safely _hold_ a floating point machine ! mode, whether or not floating arithmetic can be done on it in those ! registers. Integer move instructions can be used to move the ! values. On some machines, though, the converse is true: fixed-point machine modes may not go in floating registers. This is true if the floating registers normalize any value stored in them, because storing a non-floating value there would garble it. In this case, ! 'HARD_REGNO_MODE_OK' should reject fixed-point machine modes in floating registers. But if the floating registers do not automatically normalize, if you can store any bit pattern in one ! and retrieve it unchanged without a trap, then any machine mode may ! go in a floating register, so you can define this macro to say so. The primary significance of special floating registers is rather that they are the registers acceptable in floating point arithmetic instructions. However, this is of no concern to ! 'HARD_REGNO_MODE_OK'. You handle it by writing the proper constraints for those instructions. On some machines, the floating registers are especially slow to ! access, so that it is better to store a value in a stack frame than ! in such a register if floating point arithmetic is not being done. ! As long as the floating registers are not in class 'GENERAL_REGS', ! they will not be used unless some pattern's constraint asks for ! one. -- Macro: HARD_REGNO_RENAME_OK (FROM, TO) A C expression that is nonzero if it is OK to rename a hard --- 29421,29469 ---- reject odd register numbers for such modes. The minimum requirement for a mode to be OK in a register is that ! the `movMODE' instruction pattern support moves between the register and other hard register in the same class and that moving a value into the register and back out not alter it. ! Since the same instruction used to move `word_mode' will work for all narrower integer modes, it is not necessary on any machine for ! `HARD_REGNO_MODE_OK' to distinguish between these modes, provided ! you define patterns `movhi', etc., to take advantage of this. This ! is useful because of the interaction between `HARD_REGNO_MODE_OK' ! and `MODES_TIEABLE_P'; it is very desirable for all integer modes to be tieable. Many machines have special registers for floating point arithmetic. Often people assume that floating point machine modes are allowed ! only in floating point registers. This is not true. Any ! registers that can hold integers can safely _hold_ a floating ! point machine mode, whether or not floating arithmetic can be done ! on it in those registers. Integer move instructions can be used ! to move the values. On some machines, though, the converse is true: fixed-point machine modes may not go in floating registers. This is true if the floating registers normalize any value stored in them, because storing a non-floating value there would garble it. In this case, ! `HARD_REGNO_MODE_OK' should reject fixed-point machine modes in floating registers. But if the floating registers do not automatically normalize, if you can store any bit pattern in one ! and retrieve it unchanged without a trap, then any machine mode ! may go in a floating register, so you can define this macro to say ! so. The primary significance of special floating registers is rather that they are the registers acceptable in floating point arithmetic instructions. However, this is of no concern to ! `HARD_REGNO_MODE_OK'. You handle it by writing the proper constraints for those instructions. On some machines, the floating registers are especially slow to ! access, so that it is better to store a value in a stack frame ! than in such a register if floating point arithmetic is not being ! done. As long as the floating registers are not in class ! `GENERAL_REGS', they will not be used unless some pattern's ! constraint asks for one. -- Macro: HARD_REGNO_RENAME_OK (FROM, TO) A C expression that is nonzero if it is OK to rename a hard *************** consecutive registers are needed for a g *** 29095,29123 **** A C expression that is nonzero if a value of mode MODE1 is accessible in mode MODE2 without copying. ! If 'HARD_REGNO_MODE_OK (R, MODE1)' and 'HARD_REGNO_MODE_OK (R, ! MODE2)' are always the same for any R, then 'MODES_TIEABLE_P (MODE1, MODE2)' should be nonzero. If they differ for any R, you ! should define this macro to return zero unless some other mechanism ! ensures the accessibility of the value in a narrower mode. You should define this macro to return nonzero in as many cases as possible since doing so will allow GCC to perform better register allocation. -- Target Hook: bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int REGNO) ! This target hook should return 'true' if it is OK to use a hard register REGNO as scratch reg in peephole2. One common use of this macro is to prevent using of a register that is not saved by a prologue in an interrupt handler. ! The default version of this hook always returns 'true'. -- Macro: AVOID_CCMODE_COPIES Define this macro if the compiler should avoid copies to/from ! 'CCmode' registers. You should only define this macro if support ! for copying to/from 'CCmode' is incomplete.  File: gccint.info, Node: Leaf Functions, Next: Stack Registers, Prev: Values in Registers, Up: Registers --- 29479,29508 ---- A C expression that is nonzero if a value of mode MODE1 is accessible in mode MODE2 without copying. ! If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, ! MODE2)' are always the same for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' should be nonzero. If they differ for any R, you ! should define this macro to return zero unless some other ! mechanism ensures the accessibility of the value in a narrower ! mode. You should define this macro to return nonzero in as many cases as possible since doing so will allow GCC to perform better register allocation. -- Target Hook: bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int REGNO) ! This target hook should return `true' if it is OK to use a hard register REGNO as scratch reg in peephole2. One common use of this macro is to prevent using of a register that is not saved by a prologue in an interrupt handler. ! The default version of this hook always returns `true'. -- Macro: AVOID_CCMODE_COPIES Define this macro if the compiler should avoid copies to/from ! `CCmode' registers. You should only define this macro if support ! for copying to/from `CCmode' is incomplete.  File: gccint.info, Node: Leaf Functions, Next: Stack Registers, Prev: Values in Registers, Up: Registers *************** File: gccint.info, Node: Leaf Functions *** 29126,29141 **** ------------------------------ On some machines, a leaf function (i.e., one which makes no calls) can ! run more efficiently if it does not make its own register window. Often ! this means it is required to receive its arguments in the registers ! where they are passed by the caller, instead of the registers where they ! would normally arrive. The special treatment for leaf functions generally applies only when other conditions are met; for example, often they may use only those registers for its own variables and temporaries. We use the term "leaf ! function" to mean a function that is suitable for this special handling, ! so that functions with no calls are not necessarily "leaf functions". GCC assigns register numbers before it knows whether the function is suitable for leaf function treatment. So it needs to renumber the --- 29511,29527 ---- ------------------------------ On some machines, a leaf function (i.e., one which makes no calls) can ! run more efficiently if it does not make its own register window. ! Often this means it is required to receive its arguments in the ! registers where they are passed by the caller, instead of the registers ! where they would normally arrive. The special treatment for leaf functions generally applies only when other conditions are met; for example, often they may use only those registers for its own variables and temporaries. We use the term "leaf ! function" to mean a function that is suitable for this special ! handling, so that functions with no calls are not necessarily "leaf ! functions". GCC assigns register numbers before it knows whether the function is suitable for leaf function treatment. So it needs to renumber the *************** accomplish this. *** 29147,29154 **** contains 1 for a register that is allowable in a candidate for leaf function treatment. ! If leaf function treatment involves renumbering the registers, then ! the registers marked here should be the ones before renumbering--those that GCC would ordinarily allocate. The registers which will actually be used in the assembler code, after renumbering, should not be marked with 1 in this vector. --- 29533,29540 ---- contains 1 for a register that is allowable in a candidate for leaf function treatment. ! If leaf function treatment involves renumbering the registers, ! then the registers marked here should be the ones before renumbering--those that GCC would ordinarily allocate. The registers which will actually be used in the assembler code, after renumbering, should not be marked with 1 in this vector. *************** accomplish this. *** 29169,29184 **** optimize the treatment of leaf functions, and registers need to be renumbered to do this. ! 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE' must usually treat leaf functions specially. They can test the C variable ! 'current_function_is_leaf' which is nonzero for leaf functions. ! 'current_function_is_leaf' is set prior to local register allocation and ! is valid for the remaining compiler passes. They can also test the C ! variable 'current_function_uses_only_leaf_regs' which is nonzero for leaf functions which only use leaf registers. ! 'current_function_uses_only_leaf_regs' is valid after all passes that modify the instructions have been run and is only useful if ! 'LEAF_REGISTERS' is defined.  File: gccint.info, Node: Stack Registers, Prev: Leaf Functions, Up: Registers --- 29555,29570 ---- optimize the treatment of leaf functions, and registers need to be renumbered to do this. ! `TARGET_ASM_FUNCTION_PROLOGUE' and `TARGET_ASM_FUNCTION_EPILOGUE' must usually treat leaf functions specially. They can test the C variable ! `current_function_is_leaf' which is nonzero for leaf functions. ! `current_function_is_leaf' is set prior to local register allocation ! and is valid for the remaining compiler passes. They can also test the ! C variable `current_function_uses_only_leaf_regs' which is nonzero for leaf functions which only use leaf registers. ! `current_function_uses_only_leaf_regs' is valid after all passes that modify the instructions have been run and is only useful if ! `LEAF_REGISTERS' is defined.  File: gccint.info, Node: Stack Registers, Prev: Leaf Functions, Up: Registers *************** stack. *** 29195,29203 **** they must be consecutively numbered. Furthermore, the existing support for stack-like registers is specific to the 80387 floating point coprocessor. If you have a new architecture that uses stack-like ! registers, you will need to do substantial work on 'reg-stack.c' and ! write your machine description to cooperate with it, as well as defining ! these macros. -- Macro: STACK_REGS Define this if the machine has any stack-like registers. --- 29581,29589 ---- they must be consecutively numbered. Furthermore, the existing support for stack-like registers is specific to the 80387 floating point coprocessor. If you have a new architecture that uses stack-like ! registers, you will need to do substantial work on `reg-stack.c' and ! write your machine description to cooperate with it, as well as ! defining these macros. -- Macro: STACK_REGS Define this if the machine has any stack-like registers. *************** these macros. *** 29211,29218 **** of the stack. -- Macro: LAST_STACK_REG ! The number of the last stack-like register. This one is the bottom ! of the stack.  File: gccint.info, Node: Register Classes, Next: Old Constraints, Prev: Registers, Up: Target Macros --- 29597,29604 ---- of the stack. -- Macro: LAST_STACK_REG ! The number of the last stack-like register. This one is the ! bottom of the stack.  File: gccint.info, Node: Register Classes, Next: Old Constraints, Prev: Registers, Up: Target Macros *************** register classes that are allowed as ope *** 29232,29266 **** patterns. In general, each register will belong to several classes. In fact, one ! class must be named 'ALL_REGS' and contain all the registers. Another ! class must be named 'NO_REGS' and contain no registers. Often the union ! of two classes will be another class; however, this is not required. ! One of the classes must be named 'GENERAL_REGS'. There is nothing ! terribly special about the name, but the operand constraint letters 'r' ! and 'g' specify this class. If 'GENERAL_REGS' is the same as ! 'ALL_REGS', just define it as a macro which expands to 'ALL_REGS'. ! Order the classes so that if class X is contained in class Y then X has ! a lower class number than Y. ! The way classes other than 'GENERAL_REGS' are specified in operand constraints is through machine-dependent operand constraint letters. You can define such letters to correspond to various classes, then use them in operand constraints. You must define the narrowest register classes for allocatable ! registers, so that each class either has no subclasses, or that for some ! mode, the move cost between registers within the class is cheaper than ! moving a register in the class to or from memory (*note Costs::). You should define a class for the union of two classes whenever some instruction allows both classes. For example, if an instruction allows ! either a floating point (coprocessor) register or a general register for ! a certain operand, you should define a class 'FLOAT_OR_GENERAL_REGS' ! which includes both of them. Otherwise you will get suboptimal code, or ! even internal compiler errors when reload cannot find a register in the ! class computed via 'reg_class_subunion'. You must also specify certain redundant information about the register classes: for each class, which classes contain it and which ones are --- 29618,29653 ---- patterns. In general, each register will belong to several classes. In fact, one ! class must be named `ALL_REGS' and contain all the registers. Another ! class must be named `NO_REGS' and contain no registers. Often the ! union of two classes will be another class; however, this is not ! required. ! One of the classes must be named `GENERAL_REGS'. There is nothing ! terribly special about the name, but the operand constraint letters `r' ! and `g' specify this class. If `GENERAL_REGS' is the same as ! `ALL_REGS', just define it as a macro which expands to `ALL_REGS'. ! Order the classes so that if class X is contained in class Y then X ! has a lower class number than Y. ! The way classes other than `GENERAL_REGS' are specified in operand constraints is through machine-dependent operand constraint letters. You can define such letters to correspond to various classes, then use them in operand constraints. You must define the narrowest register classes for allocatable ! registers, so that each class either has no subclasses, or that for ! some mode, the move cost between registers within the class is cheaper ! than moving a register in the class to or from memory (*note Costs::). You should define a class for the union of two classes whenever some instruction allows both classes. For example, if an instruction allows ! either a floating point (coprocessor) register or a general register ! for a certain operand, you should define a class `FLOAT_OR_GENERAL_REGS' ! which includes both of them. Otherwise you will get suboptimal code, ! or even internal compiler errors when reload cannot find a register in ! the class computed via `reg_class_subunion'. You must also specify certain redundant information about the register classes: for each class, which classes contain it and which ones are *************** in their union. *** 29271,29299 **** certain class, all the registers used must belong to that class. Therefore, register classes cannot be used to enforce a requirement for a register pair to start with an even-numbered register. The way to ! specify this requirement is with 'HARD_REGNO_MODE_OK'. Register classes used for input-operands of bitwise-and or shift instructions have a special requirement: each such class must have, for each fixed-point machine mode, a subclass whose registers can transfer that mode to or from memory. For example, on some machines, the ! operations for single-byte values ('QImode') are limited to certain registers. When this is so, each register class that is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which single-byte values can be loaded or stored. This ! is so that 'PREFERRED_RELOAD_CLASS' can always have a possible value to return. -- Data type: enum reg_class ! An enumerated type that must be defined with all the register class ! names as enumerated values. 'NO_REGS' must be first. 'ALL_REGS' ! must be the last register class, followed by one more enumerated ! value, 'LIM_REG_CLASSES', which is not a register class but rather ! tells how many classes there are. ! Each register class has a number, which is the value of casting the ! class name to type 'int'. The number serves as an index in many of ! the tables described below. -- Macro: N_REG_CLASSES The number of distinct register classes, defined as follows: --- 29658,29686 ---- certain class, all the registers used must belong to that class. Therefore, register classes cannot be used to enforce a requirement for a register pair to start with an even-numbered register. The way to ! specify this requirement is with `HARD_REGNO_MODE_OK'. Register classes used for input-operands of bitwise-and or shift instructions have a special requirement: each such class must have, for each fixed-point machine mode, a subclass whose registers can transfer that mode to or from memory. For example, on some machines, the ! operations for single-byte values (`QImode') are limited to certain registers. When this is so, each register class that is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which single-byte values can be loaded or stored. This ! is so that `PREFERRED_RELOAD_CLASS' can always have a possible value to return. -- Data type: enum reg_class ! An enumerated type that must be defined with all the register ! class names as enumerated values. `NO_REGS' must be first. ! `ALL_REGS' must be the last register class, followed by one more ! enumerated value, `LIM_REG_CLASSES', which is not a register class ! but rather tells how many classes there are. ! Each register class has a number, which is the value of casting ! the class name to type `int'. The number serves as an index in ! many of the tables described below. -- Macro: N_REG_CLASSES The number of distinct register classes, defined as follows: *************** return. *** 29309,29323 **** An initializer containing the contents of the register classes, as integers which are bit masks. The Nth integer specifies the contents of class N. The way the integer MASK is interpreted is ! that register R is in the class if 'MASK & (1 << R)' is 1. When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, ! braced groupings containing several integers. Each sub-initializer ! must be suitable as an initializer for the type 'HARD_REG_SET' ! which is defined in 'hard-reg-set.h'. In this situation, the first ! integer in each sub-initializer corresponds to registers 0 through ! 31, the second integer to registers 32 through 63, and so on. -- Macro: REGNO_REG_CLASS (REGNO) A C expression whose value is a register class containing hard --- 29696,29711 ---- An initializer containing the contents of the register classes, as integers which are bit masks. The Nth integer specifies the contents of class N. The way the integer MASK is interpreted is ! that register R is in the class if `MASK & (1 << R)' is 1. When the machine has more than 32 registers, an integer does not suffice. Then the integers are replaced by sub-initializers, ! braced groupings containing several integers. Each ! sub-initializer must be suitable as an initializer for the type ! `HARD_REG_SET' which is defined in `hard-reg-set.h'. In this ! situation, the first integer in each sub-initializer corresponds to ! registers 0 through 31, the second integer to registers 32 through ! 63, and so on. -- Macro: REGNO_REG_CLASS (REGNO) A C expression whose value is a register class containing hard *************** return. *** 29331,29340 **** address which is the register value plus a displacement. -- Macro: MODE_BASE_REG_CLASS (MODE) ! This is a variation of the 'BASE_REG_CLASS' macro which allows the selection of a base register in a mode dependent manner. If MODE is VOIDmode then it should return the same value as ! 'BASE_REG_CLASS'. -- Macro: MODE_BASE_REG_REG_CLASS (MODE) A C expression whose value is the register class to which a valid --- 29719,29728 ---- address which is the register value plus a displacement. -- Macro: MODE_BASE_REG_CLASS (MODE) ! This is a variation of the `BASE_REG_CLASS' macro which allows the selection of a base register in a mode dependent manner. If MODE is VOIDmode then it should return the same value as ! `BASE_REG_CLASS'. -- Macro: MODE_BASE_REG_REG_CLASS (MODE) A C expression whose value is the register class to which a valid *************** return. *** 29349,29358 **** base register for a memory reference in mode MODE to address space ADDRESS_SPACE must belong. OUTER_CODE and INDEX_CODE define the context in which the base register occurs. OUTER_CODE is the code ! of the immediately enclosing expression ('MEM' for the top level of ! an address, 'ADDRESS' for something that occurs in an ! 'address_operand'). INDEX_CODE is the code of the corresponding ! index expression if OUTER_CODE is 'PLUS'; 'SCRATCH' otherwise. -- Macro: INDEX_REG_CLASS A macro whose definition is the name of the class to which a valid --- 29737,29746 ---- base register for a memory reference in mode MODE to address space ADDRESS_SPACE must belong. OUTER_CODE and INDEX_CODE define the context in which the base register occurs. OUTER_CODE is the code ! of the immediately enclosing expression (`MEM' for the top level ! of an address, `ADDRESS' for something that occurs in an ! `address_operand'). INDEX_CODE is the code of the corresponding ! index expression if OUTER_CODE is `PLUS'; `SCRATCH' otherwise. -- Macro: INDEX_REG_CLASS A macro whose definition is the name of the class to which a valid *************** return. *** 29365,29378 **** for use as a base register in operand addresses. -- Macro: REGNO_MODE_OK_FOR_BASE_P (NUM, MODE) ! A C expression that is just like 'REGNO_OK_FOR_BASE_P', except that that expression may examine the mode of the memory reference in MODE. You should define this macro if the mode of the memory reference affects whether a register may be used as a base register. If you define this macro, the compiler will use it ! instead of 'REGNO_OK_FOR_BASE_P'. The mode may be 'VOIDmode' for ! addresses that appear outside a 'MEM', i.e., as an ! 'address_operand'. -- Macro: REGNO_MODE_OK_FOR_REG_BASE_P (NUM, MODE) A C expression which is nonzero if register number NUM is suitable --- 29753,29766 ---- for use as a base register in operand addresses. -- Macro: REGNO_MODE_OK_FOR_BASE_P (NUM, MODE) ! A C expression that is just like `REGNO_OK_FOR_BASE_P', except that that expression may examine the mode of the memory reference in MODE. You should define this macro if the mode of the memory reference affects whether a register may be used as a base register. If you define this macro, the compiler will use it ! instead of `REGNO_OK_FOR_BASE_P'. The mode may be `VOIDmode' for ! addresses that appear outside a `MEM', i.e., as an ! `address_operand'. -- Macro: REGNO_MODE_OK_FOR_REG_BASE_P (NUM, MODE) A C expression which is nonzero if register number NUM is suitable *************** return. *** 29384,29404 **** uses. Use of this macro is deprecated; please use the more general ! 'REGNO_MODE_CODE_OK_FOR_BASE_P'. -- Macro: REGNO_MODE_CODE_OK_FOR_BASE_P (NUM, MODE, ADDRESS_SPACE, OUTER_CODE, INDEX_CODE) A C expression which is nonzero if register number NUM is suitable for use as a base register in operand addresses, accessing memory in mode MODE in address space ADDRESS_SPACE. This is similar to ! 'REGNO_MODE_OK_FOR_BASE_P', except that that expression may examine ! the context in which the register appears in the memory reference. ! OUTER_CODE is the code of the immediately enclosing expression ! ('MEM' if at the top level of the address, 'ADDRESS' for something ! that occurs in an 'address_operand'). INDEX_CODE is the code of ! the corresponding index expression if OUTER_CODE is 'PLUS'; ! 'SCRATCH' otherwise. The mode may be 'VOIDmode' for addresses that ! appear outside a 'MEM', i.e., as an 'address_operand'. -- Macro: REGNO_OK_FOR_INDEX_P (NUM) A C expression which is nonzero if register number NUM is suitable --- 29772,29793 ---- uses. Use of this macro is deprecated; please use the more general ! `REGNO_MODE_CODE_OK_FOR_BASE_P'. -- Macro: REGNO_MODE_CODE_OK_FOR_BASE_P (NUM, MODE, ADDRESS_SPACE, OUTER_CODE, INDEX_CODE) A C expression which is nonzero if register number NUM is suitable for use as a base register in operand addresses, accessing memory in mode MODE in address space ADDRESS_SPACE. This is similar to ! `REGNO_MODE_OK_FOR_BASE_P', except that that expression may ! examine the context in which the register appears in the memory ! reference. OUTER_CODE is the code of the immediately enclosing ! expression (`MEM' if at the top level of the address, `ADDRESS' ! for something that occurs in an `address_operand'). INDEX_CODE is ! the code of the corresponding index expression if OUTER_CODE is ! `PLUS'; `SCRATCH' otherwise. The mode may be `VOIDmode' for ! addresses that appear outside a `MEM', i.e., as an ! `address_operand'. -- Macro: REGNO_OK_FOR_INDEX_P (NUM) A C expression which is nonzero if register number NUM is suitable *************** return. *** 29420,29464 **** A target hook that places additional preference on the register class to use when it is necessary to rename a register in class RCLASS to another class, or perhaps NO_REGS, if no preferred ! register class is found or hook 'preferred_rename_class' is not ! implemented. Sometimes returning a more restrictive class makes better code. For example, on ARM, thumb-2 instructions using ! 'LO_REGS' may be smaller than instructions using 'GENERIC_REGS'. ! By returning 'LO_REGS' from 'preferred_rename_class', code size can ! be reduced. -- Target Hook: reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx X, reg_class_t RCLASS) A target hook that places additional restrictions on the register class to use when it is necessary to copy value X into a register ! in class RCLASS. The value is a register class; perhaps RCLASS, or ! perhaps another, smaller class. ! The default version of this hook always returns value of 'rclass' argument. Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is in ! range for a 'moveq' instruction, the value of this macro is always ! 'DATA_REGS' as long as RCLASS includes the data registers. ! Requiring a data register guarantees that a 'moveq' will be used. ! One case where 'TARGET_PREFERRED_RELOAD_CLASS' must not return ! RCLASS is if X is a legitimate constant which cannot be loaded into ! some register class. By returning 'NO_REGS' you can force X into a ! memory location. For example, rs6000 can load immediate values ! into general-purpose registers, but does not have an instruction ! for loading an immediate value into a floating-point register, so ! 'TARGET_PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a ! floating-point constant. If the constant can't be loaded into any ! kind of register, code generation will be better if ! 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using 'TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload will ! go through the alternatives and call repeatedly ! 'TARGET_PREFERRED_RELOAD_CLASS' to find the best one. Returning ! 'NO_REGS', in this case, makes reload add a '!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). --- 29809,29853 ---- A target hook that places additional preference on the register class to use when it is necessary to rename a register in class RCLASS to another class, or perhaps NO_REGS, if no preferred ! register class is found or hook `preferred_rename_class' is not ! implemented. Sometimes returning a more restrictive class makes better code. For example, on ARM, thumb-2 instructions using ! `LO_REGS' may be smaller than instructions using `GENERIC_REGS'. ! By returning `LO_REGS' from `preferred_rename_class', code size ! can be reduced. -- Target Hook: reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx X, reg_class_t RCLASS) A target hook that places additional restrictions on the register class to use when it is necessary to copy value X into a register ! in class RCLASS. The value is a register class; perhaps RCLASS, ! or perhaps another, smaller class. ! The default version of this hook always returns value of `rclass' argument. Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is ! in range for a `moveq' instruction, the value of this macro is ! always `DATA_REGS' as long as RCLASS includes the data registers. ! Requiring a data register guarantees that a `moveq' will be used. ! One case where `TARGET_PREFERRED_RELOAD_CLASS' must not return ! RCLASS is if X is a legitimate constant which cannot be loaded ! into some register class. By returning `NO_REGS' you can force X ! into a memory location. For example, rs6000 can load immediate ! values into general-purpose registers, but does not have an ! instruction for loading an immediate value into a floating-point ! register, so `TARGET_PREFERRED_RELOAD_CLASS' returns `NO_REGS' when ! X is a floating-point constant. If the constant can't be loaded ! into any kind of register, code generation will be better if ! `TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using `TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload ! will go through the alternatives and call repeatedly ! `TARGET_PREFERRED_RELOAD_CLASS' to find the best one. Returning ! `NO_REGS', in this case, makes reload add a `!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). *************** return. *** 29473,29514 **** #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is in ! range for a 'moveq' instruction, the value of this macro is always ! 'DATA_REGS' as long as CLASS includes the data registers. ! Requiring a data register guarantees that a 'moveq' will be used. ! One case where 'PREFERRED_RELOAD_CLASS' must not return CLASS is if ! X is a legitimate constant which cannot be loaded into some ! register class. By returning 'NO_REGS' you can force X into a memory location. For example, rs6000 can load immediate values into general-purpose registers, but does not have an instruction for loading an immediate value into a floating-point register, so ! 'PREFERRED_RELOAD_CLASS' returns 'NO_REGS' when X is a floating-point constant. If the constant can't be loaded into any kind of register, code generation will be better if ! 'TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using 'TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload will ! go through the alternatives and call repeatedly ! 'PREFERRED_RELOAD_CLASS' to find the best one. Returning ! 'NO_REGS', in this case, makes reload add a '!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). -- Target Hook: reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx X, reg_class_t RCLASS) ! Like 'TARGET_PREFERRED_RELOAD_CLASS', but for output reloads instead of input reloads. ! The default version of this hook always returns value of 'rclass' argument. ! You can also use 'TARGET_PREFERRED_OUTPUT_RELOAD_CLASS' to discourage reload from using some alternatives, like ! 'TARGET_PREFERRED_RELOAD_CLASS'. -- Macro: LIMIT_RELOAD_CLASS (MODE, CLASS) A C expression that places additional restrictions on the register --- 29862,29903 ---- #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS Sometimes returning a more restrictive class makes better code. ! For example, on the 68000, when X is an integer constant that is ! in range for a `moveq' instruction, the value of this macro is ! always `DATA_REGS' as long as CLASS includes the data registers. ! Requiring a data register guarantees that a `moveq' will be used. ! One case where `PREFERRED_RELOAD_CLASS' must not return CLASS is ! if X is a legitimate constant which cannot be loaded into some ! register class. By returning `NO_REGS' you can force X into a memory location. For example, rs6000 can load immediate values into general-purpose registers, but does not have an instruction for loading an immediate value into a floating-point register, so ! `PREFERRED_RELOAD_CLASS' returns `NO_REGS' when X is a floating-point constant. If the constant can't be loaded into any kind of register, code generation will be better if ! `TARGET_LEGITIMATE_CONSTANT_P' makes the constant illegitimate ! instead of using `TARGET_PREFERRED_RELOAD_CLASS'. ! If an insn has pseudos in it after register allocation, reload ! will go through the alternatives and call repeatedly ! `PREFERRED_RELOAD_CLASS' to find the best one. Returning ! `NO_REGS', in this case, makes reload add a `!' in front of the constraint: the x86 back-end uses this feature to discourage usage of 387 registers when math is done in the SSE registers (and vice versa). -- Target Hook: reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx X, reg_class_t RCLASS) ! Like `TARGET_PREFERRED_RELOAD_CLASS', but for output reloads instead of input reloads. ! The default version of this hook always returns value of `rclass' argument. ! You can also use `TARGET_PREFERRED_OUTPUT_RELOAD_CLASS' to discourage reload from using some alternatives, like ! `TARGET_PREFERRED_RELOAD_CLASS'. -- Macro: LIMIT_RELOAD_CLASS (MODE, CLASS) A C expression that places additional restrictions on the register *************** return. *** 29516,29522 **** mode MODE in a reload register for which class CLASS would ordinarily be used. ! Unlike 'PREFERRED_RELOAD_CLASS', this macro should be used when there are certain modes that simply can't go in certain reload classes. --- 29905,29911 ---- mode MODE in a reload register for which class CLASS would ordinarily be used. ! Unlike `PREFERRED_RELOAD_CLASS', this macro should be used when there are certain modes that simply can't go in certain reload classes. *************** return. *** 29529,29547 **** -- Target Hook: reg_class_t TARGET_SECONDARY_RELOAD (bool IN_P, rtx X, reg_class_t RELOAD_CLASS, enum machine_mode RELOAD_MODE, secondary_reload_info *SRI) ! Many machines have some registers that cannot be copied directly to ! or from memory or even from other types of registers. An example ! is the 'MQ' register, which on most machines, can only be copied to ! or from general registers, but not memory. Below, we shall be ! using the term 'intermediate register' when a move operation cannot ! be performed directly, but has to be done by copying the source ! into the intermediate register first, and then copying the ! intermediate register to the destination. An intermediate register ! always has the same mode as source and destination. Since it holds ! the actual value being copied, reload might apply optimizations to ! re-use an intermediate register and eliding the copy from the ! source when it can determine that the intermediate register still ! holds the required value. Another kind of secondary reload is required on some machines which allow copying all registers to and from memory, but require a --- 29918,29936 ---- -- Target Hook: reg_class_t TARGET_SECONDARY_RELOAD (bool IN_P, rtx X, reg_class_t RELOAD_CLASS, enum machine_mode RELOAD_MODE, secondary_reload_info *SRI) ! Many machines have some registers that cannot be copied directly ! to or from memory or even from other types of registers. An ! example is the `MQ' register, which on most machines, can only be ! copied to or from general registers, but not memory. Below, we ! shall be using the term 'intermediate register' when a move ! operation cannot be performed directly, but has to be done by ! copying the source into the intermediate register first, and then ! copying the intermediate register to the destination. An ! intermediate register always has the same mode as source and ! destination. Since it holds the actual value being copied, reload ! might apply optimizations to re-use an intermediate register and ! eliding the copy from the source when it can determine that the ! intermediate register still holds the required value. Another kind of secondary reload is required on some machines which allow copying all registers to and from memory, but require a *************** return. *** 29564,29643 **** needs to be copied to rtx X in RELOAD_MODE. If copying a register of RELOAD_CLASS from/to X requires an ! intermediate register, the hook 'secondary_reload' should return the register class required for this intermediate register. If no ! intermediate register is required, it should return NO_REGS. If more than one intermediate register is required, describe the one that is closest in the copy chain to the reload register. If scratch registers are needed, you also have to describe how to perform the copy from/to the reload register to/from this closest ! intermediate register. Or if no intermediate register is required, ! but still a scratch register is needed, describe the copy from/to ! the reload register to/from the reload operand X. ! You do this by setting 'sri->icode' to the instruction code of a pattern in the md file which performs the move. Operands 0 and 1 ! are the output and input of this copy, respectively. Operands from ! operand 2 onward are for scratch operands. These scratch operands ! must have a mode, and a single-register-class output constraint. ! When an intermediate register is used, the 'secondary_reload' hook will be called again to determine how to copy the intermediate register to/from the reload operand X, so your hook must also have code to handle the register class of the intermediate operand. ! X might be a pseudo-register or a 'subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! 'true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. ! Scratch operands in memory (constraint '"=m"' / '"=&m"') are currently not supported. For the time being, you will have to ! continue to use 'SECONDARY_MEMORY_NEEDED' for that purpose. ! 'copy_cost' also uses this target hook to find out how values are copied. If you want it to include some extra cost for the need to ! allocate (a) scratch register(s), set 'sri->extra_cost' to the additional cost. Or if two dependent moves are supposed to have a lower cost than the sum of the individual moves due to expected fortuitous scheduling and/or special forwarding logic, you can set ! 'sri->extra_cost' to a negative amount. -- Macro: SECONDARY_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X) These macros are obsolete, new ports should use the target hook ! 'TARGET_SECONDARY_RELOAD' instead. These are obsolete macros, replaced by the ! 'TARGET_SECONDARY_RELOAD' target hook. Older ports still define these macros to indicate to the reload phase that it may need to allocate at least one register for a reload in addition to the register to contain the data. Specifically, if copying X to a register CLASS in MODE requires an intermediate register, you were ! supposed to define 'SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of whose registers can be used as intermediate registers or scratch registers. If copying a register CLASS in MODE to X requires an intermediate ! or scratch register, 'SECONDARY_OUTPUT_RELOAD_CLASS' was supposed to be defined be defined to return the largest register class required. If the requirements for input and output reloads were ! the same, the macro 'SECONDARY_RELOAD_CLASS' should have been used instead of defining both macros identically. ! The values returned by these macros are often 'GENERAL_REGS'. ! Return 'NO_REGS' if no spare register is needed; i.e., if X can be directly copied to or from a register of CLASS in MODE without ! requiring a scratch register. Do not define this macro if it would ! always return 'NO_REGS'. If a scratch register is required (either with or without an intermediate register), you were supposed to define patterns for ! 'reload_inM' or 'reload_outM', as required (*note Standard Names::. ! These patterns, which were normally implemented with a ! 'define_expand', should be similar to the 'movM' patterns, except that operand 2 is the scratch register. These patterns need constraints for the reload register and scratch --- 29953,30033 ---- needs to be copied to rtx X in RELOAD_MODE. If copying a register of RELOAD_CLASS from/to X requires an ! intermediate register, the hook `secondary_reload' should return the register class required for this intermediate register. If no ! intermediate register is required, it should return NO_REGS. If more than one intermediate register is required, describe the one that is closest in the copy chain to the reload register. If scratch registers are needed, you also have to describe how to perform the copy from/to the reload register to/from this closest ! intermediate register. Or if no intermediate register is ! required, but still a scratch register is needed, describe the ! copy from/to the reload register to/from the reload operand X. ! You do this by setting `sri->icode' to the instruction code of a pattern in the md file which performs the move. Operands 0 and 1 ! are the output and input of this copy, respectively. Operands ! from operand 2 onward are for scratch operands. These scratch ! operands must have a mode, and a single-register-class output ! constraint. ! When an intermediate register is used, the `secondary_reload' hook will be called again to determine how to copy the intermediate register to/from the reload operand X, so your hook must also have code to handle the register class of the intermediate operand. ! X might be a pseudo-register or a `subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! `true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. ! Scratch operands in memory (constraint `"=m"' / `"=&m"') are currently not supported. For the time being, you will have to ! continue to use `SECONDARY_MEMORY_NEEDED' for that purpose. ! `copy_cost' also uses this target hook to find out how values are copied. If you want it to include some extra cost for the need to ! allocate (a) scratch register(s), set `sri->extra_cost' to the additional cost. Or if two dependent moves are supposed to have a lower cost than the sum of the individual moves due to expected fortuitous scheduling and/or special forwarding logic, you can set ! `sri->extra_cost' to a negative amount. -- Macro: SECONDARY_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X) -- Macro: SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X) These macros are obsolete, new ports should use the target hook ! `TARGET_SECONDARY_RELOAD' instead. These are obsolete macros, replaced by the ! `TARGET_SECONDARY_RELOAD' target hook. Older ports still define these macros to indicate to the reload phase that it may need to allocate at least one register for a reload in addition to the register to contain the data. Specifically, if copying X to a register CLASS in MODE requires an intermediate register, you were ! supposed to define `SECONDARY_INPUT_RELOAD_CLASS' to return the largest register class all of whose registers can be used as intermediate registers or scratch registers. If copying a register CLASS in MODE to X requires an intermediate ! or scratch register, `SECONDARY_OUTPUT_RELOAD_CLASS' was supposed to be defined be defined to return the largest register class required. If the requirements for input and output reloads were ! the same, the macro `SECONDARY_RELOAD_CLASS' should have been used instead of defining both macros identically. ! The values returned by these macros are often `GENERAL_REGS'. ! Return `NO_REGS' if no spare register is needed; i.e., if X can be directly copied to or from a register of CLASS in MODE without ! requiring a scratch register. Do not define this macro if it ! would always return `NO_REGS'. If a scratch register is required (either with or without an intermediate register), you were supposed to define patterns for ! `reload_inM' or `reload_outM', as required (*note Standard ! Names::. These patterns, which were normally implemented with a ! `define_expand', should be similar to the `movM' patterns, except that operand 2 is the scratch register. These patterns need constraints for the reload register and scratch *************** return. *** 29645,29663 **** reload register (whose class is CLASS) can meet the constraint given in the pattern, the value returned by these macros is used for the class of the scratch register. Otherwise, two additional ! reload registers are required. Their classes are obtained from the ! constraints in the insn pattern. ! X might be a pseudo-register or a 'subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! 'true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. These macros should not be used in the case where a particular class of registers can only be copied to memory and not to another class of registers. In that case, secondary reload registers are not needed and would not be helpful. Instead, a stack location ! must be used to perform the copy and the 'movM' pattern should use memory as an intermediate storage. This case often occurs between floating-point and general registers. --- 30035,30053 ---- reload register (whose class is CLASS) can meet the constraint given in the pattern, the value returned by these macros is used for the class of the scratch register. Otherwise, two additional ! reload registers are required. Their classes are obtained from ! the constraints in the insn pattern. ! X might be a pseudo-register or a `subreg' of a pseudo-register, which could either be in a hard register or in memory. Use ! `true_regnum' to find out; it will return -1 if the pseudo is in memory and the hard register number if it is in a register. These macros should not be used in the case where a particular class of registers can only be copied to memory and not to another class of registers. In that case, secondary reload registers are not needed and would not be helpful. Instead, a stack location ! must be used to perform the copy and the `movM' pattern should use memory as an intermediate storage. This case often occurs between floating-point and general registers. *************** return. *** 29672,29691 **** Do not define this macro if its value would always be zero. -- Macro: SECONDARY_MEMORY_NEEDED_RTX (MODE) ! Normally when 'SECONDARY_MEMORY_NEEDED' is defined, the compiler allocates a stack slot for a memory location needed for register copies. If this macro is defined, the compiler instead uses the memory location defined by this macro. Do not define this macro if you do not define ! 'SECONDARY_MEMORY_NEEDED'. -- Macro: SECONDARY_MEMORY_NEEDED_MODE (MODE) ! When the compiler needs a secondary memory location to copy between ! two registers of mode MODE, it normally allocates sufficient memory ! to hold a quantity of 'BITS_PER_WORD' bits and performs the store ! and load operations in a mode that many bits wide and whose class ! is the same as that of MODE. This is right thing to do on most machines because it ensures that all bits of the register are copied and prevents accesses to the --- 30062,30081 ---- Do not define this macro if its value would always be zero. -- Macro: SECONDARY_MEMORY_NEEDED_RTX (MODE) ! Normally when `SECONDARY_MEMORY_NEEDED' is defined, the compiler allocates a stack slot for a memory location needed for register copies. If this macro is defined, the compiler instead uses the memory location defined by this macro. Do not define this macro if you do not define ! `SECONDARY_MEMORY_NEEDED'. -- Macro: SECONDARY_MEMORY_NEEDED_MODE (MODE) ! When the compiler needs a secondary memory location to copy ! between two registers of mode MODE, it normally allocates ! sufficient memory to hold a quantity of `BITS_PER_WORD' bits and ! performs the store and load operations in a mode that many bits ! wide and whose class is the same as that of MODE. This is right thing to do on most machines because it ensures that all bits of the register are copied and prevents accesses to the *************** return. *** 29695,29715 **** However, this default behavior is not correct on some machines, such as the DEC Alpha, that store short integers in floating-point registers differently than in integer registers. On those ! machines, the default widening will not work correctly and you must ! define this macro to suppress that widening in some cases. See the ! file 'alpha.h' for details. Do not define this macro if you do not define ! 'SECONDARY_MEMORY_NEEDED' or if widening MODE to a mode that is ! 'BITS_PER_WORD' bits wide is correct for your machine. -- Target Hook: bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t RCLASS) ! A target hook which returns 'true' if pseudos that have been assigned to registers of class RCLASS would likely be spilled because registers of RCLASS are needed for spill registers. ! The default version of this target hook returns 'true' if RCLASS ! has exactly one register and 'false' otherwise. On most machines, this default should be used. For generally register-starved machines, such as i386, or machines with right register constraints, such as SH, this hook can be used to avoid excessive --- 30085,30105 ---- However, this default behavior is not correct on some machines, such as the DEC Alpha, that store short integers in floating-point registers differently than in integer registers. On those ! machines, the default widening will not work correctly and you ! must define this macro to suppress that widening in some cases. ! See the file `alpha.h' for details. Do not define this macro if you do not define ! `SECONDARY_MEMORY_NEEDED' or if widening MODE to a mode that is ! `BITS_PER_WORD' bits wide is correct for your machine. -- Target Hook: bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t RCLASS) ! A target hook which returns `true' if pseudos that have been assigned to registers of class RCLASS would likely be spilled because registers of RCLASS are needed for spill registers. ! The default version of this target hook returns `true' if RCLASS ! has exactly one register and `false' otherwise. On most machines, this default should be used. For generally register-starved machines, such as i386, or machines with right register constraints, such as SH, this hook can be used to avoid excessive *************** return. *** 29724,29748 **** A target hook returns the maximum number of consecutive registers of class RCLASS needed to hold a value of mode MODE. ! This is closely related to the macro 'HARD_REGNO_NREGS'. In fact, ! the value returned by 'TARGET_CLASS_MAX_NREGS (RCLASS, MODE)' ! target hook should be the maximum value of 'HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class RCLASS. This target hook helps control the handling of multiple-word values in the reload pass. ! The default version of this target hook returns the size of MODE in ! words. -- Macro: CLASS_MAX_NREGS (CLASS, MODE) A C expression for the maximum number of consecutive registers of class CLASS needed to hold a value of mode MODE. ! This is closely related to the macro 'HARD_REGNO_NREGS'. In fact, ! the value of the macro 'CLASS_MAX_NREGS (CLASS, MODE)' should be ! the maximum value of 'HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO ! values in the class CLASS. This macro helps control the handling of multiple-word values in the reload pass. --- 30114,30138 ---- A target hook returns the maximum number of consecutive registers of class RCLASS needed to hold a value of mode MODE. ! This is closely related to the macro `HARD_REGNO_NREGS'. In fact, ! the value returned by `TARGET_CLASS_MAX_NREGS (RCLASS, MODE)' ! target hook should be the maximum value of `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class RCLASS. This target hook helps control the handling of multiple-word values in the reload pass. ! The default version of this target hook returns the size of MODE ! in words. -- Macro: CLASS_MAX_NREGS (CLASS, MODE) A C expression for the maximum number of consecutive registers of class CLASS needed to hold a value of mode MODE. ! This is closely related to the macro `HARD_REGNO_NREGS'. In fact, ! the value of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be ! the maximum value of `HARD_REGNO_NREGS (REGNO, MODE)' for all ! REGNO values in the class CLASS. This macro helps control the handling of multiple-word values in the reload pass. *************** return. *** 29755,29762 **** into floating-point registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit object and then storing it as a 32-bit object does not store the low-order 32 bits, as would be the case ! for a normal register. Therefore, 'alpha.h' defines ! 'CANNOT_CHANGE_MODE_CLASS' as below: #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ --- 30145,30152 ---- into floating-point registers on the Alpha extends them to 64 bits. Therefore loading a 64-bit object and then storing it as a 32-bit object does not store the low-order 32 bits, as would be the case ! for a normal register. Therefore, `alpha.h' defines ! `CANNOT_CHANGE_MODE_CLASS' as below: #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ *************** return. *** 29764,29814 **** -- Target Hook: bool TARGET_LRA_P (void) A target hook which returns true if we use LRA instead of reload ! pass. It means that LRA was ported to the target. The default version of this target hook returns always false. -- Target Hook: int TARGET_REGISTER_PRIORITY (int) A target hook which returns the register priority number to which ! the register HARD_REGNO belongs to. The bigger the number, the more preferable the hard register usage (when all other conditions ! are the same). This hook can be used to prefer some hard register ! over others in LRA. For example, some x86-64 register usage needs ! additional prefix which makes instructions longer. The hook can ! return lower priority number for such registers make them less ! favorable and as result making the generated code smaller. The ! default version of this target hook returns always zero. -- Target Hook: bool TARGET_REGISTER_USAGE_LEVELING_P (void) A target hook which returns true if we need register usage leveling. That means if a few hard registers are equally good for ! the assignment, we choose the least used hard register. The ! register usage leveling may be profitable for some targets. Don't ! use the usage leveling for targets with conditional execution or ! targets with big register files as it hurts if-conversion and ! cross-jumping optimizations. The default version of this target ! hook returns always false. -- Target Hook: bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void) A target hook which returns true if an address with the same ! structure can have different maximal legitimate displacement. For ! example, the displacement can depend on memory mode or on operand ! combinations in the insn. The default version of this target hook ! returns always false. -- Target Hook: reg_class_t TARGET_SPILL_CLASS (reg_class_t, enum MACHINE_MODE) This hook defines a class of registers which could be used for ! spilling pseudos of the given mode and class, or 'NO_REGS' if only ! memory should be used. Not defining this hook is equivalent to ! returning 'NO_REGS' for all inputs. -- Target Hook: enum machine_mode TARGET_CSTORE_MODE (enum insn_code ICODE) ! This hook defines the machine mode to use for the boolean result of ! conditional store patterns. The ICODE argument is the instruction ! code for the cstore being performed. Not definiting this hook is ! the same as accepting the mode encoded into operand 0 of the cstore ! expander patterns.  File: gccint.info, Node: Old Constraints, Next: Stack and Calling, Prev: Register Classes, Up: Target Macros --- 30154,30205 ---- -- Target Hook: bool TARGET_LRA_P (void) A target hook which returns true if we use LRA instead of reload ! pass. It means that LRA was ported to the target. The default version of this target hook returns always false. -- Target Hook: int TARGET_REGISTER_PRIORITY (int) A target hook which returns the register priority number to which ! the register HARD_REGNO belongs to. The bigger the number, the more preferable the hard register usage (when all other conditions ! are the same). This hook can be used to prefer some hard ! register over others in LRA. For example, some x86-64 register ! usage needs additional prefix which makes instructions longer. ! The hook can return lower priority number for such registers make ! them less favorable and as result making the generated code ! smaller. The default version of this target hook returns always ! zero. -- Target Hook: bool TARGET_REGISTER_USAGE_LEVELING_P (void) A target hook which returns true if we need register usage leveling. That means if a few hard registers are equally good for ! the assignment, we choose the least used hard register. The ! register usage leveling may be profitable for some targets. ! Don't use the usage leveling for targets with conditional ! execution or targets with big register files as it hurts ! if-conversion and cross-jumping optimizations. The default ! version of this target hook returns always false. -- Target Hook: bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void) A target hook which returns true if an address with the same ! structure can have different maximal legitimate displacement. ! For example, the displacement can depend on memory mode or on ! operand combinations in the insn. The default version of this ! target hook returns always false. -- Target Hook: reg_class_t TARGET_SPILL_CLASS (reg_class_t, enum MACHINE_MODE) This hook defines a class of registers which could be used for ! spilling pseudos of the given mode and class, or `NO_REGS' if ! only memory should be used. Not defining this hook is equivalent ! to returning `NO_REGS' for all inputs. -- Target Hook: enum machine_mode TARGET_CSTORE_MODE (enum insn_code ICODE) ! This hook defines the machine mode to use for the boolean result ! of conditional store patterns. The ICODE argument is the ! instruction code for the cstore being performed. Not definiting ! this hook is the same as accepting the mode encoded into operand ! 0 of the cstore expander patterns.  File: gccint.info, Node: Old Constraints, Next: Stack and Calling, Prev: Register Classes, Up: Target Macros *************** File: gccint.info, Node: Old Constraint *** 29816,29823 **** 17.9 Obsolete Macros for Defining Constraints ============================================= ! Machine-specific constraints can be defined with these macros instead of ! the machine description constructs described in *note Define Constraints::. This mechanism is obsolete. New ports should not use it; old ports should convert to the new mechanism. --- 30207,30214 ---- 17.9 Obsolete Macros for Defining Constraints ============================================= ! Machine-specific constraints can be defined with these macros instead ! of the machine description constructs described in *note Define Constraints::. This mechanism is obsolete. New ports should not use it; old ports should convert to the new mechanism. *************** it; old ports should convert to the new *** 29830,29883 **** should use DEFAULT_CONSTRAINT_LEN for all the characters that you don't want to handle specially. There are some sanity checks in genoutput.c that check the constraint lengths for the md file, so ! you can also use this macro to help you while you are transitioning ! from a byzantine single-letter-constraint scheme: when you return a ! negative length for a constraint you want to re-use, genoutput will ! complain about every instance where it is used in the md file. -- Macro: REG_CLASS_FROM_LETTER (CHAR) A C expression which defines the machine-dependent operand ! constraint letters for register classes. If CHAR is such a letter, ! the value should be the register class corresponding to it. ! Otherwise, the value should be 'NO_REGS'. The register letter 'r', ! corresponding to class 'GENERAL_REGS', will not be passed to this ! macro; you do not need to handle it. -- Macro: REG_CLASS_FROM_CONSTRAINT (CHAR, STR) ! Like 'REG_CLASS_FROM_LETTER', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters ('I', 'J', 'K', ... 'P') that specify particular ! ranges of integer values. If C is one of those letters, the ! expression should check that VALUE, an integer, is in the ! appropriate range and return 1 if so, 0 otherwise. If C is not one ! of those letters, the value should be 0 regardless of VALUE. -- Macro: CONST_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like 'CONST_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_DOUBLE_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters that specify particular ranges of 'const_double' ! values ('G' or 'H'). If C is one of those letters, the expression should check that ! VALUE, an RTX of code 'const_double', is in the appropriate range ! and return 1 if so, 0 otherwise. If C is not one of those letters, ! the value should be 0 regardless of VALUE. ! 'const_double' is used for all floating-point constants and for ! 'DImode' fixed-point constants. A given letter can accept either ! or both kinds of values. It can use 'GET_MODE' to distinguish between these kinds. -- Macro: CONST_DOUBLE_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like 'CONST_DOUBLE_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. --- 30221,30276 ---- should use DEFAULT_CONSTRAINT_LEN for all the characters that you don't want to handle specially. There are some sanity checks in genoutput.c that check the constraint lengths for the md file, so ! you can also use this macro to help you while you are ! transitioning from a byzantine single-letter-constraint scheme: ! when you return a negative length for a constraint you want to ! re-use, genoutput will complain about every instance where it is ! used in the md file. -- Macro: REG_CLASS_FROM_LETTER (CHAR) A C expression which defines the machine-dependent operand ! constraint letters for register classes. If CHAR is such a ! letter, the value should be the register class corresponding to ! it. Otherwise, the value should be `NO_REGS'. The register ! letter `r', corresponding to class `GENERAL_REGS', will not be ! passed to this macro; you do not need to handle it. -- Macro: REG_CLASS_FROM_CONSTRAINT (CHAR, STR) ! Like `REG_CLASS_FROM_LETTER', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters (`I', `J', `K', ... `P') that specify ! particular ranges of integer values. If C is one of those ! letters, the expression should check that VALUE, an integer, is in ! the appropriate range and return 1 if so, 0 otherwise. If C is ! not one of those letters, the value should be 0 regardless of ! VALUE. -- Macro: CONST_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like `CONST_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: CONST_DOUBLE_OK_FOR_LETTER_P (VALUE, C) A C expression that defines the machine-dependent operand ! constraint letters that specify particular ranges of ! `const_double' values (`G' or `H'). If C is one of those letters, the expression should check that ! VALUE, an RTX of code `const_double', is in the appropriate range ! and return 1 if so, 0 otherwise. If C is not one of those ! letters, the value should be 0 regardless of VALUE. ! `const_double' is used for all floating-point constants and for ! `DImode' fixed-point constants. A given letter can accept either ! or both kinds of values. It can use `GET_MODE' to distinguish between these kinds. -- Macro: CONST_DOUBLE_OK_FOR_CONSTRAINT_P (VALUE, C, STR) ! Like `CONST_DOUBLE_OK_FOR_LETTER_P', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. *************** it; old ports should convert to the new *** 29886,29951 **** constraint letters that can be used to segregate specific types of operands, usually memory references, for the target machine. Any letter that is not elsewhere defined and not matched by ! 'REG_CLASS_FROM_LETTER' / 'REG_CLASS_FROM_CONSTRAINT' may be used. Normally this macro will not be defined. ! If it is required for a particular target machine, it should return ! 1 if VALUE corresponds to the operand type represented by the ! constraint letter C. If C is not defined as an extra constraint, ! the value returned should be 0 regardless of VALUE. For example, on the ROMP, load instructions cannot have their output in r0 if the memory reference contains a symbolic address. ! Constraint letter 'Q' is defined as representing a memory address that does _not_ contain a symbolic address. An alternative is ! specified with a 'Q' constraint on the input and 'r' on the output. ! The next alternative specifies 'm' on the input and a register ! class that does not include r0 on the output. -- Macro: EXTRA_CONSTRAINT_STR (VALUE, C, STR) ! Like 'EXTRA_CONSTRAINT', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: EXTRA_MEMORY_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by 'EXTRA_CONSTRAINT', that should be treated like memory constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, the first letter of which is the ! letter C, comprises a subset of all memory references including all ! those whose address is simply a base register. This allows the ! reload pass to reload an operand, if it does not directly correspond to the operand type of C, by copying its address into a base register. For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use of ! an index register. The constraint letter 'Q' is defined via ! 'EXTRA_CONSTRAINT' as representing a memory address of this type. ! If the letter 'Q' is marked as 'EXTRA_MEMORY_CONSTRAINT', a 'Q' constraint can handle any memory operand, because the reload pass knows it can be reloaded by copying the memory address into a base ! register if required. This is analogous to the way an 'o' constraint can handle any memory operand. -- Macro: EXTRA_ADDRESS_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by 'EXTRA_CONSTRAINT' / ! 'EXTRA_CONSTRAINT_STR', that should be treated like address constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, which starts with the letter C, ! comprises a subset of all memory addresses including all those that ! consist of just a base register. This allows the reload pass to ! reload an operand, if it does not directly correspond to the operand type of STR, by copying it into a base register. ! Any constraint marked as 'EXTRA_ADDRESS_CONSTRAINT' can only be ! used with the 'address_operand' predicate. It is treated ! analogously to the 'p' constraint.  File: gccint.info, Node: Stack and Calling, Next: Varargs, Prev: Old Constraints, Up: Target Macros --- 30279,30344 ---- constraint letters that can be used to segregate specific types of operands, usually memory references, for the target machine. Any letter that is not elsewhere defined and not matched by ! `REG_CLASS_FROM_LETTER' / `REG_CLASS_FROM_CONSTRAINT' may be used. Normally this macro will not be defined. ! If it is required for a particular target machine, it should ! return 1 if VALUE corresponds to the operand type represented by ! the constraint letter C. If C is not defined as an extra ! constraint, the value returned should be 0 regardless of VALUE. For example, on the ROMP, load instructions cannot have their output in r0 if the memory reference contains a symbolic address. ! Constraint letter `Q' is defined as representing a memory address that does _not_ contain a symbolic address. An alternative is ! specified with a `Q' constraint on the input and `r' on the ! output. The next alternative specifies `m' on the input and a ! register class that does not include r0 on the output. -- Macro: EXTRA_CONSTRAINT_STR (VALUE, C, STR) ! Like `EXTRA_CONSTRAINT', but you also get the constraint string passed in STR, so that you can use suffixes to distinguish between different variants. -- Macro: EXTRA_MEMORY_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by `EXTRA_CONSTRAINT', that should be treated like memory constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, the first letter of which is the ! letter C, comprises a subset of all memory references including ! all those whose address is simply a base register. This allows ! the reload pass to reload an operand, if it does not directly correspond to the operand type of C, by copying its address into a base register. For example, on the S/390, some instructions do not accept ! arbitrary memory references, but only those that do not make use ! of an index register. The constraint letter `Q' is defined via ! `EXTRA_CONSTRAINT' as representing a memory address of this type. ! If the letter `Q' is marked as `EXTRA_MEMORY_CONSTRAINT', a `Q' constraint can handle any memory operand, because the reload pass knows it can be reloaded by copying the memory address into a base ! register if required. This is analogous to the way an `o' constraint can handle any memory operand. -- Macro: EXTRA_ADDRESS_CONSTRAINT (C, STR) A C expression that defines the optional machine-dependent ! constraint letters, amongst those accepted by `EXTRA_CONSTRAINT' / ! `EXTRA_CONSTRAINT_STR', that should be treated like address constraints by the reload pass. It should return 1 if the operand type represented by the constraint at the start of STR, which starts with the letter C, ! comprises a subset of all memory addresses including all those ! that consist of just a base register. This allows the reload pass ! to reload an operand, if it does not directly correspond to the operand type of STR, by copying it into a base register. ! Any constraint marked as `EXTRA_ADDRESS_CONSTRAINT' can only be ! used with the `address_operand' predicate. It is treated ! analogously to the `p' constraint.  File: gccint.info, Node: Stack and Calling, Next: Varargs, Prev: Old Constraints, Up: Target Macros *************** Here is the basic stack layout. *** 29984,30005 **** Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address. ! When we say, "define this macro if ...", it means that the compiler ! checks this macro only with '#ifdef' so the precise definition used ! does not matter. -- Macro: STACK_PUSH_CODE This macro defines the operation used when something is pushed on ! the stack. In RTL, a push operation will be '(set (mem (STACK_PUSH_CODE (reg sp))) ...)' ! The choices are 'PRE_DEC', 'POST_DEC', 'PRE_INC', and 'POST_INC'. Which of these is correct depends on the stack direction and on whether the stack pointer points to the last item on the stack or whether it points to the space for the next item on the stack. ! The default is 'PRE_DEC' when 'STACK_GROWS_DOWNWARD' is defined, ! which is almost always right, and 'PRE_INC' otherwise, which is often wrong. -- Macro: FRAME_GROWS_DOWNWARD --- 30377,30398 ---- Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address. ! When we say, "define this macro if ...", it means that the ! compiler checks this macro only with `#ifdef' so the precise ! definition used does not matter. -- Macro: STACK_PUSH_CODE This macro defines the operation used when something is pushed on ! the stack. In RTL, a push operation will be `(set (mem (STACK_PUSH_CODE (reg sp))) ...)' ! The choices are `PRE_DEC', `POST_DEC', `PRE_INC', and `POST_INC'. Which of these is correct depends on the stack direction and on whether the stack pointer points to the last item on the stack or whether it points to the space for the next item on the stack. ! The default is `PRE_DEC' when `STACK_GROWS_DOWNWARD' is defined, ! which is almost always right, and `PRE_INC' otherwise, which is often wrong. -- Macro: FRAME_GROWS_DOWNWARD *************** Here is the basic stack layout. *** 30014,30040 **** Offset from the frame pointer to the first local variable slot to be allocated. ! If 'FRAME_GROWS_DOWNWARD', find the next slot's offset by ! subtracting the first slot's length from 'STARTING_FRAME_OFFSET'. Otherwise, it is found by adding the length of the first slot to ! the value 'STARTING_FRAME_OFFSET'. -- Macro: STACK_ALIGNMENT_NEEDED Define to zero to disable final alignment of the stack during reload. The nonzero default for this macro is suitable for most ports. ! On ports where 'STARTING_FRAME_OFFSET' is nonzero or where there is ! a register save block following the local block that doesn't ! require alignment to 'STACK_BOUNDARY', it may be beneficial to disable stack alignment and do it in the backend. -- Macro: STACK_POINTER_OFFSET Offset from the stack pointer register to the first location at ! which outgoing arguments are placed. If not specified, the default ! value of zero is used. This is the proper value for most machines. ! If 'ARGS_GROW_DOWNWARD', this is the offset to the location above the first location at which outgoing arguments are placed. -- Macro: FIRST_PARM_OFFSET (FUNDECL) --- 30407,30434 ---- Offset from the frame pointer to the first local variable slot to be allocated. ! If `FRAME_GROWS_DOWNWARD', find the next slot's offset by ! subtracting the first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by adding the length of the first slot to ! the value `STARTING_FRAME_OFFSET'. -- Macro: STACK_ALIGNMENT_NEEDED Define to zero to disable final alignment of the stack during reload. The nonzero default for this macro is suitable for most ports. ! On ports where `STARTING_FRAME_OFFSET' is nonzero or where there ! is a register save block following the local block that doesn't ! require alignment to `STACK_BOUNDARY', it may be beneficial to disable stack alignment and do it in the backend. -- Macro: STACK_POINTER_OFFSET Offset from the stack pointer register to the first location at ! which outgoing arguments are placed. If not specified, the ! default value of zero is used. This is the proper value for most ! machines. ! If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first location at which outgoing arguments are placed. -- Macro: FIRST_PARM_OFFSET (FUNDECL) *************** Here is the basic stack layout. *** 30042,30066 **** address. On some machines it may depend on the data type of the function. ! If 'ARGS_GROW_DOWNWARD', this is the offset to the location above the first argument's address. -- Macro: STACK_DYNAMIC_OFFSET (FUNDECL) Offset from the stack pointer register to an item dynamically ! allocated on the stack, e.g., by 'alloca'. ! The default value for this macro is 'STACK_POINTER_OFFSET' plus the length of the outgoing arguments. The default is correct for most ! machines. See 'function.c' for details. -- Macro: INITIAL_FRAME_ADDRESS_RTX A C expression whose value is RTL representing the address of the ! initial stack frame. This address is passed to 'RETURN_ADDR_RTX' ! and 'DYNAMIC_CHAIN_ADDRESS'. If you don't define this macro, a reasonable default value will be used. Define this macro in order to make frame pointer elimination work in the presence of ! '__builtin_frame_address (count)' and '__builtin_return_address ! (count)' for 'count' not equal to zero. -- Macro: DYNAMIC_CHAIN_ADDRESS (FRAMEADDR) A C expression whose value is RTL representing the address in a --- 30436,30460 ---- address. On some machines it may depend on the data type of the function. ! If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first argument's address. -- Macro: STACK_DYNAMIC_OFFSET (FUNDECL) Offset from the stack pointer register to an item dynamically ! allocated on the stack, e.g., by `alloca'. ! The default value for this macro is `STACK_POINTER_OFFSET' plus the length of the outgoing arguments. The default is correct for most ! machines. See `function.c' for details. -- Macro: INITIAL_FRAME_ADDRESS_RTX A C expression whose value is RTL representing the address of the ! initial stack frame. This address is passed to `RETURN_ADDR_RTX' ! and `DYNAMIC_CHAIN_ADDRESS'. If you don't define this macro, a reasonable default value will be used. Define this macro in order to make frame pointer elimination work in the presence of ! `__builtin_frame_address (count)' and `__builtin_return_address ! (count)' for `count' not equal to zero. -- Macro: DYNAMIC_CHAIN_ADDRESS (FRAMEADDR) A C expression whose value is RTL representing the address in a *************** Here is the basic stack layout. *** 30075,30090 **** -- Macro: SETUP_FRAME_ADDRESSES If defined, a C expression that produces the machine-specific code to setup the stack so that arbitrary frames can be accessed. For ! example, on the SPARC, we must flush all of the register windows to ! the stack before we can access arbitrary stack frames. You will ! seldom need to define this macro. -- Target Hook: rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void) This target hook should return an rtx that is used to store the ! address of the current frame into the built in 'setjmp' buffer. ! The default value, 'virtual_stack_vars_rtx', is correct for most machines. One reason you may need to define this target hook is if ! 'hard_frame_pointer_rtx' is the appropriate value on your machine. -- Macro: FRAME_ADDR_RTX (FRAMEADDR) A C expression whose value is RTL representing the value of the --- 30469,30484 ---- -- Macro: SETUP_FRAME_ADDRESSES If defined, a C expression that produces the machine-specific code to setup the stack so that arbitrary frames can be accessed. For ! example, on the SPARC, we must flush all of the register windows ! to the stack before we can access arbitrary stack frames. You ! will seldom need to define this macro. -- Target Hook: rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void) This target hook should return an rtx that is used to store the ! address of the current frame into the built in `setjmp' buffer. ! The default value, `virtual_stack_vars_rtx', is correct for most machines. One reason you may need to define this target hook is if ! `hard_frame_pointer_rtx' is the appropriate value on your machine. -- Macro: FRAME_ADDR_RTX (FRAMEADDR) A C expression whose value is RTL representing the value of the *************** Here is the basic stack layout. *** 30096,30108 **** -- Macro: RETURN_ADDR_RTX (COUNT, FRAMEADDR) A C expression whose value is RTL representing the value of the ! return address for the frame COUNT steps up from the current frame, ! after the prologue. FRAMEADDR is the frame pointer of the COUNT ! frame, or the frame pointer of the COUNT - 1 frame if ! 'RETURN_ADDR_IN_PREVIOUS_FRAME' is defined. The value of the expression must always be the correct address when ! COUNT is zero, but may be 'NULL_RTX' if there is no way to determine the return address of other frames. -- Macro: RETURN_ADDR_IN_PREVIOUS_FRAME --- 30490,30502 ---- -- Macro: RETURN_ADDR_RTX (COUNT, FRAMEADDR) A C expression whose value is RTL representing the value of the ! return address for the frame COUNT steps up from the current ! frame, after the prologue. FRAMEADDR is the frame pointer of the ! COUNT frame, or the frame pointer of the COUNT - 1 frame if ! `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined. The value of the expression must always be the correct address when ! COUNT is zero, but may be `NULL_RTX' if there is no way to determine the return address of other frames. -- Macro: RETURN_ADDR_IN_PREVIOUS_FRAME *************** Here is the basic stack layout. *** 30112,30134 **** -- Macro: INCOMING_RETURN_ADDR_RTX A C expression whose value is RTL representing the location of the incoming return address at the beginning of any function, before ! the prologue. This RTL is either a 'REG', indicating that the ! return value is saved in 'REG', or a 'MEM' representing a location in the stack. You only need to define this macro if you want to support call frame debugging information like that provided by DWARF 2. ! If this RTL is a 'REG', you should also define ! 'DWARF_FRAME_RETURN_COLUMN' to 'DWARF_FRAME_REGNUM (REGNO)'. -- Macro: DWARF_ALT_FRAME_RETURN_COLUMN A C expression whose value is an integer giving a DWARF 2 column number that may be used as an alternative return column. The column must not correspond to any gcc hard register (that is, it ! must not be in the range of 'DWARF_FRAME_REGNUM'). ! This macro can be useful if 'DWARF_FRAME_RETURN_COLUMN' is set to a general register, but an alternative column needs to be used for signal frames. Some targets have also used different frame return columns over time. --- 30506,30528 ---- -- Macro: INCOMING_RETURN_ADDR_RTX A C expression whose value is RTL representing the location of the incoming return address at the beginning of any function, before ! the prologue. This RTL is either a `REG', indicating that the ! return value is saved in `REG', or a `MEM' representing a location in the stack. You only need to define this macro if you want to support call frame debugging information like that provided by DWARF 2. ! If this RTL is a `REG', you should also define ! `DWARF_FRAME_RETURN_COLUMN' to `DWARF_FRAME_REGNUM (REGNO)'. -- Macro: DWARF_ALT_FRAME_RETURN_COLUMN A C expression whose value is an integer giving a DWARF 2 column number that may be used as an alternative return column. The column must not correspond to any gcc hard register (that is, it ! must not be in the range of `DWARF_FRAME_REGNUM'). ! This macro can be useful if `DWARF_FRAME_RETURN_COLUMN' is set to a general register, but an alternative column needs to be used for signal frames. Some targets have also used different frame return columns over time. *************** Here is the basic stack layout. *** 30138,30145 **** number that is considered to always have the value zero. This should only be defined if the target has an architected zero register, and someone decided it was a good idea to use that ! register number to terminate the stack backtrace. New ports should ! avoid this. -- Target Hook: void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *LABEL, rtx PATTERN, int INDEX) --- 30532,30539 ---- number that is considered to always have the value zero. This should only be defined if the target has an architected zero register, and someone decided it was a good idea to use that ! register number to terminate the stack backtrace. New ports ! should avoid this. -- Target Hook: void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *LABEL, rtx PATTERN, int INDEX) *************** Here is the basic stack layout. *** 30151,30157 **** (set (reg) (unspec_volatile [...] UNSPECV_INDEX)). to let the backend emit the call frame instructions. LABEL is the CFI label attached to the insn, PATTERN is the pattern of the insn ! and INDEX is 'UNSPEC_INDEX' or 'UNSPECV_INDEX'. -- Macro: INCOMING_FRAME_SP_OFFSET A C expression whose value is an integer giving the offset, in --- 30545,30551 ---- (set (reg) (unspec_volatile [...] UNSPECV_INDEX)). to let the backend emit the call frame instructions. LABEL is the CFI label attached to the insn, PATTERN is the pattern of the insn ! and INDEX is `UNSPEC_INDEX' or `UNSPECV_INDEX'. -- Macro: INCOMING_FRAME_SP_OFFSET A C expression whose value is an integer giving the offset, in *************** Here is the basic stack layout. *** 30168,30207 **** A C expression whose value is an integer giving the offset, in bytes, from the argument pointer to the canonical frame address (cfa). The final value should coincide with that calculated by ! 'INCOMING_FRAME_SP_OFFSET'. Which is unfortunately not usable during virtual register instantiation. ! The default value for this macro is 'FIRST_PARM_OFFSET (fundecl) + crtl->args.pretend_args_size', which is correct for most machines; in general, the arguments are found immediately before the stack frame. Note that this is not the case on some targets that save ! registers into the caller's frame, such as SPARC and rs6000, and so ! such targets need to define this macro. ! You only need to define this macro if the default is incorrect, and ! you want to support call frame debugging information like that provided by DWARF 2. -- Macro: FRAME_POINTER_CFA_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the offset in bytes from the frame pointer to the canonical frame address (cfa). The final value should coincide with that ! calculated by 'INCOMING_FRAME_SP_OFFSET'. Normally the CFA is calculated as an offset from the argument ! pointer, via 'ARG_POINTER_CFA_OFFSET', but if the argument pointer is variable due to the ABI, this may not be possible. If this macro is defined, it implies that the virtual register instantiation should be based on the frame pointer instead of the ! argument pointer. Only one of 'FRAME_POINTER_CFA_OFFSET' and ! 'ARG_POINTER_CFA_OFFSET' should be defined. -- Macro: CFA_FRAME_BASE_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the ! offset in bytes from the canonical frame address (cfa) to the frame ! base used in DWARF 2 debug information. The default is zero. A ! different value may reduce the size of debug information on some ! ports.  File: gccint.info, Node: Exception Handling, Next: Stack Checking, Prev: Frame Layout, Up: Stack and Calling --- 30562,30601 ---- A C expression whose value is an integer giving the offset, in bytes, from the argument pointer to the canonical frame address (cfa). The final value should coincide with that calculated by ! `INCOMING_FRAME_SP_OFFSET'. Which is unfortunately not usable during virtual register instantiation. ! The default value for this macro is `FIRST_PARM_OFFSET (fundecl) + crtl->args.pretend_args_size', which is correct for most machines; in general, the arguments are found immediately before the stack frame. Note that this is not the case on some targets that save ! registers into the caller's frame, such as SPARC and rs6000, and ! so such targets need to define this macro. ! You only need to define this macro if the default is incorrect, ! and you want to support call frame debugging information like that provided by DWARF 2. -- Macro: FRAME_POINTER_CFA_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the offset in bytes from the frame pointer to the canonical frame address (cfa). The final value should coincide with that ! calculated by `INCOMING_FRAME_SP_OFFSET'. Normally the CFA is calculated as an offset from the argument ! pointer, via `ARG_POINTER_CFA_OFFSET', but if the argument pointer is variable due to the ABI, this may not be possible. If this macro is defined, it implies that the virtual register instantiation should be based on the frame pointer instead of the ! argument pointer. Only one of `FRAME_POINTER_CFA_OFFSET' and ! `ARG_POINTER_CFA_OFFSET' should be defined. -- Macro: CFA_FRAME_BASE_OFFSET (FUNDECL) If defined, a C expression whose value is an integer giving the ! offset in bytes from the canonical frame address (cfa) to the ! frame base used in DWARF 2 debug information. The default is ! zero. A different value may reduce the size of debug information ! on some ports.  File: gccint.info, Node: Exception Handling, Next: Stack Checking, Prev: Frame Layout, Up: Stack and Calling *************** File: gccint.info, Node: Exception Hand *** 30210,30217 **** ---------------------------------- -- Macro: EH_RETURN_DATA_REGNO (N) ! A C expression whose value is the Nth register number used for data ! by exception handlers, or 'INVALID_REGNUM' if fewer than N registers are usable. The exception handling library routines communicate with the --- 30604,30611 ---- ---------------------------------- -- Macro: EH_RETURN_DATA_REGNO (N) ! A C expression whose value is the Nth register number used for ! data by exception handlers, or `INVALID_REGNUM' if fewer than N registers are usable. The exception handling library routines communicate with the *************** File: gccint.info, Node: Exception Hand *** 30251,30272 **** normal return address is stored. For targets that return by popping an address off the stack, this might be a memory address just below the _target_ call frame rather than inside the current ! call frame. If defined, 'EH_RETURN_STACKADJ_RTX' will have already been assigned, so it may be used to calculate the location of the target call frame. Some targets have more complex requirements than storing to an address calculable during initial code generation. In that case ! the 'eh_return' instruction pattern should be used instead. If you want to support call frame exception handling, you must ! define either this macro or the 'eh_return' instruction pattern. -- Macro: RETURN_ADDR_OFFSET If defined, an integer-valued C expression for which rtl will be generated to add it to the exception handler address before it is ! searched in the exception handling tables, and to subtract it again ! from the address before using it to return to the exception handler. -- Macro: ASM_PREFERRED_EH_DATA_FORMAT (CODE, GLOBAL) --- 30645,30666 ---- normal return address is stored. For targets that return by popping an address off the stack, this might be a memory address just below the _target_ call frame rather than inside the current ! call frame. If defined, `EH_RETURN_STACKADJ_RTX' will have already been assigned, so it may be used to calculate the location of the target call frame. Some targets have more complex requirements than storing to an address calculable during initial code generation. In that case ! the `eh_return' instruction pattern should be used instead. If you want to support call frame exception handling, you must ! define either this macro or the `eh_return' instruction pattern. -- Macro: RETURN_ADDR_OFFSET If defined, an integer-valued C expression for which rtl will be generated to add it to the exception handler address before it is ! searched in the exception handling tables, and to subtract it ! again from the address before using it to return to the exception handler. -- Macro: ASM_PREFERRED_EH_DATA_FORMAT (CODE, GLOBAL) *************** File: gccint.info, Node: Exception Hand *** 30278,30284 **** CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. The macro should return a combination of the ! 'DW_EH_PE_*' defines as found in 'dwarf2.h'. If this macro is not defined, pointers will not be encoded but represented directly. --- 30672,30678 ---- CODE is 0 for data, 1 for code labels, 2 for function pointers. GLOBAL is true if the symbol may be affected by dynamic relocations. The macro should return a combination of the ! `DW_EH_PE_*' defines as found in `dwarf2.h'. If this macro is not defined, pointers will not be encoded but represented directly. *************** File: gccint.info, Node: Exception Hand *** 30287,30299 **** ADDR, DONE) This macro allows the target to emit whatever special magic is required to represent the encoding chosen by ! 'ASM_PREFERRED_EH_DATA_FORMAT'. Generic code takes care of pc-relative and indirect encodings; this must be defined if the target uses text-relative or data-relative encodings. This is a C statement that branches to DONE if the format was handled. ENCODING is the format chosen, SIZE is the number of ! bytes that the format occupies, ADDR is the 'SYMBOL_REF' to be emitted. -- Macro: MD_FALLBACK_FRAME_STATE_FOR (CONTEXT, FS) --- 30681,30693 ---- ADDR, DONE) This macro allows the target to emit whatever special magic is required to represent the encoding chosen by ! `ASM_PREFERRED_EH_DATA_FORMAT'. Generic code takes care of pc-relative and indirect encodings; this must be defined if the target uses text-relative or data-relative encodings. This is a C statement that branches to DONE if the format was handled. ENCODING is the format chosen, SIZE is the number of ! bytes that the format occupies, ADDR is the `SYMBOL_REF' to be emitted. -- Macro: MD_FALLBACK_FRAME_STATE_FOR (CONTEXT, FS) *************** File: gccint.info, Node: Exception Hand *** 30302,30335 **** unwind data available. The most common reason to implement this macro is to unwind through signal frames. ! This macro is called from 'uw_frame_state_for' in 'unwind-dw2.c', ! 'unwind-dw2-xtensa.c' and 'unwind-ia64.c'. CONTEXT is an ! '_Unwind_Context'; FS is an '_Unwind_FrameState'. Examine ! 'context->ra' for the address of the code being executed and ! 'context->cfa' for the stack pointer value. If the frame can be decoded, the register save addresses should be updated in FS and ! the macro should evaluate to '_URC_NO_REASON'. If the frame cannot ! be decoded, the macro should evaluate to '_URC_END_OF_STACK'. For proper signal handling in Java this macro is accompanied by ! 'MAKE_THROW_FRAME', defined in 'libjava/include/*-signal.h' headers. -- Macro: MD_HANDLE_UNWABI (CONTEXT, FS) This macro allows the target to add operating system specific code ! to the call-frame unwinder to handle the IA-64 '.unwabi' unwinding directive, usually used for signal or interrupt frames. ! This macro is called from 'uw_update_context' in libgcc's ! 'unwind-ia64.c'. CONTEXT is an '_Unwind_Context'; FS is an ! '_Unwind_FrameState'. Examine 'fs->unwabi' for the abi and context ! in the '.unwabi' directive. If the '.unwabi' directive can be ! handled, the register save addresses should be updated in FS. -- Macro: TARGET_USES_WEAK_UNWIND_INFO A C expression that evaluates to true if the target requires unwind ! info to be given comdat linkage. Define it to be '1' if comdat ! linkage is necessary. The default is '0'.  File: gccint.info, Node: Stack Checking, Next: Frame Registers, Prev: Exception Handling, Up: Stack and Calling --- 30696,30731 ---- unwind data available. The most common reason to implement this macro is to unwind through signal frames. ! This macro is called from `uw_frame_state_for' in `unwind-dw2.c', ! `unwind-dw2-xtensa.c' and `unwind-ia64.c'. CONTEXT is an ! `_Unwind_Context'; FS is an `_Unwind_FrameState'. Examine ! `context->ra' for the address of the code being executed and ! `context->cfa' for the stack pointer value. If the frame can be decoded, the register save addresses should be updated in FS and ! the macro should evaluate to `_URC_NO_REASON'. If the frame ! cannot be decoded, the macro should evaluate to ! `_URC_END_OF_STACK'. For proper signal handling in Java this macro is accompanied by ! `MAKE_THROW_FRAME', defined in `libjava/include/*-signal.h' headers. -- Macro: MD_HANDLE_UNWABI (CONTEXT, FS) This macro allows the target to add operating system specific code ! to the call-frame unwinder to handle the IA-64 `.unwabi' unwinding directive, usually used for signal or interrupt frames. ! This macro is called from `uw_update_context' in libgcc's ! `unwind-ia64.c'. CONTEXT is an `_Unwind_Context'; FS is an ! `_Unwind_FrameState'. Examine `fs->unwabi' for the abi and ! context in the `.unwabi' directive. If the `.unwabi' directive ! can be handled, the register save addresses should be updated in ! FS. -- Macro: TARGET_USES_WEAK_UNWIND_INFO A C expression that evaluates to true if the target requires unwind ! info to be given comdat linkage. Define it to be `1' if comdat ! linkage is necessary. The default is `0'.  File: gccint.info, Node: Stack Checking, Next: Frame Registers, Prev: Exception Handling, Up: Stack and Calling *************** File: gccint.info, Node: Stack Checking *** 30338,30357 **** --------------------------------------------- GCC will check that stack references are within the boundaries of the ! stack, if the option '-fstack-check' is specified, in one of three ways: ! 1. If the value of the 'STACK_CHECK_BUILTIN' macro is nonzero, GCC will assume that you have arranged for full stack checking to be done at appropriate places in the configuration files. GCC will not do other special processing. ! 2. If 'STACK_CHECK_BUILTIN' is zero and the value of the ! 'STACK_CHECK_STATIC_BUILTIN' macro is nonzero, GCC will assume that ! you have arranged for static stack checking (checking of the static ! stack frame of functions) to be done at appropriate places in the ! configuration files. GCC will only emit code to do dynamic stack ! checking (checking on dynamic stack allocations) using the third ! approach below. 3. If neither of the above are true, GCC will generate code to periodically "probe" the stack pointer using the values of the --- 30734,30753 ---- --------------------------------------------- GCC will check that stack references are within the boundaries of the ! stack, if the option `-fstack-check' is specified, in one of three ways: ! 1. If the value of the `STACK_CHECK_BUILTIN' macro is nonzero, GCC will assume that you have arranged for full stack checking to be done at appropriate places in the configuration files. GCC will not do other special processing. ! 2. If `STACK_CHECK_BUILTIN' is zero and the value of the ! `STACK_CHECK_STATIC_BUILTIN' macro is nonzero, GCC will assume ! that you have arranged for static stack checking (checking of the ! static stack frame of functions) to be done at appropriate places ! in the configuration files. GCC will only emit code to do dynamic ! stack checking (checking on dynamic stack allocations) using the ! third approach below. 3. If neither of the above are true, GCC will generate code to periodically "probe" the stack pointer using the values of the *************** stack, if the option '-fstack-check' is *** 30359,30373 **** If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined, GCC will change its allocation strategy for large objects if ! the option '-fstack-check' is specified: they will always be allocated ! dynamically if their size exceeds 'STACK_CHECK_MAX_VAR_SIZE' bytes. -- Macro: STACK_CHECK_BUILTIN A nonzero value if stack checking is done by the configuration files in a machine-dependent manner. You should define this macro if stack checking is required by the ABI of your machine or if you ! would like to do stack checking in some more efficient way than the ! generic approach. The default value of this macro is zero. -- Macro: STACK_CHECK_STATIC_BUILTIN A nonzero value if static stack checking is done by the --- 30755,30769 ---- If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined, GCC will change its allocation strategy for large objects if ! the option `-fstack-check' is specified: they will always be allocated ! dynamically if their size exceeds `STACK_CHECK_MAX_VAR_SIZE' bytes. -- Macro: STACK_CHECK_BUILTIN A nonzero value if stack checking is done by the configuration files in a machine-dependent manner. You should define this macro if stack checking is required by the ABI of your machine or if you ! would like to do stack checking in some more efficient way than ! the generic approach. The default value of this macro is zero. -- Macro: STACK_CHECK_STATIC_BUILTIN A nonzero value if static stack checking is done by the *************** dynamically if their size exceeds 'STACK *** 30377,30402 **** value of this macro is zero. -- Macro: STACK_CHECK_PROBE_INTERVAL_EXP ! An integer specifying the interval at which GCC must generate stack ! probe instructions, defined as 2 raised to this integer. You will ! normally define this macro so that the interval be no larger than ! the size of the "guard pages" at the end of a stack area. The ! default value of 12 (4096-byte interval) is suitable for most ! systems. -- Macro: STACK_CHECK_MOVING_SP An integer which is nonzero if GCC should move the stack pointer page by page when doing probes. This can be necessary on systems where the stack pointer contains the bottom address of the memory area accessible to the executing thread at any point in time. In ! this situation an alternate signal stack is required in order to be ! able to recover from a stack overflow. The default value of this ! macro is zero. -- Macro: STACK_CHECK_PROTECT The number of bytes of stack needed to recover from a stack overflow, for languages where such a recovery is supported. The ! default value of 75 words with the 'setjmp'/'longjmp'-based exception handling mechanism and 8192 bytes with other exception handling mechanisms should be adequate for most machines. --- 30773,30798 ---- value of this macro is zero. -- Macro: STACK_CHECK_PROBE_INTERVAL_EXP ! An integer specifying the interval at which GCC must generate ! stack probe instructions, defined as 2 raised to this integer. ! You will normally define this macro so that the interval be no ! larger than the size of the "guard pages" at the end of a stack ! area. The default value of 12 (4096-byte interval) is suitable ! for most systems. -- Macro: STACK_CHECK_MOVING_SP An integer which is nonzero if GCC should move the stack pointer page by page when doing probes. This can be necessary on systems where the stack pointer contains the bottom address of the memory area accessible to the executing thread at any point in time. In ! this situation an alternate signal stack is required in order to ! be able to recover from a stack overflow. The default value of ! this macro is zero. -- Macro: STACK_CHECK_PROTECT The number of bytes of stack needed to recover from a stack overflow, for languages where such a recovery is supported. The ! default value of 75 words with the `setjmp'/`longjmp'-based exception handling mechanism and 8192 bytes with other exception handling mechanisms should be adequate for most machines. *************** in the opposite case. *** 30407,30417 **** -- Macro: STACK_CHECK_MAX_FRAME_SIZE The maximum size of a stack frame, in bytes. GCC will generate probe instructions in non-leaf functions to ensure at least this ! many bytes of stack are available. If a stack frame is larger than ! this size, stack checking will not be reliable and GCC will issue a ! warning. The default is chosen so that GCC only generates one ! instruction on most systems. You should normally not change the ! default value of this macro. -- Macro: STACK_CHECK_FIXED_FRAME_SIZE GCC uses this value to generate the above warning message. It --- 30803,30813 ---- -- Macro: STACK_CHECK_MAX_FRAME_SIZE The maximum size of a stack frame, in bytes. GCC will generate probe instructions in non-leaf functions to ensure at least this ! many bytes of stack are available. If a stack frame is larger ! than this size, stack checking will not be reliable and GCC will ! issue a warning. The default is chosen so that GCC only generates ! one instruction on most systems. You should normally not change ! the default value of this macro. -- Macro: STACK_CHECK_FIXED_FRAME_SIZE GCC uses this value to generate the above warning message. It *************** in the opposite case. *** 30423,30429 **** -- Macro: STACK_CHECK_MAX_VAR_SIZE The maximum size, in bytes, of an object that GCC will place in the fixed area of the stack frame when the user specifies ! '-fstack-check'. GCC computed the default from the values of the above macros and you will normally not need to override that default. --- 30819,30825 ---- -- Macro: STACK_CHECK_MAX_VAR_SIZE The maximum size, in bytes, of an object that GCC will place in the fixed area of the stack frame when the user specifies ! `-fstack-check'. GCC computed the default from the values of the above macros and you will normally not need to override that default. *************** This discusses registers that address th *** 30437,30493 **** -- Macro: STACK_POINTER_REGNUM The register number of the stack pointer register, which must also ! be a fixed register according to 'FIXED_REGISTERS'. On most machines, the hardware determines which register this is. -- Macro: FRAME_POINTER_REGNUM The register number of the frame pointer register, which is used to access automatic variables in the stack frame. On some machines, ! the hardware determines which register this is. On other machines, ! you can choose any register you wish for this purpose. -- Macro: HARD_FRAME_POINTER_REGNUM On some machines the offset between the frame pointer and starting offset of the automatic variables is not known until after register allocation has been done (for example, because the saved registers are between these two locations). On those machines, define ! 'FRAME_POINTER_REGNUM' the number of a special, fixed register to be used internally until the offset is known, and define ! 'HARD_FRAME_POINTER_REGNUM' to be the actual hard register number used for the frame pointer. You should define this macro only in the very rare circumstances when it is not possible to calculate the offset between the frame ! pointer and the automatic variables until after register allocation ! has been completed. When this macro is defined, you must also ! indicate in your definition of 'ELIMINABLE_REGS' how to eliminate ! 'FRAME_POINTER_REGNUM' into either 'HARD_FRAME_POINTER_REGNUM' or ! 'STACK_POINTER_REGNUM'. Do not define this macro if it would be the same as ! 'FRAME_POINTER_REGNUM'. -- Macro: ARG_POINTER_REGNUM The register number of the arg pointer register, which is used to ! access the function's argument list. On some machines, this is the ! same as the frame pointer register. On some machines, the hardware ! determines which register this is. On other machines, you can ! choose any register you wish for this purpose. If this is not the ! same register as the frame pointer register, then you must mark it ! as a fixed register according to 'FIXED_REGISTERS', or arrange to ! be able to eliminate it (*note Elimination::). -- Macro: HARD_FRAME_POINTER_IS_FRAME_POINTER Define this to a preprocessor constant that is nonzero if ! 'hard_frame_pointer_rtx' and 'frame_pointer_rtx' should be the ! same. The default definition is '(HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. -- Macro: HARD_FRAME_POINTER_IS_ARG_POINTER Define this to a preprocessor constant that is nonzero if ! 'hard_frame_pointer_rtx' and 'arg_pointer_rtx' should be the same. ! The default definition is '(HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. --- 30833,30889 ---- -- Macro: STACK_POINTER_REGNUM The register number of the stack pointer register, which must also ! be a fixed register according to `FIXED_REGISTERS'. On most machines, the hardware determines which register this is. -- Macro: FRAME_POINTER_REGNUM The register number of the frame pointer register, which is used to access automatic variables in the stack frame. On some machines, ! the hardware determines which register this is. On other ! machines, you can choose any register you wish for this purpose. -- Macro: HARD_FRAME_POINTER_REGNUM On some machines the offset between the frame pointer and starting offset of the automatic variables is not known until after register allocation has been done (for example, because the saved registers are between these two locations). On those machines, define ! `FRAME_POINTER_REGNUM' the number of a special, fixed register to be used internally until the offset is known, and define ! `HARD_FRAME_POINTER_REGNUM' to be the actual hard register number used for the frame pointer. You should define this macro only in the very rare circumstances when it is not possible to calculate the offset between the frame ! pointer and the automatic variables until after register ! allocation has been completed. When this macro is defined, you ! must also indicate in your definition of `ELIMINABLE_REGS' how to ! eliminate `FRAME_POINTER_REGNUM' into either ! `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'. Do not define this macro if it would be the same as ! `FRAME_POINTER_REGNUM'. -- Macro: ARG_POINTER_REGNUM The register number of the arg pointer register, which is used to ! access the function's argument list. On some machines, this is ! the same as the frame pointer register. On some machines, the ! hardware determines which register this is. On other machines, ! you can choose any register you wish for this purpose. If this is ! not the same register as the frame pointer register, then you must ! mark it as a fixed register according to `FIXED_REGISTERS', or ! arrange to be able to eliminate it (*note Elimination::). -- Macro: HARD_FRAME_POINTER_IS_FRAME_POINTER Define this to a preprocessor constant that is nonzero if ! `hard_frame_pointer_rtx' and `frame_pointer_rtx' should be the ! same. The default definition is `(HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. -- Macro: HARD_FRAME_POINTER_IS_ARG_POINTER Define this to a preprocessor constant that is nonzero if ! `hard_frame_pointer_rtx' and `arg_pointer_rtx' should be the same. ! The default definition is `(HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)'; you only need to define this macro if that definition is not suitable for use in preprocessor conditionals. *************** This discusses registers that address th *** 30495,30504 **** The register number of the return address pointer register, which is used to access the current function's return address from the stack. On some machines, the return address is not at a fixed ! offset from the frame pointer or stack pointer or argument pointer. ! This register can be defined to point to the return address on the ! stack, and then be converted by 'ELIMINABLE_REGS' into either the ! frame pointer or stack pointer. Do not define this macro unless there is no other way to get the return address from the stack. --- 30891,30900 ---- The register number of the return address pointer register, which is used to access the current function's return address from the stack. On some machines, the return address is not at a fixed ! offset from the frame pointer or stack pointer or argument ! pointer. This register can be defined to point to the return ! address on the stack, and then be converted by `ELIMINABLE_REGS' ! into either the frame pointer or stack pointer. Do not define this macro unless there is no other way to get the return address from the stack. *************** This discusses registers that address th *** 30506,30539 **** -- Macro: STATIC_CHAIN_REGNUM -- Macro: STATIC_CHAIN_INCOMING_REGNUM Register numbers used for passing a function's static chain ! pointer. If register windows are used, the register number as seen ! by the called function is 'STATIC_CHAIN_INCOMING_REGNUM', while the ! register number as seen by the calling function is ! 'STATIC_CHAIN_REGNUM'. If these registers are the same, ! 'STATIC_CHAIN_INCOMING_REGNUM' need not be defined. The static chain register need not be a fixed register. If the static chain is passed in memory, these macros should not be ! defined; instead, the 'TARGET_STATIC_CHAIN' hook should be used. -- Target Hook: rtx TARGET_STATIC_CHAIN (const_tree FNDECL, bool INCOMING_P) ! This hook replaces the use of 'STATIC_CHAIN_REGNUM' et al for targets that may use different static chain locations for different nested functions. This may be required if the target has function attributes that affect the calling conventions of the function and those calling conventions use different static chain locations. ! The default version of this hook uses 'STATIC_CHAIN_REGNUM' et al. If the static chain is passed in memory, this hook should be used ! to provide rtx giving 'mem' expressions that denote where they are ! stored. Often the 'mem' expression as seen by the caller will be ! at an offset from the stack pointer and the 'mem' expression as ! seen by the callee will be at an offset from the frame pointer. ! The variables 'stack_pointer_rtx', 'frame_pointer_rtx', and ! 'arg_pointer_rtx' will have been initialized and should be used to refer to those items. -- Macro: DWARF_FRAME_REGISTERS --- 30902,30935 ---- -- Macro: STATIC_CHAIN_REGNUM -- Macro: STATIC_CHAIN_INCOMING_REGNUM Register numbers used for passing a function's static chain ! pointer. If register windows are used, the register number as ! seen by the called function is `STATIC_CHAIN_INCOMING_REGNUM', ! while the register number as seen by the calling function is ! `STATIC_CHAIN_REGNUM'. If these registers are the same, ! `STATIC_CHAIN_INCOMING_REGNUM' need not be defined. The static chain register need not be a fixed register. If the static chain is passed in memory, these macros should not be ! defined; instead, the `TARGET_STATIC_CHAIN' hook should be used. -- Target Hook: rtx TARGET_STATIC_CHAIN (const_tree FNDECL, bool INCOMING_P) ! This hook replaces the use of `STATIC_CHAIN_REGNUM' et al for targets that may use different static chain locations for different nested functions. This may be required if the target has function attributes that affect the calling conventions of the function and those calling conventions use different static chain locations. ! The default version of this hook uses `STATIC_CHAIN_REGNUM' et al. If the static chain is passed in memory, this hook should be used ! to provide rtx giving `mem' expressions that denote where they are ! stored. Often the `mem' expression as seen by the caller will be ! at an offset from the stack pointer and the `mem' expression as ! seen by the callee will be at an offset from the frame pointer. The ! variables `stack_pointer_rtx', `frame_pointer_rtx', and ! `arg_pointer_rtx' will have been initialized and should be used to refer to those items. -- Macro: DWARF_FRAME_REGISTERS *************** This discusses registers that address th *** 30551,30568 **** call-saved. If this macro is not defined, it defaults to ! 'FIRST_PSEUDO_REGISTER'. -- Macro: PRE_GCC3_DWARF_FRAME_REGISTERS ! ! This macro is similar to 'DWARF_FRAME_REGISTERS', but is provided for backward compatibility in pre GCC 3.0 compiled code. If this macro is not defined, it defaults to ! 'DWARF_FRAME_REGISTERS'. -- Macro: DWARF_REG_TO_UNWIND_COLUMN (REGNO) - Define this macro if the target's representation for dwarf registers is different than the internal representation for unwind column. Given a dwarf register, this macro should return the --- 30947,30962 ---- call-saved. If this macro is not defined, it defaults to ! `FIRST_PSEUDO_REGISTER'. -- Macro: PRE_GCC3_DWARF_FRAME_REGISTERS ! This macro is similar to `DWARF_FRAME_REGISTERS', but is provided for backward compatibility in pre GCC 3.0 compiled code. If this macro is not defined, it defaults to ! `DWARF_FRAME_REGISTERS'. -- Macro: DWARF_REG_TO_UNWIND_COLUMN (REGNO) Define this macro if the target's representation for dwarf registers is different than the internal representation for unwind column. Given a dwarf register, this macro should return the *************** This discusses registers that address th *** 30571,30603 **** See the PowerPC's SPE target for an example. -- Macro: DWARF_FRAME_REGNUM (REGNO) - Define this macro if the target's representation for dwarf registers used in .eh_frame or .debug_frame is different from that used in other debug info sections. Given a GCC hard register number, this macro should return the .eh_frame register number. ! The default is 'DBX_REGISTER_NUMBER (REGNO)'. - -- Macro: DWARF2_FRAME_REG_OUT (REGNO, FOR_EH) Define this macro to map register numbers held in the call frame ! info that GCC has collected using 'DWARF_FRAME_REGNUM' to those ! that should be output in .debug_frame ('FOR_EH' is zero) and ! .eh_frame ('FOR_EH' is nonzero). The default is to return 'REGNO'. - -- Macro: REG_VALUE_IN_UNWIND_CONTEXT Define this macro if the target stores register values as ! '_Unwind_Word' type in unwind context. It should be defined if ! target register size is larger than the size of 'void *'. The ! default is to store register values as 'void *' type. - -- Macro: ASSUME_EXTENDED_UNWIND_CONTEXT Define this macro to be 1 if the target always uses extended unwind context with version, args_size and by_value fields. If it is undefined, it will be defined to 1 when ! 'REG_VALUE_IN_UNWIND_CONTEXT' is defined and 0 otherwise.  File: gccint.info, Node: Elimination, Next: Stack Arguments, Prev: Frame Registers, Up: Stack and Calling --- 30965,30997 ---- See the PowerPC's SPE target for an example. -- Macro: DWARF_FRAME_REGNUM (REGNO) Define this macro if the target's representation for dwarf registers used in .eh_frame or .debug_frame is different from that used in other debug info sections. Given a GCC hard register number, this macro should return the .eh_frame register number. ! The default is `DBX_REGISTER_NUMBER (REGNO)'. + -- Macro: DWARF2_FRAME_REG_OUT (REGNO, FOR_EH) Define this macro to map register numbers held in the call frame ! info that GCC has collected using `DWARF_FRAME_REGNUM' to those ! that should be output in .debug_frame (`FOR_EH' is zero) and ! .eh_frame (`FOR_EH' is nonzero). The default is to return `REGNO'. + -- Macro: REG_VALUE_IN_UNWIND_CONTEXT Define this macro if the target stores register values as ! `_Unwind_Word' type in unwind context. It should be defined if ! target register size is larger than the size of `void *'. The ! default is to store register values as `void *' type. + -- Macro: ASSUME_EXTENDED_UNWIND_CONTEXT Define this macro to be 1 if the target always uses extended unwind context with version, args_size and by_value fields. If it is undefined, it will be defined to 1 when ! `REG_VALUE_IN_UNWIND_CONTEXT' is defined and 0 otherwise. !  File: gccint.info, Node: Elimination, Next: Stack Arguments, Prev: Frame Registers, Up: Stack and Calling *************** File: gccint.info, Node: Elimination, *** 30608,30648 **** This is about eliminating the frame pointer and arg pointer. -- Target Hook: bool TARGET_FRAME_POINTER_REQUIRED (void) ! This target hook should return 'true' if a function must have and use a frame pointer. This target hook is called in the reload ! pass. If its return value is 'true' the function will have a frame ! pointer. This target hook can in principle examine the current function and decide according to the facts, but on most machines the constant ! 'false' or the constant 'true' suffices. Use 'false' when the machine allows code to be generated with no frame pointer, and ! doing so saves some time or space. Use 'true' when there is no possible advantage to avoiding a frame pointer. In certain cases, the compiler does not know how to produce valid code without a frame pointer. The compiler recognizes those cases and automatically gives the function a frame pointer regardless of ! what 'TARGET_FRAME_POINTER_REQUIRED' returns. You don't need to worry about them. In a function that does not require a frame pointer, the frame pointer register can be allocated for ordinary usage, unless you ! mark it as a fixed register. See 'FIXED_REGISTERS' for more information. ! Default return value is 'false'. -- Macro: INITIAL_FRAME_POINTER_OFFSET (DEPTH-VAR) A C statement to store in the variable DEPTH-VAR the difference between the frame pointer and the stack pointer values immediately after the function prologue. The value would be computed from ! information such as the result of 'get_frame_size ()' and the ! tables of registers 'regs_ever_live' and 'call_used_regs'. ! If 'ELIMINABLE_REGS' is defined, this macro will be not be used and need not be defined. Otherwise, it must be defined even if ! 'TARGET_FRAME_POINTER_REQUIRED' always returns true; in that case, you may set DEPTH-VAR to anything. -- Macro: ELIMINABLE_REGS --- 31002,31042 ---- This is about eliminating the frame pointer and arg pointer. -- Target Hook: bool TARGET_FRAME_POINTER_REQUIRED (void) ! This target hook should return `true' if a function must have and use a frame pointer. This target hook is called in the reload ! pass. If its return value is `true' the function will have a ! frame pointer. This target hook can in principle examine the current function and decide according to the facts, but on most machines the constant ! `false' or the constant `true' suffices. Use `false' when the machine allows code to be generated with no frame pointer, and ! doing so saves some time or space. Use `true' when there is no possible advantage to avoiding a frame pointer. In certain cases, the compiler does not know how to produce valid code without a frame pointer. The compiler recognizes those cases and automatically gives the function a frame pointer regardless of ! what `TARGET_FRAME_POINTER_REQUIRED' returns. You don't need to worry about them. In a function that does not require a frame pointer, the frame pointer register can be allocated for ordinary usage, unless you ! mark it as a fixed register. See `FIXED_REGISTERS' for more information. ! Default return value is `false'. -- Macro: INITIAL_FRAME_POINTER_OFFSET (DEPTH-VAR) A C statement to store in the variable DEPTH-VAR the difference between the frame pointer and the stack pointer values immediately after the function prologue. The value would be computed from ! information such as the result of `get_frame_size ()' and the ! tables of registers `regs_ever_live' and `call_used_regs'. ! If `ELIMINABLE_REGS' is defined, this macro will be not be used and need not be defined. Otherwise, it must be defined even if ! `TARGET_FRAME_POINTER_REQUIRED' always returns true; in that case, you may set DEPTH-VAR to anything. -- Macro: ELIMINABLE_REGS *************** This is about eliminating the frame poin *** 30656,30667 **** initializations, each of which specifies an original and replacement register. ! On some machines, the position of the argument pointer is not known ! until the compilation is completed. In such a case, a separate ! hard register must be used for the argument pointer. This register ! can be eliminated by replacing it with either the frame pointer or ! the argument pointer, depending on whether or not the frame pointer ! has been eliminated. In this case, you might specify: #define ELIMINABLE_REGS \ --- 31050,31061 ---- initializations, each of which specifies an original and replacement register. ! On some machines, the position of the argument pointer is not ! known until the compilation is completed. In such a case, a ! separate hard register must be used for the argument pointer. ! This register can be eliminated by replacing it with either the ! frame pointer or the argument pointer, depending on whether or not ! the frame pointer has been eliminated. In this case, you might specify: #define ELIMINABLE_REGS \ *************** This is about eliminating the frame poin *** 30674,30692 **** -- Target Hook: bool TARGET_CAN_ELIMINATE (const int FROM_REG, const int TO_REG) ! This target hook should returns 'true' if the compiler is allowed to try to replace register number FROM_REG with register number ! TO_REG. This target hook need only be defined if 'ELIMINABLE_REGS' ! is defined, and will usually be 'true', since most of the cases preventing register elimination are things that the compiler already knows about. ! Default return value is 'true'. -- Macro: INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR) ! This macro is similar to 'INITIAL_FRAME_POINTER_OFFSET'. It specifies the initial difference between the specified pair of ! registers. This macro must be defined if 'ELIMINABLE_REGS' is defined.  --- 31068,31086 ---- -- Target Hook: bool TARGET_CAN_ELIMINATE (const int FROM_REG, const int TO_REG) ! This target hook should returns `true' if the compiler is allowed to try to replace register number FROM_REG with register number ! TO_REG. This target hook need only be defined if `ELIMINABLE_REGS' ! is defined, and will usually be `true', since most of the cases preventing register elimination are things that the compiler already knows about. ! Default return value is `true'. -- Macro: INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR) ! This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the initial difference between the specified pair of ! registers. This macro must be defined if `ELIMINABLE_REGS' is defined.  *************** stack. See the following section for ot *** 30700,30708 **** certain arguments in registers. -- Target Hook: bool TARGET_PROMOTE_PROTOTYPES (const_tree FNTYPE) ! This target hook returns 'true' if an argument declared in a ! prototype as an integral type smaller than 'int' should actually be ! passed as an 'int'. In addition to avoiding errors in certain cases of mismatch, it also makes for better code on certain machines. The default is to not promote prototypes. --- 31094,31102 ---- certain arguments in registers. -- Target Hook: bool TARGET_PROMOTE_PROTOTYPES (const_tree FNTYPE) ! This target hook returns `true' if an argument declared in a ! prototype as an integral type smaller than `int' should actually be ! passed as an `int'. In addition to avoiding errors in certain cases of mismatch, it also makes for better code on certain machines. The default is to not promote prototypes. *************** certain arguments in registers. *** 30711,30723 **** outgoing arguments. If the target machine does not have a push instruction, set it to zero. That directs GCC to use an alternate strategy: to allocate the entire argument block and then store the ! arguments into it. When 'PUSH_ARGS' is nonzero, 'PUSH_ROUNDING' must be defined too. -- Macro: PUSH_ARGS_REVERSED A C expression. If nonzero, function arguments will be evaluated from last to first, rather than from first to last. If this macro ! is not defined, it defaults to 'PUSH_ARGS' on targets where the stack and args grow in opposite directions, and 0 otherwise. -- Macro: PUSH_ROUNDING (NPUSHED) --- 31105,31117 ---- outgoing arguments. If the target machine does not have a push instruction, set it to zero. That directs GCC to use an alternate strategy: to allocate the entire argument block and then store the ! arguments into it. When `PUSH_ARGS' is nonzero, `PUSH_ROUNDING' must be defined too. -- Macro: PUSH_ARGS_REVERSED A C expression. If nonzero, function arguments will be evaluated from last to first, rather than from first to last. If this macro ! is not defined, it defaults to `PUSH_ARGS' on targets where the stack and args grow in opposite directions, and 0 otherwise. -- Macro: PUSH_ROUNDING (NPUSHED) *************** certain arguments in registers. *** 30740,30750 **** -- Macro: ACCUMULATE_OUTGOING_ARGS A C expression. If nonzero, the maximum amount of space required for outgoing arguments will be computed and placed into ! 'crtl->outgoing_args_size'. No space will be pushed onto the stack ! for each call; instead, the function prologue should increase the ! stack frame size by this amount. ! Setting both 'PUSH_ARGS' and 'ACCUMULATE_OUTGOING_ARGS' is not proper. -- Macro: REG_PARM_STACK_SPACE (FNDECL) --- 31134,31144 ---- -- Macro: ACCUMULATE_OUTGOING_ARGS A C expression. If nonzero, the maximum amount of space required for outgoing arguments will be computed and placed into ! `crtl->outgoing_args_size'. No space will be pushed onto the ! stack for each call; instead, the function prologue should ! increase the stack frame size by this amount. ! Setting both `PUSH_ARGS' and `ACCUMULATE_OUTGOING_ARGS' is not proper. -- Macro: REG_PARM_STACK_SPACE (FNDECL) *************** certain arguments in registers. *** 30752,30791 **** been allocated for arguments even when their values are passed in registers. ! The value of this macro is the size, in bytes, of the area reserved ! for arguments passed in registers for the function represented by ! FNDECL, which can be zero if GCC is calling a library function. ! The argument FNDECL can be the FUNCTION_DECL, or the type itself of ! the function. This space can be allocated by the caller, or be a part of the ! machine-dependent stack frame: 'OUTGOING_REG_PARM_STACK_SPACE' says which. -- Macro: INCOMING_REG_PARM_STACK_SPACE (FNDECL) ! Like 'REG_PARM_STACK_SPACE', but for incoming register arguments. Define this macro if space guaranteed when compiling a function ! body is different to space required when making a call, a situation ! that can arise with K&R style function definitions. -- Macro: OUTGOING_REG_PARM_STACK_SPACE (FNTYPE) Define this to a nonzero value if it is the responsibility of the caller to allocate the area reserved for arguments passed in ! registers when calling a function of FNTYPE. FNTYPE may be NULL if ! the function called is a library function. ! If 'ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls whether the space for these arguments counts in the value of ! 'crtl->outgoing_args_size'. -- Macro: STACK_PARMS_IN_REG_PARM_AREA ! Define this macro if 'REG_PARM_STACK_SPACE' is defined, but the stack parameters don't skip the area specified by it. ! Normally, when a parameter is not passed in registers, it is placed ! on the stack beyond the 'REG_PARM_STACK_SPACE' area. Defining this ! macro suppresses this behavior and causes the parameter to be ! passed on the stack in its natural location. -- Target Hook: int TARGET_RETURN_POPS_ARGS (tree FUNDECL, tree FUNTYPE, int SIZE) --- 31146,31185 ---- been allocated for arguments even when their values are passed in registers. ! The value of this macro is the size, in bytes, of the area ! reserved for arguments passed in registers for the function ! represented by FNDECL, which can be zero if GCC is calling a ! library function. The argument FNDECL can be the FUNCTION_DECL, ! or the type itself of the function. This space can be allocated by the caller, or be a part of the ! machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE' says which. -- Macro: INCOMING_REG_PARM_STACK_SPACE (FNDECL) ! Like `REG_PARM_STACK_SPACE', but for incoming register arguments. Define this macro if space guaranteed when compiling a function ! body is different to space required when making a call, a ! situation that can arise with K&R style function definitions. -- Macro: OUTGOING_REG_PARM_STACK_SPACE (FNTYPE) Define this to a nonzero value if it is the responsibility of the caller to allocate the area reserved for arguments passed in ! registers when calling a function of FNTYPE. FNTYPE may be NULL ! if the function called is a library function. ! If `ACCUMULATE_OUTGOING_ARGS' is defined, this macro controls whether the space for these arguments counts in the value of ! `crtl->outgoing_args_size'. -- Macro: STACK_PARMS_IN_REG_PARM_AREA ! Define this macro if `REG_PARM_STACK_SPACE' is defined, but the stack parameters don't skip the area specified by it. ! Normally, when a parameter is not passed in registers, it is ! placed on the stack beyond the `REG_PARM_STACK_SPACE' area. ! Defining this macro suppresses this behavior and causes the ! parameter to be passed on the stack in its natural location. -- Target Hook: int TARGET_RETURN_POPS_ARGS (tree FUNDECL, tree FUNTYPE, int SIZE) *************** certain arguments in registers. *** 30796,30836 **** FUNDECL is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! 'FUNCTION_DECL' that describes the declaration of the function. ! From this you can obtain the 'DECL_ATTRIBUTES' of the function. FUNTYPE is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! 'FUNCTION_TYPE' that describes the data type of the function. From ! this it is possible to obtain the data types of the value and arguments (if known). ! When a call to a library function is being considered, FUNDECL will ! contain an identifier node for the library function. Thus, if you ! need to distinguish among various library functions, you can do so ! by their names. Note that "library function" in this context means ! a function used to perform arithmetic, whose name is known ! specially in the compiler and was not mentioned in the C code being ! compiled. ! SIZE is the number of bytes of arguments passed on the stack. If a ! variable number of bytes is passed, it is zero, and argument popping will always be the responsibility of the calling function. On the VAX, all functions always pop their arguments, so the definition of this macro is SIZE. On the 68000, using the standard calling convention, no functions pop their arguments, so the value of the macro is always 0 in this case. But an alternative calling ! convention is available in which functions that take a fixed number ! of arguments pop them but other functions (such as 'printf') pop ! nothing (the caller pops all). When this convention is in use, ! FUNTYPE is examined to determine whether a function takes a fixed ! number of arguments. -- Macro: CALL_POPS_ARGS (CUM) A C expression that should indicate the number of bytes a call sequence pops off the stack. It is added to the value of ! 'RETURN_POPS_ARGS' when compiling a function call. CUM is the variable in which all arguments to the called function have been accumulated. --- 31190,31230 ---- FUNDECL is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! `FUNCTION_DECL' that describes the declaration of the function. ! From this you can obtain the `DECL_ATTRIBUTES' of the function. FUNTYPE is a C variable whose value is a tree node that describes the function in question. Normally it is a node of type ! `FUNCTION_TYPE' that describes the data type of the function. ! From this it is possible to obtain the data types of the value and arguments (if known). ! When a call to a library function is being considered, FUNDECL ! will contain an identifier node for the library function. Thus, if ! you need to distinguish among various library functions, you can ! do so by their names. Note that "library function" in this ! context means a function used to perform arithmetic, whose name is ! known specially in the compiler and was not mentioned in the C ! code being compiled. ! SIZE is the number of bytes of arguments passed on the stack. If ! a variable number of bytes is passed, it is zero, and argument popping will always be the responsibility of the calling function. On the VAX, all functions always pop their arguments, so the definition of this macro is SIZE. On the 68000, using the standard calling convention, no functions pop their arguments, so the value of the macro is always 0 in this case. But an alternative calling ! convention is available in which functions that take a fixed ! number of arguments pop them but other functions (such as ! `printf') pop nothing (the caller pops all). When this convention ! is in use, FUNTYPE is examined to determine whether a function ! takes a fixed number of arguments. -- Macro: CALL_POPS_ARGS (CUM) A C expression that should indicate the number of bytes a call sequence pops off the stack. It is added to the value of ! `RETURN_POPS_ARGS' when compiling a function call. CUM is the variable in which all arguments to the called function have been accumulated. *************** certain arguments in registers. *** 30839,30845 **** used that pops certain registers off the stack, depending on the arguments that have been passed to the function. Since this is a property of the call site, not of the called function, ! 'RETURN_POPS_ARGS' is not appropriate.  File: gccint.info, Node: Register Arguments, Next: Scalar Return, Prev: Stack Arguments, Up: Stack and Calling --- 31233,31239 ---- used that pops certain registers off the stack, depending on the arguments that have been passed to the function. Since this is a property of the call site, not of the called function, ! `RETURN_POPS_ARGS' is not appropriate.  File: gccint.info, Node: Register Arguments, Next: Scalar Return, Prev: Stack Arguments, Up: Stack and Calling *************** the stack. *** 30859,30926 **** The arguments are CA, which summarizes all the previous arguments; MODE, the machine mode of the argument; TYPE, the data type of the argument as a tree node or 0 if that is not known (which happens ! for C support library functions); and NAMED, which is 'true' for an ! ordinary argument and 'false' for nameless arguments that ! correspond to '...' in the called function's prototype. TYPE can be an incomplete type if a syntax error has previously occurred. ! The return value is usually either a 'reg' RTX for the hard register in which to pass the argument, or zero to pass the argument on the stack. ! The value of the expression can also be a 'parallel' RTX. This is ! used when an argument is passed in multiple locations. The mode of ! the 'parallel' should be the mode of the entire argument. The ! 'parallel' holds any number of 'expr_list' pairs; each one describes where part of the argument is passed. In each ! 'expr_list' the first operand must be a 'reg' RTX for the hard register in which to pass this part of the argument, and the mode of the register RTX indicates how large this part of the argument ! is. The second operand of the 'expr_list' is a 'const_int' which gives the offset in bytes into the entire argument of where this ! part starts. As a special exception the first 'expr_list' in the ! 'parallel' RTX may have a first operand of zero. This indicates that the entire argument is also stored on the stack. ! The last time this hook is called, it is called with 'MODE == ! VOIDmode', and its result is passed to the 'call' or 'call_value' pattern as operands 2 and 3 respectively. ! The usual way to make the ISO library 'stdarg.h' work on a machine where some arguments are usually passed in registers, is to cause ! nameless arguments to be passed on the stack instead. This is done ! by making 'TARGET_FUNCTION_ARG' return 0 whenever NAMED is 'false'. ! You may use the hook 'targetm.calls.must_pass_in_stack' in the ! definition of this macro to determine if this argument is of a type ! that must be passed in the stack. If 'REG_PARM_STACK_SPACE' is not ! defined and 'TARGET_FUNCTION_ARG' returns nonzero for such an ! argument, the compiler will abort. If 'REG_PARM_STACK_SPACE' is ! defined, the argument will be computed in the stack and then loaded ! into a register. ! -- Target Hook: bool TARGET_MUST_PASS_IN_STACK (enum machine_mode MODE, ! const_tree TYPE) ! This target hook should return 'true' if we should not pass TYPE ! solely in registers. The file 'expr.h' defines a definition that ! is usually appropriate, refer to 'expr.h' for additional documentation. ! -- Target Hook: rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t CA, ! enum machine_mode MODE, const_tree TYPE, bool NAMED) Define this hook if the target machine has "register windows", so that the register in which a function sees an arguments is not necessarily the same as the one in which the caller passed the argument. ! For such machines, 'TARGET_FUNCTION_ARG' computes the register in which the caller passes the value, and ! 'TARGET_FUNCTION_INCOMING_ARG' should be defined in a similar fashion to tell the function being called where the arguments will arrive. ! If 'TARGET_FUNCTION_INCOMING_ARG' is not defined, ! 'TARGET_FUNCTION_ARG' serves both purposes. -- Target Hook: int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t CUM, enum machine_mode MODE, tree TYPE, bool NAMED) --- 31253,31321 ---- The arguments are CA, which summarizes all the previous arguments; MODE, the machine mode of the argument; TYPE, the data type of the argument as a tree node or 0 if that is not known (which happens ! for C support library functions); and NAMED, which is `true' for ! an ordinary argument and `false' for nameless arguments that ! correspond to `...' in the called function's prototype. TYPE can be an incomplete type if a syntax error has previously occurred. ! The return value is usually either a `reg' RTX for the hard register in which to pass the argument, or zero to pass the argument on the stack. ! The value of the expression can also be a `parallel' RTX. This is ! used when an argument is passed in multiple locations. The mode ! of the `parallel' should be the mode of the entire argument. The ! `parallel' holds any number of `expr_list' pairs; each one describes where part of the argument is passed. In each ! `expr_list' the first operand must be a `reg' RTX for the hard register in which to pass this part of the argument, and the mode of the register RTX indicates how large this part of the argument ! is. The second operand of the `expr_list' is a `const_int' which gives the offset in bytes into the entire argument of where this ! part starts. As a special exception the first `expr_list' in the ! `parallel' RTX may have a first operand of zero. This indicates that the entire argument is also stored on the stack. ! The last time this hook is called, it is called with `MODE == ! VOIDmode', and its result is passed to the `call' or `call_value' pattern as operands 2 and 3 respectively. ! The usual way to make the ISO library `stdarg.h' work on a machine where some arguments are usually passed in registers, is to cause ! nameless arguments to be passed on the stack instead. This is ! done by making `TARGET_FUNCTION_ARG' return 0 whenever NAMED is ! `false'. ! You may use the hook `targetm.calls.must_pass_in_stack' in the ! definition of this macro to determine if this argument is of a ! type that must be passed in the stack. If `REG_PARM_STACK_SPACE' ! is not defined and `TARGET_FUNCTION_ARG' returns nonzero for such ! an argument, the compiler will abort. If `REG_PARM_STACK_SPACE' is ! defined, the argument will be computed in the stack and then ! loaded into a register. ! -- Target Hook: bool TARGET_MUST_PASS_IN_STACK (enum machine_mode ! MODE, const_tree TYPE) ! This target hook should return `true' if we should not pass TYPE ! solely in registers. The file `expr.h' defines a definition that ! is usually appropriate, refer to `expr.h' for additional documentation. ! -- Target Hook: rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t ! CA, enum machine_mode MODE, const_tree TYPE, bool NAMED) Define this hook if the target machine has "register windows", so that the register in which a function sees an arguments is not necessarily the same as the one in which the caller passed the argument. ! For such machines, `TARGET_FUNCTION_ARG' computes the register in which the caller passes the value, and ! `TARGET_FUNCTION_INCOMING_ARG' should be defined in a similar fashion to tell the function being called where the arguments will arrive. ! If `TARGET_FUNCTION_INCOMING_ARG' is not defined, ! `TARGET_FUNCTION_ARG' serves both purposes. -- Target Hook: int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t CUM, enum machine_mode MODE, tree TYPE, bool NAMED) *************** the stack. *** 30932,30958 **** On some machines, certain arguments must be passed partially in registers and partially in memory. On these machines, typically the first few words of arguments are passed in registers, and the ! rest on the stack. If a multi-word argument (a 'double' or a structure) crosses that boundary, its first few words must be passed in registers and the rest must be pushed. This macro tells the compiler when this occurs, and how many bytes should go in registers. ! 'TARGET_FUNCTION_ARG' for these arguments should return the first register to be used by the caller for this argument; likewise ! 'TARGET_FUNCTION_INCOMING_ARG', for the called function. -- Target Hook: bool TARGET_PASS_BY_REFERENCE (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) ! This target hook should return 'true' if an argument at the position indicated by CUM should be passed by reference. This predicate is queried after target independent reasons for being ! passed by reference, such as 'TREE_ADDRESSABLE (type)'. ! If the hook returns true, a copy of that argument is made in memory ! and a pointer to the argument is passed instead of the argument ! itself. The pointer is passed in whatever way is appropriate for ! passing a pointer to that type. -- Target Hook: bool TARGET_CALLEE_COPIES (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) --- 31327,31353 ---- On some machines, certain arguments must be passed partially in registers and partially in memory. On these machines, typically the first few words of arguments are passed in registers, and the ! rest on the stack. If a multi-word argument (a `double' or a structure) crosses that boundary, its first few words must be passed in registers and the rest must be pushed. This macro tells the compiler when this occurs, and how many bytes should go in registers. ! `TARGET_FUNCTION_ARG' for these arguments should return the first register to be used by the caller for this argument; likewise ! `TARGET_FUNCTION_INCOMING_ARG', for the called function. -- Target Hook: bool TARGET_PASS_BY_REFERENCE (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) ! This target hook should return `true' if an argument at the position indicated by CUM should be passed by reference. This predicate is queried after target independent reasons for being ! passed by reference, such as `TREE_ADDRESSABLE (type)'. ! If the hook returns true, a copy of that argument is made in ! memory and a pointer to the argument is passed instead of the ! argument itself. The pointer is passed in whatever way is ! appropriate for passing a pointer to that type. -- Target Hook: bool TARGET_CALLEE_COPIES (cumulative_args_t CUM, enum machine_mode MODE, const_tree TYPE, bool NAMED) *************** the stack. *** 30969,31072 **** -- Macro: CUMULATIVE_ARGS A C type for declaring a variable that is used as the first ! argument of 'TARGET_FUNCTION_ARG' and other related values. For ! some target machines, the type 'int' suffices and can hold the number of bytes of argument so far. ! There is no need to record in 'CUMULATIVE_ARGS' anything about the arguments that have been passed on the stack. The compiler has other variables to keep track of that. For target machines on which all arguments are passed on the stack, there is no need to ! store anything in 'CUMULATIVE_ARGS'; however, the data structure ! must exist and should not be empty, so use 'int'. -- Macro: OVERRIDE_ABI_FORMAT (FNDECL) If defined, this macro is called before generating any code for a function, but after the CFUN descriptor for the function has been ! created. The back end may use this macro to update CFUN to reflect ! an ABI other than that which would normally be used by default. If ! the compiler is generating code for a compiler-generated function, ! FNDECL may be 'NULL'. -- Macro: INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. The variable ! has type 'CUMULATIVE_ARGS'. The value of FNTYPE is the tree node ! for the data type of the function which will receive the args, or 0 ! if the args are to a compiler support library function. For direct ! calls that are not libcalls, FNDECL contain the declaration node of ! the function. FNDECL is also set when 'INIT_CUMULATIVE_ARGS' is ! used to find arguments for the function being compiled. ! N_NAMED_ARGS is set to the number of named arguments, including a ! structure return address if it is passed as a parameter, when ! making a call. When processing incoming arguments, N_NAMED_ARGS is ! set to -1. When processing a call to a compiler support library function, ! LIBNAME identifies which one. It is a 'symbol_ref' rtx which contains the name of the function, as a string. LIBNAME is 0 when an ordinary C function call is being processed. Thus, each time this macro is called, either LIBNAME or FNTYPE is nonzero, but never both of them at once. -- Macro: INIT_CUMULATIVE_LIBCALL_ARGS (CUM, MODE, LIBNAME) ! Like 'INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls, it ! gets a 'MODE' argument instead of FNTYPE, that would be 'NULL'. INDIRECT would always be zero, too. If this macro is not defined, ! 'INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0)' is used instead. -- Macro: INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME) ! Like 'INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the arguments for the function being compiled. If this ! macro is undefined, 'INIT_CUMULATIVE_ARGS' is used instead. The value passed for LIBNAME is always 0, since library routines with special calling conventions are never compiled with GCC. The ! argument LIBNAME exists for symmetry with 'INIT_CUMULATIVE_ARGS'. ! -- Target Hook: void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t CA, ! enum machine_mode MODE, const_tree TYPE, bool NAMED) This hook updates the summarizer variable pointed to by CA to advance past an argument in the argument list. The values MODE, TYPE and NAMED describe that argument. Once this is done, the variable CUM is suitable for analyzing the _following_ argument ! with 'TARGET_FUNCTION_ARG', etc. This hook need not do anything if the argument in question was ! passed on the stack. The compiler knows how to track the amount of ! stack space used for arguments without any special help. -- Macro: FUNCTION_ARG_OFFSET (MODE, TYPE) If defined, a C expression that is the number of bytes to add to the offset of the argument passed in memory. This is needed for ! the SPU, which passes 'char' and 'short' arguments in the preferred slot that is in the middle of the quad word instead of starting at the top. -- Macro: FUNCTION_ARG_PADDING (MODE, TYPE) If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value ! should be of type 'enum direction': either 'upward' to pad above ! the argument, 'downward' to pad below, or 'none' to inhibit padding. The _amount_ of padding is not controlled by this macro, but by the ! target hook 'TARGET_FUNCTION_ARG_ROUND_BOUNDARY'. It is always just enough to reach the next multiple of that boundary. This macro has a default definition which is right for most ! systems. For little-endian machines, the default is to pad upward. ! For big-endian machines, the default is to pad downward for an ! argument of constant size shorter than an 'int', and upward otherwise. -- Macro: PAD_VARARGS_DOWN If defined, a C expression which determines whether the default implementation of va_arg will attempt to pad down before reading the next argument, if that argument is smaller than its aligned ! space as controlled by 'PARM_BOUNDARY'. If this macro is not ! defined, all such arguments are padded down if 'BYTES_BIG_ENDIAN' is true. -- Macro: BLOCK_REG_PADDING (MODE, TYPE, FIRST) --- 31364,31467 ---- -- Macro: CUMULATIVE_ARGS A C type for declaring a variable that is used as the first ! argument of `TARGET_FUNCTION_ARG' and other related values. For ! some target machines, the type `int' suffices and can hold the number of bytes of argument so far. ! There is no need to record in `CUMULATIVE_ARGS' anything about the arguments that have been passed on the stack. The compiler has other variables to keep track of that. For target machines on which all arguments are passed on the stack, there is no need to ! store anything in `CUMULATIVE_ARGS'; however, the data structure ! must exist and should not be empty, so use `int'. -- Macro: OVERRIDE_ABI_FORMAT (FNDECL) If defined, this macro is called before generating any code for a function, but after the CFUN descriptor for the function has been ! created. The back end may use this macro to update CFUN to ! reflect an ABI other than that which would normally be used by ! default. If the compiler is generating code for a ! compiler-generated function, FNDECL may be `NULL'. -- Macro: INIT_CUMULATIVE_ARGS (CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. The variable ! has type `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node ! for the data type of the function which will receive the args, or ! 0 if the args are to a compiler support library function. For ! direct calls that are not libcalls, FNDECL contain the declaration ! node of the function. FNDECL is also set when ! `INIT_CUMULATIVE_ARGS' is used to find arguments for the function ! being compiled. N_NAMED_ARGS is set to the number of named ! arguments, including a structure return address if it is passed as ! a parameter, when making a call. When processing incoming ! arguments, N_NAMED_ARGS is set to -1. When processing a call to a compiler support library function, ! LIBNAME identifies which one. It is a `symbol_ref' rtx which contains the name of the function, as a string. LIBNAME is 0 when an ordinary C function call is being processed. Thus, each time this macro is called, either LIBNAME or FNTYPE is nonzero, but never both of them at once. -- Macro: INIT_CUMULATIVE_LIBCALL_ARGS (CUM, MODE, LIBNAME) ! Like `INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls, ! it gets a `MODE' argument instead of FNTYPE, that would be `NULL'. INDIRECT would always be zero, too. If this macro is not defined, ! `INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, 0)' is used instead. -- Macro: INIT_CUMULATIVE_INCOMING_ARGS (CUM, FNTYPE, LIBNAME) ! Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the arguments for the function being compiled. If this ! macro is undefined, `INIT_CUMULATIVE_ARGS' is used instead. The value passed for LIBNAME is always 0, since library routines with special calling conventions are never compiled with GCC. The ! argument LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. ! -- Target Hook: void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t ! CA, enum machine_mode MODE, const_tree TYPE, bool NAMED) This hook updates the summarizer variable pointed to by CA to advance past an argument in the argument list. The values MODE, TYPE and NAMED describe that argument. Once this is done, the variable CUM is suitable for analyzing the _following_ argument ! with `TARGET_FUNCTION_ARG', etc. This hook need not do anything if the argument in question was ! passed on the stack. The compiler knows how to track the amount ! of stack space used for arguments without any special help. -- Macro: FUNCTION_ARG_OFFSET (MODE, TYPE) If defined, a C expression that is the number of bytes to add to the offset of the argument passed in memory. This is needed for ! the SPU, which passes `char' and `short' arguments in the preferred slot that is in the middle of the quad word instead of starting at the top. -- Macro: FUNCTION_ARG_PADDING (MODE, TYPE) If defined, a C expression which determines whether, and in which direction, to pad out an argument with extra space. The value ! should be of type `enum direction': either `upward' to pad above ! the argument, `downward' to pad below, or `none' to inhibit padding. The _amount_ of padding is not controlled by this macro, but by the ! target hook `TARGET_FUNCTION_ARG_ROUND_BOUNDARY'. It is always just enough to reach the next multiple of that boundary. This macro has a default definition which is right for most ! systems. For little-endian machines, the default is to pad ! upward. For big-endian machines, the default is to pad downward ! for an argument of constant size shorter than an `int', and upward otherwise. -- Macro: PAD_VARARGS_DOWN If defined, a C expression which determines whether the default implementation of va_arg will attempt to pad down before reading the next argument, if that argument is smaller than its aligned ! space as controlled by `PARM_BOUNDARY'. If this macro is not ! defined, all such arguments are padded down if `BYTES_BIG_ENDIAN' is true. -- Macro: BLOCK_REG_PADDING (MODE, TYPE, FIRST) *************** the stack. *** 31074,31096 **** registers and memory. FIRST is nonzero if this is the only element. Defining this macro allows better control of register function parameters on big-endian machines, without using ! 'PARALLEL' rtl. In particular, 'MUST_PASS_IN_STACK' need not test padding and mode of types in registers, as there is no longer a ! "wrong" part of a register; For example, a three byte aggregate may ! be passed in the high part of a register if so required. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_BOUNDARY (enum machine_mode MODE, const_tree TYPE) This hook returns the alignment boundary, in bits, of an argument with the specified mode and type. The default hook returns ! 'PARM_BOUNDARY' for all arguments. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_ROUND_BOUNDARY (enum machine_mode MODE, const_tree TYPE) ! Normally, the size of an argument is rounded up to 'PARM_BOUNDARY', ! which is the default value for this hook. You can define this hook ! to return a different value if an argument size must be rounded to ! a larger value. -- Macro: FUNCTION_ARG_REGNO_P (REGNO) A C expression that is nonzero if REGNO is the number of a hard --- 31469,31491 ---- registers and memory. FIRST is nonzero if this is the only element. Defining this macro allows better control of register function parameters on big-endian machines, without using ! `PARALLEL' rtl. In particular, `MUST_PASS_IN_STACK' need not test padding and mode of types in registers, as there is no longer a ! "wrong" part of a register; For example, a three byte aggregate ! may be passed in the high part of a register if so required. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_BOUNDARY (enum machine_mode MODE, const_tree TYPE) This hook returns the alignment boundary, in bits, of an argument with the specified mode and type. The default hook returns ! `PARM_BOUNDARY' for all arguments. -- Target Hook: unsigned int TARGET_FUNCTION_ARG_ROUND_BOUNDARY (enum machine_mode MODE, const_tree TYPE) ! Normally, the size of an argument is rounded up to `PARM_BOUNDARY', ! which is the default value for this hook. You can define this ! hook to return a different value if an argument size must be ! rounded to a larger value. -- Macro: FUNCTION_ARG_REGNO_P (REGNO) A C expression that is nonzero if REGNO is the number of a hard *************** the stack. *** 31105,31127 **** as two scalar parameters. By default, GCC will attempt to pack complex arguments into the target's word size. Some ABIs require complex arguments to be split and treated as their individual ! components. For example, on AIX64, complex floats should be passed ! in a pair of floating point registers, even though a complex float ! would fit in one 64-bit floating point register. ! The default value of this hook is 'NULL', which is treated as always false. -- Target Hook: tree TARGET_BUILD_BUILTIN_VA_LIST (void) ! This hook returns a type node for 'va_list' for the target. The ! default version of the hook returns 'void*'. ! -- Target Hook: int TARGET_ENUM_VA_LIST_P (int IDX, const char **PNAME, ! tree *PTREE) ! This target hook is used in function 'c_common_nodes_and_builtins' to iterate through the target specific builtin types for va_list. ! The variable IDX is used as iterator. PNAME has to be a pointer to ! a 'const char *' and PTREE a pointer to a 'tree' typed variable. The arguments PNAME and PTREE are used to store the result of this macro and are set to the name of the va_list builtin type and its internal type. If the return value of this macro is zero, then --- 31500,31522 ---- as two scalar parameters. By default, GCC will attempt to pack complex arguments into the target's word size. Some ABIs require complex arguments to be split and treated as their individual ! components. For example, on AIX64, complex floats should be ! passed in a pair of floating point registers, even though a ! complex float would fit in one 64-bit floating point register. ! The default value of this hook is `NULL', which is treated as always false. -- Target Hook: tree TARGET_BUILD_BUILTIN_VA_LIST (void) ! This hook returns a type node for `va_list' for the target. The ! default version of the hook returns `void*'. ! -- Target Hook: int TARGET_ENUM_VA_LIST_P (int IDX, const char ! **PNAME, tree *PTREE) ! This target hook is used in function `c_common_nodes_and_builtins' to iterate through the target specific builtin types for va_list. ! The variable IDX is used as iterator. PNAME has to be a pointer to ! a `const char *' and PTREE a pointer to a `tree' typed variable. The arguments PNAME and PTREE are used to store the result of this macro and are set to the name of the va_list builtin type and its internal type. If the return value of this macro is zero, then *************** the stack. *** 31131,31172 **** -- Target Hook: tree TARGET_FN_ABI_VA_LIST (tree FNDECL) This hook returns the va_list type of the calling convention specified by FNDECL. The default version of this hook returns ! 'va_list_type_node'. -- Target Hook: tree TARGET_CANONICAL_VA_LIST_TYPE (tree TYPE) This hook returns the va_list type of the calling convention ! specified by the type of TYPE. If TYPE is not a valid va_list ! type, it returns 'NULL_TREE'. -- Target Hook: tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree VALIST, tree TYPE, gimple_seq *PRE_P, gimple_seq *POST_P) ! This hook performs target-specific gimplification of 'VA_ARG_EXPR'. ! The first two parameters correspond to the arguments to 'va_arg'; ! the latter two are as in 'gimplify.c:gimplify_expr'. -- Target Hook: bool TARGET_VALID_POINTER_MODE (enum machine_mode MODE) Define this to return nonzero if the port can handle pointers with machine mode MODE. The default version of this hook returns true ! for both 'ptr_mode' and 'Pmode'. -- Target Hook: bool TARGET_REF_MAY_ALIAS_ERRNO (struct ao_ref *REF) ! Define this to return nonzero if the memory reference REF may alias ! with the system C library errno location. The default version of ! this hook assumes the system C library errno location is either a ! declaration of type int or accessed by dereferencing a pointer to ! int. -- Target Hook: bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine_mode MODE) Define this to return nonzero if the port is prepared to handle insns involving scalar mode MODE. For a scalar mode to be ! considered supported, all the basic arithmetic and comparisons must ! work. ! The default version of this hook returns true for any mode required ! to handle the basic C types (as defined by the port). Included ! here are the double-word arithmetic supported by the code in ! 'optabs.c'. -- Target Hook: bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine_mode MODE) --- 31526,31568 ---- -- Target Hook: tree TARGET_FN_ABI_VA_LIST (tree FNDECL) This hook returns the va_list type of the calling convention specified by FNDECL. The default version of this hook returns ! `va_list_type_node'. -- Target Hook: tree TARGET_CANONICAL_VA_LIST_TYPE (tree TYPE) This hook returns the va_list type of the calling convention ! specified by the type of TYPE. If TYPE is not a valid va_list ! type, it returns `NULL_TREE'. -- Target Hook: tree TARGET_GIMPLIFY_VA_ARG_EXPR (tree VALIST, tree TYPE, gimple_seq *PRE_P, gimple_seq *POST_P) ! This hook performs target-specific gimplification of ! `VA_ARG_EXPR'. The first two parameters correspond to the ! arguments to `va_arg'; the latter two are as in ! `gimplify.c:gimplify_expr'. -- Target Hook: bool TARGET_VALID_POINTER_MODE (enum machine_mode MODE) Define this to return nonzero if the port can handle pointers with machine mode MODE. The default version of this hook returns true ! for both `ptr_mode' and `Pmode'. -- Target Hook: bool TARGET_REF_MAY_ALIAS_ERRNO (struct ao_ref *REF) ! Define this to return nonzero if the memory reference REF may ! alias with the system C library errno location. The default ! version of this hook assumes the system C library errno location ! is either a declaration of type int or accessed by dereferencing ! a pointer to int. -- Target Hook: bool TARGET_SCALAR_MODE_SUPPORTED_P (enum machine_mode MODE) Define this to return nonzero if the port is prepared to handle insns involving scalar mode MODE. For a scalar mode to be ! considered supported, all the basic arithmetic and comparisons ! must work. ! The default version of this hook returns true for any mode ! required to handle the basic C types (as defined by the port). ! Included here are the double-word arithmetic supported by the code ! in `optabs.c'. -- Target Hook: bool TARGET_VECTOR_MODE_SUPPORTED_P (enum machine_mode MODE) *************** the stack. *** 31178,31184 **** MODE, unsigned HOST_WIDE_INT NELEMS) Return true if GCC should try to use a scalar mode to store an array of NELEMS elements, given that each element has mode MODE. ! Returning true here overrides the usual 'MAX_FIXED_MODE' limit and allows GCC to use any defined integer mode. One use of this hook is to support vector load and store operations --- 31574,31580 ---- MODE, unsigned HOST_WIDE_INT NELEMS) Return true if GCC should try to use a scalar mode to store an array of NELEMS elements, given that each element has mode MODE. ! Returning true here overrides the usual `MAX_FIXED_MODE' limit and allows GCC to use any defined integer mode. One use of this hook is to support vector load and store operations *************** the stack. *** 31194,31209 **** int8x8_t val[3]; } int8x8x3_t; ! If this hook allows 'val' to have a scalar mode, then 'int8x8x3_t' ! can have the same mode. GCC can then store 'int8x8x3_t's in registers rather than forcing them onto the stack. -- Target Hook: bool TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P (enum machine_mode MODE) Define this to return nonzero for machine modes for which the port has small register classes. If this target hook returns nonzero ! for a given MODE, the compiler will try to minimize the lifetime of ! registers in MODE. The hook may be called with 'VOIDmode' as argument. In this case, the hook is expected to return nonzero if it returns nonzero for any mode. --- 31590,31605 ---- int8x8_t val[3]; } int8x8x3_t; ! If this hook allows `val' to have a scalar mode, then `int8x8x3_t' ! can have the same mode. GCC can then store `int8x8x3_t's in registers rather than forcing them onto the stack. -- Target Hook: bool TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P (enum machine_mode MODE) Define this to return nonzero for machine modes for which the port has small register classes. If this target hook returns nonzero ! for a given MODE, the compiler will try to minimize the lifetime ! of registers in MODE. The hook may be called with `VOIDmode' as argument. In this case, the hook is expected to return nonzero if it returns nonzero for any mode. *************** the stack. *** 31217,31236 **** in an instruction, but the machine modes of the registers set or used in the instruction are already known. And for some machines, register classes are small for, say, integer registers but not for ! floating point registers. For example, the AMD x86-64 architecture ! requires specific registers for the legacy x86 integer ! instructions, but there are many SSE registers for floating point ! operations. On such targets, a good strategy may be to return ! nonzero from this hook for 'INTEGRAL_MODE_P' machine modes but zero ! for the SSE register classes. ! The default version of this hook returns false for any mode. It is ! always safe to redefine this hook to return with a nonzero value. ! But if you unnecessarily define it, you will reduce the amount of ! optimizations that can be performed in some cases. If you do not ! define this hook to return a nonzero value when it is required, the ! compiler will run out of spill registers and print a fatal error ! message.  File: gccint.info, Node: Scalar Return, Next: Aggregate Return, Prev: Register Arguments, Up: Stack and Calling --- 31613,31632 ---- in an instruction, but the machine modes of the registers set or used in the instruction are already known. And for some machines, register classes are small for, say, integer registers but not for ! floating point registers. For example, the AMD x86-64 ! architecture requires specific registers for the legacy x86 ! integer instructions, but there are many SSE registers for ! floating point operations. On such targets, a good strategy may ! be to return nonzero from this hook for `INTEGRAL_MODE_P' machine ! modes but zero for the SSE register classes. ! The default version of this hook returns false for any mode. It ! is always safe to redefine this hook to return with a nonzero ! value. But if you unnecessarily define it, you will reduce the ! amount of optimizations that can be performed in some cases. If ! you do not define this hook to return a nonzero value when it is ! required, the compiler will run out of spill registers and print a ! fatal error message.  File: gccint.info, Node: Scalar Return, Next: Aggregate Return, Prev: Register Arguments, Up: Stack and Calling *************** values--values that can fit in registers *** 31243,31291 **** -- Target Hook: rtx TARGET_FUNCTION_VALUE (const_tree RET_TYPE, const_tree FN_DECL_OR_TYPE, bool OUTGOING) - Define this to return an RTX representing the place where a function returns or receives a value of data type RET_TYPE, a tree node representing a data type. FN_DECL_OR_TYPE is a tree node ! representing 'FUNCTION_DECL' or 'FUNCTION_TYPE' of a function being ! called. If OUTGOING is false, the hook should compute the register ! in which the caller will see the return value. Otherwise, the hook ! should return an RTX representing the place where a function ! returns a value. ! On many machines, only 'TYPE_MODE (RET_TYPE)' is relevant. (Actually, on most machines, scalar values are returned in the same place regardless of mode.) The value of the expression is usually ! a 'reg' RTX for the hard register where the return value is stored. ! The value can also be a 'parallel' RTX, if the return value is in ! multiple places. See 'TARGET_FUNCTION_ARG' for an explanation of ! the 'parallel' form. Note that the callee will populate every ! location specified in the 'parallel', but if the first element of ! the 'parallel' contains the whole return value, callers will use that element as the canonical location and ignore the others. The ! m68k port uses this type of 'parallel' to return pointers in both ! '%a0' (the canonical location) and '%d0'. ! If 'TARGET_PROMOTE_FUNCTION_RETURN' returns true, you must apply ! the same promotion rules specified in 'PROMOTE_MODE' if VALTYPE is a scalar type. If the precise function being called is known, FUNC is a tree node ! ('FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This ! makes it possible to use a different value-returning convention for ! specific functions when all their calls are known. Some target machines have "register windows" so that the register ! in which a function returns its value is not the same as the one in ! which the caller sees the value. For such machines, you should return different RTX depending on OUTGOING. ! 'TARGET_FUNCTION_VALUE' is not used for return values with aggregate data types, because these are returned in another way. ! See 'TARGET_STRUCT_VALUE_RTX' and related macros, below. -- Macro: FUNCTION_VALUE (VALTYPE, FUNC) ! This macro has been deprecated. Use 'TARGET_FUNCTION_VALUE' for a new target instead. -- Macro: LIBCALL_VALUE (MODE) --- 31639,31686 ---- -- Target Hook: rtx TARGET_FUNCTION_VALUE (const_tree RET_TYPE, const_tree FN_DECL_OR_TYPE, bool OUTGOING) Define this to return an RTX representing the place where a function returns or receives a value of data type RET_TYPE, a tree node representing a data type. FN_DECL_OR_TYPE is a tree node ! representing `FUNCTION_DECL' or `FUNCTION_TYPE' of a function ! being called. If OUTGOING is false, the hook should compute the ! register in which the caller will see the return value. ! Otherwise, the hook should return an RTX representing the place ! where a function returns a value. ! On many machines, only `TYPE_MODE (RET_TYPE)' is relevant. (Actually, on most machines, scalar values are returned in the same place regardless of mode.) The value of the expression is usually ! a `reg' RTX for the hard register where the return value is stored. ! The value can also be a `parallel' RTX, if the return value is in ! multiple places. See `TARGET_FUNCTION_ARG' for an explanation of ! the `parallel' form. Note that the callee will populate every ! location specified in the `parallel', but if the first element of ! the `parallel' contains the whole return value, callers will use that element as the canonical location and ignore the others. The ! m68k port uses this type of `parallel' to return pointers in both ! `%a0' (the canonical location) and `%d0'. ! If `TARGET_PROMOTE_FUNCTION_RETURN' returns true, you must apply ! the same promotion rules specified in `PROMOTE_MODE' if VALTYPE is a scalar type. If the precise function being called is known, FUNC is a tree node ! (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This ! makes it possible to use a different value-returning convention ! for specific functions when all their calls are known. Some target machines have "register windows" so that the register ! in which a function returns its value is not the same as the one ! in which the caller sees the value. For such machines, you should return different RTX depending on OUTGOING. ! `TARGET_FUNCTION_VALUE' is not used for return values with aggregate data types, because these are returned in another way. ! See `TARGET_STRUCT_VALUE_RTX' and related macros, below. -- Macro: FUNCTION_VALUE (VALTYPE, FUNC) ! This macro has been deprecated. Use `TARGET_FUNCTION_VALUE' for a new target instead. -- Macro: LIBCALL_VALUE (MODE) *************** values--values that can fit in registers *** 31315,31321 **** register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type 'double', say) need not be recognized by this macro. So for most machines, this definition suffices: --- 31710,31716 ---- register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type `double', say) need not be recognized by this macro. So for most machines, this definition suffices: *************** values--values that can fit in registers *** 31326,31340 **** macro should recognize only the caller's register numbers. This macro has been deprecated. Use ! 'TARGET_FUNCTION_VALUE_REGNO_P' for a new target instead. -- Target Hook: bool TARGET_FUNCTION_VALUE_REGNO_P (const unsigned int REGNO) ! A target hook that return 'true' if REGNO is the number of a hard register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type 'double', say) need not be recognized by this target hook. If the machine has register windows, so that the caller and the --- 31721,31735 ---- macro should recognize only the caller's register numbers. This macro has been deprecated. Use ! `TARGET_FUNCTION_VALUE_REGNO_P' for a new target instead. -- Target Hook: bool TARGET_FUNCTION_VALUE_REGNO_P (const unsigned int REGNO) ! A target hook that return `true' if REGNO is the number of a hard register in which the values of called function may come back. A register whose use for returning values is limited to serving as ! the second of a pair (for a value of type `double', say) need not be recognized by this target hook. If the machine has register windows, so that the caller and the *************** values--values that can fit in registers *** 31345,31365 **** used. -- Macro: APPLY_RESULT_SIZE ! Define this macro if 'untyped_call' and 'untyped_return' need more ! space than is implied by 'FUNCTION_VALUE_REGNO_P' for saving and restoring an arbitrary return value. -- Target Hook: bool TARGET_RETURN_IN_MSB (const_tree TYPE) ! This hook should return true if values of type TYPE are returned at ! the most significant end of a register (in other words, if they are ! padded at the least significant end). You can assume that TYPE is ! returned in a register; the caller is required to check this. ! Note that the register provided by 'TARGET_FUNCTION_VALUE' must be able to hold the complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the most significant end of a ! 4-byte register, 'TARGET_FUNCTION_VALUE' should provide an 'SImode' ! rtx.  File: gccint.info, Node: Aggregate Return, Next: Caller Saves, Prev: Scalar Return, Up: Stack and Calling --- 31740,31760 ---- used. -- Macro: APPLY_RESULT_SIZE ! Define this macro if `untyped_call' and `untyped_return' need more ! space than is implied by `FUNCTION_VALUE_REGNO_P' for saving and restoring an arbitrary return value. -- Target Hook: bool TARGET_RETURN_IN_MSB (const_tree TYPE) ! This hook should return true if values of type TYPE are returned ! at the most significant end of a register (in other words, if they ! are padded at the least significant end). You can assume that TYPE ! is returned in a register; the caller is required to check this. ! Note that the register provided by `TARGET_FUNCTION_VALUE' must be able to hold the complete return value. For example, if a 1-, 2- or 3-byte structure is returned at the most significant end of a ! 4-byte register, `TARGET_FUNCTION_VALUE' should provide an ! `SImode' rtx.  File: gccint.info, Node: Aggregate Return, Next: Caller Saves, Prev: Scalar Return, Up: Stack and Calling *************** File: gccint.info, Node: Aggregate Retu *** 31367,31376 **** 17.10.9 How Large Values Are Returned ------------------------------------- ! When a function value's mode is 'BLKmode' (and in some other cases), the ! value is not returned according to 'TARGET_FUNCTION_VALUE' (*note Scalar ! Return::). Instead, the caller passes the address of a block of memory ! in which the value should be stored. This address is called the "structure value address". This section describes how to control returning structure values in --- 31762,31771 ---- 17.10.9 How Large Values Are Returned ------------------------------------- ! When a function value's mode is `BLKmode' (and in some other cases), ! the value is not returned according to `TARGET_FUNCTION_VALUE' (*note ! Scalar Return::). Instead, the caller passes the address of a block of ! memory in which the value should be stored. This address is called the "structure value address". This section describes how to control returning structure values in *************** memory. *** 31381,31429 **** This target hook should return a nonzero value to say to return the function value in memory, just as large structures are always returned. Here TYPE will be the data type of the value, and FNTYPE ! will be the type of the function doing the returning, or 'NULL' for libcalls. ! Note that values of mode 'BLKmode' must be explicitly handled by ! this function. Also, the option '-fpcc-struct-return' takes effect ! regardless of this macro. On most systems, it is possible to leave ! the hook undefined; this causes a default definition to be used, ! whose value is the constant 1 for 'BLKmode' values, and 0 otherwise. Do not use this hook to indicate that structures and unions should always be returned in memory. You should instead use ! 'DEFAULT_PCC_STRUCT_RETURN' to indicate this. -- Macro: DEFAULT_PCC_STRUCT_RETURN Define this macro to be 1 if all structure and union return values must be in memory. Since this results in slower code, this should ! be defined only if needed for compatibility with other compilers or ! with an ABI. If you define this macro to be 0, then the conventions used for structure and union return values are decided ! by the 'TARGET_RETURN_IN_MEMORY' target hook. If not defined, this defaults to the value 1. -- Target Hook: rtx TARGET_STRUCT_VALUE_RTX (tree FNDECL, int INCOMING) This target hook should return the location of the structure value ! address (normally a 'mem' or 'reg'), or 0 if the address is passed ! as an "invisible" first argument. Note that FNDECL may be 'NULL', for libcalls. You do not need to define this target hook if the address is always passed as an "invisible" first argument. On some architectures the place where the structure value address is found by the called function is not the same place that the ! caller put it. This can be due to register windows, or it could be ! because the function prologue moves it to a different place. ! INCOMING is '1' or '2' when the location is needed in the context ! of the called function, and '0' in the context of the caller. ! If INCOMING is nonzero and the address is to be found on the stack, ! return a 'mem' which refers to the frame pointer. If INCOMING is ! '2', the result is being used to fetch the structure value address ! at the beginning of a function. If you need to emit adjusting ! code, you should do it at this point. -- Macro: PCC_STATIC_STRUCT_RETURN Define this macro if the usual system convention on the target --- 31776,31824 ---- This target hook should return a nonzero value to say to return the function value in memory, just as large structures are always returned. Here TYPE will be the data type of the value, and FNTYPE ! will be the type of the function doing the returning, or `NULL' for libcalls. ! Note that values of mode `BLKmode' must be explicitly handled by ! this function. Also, the option `-fpcc-struct-return' takes ! effect regardless of this macro. On most systems, it is possible ! to leave the hook undefined; this causes a default definition to ! be used, whose value is the constant 1 for `BLKmode' values, and 0 otherwise. Do not use this hook to indicate that structures and unions should always be returned in memory. You should instead use ! `DEFAULT_PCC_STRUCT_RETURN' to indicate this. -- Macro: DEFAULT_PCC_STRUCT_RETURN Define this macro to be 1 if all structure and union return values must be in memory. Since this results in slower code, this should ! be defined only if needed for compatibility with other compilers ! or with an ABI. If you define this macro to be 0, then the conventions used for structure and union return values are decided ! by the `TARGET_RETURN_IN_MEMORY' target hook. If not defined, this defaults to the value 1. -- Target Hook: rtx TARGET_STRUCT_VALUE_RTX (tree FNDECL, int INCOMING) This target hook should return the location of the structure value ! address (normally a `mem' or `reg'), or 0 if the address is passed ! as an "invisible" first argument. Note that FNDECL may be `NULL', for libcalls. You do not need to define this target hook if the address is always passed as an "invisible" first argument. On some architectures the place where the structure value address is found by the called function is not the same place that the ! caller put it. This can be due to register windows, or it could ! be because the function prologue moves it to a different place. ! INCOMING is `1' or `2' when the location is needed in the context ! of the called function, and `0' in the context of the caller. ! If INCOMING is nonzero and the address is to be found on the ! stack, return a `mem' which refers to the frame pointer. If ! INCOMING is `2', the result is being used to fetch the structure ! value address at the beginning of a function. If you need to emit ! adjusting code, you should do it at this point. -- Macro: PCC_STATIC_STRUCT_RETURN Define this macro if the usual system convention on the target *************** memory. *** 31431,31452 **** function to return the address of a static variable containing the value. ! Do not define this if the usual system convention is for the caller ! to pass an address to the subroutine. ! This macro has effect in '-fpcc-struct-return' mode, but it does ! nothing when you use '-freg-struct-return' mode. -- Target Hook: enum machine_mode TARGET_GET_RAW_RESULT_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! return registers in '__builtin_return'. Define this macro if the value in REG_RAW_MODE is not correct. -- Target Hook: enum machine_mode TARGET_GET_RAW_ARG_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! argument registers in '__builtin_apply_args'. Define this macro if ! the value in REG_RAW_MODE is not correct.  File: gccint.info, Node: Caller Saves, Next: Function Entry, Prev: Aggregate Return, Up: Stack and Calling --- 31826,31847 ---- function to return the address of a static variable containing the value. ! Do not define this if the usual system convention is for the ! caller to pass an address to the subroutine. ! This macro has effect in `-fpcc-struct-return' mode, but it does ! nothing when you use `-freg-struct-return' mode. -- Target Hook: enum machine_mode TARGET_GET_RAW_RESULT_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! return registers in `__builtin_return'. Define this macro if the value in REG_RAW_MODE is not correct. -- Target Hook: enum machine_mode TARGET_GET_RAW_ARG_MODE (int REGNO) This target hook returns the mode to be used when accessing raw ! argument registers in `__builtin_apply_args'. Define this macro ! if the value in REG_RAW_MODE is not correct.  File: gccint.info, Node: Caller Saves, Next: Function Entry, Prev: Aggregate Return, Up: Stack and Calling *************** must live across calls. *** 31465,31478 **** should be 1 when this is worth doing, and 0 otherwise. If you don't define this macro, a default is used which is good on ! most machines: '4 * CALLS < REFS'. -- Macro: HARD_REGNO_CALLER_SAVE_MODE (REGNO, NREGS) A C expression specifying which mode is required for saving NREGS of a pseudo-register in call-clobbered hard register REGNO. If ! REGNO is unsuitable for caller save, 'VOIDmode' should be returned. ! For most machines this macro need not be defined since GCC will ! select the smallest suitable mode.  File: gccint.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling --- 31860,31873 ---- should be 1 when this is worth doing, and 0 otherwise. If you don't define this macro, a default is used which is good on ! most machines: `4 * CALLS < REFS'. -- Macro: HARD_REGNO_CALLER_SAVE_MODE (REGNO, NREGS) A C expression specifying which mode is required for saving NREGS of a pseudo-register in call-clobbered hard register REGNO. If ! REGNO is unsuitable for caller save, `VOIDmode' should be ! returned. For most machines this macro need not be defined since ! GCC will select the smallest suitable mode.  File: gccint.info, Node: Function Entry, Next: Profiling, Prev: Caller Saves, Up: Stack and Calling *************** This section describes the macros that o *** 31485,31525 **** -- Target Hook: void TARGET_ASM_FUNCTION_PROLOGUE (FILE *FILE, HOST_WIDE_INT SIZE) ! If defined, a function that outputs the assembler code for entry to ! a function. The prologue is responsible for setting up the stack ! frame, initializing the frame pointer register, saving registers ! that must be saved, and allocating SIZE additional bytes of storage ! for the local variables. SIZE is an integer. FILE is a stdio ! stream to which the assembler code should be output. The label for the beginning of the function need not be output by this macro. That has already been done when the macro is run. To determine which registers to save, the macro can refer to the ! array 'regs_ever_live': element R is nonzero if hard register R is used anywhere within the function. This implies the function prologue should save register R, provided it is not one of the ! call-used registers. ('TARGET_ASM_FUNCTION_EPILOGUE' must likewise ! use 'regs_ever_live'.) On machines that have "register windows", the function entry code does not save on the stack the registers that are in the windows, even if they are supposed to be preserved by function calls; ! instead it takes appropriate steps to "push" the register stack, if ! any non-call-used registers are used in the function. On machines where functions may or may not have frame-pointers, the function entry code must vary accordingly; it must set up the frame pointer if one is wanted, and not otherwise. To determine whether a frame pointer is in wanted, the macro can refer to the variable ! 'frame_pointer_needed'. The variable's value will be 1 at run time ! in a function that needs a frame pointer. *Note Elimination::. The function entry code is responsible for allocating any stack space required for the function. This stack space consists of the regions listed below. In most cases, these regions are allocated ! in the order listed, with the last listed region closest to the top ! of the stack (the lowest address if 'STACK_GROWS_DOWNWARD' is defined, and the highest address if it is not defined). You can use a different order for a machine if doing so is more convenient or required for compatibility reasons. Except in cases where --- 31880,31921 ---- -- Target Hook: void TARGET_ASM_FUNCTION_PROLOGUE (FILE *FILE, HOST_WIDE_INT SIZE) ! If defined, a function that outputs the assembler code for entry ! to a function. The prologue is responsible for setting up the ! stack frame, initializing the frame pointer register, saving ! registers that must be saved, and allocating SIZE additional bytes ! of storage for the local variables. SIZE is an integer. FILE is ! a stdio stream to which the assembler code should be output. The label for the beginning of the function need not be output by this macro. That has already been done when the macro is run. To determine which registers to save, the macro can refer to the ! array `regs_ever_live': element R is nonzero if hard register R is used anywhere within the function. This implies the function prologue should save register R, provided it is not one of the ! call-used registers. (`TARGET_ASM_FUNCTION_EPILOGUE' must ! likewise use `regs_ever_live'.) On machines that have "register windows", the function entry code does not save on the stack the registers that are in the windows, even if they are supposed to be preserved by function calls; ! instead it takes appropriate steps to "push" the register stack, ! if any non-call-used registers are used in the function. On machines where functions may or may not have frame-pointers, the function entry code must vary accordingly; it must set up the frame pointer if one is wanted, and not otherwise. To determine whether a frame pointer is in wanted, the macro can refer to the variable ! `frame_pointer_needed'. The variable's value will be 1 at run ! time in a function that needs a frame pointer. *Note ! Elimination::. The function entry code is responsible for allocating any stack space required for the function. This stack space consists of the regions listed below. In most cases, these regions are allocated ! in the order listed, with the last listed region closest to the ! top of the stack (the lowest address if `STACK_GROWS_DOWNWARD' is defined, and the highest address if it is not defined). You can use a different order for a machine if doing so is more convenient or required for compatibility reasons. Except in cases where *************** This section describes the macros that o *** 31543,31598 **** HOST_WIDE_INT SIZE) If defined, a function that outputs the assembler code for exit from a function. The epilogue is responsible for restoring the ! saved registers and stack pointer to their values when the function ! was called, and returning control to the caller. This macro takes ! the same arguments as the macro 'TARGET_ASM_FUNCTION_PROLOGUE', and ! the registers to restore are determined from 'regs_ever_live' and ! 'CALL_USED_REGISTERS' in the same way. On some machines, there is a single instruction that does all the work of returning from the function. On these machines, give that ! instruction the name 'return' and do not define the macro ! 'TARGET_ASM_FUNCTION_EPILOGUE' at all. ! Do not define a pattern named 'return' if you want the ! 'TARGET_ASM_FUNCTION_EPILOGUE' to be used. If you want the target switches to control whether return instructions or epilogues are ! used, define a 'return' pattern with a validity condition that ! tests the target switches appropriately. If the 'return' pattern's ! validity condition is false, epilogues will be used. On machines where functions may or may not have frame-pointers, the function exit code must vary accordingly. Sometimes the code for these two cases is completely different. To determine whether a frame pointer is wanted, the macro can refer to the variable ! 'frame_pointer_needed'. The variable's value will be 1 when compiling a function that needs a frame pointer. ! Normally, 'TARGET_ASM_FUNCTION_PROLOGUE' and ! 'TARGET_ASM_FUNCTION_EPILOGUE' must treat leaf functions specially. ! The C variable 'current_function_is_leaf' is nonzero for such a function. *Note Leaf Functions::. On some machines, some functions pop their arguments on exit while others leave that for the caller to do. For example, the 68020 ! when given '-mrtd' pops arguments in functions that take a fixed number of arguments. ! Your definition of the macro 'RETURN_POPS_ARGS' decides which ! functions pop their own arguments. 'TARGET_ASM_FUNCTION_EPILOGUE' needs to know what was decided. The number of bytes of the current function's arguments that this function should pop is available in ! 'crtl->args.pops_args'. *Note Scalar Return::. ! * A region of 'crtl->args.pretend_args_size' bytes of uninitialized space just underneath the first argument arriving on the stack. ! (This may not be at the very start of the allocated stack region if ! the calling sequence has pushed anything else since pushing the stack arguments. But usually, on such machines, nothing else has been pushed yet, because the function prologue itself does all the ! pushing.) This region is used on machines where an argument may be ! passed partly in registers and partly in memory, and, in some cases ! to support the features in ''. * An area of memory used to save certain registers used by the function. The size of this area, which may also include space for --- 31939,31995 ---- HOST_WIDE_INT SIZE) If defined, a function that outputs the assembler code for exit from a function. The epilogue is responsible for restoring the ! saved registers and stack pointer to their values when the ! function was called, and returning control to the caller. This ! macro takes the same arguments as the macro ! `TARGET_ASM_FUNCTION_PROLOGUE', and the registers to restore are ! determined from `regs_ever_live' and `CALL_USED_REGISTERS' in the ! same way. On some machines, there is a single instruction that does all the work of returning from the function. On these machines, give that ! instruction the name `return' and do not define the macro ! `TARGET_ASM_FUNCTION_EPILOGUE' at all. ! Do not define a pattern named `return' if you want the ! `TARGET_ASM_FUNCTION_EPILOGUE' to be used. If you want the target switches to control whether return instructions or epilogues are ! used, define a `return' pattern with a validity condition that ! tests the target switches appropriately. If the `return' ! pattern's validity condition is false, epilogues will be used. On machines where functions may or may not have frame-pointers, the function exit code must vary accordingly. Sometimes the code for these two cases is completely different. To determine whether a frame pointer is wanted, the macro can refer to the variable ! `frame_pointer_needed'. The variable's value will be 1 when compiling a function that needs a frame pointer. ! Normally, `TARGET_ASM_FUNCTION_PROLOGUE' and ! `TARGET_ASM_FUNCTION_EPILOGUE' must treat leaf functions specially. ! The C variable `current_function_is_leaf' is nonzero for such a function. *Note Leaf Functions::. On some machines, some functions pop their arguments on exit while others leave that for the caller to do. For example, the 68020 ! when given `-mrtd' pops arguments in functions that take a fixed number of arguments. ! Your definition of the macro `RETURN_POPS_ARGS' decides which ! functions pop their own arguments. `TARGET_ASM_FUNCTION_EPILOGUE' needs to know what was decided. The number of bytes of the current function's arguments that this function should pop is available in ! `crtl->args.pops_args'. *Note Scalar Return::. ! * A region of `crtl->args.pretend_args_size' bytes of uninitialized space just underneath the first argument arriving on the stack. ! (This may not be at the very start of the allocated stack region ! if the calling sequence has pushed anything else since pushing the stack arguments. But usually, on such machines, nothing else has been pushed yet, because the function prologue itself does all the ! pushing.) This region is used on machines where an argument may ! be passed partly in registers and partly in memory, and, in some ! cases to support the features in `'. * An area of memory used to save certain registers used by the function. The size of this area, which may also include space for *************** This section describes the macros that o *** 31607,31614 **** occur in the opposite order, with the save area closer to the top of the stack. ! * Optionally, when 'ACCUMULATE_OUTGOING_ARGS' is defined, a region of ! 'crtl->outgoing_args_size' bytes to be used for outgoing argument lists of the function. *Note Stack Arguments::. -- Macro: EXIT_IGNORE_STACK --- 32004,32011 ---- occur in the opposite order, with the save area closer to the top of the stack. ! * Optionally, when `ACCUMULATE_OUTGOING_ARGS' is defined, a region of ! `crtl->outgoing_args_size' bytes to be used for outgoing argument lists of the function. *Note Stack Arguments::. -- Macro: EXIT_IGNORE_STACK *************** This section describes the macros that o *** 31620,31642 **** Note that this macro's value is relevant only for functions for which frame pointers are maintained. It is never safe to delete a ! final stack adjustment in a function that has no frame pointer, and ! the compiler knows this regardless of 'EXIT_IGNORE_STACK'. -- Macro: EPILOGUE_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the epilogue or the 'return' pattern. The stack and frame pointer registers are already assumed to be used as needed. -- Macro: EH_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the exception handling mechanism, and so should be ! considered live on entry to an exception edge. -- Target Hook: void TARGET_ASM_OUTPUT_MI_THUNK (FILE *FILE, tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET, ! tree FUNCTION) A function that outputs the assembler code for a thunk function, used to implement C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper around a virtual --- 32017,32039 ---- Note that this macro's value is relevant only for functions for which frame pointers are maintained. It is never safe to delete a ! final stack adjustment in a function that has no frame pointer, ! and the compiler knows this regardless of `EXIT_IGNORE_STACK'. -- Macro: EPILOGUE_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the epilogue or the `return' pattern. The stack and frame pointer registers are already assumed to be used as needed. -- Macro: EH_USES (REGNO) Define this macro as a C expression that is nonzero for registers ! that are used by the exception handling mechanism, and so should ! be considered live on entry to an exception edge. -- Target Hook: void TARGET_ASM_OUTPUT_MI_THUNK (FILE *FILE, tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT ! VCALL_OFFSET, tree FUNCTION) A function that outputs the assembler code for a thunk function, used to implement C++ virtual function calls with multiple inheritance. The thunk acts as a wrapper around a virtual *************** This section describes the macros that o *** 31645,31689 **** First, emit code to add the integer DELTA to the location that contains the incoming first argument. Assume that this argument ! contains a pointer, and is the one used to pass the 'this' pointer in C++. This is the incoming argument _before_ the function ! prologue, e.g. '%o0' on a sparc. The addition must preserve the values of all other incoming arguments. Then, if VCALL_OFFSET is nonzero, an additional adjustment should ! be made after adding 'delta'. In particular, if P is the adjusted pointer, the following adjustment should be made: p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)] After the additions, emit code to jump to FUNCTION, which is a ! 'FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch the return address. Hence returning from FUNCTION will ! return to whoever called the current 'thunk'. ! The effect must be as if FUNCTION had been called directly with the ! adjusted first argument. This macro is responsible for emitting ! all of the code for a thunk function; ! 'TARGET_ASM_FUNCTION_PROLOGUE' and 'TARGET_ASM_FUNCTION_EPILOGUE' are not invoked. The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been extracted from it.) It might possibly be useful on some targets, but probably not. ! If you do not define this macro, the target-independent code in the ! C++ front end will generate a less efficient heavyweight thunk that ! calls FUNCTION instead of jumping to it. The generic approach does ! not support varargs. -- Target Hook: bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (const_tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT VCALL_OFFSET, ! const_tree FUNCTION) ! A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would be ! able to output the assembler code for the thunk function specified ! by the arguments it is passed, and false otherwise. In the latter ! case, the generic approach will be used by the C++ front end, with ! the limitations previously exposed.  File: gccint.info, Node: Profiling, Next: Tail Calls, Prev: Function Entry, Up: Stack and Calling --- 32042,32086 ---- First, emit code to add the integer DELTA to the location that contains the incoming first argument. Assume that this argument ! contains a pointer, and is the one used to pass the `this' pointer in C++. This is the incoming argument _before_ the function ! prologue, e.g. `%o0' on a sparc. The addition must preserve the values of all other incoming arguments. Then, if VCALL_OFFSET is nonzero, an additional adjustment should ! be made after adding `delta'. In particular, if P is the adjusted pointer, the following adjustment should be made: p += (*((ptrdiff_t **)p))[vcall_offset/sizeof(ptrdiff_t)] After the additions, emit code to jump to FUNCTION, which is a ! `FUNCTION_DECL'. This is a direct pure jump, not a call, and does not touch the return address. Hence returning from FUNCTION will ! return to whoever called the current `thunk'. ! The effect must be as if FUNCTION had been called directly with ! the adjusted first argument. This macro is responsible for ! emitting all of the code for a thunk function; ! `TARGET_ASM_FUNCTION_PROLOGUE' and `TARGET_ASM_FUNCTION_EPILOGUE' are not invoked. The THUNK_FNDECL is redundant. (DELTA and FUNCTION have already been extracted from it.) It might possibly be useful on some targets, but probably not. ! If you do not define this macro, the target-independent code in ! the C++ front end will generate a less efficient heavyweight thunk ! that calls FUNCTION instead of jumping to it. The generic ! approach does not support varargs. -- Target Hook: bool TARGET_ASM_CAN_OUTPUT_MI_THUNK (const_tree ! THUNK_FNDECL, HOST_WIDE_INT DELTA, HOST_WIDE_INT ! VCALL_OFFSET, const_tree FUNCTION) ! A function that returns true if TARGET_ASM_OUTPUT_MI_THUNK would ! be able to output the assembler code for the thunk function ! specified by the arguments it is passed, and false otherwise. In ! the latter case, the generic approach will be used by the C++ ! front end, with the limitations previously exposed.  File: gccint.info, Node: Profiling, Next: Tail Calls, Prev: Function Entry, Up: Stack and Calling *************** These macros will help you generate code *** 31695,31723 **** -- Macro: FUNCTION_PROFILER (FILE, LABELNO) A C statement or compound statement to output to FILE some ! assembler code to call the profiling subroutine 'mcount'. ! The details of how 'mcount' expects to be called are determined by your operating system environment, not by GCC. To figure them out, compile a small program for profiling using the system's installed C compiler and look at the assembler code that results. ! Older implementations of 'mcount' expect the address of a counter variable to be loaded into some register. The name of this ! variable is 'LP' followed by the number LABELNO, so you would ! generate the name using 'LP%d' in a 'fprintf'. -- Macro: PROFILE_HOOK A C statement or compound statement to output to FILE some assembly ! code to call the profiling subroutine 'mcount' even the target does not support profiling. -- Macro: NO_PROFILE_COUNTERS Define this macro to be an expression with a nonzero value if the ! 'mcount' subroutine on your system does not need a counter variable allocated for each function. This is true for almost all modern implementations. If you define this macro, you must not use the ! LABELNO argument to 'FUNCTION_PROFILER'. -- Macro: PROFILE_BEFORE_PROLOGUE Define this macro if the code for function profiling should come --- 32092,32120 ---- -- Macro: FUNCTION_PROFILER (FILE, LABELNO) A C statement or compound statement to output to FILE some ! assembler code to call the profiling subroutine `mcount'. ! The details of how `mcount' expects to be called are determined by your operating system environment, not by GCC. To figure them out, compile a small program for profiling using the system's installed C compiler and look at the assembler code that results. ! Older implementations of `mcount' expect the address of a counter variable to be loaded into some register. The name of this ! variable is `LP' followed by the number LABELNO, so you would ! generate the name using `LP%d' in a `fprintf'. -- Macro: PROFILE_HOOK A C statement or compound statement to output to FILE some assembly ! code to call the profiling subroutine `mcount' even the target does not support profiling. -- Macro: NO_PROFILE_COUNTERS Define this macro to be an expression with a nonzero value if the ! `mcount' subroutine on your system does not need a counter variable allocated for each function. This is true for almost all modern implementations. If you define this macro, you must not use the ! LABELNO argument to `FUNCTION_PROFILER'. -- Macro: PROFILE_BEFORE_PROLOGUE Define this macro if the code for function profiling should come *************** File: gccint.info, Node: Tail Calls, N *** 31733,31757 **** -- Target Hook: bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree DECL, tree EXP) True if it is OK to do sibling call optimization for the specified ! call expression EXP. DECL will be the called function, or 'NULL' if this is an indirect call. It is not uncommon for limitations of calling conventions to prevent tail calls to functions outside the current unit of translation, or during PIC compilation. The hook is used to ! enforce these restrictions, as the 'sibcall' md pattern can not ! fail, or fall over to a "normal" call. The criteria for successful ! sibling call optimization may vary greatly between different ! architectures. -- Target Hook: void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap REGS) Add any hard registers to REGS that are live on entry to the function. This hook only needs to be defined to provide registers that cannot be found by examination of FUNCTION_ARG_REGNO_P, the callee saved registers, STATIC_CHAIN_INCOMING_REGNUM, ! STATIC_CHAIN_REGNUM, TARGET_STRUCT_VALUE_RTX, FRAME_POINTER_REGNUM, ! EH_USES, FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, and the ! PIC_OFFSET_TABLE_REGNUM. -- Target Hook: void TARGET_SET_UP_BY_PROLOGUE (struct hard_reg_set_container *) --- 32130,32154 ---- -- Target Hook: bool TARGET_FUNCTION_OK_FOR_SIBCALL (tree DECL, tree EXP) True if it is OK to do sibling call optimization for the specified ! call expression EXP. DECL will be the called function, or `NULL' if this is an indirect call. It is not uncommon for limitations of calling conventions to prevent tail calls to functions outside the current unit of translation, or during PIC compilation. The hook is used to ! enforce these restrictions, as the `sibcall' md pattern can not ! fail, or fall over to a "normal" call. The criteria for ! successful sibling call optimization may vary greatly between ! different architectures. -- Target Hook: void TARGET_EXTRA_LIVE_ON_ENTRY (bitmap REGS) Add any hard registers to REGS that are live on entry to the function. This hook only needs to be defined to provide registers that cannot be found by examination of FUNCTION_ARG_REGNO_P, the callee saved registers, STATIC_CHAIN_INCOMING_REGNUM, ! STATIC_CHAIN_REGNUM, TARGET_STRUCT_VALUE_RTX, ! FRAME_POINTER_REGNUM, EH_USES, FRAME_POINTER_REGNUM, ! ARG_POINTER_REGNUM, and the PIC_OFFSET_TABLE_REGNUM. -- Target Hook: void TARGET_SET_UP_BY_PROLOGUE (struct hard_reg_set_container *) *************** File: gccint.info, Node: Stack Smashing *** 31772,31794 **** ---------------------------------- -- Target Hook: tree TARGET_STACK_PROTECT_GUARD (void) ! This hook returns a 'DECL' node for the external variable to use for the stack protection guard. This variable is initialized by the runtime to some random value and is used to initialize the guard value that is placed at the top of the local stack frame. ! The type of this variable must be 'ptr_type_node'. The default version of this hook creates a variable called ! '__stack_chk_guard', which is normally defined in 'libgcc2.c'. -- Target Hook: tree TARGET_STACK_PROTECT_FAIL (void) ! This hook returns a 'CALL_EXPR' that alerts the runtime that the stack protect guard variable has been modified. This expression ! should involve a call to a 'noreturn' function. The default version of this hook invokes a function called ! '__stack_chk_fail', taking no arguments. This function is normally ! defined in 'libgcc2.c'. -- Common Target Hook: bool TARGET_SUPPORTS_SPLIT_STACK (bool REPORT, struct gcc_options *OPTS) --- 32169,32191 ---- ---------------------------------- -- Target Hook: tree TARGET_STACK_PROTECT_GUARD (void) ! This hook returns a `DECL' node for the external variable to use for the stack protection guard. This variable is initialized by the runtime to some random value and is used to initialize the guard value that is placed at the top of the local stack frame. ! The type of this variable must be `ptr_type_node'. The default version of this hook creates a variable called ! `__stack_chk_guard', which is normally defined in `libgcc2.c'. -- Target Hook: tree TARGET_STACK_PROTECT_FAIL (void) ! This hook returns a `CALL_EXPR' that alerts the runtime that the stack protect guard variable has been modified. This expression ! should involve a call to a `noreturn' function. The default version of this hook invokes a function called ! `__stack_chk_fail', taking no arguments. This function is ! normally defined in `libgcc2.c'. -- Common Target Hook: bool TARGET_SUPPORTS_SPLIT_STACK (bool REPORT, struct gcc_options *OPTS) *************** File: gccint.info, Node: Varargs, Next *** 31805,31935 **** 17.11 Implementing the Varargs Macros ===================================== ! GCC comes with an implementation of '' and '' that ! work without change on machines that pass arguments on the stack. Other ! machines require their own implementations of varargs, and the two ! machine independent header files must have conditionals to include it. ! ISO '' differs from traditional '' mainly in the ! calling convention for 'va_start'. The traditional implementation takes ! just one argument, which is the variable in which to store the argument ! pointer. The ISO implementation of 'va_start' takes an additional ! second argument. The user is supposed to write the last named argument ! of the function here. ! However, 'va_start' should not use this argument. The way to find the end of the named arguments is with the built-in functions described below. -- Macro: __builtin_saveregs () ! Use this built-in function to save the argument registers in memory ! so that the varargs mechanism can access them. Both ISO and ! traditional versions of 'va_start' must use '__builtin_saveregs', ! unless you use 'TARGET_SETUP_INCOMING_VARARGS' (see below) instead. ! On some machines, '__builtin_saveregs' is open-coded under the ! control of the target hook 'TARGET_EXPAND_BUILTIN_SAVEREGS'. On other machines, it calls a routine written in assembler language, ! found in 'libgcc2.c'. ! Code generated for the call to '__builtin_saveregs' appears at the beginning of the function, as opposed to where the call to ! '__builtin_saveregs' is written, regardless of what the code is. This is because the registers must be saved before the function starts to use them for its own purposes. -- Macro: __builtin_next_arg (LASTARG) This builtin returns the address of the first anonymous stack ! argument, as type 'void *'. If 'ARGS_GROW_DOWNWARD', it returns the address of the location above the first anonymous stack ! argument. Use it in 'va_start' to initialize the pointer for ! fetching arguments from the stack. Also use it in 'va_start' to verify that the second parameter LASTARG is the last named argument of the current function. -- Macro: __builtin_classify_type (OBJECT) Since each machine has its own conventions for which data types are ! passed in which kind of register, your implementation of 'va_arg' has to embody these conventions. The easiest way to categorize the ! specified data type is to use '__builtin_classify_type' together ! with 'sizeof' and '__alignof__'. ! '__builtin_classify_type' ignores the value of OBJECT, considering only its data type. It returns an integer describing what kind of type that is--integer, floating, pointer, structure, and so on. ! The file 'typeclass.h' defines an enumeration that you can use to ! interpret the values of '__builtin_classify_type'. These machine description macros help implement varargs: -- Target Hook: rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void) ! If defined, this hook produces the machine-specific code for a call ! to '__builtin_saveregs'. This code will be moved to the very beginning of the function, before any parameter access are made. The return value of this function should be an RTX that contains ! the value to use as the return of '__builtin_saveregs'. -- Target Hook: void TARGET_SETUP_INCOMING_VARARGS (cumulative_args_t ARGS_SO_FAR, enum machine_mode MODE, tree TYPE, int *PRETEND_ARGS_SIZE, int SECOND_TIME) This target hook offers an alternative to using ! '__builtin_saveregs' and defining the hook ! 'TARGET_EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register arguments into the stack so that all the arguments appear ! to have been passed consecutively on the stack. Once this is done, ! you can use the standard implementation of varargs that works for ! machines that pass all their arguments on the stack. ! The argument ARGS_SO_FAR points to the 'CUMULATIVE_ARGS' data ! structure, containing the values that are obtained after processing ! the named arguments. The arguments MODE and TYPE describe the last ! named argument--its machine mode and its data type as a tree node. The target hook should do two things: first, push onto the stack all the argument registers _not_ used for the named arguments, and second, store the size of the data thus pushed into the ! 'int'-valued variable pointed to by PRETEND_ARGS_SIZE. The value that you store here will serve as additional offset for setting up the stack frame. Because you must generate code to push the anonymous arguments at compile time without knowing their data types, ! 'TARGET_SETUP_INCOMING_VARARGS' is only useful on machines that have just a single category of argument register and use it uniformly for all data types. ! If the argument SECOND_TIME is nonzero, it means that the arguments ! of the function are being analyzed for the second time. This ! happens for an inline function, which is not actually compiled ! until the end of the source file. The hook ! 'TARGET_SETUP_INCOMING_VARARGS' should not generate any instructions in this case. -- Target Hook: bool TARGET_STRICT_ARGUMENT_NAMING (cumulative_args_t CA) ! Define this hook to return 'true' if the location where a function argument is passed depends on whether or not it is a named argument. ! This hook controls how the NAMED argument to 'TARGET_FUNCTION_ARG' is set for varargs and stdarg functions. If this hook returns ! 'true', the NAMED argument is always true for named arguments, and ! false for unnamed arguments. If it returns 'false', but ! 'TARGET_PRETEND_OUTGOING_VARARGS_NAMED' returns 'true', then all arguments are treated as named. Otherwise, all named arguments except the last are treated as named. ! You need not define this hook if it always returns 'false'. -- Target Hook: bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED (cumulative_args_t CA) If you need to conditionally change ABIs so that one works with ! 'TARGET_SETUP_INCOMING_VARARGS', but the other works like neither ! 'TARGET_SETUP_INCOMING_VARARGS' nor 'TARGET_STRICT_ARGUMENT_NAMING' ! was defined, then define this hook to return 'true' if ! 'TARGET_SETUP_INCOMING_VARARGS' is used, 'false' otherwise. ! Otherwise, you should not define this hook.  File: gccint.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros --- 32202,32335 ---- 17.11 Implementing the Varargs Macros ===================================== ! GCC comes with an implementation of `' and `' that ! work without change on machines that pass arguments on the stack. ! Other machines require their own implementations of varargs, and the ! two machine independent header files must have conditionals to include ! it. ! ISO `' differs from traditional `' mainly in the ! calling convention for `va_start'. The traditional implementation ! takes just one argument, which is the variable in which to store the ! argument pointer. The ISO implementation of `va_start' takes an ! additional second argument. The user is supposed to write the last ! named argument of the function here. ! However, `va_start' should not use this argument. The way to find the end of the named arguments is with the built-in functions described below. -- Macro: __builtin_saveregs () ! Use this built-in function to save the argument registers in ! memory so that the varargs mechanism can access them. Both ISO ! and traditional versions of `va_start' must use ! `__builtin_saveregs', unless you use ! `TARGET_SETUP_INCOMING_VARARGS' (see below) instead. ! On some machines, `__builtin_saveregs' is open-coded under the ! control of the target hook `TARGET_EXPAND_BUILTIN_SAVEREGS'. On other machines, it calls a routine written in assembler language, ! found in `libgcc2.c'. ! Code generated for the call to `__builtin_saveregs' appears at the beginning of the function, as opposed to where the call to ! `__builtin_saveregs' is written, regardless of what the code is. This is because the registers must be saved before the function starts to use them for its own purposes. -- Macro: __builtin_next_arg (LASTARG) This builtin returns the address of the first anonymous stack ! argument, as type `void *'. If `ARGS_GROW_DOWNWARD', it returns the address of the location above the first anonymous stack ! argument. Use it in `va_start' to initialize the pointer for ! fetching arguments from the stack. Also use it in `va_start' to verify that the second parameter LASTARG is the last named argument of the current function. -- Macro: __builtin_classify_type (OBJECT) Since each machine has its own conventions for which data types are ! passed in which kind of register, your implementation of `va_arg' has to embody these conventions. The easiest way to categorize the ! specified data type is to use `__builtin_classify_type' together ! with `sizeof' and `__alignof__'. ! `__builtin_classify_type' ignores the value of OBJECT, considering only its data type. It returns an integer describing what kind of type that is--integer, floating, pointer, structure, and so on. ! The file `typeclass.h' defines an enumeration that you can use to ! interpret the values of `__builtin_classify_type'. These machine description macros help implement varargs: -- Target Hook: rtx TARGET_EXPAND_BUILTIN_SAVEREGS (void) ! If defined, this hook produces the machine-specific code for a ! call to `__builtin_saveregs'. This code will be moved to the very beginning of the function, before any parameter access are made. The return value of this function should be an RTX that contains ! the value to use as the return of `__builtin_saveregs'. -- Target Hook: void TARGET_SETUP_INCOMING_VARARGS (cumulative_args_t ARGS_SO_FAR, enum machine_mode MODE, tree TYPE, int *PRETEND_ARGS_SIZE, int SECOND_TIME) This target hook offers an alternative to using ! `__builtin_saveregs' and defining the hook ! `TARGET_EXPAND_BUILTIN_SAVEREGS'. Use it to store the anonymous register arguments into the stack so that all the arguments appear ! to have been passed consecutively on the stack. Once this is ! done, you can use the standard implementation of varargs that ! works for machines that pass all their arguments on the stack. ! The argument ARGS_SO_FAR points to the `CUMULATIVE_ARGS' data ! structure, containing the values that are obtained after ! processing the named arguments. The arguments MODE and TYPE ! describe the last named argument--its machine mode and its data ! type as a tree node. The target hook should do two things: first, push onto the stack all the argument registers _not_ used for the named arguments, and second, store the size of the data thus pushed into the ! `int'-valued variable pointed to by PRETEND_ARGS_SIZE. The value that you store here will serve as additional offset for setting up the stack frame. Because you must generate code to push the anonymous arguments at compile time without knowing their data types, ! `TARGET_SETUP_INCOMING_VARARGS' is only useful on machines that have just a single category of argument register and use it uniformly for all data types. ! If the argument SECOND_TIME is nonzero, it means that the ! arguments of the function are being analyzed for the second time. ! This happens for an inline function, which is not actually ! compiled until the end of the source file. The hook ! `TARGET_SETUP_INCOMING_VARARGS' should not generate any instructions in this case. -- Target Hook: bool TARGET_STRICT_ARGUMENT_NAMING (cumulative_args_t CA) ! Define this hook to return `true' if the location where a function argument is passed depends on whether or not it is a named argument. ! This hook controls how the NAMED argument to `TARGET_FUNCTION_ARG' is set for varargs and stdarg functions. If this hook returns ! `true', the NAMED argument is always true for named arguments, and ! false for unnamed arguments. If it returns `false', but ! `TARGET_PRETEND_OUTGOING_VARARGS_NAMED' returns `true', then all arguments are treated as named. Otherwise, all named arguments except the last are treated as named. ! You need not define this hook if it always returns `false'. -- Target Hook: bool TARGET_PRETEND_OUTGOING_VARARGS_NAMED (cumulative_args_t CA) If you need to conditionally change ABIs so that one works with ! `TARGET_SETUP_INCOMING_VARARGS', but the other works like neither ! `TARGET_SETUP_INCOMING_VARARGS' nor ! `TARGET_STRICT_ARGUMENT_NAMING' was defined, then define this hook ! to return `true' if `TARGET_SETUP_INCOMING_VARARGS' is used, ! `false' otherwise. Otherwise, you should not define this hook.  File: gccint.info, Node: Trampolines, Next: Library Calls, Prev: Varargs, Up: Target Macros *************** File: gccint.info, Node: Trampolines, *** 31937,31946 **** 17.12 Trampolines for Nested Functions ====================================== ! A "trampoline" is a small piece of code that is created at run time when ! the address of a nested function is taken. It normally resides on the ! stack, in the stack frame of the containing function. These macros tell ! GCC how to generate code to allocate and initialize a trampoline. The instructions in the trampoline must do two things: load a constant address into the static chain register, and jump to the real address of --- 32337,32346 ---- 17.12 Trampolines for Nested Functions ====================================== ! A "trampoline" is a small piece of code that is created at run time ! when the address of a nested function is taken. It normally resides on ! the stack, in the stack frame of the containing function. These macros ! tell GCC how to generate code to allocate and initialize a trampoline. The instructions in the trampoline must do two things: load a constant address into the static chain register, and jump to the real address of *************** may be necessary to take out pieces of t *** 31960,31968 **** separately. -- Target Hook: void TARGET_ASM_TRAMPOLINE_TEMPLATE (FILE *F) ! This hook is called by 'assemble_trampoline_template' to output, on ! the stream F, assembler code for a block of data that contains the ! constant parts of a trampoline. This code should not include a label--the label is taken care of automatically. If you do not define this hook, it means no template is needed for --- 32360,32368 ---- separately. -- Target Hook: void TARGET_ASM_TRAMPOLINE_TEMPLATE (FILE *F) ! This hook is called by `assemble_trampoline_template' to output, ! on the stream F, assembler code for a block of data that contains ! the constant parts of a trampoline. This code should not include a label--the label is taken care of automatically. If you do not define this hook, it means no template is needed for *************** separately. *** 31973,31979 **** -- Macro: TRAMPOLINE_SECTION Return the section into which the trampoline template is to be placed (*note Sections::). The default value is ! 'readonly_data_section'. -- Macro: TRAMPOLINE_SIZE A C expression for the size in bytes of the trampoline, as an --- 32373,32379 ---- -- Macro: TRAMPOLINE_SECTION Return the section into which the trampoline template is to be placed (*note Sections::). The default value is ! `readonly_data_section'. -- Macro: TRAMPOLINE_SIZE A C expression for the size in bytes of the trampoline, as an *************** separately. *** 31982,32004 **** -- Macro: TRAMPOLINE_ALIGNMENT Alignment required for trampolines, in bits. ! If you don't define this macro, the value of 'FUNCTION_ALIGNMENT' is used for aligning trampolines. -- Target Hook: void TARGET_TRAMPOLINE_INIT (rtx M_TRAMP, tree FNDECL, rtx STATIC_CHAIN) This hook is called to initialize a trampoline. M_TRAMP is an RTX for the memory block for the trampoline; FNDECL is the ! 'FUNCTION_DECL' for the nested function; STATIC_CHAIN is an RTX for ! the static chain value that should be passed to the function when ! it is called. ! If the target defines 'TARGET_ASM_TRAMPOLINE_TEMPLATE', then the first thing this hook should do is emit a block move into M_TRAMP ! from the memory block returned by 'assemble_trampoline_template'. Note that the block move need only cover the constant parts of the trampoline. If the target isolates the variable parts of the ! trampoline to the end, not all 'TRAMPOLINE_SIZE' bytes need be copied. If the target requires any other actions, such as flushing caches --- 32382,32404 ---- -- Macro: TRAMPOLINE_ALIGNMENT Alignment required for trampolines, in bits. ! If you don't define this macro, the value of `FUNCTION_ALIGNMENT' is used for aligning trampolines. -- Target Hook: void TARGET_TRAMPOLINE_INIT (rtx M_TRAMP, tree FNDECL, rtx STATIC_CHAIN) This hook is called to initialize a trampoline. M_TRAMP is an RTX for the memory block for the trampoline; FNDECL is the ! `FUNCTION_DECL' for the nested function; STATIC_CHAIN is an RTX ! for the static chain value that should be passed to the function ! when it is called. ! If the target defines `TARGET_ASM_TRAMPOLINE_TEMPLATE', then the first thing this hook should do is emit a block move into M_TRAMP ! from the memory block returned by `assemble_trampoline_template'. Note that the block move need only cover the constant parts of the trampoline. If the target isolates the variable parts of the ! trampoline to the end, not all `TRAMPOLINE_SIZE' bytes need be copied. If the target requires any other actions, such as flushing caches *************** separately. *** 32008,32024 **** -- Target Hook: rtx TARGET_TRAMPOLINE_ADJUST_ADDRESS (rtx ADDR) This hook should perform any machine-specific adjustment in the address of the trampoline. Its argument contains the address of ! the memory block that was passed to 'TARGET_TRAMPOLINE_INIT'. In ! case the address to be used for a function call should be different ! from the address at which the template was stored, the different ! address should be returned; otherwise ADDR should be returned ! unchanged. If this hook is not defined, ADDR will be used for ! function calls. Implementing trampolines is difficult on many machines because they have separate instruction and data caches. Writing into a stack ! location fails to clear the memory in the instruction cache, so when the ! program jumps to that location, it executes the old contents. Here are two possible solutions. One is to clear the relevant parts of the instruction cache whenever a trampoline is set up. The other is to --- 32408,32424 ---- -- Target Hook: rtx TARGET_TRAMPOLINE_ADJUST_ADDRESS (rtx ADDR) This hook should perform any machine-specific adjustment in the address of the trampoline. Its argument contains the address of ! the memory block that was passed to `TARGET_TRAMPOLINE_INIT'. In ! case the address to be used for a function call should be ! different from the address at which the template was stored, the ! different address should be returned; otherwise ADDR should be ! returned unchanged. If this hook is not defined, ADDR will be ! used for function calls. Implementing trampolines is difficult on many machines because they have separate instruction and data caches. Writing into a stack ! location fails to clear the memory in the instruction cache, so when ! the program jumps to that location, it executes the old contents. Here are two possible solutions. One is to clear the relevant parts of the instruction cache whenever a trampoline is set up. The other is to *************** the following macro. *** 32032,32058 **** -- Macro: CLEAR_INSN_CACHE (BEG, END) If defined, expands to a C expression clearing the _instruction cache_ in the specified interval. The definition of this macro ! would typically be a series of 'asm' statements. Both BEG and END are both pointer expressions. To use a standard subroutine, define the following macro. In addition, you must make sure that the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure that the beginning of the trampoline code is always aligned at the same point in ! its cache line. Look in 'm68k.h' as a guide. -- Macro: TRANSFER_FROM_TRAMPOLINE Define this macro if trampolines need a special subroutine to do ! their work. The macro should expand to a series of 'asm' statements which will be compiled with GCC. They go in a library ! function named '__transfer_from_trampoline'. If you need to avoid executing the ordinary prologue code of a compiled C function when you jump to the subroutine, you can do so by placing a special label of your own in the assembler code. Use ! one 'asm' statement to generate an assembler label, and another to ! make the label global. Then trampolines can use that label to jump ! directly to your special assembler code.  File: gccint.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros --- 32432,32458 ---- -- Macro: CLEAR_INSN_CACHE (BEG, END) If defined, expands to a C expression clearing the _instruction cache_ in the specified interval. The definition of this macro ! would typically be a series of `asm' statements. Both BEG and END are both pointer expressions. To use a standard subroutine, define the following macro. In addition, you must make sure that the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure that the beginning of the trampoline code is always aligned at the same point in ! its cache line. Look in `m68k.h' as a guide. -- Macro: TRANSFER_FROM_TRAMPOLINE Define this macro if trampolines need a special subroutine to do ! their work. The macro should expand to a series of `asm' statements which will be compiled with GCC. They go in a library ! function named `__transfer_from_trampoline'. If you need to avoid executing the ordinary prologue code of a compiled C function when you jump to the subroutine, you can do so by placing a special label of your own in the assembler code. Use ! one `asm' statement to generate an assembler label, and another to ! make the label global. Then trampolines can use that label to ! jump directly to your special assembler code.  File: gccint.info, Node: Library Calls, Next: Addressing Modes, Prev: Trampolines, Up: Target Macros *************** Here is an explanation of implicit calls *** 32064,32093 **** -- Macro: DECLARE_LIBRARY_RENAMES This macro, if defined, should expand to a piece of C code that ! will get expanded when compiling functions for libgcc.a. It can be ! used to provide alternate names for GCC's internal library functions if there are ABI-mandated names that the compiler should provide. -- Target Hook: void TARGET_INIT_LIBFUNCS (void) This hook should declare additional library routines or rename ! existing ones, using the functions 'set_optab_libfunc' and ! 'init_one_libfunc' defined in 'optabs.c'. 'init_optabs' calls this ! macro after initializing all the normal library routines. ! The default is to do nothing. Most ports don't need to define this ! hook. -- Target Hook: bool TARGET_LIBFUNC_GNU_PREFIX If false (the default), internal library routines start with two ! underscores. If set to true, these routines start with '__gnu_' ! instead. E.g., '__muldi3' changes to '__gnu_muldi3'. This ! currently only affects functions defined in 'libgcc2.c'. If this ! is set to true, the 'tm.h' file must also '#define LIBGCC2_GNU_PREFIX'. -- Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (MODE, COMPARISON) ! This macro should return 'true' if the library routine that implements the floating point comparison operator COMPARISON in mode MODE will return a boolean, and FALSE if it will return a tristate. --- 32464,32493 ---- -- Macro: DECLARE_LIBRARY_RENAMES This macro, if defined, should expand to a piece of C code that ! will get expanded when compiling functions for libgcc.a. It can ! be used to provide alternate names for GCC's internal library functions if there are ABI-mandated names that the compiler should provide. -- Target Hook: void TARGET_INIT_LIBFUNCS (void) This hook should declare additional library routines or rename ! existing ones, using the functions `set_optab_libfunc' and ! `init_one_libfunc' defined in `optabs.c'. `init_optabs' calls ! this macro after initializing all the normal library routines. ! The default is to do nothing. Most ports don't need to define ! this hook. -- Target Hook: bool TARGET_LIBFUNC_GNU_PREFIX If false (the default), internal library routines start with two ! underscores. If set to true, these routines start with `__gnu_' ! instead. E.g., `__muldi3' changes to `__gnu_muldi3'. This ! currently only affects functions defined in `libgcc2.c'. If this ! is set to true, the `tm.h' file must also `#define LIBGCC2_GNU_PREFIX'. -- Macro: FLOAT_LIB_COMPARE_RETURNS_BOOL (MODE, COMPARISON) ! This macro should return `true' if the library routine that implements the floating point comparison operator COMPARISON in mode MODE will return a boolean, and FALSE if it will return a tristate. *************** Here is an explanation of implicit calls *** 32097,32109 **** ports don't need to define this macro. -- Macro: TARGET_LIB_INT_CMP_BIASED ! This macro should evaluate to 'true' if the integer comparison ! functions (like '__cmpdi2') return 0 to indicate that the first operand is smaller than the second, 1 to indicate that they are ! equal, and 2 to indicate that the first operand is greater than the ! second. If this macro evaluates to 'false' the comparison functions return -1, 0, and 1 instead of 0, 1, and 2. If the ! target uses the routines in 'libgcc.a', you do not need to define this macro. -- Macro: TARGET_HAS_NO_HW_DIVIDE --- 32497,32509 ---- ports don't need to define this macro. -- Macro: TARGET_LIB_INT_CMP_BIASED ! This macro should evaluate to `true' if the integer comparison ! functions (like `__cmpdi2') return 0 to indicate that the first operand is smaller than the second, 1 to indicate that they are ! equal, and 2 to indicate that the first operand is greater than ! the second. If this macro evaluates to `false' the comparison functions return -1, 0, and 1 instead of 0, 1, and 2. If the ! target uses the routines in `libgcc.a', you do not need to define this macro. -- Macro: TARGET_HAS_NO_HW_DIVIDE *************** Here is an explanation of implicit calls *** 32114,32134 **** algorithm which make use of a 64-bit by 32-bit divide primitive. -- Macro: TARGET_EDOM ! The value of 'EDOM' on the target machine, as a C integer constant expression. If you don't define this macro, GCC does not attempt ! to deposit the value of 'EDOM' into 'errno' directly. Look in ! '/usr/include/errno.h' to find the value of 'EDOM' on your system. ! If you do not define 'TARGET_EDOM', then compiled code reports ! domain errors by calling the library function and letting it report ! the error. If mathematical functions on your system use 'matherr' ! when there is an error, then you should leave 'TARGET_EDOM' ! undefined so that 'matherr' is used normally. -- Macro: GEN_ERRNO_RTX Define this macro as a C expression to create an rtl expression ! that refers to the global "variable" 'errno'. (On certain systems, ! 'errno' may not actually be a variable.) If you don't define this macro, a reasonable default is used. -- Target Hook: bool TARGET_LIBC_HAS_FUNCTION (enum function_class --- 32514,32534 ---- algorithm which make use of a 64-bit by 32-bit divide primitive. -- Macro: TARGET_EDOM ! The value of `EDOM' on the target machine, as a C integer constant expression. If you don't define this macro, GCC does not attempt ! to deposit the value of `EDOM' into `errno' directly. Look in ! `/usr/include/errno.h' to find the value of `EDOM' on your system. ! If you do not define `TARGET_EDOM', then compiled code reports ! domain errors by calling the library function and letting it ! report the error. If mathematical functions on your system use ! `matherr' when there is an error, then you should leave ! `TARGET_EDOM' undefined so that `matherr' is used normally. -- Macro: GEN_ERRNO_RTX Define this macro as a C expression to create an rtl expression ! that refers to the global "variable" `errno'. (On certain systems, ! `errno' may not actually be a variable.) If you don't define this macro, a reasonable default is used. -- Target Hook: bool TARGET_LIBC_HAS_FUNCTION (enum function_class *************** Here is an explanation of implicit calls *** 32140,32148 **** Set this macro to 1 to use the "NeXT" Objective-C message sending conventions by default. This calling convention involves passing the object, the selector and the method arguments all at once to ! the method-lookup library function. This is the usual setting when ! targeting Darwin/Mac OS X systems, which have the NeXT runtime ! installed. If the macro is set to 0, the "GNU" Objective-C message sending convention will be used by default. This convention passes just --- 32540,32548 ---- Set this macro to 1 to use the "NeXT" Objective-C message sending conventions by default. This calling convention involves passing the object, the selector and the method arguments all at once to ! the method-lookup library function. This is the usual setting ! when targeting Darwin/Mac OS X systems, which have the NeXT ! runtime installed. If the macro is set to 0, the "GNU" Objective-C message sending convention will be used by default. This convention passes just *************** This is about addressing modes. *** 32183,32204 **** -- Macro: CONSTANT_ADDRESS_P (X) A C expression that is 1 if the RTX X is a constant which is a valid address. On most machines the default definition of ! '(CONSTANT_P (X) && GET_CODE (X) != CONST_DOUBLE)' is acceptable, but a few machines are more restrictive as to which constant addresses are supported. -- Macro: CONSTANT_P (X) ! 'CONSTANT_P', which is defined by target-independent code, accepts integer-values expressions whose values are not explicitly known, ! such as 'symbol_ref', 'label_ref', and 'high' expressions and ! 'const' arithmetic expressions, in addition to 'const_int' and ! 'const_double' expressions. -- Macro: MAX_REGS_PER_ADDRESS A number, the maximum number of registers that can appear in a ! valid memory address. Note that it is up to you to specify a value ! equal to the maximum number that 'TARGET_LEGITIMATE_ADDRESS_P' ! would ever accept. -- Target Hook: bool TARGET_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx X, bool STRICT) --- 32583,32604 ---- -- Macro: CONSTANT_ADDRESS_P (X) A C expression that is 1 if the RTX X is a constant which is a valid address. On most machines the default definition of ! `(CONSTANT_P (X) && GET_CODE (X) != CONST_DOUBLE)' is acceptable, but a few machines are more restrictive as to which constant addresses are supported. -- Macro: CONSTANT_P (X) ! `CONSTANT_P', which is defined by target-independent code, accepts integer-values expressions whose values are not explicitly known, ! such as `symbol_ref', `label_ref', and `high' expressions and ! `const' arithmetic expressions, in addition to `const_int' and ! `const_double' expressions. -- Macro: MAX_REGS_PER_ADDRESS A number, the maximum number of registers that can appear in a ! valid memory address. Note that it is up to you to specify a ! value equal to the maximum number that ! `TARGET_LEGITIMATE_ADDRESS_P' would ever accept. -- Target Hook: bool TARGET_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx X, bool STRICT) *************** This is about addressing modes. *** 32212,32258 **** The strict variant is used in the reload pass. It must be defined so that any pseudo-register that has not been allocated a hard register is considered a memory reference. This is because in ! contexts where some kind of register is required, a pseudo-register ! with no hard register must be rejected. For non-hard registers, ! the strict variant should look up the 'reg_renumber' array; it ! should then proceed using the hard register number in the array, or ! treat the pseudo as a memory reference if the array holds '-1'. ! The non-strict variant is used in other passes. It must be defined ! to accept all pseudo-registers in every context where some kind of ! register is required. ! Normally, constant addresses which are the sum of a 'symbol_ref' ! and an integer are stored inside a 'const' RTX to mark them as constant. Therefore, there is no need to recognize such sums specifically as legitimate addresses. Normally you would simply ! recognize any 'const' as legitimate. ! Usually 'PRINT_OPERAND_ADDRESS' is not prepared to handle constant ! sums that are not marked with 'const'. It assumes that a naked ! 'plus' indicates indexing. If so, then you _must_ reject such ! naked constant sums as illegitimate addresses, so that none of them ! will be given to 'PRINT_OPERAND_ADDRESS'. On some machines, whether a symbolic address is legitimate depends on the section that the address refers to. On these machines, ! define the target hook 'TARGET_ENCODE_SECTION_INFO' to store the ! information into the 'symbol_ref', and then check for it here. ! When you see a 'const', you will have to look inside it to find the ! 'symbol_ref' in order to determine the section. *Note Assembler Format::. Some ports are still using a deprecated legacy substitute for this ! hook, the 'GO_IF_LEGITIMATE_ADDRESS' macro. This macro has this syntax: #define GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL) ! and should 'goto LABEL' if the address X is a valid address on the target machine for a memory operand of mode MODE. Compiler source files that want to use the strict variant of this ! macro define the macro 'REG_OK_STRICT'. You should use an '#ifdef REG_OK_STRICT' conditional to define the strict variant in that case and the non-strict variant otherwise. --- 32612,32659 ---- The strict variant is used in the reload pass. It must be defined so that any pseudo-register that has not been allocated a hard register is considered a memory reference. This is because in ! contexts where some kind of register is required, a ! pseudo-register with no hard register must be rejected. For ! non-hard registers, the strict variant should look up the ! `reg_renumber' array; it should then proceed using the hard ! register number in the array, or treat the pseudo as a memory ! reference if the array holds `-1'. ! The non-strict variant is used in other passes. It must be ! defined to accept all pseudo-registers in every context where some ! kind of register is required. ! Normally, constant addresses which are the sum of a `symbol_ref' ! and an integer are stored inside a `const' RTX to mark them as constant. Therefore, there is no need to recognize such sums specifically as legitimate addresses. Normally you would simply ! recognize any `const' as legitimate. ! Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant ! sums that are not marked with `const'. It assumes that a naked ! `plus' indicates indexing. If so, then you _must_ reject such ! naked constant sums as illegitimate addresses, so that none of ! them will be given to `PRINT_OPERAND_ADDRESS'. On some machines, whether a symbolic address is legitimate depends on the section that the address refers to. On these machines, ! define the target hook `TARGET_ENCODE_SECTION_INFO' to store the ! information into the `symbol_ref', and then check for it here. ! When you see a `const', you will have to look inside it to find the ! `symbol_ref' in order to determine the section. *Note Assembler Format::. Some ports are still using a deprecated legacy substitute for this ! hook, the `GO_IF_LEGITIMATE_ADDRESS' macro. This macro has this syntax: #define GO_IF_LEGITIMATE_ADDRESS (MODE, X, LABEL) ! and should `goto LABEL' if the address X is a valid address on the target machine for a memory operand of mode MODE. Compiler source files that want to use the strict variant of this ! macro define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT' conditional to define the strict variant in that case and the non-strict variant otherwise. *************** This is about addressing modes. *** 32260,32279 **** files that are recompiled when changes are made. -- Macro: TARGET_MEM_CONSTRAINT ! A single character to be used instead of the default ''m'' character for general memory addresses. This defines the constraint letter which matches the memory addresses accepted by ! 'TARGET_LEGITIMATE_ADDRESS_P'. Define this macro if you want to support new address formats in your back end without changing the ! semantics of the ''m'' constraint. This is necessary in order to preserve functionality of inline assembly constructs using the ! ''m'' constraint. -- Macro: FIND_BASE_TERM (X) A C expression to determine the base term of address X, or to ! provide a simplified version of X from which 'alias.c' can easily find the base term. This macro is used in only two places: ! 'find_base_value' and 'find_base_term' in 'alias.c'. It is always safe for this macro to not be defined. It exists so that alias analysis can understand machine-dependent addresses. --- 32661,32680 ---- files that are recompiled when changes are made. -- Macro: TARGET_MEM_CONSTRAINT ! A single character to be used instead of the default `'m'' character for general memory addresses. This defines the constraint letter which matches the memory addresses accepted by ! `TARGET_LEGITIMATE_ADDRESS_P'. Define this macro if you want to support new address formats in your back end without changing the ! semantics of the `'m'' constraint. This is necessary in order to preserve functionality of inline assembly constructs using the ! `'m'' constraint. -- Macro: FIND_BASE_TERM (X) A C expression to determine the base term of address X, or to ! provide a simplified version of X from which `alias.c' can easily find the base term. This macro is used in only two places: ! `find_base_value' and `find_base_term' in `alias.c'. It is always safe for this macro to not be defined. It exists so that alias analysis can understand machine-dependent addresses. *************** This is about addressing modes. *** 32286,32359 **** This hook is given an invalid memory address X for an operand of mode MODE and should try to return a valid memory address. ! X will always be the result of a call to 'break_out_memory_refs', and OLDX will be the operand that was given to that function to produce X. ! The code of the hook should not alter the substructure of X. If it ! transforms X into a more legitimate form, it should return the new ! X. It is not necessary for this hook to come up with a legitimate ! address, with the exception of native TLS addresses (*note Emulated ! TLS::). The compiler has standard ways of doing so in all cases. ! In fact, if the target supports only emulated TLS, it is safe to ! omit this hook or make it return X if it cannot find a valid way to ! legitimize the address. But often a machine-dependent strategy can ! generate better code. -- Macro: LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) A C compound statement that attempts to replace X, which is an address that needs reloading, with a valid memory address for an ! operand of mode MODE. WIN will be a C statement label elsewhere in ! the code. It is not necessary to define this macro, but it might ! be useful for performance reasons. For example, on the i386, it is sometimes possible to use a single reload register instead of two by reloading a sum of two pseudo registers into a register. On the other hand, for number of RISC processors offsets are limited so that often an intermediate ! address needs to be generated in order to address a stack slot. By ! defining 'LEGITIMIZE_RELOAD_ADDRESS' appropriately, the intermediate addresses generated for adjacent some stack slots can be made identical, and thus be shared. ! _Note_: This macro should be used with caution. It is necessary to ! know something of how reload works in order to effectively use ! this, and it is quite easy to produce macros that build in too much ! knowledge of reload internals. _Note_: This macro must be able to reload an address created by a previous invocation of this macro. If it fails to handle such addresses then the compiler may generate incorrect code or abort. ! The macro definition should use 'push_reload' to indicate parts that need reloading; OPNUM, TYPE and IND_LEVELS are usually ! suitable to be passed unaltered to 'push_reload'. The code generated by this macro must not alter the substructure of X. If it transforms X into a more legitimate form, it should assign X (which will always be a C variable) a new value. This also applies to parts that you change indirectly by calling ! 'push_reload'. ! The macro definition may use 'strict_memory_address_p' to test if the address has become legitimate. If you want to change only a part of X, one standard way of doing ! this is to use 'copy_rtx'. Note, however, that it unshares only a single level of rtl. Thus, if the part to be changed is not at the top level, you'll need to replace first the top level. It is not ! necessary for this macro to come up with a legitimate address; but ! often a machine-dependent strategy can generate better code. -- Target Hook: bool TARGET_MODE_DEPENDENT_ADDRESS_P (const_rtx ADDR, addr_space_t ADDRSPACE) ! This hook returns 'true' if memory address ADDR in address space ! ADDRSPACE can have different meanings depending on the machine mode ! of the memory reference it is used for or if the address is valid ! for some modes but not others. Autoincrement and autodecrement addresses typically have mode-dependent effects because the amount of the increment or --- 32687,32760 ---- This hook is given an invalid memory address X for an operand of mode MODE and should try to return a valid memory address. ! X will always be the result of a call to `break_out_memory_refs', and OLDX will be the operand that was given to that function to produce X. ! The code of the hook should not alter the substructure of X. If ! it transforms X into a more legitimate form, it should return the ! new X. It is not necessary for this hook to come up with a legitimate ! address, with the exception of native TLS addresses (*note ! Emulated TLS::). The compiler has standard ways of doing so in ! all cases. In fact, if the target supports only emulated TLS, it ! is safe to omit this hook or make it return X if it cannot find a ! valid way to legitimize the address. But often a machine-dependent ! strategy can generate better code. -- Macro: LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN) A C compound statement that attempts to replace X, which is an address that needs reloading, with a valid memory address for an ! operand of mode MODE. WIN will be a C statement label elsewhere ! in the code. It is not necessary to define this macro, but it ! might be useful for performance reasons. For example, on the i386, it is sometimes possible to use a single reload register instead of two by reloading a sum of two pseudo registers into a register. On the other hand, for number of RISC processors offsets are limited so that often an intermediate ! address needs to be generated in order to address a stack slot. ! By defining `LEGITIMIZE_RELOAD_ADDRESS' appropriately, the intermediate addresses generated for adjacent some stack slots can be made identical, and thus be shared. ! _Note_: This macro should be used with caution. It is necessary ! to know something of how reload works in order to effectively use ! this, and it is quite easy to produce macros that build in too ! much knowledge of reload internals. _Note_: This macro must be able to reload an address created by a previous invocation of this macro. If it fails to handle such addresses then the compiler may generate incorrect code or abort. ! The macro definition should use `push_reload' to indicate parts that need reloading; OPNUM, TYPE and IND_LEVELS are usually ! suitable to be passed unaltered to `push_reload'. The code generated by this macro must not alter the substructure of X. If it transforms X into a more legitimate form, it should assign X (which will always be a C variable) a new value. This also applies to parts that you change indirectly by calling ! `push_reload'. ! The macro definition may use `strict_memory_address_p' to test if the address has become legitimate. If you want to change only a part of X, one standard way of doing ! this is to use `copy_rtx'. Note, however, that it unshares only a single level of rtl. Thus, if the part to be changed is not at the top level, you'll need to replace first the top level. It is not ! necessary for this macro to come up with a legitimate address; ! but often a machine-dependent strategy can generate better code. -- Target Hook: bool TARGET_MODE_DEPENDENT_ADDRESS_P (const_rtx ADDR, addr_space_t ADDRSPACE) ! This hook returns `true' if memory address ADDR in address space ! ADDRSPACE can have different meanings depending on the machine ! mode of the memory reference it is used for or if the address is ! valid for some modes but not others. Autoincrement and autodecrement addresses typically have mode-dependent effects because the amount of the increment or *************** This is about addressing modes. *** 32363,32386 **** You may assume that ADDR is a valid address for the machine. ! The default version of this hook returns 'false'. -- Target Hook: bool TARGET_LEGITIMATE_CONSTANT_P (enum machine_mode MODE, rtx X) This hook returns true if X is a legitimate constant for a MODE-mode immediate operand on the target machine. You can assume ! that X satisfies 'CONSTANT_P', so you need not check this. The default definition returns true. -- Target Hook: rtx TARGET_DELEGITIMIZE_ADDRESS (rtx X) This hook is used to undo the possibly obfuscating effects of the ! 'LEGITIMIZE_ADDRESS' and 'LEGITIMIZE_RELOAD_ADDRESS' target macros. ! Some backend implementations of these macros wrap symbol references ! inside an 'UNSPEC' rtx to represent PIC or similar addressing ! modes. This target hook allows GCC's optimizers to understand the ! semantics of these opaque 'UNSPEC's by converting them back into ! their original form. -- Target Hook: bool TARGET_CONST_NOT_OK_FOR_DEBUG_P (rtx X) This hook should return true if X should not be emitted into debug --- 32764,32787 ---- You may assume that ADDR is a valid address for the machine. ! The default version of this hook returns `false'. -- Target Hook: bool TARGET_LEGITIMATE_CONSTANT_P (enum machine_mode MODE, rtx X) This hook returns true if X is a legitimate constant for a MODE-mode immediate operand on the target machine. You can assume ! that X satisfies `CONSTANT_P', so you need not check this. The default definition returns true. -- Target Hook: rtx TARGET_DELEGITIMIZE_ADDRESS (rtx X) This hook is used to undo the possibly obfuscating effects of the ! `LEGITIMIZE_ADDRESS' and `LEGITIMIZE_RELOAD_ADDRESS' target ! macros. Some backend implementations of these macros wrap symbol ! references inside an `UNSPEC' rtx to represent PIC or similar ! addressing modes. This target hook allows GCC's optimizers to ! understand the semantics of these opaque `UNSPEC's by converting ! them back into their original form. -- Target Hook: bool TARGET_CONST_NOT_OK_FOR_DEBUG_P (rtx X) This hook should return true if X should not be emitted into debug *************** This is about addressing modes. *** 32403,32415 **** -- Target Hook: bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum machine_mode MODE, const_rtx X) This hook should return true if pool entries for constant X can be ! placed in an 'object_block' structure. MODE is the mode of X. The default version returns false for all constants. -- Target Hook: bool TARGET_USE_BLOCKS_FOR_DECL_P (const_tree DECL) This hook should return true if pool entries for DECL should be ! placed in an 'object_block' structure. The default version returns true for all decls. --- 32804,32816 ---- -- Target Hook: bool TARGET_USE_BLOCKS_FOR_CONSTANT_P (enum machine_mode MODE, const_rtx X) This hook should return true if pool entries for constant X can be ! placed in an `object_block' structure. MODE is the mode of X. The default version returns false for all constants. -- Target Hook: bool TARGET_USE_BLOCKS_FOR_DECL_P (const_tree DECL) This hook should return true if pool entries for DECL should be ! placed in an `object_block' structure. The default version returns true for all decls. *************** This is about addressing modes. *** 32417,32427 **** MD_FN, bool SQRT) This hook should return the DECL of a function that implements reciprocal of the builtin function with builtin function code FN, ! or 'NULL_TREE' if such a function is not available. MD_FN is true when FN is a code of a machine-dependent builtin function. When SQRT is true, additional optimizations that apply only to the reciprocal of a square root function are performed, and only ! reciprocals of 'sqrt' function are valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void) This hook should return the DECL of a function F that given an --- 32818,32828 ---- MD_FN, bool SQRT) This hook should return the DECL of a function that implements reciprocal of the builtin function with builtin function code FN, ! or `NULL_TREE' if such a function is not available. MD_FN is true when FN is a code of a machine-dependent builtin function. When SQRT is true, additional optimizations that apply only to the reciprocal of a square root function are performed, and only ! reciprocals of `sqrt' function are valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD (void) This hook should return the DECL of a function F that given an *************** This is about addressing modes. *** 32431,32452 **** The autovectorizer, when vectorizing a load operation from an address ADDR that may be unaligned, will generate two vector loads ! from the two aligned addresses around ADDR. It then generates a ! 'REALIGN_LOAD' operation to extract the relevant data from the two ! loaded vectors. The first two arguments to 'REALIGN_LOAD', V1 and V2, are the two vectors, each of size VS, and the third argument, ! OFF, defines how the data will be extracted from these two vectors: ! if OFF is 0, then the returned vector is V2; otherwise, the ! returned vector is composed from the last VS-OFF elements of V1 ! concatenated to the first OFF elements of V2. ! If this hook is defined, the autovectorizer will generate a call to ! F (using the DECL tree that this hook returns) and will use the ! return value of F as the argument OFF to 'REALIGN_LOAD'. Therefore, the mask M returned by F should comply with the ! semantics expected by 'REALIGN_LOAD' described above. If this hook ! is not defined, then ADDR will be used as the argument OFF to ! 'REALIGN_LOAD', in which case the low log2(VS) - 1 bits of ADDR will be considered. -- Target Hook: int TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST (enum --- 32832,32853 ---- The autovectorizer, when vectorizing a load operation from an address ADDR that may be unaligned, will generate two vector loads ! from the two aligned addresses around ADDR. It then generates a ! `REALIGN_LOAD' operation to extract the relevant data from the two ! loaded vectors. The first two arguments to `REALIGN_LOAD', V1 and V2, are the two vectors, each of size VS, and the third argument, ! OFF, defines how the data will be extracted from these two ! vectors: if OFF is 0, then the returned vector is V2; otherwise, ! the returned vector is composed from the last VS-OFF elements of ! V1 concatenated to the first OFF elements of V2. ! If this hook is defined, the autovectorizer will generate a call ! to F (using the DECL tree that this hook returns) and will use the ! return value of F as the argument OFF to `REALIGN_LOAD'. Therefore, the mask M returned by F should comply with the ! semantics expected by `REALIGN_LOAD' described above. If this ! hook is not defined, then ADDR will be used as the argument OFF to ! `REALIGN_LOAD', in which case the low log2(VS) - 1 bits of ADDR will be considered. -- Target Hook: int TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST (enum *************** This is about addressing modes. *** 32462,32493 **** -- Target Hook: bool TARGET_VECTORIZE_VEC_PERM_CONST_OK (enum MACHINE_MODE, const unsigned char *SEL) ! Return true if a vector created for 'vec_perm_const' is valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_CONVERSION (unsigned CODE, tree DEST_TYPE, tree SRC_TYPE) This hook should return the DECL of a function that implements conversion of the input vector of type SRC_TYPE to type DEST_TYPE. ! The value of CODE is one of the enumerators in 'enum tree_code' and specifies how the conversion is to be applied (truncation, rounding, etc.). If this hook is defined, the autovectorizer will use the ! 'TARGET_VECTORIZE_BUILTIN_CONVERSION' target hook when vectorizing ! conversion. Otherwise, it will return 'NULL_TREE'. ! -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION (tree ! FNDECL, tree VEC_TYPE_OUT, tree VEC_TYPE_IN) This hook should return the decl of a function that implements the vectorized variant of the builtin function with builtin function ! code CODE or 'NULL_TREE' if such a function is not available. The value of FNDECL is the builtin function declaration. The return type of the vectorized function shall be of vector type VEC_TYPE_OUT and the argument types should be VEC_TYPE_IN. ! -- Target Hook: bool TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT (enum ! machine_mode MODE, const_tree TYPE, int MISALIGNMENT, bool ! IS_PACKED) This hook should return true if the target supports misaligned vector store/load of a specific factor denoted in the MISALIGNMENT parameter. The vector store/load should be of machine mode MODE --- 32863,32894 ---- -- Target Hook: bool TARGET_VECTORIZE_VEC_PERM_CONST_OK (enum MACHINE_MODE, const unsigned char *SEL) ! Return true if a vector created for `vec_perm_const' is valid. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_CONVERSION (unsigned CODE, tree DEST_TYPE, tree SRC_TYPE) This hook should return the DECL of a function that implements conversion of the input vector of type SRC_TYPE to type DEST_TYPE. ! The value of CODE is one of the enumerators in `enum tree_code' and specifies how the conversion is to be applied (truncation, rounding, etc.). If this hook is defined, the autovectorizer will use the ! `TARGET_VECTORIZE_BUILTIN_CONVERSION' target hook when vectorizing ! conversion. Otherwise, it will return `NULL_TREE'. ! -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION ! (tree FNDECL, tree VEC_TYPE_OUT, tree VEC_TYPE_IN) This hook should return the decl of a function that implements the vectorized variant of the builtin function with builtin function ! code CODE or `NULL_TREE' if such a function is not available. The value of FNDECL is the builtin function declaration. The return type of the vectorized function shall be of vector type VEC_TYPE_OUT and the argument types should be VEC_TYPE_IN. ! -- Target Hook: bool TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT ! (enum machine_mode MODE, const_tree TYPE, int MISALIGNMENT, ! bool IS_PACKED) This hook should return true if the target supports misaligned vector store/load of a specific factor denoted in the MISALIGNMENT parameter. The vector store/load should be of machine mode MODE *************** This is about addressing modes. *** 32498,32512 **** -- Target Hook: enum machine_mode TARGET_VECTORIZE_PREFERRED_SIMD_MODE (enum machine_mode MODE) This hook should return the preferred mode for vectorizing scalar ! mode MODE. The default is equal to 'word_mode', because the vectorizer can do some transformations even in absence of specialized SIMD hardware. -- Target Hook: unsigned int ! TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES (void) This hook should return a mask of sizes that should be iterated over after trying to autovectorize using the vector size derived ! from the mode returned by 'TARGET_VECTORIZE_PREFERRED_SIMD_MODE'. The default is zero which means to not iterate over other vector sizes. --- 32899,32913 ---- -- Target Hook: enum machine_mode TARGET_VECTORIZE_PREFERRED_SIMD_MODE (enum machine_mode MODE) This hook should return the preferred mode for vectorizing scalar ! mode MODE. The default is equal to `word_mode', because the vectorizer can do some transformations even in absence of specialized SIMD hardware. -- Target Hook: unsigned int ! TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES (void) This hook should return a mask of sizes that should be iterated over after trying to autovectorize using the vector size derived ! from the mode returned by `TARGET_VECTORIZE_PREFERRED_SIMD_MODE'. The default is zero which means to not iterate over other vector sizes. *************** This is about addressing modes. *** 32515,32545 **** This hook should initialize target-specific data structures in preparation for modeling the costs of vectorizing a loop or basic block. The default allocates three unsigned integers for ! accumulating costs for the prologue, body, and epilogue of the loop ! or basic block. If LOOP_INFO is non-NULL, it identifies the loop ! being vectorized; otherwise a single block is being vectorized. -- Target Hook: unsigned TARGET_VECTORIZE_ADD_STMT_COST (void *DATA, ! int COUNT, enum vect_cost_for_stmt KIND, struct _stmt_vec_info ! *STMT_INFO, int MISALIGN, enum vect_cost_model_location WHERE) This hook should update the target-specific DATA in response to adding COUNT copies of the given KIND of statement to a loop or basic block. The default adds the builtin vectorizer cost for the ! copies of the statement to the accumulator specified by WHERE, (the ! prologue, body, or epilogue) and returns the amount added. The ! return value should be viewed as a tentative cost that may later be ! revised. ! -- Target Hook: void TARGET_VECTORIZE_FINISH_COST (void *DATA, unsigned ! *PROLOGUE_COST, unsigned *BODY_COST, unsigned *EPILOGUE_COST) ! This hook should complete calculations of the cost of vectorizing a ! loop or basic block based on DATA, and return the prologue, body, ! and epilogue costs as unsigned integers. The default returns the ! value of the three accumulators. -- Target Hook: void TARGET_VECTORIZE_DESTROY_COST_DATA (void *DATA) This hook should release DATA and any related data structures ! allocated by TARGET_VECTORIZE_INIT_COST. The default releases the accumulator. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_TM_LOAD (tree) --- 32916,32949 ---- This hook should initialize target-specific data structures in preparation for modeling the costs of vectorizing a loop or basic block. The default allocates three unsigned integers for ! accumulating costs for the prologue, body, and epilogue of the ! loop or basic block. If LOOP_INFO is non-NULL, it identifies the ! loop being vectorized; otherwise a single block is being ! vectorized. -- Target Hook: unsigned TARGET_VECTORIZE_ADD_STMT_COST (void *DATA, ! int COUNT, enum vect_cost_for_stmt KIND, struct ! _stmt_vec_info *STMT_INFO, int MISALIGN, enum ! vect_cost_model_location WHERE) This hook should update the target-specific DATA in response to adding COUNT copies of the given KIND of statement to a loop or basic block. The default adds the builtin vectorizer cost for the ! copies of the statement to the accumulator specified by WHERE, ! (the prologue, body, or epilogue) and returns the amount added. ! The return value should be viewed as a tentative cost that may ! later be revised. ! -- Target Hook: void TARGET_VECTORIZE_FINISH_COST (void *DATA, ! unsigned *PROLOGUE_COST, unsigned *BODY_COST, unsigned ! *EPILOGUE_COST) ! This hook should complete calculations of the cost of vectorizing ! a loop or basic block based on DATA, and return the prologue, ! body, and epilogue costs as unsigned integers. The default ! returns the value of the three accumulators. -- Target Hook: void TARGET_VECTORIZE_DESTROY_COST_DATA (void *DATA) This hook should release DATA and any related data structures ! allocated by TARGET_VECTORIZE_INIT_COST. The default releases the accumulator. -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_TM_LOAD (tree) *************** This is about addressing modes. *** 32553,32561 **** -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_GATHER (const_tree MEM_VECTYPE, const_tree INDEX_TYPE, int SCALE) Target builtin that implements vector gather operation. ! MEM_VECTYPE is the vector type of the load and INDEX_TYPE is scalar ! type of the index, scaled by SCALE. The default is 'NULL_TREE' ! which means to not vectorize gather loads. -- Target Hook: int TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN (struct cgraph_node *, struct cgraph_simd_clone *, TREE, INT) --- 32957,32965 ---- -- Target Hook: tree TARGET_VECTORIZE_BUILTIN_GATHER (const_tree MEM_VECTYPE, const_tree INDEX_TYPE, int SCALE) Target builtin that implements vector gather operation. ! MEM_VECTYPE is the vector type of the load and INDEX_TYPE is ! scalar type of the index, scaled by SCALE. The default is ! `NULL_TREE' which means to not vectorize gather loads. -- Target Hook: int TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN (struct cgraph_node *, struct cgraph_simd_clone *, TREE, INT) *************** This is about addressing modes. *** 32566,32572 **** variants that should be emitted. -- Target Hook: void TARGET_SIMD_CLONE_ADJUST (struct cgraph_node *) ! This hook should add implicit 'attribute(target("..."))' attribute to SIMD clone NODE if needed. -- Target Hook: int TARGET_SIMD_CLONE_USABLE (struct cgraph_node *) --- 32970,32976 ---- variants that should be emitted. -- Target Hook: void TARGET_SIMD_CLONE_ADJUST (struct cgraph_node *) ! This hook should add implicit `attribute(target("..."))' attribute to SIMD clone NODE if needed. -- Target Hook: int TARGET_SIMD_CLONE_USABLE (struct cgraph_node *) *************** example, if we have: *** 32587,32594 **** static int a, b, c; int foo (void) { return a + b + c; } ! the code for 'foo' will usually calculate three separate symbolic ! addresses: those of 'a', 'b' and 'c'. On some targets, it would be better to calculate just one symbolic address and access the three variables relative to it. The equivalent pseudocode would be something like: --- 32991,32998 ---- static int a, b, c; int foo (void) { return a + b + c; } ! the code for `foo' will usually calculate three separate symbolic ! addresses: those of `a', `b' and `c'. On some targets, it would be better to calculate just one symbolic address and access the three variables relative to it. The equivalent pseudocode would be something like: *************** like: *** 32599,32611 **** return xr[&a - &x] + xr[&b - &x] + xr[&c - &x]; } ! (which isn't valid C). We refer to shared addresses like 'x' as ! "section anchors". Their use is controlled by '-fsection-anchors'. The hooks below describe the target properties that GCC needs to know ! in order to make effective use of section anchors. It won't use section ! anchors at all unless either 'TARGET_MIN_ANCHOR_OFFSET' or ! 'TARGET_MAX_ANCHOR_OFFSET' is set to a nonzero value. -- Target Hook: HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET The minimum offset that should be applied to a section anchor. On --- 33003,33015 ---- return xr[&a - &x] + xr[&b - &x] + xr[&c - &x]; } ! (which isn't valid C). We refer to shared addresses like `x' as ! "section anchors". Their use is controlled by `-fsection-anchors'. The hooks below describe the target properties that GCC needs to know ! in order to make effective use of section anchors. It won't use ! section anchors at all unless either `TARGET_MIN_ANCHOR_OFFSET' or ! `TARGET_MAX_ANCHOR_OFFSET' is set to a nonzero value. -- Target Hook: HOST_WIDE_INT TARGET_MIN_ANCHOR_OFFSET The minimum offset that should be applied to a section anchor. On *************** anchors at all unless either 'TARGET_MIN *** 32614,32640 **** every mode. The default value is 0. -- Target Hook: HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET ! Like 'TARGET_MIN_ANCHOR_OFFSET', but the maximum (inclusive) offset ! that should be applied to section anchors. The default value is 0. -- Target Hook: void TARGET_ASM_OUTPUT_ANCHOR (rtx X) Write the assembly code to define section anchor X, which is a ! 'SYMBOL_REF' for which 'SYMBOL_REF_ANCHOR_P (X)' is true. The hook ! is called with the assembly output position set to the beginning of ! 'SYMBOL_REF_BLOCK (X)'. ! If 'ASM_OUTPUT_DEF' is available, the hook's default definition ! uses it to define the symbol as '. + SYMBOL_REF_BLOCK_OFFSET (X)'. ! If 'ASM_OUTPUT_DEF' is not available, the hook's default definition ! is 'NULL', which disables the use of section anchors altogether. -- Target Hook: bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (const_rtx X) Return true if GCC should attempt to use anchors to access ! 'SYMBOL_REF' X. You can assume 'SYMBOL_REF_HAS_BLOCK_INFO_P (X)' ! and '!SYMBOL_REF_ANCHOR_P (X)'. ! The default version is correct for most targets, but you might need ! to intercept this hook to handle things like target-specific attributes or target-specific sections.  --- 33018,33045 ---- every mode. The default value is 0. -- Target Hook: HOST_WIDE_INT TARGET_MAX_ANCHOR_OFFSET ! Like `TARGET_MIN_ANCHOR_OFFSET', but the maximum (inclusive) ! offset that should be applied to section anchors. The default ! value is 0. -- Target Hook: void TARGET_ASM_OUTPUT_ANCHOR (rtx X) Write the assembly code to define section anchor X, which is a ! `SYMBOL_REF' for which `SYMBOL_REF_ANCHOR_P (X)' is true. The ! hook is called with the assembly output position set to the ! beginning of `SYMBOL_REF_BLOCK (X)'. ! If `ASM_OUTPUT_DEF' is available, the hook's default definition ! uses it to define the symbol as `. + SYMBOL_REF_BLOCK_OFFSET (X)'. ! If `ASM_OUTPUT_DEF' is not available, the hook's default definition ! is `NULL', which disables the use of section anchors altogether. -- Target Hook: bool TARGET_USE_ANCHORS_FOR_SYMBOL_P (const_rtx X) Return true if GCC should attempt to use anchors to access ! `SYMBOL_REF' X. You can assume `SYMBOL_REF_HAS_BLOCK_INFO_P (X)' ! and `!SYMBOL_REF_ANCHOR_P (X)'. ! The default version is correct for most targets, but you might ! need to intercept this hook to handle things like target-specific attributes or target-specific sections.  *************** File: gccint.info, Node: Condition Code *** 32646,32663 **** The macros in this section can be split in two families, according to the two ways of representing condition codes in GCC. ! The first representation is the so called '(cc0)' representation (*note ! Jump Patterns::), where all instructions can have an implicit clobber of ! the condition codes. The second is the condition code register ! representation, which provides better schedulability for architectures ! that do have a condition code register, but on which most instructions ! do not affect it. The latter category includes most RISC machines. The implicit clobbering poses a strong restriction on the placement of the definition and use of the condition code. In the past the definition and use were always adjacent. However, recent changes to support trapping arithmatic may result in the definition and user being ! in different blocks. Thus, there may be a 'NOTE_INSN_BASIC_BLOCK' between them. Additionally, the definition may be the source of exception handling edges. --- 33051,33069 ---- The macros in this section can be split in two families, according to the two ways of representing condition codes in GCC. ! The first representation is the so called `(cc0)' representation ! (*note Jump Patterns::), where all instructions can have an implicit ! clobber of the condition codes. The second is the condition code ! register representation, which provides better schedulability for ! architectures that do have a condition code register, but on which most ! instructions do not affect it. The latter category includes most RISC ! machines. The implicit clobbering poses a strong restriction on the placement of the definition and use of the condition code. In the past the definition and use were always adjacent. However, recent changes to support trapping arithmatic may result in the definition and user being ! in different blocks. Thus, there may be a `NOTE_INSN_BASIC_BLOCK' between them. Additionally, the definition may be the source of exception handling edges. *************** represent the condition code for new por *** 32673,32682 **** condition code register in the machine, use a hard register. If the condition code or comparison result can be placed in any general register, or if there are multiple condition registers, use a pseudo ! register. Registers used to store the condition code value will usually ! have a mode that is in class 'MODE_CC'. ! Alternatively, you can use 'BImode' if the comparison operator is specified already in the compare instruction. In this case, you are not interested in most macros in this section. --- 33079,33088 ---- condition code register in the machine, use a hard register. If the condition code or comparison result can be placed in any general register, or if there are multiple condition registers, use a pseudo ! register. Registers used to store the condition code value will ! usually have a mode that is in class `MODE_CC'. ! Alternatively, you can use `BImode' if the comparison operator is specified already in the compare instruction. In this case, you are not interested in most macros in this section. *************** interested in most macros in this sectio *** 32688,32697 ****  File: gccint.info, Node: CC0 Condition Codes, Next: MODE_CC Condition Codes, Up: Condition Code ! 17.16.1 Representation of condition codes using '(cc0)' ------------------------------------------------------- ! The file 'conditions.h' defines a variable 'cc_status' to describe how the condition code was computed (in case the interpretation of the condition code depends on the instruction that it was set by). This variable contains the RTL expressions on which the condition code is --- 33094,33103 ----  File: gccint.info, Node: CC0 Condition Codes, Next: MODE_CC Condition Codes, Up: Condition Code ! 17.16.1 Representation of condition codes using `(cc0)' ------------------------------------------------------- ! The file `conditions.h' defines a variable `cc_status' to describe how the condition code was computed (in case the interpretation of the condition code depends on the instruction that it was set by). This variable contains the RTL expressions on which the condition code is *************** currently based, and several standard fl *** 32699,32754 **** Sometimes additional machine-specific flags must be defined in the machine description header file. It can also add additional ! machine-specific information by defining 'CC_STATUS_MDEP'. -- Macro: CC_STATUS_MDEP ! C code for a data type which is used for declaring the 'mdep' ! component of 'cc_status'. It defaults to 'int'. ! This macro is not used on machines that do not use 'cc0'. -- Macro: CC_STATUS_MDEP_INIT ! A C expression to initialize the 'mdep' field to "empty". The default definition does nothing, since most machines don't use the field anyway. If you want to use the field, you should probably define this macro to initialize it. ! This macro is not used on machines that do not use 'cc0'. -- Macro: NOTICE_UPDATE_CC (EXP, INSN) ! A C compound statement to set the components of 'cc_status' appropriately for an insn INSN whose body is EXP. It is this macro's responsibility to recognize insns that set the condition code as a byproduct of other activity as well as those that ! explicitly set '(cc0)'. ! This macro is not used on machines that do not use 'cc0'. If there are insns that do not set the condition code but do alter other machine registers, this macro must check to see whether they invalidate the expressions that the condition code is recorded as reflecting. For example, on the 68000, insns that store in address registers do not set the condition code, which means that usually ! 'NOTICE_UPDATE_CC' can leave 'cc_status' unaltered for such insns. But suppose that the previous insn set the condition code based on ! location 'a4@(102)' and the current insn stores a new value in ! 'a4'. Although the condition code is not changed by this, it will ! no longer be true that it reflects the contents of 'a4@(102)'. ! Therefore, 'NOTICE_UPDATE_CC' must alter 'cc_status' in this case to say that nothing is known about the condition code value. ! The definition of 'NOTICE_UPDATE_CC' must be prepared to deal with the results of peephole optimization: insns whose patterns are ! 'parallel' RTXs containing various 'reg', 'mem' or constants which are just the operands. The RTL structure of these insns is not sufficient to indicate what the insns actually do. What ! 'NOTICE_UPDATE_CC' should do when it sees one is just to run ! 'CC_STATUS_INIT'. ! A possible definition of 'NOTICE_UPDATE_CC' is to call a function that looks at an attribute (*note Insn Attributes::) named, for ! example, 'cc'. This avoids having detailed information about ! patterns in two places, the 'md' file and in 'NOTICE_UPDATE_CC'.  File: gccint.info, Node: MODE_CC Condition Codes, Prev: CC0 Condition Codes, Up: Condition Code --- 33105,33160 ---- Sometimes additional machine-specific flags must be defined in the machine description header file. It can also add additional ! machine-specific information by defining `CC_STATUS_MDEP'. -- Macro: CC_STATUS_MDEP ! C code for a data type which is used for declaring the `mdep' ! component of `cc_status'. It defaults to `int'. ! This macro is not used on machines that do not use `cc0'. -- Macro: CC_STATUS_MDEP_INIT ! A C expression to initialize the `mdep' field to "empty". The default definition does nothing, since most machines don't use the field anyway. If you want to use the field, you should probably define this macro to initialize it. ! This macro is not used on machines that do not use `cc0'. -- Macro: NOTICE_UPDATE_CC (EXP, INSN) ! A C compound statement to set the components of `cc_status' appropriately for an insn INSN whose body is EXP. It is this macro's responsibility to recognize insns that set the condition code as a byproduct of other activity as well as those that ! explicitly set `(cc0)'. ! This macro is not used on machines that do not use `cc0'. If there are insns that do not set the condition code but do alter other machine registers, this macro must check to see whether they invalidate the expressions that the condition code is recorded as reflecting. For example, on the 68000, insns that store in address registers do not set the condition code, which means that usually ! `NOTICE_UPDATE_CC' can leave `cc_status' unaltered for such insns. But suppose that the previous insn set the condition code based on ! location `a4@(102)' and the current insn stores a new value in ! `a4'. Although the condition code is not changed by this, it will ! no longer be true that it reflects the contents of `a4@(102)'. ! Therefore, `NOTICE_UPDATE_CC' must alter `cc_status' in this case to say that nothing is known about the condition code value. ! The definition of `NOTICE_UPDATE_CC' must be prepared to deal with the results of peephole optimization: insns whose patterns are ! `parallel' RTXs containing various `reg', `mem' or constants which are just the operands. The RTL structure of these insns is not sufficient to indicate what the insns actually do. What ! `NOTICE_UPDATE_CC' should do when it sees one is just to run ! `CC_STATUS_INIT'. ! A possible definition of `NOTICE_UPDATE_CC' is to call a function that looks at an attribute (*note Insn Attributes::) named, for ! example, `cc'. This avoids having detailed information about ! patterns in two places, the `md' file and in `NOTICE_UPDATE_CC'.  File: gccint.info, Node: MODE_CC Condition Codes, Prev: CC0 Condition Codes, Up: Condition Code *************** File: gccint.info, Node: MODE_CC Condit *** 32758,32780 **** -- Macro: SELECT_CC_MODE (OP, X, Y) On many machines, the condition code may be produced by other ! instructions than compares, for example the branch can use directly ! the condition code set by a subtract instruction. However, on some ! machines when the condition code is set this way some bits (such as ! the overflow bit) are not set in the same way as a test ! instruction, so that a different branch instruction must be used ! for some conditional branches. When this happens, use the machine ! mode of the condition code register to record different formats of ! the condition code register. Modes can also be used to record ! which compare instruction (e.g. a signed or an unsigned comparison) produced the condition codes. ! If other modes than 'CCmode' are required, add them to ! 'MACHINE-modes.def' and define 'SELECT_CC_MODE' to choose a mode given an operand of a compare. This is needed because the modes have to be chosen not only during RTL generation but also, for example, by instruction combination. The result of ! 'SELECT_CC_MODE' should be consistent with the mode used in the patterns; for example to support the case of the add on the SPARC discussed above, we have the pattern --- 33164,33186 ---- -- Macro: SELECT_CC_MODE (OP, X, Y) On many machines, the condition code may be produced by other ! instructions than compares, for example the branch can use ! directly the condition code set by a subtract instruction. ! However, on some machines when the condition code is set this way ! some bits (such as the overflow bit) are not set in the same way ! as a test instruction, so that a different branch instruction must ! be used for some conditional branches. When this happens, use the ! machine mode of the condition code register to record different ! formats of the condition code register. Modes can also be used to ! record which compare instruction (e.g. a signed or an unsigned comparison) produced the condition codes. ! If other modes than `CCmode' are required, add them to ! `MACHINE-modes.def' and define `SELECT_CC_MODE' to choose a mode given an operand of a compare. This is needed because the modes have to be chosen not only during RTL generation but also, for example, by instruction combination. The result of ! `SELECT_CC_MODE' should be consistent with the mode used in the patterns; for example to support the case of the add on the SPARC discussed above, we have the pattern *************** File: gccint.info, Node: MODE_CC Condit *** 32787,32794 **** "" "...") ! together with a 'SELECT_CC_MODE' that returns 'CC_NOOVmode' for ! comparisons whose argument is a 'plus': #define SELECT_CC_MODE(OP,X,Y) \ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ --- 33193,33200 ---- "" "...") ! together with a `SELECT_CC_MODE' that returns `CC_NOOVmode' for ! comparisons whose argument is a `plus': #define SELECT_CC_MODE(OP,X,Y) \ (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \ *************** File: gccint.info, Node: MODE_CC Condit *** 32799,32843 **** ? CC_NOOVmode : CCmode)) Another reason to use modes is to retain information on which ! operands were used by the comparison; see 'REVERSIBLE_CC_MODE' later in this section. You should define this macro if and only if you define extra CC ! modes in 'MACHINE-modes.def'. -- Target Hook: void TARGET_CANONICALIZE_COMPARISON (int *CODE, rtx *OP0, rtx *OP1, bool OP0_PRESERVE_VALUE) On some machines not all possible comparisons are defined, but you can convert an invalid comparison into a valid one. For example, ! the Alpha does not have a 'GT' comparison, but you can use an 'LT' comparison instead and swap the order of the operands. On such machines, implement this hook to do any required conversions. CODE is the initial comparison code and OP0 and OP1 are the left and right operands of the comparison, respectively. ! If OP0_PRESERVE_VALUE is 'true' the implementation is not allowed to change the value of OP0 since the value might be used in RTXs ! which aren't comparisons. E.g. the implementation is not allowed to swap operands in that case. GCC will not assume that the comparison resulting from this macro is valid but will see if the resulting insn matches a pattern in ! the 'md' file. You need not to implement this hook if it would never change the comparison code or operands. -- Macro: REVERSIBLE_CC_MODE (MODE) A C expression whose value is one if it is always safe to reverse a ! comparison whose mode is MODE. If 'SELECT_CC_MODE' can ever return ! MODE for a floating-point inequality comparison, then ! 'REVERSIBLE_CC_MODE (MODE)' must be zero. You need not define this macro if it would always returns zero or if the floating-point format is anything other than ! 'IEEE_FLOAT_FORMAT'. For example, here is the definition used on the SPARC, where floating-point inequality comparisons are given ! either 'CCFPEmode' or 'CCFPmode': #define REVERSIBLE_CC_MODE(MODE) \ ((MODE) != CCFPEmode && (MODE) != CCFPmode) --- 33205,33249 ---- ? CC_NOOVmode : CCmode)) Another reason to use modes is to retain information on which ! operands were used by the comparison; see `REVERSIBLE_CC_MODE' later in this section. You should define this macro if and only if you define extra CC ! modes in `MACHINE-modes.def'. -- Target Hook: void TARGET_CANONICALIZE_COMPARISON (int *CODE, rtx *OP0, rtx *OP1, bool OP0_PRESERVE_VALUE) On some machines not all possible comparisons are defined, but you can convert an invalid comparison into a valid one. For example, ! the Alpha does not have a `GT' comparison, but you can use an `LT' comparison instead and swap the order of the operands. On such machines, implement this hook to do any required conversions. CODE is the initial comparison code and OP0 and OP1 are the left and right operands of the comparison, respectively. ! If OP0_PRESERVE_VALUE is `true' the implementation is not allowed to change the value of OP0 since the value might be used in RTXs ! which aren't comparisons. E.g. the implementation is not allowed to swap operands in that case. GCC will not assume that the comparison resulting from this macro is valid but will see if the resulting insn matches a pattern in ! the `md' file. You need not to implement this hook if it would never change the comparison code or operands. -- Macro: REVERSIBLE_CC_MODE (MODE) A C expression whose value is one if it is always safe to reverse a ! comparison whose mode is MODE. If `SELECT_CC_MODE' can ever ! return MODE for a floating-point inequality comparison, then ! `REVERSIBLE_CC_MODE (MODE)' must be zero. You need not define this macro if it would always returns zero or if the floating-point format is anything other than ! `IEEE_FLOAT_FORMAT'. For example, here is the definition used on the SPARC, where floating-point inequality comparisons are given ! either `CCFPEmode' or `CCFPmode': #define REVERSIBLE_CC_MODE(MODE) \ ((MODE) != CCFPEmode && (MODE) != CCFPmode) *************** File: gccint.info, Node: MODE_CC Condit *** 32845,32855 **** -- Macro: REVERSE_CONDITION (CODE, MODE) A C expression whose value is reversed condition code of the CODE for comparison done in CC_MODE MODE. The macro is used only in ! case 'REVERSIBLE_CC_MODE (MODE)' is nonzero. Define this macro in case machine has some non-standard way how to reverse certain conditionals. For instance in case all floating point conditions ! are non-trapping, compiler may freely convert unordered compares to ! ordered ones. Then definition may look like: #define REVERSE_CONDITION(CODE, MODE) \ ((MODE) != CCFPmode ? reverse_condition (CODE) \ --- 33251,33261 ---- -- Macro: REVERSE_CONDITION (CODE, MODE) A C expression whose value is reversed condition code of the CODE for comparison done in CC_MODE MODE. The macro is used only in ! case `REVERSIBLE_CC_MODE (MODE)' is nonzero. Define this macro in case machine has some non-standard way how to reverse certain conditionals. For instance in case all floating point conditions ! are non-trapping, compiler may freely convert unordered compares ! to ordered ones. Then definition may look like: #define REVERSE_CONDITION(CODE, MODE) \ ((MODE) != CCFPmode ? reverse_condition (CODE) \ *************** File: gccint.info, Node: MODE_CC Condit *** 32857,32892 **** -- Target Hook: bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *P1, unsigned int *P2) ! On targets which do not use '(cc0)', and which use a hard register rather than a pseudo-register to hold condition codes, the regular CSE passes are often not able to identify cases in which the hard ! register is set to a common value. Use this hook to enable a small ! pass which optimizes such cases. This hook should return true to ! enable this pass, and it should set the integers to which its ! arguments point to the hard register numbers used for condition ! codes. When there is only one such register, as is true on most ! systems, the integer pointed to by P2 should be set to ! 'INVALID_REGNUM'. The default version of this hook returns false. -- Target Hook: enum machine_mode TARGET_CC_MODES_COMPATIBLE (enum machine_mode M1, enum machine_mode M2) On targets which use multiple condition code modes in class ! 'MODE_CC', it is sometimes the case that a comparison can be validly done in more than one mode. On such a system, define this target hook to take two mode arguments and to return a mode in which both comparisons may be validly done. If there is no such ! mode, return 'VOIDmode'. The default version of this hook checks whether the modes are the same. If they are, it returns that mode. If they are different, ! it returns 'VOIDmode'. -- Target Hook: unsigned int TARGET_FLAGS_REGNUM If the target has a dedicated flags register, and it needs to use ! the post-reload comparison elimination pass, then this value should ! be set appropriately.  File: gccint.info, Node: Costs, Next: Scheduling, Prev: Condition Code, Up: Target Macros --- 33263,33298 ---- -- Target Hook: bool TARGET_FIXED_CONDITION_CODE_REGS (unsigned int *P1, unsigned int *P2) ! On targets which do not use `(cc0)', and which use a hard register rather than a pseudo-register to hold condition codes, the regular CSE passes are often not able to identify cases in which the hard ! register is set to a common value. Use this hook to enable a ! small pass which optimizes such cases. This hook should return ! true to enable this pass, and it should set the integers to which ! its arguments point to the hard register numbers used for ! condition codes. When there is only one such register, as is true ! on most systems, the integer pointed to by P2 should be set to ! `INVALID_REGNUM'. The default version of this hook returns false. -- Target Hook: enum machine_mode TARGET_CC_MODES_COMPATIBLE (enum machine_mode M1, enum machine_mode M2) On targets which use multiple condition code modes in class ! `MODE_CC', it is sometimes the case that a comparison can be validly done in more than one mode. On such a system, define this target hook to take two mode arguments and to return a mode in which both comparisons may be validly done. If there is no such ! mode, return `VOIDmode'. The default version of this hook checks whether the modes are the same. If they are, it returns that mode. If they are different, ! it returns `VOIDmode'. -- Target Hook: unsigned int TARGET_FLAGS_REGNUM If the target has a dedicated flags register, and it needs to use ! the post-reload comparison elimination pass, then this value ! should be set appropriately.  File: gccint.info, Node: Costs, Next: Scheduling, Prev: Condition Code, Up: Target Macros *************** on the target machine. *** 32900,32906 **** -- Macro: REGISTER_MOVE_COST (MODE, FROM, TO) A C expression for the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as 'GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. --- 33306,33312 ---- -- Macro: REGISTER_MOVE_COST (MODE, FROM, TO) A C expression for the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as `GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. *************** on the target machine. *** 32908,32929 **** same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single 'set' between two ! hard registers, and if 'REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the 'movM' pattern's constraints do not allow such copying. These macros are obsolete, new ports should use the target hook ! 'TARGET_REGISTER_MOVE_COST' instead. -- Target Hook: int TARGET_REGISTER_MOVE_COST (enum machine_mode MODE, reg_class_t FROM, reg_class_t TO) This target hook should return the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as 'GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. --- 33314,33335 ---- same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single `set' between two ! hard registers, and if `REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the `movM' pattern's constraints do not allow such copying. These macros are obsolete, new ports should use the target hook ! `TARGET_REGISTER_MOVE_COST' instead. -- Target Hook: int TARGET_REGISTER_MOVE_COST (enum machine_mode MODE, reg_class_t FROM, reg_class_t TO) This target hook should return the cost of moving data of mode MODE from a register in class FROM to one in class TO. The classes are ! expressed using the enumeration values such as `GENERAL_REGS'. A value of 2 is the default; other values are interpreted relative to that. *************** on the target machine. *** 32931,32942 **** same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single 'set' between two ! hard registers, and if 'TARGET_REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the 'movM' pattern's constraints do not allow such copying. The default version of this function returns 2. --- 33337,33348 ---- same as TO; on some machines it is expensive to move between registers if they are not general registers. ! If reload sees an insn consisting of a single `set' between two ! hard registers, and if `TARGET_REGISTER_MOVE_COST' applied to their classes returns a value of 2, reload does not check to ensure that the constraints of the insn are met. Setting a cost of other than 2 will allow reload to verify that the constraints are met. You ! should do this if the `movM' pattern's constraints do not allow such copying. The default version of this function returns 2. *************** on the target machine. *** 32944,32951 **** -- Macro: MEMORY_MOVE_COST (MODE, CLASS, IN) A C expression for the cost of moving data of mode MODE between a register of class CLASS and memory; IN is zero if the value is to ! be written to memory, nonzero if it is to be read in. This cost is ! relative to those in 'REGISTER_MOVE_COST'. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. --- 33350,33357 ---- -- Macro: MEMORY_MOVE_COST (MODE, CLASS, IN) A C expression for the cost of moving data of mode MODE between a register of class CLASS and memory; IN is zero if the value is to ! be written to memory, nonzero if it is to be read in. This cost ! is relative to those in `REGISTER_MOVE_COST'. If moving between registers and memory is more expensive than between two registers, you should define this macro to express the relative cost. *************** on the target machine. *** 32956,32981 **** mechanism is more complex than copying via an intermediate, define this macro to reflect the actual cost of the move. ! GCC defines the function 'memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base value of 4 is not correct for your machine, define this macro to ! add some other value to the result of that function. The arguments ! to that function are the same as to this macro. These macros are obsolete, new ports should use the target hook ! 'TARGET_MEMORY_MOVE_COST' instead. -- Target Hook: int TARGET_MEMORY_MOVE_COST (enum machine_mode MODE, reg_class_t RCLASS, bool IN) This target hook should return the cost of moving data of mode MODE ! between a register of class RCLASS and memory; IN is 'false' if the ! value is to be written to memory, 'true' if it is to be read in. ! This cost is relative to those in 'TARGET_REGISTER_MOVE_COST'. If ! moving between registers and memory is more expensive than between ! two registers, you should add this target hook to express the ! relative cost. If you do not add this target hook, GCC uses a default cost of 4 plus the cost of copying via a secondary reload register, if one is --- 33362,33387 ---- mechanism is more complex than copying via an intermediate, define this macro to reflect the actual cost of the move. ! GCC defines the function `memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base value of 4 is not correct for your machine, define this macro to ! add some other value to the result of that function. The ! arguments to that function are the same as to this macro. These macros are obsolete, new ports should use the target hook ! `TARGET_MEMORY_MOVE_COST' instead. -- Target Hook: int TARGET_MEMORY_MOVE_COST (enum machine_mode MODE, reg_class_t RCLASS, bool IN) This target hook should return the cost of moving data of mode MODE ! between a register of class RCLASS and memory; IN is `false' if ! the value is to be written to memory, `true' if it is to be read ! in. This cost is relative to those in `TARGET_REGISTER_MOVE_COST'. ! If moving between registers and memory is more expensive than ! between two registers, you should add this target hook to express ! the relative cost. If you do not add this target hook, GCC uses a default cost of 4 plus the cost of copying via a secondary reload register, if one is *************** on the target machine. *** 32984,33005 **** mechanism is more complex than copying via an intermediate, use this target hook to reflect the actual cost of the move. ! GCC defines the function 'memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base ! value of 4 is not correct for your machine, use this target hook to ! add some other value to the result of that function. The arguments ! to that function are the same as to this target hook. -- Macro: BRANCH_COST (SPEED_P, PREDICTABLE_P) A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. Parameter SPEED_P is true when the branch in question should be ! optimized for speed. When it is false, 'BRANCH_COST' should return ! a value optimal for code size rather than performance. ! PREDICTABLE_P is true for well-predicted branches. On many ! architectures the 'BRANCH_COST' can be reduced then. Here are additional macros which do not specify precise relative costs, but only that certain actions are more expensive than GCC would --- 33390,33411 ---- mechanism is more complex than copying via an intermediate, use this target hook to reflect the actual cost of the move. ! GCC defines the function `memory_move_secondary_cost' if secondary reloads are needed. It computes the costs due to copying via a secondary register. If your machine copies from memory using a secondary register in the conventional way but the default base ! value of 4 is not correct for your machine, use this target hook ! to add some other value to the result of that function. The ! arguments to that function are the same as to this target hook. -- Macro: BRANCH_COST (SPEED_P, PREDICTABLE_P) A C expression for the cost of a branch instruction. A value of 1 is the default; other values are interpreted relative to that. Parameter SPEED_P is true when the branch in question should be ! optimized for speed. When it is false, `BRANCH_COST' should ! return a value optimal for code size rather than performance. ! PREDICTABLE_P is true for well-predicted branches. On many ! architectures the `BRANCH_COST' can be reduced then. Here are additional macros which do not specify precise relative costs, but only that certain actions are more expensive than GCC would *************** ordinarily expect. *** 33007,33013 **** -- Macro: SLOW_BYTE_ACCESS Define this macro as a C expression which is nonzero if accessing ! less than a word of memory (i.e. a 'char' or a 'short') is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads. --- 33413,33419 ---- -- Macro: SLOW_BYTE_ACCESS Define this macro as a C expression which is nonzero if accessing ! less than a word of memory (i.e. a `char' or a `short') is no faster than accessing a word of memory, i.e., if such access require more than one instruction or if there is no difference in cost between byte and (aligned) word loads. *************** ordinarily expect. *** 33021,33040 **** structure, but to different bytes. -- Macro: SLOW_UNALIGNED_ACCESS (MODE, ALIGNMENT) ! Define this macro to be the value 1 if memory accesses described by ! the MODE and ALIGNMENT parameters have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler. When this macro is nonzero, the compiler will act as if ! 'STRICT_ALIGNMENT' were nonzero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro nonzero if unaligned accesses only add a cycle or two to the time for a memory access. If the value of this macro is always zero, it need not be defined. If this macro is defined, it should produce a nonzero value when ! 'STRICT_ALIGNMENT' is nonzero. -- Macro: MOVE_RATIO (SPEED) The threshold of number of scalar memory-to-memory move insns, --- 33427,33446 ---- structure, but to different bytes. -- Macro: SLOW_UNALIGNED_ACCESS (MODE, ALIGNMENT) ! Define this macro to be the value 1 if memory accesses described ! by the MODE and ALIGNMENT parameters have a cost many times greater than aligned accesses, for example if they are emulated in a trap handler. When this macro is nonzero, the compiler will act as if ! `STRICT_ALIGNMENT' were nonzero when generating code for block moves. This can cause significantly more instructions to be produced. Therefore, do not set this macro nonzero if unaligned accesses only add a cycle or two to the time for a memory access. If the value of this macro is always zero, it need not be defined. If this macro is defined, it should produce a nonzero value when ! `STRICT_ALIGNMENT' is nonzero. -- Macro: MOVE_RATIO (SPEED) The threshold of number of scalar memory-to-memory move insns, *************** ordinarily expect. *** 33044,33050 **** increased code size. Note that on machines where the corresponding move insn is a ! 'define_expand' that emits a sequence of insns, this macro counts the number of such sequences. The parameter SPEED is true if the code is currently being --- 33450,33456 ---- increased code size. Note that on machines where the corresponding move insn is a ! `define_expand' that emits a sequence of insns, this macro counts the number of such sequences. The parameter SPEED is true if the code is currently being *************** ordinarily expect. *** 33053,33067 **** If you don't define this, a reasonable default is used. -- Macro: MOVE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'move_by_pieces' will be used to copy a chunk of memory, or whether some other block move ! mechanism will be used. Defaults to 1 if 'move_by_pieces_ninsns' ! returns less than 'MOVE_RATIO'. -- Macro: MOVE_MAX_PIECES ! A C expression used by 'move_by_pieces' to determine the largest unit a load or store used to copy memory is. Defaults to ! 'MOVE_MAX'. -- Macro: CLEAR_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a --- 33459,33473 ---- If you don't define this, a reasonable default is used. -- Macro: MOVE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `move_by_pieces' will be used to copy a chunk of memory, or whether some other block move ! mechanism will be used. Defaults to 1 if `move_by_pieces_ninsns' ! returns less than `MOVE_RATIO'. -- Macro: MOVE_MAX_PIECES ! A C expression used by `move_by_pieces' to determine the largest unit a load or store used to copy memory is. Defaults to ! `MOVE_MAX'. -- Macro: CLEAR_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a *************** ordinarily expect. *** 33076,33085 **** If you don't define this, a reasonable default is used. -- Macro: CLEAR_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'clear_by_pieces' will be used to clear a chunk of memory, or whether some other block clear ! mechanism will be used. Defaults to 1 if 'move_by_pieces_ninsns' ! returns less than 'CLEAR_RATIO'. -- Macro: SET_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a --- 33482,33491 ---- If you don't define this, a reasonable default is used. -- Macro: CLEAR_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `clear_by_pieces' will be used to clear a chunk of memory, or whether some other block clear ! mechanism will be used. Defaults to 1 if `move_by_pieces_ninsns' ! returns less than `CLEAR_RATIO'. -- Macro: SET_RATIO (SPEED) The threshold of number of scalar move insns, _below_ which a *************** ordinarily expect. *** 33091,33152 **** The parameter SPEED is true if the code is currently being optimized for speed rather than size. ! If you don't define this, it defaults to the value of 'MOVE_RATIO'. -- Macro: SET_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'store_by_pieces' will be used to set a chunk of memory to a constant value, or whether some ! other mechanism will be used. Used by '__builtin_memset' when storing values other than constant zero. Defaults to 1 if ! 'move_by_pieces_ninsns' returns less than 'SET_RATIO'. -- Macro: STORE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether 'store_by_pieces' will be used to set a chunk of memory to a constant string value, or whether some other mechanism will be used. Used by ! '__builtin_strcpy' when called with a constant source string. ! Defaults to 1 if 'move_by_pieces_ninsns' returns less than ! 'MOVE_RATIO'. -- Macro: USE_LOAD_POST_INCREMENT (MODE) A C expression used to determine whether a load postincrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_INCREMENT'. -- Macro: USE_LOAD_POST_DECREMENT (MODE) A C expression used to determine whether a load postdecrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_DECREMENT'. -- Macro: USE_LOAD_PRE_INCREMENT (MODE) A C expression used to determine whether a load preincrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_INCREMENT'. -- Macro: USE_LOAD_PRE_DECREMENT (MODE) A C expression used to determine whether a load predecrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_DECREMENT'. -- Macro: USE_STORE_POST_INCREMENT (MODE) ! A C expression used to determine whether a store postincrement is a ! good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_INCREMENT'. -- Macro: USE_STORE_POST_DECREMENT (MODE) ! A C expression used to determine whether a store postdecrement is a ! good thing to use for a given mode. Defaults to the value of ! 'HAVE_POST_DECREMENT'. -- Macro: USE_STORE_PRE_INCREMENT (MODE) This macro is used to determine whether a store preincrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_INCREMENT'. -- Macro: USE_STORE_PRE_DECREMENT (MODE) This macro is used to determine whether a store predecrement is a good thing to use for a given mode. Defaults to the value of ! 'HAVE_PRE_DECREMENT'. -- Macro: NO_FUNCTION_CSE Define this macro if it is as good or better to call a constant --- 33497,33558 ---- The parameter SPEED is true if the code is currently being optimized for speed rather than size. ! If you don't define this, it defaults to the value of `MOVE_RATIO'. -- Macro: SET_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `store_by_pieces' will be used to set a chunk of memory to a constant value, or whether some ! other mechanism will be used. Used by `__builtin_memset' when storing values other than constant zero. Defaults to 1 if ! `move_by_pieces_ninsns' returns less than `SET_RATIO'. -- Macro: STORE_BY_PIECES_P (SIZE, ALIGNMENT) ! A C expression used to determine whether `store_by_pieces' will be used to set a chunk of memory to a constant string value, or whether some other mechanism will be used. Used by ! `__builtin_strcpy' when called with a constant source string. ! Defaults to 1 if `move_by_pieces_ninsns' returns less than ! `MOVE_RATIO'. -- Macro: USE_LOAD_POST_INCREMENT (MODE) A C expression used to determine whether a load postincrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_INCREMENT'. -- Macro: USE_LOAD_POST_DECREMENT (MODE) A C expression used to determine whether a load postdecrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_DECREMENT'. -- Macro: USE_LOAD_PRE_INCREMENT (MODE) A C expression used to determine whether a load preincrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_INCREMENT'. -- Macro: USE_LOAD_PRE_DECREMENT (MODE) A C expression used to determine whether a load predecrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_DECREMENT'. -- Macro: USE_STORE_POST_INCREMENT (MODE) ! A C expression used to determine whether a store postincrement is ! a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_INCREMENT'. -- Macro: USE_STORE_POST_DECREMENT (MODE) ! A C expression used to determine whether a store postdecrement is ! a good thing to use for a given mode. Defaults to the value of ! `HAVE_POST_DECREMENT'. -- Macro: USE_STORE_PRE_INCREMENT (MODE) This macro is used to determine whether a store preincrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_INCREMENT'. -- Macro: USE_STORE_PRE_DECREMENT (MODE) This macro is used to determine whether a store predecrement is a good thing to use for a given mode. Defaults to the value of ! `HAVE_PRE_DECREMENT'. -- Macro: NO_FUNCTION_CSE Define this macro if it is as good or better to call a constant *************** ordinarily expect. *** 33154,33203 **** -- Macro: LOGICAL_OP_NON_SHORT_CIRCUIT Define this macro if a non-short-circuit operation produced by ! 'fold_range_test ()' is optimal. This macro defaults to true if ! 'BRANCH_COST' is greater than or equal to the value 2. ! -- Target Hook: bool TARGET_RTX_COSTS (rtx X, int CODE, int OUTER_CODE, ! int OPNO, int *TOTAL, bool SPEED) This target hook describes the relative costs of RTL expressions. The cost may depend on the precise form of the expression, which is available for examination in X, and the fact that X appears as operand OPNO of an expression with rtx code OUTER_CODE. That is, ! the hook can assume that there is some rtx Y such that 'GET_CODE ! (Y) == OUTER_CODE' and such that either (a) 'XEXP (Y, OPNO) == X' ! or (b) 'XVEC (Y, OPNO)' contains X. CODE is X's expression code--redundant, since it can be obtained ! with 'GET_CODE (X)'. ! In implementing this hook, you can use the construct 'COSTS_N_INSNS ! (N)' to specify a cost equal to N fast instructions. ! On entry to the hook, '*TOTAL' contains a default estimate for the cost of the expression. The hook should modify this value as ! necessary. Traditionally, the default costs are 'COSTS_N_INSNS ! (5)' for multiplications, 'COSTS_N_INSNS (7)' for division and ! modulus operations, and 'COSTS_N_INSNS (1)' for all other operations. ! When optimizing for code size, i.e. when 'speed' is false, this ! target hook should be used to estimate the relative size cost of an ! expression, again relative to 'COSTS_N_INSNS'. The hook returns true when all subexpressions of X have been ! processed, and false when 'rtx_cost' should recurse. ! -- Target Hook: int TARGET_ADDRESS_COST (rtx ADDRESS, enum machine_mode ! MODE, addr_space_t AS, bool SPEED) This hook computes the cost of an addressing mode that contains ADDRESS. If not defined, the cost is computed from the ADDRESS ! expression and the 'TARGET_RTX_COST' hook. ! For most CISC machines, the default cost is a good approximation of ! the true cost of the addressing mode. However, on RISC machines, ! all instructions normally have the same length and execution time. ! Hence all addresses will have equal costs. In cases where more than one form of an address is known, the form with the lowest cost will be used. If multiple forms have the --- 33560,33609 ---- -- Macro: LOGICAL_OP_NON_SHORT_CIRCUIT Define this macro if a non-short-circuit operation produced by ! `fold_range_test ()' is optimal. This macro defaults to true if ! `BRANCH_COST' is greater than or equal to the value 2. ! -- Target Hook: bool TARGET_RTX_COSTS (rtx X, int CODE, int ! OUTER_CODE, int OPNO, int *TOTAL, bool SPEED) This target hook describes the relative costs of RTL expressions. The cost may depend on the precise form of the expression, which is available for examination in X, and the fact that X appears as operand OPNO of an expression with rtx code OUTER_CODE. That is, ! the hook can assume that there is some rtx Y such that `GET_CODE ! (Y) == OUTER_CODE' and such that either (a) `XEXP (Y, OPNO) == X' ! or (b) `XVEC (Y, OPNO)' contains X. CODE is X's expression code--redundant, since it can be obtained ! with `GET_CODE (X)'. ! In implementing this hook, you can use the construct ! `COSTS_N_INSNS (N)' to specify a cost equal to N fast instructions. ! On entry to the hook, `*TOTAL' contains a default estimate for the cost of the expression. The hook should modify this value as ! necessary. Traditionally, the default costs are `COSTS_N_INSNS ! (5)' for multiplications, `COSTS_N_INSNS (7)' for division and ! modulus operations, and `COSTS_N_INSNS (1)' for all other operations. ! When optimizing for code size, i.e. when `speed' is false, this ! target hook should be used to estimate the relative size cost of ! an expression, again relative to `COSTS_N_INSNS'. The hook returns true when all subexpressions of X have been ! processed, and false when `rtx_cost' should recurse. ! -- Target Hook: int TARGET_ADDRESS_COST (rtx ADDRESS, enum ! machine_mode MODE, addr_space_t AS, bool SPEED) This hook computes the cost of an addressing mode that contains ADDRESS. If not defined, the cost is computed from the ADDRESS ! expression and the `TARGET_RTX_COST' hook. ! For most CISC machines, the default cost is a good approximation ! of the true cost of the addressing mode. However, on RISC ! machines, all instructions normally have the same length and ! execution time. Hence all addresses will have equal costs. In cases where more than one form of an address is known, the form with the lowest cost will be used. If multiple forms have the *************** ordinarily expect. *** 33209,33228 **** register and memory references will be indirect through that register. On machines where the cost of the addressing mode containing the sum is no higher than that of a simple indirect ! reference, this will produce an additional instruction and possibly ! require an additional register. Proper specification of this macro ! eliminates this overhead for such machines. This hook is never called with an invalid address. On machines where an address involving more than one register is as cheap as an address computation involving only one register, ! defining 'TARGET_ADDRESS_COST' to reflect this can cause two registers to be live over a region of code where only one would ! have been if 'TARGET_ADDRESS_COST' were not defined in that manner. ! This effect should be considered in the definition of this macro. ! Equivalent costs should probably only be given to addresses with ! different numbers of registers on machines with lots of registers.  File: gccint.info, Node: Scheduling, Next: Sections, Prev: Costs, Up: Target Macros --- 33615,33635 ---- register and memory references will be indirect through that register. On machines where the cost of the addressing mode containing the sum is no higher than that of a simple indirect ! reference, this will produce an additional instruction and ! possibly require an additional register. Proper specification of ! this macro eliminates this overhead for such machines. This hook is never called with an invalid address. On machines where an address involving more than one register is as cheap as an address computation involving only one register, ! defining `TARGET_ADDRESS_COST' to reflect this can cause two registers to be live over a region of code where only one would ! have been if `TARGET_ADDRESS_COST' were not defined in that ! manner. This effect should be considered in the definition of ! this macro. Equivalent costs should probably only be given to ! addresses with different numbers of registers on machines with ! lots of registers.  File: gccint.info, Node: Scheduling, Next: Sections, Prev: Costs, Up: Target Macros *************** them: try the first ones in this list fi *** 33241,33263 **** Although the insn scheduler can define itself the possibility of issue an insn on the same cycle, the value can serve as an additional constraint to issue insns on the same simulated ! processor cycle (see hooks 'TARGET_SCHED_REORDER' and ! 'TARGET_SCHED_REORDER2'). This value must be constant over the entire compilation. If you need it to vary depending on what the ! instructions are, you must use 'TARGET_SCHED_VARIABLE_ISSUE'. -- Target Hook: int TARGET_SCHED_VARIABLE_ISSUE (FILE *FILE, int VERBOSE, rtx INSN, int MORE) This hook is executed by the scheduler after it has scheduled an insn from the ready list. It should return the number of insns which can still be issued in the current cycle. The default is ! 'MORE - 1' for insns other than 'CLOBBER' and 'USE', which normally ! are not counted against the issue rate. You should define this ! hook if some insns take more machine resources than others, so that ! fewer insns can follow them in the same cycle. FILE is either a ! null pointer, or a stdio stream to write any debug output to. ! VERBOSE is the verbose level provided by '-fsched-verbose-N'. INSN ! is the instruction that was scheduled. -- Target Hook: int TARGET_SCHED_ADJUST_COST (rtx INSN, rtx LINK, rtx DEP_INSN, int COST) --- 33648,33670 ---- Although the insn scheduler can define itself the possibility of issue an insn on the same cycle, the value can serve as an additional constraint to issue insns on the same simulated ! processor cycle (see hooks `TARGET_SCHED_REORDER' and ! `TARGET_SCHED_REORDER2'). This value must be constant over the entire compilation. If you need it to vary depending on what the ! instructions are, you must use `TARGET_SCHED_VARIABLE_ISSUE'. -- Target Hook: int TARGET_SCHED_VARIABLE_ISSUE (FILE *FILE, int VERBOSE, rtx INSN, int MORE) This hook is executed by the scheduler after it has scheduled an insn from the ready list. It should return the number of insns which can still be issued in the current cycle. The default is ! `MORE - 1' for insns other than `CLOBBER' and `USE', which ! normally are not counted against the issue rate. You should ! define this hook if some insns take more machine resources than ! others, so that fewer insns can follow them in the same cycle. ! FILE is either a null pointer, or a stdio stream to write any ! debug output to. VERBOSE is the verbose level provided by ! `-fsched-verbose-N'. INSN is the instruction that was scheduled. -- Target Hook: int TARGET_SCHED_ADJUST_COST (rtx INSN, rtx LINK, rtx DEP_INSN, int COST) *************** them: try the first ones in this list fi *** 33276,33326 **** -- Target Hook: int TARGET_SCHED_ADJUST_PRIORITY (rtx INSN, int PRIORITY) ! This hook adjusts the integer scheduling priority PRIORITY of INSN. ! It should return the new priority. Increase the priority to execute INSN earlier, reduce the priority to execute INSN later. ! Do not define this hook if you do not need to adjust the scheduling ! priorities of insns. -- Target Hook: int TARGET_SCHED_REORDER (FILE *FILE, int VERBOSE, rtx *READY, int *N_READYP, int CLOCK) This hook is executed by the scheduler after it has scheduled the ready list, to allow the machine description to reorder it (for ! example to combine two small instructions together on 'VLIW' machines). FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level provided ! by '-fsched-verbose-N'. READY is a pointer to the ready list of ! instructions that are ready to be scheduled. N_READYP is a pointer ! to the number of elements in the ready list. The scheduler reads ! the ready list in reverse order, starting with READY[*N_READYP - 1] ! and going to READY[0]. CLOCK is the timer tick of the scheduler. ! You may modify the ready list and the number of ready insns. The ! return value is the number of insns that can issue this cycle; ! normally this is just 'issue_rate'. See also ! 'TARGET_SCHED_REORDER2'. ! -- Target Hook: int TARGET_SCHED_REORDER2 (FILE *FILE, int VERBOSE, rtx ! *READY, int *N_READYP, int CLOCK) ! Like 'TARGET_SCHED_REORDER', but called at a different time. That ! function is called whenever the scheduler starts a new cycle. This ! one is called once per iteration over a cycle, immediately after ! 'TARGET_SCHED_VARIABLE_ISSUE'; it can reorder the ready list and ! return the number of insns to be scheduled in the same cycle. Defining this hook can be useful if there are frequent situations ! where scheduling one insn causes other insns to become ready in the ! same cycle. These other insns can then be taken into account properly. -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_P (void) This hook is used to check whether target platform supports macro fusion. ! -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_PAIR_P (rtx CONDGEN, rtx ! CONDJMP) This hook is used to check whether two insns could be macro fused ! for target microarchitecture. If this hook returns true for the ! given insn pair (CONDGEN and CONDJMP), scheduler will put them into ! a sched group, and they will not be scheduled apart. -- Target Hook: void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx HEAD, rtx TAIL) --- 33683,33733 ---- -- Target Hook: int TARGET_SCHED_ADJUST_PRIORITY (rtx INSN, int PRIORITY) ! This hook adjusts the integer scheduling priority PRIORITY of ! INSN. It should return the new priority. Increase the priority to execute INSN earlier, reduce the priority to execute INSN later. ! Do not define this hook if you do not need to adjust the ! scheduling priorities of insns. -- Target Hook: int TARGET_SCHED_REORDER (FILE *FILE, int VERBOSE, rtx *READY, int *N_READYP, int CLOCK) This hook is executed by the scheduler after it has scheduled the ready list, to allow the machine description to reorder it (for ! example to combine two small instructions together on `VLIW' machines). FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level provided ! by `-fsched-verbose-N'. READY is a pointer to the ready list of ! instructions that are ready to be scheduled. N_READYP is a ! pointer to the number of elements in the ready list. The scheduler ! reads the ready list in reverse order, starting with ! READY[*N_READYP - 1] and going to READY[0]. CLOCK is the timer ! tick of the scheduler. You may modify the ready list and the ! number of ready insns. The return value is the number of insns ! that can issue this cycle; normally this is just `issue_rate'. ! See also `TARGET_SCHED_REORDER2'. ! -- Target Hook: int TARGET_SCHED_REORDER2 (FILE *FILE, int VERBOSE, ! rtx *READY, int *N_READYP, int CLOCK) ! Like `TARGET_SCHED_REORDER', but called at a different time. That ! function is called whenever the scheduler starts a new cycle. ! This one is called once per iteration over a cycle, immediately ! after `TARGET_SCHED_VARIABLE_ISSUE'; it can reorder the ready list ! and return the number of insns to be scheduled in the same cycle. Defining this hook can be useful if there are frequent situations ! where scheduling one insn causes other insns to become ready in ! the same cycle. These other insns can then be taken into account properly. -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_P (void) This hook is used to check whether target platform supports macro fusion. ! -- Target Hook: bool TARGET_SCHED_MACRO_FUSION_PAIR_P (rtx CONDGEN, ! rtx CONDJMP) This hook is used to check whether two insns could be macro fused ! for target microarchitecture. If this hook returns true for the ! given insn pair (CONDGEN and CONDJMP), scheduler will put them ! into a sched group, and they will not be scheduled apart. -- Target Hook: void TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK (rtx HEAD, rtx TAIL) *************** them: try the first ones in this list fi *** 33337,33369 **** This hook is executed by the scheduler at the beginning of each block of instructions that are to be scheduled. FILE is either a null pointer, or a stdio stream to write any debug output to. ! VERBOSE is the verbose level provided by '-fsched-verbose-N'. MAX_READY is the maximum number of insns in the current scheduling region that can be live at the same time. This can be used to allocate scratch space if it is needed, e.g. by ! 'TARGET_SCHED_REORDER'. -- Target Hook: void TARGET_SCHED_FINISH (FILE *FILE, int VERBOSE) This hook is executed by the scheduler at the end of each block of instructions that are to be scheduled. It can be used to perform ! cleanup of any actions done by the other scheduling hooks. FILE is ! either a null pointer, or a stdio stream to write any debug output ! to. VERBOSE is the verbose level provided by '-fsched-verbose-N'. ! -- Target Hook: void TARGET_SCHED_INIT_GLOBAL (FILE *FILE, int VERBOSE, ! int OLD_MAX_UID) This hook is executed by the scheduler after function level initializations. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level ! provided by '-fsched-verbose-N'. OLD_MAX_UID is the maximum insn uid when scheduling begins. -- Target Hook: void TARGET_SCHED_FINISH_GLOBAL (FILE *FILE, int VERBOSE) This is the cleanup hook corresponding to ! 'TARGET_SCHED_INIT_GLOBAL'. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose ! level provided by '-fsched-verbose-N'. -- Target Hook: rtx TARGET_SCHED_DFA_PRE_CYCLE_INSN (void) The hook returns an RTL insn. The automaton state used in the --- 33744,33777 ---- This hook is executed by the scheduler at the beginning of each block of instructions that are to be scheduled. FILE is either a null pointer, or a stdio stream to write any debug output to. ! VERBOSE is the verbose level provided by `-fsched-verbose-N'. MAX_READY is the maximum number of insns in the current scheduling region that can be live at the same time. This can be used to allocate scratch space if it is needed, e.g. by ! `TARGET_SCHED_REORDER'. -- Target Hook: void TARGET_SCHED_FINISH (FILE *FILE, int VERBOSE) This hook is executed by the scheduler at the end of each block of instructions that are to be scheduled. It can be used to perform ! cleanup of any actions done by the other scheduling hooks. FILE ! is either a null pointer, or a stdio stream to write any debug ! output to. VERBOSE is the verbose level provided by ! `-fsched-verbose-N'. ! -- Target Hook: void TARGET_SCHED_INIT_GLOBAL (FILE *FILE, int ! VERBOSE, int OLD_MAX_UID) This hook is executed by the scheduler after function level initializations. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose level ! provided by `-fsched-verbose-N'. OLD_MAX_UID is the maximum insn uid when scheduling begins. -- Target Hook: void TARGET_SCHED_FINISH_GLOBAL (FILE *FILE, int VERBOSE) This is the cleanup hook corresponding to ! `TARGET_SCHED_INIT_GLOBAL'. FILE is either a null pointer, or a stdio stream to write any debug output to. VERBOSE is the verbose ! level provided by `-fsched-verbose-N'. -- Target Hook: rtx TARGET_SCHED_DFA_PRE_CYCLE_INSN (void) The hook returns an RTL insn. The automaton state used in the *************** them: try the first ones in this list fi *** 33371,33402 **** when the new simulated processor cycle starts. Usage of the hook may simplify the automaton pipeline description for some VLIW processors. If the hook is defined, it is used only for the ! automaton based pipeline description. The default is not to change ! the state when the new simulated processor cycle starts. -- Target Hook: void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void) The hook can be used to initialize data used by the previous hook. -- Target Hook: rtx TARGET_SCHED_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to changed the state as if the insn were scheduled when the new simulated processor cycle finishes. -- Target Hook: void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to 'TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN' but used to initialize data used by the previous hook. -- Target Hook: void TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE (void) ! The hook to notify target that the current simulated cycle is about ! to finish. The hook is analogous to ! 'TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. -- Target Hook: void TARGET_SCHED_DFA_POST_ADVANCE_CYCLE (void) The hook to notify target that new simulated cycle has just started. The hook is analogous to ! 'TARGET_SCHED_DFA_POST_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. --- 33779,33810 ---- when the new simulated processor cycle starts. Usage of the hook may simplify the automaton pipeline description for some VLIW processors. If the hook is defined, it is used only for the ! automaton based pipeline description. The default is not to ! change the state when the new simulated processor cycle starts. -- Target Hook: void TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN (void) The hook can be used to initialize data used by the previous hook. -- Target Hook: rtx TARGET_SCHED_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to `TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to changed the state as if the insn were scheduled when the new simulated processor cycle finishes. -- Target Hook: void TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN (void) ! The hook is analogous to `TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN' but used to initialize data used by the previous hook. -- Target Hook: void TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE (void) ! The hook to notify target that the current simulated cycle is ! about to finish. The hook is analogous to ! `TARGET_SCHED_DFA_PRE_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. -- Target Hook: void TARGET_SCHED_DFA_POST_ADVANCE_CYCLE (void) The hook to notify target that new simulated cycle has just started. The hook is analogous to ! `TARGET_SCHED_DFA_POST_CYCLE_INSN' but used to change the state in more complicated situations - e.g., when advancing state on a single insn is not enough. *************** them: try the first ones in this list fi *** 33405,33417 **** This hook controls better choosing an insn from the ready insn queue for the DFA-based insn scheduler. Usually the scheduler chooses the first insn from the queue. If the hook returns a ! positive value, an additional scheduler code tries all permutations ! of 'TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ()' subsequent ! ready insns to choose an insn whose issue will result in maximal ! number of issued insns on the same cycle. For the VLIW processor, ! the code could actually solve the problem of packing simple insns ! into the VLIW insn. Of course, if the rules of VLIW packing are ! described in the automaton. This code also could be used for superscalar RISC processors. Let us consider a superscalar RISC processor with 3 pipelines. Some --- 33813,33825 ---- This hook controls better choosing an insn from the ready insn queue for the DFA-based insn scheduler. Usually the scheduler chooses the first insn from the queue. If the hook returns a ! positive value, an additional scheduler code tries all ! permutations of `TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD ! ()' subsequent ready insns to choose an insn whose issue will ! result in maximal number of issued insns on the same cycle. For ! the VLIW processor, the code could actually solve the problem of ! packing simple insns into the VLIW insn. Of course, if the rules ! of VLIW packing are described in the automaton. This code also could be used for superscalar RISC processors. Let us consider a superscalar RISC processor with 3 pipelines. Some *************** them: try the first ones in this list fi *** 33429,33437 **** The default is no multipass scheduling. -- Target Hook: int ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx ! INSN) ! This hook controls what insns from the ready insn queue will be considered for the multipass insn scheduling. If the hook returns zero for INSN, the insn will be not chosen to be issued. --- 33837,33843 ---- The default is no multipass scheduling. -- Target Hook: int ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD (rtx INSN) This hook controls what insns from the ready insn queue will be considered for the multipass insn scheduling. If the hook returns zero for INSN, the insn will be not chosen to be issued. *************** them: try the first ones in this list fi *** 33446,33461 **** -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE (void *DATA, char *READY_TRY, int N_READY, rtx INSN, const void *PREV_DATA) ! This hook is called when multipass scheduling evaluates instruction ! INSN. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK (const void *DATA, char *READY_TRY, int N_READY) ! This is called when multipass scheduling backtracks from evaluation ! of an instruction. ! -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END (const void ! *DATA) This hook notifies the target about the result of the concluded current round of multipass scheduling. --- 33852,33867 ---- -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE (void *DATA, char *READY_TRY, int N_READY, rtx INSN, const void *PREV_DATA) ! This hook is called when multipass scheduling evaluates ! instruction INSN. -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK (const void *DATA, char *READY_TRY, int N_READY) ! This is called when multipass scheduling backtracks from ! evaluation of an instruction. ! -- Target Hook: void TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END (const ! void *DATA) This hook notifies the target about the result of the concluded current round of multipass scheduling. *************** them: try the first ones in this list fi *** 33482,33506 **** -- Target Hook: bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct _dep *_DEP, int COST, int DISTANCE) ! This hook is used to define which dependences are considered costly ! by the target, so costly that it is not advisable to schedule the ! insns that are involved in the dependence too close to one another. ! The parameters to this hook are as follows: The first parameter ! _DEP is the dependence being evaluated. The second parameter COST ! is the cost of the dependence as estimated by the scheduler, and ! the third parameter DISTANCE is the distance in cycles between the ! two insns. The hook returns 'true' if considering the distance ! between the two insns the dependence between them is considered ! costly by the target, and 'false' otherwise. Defining this hook can be useful in multiple-issue out-of-order ! machines, where (a) it's practically hopeless to predict the actual ! data/resource delays, however: (b) there's a better chance to ! predict the actual grouping that will be formed, and (c) correctly ! emulating the grouping can be very important. In such targets one ! may want to allow issuing dependent insns closer to one ! another--i.e., closer than the dependence distance; however, not in ! cases of "costly dependences", which this hooks allows to define. -- Target Hook: void TARGET_SCHED_H_I_D_EXTENDED (void) This hook is called by the insn scheduler after emitting a new --- 33888,33914 ---- -- Target Hook: bool TARGET_SCHED_IS_COSTLY_DEPENDENCE (struct _dep *_DEP, int COST, int DISTANCE) ! This hook is used to define which dependences are considered ! costly by the target, so costly that it is not advisable to ! schedule the insns that are involved in the dependence too close ! to one another. The parameters to this hook are as follows: The ! first parameter _DEP is the dependence being evaluated. The ! second parameter COST is the cost of the dependence as estimated ! by the scheduler, and the third parameter DISTANCE is the distance ! in cycles between the two insns. The hook returns `true' if ! considering the distance between the two insns the dependence ! between them is considered costly by the target, and `false' ! otherwise. Defining this hook can be useful in multiple-issue out-of-order ! machines, where (a) it's practically hopeless to predict the ! actual data/resource delays, however: (b) there's a better chance ! to predict the actual grouping that will be formed, and (c) ! correctly emulating the grouping can be very important. In such ! targets one may want to allow issuing dependent insns closer to ! one another--i.e., closer than the dependence distance; however, ! not in cases of "costly dependences", which this hooks allows to ! define. -- Target Hook: void TARGET_SCHED_H_I_D_EXTENDED (void) This hook is called by the insn scheduler after emitting a new *************** them: try the first ones in this list fi *** 33515,33558 **** CLEAN_P) Initialize store pointed to by TC to hold target scheduling context. It CLEAN_P is true then initialize TC as if scheduler is ! at the beginning of the block. Otherwise, copy the current context ! into TC. -- Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *TC) Copy target scheduling context pointed to by TC to the current context. -- Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *TC) ! Deallocate internal data in target scheduling context pointed to by ! TC. -- Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *TC) Deallocate a store for target scheduling context pointed to by TC. ! -- Target Hook: int TARGET_SCHED_SPECULATE_INSN (rtx INSN, unsigned int ! DEP_STATUS, rtx *NEW_PAT) This hook is called by the insn scheduler when INSN has only speculative dependencies and therefore can be scheduled speculatively. The hook is used to check if the pattern of INSN has a speculative version and, in case of successful check, to generate that speculative pattern. The hook should return 1, if the instruction has a speculative form, or -1, if it doesn't. ! REQUEST describes the type of requested speculation. If the return ! value equals 1 then NEW_PAT is assigned the generated speculative ! pattern. -- Target Hook: bool TARGET_SCHED_NEEDS_BLOCK_P (unsigned int DEP_STATUS) This hook is called by the insn scheduler during generation of ! recovery code for INSN. It should return 'true', if the corresponding check instruction should branch to recovery code, or ! 'false' otherwise. -- Target Hook: rtx TARGET_SCHED_GEN_SPEC_CHECK (rtx INSN, rtx LABEL, unsigned int DS) ! This hook is called by the insn scheduler to generate a pattern for ! recovery check instruction. If MUTATE_P is zero, then INSN is a ! speculative instruction for which the check should be generated. LABEL is either a label of a basic block, where recovery code should be emitted, or a null pointer, when requested check doesn't branch to recovery code (a simple check). If MUTATE_P is nonzero, --- 33923,33966 ---- CLEAN_P) Initialize store pointed to by TC to hold target scheduling context. It CLEAN_P is true then initialize TC as if scheduler is ! at the beginning of the block. Otherwise, copy the current ! context into TC. -- Target Hook: void TARGET_SCHED_SET_SCHED_CONTEXT (void *TC) Copy target scheduling context pointed to by TC to the current context. -- Target Hook: void TARGET_SCHED_CLEAR_SCHED_CONTEXT (void *TC) ! Deallocate internal data in target scheduling context pointed to ! by TC. -- Target Hook: void TARGET_SCHED_FREE_SCHED_CONTEXT (void *TC) Deallocate a store for target scheduling context pointed to by TC. ! -- Target Hook: int TARGET_SCHED_SPECULATE_INSN (rtx INSN, unsigned ! int DEP_STATUS, rtx *NEW_PAT) This hook is called by the insn scheduler when INSN has only speculative dependencies and therefore can be scheduled speculatively. The hook is used to check if the pattern of INSN has a speculative version and, in case of successful check, to generate that speculative pattern. The hook should return 1, if the instruction has a speculative form, or -1, if it doesn't. ! REQUEST describes the type of requested speculation. If the ! return value equals 1 then NEW_PAT is assigned the generated ! speculative pattern. -- Target Hook: bool TARGET_SCHED_NEEDS_BLOCK_P (unsigned int DEP_STATUS) This hook is called by the insn scheduler during generation of ! recovery code for INSN. It should return `true', if the corresponding check instruction should branch to recovery code, or ! `false' otherwise. -- Target Hook: rtx TARGET_SCHED_GEN_SPEC_CHECK (rtx INSN, rtx LABEL, unsigned int DS) ! This hook is called by the insn scheduler to generate a pattern ! for recovery check instruction. If MUTATE_P is zero, then INSN is ! a speculative instruction for which the check should be generated. LABEL is either a label of a basic block, where recovery code should be emitted, or a null pointer, when requested check doesn't branch to recovery code (a simple check). If MUTATE_P is nonzero, *************** them: try the first ones in this list fi *** 33561,33580 **** null. -- Target Hook: bool ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC ! (const_rtx INSN) This hook is used as a workaround for ! 'TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD' not being called on the first instruction of the ready list. The hook is used to discard speculative instructions that stand first in the ready list from being scheduled on the current cycle. If the hook ! returns 'false', INSN will not be chosen to be issued. For ! non-speculative instructions, the hook should always return 'true'. ! For example, in the ia64 backend the hook is used to cancel data ! speculative insns when the ALAT table is nearly full. ! -- Target Hook: void TARGET_SCHED_SET_SCHED_FLAGS (struct spec_info_def ! *SPEC_INFO) This hook is used by the insn scheduler to find out what features should be enabled/used. The structure *SPEC_INFO should be filled in by the target. The structure describes speculation types that --- 33969,33988 ---- null. -- Target Hook: bool ! TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC (const_rtx ! INSN) This hook is used as a workaround for ! `TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD' not being called on the first instruction of the ready list. The hook is used to discard speculative instructions that stand first in the ready list from being scheduled on the current cycle. If the hook ! returns `false', INSN will not be chosen to be issued. For ! non-speculative instructions, the hook should always return ! `true'. For example, in the ia64 backend the hook is used to ! cancel data speculative insns when the ALAT table is nearly full. ! -- Target Hook: void TARGET_SCHED_SET_SCHED_FLAGS (struct ! spec_info_def *SPEC_INFO) This hook is used by the insn scheduler to find out what features should be enabled/used. The structure *SPEC_INFO should be filled in by the target. The structure describes speculation types that *************** them: try the first ones in this list fi *** 33584,33593 **** This hook is called by the swing modulo scheduler to calculate a resource-based lower bound which is based on the resources available in the machine and the resources required by each ! instruction. The target backend can use G to calculate such bound. ! A very simple lower bound will be used in case this hook is not ! implemented: the total number of instructions divided by the issue ! rate. -- Target Hook: bool TARGET_SCHED_DISPATCH (rtx INSN, int X) This hook is called by Haifa Scheduler. It returns true if --- 33992,34001 ---- This hook is called by the swing modulo scheduler to calculate a resource-based lower bound which is based on the resources available in the machine and the resources required by each ! instruction. The target backend can use G to calculate such ! bound. A very simple lower bound will be used in case this hook ! is not implemented: the total number of instructions divided by ! the issue rate. -- Target Hook: bool TARGET_SCHED_DISPATCH (rtx INSN, int X) This hook is called by Haifa Scheduler. It returns true if *************** them: try the first ones in this list fi *** 33599,33610 **** specified in its second parameter. -- Target Hook: bool TARGET_SCHED_EXPOSED_PIPELINE ! True if the processor has an exposed pipeline, which means that not ! just the order of instructions is important for correctness when ! scheduling, but also the latencies of operations. ! -- Target Hook: int TARGET_SCHED_REASSOCIATION_WIDTH (unsigned int OPC, ! enum machine_mode MODE) This hook is called by tree reassociator to determine a level of parallelism required in output calculations chain. --- 34007,34018 ---- specified in its second parameter. -- Target Hook: bool TARGET_SCHED_EXPOSED_PIPELINE ! True if the processor has an exposed pipeline, which means that ! not just the order of instructions is important for correctness ! when scheduling, but also the latencies of operations. ! -- Target Hook: int TARGET_SCHED_REASSOCIATION_WIDTH (unsigned int ! OPC, enum machine_mode MODE) This hook is called by tree reassociator to determine a level of parallelism required in output calculations chain. *************** section", which holds initialized writab *** 33621,33654 **** which holds uninitialized data. Some systems have other kinds of sections. ! 'varasm.c' provides several well-known sections, such as ! 'text_section', 'data_section' and 'bss_section'. The normal way of ! controlling a 'FOO_section' variable is to define the associated ! 'FOO_SECTION_ASM_OP' macro, as described below. The macros are only ! read once, when 'varasm.c' initializes itself, so their values must be run-time constants. They may however depend on command-line flags. ! _Note:_ Some run-time files, such 'crtstuff.c', also make use of the ! 'FOO_SECTION_ASM_OP' macros, and expect them to be string literals. Some assemblers require a different string to be written every time a section is selected. If your assembler falls into this category, you ! should define the 'TARGET_ASM_INIT_SECTIONS' hook and use ! 'get_unnamed_section' to set up the sections. ! You must always create a 'text_section', either by defining ! 'TEXT_SECTION_ASM_OP' or by initializing 'text_section' in ! 'TARGET_ASM_INIT_SECTIONS'. The same is true of 'data_section' and ! 'DATA_SECTION_ASM_OP'. If you do not create a distinct ! 'readonly_data_section', the default is to reuse 'text_section'. ! All the other 'varasm.c' sections are optional, and are null if the target does not provide them. -- Macro: TEXT_SECTION_ASM_OP A C expression whose value is a string, including spacing, ! containing the assembler operation that should precede instructions ! and read-only data. Normally '"\t.text"' is right. -- Macro: HOT_TEXT_SECTION_NAME If defined, a C string constant for the name of the section --- 34029,34062 ---- which holds uninitialized data. Some systems have other kinds of sections. ! `varasm.c' provides several well-known sections, such as ! `text_section', `data_section' and `bss_section'. The normal way of ! controlling a `FOO_section' variable is to define the associated ! `FOO_SECTION_ASM_OP' macro, as described below. The macros are only ! read once, when `varasm.c' initializes itself, so their values must be run-time constants. They may however depend on command-line flags. ! _Note:_ Some run-time files, such `crtstuff.c', also make use of the ! `FOO_SECTION_ASM_OP' macros, and expect them to be string literals. Some assemblers require a different string to be written every time a section is selected. If your assembler falls into this category, you ! should define the `TARGET_ASM_INIT_SECTIONS' hook and use ! `get_unnamed_section' to set up the sections. ! You must always create a `text_section', either by defining ! `TEXT_SECTION_ASM_OP' or by initializing `text_section' in ! `TARGET_ASM_INIT_SECTIONS'. The same is true of `data_section' and ! `DATA_SECTION_ASM_OP'. If you do not create a distinct ! `readonly_data_section', the default is to reuse `text_section'. ! All the other `varasm.c' sections are optional, and are null if the target does not provide them. -- Macro: TEXT_SECTION_ASM_OP A C expression whose value is a string, including spacing, ! containing the assembler operation that should precede ! instructions and read-only data. Normally `"\t.text"' is right. -- Macro: HOT_TEXT_SECTION_NAME If defined, a C string constant for the name of the section *************** target does not provide them. *** 33663,33669 **** -- Macro: DATA_SECTION_ASM_OP A C expression whose value is a string, including spacing, containing the assembler operation to identify the following data ! as writable initialized data. Normally '"\t.data"' is right. -- Macro: SDATA_SECTION_ASM_OP If defined, a C expression whose value is a string, including --- 34071,34077 ---- -- Macro: DATA_SECTION_ASM_OP A C expression whose value is a string, including spacing, containing the assembler operation to identify the following data ! as writable initialized data. Normally `"\t.data"' is right. -- Macro: SDATA_SECTION_ASM_OP If defined, a C expression whose value is a string, including *************** target does not provide them. *** 33679,33687 **** If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as uninitialized global data. If not defined, and ! 'ASM_OUTPUT_ALIGNED_BSS' not defined, uninitialized global data ! will be output in the data section if '-fno-common' is passed, ! otherwise 'ASM_OUTPUT_COMMON' will be used. -- Macro: SBSS_SECTION_ASM_OP If defined, a C expression whose value is a string, including --- 34087,34095 ---- If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as uninitialized global data. If not defined, and ! `ASM_OUTPUT_ALIGNED_BSS' not defined, uninitialized global data ! will be output in the data section if `-fno-common' is passed, ! otherwise `ASM_OUTPUT_COMMON' will be used. -- Macro: SBSS_SECTION_ASM_OP If defined, a C expression whose value is a string, including *************** target does not provide them. *** 33691,33709 **** -- Macro: TLS_COMMON_ASM_OP If defined, a C expression whose value is a string containing the assembler operation to identify the following data as thread-local ! common data. The default is '".tls_common"'. -- Macro: TLS_SECTION_ASM_FLAG If defined, a C expression whose value is a character constant containing the flag used to mark a section as a TLS section. The ! default is ''T''. -- Macro: INIT_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as initialization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding 'init_section' variable; it is used entirely in runtime code. -- Macro: FINI_SECTION_ASM_OP --- 34099,34117 ---- -- Macro: TLS_COMMON_ASM_OP If defined, a C expression whose value is a string containing the assembler operation to identify the following data as thread-local ! common data. The default is `".tls_common"'. -- Macro: TLS_SECTION_ASM_FLAG If defined, a C expression whose value is a character constant containing the flag used to mark a section as a TLS section. The ! default is `'T''. -- Macro: INIT_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the following data as initialization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding `init_section' variable; it is used entirely in runtime code. -- Macro: FINI_SECTION_ASM_OP *************** target does not provide them. *** 33711,33766 **** spacing, containing the assembler operation to identify the following data as finalization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding 'fini_section' variable; it is used entirely in runtime code. -- Macro: INIT_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the '.init_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and 'INIT_SECTION_ASM_OP'. -- Macro: FINI_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the '.fini_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and 'FINI_SECTION_ASM_OP'. -- Macro: CRT_CALL_STATIC_FUNCTION (SECTION_OP, FUNCTION) If defined, an ASM statement that switches to a different section via SECTION_OP, calls FUNCTION, and switches back to the text ! section. This is used in 'crtstuff.c' if 'INIT_SECTION_ASM_OP' or ! 'FINI_SECTION_ASM_OP' to calls to initialization and finalization functions from the init and fini sections. By default, this macro ! uses a simple function call. Some ports need hand-crafted assembly ! code to avoid dependencies on registers initialized in the function ! prologue or to ensure that constant pools don't end up too far way ! in the text section. -- Macro: TARGET_LIBGCC_SDATA_SECTION If defined, a string which names the section into which small variables defined in crtstuff and libgcc should go. This is useful when the target has options for optimizing access to small data, ! and you want the crtstuff and libgcc routines to be conservative in ! what they expect of your application yet liberal in what your ! application expects. For example, for targets with a '.sdata' ! section (like MIPS), you could compile crtstuff with '-G 0' so that ! it doesn't require small data support from your application, but ! use this macro to put small data into '.sdata' so that your application can access these variables whether it uses small data or not. -- Macro: FORCE_CODE_SECTION_ALIGN If defined, an ASM statement that aligns a code section to some arbitrary boundary. This is used to force all fragments of the ! '.init' and '.fini' sections to have to same alignment and thus prevent the linker from having to add any padding. -- Macro: JUMP_TABLES_IN_TEXT_SECTION Define this macro to be an expression with a nonzero value if jump ! tables (for 'tablejump' insns) should be output in the text section, along with the assembler instructions. Otherwise, the readonly data section is used. --- 34119,34174 ---- spacing, containing the assembler operation to identify the following data as finalization code. If not defined, GCC will assume such a section does not exist. This section has no ! corresponding `fini_section' variable; it is used entirely in runtime code. -- Macro: INIT_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the `.init_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and `INIT_SECTION_ASM_OP'. -- Macro: FINI_ARRAY_SECTION_ASM_OP If defined, a C expression whose value is a string, including spacing, containing the assembler operation to identify the ! following data as part of the `.fini_array' (or equivalent) section. If not defined, GCC will assume such a section does not ! exist. Do not define both this macro and `FINI_SECTION_ASM_OP'. -- Macro: CRT_CALL_STATIC_FUNCTION (SECTION_OP, FUNCTION) If defined, an ASM statement that switches to a different section via SECTION_OP, calls FUNCTION, and switches back to the text ! section. This is used in `crtstuff.c' if `INIT_SECTION_ASM_OP' or ! `FINI_SECTION_ASM_OP' to calls to initialization and finalization functions from the init and fini sections. By default, this macro ! uses a simple function call. Some ports need hand-crafted ! assembly code to avoid dependencies on registers initialized in ! the function prologue or to ensure that constant pools don't end ! up too far way in the text section. -- Macro: TARGET_LIBGCC_SDATA_SECTION If defined, a string which names the section into which small variables defined in crtstuff and libgcc should go. This is useful when the target has options for optimizing access to small data, ! and you want the crtstuff and libgcc routines to be conservative ! in what they expect of your application yet liberal in what your ! application expects. For example, for targets with a `.sdata' ! section (like MIPS), you could compile crtstuff with `-G 0' so ! that it doesn't require small data support from your application, ! but use this macro to put small data into `.sdata' so that your application can access these variables whether it uses small data or not. -- Macro: FORCE_CODE_SECTION_ALIGN If defined, an ASM statement that aligns a code section to some arbitrary boundary. This is used to force all fragments of the ! `.init' and `.fini' sections to have to same alignment and thus prevent the linker from having to add any padding. -- Macro: JUMP_TABLES_IN_TEXT_SECTION Define this macro to be an expression with a nonzero value if jump ! tables (for `tablejump' insns) should be output in the text section, along with the assembler instructions. Otherwise, the readonly data section is used. *************** target does not provide them. *** 33769,33776 **** -- Target Hook: void TARGET_ASM_INIT_SECTIONS (void) Define this hook if you need to do something special to set up the ! 'varasm.c' sections, or if your target has some special sections of ! its own that you need to create. GCC calls this hook after processing the command line, but before writing any assembly code, and before calling any of the --- 34177,34184 ---- -- Target Hook: void TARGET_ASM_INIT_SECTIONS (void) Define this hook if you need to do something special to set up the ! `varasm.c' sections, or if your target has some special sections ! of its own that you need to create. GCC calls this hook after processing the command line, but before writing any assembly code, and before calling any of the *************** target does not provide them. *** 33782,33863 **** should be placed in a read-write section; bit 0 should be set if local relocations should be placed in a read-write section. ! The default version of this function returns 3 when '-fpic' is in effect, and 0 otherwise. The hook is typically redefined when the target cannot support (some kinds of) dynamic relocations in read-only sections even in executables. -- Target Hook: section * TARGET_ASM_SELECT_SECTION (tree EXP, int RELOC, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which EXP should be placed. You can assume ! that EXP is either a 'VAR_DECL' node or a constant of some sort. ! RELOC indicates whether the initial value of EXP requires link-time ! relocations. Bit 0 is set when variable contains local relocations ! only, while bit 1 is set for global relocations. ALIGN is the ! constant alignment in bits. The default version of this function takes care of putting ! read-only variables in 'readonly_data_section'. See also USE_SELECT_SECTION_FOR_FUNCTIONS. -- Macro: USE_SELECT_SECTION_FOR_FUNCTIONS Define this macro if you wish TARGET_ASM_SELECT_SECTION to be ! called for 'FUNCTION_DECL's as well as for variables and constants. ! In the case of a 'FUNCTION_DECL', RELOC will be zero if the ! function has been determined to be likely to be called, and nonzero ! if it is unlikely to be called. -- Target Hook: void TARGET_ASM_UNIQUE_SECTION (tree DECL, int RELOC) ! Build up a unique section name, expressed as a 'STRING_CST' node, ! and assign it to 'DECL_SECTION_NAME (DECL)'. As with ! 'TARGET_ASM_SELECT_SECTION', RELOC indicates whether the initial value of EXP requires link-time relocations. The default version of this function appends the symbol name to the ELF section name that would normally be used for the symbol. For ! example, the function 'foo' would be placed in '.text.foo'. Whatever the actual target object format, this is often good enough. -- Target Hook: section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree DECL) ! Return the readonly data section associated with 'DECL_SECTION_NAME ! (DECL)'. The default version of this function selects ! '.gnu.linkonce.r.name' if the function's section is ! '.gnu.linkonce.t.name', '.rodata.name' if function is in ! '.text.name', and the normal readonly-data section otherwise. -- Target Hook: const char * TARGET_ASM_MERGEABLE_RODATA_PREFIX ! Usually, the compiler uses the prefix '".rodata"' to construct section names for mergeable constant data. Define this macro to override the string if a different section name should be used. -- Target Hook: section * TARGET_ASM_TM_CLONE_TABLE_SECTION (void) Return the section that should be used for transactional memory ! clone tables. -- Target Hook: section * TARGET_ASM_SELECT_RTX_SECTION (enum machine_mode MODE, rtx X, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which a constant X, of mode MODE, should be ! placed. You can assume that X is some kind of constant in RTL. ! The argument MODE is redundant except in the case of a 'const_int' rtx. ALIGN is the constant alignment in bits. The default version of this function takes care of putting symbolic ! constants in 'flag_pic' mode in 'data_section' and everything else ! in 'readonly_data_section'. ! -- Target Hook: tree TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree DECL, tree ! ID) Define this hook if you need to postprocess the assembler name ! generated by target-independent code. The ID provided to this hook ! will be the computed name (e.g., the macro 'DECL_NAME' of the DECL ! in C, or the mangled name of the DECL in C++). The return value of ! the hook is an 'IDENTIFIER_NODE' for the appropriate mangled name ! on your target system. The default implementation of this hook ! just returns the ID provided. -- Target Hook: void TARGET_ENCODE_SECTION_INFO (tree DECL, rtx RTL, int NEW_DECL_P) --- 34190,34271 ---- should be placed in a read-write section; bit 0 should be set if local relocations should be placed in a read-write section. ! The default version of this function returns 3 when `-fpic' is in effect, and 0 otherwise. The hook is typically redefined when the target cannot support (some kinds of) dynamic relocations in read-only sections even in executables. -- Target Hook: section * TARGET_ASM_SELECT_SECTION (tree EXP, int RELOC, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which EXP should be placed. You can ! assume that EXP is either a `VAR_DECL' node or a constant of some ! sort. RELOC indicates whether the initial value of EXP requires ! link-time relocations. Bit 0 is set when variable contains local ! relocations only, while bit 1 is set for global relocations. ! ALIGN is the constant alignment in bits. The default version of this function takes care of putting ! read-only variables in `readonly_data_section'. See also USE_SELECT_SECTION_FOR_FUNCTIONS. -- Macro: USE_SELECT_SECTION_FOR_FUNCTIONS Define this macro if you wish TARGET_ASM_SELECT_SECTION to be ! called for `FUNCTION_DECL's as well as for variables and constants. ! In the case of a `FUNCTION_DECL', RELOC will be zero if the ! function has been determined to be likely to be called, and ! nonzero if it is unlikely to be called. -- Target Hook: void TARGET_ASM_UNIQUE_SECTION (tree DECL, int RELOC) ! Build up a unique section name, expressed as a `STRING_CST' node, ! and assign it to `DECL_SECTION_NAME (DECL)'. As with ! `TARGET_ASM_SELECT_SECTION', RELOC indicates whether the initial value of EXP requires link-time relocations. The default version of this function appends the symbol name to the ELF section name that would normally be used for the symbol. For ! example, the function `foo' would be placed in `.text.foo'. Whatever the actual target object format, this is often good enough. -- Target Hook: section * TARGET_ASM_FUNCTION_RODATA_SECTION (tree DECL) ! Return the readonly data section associated with ! `DECL_SECTION_NAME (DECL)'. The default version of this function ! selects `.gnu.linkonce.r.name' if the function's section is ! `.gnu.linkonce.t.name', `.rodata.name' if function is in ! `.text.name', and the normal readonly-data section otherwise. -- Target Hook: const char * TARGET_ASM_MERGEABLE_RODATA_PREFIX ! Usually, the compiler uses the prefix `".rodata"' to construct section names for mergeable constant data. Define this macro to override the string if a different section name should be used. -- Target Hook: section * TARGET_ASM_TM_CLONE_TABLE_SECTION (void) Return the section that should be used for transactional memory ! clone tables. -- Target Hook: section * TARGET_ASM_SELECT_RTX_SECTION (enum machine_mode MODE, rtx X, unsigned HOST_WIDE_INT ALIGN) ! Return the section into which a constant X, of mode MODE, should ! be placed. You can assume that X is some kind of constant in RTL. ! The argument MODE is redundant except in the case of a `const_int' rtx. ALIGN is the constant alignment in bits. The default version of this function takes care of putting symbolic ! constants in `flag_pic' mode in `data_section' and everything else ! in `readonly_data_section'. ! -- Target Hook: tree TARGET_MANGLE_DECL_ASSEMBLER_NAME (tree DECL, ! tree ID) Define this hook if you need to postprocess the assembler name ! generated by target-independent code. The ID provided to this ! hook will be the computed name (e.g., the macro `DECL_NAME' of the ! DECL in C, or the mangled name of the DECL in C++). The return ! value of the hook is an `IDENTIFIER_NODE' for the appropriate ! mangled name on your target system. The default implementation of ! this hook just returns the ID provided. -- Target Hook: void TARGET_ENCODE_SECTION_INFO (tree DECL, rtx RTL, int NEW_DECL_P) *************** target does not provide them. *** 33868,33929 **** The hook is executed immediately after rtl has been created for DECL, which may be a variable or function declaration or an entry in the constant pool. In either case, RTL is the rtl in question. ! Do _not_ use 'DECL_RTL (DECL)' in this hook; that field may not have been initialized yet. In the case of a constant, it is safe to assume that the rtl is a ! 'mem' whose address is a 'symbol_ref'. Most decls will also have this form, but that is not guaranteed. Global register variables, ! for instance, will have a 'reg' for their rtl. (Normally the right ! thing to do with such unusual rtl is leave it alone.) ! The NEW_DECL_P argument will be true if this is the first time that ! 'TARGET_ENCODE_SECTION_INFO' has been invoked on this decl. It ! will be false for subsequent invocations, which will happen for duplicate declarations. Whether or not anything must be done for the duplicate declaration depends on whether the hook examines ! 'DECL_ATTRIBUTES'. NEW_DECL_P is always true when the hook is called for a constant. The usual thing for this hook to do is to record flags in the ! 'symbol_ref', using 'SYMBOL_REF_FLAG' or 'SYMBOL_REF_FLAGS'. Historically, the name string was modified if it was necessary to encode more than one bit of information, but this practice is now ! discouraged; use 'SYMBOL_REF_FLAGS'. ! The default definition of this hook, 'default_encode_section_info' ! in 'varasm.c', sets a number of commonly-useful bits in ! 'SYMBOL_REF_FLAGS'. Check whether the default does what you need before overriding it. -- Target Hook: const char * TARGET_STRIP_NAME_ENCODING (const char *NAME) ! Decode NAME and return the real name part, sans the characters that ! 'TARGET_ENCODE_SECTION_INFO' may have added. -- Target Hook: bool TARGET_IN_SMALL_DATA_P (const_tree EXP) Returns true if EXP should be placed into a "small data" section. The default version of this hook always returns false. -- Target Hook: bool TARGET_HAVE_SRODATA_SECTION ! Contains the value true if the target places read-only "small data" ! into a separate section. The default value is false. -- Target Hook: bool TARGET_PROFILE_BEFORE_PROLOGUE (void) It returns true if target wants profile code emitted before prologue. The default version of this hook use the target macro ! 'PROFILE_BEFORE_PROLOGUE'. -- Target Hook: bool TARGET_BINDS_LOCAL_P (const_tree EXP) ! Returns true if EXP names an object for which name resolution rules ! must resolve to the current "module" (dynamic shared library or ! executable image). The default version of this hook implements the name resolution ! rules for ELF, which has a looser model of global name binding than ! other currently supported object file formats. -- Target Hook: bool TARGET_HAVE_TLS Contains the value true if the target supports thread-local --- 34276,34337 ---- The hook is executed immediately after rtl has been created for DECL, which may be a variable or function declaration or an entry in the constant pool. In either case, RTL is the rtl in question. ! Do _not_ use `DECL_RTL (DECL)' in this hook; that field may not have been initialized yet. In the case of a constant, it is safe to assume that the rtl is a ! `mem' whose address is a `symbol_ref'. Most decls will also have this form, but that is not guaranteed. Global register variables, ! for instance, will have a `reg' for their rtl. (Normally the ! right thing to do with such unusual rtl is leave it alone.) ! The NEW_DECL_P argument will be true if this is the first time ! that `TARGET_ENCODE_SECTION_INFO' has been invoked on this decl. ! It will be false for subsequent invocations, which will happen for duplicate declarations. Whether or not anything must be done for the duplicate declaration depends on whether the hook examines ! `DECL_ATTRIBUTES'. NEW_DECL_P is always true when the hook is called for a constant. The usual thing for this hook to do is to record flags in the ! `symbol_ref', using `SYMBOL_REF_FLAG' or `SYMBOL_REF_FLAGS'. Historically, the name string was modified if it was necessary to encode more than one bit of information, but this practice is now ! discouraged; use `SYMBOL_REF_FLAGS'. ! The default definition of this hook, `default_encode_section_info' ! in `varasm.c', sets a number of commonly-useful bits in ! `SYMBOL_REF_FLAGS'. Check whether the default does what you need before overriding it. -- Target Hook: const char * TARGET_STRIP_NAME_ENCODING (const char *NAME) ! Decode NAME and return the real name part, sans the characters ! that `TARGET_ENCODE_SECTION_INFO' may have added. -- Target Hook: bool TARGET_IN_SMALL_DATA_P (const_tree EXP) Returns true if EXP should be placed into a "small data" section. The default version of this hook always returns false. -- Target Hook: bool TARGET_HAVE_SRODATA_SECTION ! Contains the value true if the target places read-only "small ! data" into a separate section. The default value is false. -- Target Hook: bool TARGET_PROFILE_BEFORE_PROLOGUE (void) It returns true if target wants profile code emitted before prologue. The default version of this hook use the target macro ! `PROFILE_BEFORE_PROLOGUE'. -- Target Hook: bool TARGET_BINDS_LOCAL_P (const_tree EXP) ! Returns true if EXP names an object for which name resolution ! rules must resolve to the current "module" (dynamic shared library ! or executable image). The default version of this hook implements the name resolution ! rules for ELF, which has a looser model of global name binding ! than other currently supported object file formats. -- Target Hook: bool TARGET_HAVE_TLS Contains the value true if the target supports thread-local *************** File: gccint.info, Node: PIC, Next: As *** 33938,33946 **** This section describes macros that help implement generation of position independent code. Simply defining these macros is not enough to generate valid PIC; you must also add support to the hook ! 'TARGET_LEGITIMATE_ADDRESS_P' and to the macro 'PRINT_OPERAND_ADDRESS', ! as well as 'LEGITIMIZE_ADDRESS'. You must modify the definition of ! 'movsi' to do something appropriate when the source operand contains a symbolic address. You may also need to alter the handling of switch statements so that they use relative addresses. --- 34346,34354 ---- This section describes macros that help implement generation of position independent code. Simply defining these macros is not enough to generate valid PIC; you must also add support to the hook ! `TARGET_LEGITIMATE_ADDRESS_P' and to the macro `PRINT_OPERAND_ADDRESS', ! as well as `LEGITIMIZE_ADDRESS'. You must modify the definition of ! `movsi' to do something appropriate when the source operand contains a symbolic address. You may also need to alter the handling of switch statements so that they use relative addresses. *************** statements so that they use relative add *** 33952,33972 **** once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). Note that this ! register must be fixed when in use (e.g. when 'flag_pic' is true). -- Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED A C expression that is nonzero if the register defined by ! 'PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. If not defined, the default is zero. Do not define this macro if ! 'PIC_OFFSET_TABLE_REGNUM' is not defined. -- Macro: LEGITIMATE_PIC_OPERAND_P (X) A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent ! code. You can assume that X satisfies 'CONSTANT_P', so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all ! constants (including 'SYMBOL_REF') can be immediate operands when generating position independent code.  --- 34360,34380 ---- once, as with the stack pointer and frame pointer registers. If this macro is not defined, it is up to the machine-dependent files to allocate such a register (if necessary). Note that this ! register must be fixed when in use (e.g. when `flag_pic' is true). -- Macro: PIC_OFFSET_TABLE_REG_CALL_CLOBBERED A C expression that is nonzero if the register defined by ! `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. If not defined, the default is zero. Do not define this macro if ! `PIC_OFFSET_TABLE_REGNUM' is not defined. -- Macro: LEGITIMATE_PIC_OPERAND_P (X) A C expression that is nonzero if X is a legitimate immediate operand on the target machine when generating position independent ! code. You can assume that X satisfies `CONSTANT_P', so you need not check this. You can also assume FLAG_PIC is true, so you need not check it either. You need not define this macro if all ! constants (including `SYMBOL_REF') can be immediate operands when generating position independent code.  *************** File: gccint.info, Node: File Framework *** 34004,34059 **** This describes the overall framework of an assembly file. -- Target Hook: void TARGET_ASM_FILE_START (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the beginning of a file. The default behavior is controlled by two flags, documented below. Unless your target's ! assembler is quite unusual, if you override the default, you should ! call 'default_file_start' at some point in your target hook. This ! lets other target files rely on these variables. -- Target Hook: bool TARGET_ASM_FILE_START_APP_OFF ! If this flag is true, the text of the macro 'ASM_APP_OFF' will be printed as the very first line in the assembly file, unless ! '-fverbose-asm' is in effect. (If that macro has been defined to the empty string, this variable has no effect.) With the normal ! definition of 'ASM_APP_OFF', the effect is to notify the GNU assembler that it need not bother stripping comments or extra whitespace from its input. This allows it to work a bit faster. The default is false. You should not set it to true unless you ! have verified that your port does not generate any extra whitespace ! or comments that will cause GAS to issue errors in NO_APP mode. -- Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE ! If this flag is true, 'output_file_directive' will be called for ! the primary source file, immediately after printing 'ASM_APP_OFF' (if that is enabled). Most ELF assemblers expect this to be done. The default is false. -- Target Hook: void TARGET_ASM_FILE_END (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the end of a file. The default is to output nothing. -- Function: void file_end_indicate_exec_stack () ! Some systems use a common convention, the '.note.GNU-stack' special ! section, to indicate whether or not an object file relies on the ! stack being executable. If your system uses this convention, you ! should define 'TARGET_ASM_FILE_END' to this function. If you need ! to do other things in that hook, have your hook function call this ! function. -- Target Hook: void TARGET_ASM_LTO_START (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the start of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_LTO_END (void) ! Output to 'asm_out_file' any text which the assembler expects to find at the end of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_CODE_END (void) ! Output to 'asm_out_file' any text which is needed before emitting unwind info and debug info at the end of a file. Some targets emit here PIC setup thunks that cannot be emitted at the end of file, because they couldn't have unwind info then. The default is to --- 34412,34468 ---- This describes the overall framework of an assembly file. -- Target Hook: void TARGET_ASM_FILE_START (void) ! Output to `asm_out_file' any text which the assembler expects to find at the beginning of a file. The default behavior is controlled by two flags, documented below. Unless your target's ! assembler is quite unusual, if you override the default, you ! should call `default_file_start' at some point in your target ! hook. This lets other target files rely on these variables. -- Target Hook: bool TARGET_ASM_FILE_START_APP_OFF ! If this flag is true, the text of the macro `ASM_APP_OFF' will be printed as the very first line in the assembly file, unless ! `-fverbose-asm' is in effect. (If that macro has been defined to the empty string, this variable has no effect.) With the normal ! definition of `ASM_APP_OFF', the effect is to notify the GNU assembler that it need not bother stripping comments or extra whitespace from its input. This allows it to work a bit faster. The default is false. You should not set it to true unless you ! have verified that your port does not generate any extra ! whitespace or comments that will cause GAS to issue errors in ! NO_APP mode. -- Target Hook: bool TARGET_ASM_FILE_START_FILE_DIRECTIVE ! If this flag is true, `output_file_directive' will be called for ! the primary source file, immediately after printing `ASM_APP_OFF' (if that is enabled). Most ELF assemblers expect this to be done. The default is false. -- Target Hook: void TARGET_ASM_FILE_END (void) ! Output to `asm_out_file' any text which the assembler expects to find at the end of a file. The default is to output nothing. -- Function: void file_end_indicate_exec_stack () ! Some systems use a common convention, the `.note.GNU-stack' ! special section, to indicate whether or not an object file relies ! on the stack being executable. If your system uses this ! convention, you should define `TARGET_ASM_FILE_END' to this ! function. If you need to do other things in that hook, have your ! hook function call this function. -- Target Hook: void TARGET_ASM_LTO_START (void) ! Output to `asm_out_file' any text which the assembler expects to find at the start of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_LTO_END (void) ! Output to `asm_out_file' any text which the assembler expects to find at the end of an LTO section. The default is to output nothing. -- Target Hook: void TARGET_ASM_CODE_END (void) ! Output to `asm_out_file' any text which is needed before emitting unwind info and debug info at the end of a file. Some targets emit here PIC setup thunks that cannot be emitted at the end of file, because they couldn't have unwind info then. The default is to *************** This describes the overall framework of *** 34061,34080 **** -- Macro: ASM_COMMENT_START A C string constant describing how to begin a comment in the target ! assembler language. The compiler assumes that the comment will end ! at the end of the line. -- Macro: ASM_APP_ON ! A C string constant for text to be output before each 'asm' ! statement or group of consecutive ones. Normally this is '"#APP"', ! which is a comment that has no effect on most assemblers but tells ! the GNU assembler that it must check the lines that follow for all ! valid assembler constructs. -- Macro: ASM_APP_OFF ! A C string constant for text to be output after each 'asm' statement or group of consecutive ones. Normally this is ! '"#NO_APP"', which tells the GNU assembler to resume making the time-saving assumptions that are valid for ordinary compiler output. --- 34470,34489 ---- -- Macro: ASM_COMMENT_START A C string constant describing how to begin a comment in the target ! assembler language. The compiler assumes that the comment will ! end at the end of the line. -- Macro: ASM_APP_ON ! A C string constant for text to be output before each `asm' ! statement or group of consecutive ones. Normally this is ! `"#APP"', which is a comment that has no effect on most assemblers ! but tells the GNU assembler that it must check the lines that ! follow for all valid assembler constructs. -- Macro: ASM_APP_OFF ! A C string constant for text to be output after each `asm' statement or group of consecutive ones. Normally this is ! `"#NO_APP"', which tells the GNU assembler to resume making the time-saving assumptions that are valid for ordinary compiler output. *************** This describes the overall framework of *** 34092,34128 **** indicates that filename NAME is the current source file to the stdio stream FILE. ! This target hook need not be defined if the standard form of output ! for the file format in use is appropriate. -- Target Hook: void TARGET_ASM_OUTPUT_IDENT (const char *NAME) ! Output a string based on NAME, suitable for the '#ident' directive, ! or the equivalent directive or pragma in non-C-family languages. ! If this hook is not defined, nothing is output for the '#ident' ! directive. -- Macro: OUTPUT_QUOTED_STRING (STREAM, STRING) A C statement to output the string STRING to the stdio stream ! STREAM. If you do not call the function 'output_quoted_string' in ! your config files, GCC will only call it to output filenames to the ! assembler source. So you can use it to canonicalize the format of ! the filename using this macro. -- Target Hook: void TARGET_ASM_NAMED_SECTION (const char *NAME, unsigned int FLAGS, tree DECL) Output assembly directives to switch to section NAME. The section should have attributes as specified by FLAGS, which is a bit mask ! of the 'SECTION_*' flags defined in 'output.h'. If DECL is ! non-NULL, it is the 'VAR_DECL' or 'FUNCTION_DECL' with which this section is associated. -- Target Hook: section * TARGET_ASM_FUNCTION_SECTION (tree DECL, enum node_frequency FREQ, bool STARTUP, bool EXIT) ! Return preferred text (sub)section for function DECL. Main purpose ! of this function is to separate cold, normal and hot functions. ! STARTUP is true when function is known to be used only at startup ! (from static constructors or it is 'main()'). EXIT is true when ! function is known to be used only at exit (from static destructors). Return NULL if function should go to default text section. --- 34501,34537 ---- indicates that filename NAME is the current source file to the stdio stream FILE. ! This target hook need not be defined if the standard form of ! output for the file format in use is appropriate. -- Target Hook: void TARGET_ASM_OUTPUT_IDENT (const char *NAME) ! Output a string based on NAME, suitable for the `#ident' ! directive, or the equivalent directive or pragma in non-C-family ! languages. If this hook is not defined, nothing is output for the ! `#ident' directive. -- Macro: OUTPUT_QUOTED_STRING (STREAM, STRING) A C statement to output the string STRING to the stdio stream ! STREAM. If you do not call the function `output_quoted_string' in ! your config files, GCC will only call it to output filenames to ! the assembler source. So you can use it to canonicalize the format ! of the filename using this macro. -- Target Hook: void TARGET_ASM_NAMED_SECTION (const char *NAME, unsigned int FLAGS, tree DECL) Output assembly directives to switch to section NAME. The section should have attributes as specified by FLAGS, which is a bit mask ! of the `SECTION_*' flags defined in `output.h'. If DECL is ! non-NULL, it is the `VAR_DECL' or `FUNCTION_DECL' with which this section is associated. -- Target Hook: section * TARGET_ASM_FUNCTION_SECTION (tree DECL, enum node_frequency FREQ, bool STARTUP, bool EXIT) ! Return preferred text (sub)section for function DECL. Main ! purpose of this function is to separate cold, normal and hot ! functions. STARTUP is true when function is known to be used only ! at startup (from static constructors or it is `main()'). EXIT is ! true when function is known to be used only at exit (from static destructors). Return NULL if function should go to default text section. *************** This describes the overall framework of *** 34130,34161 **** *FILE, tree DECL, bool NEW_IS_COLD) Used by the target to emit any assembler directives or additional labels needed when a function is partitioned between different ! sections. Output should be written to FILE. The function decl is ! available as DECL and the new section is 'cold' if NEW_IS_COLD is ! 'true'. -- Common Target Hook: bool TARGET_HAVE_NAMED_SECTIONS This flag is true if the target supports ! 'TARGET_ASM_NAMED_SECTION'. It must not be modified by command-line option processing. -- Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS This flag is true if we can create zeroed data by switching to a ! BSS section and then using 'ASM_OUTPUT_SKIP' to allocate the space. This is true on most ELF targets. -- Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree DECL, const char *NAME, int RELOC) Choose a set of section attributes for use by ! 'TARGET_ASM_NAMED_SECTION' based on a variable or function decl, a section name, and whether or not the declaration's initializer may contain runtime relocations. DECL may be null, in which case read-write data should be assumed. The default version of this function handles choosing code vs data, ! read-only vs read-write data, and 'flag_pic'. You should only need ! to override this if your target has special flags that might be set ! via '__attribute__'. -- Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type TYPE, const char *TEXT) --- 34539,34570 ---- *FILE, tree DECL, bool NEW_IS_COLD) Used by the target to emit any assembler directives or additional labels needed when a function is partitioned between different ! sections. Output should be written to FILE. The function decl ! is available as DECL and the new section is `cold' if NEW_IS_COLD ! is `true'. -- Common Target Hook: bool TARGET_HAVE_NAMED_SECTIONS This flag is true if the target supports ! `TARGET_ASM_NAMED_SECTION'. It must not be modified by command-line option processing. -- Target Hook: bool TARGET_HAVE_SWITCHABLE_BSS_SECTIONS This flag is true if we can create zeroed data by switching to a ! BSS section and then using `ASM_OUTPUT_SKIP' to allocate the space. This is true on most ELF targets. -- Target Hook: unsigned int TARGET_SECTION_TYPE_FLAGS (tree DECL, const char *NAME, int RELOC) Choose a set of section attributes for use by ! `TARGET_ASM_NAMED_SECTION' based on a variable or function decl, a section name, and whether or not the declaration's initializer may contain runtime relocations. DECL may be null, in which case read-write data should be assumed. The default version of this function handles choosing code vs data, ! read-only vs read-write data, and `flag_pic'. You should only ! need to override this if your target has special flags that might ! be set via `__attribute__'. -- Target Hook: int TARGET_ASM_RECORD_GCC_SWITCHES (print_switch_type TYPE, const char *TEXT) *************** This describes the overall framework of *** 34164,34195 **** are enabled. The TYPE argument specifies what is being recorded. It can take the following values: ! 'SWITCH_TYPE_PASSED' TEXT is a command line switch that has been set by the user. ! 'SWITCH_TYPE_ENABLED' TEXT is an option which has been enabled. This might be as a direct result of a command line switch, or because it is enabled by default or because it has been enabled as a side effect of a different command line switch. For example, the ! '-O2' switch enables various different individual optimization ! passes. ! 'SWITCH_TYPE_DESCRIPTIVE' TEXT is either NULL or some descriptive text which should be ignored. If TEXT is NULL then it is being used to warn the target hook that either recording is starting or ending. The first time TYPE is SWITCH_TYPE_DESCRIPTIVE and TEXT is NULL, ! the warning is for start up and the second time the warning is ! for wind down. This feature is to allow the target hook to ! make any necessary preparations before it starts to record switches and to perform any necessary tidying up after it has finished recording switches. ! 'SWITCH_TYPE_LINE_START' This option can be ignored by this target hook. ! 'SWITCH_TYPE_LINE_END' This option can be ignored by this target hook. The hook's return value must be zero. Other return values may be --- 34573,34604 ---- are enabled. The TYPE argument specifies what is being recorded. It can take the following values: ! `SWITCH_TYPE_PASSED' TEXT is a command line switch that has been set by the user. ! `SWITCH_TYPE_ENABLED' TEXT is an option which has been enabled. This might be as a direct result of a command line switch, or because it is enabled by default or because it has been enabled as a side effect of a different command line switch. For example, the ! `-O2' switch enables various different individual ! optimization passes. ! `SWITCH_TYPE_DESCRIPTIVE' TEXT is either NULL or some descriptive text which should be ignored. If TEXT is NULL then it is being used to warn the target hook that either recording is starting or ending. The first time TYPE is SWITCH_TYPE_DESCRIPTIVE and TEXT is NULL, ! the warning is for start up and the second time the warning ! is for wind down. This feature is to allow the target hook ! to make any necessary preparations before it starts to record switches and to perform any necessary tidying up after it has finished recording switches. ! `SWITCH_TYPE_LINE_START' This option can be ignored by this target hook. ! `SWITCH_TYPE_LINE_END' This option can be ignored by this target hook. The hook's return value must be zero. Other return values may be *************** This describes the overall framework of *** 34200,34210 **** it records the switches as ASCII text inside a new, string mergeable section in the assembler output file. The name of the new section is provided by the ! 'TARGET_ASM_RECORD_GCC_SWITCHES_SECTION' target hook. -- Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION This is the name of the section that will be created by the example ! ELF implementation of the 'TARGET_ASM_RECORD_GCC_SWITCHES' target hook.  --- 34609,34619 ---- it records the switches as ASCII text inside a new, string mergeable section in the assembler output file. The name of the new section is provided by the ! `TARGET_ASM_RECORD_GCC_SWITCHES_SECTION' target hook. -- Target Hook: const char * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION This is the name of the section that will be created by the example ! ELF implementation of the `TARGET_ASM_RECORD_GCC_SWITCHES' target hook.  *************** File: gccint.info, Node: Data Output, *** 34223,34232 **** -- Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP These hooks specify assembly directives for creating certain kinds ! of integer object. The 'TARGET_ASM_BYTE_OP' directive creates a ! byte-sized object, the 'TARGET_ASM_ALIGNED_HI_OP' one creates an aligned two-byte object, and so on. Any of the hooks may be ! 'NULL', indicating that no suitable directive is available. The compiler will print these strings at the start of a new line, followed immediately by the object's initial value. In most cases, --- 34632,34641 ---- -- Target Hook: const char * TARGET_ASM_UNALIGNED_DI_OP -- Target Hook: const char * TARGET_ASM_UNALIGNED_TI_OP These hooks specify assembly directives for creating certain kinds ! of integer object. The `TARGET_ASM_BYTE_OP' directive creates a ! byte-sized object, the `TARGET_ASM_ALIGNED_HI_OP' one creates an aligned two-byte object, and so on. Any of the hooks may be ! `NULL', indicating that no suitable directive is available. The compiler will print these strings at the start of a new line, followed immediately by the object's initial value. In most cases, *************** File: gccint.info, Node: Data Output, *** 34234,34281 **** -- Target Hook: bool TARGET_ASM_INTEGER (rtx X, unsigned int SIZE, int ALIGNED_P) ! The 'assemble_integer' function uses this hook to output an integer ! object. X is the object's value, SIZE is its size in bytes and ! ALIGNED_P indicates whether it is aligned. The function should ! return 'true' if it was able to output the object. If it returns ! false, 'assemble_integer' will try to split the object into smaller ! parts. The default implementation of this hook will use the ! 'TARGET_ASM_BYTE_OP' family of strings, returning 'false' when the ! relevant string is 'NULL'. -- Target Hook: bool TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA (FILE *FILE, rtx X) ! A target hook to recognize RTX patterns that 'output_addr_const' can't deal with, and output assembly code to FILE corresponding to the pattern X. This may be used to allow machine-dependent ! 'UNSPEC's to appear within constants. If target hook fails to recognize a pattern, it must return ! 'false', so that a standard error message is printed. If it prints ! an error message itself, by calling, for example, ! 'output_operand_lossage', it may just return 'true'. -- Macro: ASM_OUTPUT_ASCII (STREAM, PTR, LEN) A C statement to output to the stdio stream STREAM an assembler instruction to assemble a string constant containing the LEN bytes ! at PTR. PTR will be a C expression of type 'char *' and LEN a C ! expression of type 'int'. ! If the assembler has a '.ascii' pseudo-op as found in the Berkeley ! Unix assembler, do not define the macro 'ASM_OUTPUT_ASCII'. -- Macro: ASM_OUTPUT_FDESC (STREAM, DECL, N) A C statement to output word N of a function descriptor for DECL. ! This must be defined if 'TARGET_VTABLE_USES_DESCRIPTORS' is defined, and is otherwise unused. -- Macro: CONSTANT_POOL_BEFORE_FUNCTION You may define this macro as a C expression. You should define the expression to have a nonzero value if GCC should output the ! constant pool for a function before the code for the function, or a ! zero value if GCC should output the constant pool after the function. If you do not define this macro, the usual case, GCC will output the constant pool before the function. --- 34643,34690 ---- -- Target Hook: bool TARGET_ASM_INTEGER (rtx X, unsigned int SIZE, int ALIGNED_P) ! The `assemble_integer' function uses this hook to output an ! integer object. X is the object's value, SIZE is its size in ! bytes and ALIGNED_P indicates whether it is aligned. The function ! should return `true' if it was able to output the object. If it ! returns false, `assemble_integer' will try to split the object ! into smaller parts. The default implementation of this hook will use the ! `TARGET_ASM_BYTE_OP' family of strings, returning `false' when the ! relevant string is `NULL'. -- Target Hook: bool TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA (FILE *FILE, rtx X) ! A target hook to recognize RTX patterns that `output_addr_const' can't deal with, and output assembly code to FILE corresponding to the pattern X. This may be used to allow machine-dependent ! `UNSPEC's to appear within constants. If target hook fails to recognize a pattern, it must return ! `false', so that a standard error message is printed. If it ! prints an error message itself, by calling, for example, ! `output_operand_lossage', it may just return `true'. -- Macro: ASM_OUTPUT_ASCII (STREAM, PTR, LEN) A C statement to output to the stdio stream STREAM an assembler instruction to assemble a string constant containing the LEN bytes ! at PTR. PTR will be a C expression of type `char *' and LEN a C ! expression of type `int'. ! If the assembler has a `.ascii' pseudo-op as found in the Berkeley ! Unix assembler, do not define the macro `ASM_OUTPUT_ASCII'. -- Macro: ASM_OUTPUT_FDESC (STREAM, DECL, N) A C statement to output word N of a function descriptor for DECL. ! This must be defined if `TARGET_VTABLE_USES_DESCRIPTORS' is defined, and is otherwise unused. -- Macro: CONSTANT_POOL_BEFORE_FUNCTION You may define this macro as a C expression. You should define the expression to have a nonzero value if GCC should output the ! constant pool for a function before the code for the function, or ! a zero value if GCC should output the constant pool after the function. If you do not define this macro, the usual case, GCC will output the constant pool before the function. *************** File: gccint.info, Node: Data Output, *** 34290,34304 **** If no constant-pool prefix is required, the usual case, this macro need not be defined. ! -- Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, LABELNO, ! JUMPTO) A C statement (with or without semicolon) to output a constant in ! the constant pool, if it needs special treatment. (This macro need ! not do anything for RTL expressions that can be output normally.) The argument FILE is the standard I/O stream to output the assembler code on. X is the RTL expression for the constant to ! output, and MODE is the machine mode (in case X is a 'const_int'). ALIGN is the required alignment for the value X; you should output an assembler directive to force this much alignment. --- 34699,34714 ---- If no constant-pool prefix is required, the usual case, this macro need not be defined. ! -- Macro: ASM_OUTPUT_SPECIAL_POOL_ENTRY (FILE, X, MODE, ALIGN, ! LABELNO, JUMPTO) A C statement (with or without semicolon) to output a constant in ! the constant pool, if it needs special treatment. (This macro ! need not do anything for RTL expressions that can be output ! normally.) The argument FILE is the standard I/O stream to output the assembler code on. X is the RTL expression for the constant to ! output, and MODE is the machine mode (in case X is a `const_int'). ALIGN is the required alignment for the value X; you should output an assembler directive to force this much alignment. *************** File: gccint.info, Node: Data Output, *** 34307,34316 **** responsible for outputting the label definition at the proper place. Here is how to do this: ! (*targetm.asm_out.internal_label) (FILE, "LC", LABELNO); When you output a pool entry specially, you should end with a ! 'goto' to the label JUMPTO. This will prevent the same pool entry from being output a second time in the usual manner. You need not define this macro if it would do nothing. --- 34717,34726 ---- responsible for outputting the label definition at the proper place. Here is how to do this: ! `(*targetm.asm_out.internal_label)' (FILE, "LC", LABELNO); When you output a pool entry specially, you should end with a ! `goto' to the label JUMPTO. This will prevent the same pool entry from being output a second time in the usual manner. You need not define this macro if it would do nothing. *************** File: gccint.info, Node: Data Output, *** 34333,34349 **** line separator uses multiple characters. If you do not define this macro, the default is that only the ! character ';' is treated as a logical line separator. -- Target Hook: const char * TARGET_ASM_OPEN_PAREN -- Target Hook: const char * TARGET_ASM_CLOSE_PAREN ! These target hooks are C string constants, describing the syntax in ! the assembler for grouping arithmetic expressions. If not overridden, they default to normal parentheses, which is correct for most assemblers. ! These macros are provided by 'real.h' for writing the definitions of ! 'ASM_OUTPUT_DOUBLE' and the like: -- Macro: REAL_VALUE_TO_TARGET_SINGLE (X, L) -- Macro: REAL_VALUE_TO_TARGET_DOUBLE (X, L) --- 34743,34759 ---- line separator uses multiple characters. If you do not define this macro, the default is that only the ! character `;' is treated as a logical line separator. -- Target Hook: const char * TARGET_ASM_OPEN_PAREN -- Target Hook: const char * TARGET_ASM_CLOSE_PAREN ! These target hooks are C string constants, describing the syntax ! in the assembler for grouping arithmetic expressions. If not overridden, they default to normal parentheses, which is correct for most assemblers. ! These macros are provided by `real.h' for writing the definitions of ! `ASM_OUTPUT_DOUBLE' and the like: -- Macro: REAL_VALUE_TO_TARGET_SINGLE (X, L) -- Macro: REAL_VALUE_TO_TARGET_DOUBLE (X, L) *************** File: gccint.info, Node: Data Output, *** 34351,34369 **** -- Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (X, L) ! These translate X, of type 'REAL_VALUE_TYPE', to the target's floating point representation, and store its bit pattern in the ! variable L. For 'REAL_VALUE_TO_TARGET_SINGLE' and ! 'REAL_VALUE_TO_TARGET_DECIMAL32', this variable should be a simple ! 'long int'. For the others, it should be an array of 'long int'. The number of elements in this array is determined by the size of the desired target floating point data type: 32 bits of it go in ! each 'long int' array element. Each array element holds 32 bits of ! the result, even if 'long int' is wider than 32 bits on the host ! machine. The array element values are designed so that you can print them ! out using 'fprintf' in the order they should appear in the target machine's memory.  --- 34761,34779 ---- -- Macro: REAL_VALUE_TO_TARGET_DECIMAL32 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL64 (X, L) -- Macro: REAL_VALUE_TO_TARGET_DECIMAL128 (X, L) ! These translate X, of type `REAL_VALUE_TYPE', to the target's floating point representation, and store its bit pattern in the ! variable L. For `REAL_VALUE_TO_TARGET_SINGLE' and ! `REAL_VALUE_TO_TARGET_DECIMAL32', this variable should be a simple ! `long int'. For the others, it should be an array of `long int'. The number of elements in this array is determined by the size of the desired target floating point data type: 32 bits of it go in ! each `long int' array element. Each array element holds 32 bits ! of the result, even if `long int' is wider than 32 bits on the ! host machine. The array element values are designed so that you can print them ! out using `fprintf' in the order they should appear in the target machine's memory.  *************** Each of the macros in this section is us *** 34376,34386 **** outputting a single uninitialized variable. -- Macro: ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a common-label named NAME whose size is ! SIZE bytes. The variable ROUNDED is the size rounded up to ! whatever alignment the caller wants. It is possible that SIZE may ! be zero, for instance if a struct with no other member than a zero-length array is defined. In this case, the backend must output a symbol definition that allocates at least one byte, both so that the address of the resulting object does not compare equal --- 34786,34796 ---- outputting a single uninitialized variable. -- Macro: ASM_OUTPUT_COMMON (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of a common-label named NAME whose ! size is SIZE bytes. The variable ROUNDED is the size rounded up ! to whatever alignment the caller wants. It is possible that SIZE ! may be zero, for instance if a struct with no other member than a zero-length array is defined. In this case, the backend must output a symbol definition that allocates at least one byte, both so that the address of the resulting object does not compare equal *************** outputting a single uninitialized variab *** 34388,34468 **** the concept of a zero-sized common symbol, as that is how they represent an ordinary undefined external. ! Use the expression 'assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional assembler ! syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized common global variables are output. -- Macro: ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_COMMON' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of 'ASM_OUTPUT_COMMON', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable ! to be output, if there is one, or 'NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both 'ASM_OUTPUT_COMMON' and ! 'ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to see the variable's decl in order to chose what to output. -- Macro: ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of uninitialized global DECL named NAME ! whose size is SIZE bytes. The variable ALIGNMENT is the alignment ! specified as the number of bits. ! Try to use function 'asm_output_aligned_bss' defined in file ! 'varasm.c' when defining this macro. If unable, use the expression ! 'assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. There are two ways of handling global BSS. One is to define this ! macro. The other is to have 'TARGET_ASM_SELECT_SECTION' return a switchable BSS section (*note TARGET_HAVE_SWITCHABLE_BSS_SECTIONS::). You do not need to do both. ! Some languages do not have 'common' data, and require a non-common form of global BSS in order to handle uninitialized globals efficiently. C++ is one example of this. However, if the target does not support global BSS, the front end may choose to make globals common in order to save space in the object file. -- Macro: ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a local-common-label named NAME whose ! size is SIZE bytes. The variable ROUNDED is the size rounded up to ! whatever alignment the caller wants. ! Use the expression 'assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional assembler ! syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized static variables are output. -- Macro: ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_LOCAL' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of 'ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like 'ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to ! be output, if there is one, or 'NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both 'ASM_OUTPUT_DECL' and 'ASM_OUTPUT_ALIGNED_DECL'. ! Define this macro when you need to see the variable's decl in order ! to chose what to output.  File: gccint.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format --- 34798,34878 ---- the concept of a zero-sized common symbol, as that is how they represent an ordinary undefined external. ! Use the expression `assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional ! assembler syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized common global variables are output. -- Macro: ASM_OUTPUT_ALIGNED_COMMON (STREAM, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_COMMON' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of `ASM_OUTPUT_COMMON', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_COMMON (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_ALIGNED_COMMON' except that DECL of the variable ! to be output, if there is one, or `NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both `ASM_OUTPUT_COMMON' and ! `ASM_OUTPUT_ALIGNED_COMMON'. Define this macro when you need to see the variable's decl in order to chose what to output. -- Macro: ASM_OUTPUT_ALIGNED_BSS (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of uninitialized global DECL named ! NAME whose size is SIZE bytes. The variable ALIGNMENT is the ! alignment specified as the number of bits. ! Try to use function `asm_output_aligned_bss' defined in file ! `varasm.c' when defining this macro. If unable, use the expression ! `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. There are two ways of handling global BSS. One is to define this ! macro. The other is to have `TARGET_ASM_SELECT_SECTION' return a switchable BSS section (*note TARGET_HAVE_SWITCHABLE_BSS_SECTIONS::). You do not need to do both. ! Some languages do not have `common' data, and require a non-common form of global BSS in order to handle uninitialized globals efficiently. C++ is one example of this. However, if the target does not support global BSS, the front end may choose to make globals common in order to save space in the object file. -- Macro: ASM_OUTPUT_LOCAL (STREAM, NAME, SIZE, ROUNDED) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of a local-common-label named NAME ! whose size is SIZE bytes. The variable ROUNDED is the size ! rounded up to whatever alignment the caller wants. ! Use the expression `assemble_name (STREAM, NAME)' to output the ! name itself; before and after that, output the additional ! assembler syntax for defining the name, and a newline. This macro controls how the assembler definitions of uninitialized static variables are output. -- Macro: ASM_OUTPUT_ALIGNED_LOCAL (STREAM, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate, explicit argument. If you define this macro, it is used ! in place of `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required alignment of the variable. The alignment is specified as the number of bits. -- Macro: ASM_OUTPUT_ALIGNED_DECL_LOCAL (STREAM, DECL, NAME, SIZE, ALIGNMENT) ! Like `ASM_OUTPUT_ALIGNED_DECL' except that DECL of the variable to ! be output, if there is one, or `NULL_TREE' if there is no corresponding variable. If you define this macro, GCC will use it ! in place of both `ASM_OUTPUT_DECL' and `ASM_OUTPUT_ALIGNED_DECL'. ! Define this macro when you need to see the variable's decl in ! order to chose what to output.  File: gccint.info, Node: Label Output, Next: Initialization, Prev: Uninitialized Data, Up: Assembler Format *************** File: gccint.info, Node: Label Output, *** 34473,34720 **** This is about outputting labels. -- Macro: ASM_OUTPUT_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a label named NAME. Use the expression ! 'assemble_name (STREAM, NAME)' to output the name itself; before ! and after that, output the additional assembler syntax for defining ! the name, and a newline. A default definition of this macro is ! provided which is correct for most systems. ! ! -- Macro: ASM_OUTPUT_FUNCTION_LABEL (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! the assembler definition of a label named NAME of a function. Use ! the expression 'assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. A default definition of this macro is provided which is correct for most systems. If this macro is not defined, then the function name is defined in ! the usual manner as a label (by means of 'ASM_OUTPUT_LABEL'). -- Macro: ASM_OUTPUT_INTERNAL_LABEL (STREAM, NAME) ! Identical to 'ASM_OUTPUT_LABEL', except that NAME is known to refer ! to a compiler-generated label. The default definition uses ! 'assemble_name_raw', which is like 'assemble_name' except that it is more efficient. -- Macro: SIZE_ASM_OP A C string containing the appropriate assembler directive to specify the size of a symbol, without any arguments. On systems ! that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definitions of 'ASM_OUTPUT_SIZE_DIRECTIVE' and ! 'ASM_OUTPUT_MEASURED_SIZE' for your system. If you need your own custom definitions of those macros, or if you do not need explicit symbol sizes at all, do not define this macro. -- Macro: ASM_OUTPUT_SIZE_DIRECTIVE (STREAM, NAME, SIZE) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a directive telling the assembler that the size of the symbol NAME ! is SIZE. SIZE is a 'HOST_WIDE_INT'. If you define 'SIZE_ASM_OP', ! a default definition of this macro is provided. -- Macro: ASM_OUTPUT_MEASURED_SIZE (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a directive telling the assembler to calculate the size of the ! symbol NAME by subtracting its address from the current address. ! If you define 'SIZE_ASM_OP', a default definition of this macro is provided. The default assumes that the assembler recognizes a ! special '.' symbol as referring to the current address, and can calculate the difference between this and another symbol. If your ! assembler does not recognize '.' or cannot do calculations with it, ! you will need to redefine 'ASM_OUTPUT_MEASURED_SIZE' to use some ! other technique. -- Macro: NO_DOLLAR_IN_LABEL Define this macro if the assembler does not accept the character ! '$' in label names. By default constructors and destructors in G++ ! have '$' in the identifiers. If this macro is defined, '.' is used ! instead. -- Macro: NO_DOT_IN_LABEL Define this macro if the assembler does not accept the character ! '.' in label names. By default constructors and destructors in G++ ! have names that use '.'. If this macro is defined, these names are ! rewritten to avoid '.'. -- Macro: TYPE_ASM_OP A C string containing the appropriate assembler directive to specify the type of a symbol, without any arguments. On systems ! that use ELF, the default (in 'config/elfos.h') is '"\t.type\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: TYPE_OPERAND_FMT ! A C string which specifies (using 'printf' syntax) the format of ! the second operand to 'TYPE_ASM_OP'. On systems that use ELF, the ! default (in 'config/elfos.h') is '"@%s"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of 'ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: ASM_OUTPUT_TYPE_DIRECTIVE (STREAM, TYPE) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a directive telling the assembler that the type of the symbol NAME ! is TYPE. TYPE is a C string; currently, that string is always ! either '"function"' or '"object"', but you should not count on ! this. ! If you define 'TYPE_ASM_OP' and 'TYPE_OPERAND_FMT', a default definition of this macro is provided. -- Macro: ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the name NAME of a function which ! is being defined. This macro is responsible for outputting the ! label definition (perhaps using 'ASM_OUTPUT_FUNCTION_LABEL'). The ! argument DECL is the 'FUNCTION_DECL' tree node representing the ! function. If this macro is not defined, then the function name is defined in the usual manner as a label (by means of ! 'ASM_OUTPUT_FUNCTION_LABEL'). ! You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in the definition of this macro. -- Macro: ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the size of a function which is ! being defined. The argument NAME is the name of the function. The ! argument DECL is the 'FUNCTION_DECL' tree node representing the ! function. If this macro is not defined, then the function size is not defined. ! You may wish to use 'ASM_OUTPUT_MEASURED_SIZE' in the definition of ! this macro. -- Macro: ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the name NAME of an initialized ! variable which is being defined. This macro must output the label ! definition (perhaps using 'ASM_OUTPUT_LABEL'). The argument DECL ! is the 'VAR_DECL' tree node representing the variable. If this macro is not defined, then the variable name is defined in ! the usual manner as a label (by means of 'ASM_OUTPUT_LABEL'). ! You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' and/or ! 'ASM_OUTPUT_SIZE_DIRECTIVE' in the definition of this macro. -- Target Hook: void TARGET_ASM_DECLARE_CONSTANT_NAME (FILE *FILE, const char *NAME, const_tree EXPR, HOST_WIDE_INT SIZE) A target hook to output to the stdio stream FILE any text necessary for declaring the name NAME of a constant which is being defined. ! This target hook is responsible for outputting the label definition ! (perhaps using 'assemble_label'). The argument EXP is the value of ! the constant, and SIZE is the size of the constant in bytes. The ! NAME will be an internal label. The default version of this target hook, define the NAME in the ! usual manner as a label (by means of 'assemble_label'). ! You may wish to use 'ASM_OUTPUT_TYPE_DIRECTIVE' in this target hook. -- Macro: ASM_DECLARE_REGISTER_GLOBAL (STREAM, DECL, REGNO, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for claiming a register REGNO for a global ! variable DECL with name NAME. If you don't define this macro, that is equivalent to defining it to do nothing. -- Macro: ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND) A C statement (sans semicolon) to finish up declaring a variable ! name once the compiler has processed its initializer fully and thus ! has had a chance to determine the size of an array when controlled ! by an initializer. This is used on systems where it's necessary to ! declare something about the size of the object. If you don't define this macro, that is equivalent to defining it to do nothing. ! You may wish to use 'ASM_OUTPUT_SIZE_DIRECTIVE' and/or ! 'ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro. -- Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *STREAM, const char *NAME) ! This target hook is a function to output to the stdio stream STREAM ! some commands that will make the label NAME global; that is, ! available for reference from other files. The default implementation relies on a proper definition of ! 'GLOBAL_ASM_OP'. ! -- Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *STREAM, tree ! DECL) ! This target hook is a function to output to the stdio stream STREAM ! some commands that will make the name associated with DECL global; ! that is, available for reference from other files. The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook. -- Macro: ASM_WEAKEN_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! some commands that will make the label NAME weak; that is, available for reference from other files but only used if no other ! definition is available. Use the expression 'assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for making that name weak, and a newline. ! If you don't define this macro or 'ASM_WEAKEN_DECL', GCC will not ! support weak symbols and you should not define the 'SUPPORTS_WEAK' macro. -- Macro: ASM_WEAKEN_DECL (STREAM, DECL, NAME, VALUE) ! Combines (and replaces) the function of 'ASM_WEAKEN_LABEL' and ! 'ASM_OUTPUT_WEAK_ALIAS', allowing access to the associated function ! or variable decl. If VALUE is not 'NULL', this C statement should output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value VALUE. If VALUE ! is 'NULL', it should output commands to make NAME weak. -- Macro: ASM_OUTPUT_WEAKREF (STREAM, DECL, NAME, VALUE) ! Outputs a directive that enables NAME to be used to refer to symbol ! VALUE with weak-symbol semantics. 'decl' is the declaration of ! 'name'. -- Macro: SUPPORTS_WEAK A preprocessor constant expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, 'defaults.h' provides a default ! definition. If either 'ASM_WEAKEN_LABEL' or 'ASM_WEAKEN_DECL' is ! defined, the default definition is '1'; otherwise, it is '0'. -- Macro: TARGET_SUPPORTS_WEAK A C expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, 'defaults.h' provides a default ! definition. The default definition is '(SUPPORTS_WEAK)'. Define this macro if you want to control weak symbol support with a ! compiler flag such as '-melf'. -- Macro: MAKE_DECL_ONE_ONLY (DECL) A C statement (sans semicolon) to mark DECL to be emitted as a public symbol such that extra copies in multiple translation units will be discarded by the linker. Define this macro if your object ! file format provides support for this concept, such as the 'COMDAT' section flags in the Microsoft Windows PE/COFF format, and this support requires changes to DECL, such as putting it in a separate section. --- 34883,35133 ---- This is about outputting labels. -- Macro: ASM_OUTPUT_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM the assembler definition of a label named NAME. Use the ! expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for defining the name, and a newline. A default definition of this macro is provided which is correct for most systems. + -- Macro: ASM_OUTPUT_FUNCTION_LABEL (STREAM, NAME, DECL) + A C statement (sans semicolon) to output to the stdio stream + STREAM the assembler definition of a label named NAME of a + function. Use the expression `assemble_name (STREAM, NAME)' to + output the name itself; before and after that, output the + additional assembler syntax for defining the name, and a newline. + A default definition of this macro is provided which is correct + for most systems. + If this macro is not defined, then the function name is defined in ! the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). -- Macro: ASM_OUTPUT_INTERNAL_LABEL (STREAM, NAME) ! Identical to `ASM_OUTPUT_LABEL', except that NAME is known to ! refer to a compiler-generated label. The default definition uses ! `assemble_name_raw', which is like `assemble_name' except that it is more efficient. -- Macro: SIZE_ASM_OP A C string containing the appropriate assembler directive to specify the size of a symbol, without any arguments. On systems ! that use ELF, the default (in `config/elfos.h') is `"\t.size\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definitions of `ASM_OUTPUT_SIZE_DIRECTIVE' and ! `ASM_OUTPUT_MEASURED_SIZE' for your system. If you need your own custom definitions of those macros, or if you do not need explicit symbol sizes at all, do not define this macro. -- Macro: ASM_OUTPUT_SIZE_DIRECTIVE (STREAM, NAME, SIZE) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a directive telling the assembler that the size of the ! symbol NAME is SIZE. SIZE is a `HOST_WIDE_INT'. If you define ! `SIZE_ASM_OP', a default definition of this macro is provided. -- Macro: ASM_OUTPUT_MEASURED_SIZE (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a directive telling the assembler to calculate the size of ! the symbol NAME by subtracting its address from the current ! address. ! If you define `SIZE_ASM_OP', a default definition of this macro is provided. The default assumes that the assembler recognizes a ! special `.' symbol as referring to the current address, and can calculate the difference between this and another symbol. If your ! assembler does not recognize `.' or cannot do calculations with ! it, you will need to redefine `ASM_OUTPUT_MEASURED_SIZE' to use ! some other technique. -- Macro: NO_DOLLAR_IN_LABEL Define this macro if the assembler does not accept the character ! `$' in label names. By default constructors and destructors in ! G++ have `$' in the identifiers. If this macro is defined, `.' is ! used instead. -- Macro: NO_DOT_IN_LABEL Define this macro if the assembler does not accept the character ! `.' in label names. By default constructors and destructors in G++ ! have names that use `.'. If this macro is defined, these names ! are rewritten to avoid `.'. -- Macro: TYPE_ASM_OP A C string containing the appropriate assembler directive to specify the type of a symbol, without any arguments. On systems ! that use ELF, the default (in `config/elfos.h') is `"\t.type\t"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of `ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: TYPE_OPERAND_FMT ! A C string which specifies (using `printf' syntax) the format of ! the second operand to `TYPE_ASM_OP'. On systems that use ELF, the ! default (in `config/elfos.h') is `"@%s"'; on other systems, the default is not to define this macro. Define this macro only if it is correct to use the default ! definition of `ASM_OUTPUT_TYPE_DIRECTIVE' for your system. If you need your own custom definition of this macro, or if you do not need explicit symbol types at all, do not define this macro. -- Macro: ASM_OUTPUT_TYPE_DIRECTIVE (STREAM, TYPE) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a directive telling the assembler that the type of the ! symbol NAME is TYPE. TYPE is a C string; currently, that string ! is always either `"function"' or `"object"', but you should not ! count on this. ! If you define `TYPE_ASM_OP' and `TYPE_OPERAND_FMT', a default definition of this macro is provided. -- Macro: ASM_DECLARE_FUNCTION_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the name NAME of a ! function which is being defined. This macro is responsible for ! outputting the label definition (perhaps using ! `ASM_OUTPUT_FUNCTION_LABEL'). The argument DECL is the ! `FUNCTION_DECL' tree node representing the function. If this macro is not defined, then the function name is defined in the usual manner as a label (by means of ! `ASM_OUTPUT_FUNCTION_LABEL'). ! You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' in the definition of this macro. -- Macro: ASM_DECLARE_FUNCTION_SIZE (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the size of a function ! which is being defined. The argument NAME is the name of the ! function. The argument DECL is the `FUNCTION_DECL' tree node ! representing the function. If this macro is not defined, then the function size is not defined. ! You may wish to use `ASM_OUTPUT_MEASURED_SIZE' in the definition ! of this macro. -- Macro: ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the name NAME of an ! initialized variable which is being defined. This macro must ! output the label definition (perhaps using `ASM_OUTPUT_LABEL'). ! The argument DECL is the `VAR_DECL' tree node representing the ! variable. If this macro is not defined, then the variable name is defined in ! the usual manner as a label (by means of `ASM_OUTPUT_LABEL'). ! You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' and/or ! `ASM_OUTPUT_SIZE_DIRECTIVE' in the definition of this macro. -- Target Hook: void TARGET_ASM_DECLARE_CONSTANT_NAME (FILE *FILE, const char *NAME, const_tree EXPR, HOST_WIDE_INT SIZE) A target hook to output to the stdio stream FILE any text necessary for declaring the name NAME of a constant which is being defined. ! This target hook is responsible for outputting the label ! definition (perhaps using `assemble_label'). The argument EXP is ! the value of the constant, and SIZE is the size of the constant in ! bytes. The NAME will be an internal label. The default version of this target hook, define the NAME in the ! usual manner as a label (by means of `assemble_label'). ! You may wish to use `ASM_OUTPUT_TYPE_DIRECTIVE' in this target hook. -- Macro: ASM_DECLARE_REGISTER_GLOBAL (STREAM, DECL, REGNO, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for claiming a register REGNO for a ! global variable DECL with name NAME. If you don't define this macro, that is equivalent to defining it to do nothing. -- Macro: ASM_FINISH_DECLARE_OBJECT (STREAM, DECL, TOPLEVEL, ATEND) A C statement (sans semicolon) to finish up declaring a variable ! name once the compiler has processed its initializer fully and ! thus has had a chance to determine the size of an array when ! controlled by an initializer. This is used on systems where it's ! necessary to declare something about the size of the object. If you don't define this macro, that is equivalent to defining it to do nothing. ! You may wish to use `ASM_OUTPUT_SIZE_DIRECTIVE' and/or ! `ASM_OUTPUT_MEASURED_SIZE' in the definition of this macro. -- Target Hook: void TARGET_ASM_GLOBALIZE_LABEL (FILE *STREAM, const char *NAME) ! This target hook is a function to output to the stdio stream ! STREAM some commands that will make the label NAME global; that ! is, available for reference from other files. The default implementation relies on a proper definition of ! `GLOBAL_ASM_OP'. ! -- Target Hook: void TARGET_ASM_GLOBALIZE_DECL_NAME (FILE *STREAM, ! tree DECL) ! This target hook is a function to output to the stdio stream ! STREAM some commands that will make the name associated with DECL ! global; that is, available for reference from other files. The default implementation uses the TARGET_ASM_GLOBALIZE_LABEL target hook. -- Macro: ASM_WEAKEN_LABEL (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM some commands that will make the label NAME weak; that is, available for reference from other files but only used if no other ! definition is available. Use the expression `assemble_name (STREAM, NAME)' to output the name itself; before and after that, output the additional assembler syntax for making that name weak, and a newline. ! If you don't define this macro or `ASM_WEAKEN_DECL', GCC will not ! support weak symbols and you should not define the `SUPPORTS_WEAK' macro. -- Macro: ASM_WEAKEN_DECL (STREAM, DECL, NAME, VALUE) ! Combines (and replaces) the function of `ASM_WEAKEN_LABEL' and ! `ASM_OUTPUT_WEAK_ALIAS', allowing access to the associated function ! or variable decl. If VALUE is not `NULL', this C statement should output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value VALUE. If VALUE ! is `NULL', it should output commands to make NAME weak. -- Macro: ASM_OUTPUT_WEAKREF (STREAM, DECL, NAME, VALUE) ! Outputs a directive that enables NAME to be used to refer to ! symbol VALUE with weak-symbol semantics. `decl' is the ! declaration of `name'. -- Macro: SUPPORTS_WEAK A preprocessor constant expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, `defaults.h' provides a default ! definition. If either `ASM_WEAKEN_LABEL' or `ASM_WEAKEN_DECL' is ! defined, the default definition is `1'; otherwise, it is `0'. -- Macro: TARGET_SUPPORTS_WEAK A C expression which evaluates to true if the target supports weak symbols. ! If you don't define this macro, `defaults.h' provides a default ! definition. The default definition is `(SUPPORTS_WEAK)'. Define this macro if you want to control weak symbol support with a ! compiler flag such as `-melf'. -- Macro: MAKE_DECL_ONE_ONLY (DECL) A C statement (sans semicolon) to mark DECL to be emitted as a public symbol such that extra copies in multiple translation units will be discarded by the linker. Define this macro if your object ! file format provides support for this concept, such as the `COMDAT' section flags in the Microsoft Windows PE/COFF format, and this support requires changes to DECL, such as putting it in a separate section. *************** This is about outputting labels. *** 34723,34733 **** A C expression which evaluates to true if the target supports one-only semantics. ! If you don't define this macro, 'varasm.c' provides a default ! definition. If 'MAKE_DECL_ONE_ONLY' is defined, the default ! definition is '1'; otherwise, it is '0'. Define this macro if you want to control one-only symbol support with a compiler flag, or if ! setting the 'DECL_ONE_ONLY' flag is enough to mark a declaration to be emitted as one-only. -- Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree DECL, int --- 35136,35146 ---- A C expression which evaluates to true if the target supports one-only semantics. ! If you don't define this macro, `varasm.c' provides a default ! definition. If `MAKE_DECL_ONE_ONLY' is defined, the default ! definition is `1'; otherwise, it is `0'. Define this macro if you want to control one-only symbol support with a compiler flag, or if ! setting the `DECL_ONE_ONLY' flag is enough to mark a declaration to be emitted as one-only. -- Target Hook: void TARGET_ASM_ASSEMBLE_VISIBILITY (tree DECL, int *************** This is about outputting labels. *** 34739,34776 **** -- Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC A C expression that evaluates to true if the target's linker ! expects that weak symbols do not appear in a static archive's table ! of contents. The default is '0'. Leaving weak symbols out of an archive's table of contents means that, if a symbol will only have a definition in one translation unit and will have undefined references from other translation units, that symbol should not be weak. Defining this macro to be nonzero will thus have the effect that certain symbols that would ! normally be weak (explicit template instantiations, and vtables for ! polymorphic classes with noninline key methods) will instead be ! nonweak. The C++ ABI requires this macro to be zero. Define this macro for targets where full C++ ABI compliance is impossible and where ! linker restrictions require weak symbols to be left out of a static ! archive's table of contents. -- Macro: ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! any text necessary for declaring the name of an external symbol ! named NAME which is referenced in this compilation but not defined. ! The value of DECL is the tree node for the declaration. This macro need not be defined if it does not need to output ! anything. The GNU assembler and most Unix assemblers don't require ! anything. -- Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx SYMREF) This target hook is a function to output to ASM_OUT_FILE an assembler pseudo-op to declare a library function name external. The name of the library function is given by SYMREF, which is a ! 'symbol_ref'. -- Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (const char *SYMBOL) --- 35152,35189 ---- -- Macro: TARGET_WEAK_NOT_IN_ARCHIVE_TOC A C expression that evaluates to true if the target's linker ! expects that weak symbols do not appear in a static archive's ! table of contents. The default is `0'. Leaving weak symbols out of an archive's table of contents means that, if a symbol will only have a definition in one translation unit and will have undefined references from other translation units, that symbol should not be weak. Defining this macro to be nonzero will thus have the effect that certain symbols that would ! normally be weak (explicit template instantiations, and vtables ! for polymorphic classes with noninline key methods) will instead ! be nonweak. The C++ ABI requires this macro to be zero. Define this macro for targets where full C++ ABI compliance is impossible and where ! linker restrictions require weak symbols to be left out of a ! static archive's table of contents. -- Macro: ASM_OUTPUT_EXTERNAL (STREAM, DECL, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM any text necessary for declaring the name of an external ! symbol named NAME which is referenced in this compilation but not ! defined. The value of DECL is the tree node for the declaration. This macro need not be defined if it does not need to output ! anything. The GNU assembler and most Unix assemblers don't ! require anything. -- Target Hook: void TARGET_ASM_EXTERNAL_LIBCALL (rtx SYMREF) This target hook is a function to output to ASM_OUT_FILE an assembler pseudo-op to declare a library function name external. The name of the library function is given by SYMREF, which is a ! `symbol_ref'. -- Target Hook: void TARGET_ASM_MARK_DECL_PRESERVED (const char *SYMBOL) *************** This is about outputting labels. *** 34779,34813 **** uses the .no_dead_code_strip directive. -- Macro: ASM_OUTPUT_LABELREF (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream STREAM ! a reference in assembler syntax to a label named NAME. This should ! add '_' to the front of the name, if that is customary on your ! operating system, as it is in most Berkeley Unix systems. This ! macro is used in 'assemble_name'. -- Target Hook: tree TARGET_MANGLE_ASSEMBLER_NAME (const char *NAME) ! Given a symbol NAME, perform same mangling as 'varasm.c''s ! 'assemble_name', but in memory rather than to a file stream, ! returning result as an 'IDENTIFIER_NODE'. Required for correct LTO ! symtabs. The default implementation calls the ! 'TARGET_STRIP_NAME_ENCODING' hook and then prepends the ! 'USER_LABEL_PREFIX', if any. -- Macro: ASM_OUTPUT_SYMBOL_REF (STREAM, SYM) A C statement (sans semicolon) to output a reference to ! 'SYMBOL_REF' SYM. If not defined, 'assemble_name' will be used to output the name of the symbol. This macro may be used to modify the way a symbol is referenced depending on information encoded by ! 'TARGET_ENCODE_SECTION_INFO'. -- Macro: ASM_OUTPUT_LABEL_REF (STREAM, BUF) A C statement (sans semicolon) to output a reference to BUF, the ! result of 'ASM_GENERATE_INTERNAL_LABEL'. If not defined, ! 'assemble_name' will be used to output the name of the symbol. ! This macro is not used by 'output_asm_label', or the '%l' specifier ! that calls it; the intention is that this macro should be set when ! it is necessary to output a label differently when its address is ! being taken. -- Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *STREAM, const char *PREFIX, unsigned long LABELNO) --- 35192,35226 ---- uses the .no_dead_code_strip directive. -- Macro: ASM_OUTPUT_LABELREF (STREAM, NAME) ! A C statement (sans semicolon) to output to the stdio stream ! STREAM a reference in assembler syntax to a label named NAME. ! This should add `_' to the front of the name, if that is customary ! on your operating system, as it is in most Berkeley Unix systems. ! This macro is used in `assemble_name'. -- Target Hook: tree TARGET_MANGLE_ASSEMBLER_NAME (const char *NAME) ! Given a symbol NAME, perform same mangling as `varasm.c''s ! `assemble_name', but in memory rather than to a file stream, ! returning result as an `IDENTIFIER_NODE'. Required for correct ! LTO symtabs. The default implementation calls the ! `TARGET_STRIP_NAME_ENCODING' hook and then prepends the ! `USER_LABEL_PREFIX', if any. -- Macro: ASM_OUTPUT_SYMBOL_REF (STREAM, SYM) A C statement (sans semicolon) to output a reference to ! `SYMBOL_REF' SYM. If not defined, `assemble_name' will be used to output the name of the symbol. This macro may be used to modify the way a symbol is referenced depending on information encoded by ! `TARGET_ENCODE_SECTION_INFO'. -- Macro: ASM_OUTPUT_LABEL_REF (STREAM, BUF) A C statement (sans semicolon) to output a reference to BUF, the ! result of `ASM_GENERATE_INTERNAL_LABEL'. If not defined, ! `assemble_name' will be used to output the name of the symbol. ! This macro is not used by `output_asm_label', or the `%l' ! specifier that calls it; the intention is that this macro should ! be set when it is necessary to output a label differently when its ! address is being taken. -- Target Hook: void TARGET_ASM_INTERNAL_LABEL (FILE *STREAM, const char *PREFIX, unsigned long LABELNO) *************** This is about outputting labels. *** 34818,34867 **** labels used for user-level functions and variables. Otherwise, certain programs will have name conflicts with internal labels. ! It is desirable to exclude internal labels from the symbol table of ! the object file. Most assemblers have a naming convention for ! labels that should be excluded; on many systems, the letter 'L' at the beginning of a label has this effect. You should find out what convention your system uses, and follow it. The default version of this function utilizes ! 'ASM_GENERATE_INTERNAL_LABEL'. -- Macro: ASM_OUTPUT_DEBUG_LABEL (STREAM, PREFIX, NUM) A C statement to output to the stdio stream STREAM a debug info ! label whose name is made from the string PREFIX and the number NUM. ! This is useful for VLIW targets, where debug info labels may need ! to be treated differently than branch target labels. On some systems, branch target labels must be at the beginning of instruction bundles, but debug info labels can occur in the middle of instruction bundles. If this macro is not defined, then ! '(*targetm.asm_out.internal_label)' will be used. -- Macro: ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM) ! A C statement to store into the string STRING a label whose name is ! made from the string PREFIX and the number NUM. ! This string, when output subsequently by 'assemble_name', should ! produce the output that '(*targetm.asm_out.internal_label)' would produce with the same PREFIX and NUM. ! If the string begins with '*', then 'assemble_name' will output the ! rest of the string unchanged. It is often convenient for ! 'ASM_GENERATE_INTERNAL_LABEL' to use '*' in this way. If the ! string doesn't start with '*', then 'ASM_OUTPUT_LABELREF' gets to output the string, and may change it. (Of course, ! 'ASM_OUTPUT_LABELREF' is also part of your machine description, so you should know what it does on your machine.) -- Macro: ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER) A C expression to assign to OUTVAR (which is a variable of type ! 'char *') a newly allocated string made from the string NAME and the number NUMBER, with some suitable punctuation added. Use ! 'alloca' to get space for the string. ! The string will be used as an argument to 'ASM_OUTPUT_LABELREF' to produce an assembler label for an internal static variable whose name is NAME. Therefore, the string must be such as to result in valid assembler code. The argument NUMBER is different each time --- 35231,35280 ---- labels used for user-level functions and variables. Otherwise, certain programs will have name conflicts with internal labels. ! It is desirable to exclude internal labels from the symbol table ! of the object file. Most assemblers have a naming convention for ! labels that should be excluded; on many systems, the letter `L' at the beginning of a label has this effect. You should find out what convention your system uses, and follow it. The default version of this function utilizes ! `ASM_GENERATE_INTERNAL_LABEL'. -- Macro: ASM_OUTPUT_DEBUG_LABEL (STREAM, PREFIX, NUM) A C statement to output to the stdio stream STREAM a debug info ! label whose name is made from the string PREFIX and the number ! NUM. This is useful for VLIW targets, where debug info labels may ! need to be treated differently than branch target labels. On some systems, branch target labels must be at the beginning of instruction bundles, but debug info labels can occur in the middle of instruction bundles. If this macro is not defined, then ! `(*targetm.asm_out.internal_label)' will be used. -- Macro: ASM_GENERATE_INTERNAL_LABEL (STRING, PREFIX, NUM) ! A C statement to store into the string STRING a label whose name ! is made from the string PREFIX and the number NUM. ! This string, when output subsequently by `assemble_name', should ! produce the output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX and NUM. ! If the string begins with `*', then `assemble_name' will output ! the rest of the string unchanged. It is often convenient for ! `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the ! string doesn't start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and may change it. (Of course, ! `ASM_OUTPUT_LABELREF' is also part of your machine description, so you should know what it does on your machine.) -- Macro: ASM_FORMAT_PRIVATE_NAME (OUTVAR, NAME, NUMBER) A C expression to assign to OUTVAR (which is a variable of type ! `char *') a newly allocated string made from the string NAME and the number NUMBER, with some suitable punctuation added. Use ! `alloca' to get space for the string. ! The string will be used as an argument to `ASM_OUTPUT_LABELREF' to produce an assembler label for an internal static variable whose name is NAME. Therefore, the string must be such as to result in valid assembler code. The argument NUMBER is different each time *************** This is about outputting labels. *** 34870,34877 **** Ideally this string should not be a valid C identifier, to prevent any conflict with the user's own symbols. Most assemblers allow ! periods or percent signs in assembler symbols; putting at least one ! of these between the name and the number will suffice. If this macro is not defined, a default definition will be provided which is correct for most systems. --- 35283,35290 ---- Ideally this string should not be a valid C identifier, to prevent any conflict with the user's own symbols. Most assemblers allow ! periods or percent signs in assembler symbols; putting at least ! one of these between the name and the number will suffice. If this macro is not defined, a default definition will be provided which is correct for most systems. *************** This is about outputting labels. *** 34880,34886 **** A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol NAME to have the value VALUE. ! If 'SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: ASM_OUTPUT_DEF_FROM_DECLS (STREAM, DECL_OF_NAME, --- 35293,35299 ---- A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol NAME to have the value VALUE. ! If `SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: ASM_OUTPUT_DEF_FROM_DECLS (STREAM, DECL_OF_NAME, *************** This is about outputting labels. *** 34888,34897 **** A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol whose tree node is DECL_OF_NAME to have the value of the tree node DECL_OF_VALUE. This macro will ! be used in preference to 'ASM_OUTPUT_DEF' if it is defined and if the tree nodes are available. ! If 'SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: TARGET_DEFERRED_OUTPUT_DEFS (DECL_OF_NAME, DECL_OF_VALUE) --- 35301,35310 ---- A C statement to output to the stdio stream STREAM assembler code which defines (equates) the symbol whose tree node is DECL_OF_NAME to have the value of the tree node DECL_OF_VALUE. This macro will ! be used in preference to `ASM_OUTPUT_DEF' if it is defined and if the tree nodes are available. ! If `SET_ASM_OP' is defined, a default definition is provided which is correct for most systems. -- Macro: TARGET_DEFERRED_OUTPUT_DEFS (DECL_OF_NAME, DECL_OF_VALUE) *************** This is about outputting labels. *** 34900,34915 **** have the value of the tree node DECL_OF_VALUE should be emitted near the end of the current compilation unit. The default is to not defer output of defines. This macro affects defines output by ! 'ASM_OUTPUT_DEF' and 'ASM_OUTPUT_DEF_FROM_DECLS'. -- Macro: ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE) A C statement to output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value ! VALUE. If VALUE is 'NULL', it defines NAME as an undefined weak symbol. Define this macro if the target only supports weak aliases; define ! 'ASM_OUTPUT_DEF' instead if possible. -- Macro: OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME) --- 35313,35328 ---- have the value of the tree node DECL_OF_VALUE should be emitted near the end of the current compilation unit. The default is to not defer output of defines. This macro affects defines output by ! `ASM_OUTPUT_DEF' and `ASM_OUTPUT_DEF_FROM_DECLS'. -- Macro: ASM_OUTPUT_WEAK_ALIAS (STREAM, NAME, VALUE) A C statement to output to the stdio stream STREAM assembler code which defines (equates) the weak symbol NAME to have the value ! VALUE. If VALUE is `NULL', it defines NAME as an undefined weak symbol. Define this macro if the target only supports weak aliases; define ! `ASM_OUTPUT_DEF' instead if possible. -- Macro: OBJC_GEN_METHOD_LABEL (BUF, IS_INST, CLASS_NAME, CAT_NAME, SEL_NAME) *************** This is about outputting labels. *** 34917,34941 **** Objective-C methods. The default name is a unique method number followed by the name of ! the class (e.g. '_1_Foo'). For methods in categories, the name of the category is also included in the assembler name (e.g. ! '_1_Foo_Bar'). These names are safe on most systems, but make debugging difficult ! since the method's selector is not present in the name. Therefore, ! particular systems define other ways of computing names. ! BUF is an expression of type 'char *' which gives you a buffer in which to store the name; its length is as long as CLASS_NAME, CAT_NAME and SEL_NAME put together, plus 50 characters extra. The argument IS_INST specifies whether the method is an instance method or a class method; CLASS_NAME is the name of the class; ! CAT_NAME is the name of the category (or 'NULL' if the method is not in a category); and SEL_NAME is the name of the selector. ! On systems where the assembler can handle quoted names, you can use ! this macro to provide more human-readable names.  File: gccint.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format --- 35330,35354 ---- Objective-C methods. The default name is a unique method number followed by the name of ! the class (e.g. `_1_Foo'). For methods in categories, the name of the category is also included in the assembler name (e.g. ! `_1_Foo_Bar'). These names are safe on most systems, but make debugging difficult ! since the method's selector is not present in the name. ! Therefore, particular systems define other ways of computing names. ! BUF is an expression of type `char *' which gives you a buffer in which to store the name; its length is as long as CLASS_NAME, CAT_NAME and SEL_NAME put together, plus 50 characters extra. The argument IS_INST specifies whether the method is an instance method or a class method; CLASS_NAME is the name of the class; ! CAT_NAME is the name of the category (or `NULL' if the method is not in a category); and SEL_NAME is the name of the selector. ! On systems where the assembler can handle quoted names, you can ! use this macro to provide more human-readable names.  File: gccint.info, Node: Initialization, Next: Macros for Initialization, Prev: Label Output, Up: Assembler Format *************** File: gccint.info, Node: Initialization *** 34946,34952 **** The compiled code for certain languages includes "constructors" (also called "initialization routines")--functions to initialize data in the program when the program is started. These functions need to be called ! before the program is "started"--that is to say, before 'main' is called. Compiling some languages generates "destructors" (also called --- 35359,35365 ---- The compiled code for certain languages includes "constructors" (also called "initialization routines")--functions to initialize data in the program when the program is started. These functions need to be called ! before the program is "started"--that is to say, before `main' is called. Compiling some languages generates "destructors" (also called *************** initialization and termination functions *** 34963,34970 **** Much of the structure is common to all four variations. The linker must build two lists of these functions--a list of ! initialization functions, called '__CTOR_LIST__', and a list of ! termination functions, called '__DTOR_LIST__'. Each list always begins with an ignored function pointer (which may hold 0, -1, or a count of the function pointers after it, depending on --- 35376,35383 ---- Much of the structure is common to all four variations. The linker must build two lists of these functions--a list of ! initialization functions, called `__CTOR_LIST__', and a list of ! termination functions, called `__DTOR_LIST__'. Each list always begins with an ignored function pointer (which may hold 0, -1, or a count of the function pointers after it, depending on *************** pointers to constructors (or destructors *** 34973,35053 **** pointer containing zero. Depending on the operating system and its executable file format, ! either 'crtstuff.c' or 'libgcc2.c' traverses these lists at startup time ! and exit time. Constructors are called in reverse order of the list; ! destructors in forward order. The best way to handle static constructors works only for object file formats which provide arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of destructors. ! Traditionally these are called '.ctors' and '.dtors'. Each object file that defines an initialization function also puts a word in the constructor section to point to that function. The linker accumulates ! all these words into one contiguous '.ctors' section. Termination functions are handled similarly. ! This method will be chosen as the default by 'target-def.h' if ! 'TARGET_ASM_NAMED_SECTION' is defined. A target that does not support arbitrary sections, but does support special designated constructor and ! destructor sections may define 'CTORS_SECTION_ASM_OP' and ! 'DTORS_SECTION_ASM_OP' to achieve the same effect. When arbitrary sections are available, there are two variants, ! depending upon how the code in 'crtstuff.c' is called. On systems that ! support a ".init" section which is executed at program startup, parts of ! 'crtstuff.c' are compiled into that section. The program is linked by ! the 'gcc' driver like this: ld -o OUTPUT_FILE crti.o crtbegin.o ... -lgcc crtend.o crtn.o ! The prologue of a function ('__init') appears in the '.init' section of ! 'crti.o'; the epilogue appears in 'crtn.o'. Likewise for the function ! '__fini' in the ".fini" section. Normally these files are provided by ! the operating system or by the GNU C library, but are provided by GCC ! for a few targets. ! The objects 'crtbegin.o' and 'crtend.o' are (for most targets) compiled ! from 'crtstuff.c'. They contain, among other things, code fragments ! within the '.init' and '.fini' sections that branch to routines in the ! '.text' section. The linker will pull all parts of a section together, ! which results in a complete '__init' function that invokes the routines ! we need at startup. ! To use this variant, you must define the 'INIT_SECTION_ASM_OP' macro properly. If no init section is available, when GCC compiles any function called ! 'main' (or more accurately, any function designated as a program entry ! point by the language front end calling 'expand_main_function'), it ! inserts a procedure call to '__main' as the first executable code after ! the function prologue. The '__main' function is defined in 'libgcc2.c' and runs the global constructors. In file formats that don't support arbitrary sections, there are again ! two variants. In the simplest variant, the GNU linker (GNU 'ld') and an ! 'a.out' format must be used. In this case, 'TARGET_ASM_CONSTRUCTOR' is ! defined to produce a '.stabs' entry of type 'N_SETT', referencing the ! name '__CTOR_LIST__', and with the address of the void function containing the initialization code as its value. The GNU linker ! recognizes this as a request to add the value to a "set"; the values are ! accumulated, and are eventually placed in the executable as a vector in ! the format described above, with a leading (ignored) count and a ! trailing zero element. 'TARGET_ASM_DESTRUCTOR' is handled similarly. ! Since no init section is available, the absence of 'INIT_SECTION_ASM_OP' ! causes the compilation of 'main' to call '__main' as above, starting the ! initialization process. The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you want to do dynamic linking and when using ! file formats which the GNU linker does not support, such as 'ECOFF'. In ! this case, 'TARGET_HAVE_CTORS_DTORS' is false, initialization and termination functions are recognized simply by their names. This ! requires an extra program in the linkage step, called 'collect2'. This program pretends to be the linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to include the vectors of initialization and termination functions. These functions are called ! via '__main' as described above. In order to use this method, ! 'use_collect2' must be defined in the target in 'config.gcc'. The following section describes the specific macros that control and customize the handling of initialization and termination functions. --- 35386,35466 ---- pointer containing zero. Depending on the operating system and its executable file format, ! either `crtstuff.c' or `libgcc2.c' traverses these lists at startup ! time and exit time. Constructors are called in reverse order of the ! list; destructors in forward order. The best way to handle static constructors works only for object file formats which provide arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of destructors. ! Traditionally these are called `.ctors' and `.dtors'. Each object file that defines an initialization function also puts a word in the constructor section to point to that function. The linker accumulates ! all these words into one contiguous `.ctors' section. Termination functions are handled similarly. ! This method will be chosen as the default by `target-def.h' if ! `TARGET_ASM_NAMED_SECTION' is defined. A target that does not support arbitrary sections, but does support special designated constructor and ! destructor sections may define `CTORS_SECTION_ASM_OP' and ! `DTORS_SECTION_ASM_OP' to achieve the same effect. When arbitrary sections are available, there are two variants, ! depending upon how the code in `crtstuff.c' is called. On systems that ! support a ".init" section which is executed at program startup, parts ! of `crtstuff.c' are compiled into that section. The program is linked ! by the `gcc' driver like this: ld -o OUTPUT_FILE crti.o crtbegin.o ... -lgcc crtend.o crtn.o ! The prologue of a function (`__init') appears in the `.init' section ! of `crti.o'; the epilogue appears in `crtn.o'. Likewise for the ! function `__fini' in the ".fini" section. Normally these files are ! provided by the operating system or by the GNU C library, but are ! provided by GCC for a few targets. ! The objects `crtbegin.o' and `crtend.o' are (for most targets) ! compiled from `crtstuff.c'. They contain, among other things, code ! fragments within the `.init' and `.fini' sections that branch to ! routines in the `.text' section. The linker will pull all parts of a ! section together, which results in a complete `__init' function that ! invokes the routines we need at startup. ! To use this variant, you must define the `INIT_SECTION_ASM_OP' macro properly. If no init section is available, when GCC compiles any function called ! `main' (or more accurately, any function designated as a program entry ! point by the language front end calling `expand_main_function'), it ! inserts a procedure call to `__main' as the first executable code after ! the function prologue. The `__main' function is defined in `libgcc2.c' and runs the global constructors. In file formats that don't support arbitrary sections, there are again ! two variants. In the simplest variant, the GNU linker (GNU `ld') and ! an `a.out' format must be used. In this case, `TARGET_ASM_CONSTRUCTOR' ! is defined to produce a `.stabs' entry of type `N_SETT', referencing ! the name `__CTOR_LIST__', and with the address of the void function containing the initialization code as its value. The GNU linker ! recognizes this as a request to add the value to a "set"; the values ! are accumulated, and are eventually placed in the executable as a ! vector in the format described above, with a leading (ignored) count ! and a trailing zero element. `TARGET_ASM_DESTRUCTOR' is handled ! similarly. Since no init section is available, the absence of ! `INIT_SECTION_ASM_OP' causes the compilation of `main' to call `__main' ! as above, starting the initialization process. The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you want to do dynamic linking and when using ! file formats which the GNU linker does not support, such as `ECOFF'. In ! this case, `TARGET_HAVE_CTORS_DTORS' is false, initialization and termination functions are recognized simply by their names. This ! requires an extra program in the linkage step, called `collect2'. This program pretends to be the linker, for use with GCC; it does its job by running the ordinary linker, but also arranges to include the vectors of initialization and termination functions. These functions are called ! via `__main' as described above. In order to use this method, ! `use_collect2' must be defined in the target in `config.gcc'. The following section describes the specific macros that control and customize the handling of initialization and termination functions. *************** and termination functions: *** 35067,35080 **** initialization code. If not defined, GCC will assume such a section does not exist. When you are using special sections for initialization and termination functions, this macro also controls ! how 'crtstuff.c' and 'libgcc2.c' arrange to run the initialization functions. -- Macro: HAS_INIT_SECTION ! If defined, 'main' will not call '__main' as described above. This ! macro should be defined for systems that control start-up code on a ! symbol-by-symbol basis, such as OSF/1, and should not be defined ! explicitly for systems that support 'INIT_SECTION_ASM_OP'. -- Macro: LD_INIT_SWITCH If defined, a C string constant for a switch that tells the linker --- 35480,35493 ---- initialization code. If not defined, GCC will assume such a section does not exist. When you are using special sections for initialization and termination functions, this macro also controls ! how `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions. -- Macro: HAS_INIT_SECTION ! If defined, `main' will not call `__main' as described above. ! This macro should be defined for systems that control start-up code ! on a symbol-by-symbol basis, such as OSF/1, and should not be ! defined explicitly for systems that support `INIT_SECTION_ASM_OP'. -- Macro: LD_INIT_SWITCH If defined, a C string constant for a switch that tells the linker *************** and termination functions: *** 35089,35172 **** automatically called when a shared library is loaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit initialization function, ! then a function called '_GLOBAL__DI' will be generated. This function and the following one are used by collect2 when ! linking a shared library that needs constructors or destructors, or ! has DWARF2 exception tables embedded in the code. -- Macro: COLLECT_SHARED_FINI_FUNC (STREAM, FUNC) If defined, a C statement that will write a function that can be automatically called when a shared library is unloaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit finalization ! function, then a function called '_GLOBAL__DD' will be generated. -- Macro: INVOKE__main ! If defined, 'main' will call '__main' despite the presence of ! 'INIT_SECTION_ASM_OP'. This macro should be defined for systems where the init section is not actually run automatically, but is still useful for collecting the lists of constructors and destructors. -- Macro: SUPPORTS_INIT_PRIORITY ! If nonzero, the C++ 'init_priority' attribute is supported and the compiler should emit instructions to control the order of initialization of objects. If zero, the compiler will issue an ! error message upon encountering an 'init_priority' attribute. -- Target Hook: bool TARGET_HAVE_CTORS_DTORS This value is true if the target supports some "native" method of collecting constructors and destructors to be run at startup and ! exit. It is false if we must use 'collect2'. -- Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx SYMBOL, int PRIORITY) If defined, a function that outputs assembler code to arrange to call the function referenced by SYMBOL at initialization time. ! Assume that SYMBOL is a 'SYMBOL_REF' for a function taking no arguments and with no return value. If the target supports initialization priorities, PRIORITY is a value between 0 and ! 'MAX_INIT_PRIORITY'; otherwise it must be 'DEFAULT_INIT_PRIORITY'. If this macro is not defined by the target, a suitable default will be chosen if (1) the target supports arbitrary section names, (2) ! the target defines 'CTORS_SECTION_ASM_OP', or (3) 'USE_COLLECT2' is ! not defined. -- Target Hook: void TARGET_ASM_DESTRUCTOR (rtx SYMBOL, int PRIORITY) ! This is like 'TARGET_ASM_CONSTRUCTOR' but used for termination functions rather than initialization functions. ! If 'TARGET_HAVE_CTORS_DTORS' is true, the initialization routine generated for the generated object file will have static linkage. ! If your system uses 'collect2' as the means of processing constructors, ! then that program normally uses 'nm' to scan an object file for ! constructor functions to be called. On certain kinds of systems, you can define this macro to make ! 'collect2' work faster (and, in some cases, make it work at all): -- Macro: OBJECT_FORMAT_COFF Define this macro if the system uses COFF (Common Object File ! Format) object files, so that 'collect2' can assume this format and ! scan object files directly for dynamic constructor/destructor functions. ! This macro is effective only in a native compiler; 'collect2' as ! part of a cross compiler always uses 'nm' for the target machine. -- Macro: REAL_NM_FILE_NAME Define this macro as a C string constant containing the file name ! to use to execute 'nm'. The default is to search the path normally ! for 'nm'. -- Macro: NM_FLAGS ! 'collect2' calls 'nm' to scan object files for static constructors ! and destructors and LTO info. By default, '-n' is passed. Define ! 'NM_FLAGS' to a C string constant if other options are needed to ! get the same output format as GNU 'nm -n' produces. If your system supports shared libraries and has a program to list the dynamic dependencies of a given library or executable, you can define --- 35502,35585 ---- automatically called when a shared library is loaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit initialization function, ! then a function called `_GLOBAL__DI' will be generated. This function and the following one are used by collect2 when ! linking a shared library that needs constructors or destructors, ! or has DWARF2 exception tables embedded in the code. -- Macro: COLLECT_SHARED_FINI_FUNC (STREAM, FUNC) If defined, a C statement that will write a function that can be automatically called when a shared library is unloaded. The function should call FUNC, which takes no arguments. If not defined, and the object format requires an explicit finalization ! function, then a function called `_GLOBAL__DD' will be generated. -- Macro: INVOKE__main ! If defined, `main' will call `__main' despite the presence of ! `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the init section is not actually run automatically, but is still useful for collecting the lists of constructors and destructors. -- Macro: SUPPORTS_INIT_PRIORITY ! If nonzero, the C++ `init_priority' attribute is supported and the compiler should emit instructions to control the order of initialization of objects. If zero, the compiler will issue an ! error message upon encountering an `init_priority' attribute. -- Target Hook: bool TARGET_HAVE_CTORS_DTORS This value is true if the target supports some "native" method of collecting constructors and destructors to be run at startup and ! exit. It is false if we must use `collect2'. -- Target Hook: void TARGET_ASM_CONSTRUCTOR (rtx SYMBOL, int PRIORITY) If defined, a function that outputs assembler code to arrange to call the function referenced by SYMBOL at initialization time. ! Assume that SYMBOL is a `SYMBOL_REF' for a function taking no arguments and with no return value. If the target supports initialization priorities, PRIORITY is a value between 0 and ! `MAX_INIT_PRIORITY'; otherwise it must be `DEFAULT_INIT_PRIORITY'. If this macro is not defined by the target, a suitable default will be chosen if (1) the target supports arbitrary section names, (2) ! the target defines `CTORS_SECTION_ASM_OP', or (3) `USE_COLLECT2' ! is not defined. -- Target Hook: void TARGET_ASM_DESTRUCTOR (rtx SYMBOL, int PRIORITY) ! This is like `TARGET_ASM_CONSTRUCTOR' but used for termination functions rather than initialization functions. ! If `TARGET_HAVE_CTORS_DTORS' is true, the initialization routine generated for the generated object file will have static linkage. ! If your system uses `collect2' as the means of processing ! constructors, then that program normally uses `nm' to scan an object ! file for constructor functions to be called. On certain kinds of systems, you can define this macro to make ! `collect2' work faster (and, in some cases, make it work at all): -- Macro: OBJECT_FORMAT_COFF Define this macro if the system uses COFF (Common Object File ! Format) object files, so that `collect2' can assume this format ! and scan object files directly for dynamic constructor/destructor functions. ! This macro is effective only in a native compiler; `collect2' as ! part of a cross compiler always uses `nm' for the target machine. -- Macro: REAL_NM_FILE_NAME Define this macro as a C string constant containing the file name ! to use to execute `nm'. The default is to search the path ! normally for `nm'. -- Macro: NM_FLAGS ! `collect2' calls `nm' to scan object files for static constructors ! and destructors and LTO info. By default, `-n' is passed. Define ! `NM_FLAGS' to a C string constant if other options are needed to ! get the same output format as GNU `nm -n' produces. If your system supports shared libraries and has a program to list the dynamic dependencies of a given library or executable, you can define *************** these macros to enable support for runni *** 35174,35196 **** termination functions in shared libraries: -- Macro: LDD_SUFFIX ! Define this macro to a C string constant containing the name of the ! program which lists dynamic dependencies, like 'ldd' under SunOS 4. -- Macro: PARSE_LDD_OUTPUT (PTR) Define this macro to be C code that extracts filenames from the ! output of the program denoted by 'LDD_SUFFIX'. PTR is a variable ! of type 'char *' that points to the beginning of a line of output ! from 'LDD_SUFFIX'. If the line lists a dynamic dependency, the code must advance PTR to the beginning of the filename on that ! line. Otherwise, it must set PTR to 'NULL'. -- Macro: SHLIB_SUFFIX Define this macro to a C string constant containing the default ! shared library extension of the target (e.g., '".so"'). 'collect2' strips version information after this suffix when generating global constructor and destructor names. This define is only needed on ! targets that use 'collect2' to process constructors and destructors.  --- 35587,35610 ---- termination functions in shared libraries: -- Macro: LDD_SUFFIX ! Define this macro to a C string constant containing the name of ! the program which lists dynamic dependencies, like `ldd' under ! SunOS 4. -- Macro: PARSE_LDD_OUTPUT (PTR) Define this macro to be C code that extracts filenames from the ! output of the program denoted by `LDD_SUFFIX'. PTR is a variable ! of type `char *' that points to the beginning of a line of output ! from `LDD_SUFFIX'. If the line lists a dynamic dependency, the code must advance PTR to the beginning of the filename on that ! line. Otherwise, it must set PTR to `NULL'. -- Macro: SHLIB_SUFFIX Define this macro to a C string constant containing the default ! shared library extension of the target (e.g., `".so"'). `collect2' strips version information after this suffix when generating global constructor and destructor names. This define is only needed on ! targets that use `collect2' to process constructors and destructors.  *************** This describes assembler instruction out *** 35208,35229 **** language. -- Macro: ADDITIONAL_REGISTER_NAMES ! If defined, a C initializer for an array of structures containing a ! name and a register number. This macro defines additional names ! for hard registers, thus allowing the 'asm' option in declarations to refer to registers using alternate names. -- Macro: OVERLAPPING_REGISTER_NAMES If defined, a C initializer for an array of structures containing a name, a register number and a count of the number of consecutive machine registers the name overlaps. This macro defines additional ! names for hard registers, thus allowing the 'asm' option in declarations to refer to registers using alternate names. Unlike ! 'ADDITIONAL_REGISTER_NAMES', this macro should be used when the register name implies multiple underlying registers. This macro should be used when it is important that a clobber in an ! 'asm' statement clobbers all the underlying values implied by the register name. For example, on ARM, clobbering the double-precision VFP register "d0" implies clobbering both single-precision registers "s0" and "s1". --- 35622,35643 ---- language. -- Macro: ADDITIONAL_REGISTER_NAMES ! If defined, a C initializer for an array of structures containing ! a name and a register number. This macro defines additional names ! for hard registers, thus allowing the `asm' option in declarations to refer to registers using alternate names. -- Macro: OVERLAPPING_REGISTER_NAMES If defined, a C initializer for an array of structures containing a name, a register number and a count of the number of consecutive machine registers the name overlaps. This macro defines additional ! names for hard registers, thus allowing the `asm' option in declarations to refer to registers using alternate names. Unlike ! `ADDITIONAL_REGISTER_NAMES', this macro should be used when the register name implies multiple underlying registers. This macro should be used when it is important that a clobber in an ! `asm' statement clobbers all the underlying values implied by the register name. For example, on ARM, clobbering the double-precision VFP register "d0" implies clobbering both single-precision registers "s0" and "s1". *************** This describes assembler instruction out *** 35234,35254 **** The definition is a C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The ! macro-operand PTR is a variable of type 'char *' which points to ! the opcode name in its "internal" form--the form that is written in ! the machine description. The definition should output the opcode ! name to STREAM, performing any translation you desire, and increment the variable PTR to point at the end of the opcode so that it will not be output twice. In fact, your macro definition may process less than the entire opcode name, or more than the opcode name; but if you want to ! process text that includes '%'-sequences to substitute operands, you must take care of the substitution yourself. Just be sure to increment PTR over whatever text should not be output normally. If you need to look at the operand values, they can be found as the ! elements of 'recog_data.operand'. If the macro definition does nothing, the instruction is output in the usual way. --- 35648,35668 ---- The definition is a C statement or statements which output an assembler instruction opcode to the stdio stream STREAM. The ! macro-operand PTR is a variable of type `char *' which points to ! the opcode name in its "internal" form--the form that is written ! in the machine description. The definition should output the ! opcode name to STREAM, performing any translation you desire, and increment the variable PTR to point at the end of the opcode so that it will not be output twice. In fact, your macro definition may process less than the entire opcode name, or more than the opcode name; but if you want to ! process text that includes `%'-sequences to substitute operands, you must take care of the substitution yourself. Just be sure to increment PTR over whatever text should not be output normally. If you need to look at the operand values, they can be found as the ! elements of `recog_data.operand'. If the macro definition does nothing, the instruction is output in the usual way. *************** This describes assembler instruction out *** 35259,35277 **** they will be output differently. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of the ! vector which contain meaningful data for this insn. The contents ! of this vector are what will be used to convert the insn template ! into assembler code, so you can change the assembler output by ! changing the contents of the vector. This macro is useful when various assembler syntaxes share a single file of instruction patterns; by defining this macro differently, you can cause a large class of instructions to be output differently (such as with rearranged operands). Naturally, variations in assembler syntax affecting individual insn patterns ! ought to be handled by writing conditional output routines in those ! patterns. If this macro is not defined, it is equivalent to a null statement. --- 35673,35691 ---- they will be output differently. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of ! the vector which contain meaningful data for this insn. The ! contents of this vector are what will be used to convert the insn ! template into assembler code, so you can change the assembler ! output by changing the contents of the vector. This macro is useful when various assembler syntaxes share a single file of instruction patterns; by defining this macro differently, you can cause a large class of instructions to be output differently (such as with rearranged operands). Naturally, variations in assembler syntax affecting individual insn patterns ! ought to be handled by writing conditional output routines in ! those patterns. If this macro is not defined, it is equivalent to a null statement. *************** This describes assembler instruction out *** 35282,35292 **** the assembler if necessary. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of the ! vector which contain meaningful data for this insn. The contents ! of this vector are what was used to convert the insn template into ! assembler code, so you can change the assembler mode by checking ! the contents of the vector. -- Macro: PRINT_OPERAND (STREAM, X, CODE) A C compound statement to output to stdio stream STREAM the --- 35696,35706 ---- the assembler if necessary. Here the argument OPVEC is the vector containing the operands ! extracted from INSN, and NOPERANDS is the number of elements of ! the vector which contain meaningful data for this insn. The ! contents of this vector are what was used to convert the insn ! template into assembler code, so you can change the assembler mode ! by checking the contents of the vector. -- Macro: PRINT_OPERAND (STREAM, X, CODE) A C compound statement to output to stdio stream STREAM the *************** This describes assembler instruction out *** 35296,35318 **** CODE is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. CODE comes from the ! '%' specification that was used to request printing of the operand. ! If the specification was just '%DIGIT' then CODE is 0; if the ! specification was '%LTR DIGIT' then CODE is the ASCII code for LTR. If X is a register, this macro should print the register's name. ! The names can be found in an array 'reg_names' whose type is 'char ! *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'. ! When the machine description has a specification '%PUNCT' (a '%' followed by a punctuation character), this macro is called with a null pointer for X and the punctuation character for CODE. -- Macro: PRINT_OPERAND_PUNCT_VALID_P (CODE) A C expression which evaluates to true if CODE is a valid ! punctuation character for use in the 'PRINT_OPERAND' macro. If ! 'PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no ! punctuation characters (except for the standard one, '%') are used in this way. -- Macro: PRINT_OPERAND_ADDRESS (STREAM, X) --- 35710,35733 ---- CODE is a value that can be used to specify one of several ways of printing the operand. It is used when identical operands must be printed differently depending on the context. CODE comes from the ! `%' specification that was used to request printing of the ! operand. If the specification was just `%DIGIT' then CODE is 0; ! if the specification was `%LTR DIGIT' then CODE is the ASCII code ! for LTR. If X is a register, this macro should print the register's name. ! The names can be found in an array `reg_names' whose type is `char ! *[]'. `reg_names' is initialized from `REGISTER_NAMES'. ! When the machine description has a specification `%PUNCT' (a `%' followed by a punctuation character), this macro is called with a null pointer for X and the punctuation character for CODE. -- Macro: PRINT_OPERAND_PUNCT_VALID_P (CODE) A C expression which evaluates to true if CODE is a valid ! punctuation character for use in the `PRINT_OPERAND' macro. If ! `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no ! punctuation characters (except for the standard one, `%') are used in this way. -- Macro: PRINT_OPERAND_ADDRESS (STREAM, X) *************** This describes assembler instruction out *** 35322,35334 **** On some machines, the syntax for a symbolic address depends on the section that the address refers to. On these machines, define the ! hook 'TARGET_ENCODE_SECTION_INFO' to store the information into the ! 'symbol_ref', and then check for it here. *Note Assembler Format::. -- Macro: DBR_OUTPUT_SEQEND (FILE) A C statement, to be executed after all slot-filler instructions ! have been output. If necessary, call 'dbr_sequence_length' to determine the number of slots filled in a sequence (zero if not currently outputting a sequence), to decide how many no-ops to output, or whatever. --- 35737,35749 ---- On some machines, the syntax for a symbolic address depends on the section that the address refers to. On these machines, define the ! hook `TARGET_ENCODE_SECTION_INFO' to store the information into the ! `symbol_ref', and then check for it here. *Note Assembler Format::. -- Macro: DBR_OUTPUT_SEQEND (FILE) A C statement, to be executed after all slot-filler instructions ! have been output. If necessary, call `dbr_sequence_length' to determine the number of slots filled in a sequence (zero if not currently outputting a sequence), to decide how many no-ops to output, or whatever. *************** This describes assembler instruction out *** 35339,35362 **** Note that output routines for instructions with delay slots must be prepared to deal with not being output as part of a sequence (i.e. when ! the scheduling pass is not run, or when no slot fillers could be found.) ! The variable 'final_sequence' is null when not processing a sequence, ! otherwise it contains the 'sequence' rtx being output. -- Macro: REGISTER_PREFIX -- Macro: LOCAL_LABEL_PREFIX -- Macro: USER_LABEL_PREFIX -- Macro: IMMEDIATE_PREFIX ! If defined, C string expressions to be used for the '%R', '%L', ! '%U', and '%I' options of 'asm_fprintf' (see 'final.c'). These are ! useful when a single 'md' file must support multiple assembler ! formats. In that case, the various 'tm.h' files can define these macros differently. -- Macro: ASM_FPRINTF_EXTENSIONS (FILE, ARGPTR, FORMAT) ! If defined this macro should expand to a series of 'case' ! statements which will be parsed inside the 'switch' statement of ! the 'asm_fprintf' function. This allows targets to define extra printf formats which may useful when generating their assembler statements. Note that uppercase letters are reserved for future generic extensions to asm_fprintf, and so are not available to --- 35754,35777 ---- Note that output routines for instructions with delay slots must be prepared to deal with not being output as part of a sequence (i.e. when ! the scheduling pass is not run, or when no slot fillers could be ! found.) The variable `final_sequence' is null when not processing a ! sequence, otherwise it contains the `sequence' rtx being output. -- Macro: REGISTER_PREFIX -- Macro: LOCAL_LABEL_PREFIX -- Macro: USER_LABEL_PREFIX -- Macro: IMMEDIATE_PREFIX ! If defined, C string expressions to be used for the `%R', `%L', ! `%U', and `%I' options of `asm_fprintf' (see `final.c'). These ! are useful when a single `md' file must support multiple assembler ! formats. In that case, the various `tm.h' files can define these macros differently. -- Macro: ASM_FPRINTF_EXTENSIONS (FILE, ARGPTR, FORMAT) ! If defined this macro should expand to a series of `case' ! statements which will be parsed inside the `switch' statement of ! the `asm_fprintf' function. This allows targets to define extra printf formats which may useful when generating their assembler statements. Note that uppercase letters are reserved for future generic extensions to asm_fprintf, and so are not available to *************** otherwise it contains the 'sequence' rtx *** 35372,35396 **** use, with zero as the first variant. If this macro is defined, you may use constructs of the form ! '{option0|option1|option2...}' ! in the output templates of patterns (*note Output Template::) or in ! the first argument of 'asm_fprintf'. This construct outputs ! 'option0', 'option1', 'option2', etc., if the value of ! 'ASSEMBLER_DIALECT' is zero, one, two, etc. Any special characters within these strings retain their usual meaning. If there are fewer alternatives within the braces than the value of ! 'ASSEMBLER_DIALECT', the construct outputs nothing. If it's needed ! to print curly braces or '|' character in assembler output ! directly, '%{', '%}' and '%|' can be used. ! If you do not define this macro, the characters '{', '|' and '}' do ! not have any special meaning when used in templates or operands to ! 'asm_fprintf'. ! Define the macros 'REGISTER_PREFIX', 'LOCAL_LABEL_PREFIX', ! 'USER_LABEL_PREFIX' and 'IMMEDIATE_PREFIX' if you can express the variations in assembler language syntax with that mechanism. ! Define 'ASSEMBLER_DIALECT' and use the '{option0|option1}' syntax if the syntax variant are larger and involve such things as different opcodes or operand order. --- 35787,35811 ---- use, with zero as the first variant. If this macro is defined, you may use constructs of the form ! `{option0|option1|option2...}' ! in the output templates of patterns (*note Output Template::) or ! in the first argument of `asm_fprintf'. This construct outputs ! `option0', `option1', `option2', etc., if the value of ! `ASSEMBLER_DIALECT' is zero, one, two, etc. Any special characters within these strings retain their usual meaning. If there are fewer alternatives within the braces than the value of ! `ASSEMBLER_DIALECT', the construct outputs nothing. If it's needed ! to print curly braces or `|' character in assembler output ! directly, `%{', `%}' and `%|' can be used. ! If you do not define this macro, the characters `{', `|' and `}' ! do not have any special meaning when used in templates or operands ! to `asm_fprintf'. ! Define the macros `REGISTER_PREFIX', `LOCAL_LABEL_PREFIX', ! `USER_LABEL_PREFIX' and `IMMEDIATE_PREFIX' if you can express the variations in assembler language syntax with that mechanism. ! Define `ASSEMBLER_DIALECT' and use the `{option0|option1}' syntax if the syntax variant are larger and involve such things as different opcodes or operand order. *************** otherwise it contains the 'sequence' rtx *** 35401,35408 **** -- Macro: ASM_OUTPUT_REG_POP (STREAM, REGNO) A C expression to output to STREAM some assembler code which will ! pop hard register number REGNO off of the stack. The code need not ! be optimal, since this macro is used only when profiling.  File: gccint.info, Node: Dispatch Tables, Next: Exception Region Output, Prev: Instruction Output, Up: Assembler Format --- 35816,35823 ---- -- Macro: ASM_OUTPUT_REG_POP (STREAM, REGNO) A C expression to output to STREAM some assembler code which will ! pop hard register number REGNO off of the stack. The code need ! not be optimal, since this macro is used only when profiling.  File: gccint.info, Node: Dispatch Tables, Next: Exception Region Output, Prev: Instruction Output, Up: Assembler Format *************** This concerns dispatch tables. *** 35417,35423 **** pseudo-instruction to generate a difference between two labels. VALUE and REL are the numbers of two internal labels. The definitions of these labels are output using ! '(*targetm.asm_out.internal_label)', and they must be printed in the same way here. For example, fprintf (STREAM, "\t.word L%d-L%d\n", --- 35832,35838 ---- pseudo-instruction to generate a difference between two labels. VALUE and REL are the numbers of two internal labels. The definitions of these labels are output using ! `(*targetm.asm_out.internal_label)', and they must be printed in the same way here. For example, fprintf (STREAM, "\t.word L%d-L%d\n", *************** This concerns dispatch tables. *** 35426,35432 **** You must provide this macro on machines where the addresses in a dispatch table are relative to the table's own address. If defined, GCC will also use this macro on all machines when ! producing PIC. BODY is the body of the 'ADDR_DIFF_VEC'; it is provided so that the mode and flags can be read. -- Macro: ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE) --- 35841,35847 ---- You must provide this macro on machines where the addresses in a dispatch table are relative to the table's own address. If defined, GCC will also use this macro on all machines when ! producing PIC. BODY is the body of the `ADDR_DIFF_VEC'; it is provided so that the mode and flags can be read. -- Macro: ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE) *************** This concerns dispatch tables. *** 35437,35466 **** stream STREAM an assembler pseudo-instruction to generate a reference to a label. VALUE is the number of an internal label whose definition is output using ! '(*targetm.asm_out.internal_label)'. For example, fprintf (STREAM, "\t.word L%d\n", VALUE) -- Macro: ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE) Define this if the label before a jump-table needs to be output specially. The first three arguments are the same as for ! '(*targetm.asm_out.internal_label)'; the fourth argument is the ! jump-table which follows (a 'jump_table_data' containing an ! 'addr_vec' or 'addr_diff_vec'). ! This feature is used on system V to output a 'swbeg' statement for the table. If this macro is not defined, these labels are output with ! '(*targetm.asm_out.internal_label)'. -- Macro: ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE) Define this if something special must be output at the end of a jump-table. The definition should be a C statement to be executed after the assembler code for the table is written. It should write ! the appropriate code to stdio stream STREAM. The argument TABLE is ! the jump-table insn, and NUM is the label-number of the preceding ! label. If this macro is not defined, nothing special is output at the end of the jump-table. --- 35852,35881 ---- stream STREAM an assembler pseudo-instruction to generate a reference to a label. VALUE is the number of an internal label whose definition is output using ! `(*targetm.asm_out.internal_label)'. For example, fprintf (STREAM, "\t.word L%d\n", VALUE) -- Macro: ASM_OUTPUT_CASE_LABEL (STREAM, PREFIX, NUM, TABLE) Define this if the label before a jump-table needs to be output specially. The first three arguments are the same as for ! `(*targetm.asm_out.internal_label)'; the fourth argument is the ! jump-table which follows (a `jump_table_data' containing an ! `addr_vec' or `addr_diff_vec'). ! This feature is used on system V to output a `swbeg' statement for the table. If this macro is not defined, these labels are output with ! `(*targetm.asm_out.internal_label)'. -- Macro: ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE) Define this if something special must be output at the end of a jump-table. The definition should be a C statement to be executed after the assembler code for the table is written. It should write ! the appropriate code to stdio stream STREAM. The argument TABLE ! is the jump-table insn, and NUM is the label-number of the ! preceding label. If this macro is not defined, nothing special is output at the end of the jump-table. *************** This concerns dispatch tables. *** 35472,35479 **** should write the appropriate label, for the FDE associated with the function declaration DECL, to the stdio stream STREAM. The third argument, FOR_EH, is a boolean: true if this is for an exception ! table. The fourth argument, EMPTY, is a boolean: true if this is a ! placeholder label for an omitted FDE. The default is that FDEs are not given nonlocal labels. --- 35887,35894 ---- should write the appropriate label, for the FDE associated with the function declaration DECL, to the stdio stream STREAM. The third argument, FOR_EH, is a boolean: true if this is for an exception ! table. The fourth argument, EMPTY, is a boolean: true if this is ! a placeholder label for an omitted FDE. The default is that FDEs are not given nonlocal labels. *************** This concerns dispatch tables. *** 35486,35505 **** -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_PERSONALITY (rtx PERSONALITY) ! If the target implements 'TARGET_ASM_UNWIND_EMIT', this hook may be ! used to emit a directive to install a personality hook into the ! unwind info. This hook should not be used if dwarf2 unwind info is ! used. -- Target Hook: void TARGET_ASM_UNWIND_EMIT (FILE *STREAM, rtx INSN) This target hook emits assembly directives required to unwind the given instruction. This is only used when ! 'TARGET_EXCEPT_UNWIND_INFO' returns 'UI_TARGET'. -- Target Hook: bool TARGET_ASM_UNWIND_EMIT_BEFORE_INSN ! True if the 'TARGET_ASM_UNWIND_EMIT' hook should be called before ! the assembly for INSN has been emitted, false if the hook should be ! called afterward.  File: gccint.info, Node: Exception Region Output, Next: Alignment Output, Prev: Dispatch Tables, Up: Assembler Format --- 35901,35920 ---- -- Target Hook: void TARGET_ASM_EMIT_EXCEPT_PERSONALITY (rtx PERSONALITY) ! If the target implements `TARGET_ASM_UNWIND_EMIT', this hook may ! be used to emit a directive to install a personality hook into the ! unwind info. This hook should not be used if dwarf2 unwind info ! is used. -- Target Hook: void TARGET_ASM_UNWIND_EMIT (FILE *STREAM, rtx INSN) This target hook emits assembly directives required to unwind the given instruction. This is only used when ! `TARGET_EXCEPT_UNWIND_INFO' returns `UI_TARGET'. -- Target Hook: bool TARGET_ASM_UNWIND_EMIT_BEFORE_INSN ! True if the `TARGET_ASM_UNWIND_EMIT' hook should be called before ! the assembly for INSN has been emitted, false if the hook should ! be called afterward.  File: gccint.info, Node: Exception Region Output, Next: Alignment Output, Prev: Dispatch Tables, Up: Assembler Format *************** region. *** 35514,35521 **** If defined, a C string constant for the name of the section containing exception handling frame unwind information. If not defined, GCC will provide a default definition if the target ! supports named sections. 'crtstuff.c' uses this macro to switch to ! the appropriate section. You should define this symbol if your target supports DWARF 2 frame unwind information and the default definition does not work. --- 35929,35936 ---- If defined, a C string constant for the name of the section containing exception handling frame unwind information. If not defined, GCC will provide a default definition if the target ! supports named sections. `crtstuff.c' uses this macro to switch ! to the appropriate section. You should define this symbol if your target supports DWARF 2 frame unwind information and the default definition does not work. *************** region. *** 35526,35532 **** might be necessary, for instance, if the system linker does garbage collection and sections cannot be marked as not to be collected. ! Do not define this macro unless 'TARGET_ASM_NAMED_SECTION' is also defined. -- Macro: EH_TABLES_CAN_BE_READ_ONLY --- 35941,35947 ---- might be necessary, for instance, if the system linker does garbage collection and sections cannot be marked as not to be collected. ! Do not define this macro unless `TARGET_ASM_NAMED_SECTION' is also defined. -- Macro: EH_TABLES_CAN_BE_READ_ONLY *************** region. *** 35536,35600 **** read-only and read-write sections into a single read-write section. -- Macro: MASK_RETURN_ADDR ! An rtx used to mask the return address found via 'RETURN_ADDR_RTX', ! so that it does not contain any extraneous set bits in it. -- Macro: DWARF2_UNWIND_INFO Define this macro to 0 if your target supports DWARF 2 frame unwind information, but it does not yet work with exception handling. Otherwise, if your target supports this information (if it defines ! 'INCOMING_RETURN_ADDR_RTX' and 'OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1. -- Common Target Hook: enum unwind_info_type TARGET_EXCEPT_UNWIND_INFO (struct gcc_options *OPTS) This hook defines the mechanism that will be used for exception handling by the target. If the target has ABI specified unwind ! tables, the hook should return 'UI_TARGET'. If the target is to ! use the 'setjmp'/'longjmp'-based exception handling scheme, the ! hook should return 'UI_SJLJ'. If the target supports DWARF 2 frame ! unwind information, the hook should return 'UI_DWARF2'. A target may, if exceptions are disabled, choose to return ! 'UI_NONE'. This may end up simplifying other parts of target-specific code. The default implementation of this hook ! never returns 'UI_NONE'. Note that the value returned by this hook should be constant. It should not depend on anything except the command-line switches ! described by OPTS. In particular, the setting 'UI_SJLJ' must be fixed at compiler start-up as C pre-processor macros and builtin functions related to exception handling are set up depending on this setting. The default implementation of the hook first honors the ! '--enable-sjlj-exceptions' configure option, then ! 'DWARF2_UNWIND_INFO', and finally defaults to 'UI_SJLJ'. If ! 'DWARF2_UNWIND_INFO' depends on command-line options, the target must define this hook so that OPTS is used correctly. -- Common Target Hook: bool TARGET_UNWIND_TABLES_DEFAULT ! This variable should be set to 'true' if the target ABI requires ! unwinding tables even when exceptions are not used. It must not be ! modified by command-line option processing. -- Macro: DONT_USE_BUILTIN_SETJMP ! Define this macro to 1 if the 'setjmp'/'longjmp'-based scheme ! should use the 'setjmp'/'longjmp' functions from the C library ! instead of the '__builtin_setjmp'/'__builtin_longjmp' machinery. -- Macro: JMP_BUF_SIZE ! This macro has no effect unless 'DONT_USE_BUILTIN_SETJMP' is also ! defined. Define this macro if the default size of 'jmp_buf' buffer ! for the 'setjmp'/'longjmp'-based exception handling mechanism is not large enough, or if it is much too large. The default size is ! 'FIRST_PSEUDO_REGISTER * sizeof(void *)'. -- Macro: DWARF_CIE_DATA_ALIGNMENT This macro need only be defined if the target might save registers in the function prologue at an offset to the stack pointer that is ! not aligned to 'UNITS_PER_WORD'. The definition should be the ! negative minimum alignment if 'STACK_GROWS_DOWNWARD' is defined, and the positive minimum alignment otherwise. *Note SDB and DWARF::. Only applicable if the target supports DWARF 2 frame unwind information. --- 35951,36016 ---- read-only and read-write sections into a single read-write section. -- Macro: MASK_RETURN_ADDR ! An rtx used to mask the return address found via ! `RETURN_ADDR_RTX', so that it does not contain any extraneous set ! bits in it. -- Macro: DWARF2_UNWIND_INFO Define this macro to 0 if your target supports DWARF 2 frame unwind information, but it does not yet work with exception handling. Otherwise, if your target supports this information (if it defines ! `INCOMING_RETURN_ADDR_RTX' and `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1. -- Common Target Hook: enum unwind_info_type TARGET_EXCEPT_UNWIND_INFO (struct gcc_options *OPTS) This hook defines the mechanism that will be used for exception handling by the target. If the target has ABI specified unwind ! tables, the hook should return `UI_TARGET'. If the target is to ! use the `setjmp'/`longjmp'-based exception handling scheme, the ! hook should return `UI_SJLJ'. If the target supports DWARF 2 ! frame unwind information, the hook should return `UI_DWARF2'. A target may, if exceptions are disabled, choose to return ! `UI_NONE'. This may end up simplifying other parts of target-specific code. The default implementation of this hook ! never returns `UI_NONE'. Note that the value returned by this hook should be constant. It should not depend on anything except the command-line switches ! described by OPTS. In particular, the setting `UI_SJLJ' must be fixed at compiler start-up as C pre-processor macros and builtin functions related to exception handling are set up depending on this setting. The default implementation of the hook first honors the ! `--enable-sjlj-exceptions' configure option, then ! `DWARF2_UNWIND_INFO', and finally defaults to `UI_SJLJ'. If ! `DWARF2_UNWIND_INFO' depends on command-line options, the target must define this hook so that OPTS is used correctly. -- Common Target Hook: bool TARGET_UNWIND_TABLES_DEFAULT ! This variable should be set to `true' if the target ABI requires ! unwinding tables even when exceptions are not used. It must not ! be modified by command-line option processing. -- Macro: DONT_USE_BUILTIN_SETJMP ! Define this macro to 1 if the `setjmp'/`longjmp'-based scheme ! should use the `setjmp'/`longjmp' functions from the C library ! instead of the `__builtin_setjmp'/`__builtin_longjmp' machinery. -- Macro: JMP_BUF_SIZE ! This macro has no effect unless `DONT_USE_BUILTIN_SETJMP' is also ! defined. Define this macro if the default size of `jmp_buf' buffer ! for the `setjmp'/`longjmp'-based exception handling mechanism is not large enough, or if it is much too large. The default size is ! `FIRST_PSEUDO_REGISTER * sizeof(void *)'. -- Macro: DWARF_CIE_DATA_ALIGNMENT This macro need only be defined if the target might save registers in the function prologue at an offset to the stack pointer that is ! not aligned to `UNITS_PER_WORD'. The definition should be the ! negative minimum alignment if `STACK_GROWS_DOWNWARD' is defined, and the positive minimum alignment otherwise. *Note SDB and DWARF::. Only applicable if the target supports DWARF 2 frame unwind information. *************** region. *** 35602,35608 **** -- Target Hook: bool TARGET_TERMINATE_DW2_EH_FRAME_INFO Contains the value true if the target should add a zero word onto the end of a Dwarf-2 frame info section when used for exception ! handling. Default value is false if 'EH_FRAME_SECTION_NAME' is defined, and true otherwise. -- Target Hook: rtx TARGET_DWARF_REGISTER_SPAN (rtx REG) --- 36018,36024 ---- -- Target Hook: bool TARGET_TERMINATE_DW2_EH_FRAME_INFO Contains the value true if the target should add a zero word onto the end of a Dwarf-2 frame info section when used for exception ! handling. Default value is false if `EH_FRAME_SECTION_NAME' is defined, and true otherwise. -- Target Hook: rtx TARGET_DWARF_REGISTER_SPAN (rtx REG) *************** region. *** 35611,35638 **** if the register and its mode are represented in Dwarf in non-contiguous locations, or if the register should be represented in more than one register in Dwarf. Otherwise, this hook should ! return 'NULL_RTX'. If not defined, the default is to return ! 'NULL_RTX'. -- Target Hook: void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree ADDRESS) If some registers are represented in Dwarf-2 unwind information in multiple pieces, define this hook to fill in information about the sizes of those pieces in the table used by the unwinder at runtime. ! It will be called by 'expand_builtin_init_dwarf_reg_sizes' after filling in a single size corresponding to each hard register; ADDRESS is the address of the table. -- Target Hook: bool TARGET_ASM_TTYPE (rtx SYM) This hook is used to output a reference from a frame unwinding table to the type_info object identified by SYM. It should return ! 'true' if the reference was output. Returning 'false' will cause the reference to be output using the normal Dwarf2 routines. -- Target Hook: bool TARGET_ARM_EABI_UNWINDER ! This flag should be set to 'true' on targets that use an ARM EABI ! based unwinding library, and 'false' on other targets. This effects the format of unwinding tables, and how the unwinder in ! entered after running a cleanup. The default is 'false'.  File: gccint.info, Node: Alignment Output, Prev: Exception Region Output, Up: Assembler Format --- 36027,36054 ---- if the register and its mode are represented in Dwarf in non-contiguous locations, or if the register should be represented in more than one register in Dwarf. Otherwise, this hook should ! return `NULL_RTX'. If not defined, the default is to return ! `NULL_RTX'. -- Target Hook: void TARGET_INIT_DWARF_REG_SIZES_EXTRA (tree ADDRESS) If some registers are represented in Dwarf-2 unwind information in multiple pieces, define this hook to fill in information about the sizes of those pieces in the table used by the unwinder at runtime. ! It will be called by `expand_builtin_init_dwarf_reg_sizes' after filling in a single size corresponding to each hard register; ADDRESS is the address of the table. -- Target Hook: bool TARGET_ASM_TTYPE (rtx SYM) This hook is used to output a reference from a frame unwinding table to the type_info object identified by SYM. It should return ! `true' if the reference was output. Returning `false' will cause the reference to be output using the normal Dwarf2 routines. -- Target Hook: bool TARGET_ARM_EABI_UNWINDER ! This flag should be set to `true' on targets that use an ARM EABI ! based unwinding library, and `false' on other targets. This effects the format of unwinding tables, and how the unwinder in ! entered after running a cleanup. The default is `false'.  File: gccint.info, Node: Alignment Output, Prev: Exception Region Output, Up: Assembler Format *************** This describes commands for alignment. *** 35652,35668 **** Unless it's necessary to inspect the LABEL parameter, it is better to set the variable ALIGN_JUMPS in the target's ! 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in ALIGN_JUMPS in a 'JUMP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_JUMP_ALIGN_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! 'JUMP_ALIGN'. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN_AFTER_BARRIER (LABEL) The alignment (log base 2) to put in front of LABEL, which follows ! a 'BARRIER'. This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do --- 36068,36084 ---- Unless it's necessary to inspect the LABEL parameter, it is better to set the variable ALIGN_JUMPS in the target's ! `TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in ALIGN_JUMPS in a `JUMP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_JUMP_ALIGN_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! `JUMP_ALIGN'. This works only if `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN_AFTER_BARRIER (LABEL) The alignment (log base 2) to put in front of LABEL, which follows ! a `BARRIER'. This macro need not be defined if you don't want any special alignment to be done at such a time. Most machine descriptions do *************** This describes commands for alignment. *** 35671,35678 **** -- Target Hook: int TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! 'LABEL_ALIGN_AFTER_BARRIER'. This works only if ! 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LOOP_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL that heads a --- 36087,36094 ---- -- Target Hook: int TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (rtx LABEL) The maximum number of bytes to skip before LABEL when applying ! `LABEL_ALIGN_AFTER_BARRIER'. This works only if ! `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LOOP_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL that heads a *************** This describes commands for alignment. *** 35683,35731 **** not currently define the macro. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable 'align_loops' in the target's ! 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in 'align_loops' in a 'LOOP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LOOP_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying 'LOOP_ALIGN' to ! LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL. If ! 'LABEL_ALIGN_AFTER_BARRIER' / 'LOOP_ALIGN' specify a different alignment, the maximum of the specified values is used. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable 'align_labels' in the target's ! 'TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in 'align_labels' in a 'LABEL_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LABEL_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying 'LABEL_ALIGN' to ! LABEL. This works only if 'ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: ASM_OUTPUT_SKIP (STREAM, NBYTES) A C statement to output to the stdio stream STREAM an assembler ! instruction to advance the location counter by NBYTES bytes. Those ! bytes should be zero when loaded. NBYTES will be a C expression of ! type 'unsigned HOST_WIDE_INT'. -- Macro: ASM_NO_SKIP_IN_TEXT ! Define this macro if 'ASM_OUTPUT_SKIP' should not be used in the text section because it fails to put zeros in the bytes that are ! skipped. This is true on many Unix systems, where the pseudo-op to ! skip bytes produces no-op instructions rather than zeros when used ! in the text section. -- Macro: ASM_OUTPUT_ALIGN (STREAM, POWER) A C statement to output to the stdio stream STREAM an assembler command to advance the location counter to a multiple of 2 to the ! POWER bytes. POWER will be a C expression of type 'int'. -- Macro: ASM_OUTPUT_ALIGN_WITH_NOP (STREAM, POWER) ! Like 'ASM_OUTPUT_ALIGN', except that the "nop" instruction is used for padding, if necessary. -- Macro: ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP) --- 36099,36147 ---- not currently define the macro. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable `align_loops' in the target's ! `TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in `align_loops' in a `LOOP_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LOOP_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying `LOOP_ALIGN' to ! LABEL. This works only if `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: LABEL_ALIGN (LABEL) The alignment (log base 2) to put in front of LABEL. If ! `LABEL_ALIGN_AFTER_BARRIER' / `LOOP_ALIGN' specify a different alignment, the maximum of the specified values is used. Unless it's necessary to inspect the LABEL parameter, it is better ! to set the variable `align_labels' in the target's ! `TARGET_OPTION_OVERRIDE'. Otherwise, you should try to honor the ! user's selection in `align_labels' in a `LABEL_ALIGN' implementation. -- Target Hook: int TARGET_ASM_LABEL_ALIGN_MAX_SKIP (rtx LABEL) ! The maximum number of bytes to skip when applying `LABEL_ALIGN' to ! LABEL. This works only if `ASM_OUTPUT_MAX_SKIP_ALIGN' is defined. -- Macro: ASM_OUTPUT_SKIP (STREAM, NBYTES) A C statement to output to the stdio stream STREAM an assembler ! instruction to advance the location counter by NBYTES bytes. ! Those bytes should be zero when loaded. NBYTES will be a C ! expression of type `unsigned HOST_WIDE_INT'. -- Macro: ASM_NO_SKIP_IN_TEXT ! Define this macro if `ASM_OUTPUT_SKIP' should not be used in the text section because it fails to put zeros in the bytes that are ! skipped. This is true on many Unix systems, where the pseudo-op ! to skip bytes produces no-op instructions rather than zeros when ! used in the text section. -- Macro: ASM_OUTPUT_ALIGN (STREAM, POWER) A C statement to output to the stdio stream STREAM an assembler command to advance the location counter to a multiple of 2 to the ! POWER bytes. POWER will be a C expression of type `int'. -- Macro: ASM_OUTPUT_ALIGN_WITH_NOP (STREAM, POWER) ! Like `ASM_OUTPUT_ALIGN', except that the "nop" instruction is used for padding, if necessary. -- Macro: ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP) *************** This describes commands for alignment. *** 35733,35739 **** command to advance the location counter to a multiple of 2 to the POWER bytes, but only if MAX_SKIP or fewer bytes are needed to satisfy the alignment request. POWER and MAX_SKIP will be a C ! expression of type 'int'.  File: gccint.info, Node: Debugging Info, Next: Floating Point, Prev: Assembler Format, Up: Target Macros --- 36149,36155 ---- command to advance the location counter to a multiple of 2 to the POWER bytes, but only if MAX_SKIP or fewer bytes are needed to satisfy the alignment request. POWER and MAX_SKIP will be a C ! expression of type `int'.  File: gccint.info, Node: Debugging Info, Next: Floating Point, Prev: Assembler Format, Up: Target Macros *************** These macros affect all debugging format *** 35762,35781 **** -- Macro: DBX_REGISTER_NUMBER (REGNO) A C expression that returns the DBX register number for the ! compiler register number REGNO. In the default macro provided, the ! value of this expression will be REGNO itself. But sometimes there ! are some registers that the compiler knows about and DBX does not, ! or vice versa. In such cases, some register may need to have one ! number in the compiler and another for DBX. If two registers have consecutive numbers inside GCC, and they can be used as a pair to hold a multiword value, then they _must_ have ! consecutive numbers after renumbering with 'DBX_REGISTER_NUMBER'. Otherwise, debuggers will be unable to access such a pair, because ! they expect register pairs to be consecutive in their own numbering ! scheme. ! If you find yourself defining 'DBX_REGISTER_NUMBER' in way that does not preserve register pairs, then what you must do instead is redefine the actual register numbering scheme. --- 36178,36197 ---- -- Macro: DBX_REGISTER_NUMBER (REGNO) A C expression that returns the DBX register number for the ! compiler register number REGNO. In the default macro provided, ! the value of this expression will be REGNO itself. But sometimes ! there are some registers that the compiler knows about and DBX ! does not, or vice versa. In such cases, some register may need to ! have one number in the compiler and another for DBX. If two registers have consecutive numbers inside GCC, and they can be used as a pair to hold a multiword value, then they _must_ have ! consecutive numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers will be unable to access such a pair, because ! they expect register pairs to be consecutive in their own ! numbering scheme. ! If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not preserve register pairs, then what you must do instead is redefine the actual register numbering scheme. *************** These macros affect all debugging format *** 35786,35792 **** and gives the offset from the frame-pointer. This is required for targets that produce debugging output for DBX or COFF-style debugging output for SDB and allow the frame-pointer to be ! eliminated when the '-g' options is used. -- Macro: DEBUGGER_ARG_OFFSET (OFFSET, X) A C expression that returns the integer offset value for an --- 36202,36208 ---- and gives the offset from the frame-pointer. This is required for targets that produce debugging output for DBX or COFF-style debugging output for SDB and allow the frame-pointer to be ! eliminated when the `-g' options is used. -- Macro: DEBUGGER_ARG_OFFSET (OFFSET, X) A C expression that returns the integer offset value for an *************** These macros affect all debugging format *** 35795,35815 **** -- Macro: PREFERRED_DEBUGGING_TYPE A C expression that returns the type of debugging output GCC should ! produce when the user specifies just '-g'. Define this if you have ! arranged for GCC to support more than one format of debugging ! output. Currently, the allowable values are 'DBX_DEBUG', ! 'SDB_DEBUG', 'DWARF_DEBUG', 'DWARF2_DEBUG', 'XCOFF_DEBUG', ! 'VMS_DEBUG', and 'VMS_AND_DWARF2_DEBUG'. ! When the user specifies '-ggdb', GCC normally also uses the value of this macro to select the debugging output format, but with two ! exceptions. If 'DWARF2_DEBUGGING_INFO' is defined, GCC uses the ! value 'DWARF2_DEBUG'. Otherwise, if 'DBX_DEBUGGING_INFO' is ! defined, GCC uses 'DBX_DEBUG'. The value of this macro only affects the default debugging output; the user can always get a specific type of output by using ! '-gstabs', '-gcoff', '-gdwarf-2', '-gxcoff', or '-gvms'.  File: gccint.info, Node: DBX Options, Next: DBX Hooks, Prev: All Debuggers, Up: Debugging Info --- 36211,36231 ---- -- Macro: PREFERRED_DEBUGGING_TYPE A C expression that returns the type of debugging output GCC should ! produce when the user specifies just `-g'. Define this if you ! have arranged for GCC to support more than one format of debugging ! output. Currently, the allowable values are `DBX_DEBUG', ! `SDB_DEBUG', `DWARF_DEBUG', `DWARF2_DEBUG', `XCOFF_DEBUG', ! `VMS_DEBUG', and `VMS_AND_DWARF2_DEBUG'. ! When the user specifies `-ggdb', GCC normally also uses the value of this macro to select the debugging output format, but with two ! exceptions. If `DWARF2_DEBUGGING_INFO' is defined, GCC uses the ! value `DWARF2_DEBUG'. Otherwise, if `DBX_DEBUGGING_INFO' is ! defined, GCC uses `DBX_DEBUG'. The value of this macro only affects the default debugging output; the user can always get a specific type of output by using ! `-gstabs', `-gcoff', `-gdwarf-2', `-gxcoff', or `-gvms'.  File: gccint.info, Node: DBX Options, Next: DBX Hooks, Prev: All Debuggers, Up: Debugging Info *************** File: gccint.info, Node: DBX Options, *** 35820,35831 **** These are specific options for DBX output. -- Macro: DBX_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for DBX in ! response to the '-g' option. -- Macro: XCOFF_DEBUGGING_INFO Define this macro if GCC should produce XCOFF format debugging ! output in response to the '-g' option. This is a variant of DBX format. -- Macro: DEFAULT_GDB_EXTENSIONS --- 36236,36247 ---- These are specific options for DBX output. -- Macro: DBX_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for DBX ! in response to the `-g' option. -- Macro: XCOFF_DEBUGGING_INFO Define this macro if GCC should produce XCOFF format debugging ! output in response to the `-g' option. This is a variant of DBX format. -- Macro: DEFAULT_GDB_EXTENSIONS *************** These are specific options for DBX outpu *** 35836,35872 **** information if there is any occasion to. -- Macro: DEBUG_SYMS_TEXT ! Define this macro if all '.stabs' commands should be output while in the text section. -- Macro: ASM_STABS_OP ! A C string constant, including spacing, naming the assembler pseudo ! op to use instead of '"\t.stabs\t"' to define an ordinary debugging ! symbol. If you don't define this macro, '"\t.stabs\t"' is used. ! This macro applies only to DBX debugging information format. -- Macro: ASM_STABD_OP ! A C string constant, including spacing, naming the assembler pseudo ! op to use instead of '"\t.stabd\t"' to define a debugging symbol ! whose value is the current location. If you don't define this ! macro, '"\t.stabd\t"' is used. This macro applies only to DBX ! debugging information format. -- Macro: ASM_STABN_OP ! A C string constant, including spacing, naming the assembler pseudo ! op to use instead of '"\t.stabn\t"' to define a debugging symbol ! with no name. If you don't define this macro, '"\t.stabn\t"' is ! used. This macro applies only to DBX debugging information format. -- Macro: DBX_NO_XREFS Define this macro if DBX on your system does not support the ! construct 'xsTAGNAME'. On some systems, this construct is used to describe a forward reference to a structure named TAGNAME. On other systems, this construct is not supported at all. -- Macro: DBX_CONTIN_LENGTH A symbol name in DBX-format debugging information is normally ! continued (split into two separate '.stabs' directives) when it exceeds a certain length (by default, 80 characters). On some operating systems, DBX requires this splitting; on others, splitting must not be done. You can inhibit splitting by defining --- 36252,36290 ---- information if there is any occasion to. -- Macro: DEBUG_SYMS_TEXT ! Define this macro if all `.stabs' commands should be output while in the text section. -- Macro: ASM_STABS_OP ! A C string constant, including spacing, naming the assembler ! pseudo op to use instead of `"\t.stabs\t"' to define an ordinary ! debugging symbol. If you don't define this macro, `"\t.stabs\t"' ! is used. This macro applies only to DBX debugging information ! format. -- Macro: ASM_STABD_OP ! A C string constant, including spacing, naming the assembler ! pseudo op to use instead of `"\t.stabd\t"' to define a debugging ! symbol whose value is the current location. If you don't define ! this macro, `"\t.stabd\t"' is used. This macro applies only to ! DBX debugging information format. -- Macro: ASM_STABN_OP ! A C string constant, including spacing, naming the assembler ! pseudo op to use instead of `"\t.stabn\t"' to define a debugging ! symbol with no name. If you don't define this macro, ! `"\t.stabn\t"' is used. This macro applies only to DBX debugging ! information format. -- Macro: DBX_NO_XREFS Define this macro if DBX on your system does not support the ! construct `xsTAGNAME'. On some systems, this construct is used to describe a forward reference to a structure named TAGNAME. On other systems, this construct is not supported at all. -- Macro: DBX_CONTIN_LENGTH A symbol name in DBX-format debugging information is normally ! continued (split into two separate `.stabs' directives) when it exceeds a certain length (by default, 80 characters). On some operating systems, DBX requires this splitting; on others, splitting must not be done. You can inhibit splitting by defining *************** These are specific options for DBX outpu *** 35875,35935 **** length you desire. -- Macro: DBX_CONTIN_CHAR ! Normally continuation is indicated by adding a '\' character to the ! end of a '.stabs' string when a continuation follows. To use a ! different character instead, define this macro as a character constant for the character you want to use. Do not define this macro if backslash is correct for your system. -- Macro: DBX_STATIC_STAB_DATA_SECTION Define this macro if it is necessary to go to the data section ! before outputting the '.stabs' pseudo-op for a non-global static variable. -- Macro: DBX_TYPE_DECL_STABS_CODE ! The value to use in the "code" field of the '.stabs' directive for ! a typedef. The default is 'N_LSYM'. -- Macro: DBX_STATIC_CONST_VAR_CODE ! The value to use in the "code" field of the '.stabs' directive for a static variable located in the text section. DBX format does not ! provide any "right" way to do this. The default is 'N_FUN'. -- Macro: DBX_REGPARM_STABS_CODE ! The value to use in the "code" field of the '.stabs' directive for a parameter passed in registers. DBX format does not provide any ! "right" way to do this. The default is 'N_RSYM'. -- Macro: DBX_REGPARM_STABS_LETTER The letter to use in DBX symbol data to identify a symbol as a parameter passed in registers. DBX format does not customarily ! provide any way to do this. The default is ''P''. -- Macro: DBX_FUNCTION_FIRST Define this macro if the DBX information for a function and its arguments should precede the assembler code for the function. ! Normally, in DBX format, the debugging information entirely follows ! the assembler code. -- Macro: DBX_BLOCKS_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! describing the scope of a block ('N_LBRAC' or 'N_RBRAC') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_LINES_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! indicating the current line number ('N_SLINE') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_USE_BINCL ! Define this macro if GCC should generate 'N_BINCL' and 'N_EINCL' stabs for included header files, as on Sun systems. This macro ! also directs GCC to output a type number as a pair of a file number ! and a type number within the file. Normally, GCC does not generate ! 'N_BINCL' or 'N_EINCL' stabs, and it outputs a single number for a ! type number.  File: gccint.info, Node: DBX Hooks, Next: File Names and DBX, Prev: DBX Options, Up: Debugging Info --- 36293,36353 ---- length you desire. -- Macro: DBX_CONTIN_CHAR ! Normally continuation is indicated by adding a `\' character to ! the end of a `.stabs' string when a continuation follows. To use ! a different character instead, define this macro as a character constant for the character you want to use. Do not define this macro if backslash is correct for your system. -- Macro: DBX_STATIC_STAB_DATA_SECTION Define this macro if it is necessary to go to the data section ! before outputting the `.stabs' pseudo-op for a non-global static variable. -- Macro: DBX_TYPE_DECL_STABS_CODE ! The value to use in the "code" field of the `.stabs' directive for ! a typedef. The default is `N_LSYM'. -- Macro: DBX_STATIC_CONST_VAR_CODE ! The value to use in the "code" field of the `.stabs' directive for a static variable located in the text section. DBX format does not ! provide any "right" way to do this. The default is `N_FUN'. -- Macro: DBX_REGPARM_STABS_CODE ! The value to use in the "code" field of the `.stabs' directive for a parameter passed in registers. DBX format does not provide any ! "right" way to do this. The default is `N_RSYM'. -- Macro: DBX_REGPARM_STABS_LETTER The letter to use in DBX symbol data to identify a symbol as a parameter passed in registers. DBX format does not customarily ! provide any way to do this. The default is `'P''. -- Macro: DBX_FUNCTION_FIRST Define this macro if the DBX information for a function and its arguments should precede the assembler code for the function. ! Normally, in DBX format, the debugging information entirely ! follows the assembler code. -- Macro: DBX_BLOCKS_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! describing the scope of a block (`N_LBRAC' or `N_RBRAC') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_LINES_FUNCTION_RELATIVE Define this macro, with value 1, if the value of a symbol ! indicating the current line number (`N_SLINE') should be relative to the start of the enclosing function. Normally, GCC uses an absolute address. -- Macro: DBX_USE_BINCL ! Define this macro if GCC should generate `N_BINCL' and `N_EINCL' stabs for included header files, as on Sun systems. This macro ! also directs GCC to output a type number as a pair of a file ! number and a type number within the file. Normally, GCC does not ! generate `N_BINCL' or `N_EINCL' stabs, and it outputs a single ! number for a type number.  File: gccint.info, Node: DBX Hooks, Next: File Names and DBX, Prev: DBX Options, Up: Debugging Info *************** These are hooks for DBX format. *** 35943,35963 **** A C statement to output DBX debugging information before code for line number LINE of the current source file to the stdio stream STREAM. COUNTER is the number of time the macro was invoked, ! including the current invocation; it is intended to generate unique ! labels in the assembly output. This macro should not be defined if the default output is correct, or if it can be made correct by defining ! 'DBX_LINES_FUNCTION_RELATIVE'. -- Macro: NO_DBX_FUNCTION_END Some stabs encapsulation formats (in particular ECOFF), cannot ! handle the '.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. -- Macro: NO_DBX_BNSYM_ENSYM ! Some assemblers cannot handle the '.stabd BNSYM/ENSYM,0,0' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. --- 36361,36381 ---- A C statement to output DBX debugging information before code for line number LINE of the current source file to the stdio stream STREAM. COUNTER is the number of time the macro was invoked, ! including the current invocation; it is intended to generate ! unique labels in the assembly output. This macro should not be defined if the default output is correct, or if it can be made correct by defining ! `DBX_LINES_FUNCTION_RELATIVE'. -- Macro: NO_DBX_FUNCTION_END Some stabs encapsulation formats (in particular ECOFF), cannot ! handle the `.stabs "",N_FUN,,0,0,Lscope-function-1' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. -- Macro: NO_DBX_BNSYM_ENSYM ! Some assemblers cannot handle the `.stabd BNSYM/ENSYM,0,0' gdb dbx extension construct. On those machines, define this macro to turn this feature off without disturbing the rest of the gdb extensions. *************** This describes file names in DBX format. *** 35979,35987 **** DBX debugging information is appropriate. It may be necessary to refer to a label equal to the beginning of ! the text section. You can use 'assemble_name (stream, ! ltext_label_name)' to do so. If you do this, you must also set the ! variable USED_LTEXT_LABEL_NAME to 'true'. -- Macro: NO_DBX_MAIN_SOURCE_DIRECTORY Define this macro, with value 1, if GCC should not emit an --- 36397,36405 ---- DBX debugging information is appropriate. It may be necessary to refer to a label equal to the beginning of ! the text section. You can use `assemble_name (stream, ! ltext_label_name)' to do so. If you do this, you must also set ! the variable USED_LTEXT_LABEL_NAME to `true'. -- Macro: NO_DBX_MAIN_SOURCE_DIRECTORY Define this macro, with value 1, if GCC should not emit an *************** This describes file names in DBX format. *** 35991,36011 **** -- Macro: NO_DBX_GCC_MARKER Define this macro, with value 1, if GCC should not emit an indication that this object file was compiled by GCC. The default ! is to emit an 'N_OPT' stab at the beginning of every source file, ! with 'gcc2_compiled.' for the string and value 0. -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILE_END (STREAM, NAME) A C statement to output DBX debugging information at the end of ! compilation of the main source file NAME. Output should be written ! to the stdio stream STREAM. If you don't define this macro, nothing special is output at the end of compilation, which is correct for most machines. -- Macro: DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END Define this macro _instead of_ defining ! 'DBX_OUTPUT_MAIN_SOURCE_FILE_END', if what needs to be output at ! the end of compilation is an 'N_SO' stab with an empty string, whose value is the highest absolute text address in the file.  --- 36409,36429 ---- -- Macro: NO_DBX_GCC_MARKER Define this macro, with value 1, if GCC should not emit an indication that this object file was compiled by GCC. The default ! is to emit an `N_OPT' stab at the beginning of every source file, ! with `gcc2_compiled.' for the string and value 0. -- Macro: DBX_OUTPUT_MAIN_SOURCE_FILE_END (STREAM, NAME) A C statement to output DBX debugging information at the end of ! compilation of the main source file NAME. Output should be ! written to the stdio stream STREAM. If you don't define this macro, nothing special is output at the end of compilation, which is correct for most machines. -- Macro: DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END Define this macro _instead of_ defining ! `DBX_OUTPUT_MAIN_SOURCE_FILE_END', if what needs to be output at ! the end of compilation is an `N_SO' stab with an empty string, whose value is the highest absolute text address in the file.  *************** Here are macros for SDB and DWARF output *** 36018,36059 **** -- Macro: SDB_DEBUGGING_INFO Define this macro if GCC should produce COFF-style debugging output ! for SDB in response to the '-g' option. -- Macro: DWARF2_DEBUGGING_INFO Define this macro if GCC should produce dwarf version 2 format ! debugging output in response to the '-g' option. -- Target Hook: int TARGET_DWARF_CALLING_CONVENTION (const_tree FUNCTION) Define this to enable the dwarf attribute ! 'DW_AT_calling_convention' to be emitted for each function. ! Instead of an integer return the enum value for the 'DW_CC_' tag. To support optional call frame debugging information, you must also ! define 'INCOMING_RETURN_ADDR_RTX' and either set ! 'RTX_FRAME_RELATED_P' on the prologue insns if you use RTL for the ! prologue, or call 'dwarf2out_def_cfa' and 'dwarf2out_reg_save' as ! appropriate from 'TARGET_ASM_FUNCTION_PROLOGUE' if you don't. -- Macro: DWARF2_FRAME_INFO Define this macro to a nonzero value if GCC should always output ! Dwarf 2 frame information. If 'TARGET_EXCEPT_UNWIND_INFO' (*note ! Exception Region Output::) returns 'UI_DWARF2', and exceptions are ! enabled, GCC will output this information not matter how you define ! 'DWARF2_FRAME_INFO'. -- Target Hook: enum unwind_info_type TARGET_DEBUG_UNWIND_INFO (void) This hook defines the mechanism that will be used for describing frame unwind information to the debugger. Normally the hook will ! return 'UI_DWARF2' if DWARF 2 debug information is enabled, and ! return 'UI_NONE' otherwise. ! A target may return 'UI_DWARF2' even when DWARF 2 debug information is disabled in order to always output DWARF 2 frame information. ! A target may return 'UI_TARGET' if it has ABI specified unwind tables. This will suppress generation of the normal debug frame unwind information. --- 36436,36477 ---- -- Macro: SDB_DEBUGGING_INFO Define this macro if GCC should produce COFF-style debugging output ! for SDB in response to the `-g' option. -- Macro: DWARF2_DEBUGGING_INFO Define this macro if GCC should produce dwarf version 2 format ! debugging output in response to the `-g' option. -- Target Hook: int TARGET_DWARF_CALLING_CONVENTION (const_tree FUNCTION) Define this to enable the dwarf attribute ! `DW_AT_calling_convention' to be emitted for each function. ! Instead of an integer return the enum value for the `DW_CC_' tag. To support optional call frame debugging information, you must also ! define `INCOMING_RETURN_ADDR_RTX' and either set ! `RTX_FRAME_RELATED_P' on the prologue insns if you use RTL for the ! prologue, or call `dwarf2out_def_cfa' and `dwarf2out_reg_save' as ! appropriate from `TARGET_ASM_FUNCTION_PROLOGUE' if you don't. -- Macro: DWARF2_FRAME_INFO Define this macro to a nonzero value if GCC should always output ! Dwarf 2 frame information. If `TARGET_EXCEPT_UNWIND_INFO' (*note ! Exception Region Output::) returns `UI_DWARF2', and exceptions are ! enabled, GCC will output this information not matter how you ! define `DWARF2_FRAME_INFO'. -- Target Hook: enum unwind_info_type TARGET_DEBUG_UNWIND_INFO (void) This hook defines the mechanism that will be used for describing frame unwind information to the debugger. Normally the hook will ! return `UI_DWARF2' if DWARF 2 debug information is enabled, and ! return `UI_NONE' otherwise. ! A target may return `UI_DWARF2' even when DWARF 2 debug information is disabled in order to always output DWARF 2 frame information. ! A target may return `UI_TARGET' if it has ABI specified unwind tables. This will suppress generation of the normal debug frame unwind information. *************** Here are macros for SDB and DWARF output *** 36064,36077 **** works. -- Target Hook: bool TARGET_WANT_DEBUG_PUB_SECTIONS ! True if the '.debug_pubtypes' and '.debug_pubnames' sections should ! be emitted. These sections are not used on most platforms, and in ! particular GDB does not use them. -- Target Hook: bool TARGET_FORCE_AT_COMP_DIR ! True if the 'DW_AT_comp_dir' attribute should be emitted for each ! compilation unit. This attribute is required for the darwin linker ! to emit debug information. -- Target Hook: bool TARGET_DELAY_SCHED2 True if sched2 is not to be run at its normal place. This usually --- 36482,36495 ---- works. -- Target Hook: bool TARGET_WANT_DEBUG_PUB_SECTIONS ! True if the `.debug_pubtypes' and `.debug_pubnames' sections ! should be emitted. These sections are not used on most platforms, ! and in particular GDB does not use them. -- Target Hook: bool TARGET_FORCE_AT_COMP_DIR ! True if the `DW_AT_comp_dir' attribute should be emitted for each ! compilation unit. This attribute is required for the darwin ! linker to emit debug information. -- Target Hook: bool TARGET_DELAY_SCHED2 True if sched2 is not to be run at its normal place. This usually *************** Here are macros for SDB and DWARF output *** 36098,36105 **** -- Macro: ASM_OUTPUT_DWARF_PCREL (STREAM, SIZE, LABEL) A C statement to issue assembly directives that create a ! self-relative reference to the given LABEL, using an integer of the ! given SIZE. -- Macro: ASM_OUTPUT_DWARF_TABLE_REF (LABEL) A C statement to issue assembly directives that create a reference --- 36516,36523 ---- -- Macro: ASM_OUTPUT_DWARF_PCREL (STREAM, SIZE, LABEL) A C statement to issue assembly directives that create a ! self-relative reference to the given LABEL, using an integer of ! the given SIZE. -- Macro: ASM_OUTPUT_DWARF_TABLE_REF (LABEL) A C statement to issue assembly directives that create a reference *************** Here are macros for SDB and DWARF output *** 36113,36129 **** DTP-relative reference to the given TLS symbol of the specified size. ! -- Macro: PUT_SDB_ ... Define these macros to override the assembler syntax for the ! special SDB assembler directives. See 'sdbout.c' for a list of these macros and their arguments. If the standard syntax is used, you need not define them yourself. -- Macro: SDB_DELIM Some assemblers do not support a semicolon as a delimiter, even between SDB assembler directives. In that case, define this macro ! to be the delimiter to use (usually '\n'). It is not necessary to ! define a new set of 'PUT_SDB_OP' macros if this is the only change required. -- Macro: SDB_ALLOW_UNKNOWN_REFERENCES --- 36531,36547 ---- DTP-relative reference to the given TLS symbol of the specified size. ! -- Macro: PUT_SDB_... Define these macros to override the assembler syntax for the ! special SDB assembler directives. See `sdbout.c' for a list of these macros and their arguments. If the standard syntax is used, you need not define them yourself. -- Macro: SDB_DELIM Some assemblers do not support a semicolon as a delimiter, even between SDB assembler directives. In that case, define this macro ! to be the delimiter to use (usually `\n'). It is not necessary to ! define a new set of `PUT_SDB_OP' macros if this is the only change required. -- Macro: SDB_ALLOW_UNKNOWN_REFERENCES *************** Here are macros for SDB and DWARF output *** 36139,36145 **** -- Macro: SDB_OUTPUT_SOURCE_LINE (STREAM, LINE) A C statement to output SDB debugging information before code for line number LINE of the current source file to the stdio stream ! STREAM. The default is to emit an '.ln' directive.  File: gccint.info, Node: VMS Debug, Prev: SDB and DWARF, Up: Debugging Info --- 36557,36563 ---- -- Macro: SDB_OUTPUT_SOURCE_LINE (STREAM, LINE) A C statement to output SDB debugging information before code for line number LINE of the current source file to the stdio stream ! STREAM. The default is to emit an `.ln' directive.  File: gccint.info, Node: VMS Debug, Prev: SDB and DWARF, Up: Debugging Info *************** File: gccint.info, Node: VMS Debug, Pr *** 36150,36161 **** Here are macros for VMS debug format. -- Macro: VMS_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for VMS in ! response to the '-g' option. The default behavior for VMS is to ! generate minimal debug info for a traceback in the absence of '-g' ! unless explicitly overridden with '-g0'. This behavior is ! controlled by 'TARGET_OPTION_OPTIMIZATION' and ! 'TARGET_OPTION_OVERRIDE'.  File: gccint.info, Node: Floating Point, Next: Mode Switching, Prev: Debugging Info, Up: Target Macros --- 36568,36579 ---- Here are macros for VMS debug format. -- Macro: VMS_DEBUGGING_INFO ! Define this macro if GCC should produce debugging output for VMS ! in response to the `-g' option. The default behavior for VMS is ! to generate minimal debug info for a traceback in the absence of ! `-g' unless explicitly overridden with `-g0'. This behavior is ! controlled by `TARGET_OPTION_OPTIMIZATION' and ! `TARGET_OPTION_OVERRIDE'.  File: gccint.info, Node: Floating Point, Next: Mode Switching, Prev: Debugging Info, Up: Target Macros *************** the target's arithmetic. To ensure cons *** 36177,36197 **** emulation to work with floating point values, even when the host and target floating point formats are identical. ! The following macros are provided by 'real.h' for the compiler to use. All parts of the compiler which generate or optimize floating-point calculations must use these macros. They may evaluate their operands more than once, so operands must not have side effects. -- Macro: REAL_VALUE_TYPE The C data type to be used to hold a floating point value in the ! target machine's format. Typically this is a 'struct' containing ! an array of 'HOST_WIDE_INT', but all code should treat it as an opaque quantity. -- Macro: int REAL_VALUES_EQUAL (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) Compares for equality the two values, X and Y. If the target floating point format supports negative zeroes and/or NaNs, ! 'REAL_VALUES_EQUAL (-0.0, 0.0)' is true, and 'REAL_VALUES_EQUAL (NaN, NaN)' is false. -- Macro: int REAL_VALUES_LESS (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) --- 36595,36615 ---- emulation to work with floating point values, even when the host and target floating point formats are identical. ! The following macros are provided by `real.h' for the compiler to use. All parts of the compiler which generate or optimize floating-point calculations must use these macros. They may evaluate their operands more than once, so operands must not have side effects. -- Macro: REAL_VALUE_TYPE The C data type to be used to hold a floating point value in the ! target machine's format. Typically this is a `struct' containing ! an array of `HOST_WIDE_INT', but all code should treat it as an opaque quantity. -- Macro: int REAL_VALUES_EQUAL (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) Compares for equality the two values, X and Y. If the target floating point format supports negative zeroes and/or NaNs, ! `REAL_VALUES_EQUAL (-0.0, 0.0)' is true, and `REAL_VALUES_EQUAL (NaN, NaN)' is false. -- Macro: int REAL_VALUES_LESS (REAL_VALUE_TYPE X, REAL_VALUE_TYPE Y) *************** more than once, so operands must not hav *** 36227,36239 **** X and Y, storing the result in OUTPUT (which must be a variable). The operation to be performed is specified by CODE. Only the ! following codes are supported: 'PLUS_EXPR', 'MINUS_EXPR', ! 'MULT_EXPR', 'RDIV_EXPR', 'MAX_EXPR', 'MIN_EXPR'. ! If 'REAL_ARITHMETIC' is asked to evaluate division by zero and the target's floating point format cannot represent infinity, it will ! call 'abort'. Callers should check for this situation first, using ! 'MODE_HAS_INFINITIES'. *Note Storage Layout::. -- Macro: REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE X) Returns the negative of the floating point value X. --- 36645,36657 ---- X and Y, storing the result in OUTPUT (which must be a variable). The operation to be performed is specified by CODE. Only the ! following codes are supported: `PLUS_EXPR', `MINUS_EXPR', ! `MULT_EXPR', `RDIV_EXPR', `MAX_EXPR', `MIN_EXPR'. ! If `REAL_ARITHMETIC' is asked to evaluate division by zero and the target's floating point format cannot represent infinity, it will ! call `abort'. Callers should check for this situation first, using ! `MODE_HAS_INFINITIES'. *Note Storage Layout::. -- Macro: REAL_VALUE_TYPE REAL_VALUE_NEGATE (REAL_VALUE_TYPE X) Returns the negative of the floating point value X. *************** File: gccint.info, Node: Mode Switching *** 36262,36304 **** The following macros control mode switching optimizations: -- Macro: OPTIMIZE_MODE_SWITCHING (ENTITY) ! Define this macro if the port needs extra instructions inserted for ! mode switching in an optimizing compilation. For an example, the SH4 can perform both single and double precision floating point operations, but to perform a single precision operation, the FPSCR PR bit has to be cleared, while for ! a double precision operation, this bit has to be set. Changing the ! PR bit requires a general purpose register as a scratch register, ! hence these FPSCR sets have to be inserted before reload, i.e. you ! can't put this into instruction emitting or ! 'TARGET_MACHINE_DEPENDENT_REORG'. You can have multiple entities that are mode-switched, and select at run time which entities actually need it. ! 'OPTIMIZE_MODE_SWITCHING' should return nonzero for any ENTITY that ! needs mode-switching. If you define this macro, you also have to ! define 'NUM_MODES_FOR_MODE_SWITCHING', 'MODE_NEEDED', ! 'MODE_PRIORITY_TO_MODE' and 'EMIT_MODE_SET'. 'MODE_AFTER', ! 'MODE_ENTRY', and 'MODE_EXIT' are optional. -- Macro: NUM_MODES_FOR_MODE_SWITCHING ! If you define 'OPTIMIZE_MODE_SWITCHING', you have to define this as initializer for an array of integers. Each initializer element N refers to an entity that needs mode switching, and specifies the number of different modes that might need to be set for this entity. The position of the initializer in the ! initializer--starting counting at zero--determines the integer that ! is used to refer to the mode-switched entity in question. In macros that take mode arguments / yield a mode result, modes are represented as numbers 0 ... N - 1. N is used to specify that no mode switch is needed / supplied. -- Macro: MODE_NEEDED (ENTITY, INSN) ENTITY is an integer specifying a mode-switched entity. If ! 'OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to return an integer value not larger than the corresponding element ! in 'NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY must be switched into prior to the execution of INSN. -- Macro: MODE_AFTER (ENTITY, MODE, INSN) --- 36680,36722 ---- The following macros control mode switching optimizations: -- Macro: OPTIMIZE_MODE_SWITCHING (ENTITY) ! Define this macro if the port needs extra instructions inserted ! for mode switching in an optimizing compilation. For an example, the SH4 can perform both single and double precision floating point operations, but to perform a single precision operation, the FPSCR PR bit has to be cleared, while for ! a double precision operation, this bit has to be set. Changing ! the PR bit requires a general purpose register as a scratch ! register, hence these FPSCR sets have to be inserted before ! reload, i.e. you can't put this into instruction emitting or ! `TARGET_MACHINE_DEPENDENT_REORG'. You can have multiple entities that are mode-switched, and select at run time which entities actually need it. ! `OPTIMIZE_MODE_SWITCHING' should return nonzero for any ENTITY ! that needs mode-switching. If you define this macro, you also ! have to define `NUM_MODES_FOR_MODE_SWITCHING', `MODE_NEEDED', ! `MODE_PRIORITY_TO_MODE' and `EMIT_MODE_SET'. `MODE_AFTER', ! `MODE_ENTRY', and `MODE_EXIT' are optional. -- Macro: NUM_MODES_FOR_MODE_SWITCHING ! If you define `OPTIMIZE_MODE_SWITCHING', you have to define this as initializer for an array of integers. Each initializer element N refers to an entity that needs mode switching, and specifies the number of different modes that might need to be set for this entity. The position of the initializer in the ! initializer--starting counting at zero--determines the integer ! that is used to refer to the mode-switched entity in question. In macros that take mode arguments / yield a mode result, modes are represented as numbers 0 ... N - 1. N is used to specify that no mode switch is needed / supplied. -- Macro: MODE_NEEDED (ENTITY, INSN) ENTITY is an integer specifying a mode-switched entity. If ! `OPTIMIZE_MODE_SWITCHING' is defined, you must define this macro to return an integer value not larger than the corresponding element ! in `NUM_MODES_FOR_MODE_SWITCHING', to denote the mode that ENTITY must be switched into prior to the execution of INSN. -- Macro: MODE_AFTER (ENTITY, MODE, INSN) *************** The following macros control mode switch *** 36309,36352 **** -- Macro: MODE_ENTRY (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is a ! mode that ENTITY is assumed to be switched to at function entry. ! If 'MODE_ENTRY' is defined then 'MODE_EXIT' must be defined. -- Macro: MODE_EXIT (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is a ! mode that ENTITY is assumed to be switched to at function exit. If ! 'MODE_EXIT' is defined then 'MODE_ENTRY' must be defined. -- Macro: MODE_PRIORITY_TO_MODE (ENTITY, N) This macro specifies the order in which modes for ENTITY are processed. 0 is the highest priority, ! 'NUM_MODES_FOR_MODE_SWITCHING[ENTITY] - 1' the lowest. The value of the macro should be an integer designating a mode for ENTITY. ! For any fixed ENTITY, 'mode_priority_to_mode' (ENTITY, N) shall be ! a bijection in 0 ... 'num_modes_for_mode_switching[ENTITY] - 1'. -- Macro: EMIT_MODE_SET (ENTITY, MODE, HARD_REGS_LIVE) ! Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE is ! the set of hard registers live at the point where the insn(s) are ! to be inserted.  File: gccint.info, Node: Target Attributes, Next: Emulated TLS, Prev: Mode Switching, Up: Target Macros ! 17.25 Defining target-specific uses of '__attribute__' ====================================================== Target-specific attributes may be defined for functions, data and types. These are described using the following target hooks; they also need to ! be documented in 'extend.texi'. -- Target Hook: const struct attribute_spec * TARGET_ATTRIBUTE_TABLE ! If defined, this target hook points to an array of 'struct ! attribute_spec' (defined in 'tree.h') specifying the machine ! specific attributes for this target and some of the restrictions on ! the entities to which these attributes are applied and the arguments they take. -- Target Hook: bool TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P (const_tree --- 36727,36770 ---- -- Macro: MODE_ENTRY (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is ! a mode that ENTITY is assumed to be switched to at function entry. ! If `MODE_ENTRY' is defined then `MODE_EXIT' must be defined. -- Macro: MODE_EXIT (ENTITY) If this macro is defined, it is evaluated for every ENTITY that ! needs mode switching. It should evaluate to an integer, which is ! a mode that ENTITY is assumed to be switched to at function exit. ! If `MODE_EXIT' is defined then `MODE_ENTRY' must be defined. -- Macro: MODE_PRIORITY_TO_MODE (ENTITY, N) This macro specifies the order in which modes for ENTITY are processed. 0 is the highest priority, ! `NUM_MODES_FOR_MODE_SWITCHING[ENTITY] - 1' the lowest. The value of the macro should be an integer designating a mode for ENTITY. ! For any fixed ENTITY, `mode_priority_to_mode' (ENTITY, N) shall be ! a bijection in 0 ... `num_modes_for_mode_switching[ENTITY] - 1'. -- Macro: EMIT_MODE_SET (ENTITY, MODE, HARD_REGS_LIVE) ! Generate one or more insns to set ENTITY to MODE. HARD_REG_LIVE ! is the set of hard registers live at the point where the insn(s) ! are to be inserted.  File: gccint.info, Node: Target Attributes, Next: Emulated TLS, Prev: Mode Switching, Up: Target Macros ! 17.25 Defining target-specific uses of `__attribute__' ====================================================== Target-specific attributes may be defined for functions, data and types. These are described using the following target hooks; they also need to ! be documented in `extend.texi'. -- Target Hook: const struct attribute_spec * TARGET_ATTRIBUTE_TABLE ! If defined, this target hook points to an array of `struct ! attribute_spec' (defined in `tree.h') specifying the machine ! specific attributes for this target and some of the restrictions ! on the entities to which these attributes are applied and the arguments they take. -- Target Hook: bool TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P (const_tree *************** be documented in 'extend.texi'. *** 36360,36369 **** -- Target Hook: int TARGET_COMP_TYPE_ATTRIBUTES (const_tree TYPE1, const_tree TYPE2) If defined, this target hook is a function which returns zero if ! the attributes on TYPE1 and TYPE2 are incompatible, one if they are ! compatible, and two if they are nearly compatible (which causes a ! warning to be generated). If this is not defined, machine-specific ! attributes are supposed always to be compatible. -- Target Hook: void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree TYPE) If defined, this target hook is a function which assigns default --- 36778,36787 ---- -- Target Hook: int TARGET_COMP_TYPE_ATTRIBUTES (const_tree TYPE1, const_tree TYPE2) If defined, this target hook is a function which returns zero if ! the attributes on TYPE1 and TYPE2 are incompatible, one if they ! are compatible, and two if they are nearly compatible (which ! causes a warning to be generated). If this is not defined, ! machine-specific attributes are supposed always to be compatible. -- Target Hook: void TARGET_SET_DEFAULT_TYPE_ATTRIBUTES (tree TYPE) If defined, this target hook is a function which assigns default *************** be documented in 'extend.texi'. *** 36373,36498 **** TYPE2) Define this target hook if the merging of type attributes needs special handling. If defined, the result is a list of the combined ! 'TYPE_ATTRIBUTES' of TYPE1 and TYPE2. It is assumed that ! 'comptypes' has already been called and returned 1. This function ! may call 'merge_attributes' to handle machine-independent merging. -- Target Hook: tree TARGET_MERGE_DECL_ATTRIBUTES (tree OLDDECL, tree NEWDECL) Define this target hook if the merging of decl attributes needs special handling. If defined, the result is a list of the combined ! 'DECL_ATTRIBUTES' of OLDDECL and NEWDECL. NEWDECL is a duplicate declaration of OLDDECL. Examples of when this is needed are when one attribute overrides another, or when an attribute is nullified by a subsequent definition. This function may call ! 'merge_attributes' to handle machine-independent merging. ! If the only target-specific handling you require is 'dllimport' for ! Microsoft Windows targets, you should define the macro ! 'TARGET_DLLIMPORT_DECL_ATTRIBUTES' to '1'. The compiler will then ! define a function called 'merge_dllimport_decl_attributes' which can then be defined as the expansion of ! 'TARGET_MERGE_DECL_ATTRIBUTES'. You can also add ! 'handle_dll_attribute' in the attribute table for your port to ! perform initial processing of the 'dllimport' and 'dllexport' ! attributes. This is done in 'i386/cygwin.h' and 'i386/i386.c', for ! example. -- Target Hook: bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (const_tree DECL) ! DECL is a variable or function with '__attribute__((dllimport))' specified. Use this hook if the target needs to add extra ! validation checks to 'handle_dll_attribute'. -- Macro: TARGET_DECLSPEC Define this macro to a nonzero value if you want to treat ! '__declspec(X)' as equivalent to '__attribute((X))'. By default, this behavior is enabled only for targets that define ! 'TARGET_DLLIMPORT_DECL_ATTRIBUTES'. The current implementation of ! '__declspec' is via a built-in macro, but you should not rely on this implementation detail. -- Target Hook: void TARGET_INSERT_ATTRIBUTES (tree NODE, tree *ATTR_PTR) ! Define this target hook if you want to be able to add attributes to ! a decl when it is being created. This is normally useful for back ! ends which wish to implement a pragma by using the attributes which ! correspond to the pragma's effect. The NODE argument is the decl ! which is being created. The ATTR_PTR argument is a pointer to the ! attribute list for this decl. The list itself should not be ! modified, since it may be shared with other decls, but attributes ! may be chained on the head of the list and '*ATTR_PTR' modified to ! point to the new attributes, or a copy of the list may be made if ! further changes are needed. -- Target Hook: bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (const_tree FNDECL) ! This target hook returns 'true' if it is OK to inline FNDECL into the current function, despite its having target-specific ! attributes, 'false' otherwise. By default, if a function has a target specific attribute attached to it, it will not be inlined. ! -- Target Hook: bool TARGET_OPTION_VALID_ATTRIBUTE_P (tree FNDECL, tree ! NAME, tree ARGS, int FLAGS) ! This hook is called to parse 'attribute(target("..."))', which allows setting target-specific options on individual functions. These function-specific options may differ from the options ! specified on the command line. The hook should return 'true' if the options are valid. ! The hook should set the 'DECL_FUNCTION_SPECIFIC_TARGET' field in the function declaration to hold a pointer to a target-specific ! 'struct cl_target_option' structure. -- Target Hook: void TARGET_OPTION_SAVE (struct cl_target_option *PTR, struct gcc_options *OPTS) This hook is called to save any additional target-specific ! information in the 'struct cl_target_option' structure for ! function-specific options from the 'struct gcc_options' structure. *Note Option file format::. -- Target Hook: void TARGET_OPTION_RESTORE (struct gcc_options *OPTS, struct cl_target_option *PTR) This hook is called to restore any additional target-specific ! information in the 'struct cl_target_option' structure for ! function-specific options to the 'struct gcc_options' structure. -- Target Hook: void TARGET_OPTION_PRINT (FILE *FILE, int INDENT, struct cl_target_option *PTR) This hook is called to print any additional target-specific ! information in the 'struct cl_target_option' structure for function-specific options. -- Target Hook: bool TARGET_OPTION_PRAGMA_PARSE (tree ARGS, tree POP_TARGET) ! This target hook parses the options for '#pragma GCC target', which sets the target-specific options for functions that occur later in ! the input stream. The options accepted should be the same as those ! handled by the 'TARGET_OPTION_VALID_ATTRIBUTE_P' hook. -- Target Hook: void TARGET_OPTION_OVERRIDE (void) ! Sometimes certain combinations of command options do not make sense ! on a particular target machine. You can override the hook ! 'TARGET_OPTION_OVERRIDE' to take account of this. This hooks is called once just after all the command options have been parsed. Don't use this hook to turn on various extra optimizations for ! '-O'. That is what 'TARGET_OPTION_OPTIMIZATION' is for. If you need to do something whenever the optimization level is changed via the optimize attribute or pragma, see ! 'TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE' -- Target Hook: bool TARGET_OPTION_FUNCTION_VERSIONS (tree DECL1, tree DECL2) ! This target hook returns 'true' if DECL1 and DECL2 are versions of the same function. DECL1 and DECL2 are function versions if and only if they have the same function signature and different target specific attributes, that is, they are compiled for different target machines. -- Target Hook: bool TARGET_CAN_INLINE_P (tree CALLER, tree CALLEE) ! This target hook returns 'false' if the CALLER function cannot inline CALLEE, based on target specific information. By default, inlining is not allowed if the callee function has function specific target options and the caller does not use the same --- 36791,36916 ---- TYPE2) Define this target hook if the merging of type attributes needs special handling. If defined, the result is a list of the combined ! `TYPE_ATTRIBUTES' of TYPE1 and TYPE2. It is assumed that ! `comptypes' has already been called and returned 1. This function ! may call `merge_attributes' to handle machine-independent merging. -- Target Hook: tree TARGET_MERGE_DECL_ATTRIBUTES (tree OLDDECL, tree NEWDECL) Define this target hook if the merging of decl attributes needs special handling. If defined, the result is a list of the combined ! `DECL_ATTRIBUTES' of OLDDECL and NEWDECL. NEWDECL is a duplicate declaration of OLDDECL. Examples of when this is needed are when one attribute overrides another, or when an attribute is nullified by a subsequent definition. This function may call ! `merge_attributes' to handle machine-independent merging. ! If the only target-specific handling you require is `dllimport' ! for Microsoft Windows targets, you should define the macro ! `TARGET_DLLIMPORT_DECL_ATTRIBUTES' to `1'. The compiler will then ! define a function called `merge_dllimport_decl_attributes' which can then be defined as the expansion of ! `TARGET_MERGE_DECL_ATTRIBUTES'. You can also add ! `handle_dll_attribute' in the attribute table for your port to ! perform initial processing of the `dllimport' and `dllexport' ! attributes. This is done in `i386/cygwin.h' and `i386/i386.c', ! for example. -- Target Hook: bool TARGET_VALID_DLLIMPORT_ATTRIBUTE_P (const_tree DECL) ! DECL is a variable or function with `__attribute__((dllimport))' specified. Use this hook if the target needs to add extra ! validation checks to `handle_dll_attribute'. -- Macro: TARGET_DECLSPEC Define this macro to a nonzero value if you want to treat ! `__declspec(X)' as equivalent to `__attribute((X))'. By default, this behavior is enabled only for targets that define ! `TARGET_DLLIMPORT_DECL_ATTRIBUTES'. The current implementation of ! `__declspec' is via a built-in macro, but you should not rely on this implementation detail. -- Target Hook: void TARGET_INSERT_ATTRIBUTES (tree NODE, tree *ATTR_PTR) ! Define this target hook if you want to be able to add attributes ! to a decl when it is being created. This is normally useful for ! back ends which wish to implement a pragma by using the attributes ! which correspond to the pragma's effect. The NODE argument is the ! decl which is being created. The ATTR_PTR argument is a pointer ! to the attribute list for this decl. The list itself should not ! be modified, since it may be shared with other decls, but ! attributes may be chained on the head of the list and `*ATTR_PTR' ! modified to point to the new attributes, or a copy of the list may ! be made if further changes are needed. -- Target Hook: bool TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P (const_tree FNDECL) ! This target hook returns `true' if it is OK to inline FNDECL into the current function, despite its having target-specific ! attributes, `false' otherwise. By default, if a function has a target specific attribute attached to it, it will not be inlined. ! -- Target Hook: bool TARGET_OPTION_VALID_ATTRIBUTE_P (tree FNDECL, ! tree NAME, tree ARGS, int FLAGS) ! This hook is called to parse `attribute(target("..."))', which allows setting target-specific options on individual functions. These function-specific options may differ from the options ! specified on the command line. The hook should return `true' if the options are valid. ! The hook should set the `DECL_FUNCTION_SPECIFIC_TARGET' field in the function declaration to hold a pointer to a target-specific ! `struct cl_target_option' structure. -- Target Hook: void TARGET_OPTION_SAVE (struct cl_target_option *PTR, struct gcc_options *OPTS) This hook is called to save any additional target-specific ! information in the `struct cl_target_option' structure for ! function-specific options from the `struct gcc_options' structure. *Note Option file format::. -- Target Hook: void TARGET_OPTION_RESTORE (struct gcc_options *OPTS, struct cl_target_option *PTR) This hook is called to restore any additional target-specific ! information in the `struct cl_target_option' structure for ! function-specific options to the `struct gcc_options' structure. -- Target Hook: void TARGET_OPTION_PRINT (FILE *FILE, int INDENT, struct cl_target_option *PTR) This hook is called to print any additional target-specific ! information in the `struct cl_target_option' structure for function-specific options. -- Target Hook: bool TARGET_OPTION_PRAGMA_PARSE (tree ARGS, tree POP_TARGET) ! This target hook parses the options for `#pragma GCC target', which sets the target-specific options for functions that occur later in ! the input stream. The options accepted should be the same as ! those handled by the `TARGET_OPTION_VALID_ATTRIBUTE_P' hook. -- Target Hook: void TARGET_OPTION_OVERRIDE (void) ! Sometimes certain combinations of command options do not make ! sense on a particular target machine. You can override the hook ! `TARGET_OPTION_OVERRIDE' to take account of this. This hooks is called once just after all the command options have been parsed. Don't use this hook to turn on various extra optimizations for ! `-O'. That is what `TARGET_OPTION_OPTIMIZATION' is for. If you need to do something whenever the optimization level is changed via the optimize attribute or pragma, see ! `TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE' -- Target Hook: bool TARGET_OPTION_FUNCTION_VERSIONS (tree DECL1, tree DECL2) ! This target hook returns `true' if DECL1 and DECL2 are versions of the same function. DECL1 and DECL2 are function versions if and only if they have the same function signature and different target specific attributes, that is, they are compiled for different target machines. -- Target Hook: bool TARGET_CAN_INLINE_P (tree CALLER, tree CALLEE) ! This target hook returns `false' if the CALLER function cannot inline CALLEE, based on target specific information. By default, inlining is not allowed if the callee function has function specific target options and the caller does not use the same *************** layer. *** 36513,36520 **** The emulation layer works by creating a control object for every TLS object. To access the TLS object, a lookup function is provided which, ! when given the address of the control object, will return the address of ! the current thread's instance of the TLS object. -- Target Hook: const char * TARGET_EMUTLS_GET_ADDRESS Contains the name of the helper function that uses a TLS control --- 36931,36938 ---- The emulation layer works by creating a control object for every TLS object. To access the TLS object, a lookup function is provided which, ! when given the address of the control object, will return the address ! of the current thread's instance of the TLS object. -- Target Hook: const char * TARGET_EMUTLS_GET_ADDRESS Contains the name of the helper function that uses a TLS control *************** the current thread's instance of the TLS *** 36524,36563 **** -- Target Hook: const char * TARGET_EMUTLS_REGISTER_COMMON Contains the name of the helper function that should be used at program startup to register TLS objects that are implicitly ! initialized to zero. If this is 'NULL', all TLS objects will have explicit initializers. The default causes libgcc's emulated TLS registration function to be used. -- Target Hook: const char * TARGET_EMUTLS_VAR_SECTION Contains the name of the section in which TLS control variables ! should be placed. The default of 'NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_TMPL_SECTION Contains the name of the section in which TLS initializers should ! be placed. The default of 'NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_VAR_PREFIX Contains the prefix to be prepended to TLS control variable names. ! The default of 'NULL' uses a target-specific prefix. -- Target Hook: const char * TARGET_EMUTLS_TMPL_PREFIX Contains the prefix to be prepended to TLS initializer objects. ! The default of 'NULL' uses a target-specific prefix. -- Target Hook: tree TARGET_EMUTLS_VAR_FIELDS (tree TYPE, tree *NAME) Specifies a function that generates the FIELD_DECLs for a TLS control object type. TYPE is the RECORD_TYPE the fields are for and NAME should be filled with the structure tag, if the default of ! '__emutls_object' is unsuitable. The default creates a type suitable for libgcc's emulated TLS function. -- Target Hook: tree TARGET_EMUTLS_VAR_INIT (tree VAR, tree DECL, tree TMPL_ADDR) Specifies a function that generates the CONSTRUCTOR to initialize a ! TLS control object. VAR is the TLS control object, DECL is the TLS ! object and TMPL_ADDR is the address of the initializer. The default initializes libgcc's emulated TLS control object. -- Target Hook: bool TARGET_EMUTLS_VAR_ALIGN_FIXED --- 36942,36981 ---- -- Target Hook: const char * TARGET_EMUTLS_REGISTER_COMMON Contains the name of the helper function that should be used at program startup to register TLS objects that are implicitly ! initialized to zero. If this is `NULL', all TLS objects will have explicit initializers. The default causes libgcc's emulated TLS registration function to be used. -- Target Hook: const char * TARGET_EMUTLS_VAR_SECTION Contains the name of the section in which TLS control variables ! should be placed. The default of `NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_TMPL_SECTION Contains the name of the section in which TLS initializers should ! be placed. The default of `NULL' allows these to be placed in any section. -- Target Hook: const char * TARGET_EMUTLS_VAR_PREFIX Contains the prefix to be prepended to TLS control variable names. ! The default of `NULL' uses a target-specific prefix. -- Target Hook: const char * TARGET_EMUTLS_TMPL_PREFIX Contains the prefix to be prepended to TLS initializer objects. ! The default of `NULL' uses a target-specific prefix. -- Target Hook: tree TARGET_EMUTLS_VAR_FIELDS (tree TYPE, tree *NAME) Specifies a function that generates the FIELD_DECLs for a TLS control object type. TYPE is the RECORD_TYPE the fields are for and NAME should be filled with the structure tag, if the default of ! `__emutls_object' is unsuitable. The default creates a type suitable for libgcc's emulated TLS function. -- Target Hook: tree TARGET_EMUTLS_VAR_INIT (tree VAR, tree DECL, tree TMPL_ADDR) Specifies a function that generates the CONSTRUCTOR to initialize a ! TLS control object. VAR is the TLS control object, DECL is the ! TLS object and TMPL_ADDR is the address of the initializer. The default initializes libgcc's emulated TLS control object. -- Target Hook: bool TARGET_EMUTLS_VAR_ALIGN_FIXED *************** the current thread's instance of the TLS *** 36566,36572 **** optimize single objects. The default is false. -- Target Hook: bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS ! Specifies whether a DWARF 'DW_OP_form_tls_address' location descriptor may be used to describe emulated TLS control objects.  --- 36984,36990 ---- optimize single objects. The default is false. -- Target Hook: bool TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS ! Specifies whether a DWARF `DW_OP_form_tls_address' location descriptor may be used to describe emulated TLS control objects.  *************** and memory using asm-ized variables. Fo *** 36587,36593 **** ("c0r1" is the default name of register 1 in coprocessor 0; alternate names may be added as described below, or the default names may be ! overridden entirely in 'SUBTARGET_CONDITIONAL_REGISTER_USAGE'.) Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved even if it does not appear that the register is used --- 37005,37011 ---- ("c0r1" is the default name of register 1 in coprocessor 0; alternate names may be added as described below, or the default names may be ! overridden entirely in `SUBTARGET_CONDITIONAL_REGISTER_USAGE'.) Coprocessor registers are assumed to be epilogue-used; sets to them will be preserved even if it does not appear that the register is used *************** File: gccint.info, Node: PCH Target, N *** 36608,36638 **** -- Target Hook: void * TARGET_GET_PCH_VALIDITY (size_t *SZ) This hook returns a pointer to the data needed by ! 'TARGET_PCH_VALID_P' and sets '*SZ' to the size of the data in bytes. -- Target Hook: const char * TARGET_PCH_VALID_P (const void *DATA, size_t SZ) This hook checks whether the options used to create a PCH file are ! compatible with the current settings. It returns 'NULL' if so and a suitable error message if not. Error messages will be presented ! to the user and must be localized using '_(MSG)'. ! DATA is the data that was returned by 'TARGET_GET_PCH_VALIDITY' when the PCH file was created and SZ is the size of that data in bytes. It's safe to assume that the data was created by the same version of the compiler, so no format checking is needed. ! The default definition of 'default_pch_valid_p' should be suitable for most targets. -- Target Hook: const char * TARGET_CHECK_PCH_TARGET_FLAGS (int PCH_FLAGS) If this hook is nonnull, the default implementation of ! 'TARGET_PCH_VALID_P' will use it to check for compatible values of ! 'target_flags'. PCH_FLAGS specifies the value that 'target_flags' ! had when the PCH file was created. The return value is the same as ! for 'TARGET_PCH_VALID_P'. -- Target Hook: void TARGET_PREPARE_PCH_SAVE (void) Called before writing out a PCH file. If the target has some --- 37026,37056 ---- -- Target Hook: void * TARGET_GET_PCH_VALIDITY (size_t *SZ) This hook returns a pointer to the data needed by ! `TARGET_PCH_VALID_P' and sets `*SZ' to the size of the data in bytes. -- Target Hook: const char * TARGET_PCH_VALID_P (const void *DATA, size_t SZ) This hook checks whether the options used to create a PCH file are ! compatible with the current settings. It returns `NULL' if so and a suitable error message if not. Error messages will be presented ! to the user and must be localized using `_(MSG)'. ! DATA is the data that was returned by `TARGET_GET_PCH_VALIDITY' when the PCH file was created and SZ is the size of that data in bytes. It's safe to assume that the data was created by the same version of the compiler, so no format checking is needed. ! The default definition of `default_pch_valid_p' should be suitable for most targets. -- Target Hook: const char * TARGET_CHECK_PCH_TARGET_FLAGS (int PCH_FLAGS) If this hook is nonnull, the default implementation of ! `TARGET_PCH_VALID_P' will use it to check for compatible values of ! `target_flags'. PCH_FLAGS specifies the value that `target_flags' ! had when the PCH file was created. The return value is the same ! as for `TARGET_PCH_VALID_P'. -- Target Hook: void TARGET_PREPARE_PCH_SAVE (void) Called before writing out a PCH file. If the target has some *************** File: gccint.info, Node: C++ ABI, Next *** 36653,36672 **** -- Target Hook: bool TARGET_CXX_GUARD_MASK_BIT (void) This hook determines how guard variables are used. It should ! return 'false' (the default) if the first byte should be used. A ! return value of 'true' indicates that only the least significant bit should be used. -- Target Hook: tree TARGET_CXX_GET_COOKIE_SIZE (tree TYPE) This hook returns the size of the cookie to use when allocating an array whose elements have the indicated TYPE. Assumes that it is ! already known that a cookie is needed. The default is 'max(sizeof (size_t), alignof(type))', as defined in section 2.7 of the IA64/Generic C++ ABI. -- Target Hook: bool TARGET_CXX_COOKIE_HAS_SIZE (void) ! This hook should return 'true' if the element size should be stored ! in array cookies. The default is to return 'false'. -- Target Hook: int TARGET_CXX_IMPORT_EXPORT_CLASS (tree TYPE, int IMPORT_EXPORT) --- 37071,37090 ---- -- Target Hook: bool TARGET_CXX_GUARD_MASK_BIT (void) This hook determines how guard variables are used. It should ! return `false' (the default) if the first byte should be used. A ! return value of `true' indicates that only the least significant bit should be used. -- Target Hook: tree TARGET_CXX_GET_COOKIE_SIZE (tree TYPE) This hook returns the size of the cookie to use when allocating an array whose elements have the indicated TYPE. Assumes that it is ! already known that a cookie is needed. The default is `max(sizeof (size_t), alignof(type))', as defined in section 2.7 of the IA64/Generic C++ ABI. -- Target Hook: bool TARGET_CXX_COOKIE_HAS_SIZE (void) ! This hook should return `true' if the element size should be ! stored in array cookies. The default is to return `false'. -- Target Hook: int TARGET_CXX_IMPORT_EXPORT_CLASS (tree TYPE, int IMPORT_EXPORT) *************** File: gccint.info, Node: C++ ABI, Next *** 36678,36686 **** the backend's targeted operating system. -- Target Hook: bool TARGET_CXX_CDTOR_RETURNS_THIS (void) ! This hook should return 'true' if constructors and destructors ! return the address of the object created/destroyed. The default is ! to return 'false'. -- Target Hook: bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void) This hook returns true if the key method for a class (i.e., the --- 37096,37104 ---- the backend's targeted operating system. -- Target Hook: bool TARGET_CXX_CDTOR_RETURNS_THIS (void) ! This hook should return `true' if constructors and destructors ! return the address of the object created/destroyed. The default ! is to return `false'. -- Target Hook: bool TARGET_CXX_KEY_METHOD_MAY_BE_INLINE (void) This hook returns true if the key method for a class (i.e., the *************** File: gccint.info, Node: C++ ABI, Next *** 36690,36696 **** function so long as the function is not declared inline in the class definition. Under some variants of the ABI, an inline function can never be the key method. The default is to return ! 'true'. -- Target Hook: void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree DECL) --- 37108,37114 ---- function so long as the function is not declared inline in the class definition. Under some variants of the ABI, an inline function can never be the key method. The default is to return ! `true'. -- Target Hook: void TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY (tree DECL) *************** File: gccint.info, Node: C++ ABI, Next *** 36699,36705 **** external linkage in this translation unit. No ELF visibility has been explicitly specified. If the target needs to specify a visibility other than that of the containing class, use this hook ! to set 'DECL_VISIBILITY' and 'DECL_VISIBILITY_SPECIFIED'. -- Target Hook: bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void) This hook returns true (the default) if virtual tables and other --- 37117,37123 ---- external linkage in this translation unit. No ELF visibility has been explicitly specified. If the target needs to specify a visibility other than that of the containing class, use this hook ! to set `DECL_VISIBILITY' and `DECL_VISIBILITY_SPECIFIED'. -- Target Hook: bool TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT (void) This hook returns true (the default) if virtual tables and other *************** File: gccint.info, Node: C++ ABI, Next *** 36714,36739 **** be COMDAT, false if it should not be COMDAT. -- Target Hook: bool TARGET_CXX_USE_AEABI_ATEXIT (void) ! This hook returns true if '__aeabi_atexit' (as defined by the ARM EABI) should be used to register static destructors when ! '-fuse-cxa-atexit' is in effect. The default is to return false to ! use '__cxa_atexit'. -- Target Hook: bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void) ! This hook returns true if the target 'atexit' function can be used ! in the same manner as '__cxa_atexit' to register C++ static ! destructors. This requires that 'atexit'-registered functions in shared libraries are run in the correct order when the libraries ! are unloaded. The default is to return false. -- Target Hook: void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree TYPE) ! TYPE is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has just ! been defined. Use this hook to make adjustments to the class (eg, ! tweak visibility or perform any other required target modifications). -- Target Hook: tree TARGET_CXX_DECL_MANGLING_CONTEXT (const_tree DECL) ! Return target-specific mangling context of DECL or 'NULL_TREE'.  File: gccint.info, Node: Named Address Spaces, Next: Misc, Prev: C++ ABI, Up: Target Macros --- 37132,37157 ---- be COMDAT, false if it should not be COMDAT. -- Target Hook: bool TARGET_CXX_USE_AEABI_ATEXIT (void) ! This hook returns true if `__aeabi_atexit' (as defined by the ARM EABI) should be used to register static destructors when ! `-fuse-cxa-atexit' is in effect. The default is to return false ! to use `__cxa_atexit'. -- Target Hook: bool TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT (void) ! This hook returns true if the target `atexit' function can be used ! in the same manner as `__cxa_atexit' to register C++ static ! destructors. This requires that `atexit'-registered functions in shared libraries are run in the correct order when the libraries ! are unloaded. The default is to return false. -- Target Hook: void TARGET_CXX_ADJUST_CLASS_AT_DEFINITION (tree TYPE) ! TYPE is a C++ class (i.e., RECORD_TYPE or UNION_TYPE) that has ! just been defined. Use this hook to make adjustments to the class ! (eg, tweak visibility or perform any other required target modifications). -- Target Hook: tree TARGET_CXX_DECL_MANGLING_CONTEXT (const_tree DECL) ! Return target-specific mangling context of DECL or `NULL_TREE'.  File: gccint.info, Node: Named Address Spaces, Next: Misc, Prev: C++ ABI, Up: Target Macros *************** File: gccint.info, Node: Named Address *** 36742,36763 **** ============================================= The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275 standards ! committee, 'Programming Languages - C - Extensions to support embedded processors', specifies a syntax for embedded processors to specify alternate address spaces. You can configure a GCC port to support section 5.1 of the draft report to add support for address spaces other than the default address space. These address spaces are new keywords ! that are similar to the 'volatile' and 'const' type attributes. Pointers to named address spaces can have a different size than pointers to the generic address space. ! For example, the SPU port uses the '__ea' address space to refer to memory in the host processor, rather than memory local to the SPU ! processor. Access to memory in the '__ea' address space involves issuing DMA operations to move data between the host processor and the ! local processor memory address space. Pointers in the '__ea' address ! space are either 32 bits or 64 bits based on the '-mea32' or '-mea64' switches (native SPU pointers are always 32 bits). Internally, address spaces are represented as a small integer in the --- 37160,37181 ---- ============================================= The draft technical report of the ISO/IEC JTC1 S22 WG14 N1275 standards ! committee, `Programming Languages - C - Extensions to support embedded processors', specifies a syntax for embedded processors to specify alternate address spaces. You can configure a GCC port to support section 5.1 of the draft report to add support for address spaces other than the default address space. These address spaces are new keywords ! that are similar to the `volatile' and `const' type attributes. Pointers to named address spaces can have a different size than pointers to the generic address space. ! For example, the SPU port uses the `__ea' address space to refer to memory in the host processor, rather than memory local to the SPU ! processor. Access to memory in the `__ea' address space involves issuing DMA operations to move data between the host processor and the ! local processor memory address space. Pointers in the `__ea' address ! space are either 32 bits or 64 bits based on the `-mea32' or `-mea64' switches (native SPU pointers are always 32 bits). Internally, address spaces are represented as a small integer in the *************** range 0 to 15 with address space 0 being *** 36765,36772 **** address space. To register a named address space qualifier keyword with the C front ! end, the target may call the 'c_register_addr_space' routine. For ! example, the SPU port uses the following to declare '__ea' as the keyword for named address space #1: #define ADDR_SPACE_EA 1 c_register_addr_space ("__ea", ADDR_SPACE_EA); --- 37183,37190 ---- address space. To register a named address space qualifier keyword with the C front ! end, the target may call the `c_register_addr_space' routine. For ! example, the SPU port uses the following to declare `__ea' as the keyword for named address space #1: #define ADDR_SPACE_EA 1 c_register_addr_space ("__ea", ADDR_SPACE_EA); *************** keyword for named address space #1: *** 36775,36814 **** (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for pointers to ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns 'ptr_mode' for the generic address space only. -- Target Hook: enum machine_mode TARGET_ADDR_SPACE_ADDRESS_MODE (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for addresses in ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns 'Pmode' for the generic address space only. -- Target Hook: bool TARGET_ADDR_SPACE_VALID_POINTER_MODE (enum machine_mode MODE, addr_space_t AS) Define this to return nonzero if the port can handle pointers with machine mode MODE to address space AS. This target hook is the ! same as the 'TARGET_VALID_POINTER_MODE' target hook, except that it ! includes explicit named address space support. The default version ! of this hook returns true for the modes returned by either the ! 'TARGET_ADDR_SPACE_POINTER_MODE' or ! 'TARGET_ADDR_SPACE_ADDRESS_MODE' target hooks for the given address ! space. -- Target Hook: bool TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx EXP, bool STRICT, addr_space_t AS) Define this to return true if EXP is a valid address for mode MODE in the named address space AS. The STRICT parameter says whether strict addressing is in effect after reload has finished. This ! target hook is the same as the 'TARGET_LEGITIMATE_ADDRESS_P' target ! hook, except that it includes explicit named address space support. -- Target Hook: rtx TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS (rtx X, rtx OLDX, enum machine_mode MODE, addr_space_t AS) Define this to modify an invalid address X to be a valid address with mode MODE in the named address space AS. This target hook is ! the same as the 'TARGET_LEGITIMIZE_ADDRESS' target hook, except that it includes explicit named address space support. -- Target Hook: bool TARGET_ADDR_SPACE_SUBSET_P (addr_space_t SUBSET, --- 37193,37233 ---- (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for pointers to ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns `ptr_mode' for the generic address space only. -- Target Hook: enum machine_mode TARGET_ADDR_SPACE_ADDRESS_MODE (addr_space_t ADDRESS_SPACE) Define this to return the machine mode to use for addresses in ADDRESS_SPACE if the target supports named address spaces. The ! default version of this hook returns `Pmode' for the generic address space only. -- Target Hook: bool TARGET_ADDR_SPACE_VALID_POINTER_MODE (enum machine_mode MODE, addr_space_t AS) Define this to return nonzero if the port can handle pointers with machine mode MODE to address space AS. This target hook is the ! same as the `TARGET_VALID_POINTER_MODE' target hook, except that ! it includes explicit named address space support. The default ! version of this hook returns true for the modes returned by either ! the `TARGET_ADDR_SPACE_POINTER_MODE' or ! `TARGET_ADDR_SPACE_ADDRESS_MODE' target hooks for the given ! address space. -- Target Hook: bool TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P (enum machine_mode MODE, rtx EXP, bool STRICT, addr_space_t AS) Define this to return true if EXP is a valid address for mode MODE in the named address space AS. The STRICT parameter says whether strict addressing is in effect after reload has finished. This ! target hook is the same as the `TARGET_LEGITIMATE_ADDRESS_P' ! target hook, except that it includes explicit named address space ! support. -- Target Hook: rtx TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS (rtx X, rtx OLDX, enum machine_mode MODE, addr_space_t AS) Define this to modify an invalid address X to be a valid address with mode MODE in the named address space AS. This target hook is ! the same as the `TARGET_LEGITIMIZE_ADDRESS' target hook, except that it includes explicit named address space support. -- Target Hook: bool TARGET_ADDR_SPACE_SUBSET_P (addr_space_t SUBSET, *************** keyword for named address space #1: *** 36827,36833 **** a new pointer expression with type TO_TYPE that points to a different named address space. When this hook it called, it is guaranteed that one of the two address spaces is a subset of the ! other, as determined by the 'TARGET_ADDR_SPACE_SUBSET_P' target hook.  --- 37246,37252 ---- a new pointer expression with type TO_TYPE that points to a different named address space. When this hook it called, it is guaranteed that one of the two address spaces is a subset of the ! other, as determined by the `TARGET_ADDR_SPACE_SUBSET_P' target hook.  *************** Here are several miscellaneous parameter *** 36842,36849 **** Define this boolean macro to indicate whether or not your architecture has conditional branches that can span all of memory. It is used in conjunction with an optimization that partitions hot ! and cold basic blocks into separate sections of the executable. If ! this macro is set to false, gcc will convert any conditional branches that attempt to cross between sections into unconditional branches or indirect jumps. --- 37261,37268 ---- Define this boolean macro to indicate whether or not your architecture has conditional branches that can span all of memory. It is used in conjunction with an optimization that partitions hot ! and cold basic blocks into separate sections of the executable. ! If this macro is set to false, gcc will convert any conditional branches that attempt to cross between sections into unconditional branches or indirect jumps. *************** Here are several miscellaneous parameter *** 36861,36871 **** elements of a jump-table should have. -- Macro: CASE_VECTOR_SHORTEN_MODE (MIN_OFFSET, MAX_OFFSET, BODY) ! Optional: return the preferred mode for an 'addr_diff_vec' when the ! minimum and maximum offset are known. If you define this, it enables extra code in branch shortening to deal with ! 'addr_diff_vec'. To make this work, you also have to define ! 'INSN_ALIGN' and make the alignment for 'addr_diff_vec' explicit. The BODY argument is provided so that the offset_unsigned and scale flags can be updated. --- 37280,37290 ---- elements of a jump-table should have. -- Macro: CASE_VECTOR_SHORTEN_MODE (MIN_OFFSET, MAX_OFFSET, BODY) ! Optional: return the preferred mode for an `addr_diff_vec' when ! the minimum and maximum offset are known. If you define this, it enables extra code in branch shortening to deal with ! `addr_diff_vec'. To make this work, you also have to define ! `INSN_ALIGN' and make the alignment for `addr_diff_vec' explicit. The BODY argument is provided so that the offset_unsigned and scale flags can be updated. *************** Here are several miscellaneous parameter *** 36873,36886 **** Define this macro to be a C expression to indicate when jump-tables should contain relative addresses. You need not define this macro if jump-tables never contain relative addresses, or jump-tables ! should contain relative addresses only when '-fPIC' or '-fPIC' is in effect. -- Target Hook: unsigned int TARGET_CASE_VALUES_THRESHOLD (void) This function return the smallest number of different values for which it is best to use a jump-table instead of a tree of conditional branches. The default is four for machines with a ! 'casesi' instruction and five otherwise. This is best for most machines. -- Macro: WORD_REGISTER_OPERATIONS --- 37292,37305 ---- Define this macro to be a C expression to indicate when jump-tables should contain relative addresses. You need not define this macro if jump-tables never contain relative addresses, or jump-tables ! should contain relative addresses only when `-fPIC' or `-fPIC' is in effect. -- Target Hook: unsigned int TARGET_CASE_VALUES_THRESHOLD (void) This function return the smallest number of different values for which it is best to use a jump-table instead of a tree of conditional branches. The default is four for machines with a ! `casesi' instruction and five otherwise. This is best for most machines. -- Macro: WORD_REGISTER_OPERATIONS *************** Here are several miscellaneous parameter *** 36891,36920 **** -- Macro: LOAD_EXTEND_OP (MEM_MODE) Define this macro to be a C expression indicating when insns that ! read memory in MEM_MODE, an integral mode narrower than a word, set ! the bits outside of MEM_MODE to be either the sign-extension or the ! zero-extension of the data read. Return 'SIGN_EXTEND' for values ! of MEM_MODE for which the insn sign-extends, 'ZERO_EXTEND' for ! which it zero-extends, and 'UNKNOWN' for other modes. This macro is not called with MEM_MODE non-integral or with a width ! greater than or equal to 'BITS_PER_WORD', so you may return any value in this case. Do not define this macro if it would always ! return 'UNKNOWN'. On machines where this macro is defined, you ! will normally define it as the constant 'SIGN_EXTEND' or ! 'ZERO_EXTEND'. ! You may return a non-'UNKNOWN' value even if for some hard registers the sign extension is not performed, if for the ! 'REGNO_REG_CLASS' of these hard registers ! 'CANNOT_CHANGE_MODE_CLASS' returns nonzero when the FROM mode is MEM_MODE and the TO mode is any integral mode larger than this but ! not larger than 'word_mode'. ! You must return 'UNKNOWN' if for some hard registers that allow ! this mode, 'CANNOT_CHANGE_MODE_CLASS' says that they cannot change ! to 'word_mode', but that they can change to another integral mode ! that is larger then MEM_MODE but still smaller than 'word_mode'. -- Macro: SHORT_IMMEDIATES_SIGN_EXTEND Define this macro if loading short immediate values into registers --- 37310,37339 ---- -- Macro: LOAD_EXTEND_OP (MEM_MODE) Define this macro to be a C expression indicating when insns that ! read memory in MEM_MODE, an integral mode narrower than a word, ! set the bits outside of MEM_MODE to be either the sign-extension ! or the zero-extension of the data read. Return `SIGN_EXTEND' for ! values of MEM_MODE for which the insn sign-extends, `ZERO_EXTEND' ! for which it zero-extends, and `UNKNOWN' for other modes. This macro is not called with MEM_MODE non-integral or with a width ! greater than or equal to `BITS_PER_WORD', so you may return any value in this case. Do not define this macro if it would always ! return `UNKNOWN'. On machines where this macro is defined, you ! will normally define it as the constant `SIGN_EXTEND' or ! `ZERO_EXTEND'. ! You may return a non-`UNKNOWN' value even if for some hard registers the sign extension is not performed, if for the ! `REGNO_REG_CLASS' of these hard registers ! `CANNOT_CHANGE_MODE_CLASS' returns nonzero when the FROM mode is MEM_MODE and the TO mode is any integral mode larger than this but ! not larger than `word_mode'. ! You must return `UNKNOWN' if for some hard registers that allow ! this mode, `CANNOT_CHANGE_MODE_CLASS' says that they cannot change ! to `word_mode', but that they can change to another integral mode ! that is larger then MEM_MODE but still smaller than `word_mode'. -- Macro: SHORT_IMMEDIATES_SIGN_EXTEND Define this macro if loading short immediate values into registers *************** Here are several miscellaneous parameter *** 36922,36929 **** -- Target Hook: unsigned int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum machine_mode MODE) ! When '-ffast-math' is in effect, GCC tries to optimize divisions by ! the same divisor, by turning them into multiplications by the reciprocal. This target hook specifies the minimum number of divisions that should be there for GCC to perform the optimization for a variable of mode MODE. The default implementation returns 3 --- 37341,37348 ---- -- Target Hook: unsigned int TARGET_MIN_DIVISIONS_FOR_RECIP_MUL (enum machine_mode MODE) ! When `-ffast-math' is in effect, GCC tries to optimize divisions ! by the same divisor, by turning them into multiplications by the reciprocal. This target hook specifies the minimum number of divisions that should be there for GCC to perform the optimization for a variable of mode MODE. The default implementation returns 3 *************** Here are several miscellaneous parameter *** 36938,36959 **** -- Macro: MAX_MOVE_MAX The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory ! locations. If this is undefined, the default is 'MOVE_MAX'. Otherwise, it is the constant value that is the largest value that ! 'MOVE_MAX' can have at run-time. -- Macro: SHIFT_COUNT_TRUNCATED A C expression that is nonzero if on this machine the number of bits actually used for the count of a shift operation is equal to ! the number of bits needed to represent the size of the object being ! shifted. When this macro is nonzero, the compiler will assume that ! it is safe to omit a sign-extend, zero-extend, and certain bitwise ! 'and' instructions that truncates the count of a shift operation. ! On machines that have instructions that act on bit-fields at ! variable positions, which may include 'bit test' instructions, a ! nonzero 'SHIFT_COUNT_TRUNCATED' also enables deletion of ! truncations of the values that serve as arguments to bit-field ! instructions. If both types of instructions truncate the count (for shifts) and position (for bit-field operations), or if no variable-position --- 37357,37378 ---- -- Macro: MAX_MOVE_MAX The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory ! locations. If this is undefined, the default is `MOVE_MAX'. Otherwise, it is the constant value that is the largest value that ! `MOVE_MAX' can have at run-time. -- Macro: SHIFT_COUNT_TRUNCATED A C expression that is nonzero if on this machine the number of bits actually used for the count of a shift operation is equal to ! the number of bits needed to represent the size of the object ! being shifted. When this macro is nonzero, the compiler will ! assume that it is safe to omit a sign-extend, zero-extend, and ! certain bitwise `and' instructions that truncates the count of a ! shift operation. On machines that have instructions that act on ! bit-fields at variable positions, which may include `bit test' ! instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables ! deletion of truncations of the values that serve as arguments to ! bit-field instructions. If both types of instructions truncate the count (for shifts) and position (for bit-field operations), or if no variable-position *************** Here are several miscellaneous parameter *** 36961,36972 **** However, on some machines, such as the 80386 and the 680x0, truncation only applies to shift operations and not the (real or ! pretended) bit-field operations. Define 'SHIFT_COUNT_TRUNCATED' to ! be zero on such machines. Instead, add patterns to the 'md' file ! that include the implied truncation of the shift instructions. ! You need not define this macro if it would always have the value of ! zero. -- Target Hook: unsigned HOST_WIDE_INT TARGET_SHIFT_TRUNCATION_MASK (enum machine_mode MODE) --- 37380,37391 ---- However, on some machines, such as the 80386 and the 680x0, truncation only applies to shift operations and not the (real or ! pretended) bit-field operations. Define `SHIFT_COUNT_TRUNCATED' ! to be zero on such machines. Instead, add patterns to the `md' ! file that include the implied truncation of the shift instructions. ! You need not define this macro if it would always have the value ! of zero. -- Target Hook: unsigned HOST_WIDE_INT TARGET_SHIFT_TRUNCATION_MASK (enum machine_mode MODE) *************** Here are several miscellaneous parameter *** 36981,36994 **** should return 0. A return value of 0 indicates that no particular behavior is guaranteed. ! Note that, unlike 'SHIFT_COUNT_TRUNCATED', this function does _not_ ! apply to general shift rtxes; it applies only to instructions that ! are generated by the named shift patterns. The default implementation of this function returns ! 'GET_MODE_BITSIZE (MODE) - 1' if 'SHIFT_COUNT_TRUNCATED' and 0 otherwise. This definition is always safe, but if ! 'SHIFT_COUNT_TRUNCATED' is false, and some shift patterns nevertheless truncate the shift count, you may get better code by overriding it. --- 37400,37413 ---- should return 0. A return value of 0 indicates that no particular behavior is guaranteed. ! Note that, unlike `SHIFT_COUNT_TRUNCATED', this function does ! _not_ apply to general shift rtxes; it applies only to instructions ! that are generated by the named shift patterns. The default implementation of this function returns ! `GET_MODE_BITSIZE (MODE) - 1' if `SHIFT_COUNT_TRUNCATED' and 0 otherwise. This definition is always safe, but if ! `SHIFT_COUNT_TRUNCATED' is false, and some shift patterns nevertheless truncate the shift count, you may get better code by overriding it. *************** Here are several miscellaneous parameter *** 37000,37042 **** On many machines, this expression can be 1. ! When 'TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for ! modes for which 'MODES_TIEABLE_P' is 0, suboptimal code can result. ! If this is the case, making 'TRULY_NOOP_TRUNCATION' return 0 in such cases may improve things. -- Target Hook: int TARGET_MODE_REP_EXTENDED (enum machine_mode MODE, enum machine_mode REP_MODE) The representation of an integral mode can be such that the values ! are always extended to a wider integral mode. Return 'SIGN_EXTEND' ! if values of MODE are represented in sign-extended form to ! REP_MODE. Return 'UNKNOWN' otherwise. (Currently, none of the ! targets use zero-extended representation this way so unlike ! 'LOAD_EXTEND_OP', 'TARGET_MODE_REP_EXTENDED' is expected to return ! either 'SIGN_EXTEND' or 'UNKNOWN'. Also no target extends MODE to REP_MODE so that REP_MODE is not the next widest integral mode and currently we take advantage of this fact.) ! Similarly to 'LOAD_EXTEND_OP' you may return a non-'UNKNOWN' value ! even if the extension is not performed on certain hard registers as ! long as for the 'REGNO_REG_CLASS' of these hard registers ! 'CANNOT_CHANGE_MODE_CLASS' returns nonzero. ! Note that 'TARGET_MODE_REP_EXTENDED' and 'LOAD_EXTEND_OP' describe ! two related properties. If you define 'TARGET_MODE_REP_EXTENDED ! (mode, word_mode)' you probably also want to define 'LOAD_EXTEND_OP ! (mode)' to return the same type of extension. ! In order to enforce the representation of 'mode', ! 'TRULY_NOOP_TRUNCATION' should return false when truncating to ! 'mode'. -- Macro: STORE_FLAG_VALUE A C expression describing the value returned by a comparison operator with an integral mode and stored by a store-flag ! instruction ('cstoreMODE4') when the condition is true. This ! description must apply to _all_ the 'cstoreMODE4' patterns and all ! the comparison operators whose results have a 'MODE_INT' mode. A value of 1 or -1 means that the instruction implementing the comparison operator returns exactly 1 or -1 when the comparison is --- 37419,37461 ---- On many machines, this expression can be 1. ! When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for ! modes for which `MODES_TIEABLE_P' is 0, suboptimal code can result. ! If this is the case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve things. -- Target Hook: int TARGET_MODE_REP_EXTENDED (enum machine_mode MODE, enum machine_mode REP_MODE) The representation of an integral mode can be such that the values ! are always extended to a wider integral mode. Return ! `SIGN_EXTEND' if values of MODE are represented in sign-extended ! form to REP_MODE. Return `UNKNOWN' otherwise. (Currently, none ! of the targets use zero-extended representation this way so unlike ! `LOAD_EXTEND_OP', `TARGET_MODE_REP_EXTENDED' is expected to return ! either `SIGN_EXTEND' or `UNKNOWN'. Also no target extends MODE to REP_MODE so that REP_MODE is not the next widest integral mode and currently we take advantage of this fact.) ! Similarly to `LOAD_EXTEND_OP' you may return a non-`UNKNOWN' value ! even if the extension is not performed on certain hard registers ! as long as for the `REGNO_REG_CLASS' of these hard registers ! `CANNOT_CHANGE_MODE_CLASS' returns nonzero. ! Note that `TARGET_MODE_REP_EXTENDED' and `LOAD_EXTEND_OP' describe ! two related properties. If you define `TARGET_MODE_REP_EXTENDED ! (mode, word_mode)' you probably also want to define ! `LOAD_EXTEND_OP (mode)' to return the same type of extension. ! In order to enforce the representation of `mode', ! `TRULY_NOOP_TRUNCATION' should return false when truncating to ! `mode'. -- Macro: STORE_FLAG_VALUE A C expression describing the value returned by a comparison operator with an integral mode and stored by a store-flag ! instruction (`cstoreMODE4') when the condition is true. This ! description must apply to _all_ the `cstoreMODE4' patterns and all ! the comparison operators whose results have a `MODE_INT' mode. A value of 1 or -1 means that the instruction implementing the comparison operator returns exactly 1 or -1 when the comparison is *************** Here are several miscellaneous parameter *** 37044,37060 **** indicates which bits of the result are guaranteed to be 1 when the comparison is true. This value is interpreted in the mode of the comparison operation, which is given by the mode of the first ! operand in the 'cstoreMODE4' pattern. Either the low bit or the ! sign bit of 'STORE_FLAG_VALUE' be on. Presently, only those bits are used by the compiler. ! If 'STORE_FLAG_VALUE' is neither 1 or -1, the compiler will generate code that depends only on the specified bits. It can also replace comparison operators with equivalent operations if they cause the required bits to be set, even if the remaining bits are undefined. For example, on a machine whose comparison operators ! return an 'SImode' value and where 'STORE_FLAG_VALUE' is defined as ! '0x80000000', saying that just the sign bit is relevant, the expression (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0)) --- 37463,37479 ---- indicates which bits of the result are guaranteed to be 1 when the comparison is true. This value is interpreted in the mode of the comparison operation, which is given by the mode of the first ! operand in the `cstoreMODE4' pattern. Either the low bit or the ! sign bit of `STORE_FLAG_VALUE' be on. Presently, only those bits are used by the compiler. ! If `STORE_FLAG_VALUE' is neither 1 or -1, the compiler will generate code that depends only on the specified bits. It can also replace comparison operators with equivalent operations if they cause the required bits to be set, even if the remaining bits are undefined. For example, on a machine whose comparison operators ! return an `SImode' value and where `STORE_FLAG_VALUE' is defined as ! `0x80000000', saying that just the sign bit is relevant, the expression (ne:SI (and:SI X (const_int POWER-OF-2)) (const_int 0)) *************** Here are several miscellaneous parameter *** 37063,37086 **** (ashift:SI X (const_int N)) ! where N is the appropriate shift count to move the bit being tested ! into the sign bit. There is no way to describe a machine that always sets the ! low-order bit for a true value, but does not guarantee the value of ! any other bits, but we do not know of any machine that has such an ! instruction. If you are trying to port GCC to such a machine, include an instruction to perform a logical-and of the result with 1 in the pattern for the comparison operators and let us know at . Often, a machine will have multiple instructions that obtain a value from a comparison (or the condition codes). Here are rules ! to guide the choice of value for 'STORE_FLAG_VALUE', and hence the instructions to be used: * Use the shortest sequence that yields a valid definition for ! 'STORE_FLAG_VALUE'. It is more efficient for the compiler to "normalize" the value (convert it to, e.g., 1 or 0) than for the comparison operators to do so because there may be opportunities to combine the normalization with other --- 37482,37505 ---- (ashift:SI X (const_int N)) ! where N is the appropriate shift count to move the bit being ! tested into the sign bit. There is no way to describe a machine that always sets the ! low-order bit for a true value, but does not guarantee the value ! of any other bits, but we do not know of any machine that has such ! an instruction. If you are trying to port GCC to such a machine, include an instruction to perform a logical-and of the result with 1 in the pattern for the comparison operators and let us know at . Often, a machine will have multiple instructions that obtain a value from a comparison (or the condition codes). Here are rules ! to guide the choice of value for `STORE_FLAG_VALUE', and hence the instructions to be used: * Use the shortest sequence that yields a valid definition for ! `STORE_FLAG_VALUE'. It is more efficient for the compiler to "normalize" the value (convert it to, e.g., 1 or 0) than for the comparison operators to do so because there may be opportunities to combine the normalization with other *************** Here are several miscellaneous parameter *** 37090,37160 **** being slightly preferred on machines with expensive jumps and 1 preferred on other machines. ! * As a second choice, choose a value of '0x80000001' if instructions exist that set both the sign and low-order bits but do not define the others. ! * Otherwise, use a value of '0x80000000'. Many machines can produce both the value chosen for ! 'STORE_FLAG_VALUE' and its negation in the same number of instructions. On those machines, you should also define a pattern for those cases, e.g., one matching (set A (neg:M (ne:M B C))) ! Some machines can also perform 'and' or 'plus' operations on condition code values with less instructions than the corresponding ! 'cstoreMODE4' insn followed by 'and' or 'plus'. On those machines, ! define the appropriate patterns. Use the names 'incscc' and ! 'decscc', respectively, for the patterns which perform 'plus' or ! 'minus' operations on condition code values. See 'rs6000.md' for ! some examples. The GNU Superoptimizer can be used to find such ! instruction sequences on other machines. If this macro is not defined, the default value, 1, is used. You ! need not define 'STORE_FLAG_VALUE' if the machine has no store-flag instructions, or if the value generated by these instructions is 1. -- Macro: FLOAT_STORE_FLAG_VALUE (MODE) ! A C expression that gives a nonzero 'REAL_VALUE_TYPE' value that is returned when comparison operators with floating-point results are true. Define this macro on machines that have comparison ! operations that return floating-point values. If there are no such ! operations, do not define this macro. -- Macro: VECTOR_STORE_FLAG_VALUE (MODE) A C expression that gives a rtx representing the nonzero true element for vector comparisons. The returned rtx should be valid ! for the inner mode of MODE which is guaranteed to be a vector mode. ! Define this macro on machines that have vector comparison operations that return a vector result. If there are no such operations, do not define this macro. Typically, this macro is ! defined as 'const1_rtx' or 'constm1_rtx'. This macro may return ! 'NULL_RTX' to prevent the compiler optimizing such vector comparison operations for the given mode. -- Macro: CLZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) -- Macro: CTZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) A C expression that indicates whether the architecture defines a ! value for 'clz' or 'ctz' with a zero operand. A result of '0' ! indicates the value is undefined. If the value is defined for only ! the RTL expression, the macro should evaluate to '1'; if the value ! applies also to the corresponding optab entry (which is normally ! the case if it expands directly into the corresponding RTL), then ! the macro should evaluate to '2'. In the cases where the value is ! defined, VALUE should be set to this value. ! If this macro is not defined, the value of 'clz' or 'ctz' at zero is assumed to be undefined. ! This macro must be defined if the target's expansion for 'ffs' relies on a particular value to get correct results. Otherwise it is not necessary, though it may be used to optimize some corner ! cases, and to provide a default expansion for the 'ffs' optab. ! Note that regardless of this macro the "definedness" of 'clz' and ! 'ctz' at zero do _not_ extend to the builtin functions visible to the user. Thus one may be free to adjust the value at will to match the target expansion of these operations without fear of breaking the API. --- 37509,37579 ---- being slightly preferred on machines with expensive jumps and 1 preferred on other machines. ! * As a second choice, choose a value of `0x80000001' if instructions exist that set both the sign and low-order bits but do not define the others. ! * Otherwise, use a value of `0x80000000'. Many machines can produce both the value chosen for ! `STORE_FLAG_VALUE' and its negation in the same number of instructions. On those machines, you should also define a pattern for those cases, e.g., one matching (set A (neg:M (ne:M B C))) ! Some machines can also perform `and' or `plus' operations on condition code values with less instructions than the corresponding ! `cstoreMODE4' insn followed by `and' or `plus'. On those ! machines, define the appropriate patterns. Use the names `incscc' ! and `decscc', respectively, for the patterns which perform `plus' ! or `minus' operations on condition code values. See `rs6000.md' ! for some examples. The GNU Superoptimizer can be used to find ! such instruction sequences on other machines. If this macro is not defined, the default value, 1, is used. You ! need not define `STORE_FLAG_VALUE' if the machine has no store-flag instructions, or if the value generated by these instructions is 1. -- Macro: FLOAT_STORE_FLAG_VALUE (MODE) ! A C expression that gives a nonzero `REAL_VALUE_TYPE' value that is returned when comparison operators with floating-point results are true. Define this macro on machines that have comparison ! operations that return floating-point values. If there are no ! such operations, do not define this macro. -- Macro: VECTOR_STORE_FLAG_VALUE (MODE) A C expression that gives a rtx representing the nonzero true element for vector comparisons. The returned rtx should be valid ! for the inner mode of MODE which is guaranteed to be a vector ! mode. Define this macro on machines that have vector comparison operations that return a vector result. If there are no such operations, do not define this macro. Typically, this macro is ! defined as `const1_rtx' or `constm1_rtx'. This macro may return ! `NULL_RTX' to prevent the compiler optimizing such vector comparison operations for the given mode. -- Macro: CLZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) -- Macro: CTZ_DEFINED_VALUE_AT_ZERO (MODE, VALUE) A C expression that indicates whether the architecture defines a ! value for `clz' or `ctz' with a zero operand. A result of `0' ! indicates the value is undefined. If the value is defined for ! only the RTL expression, the macro should evaluate to `1'; if the ! value applies also to the corresponding optab entry (which is ! normally the case if it expands directly into the corresponding ! RTL), then the macro should evaluate to `2'. In the cases where ! the value is defined, VALUE should be set to this value. ! If this macro is not defined, the value of `clz' or `ctz' at zero is assumed to be undefined. ! This macro must be defined if the target's expansion for `ffs' relies on a particular value to get correct results. Otherwise it is not necessary, though it may be used to optimize some corner ! cases, and to provide a default expansion for the `ffs' optab. ! Note that regardless of this macro the "definedness" of `clz' and ! `ctz' at zero do _not_ extend to the builtin functions visible to the user. Thus one may be free to adjust the value at will to match the target expansion of these operations without fear of breaking the API. *************** Here are several miscellaneous parameter *** 37162,37300 **** -- Macro: Pmode An alias for the machine mode for pointers. On most machines, define this to be the integer mode corresponding to the width of a ! hardware pointer; 'SImode' on 32-bit machine or 'DImode' on 64-bit machines. On some machines you must define this to be one of the ! partial integer modes, such as 'PSImode'. ! The width of 'Pmode' must be at least as large as the value of ! 'POINTER_SIZE'. If it is not equal, you must define the macro ! 'POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to ! 'Pmode'. -- Macro: FUNCTION_MODE An alias for the machine mode used for memory references to ! functions being called, in 'call' RTL expressions. On most CISC machines, where an instruction can begin at any byte address, this ! should be 'QImode'. On most RISC machines, where all instructions have fixed size and alignment, this should be a mode with the same size and alignment as the machine instruction words - typically ! 'SImode' or 'HImode'. -- Macro: STDC_0_IN_SYSTEM_HEADERS ! In normal operation, the preprocessor expands '__STDC__' to the constant 1, to signify that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system compiler uses a different ! convention, where '__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. ! Defining 'STDC_0_IN_SYSTEM_HEADERS' makes GNU CPP follows the host ! convention when processing system header files, but when processing ! user files '__STDC__' will always expand to 1. -- C Target Hook: const char * TARGET_C_PREINCLUDE (void) ! Define this hook to return the name of a header file to be included ! at the start of all compilations, as if it had been included with ! '#include '. If this hook returns 'NULL', or is not defined, ! or the header is not found, or if the user specifies ! '-ffreestanding' or '-nostdinc', no header is included. ! This hook can be used together with a header provided by the system ! C library to implement ISO C requirements for certain macros to be ! predefined that describe properties of the whole implementation ! rather than just the compiler. -- C Target Hook: bool TARGET_CXX_IMPLICIT_EXTERN_C (const char*) Define this hook to add target-specific C++ implicit extern C ! functions. If this function returns true for the name of a file-scope function, that function implicitly gets extern "C" ! linkage rather than whatever language linkage the declaration would ! normally have. An example of such function is WinMain on Win32 ! targets. -- Macro: NO_IMPLICIT_EXTERN_C ! Define this macro if the system header files support C++ as well as ! C. This macro inhibits the usual method of using system header files in C++, which is to pretend that the file's contents are ! enclosed in 'extern "C" {...}'. -- Macro: REGISTER_TARGET_PRAGMAS () Define this macro if you want to implement any target-specific pragmas. If defined, it is a C expression which makes a series of ! calls to 'c_register_pragma' or 'c_register_pragma_with_expansion' for each pragma. The macro may also do any setup required for the pragmas. ! The primary reason to define this macro is to provide compatibility ! with other compilers for the same target. In general, we ! discourage definition of target-specific pragmas for GCC. If the pragma can be implemented by attributes then you should ! consider defining the target hook 'TARGET_INSERT_ATTRIBUTES' as well. Preprocessor macros that appear on pragma lines are not expanded. ! All '#pragma' directives that do not match any registered pragma are silently ignored, unless the user specifies ! '-Wunknown-pragmas'. -- Function: void c_register_pragma (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) -- Function: void c_register_pragma_with_expansion (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) ! ! Each call to 'c_register_pragma' or ! 'c_register_pragma_with_expansion' establishes one pragma. The CALLBACK routine will be called when the preprocessor encounters a pragma of the form #pragma [SPACE] NAME ... ! SPACE is the case-sensitive namespace of the pragma, or 'NULL' to put the pragma in the global namespace. The callback routine receives PFILE as its first argument, which can be passed on to ! cpplib's functions if necessary. You can lex tokens after the NAME ! by calling 'pragma_lex'. Tokens that are not read by the callback ! will be silently ignored. The end of the line is indicated by a ! token of type 'CPP_EOF'. Macro expansion occurs on the arguments ! of pragmas registered with 'c_register_pragma_with_expansion' but ! not on the arguments of pragmas registered with ! 'c_register_pragma'. ! Note that the use of 'pragma_lex' is specific to the C and C++ compilers. It will not work in the Java or Fortran compilers, or ! any other language compilers for that matter. Thus if 'pragma_lex' ! is going to be called from target-specific code, it must only be ! done so when building the C and C++ compilers. This can be done by ! defining the variables 'c_target_objs' and 'cxx_target_objs' in the ! target entry in the 'config.gcc' file. These variables should name ! the target-specific, language-specific object file which contains ! the code that uses 'pragma_lex'. Note it will also be necessary to ! add a rule to the makefile fragment pointed to by 'tmake_file' that ! shows how to build this object file. -- Macro: HANDLE_PRAGMA_PACK_WITH_EXPANSION Define this macro if macros should be expanded in the arguments of ! '#pragma pack'. -- Macro: TARGET_DEFAULT_PACK_STRUCT If your target requires a structure packing default other than 0 (meaning the machine default), define this macro to the necessary ! value (in bytes). This must be a value that would also be valid to ! use with '#pragma pack()' (that is, a small power of two). -- Macro: DOLLARS_IN_IDENTIFIERS ! Define this macro to control use of the character '$' in identifier ! names for the C family of languages. 0 means '$' is not allowed by ! default; 1 means it is allowed. 1 is the default; there is no need ! to define this macro in that case. -- Macro: INSN_SETS_ARE_DELAYED (INSN) Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to use a resource set or ! clobbered in INSN. INSN is always a 'jump_insn' or an 'insn'; GCC ! knows that every 'call_insn' has this behavior. On machines where ! some 'insn' or 'jump_insn' is really a function call and hence has this behavior, you should define this macro. You need not define this macro if it would always return zero. --- 37581,37720 ---- -- Macro: Pmode An alias for the machine mode for pointers. On most machines, define this to be the integer mode corresponding to the width of a ! hardware pointer; `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines you must define this to be one of the ! partial integer modes, such as `PSImode'. ! The width of `Pmode' must be at least as large as the value of ! `POINTER_SIZE'. If it is not equal, you must define the macro ! `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to ! `Pmode'. -- Macro: FUNCTION_MODE An alias for the machine mode used for memory references to ! functions being called, in `call' RTL expressions. On most CISC machines, where an instruction can begin at any byte address, this ! should be `QImode'. On most RISC machines, where all instructions have fixed size and alignment, this should be a mode with the same size and alignment as the machine instruction words - typically ! `SImode' or `HImode'. -- Macro: STDC_0_IN_SYSTEM_HEADERS ! In normal operation, the preprocessor expands `__STDC__' to the constant 1, to signify that GCC conforms to ISO Standard C. On some hosts, like Solaris, the system compiler uses a different ! convention, where `__STDC__' is normally 0, but is 1 if the user specifies strict conformance to the C Standard. ! Defining `STDC_0_IN_SYSTEM_HEADERS' makes GNU CPP follows the host ! convention when processing system header files, but when ! processing user files `__STDC__' will always expand to 1. -- C Target Hook: const char * TARGET_C_PREINCLUDE (void) ! Define this hook to return the name of a header file to be ! included at the start of all compilations, as if it had been ! included with `#include '. If this hook returns `NULL', or ! is not defined, or the header is not found, or if the user ! specifies `-ffreestanding' or `-nostdinc', no header is included. ! This hook can be used together with a header provided by the ! system C library to implement ISO C requirements for certain ! macros to be predefined that describe properties of the whole ! implementation rather than just the compiler. -- C Target Hook: bool TARGET_CXX_IMPLICIT_EXTERN_C (const char*) Define this hook to add target-specific C++ implicit extern C ! functions. If this function returns true for the name of a file-scope function, that function implicitly gets extern "C" ! linkage rather than whatever language linkage the declaration ! would normally have. An example of such function is WinMain on ! Win32 targets. -- Macro: NO_IMPLICIT_EXTERN_C ! Define this macro if the system header files support C++ as well ! as C. This macro inhibits the usual method of using system header files in C++, which is to pretend that the file's contents are ! enclosed in `extern "C" {...}'. -- Macro: REGISTER_TARGET_PRAGMAS () Define this macro if you want to implement any target-specific pragmas. If defined, it is a C expression which makes a series of ! calls to `c_register_pragma' or `c_register_pragma_with_expansion' for each pragma. The macro may also do any setup required for the pragmas. ! The primary reason to define this macro is to provide ! compatibility with other compilers for the same target. In ! general, we discourage definition of target-specific pragmas for ! GCC. If the pragma can be implemented by attributes then you should ! consider defining the target hook `TARGET_INSERT_ATTRIBUTES' as well. Preprocessor macros that appear on pragma lines are not expanded. ! All `#pragma' directives that do not match any registered pragma are silently ignored, unless the user specifies ! `-Wunknown-pragmas'. -- Function: void c_register_pragma (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) -- Function: void c_register_pragma_with_expansion (const char *SPACE, const char *NAME, void (*CALLBACK) (struct cpp_reader *)) ! Each call to `c_register_pragma' or ! `c_register_pragma_with_expansion' establishes one pragma. The CALLBACK routine will be called when the preprocessor encounters a pragma of the form #pragma [SPACE] NAME ... ! SPACE is the case-sensitive namespace of the pragma, or `NULL' to put the pragma in the global namespace. The callback routine receives PFILE as its first argument, which can be passed on to ! cpplib's functions if necessary. You can lex tokens after the ! NAME by calling `pragma_lex'. Tokens that are not read by the ! callback will be silently ignored. The end of the line is ! indicated by a token of type `CPP_EOF'. Macro expansion occurs on ! the arguments of pragmas registered with ! `c_register_pragma_with_expansion' but not on the arguments of ! pragmas registered with `c_register_pragma'. ! Note that the use of `pragma_lex' is specific to the C and C++ compilers. It will not work in the Java or Fortran compilers, or ! any other language compilers for that matter. Thus if ! `pragma_lex' is going to be called from target-specific code, it ! must only be done so when building the C and C++ compilers. This ! can be done by defining the variables `c_target_objs' and ! `cxx_target_objs' in the target entry in the `config.gcc' file. ! These variables should name the target-specific, language-specific ! object file which contains the code that uses `pragma_lex'. Note ! it will also be necessary to add a rule to the makefile fragment ! pointed to by `tmake_file' that shows how to build this object ! file. -- Macro: HANDLE_PRAGMA_PACK_WITH_EXPANSION Define this macro if macros should be expanded in the arguments of ! `#pragma pack'. -- Macro: TARGET_DEFAULT_PACK_STRUCT If your target requires a structure packing default other than 0 (meaning the machine default), define this macro to the necessary ! value (in bytes). This must be a value that would also be valid ! to use with `#pragma pack()' (that is, a small power of two). -- Macro: DOLLARS_IN_IDENTIFIERS ! Define this macro to control use of the character `$' in ! identifier names for the C family of languages. 0 means `$' is ! not allowed by default; 1 means it is allowed. 1 is the default; ! there is no need to define this macro in that case. -- Macro: INSN_SETS_ARE_DELAYED (INSN) Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to use a resource set or ! clobbered in INSN. INSN is always a `jump_insn' or an `insn'; GCC ! knows that every `call_insn' has this behavior. On machines where ! some `insn' or `jump_insn' is really a function call and hence has this behavior, you should define this macro. You need not define this macro if it would always return zero. *************** Here are several miscellaneous parameter *** 37303,37406 **** Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to set or clobber a resource ! referenced in INSN. INSN is always a 'jump_insn' or an 'insn'. On ! machines where some 'insn' or 'jump_insn' is really a function call ! and its operands are registers whose use is actually in the ! subroutine it calls, you should define this macro. Doing so allows ! the delay slot scheduler to move instructions which copy arguments ! into the argument registers into the delay slot of INSN. You need not define this macro if it would always return zero. -- Macro: MULTIPLE_SYMBOL_SPACES Define this macro as a C expression that is nonzero if, in some ! cases, global symbols from one translation unit may not be bound to ! undefined symbols in another translation unit without user intervention. For instance, under Microsoft Windows symbols must be explicitly imported from shared libraries (DLLs). You need not define this macro if it would always evaluate to zero. ! -- Target Hook: tree TARGET_MD_ASM_CLOBBERS (tree OUTPUTS, tree INPUTS, ! tree CLOBBERS) ! This target hook should add to CLOBBERS 'STRING_CST' trees for any hard regs the port wishes to automatically clobber for an asm. It ! should return the result of the last 'tree_cons' used to add a clobber. The OUTPUTS, INPUTS and CLOBBER lists are the corresponding parameters to the asm and may be inspected to avoid clobbering a register that is an input or output of the asm. You ! can use 'tree_overlaps_hard_reg_set', declared in 'tree.h', to test for overlap with regards to asm-declared registers. -- Macro: MATH_LIBRARY ! Define this macro as a C string constant for the linker argument to ! link in the system math library, minus the initial '"-l"', or '""' ! if the target does not have a separate math library. ! You need only define this macro if the default of '"m"' is wrong. -- Macro: LIBRARY_PATH_ENV Define this macro as a C string constant for the environment variable that specifies where the linker should look for libraries. ! You need only define this macro if the default of '"LIBRARY_PATH"' is wrong. -- Macro: TARGET_POSIX_IO Define this macro if the target supports the following POSIX file ! functions, access, mkdir and file locking with fcntl / F_SETLKW. ! Defining 'TARGET_POSIX_IO' will enable the test coverage code to use file locking when exiting a program, which avoids race ! conditions if the program has forked. It will also create directories at run-time for cross-profiling. -- Macro: MAX_CONDITIONAL_EXECUTE - A C expression for the maximum number of instructions to execute via conditional execution instructions instead of a branch. A ! value of 'BRANCH_COST'+1 is the default if the machine does not use ! cc0, and 1 if it does use cc0. -- Macro: IFCVT_MODIFY_TESTS (CE_INFO, TRUE_EXPR, FALSE_EXPR) ! Used if the target needs to perform machine-dependent modifications ! on the conditionals used for turning basic blocks into ! conditionally executed code. CE_INFO points to a data structure, ! 'struct ce_if_block', which contains information about the ! currently processed blocks. TRUE_EXPR and FALSE_EXPR are the tests ! that are used for converting the then-block and the else-block, ! respectively. Set either TRUE_EXPR or FALSE_EXPR to a null pointer ! if the tests cannot be converted. -- Macro: IFCVT_MODIFY_MULTIPLE_TESTS (CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) ! Like 'IFCVT_MODIFY_TESTS', but used when converting more ! complicated if-statements into conditions combined by 'and' and ! 'or' operations. BB contains the basic block that contains the test that is currently being processed and about to be turned into a condition. -- Macro: IFCVT_MODIFY_INSN (CE_INFO, PATTERN, INSN) A C expression to modify the PATTERN of an INSN that is to be converted to conditional execution format. CE_INFO points to a ! data structure, 'struct ce_if_block', which contains information about the currently processed blocks. -- Macro: IFCVT_MODIFY_FINAL (CE_INFO) ! A C expression to perform any final machine dependent modifications ! in converting code to conditional execution. The involved basic ! blocks can be found in the 'struct ce_if_block' structure that is ! pointed to by CE_INFO. -- Macro: IFCVT_MODIFY_CANCEL (CE_INFO) A C expression to cancel any machine dependent modifications in converting code to conditional execution. The involved basic ! blocks can be found in the 'struct ce_if_block' structure that is pointed to by CE_INFO. -- Macro: IFCVT_MACHDEP_INIT (CE_INFO) A C expression to initialize any machine specific data for ! if-conversion of the if-block in the 'struct ce_if_block' structure ! that is pointed to by CE_INFO. -- Target Hook: void TARGET_MACHINE_DEPENDENT_REORG (void) If non-null, this hook performs a target-specific pass over the --- 37723,37825 ---- Define this macro as a C expression that is nonzero if it is safe for the delay slot scheduler to place instructions in the delay slot of INSN, even if they appear to set or clobber a resource ! referenced in INSN. INSN is always a `jump_insn' or an `insn'. ! On machines where some `insn' or `jump_insn' is really a function ! call and its operands are registers whose use is actually in the ! subroutine it calls, you should define this macro. Doing so ! allows the delay slot scheduler to move instructions which copy ! arguments into the argument registers into the delay slot of INSN. You need not define this macro if it would always return zero. -- Macro: MULTIPLE_SYMBOL_SPACES Define this macro as a C expression that is nonzero if, in some ! cases, global symbols from one translation unit may not be bound ! to undefined symbols in another translation unit without user intervention. For instance, under Microsoft Windows symbols must be explicitly imported from shared libraries (DLLs). You need not define this macro if it would always evaluate to zero. ! -- Target Hook: tree TARGET_MD_ASM_CLOBBERS (tree OUTPUTS, tree ! INPUTS, tree CLOBBERS) ! This target hook should add to CLOBBERS `STRING_CST' trees for any hard regs the port wishes to automatically clobber for an asm. It ! should return the result of the last `tree_cons' used to add a clobber. The OUTPUTS, INPUTS and CLOBBER lists are the corresponding parameters to the asm and may be inspected to avoid clobbering a register that is an input or output of the asm. You ! can use `tree_overlaps_hard_reg_set', declared in `tree.h', to test for overlap with regards to asm-declared registers. -- Macro: MATH_LIBRARY ! Define this macro as a C string constant for the linker argument ! to link in the system math library, minus the initial `"-l"', or ! `""' if the target does not have a separate math library. ! You need only define this macro if the default of `"m"' is wrong. -- Macro: LIBRARY_PATH_ENV Define this macro as a C string constant for the environment variable that specifies where the linker should look for libraries. ! You need only define this macro if the default of `"LIBRARY_PATH"' is wrong. -- Macro: TARGET_POSIX_IO Define this macro if the target supports the following POSIX file ! functions, access, mkdir and file locking with fcntl / F_SETLKW. ! Defining `TARGET_POSIX_IO' will enable the test coverage code to use file locking when exiting a program, which avoids race ! conditions if the program has forked. It will also create directories at run-time for cross-profiling. -- Macro: MAX_CONDITIONAL_EXECUTE A C expression for the maximum number of instructions to execute via conditional execution instructions instead of a branch. A ! value of `BRANCH_COST'+1 is the default if the machine does not ! use cc0, and 1 if it does use cc0. -- Macro: IFCVT_MODIFY_TESTS (CE_INFO, TRUE_EXPR, FALSE_EXPR) ! Used if the target needs to perform machine-dependent ! modifications on the conditionals used for turning basic blocks ! into conditionally executed code. CE_INFO points to a data ! structure, `struct ce_if_block', which contains information about ! the currently processed blocks. TRUE_EXPR and FALSE_EXPR are the ! tests that are used for converting the then-block and the ! else-block, respectively. Set either TRUE_EXPR or FALSE_EXPR to a ! null pointer if the tests cannot be converted. -- Macro: IFCVT_MODIFY_MULTIPLE_TESTS (CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) ! Like `IFCVT_MODIFY_TESTS', but used when converting more ! complicated if-statements into conditions combined by `and' and ! `or' operations. BB contains the basic block that contains the test that is currently being processed and about to be turned into a condition. -- Macro: IFCVT_MODIFY_INSN (CE_INFO, PATTERN, INSN) A C expression to modify the PATTERN of an INSN that is to be converted to conditional execution format. CE_INFO points to a ! data structure, `struct ce_if_block', which contains information about the currently processed blocks. -- Macro: IFCVT_MODIFY_FINAL (CE_INFO) ! A C expression to perform any final machine dependent ! modifications in converting code to conditional execution. The ! involved basic blocks can be found in the `struct ce_if_block' ! structure that is pointed to by CE_INFO. -- Macro: IFCVT_MODIFY_CANCEL (CE_INFO) A C expression to cancel any machine dependent modifications in converting code to conditional execution. The involved basic ! blocks can be found in the `struct ce_if_block' structure that is pointed to by CE_INFO. -- Macro: IFCVT_MACHDEP_INIT (CE_INFO) A C expression to initialize any machine specific data for ! if-conversion of the if-block in the `struct ce_if_block' ! structure that is pointed to by CE_INFO. -- Target Hook: void TARGET_MACHINE_DEPENDENT_REORG (void) If non-null, this hook performs a target-specific pass over the *************** Here are several miscellaneous parameter *** 37422,37437 **** functions that need to be defined. It should be a function that performs the necessary setup. ! Machine specific built-in functions can be useful to expand special ! machine instructions that would otherwise not normally be generated ! because they have no equivalent in the source language (for ! example, SIMD vector instructions or prefetch instructions). To create a built-in function, call the function ! 'lang_hooks.builtin_function' which is defined by the language front end. You can use any type nodes set up by ! 'build_common_tree_nodes'; only language front ends that use those ! two functions will call 'TARGET_INIT_BUILTINS'. -- Target Hook: tree TARGET_BUILTIN_DECL (unsigned CODE, bool INITIALIZE_P) --- 37841,37856 ---- functions that need to be defined. It should be a function that performs the necessary setup. ! Machine specific built-in functions can be useful to expand ! special machine instructions that would otherwise not normally be ! generated because they have no equivalent in the source language ! (for example, SIMD vector instructions or prefetch instructions). To create a built-in function, call the function ! `lang_hooks.builtin_function' which is defined by the language front end. You can use any type nodes set up by ! `build_common_tree_nodes'; only language front ends that use those ! two functions will call `TARGET_INIT_BUILTINS'. -- Target Hook: tree TARGET_BUILTIN_DECL (unsigned CODE, bool INITIALIZE_P) *************** Here are several miscellaneous parameter *** 37440,37453 **** returns the builtin function declaration for the builtin function code CODE. If there is no such builtin and it cannot be initialized at this time if INITIALIZE_P is true the function ! should return 'NULL_TREE'. If CODE is out of range the function ! should return 'error_mark_node'. -- Target Hook: rtx TARGET_EXPAND_BUILTIN (tree EXP, rtx TARGET, rtx SUBTARGET, enum machine_mode MODE, int IGNORE) - Expand a call to a machine specific built-in function that was set ! up by 'TARGET_INIT_BUILTINS'. EXP is the expression for the function call; the result should go to TARGET if that is convenient, and have mode MODE if that is convenient. SUBTARGET may be used as the target for computing one of EXP's operands. --- 37859,37871 ---- returns the builtin function declaration for the builtin function code CODE. If there is no such builtin and it cannot be initialized at this time if INITIALIZE_P is true the function ! should return `NULL_TREE'. If CODE is out of range the function ! should return `error_mark_node'. -- Target Hook: rtx TARGET_EXPAND_BUILTIN (tree EXP, rtx TARGET, rtx SUBTARGET, enum machine_mode MODE, int IGNORE) Expand a call to a machine specific built-in function that was set ! up by `TARGET_INIT_BUILTINS'. EXP is the expression for the function call; the result should go to TARGET if that is convenient, and have mode MODE if that is convenient. SUBTARGET may be used as the target for computing one of EXP's operands. *************** Here are several miscellaneous parameter *** 37457,37502 **** -- Target Hook: tree TARGET_RESOLVE_OVERLOADED_BUILTIN (unsigned int LOC, tree FNDECL, void *ARGLIST) Select a replacement for a machine specific built-in function that ! was set up by 'TARGET_INIT_BUILTINS'. This is done _before_ regular type checking, and so allows the target to implement a crude form of function overloading. FNDECL is the declaration of the built-in function. ARGLIST is the list of arguments passed to the built-in function. The result is a complete expression that ! implements the operation, usually another 'CALL_EXPR'. ARGLIST ! really has type 'VEC(tree,gc)*' ! -- Target Hook: tree TARGET_FOLD_BUILTIN (tree FNDECL, int N_ARGS, tree ! *ARGP, bool IGNORE) ! Fold a call to a machine specific built-in function that was set up ! by 'TARGET_INIT_BUILTINS'. FNDECL is the declaration of the ! built-in function. N_ARGS is the number of arguments passed to the ! function; the arguments themselves are pointed to by ARGP. The ! result is another tree, valid for both GIMPLE and GENERIC, containing a simplified expression for the call's result. If IGNORE is true the value will be ignored. -- Target Hook: bool TARGET_GIMPLE_FOLD_BUILTIN (gimple_stmt_iterator *GSI) Fold a call to a machine specific built-in function that was set up ! by 'TARGET_INIT_BUILTINS'. GSI points to the gimple statement holding the function call. Returns true if any change was made to the GIMPLE stream. -- Target Hook: int TARGET_COMPARE_VERSION_PRIORITY (tree DECL1, tree DECL2) ! This hook is used to compare the target attributes in two functions ! to determine which function's features get higher priority. This ! is used during function multi-versioning to figure out the order in ! which two versions must be dispatched. A function version with a ! higher priority is checked for dispatching earlier. DECL1 and ! DECL2 are the two function decls that will be compared. -- Target Hook: tree TARGET_GET_FUNCTION_VERSIONS_DISPATCHER (void *DECL) This hook is used to get the dispatcher function for a set of ! function versions. The dispatcher function is called to invoke the ! right function version at run-time. DECL is one version from a set ! of semantically identical versions. -- Target Hook: tree TARGET_GENERATE_VERSION_DISPATCHER_BODY (void *ARG) --- 37875,37921 ---- -- Target Hook: tree TARGET_RESOLVE_OVERLOADED_BUILTIN (unsigned int LOC, tree FNDECL, void *ARGLIST) Select a replacement for a machine specific built-in function that ! was set up by `TARGET_INIT_BUILTINS'. This is done _before_ regular type checking, and so allows the target to implement a crude form of function overloading. FNDECL is the declaration of the built-in function. ARGLIST is the list of arguments passed to the built-in function. The result is a complete expression that ! implements the operation, usually another `CALL_EXPR'. ARGLIST ! really has type `VEC(tree,gc)*' ! -- Target Hook: tree TARGET_FOLD_BUILTIN (tree FNDECL, int N_ARGS, ! tree *ARGP, bool IGNORE) ! Fold a call to a machine specific built-in function that was set ! up by `TARGET_INIT_BUILTINS'. FNDECL is the declaration of the ! built-in function. N_ARGS is the number of arguments passed to ! the function; the arguments themselves are pointed to by ARGP. ! The result is another tree, valid for both GIMPLE and GENERIC, containing a simplified expression for the call's result. If IGNORE is true the value will be ignored. -- Target Hook: bool TARGET_GIMPLE_FOLD_BUILTIN (gimple_stmt_iterator *GSI) Fold a call to a machine specific built-in function that was set up ! by `TARGET_INIT_BUILTINS'. GSI points to the gimple statement holding the function call. Returns true if any change was made to the GIMPLE stream. -- Target Hook: int TARGET_COMPARE_VERSION_PRIORITY (tree DECL1, tree DECL2) ! This hook is used to compare the target attributes in two ! functions to determine which function's features get higher ! priority. This is used during function multi-versioning to figure ! out the order in which two versions must be dispatched. A ! function version with a higher priority is checked for dispatching ! earlier. DECL1 and DECL2 are the two function decls that will be ! compared. -- Target Hook: tree TARGET_GET_FUNCTION_VERSIONS_DISPATCHER (void *DECL) This hook is used to get the dispatcher function for a set of ! function versions. The dispatcher function is called to invoke ! the right function version at run-time. DECL is one version from a ! set of semantically identical versions. -- Target Hook: tree TARGET_GENERATE_VERSION_DISPATCHER_BODY (void *ARG) *************** Here are several miscellaneous parameter *** 37509,37535 **** double_int ITERATIONS_MAX, unsigned int LOOP_DEPTH, bool ENTERED_AT_TOP) Return true if it is possible to use low-overhead loops ! ('doloop_end' and 'doloop_begin') for a particular loop. ! ITERATIONS gives the exact number of iterations, or 0 if not known. ! ITERATIONS_MAX gives the maximum number of iterations, or 0 if not ! known. LOOP_DEPTH is the nesting depth of the loop, with 1 for ! innermost loops, 2 for loops that contain innermost loops, and so ! on. ENTERED_AT_TOP is true if the loop is only entered from the ! top. ! This hook is only used if 'doloop_end' is available. The default implementation returns true. You can use ! 'can_use_doloop_if_innermost' if the loop must be the innermost, and if there are no other restrictions. -- Target Hook: const char * TARGET_INVALID_WITHIN_DOLOOP (const_rtx INSN) - Take an instruction in INSN and return NULL if it is valid within a low-overhead loop, otherwise return a string explaining why doloop could not be applied. ! Many targets use special registers for low-overhead looping. For any instruction that clobbers these this function should return a string indicating the reason why the doloop could not be applied. By default, the RTL loop optimizer does not use a present doloop --- 37928,37953 ---- double_int ITERATIONS_MAX, unsigned int LOOP_DEPTH, bool ENTERED_AT_TOP) Return true if it is possible to use low-overhead loops ! (`doloop_end' and `doloop_begin') for a particular loop. ! ITERATIONS gives the exact number of iterations, or 0 if not ! known. ITERATIONS_MAX gives the maximum number of iterations, or ! 0 if not known. LOOP_DEPTH is the nesting depth of the loop, with ! 1 for innermost loops, 2 for loops that contain innermost loops, ! and so on. ENTERED_AT_TOP is true if the loop is only entered ! from the top. ! This hook is only used if `doloop_end' is available. The default implementation returns true. You can use ! `can_use_doloop_if_innermost' if the loop must be the innermost, and if there are no other restrictions. -- Target Hook: const char * TARGET_INVALID_WITHIN_DOLOOP (const_rtx INSN) Take an instruction in INSN and return NULL if it is valid within a low-overhead loop, otherwise return a string explaining why doloop could not be applied. ! Many targets use special registers for low-overhead looping. For any instruction that clobbers these this function should return a string indicating the reason why the doloop could not be applied. By default, the RTL loop optimizer does not use a present doloop *************** Here are several miscellaneous parameter *** 37537,37631 **** instructions. -- Target Hook: bool TARGET_LEGITIMATE_COMBINED_INSN (rtx INSN) ! Take an instruction in INSN and return 'false' if the instruction is not appropriate as a combination of two or more instructions. The default is to accept all instructions. -- Macro: MD_CAN_REDIRECT_BRANCH (BRANCH1, BRANCH2) - Take a branch insn in BRANCH1 and another in BRANCH2. Return true if redirecting BRANCH1 to the destination of BRANCH2 is possible. On some targets, branches may have a limited range. Optimizing the ! filling of delay slots can result in branches being redirected, and ! this may in turn cause a branch offset to overflow. -- Target Hook: bool TARGET_CAN_FOLLOW_JUMP (const_rtx FOLLOWER, const_rtx FOLLOWEE) ! FOLLOWER and FOLLOWEE are JUMP_INSN instructions; return true if ! FOLLOWER may be modified to follow FOLLOWEE; false, if it can't. For example, on some targets, certain kinds of branches can't be ! made to follow through a hot/cold partitioning. -- Target Hook: bool TARGET_COMMUTATIVE_P (const_rtx X, int OUTER_CODE) ! This target hook returns 'true' if X is considered to be commutative. Usually, this is just COMMUTATIVE_P (X), but the HP PA doesn't consider PLUS to be commutative inside a MEM. OUTER_CODE is the rtx code of the enclosing rtl, if known, otherwise it is UNKNOWN. -- Target Hook: rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx HARD_REG) - When the initial value of a hard register has been copied in a pseudo register, it is often not necessary to actually allocate ! another register to this pseudo register, because the original hard ! register or a stack slot it has been saved into can be used. ! 'TARGET_ALLOCATE_INITIAL_VALUE' is called at the start of register allocation once for each hard register that had its initial value ! copied by using 'get_func_hard_reg_initial_val' or ! 'get_hard_reg_initial_val'. Possible values are 'NULL_RTX', if you ! don't want to do any special allocation, a 'REG' rtx--that would ! typically be the hard register itself, if it is known not to be ! clobbered--or a 'MEM'. If you are returning a 'MEM', this is only ! a hint for the allocator; it might decide to use another register ! anyways. You may use 'current_function_is_leaf' or 'REG_N_SETS' in ! the hook to determine if the hard register in question will not be ! clobbered. The default value of this hook is 'NULL', which ! disables any special allocation. -- Target Hook: int TARGET_UNSPEC_MAY_TRAP_P (const_rtx X, unsigned FLAGS) ! This target hook returns nonzero if X, an 'unspec' or ! 'unspec_volatile' operation, might cause a trap. Targets can use ! this hook to enhance precision of analysis for 'unspec' and ! 'unspec_volatile' operations. You may call 'may_trap_p_1' to analyze inner elements of X in which case FLAGS should be passed along. -- Target Hook: void TARGET_SET_CURRENT_FUNCTION (tree DECL) The compiler invokes this hook whenever it changes its current ! function context ('cfun'). You can define this function if the back end needs to perform any initialization or reset actions on a per-function basis. For example, it may be used to implement function attributes that affect register usage or code generation patterns. The argument DECL is the declaration for the new ! function context, and may be null to indicate that the compiler has ! left a function context and is returning to processing at the top ! level. The default hook function does nothing. ! GCC sets 'cfun' to a dummy function context during initialization ! of some parts of the back end. The hook function is not invoked in ! this situation; you need not worry about the hook being invoked recursively, or when the back end is in a partially-initialized ! state. 'cfun' might be 'NULL' to indicate processing at top level, outside of any function scope. -- Macro: TARGET_OBJECT_SUFFIX Define this macro to be a C string representing the suffix for object files on your target machine. If you do not define this ! macro, GCC will use '.o' as the suffix for object files. -- Macro: TARGET_EXECUTABLE_SUFFIX Define this macro to be a C string representing the suffix to be ! automatically added to executable files on your target machine. If ! you do not define this macro, GCC will use the null string as the ! suffix for executable files. -- Macro: COLLECT_EXPORT_LIST ! If defined, 'collect2' will scan the individual object files specified on its command line and create an export list for the linker. Define this macro for systems like AIX, where the linker ! discards object files that are not referenced from 'main' and uses export lists. -- Macro: MODIFY_JNI_METHOD_CALL (MDECL) --- 37955,38047 ---- instructions. -- Target Hook: bool TARGET_LEGITIMATE_COMBINED_INSN (rtx INSN) ! Take an instruction in INSN and return `false' if the instruction is not appropriate as a combination of two or more instructions. The default is to accept all instructions. -- Macro: MD_CAN_REDIRECT_BRANCH (BRANCH1, BRANCH2) Take a branch insn in BRANCH1 and another in BRANCH2. Return true if redirecting BRANCH1 to the destination of BRANCH2 is possible. On some targets, branches may have a limited range. Optimizing the ! filling of delay slots can result in branches being redirected, ! and this may in turn cause a branch offset to overflow. -- Target Hook: bool TARGET_CAN_FOLLOW_JUMP (const_rtx FOLLOWER, const_rtx FOLLOWEE) ! FOLLOWER and FOLLOWEE are JUMP_INSN instructions; return true if ! FOLLOWER may be modified to follow FOLLOWEE; false, if it can't. For example, on some targets, certain kinds of branches can't be ! made to follow through a hot/cold partitioning. -- Target Hook: bool TARGET_COMMUTATIVE_P (const_rtx X, int OUTER_CODE) ! This target hook returns `true' if X is considered to be commutative. Usually, this is just COMMUTATIVE_P (X), but the HP PA doesn't consider PLUS to be commutative inside a MEM. OUTER_CODE is the rtx code of the enclosing rtl, if known, otherwise it is UNKNOWN. -- Target Hook: rtx TARGET_ALLOCATE_INITIAL_VALUE (rtx HARD_REG) When the initial value of a hard register has been copied in a pseudo register, it is often not necessary to actually allocate ! another register to this pseudo register, because the original ! hard register or a stack slot it has been saved into can be used. ! `TARGET_ALLOCATE_INITIAL_VALUE' is called at the start of register allocation once for each hard register that had its initial value ! copied by using `get_func_hard_reg_initial_val' or ! `get_hard_reg_initial_val'. Possible values are `NULL_RTX', if ! you don't want to do any special allocation, a `REG' rtx--that ! would typically be the hard register itself, if it is known not to ! be clobbered--or a `MEM'. If you are returning a `MEM', this is ! only a hint for the allocator; it might decide to use another ! register anyways. You may use `current_function_is_leaf' or ! `REG_N_SETS' in the hook to determine if the hard register in ! question will not be clobbered. The default value of this hook is ! `NULL', which disables any special allocation. -- Target Hook: int TARGET_UNSPEC_MAY_TRAP_P (const_rtx X, unsigned FLAGS) ! This target hook returns nonzero if X, an `unspec' or ! `unspec_volatile' operation, might cause a trap. Targets can use ! this hook to enhance precision of analysis for `unspec' and ! `unspec_volatile' operations. You may call `may_trap_p_1' to analyze inner elements of X in which case FLAGS should be passed along. -- Target Hook: void TARGET_SET_CURRENT_FUNCTION (tree DECL) The compiler invokes this hook whenever it changes its current ! function context (`cfun'). You can define this function if the back end needs to perform any initialization or reset actions on a per-function basis. For example, it may be used to implement function attributes that affect register usage or code generation patterns. The argument DECL is the declaration for the new ! function context, and may be null to indicate that the compiler ! has left a function context and is returning to processing at the ! top level. The default hook function does nothing. ! GCC sets `cfun' to a dummy function context during initialization ! of some parts of the back end. The hook function is not invoked ! in this situation; you need not worry about the hook being invoked recursively, or when the back end is in a partially-initialized ! state. `cfun' might be `NULL' to indicate processing at top level, outside of any function scope. -- Macro: TARGET_OBJECT_SUFFIX Define this macro to be a C string representing the suffix for object files on your target machine. If you do not define this ! macro, GCC will use `.o' as the suffix for object files. -- Macro: TARGET_EXECUTABLE_SUFFIX Define this macro to be a C string representing the suffix to be ! automatically added to executable files on your target machine. ! If you do not define this macro, GCC will use the null string as ! the suffix for executable files. -- Macro: COLLECT_EXPORT_LIST ! If defined, `collect2' will scan the individual object files specified on its command line and create an export list for the linker. Define this macro for systems like AIX, where the linker ! discards object files that are not referenced from `main' and uses export lists. -- Macro: MODIFY_JNI_METHOD_CALL (MDECL) *************** Here are several miscellaneous parameter *** 37633,37639 **** method call MDECL, if Java Native Interface (JNI) methods must be invoked differently from other methods on your target. For example, on 32-bit Microsoft Windows, JNI methods must be invoked ! using the 'stdcall' calling convention and this macro is then defined as this expression: build_type_attribute_variant (MDECL, --- 38049,38055 ---- method call MDECL, if Java Native Interface (JNI) methods must be invoked differently from other methods on your target. For example, on 32-bit Microsoft Windows, JNI methods must be invoked ! using the `stdcall' calling convention and this macro is then defined as this expression: build_type_attribute_variant (MDECL, *************** Here are several miscellaneous parameter *** 37642,37652 **** NULL)) -- Target Hook: bool TARGET_CANNOT_MODIFY_JUMPS_P (void) ! This target hook returns 'true' past the point in which new jump ! instructions could be created. On machines that require a register ! for every jump such as the SHmedia ISA of SH5, this point would ! typically be reload, so this target hook should be defined to a ! function such as: static bool cannot_modify_jumps_past_reload_p () --- 38058,38068 ---- NULL)) -- Target Hook: bool TARGET_CANNOT_MODIFY_JUMPS_P (void) ! This target hook returns `true' past the point in which new jump ! instructions could be created. On machines that require a ! register for every jump such as the SHmedia ISA of SH5, this point ! would typically be reload, so this target hook should be defined ! to a function such as: static bool cannot_modify_jumps_past_reload_p () *************** Here are several miscellaneous parameter *** 37657,37678 **** -- Target Hook: reg_class_t TARGET_BRANCH_TARGET_REGISTER_CLASS (void) This target hook returns a register class for which branch target register optimizations should be applied. All registers in this ! class should be usable interchangeably. After reload, registers in ! this class will be re-allocated and loads will be hoisted out of ! loops and be subjected to inter-block scheduling. -- Target Hook: bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool AFTER_PROLOGUE_EPILOGUE_GEN) Branch target register optimization will by default exclude ! callee-saved registers that are not already live during the current ! function; if this target hook returns true, they will be included. ! The target code must than make sure that all target registers in ! the class returned by 'TARGET_BRANCH_TARGET_REGISTER_CLASS' that ! might need saving are saved. AFTER_PROLOGUE_EPILOGUE_GEN indicates ! if prologues and epilogues have already been generated. Note, even ! if you only return true when AFTER_PROLOGUE_EPILOGUE_GEN is false, ! you still are likely to have to make special provisions in ! 'INITIAL_ELIMINATION_OFFSET' to reserve space for caller-saved target registers. -- Target Hook: bool TARGET_HAVE_CONDITIONAL_EXECUTION (void) --- 38073,38095 ---- -- Target Hook: reg_class_t TARGET_BRANCH_TARGET_REGISTER_CLASS (void) This target hook returns a register class for which branch target register optimizations should be applied. All registers in this ! class should be usable interchangeably. After reload, registers ! in this class will be re-allocated and loads will be hoisted out ! of loops and be subjected to inter-block scheduling. -- Target Hook: bool TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED (bool AFTER_PROLOGUE_EPILOGUE_GEN) Branch target register optimization will by default exclude ! callee-saved registers that are not already live during the ! current function; if this target hook returns true, they will be ! included. The target code must than make sure that all target ! registers in the class returned by ! `TARGET_BRANCH_TARGET_REGISTER_CLASS' that might need saving are ! saved. AFTER_PROLOGUE_EPILOGUE_GEN indicates if prologues and ! epilogues have already been generated. Note, even if you only ! return true when AFTER_PROLOGUE_EPILOGUE_GEN is false, you still ! are likely to have to make special provisions in ! `INITIAL_ELIMINATION_OFFSET' to reserve space for caller-saved target registers. -- Target Hook: bool TARGET_HAVE_CONDITIONAL_EXECUTION (void) *************** Here are several miscellaneous parameter *** 37684,37692 **** -- Target Hook: unsigned TARGET_LOOP_UNROLL_ADJUST (unsigned NUNROLL, struct loop *LOOP) This target hook returns a new value for the number of times LOOP ! should be unrolled. The parameter NUNROLL is the number of times ! the loop is to be unrolled. The parameter LOOP is a pointer to the ! loop, which is going to be checked for unrolling. This target hook is required only when the target has special constraints like maximum number of memory accesses. --- 38101,38109 ---- -- Target Hook: unsigned TARGET_LOOP_UNROLL_ADJUST (unsigned NUNROLL, struct loop *LOOP) This target hook returns a new value for the number of times LOOP ! should be unrolled. The parameter NUNROLL is the number of times ! the loop is to be unrolled. The parameter LOOP is a pointer to the ! loop, which is going to be checked for unrolling. This target hook is required only when the target has special constraints like maximum number of memory accesses. *************** Here are several miscellaneous parameter *** 37697,37765 **** exponentiation by an integer constant inline. When this value is defined, exponentiation requiring more than this number of multiplications is implemented by calling the system library's ! 'pow', 'powf' or 'powl' routines. The default value places no upper bound on the multiplication count. -- Macro: void TARGET_EXTRA_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target. The parameter STDINC indicates if normal include files are ! present. The parameter SYSROOT is the system root directory. The ! parameter IPREFIX is the prefix for the gcc directory. -- Macro: void TARGET_EXTRA_PRE_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target before any standard headers. The parameter STDINC indicates ! if normal include files are present. The parameter SYSROOT is the ! system root directory. The parameter IPREFIX is the prefix for the ! gcc directory. -- Macro: void TARGET_OPTF (char *PATH) This target hook should register special include paths for the target. The parameter PATH is the include to register. On Darwin systems, this is used for Framework includes, which have semantics ! that are different from '-I'. -- Macro: bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree FNDECL) ! This target macro returns 'true' if it is safe to use a local alias ! for a virtual function FNDECL when constructing thunks, 'false' ! otherwise. By default, the macro returns 'true' for all functions, ! if a target supports aliases (i.e. defines 'ASM_OUTPUT_DEF'), ! 'false' otherwise, -- Macro: TARGET_FORMAT_TYPES If defined, this macro is the name of a global variable containing ! target-specific format checking information for the '-Wformat' option. The default is to have no target-specific format checks. -- Macro: TARGET_N_FORMAT_TYPES If defined, this macro is the number of entries in ! 'TARGET_FORMAT_TYPES'. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES If defined, this macro is the name of a global variable containing ! target-specific format overrides for the '-Wformat' option. The ! default is to have no target-specific format overrides. If ! defined, 'TARGET_FORMAT_TYPES' must be defined, too. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT If defined, this macro specifies the number of entries in ! 'TARGET_OVERRIDES_FORMAT_ATTRIBUTES'. -- Macro: TARGET_OVERRIDES_FORMAT_INIT If defined, this macro specifies the optional initialization ! routine for target specific customizations of the system printf and ! scanf formatter settings. -- Target Hook: bool TARGET_RELAXED_ORDERING ! If set to 'true', means that the target's memory model does not guarantee that loads which do not depend on one another will access main memory in the order of the instruction stream; if ordering is important, an explicit memory barrier must be used. This is true of many recent processors which implement a policy of "relaxed," "weak," or "release" memory consistency, such as Alpha, PowerPC, ! and ia64. The default is 'false'. -- Target Hook: const char * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN (const_tree TYPELIST, const_tree FUNCDECL, const_tree VAL) --- 38114,38182 ---- exponentiation by an integer constant inline. When this value is defined, exponentiation requiring more than this number of multiplications is implemented by calling the system library's ! `pow', `powf' or `powl' routines. The default value places no upper bound on the multiplication count. -- Macro: void TARGET_EXTRA_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target. The parameter STDINC indicates if normal include files ! are present. The parameter SYSROOT is the system root directory. ! The parameter IPREFIX is the prefix for the gcc directory. -- Macro: void TARGET_EXTRA_PRE_INCLUDES (const char *SYSROOT, const char *IPREFIX, int STDINC) This target hook should register any extra include files for the ! target before any standard headers. The parameter STDINC ! indicates if normal include files are present. The parameter ! SYSROOT is the system root directory. The parameter IPREFIX is ! the prefix for the gcc directory. -- Macro: void TARGET_OPTF (char *PATH) This target hook should register special include paths for the target. The parameter PATH is the include to register. On Darwin systems, this is used for Framework includes, which have semantics ! that are different from `-I'. -- Macro: bool TARGET_USE_LOCAL_THUNK_ALIAS_P (tree FNDECL) ! This target macro returns `true' if it is safe to use a local alias ! for a virtual function FNDECL when constructing thunks, `false' ! otherwise. By default, the macro returns `true' for all ! functions, if a target supports aliases (i.e. defines ! `ASM_OUTPUT_DEF'), `false' otherwise, -- Macro: TARGET_FORMAT_TYPES If defined, this macro is the name of a global variable containing ! target-specific format checking information for the `-Wformat' option. The default is to have no target-specific format checks. -- Macro: TARGET_N_FORMAT_TYPES If defined, this macro is the number of entries in ! `TARGET_FORMAT_TYPES'. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES If defined, this macro is the name of a global variable containing ! target-specific format overrides for the `-Wformat' option. The ! default is to have no target-specific format overrides. If defined, ! `TARGET_FORMAT_TYPES' must be defined, too. -- Macro: TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT If defined, this macro specifies the number of entries in ! `TARGET_OVERRIDES_FORMAT_ATTRIBUTES'. -- Macro: TARGET_OVERRIDES_FORMAT_INIT If defined, this macro specifies the optional initialization ! routine for target specific customizations of the system printf ! and scanf formatter settings. -- Target Hook: bool TARGET_RELAXED_ORDERING ! If set to `true', means that the target's memory model does not guarantee that loads which do not depend on one another will access main memory in the order of the instruction stream; if ordering is important, an explicit memory barrier must be used. This is true of many recent processors which implement a policy of "relaxed," "weak," or "release" memory consistency, such as Alpha, PowerPC, ! and ia64. The default is `false'. -- Target Hook: const char * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN (const_tree TYPELIST, const_tree FUNCDECL, const_tree VAL) *************** Here are several miscellaneous parameter *** 37770,37836 **** -- Target Hook: const char * TARGET_INVALID_CONVERSION (const_tree FROMTYPE, const_tree TOTYPE) If defined, this macro returns the diagnostic message when it is ! invalid to convert from FROMTYPE to TOTYPE, or 'NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_UNARY_OP (int OP, const_tree TYPE) If defined, this macro returns the diagnostic message when it is invalid to apply operation OP (where unary plus is denoted by ! 'CONVERT_EXPR') to an operand of type TYPE, or 'NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_BINARY_OP (int OP, const_tree TYPE1, const_tree TYPE2) If defined, this macro returns the diagnostic message when it is ! invalid to apply operation OP to operands of types TYPE1 and TYPE2, ! or 'NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_PARAMETER_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to include parameters of type TYPE, or 'NULL' ! if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: const char * TARGET_INVALID_RETURN_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to have return type TYPE, or 'NULL' if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_PROMOTED_TYPE (const_tree TYPE) If defined, this target hook returns the type to which values of TYPE should be promoted when they appear in expressions, analogous ! to the integer promotions, or 'NULL_TREE' to use the front end's normal promotion rules. This hook is useful when there are target-specific types with special promotion rules. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_CONVERT_TO_TYPE (tree TYPE, tree EXPR) If defined, this hook returns the result of converting EXPR to ! TYPE. It should return the converted expression, or 'NULL_TREE' to ! apply the front end's normal conversion rules. This hook is useful ! when there are target-specific types with special conversion rules. ! This is currently used only by the C and C++ front ends. -- Macro: TARGET_USE_JCR_SECTION This macro determines whether to use the JCR section to register ! Java classes. By default, TARGET_USE_JCR_SECTION is defined to 1 ! if both SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, else ! 0. -- Macro: OBJC_JBLEN This macro determines the size of the objective C jump buffer for ! the NeXT runtime. By default, OBJC_JBLEN is defined to an innocuous value. -- Macro: LIBGCC2_UNWIND_ATTRIBUTE Define this macro if any target-specific attributes need to be ! attached to the functions in 'libgcc' that provide low-level support for call stack unwinding. It is used in declarations in ! 'unwind-generic.h' and the associated definitions of those functions. -- Target Hook: void TARGET_UPDATE_STACK_BOUNDARY (void) --- 38187,38254 ---- -- Target Hook: const char * TARGET_INVALID_CONVERSION (const_tree FROMTYPE, const_tree TOTYPE) If defined, this macro returns the diagnostic message when it is ! invalid to convert from FROMTYPE to TOTYPE, or `NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_UNARY_OP (int OP, const_tree TYPE) If defined, this macro returns the diagnostic message when it is invalid to apply operation OP (where unary plus is denoted by ! `CONVERT_EXPR') to an operand of type TYPE, or `NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_BINARY_OP (int OP, const_tree TYPE1, const_tree TYPE2) If defined, this macro returns the diagnostic message when it is ! invalid to apply operation OP to operands of types TYPE1 and ! TYPE2, or `NULL' if validity should be determined by the front end. -- Target Hook: const char * TARGET_INVALID_PARAMETER_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to include parameters of type TYPE, or ! `NULL' if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: const char * TARGET_INVALID_RETURN_TYPE (const_tree TYPE) If defined, this macro returns the diagnostic message when it is ! invalid for functions to have return type TYPE, or `NULL' if validity should be determined by the front end. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_PROMOTED_TYPE (const_tree TYPE) If defined, this target hook returns the type to which values of TYPE should be promoted when they appear in expressions, analogous ! to the integer promotions, or `NULL_TREE' to use the front end's normal promotion rules. This hook is useful when there are target-specific types with special promotion rules. This is currently used only by the C and C++ front ends. -- Target Hook: tree TARGET_CONVERT_TO_TYPE (tree TYPE, tree EXPR) If defined, this hook returns the result of converting EXPR to ! TYPE. It should return the converted expression, or `NULL_TREE' ! to apply the front end's normal conversion rules. This hook is ! useful when there are target-specific types with special ! conversion rules. This is currently used only by the C and C++ ! front ends. -- Macro: TARGET_USE_JCR_SECTION This macro determines whether to use the JCR section to register ! Java classes. By default, TARGET_USE_JCR_SECTION is defined to 1 ! if both SUPPORTS_WEAK and TARGET_HAVE_NAMED_SECTIONS are true, ! else 0. -- Macro: OBJC_JBLEN This macro determines the size of the objective C jump buffer for ! the NeXT runtime. By default, OBJC_JBLEN is defined to an innocuous value. -- Macro: LIBGCC2_UNWIND_ATTRIBUTE Define this macro if any target-specific attributes need to be ! attached to the functions in `libgcc' that provide low-level support for call stack unwinding. It is used in declarations in ! `unwind-generic.h' and the associated definitions of those functions. -- Target Hook: void TARGET_UPDATE_STACK_BOUNDARY (void) *************** Here are several miscellaneous parameter *** 37838,37854 **** necessary. -- Target Hook: rtx TARGET_GET_DRAP_RTX (void) ! This hook should return an rtx for Dynamic Realign Argument Pointer ! (DRAP) if a different argument pointer register is needed to access ! the function's argument list due to stack realignment. Return ! 'NULL' if no DRAP is needed. -- Target Hook: bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void) When optimization is disabled, this hook indicates whether or not arguments should be allocated to stack slots. Normally, GCC allocates stacks slots for arguments when not optimizing in order to make debugging easier. However, when a function is declared ! with '__attribute__((naked))', there is no stack frame, and the compiler cannot safely move arguments from the registers in which they are passed to the stack. Therefore, this hook should return true in general, but false for naked functions. The default --- 38256,38272 ---- necessary. -- Target Hook: rtx TARGET_GET_DRAP_RTX (void) ! This hook should return an rtx for Dynamic Realign Argument ! Pointer (DRAP) if a different argument pointer register is needed ! to access the function's argument list due to stack realignment. ! Return `NULL' if no DRAP is needed. -- Target Hook: bool TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS (void) When optimization is disabled, this hook indicates whether or not arguments should be allocated to stack slots. Normally, GCC allocates stacks slots for arguments when not optimizing in order to make debugging easier. However, when a function is declared ! with `__attribute__((naked))', there is no stack frame, and the compiler cannot safely move arguments from the registers in which they are passed to the stack. Therefore, this hook should return true in general, but false for naked functions. The default *************** Here are several miscellaneous parameter *** 37859,37875 **** synthesize a constant. If there is another constant already in a register that is close enough in value then it is preferable that the new constant is computed from this register using immediate ! addition or subtraction. We accomplish this through CSE. Besides ! the value of the constant we also add a lower and an upper constant ! anchor to the available expressions. These are then queried when ! encountering new constants. The anchors are computed by rounding ! the constant up and down to a multiple of the value of ! 'TARGET_CONST_ANCHOR'. 'TARGET_CONST_ANCHOR' should be the maximum ! positive value accepted by immediate-add plus one. We currently ! assume that the value of 'TARGET_CONST_ANCHOR' is a power of 2. ! For example, on MIPS, where add-immediate takes a 16-bit signed ! value, 'TARGET_CONST_ANCHOR' is set to '0x8000'. The default value ! is zero, which disables this optimization. -- Target Hook: unsigned HOST_WIDE_INT TARGET_ASAN_SHADOW_OFFSET (void) Return the offset bitwise ored into shifted address to get --- 38277,38293 ---- synthesize a constant. If there is another constant already in a register that is close enough in value then it is preferable that the new constant is computed from this register using immediate ! addition or subtraction. We accomplish this through CSE. Besides ! the value of the constant we also add a lower and an upper ! constant anchor to the available expressions. These are then ! queried when encountering new constants. The anchors are computed ! by rounding the constant up and down to a multiple of the value of ! `TARGET_CONST_ANCHOR'. `TARGET_CONST_ANCHOR' should be the ! maximum positive value accepted by immediate-add plus one. We ! currently assume that the value of `TARGET_CONST_ANCHOR' is a ! power of 2. For example, on MIPS, where add-immediate takes a ! 16-bit signed value, `TARGET_CONST_ANCHOR' is set to `0x8000'. ! The default value is zero, which disables this optimization. -- Target Hook: unsigned HOST_WIDE_INT TARGET_ASAN_SHADOW_OFFSET (void) Return the offset bitwise ored into shifted address to get *************** Here are several miscellaneous parameter *** 37878,37894 **** -- Target Hook: unsigned HOST_WIDE_INT TARGET_MEMMODEL_CHECK (unsigned HOST_WIDE_INT VAL) ! Validate target specific memory model mask bits. When NULL no target specific memory model bits are allowed. -- Target Hook: unsigned char TARGET_ATOMIC_TEST_AND_SET_TRUEVAL This value should be set if the result written by ! 'atomic_test_and_set' is not exactly 1, i.e. the 'bool' 'true'. -- Target Hook: bool TARGET_HAS_IFUNC_P (void) ! It returns true if the target supports GNU indirect functions. The ! support includes the assembler, linker and dynamic linker. The ! default value of this hook is based on target's libc. -- Target Hook: unsigned int TARGET_ATOMIC_ALIGN_FOR_MODE (enum machine_mode MODE) --- 38296,38312 ---- -- Target Hook: unsigned HOST_WIDE_INT TARGET_MEMMODEL_CHECK (unsigned HOST_WIDE_INT VAL) ! Validate target specific memory model mask bits. When NULL no target specific memory model bits are allowed. -- Target Hook: unsigned char TARGET_ATOMIC_TEST_AND_SET_TRUEVAL This value should be set if the result written by ! `atomic_test_and_set' is not exactly 1, i.e. the `bool' `true'. -- Target Hook: bool TARGET_HAS_IFUNC_P (void) ! It returns true if the target supports GNU indirect functions. ! The support includes the assembler, linker and dynamic linker. ! The default value of this hook is based on target's libc. -- Target Hook: unsigned int TARGET_ATOMIC_ALIGN_FOR_MODE (enum machine_mode MODE) *************** Here are several miscellaneous parameter *** 37896,37918 **** for an atomic object of machine_mode MODE. If 0 is returned then the default alignment for the specified mode is used. ! -- Target Hook: void TARGET_ATOMIC_ASSIGN_EXPAND_FENV (tree *HOLD, tree ! *CLEAR, tree *UPDATE) ISO C11 requires atomic compound assignments that may raise floating-point exceptions to raise exceptions corresponding to the arithmetic operation whose result was successfully stored in a compare-and-exchange sequence. This requires code equivalent to ! calls to 'feholdexcept', 'feclearexcept' and 'feupdateenv' to be generated at appropriate points in the compare-and-exchange ! sequence. This hook should set '*HOLD' to an expression equivalent ! to the call to 'feholdexcept', '*CLEAR' to an expression equivalent ! to the call to 'feclearexcept' and '*UPDATE' to an expression ! equivalent to the call to 'feupdateenv'. The three expressions are ! 'NULL_TREE' on entry to the hook and may be left as 'NULL_TREE' if ! no code is required in a particular place. The default ! implementation leaves all three expressions as 'NULL_TREE'. The ! '__atomic_feraiseexcept' function from 'libatomic' may be of use as ! part of the code generated in '*UPDATE'.  File: gccint.info, Node: Host Config, Next: Fragments, Prev: Target Macros, Up: Top --- 38314,38337 ---- for an atomic object of machine_mode MODE. If 0 is returned then the default alignment for the specified mode is used. ! -- Target Hook: void TARGET_ATOMIC_ASSIGN_EXPAND_FENV (tree *HOLD, ! tree *CLEAR, tree *UPDATE) ISO C11 requires atomic compound assignments that may raise floating-point exceptions to raise exceptions corresponding to the arithmetic operation whose result was successfully stored in a compare-and-exchange sequence. This requires code equivalent to ! calls to `feholdexcept', `feclearexcept' and `feupdateenv' to be generated at appropriate points in the compare-and-exchange ! sequence. This hook should set `*HOLD' to an expression ! equivalent to the call to `feholdexcept', `*CLEAR' to an ! expression equivalent to the call to `feclearexcept' and `*UPDATE' ! to an expression equivalent to the call to `feupdateenv'. The ! three expressions are `NULL_TREE' on entry to the hook and may be ! left as `NULL_TREE' if no code is required in a particular place. ! The default implementation leaves all three expressions as ! `NULL_TREE'. The `__atomic_feraiseexcept' function from ! `libatomic' may be of use as part of the code generated in ! `*UPDATE'.  File: gccint.info, Node: Host Config, Next: Fragments, Prev: Target Macros, Up: Top *************** File: gccint.info, Node: Host Config, *** 37921,37943 **** ********************* Most details about the machine and system on which the compiler is ! actually running are detected by the 'configure' script. Some things ! are impossible for 'configure' to detect; these are described in two ! ways, either by macros defined in a file named 'xm-MACHINE.h' or by hook ! functions in the file specified by the OUT_HOST_HOOK_OBJ variable in ! 'config.gcc'. (The intention is that very few hosts will need a header ! file but nearly every fully supported host will need to override some ! hooks.) If you need to define only a few macros, and they have simple ! definitions, consider using the 'xm_defines' variable in your ! 'config.gcc' entry instead of creating a host configuration header. *Note System Config::. * Menu: * Host Common:: Things every host probably needs implemented. ! * Filesystem:: Your host can't have the letter 'a' in filenames? * Host Misc:: Rare configuration options for hosts.  --- 38340,38362 ---- ********************* Most details about the machine and system on which the compiler is ! actually running are detected by the `configure' script. Some things ! are impossible for `configure' to detect; these are described in two ! ways, either by macros defined in a file named `xm-MACHINE.h' or by ! hook functions in the file specified by the OUT_HOST_HOOK_OBJ variable ! in `config.gcc'. (The intention is that very few hosts will need a ! header file but nearly every fully supported host will need to override ! some hooks.) If you need to define only a few macros, and they have simple ! definitions, consider using the `xm_defines' variable in your ! `config.gcc' entry instead of creating a host configuration header. *Note System Config::. * Menu: * Host Common:: Things every host probably needs implemented. ! * Filesystem:: Your host can't have the letter `a' in filenames? * Host Misc:: Rare configuration options for hosts.  *************** File: gccint.info, Node: Host Common, *** 37949,37955 **** Some things are just not portable, even between similar operating systems, and are too difficult for autoconf to detect. They get implemented using hook functions in the file specified by the ! HOST_HOOK_OBJ variable in 'config.gcc'. -- Host Hook: void HOST_HOOKS_EXTRA_SIGNALS (void) This host hook is used to set up handling for extra signals. The --- 38368,38374 ---- Some things are just not portable, even between similar operating systems, and are too difficult for autoconf to detect. They get implemented using hook functions in the file specified by the ! HOST_HOOK_OBJ variable in `config.gcc'. -- Host Hook: void HOST_HOOKS_EXTRA_SIGNALS (void) This host hook is used to set up handling for extra signals. The *************** HOST_HOOK_OBJ variable in 'config.gcc'. *** 37959,37977 **** FD) This host hook returns the address of some space that is likely to be free in some subsequent invocation of the compiler. We intend ! to load the PCH data at this address such that the data need not be ! relocated. The area should be able to hold SIZE bytes. If the ! host uses 'mmap', FD is an open file descriptor that can be used for probing. ! -- Host Hook: int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * ADDRESS, size_t ! SIZE, int FD, size_t OFFSET) ! This host hook is called when a PCH file is about to be loaded. We ! want to load SIZE bytes from FD at OFFSET into memory at ADDRESS. ! The given address will be the result of a previous invocation of ! 'HOST_HOOKS_GT_PCH_GET_ADDRESS'. Return -1 if we couldn't allocate ! SIZE bytes at ADDRESS. Return 0 if the memory is allocated but the ! data is not loaded. Return 1 if the hook has performed everything. If the implementation uses reserved address space, free any reserved space beyond SIZE, regardless of the return value. If no --- 38378,38397 ---- FD) This host hook returns the address of some space that is likely to be free in some subsequent invocation of the compiler. We intend ! to load the PCH data at this address such that the data need not ! be relocated. The area should be able to hold SIZE bytes. If the ! host uses `mmap', FD is an open file descriptor that can be used for probing. ! -- Host Hook: int HOST_HOOKS_GT_PCH_USE_ADDRESS (void * ADDRESS, ! size_t SIZE, int FD, size_t OFFSET) ! This host hook is called when a PCH file is about to be loaded. ! We want to load SIZE bytes from FD at OFFSET into memory at ! ADDRESS. The given address will be the result of a previous ! invocation of `HOST_HOOKS_GT_PCH_GET_ADDRESS'. Return -1 if we ! couldn't allocate SIZE bytes at ADDRESS. Return 0 if the memory ! is allocated but the data is not loaded. Return 1 if the hook has ! performed everything. If the implementation uses reserved address space, free any reserved space beyond SIZE, regardless of the return value. If no *************** File: gccint.info, Node: Filesystem, N *** 37997,38054 **** GCC needs to know a number of things about the semantics of the host machine's filesystem. Filesystems with Unix and MS-DOS semantics are ! automatically detected. For other systems, you can define the following ! macros in 'xm-MACHINE.h'. ! 'HAVE_DOS_BASED_FILE_SYSTEM' ! This macro is automatically defined by 'system.h' if the host file system obeys the semantics defined by MS-DOS instead of Unix. DOS file systems are case insensitive, file specifications may begin ! with a drive letter, and both forward slash and backslash ('/' and ! '\') are directory separators. ! 'DIR_SEPARATOR' ! 'DIR_SEPARATOR_2' If defined, these macros expand to character constants specifying separators for directory names within a file specification. ! 'system.h' will automatically give them appropriate values on Unix and MS-DOS file systems. If your file system is neither of these, ! define one or both appropriately in 'xm-MACHINE.h'. However, operating systems like VMS, where constructing a pathname is more complicated than just stringing together directory names separated by a special character, should not define either of these macros. ! 'PATH_SEPARATOR' If defined, this macro should expand to a character constant specifying the separator for elements of search paths. The default ! value is a colon (':'). DOS-based systems usually, but not always, ! use semicolon (';'). ! 'VMS' Define this macro if the host system is VMS. ! 'HOST_OBJECT_SUFFIX' Define this macro to be a C string representing the suffix for object files on your host machine. If you do not define this ! macro, GCC will use '.o' as the suffix for object files. ! 'HOST_EXECUTABLE_SUFFIX' Define this macro to be a C string representing the suffix for executable files on your host machine. If you do not define this macro, GCC will use the null string as the suffix for executable files. ! 'HOST_BIT_BUCKET' A pathname defined by the host operating system, which can be ! opened as a file and written to, but all the information written is ! discarded. This is commonly known as a "bit bucket" or "null ! device". If you do not define this macro, GCC will use '/dev/null' ! as the bit bucket. If the host does not support a bit bucket, ! define this macro to an invalid filename. ! 'UPDATE_PATH_HOST_CANONICALIZE (PATH)' If defined, a C statement (sans semicolon) that performs host-dependent canonicalization when a path used in a compilation driver or preprocessor is canonicalized. PATH is a malloc-ed path --- 38417,38474 ---- GCC needs to know a number of things about the semantics of the host machine's filesystem. Filesystems with Unix and MS-DOS semantics are ! automatically detected. For other systems, you can define the ! following macros in `xm-MACHINE.h'. ! `HAVE_DOS_BASED_FILE_SYSTEM' ! This macro is automatically defined by `system.h' if the host file system obeys the semantics defined by MS-DOS instead of Unix. DOS file systems are case insensitive, file specifications may begin ! with a drive letter, and both forward slash and backslash (`/' and ! `\') are directory separators. ! `DIR_SEPARATOR' ! `DIR_SEPARATOR_2' If defined, these macros expand to character constants specifying separators for directory names within a file specification. ! `system.h' will automatically give them appropriate values on Unix and MS-DOS file systems. If your file system is neither of these, ! define one or both appropriately in `xm-MACHINE.h'. However, operating systems like VMS, where constructing a pathname is more complicated than just stringing together directory names separated by a special character, should not define either of these macros. ! `PATH_SEPARATOR' If defined, this macro should expand to a character constant specifying the separator for elements of search paths. The default ! value is a colon (`:'). DOS-based systems usually, but not ! always, use semicolon (`;'). ! `VMS' Define this macro if the host system is VMS. ! `HOST_OBJECT_SUFFIX' Define this macro to be a C string representing the suffix for object files on your host machine. If you do not define this ! macro, GCC will use `.o' as the suffix for object files. ! `HOST_EXECUTABLE_SUFFIX' Define this macro to be a C string representing the suffix for executable files on your host machine. If you do not define this macro, GCC will use the null string as the suffix for executable files. ! `HOST_BIT_BUCKET' A pathname defined by the host operating system, which can be ! opened as a file and written to, but all the information written ! is discarded. This is commonly known as a "bit bucket" or "null ! device". If you do not define this macro, GCC will use ! `/dev/null' as the bit bucket. If the host does not support a bit ! bucket, define this macro to an invalid filename. ! `UPDATE_PATH_HOST_CANONICALIZE (PATH)' If defined, a C statement (sans semicolon) that performs host-dependent canonicalization when a path used in a compilation driver or preprocessor is canonicalized. PATH is a malloc-ed path *************** macros in 'xm-MACHINE.h'. *** 38056,38074 **** into a different buffer, the old path should be freed and the new buffer should have been allocated with malloc. ! 'DUMPFILE_FORMAT' Define this macro to be a C string representing the format to use for constructing the index part of debugging dump file names. The ! resultant string must fit in fifteen bytes. The full filename will ! be the concatenation of: the prefix of the assembler file name, the ! string resulting from applying this format to an index number, and ! a string unique to each dump file kind, e.g. 'rtl'. ! If you do not define this macro, GCC will use '.%02d.'. You should define this macro if using the default will create an invalid file name. ! 'DELETE_IF_ORDINARY' Define this macro to be a C statement (sans semicolon) that performs host-dependent removal of ordinary temp files in the compilation driver. --- 38476,38494 ---- into a different buffer, the old path should be freed and the new buffer should have been allocated with malloc. ! `DUMPFILE_FORMAT' Define this macro to be a C string representing the format to use for constructing the index part of debugging dump file names. The ! resultant string must fit in fifteen bytes. The full filename ! will be the concatenation of: the prefix of the assembler file ! name, the string resulting from applying this format to an index ! number, and a string unique to each dump file kind, e.g. `rtl'. ! If you do not define this macro, GCC will use `.%02d.'. You should define this macro if using the default will create an invalid file name. ! `DELETE_IF_ORDINARY' Define this macro to be a C statement (sans semicolon) that performs host-dependent removal of ordinary temp files in the compilation driver. *************** macros in 'xm-MACHINE.h'. *** 38078,38086 **** reliably remove the temp file as, for example, on VMS which allows multiple versions of a file. ! 'HOST_LACKS_INODE_NUMBERS' ! Define this macro if the host filesystem does not report meaningful ! inode numbers in struct stat.  File: gccint.info, Node: Host Misc, Prev: Filesystem, Up: Host Config --- 38498,38506 ---- reliably remove the temp file as, for example, on VMS which allows multiple versions of a file. ! `HOST_LACKS_INODE_NUMBERS' ! Define this macro if the host filesystem does not report ! meaningful inode numbers in struct stat.  File: gccint.info, Node: Host Misc, Prev: Filesystem, Up: Host Config *************** File: gccint.info, Node: Host Misc, Pr *** 38088,38144 **** 18.3 Host Misc ============== ! 'FATAL_EXIT_CODE' A C expression for the status code to be returned when the compiler exits after serious errors. The default is the system-provided ! macro 'EXIT_FAILURE', or '1' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! 'SUCCESS_EXIT_CODE' A C expression for the status code to be returned when the compiler exits without serious errors. (Warnings are not serious errors.) ! The default is the system-provided macro 'EXIT_SUCCESS', or '0' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! 'USE_C_ALLOCA' Define this macro if GCC should use the C implementation of ! 'alloca' provided by 'libiberty.a'. This only affects how some parts of the compiler itself allocate memory. It does not change code generation. ! When GCC is built with a compiler other than itself, the C 'alloca' is always used. This is because most other implementations have serious bugs. You should define this macro only on a system where ! no stack-based 'alloca' can possibly work. For instance, if a system has a small limit on the size of the stack, GCC's builtin ! 'alloca' will not work reliably. ! 'COLLECT2_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs ! host-dependent initialization when 'collect2' is being initialized. ! 'GCC_DRIVER_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs host-dependent initialization when a compilation driver is being initialized. ! 'HOST_LONG_LONG_FORMAT' ! If defined, the string used to indicate an argument of type 'long ! long' to functions like 'printf'. The default value is '"ll"'. ! 'HOST_LONG_FORMAT' ! If defined, the string used to indicate an argument of type 'long' ! to functions like 'printf'. The default value is '"l"'. ! 'HOST_PTR_PRINTF' ! If defined, the string used to indicate an argument of type 'void ! *' to functions like 'printf'. The default value is '"%p"'. ! In addition, if 'configure' generates an incorrect definition of any of ! the macros in 'auto-host.h', you can override that definition in a host ! configuration header. If you need to do this, first see if it is ! possible to fix 'configure'.  File: gccint.info, Node: Fragments, Next: Collect2, Prev: Host Config, Up: Top --- 38508,38564 ---- 18.3 Host Misc ============== ! `FATAL_EXIT_CODE' A C expression for the status code to be returned when the compiler exits after serious errors. The default is the system-provided ! macro `EXIT_FAILURE', or `1' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! `SUCCESS_EXIT_CODE' A C expression for the status code to be returned when the compiler exits without serious errors. (Warnings are not serious errors.) ! The default is the system-provided macro `EXIT_SUCCESS', or `0' if the system doesn't define that macro. Define this macro only if these defaults are incorrect. ! `USE_C_ALLOCA' Define this macro if GCC should use the C implementation of ! `alloca' provided by `libiberty.a'. This only affects how some parts of the compiler itself allocate memory. It does not change code generation. ! When GCC is built with a compiler other than itself, the C `alloca' is always used. This is because most other implementations have serious bugs. You should define this macro only on a system where ! no stack-based `alloca' can possibly work. For instance, if a system has a small limit on the size of the stack, GCC's builtin ! `alloca' will not work reliably. ! `COLLECT2_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs ! host-dependent initialization when `collect2' is being initialized. ! `GCC_DRIVER_HOST_INITIALIZATION' If defined, a C statement (sans semicolon) that performs host-dependent initialization when a compilation driver is being initialized. ! `HOST_LONG_LONG_FORMAT' ! If defined, the string used to indicate an argument of type `long ! long' to functions like `printf'. The default value is `"ll"'. ! `HOST_LONG_FORMAT' ! If defined, the string used to indicate an argument of type `long' ! to functions like `printf'. The default value is `"l"'. ! `HOST_PTR_PRINTF' ! If defined, the string used to indicate an argument of type `void ! *' to functions like `printf'. The default value is `"%p"'. ! In addition, if `configure' generates an incorrect definition of any ! of the macros in `auto-host.h', you can override that definition in a ! host configuration header. If you need to do this, first see if it is ! possible to fix `configure'.  File: gccint.info, Node: Fragments, Next: Collect2, Prev: Host Config, Up: Top *************** File: gccint.info, Node: Fragments, Ne *** 38146,38173 **** 19 Makefile Fragments ********************* ! When you configure GCC using the 'configure' script, it will construct ! the file 'Makefile' from the template file 'Makefile.in'. When it does ! this, it can incorporate makefile fragments from the 'config' directory. ! These are used to set Makefile parameters that are not amenable to being ! calculated by autoconf. The list of fragments to incorporate is set by ! 'config.gcc' (and occasionally 'config.build' and 'config.host'); *Note ! System Config::. ! Fragments are named either 't-TARGET' or 'x-HOST', depending on whether ! they are relevant to configuring GCC to produce code for a particular ! target, or to configuring GCC to run on a particular host. Here TARGET ! and HOST are mnemonics which usually have some relationship to the ! canonical system name, but no formal connection. If these files do not exist, it means nothing needs to be added for a ! given target or host. Most targets need a few 't-TARGET' fragments, but ! needing 'x-HOST' fragments is rare. * Menu: ! * Target Fragment:: Writing 't-TARGET' files. ! * Host Fragment:: Writing 'x-HOST' files.  File: gccint.info, Node: Target Fragment, Next: Host Fragment, Up: Fragments --- 38566,38593 ---- 19 Makefile Fragments ********************* ! When you configure GCC using the `configure' script, it will construct ! the file `Makefile' from the template file `Makefile.in'. When it does ! this, it can incorporate makefile fragments from the `config' ! directory. These are used to set Makefile parameters that are not ! amenable to being calculated by autoconf. The list of fragments to ! incorporate is set by `config.gcc' (and occasionally `config.build' and ! `config.host'); *Note System Config::. ! Fragments are named either `t-TARGET' or `x-HOST', depending on ! whether they are relevant to configuring GCC to produce code for a ! particular target, or to configuring GCC to run on a particular host. ! Here TARGET and HOST are mnemonics which usually have some relationship ! to the canonical system name, but no formal connection. If these files do not exist, it means nothing needs to be added for a ! given target or host. Most targets need a few `t-TARGET' fragments, ! but needing `x-HOST' fragments is rare. * Menu: ! * Target Fragment:: Writing `t-TARGET' files. ! * Host Fragment:: Writing `x-HOST' files.  File: gccint.info, Node: Target Fragment, Next: Host Fragment, Up: Fragments *************** File: gccint.info, Node: Target Fragmen *** 38177,38345 **** Target makefile fragments can set these Makefile variables. ! 'LIBGCC2_CFLAGS' ! Compiler flags to use when compiling 'libgcc2.c'. ! 'LIB2FUNCS_EXTRA' A list of source file names to be compiled or assembled and ! inserted into 'libgcc.a'. ! 'CRTSTUFF_T_CFLAGS' ! Special flags used when compiling 'crtstuff.c'. *Note Initialization::. ! 'CRTSTUFF_T_CFLAGS_S' ! Special flags used when compiling 'crtstuff.c' for shared linking. ! Used if you use 'crtbeginS.o' and 'crtendS.o' in 'EXTRA-PARTS'. *Note Initialization::. ! 'MULTILIB_OPTIONS' For some targets, invoking GCC in different ways produces objects that can not be linked together. For example, for some targets GCC produces both big and little endian code. For these targets, you ! must arrange for multiple versions of 'libgcc.a' to be compiled, one for each set of incompatible options. When GCC invokes the ! linker, it arranges to link in the right version of 'libgcc.a', based on the command line options used. ! The 'MULTILIB_OPTIONS' macro lists the set of options for which ! special versions of 'libgcc.a' must be built. Write options that are mutually incompatible side by side, separated by a slash. Write options that may be used together separated by a space. The build procedure will build all combinations of compatible options. ! For example, if you set 'MULTILIB_OPTIONS' to 'm68000/m68020 ! msoft-float', 'Makefile' will build special versions of 'libgcc.a' ! using the following sets of options: '-m68000', '-m68020', ! '-msoft-float', '-m68000 -msoft-float', and '-m68020 -msoft-float'. ! 'MULTILIB_DIRNAMES' ! If 'MULTILIB_OPTIONS' is used, this variable specifies the directory names that should be used to hold the various libraries. ! Write one element in 'MULTILIB_DIRNAMES' for each element in ! 'MULTILIB_OPTIONS'. If 'MULTILIB_DIRNAMES' is not used, the ! default value will be 'MULTILIB_OPTIONS', with all slashes treated as spaces. ! 'MULTILIB_DIRNAMES' describes the multilib directories using GCC conventions and is applied to directories that are part of the GCC installation. When multilib-enabled, the compiler will add a subdirectory of the form PREFIX/MULTILIB before each directory in the search path for libraries and crt files. ! For example, if 'MULTILIB_OPTIONS' is set to 'm68000/m68020 ! msoft-float', then the default value of 'MULTILIB_DIRNAMES' is ! 'm68000 m68020 msoft-float'. You may specify a different value if you desire a different set of directory names. ! 'MULTILIB_MATCHES' ! Sometimes the same option may be written in two different ways. If ! an option is listed in 'MULTILIB_OPTIONS', GCC needs to know about ! any synonyms. In that case, set 'MULTILIB_MATCHES' to a list of ! items of the form 'option=option' to describe all relevant ! synonyms. For example, 'm68000=mc68000 m68020=mc68020'. ! 'MULTILIB_EXCEPTIONS' ! Sometimes when there are multiple sets of 'MULTILIB_OPTIONS' being specified, there are combinations that should not be built. In ! that case, set 'MULTILIB_EXCEPTIONS' to be all of the switch exceptions in shell case syntax that should not be built. For example the ARM processor cannot execute both hardware floating point instructions and the reduced size THUMB instructions at the same time, so there is no need to build libraries with both of ! these options enabled. Therefore 'MULTILIB_EXCEPTIONS' is set to: *mthumb/*mhard-float* ! 'MULTILIB_REQUIRED' Sometimes when there are only a few combinations are required, it ! would be a big effort to come up with a 'MULTILIB_EXCEPTIONS' list to cover all undesired ones. In such a case, just listing all the ! required combinations in 'MULTILIB_REQUIRED' would be more straightforward. ! The way to specify the entries in 'MULTILIB_REQUIRED' is same with ! the way used for 'MULTILIB_EXCEPTIONS', only this time what are required will be specified. Suppose there are multiple sets of ! 'MULTILIB_OPTIONS' and only two combinations are required, one for ARMv7-M and one for ARMv7-R with hard floating-point ABI and FPU, ! the 'MULTILIB_REQUIRED' can be set to: ! MULTILIB_REQUIRED = mthumb/march=armv7-m ! MULTILIB_REQUIRED += march=armv7-r/mfloat-abi=hard/mfpu=vfpv3-d16 ! The 'MULTILIB_REQUIRED' can be used together with ! 'MULTILIB_EXCEPTIONS'. The option combinations generated from ! 'MULTILIB_OPTIONS' will be filtered by 'MULTILIB_EXCEPTIONS' and ! then by 'MULTILIB_REQUIRED'. ! 'MULTILIB_REUSE' Sometimes it is desirable to reuse one existing multilib for different sets of options. Such kind of reuse can minimize the number of multilib variants. And for some targets it is better to reuse an existing multilib than to fall back to default multilib when there is no corresponding multilib. This can be done by ! adding reuse rules to 'MULTILIB_REUSE'. A reuse rule is comprised of two parts connected by equality sign. The left part is option set used to build multilib and the right part is option set that will reuse this multilib. The order of options in the left part matters and should be same with those ! specified in 'MULTILIB_REQUIRED' or aligned with order in ! 'MULTILIB_OPTIONS'. There is no such limitation for options in right part as we don't build multilib from them. But the equality sign in both parts should be replaced with period. ! The 'MULTILIB_REUSE' is different from 'MULTILIB_MATCHES' in that it sets up relations between two option sets rather than two options. Here is an example to demo how we reuse libraries built in Thumb mode for applications built in ARM mode: ! MULTILIB_REUSE = mthumb/march.armv7-r=marm/march.armv7-r ! Before the advent of 'MULTILIB_REUSE', GCC select multilib by ! comparing command line options with options used to build multilib. ! The 'MULTILIB_REUSE' is complementary to that way. Only when the ! original comparison matches nothing it will work to see if it is OK ! to reuse some existing multilib. ! 'MULTILIB_EXTRA_OPTS' Sometimes it is desirable that when building multiple versions of ! 'libgcc.a' certain options should always be passed on to the ! compiler. In that case, set 'MULTILIB_EXTRA_OPTS' to be the list of options to be used for all builds. If you set this, you should ! probably set 'CRTSTUFF_T_CFLAGS' to a dash followed by it. ! 'MULTILIB_OSDIRNAMES' ! If 'MULTILIB_OPTIONS' is used, this variable specifies a list of subdirectory names, that are used to modify the search path ! depending on the chosen multilib. Unlike 'MULTILIB_DIRNAMES', ! 'MULTILIB_OSDIRNAMES' describes the multilib directories using operating systems conventions, and is applied to the directories ! such as 'lib' or those in the 'LIBRARY_PATH' environment variable. ! The format is either the same as of 'MULTILIB_DIRNAMES', or a set ! of mappings. When it is the same as 'MULTILIB_DIRNAMES', it describes the multilib directories using operating system conventions, rather than GCC conventions. When it is a set of mappings of the form GCCDIR=OSDIR, the left side gives the GCC convention and the right gives the equivalent OS defined location. ! If the OSDIR part begins with a '!', GCC will not search in the non-multilib directory and use exclusively the multilib directory. Otherwise, the compiler will examine the search path for libraries and crt files twice; the first time it will add MULTILIB to each directory in the search path, the second it will not. For configurations that support both multilib and multiarch, ! 'MULTILIB_OSDIRNAMES' also encodes the multiarch name, thus ! subsuming 'MULTIARCH_DIRNAME'. The multiarch name is appended to each directory name, separated by a colon (e.g. ! '../lib32:i386-linux-gnu'). Each multiarch subdirectory will be searched before the corresponding OS multilib directory, for example ! '/lib/i386-linux-gnu' before '/lib/../lib32'. The multiarch name will also be used to modify the system header search path, as ! explained for 'MULTIARCH_DIRNAME'. ! 'MULTIARCH_DIRNAME' This variable specifies the multiarch name for configurations that are multiarch-enabled but not multilibbed configurations. --- 38597,38765 ---- Target makefile fragments can set these Makefile variables. ! `LIBGCC2_CFLAGS' ! Compiler flags to use when compiling `libgcc2.c'. ! `LIB2FUNCS_EXTRA' A list of source file names to be compiled or assembled and ! inserted into `libgcc.a'. ! `CRTSTUFF_T_CFLAGS' ! Special flags used when compiling `crtstuff.c'. *Note Initialization::. ! `CRTSTUFF_T_CFLAGS_S' ! Special flags used when compiling `crtstuff.c' for shared linking. ! Used if you use `crtbeginS.o' and `crtendS.o' in `EXTRA-PARTS'. *Note Initialization::. ! `MULTILIB_OPTIONS' For some targets, invoking GCC in different ways produces objects that can not be linked together. For example, for some targets GCC produces both big and little endian code. For these targets, you ! must arrange for multiple versions of `libgcc.a' to be compiled, one for each set of incompatible options. When GCC invokes the ! linker, it arranges to link in the right version of `libgcc.a', based on the command line options used. ! The `MULTILIB_OPTIONS' macro lists the set of options for which ! special versions of `libgcc.a' must be built. Write options that are mutually incompatible side by side, separated by a slash. Write options that may be used together separated by a space. The build procedure will build all combinations of compatible options. ! For example, if you set `MULTILIB_OPTIONS' to `m68000/m68020 ! msoft-float', `Makefile' will build special versions of `libgcc.a' ! using the following sets of options: `-m68000', `-m68020', ! `-msoft-float', `-m68000 -msoft-float', and `-m68020 -msoft-float'. ! `MULTILIB_DIRNAMES' ! If `MULTILIB_OPTIONS' is used, this variable specifies the directory names that should be used to hold the various libraries. ! Write one element in `MULTILIB_DIRNAMES' for each element in ! `MULTILIB_OPTIONS'. If `MULTILIB_DIRNAMES' is not used, the ! default value will be `MULTILIB_OPTIONS', with all slashes treated as spaces. ! `MULTILIB_DIRNAMES' describes the multilib directories using GCC conventions and is applied to directories that are part of the GCC installation. When multilib-enabled, the compiler will add a subdirectory of the form PREFIX/MULTILIB before each directory in the search path for libraries and crt files. ! For example, if `MULTILIB_OPTIONS' is set to `m68000/m68020 ! msoft-float', then the default value of `MULTILIB_DIRNAMES' is ! `m68000 m68020 msoft-float'. You may specify a different value if you desire a different set of directory names. ! `MULTILIB_MATCHES' ! Sometimes the same option may be written in two different ways. ! If an option is listed in `MULTILIB_OPTIONS', GCC needs to know ! about any synonyms. In that case, set `MULTILIB_MATCHES' to a ! list of items of the form `option=option' to describe all relevant ! synonyms. For example, `m68000=mc68000 m68020=mc68020'. ! `MULTILIB_EXCEPTIONS' ! Sometimes when there are multiple sets of `MULTILIB_OPTIONS' being specified, there are combinations that should not be built. In ! that case, set `MULTILIB_EXCEPTIONS' to be all of the switch exceptions in shell case syntax that should not be built. For example the ARM processor cannot execute both hardware floating point instructions and the reduced size THUMB instructions at the same time, so there is no need to build libraries with both of ! these options enabled. Therefore `MULTILIB_EXCEPTIONS' is set to: *mthumb/*mhard-float* ! `MULTILIB_REQUIRED' Sometimes when there are only a few combinations are required, it ! would be a big effort to come up with a `MULTILIB_EXCEPTIONS' list to cover all undesired ones. In such a case, just listing all the ! required combinations in `MULTILIB_REQUIRED' would be more straightforward. ! The way to specify the entries in `MULTILIB_REQUIRED' is same with ! the way used for `MULTILIB_EXCEPTIONS', only this time what are required will be specified. Suppose there are multiple sets of ! `MULTILIB_OPTIONS' and only two combinations are required, one for ARMv7-M and one for ARMv7-R with hard floating-point ABI and FPU, ! the `MULTILIB_REQUIRED' can be set to: ! `MULTILIB_REQUIRED' = mthumb/march=armv7-m ! `MULTILIB_REQUIRED' += march=armv7-r/mfloat-abi=hard/mfpu=vfpv3-d16 ! The `MULTILIB_REQUIRED' can be used together with ! `MULTILIB_EXCEPTIONS'. The option combinations generated from ! `MULTILIB_OPTIONS' will be filtered by `MULTILIB_EXCEPTIONS' and ! then by `MULTILIB_REQUIRED'. ! `MULTILIB_REUSE' Sometimes it is desirable to reuse one existing multilib for different sets of options. Such kind of reuse can minimize the number of multilib variants. And for some targets it is better to reuse an existing multilib than to fall back to default multilib when there is no corresponding multilib. This can be done by ! adding reuse rules to `MULTILIB_REUSE'. A reuse rule is comprised of two parts connected by equality sign. The left part is option set used to build multilib and the right part is option set that will reuse this multilib. The order of options in the left part matters and should be same with those ! specified in `MULTILIB_REQUIRED' or aligned with order in ! `MULTILIB_OPTIONS'. There is no such limitation for options in right part as we don't build multilib from them. But the equality sign in both parts should be replaced with period. ! The `MULTILIB_REUSE' is different from `MULTILIB_MATCHES' in that it sets up relations between two option sets rather than two options. Here is an example to demo how we reuse libraries built in Thumb mode for applications built in ARM mode: ! `MULTILIB_REUSE' = mthumb/march.armv7-r=marm/march.armv7-r ! Before the advent of `MULTILIB_REUSE', GCC select multilib by ! comparing command line options with options used to build ! multilib. The `MULTILIB_REUSE' is complementary to that way. ! Only when the original comparison matches nothing it will work to ! see if it is OK to reuse some existing multilib. ! `MULTILIB_EXTRA_OPTS' Sometimes it is desirable that when building multiple versions of ! `libgcc.a' certain options should always be passed on to the ! compiler. In that case, set `MULTILIB_EXTRA_OPTS' to be the list of options to be used for all builds. If you set this, you should ! probably set `CRTSTUFF_T_CFLAGS' to a dash followed by it. ! `MULTILIB_OSDIRNAMES' ! If `MULTILIB_OPTIONS' is used, this variable specifies a list of subdirectory names, that are used to modify the search path ! depending on the chosen multilib. Unlike `MULTILIB_DIRNAMES', ! `MULTILIB_OSDIRNAMES' describes the multilib directories using operating systems conventions, and is applied to the directories ! such as `lib' or those in the `LIBRARY_PATH' environment variable. ! The format is either the same as of `MULTILIB_DIRNAMES', or a set ! of mappings. When it is the same as `MULTILIB_DIRNAMES', it describes the multilib directories using operating system conventions, rather than GCC conventions. When it is a set of mappings of the form GCCDIR=OSDIR, the left side gives the GCC convention and the right gives the equivalent OS defined location. ! If the OSDIR part begins with a `!', GCC will not search in the non-multilib directory and use exclusively the multilib directory. Otherwise, the compiler will examine the search path for libraries and crt files twice; the first time it will add MULTILIB to each directory in the search path, the second it will not. For configurations that support both multilib and multiarch, ! `MULTILIB_OSDIRNAMES' also encodes the multiarch name, thus ! subsuming `MULTIARCH_DIRNAME'. The multiarch name is appended to each directory name, separated by a colon (e.g. ! `../lib32:i386-linux-gnu'). Each multiarch subdirectory will be searched before the corresponding OS multilib directory, for example ! `/lib/i386-linux-gnu' before `/lib/../lib32'. The multiarch name will also be used to modify the system header search path, as ! explained for `MULTIARCH_DIRNAME'. ! `MULTIARCH_DIRNAME' This variable specifies the multiarch name for configurations that are multiarch-enabled but not multilibbed configurations. *************** Target makefile fragments can set these *** 38348,38381 **** locations. The compiler will add a multiarch subdirectory of the form PREFIX/MULTIARCH before each directory in the library and crt search path. It will also add two directories ! 'LOCAL_INCLUDE_DIR'/MULTIARCH and ! 'NATIVE_SYSTEM_HEADER_DIR'/MULTIARCH) to the system header search ! path, respectively before 'LOCAL_INCLUDE_DIR' and ! 'NATIVE_SYSTEM_HEADER_DIR'. ! 'MULTIARCH_DIRNAME' is not used for configurations that support both multilib and multiarch. In that case, multiarch names are ! encoded in 'MULTILIB_OSDIRNAMES' instead. More documentation about multiarch can be found at ! . ! 'SPECS' ! Unfortunately, setting 'MULTILIB_EXTRA_OPTS' is not enough, since it does not affect the build of target libraries, at least not the build of the default multilib. One possible work-around is to use ! 'DRIVER_SELF_SPECS' to bring options from the 'specs' file as if ! they had been passed in the compiler driver command line. However, ! you don't want to be adding these options after the toolchain is ! installed, so you can instead tweak the 'specs' file that will be ! used during the toolchain build, while you still install the ! original, built-in 'specs'. The trick is to set 'SPECS' to some ! other filename (say 'specs.install'), that will then be created out ! of the built-in specs, and introduce a 'Makefile' rule to generate ! the 'specs' file that's going to be used at build time out of your ! 'specs.install'. ! 'T_CFLAGS' These are extra flags to pass to the C compiler. They are used both when building GCC, and when compiling things with the just-built GCC. This variable is deprecated and should not be --- 38768,38801 ---- locations. The compiler will add a multiarch subdirectory of the form PREFIX/MULTIARCH before each directory in the library and crt search path. It will also add two directories ! `LOCAL_INCLUDE_DIR'/MULTIARCH and ! `NATIVE_SYSTEM_HEADER_DIR'/MULTIARCH) to the system header search ! path, respectively before `LOCAL_INCLUDE_DIR' and ! `NATIVE_SYSTEM_HEADER_DIR'. ! `MULTIARCH_DIRNAME' is not used for configurations that support both multilib and multiarch. In that case, multiarch names are ! encoded in `MULTILIB_OSDIRNAMES' instead. More documentation about multiarch can be found at ! `http://wiki.debian.org/Multiarch'. ! `SPECS' ! Unfortunately, setting `MULTILIB_EXTRA_OPTS' is not enough, since it does not affect the build of target libraries, at least not the build of the default multilib. One possible work-around is to use ! `DRIVER_SELF_SPECS' to bring options from the `specs' file as if ! they had been passed in the compiler driver command line. ! However, you don't want to be adding these options after the ! toolchain is installed, so you can instead tweak the `specs' file ! that will be used during the toolchain build, while you still ! install the original, built-in `specs'. The trick is to set ! `SPECS' to some other filename (say `specs.install'), that will ! then be created out of the built-in specs, and introduce a ! `Makefile' rule to generate the `specs' file that's going to be ! used at build time out of your `specs.install'. ! `T_CFLAGS' These are extra flags to pass to the C compiler. They are used both when building GCC, and when compiling things with the just-built GCC. This variable is deprecated and should not be *************** File: gccint.info, Node: Host Fragment, *** 38387,38465 **** 19.2 Host Makefile Fragments ============================ ! The use of 'x-HOST' fragments is discouraged. You should only use it for makefile dependencies.  File: gccint.info, Node: Collect2, Next: Header Dirs, Prev: Fragments, Up: Top ! 20 'collect2' ************* ! GCC uses a utility called 'collect2' on nearly all systems to arrange to ! call various initialization functions at start time. ! The program 'collect2' works by linking the program once and looking through the linker output file for symbols with particular names indicating they are constructor functions. If it finds any, it creates ! a new temporary '.c' file containing a table of them, compiles it, and links the program a second time including that file. The actual calls to the constructors are carried out by a subroutine ! called '__main', which is called (automatically) at the beginning of the ! body of 'main' (provided 'main' was compiled with GNU CC). Calling ! '__main' is necessary, even when compiling C code, to allow linking C ! and C++ object code together. (If you use '-nostdlib', you get an ! unresolved reference to '__main', since it's defined in the standard GCC ! library. Include '-lgcc' at the end of your compiler command line to ! resolve this reference.) ! The program 'collect2' is installed as 'ld' in the directory where the ! passes of the compiler are installed. When 'collect2' needs to find the ! _real_ 'ld', it tries the following file names: * a hard coded linker file name, if GCC was configured with the ! '--with-ld' option. ! * 'real-ld' in the directories listed in the compiler's search directories. ! * 'real-ld' in the directories listed in the environment variable ! 'PATH'. ! * The file specified in the 'REAL_LD_FILE_NAME' configuration macro, if specified. ! * 'ld' in the compiler's search directories, except that 'collect2' will not execute itself recursively. ! * 'ld' in 'PATH'. "The compiler's search directories" means all the directories where ! 'gcc' searches for passes of the compiler. This includes directories ! that you specify with '-B'. Cross-compilers search a little differently: ! * 'real-ld' in the compiler's search directories. ! * 'TARGET-real-ld' in 'PATH'. ! * The file specified in the 'REAL_LD_FILE_NAME' configuration macro, if specified. ! * 'ld' in the compiler's search directories. ! * 'TARGET-ld' in 'PATH'. ! 'collect2' explicitly avoids running 'ld' using the file name under ! which 'collect2' itself was invoked. In fact, it remembers up a list of ! such names--in case one copy of 'collect2' finds another copy (or ! version) of 'collect2' installed as 'ld' in a second place in the search ! path. ! 'collect2' searches for the utilities 'nm' and 'strip' using the same ! algorithm as above for 'ld'.  File: gccint.info, Node: Header Dirs, Next: Type Information, Prev: Collect2, Up: Top --- 38807,38885 ---- 19.2 Host Makefile Fragments ============================ ! The use of `x-HOST' fragments is discouraged. You should only use it for makefile dependencies.  File: gccint.info, Node: Collect2, Next: Header Dirs, Prev: Fragments, Up: Top ! 20 `collect2' ************* ! GCC uses a utility called `collect2' on nearly all systems to arrange ! to call various initialization functions at start time. ! The program `collect2' works by linking the program once and looking through the linker output file for symbols with particular names indicating they are constructor functions. If it finds any, it creates ! a new temporary `.c' file containing a table of them, compiles it, and links the program a second time including that file. The actual calls to the constructors are carried out by a subroutine ! called `__main', which is called (automatically) at the beginning of ! the body of `main' (provided `main' was compiled with GNU CC). Calling ! `__main' is necessary, even when compiling C code, to allow linking C ! and C++ object code together. (If you use `-nostdlib', you get an ! unresolved reference to `__main', since it's defined in the standard ! GCC library. Include `-lgcc' at the end of your compiler command line ! to resolve this reference.) ! The program `collect2' is installed as `ld' in the directory where the ! passes of the compiler are installed. When `collect2' needs to find ! the _real_ `ld', it tries the following file names: * a hard coded linker file name, if GCC was configured with the ! `--with-ld' option. ! * `real-ld' in the directories listed in the compiler's search directories. ! * `real-ld' in the directories listed in the environment variable ! `PATH'. ! * The file specified in the `REAL_LD_FILE_NAME' configuration macro, if specified. ! * `ld' in the compiler's search directories, except that `collect2' will not execute itself recursively. ! * `ld' in `PATH'. "The compiler's search directories" means all the directories where ! `gcc' searches for passes of the compiler. This includes directories ! that you specify with `-B'. Cross-compilers search a little differently: ! * `real-ld' in the compiler's search directories. ! * `TARGET-real-ld' in `PATH'. ! * The file specified in the `REAL_LD_FILE_NAME' configuration macro, if specified. ! * `ld' in the compiler's search directories. ! * `TARGET-ld' in `PATH'. ! `collect2' explicitly avoids running `ld' using the file name under ! which `collect2' itself was invoked. In fact, it remembers up a list ! of such names--in case one copy of `collect2' finds another copy (or ! version) of `collect2' installed as `ld' in a second place in the ! search path. ! `collect2' searches for the utilities `nm' and `strip' using the same ! algorithm as above for `ld'.  File: gccint.info, Node: Header Dirs, Next: Type Information, Prev: Collect2, Up: Top *************** File: gccint.info, Node: Header Dirs, *** 38467,38495 **** 21 Standard Header File Directories *********************************** ! 'GCC_INCLUDE_DIR' means the same thing for native and cross. It is where GCC stores its private include files, and also where GCC stores ! the fixed include files. A cross compiled GCC runs 'fixincludes' on the ! header files in '$(tooldir)/include'. (If the cross compilation header ! files need to be fixed, they must be installed before GCC is built. If ! the cross compilation header files are already suitable for GCC, nothing ! special need be done). ! 'GPLUSPLUS_INCLUDE_DIR' means the same thing for native and cross. It ! is where 'g++' looks first for header files. The C++ library installs only target independent header files in that directory. ! 'LOCAL_INCLUDE_DIR' is used only by native compilers. GCC doesn't ! install anything there. It is normally '/usr/local/include'. This is where local additions to a packaged system should place header files. ! 'CROSS_INCLUDE_DIR' is used only by cross compilers. GCC doesn't install anything there. ! 'TOOL_INCLUDE_DIR' is used for both native and cross compilers. It is the place for other packages to install header files that GCC will use. ! For a cross-compiler, this is the equivalent of '/usr/include'. When ! you build a cross-compiler, 'fixincludes' processes any header files in this directory.  --- 38887,38915 ---- 21 Standard Header File Directories *********************************** ! `GCC_INCLUDE_DIR' means the same thing for native and cross. It is where GCC stores its private include files, and also where GCC stores ! the fixed include files. A cross compiled GCC runs `fixincludes' on ! the header files in `$(tooldir)/include'. (If the cross compilation ! header files need to be fixed, they must be installed before GCC is ! built. If the cross compilation header files are already suitable for ! GCC, nothing special need be done). ! `GPLUSPLUS_INCLUDE_DIR' means the same thing for native and cross. It ! is where `g++' looks first for header files. The C++ library installs only target independent header files in that directory. ! `LOCAL_INCLUDE_DIR' is used only by native compilers. GCC doesn't ! install anything there. It is normally `/usr/local/include'. This is where local additions to a packaged system should place header files. ! `CROSS_INCLUDE_DIR' is used only by cross compilers. GCC doesn't install anything there. ! `TOOL_INCLUDE_DIR' is used for both native and cross compilers. It is the place for other packages to install header files that GCC will use. ! For a cross-compiler, this is the equivalent of `/usr/include'. When ! you build a cross-compiler, `fixincludes' processes any header files in this directory.  *************** implement precompiled headers. *** 38505,38528 **** A full C++ parser would be too complicated for this task, so a limited subset of C++ is interpreted and special markers are used to determine ! what parts of the source to look at. All 'struct', 'union' and ! 'template' structure declarations that define data structures that are allocated under control of the garbage collector must be marked. All global variables that hold pointers to garbage-collected memory must ! also be marked. Finally, all global variables that need to be saved and ! restored by a precompiled header must be marked. (The precompiled header mechanism can only save static variables if they're scalar. ! Complex data structures must be allocated in garbage-collected memory to ! be saved in a precompiled header.) The full format of a marker is GTY (([OPTION] [(PARAM)], [OPTION] [(PARAM)] ...)) ! but in most cases no options are needed. The outer double parentheses ! are still necessary, though: 'GTY(())'. Markers can appear: * In a structure definition, before the open brace; ! * In a global variable declaration, after the keyword 'static' or ! 'extern'; and * In a structure field definition, before the name of the field. Here are some examples of marking simple data structures and globals. --- 38925,38950 ---- A full C++ parser would be too complicated for this task, so a limited subset of C++ is interpreted and special markers are used to determine ! what parts of the source to look at. All `struct', `union' and ! `template' structure declarations that define data structures that are allocated under control of the garbage collector must be marked. All global variables that hold pointers to garbage-collected memory must ! also be marked. Finally, all global variables that need to be saved ! and restored by a precompiled header must be marked. (The precompiled header mechanism can only save static variables if they're scalar. ! Complex data structures must be allocated in garbage-collected memory ! to be saved in a precompiled header.) The full format of a marker is GTY (([OPTION] [(PARAM)], [OPTION] [(PARAM)] ...)) ! but in most cases no options are needed. The outer double parentheses ! are still necessary, though: `GTY(())'. Markers can appear: * In a structure definition, before the open brace; ! ! * In a global variable declaration, after the keyword `static' or ! `extern'; and ! * In a structure field definition, before the name of the field. Here are some examples of marking simple data structures and globals. *************** are still necessary, though: 'GTY(())'. *** 38540,38568 **** static GTY(()) struct TAG *LIST; /* points to GC memory */ static GTY(()) int COUNTER; /* save counter in a PCH */ ! The parser understands simple typedefs such as 'typedef struct TAG ! *NAME;' and 'typedef int NAME;'. These don't need to be marked. ! Since 'gengtype''s understanding of C++ is limited, there are several constructs and declarations that are not supported inside classes/structures marked for automatic GC code generation. The ! following C++ constructs produce a 'gengtype' error on structures/classes marked for automatic GC code generation: * Type definitions inside classes/structures are not supported. * Enumerations inside classes/structures are not supported. ! If you have a class or structure using any of the above constructs, you ! need to mark that class as 'GTY ((user))' and provide your own marking ! routines (see section *note User GC:: for details). It is always valid to include function definitions inside classes. ! Those are always ignored by 'gengtype', as it only cares about data members. * Menu: ! * GTY Options:: What goes inside a 'GTY(())'. * Inheritance and GTY:: Adding GTY to a class hierarchy. * User GC:: Adding user-provided GC marking routines. * GGC Roots:: Making global variables GGC roots. --- 38962,38991 ---- static GTY(()) struct TAG *LIST; /* points to GC memory */ static GTY(()) int COUNTER; /* save counter in a PCH */ ! The parser understands simple typedefs such as `typedef struct TAG ! *NAME;' and `typedef int NAME;'. These don't need to be marked. ! Since `gengtype''s understanding of C++ is limited, there are several constructs and declarations that are not supported inside classes/structures marked for automatic GC code generation. The ! following C++ constructs produce a `gengtype' error on structures/classes marked for automatic GC code generation: * Type definitions inside classes/structures are not supported. + * Enumerations inside classes/structures are not supported. ! If you have a class or structure using any of the above constructs, ! you need to mark that class as `GTY ((user))' and provide your own ! marking routines (see section *note User GC:: for details). It is always valid to include function definitions inside classes. ! Those are always ignored by `gengtype', as it only cares about data members. * Menu: ! * GTY Options:: What goes inside a `GTY(())'. * Inheritance and GTY:: Adding GTY to a class hierarchy. * User GC:: Adding user-provided GC marking routines. * GGC Roots:: Making global variables GGC roots. *************** members. *** 38573,38601 ****  File: gccint.info, Node: GTY Options, Next: Inheritance and GTY, Up: Type Information ! 22.1 The Inside of a 'GTY(())' ============================== ! Sometimes the C code is not enough to fully describe the type structure. ! Extra information can be provided with 'GTY' options and additional ! markers. Some options take a parameter, which may be either a string or ! a type name, depending on the parameter. If an option takes no ! parameter, it is acceptable either to omit the parameter entirely, or to ! provide an empty string as a parameter. For example, 'GTY ((skip))' and ! 'GTY ((skip ("")))' are equivalent. When the parameter is a string, often it is a fragment of C code. Four special escapes may be used in these strings, to refer to pieces of the data structure being marked: ! '%h' The current structure. ! '%1' The structure that immediately contains the current structure. ! '%0' The outermost structure that contains the current structure. ! '%a' ! A partial expression of the form '[i1][i2]...' that indexes the array item currently being marked. For instance, suppose that you have a structure of the form --- 38996,39027 ----  File: gccint.info, Node: GTY Options, Next: Inheritance and GTY, Up: Type Information ! 22.1 The Inside of a `GTY(())' ============================== ! Sometimes the C code is not enough to fully describe the type ! structure. Extra information can be provided with `GTY' options and ! additional markers. Some options take a parameter, which may be either ! a string or a type name, depending on the parameter. If an option ! takes no parameter, it is acceptable either to omit the parameter ! entirely, or to provide an empty string as a parameter. For example, ! `GTY ((skip))' and `GTY ((skip ("")))' are equivalent. When the parameter is a string, often it is a fragment of C code. Four special escapes may be used in these strings, to refer to pieces of the data structure being marked: ! `%h' The current structure. ! ! `%1' The structure that immediately contains the current structure. ! ! `%0' The outermost structure that contains the current structure. ! ! `%a' ! A partial expression of the form `[i1][i2]...' that indexes the array item currently being marked. For instance, suppose that you have a structure of the form *************** data structure being marked: *** 38605,38613 **** struct B { struct A foo[12]; }; ! and 'b' is a variable of type 'struct B'. When marking 'b.foo[11]', ! '%h' would expand to 'b.foo[11]', '%0' and '%1' would both expand to ! 'b', and '%a' would expand to '[11]'. As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a complicated expression. --- 39031,39039 ---- struct B { struct A foo[12]; }; ! and `b' is a variable of type `struct B'. When marking `b.foo[11]', ! `%h' would expand to `b.foo[11]', `%0' and `%1' would both expand to ! `b', and `%a' would expand to `[11]'. As in ordinary C, adjacent strings will be concatenated; this is helpful when you have a complicated expression. *************** helpful when you have a complicated expr *** 38617,38624 **** The available options are: ! 'length ("EXPRESSION")' ! There are two places the type machinery will need to be explicitly told the length of an array of non-atomic objects. The first case is when a structure ends in a variable-length array, like this: --- 39043,39049 ---- The available options are: ! `length ("EXPRESSION")' There are two places the type machinery will need to be explicitly told the length of an array of non-atomic objects. The first case is when a structure ends in a variable-length array, like this: *************** helpful when you have a complicated expr *** 38627,38672 **** rtx GTY ((length ("%h.num_elem"))) elem[1]; }; ! In this case, the 'length' option is used to override the specified ! array length (which should usually be '1'). The parameter of the option is a fragment of C code that calculates the length. The second case is when a structure or a global variable contains a pointer to an array, like this: struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter; ! In this case, 'iter' has been allocated by writing something like x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse); ! and the 'collapse' provides the length of the field. ! ! This second use of 'length' also works on global variables, like: ! static GTY((length("reg_known_value_size"))) rtx *reg_known_value; ! Note that the 'length' option is only meant for use with arrays of ! non-atomic objects, that is, objects that contain pointers pointing ! to other GTY-managed objects. For other GC-allocated arrays and ! strings you should use 'atomic'. ! 'skip' ! If 'skip' is applied to a field, the type machinery will ignore it. This is somewhat dangerous; the only safe use is in a union when one field really isn't ever used. ! 'desc ("EXPRESSION")' ! 'tag ("CONSTANT")' ! 'default' ! ! The type machinery needs to be told which field of a 'union' is currently active. This is done by giving each field a constant ! 'tag' value, and then specifying a discriminator using 'desc'. The ! value of the expression given by 'desc' is compared against each ! 'tag' value, each of which should be different. If no 'tag' is ! matched, the field marked with 'default' is used if there is one, ! otherwise no field in the union will be marked. ! In the 'desc' option, the "current structure" is the union that it ! discriminates. Use '%1' to mean the structure containing it. ! There are no escapes available to the 'tag' option, since it is a constant. For example, --- 39052,39094 ---- rtx GTY ((length ("%h.num_elem"))) elem[1]; }; ! In this case, the `length' option is used to override the specified ! array length (which should usually be `1'). The parameter of the option is a fragment of C code that calculates the length. The second case is when a structure or a global variable contains a pointer to an array, like this: struct gimple_omp_for_iter * GTY((length ("%h.collapse"))) iter; ! In this case, `iter' has been allocated by writing something like x->iter = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse); ! and the `collapse' provides the length of the field. ! This second use of `length' also works on global variables, like: static GTY((length("reg_known_value_size"))) rtx *reg_known_value; ! Note that the `length' option is only meant for use with arrays of ! non-atomic objects, that is, objects that contain pointers ! pointing to other GTY-managed objects. For other GC-allocated ! arrays and strings you should use `atomic'. ! `skip' ! If `skip' is applied to a field, the type machinery will ignore it. This is somewhat dangerous; the only safe use is in a union when one field really isn't ever used. ! `desc ("EXPRESSION")' ! `tag ("CONSTANT")' ! `default' ! The type machinery needs to be told which field of a `union' is currently active. This is done by giving each field a constant ! `tag' value, and then specifying a discriminator using `desc'. ! The value of the expression given by `desc' is compared against ! each `tag' value, each of which should be different. If no `tag' ! is matched, the field marked with `default' is used if there is ! one, otherwise no field in the union will be marked. ! In the `desc' option, the "current structure" is the union that it ! discriminates. Use `%1' to mean the structure containing it. ! There are no escapes available to the `tag' option, since it is a constant. For example, *************** helpful when you have a complicated expr *** 38681,38705 **** }; In this example, the value of BINDING_HAS_LEVEL_P when applied to a ! 'struct tree_binding *' is presumed to be 0 or 1. If 1, the type ! mechanism will treat the field 'level' as being present and if 0, ! will treat the field 'scope' as being present. ! The 'desc' and 'tag' options can also be used for inheritance to denote which subclass an instance is. See *note Inheritance and GTY:: for more information. ! 'param_is (TYPE)' ! 'use_param' ! Sometimes it's convenient to define some data structure to work on ! generic pointers (that is, 'PTR') and then use it with a specific ! type. 'param_is' specifies the real type pointed to, and ! 'use_param' says where in the generic data structure that type should be put. ! For instance, to have a 'htab_t' that points to trees, one would ! write the definition of 'htab_t' like this: typedef struct GTY(()) { ... void ** GTY ((use_param, ...)) entries; --- 39103,39126 ---- }; In this example, the value of BINDING_HAS_LEVEL_P when applied to a ! `struct tree_binding *' is presumed to be 0 or 1. If 1, the type ! mechanism will treat the field `level' as being present and if 0, ! will treat the field `scope' as being present. ! The `desc' and `tag' options can also be used for inheritance to denote which subclass an instance is. See *note Inheritance and GTY:: for more information. ! `param_is (TYPE)' ! `use_param' Sometimes it's convenient to define some data structure to work on ! generic pointers (that is, `PTR') and then use it with a specific ! type. `param_is' specifies the real type pointed to, and ! `use_param' says where in the generic data structure that type should be put. ! For instance, to have a `htab_t' that points to trees, one would ! write the definition of `htab_t' like this: typedef struct GTY(()) { ... void ** GTY ((use_param, ...)) entries; *************** helpful when you have a complicated expr *** 38708,38775 **** and then declare variables like this: static htab_t GTY ((param_is (union tree_node))) ict; ! 'paramN_is (TYPE)' ! 'use_paramN' ! In more complicated cases, the data structure might need to work on several different types, which might not necessarily all be ! pointers. For this, 'param1_is' through 'param9_is' may be used to ! specify the real type of a field identified by 'use_param1' through ! 'use_param9'. ! ! 'use_params' When a structure contains another structure that is parameterized, there's no need to do anything special, the inner structure inherits the parameters of the outer one. When a structure ! contains a pointer to a parameterized structure, the type machinery ! won't automatically detect this (it could, it just doesn't yet), so ! it's necessary to tell it that the pointed-to structure should use ! the same parameters as the outer structure. This is done by ! marking the pointer with the 'use_params' option. ! ! 'deletable' ! 'deletable', when applied to a global variable, indicates that when garbage collection runs, there's no need to mark anything pointed ! to by this variable, it can just be set to 'NULL' instead. This is ! used to keep a list of free structures around for re-use. ! ! 'if_marked ("EXPRESSION")' Suppose you want some kinds of object to be unique, and so you put them in a hash table. If garbage collection marks the hash table, ! these objects will never be freed, even if the last other reference ! to them goes away. GGC has special handling to deal with this: if ! you use the 'if_marked' option on a global hash table, GGC will ! call the routine whose name is the parameter to the option on each ! hash table entry. If the routine returns nonzero, the hash table ! entry will be marked as usual. If the routine returns zero, the ! hash table entry will be deleted. ! The routine 'ggc_marked_p' can be used to determine if an element has been marked already; in fact, the usual case is to use ! 'if_marked ("ggc_marked_p")'. ! ! 'mark_hook ("HOOK-ROUTINE-NAME")' If provided for a structure or union type, the given HOOK-ROUTINE-NAME (between double-quotes) is the name of a routine called when the garbage collector has just marked the data as ! reachable. This routine should not change the data, or call any ! ggc routine. Its only argument is a pointer to the just marked ! (const) structure or union. ! ! 'maybe_undef' ! When applied to a field, 'maybe_undef' indicates that it's OK if the structure that this fields points to is never defined, so long ! as this field is always 'NULL'. This is used to avoid requiring backends to define certain optional structures. It doesn't work with language frontends. ! 'nested_ptr (TYPE, "TO EXPRESSION", "FROM EXPRESSION")' ! The type machinery expects all pointers to point to the start of an object. Sometimes for abstraction purposes it's convenient to have a pointer which points inside an object. So long as it's possible --- 39129,39189 ---- and then declare variables like this: static htab_t GTY ((param_is (union tree_node))) ict; ! `paramN_is (TYPE)' ! `use_paramN' In more complicated cases, the data structure might need to work on several different types, which might not necessarily all be ! pointers. For this, `param1_is' through `param9_is' may be used to ! specify the real type of a field identified by `use_param1' through ! `use_param9'. + `use_params' When a structure contains another structure that is parameterized, there's no need to do anything special, the inner structure inherits the parameters of the outer one. When a structure ! contains a pointer to a parameterized structure, the type ! machinery won't automatically detect this (it could, it just ! doesn't yet), so it's necessary to tell it that the pointed-to ! structure should use the same parameters as the outer structure. ! This is done by marking the pointer with the `use_params' option. ! `deletable' ! `deletable', when applied to a global variable, indicates that when garbage collection runs, there's no need to mark anything pointed ! to by this variable, it can just be set to `NULL' instead. This ! is used to keep a list of free structures around for re-use. + `if_marked ("EXPRESSION")' Suppose you want some kinds of object to be unique, and so you put them in a hash table. If garbage collection marks the hash table, ! these objects will never be freed, even if the last other ! reference to them goes away. GGC has special handling to deal ! with this: if you use the `if_marked' option on a global hash ! table, GGC will call the routine whose name is the parameter to ! the option on each hash table entry. If the routine returns ! nonzero, the hash table entry will be marked as usual. If the ! routine returns zero, the hash table entry will be deleted. ! The routine `ggc_marked_p' can be used to determine if an element has been marked already; in fact, the usual case is to use ! `if_marked ("ggc_marked_p")'. + `mark_hook ("HOOK-ROUTINE-NAME")' If provided for a structure or union type, the given HOOK-ROUTINE-NAME (between double-quotes) is the name of a routine called when the garbage collector has just marked the data as ! reachable. This routine should not change the data, or call any ggc ! routine. Its only argument is a pointer to the just marked (const) ! structure or union. ! `maybe_undef' ! When applied to a field, `maybe_undef' indicates that it's OK if the structure that this fields points to is never defined, so long ! as this field is always `NULL'. This is used to avoid requiring backends to define certain optional structures. It doesn't work with language frontends. ! `nested_ptr (TYPE, "TO EXPRESSION", "FROM EXPRESSION")' The type machinery expects all pointers to point to the start of an object. Sometimes for abstraction purposes it's convenient to have a pointer which points inside an object. So long as it's possible *************** helpful when you have a complicated expr *** 38777,38830 **** pointers can still be used. TYPE is the type of the original object, the TO EXPRESSION returns the pointer given the original object, and the FROM EXPRESSION returns the original object given ! the pointer. The pointer will be available using the '%h' escape. ! ! 'chain_next ("EXPRESSION")' ! 'chain_prev ("EXPRESSION")' ! 'chain_circular ("EXPRESSION")' It's helpful for the type machinery to know if objects are often chained together in long lists; this lets it generate code that uses less stack space by iterating along the list instead of ! recursing down it. 'chain_next' is an expression for the next item ! in the list, 'chain_prev' is an expression for the previous item. ! For singly linked lists, use only 'chain_next'; for doubly linked ! lists, use both. The machinery requires that taking the next item ! of the previous item gives the original item. 'chain_circular' is ! similar to 'chain_next', but can be used for circular single linked ! lists. ! ! 'reorder ("FUNCTION NAME")' Some data structures depend on the relative ordering of pointers. If the precompiled header machinery needs to change that ordering, ! it will call the function referenced by the 'reorder' option, ! before changing the pointers in the object that's pointed to by the ! field the option applies to. The function must take four arguments, with the signature ! 'void *, void *, gt_pointer_operator, void *'. The first parameter ! is a pointer to the structure that contains the object being ! updated, or the object itself if there is no containing structure. ! The second parameter is a cookie that should be ignored. The third ! parameter is a routine that, given a pointer, will update it to its ! correct new value. The fourth parameter is a cookie that must be ! passed to the second parameter. PCH cannot handle data structures that depend on the absolute ! values of pointers. 'reorder' functions can be expensive. When ! possible, it is better to depend on properties of the data, like an ! ID number or the hash of a string instead. ! ! 'variable_size' The type machinery expects the types to be of constant size. When this is not true, for example, with structs that have array fields ! or unions, the type machinery cannot tell how many bytes need to be ! allocated at each allocation. The 'variable_size' is used to mark ! such types. The type machinery then provides allocators that take ! a parameter indicating an exact size of object being allocated. ! Note that the size must be provided in bytes whereas the 'length' ! option works with array lengths in number of elements. For example, struct GTY((variable_size)) sorted_fields_type { --- 39191,39241 ---- pointers can still be used. TYPE is the type of the original object, the TO EXPRESSION returns the pointer given the original object, and the FROM EXPRESSION returns the original object given ! the pointer. The pointer will be available using the `%h' escape. + `chain_next ("EXPRESSION")' + `chain_prev ("EXPRESSION")' + `chain_circular ("EXPRESSION")' It's helpful for the type machinery to know if objects are often chained together in long lists; this lets it generate code that uses less stack space by iterating along the list instead of ! recursing down it. `chain_next' is an expression for the next ! item in the list, `chain_prev' is an expression for the previous ! item. For singly linked lists, use only `chain_next'; for doubly ! linked lists, use both. The machinery requires that taking the ! next item of the previous item gives the original item. ! `chain_circular' is similar to `chain_next', but can be used for ! circular single linked lists. + `reorder ("FUNCTION NAME")' Some data structures depend on the relative ordering of pointers. If the precompiled header machinery needs to change that ordering, ! it will call the function referenced by the `reorder' option, ! before changing the pointers in the object that's pointed to by ! the field the option applies to. The function must take four arguments, with the signature ! `void *, void *, gt_pointer_operator, void *'. The first ! parameter is a pointer to the structure that contains the object ! being updated, or the object itself if there is no containing ! structure. The second parameter is a cookie that should be ! ignored. The third parameter is a routine that, given a pointer, ! will update it to its correct new value. The fourth parameter is ! a cookie that must be passed to the second parameter. PCH cannot handle data structures that depend on the absolute ! values of pointers. `reorder' functions can be expensive. When ! possible, it is better to depend on properties of the data, like ! an ID number or the hash of a string instead. + `variable_size' The type machinery expects the types to be of constant size. When this is not true, for example, with structs that have array fields ! or unions, the type machinery cannot tell how many bytes need to ! be allocated at each allocation. The `variable_size' is used to ! mark such types. The type machinery then provides allocators that ! take a parameter indicating an exact size of object being ! allocated. Note that the size must be provided in bytes whereas ! the `length' option works with array lengths in number of elements. For example, struct GTY((variable_size)) sorted_fields_type { *************** helpful when you have a complicated expr *** 38832,38898 **** tree GTY((length ("%h.len"))) elts[1]; }; ! Then the objects of 'struct sorted_fields_type' are allocated in GC memory as follows: field_vec = ggc_alloc_sorted_fields_type (size); ! If FIELD_VEC->ELTS stores N elements, then SIZE could be calculated ! as follows: size_t size = sizeof (struct sorted_fields_type) + n * sizeof (tree); ! 'atomic' ! ! The 'atomic' option can only be used with pointers. It informs the ! GC machinery that the memory that the pointer points to does not ! contain any pointers, and hence it should be treated by the GC and ! PCH machinery as an "atomic" block of memory that does not need to ! be examined when scanning memory for pointers. In particular, the ! machinery will not scan that memory for pointers to mark them as ! reachable (when marking pointers for GC) or to relocate them (when ! writing a PCH file). ! The 'atomic' option differs from the 'skip' option. 'atomic' keeps ! the memory under Garbage Collection, but makes the GC ignore the ! contents of the memory. 'skip' is more drastic in that it causes ! the pointer and the memory to be completely ignored by the Garbage ! Collector. So, memory marked as 'atomic' is automatically freed ! when no longer reachable, while memory marked as 'skip' is not. ! The 'atomic' option must be used with great care, because all sorts ! of problem can occur if used incorrectly, that is, if the memory ! the pointer points to does actually contain a pointer. Here is an example of how to use it: struct GTY(()) my_struct { int number_of_elements; unsigned int * GTY ((atomic)) elements; }; ! In this case, 'elements' is a pointer under GC, and the memory it points to needs to be allocated using the Garbage Collector, and will be freed automatically by the Garbage Collector when it is no ! longer referenced. But the memory that the pointer points to is an ! array of 'unsigned int' elements, and the GC must not try to scan ! it to find pointers to mark or relocate, which is why it is marked ! with the 'atomic' option. Note that, currently, global variables can not be marked with ! 'atomic'; only fields of a struct can. This is a known limitation. ! It would be useful to be able to mark global pointers with 'atomic' ! to make the PCH machinery aware of them so that they are saved and ! restored correctly to PCH files. ! ! 'special ("NAME")' ! The 'special' option is used to mark types that have to be dealt with by special case machinery. The parameter is the name of the ! special case. See 'gengtype.c' for further details. Avoid adding new special cases unless there is no other alternative. ! 'user' ! ! The 'user' option indicates that the code to mark structure fields ! is completely handled by user-provided routines. See section *note ! User GC:: for details on what functions need to be provided.  File: gccint.info, Node: Inheritance and GTY, Next: User GC, Prev: GTY Options, Up: Type Information --- 39243,39307 ---- tree GTY((length ("%h.len"))) elts[1]; }; ! Then the objects of `struct sorted_fields_type' are allocated in GC memory as follows: field_vec = ggc_alloc_sorted_fields_type (size); ! If FIELD_VEC->ELTS stores N elements, then SIZE could be ! calculated as follows: size_t size = sizeof (struct sorted_fields_type) + n * sizeof (tree); ! `atomic' ! The `atomic' option can only be used with pointers. It informs ! the GC machinery that the memory that the pointer points to does ! not contain any pointers, and hence it should be treated by the GC ! and PCH machinery as an "atomic" block of memory that does not ! need to be examined when scanning memory for pointers. In ! particular, the machinery will not scan that memory for pointers ! to mark them as reachable (when marking pointers for GC) or to ! relocate them (when writing a PCH file). ! The `atomic' option differs from the `skip' option. `atomic' ! keeps the memory under Garbage Collection, but makes the GC ignore ! the contents of the memory. `skip' is more drastic in that it ! causes the pointer and the memory to be completely ignored by the ! Garbage Collector. So, memory marked as `atomic' is automatically ! freed when no longer reachable, while memory marked as `skip' is ! not. ! The `atomic' option must be used with great care, because all ! sorts of problem can occur if used incorrectly, that is, if the ! memory the pointer points to does actually contain a pointer. Here is an example of how to use it: struct GTY(()) my_struct { int number_of_elements; unsigned int * GTY ((atomic)) elements; }; ! In this case, `elements' is a pointer under GC, and the memory it points to needs to be allocated using the Garbage Collector, and will be freed automatically by the Garbage Collector when it is no ! longer referenced. But the memory that the pointer points to is ! an array of `unsigned int' elements, and the GC must not try to ! scan it to find pointers to mark or relocate, which is why it is ! marked with the `atomic' option. Note that, currently, global variables can not be marked with ! `atomic'; only fields of a struct can. This is a known ! limitation. It would be useful to be able to mark global pointers ! with `atomic' to make the PCH machinery aware of them so that they ! are saved and restored correctly to PCH files. ! `special ("NAME")' ! The `special' option is used to mark types that have to be dealt with by special case machinery. The parameter is the name of the ! special case. See `gengtype.c' for further details. Avoid adding new special cases unless there is no other alternative. ! `user' ! The `user' option indicates that the code to mark structure fields ! is completely handled by user-provided routines. See section ! *note User GC:: for details on what functions need to be provided.  File: gccint.info, Node: Inheritance and GTY, Next: User GC, Prev: GTY Options, Up: Type Information *************** this to have gengtype autogenerate marki *** 38906,38912 **** --- 39315,39323 ---- * There must be a concrete base class, with a discriminator expression that can be used to identify which subclass an instance is. + * Only single inheritance is used. + * None of the classes within the hierarchy are templates. If your class hierarchy does not fit in this pattern, you must use *************** this to have gengtype autogenerate marki *** 38916,38922 **** "desc" option. Each concrete subclass must use the "tag" option to identify which value of the discriminator it corresponds to. ! Every class in the hierarchy must have a 'GTY(())' marker, as gengtype will only attempt to parse classes that have such a marker (1). class GTY((desc("%h.kind"), tag("0"))) example_base --- 39327,39333 ---- "desc" option. Each concrete subclass must use the "tag" option to identify which value of the discriminator it corresponds to. ! Every class in the hierarchy must have a `GTY(())' marker, as gengtype will only attempt to parse classes that have such a marker (1). class GTY((desc("%h.kind"), tag("0"))) example_base *************** will only attempt to parse classes that *** 38938,38951 **** tree c; }; ! The generated marking routines for the above will contain a "switch" on ! "kind", visiting all appropriate fields. For example, if kind is 2, it ! will cast to "some_other_subclass" and visit fields a, b, and c. ! ---------- Footnotes ---------- ! (1) Classes lacking such a marker will not be identified as being ! part of the hierarchy, and so the marking routines will not handle them, leading to a assertion failure within the marking routines due to an unknown tag value (assuming that assertions are enabled). --- 39349,39362 ---- tree c; }; ! The generated marking routines for the above will contain a "switch" ! on "kind", visiting all appropriate fields. For example, if kind is 2, ! it will cast to "some_other_subclass" and visit fields a, b, and c. ! ---------- Footnotes ---------- ! (1) Classes lacking such a marker will not be identified as being part ! of the hierarchy, and so the marking routines will not handle them, leading to a assertion failure within the marking routines due to an unknown tag value (assuming that assertions are enabled). *************** File: gccint.info, Node: User GC, Next *** 38955,38967 **** 22.3 Support for user-provided GC marking routines ================================================== ! The garbage collector supports types for which no automatic marking code ! is generated. For these types, the user is required to provide three ! functions: one to act as a marker for garbage collection, and two functions to act as marker and pointer walker for pre-compiled headers. ! Given a structure 'struct GTY((user)) my_struct', the following ! functions should be defined to mark 'my_struct': void gt_ggc_mx (my_struct *p) { --- 39366,39378 ---- 22.3 Support for user-provided GC marking routines ================================================== ! The garbage collector supports types for which no automatic marking ! code is generated. For these types, the user is required to provide ! three functions: one to act as a marker for garbage collection, and two functions to act as marker and pointer walker for pre-compiled headers. ! Given a structure `struct GTY((user)) my_struct', the following ! functions should be defined to mark `my_struct': void gt_ggc_mx (my_struct *p) { *************** functions should be defined to mark 'my_ *** 38981,39008 **** op (&(tp->fld), cookie); } ! In general, each marker 'M' should call 'M' for every pointer field in the structure. Fields that are not allocated in GC or are not pointers must be ignored. ! For embedded lists (e.g., structures with a 'next' or 'prev' pointer), the marker must follow the chain and mark every element in it. ! Note that the rules for the pointer walker 'gt_pch_nx (my_struct *, ! gt_pointer_operator, void *)' are slightly different. In this case, the ! operation 'op' must be applied to the _address_ of every pointer field. 22.3.1 User-provided marking routines for template types -------------------------------------------------------- ! When a template type 'TP' is marked with 'GTY', all instances of that ! type are considered user-provided types. This means that the individual ! instances of 'TP' do not need to be marked with 'GTY'. The user needs ! to provide template functions to mark all the fields of the type. ! The following code snippets represent all the functions that need to be ! provided. Note that type 'TP' may reference to more than one type. In ! these snippets, there is only one type 'T', but there could be more. template void gt_ggc_mx (TP *tp) --- 39392,39421 ---- op (&(tp->fld), cookie); } ! In general, each marker `M' should call `M' for every pointer field in the structure. Fields that are not allocated in GC or are not pointers must be ignored. ! For embedded lists (e.g., structures with a `next' or `prev' pointer), the marker must follow the chain and mark every element in it. ! Note that the rules for the pointer walker `gt_pch_nx (my_struct *, ! gt_pointer_operator, void *)' are slightly different. In this case, ! the operation `op' must be applied to the _address_ of every pointer ! field. 22.3.1 User-provided marking routines for template types -------------------------------------------------------- ! When a template type `TP' is marked with `GTY', all instances of that ! type are considered user-provided types. This means that the ! individual instances of `TP' do not need to be marked with `GTY'. The ! user needs to provide template functions to mark all the fields of the ! type. ! The following code snippets represent all the functions that need to ! be provided. Note that type `TP' may reference to more than one type. ! In these snippets, there is only one type `T', but there could be more. template void gt_ggc_mx (TP *tp) *************** these snippets, there is only one type ' *** 39040,39057 **** gt_pch_nx (&(tp->fld), op, cookie); } ! Support for user-defined types is currently limited. The following restrictions apply: ! 1. Type 'TP' and all the argument types 'T' must be marked with 'GTY'. ! 2. Type 'TP' can only have type names in its argument list. ! 3. The pointer walker functions are different for 'TP' and 'TP'. In the case of 'TP', references to 'T' must be handled by ! calling 'gt_pch_nx' (which will, in turn, walk all the pointers ! inside fields of 'T'). In the case of 'TP', references to 'T ! *' must be handled by calling the 'op' function on the address of the pointer (see the code snippets above).  --- 39453,39470 ---- gt_pch_nx (&(tp->fld), op, cookie); } ! Support for user-defined types is currently limited. The following restrictions apply: ! 1. Type `TP' and all the argument types `T' must be marked with `GTY'. ! 2. Type `TP' can only have type names in its argument list. ! 3. The pointer walker functions are different for `TP' and `TP'. In the case of `TP', references to `T' must be handled by ! calling `gt_pch_nx' (which will, in turn, walk all the pointers ! inside fields of `T'). In the case of `TP', references to `T ! *' must be handled by calling the `op' function on the address of the pointer (see the code snippets above).  *************** In addition to keeping track of types, t *** 39064,39076 **** the global variables ("roots") that the garbage collector starts at. Roots must be declared using one of the following syntaxes: ! * 'extern GTY(([OPTIONS])) TYPE NAME;' ! * 'static GTY(([OPTIONS])) TYPE NAME;' ! The syntax ! * 'GTY(([OPTIONS])) TYPE NAME;' ! is _not_ accepted. There should be an 'extern' declaration of such a variable in a header somewhere--mark that, not the definition. Or, if ! the variable is only used in one file, make it 'static'.  File: gccint.info, Node: Files, Next: Invoking the garbage collector, Prev: GGC Roots, Up: Type Information --- 39477,39490 ---- the global variables ("roots") that the garbage collector starts at. Roots must be declared using one of the following syntaxes: ! * `extern GTY(([OPTIONS])) TYPE NAME;' ! ! * `static GTY(([OPTIONS])) TYPE NAME;' ! The syntax ! * `GTY(([OPTIONS])) TYPE NAME;' ! is _not_ accepted. There should be an `extern' declaration of such a variable in a header somewhere--mark that, not the definition. Or, if ! the variable is only used in one file, make it `static'.  File: gccint.info, Node: Files, Next: Invoking the garbage collector, Prev: GGC Roots, Up: Type Information *************** File: gccint.info, Node: Files, Next: *** 39078,39132 **** 22.5 Source Files Containing Type Information ============================================= ! Whenever you add 'GTY' markers to a source file that previously had ! none, or create a new source file containing 'GTY' markers, there are three things you need to do: 1. You need to add the file to the list of source files the type machinery scans. There are four cases: a. For a back-end file, this is usually done automatically; if ! not, you should add it to 'target_gtfiles' in the appropriate ! port's entries in 'config.gcc'. b. For files shared by all front ends, add the filename to the ! 'GTFILES' variable in 'Makefile.in'. c. For files that are part of one front end, add the filename to ! the 'gtfiles' variable defined in the appropriate ! 'config-lang.in'. Headers should appear before non-headers in ! this list. d. For files that are part of some but not all front ends, add ! the filename to the 'gtfiles' variable of _all_ the front ends that use it. 2. If the file was a header file, you'll need to check that it's included in the right place to be visible to the generated files. ! For a back-end header file, this should be done automatically. For ! a front-end header file, it needs to be included by the same file ! that includes 'gtype-LANG.h'. For other header files, it needs to ! be included in 'gtype-desc.c', which is a generated file, so add it ! to 'ifiles' in 'open_base_file' in 'gengtype.c'. For source files that aren't header files, the machinery will generate a header file that should be included in the source file ! you just changed. The file will be called 'gt-PATH.h' where PATH ! is the pathname relative to the 'gcc' directory with slashes replaced by -, so for example the header file to be included in ! 'cp/parser.c' is called 'gt-cp-parser.c'. The generated header file should be included after everything else in the source file. Don't forget to mention this file as a dependency in the ! 'Makefile'! For language frontends, there is another file that needs to be included ! somewhere. It will be called 'gtype-LANG.h', where LANG is the name of the subdirectory the language is contained in. ! Plugins can add additional root tables. Run the 'gengtype' utility in ! plugin mode as 'gengtype -P pluginout.h SOURCE-DIR FILE-LIST PLUGIN*.C' ! with your plugin files PLUGIN*.C using 'GTY' to generate the PLUGINOUT.H ! file. The GCC build tree is needed to be present in that mode.  File: gccint.info, Node: Invoking the garbage collector, Next: Troubleshooting, Prev: Files, Up: Type Information --- 39492,39548 ---- 22.5 Source Files Containing Type Information ============================================= ! Whenever you add `GTY' markers to a source file that previously had ! none, or create a new source file containing `GTY' markers, there are three things you need to do: 1. You need to add the file to the list of source files the type machinery scans. There are four cases: a. For a back-end file, this is usually done automatically; if ! not, you should add it to `target_gtfiles' in the appropriate ! port's entries in `config.gcc'. b. For files shared by all front ends, add the filename to the ! `GTFILES' variable in `Makefile.in'. c. For files that are part of one front end, add the filename to ! the `gtfiles' variable defined in the appropriate ! `config-lang.in'. Headers should appear before non-headers ! in this list. d. For files that are part of some but not all front ends, add ! the filename to the `gtfiles' variable of _all_ the front ends that use it. 2. If the file was a header file, you'll need to check that it's included in the right place to be visible to the generated files. ! For a back-end header file, this should be done automatically. ! For a front-end header file, it needs to be included by the same ! file that includes `gtype-LANG.h'. For other header files, it ! needs to be included in `gtype-desc.c', which is a generated file, ! so add it to `ifiles' in `open_base_file' in `gengtype.c'. For source files that aren't header files, the machinery will generate a header file that should be included in the source file ! you just changed. The file will be called `gt-PATH.h' where PATH ! is the pathname relative to the `gcc' directory with slashes replaced by -, so for example the header file to be included in ! `cp/parser.c' is called `gt-cp-parser.c'. The generated header file should be included after everything else in the source file. Don't forget to mention this file as a dependency in the ! `Makefile'! ! For language frontends, there is another file that needs to be included ! somewhere. It will be called `gtype-LANG.h', where LANG is the name of the subdirectory the language is contained in. ! Plugins can add additional root tables. Run the `gengtype' utility in ! plugin mode as `gengtype -P pluginout.h SOURCE-DIR FILE-LIST PLUGIN*.C' ! with your plugin files PLUGIN*.C using `GTY' to generate the ! PLUGINOUT.H file. The GCC build tree is needed to be present in that ! mode.  File: gccint.info, Node: Invoking the garbage collector, Next: Troubleshooting, Prev: Files, Up: Type Information *************** File: gccint.info, Node: Invoking the g *** 39134,39155 **** 22.6 How to invoke the garbage collector ======================================== ! The GCC garbage collector GGC is only invoked explicitly. In contrast with many other garbage collectors, it is not implicitly invoked by ! allocation routines when a lot of memory has been consumed. So the only ! way to have GGC reclaim storage is to call the 'ggc_collect' function ! explicitly. This call is an expensive operation, as it may have to scan ! the entire heap. Beware that local variables (on the GCC call stack) ! are not followed by such an invocation (as many other garbage collectors ! do): you should reference all your data from static or external 'GTY'-ed ! variables, and it is advised to call 'ggc_collect' with a shallow call ! stack. The GGC is an exact mark and sweep garbage collector (so it does ! not scan the call stack for pointers). In practice GCC passes don't ! often call 'ggc_collect' themselves, because it is called by the pass ! manager between passes. ! At the time of the 'ggc_collect' call all pointers in the GC-marked ! structures must be valid or 'NULL'. In practice this means that there should not be uninitialized pointer fields in the structures even if your code never reads or writes those fields at a particular instance. One way to ensure this is to use cleared versions of allocators unless --- 39550,39571 ---- 22.6 How to invoke the garbage collector ======================================== ! The GCC garbage collector GGC is only invoked explicitly. In contrast with many other garbage collectors, it is not implicitly invoked by ! allocation routines when a lot of memory has been consumed. So the only ! way to have GGC reclaim storage is to call the `ggc_collect' function ! explicitly. This call is an expensive operation, as it may have to ! scan the entire heap. Beware that local variables (on the GCC call ! stack) are not followed by such an invocation (as many other garbage ! collectors do): you should reference all your data from static or ! external `GTY'-ed variables, and it is advised to call `ggc_collect' ! with a shallow call stack. The GGC is an exact mark and sweep garbage ! collector (so it does not scan the call stack for pointers). In ! practice GCC passes don't often call `ggc_collect' themselves, because ! it is called by the pass manager between passes. ! At the time of the `ggc_collect' call all pointers in the GC-marked ! structures must be valid or `NULL'. In practice this means that there should not be uninitialized pointer fields in the structures even if your code never reads or writes those fields at a particular instance. One way to ensure this is to use cleared versions of allocators unless *************** With the current garbage collector imple *** 39165,39182 **** show up as GCC compilation errors. Some of the most commonly encountered issues are described below. ! * Gengtype does not produce allocators for a 'GTY'-marked type. Gengtype checks if there is at least one possible path from GC roots to at least one instance of each type before outputting ! allocators. If there is no such path, the 'GTY' markers will be ignored and no allocators will be output. Solve this by making sure that there exists at least one such path. If creating it is unfeasible or raises a "code smell", consider if you really must use GC for allocating such type. ! * Link-time errors about undefined 'gt_ggc_r_foo_bar' and ! similarly-named symbols. Check if your 'foo_bar' source file has ! '#include "gt-foo_bar.h"' as its very last line.  File: gccint.info, Node: Plugins, Next: LTO, Prev: Type Information, Up: Top --- 39581,39599 ---- show up as GCC compilation errors. Some of the most commonly encountered issues are described below. ! * Gengtype does not produce allocators for a `GTY'-marked type. Gengtype checks if there is at least one possible path from GC roots to at least one instance of each type before outputting ! allocators. If there is no such path, the `GTY' markers will be ignored and no allocators will be output. Solve this by making sure that there exists at least one such path. If creating it is unfeasible or raises a "code smell", consider if you really must use GC for allocating such type. ! * Link-time errors about undefined `gt_ggc_r_foo_bar' and ! similarly-named symbols. Check if your `foo_bar' source file has ! `#include "gt-foo_bar.h"' as its very last line. !  File: gccint.info, Node: Plugins, Next: LTO, Prev: Type Information, Up: Top *************** File: gccint.info, Node: Plugins loadin *** 39211,39233 **** 23.1 Loading Plugins ==================== ! Plugins are supported on platforms that support '-ldl -rdynamic'. They ! are loaded by the compiler using 'dlopen' and invoked at pre-determined locations in the compilation process. Plugins are loaded with ! '-fplugin=/path/to/NAME.so' '-fplugin-arg-NAME-KEY1[=VALUE1]' ! The plugin arguments are parsed by GCC and passed to respective plugins ! as key-value pairs. Multiple plugins can be invoked by specifying ! multiple '-fplugin' arguments. A plugin can be simply given by its short name (no dots or slashes). ! When simply passing '-fplugin=NAME', the plugin is loaded from the ! 'plugin' directory, so '-fplugin=NAME' is the same as '-fplugin=`gcc ! -print-file-name=plugin`/NAME.so', using backquote shell syntax to query ! the 'plugin' directory.  File: gccint.info, Node: Plugin API, Next: Plugins pass, Prev: Plugins loading, Up: Plugins --- 39628,39650 ---- 23.1 Loading Plugins ==================== ! Plugins are supported on platforms that support `-ldl -rdynamic'. They ! are loaded by the compiler using `dlopen' and invoked at pre-determined locations in the compilation process. Plugins are loaded with ! `-fplugin=/path/to/NAME.so' `-fplugin-arg-NAME-KEY1[=VALUE1]' ! The plugin arguments are parsed by GCC and passed to respective ! plugins as key-value pairs. Multiple plugins can be invoked by ! specifying multiple `-fplugin' arguments. A plugin can be simply given by its short name (no dots or slashes). ! When simply passing `-fplugin=NAME', the plugin is loaded from the ! `plugin' directory, so `-fplugin=NAME' is the same as `-fplugin=`gcc ! -print-file-name=plugin`/NAME.so', using backquote shell syntax to ! query the `plugin' directory.  File: gccint.info, Node: Plugin API, Next: Plugins pass, Prev: Plugins loading, Up: Plugins *************** File: gccint.info, Node: Plugin API, N *** 39236,39251 **** =============== Plugins are activated by the compiler at specific events as defined in ! 'gcc-plugin.h'. For each event of interest, the plugin should call ! 'register_callback' specifying the name of the event and address of the callback function that will handle that event. ! The header 'gcc-plugin.h' must be the first gcc header to be included. 23.2.1 Plugin license check --------------------------- ! Every plugin should define the global symbol 'plugin_is_GPL_compatible' to assert that it has been licensed under a GPL-compatible license. If this symbol does not exist, the compiler will emit a fatal error and exit with the error message: --- 39653,39668 ---- =============== Plugins are activated by the compiler at specific events as defined in ! `gcc-plugin.h'. For each event of interest, the plugin should call ! `register_callback' specifying the name of the event and address of the callback function that will handle that event. ! The header `gcc-plugin.h' must be the first gcc header to be included. 23.2.1 Plugin license check --------------------------- ! Every plugin should define the global symbol `plugin_is_GPL_compatible' to assert that it has been licensed under a GPL-compatible license. If this symbol does not exist, the compiler will emit a fatal error and exit with the error message: *************** exit with the error message: *** 39255,39282 **** compilation terminated The declared type of the symbol should be int, to match a forward ! declaration in 'gcc-plugin.h' that suppresses C++ mangling. It does not ! need to be in any allocated section, though. The compiler merely ! asserts that the symbol exists in the global scope. Something like this ! is enough: int plugin_is_GPL_compatible; 23.2.2 Plugin initialization ---------------------------- ! Every plugin should export a function called 'plugin_init' that is ! called right after the plugin is loaded. This function is responsible for registering all the callbacks required by the plugin and do any other required initialization. ! This function is called from 'compile_file' right before invoking the ! parser. The arguments to 'plugin_init' are: ! * 'plugin_info': Plugin invocation information. ! * 'version': GCC version. ! The 'plugin_info' struct is defined as follows: struct plugin_name_args { --- 39672,39700 ---- compilation terminated The declared type of the symbol should be int, to match a forward ! declaration in `gcc-plugin.h' that suppresses C++ mangling. It does ! not need to be in any allocated section, though. The compiler merely ! asserts that the symbol exists in the global scope. Something like ! this is enough: int plugin_is_GPL_compatible; 23.2.2 Plugin initialization ---------------------------- ! Every plugin should export a function called `plugin_init' that is ! called right after the plugin is loaded. This function is responsible for registering all the callbacks required by the plugin and do any other required initialization. ! This function is called from `compile_file' right before invoking the ! parser. The arguments to `plugin_init' are: ! * `plugin_info': Plugin invocation information. ! * `version': GCC version. ! ! The `plugin_info' struct is defined as follows: struct plugin_name_args { *************** parser. The arguments to 'plugin_init' *** 39291,39297 **** const char *help; /* Help string provided by plugin. */ } ! If initialization fails, 'plugin_init' must return a non-zero value. Otherwise, it should return 0. The version of the GCC compiler loading the plugin is described by the --- 39709,39715 ---- const char *help; /* Help string provided by plugin. */ } ! If initialization fails, `plugin_init' must return a non-zero value. Otherwise, it should return 0. The version of the GCC compiler loading the plugin is described by the *************** following structure: *** 39306,39317 **** const char *configuration_arguments; }; ! The function 'plugin_default_version_check' takes two pointers to such ! structure and compare them field by field. It can be used by the ! plugin's 'plugin_init' function. The version of GCC used to compile the plugin can be found in the ! symbol 'gcc_version' defined in the header 'plugin-version.h'. The recommended version check to perform looks like #include "plugin-version.h" --- 39724,39735 ---- const char *configuration_arguments; }; ! The function `plugin_default_version_check' takes two pointers to such ! structure and compare them field by field. It can be used by the ! plugin's `plugin_init' function. The version of GCC used to compile the plugin can be found in the ! symbol `gcc_version' defined in the header `plugin-version.h'. The recommended version check to perform looks like #include "plugin-version.h" *************** Callback functions have the following pr *** 39389,39419 **** In addition, plugins can also look up the enumerator of a named event, and / or generate new events dynamically, by calling the function ! 'get_named_event_id'. ! To register a callback, the plugin calls 'register_callback' with the arguments: ! * 'char *name': Plugin name. ! * 'int event': The event code. ! * 'plugin_callback_func callback': The function that handles 'event'. ! * 'void *user_data': Pointer to plugin-specific data. For the PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO, PLUGIN_REGISTER_GGC_ROOTS and PLUGIN_REGISTER_GGC_CACHES pseudo-events ! the 'callback' should be null, and the 'user_data' is specific. ! When the PLUGIN_PRAGMAS event is triggered (with a null pointer as data ! from GCC), plugins may register their own pragmas. Notice that pragmas ! are not available from 'lto1', so plugins used with '-flto' option to ! GCC during link-time optimization cannot use pragmas and do not even see ! functions like 'c_register_pragma' or 'pragma_lex'. ! The PLUGIN_INCLUDE_FILE event, with a 'const char*' file path as GCC ! data, is triggered for processing of '#include' or '#line' directives. The PLUGIN_FINISH event is the last time that plugins can call GCC ! functions, notably emit diagnostics with 'warning', 'error' etc.  File: gccint.info, Node: Plugins pass, Next: Plugins GC, Prev: Plugin API, Up: Plugins --- 39807,39840 ---- In addition, plugins can also look up the enumerator of a named event, and / or generate new events dynamically, by calling the function ! `get_named_event_id'. ! To register a callback, the plugin calls `register_callback' with the arguments: ! * `char *name': Plugin name. ! ! * `int event': The event code. ! ! * `plugin_callback_func callback': The function that handles `event'. ! ! * `void *user_data': Pointer to plugin-specific data. For the PLUGIN_PASS_MANAGER_SETUP, PLUGIN_INFO, PLUGIN_REGISTER_GGC_ROOTS and PLUGIN_REGISTER_GGC_CACHES pseudo-events ! the `callback' should be null, and the `user_data' is specific. ! When the PLUGIN_PRAGMAS event is triggered (with a null pointer as ! data from GCC), plugins may register their own pragmas. Notice that ! pragmas are not available from `lto1', so plugins used with `-flto' ! option to GCC during link-time optimization cannot use pragmas and do ! not even see functions like `c_register_pragma' or `pragma_lex'. ! The PLUGIN_INCLUDE_FILE event, with a `const char*' file path as GCC ! data, is triggered for processing of `#include' or `#line' directives. The PLUGIN_FINISH event is the last time that plugins can call GCC ! functions, notably emit diagnostics with `warning', `error' etc.  File: gccint.info, Node: Plugins pass, Next: Plugins GC, Prev: Plugin API, Up: Plugins *************** File: gccint.info, Node: Plugins pass, *** 39421,39434 **** 23.3 Interacting with the pass manager ====================================== ! There needs to be a way to add/reorder/remove passes dynamically. This is useful for both analysis plugins (plugging in after a certain pass such as CFG or an IPA pass) and optimization plugins. Basic support for inserting new passes or replacing existing passes is ! provided. A plugin registers a new pass with GCC by calling ! 'register_callback' with the 'PLUGIN_PASS_MANAGER_SETUP' event and a ! pointer to a 'struct register_pass_info' object defined as follows enum pass_positioning_ops { --- 39842,39855 ---- 23.3 Interacting with the pass manager ====================================== ! There needs to be a way to add/reorder/remove passes dynamically. This is useful for both analysis plugins (plugging in after a certain pass such as CFG or an IPA pass) and optimization plugins. Basic support for inserting new passes or replacing existing passes is ! provided. A plugin registers a new pass with GCC by calling ! `register_callback' with the `PLUGIN_PASS_MANAGER_SETUP' event and a ! pointer to a `struct register_pass_info' object defined as follows enum pass_positioning_ops { *************** File: gccint.info, Node: Plugins GC, N *** 39475,39506 **** =============================================== Some plugins may want to be informed when GGC (the GCC Garbage ! Collector) is running. They can register callbacks for the ! 'PLUGIN_GGC_START' and 'PLUGIN_GGC_END' events (for which the callback ! is called with a null 'gcc_data') to be notified of the start or end of the GCC garbage collection. ! Some plugins may need to have GGC mark additional data. This can be ! done by registering a callback (called with a null 'gcc_data') for the ! 'PLUGIN_GGC_MARKING' event. Such callbacks can call the 'ggc_set_mark' ! routine, preferably through the 'ggc_mark' macro (and conversely, these routines should usually not be used in plugins outside of the ! 'PLUGIN_GGC_MARKING' event). ! Some plugins may need to add extra GGC root tables, e.g. to handle ! their own 'GTY'-ed data. This can be done with the ! 'PLUGIN_REGISTER_GGC_ROOTS' pseudo-event with a null callback and the ! extra root table (of type 'struct ggc_root_tab*') as 'user_data'. ! Plugins that want to use the 'if_marked' hash table option can add the ! extra GGC cache tables generated by 'gengtype' using the ! 'PLUGIN_REGISTER_GGC_CACHES' pseudo-event with a null callback and the ! extra cache table (of type 'struct ggc_cache_tab*') as 'user_data'. ! Running the 'gengtype -p SOURCE-DIR FILE-LIST PLUGIN*.C ...' utility generates these extra root tables. You should understand the details of memory management inside GCC ! before using 'PLUGIN_GGC_MARKING', 'PLUGIN_REGISTER_GGC_ROOTS' or ! 'PLUGIN_REGISTER_GGC_CACHES'.  File: gccint.info, Node: Plugins description, Next: Plugins attr, Prev: Plugins GC, Up: Plugins --- 39896,39927 ---- =============================================== Some plugins may want to be informed when GGC (the GCC Garbage ! Collector) is running. They can register callbacks for the ! `PLUGIN_GGC_START' and `PLUGIN_GGC_END' events (for which the callback ! is called with a null `gcc_data') to be notified of the start or end of the GCC garbage collection. ! Some plugins may need to have GGC mark additional data. This can be ! done by registering a callback (called with a null `gcc_data') for the ! `PLUGIN_GGC_MARKING' event. Such callbacks can call the `ggc_set_mark' ! routine, preferably through the `ggc_mark' macro (and conversely, these routines should usually not be used in plugins outside of the ! `PLUGIN_GGC_MARKING' event). ! Some plugins may need to add extra GGC root tables, e.g. to handle ! their own `GTY'-ed data. This can be done with the ! `PLUGIN_REGISTER_GGC_ROOTS' pseudo-event with a null callback and the ! extra root table (of type `struct ggc_root_tab*') as `user_data'. ! Plugins that want to use the `if_marked' hash table option can add the ! extra GGC cache tables generated by `gengtype' using the ! `PLUGIN_REGISTER_GGC_CACHES' pseudo-event with a null callback and the ! extra cache table (of type `struct ggc_cache_tab*') as `user_data'. ! Running the `gengtype -p SOURCE-DIR FILE-LIST PLUGIN*.C ...' utility generates these extra root tables. You should understand the details of memory management inside GCC ! before using `PLUGIN_GGC_MARKING', `PLUGIN_REGISTER_GGC_ROOTS' or ! `PLUGIN_REGISTER_GGC_CACHES'.  File: gccint.info, Node: Plugins description, Next: Plugins attr, Prev: Plugins GC, Up: Plugins *************** File: gccint.info, Node: Plugins descri *** 39508,39514 **** 23.5 Giving information about a plugin ====================================== ! A plugin should give some information to the user about itself. This uses the following structure: struct plugin_info --- 39929,39935 ---- 23.5 Giving information about a plugin ====================================== ! A plugin should give some information to the user about itself. This uses the following structure: struct plugin_info *************** uses the following structure: *** 39517,39524 **** const char *help; }; ! Such a structure is passed as the 'user_data' by the plugin's init ! routine using 'register_callback' with the 'PLUGIN_INFO' pseudo-event and a null callback.  --- 39938,39945 ---- const char *help; }; ! Such a structure is passed as the `user_data' by the plugin's init ! routine using `register_callback' with the `PLUGIN_INFO' pseudo-event and a null callback.  *************** File: gccint.info, Node: Plugins attr, *** 39530,39537 **** For analysis (or other) purposes it is useful to be able to add custom attributes or pragmas. ! The 'PLUGIN_ATTRIBUTES' callback is called during attribute ! registration. Use the 'register_attribute' function to register custom attributes. /* Attribute handler callback */ --- 39951,39958 ---- For analysis (or other) purposes it is useful to be able to add custom attributes or pragmas. ! The `PLUGIN_ATTRIBUTES' callback is called during attribute ! registration. Use the `register_attribute' function to register custom attributes. /* Attribute handler callback */ *************** attributes. *** 39556,39568 **** register_attribute (&user_attr); } ! ! The PLUGIN_PRAGMAS callback is called once during pragmas registration. ! Use the 'c_register_pragma', 'c_register_pragma_with_data', ! 'c_register_pragma_with_expansion', ! 'c_register_pragma_with_expansion_and_data' functions to register custom ! pragmas and their handlers (which often want to call 'pragma_lex') from ! 'c-family/c-pragma.h'. /* Plugin callback called during pragmas registration. Registered with register_callback (plugin_name, PLUGIN_PRAGMAS, --- 39977,39988 ---- register_attribute (&user_attr); } ! The PLUGIN_PRAGMAS callback is called once during pragmas ! registration. Use the `c_register_pragma', ! `c_register_pragma_with_data', `c_register_pragma_with_expansion', ! `c_register_pragma_with_expansion_and_data' functions to register ! custom pragmas and their handlers (which often want to call ! `pragma_lex') from `c-family/c-pragma.h'. /* Plugin callback called during pragmas registration. Registered with register_callback (plugin_name, PLUGIN_PRAGMAS, *************** pragmas and their handlers (which often *** 39575,39586 **** c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello); } ! It is suggested to pass '"GCCPLUGIN"' (or a short name identifying your ! plugin) as the "space" argument of your pragma. ! Pragmas registered with 'c_register_pragma_with_expansion' or ! 'c_register_pragma_with_expansion_and_data' support preprocessor ! expansions. For example: #define NUMBER 10 #pragma GCCPLUGIN foothreshold (NUMBER) --- 39995,40006 ---- c_register_pragma ("GCCPLUGIN", "sayhello", handle_pragma_sayhello); } ! It is suggested to pass `"GCCPLUGIN"' (or a short name identifying ! your plugin) as the "space" argument of your pragma. ! Pragmas registered with `c_register_pragma_with_expansion' or ! `c_register_pragma_with_expansion_and_data' support preprocessor ! expansions. For example: #define NUMBER 10 #pragma GCCPLUGIN foothreshold (NUMBER) *************** File: gccint.info, Node: Plugins record *** 39592,39605 **** =============================================== The event PLUGIN_PASS_EXECUTION passes the pointer to the executed pass ! (the same as current_pass) as 'gcc_data' to the callback. You can also inspect cfun to find out about which function this pass is executed for. Note that this event will only be invoked if the gate check (if applicable, modified by PLUGIN_OVERRIDE_GATE) succeeds. You can use ! other hooks, like 'PLUGIN_ALL_PASSES_START', 'PLUGIN_ALL_PASSES_END', ! 'PLUGIN_ALL_IPA_PASSES_START', 'PLUGIN_ALL_IPA_PASSES_END', ! 'PLUGIN_EARLY_GIMPLE_PASSES_START', and/or ! 'PLUGIN_EARLY_GIMPLE_PASSES_END' to manipulate global state in your plugin(s) in order to get context for the pass execution.  --- 40012,40025 ---- =============================================== The event PLUGIN_PASS_EXECUTION passes the pointer to the executed pass ! (the same as current_pass) as `gcc_data' to the callback. You can also inspect cfun to find out about which function this pass is executed for. Note that this event will only be invoked if the gate check (if applicable, modified by PLUGIN_OVERRIDE_GATE) succeeds. You can use ! other hooks, like `PLUGIN_ALL_PASSES_START', `PLUGIN_ALL_PASSES_END', ! `PLUGIN_ALL_IPA_PASSES_START', `PLUGIN_ALL_IPA_PASSES_END', ! `PLUGIN_EARLY_GIMPLE_PASSES_START', and/or ! `PLUGIN_EARLY_GIMPLE_PASSES_END' to manipulate global state in your plugin(s) in order to get context for the pass execution.  *************** File: gccint.info, Node: Plugins gate, *** 39610,39617 **** After the original gate function for a pass is called, its result - the gate status - is stored as an integer. Then the event ! 'PLUGIN_OVERRIDE_GATE' is invoked, with a pointer to the gate status in ! the 'gcc_data' parameter to the callback function. A nonzero value of the gate status means that the pass is to be executed. You can both read and write the gate status via the passed pointer. --- 40030,40037 ---- After the original gate function for a pass is called, its result - the gate status - is stored as an integer. Then the event ! `PLUGIN_OVERRIDE_GATE' is invoked, with a pointer to the gate status in ! the `gcc_data' parameter to the callback function. A nonzero value of the gate status means that the pass is to be executed. You can both read and write the gate status via the passed pointer. *************** File: gccint.info, Node: Plugins tracki *** 39624,39632 **** When your plugin is loaded, you can inspect the various pass lists to determine what passes are available. However, other plugins might add new passes. Also, future changes to GCC might cause generic passes to ! be added after plugin loading. When a pass is first added to one of the ! pass lists, the event 'PLUGIN_NEW_PASS' is invoked, with the callback ! parameter 'gcc_data' pointing to the new pass.  File: gccint.info, Node: Plugins building, Prev: Plugins tracking, Up: Plugins --- 40044,40052 ---- When your plugin is loaded, you can inspect the various pass lists to determine what passes are available. However, other plugins might add new passes. Also, future changes to GCC might cause generic passes to ! be added after plugin loading. When a pass is first added to one of ! the pass lists, the event `PLUGIN_NEW_PASS' is invoked, with the ! callback parameter `gcc_data' pointing to the new pass.  File: gccint.info, Node: Plugins building, Prev: Plugins tracking, Up: Plugins *************** File: gccint.info, Node: Plugins buildi *** 39635,39656 **** ========================== If plugins are enabled, GCC installs the headers needed to build a ! plugin (somewhere in the installation tree, e.g. under '/usr/local'). ! In particular a 'plugin/include' directory is installed, containing all the header files needed to build plugins. ! On most systems, you can query this 'plugin' directory by invoking 'gcc ! -print-file-name=plugin' (replace if needed 'gcc' with the appropriate ! program path). ! Inside plugins, this 'plugin' directory name can be queried by calling ! 'default_plugin_dir_name ()'. Plugins may know, when they are compiled, the GCC version for which ! 'plugin-version.h' is provided. The constant macros ! 'GCCPLUGIN_VERSION_MAJOR', 'GCCPLUGIN_VERSION_MINOR', ! 'GCCPLUGIN_VERSION_PATCHLEVEL', 'GCCPLUGIN_VERSION' are integer numbers, ! so a plugin could ensure it is built for GCC 4.7 with #if GCCPLUGIN_VERSION != 4007 #error this GCC plugin is for GCC 4.7 #endif --- 40055,40076 ---- ========================== If plugins are enabled, GCC installs the headers needed to build a ! plugin (somewhere in the installation tree, e.g. under `/usr/local'). ! In particular a `plugin/include' directory is installed, containing all the header files needed to build plugins. ! On most systems, you can query this `plugin' directory by invoking ! `gcc -print-file-name=plugin' (replace if needed `gcc' with the ! appropriate program path). ! Inside plugins, this `plugin' directory name can be queried by calling ! `default_plugin_dir_name ()'. Plugins may know, when they are compiled, the GCC version for which ! `plugin-version.h' is provided. The constant macros ! `GCCPLUGIN_VERSION_MAJOR', `GCCPLUGIN_VERSION_MINOR', ! `GCCPLUGIN_VERSION_PATCHLEVEL', `GCCPLUGIN_VERSION' are integer ! numbers, so a plugin could ensure it is built for GCC 4.7 with #if GCCPLUGIN_VERSION != 4007 #error this GCC plugin is for GCC 4.7 #endif *************** so a plugin could ensure it is built for *** 39666,39679 **** plugin.so: $(PLUGIN_SOURCE_FILES) $(HOST_GCC) -shared $(CXXFLAGS) $^ -o $@ ! A single source file plugin may be built with 'g++ -I`gcc -print-file-name=plugin`/include -fPIC -shared -fno-rtti -O2 plugin.c -o ! plugin.so', using backquote shell syntax to query the 'plugin' directory. ! When a plugin needs to use 'gengtype', be sure that both 'gengtype' and ! 'gtype.state' have the same version as the GCC for which the plugin is ! built.  File: gccint.info, Node: LTO, Next: Funding, Prev: Plugins, Up: Top --- 40086,40099 ---- plugin.so: $(PLUGIN_SOURCE_FILES) $(HOST_GCC) -shared $(CXXFLAGS) $^ -o $@ ! A single source file plugin may be built with `g++ -I`gcc -print-file-name=plugin`/include -fPIC -shared -fno-rtti -O2 plugin.c -o ! plugin.so', using backquote shell syntax to query the `plugin' directory. ! When a plugin needs to use `gengtype', be sure that both `gengtype' ! and `gtype.state' have the same version as the GCC for which the plugin ! is built.  File: gccint.info, Node: LTO, Next: Funding, Prev: Plugins, Up: Top *************** File: gccint.info, Node: LTO, Next: Fu *** 39683,39692 **** Link Time Optimization (LTO) gives GCC the capability of dumping its internal representation (GIMPLE) to disk, so that all the different ! compilation units that make up a single executable can be optimized as a ! single module. This expands the scope of inter-procedural optimizations ! to encompass the whole program (or, rather, everything that is visible ! at link time). * Menu: --- 40103,40112 ---- Link Time Optimization (LTO) gives GCC the capability of dumping its internal representation (GIMPLE) to disk, so that all the different ! compilation units that make up a single executable can be optimized as ! a single module. This expands the scope of inter-procedural ! optimizations to encompass the whole program (or, rather, everything ! that is visible at link time). * Menu: *************** at link time). *** 39695,39701 **** * IPA:: Using summary information in IPA passes. * WHOPR:: Whole program assumptions, linker plugin and symbol visibilities. ! * Internal flags:: Internal flags controlling 'lto1'.  File: gccint.info, Node: LTO Overview, Next: LTO object file layout, Up: LTO --- 40115,40121 ---- * IPA:: Using summary information in IPA passes. * WHOPR:: Whole program assumptions, linker plugin and symbol visibilities. ! * Internal flags:: Internal flags controlling `lto1'.  File: gccint.info, Node: LTO Overview, Next: LTO object file layout, Up: LTO *************** File: gccint.info, Node: LTO Overview, *** 39704,39710 **** ==================== Link time optimization is implemented as a GCC front end for a bytecode ! representation of GIMPLE that is emitted in special sections of '.o' files. Currently, LTO support is enabled in most ELF-based systems, as well as darwin, cygwin and mingw systems. --- 40124,40130 ---- ==================== Link time optimization is implemented as a GCC front end for a bytecode ! representation of GIMPLE that is emitted in special sections of `.o' files. Currently, LTO support is enabled in most ELF-based systems, as well as darwin, cygwin and mingw systems. *************** Additionally, one might be able to ship *** 39716,39731 **** could be used both for development and the production of optimized builds. A, perhaps surprising, side effect of this feature is that any mistake in the toolchain that leads to LTO information not being used ! (e.g. an older 'libtool' calling 'ld' directly). This is both an ! advantage, as the system is more robust, and a disadvantage, as the user ! is not informed that the optimization has been disabled. The current implementation only produces "fat" objects, effectively doubling compilation time and increasing file sizes up to 5x the ! original size. This hides the problem that some tools, such as 'ar' and ! 'nm', need to understand symbol tables of LTO sections. These tools ! were extended to use the plugin infrastructure, and with these problems ! solved, GCC will also support "slim" objects consisting of the intermediate code alone. At the highest level, LTO splits the compiler in two. The first half --- 40136,40151 ---- could be used both for development and the production of optimized builds. A, perhaps surprising, side effect of this feature is that any mistake in the toolchain that leads to LTO information not being used ! (e.g. an older `libtool' calling `ld' directly). This is both an ! advantage, as the system is more robust, and a disadvantage, as the ! user is not informed that the optimization has been disabled. The current implementation only produces "fat" objects, effectively doubling compilation time and increasing file sizes up to 5x the ! original size. This hides the problem that some tools, such as `ar' ! and `nm', need to understand symbol tables of LTO sections. These ! tools were extended to use the plugin infrastructure, and with these ! problems solved, GCC will also support "slim" objects consisting of the intermediate code alone. At the highest level, LTO splits the compiler in two. The first half *************** data structures needed to optimize and g *** 39734,39781 **** declarations, types, the callgraph and the GIMPLE representation of function bodies. ! When '-flto' is given during compilation of a source file, the pass ! manager executes all the passes in 'all_lto_gen_passes'. Currently, this phase is composed of two IPA passes: ! * 'pass_ipa_lto_gimple_out' This pass executes the function ! 'lto_output' in 'lto-streamer-out.c', which traverses the call graph encoding every reachable declaration, type and function. This generates a memory representation of all the file sections described below. ! * 'pass_ipa_lto_finish_out' This pass executes the function ! 'produce_asm_for_decls' in 'lto-streamer-out.c', which takes the memory image built in the previous pass and encodes it in the corresponding ELF file sections. ! The second half of LTO support is the "reader". This is implemented as ! the GCC front end 'lto1' in 'lto/lto.c'. When 'collect2' detects a link ! set of '.o'/'.a' files with LTO information and the '-flto' is enabled, ! it invokes 'lto1' which reads the set of files and aggregates them into ! a single translation unit for optimization. The main entry point for ! the reader is 'lto/lto.c':'lto_main'. 24.1.1 LTO modes of operation ----------------------------- One of the main goals of the GCC link-time infrastructure was to allow ! effective compilation of large programs. For this reason GCC implements ! two link-time compilation modes. ! 1. _LTO mode_, in which the whole program is read into the compiler at ! link-time and optimized in a similar way as if it were a single source-level compilation unit. 2. _WHOPR or partitioned mode_, designed to utilize multiple CPUs and/or a distributed compilation environment to quickly link large applications. WHOPR stands for WHOle Program optimizeR (not to be ! confused with the semantics of '-fwhole-program'). It partitions ! the aggregated callgraph from many different '.o' files and distributes the compilation of the sub-graphs to different CPUs. Note that distributed compilation is not implemented yet, but since ! the parallelism is facilitated via generating a 'Makefile', it would be easy to implement. WHOPR splits LTO into three main stages: --- 40154,40201 ---- declarations, types, the callgraph and the GIMPLE representation of function bodies. ! When `-flto' is given during compilation of a source file, the pass ! manager executes all the passes in `all_lto_gen_passes'. Currently, this phase is composed of two IPA passes: ! * `pass_ipa_lto_gimple_out' This pass executes the function ! `lto_output' in `lto-streamer-out.c', which traverses the call graph encoding every reachable declaration, type and function. This generates a memory representation of all the file sections described below. ! * `pass_ipa_lto_finish_out' This pass executes the function ! `produce_asm_for_decls' in `lto-streamer-out.c', which takes the memory image built in the previous pass and encodes it in the corresponding ELF file sections. ! The second half of LTO support is the "reader". This is implemented ! as the GCC front end `lto1' in `lto/lto.c'. When `collect2' detects a ! link set of `.o'/`.a' files with LTO information and the `-flto' is ! enabled, it invokes `lto1' which reads the set of files and aggregates ! them into a single translation unit for optimization. The main entry ! point for the reader is `lto/lto.c':`lto_main'. 24.1.1 LTO modes of operation ----------------------------- One of the main goals of the GCC link-time infrastructure was to allow ! effective compilation of large programs. For this reason GCC ! implements two link-time compilation modes. ! 1. _LTO mode_, in which the whole program is read into the compiler ! at link-time and optimized in a similar way as if it were a single source-level compilation unit. 2. _WHOPR or partitioned mode_, designed to utilize multiple CPUs and/or a distributed compilation environment to quickly link large applications. WHOPR stands for WHOle Program optimizeR (not to be ! confused with the semantics of `-fwhole-program'). It partitions ! the aggregated callgraph from many different `.o' files and distributes the compilation of the sub-graphs to different CPUs. Note that distributed compilation is not implemented yet, but since ! the parallelism is facilitated via generating a `Makefile', it would be easy to implement. WHOPR splits LTO into three main stages: *************** two link-time compilation modes. *** 39789,39797 **** global call-graph is generated, and a global analysis procedure makes transformation decisions. The global call-graph is partitioned to facilitate parallel optimization during phase 3. ! The results of the WPA stage are stored into new object files which ! contain the partitions of program expressed in the intermediate ! language and the optimization decisions. 3. Local transformations (LTRANS) This stage executes in parallel. All the decisions made during phase 2 are implemented locally in --- 40209,40217 ---- global call-graph is generated, and a global analysis procedure makes transformation decisions. The global call-graph is partitioned to facilitate parallel optimization during phase 3. ! The results of the WPA stage are stored into new object files ! which contain the partitions of program expressed in the ! intermediate language and the optimization decisions. 3. Local transformations (LTRANS) This stage executes in parallel. All the decisions made during phase 2 are implemented locally in *************** two link-time compilation modes. *** 39800,39816 **** during the phase 2 may be performed on the local call-graph partitions. ! WHOPR can be seen as an extension of the usual LTO mode of compilation. ! In LTO, WPA and LTRANS are executed within a single execution of the ! compiler, after the whole program has been read into memory. When compiling in WHOPR mode, the callgraph is partitioned during the ! WPA stage. The whole program is split into a given number of partitions ! of roughly the same size. The compiler tries to minimize the number of ! references which cross partition boundaries. The main advantage of ! WHOPR is to allow the parallel execution of LTRANS stages, which are the ! most time-consuming part of the compilation process. Additionally, it ! avoids the need to load the whole program into memory.  File: gccint.info, Node: LTO object file layout, Next: IPA, Prev: LTO Overview, Up: LTO --- 40220,40237 ---- during the phase 2 may be performed on the local call-graph partitions. ! WHOPR can be seen as an extension of the usual LTO mode of ! compilation. In LTO, WPA and LTRANS are executed within a single ! execution of the compiler, after the whole program has been read into ! memory. When compiling in WHOPR mode, the callgraph is partitioned during the ! WPA stage. The whole program is split into a given number of ! partitions of roughly the same size. The compiler tries to minimize ! the number of references which cross partition boundaries. The main ! advantage of WHOPR is to allow the parallel execution of LTRANS stages, ! which are the most time-consuming part of the compilation process. ! Additionally, it avoids the need to load the whole program into memory.  File: gccint.info, Node: LTO object file layout, Next: IPA, Prev: LTO Overview, Up: LTO *************** File: gccint.info, Node: LTO object fil *** 39820,39832 **** LTO information is stored in several ELF sections inside object files. Data structures and enum codes for sections are defined in ! 'lto-streamer.h'. ! These sections are emitted from 'lto-streamer-out.c' and mapped in all ! at once from 'lto/lto.c':'lto_file_read'. The individual functions dealing with the reading/writing of each section are described below. ! * Command line options ('.gnu.lto_.opts') This section contains the command line options used to generate the object files. This is used at link time to determine the --- 40241,40253 ---- LTO information is stored in several ELF sections inside object files. Data structures and enum codes for sections are defined in ! `lto-streamer.h'. ! These sections are emitted from `lto-streamer-out.c' and mapped in all ! at once from `lto/lto.c':`lto_file_read'. The individual functions dealing with the reading/writing of each section are described below. ! * Command line options (`.gnu.lto_.opts') This section contains the command line options used to generate the object files. This is used at link time to determine the *************** dealing with the reading/writing of each *** 39839,39850 **** the options saved on all the files in a link-time set are applied globally. No attempt is made at validating the combination of flags (other than the usual validation done by option processing). ! This is implemented in 'lto/lto.c':'lto_read_all_file_options'. ! * Symbol table ('.gnu.lto_.symtab') This table replaces the ELF symbol table for functions and ! variables represented in the LTO IL. Symbols used and exported by the optimized assembly code of "fat" objects might not match the ones used and exported by the intermediate code. This table is necessary because the intermediate code is less optimized and thus --- 40260,40271 ---- the options saved on all the files in a link-time set are applied globally. No attempt is made at validating the combination of flags (other than the usual validation done by option processing). ! This is implemented in `lto/lto.c':`lto_read_all_file_options'. ! * Symbol table (`.gnu.lto_.symtab') This table replaces the ELF symbol table for functions and ! variables represented in the LTO IL. Symbols used and exported by the optimized assembly code of "fat" objects might not match the ones used and exported by the intermediate code. This table is necessary because the intermediate code is less optimized and thus *************** dealing with the reading/writing of each *** 39858,39921 **** symbol table was used. The symbol table is emitted in ! 'lto-streamer-out.c':'produce_symtab'. ! * Global declarations and types ('.gnu.lto_.decls') This section contains an intermediate language dump of all declarations and types required to represent the callgraph, static variables and top-level debug info. The contents of this section are emitted in ! 'lto-streamer-out.c':'produce_asm_for_decls'. Types and symbols are emitted in a topological order that preserves the sharing of pointers when the file is read back in ! ('lto.c':'read_cgraph_and_symbols'). ! * The callgraph ('.gnu.lto_.cgraph') This section contains the basic data structure used by the GCC inter-procedural optimization infrastructure. This section stores an annotated multi-graph which represents the functions and call ! sites as well as the variables, aliases and top-level 'asm' statements. ! This section is emitted in 'lto-streamer-out.c':'output_cgraph' and ! read in 'lto-cgraph.c':'input_cgraph'. ! * IPA references ('.gnu.lto_.refs') This section contains references between function and static ! variables. It is emitted by 'lto-cgraph.c':'output_refs' and read ! by 'lto-cgraph.c':'input_refs'. ! * Function bodies ('.gnu.lto_.function_body.') This section contains function bodies in the intermediate language representation. Every function body is in a separate section to allow copying of the section independently to different object files or reading the function on demand. ! Functions are emitted in 'lto-streamer-out.c':'output_function' and ! read in 'lto-streamer-in.c':'input_function'. ! * Static variable initializers ('.gnu.lto_.vars') This section contains all the symbols in the global variable pool. ! It is emitted by 'lto-cgraph.c':'output_varpool' and read in ! 'lto-cgraph.c':'input_cgraph'. * Summaries and optimization summaries used by IPA passes ! ('.gnu.lto_.', where '' is one of 'jmpfuncs', 'pureconst' ! or 'reference') These sections are used by IPA passes that need to emit summary ! information during LTO generation to be read and aggregated at link ! time. Each pass is responsible for implementing two pass manager ! hooks: one for writing the summary and another for reading it in. ! The format of these sections is entirely up to each individual ! pass. The only requirement is that the writer and reader hooks ! agree on the format.  File: gccint.info, Node: IPA, Next: WHOPR, Prev: LTO object file layout, Up: LTO --- 40279,40342 ---- symbol table was used. The symbol table is emitted in ! `lto-streamer-out.c':`produce_symtab'. ! * Global declarations and types (`.gnu.lto_.decls') This section contains an intermediate language dump of all declarations and types required to represent the callgraph, static variables and top-level debug info. The contents of this section are emitted in ! `lto-streamer-out.c':`produce_asm_for_decls'. Types and symbols are emitted in a topological order that preserves the sharing of pointers when the file is read back in ! (`lto.c':`read_cgraph_and_symbols'). ! * The callgraph (`.gnu.lto_.cgraph') This section contains the basic data structure used by the GCC inter-procedural optimization infrastructure. This section stores an annotated multi-graph which represents the functions and call ! sites as well as the variables, aliases and top-level `asm' statements. ! This section is emitted in `lto-streamer-out.c':`output_cgraph' ! and read in `lto-cgraph.c':`input_cgraph'. ! * IPA references (`.gnu.lto_.refs') This section contains references between function and static ! variables. It is emitted by `lto-cgraph.c':`output_refs' and read ! by `lto-cgraph.c':`input_refs'. ! * Function bodies (`.gnu.lto_.function_body.') This section contains function bodies in the intermediate language representation. Every function body is in a separate section to allow copying of the section independently to different object files or reading the function on demand. ! Functions are emitted in `lto-streamer-out.c':`output_function' ! and read in `lto-streamer-in.c':`input_function'. ! * Static variable initializers (`.gnu.lto_.vars') This section contains all the symbols in the global variable pool. ! It is emitted by `lto-cgraph.c':`output_varpool' and read in ! `lto-cgraph.c':`input_cgraph'. * Summaries and optimization summaries used by IPA passes ! (`.gnu.lto_.', where `' is one of `jmpfuncs', ! `pureconst' or `reference') These sections are used by IPA passes that need to emit summary ! information during LTO generation to be read and aggregated at ! link time. Each pass is responsible for implementing two pass ! manager hooks: one for writing the summary and another for reading ! it in. The format of these sections is entirely up to each ! individual pass. The only requirement is that the writer and ! reader hooks agree on the format.  File: gccint.info, Node: IPA, Next: WHOPR, Prev: LTO object file layout, Up: LTO *************** optimization pass is split into several *** 39934,39979 **** different times during WHOPR compilation: * LGEN time ! 1. _Generate summary_ ('generate_summary' in 'struct ! ipa_opt_pass_d'). This stage analyzes every function body and ! variable initializer is examined and stores relevant information into a pass-specific data structure. ! 2. _Write summary_ ('write_summary' in 'struct ipa_opt_pass_d'). This stage writes all the pass-specific information generated ! by 'generate_summary'. Summaries go into their own ! 'LTO_section_*' sections that have to be declared in ! 'lto-streamer.h':'enum lto_section_type'. A new section is ! created by calling 'create_output_block' and data can be ! written using the 'lto_output_*' routines. * WPA time ! 1. _Read summary_ ('read_summary' in 'struct ipa_opt_pass_d'). This stage reads all the pass-specific information in exactly ! the same order that it was written by 'write_summary'. ! 2. _Execute_ ('execute' in 'struct opt_pass'). This performs inter-procedural propagation. This must be done without actual access to the individual function bodies or variable ! initializers. Typically, this results in a transitive closure ! operation over the summary information of all the nodes in the ! callgraph. ! 3. _Write optimization summary_ ('write_optimization_summary' in ! 'struct ipa_opt_pass_d'). This writes the result of the inter-procedural propagation into the object file. This can use the same data structures and helper routines used in ! 'write_summary'. * LTRANS time ! 1. _Read optimization summary_ ('read_optimization_summary' in ! 'struct ipa_opt_pass_d'). The counterpart to ! 'write_optimization_summary'. This reads the interprocedural optimization decisions in exactly the same format emitted by ! 'write_optimization_summary'. ! 2. _Transform_ ('function_transform' and 'variable_transform' in ! 'struct ipa_opt_pass_d'). The actual function bodies and variable initializers are updated based on the information passed down from the _Execute_ stage. --- 40355,40400 ---- different times during WHOPR compilation: * LGEN time ! 1. _Generate summary_ (`generate_summary' in `struct ! ipa_opt_pass_d'). This stage analyzes every function body ! and variable initializer is examined and stores relevant information into a pass-specific data structure. ! 2. _Write summary_ (`write_summary' in `struct ipa_opt_pass_d'). This stage writes all the pass-specific information generated ! by `generate_summary'. Summaries go into their own ! `LTO_section_*' sections that have to be declared in ! `lto-streamer.h':`enum lto_section_type'. A new section is ! created by calling `create_output_block' and data can be ! written using the `lto_output_*' routines. * WPA time ! 1. _Read summary_ (`read_summary' in `struct ipa_opt_pass_d'). This stage reads all the pass-specific information in exactly ! the same order that it was written by `write_summary'. ! 2. _Execute_ (`execute' in `struct opt_pass'). This performs inter-procedural propagation. This must be done without actual access to the individual function bodies or variable ! initializers. Typically, this results in a transitive ! closure operation over the summary information of all the ! nodes in the callgraph. ! 3. _Write optimization summary_ (`write_optimization_summary' in ! `struct ipa_opt_pass_d'). This writes the result of the inter-procedural propagation into the object file. This can use the same data structures and helper routines used in ! `write_summary'. * LTRANS time ! 1. _Read optimization summary_ (`read_optimization_summary' in ! `struct ipa_opt_pass_d'). The counterpart to ! `write_optimization_summary'. This reads the interprocedural optimization decisions in exactly the same format emitted by ! `write_optimization_summary'. ! 2. _Transform_ (`function_transform' and `variable_transform' in ! `struct ipa_opt_pass_d'). The actual function bodies and variable initializers are updated based on the information passed down from the _Execute_ stage. *************** LTO, WHOPR and classic non-LTO compilati *** 39993,39999 **** To simplify development, the GCC pass manager differentiates between normal inter-procedural passes and small inter-procedural passes. A ! _small inter-procedural pass_ ('SIMPLE_IPA_PASS') is a pass that does everything at once and thus it can not be executed during WPA in WHOPR mode. It defines only the _Execute_ stage and during this stage it accesses and modifies the function bodies. Such passes are useful for --- 40414,40420 ---- To simplify development, the GCC pass manager differentiates between normal inter-procedural passes and small inter-procedural passes. A ! _small inter-procedural pass_ (`SIMPLE_IPA_PASS') is a pass that does everything at once and thus it can not be executed during WPA in WHOPR mode. It defines only the _Execute_ stage and during this stage it accesses and modifies the function bodies. Such passes are useful for *************** development of a new inter-procedural pa *** 40005,40017 **** 24.3.1 Virtual clones --------------------- ! One of the main challenges of introducing the WHOPR compilation mode was ! addressing the interactions between optimization passes. In LTO compilation mode, the passes are executed in a sequence, each of which ! consists of analysis (or _Generate summary_), propagation (or _Execute_) ! and _Transform_ stages. Once the work of one pass is finished, the next ! pass sees the updated program representation and can execute. This ! makes the individual passes dependent on each other. In WHOPR mode all passes first execute their _Generate summary_ stage. Then summary writing marks the end of the LGEN stage. At WPA time, the --- 40426,40438 ---- 24.3.1 Virtual clones --------------------- ! One of the main challenges of introducing the WHOPR compilation mode ! was addressing the interactions between optimization passes. In LTO compilation mode, the passes are executed in a sequence, each of which ! consists of analysis (or _Generate summary_), propagation (or ! _Execute_) and _Transform_ stages. Once the work of one pass is ! finished, the next pass sees the updated program representation and can ! execute. This makes the individual passes dependent on each other. In WHOPR mode all passes first execute their _Generate summary_ stage. Then summary writing marks the end of the LGEN stage. At WPA time, the *************** summaries are read back into memory and *** 40019,40056 **** stage. Optimization summaries are streamed and sent to LTRANS, where all the passes execute the _Transform_ stage. ! Most optimization passes split naturally into analysis, propagation and ! transformation stages. But some do not. The main problem arises when ! one pass performs changes and the following pass gets confused by seeing ! different callgraphs between the _Transform_ stage and the _Generate ! summary_ or _Execute_ stage. This means that the passes are required to ! communicate their decisions with each other. To facilitate this communication, the GCC callgraph infrastructure implements _virtual clones_, a method of representing the changes ! performed by the optimization passes in the callgraph without needing to ! update function bodies. ! A _virtual clone_ in the callgraph is a function that has no associated ! body, just a description of how to create its body based on a different ! function (which itself may be a virtual clone). The description of function modifications includes adjustments to the function's signature (which allows, for example, removing or adding ! function arguments), substitutions to perform on the function body, and, ! for inlined functions, a pointer to the function that it will be inlined ! into. It is also possible to redirect any edge of the callgraph from a function to its virtual clone. This implies updating of the call site to adjust for the new function signature. ! Most of the transformations performed by inter-procedural optimizations ! can be represented via virtual clones. For instance, a constant ! propagation pass can produce a virtual clone of the function which ! replaces one of its arguments by a constant. The inliner can represent ! its decisions by producing a clone of a function whose body will be ! later integrated into a given function. Using _virtual clones_, the program can be easily updated during the _Execute_ stage, solving most of pass interactions problems that would --- 40440,40477 ---- stage. Optimization summaries are streamed and sent to LTRANS, where all the passes execute the _Transform_ stage. ! Most optimization passes split naturally into analysis, propagation ! and transformation stages. But some do not. The main problem arises ! when one pass performs changes and the following pass gets confused by ! seeing different callgraphs between the _Transform_ stage and the ! _Generate summary_ or _Execute_ stage. This means that the passes are ! required to communicate their decisions with each other. To facilitate this communication, the GCC callgraph infrastructure implements _virtual clones_, a method of representing the changes ! performed by the optimization passes in the callgraph without needing ! to update function bodies. ! A _virtual clone_ in the callgraph is a function that has no ! associated body, just a description of how to create its body based on ! a different function (which itself may be a virtual clone). The description of function modifications includes adjustments to the function's signature (which allows, for example, removing or adding ! function arguments), substitutions to perform on the function body, ! and, for inlined functions, a pointer to the function that it will be ! inlined into. It is also possible to redirect any edge of the callgraph from a function to its virtual clone. This implies updating of the call site to adjust for the new function signature. ! Most of the transformations performed by inter-procedural ! optimizations can be represented via virtual clones. For instance, a ! constant propagation pass can produce a virtual clone of the function ! which replaces one of its arguments by a constant. The inliner can ! represent its decisions by producing a clone of a function whose body ! will be later integrated into a given function. Using _virtual clones_, the program can be easily updated during the _Execute_ stage, solving most of pass interactions problems that would *************** otherwise occur during _Transform_. *** 40058,40070 **** Virtual clones are later materialized in the LTRANS stage and turned into real functions. Passes executed after the virtual clone were ! introduced also perform their _Transform_ stage on new functions, so for ! a pass there is no significant difference between operating on a real ! function or a virtual clone introduced before its _Execute_ stage. ! Optimization passes then work on virtual clones introduced before their ! _Execute_ stage as if they were real functions. The only difference is ! that clones are not visible during the _Generate Summary_ stage. To keep function summaries updated, the callgraph interface allows an optimizer to register a callback that is called every time a new clone --- 40479,40492 ---- Virtual clones are later materialized in the LTRANS stage and turned into real functions. Passes executed after the virtual clone were ! introduced also perform their _Transform_ stage on new functions, so ! for a pass there is no significant difference between operating on a ! real function or a virtual clone introduced before its _Execute_ stage. ! Optimization passes then work on virtual clones introduced before ! their _Execute_ stage as if they were real functions. The only ! difference is that clones are not visible during the _Generate Summary_ ! stage. To keep function summaries updated, the callgraph interface allows an optimizer to register a callback that is called every time a new clone *************** summaries updated for the _Transform_ st *** 40079,40097 **** --------------------- GCC represents IPA references in the callgraph. For a function or ! variable 'A', the _IPA reference_ is a list of all locations where the ! address of 'A' is taken and, when 'A' is a variable, a list of all ! direct stores and reads to/from 'A'. References represent an oriented multi-graph on the union of nodes of the callgraph and the varpool. See ! 'ipa-reference.c':'ipa_reference_write_optimization_summary' and ! 'ipa-reference.c':'ipa_reference_read_optimization_summary' for details. 24.3.3 Jump functions --------------------- ! Suppose that an optimization pass sees a function 'A' and it knows the values of (some of) its arguments. The _jump function_ describes the ! value of a parameter of a given function call in function 'A' based on this knowledge. Jump functions are used by several optimizations, such as the --- 40501,40519 ---- --------------------- GCC represents IPA references in the callgraph. For a function or ! variable `A', the _IPA reference_ is a list of all locations where the ! address of `A' is taken and, when `A' is a variable, a list of all ! direct stores and reads to/from `A'. References represent an oriented multi-graph on the union of nodes of the callgraph and the varpool. See ! `ipa-reference.c':`ipa_reference_write_optimization_summary' and ! `ipa-reference.c':`ipa_reference_read_optimization_summary' for details. 24.3.3 Jump functions --------------------- ! Suppose that an optimization pass sees a function `A' and it knows the values of (some of) its arguments. The _jump function_ describes the ! value of a parameter of a given function call in function `A' based on this knowledge. Jump functions are used by several optimizations, such as the *************** File: gccint.info, Node: WHOPR, Next: *** 40106,40160 **** ===================================================================== Link-time optimization gives relatively minor benefits when used alone. ! The problem is that propagation of inter-procedural information does not ! work well across functions and variables that are called or referenced ! by other compilation units (such as from a dynamically linked library). ! We say that such functions and variables are _externally visible_. To make the situation even more difficult, many applications organize themselves as a set of shared libraries, and the default ELF visibility rules allow one to overwrite any externally visible symbol with a different symbol at runtime. This basically disables any optimizations ! across such functions and variables, because the compiler cannot be sure ! that the function body it is seeing is the same function body that will ! be used at runtime. Any function or variable not declared 'static' in ! the sources degrades the quality of inter-procedural optimization. To avoid this problem the compiler must assume that it sees the whole ! program when doing link-time optimization. Strictly speaking, the whole ! program is rarely visible even at link-time. Standard system libraries ! are usually linked dynamically or not provided with the link-time ! information. In GCC, the whole program option ('-fwhole-program') ! asserts that every function and variable defined in the current ! compilation unit is static, except for function 'main' (note: at link ! time, the current unit is the union of all objects compiled with LTO). ! Since some functions and variables need to be referenced externally, for ! example by another DSO or from an assembler file, GCC also provides the ! function and variable attribute 'externally_visible' which can be used ! to disable the effect of '-fwhole-program' on a specific symbol. The whole program mode assumptions are slightly more complex in C++, where inline functions in headers are put into _COMDAT_ sections. COMDAT function and variables can be defined by multiple object files ! and their bodies are unified at link-time and dynamic link-time. COMDAT ! functions are changed to local only when their address is not taken and ! thus un-sharing them with a library is not harmful. COMDAT variables ! always remain externally visible, however for readonly variables it is ! assumed that their initializers cannot be overwritten by a different ! value. ! GCC provides the function and variable attribute 'visibility' that can be used to specify the visibility of externally visible symbols (or ! alternatively an '-fdefault-visibility' command line option). ELF ! defines the 'default', 'protected', 'hidden' and 'internal' visibilities. ! The most commonly used is visibility is 'hidden'. It specifies that the symbol cannot be referenced from outside of the current shared ! library. Unfortunately, this information cannot be used directly by the ! link-time optimization in the compiler since the whole shared library ! also might contain non-LTO objects and those are not visible to the ! compiler. GCC solves this problem using linker plugins. A _linker plugin_ is an interface to the linker that allows an external program to claim the --- 40528,40585 ---- ===================================================================== Link-time optimization gives relatively minor benefits when used alone. ! The problem is that propagation of inter-procedural information does ! not work well across functions and variables that are called or ! referenced by other compilation units (such as from a dynamically ! linked library). We say that such functions and variables are ! _externally visible_. To make the situation even more difficult, many applications organize themselves as a set of shared libraries, and the default ELF visibility rules allow one to overwrite any externally visible symbol with a different symbol at runtime. This basically disables any optimizations ! across such functions and variables, because the compiler cannot be ! sure that the function body it is seeing is the same function body that ! will be used at runtime. Any function or variable not declared ! `static' in the sources degrades the quality of inter-procedural ! optimization. To avoid this problem the compiler must assume that it sees the whole ! program when doing link-time optimization. Strictly speaking, the ! whole program is rarely visible even at link-time. Standard system ! libraries are usually linked dynamically or not provided with the ! link-time information. In GCC, the whole program option ! (`-fwhole-program') asserts that every function and variable defined in ! the current compilation unit is static, except for function `main' ! (note: at link time, the current unit is the union of all objects ! compiled with LTO). Since some functions and variables need to be ! referenced externally, for example by another DSO or from an assembler ! file, GCC also provides the function and variable attribute ! `externally_visible' which can be used to disable the effect of ! `-fwhole-program' on a specific symbol. The whole program mode assumptions are slightly more complex in C++, where inline functions in headers are put into _COMDAT_ sections. COMDAT function and variables can be defined by multiple object files ! and their bodies are unified at link-time and dynamic link-time. ! COMDAT functions are changed to local only when their address is not ! taken and thus un-sharing them with a library is not harmful. COMDAT ! variables always remain externally visible, however for readonly ! variables it is assumed that their initializers cannot be overwritten ! by a different value. ! GCC provides the function and variable attribute `visibility' that can be used to specify the visibility of externally visible symbols (or ! alternatively an `-fdefault-visibility' command line option). ELF ! defines the `default', `protected', `hidden' and `internal' visibilities. ! The most commonly used is visibility is `hidden'. It specifies that the symbol cannot be referenced from outside of the current shared ! library. Unfortunately, this information cannot be used directly by ! the link-time optimization in the compiler since the whole shared ! library also might contain non-LTO objects and those are not visible to ! the compiler. GCC solves this problem using linker plugins. A _linker plugin_ is an interface to the linker that allows an external program to claim the *************** ownership of a given object file. The l *** 40162,40201 **** procedure by querying the plugin about the symbol table of the claimed objects and once the linking decisions are complete, the plugin is allowed to provide the final object file before the actual linking is ! made. The linker plugin obtains the symbol resolution information which ! specifies which symbols provided by the claimed objects are bound from ! the rest of a binary being linked. ! Currently, the linker plugin works only in combination with the Gold linker, but a GNU ld implementation is under development. ! GCC is designed to be independent of the rest of the toolchain and aims ! to support linkers without plugin support. For this reason it does not ! use the linker plugin by default. Instead, the object files are ! examined by 'collect2' before being passed to the linker and objects ! found to have LTO sections are passed to 'lto1' first. This mode does ! not work for library archives. The decision on what object files from ! the archive are needed depends on the actual linking and thus GCC would ! have to implement the linker itself. The resolution information is ! missing too and thus GCC needs to make an educated guess based on ! '-fwhole-program'. Without the linker plugin GCC also assumes that ! symbols are declared 'hidden' and not referred by non-LTO code by default.  File: gccint.info, Node: Internal flags, Prev: WHOPR, Up: LTO ! 24.5 Internal flags controlling 'lto1' ====================================== ! The following flags are passed into 'lto1' and are not meant to be used directly from the command line. * -fwpa This option runs the serial part of the link-time optimizer performing the inter-procedural propagation (WPA mode). The compiler reads in summary information from all inputs and performs ! an analysis based on summary information only. It generates object ! files for subsequent runs of the link-time optimizer where individual object files are optimized using both summary information from the WPA mode and the actual function bodies. It then drives the LTRANS phase. --- 40587,40626 ---- procedure by querying the plugin about the symbol table of the claimed objects and once the linking decisions are complete, the plugin is allowed to provide the final object file before the actual linking is ! made. The linker plugin obtains the symbol resolution information ! which specifies which symbols provided by the claimed objects are bound ! from the rest of a binary being linked. ! Currently, the linker plugin works only in combination with the Gold linker, but a GNU ld implementation is under development. ! GCC is designed to be independent of the rest of the toolchain and ! aims to support linkers without plugin support. For this reason it ! does not use the linker plugin by default. Instead, the object files ! are examined by `collect2' before being passed to the linker and ! objects found to have LTO sections are passed to `lto1' first. This ! mode does not work for library archives. The decision on what object ! files from the archive are needed depends on the actual linking and ! thus GCC would have to implement the linker itself. The resolution ! information is missing too and thus GCC needs to make an educated guess ! based on `-fwhole-program'. Without the linker plugin GCC also assumes ! that symbols are declared `hidden' and not referred by non-LTO code by default.  File: gccint.info, Node: Internal flags, Prev: WHOPR, Up: LTO ! 24.5 Internal flags controlling `lto1' ====================================== ! The following flags are passed into `lto1' and are not meant to be used directly from the command line. * -fwpa This option runs the serial part of the link-time optimizer performing the inter-procedural propagation (WPA mode). The compiler reads in summary information from all inputs and performs ! an analysis based on summary information only. It generates ! object files for subsequent runs of the link-time optimizer where individual object files are optimized using both summary information from the WPA mode and the actual function bodies. It then drives the LTRANS phase. *************** directly from the command line. *** 40205,40217 **** previous run of the LTO in WPA mode. In the LTRANS mode, LTO optimizes an object and produces the final assembly. ! * -fltrans-output-list=FILE This option specifies a file to which the ! names of LTRANS output files are written. This option is only ! meaningful in conjunction with '-fwpa'. ! * -fresolution=FILE This option specifies the linker resolution file. ! This option is only meaningful in conjunction with '-fwpa' and as ! option to pass through to the LTO linker plugin.  File: gccint.info, Node: Funding, Next: GNU Project, Prev: LTO, Up: Top --- 40630,40642 ---- previous run of the LTO in WPA mode. In the LTRANS mode, LTO optimizes an object and produces the final assembly. ! * -fltrans-output-list=FILE This option specifies a file to which ! the names of LTRANS output files are written. This option is only ! meaningful in conjunction with `-fwpa'. ! * -fresolution=FILE This option specifies the linker resolution ! file. This option is only meaningful in conjunction with `-fwpa' ! and as option to pass through to the LTO linker plugin.  File: gccint.info, Node: Funding, Next: GNU Project, Prev: LTO, Up: Top *************** to free software developers--the Free So *** 40230,40237 **** The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors they ! must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project --- 40655,40662 ---- The way to convince distributors to do this is to demand it and expect it from them. So when you compare distributors, judge them partly by ! how much they give to free software development. Show distributors ! they must compete to be the one who gives the most. To make this approach work, you must insist on numbers that you can compare, such as, "We will donate ten dollars to the Frobnitz project *************** for comparison. *** 40241,40248 **** Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. If ! the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful --- 40666,40673 ---- Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. ! If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful *************** difference than others. For example, ma *** 40252,40259 **** a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection contribute ! more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can --- 40677,40684 ---- a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection ! contribute more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can *************** now widely used; though these systems ar *** 40277,40284 **** they are more accurately called GNU/Linux systems. For more information, see: ! !  File: gccint.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top --- 40702,40709 ---- they are more accurately called GNU/Linux systems. For more information, see: ! `http://www.gnu.org/' ! `http://www.gnu.org/gnu/linux-and-gnu.html'  File: gccint.info, Node: Copying, Next: GNU Free Documentation License, Prev: GNU Project, Up: Top *************** GNU General Public License *** 40288,40294 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 40713,40719 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU General Public License for most of o *** 40308,40334 **** any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not price. ! Our General Public Licenses are designed to make sure that you have the ! freedom to distribute copies of free software (and charge for them if ! you wish), that you receive source code or can get it if you want it, ! that you can change the software or use pieces of it in new free ! programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether gratis ! or for a fee, you must pass on to the recipients the same freedoms that ! you received. You must make sure that they, too, receive or can get the ! source code. And you must show them these terms so they know their ! rights. ! Developers that use the GNU GPL protect your rights with two steps: (1) ! assert copyright on the software, and (2) offer you this License giving ! you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and --- 40733,40759 ---- any other work released this way by its authors. You can apply it to your programs, too. ! When we speak of free software, we are referring to freedom, not ! price. Our General Public Licenses are designed to make sure that you ! have the freedom to distribute copies of free software (and charge for ! them if you wish), that you receive source code or can get it if you ! want it, that you can change the software or use pieces of it in new ! free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. ! For example, if you distribute copies of such a program, whether ! gratis or for a fee, you must pass on to the recipients the same ! freedoms that you received. You must make sure that they, too, receive ! or can get the source code. And you must show them these terms so they ! know their rights. ! Developers that use the GNU GPL protect your rights with two steps: ! (1) assert copyright on the software, and (2) offer you this License ! giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and *************** changed, so that their problems will not *** 40337,40351 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 40762,40777 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 40382,40389 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 40808,40815 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 40397,40404 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 40823,40830 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 40406,40413 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 40832,40839 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 40418,40427 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 40844,40853 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 40429,40443 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 40855,40869 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 40454,40475 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 40880,40901 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 40486,40493 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 40912,40919 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 40557,40564 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 40983,40990 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 40568,40598 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 40994,41025 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. + A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 40600,40607 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 41027,41034 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 40632,40642 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 41059,41069 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 40666,40673 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 41093,41100 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 40677,40684 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 41104,41112 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 40697,40706 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 41125,41135 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 40716,40728 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 41145,41157 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 40734,40743 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 41163,41172 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 40751,40757 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 41180,41186 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 40765,40785 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 41194,41214 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 40799,40813 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 41228,41242 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 40837,40871 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 41266,41301 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 40876,40896 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 41306,41327 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 40902,40925 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 41333,41356 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 40927,40933 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 41358,41364 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 40936,40941 **** --- 41367,41373 ---- connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. + END OF TERMS AND CONDITIONS =========================== *************** possible use to the public, the best way *** 40947,40955 **** free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest to ! attach them to the start of each source file to most effectively state ! the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. --- 41379,41387 ---- free software which everyone can redistribute and change under these terms. ! To do so, attach the following notices to the program. It is safest ! to attach them to the start of each source file to most effectively ! state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. ONE LINE TO GIVE THE PROGRAM'S NAME AND A BRIEF IDEA OF WHAT IT DOES. *************** the exclusion of warranty; and each file *** 40966,40985 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short notice ! like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 41398,41417 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. ! If the program does terminal interaction, make it output a short ! notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 40987,41000 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gccint.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top --- 41419,41432 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gccint.info, Node: GNU Free Documentation License, Next: Contributors, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 41005,41011 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 41437,41443 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 41030,41050 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 41462,41482 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 41062,41073 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 41494,41505 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 41078,41104 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 41510,41536 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 41136,41143 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 41568,41575 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 41151,41161 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 41583,41594 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 41163,41201 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 41596,41635 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 41225,41254 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 41659,41689 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 41261,41271 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 41696,41706 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 41274,41288 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 41709,41723 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 41292,41299 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 41727,41734 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 41320,41339 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 41755,41774 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 41378,41385 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 41813,41820 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 41391,41423 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 41826,41858 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 41447,41452 **** --- 41882,41888 ---- site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. + ADDENDUM: How to use this License for your documents ==================================================== *************** notices just after the title page: *** 41463,41469 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 41899,41905 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 41474,41482 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gccint.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 41910,41918 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gccint.info, Node: Contributors, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** File: gccint.info, Node: Contributors, *** 41484,41492 **** Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without them ! the project would not have been nearly as successful as it has been. ! Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. --- 41920,41928 ---- Contributors to GCC ******************* ! The GCC project would like to thank its many contributors. Without ! them the project would not have been nearly as successful as it has ! been. Any omissions in this list are accidental. Feel free to contact or if you have been left out or some of your contributions are not listed. Please keep this list in alphabetical order. *************** alphabetical order. *** 41616,41622 **** * The GNU Classpath project for all of their merged runtime code. * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work, ! '--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. --- 42052,42058 ---- * The GNU Classpath project for all of their merged runtime code. * Nick Clifton for arm, mcore, fr30, v850, m32r, msp430 rx work, ! `--help', and other random hacking. * Michael Cook for libstdc++ cleanup patches to reduce warnings. *************** alphabetical order. *** 41636,41643 **** * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs that ! print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. --- 42072,42079 ---- * Paul Dale for his work to add uClinux platform support to the m68k backend. ! * Dario Dariol contributed the four varieties of sample programs ! that print a copy of their source. * Russell Davidson for fstream and stringstream fixes in libstdc++. *************** alphabetical order. *** 41652,41670 **** * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including 'valarray<>', 'complex<>', maintaining the numerics ! library (including that pesky '' :-) and keeping up-to-date ! anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the C++ ! runtime libraries including for all kinds of C interface issues, ! contributing and maintaining 'complex<>', sanity checking and ! disbursement, configuration architecture, libio maintenance, and ! early math work. * Franc,ois Dumont for his work on libstdc++-v3, especially ! maintaining and improving 'debug-mode' and associative and unordered containers. * Zdenek Dvorak for a new loop unroller and various fixes. --- 42088,42106 ---- * Gabriel Dos Reis for contributions to G++, contributions and maintenance of GCC diagnostics infrastructure, libstdc++-v3, ! including `valarray<>', `complex<>', maintaining the numerics ! library (including that pesky `' :-) and keeping ! up-to-date anything to do with numbers. * Ulrich Drepper for his work on glibc, testing of GCC using glibc, ! ISO C99 support, CFG dumping support, etc., plus support of the ! C++ runtime libraries including for all kinds of C interface ! issues, contributing and maintaining `complex<>', sanity checking ! and disbursement, configuration architecture, libio maintenance, ! and early math work. * Franc,ois Dumont for his work on libstdc++-v3, especially ! maintaining and improving `debug-mode' and associative and unordered containers. * Zdenek Dvorak for a new loop unroller and various fixes. *************** alphabetical order. *** 41716,41725 **** * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make '-W -Wall -W* -Werror' useful, and testing GCC ! on a plethora of platforms. Kaveh extends his gratitude to the ! CAIP Center at Rutgers University for providing him with computing ! resources to work on Free Software from the late 1980s to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. --- 42152,42162 ---- * Peter Gerwinski for various bug fixes and the Pascal front end. * Kaveh R. Ghazi for his direction via the steering committee, ! amazing work to make `-W -Wall -W* -Werror' useful, and testing ! GCC on a plethora of platforms. Kaveh extends his gratitude to ! the CAIP Center at Rutgers University for providing him with ! computing resources to work on Free Software from the late 1980s ! to 2010. * John Gilmore for a donation to the FSF earmarked improving GNU Java. *************** alphabetical order. *** 41731,41748 **** support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his '-Os' contributions, the moxie port, and Java ! front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug Java ! code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Biener for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the 'protoize' and 'unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. --- 42168,42185 ---- support, improved leaf function register allocation, and his direction via the steering committee. ! * Anthony Green for his `-Os' contributions, the moxie port, and ! Java front end work. ! * Stu Grossman for gdb hacking, allowing GCJ developers to debug ! Java code. * Michael K. Gschwind contributed the port to the PDP-11. * Richard Biener for his ongoing middle-end contributions and bug fixes and for release management. ! * Ron Guilmette implemented the `protoize' and `unprotoize' tools, the support for Dwarf symbolic debugging information, and much of the support for System V Release 4. He has also worked heavily on the Intel 386 and 860 support. *************** alphabetical order. *** 41761,41768 **** series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll improvements ! and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. --- 42198,42205 ---- series 300. * Michael Hayes for various thankless work he's done trying to get ! the c30/c40 ports functional. Lots of loop and unroll ! improvements and fixes. * Dara Hazeghi for wading through myriads of target-specific bug reports. *************** alphabetical order. *** 41796,41803 **** * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ColdFire ! improvements and uClinux support. * Christian Iseli for various bug fixes. --- 42233,42240 ---- * Falk Hueffner for working on C and optimization bug reports. ! * Bernardo Innocenti for his m68k work, including merging of ! ColdFire improvements and uClinux support. * Christian Iseli for various bug fixes. *************** alphabetical order. *** 41845,41857 **** * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to better ! support RISC processors including changes to common subexpression ! elimination, strength reduction, function calling sequence ! handling, and condition code support, in addition to generalizing ! the code for frame pointer elimination and delay slot scheduling. ! Richard Kenner was also the head maintainer of GCC for several ! years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, --- 42282,42294 ---- * Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM RS/6000 as well as the ! support for instruction attributes. He also made changes to ! better support RISC processors including changes to common ! subexpression elimination, strength reduction, function calling ! sequence handling, and condition code support, in addition to ! generalizing the code for frame pointer elimination and delay slot ! scheduling. Richard Kenner was also the head maintainer of GCC ! for several years. * Mumit Khan for various contributions to the Cygwin and Mingw32 ports and maintaining binary releases for Microsoft Windows hosts, *************** alphabetical order. *** 41874,41884 **** * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, coordinating ! the entire egcs project and GCC 2.95, rolling out snapshots and ! releases, handling merges from GCC2, reviewing tons of patches that ! might have fallen through the cracks else, and random but extensive ! hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. --- 42311,42321 ---- * Asher Langton and Mike Kumbera for contributing Cray pointer support to GNU Fortran, and for other GNU Fortran improvements. ! * Jeff Law for his direction via the steering committee, ! coordinating the entire egcs project and GCC 2.95, rolling out ! snapshots and releases, handling merges from GCC2, reviewing tons ! of patches that might have fallen through the cracks else, and ! random but extensive hacking. * Walter Lee for work on the TILE-Gx and TILEPro ports. *************** alphabetical order. *** 41907,41913 **** * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving '-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and --- 42344,42350 ---- * Weiwen Liu for testing and various bug fixes. ! * Manuel Lo'pez-Iba'n~ez for improving `-Wconversion' and many other diagnostics fixes and improvements. * Dave Love for his ongoing work with the Fortran front end and *************** alphabetical order. *** 41924,41936 **** * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global optimizer, ! etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall knowledge ! and direction in the area of instruction scheduling, and design and ! implementation of the automaton based instruction scheduler. * Bob Manson for his behind the scenes work on dejagnu. --- 42361,42374 ---- * Greg McGary for random fixes and (someday) bounded pointers. * Andrew MacLeod for his ongoing work in building a real EH system, ! various code generation improvements, work on the global ! optimizer, etc. * Vladimir Makarov for hacking some ugly i960 problems, PowerPC ! hacking improvements to compile-time performance, overall ! knowledge and direction in the area of instruction scheduling, and ! design and implementation of the automaton based instruction ! scheduler. * Bob Manson for his behind the scenes work on dejagnu. *************** alphabetical order. *** 41963,41969 **** * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C 'restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. --- 42401,42407 ---- * Mark Mitchell for his direction via the steering committee, mountains of C++ work, load/store hoisting out of loops, alias ! analysis improvements, ISO C `restrict' support, and serving as release manager from 2000 to 2011. * Alan Modra for various GNU/Linux bits and testing. *************** alphabetical order. *** 41973,41981 **** * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all this ! work on scrap paper and the backs of envelopes would have been... ! difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC --- 42411,42419 ---- * Jason Molenda for major help in the care and feeding of all the services on the gcc.gnu.org (formerly egcs.cygnus.com) ! machine--mail, web services, ftp services, etc etc. Doing all ! this work on scrap paper and the backs of envelopes would have ! been... difficult. * Catherine Moore for fixing various ugly problems we have sent her way, including the haifa bug which was killing the Alpha & PowerPC *************** alphabetical order. *** 41987,41994 **** initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating point ! numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. --- 42425,42432 ---- initial IA-64 port. * Stephen Moshier contributed the floating point emulator that ! assists in cross-compilation and permits support for floating ! point numbers wider than 64 bits and for ISO C99 support. * Bill Moyer for his behind the scenes work on various issues. *************** alphabetical order. *** 42011,42019 **** * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to the ! search engine setup, various documentation fixes and other small ! fixes. * Geoff Noer for his work on getting cygwin native builds working. --- 42449,42457 ---- * NeXT, Inc. donated the front end that supports the Objective-C language. ! * Hans-Peter Nilsson for the CRIS and MMIX ports, improvements to ! the search engine setup, various documentation fixes and other ! small fixes. * Geoff Noer for his work on getting cygwin native builds working. *************** alphabetical order. *** 42021,42028 **** tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and related ! infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues --- 42459,42466 ---- tracking web pages, GIMPLE tuples, and assorted fixes. * David O'Brien for the FreeBSD/alpha, FreeBSD/AMD x86-64, ! FreeBSD/ARM, FreeBSD/PowerPC, and FreeBSD/SPARC64 ports and ! related infrastructure improvements. * Alexandre Oliva for various build infrastructure improvements, scripts and amazing testing work, including keeping libtool issues *************** alphabetical order. *** 42034,42041 **** * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the IRIX, ! Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. --- 42472,42479 ---- * Rainer Orth for random MIPS work, including improvements to GCC's o32 ABI support, improvements to dejagnu's MIPS support, Java ! configuration clean-ups and porting work, and maintaining the ! IRIX, Solaris 2, and Tru64 UNIX ports. * Hartmut Penner for work on the s390 port. *************** alphabetical order. *** 42085,42091 **** * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old 'g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. --- 42523,42529 ---- * David Ronis inspired and encouraged Craig to rewrite the G77 documentation in texinfo format by contributing a first pass at a ! translation of the old `g77-0.5.16/f/DOC' file. * Ken Rose for fixes to GCC's delay slot filling code. *************** alphabetical order. *** 42115,42122 **** * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC 2.95.3, ! and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for --- 42553,42560 ---- * Tobias Schlu"ter for work on GNU Fortran. * Bernd Schmidt for various code generation improvements and major ! work in the reload pass, serving as release manager for GCC ! 2.95.3, and work on the Blackfin and C6X ports. * Peter Schmid for constant testing of libstdc++--especially application testing, going above and beyond what was requested for *************** alphabetical order. *** 42131,42137 **** * Dodji Seketeli for numerous C++ bug fixes and debug info improvements. ! * Tim Shen for major work on ''. * Joel Sherrill for his direction via the steering committee, RTEMS contributions and RTEMS testing. --- 42569,42575 ---- * Dodji Seketeli for numerous C++ bug fixes and debug info improvements. ! * Tim Shen for major work on `'. * Joel Sherrill for his direction via the steering committee, RTEMS contributions and RTEMS testing. *************** alphabetical order. *** 42146,42153 **** from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable for ! GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. --- 42584,42591 ---- from the LWG (thereby keeping GCC in line with updates from the ISO). ! * Franz Sirl for his ongoing work with making the PPC port stable ! for GNU/Linux. * Andrey Slepuhin for assorted AIX hacking. *************** alphabetical order. *** 42160,42171 **** * Randy Smith finished the Sun FPA support. * Ed Smith-Rowland for his continuous work on libstdc++-v3, special ! functions, '', and various improvements to C++11 features. * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for 'INTEGER*1', 'INTEGER*2', and ! 'LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. --- 42598,42609 ---- * Randy Smith finished the Sun FPA support. * Ed Smith-Rowland for his continuous work on libstdc++-v3, special ! functions, `', and various improvements to C++11 features. * Scott Snyder for queue, iterator, istream, and string fixes and libstdc++ testsuite entries. Also for providing the patch to G77 ! to add rudimentary support for `INTEGER*1', `INTEGER*2', and ! `LOGICAL*1'. * Zdenek Sojka for running automated regression testing of GCC and reporting numerous bugs. *************** alphabetical order. *** 42189,42196 **** * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years and ! more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. --- 42627,42634 ---- * John Stracke for his Java HTTP protocol fixes. ! * Mike Stump for his Elxsi port, G++ contributions over the years ! and more recently his vxworks contributions * Jeff Sturm for Java porting help, bug fixes, and encouragement. *************** alphabetical order. *** 42244,42251 **** * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML to ! texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. --- 42682,42689 ---- * Jonathan Wakely for contributing libstdc++ Doxygen notes and XHTML guidance. ! * Dean Wakerley for converting the install documentation from HTML ! to texinfo in time for GCC 3.0. * Krister Walfridsson for random bug fixes. *************** alphabetical order. *** 42253,42260 **** * Stephen M. Webb for time and effort on making libstdc++ shadow files work with the tricky Solaris 8+ headers, and for pushing the ! build-time header tree. Also, for starting and driving the ! '' effort. * John Wehle for various improvements for the x86 code generator, related infrastructure improvements to help x86 code generation, --- 42691,42698 ---- * Stephen M. Webb for time and effort on making libstdc++ shadow files work with the tricky Solaris 8+ headers, and for pushing the ! build-time header tree. Also, for starting and driving the ! `' effort. * John Wehle for various improvements for the x86 code generator, related infrastructure improvements to help x86 code generation, *************** alphabetical order. *** 42276,42283 **** * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work on, ! strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. --- 42714,42721 ---- * Bob Wilson from Tensilica, Inc. for the Xtensa port. * Jim Wilson for his direction via the steering committee, tackling ! hard problems in various places that nobody else wanted to work ! on, strength reduction and other loop optimizations. * Paul Woegerer and Tal Agmon for the CRX port. *************** alphabetical order. *** 42300,42305 **** --- 42738,42744 ---- * Gilles Zunino for help porting Java to Irix. + The following people are recognized for their contributions to GNAT, the Ada front end of GCC: * Bernard Banner *************** the Ada front end of GCC: *** 42396,42497 **** * Samuel Tardieu The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for 'JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for 'GapContent' bug fixes. ! * Anthony Balkissoon for 'JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including 'JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for 'HTTPURLConnection' fixes. ! * Gary Benson for 'MessageFormat' fixes. ! * Daniel Bonniot for 'Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, 'StAX' ! and 'DOM xml:id' support. ! * Ka-Hing Cheung for 'TreePath' and 'TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! 'URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better 'SocketTimeoutException'. ! * David Daney for 'BitSet' bug fixes, 'HttpURLConnection' rewrite and ! improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for 'ClassLoader' and nio cleanups, serialization ! fixes, better 'Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for 'AccessControlContext' fixes. ! * Nicolas Geoffray for 'VMClassLoader' and 'AccessController' improvements. ! * David Gilbert for 'basic' and 'metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! 'MetalIconFactory' implementation. ! * Anthony Green for 'MIDI' framework, 'ALSA' and 'DSSI' providers. ! * Andrew Haley for 'Serialization' and 'URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for 'JFileChooser' implementation. ! * Andrew John Hughes for 'Locale' and net fixes, URI RFC2986 updates, ! 'Serialization' fixes, 'Properties' XML support and generic branch ! work, VMIntegration guide update. ! * Bastiaan Huisman for 'TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better '-Werror' support. ! * Ito Kazumitsu for 'NetworkInterface' implementation and updates. ! * Roman Kennke for 'BoxLayout', 'GrayFilter' and 'SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for 'String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, 'Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native 'Pointer' updates. Logger bug ! fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for 'Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and 'TextLayout' ! fixes. 'GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, 'FileChannel' lock, ! 'SystemLogger' and 'FileHandler' rotate implementations, NIO ! 'FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. --- 42835,42936 ---- * Samuel Tardieu + The following people are recognized for their contributions of new features, bug reports, testing and integration of classpath/libgcj for GCC version 4.1: ! * Lillian Angel for `JTree' implementation and lots Free Swing additions and bug fixes. ! * Wolfgang Baer for `GapContent' bug fixes. ! * Anthony Balkissoon for `JList', Free Swing 1.5 updates and mouse ! event fixes, lots of Free Swing work including `JTable' editing. * Stuart Ballard for RMI constant fixes. ! * Goffredo Baroncelli for `HTTPURLConnection' fixes. ! * Gary Benson for `MessageFormat' fixes. ! * Daniel Bonniot for `Serialization' fixes. ! * Chris Burdess for lots of gnu.xml and http protocol fixes, `StAX' ! and `DOM xml:id' support. ! * Ka-Hing Cheung for `TreePath' and `TreeSelection' fixes. * Archie Cobbs for build fixes, VM interface updates, ! `URLClassLoader' updates. * Kelley Cook for build fixes. ! * Martin Cordova for Suggestions for better `SocketTimeoutException'. ! * David Daney for `BitSet' bug fixes, `HttpURLConnection' rewrite ! and improvements. * Thomas Fitzsimmons for lots of upgrades to the gtk+ AWT and Cairo ! 2D support. Lots of imageio framework additions, lots of AWT and Free Swing bug fixes. ! * Jeroen Frijters for `ClassLoader' and nio cleanups, serialization ! fixes, better `Proxy' support, bug fixes and IKVM integration. ! * Santiago Gala for `AccessControlContext' fixes. ! * Nicolas Geoffray for `VMClassLoader' and `AccessController' improvements. ! * David Gilbert for `basic' and `metal' icon and plaf support and lots of documenting, Lots of Free Swing and metal theme additions. ! `MetalIconFactory' implementation. ! * Anthony Green for `MIDI' framework, `ALSA' and `DSSI' providers. ! * Andrew Haley for `Serialization' and `URLClassLoader' fixes, gcj build speedups. ! * Kim Ho for `JFileChooser' implementation. ! * Andrew John Hughes for `Locale' and net fixes, URI RFC2986 ! updates, `Serialization' fixes, `Properties' XML support and ! generic branch work, VMIntegration guide update. ! * Bastiaan Huisman for `TimeZone' bug fixing. * Andreas Jaeger for mprec updates. ! * Paul Jenner for better `-Werror' support. ! * Ito Kazumitsu for `NetworkInterface' implementation and updates. ! * Roman Kennke for `BoxLayout', `GrayFilter' and `SplitPane', plus ! bug fixes all over. Lots of Free Swing work including styled text. ! * Simon Kitching for `String' cleanups and optimization suggestions. ! * Michael Koch for configuration fixes, `Locale' updates, bug and build fixes. * Guilhem Lavaux for configuration, thread and channel fixes and ! Kaffe integration. JCL native `Pointer' updates. Logger bug fixes. * David Lichteblau for JCL support library global/local reference cleanups. * Aaron Luchko for JDWP updates and documentation fixes. ! * Ziga Mahkovec for `Graphics2D' upgraded to Cairo 0.5 and new regex features. ! * Sven de Marothy for BMP imageio support, CSS and `TextLayout' ! fixes. `GtkImage' rewrite, 2D, awt, free swing and date/time fixes and implementing the Qt4 peers. ! * Casey Marshall for crypto algorithm fixes, `FileChannel' lock, ! `SystemLogger' and `FileHandler' rotate implementations, NIO ! `FileChannel.map' support, security and policy updates. * Bryce McKinlay for RMI work. *************** GCC version 4.1: *** 42502,42546 **** * Rainer Orth for build fixes. ! * Andrew Overholt for 'File' locking fixes. ! * Ingo Proetel for 'Image', 'Logger' and 'URLClassLoader' updates. ! * Olga Rodimina for 'MenuSelectionManager' implementation. ! * Jan Roehrich for 'BasicTreeUI' and 'JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! 'TreeNode' enumerations and 'ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and 'CACAO' integration, 'fdlibm' updates. ! * Gael Thomas for 'VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, 'Qt4' ! support for Darwin/OS X, 'Graphics2D' support, 'gtk+' updates. ! * Dalibor Topic for better 'DEBUG' support, build cleanups and Kaffe ! integration. 'Qt4' build infrastructure, 'SHA1PRNG' and ! 'GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! 'Clipboard' implementation, system call interrupts and network ! timeouts and 'GdkPixpufDecoder' fixes. ! In addition to the above, all of which also contributed time and energy ! in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek --- 42941,42986 ---- * Rainer Orth for build fixes. ! * Andrew Overholt for `File' locking fixes. ! * Ingo Proetel for `Image', `Logger' and `URLClassLoader' updates. ! * Olga Rodimina for `MenuSelectionManager' implementation. ! * Jan Roehrich for `BasicTreeUI' and `JTree' fixes. * Julian Scheid for documentation updates and gjdoc support. * Christian Schlichtherle for zip fixes and cleanups. * Robert Schuster for documentation updates and beans fixes, ! `TreeNode' enumerations and `ActionCommand' and various fixes, XML and URL, AWT and Free Swing bug fixes. * Keith Seitz for lots of JDWP work. * Christian Thalinger for 64-bit cleanups, Configuration and VM ! interface fixes and `CACAO' integration, `fdlibm' updates. ! * Gael Thomas for `VMClassLoader' boot packages support suggestions. ! * Andreas Tobler for Darwin and Solaris testing and fixing, `Qt4' ! support for Darwin/OS X, `Graphics2D' support, `gtk+' updates. ! * Dalibor Topic for better `DEBUG' support, build cleanups and Kaffe ! integration. `Qt4' build infrastructure, `SHA1PRNG' and ! `GdkPixbugDecoder' updates. * Tom Tromey for Eclipse integration, generics work, lots of bug fixes and gcj integration including coordinating The Big Merge. * Mark Wielaard for bug fixes, packaging and release management, ! `Clipboard' implementation, system call interrupts and network ! timeouts and `GdkPixpufDecoder' fixes. ! ! In addition to the above, all of which also contributed time and ! energy in testing GCC, we would like to thank the following for their contributions to testing: * Michael Abd-El-Malek *************** File: gccint.info, Node: Option Index, *** 42709,42717 **** Option Index ************ ! GCC's command line options are indexed here without any initial '-' or ! '--'. Where an option has both positive and negative forms (such as ! '-fOPTION' and '-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. --- 43149,43157 ---- Option Index ************ ! GCC's command line options are indexed here without any initial `-' or ! `--'. Where an option has both positive and negative forms (such as ! `-fOPTION' and `-fno-OPTION'), relevant entries in the manual are indexed under the most appropriate form; it may sometimes be useful to look up both forms. *************** Concept Index *** 42734,46290 **** [index] * Menu: ! * '!' in constraint: Multi-Alternative. (line 47) ! * '#' in constraint: Modifiers. (line 67) ! * '#' in template: Output Template. (line 66) * #pragma: Misc. (line 387) ! * '%' in constraint: Modifiers. (line 45) * % in GTY option: GTY Options. (line 18) ! * '%' in template: Output Template. (line 6) ! * '&' in constraint: Modifiers. (line 25) * (nil): RTL Objects. (line 73) ! * '*' in constraint: Modifiers. (line 72) ! * '*' in template: Output Statement. (line 29) ! * '+' in constraint: Modifiers. (line 12) ! * '-fsection-anchors': Special Accessors. (line 117) ! * '-fsection-anchors' <1>: Anchored Addresses. (line 6) ! * '/c' in RTL dump: Flags. (line 221) ! * '/f' in RTL dump: Flags. (line 229) ! * '/i' in RTL dump: Flags. (line 274) ! * '/j' in RTL dump: Flags. (line 286) ! * '/s' in RTL dump: Flags. (line 245) ! * '/u' in RTL dump: Flags. (line 296) ! * '/v' in RTL dump: Flags. (line 328) ! * '0' in constraint: Simple Constraints. (line 128) ! * '<' in constraint: Simple Constraints. (line 47) ! * '=' in constraint: Modifiers. (line 8) ! * '>' in constraint: Simple Constraints. (line 59) ! * '?' in constraint: Multi-Alternative. (line 41) * \: Output Template. (line 46) * __absvdi2: Integer library routines. ! (line 106) * __absvsi2: Integer library routines. ! (line 105) * __addda3: Fixed-point fractional library routines. ! (line 44) * __adddf3: Soft float library routines. ! (line 22) * __adddq3: Fixed-point fractional library routines. ! (line 31) * __addha3: Fixed-point fractional library routines. ! (line 41) * __addhq3: Fixed-point fractional library routines. ! (line 29) * __addqq3: Fixed-point fractional library routines. ! (line 27) * __addsa3: Fixed-point fractional library routines. ! (line 43) * __addsf3: Soft float library routines. ! (line 21) * __addsq3: Fixed-point fractional library routines. ! (line 30) * __addta3: Fixed-point fractional library routines. ! (line 45) * __addtf3: Soft float library routines. ! (line 23) * __adduda3: Fixed-point fractional library routines. ! (line 51) * __addudq3: Fixed-point fractional library routines. ! (line 39) * __adduha3: Fixed-point fractional library routines. ! (line 47) * __adduhq3: Fixed-point fractional library routines. ! (line 35) * __adduqq3: Fixed-point fractional library routines. ! (line 33) * __addusa3: Fixed-point fractional library routines. ! (line 49) * __addusq3: Fixed-point fractional library routines. ! (line 37) * __adduta3: Fixed-point fractional library routines. ! (line 53) * __addvdi3: Integer library routines. ! (line 110) * __addvsi3: Integer library routines. ! (line 109) * __addxf3: Soft float library routines. ! (line 25) * __ashlda3: Fixed-point fractional library routines. ! (line 350) * __ashldi3: Integer library routines. ! (line 13) * __ashldq3: Fixed-point fractional library routines. ! (line 338) * __ashlha3: Fixed-point fractional library routines. ! (line 348) * __ashlhq3: Fixed-point fractional library routines. ! (line 336) * __ashlqq3: Fixed-point fractional library routines. ! (line 335) * __ashlsa3: Fixed-point fractional library routines. ! (line 349) * __ashlsi3: Integer library routines. ! (line 12) * __ashlsq3: Fixed-point fractional library routines. ! (line 337) * __ashlta3: Fixed-point fractional library routines. ! (line 351) * __ashlti3: Integer library routines. ! (line 14) * __ashluda3: Fixed-point fractional library routines. ! (line 357) * __ashludq3: Fixed-point fractional library routines. ! (line 346) * __ashluha3: Fixed-point fractional library routines. ! (line 353) * __ashluhq3: Fixed-point fractional library routines. ! (line 342) * __ashluqq3: Fixed-point fractional library routines. ! (line 340) * __ashlusa3: Fixed-point fractional library routines. ! (line 355) * __ashlusq3: Fixed-point fractional library routines. ! (line 344) * __ashluta3: Fixed-point fractional library routines. ! (line 359) * __ashrda3: Fixed-point fractional library routines. ! (line 370) * __ashrdi3: Integer library routines. ! (line 18) * __ashrdq3: Fixed-point fractional library routines. - (line 366) - * __ashrha3: Fixed-point fractional library routines. (line 368) * __ashrhq3: Fixed-point fractional library routines. ! (line 364) * __ashrqq3: Fixed-point fractional library routines. ! (line 363) * __ashrsa3: Fixed-point fractional library routines. ! (line 369) * __ashrsi3: Integer library routines. ! (line 17) * __ashrsq3: Fixed-point fractional library routines. ! (line 365) * __ashrta3: Fixed-point fractional library routines. ! (line 371) * __ashrti3: Integer library routines. ! (line 19) * __bid_adddd3: Decimal float library routines. ! (line 23) * __bid_addsd3: Decimal float library routines. ! (line 19) * __bid_addtd3: Decimal float library routines. ! (line 27) * __bid_divdd3: Decimal float library routines. ! (line 66) * __bid_divsd3: Decimal float library routines. ! (line 62) * __bid_divtd3: Decimal float library routines. ! (line 70) * __bid_eqdd2: Decimal float library routines. ! (line 258) * __bid_eqsd2: Decimal float library routines. ! (line 256) * __bid_eqtd2: Decimal float library routines. ! (line 260) * __bid_extendddtd2: Decimal float library routines. ! (line 91) * __bid_extendddtf: Decimal float library routines. ! (line 139) * __bid_extendddxf: Decimal float library routines. ! (line 133) * __bid_extenddfdd: Decimal float library routines. ! (line 146) * __bid_extenddftd: Decimal float library routines. ! (line 106) * __bid_extendsddd2: Decimal float library routines. ! (line 87) * __bid_extendsddf: Decimal float library routines. ! (line 127) * __bid_extendsdtd2: Decimal float library routines. ! (line 89) * __bid_extendsdtf: Decimal float library routines. ! (line 137) * __bid_extendsdxf: Decimal float library routines. ! (line 131) * __bid_extendsfdd: Decimal float library routines. ! (line 102) * __bid_extendsfsd: Decimal float library routines. ! (line 144) * __bid_extendsftd: Decimal float library routines. ! (line 104) * __bid_extendtftd: Decimal float library routines. ! (line 148) * __bid_extendxftd: Decimal float library routines. ! (line 108) * __bid_fixdddi: Decimal float library routines. ! (line 169) * __bid_fixddsi: Decimal float library routines. ! (line 161) * __bid_fixsddi: Decimal float library routines. ! (line 167) * __bid_fixsdsi: Decimal float library routines. ! (line 159) * __bid_fixtddi: Decimal float library routines. ! (line 171) * __bid_fixtdsi: Decimal float library routines. ! (line 163) * __bid_fixunsdddi: Decimal float library routines. ! (line 186) * __bid_fixunsddsi: Decimal float library routines. ! (line 177) * __bid_fixunssddi: Decimal float library routines. ! (line 184) * __bid_fixunssdsi: Decimal float library routines. ! (line 175) * __bid_fixunstddi: Decimal float library routines. ! (line 188) * __bid_fixunstdsi: Decimal float library routines. ! (line 179) * __bid_floatdidd: Decimal float library routines. ! (line 204) * __bid_floatdisd: Decimal float library routines. ! (line 202) * __bid_floatditd: Decimal float library routines. ! (line 206) * __bid_floatsidd: Decimal float library routines. ! (line 195) * __bid_floatsisd: Decimal float library routines. ! (line 193) * __bid_floatsitd: Decimal float library routines. ! (line 197) * __bid_floatunsdidd: Decimal float library routines. ! (line 222) * __bid_floatunsdisd: Decimal float library routines. ! (line 220) * __bid_floatunsditd: Decimal float library routines. ! (line 224) * __bid_floatunssidd: Decimal float library routines. ! (line 213) * __bid_floatunssisd: Decimal float library routines. ! (line 211) * __bid_floatunssitd: Decimal float library routines. ! (line 215) * __bid_gedd2: Decimal float library routines. ! (line 276) * __bid_gesd2: Decimal float library routines. ! (line 274) * __bid_getd2: Decimal float library routines. ! (line 278) * __bid_gtdd2: Decimal float library routines. ! (line 303) * __bid_gtsd2: Decimal float library routines. ! (line 301) * __bid_gttd2: Decimal float library routines. ! (line 305) * __bid_ledd2: Decimal float library routines. ! (line 294) * __bid_lesd2: Decimal float library routines. ! (line 292) * __bid_letd2: Decimal float library routines. ! (line 296) * __bid_ltdd2: Decimal float library routines. ! (line 285) * __bid_ltsd2: Decimal float library routines. ! (line 283) * __bid_lttd2: Decimal float library routines. ! (line 287) * __bid_muldd3: Decimal float library routines. ! (line 52) * __bid_mulsd3: Decimal float library routines. ! (line 48) * __bid_multd3: Decimal float library routines. ! (line 56) * __bid_nedd2: Decimal float library routines. ! (line 267) * __bid_negdd2: Decimal float library routines. ! (line 77) * __bid_negsd2: Decimal float library routines. ! (line 75) * __bid_negtd2: Decimal float library routines. ! (line 79) * __bid_nesd2: Decimal float library routines. ! (line 265) * __bid_netd2: Decimal float library routines. ! (line 269) * __bid_subdd3: Decimal float library routines. ! (line 37) * __bid_subsd3: Decimal float library routines. ! (line 33) * __bid_subtd3: Decimal float library routines. ! (line 41) * __bid_truncdddf: Decimal float library routines. ! (line 152) * __bid_truncddsd2: Decimal float library routines. ! (line 93) * __bid_truncddsf: Decimal float library routines. ! (line 123) * __bid_truncdfsd: Decimal float library routines. ! (line 110) * __bid_truncsdsf: Decimal float library routines. ! (line 150) * __bid_trunctddd2: Decimal float library routines. ! (line 97) * __bid_trunctddf: Decimal float library routines. ! (line 129) * __bid_trunctdsd2: Decimal float library routines. ! (line 95) * __bid_trunctdsf: Decimal float library routines. ! (line 125) * __bid_trunctdtf: Decimal float library routines. ! (line 154) * __bid_trunctdxf: Decimal float library routines. ! (line 135) * __bid_trunctfdd: Decimal float library routines. ! (line 118) * __bid_trunctfsd: Decimal float library routines. ! (line 114) * __bid_truncxfdd: Decimal float library routines. ! (line 116) * __bid_truncxfsd: Decimal float library routines. ! (line 112) * __bid_unorddd2: Decimal float library routines. ! (line 234) * __bid_unordsd2: Decimal float library routines. ! (line 232) * __bid_unordtd2: Decimal float library routines. ! (line 236) * __bswapdi2: Integer library routines. ! (line 161) * __bswapsi2: Integer library routines. ! (line 160) ! * __builtin_classify_type: Varargs. (line 48) ! * __builtin_next_arg: Varargs. (line 39) ! * __builtin_saveregs: Varargs. (line 22) * __clear_cache: Miscellaneous routines. ! (line 9) * __clzdi2: Integer library routines. ! (line 130) * __clzsi2: Integer library routines. ! (line 129) * __clzti2: Integer library routines. ! (line 131) * __cmpda2: Fixed-point fractional library routines. ! (line 450) * __cmpdf2: Soft float library routines. ! (line 163) * __cmpdi2: Integer library routines. ! (line 86) * __cmpdq2: Fixed-point fractional library routines. ! (line 439) * __cmpha2: Fixed-point fractional library routines. ! (line 448) * __cmphq2: Fixed-point fractional library routines. ! (line 437) * __cmpqq2: Fixed-point fractional library routines. ! (line 436) * __cmpsa2: Fixed-point fractional library routines. ! (line 449) * __cmpsf2: Soft float library routines. ! (line 162) * __cmpsq2: Fixed-point fractional library routines. ! (line 438) * __cmpta2: Fixed-point fractional library routines. ! (line 451) * __cmptf2: Soft float library routines. ! (line 164) * __cmpti2: Integer library routines. ! (line 87) * __cmpuda2: Fixed-point fractional library routines. ! (line 456) * __cmpudq2: Fixed-point fractional library routines. ! (line 446) * __cmpuha2: Fixed-point fractional library routines. ! (line 453) * __cmpuhq2: Fixed-point fractional library routines. ! (line 443) * __cmpuqq2: Fixed-point fractional library routines. ! (line 441) * __cmpusa2: Fixed-point fractional library routines. ! (line 455) * __cmpusq2: Fixed-point fractional library routines. ! (line 444) * __cmputa2: Fixed-point fractional library routines. ! (line 458) * __CTOR_LIST__: Initialization. (line 25) * __ctzdi2: Integer library routines. ! (line 137) * __ctzsi2: Integer library routines. ! (line 136) * __ctzti2: Integer library routines. ! (line 138) * __divda3: Fixed-point fractional library routines. ! (line 226) * __divdc3: Soft float library routines. ! (line 250) * __divdf3: Soft float library routines. ! (line 47) * __divdi3: Integer library routines. ! (line 24) * __divdq3: Fixed-point fractional library routines. - (line 221) - * __divha3: Fixed-point fractional library routines. (line 223) * __divhq3: Fixed-point fractional library routines. ! (line 219) * __divqq3: Fixed-point fractional library routines. ! (line 217) * __divsa3: Fixed-point fractional library routines. ! (line 225) * __divsc3: Soft float library routines. ! (line 248) * __divsf3: Soft float library routines. ! (line 46) * __divsi3: Integer library routines. ! (line 23) * __divsq3: Fixed-point fractional library routines. ! (line 220) * __divta3: Fixed-point fractional library routines. ! (line 227) * __divtc3: Soft float library routines. ! (line 252) * __divtf3: Soft float library routines. ! (line 48) * __divti3: Integer library routines. ! (line 25) * __divxc3: Soft float library routines. ! (line 254) * __divxf3: Soft float library routines. ! (line 50) * __dpd_adddd3: Decimal float library routines. ! (line 21) * __dpd_addsd3: Decimal float library routines. ! (line 17) * __dpd_addtd3: Decimal float library routines. ! (line 25) * __dpd_divdd3: Decimal float library routines. ! (line 64) * __dpd_divsd3: Decimal float library routines. ! (line 60) * __dpd_divtd3: Decimal float library routines. ! (line 68) * __dpd_eqdd2: Decimal float library routines. ! (line 257) * __dpd_eqsd2: Decimal float library routines. ! (line 255) * __dpd_eqtd2: Decimal float library routines. ! (line 259) * __dpd_extendddtd2: Decimal float library routines. ! (line 90) * __dpd_extendddtf: Decimal float library routines. ! (line 138) * __dpd_extendddxf: Decimal float library routines. ! (line 132) * __dpd_extenddfdd: Decimal float library routines. ! (line 145) * __dpd_extenddftd: Decimal float library routines. ! (line 105) * __dpd_extendsddd2: Decimal float library routines. ! (line 86) * __dpd_extendsddf: Decimal float library routines. ! (line 126) * __dpd_extendsdtd2: Decimal float library routines. ! (line 88) * __dpd_extendsdtf: Decimal float library routines. ! (line 136) * __dpd_extendsdxf: Decimal float library routines. ! (line 130) * __dpd_extendsfdd: Decimal float library routines. ! (line 101) * __dpd_extendsfsd: Decimal float library routines. ! (line 143) * __dpd_extendsftd: Decimal float library routines. ! (line 103) * __dpd_extendtftd: Decimal float library routines. ! (line 147) * __dpd_extendxftd: Decimal float library routines. ! (line 107) * __dpd_fixdddi: Decimal float library routines. ! (line 168) * __dpd_fixddsi: Decimal float library routines. ! (line 160) * __dpd_fixsddi: Decimal float library routines. ! (line 166) * __dpd_fixsdsi: Decimal float library routines. ! (line 158) * __dpd_fixtddi: Decimal float library routines. ! (line 170) * __dpd_fixtdsi: Decimal float library routines. ! (line 162) * __dpd_fixunsdddi: Decimal float library routines. ! (line 185) * __dpd_fixunsddsi: Decimal float library routines. ! (line 176) * __dpd_fixunssddi: Decimal float library routines. ! (line 183) * __dpd_fixunssdsi: Decimal float library routines. ! (line 174) * __dpd_fixunstddi: Decimal float library routines. ! (line 187) * __dpd_fixunstdsi: Decimal float library routines. ! (line 178) * __dpd_floatdidd: Decimal float library routines. ! (line 203) * __dpd_floatdisd: Decimal float library routines. ! (line 201) * __dpd_floatditd: Decimal float library routines. ! (line 205) * __dpd_floatsidd: Decimal float library routines. ! (line 194) * __dpd_floatsisd: Decimal float library routines. ! (line 192) * __dpd_floatsitd: Decimal float library routines. ! (line 196) * __dpd_floatunsdidd: Decimal float library routines. ! (line 221) * __dpd_floatunsdisd: Decimal float library routines. ! (line 219) * __dpd_floatunsditd: Decimal float library routines. ! (line 223) * __dpd_floatunssidd: Decimal float library routines. ! (line 212) * __dpd_floatunssisd: Decimal float library routines. ! (line 210) * __dpd_floatunssitd: Decimal float library routines. ! (line 214) * __dpd_gedd2: Decimal float library routines. ! (line 275) * __dpd_gesd2: Decimal float library routines. ! (line 273) * __dpd_getd2: Decimal float library routines. ! (line 277) * __dpd_gtdd2: Decimal float library routines. ! (line 302) * __dpd_gtsd2: Decimal float library routines. ! (line 300) * __dpd_gttd2: Decimal float library routines. ! (line 304) * __dpd_ledd2: Decimal float library routines. ! (line 293) * __dpd_lesd2: Decimal float library routines. ! (line 291) * __dpd_letd2: Decimal float library routines. ! (line 295) * __dpd_ltdd2: Decimal float library routines. ! (line 284) * __dpd_ltsd2: Decimal float library routines. ! (line 282) * __dpd_lttd2: Decimal float library routines. ! (line 286) * __dpd_muldd3: Decimal float library routines. ! (line 50) * __dpd_mulsd3: Decimal float library routines. ! (line 46) * __dpd_multd3: Decimal float library routines. ! (line 54) * __dpd_nedd2: Decimal float library routines. ! (line 266) * __dpd_negdd2: Decimal float library routines. ! (line 76) * __dpd_negsd2: Decimal float library routines. ! (line 74) * __dpd_negtd2: Decimal float library routines. ! (line 78) * __dpd_nesd2: Decimal float library routines. ! (line 264) * __dpd_netd2: Decimal float library routines. ! (line 268) * __dpd_subdd3: Decimal float library routines. ! (line 35) * __dpd_subsd3: Decimal float library routines. ! (line 31) * __dpd_subtd3: Decimal float library routines. ! (line 39) * __dpd_truncdddf: Decimal float library routines. ! (line 151) * __dpd_truncddsd2: Decimal float library routines. ! (line 92) * __dpd_truncddsf: Decimal float library routines. ! (line 122) * __dpd_truncdfsd: Decimal float library routines. ! (line 109) * __dpd_truncsdsf: Decimal float library routines. ! (line 149) * __dpd_trunctddd2: Decimal float library routines. ! (line 96) * __dpd_trunctddf: Decimal float library routines. ! (line 128) * __dpd_trunctdsd2: Decimal float library routines. ! (line 94) * __dpd_trunctdsf: Decimal float library routines. ! (line 124) * __dpd_trunctdtf: Decimal float library routines. ! (line 153) * __dpd_trunctdxf: Decimal float library routines. ! (line 134) * __dpd_trunctfdd: Decimal float library routines. ! (line 117) * __dpd_trunctfsd: Decimal float library routines. ! (line 113) * __dpd_truncxfdd: Decimal float library routines. ! (line 115) * __dpd_truncxfsd: Decimal float library routines. ! (line 111) * __dpd_unorddd2: Decimal float library routines. ! (line 233) * __dpd_unordsd2: Decimal float library routines. ! (line 231) * __dpd_unordtd2: Decimal float library routines. ! (line 235) * __DTOR_LIST__: Initialization. (line 25) * __eqdf2: Soft float library routines. ! (line 193) * __eqsf2: Soft float library routines. ! (line 192) * __eqtf2: Soft float library routines. ! (line 194) * __extenddftf2: Soft float library routines. - (line 67) - * __extenddfxf2: Soft float library routines. (line 68) * __extendsfdf2: Soft float library routines. - (line 64) - * __extendsftf2: Soft float library routines. (line 65) ! * __extendsfxf2: Soft float library routines. (line 66) * __ffsdi2: Integer library routines. - (line 143) - * __ffsti2: Integer library routines. (line 144) * __fixdfdi: Soft float library routines. ! (line 87) * __fixdfsi: Soft float library routines. ! (line 80) * __fixdfti: Soft float library routines. ! (line 93) * __fixsfdi: Soft float library routines. ! (line 86) * __fixsfsi: Soft float library routines. ! (line 79) * __fixsfti: Soft float library routines. ! (line 92) * __fixtfdi: Soft float library routines. ! (line 88) * __fixtfsi: Soft float library routines. ! (line 81) * __fixtfti: Soft float library routines. ! (line 94) * __fixunsdfdi: Soft float library routines. ! (line 107) * __fixunsdfsi: Soft float library routines. ! (line 100) * __fixunsdfti: Soft float library routines. ! (line 114) * __fixunssfdi: Soft float library routines. ! (line 106) * __fixunssfsi: Soft float library routines. ! (line 99) * __fixunssfti: Soft float library routines. ! (line 113) * __fixunstfdi: Soft float library routines. ! (line 108) * __fixunstfsi: Soft float library routines. ! (line 101) * __fixunstfti: Soft float library routines. ! (line 115) * __fixunsxfdi: Soft float library routines. ! (line 109) * __fixunsxfsi: Soft float library routines. ! (line 102) * __fixunsxfti: Soft float library routines. ! (line 116) * __fixxfdi: Soft float library routines. ! (line 89) * __fixxfsi: Soft float library routines. ! (line 82) * __fixxfti: Soft float library routines. ! (line 95) * __floatdidf: Soft float library routines. ! (line 127) * __floatdisf: Soft float library routines. ! (line 126) * __floatditf: Soft float library routines. - (line 128) - * __floatdixf: Soft float library routines. (line 129) * __floatsidf: Soft float library routines. ! (line 121) * __floatsisf: Soft float library routines. ! (line 120) * __floatsitf: Soft float library routines. - (line 122) - * __floatsixf: Soft float library routines. (line 123) * __floattidf: Soft float library routines. ! (line 133) * __floattisf: Soft float library routines. ! (line 132) * __floattitf: Soft float library routines. - (line 134) - * __floattixf: Soft float library routines. (line 135) * __floatundidf: Soft float library routines. ! (line 145) * __floatundisf: Soft float library routines. ! (line 144) * __floatunditf: Soft float library routines. - (line 146) - * __floatundixf: Soft float library routines. (line 147) * __floatunsidf: Soft float library routines. ! (line 139) * __floatunsisf: Soft float library routines. ! (line 138) * __floatunsitf: Soft float library routines. - (line 140) - * __floatunsixf: Soft float library routines. (line 141) * __floatuntidf: Soft float library routines. ! (line 151) * __floatuntisf: Soft float library routines. ! (line 150) * __floatuntitf: Soft float library routines. - (line 152) - * __floatuntixf: Soft float library routines. (line 153) * __fractdadf: Fixed-point fractional library routines. ! (line 635) * __fractdadi: Fixed-point fractional library routines. ! (line 632) * __fractdadq: Fixed-point fractional library routines. - (line 615) - * __fractdaha2: Fixed-point fractional library routines. (line 616) * __fractdahi: Fixed-point fractional library routines. ! (line 630) * __fractdahq: Fixed-point fractional library routines. ! (line 613) * __fractdaqi: Fixed-point fractional library routines. ! (line 629) * __fractdaqq: Fixed-point fractional library routines. ! (line 612) * __fractdasa2: Fixed-point fractional library routines. ! (line 617) * __fractdasf: Fixed-point fractional library routines. ! (line 634) * __fractdasi: Fixed-point fractional library routines. ! (line 631) * __fractdasq: Fixed-point fractional library routines. ! (line 614) * __fractdata2: Fixed-point fractional library routines. ! (line 618) * __fractdati: Fixed-point fractional library routines. ! (line 633) * __fractdauda: Fixed-point fractional library routines. ! (line 626) * __fractdaudq: Fixed-point fractional library routines. - (line 622) - * __fractdauha: Fixed-point fractional library routines. (line 624) * __fractdauhq: Fixed-point fractional library routines. ! (line 620) * __fractdauqq: Fixed-point fractional library routines. ! (line 619) * __fractdausa: Fixed-point fractional library routines. ! (line 625) * __fractdausq: Fixed-point fractional library routines. ! (line 621) * __fractdauta: Fixed-point fractional library routines. ! (line 627) * __fractdfda: Fixed-point fractional library routines. ! (line 1024) * __fractdfdq: Fixed-point fractional library routines. - (line 1021) - * __fractdfha: Fixed-point fractional library routines. (line 1022) * __fractdfhq: Fixed-point fractional library routines. ! (line 1019) * __fractdfqq: Fixed-point fractional library routines. ! (line 1018) * __fractdfsa: Fixed-point fractional library routines. ! (line 1023) * __fractdfsq: Fixed-point fractional library routines. ! (line 1020) * __fractdfta: Fixed-point fractional library routines. ! (line 1025) * __fractdfuda: Fixed-point fractional library routines. ! (line 1032) * __fractdfudq: Fixed-point fractional library routines. - (line 1029) - * __fractdfuha: Fixed-point fractional library routines. (line 1030) * __fractdfuhq: Fixed-point fractional library routines. ! (line 1027) * __fractdfuqq: Fixed-point fractional library routines. ! (line 1026) * __fractdfusa: Fixed-point fractional library routines. ! (line 1031) * __fractdfusq: Fixed-point fractional library routines. ! (line 1028) * __fractdfuta: Fixed-point fractional library routines. ! (line 1033) * __fractdida: Fixed-point fractional library routines. ! (line 974) * __fractdidq: Fixed-point fractional library routines. - (line 971) - * __fractdiha: Fixed-point fractional library routines. (line 972) * __fractdihq: Fixed-point fractional library routines. ! (line 969) * __fractdiqq: Fixed-point fractional library routines. ! (line 968) * __fractdisa: Fixed-point fractional library routines. ! (line 973) * __fractdisq: Fixed-point fractional library routines. ! (line 970) * __fractdita: Fixed-point fractional library routines. ! (line 975) * __fractdiuda: Fixed-point fractional library routines. ! (line 982) * __fractdiudq: Fixed-point fractional library routines. - (line 979) - * __fractdiuha: Fixed-point fractional library routines. (line 980) * __fractdiuhq: Fixed-point fractional library routines. ! (line 977) * __fractdiuqq: Fixed-point fractional library routines. ! (line 976) * __fractdiusa: Fixed-point fractional library routines. ! (line 981) * __fractdiusq: Fixed-point fractional library routines. ! (line 978) * __fractdiuta: Fixed-point fractional library routines. ! (line 983) * __fractdqda: Fixed-point fractional library routines. ! (line 543) * __fractdqdf: Fixed-point fractional library routines. ! (line 565) * __fractdqdi: Fixed-point fractional library routines. ! (line 562) * __fractdqha: Fixed-point fractional library routines. ! (line 541) * __fractdqhi: Fixed-point fractional library routines. ! (line 560) * __fractdqhq2: Fixed-point fractional library routines. ! (line 539) * __fractdqqi: Fixed-point fractional library routines. ! (line 559) * __fractdqqq2: Fixed-point fractional library routines. ! (line 538) * __fractdqsa: Fixed-point fractional library routines. ! (line 542) * __fractdqsf: Fixed-point fractional library routines. ! (line 564) * __fractdqsi: Fixed-point fractional library routines. ! (line 561) * __fractdqsq2: Fixed-point fractional library routines. ! (line 540) * __fractdqta: Fixed-point fractional library routines. ! (line 544) * __fractdqti: Fixed-point fractional library routines. ! (line 563) * __fractdquda: Fixed-point fractional library routines. ! (line 555) * __fractdqudq: Fixed-point fractional library routines. - (line 550) - * __fractdquha: Fixed-point fractional library routines. (line 552) * __fractdquhq: Fixed-point fractional library routines. ! (line 547) * __fractdquqq: Fixed-point fractional library routines. ! (line 545) * __fractdqusa: Fixed-point fractional library routines. ! (line 554) * __fractdqusq: Fixed-point fractional library routines. ! (line 548) * __fractdquta: Fixed-point fractional library routines. ! (line 557) * __fracthada2: Fixed-point fractional library routines. ! (line 571) * __fracthadf: Fixed-point fractional library routines. ! (line 589) * __fracthadi: Fixed-point fractional library routines. ! (line 586) * __fracthadq: Fixed-point fractional library routines. ! (line 569) * __fracthahi: Fixed-point fractional library routines. ! (line 584) * __fracthahq: Fixed-point fractional library routines. ! (line 567) * __fracthaqi: Fixed-point fractional library routines. ! (line 583) * __fracthaqq: Fixed-point fractional library routines. ! (line 566) * __fracthasa2: Fixed-point fractional library routines. ! (line 570) * __fracthasf: Fixed-point fractional library routines. ! (line 588) * __fracthasi: Fixed-point fractional library routines. ! (line 585) * __fracthasq: Fixed-point fractional library routines. ! (line 568) * __fracthata2: Fixed-point fractional library routines. ! (line 572) * __fracthati: Fixed-point fractional library routines. ! (line 587) * __fracthauda: Fixed-point fractional library routines. ! (line 580) * __fracthaudq: Fixed-point fractional library routines. - (line 576) - * __fracthauha: Fixed-point fractional library routines. (line 578) * __fracthauhq: Fixed-point fractional library routines. ! (line 574) * __fracthauqq: Fixed-point fractional library routines. ! (line 573) * __fracthausa: Fixed-point fractional library routines. ! (line 579) * __fracthausq: Fixed-point fractional library routines. ! (line 575) * __fracthauta: Fixed-point fractional library routines. ! (line 581) * __fracthida: Fixed-point fractional library routines. ! (line 942) * __fracthidq: Fixed-point fractional library routines. - (line 939) - * __fracthiha: Fixed-point fractional library routines. (line 940) * __fracthihq: Fixed-point fractional library routines. ! (line 937) * __fracthiqq: Fixed-point fractional library routines. ! (line 936) * __fracthisa: Fixed-point fractional library routines. ! (line 941) * __fracthisq: Fixed-point fractional library routines. ! (line 938) * __fracthita: Fixed-point fractional library routines. ! (line 943) * __fracthiuda: Fixed-point fractional library routines. ! (line 950) * __fracthiudq: Fixed-point fractional library routines. - (line 947) - * __fracthiuha: Fixed-point fractional library routines. (line 948) * __fracthiuhq: Fixed-point fractional library routines. ! (line 945) * __fracthiuqq: Fixed-point fractional library routines. ! (line 944) * __fracthiusa: Fixed-point fractional library routines. ! (line 949) * __fracthiusq: Fixed-point fractional library routines. ! (line 946) * __fracthiuta: Fixed-point fractional library routines. ! (line 951) * __fracthqda: Fixed-point fractional library routines. ! (line 497) * __fracthqdf: Fixed-point fractional library routines. ! (line 513) * __fracthqdi: Fixed-point fractional library routines. ! (line 510) * __fracthqdq2: Fixed-point fractional library routines. - (line 494) - * __fracthqha: Fixed-point fractional library routines. (line 495) * __fracthqhi: Fixed-point fractional library routines. ! (line 508) * __fracthqqi: Fixed-point fractional library routines. ! (line 507) * __fracthqqq2: Fixed-point fractional library routines. ! (line 492) * __fracthqsa: Fixed-point fractional library routines. ! (line 496) * __fracthqsf: Fixed-point fractional library routines. ! (line 512) * __fracthqsi: Fixed-point fractional library routines. ! (line 509) * __fracthqsq2: Fixed-point fractional library routines. ! (line 493) * __fracthqta: Fixed-point fractional library routines. ! (line 498) * __fracthqti: Fixed-point fractional library routines. ! (line 511) * __fracthquda: Fixed-point fractional library routines. ! (line 505) * __fracthqudq: Fixed-point fractional library routines. - (line 502) - * __fracthquha: Fixed-point fractional library routines. (line 503) * __fracthquhq: Fixed-point fractional library routines. ! (line 500) * __fracthquqq: Fixed-point fractional library routines. ! (line 499) * __fracthqusa: Fixed-point fractional library routines. ! (line 504) * __fracthqusq: Fixed-point fractional library routines. ! (line 501) * __fracthquta: Fixed-point fractional library routines. ! (line 506) * __fractqida: Fixed-point fractional library routines. ! (line 924) * __fractqidq: Fixed-point fractional library routines. - (line 921) - * __fractqiha: Fixed-point fractional library routines. (line 922) * __fractqihq: Fixed-point fractional library routines. ! (line 919) * __fractqiqq: Fixed-point fractional library routines. ! (line 918) * __fractqisa: Fixed-point fractional library routines. ! (line 923) * __fractqisq: Fixed-point fractional library routines. ! (line 920) * __fractqita: Fixed-point fractional library routines. ! (line 925) * __fractqiuda: Fixed-point fractional library routines. ! (line 933) * __fractqiudq: Fixed-point fractional library routines. - (line 929) - * __fractqiuha: Fixed-point fractional library routines. (line 931) * __fractqiuhq: Fixed-point fractional library routines. ! (line 927) * __fractqiuqq: Fixed-point fractional library routines. ! (line 926) * __fractqiusa: Fixed-point fractional library routines. ! (line 932) * __fractqiusq: Fixed-point fractional library routines. ! (line 928) * __fractqiuta: Fixed-point fractional library routines. ! (line 934) * __fractqqda: Fixed-point fractional library routines. ! (line 473) * __fractqqdf: Fixed-point fractional library routines. ! (line 491) * __fractqqdi: Fixed-point fractional library routines. ! (line 488) * __fractqqdq2: Fixed-point fractional library routines. - (line 470) - * __fractqqha: Fixed-point fractional library routines. (line 471) * __fractqqhi: Fixed-point fractional library routines. ! (line 486) * __fractqqhq2: Fixed-point fractional library routines. ! (line 468) * __fractqqqi: Fixed-point fractional library routines. ! (line 485) * __fractqqsa: Fixed-point fractional library routines. ! (line 472) * __fractqqsf: Fixed-point fractional library routines. ! (line 490) * __fractqqsi: Fixed-point fractional library routines. ! (line 487) * __fractqqsq2: Fixed-point fractional library routines. ! (line 469) * __fractqqta: Fixed-point fractional library routines. ! (line 474) * __fractqqti: Fixed-point fractional library routines. ! (line 489) * __fractqquda: Fixed-point fractional library routines. ! (line 482) * __fractqqudq: Fixed-point fractional library routines. - (line 478) - * __fractqquha: Fixed-point fractional library routines. (line 480) * __fractqquhq: Fixed-point fractional library routines. ! (line 476) * __fractqquqq: Fixed-point fractional library routines. ! (line 475) * __fractqqusa: Fixed-point fractional library routines. ! (line 481) * __fractqqusq: Fixed-point fractional library routines. ! (line 477) * __fractqquta: Fixed-point fractional library routines. ! (line 483) * __fractsada2: Fixed-point fractional library routines. ! (line 595) * __fractsadf: Fixed-point fractional library routines. ! (line 611) * __fractsadi: Fixed-point fractional library routines. ! (line 608) * __fractsadq: Fixed-point fractional library routines. - (line 593) - * __fractsaha2: Fixed-point fractional library routines. (line 594) * __fractsahi: Fixed-point fractional library routines. ! (line 606) * __fractsahq: Fixed-point fractional library routines. ! (line 591) * __fractsaqi: Fixed-point fractional library routines. ! (line 605) * __fractsaqq: Fixed-point fractional library routines. ! (line 590) * __fractsasf: Fixed-point fractional library routines. ! (line 610) * __fractsasi: Fixed-point fractional library routines. ! (line 607) * __fractsasq: Fixed-point fractional library routines. ! (line 592) * __fractsata2: Fixed-point fractional library routines. ! (line 596) * __fractsati: Fixed-point fractional library routines. ! (line 609) * __fractsauda: Fixed-point fractional library routines. ! (line 603) * __fractsaudq: Fixed-point fractional library routines. - (line 600) - * __fractsauha: Fixed-point fractional library routines. (line 601) * __fractsauhq: Fixed-point fractional library routines. ! (line 598) * __fractsauqq: Fixed-point fractional library routines. ! (line 597) * __fractsausa: Fixed-point fractional library routines. ! (line 602) * __fractsausq: Fixed-point fractional library routines. ! (line 599) * __fractsauta: Fixed-point fractional library routines. ! (line 604) * __fractsfda: Fixed-point fractional library routines. ! (line 1008) * __fractsfdq: Fixed-point fractional library routines. - (line 1005) - * __fractsfha: Fixed-point fractional library routines. (line 1006) * __fractsfhq: Fixed-point fractional library routines. ! (line 1003) * __fractsfqq: Fixed-point fractional library routines. ! (line 1002) * __fractsfsa: Fixed-point fractional library routines. ! (line 1007) * __fractsfsq: Fixed-point fractional library routines. ! (line 1004) * __fractsfta: Fixed-point fractional library routines. ! (line 1009) * __fractsfuda: Fixed-point fractional library routines. ! (line 1016) * __fractsfudq: Fixed-point fractional library routines. - (line 1013) - * __fractsfuha: Fixed-point fractional library routines. (line 1014) * __fractsfuhq: Fixed-point fractional library routines. ! (line 1011) * __fractsfuqq: Fixed-point fractional library routines. ! (line 1010) * __fractsfusa: Fixed-point fractional library routines. ! (line 1015) * __fractsfusq: Fixed-point fractional library routines. ! (line 1012) * __fractsfuta: Fixed-point fractional library routines. ! (line 1017) * __fractsida: Fixed-point fractional library routines. ! (line 958) * __fractsidq: Fixed-point fractional library routines. - (line 955) - * __fractsiha: Fixed-point fractional library routines. (line 956) * __fractsihq: Fixed-point fractional library routines. ! (line 953) * __fractsiqq: Fixed-point fractional library routines. ! (line 952) * __fractsisa: Fixed-point fractional library routines. ! (line 957) * __fractsisq: Fixed-point fractional library routines. ! (line 954) * __fractsita: Fixed-point fractional library routines. ! (line 959) * __fractsiuda: Fixed-point fractional library routines. ! (line 966) * __fractsiudq: Fixed-point fractional library routines. - (line 963) - * __fractsiuha: Fixed-point fractional library routines. (line 964) * __fractsiuhq: Fixed-point fractional library routines. ! (line 961) * __fractsiuqq: Fixed-point fractional library routines. ! (line 960) * __fractsiusa: Fixed-point fractional library routines. ! (line 965) * __fractsiusq: Fixed-point fractional library routines. ! (line 962) * __fractsiuta: Fixed-point fractional library routines. ! (line 967) * __fractsqda: Fixed-point fractional library routines. ! (line 519) * __fractsqdf: Fixed-point fractional library routines. ! (line 537) * __fractsqdi: Fixed-point fractional library routines. ! (line 534) * __fractsqdq2: Fixed-point fractional library routines. - (line 516) - * __fractsqha: Fixed-point fractional library routines. (line 517) * __fractsqhi: Fixed-point fractional library routines. ! (line 532) * __fractsqhq2: Fixed-point fractional library routines. ! (line 515) * __fractsqqi: Fixed-point fractional library routines. ! (line 531) * __fractsqqq2: Fixed-point fractional library routines. ! (line 514) * __fractsqsa: Fixed-point fractional library routines. ! (line 518) * __fractsqsf: Fixed-point fractional library routines. ! (line 536) * __fractsqsi: Fixed-point fractional library routines. ! (line 533) * __fractsqta: Fixed-point fractional library routines. ! (line 520) * __fractsqti: Fixed-point fractional library routines. ! (line 535) * __fractsquda: Fixed-point fractional library routines. ! (line 528) * __fractsqudq: Fixed-point fractional library routines. - (line 524) - * __fractsquha: Fixed-point fractional library routines. (line 526) * __fractsquhq: Fixed-point fractional library routines. ! (line 522) * __fractsquqq: Fixed-point fractional library routines. ! (line 521) * __fractsqusa: Fixed-point fractional library routines. ! (line 527) * __fractsqusq: Fixed-point fractional library routines. ! (line 523) * __fractsquta: Fixed-point fractional library routines. ! (line 529) * __fracttada2: Fixed-point fractional library routines. ! (line 642) * __fracttadf: Fixed-point fractional library routines. ! (line 663) * __fracttadi: Fixed-point fractional library routines. ! (line 660) * __fracttadq: Fixed-point fractional library routines. - (line 639) - * __fracttaha2: Fixed-point fractional library routines. (line 640) * __fracttahi: Fixed-point fractional library routines. ! (line 658) * __fracttahq: Fixed-point fractional library routines. ! (line 637) * __fracttaqi: Fixed-point fractional library routines. ! (line 657) * __fracttaqq: Fixed-point fractional library routines. ! (line 636) * __fracttasa2: Fixed-point fractional library routines. ! (line 641) * __fracttasf: Fixed-point fractional library routines. ! (line 662) * __fracttasi: Fixed-point fractional library routines. ! (line 659) * __fracttasq: Fixed-point fractional library routines. ! (line 638) * __fracttati: Fixed-point fractional library routines. ! (line 661) * __fracttauda: Fixed-point fractional library routines. ! (line 653) * __fracttaudq: Fixed-point fractional library routines. - (line 648) - * __fracttauha: Fixed-point fractional library routines. (line 650) * __fracttauhq: Fixed-point fractional library routines. ! (line 645) * __fracttauqq: Fixed-point fractional library routines. ! (line 643) * __fracttausa: Fixed-point fractional library routines. ! (line 652) * __fracttausq: Fixed-point fractional library routines. ! (line 646) * __fracttauta: Fixed-point fractional library routines. ! (line 655) * __fracttida: Fixed-point fractional library routines. ! (line 990) * __fracttidq: Fixed-point fractional library routines. - (line 987) - * __fracttiha: Fixed-point fractional library routines. (line 988) * __fracttihq: Fixed-point fractional library routines. ! (line 985) * __fracttiqq: Fixed-point fractional library routines. ! (line 984) * __fracttisa: Fixed-point fractional library routines. ! (line 989) * __fracttisq: Fixed-point fractional library routines. ! (line 986) * __fracttita: Fixed-point fractional library routines. ! (line 991) * __fracttiuda: Fixed-point fractional library routines. ! (line 999) * __fracttiudq: Fixed-point fractional library routines. - (line 995) - * __fracttiuha: Fixed-point fractional library routines. (line 997) * __fracttiuhq: Fixed-point fractional library routines. ! (line 993) * __fracttiuqq: Fixed-point fractional library routines. ! (line 992) * __fracttiusa: Fixed-point fractional library routines. ! (line 998) * __fracttiusq: Fixed-point fractional library routines. ! (line 994) * __fracttiuta: Fixed-point fractional library routines. ! (line 1000) * __fractudada: Fixed-point fractional library routines. ! (line 857) * __fractudadf: Fixed-point fractional library routines. ! (line 880) * __fractudadi: Fixed-point fractional library routines. ! (line 877) * __fractudadq: Fixed-point fractional library routines. - (line 853) - * __fractudaha: Fixed-point fractional library routines. (line 855) * __fractudahi: Fixed-point fractional library routines. ! (line 875) * __fractudahq: Fixed-point fractional library routines. ! (line 851) * __fractudaqi: Fixed-point fractional library routines. ! (line 874) * __fractudaqq: Fixed-point fractional library routines. ! (line 850) * __fractudasa: Fixed-point fractional library routines. ! (line 856) * __fractudasf: Fixed-point fractional library routines. ! (line 879) * __fractudasi: Fixed-point fractional library routines. ! (line 876) * __fractudasq: Fixed-point fractional library routines. ! (line 852) * __fractudata: Fixed-point fractional library routines. ! (line 858) * __fractudati: Fixed-point fractional library routines. ! (line 878) * __fractudaudq: Fixed-point fractional library routines. - (line 866) - * __fractudauha2: Fixed-point fractional library routines. (line 868) * __fractudauhq: Fixed-point fractional library routines. ! (line 862) * __fractudauqq: Fixed-point fractional library routines. ! (line 860) * __fractudausa2: Fixed-point fractional library routines. ! (line 870) * __fractudausq: Fixed-point fractional library routines. ! (line 864) * __fractudauta2: Fixed-point fractional library routines. ! (line 872) * __fractudqda: Fixed-point fractional library routines. ! (line 764) * __fractudqdf: Fixed-point fractional library routines. ! (line 790) * __fractudqdi: Fixed-point fractional library routines. ! (line 786) * __fractudqdq: Fixed-point fractional library routines. - (line 759) - * __fractudqha: Fixed-point fractional library routines. (line 761) * __fractudqhi: Fixed-point fractional library routines. ! (line 784) * __fractudqhq: Fixed-point fractional library routines. ! (line 756) * __fractudqqi: Fixed-point fractional library routines. ! (line 782) * __fractudqqq: Fixed-point fractional library routines. ! (line 754) * __fractudqsa: Fixed-point fractional library routines. ! (line 763) * __fractudqsf: Fixed-point fractional library routines. ! (line 789) * __fractudqsi: Fixed-point fractional library routines. ! (line 785) * __fractudqsq: Fixed-point fractional library routines. ! (line 757) * __fractudqta: Fixed-point fractional library routines. ! (line 766) * __fractudqti: Fixed-point fractional library routines. ! (line 787) * __fractudquda: Fixed-point fractional library routines. ! (line 778) * __fractudquha: Fixed-point fractional library routines. ! (line 774) * __fractudquhq2: Fixed-point fractional library routines. ! (line 770) * __fractudquqq2: Fixed-point fractional library routines. ! (line 768) * __fractudqusa: Fixed-point fractional library routines. ! (line 776) * __fractudqusq2: Fixed-point fractional library routines. ! (line 772) * __fractudquta: Fixed-point fractional library routines. ! (line 780) * __fractuhada: Fixed-point fractional library routines. ! (line 798) * __fractuhadf: Fixed-point fractional library routines. ! (line 821) * __fractuhadi: Fixed-point fractional library routines. ! (line 818) * __fractuhadq: Fixed-point fractional library routines. - (line 794) - * __fractuhaha: Fixed-point fractional library routines. (line 796) * __fractuhahi: Fixed-point fractional library routines. ! (line 816) * __fractuhahq: Fixed-point fractional library routines. ! (line 792) * __fractuhaqi: Fixed-point fractional library routines. ! (line 815) * __fractuhaqq: Fixed-point fractional library routines. ! (line 791) * __fractuhasa: Fixed-point fractional library routines. ! (line 797) * __fractuhasf: Fixed-point fractional library routines. ! (line 820) * __fractuhasi: Fixed-point fractional library routines. ! (line 817) * __fractuhasq: Fixed-point fractional library routines. ! (line 793) * __fractuhata: Fixed-point fractional library routines. ! (line 799) * __fractuhati: Fixed-point fractional library routines. ! (line 819) * __fractuhauda2: Fixed-point fractional library routines. ! (line 811) * __fractuhaudq: Fixed-point fractional library routines. ! (line 807) * __fractuhauhq: Fixed-point fractional library routines. ! (line 803) * __fractuhauqq: Fixed-point fractional library routines. ! (line 801) * __fractuhausa2: Fixed-point fractional library routines. ! (line 809) * __fractuhausq: Fixed-point fractional library routines. ! (line 805) * __fractuhauta2: Fixed-point fractional library routines. ! (line 813) * __fractuhqda: Fixed-point fractional library routines. ! (line 701) * __fractuhqdf: Fixed-point fractional library routines. ! (line 722) * __fractuhqdi: Fixed-point fractional library routines. ! (line 719) * __fractuhqdq: Fixed-point fractional library routines. - (line 698) - * __fractuhqha: Fixed-point fractional library routines. (line 699) * __fractuhqhi: Fixed-point fractional library routines. ! (line 717) * __fractuhqhq: Fixed-point fractional library routines. ! (line 696) * __fractuhqqi: Fixed-point fractional library routines. ! (line 716) * __fractuhqqq: Fixed-point fractional library routines. ! (line 695) * __fractuhqsa: Fixed-point fractional library routines. ! (line 700) * __fractuhqsf: Fixed-point fractional library routines. ! (line 721) * __fractuhqsi: Fixed-point fractional library routines. ! (line 718) * __fractuhqsq: Fixed-point fractional library routines. ! (line 697) * __fractuhqta: Fixed-point fractional library routines. ! (line 702) * __fractuhqti: Fixed-point fractional library routines. ! (line 720) * __fractuhquda: Fixed-point fractional library routines. ! (line 712) * __fractuhqudq2: Fixed-point fractional library routines. - (line 707) - * __fractuhquha: Fixed-point fractional library routines. (line 709) * __fractuhquqq2: Fixed-point fractional library routines. ! (line 703) * __fractuhqusa: Fixed-point fractional library routines. ! (line 711) * __fractuhqusq2: Fixed-point fractional library routines. ! (line 705) * __fractuhquta: Fixed-point fractional library routines. ! (line 714) * __fractunsdadi: Fixed-point fractional library routines. ! (line 1554) * __fractunsdahi: Fixed-point fractional library routines. ! (line 1552) * __fractunsdaqi: Fixed-point fractional library routines. ! (line 1551) * __fractunsdasi: Fixed-point fractional library routines. ! (line 1553) * __fractunsdati: Fixed-point fractional library routines. ! (line 1555) * __fractunsdida: Fixed-point fractional library routines. ! (line 1706) * __fractunsdidq: Fixed-point fractional library routines. - (line 1703) - * __fractunsdiha: Fixed-point fractional library routines. (line 1704) * __fractunsdihq: Fixed-point fractional library routines. ! (line 1701) * __fractunsdiqq: Fixed-point fractional library routines. ! (line 1700) * __fractunsdisa: Fixed-point fractional library routines. ! (line 1705) * __fractunsdisq: Fixed-point fractional library routines. ! (line 1702) * __fractunsdita: Fixed-point fractional library routines. ! (line 1707) * __fractunsdiuda: Fixed-point fractional library routines. ! (line 1718) * __fractunsdiudq: Fixed-point fractional library routines. - (line 1713) - * __fractunsdiuha: Fixed-point fractional library routines. (line 1715) * __fractunsdiuhq: Fixed-point fractional library routines. ! (line 1710) * __fractunsdiuqq: Fixed-point fractional library routines. ! (line 1708) * __fractunsdiusa: Fixed-point fractional library routines. ! (line 1717) * __fractunsdiusq: Fixed-point fractional library routines. ! (line 1711) * __fractunsdiuta: Fixed-point fractional library routines. ! (line 1720) * __fractunsdqdi: Fixed-point fractional library routines. ! (line 1538) * __fractunsdqhi: Fixed-point fractional library routines. ! (line 1536) * __fractunsdqqi: Fixed-point fractional library routines. ! (line 1535) * __fractunsdqsi: Fixed-point fractional library routines. ! (line 1537) * __fractunsdqti: Fixed-point fractional library routines. ! (line 1539) * __fractunshadi: Fixed-point fractional library routines. ! (line 1544) * __fractunshahi: Fixed-point fractional library routines. ! (line 1542) * __fractunshaqi: Fixed-point fractional library routines. ! (line 1541) * __fractunshasi: Fixed-point fractional library routines. ! (line 1543) * __fractunshati: Fixed-point fractional library routines. ! (line 1545) * __fractunshida: Fixed-point fractional library routines. ! (line 1662) * __fractunshidq: Fixed-point fractional library routines. - (line 1659) - * __fractunshiha: Fixed-point fractional library routines. (line 1660) * __fractunshihq: Fixed-point fractional library routines. ! (line 1657) * __fractunshiqq: Fixed-point fractional library routines. ! (line 1656) * __fractunshisa: Fixed-point fractional library routines. ! (line 1661) * __fractunshisq: Fixed-point fractional library routines. ! (line 1658) * __fractunshita: Fixed-point fractional library routines. ! (line 1663) * __fractunshiuda: Fixed-point fractional library routines. ! (line 1674) * __fractunshiudq: Fixed-point fractional library routines. - (line 1669) - * __fractunshiuha: Fixed-point fractional library routines. (line 1671) * __fractunshiuhq: Fixed-point fractional library routines. ! (line 1666) * __fractunshiuqq: Fixed-point fractional library routines. ! (line 1664) * __fractunshiusa: Fixed-point fractional library routines. ! (line 1673) * __fractunshiusq: Fixed-point fractional library routines. ! (line 1667) * __fractunshiuta: Fixed-point fractional library routines. ! (line 1676) * __fractunshqdi: Fixed-point fractional library routines. ! (line 1528) * __fractunshqhi: Fixed-point fractional library routines. ! (line 1526) * __fractunshqqi: Fixed-point fractional library routines. ! (line 1525) * __fractunshqsi: Fixed-point fractional library routines. ! (line 1527) * __fractunshqti: Fixed-point fractional library routines. ! (line 1529) * __fractunsqida: Fixed-point fractional library routines. ! (line 1640) * __fractunsqidq: Fixed-point fractional library routines. - (line 1637) - * __fractunsqiha: Fixed-point fractional library routines. (line 1638) * __fractunsqihq: Fixed-point fractional library routines. ! (line 1635) * __fractunsqiqq: Fixed-point fractional library routines. ! (line 1634) * __fractunsqisa: Fixed-point fractional library routines. ! (line 1639) * __fractunsqisq: Fixed-point fractional library routines. ! (line 1636) * __fractunsqita: Fixed-point fractional library routines. ! (line 1641) * __fractunsqiuda: Fixed-point fractional library routines. ! (line 1652) * __fractunsqiudq: Fixed-point fractional library routines. - (line 1647) - * __fractunsqiuha: Fixed-point fractional library routines. (line 1649) * __fractunsqiuhq: Fixed-point fractional library routines. ! (line 1644) * __fractunsqiuqq: Fixed-point fractional library routines. ! (line 1642) * __fractunsqiusa: Fixed-point fractional library routines. ! (line 1651) * __fractunsqiusq: Fixed-point fractional library routines. ! (line 1645) * __fractunsqiuta: Fixed-point fractional library routines. ! (line 1654) * __fractunsqqdi: Fixed-point fractional library routines. ! (line 1523) * __fractunsqqhi: Fixed-point fractional library routines. ! (line 1521) * __fractunsqqqi: Fixed-point fractional library routines. ! (line 1520) * __fractunsqqsi: Fixed-point fractional library routines. ! (line 1522) * __fractunsqqti: Fixed-point fractional library routines. ! (line 1524) * __fractunssadi: Fixed-point fractional library routines. ! (line 1549) * __fractunssahi: Fixed-point fractional library routines. ! (line 1547) * __fractunssaqi: Fixed-point fractional library routines. ! (line 1546) * __fractunssasi: Fixed-point fractional library routines. ! (line 1548) * __fractunssati: Fixed-point fractional library routines. ! (line 1550) * __fractunssida: Fixed-point fractional library routines. ! (line 1684) * __fractunssidq: Fixed-point fractional library routines. - (line 1681) - * __fractunssiha: Fixed-point fractional library routines. (line 1682) * __fractunssihq: Fixed-point fractional library routines. ! (line 1679) * __fractunssiqq: Fixed-point fractional library routines. ! (line 1678) * __fractunssisa: Fixed-point fractional library routines. ! (line 1683) * __fractunssisq: Fixed-point fractional library routines. ! (line 1680) * __fractunssita: Fixed-point fractional library routines. ! (line 1685) * __fractunssiuda: Fixed-point fractional library routines. ! (line 1696) * __fractunssiudq: Fixed-point fractional library routines. - (line 1691) - * __fractunssiuha: Fixed-point fractional library routines. (line 1693) * __fractunssiuhq: Fixed-point fractional library routines. ! (line 1688) * __fractunssiuqq: Fixed-point fractional library routines. ! (line 1686) * __fractunssiusa: Fixed-point fractional library routines. ! (line 1695) * __fractunssiusq: Fixed-point fractional library routines. ! (line 1689) * __fractunssiuta: Fixed-point fractional library routines. ! (line 1698) * __fractunssqdi: Fixed-point fractional library routines. ! (line 1533) * __fractunssqhi: Fixed-point fractional library routines. ! (line 1531) * __fractunssqqi: Fixed-point fractional library routines. ! (line 1530) * __fractunssqsi: Fixed-point fractional library routines. ! (line 1532) * __fractunssqti: Fixed-point fractional library routines. ! (line 1534) * __fractunstadi: Fixed-point fractional library routines. ! (line 1559) * __fractunstahi: Fixed-point fractional library routines. ! (line 1557) * __fractunstaqi: Fixed-point fractional library routines. ! (line 1556) * __fractunstasi: Fixed-point fractional library routines. ! (line 1558) * __fractunstati: Fixed-point fractional library routines. ! (line 1560) * __fractunstida: Fixed-point fractional library routines. ! (line 1729) * __fractunstidq: Fixed-point fractional library routines. - (line 1725) - * __fractunstiha: Fixed-point fractional library routines. (line 1727) * __fractunstihq: Fixed-point fractional library routines. ! (line 1723) * __fractunstiqq: Fixed-point fractional library routines. ! (line 1722) * __fractunstisa: Fixed-point fractional library routines. ! (line 1728) * __fractunstisq: Fixed-point fractional library routines. ! (line 1724) * __fractunstita: Fixed-point fractional library routines. ! (line 1730) * __fractunstiuda: Fixed-point fractional library routines. ! (line 1744) * __fractunstiudq: Fixed-point fractional library routines. - (line 1738) - * __fractunstiuha: Fixed-point fractional library routines. (line 1740) * __fractunstiuhq: Fixed-point fractional library routines. ! (line 1734) * __fractunstiuqq: Fixed-point fractional library routines. ! (line 1732) * __fractunstiusa: Fixed-point fractional library routines. ! (line 1742) * __fractunstiusq: Fixed-point fractional library routines. ! (line 1736) * __fractunstiuta: Fixed-point fractional library routines. ! (line 1746) * __fractunsudadi: Fixed-point fractional library routines. ! (line 1620) * __fractunsudahi: Fixed-point fractional library routines. ! (line 1616) * __fractunsudaqi: Fixed-point fractional library routines. ! (line 1614) * __fractunsudasi: Fixed-point fractional library routines. ! (line 1618) * __fractunsudati: Fixed-point fractional library routines. ! (line 1622) * __fractunsudqdi: Fixed-point fractional library routines. ! (line 1594) * __fractunsudqhi: Fixed-point fractional library routines. ! (line 1590) * __fractunsudqqi: Fixed-point fractional library routines. ! (line 1588) * __fractunsudqsi: Fixed-point fractional library routines. ! (line 1592) * __fractunsudqti: Fixed-point fractional library routines. ! (line 1596) * __fractunsuhadi: Fixed-point fractional library routines. ! (line 1604) * __fractunsuhahi: Fixed-point fractional library routines. ! (line 1600) * __fractunsuhaqi: Fixed-point fractional library routines. ! (line 1598) * __fractunsuhasi: Fixed-point fractional library routines. ! (line 1602) * __fractunsuhati: Fixed-point fractional library routines. ! (line 1606) * __fractunsuhqdi: Fixed-point fractional library routines. ! (line 1575) * __fractunsuhqhi: Fixed-point fractional library routines. ! (line 1573) * __fractunsuhqqi: Fixed-point fractional library routines. ! (line 1572) * __fractunsuhqsi: Fixed-point fractional library routines. ! (line 1574) * __fractunsuhqti: Fixed-point fractional library routines. ! (line 1576) * __fractunsuqqdi: Fixed-point fractional library routines. ! (line 1568) * __fractunsuqqhi: Fixed-point fractional library routines. ! (line 1564) * __fractunsuqqqi: Fixed-point fractional library routines. ! (line 1562) * __fractunsuqqsi: Fixed-point fractional library routines. ! (line 1566) * __fractunsuqqti: Fixed-point fractional library routines. ! (line 1570) * __fractunsusadi: Fixed-point fractional library routines. ! (line 1611) * __fractunsusahi: Fixed-point fractional library routines. ! (line 1609) * __fractunsusaqi: Fixed-point fractional library routines. ! (line 1608) * __fractunsusasi: Fixed-point fractional library routines. ! (line 1610) * __fractunsusati: Fixed-point fractional library routines. ! (line 1612) * __fractunsusqdi: Fixed-point fractional library routines. ! (line 1584) * __fractunsusqhi: Fixed-point fractional library routines. ! (line 1580) * __fractunsusqqi: Fixed-point fractional library routines. ! (line 1578) * __fractunsusqsi: Fixed-point fractional library routines. ! (line 1582) * __fractunsusqti: Fixed-point fractional library routines. ! (line 1586) * __fractunsutadi: Fixed-point fractional library routines. ! (line 1630) * __fractunsutahi: Fixed-point fractional library routines. ! (line 1626) * __fractunsutaqi: Fixed-point fractional library routines. ! (line 1624) * __fractunsutasi: Fixed-point fractional library routines. ! (line 1628) * __fractunsutati: Fixed-point fractional library routines. ! (line 1632) * __fractuqqda: Fixed-point fractional library routines. ! (line 671) * __fractuqqdf: Fixed-point fractional library routines. ! (line 694) * __fractuqqdi: Fixed-point fractional library routines. ! (line 691) * __fractuqqdq: Fixed-point fractional library routines. - (line 667) - * __fractuqqha: Fixed-point fractional library routines. (line 669) * __fractuqqhi: Fixed-point fractional library routines. ! (line 689) * __fractuqqhq: Fixed-point fractional library routines. ! (line 665) * __fractuqqqi: Fixed-point fractional library routines. ! (line 688) * __fractuqqqq: Fixed-point fractional library routines. ! (line 664) * __fractuqqsa: Fixed-point fractional library routines. ! (line 670) * __fractuqqsf: Fixed-point fractional library routines. ! (line 693) * __fractuqqsi: Fixed-point fractional library routines. ! (line 690) * __fractuqqsq: Fixed-point fractional library routines. ! (line 666) * __fractuqqta: Fixed-point fractional library routines. ! (line 672) * __fractuqqti: Fixed-point fractional library routines. ! (line 692) * __fractuqquda: Fixed-point fractional library routines. ! (line 684) * __fractuqqudq2: Fixed-point fractional library routines. - (line 678) - * __fractuqquha: Fixed-point fractional library routines. (line 680) * __fractuqquhq2: Fixed-point fractional library routines. ! (line 674) * __fractuqqusa: Fixed-point fractional library routines. ! (line 682) * __fractuqqusq2: Fixed-point fractional library routines. ! (line 676) * __fractuqquta: Fixed-point fractional library routines. ! (line 686) * __fractusada: Fixed-point fractional library routines. ! (line 828) * __fractusadf: Fixed-point fractional library routines. ! (line 849) * __fractusadi: Fixed-point fractional library routines. ! (line 846) * __fractusadq: Fixed-point fractional library routines. - (line 825) - * __fractusaha: Fixed-point fractional library routines. (line 826) * __fractusahi: Fixed-point fractional library routines. ! (line 844) * __fractusahq: Fixed-point fractional library routines. ! (line 823) * __fractusaqi: Fixed-point fractional library routines. ! (line 843) * __fractusaqq: Fixed-point fractional library routines. ! (line 822) * __fractusasa: Fixed-point fractional library routines. ! (line 827) * __fractusasf: Fixed-point fractional library routines. ! (line 848) * __fractusasi: Fixed-point fractional library routines. ! (line 845) * __fractusasq: Fixed-point fractional library routines. ! (line 824) * __fractusata: Fixed-point fractional library routines. ! (line 829) * __fractusati: Fixed-point fractional library routines. ! (line 847) * __fractusauda2: Fixed-point fractional library routines. ! (line 839) * __fractusaudq: Fixed-point fractional library routines. - (line 835) - * __fractusauha2: Fixed-point fractional library routines. (line 837) * __fractusauhq: Fixed-point fractional library routines. ! (line 832) * __fractusauqq: Fixed-point fractional library routines. ! (line 830) * __fractusausq: Fixed-point fractional library routines. ! (line 833) * __fractusauta2: Fixed-point fractional library routines. ! (line 841) * __fractusqda: Fixed-point fractional library routines. ! (line 730) * __fractusqdf: Fixed-point fractional library routines. ! (line 753) * __fractusqdi: Fixed-point fractional library routines. ! (line 750) * __fractusqdq: Fixed-point fractional library routines. - (line 726) - * __fractusqha: Fixed-point fractional library routines. (line 728) * __fractusqhi: Fixed-point fractional library routines. ! (line 748) * __fractusqhq: Fixed-point fractional library routines. ! (line 724) * __fractusqqi: Fixed-point fractional library routines. ! (line 747) * __fractusqqq: Fixed-point fractional library routines. ! (line 723) * __fractusqsa: Fixed-point fractional library routines. ! (line 729) * __fractusqsf: Fixed-point fractional library routines. ! (line 752) * __fractusqsi: Fixed-point fractional library routines. ! (line 749) * __fractusqsq: Fixed-point fractional library routines. ! (line 725) * __fractusqta: Fixed-point fractional library routines. ! (line 731) * __fractusqti: Fixed-point fractional library routines. ! (line 751) * __fractusquda: Fixed-point fractional library routines. ! (line 743) * __fractusqudq2: Fixed-point fractional library routines. - (line 737) - * __fractusquha: Fixed-point fractional library routines. (line 739) * __fractusquhq2: Fixed-point fractional library routines. ! (line 735) * __fractusquqq2: Fixed-point fractional library routines. ! (line 733) * __fractusqusa: Fixed-point fractional library routines. ! (line 741) * __fractusquta: Fixed-point fractional library routines. ! (line 745) * __fractutada: Fixed-point fractional library routines. ! (line 891) * __fractutadf: Fixed-point fractional library routines. ! (line 917) * __fractutadi: Fixed-point fractional library routines. ! (line 913) * __fractutadq: Fixed-point fractional library routines. - (line 886) - * __fractutaha: Fixed-point fractional library routines. (line 888) * __fractutahi: Fixed-point fractional library routines. ! (line 911) * __fractutahq: Fixed-point fractional library routines. ! (line 883) * __fractutaqi: Fixed-point fractional library routines. ! (line 909) * __fractutaqq: Fixed-point fractional library routines. ! (line 881) * __fractutasa: Fixed-point fractional library routines. ! (line 890) * __fractutasf: Fixed-point fractional library routines. ! (line 916) * __fractutasi: Fixed-point fractional library routines. ! (line 912) * __fractutasq: Fixed-point fractional library routines. ! (line 884) * __fractutata: Fixed-point fractional library routines. ! (line 893) * __fractutati: Fixed-point fractional library routines. ! (line 914) * __fractutauda2: Fixed-point fractional library routines. ! (line 907) * __fractutaudq: Fixed-point fractional library routines. - (line 901) - * __fractutauha2: Fixed-point fractional library routines. (line 903) * __fractutauhq: Fixed-point fractional library routines. ! (line 897) * __fractutauqq: Fixed-point fractional library routines. ! (line 895) * __fractutausa2: Fixed-point fractional library routines. ! (line 905) * __fractutausq: Fixed-point fractional library routines. ! (line 899) * __gedf2: Soft float library routines. ! (line 205) * __gesf2: Soft float library routines. ! (line 204) * __getf2: Soft float library routines. ! (line 206) * __gtdf2: Soft float library routines. ! (line 223) * __gtsf2: Soft float library routines. ! (line 222) * __gttf2: Soft float library routines. ! (line 224) * __ledf2: Soft float library routines. ! (line 217) * __lesf2: Soft float library routines. ! (line 216) * __letf2: Soft float library routines. ! (line 218) * __lshrdi3: Integer library routines. ! (line 30) * __lshrsi3: Integer library routines. ! (line 29) * __lshrti3: Integer library routines. ! (line 31) * __lshruda3: Fixed-point fractional library routines. ! (line 388) * __lshrudq3: Fixed-point fractional library routines. - (line 382) - * __lshruha3: Fixed-point fractional library routines. (line 384) * __lshruhq3: Fixed-point fractional library routines. ! (line 378) * __lshruqq3: Fixed-point fractional library routines. ! (line 376) * __lshrusa3: Fixed-point fractional library routines. ! (line 386) * __lshrusq3: Fixed-point fractional library routines. ! (line 380) * __lshruta3: Fixed-point fractional library routines. ! (line 390) * __ltdf2: Soft float library routines. ! (line 211) * __ltsf2: Soft float library routines. ! (line 210) * __lttf2: Soft float library routines. ! (line 212) * __main: Collect2. (line 15) * __moddi3: Integer library routines. ! (line 36) * __modsi3: Integer library routines. ! (line 35) * __modti3: Integer library routines. ! (line 37) * __morestack_current_segment: Miscellaneous routines. - (line 45) - * __morestack_initial_sp: Miscellaneous routines. (line 46) * __morestack_segments: Miscellaneous routines. ! (line 44) * __mulda3: Fixed-point fractional library routines. ! (line 170) * __muldc3: Soft float library routines. ! (line 239) * __muldf3: Soft float library routines. ! (line 39) * __muldi3: Integer library routines. ! (line 42) * __muldq3: Fixed-point fractional library routines. ! (line 157) * __mulha3: Fixed-point fractional library routines. ! (line 167) * __mulhq3: Fixed-point fractional library routines. ! (line 155) * __mulqq3: Fixed-point fractional library routines. ! (line 153) * __mulsa3: Fixed-point fractional library routines. ! (line 169) * __mulsc3: Soft float library routines. ! (line 237) * __mulsf3: Soft float library routines. ! (line 38) * __mulsi3: Integer library routines. ! (line 41) * __mulsq3: Fixed-point fractional library routines. ! (line 156) * __multa3: Fixed-point fractional library routines. ! (line 171) * __multc3: Soft float library routines. ! (line 241) * __multf3: Soft float library routines. ! (line 40) * __multi3: Integer library routines. ! (line 43) * __muluda3: Fixed-point fractional library routines. ! (line 177) * __muludq3: Fixed-point fractional library routines. ! (line 165) * __muluha3: Fixed-point fractional library routines. ! (line 173) * __muluhq3: Fixed-point fractional library routines. ! (line 161) * __muluqq3: Fixed-point fractional library routines. ! (line 159) * __mulusa3: Fixed-point fractional library routines. ! (line 175) * __mulusq3: Fixed-point fractional library routines. ! (line 163) * __muluta3: Fixed-point fractional library routines. ! (line 179) * __mulvdi3: Integer library routines. ! (line 114) * __mulvsi3: Integer library routines. ! (line 113) * __mulxc3: Soft float library routines. ! (line 243) * __mulxf3: Soft float library routines. ! (line 42) * __nedf2: Soft float library routines. ! (line 199) * __negda2: Fixed-point fractional library routines. ! (line 298) * __negdf2: Soft float library routines. ! (line 55) * __negdi2: Integer library routines. ! (line 46) * __negdq2: Fixed-point fractional library routines. ! (line 288) * __negha2: Fixed-point fractional library routines. ! (line 296) * __neghq2: Fixed-point fractional library routines. ! (line 286) * __negqq2: Fixed-point fractional library routines. ! (line 285) * __negsa2: Fixed-point fractional library routines. ! (line 297) * __negsf2: Soft float library routines. ! (line 54) * __negsq2: Fixed-point fractional library routines. ! (line 287) * __negta2: Fixed-point fractional library routines. ! (line 299) * __negtf2: Soft float library routines. ! (line 56) * __negti2: Integer library routines. ! (line 47) * __neguda2: Fixed-point fractional library routines. ! (line 303) * __negudq2: Fixed-point fractional library routines. ! (line 294) * __neguha2: Fixed-point fractional library routines. ! (line 300) * __neguhq2: Fixed-point fractional library routines. ! (line 291) * __neguqq2: Fixed-point fractional library routines. ! (line 289) * __negusa2: Fixed-point fractional library routines. ! (line 302) * __negusq2: Fixed-point fractional library routines. ! (line 292) * __neguta2: Fixed-point fractional library routines. ! (line 305) * __negvdi2: Integer library routines. ! (line 118) * __negvsi2: Integer library routines. ! (line 117) * __negxf2: Soft float library routines. ! (line 57) * __nesf2: Soft float library routines. ! (line 198) * __netf2: Soft float library routines. ! (line 200) * __paritydi2: Integer library routines. ! (line 150) * __paritysi2: Integer library routines. ! (line 149) * __parityti2: Integer library routines. ! (line 151) * __popcountdi2: Integer library routines. ! (line 156) * __popcountsi2: Integer library routines. ! (line 155) * __popcountti2: Integer library routines. ! (line 157) * __powidf2: Soft float library routines. ! (line 232) * __powisf2: Soft float library routines. ! (line 231) * __powitf2: Soft float library routines. - (line 233) - * __powixf2: Soft float library routines. (line 234) * __satfractdadq: Fixed-point fractional library routines. - (line 1152) - * __satfractdaha2: Fixed-point fractional library routines. (line 1153) * __satfractdahq: Fixed-point fractional library routines. ! (line 1150) * __satfractdaqq: Fixed-point fractional library routines. ! (line 1149) * __satfractdasa2: Fixed-point fractional library routines. ! (line 1154) * __satfractdasq: Fixed-point fractional library routines. ! (line 1151) * __satfractdata2: Fixed-point fractional library routines. ! (line 1155) * __satfractdauda: Fixed-point fractional library routines. ! (line 1165) * __satfractdaudq: Fixed-point fractional library routines. - (line 1160) - * __satfractdauha: Fixed-point fractional library routines. (line 1162) * __satfractdauhq: Fixed-point fractional library routines. ! (line 1158) * __satfractdauqq: Fixed-point fractional library routines. ! (line 1156) * __satfractdausa: Fixed-point fractional library routines. ! (line 1164) * __satfractdausq: Fixed-point fractional library routines. ! (line 1159) * __satfractdauta: Fixed-point fractional library routines. ! (line 1166) * __satfractdfda: Fixed-point fractional library routines. ! (line 1505) * __satfractdfdq: Fixed-point fractional library routines. - (line 1502) - * __satfractdfha: Fixed-point fractional library routines. (line 1503) * __satfractdfhq: Fixed-point fractional library routines. ! (line 1500) * __satfractdfqq: Fixed-point fractional library routines. ! (line 1499) * __satfractdfsa: Fixed-point fractional library routines. ! (line 1504) * __satfractdfsq: Fixed-point fractional library routines. ! (line 1501) * __satfractdfta: Fixed-point fractional library routines. ! (line 1506) * __satfractdfuda: Fixed-point fractional library routines. ! (line 1514) * __satfractdfudq: Fixed-point fractional library routines. - (line 1510) - * __satfractdfuha: Fixed-point fractional library routines. (line 1512) * __satfractdfuhq: Fixed-point fractional library routines. ! (line 1508) * __satfractdfuqq: Fixed-point fractional library routines. ! (line 1507) * __satfractdfusa: Fixed-point fractional library routines. ! (line 1513) * __satfractdfusq: Fixed-point fractional library routines. ! (line 1509) * __satfractdfuta: Fixed-point fractional library routines. ! (line 1515) * __satfractdida: Fixed-point fractional library routines. ! (line 1455) * __satfractdidq: Fixed-point fractional library routines. - (line 1452) - * __satfractdiha: Fixed-point fractional library routines. (line 1453) * __satfractdihq: Fixed-point fractional library routines. ! (line 1450) * __satfractdiqq: Fixed-point fractional library routines. ! (line 1449) * __satfractdisa: Fixed-point fractional library routines. ! (line 1454) * __satfractdisq: Fixed-point fractional library routines. ! (line 1451) * __satfractdita: Fixed-point fractional library routines. ! (line 1456) * __satfractdiuda: Fixed-point fractional library routines. ! (line 1463) * __satfractdiudq: Fixed-point fractional library routines. - (line 1460) - * __satfractdiuha: Fixed-point fractional library routines. (line 1461) * __satfractdiuhq: Fixed-point fractional library routines. ! (line 1458) * __satfractdiuqq: Fixed-point fractional library routines. ! (line 1457) * __satfractdiusa: Fixed-point fractional library routines. ! (line 1462) * __satfractdiusq: Fixed-point fractional library routines. ! (line 1459) * __satfractdiuta: Fixed-point fractional library routines. ! (line 1464) * __satfractdqda: Fixed-point fractional library routines. ! (line 1097) * __satfractdqha: Fixed-point fractional library routines. ! (line 1095) * __satfractdqhq2: Fixed-point fractional library routines. ! (line 1093) * __satfractdqqq2: Fixed-point fractional library routines. ! (line 1092) * __satfractdqsa: Fixed-point fractional library routines. ! (line 1096) * __satfractdqsq2: Fixed-point fractional library routines. ! (line 1094) * __satfractdqta: Fixed-point fractional library routines. ! (line 1098) * __satfractdquda: Fixed-point fractional library routines. ! (line 1109) * __satfractdqudq: Fixed-point fractional library routines. - (line 1104) - * __satfractdquha: Fixed-point fractional library routines. (line 1106) * __satfractdquhq: Fixed-point fractional library routines. ! (line 1101) * __satfractdquqq: Fixed-point fractional library routines. ! (line 1099) * __satfractdqusa: Fixed-point fractional library routines. ! (line 1108) * __satfractdqusq: Fixed-point fractional library routines. ! (line 1102) * __satfractdquta: Fixed-point fractional library routines. ! (line 1111) * __satfracthada2: Fixed-point fractional library routines. ! (line 1118) * __satfracthadq: Fixed-point fractional library routines. ! (line 1116) * __satfracthahq: Fixed-point fractional library routines. ! (line 1114) * __satfracthaqq: Fixed-point fractional library routines. ! (line 1113) * __satfracthasa2: Fixed-point fractional library routines. ! (line 1117) * __satfracthasq: Fixed-point fractional library routines. ! (line 1115) * __satfracthata2: Fixed-point fractional library routines. ! (line 1119) * __satfracthauda: Fixed-point fractional library routines. ! (line 1130) * __satfracthaudq: Fixed-point fractional library routines. - (line 1125) - * __satfracthauha: Fixed-point fractional library routines. (line 1127) * __satfracthauhq: Fixed-point fractional library routines. ! (line 1122) * __satfracthauqq: Fixed-point fractional library routines. ! (line 1120) * __satfracthausa: Fixed-point fractional library routines. ! (line 1129) * __satfracthausq: Fixed-point fractional library routines. ! (line 1123) * __satfracthauta: Fixed-point fractional library routines. ! (line 1132) * __satfracthida: Fixed-point fractional library routines. ! (line 1423) * __satfracthidq: Fixed-point fractional library routines. - (line 1420) - * __satfracthiha: Fixed-point fractional library routines. (line 1421) * __satfracthihq: Fixed-point fractional library routines. ! (line 1418) * __satfracthiqq: Fixed-point fractional library routines. ! (line 1417) * __satfracthisa: Fixed-point fractional library routines. ! (line 1422) * __satfracthisq: Fixed-point fractional library routines. ! (line 1419) * __satfracthita: Fixed-point fractional library routines. ! (line 1424) * __satfracthiuda: Fixed-point fractional library routines. ! (line 1431) * __satfracthiudq: Fixed-point fractional library routines. - (line 1428) - * __satfracthiuha: Fixed-point fractional library routines. (line 1429) * __satfracthiuhq: Fixed-point fractional library routines. ! (line 1426) * __satfracthiuqq: Fixed-point fractional library routines. ! (line 1425) * __satfracthiusa: Fixed-point fractional library routines. ! (line 1430) * __satfracthiusq: Fixed-point fractional library routines. ! (line 1427) * __satfracthiuta: Fixed-point fractional library routines. ! (line 1432) * __satfracthqda: Fixed-point fractional library routines. ! (line 1063) * __satfracthqdq2: Fixed-point fractional library routines. - (line 1060) - * __satfracthqha: Fixed-point fractional library routines. (line 1061) * __satfracthqqq2: Fixed-point fractional library routines. ! (line 1058) * __satfracthqsa: Fixed-point fractional library routines. ! (line 1062) * __satfracthqsq2: Fixed-point fractional library routines. ! (line 1059) * __satfracthqta: Fixed-point fractional library routines. ! (line 1064) * __satfracthquda: Fixed-point fractional library routines. ! (line 1071) * __satfracthqudq: Fixed-point fractional library routines. - (line 1068) - * __satfracthquha: Fixed-point fractional library routines. (line 1069) * __satfracthquhq: Fixed-point fractional library routines. ! (line 1066) * __satfracthquqq: Fixed-point fractional library routines. ! (line 1065) * __satfracthqusa: Fixed-point fractional library routines. ! (line 1070) * __satfracthqusq: Fixed-point fractional library routines. ! (line 1067) * __satfracthquta: Fixed-point fractional library routines. ! (line 1072) * __satfractqida: Fixed-point fractional library routines. ! (line 1401) * __satfractqidq: Fixed-point fractional library routines. - (line 1398) - * __satfractqiha: Fixed-point fractional library routines. (line 1399) * __satfractqihq: Fixed-point fractional library routines. ! (line 1396) * __satfractqiqq: Fixed-point fractional library routines. ! (line 1395) * __satfractqisa: Fixed-point fractional library routines. ! (line 1400) * __satfractqisq: Fixed-point fractional library routines. ! (line 1397) * __satfractqita: Fixed-point fractional library routines. ! (line 1402) * __satfractqiuda: Fixed-point fractional library routines. ! (line 1413) * __satfractqiudq: Fixed-point fractional library routines. - (line 1408) - * __satfractqiuha: Fixed-point fractional library routines. (line 1410) * __satfractqiuhq: Fixed-point fractional library routines. ! (line 1405) * __satfractqiuqq: Fixed-point fractional library routines. ! (line 1403) * __satfractqiusa: Fixed-point fractional library routines. ! (line 1412) * __satfractqiusq: Fixed-point fractional library routines. ! (line 1406) * __satfractqiuta: Fixed-point fractional library routines. ! (line 1415) * __satfractqqda: Fixed-point fractional library routines. ! (line 1042) * __satfractqqdq2: Fixed-point fractional library routines. - (line 1039) - * __satfractqqha: Fixed-point fractional library routines. (line 1040) * __satfractqqhq2: Fixed-point fractional library routines. ! (line 1037) * __satfractqqsa: Fixed-point fractional library routines. ! (line 1041) * __satfractqqsq2: Fixed-point fractional library routines. ! (line 1038) * __satfractqqta: Fixed-point fractional library routines. ! (line 1043) * __satfractqquda: Fixed-point fractional library routines. ! (line 1054) * __satfractqqudq: Fixed-point fractional library routines. - (line 1049) - * __satfractqquha: Fixed-point fractional library routines. (line 1051) * __satfractqquhq: Fixed-point fractional library routines. ! (line 1046) * __satfractqquqq: Fixed-point fractional library routines. ! (line 1044) * __satfractqqusa: Fixed-point fractional library routines. ! (line 1053) * __satfractqqusq: Fixed-point fractional library routines. ! (line 1047) * __satfractqquta: Fixed-point fractional library routines. ! (line 1056) * __satfractsada2: Fixed-point fractional library routines. ! (line 1139) * __satfractsadq: Fixed-point fractional library routines. - (line 1137) - * __satfractsaha2: Fixed-point fractional library routines. (line 1138) * __satfractsahq: Fixed-point fractional library routines. ! (line 1135) * __satfractsaqq: Fixed-point fractional library routines. ! (line 1134) * __satfractsasq: Fixed-point fractional library routines. ! (line 1136) * __satfractsata2: Fixed-point fractional library routines. ! (line 1140) * __satfractsauda: Fixed-point fractional library routines. ! (line 1147) * __satfractsaudq: Fixed-point fractional library routines. - (line 1144) - * __satfractsauha: Fixed-point fractional library routines. (line 1145) * __satfractsauhq: Fixed-point fractional library routines. ! (line 1142) * __satfractsauqq: Fixed-point fractional library routines. ! (line 1141) * __satfractsausa: Fixed-point fractional library routines. ! (line 1146) * __satfractsausq: Fixed-point fractional library routines. ! (line 1143) * __satfractsauta: Fixed-point fractional library routines. ! (line 1148) * __satfractsfda: Fixed-point fractional library routines. ! (line 1489) * __satfractsfdq: Fixed-point fractional library routines. - (line 1486) - * __satfractsfha: Fixed-point fractional library routines. (line 1487) * __satfractsfhq: Fixed-point fractional library routines. ! (line 1484) * __satfractsfqq: Fixed-point fractional library routines. ! (line 1483) * __satfractsfsa: Fixed-point fractional library routines. ! (line 1488) * __satfractsfsq: Fixed-point fractional library routines. ! (line 1485) * __satfractsfta: Fixed-point fractional library routines. ! (line 1490) * __satfractsfuda: Fixed-point fractional library routines. ! (line 1497) * __satfractsfudq: Fixed-point fractional library routines. - (line 1494) - * __satfractsfuha: Fixed-point fractional library routines. (line 1495) * __satfractsfuhq: Fixed-point fractional library routines. ! (line 1492) * __satfractsfuqq: Fixed-point fractional library routines. ! (line 1491) * __satfractsfusa: Fixed-point fractional library routines. ! (line 1496) * __satfractsfusq: Fixed-point fractional library routines. ! (line 1493) * __satfractsfuta: Fixed-point fractional library routines. ! (line 1498) * __satfractsida: Fixed-point fractional library routines. ! (line 1439) * __satfractsidq: Fixed-point fractional library routines. - (line 1436) - * __satfractsiha: Fixed-point fractional library routines. (line 1437) * __satfractsihq: Fixed-point fractional library routines. ! (line 1434) * __satfractsiqq: Fixed-point fractional library routines. ! (line 1433) * __satfractsisa: Fixed-point fractional library routines. ! (line 1438) * __satfractsisq: Fixed-point fractional library routines. ! (line 1435) * __satfractsita: Fixed-point fractional library routines. ! (line 1440) * __satfractsiuda: Fixed-point fractional library routines. ! (line 1447) * __satfractsiudq: Fixed-point fractional library routines. - (line 1444) - * __satfractsiuha: Fixed-point fractional library routines. (line 1445) * __satfractsiuhq: Fixed-point fractional library routines. ! (line 1442) * __satfractsiuqq: Fixed-point fractional library routines. ! (line 1441) * __satfractsiusa: Fixed-point fractional library routines. ! (line 1446) * __satfractsiusq: Fixed-point fractional library routines. ! (line 1443) * __satfractsiuta: Fixed-point fractional library routines. ! (line 1448) * __satfractsqda: Fixed-point fractional library routines. ! (line 1078) * __satfractsqdq2: Fixed-point fractional library routines. - (line 1075) - * __satfractsqha: Fixed-point fractional library routines. (line 1076) * __satfractsqhq2: Fixed-point fractional library routines. ! (line 1074) * __satfractsqqq2: Fixed-point fractional library routines. ! (line 1073) * __satfractsqsa: Fixed-point fractional library routines. ! (line 1077) * __satfractsqta: Fixed-point fractional library routines. ! (line 1079) * __satfractsquda: Fixed-point fractional library routines. ! (line 1089) * __satfractsqudq: Fixed-point fractional library routines. - (line 1084) - * __satfractsquha: Fixed-point fractional library routines. (line 1086) * __satfractsquhq: Fixed-point fractional library routines. ! (line 1082) * __satfractsquqq: Fixed-point fractional library routines. ! (line 1080) * __satfractsqusa: Fixed-point fractional library routines. ! (line 1088) * __satfractsqusq: Fixed-point fractional library routines. ! (line 1083) * __satfractsquta: Fixed-point fractional library routines. ! (line 1090) * __satfracttada2: Fixed-point fractional library routines. ! (line 1174) * __satfracttadq: Fixed-point fractional library routines. - (line 1171) - * __satfracttaha2: Fixed-point fractional library routines. (line 1172) * __satfracttahq: Fixed-point fractional library routines. ! (line 1169) * __satfracttaqq: Fixed-point fractional library routines. ! (line 1168) * __satfracttasa2: Fixed-point fractional library routines. ! (line 1173) * __satfracttasq: Fixed-point fractional library routines. ! (line 1170) * __satfracttauda: Fixed-point fractional library routines. ! (line 1185) * __satfracttaudq: Fixed-point fractional library routines. - (line 1180) - * __satfracttauha: Fixed-point fractional library routines. (line 1182) * __satfracttauhq: Fixed-point fractional library routines. ! (line 1177) * __satfracttauqq: Fixed-point fractional library routines. ! (line 1175) * __satfracttausa: Fixed-point fractional library routines. ! (line 1184) * __satfracttausq: Fixed-point fractional library routines. ! (line 1178) * __satfracttauta: Fixed-point fractional library routines. ! (line 1187) * __satfracttida: Fixed-point fractional library routines. ! (line 1471) * __satfracttidq: Fixed-point fractional library routines. - (line 1468) - * __satfracttiha: Fixed-point fractional library routines. (line 1469) * __satfracttihq: Fixed-point fractional library routines. ! (line 1466) * __satfracttiqq: Fixed-point fractional library routines. ! (line 1465) * __satfracttisa: Fixed-point fractional library routines. ! (line 1470) * __satfracttisq: Fixed-point fractional library routines. ! (line 1467) * __satfracttita: Fixed-point fractional library routines. ! (line 1472) * __satfracttiuda: Fixed-point fractional library routines. ! (line 1480) * __satfracttiudq: Fixed-point fractional library routines. - (line 1476) - * __satfracttiuha: Fixed-point fractional library routines. (line 1478) * __satfracttiuhq: Fixed-point fractional library routines. ! (line 1474) * __satfracttiuqq: Fixed-point fractional library routines. ! (line 1473) * __satfracttiusa: Fixed-point fractional library routines. ! (line 1479) * __satfracttiusq: Fixed-point fractional library routines. ! (line 1475) * __satfracttiuta: Fixed-point fractional library routines. ! (line 1481) * __satfractudada: Fixed-point fractional library routines. ! (line 1350) * __satfractudadq: Fixed-point fractional library routines. - (line 1345) - * __satfractudaha: Fixed-point fractional library routines. (line 1347) * __satfractudahq: Fixed-point fractional library routines. ! (line 1343) * __satfractudaqq: Fixed-point fractional library routines. ! (line 1341) * __satfractudasa: Fixed-point fractional library routines. ! (line 1349) * __satfractudasq: Fixed-point fractional library routines. ! (line 1344) * __satfractudata: Fixed-point fractional library routines. ! (line 1351) * __satfractudaudq: Fixed-point fractional library routines. - (line 1359) - * __satfractudauha2: Fixed-point fractional library routines. (line 1361) * __satfractudauhq: Fixed-point fractional library routines. ! (line 1355) * __satfractudauqq: Fixed-point fractional library routines. ! (line 1353) * __satfractudausa2: Fixed-point fractional library routines. ! (line 1363) * __satfractudausq: Fixed-point fractional library routines. ! (line 1357) * __satfractudauta2: Fixed-point fractional library routines. ! (line 1365) * __satfractudqda: Fixed-point fractional library routines. ! (line 1274) * __satfractudqdq: Fixed-point fractional library routines. - (line 1269) - * __satfractudqha: Fixed-point fractional library routines. (line 1271) * __satfractudqhq: Fixed-point fractional library routines. ! (line 1266) * __satfractudqqq: Fixed-point fractional library routines. ! (line 1264) * __satfractudqsa: Fixed-point fractional library routines. ! (line 1273) * __satfractudqsq: Fixed-point fractional library routines. ! (line 1267) * __satfractudqta: Fixed-point fractional library routines. ! (line 1276) * __satfractudquda: Fixed-point fractional library routines. ! (line 1288) * __satfractudquha: Fixed-point fractional library routines. ! (line 1284) * __satfractudquhq2: Fixed-point fractional library routines. ! (line 1280) * __satfractudquqq2: Fixed-point fractional library routines. ! (line 1278) * __satfractudqusa: Fixed-point fractional library routines. ! (line 1286) * __satfractudqusq2: Fixed-point fractional library routines. ! (line 1282) * __satfractudquta: Fixed-point fractional library routines. ! (line 1290) * __satfractuhada: Fixed-point fractional library routines. ! (line 1302) * __satfractuhadq: Fixed-point fractional library routines. - (line 1297) - * __satfractuhaha: Fixed-point fractional library routines. (line 1299) * __satfractuhahq: Fixed-point fractional library routines. ! (line 1294) * __satfractuhaqq: Fixed-point fractional library routines. ! (line 1292) * __satfractuhasa: Fixed-point fractional library routines. ! (line 1301) * __satfractuhasq: Fixed-point fractional library routines. ! (line 1295) * __satfractuhata: Fixed-point fractional library routines. ! (line 1304) * __satfractuhauda2: Fixed-point fractional library routines. ! (line 1316) * __satfractuhaudq: Fixed-point fractional library routines. ! (line 1312) * __satfractuhauhq: Fixed-point fractional library routines. ! (line 1308) * __satfractuhauqq: Fixed-point fractional library routines. ! (line 1306) * __satfractuhausa2: Fixed-point fractional library routines. ! (line 1314) * __satfractuhausq: Fixed-point fractional library routines. ! (line 1310) * __satfractuhauta2: Fixed-point fractional library routines. ! (line 1318) * __satfractuhqda: Fixed-point fractional library routines. ! (line 1223) * __satfractuhqdq: Fixed-point fractional library routines. - (line 1220) - * __satfractuhqha: Fixed-point fractional library routines. (line 1221) * __satfractuhqhq: Fixed-point fractional library routines. ! (line 1218) * __satfractuhqqq: Fixed-point fractional library routines. ! (line 1217) * __satfractuhqsa: Fixed-point fractional library routines. ! (line 1222) * __satfractuhqsq: Fixed-point fractional library routines. ! (line 1219) * __satfractuhqta: Fixed-point fractional library routines. ! (line 1224) * __satfractuhquda: Fixed-point fractional library routines. ! (line 1234) * __satfractuhqudq2: Fixed-point fractional library routines. - (line 1229) - * __satfractuhquha: Fixed-point fractional library routines. (line 1231) * __satfractuhquqq2: Fixed-point fractional library routines. ! (line 1225) * __satfractuhqusa: Fixed-point fractional library routines. ! (line 1233) * __satfractuhqusq2: Fixed-point fractional library routines. ! (line 1227) * __satfractuhquta: Fixed-point fractional library routines. ! (line 1236) * __satfractunsdida: Fixed-point fractional library routines. ! (line 1833) * __satfractunsdidq: Fixed-point fractional library routines. - (line 1829) - * __satfractunsdiha: Fixed-point fractional library routines. (line 1831) * __satfractunsdihq: Fixed-point fractional library routines. ! (line 1827) * __satfractunsdiqq: Fixed-point fractional library routines. ! (line 1826) * __satfractunsdisa: Fixed-point fractional library routines. ! (line 1832) * __satfractunsdisq: Fixed-point fractional library routines. ! (line 1828) * __satfractunsdita: Fixed-point fractional library routines. ! (line 1834) * __satfractunsdiuda: Fixed-point fractional library routines. ! (line 1848) * __satfractunsdiudq: Fixed-point fractional library routines. - (line 1842) - * __satfractunsdiuha: Fixed-point fractional library routines. (line 1844) * __satfractunsdiuhq: Fixed-point fractional library routines. ! (line 1838) * __satfractunsdiuqq: Fixed-point fractional library routines. ! (line 1836) * __satfractunsdiusa: Fixed-point fractional library routines. ! (line 1846) * __satfractunsdiusq: Fixed-point fractional library routines. ! (line 1840) * __satfractunsdiuta: Fixed-point fractional library routines. ! (line 1850) * __satfractunshida: Fixed-point fractional library routines. ! (line 1785) * __satfractunshidq: Fixed-point fractional library routines. - (line 1781) - * __satfractunshiha: Fixed-point fractional library routines. (line 1783) * __satfractunshihq: Fixed-point fractional library routines. ! (line 1779) * __satfractunshiqq: Fixed-point fractional library routines. ! (line 1778) * __satfractunshisa: Fixed-point fractional library routines. ! (line 1784) * __satfractunshisq: Fixed-point fractional library routines. ! (line 1780) * __satfractunshita: Fixed-point fractional library routines. ! (line 1786) * __satfractunshiuda: Fixed-point fractional library routines. ! (line 1800) * __satfractunshiudq: Fixed-point fractional library routines. - (line 1794) - * __satfractunshiuha: Fixed-point fractional library routines. (line 1796) * __satfractunshiuhq: Fixed-point fractional library routines. ! (line 1790) * __satfractunshiuqq: Fixed-point fractional library routines. ! (line 1788) * __satfractunshiusa: Fixed-point fractional library routines. ! (line 1798) * __satfractunshiusq: Fixed-point fractional library routines. ! (line 1792) * __satfractunshiuta: Fixed-point fractional library routines. ! (line 1802) * __satfractunsqida: Fixed-point fractional library routines. ! (line 1759) * __satfractunsqidq: Fixed-point fractional library routines. - (line 1755) - * __satfractunsqiha: Fixed-point fractional library routines. (line 1757) * __satfractunsqihq: Fixed-point fractional library routines. ! (line 1753) * __satfractunsqiqq: Fixed-point fractional library routines. ! (line 1752) * __satfractunsqisa: Fixed-point fractional library routines. ! (line 1758) * __satfractunsqisq: Fixed-point fractional library routines. ! (line 1754) * __satfractunsqita: Fixed-point fractional library routines. ! (line 1760) * __satfractunsqiuda: Fixed-point fractional library routines. ! (line 1774) * __satfractunsqiudq: Fixed-point fractional library routines. - (line 1768) - * __satfractunsqiuha: Fixed-point fractional library routines. (line 1770) * __satfractunsqiuhq: Fixed-point fractional library routines. ! (line 1764) * __satfractunsqiuqq: Fixed-point fractional library routines. ! (line 1762) * __satfractunsqiusa: Fixed-point fractional library routines. ! (line 1772) * __satfractunsqiusq: Fixed-point fractional library routines. ! (line 1766) * __satfractunsqiuta: Fixed-point fractional library routines. ! (line 1776) * __satfractunssida: Fixed-point fractional library routines. ! (line 1810) * __satfractunssidq: Fixed-point fractional library routines. - (line 1807) - * __satfractunssiha: Fixed-point fractional library routines. (line 1808) * __satfractunssihq: Fixed-point fractional library routines. ! (line 1805) * __satfractunssiqq: Fixed-point fractional library routines. ! (line 1804) * __satfractunssisa: Fixed-point fractional library routines. ! (line 1809) * __satfractunssisq: Fixed-point fractional library routines. ! (line 1806) * __satfractunssita: Fixed-point fractional library routines. ! (line 1811) * __satfractunssiuda: Fixed-point fractional library routines. ! (line 1822) * __satfractunssiudq: Fixed-point fractional library routines. - (line 1817) - * __satfractunssiuha: Fixed-point fractional library routines. (line 1819) * __satfractunssiuhq: Fixed-point fractional library routines. ! (line 1814) * __satfractunssiuqq: Fixed-point fractional library routines. ! (line 1812) * __satfractunssiusa: Fixed-point fractional library routines. ! (line 1821) * __satfractunssiusq: Fixed-point fractional library routines. ! (line 1815) * __satfractunssiuta: Fixed-point fractional library routines. ! (line 1824) * __satfractunstida: Fixed-point fractional library routines. ! (line 1862) * __satfractunstidq: Fixed-point fractional library routines. - (line 1857) - * __satfractunstiha: Fixed-point fractional library routines. (line 1859) * __satfractunstihq: Fixed-point fractional library routines. ! (line 1854) * __satfractunstiqq: Fixed-point fractional library routines. ! (line 1852) * __satfractunstisa: Fixed-point fractional library routines. ! (line 1861) * __satfractunstisq: Fixed-point fractional library routines. ! (line 1855) * __satfractunstita: Fixed-point fractional library routines. ! (line 1864) * __satfractunstiuda: Fixed-point fractional library routines. ! (line 1878) * __satfractunstiudq: Fixed-point fractional library routines. - (line 1872) - * __satfractunstiuha: Fixed-point fractional library routines. (line 1874) * __satfractunstiuhq: Fixed-point fractional library routines. ! (line 1868) * __satfractunstiuqq: Fixed-point fractional library routines. ! (line 1866) * __satfractunstiusa: Fixed-point fractional library routines. ! (line 1876) * __satfractunstiusq: Fixed-point fractional library routines. ! (line 1870) * __satfractunstiuta: Fixed-point fractional library routines. ! (line 1880) * __satfractuqqda: Fixed-point fractional library routines. ! (line 1199) * __satfractuqqdq: Fixed-point fractional library routines. - (line 1194) - * __satfractuqqha: Fixed-point fractional library routines. (line 1196) * __satfractuqqhq: Fixed-point fractional library routines. ! (line 1191) * __satfractuqqqq: Fixed-point fractional library routines. ! (line 1189) * __satfractuqqsa: Fixed-point fractional library routines. ! (line 1198) * __satfractuqqsq: Fixed-point fractional library routines. ! (line 1192) * __satfractuqqta: Fixed-point fractional library routines. ! (line 1201) * __satfractuqquda: Fixed-point fractional library routines. ! (line 1213) * __satfractuqqudq2: Fixed-point fractional library routines. - (line 1207) - * __satfractuqquha: Fixed-point fractional library routines. (line 1209) * __satfractuqquhq2: Fixed-point fractional library routines. ! (line 1203) * __satfractuqqusa: Fixed-point fractional library routines. ! (line 1211) * __satfractuqqusq2: Fixed-point fractional library routines. ! (line 1205) * __satfractuqquta: Fixed-point fractional library routines. ! (line 1215) * __satfractusada: Fixed-point fractional library routines. ! (line 1326) * __satfractusadq: Fixed-point fractional library routines. - (line 1323) - * __satfractusaha: Fixed-point fractional library routines. (line 1324) * __satfractusahq: Fixed-point fractional library routines. ! (line 1321) * __satfractusaqq: Fixed-point fractional library routines. ! (line 1320) * __satfractusasa: Fixed-point fractional library routines. ! (line 1325) * __satfractusasq: Fixed-point fractional library routines. ! (line 1322) * __satfractusata: Fixed-point fractional library routines. ! (line 1327) * __satfractusauda2: Fixed-point fractional library routines. ! (line 1337) * __satfractusaudq: Fixed-point fractional library routines. - (line 1333) - * __satfractusauha2: Fixed-point fractional library routines. (line 1335) * __satfractusauhq: Fixed-point fractional library routines. ! (line 1330) * __satfractusauqq: Fixed-point fractional library routines. ! (line 1328) * __satfractusausq: Fixed-point fractional library routines. ! (line 1331) * __satfractusauta2: Fixed-point fractional library routines. ! (line 1339) * __satfractusqda: Fixed-point fractional library routines. ! (line 1247) * __satfractusqdq: Fixed-point fractional library routines. - (line 1242) - * __satfractusqha: Fixed-point fractional library routines. (line 1244) * __satfractusqhq: Fixed-point fractional library routines. ! (line 1240) * __satfractusqqq: Fixed-point fractional library routines. ! (line 1238) * __satfractusqsa: Fixed-point fractional library routines. ! (line 1246) * __satfractusqsq: Fixed-point fractional library routines. ! (line 1241) * __satfractusqta: Fixed-point fractional library routines. ! (line 1248) * __satfractusquda: Fixed-point fractional library routines. ! (line 1260) * __satfractusqudq2: Fixed-point fractional library routines. - (line 1254) - * __satfractusquha: Fixed-point fractional library routines. (line 1256) * __satfractusquhq2: Fixed-point fractional library routines. ! (line 1252) * __satfractusquqq2: Fixed-point fractional library routines. ! (line 1250) * __satfractusqusa: Fixed-point fractional library routines. ! (line 1258) * __satfractusquta: Fixed-point fractional library routines. ! (line 1262) * __satfractutada: Fixed-point fractional library routines. ! (line 1377) * __satfractutadq: Fixed-point fractional library routines. - (line 1372) - * __satfractutaha: Fixed-point fractional library routines. (line 1374) * __satfractutahq: Fixed-point fractional library routines. ! (line 1369) * __satfractutaqq: Fixed-point fractional library routines. ! (line 1367) * __satfractutasa: Fixed-point fractional library routines. ! (line 1376) * __satfractutasq: Fixed-point fractional library routines. ! (line 1370) * __satfractutata: Fixed-point fractional library routines. ! (line 1379) * __satfractutauda2: Fixed-point fractional library routines. ! (line 1393) * __satfractutaudq: Fixed-point fractional library routines. - (line 1387) - * __satfractutauha2: Fixed-point fractional library routines. (line 1389) * __satfractutauhq: Fixed-point fractional library routines. ! (line 1383) * __satfractutauqq: Fixed-point fractional library routines. ! (line 1381) * __satfractutausa2: Fixed-point fractional library routines. ! (line 1391) * __satfractutausq: Fixed-point fractional library routines. ! (line 1385) * __splitstack_find: Miscellaneous routines. ! (line 15) * __ssaddda3: Fixed-point fractional library routines. ! (line 66) * __ssadddq3: Fixed-point fractional library routines. - (line 61) - * __ssaddha3: Fixed-point fractional library routines. (line 63) * __ssaddhq3: Fixed-point fractional library routines. ! (line 59) * __ssaddqq3: Fixed-point fractional library routines. ! (line 57) * __ssaddsa3: Fixed-point fractional library routines. ! (line 65) * __ssaddsq3: Fixed-point fractional library routines. ! (line 60) * __ssaddta3: Fixed-point fractional library routines. ! (line 67) * __ssashlda3: Fixed-point fractional library routines. ! (line 401) * __ssashldq3: Fixed-point fractional library routines. - (line 397) - * __ssashlha3: Fixed-point fractional library routines. (line 399) * __ssashlhq3: Fixed-point fractional library routines. ! (line 395) * __ssashlsa3: Fixed-point fractional library routines. ! (line 400) * __ssashlsq3: Fixed-point fractional library routines. ! (line 396) * __ssashlta3: Fixed-point fractional library routines. ! (line 402) * __ssdivda3: Fixed-point fractional library routines. ! (line 260) * __ssdivdq3: Fixed-point fractional library routines. - (line 255) - * __ssdivha3: Fixed-point fractional library routines. (line 257) * __ssdivhq3: Fixed-point fractional library routines. ! (line 253) * __ssdivqq3: Fixed-point fractional library routines. ! (line 251) * __ssdivsa3: Fixed-point fractional library routines. ! (line 259) * __ssdivsq3: Fixed-point fractional library routines. ! (line 254) * __ssdivta3: Fixed-point fractional library routines. ! (line 261) * __ssmulda3: Fixed-point fractional library routines. ! (line 192) * __ssmuldq3: Fixed-point fractional library routines. - (line 187) - * __ssmulha3: Fixed-point fractional library routines. (line 189) * __ssmulhq3: Fixed-point fractional library routines. ! (line 185) * __ssmulqq3: Fixed-point fractional library routines. ! (line 183) * __ssmulsa3: Fixed-point fractional library routines. ! (line 191) * __ssmulsq3: Fixed-point fractional library routines. ! (line 186) * __ssmulta3: Fixed-point fractional library routines. ! (line 193) * __ssnegda2: Fixed-point fractional library routines. ! (line 315) * __ssnegdq2: Fixed-point fractional library routines. - (line 312) - * __ssnegha2: Fixed-point fractional library routines. (line 313) * __ssneghq2: Fixed-point fractional library routines. ! (line 310) * __ssnegqq2: Fixed-point fractional library routines. ! (line 309) * __ssnegsa2: Fixed-point fractional library routines. ! (line 314) * __ssnegsq2: Fixed-point fractional library routines. ! (line 311) * __ssnegta2: Fixed-point fractional library routines. ! (line 316) * __sssubda3: Fixed-point fractional library routines. ! (line 128) * __sssubdq3: Fixed-point fractional library routines. - (line 123) - * __sssubha3: Fixed-point fractional library routines. (line 125) * __sssubhq3: Fixed-point fractional library routines. ! (line 121) * __sssubqq3: Fixed-point fractional library routines. ! (line 119) * __sssubsa3: Fixed-point fractional library routines. ! (line 127) * __sssubsq3: Fixed-point fractional library routines. ! (line 122) * __sssubta3: Fixed-point fractional library routines. ! (line 129) * __subda3: Fixed-point fractional library routines. ! (line 106) * __subdf3: Soft float library routines. ! (line 30) * __subdq3: Fixed-point fractional library routines. ! (line 93) * __subha3: Fixed-point fractional library routines. ! (line 103) * __subhq3: Fixed-point fractional library routines. ! (line 91) * __subqq3: Fixed-point fractional library routines. ! (line 89) * __subsa3: Fixed-point fractional library routines. ! (line 105) * __subsf3: Soft float library routines. ! (line 29) * __subsq3: Fixed-point fractional library routines. ! (line 92) * __subta3: Fixed-point fractional library routines. ! (line 107) * __subtf3: Soft float library routines. ! (line 31) * __subuda3: Fixed-point fractional library routines. ! (line 113) * __subudq3: Fixed-point fractional library routines. ! (line 101) * __subuha3: Fixed-point fractional library routines. ! (line 109) * __subuhq3: Fixed-point fractional library routines. ! (line 97) * __subuqq3: Fixed-point fractional library routines. ! (line 95) * __subusa3: Fixed-point fractional library routines. ! (line 111) * __subusq3: Fixed-point fractional library routines. ! (line 99) * __subuta3: Fixed-point fractional library routines. ! (line 115) * __subvdi3: Integer library routines. ! (line 122) * __subvsi3: Integer library routines. ! (line 121) * __subxf3: Soft float library routines. ! (line 33) * __truncdfsf2: Soft float library routines. ! (line 75) * __trunctfdf2: Soft float library routines. ! (line 72) * __trunctfsf2: Soft float library routines. ! (line 74) * __truncxfdf2: Soft float library routines. ! (line 71) * __truncxfsf2: Soft float library routines. ! (line 73) * __ucmpdi2: Integer library routines. - (line 92) - * __ucmpti2: Integer library routines. (line 93) * __udivdi3: Integer library routines. ! (line 52) * __udivmoddi4: Integer library routines. - (line 59) - * __udivmodti4: Integer library routines. (line 61) * __udivsi3: Integer library routines. ! (line 50) * __udivti3: Integer library routines. ! (line 54) * __udivuda3: Fixed-point fractional library routines. ! (line 244) * __udivudq3: Fixed-point fractional library routines. - (line 238) - * __udivuha3: Fixed-point fractional library routines. (line 240) * __udivuhq3: Fixed-point fractional library routines. ! (line 234) * __udivuqq3: Fixed-point fractional library routines. ! (line 232) * __udivusa3: Fixed-point fractional library routines. ! (line 242) * __udivusq3: Fixed-point fractional library routines. ! (line 236) * __udivuta3: Fixed-point fractional library routines. ! (line 246) * __umoddi3: Integer library routines. ! (line 69) * __umodsi3: Integer library routines. ! (line 67) * __umodti3: Integer library routines. ! (line 71) * __unorddf2: Soft float library routines. ! (line 172) * __unordsf2: Soft float library routines. ! (line 171) * __unordtf2: Soft float library routines. ! (line 173) * __usadduda3: Fixed-point fractional library routines. ! (line 83) * __usaddudq3: Fixed-point fractional library routines. - (line 77) - * __usadduha3: Fixed-point fractional library routines. (line 79) * __usadduhq3: Fixed-point fractional library routines. ! (line 73) * __usadduqq3: Fixed-point fractional library routines. ! (line 71) * __usaddusa3: Fixed-point fractional library routines. ! (line 81) * __usaddusq3: Fixed-point fractional library routines. ! (line 75) * __usadduta3: Fixed-point fractional library routines. ! (line 85) * __usashluda3: Fixed-point fractional library routines. ! (line 419) * __usashludq3: Fixed-point fractional library routines. - (line 413) - * __usashluha3: Fixed-point fractional library routines. (line 415) * __usashluhq3: Fixed-point fractional library routines. ! (line 409) * __usashluqq3: Fixed-point fractional library routines. ! (line 407) * __usashlusa3: Fixed-point fractional library routines. ! (line 417) * __usashlusq3: Fixed-point fractional library routines. ! (line 411) * __usashluta3: Fixed-point fractional library routines. ! (line 421) * __usdivuda3: Fixed-point fractional library routines. ! (line 278) * __usdivudq3: Fixed-point fractional library routines. - (line 272) - * __usdivuha3: Fixed-point fractional library routines. (line 274) * __usdivuhq3: Fixed-point fractional library routines. ! (line 268) * __usdivuqq3: Fixed-point fractional library routines. ! (line 266) * __usdivusa3: Fixed-point fractional library routines. ! (line 276) * __usdivusq3: Fixed-point fractional library routines. ! (line 270) * __usdivuta3: Fixed-point fractional library routines. ! (line 280) * __usmuluda3: Fixed-point fractional library routines. ! (line 210) * __usmuludq3: Fixed-point fractional library routines. - (line 204) - * __usmuluha3: Fixed-point fractional library routines. (line 206) * __usmuluhq3: Fixed-point fractional library routines. ! (line 200) * __usmuluqq3: Fixed-point fractional library routines. ! (line 198) * __usmulusa3: Fixed-point fractional library routines. ! (line 208) * __usmulusq3: Fixed-point fractional library routines. ! (line 202) * __usmuluta3: Fixed-point fractional library routines. ! (line 212) * __usneguda2: Fixed-point fractional library routines. ! (line 329) * __usnegudq2: Fixed-point fractional library routines. - (line 324) - * __usneguha2: Fixed-point fractional library routines. (line 326) * __usneguhq2: Fixed-point fractional library routines. ! (line 321) * __usneguqq2: Fixed-point fractional library routines. ! (line 319) * __usnegusa2: Fixed-point fractional library routines. ! (line 328) * __usnegusq2: Fixed-point fractional library routines. ! (line 322) * __usneguta2: Fixed-point fractional library routines. ! (line 331) * __ussubuda3: Fixed-point fractional library routines. ! (line 146) * __ussubudq3: Fixed-point fractional library routines. - (line 140) - * __ussubuha3: Fixed-point fractional library routines. (line 142) * __ussubuhq3: Fixed-point fractional library routines. ! (line 136) * __ussubuqq3: Fixed-point fractional library routines. ! (line 134) * __ussubusa3: Fixed-point fractional library routines. ! (line 144) * __ussubusq3: Fixed-point fractional library routines. ! (line 138) * __ussubuta3: Fixed-point fractional library routines. ! (line 148) ! * abort: Portability. (line 20) ! * abs: Arithmetic. (line 201) ! * 'abs' and attributes: Expressions. (line 83) ! * absence_set: Processor pipeline description. ! (line 223) ! * 'absM2' instruction pattern: Standard Names. (line 541) ! * absolute value: Arithmetic. (line 201) * ABS_EXPR: Unary and Binary Expressions. (line 6) * access to operands: Accessors. (line 6) * access to special operands: Special Accessors. (line 6) * accessors: Accessors. (line 6) ! * ACCUMULATE_OUTGOING_ARGS: Stack Arguments. (line 48) ! * 'ACCUMULATE_OUTGOING_ARGS' and stack frames: Function Entry. ! (line 133) ! * ACCUM_TYPE_SIZE: Type Layout. (line 87) ! * ADA_LONG_TYPE_SIZE: Type Layout. (line 25) * Adding a new GIMPLE statement code: Adding a new GIMPLE statement code. (line 6) ! * ADDITIONAL_REGISTER_NAMES: Instruction Output. (line 14) ! * 'addM3' instruction pattern: Standard Names. (line 260) ! * 'addMODEcc' instruction pattern: Standard Names. (line 1063) ! * 'addptrM3' instruction pattern: Standard Names. (line 266) ! * address constraints: Simple Constraints. (line 162) ! * addressing modes: Addressing Modes. (line 6) ! * address_operand: Machine-Independent Predicates. ! (line 62) ! * address_operand <1>: Simple Constraints. (line 166) ! * addr_diff_vec: Side Effects. (line 313) ! * 'addr_diff_vec', length of: Insn Lengths. (line 26) * ADDR_EXPR: Storage References. (line 6) ! * addr_vec: Side Effects. (line 308) ! * 'addr_vec', length of: Insn Lengths. (line 26) ! * ADJUST_FIELD_ALIGN: Storage Layout. (line 190) * ADJUST_INSN_LENGTH: Insn Lengths. (line 35) ! * ADJUST_REG_ALLOC_ORDER: Allocation Order. (line 22) * aggregates as return values: Aggregate Return. (line 6) * alias: Alias analysis. (line 6) - * 'allocate_stack' instruction pattern: Standard Names. (line 1377) * ALL_REGS: Register Classes. (line 17) * alternate entry points: Insns. (line 146) * anchored addresses: Anchored Addresses. (line 6) ! * and: Arithmetic. (line 159) ! * 'and' and attributes: Expressions. (line 50) ! * 'and', canonicalization of: Insn Canonicalizations. ! (line 51) ! * 'andM3' instruction pattern: Standard Names. (line 276) * ANNOTATE_EXPR: Unary and Binary Expressions. (line 6) * annotations: Annotations. (line 6) * APPLY_RESULT_SIZE: Scalar Return. (line 112) ! * ARGS_GROW_DOWNWARD: Frame Layout. (line 34) * argument passing: Interface. (line 36) * arguments in registers: Register Arguments. (line 6) * arguments on stack: Stack Arguments. (line 6) - * ARG_POINTER_CFA_OFFSET: Frame Layout. (line 192) - * ARG_POINTER_REGNUM: Frame Registers. (line 40) - * 'ARG_POINTER_REGNUM' and virtual registers: Regs and Memory. - (line 65) - * arg_pointer_rtx: Frame Registers. (line 104) * arithmetic library: Soft float library routines. (line 6) ! * arithmetic shift: Arithmetic. (line 174) ! * arithmetic shift with signed saturation: Arithmetic. (line 174) ! * arithmetic shift with unsigned saturation: Arithmetic. (line 174) * arithmetic, in RTL: Arithmetic. (line 6) ! * ARITHMETIC_TYPE_P: Types for C++. (line 59) * array: Types. (line 6) * ARRAY_RANGE_REF: Storage References. (line 6) * ARRAY_REF: Storage References. (line 6) * ARRAY_TYPE: Types. (line 6) ! * ashift: Arithmetic. (line 174) ! * 'ashift' and attributes: Expressions. (line 83) ! * ashiftrt: Arithmetic. (line 191) ! * 'ashiftrt' and attributes: Expressions. (line 83) ! * 'ashlM3' instruction pattern: Standard Names. (line 516) ! * 'ashrM3' instruction pattern: Standard Names. (line 526) ! * ASM_APP_OFF: File Framework. (line 76) ! * ASM_APP_ON: File Framework. (line 69) ! * ASM_COMMENT_START: File Framework. (line 64) ! * ASM_DECLARE_FUNCTION_NAME: Label Output. (line 108) ! * ASM_DECLARE_FUNCTION_SIZE: Label Output. (line 123) ! * ASM_DECLARE_OBJECT_NAME: Label Output. (line 136) ! * ASM_DECLARE_REGISTER_GLOBAL: Label Output. (line 164) ! * ASM_FINAL_SPEC: Driver. (line 81) ! * ASM_FINISH_DECLARE_OBJECT: Label Output. (line 172) ! * ASM_FORMAT_PRIVATE_NAME: Label Output. (line 391) ! * asm_fprintf: Instruction Output. (line 150) ! * ASM_FPRINTF_EXTENSIONS: Instruction Output. (line 160) ! * ASM_GENERATE_INTERNAL_LABEL: Label Output. (line 375) ! * asm_input: Side Effects. (line 295) ! * 'asm_input' and '/v': Flags. (line 76) ! * ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX: Exception Handling. (line 80) ! * asm_noperands: Insns. (line 304) ! * ASM_NO_SKIP_IN_TEXT: Alignment Output. (line 78) ! * 'asm_operands' and '/v': Flags. (line 76) ! * 'asm_operands', RTL sharing: Sharing. (line 45) ! * 'asm_operands', usage: Assembler. (line 6) ! * ASM_OUTPUT_ADDR_DIFF_ELT: Dispatch Tables. (line 8) ! * ASM_OUTPUT_ADDR_VEC_ELT: Dispatch Tables. (line 25) ! * ASM_OUTPUT_ALIGN: Alignment Output. (line 85) ! * ASM_OUTPUT_ALIGNED_BSS: Uninitialized Data. (line 45) ! * ASM_OUTPUT_ALIGNED_COMMON: Uninitialized Data. (line 29) ! * ASM_OUTPUT_ALIGNED_DECL_COMMON: Uninitialized Data. (line 36) ! * ASM_OUTPUT_ALIGNED_DECL_LOCAL: Uninitialized Data. (line 89) ! * ASM_OUTPUT_ALIGNED_LOCAL: Uninitialized Data. (line 82) ! * ASM_OUTPUT_ALIGN_WITH_NOP: Alignment Output. (line 90) ! * ASM_OUTPUT_ASCII: Data Output. (line 50) ! * ASM_OUTPUT_CASE_END: Dispatch Tables. (line 50) ! * ASM_OUTPUT_CASE_LABEL: Dispatch Tables. (line 37) ! * ASM_OUTPUT_COMMON: Uninitialized Data. (line 9) ! * ASM_OUTPUT_DEBUG_LABEL: Label Output. (line 363) ! * ASM_OUTPUT_DEF: Label Output. (line 412) ! * ASM_OUTPUT_DEF_FROM_DECLS: Label Output. (line 419) ! * ASM_OUTPUT_DWARF_DELTA: SDB and DWARF. (line 73) ! * ASM_OUTPUT_DWARF_OFFSET: SDB and DWARF. (line 82) ! * ASM_OUTPUT_DWARF_PCREL: SDB and DWARF. (line 88) ! * ASM_OUTPUT_DWARF_TABLE_REF: SDB and DWARF. (line 93) ! * ASM_OUTPUT_DWARF_VMS_DELTA: SDB and DWARF. (line 77) ! * ASM_OUTPUT_EXTERNAL: Label Output. (line 292) ! * ASM_OUTPUT_FDESC: Data Output. (line 59) ! * ASM_OUTPUT_FUNCTION_LABEL: Label Output. (line 16) ! * ASM_OUTPUT_INTERNAL_LABEL: Label Output. (line 27) ! * ASM_OUTPUT_LABEL: Label Output. (line 8) ! * ASM_OUTPUT_LABELREF: Label Output. (line 314) ! * ASM_OUTPUT_LABEL_REF: Label Output. (line 336) ! * ASM_OUTPUT_LOCAL: Uninitialized Data. (line 69) ! * ASM_OUTPUT_MAX_SKIP_ALIGN: Alignment Output. (line 94) ! * ASM_OUTPUT_MEASURED_SIZE: Label Output. (line 51) ! * ASM_OUTPUT_OPCODE: Instruction Output. (line 35) ! * ASM_OUTPUT_POOL_EPILOGUE: Data Output. (line 108) ! * ASM_OUTPUT_POOL_PROLOGUE: Data Output. (line 72) ! * ASM_OUTPUT_REG_POP: Instruction Output. (line 206) ! * ASM_OUTPUT_REG_PUSH: Instruction Output. (line 201) ! * ASM_OUTPUT_SIZE_DIRECTIVE: Label Output. (line 45) ! * ASM_OUTPUT_SKIP: Alignment Output. (line 72) ! * ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 83) ! * ASM_OUTPUT_SPECIAL_POOL_ENTRY: Data Output. (line 83) ! * ASM_OUTPUT_SYMBOL_REF: Label Output. (line 329) ! * ASM_OUTPUT_TYPE_DIRECTIVE: Label Output. (line 98) ! * ASM_OUTPUT_WEAKREF: Label Output. (line 224) ! * ASM_OUTPUT_WEAK_ALIAS: Label Output. (line 438) ! * ASM_PREFERRED_EH_DATA_FORMAT: Exception Handling. (line 66) ! * ASM_SPEC: Driver. (line 73) ! * ASM_STABD_OP: DBX Options. (line 34) ! * ASM_STABN_OP: DBX Options. (line 41) ! * ASM_STABS_OP: DBX Options. (line 28) ! * ASM_WEAKEN_DECL: Label Output. (line 216) ! * ASM_WEAKEN_LABEL: Label Output. (line 203) * assembler format: File Framework. (line 6) * assembler instructions in RTL: Assembler. (line 6) ! * ASSEMBLER_DIALECT: Instruction Output. (line 172) ! * assemble_name: Label Output. (line 8) ! * assemble_name_raw: Label Output. (line 27) * assigning attribute values to insns: Tagging Insns. (line 6) ! * ASSUME_EXTENDED_UNWIND_CONTEXT: Frame Registers. (line 165) * asterisk in template: Output Statement. (line 29) ! * AS_NEEDS_DASH_FOR_PIPED_INPUT: Driver. (line 88) ! * 'atan2M3' instruction pattern: Standard Names. (line 624) ! * atomic: GTY Options. (line 270) ! * 'atomic_addMODE' instruction pattern: Standard Names. (line 1788) ! * 'atomic_add_fetchMODE' instruction pattern: Standard Names. ! (line 1819) ! * 'atomic_andMODE' instruction pattern: Standard Names. (line 1788) ! * 'atomic_and_fetchMODE' instruction pattern: Standard Names. ! (line 1819) ! * 'atomic_compare_and_swapMODE' instruction pattern: Standard Names. ! (line 1724) ! * 'atomic_exchangeMODE' instruction pattern: Standard Names. (line 1776) ! * 'atomic_fetch_addMODE' instruction pattern: Standard Names. ! (line 1803) ! * 'atomic_fetch_andMODE' instruction pattern: Standard Names. ! (line 1803) ! * 'atomic_fetch_nandMODE' instruction pattern: Standard Names. ! (line 1803) ! * 'atomic_fetch_orMODE' instruction pattern: Standard Names. (line 1803) ! * 'atomic_fetch_subMODE' instruction pattern: Standard Names. ! (line 1803) ! * 'atomic_fetch_xorMODE' instruction pattern: Standard Names. ! (line 1803) ! * 'atomic_loadMODE' instruction pattern: Standard Names. (line 1755) ! * 'atomic_nandMODE' instruction pattern: Standard Names. (line 1788) ! * 'atomic_nand_fetchMODE' instruction pattern: Standard Names. ! (line 1819) ! * 'atomic_orMODE' instruction pattern: Standard Names. (line 1788) ! * 'atomic_or_fetchMODE' instruction pattern: Standard Names. (line 1819) ! * 'atomic_storeMODE' instruction pattern: Standard Names. (line 1765) ! * 'atomic_subMODE' instruction pattern: Standard Names. (line 1788) ! * 'atomic_sub_fetchMODE' instruction pattern: Standard Names. ! (line 1819) ! * 'atomic_test_and_set' instruction pattern: Standard Names. (line 1837) ! * 'atomic_xorMODE' instruction pattern: Standard Names. (line 1788) ! * 'atomic_xor_fetchMODE' instruction pattern: Standard Names. ! (line 1819) ! * attr: Expressions. (line 163) * attr <1>: Tagging Insns. (line 54) * attribute expressions: Expressions. (line 6) * attribute specifications: Attr Example. (line 6) * attribute specifications example: Attr Example. (line 6) * attributes: Attributes. (line 6) * attributes, defining: Defining Attributes. (line 6) * attributes, target-specific: Target Attributes. (line 6) ! * ATTRIBUTE_ALIGNED_VALUE: Storage Layout. (line 172) ! * attr_flag: Expressions. (line 138) ! * autoincrement addressing, availability: Portability. (line 20) * autoincrement/decrement addressing: Simple Constraints. (line 30) * automata_option: Processor pipeline description. ! (line 304) * automaton based pipeline description: Processor pipeline description. (line 6) - * automaton based pipeline description <1>: Processor pipeline description. - (line 49) * automaton based scheduler: Processor pipeline description. (line 6) * AVOID_CCMODE_COPIES: Values in Registers. ! (line 150) * backslash: Output Template. (line 46) ! * barrier: Insns. (line 176) ! * 'barrier' and '/f': Flags. (line 107) ! * 'barrier' and '/v': Flags. (line 44) ! * BASE_REG_CLASS: Register Classes. (line 111) * basic block: Basic Blocks. (line 6) * Basic Statements: Basic Statements. (line 6) * basic-block.h: Control Flow. (line 6) - * basic_block: Basic Blocks. (line 6) * BASIC_BLOCK: Basic Blocks. (line 14) * BB_HEAD, BB_END: Maintaining the CFG. ! (line 76) ! * bb_seq: GIMPLE sequences. (line 72) ! * BIGGEST_ALIGNMENT: Storage Layout. (line 162) ! * BIGGEST_FIELD_ALIGNMENT: Storage Layout. (line 183) * BImode: Machine Modes. (line 22) * BIND_EXPR: Unary and Binary Expressions. (line 6) * BINFO_TYPE: Classes. (line 6) * bit-fields: Bit-Fields. (line 6) - * BITFIELD_NBYTES_LIMITED: Storage Layout. (line 393) - * BITS_BIG_ENDIAN: Storage Layout. (line 11) - * 'BITS_BIG_ENDIAN', effect on 'sign_extract': Bit-Fields. (line 8) - * BITS_PER_UNIT: Machine Modes. (line 345) - * BITS_PER_WORD: Storage Layout. (line 50) - * bitwise complement: Arithmetic. (line 155) - * bitwise exclusive-or: Arithmetic. (line 169) - * bitwise inclusive-or: Arithmetic. (line 164) - * bitwise logical-and: Arithmetic. (line 159) * BIT_AND_EXPR: Unary and Binary Expressions. (line 6) * BIT_IOR_EXPR: Unary and Binary Expressions. --- 43174,46707 ---- [index] * Menu: ! * ! in constraint: Multi-Alternative. (line 47) ! * # in constraint: Modifiers. (line 67) ! * # in template: Output Template. (line 66) * #pragma: Misc. (line 387) ! * % in constraint: Modifiers. (line 45) * % in GTY option: GTY Options. (line 18) ! * % in template: Output Template. (line 6) ! * & in constraint: Modifiers. (line 25) * (nil): RTL Objects. (line 73) ! * * in constraint: Modifiers. (line 72) ! * * in template: Output Statement. (line 29) ! * + in constraint: Modifiers. (line 12) ! * -fsection-anchors <1>: Anchored Addresses. (line 6) ! * -fsection-anchors: Special Accessors. (line 120) ! * /c in RTL dump: Flags. (line 221) ! * /f in RTL dump: Flags. (line 229) ! * /i in RTL dump: Flags. (line 274) ! * /j in RTL dump: Flags. (line 286) ! * /s in RTL dump: Flags. (line 245) ! * /u in RTL dump: Flags. (line 296) ! * /v in RTL dump: Flags. (line 328) ! * 0 in constraint: Simple Constraints. (line 130) ! * < in constraint: Simple Constraints. (line 48) ! * = in constraint: Modifiers. (line 8) ! * > in constraint: Simple Constraints. (line 61) ! * ? in constraint: Multi-Alternative. (line 41) * \: Output Template. (line 46) * __absvdi2: Integer library routines. ! (line 107) * __absvsi2: Integer library routines. ! (line 106) * __addda3: Fixed-point fractional library routines. ! (line 45) * __adddf3: Soft float library routines. ! (line 23) * __adddq3: Fixed-point fractional library routines. ! (line 33) * __addha3: Fixed-point fractional library routines. ! (line 43) * __addhq3: Fixed-point fractional library routines. ! (line 30) * __addqq3: Fixed-point fractional library routines. ! (line 29) * __addsa3: Fixed-point fractional library routines. ! (line 44) * __addsf3: Soft float library routines. ! (line 22) * __addsq3: Fixed-point fractional library routines. ! (line 31) * __addta3: Fixed-point fractional library routines. ! (line 47) * __addtf3: Soft float library routines. ! (line 25) * __adduda3: Fixed-point fractional library routines. ! (line 53) * __addudq3: Fixed-point fractional library routines. ! (line 41) * __adduha3: Fixed-point fractional library routines. ! (line 49) * __adduhq3: Fixed-point fractional library routines. ! (line 37) * __adduqq3: Fixed-point fractional library routines. ! (line 35) * __addusa3: Fixed-point fractional library routines. ! (line 51) * __addusq3: Fixed-point fractional library routines. ! (line 39) * __adduta3: Fixed-point fractional library routines. ! (line 55) * __addvdi3: Integer library routines. ! (line 111) * __addvsi3: Integer library routines. ! (line 110) * __addxf3: Soft float library routines. ! (line 27) * __ashlda3: Fixed-point fractional library routines. ! (line 351) * __ashldi3: Integer library routines. ! (line 14) * __ashldq3: Fixed-point fractional library routines. ! (line 340) * __ashlha3: Fixed-point fractional library routines. ! (line 349) * __ashlhq3: Fixed-point fractional library routines. ! (line 337) * __ashlqq3: Fixed-point fractional library routines. ! (line 336) * __ashlsa3: Fixed-point fractional library routines. ! (line 350) * __ashlsi3: Integer library routines. ! (line 13) * __ashlsq3: Fixed-point fractional library routines. ! (line 338) * __ashlta3: Fixed-point fractional library routines. ! (line 353) * __ashlti3: Integer library routines. ! (line 15) * __ashluda3: Fixed-point fractional library routines. ! (line 359) * __ashludq3: Fixed-point fractional library routines. ! (line 348) * __ashluha3: Fixed-point fractional library routines. ! (line 355) * __ashluhq3: Fixed-point fractional library routines. ! (line 344) * __ashluqq3: Fixed-point fractional library routines. ! (line 342) * __ashlusa3: Fixed-point fractional library routines. ! (line 357) * __ashlusq3: Fixed-point fractional library routines. ! (line 346) * __ashluta3: Fixed-point fractional library routines. ! (line 361) * __ashrda3: Fixed-point fractional library routines. ! (line 371) * __ashrdi3: Integer library routines. ! (line 19) * __ashrdq3: Fixed-point fractional library routines. (line 368) + * __ashrha3: Fixed-point fractional library routines. + (line 369) * __ashrhq3: Fixed-point fractional library routines. ! (line 365) * __ashrqq3: Fixed-point fractional library routines. ! (line 364) * __ashrsa3: Fixed-point fractional library routines. ! (line 370) * __ashrsi3: Integer library routines. ! (line 18) * __ashrsq3: Fixed-point fractional library routines. ! (line 366) * __ashrta3: Fixed-point fractional library routines. ! (line 373) * __ashrti3: Integer library routines. ! (line 20) * __bid_adddd3: Decimal float library routines. ! (line 25) * __bid_addsd3: Decimal float library routines. ! (line 21) * __bid_addtd3: Decimal float library routines. ! (line 29) * __bid_divdd3: Decimal float library routines. ! (line 68) * __bid_divsd3: Decimal float library routines. ! (line 64) * __bid_divtd3: Decimal float library routines. ! (line 72) * __bid_eqdd2: Decimal float library routines. ! (line 259) * __bid_eqsd2: Decimal float library routines. ! (line 257) * __bid_eqtd2: Decimal float library routines. ! (line 261) * __bid_extendddtd2: Decimal float library routines. ! (line 92) * __bid_extendddtf: Decimal float library routines. ! (line 140) * __bid_extendddxf: Decimal float library routines. ! (line 134) * __bid_extenddfdd: Decimal float library routines. ! (line 147) * __bid_extenddftd: Decimal float library routines. ! (line 107) * __bid_extendsddd2: Decimal float library routines. ! (line 88) * __bid_extendsddf: Decimal float library routines. ! (line 128) * __bid_extendsdtd2: Decimal float library routines. ! (line 90) * __bid_extendsdtf: Decimal float library routines. ! (line 138) * __bid_extendsdxf: Decimal float library routines. ! (line 132) * __bid_extendsfdd: Decimal float library routines. ! (line 103) * __bid_extendsfsd: Decimal float library routines. ! (line 145) * __bid_extendsftd: Decimal float library routines. ! (line 105) * __bid_extendtftd: Decimal float library routines. ! (line 149) * __bid_extendxftd: Decimal float library routines. ! (line 109) * __bid_fixdddi: Decimal float library routines. ! (line 170) * __bid_fixddsi: Decimal float library routines. ! (line 162) * __bid_fixsddi: Decimal float library routines. ! (line 168) * __bid_fixsdsi: Decimal float library routines. ! (line 160) * __bid_fixtddi: Decimal float library routines. ! (line 172) * __bid_fixtdsi: Decimal float library routines. ! (line 164) * __bid_fixunsdddi: Decimal float library routines. ! (line 187) * __bid_fixunsddsi: Decimal float library routines. ! (line 178) * __bid_fixunssddi: Decimal float library routines. ! (line 185) * __bid_fixunssdsi: Decimal float library routines. ! (line 176) * __bid_fixunstddi: Decimal float library routines. ! (line 189) * __bid_fixunstdsi: Decimal float library routines. ! (line 180) * __bid_floatdidd: Decimal float library routines. ! (line 205) * __bid_floatdisd: Decimal float library routines. ! (line 203) * __bid_floatditd: Decimal float library routines. ! (line 207) * __bid_floatsidd: Decimal float library routines. ! (line 196) * __bid_floatsisd: Decimal float library routines. ! (line 194) * __bid_floatsitd: Decimal float library routines. ! (line 198) * __bid_floatunsdidd: Decimal float library routines. ! (line 223) * __bid_floatunsdisd: Decimal float library routines. ! (line 221) * __bid_floatunsditd: Decimal float library routines. ! (line 225) * __bid_floatunssidd: Decimal float library routines. ! (line 214) * __bid_floatunssisd: Decimal float library routines. ! (line 212) * __bid_floatunssitd: Decimal float library routines. ! (line 216) * __bid_gedd2: Decimal float library routines. ! (line 277) * __bid_gesd2: Decimal float library routines. ! (line 275) * __bid_getd2: Decimal float library routines. ! (line 279) * __bid_gtdd2: Decimal float library routines. ! (line 304) * __bid_gtsd2: Decimal float library routines. ! (line 302) * __bid_gttd2: Decimal float library routines. ! (line 306) * __bid_ledd2: Decimal float library routines. ! (line 295) * __bid_lesd2: Decimal float library routines. ! (line 293) * __bid_letd2: Decimal float library routines. ! (line 297) * __bid_ltdd2: Decimal float library routines. ! (line 286) * __bid_ltsd2: Decimal float library routines. ! (line 284) * __bid_lttd2: Decimal float library routines. ! (line 288) * __bid_muldd3: Decimal float library routines. ! (line 54) * __bid_mulsd3: Decimal float library routines. ! (line 50) * __bid_multd3: Decimal float library routines. ! (line 58) * __bid_nedd2: Decimal float library routines. ! (line 268) * __bid_negdd2: Decimal float library routines. ! (line 78) * __bid_negsd2: Decimal float library routines. ! (line 76) * __bid_negtd2: Decimal float library routines. ! (line 80) * __bid_nesd2: Decimal float library routines. ! (line 266) * __bid_netd2: Decimal float library routines. ! (line 270) * __bid_subdd3: Decimal float library routines. ! (line 39) * __bid_subsd3: Decimal float library routines. ! (line 35) * __bid_subtd3: Decimal float library routines. ! (line 43) * __bid_truncdddf: Decimal float library routines. ! (line 153) * __bid_truncddsd2: Decimal float library routines. ! (line 94) * __bid_truncddsf: Decimal float library routines. ! (line 124) * __bid_truncdfsd: Decimal float library routines. ! (line 111) * __bid_truncsdsf: Decimal float library routines. ! (line 151) * __bid_trunctddd2: Decimal float library routines. ! (line 98) * __bid_trunctddf: Decimal float library routines. ! (line 130) * __bid_trunctdsd2: Decimal float library routines. ! (line 96) * __bid_trunctdsf: Decimal float library routines. ! (line 126) * __bid_trunctdtf: Decimal float library routines. ! (line 155) * __bid_trunctdxf: Decimal float library routines. ! (line 136) * __bid_trunctfdd: Decimal float library routines. ! (line 119) * __bid_trunctfsd: Decimal float library routines. ! (line 115) * __bid_truncxfdd: Decimal float library routines. ! (line 117) * __bid_truncxfsd: Decimal float library routines. ! (line 113) * __bid_unorddd2: Decimal float library routines. ! (line 235) * __bid_unordsd2: Decimal float library routines. ! (line 233) * __bid_unordtd2: Decimal float library routines. ! (line 237) * __bswapdi2: Integer library routines. ! (line 162) * __bswapsi2: Integer library routines. ! (line 161) ! * __builtin_classify_type: Varargs. (line 51) ! * __builtin_next_arg: Varargs. (line 42) ! * __builtin_saveregs: Varargs. (line 24) * __clear_cache: Miscellaneous routines. ! (line 10) * __clzdi2: Integer library routines. ! (line 131) * __clzsi2: Integer library routines. ! (line 130) * __clzti2: Integer library routines. ! (line 132) * __cmpda2: Fixed-point fractional library routines. ! (line 451) * __cmpdf2: Soft float library routines. ! (line 164) * __cmpdi2: Integer library routines. ! (line 87) * __cmpdq2: Fixed-point fractional library routines. ! (line 441) * __cmpha2: Fixed-point fractional library routines. ! (line 449) * __cmphq2: Fixed-point fractional library routines. ! (line 438) * __cmpqq2: Fixed-point fractional library routines. ! (line 437) * __cmpsa2: Fixed-point fractional library routines. ! (line 450) * __cmpsf2: Soft float library routines. ! (line 163) * __cmpsq2: Fixed-point fractional library routines. ! (line 439) * __cmpta2: Fixed-point fractional library routines. ! (line 453) * __cmptf2: Soft float library routines. ! (line 165) * __cmpti2: Integer library routines. ! (line 88) * __cmpuda2: Fixed-point fractional library routines. ! (line 458) * __cmpudq2: Fixed-point fractional library routines. ! (line 448) * __cmpuha2: Fixed-point fractional library routines. ! (line 455) * __cmpuhq2: Fixed-point fractional library routines. ! (line 444) * __cmpuqq2: Fixed-point fractional library routines. ! (line 443) * __cmpusa2: Fixed-point fractional library routines. ! (line 456) * __cmpusq2: Fixed-point fractional library routines. ! (line 446) * __cmputa2: Fixed-point fractional library routines. ! (line 460) * __CTOR_LIST__: Initialization. (line 25) * __ctzdi2: Integer library routines. ! (line 138) * __ctzsi2: Integer library routines. ! (line 137) * __ctzti2: Integer library routines. ! (line 139) * __divda3: Fixed-point fractional library routines. ! (line 227) * __divdc3: Soft float library routines. ! (line 252) * __divdf3: Soft float library routines. ! (line 48) * __divdi3: Integer library routines. ! (line 25) * __divdq3: Fixed-point fractional library routines. (line 223) + * __divha3: Fixed-point fractional library routines. + (line 225) * __divhq3: Fixed-point fractional library routines. ! (line 220) * __divqq3: Fixed-point fractional library routines. ! (line 219) * __divsa3: Fixed-point fractional library routines. ! (line 226) * __divsc3: Soft float library routines. ! (line 250) * __divsf3: Soft float library routines. ! (line 47) * __divsi3: Integer library routines. ! (line 24) * __divsq3: Fixed-point fractional library routines. ! (line 221) * __divta3: Fixed-point fractional library routines. ! (line 229) * __divtc3: Soft float library routines. ! (line 254) * __divtf3: Soft float library routines. ! (line 50) * __divti3: Integer library routines. ! (line 26) * __divxc3: Soft float library routines. ! (line 256) * __divxf3: Soft float library routines. ! (line 52) * __dpd_adddd3: Decimal float library routines. ! (line 23) * __dpd_addsd3: Decimal float library routines. ! (line 19) * __dpd_addtd3: Decimal float library routines. ! (line 27) * __dpd_divdd3: Decimal float library routines. ! (line 66) * __dpd_divsd3: Decimal float library routines. ! (line 62) * __dpd_divtd3: Decimal float library routines. ! (line 70) * __dpd_eqdd2: Decimal float library routines. ! (line 258) * __dpd_eqsd2: Decimal float library routines. ! (line 256) * __dpd_eqtd2: Decimal float library routines. ! (line 260) * __dpd_extendddtd2: Decimal float library routines. ! (line 91) * __dpd_extendddtf: Decimal float library routines. ! (line 139) * __dpd_extendddxf: Decimal float library routines. ! (line 133) * __dpd_extenddfdd: Decimal float library routines. ! (line 146) * __dpd_extenddftd: Decimal float library routines. ! (line 106) * __dpd_extendsddd2: Decimal float library routines. ! (line 87) * __dpd_extendsddf: Decimal float library routines. ! (line 127) * __dpd_extendsdtd2: Decimal float library routines. ! (line 89) * __dpd_extendsdtf: Decimal float library routines. ! (line 137) * __dpd_extendsdxf: Decimal float library routines. ! (line 131) * __dpd_extendsfdd: Decimal float library routines. ! (line 102) * __dpd_extendsfsd: Decimal float library routines. ! (line 144) * __dpd_extendsftd: Decimal float library routines. ! (line 104) * __dpd_extendtftd: Decimal float library routines. ! (line 148) * __dpd_extendxftd: Decimal float library routines. ! (line 108) * __dpd_fixdddi: Decimal float library routines. ! (line 169) * __dpd_fixddsi: Decimal float library routines. ! (line 161) * __dpd_fixsddi: Decimal float library routines. ! (line 167) * __dpd_fixsdsi: Decimal float library routines. ! (line 159) * __dpd_fixtddi: Decimal float library routines. ! (line 171) * __dpd_fixtdsi: Decimal float library routines. ! (line 163) * __dpd_fixunsdddi: Decimal float library routines. ! (line 186) * __dpd_fixunsddsi: Decimal float library routines. ! (line 177) * __dpd_fixunssddi: Decimal float library routines. ! (line 184) * __dpd_fixunssdsi: Decimal float library routines. ! (line 175) * __dpd_fixunstddi: Decimal float library routines. ! (line 188) * __dpd_fixunstdsi: Decimal float library routines. ! (line 179) * __dpd_floatdidd: Decimal float library routines. ! (line 204) * __dpd_floatdisd: Decimal float library routines. ! (line 202) * __dpd_floatditd: Decimal float library routines. ! (line 206) * __dpd_floatsidd: Decimal float library routines. ! (line 195) * __dpd_floatsisd: Decimal float library routines. ! (line 193) * __dpd_floatsitd: Decimal float library routines. ! (line 197) * __dpd_floatunsdidd: Decimal float library routines. ! (line 222) * __dpd_floatunsdisd: Decimal float library routines. ! (line 220) * __dpd_floatunsditd: Decimal float library routines. ! (line 224) * __dpd_floatunssidd: Decimal float library routines. ! (line 213) * __dpd_floatunssisd: Decimal float library routines. ! (line 211) * __dpd_floatunssitd: Decimal float library routines. ! (line 215) * __dpd_gedd2: Decimal float library routines. ! (line 276) * __dpd_gesd2: Decimal float library routines. ! (line 274) * __dpd_getd2: Decimal float library routines. ! (line 278) * __dpd_gtdd2: Decimal float library routines. ! (line 303) * __dpd_gtsd2: Decimal float library routines. ! (line 301) * __dpd_gttd2: Decimal float library routines. ! (line 305) * __dpd_ledd2: Decimal float library routines. ! (line 294) * __dpd_lesd2: Decimal float library routines. ! (line 292) * __dpd_letd2: Decimal float library routines. ! (line 296) * __dpd_ltdd2: Decimal float library routines. ! (line 285) * __dpd_ltsd2: Decimal float library routines. ! (line 283) * __dpd_lttd2: Decimal float library routines. ! (line 287) * __dpd_muldd3: Decimal float library routines. ! (line 52) * __dpd_mulsd3: Decimal float library routines. ! (line 48) * __dpd_multd3: Decimal float library routines. ! (line 56) * __dpd_nedd2: Decimal float library routines. ! (line 267) * __dpd_negdd2: Decimal float library routines. ! (line 77) * __dpd_negsd2: Decimal float library routines. ! (line 75) * __dpd_negtd2: Decimal float library routines. ! (line 79) * __dpd_nesd2: Decimal float library routines. ! (line 265) * __dpd_netd2: Decimal float library routines. ! (line 269) * __dpd_subdd3: Decimal float library routines. ! (line 37) * __dpd_subsd3: Decimal float library routines. ! (line 33) * __dpd_subtd3: Decimal float library routines. ! (line 41) * __dpd_truncdddf: Decimal float library routines. ! (line 152) * __dpd_truncddsd2: Decimal float library routines. ! (line 93) * __dpd_truncddsf: Decimal float library routines. ! (line 123) * __dpd_truncdfsd: Decimal float library routines. ! (line 110) * __dpd_truncsdsf: Decimal float library routines. ! (line 150) * __dpd_trunctddd2: Decimal float library routines. ! (line 97) * __dpd_trunctddf: Decimal float library routines. ! (line 129) * __dpd_trunctdsd2: Decimal float library routines. ! (line 95) * __dpd_trunctdsf: Decimal float library routines. ! (line 125) * __dpd_trunctdtf: Decimal float library routines. ! (line 154) * __dpd_trunctdxf: Decimal float library routines. ! (line 135) * __dpd_trunctfdd: Decimal float library routines. ! (line 118) * __dpd_trunctfsd: Decimal float library routines. ! (line 114) * __dpd_truncxfdd: Decimal float library routines. ! (line 116) * __dpd_truncxfsd: Decimal float library routines. ! (line 112) * __dpd_unorddd2: Decimal float library routines. ! (line 234) * __dpd_unordsd2: Decimal float library routines. ! (line 232) * __dpd_unordtd2: Decimal float library routines. ! (line 236) * __DTOR_LIST__: Initialization. (line 25) * __eqdf2: Soft float library routines. ! (line 194) * __eqsf2: Soft float library routines. ! (line 193) * __eqtf2: Soft float library routines. ! (line 195) * __extenddftf2: Soft float library routines. (line 68) + * __extenddfxf2: Soft float library routines. + (line 69) * __extendsfdf2: Soft float library routines. (line 65) ! * __extendsftf2: Soft float library routines. (line 66) + * __extendsfxf2: Soft float library routines. + (line 67) * __ffsdi2: Integer library routines. (line 144) + * __ffsti2: Integer library routines. + (line 145) * __fixdfdi: Soft float library routines. ! (line 88) * __fixdfsi: Soft float library routines. ! (line 81) * __fixdfti: Soft float library routines. ! (line 94) * __fixsfdi: Soft float library routines. ! (line 87) * __fixsfsi: Soft float library routines. ! (line 80) * __fixsfti: Soft float library routines. ! (line 93) * __fixtfdi: Soft float library routines. ! (line 89) * __fixtfsi: Soft float library routines. ! (line 82) * __fixtfti: Soft float library routines. ! (line 95) * __fixunsdfdi: Soft float library routines. ! (line 108) * __fixunsdfsi: Soft float library routines. ! (line 101) * __fixunsdfti: Soft float library routines. ! (line 115) * __fixunssfdi: Soft float library routines. ! (line 107) * __fixunssfsi: Soft float library routines. ! (line 100) * __fixunssfti: Soft float library routines. ! (line 114) * __fixunstfdi: Soft float library routines. ! (line 109) * __fixunstfsi: Soft float library routines. ! (line 102) * __fixunstfti: Soft float library routines. ! (line 116) * __fixunsxfdi: Soft float library routines. ! (line 110) * __fixunsxfsi: Soft float library routines. ! (line 103) * __fixunsxfti: Soft float library routines. ! (line 117) * __fixxfdi: Soft float library routines. ! (line 90) * __fixxfsi: Soft float library routines. ! (line 83) * __fixxfti: Soft float library routines. ! (line 96) * __floatdidf: Soft float library routines. ! (line 128) * __floatdisf: Soft float library routines. ! (line 127) * __floatditf: Soft float library routines. (line 129) + * __floatdixf: Soft float library routines. + (line 130) * __floatsidf: Soft float library routines. ! (line 122) * __floatsisf: Soft float library routines. ! (line 121) * __floatsitf: Soft float library routines. (line 123) + * __floatsixf: Soft float library routines. + (line 124) * __floattidf: Soft float library routines. ! (line 134) * __floattisf: Soft float library routines. ! (line 133) * __floattitf: Soft float library routines. (line 135) + * __floattixf: Soft float library routines. + (line 136) * __floatundidf: Soft float library routines. ! (line 146) * __floatundisf: Soft float library routines. ! (line 145) * __floatunditf: Soft float library routines. (line 147) + * __floatundixf: Soft float library routines. + (line 148) * __floatunsidf: Soft float library routines. ! (line 140) * __floatunsisf: Soft float library routines. ! (line 139) * __floatunsitf: Soft float library routines. (line 141) + * __floatunsixf: Soft float library routines. + (line 142) * __floatuntidf: Soft float library routines. ! (line 152) * __floatuntisf: Soft float library routines. ! (line 151) * __floatuntitf: Soft float library routines. (line 153) + * __floatuntixf: Soft float library routines. + (line 154) * __fractdadf: Fixed-point fractional library routines. ! (line 636) * __fractdadi: Fixed-point fractional library routines. ! (line 633) * __fractdadq: Fixed-point fractional library routines. (line 616) + * __fractdaha2: Fixed-point fractional library routines. + (line 617) * __fractdahi: Fixed-point fractional library routines. ! (line 631) * __fractdahq: Fixed-point fractional library routines. ! (line 614) * __fractdaqi: Fixed-point fractional library routines. ! (line 630) * __fractdaqq: Fixed-point fractional library routines. ! (line 613) * __fractdasa2: Fixed-point fractional library routines. ! (line 618) * __fractdasf: Fixed-point fractional library routines. ! (line 635) * __fractdasi: Fixed-point fractional library routines. ! (line 632) * __fractdasq: Fixed-point fractional library routines. ! (line 615) * __fractdata2: Fixed-point fractional library routines. ! (line 619) * __fractdati: Fixed-point fractional library routines. ! (line 634) * __fractdauda: Fixed-point fractional library routines. ! (line 627) * __fractdaudq: Fixed-point fractional library routines. (line 624) + * __fractdauha: Fixed-point fractional library routines. + (line 625) * __fractdauhq: Fixed-point fractional library routines. ! (line 621) * __fractdauqq: Fixed-point fractional library routines. ! (line 620) * __fractdausa: Fixed-point fractional library routines. ! (line 626) * __fractdausq: Fixed-point fractional library routines. ! (line 622) * __fractdauta: Fixed-point fractional library routines. ! (line 629) * __fractdfda: Fixed-point fractional library routines. ! (line 1025) * __fractdfdq: Fixed-point fractional library routines. (line 1022) + * __fractdfha: Fixed-point fractional library routines. + (line 1023) * __fractdfhq: Fixed-point fractional library routines. ! (line 1020) * __fractdfqq: Fixed-point fractional library routines. ! (line 1019) * __fractdfsa: Fixed-point fractional library routines. ! (line 1024) * __fractdfsq: Fixed-point fractional library routines. ! (line 1021) * __fractdfta: Fixed-point fractional library routines. ! (line 1026) * __fractdfuda: Fixed-point fractional library routines. ! (line 1033) * __fractdfudq: Fixed-point fractional library routines. (line 1030) + * __fractdfuha: Fixed-point fractional library routines. + (line 1031) * __fractdfuhq: Fixed-point fractional library routines. ! (line 1028) * __fractdfuqq: Fixed-point fractional library routines. ! (line 1027) * __fractdfusa: Fixed-point fractional library routines. ! (line 1032) * __fractdfusq: Fixed-point fractional library routines. ! (line 1029) * __fractdfuta: Fixed-point fractional library routines. ! (line 1034) * __fractdida: Fixed-point fractional library routines. ! (line 975) * __fractdidq: Fixed-point fractional library routines. (line 972) + * __fractdiha: Fixed-point fractional library routines. + (line 973) * __fractdihq: Fixed-point fractional library routines. ! (line 970) * __fractdiqq: Fixed-point fractional library routines. ! (line 969) * __fractdisa: Fixed-point fractional library routines. ! (line 974) * __fractdisq: Fixed-point fractional library routines. ! (line 971) * __fractdita: Fixed-point fractional library routines. ! (line 976) * __fractdiuda: Fixed-point fractional library routines. ! (line 983) * __fractdiudq: Fixed-point fractional library routines. (line 980) + * __fractdiuha: Fixed-point fractional library routines. + (line 981) * __fractdiuhq: Fixed-point fractional library routines. ! (line 978) * __fractdiuqq: Fixed-point fractional library routines. ! (line 977) * __fractdiusa: Fixed-point fractional library routines. ! (line 982) * __fractdiusq: Fixed-point fractional library routines. ! (line 979) * __fractdiuta: Fixed-point fractional library routines. ! (line 984) * __fractdqda: Fixed-point fractional library routines. ! (line 544) * __fractdqdf: Fixed-point fractional library routines. ! (line 566) * __fractdqdi: Fixed-point fractional library routines. ! (line 563) * __fractdqha: Fixed-point fractional library routines. ! (line 542) * __fractdqhi: Fixed-point fractional library routines. ! (line 561) * __fractdqhq2: Fixed-point fractional library routines. ! (line 540) * __fractdqqi: Fixed-point fractional library routines. ! (line 560) * __fractdqqq2: Fixed-point fractional library routines. ! (line 539) * __fractdqsa: Fixed-point fractional library routines. ! (line 543) * __fractdqsf: Fixed-point fractional library routines. ! (line 565) * __fractdqsi: Fixed-point fractional library routines. ! (line 562) * __fractdqsq2: Fixed-point fractional library routines. ! (line 541) * __fractdqta: Fixed-point fractional library routines. ! (line 545) * __fractdqti: Fixed-point fractional library routines. ! (line 564) * __fractdquda: Fixed-point fractional library routines. ! (line 557) * __fractdqudq: Fixed-point fractional library routines. (line 552) + * __fractdquha: Fixed-point fractional library routines. + (line 554) * __fractdquhq: Fixed-point fractional library routines. ! (line 548) * __fractdquqq: Fixed-point fractional library routines. ! (line 547) * __fractdqusa: Fixed-point fractional library routines. ! (line 555) * __fractdqusq: Fixed-point fractional library routines. ! (line 550) * __fractdquta: Fixed-point fractional library routines. ! (line 559) * __fracthada2: Fixed-point fractional library routines. ! (line 572) * __fracthadf: Fixed-point fractional library routines. ! (line 590) * __fracthadi: Fixed-point fractional library routines. ! (line 587) * __fracthadq: Fixed-point fractional library routines. ! (line 570) * __fracthahi: Fixed-point fractional library routines. ! (line 585) * __fracthahq: Fixed-point fractional library routines. ! (line 568) * __fracthaqi: Fixed-point fractional library routines. ! (line 584) * __fracthaqq: Fixed-point fractional library routines. ! (line 567) * __fracthasa2: Fixed-point fractional library routines. ! (line 571) * __fracthasf: Fixed-point fractional library routines. ! (line 589) * __fracthasi: Fixed-point fractional library routines. ! (line 586) * __fracthasq: Fixed-point fractional library routines. ! (line 569) * __fracthata2: Fixed-point fractional library routines. ! (line 573) * __fracthati: Fixed-point fractional library routines. ! (line 588) * __fracthauda: Fixed-point fractional library routines. ! (line 581) * __fracthaudq: Fixed-point fractional library routines. (line 578) + * __fracthauha: Fixed-point fractional library routines. + (line 579) * __fracthauhq: Fixed-point fractional library routines. ! (line 575) * __fracthauqq: Fixed-point fractional library routines. ! (line 574) * __fracthausa: Fixed-point fractional library routines. ! (line 580) * __fracthausq: Fixed-point fractional library routines. ! (line 576) * __fracthauta: Fixed-point fractional library routines. ! (line 583) * __fracthida: Fixed-point fractional library routines. ! (line 943) * __fracthidq: Fixed-point fractional library routines. (line 940) + * __fracthiha: Fixed-point fractional library routines. + (line 941) * __fracthihq: Fixed-point fractional library routines. ! (line 938) * __fracthiqq: Fixed-point fractional library routines. ! (line 937) * __fracthisa: Fixed-point fractional library routines. ! (line 942) * __fracthisq: Fixed-point fractional library routines. ! (line 939) * __fracthita: Fixed-point fractional library routines. ! (line 944) * __fracthiuda: Fixed-point fractional library routines. ! (line 951) * __fracthiudq: Fixed-point fractional library routines. (line 948) + * __fracthiuha: Fixed-point fractional library routines. + (line 949) * __fracthiuhq: Fixed-point fractional library routines. ! (line 946) * __fracthiuqq: Fixed-point fractional library routines. ! (line 945) * __fracthiusa: Fixed-point fractional library routines. ! (line 950) * __fracthiusq: Fixed-point fractional library routines. ! (line 947) * __fracthiuta: Fixed-point fractional library routines. ! (line 952) * __fracthqda: Fixed-point fractional library routines. ! (line 498) * __fracthqdf: Fixed-point fractional library routines. ! (line 514) * __fracthqdi: Fixed-point fractional library routines. ! (line 511) * __fracthqdq2: Fixed-point fractional library routines. (line 495) + * __fracthqha: Fixed-point fractional library routines. + (line 496) * __fracthqhi: Fixed-point fractional library routines. ! (line 509) * __fracthqqi: Fixed-point fractional library routines. ! (line 508) * __fracthqqq2: Fixed-point fractional library routines. ! (line 493) * __fracthqsa: Fixed-point fractional library routines. ! (line 497) * __fracthqsf: Fixed-point fractional library routines. ! (line 513) * __fracthqsi: Fixed-point fractional library routines. ! (line 510) * __fracthqsq2: Fixed-point fractional library routines. ! (line 494) * __fracthqta: Fixed-point fractional library routines. ! (line 499) * __fracthqti: Fixed-point fractional library routines. ! (line 512) * __fracthquda: Fixed-point fractional library routines. ! (line 506) * __fracthqudq: Fixed-point fractional library routines. (line 503) + * __fracthquha: Fixed-point fractional library routines. + (line 504) * __fracthquhq: Fixed-point fractional library routines. ! (line 501) * __fracthquqq: Fixed-point fractional library routines. ! (line 500) * __fracthqusa: Fixed-point fractional library routines. ! (line 505) * __fracthqusq: Fixed-point fractional library routines. ! (line 502) * __fracthquta: Fixed-point fractional library routines. ! (line 507) * __fractqida: Fixed-point fractional library routines. ! (line 925) * __fractqidq: Fixed-point fractional library routines. (line 922) + * __fractqiha: Fixed-point fractional library routines. + (line 923) * __fractqihq: Fixed-point fractional library routines. ! (line 920) * __fractqiqq: Fixed-point fractional library routines. ! (line 919) * __fractqisa: Fixed-point fractional library routines. ! (line 924) * __fractqisq: Fixed-point fractional library routines. ! (line 921) * __fractqita: Fixed-point fractional library routines. ! (line 926) * __fractqiuda: Fixed-point fractional library routines. ! (line 934) * __fractqiudq: Fixed-point fractional library routines. (line 931) + * __fractqiuha: Fixed-point fractional library routines. + (line 932) * __fractqiuhq: Fixed-point fractional library routines. ! (line 928) * __fractqiuqq: Fixed-point fractional library routines. ! (line 927) * __fractqiusa: Fixed-point fractional library routines. ! (line 933) * __fractqiusq: Fixed-point fractional library routines. ! (line 929) * __fractqiuta: Fixed-point fractional library routines. ! (line 936) * __fractqqda: Fixed-point fractional library routines. ! (line 474) * __fractqqdf: Fixed-point fractional library routines. ! (line 492) * __fractqqdi: Fixed-point fractional library routines. ! (line 489) * __fractqqdq2: Fixed-point fractional library routines. (line 471) + * __fractqqha: Fixed-point fractional library routines. + (line 472) * __fractqqhi: Fixed-point fractional library routines. ! (line 487) * __fractqqhq2: Fixed-point fractional library routines. ! (line 469) * __fractqqqi: Fixed-point fractional library routines. ! (line 486) * __fractqqsa: Fixed-point fractional library routines. ! (line 473) * __fractqqsf: Fixed-point fractional library routines. ! (line 491) * __fractqqsi: Fixed-point fractional library routines. ! (line 488) * __fractqqsq2: Fixed-point fractional library routines. ! (line 470) * __fractqqta: Fixed-point fractional library routines. ! (line 475) * __fractqqti: Fixed-point fractional library routines. ! (line 490) * __fractqquda: Fixed-point fractional library routines. ! (line 483) * __fractqqudq: Fixed-point fractional library routines. (line 480) + * __fractqquha: Fixed-point fractional library routines. + (line 481) * __fractqquhq: Fixed-point fractional library routines. ! (line 477) * __fractqquqq: Fixed-point fractional library routines. ! (line 476) * __fractqqusa: Fixed-point fractional library routines. ! (line 482) * __fractqqusq: Fixed-point fractional library routines. ! (line 478) * __fractqquta: Fixed-point fractional library routines. ! (line 485) * __fractsada2: Fixed-point fractional library routines. ! (line 596) * __fractsadf: Fixed-point fractional library routines. ! (line 612) * __fractsadi: Fixed-point fractional library routines. ! (line 609) * __fractsadq: Fixed-point fractional library routines. (line 594) + * __fractsaha2: Fixed-point fractional library routines. + (line 595) * __fractsahi: Fixed-point fractional library routines. ! (line 607) * __fractsahq: Fixed-point fractional library routines. ! (line 592) * __fractsaqi: Fixed-point fractional library routines. ! (line 606) * __fractsaqq: Fixed-point fractional library routines. ! (line 591) * __fractsasf: Fixed-point fractional library routines. ! (line 611) * __fractsasi: Fixed-point fractional library routines. ! (line 608) * __fractsasq: Fixed-point fractional library routines. ! (line 593) * __fractsata2: Fixed-point fractional library routines. ! (line 597) * __fractsati: Fixed-point fractional library routines. ! (line 610) * __fractsauda: Fixed-point fractional library routines. ! (line 604) * __fractsaudq: Fixed-point fractional library routines. (line 601) + * __fractsauha: Fixed-point fractional library routines. + (line 602) * __fractsauhq: Fixed-point fractional library routines. ! (line 599) * __fractsauqq: Fixed-point fractional library routines. ! (line 598) * __fractsausa: Fixed-point fractional library routines. ! (line 603) * __fractsausq: Fixed-point fractional library routines. ! (line 600) * __fractsauta: Fixed-point fractional library routines. ! (line 605) * __fractsfda: Fixed-point fractional library routines. ! (line 1009) * __fractsfdq: Fixed-point fractional library routines. (line 1006) + * __fractsfha: Fixed-point fractional library routines. + (line 1007) * __fractsfhq: Fixed-point fractional library routines. ! (line 1004) * __fractsfqq: Fixed-point fractional library routines. ! (line 1003) * __fractsfsa: Fixed-point fractional library routines. ! (line 1008) * __fractsfsq: Fixed-point fractional library routines. ! (line 1005) * __fractsfta: Fixed-point fractional library routines. ! (line 1010) * __fractsfuda: Fixed-point fractional library routines. ! (line 1017) * __fractsfudq: Fixed-point fractional library routines. (line 1014) + * __fractsfuha: Fixed-point fractional library routines. + (line 1015) * __fractsfuhq: Fixed-point fractional library routines. ! (line 1012) * __fractsfuqq: Fixed-point fractional library routines. ! (line 1011) * __fractsfusa: Fixed-point fractional library routines. ! (line 1016) * __fractsfusq: Fixed-point fractional library routines. ! (line 1013) * __fractsfuta: Fixed-point fractional library routines. ! (line 1018) * __fractsida: Fixed-point fractional library routines. ! (line 959) * __fractsidq: Fixed-point fractional library routines. (line 956) + * __fractsiha: Fixed-point fractional library routines. + (line 957) * __fractsihq: Fixed-point fractional library routines. ! (line 954) * __fractsiqq: Fixed-point fractional library routines. ! (line 953) * __fractsisa: Fixed-point fractional library routines. ! (line 958) * __fractsisq: Fixed-point fractional library routines. ! (line 955) * __fractsita: Fixed-point fractional library routines. ! (line 960) * __fractsiuda: Fixed-point fractional library routines. ! (line 967) * __fractsiudq: Fixed-point fractional library routines. (line 964) + * __fractsiuha: Fixed-point fractional library routines. + (line 965) * __fractsiuhq: Fixed-point fractional library routines. ! (line 962) * __fractsiuqq: Fixed-point fractional library routines. ! (line 961) * __fractsiusa: Fixed-point fractional library routines. ! (line 966) * __fractsiusq: Fixed-point fractional library routines. ! (line 963) * __fractsiuta: Fixed-point fractional library routines. ! (line 968) * __fractsqda: Fixed-point fractional library routines. ! (line 520) * __fractsqdf: Fixed-point fractional library routines. ! (line 538) * __fractsqdi: Fixed-point fractional library routines. ! (line 535) * __fractsqdq2: Fixed-point fractional library routines. (line 517) + * __fractsqha: Fixed-point fractional library routines. + (line 518) * __fractsqhi: Fixed-point fractional library routines. ! (line 533) * __fractsqhq2: Fixed-point fractional library routines. ! (line 516) * __fractsqqi: Fixed-point fractional library routines. ! (line 532) * __fractsqqq2: Fixed-point fractional library routines. ! (line 515) * __fractsqsa: Fixed-point fractional library routines. ! (line 519) * __fractsqsf: Fixed-point fractional library routines. ! (line 537) * __fractsqsi: Fixed-point fractional library routines. ! (line 534) * __fractsqta: Fixed-point fractional library routines. ! (line 521) * __fractsqti: Fixed-point fractional library routines. ! (line 536) * __fractsquda: Fixed-point fractional library routines. ! (line 529) * __fractsqudq: Fixed-point fractional library routines. (line 526) + * __fractsquha: Fixed-point fractional library routines. + (line 527) * __fractsquhq: Fixed-point fractional library routines. ! (line 523) * __fractsquqq: Fixed-point fractional library routines. ! (line 522) * __fractsqusa: Fixed-point fractional library routines. ! (line 528) * __fractsqusq: Fixed-point fractional library routines. ! (line 524) * __fractsquta: Fixed-point fractional library routines. ! (line 531) * __fracttada2: Fixed-point fractional library routines. ! (line 643) * __fracttadf: Fixed-point fractional library routines. ! (line 664) * __fracttadi: Fixed-point fractional library routines. ! (line 661) * __fracttadq: Fixed-point fractional library routines. (line 640) + * __fracttaha2: Fixed-point fractional library routines. + (line 641) * __fracttahi: Fixed-point fractional library routines. ! (line 659) * __fracttahq: Fixed-point fractional library routines. ! (line 638) * __fracttaqi: Fixed-point fractional library routines. ! (line 658) * __fracttaqq: Fixed-point fractional library routines. ! (line 637) * __fracttasa2: Fixed-point fractional library routines. ! (line 642) * __fracttasf: Fixed-point fractional library routines. ! (line 663) * __fracttasi: Fixed-point fractional library routines. ! (line 660) * __fracttasq: Fixed-point fractional library routines. ! (line 639) * __fracttati: Fixed-point fractional library routines. ! (line 662) * __fracttauda: Fixed-point fractional library routines. ! (line 655) * __fracttaudq: Fixed-point fractional library routines. (line 650) + * __fracttauha: Fixed-point fractional library routines. + (line 652) * __fracttauhq: Fixed-point fractional library routines. ! (line 646) * __fracttauqq: Fixed-point fractional library routines. ! (line 645) * __fracttausa: Fixed-point fractional library routines. ! (line 653) * __fracttausq: Fixed-point fractional library routines. ! (line 648) * __fracttauta: Fixed-point fractional library routines. ! (line 657) * __fracttida: Fixed-point fractional library routines. ! (line 991) * __fracttidq: Fixed-point fractional library routines. (line 988) + * __fracttiha: Fixed-point fractional library routines. + (line 989) * __fracttihq: Fixed-point fractional library routines. ! (line 986) * __fracttiqq: Fixed-point fractional library routines. ! (line 985) * __fracttisa: Fixed-point fractional library routines. ! (line 990) * __fracttisq: Fixed-point fractional library routines. ! (line 987) * __fracttita: Fixed-point fractional library routines. ! (line 992) * __fracttiuda: Fixed-point fractional library routines. ! (line 1000) * __fracttiudq: Fixed-point fractional library routines. (line 997) + * __fracttiuha: Fixed-point fractional library routines. + (line 998) * __fracttiuhq: Fixed-point fractional library routines. ! (line 994) * __fracttiuqq: Fixed-point fractional library routines. ! (line 993) * __fracttiusa: Fixed-point fractional library routines. ! (line 999) * __fracttiusq: Fixed-point fractional library routines. ! (line 995) * __fracttiuta: Fixed-point fractional library routines. ! (line 1002) * __fractudada: Fixed-point fractional library routines. ! (line 858) * __fractudadf: Fixed-point fractional library routines. ! (line 881) * __fractudadi: Fixed-point fractional library routines. ! (line 878) * __fractudadq: Fixed-point fractional library routines. (line 855) + * __fractudaha: Fixed-point fractional library routines. + (line 856) * __fractudahi: Fixed-point fractional library routines. ! (line 876) * __fractudahq: Fixed-point fractional library routines. ! (line 852) * __fractudaqi: Fixed-point fractional library routines. ! (line 875) * __fractudaqq: Fixed-point fractional library routines. ! (line 851) * __fractudasa: Fixed-point fractional library routines. ! (line 857) * __fractudasf: Fixed-point fractional library routines. ! (line 880) * __fractudasi: Fixed-point fractional library routines. ! (line 877) * __fractudasq: Fixed-point fractional library routines. ! (line 853) * __fractudata: Fixed-point fractional library routines. ! (line 860) * __fractudati: Fixed-point fractional library routines. ! (line 879) * __fractudaudq: Fixed-point fractional library routines. (line 868) + * __fractudauha2: Fixed-point fractional library routines. + (line 870) * __fractudauhq: Fixed-point fractional library routines. ! (line 864) * __fractudauqq: Fixed-point fractional library routines. ! (line 862) * __fractudausa2: Fixed-point fractional library routines. ! (line 872) * __fractudausq: Fixed-point fractional library routines. ! (line 866) * __fractudauta2: Fixed-point fractional library routines. ! (line 874) * __fractudqda: Fixed-point fractional library routines. ! (line 766) * __fractudqdf: Fixed-point fractional library routines. ! (line 791) * __fractudqdi: Fixed-point fractional library routines. ! (line 787) * __fractudqdq: Fixed-point fractional library routines. (line 761) + * __fractudqha: Fixed-point fractional library routines. + (line 763) * __fractudqhi: Fixed-point fractional library routines. ! (line 785) * __fractudqhq: Fixed-point fractional library routines. ! (line 757) * __fractudqqi: Fixed-point fractional library routines. ! (line 784) * __fractudqqq: Fixed-point fractional library routines. ! (line 756) * __fractudqsa: Fixed-point fractional library routines. ! (line 764) * __fractudqsf: Fixed-point fractional library routines. ! (line 790) * __fractudqsi: Fixed-point fractional library routines. ! (line 786) * __fractudqsq: Fixed-point fractional library routines. ! (line 759) * __fractudqta: Fixed-point fractional library routines. ! (line 768) * __fractudqti: Fixed-point fractional library routines. ! (line 789) * __fractudquda: Fixed-point fractional library routines. ! (line 780) * __fractudquha: Fixed-point fractional library routines. ! (line 776) * __fractudquhq2: Fixed-point fractional library routines. ! (line 772) * __fractudquqq2: Fixed-point fractional library routines. ! (line 770) * __fractudqusa: Fixed-point fractional library routines. ! (line 778) * __fractudqusq2: Fixed-point fractional library routines. ! (line 774) * __fractudquta: Fixed-point fractional library routines. ! (line 782) * __fractuhada: Fixed-point fractional library routines. ! (line 799) * __fractuhadf: Fixed-point fractional library routines. ! (line 822) * __fractuhadi: Fixed-point fractional library routines. ! (line 819) * __fractuhadq: Fixed-point fractional library routines. (line 796) + * __fractuhaha: Fixed-point fractional library routines. + (line 797) * __fractuhahi: Fixed-point fractional library routines. ! (line 817) * __fractuhahq: Fixed-point fractional library routines. ! (line 793) * __fractuhaqi: Fixed-point fractional library routines. ! (line 816) * __fractuhaqq: Fixed-point fractional library routines. ! (line 792) * __fractuhasa: Fixed-point fractional library routines. ! (line 798) * __fractuhasf: Fixed-point fractional library routines. ! (line 821) * __fractuhasi: Fixed-point fractional library routines. ! (line 818) * __fractuhasq: Fixed-point fractional library routines. ! (line 794) * __fractuhata: Fixed-point fractional library routines. ! (line 801) * __fractuhati: Fixed-point fractional library routines. ! (line 820) * __fractuhauda2: Fixed-point fractional library routines. ! (line 813) * __fractuhaudq: Fixed-point fractional library routines. ! (line 809) * __fractuhauhq: Fixed-point fractional library routines. ! (line 805) * __fractuhauqq: Fixed-point fractional library routines. ! (line 803) * __fractuhausa2: Fixed-point fractional library routines. ! (line 811) * __fractuhausq: Fixed-point fractional library routines. ! (line 807) * __fractuhauta2: Fixed-point fractional library routines. ! (line 815) * __fractuhqda: Fixed-point fractional library routines. ! (line 702) * __fractuhqdf: Fixed-point fractional library routines. ! (line 723) * __fractuhqdi: Fixed-point fractional library routines. ! (line 720) * __fractuhqdq: Fixed-point fractional library routines. (line 699) + * __fractuhqha: Fixed-point fractional library routines. + (line 700) * __fractuhqhi: Fixed-point fractional library routines. ! (line 718) * __fractuhqhq: Fixed-point fractional library routines. ! (line 697) * __fractuhqqi: Fixed-point fractional library routines. ! (line 717) * __fractuhqqq: Fixed-point fractional library routines. ! (line 696) * __fractuhqsa: Fixed-point fractional library routines. ! (line 701) * __fractuhqsf: Fixed-point fractional library routines. ! (line 722) * __fractuhqsi: Fixed-point fractional library routines. ! (line 719) * __fractuhqsq: Fixed-point fractional library routines. ! (line 698) * __fractuhqta: Fixed-point fractional library routines. ! (line 703) * __fractuhqti: Fixed-point fractional library routines. ! (line 721) * __fractuhquda: Fixed-point fractional library routines. ! (line 714) * __fractuhqudq2: Fixed-point fractional library routines. (line 709) + * __fractuhquha: Fixed-point fractional library routines. + (line 711) * __fractuhquqq2: Fixed-point fractional library routines. ! (line 705) * __fractuhqusa: Fixed-point fractional library routines. ! (line 712) * __fractuhqusq2: Fixed-point fractional library routines. ! (line 707) * __fractuhquta: Fixed-point fractional library routines. ! (line 716) * __fractunsdadi: Fixed-point fractional library routines. ! (line 1555) * __fractunsdahi: Fixed-point fractional library routines. ! (line 1553) * __fractunsdaqi: Fixed-point fractional library routines. ! (line 1552) * __fractunsdasi: Fixed-point fractional library routines. ! (line 1554) * __fractunsdati: Fixed-point fractional library routines. ! (line 1556) * __fractunsdida: Fixed-point fractional library routines. ! (line 1707) * __fractunsdidq: Fixed-point fractional library routines. (line 1704) + * __fractunsdiha: Fixed-point fractional library routines. + (line 1705) * __fractunsdihq: Fixed-point fractional library routines. ! (line 1702) * __fractunsdiqq: Fixed-point fractional library routines. ! (line 1701) * __fractunsdisa: Fixed-point fractional library routines. ! (line 1706) * __fractunsdisq: Fixed-point fractional library routines. ! (line 1703) * __fractunsdita: Fixed-point fractional library routines. ! (line 1708) * __fractunsdiuda: Fixed-point fractional library routines. ! (line 1720) * __fractunsdiudq: Fixed-point fractional library routines. (line 1715) + * __fractunsdiuha: Fixed-point fractional library routines. + (line 1717) * __fractunsdiuhq: Fixed-point fractional library routines. ! (line 1711) * __fractunsdiuqq: Fixed-point fractional library routines. ! (line 1710) * __fractunsdiusa: Fixed-point fractional library routines. ! (line 1718) * __fractunsdiusq: Fixed-point fractional library routines. ! (line 1713) * __fractunsdiuta: Fixed-point fractional library routines. ! (line 1722) * __fractunsdqdi: Fixed-point fractional library routines. ! (line 1539) * __fractunsdqhi: Fixed-point fractional library routines. ! (line 1537) * __fractunsdqqi: Fixed-point fractional library routines. ! (line 1536) * __fractunsdqsi: Fixed-point fractional library routines. ! (line 1538) * __fractunsdqti: Fixed-point fractional library routines. ! (line 1541) * __fractunshadi: Fixed-point fractional library routines. ! (line 1545) * __fractunshahi: Fixed-point fractional library routines. ! (line 1543) * __fractunshaqi: Fixed-point fractional library routines. ! (line 1542) * __fractunshasi: Fixed-point fractional library routines. ! (line 1544) * __fractunshati: Fixed-point fractional library routines. ! (line 1546) * __fractunshida: Fixed-point fractional library routines. ! (line 1663) * __fractunshidq: Fixed-point fractional library routines. (line 1660) + * __fractunshiha: Fixed-point fractional library routines. + (line 1661) * __fractunshihq: Fixed-point fractional library routines. ! (line 1658) * __fractunshiqq: Fixed-point fractional library routines. ! (line 1657) * __fractunshisa: Fixed-point fractional library routines. ! (line 1662) * __fractunshisq: Fixed-point fractional library routines. ! (line 1659) * __fractunshita: Fixed-point fractional library routines. ! (line 1664) * __fractunshiuda: Fixed-point fractional library routines. ! (line 1676) * __fractunshiudq: Fixed-point fractional library routines. (line 1671) + * __fractunshiuha: Fixed-point fractional library routines. + (line 1673) * __fractunshiuhq: Fixed-point fractional library routines. ! (line 1667) * __fractunshiuqq: Fixed-point fractional library routines. ! (line 1666) * __fractunshiusa: Fixed-point fractional library routines. ! (line 1674) * __fractunshiusq: Fixed-point fractional library routines. ! (line 1669) * __fractunshiuta: Fixed-point fractional library routines. ! (line 1678) * __fractunshqdi: Fixed-point fractional library routines. ! (line 1529) * __fractunshqhi: Fixed-point fractional library routines. ! (line 1527) * __fractunshqqi: Fixed-point fractional library routines. ! (line 1526) * __fractunshqsi: Fixed-point fractional library routines. ! (line 1528) * __fractunshqti: Fixed-point fractional library routines. ! (line 1530) * __fractunsqida: Fixed-point fractional library routines. ! (line 1641) * __fractunsqidq: Fixed-point fractional library routines. (line 1638) + * __fractunsqiha: Fixed-point fractional library routines. + (line 1639) * __fractunsqihq: Fixed-point fractional library routines. ! (line 1636) * __fractunsqiqq: Fixed-point fractional library routines. ! (line 1635) * __fractunsqisa: Fixed-point fractional library routines. ! (line 1640) * __fractunsqisq: Fixed-point fractional library routines. ! (line 1637) * __fractunsqita: Fixed-point fractional library routines. ! (line 1642) * __fractunsqiuda: Fixed-point fractional library routines. ! (line 1654) * __fractunsqiudq: Fixed-point fractional library routines. (line 1649) + * __fractunsqiuha: Fixed-point fractional library routines. + (line 1651) * __fractunsqiuhq: Fixed-point fractional library routines. ! (line 1645) * __fractunsqiuqq: Fixed-point fractional library routines. ! (line 1644) * __fractunsqiusa: Fixed-point fractional library routines. ! (line 1652) * __fractunsqiusq: Fixed-point fractional library routines. ! (line 1647) * __fractunsqiuta: Fixed-point fractional library routines. ! (line 1656) * __fractunsqqdi: Fixed-point fractional library routines. ! (line 1524) * __fractunsqqhi: Fixed-point fractional library routines. ! (line 1522) * __fractunsqqqi: Fixed-point fractional library routines. ! (line 1521) * __fractunsqqsi: Fixed-point fractional library routines. ! (line 1523) * __fractunsqqti: Fixed-point fractional library routines. ! (line 1525) * __fractunssadi: Fixed-point fractional library routines. ! (line 1550) * __fractunssahi: Fixed-point fractional library routines. ! (line 1548) * __fractunssaqi: Fixed-point fractional library routines. ! (line 1547) * __fractunssasi: Fixed-point fractional library routines. ! (line 1549) * __fractunssati: Fixed-point fractional library routines. ! (line 1551) * __fractunssida: Fixed-point fractional library routines. ! (line 1685) * __fractunssidq: Fixed-point fractional library routines. (line 1682) + * __fractunssiha: Fixed-point fractional library routines. + (line 1683) * __fractunssihq: Fixed-point fractional library routines. ! (line 1680) * __fractunssiqq: Fixed-point fractional library routines. ! (line 1679) * __fractunssisa: Fixed-point fractional library routines. ! (line 1684) * __fractunssisq: Fixed-point fractional library routines. ! (line 1681) * __fractunssita: Fixed-point fractional library routines. ! (line 1686) * __fractunssiuda: Fixed-point fractional library routines. ! (line 1698) * __fractunssiudq: Fixed-point fractional library routines. (line 1693) + * __fractunssiuha: Fixed-point fractional library routines. + (line 1695) * __fractunssiuhq: Fixed-point fractional library routines. ! (line 1689) * __fractunssiuqq: Fixed-point fractional library routines. ! (line 1688) * __fractunssiusa: Fixed-point fractional library routines. ! (line 1696) * __fractunssiusq: Fixed-point fractional library routines. ! (line 1691) * __fractunssiuta: Fixed-point fractional library routines. ! (line 1700) * __fractunssqdi: Fixed-point fractional library routines. ! (line 1534) * __fractunssqhi: Fixed-point fractional library routines. ! (line 1532) * __fractunssqqi: Fixed-point fractional library routines. ! (line 1531) * __fractunssqsi: Fixed-point fractional library routines. ! (line 1533) * __fractunssqti: Fixed-point fractional library routines. ! (line 1535) * __fractunstadi: Fixed-point fractional library routines. ! (line 1560) * __fractunstahi: Fixed-point fractional library routines. ! (line 1558) * __fractunstaqi: Fixed-point fractional library routines. ! (line 1557) * __fractunstasi: Fixed-point fractional library routines. ! (line 1559) * __fractunstati: Fixed-point fractional library routines. ! (line 1562) * __fractunstida: Fixed-point fractional library routines. ! (line 1730) * __fractunstidq: Fixed-point fractional library routines. (line 1727) + * __fractunstiha: Fixed-point fractional library routines. + (line 1728) * __fractunstihq: Fixed-point fractional library routines. ! (line 1724) * __fractunstiqq: Fixed-point fractional library routines. ! (line 1723) * __fractunstisa: Fixed-point fractional library routines. ! (line 1729) * __fractunstisq: Fixed-point fractional library routines. ! (line 1725) * __fractunstita: Fixed-point fractional library routines. ! (line 1732) * __fractunstiuda: Fixed-point fractional library routines. ! (line 1746) * __fractunstiudq: Fixed-point fractional library routines. (line 1740) + * __fractunstiuha: Fixed-point fractional library routines. + (line 1742) * __fractunstiuhq: Fixed-point fractional library routines. ! (line 1736) * __fractunstiuqq: Fixed-point fractional library routines. ! (line 1734) * __fractunstiusa: Fixed-point fractional library routines. ! (line 1744) * __fractunstiusq: Fixed-point fractional library routines. ! (line 1738) * __fractunstiuta: Fixed-point fractional library routines. ! (line 1748) * __fractunsudadi: Fixed-point fractional library routines. ! (line 1622) * __fractunsudahi: Fixed-point fractional library routines. ! (line 1618) * __fractunsudaqi: Fixed-point fractional library routines. ! (line 1616) * __fractunsudasi: Fixed-point fractional library routines. ! (line 1620) * __fractunsudati: Fixed-point fractional library routines. ! (line 1624) * __fractunsudqdi: Fixed-point fractional library routines. ! (line 1596) * __fractunsudqhi: Fixed-point fractional library routines. ! (line 1592) * __fractunsudqqi: Fixed-point fractional library routines. ! (line 1590) * __fractunsudqsi: Fixed-point fractional library routines. ! (line 1594) * __fractunsudqti: Fixed-point fractional library routines. ! (line 1598) * __fractunsuhadi: Fixed-point fractional library routines. ! (line 1606) * __fractunsuhahi: Fixed-point fractional library routines. ! (line 1602) * __fractunsuhaqi: Fixed-point fractional library routines. ! (line 1600) * __fractunsuhasi: Fixed-point fractional library routines. ! (line 1604) * __fractunsuhati: Fixed-point fractional library routines. ! (line 1608) * __fractunsuhqdi: Fixed-point fractional library routines. ! (line 1576) * __fractunsuhqhi: Fixed-point fractional library routines. ! (line 1574) * __fractunsuhqqi: Fixed-point fractional library routines. ! (line 1573) * __fractunsuhqsi: Fixed-point fractional library routines. ! (line 1575) * __fractunsuhqti: Fixed-point fractional library routines. ! (line 1578) * __fractunsuqqdi: Fixed-point fractional library routines. ! (line 1570) * __fractunsuqqhi: Fixed-point fractional library routines. ! (line 1566) * __fractunsuqqqi: Fixed-point fractional library routines. ! (line 1564) * __fractunsuqqsi: Fixed-point fractional library routines. ! (line 1568) * __fractunsuqqti: Fixed-point fractional library routines. ! (line 1572) * __fractunsusadi: Fixed-point fractional library routines. ! (line 1612) * __fractunsusahi: Fixed-point fractional library routines. ! (line 1610) * __fractunsusaqi: Fixed-point fractional library routines. ! (line 1609) * __fractunsusasi: Fixed-point fractional library routines. ! (line 1611) * __fractunsusati: Fixed-point fractional library routines. ! (line 1614) * __fractunsusqdi: Fixed-point fractional library routines. ! (line 1586) * __fractunsusqhi: Fixed-point fractional library routines. ! (line 1582) * __fractunsusqqi: Fixed-point fractional library routines. ! (line 1580) * __fractunsusqsi: Fixed-point fractional library routines. ! (line 1584) * __fractunsusqti: Fixed-point fractional library routines. ! (line 1588) * __fractunsutadi: Fixed-point fractional library routines. ! (line 1632) * __fractunsutahi: Fixed-point fractional library routines. ! (line 1628) * __fractunsutaqi: Fixed-point fractional library routines. ! (line 1626) * __fractunsutasi: Fixed-point fractional library routines. ! (line 1630) * __fractunsutati: Fixed-point fractional library routines. ! (line 1634) * __fractuqqda: Fixed-point fractional library routines. ! (line 672) * __fractuqqdf: Fixed-point fractional library routines. ! (line 695) * __fractuqqdi: Fixed-point fractional library routines. ! (line 692) * __fractuqqdq: Fixed-point fractional library routines. (line 669) + * __fractuqqha: Fixed-point fractional library routines. + (line 670) * __fractuqqhi: Fixed-point fractional library routines. ! (line 690) * __fractuqqhq: Fixed-point fractional library routines. ! (line 666) * __fractuqqqi: Fixed-point fractional library routines. ! (line 689) * __fractuqqqq: Fixed-point fractional library routines. ! (line 665) * __fractuqqsa: Fixed-point fractional library routines. ! (line 671) * __fractuqqsf: Fixed-point fractional library routines. ! (line 694) * __fractuqqsi: Fixed-point fractional library routines. ! (line 691) * __fractuqqsq: Fixed-point fractional library routines. ! (line 667) * __fractuqqta: Fixed-point fractional library routines. ! (line 674) * __fractuqqti: Fixed-point fractional library routines. ! (line 693) * __fractuqquda: Fixed-point fractional library routines. ! (line 686) * __fractuqqudq2: Fixed-point fractional library routines. (line 680) + * __fractuqquha: Fixed-point fractional library routines. + (line 682) * __fractuqquhq2: Fixed-point fractional library routines. ! (line 676) * __fractuqqusa: Fixed-point fractional library routines. ! (line 684) * __fractuqqusq2: Fixed-point fractional library routines. ! (line 678) * __fractuqquta: Fixed-point fractional library routines. ! (line 688) * __fractusada: Fixed-point fractional library routines. ! (line 829) * __fractusadf: Fixed-point fractional library routines. ! (line 850) * __fractusadi: Fixed-point fractional library routines. ! (line 847) * __fractusadq: Fixed-point fractional library routines. (line 826) + * __fractusaha: Fixed-point fractional library routines. + (line 827) * __fractusahi: Fixed-point fractional library routines. ! (line 845) * __fractusahq: Fixed-point fractional library routines. ! (line 824) * __fractusaqi: Fixed-point fractional library routines. ! (line 844) * __fractusaqq: Fixed-point fractional library routines. ! (line 823) * __fractusasa: Fixed-point fractional library routines. ! (line 828) * __fractusasf: Fixed-point fractional library routines. ! (line 849) * __fractusasi: Fixed-point fractional library routines. ! (line 846) * __fractusasq: Fixed-point fractional library routines. ! (line 825) * __fractusata: Fixed-point fractional library routines. ! (line 830) * __fractusati: Fixed-point fractional library routines. ! (line 848) * __fractusauda2: Fixed-point fractional library routines. ! (line 841) * __fractusaudq: Fixed-point fractional library routines. (line 837) + * __fractusauha2: Fixed-point fractional library routines. + (line 839) * __fractusauhq: Fixed-point fractional library routines. ! (line 833) * __fractusauqq: Fixed-point fractional library routines. ! (line 832) * __fractusausq: Fixed-point fractional library routines. ! (line 835) * __fractusauta2: Fixed-point fractional library routines. ! (line 843) * __fractusqda: Fixed-point fractional library routines. ! (line 731) * __fractusqdf: Fixed-point fractional library routines. ! (line 754) * __fractusqdi: Fixed-point fractional library routines. ! (line 751) * __fractusqdq: Fixed-point fractional library routines. (line 728) + * __fractusqha: Fixed-point fractional library routines. + (line 729) * __fractusqhi: Fixed-point fractional library routines. ! (line 749) * __fractusqhq: Fixed-point fractional library routines. ! (line 725) * __fractusqqi: Fixed-point fractional library routines. ! (line 748) * __fractusqqq: Fixed-point fractional library routines. ! (line 724) * __fractusqsa: Fixed-point fractional library routines. ! (line 730) * __fractusqsf: Fixed-point fractional library routines. ! (line 753) * __fractusqsi: Fixed-point fractional library routines. ! (line 750) * __fractusqsq: Fixed-point fractional library routines. ! (line 726) * __fractusqta: Fixed-point fractional library routines. ! (line 733) * __fractusqti: Fixed-point fractional library routines. ! (line 752) * __fractusquda: Fixed-point fractional library routines. ! (line 745) * __fractusqudq2: Fixed-point fractional library routines. (line 739) + * __fractusquha: Fixed-point fractional library routines. + (line 741) * __fractusquhq2: Fixed-point fractional library routines. ! (line 737) * __fractusquqq2: Fixed-point fractional library routines. ! (line 735) * __fractusqusa: Fixed-point fractional library routines. ! (line 743) * __fractusquta: Fixed-point fractional library routines. ! (line 747) * __fractutada: Fixed-point fractional library routines. ! (line 893) * __fractutadf: Fixed-point fractional library routines. ! (line 918) * __fractutadi: Fixed-point fractional library routines. ! (line 914) * __fractutadq: Fixed-point fractional library routines. (line 888) + * __fractutaha: Fixed-point fractional library routines. + (line 890) * __fractutahi: Fixed-point fractional library routines. ! (line 912) * __fractutahq: Fixed-point fractional library routines. ! (line 884) * __fractutaqi: Fixed-point fractional library routines. ! (line 911) * __fractutaqq: Fixed-point fractional library routines. ! (line 883) * __fractutasa: Fixed-point fractional library routines. ! (line 891) * __fractutasf: Fixed-point fractional library routines. ! (line 917) * __fractutasi: Fixed-point fractional library routines. ! (line 913) * __fractutasq: Fixed-point fractional library routines. ! (line 886) * __fractutata: Fixed-point fractional library routines. ! (line 895) * __fractutati: Fixed-point fractional library routines. ! (line 916) * __fractutauda2: Fixed-point fractional library routines. ! (line 909) * __fractutaudq: Fixed-point fractional library routines. (line 903) + * __fractutauha2: Fixed-point fractional library routines. + (line 905) * __fractutauhq: Fixed-point fractional library routines. ! (line 899) * __fractutauqq: Fixed-point fractional library routines. ! (line 897) * __fractutausa2: Fixed-point fractional library routines. ! (line 907) * __fractutausq: Fixed-point fractional library routines. ! (line 901) * __gedf2: Soft float library routines. ! (line 206) * __gesf2: Soft float library routines. ! (line 205) * __getf2: Soft float library routines. ! (line 207) * __gtdf2: Soft float library routines. ! (line 224) * __gtsf2: Soft float library routines. ! (line 223) * __gttf2: Soft float library routines. ! (line 225) * __ledf2: Soft float library routines. ! (line 218) * __lesf2: Soft float library routines. ! (line 217) * __letf2: Soft float library routines. ! (line 219) * __lshrdi3: Integer library routines. ! (line 31) * __lshrsi3: Integer library routines. ! (line 30) * __lshrti3: Integer library routines. ! (line 32) * __lshruda3: Fixed-point fractional library routines. ! (line 390) * __lshrudq3: Fixed-point fractional library routines. (line 384) + * __lshruha3: Fixed-point fractional library routines. + (line 386) * __lshruhq3: Fixed-point fractional library routines. ! (line 380) * __lshruqq3: Fixed-point fractional library routines. ! (line 378) * __lshrusa3: Fixed-point fractional library routines. ! (line 388) * __lshrusq3: Fixed-point fractional library routines. ! (line 382) * __lshruta3: Fixed-point fractional library routines. ! (line 392) * __ltdf2: Soft float library routines. ! (line 212) * __ltsf2: Soft float library routines. ! (line 211) * __lttf2: Soft float library routines. ! (line 213) * __main: Collect2. (line 15) * __moddi3: Integer library routines. ! (line 37) * __modsi3: Integer library routines. ! (line 36) * __modti3: Integer library routines. ! (line 38) * __morestack_current_segment: Miscellaneous routines. (line 46) + * __morestack_initial_sp: Miscellaneous routines. + (line 47) * __morestack_segments: Miscellaneous routines. ! (line 45) * __mulda3: Fixed-point fractional library routines. ! (line 171) * __muldc3: Soft float library routines. ! (line 241) * __muldf3: Soft float library routines. ! (line 40) * __muldi3: Integer library routines. ! (line 43) * __muldq3: Fixed-point fractional library routines. ! (line 159) * __mulha3: Fixed-point fractional library routines. ! (line 169) * __mulhq3: Fixed-point fractional library routines. ! (line 156) * __mulqq3: Fixed-point fractional library routines. ! (line 155) * __mulsa3: Fixed-point fractional library routines. ! (line 170) * __mulsc3: Soft float library routines. ! (line 239) * __mulsf3: Soft float library routines. ! (line 39) * __mulsi3: Integer library routines. ! (line 42) * __mulsq3: Fixed-point fractional library routines. ! (line 157) * __multa3: Fixed-point fractional library routines. ! (line 173) * __multc3: Soft float library routines. ! (line 243) * __multf3: Soft float library routines. ! (line 42) * __multi3: Integer library routines. ! (line 44) * __muluda3: Fixed-point fractional library routines. ! (line 179) * __muludq3: Fixed-point fractional library routines. ! (line 167) * __muluha3: Fixed-point fractional library routines. ! (line 175) * __muluhq3: Fixed-point fractional library routines. ! (line 163) * __muluqq3: Fixed-point fractional library routines. ! (line 161) * __mulusa3: Fixed-point fractional library routines. ! (line 177) * __mulusq3: Fixed-point fractional library routines. ! (line 165) * __muluta3: Fixed-point fractional library routines. ! (line 181) * __mulvdi3: Integer library routines. ! (line 115) * __mulvsi3: Integer library routines. ! (line 114) * __mulxc3: Soft float library routines. ! (line 245) * __mulxf3: Soft float library routines. ! (line 44) * __nedf2: Soft float library routines. ! (line 200) * __negda2: Fixed-point fractional library routines. ! (line 299) * __negdf2: Soft float library routines. ! (line 56) * __negdi2: Integer library routines. ! (line 47) * __negdq2: Fixed-point fractional library routines. ! (line 289) * __negha2: Fixed-point fractional library routines. ! (line 297) * __neghq2: Fixed-point fractional library routines. ! (line 287) * __negqq2: Fixed-point fractional library routines. ! (line 286) * __negsa2: Fixed-point fractional library routines. ! (line 298) * __negsf2: Soft float library routines. ! (line 55) * __negsq2: Fixed-point fractional library routines. ! (line 288) * __negta2: Fixed-point fractional library routines. ! (line 300) * __negtf2: Soft float library routines. ! (line 57) * __negti2: Integer library routines. ! (line 48) * __neguda2: Fixed-point fractional library routines. ! (line 305) * __negudq2: Fixed-point fractional library routines. ! (line 296) * __neguha2: Fixed-point fractional library routines. ! (line 302) * __neguhq2: Fixed-point fractional library routines. ! (line 292) * __neguqq2: Fixed-point fractional library routines. ! (line 291) * __negusa2: Fixed-point fractional library routines. ! (line 303) * __negusq2: Fixed-point fractional library routines. ! (line 294) * __neguta2: Fixed-point fractional library routines. ! (line 307) * __negvdi2: Integer library routines. ! (line 119) * __negvsi2: Integer library routines. ! (line 118) * __negxf2: Soft float library routines. ! (line 58) * __nesf2: Soft float library routines. ! (line 199) * __netf2: Soft float library routines. ! (line 201) * __paritydi2: Integer library routines. ! (line 151) * __paritysi2: Integer library routines. ! (line 150) * __parityti2: Integer library routines. ! (line 152) * __popcountdi2: Integer library routines. ! (line 157) * __popcountsi2: Integer library routines. ! (line 156) * __popcountti2: Integer library routines. ! (line 158) * __powidf2: Soft float library routines. ! (line 233) * __powisf2: Soft float library routines. ! (line 232) * __powitf2: Soft float library routines. (line 234) + * __powixf2: Soft float library routines. + (line 235) * __satfractdadq: Fixed-point fractional library routines. (line 1153) + * __satfractdaha2: Fixed-point fractional library routines. + (line 1154) * __satfractdahq: Fixed-point fractional library routines. ! (line 1151) * __satfractdaqq: Fixed-point fractional library routines. ! (line 1150) * __satfractdasa2: Fixed-point fractional library routines. ! (line 1155) * __satfractdasq: Fixed-point fractional library routines. ! (line 1152) * __satfractdata2: Fixed-point fractional library routines. ! (line 1156) * __satfractdauda: Fixed-point fractional library routines. ! (line 1166) * __satfractdaudq: Fixed-point fractional library routines. (line 1162) + * __satfractdauha: Fixed-point fractional library routines. + (line 1164) * __satfractdauhq: Fixed-point fractional library routines. ! (line 1159) * __satfractdauqq: Fixed-point fractional library routines. ! (line 1158) * __satfractdausa: Fixed-point fractional library routines. ! (line 1165) * __satfractdausq: Fixed-point fractional library routines. ! (line 1160) * __satfractdauta: Fixed-point fractional library routines. ! (line 1168) * __satfractdfda: Fixed-point fractional library routines. ! (line 1506) * __satfractdfdq: Fixed-point fractional library routines. (line 1503) + * __satfractdfha: Fixed-point fractional library routines. + (line 1504) * __satfractdfhq: Fixed-point fractional library routines. ! (line 1501) * __satfractdfqq: Fixed-point fractional library routines. ! (line 1500) * __satfractdfsa: Fixed-point fractional library routines. ! (line 1505) * __satfractdfsq: Fixed-point fractional library routines. ! (line 1502) * __satfractdfta: Fixed-point fractional library routines. ! (line 1507) * __satfractdfuda: Fixed-point fractional library routines. ! (line 1515) * __satfractdfudq: Fixed-point fractional library routines. (line 1512) + * __satfractdfuha: Fixed-point fractional library routines. + (line 1513) * __satfractdfuhq: Fixed-point fractional library routines. ! (line 1509) * __satfractdfuqq: Fixed-point fractional library routines. ! (line 1508) * __satfractdfusa: Fixed-point fractional library routines. ! (line 1514) * __satfractdfusq: Fixed-point fractional library routines. ! (line 1510) * __satfractdfuta: Fixed-point fractional library routines. ! (line 1517) * __satfractdida: Fixed-point fractional library routines. ! (line 1456) * __satfractdidq: Fixed-point fractional library routines. (line 1453) + * __satfractdiha: Fixed-point fractional library routines. + (line 1454) * __satfractdihq: Fixed-point fractional library routines. ! (line 1451) * __satfractdiqq: Fixed-point fractional library routines. ! (line 1450) * __satfractdisa: Fixed-point fractional library routines. ! (line 1455) * __satfractdisq: Fixed-point fractional library routines. ! (line 1452) * __satfractdita: Fixed-point fractional library routines. ! (line 1457) * __satfractdiuda: Fixed-point fractional library routines. ! (line 1464) * __satfractdiudq: Fixed-point fractional library routines. (line 1461) + * __satfractdiuha: Fixed-point fractional library routines. + (line 1462) * __satfractdiuhq: Fixed-point fractional library routines. ! (line 1459) * __satfractdiuqq: Fixed-point fractional library routines. ! (line 1458) * __satfractdiusa: Fixed-point fractional library routines. ! (line 1463) * __satfractdiusq: Fixed-point fractional library routines. ! (line 1460) * __satfractdiuta: Fixed-point fractional library routines. ! (line 1465) * __satfractdqda: Fixed-point fractional library routines. ! (line 1098) * __satfractdqha: Fixed-point fractional library routines. ! (line 1096) * __satfractdqhq2: Fixed-point fractional library routines. ! (line 1094) * __satfractdqqq2: Fixed-point fractional library routines. ! (line 1093) * __satfractdqsa: Fixed-point fractional library routines. ! (line 1097) * __satfractdqsq2: Fixed-point fractional library routines. ! (line 1095) * __satfractdqta: Fixed-point fractional library routines. ! (line 1099) * __satfractdquda: Fixed-point fractional library routines. ! (line 1111) * __satfractdqudq: Fixed-point fractional library routines. (line 1106) + * __satfractdquha: Fixed-point fractional library routines. + (line 1108) * __satfractdquhq: Fixed-point fractional library routines. ! (line 1102) * __satfractdquqq: Fixed-point fractional library routines. ! (line 1101) * __satfractdqusa: Fixed-point fractional library routines. ! (line 1109) * __satfractdqusq: Fixed-point fractional library routines. ! (line 1104) * __satfractdquta: Fixed-point fractional library routines. ! (line 1113) * __satfracthada2: Fixed-point fractional library routines. ! (line 1119) * __satfracthadq: Fixed-point fractional library routines. ! (line 1117) * __satfracthahq: Fixed-point fractional library routines. ! (line 1115) * __satfracthaqq: Fixed-point fractional library routines. ! (line 1114) * __satfracthasa2: Fixed-point fractional library routines. ! (line 1118) * __satfracthasq: Fixed-point fractional library routines. ! (line 1116) * __satfracthata2: Fixed-point fractional library routines. ! (line 1120) * __satfracthauda: Fixed-point fractional library routines. ! (line 1132) * __satfracthaudq: Fixed-point fractional library routines. (line 1127) + * __satfracthauha: Fixed-point fractional library routines. + (line 1129) * __satfracthauhq: Fixed-point fractional library routines. ! (line 1123) * __satfracthauqq: Fixed-point fractional library routines. ! (line 1122) * __satfracthausa: Fixed-point fractional library routines. ! (line 1130) * __satfracthausq: Fixed-point fractional library routines. ! (line 1125) * __satfracthauta: Fixed-point fractional library routines. ! (line 1134) * __satfracthida: Fixed-point fractional library routines. ! (line 1424) * __satfracthidq: Fixed-point fractional library routines. (line 1421) + * __satfracthiha: Fixed-point fractional library routines. + (line 1422) * __satfracthihq: Fixed-point fractional library routines. ! (line 1419) * __satfracthiqq: Fixed-point fractional library routines. ! (line 1418) * __satfracthisa: Fixed-point fractional library routines. ! (line 1423) * __satfracthisq: Fixed-point fractional library routines. ! (line 1420) * __satfracthita: Fixed-point fractional library routines. ! (line 1425) * __satfracthiuda: Fixed-point fractional library routines. ! (line 1432) * __satfracthiudq: Fixed-point fractional library routines. (line 1429) + * __satfracthiuha: Fixed-point fractional library routines. + (line 1430) * __satfracthiuhq: Fixed-point fractional library routines. ! (line 1427) * __satfracthiuqq: Fixed-point fractional library routines. ! (line 1426) * __satfracthiusa: Fixed-point fractional library routines. ! (line 1431) * __satfracthiusq: Fixed-point fractional library routines. ! (line 1428) * __satfracthiuta: Fixed-point fractional library routines. ! (line 1433) * __satfracthqda: Fixed-point fractional library routines. ! (line 1064) * __satfracthqdq2: Fixed-point fractional library routines. (line 1061) + * __satfracthqha: Fixed-point fractional library routines. + (line 1062) * __satfracthqqq2: Fixed-point fractional library routines. ! (line 1059) * __satfracthqsa: Fixed-point fractional library routines. ! (line 1063) * __satfracthqsq2: Fixed-point fractional library routines. ! (line 1060) * __satfracthqta: Fixed-point fractional library routines. ! (line 1065) * __satfracthquda: Fixed-point fractional library routines. ! (line 1072) * __satfracthqudq: Fixed-point fractional library routines. (line 1069) + * __satfracthquha: Fixed-point fractional library routines. + (line 1070) * __satfracthquhq: Fixed-point fractional library routines. ! (line 1067) * __satfracthquqq: Fixed-point fractional library routines. ! (line 1066) * __satfracthqusa: Fixed-point fractional library routines. ! (line 1071) * __satfracthqusq: Fixed-point fractional library routines. ! (line 1068) * __satfracthquta: Fixed-point fractional library routines. ! (line 1073) * __satfractqida: Fixed-point fractional library routines. ! (line 1402) * __satfractqidq: Fixed-point fractional library routines. (line 1399) + * __satfractqiha: Fixed-point fractional library routines. + (line 1400) * __satfractqihq: Fixed-point fractional library routines. ! (line 1397) * __satfractqiqq: Fixed-point fractional library routines. ! (line 1396) * __satfractqisa: Fixed-point fractional library routines. ! (line 1401) * __satfractqisq: Fixed-point fractional library routines. ! (line 1398) * __satfractqita: Fixed-point fractional library routines. ! (line 1403) * __satfractqiuda: Fixed-point fractional library routines. ! (line 1415) * __satfractqiudq: Fixed-point fractional library routines. (line 1410) + * __satfractqiuha: Fixed-point fractional library routines. + (line 1412) * __satfractqiuhq: Fixed-point fractional library routines. ! (line 1406) * __satfractqiuqq: Fixed-point fractional library routines. ! (line 1405) * __satfractqiusa: Fixed-point fractional library routines. ! (line 1413) * __satfractqiusq: Fixed-point fractional library routines. ! (line 1408) * __satfractqiuta: Fixed-point fractional library routines. ! (line 1417) * __satfractqqda: Fixed-point fractional library routines. ! (line 1043) * __satfractqqdq2: Fixed-point fractional library routines. (line 1040) + * __satfractqqha: Fixed-point fractional library routines. + (line 1041) * __satfractqqhq2: Fixed-point fractional library routines. ! (line 1038) * __satfractqqsa: Fixed-point fractional library routines. ! (line 1042) * __satfractqqsq2: Fixed-point fractional library routines. ! (line 1039) * __satfractqqta: Fixed-point fractional library routines. ! (line 1044) * __satfractqquda: Fixed-point fractional library routines. ! (line 1056) * __satfractqqudq: Fixed-point fractional library routines. (line 1051) + * __satfractqquha: Fixed-point fractional library routines. + (line 1053) * __satfractqquhq: Fixed-point fractional library routines. ! (line 1047) * __satfractqquqq: Fixed-point fractional library routines. ! (line 1046) * __satfractqqusa: Fixed-point fractional library routines. ! (line 1054) * __satfractqqusq: Fixed-point fractional library routines. ! (line 1049) * __satfractqquta: Fixed-point fractional library routines. ! (line 1058) * __satfractsada2: Fixed-point fractional library routines. ! (line 1140) * __satfractsadq: Fixed-point fractional library routines. (line 1138) + * __satfractsaha2: Fixed-point fractional library routines. + (line 1139) * __satfractsahq: Fixed-point fractional library routines. ! (line 1136) * __satfractsaqq: Fixed-point fractional library routines. ! (line 1135) * __satfractsasq: Fixed-point fractional library routines. ! (line 1137) * __satfractsata2: Fixed-point fractional library routines. ! (line 1141) * __satfractsauda: Fixed-point fractional library routines. ! (line 1148) * __satfractsaudq: Fixed-point fractional library routines. (line 1145) + * __satfractsauha: Fixed-point fractional library routines. + (line 1146) * __satfractsauhq: Fixed-point fractional library routines. ! (line 1143) * __satfractsauqq: Fixed-point fractional library routines. ! (line 1142) * __satfractsausa: Fixed-point fractional library routines. ! (line 1147) * __satfractsausq: Fixed-point fractional library routines. ! (line 1144) * __satfractsauta: Fixed-point fractional library routines. ! (line 1149) * __satfractsfda: Fixed-point fractional library routines. ! (line 1490) * __satfractsfdq: Fixed-point fractional library routines. (line 1487) + * __satfractsfha: Fixed-point fractional library routines. + (line 1488) * __satfractsfhq: Fixed-point fractional library routines. ! (line 1485) * __satfractsfqq: Fixed-point fractional library routines. ! (line 1484) * __satfractsfsa: Fixed-point fractional library routines. ! (line 1489) * __satfractsfsq: Fixed-point fractional library routines. ! (line 1486) * __satfractsfta: Fixed-point fractional library routines. ! (line 1491) * __satfractsfuda: Fixed-point fractional library routines. ! (line 1498) * __satfractsfudq: Fixed-point fractional library routines. (line 1495) + * __satfractsfuha: Fixed-point fractional library routines. + (line 1496) * __satfractsfuhq: Fixed-point fractional library routines. ! (line 1493) * __satfractsfuqq: Fixed-point fractional library routines. ! (line 1492) * __satfractsfusa: Fixed-point fractional library routines. ! (line 1497) * __satfractsfusq: Fixed-point fractional library routines. ! (line 1494) * __satfractsfuta: Fixed-point fractional library routines. ! (line 1499) * __satfractsida: Fixed-point fractional library routines. ! (line 1440) * __satfractsidq: Fixed-point fractional library routines. (line 1437) + * __satfractsiha: Fixed-point fractional library routines. + (line 1438) * __satfractsihq: Fixed-point fractional library routines. ! (line 1435) * __satfractsiqq: Fixed-point fractional library routines. ! (line 1434) * __satfractsisa: Fixed-point fractional library routines. ! (line 1439) * __satfractsisq: Fixed-point fractional library routines. ! (line 1436) * __satfractsita: Fixed-point fractional library routines. ! (line 1441) * __satfractsiuda: Fixed-point fractional library routines. ! (line 1448) * __satfractsiudq: Fixed-point fractional library routines. (line 1445) + * __satfractsiuha: Fixed-point fractional library routines. + (line 1446) * __satfractsiuhq: Fixed-point fractional library routines. ! (line 1443) * __satfractsiuqq: Fixed-point fractional library routines. ! (line 1442) * __satfractsiusa: Fixed-point fractional library routines. ! (line 1447) * __satfractsiusq: Fixed-point fractional library routines. ! (line 1444) * __satfractsiuta: Fixed-point fractional library routines. ! (line 1449) * __satfractsqda: Fixed-point fractional library routines. ! (line 1079) * __satfractsqdq2: Fixed-point fractional library routines. (line 1076) + * __satfractsqha: Fixed-point fractional library routines. + (line 1077) * __satfractsqhq2: Fixed-point fractional library routines. ! (line 1075) * __satfractsqqq2: Fixed-point fractional library routines. ! (line 1074) * __satfractsqsa: Fixed-point fractional library routines. ! (line 1078) * __satfractsqta: Fixed-point fractional library routines. ! (line 1080) * __satfractsquda: Fixed-point fractional library routines. ! (line 1090) * __satfractsqudq: Fixed-point fractional library routines. (line 1086) + * __satfractsquha: Fixed-point fractional library routines. + (line 1088) * __satfractsquhq: Fixed-point fractional library routines. ! (line 1083) * __satfractsquqq: Fixed-point fractional library routines. ! (line 1082) * __satfractsqusa: Fixed-point fractional library routines. ! (line 1089) * __satfractsqusq: Fixed-point fractional library routines. ! (line 1084) * __satfractsquta: Fixed-point fractional library routines. ! (line 1092) * __satfracttada2: Fixed-point fractional library routines. ! (line 1175) * __satfracttadq: Fixed-point fractional library routines. (line 1172) + * __satfracttaha2: Fixed-point fractional library routines. + (line 1173) * __satfracttahq: Fixed-point fractional library routines. ! (line 1170) * __satfracttaqq: Fixed-point fractional library routines. ! (line 1169) * __satfracttasa2: Fixed-point fractional library routines. ! (line 1174) * __satfracttasq: Fixed-point fractional library routines. ! (line 1171) * __satfracttauda: Fixed-point fractional library routines. ! (line 1187) * __satfracttaudq: Fixed-point fractional library routines. (line 1182) + * __satfracttauha: Fixed-point fractional library routines. + (line 1184) * __satfracttauhq: Fixed-point fractional library routines. ! (line 1178) * __satfracttauqq: Fixed-point fractional library routines. ! (line 1177) * __satfracttausa: Fixed-point fractional library routines. ! (line 1185) * __satfracttausq: Fixed-point fractional library routines. ! (line 1180) * __satfracttauta: Fixed-point fractional library routines. ! (line 1189) * __satfracttida: Fixed-point fractional library routines. ! (line 1472) * __satfracttidq: Fixed-point fractional library routines. (line 1469) + * __satfracttiha: Fixed-point fractional library routines. + (line 1470) * __satfracttihq: Fixed-point fractional library routines. ! (line 1467) * __satfracttiqq: Fixed-point fractional library routines. ! (line 1466) * __satfracttisa: Fixed-point fractional library routines. ! (line 1471) * __satfracttisq: Fixed-point fractional library routines. ! (line 1468) * __satfracttita: Fixed-point fractional library routines. ! (line 1473) * __satfracttiuda: Fixed-point fractional library routines. ! (line 1481) * __satfracttiudq: Fixed-point fractional library routines. (line 1478) + * __satfracttiuha: Fixed-point fractional library routines. + (line 1479) * __satfracttiuhq: Fixed-point fractional library routines. ! (line 1475) * __satfracttiuqq: Fixed-point fractional library routines. ! (line 1474) * __satfracttiusa: Fixed-point fractional library routines. ! (line 1480) * __satfracttiusq: Fixed-point fractional library routines. ! (line 1476) * __satfracttiuta: Fixed-point fractional library routines. ! (line 1483) * __satfractudada: Fixed-point fractional library routines. ! (line 1351) * __satfractudadq: Fixed-point fractional library routines. (line 1347) + * __satfractudaha: Fixed-point fractional library routines. + (line 1349) * __satfractudahq: Fixed-point fractional library routines. ! (line 1344) * __satfractudaqq: Fixed-point fractional library routines. ! (line 1343) * __satfractudasa: Fixed-point fractional library routines. ! (line 1350) * __satfractudasq: Fixed-point fractional library routines. ! (line 1345) * __satfractudata: Fixed-point fractional library routines. ! (line 1353) * __satfractudaudq: Fixed-point fractional library routines. (line 1361) + * __satfractudauha2: Fixed-point fractional library routines. + (line 1363) * __satfractudauhq: Fixed-point fractional library routines. ! (line 1357) * __satfractudauqq: Fixed-point fractional library routines. ! (line 1355) * __satfractudausa2: Fixed-point fractional library routines. ! (line 1365) * __satfractudausq: Fixed-point fractional library routines. ! (line 1359) * __satfractudauta2: Fixed-point fractional library routines. ! (line 1367) * __satfractudqda: Fixed-point fractional library routines. ! (line 1276) * __satfractudqdq: Fixed-point fractional library routines. (line 1271) + * __satfractudqha: Fixed-point fractional library routines. + (line 1273) * __satfractudqhq: Fixed-point fractional library routines. ! (line 1267) * __satfractudqqq: Fixed-point fractional library routines. ! (line 1266) * __satfractudqsa: Fixed-point fractional library routines. ! (line 1274) * __satfractudqsq: Fixed-point fractional library routines. ! (line 1269) * __satfractudqta: Fixed-point fractional library routines. ! (line 1278) * __satfractudquda: Fixed-point fractional library routines. ! (line 1290) * __satfractudquha: Fixed-point fractional library routines. ! (line 1286) * __satfractudquhq2: Fixed-point fractional library routines. ! (line 1282) * __satfractudquqq2: Fixed-point fractional library routines. ! (line 1280) * __satfractudqusa: Fixed-point fractional library routines. ! (line 1288) * __satfractudqusq2: Fixed-point fractional library routines. ! (line 1284) * __satfractudquta: Fixed-point fractional library routines. ! (line 1292) * __satfractuhada: Fixed-point fractional library routines. ! (line 1304) * __satfractuhadq: Fixed-point fractional library routines. (line 1299) + * __satfractuhaha: Fixed-point fractional library routines. + (line 1301) * __satfractuhahq: Fixed-point fractional library routines. ! (line 1295) * __satfractuhaqq: Fixed-point fractional library routines. ! (line 1294) * __satfractuhasa: Fixed-point fractional library routines. ! (line 1302) * __satfractuhasq: Fixed-point fractional library routines. ! (line 1297) * __satfractuhata: Fixed-point fractional library routines. ! (line 1306) * __satfractuhauda2: Fixed-point fractional library routines. ! (line 1318) * __satfractuhaudq: Fixed-point fractional library routines. ! (line 1314) * __satfractuhauhq: Fixed-point fractional library routines. ! (line 1310) * __satfractuhauqq: Fixed-point fractional library routines. ! (line 1308) * __satfractuhausa2: Fixed-point fractional library routines. ! (line 1316) * __satfractuhausq: Fixed-point fractional library routines. ! (line 1312) * __satfractuhauta2: Fixed-point fractional library routines. ! (line 1320) * __satfractuhqda: Fixed-point fractional library routines. ! (line 1224) * __satfractuhqdq: Fixed-point fractional library routines. (line 1221) + * __satfractuhqha: Fixed-point fractional library routines. + (line 1222) * __satfractuhqhq: Fixed-point fractional library routines. ! (line 1219) * __satfractuhqqq: Fixed-point fractional library routines. ! (line 1218) * __satfractuhqsa: Fixed-point fractional library routines. ! (line 1223) * __satfractuhqsq: Fixed-point fractional library routines. ! (line 1220) * __satfractuhqta: Fixed-point fractional library routines. ! (line 1225) * __satfractuhquda: Fixed-point fractional library routines. ! (line 1236) * __satfractuhqudq2: Fixed-point fractional library routines. (line 1231) + * __satfractuhquha: Fixed-point fractional library routines. + (line 1233) * __satfractuhquqq2: Fixed-point fractional library routines. ! (line 1227) * __satfractuhqusa: Fixed-point fractional library routines. ! (line 1234) * __satfractuhqusq2: Fixed-point fractional library routines. ! (line 1229) * __satfractuhquta: Fixed-point fractional library routines. ! (line 1238) * __satfractunsdida: Fixed-point fractional library routines. ! (line 1834) * __satfractunsdidq: Fixed-point fractional library routines. (line 1831) + * __satfractunsdiha: Fixed-point fractional library routines. + (line 1832) * __satfractunsdihq: Fixed-point fractional library routines. ! (line 1828) * __satfractunsdiqq: Fixed-point fractional library routines. ! (line 1827) * __satfractunsdisa: Fixed-point fractional library routines. ! (line 1833) * __satfractunsdisq: Fixed-point fractional library routines. ! (line 1829) * __satfractunsdita: Fixed-point fractional library routines. ! (line 1836) * __satfractunsdiuda: Fixed-point fractional library routines. ! (line 1850) * __satfractunsdiudq: Fixed-point fractional library routines. (line 1844) + * __satfractunsdiuha: Fixed-point fractional library routines. + (line 1846) * __satfractunsdiuhq: Fixed-point fractional library routines. ! (line 1840) * __satfractunsdiuqq: Fixed-point fractional library routines. ! (line 1838) * __satfractunsdiusa: Fixed-point fractional library routines. ! (line 1848) * __satfractunsdiusq: Fixed-point fractional library routines. ! (line 1842) * __satfractunsdiuta: Fixed-point fractional library routines. ! (line 1852) * __satfractunshida: Fixed-point fractional library routines. ! (line 1786) * __satfractunshidq: Fixed-point fractional library routines. (line 1783) + * __satfractunshiha: Fixed-point fractional library routines. + (line 1784) * __satfractunshihq: Fixed-point fractional library routines. ! (line 1780) * __satfractunshiqq: Fixed-point fractional library routines. ! (line 1779) * __satfractunshisa: Fixed-point fractional library routines. ! (line 1785) * __satfractunshisq: Fixed-point fractional library routines. ! (line 1781) * __satfractunshita: Fixed-point fractional library routines. ! (line 1788) * __satfractunshiuda: Fixed-point fractional library routines. ! (line 1802) * __satfractunshiudq: Fixed-point fractional library routines. (line 1796) + * __satfractunshiuha: Fixed-point fractional library routines. + (line 1798) * __satfractunshiuhq: Fixed-point fractional library routines. ! (line 1792) * __satfractunshiuqq: Fixed-point fractional library routines. ! (line 1790) * __satfractunshiusa: Fixed-point fractional library routines. ! (line 1800) * __satfractunshiusq: Fixed-point fractional library routines. ! (line 1794) * __satfractunshiuta: Fixed-point fractional library routines. ! (line 1804) * __satfractunsqida: Fixed-point fractional library routines. ! (line 1760) * __satfractunsqidq: Fixed-point fractional library routines. (line 1757) + * __satfractunsqiha: Fixed-point fractional library routines. + (line 1758) * __satfractunsqihq: Fixed-point fractional library routines. ! (line 1754) * __satfractunsqiqq: Fixed-point fractional library routines. ! (line 1753) * __satfractunsqisa: Fixed-point fractional library routines. ! (line 1759) * __satfractunsqisq: Fixed-point fractional library routines. ! (line 1755) * __satfractunsqita: Fixed-point fractional library routines. ! (line 1762) * __satfractunsqiuda: Fixed-point fractional library routines. ! (line 1776) * __satfractunsqiudq: Fixed-point fractional library routines. (line 1770) + * __satfractunsqiuha: Fixed-point fractional library routines. + (line 1772) * __satfractunsqiuhq: Fixed-point fractional library routines. ! (line 1766) * __satfractunsqiuqq: Fixed-point fractional library routines. ! (line 1764) * __satfractunsqiusa: Fixed-point fractional library routines. ! (line 1774) * __satfractunsqiusq: Fixed-point fractional library routines. ! (line 1768) * __satfractunsqiuta: Fixed-point fractional library routines. ! (line 1778) * __satfractunssida: Fixed-point fractional library routines. ! (line 1811) * __satfractunssidq: Fixed-point fractional library routines. (line 1808) + * __satfractunssiha: Fixed-point fractional library routines. + (line 1809) * __satfractunssihq: Fixed-point fractional library routines. ! (line 1806) * __satfractunssiqq: Fixed-point fractional library routines. ! (line 1805) * __satfractunssisa: Fixed-point fractional library routines. ! (line 1810) * __satfractunssisq: Fixed-point fractional library routines. ! (line 1807) * __satfractunssita: Fixed-point fractional library routines. ! (line 1812) * __satfractunssiuda: Fixed-point fractional library routines. ! (line 1824) * __satfractunssiudq: Fixed-point fractional library routines. (line 1819) + * __satfractunssiuha: Fixed-point fractional library routines. + (line 1821) * __satfractunssiuhq: Fixed-point fractional library routines. ! (line 1815) * __satfractunssiuqq: Fixed-point fractional library routines. ! (line 1814) * __satfractunssiusa: Fixed-point fractional library routines. ! (line 1822) * __satfractunssiusq: Fixed-point fractional library routines. ! (line 1817) * __satfractunssiuta: Fixed-point fractional library routines. ! (line 1826) * __satfractunstida: Fixed-point fractional library routines. ! (line 1864) * __satfractunstidq: Fixed-point fractional library routines. (line 1859) + * __satfractunstiha: Fixed-point fractional library routines. + (line 1861) * __satfractunstihq: Fixed-point fractional library routines. ! (line 1855) * __satfractunstiqq: Fixed-point fractional library routines. ! (line 1854) * __satfractunstisa: Fixed-point fractional library routines. ! (line 1862) * __satfractunstisq: Fixed-point fractional library routines. ! (line 1857) * __satfractunstita: Fixed-point fractional library routines. ! (line 1866) * __satfractunstiuda: Fixed-point fractional library routines. ! (line 1880) * __satfractunstiudq: Fixed-point fractional library routines. (line 1874) + * __satfractunstiuha: Fixed-point fractional library routines. + (line 1876) * __satfractunstiuhq: Fixed-point fractional library routines. ! (line 1870) * __satfractunstiuqq: Fixed-point fractional library routines. ! (line 1868) * __satfractunstiusa: Fixed-point fractional library routines. ! (line 1878) * __satfractunstiusq: Fixed-point fractional library routines. ! (line 1872) * __satfractunstiuta: Fixed-point fractional library routines. ! (line 1882) * __satfractuqqda: Fixed-point fractional library routines. ! (line 1201) * __satfractuqqdq: Fixed-point fractional library routines. (line 1196) + * __satfractuqqha: Fixed-point fractional library routines. + (line 1198) * __satfractuqqhq: Fixed-point fractional library routines. ! (line 1192) * __satfractuqqqq: Fixed-point fractional library routines. ! (line 1191) * __satfractuqqsa: Fixed-point fractional library routines. ! (line 1199) * __satfractuqqsq: Fixed-point fractional library routines. ! (line 1194) * __satfractuqqta: Fixed-point fractional library routines. ! (line 1203) * __satfractuqquda: Fixed-point fractional library routines. ! (line 1215) * __satfractuqqudq2: Fixed-point fractional library routines. (line 1209) + * __satfractuqquha: Fixed-point fractional library routines. + (line 1211) * __satfractuqquhq2: Fixed-point fractional library routines. ! (line 1205) * __satfractuqqusa: Fixed-point fractional library routines. ! (line 1213) * __satfractuqqusq2: Fixed-point fractional library routines. ! (line 1207) * __satfractuqquta: Fixed-point fractional library routines. ! (line 1217) * __satfractusada: Fixed-point fractional library routines. ! (line 1327) * __satfractusadq: Fixed-point fractional library routines. (line 1324) + * __satfractusaha: Fixed-point fractional library routines. + (line 1325) * __satfractusahq: Fixed-point fractional library routines. ! (line 1322) * __satfractusaqq: Fixed-point fractional library routines. ! (line 1321) * __satfractusasa: Fixed-point fractional library routines. ! (line 1326) * __satfractusasq: Fixed-point fractional library routines. ! (line 1323) * __satfractusata: Fixed-point fractional library routines. ! (line 1328) * __satfractusauda2: Fixed-point fractional library routines. ! (line 1339) * __satfractusaudq: Fixed-point fractional library routines. (line 1335) + * __satfractusauha2: Fixed-point fractional library routines. + (line 1337) * __satfractusauhq: Fixed-point fractional library routines. ! (line 1331) * __satfractusauqq: Fixed-point fractional library routines. ! (line 1330) * __satfractusausq: Fixed-point fractional library routines. ! (line 1333) * __satfractusauta2: Fixed-point fractional library routines. ! (line 1341) * __satfractusqda: Fixed-point fractional library routines. ! (line 1248) * __satfractusqdq: Fixed-point fractional library routines. (line 1244) + * __satfractusqha: Fixed-point fractional library routines. + (line 1246) * __satfractusqhq: Fixed-point fractional library routines. ! (line 1241) * __satfractusqqq: Fixed-point fractional library routines. ! (line 1240) * __satfractusqsa: Fixed-point fractional library routines. ! (line 1247) * __satfractusqsq: Fixed-point fractional library routines. ! (line 1242) * __satfractusqta: Fixed-point fractional library routines. ! (line 1250) * __satfractusquda: Fixed-point fractional library routines. ! (line 1262) * __satfractusqudq2: Fixed-point fractional library routines. (line 1256) + * __satfractusquha: Fixed-point fractional library routines. + (line 1258) * __satfractusquhq2: Fixed-point fractional library routines. ! (line 1254) * __satfractusquqq2: Fixed-point fractional library routines. ! (line 1252) * __satfractusqusa: Fixed-point fractional library routines. ! (line 1260) * __satfractusquta: Fixed-point fractional library routines. ! (line 1264) * __satfractutada: Fixed-point fractional library routines. ! (line 1379) * __satfractutadq: Fixed-point fractional library routines. (line 1374) + * __satfractutaha: Fixed-point fractional library routines. + (line 1376) * __satfractutahq: Fixed-point fractional library routines. ! (line 1370) * __satfractutaqq: Fixed-point fractional library routines. ! (line 1369) * __satfractutasa: Fixed-point fractional library routines. ! (line 1377) * __satfractutasq: Fixed-point fractional library routines. ! (line 1372) * __satfractutata: Fixed-point fractional library routines. ! (line 1381) * __satfractutauda2: Fixed-point fractional library routines. ! (line 1395) * __satfractutaudq: Fixed-point fractional library routines. (line 1389) + * __satfractutauha2: Fixed-point fractional library routines. + (line 1391) * __satfractutauhq: Fixed-point fractional library routines. ! (line 1385) * __satfractutauqq: Fixed-point fractional library routines. ! (line 1383) * __satfractutausa2: Fixed-point fractional library routines. ! (line 1393) * __satfractutausq: Fixed-point fractional library routines. ! (line 1387) * __splitstack_find: Miscellaneous routines. ! (line 18) * __ssaddda3: Fixed-point fractional library routines. ! (line 67) * __ssadddq3: Fixed-point fractional library routines. (line 63) + * __ssaddha3: Fixed-point fractional library routines. + (line 65) * __ssaddhq3: Fixed-point fractional library routines. ! (line 60) * __ssaddqq3: Fixed-point fractional library routines. ! (line 59) * __ssaddsa3: Fixed-point fractional library routines. ! (line 66) * __ssaddsq3: Fixed-point fractional library routines. ! (line 61) * __ssaddta3: Fixed-point fractional library routines. ! (line 69) * __ssashlda3: Fixed-point fractional library routines. ! (line 402) * __ssashldq3: Fixed-point fractional library routines. (line 399) + * __ssashlha3: Fixed-point fractional library routines. + (line 400) * __ssashlhq3: Fixed-point fractional library routines. ! (line 396) * __ssashlsa3: Fixed-point fractional library routines. ! (line 401) * __ssashlsq3: Fixed-point fractional library routines. ! (line 397) * __ssashlta3: Fixed-point fractional library routines. ! (line 404) * __ssdivda3: Fixed-point fractional library routines. ! (line 261) * __ssdivdq3: Fixed-point fractional library routines. (line 257) + * __ssdivha3: Fixed-point fractional library routines. + (line 259) * __ssdivhq3: Fixed-point fractional library routines. ! (line 254) * __ssdivqq3: Fixed-point fractional library routines. ! (line 253) * __ssdivsa3: Fixed-point fractional library routines. ! (line 260) * __ssdivsq3: Fixed-point fractional library routines. ! (line 255) * __ssdivta3: Fixed-point fractional library routines. ! (line 263) * __ssmulda3: Fixed-point fractional library routines. ! (line 193) * __ssmuldq3: Fixed-point fractional library routines. (line 189) + * __ssmulha3: Fixed-point fractional library routines. + (line 191) * __ssmulhq3: Fixed-point fractional library routines. ! (line 186) * __ssmulqq3: Fixed-point fractional library routines. ! (line 185) * __ssmulsa3: Fixed-point fractional library routines. ! (line 192) * __ssmulsq3: Fixed-point fractional library routines. ! (line 187) * __ssmulta3: Fixed-point fractional library routines. ! (line 195) * __ssnegda2: Fixed-point fractional library routines. ! (line 316) * __ssnegdq2: Fixed-point fractional library routines. (line 313) + * __ssnegha2: Fixed-point fractional library routines. + (line 314) * __ssneghq2: Fixed-point fractional library routines. ! (line 311) * __ssnegqq2: Fixed-point fractional library routines. ! (line 310) * __ssnegsa2: Fixed-point fractional library routines. ! (line 315) * __ssnegsq2: Fixed-point fractional library routines. ! (line 312) * __ssnegta2: Fixed-point fractional library routines. ! (line 317) * __sssubda3: Fixed-point fractional library routines. ! (line 129) * __sssubdq3: Fixed-point fractional library routines. (line 125) + * __sssubha3: Fixed-point fractional library routines. + (line 127) * __sssubhq3: Fixed-point fractional library routines. ! (line 122) * __sssubqq3: Fixed-point fractional library routines. ! (line 121) * __sssubsa3: Fixed-point fractional library routines. ! (line 128) * __sssubsq3: Fixed-point fractional library routines. ! (line 123) * __sssubta3: Fixed-point fractional library routines. ! (line 131) * __subda3: Fixed-point fractional library routines. ! (line 107) * __subdf3: Soft float library routines. ! (line 31) * __subdq3: Fixed-point fractional library routines. ! (line 95) * __subha3: Fixed-point fractional library routines. ! (line 105) * __subhq3: Fixed-point fractional library routines. ! (line 92) * __subqq3: Fixed-point fractional library routines. ! (line 91) * __subsa3: Fixed-point fractional library routines. ! (line 106) * __subsf3: Soft float library routines. ! (line 30) * __subsq3: Fixed-point fractional library routines. ! (line 93) * __subta3: Fixed-point fractional library routines. ! (line 109) * __subtf3: Soft float library routines. ! (line 33) * __subuda3: Fixed-point fractional library routines. ! (line 115) * __subudq3: Fixed-point fractional library routines. ! (line 103) * __subuha3: Fixed-point fractional library routines. ! (line 111) * __subuhq3: Fixed-point fractional library routines. ! (line 99) * __subuqq3: Fixed-point fractional library routines. ! (line 97) * __subusa3: Fixed-point fractional library routines. ! (line 113) * __subusq3: Fixed-point fractional library routines. ! (line 101) * __subuta3: Fixed-point fractional library routines. ! (line 117) * __subvdi3: Integer library routines. ! (line 123) * __subvsi3: Integer library routines. ! (line 122) * __subxf3: Soft float library routines. ! (line 35) * __truncdfsf2: Soft float library routines. ! (line 76) * __trunctfdf2: Soft float library routines. ! (line 73) * __trunctfsf2: Soft float library routines. ! (line 75) * __truncxfdf2: Soft float library routines. ! (line 72) * __truncxfsf2: Soft float library routines. ! (line 74) * __ucmpdi2: Integer library routines. (line 93) + * __ucmpti2: Integer library routines. + (line 95) * __udivdi3: Integer library routines. ! (line 54) * __udivmoddi4: Integer library routines. (line 61) + * __udivmodti4: Integer library routines. + (line 63) * __udivsi3: Integer library routines. ! (line 52) * __udivti3: Integer library routines. ! (line 56) * __udivuda3: Fixed-point fractional library routines. ! (line 246) * __udivudq3: Fixed-point fractional library routines. (line 240) + * __udivuha3: Fixed-point fractional library routines. + (line 242) * __udivuhq3: Fixed-point fractional library routines. ! (line 236) * __udivuqq3: Fixed-point fractional library routines. ! (line 234) * __udivusa3: Fixed-point fractional library routines. ! (line 244) * __udivusq3: Fixed-point fractional library routines. ! (line 238) * __udivuta3: Fixed-point fractional library routines. ! (line 248) * __umoddi3: Integer library routines. ! (line 71) * __umodsi3: Integer library routines. ! (line 69) * __umodti3: Integer library routines. ! (line 73) * __unorddf2: Soft float library routines. ! (line 173) * __unordsf2: Soft float library routines. ! (line 172) * __unordtf2: Soft float library routines. ! (line 174) * __usadduda3: Fixed-point fractional library routines. ! (line 85) * __usaddudq3: Fixed-point fractional library routines. (line 79) + * __usadduha3: Fixed-point fractional library routines. + (line 81) * __usadduhq3: Fixed-point fractional library routines. ! (line 75) * __usadduqq3: Fixed-point fractional library routines. ! (line 73) * __usaddusa3: Fixed-point fractional library routines. ! (line 83) * __usaddusq3: Fixed-point fractional library routines. ! (line 77) * __usadduta3: Fixed-point fractional library routines. ! (line 87) * __usashluda3: Fixed-point fractional library routines. ! (line 421) * __usashludq3: Fixed-point fractional library routines. (line 415) + * __usashluha3: Fixed-point fractional library routines. + (line 417) * __usashluhq3: Fixed-point fractional library routines. ! (line 411) * __usashluqq3: Fixed-point fractional library routines. ! (line 409) * __usashlusa3: Fixed-point fractional library routines. ! (line 419) * __usashlusq3: Fixed-point fractional library routines. ! (line 413) * __usashluta3: Fixed-point fractional library routines. ! (line 423) * __usdivuda3: Fixed-point fractional library routines. ! (line 280) * __usdivudq3: Fixed-point fractional library routines. (line 274) + * __usdivuha3: Fixed-point fractional library routines. + (line 276) * __usdivuhq3: Fixed-point fractional library routines. ! (line 270) * __usdivuqq3: Fixed-point fractional library routines. ! (line 268) * __usdivusa3: Fixed-point fractional library routines. ! (line 278) * __usdivusq3: Fixed-point fractional library routines. ! (line 272) * __usdivuta3: Fixed-point fractional library routines. ! (line 282) * __usmuluda3: Fixed-point fractional library routines. ! (line 212) * __usmuludq3: Fixed-point fractional library routines. (line 206) + * __usmuluha3: Fixed-point fractional library routines. + (line 208) * __usmuluhq3: Fixed-point fractional library routines. ! (line 202) * __usmuluqq3: Fixed-point fractional library routines. ! (line 200) * __usmulusa3: Fixed-point fractional library routines. ! (line 210) * __usmulusq3: Fixed-point fractional library routines. ! (line 204) * __usmuluta3: Fixed-point fractional library routines. ! (line 214) * __usneguda2: Fixed-point fractional library routines. ! (line 331) * __usnegudq2: Fixed-point fractional library routines. (line 326) + * __usneguha2: Fixed-point fractional library routines. + (line 328) * __usneguhq2: Fixed-point fractional library routines. ! (line 322) * __usneguqq2: Fixed-point fractional library routines. ! (line 321) * __usnegusa2: Fixed-point fractional library routines. ! (line 329) * __usnegusq2: Fixed-point fractional library routines. ! (line 324) * __usneguta2: Fixed-point fractional library routines. ! (line 333) * __ussubuda3: Fixed-point fractional library routines. ! (line 148) * __ussubudq3: Fixed-point fractional library routines. (line 142) + * __ussubuha3: Fixed-point fractional library routines. + (line 144) * __ussubuhq3: Fixed-point fractional library routines. ! (line 138) * __ussubuqq3: Fixed-point fractional library routines. ! (line 136) * __ussubusa3: Fixed-point fractional library routines. ! (line 146) * __ussubusq3: Fixed-point fractional library routines. ! (line 140) * __ussubuta3: Fixed-point fractional library routines. ! (line 150) ! * abort: Portability. (line 21) ! * abs: Arithmetic. (line 200) ! * abs and attributes: Expressions. (line 85) * ABS_EXPR: Unary and Binary Expressions. (line 6) + * absence_set: Processor pipeline description. + (line 224) + * absM2 instruction pattern: Standard Names. (line 547) + * absolute value: Arithmetic. (line 200) * access to operands: Accessors. (line 6) * access to special operands: Special Accessors. (line 6) * accessors: Accessors. (line 6) ! * ACCUM_TYPE_SIZE: Type Layout. (line 88) ! * ACCUMULATE_OUTGOING_ARGS: Stack Arguments. (line 49) ! * ACCUMULATE_OUTGOING_ARGS and stack frames: Function Entry. (line 135) ! * ADA_LONG_TYPE_SIZE: Type Layout. (line 26) * Adding a new GIMPLE statement code: Adding a new GIMPLE statement code. (line 6) ! * ADDITIONAL_REGISTER_NAMES: Instruction Output. (line 15) ! * addM3 instruction pattern: Standard Names. (line 263) ! * addMODEcc instruction pattern: Standard Names. (line 1069) ! * addptrM3 instruction pattern: Standard Names. (line 269) ! * addr_diff_vec: Side Effects. (line 315) ! * addr_diff_vec, length of: Insn Lengths. (line 26) * ADDR_EXPR: Storage References. (line 6) ! * addr_vec: Side Effects. (line 310) ! * addr_vec, length of: Insn Lengths. (line 26) ! * address constraints: Simple Constraints. (line 164) ! * address_operand <1>: Simple Constraints. (line 168) ! * address_operand: Machine-Independent Predicates. ! (line 63) ! * addressing modes: Addressing Modes. (line 6) ! * ADJUST_FIELD_ALIGN: Storage Layout. (line 192) * ADJUST_INSN_LENGTH: Insn Lengths. (line 35) ! * ADJUST_REG_ALLOC_ORDER: Allocation Order. (line 23) * aggregates as return values: Aggregate Return. (line 6) * alias: Alias analysis. (line 6) * ALL_REGS: Register Classes. (line 17) + * allocate_stack instruction pattern: Standard Names. (line 1386) * alternate entry points: Insns. (line 146) * anchored addresses: Anchored Addresses. (line 6) ! * and: Arithmetic. (line 158) ! * and and attributes: Expressions. (line 50) ! * and, canonicalization of: Insn Canonicalizations. ! (line 52) ! * andM3 instruction pattern: Standard Names. (line 279) * ANNOTATE_EXPR: Unary and Binary Expressions. (line 6) * annotations: Annotations. (line 6) * APPLY_RESULT_SIZE: Scalar Return. (line 112) ! * ARG_POINTER_CFA_OFFSET: Frame Layout. (line 194) ! * ARG_POINTER_REGNUM: Frame Registers. (line 41) ! * ARG_POINTER_REGNUM and virtual registers: Regs and Memory. (line 65) ! * arg_pointer_rtx: Frame Registers. (line 104) ! * ARGS_GROW_DOWNWARD: Frame Layout. (line 35) * argument passing: Interface. (line 36) * arguments in registers: Register Arguments. (line 6) * arguments on stack: Stack Arguments. (line 6) * arithmetic library: Soft float library routines. (line 6) ! * arithmetic shift: Arithmetic. (line 173) ! * arithmetic shift with signed saturation: Arithmetic. (line 173) ! * arithmetic shift with unsigned saturation: Arithmetic. (line 173) * arithmetic, in RTL: Arithmetic. (line 6) ! * ARITHMETIC_TYPE_P: Types for C++. (line 61) * array: Types. (line 6) * ARRAY_RANGE_REF: Storage References. (line 6) * ARRAY_REF: Storage References. (line 6) * ARRAY_TYPE: Types. (line 6) ! * AS_NEEDS_DASH_FOR_PIPED_INPUT: Driver. (line 89) ! * ashift: Arithmetic. (line 173) ! * ashift and attributes: Expressions. (line 85) ! * ashiftrt: Arithmetic. (line 190) ! * ashiftrt and attributes: Expressions. (line 85) ! * ashlM3 instruction pattern: Standard Names. (line 522) ! * ashrM3 instruction pattern: Standard Names. (line 532) ! * ASM_APP_OFF: File Framework. (line 78) ! * ASM_APP_ON: File Framework. (line 71) ! * ASM_COMMENT_START: File Framework. (line 66) ! * ASM_DECLARE_FUNCTION_NAME: Label Output. (line 111) ! * ASM_DECLARE_FUNCTION_SIZE: Label Output. (line 126) ! * ASM_DECLARE_OBJECT_NAME: Label Output. (line 139) ! * ASM_DECLARE_REGISTER_GLOBAL: Label Output. (line 168) ! * ASM_FINAL_SPEC: Driver. (line 82) ! * ASM_FINISH_DECLARE_OBJECT: Label Output. (line 176) ! * ASM_FORMAT_PRIVATE_NAME: Label Output. (line 395) ! * asm_fprintf: Instruction Output. (line 151) ! * ASM_FPRINTF_EXTENSIONS: Instruction Output. (line 162) ! * ASM_GENERATE_INTERNAL_LABEL: Label Output. (line 379) ! * asm_input: Side Effects. (line 297) ! * asm_input and /v: Flags. (line 76) ! * ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX: Exception Handling. (line 82) ! * ASM_NO_SKIP_IN_TEXT: Alignment Output. (line 79) ! * asm_noperands: Insns. (line 308) ! * asm_operands and /v: Flags. (line 76) ! * asm_operands, RTL sharing: Sharing. (line 45) ! * asm_operands, usage: Assembler. (line 6) ! * ASM_OUTPUT_ADDR_DIFF_ELT: Dispatch Tables. (line 9) ! * ASM_OUTPUT_ADDR_VEC_ELT: Dispatch Tables. (line 26) ! * ASM_OUTPUT_ALIGN: Alignment Output. (line 86) ! * ASM_OUTPUT_ALIGN_WITH_NOP: Alignment Output. (line 91) ! * ASM_OUTPUT_ALIGNED_BSS: Uninitialized Data. (line 46) ! * ASM_OUTPUT_ALIGNED_COMMON: Uninitialized Data. (line 30) ! * ASM_OUTPUT_ALIGNED_DECL_COMMON: Uninitialized Data. (line 38) ! * ASM_OUTPUT_ALIGNED_DECL_LOCAL: Uninitialized Data. (line 91) ! * ASM_OUTPUT_ALIGNED_LOCAL: Uninitialized Data. (line 83) ! * ASM_OUTPUT_ASCII: Data Output. (line 51) ! * ASM_OUTPUT_CASE_END: Dispatch Tables. (line 51) ! * ASM_OUTPUT_CASE_LABEL: Dispatch Tables. (line 38) ! * ASM_OUTPUT_COMMON: Uninitialized Data. (line 10) ! * ASM_OUTPUT_DEBUG_LABEL: Label Output. (line 367) ! * ASM_OUTPUT_DEF: Label Output. (line 416) ! * ASM_OUTPUT_DEF_FROM_DECLS: Label Output. (line 424) ! * ASM_OUTPUT_DWARF_DELTA: SDB and DWARF. (line 74) ! * ASM_OUTPUT_DWARF_OFFSET: SDB and DWARF. (line 83) ! * ASM_OUTPUT_DWARF_PCREL: SDB and DWARF. (line 89) ! * ASM_OUTPUT_DWARF_TABLE_REF: SDB and DWARF. (line 94) ! * ASM_OUTPUT_DWARF_VMS_DELTA: SDB and DWARF. (line 78) ! * ASM_OUTPUT_EXTERNAL: Label Output. (line 296) ! * ASM_OUTPUT_FDESC: Data Output. (line 60) ! * ASM_OUTPUT_FUNCTION_LABEL: Label Output. (line 17) ! * ASM_OUTPUT_INTERNAL_LABEL: Label Output. (line 29) ! * ASM_OUTPUT_LABEL: Label Output. (line 9) ! * ASM_OUTPUT_LABEL_REF: Label Output. (line 340) ! * ASM_OUTPUT_LABELREF: Label Output. (line 318) ! * ASM_OUTPUT_LOCAL: Uninitialized Data. (line 70) ! * ASM_OUTPUT_MAX_SKIP_ALIGN: Alignment Output. (line 95) ! * ASM_OUTPUT_MEASURED_SIZE: Label Output. (line 53) ! * ASM_OUTPUT_OPCODE: Instruction Output. (line 36) ! * ASM_OUTPUT_POOL_EPILOGUE: Data Output. (line 110) ! * ASM_OUTPUT_POOL_PROLOGUE: Data Output. (line 73) ! * ASM_OUTPUT_REG_POP: Instruction Output. (line 208) ! * ASM_OUTPUT_REG_PUSH: Instruction Output. (line 203) ! * ASM_OUTPUT_SIZE_DIRECTIVE: Label Output. (line 47) ! * ASM_OUTPUT_SKIP: Alignment Output. (line 73) ! * ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 85) ! * ASM_OUTPUT_SPECIAL_POOL_ENTRY: Data Output. (line 85) ! * ASM_OUTPUT_SYMBOL_REF: Label Output. (line 333) ! * ASM_OUTPUT_TYPE_DIRECTIVE: Label Output. (line 101) ! * ASM_OUTPUT_WEAK_ALIAS: Label Output. (line 442) ! * ASM_OUTPUT_WEAKREF: Label Output. (line 228) ! * ASM_PREFERRED_EH_DATA_FORMAT: Exception Handling. (line 67) ! * ASM_SPEC: Driver. (line 74) ! * ASM_STABD_OP: DBX Options. (line 36) ! * ASM_STABN_OP: DBX Options. (line 43) ! * ASM_STABS_OP: DBX Options. (line 29) ! * ASM_WEAKEN_DECL: Label Output. (line 220) ! * ASM_WEAKEN_LABEL: Label Output. (line 207) ! * assemble_name: Label Output. (line 8) ! * assemble_name_raw: Label Output. (line 28) * assembler format: File Framework. (line 6) * assembler instructions in RTL: Assembler. (line 6) ! * ASSEMBLER_DIALECT: Instruction Output. (line 174) * assigning attribute values to insns: Tagging Insns. (line 6) ! * ASSUME_EXTENDED_UNWIND_CONTEXT: Frame Registers. (line 164) * asterisk in template: Output Statement. (line 29) ! * atan2M3 instruction pattern: Standard Names. (line 630) ! * atomic: GTY Options. (line 258) ! * atomic_add_fetchMODE instruction pattern: Standard Names. (line 1819) ! * atomic_addMODE instruction pattern: Standard Names. (line 1790) ! * atomic_and_fetchMODE instruction pattern: Standard Names. (line 1819) ! * atomic_andMODE instruction pattern: Standard Names. (line 1790) ! * atomic_compare_and_swapMODE instruction pattern: Standard Names. ! (line 1726) ! * atomic_exchangeMODE instruction pattern: Standard Names. (line 1778) ! * atomic_fetch_addMODE instruction pattern: Standard Names. (line 1804) ! * atomic_fetch_andMODE instruction pattern: Standard Names. (line 1804) ! * atomic_fetch_nandMODE instruction pattern: Standard Names. (line 1804) ! * atomic_fetch_orMODE instruction pattern: Standard Names. (line 1804) ! * atomic_fetch_subMODE instruction pattern: Standard Names. (line 1804) ! * atomic_fetch_xorMODE instruction pattern: Standard Names. (line 1804) ! * atomic_loadMODE instruction pattern: Standard Names. (line 1757) ! * atomic_nand_fetchMODE instruction pattern: Standard Names. (line 1819) ! * atomic_nandMODE instruction pattern: Standard Names. (line 1790) ! * atomic_or_fetchMODE instruction pattern: Standard Names. (line 1819) ! * atomic_orMODE instruction pattern: Standard Names. (line 1790) ! * atomic_storeMODE instruction pattern: Standard Names. (line 1767) ! * atomic_sub_fetchMODE instruction pattern: Standard Names. (line 1819) ! * atomic_subMODE instruction pattern: Standard Names. (line 1790) ! * atomic_test_and_set instruction pattern: Standard Names. (line 1836) ! * atomic_xor_fetchMODE instruction pattern: Standard Names. (line 1819) ! * atomic_xorMODE instruction pattern: Standard Names. (line 1790) * attr <1>: Tagging Insns. (line 54) + * attr: Expressions. (line 165) + * attr_flag: Expressions. (line 140) * attribute expressions: Expressions. (line 6) * attribute specifications: Attr Example. (line 6) * attribute specifications example: Attr Example. (line 6) + * ATTRIBUTE_ALIGNED_VALUE: Storage Layout. (line 174) * attributes: Attributes. (line 6) * attributes, defining: Defining Attributes. (line 6) * attributes, target-specific: Target Attributes. (line 6) ! * autoincrement addressing, availability: Portability. (line 21) * autoincrement/decrement addressing: Simple Constraints. (line 30) * automata_option: Processor pipeline description. ! (line 305) * automaton based pipeline description: Processor pipeline description. (line 6) * automaton based scheduler: Processor pipeline description. (line 6) * AVOID_CCMODE_COPIES: Values in Registers. ! (line 153) * backslash: Output Template. (line 46) ! * barrier: Insns. (line 177) ! * barrier and /f: Flags. (line 107) ! * barrier and /v: Flags. (line 44) ! * BASE_REG_CLASS: Register Classes. (line 114) * basic block: Basic Blocks. (line 6) * Basic Statements: Basic Statements. (line 6) * basic-block.h: Control Flow. (line 6) * BASIC_BLOCK: Basic Blocks. (line 14) + * basic_block: Basic Blocks. (line 6) * BB_HEAD, BB_END: Maintaining the CFG. ! (line 77) ! * bb_seq: GIMPLE sequences. (line 73) ! * BIGGEST_ALIGNMENT: Storage Layout. (line 164) ! * BIGGEST_FIELD_ALIGNMENT: Storage Layout. (line 185) * BImode: Machine Modes. (line 22) * BIND_EXPR: Unary and Binary Expressions. (line 6) * BINFO_TYPE: Classes. (line 6) * bit-fields: Bit-Fields. (line 6) * BIT_AND_EXPR: Unary and Binary Expressions. (line 6) * BIT_IOR_EXPR: Unary and Binary Expressions. *************** Concept Index *** 46293,46317 **** (line 6) * BIT_XOR_EXPR: Unary and Binary Expressions. (line 6) ! * BLKmode: Machine Modes. (line 185) ! * 'BLKmode', and function return values: Calls. (line 23) ! * 'blockage' instruction pattern: Standard Names. (line 1579) ! * Blocks: Blocks. (line 6) * BLOCK_FOR_INSN, gimple_bb: Maintaining the CFG. ! (line 28) ! * BLOCK_REG_PADDING: Register Arguments. (line 228) ! * bool: Misc. (line 891) * BOOLEAN_TYPE: Types. (line 6) - * BOOL_TYPE_SIZE: Type Layout. (line 43) * branch prediction: Profile information. (line 24) ! * BRANCH_COST: Costs. (line 104) ! * break_out_memory_refs: Addressing Modes. (line 134) * BREAK_STMT: Statements for C++. (line 6) ! * BSS_SECTION_ASM_OP: Sections. (line 67) * bswap: Arithmetic. (line 247) ! * 'bswapM2' instruction pattern: Standard Names. (line 534) ! * 'btruncM2' instruction pattern: Standard Names. (line 642) * build0: Macros and Functions. (line 16) * build1: Macros and Functions. --- 46710,46743 ---- (line 6) * BIT_XOR_EXPR: Unary and Binary Expressions. (line 6) ! * BITFIELD_NBYTES_LIMITED: Storage Layout. (line 397) ! * BITS_BIG_ENDIAN: Storage Layout. (line 12) ! * BITS_BIG_ENDIAN, effect on sign_extract: Bit-Fields. (line 8) ! * BITS_PER_UNIT: Machine Modes. (line 346) ! * BITS_PER_WORD: Storage Layout. (line 51) ! * bitwise complement: Arithmetic. (line 154) ! * bitwise exclusive-or: Arithmetic. (line 168) ! * bitwise inclusive-or: Arithmetic. (line 163) ! * bitwise logical-and: Arithmetic. (line 158) ! * BLKmode: Machine Modes. (line 186) ! * BLKmode, and function return values: Calls. (line 23) * BLOCK_FOR_INSN, gimple_bb: Maintaining the CFG. ! (line 29) ! * BLOCK_REG_PADDING: Register Arguments. (line 230) ! * blockage instruction pattern: Standard Names. (line 1589) ! * Blocks: Blocks. (line 6) ! * bool: Misc. (line 890) ! * BOOL_TYPE_SIZE: Type Layout. (line 44) * BOOLEAN_TYPE: Types. (line 6) * branch prediction: Profile information. (line 24) ! * BRANCH_COST: Costs. (line 105) ! * break_out_memory_refs: Addressing Modes. (line 135) * BREAK_STMT: Statements for C++. (line 6) ! * BSS_SECTION_ASM_OP: Sections. (line 68) * bswap: Arithmetic. (line 247) ! * bswapM2 instruction pattern: Standard Names. (line 540) ! * btruncM2 instruction pattern: Standard Names. (line 648) * build0: Macros and Functions. (line 16) * build1: Macros and Functions. *************** Concept Index *** 46326,46484 **** (line 21) * build6: Macros and Functions. (line 22) ! * 'builtin_longjmp' instruction pattern: Standard Names. (line 1475) ! * 'builtin_setjmp_receiver' instruction pattern: Standard Names. ! (line 1465) ! * 'builtin_setjmp_setup' instruction pattern: Standard Names. ! (line 1454) ! * BYTES_BIG_ENDIAN: Storage Layout. (line 23) ! * 'BYTES_BIG_ENDIAN', effect on 'subreg': Regs and Memory. (line 219) ! * byte_mode: Machine Modes. (line 358) * C statements for assembler output: Output Statement. (line 6) ! * call: Flags. (line 221) * call <1>: Side Effects. (line 92) ! * 'call' instruction pattern: Standard Names. (line 1120) ! * 'call' usage: Calls. (line 10) ! * 'call', in 'call_insn': Flags. (line 33) ! * 'call', in 'mem': Flags. (line 81) * call-clobbered register: Register Basics. (line 35) - * call-clobbered register <1>: Register Basics. (line 46) - * call-clobbered register <2>: Register Basics. (line 53) * call-saved register: Register Basics. (line 35) - * call-saved register <1>: Register Basics. (line 46) - * call-saved register <2>: Register Basics. (line 53) * call-used register: Register Basics. (line 35) - * call-used register <1>: Register Basics. (line 46) - * call-used register <2>: Register Basics. (line 53) - * CALLER_SAVE_PROFITABLE: Caller Saves. (line 10) - * calling conventions: Stack and Calling. (line 6) - * calling functions in RTL: Calls. (line 6) * CALL_EXPR: Unary and Binary Expressions. (line 6) * call_insn: Insns. (line 95) ! * 'call_insn' and '/c': Flags. (line 33) ! * 'call_insn' and '/f': Flags. (line 107) ! * 'call_insn' and '/i': Flags. (line 24) ! * 'call_insn' and '/j': Flags. (line 161) ! * 'call_insn' and '/s': Flags. (line 49) ! * 'call_insn' and '/s' <1>: Flags. (line 148) ! * 'call_insn' and '/u': Flags. (line 19) ! * 'call_insn' and '/u' <1>: Flags. (line 39) ! * 'call_insn' and '/u' or '/i': Flags. (line 29) ! * 'call_insn' and '/v': Flags. (line 44) * CALL_INSN_FUNCTION_USAGE: Insns. (line 101) ! * 'call_pop' instruction pattern: Standard Names. (line 1148) ! * CALL_POPS_ARGS: Stack Arguments. (line 138) ! * CALL_REALLY_USED_REGISTERS: Register Basics. (line 45) ! * CALL_USED_REGISTERS: Register Basics. (line 34) * call_used_regs: Register Basics. (line 59) ! * 'call_value' instruction pattern: Standard Names. (line 1140) ! * 'call_value_pop' instruction pattern: Standard Names. (line 1148) * canadian: Configure Terms. (line 6) ! * CANNOT_CHANGE_MODE_CLASS: Register Classes. (line 533) ! * 'CANNOT_CHANGE_MODE_CLASS' and subreg semantics: Regs and Memory. ! (line 276) * canonicalization of instructions: Insn Canonicalizations. (line 6) ! * 'canonicalize_funcptr_for_compare' instruction pattern: Standard Names. ! (line 1309) ! * can_create_pseudo_p: Standard Names. (line 75) ! * can_fallthru: Basic Blocks. (line 67) ! * 'casesi' instruction pattern: Standard Names. (line 1241) ! * CASE_VECTOR_MODE: Misc. (line 26) ! * CASE_VECTOR_PC_RELATIVE: Misc. (line 39) ! * CASE_VECTOR_SHORTEN_MODE: Misc. (line 30) ! * 'cbranchMODE4' instruction pattern: Standard Names. (line 1109) ! * cc0: Regs and Memory. (line 303) * cc0 <1>: CC0 Condition Codes. (line 6) ! * 'cc0', RTL sharing: Sharing. (line 27) ! * cc0_rtx: Regs and Memory. (line 329) ! * CC1PLUS_SPEC: Driver. (line 63) ! * CC1_SPEC: Driver. (line 55) ! * CCmode: Machine Modes. (line 178) ! * CCmode <1>: MODE_CC Condition Codes. ! (line 6) * cc_status: CC0 Condition Codes. (line 6) * CC_STATUS_MDEP: CC0 Condition Codes. ! (line 16) * CC_STATUS_MDEP_INIT: CC0 Condition Codes. ! (line 22) ! * CDImode: Machine Modes. (line 204) ! * 'ceilM2' instruction pattern: Standard Names. (line 658) * CEIL_DIV_EXPR: Unary and Binary Expressions. (line 6) * CEIL_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * CFA_FRAME_BASE_OFFSET: Frame Layout. (line 224) * CFG verification: Maintaining the CFG. ! (line 117) * CFG, Control Flow Graph: Control Flow. (line 6) * cfghooks.h: Maintaining the CFG. (line 6) ! * cgraph_finalize_function: Parsing pass. (line 51) ! * chain_circular: GTY Options. (line 209) ! * chain_next: GTY Options. (line 209) ! * chain_prev: GTY Options. (line 209) * change_address: Standard Names. (line 47) ! * CHAR_TYPE_SIZE: Type Layout. (line 38) ! * 'check_stack' instruction pattern: Standard Names. (line 1395) ! * CHImode: Machine Modes. (line 204) * CILK_PLUS: Cilk Plus Transformation. (line 6) * class definitions, register: Register Classes. (line 6) * class preference constraints: Class Preferences. (line 6) * class, scope: Classes. (line 6) * classes of RTX codes: RTL Classes. (line 6) * CLASSTYPE_DECLARED_CLASS: Classes. (line 6) * CLASSTYPE_HAS_MUTABLE: Classes. (line 85) * CLASSTYPE_NON_POD_P: Classes. (line 90) - * CLASS_MAX_NREGS: Register Classes. (line 521) - * CLASS_TYPE_P: Types for C++. (line 63) - * Cleanups: Cleanups. (line 6) * CLEANUP_DECL: Statements for C++. (line 6) * CLEANUP_EXPR: Statements for C++. (line 6) * CLEANUP_POINT_EXPR: Unary and Binary Expressions. (line 6) * CLEANUP_STMT: Statements for C++. (line 6) ! * CLEAR_BY_PIECES_P: Costs. (line 187) ! * 'clear_cache' instruction pattern: Standard Names. (line 1900) ! * CLEAR_INSN_CACHE: Trampolines. (line 98) ! * CLEAR_RATIO: Costs. (line 175) * clobber: Side Effects. (line 106) * clrsb: Arithmetic. (line 216) * clz: Arithmetic. (line 223) ! * 'clzM2' instruction pattern: Standard Names. (line 723) ! * CLZ_DEFINED_VALUE_AT_ZERO: Misc. (line 304) ! * 'cmpmemM' instruction pattern: Standard Names. (line 863) ! * 'cmpstrM' instruction pattern: Standard Names. (line 842) ! * 'cmpstrnM' instruction pattern: Standard Names. (line 829) * code generation RTL sequences: Expander Definitions. (line 6) ! * code iterators in '.md' files: Code Iterators. (line 6) ! * codes, RTL expression: RTL Objects. (line 47) ! * code_label: Insns. (line 125) * CODE_LABEL: Basic Blocks. (line 50) ! * 'code_label' and '/i': Flags. (line 59) ! * 'code_label' and '/v': Flags. (line 44) * CODE_LABEL_NUMBER: Insns. (line 125) ! * COImode: Machine Modes. (line 204) * COLLECT2_HOST_INITIALIZATION: Host Misc. (line 32) ! * COLLECT_EXPORT_LIST: Misc. (line 791) * COLLECT_SHARED_FINI_FUNC: Macros for Initialization. ! (line 43) * COLLECT_SHARED_INIT_FUNC: Macros for Initialization. ! (line 32) * commit_edge_insertions: Maintaining the CFG. ! (line 105) ! * compare: Arithmetic. (line 46) ! * 'compare', canonicalization of: Insn Canonicalizations. ! (line 36) * comparison_operator: Machine-Independent Predicates. ! (line 110) * compiler passes and files: Passes. (line 6) ! * complement, bitwise: Arithmetic. (line 155) * COMPLEX_CST: Constant expressions. (line 6) * COMPLEX_EXPR: Unary and Binary Expressions. --- 46752,46904 ---- (line 21) * build6: Macros and Functions. (line 22) ! * builtin_longjmp instruction pattern: Standard Names. (line 1486) ! * builtin_setjmp_receiver instruction pattern: Standard Names. ! (line 1476) ! * builtin_setjmp_setup instruction pattern: Standard Names. (line 1465) ! * byte_mode: Machine Modes. (line 359) ! * BYTES_BIG_ENDIAN: Storage Layout. (line 24) ! * BYTES_BIG_ENDIAN, effect on subreg: Regs and Memory. (line 221) * C statements for assembler output: Output Statement. (line 6) ! * C_COMMON_OVERRIDE_OPTIONS: Run-time Target. (line 137) ! * c_register_pragma: Misc. (line 410) ! * c_register_pragma_with_expansion: Misc. (line 412) * call <1>: Side Effects. (line 92) ! * call: Flags. (line 221) ! * call instruction pattern: Standard Names. (line 1126) ! * call usage: Calls. (line 10) ! * call, in call_insn: Flags. (line 33) ! * call, in mem: Flags. (line 81) * call-clobbered register: Register Basics. (line 35) * call-saved register: Register Basics. (line 35) * call-used register: Register Basics. (line 35) * CALL_EXPR: Unary and Binary Expressions. (line 6) * call_insn: Insns. (line 95) ! * call_insn and /c: Flags. (line 33) ! * call_insn and /f: Flags. (line 107) ! * call_insn and /i: Flags. (line 24) ! * call_insn and /j: Flags. (line 161) ! * call_insn and /s: Flags. (line 49) ! * call_insn and /u: Flags. (line 19) ! * call_insn and /u or /i: Flags. (line 29) ! * call_insn and /v: Flags. (line 44) * CALL_INSN_FUNCTION_USAGE: Insns. (line 101) ! * call_pop instruction pattern: Standard Names. (line 1154) ! * CALL_POPS_ARGS: Stack Arguments. (line 139) ! * CALL_REALLY_USED_REGISTERS: Register Basics. (line 46) ! * CALL_USED_REGISTERS: Register Basics. (line 35) * call_used_regs: Register Basics. (line 59) ! * call_value instruction pattern: Standard Names. (line 1146) ! * call_value_pop instruction pattern: Standard Names. (line 1154) ! * CALLER_SAVE_PROFITABLE: Caller Saves. (line 11) ! * calling conventions: Stack and Calling. (line 6) ! * calling functions in RTL: Calls. (line 6) ! * can_create_pseudo_p: Standard Names. (line 75) ! * can_fallthru: Basic Blocks. (line 67) * canadian: Configure Terms. (line 6) ! * CANNOT_CHANGE_MODE_CLASS: Register Classes. (line 538) ! * CANNOT_CHANGE_MODE_CLASS and subreg semantics: Regs and Memory. ! (line 280) * canonicalization of instructions: Insn Canonicalizations. (line 6) ! * canonicalize_funcptr_for_compare instruction pattern: Standard Names. ! (line 1317) ! * CASE_VECTOR_MODE: Misc. (line 27) ! * CASE_VECTOR_PC_RELATIVE: Misc. (line 40) ! * CASE_VECTOR_SHORTEN_MODE: Misc. (line 31) ! * casesi instruction pattern: Standard Names. (line 1248) ! * cbranchMODE4 instruction pattern: Standard Names. (line 1115) * cc0 <1>: CC0 Condition Codes. (line 6) ! * cc0: Regs and Memory. (line 307) ! * cc0, RTL sharing: Sharing. (line 27) ! * cc0_rtx: Regs and Memory. (line 333) ! * CC1_SPEC: Driver. (line 56) ! * CC1PLUS_SPEC: Driver. (line 64) * cc_status: CC0 Condition Codes. (line 6) * CC_STATUS_MDEP: CC0 Condition Codes. ! (line 17) * CC_STATUS_MDEP_INIT: CC0 Condition Codes. ! (line 23) ! * CCmode <1>: MODE_CC Condition Codes. ! (line 6) ! * CCmode: Machine Modes. (line 179) ! * CDImode: Machine Modes. (line 205) * CEIL_DIV_EXPR: Unary and Binary Expressions. (line 6) * CEIL_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * ceilM2 instruction pattern: Standard Names. (line 664) ! * CFA_FRAME_BASE_OFFSET: Frame Layout. (line 226) * CFG verification: Maintaining the CFG. ! (line 119) * CFG, Control Flow Graph: Control Flow. (line 6) * cfghooks.h: Maintaining the CFG. (line 6) ! * cgraph_finalize_function: Parsing pass. (line 52) ! * chain_circular: GTY Options. (line 200) ! * chain_next: GTY Options. (line 200) ! * chain_prev: GTY Options. (line 200) * change_address: Standard Names. (line 47) ! * CHAR_TYPE_SIZE: Type Layout. (line 39) ! * check_stack instruction pattern: Standard Names. (line 1404) ! * CHImode: Machine Modes. (line 205) * CILK_PLUS: Cilk Plus Transformation. (line 6) * class definitions, register: Register Classes. (line 6) * class preference constraints: Class Preferences. (line 6) * class, scope: Classes. (line 6) + * CLASS_MAX_NREGS: Register Classes. (line 526) + * CLASS_TYPE_P: Types for C++. (line 65) * classes of RTX codes: RTL Classes. (line 6) * CLASSTYPE_DECLARED_CLASS: Classes. (line 6) * CLASSTYPE_HAS_MUTABLE: Classes. (line 85) * CLASSTYPE_NON_POD_P: Classes. (line 90) * CLEANUP_DECL: Statements for C++. (line 6) * CLEANUP_EXPR: Statements for C++. (line 6) * CLEANUP_POINT_EXPR: Unary and Binary Expressions. (line 6) * CLEANUP_STMT: Statements for C++. (line 6) ! * Cleanups: Cleanups. (line 6) ! * CLEAR_BY_PIECES_P: Costs. (line 188) ! * clear_cache instruction pattern: Standard Names. (line 1896) ! * CLEAR_INSN_CACHE: Trampolines. (line 99) ! * CLEAR_RATIO: Costs. (line 176) * clobber: Side Effects. (line 106) * clrsb: Arithmetic. (line 216) * clz: Arithmetic. (line 223) ! * CLZ_DEFINED_VALUE_AT_ZERO: Misc. (line 305) ! * clzM2 instruction pattern: Standard Names. (line 729) ! * cmpmemM instruction pattern: Standard Names. (line 869) ! * cmpstrM instruction pattern: Standard Names. (line 848) ! * cmpstrnM instruction pattern: Standard Names. (line 835) * code generation RTL sequences: Expander Definitions. (line 6) ! * code iterators in .md files: Code Iterators. (line 6) * CODE_LABEL: Basic Blocks. (line 50) ! * code_label: Insns. (line 125) ! * code_label and /i: Flags. (line 59) ! * code_label and /v: Flags. (line 44) * CODE_LABEL_NUMBER: Insns. (line 125) ! * codes, RTL expression: RTL Objects. (line 47) ! * COImode: Machine Modes. (line 205) * COLLECT2_HOST_INITIALIZATION: Host Misc. (line 32) ! * COLLECT_EXPORT_LIST: Misc. (line 789) * COLLECT_SHARED_FINI_FUNC: Macros for Initialization. ! (line 44) * COLLECT_SHARED_INIT_FUNC: Macros for Initialization. ! (line 33) * commit_edge_insertions: Maintaining the CFG. ! (line 107) ! * compare: Arithmetic. (line 43) ! * compare, canonicalization of: Insn Canonicalizations. ! (line 37) * comparison_operator: Machine-Independent Predicates. ! (line 111) * compiler passes and files: Passes. (line 6) ! * complement, bitwise: Arithmetic. (line 154) * COMPLEX_CST: Constant expressions. (line 6) * COMPLEX_EXPR: Unary and Binary Expressions. *************** Concept Index *** 46493,46508 **** * COMPOUND_LITERAL_EXPR: Unary and Binary Expressions. (line 6) * COMPOUND_LITERAL_EXPR_DECL: Unary and Binary Expressions. ! (line 377) * COMPOUND_LITERAL_EXPR_DECL_EXPR: Unary and Binary Expressions. ! (line 377) ! * computed jump: Edges. (line 127) * computing the length of an insn: Insn Lengths. (line 6) ! * concat: Regs and Memory. (line 381) ! * concatn: Regs and Memory. (line 387) * cond: Comparisons. (line 90) ! * 'cond' and attributes: Expressions. (line 37) ! * condition code register: Regs and Memory. (line 303) * condition code status: Condition Code. (line 6) * condition codes: Comparisons. (line 20) * conditional execution: Conditional Execution. --- 46913,46931 ---- * COMPOUND_LITERAL_EXPR: Unary and Binary Expressions. (line 6) * COMPOUND_LITERAL_EXPR_DECL: Unary and Binary Expressions. ! (line 378) * COMPOUND_LITERAL_EXPR_DECL_EXPR: Unary and Binary Expressions. ! (line 378) ! * computed jump: Edges. (line 128) * computing the length of an insn: Insn Lengths. (line 6) ! * concat: Regs and Memory. (line 385) ! * concatn: Regs and Memory. (line 391) * cond: Comparisons. (line 90) ! * cond and attributes: Expressions. (line 37) ! * cond_exec: Side Effects. (line 254) ! * COND_EXPR: Unary and Binary Expressions. ! (line 6) ! * condition code register: Regs and Memory. (line 307) * condition code status: Condition Code. (line 6) * condition codes: Comparisons. (line 20) * conditional execution: Conditional Execution. *************** Concept Index *** 46510,46543 **** * Conditional Expressions: Conditional Expressions. (line 6) * conditions, in patterns: Patterns. (line 43) - * cond_exec: Side Effects. (line 253) - * COND_EXPR: Unary and Binary Expressions. - (line 6) - * configuration file: Filesystem. (line 6) * configuration file <1>: Host Misc. (line 6) * configure terms: Configure Terms. (line 6) * CONJ_EXPR: Unary and Binary Expressions. (line 6) ! * const: Constants. (line 109) * const0_rtx: Constants. (line 21) ! * CONST0_RTX: Constants. (line 129) * const1_rtx: Constants. (line 21) ! * CONST1_RTX: Constants. (line 129) * const2_rtx: Constants. (line 21) ! * CONST2_RTX: Constants. (line 129) * constant attributes: Constant Attributes. (line 6) * constant definitions: Constant Definitions. (line 6) ! * constants in constraints: Simple Constraints. (line 68) ! * CONSTANT_ADDRESS_P: Addressing Modes. (line 28) ! * CONSTANT_ALIGNMENT: Storage Layout. (line 236) ! * CONSTANT_P: Addressing Modes. (line 35) * CONSTANT_POOL_ADDRESS_P: Flags. (line 10) ! * CONSTANT_POOL_BEFORE_FUNCTION: Data Output. (line 64) * constm1_rtx: Constants. (line 21) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 140) * constraints: Constraints. (line 6) * constraints, defining: Define Constraints. (line 6) * constraints, defining, obsolete method: Old Constraints. (line 6) --- 46933,46990 ---- * Conditional Expressions: Conditional Expressions. (line 6) * conditions, in patterns: Patterns. (line 43) * configuration file <1>: Host Misc. (line 6) + * configuration file: Filesystem. (line 6) * configure terms: Configure Terms. (line 6) * CONJ_EXPR: Unary and Binary Expressions. (line 6) ! * const: Constants. (line 110) ! * CONST0_RTX: Constants. (line 130) * const0_rtx: Constants. (line 21) ! * CONST1_RTX: Constants. (line 130) * const1_rtx: Constants. (line 21) ! * CONST2_RTX: Constants. (line 130) * const2_rtx: Constants. (line 21) ! * CONST_DECL: Declarations. (line 6) ! * const_double: Constants. (line 37) ! * const_double, RTL sharing: Sharing. (line 29) ! * CONST_DOUBLE_LOW: Constants. (line 50) ! * CONST_DOUBLE_OK_FOR_CONSTRAINT_P: Old Constraints. (line 69) ! * CONST_DOUBLE_OK_FOR_LETTER_P: Old Constraints. (line 54) ! * const_double_operand: Machine-Independent Predicates. ! (line 21) ! * const_fixed: Constants. (line 63) ! * const_int: Constants. (line 8) ! * const_int and attribute tests: Expressions. (line 47) ! * const_int and attributes: Expressions. (line 10) ! * const_int, RTL sharing: Sharing. (line 23) ! * const_int_operand: Machine-Independent Predicates. ! (line 16) ! * CONST_OK_FOR_CONSTRAINT_P: Old Constraints. (line 49) ! * CONST_OK_FOR_LETTER_P: Old Constraints. (line 40) ! * const_string: Constants. (line 82) ! * const_string and attributes: Expressions. (line 20) ! * const_true_rtx: Constants. (line 31) ! * const_vector: Constants. (line 70) ! * const_vector, RTL sharing: Sharing. (line 32) * constant attributes: Constant Attributes. (line 6) * constant definitions: Constant Definitions. (line 6) ! * CONSTANT_ADDRESS_P: Addressing Modes. (line 29) ! * CONSTANT_ALIGNMENT: Storage Layout. (line 240) ! * CONSTANT_P: Addressing Modes. (line 36) * CONSTANT_POOL_ADDRESS_P: Flags. (line 10) ! * CONSTANT_POOL_BEFORE_FUNCTION: Data Output. (line 65) ! * constants in constraints: Simple Constraints. (line 70) * constm1_rtx: Constants. (line 21) * constraint modifier characters: Modifiers. (line 6) ! * constraint, matching: Simple Constraints. (line 142) ! * CONSTRAINT_LEN: Old Constraints. (line 12) ! * constraint_num: C Constraint Interface. ! (line 38) ! * constraint_satisfied_p: C Constraint Interface. ! (line 54) * constraints: Constraints. (line 6) * constraints, defining: Define Constraints. (line 6) * constraints, defining, obsolete method: Old Constraints. (line 6) *************** Concept Index *** 46545,46581 **** (line 6) * constraints, testing: C Constraint Interface. (line 6) - * CONSTRAINT_LEN: Old Constraints. (line 11) - * constraint_num: C Constraint Interface. - (line 37) - * constraint_satisfied_p: C Constraint Interface. - (line 52) * CONSTRUCTOR: Unary and Binary Expressions. (line 6) * constructors, automatic calls: Collect2. (line 15) * constructors, output of: Initialization. (line 6) - * CONST_DECL: Declarations. (line 6) - * const_double: Constants. (line 37) - * 'const_double', RTL sharing: Sharing. (line 29) - * CONST_DOUBLE_LOW: Constants. (line 49) - * CONST_DOUBLE_OK_FOR_CONSTRAINT_P: Old Constraints. (line 66) - * CONST_DOUBLE_OK_FOR_LETTER_P: Old Constraints. (line 51) - * const_double_operand: Machine-Independent Predicates. - (line 20) - * const_fixed: Constants. (line 62) - * const_int: Constants. (line 8) - * 'const_int' and attribute tests: Expressions. (line 47) - * 'const_int' and attributes: Expressions. (line 10) - * 'const_int', RTL sharing: Sharing. (line 23) - * const_int_operand: Machine-Independent Predicates. - (line 15) - * CONST_OK_FOR_CONSTRAINT_P: Old Constraints. (line 46) - * CONST_OK_FOR_LETTER_P: Old Constraints. (line 38) - * const_string: Constants. (line 81) - * 'const_string' and attributes: Expressions. (line 20) - * const_true_rtx: Constants. (line 31) - * const_vector: Constants. (line 69) - * 'const_vector', RTL sharing: Sharing. (line 32) * container: Containers. (line 6) * CONTINUE_STMT: Statements for C++. (line 6) * contributors: Contributors. (line 6) --- 46992,47001 ---- *************** Concept Index *** 46585,46727 **** * conversions: Conversions. (line 6) * CONVERT_EXPR: Unary and Binary Expressions. (line 6) ! * 'copysignM3' instruction pattern: Standard Names. (line 704) ! * copy_rtx: Addressing Modes. (line 189) * copy_rtx_if_shared: Sharing. (line 64) ! * 'cosM2' instruction pattern: Standard Names. (line 570) * costs of instructions: Costs. (line 6) ! * CPLUSPLUS_CPP_SPEC: Driver. (line 50) ! * CPP_SPEC: Driver. (line 43) ! * CP_INTEGRAL_TYPE: Types for C++. (line 55) * cp_namespace_decls: Namespaces. (line 49) * CP_TYPE_CONST_NON_VOLATILE_P: Types for C++. (line 33) * CP_TYPE_CONST_P: Types for C++. (line 24) * cp_type_quals: Types for C++. (line 6) - * cp_type_quals <1>: Types for C++. (line 16) * CP_TYPE_RESTRICT_P: Types for C++. (line 30) * CP_TYPE_VOLATILE_P: Types for C++. (line 27) ! * CQImode: Machine Modes. (line 204) * cross compilation and floating point: Floating Point. (line 6) ! * crtl->args.pops_args: Function Entry. (line 104) ! * crtl->args.pretend_args_size: Function Entry. (line 110) * crtl->outgoing_args_size: Stack Arguments. (line 48) * CRTSTUFF_T_CFLAGS: Target Fragment. (line 15) * CRTSTUFF_T_CFLAGS_S: Target Fragment. (line 19) ! * CRT_CALL_STATIC_FUNCTION: Sections. (line 120) ! * CSImode: Machine Modes. (line 204) ! * 'cstoreMODE4' instruction pattern: Standard Names. (line 1070) ! * CTImode: Machine Modes. (line 204) ! * 'ctrapMM4' instruction pattern: Standard Names. (line 1547) * ctz: Arithmetic. (line 231) ! * 'ctzM2' instruction pattern: Standard Names. (line 732) ! * CTZ_DEFINED_VALUE_AT_ZERO: Misc. (line 305) ! * CUMULATIVE_ARGS: Register Arguments. (line 126) ! * current_function_is_leaf: Leaf Functions. (line 50) ! * current_function_uses_only_leaf_regs: Leaf Functions. (line 50) * current_insn_predicate: Conditional Execution. (line 27) ! * C_COMMON_OVERRIDE_OPTIONS: Run-time Target. (line 136) ! * c_register_pragma: Misc. (line 407) ! * c_register_pragma_with_expansion: Misc. (line 409) ! * DAmode: Machine Modes. (line 154) * data bypass: Processor pipeline description. ! (line 105) ! * data bypass <1>: Processor pipeline description. ! (line 196) * data dependence delays: Processor pipeline description. (line 6) * Data Dependency Analysis: Dependency analysis. (line 6) * data structures: Per-Function Data. (line 6) ! * DATA_ABI_ALIGNMENT: Storage Layout. (line 228) ! * DATA_ALIGNMENT: Storage Layout. (line 215) ! * DATA_SECTION_ASM_OP: Sections. (line 52) ! * DBR_OUTPUT_SEQEND: Instruction Output. (line 133) ! * dbr_sequence_length: Instruction Output. (line 133) ! * DBX_BLOCKS_FUNCTION_RELATIVE: DBX Options. (line 100) ! * DBX_CONTIN_CHAR: DBX Options. (line 63) ! * DBX_CONTIN_LENGTH: DBX Options. (line 53) ! * DBX_DEBUGGING_INFO: DBX Options. (line 8) ! * DBX_FUNCTION_FIRST: DBX Options. (line 94) ! * DBX_LINES_FUNCTION_RELATIVE: DBX Options. (line 106) ! * DBX_NO_XREFS: DBX Options. (line 47) ! * DBX_OUTPUT_MAIN_SOURCE_FILENAME: File Names and DBX. (line 8) ! * DBX_OUTPUT_MAIN_SOURCE_FILE_END: File Names and DBX. (line 33) * DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END: File Names and DBX. ! (line 41) ! * DBX_OUTPUT_SOURCE_LINE: DBX Hooks. (line 8) ! * DBX_REGISTER_NUMBER: All Debuggers. (line 8) ! * DBX_REGPARM_STABS_CODE: DBX Options. (line 84) ! * DBX_REGPARM_STABS_LETTER: DBX Options. (line 89) ! * DBX_STATIC_CONST_VAR_CODE: DBX Options. (line 79) ! * DBX_STATIC_STAB_DATA_SECTION: DBX Options. (line 70) ! * DBX_TYPE_DECL_STABS_CODE: DBX Options. (line 75) ! * DBX_USE_BINCL: DBX Options. (line 112) ! * DCmode: Machine Modes. (line 199) * DDmode: Machine Modes. (line 93) * De Morgan's law: Insn Canonicalizations. ! (line 51) * dead_or_set_p: define_peephole. (line 65) - * DEBUGGER_ARG_OFFSET: All Debuggers. (line 36) - * DEBUGGER_AUTO_OFFSET: All Debuggers. (line 27) * debug_expr: Debug Information. (line 22) * DEBUG_EXPR_DECL: Declarations. (line 6) ! * debug_insn: Insns. (line 236) ! * DEBUG_SYMS_TEXT: DBX Options. (line 24) * decimal float library: Decimal float library routines. (line 6) - * declaration: Declarations. (line 6) - * declarations, RTL: RTL Declarations. (line 6) - * DECLARE_LIBRARY_RENAMES: Library Calls. (line 8) * DECL_ALIGN: Declarations. (line 6) * DECL_ANTICIPATED: Functions for C++. (line 42) * DECL_ARGUMENTS: Function Basics. (line 36) * DECL_ARRAY_DELETE_OPERATOR_P: Functions for C++. (line 158) * DECL_ARTIFICIAL: Working with declarations. (line 24) - * DECL_ARTIFICIAL <1>: Function Basics. (line 6) - * DECL_ARTIFICIAL <2>: Function Properties. - (line 47) * DECL_ASSEMBLER_NAME: Function Basics. (line 6) ! * DECL_ASSEMBLER_NAME <1>: Function Basics. (line 19) ! * DECL_ATTRIBUTES: Attributes. (line 21) * DECL_BASE_CONSTRUCTOR_P: Functions for C++. (line 88) * DECL_COMPLETE_CONSTRUCTOR_P: Functions for C++. (line 84) * DECL_COMPLETE_DESTRUCTOR_P: Functions for C++. (line 98) - * DECL_CONSTRUCTOR_P: Functions for C++. (line 77) * DECL_CONST_MEMFUNC_P: Functions for C++. (line 71) * DECL_CONTEXT: Namespaces. (line 31) * DECL_CONV_FN_P: Functions for C++. (line 105) * DECL_COPY_CONSTRUCTOR_P: Functions for C++. (line 92) * DECL_DESTRUCTOR_P: Functions for C++. (line 95) ! * DECL_EXTERNAL: Declarations. (line 6) * DECL_EXTERNAL <1>: Function Properties. (line 25) ! * DECL_EXTERN_C_FUNCTION_P: Functions for C++. (line 46) * DECL_FUNCTION_MEMBER_P: Functions for C++. (line 61) - * DECL_FUNCTION_SPECIFIC_OPTIMIZATION: Function Basics. (line 6) * DECL_FUNCTION_SPECIFIC_OPTIMIZATION <1>: Function Properties. (line 61) ! * DECL_FUNCTION_SPECIFIC_TARGET: Function Basics. (line 6) * DECL_FUNCTION_SPECIFIC_TARGET <1>: Function Properties. (line 55) * DECL_GLOBAL_CTOR_P: Functions for C++. (line 108) * DECL_GLOBAL_DTOR_P: Functions for C++. (line 112) - * DECL_INITIAL: Declarations. (line 6) * DECL_INITIAL <1>: Function Basics. (line 51) * DECL_LINKONCE_P: Functions for C++. (line 50) * DECL_LOCAL_FUNCTION_P: Functions for C++. (line 38) * DECL_MAIN_P: Functions for C++. (line 34) * DECL_NAME: Working with declarations. (line 7) - * DECL_NAME <1>: Function Basics. (line 6) - * DECL_NAME <2>: Function Basics. (line 9) - * DECL_NAME <3>: Namespaces. (line 20) * DECL_NAMESPACE_ALIAS: Namespaces. (line 35) * DECL_NAMESPACE_STD_P: Namespaces. (line 45) * DECL_NONCONVERTING_P: Functions for C++. (line 80) * DECL_NONSTATIC_MEMBER_FUNCTION_P: Functions for C++. (line 68) - * DECL_NON_THUNK_FUNCTION_P: Functions for C++. (line 138) * DECL_OVERLOADED_OPERATOR_P: Functions for C++. (line 102) * DECL_PURE_P: Function Properties. (line 40) --- 47005,47136 ---- * conversions: Conversions. (line 6) * CONVERT_EXPR: Unary and Binary Expressions. (line 6) ! * copy_rtx: Addressing Modes. (line 190) * copy_rtx_if_shared: Sharing. (line 64) ! * copysignM3 instruction pattern: Standard Names. (line 710) ! * cosM2 instruction pattern: Standard Names. (line 576) * costs of instructions: Costs. (line 6) ! * CP_INTEGRAL_TYPE: Types for C++. (line 57) * cp_namespace_decls: Namespaces. (line 49) * CP_TYPE_CONST_NON_VOLATILE_P: Types for C++. (line 33) * CP_TYPE_CONST_P: Types for C++. (line 24) * cp_type_quals: Types for C++. (line 6) * CP_TYPE_RESTRICT_P: Types for C++. (line 30) * CP_TYPE_VOLATILE_P: Types for C++. (line 27) ! * CPLUSPLUS_CPP_SPEC: Driver. (line 51) ! * CPP_SPEC: Driver. (line 44) ! * CQImode: Machine Modes. (line 205) * cross compilation and floating point: Floating Point. (line 6) ! * CRT_CALL_STATIC_FUNCTION: Sections. (line 121) ! * crtl->args.pops_args: Function Entry. (line 106) ! * crtl->args.pretend_args_size: Function Entry. (line 112) * crtl->outgoing_args_size: Stack Arguments. (line 48) * CRTSTUFF_T_CFLAGS: Target Fragment. (line 15) * CRTSTUFF_T_CFLAGS_S: Target Fragment. (line 19) ! * CSImode: Machine Modes. (line 205) ! * cstoreMODE4 instruction pattern: Standard Names. (line 1076) ! * CTImode: Machine Modes. (line 205) ! * ctrapMM4 instruction pattern: Standard Names. (line 1558) * ctz: Arithmetic. (line 231) ! * CTZ_DEFINED_VALUE_AT_ZERO: Misc. (line 306) ! * ctzM2 instruction pattern: Standard Names. (line 738) ! * CUMULATIVE_ARGS: Register Arguments. (line 128) ! * current_function_is_leaf: Leaf Functions. (line 51) ! * current_function_uses_only_leaf_regs: Leaf Functions. (line 51) * current_insn_predicate: Conditional Execution. (line 27) ! * DAmode: Machine Modes. (line 155) * data bypass: Processor pipeline description. ! (line 106) * data dependence delays: Processor pipeline description. (line 6) * Data Dependency Analysis: Dependency analysis. (line 6) * data structures: Per-Function Data. (line 6) ! * DATA_ABI_ALIGNMENT: Storage Layout. (line 232) ! * DATA_ALIGNMENT: Storage Layout. (line 219) ! * DATA_SECTION_ASM_OP: Sections. (line 53) ! * DBR_OUTPUT_SEQEND: Instruction Output. (line 135) ! * dbr_sequence_length: Instruction Output. (line 134) ! * DBX_BLOCKS_FUNCTION_RELATIVE: DBX Options. (line 103) ! * DBX_CONTIN_CHAR: DBX Options. (line 66) ! * DBX_CONTIN_LENGTH: DBX Options. (line 56) ! * DBX_DEBUGGING_INFO: DBX Options. (line 9) ! * DBX_FUNCTION_FIRST: DBX Options. (line 97) ! * DBX_LINES_FUNCTION_RELATIVE: DBX Options. (line 109) ! * DBX_NO_XREFS: DBX Options. (line 50) ! * DBX_OUTPUT_MAIN_SOURCE_FILE_END: File Names and DBX. (line 34) ! * DBX_OUTPUT_MAIN_SOURCE_FILENAME: File Names and DBX. (line 9) * DBX_OUTPUT_NULL_N_SO_AT_MAIN_SOURCE_FILE_END: File Names and DBX. ! (line 42) ! * DBX_OUTPUT_SOURCE_LINE: DBX Hooks. (line 9) ! * DBX_REGISTER_NUMBER: All Debuggers. (line 9) ! * DBX_REGPARM_STABS_CODE: DBX Options. (line 87) ! * DBX_REGPARM_STABS_LETTER: DBX Options. (line 92) ! * DBX_STATIC_CONST_VAR_CODE: DBX Options. (line 82) ! * DBX_STATIC_STAB_DATA_SECTION: DBX Options. (line 73) ! * DBX_TYPE_DECL_STABS_CODE: DBX Options. (line 78) ! * DBX_USE_BINCL: DBX Options. (line 115) ! * DCmode: Machine Modes. (line 200) * DDmode: Machine Modes. (line 93) * De Morgan's law: Insn Canonicalizations. ! (line 52) * dead_or_set_p: define_peephole. (line 65) * debug_expr: Debug Information. (line 22) * DEBUG_EXPR_DECL: Declarations. (line 6) ! * debug_insn: Insns. (line 239) ! * DEBUG_SYMS_TEXT: DBX Options. (line 25) ! * DEBUGGER_ARG_OFFSET: All Debuggers. (line 37) ! * DEBUGGER_AUTO_OFFSET: All Debuggers. (line 28) * decimal float library: Decimal float library routines. (line 6) * DECL_ALIGN: Declarations. (line 6) * DECL_ANTICIPATED: Functions for C++. (line 42) * DECL_ARGUMENTS: Function Basics. (line 36) * DECL_ARRAY_DELETE_OPERATOR_P: Functions for C++. (line 158) + * DECL_ARTIFICIAL <1>: Function Properties. + (line 47) + * DECL_ARTIFICIAL <2>: Function Basics. (line 6) * DECL_ARTIFICIAL: Working with declarations. (line 24) * DECL_ASSEMBLER_NAME: Function Basics. (line 6) ! * DECL_ATTRIBUTES: Attributes. (line 22) * DECL_BASE_CONSTRUCTOR_P: Functions for C++. (line 88) * DECL_COMPLETE_CONSTRUCTOR_P: Functions for C++. (line 84) * DECL_COMPLETE_DESTRUCTOR_P: Functions for C++. (line 98) * DECL_CONST_MEMFUNC_P: Functions for C++. (line 71) + * DECL_CONSTRUCTOR_P: Functions for C++. (line 77) * DECL_CONTEXT: Namespaces. (line 31) * DECL_CONV_FN_P: Functions for C++. (line 105) * DECL_COPY_CONSTRUCTOR_P: Functions for C++. (line 92) * DECL_DESTRUCTOR_P: Functions for C++. (line 95) ! * DECL_EXTERN_C_FUNCTION_P: Functions for C++. (line 46) * DECL_EXTERNAL <1>: Function Properties. (line 25) ! * DECL_EXTERNAL: Declarations. (line 6) * DECL_FUNCTION_MEMBER_P: Functions for C++. (line 61) * DECL_FUNCTION_SPECIFIC_OPTIMIZATION <1>: Function Properties. (line 61) ! * DECL_FUNCTION_SPECIFIC_OPTIMIZATION: Function Basics. (line 6) * DECL_FUNCTION_SPECIFIC_TARGET <1>: Function Properties. (line 55) + * DECL_FUNCTION_SPECIFIC_TARGET: Function Basics. (line 6) * DECL_GLOBAL_CTOR_P: Functions for C++. (line 108) * DECL_GLOBAL_DTOR_P: Functions for C++. (line 112) * DECL_INITIAL <1>: Function Basics. (line 51) + * DECL_INITIAL: Declarations. (line 6) * DECL_LINKONCE_P: Functions for C++. (line 50) * DECL_LOCAL_FUNCTION_P: Functions for C++. (line 38) * DECL_MAIN_P: Functions for C++. (line 34) + * DECL_NAME <1>: Namespaces. (line 20) + * DECL_NAME <2>: Function Basics. (line 6) * DECL_NAME: Working with declarations. (line 7) * DECL_NAMESPACE_ALIAS: Namespaces. (line 35) * DECL_NAMESPACE_STD_P: Namespaces. (line 45) + * DECL_NON_THUNK_FUNCTION_P: Functions for C++. (line 138) * DECL_NONCONVERTING_P: Functions for C++. (line 80) * DECL_NONSTATIC_MEMBER_FUNCTION_P: Functions for C++. (line 68) * DECL_OVERLOADED_OPERATOR_P: Functions for C++. (line 102) * DECL_PURE_P: Function Properties. (line 40) *************** Concept Index *** 46735,46783 **** * DECL_VIRTUAL_P: Function Properties. (line 44) * DECL_VOLATILE_MEMFUNC_P: Functions for C++. (line 74) ! * 'decrement_and_branch_until_zero' instruction pattern: Standard Names. ! (line 1278) * default: GTY Options. (line 82) * default_file_start: File Framework. (line 8) ! * DEFAULT_GDB_EXTENSIONS: DBX Options. (line 17) ! * DEFAULT_PCC_STRUCT_RETURN: Aggregate Return. (line 34) ! * DEFAULT_SIGNED_CHAR: Type Layout. (line 160) ! * define_address_constraint: Define Constraints. (line 99) * define_asm_attributes: Tagging Insns. (line 73) * define_attr: Defining Attributes. (line 6) * define_automaton: Processor pipeline description. (line 53) * define_bypass: Processor pipeline description. ! (line 196) * define_code_attr: Code Iterators. (line 6) * define_code_iterator: Code Iterators. (line 6) * define_cond_exec: Conditional Execution. (line 13) * define_constants: Constant Definitions. (line 6) ! * define_constraint: Define Constraints. (line 45) * define_cpu_unit: Processor pipeline description. (line 68) - * define_c_enum: Constant Definitions. - (line 49) * define_delay: Delay Slots. (line 25) * define_enum: Constant Definitions. (line 118) - * define_enum_attr: Defining Attributes. - (line 83) * define_enum_attr <1>: Constant Definitions. (line 136) * define_expand: Expander Definitions. (line 11) * define_insn: Patterns. (line 6) ! * 'define_insn' example: Example. (line 6) * define_insn_and_split: Insn Splitting. (line 170) * define_insn_reservation: Processor pipeline description. ! (line 105) * define_int_attr: Int Iterators. (line 6) * define_int_iterator: Int Iterators. (line 6) ! * define_memory_constraint: Define Constraints. (line 80) * define_mode_attr: Substitutions. (line 6) * define_mode_iterator: Defining Mode Iterators. (line 6) --- 47144,47195 ---- * DECL_VIRTUAL_P: Function Properties. (line 44) * DECL_VOLATILE_MEMFUNC_P: Functions for C++. (line 74) ! * declaration: Declarations. (line 6) ! * declarations, RTL: RTL Declarations. (line 6) ! * DECLARE_LIBRARY_RENAMES: Library Calls. (line 9) ! * decrement_and_branch_until_zero instruction pattern: Standard Names. ! (line 1286) * default: GTY Options. (line 82) * default_file_start: File Framework. (line 8) ! * DEFAULT_GDB_EXTENSIONS: DBX Options. (line 18) ! * DEFAULT_PCC_STRUCT_RETURN: Aggregate Return. (line 35) ! * DEFAULT_SIGNED_CHAR: Type Layout. (line 161) ! * define_address_constraint: Define Constraints. (line 107) * define_asm_attributes: Tagging Insns. (line 73) * define_attr: Defining Attributes. (line 6) * define_automaton: Processor pipeline description. (line 53) * define_bypass: Processor pipeline description. ! (line 197) ! * define_c_enum: Constant Definitions. ! (line 49) * define_code_attr: Code Iterators. (line 6) * define_code_iterator: Code Iterators. (line 6) * define_cond_exec: Conditional Execution. (line 13) * define_constants: Constant Definitions. (line 6) ! * define_constraint: Define Constraints. (line 48) * define_cpu_unit: Processor pipeline description. (line 68) * define_delay: Delay Slots. (line 25) * define_enum: Constant Definitions. (line 118) * define_enum_attr <1>: Constant Definitions. (line 136) + * define_enum_attr: Defining Attributes. + (line 83) * define_expand: Expander Definitions. (line 11) * define_insn: Patterns. (line 6) ! * define_insn example: Example. (line 6) * define_insn_and_split: Insn Splitting. (line 170) * define_insn_reservation: Processor pipeline description. ! (line 106) * define_int_attr: Int Iterators. (line 6) * define_int_iterator: Int Iterators. (line 6) ! * define_memory_constraint: Define Constraints. (line 88) * define_mode_attr: Substitutions. (line 6) * define_mode_iterator: Defining Mode Iterators. (line 6) *************** Concept Index *** 46787,46809 **** (line 6) * define_query_cpu_unit: Processor pipeline description. (line 90) ! * define_register_constraint: Define Constraints. (line 26) * define_reservation: Processor pipeline description. ! (line 185) * define_special_predicate: Defining Predicates. (line 6) * define_split: Insn Splitting. (line 32) ! * define_subst: Define Subst. (line 6) ! * define_subst <1>: Define Subst Example. (line 6) ! * define_subst <2>: Define Subst Pattern Matching. (line 6) ! * define_subst <3>: Define Subst Output Template. (line 6) ! * define_subst <4>: Define Subst. (line 14) ! * define_subst <5>: Subst Iterators. (line 6) * define_subst_attr: Subst Iterators. (line 6) - * define_subst_attr <1>: Subst Iterators. (line 26) * defining attributes and their values: Defining Attributes. (line 6) * defining constraints: Define Constraints. (line 6) --- 47199,47219 ---- (line 6) * define_query_cpu_unit: Processor pipeline description. (line 90) ! * define_register_constraint: Define Constraints. (line 28) * define_reservation: Processor pipeline description. ! (line 186) * define_special_predicate: Defining Predicates. (line 6) * define_split: Insn Splitting. (line 32) ! * define_subst <1>: Subst Iterators. (line 6) ! * define_subst <2>: Define Subst Output Template. (line 6) ! * define_subst <3>: Define Subst Pattern Matching. (line 6) ! * define_subst <4>: Define Subst Example. (line 6) ! * define_subst: Define Subst. (line 6) * define_subst_attr: Subst Iterators. (line 6) * defining attributes and their values: Defining Attributes. (line 6) * defining constraints: Define Constraints. (line 6) *************** Concept Index *** 46817,46909 **** * defining RTL sequences for code generation: Expander Definitions. (line 6) * delay slots, defining: Delay Slots. (line 6) ! * deletable: GTY Options. (line 158) * DELETE_IF_ORDINARY: Filesystem. (line 79) * Dependent Patterns: Dependent Patterns. (line 6) * desc: GTY Options. (line 82) * destructors, output of: Initialization. (line 6) * deterministic finite state automaton: Processor pipeline description. (line 6) ! * deterministic finite state automaton <1>: Processor pipeline description. ! (line 304) * DFmode: Machine Modes. (line 76) ! * DF_SIZE: Type Layout. (line 136) ! * digits in constraint: Simple Constraints. (line 128) * DImode: Machine Modes. (line 45) - * directory options .md: Including Patterns. (line 47) * DIR_SEPARATOR: Filesystem. (line 18) * DIR_SEPARATOR_2: Filesystem. (line 19) * disabling certain registers: Register Basics. (line 73) * dispatch table: Dispatch Tables. (line 8) ! * div: Arithmetic. (line 117) ! * 'div' and attributes: Expressions. (line 83) ! * division: Arithmetic. (line 117) ! * division <1>: Arithmetic. (line 131) ! * division <2>: Arithmetic. (line 137) ! * 'divM3' instruction pattern: Standard Names. (line 276) ! * 'divmodM4' instruction pattern: Standard Names. (line 496) ! * DOLLARS_IN_IDENTIFIERS: Misc. (line 452) ! * 'doloop_begin' instruction pattern: Standard Names. (line 1300) ! * 'doloop_end' instruction pattern: Standard Names. (line 1288) ! * DONE: Expander Definitions. ! (line 77) ! * DONT_USE_BUILTIN_SETJMP: Exception Region Output. ! (line 77) ! * DOUBLE_TYPE_SIZE: Type Layout. (line 52) * DO_BODY: Statements for C++. (line 6) * DO_COND: Statements for C++. (line 6) * DO_STMT: Statements for C++. (line 6) * DQmode: Machine Modes. (line 118) * driver: Driver. (line 6) ! * DRIVER_SELF_SPECS: Driver. (line 8) * dump examples: Dump examples. (line 6) * dump setup: Dump setup. (line 6) * dump types: Dump types. (line 6) * dump verbosity: Dump output verbosity. (line 6) ! * DUMPFILE_FORMAT: Filesystem. (line 67) ! * dump_basic_block: Dump types. (line 29) ! * dump_generic_expr: Dump types. (line 31) ! * dump_gimple_stmt: Dump types. (line 33) * dump_printf: Dump types. (line 6) ! * DWARF2_ASM_LINE_DEBUG_INFO: SDB and DWARF. (line 49) ! * DWARF2_DEBUGGING_INFO: SDB and DWARF. (line 12) ! * DWARF2_FRAME_INFO: SDB and DWARF. (line 29) ! * DWARF2_FRAME_REG_OUT: Frame Registers. (line 151) * DWARF2_UNWIND_INFO: Exception Region Output. ! (line 38) ! * DWARF_ALT_FRAME_RETURN_COLUMN: Frame Layout. (line 150) * DWARF_CIE_DATA_ALIGNMENT: Exception Region Output. ! (line 89) ! * DWARF_FRAME_REGISTERS: Frame Registers. (line 109) ! * DWARF_FRAME_REGNUM: Frame Registers. (line 143) * DWARF_REG_TO_UNWIND_COLUMN: Frame Registers. (line 134) ! * DWARF_ZERO_REG: Frame Layout. (line 161) ! * DYNAMIC_CHAIN_ADDRESS: Frame Layout. (line 90) ! * 'E' in constraint: Simple Constraints. (line 87) * earlyclobber operand: Modifiers. (line 25) * edge: Edges. (line 6) * edge in the flow graph: Edges. (line 6) * edge iterators: Edges. (line 15) * edge splitting: Maintaining the CFG. ! (line 105) ! * EDGE_ABNORMAL: Edges. (line 127) ! * EDGE_ABNORMAL, EDGE_ABNORMAL_CALL: Edges. (line 171) ! * EDGE_ABNORMAL, EDGE_EH: Edges. (line 95) ! * EDGE_ABNORMAL, EDGE_SIBCALL: Edges. (line 121) ! * EDGE_FALLTHRU, force_nonfallthru: Edges. (line 85) ! * 'EDOM', implicit usage: Library Calls. (line 59) * EH_FRAME_IN_DATA_SECTION: Exception Region Output. ! (line 19) * EH_FRAME_SECTION_NAME: Exception Region Output. ! (line 9) ! * 'eh_return' instruction pattern: Standard Names. (line 1481) ! * EH_RETURN_DATA_REGNO: Exception Handling. (line 6) ! * EH_RETURN_HANDLER_RTX: Exception Handling. (line 38) ! * EH_RETURN_STACKADJ_RTX: Exception Handling. (line 21) * EH_TABLES_CAN_BE_READ_ONLY: Exception Region Output. ! (line 28) ! * EH_USES: Function Entry. (line 155) * ei_edge: Edges. (line 43) * ei_end_p: Edges. (line 27) * ei_last: Edges. (line 23) --- 47227,47315 ---- * defining RTL sequences for code generation: Expander Definitions. (line 6) * delay slots, defining: Delay Slots. (line 6) ! * deletable: GTY Options. (line 154) * DELETE_IF_ORDINARY: Filesystem. (line 79) * Dependent Patterns: Dependent Patterns. (line 6) * desc: GTY Options. (line 82) * destructors, output of: Initialization. (line 6) * deterministic finite state automaton: Processor pipeline description. (line 6) ! * DF_SIZE: Type Layout. (line 137) * DFmode: Machine Modes. (line 76) ! * digits in constraint: Simple Constraints. (line 130) * DImode: Machine Modes. (line 45) * DIR_SEPARATOR: Filesystem. (line 18) * DIR_SEPARATOR_2: Filesystem. (line 19) + * directory options .md: Including Patterns. (line 44) * disabling certain registers: Register Basics. (line 73) * dispatch table: Dispatch Tables. (line 8) ! * div: Arithmetic. (line 116) ! * div and attributes: Expressions. (line 85) ! * division: Arithmetic. (line 116) ! * divM3 instruction pattern: Standard Names. (line 279) ! * divmodM4 instruction pattern: Standard Names. (line 502) * DO_BODY: Statements for C++. (line 6) * DO_COND: Statements for C++. (line 6) * DO_STMT: Statements for C++. (line 6) + * DOLLARS_IN_IDENTIFIERS: Misc. (line 454) + * doloop_begin instruction pattern: Standard Names. (line 1308) + * doloop_end instruction pattern: Standard Names. (line 1296) + * DONE: Expander Definitions. + (line 77) + * DONT_USE_BUILTIN_SETJMP: Exception Region Output. + (line 79) + * DOUBLE_TYPE_SIZE: Type Layout. (line 53) * DQmode: Machine Modes. (line 118) * driver: Driver. (line 6) ! * DRIVER_SELF_SPECS: Driver. (line 9) * dump examples: Dump examples. (line 6) * dump setup: Dump setup. (line 6) * dump types: Dump types. (line 6) * dump verbosity: Dump output verbosity. (line 6) ! * dump_basic_block: Dump types. (line 30) ! * dump_generic_expr: Dump types. (line 33) ! * dump_gimple_stmt: Dump types. (line 36) * dump_printf: Dump types. (line 6) ! * DUMPFILE_FORMAT: Filesystem. (line 67) ! * DWARF2_ASM_LINE_DEBUG_INFO: SDB and DWARF. (line 50) ! * DWARF2_DEBUGGING_INFO: SDB and DWARF. (line 13) ! * DWARF2_FRAME_INFO: SDB and DWARF. (line 30) ! * DWARF2_FRAME_REG_OUT: Frame Registers. (line 150) * DWARF2_UNWIND_INFO: Exception Region Output. ! (line 40) ! * DWARF_ALT_FRAME_RETURN_COLUMN: Frame Layout. (line 152) * DWARF_CIE_DATA_ALIGNMENT: Exception Region Output. ! (line 91) ! * DWARF_FRAME_REGISTERS: Frame Registers. (line 110) ! * DWARF_FRAME_REGNUM: Frame Registers. (line 142) * DWARF_REG_TO_UNWIND_COLUMN: Frame Registers. (line 134) ! * DWARF_ZERO_REG: Frame Layout. (line 163) ! * DYNAMIC_CHAIN_ADDRESS: Frame Layout. (line 92) ! * E in constraint: Simple Constraints. (line 89) * earlyclobber operand: Modifiers. (line 25) * edge: Edges. (line 6) * edge in the flow graph: Edges. (line 6) * edge iterators: Edges. (line 15) * edge splitting: Maintaining the CFG. ! (line 107) ! * EDGE_ABNORMAL: Edges. (line 128) ! * EDGE_ABNORMAL, EDGE_ABNORMAL_CALL: Edges. (line 172) ! * EDGE_ABNORMAL, EDGE_EH: Edges. (line 96) ! * EDGE_ABNORMAL, EDGE_SIBCALL: Edges. (line 122) ! * EDGE_FALLTHRU, force_nonfallthru: Edges. (line 86) ! * EDOM, implicit usage: Library Calls. (line 59) * EH_FRAME_IN_DATA_SECTION: Exception Region Output. ! (line 20) * EH_FRAME_SECTION_NAME: Exception Region Output. ! (line 10) ! * eh_return instruction pattern: Standard Names. (line 1492) ! * EH_RETURN_DATA_REGNO: Exception Handling. (line 7) ! * EH_RETURN_HANDLER_RTX: Exception Handling. (line 39) ! * EH_RETURN_STACKADJ_RTX: Exception Handling. (line 22) * EH_TABLES_CAN_BE_READ_ONLY: Exception Region Output. ! (line 29) ! * EH_USES: Function Entry. (line 158) * ei_edge: Edges. (line 43) * ei_end_p: Edges. (line 27) * ei_last: Edges. (line 23) *************** Concept Index *** 46912,47017 **** * ei_prev: Edges. (line 39) * ei_safe_safe: Edges. (line 47) * ei_start: Edges. (line 19) ! * ELIMINABLE_REGS: Elimination. (line 46) * ELSE_CLAUSE: Statements for C++. (line 6) * Embedded C: Fixed-point fractional library routines. (line 6) ! * EMIT_MODE_SET: Mode Switching. (line 74) * Empty Statements: Empty Statements. (line 6) * EMPTY_CLASS_EXPR: Statements for C++. (line 6) ! * EMPTY_FIELD_BOUNDARY: Storage Layout. (line 306) * Emulated TLS: Emulated TLS. (line 6) * enabled: Disable Insn Alternatives. (line 6) ! * ENDFILE_SPEC: Driver. (line 155) ! * endianness: Portability. (line 20) * ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR: Basic Blocks. (line 10) * enum machine_mode: Machine Modes. (line 6) ! * enum reg_class: Register Classes. (line 70) * ENUMERAL_TYPE: Types. (line 6) * enumerations: Constant Definitions. (line 49) * epilogue: Function Entry. (line 6) ! * 'epilogue' instruction pattern: Standard Names. (line 1519) ! * EPILOGUE_USES: Function Entry. (line 149) * eq: Comparisons. (line 52) ! * 'eq' and attributes: Expressions. (line 83) ! * equal: Comparisons. (line 52) ! * eq_attr: Expressions. (line 104) * EQ_EXPR: Unary and Binary Expressions. (line 6) ! * 'errno', implicit usage: Library Calls. (line 71) * EXACT_DIV_EXPR: Unary and Binary Expressions. (line 6) * examining SSA_NAMEs: SSA. (line 214) - * exception handling: Edges. (line 95) * exception handling <1>: Exception Handling. (line 6) ! * 'exception_receiver' instruction pattern: Standard Names. (line 1446) * exclamation point: Multi-Alternative. (line 47) * exclusion_set: Processor pipeline description. ! (line 223) ! * exclusive-or, bitwise: Arithmetic. (line 169) * EXIT_EXPR: Unary and Binary Expressions. (line 6) ! * EXIT_IGNORE_STACK: Function Entry. (line 137) * expander definitions: Expander Definitions. (line 6) ! * 'expM2' instruction pattern: Standard Names. (line 599) ! * expression: Expression trees. (line 6) ! * expression codes: RTL Objects. (line 47) * EXPR_FILENAME: Working with declarations. (line 14) * EXPR_LINENO: Working with declarations. (line 20) ! * expr_list: Insns. (line 540) * EXPR_STMT: Statements for C++. (line 6) * EXPR_STMT_EXPR: Statements for C++. (line 6) ! * 'extendMN2' instruction pattern: Standard Names. (line 921) ! * extensible constraints: Simple Constraints. (line 171) ! * EXTRA_ADDRESS_CONSTRAINT: Old Constraints. (line 120) ! * EXTRA_CONSTRAINT: Old Constraints. (line 71) ! * EXTRA_CONSTRAINT_STR: Old Constraints. (line 92) ! * EXTRA_MEMORY_CONSTRAINT: Old Constraints. (line 97) ! * EXTRA_SPECS: Driver. (line 182) ! * 'extv' instruction pattern: Standard Names. (line 1012) ! * 'extvM' instruction pattern: Standard Names. (line 957) ! * 'extvmisalignM' instruction pattern: Standard Names. (line 967) ! * 'extzv' instruction pattern: Standard Names. (line 1030) ! * 'extzvM' instruction pattern: Standard Names. (line 981) ! * 'extzvmisalignM' instruction pattern: Standard Names. (line 984) ! * 'F' in constraint: Simple Constraints. (line 92) * FAIL: Expander Definitions. (line 83) ! * fall-thru: Edges. (line 68) * FATAL_EXIT_CODE: Host Misc. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * features, optional, in system conventions: Run-time Target. (line 59) * ffs: Arithmetic. (line 211) ! * 'ffsM2' instruction pattern: Standard Names. (line 713) * FIELD_DECL: Declarations. (line 6) * files and passes of the compiler: Passes. (line 6) * files, generated: Files. (line 6) - * file_end_indicate_exec_stack: File Framework. (line 39) * final_absence_set: Processor pipeline description. ! (line 223) ! * FINAL_PRESCAN_INSN: Instruction Output. (line 60) * final_presence_set: Processor pipeline description. ! (line 223) ! * final_sequence: Instruction Output. (line 144) ! * FIND_BASE_TERM: Addressing Modes. (line 117) * finite state automaton minimization: Processor pipeline description. ! (line 304) ! * FINI_ARRAY_SECTION_ASM_OP: Sections. (line 113) ! * FINI_SECTION_ASM_OP: Sections. (line 98) ! * FIRST_PARM_OFFSET: Frame Layout. (line 65) ! * 'FIRST_PARM_OFFSET' and virtual registers: Regs and Memory. ! (line 65) ! * FIRST_PSEUDO_REGISTER: Register Basics. (line 8) ! * FIRST_STACK_REG: Stack Registers. (line 26) * FIRST_VIRTUAL_REGISTER: Regs and Memory. (line 51) * fix: Conversions. (line 66) * fixed register: Register Basics. (line 15) * fixed-point fractional library: Fixed-point fractional library routines. (line 6) --- 47318,47425 ---- * ei_prev: Edges. (line 39) * ei_safe_safe: Edges. (line 47) * ei_start: Edges. (line 19) ! * ELIMINABLE_REGS: Elimination. (line 47) * ELSE_CLAUSE: Statements for C++. (line 6) * Embedded C: Fixed-point fractional library routines. (line 6) ! * EMIT_MODE_SET: Mode Switching. (line 75) * Empty Statements: Empty Statements. (line 6) * EMPTY_CLASS_EXPR: Statements for C++. (line 6) ! * EMPTY_FIELD_BOUNDARY: Storage Layout. (line 310) * Emulated TLS: Emulated TLS. (line 6) * enabled: Disable Insn Alternatives. (line 6) ! * ENDFILE_SPEC: Driver. (line 156) ! * endianness: Portability. (line 21) * ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR: Basic Blocks. (line 10) * enum machine_mode: Machine Modes. (line 6) ! * enum reg_class: Register Classes. (line 72) * ENUMERAL_TYPE: Types. (line 6) * enumerations: Constant Definitions. (line 49) * epilogue: Function Entry. (line 6) ! * epilogue instruction pattern: Standard Names. (line 1530) ! * EPILOGUE_USES: Function Entry. (line 152) * eq: Comparisons. (line 52) ! * eq and attributes: Expressions. (line 85) ! * eq_attr: Expressions. (line 106) * EQ_EXPR: Unary and Binary Expressions. (line 6) ! * equal: Comparisons. (line 52) ! * errno, implicit usage: Library Calls. (line 71) * EXACT_DIV_EXPR: Unary and Binary Expressions. (line 6) * examining SSA_NAMEs: SSA. (line 214) * exception handling <1>: Exception Handling. (line 6) ! * exception handling: Edges. (line 96) ! * exception_receiver instruction pattern: Standard Names. (line 1456) * exclamation point: Multi-Alternative. (line 47) * exclusion_set: Processor pipeline description. ! (line 224) ! * exclusive-or, bitwise: Arithmetic. (line 168) * EXIT_EXPR: Unary and Binary Expressions. (line 6) ! * EXIT_IGNORE_STACK: Function Entry. (line 140) * expander definitions: Expander Definitions. (line 6) ! * expM2 instruction pattern: Standard Names. (line 605) * EXPR_FILENAME: Working with declarations. (line 14) * EXPR_LINENO: Working with declarations. (line 20) ! * expr_list: Insns. (line 548) * EXPR_STMT: Statements for C++. (line 6) * EXPR_STMT_EXPR: Statements for C++. (line 6) ! * expression: Expression trees. (line 6) ! * expression codes: RTL Objects. (line 47) ! * extendMN2 instruction pattern: Standard Names. (line 927) ! * extensible constraints: Simple Constraints. (line 173) ! * EXTRA_ADDRESS_CONSTRAINT: Old Constraints. (line 123) ! * EXTRA_CONSTRAINT: Old Constraints. (line 74) ! * EXTRA_CONSTRAINT_STR: Old Constraints. (line 95) ! * EXTRA_MEMORY_CONSTRAINT: Old Constraints. (line 100) ! * EXTRA_SPECS: Driver. (line 183) ! * extv instruction pattern: Standard Names. (line 1018) ! * extvM instruction pattern: Standard Names. (line 963) ! * extvmisalignM instruction pattern: Standard Names. (line 973) ! * extzv instruction pattern: Standard Names. (line 1036) ! * extzvM instruction pattern: Standard Names. (line 987) ! * extzvmisalignM instruction pattern: Standard Names. (line 990) ! * F in constraint: Simple Constraints. (line 94) * FAIL: Expander Definitions. (line 83) ! * fall-thru: Edges. (line 69) * FATAL_EXIT_CODE: Host Misc. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * features, optional, in system conventions: Run-time Target. (line 59) * ffs: Arithmetic. (line 211) ! * ffsM2 instruction pattern: Standard Names. (line 719) * FIELD_DECL: Declarations. (line 6) + * file_end_indicate_exec_stack: File Framework. (line 41) * files and passes of the compiler: Passes. (line 6) * files, generated: Files. (line 6) * final_absence_set: Processor pipeline description. ! (line 224) ! * FINAL_PRESCAN_INSN: Instruction Output. (line 61) * final_presence_set: Processor pipeline description. ! (line 224) ! * final_sequence: Instruction Output. (line 145) ! * FIND_BASE_TERM: Addressing Modes. (line 119) ! * FINI_ARRAY_SECTION_ASM_OP: Sections. (line 114) ! * FINI_SECTION_ASM_OP: Sections. (line 99) * finite state automaton minimization: Processor pipeline description. ! (line 305) ! * FIRST_PARM_OFFSET: Frame Layout. (line 67) ! * FIRST_PARM_OFFSET and virtual registers: Regs and Memory. (line 65) ! * FIRST_PSEUDO_REGISTER: Register Basics. (line 9) ! * FIRST_STACK_REG: Stack Registers. (line 27) * FIRST_VIRTUAL_REGISTER: Regs and Memory. (line 51) * fix: Conversions. (line 66) + * FIX_TRUNC_EXPR: Unary and Binary Expressions. + (line 6) + * fix_truncMN2 instruction pattern: Standard Names. (line 914) * fixed register: Register Basics. (line 15) * fixed-point fractional library: Fixed-point fractional library routines. (line 6) *************** Concept Index *** 47020,47118 **** * FIXED_CST: Constant expressions. (line 6) * FIXED_POINT_TYPE: Types. (line 6) ! * FIXED_REGISTERS: Register Basics. (line 14) * fixed_regs: Register Basics. (line 59) ! * 'fixMN2' instruction pattern: Standard Names. (line 888) ! * 'fixunsMN2' instruction pattern: Standard Names. (line 897) ! * 'fixuns_truncMN2' instruction pattern: Standard Names. (line 912) ! * 'fix_truncMN2' instruction pattern: Standard Names. (line 908) ! * FIX_TRUNC_EXPR: Unary and Binary Expressions. ! (line 6) * flags in RTL expression: Flags. (line 6) * float: Conversions. (line 58) - * floating point and cross compilation: Floating Point. (line 6) - * 'floatMN2' instruction pattern: Standard Names. (line 880) - * 'floatunsMN2' instruction pattern: Standard Names. (line 884) * FLOAT_EXPR: Unary and Binary Expressions. (line 6) * float_extend: Conversions. (line 33) ! * FLOAT_LIB_COMPARE_RETURNS_BOOL: Library Calls. (line 32) ! * FLOAT_STORE_FLAG_VALUE: Misc. (line 286) * float_truncate: Conversions. (line 53) ! * FLOAT_TYPE_SIZE: Type Layout. (line 48) ! * FLOAT_WORDS_BIG_ENDIAN: Storage Layout. (line 41) ! * 'FLOAT_WORDS_BIG_ENDIAN', (lack of) effect on 'subreg': Regs and Memory. ! (line 224) ! * 'floorM2' instruction pattern: Standard Names. (line 634) * FLOOR_DIV_EXPR: Unary and Binary Expressions. (line 6) * FLOOR_MOD_EXPR: Unary and Binary Expressions. (line 6) * flow-insensitive alias analysis: Alias analysis. (line 6) * flow-sensitive alias analysis: Alias analysis. (line 6) ! * fma: Arithmetic. (line 112) ! * 'fmaM4' instruction pattern: Standard Names. (line 286) ! * 'fmodM3' instruction pattern: Standard Names. (line 552) ! * 'fmsM4' instruction pattern: Standard Names. (line 293) ! * 'fnmaM4' instruction pattern: Standard Names. (line 299) ! * 'fnmsM4' instruction pattern: Standard Names. (line 305) ! * FORCE_CODE_SECTION_ALIGN: Sections. (line 144) ! * force_reg: Standard Names. (line 36) * FOR_BODY: Statements for C++. (line 6) * FOR_COND: Statements for C++. (line 6) * FOR_EXPR: Statements for C++. (line 6) * FOR_INIT_STMT: Statements for C++. (line 6) * FOR_STMT: Statements for C++. (line 6) * fractional types: Fixed-point fractional library routines. (line 6) ! * 'fractMN2' instruction pattern: Standard Names. (line 930) ! * 'fractunsMN2' instruction pattern: Standard Names. (line 945) ! * fract_convert: Conversions. (line 82) ! * FRACT_TYPE_SIZE: Type Layout. (line 67) * frame layout: Frame Layout. (line 6) ! * FRAME_ADDR_RTX: Frame Layout. (line 114) ! * FRAME_GROWS_DOWNWARD: Frame Layout. (line 30) ! * 'FRAME_GROWS_DOWNWARD' and virtual registers: Regs and Memory. (line 69) ! * FRAME_POINTER_CFA_OFFSET: Frame Layout. (line 210) * frame_pointer_needed: Function Entry. (line 34) ! * FRAME_POINTER_REGNUM: Frame Registers. (line 13) ! * 'FRAME_POINTER_REGNUM' and virtual registers: Regs and Memory. (line 74) * frame_pointer_rtx: Frame Registers. (line 104) * frame_related: Flags. (line 229) ! * 'frame_related', in 'insn', 'call_insn', 'jump_insn', 'barrier', and 'set': Flags. (line 107) ! * 'frame_related', in 'mem': Flags. (line 85) ! * 'frame_related', in 'reg': Flags. (line 94) ! * 'frame_related', in 'symbol_ref': Flags. (line 165) * frequency, count, BB_FREQ_BASE: Profile information. (line 30) ! * 'ftruncM2' instruction pattern: Standard Names. (line 903) ! * function: Functions. (line 6) * function <1>: Functions for C++. (line 6) * function call conventions: Interface. (line 6) * function entry and exit: Function Entry. (line 6) * function entry point, alternate function entry point: Edges. ! (line 180) * function properties: Function Properties. (line 6) * function-call insns: Calls. (line 6) ! * functions, leaf: Leaf Functions. (line 6) ! * FUNCTION_ARG_OFFSET: Register Arguments. (line 196) ! * FUNCTION_ARG_PADDING: Register Arguments. (line 203) ! * FUNCTION_ARG_REGNO_P: Register Arguments. (line 251) ! * FUNCTION_BOUNDARY: Storage Layout. (line 159) ! * FUNCTION_DECL: Functions. (line 6) * FUNCTION_DECL <1>: Functions for C++. (line 6) ! * FUNCTION_MODE: Misc. (line 341) ! * FUNCTION_PROFILER: Profiling. (line 8) * FUNCTION_TYPE: Types. (line 6) * FUNCTION_VALUE: Scalar Return. (line 52) * FUNCTION_VALUE_REGNO_P: Scalar Return. (line 78) * fundamental type: Types. (line 6) ! * 'G' in constraint: Simple Constraints. (line 96) ! * 'g' in constraint: Simple Constraints. (line 118) * garbage collector, invocation: Invoking the garbage collector. (line 6) * garbage collector, troubleshooting: Troubleshooting. (line 6) --- 47428,47523 ---- * FIXED_CST: Constant expressions. (line 6) * FIXED_POINT_TYPE: Types. (line 6) ! * FIXED_REGISTERS: Register Basics. (line 15) * fixed_regs: Register Basics. (line 59) ! * fixMN2 instruction pattern: Standard Names. (line 894) ! * fixuns_truncMN2 instruction pattern: Standard Names. (line 918) ! * fixunsMN2 instruction pattern: Standard Names. (line 903) * flags in RTL expression: Flags. (line 6) * float: Conversions. (line 58) * FLOAT_EXPR: Unary and Binary Expressions. (line 6) * float_extend: Conversions. (line 33) ! * FLOAT_LIB_COMPARE_RETURNS_BOOL: Library Calls. (line 33) ! * FLOAT_STORE_FLAG_VALUE: Misc. (line 287) * float_truncate: Conversions. (line 53) ! * FLOAT_TYPE_SIZE: Type Layout. (line 49) ! * FLOAT_WORDS_BIG_ENDIAN: Storage Layout. (line 42) ! * FLOAT_WORDS_BIG_ENDIAN, (lack of) effect on subreg: Regs and Memory. ! (line 226) ! * floating point and cross compilation: Floating Point. (line 6) ! * floatMN2 instruction pattern: Standard Names. (line 886) ! * floatunsMN2 instruction pattern: Standard Names. (line 890) * FLOOR_DIV_EXPR: Unary and Binary Expressions. (line 6) * FLOOR_MOD_EXPR: Unary and Binary Expressions. (line 6) + * floorM2 instruction pattern: Standard Names. (line 640) * flow-insensitive alias analysis: Alias analysis. (line 6) * flow-sensitive alias analysis: Alias analysis. (line 6) ! * fma: Arithmetic. (line 111) ! * fmaM4 instruction pattern: Standard Names. (line 289) ! * fmodM3 instruction pattern: Standard Names. (line 558) ! * fmsM4 instruction pattern: Standard Names. (line 296) ! * fnmaM4 instruction pattern: Standard Names. (line 302) ! * fnmsM4 instruction pattern: Standard Names. (line 308) * FOR_BODY: Statements for C++. (line 6) * FOR_COND: Statements for C++. (line 6) * FOR_EXPR: Statements for C++. (line 6) * FOR_INIT_STMT: Statements for C++. (line 6) * FOR_STMT: Statements for C++. (line 6) + * FORCE_CODE_SECTION_ALIGN: Sections. (line 145) + * force_reg: Standard Names. (line 36) + * fract_convert: Conversions. (line 82) + * FRACT_TYPE_SIZE: Type Layout. (line 68) * fractional types: Fixed-point fractional library routines. (line 6) ! * fractMN2 instruction pattern: Standard Names. (line 936) ! * fractunsMN2 instruction pattern: Standard Names. (line 951) * frame layout: Frame Layout. (line 6) ! * FRAME_ADDR_RTX: Frame Layout. (line 116) ! * FRAME_GROWS_DOWNWARD: Frame Layout. (line 31) ! * FRAME_GROWS_DOWNWARD and virtual registers: Regs and Memory. (line 69) ! * FRAME_POINTER_CFA_OFFSET: Frame Layout. (line 212) * frame_pointer_needed: Function Entry. (line 34) ! * FRAME_POINTER_REGNUM: Frame Registers. (line 14) ! * FRAME_POINTER_REGNUM and virtual registers: Regs and Memory. (line 74) * frame_pointer_rtx: Frame Registers. (line 104) * frame_related: Flags. (line 229) ! * frame_related, in insn, call_insn, jump_insn, barrier, and set: Flags. (line 107) ! * frame_related, in mem: Flags. (line 85) ! * frame_related, in reg: Flags. (line 94) ! * frame_related, in symbol_ref: Flags. (line 165) * frequency, count, BB_FREQ_BASE: Profile information. (line 30) ! * ftruncM2 instruction pattern: Standard Names. (line 909) * function <1>: Functions for C++. (line 6) + * function: Functions. (line 6) * function call conventions: Interface. (line 6) * function entry and exit: Function Entry. (line 6) * function entry point, alternate function entry point: Edges. ! (line 181) * function properties: Function Properties. (line 6) * function-call insns: Calls. (line 6) ! * FUNCTION_ARG_OFFSET: Register Arguments. (line 198) ! * FUNCTION_ARG_PADDING: Register Arguments. (line 205) ! * FUNCTION_ARG_REGNO_P: Register Arguments. (line 253) ! * FUNCTION_BOUNDARY: Storage Layout. (line 161) * FUNCTION_DECL <1>: Functions for C++. (line 6) ! * FUNCTION_DECL: Functions. (line 6) ! * FUNCTION_MODE: Misc. (line 342) ! * FUNCTION_PROFILER: Profiling. (line 9) * FUNCTION_TYPE: Types. (line 6) * FUNCTION_VALUE: Scalar Return. (line 52) * FUNCTION_VALUE_REGNO_P: Scalar Return. (line 78) + * functions, leaf: Leaf Functions. (line 6) * fundamental type: Types. (line 6) ! * g in constraint: Simple Constraints. (line 120) ! * G in constraint: Simple Constraints. (line 98) * garbage collector, invocation: Invoking the garbage collector. (line 6) * garbage collector, troubleshooting: Troubleshooting. (line 6) *************** Concept Index *** 47121,47733 **** * gcov_type: Profile information. (line 41) * ge: Comparisons. (line 72) ! * 'ge' and attributes: Expressions. (line 83) * gencodes: RTL passes. (line 18) * general_operand: Machine-Independent Predicates. ! (line 104) ! * GENERAL_REGS: Register Classes. (line 22) * generated files: Files. (line 6) * generating assembler output: Output Statement. (line 6) * generating insns: RTL Template. (line 6) - * GENERIC: Parsing pass. (line 6) * GENERIC <1>: GENERIC. (line 6) * generic predicates: Machine-Independent Predicates. (line 6) * genflags: RTL passes. (line 18) ! * GEN_ERRNO_RTX: Library Calls. (line 71) ! * get_attr: Expressions. (line 99) * get_attr_length: Insn Lengths. (line 46) ! * GET_CLASS_NARROWEST_MODE: Machine Modes. (line 335) * GET_CODE: RTL Objects. (line 47) * get_frame_size: Elimination. (line 34) * get_insns: Insns. (line 34) * get_last_insn: Insns. (line 34) ! * GET_MODE: Machine Modes. (line 282) ! * GET_MODE_ALIGNMENT: Machine Modes. (line 322) ! * GET_MODE_BITSIZE: Machine Modes. (line 306) ! * GET_MODE_CLASS: Machine Modes. (line 296) ! * GET_MODE_FBIT: Machine Modes. (line 313) ! * GET_MODE_IBIT: Machine Modes. (line 309) ! * GET_MODE_MASK: Machine Modes. (line 317) ! * GET_MODE_NAME: Machine Modes. (line 293) ! * GET_MODE_NUNITS: Machine Modes. (line 331) ! * GET_MODE_SIZE: Machine Modes. (line 303) ! * GET_MODE_UNIT_SIZE: Machine Modes. (line 325) ! * GET_MODE_WIDER_MODE: Machine Modes. (line 299) * GET_RTX_CLASS: RTL Classes. (line 6) * GET_RTX_FORMAT: RTL Classes. (line 131) * GET_RTX_LENGTH: RTL Classes. (line 128) ! * 'get_thread_pointerMODE' instruction pattern: Standard Names. ! (line 1869) * geu: Comparisons. (line 72) ! * 'geu' and attributes: Expressions. (line 83) ! * GE_EXPR: Unary and Binary Expressions. ! (line 6) * GGC: Type Information. (line 6) * ggc_collect: Invoking the garbage collector. (line 6) ! * GIMPLE: Parsing pass. (line 13) ! * GIMPLE <1>: Gimplification pass. (line 6) ! * GIMPLE <2>: GIMPLE. (line 6) * GIMPLE Exception Handling: GIMPLE Exception Handling. (line 6) * GIMPLE instruction set: GIMPLE instruction set. (line 6) * GIMPLE sequences: GIMPLE sequences. (line 6) - * GIMPLE statement iterators: Basic Blocks. (line 78) * GIMPLE statement iterators <1>: Maintaining the CFG. ! (line 33) * gimple_addresses_taken: Manipulating GIMPLE statements. ! (line 89) ! * 'GIMPLE_ASM': 'GIMPLE_ASM'. (line 6) ! * gimple_asm_clobber_op: 'GIMPLE_ASM'. (line 44) ! * gimple_asm_input_op: 'GIMPLE_ASM'. (line 29) ! * gimple_asm_nclobbers: 'GIMPLE_ASM'. (line 26) ! * gimple_asm_ninputs: 'GIMPLE_ASM'. (line 20) ! * gimple_asm_noutputs: 'GIMPLE_ASM'. (line 23) ! * gimple_asm_output_op: 'GIMPLE_ASM'. (line 36) ! * gimple_asm_set_clobber_op: 'GIMPLE_ASM'. (line 48) ! * gimple_asm_set_input_op: 'GIMPLE_ASM'. (line 32) ! * gimple_asm_set_output_op: 'GIMPLE_ASM'. (line 40) ! * gimple_asm_set_volatile: 'GIMPLE_ASM'. (line 59) ! * gimple_asm_string: 'GIMPLE_ASM'. (line 52) ! * gimple_asm_volatile_p: 'GIMPLE_ASM'. (line 56) ! * 'GIMPLE_ASSIGN': 'GIMPLE_ASSIGN'. (line 6) ! * gimple_assign_cast_p: Logical Operators. (line 158) ! * gimple_assign_cast_p <1>: 'GIMPLE_ASSIGN'. (line 92) ! * gimple_assign_lhs: 'GIMPLE_ASSIGN'. (line 50) ! * gimple_assign_lhs_ptr: 'GIMPLE_ASSIGN'. (line 53) ! * gimple_assign_rhs1: 'GIMPLE_ASSIGN'. (line 56) ! * gimple_assign_rhs1_ptr: 'GIMPLE_ASSIGN'. (line 59) ! * gimple_assign_rhs2: 'GIMPLE_ASSIGN'. (line 63) ! * gimple_assign_rhs2_ptr: 'GIMPLE_ASSIGN'. (line 66) ! * gimple_assign_rhs3: 'GIMPLE_ASSIGN'. (line 70) ! * gimple_assign_rhs3_ptr: 'GIMPLE_ASSIGN'. (line 73) ! * gimple_assign_rhs_class: 'GIMPLE_ASSIGN'. (line 44) ! * gimple_assign_rhs_code: 'GIMPLE_ASSIGN'. (line 40) ! * gimple_assign_set_lhs: 'GIMPLE_ASSIGN'. (line 77) ! * gimple_assign_set_rhs1: 'GIMPLE_ASSIGN'. (line 80) ! * gimple_assign_set_rhs2: 'GIMPLE_ASSIGN'. (line 84) ! * gimple_assign_set_rhs3: 'GIMPLE_ASSIGN'. (line 88) * gimple_bb: Manipulating GIMPLE statements. ! (line 17) ! * 'GIMPLE_BIND': 'GIMPLE_BIND'. (line 6) ! * gimple_bind_add_seq: 'GIMPLE_BIND'. (line 34) ! * gimple_bind_add_stmt: 'GIMPLE_BIND'. (line 31) ! * gimple_bind_append_vars: 'GIMPLE_BIND'. (line 18) ! * gimple_bind_block: 'GIMPLE_BIND'. (line 39) ! * gimple_bind_body: 'GIMPLE_BIND'. (line 22) ! * gimple_bind_set_block: 'GIMPLE_BIND'. (line 44) ! * gimple_bind_set_body: 'GIMPLE_BIND'. (line 26) ! * gimple_bind_set_vars: 'GIMPLE_BIND'. (line 14) ! * gimple_bind_vars: 'GIMPLE_BIND'. (line 11) * gimple_block: Manipulating GIMPLE statements. ! (line 20) ! * gimple_build_asm: 'GIMPLE_ASM'. (line 6) ! * gimple_build_asm_vec: 'GIMPLE_ASM'. (line 15) ! * gimple_build_assign: 'GIMPLE_ASSIGN'. (line 6) ! * gimple_build_assign_with_ops: 'GIMPLE_ASSIGN'. (line 28) ! * gimple_build_bind: 'GIMPLE_BIND'. (line 6) ! * gimple_build_call: 'GIMPLE_CALL'. (line 6) ! * gimple_build_call_from_tree: 'GIMPLE_CALL'. (line 15) ! * gimple_build_call_vec: 'GIMPLE_CALL'. (line 23) ! * gimple_build_catch: 'GIMPLE_CATCH'. (line 6) ! * gimple_build_cond: 'GIMPLE_COND'. (line 6) ! * gimple_build_cond_from_tree: 'GIMPLE_COND'. (line 14) ! * gimple_build_debug_bind: 'GIMPLE_DEBUG'. (line 6) ! * gimple_build_eh_filter: 'GIMPLE_EH_FILTER'. (line 6) ! * gimple_build_goto: 'GIMPLE_LABEL'. (line 17) ! * gimple_build_label: 'GIMPLE_LABEL'. (line 6) ! * gimple_build_nop: 'GIMPLE_NOP'. (line 6) ! * gimple_build_omp_atomic_load: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 6) ! * gimple_build_omp_atomic_store: 'GIMPLE_OMP_ATOMIC_STORE'. ! (line 6) ! * gimple_build_omp_continue: 'GIMPLE_OMP_CONTINUE'. ! (line 6) ! * gimple_build_omp_critical: 'GIMPLE_OMP_CRITICAL'. ! (line 6) ! * gimple_build_omp_for: 'GIMPLE_OMP_FOR'. (line 6) ! * gimple_build_omp_master: 'GIMPLE_OMP_MASTER'. ! (line 6) ! * gimple_build_omp_ordered: 'GIMPLE_OMP_ORDERED'. ! (line 6) ! * gimple_build_omp_parallel: 'GIMPLE_OMP_PARALLEL'. ! (line 6) ! * gimple_build_omp_return: 'GIMPLE_OMP_RETURN'. ! (line 6) ! * gimple_build_omp_section: 'GIMPLE_OMP_SECTION'. ! (line 6) ! * gimple_build_omp_sections: 'GIMPLE_OMP_SECTIONS'. ! (line 6) ! * gimple_build_omp_sections_switch: 'GIMPLE_OMP_SECTIONS'. ! (line 13) ! * gimple_build_omp_single: 'GIMPLE_OMP_SINGLE'. ! (line 6) ! * gimple_build_resx: 'GIMPLE_RESX'. (line 6) ! * gimple_build_return: 'GIMPLE_RETURN'. (line 6) ! * gimple_build_switch: 'GIMPLE_SWITCH'. (line 6) ! * gimple_build_try: 'GIMPLE_TRY'. (line 6) ! * gimple_build_wce: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 6) ! * 'GIMPLE_CALL': 'GIMPLE_CALL'. (line 6) ! * gimple_call_arg: 'GIMPLE_CALL'. (line 65) ! * gimple_call_arg_ptr: 'GIMPLE_CALL'. (line 69) ! * gimple_call_cannot_inline_p: 'GIMPLE_CALL'. (line 90) ! * gimple_call_chain: 'GIMPLE_CALL'. (line 56) ! * gimple_call_copy_skip_args: 'GIMPLE_CALL'. (line 96) ! * gimple_call_fn: 'GIMPLE_CALL'. (line 37) ! * gimple_call_fndecl: 'GIMPLE_CALL'. (line 45) ! * gimple_call_lhs: 'GIMPLE_CALL'. (line 28) ! * gimple_call_lhs_ptr: 'GIMPLE_CALL'. (line 31) ! * gimple_call_mark_uninlinable: 'GIMPLE_CALL'. (line 87) ! * gimple_call_noreturn_p: 'GIMPLE_CALL'. (line 93) ! * gimple_call_num_args: 'GIMPLE_CALL'. (line 62) ! * gimple_call_return_type: 'GIMPLE_CALL'. (line 53) ! * gimple_call_set_arg: 'GIMPLE_CALL'. (line 74) ! * gimple_call_set_chain: 'GIMPLE_CALL'. (line 59) ! * gimple_call_set_fn: 'GIMPLE_CALL'. (line 41) ! * gimple_call_set_fndecl: 'GIMPLE_CALL'. (line 50) ! * gimple_call_set_lhs: 'GIMPLE_CALL'. (line 34) ! * gimple_call_set_tail: 'GIMPLE_CALL'. (line 79) ! * gimple_call_tail_p: 'GIMPLE_CALL'. (line 84) ! * 'GIMPLE_CATCH': 'GIMPLE_CATCH'. (line 6) ! * gimple_catch_handler: 'GIMPLE_CATCH'. (line 19) ! * gimple_catch_set_handler: 'GIMPLE_CATCH'. (line 26) ! * gimple_catch_set_types: 'GIMPLE_CATCH'. (line 23) ! * gimple_catch_types: 'GIMPLE_CATCH'. (line 12) ! * gimple_catch_types_ptr: 'GIMPLE_CATCH'. (line 15) ! * gimple_code: Manipulating GIMPLE statements. (line 14) ! * 'GIMPLE_COND': 'GIMPLE_COND'. (line 6) ! * gimple_cond_code: 'GIMPLE_COND'. (line 20) ! * gimple_cond_false_label: 'GIMPLE_COND'. (line 59) ! * gimple_cond_lhs: 'GIMPLE_COND'. (line 29) ! * gimple_cond_make_false: 'GIMPLE_COND'. (line 63) ! * gimple_cond_make_true: 'GIMPLE_COND'. (line 66) ! * gimple_cond_rhs: 'GIMPLE_COND'. (line 37) ! * gimple_cond_set_code: 'GIMPLE_COND'. (line 24) ! * gimple_cond_set_false_label: 'GIMPLE_COND'. (line 54) ! * gimple_cond_set_lhs: 'GIMPLE_COND'. (line 33) ! * gimple_cond_set_rhs: 'GIMPLE_COND'. (line 41) ! * gimple_cond_set_true_label: 'GIMPLE_COND'. (line 49) ! * gimple_cond_true_label: 'GIMPLE_COND'. (line 45) * gimple_copy: Manipulating GIMPLE statements. ! (line 146) ! * 'GIMPLE_DEBUG': 'GIMPLE_DEBUG'. (line 6) ! * 'GIMPLE_DEBUG_BIND': 'GIMPLE_DEBUG'. (line 6) ! * gimple_debug_bind_get_value: 'GIMPLE_DEBUG'. (line 46) ! * gimple_debug_bind_get_value_ptr: 'GIMPLE_DEBUG'. (line 50) ! * gimple_debug_bind_get_var: 'GIMPLE_DEBUG'. (line 43) ! * gimple_debug_bind_has_value_p: 'GIMPLE_DEBUG'. (line 68) ! * gimple_debug_bind_p: Logical Operators. (line 162) ! * gimple_debug_bind_reset_value: 'GIMPLE_DEBUG'. (line 64) ! * gimple_debug_bind_set_value: 'GIMPLE_DEBUG'. (line 59) ! * gimple_debug_bind_set_var: 'GIMPLE_DEBUG'. (line 55) * gimple_def_ops: Manipulating GIMPLE statements. ! (line 93) ! * 'GIMPLE_EH_FILTER': 'GIMPLE_EH_FILTER'. (line 6) ! * gimple_eh_filter_failure: 'GIMPLE_EH_FILTER'. (line 18) ! * gimple_eh_filter_must_not_throw: 'GIMPLE_EH_FILTER'. (line 32) ! * gimple_eh_filter_set_failure: 'GIMPLE_EH_FILTER'. (line 27) ! * gimple_eh_filter_set_must_not_throw: 'GIMPLE_EH_FILTER'. (line 35) ! * gimple_eh_filter_set_types: 'GIMPLE_EH_FILTER'. (line 22) ! * gimple_eh_filter_types: 'GIMPLE_EH_FILTER'. (line 11) ! * gimple_eh_filter_types_ptr: 'GIMPLE_EH_FILTER'. (line 14) * gimple_expr_code: Manipulating GIMPLE statements. ! (line 30) * gimple_expr_type: Manipulating GIMPLE statements. ! (line 23) ! * gimple_goto_dest: 'GIMPLE_LABEL'. (line 20) ! * gimple_goto_set_dest: 'GIMPLE_LABEL'. (line 23) * gimple_has_mem_ops: Manipulating GIMPLE statements. ! (line 71) * gimple_has_ops: Manipulating GIMPLE statements. ! (line 68) * gimple_has_volatile_ops: Manipulating GIMPLE statements. ! (line 133) ! * 'GIMPLE_LABEL': 'GIMPLE_LABEL'. (line 6) ! * gimple_label_label: 'GIMPLE_LABEL'. (line 10) ! * gimple_label_set_label: 'GIMPLE_LABEL'. (line 13) * gimple_loaded_syms: Manipulating GIMPLE statements. ! (line 121) * gimple_locus: Manipulating GIMPLE statements. ! (line 41) * gimple_locus_empty_p: Manipulating GIMPLE statements. ! (line 47) * gimple_modified_p: Manipulating GIMPLE statements. ! (line 129) ! * 'GIMPLE_NOP': 'GIMPLE_NOP'. (line 6) ! * gimple_nop_p: 'GIMPLE_NOP'. (line 9) * gimple_no_warning_p: Manipulating GIMPLE statements. ! (line 50) ! * gimple_num_ops: Logical Operators. (line 76) * gimple_num_ops <1>: Manipulating GIMPLE statements. ! (line 74) ! * 'GIMPLE_OMP_ATOMIC_LOAD': 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 6) ! * gimple_omp_atomic_load_lhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 16) ! * gimple_omp_atomic_load_rhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 23) ! * gimple_omp_atomic_load_set_lhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 12) ! * gimple_omp_atomic_load_set_rhs: 'GIMPLE_OMP_ATOMIC_LOAD'. ! (line 19) ! * 'GIMPLE_OMP_ATOMIC_STORE': 'GIMPLE_OMP_ATOMIC_STORE'. (line 6) ! * gimple_omp_atomic_store_set_val: 'GIMPLE_OMP_ATOMIC_STORE'. ! (line 10) ! * gimple_omp_atomic_store_val: 'GIMPLE_OMP_ATOMIC_STORE'. (line 14) ! * gimple_omp_body: 'GIMPLE_OMP_PARALLEL'. ! (line 23) ! * 'GIMPLE_OMP_CONTINUE': 'GIMPLE_OMP_CONTINUE'. ! (line 6) ! * gimple_omp_continue_control_def: 'GIMPLE_OMP_CONTINUE'. ! (line 12) ! * gimple_omp_continue_control_def_ptr: 'GIMPLE_OMP_CONTINUE'. ! (line 16) ! * gimple_omp_continue_control_use: 'GIMPLE_OMP_CONTINUE'. ! (line 23) ! * gimple_omp_continue_control_use_ptr: 'GIMPLE_OMP_CONTINUE'. ! (line 27) ! * gimple_omp_continue_set_control_def: 'GIMPLE_OMP_CONTINUE'. ! (line 19) ! * gimple_omp_continue_set_control_use: 'GIMPLE_OMP_CONTINUE'. ! (line 30) ! * 'GIMPLE_OMP_CRITICAL': 'GIMPLE_OMP_CRITICAL'. (line 6) ! * gimple_omp_critical_name: 'GIMPLE_OMP_CRITICAL'. (line 12) ! * gimple_omp_critical_name_ptr: 'GIMPLE_OMP_CRITICAL'. ! (line 15) ! * gimple_omp_critical_set_name: 'GIMPLE_OMP_CRITICAL'. ! (line 19) ! * 'GIMPLE_OMP_FOR': 'GIMPLE_OMP_FOR'. (line 6) ! * gimple_omp_for_clauses: 'GIMPLE_OMP_FOR'. (line 19) ! * gimple_omp_for_clauses_ptr: 'GIMPLE_OMP_FOR'. (line 22) ! * gimple_omp_for_cond: 'GIMPLE_OMP_FOR'. (line 82) ! * gimple_omp_for_final: 'GIMPLE_OMP_FOR'. (line 50) ! * gimple_omp_for_final_ptr: 'GIMPLE_OMP_FOR'. (line 53) ! * gimple_omp_for_incr: 'GIMPLE_OMP_FOR'. (line 60) ! * gimple_omp_for_incr_ptr: 'GIMPLE_OMP_FOR'. (line 63) ! * gimple_omp_for_index: 'GIMPLE_OMP_FOR'. (line 30) ! * gimple_omp_for_index_ptr: 'GIMPLE_OMP_FOR'. (line 33) ! * gimple_omp_for_initial: 'GIMPLE_OMP_FOR'. (line 40) ! * gimple_omp_for_initial_ptr: 'GIMPLE_OMP_FOR'. (line 43) ! * gimple_omp_for_pre_body: 'GIMPLE_OMP_FOR'. (line 69) ! * gimple_omp_for_set_clauses: 'GIMPLE_OMP_FOR'. (line 25) ! * gimple_omp_for_set_cond: 'GIMPLE_OMP_FOR'. (line 78) ! * gimple_omp_for_set_final: 'GIMPLE_OMP_FOR'. (line 56) ! * gimple_omp_for_set_incr: 'GIMPLE_OMP_FOR'. (line 66) ! * gimple_omp_for_set_index: 'GIMPLE_OMP_FOR'. (line 36) ! * gimple_omp_for_set_initial: 'GIMPLE_OMP_FOR'. (line 46) ! * gimple_omp_for_set_pre_body: 'GIMPLE_OMP_FOR'. (line 73) ! * 'GIMPLE_OMP_MASTER': 'GIMPLE_OMP_MASTER'. ! (line 6) ! * 'GIMPLE_OMP_ORDERED': 'GIMPLE_OMP_ORDERED'. ! (line 6) ! * 'GIMPLE_OMP_PARALLEL': 'GIMPLE_OMP_PARALLEL'. ! (line 6) ! * gimple_omp_parallel_child_fn: 'GIMPLE_OMP_PARALLEL'. ! (line 41) ! * gimple_omp_parallel_child_fn_ptr: 'GIMPLE_OMP_PARALLEL'. ! (line 45) ! * gimple_omp_parallel_clauses: 'GIMPLE_OMP_PARALLEL'. ! (line 30) ! * gimple_omp_parallel_clauses_ptr: 'GIMPLE_OMP_PARALLEL'. ! (line 33) ! * gimple_omp_parallel_combined_p: 'GIMPLE_OMP_PARALLEL'. (line 15) ! * gimple_omp_parallel_data_arg: 'GIMPLE_OMP_PARALLEL'. ! (line 53) ! * gimple_omp_parallel_data_arg_ptr: 'GIMPLE_OMP_PARALLEL'. ! (line 57) ! * gimple_omp_parallel_set_child_fn: 'GIMPLE_OMP_PARALLEL'. ! (line 49) ! * gimple_omp_parallel_set_clauses: 'GIMPLE_OMP_PARALLEL'. ! (line 36) ! * gimple_omp_parallel_set_combined_p: 'GIMPLE_OMP_PARALLEL'. ! (line 19) ! * gimple_omp_parallel_set_data_arg: 'GIMPLE_OMP_PARALLEL'. ! (line 60) ! * 'GIMPLE_OMP_RETURN': 'GIMPLE_OMP_RETURN'. (line 6) ! * gimple_omp_return_nowait_p: 'GIMPLE_OMP_RETURN'. (line 13) ! * gimple_omp_return_set_nowait: 'GIMPLE_OMP_RETURN'. ! (line 10) ! * 'GIMPLE_OMP_SECTION': 'GIMPLE_OMP_SECTION'. (line 6) ! * 'GIMPLE_OMP_SECTIONS': 'GIMPLE_OMP_SECTIONS'. (line 6) ! * gimple_omp_sections_clauses: 'GIMPLE_OMP_SECTIONS'. ! (line 29) ! * gimple_omp_sections_clauses_ptr: 'GIMPLE_OMP_SECTIONS'. ! (line 32) ! * gimple_omp_sections_control: 'GIMPLE_OMP_SECTIONS'. (line 16) ! * gimple_omp_sections_control_ptr: 'GIMPLE_OMP_SECTIONS'. (line 20) ! * gimple_omp_sections_set_clauses: 'GIMPLE_OMP_SECTIONS'. ! (line 35) ! * gimple_omp_sections_set_control: 'GIMPLE_OMP_SECTIONS'. ! (line 24) ! * gimple_omp_section_last_p: 'GIMPLE_OMP_SECTION'. ! (line 11) ! * gimple_omp_section_set_last: 'GIMPLE_OMP_SECTION'. ! (line 15) ! * gimple_omp_set_body: 'GIMPLE_OMP_PARALLEL'. ! (line 26) ! * 'GIMPLE_OMP_SINGLE': 'GIMPLE_OMP_SINGLE'. (line 6) ! * gimple_omp_single_clauses: 'GIMPLE_OMP_SINGLE'. ! (line 13) ! * gimple_omp_single_clauses_ptr: 'GIMPLE_OMP_SINGLE'. ! (line 16) ! * gimple_omp_single_set_clauses: 'GIMPLE_OMP_SINGLE'. ! (line 19) ! * gimple_op: Logical Operators. (line 79) * gimple_op <1>: Manipulating GIMPLE statements. ! (line 80) ! * gimple_ops: Logical Operators. (line 82) ! * gimple_ops <1>: Manipulating GIMPLE statements. ! (line 77) * gimple_op_ptr: Manipulating GIMPLE statements. ! (line 83) ! * 'GIMPLE_PHI': 'GIMPLE_PHI'. (line 6) ! * gimple_phi_arg: 'GIMPLE_PHI'. (line 24) ! * gimple_phi_arg <1>: SSA. (line 62) ! * gimple_phi_arg_def: SSA. (line 68) ! * gimple_phi_arg_edge: SSA. (line 65) ! * gimple_phi_capacity: 'GIMPLE_PHI'. (line 6) ! * gimple_phi_num_args: 'GIMPLE_PHI'. (line 10) ! * gimple_phi_num_args <1>: SSA. (line 58) ! * gimple_phi_result: 'GIMPLE_PHI'. (line 15) ! * gimple_phi_result <1>: SSA. (line 55) ! * gimple_phi_result_ptr: 'GIMPLE_PHI'. (line 18) ! * gimple_phi_set_arg: 'GIMPLE_PHI'. (line 28) ! * gimple_phi_set_result: 'GIMPLE_PHI'. (line 21) * gimple_plf: Manipulating GIMPLE statements. ! (line 64) ! * 'GIMPLE_RESX': 'GIMPLE_RESX'. (line 6) ! * gimple_resx_region: 'GIMPLE_RESX'. (line 12) ! * gimple_resx_set_region: 'GIMPLE_RESX'. (line 15) ! * 'GIMPLE_RETURN': 'GIMPLE_RETURN'. (line 6) ! * gimple_return_retval: 'GIMPLE_RETURN'. (line 9) ! * gimple_return_set_retval: 'GIMPLE_RETURN'. (line 12) ! * gimple_seq_add_seq: GIMPLE sequences. (line 30) ! * gimple_seq_add_stmt: GIMPLE sequences. (line 24) ! * gimple_seq_alloc: GIMPLE sequences. (line 61) ! * gimple_seq_copy: GIMPLE sequences. (line 65) ! * gimple_seq_deep_copy: GIMPLE sequences. (line 36) ! * gimple_seq_empty_p: GIMPLE sequences. (line 69) ! * gimple_seq_first: GIMPLE sequences. (line 43) ! * gimple_seq_init: GIMPLE sequences. (line 58) ! * gimple_seq_last: GIMPLE sequences. (line 46) ! * gimple_seq_reverse: GIMPLE sequences. (line 39) ! * gimple_seq_set_first: GIMPLE sequences. (line 53) ! * gimple_seq_set_last: GIMPLE sequences. (line 49) ! * gimple_seq_singleton_p: GIMPLE sequences. (line 78) * gimple_set_block: Manipulating GIMPLE statements. ! (line 38) * gimple_set_def_ops: Manipulating GIMPLE statements. ! (line 96) * gimple_set_has_volatile_ops: Manipulating GIMPLE statements. ! (line 136) * gimple_set_locus: Manipulating GIMPLE statements. ! (line 44) * gimple_set_op: Manipulating GIMPLE statements. ! (line 86) * gimple_set_plf: Manipulating GIMPLE statements. ! (line 60) * gimple_set_use_ops: Manipulating GIMPLE statements. ! (line 103) * gimple_set_vdef_ops: Manipulating GIMPLE statements. ! (line 117) * gimple_set_visited: Manipulating GIMPLE statements. ! (line 53) * gimple_set_vuse_ops: Manipulating GIMPLE statements. ! (line 110) * gimple_statement_base: Tuple representation. (line 14) * gimple_statement_with_ops: Tuple representation. (line 96) * gimple_stored_syms: Manipulating GIMPLE statements. ! (line 125) ! * 'GIMPLE_SWITCH': 'GIMPLE_SWITCH'. (line 6) ! * gimple_switch_default_label: 'GIMPLE_SWITCH'. (line 38) ! * gimple_switch_index: 'GIMPLE_SWITCH'. (line 23) ! * gimple_switch_label: 'GIMPLE_SWITCH'. (line 29) ! * gimple_switch_num_labels: 'GIMPLE_SWITCH'. (line 14) ! * gimple_switch_set_default_label: 'GIMPLE_SWITCH'. (line 41) ! * gimple_switch_set_index: 'GIMPLE_SWITCH'. (line 26) ! * gimple_switch_set_label: 'GIMPLE_SWITCH'. (line 33) ! * gimple_switch_set_num_labels: 'GIMPLE_SWITCH'. (line 18) ! * 'GIMPLE_TRY': 'GIMPLE_TRY'. (line 6) ! * gimple_try_catch_is_cleanup: 'GIMPLE_TRY'. (line 19) ! * gimple_try_cleanup: 'GIMPLE_TRY'. (line 26) ! * gimple_try_eval: 'GIMPLE_TRY'. (line 22) ! * gimple_try_kind: 'GIMPLE_TRY'. (line 15) ! * gimple_try_set_catch_is_cleanup: 'GIMPLE_TRY'. (line 30) ! * gimple_try_set_cleanup: 'GIMPLE_TRY'. (line 39) ! * gimple_try_set_eval: 'GIMPLE_TRY'. (line 34) * gimple_use_ops: Manipulating GIMPLE statements. ! (line 100) * gimple_vdef_ops: Manipulating GIMPLE statements. ! (line 114) * gimple_visited_p: Manipulating GIMPLE statements. ! (line 57) * gimple_vuse_ops: Manipulating GIMPLE statements. ! (line 107) ! * gimple_wce_cleanup: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 10) ! * gimple_wce_cleanup_eh_only: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 17) ! * gimple_wce_set_cleanup: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 13) ! * gimple_wce_set_cleanup_eh_only: 'GIMPLE_WITH_CLEANUP_EXPR'. ! (line 20) ! * 'GIMPLE_WITH_CLEANUP_EXPR': 'GIMPLE_WITH_CLEANUP_EXPR'. (line 6) - * gimplification: Parsing pass. (line 13) * gimplification <1>: Gimplification pass. (line 6) ! * gimplifier: Parsing pass. (line 13) ! * gimplify_assign: 'GIMPLE_ASSIGN'. (line 17) * gimplify_expr: Gimplification pass. (line 18) * gimplify_function_tree: Gimplification pass. (line 18) * GLOBAL_INIT_PRIORITY: Functions for C++. (line 141) * global_regs: Register Basics. (line 59) ! * 'GO_IF_LEGITIMATE_ADDRESS': Addressing Modes. (line 90) * greater than: Comparisons. (line 60) ! * greater than <1>: Comparisons. (line 64) ! * greater than <2>: Comparisons. (line 72) ! * gsi_after_labels: Sequence iterators. (line 74) ! * gsi_bb: Sequence iterators. (line 82) ! * gsi_commit_edge_inserts: Sequence iterators. (line 193) * gsi_commit_edge_inserts <1>: Maintaining the CFG. ! (line 105) ! * gsi_commit_one_edge_insert: Sequence iterators. (line 188) ! * gsi_end_p: Sequence iterators. (line 59) * gsi_end_p <1>: Maintaining the CFG. ! (line 48) ! * gsi_for_stmt: Sequence iterators. (line 156) ! * gsi_insert_after: Sequence iterators. (line 145) * gsi_insert_after <1>: Maintaining the CFG. ! (line 60) ! * gsi_insert_before: Sequence iterators. (line 134) * gsi_insert_before <1>: Maintaining the CFG. ! (line 66) ! * gsi_insert_on_edge: Sequence iterators. (line 173) * gsi_insert_on_edge <1>: Maintaining the CFG. ! (line 105) ! * gsi_insert_on_edge_immediate: Sequence iterators. (line 183) ! * gsi_insert_seq_after: Sequence iterators. (line 152) ! * gsi_insert_seq_before: Sequence iterators. (line 141) ! * gsi_insert_seq_on_edge: Sequence iterators. (line 177) ! * gsi_last: Sequence iterators. (line 49) * gsi_last <1>: Maintaining the CFG. ! (line 44) ! * gsi_last_bb: Sequence iterators. (line 55) ! * gsi_link_after: Sequence iterators. (line 113) ! * gsi_link_before: Sequence iterators. (line 103) ! * gsi_link_seq_after: Sequence iterators. (line 108) ! * gsi_link_seq_before: Sequence iterators. (line 97) ! * gsi_move_after: Sequence iterators. (line 159) ! * gsi_move_before: Sequence iterators. (line 164) ! * gsi_move_to_bb_end: Sequence iterators. (line 169) ! * gsi_next: Sequence iterators. (line 65) * gsi_next <1>: Maintaining the CFG. ! (line 52) ! * gsi_one_before_end_p: Sequence iterators. (line 62) ! * gsi_prev: Sequence iterators. (line 68) * gsi_prev <1>: Maintaining the CFG. ! (line 56) ! * gsi_remove: Sequence iterators. (line 88) * gsi_remove <1>: Maintaining the CFG. ! (line 72) ! * gsi_replace: Sequence iterators. (line 128) ! * gsi_seq: Sequence iterators. (line 85) ! * gsi_split_seq_after: Sequence iterators. (line 118) ! * gsi_split_seq_before: Sequence iterators. (line 123) ! * gsi_start: Sequence iterators. (line 39) * gsi_start <1>: Maintaining the CFG. ! (line 40) ! * gsi_start_bb: Sequence iterators. (line 45) ! * gsi_stmt: Sequence iterators. (line 71) ! * gsi_stmt_ptr: Sequence iterators. (line 79) * gt: Comparisons. (line 60) ! * 'gt' and attributes: Expressions. (line 83) ! * gtu: Comparisons. (line 64) ! * 'gtu' and attributes: Expressions. (line 83) ! * GTY: Type Information. (line 6) * GT_EXPR: Unary and Binary Expressions. (line 6) ! * 'H' in constraint: Simple Constraints. (line 96) ! * HAmode: Machine Modes. (line 146) * HANDLER: Statements for C++. (line 6) * HANDLER_BODY: Statements for C++. (line 6) * HANDLER_PARMS: Statements for C++. (line 6) - * HANDLE_PRAGMA_PACK_WITH_EXPANSION: Misc. (line 442) * hard registers: Regs and Memory. (line 9) ! * HARD_FRAME_POINTER_IS_ARG_POINTER: Frame Registers. (line 57) ! * HARD_FRAME_POINTER_IS_FRAME_POINTER: Frame Registers. (line 50) ! * HARD_FRAME_POINTER_REGNUM: Frame Registers. (line 19) ! * HARD_REGNO_CALLER_SAVE_MODE: Caller Saves. (line 19) ! * HARD_REGNO_CALL_PART_CLOBBERED: Register Basics. (line 52) * HARD_REGNO_MODE_OK: Values in Registers. ! (line 57) * HARD_REGNO_NREGS: Values in Registers. ! (line 10) * HARD_REGNO_NREGS_HAS_PADDING: Values in Registers. ! (line 24) * HARD_REGNO_NREGS_WITH_PADDING: Values in Registers. ! (line 42) * HARD_REGNO_RENAME_OK: Values in Registers. ! (line 117) * HAS_INIT_SECTION: Macros for Initialization. ! (line 18) ! * HAS_LONG_COND_BRANCH: Misc. (line 8) ! * HAS_LONG_UNCOND_BRANCH: Misc. (line 17) * HAVE_DOS_BASED_FILE_SYSTEM: Filesystem. (line 11) ! * HAVE_POST_DECREMENT: Addressing Modes. (line 11) ! * HAVE_POST_INCREMENT: Addressing Modes. (line 10) ! * HAVE_POST_MODIFY_DISP: Addressing Modes. (line 17) ! * HAVE_POST_MODIFY_REG: Addressing Modes. (line 23) ! * HAVE_PRE_DECREMENT: Addressing Modes. (line 9) ! * HAVE_PRE_INCREMENT: Addressing Modes. (line 8) ! * HAVE_PRE_MODIFY_DISP: Addressing Modes. (line 16) ! * HAVE_PRE_MODIFY_REG: Addressing Modes. (line 22) ! * HCmode: Machine Modes. (line 199) * HFmode: Machine Modes. (line 61) ! * high: Constants. (line 119) * HImode: Machine Modes. (line 29) ! * 'HImode', in 'insn': Insns. (line 268) ! * HONOR_REG_ALLOC_ORDER: Allocation Order. (line 36) * host configuration: Host Config. (line 6) * host functions: Host Common. (line 6) * host hooks: Host Common. (line 6) * host makefile fragment: Host Fragment. (line 6) * HOST_BIT_BUCKET: Filesystem. (line 51) * HOST_EXECUTABLE_SUFFIX: Filesystem. (line 45) ! * HOST_HOOKS_EXTRA_SIGNALS: Host Common. (line 11) ! * HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY: Host Common. (line 43) ! * HOST_HOOKS_GT_PCH_GET_ADDRESS: Host Common. (line 15) ! * HOST_HOOKS_GT_PCH_USE_ADDRESS: Host Common. (line 24) * HOST_LACKS_INODE_NUMBERS: Filesystem. (line 89) * HOST_LONG_FORMAT: Host Misc. (line 45) * HOST_LONG_LONG_FORMAT: Host Misc. (line 41) * HOST_OBJECT_SUFFIX: Filesystem. (line 40) * HOST_PTR_PRINTF: Host Misc. (line 49) ! * HOT_TEXT_SECTION_NAME: Sections. (line 42) * HQmode: Machine Modes. (line 110) ! * 'i' in constraint: Simple Constraints. (line 68) ! * 'I' in constraint: Simple Constraints. (line 79) * identifier: Identifiers. (line 6) * IDENTIFIER_LENGTH: Identifiers. (line 22) * IDENTIFIER_NODE: Identifiers. (line 6) --- 47526,48119 ---- * gcov_type: Profile information. (line 41) * ge: Comparisons. (line 72) ! * ge and attributes: Expressions. (line 85) ! * GE_EXPR: Unary and Binary Expressions. ! (line 6) ! * GEN_ERRNO_RTX: Library Calls. (line 72) * gencodes: RTL passes. (line 18) * general_operand: Machine-Independent Predicates. ! (line 105) ! * GENERAL_REGS: Register Classes. (line 23) * generated files: Files. (line 6) * generating assembler output: Output Statement. (line 6) * generating insns: RTL Template. (line 6) * GENERIC <1>: GENERIC. (line 6) + * GENERIC: Parsing pass. (line 6) * generic predicates: Machine-Independent Predicates. (line 6) * genflags: RTL passes. (line 18) ! * get_attr: Expressions. (line 101) * get_attr_length: Insn Lengths. (line 46) ! * GET_CLASS_NARROWEST_MODE: Machine Modes. (line 336) * GET_CODE: RTL Objects. (line 47) * get_frame_size: Elimination. (line 34) * get_insns: Insns. (line 34) * get_last_insn: Insns. (line 34) ! * GET_MODE: Machine Modes. (line 283) ! * GET_MODE_ALIGNMENT: Machine Modes. (line 323) ! * GET_MODE_BITSIZE: Machine Modes. (line 307) ! * GET_MODE_CLASS: Machine Modes. (line 297) ! * GET_MODE_FBIT: Machine Modes. (line 314) ! * GET_MODE_IBIT: Machine Modes. (line 310) ! * GET_MODE_MASK: Machine Modes. (line 318) ! * GET_MODE_NAME: Machine Modes. (line 294) ! * GET_MODE_NUNITS: Machine Modes. (line 332) ! * GET_MODE_SIZE: Machine Modes. (line 304) ! * GET_MODE_UNIT_SIZE: Machine Modes. (line 326) ! * GET_MODE_WIDER_MODE: Machine Modes. (line 300) * GET_RTX_CLASS: RTL Classes. (line 6) * GET_RTX_FORMAT: RTL Classes. (line 131) * GET_RTX_LENGTH: RTL Classes. (line 128) ! * get_thread_pointerMODE instruction pattern: Standard Names. ! (line 1867) * geu: Comparisons. (line 72) ! * geu and attributes: Expressions. (line 85) * GGC: Type Information. (line 6) * ggc_collect: Invoking the garbage collector. (line 6) ! * GIMPLE <1>: GIMPLE. (line 6) ! * GIMPLE <2>: Gimplification pass. (line 6) ! * GIMPLE: Parsing pass. (line 14) * GIMPLE Exception Handling: GIMPLE Exception Handling. (line 6) * GIMPLE instruction set: GIMPLE instruction set. (line 6) * GIMPLE sequences: GIMPLE sequences. (line 6) * GIMPLE statement iterators <1>: Maintaining the CFG. ! (line 34) ! * GIMPLE statement iterators: Basic Blocks. (line 78) * gimple_addresses_taken: Manipulating GIMPLE statements. ! (line 90) ! * GIMPLE_ASM: GIMPLE_ASM. (line 6) ! * gimple_asm_clobber_op: GIMPLE_ASM. (line 46) ! * gimple_asm_input_op: GIMPLE_ASM. (line 30) ! * gimple_asm_nclobbers: GIMPLE_ASM. (line 27) ! * gimple_asm_ninputs: GIMPLE_ASM. (line 21) ! * gimple_asm_noutputs: GIMPLE_ASM. (line 24) ! * gimple_asm_output_op: GIMPLE_ASM. (line 38) ! * gimple_asm_set_clobber_op: GIMPLE_ASM. (line 50) ! * gimple_asm_set_input_op: GIMPLE_ASM. (line 34) ! * gimple_asm_set_output_op: GIMPLE_ASM. (line 42) ! * gimple_asm_set_volatile: GIMPLE_ASM. (line 60) ! * gimple_asm_string: GIMPLE_ASM. (line 53) ! * gimple_asm_volatile_p: GIMPLE_ASM. (line 57) ! * GIMPLE_ASSIGN: GIMPLE_ASSIGN. (line 6) ! * gimple_assign_cast_p <1>: GIMPLE_ASSIGN. (line 93) ! * gimple_assign_cast_p: Logical Operators. (line 160) ! * gimple_assign_lhs: GIMPLE_ASSIGN. (line 51) ! * gimple_assign_lhs_ptr: GIMPLE_ASSIGN. (line 54) ! * gimple_assign_rhs1: GIMPLE_ASSIGN. (line 57) ! * gimple_assign_rhs1_ptr: GIMPLE_ASSIGN. (line 60) ! * gimple_assign_rhs2: GIMPLE_ASSIGN. (line 64) ! * gimple_assign_rhs2_ptr: GIMPLE_ASSIGN. (line 67) ! * gimple_assign_rhs3: GIMPLE_ASSIGN. (line 71) ! * gimple_assign_rhs3_ptr: GIMPLE_ASSIGN. (line 74) ! * gimple_assign_rhs_class: GIMPLE_ASSIGN. (line 46) ! * gimple_assign_rhs_code: GIMPLE_ASSIGN. (line 41) ! * gimple_assign_set_lhs: GIMPLE_ASSIGN. (line 78) ! * gimple_assign_set_rhs1: GIMPLE_ASSIGN. (line 81) ! * gimple_assign_set_rhs2: GIMPLE_ASSIGN. (line 85) ! * gimple_assign_set_rhs3: GIMPLE_ASSIGN. (line 89) * gimple_bb: Manipulating GIMPLE statements. ! (line 18) ! * GIMPLE_BIND: GIMPLE_BIND. (line 6) ! * gimple_bind_add_seq: GIMPLE_BIND. (line 36) ! * gimple_bind_add_stmt: GIMPLE_BIND. (line 32) ! * gimple_bind_append_vars: GIMPLE_BIND. (line 19) ! * gimple_bind_block: GIMPLE_BIND. (line 40) ! * gimple_bind_body: GIMPLE_BIND. (line 23) ! * gimple_bind_set_block: GIMPLE_BIND. (line 45) ! * gimple_bind_set_body: GIMPLE_BIND. (line 28) ! * gimple_bind_set_vars: GIMPLE_BIND. (line 15) ! * gimple_bind_vars: GIMPLE_BIND. (line 12) * gimple_block: Manipulating GIMPLE statements. ! (line 21) ! * gimple_build_asm: GIMPLE_ASM. (line 8) ! * gimple_build_asm_vec: GIMPLE_ASM. (line 17) ! * gimple_build_assign: GIMPLE_ASSIGN. (line 7) ! * gimple_build_assign_with_ops: GIMPLE_ASSIGN. (line 30) ! * gimple_build_bind: GIMPLE_BIND. (line 8) ! * gimple_build_call: GIMPLE_CALL. (line 8) ! * gimple_build_call_from_tree: GIMPLE_CALL. (line 16) ! * gimple_build_call_vec: GIMPLE_CALL. (line 25) ! * gimple_build_catch: GIMPLE_CATCH. (line 8) ! * gimple_build_cond: GIMPLE_COND. (line 8) ! * gimple_build_cond_from_tree: GIMPLE_COND. (line 16) ! * gimple_build_debug_bind: GIMPLE_DEBUG. (line 8) ! * gimple_build_eh_filter: GIMPLE_EH_FILTER. (line 8) ! * gimple_build_goto: GIMPLE_LABEL. (line 18) ! * gimple_build_label: GIMPLE_LABEL. (line 7) ! * gimple_build_nop: GIMPLE_NOP. (line 7) ! * gimple_build_omp_atomic_load: GIMPLE_OMP_ATOMIC_LOAD. ! (line 8) ! * gimple_build_omp_atomic_store: GIMPLE_OMP_ATOMIC_STORE. ! (line 7) ! * gimple_build_omp_continue: GIMPLE_OMP_CONTINUE. ! (line 8) ! * gimple_build_omp_critical: GIMPLE_OMP_CRITICAL. ! (line 8) ! * gimple_build_omp_for: GIMPLE_OMP_FOR. (line 9) ! * gimple_build_omp_master: GIMPLE_OMP_MASTER. (line 7) ! * gimple_build_omp_ordered: GIMPLE_OMP_ORDERED. (line 7) ! * gimple_build_omp_parallel: GIMPLE_OMP_PARALLEL. ! (line 8) ! * gimple_build_omp_return: GIMPLE_OMP_RETURN. (line 7) ! * gimple_build_omp_section: GIMPLE_OMP_SECTION. (line 7) ! * gimple_build_omp_sections: GIMPLE_OMP_SECTIONS. ! (line 8) ! * gimple_build_omp_sections_switch: GIMPLE_OMP_SECTIONS. (line 14) ! * gimple_build_omp_single: GIMPLE_OMP_SINGLE. (line 8) ! * gimple_build_resx: GIMPLE_RESX. (line 7) ! * gimple_build_return: GIMPLE_RETURN. (line 7) ! * gimple_build_switch: GIMPLE_SWITCH. (line 8) ! * gimple_build_try: GIMPLE_TRY. (line 8) ! * gimple_build_wce: GIMPLE_WITH_CLEANUP_EXPR. ! (line 7) ! * GIMPLE_CALL: GIMPLE_CALL. (line 6) ! * gimple_call_arg: GIMPLE_CALL. (line 66) ! * gimple_call_arg_ptr: GIMPLE_CALL. (line 71) ! * gimple_call_cannot_inline_p: GIMPLE_CALL. (line 91) ! * gimple_call_chain: GIMPLE_CALL. (line 57) ! * gimple_call_copy_skip_args: GIMPLE_CALL. (line 98) ! * gimple_call_fn: GIMPLE_CALL. (line 38) ! * gimple_call_fndecl: GIMPLE_CALL. (line 46) ! * gimple_call_lhs: GIMPLE_CALL. (line 29) ! * gimple_call_lhs_ptr: GIMPLE_CALL. (line 32) ! * gimple_call_mark_uninlinable: GIMPLE_CALL. (line 88) ! * gimple_call_noreturn_p: GIMPLE_CALL. (line 94) ! * gimple_call_num_args: GIMPLE_CALL. (line 63) ! * gimple_call_return_type: GIMPLE_CALL. (line 54) ! * gimple_call_set_arg: GIMPLE_CALL. (line 76) ! * gimple_call_set_chain: GIMPLE_CALL. (line 60) ! * gimple_call_set_fn: GIMPLE_CALL. (line 42) ! * gimple_call_set_fndecl: GIMPLE_CALL. (line 51) ! * gimple_call_set_lhs: GIMPLE_CALL. (line 35) ! * gimple_call_set_tail: GIMPLE_CALL. (line 80) ! * gimple_call_tail_p: GIMPLE_CALL. (line 85) ! * GIMPLE_CATCH: GIMPLE_CATCH. (line 6) ! * gimple_catch_handler: GIMPLE_CATCH. (line 20) ! * gimple_catch_set_handler: GIMPLE_CATCH. (line 28) ! * gimple_catch_set_types: GIMPLE_CATCH. (line 24) ! * gimple_catch_types: GIMPLE_CATCH. (line 13) ! * gimple_catch_types_ptr: GIMPLE_CATCH. (line 16) ! * gimple_code: Manipulating GIMPLE statements. ! (line 15) ! * GIMPLE_COND: GIMPLE_COND. (line 6) ! * gimple_cond_code: GIMPLE_COND. (line 21) ! * gimple_cond_false_label: GIMPLE_COND. (line 60) ! * gimple_cond_lhs: GIMPLE_COND. (line 30) ! * gimple_cond_make_false: GIMPLE_COND. (line 64) ! * gimple_cond_make_true: GIMPLE_COND. (line 67) ! * gimple_cond_rhs: GIMPLE_COND. (line 38) ! * gimple_cond_set_code: GIMPLE_COND. (line 26) ! * gimple_cond_set_false_label: GIMPLE_COND. (line 56) ! * gimple_cond_set_lhs: GIMPLE_COND. (line 34) ! * gimple_cond_set_rhs: GIMPLE_COND. (line 42) ! * gimple_cond_set_true_label: GIMPLE_COND. (line 51) ! * gimple_cond_true_label: GIMPLE_COND. (line 46) * gimple_copy: Manipulating GIMPLE statements. ! (line 147) ! * GIMPLE_DEBUG: GIMPLE_DEBUG. (line 6) ! * GIMPLE_DEBUG_BIND: GIMPLE_DEBUG. (line 6) ! * gimple_debug_bind_get_value: GIMPLE_DEBUG. (line 48) ! * gimple_debug_bind_get_value_ptr: GIMPLE_DEBUG. (line 53) ! * gimple_debug_bind_get_var: GIMPLE_DEBUG. (line 45) ! * gimple_debug_bind_has_value_p: GIMPLE_DEBUG. (line 70) ! * gimple_debug_bind_p: Logical Operators. (line 164) ! * gimple_debug_bind_reset_value: GIMPLE_DEBUG. (line 66) ! * gimple_debug_bind_set_value: GIMPLE_DEBUG. (line 62) ! * gimple_debug_bind_set_var: GIMPLE_DEBUG. (line 58) * gimple_def_ops: Manipulating GIMPLE statements. ! (line 94) ! * GIMPLE_EH_FILTER: GIMPLE_EH_FILTER. (line 6) ! * gimple_eh_filter_failure: GIMPLE_EH_FILTER. (line 19) ! * gimple_eh_filter_must_not_throw: GIMPLE_EH_FILTER. (line 33) ! * gimple_eh_filter_set_failure: GIMPLE_EH_FILTER. (line 29) ! * gimple_eh_filter_set_must_not_throw: GIMPLE_EH_FILTER. (line 37) ! * gimple_eh_filter_set_types: GIMPLE_EH_FILTER. (line 24) ! * gimple_eh_filter_types: GIMPLE_EH_FILTER. (line 12) ! * gimple_eh_filter_types_ptr: GIMPLE_EH_FILTER. (line 15) * gimple_expr_code: Manipulating GIMPLE statements. ! (line 31) * gimple_expr_type: Manipulating GIMPLE statements. ! (line 24) ! * gimple_goto_dest: GIMPLE_LABEL. (line 21) ! * gimple_goto_set_dest: GIMPLE_LABEL. (line 24) * gimple_has_mem_ops: Manipulating GIMPLE statements. ! (line 72) * gimple_has_ops: Manipulating GIMPLE statements. ! (line 69) * gimple_has_volatile_ops: Manipulating GIMPLE statements. ! (line 134) ! * GIMPLE_LABEL: GIMPLE_LABEL. (line 6) ! * gimple_label_label: GIMPLE_LABEL. (line 11) ! * gimple_label_set_label: GIMPLE_LABEL. (line 14) * gimple_loaded_syms: Manipulating GIMPLE statements. ! (line 122) * gimple_locus: Manipulating GIMPLE statements. ! (line 42) * gimple_locus_empty_p: Manipulating GIMPLE statements. ! (line 48) * gimple_modified_p: Manipulating GIMPLE statements. ! (line 130) * gimple_no_warning_p: Manipulating GIMPLE statements. ! (line 51) ! * GIMPLE_NOP: GIMPLE_NOP. (line 6) ! * gimple_nop_p: GIMPLE_NOP. (line 10) * gimple_num_ops <1>: Manipulating GIMPLE statements. ! (line 75) ! * gimple_num_ops: Logical Operators. (line 78) ! * GIMPLE_OMP_ATOMIC_LOAD: GIMPLE_OMP_ATOMIC_LOAD. (line 6) ! * gimple_omp_atomic_load_lhs: GIMPLE_OMP_ATOMIC_LOAD. ! (line 17) ! * gimple_omp_atomic_load_rhs: GIMPLE_OMP_ATOMIC_LOAD. ! (line 24) ! * gimple_omp_atomic_load_set_lhs: GIMPLE_OMP_ATOMIC_LOAD. (line 14) ! * gimple_omp_atomic_load_set_rhs: GIMPLE_OMP_ATOMIC_LOAD. ! (line 21) ! * GIMPLE_OMP_ATOMIC_STORE: GIMPLE_OMP_ATOMIC_STORE. (line 6) ! * gimple_omp_atomic_store_set_val: GIMPLE_OMP_ATOMIC_STORE. (line 12) ! * gimple_omp_atomic_store_val: GIMPLE_OMP_ATOMIC_STORE. (line 15) ! * gimple_omp_body: GIMPLE_OMP_PARALLEL. ! (line 24) ! * GIMPLE_OMP_CONTINUE: GIMPLE_OMP_CONTINUE. (line 6) ! * gimple_omp_continue_control_def: GIMPLE_OMP_CONTINUE. (line 13) ! * gimple_omp_continue_control_def_ptr: GIMPLE_OMP_CONTINUE. ! (line 17) ! * gimple_omp_continue_control_use: GIMPLE_OMP_CONTINUE. ! (line 24) ! * gimple_omp_continue_control_use_ptr: GIMPLE_OMP_CONTINUE. ! (line 28) ! * gimple_omp_continue_set_control_def: GIMPLE_OMP_CONTINUE. ! (line 20) ! * gimple_omp_continue_set_control_use: GIMPLE_OMP_CONTINUE. ! (line 31) ! * GIMPLE_OMP_CRITICAL: GIMPLE_OMP_CRITICAL. (line 6) ! * gimple_omp_critical_name: GIMPLE_OMP_CRITICAL. ! (line 13) ! * gimple_omp_critical_name_ptr: GIMPLE_OMP_CRITICAL. ! (line 16) ! * gimple_omp_critical_set_name: GIMPLE_OMP_CRITICAL. ! (line 21) ! * GIMPLE_OMP_FOR: GIMPLE_OMP_FOR. (line 6) ! * gimple_omp_for_clauses: GIMPLE_OMP_FOR. (line 20) ! * gimple_omp_for_clauses_ptr: GIMPLE_OMP_FOR. (line 23) ! * gimple_omp_for_cond: GIMPLE_OMP_FOR. (line 83) ! * gimple_omp_for_final: GIMPLE_OMP_FOR. (line 51) ! * gimple_omp_for_final_ptr: GIMPLE_OMP_FOR. (line 54) ! * gimple_omp_for_incr: GIMPLE_OMP_FOR. (line 61) ! * gimple_omp_for_incr_ptr: GIMPLE_OMP_FOR. (line 64) ! * gimple_omp_for_index: GIMPLE_OMP_FOR. (line 31) ! * gimple_omp_for_index_ptr: GIMPLE_OMP_FOR. (line 34) ! * gimple_omp_for_initial: GIMPLE_OMP_FOR. (line 41) ! * gimple_omp_for_initial_ptr: GIMPLE_OMP_FOR. (line 44) ! * gimple_omp_for_pre_body: GIMPLE_OMP_FOR. (line 70) ! * gimple_omp_for_set_clauses: GIMPLE_OMP_FOR. (line 27) ! * gimple_omp_for_set_cond: GIMPLE_OMP_FOR. (line 80) ! * gimple_omp_for_set_final: GIMPLE_OMP_FOR. (line 58) ! * gimple_omp_for_set_incr: GIMPLE_OMP_FOR. (line 67) ! * gimple_omp_for_set_index: GIMPLE_OMP_FOR. (line 38) ! * gimple_omp_for_set_initial: GIMPLE_OMP_FOR. (line 48) ! * gimple_omp_for_set_pre_body: GIMPLE_OMP_FOR. (line 75) ! * GIMPLE_OMP_MASTER: GIMPLE_OMP_MASTER. (line 6) ! * GIMPLE_OMP_ORDERED: GIMPLE_OMP_ORDERED. (line 6) ! * GIMPLE_OMP_PARALLEL: GIMPLE_OMP_PARALLEL. (line 6) ! * gimple_omp_parallel_child_fn: GIMPLE_OMP_PARALLEL. ! (line 42) ! * gimple_omp_parallel_child_fn_ptr: GIMPLE_OMP_PARALLEL. ! (line 46) ! * gimple_omp_parallel_clauses: GIMPLE_OMP_PARALLEL. ! (line 31) ! * gimple_omp_parallel_clauses_ptr: GIMPLE_OMP_PARALLEL. ! (line 34) ! * gimple_omp_parallel_combined_p: GIMPLE_OMP_PARALLEL. (line 16) ! * gimple_omp_parallel_data_arg: GIMPLE_OMP_PARALLEL. ! (line 54) ! * gimple_omp_parallel_data_arg_ptr: GIMPLE_OMP_PARALLEL. ! (line 58) ! * gimple_omp_parallel_set_child_fn: GIMPLE_OMP_PARALLEL. ! (line 51) ! * gimple_omp_parallel_set_clauses: GIMPLE_OMP_PARALLEL. ! (line 38) ! * gimple_omp_parallel_set_combined_p: GIMPLE_OMP_PARALLEL. (line 20) ! * gimple_omp_parallel_set_data_arg: GIMPLE_OMP_PARALLEL. ! (line 62) ! * GIMPLE_OMP_RETURN: GIMPLE_OMP_RETURN. (line 6) ! * gimple_omp_return_nowait_p: GIMPLE_OMP_RETURN. (line 14) ! * gimple_omp_return_set_nowait: GIMPLE_OMP_RETURN. (line 11) ! * GIMPLE_OMP_SECTION: GIMPLE_OMP_SECTION. (line 6) ! * gimple_omp_section_last_p: GIMPLE_OMP_SECTION. (line 12) ! * gimple_omp_section_set_last: GIMPLE_OMP_SECTION. (line 16) ! * GIMPLE_OMP_SECTIONS: GIMPLE_OMP_SECTIONS. (line 6) ! * gimple_omp_sections_clauses: GIMPLE_OMP_SECTIONS. ! (line 30) ! * gimple_omp_sections_clauses_ptr: GIMPLE_OMP_SECTIONS. ! (line 33) ! * gimple_omp_sections_control: GIMPLE_OMP_SECTIONS. ! (line 17) ! * gimple_omp_sections_control_ptr: GIMPLE_OMP_SECTIONS. ! (line 21) ! * gimple_omp_sections_set_clauses: GIMPLE_OMP_SECTIONS. ! (line 37) ! * gimple_omp_sections_set_control: GIMPLE_OMP_SECTIONS. ! (line 26) ! * gimple_omp_set_body: GIMPLE_OMP_PARALLEL. ! (line 28) ! * GIMPLE_OMP_SINGLE: GIMPLE_OMP_SINGLE. (line 6) ! * gimple_omp_single_clauses: GIMPLE_OMP_SINGLE. (line 14) ! * gimple_omp_single_clauses_ptr: GIMPLE_OMP_SINGLE. (line 17) ! * gimple_omp_single_set_clauses: GIMPLE_OMP_SINGLE. (line 21) * gimple_op <1>: Manipulating GIMPLE statements. ! (line 81) ! * gimple_op: Logical Operators. (line 81) * gimple_op_ptr: Manipulating GIMPLE statements. ! (line 84) ! * gimple_ops <1>: Manipulating GIMPLE statements. ! (line 78) ! * gimple_ops: Logical Operators. (line 84) ! * GIMPLE_PHI: GIMPLE_PHI. (line 6) ! * gimple_phi_arg <1>: SSA. (line 63) ! * gimple_phi_arg: GIMPLE_PHI. (line 25) ! * gimple_phi_arg_def: SSA. (line 69) ! * gimple_phi_arg_edge: SSA. (line 66) ! * gimple_phi_capacity: GIMPLE_PHI. (line 7) ! * gimple_phi_num_args <1>: SSA. (line 59) ! * gimple_phi_num_args: GIMPLE_PHI. (line 11) ! * gimple_phi_result <1>: SSA. (line 56) ! * gimple_phi_result: GIMPLE_PHI. (line 16) ! * gimple_phi_result_ptr: GIMPLE_PHI. (line 19) ! * gimple_phi_set_arg: GIMPLE_PHI. (line 30) ! * gimple_phi_set_result: GIMPLE_PHI. (line 22) * gimple_plf: Manipulating GIMPLE statements. ! (line 66) ! * GIMPLE_RESX: GIMPLE_RESX. (line 6) ! * gimple_resx_region: GIMPLE_RESX. (line 13) ! * gimple_resx_set_region: GIMPLE_RESX. (line 16) ! * GIMPLE_RETURN: GIMPLE_RETURN. (line 6) ! * gimple_return_retval: GIMPLE_RETURN. (line 10) ! * gimple_return_set_retval: GIMPLE_RETURN. (line 14) ! * gimple_seq_add_seq: GIMPLE sequences. (line 32) ! * gimple_seq_add_stmt: GIMPLE sequences. (line 26) ! * gimple_seq_alloc: GIMPLE sequences. (line 62) ! * gimple_seq_copy: GIMPLE sequences. (line 67) ! * gimple_seq_deep_copy: GIMPLE sequences. (line 37) ! * gimple_seq_empty_p: GIMPLE sequences. (line 70) ! * gimple_seq_first: GIMPLE sequences. (line 44) ! * gimple_seq_init: GIMPLE sequences. (line 59) ! * gimple_seq_last: GIMPLE sequences. (line 47) ! * gimple_seq_reverse: GIMPLE sequences. (line 40) ! * gimple_seq_set_first: GIMPLE sequences. (line 55) ! * gimple_seq_set_last: GIMPLE sequences. (line 51) ! * gimple_seq_singleton_p: GIMPLE sequences. (line 79) * gimple_set_block: Manipulating GIMPLE statements. ! (line 39) * gimple_set_def_ops: Manipulating GIMPLE statements. ! (line 98) * gimple_set_has_volatile_ops: Manipulating GIMPLE statements. ! (line 138) * gimple_set_locus: Manipulating GIMPLE statements. ! (line 45) * gimple_set_op: Manipulating GIMPLE statements. ! (line 87) * gimple_set_plf: Manipulating GIMPLE statements. ! (line 62) * gimple_set_use_ops: Manipulating GIMPLE statements. ! (line 105) * gimple_set_vdef_ops: Manipulating GIMPLE statements. ! (line 119) * gimple_set_visited: Manipulating GIMPLE statements. ! (line 55) * gimple_set_vuse_ops: Manipulating GIMPLE statements. ! (line 112) * gimple_statement_base: Tuple representation. (line 14) * gimple_statement_with_ops: Tuple representation. (line 96) * gimple_stored_syms: Manipulating GIMPLE statements. ! (line 126) ! * GIMPLE_SWITCH: GIMPLE_SWITCH. (line 6) ! * gimple_switch_default_label: GIMPLE_SWITCH. (line 39) ! * gimple_switch_index: GIMPLE_SWITCH. (line 24) ! * gimple_switch_label: GIMPLE_SWITCH. (line 30) ! * gimple_switch_num_labels: GIMPLE_SWITCH. (line 15) ! * gimple_switch_set_default_label: GIMPLE_SWITCH. (line 43) ! * gimple_switch_set_index: GIMPLE_SWITCH. (line 27) ! * gimple_switch_set_label: GIMPLE_SWITCH. (line 35) ! * gimple_switch_set_num_labels: GIMPLE_SWITCH. (line 20) ! * GIMPLE_TRY: GIMPLE_TRY. (line 6) ! * gimple_try_catch_is_cleanup: GIMPLE_TRY. (line 20) ! * gimple_try_cleanup: GIMPLE_TRY. (line 27) ! * gimple_try_eval: GIMPLE_TRY. (line 23) ! * gimple_try_kind: GIMPLE_TRY. (line 16) ! * gimple_try_set_catch_is_cleanup: GIMPLE_TRY. (line 32) ! * gimple_try_set_cleanup: GIMPLE_TRY. (line 41) ! * gimple_try_set_eval: GIMPLE_TRY. (line 36) * gimple_use_ops: Manipulating GIMPLE statements. ! (line 101) * gimple_vdef_ops: Manipulating GIMPLE statements. ! (line 115) * gimple_visited_p: Manipulating GIMPLE statements. ! (line 58) * gimple_vuse_ops: Manipulating GIMPLE statements. ! (line 108) ! * gimple_wce_cleanup: GIMPLE_WITH_CLEANUP_EXPR. ! (line 11) ! * gimple_wce_cleanup_eh_only: GIMPLE_WITH_CLEANUP_EXPR. ! (line 18) ! * gimple_wce_set_cleanup: GIMPLE_WITH_CLEANUP_EXPR. ! (line 15) ! * gimple_wce_set_cleanup_eh_only: GIMPLE_WITH_CLEANUP_EXPR. ! (line 22) ! * GIMPLE_WITH_CLEANUP_EXPR: GIMPLE_WITH_CLEANUP_EXPR. (line 6) * gimplification <1>: Gimplification pass. (line 6) ! * gimplification: Parsing pass. (line 14) ! * gimplifier: Parsing pass. (line 14) ! * gimplify_assign: GIMPLE_ASSIGN. (line 19) * gimplify_expr: Gimplification pass. (line 18) * gimplify_function_tree: Gimplification pass. (line 18) * GLOBAL_INIT_PRIORITY: Functions for C++. (line 141) * global_regs: Register Basics. (line 59) ! * GO_IF_LEGITIMATE_ADDRESS: Addressing Modes. (line 91) * greater than: Comparisons. (line 60) ! * gsi_after_labels: Sequence iterators. (line 76) ! * gsi_bb: Sequence iterators. (line 83) * gsi_commit_edge_inserts <1>: Maintaining the CFG. ! (line 107) ! * gsi_commit_edge_inserts: Sequence iterators. (line 194) ! * gsi_commit_one_edge_insert: Sequence iterators. (line 190) * gsi_end_p <1>: Maintaining the CFG. ! (line 49) ! * gsi_end_p: Sequence iterators. (line 60) ! * gsi_for_stmt: Sequence iterators. (line 157) * gsi_insert_after <1>: Maintaining the CFG. ! (line 61) ! * gsi_insert_after: Sequence iterators. (line 147) * gsi_insert_before <1>: Maintaining the CFG. ! (line 67) ! * gsi_insert_before: Sequence iterators. (line 136) * gsi_insert_on_edge <1>: Maintaining the CFG. ! (line 107) ! * gsi_insert_on_edge: Sequence iterators. (line 174) ! * gsi_insert_on_edge_immediate: Sequence iterators. (line 185) ! * gsi_insert_seq_after: Sequence iterators. (line 154) ! * gsi_insert_seq_before: Sequence iterators. (line 143) ! * gsi_insert_seq_on_edge: Sequence iterators. (line 179) * gsi_last <1>: Maintaining the CFG. ! (line 45) ! * gsi_last: Sequence iterators. (line 50) ! * gsi_last_bb: Sequence iterators. (line 56) ! * gsi_link_after: Sequence iterators. (line 115) ! * gsi_link_before: Sequence iterators. (line 105) ! * gsi_link_seq_after: Sequence iterators. (line 110) ! * gsi_link_seq_before: Sequence iterators. (line 99) ! * gsi_move_after: Sequence iterators. (line 161) ! * gsi_move_before: Sequence iterators. (line 166) ! * gsi_move_to_bb_end: Sequence iterators. (line 171) * gsi_next <1>: Maintaining the CFG. ! (line 53) ! * gsi_next: Sequence iterators. (line 66) ! * gsi_one_before_end_p: Sequence iterators. (line 63) * gsi_prev <1>: Maintaining the CFG. ! (line 57) ! * gsi_prev: Sequence iterators. (line 69) * gsi_remove <1>: Maintaining the CFG. ! (line 73) ! * gsi_remove: Sequence iterators. (line 90) ! * gsi_replace: Sequence iterators. (line 130) ! * gsi_seq: Sequence iterators. (line 86) ! * gsi_split_seq_after: Sequence iterators. (line 120) ! * gsi_split_seq_before: Sequence iterators. (line 125) * gsi_start <1>: Maintaining the CFG. ! (line 41) ! * gsi_start: Sequence iterators. (line 40) ! * gsi_start_bb: Sequence iterators. (line 46) ! * gsi_stmt: Sequence iterators. (line 72) ! * gsi_stmt_ptr: Sequence iterators. (line 80) * gt: Comparisons. (line 60) ! * gt and attributes: Expressions. (line 85) * GT_EXPR: Unary and Binary Expressions. (line 6) ! * gtu: Comparisons. (line 64) ! * gtu and attributes: Expressions. (line 85) ! * GTY: Type Information. (line 6) ! * H in constraint: Simple Constraints. (line 98) ! * HAmode: Machine Modes. (line 147) ! * HANDLE_PRAGMA_PACK_WITH_EXPANSION: Misc. (line 444) * HANDLER: Statements for C++. (line 6) * HANDLER_BODY: Statements for C++. (line 6) * HANDLER_PARMS: Statements for C++. (line 6) * hard registers: Regs and Memory. (line 9) ! * HARD_FRAME_POINTER_IS_ARG_POINTER: Frame Registers. (line 58) ! * HARD_FRAME_POINTER_IS_FRAME_POINTER: Frame Registers. (line 51) ! * HARD_FRAME_POINTER_REGNUM: Frame Registers. (line 20) ! * HARD_REGNO_CALL_PART_CLOBBERED: Register Basics. (line 53) ! * HARD_REGNO_CALLER_SAVE_MODE: Caller Saves. (line 20) * HARD_REGNO_MODE_OK: Values in Registers. ! (line 58) * HARD_REGNO_NREGS: Values in Registers. ! (line 11) * HARD_REGNO_NREGS_HAS_PADDING: Values in Registers. ! (line 25) * HARD_REGNO_NREGS_WITH_PADDING: Values in Registers. ! (line 43) * HARD_REGNO_RENAME_OK: Values in Registers. ! (line 119) * HAS_INIT_SECTION: Macros for Initialization. ! (line 19) ! * HAS_LONG_COND_BRANCH: Misc. (line 9) ! * HAS_LONG_UNCOND_BRANCH: Misc. (line 18) * HAVE_DOS_BASED_FILE_SYSTEM: Filesystem. (line 11) ! * HAVE_POST_DECREMENT: Addressing Modes. (line 12) ! * HAVE_POST_INCREMENT: Addressing Modes. (line 11) ! * HAVE_POST_MODIFY_DISP: Addressing Modes. (line 18) ! * HAVE_POST_MODIFY_REG: Addressing Modes. (line 24) ! * HAVE_PRE_DECREMENT: Addressing Modes. (line 10) ! * HAVE_PRE_INCREMENT: Addressing Modes. (line 9) ! * HAVE_PRE_MODIFY_DISP: Addressing Modes. (line 17) ! * HAVE_PRE_MODIFY_REG: Addressing Modes. (line 23) ! * HCmode: Machine Modes. (line 200) * HFmode: Machine Modes. (line 61) ! * high: Constants. (line 120) * HImode: Machine Modes. (line 29) ! * HImode, in insn: Insns. (line 272) ! * HONOR_REG_ALLOC_ORDER: Allocation Order. (line 37) * host configuration: Host Config. (line 6) * host functions: Host Common. (line 6) * host hooks: Host Common. (line 6) * host makefile fragment: Host Fragment. (line 6) * HOST_BIT_BUCKET: Filesystem. (line 51) * HOST_EXECUTABLE_SUFFIX: Filesystem. (line 45) ! * HOST_HOOKS_EXTRA_SIGNALS: Host Common. (line 12) ! * HOST_HOOKS_GT_PCH_ALLOC_GRANULARITY: Host Common. (line 45) ! * HOST_HOOKS_GT_PCH_GET_ADDRESS: Host Common. (line 17) ! * HOST_HOOKS_GT_PCH_USE_ADDRESS: Host Common. (line 26) * HOST_LACKS_INODE_NUMBERS: Filesystem. (line 89) * HOST_LONG_FORMAT: Host Misc. (line 45) * HOST_LONG_LONG_FORMAT: Host Misc. (line 41) * HOST_OBJECT_SUFFIX: Filesystem. (line 40) * HOST_PTR_PRINTF: Host Misc. (line 49) ! * HOT_TEXT_SECTION_NAME: Sections. (line 43) * HQmode: Machine Modes. (line 110) ! * I in constraint: Simple Constraints. (line 81) ! * i in constraint: Simple Constraints. (line 70) * identifier: Identifiers. (line 6) * IDENTIFIER_LENGTH: Identifiers. (line 22) * IDENTIFIER_NODE: Identifiers. (line 6) *************** Concept Index *** 47736,47799 **** * IDENTIFIER_TYPENAME_P: Identifiers. (line 33) * IEEE 754-2008: Decimal float library routines. (line 6) - * IFCVT_MACHDEP_INIT: Misc. (line 567) - * IFCVT_MODIFY_CANCEL: Misc. (line 561) - * IFCVT_MODIFY_FINAL: Misc. (line 555) - * IFCVT_MODIFY_INSN: Misc. (line 549) - * IFCVT_MODIFY_MULTIPLE_TESTS: Misc. (line 541) - * IFCVT_MODIFY_TESTS: Misc. (line 531) * IF_COND: Statements for C++. (line 6) ! * if_marked: GTY Options. (line 165) * IF_STMT: Statements for C++. (line 6) * if_then_else: Comparisons. (line 80) ! * 'if_then_else' and attributes: Expressions. (line 32) ! * 'if_then_else' usage: Side Effects. (line 56) * IMAGPART_EXPR: Unary and Binary Expressions. (line 6) ! * Immediate Uses: SSA Operands. (line 258) * immediate_operand: Machine-Independent Predicates. ! (line 10) ! * IMMEDIATE_PREFIX: Instruction Output. (line 153) * include: Including Patterns. (line 6) ! * INCLUDE_DEFAULTS: Driver. (line 327) ! * inclusive-or, bitwise: Arithmetic. (line 164) ! * INCOMING_FRAME_SP_OFFSET: Frame Layout. (line 181) ! * INCOMING_REGNO: Register Basics. (line 87) ! * INCOMING_REG_PARM_STACK_SPACE: Stack Arguments. (line 73) ! * INCOMING_RETURN_ADDR_RTX: Frame Layout. (line 137) ! * INCOMING_STACK_BOUNDARY: Storage Layout. (line 154) ! * INDEX_REG_CLASS: Register Classes. (line 140) ! * 'indirect_jump' instruction pattern: Standard Names. (line 1237) * indirect_operand: Machine-Independent Predicates. ! (line 70) * INDIRECT_REF: Storage References. (line 6) ! * initialization routines: Initialization. (line 6) ! * INITIAL_ELIMINATION_OFFSET: Elimination. (line 84) ! * INITIAL_FRAME_ADDRESS_RTX: Frame Layout. (line 81) ! * INITIAL_FRAME_POINTER_OFFSET: Elimination. (line 34) ! * INIT_ARRAY_SECTION_ASM_OP: Sections. (line 106) ! * INIT_CUMULATIVE_ARGS: Register Arguments. (line 147) ! * INIT_CUMULATIVE_INCOMING_ARGS: Register Arguments. (line 175) ! * INIT_CUMULATIVE_LIBCALL_ARGS: Register Arguments. (line 169) ! * INIT_ENVIRONMENT: Driver. (line 305) ! * INIT_EXPANDERS: Per-Function Data. (line 36) * INIT_EXPR: Unary and Binary Expressions. (line 6) ! * init_machine_status: Per-Function Data. (line 42) * init_one_libfunc: Library Calls. (line 15) - * INIT_SECTION_ASM_OP: Sections. (line 90) * INIT_SECTION_ASM_OP <1>: Macros for Initialization. ! (line 9) * inlining: Target Attributes. (line 95) * insert_insn_on_edge: Maintaining the CFG. ! (line 105) * insn: Insns. (line 63) ! * 'insn' and '/f': Flags. (line 107) ! * 'insn' and '/j': Flags. (line 157) ! * 'insn' and '/s': Flags. (line 49) ! * 'insn' and '/s' <1>: Flags. (line 148) ! * 'insn' and '/u': Flags. (line 39) ! * 'insn' and '/v': Flags. (line 44) * insn attributes: Insn Attributes. (line 6) * insn canonicalization: Insn Canonicalizations. (line 6) --- 48122,48190 ---- * IDENTIFIER_TYPENAME_P: Identifiers. (line 33) * IEEE 754-2008: Decimal float library routines. (line 6) * IF_COND: Statements for C++. (line 6) ! * if_marked: GTY Options. (line 160) * IF_STMT: Statements for C++. (line 6) * if_then_else: Comparisons. (line 80) ! * if_then_else and attributes: Expressions. (line 32) ! * if_then_else usage: Side Effects. (line 56) ! * IFCVT_MACHDEP_INIT: Misc. (line 568) ! * IFCVT_MODIFY_CANCEL: Misc. (line 562) ! * IFCVT_MODIFY_FINAL: Misc. (line 556) ! * IFCVT_MODIFY_INSN: Misc. (line 550) ! * IFCVT_MODIFY_MULTIPLE_TESTS: Misc. (line 543) ! * IFCVT_MODIFY_TESTS: Misc. (line 532) * IMAGPART_EXPR: Unary and Binary Expressions. (line 6) ! * Immediate Uses: SSA Operands. (line 261) * immediate_operand: Machine-Independent Predicates. ! (line 11) ! * IMMEDIATE_PREFIX: Instruction Output. (line 155) ! * in_struct: Flags. (line 245) ! * in_struct, in code_label and note: Flags. (line 59) ! * in_struct, in insn and jump_insn and call_insn: Flags. (line 49) ! * in_struct, in insn, call_insn, jump_insn and jump_table_data: Flags. ! (line 148) ! * in_struct, in subreg: Flags. (line 187) * include: Including Patterns. (line 6) ! * INCLUDE_DEFAULTS: Driver. (line 328) ! * inclusive-or, bitwise: Arithmetic. (line 163) ! * INCOMING_FRAME_SP_OFFSET: Frame Layout. (line 183) ! * INCOMING_REG_PARM_STACK_SPACE: Stack Arguments. (line 74) ! * INCOMING_REGNO: Register Basics. (line 88) ! * INCOMING_RETURN_ADDR_RTX: Frame Layout. (line 139) ! * INCOMING_STACK_BOUNDARY: Storage Layout. (line 156) ! * INDEX_REG_CLASS: Register Classes. (line 143) ! * indirect_jump instruction pattern: Standard Names. (line 1244) * indirect_operand: Machine-Independent Predicates. ! (line 71) * INDIRECT_REF: Storage References. (line 6) ! * INIT_ARRAY_SECTION_ASM_OP: Sections. (line 107) ! * INIT_CUMULATIVE_ARGS: Register Arguments. (line 150) ! * INIT_CUMULATIVE_INCOMING_ARGS: Register Arguments. (line 177) ! * INIT_CUMULATIVE_LIBCALL_ARGS: Register Arguments. (line 171) ! * INIT_ENVIRONMENT: Driver. (line 306) ! * INIT_EXPANDERS: Per-Function Data. (line 39) * INIT_EXPR: Unary and Binary Expressions. (line 6) ! * init_machine_status: Per-Function Data. (line 45) * init_one_libfunc: Library Calls. (line 15) * INIT_SECTION_ASM_OP <1>: Macros for Initialization. ! (line 10) ! * INIT_SECTION_ASM_OP: Sections. (line 91) ! * INITIAL_ELIMINATION_OFFSET: Elimination. (line 85) ! * INITIAL_FRAME_ADDRESS_RTX: Frame Layout. (line 83) ! * INITIAL_FRAME_POINTER_OFFSET: Elimination. (line 35) ! * initialization routines: Initialization. (line 6) * inlining: Target Attributes. (line 95) * insert_insn_on_edge: Maintaining the CFG. ! (line 107) * insn: Insns. (line 63) ! * insn and /f: Flags. (line 107) ! * insn and /j: Flags. (line 157) ! * insn and /s: Flags. (line 49) ! * insn and /u: Flags. (line 39) ! * insn and /v: Flags. (line 44) * insn attributes: Insn Attributes. (line 6) * insn canonicalization: Insn Canonicalizations. (line 6) *************** Concept Index *** 47803,47837 **** * insn splitting: Insn Splitting. (line 6) * insn-attr.h: Defining Attributes. (line 34) - * insns: Insns. (line 6) - * insns, generating: RTL Template. (line 6) - * insns, recognizing: RTL Template. (line 6) * INSN_ANNULLED_BRANCH_P: Flags. (line 39) ! * INSN_CODE: Insns. (line 295) * INSN_DELETED_P: Flags. (line 44) * INSN_FROM_TARGET_P: Flags. (line 49) ! * insn_list: Insns. (line 540) ! * INSN_REFERENCES_ARE_DELAYED: Misc. (line 469) ! * INSN_SETS_ARE_DELAYED: Misc. (line 458) * INSN_UID: Insns. (line 23) ! * INSN_VAR_LOCATION: Insns. (line 236) * instruction attributes: Insn Attributes. (line 6) * instruction latency time: Processor pipeline description. (line 6) - * instruction latency time <1>: Processor pipeline description. - (line 105) - * instruction latency time <2>: Processor pipeline description. - (line 196) * instruction patterns: Patterns. (line 6) * instruction splitting: Insn Splitting. (line 6) ! * 'insv' instruction pattern: Standard Names. (line 1036) ! * 'insvM' instruction pattern: Standard Names. (line 988) ! * 'insvmisalignM' instruction pattern: Standard Names. (line 998) ! * int iterators in '.md' files: Int Iterators. (line 6) ! * INT16_TYPE: Type Layout. (line 253) ! * INT32_TYPE: Type Layout. (line 254) ! * INT64_TYPE: Type Layout. (line 255) ! * INT8_TYPE: Type Layout. (line 252) * INTEGER_CST: Constant expressions. (line 6) * INTEGER_TYPE: Types. (line 6) --- 48194,48233 ---- * insn splitting: Insn Splitting. (line 6) * insn-attr.h: Defining Attributes. (line 34) * INSN_ANNULLED_BRANCH_P: Flags. (line 39) ! * INSN_CODE: Insns. (line 299) * INSN_DELETED_P: Flags. (line 44) * INSN_FROM_TARGET_P: Flags. (line 49) ! * insn_list: Insns. (line 548) ! * INSN_REFERENCES_ARE_DELAYED: Misc. (line 471) ! * INSN_SETS_ARE_DELAYED: Misc. (line 460) * INSN_UID: Insns. (line 23) ! * INSN_VAR_LOCATION: Insns. (line 239) ! * insns: Insns. (line 6) ! * insns, generating: RTL Template. (line 6) ! * insns, recognizing: RTL Template. (line 6) * instruction attributes: Insn Attributes. (line 6) * instruction latency time: Processor pipeline description. (line 6) * instruction patterns: Patterns. (line 6) * instruction splitting: Insn Splitting. (line 6) ! * insv instruction pattern: Standard Names. (line 1042) ! * insvM instruction pattern: Standard Names. (line 994) ! * insvmisalignM instruction pattern: Standard Names. (line 1004) ! * int iterators in .md files: Int Iterators. (line 6) ! * INT16_TYPE: Type Layout. (line 254) ! * INT32_TYPE: Type Layout. (line 255) ! * INT64_TYPE: Type Layout. (line 256) ! * INT8_TYPE: Type Layout. (line 253) ! * INT_FAST16_TYPE: Type Layout. (line 270) ! * INT_FAST32_TYPE: Type Layout. (line 271) ! * INT_FAST64_TYPE: Type Layout. (line 272) ! * INT_FAST8_TYPE: Type Layout. (line 269) ! * INT_LEAST16_TYPE: Type Layout. (line 262) ! * INT_LEAST32_TYPE: Type Layout. (line 263) ! * INT_LEAST64_TYPE: Type Layout. (line 264) ! * INT_LEAST8_TYPE: Type Layout. (line 261) ! * INT_TYPE_SIZE: Type Layout. (line 12) * INTEGER_CST: Constant expressions. (line 6) * INTEGER_TYPE: Types. (line 6) *************** Concept Index *** 47839,48006 **** * interfacing to GCC output: Interface. (line 6) * interlock delays: Processor pipeline description. (line 6) ! * intermediate representation lowering: Parsing pass. (line 13) ! * INTMAX_TYPE: Type Layout. (line 229) ! * INTPTR_TYPE: Type Layout. (line 276) * introduction: Top. (line 6) - * INT_FAST16_TYPE: Type Layout. (line 269) - * INT_FAST32_TYPE: Type Layout. (line 270) - * INT_FAST64_TYPE: Type Layout. (line 271) - * INT_FAST8_TYPE: Type Layout. (line 268) - * INT_LEAST16_TYPE: Type Layout. (line 261) - * INT_LEAST32_TYPE: Type Layout. (line 262) - * INT_LEAST64_TYPE: Type Layout. (line 263) - * INT_LEAST8_TYPE: Type Layout. (line 260) - * INT_TYPE_SIZE: Type Layout. (line 11) * INVOKE__main: Macros for Initialization. - (line 50) - * in_struct: Flags. (line 245) - * 'in_struct', in 'code_label' and 'note': Flags. (line 59) - * 'in_struct', in 'insn' and 'jump_insn' and 'call_insn': Flags. - (line 49) - * 'in_struct', in 'insn', 'call_insn', 'jump_insn' and 'jump_table_data': Flags. - (line 148) - * 'in_struct', in 'subreg': Flags. (line 187) - * ior: Arithmetic. (line 164) - * 'ior' and attributes: Expressions. (line 50) - * 'ior', canonicalization of: Insn Canonicalizations. (line 51) ! * 'iorM3' instruction pattern: Standard Names. (line 276) ! * IRA_HARD_REGNO_ADD_COST_MULTIPLIER: Allocation Order. (line 44) ! * IS_ASM_LOGICAL_LINE_SEPARATOR: Data Output. (line 119) ! * is_gimple_addressable: Logical Operators. (line 113) ! * is_gimple_asm_val: Logical Operators. (line 117) ! * is_gimple_assign: Logical Operators. (line 149) ! * is_gimple_call: Logical Operators. (line 152) ! * is_gimple_call_addr: Logical Operators. (line 120) ! * is_gimple_constant: Logical Operators. (line 128) ! * is_gimple_debug: Logical Operators. (line 155) ! * is_gimple_ip_invariant: Logical Operators. (line 137) ! * is_gimple_ip_invariant_address: Logical Operators. (line 142) ! * is_gimple_mem_ref_addr: Logical Operators. (line 124) ! * is_gimple_min_invariant: Logical Operators. (line 131) ! * is_gimple_omp: Logical Operators. (line 166) ! * is_gimple_val: Logical Operators. (line 107) ! * iterators in '.md' files: Iterators. (line 6) * IV analysis on GIMPLE: Scalar evolutions. (line 6) * IV analysis on RTL: loop-iv. (line 6) * JMP_BUF_SIZE: Exception Region Output. ! (line 82) * jump: Flags. (line 286) ! * 'jump' instruction pattern: Standard Names. (line 1115) * jump instruction patterns: Jump Patterns. (line 6) ! * jump instructions and 'set': Side Effects. (line 56) ! * 'jump', in 'call_insn': Flags. (line 161) ! * 'jump', in 'insn': Flags. (line 157) ! * 'jump', in 'mem': Flags. (line 70) ! * Jumps: Jumps. (line 6) ! * JUMP_ALIGN: Alignment Output. (line 8) * jump_insn: Insns. (line 73) ! * 'jump_insn' and '/f': Flags. (line 107) ! * 'jump_insn' and '/s': Flags. (line 49) ! * 'jump_insn' and '/s' <1>: Flags. (line 148) ! * 'jump_insn' and '/u': Flags. (line 39) ! * 'jump_insn' and '/v': Flags. (line 44) * JUMP_LABEL: Insns. (line 80) - * JUMP_TABLES_IN_TEXT_SECTION: Sections. (line 150) * jump_table_data: Insns. (line 166) ! * 'jump_table_data' and '/s': Flags. (line 148) ! * 'jump_table_data' and '/v': Flags. (line 44) ! * LABEL_ALIGN: Alignment Output. (line 57) ! * LABEL_ALIGN_AFTER_BARRIER: Alignment Output. (line 26) ! * LABEL_ALTERNATE_NAME: Edges. (line 180) * LABEL_ALT_ENTRY_P: Insns. (line 146) * LABEL_DECL: Declarations. (line 6) * LABEL_KIND: Insns. (line 146) * LABEL_NUSES: Insns. (line 142) * LABEL_PRESERVE_P: Flags. (line 59) ! * label_ref: Constants. (line 96) ! * 'label_ref' and '/v': Flags. (line 65) ! * 'label_ref', RTL sharing: Sharing. (line 35) * LABEL_REF_NONLOCAL_P: Flags. (line 65) - * language-dependent trees: Language-dependent trees. - (line 6) - * language-independent intermediate representation: Parsing pass. - (line 13) * lang_hooks.gimplify_expr: Gimplification pass. (line 18) * lang_hooks.parse_file: Parsing pass. (line 6) * large return values: Aggregate Return. (line 6) ! * LARGEST_EXPONENT_IS_NORMAL: Storage Layout. (line 483) ! * LAST_STACK_REG: Stack Registers. (line 30) * LAST_VIRTUAL_REGISTER: Regs and Memory. (line 51) ! * 'lceilMN2': Standard Names. (line 699) * LCSSA: LCSSA. (line 6) - * LDD_SUFFIX: Macros for Initialization. - (line 121) * LD_FINI_SWITCH: Macros for Initialization. ! (line 28) * LD_INIT_SWITCH: Macros for Initialization. ! (line 24) * le: Comparisons. (line 76) ! * 'le' and attributes: Expressions. (line 83) * leaf functions: Leaf Functions. (line 6) ! * leaf_function_p: Standard Names. (line 1199) ! * LEAF_REGISTERS: Leaf Functions. (line 23) ! * LEAF_REG_REMAP: Leaf Functions. (line 37) ! * left rotate: Arithmetic. (line 196) ! * left shift: Arithmetic. (line 174) ! * LEGITIMATE_PIC_OPERAND_P: PIC. (line 31) ! * LEGITIMIZE_RELOAD_ADDRESS: Addressing Modes. (line 150) ! * length: GTY Options. (line 47) * less than: Comparisons. (line 68) * less than or equal: Comparisons. (line 76) * leu: Comparisons. (line 76) ! * 'leu' and attributes: Expressions. (line 83) ! * LE_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'lfloorMN2': Standard Names. (line 694) * LIB2FUNCS_EXTRA: Target Fragment. (line 11) * LIBCALL_VALUE: Scalar Return. (line 56) ! * 'libgcc.a': Library Calls. (line 6) * LIBGCC2_CFLAGS: Target Fragment. (line 8) ! * LIBGCC2_GNU_PREFIX: Type Layout. (line 127) ! * LIBGCC2_HAS_DF_MODE: Type Layout. (line 108) ! * LIBGCC2_HAS_TF_MODE: Type Layout. (line 121) ! * LIBGCC2_HAS_XF_MODE: Type Layout. (line 115) ! * LIBGCC2_LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 102) * LIBGCC2_UNWIND_ATTRIBUTE: Misc. (line 996) ! * LIBGCC_SPEC: Driver. (line 115) * library subroutine names: Library Calls. (line 6) ! * LIBRARY_PATH_ENV: Misc. (line 509) ! * LIB_SPEC: Driver. (line 107) ! * LIMIT_RELOAD_CLASS: Register Classes. (line 296) ! * LINK_COMMAND_SPEC: Driver. (line 236) ! * LINK_EH_SPEC: Driver. (line 142) ! * LINK_GCC_C_SEQUENCE_SPEC: Driver. (line 232) ! * LINK_LIBGCC_SPECIAL_1: Driver. (line 227) ! * LINK_SPEC: Driver. (line 100) * list: Containers. (line 6) * Liveness representation: Liveness information. (line 6) ! * load address instruction: Simple Constraints. (line 162) ! * LOAD_EXTEND_OP: Misc. (line 59) ! * 'load_multiple' instruction pattern: Standard Names. (line 136) ! * Local Register Allocator (LRA): RTL passes. (line 187) ! * LOCAL_ALIGNMENT: Storage Layout. (line 249) * LOCAL_CLASS_P: Classes. (line 73) ! * LOCAL_DECL_ALIGNMENT: Storage Layout. (line 286) ! * LOCAL_INCLUDE_DIR: Driver. (line 312) ! * LOCAL_LABEL_PREFIX: Instruction Output. (line 151) ! * LOCAL_REGNO: Register Basics. (line 101) * Logical Operators: Logical Operators. (line 6) ! * logical-and, bitwise: Arithmetic. (line 159) ! * LOGICAL_OP_NON_SHORT_CIRCUIT: Costs. (line 264) ! * 'logM2' instruction pattern: Standard Names. (line 607) ! * LOG_LINKS: Insns. (line 314) ! * 'longjmp' and automatic variables: Interface. (line 52) ! * LONG_ACCUM_TYPE_SIZE: Type Layout. (line 92) ! * LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 57) ! * LONG_FRACT_TYPE_SIZE: Type Layout. (line 72) ! * LONG_LONG_ACCUM_TYPE_SIZE: Type Layout. (line 97) ! * LONG_LONG_FRACT_TYPE_SIZE: Type Layout. (line 77) ! * LONG_LONG_TYPE_SIZE: Type Layout. (line 32) ! * LONG_TYPE_SIZE: Type Layout. (line 21) * Loop analysis: Loop representation. (line 6) * Loop manipulation: Loop manipulation. (line 6) --- 48235,48386 ---- * interfacing to GCC output: Interface. (line 6) * interlock delays: Processor pipeline description. (line 6) ! * intermediate representation lowering: Parsing pass. (line 14) ! * INTMAX_TYPE: Type Layout. (line 230) ! * INTPTR_TYPE: Type Layout. (line 277) * introduction: Top. (line 6) * INVOKE__main: Macros for Initialization. (line 51) ! * ior: Arithmetic. (line 163) ! * ior and attributes: Expressions. (line 50) ! * ior, canonicalization of: Insn Canonicalizations. ! (line 52) ! * iorM3 instruction pattern: Standard Names. (line 279) ! * IRA_HARD_REGNO_ADD_COST_MULTIPLIER: Allocation Order. (line 45) ! * IS_ASM_LOGICAL_LINE_SEPARATOR: Data Output. (line 121) ! * is_gimple_addressable: Logical Operators. (line 115) ! * is_gimple_asm_val: Logical Operators. (line 119) ! * is_gimple_assign: Logical Operators. (line 151) ! * is_gimple_call: Logical Operators. (line 154) ! * is_gimple_call_addr: Logical Operators. (line 122) ! * is_gimple_constant: Logical Operators. (line 130) ! * is_gimple_debug: Logical Operators. (line 157) ! * is_gimple_ip_invariant: Logical Operators. (line 139) ! * is_gimple_ip_invariant_address: Logical Operators. (line 144) ! * is_gimple_mem_ref_addr: Logical Operators. (line 126) ! * is_gimple_min_invariant: Logical Operators. (line 133) ! * is_gimple_omp: Logical Operators. (line 168) ! * is_gimple_val: Logical Operators. (line 109) ! * iterators in .md files: Iterators. (line 6) * IV analysis on GIMPLE: Scalar evolutions. (line 6) * IV analysis on RTL: loop-iv. (line 6) * JMP_BUF_SIZE: Exception Region Output. ! (line 84) * jump: Flags. (line 286) ! * jump instruction pattern: Standard Names. (line 1121) * jump instruction patterns: Jump Patterns. (line 6) ! * jump instructions and set: Side Effects. (line 56) ! * jump, in call_insn: Flags. (line 161) ! * jump, in insn: Flags. (line 157) ! * jump, in mem: Flags. (line 70) ! * JUMP_ALIGN: Alignment Output. (line 9) * jump_insn: Insns. (line 73) ! * jump_insn and /f: Flags. (line 107) ! * jump_insn and /s: Flags. (line 49) ! * jump_insn and /u: Flags. (line 39) ! * jump_insn and /v: Flags. (line 44) * JUMP_LABEL: Insns. (line 80) * jump_table_data: Insns. (line 166) ! * jump_table_data and /s: Flags. (line 148) ! * jump_table_data and /v: Flags. (line 44) ! * JUMP_TABLES_IN_TEXT_SECTION: Sections. (line 151) ! * Jumps: Jumps. (line 6) ! * LABEL_ALIGN: Alignment Output. (line 58) ! * LABEL_ALIGN_AFTER_BARRIER: Alignment Output. (line 27) * LABEL_ALT_ENTRY_P: Insns. (line 146) + * LABEL_ALTERNATE_NAME: Edges. (line 181) * LABEL_DECL: Declarations. (line 6) * LABEL_KIND: Insns. (line 146) * LABEL_NUSES: Insns. (line 142) * LABEL_PRESERVE_P: Flags. (line 59) ! * label_ref: Constants. (line 97) ! * label_ref and /v: Flags. (line 65) ! * label_ref, RTL sharing: Sharing. (line 35) * LABEL_REF_NONLOCAL_P: Flags. (line 65) * lang_hooks.gimplify_expr: Gimplification pass. (line 18) * lang_hooks.parse_file: Parsing pass. (line 6) + * language-dependent trees: Language-dependent trees. + (line 6) + * language-independent intermediate representation: Parsing pass. + (line 14) * large return values: Aggregate Return. (line 6) ! * LARGEST_EXPONENT_IS_NORMAL: Storage Layout. (line 489) ! * LAST_STACK_REG: Stack Registers. (line 31) * LAST_VIRTUAL_REGISTER: Regs and Memory. (line 51) ! * lceilMN2: Standard Names. (line 705) * LCSSA: LCSSA. (line 6) * LD_FINI_SWITCH: Macros for Initialization. ! (line 29) * LD_INIT_SWITCH: Macros for Initialization. ! (line 25) ! * LDD_SUFFIX: Macros for Initialization. ! (line 122) * le: Comparisons. (line 76) ! * le and attributes: Expressions. (line 85) ! * LE_EXPR: Unary and Binary Expressions. ! (line 6) * leaf functions: Leaf Functions. (line 6) ! * leaf_function_p: Standard Names. (line 1206) ! * LEAF_REG_REMAP: Leaf Functions. (line 39) ! * LEAF_REGISTERS: Leaf Functions. (line 25) ! * left rotate: Arithmetic. (line 195) ! * left shift: Arithmetic. (line 173) ! * LEGITIMATE_PIC_OPERAND_P: PIC. (line 32) ! * LEGITIMIZE_RELOAD_ADDRESS: Addressing Modes. (line 153) ! * length: GTY Options. (line 50) * less than: Comparisons. (line 68) * less than or equal: Comparisons. (line 76) * leu: Comparisons. (line 76) ! * leu and attributes: Expressions. (line 85) ! * lfloorMN2: Standard Names. (line 700) * LIB2FUNCS_EXTRA: Target Fragment. (line 11) + * LIB_SPEC: Driver. (line 108) * LIBCALL_VALUE: Scalar Return. (line 56) ! * libgcc.a: Library Calls. (line 6) * LIBGCC2_CFLAGS: Target Fragment. (line 8) ! * LIBGCC2_GNU_PREFIX: Type Layout. (line 128) ! * LIBGCC2_HAS_DF_MODE: Type Layout. (line 109) ! * LIBGCC2_HAS_TF_MODE: Type Layout. (line 122) ! * LIBGCC2_HAS_XF_MODE: Type Layout. (line 116) ! * LIBGCC2_LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 103) * LIBGCC2_UNWIND_ATTRIBUTE: Misc. (line 996) ! * LIBGCC_SPEC: Driver. (line 116) * library subroutine names: Library Calls. (line 6) ! * LIBRARY_PATH_ENV: Misc. (line 511) ! * LIMIT_RELOAD_CLASS: Register Classes. (line 300) ! * LINK_COMMAND_SPEC: Driver. (line 237) ! * LINK_EH_SPEC: Driver. (line 143) ! * LINK_GCC_C_SEQUENCE_SPEC: Driver. (line 233) ! * LINK_LIBGCC_SPECIAL_1: Driver. (line 228) ! * LINK_SPEC: Driver. (line 101) * list: Containers. (line 6) * Liveness representation: Liveness information. (line 6) ! * lo_sum: Arithmetic. (line 24) ! * load address instruction: Simple Constraints. (line 164) ! * LOAD_EXTEND_OP: Misc. (line 60) ! * load_multiple instruction pattern: Standard Names. (line 137) ! * Local Register Allocator (LRA): RTL passes. (line 188) ! * LOCAL_ALIGNMENT: Storage Layout. (line 253) * LOCAL_CLASS_P: Classes. (line 73) ! * LOCAL_DECL_ALIGNMENT: Storage Layout. (line 290) ! * LOCAL_INCLUDE_DIR: Driver. (line 313) ! * LOCAL_LABEL_PREFIX: Instruction Output. (line 153) ! * LOCAL_REGNO: Register Basics. (line 102) ! * LOG_LINKS: Insns. (line 318) * Logical Operators: Logical Operators. (line 6) ! * logical-and, bitwise: Arithmetic. (line 158) ! * LOGICAL_OP_NON_SHORT_CIRCUIT: Costs. (line 265) ! * logM2 instruction pattern: Standard Names. (line 613) ! * LONG_ACCUM_TYPE_SIZE: Type Layout. (line 93) ! * LONG_DOUBLE_TYPE_SIZE: Type Layout. (line 58) ! * LONG_FRACT_TYPE_SIZE: Type Layout. (line 73) ! * LONG_LONG_ACCUM_TYPE_SIZE: Type Layout. (line 98) ! * LONG_LONG_FRACT_TYPE_SIZE: Type Layout. (line 78) ! * LONG_LONG_TYPE_SIZE: Type Layout. (line 33) ! * LONG_TYPE_SIZE: Type Layout. (line 22) ! * longjmp and automatic variables: Interface. (line 52) * Loop analysis: Loop representation. (line 6) * Loop manipulation: Loop manipulation. (line 6) *************** Concept Index *** 48008,48037 **** * Loop representation: Loop representation. (line 6) * Loop-closed SSA form: LCSSA. (line 6) ! * looping instruction patterns: Looping Patterns. (line 6) ! * LOOP_ALIGN: Alignment Output. (line 40) * LOOP_EXPR: Unary and Binary Expressions. (line 6) * lowering, language-dependent intermediate representation: Parsing pass. ! (line 13) ! * lo_sum: Arithmetic. (line 25) ! * 'lrintMN2': Standard Names. (line 684) ! * 'lroundMN2': Standard Names. (line 689) ! * lshiftrt: Arithmetic. (line 191) ! * 'lshiftrt' and attributes: Expressions. (line 83) * LSHIFT_EXPR: Unary and Binary Expressions. (line 6) ! * 'lshrM3' instruction pattern: Standard Names. (line 526) * lt: Comparisons. (line 68) ! * 'lt' and attributes: Expressions. (line 83) * LTGT_EXPR: Unary and Binary Expressions. (line 6) * lto: LTO. (line 6) * ltrans: LTO. (line 6) * ltu: Comparisons. (line 68) ! * LT_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'm' in constraint: Simple Constraints. (line 17) * machine attributes: Target Attributes. (line 6) * machine description macros: Target Macros. (line 6) * machine descriptions: Machine Desc. (line 6) --- 48388,48416 ---- * Loop representation: Loop representation. (line 6) * Loop-closed SSA form: LCSSA. (line 6) ! * LOOP_ALIGN: Alignment Output. (line 41) * LOOP_EXPR: Unary and Binary Expressions. (line 6) + * looping instruction patterns: Looping Patterns. (line 6) * lowering, language-dependent intermediate representation: Parsing pass. ! (line 14) ! * lrintMN2: Standard Names. (line 690) ! * lroundMN2: Standard Names. (line 695) * LSHIFT_EXPR: Unary and Binary Expressions. (line 6) ! * lshiftrt: Arithmetic. (line 190) ! * lshiftrt and attributes: Expressions. (line 85) ! * lshrM3 instruction pattern: Standard Names. (line 532) * lt: Comparisons. (line 68) ! * lt and attributes: Expressions. (line 85) ! * LT_EXPR: Unary and Binary Expressions. ! (line 6) * LTGT_EXPR: Unary and Binary Expressions. (line 6) * lto: LTO. (line 6) * ltrans: LTO. (line 6) * ltu: Comparisons. (line 68) ! * m in constraint: Simple Constraints. (line 17) * machine attributes: Target Attributes. (line 6) * machine description macros: Target Macros. (line 6) * machine descriptions: Machine Desc. (line 6) *************** Concept Index *** 48042,48202 **** * machine-independent predicates: Machine-Independent Predicates. (line 6) * macros, target description: Target Macros. (line 6) ! * 'maddMN4' instruction pattern: Standard Names. (line 449) ! * makefile fragment: Fragments. (line 6) ! * makefile targets: Makefile. (line 6) ! * MAKE_DECL_ONE_ONLY: Label Output. (line 246) * make_safe_from: Expander Definitions. (line 151) ! * MALLOC_ABI_ALIGNMENT: Storage Layout. (line 168) * Manipulating GIMPLE statements: Manipulating GIMPLE statements. (line 6) * marking roots: GGC Roots. (line 6) - * mark_hook: GTY Options. (line 181) * MASK_RETURN_ADDR: Exception Region Output. ! (line 34) ! * matching constraint: Simple Constraints. (line 140) ! * matching operands: Output Template. (line 49) ! * match_dup: RTL Template. (line 73) * match_dup <1>: define_peephole2. (line 28) ! * 'match_dup' and attributes: Insn Lengths. (line 16) * match_operand: RTL Template. (line 16) ! * 'match_operand' and attributes: Expressions. (line 55) * match_operator: RTL Template. (line 95) - * match_op_dup: RTL Template. (line 163) - * match_parallel: RTL Template. (line 172) * match_par_dup: RTL Template. (line 219) ! * match_scratch: RTL Template. (line 58) * match_scratch <1>: define_peephole2. (line 28) ! * 'match_test' and attributes: Expressions. (line 64) * math library: Soft float library routines. (line 6) * math, in RTL: Arithmetic. (line 6) * matherr: Library Calls. (line 59) ! * MATH_LIBRARY: Misc. (line 502) ! * 'maxM3' instruction pattern: Standard Names. (line 311) ! * MAX_BITSIZE_MODE_ANY_INT: Machine Modes. (line 349) ! * MAX_BITSIZE_MODE_ANY_MODE: Machine Modes. (line 355) ! * MAX_BITS_PER_WORD: Storage Layout. (line 54) ! * MAX_CONDITIONAL_EXECUTE: Misc. (line 524) ! * MAX_FIXED_MODE_SIZE: Storage Layout. (line 431) ! * MAX_MOVE_MAX: Misc. (line 105) ! * MAX_OFILE_ALIGNMENT: Storage Layout. (line 203) ! * MAX_REGS_PER_ADDRESS: Addressing Modes. (line 42) ! * MAX_STACK_ALIGNMENT: Storage Layout. (line 197) ! * maybe_undef: GTY Options. (line 190) ! * may_trap_p, tree_could_trap_p: Edges. (line 114) * mcount: Profiling. (line 12) * MD_CAN_REDIRECT_BRANCH: Misc. (line 711) ! * MD_EXEC_PREFIX: Driver. (line 267) ! * MD_FALLBACK_FRAME_STATE_FOR: Exception Handling. (line 93) ! * MD_HANDLE_UNWABI: Exception Handling. (line 112) ! * MD_STARTFILE_PREFIX: Driver. (line 295) ! * MD_STARTFILE_PREFIX_1: Driver. (line 300) ! * mem: Regs and Memory. (line 370) ! * 'mem' and '/c': Flags. (line 81) ! * 'mem' and '/f': Flags. (line 85) ! * 'mem' and '/j': Flags. (line 70) ! * 'mem' and '/u': Flags. (line 134) ! * 'mem' and '/v': Flags. (line 76) ! * 'mem', RTL sharing: Sharing. (line 40) ! * memory model: Memory model. (line 6) ! * memory reference, nonoffsettable: Simple Constraints. (line 254) ! * memory references in constraints: Simple Constraints. (line 17) ! * 'memory_barrier' instruction pattern: Standard Names. (line 1587) ! * MEMORY_MOVE_COST: Costs. (line 53) ! * memory_operand: Machine-Independent Predicates. ! (line 57) ! * MEM_ADDR_SPACE: Special Accessors. (line 48) * MEM_ALIAS_SET: Special Accessors. (line 9) ! * MEM_ALIGN: Special Accessors. (line 45) ! * MEM_EXPR: Special Accessors. (line 19) * MEM_KEEP_ALIAS_SET_P: Flags. (line 70) * MEM_NOTRAP_P: Flags. (line 81) ! * MEM_OFFSET: Special Accessors. (line 31) ! * MEM_OFFSET_KNOWN_P: Special Accessors. (line 27) * MEM_POINTER: Flags. (line 85) * MEM_READONLY_P: Flags. (line 134) * MEM_REF: Storage References. (line 6) ! * 'mem_signal_fenceMODE' instruction pattern: Standard Names. ! (line 1857) ! * MEM_SIZE: Special Accessors. (line 39) ! * MEM_SIZE_KNOWN_P: Special Accessors. (line 35) ! * 'mem_thread_fenceMODE' instruction pattern: Standard Names. ! (line 1849) * MEM_VOLATILE_P: Flags. (line 76) * METHOD_TYPE: Types. (line 6) ! * MINIMUM_ALIGNMENT: Storage Layout. (line 299) ! * MINIMUM_ATOMIC_ALIGNMENT: Storage Layout. (line 176) ! * 'minM3' instruction pattern: Standard Names. (line 311) ! * minus: Arithmetic. (line 38) ! * 'minus' and attributes: Expressions. (line 83) ! * 'minus', canonicalization of: Insn Canonicalizations. (line 27) * MINUS_EXPR: Unary and Binary Expressions. (line 6) - * MIN_UNITS_PER_WORD: Storage Layout. (line 64) * MIPS coprocessor-definition macros: MIPS Coprocessors. (line 6) * mnemonic attribute: Mnemonic Attribute. (line 6) ! * mod: Arithmetic. (line 137) ! * 'mod' and attributes: Expressions. (line 83) ! * mode classes: Machine Modes. (line 221) ! * mode iterators in '.md' files: Mode Iterators. (line 6) * mode switching: Mode Switching. (line 6) ! * MODES_TIEABLE_P: Values in Registers. ! (line 127) ! * MODE_ACCUM: Machine Modes. (line 251) ! * MODE_AFTER: Mode Switching. (line 48) ! * MODE_BASE_REG_CLASS: Register Classes. (line 116) ! * MODE_BASE_REG_REG_CLASS: Register Classes. (line 122) ! * MODE_CC: Machine Modes. (line 270) * MODE_CC <1>: MODE_CC Condition Codes. (line 6) ! * MODE_CODE_BASE_REG_CLASS: Register Classes. (line 129) ! * MODE_COMPLEX_FLOAT: Machine Modes. (line 262) ! * MODE_COMPLEX_INT: Machine Modes. (line 259) ! * MODE_DECIMAL_FLOAT: Machine Modes. (line 239) ! * MODE_ENTRY: Mode Switching. (line 54) ! * MODE_EXIT: Mode Switching. (line 60) ! * MODE_FLOAT: Machine Modes. (line 235) ! * MODE_FRACT: Machine Modes. (line 243) ! * MODE_FUNCTION: Machine Modes. (line 266) ! * MODE_INT: Machine Modes. (line 227) ! * MODE_NEEDED: Mode Switching. (line 41) ! * MODE_PARTIAL_INT: Machine Modes. (line 231) ! * MODE_PRIORITY_TO_MODE: Mode Switching. (line 66) ! * MODE_RANDOM: Machine Modes. (line 275) ! * MODE_UACCUM: Machine Modes. (line 255) ! * MODE_UFRACT: Machine Modes. (line 247) * modifiers in constraints: Modifiers. (line 6) * MODIFY_EXPR: Unary and Binary Expressions. (line 6) ! * MODIFY_JNI_METHOD_CALL: Misc. (line 798) ! * 'modM3' instruction pattern: Standard Names. (line 276) ! * modulo scheduling: RTL passes. (line 123) ! * MOVE_BY_PIECES_P: Costs. (line 164) ! * MOVE_MAX: Misc. (line 100) ! * MOVE_MAX_PIECES: Costs. (line 170) ! * MOVE_RATIO: Costs. (line 148) ! * 'movM' instruction pattern: Standard Names. (line 11) ! * 'movmemM' instruction pattern: Standard Names. (line 756) ! * 'movmisalignM' instruction pattern: Standard Names. (line 125) ! * 'movMODEcc' instruction pattern: Standard Names. (line 1050) ! * 'movstr' instruction pattern: Standard Names. (line 791) ! * 'movstrictM' instruction pattern: Standard Names. (line 119) ! * 'msubMN4' instruction pattern: Standard Names. (line 472) ! * 'mulhisi3' instruction pattern: Standard Names. (line 425) ! * 'mulM3' instruction pattern: Standard Names. (line 276) ! * 'mulqihi3' instruction pattern: Standard Names. (line 429) ! * 'mulsidi3' instruction pattern: Standard Names. (line 429) ! * mult: Arithmetic. (line 93) ! * 'mult' and attributes: Expressions. (line 83) ! * 'mult', canonicalization of: Insn Canonicalizations. (line 27) ! * 'mult', canonicalization of <1>: Insn Canonicalizations. ! (line 91) * MULTIARCH_DIRNAME: Target Fragment. (line 170) ! * MULTILIB_DEFAULTS: Driver. (line 252) * MULTILIB_DIRNAMES: Target Fragment. (line 44) * MULTILIB_EXCEPTIONS: Target Fragment. (line 70) * MULTILIB_EXTRA_OPTS: Target Fragment. (line 132) --- 48421,48581 ---- * machine-independent predicates: Machine-Independent Predicates. (line 6) * macros, target description: Target Macros. (line 6) ! * maddMN4 instruction pattern: Standard Names. (line 455) ! * MAKE_DECL_ONE_ONLY: Label Output. (line 250) * make_safe_from: Expander Definitions. (line 151) ! * makefile fragment: Fragments. (line 6) ! * makefile targets: Makefile. (line 6) ! * MALLOC_ABI_ALIGNMENT: Storage Layout. (line 170) * Manipulating GIMPLE statements: Manipulating GIMPLE statements. (line 6) + * mark_hook: GTY Options. (line 175) * marking roots: GGC Roots. (line 6) * MASK_RETURN_ADDR: Exception Region Output. ! (line 35) * match_dup <1>: define_peephole2. (line 28) ! * match_dup: RTL Template. (line 73) ! * match_dup and attributes: Insn Lengths. (line 16) ! * match_op_dup: RTL Template. (line 163) * match_operand: RTL Template. (line 16) ! * match_operand and attributes: Expressions. (line 55) * match_operator: RTL Template. (line 95) * match_par_dup: RTL Template. (line 219) ! * match_parallel: RTL Template. (line 172) * match_scratch <1>: define_peephole2. (line 28) ! * match_scratch: RTL Template. (line 58) ! * match_test and attributes: Expressions. (line 64) ! * matching constraint: Simple Constraints. (line 142) ! * matching operands: Output Template. (line 49) * math library: Soft float library routines. (line 6) * math, in RTL: Arithmetic. (line 6) + * MATH_LIBRARY: Misc. (line 504) * matherr: Library Calls. (line 59) ! * MAX_BITS_PER_WORD: Storage Layout. (line 55) ! * MAX_BITSIZE_MODE_ANY_INT: Machine Modes. (line 350) ! * MAX_BITSIZE_MODE_ANY_MODE: Machine Modes. (line 356) ! * MAX_CONDITIONAL_EXECUTE: Misc. (line 526) ! * MAX_FIXED_MODE_SIZE: Storage Layout. (line 436) ! * MAX_MOVE_MAX: Misc. (line 106) ! * MAX_OFILE_ALIGNMENT: Storage Layout. (line 207) ! * MAX_REGS_PER_ADDRESS: Addressing Modes. (line 43) ! * MAX_STACK_ALIGNMENT: Storage Layout. (line 200) ! * maxM3 instruction pattern: Standard Names. (line 314) ! * may_trap_p, tree_could_trap_p: Edges. (line 115) ! * maybe_undef: GTY Options. (line 183) * mcount: Profiling. (line 12) * MD_CAN_REDIRECT_BRANCH: Misc. (line 711) ! * MD_EXEC_PREFIX: Driver. (line 268) ! * MD_FALLBACK_FRAME_STATE_FOR: Exception Handling. (line 94) ! * MD_HANDLE_UNWABI: Exception Handling. (line 114) ! * MD_STARTFILE_PREFIX: Driver. (line 296) ! * MD_STARTFILE_PREFIX_1: Driver. (line 301) ! * mem: Regs and Memory. (line 374) ! * mem and /c: Flags. (line 81) ! * mem and /f: Flags. (line 85) ! * mem and /j: Flags. (line 70) ! * mem and /u: Flags. (line 134) ! * mem and /v: Flags. (line 76) ! * mem, RTL sharing: Sharing. (line 40) ! * MEM_ADDR_SPACE: Special Accessors. (line 49) * MEM_ALIAS_SET: Special Accessors. (line 9) ! * MEM_ALIGN: Special Accessors. (line 46) ! * MEM_EXPR: Special Accessors. (line 20) * MEM_KEEP_ALIAS_SET_P: Flags. (line 70) * MEM_NOTRAP_P: Flags. (line 81) ! * MEM_OFFSET: Special Accessors. (line 32) ! * MEM_OFFSET_KNOWN_P: Special Accessors. (line 28) * MEM_POINTER: Flags. (line 85) * MEM_READONLY_P: Flags. (line 134) * MEM_REF: Storage References. (line 6) ! * mem_signal_fenceMODE instruction pattern: Standard Names. (line 1855) ! * MEM_SIZE: Special Accessors. (line 40) ! * MEM_SIZE_KNOWN_P: Special Accessors. (line 36) ! * mem_thread_fenceMODE instruction pattern: Standard Names. (line 1847) * MEM_VOLATILE_P: Flags. (line 76) + * memory model: Memory model. (line 6) + * memory reference, nonoffsettable: Simple Constraints. (line 256) + * memory references in constraints: Simple Constraints. (line 17) + * memory_barrier instruction pattern: Standard Names. (line 1596) + * MEMORY_MOVE_COST: Costs. (line 54) + * memory_operand: Machine-Independent Predicates. + (line 58) * METHOD_TYPE: Types. (line 6) ! * MIN_UNITS_PER_WORD: Storage Layout. (line 65) ! * MINIMUM_ALIGNMENT: Storage Layout. (line 303) ! * MINIMUM_ATOMIC_ALIGNMENT: Storage Layout. (line 178) ! * minM3 instruction pattern: Standard Names. (line 314) ! * minus: Arithmetic. (line 36) ! * minus and attributes: Expressions. (line 85) ! * minus, canonicalization of: Insn Canonicalizations. (line 27) * MINUS_EXPR: Unary and Binary Expressions. (line 6) * MIPS coprocessor-definition macros: MIPS Coprocessors. (line 6) * mnemonic attribute: Mnemonic Attribute. (line 6) ! * mod: Arithmetic. (line 136) ! * mod and attributes: Expressions. (line 85) ! * mode classes: Machine Modes. (line 222) ! * mode iterators in .md files: Mode Iterators. (line 6) * mode switching: Mode Switching. (line 6) ! * MODE_ACCUM: Machine Modes. (line 252) ! * MODE_AFTER: Mode Switching. (line 49) ! * MODE_BASE_REG_CLASS: Register Classes. (line 119) ! * MODE_BASE_REG_REG_CLASS: Register Classes. (line 125) * MODE_CC <1>: MODE_CC Condition Codes. (line 6) ! * MODE_CC: Machine Modes. (line 271) ! * MODE_CODE_BASE_REG_CLASS: Register Classes. (line 133) ! * MODE_COMPLEX_FLOAT: Machine Modes. (line 263) ! * MODE_COMPLEX_INT: Machine Modes. (line 260) ! * MODE_DECIMAL_FLOAT: Machine Modes. (line 240) ! * MODE_ENTRY: Mode Switching. (line 55) ! * MODE_EXIT: Mode Switching. (line 61) ! * MODE_FLOAT: Machine Modes. (line 236) ! * MODE_FRACT: Machine Modes. (line 244) ! * MODE_FUNCTION: Machine Modes. (line 267) ! * MODE_INT: Machine Modes. (line 228) ! * MODE_NEEDED: Mode Switching. (line 42) ! * MODE_PARTIAL_INT: Machine Modes. (line 232) ! * MODE_PRIORITY_TO_MODE: Mode Switching. (line 67) ! * MODE_RANDOM: Machine Modes. (line 276) ! * MODE_UACCUM: Machine Modes. (line 256) ! * MODE_UFRACT: Machine Modes. (line 248) ! * MODES_TIEABLE_P: Values in Registers. ! (line 129) * modifiers in constraints: Modifiers. (line 6) * MODIFY_EXPR: Unary and Binary Expressions. (line 6) ! * MODIFY_JNI_METHOD_CALL: Misc. (line 796) ! * modM3 instruction pattern: Standard Names. (line 279) ! * modulo scheduling: RTL passes. (line 124) ! * MOVE_BY_PIECES_P: Costs. (line 165) ! * MOVE_MAX: Misc. (line 101) ! * MOVE_MAX_PIECES: Costs. (line 171) ! * MOVE_RATIO: Costs. (line 149) ! * movM instruction pattern: Standard Names. (line 11) ! * movmemM instruction pattern: Standard Names. (line 762) ! * movmisalignM instruction pattern: Standard Names. (line 126) ! * movMODEcc instruction pattern: Standard Names. (line 1056) ! * movstr instruction pattern: Standard Names. (line 797) ! * movstrictM instruction pattern: Standard Names. (line 120) ! * msubMN4 instruction pattern: Standard Names. (line 478) ! * mulhisi3 instruction pattern: Standard Names. (line 431) ! * mulM3 instruction pattern: Standard Names. (line 279) ! * mulqihi3 instruction pattern: Standard Names. (line 435) ! * mulsidi3 instruction pattern: Standard Names. (line 435) ! * mult: Arithmetic. (line 92) ! * mult and attributes: Expressions. (line 85) ! * mult, canonicalization of: Insn Canonicalizations. (line 27) ! * MULT_EXPR: Unary and Binary Expressions. ! (line 6) ! * MULT_HIGHPART_EXPR: Unary and Binary Expressions. ! (line 6) * MULTIARCH_DIRNAME: Target Fragment. (line 170) ! * MULTILIB_DEFAULTS: Driver. (line 253) * MULTILIB_DIRNAMES: Target Fragment. (line 44) * MULTILIB_EXCEPTIONS: Target Fragment. (line 70) * MULTILIB_EXTRA_OPTS: Target Fragment. (line 132) *************** Concept Index *** 48206,48314 **** * MULTILIB_REQUIRED: Target Fragment. (line 82) * MULTILIB_REUSE: Target Fragment. (line 103) * multiple alternative constraints: Multi-Alternative. (line 6) ! * MULTIPLE_SYMBOL_SPACES: Misc. (line 482) ! * multiplication: Arithmetic. (line 93) ! * multiplication with signed saturation: Arithmetic. (line 93) ! * multiplication with unsigned saturation: Arithmetic. (line 93) ! * MULT_EXPR: Unary and Binary Expressions. ! (line 6) ! * MULT_HIGHPART_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'n' in constraint: Simple Constraints. (line 73) * name: Identifiers. (line 6) * named address spaces: Named Address Spaces. (line 6) * named patterns and conditions: Patterns. (line 47) * names, pattern: Standard Names. (line 6) * namespace, scope: Namespaces. (line 6) - * NAMESPACE_DECL: Declarations. (line 6) * NAMESPACE_DECL <1>: Namespaces. (line 6) ! * NATIVE_SYSTEM_HEADER_COMPONENT: Driver. (line 322) * ne: Comparisons. (line 56) ! * 'ne' and attributes: Expressions. (line 83) ! * 'nearbyintM2' instruction pattern: Standard Names. (line 666) ! * neg: Arithmetic. (line 82) ! * 'neg' and attributes: Expressions. (line 83) ! * 'neg', canonicalization of: Insn Canonicalizations. (line 27) * NEGATE_EXPR: Unary and Binary Expressions. (line 6) ! * negation: Arithmetic. (line 82) ! * negation with signed saturation: Arithmetic. (line 82) ! * negation with unsigned saturation: Arithmetic. (line 82) ! * 'negM2' instruction pattern: Standard Names. (line 538) * nested functions, trampolines for: Trampolines. (line 6) ! * nested_ptr: GTY Options. (line 198) * next_bb, prev_bb, FOR_EACH_BB, FOR_ALL_BB: Basic Blocks. (line 25) * NEXT_INSN: Insns. (line 30) ! * NEXT_OBJC_RUNTIME: Library Calls. (line 82) ! * NE_EXPR: Unary and Binary Expressions. ! (line 6) * nil: RTL Objects. (line 73) * NM_FLAGS: Macros for Initialization. ! (line 110) * nondeterministic finite state automaton: Processor pipeline description. ! (line 304) * nonimmediate_operand: Machine-Independent Predicates. ! (line 100) ! * nonlocal goto handler: Edges. (line 171) ! * 'nonlocal_goto' instruction pattern: Standard Names. (line 1419) ! * 'nonlocal_goto_receiver' instruction pattern: Standard Names. ! (line 1436) * nonmemory_operand: Machine-Independent Predicates. ! (line 96) ! * nonoffsettable memory reference: Simple Constraints. (line 254) ! * NON_LVALUE_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'nop' instruction pattern: Standard Names. (line 1232) * NOP_EXPR: Unary and Binary Expressions. (line 6) * normal predicates: Predicates. (line 31) ! * not: Arithmetic. (line 155) ! * 'not' and attributes: Expressions. (line 50) * not equal: Comparisons. (line 56) ! * 'not', canonicalization of: Insn Canonicalizations. (line 27) ! * note: Insns. (line 183) ! * 'note' and '/i': Flags. (line 59) ! * 'note' and '/v': Flags. (line 44) * NOTE_INSN_BASIC_BLOCK: Basic Blocks. (line 50) ! * NOTE_INSN_BASIC_BLOCK <1>: Basic Blocks. (line 52) ! * NOTE_INSN_BLOCK_BEG: Insns. (line 208) ! * NOTE_INSN_BLOCK_END: Insns. (line 208) ! * NOTE_INSN_DELETED: Insns. (line 198) ! * NOTE_INSN_DELETED_LABEL: Insns. (line 203) ! * NOTE_INSN_EH_REGION_BEG: Insns. (line 214) ! * NOTE_INSN_EH_REGION_END: Insns. (line 214) ! * NOTE_INSN_FUNCTION_BEG: Insns. (line 221) ! * NOTE_INSN_VAR_LOCATION: Insns. (line 225) ! * NOTE_LINE_NUMBER: Insns. (line 183) ! * NOTE_SOURCE_FILE: Insns. (line 183) ! * NOTE_VAR_LOCATION: Insns. (line 225) * NOTICE_UPDATE_CC: CC0 Condition Codes. ! (line 30) ! * NO_DBX_BNSYM_ENSYM: DBX Hooks. (line 25) ! * NO_DBX_FUNCTION_END: DBX Hooks. (line 19) ! * NO_DBX_GCC_MARKER: File Names and DBX. (line 27) ! * NO_DBX_MAIN_SOURCE_DIRECTORY: File Names and DBX. (line 22) ! * NO_DOLLAR_IN_LABEL: Label Output. (line 64) ! * NO_DOT_IN_LABEL: Label Output. (line 70) ! * NO_FUNCTION_CSE: Costs. (line 260) ! * NO_IMPLICIT_EXTERN_C: Misc. (line 381) ! * NO_PROFILE_COUNTERS: Profiling. (line 27) ! * NO_REGS: Register Classes. (line 17) * Number of iterations analysis: Number of iterations. (line 6) ! * NUM_MACHINE_MODES: Machine Modes. (line 288) ! * NUM_MODES_FOR_MODE_SWITCHING: Mode Switching. (line 29) ! * N_REG_CLASSES: Register Classes. (line 81) ! * 'o' in constraint: Simple Constraints. (line 23) ! * OBJC_GEN_METHOD_LABEL: Label Output. (line 447) * OBJC_JBLEN: Misc. (line 991) * OBJECT_FORMAT_COFF: Macros for Initialization. ! (line 96) ! * offsettable address: Simple Constraints. (line 23) * OFFSET_TYPE: Types. (line 6) * OImode: Machine Modes. (line 51) * Omega a solver for linear programming problems: Omega. (line 6) * OMP_ATOMIC: OpenMP. (line 6) --- 48585,48688 ---- * MULTILIB_REQUIRED: Target Fragment. (line 82) * MULTILIB_REUSE: Target Fragment. (line 103) * multiple alternative constraints: Multi-Alternative. (line 6) ! * MULTIPLE_SYMBOL_SPACES: Misc. (line 484) ! * multiplication: Arithmetic. (line 92) ! * multiplication with signed saturation: Arithmetic. (line 92) ! * multiplication with unsigned saturation: Arithmetic. (line 92) ! * n in constraint: Simple Constraints. (line 75) ! * N_REG_CLASSES: Register Classes. (line 83) * name: Identifiers. (line 6) * named address spaces: Named Address Spaces. (line 6) * named patterns and conditions: Patterns. (line 47) * names, pattern: Standard Names. (line 6) * namespace, scope: Namespaces. (line 6) * NAMESPACE_DECL <1>: Namespaces. (line 6) ! * NAMESPACE_DECL: Declarations. (line 6) ! * NATIVE_SYSTEM_HEADER_COMPONENT: Driver. (line 323) * ne: Comparisons. (line 56) ! * ne and attributes: Expressions. (line 85) ! * NE_EXPR: Unary and Binary Expressions. ! (line 6) ! * nearbyintM2 instruction pattern: Standard Names. (line 672) ! * neg: Arithmetic. (line 81) ! * neg and attributes: Expressions. (line 85) ! * neg, canonicalization of: Insn Canonicalizations. (line 27) * NEGATE_EXPR: Unary and Binary Expressions. (line 6) ! * negation: Arithmetic. (line 81) ! * negation with signed saturation: Arithmetic. (line 81) ! * negation with unsigned saturation: Arithmetic. (line 81) ! * negM2 instruction pattern: Standard Names. (line 544) * nested functions, trampolines for: Trampolines. (line 6) ! * nested_ptr: GTY Options. (line 190) * next_bb, prev_bb, FOR_EACH_BB, FOR_ALL_BB: Basic Blocks. (line 25) * NEXT_INSN: Insns. (line 30) ! * NEXT_OBJC_RUNTIME: Library Calls. (line 83) * nil: RTL Objects. (line 73) * NM_FLAGS: Macros for Initialization. ! (line 111) ! * NO_DBX_BNSYM_ENSYM: DBX Hooks. (line 26) ! * NO_DBX_FUNCTION_END: DBX Hooks. (line 20) ! * NO_DBX_GCC_MARKER: File Names and DBX. (line 28) ! * NO_DBX_MAIN_SOURCE_DIRECTORY: File Names and DBX. (line 23) ! * NO_DOLLAR_IN_LABEL: Label Output. (line 67) ! * NO_DOT_IN_LABEL: Label Output. (line 73) ! * NO_FUNCTION_CSE: Costs. (line 261) ! * NO_IMPLICIT_EXTERN_C: Misc. (line 382) ! * NO_PROFILE_COUNTERS: Profiling. (line 28) ! * NO_REGS: Register Classes. (line 17) ! * NON_LVALUE_EXPR: Unary and Binary Expressions. ! (line 6) * nondeterministic finite state automaton: Processor pipeline description. ! (line 305) * nonimmediate_operand: Machine-Independent Predicates. ! (line 101) ! * nonlocal goto handler: Edges. (line 172) ! * nonlocal_goto instruction pattern: Standard Names. (line 1428) ! * nonlocal_goto_receiver instruction pattern: Standard Names. ! (line 1445) * nonmemory_operand: Machine-Independent Predicates. ! (line 97) ! * nonoffsettable memory reference: Simple Constraints. (line 256) ! * nop instruction pattern: Standard Names. (line 1239) * NOP_EXPR: Unary and Binary Expressions. (line 6) * normal predicates: Predicates. (line 31) ! * not: Arithmetic. (line 154) ! * not and attributes: Expressions. (line 50) * not equal: Comparisons. (line 56) ! * not, canonicalization of: Insn Canonicalizations. (line 27) ! * note: Insns. (line 185) ! * note and /i: Flags. (line 59) ! * note and /v: Flags. (line 44) * NOTE_INSN_BASIC_BLOCK: Basic Blocks. (line 50) ! * NOTE_INSN_BLOCK_BEG: Insns. (line 210) ! * NOTE_INSN_BLOCK_END: Insns. (line 210) ! * NOTE_INSN_DELETED: Insns. (line 200) ! * NOTE_INSN_DELETED_LABEL: Insns. (line 205) ! * NOTE_INSN_EH_REGION_BEG: Insns. (line 216) ! * NOTE_INSN_EH_REGION_END: Insns. (line 216) ! * NOTE_INSN_FUNCTION_BEG: Insns. (line 223) ! * NOTE_INSN_VAR_LOCATION: Insns. (line 227) ! * NOTE_LINE_NUMBER: Insns. (line 185) ! * NOTE_SOURCE_FILE: Insns. (line 185) ! * NOTE_VAR_LOCATION: Insns. (line 227) * NOTICE_UPDATE_CC: CC0 Condition Codes. ! (line 31) ! * NUM_MACHINE_MODES: Machine Modes. (line 289) ! * NUM_MODES_FOR_MODE_SWITCHING: Mode Switching. (line 30) * Number of iterations analysis: Number of iterations. (line 6) ! * o in constraint: Simple Constraints. (line 23) ! * OBJC_GEN_METHOD_LABEL: Label Output. (line 452) * OBJC_JBLEN: Misc. (line 991) * OBJECT_FORMAT_COFF: Macros for Initialization. ! (line 97) * OFFSET_TYPE: Types. (line 6) + * offsettable address: Simple Constraints. (line 23) * OImode: Machine Modes. (line 51) * Omega a solver for linear programming problems: Omega. (line 6) * OMP_ATOMIC: OpenMP. (line 6) *************** Concept Index *** 48323,48340 **** * OMP_SECTION: OpenMP. (line 6) * OMP_SECTIONS: OpenMP. (line 6) * OMP_SINGLE: OpenMP. (line 6) ! * 'one_cmplM2' instruction pattern: Standard Names. (line 753) * operand access: Accessors. (line 6) ! * Operand Access Routines: SSA Operands. (line 116) * operand constraints: Constraints. (line 6) ! * Operand Iterators: SSA Operands. (line 116) * operand predicates: Predicates. (line 6) * operand substitution: Output Template. (line 6) - * Operands: Operands. (line 6) - * operands: SSA Operands. (line 6) * operands <1>: Patterns. (line 53) * operator predicates: Predicates. (line 6) ! * 'optc-gen.awk': Options. (line 6) * OPTGROUP_ALL: Optimization groups. (line 25) * OPTGROUP_INLINE: Optimization groups. --- 48697,48714 ---- * OMP_SECTION: OpenMP. (line 6) * OMP_SECTIONS: OpenMP. (line 6) * OMP_SINGLE: OpenMP. (line 6) ! * one_cmplM2 instruction pattern: Standard Names. (line 759) * operand access: Accessors. (line 6) ! * Operand Access Routines: SSA Operands. (line 119) * operand constraints: Constraints. (line 6) ! * Operand Iterators: SSA Operands. (line 119) * operand predicates: Predicates. (line 6) * operand substitution: Output Template. (line 6) * operands <1>: Patterns. (line 53) + * operands: SSA Operands. (line 6) + * Operands: Operands. (line 6) * operator predicates: Predicates. (line 6) ! * optc-gen.awk: Options. (line 6) * OPTGROUP_ALL: Optimization groups. (line 25) * OPTGROUP_INLINE: Optimization groups. *************** Concept Index *** 48353,48464 **** * optimization info file names: Dump files and streams. (line 6) * Optimization infrastructure for GIMPLE: Tree SSA. (line 6) ! * OPTIMIZE_MODE_SWITCHING: Mode Switching. (line 8) * option specification files: Options. (line 6) * optional hardware or system features: Run-time Target. (line 59) ! * options, directory search: Including Patterns. (line 47) ! * OPTION_DEFAULT_SPECS: Driver. (line 25) * order of register allocation: Allocation Order. (line 6) * ordered_comparison_operator: Machine-Independent Predicates. ! (line 115) * ORDERED_EXPR: Unary and Binary Expressions. (line 6) * Ordering of Patterns: Pattern Ordering. (line 6) ! * ORIGINAL_REGNO: Special Accessors. (line 53) ! * other register constraints: Simple Constraints. (line 171) * outgoing_args_size: Stack Arguments. (line 48) ! * OUTGOING_REGNO: Register Basics. (line 94) ! * OUTGOING_REG_PARM_STACK_SPACE: Stack Arguments. (line 79) * output of assembler code: File Framework. (line 6) * output statements: Output Statement. (line 6) * output templates: Output Template. (line 6) ! * output_asm_insn: Output Statement. (line 52) ! * OUTPUT_QUOTED_STRING: File Framework. (line 106) ! * OVERLAPPING_REGISTER_NAMES: Instruction Output. (line 20) * OVERLOAD: Functions for C++. (line 6) ! * OVERRIDE_ABI_FORMAT: Register Arguments. (line 139) * OVL_CURRENT: Functions for C++. (line 6) * OVL_NEXT: Functions for C++. (line 6) ! * 'p' in constraint: Simple Constraints. (line 162) ! * PAD_VARARGS_DOWN: Register Arguments. (line 220) ! * parallel: Side Effects. (line 209) * parameters, c++ abi: C++ ABI. (line 6) * parameters, miscellaneous: Misc. (line 6) * parameters, precompiled headers: PCH Target. (line 6) ! * paramN_is: GTY Options. (line 138) ! * param_is: GTY Options. (line 119) * parity: Arithmetic. (line 243) ! * 'parityM2' instruction pattern: Standard Names. (line 747) ! * PARM_BOUNDARY: Storage Layout. (line 133) * PARM_DECL: Declarations. (line 6) * PARSE_LDD_OUTPUT: Macros for Initialization. ! (line 125) * pass dumps: Passes. (line 6) * passes and files of the compiler: Passes. (line 6) * passing arguments: Interface. (line 36) - * pass_duplicate_computed_gotos: Edges. (line 161) * PATH_SEPARATOR: Filesystem. (line 31) ! * PATTERN: Insns. (line 284) * pattern conditions: Patterns. (line 43) * pattern names: Standard Names. (line 6) * Pattern Ordering: Pattern Ordering. (line 6) * patterns: Patterns. (line 6) ! * pc: Regs and Memory. (line 357) ! * 'pc' and attributes: Insn Lengths. (line 20) ! * 'pc', RTL sharing: Sharing. (line 25) ! * PCC_BITFIELD_TYPE_MATTERS: Storage Layout. (line 325) ! * PCC_STATIC_STRUCT_RETURN: Aggregate Return. (line 64) ! * PC_REGNUM: Register Basics. (line 108) ! * pc_rtx: Regs and Memory. (line 362) * PDImode: Machine Modes. (line 40) ! * peephole optimization, RTL representation: Side Effects. (line 243) * peephole optimizer definitions: Peephole Definitions. (line 6) * per-function data: Per-Function Data. (line 6) * percent sign: Output Template. (line 6) * PHI nodes: SSA. (line 31) * PIC: PIC. (line 6) ! * PIC_OFFSET_TABLE_REGNUM: PIC. (line 15) ! * PIC_OFFSET_TABLE_REG_CALL_CLOBBERED: PIC. (line 25) * pipeline hazard recognizer: Processor pipeline description. (line 6) - * pipeline hazard recognizer <1>: Processor pipeline description. - (line 53) * Plugins: Plugins. (line 6) * plus: Arithmetic. (line 14) ! * 'plus' and attributes: Expressions. (line 83) ! * 'plus', canonicalization of: Insn Canonicalizations. (line 27) * PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * Pmode: Misc. (line 329) * pmode_register_operand: Machine-Independent Predicates. ! (line 34) * pointer: Types. (line 6) - * POINTERS_EXTEND_UNSIGNED: Storage Layout. (line 76) * POINTER_PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * POINTER_SIZE: Storage Layout. (line 70) * POINTER_TYPE: Types. (line 6) ! * popcount: Arithmetic. (line 239) ! * 'popcountM2' instruction pattern: Standard Names. (line 741) ! * pops_args: Function Entry. (line 104) * pop_operand: Machine-Independent Predicates. ! (line 87) * portability: Portability. (line 6) * position independent code: PIC. (line 6) - * POSTDECREMENT_EXPR: Unary and Binary Expressions. - (line 6) - * POSTINCREMENT_EXPR: Unary and Binary Expressions. - (line 6) * post_dec: Incdec. (line 25) * post_inc: Incdec. (line 30) * post_modify: Incdec. (line 33) * post_order_compute, inverted_post_order_compute, walk_dominator_tree: Basic Blocks. (line 34) ! * POWI_MAX_MULTS: Misc. (line 860) ! * 'powM3' instruction pattern: Standard Names. (line 615) * pragma: Misc. (line 387) * PREDECREMENT_EXPR: Unary and Binary Expressions. (line 6) * predefined macros: Run-time Target. (line 6) --- 48727,48840 ---- * optimization info file names: Dump files and streams. (line 6) * Optimization infrastructure for GIMPLE: Tree SSA. (line 6) ! * OPTIMIZE_MODE_SWITCHING: Mode Switching. (line 9) * option specification files: Options. (line 6) + * OPTION_DEFAULT_SPECS: Driver. (line 26) * optional hardware or system features: Run-time Target. (line 59) ! * options, directory search: Including Patterns. (line 44) * order of register allocation: Allocation Order. (line 6) * ordered_comparison_operator: Machine-Independent Predicates. ! (line 116) * ORDERED_EXPR: Unary and Binary Expressions. (line 6) * Ordering of Patterns: Pattern Ordering. (line 6) ! * ORIGINAL_REGNO: Special Accessors. (line 54) ! * other register constraints: Simple Constraints. (line 173) * outgoing_args_size: Stack Arguments. (line 48) ! * OUTGOING_REG_PARM_STACK_SPACE: Stack Arguments. (line 80) ! * OUTGOING_REGNO: Register Basics. (line 95) * output of assembler code: File Framework. (line 6) * output statements: Output Statement. (line 6) * output templates: Output Template. (line 6) ! * output_asm_insn: Output Statement. (line 53) ! * OUTPUT_QUOTED_STRING: File Framework. (line 108) ! * OVERLAPPING_REGISTER_NAMES: Instruction Output. (line 21) * OVERLOAD: Functions for C++. (line 6) ! * OVERRIDE_ABI_FORMAT: Register Arguments. (line 141) * OVL_CURRENT: Functions for C++. (line 6) * OVL_NEXT: Functions for C++. (line 6) ! * p in constraint: Simple Constraints. (line 164) ! * PAD_VARARGS_DOWN: Register Arguments. (line 222) ! * parallel: Side Effects. (line 210) ! * param_is: GTY Options. (line 118) * parameters, c++ abi: C++ ABI. (line 6) * parameters, miscellaneous: Misc. (line 6) * parameters, precompiled headers: PCH Target. (line 6) ! * paramN_is: GTY Options. (line 136) * parity: Arithmetic. (line 243) ! * parityM2 instruction pattern: Standard Names. (line 753) ! * PARM_BOUNDARY: Storage Layout. (line 135) * PARM_DECL: Declarations. (line 6) * PARSE_LDD_OUTPUT: Macros for Initialization. ! (line 127) * pass dumps: Passes. (line 6) + * pass_duplicate_computed_gotos: Edges. (line 162) * passes and files of the compiler: Passes. (line 6) * passing arguments: Interface. (line 36) * PATH_SEPARATOR: Filesystem. (line 31) ! * PATTERN: Insns. (line 288) * pattern conditions: Patterns. (line 43) * pattern names: Standard Names. (line 6) * Pattern Ordering: Pattern Ordering. (line 6) * patterns: Patterns. (line 6) ! * pc: Regs and Memory. (line 361) ! * pc and attributes: Insn Lengths. (line 20) ! * pc, RTL sharing: Sharing. (line 25) ! * PC_REGNUM: Register Basics. (line 109) ! * pc_rtx: Regs and Memory. (line 366) ! * PCC_BITFIELD_TYPE_MATTERS: Storage Layout. (line 329) ! * PCC_STATIC_STRUCT_RETURN: Aggregate Return. (line 65) * PDImode: Machine Modes. (line 40) ! * peephole optimization, RTL representation: Side Effects. (line 244) * peephole optimizer definitions: Peephole Definitions. (line 6) * per-function data: Per-Function Data. (line 6) * percent sign: Output Template. (line 6) * PHI nodes: SSA. (line 31) * PIC: PIC. (line 6) ! * PIC_OFFSET_TABLE_REG_CALL_CLOBBERED: PIC. (line 26) ! * PIC_OFFSET_TABLE_REGNUM: PIC. (line 16) * pipeline hazard recognizer: Processor pipeline description. (line 6) * Plugins: Plugins. (line 6) * plus: Arithmetic. (line 14) ! * plus and attributes: Expressions. (line 85) ! * plus, canonicalization of: Insn Canonicalizations. (line 27) * PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * Pmode: Misc. (line 330) * pmode_register_operand: Machine-Independent Predicates. ! (line 35) * pointer: Types. (line 6) * POINTER_PLUS_EXPR: Unary and Binary Expressions. (line 6) ! * POINTER_SIZE: Storage Layout. (line 71) * POINTER_TYPE: Types. (line 6) ! * POINTERS_EXTEND_UNSIGNED: Storage Layout. (line 77) * pop_operand: Machine-Independent Predicates. ! (line 88) ! * popcount: Arithmetic. (line 239) ! * popcountM2 instruction pattern: Standard Names. (line 747) ! * pops_args: Function Entry. (line 106) * portability: Portability. (line 6) * position independent code: PIC. (line 6) * post_dec: Incdec. (line 25) * post_inc: Incdec. (line 30) * post_modify: Incdec. (line 33) * post_order_compute, inverted_post_order_compute, walk_dominator_tree: Basic Blocks. (line 34) ! * POSTDECREMENT_EXPR: Unary and Binary Expressions. ! (line 6) ! * POSTINCREMENT_EXPR: Unary and Binary Expressions. ! (line 6) ! * POWI_MAX_MULTS: Misc. (line 859) ! * powM3 instruction pattern: Standard Names. (line 621) * pragma: Misc. (line 387) + * pre_dec: Incdec. (line 8) + * PRE_GCC3_DWARF_FRAME_REGISTERS: Frame Registers. (line 127) + * pre_inc: Incdec. (line 22) + * pre_modify: Incdec. (line 51) * PREDECREMENT_EXPR: Unary and Binary Expressions. (line 6) * predefined macros: Run-time Target. (line 6) *************** Concept Index *** 48468,48601 **** (line 6) * predict.def: Profile information. (line 24) ! * PREFERRED_DEBUGGING_TYPE: All Debuggers. (line 41) ! * PREFERRED_RELOAD_CLASS: Register Classes. (line 249) ! * PREFERRED_STACK_BOUNDARY: Storage Layout. (line 147) ! * prefetch: Side Effects. (line 323) ! * 'prefetch' and '/v': Flags. (line 214) ! * 'prefetch' instruction pattern: Standard Names. (line 1562) * PREFETCH_SCHEDULE_BARRIER_P: Flags. (line 214) * PREINCREMENT_EXPR: Unary and Binary Expressions. (line 6) * presence_set: Processor pipeline description. ! (line 223) * preserving SSA form: SSA. (line 74) * preserving virtual SSA form: SSA. (line 182) ! * pretend_args_size: Function Entry. (line 110) * prev_active_insn: define_peephole. (line 60) * PREV_INSN: Insns. (line 26) ! * pre_dec: Incdec. (line 8) ! * PRE_GCC3_DWARF_FRAME_REGISTERS: Frame Registers. (line 126) ! * pre_inc: Incdec. (line 22) ! * pre_modify: Incdec. (line 52) ! * PRINT_OPERAND: Instruction Output. (line 95) ! * PRINT_OPERAND_ADDRESS: Instruction Output. (line 122) ! * PRINT_OPERAND_PUNCT_VALID_P: Instruction Output. (line 115) ! * 'probe_stack' instruction pattern: Standard Names. (line 1411) ! * 'probe_stack_address' instruction pattern: Standard Names. (line 1404) * processor functional units: Processor pipeline description. (line 6) - * processor functional units <1>: Processor pipeline description. - (line 68) * processor pipeline description: Processor pipeline description. (line 6) ! * product: Arithmetic. (line 93) * profile feedback: Profile information. (line 14) * profile representation: Profile information. (line 6) ! * PROFILE_BEFORE_PROLOGUE: Profiling. (line 34) ! * PROFILE_HOOK: Profiling. (line 22) * profiling, code generation: Profiling. (line 6) ! * program counter: Regs and Memory. (line 358) * prologue: Function Entry. (line 6) ! * 'prologue' instruction pattern: Standard Names. (line 1500) ! * PROMOTE_MODE: Storage Layout. (line 87) * pseudo registers: Regs and Memory. (line 9) * PSImode: Machine Modes. (line 32) ! * PTRDIFF_TYPE: Type Layout. (line 200) ! * purge_dead_edges: Edges. (line 103) * purge_dead_edges <1>: Maintaining the CFG. ! (line 81) ! * push address instruction: Simple Constraints. (line 162) ! * 'pushM1' instruction pattern: Standard Names. (line 253) ! * PUSH_ARGS: Stack Arguments. (line 17) ! * PUSH_ARGS_REVERSED: Stack Arguments. (line 25) * push_operand: Machine-Independent Predicates. ! (line 80) ! * push_reload: Addressing Modes. (line 176) ! * PUSH_ROUNDING: Stack Arguments. (line 31) * PUT_CODE: RTL Objects. (line 47) ! * PUT_MODE: Machine Modes. (line 285) ! * PUT_REG_NOTE_KIND: Insns. (line 346) ! * PUT_SDB_: SDB and DWARF. (line 105) ! * QCmode: Machine Modes. (line 199) * QFmode: Machine Modes. (line 57) * QImode: Machine Modes. (line 25) ! * 'QImode', in 'insn': Insns. (line 268) * QQmode: Machine Modes. (line 106) - * qualified type: Types. (line 6) * qualified type <1>: Types for C++. (line 6) * querying function unit reservations: Processor pipeline description. (line 90) * question mark: Multi-Alternative. (line 41) ! * quotient: Arithmetic. (line 117) ! * 'r' in constraint: Simple Constraints. (line 64) * RDIV_EXPR: Unary and Binary Expressions. (line 6) ! * READONLY_DATA_SECTION_ASM_OP: Sections. (line 62) * real operands: SSA Operands. (line 6) ! * REALPART_EXPR: Unary and Binary Expressions. ! (line 6) ! * REAL_ARITHMETIC: Floating Point. (line 64) * REAL_CST: Constant expressions. (line 6) ! * REAL_LIBGCC_SPEC: Driver. (line 124) * REAL_NM_FILE_NAME: Macros for Initialization. ! (line 105) * REAL_TYPE: Types. (line 6) ! * REAL_VALUES_EQUAL: Floating Point. (line 31) ! * REAL_VALUES_LESS: Floating Point. (line 37) ! * REAL_VALUE_ABS: Floating Point. (line 81) ! * REAL_VALUE_ATOF: Floating Point. (line 48) ! * REAL_VALUE_FIX: Floating Point. (line 40) ! * REAL_VALUE_FROM_INT: Floating Point. (line 90) ! * REAL_VALUE_ISINF: Floating Point. (line 58) ! * REAL_VALUE_ISNAN: Floating Point. (line 61) ! * REAL_VALUE_NEGATE: Floating Point. (line 78) ! * REAL_VALUE_NEGATIVE: Floating Point. (line 55) ! * REAL_VALUE_TO_INT: Floating Point. (line 84) ! * REAL_VALUE_TO_TARGET_DECIMAL128: Data Output. (line 143) ! * REAL_VALUE_TO_TARGET_DECIMAL32: Data Output. (line 141) ! * REAL_VALUE_TO_TARGET_DECIMAL64: Data Output. (line 142) ! * REAL_VALUE_TO_TARGET_DOUBLE: Data Output. (line 139) ! * REAL_VALUE_TO_TARGET_LONG_DOUBLE: Data Output. (line 140) ! * REAL_VALUE_TO_TARGET_SINGLE: Data Output. (line 138) ! * REAL_VALUE_TYPE: Floating Point. (line 25) ! * REAL_VALUE_UNSIGNED_FIX: Floating Point. (line 43) ! * recognizing insns: RTL Template. (line 6) * recog_data.operand: Instruction Output. (line 54) ! * RECORD_TYPE: Types. (line 6) * RECORD_TYPE <1>: Classes. (line 6) * redirect_edge_and_branch: Profile information. (line 71) * redirect_edge_and_branch, redirect_jump: Maintaining the CFG. ! (line 90) ! * 'reduc_smax_M' instruction pattern: Standard Names. (line 317) ! * 'reduc_smin_M' instruction pattern: Standard Names. (line 317) ! * 'reduc_splus_M' instruction pattern: Standard Names. (line 329) ! * 'reduc_umax_M' instruction pattern: Standard Names. (line 323) ! * 'reduc_umin_M' instruction pattern: Standard Names. (line 323) ! * 'reduc_uplus_M' instruction pattern: Standard Names. (line 335) * reference: Types. (line 6) * REFERENCE_TYPE: Types. (line 6) * reg: Regs and Memory. (line 9) ! * 'reg' and '/f': Flags. (line 94) ! * 'reg' and '/i': Flags. (line 89) ! * 'reg' and '/v': Flags. (line 98) ! * 'reg', RTL sharing: Sharing. (line 17) * regclass_for_constraint: C Constraint Interface. ! (line 58) * register allocation order: Allocation Order. (line 6) * register class definitions: Register Classes. (line 6) * register class preference constraints: Class Preferences. (line 6) --- 48844,49018 ---- (line 6) * predict.def: Profile information. (line 24) ! * PREFERRED_DEBUGGING_TYPE: All Debuggers. (line 42) ! * PREFERRED_RELOAD_CLASS: Register Classes. (line 253) ! * PREFERRED_STACK_BOUNDARY: Storage Layout. (line 149) ! * prefetch: Side Effects. (line 325) ! * prefetch and /v: Flags. (line 214) ! * prefetch instruction pattern: Standard Names. (line 1573) * PREFETCH_SCHEDULE_BARRIER_P: Flags. (line 214) * PREINCREMENT_EXPR: Unary and Binary Expressions. (line 6) * presence_set: Processor pipeline description. ! (line 224) * preserving SSA form: SSA. (line 74) * preserving virtual SSA form: SSA. (line 182) ! * pretend_args_size: Function Entry. (line 112) * prev_active_insn: define_peephole. (line 60) * PREV_INSN: Insns. (line 26) ! * PRINT_OPERAND: Instruction Output. (line 96) ! * PRINT_OPERAND_ADDRESS: Instruction Output. (line 124) ! * PRINT_OPERAND_PUNCT_VALID_P: Instruction Output. (line 117) ! * probe_stack instruction pattern: Standard Names. (line 1420) ! * probe_stack_address instruction pattern: Standard Names. (line 1413) * processor functional units: Processor pipeline description. (line 6) * processor pipeline description: Processor pipeline description. (line 6) ! * product: Arithmetic. (line 92) * profile feedback: Profile information. (line 14) * profile representation: Profile information. (line 6) ! * PROFILE_BEFORE_PROLOGUE: Profiling. (line 35) ! * PROFILE_HOOK: Profiling. (line 23) * profiling, code generation: Profiling. (line 6) ! * program counter: Regs and Memory. (line 362) * prologue: Function Entry. (line 6) ! * prologue instruction pattern: Standard Names. (line 1511) ! * PROMOTE_MODE: Storage Layout. (line 88) * pseudo registers: Regs and Memory. (line 9) * PSImode: Machine Modes. (line 32) ! * PTRDIFF_TYPE: Type Layout. (line 201) * purge_dead_edges <1>: Maintaining the CFG. ! (line 82) ! * purge_dead_edges: Edges. (line 104) ! * push address instruction: Simple Constraints. (line 164) ! * PUSH_ARGS: Stack Arguments. (line 18) ! * PUSH_ARGS_REVERSED: Stack Arguments. (line 26) * push_operand: Machine-Independent Predicates. ! (line 81) ! * push_reload: Addressing Modes. (line 177) ! * PUSH_ROUNDING: Stack Arguments. (line 32) ! * pushM1 instruction pattern: Standard Names. (line 256) * PUT_CODE: RTL Objects. (line 47) ! * PUT_MODE: Machine Modes. (line 286) ! * PUT_REG_NOTE_KIND: Insns. (line 352) ! * PUT_SDB_: SDB and DWARF. (line 106) ! * QCmode: Machine Modes. (line 200) * QFmode: Machine Modes. (line 57) * QImode: Machine Modes. (line 25) ! * QImode, in insn: Insns. (line 272) * QQmode: Machine Modes. (line 106) * qualified type <1>: Types for C++. (line 6) + * qualified type: Types. (line 6) * querying function unit reservations: Processor pipeline description. (line 90) * question mark: Multi-Alternative. (line 41) ! * quotient: Arithmetic. (line 116) ! * r in constraint: Simple Constraints. (line 66) * RDIV_EXPR: Unary and Binary Expressions. (line 6) ! * READONLY_DATA_SECTION_ASM_OP: Sections. (line 63) * real operands: SSA Operands. (line 6) ! * REAL_ARITHMETIC: Floating Point. (line 66) * REAL_CST: Constant expressions. (line 6) ! * REAL_LIBGCC_SPEC: Driver. (line 125) * REAL_NM_FILE_NAME: Macros for Initialization. ! (line 106) * REAL_TYPE: Types. (line 6) ! * REAL_VALUE_ABS: Floating Point. (line 82) ! * REAL_VALUE_ATOF: Floating Point. (line 50) ! * REAL_VALUE_FIX: Floating Point. (line 41) ! * REAL_VALUE_FROM_INT: Floating Point. (line 92) ! * REAL_VALUE_ISINF: Floating Point. (line 59) ! * REAL_VALUE_ISNAN: Floating Point. (line 62) ! * REAL_VALUE_NEGATE: Floating Point. (line 79) ! * REAL_VALUE_NEGATIVE: Floating Point. (line 56) ! * REAL_VALUE_TO_INT: Floating Point. (line 86) ! * REAL_VALUE_TO_TARGET_DECIMAL128: Data Output. (line 145) ! * REAL_VALUE_TO_TARGET_DECIMAL32: Data Output. (line 143) ! * REAL_VALUE_TO_TARGET_DECIMAL64: Data Output. (line 144) ! * REAL_VALUE_TO_TARGET_DOUBLE: Data Output. (line 141) ! * REAL_VALUE_TO_TARGET_LONG_DOUBLE: Data Output. (line 142) ! * REAL_VALUE_TO_TARGET_SINGLE: Data Output. (line 140) ! * REAL_VALUE_TYPE: Floating Point. (line 26) ! * REAL_VALUE_UNSIGNED_FIX: Floating Point. (line 45) ! * REAL_VALUES_EQUAL: Floating Point. (line 32) ! * REAL_VALUES_LESS: Floating Point. (line 38) ! * REALPART_EXPR: Unary and Binary Expressions. ! (line 6) * recog_data.operand: Instruction Output. (line 54) ! * recognizing insns: RTL Template. (line 6) * RECORD_TYPE <1>: Classes. (line 6) + * RECORD_TYPE: Types. (line 6) * redirect_edge_and_branch: Profile information. (line 71) * redirect_edge_and_branch, redirect_jump: Maintaining the CFG. ! (line 92) ! * reduc_smax_M instruction pattern: Standard Names. (line 320) ! * reduc_smin_M instruction pattern: Standard Names. (line 320) ! * reduc_splus_M instruction pattern: Standard Names. (line 332) ! * reduc_umax_M instruction pattern: Standard Names. (line 326) ! * reduc_umin_M instruction pattern: Standard Names. (line 326) ! * reduc_uplus_M instruction pattern: Standard Names. (line 338) * reference: Types. (line 6) * REFERENCE_TYPE: Types. (line 6) * reg: Regs and Memory. (line 9) ! * reg and /f: Flags. (line 94) ! * reg and /i: Flags. (line 89) ! * reg and /v: Flags. (line 98) ! * reg, RTL sharing: Sharing. (line 17) ! * REG_ALLOC_ORDER: Allocation Order. (line 9) ! * REG_BR_PRED: Insns. (line 534) ! * REG_BR_PROB: Insns. (line 527) ! * REG_BR_PROB_BASE, BB_FREQ_BASE, count: Profile information. ! (line 82) ! * REG_BR_PROB_BASE, EDGE_FREQUENCY: Profile information. ! (line 52) ! * REG_CC_SETTER: Insns. (line 498) ! * REG_CC_USER: Insns. (line 498) ! * REG_CLASS_CONTENTS: Register Classes. (line 93) ! * reg_class_contents: Register Basics. (line 59) ! * REG_CLASS_FROM_CONSTRAINT: Old Constraints. (line 35) ! * REG_CLASS_FROM_LETTER: Old Constraints. (line 27) ! * REG_CLASS_NAMES: Register Classes. (line 88) ! * REG_CROSSING_JUMP: Insns. (line 411) ! * REG_DEAD: Insns. (line 363) ! * REG_DEAD, REG_UNUSED: Liveness information. ! (line 32) ! * REG_DEP_ANTI: Insns. (line 520) ! * REG_DEP_OUTPUT: Insns. (line 516) ! * REG_DEP_TRUE: Insns. (line 513) ! * REG_EH_REGION, EDGE_ABNORMAL_CALL: Edges. (line 110) ! * REG_EQUAL: Insns. (line 426) ! * REG_EQUIV: Insns. (line 426) ! * REG_EXPR: Special Accessors. (line 60) ! * REG_FRAME_RELATED_EXPR: Insns. (line 540) ! * REG_FUNCTION_VALUE_P: Flags. (line 89) ! * REG_INC: Insns. (line 379) ! * reg_label and /v: Flags. (line 65) ! * REG_LABEL_OPERAND: Insns. (line 393) ! * REG_LABEL_TARGET: Insns. (line 402) ! * reg_names <1>: Instruction Output. (line 108) ! * reg_names: Register Basics. (line 59) ! * REG_NONNEG: Insns. (line 385) ! * REG_NOTE_KIND: Insns. (line 352) ! * REG_NOTES: Insns. (line 325) ! * REG_OFFSET: Special Accessors. (line 64) ! * REG_OK_STRICT: Addressing Modes. (line 100) ! * REG_PARM_STACK_SPACE: Stack Arguments. (line 59) ! * REG_PARM_STACK_SPACE, and TARGET_FUNCTION_ARG: Register Arguments. ! (line 51) ! * REG_POINTER: Flags. (line 94) ! * REG_SETJMP: Insns. (line 420) ! * REG_UNUSED: Insns. (line 372) ! * REG_USERVAR_P: Flags. (line 98) ! * REG_VALUE_IN_UNWIND_CONTEXT: Frame Registers. (line 157) ! * REG_WORDS_BIG_ENDIAN: Storage Layout. (line 36) * regclass_for_constraint: C Constraint Interface. ! (line 60) * register allocation order: Allocation Order. (line 6) * register class definitions: Register Classes. (line 6) * register class preference constraints: Class Preferences. (line 6) *************** Concept Index *** 48603,48750 **** (line 69) * Register Transfer Language (RTL): RTL. (line 6) * register usage: Registers. (line 6) ! * registers arguments: Register Arguments. (line 6) ! * registers in constraints: Simple Constraints. (line 64) ! * REGISTER_MOVE_COST: Costs. (line 9) ! * REGISTER_NAMES: Instruction Output. (line 8) * register_operand: Machine-Independent Predicates. ! (line 29) ! * REGISTER_PREFIX: Instruction Output. (line 150) ! * REGISTER_TARGET_PRAGMAS: Misc. (line 387) * REGMODE_NATURAL_SIZE: Values in Registers. ! (line 49) ! * REGNO_MODE_CODE_OK_FOR_BASE_P: Register Classes. (line 172) ! * REGNO_MODE_OK_FOR_BASE_P: Register Classes. (line 150) ! * REGNO_MODE_OK_FOR_REG_BASE_P: Register Classes. (line 160) ! * REGNO_OK_FOR_BASE_P: Register Classes. (line 146) ! * REGNO_OK_FOR_INDEX_P: Register Classes. (line 186) ! * REGNO_REG_CLASS: Register Classes. (line 105) * regs_ever_live: Function Entry. (line 21) * regular expressions: Processor pipeline description. (line 6) - * regular expressions <1>: Processor pipeline description. - (line 105) - * REG_ALLOC_ORDER: Allocation Order. (line 8) - * REG_BR_PRED: Insns. (line 526) - * REG_BR_PROB: Insns. (line 519) - * REG_BR_PROB_BASE, BB_FREQ_BASE, count: Profile information. - (line 82) - * REG_BR_PROB_BASE, EDGE_FREQUENCY: Profile information. - (line 52) - * REG_CC_SETTER: Insns. (line 491) - * REG_CC_USER: Insns. (line 491) - * reg_class_contents: Register Basics. (line 59) - * REG_CLASS_CONTENTS: Register Classes. (line 91) - * REG_CLASS_FROM_CONSTRAINT: Old Constraints. (line 33) - * REG_CLASS_FROM_LETTER: Old Constraints. (line 25) - * REG_CLASS_NAMES: Register Classes. (line 86) - * REG_CROSSING_JUMP: Insns. (line 405) - * REG_DEAD: Insns. (line 357) - * REG_DEAD, REG_UNUSED: Liveness information. - (line 32) - * REG_DEP_ANTI: Insns. (line 513) - * REG_DEP_OUTPUT: Insns. (line 509) - * REG_DEP_TRUE: Insns. (line 506) - * REG_EH_REGION, EDGE_ABNORMAL_CALL: Edges. (line 109) - * REG_EQUAL: Insns. (line 420) - * REG_EQUIV: Insns. (line 420) - * REG_EXPR: Special Accessors. (line 58) - * REG_FRAME_RELATED_EXPR: Insns. (line 532) - * REG_FUNCTION_VALUE_P: Flags. (line 89) - * REG_INC: Insns. (line 373) - * 'reg_label' and '/v': Flags. (line 65) - * REG_LABEL_OPERAND: Insns. (line 387) - * REG_LABEL_TARGET: Insns. (line 396) - * reg_names: Register Basics. (line 59) - * reg_names <1>: Instruction Output. (line 107) - * REG_NONNEG: Insns. (line 379) - * REG_NOTES: Insns. (line 321) - * REG_NOTE_KIND: Insns. (line 346) - * REG_OFFSET: Special Accessors. (line 62) - * REG_OK_STRICT: Addressing Modes. (line 99) - * REG_PARM_STACK_SPACE: Stack Arguments. (line 58) - * 'REG_PARM_STACK_SPACE', and 'TARGET_FUNCTION_ARG': Register Arguments. - (line 50) - * REG_POINTER: Flags. (line 94) - * REG_SETJMP: Insns. (line 414) - * REG_UNUSED: Insns. (line 366) - * REG_USERVAR_P: Flags. (line 98) - * REG_VALUE_IN_UNWIND_CONTEXT: Frame Registers. (line 158) - * REG_WORDS_BIG_ENDIAN: Storage Layout. (line 35) * relative costs: Costs. (line 6) ! * RELATIVE_PREFIX_NOT_LINKDIR: Driver. (line 262) ! * reloading: RTL passes. (line 170) ! * reload_completed: Standard Names. (line 1199) ! * 'reload_in' instruction pattern: Standard Names. (line 98) * reload_in_progress: Standard Names. (line 57) ! * 'reload_out' instruction pattern: Standard Names. (line 98) ! * remainder: Arithmetic. (line 137) ! * 'remainderM3' instruction pattern: Standard Names. (line 561) ! * reorder: GTY Options. (line 224) * representation of RTL: RTL. (line 6) * reservation delays: Processor pipeline description. (line 6) ! * 'restore_stack_block' instruction pattern: Standard Names. (line 1325) ! * 'restore_stack_function' instruction pattern: Standard Names. ! (line 1325) ! * 'restore_stack_nonlocal' instruction pattern: Standard Names. ! (line 1325) ! * rest_of_decl_compilation: Parsing pass. (line 51) ! * rest_of_type_compilation: Parsing pass. (line 51) * RESULT_DECL: Declarations. (line 6) * return: Side Effects. (line 72) ! * 'return' instruction pattern: Standard Names. (line 1173) * return values in registers: Scalar Return. (line 6) ! * returning aggregate values: Aggregate Return. (line 6) ! * returning structures and unions: Interface. (line 10) ! * RETURN_ADDRESS_POINTER_REGNUM: Frame Registers. (line 64) ! * RETURN_ADDR_IN_PREVIOUS_FRAME: Frame Layout. (line 133) ! * RETURN_ADDR_OFFSET: Exception Handling. (line 59) ! * RETURN_ADDR_RTX: Frame Layout. (line 122) * RETURN_EXPR: Statements for C++. (line 6) * RETURN_STMT: Statements for C++. (line 6) * return_val: Flags. (line 274) ! * 'return_val', in 'call_insn': Flags. (line 24) ! * 'return_val', in 'reg': Flags. (line 89) ! * 'return_val', in 'symbol_ref': Flags. (line 202) * reverse probability: Profile information. (line 66) * REVERSE_CONDITION: MODE_CC Condition Codes. ! (line 92) * REVERSIBLE_CC_MODE: MODE_CC Condition Codes. ! (line 77) ! * right rotate: Arithmetic. (line 196) ! * right shift: Arithmetic. (line 191) ! * 'rintM2' instruction pattern: Standard Names. (line 674) * RISC: Processor pipeline description. (line 6) - * RISC <1>: Processor pipeline description. - (line 223) * roots, marking: GGC Roots. (line 6) ! * rotate: Arithmetic. (line 196) ! * rotate <1>: Arithmetic. (line 196) ! * rotatert: Arithmetic. (line 196) ! * 'rotlM3' instruction pattern: Standard Names. (line 526) ! * 'rotrM3' instruction pattern: Standard Names. (line 526) ! * 'roundM2' instruction pattern: Standard Names. (line 650) * ROUND_DIV_EXPR: Unary and Binary Expressions. (line 6) * ROUND_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * ROUND_TOWARDS_ZERO: Storage Layout. (line 474) ! * ROUND_TYPE_ALIGN: Storage Layout. (line 422) * RSHIFT_EXPR: Unary and Binary Expressions. (line 6) * RTL addition: Arithmetic. (line 14) * RTL addition with signed saturation: Arithmetic. (line 14) * RTL addition with unsigned saturation: Arithmetic. (line 14) * RTL classes: RTL Classes. (line 6) ! * RTL comparison: Arithmetic. (line 46) * RTL comparison operations: Comparisons. (line 6) * RTL constant expression types: Constants. (line 6) * RTL constants: Constants. (line 6) * RTL declarations: RTL Declarations. (line 6) ! * RTL difference: Arithmetic. (line 38) * RTL expression: RTL Objects. (line 6) * RTL expressions for arithmetic: Arithmetic. (line 6) * RTL format: RTL Classes. (line 72) --- 49020,49115 ---- (line 69) * Register Transfer Language (RTL): RTL. (line 6) * register usage: Registers. (line 6) ! * REGISTER_MOVE_COST: Costs. (line 10) ! * REGISTER_NAMES: Instruction Output. (line 9) * register_operand: Machine-Independent Predicates. ! (line 30) ! * REGISTER_PREFIX: Instruction Output. (line 152) ! * REGISTER_TARGET_PRAGMAS: Misc. (line 388) ! * registers arguments: Register Arguments. (line 6) ! * registers in constraints: Simple Constraints. (line 66) * REGMODE_NATURAL_SIZE: Values in Registers. ! (line 50) ! * REGNO_MODE_CODE_OK_FOR_BASE_P: Register Classes. (line 176) ! * REGNO_MODE_OK_FOR_BASE_P: Register Classes. (line 153) ! * REGNO_MODE_OK_FOR_REG_BASE_P: Register Classes. (line 163) ! * REGNO_OK_FOR_BASE_P: Register Classes. (line 149) ! * REGNO_OK_FOR_INDEX_P: Register Classes. (line 190) ! * REGNO_REG_CLASS: Register Classes. (line 108) * regs_ever_live: Function Entry. (line 21) * regular expressions: Processor pipeline description. (line 6) * relative costs: Costs. (line 6) ! * RELATIVE_PREFIX_NOT_LINKDIR: Driver. (line 263) ! * reload_completed: Standard Names. (line 1206) ! * reload_in instruction pattern: Standard Names. (line 99) * reload_in_progress: Standard Names. (line 57) ! * reload_out instruction pattern: Standard Names. (line 99) ! * reloading: RTL passes. (line 171) ! * remainder: Arithmetic. (line 136) ! * remainderM3 instruction pattern: Standard Names. (line 567) ! * reorder: GTY Options. (line 214) * representation of RTL: RTL. (line 6) * reservation delays: Processor pipeline description. (line 6) ! * rest_of_decl_compilation: Parsing pass. (line 52) ! * rest_of_type_compilation: Parsing pass. (line 52) ! * restore_stack_block instruction pattern: Standard Names. (line 1333) ! * restore_stack_function instruction pattern: Standard Names. ! (line 1333) ! * restore_stack_nonlocal instruction pattern: Standard Names. ! (line 1333) * RESULT_DECL: Declarations. (line 6) * return: Side Effects. (line 72) ! * return instruction pattern: Standard Names. (line 1179) * return values in registers: Scalar Return. (line 6) ! * RETURN_ADDR_IN_PREVIOUS_FRAME: Frame Layout. (line 135) ! * RETURN_ADDR_OFFSET: Exception Handling. (line 60) ! * RETURN_ADDR_RTX: Frame Layout. (line 124) ! * RETURN_ADDRESS_POINTER_REGNUM: Frame Registers. (line 65) * RETURN_EXPR: Statements for C++. (line 6) * RETURN_STMT: Statements for C++. (line 6) * return_val: Flags. (line 274) ! * return_val, in call_insn: Flags. (line 24) ! * return_val, in reg: Flags. (line 89) ! * return_val, in symbol_ref: Flags. (line 202) ! * returning aggregate values: Aggregate Return. (line 6) ! * returning structures and unions: Interface. (line 10) * reverse probability: Profile information. (line 66) * REVERSE_CONDITION: MODE_CC Condition Codes. ! (line 93) * REVERSIBLE_CC_MODE: MODE_CC Condition Codes. ! (line 78) ! * right rotate: Arithmetic. (line 195) ! * right shift: Arithmetic. (line 190) ! * rintM2 instruction pattern: Standard Names. (line 680) * RISC: Processor pipeline description. (line 6) * roots, marking: GGC Roots. (line 6) ! * rotate: Arithmetic. (line 195) ! * rotatert: Arithmetic. (line 195) ! * rotlM3 instruction pattern: Standard Names. (line 532) ! * rotrM3 instruction pattern: Standard Names. (line 532) * ROUND_DIV_EXPR: Unary and Binary Expressions. (line 6) * ROUND_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * ROUND_TOWARDS_ZERO: Storage Layout. (line 480) ! * ROUND_TYPE_ALIGN: Storage Layout. (line 427) ! * roundM2 instruction pattern: Standard Names. (line 656) * RSHIFT_EXPR: Unary and Binary Expressions. (line 6) * RTL addition: Arithmetic. (line 14) * RTL addition with signed saturation: Arithmetic. (line 14) * RTL addition with unsigned saturation: Arithmetic. (line 14) * RTL classes: RTL Classes. (line 6) ! * RTL comparison: Arithmetic. (line 43) * RTL comparison operations: Comparisons. (line 6) * RTL constant expression types: Constants. (line 6) * RTL constants: Constants. (line 6) * RTL declarations: RTL Declarations. (line 6) ! * RTL difference: Arithmetic. (line 36) * RTL expression: RTL Objects. (line 6) * RTL expressions for arithmetic: Arithmetic. (line 6) * RTL format: RTL Classes. (line 72) *************** Concept Index *** 48763,48771 **** * RTL side effect expressions: Side Effects. (line 6) * RTL strings: RTL Objects. (line 6) * RTL structure sharing assumptions: Sharing. (line 6) ! * RTL subtraction: Arithmetic. (line 38) ! * RTL subtraction with signed saturation: Arithmetic. (line 38) ! * RTL subtraction with unsigned saturation: Arithmetic. (line 38) * RTL sum: Arithmetic. (line 14) * RTL vectors: RTL Objects. (line 6) * RTL_CONST_CALL_P: Flags. (line 19) --- 49128,49136 ---- * RTL side effect expressions: Side Effects. (line 6) * RTL strings: RTL Objects. (line 6) * RTL structure sharing assumptions: Sharing. (line 6) ! * RTL subtraction: Arithmetic. (line 36) ! * RTL subtraction with signed saturation: Arithmetic. (line 36) ! * RTL subtraction with unsigned saturation: Arithmetic. (line 36) * RTL sum: Arithmetic. (line 14) * RTL vectors: RTL Objects. (line 6) * RTL_CONST_CALL_P: Flags. (line 19) *************** Concept Index *** 48777,49569 **** * RTX_FRAME_RELATED_P: Flags. (line 107) * run-time conventions: Interface. (line 6) * run-time target specification: Run-time Target. (line 6) ! * 's' in constraint: Simple Constraints. (line 100) ! * same_type_p: Types. (line 86) ! * SAmode: Machine Modes. (line 150) ! * 'satfractMN2' instruction pattern: Standard Names. (line 938) ! * 'satfractunsMN2' instruction pattern: Standard Names. (line 951) ! * satisfies_constraint_: C Constraint Interface. ! (line 46) * sat_fract: Conversions. (line 90) * SAVE_EXPR: Unary and Binary Expressions. (line 6) ! * 'save_stack_block' instruction pattern: Standard Names. (line 1325) ! * 'save_stack_function' instruction pattern: Standard Names. (line 1325) ! * 'save_stack_nonlocal' instruction pattern: Standard Names. (line 1325) ! * SBSS_SECTION_ASM_OP: Sections. (line 75) * Scalar evolutions: Scalar evolutions. (line 6) * scalars, returned as values: Scalar Return. (line 6) * SCHED_GROUP_P: Flags. (line 148) ! * SCmode: Machine Modes. (line 199) ! * scratch: Regs and Memory. (line 294) ! * scratch operands: Regs and Memory. (line 294) ! * 'scratch', RTL sharing: Sharing. (line 35) * scratch_operand: Machine-Independent Predicates. ! (line 49) ! * SDATA_SECTION_ASM_OP: Sections. (line 57) ! * SDB_ALLOW_FORWARD_REFERENCES: SDB and DWARF. (line 123) ! * SDB_ALLOW_UNKNOWN_REFERENCES: SDB and DWARF. (line 118) ! * SDB_DEBUGGING_INFO: SDB and DWARF. (line 8) ! * SDB_DELIM: SDB and DWARF. (line 111) ! * SDB_OUTPUT_SOURCE_LINE: SDB and DWARF. (line 128) * SDmode: Machine Modes. (line 88) ! * 'sdot_prodM' instruction pattern: Standard Names. (line 341) ! * search options: Including Patterns. (line 47) ! * SECONDARY_INPUT_RELOAD_CLASS: Register Classes. (line 391) ! * SECONDARY_MEMORY_NEEDED: Register Classes. (line 447) ! * SECONDARY_MEMORY_NEEDED_MODE: Register Classes. (line 466) ! * SECONDARY_MEMORY_NEEDED_RTX: Register Classes. (line 457) ! * SECONDARY_OUTPUT_RELOAD_CLASS: Register Classes. (line 392) ! * SECONDARY_RELOAD_CLASS: Register Classes. (line 390) * SELECT_CC_MODE: MODE_CC Condition Codes. ! (line 6) ! * sequence: Side Effects. (line 258) * Sequence iterators: Sequence iterators. (line 6) * set: Side Effects. (line 15) ! * 'set' and '/f': Flags. (line 107) ! * 'setmemM' instruction pattern: Standard Names. (line 802) ! * SETUP_FRAME_ADDRESSES: Frame Layout. (line 100) ! * SET_ASM_OP: Label Output. (line 416) ! * SET_ASM_OP <1>: Label Output. (line 427) * set_attr: Tagging Insns. (line 31) * set_attr_alternative: Tagging Insns. (line 49) ! * set_bb_seq: GIMPLE sequences. (line 75) ! * SET_BY_PIECES_P: Costs. (line 205) * SET_DEST: Side Effects. (line 69) * SET_IS_RETURN_P: Flags. (line 157) * SET_LABEL_KIND: Insns. (line 146) * set_optab_libfunc: Library Calls. (line 15) ! * SET_RATIO: Costs. (line 193) * SET_SRC: Side Effects. (line 69) ! * 'set_thread_pointerMODE' instruction pattern: Standard Names. ! (line 1869) * SET_TYPE_STRUCTURAL_EQUALITY: Types. (line 6) ! * SET_TYPE_STRUCTURAL_EQUALITY <1>: Types. (line 81) * SFmode: Machine Modes. (line 69) - * SF_SIZE: Type Layout. (line 135) * sharing of RTL components: Sharing. (line 6) ! * shift: Arithmetic. (line 174) ! * SHIFT_COUNT_TRUNCATED: Misc. (line 112) * SHLIB_SUFFIX: Macros for Initialization. ! (line 133) ! * SHORT_ACCUM_TYPE_SIZE: Type Layout. (line 82) ! * SHORT_FRACT_TYPE_SIZE: Type Layout. (line 62) ! * SHORT_IMMEDIATES_SIGN_EXTEND: Misc. (line 86) ! * SHORT_TYPE_SIZE: Type Layout. (line 15) ! * 'sibcall_epilogue' instruction pattern: Standard Names. (line 1532) ! * sibling call: Edges. (line 121) * SIBLING_CALL_P: Flags. (line 161) ! * signed division: Arithmetic. (line 117) ! * signed division with signed saturation: Arithmetic. (line 117) ! * signed maximum: Arithmetic. (line 142) ! * signed minimum: Arithmetic. (line 142) * sign_extend: Conversions. (line 23) * sign_extract: Bit-Fields. (line 8) ! * 'sign_extract', canonicalization of: Insn Canonicalizations. ! (line 87) ! * SIG_ATOMIC_TYPE: Type Layout. (line 251) * SImode: Machine Modes. (line 37) * simple constraints: Simple Constraints. (line 6) * simple_return: Side Effects. (line 86) ! * 'simple_return' instruction pattern: Standard Names. (line 1188) ! * 'sincosM3' instruction pattern: Standard Names. (line 586) ! * 'sinM2' instruction pattern: Standard Names. (line 578) ! * SIZETYPE: Type Layout. (line 190) ! * SIZE_ASM_OP: Label Output. (line 33) ! * SIZE_TYPE: Type Layout. (line 174) ! * skip: GTY Options. (line 76) ! * SLOW_BYTE_ACCESS: Costs. (line 117) ! * SLOW_UNALIGNED_ACCESS: Costs. (line 132) ! * smax: Arithmetic. (line 142) ! * smin: Arithmetic. (line 142) ! * sms, swing, software pipelining: RTL passes. (line 123) ! * 'smulM3_highpart' instruction pattern: Standard Names. (line 441) * soft float library: Soft float library routines. (line 6) ! * special: GTY Options. (line 311) * special predicates: Predicates. (line 31) * SPECS: Target Fragment. (line 191) * speed of instructions: Costs. (line 6) - * splitting instructions: Insn Splitting. (line 6) * split_block: Maintaining the CFG. ! (line 97) * SQmode: Machine Modes. (line 114) * sqrt: Arithmetic. (line 207) ! * 'sqrtM2' instruction pattern: Standard Names. (line 544) * square root: Arithmetic. (line 207) ! * SSA: SSA. (line 6) ! * 'ssaddM3' instruction pattern: Standard Names. (line 276) ! * 'ssashlM3' instruction pattern: Standard Names. (line 516) ! * SSA_NAME_DEF_STMT: SSA. (line 216) ! * SSA_NAME_VERSION: SSA. (line 221) ! * 'ssdivM3' instruction pattern: Standard Names. (line 276) ! * 'ssmaddMN4' instruction pattern: Standard Names. (line 464) ! * 'ssmsubMN4' instruction pattern: Standard Names. (line 488) ! * 'ssmulM3' instruction pattern: Standard Names. (line 276) ! * 'ssnegM2' instruction pattern: Standard Names. (line 538) ! * 'sssubM3' instruction pattern: Standard Names. (line 276) ! * 'ssum_widenM3' instruction pattern: Standard Names. (line 350) ! * ss_abs: Arithmetic. (line 201) ! * ss_ashift: Arithmetic. (line 174) ! * ss_div: Arithmetic. (line 117) ! * ss_minus: Arithmetic. (line 38) ! * ss_mult: Arithmetic. (line 93) ! * ss_neg: Arithmetic. (line 82) * ss_plus: Arithmetic. (line 14) * ss_truncate: Conversions. (line 43) * stack arguments: Stack Arguments. (line 6) * stack frame layout: Frame Layout. (line 6) * stack smashing protection: Stack Smashing Protection. (line 6) ! * STACK_ALIGNMENT_NEEDED: Frame Layout. (line 47) ! * STACK_BOUNDARY: Storage Layout. (line 139) ! * STACK_CHECK_BUILTIN: Stack Checking. (line 31) ! * STACK_CHECK_FIXED_FRAME_SIZE: Stack Checking. (line 82) ! * STACK_CHECK_MAX_FRAME_SIZE: Stack Checking. (line 73) ! * STACK_CHECK_MAX_VAR_SIZE: Stack Checking. (line 89) ! * STACK_CHECK_MOVING_SP: Stack Checking. (line 53) ! * STACK_CHECK_PROBE_INTERVAL_EXP: Stack Checking. (line 45) ! * STACK_CHECK_PROTECT: Stack Checking. (line 62) ! * STACK_CHECK_STATIC_BUILTIN: Stack Checking. (line 38) ! * STACK_DYNAMIC_OFFSET: Frame Layout. (line 73) ! * 'STACK_DYNAMIC_OFFSET' and virtual registers: Regs and Memory. (line 83) ! * STACK_GROWS_DOWNWARD: Frame Layout. (line 8) ! * STACK_PARMS_IN_REG_PARM_AREA: Stack Arguments. (line 89) ! * STACK_POINTER_OFFSET: Frame Layout. (line 57) ! * 'STACK_POINTER_OFFSET' and virtual registers: Regs and Memory. (line 93) ! * STACK_POINTER_REGNUM: Frame Registers. (line 8) ! * 'STACK_POINTER_REGNUM' and virtual registers: Regs and Memory. (line 83) * stack_pointer_rtx: Frame Registers. (line 104) ! * 'stack_protect_set' instruction pattern: Standard Names. (line 1879) ! * 'stack_protect_test' instruction pattern: Standard Names. (line 1890) ! * STACK_PUSH_CODE: Frame Layout. (line 16) ! * STACK_REGS: Stack Registers. (line 19) ! * STACK_REG_COVER_CLASS: Stack Registers. (line 22) ! * STACK_SAVEAREA_MODE: Storage Layout. (line 438) ! * STACK_SIZE_MODE: Storage Layout. (line 449) ! * STACK_SLOT_ALIGNMENT: Storage Layout. (line 270) * standard pattern names: Standard Names. (line 6) ! * STANDARD_STARTFILE_PREFIX: Driver. (line 274) ! * STANDARD_STARTFILE_PREFIX_1: Driver. (line 281) ! * STANDARD_STARTFILE_PREFIX_2: Driver. (line 288) ! * STARTFILE_SPEC: Driver. (line 147) ! * STARTING_FRAME_OFFSET: Frame Layout. (line 38) ! * 'STARTING_FRAME_OFFSET' and virtual registers: Regs and Memory. (line 74) * Statement and operand traversals: Statement and operand traversals. (line 6) * Statement Sequences: Statement Sequences. (line 6) ! * Statements: Statements. (line 6) * statements: Function Properties. (line 6) ! * statements <1>: Statements for C++. (line 6) * Static profile estimation: Profile information. (line 24) * static single assignment: SSA. (line 6) ! * STATIC_CHAIN_INCOMING_REGNUM: Frame Registers. (line 77) ! * STATIC_CHAIN_REGNUM: Frame Registers. (line 76) ! * 'stdarg.h' and register arguments: Register Arguments. (line 45) ! * STDC_0_IN_SYSTEM_HEADERS: Misc. (line 350) * STMT_EXPR: Unary and Binary Expressions. (line 6) * STMT_IS_FULL_EXPR_P: Statements for C++. (line 22) * storage layout: Storage Layout. (line 6) ! * STORE_BY_PIECES_P: Costs. (line 212) ! * STORE_FLAG_VALUE: Misc. (line 201) ! * 'store_multiple' instruction pattern: Standard Names. (line 159) ! * strcpy: Storage Layout. (line 223) ! * STRICT_ALIGNMENT: Storage Layout. (line 320) * strict_low_part: RTL Declarations. (line 9) ! * strict_memory_address_p: Addressing Modes. (line 186) * STRING_CST: Constant expressions. (line 6) * STRING_POOL_ADDRESS_P: Flags. (line 165) ! * 'strlenM' instruction pattern: Standard Names. (line 873) * structure value address: Aggregate Return. (line 6) * structures, returning: Interface. (line 10) ! * STRUCTURE_SIZE_BOUNDARY: Storage Layout. (line 312) ! * 'subM3' instruction pattern: Standard Names. (line 276) * SUBOBJECT: Statements for C++. (line 6) * SUBOBJECT_CLEANUP: Statements for C++. (line 6) * subreg: Regs and Memory. (line 97) ! * 'subreg' and '/s': Flags. (line 187) ! * 'subreg' and '/u': Flags. (line 180) ! * 'subreg' and '/u' and '/v': Flags. (line 170) ! * 'subreg', in 'strict_low_part': RTL Declarations. (line 9) ! * SUBREG_BYTE: Regs and Memory. (line 285) * SUBREG_PROMOTED_UNSIGNED_P: Flags. (line 170) * SUBREG_PROMOTED_UNSIGNED_SET: Flags. (line 180) * SUBREG_PROMOTED_VAR_P: Flags. (line 187) ! * SUBREG_REG: Regs and Memory. (line 285) ! * subst iterators in '.md' files: Subst Iterators. (line 6) * SUCCESS_EXIT_CODE: Host Misc. (line 12) * SUPPORTS_INIT_PRIORITY: Macros for Initialization. ! (line 57) ! * SUPPORTS_ONE_ONLY: Label Output. (line 255) ! * SUPPORTS_WEAK: Label Output. (line 229) ! * SWITCHABLE_TARGET: Run-time Target. (line 164) * SWITCH_BODY: Statements for C++. (line 6) * SWITCH_COND: Statements for C++. (line 6) * SWITCH_STMT: Statements for C++. (line 6) ! * symbolic label: Sharing. (line 20) ! * SYMBOL_FLAG_ANCHOR: Special Accessors. (line 117) ! * SYMBOL_FLAG_EXTERNAL: Special Accessors. (line 99) ! * SYMBOL_FLAG_FUNCTION: Special Accessors. (line 92) ! * SYMBOL_FLAG_HAS_BLOCK_INFO: Special Accessors. (line 113) ! * SYMBOL_FLAG_LOCAL: Special Accessors. (line 95) ! * SYMBOL_FLAG_SMALL: Special Accessors. (line 104) ! * SYMBOL_FLAG_TLS_SHIFT: Special Accessors. (line 108) ! * symbol_ref: Constants. (line 86) ! * 'symbol_ref' and '/f': Flags. (line 165) ! * 'symbol_ref' and '/i': Flags. (line 202) ! * 'symbol_ref' and '/u': Flags. (line 10) ! * 'symbol_ref' and '/v': Flags. (line 206) ! * 'symbol_ref', RTL sharing: Sharing. (line 20) ! * SYMBOL_REF_ANCHOR_P: Special Accessors. (line 117) ! * SYMBOL_REF_BLOCK: Special Accessors. (line 130) ! * SYMBOL_REF_BLOCK_OFFSET: Special Accessors. (line 135) ! * SYMBOL_REF_CONSTANT: Special Accessors. (line 78) ! * SYMBOL_REF_DATA: Special Accessors. (line 82) ! * SYMBOL_REF_DECL: Special Accessors. (line 67) ! * SYMBOL_REF_EXTERNAL_P: Special Accessors. (line 99) * SYMBOL_REF_FLAG: Flags. (line 206) ! * 'SYMBOL_REF_FLAG', in 'TARGET_ENCODE_SECTION_INFO': Sections. ! (line 277) ! * SYMBOL_REF_FLAGS: Special Accessors. (line 86) ! * SYMBOL_REF_FUNCTION_P: Special Accessors. (line 92) ! * SYMBOL_REF_HAS_BLOCK_INFO_P: Special Accessors. (line 113) ! * SYMBOL_REF_LOCAL_P: Special Accessors. (line 95) ! * SYMBOL_REF_SMALL_P: Special Accessors. (line 104) ! * SYMBOL_REF_TLS_MODEL: Special Accessors. (line 108) * SYMBOL_REF_USED: Flags. (line 197) * SYMBOL_REF_WEAK: Flags. (line 202) ! * 'sync_addMODE' instruction pattern: Standard Names. (line 1635) ! * 'sync_andMODE' instruction pattern: Standard Names. (line 1635) ! * 'sync_compare_and_swapMODE' instruction pattern: Standard Names. ! (line 1594) ! * 'sync_iorMODE' instruction pattern: Standard Names. (line 1635) ! * 'sync_lock_releaseMODE' instruction pattern: Standard Names. ! (line 1704) ! * 'sync_lock_test_and_setMODE' instruction pattern: Standard Names. ! (line 1677) ! * 'sync_nandMODE' instruction pattern: Standard Names. (line 1635) ! * 'sync_new_addMODE' instruction pattern: Standard Names. (line 1669) ! * 'sync_new_andMODE' instruction pattern: Standard Names. (line 1669) ! * 'sync_new_iorMODE' instruction pattern: Standard Names. (line 1669) ! * 'sync_new_nandMODE' instruction pattern: Standard Names. (line 1669) ! * 'sync_new_subMODE' instruction pattern: Standard Names. (line 1669) ! * 'sync_new_xorMODE' instruction pattern: Standard Names. (line 1669) ! * 'sync_old_addMODE' instruction pattern: Standard Names. (line 1651) ! * 'sync_old_andMODE' instruction pattern: Standard Names. (line 1651) ! * 'sync_old_iorMODE' instruction pattern: Standard Names. (line 1651) ! * 'sync_old_nandMODE' instruction pattern: Standard Names. (line 1651) ! * 'sync_old_subMODE' instruction pattern: Standard Names. (line 1651) ! * 'sync_old_xorMODE' instruction pattern: Standard Names. (line 1651) ! * 'sync_subMODE' instruction pattern: Standard Names. (line 1635) ! * 'sync_xorMODE' instruction pattern: Standard Names. (line 1635) ! * SYSROOT_HEADERS_SUFFIX_SPEC: Driver. (line 176) ! * SYSROOT_SUFFIX_SPEC: Driver. (line 171) ! * 't-TARGET': Target Fragment. (line 6) * table jump: Basic Blocks. (line 67) ! * 'tablejump' instruction pattern: Standard Names. (line 1261) * tag: GTY Options. (line 82) * tagging insns: Tagging Insns. (line 6) * tail calls: Tail Calls. (line 6) ! * TAmode: Machine Modes. (line 158) * target attributes: Target Attributes. (line 6) * target description macros: Target Macros. (line 6) * target functions: Target Structure. (line 6) * target hooks: Target Structure. (line 6) * target makefile fragment: Target Fragment. (line 6) * target specifications: Run-time Target. (line 6) - * targetm: Target Structure. (line 6) - * targets, makefile: Makefile. (line 6) - * TARGET_ADDRESS_COST: Costs. (line 300) * TARGET_ADDR_SPACE_ADDRESS_MODE: Named Address Spaces. ! (line 43) * TARGET_ADDR_SPACE_CONVERT: Named Address Spaces. ! (line 85) * TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P: Named Address Spaces. ! (line 61) * TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS: Named Address Spaces. ! (line 69) * TARGET_ADDR_SPACE_POINTER_MODE: Named Address Spaces. ! (line 36) * TARGET_ADDR_SPACE_SUBSET_P: Named Address Spaces. ! (line 76) * TARGET_ADDR_SPACE_VALID_POINTER_MODE: Named Address Spaces. ! (line 50) ! * TARGET_ALIGN_ANON_BITFIELD: Storage Layout. (line 397) ! * TARGET_ALLOCATE_INITIAL_VALUE: Misc. (line 734) * TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS: Misc. (line 1013) ! * TARGET_ALWAYS_STRIP_DOTDOT: Driver. (line 246) ! * TARGET_ARG_PARTIAL_BYTES: Register Arguments. (line 81) * TARGET_ARM_EABI_UNWINDER: Exception Region Output. ! (line 127) ! * TARGET_ARRAY_MODE_SUPPORTED_P: Register Arguments. (line 333) * TARGET_ASAN_SHADOW_OFFSET: Misc. (line 1041) ! * TARGET_ASM_ALIGNED_DI_OP: Data Output. (line 9) ! * TARGET_ASM_ALIGNED_HI_OP: Data Output. (line 7) ! * TARGET_ASM_ALIGNED_SI_OP: Data Output. (line 8) ! * TARGET_ASM_ALIGNED_TI_OP: Data Output. (line 10) ! * TARGET_ASM_ASSEMBLE_VISIBILITY: Label Output. (line 266) ! * TARGET_ASM_BYTE_OP: Data Output. (line 6) ! * TARGET_ASM_CAN_OUTPUT_MI_THUNK: Function Entry. (line 202) ! * TARGET_ASM_CLOSE_PAREN: Data Output. (line 129) ! * TARGET_ASM_CODE_END: File Framework. (line 57) * TARGET_ASM_CONSTRUCTOR: Macros for Initialization. ! (line 68) ! * TARGET_ASM_DECLARE_CONSTANT_NAME: Label Output. (line 149) * TARGET_ASM_DESTRUCTOR: Macros for Initialization. ! (line 82) ! * TARGET_ASM_EMIT_EXCEPT_PERSONALITY: Dispatch Tables. (line 80) ! * TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL: Dispatch Tables. (line 73) ! * TARGET_ASM_EMIT_UNWIND_LABEL: Dispatch Tables. (line 61) ! * TARGET_ASM_EXTERNAL_LIBCALL: Label Output. (line 302) ! * TARGET_ASM_FILE_END: File Framework. (line 35) ! * TARGET_ASM_FILE_START: File Framework. (line 8) ! * TARGET_ASM_FILE_START_APP_OFF: File Framework. (line 16) ! * TARGET_ASM_FILE_START_FILE_DIRECTIVE: File Framework. (line 29) ! * TARGET_ASM_FINAL_POSTSCAN_INSN: Instruction Output. (line 82) ! * TARGET_ASM_FUNCTION_BEGIN_EPILOGUE: Function Entry. (line 59) ! * TARGET_ASM_FUNCTION_END_PROLOGUE: Function Entry. (line 53) ! * TARGET_ASM_FUNCTION_EPILOGUE: Function Entry. (line 65) ! * TARGET_ASM_FUNCTION_PROLOGUE: Function Entry. (line 9) ! * TARGET_ASM_FUNCTION_RODATA_SECTION: Sections. (line 213) ! * TARGET_ASM_FUNCTION_SECTION: File Framework. (line 121) * TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS: File Framework. ! (line 131) ! * TARGET_ASM_GLOBALIZE_DECL_NAME: Label Output. (line 194) ! * TARGET_ASM_GLOBALIZE_LABEL: Label Output. (line 185) ! * TARGET_ASM_INIT_SECTIONS: Sections. (line 159) ! * TARGET_ASM_INTEGER: Data Output. (line 25) ! * TARGET_ASM_INTERNAL_LABEL: Label Output. (line 345) ! * TARGET_ASM_JUMP_ALIGN_MAX_SKIP: Alignment Output. (line 21) * TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP: Alignment Output. ! (line 34) ! * TARGET_ASM_LABEL_ALIGN_MAX_SKIP: Alignment Output. (line 68) ! * TARGET_ASM_LOOP_ALIGN_MAX_SKIP: Alignment Output. (line 53) ! * TARGET_ASM_LTO_END: File Framework. (line 52) ! * TARGET_ASM_LTO_START: File Framework. (line 47) ! * TARGET_ASM_MARK_DECL_PRESERVED: Label Output. (line 308) ! * TARGET_ASM_MERGEABLE_RODATA_PREFIX: Sections. (line 221) ! * TARGET_ASM_NAMED_SECTION: File Framework. (line 113) ! * TARGET_ASM_OPEN_PAREN: Data Output. (line 128) ! * TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA: Data Output. (line 38) ! * TARGET_ASM_OUTPUT_ANCHOR: Anchored Addresses. (line 42) ! * TARGET_ASM_OUTPUT_DWARF_DTPREL: SDB and DWARF. (line 99) ! * TARGET_ASM_OUTPUT_IDENT: File Framework. (line 100) ! * TARGET_ASM_OUTPUT_MI_THUNK: Function Entry. (line 160) ! * TARGET_ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 91) ! * TARGET_ASM_RECORD_GCC_SWITCHES: File Framework. (line 162) ! * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION: File Framework. (line 207) ! * TARGET_ASM_RELOC_RW_MASK: Sections. (line 168) ! * TARGET_ASM_SELECT_RTX_SECTION: Sections. (line 230) ! * TARGET_ASM_SELECT_SECTION: Sections. (line 179) ! * TARGET_ASM_TM_CLONE_TABLE_SECTION: Sections. (line 226) ! * TARGET_ASM_TRAMPOLINE_TEMPLATE: Trampolines. (line 28) * TARGET_ASM_TTYPE: Exception Region Output. ! (line 121) ! * TARGET_ASM_UNALIGNED_DI_OP: Data Output. (line 13) ! * TARGET_ASM_UNALIGNED_HI_OP: Data Output. (line 11) ! * TARGET_ASM_UNALIGNED_SI_OP: Data Output. (line 12) ! * TARGET_ASM_UNALIGNED_TI_OP: Data Output. (line 14) ! * TARGET_ASM_UNIQUE_SECTION: Sections. (line 201) ! * TARGET_ASM_UNWIND_EMIT: Dispatch Tables. (line 87) ! * TARGET_ASM_UNWIND_EMIT_BEFORE_INSN: Dispatch Tables. (line 92) ! * TARGET_ATOMIC_ALIGN_FOR_MODE: Misc. (line 1060) ! * TARGET_ATOMIC_ASSIGN_EXPAND_FENV: Misc. (line 1066) * TARGET_ATOMIC_TEST_AND_SET_TRUEVAL: Misc. (line 1051) ! * TARGET_ATTRIBUTE_TABLE: Target Attributes. (line 10) ! * TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P: Target Attributes. (line 17) ! * TARGET_BINDS_LOCAL_P: Sections. (line 308) ! * TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED: Misc. (line 831) ! * TARGET_BRANCH_TARGET_REGISTER_CLASS: Misc. (line 824) ! * TARGET_BUILD_BUILTIN_VA_LIST: Register Arguments. (line 271) ! * TARGET_BUILTIN_DECL: Misc. (line 603) ! * TARGET_BUILTIN_RECIPROCAL: Addressing Modes. (line 261) ! * TARGET_BUILTIN_SETJMP_FRAME_VALUE: Frame Layout. (line 107) ! * TARGET_CALLEE_COPIES: Register Arguments. (line 113) ! * TARGET_CANNOT_FORCE_CONST_MEM: Addressing Modes. (line 234) ! * TARGET_CANNOT_MODIFY_JUMPS_P: Misc. (line 811) ! * TARGET_CANONICALIZE_COMPARISON: MODE_CC Condition Codes. ! (line 55) ! * TARGET_CANONICAL_VA_LIST_TYPE: Register Arguments. (line 292) ! * TARGET_CAN_ELIMINATE: Elimination. (line 73) * TARGET_CAN_FOLLOW_JUMP: Misc. (line 720) ! * TARGET_CAN_INLINE_P: Target Attributes. (line 159) ! * TARGET_CAN_USE_DOLOOP_P: Misc. (line 675) ! * TARGET_CASE_VALUES_THRESHOLD: Misc. (line 46) * TARGET_CC_MODES_COMPATIBLE: MODE_CC Condition Codes. ! (line 120) ! * TARGET_CHECK_PCH_TARGET_FLAGS: PCH Target. (line 26) ! * TARGET_CHECK_STRING_OBJECT_FORMAT_ARG: Run-time Target. (line 119) ! * TARGET_CLASS_LIKELY_SPILLED_P: Register Classes. (line 489) ! * TARGET_CLASS_MAX_NREGS: Register Classes. (line 505) ! * TARGET_COMMUTATIVE_P: Misc. (line 727) ! * TARGET_COMPARE_VERSION_PRIORITY: Misc. (line 652) ! * TARGET_COMP_TYPE_ATTRIBUTES: Target Attributes. (line 25) ! * TARGET_CONDITIONAL_REGISTER_USAGE: Register Basics. (line 59) * TARGET_CONST_ANCHOR: Misc. (line 1024) ! * TARGET_CONST_NOT_OK_FOR_DEBUG_P: Addressing Modes. (line 230) ! * TARGET_CONVERT_TO_TYPE: Misc. (line 978) ! * TARGET_CPU_CPP_BUILTINS: Run-time Target. (line 8) ! * TARGET_CSTORE_MODE: Register Classes. (line 588) ! * TARGET_CXX_ADJUST_CLASS_AT_DEFINITION: C++ ABI. (line 86) ! * TARGET_CXX_CDTOR_RETURNS_THIS: C++ ABI. (line 37) ! * TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT: C++ ABI. (line 61) ! * TARGET_CXX_COOKIE_HAS_SIZE: C++ ABI. (line 24) ! * TARGET_CXX_DECL_MANGLING_CONTEXT: C++ ABI. (line 92) ! * TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY: C++ ABI. (line 52) ! * TARGET_CXX_GET_COOKIE_SIZE: C++ ABI. (line 17) ! * TARGET_CXX_GUARD_MASK_BIT: C++ ABI. (line 11) ! * TARGET_CXX_GUARD_TYPE: C++ ABI. (line 6) ! * TARGET_CXX_IMPLICIT_EXTERN_C: Misc. (line 373) ! * TARGET_CXX_IMPORT_EXPORT_CLASS: C++ ABI. (line 28) ! * TARGET_CXX_KEY_METHOD_MAY_BE_INLINE: C++ ABI. (line 42) ! * TARGET_CXX_LIBRARY_RTTI_COMDAT: C++ ABI. (line 68) ! * TARGET_CXX_USE_AEABI_ATEXIT: C++ ABI. (line 73) ! * TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT: C++ ABI. (line 79) ! * TARGET_C_PREINCLUDE: Misc. (line 361) ! * TARGET_DEBUG_UNWIND_INFO: SDB and DWARF. (line 36) ! * TARGET_DECIMAL_FLOAT_SUPPORTED_P: Storage Layout. (line 521) ! * TARGET_DECLSPEC: Target Attributes. (line 72) ! * TARGET_DEFAULT_PACK_STRUCT: Misc. (line 446) ! * TARGET_DEFAULT_SHORT_ENUMS: Type Layout. (line 166) ! * TARGET_DEFAULT_TARGET_FLAGS: Run-time Target. (line 55) ! * TARGET_DEFERRED_OUTPUT_DEFS: Label Output. (line 430) ! * TARGET_DELAY_SCHED2: SDB and DWARF. (line 65) ! * TARGET_DELAY_VARTRACK: SDB and DWARF. (line 69) ! * TARGET_DELEGITIMIZE_ADDRESS: Addressing Modes. (line 221) ! * TARGET_DIFFERENT_ADDR_DISPLACEMENT_P: Register Classes. (line 574) * TARGET_DLLIMPORT_DECL_ATTRIBUTES: Target Attributes. (line 55) ! * TARGET_DWARF_CALLING_CONVENTION: SDB and DWARF. (line 16) ! * TARGET_DWARF_HANDLE_FRAME_UNSPEC: Frame Layout. (line 169) * TARGET_DWARF_REGISTER_SPAN: Exception Region Output. ! (line 104) ! * TARGET_EDOM: Library Calls. (line 59) ! * TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS: Emulated TLS. (line 67) ! * TARGET_EMUTLS_GET_ADDRESS: Emulated TLS. (line 18) ! * TARGET_EMUTLS_REGISTER_COMMON: Emulated TLS. (line 23) ! * TARGET_EMUTLS_TMPL_PREFIX: Emulated TLS. (line 44) ! * TARGET_EMUTLS_TMPL_SECTION: Emulated TLS. (line 35) ! * TARGET_EMUTLS_VAR_ALIGN_FIXED: Emulated TLS. (line 62) ! * TARGET_EMUTLS_VAR_FIELDS: Emulated TLS. (line 48) ! * TARGET_EMUTLS_VAR_INIT: Emulated TLS. (line 55) ! * TARGET_EMUTLS_VAR_PREFIX: Emulated TLS. (line 40) ! * TARGET_EMUTLS_VAR_SECTION: Emulated TLS. (line 30) ! * TARGET_ENCODE_SECTION_INFO: Sections. (line 251) ! * 'TARGET_ENCODE_SECTION_INFO' and address validation: Addressing Modes. ! (line 82) ! * 'TARGET_ENCODE_SECTION_INFO' usage: Instruction Output. (line 127) ! * TARGET_ENUM_VA_LIST_P: Register Arguments. (line 275) * TARGET_EXCEPT_UNWIND_INFO: Exception Region Output. ! (line 45) ! * TARGET_EXECUTABLE_SUFFIX: Misc. (line 785) ! * TARGET_EXPAND_BUILTIN: Misc. (line 613) ! * TARGET_EXPAND_BUILTIN_SAVEREGS: Varargs. (line 64) ! * TARGET_EXPAND_TO_RTL_HOOK: Storage Layout. (line 527) * TARGET_EXPR: Unary and Binary Expressions. (line 6) * TARGET_EXTRA_INCLUDES: Misc. (line 870) ! * TARGET_EXTRA_LIVE_ON_ENTRY: Tail Calls. (line 20) * TARGET_EXTRA_PRE_INCLUDES: Misc. (line 877) * TARGET_FIXED_CONDITION_CODE_REGS: MODE_CC Condition Codes. ! (line 105) ! * TARGET_FIXED_POINT_SUPPORTED_P: Storage Layout. (line 524) ! * target_flags: Run-time Target. (line 51) * TARGET_FLAGS_REGNUM: MODE_CC Condition Codes. ! (line 133) * TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P: Run-time Target. ! (line 183) ! * TARGET_FLT_EVAL_METHOD: Type Layout. (line 147) ! * TARGET_FN_ABI_VA_LIST: Register Arguments. (line 287) ! * TARGET_FOLD_BUILTIN: Misc. (line 635) ! * TARGET_FORCE_AT_COMP_DIR: SDB and DWARF. (line 60) ! * TARGET_FORMAT_TYPES: Misc. (line 898) ! * TARGET_FRAME_POINTER_REQUIRED: Elimination. (line 8) ! * TARGET_FUNCTION_ARG: Register Arguments. (line 10) ! * TARGET_FUNCTION_ARG_ADVANCE: Register Arguments. (line 184) ! * TARGET_FUNCTION_ARG_BOUNDARY: Register Arguments. (line 238) ! * TARGET_FUNCTION_ARG_ROUND_BOUNDARY: Register Arguments. (line 244) ! * TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P: Target Attributes. (line 93) ! * TARGET_FUNCTION_INCOMING_ARG: Register Arguments. (line 65) ! * TARGET_FUNCTION_OK_FOR_SIBCALL: Tail Calls. (line 6) ! * TARGET_FUNCTION_VALUE: Scalar Return. (line 9) ! * TARGET_FUNCTION_VALUE_REGNO_P: Scalar Return. (line 96) ! * TARGET_GENERATE_VERSION_DISPATCHER_BODY: Misc. (line 668) * TARGET_GET_DRAP_RTX: Misc. (line 1007) ! * TARGET_GET_FUNCTION_VERSIONS_DISPATCHER: Misc. (line 661) ! * TARGET_GET_PCH_VALIDITY: PCH Target. (line 6) ! * TARGET_GET_RAW_ARG_MODE: Aggregate Return. (line 82) ! * TARGET_GET_RAW_RESULT_MODE: Aggregate Return. (line 76) ! * TARGET_GIMPLE_FOLD_BUILTIN: Misc. (line 645) ! * TARGET_GIMPLIFY_VA_ARG_EXPR: Register Arguments. (line 297) ! * TARGET_HANDLE_C_OPTION: Run-time Target. (line 73) ! * TARGET_HANDLE_OPTION: Run-time Target. (line 59) * TARGET_HARD_REGNO_SCRATCH_OK: Values in Registers. ! (line 141) * TARGET_HAS_IFUNC_P: Misc. (line 1055) ! * TARGET_HAS_NO_HW_DIVIDE: Library Calls. (line 52) ! * TARGET_HAVE_CONDITIONAL_EXECUTION: Misc. (line 845) * TARGET_HAVE_CTORS_DTORS: Macros for Initialization. ! (line 63) ! * TARGET_HAVE_NAMED_SECTIONS: File Framework. (line 139) ! * TARGET_HAVE_SRODATA_SECTION: Sections. (line 297) ! * TARGET_HAVE_SWITCHABLE_BSS_SECTIONS: File Framework. (line 144) ! * TARGET_HAVE_TLS: Sections. (line 317) ! * TARGET_INIT_BUILTINS: Misc. (line 587) * TARGET_INIT_DWARF_REG_SIZES_EXTRA: Exception Region Output. ! (line 113) ! * TARGET_INIT_LIBFUNCS: Library Calls. (line 15) ! * TARGET_INSERT_ATTRIBUTES: Target Attributes. (line 80) ! * TARGET_INSTANTIATE_DECLS: Storage Layout. (line 535) * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN: Misc. (line 931) * TARGET_INVALID_BINARY_OP: Misc. (line 950) * TARGET_INVALID_CONVERSION: Misc. (line 937) * TARGET_INVALID_PARAMETER_TYPE: Misc. (line 956) * TARGET_INVALID_RETURN_TYPE: Misc. (line 963) * TARGET_INVALID_UNARY_OP: Misc. (line 943) ! * TARGET_INVALID_WITHIN_DOLOOP: Misc. (line 692) ! * TARGET_IN_SMALL_DATA_P: Sections. (line 293) ! * TARGET_LEGITIMATE_ADDRESS_P: Addressing Modes. (line 48) * TARGET_LEGITIMATE_COMBINED_INSN: Misc. (line 706) ! * TARGET_LEGITIMATE_CONSTANT_P: Addressing Modes. (line 213) ! * TARGET_LEGITIMIZE_ADDRESS: Addressing Modes. (line 129) ! * TARGET_LIBCALL_VALUE: Scalar Return. (line 65) ! * TARGET_LIBC_HAS_FUNCTION: Library Calls. (line 77) ! * TARGET_LIBFUNC_GNU_PREFIX: Library Calls. (line 24) ! * TARGET_LIBGCC_CMP_RETURN_MODE: Storage Layout. (line 458) ! * TARGET_LIBGCC_SDATA_SECTION: Sections. (line 131) ! * TARGET_LIBGCC_SHIFT_COUNT_MODE: Storage Layout. (line 464) ! * TARGET_LIB_INT_CMP_BIASED: Library Calls. (line 42) * TARGET_LOOP_UNROLL_ADJUST: Misc. (line 851) ! * TARGET_LRA_P: Register Classes. (line 548) ! * TARGET_MACHINE_DEPENDENT_REORG: Misc. (line 572) ! * TARGET_MANGLE_ASSEMBLER_NAME: Label Output. (line 321) ! * TARGET_MANGLE_DECL_ASSEMBLER_NAME: Sections. (line 241) ! * TARGET_MANGLE_TYPE: Storage Layout. (line 539) ! * TARGET_MAX_ANCHOR_OFFSET: Anchored Addresses. (line 38) ! * TARGET_MD_ASM_CLOBBERS: Misc. (line 491) ! * TARGET_MEMBER_TYPE_FORCES_BLK: Storage Layout. (line 410) ! * TARGET_MEMMODEL_CHECK: Misc. (line 1046) ! * TARGET_MEMORY_MOVE_COST: Costs. (line 79) ! * TARGET_MEM_CONSTRAINT: Addressing Modes. (line 107) * TARGET_MEM_REF: Storage References. (line 6) ! * TARGET_MERGE_DECL_ATTRIBUTES: Target Attributes. (line 45) ! * TARGET_MERGE_TYPE_ATTRIBUTES: Target Attributes. (line 37) ! * TARGET_MIN_ANCHOR_OFFSET: Anchored Addresses. (line 32) ! * TARGET_MIN_DIVISIONS_FOR_RECIP_MUL: Misc. (line 90) ! * TARGET_MODE_DEPENDENT_ADDRESS_P: Addressing Modes. (line 196) ! * TARGET_MODE_REP_EXTENDED: Misc. (line 175) ! * TARGET_MS_BITFIELD_LAYOUT_P: Storage Layout. (line 493) ! * TARGET_MUST_PASS_IN_STACK: Register Arguments. (line 58) ! * 'TARGET_MUST_PASS_IN_STACK', and 'TARGET_FUNCTION_ARG': Register Arguments. ! (line 50) ! * TARGET_NARROW_VOLATILE_BITFIELD: Storage Layout. (line 403) ! * TARGET_N_FORMAT_TYPES: Misc. (line 903) ! * TARGET_OBJC_CONSTRUCT_STRING_OBJECT: Run-time Target. (line 88) ! * TARGET_OBJC_DECLARE_CLASS_DEFINITION: Run-time Target. (line 109) * TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE: Run-time Target. ! (line 104) ! * TARGET_OBJECT_SUFFIX: Misc. (line 780) ! * TARGET_OBJFMT_CPP_BUILTINS: Run-time Target. (line 45) ! * TARGET_OPTF: Misc. (line 885) ! * TARGET_OPTION_DEFAULT_PARAMS: Run-time Target. (line 160) ! * TARGET_OPTION_FUNCTION_VERSIONS: Target Attributes. (line 151) ! * TARGET_OPTION_INIT_STRUCT: Run-time Target. (line 156) ! * TARGET_OPTION_OPTIMIZATION_TABLE: Run-time Target. (line 142) ! * TARGET_OPTION_OVERRIDE: Target Attributes. (line 138) ! * TARGET_OPTION_PRAGMA_PARSE: Target Attributes. (line 131) ! * TARGET_OPTION_PRINT: Target Attributes. (line 125) ! * TARGET_OPTION_RESTORE: Target Attributes. (line 119) ! * TARGET_OPTION_SAVE: Target Attributes. (line 112) ! * TARGET_OPTION_VALID_ATTRIBUTE_P: Target Attributes. (line 100) ! * TARGET_OS_CPP_BUILTINS: Run-time Target. (line 41) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES: Misc. (line 907) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT: Misc. (line 913) ! * TARGET_OVERRIDES_FORMAT_INIT: Misc. (line 917) ! * TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE: Run-time Target. (line 126) ! * TARGET_PASS_BY_REFERENCE: Register Arguments. (line 101) ! * TARGET_PCH_VALID_P: PCH Target. (line 11) ! * TARGET_POSIX_IO: Misc. (line 516) ! * TARGET_PREFERRED_OUTPUT_RELOAD_CLASS: Register Classes. (line 284) ! * TARGET_PREFERRED_RELOAD_CLASS: Register Classes. (line 213) ! * TARGET_PREFERRED_RENAME_CLASS: Register Classes. (line 201) ! * TARGET_PREPARE_PCH_SAVE: PCH Target. (line 34) ! * TARGET_PRETEND_OUTGOING_VARARGS_NAMED: Varargs. (line 123) ! * TARGET_PROFILE_BEFORE_PROLOGUE: Sections. (line 301) ! * TARGET_PROMOTED_TYPE: Misc. (line 970) ! * TARGET_PROMOTE_FUNCTION_MODE: Storage Layout. (line 109) ! * TARGET_PROMOTE_PROTOTYPES: Stack Arguments. (line 10) ! * TARGET_PTRMEMFUNC_VBIT_LOCATION: Type Layout. (line 293) ! * TARGET_REF_MAY_ALIAS_ERRNO: Register Arguments. (line 308) ! * TARGET_REGISTER_MOVE_COST: Costs. (line 31) ! * TARGET_REGISTER_PRIORITY: Register Classes. (line 553) ! * TARGET_REGISTER_USAGE_LEVELING_P: Register Classes. (line 564) ! * TARGET_RELAXED_ORDERING: Misc. (line 922) ! * TARGET_RESOLVE_OVERLOADED_BUILTIN: Misc. (line 624) ! * TARGET_RETURN_IN_MEMORY: Aggregate Return. (line 15) * TARGET_RETURN_IN_MSB: Scalar Return. (line 117) ! * TARGET_RETURN_POPS_ARGS: Stack Arguments. (line 98) ! * TARGET_RTX_COSTS: Costs. (line 269) ! * TARGET_SCALAR_MODE_SUPPORTED_P: Register Arguments. (line 315) ! * TARGET_SCHED_ADJUST_COST: Scheduling. (line 35) ! * TARGET_SCHED_ADJUST_PRIORITY: Scheduling. (line 50) ! * TARGET_SCHED_ALLOC_SCHED_CONTEXT: Scheduling. (line 283) ! * TARGET_SCHED_CLEAR_SCHED_CONTEXT: Scheduling. (line 298) ! * TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK: Scheduling. (line 98) ! * TARGET_SCHED_DFA_NEW_CYCLE: Scheduling. (line 245) ! * TARGET_SCHED_DFA_POST_ADVANCE_CYCLE: Scheduling. (line 169) ! * TARGET_SCHED_DFA_POST_CYCLE_INSN: Scheduling. (line 153) ! * TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE: Scheduling. (line 162) ! * TARGET_SCHED_DFA_PRE_CYCLE_INSN: Scheduling. (line 141) ! * TARGET_SCHED_DISPATCH: Scheduling. (line 365) ! * TARGET_SCHED_DISPATCH_DO: Scheduling. (line 370) ! * TARGET_SCHED_EXPOSED_PIPELINE: Scheduling. (line 374) ! * TARGET_SCHED_FINISH: Scheduling. (line 119) ! * TARGET_SCHED_FINISH_GLOBAL: Scheduling. (line 134) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK: Scheduling. (line 225) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN: Scheduling. (line 214) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD: Scheduling. ! (line 176) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD: Scheduling. ! (line 204) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC: Scheduling. ! (line 336) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END: Scheduling. (line 230) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI: Scheduling. (line 240) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT: Scheduling. (line 235) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE: Scheduling. (line 219) ! * TARGET_SCHED_FREE_SCHED_CONTEXT: Scheduling. (line 302) ! * TARGET_SCHED_GEN_SPEC_CHECK: Scheduling. (line 324) ! * TARGET_SCHED_H_I_D_EXTENDED: Scheduling. (line 278) ! * TARGET_SCHED_INIT: Scheduling. (line 108) ! * TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN: Scheduling. (line 158) ! * TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN: Scheduling. (line 150) ! * TARGET_SCHED_INIT_GLOBAL: Scheduling. (line 126) ! * TARGET_SCHED_INIT_SCHED_CONTEXT: Scheduling. (line 287) ! * TARGET_SCHED_ISSUE_RATE: Scheduling. (line 11) ! * TARGET_SCHED_IS_COSTLY_DEPENDENCE: Scheduling. (line 256) ! * TARGET_SCHED_MACRO_FUSION_P: Scheduling. (line 87) ! * TARGET_SCHED_MACRO_FUSION_PAIR_P: Scheduling. (line 91) ! * TARGET_SCHED_NEEDS_BLOCK_P: Scheduling. (line 317) ! * TARGET_SCHED_REASSOCIATION_WIDTH: Scheduling. (line 379) ! * TARGET_SCHED_REORDER: Scheduling. (line 58) ! * TARGET_SCHED_REORDER2: Scheduling. (line 75) ! * TARGET_SCHED_SET_SCHED_CONTEXT: Scheduling. (line 294) ! * TARGET_SCHED_SET_SCHED_FLAGS: Scheduling. (line 349) ! * TARGET_SCHED_SMS_RES_MII: Scheduling. (line 356) ! * TARGET_SCHED_SPECULATE_INSN: Scheduling. (line 305) ! * TARGET_SCHED_VARIABLE_ISSUE: Scheduling. (line 22) ! * TARGET_SECONDARY_RELOAD: Register Classes. (line 312) ! * TARGET_SECTION_TYPE_FLAGS: File Framework. (line 149) ! * TARGET_SETUP_INCOMING_VARARGS: Varargs. (line 71) ! * TARGET_SET_CURRENT_FUNCTION: Misc. (line 762) ! * TARGET_SET_DEFAULT_TYPE_ATTRIBUTES: Target Attributes. (line 33) ! * TARGET_SET_UP_BY_PROLOGUE: Tail Calls. (line 29) ! * TARGET_SHIFT_TRUNCATION_MASK: Misc. (line 138) ! * TARGET_SIMD_CLONE_ADJUST: Addressing Modes. (line 413) * TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN: Addressing Modes. ! (line 405) ! * TARGET_SIMD_CLONE_USABLE: Addressing Modes. (line 417) * TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P: Register Arguments. ! (line 357) ! * TARGET_SPILL_CLASS: Register Classes. (line 581) ! * TARGET_SPLIT_COMPLEX_ARG: Register Arguments. (line 259) * TARGET_STACK_PROTECT_FAIL: Stack Smashing Protection. ! (line 16) * TARGET_STACK_PROTECT_GUARD: Stack Smashing Protection. ! (line 6) ! * TARGET_STATIC_CHAIN: Frame Registers. (line 90) ! * TARGET_STRICT_ARGUMENT_NAMING: Varargs. (line 107) ! * TARGET_STRING_OBJECT_REF_TYPE_P: Run-time Target. (line 114) ! * TARGET_STRIP_NAME_ENCODING: Sections. (line 288) ! * TARGET_STRUCT_VALUE_RTX: Aggregate Return. (line 44) * TARGET_SUPPORTS_SPLIT_STACK: Stack Smashing Protection. ! (line 25) ! * TARGET_SUPPORTS_WEAK: Label Output. (line 237) * TARGET_TERMINATE_DW2_EH_FRAME_INFO: Exception Region Output. ! (line 98) ! * TARGET_TRAMPOLINE_ADJUST_ADDRESS: Trampolines. (line 74) ! * TARGET_TRAMPOLINE_INIT: Trampolines. (line 54) ! * TARGET_UNSPEC_MAY_TRAP_P: Misc. (line 753) * TARGET_UNWIND_TABLES_DEFAULT: Exception Region Output. ! (line 72) ! * TARGET_UNWIND_WORD_MODE: Storage Layout. (line 470) * TARGET_UPDATE_STACK_BOUNDARY: Misc. (line 1003) ! * TARGET_USES_WEAK_UNWIND_INFO: Exception Handling. (line 123) ! * TARGET_USE_ANCHORS_FOR_SYMBOL_P: Anchored Addresses. (line 53) ! * TARGET_USE_BLOCKS_FOR_CONSTANT_P: Addressing Modes. (line 248) ! * TARGET_USE_BLOCKS_FOR_DECL_P: Addressing Modes. (line 255) * TARGET_USE_JCR_SECTION: Misc. (line 985) ! * TARGET_VALID_DLLIMPORT_ATTRIBUTE_P: Target Attributes. (line 66) ! * TARGET_VALID_POINTER_MODE: Register Arguments. (line 303) ! * TARGET_VECTORIZE_ADD_STMT_COST: Addressing Modes. (line 367) * TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES: Addressing Modes. ! (line 350) ! * TARGET_VECTORIZE_BUILTIN_CONVERSION: Addressing Modes. (line 312) ! * TARGET_VECTORIZE_BUILTIN_GATHER: Addressing Modes. (line 398) ! * TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD: Addressing Modes. (line 271) ! * TARGET_VECTORIZE_BUILTIN_TM_LOAD: Addressing Modes. (line 390) ! * TARGET_VECTORIZE_BUILTIN_TM_STORE: Addressing Modes. (line 394) * TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST: Addressing Modes. ! (line 297) * TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION: Addressing Modes. ! (line 324) ! * TARGET_VECTORIZE_DESTROY_COST_DATA: Addressing Modes. (line 385) ! * TARGET_VECTORIZE_FINISH_COST: Addressing Modes. (line 378) ! * TARGET_VECTORIZE_INIT_COST: Addressing Modes. (line 358) ! * TARGET_VECTORIZE_PREFERRED_SIMD_MODE: Addressing Modes. (line 343) * TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT: Addressing Modes. ! (line 333) * TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE: Addressing Modes. ! (line 303) ! * TARGET_VECTORIZE_VEC_PERM_CONST_OK: Addressing Modes. (line 308) ! * TARGET_VECTOR_ALIGNMENT: Storage Layout. (line 263) ! * TARGET_VECTOR_MODE_SUPPORTED_P: Register Arguments. (line 327) ! * TARGET_VTABLE_DATA_ENTRY_DISTANCE: Type Layout. (line 346) ! * TARGET_VTABLE_ENTRY_ALIGN: Type Layout. (line 340) ! * TARGET_VTABLE_USES_DESCRIPTORS: Type Layout. (line 329) ! * TARGET_WANT_DEBUG_PUB_SECTIONS: SDB and DWARF. (line 55) ! * TARGET_WARN_FUNC_RETURN: Tail Calls. (line 35) ! * TARGET_WEAK_NOT_IN_ARCHIVE_TOC: Label Output. (line 273) ! * TCmode: Machine Modes. (line 199) * TDmode: Machine Modes. (line 97) * TEMPLATE_DECL: Declarations. (line 6) * Temporaries: Temporaries. (line 6) * termination routines: Initialization. (line 6) * testing constraints: C Constraint Interface. (line 6) ! * TEXT_SECTION_ASM_OP: Sections. (line 37) * TFmode: Machine Modes. (line 101) - * TF_SIZE: Type Layout. (line 138) * THEN_CLAUSE: Statements for C++. (line 6) ! * THREAD_MODEL_SPEC: Driver. (line 162) * THROW_EXPR: Unary and Binary Expressions. (line 6) * THUNK_DECL: Declarations. (line 6) * THUNK_DELTA: Declarations. (line 6) * TImode: Machine Modes. (line 48) ! * 'TImode', in 'insn': Insns. (line 268) ! * TLS_COMMON_ASM_OP: Sections. (line 80) ! * TLS_SECTION_ASM_FLAG: Sections. (line 85) ! * 'tm.h' macros: Target Macros. (line 6) * TQFmode: Machine Modes. (line 65) * TQmode: Machine Modes. (line 122) * trampolines for nested functions: Trampolines. (line 6) ! * TRAMPOLINE_ALIGNMENT: Trampolines. (line 48) ! * TRAMPOLINE_SECTION: Trampolines. (line 39) ! * TRAMPOLINE_SIZE: Trampolines. (line 44) ! * TRANSFER_FROM_TRAMPOLINE: Trampolines. (line 110) ! * 'trap' instruction pattern: Standard Names. (line 1542) ! * tree: Tree overview. (line 6) * tree <1>: Macros and Functions. (line 6) * Tree SSA: Tree SSA. (line 6) * TREE_CHAIN: Macros and Functions. (line 6) --- 49142,49930 ---- * RTX_FRAME_RELATED_P: Flags. (line 107) * run-time conventions: Interface. (line 6) * run-time target specification: Run-time Target. (line 6) ! * s in constraint: Simple Constraints. (line 102) ! * same_type_p: Types. (line 88) ! * SAmode: Machine Modes. (line 151) * sat_fract: Conversions. (line 90) + * satfractMN2 instruction pattern: Standard Names. (line 944) + * satfractunsMN2 instruction pattern: Standard Names. (line 957) + * satisfies_constraint_: C Constraint Interface. + (line 47) * SAVE_EXPR: Unary and Binary Expressions. (line 6) ! * save_stack_block instruction pattern: Standard Names. (line 1333) ! * save_stack_function instruction pattern: Standard Names. (line 1333) ! * save_stack_nonlocal instruction pattern: Standard Names. (line 1333) ! * SBSS_SECTION_ASM_OP: Sections. (line 76) * Scalar evolutions: Scalar evolutions. (line 6) * scalars, returned as values: Scalar Return. (line 6) * SCHED_GROUP_P: Flags. (line 148) ! * SCmode: Machine Modes. (line 200) ! * scratch: Regs and Memory. (line 298) ! * scratch operands: Regs and Memory. (line 298) ! * scratch, RTL sharing: Sharing. (line 35) * scratch_operand: Machine-Independent Predicates. ! (line 50) ! * SDATA_SECTION_ASM_OP: Sections. (line 58) ! * SDB_ALLOW_FORWARD_REFERENCES: SDB and DWARF. (line 124) ! * SDB_ALLOW_UNKNOWN_REFERENCES: SDB and DWARF. (line 119) ! * SDB_DEBUGGING_INFO: SDB and DWARF. (line 9) ! * SDB_DELIM: SDB and DWARF. (line 112) ! * SDB_OUTPUT_SOURCE_LINE: SDB and DWARF. (line 129) * SDmode: Machine Modes. (line 88) ! * sdot_prodM instruction pattern: Standard Names. (line 344) ! * search options: Including Patterns. (line 44) ! * SECONDARY_INPUT_RELOAD_CLASS: Register Classes. (line 396) ! * SECONDARY_MEMORY_NEEDED: Register Classes. (line 452) ! * SECONDARY_MEMORY_NEEDED_MODE: Register Classes. (line 471) ! * SECONDARY_MEMORY_NEEDED_RTX: Register Classes. (line 462) ! * SECONDARY_OUTPUT_RELOAD_CLASS: Register Classes. (line 397) ! * SECONDARY_RELOAD_CLASS: Register Classes. (line 395) * SELECT_CC_MODE: MODE_CC Condition Codes. ! (line 7) ! * sequence: Side Effects. (line 260) * Sequence iterators: Sequence iterators. (line 6) * set: Side Effects. (line 15) ! * set and /f: Flags. (line 107) ! * SET_ASM_OP: Label Output. (line 419) * set_attr: Tagging Insns. (line 31) * set_attr_alternative: Tagging Insns. (line 49) ! * set_bb_seq: GIMPLE sequences. (line 76) ! * SET_BY_PIECES_P: Costs. (line 206) * SET_DEST: Side Effects. (line 69) * SET_IS_RETURN_P: Flags. (line 157) * SET_LABEL_KIND: Insns. (line 146) * set_optab_libfunc: Library Calls. (line 15) ! * SET_RATIO: Costs. (line 194) * SET_SRC: Side Effects. (line 69) ! * set_thread_pointerMODE instruction pattern: Standard Names. ! (line 1867) * SET_TYPE_STRUCTURAL_EQUALITY: Types. (line 6) ! * setmemM instruction pattern: Standard Names. (line 808) ! * SETUP_FRAME_ADDRESSES: Frame Layout. (line 102) ! * SF_SIZE: Type Layout. (line 136) * SFmode: Machine Modes. (line 69) * sharing of RTL components: Sharing. (line 6) ! * shift: Arithmetic. (line 173) ! * SHIFT_COUNT_TRUNCATED: Misc. (line 113) * SHLIB_SUFFIX: Macros for Initialization. ! (line 135) ! * SHORT_ACCUM_TYPE_SIZE: Type Layout. (line 83) ! * SHORT_FRACT_TYPE_SIZE: Type Layout. (line 63) ! * SHORT_IMMEDIATES_SIGN_EXTEND: Misc. (line 87) ! * SHORT_TYPE_SIZE: Type Layout. (line 16) ! * sibcall_epilogue instruction pattern: Standard Names. (line 1543) ! * sibling call: Edges. (line 122) * SIBLING_CALL_P: Flags. (line 161) ! * SIG_ATOMIC_TYPE: Type Layout. (line 252) * sign_extend: Conversions. (line 23) * sign_extract: Bit-Fields. (line 8) ! * sign_extract, canonicalization of: Insn Canonicalizations. ! (line 88) ! * signed division: Arithmetic. (line 116) ! * signed division with signed saturation: Arithmetic. (line 116) ! * signed maximum: Arithmetic. (line 141) ! * signed minimum: Arithmetic. (line 141) * SImode: Machine Modes. (line 37) * simple constraints: Simple Constraints. (line 6) * simple_return: Side Effects. (line 86) ! * simple_return instruction pattern: Standard Names. (line 1195) ! * sincosM3 instruction pattern: Standard Names. (line 592) ! * sinM2 instruction pattern: Standard Names. (line 584) ! * SIZE_ASM_OP: Label Output. (line 35) ! * SIZE_TYPE: Type Layout. (line 175) ! * SIZETYPE: Type Layout. (line 191) ! * skip: GTY Options. (line 77) ! * SLOW_BYTE_ACCESS: Costs. (line 118) ! * SLOW_UNALIGNED_ACCESS: Costs. (line 133) ! * smax: Arithmetic. (line 141) ! * smin: Arithmetic. (line 141) ! * sms, swing, software pipelining: RTL passes. (line 124) ! * smulM3_highpart instruction pattern: Standard Names. (line 447) * soft float library: Soft float library routines. (line 6) ! * special: GTY Options. (line 299) * special predicates: Predicates. (line 31) * SPECS: Target Fragment. (line 191) * speed of instructions: Costs. (line 6) * split_block: Maintaining the CFG. ! (line 99) ! * splitting instructions: Insn Splitting. (line 6) * SQmode: Machine Modes. (line 114) * sqrt: Arithmetic. (line 207) ! * sqrtM2 instruction pattern: Standard Names. (line 550) * square root: Arithmetic. (line 207) ! * ss_abs: Arithmetic. (line 200) ! * ss_ashift: Arithmetic. (line 173) ! * ss_div: Arithmetic. (line 116) ! * ss_minus: Arithmetic. (line 36) ! * ss_mult: Arithmetic. (line 92) ! * ss_neg: Arithmetic. (line 81) * ss_plus: Arithmetic. (line 14) * ss_truncate: Conversions. (line 43) + * SSA: SSA. (line 6) + * SSA_NAME_DEF_STMT: SSA. (line 217) + * SSA_NAME_VERSION: SSA. (line 222) + * ssaddM3 instruction pattern: Standard Names. (line 279) + * ssashlM3 instruction pattern: Standard Names. (line 522) + * ssdivM3 instruction pattern: Standard Names. (line 279) + * ssmaddMN4 instruction pattern: Standard Names. (line 470) + * ssmsubMN4 instruction pattern: Standard Names. (line 494) + * ssmulM3 instruction pattern: Standard Names. (line 279) + * ssnegM2 instruction pattern: Standard Names. (line 544) + * sssubM3 instruction pattern: Standard Names. (line 279) + * ssum_widenM3 instruction pattern: Standard Names. (line 354) * stack arguments: Stack Arguments. (line 6) * stack frame layout: Frame Layout. (line 6) * stack smashing protection: Stack Smashing Protection. (line 6) ! * STACK_ALIGNMENT_NEEDED: Frame Layout. (line 48) ! * STACK_BOUNDARY: Storage Layout. (line 141) ! * STACK_CHECK_BUILTIN: Stack Checking. (line 32) ! * STACK_CHECK_FIXED_FRAME_SIZE: Stack Checking. (line 83) ! * STACK_CHECK_MAX_FRAME_SIZE: Stack Checking. (line 74) ! * STACK_CHECK_MAX_VAR_SIZE: Stack Checking. (line 90) ! * STACK_CHECK_MOVING_SP: Stack Checking. (line 54) ! * STACK_CHECK_PROBE_INTERVAL_EXP: Stack Checking. (line 46) ! * STACK_CHECK_PROTECT: Stack Checking. (line 63) ! * STACK_CHECK_STATIC_BUILTIN: Stack Checking. (line 39) ! * STACK_DYNAMIC_OFFSET: Frame Layout. (line 75) ! * STACK_DYNAMIC_OFFSET and virtual registers: Regs and Memory. (line 83) ! * STACK_GROWS_DOWNWARD: Frame Layout. (line 9) ! * STACK_PARMS_IN_REG_PARM_AREA: Stack Arguments. (line 90) ! * STACK_POINTER_OFFSET: Frame Layout. (line 58) ! * STACK_POINTER_OFFSET and virtual registers: Regs and Memory. (line 93) ! * STACK_POINTER_REGNUM: Frame Registers. (line 9) ! * STACK_POINTER_REGNUM and virtual registers: Regs and Memory. (line 83) * stack_pointer_rtx: Frame Registers. (line 104) ! * stack_protect_set instruction pattern: Standard Names. (line 1877) ! * stack_protect_test instruction pattern: Standard Names. (line 1887) ! * STACK_PUSH_CODE: Frame Layout. (line 17) ! * STACK_REG_COVER_CLASS: Stack Registers. (line 23) ! * STACK_REGS: Stack Registers. (line 20) ! * STACK_SAVEAREA_MODE: Storage Layout. (line 443) ! * STACK_SIZE_MODE: Storage Layout. (line 455) ! * STACK_SLOT_ALIGNMENT: Storage Layout. (line 274) * standard pattern names: Standard Names. (line 6) ! * STANDARD_STARTFILE_PREFIX: Driver. (line 275) ! * STANDARD_STARTFILE_PREFIX_1: Driver. (line 282) ! * STANDARD_STARTFILE_PREFIX_2: Driver. (line 289) ! * STARTFILE_SPEC: Driver. (line 148) ! * STARTING_FRAME_OFFSET: Frame Layout. (line 39) ! * STARTING_FRAME_OFFSET and virtual registers: Regs and Memory. (line 74) * Statement and operand traversals: Statement and operand traversals. (line 6) * Statement Sequences: Statement Sequences. (line 6) ! * statements <1>: Statements for C++. (line 6) * statements: Function Properties. (line 6) ! * Statements: Statements. (line 6) * Static profile estimation: Profile information. (line 24) * static single assignment: SSA. (line 6) ! * STATIC_CHAIN_INCOMING_REGNUM: Frame Registers. (line 78) ! * STATIC_CHAIN_REGNUM: Frame Registers. (line 77) ! * stdarg.h and register arguments: Register Arguments. (line 45) ! * STDC_0_IN_SYSTEM_HEADERS: Misc. (line 351) * STMT_EXPR: Unary and Binary Expressions. (line 6) * STMT_IS_FULL_EXPR_P: Statements for C++. (line 22) * storage layout: Storage Layout. (line 6) ! * STORE_BY_PIECES_P: Costs. (line 213) ! * STORE_FLAG_VALUE: Misc. (line 202) ! * store_multiple instruction pattern: Standard Names. (line 160) ! * strcpy: Storage Layout. (line 226) ! * STRICT_ALIGNMENT: Storage Layout. (line 324) * strict_low_part: RTL Declarations. (line 9) ! * strict_memory_address_p: Addressing Modes. (line 187) * STRING_CST: Constant expressions. (line 6) * STRING_POOL_ADDRESS_P: Flags. (line 165) ! * strlenM instruction pattern: Standard Names. (line 879) * structure value address: Aggregate Return. (line 6) + * STRUCTURE_SIZE_BOUNDARY: Storage Layout. (line 316) * structures, returning: Interface. (line 10) ! * subM3 instruction pattern: Standard Names. (line 279) * SUBOBJECT: Statements for C++. (line 6) * SUBOBJECT_CLEANUP: Statements for C++. (line 6) * subreg: Regs and Memory. (line 97) ! * subreg and /s: Flags. (line 187) ! * subreg and /u: Flags. (line 180) ! * subreg and /u and /v: Flags. (line 170) ! * subreg, in strict_low_part: RTL Declarations. (line 9) ! * SUBREG_BYTE: Regs and Memory. (line 289) * SUBREG_PROMOTED_UNSIGNED_P: Flags. (line 170) * SUBREG_PROMOTED_UNSIGNED_SET: Flags. (line 180) * SUBREG_PROMOTED_VAR_P: Flags. (line 187) ! * SUBREG_REG: Regs and Memory. (line 289) ! * subst iterators in .md files: Subst Iterators. (line 6) * SUCCESS_EXIT_CODE: Host Misc. (line 12) * SUPPORTS_INIT_PRIORITY: Macros for Initialization. ! (line 58) ! * SUPPORTS_ONE_ONLY: Label Output. (line 259) ! * SUPPORTS_WEAK: Label Output. (line 233) * SWITCH_BODY: Statements for C++. (line 6) * SWITCH_COND: Statements for C++. (line 6) * SWITCH_STMT: Statements for C++. (line 6) ! * SWITCHABLE_TARGET: Run-time Target. (line 165) ! * SYMBOL_FLAG_ANCHOR: Special Accessors. (line 120) ! * SYMBOL_FLAG_EXTERNAL: Special Accessors. (line 102) ! * SYMBOL_FLAG_FUNCTION: Special Accessors. (line 95) ! * SYMBOL_FLAG_HAS_BLOCK_INFO: Special Accessors. (line 116) ! * SYMBOL_FLAG_LOCAL: Special Accessors. (line 98) ! * SYMBOL_FLAG_SMALL: Special Accessors. (line 107) ! * SYMBOL_FLAG_TLS_SHIFT: Special Accessors. (line 111) ! * symbol_ref: Constants. (line 87) ! * symbol_ref and /f: Flags. (line 165) ! * symbol_ref and /i: Flags. (line 202) ! * symbol_ref and /u: Flags. (line 10) ! * symbol_ref and /v: Flags. (line 206) ! * symbol_ref, RTL sharing: Sharing. (line 20) ! * SYMBOL_REF_ANCHOR_P: Special Accessors. (line 120) ! * SYMBOL_REF_BLOCK: Special Accessors. (line 133) ! * SYMBOL_REF_BLOCK_OFFSET: Special Accessors. (line 138) ! * SYMBOL_REF_CONSTANT: Special Accessors. (line 81) ! * SYMBOL_REF_DATA: Special Accessors. (line 85) ! * SYMBOL_REF_DECL: Special Accessors. (line 69) ! * SYMBOL_REF_EXTERNAL_P: Special Accessors. (line 102) * SYMBOL_REF_FLAG: Flags. (line 206) ! * SYMBOL_REF_FLAG, in TARGET_ENCODE_SECTION_INFO: Sections. (line 277) ! * SYMBOL_REF_FLAGS: Special Accessors. (line 89) ! * SYMBOL_REF_FUNCTION_P: Special Accessors. (line 95) ! * SYMBOL_REF_HAS_BLOCK_INFO_P: Special Accessors. (line 116) ! * SYMBOL_REF_LOCAL_P: Special Accessors. (line 98) ! * SYMBOL_REF_SMALL_P: Special Accessors. (line 107) ! * SYMBOL_REF_TLS_MODEL: Special Accessors. (line 111) * SYMBOL_REF_USED: Flags. (line 197) * SYMBOL_REF_WEAK: Flags. (line 202) ! * symbolic label: Sharing. (line 20) ! * sync_addMODE instruction pattern: Standard Names. (line 1642) ! * sync_andMODE instruction pattern: Standard Names. (line 1642) ! * sync_compare_and_swapMODE instruction pattern: Standard Names. ! (line 1602) ! * sync_iorMODE instruction pattern: Standard Names. (line 1642) ! * sync_lock_releaseMODE instruction pattern: Standard Names. (line 1707) ! * sync_lock_test_and_setMODE instruction pattern: Standard Names. ! (line 1681) ! * sync_nandMODE instruction pattern: Standard Names. (line 1642) ! * sync_new_addMODE instruction pattern: Standard Names. (line 1674) ! * sync_new_andMODE instruction pattern: Standard Names. (line 1674) ! * sync_new_iorMODE instruction pattern: Standard Names. (line 1674) ! * sync_new_nandMODE instruction pattern: Standard Names. (line 1674) ! * sync_new_subMODE instruction pattern: Standard Names. (line 1674) ! * sync_new_xorMODE instruction pattern: Standard Names. (line 1674) ! * sync_old_addMODE instruction pattern: Standard Names. (line 1657) ! * sync_old_andMODE instruction pattern: Standard Names. (line 1657) ! * sync_old_iorMODE instruction pattern: Standard Names. (line 1657) ! * sync_old_nandMODE instruction pattern: Standard Names. (line 1657) ! * sync_old_subMODE instruction pattern: Standard Names. (line 1657) ! * sync_old_xorMODE instruction pattern: Standard Names. (line 1657) ! * sync_subMODE instruction pattern: Standard Names. (line 1642) ! * sync_xorMODE instruction pattern: Standard Names. (line 1642) ! * SYSROOT_HEADERS_SUFFIX_SPEC: Driver. (line 177) ! * SYSROOT_SUFFIX_SPEC: Driver. (line 172) ! * t-TARGET: Target Fragment. (line 6) * table jump: Basic Blocks. (line 67) ! * tablejump instruction pattern: Standard Names. (line 1268) * tag: GTY Options. (line 82) * tagging insns: Tagging Insns. (line 6) * tail calls: Tail Calls. (line 6) ! * TAmode: Machine Modes. (line 159) * target attributes: Target Attributes. (line 6) * target description macros: Target Macros. (line 6) * target functions: Target Structure. (line 6) * target hooks: Target Structure. (line 6) * target makefile fragment: Target Fragment. (line 6) * target specifications: Run-time Target. (line 6) * TARGET_ADDR_SPACE_ADDRESS_MODE: Named Address Spaces. ! (line 45) * TARGET_ADDR_SPACE_CONVERT: Named Address Spaces. ! (line 88) * TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P: Named Address Spaces. ! (line 63) * TARGET_ADDR_SPACE_LEGITIMIZE_ADDRESS: Named Address Spaces. ! (line 72) * TARGET_ADDR_SPACE_POINTER_MODE: Named Address Spaces. ! (line 38) * TARGET_ADDR_SPACE_SUBSET_P: Named Address Spaces. ! (line 79) * TARGET_ADDR_SPACE_VALID_POINTER_MODE: Named Address Spaces. ! (line 52) ! * TARGET_ADDRESS_COST: Costs. (line 302) ! * TARGET_ALIGN_ANON_BITFIELD: Storage Layout. (line 401) ! * TARGET_ALLOCATE_INITIAL_VALUE: Misc. (line 733) * TARGET_ALLOCATE_STACK_SLOTS_FOR_ARGS: Misc. (line 1013) ! * TARGET_ALWAYS_STRIP_DOTDOT: Driver. (line 247) ! * TARGET_ARG_PARTIAL_BYTES: Register Arguments. (line 84) * TARGET_ARM_EABI_UNWINDER: Exception Region Output. ! (line 129) ! * TARGET_ARRAY_MODE_SUPPORTED_P: Register Arguments. (line 337) * TARGET_ASAN_SHADOW_OFFSET: Misc. (line 1041) ! * TARGET_ASM_ALIGNED_DI_OP: Data Output. (line 10) ! * TARGET_ASM_ALIGNED_HI_OP: Data Output. (line 8) ! * TARGET_ASM_ALIGNED_SI_OP: Data Output. (line 9) ! * TARGET_ASM_ALIGNED_TI_OP: Data Output. (line 11) ! * TARGET_ASM_ASSEMBLE_VISIBILITY: Label Output. (line 271) ! * TARGET_ASM_BYTE_OP: Data Output. (line 7) ! * TARGET_ASM_CAN_OUTPUT_MI_THUNK: Function Entry. (line 207) ! * TARGET_ASM_CLOSE_PAREN: Data Output. (line 131) ! * TARGET_ASM_CODE_END: File Framework. (line 59) * TARGET_ASM_CONSTRUCTOR: Macros for Initialization. ! (line 69) ! * TARGET_ASM_DECLARE_CONSTANT_NAME: Label Output. (line 154) * TARGET_ASM_DESTRUCTOR: Macros for Initialization. ! (line 83) ! * TARGET_ASM_EMIT_EXCEPT_PERSONALITY: Dispatch Tables. (line 82) ! * TARGET_ASM_EMIT_EXCEPT_TABLE_LABEL: Dispatch Tables. (line 74) ! * TARGET_ASM_EMIT_UNWIND_LABEL: Dispatch Tables. (line 63) ! * TARGET_ASM_EXTERNAL_LIBCALL: Label Output. (line 306) ! * TARGET_ASM_FILE_END: File Framework. (line 37) ! * TARGET_ASM_FILE_START: File Framework. (line 9) ! * TARGET_ASM_FILE_START_APP_OFF: File Framework. (line 17) ! * TARGET_ASM_FILE_START_FILE_DIRECTIVE: File Framework. (line 31) ! * TARGET_ASM_FINAL_POSTSCAN_INSN: Instruction Output. (line 84) ! * TARGET_ASM_FUNCTION_BEGIN_EPILOGUE: Function Entry. (line 61) ! * TARGET_ASM_FUNCTION_END_PROLOGUE: Function Entry. (line 55) ! * TARGET_ASM_FUNCTION_EPILOGUE: Function Entry. (line 68) ! * TARGET_ASM_FUNCTION_PROLOGUE: Function Entry. (line 11) ! * TARGET_ASM_FUNCTION_RODATA_SECTION: Sections. (line 215) ! * TARGET_ASM_FUNCTION_SECTION: File Framework. (line 124) * TARGET_ASM_FUNCTION_SWITCHED_TEXT_SECTIONS: File Framework. ! (line 134) ! * TARGET_ASM_GLOBALIZE_DECL_NAME: Label Output. (line 199) ! * TARGET_ASM_GLOBALIZE_LABEL: Label Output. (line 190) ! * TARGET_ASM_INIT_SECTIONS: Sections. (line 160) ! * TARGET_ASM_INTEGER: Data Output. (line 27) ! * TARGET_ASM_INTERNAL_LABEL: Label Output. (line 350) ! * TARGET_ASM_JUMP_ALIGN_MAX_SKIP: Alignment Output. (line 22) * TARGET_ASM_LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP: Alignment Output. ! (line 36) ! * TARGET_ASM_LABEL_ALIGN_MAX_SKIP: Alignment Output. (line 69) ! * TARGET_ASM_LOOP_ALIGN_MAX_SKIP: Alignment Output. (line 54) ! * TARGET_ASM_LTO_END: File Framework. (line 54) ! * TARGET_ASM_LTO_START: File Framework. (line 49) ! * TARGET_ASM_MARK_DECL_PRESERVED: Label Output. (line 313) ! * TARGET_ASM_MERGEABLE_RODATA_PREFIX: Sections. (line 222) ! * TARGET_ASM_NAMED_SECTION: File Framework. (line 116) ! * TARGET_ASM_OPEN_PAREN: Data Output. (line 130) ! * TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA: Data Output. (line 40) ! * TARGET_ASM_OUTPUT_ANCHOR: Anchored Addresses. (line 44) ! * TARGET_ASM_OUTPUT_DWARF_DTPREL: SDB and DWARF. (line 101) ! * TARGET_ASM_OUTPUT_IDENT: File Framework. (line 102) ! * TARGET_ASM_OUTPUT_MI_THUNK: Function Entry. (line 165) ! * TARGET_ASM_OUTPUT_SOURCE_FILENAME: File Framework. (line 94) ! * TARGET_ASM_RECORD_GCC_SWITCHES: File Framework. (line 165) ! * TARGET_ASM_RECORD_GCC_SWITCHES_SECTION: File Framework. (line 209) ! * TARGET_ASM_RELOC_RW_MASK: Sections. (line 169) ! * TARGET_ASM_SELECT_RTX_SECTION: Sections. (line 232) ! * TARGET_ASM_SELECT_SECTION: Sections. (line 181) ! * TARGET_ASM_TM_CLONE_TABLE_SECTION: Sections. (line 227) ! * TARGET_ASM_TRAMPOLINE_TEMPLATE: Trampolines. (line 29) * TARGET_ASM_TTYPE: Exception Region Output. ! (line 123) ! * TARGET_ASM_UNALIGNED_DI_OP: Data Output. (line 14) ! * TARGET_ASM_UNALIGNED_HI_OP: Data Output. (line 12) ! * TARGET_ASM_UNALIGNED_SI_OP: Data Output. (line 13) ! * TARGET_ASM_UNALIGNED_TI_OP: Data Output. (line 15) ! * TARGET_ASM_UNIQUE_SECTION: Sections. (line 202) ! * TARGET_ASM_UNWIND_EMIT: Dispatch Tables. (line 88) ! * TARGET_ASM_UNWIND_EMIT_BEFORE_INSN: Dispatch Tables. (line 93) ! * TARGET_ATOMIC_ALIGN_FOR_MODE: Misc. (line 1061) ! * TARGET_ATOMIC_ASSIGN_EXPAND_FENV: Misc. (line 1067) * TARGET_ATOMIC_TEST_AND_SET_TRUEVAL: Misc. (line 1051) ! * TARGET_ATTRIBUTE_TABLE: Target Attributes. (line 11) ! * TARGET_ATTRIBUTE_TAKES_IDENTIFIER_P: Target Attributes. (line 19) ! * TARGET_BINDS_LOCAL_P: Sections. (line 309) ! * TARGET_BRANCH_TARGET_REGISTER_CALLEE_SAVED: Misc. (line 830) ! * TARGET_BRANCH_TARGET_REGISTER_CLASS: Misc. (line 822) ! * TARGET_BUILD_BUILTIN_VA_LIST: Register Arguments. (line 273) ! * TARGET_BUILTIN_DECL: Misc. (line 605) ! * TARGET_BUILTIN_RECIPROCAL: Addressing Modes. (line 264) ! * TARGET_BUILTIN_SETJMP_FRAME_VALUE: Frame Layout. (line 109) ! * TARGET_C_PREINCLUDE: Misc. (line 362) ! * TARGET_CALLEE_COPIES: Register Arguments. (line 116) ! * TARGET_CAN_ELIMINATE: Elimination. (line 75) * TARGET_CAN_FOLLOW_JUMP: Misc. (line 720) ! * TARGET_CAN_INLINE_P: Target Attributes. (line 160) ! * TARGET_CAN_USE_DOLOOP_P: Misc. (line 678) ! * TARGET_CANNOT_FORCE_CONST_MEM: Addressing Modes. (line 237) ! * TARGET_CANNOT_MODIFY_JUMPS_P: Misc. (line 809) ! * TARGET_CANONICAL_VA_LIST_TYPE: Register Arguments. (line 294) ! * TARGET_CANONICALIZE_COMPARISON: MODE_CC Condition Codes. ! (line 57) ! * TARGET_CASE_VALUES_THRESHOLD: Misc. (line 47) * TARGET_CC_MODES_COMPATIBLE: MODE_CC Condition Codes. ! (line 122) ! * TARGET_CHECK_PCH_TARGET_FLAGS: PCH Target. (line 28) ! * TARGET_CHECK_STRING_OBJECT_FORMAT_ARG: Run-time Target. (line 121) ! * TARGET_CLASS_LIKELY_SPILLED_P: Register Classes. (line 494) ! * TARGET_CLASS_MAX_NREGS: Register Classes. (line 511) ! * TARGET_COMMUTATIVE_P: Misc. (line 726) ! * TARGET_COMP_TYPE_ATTRIBUTES: Target Attributes. (line 27) ! * TARGET_COMPARE_VERSION_PRIORITY: Misc. (line 653) ! * TARGET_CONDITIONAL_REGISTER_USAGE: Register Basics. (line 60) * TARGET_CONST_ANCHOR: Misc. (line 1024) ! * TARGET_CONST_NOT_OK_FOR_DEBUG_P: Addressing Modes. (line 232) ! * TARGET_CONVERT_TO_TYPE: Misc. (line 977) ! * TARGET_CPU_CPP_BUILTINS: Run-time Target. (line 9) ! * TARGET_CSTORE_MODE: Register Classes. (line 595) ! * TARGET_CXX_ADJUST_CLASS_AT_DEFINITION: C++ ABI. (line 87) ! * TARGET_CXX_CDTOR_RETURNS_THIS: C++ ABI. (line 38) ! * TARGET_CXX_CLASS_DATA_ALWAYS_COMDAT: C++ ABI. (line 62) ! * TARGET_CXX_COOKIE_HAS_SIZE: C++ ABI. (line 25) ! * TARGET_CXX_DECL_MANGLING_CONTEXT: C++ ABI. (line 93) ! * TARGET_CXX_DETERMINE_CLASS_DATA_VISIBILITY: C++ ABI. (line 54) ! * TARGET_CXX_GET_COOKIE_SIZE: C++ ABI. (line 18) ! * TARGET_CXX_GUARD_MASK_BIT: C++ ABI. (line 12) ! * TARGET_CXX_GUARD_TYPE: C++ ABI. (line 7) ! * TARGET_CXX_IMPLICIT_EXTERN_C: Misc. (line 374) ! * TARGET_CXX_IMPORT_EXPORT_CLASS: C++ ABI. (line 30) ! * TARGET_CXX_KEY_METHOD_MAY_BE_INLINE: C++ ABI. (line 43) ! * TARGET_CXX_LIBRARY_RTTI_COMDAT: C++ ABI. (line 69) ! * TARGET_CXX_USE_AEABI_ATEXIT: C++ ABI. (line 74) ! * TARGET_CXX_USE_ATEXIT_FOR_CXA_ATEXIT: C++ ABI. (line 80) ! * TARGET_DEBUG_UNWIND_INFO: SDB and DWARF. (line 37) ! * TARGET_DECIMAL_FLOAT_SUPPORTED_P: Storage Layout. (line 527) ! * TARGET_DECLSPEC: Target Attributes. (line 73) ! * TARGET_DEFAULT_PACK_STRUCT: Misc. (line 448) ! * TARGET_DEFAULT_SHORT_ENUMS: Type Layout. (line 167) ! * TARGET_DEFAULT_TARGET_FLAGS: Run-time Target. (line 56) ! * TARGET_DEFERRED_OUTPUT_DEFS: Label Output. (line 434) ! * TARGET_DELAY_SCHED2: SDB and DWARF. (line 66) ! * TARGET_DELAY_VARTRACK: SDB and DWARF. (line 70) ! * TARGET_DELEGITIMIZE_ADDRESS: Addressing Modes. (line 223) ! * TARGET_DIFFERENT_ADDR_DISPLACEMENT_P: Register Classes. (line 580) * TARGET_DLLIMPORT_DECL_ATTRIBUTES: Target Attributes. (line 55) ! * TARGET_DWARF_CALLING_CONVENTION: SDB and DWARF. (line 18) ! * TARGET_DWARF_HANDLE_FRAME_UNSPEC: Frame Layout. (line 172) * TARGET_DWARF_REGISTER_SPAN: Exception Region Output. ! (line 106) ! * TARGET_EDOM: Library Calls. (line 60) ! * TARGET_EMUTLS_DEBUG_FORM_TLS_ADDRESS: Emulated TLS. (line 68) ! * TARGET_EMUTLS_GET_ADDRESS: Emulated TLS. (line 19) ! * TARGET_EMUTLS_REGISTER_COMMON: Emulated TLS. (line 24) ! * TARGET_EMUTLS_TMPL_PREFIX: Emulated TLS. (line 45) ! * TARGET_EMUTLS_TMPL_SECTION: Emulated TLS. (line 36) ! * TARGET_EMUTLS_VAR_ALIGN_FIXED: Emulated TLS. (line 63) ! * TARGET_EMUTLS_VAR_FIELDS: Emulated TLS. (line 49) ! * TARGET_EMUTLS_VAR_INIT: Emulated TLS. (line 57) ! * TARGET_EMUTLS_VAR_PREFIX: Emulated TLS. (line 41) ! * TARGET_EMUTLS_VAR_SECTION: Emulated TLS. (line 31) ! * TARGET_ENCODE_SECTION_INFO: Sections. (line 253) ! * TARGET_ENCODE_SECTION_INFO and address validation: Addressing Modes. ! (line 83) ! * TARGET_ENCODE_SECTION_INFO usage: Instruction Output. (line 128) ! * TARGET_ENUM_VA_LIST_P: Register Arguments. (line 278) * TARGET_EXCEPT_UNWIND_INFO: Exception Region Output. ! (line 48) ! * TARGET_EXECUTABLE_SUFFIX: Misc. (line 783) ! * TARGET_EXPAND_BUILTIN: Misc. (line 615) ! * TARGET_EXPAND_BUILTIN_SAVEREGS: Varargs. (line 67) ! * TARGET_EXPAND_TO_RTL_HOOK: Storage Layout. (line 533) * TARGET_EXPR: Unary and Binary Expressions. (line 6) * TARGET_EXTRA_INCLUDES: Misc. (line 870) ! * TARGET_EXTRA_LIVE_ON_ENTRY: Tail Calls. (line 21) * TARGET_EXTRA_PRE_INCLUDES: Misc. (line 877) * TARGET_FIXED_CONDITION_CODE_REGS: MODE_CC Condition Codes. ! (line 107) ! * TARGET_FIXED_POINT_SUPPORTED_P: Storage Layout. (line 530) ! * target_flags: Run-time Target. (line 52) * TARGET_FLAGS_REGNUM: MODE_CC Condition Codes. ! (line 134) * TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P: Run-time Target. ! (line 185) ! * TARGET_FLT_EVAL_METHOD: Type Layout. (line 148) ! * TARGET_FN_ABI_VA_LIST: Register Arguments. (line 289) ! * TARGET_FOLD_BUILTIN: Misc. (line 636) ! * TARGET_FORCE_AT_COMP_DIR: SDB and DWARF. (line 61) ! * TARGET_FORMAT_TYPES: Misc. (line 897) ! * TARGET_FRAME_POINTER_REQUIRED: Elimination. (line 9) ! * TARGET_FUNCTION_ARG: Register Arguments. (line 12) ! * TARGET_FUNCTION_ARG_ADVANCE: Register Arguments. (line 187) ! * TARGET_FUNCTION_ARG_BOUNDARY: Register Arguments. (line 241) ! * TARGET_FUNCTION_ARG_ROUND_BOUNDARY: Register Arguments. (line 247) ! * TARGET_FUNCTION_ATTRIBUTE_INLINABLE_P: Target Attributes. (line 95) ! * TARGET_FUNCTION_INCOMING_ARG: Register Arguments. (line 68) ! * TARGET_FUNCTION_OK_FOR_SIBCALL: Tail Calls. (line 8) ! * TARGET_FUNCTION_VALUE: Scalar Return. (line 11) ! * TARGET_FUNCTION_VALUE_REGNO_P: Scalar Return. (line 97) ! * TARGET_GENERATE_VERSION_DISPATCHER_BODY: Misc. (line 670) * TARGET_GET_DRAP_RTX: Misc. (line 1007) ! * TARGET_GET_FUNCTION_VERSIONS_DISPATCHER: Misc. (line 663) ! * TARGET_GET_PCH_VALIDITY: PCH Target. (line 7) ! * TARGET_GET_RAW_ARG_MODE: Aggregate Return. (line 83) ! * TARGET_GET_RAW_RESULT_MODE: Aggregate Return. (line 78) ! * TARGET_GIMPLE_FOLD_BUILTIN: Misc. (line 646) ! * TARGET_GIMPLIFY_VA_ARG_EXPR: Register Arguments. (line 300) ! * TARGET_HANDLE_C_OPTION: Run-time Target. (line 75) ! * TARGET_HANDLE_OPTION: Run-time Target. (line 62) * TARGET_HARD_REGNO_SCRATCH_OK: Values in Registers. ! (line 144) * TARGET_HAS_IFUNC_P: Misc. (line 1055) ! * TARGET_HAS_NO_HW_DIVIDE: Library Calls. (line 53) ! * TARGET_HAVE_CONDITIONAL_EXECUTION: Misc. (line 844) * TARGET_HAVE_CTORS_DTORS: Macros for Initialization. ! (line 64) ! * TARGET_HAVE_NAMED_SECTIONS: File Framework. (line 141) ! * TARGET_HAVE_SRODATA_SECTION: Sections. (line 298) ! * TARGET_HAVE_SWITCHABLE_BSS_SECTIONS: File Framework. (line 146) ! * TARGET_HAVE_TLS: Sections. (line 318) ! * TARGET_IN_SMALL_DATA_P: Sections. (line 294) ! * TARGET_INIT_BUILTINS: Misc. (line 588) * TARGET_INIT_DWARF_REG_SIZES_EXTRA: Exception Region Output. ! (line 115) ! * TARGET_INIT_LIBFUNCS: Library Calls. (line 16) ! * TARGET_INSERT_ATTRIBUTES: Target Attributes. (line 82) ! * TARGET_INSTANTIATE_DECLS: Storage Layout. (line 541) * TARGET_INVALID_ARG_FOR_UNPROTOTYPED_FN: Misc. (line 931) * TARGET_INVALID_BINARY_OP: Misc. (line 950) * TARGET_INVALID_CONVERSION: Misc. (line 937) * TARGET_INVALID_PARAMETER_TYPE: Misc. (line 956) * TARGET_INVALID_RETURN_TYPE: Misc. (line 963) * TARGET_INVALID_UNARY_OP: Misc. (line 943) ! * TARGET_INVALID_WITHIN_DOLOOP: Misc. (line 694) ! * TARGET_LEGITIMATE_ADDRESS_P: Addressing Modes. (line 50) * TARGET_LEGITIMATE_COMBINED_INSN: Misc. (line 706) ! * TARGET_LEGITIMATE_CONSTANT_P: Addressing Modes. (line 216) ! * TARGET_LEGITIMIZE_ADDRESS: Addressing Modes. (line 132) ! * TARGET_LIB_INT_CMP_BIASED: Library Calls. (line 43) ! * TARGET_LIBC_HAS_FUNCTION: Library Calls. (line 79) ! * TARGET_LIBCALL_VALUE: Scalar Return. (line 66) ! * TARGET_LIBFUNC_GNU_PREFIX: Library Calls. (line 25) ! * TARGET_LIBGCC_CMP_RETURN_MODE: Storage Layout. (line 464) ! * TARGET_LIBGCC_SDATA_SECTION: Sections. (line 132) ! * TARGET_LIBGCC_SHIFT_COUNT_MODE: Storage Layout. (line 470) * TARGET_LOOP_UNROLL_ADJUST: Misc. (line 851) ! * TARGET_LRA_P: Register Classes. (line 553) ! * TARGET_MACHINE_DEPENDENT_REORG: Misc. (line 573) ! * TARGET_MANGLE_ASSEMBLER_NAME: Label Output. (line 325) ! * TARGET_MANGLE_DECL_ASSEMBLER_NAME: Sections. (line 243) ! * TARGET_MANGLE_TYPE: Storage Layout. (line 545) ! * TARGET_MAX_ANCHOR_OFFSET: Anchored Addresses. (line 39) ! * TARGET_MD_ASM_CLOBBERS: Misc. (line 494) ! * TARGET_MEM_CONSTRAINT: Addressing Modes. (line 109) * TARGET_MEM_REF: Storage References. (line 6) ! * TARGET_MEMBER_TYPE_FORCES_BLK: Storage Layout. (line 416) ! * TARGET_MEMMODEL_CHECK: Misc. (line 1047) ! * TARGET_MEMORY_MOVE_COST: Costs. (line 81) ! * TARGET_MERGE_DECL_ATTRIBUTES: Target Attributes. (line 47) ! * TARGET_MERGE_TYPE_ATTRIBUTES: Target Attributes. (line 39) ! * TARGET_MIN_ANCHOR_OFFSET: Anchored Addresses. (line 33) ! * TARGET_MIN_DIVISIONS_FOR_RECIP_MUL: Misc. (line 92) ! * TARGET_MODE_DEPENDENT_ADDRESS_P: Addressing Modes. (line 199) ! * TARGET_MODE_REP_EXTENDED: Misc. (line 177) ! * TARGET_MS_BITFIELD_LAYOUT_P: Storage Layout. (line 500) ! * TARGET_MUST_PASS_IN_STACK: Register Arguments. (line 61) ! * TARGET_MUST_PASS_IN_STACK, and TARGET_FUNCTION_ARG: Register Arguments. ! (line 51) ! * TARGET_N_FORMAT_TYPES: Misc. (line 902) ! * TARGET_NARROW_VOLATILE_BITFIELD: Storage Layout. (line 407) ! * TARGET_OBJC_CONSTRUCT_STRING_OBJECT: Run-time Target. (line 90) ! * TARGET_OBJC_DECLARE_CLASS_DEFINITION: Run-time Target. (line 111) * TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE: Run-time Target. ! (line 106) ! * TARGET_OBJECT_SUFFIX: Misc. (line 778) ! * TARGET_OBJFMT_CPP_BUILTINS: Run-time Target. (line 46) ! * TARGET_OPTF: Misc. (line 884) ! * TARGET_OPTION_DEFAULT_PARAMS: Run-time Target. (line 161) ! * TARGET_OPTION_FUNCTION_VERSIONS: Target Attributes. (line 153) ! * TARGET_OPTION_INIT_STRUCT: Run-time Target. (line 158) ! * TARGET_OPTION_OPTIMIZATION_TABLE: Run-time Target. (line 144) ! * TARGET_OPTION_OVERRIDE: Target Attributes. (line 139) ! * TARGET_OPTION_PRAGMA_PARSE: Target Attributes. (line 133) ! * TARGET_OPTION_PRINT: Target Attributes. (line 127) ! * TARGET_OPTION_RESTORE: Target Attributes. (line 121) ! * TARGET_OPTION_SAVE: Target Attributes. (line 114) ! * TARGET_OPTION_VALID_ATTRIBUTE_P: Target Attributes. (line 102) ! * TARGET_OS_CPP_BUILTINS: Run-time Target. (line 42) ! * TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE: Run-time Target. (line 127) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES: Misc. (line 906) ! * TARGET_OVERRIDES_FORMAT_ATTRIBUTES_COUNT: Misc. (line 912) ! * TARGET_OVERRIDES_FORMAT_INIT: Misc. (line 916) ! * TARGET_PASS_BY_REFERENCE: Register Arguments. (line 104) ! * TARGET_PCH_VALID_P: PCH Target. (line 13) ! * TARGET_POSIX_IO: Misc. (line 518) ! * TARGET_PREFERRED_OUTPUT_RELOAD_CLASS: Register Classes. (line 289) ! * TARGET_PREFERRED_RELOAD_CLASS: Register Classes. (line 218) ! * TARGET_PREFERRED_RENAME_CLASS: Register Classes. (line 206) ! * TARGET_PREPARE_PCH_SAVE: PCH Target. (line 35) ! * TARGET_PRETEND_OUTGOING_VARARGS_NAMED: Varargs. (line 128) ! * TARGET_PROFILE_BEFORE_PROLOGUE: Sections. (line 302) ! * TARGET_PROMOTE_FUNCTION_MODE: Storage Layout. (line 113) ! * TARGET_PROMOTE_PROTOTYPES: Stack Arguments. (line 11) ! * TARGET_PROMOTED_TYPE: Misc. (line 969) ! * TARGET_PTRMEMFUNC_VBIT_LOCATION: Type Layout. (line 295) ! * TARGET_REF_MAY_ALIAS_ERRNO: Register Arguments. (line 311) ! * TARGET_REGISTER_MOVE_COST: Costs. (line 33) ! * TARGET_REGISTER_PRIORITY: Register Classes. (line 558) ! * TARGET_REGISTER_USAGE_LEVELING_P: Register Classes. (line 570) ! * TARGET_RELAXED_ORDERING: Misc. (line 921) ! * TARGET_RESOLVE_OVERLOADED_BUILTIN: Misc. (line 625) ! * TARGET_RETURN_IN_MEMORY: Aggregate Return. (line 17) * TARGET_RETURN_IN_MSB: Scalar Return. (line 117) ! * TARGET_RETURN_POPS_ARGS: Stack Arguments. (line 100) ! * TARGET_RTX_COSTS: Costs. (line 271) ! * TARGET_SCALAR_MODE_SUPPORTED_P: Register Arguments. (line 319) ! * TARGET_SCHED_ADJUST_COST: Scheduling. (line 37) ! * TARGET_SCHED_ADJUST_PRIORITY: Scheduling. (line 52) ! * TARGET_SCHED_ALLOC_SCHED_CONTEXT: Scheduling. (line 285) ! * TARGET_SCHED_CLEAR_SCHED_CONTEXT: Scheduling. (line 300) ! * TARGET_SCHED_DEPENDENCIES_EVALUATION_HOOK: Scheduling. (line 100) ! * TARGET_SCHED_DFA_NEW_CYCLE: Scheduling. (line 246) ! * TARGET_SCHED_DFA_POST_ADVANCE_CYCLE: Scheduling. (line 171) ! * TARGET_SCHED_DFA_POST_CYCLE_INSN: Scheduling. (line 155) ! * TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE: Scheduling. (line 164) ! * TARGET_SCHED_DFA_PRE_CYCLE_INSN: Scheduling. (line 143) ! * TARGET_SCHED_DISPATCH: Scheduling. (line 367) ! * TARGET_SCHED_DISPATCH_DO: Scheduling. (line 372) ! * TARGET_SCHED_EXPOSED_PIPELINE: Scheduling. (line 376) ! * TARGET_SCHED_FINISH: Scheduling. (line 120) ! * TARGET_SCHED_FINISH_GLOBAL: Scheduling. (line 137) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BACKTRACK: Scheduling. (line 226) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_BEGIN: Scheduling. (line 215) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD: Scheduling. ! (line 179) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD: Scheduling. ! (line 207) * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD_GUARD_SPEC: Scheduling. ! (line 340) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_END: Scheduling. (line 231) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_FINI: Scheduling. (line 241) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_INIT: Scheduling. (line 236) ! * TARGET_SCHED_FIRST_CYCLE_MULTIPASS_ISSUE: Scheduling. (line 221) ! * TARGET_SCHED_FREE_SCHED_CONTEXT: Scheduling. (line 304) ! * TARGET_SCHED_GEN_SPEC_CHECK: Scheduling. (line 327) ! * TARGET_SCHED_H_I_D_EXTENDED: Scheduling. (line 280) ! * TARGET_SCHED_INIT: Scheduling. (line 110) ! * TARGET_SCHED_INIT_DFA_POST_CYCLE_INSN: Scheduling. (line 160) ! * TARGET_SCHED_INIT_DFA_PRE_CYCLE_INSN: Scheduling. (line 152) ! * TARGET_SCHED_INIT_GLOBAL: Scheduling. (line 129) ! * TARGET_SCHED_INIT_SCHED_CONTEXT: Scheduling. (line 290) ! * TARGET_SCHED_IS_COSTLY_DEPENDENCE: Scheduling. (line 257) ! * TARGET_SCHED_ISSUE_RATE: Scheduling. (line 12) ! * TARGET_SCHED_MACRO_FUSION_P: Scheduling. (line 88) ! * TARGET_SCHED_MACRO_FUSION_PAIR_P: Scheduling. (line 93) ! * TARGET_SCHED_NEEDS_BLOCK_P: Scheduling. (line 320) ! * TARGET_SCHED_REASSOCIATION_WIDTH: Scheduling. (line 382) ! * TARGET_SCHED_REORDER: Scheduling. (line 60) ! * TARGET_SCHED_REORDER2: Scheduling. (line 77) ! * TARGET_SCHED_SET_SCHED_CONTEXT: Scheduling. (line 296) ! * TARGET_SCHED_SET_SCHED_FLAGS: Scheduling. (line 352) ! * TARGET_SCHED_SMS_RES_MII: Scheduling. (line 358) ! * TARGET_SCHED_SPECULATE_INSN: Scheduling. (line 308) ! * TARGET_SCHED_VARIABLE_ISSUE: Scheduling. (line 24) ! * TARGET_SECONDARY_RELOAD: Register Classes. (line 318) ! * TARGET_SECTION_TYPE_FLAGS: File Framework. (line 152) ! * TARGET_SET_CURRENT_FUNCTION: Misc. (line 760) ! * TARGET_SET_DEFAULT_TYPE_ATTRIBUTES: Target Attributes. (line 34) ! * TARGET_SET_UP_BY_PROLOGUE: Tail Calls. (line 31) ! * TARGET_SETUP_INCOMING_VARARGS: Varargs. (line 76) ! * TARGET_SHIFT_TRUNCATION_MASK: Misc. (line 140) ! * TARGET_SIMD_CLONE_ADJUST: Addressing Modes. (line 418) * TARGET_SIMD_CLONE_COMPUTE_VECSIZE_AND_SIMDLEN: Addressing Modes. ! (line 411) ! * TARGET_SIMD_CLONE_USABLE: Addressing Modes. (line 422) * TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P: Register Arguments. ! (line 361) ! * TARGET_SPILL_CLASS: Register Classes. (line 588) ! * TARGET_SPLIT_COMPLEX_ARG: Register Arguments. (line 261) * TARGET_STACK_PROTECT_FAIL: Stack Smashing Protection. ! (line 17) * TARGET_STACK_PROTECT_GUARD: Stack Smashing Protection. ! (line 7) ! * TARGET_STATIC_CHAIN: Frame Registers. (line 92) ! * TARGET_STRICT_ARGUMENT_NAMING: Varargs. (line 112) ! * TARGET_STRING_OBJECT_REF_TYPE_P: Run-time Target. (line 116) ! * TARGET_STRIP_NAME_ENCODING: Sections. (line 290) ! * TARGET_STRUCT_VALUE_RTX: Aggregate Return. (line 45) * TARGET_SUPPORTS_SPLIT_STACK: Stack Smashing Protection. ! (line 27) ! * TARGET_SUPPORTS_WEAK: Label Output. (line 241) * TARGET_TERMINATE_DW2_EH_FRAME_INFO: Exception Region Output. ! (line 100) ! * TARGET_TRAMPOLINE_ADJUST_ADDRESS: Trampolines. (line 75) ! * TARGET_TRAMPOLINE_INIT: Trampolines. (line 56) ! * TARGET_UNSPEC_MAY_TRAP_P: Misc. (line 752) * TARGET_UNWIND_TABLES_DEFAULT: Exception Region Output. ! (line 74) ! * TARGET_UNWIND_WORD_MODE: Storage Layout. (line 476) * TARGET_UPDATE_STACK_BOUNDARY: Misc. (line 1003) ! * TARGET_USE_ANCHORS_FOR_SYMBOL_P: Anchored Addresses. (line 55) ! * TARGET_USE_BLOCKS_FOR_CONSTANT_P: Addressing Modes. (line 251) ! * TARGET_USE_BLOCKS_FOR_DECL_P: Addressing Modes. (line 257) * TARGET_USE_JCR_SECTION: Misc. (line 985) ! * TARGET_USES_WEAK_UNWIND_INFO: Exception Handling. (line 126) ! * TARGET_VALID_DLLIMPORT_ATTRIBUTE_P: Target Attributes. (line 68) ! * TARGET_VALID_POINTER_MODE: Register Arguments. (line 306) ! * TARGET_VECTOR_ALIGNMENT: Storage Layout. (line 267) ! * TARGET_VECTOR_MODE_SUPPORTED_P: Register Arguments. (line 331) ! * TARGET_VECTORIZE_ADD_STMT_COST: Addressing Modes. (line 373) * TARGET_VECTORIZE_AUTOVECTORIZE_VECTOR_SIZES: Addressing Modes. ! (line 353) ! * TARGET_VECTORIZE_BUILTIN_CONVERSION: Addressing Modes. (line 315) ! * TARGET_VECTORIZE_BUILTIN_GATHER: Addressing Modes. (line 404) ! * TARGET_VECTORIZE_BUILTIN_MASK_FOR_LOAD: Addressing Modes. (line 273) ! * TARGET_VECTORIZE_BUILTIN_TM_LOAD: Addressing Modes. (line 395) ! * TARGET_VECTORIZE_BUILTIN_TM_STORE: Addressing Modes. (line 399) * TARGET_VECTORIZE_BUILTIN_VECTORIZATION_COST: Addressing Modes. ! (line 300) * TARGET_VECTORIZE_BUILTIN_VECTORIZED_FUNCTION: Addressing Modes. ! (line 327) ! * TARGET_VECTORIZE_DESTROY_COST_DATA: Addressing Modes. (line 390) ! * TARGET_VECTORIZE_FINISH_COST: Addressing Modes. (line 384) ! * TARGET_VECTORIZE_INIT_COST: Addressing Modes. (line 361) ! * TARGET_VECTORIZE_PREFERRED_SIMD_MODE: Addressing Modes. (line 346) * TARGET_VECTORIZE_SUPPORT_VECTOR_MISALIGNMENT: Addressing Modes. ! (line 337) ! * TARGET_VECTORIZE_VEC_PERM_CONST_OK: Addressing Modes. (line 311) * TARGET_VECTORIZE_VECTOR_ALIGNMENT_REACHABLE: Addressing Modes. ! (line 306) ! * TARGET_VTABLE_DATA_ENTRY_DISTANCE: Type Layout. (line 348) ! * TARGET_VTABLE_ENTRY_ALIGN: Type Layout. (line 342) ! * TARGET_VTABLE_USES_DESCRIPTORS: Type Layout. (line 331) ! * TARGET_WANT_DEBUG_PUB_SECTIONS: SDB and DWARF. (line 56) ! * TARGET_WARN_FUNC_RETURN: Tail Calls. (line 36) ! * TARGET_WEAK_NOT_IN_ARCHIVE_TOC: Label Output. (line 277) ! * targetm: Target Structure. (line 7) ! * targets, makefile: Makefile. (line 6) ! * TCmode: Machine Modes. (line 200) * TDmode: Machine Modes. (line 97) * TEMPLATE_DECL: Declarations. (line 6) * Temporaries: Temporaries. (line 6) * termination routines: Initialization. (line 6) * testing constraints: C Constraint Interface. (line 6) ! * TEXT_SECTION_ASM_OP: Sections. (line 38) ! * TF_SIZE: Type Layout. (line 139) * TFmode: Machine Modes. (line 101) * THEN_CLAUSE: Statements for C++. (line 6) ! * THREAD_MODEL_SPEC: Driver. (line 163) * THROW_EXPR: Unary and Binary Expressions. (line 6) * THUNK_DECL: Declarations. (line 6) * THUNK_DELTA: Declarations. (line 6) * TImode: Machine Modes. (line 48) ! * TImode, in insn: Insns. (line 272) ! * TLS_COMMON_ASM_OP: Sections. (line 81) ! * TLS_SECTION_ASM_FLAG: Sections. (line 86) ! * tm.h macros: Target Macros. (line 6) * TQFmode: Machine Modes. (line 65) * TQmode: Machine Modes. (line 122) + * TRAMPOLINE_ALIGNMENT: Trampolines. (line 49) + * TRAMPOLINE_SECTION: Trampolines. (line 40) + * TRAMPOLINE_SIZE: Trampolines. (line 45) * trampolines for nested functions: Trampolines. (line 6) ! * TRANSFER_FROM_TRAMPOLINE: Trampolines. (line 111) ! * trap instruction pattern: Standard Names. (line 1553) * tree <1>: Macros and Functions. (line 6) + * tree: Tree overview. (line 6) * Tree SSA: Tree SSA. (line 6) * TREE_CHAIN: Macros and Functions. (line 6) *************** Concept Index *** 49578,49586 **** (line 6) * TREE_LIST: Containers. (line 6) * TREE_OPERAND: Expression trees. (line 6) - * TREE_PUBLIC: Function Basics. (line 6) * TREE_PUBLIC <1>: Function Properties. (line 28) * TREE_PURPOSE: Containers. (line 6) * TREE_READONLY: Function Properties. (line 37) --- 49939,49947 ---- (line 6) * TREE_LIST: Containers. (line 6) * TREE_OPERAND: Expression trees. (line 6) * TREE_PUBLIC <1>: Function Properties. (line 28) + * TREE_PUBLIC: Function Basics. (line 6) * TREE_PURPOSE: Containers. (line 6) * TREE_READONLY: Function Properties. (line 37) *************** Concept Index *** 49594,49629 **** (line 6) * TREE_THIS_VOLATILE: Function Properties. (line 34) * TREE_TYPE: Macros and Functions. (line 6) - * TREE_TYPE <1>: Types. (line 6) - * TREE_TYPE <2>: Working with declarations. - (line 11) - * TREE_TYPE <3>: Expression trees. (line 6) - * TREE_TYPE <4>: Expression trees. (line 17) - * TREE_TYPE <5>: Function Basics. (line 47) - * TREE_TYPE <6>: Types for C++. (line 6) * TREE_VALUE: Containers. (line 6) * TREE_VEC: Containers. (line 6) * TREE_VEC_ELT: Containers. (line 6) * TREE_VEC_LENGTH: Containers. (line 6) ! * TRULY_NOOP_TRUNCATION: Misc. (line 162) ! * truncate: Conversions. (line 38) ! * 'truncMN2' instruction pattern: Standard Names. (line 916) * TRUNC_DIV_EXPR: Unary and Binary Expressions. (line 6) * TRUNC_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_ANDIF_EXPR: Unary and Binary Expressions. ! (line 6) * TRUTH_AND_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_NOT_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_ORIF_EXPR: Unary and Binary Expressions. (line 6) * TRUTH_OR_EXPR: Unary and Binary Expressions. (line 6) * TRUTH_XOR_EXPR: Unary and Binary Expressions. (line 6) * TRY_BLOCK: Statements for C++. (line 6) --- 49955,49989 ---- (line 6) * TREE_THIS_VOLATILE: Function Properties. (line 34) + * TREE_TYPE <1>: Types for C++. (line 6) + * TREE_TYPE <2>: Function Basics. (line 47) + * TREE_TYPE <3>: Expression trees. (line 6) + * TREE_TYPE <4>: Working with declarations. + (line 11) + * TREE_TYPE <5>: Types. (line 6) * TREE_TYPE: Macros and Functions. (line 6) * TREE_VALUE: Containers. (line 6) * TREE_VEC: Containers. (line 6) * TREE_VEC_ELT: Containers. (line 6) * TREE_VEC_LENGTH: Containers. (line 6) ! * TRULY_NOOP_TRUNCATION: Misc. (line 163) * TRUNC_DIV_EXPR: Unary and Binary Expressions. (line 6) * TRUNC_MOD_EXPR: Unary and Binary Expressions. (line 6) ! * truncate: Conversions. (line 38) ! * truncMN2 instruction pattern: Standard Names. (line 922) * TRUTH_AND_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_ANDIF_EXPR: Unary and Binary Expressions. (line 6) ! * TRUTH_NOT_EXPR: Unary and Binary Expressions. (line 6) * TRUTH_OR_EXPR: Unary and Binary Expressions. (line 6) + * TRUTH_ORIF_EXPR: Unary and Binary Expressions. + (line 6) * TRUTH_XOR_EXPR: Unary and Binary Expressions. (line 6) * TRY_BLOCK: Statements for C++. (line 6) *************** Concept Index *** 49635,49930 **** (line 6) * type: Types. (line 6) * type declaration: Declarations. (line 6) ! * TYPENAME_TYPE: Types for C++. (line 6) ! * TYPENAME_TYPE_FULLNAME: Types. (line 6) ! * TYPENAME_TYPE_FULLNAME <1>: Types for C++. (line 6) ! * TYPEOF_TYPE: Types for C++. (line 6) * TYPE_ALIGN: Types. (line 6) - * TYPE_ALIGN <1>: Types. (line 30) - * TYPE_ALIGN <2>: Types for C++. (line 6) - * TYPE_ALIGN <3>: Types for C++. (line 44) - * TYPE_ARG_TYPES: Types. (line 6) * TYPE_ARG_TYPES <1>: Types for C++. (line 6) ! * TYPE_ASM_OP: Label Output. (line 76) ! * TYPE_ATTRIBUTES: Attributes. (line 24) * TYPE_BINFO: Classes. (line 6) ! * TYPE_BUILT_IN: Types for C++. (line 66) * TYPE_CANONICAL: Types. (line 6) - * TYPE_CANONICAL <1>: Types. (line 41) - * TYPE_CONTEXT: Types. (line 6) * TYPE_CONTEXT <1>: Types for C++. (line 6) * TYPE_DECL: Declarations. (line 6) * TYPE_FIELDS: Types. (line 6) - * TYPE_FIELDS <1>: Types for C++. (line 6) - * TYPE_FIELDS <2>: Classes. (line 6) * TYPE_HAS_ARRAY_NEW_OPERATOR: Classes. (line 96) * TYPE_HAS_DEFAULT_CONSTRUCTOR: Classes. (line 81) * TYPE_HAS_MUTABLE_P: Classes. (line 86) * TYPE_HAS_NEW_OPERATOR: Classes. (line 93) * TYPE_MAIN_VARIANT: Types. (line 6) - * TYPE_MAIN_VARIANT <1>: Types. (line 19) - * TYPE_MAIN_VARIANT <2>: Types for C++. (line 6) * TYPE_MAX_VALUE: Types. (line 6) - * TYPE_METHODS: Classes. (line 6) - * TYPE_METHOD_BASETYPE: Types. (line 6) * TYPE_METHOD_BASETYPE <1>: Types for C++. (line 6) * TYPE_MIN_VALUE: Types. (line 6) * TYPE_NAME: Types. (line 6) - * TYPE_NAME <1>: Types. (line 33) - * TYPE_NAME <2>: Types for C++. (line 6) - * TYPE_NAME <3>: Types for C++. (line 47) * TYPE_NOTHROW_P: Functions for C++. (line 154) - * TYPE_OFFSET_BASETYPE: Types. (line 6) * TYPE_OFFSET_BASETYPE <1>: Types for C++. (line 6) ! * TYPE_OPERAND_FMT: Label Output. (line 87) * TYPE_OVERLOADS_ARRAY_REF: Classes. (line 104) * TYPE_OVERLOADS_ARROW: Classes. (line 107) * TYPE_OVERLOADS_CALL_EXPR: Classes. (line 100) * TYPE_POLYMORPHIC_P: Classes. (line 77) - * TYPE_PRECISION: Types. (line 6) * TYPE_PRECISION <1>: Types for C++. (line 6) * TYPE_PTRDATAMEM_P: Types for C++. (line 6) ! * TYPE_PTRDATAMEM_P <1>: Types for C++. (line 69) ! * TYPE_PTRFN_P: Types for C++. (line 76) * TYPE_PTROBV_P: Types for C++. (line 6) - * TYPE_PTROB_P: Types for C++. (line 79) - * TYPE_PTR_P: Types for C++. (line 72) - * TYPE_QUAL_CONST: Types. (line 6) * TYPE_QUAL_CONST <1>: Types for C++. (line 6) ! * TYPE_QUAL_RESTRICT: Types. (line 6) * TYPE_QUAL_RESTRICT <1>: Types for C++. (line 6) ! * TYPE_QUAL_VOLATILE: Types. (line 6) * TYPE_QUAL_VOLATILE <1>: Types for C++. (line 6) * TYPE_RAISES_EXCEPTIONS: Functions for C++. (line 149) * TYPE_SIZE: Types. (line 6) - * TYPE_SIZE <1>: Types. (line 25) - * TYPE_SIZE <2>: Types for C++. (line 6) - * TYPE_SIZE <3>: Types for C++. (line 39) * TYPE_STRUCTURAL_EQUALITY_P: Types. (line 6) - * TYPE_STRUCTURAL_EQUALITY_P <1>: Types. (line 77) - * TYPE_UNQUALIFIED: Types. (line 6) * TYPE_UNQUALIFIED <1>: Types for C++. (line 6) * TYPE_VFIELD: Classes. (line 6) ! * UDAmode: Machine Modes. (line 170) ! * udiv: Arithmetic. (line 131) ! * 'udivM3' instruction pattern: Standard Names. (line 276) ! * 'udivmodM4' instruction pattern: Standard Names. (line 513) ! * 'udot_prodM' instruction pattern: Standard Names. (line 342) ! * UDQmode: Machine Modes. (line 138) ! * UHAmode: Machine Modes. (line 162) ! * UHQmode: Machine Modes. (line 130) ! * UINT16_TYPE: Type Layout. (line 257) ! * UINT32_TYPE: Type Layout. (line 258) ! * UINT64_TYPE: Type Layout. (line 259) ! * UINT8_TYPE: Type Layout. (line 256) ! * UINTMAX_TYPE: Type Layout. (line 240) ! * UINTPTR_TYPE: Type Layout. (line 277) ! * UINT_FAST16_TYPE: Type Layout. (line 273) ! * UINT_FAST32_TYPE: Type Layout. (line 274) ! * UINT_FAST64_TYPE: Type Layout. (line 275) ! * UINT_FAST8_TYPE: Type Layout. (line 272) ! * UINT_LEAST16_TYPE: Type Layout. (line 265) ! * UINT_LEAST32_TYPE: Type Layout. (line 266) ! * UINT_LEAST64_TYPE: Type Layout. (line 267) ! * UINT_LEAST8_TYPE: Type Layout. (line 264) ! * 'umaddMN4' instruction pattern: Standard Names. (line 460) ! * umax: Arithmetic. (line 150) ! * 'umaxM3' instruction pattern: Standard Names. (line 276) ! * umin: Arithmetic. (line 150) ! * 'uminM3' instruction pattern: Standard Names. (line 276) ! * umod: Arithmetic. (line 137) ! * 'umodM3' instruction pattern: Standard Names. (line 276) ! * 'umsubMN4' instruction pattern: Standard Names. (line 484) ! * 'umulhisi3' instruction pattern: Standard Names. (line 432) ! * 'umulM3_highpart' instruction pattern: Standard Names. (line 446) ! * 'umulqihi3' instruction pattern: Standard Names. (line 432) ! * 'umulsidi3' instruction pattern: Standard Names. (line 432) * unchanging: Flags. (line 296) ! * 'unchanging', in 'call_insn': Flags. (line 19) ! * 'unchanging', in 'jump_insn', 'call_insn' and 'insn': Flags. ! (line 39) ! * 'unchanging', in 'mem': Flags. (line 134) ! * 'unchanging', in 'subreg': Flags. (line 170) ! * 'unchanging', in 'subreg' <1>: Flags. (line 180) ! * 'unchanging', in 'symbol_ref': Flags. (line 10) * UNEQ_EXPR: Unary and Binary Expressions. (line 6) * UNGE_EXPR: Unary and Binary Expressions. (line 6) * UNGT_EXPR: Unary and Binary Expressions. (line 6) - * unions, returning: Interface. (line 10) - * UNION_TYPE: Types. (line 6) * UNION_TYPE <1>: Classes. (line 6) ! * UNITS_PER_WORD: Storage Layout. (line 60) ! * UNKNOWN_TYPE: Types. (line 6) * UNKNOWN_TYPE <1>: Types for C++. (line 6) * UNLE_EXPR: Unary and Binary Expressions. (line 6) ! * UNLIKELY_EXECUTED_TEXT_SECTION_NAME: Sections. (line 48) * UNLT_EXPR: Unary and Binary Expressions. (line 6) * UNORDERED_EXPR: Unary and Binary Expressions. (line 6) * unshare_all_rtl: Sharing. (line 58) ! * unsigned division: Arithmetic. (line 131) ! * unsigned division with unsigned saturation: Arithmetic. (line 131) * unsigned greater than: Comparisons. (line 64) - * unsigned greater than <1>: Comparisons. (line 72) * unsigned less than: Comparisons. (line 68) ! * unsigned less than <1>: Comparisons. (line 76) ! * unsigned minimum and maximum: Arithmetic. (line 150) * unsigned_fix: Conversions. (line 77) * unsigned_float: Conversions. (line 62) * unsigned_fract_convert: Conversions. (line 97) * unsigned_sat_fract: Conversions. (line 103) - * unspec: Side Effects. (line 298) * unspec <1>: Constant Definitions. (line 111) ! * unspec_volatile: Side Effects. (line 298) * unspec_volatile <1>: Constant Definitions. (line 99) ! * 'untyped_call' instruction pattern: Standard Names. (line 1158) ! * 'untyped_return' instruction pattern: Standard Names. (line 1221) * UPDATE_PATH_HOST_CANONICALIZE (PATH): Filesystem. (line 59) * update_ssa: SSA. (line 74) - * update_stmt: Manipulating GIMPLE statements. - (line 140) * update_stmt <1>: SSA Operands. (line 6) * update_stmt_if_modified: Manipulating GIMPLE statements. ! (line 143) * UQQmode: Machine Modes. (line 126) ! * 'usaddM3' instruction pattern: Standard Names. (line 276) ! * USAmode: Machine Modes. (line 166) ! * 'usashlM3' instruction pattern: Standard Names. (line 516) ! * 'usdivM3' instruction pattern: Standard Names. (line 276) * use: Side Effects. (line 168) * used: Flags. (line 314) ! * 'used', in 'symbol_ref': Flags. (line 197) ! * user: GTY Options. (line 318) * user gc: User GC. (line 6) ! * USER_LABEL_PREFIX: Instruction Output. (line 152) ! * USE_C_ALLOCA: Host Misc. (line 19) ! * USE_LD_AS_NEEDED: Driver. (line 135) ! * USE_LOAD_POST_DECREMENT: Costs. (line 225) ! * USE_LOAD_POST_INCREMENT: Costs. (line 220) ! * USE_LOAD_PRE_DECREMENT: Costs. (line 235) ! * USE_LOAD_PRE_INCREMENT: Costs. (line 230) ! * use_param: GTY Options. (line 119) ! * use_paramN: GTY Options. (line 138) ! * use_params: GTY Options. (line 147) ! * USE_SELECT_SECTION_FOR_FUNCTIONS: Sections. (line 193) ! * USE_STORE_POST_DECREMENT: Costs. (line 245) ! * USE_STORE_POST_INCREMENT: Costs. (line 240) ! * USE_STORE_PRE_DECREMENT: Costs. (line 255) ! * USE_STORE_PRE_INCREMENT: Costs. (line 250) * USING_STMT: Statements for C++. (line 6) ! * 'usmaddMN4' instruction pattern: Standard Names. (line 468) ! * 'usmsubMN4' instruction pattern: Standard Names. (line 492) ! * 'usmulhisi3' instruction pattern: Standard Names. (line 436) ! * 'usmulM3' instruction pattern: Standard Names. (line 276) ! * 'usmulqihi3' instruction pattern: Standard Names. (line 436) ! * 'usmulsidi3' instruction pattern: Standard Names. (line 436) ! * 'usnegM2' instruction pattern: Standard Names. (line 538) ! * USQmode: Machine Modes. (line 134) ! * 'ussubM3' instruction pattern: Standard Names. (line 276) ! * 'usum_widenM3' instruction pattern: Standard Names. (line 351) ! * us_ashift: Arithmetic. (line 174) ! * us_minus: Arithmetic. (line 38) ! * us_mult: Arithmetic. (line 93) ! * us_neg: Arithmetic. (line 82) ! * us_plus: Arithmetic. (line 14) ! * us_truncate: Conversions. (line 48) ! * UTAmode: Machine Modes. (line 174) ! * UTQmode: Machine Modes. (line 142) ! * 'V' in constraint: Simple Constraints. (line 43) * values, returned by functions: Scalar Return. (line 6) * varargs implementation: Varargs. (line 6) * variable: Declarations. (line 6) * Variable Location Debug Information in RTL: Debug Information. (line 6) ! * variable_size: GTY Options. (line 245) ! * VAR_DECL: Declarations. (line 6) ! * var_location: Debug Information. (line 14) ! * 'vashlM3' instruction pattern: Standard Names. (line 530) ! * 'vashrM3' instruction pattern: Standard Names. (line 530) ! * VA_ARG_EXPR: Unary and Binary Expressions. ! (line 6) ! * 'vcondMN' instruction pattern: Standard Names. (line 213) ! * vector: Containers. (line 6) ! * vector operations: Vector Operations. (line 6) ! * VECTOR_CST: Constant expressions. ! (line 6) ! * VECTOR_STORE_FLAG_VALUE: Misc. (line 293) * vec_concat: Vector Operations. (line 28) * vec_duplicate: Vector Operations. (line 33) ! * 'vec_extractM' instruction pattern: Standard Names. (line 203) ! * 'vec_initM' instruction pattern: Standard Names. (line 208) ! * 'vec_load_lanesMN' instruction pattern: Standard Names. (line 165) * VEC_LSHIFT_EXPR: Vectors. (line 6) * vec_merge: Vector Operations. (line 11) * VEC_PACK_FIX_TRUNC_EXPR: Vectors. (line 6) * VEC_PACK_SAT_EXPR: Vectors. (line 6) ! * 'vec_pack_sfix_trunc_M' instruction pattern: Standard Names. ! (line 377) ! * 'vec_pack_ssat_M' instruction pattern: Standard Names. (line 370) * VEC_PACK_TRUNC_EXPR: Vectors. (line 6) ! * 'vec_pack_trunc_M' instruction pattern: Standard Names. (line 363) ! * 'vec_pack_ufix_trunc_M' instruction pattern: Standard Names. ! (line 377) ! * 'vec_pack_usat_M' instruction pattern: Standard Names. (line 370) ! * 'vec_permM' instruction pattern: Standard Names. (line 223) ! * 'vec_perm_constM' instruction pattern: Standard Names. (line 239) * VEC_RSHIFT_EXPR: Vectors. (line 6) * vec_select: Vector Operations. (line 19) ! * 'vec_setM' instruction pattern: Standard Names. (line 198) ! * 'vec_shl_M' instruction pattern: Standard Names. (line 357) ! * 'vec_shr_M' instruction pattern: Standard Names. (line 357) ! * 'vec_store_lanesMN' instruction pattern: Standard Names. (line 187) ! * 'vec_unpacks_float_hi_M' instruction pattern: Standard Names. ! (line 398) ! * 'vec_unpacks_float_lo_M' instruction pattern: Standard Names. ! (line 398) ! * 'vec_unpacks_hi_M' instruction pattern: Standard Names. (line 384) ! * 'vec_unpacks_lo_M' instruction pattern: Standard Names. (line 384) ! * 'vec_unpacku_float_hi_M' instruction pattern: Standard Names. ! (line 398) ! * 'vec_unpacku_float_lo_M' instruction pattern: Standard Names. ! (line 398) ! * 'vec_unpacku_hi_M' instruction pattern: Standard Names. (line 391) ! * 'vec_unpacku_lo_M' instruction pattern: Standard Names. (line 391) * VEC_UNPACK_FLOAT_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_FLOAT_LO_EXPR: Vectors. (line 6) * VEC_UNPACK_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_LO_EXPR: Vectors. (line 6) * VEC_WIDEN_MULT_HI_EXPR: Vectors. (line 6) * VEC_WIDEN_MULT_LO_EXPR: Vectors. (line 6) ! * 'vec_widen_smult_even_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_smult_hi_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_smult_lo_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_smult_odd_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_sshiftl_hi_M' instruction pattern: Standard Names. ! (line 418) ! * 'vec_widen_sshiftl_lo_M' instruction pattern: Standard Names. ! (line 418) ! * 'vec_widen_umult_even_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_umult_hi_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_umult_lo_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_umult_odd_M' instruction pattern: Standard Names. ! (line 407) ! * 'vec_widen_ushiftl_hi_M' instruction pattern: Standard Names. ! (line 418) ! * 'vec_widen_ushiftl_lo_M' instruction pattern: Standard Names. ! (line 418) * verify_flow_info: Maintaining the CFG. ! (line 117) * virtual operands: SSA Operands. (line 6) * VIRTUAL_INCOMING_ARGS_REGNUM: Regs and Memory. (line 59) * VIRTUAL_OUTGOING_ARGS_REGNUM: Regs and Memory. (line 87) --- 49995,50268 ---- (line 6) * type: Types. (line 6) * type declaration: Declarations. (line 6) ! * TYPE_ALIGN <1>: Types for C++. (line 6) * TYPE_ALIGN: Types. (line 6) * TYPE_ARG_TYPES <1>: Types for C++. (line 6) ! * TYPE_ARG_TYPES: Types. (line 6) ! * TYPE_ASM_OP: Label Output. (line 79) ! * TYPE_ATTRIBUTES: Attributes. (line 25) * TYPE_BINFO: Classes. (line 6) ! * TYPE_BUILT_IN: Types for C++. (line 68) * TYPE_CANONICAL: Types. (line 6) * TYPE_CONTEXT <1>: Types for C++. (line 6) + * TYPE_CONTEXT: Types. (line 6) * TYPE_DECL: Declarations. (line 6) + * TYPE_FIELDS <1>: Classes. (line 6) + * TYPE_FIELDS <2>: Types for C++. (line 6) * TYPE_FIELDS: Types. (line 6) * TYPE_HAS_ARRAY_NEW_OPERATOR: Classes. (line 96) * TYPE_HAS_DEFAULT_CONSTRUCTOR: Classes. (line 81) * TYPE_HAS_MUTABLE_P: Classes. (line 86) * TYPE_HAS_NEW_OPERATOR: Classes. (line 93) + * TYPE_MAIN_VARIANT <1>: Types for C++. (line 6) * TYPE_MAIN_VARIANT: Types. (line 6) * TYPE_MAX_VALUE: Types. (line 6) * TYPE_METHOD_BASETYPE <1>: Types for C++. (line 6) + * TYPE_METHOD_BASETYPE: Types. (line 6) + * TYPE_METHODS: Classes. (line 6) * TYPE_MIN_VALUE: Types. (line 6) + * TYPE_NAME <1>: Types for C++. (line 6) * TYPE_NAME: Types. (line 6) * TYPE_NOTHROW_P: Functions for C++. (line 154) * TYPE_OFFSET_BASETYPE <1>: Types for C++. (line 6) ! * TYPE_OFFSET_BASETYPE: Types. (line 6) ! * TYPE_OPERAND_FMT: Label Output. (line 90) * TYPE_OVERLOADS_ARRAY_REF: Classes. (line 104) * TYPE_OVERLOADS_ARROW: Classes. (line 107) * TYPE_OVERLOADS_CALL_EXPR: Classes. (line 100) * TYPE_POLYMORPHIC_P: Classes. (line 77) * TYPE_PRECISION <1>: Types for C++. (line 6) + * TYPE_PRECISION: Types. (line 6) + * TYPE_PTR_P: Types for C++. (line 74) * TYPE_PTRDATAMEM_P: Types for C++. (line 6) ! * TYPE_PTRFN_P: Types for C++. (line 78) ! * TYPE_PTROB_P: Types for C++. (line 81) * TYPE_PTROBV_P: Types for C++. (line 6) * TYPE_QUAL_CONST <1>: Types for C++. (line 6) ! * TYPE_QUAL_CONST: Types. (line 6) * TYPE_QUAL_RESTRICT <1>: Types for C++. (line 6) ! * TYPE_QUAL_RESTRICT: Types. (line 6) * TYPE_QUAL_VOLATILE <1>: Types for C++. (line 6) + * TYPE_QUAL_VOLATILE: Types. (line 6) * TYPE_RAISES_EXCEPTIONS: Functions for C++. (line 149) + * TYPE_SIZE <1>: Types for C++. (line 6) * TYPE_SIZE: Types. (line 6) * TYPE_STRUCTURAL_EQUALITY_P: Types. (line 6) * TYPE_UNQUALIFIED <1>: Types for C++. (line 6) + * TYPE_UNQUALIFIED: Types. (line 6) * TYPE_VFIELD: Classes. (line 6) ! * TYPENAME_TYPE: Types for C++. (line 6) ! * TYPENAME_TYPE_FULLNAME <1>: Types for C++. (line 6) ! * TYPENAME_TYPE_FULLNAME: Types. (line 6) ! * TYPEOF_TYPE: Types for C++. (line 6) ! * UDAmode: Machine Modes. (line 171) ! * udiv: Arithmetic. (line 130) ! * udivM3 instruction pattern: Standard Names. (line 279) ! * udivmodM4 instruction pattern: Standard Names. (line 519) ! * udot_prodM instruction pattern: Standard Names. (line 345) ! * UDQmode: Machine Modes. (line 139) ! * UHAmode: Machine Modes. (line 163) ! * UHQmode: Machine Modes. (line 131) ! * UINT16_TYPE: Type Layout. (line 258) ! * UINT32_TYPE: Type Layout. (line 259) ! * UINT64_TYPE: Type Layout. (line 260) ! * UINT8_TYPE: Type Layout. (line 257) ! * UINT_FAST16_TYPE: Type Layout. (line 274) ! * UINT_FAST32_TYPE: Type Layout. (line 275) ! * UINT_FAST64_TYPE: Type Layout. (line 276) ! * UINT_FAST8_TYPE: Type Layout. (line 273) ! * UINT_LEAST16_TYPE: Type Layout. (line 266) ! * UINT_LEAST32_TYPE: Type Layout. (line 267) ! * UINT_LEAST64_TYPE: Type Layout. (line 268) ! * UINT_LEAST8_TYPE: Type Layout. (line 265) ! * UINTMAX_TYPE: Type Layout. (line 241) ! * UINTPTR_TYPE: Type Layout. (line 278) ! * umaddMN4 instruction pattern: Standard Names. (line 466) ! * umax: Arithmetic. (line 149) ! * umaxM3 instruction pattern: Standard Names. (line 279) ! * umin: Arithmetic. (line 149) ! * uminM3 instruction pattern: Standard Names. (line 279) ! * umod: Arithmetic. (line 136) ! * umodM3 instruction pattern: Standard Names. (line 279) ! * umsubMN4 instruction pattern: Standard Names. (line 490) ! * umulhisi3 instruction pattern: Standard Names. (line 438) ! * umulM3_highpart instruction pattern: Standard Names. (line 452) ! * umulqihi3 instruction pattern: Standard Names. (line 438) ! * umulsidi3 instruction pattern: Standard Names. (line 438) * unchanging: Flags. (line 296) ! * unchanging, in call_insn: Flags. (line 19) ! * unchanging, in jump_insn, call_insn and insn: Flags. (line 39) ! * unchanging, in mem: Flags. (line 134) ! * unchanging, in subreg: Flags. (line 170) ! * unchanging, in symbol_ref: Flags. (line 10) * UNEQ_EXPR: Unary and Binary Expressions. (line 6) * UNGE_EXPR: Unary and Binary Expressions. (line 6) * UNGT_EXPR: Unary and Binary Expressions. (line 6) * UNION_TYPE <1>: Classes. (line 6) ! * UNION_TYPE: Types. (line 6) ! * unions, returning: Interface. (line 10) ! * UNITS_PER_WORD: Storage Layout. (line 61) * UNKNOWN_TYPE <1>: Types for C++. (line 6) + * UNKNOWN_TYPE: Types. (line 6) * UNLE_EXPR: Unary and Binary Expressions. (line 6) ! * UNLIKELY_EXECUTED_TEXT_SECTION_NAME: Sections. (line 49) * UNLT_EXPR: Unary and Binary Expressions. (line 6) * UNORDERED_EXPR: Unary and Binary Expressions. (line 6) * unshare_all_rtl: Sharing. (line 58) ! * unsigned division: Arithmetic. (line 130) ! * unsigned division with unsigned saturation: Arithmetic. (line 130) * unsigned greater than: Comparisons. (line 64) * unsigned less than: Comparisons. (line 68) ! * unsigned minimum and maximum: Arithmetic. (line 149) * unsigned_fix: Conversions. (line 77) * unsigned_float: Conversions. (line 62) * unsigned_fract_convert: Conversions. (line 97) * unsigned_sat_fract: Conversions. (line 103) * unspec <1>: Constant Definitions. (line 111) ! * unspec: Side Effects. (line 300) * unspec_volatile <1>: Constant Definitions. (line 99) ! * unspec_volatile: Side Effects. (line 300) ! * untyped_call instruction pattern: Standard Names. (line 1164) ! * untyped_return instruction pattern: Standard Names. (line 1228) * UPDATE_PATH_HOST_CANONICALIZE (PATH): Filesystem. (line 59) * update_ssa: SSA. (line 74) * update_stmt <1>: SSA Operands. (line 6) + * update_stmt: Manipulating GIMPLE statements. + (line 141) * update_stmt_if_modified: Manipulating GIMPLE statements. ! (line 144) * UQQmode: Machine Modes. (line 126) ! * us_ashift: Arithmetic. (line 173) ! * us_minus: Arithmetic. (line 36) ! * us_mult: Arithmetic. (line 92) ! * us_neg: Arithmetic. (line 81) ! * us_plus: Arithmetic. (line 14) ! * us_truncate: Conversions. (line 48) ! * usaddM3 instruction pattern: Standard Names. (line 279) ! * USAmode: Machine Modes. (line 167) ! * usashlM3 instruction pattern: Standard Names. (line 522) ! * usdivM3 instruction pattern: Standard Names. (line 279) * use: Side Effects. (line 168) + * USE_C_ALLOCA: Host Misc. (line 19) + * USE_LD_AS_NEEDED: Driver. (line 136) + * USE_LOAD_POST_DECREMENT: Costs. (line 226) + * USE_LOAD_POST_INCREMENT: Costs. (line 221) + * USE_LOAD_PRE_DECREMENT: Costs. (line 236) + * USE_LOAD_PRE_INCREMENT: Costs. (line 231) + * use_param: GTY Options. (line 118) + * use_paramN: GTY Options. (line 136) + * use_params: GTY Options. (line 144) + * USE_SELECT_SECTION_FOR_FUNCTIONS: Sections. (line 194) + * USE_STORE_POST_DECREMENT: Costs. (line 246) + * USE_STORE_POST_INCREMENT: Costs. (line 241) + * USE_STORE_PRE_DECREMENT: Costs. (line 256) + * USE_STORE_PRE_INCREMENT: Costs. (line 251) * used: Flags. (line 314) ! * used, in symbol_ref: Flags. (line 197) ! * user: GTY Options. (line 305) * user gc: User GC. (line 6) ! * USER_LABEL_PREFIX: Instruction Output. (line 154) * USING_STMT: Statements for C++. (line 6) ! * usmaddMN4 instruction pattern: Standard Names. (line 474) ! * usmsubMN4 instruction pattern: Standard Names. (line 498) ! * usmulhisi3 instruction pattern: Standard Names. (line 442) ! * usmulM3 instruction pattern: Standard Names. (line 279) ! * usmulqihi3 instruction pattern: Standard Names. (line 442) ! * usmulsidi3 instruction pattern: Standard Names. (line 442) ! * usnegM2 instruction pattern: Standard Names. (line 544) ! * USQmode: Machine Modes. (line 135) ! * ussubM3 instruction pattern: Standard Names. (line 279) ! * usum_widenM3 instruction pattern: Standard Names. (line 355) ! * UTAmode: Machine Modes. (line 175) ! * UTQmode: Machine Modes. (line 143) ! * V in constraint: Simple Constraints. (line 43) ! * VA_ARG_EXPR: Unary and Binary Expressions. ! (line 6) * values, returned by functions: Scalar Return. (line 6) + * VAR_DECL: Declarations. (line 6) + * var_location: Debug Information. (line 14) * varargs implementation: Varargs. (line 6) * variable: Declarations. (line 6) * Variable Location Debug Information in RTL: Debug Information. (line 6) ! * variable_size: GTY Options. (line 234) ! * vashlM3 instruction pattern: Standard Names. (line 536) ! * vashrM3 instruction pattern: Standard Names. (line 536) ! * vcondMN instruction pattern: Standard Names. (line 214) * vec_concat: Vector Operations. (line 28) * vec_duplicate: Vector Operations. (line 33) ! * vec_extractM instruction pattern: Standard Names. (line 204) ! * vec_initM instruction pattern: Standard Names. (line 209) ! * vec_load_lanesMN instruction pattern: Standard Names. (line 166) * VEC_LSHIFT_EXPR: Vectors. (line 6) * vec_merge: Vector Operations. (line 11) * VEC_PACK_FIX_TRUNC_EXPR: Vectors. (line 6) * VEC_PACK_SAT_EXPR: Vectors. (line 6) ! * vec_pack_sfix_trunc_M instruction pattern: Standard Names. (line 382) ! * vec_pack_ssat_M instruction pattern: Standard Names. (line 375) * VEC_PACK_TRUNC_EXPR: Vectors. (line 6) ! * vec_pack_trunc_M instruction pattern: Standard Names. (line 368) ! * vec_pack_ufix_trunc_M instruction pattern: Standard Names. (line 382) ! * vec_pack_usat_M instruction pattern: Standard Names. (line 375) ! * vec_perm_constM instruction pattern: Standard Names. (line 242) ! * vec_permM instruction pattern: Standard Names. (line 224) * VEC_RSHIFT_EXPR: Vectors. (line 6) * vec_select: Vector Operations. (line 19) ! * vec_setM instruction pattern: Standard Names. (line 199) ! * vec_shl_M instruction pattern: Standard Names. (line 362) ! * vec_shr_M instruction pattern: Standard Names. (line 362) ! * vec_store_lanesMN instruction pattern: Standard Names. (line 188) * VEC_UNPACK_FLOAT_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_FLOAT_LO_EXPR: Vectors. (line 6) * VEC_UNPACK_HI_EXPR: Vectors. (line 6) * VEC_UNPACK_LO_EXPR: Vectors. (line 6) + * vec_unpacks_float_hi_M instruction pattern: Standard Names. + (line 404) + * vec_unpacks_float_lo_M instruction pattern: Standard Names. + (line 404) + * vec_unpacks_hi_M instruction pattern: Standard Names. (line 389) + * vec_unpacks_lo_M instruction pattern: Standard Names. (line 389) + * vec_unpacku_float_hi_M instruction pattern: Standard Names. + (line 404) + * vec_unpacku_float_lo_M instruction pattern: Standard Names. + (line 404) + * vec_unpacku_hi_M instruction pattern: Standard Names. (line 397) + * vec_unpacku_lo_M instruction pattern: Standard Names. (line 397) * VEC_WIDEN_MULT_HI_EXPR: Vectors. (line 6) * VEC_WIDEN_MULT_LO_EXPR: Vectors. (line 6) ! * vec_widen_smult_even_M instruction pattern: Standard Names. ! (line 413) ! * vec_widen_smult_hi_M instruction pattern: Standard Names. (line 413) ! * vec_widen_smult_lo_M instruction pattern: Standard Names. (line 413) ! * vec_widen_smult_odd_M instruction pattern: Standard Names. (line 413) ! * vec_widen_sshiftl_hi_M instruction pattern: Standard Names. ! (line 424) ! * vec_widen_sshiftl_lo_M instruction pattern: Standard Names. ! (line 424) ! * vec_widen_umult_even_M instruction pattern: Standard Names. ! (line 413) ! * vec_widen_umult_hi_M instruction pattern: Standard Names. (line 413) ! * vec_widen_umult_lo_M instruction pattern: Standard Names. (line 413) ! * vec_widen_umult_odd_M instruction pattern: Standard Names. (line 413) ! * vec_widen_ushiftl_hi_M instruction pattern: Standard Names. ! (line 424) ! * vec_widen_ushiftl_lo_M instruction pattern: Standard Names. ! (line 424) ! * vector: Containers. (line 6) ! * vector operations: Vector Operations. (line 6) ! * VECTOR_CST: Constant expressions. ! (line 6) ! * VECTOR_STORE_FLAG_VALUE: Misc. (line 294) * verify_flow_info: Maintaining the CFG. ! (line 119) * virtual operands: SSA Operands. (line 6) * VIRTUAL_INCOMING_ARGS_REGNUM: Regs and Memory. (line 59) * VIRTUAL_OUTGOING_ARGS_REGNUM: Regs and Memory. (line 87) *************** Concept Index *** 49932,50387 **** * VIRTUAL_STACK_VARS_REGNUM: Regs and Memory. (line 69) * VLIW: Processor pipeline description. (line 6) ! * VLIW <1>: Processor pipeline description. ! (line 223) ! * 'vlshrM3' instruction pattern: Standard Names. (line 530) * VMS: Filesystem. (line 37) ! * VMS_DEBUGGING_INFO: VMS Debug. (line 8) ! * VOIDmode: Machine Modes. (line 192) * VOID_TYPE: Types. (line 6) * volatil: Flags. (line 328) ! * 'volatil', in 'insn', 'call_insn', 'jump_insn', 'code_label', 'jump_table_data', 'barrier', and 'note': Flags. (line 44) ! * 'volatil', in 'label_ref' and 'reg_label': Flags. (line 65) ! * 'volatil', in 'mem', 'asm_operands', and 'asm_input': Flags. ! (line 76) ! * 'volatil', in 'reg': Flags. (line 98) ! * 'volatil', in 'subreg': Flags. (line 170) ! * 'volatil', in 'subreg' <1>: Flags. (line 180) ! * 'volatil', in 'symbol_ref': Flags. (line 206) * volatile memory references: Flags. (line 329) ! * 'volatile', in 'prefetch': Flags. (line 214) * voting between constraint alternatives: Class Preferences. (line 6) ! * 'vrotlM3' instruction pattern: Standard Names. (line 530) ! * 'vrotrM3' instruction pattern: Standard Names. (line 530) ! * walk_dominator_tree: SSA. (line 227) * walk_gimple_op: Statement and operand traversals. ! (line 30) * walk_gimple_seq: Statement and operand traversals. ! (line 47) * walk_gimple_stmt: Statement and operand traversals. ! (line 10) ! * WCHAR_TYPE: Type Layout. (line 208) ! * WCHAR_TYPE_SIZE: Type Layout. (line 216) ! * which_alternative: Output Statement. (line 58) * WHILE_BODY: Statements for C++. (line 6) * WHILE_COND: Statements for C++. (line 6) * WHILE_STMT: Statements for C++. (line 6) * whopr: LTO. (line 6) ! * WIDEST_HARDWARE_FP_SIZE: Type Layout. (line 153) ! * 'window_save' instruction pattern: Standard Names. (line 1513) ! * WINT_TYPE: Type Layout. (line 221) ! * WORDS_BIG_ENDIAN: Storage Layout. (line 28) ! * 'WORDS_BIG_ENDIAN', effect on 'subreg': Regs and Memory. (line 215) ! * word_mode: Machine Modes. (line 358) ! * WORD_REGISTER_OPERATIONS: Misc. (line 53) * wpa: LTO. (line 6) ! * 'X' in constraint: Simple Constraints. (line 122) ! * 'x-HOST': Host Fragment. (line 6) ! * XCmode: Machine Modes. (line 199) ! * XCOFF_DEBUGGING_INFO: DBX Options. (line 12) * XEXP: Accessors. (line 6) * XFmode: Machine Modes. (line 82) - * XF_SIZE: Type Layout. (line 137) * XImode: Machine Modes. (line 54) * XINT: Accessors. (line 6) ! * 'xm-MACHINE.h': Filesystem. (line 6) ! * 'xm-MACHINE.h' <1>: Host Misc. (line 6) ! * xor: Arithmetic. (line 169) ! * 'xor', canonicalization of: Insn Canonicalizations. ! (line 78) ! * 'xorM3' instruction pattern: Standard Names. (line 276) * XSTR: Accessors. (line 6) * XVEC: Accessors. (line 41) * XVECEXP: Accessors. (line 48) * XVECLEN: Accessors. (line 44) * XWINT: Accessors. (line 6) * zero_extend: Conversions. (line 28) ! * 'zero_extendMN2' instruction pattern: Standard Names. (line 926) * zero_extract: Bit-Fields. (line 30) ! * 'zero_extract', canonicalization of: Insn Canonicalizations. ! (line 87)  Tag Table: ! Node: Top1789 ! Node: Contributing4877 ! Node: Portability5606 ! Node: Interface7394 ! Node: Libgcc10435 ! Node: Integer library routines12262 ! Node: Soft float library routines19104 ! Node: Decimal float library routines31042 ! Node: Fixed-point fractional library routines46800 ! Node: Exception handling routines147196 ! Node: Miscellaneous routines148303 ! Node: Languages150423 ! Node: Source Tree151970 ! Node: Configure Terms152552 ! Node: Top Level155508 ! Node: gcc Directory158970 ! Node: Subdirectories159922 ! Node: Configuration162090 ! Node: Config Fragments162810 ! Node: System Config164035 ! Node: Configuration Files164971 ! Node: Build167788 ! Node: Makefile168200 ! Ref: Makefile-Footnote-1175004 ! Ref: Makefile-Footnote-2175151 ! Node: Library Files175225 ! Node: Headers175787 ! Node: Documentation177870 ! Node: Texinfo Manuals178729 ! Node: Man Page Generation181058 ! Node: Miscellaneous Docs182971 ! Node: Front End184358 ! Node: Front End Directory188032 ! Node: Front End Config189348 ! Node: Front End Makefile192164 ! Node: Back End195932 ! Node: Testsuites199713 ! Node: Test Idioms200644 ! Node: Test Directives204042 ! Node: Directives204569 ! Node: Selectors214866 ! Node: Effective-Target Keywords216222 ! Ref: arm_neon_ok223966 ! Ref: arm_neonv2_ok224124 ! Ref: arm_neon_fp16_ok224296 ! Ref: arm_vfp3_ok224736 ! Node: Add Options234805 ! Node: Require Support236122 ! Node: Final Actions238629 ! Node: Ada Tests243794 ! Node: C Tests245125 ! Node: libgcj Tests249520 ! Node: LTO Testing250647 ! Node: gcov Testing252295 ! Node: profopt Testing255285 ! Node: compat Testing257000 ! Node: Torture Tests261240 ! Node: Options262855 ! Node: Option file format263296 ! Node: Option properties270285 ! Node: Passes283312 ! Node: Parsing pass284202 ! Node: Cilk Plus Transformation287735 ! Node: Gimplification pass291117 ! Node: Pass manager292962 ! Node: Tree SSA passes294808 ! Node: RTL passes315875 ! Node: Optimization info328239 ! Node: Dump setup329058 ! Node: Optimization groups330187 ! Node: Dump files and streams331076 ! Node: Dump output verbosity332274 ! Node: Dump types333330 ! Node: Dump examples334820 ! Node: GENERIC336166 ! Node: Deficiencies338042 ! Node: Tree overview338283 ! Node: Macros and Functions342407 ! Node: Identifiers343232 ! Node: Containers344841 ! Node: Types345998 ! Node: Declarations358072 ! Node: Working with declarations358567 ! Node: Internal structure364171 ! Node: Current structure hierarchy364555 ! Node: Adding new DECL node types366648 ! Node: Attributes370932 ! Node: Expression trees372176 ! Node: Constant expressions373930 ! Node: Storage References378143 ! Node: Unary and Binary Expressions381662 ! Node: Vectors401810 ! Node: Statements406542 ! Node: Basic Statements407062 ! Node: Blocks411569 ! Node: Statement Sequences412973 ! Node: Empty Statements413306 ! Node: Jumps413880 ! Node: Cleanups414533 ! Node: OpenMP416300 ! Node: Functions422144 ! Node: Function Basics422615 ! Node: Function Properties426299 ! Node: Language-dependent trees429080 ! Node: C and C++ Trees429967 ! Node: Types for C++432871 ! Node: Namespaces437841 ! Node: Classes440947 ! Node: Functions for C++446024 ! Node: Statements for C++452275 ! Node: C++ Expressions461048 ! Node: Java Trees462553 ! Node: GIMPLE462666 ! Node: Tuple representation466290 ! Node: GIMPLE instruction set474594 ! Node: GIMPLE Exception Handling476210 ! Node: Temporaries478122 ! Ref: Temporaries-Footnote-1479440 ! Node: Operands479505 ! Node: Compound Expressions480266 ! Node: Compound Lvalues480500 ! Node: Conditional Expressions481262 ! Node: Logical Operators481921 ! Node: Manipulating GIMPLE statements488779 ! Node: Tuple specific accessors494715 ! Node: 'GIMPLE_ASM'495534 ! Node: 'GIMPLE_ASSIGN'498051 ! Node: 'GIMPLE_BIND'502157 ! Node: 'GIMPLE_CALL'503965 ! Node: 'GIMPLE_CATCH'508236 ! Node: 'GIMPLE_COND'509380 ! Node: 'GIMPLE_DEBUG'512168 ! Node: 'GIMPLE_EH_FILTER'515546 ! Node: 'GIMPLE_LABEL'517034 ! Node: 'GIMPLE_NOP'518009 ! Node: 'GIMPLE_OMP_ATOMIC_LOAD'518378 ! Node: 'GIMPLE_OMP_ATOMIC_STORE'519288 ! Node: 'GIMPLE_OMP_CONTINUE'519928 ! Node: 'GIMPLE_OMP_CRITICAL'521278 ! Node: 'GIMPLE_OMP_FOR'522216 ! Node: 'GIMPLE_OMP_MASTER'525731 ! Node: 'GIMPLE_OMP_ORDERED'526115 ! Node: 'GIMPLE_OMP_PARALLEL'526515 ! Node: 'GIMPLE_OMP_RETURN'529148 ! Node: 'GIMPLE_OMP_SECTION'529799 ! Node: 'GIMPLE_OMP_SECTIONS'530465 ! Node: 'GIMPLE_OMP_SINGLE'532072 ! Node: 'GIMPLE_PHI'533010 ! Node: 'GIMPLE_RESX'534297 ! Node: 'GIMPLE_RETURN'535016 ! Node: 'GIMPLE_SWITCH'535584 ! Node: 'GIMPLE_TRY'537386 ! Node: 'GIMPLE_WITH_CLEANUP_EXPR'539177 ! Node: GIMPLE sequences540060 ! Node: Sequence iterators543266 ! Node: Adding a new GIMPLE statement code551721 ! Node: Statement and operand traversals552997 ! Node: Tree SSA555589 ! Node: Annotations557377 ! Node: SSA Operands557782 ! Node: SSA571856 ! Node: Alias analysis582888 ! Node: Memory model586662 ! Node: RTL588021 ! Node: RTL Objects590209 ! Node: RTL Classes594083 ! Node: Accessors599080 ! Node: Special Accessors601474 ! Node: Flags607261 ! Node: Machine Modes622025 ! Node: Constants635313 ! Node: Regs and Memory642041 ! Node: Arithmetic659929 ! Node: Comparisons670011 ! Node: Bit-Fields674303 ! Node: Vector Operations675855 ! Node: Conversions677736 ! Node: RTL Declarations682234 ! Node: Side Effects683055 ! Node: Incdec700065 ! Node: Assembler703401 ! Node: Debug Information704946 ! Node: Insns706143 ! Node: Calls732564 ! Node: Sharing735157 ! Node: Reading RTL738268 ! Node: Control Flow739259 ! Node: Basic Blocks741028 ! Node: Edges746317 ! Node: Profile information754946 ! Node: Maintaining the CFG759630 ! Node: Liveness information765491 ! Node: Loop Analysis and Representation767617 ! Node: Loop representation768727 ! Node: Loop querying776290 ! Node: Loop manipulation779106 ! Node: LCSSA781467 ! Node: Scalar evolutions783536 ! Node: loop-iv786780 ! Node: Number of iterations788702 ! Node: Dependency analysis791508 ! Node: Omega797872 ! Node: Machine Desc799448 ! Node: Overview802011 ! Node: Patterns804051 ! Node: Example807489 ! Node: RTL Template808923 ! Node: Output Template819578 ! Node: Output Statement823541 ! Node: Predicates827880 ! Node: Machine-Independent Predicates830798 ! Node: Defining Predicates835742 ! Node: Constraints841705 ! Node: Simple Constraints843187 ! Node: Multi-Alternative856027 ! Node: Class Preferences858868 ! Node: Modifiers859760 ! Node: Machine Constraints864006 ! Node: Disable Insn Alternatives923277 ! Node: Define Constraints926181 ! Node: C Constraint Interface932966 ! Node: Standard Names936618 ! Ref: shift patterns959766 ! Ref: prologue instruction pattern1004523 ! Ref: window_save instruction pattern1005016 ! Ref: epilogue instruction pattern1005293 ! Node: Pattern Ordering1022879 ! Node: Dependent Patterns1024115 ! Node: Jump Patterns1025735 ! Ref: Jump Patterns-Footnote-11027882 ! Node: Looping Patterns1027930 ! Node: Insn Canonicalizations1032659 ! Node: Expander Definitions1037244 ! Node: Insn Splitting1045458 ! Node: Including Patterns1055061 ! Node: Peephole Definitions1056845 ! Node: define_peephole1058098 ! Node: define_peephole21064428 ! Node: Insn Attributes1067494 ! Node: Defining Attributes1068676 ! Ref: define_enum_attr1072169 ! Node: Expressions1073205 ! Node: Tagging Insns1079955 ! Node: Attr Example1084308 ! Node: Insn Lengths1086681 ! Node: Constant Attributes1089758 ! Node: Mnemonic Attribute1090934 ! Node: Delay Slots1092453 ! Node: Processor pipeline description1095676 ! Ref: Processor pipeline description-Footnote-11114494 ! Node: Conditional Execution1114818 ! Node: Define Subst1118301 ! Node: Define Subst Example1120337 ! Node: Define Subst Pattern Matching1123331 ! Node: Define Subst Output Template1124557 ! Node: Constant Definitions1126627 ! Ref: define_enum1130409 ! Node: Iterators1130897 ! Node: Mode Iterators1131475 ! Node: Defining Mode Iterators1132453 ! Node: Substitutions1133947 ! Node: Examples1136189 ! Node: Code Iterators1137637 ! Node: Int Iterators1139916 ! Node: Subst Iterators1142362 ! Node: Target Macros1144054 ! Node: Target Structure1147142 ! Node: Driver1149258 ! Node: Run-time Target1168070 ! Node: Per-Function Data1177781 ! Node: Storage Layout1180545 ! Node: Type Layout1206797 ! Node: Registers1222120 ! Node: Register Basics1223094 ! Node: Allocation Order1228602 ! Node: Values in Registers1231048 ! Node: Leaf Functions1238526 ! Node: Stack Registers1241385 ! Node: Register Classes1242657 ! Node: Old Constraints1273601 ! Node: Stack and Calling1280741 ! Node: Frame Layout1281275 ! Node: Exception Handling1292151 ! Node: Stack Checking1298363 ! Node: Frame Registers1303177 ! Node: Elimination1311436 ! Node: Stack Arguments1315666 ! Node: Register Arguments1322850 ! Node: Scalar Return1342929 ! Node: Aggregate Return1349016 ! Node: Caller Saves1353227 ! Node: Function Entry1354404 ! Node: Profiling1365498 ! Node: Tail Calls1367197 ! Node: Stack Smashing Protection1369100 ! Node: Varargs1370728 ! Node: Trampolines1377415 ! Node: Library Calls1383458 ! Node: Addressing Modes1388142 ! Node: Anchored Addresses1409110 ! Node: Condition Code1411753 ! Node: CC0 Condition Codes1414080 ! Node: MODE_CC Condition Codes1417326 ! Node: Costs1424149 ! Node: Scheduling1440611 ! Node: Sections1460569 ! Node: PIC1476267 ! Node: Assembler Format1478326 ! Node: File Framework1479464 ! Ref: TARGET_HAVE_SWITCHABLE_BSS_SECTIONS1486396 ! Node: Data Output1489666 ! Node: Uninitialized Data1497435 ! Node: Label Output1502446 ! Node: Initialization1525402 ! Node: Macros for Initialization1531363 ! Node: Instruction Output1538082 ! Node: Dispatch Tables1548705 ! Node: Exception Region Output1553089 ! Node: Alignment Output1559767 ! Node: Debugging Info1564346 ! Node: All Debuggers1565016 ! Node: DBX Options1567871 ! Node: DBX Hooks1573309 ! Node: File Names and DBX1574618 ! Node: SDB and DWARF1576730 ! Node: VMS Debug1582802 ! Node: Floating Point1583389 ! Node: Mode Switching1587865 ! Node: Target Attributes1591861 ! Node: Emulated TLS1600319 ! Node: MIPS Coprocessors1603709 ! Node: PCH Target1605006 ! Node: C++ ABI1606848 ! Node: Named Address Spaces1611642 ! Node: Misc1616576 ! Ref: TARGET_SHIFT_TRUNCATION_MASK1623318 ! Node: Host Config1671820 ! Node: Host Common1672888 ! Node: Filesystem1675262 ! Node: Host Misc1679377 ! Node: Fragments1681826 ! Node: Target Fragment1683021 ! Node: Host Fragment1693649 ! Node: Collect21693889 ! Node: Header Dirs1696525 ! Node: Type Information1697948 ! Node: GTY Options1701224 ! Node: Inheritance and GTY1715744 ! Ref: Inheritance and GTY-Footnote-11717307 ! Node: User GC1717577 ! Node: GGC Roots1721316 ! Node: Files1722029 ! Node: Invoking the garbage collector1724736 ! Node: Troubleshooting1726241 ! Node: Plugins1727316 ! Node: Plugins loading1728434 ! Node: Plugin API1729304 ! Node: Plugins pass1736967 ! Node: Plugins GC1738938 ! Node: Plugins description1740603 ! Node: Plugins attr1741139 ! Node: Plugins recording1743413 ! Node: Plugins gate1744263 ! Node: Plugins tracking1744854 ! Node: Plugins building1745442 ! Node: LTO1747232 ! Node: LTO Overview1748093 ! Node: LTO object file layout1753925 ! Node: IPA1758555 ! Node: WHOPR1767520 ! Node: Internal flags1772209 ! Node: Funding1773620 ! Node: GNU Project1776104 ! Node: Copying1776753 ! Node: GNU Free Documentation License1814265 ! Node: Contributors1839386 ! Node: Option Index1877258 ! Node: Concept Index1878135  End Tag Table --- 50270,50721 ---- * VIRTUAL_STACK_VARS_REGNUM: Regs and Memory. (line 69) * VLIW: Processor pipeline description. (line 6) ! * vlshrM3 instruction pattern: Standard Names. (line 536) * VMS: Filesystem. (line 37) ! * VMS_DEBUGGING_INFO: VMS Debug. (line 9) * VOID_TYPE: Types. (line 6) + * VOIDmode: Machine Modes. (line 193) * volatil: Flags. (line 328) ! * volatil, in insn, call_insn, jump_insn, code_label, jump_table_data, barrier, and note: Flags. (line 44) ! * volatil, in label_ref and reg_label: Flags. (line 65) ! * volatil, in mem, asm_operands, and asm_input: Flags. (line 76) ! * volatil, in reg: Flags. (line 98) ! * volatil, in subreg: Flags. (line 170) ! * volatil, in symbol_ref: Flags. (line 206) * volatile memory references: Flags. (line 329) ! * volatile, in prefetch: Flags. (line 214) * voting between constraint alternatives: Class Preferences. (line 6) ! * vrotlM3 instruction pattern: Standard Names. (line 536) ! * vrotrM3 instruction pattern: Standard Names. (line 536) ! * walk_dominator_tree: SSA. (line 228) * walk_gimple_op: Statement and operand traversals. ! (line 32) * walk_gimple_seq: Statement and operand traversals. ! (line 50) * walk_gimple_stmt: Statement and operand traversals. ! (line 13) ! * WCHAR_TYPE: Type Layout. (line 209) ! * WCHAR_TYPE_SIZE: Type Layout. (line 217) ! * which_alternative: Output Statement. (line 59) * WHILE_BODY: Statements for C++. (line 6) * WHILE_COND: Statements for C++. (line 6) * WHILE_STMT: Statements for C++. (line 6) * whopr: LTO. (line 6) ! * WIDEST_HARDWARE_FP_SIZE: Type Layout. (line 154) ! * window_save instruction pattern: Standard Names. (line 1524) ! * WINT_TYPE: Type Layout. (line 222) ! * word_mode: Machine Modes. (line 359) ! * WORD_REGISTER_OPERATIONS: Misc. (line 54) ! * WORDS_BIG_ENDIAN: Storage Layout. (line 29) ! * WORDS_BIG_ENDIAN, effect on subreg: Regs and Memory. (line 217) * wpa: LTO. (line 6) ! * X in constraint: Simple Constraints. (line 124) ! * x-HOST: Host Fragment. (line 6) ! * XCmode: Machine Modes. (line 200) ! * XCOFF_DEBUGGING_INFO: DBX Options. (line 13) * XEXP: Accessors. (line 6) + * XF_SIZE: Type Layout. (line 138) * XFmode: Machine Modes. (line 82) * XImode: Machine Modes. (line 54) * XINT: Accessors. (line 6) ! * xm-MACHINE.h <1>: Host Misc. (line 6) ! * xm-MACHINE.h: Filesystem. (line 6) ! * xor: Arithmetic. (line 168) ! * xor, canonicalization of: Insn Canonicalizations. ! (line 79) ! * xorM3 instruction pattern: Standard Names. (line 279) * XSTR: Accessors. (line 6) * XVEC: Accessors. (line 41) * XVECEXP: Accessors. (line 48) * XVECLEN: Accessors. (line 44) * XWINT: Accessors. (line 6) * zero_extend: Conversions. (line 28) ! * zero_extendMN2 instruction pattern: Standard Names. (line 932) * zero_extract: Bit-Fields. (line 30) ! * zero_extract, canonicalization of: Insn Canonicalizations. ! (line 88)  Tag Table: ! Node: Top1842 ! Node: Contributing4930 ! Node: Portability5671 ! Node: Interface7459 ! Node: Libgcc10499 ! Node: Integer library routines12340 ! Node: Soft float library routines19182 ! Node: Decimal float library routines31119 ! Node: Fixed-point fractional library routines46876 ! Node: Exception handling routines147274 ! Node: Miscellaneous routines148381 ! Node: Languages150501 ! Node: Source Tree152050 ! Node: Configure Terms152632 ! Node: Top Level155590 ! Node: gcc Directory159051 ! Node: Subdirectories160001 ! Node: Configuration162168 ! Node: Config Fragments162888 ! Node: System Config164117 ! Node: Configuration Files165053 ! Node: Build167878 ! Node: Makefile168290 ! Ref: Makefile-Footnote-1175093 ! Ref: Makefile-Footnote-2175238 ! Node: Library Files175310 ! Node: Headers175872 ! Node: Documentation177955 ! Node: Texinfo Manuals178814 ! Node: Man Page Generation181147 ! Node: Miscellaneous Docs183062 ! Node: Front End184456 ! Node: Front End Directory188149 ! Node: Front End Config189469 ! Node: Front End Makefile192295 ! Node: Back End196077 ! Node: Testsuites199874 ! Node: Test Idioms200805 ! Node: Test Directives204202 ! Node: Directives204729 ! Node: Selectors215039 ! Node: Effective-Target Keywords216397 ! Ref: arm_neon_ok224146 ! Ref: arm_neonv2_ok224304 ! Ref: arm_neon_fp16_ok224476 ! Ref: arm_vfp3_ok224916 ! Node: Add Options235039 ! Node: Require Support236356 ! Node: Final Actions238863 ! Node: Ada Tests244030 ! Node: C Tests245362 ! Node: libgcj Tests249785 ! Node: LTO Testing250912 ! Node: gcov Testing252559 ! Node: profopt Testing255546 ! Node: compat Testing257261 ! Node: Torture Tests261501 ! Node: Options263118 ! Node: Option file format263558 ! Node: Option properties270548 ! Node: Passes283578 ! Node: Parsing pass284468 ! Node: Cilk Plus Transformation288003 ! Node: Gimplification pass291390 ! Node: Pass manager293235 ! Node: Tree SSA passes295080 ! Node: RTL passes316161 ! Node: Optimization info328541 ! Node: Dump setup329359 ! Node: Optimization groups330481 ! Node: Dump files and streams331364 ! Node: Dump output verbosity332555 ! Node: Dump types333606 ! Node: Dump examples335096 ! Node: GENERIC336438 ! Node: Deficiencies338313 ! Node: Tree overview338554 ! Node: Macros and Functions342681 ! Node: Identifiers343506 ! Node: Containers345117 ! Node: Types346274 ! Node: Declarations358370 ! Node: Working with declarations358865 ! Node: Internal structure364471 ! Node: Current structure hierarchy364855 ! Node: Adding new DECL node types366949 ! Node: Attributes371234 ! Node: Expression trees372479 ! Node: Constant expressions374232 ! Node: Storage References378451 ! Node: Unary and Binary Expressions381970 ! Node: Vectors402121 ! Node: Statements406848 ! Node: Basic Statements407368 ! Node: Blocks411875 ! Node: Statement Sequences413279 ! Node: Empty Statements413612 ! Node: Jumps414186 ! Node: Cleanups414839 ! Node: OpenMP416607 ! Node: Functions422446 ! Node: Function Basics422917 ! Node: Function Properties426602 ! Node: Language-dependent trees429384 ! Node: C and C++ Trees430270 ! Node: Types for C++433174 ! Node: Namespaces438152 ! Node: Classes441259 ! Node: Functions for C++446337 ! Node: Statements for C++452590 ! Node: C++ Expressions461360 ! Node: Java Trees462861 ! Node: GIMPLE462974 ! Node: Tuple representation466595 ! Node: GIMPLE instruction set474871 ! Node: GIMPLE Exception Handling476539 ! Node: Temporaries478453 ! Ref: Temporaries-Footnote-1479768 ! Node: Operands479831 ! Node: Compound Expressions480593 ! Node: Compound Lvalues480827 ! Node: Conditional Expressions481589 ! Node: Logical Operators482247 ! Node: Manipulating GIMPLE statements489106 ! Node: Tuple specific accessors495040 ! Node: `GIMPLE_ASM'495859 ! Node: `GIMPLE_ASSIGN'498376 ! Node: `GIMPLE_BIND'502482 ! Node: `GIMPLE_CALL'504289 ! Node: `GIMPLE_CATCH'508559 ! Node: `GIMPLE_COND'509703 ! Node: `GIMPLE_DEBUG'512491 ! Node: `GIMPLE_EH_FILTER'515874 ! Node: `GIMPLE_LABEL'517362 ! Node: `GIMPLE_NOP'518337 ! Node: `GIMPLE_OMP_ATOMIC_LOAD'518706 ! Node: `GIMPLE_OMP_ATOMIC_STORE'519616 ! Node: `GIMPLE_OMP_CONTINUE'520255 ! Node: `GIMPLE_OMP_CRITICAL'521605 ! Node: `GIMPLE_OMP_FOR'522542 ! Node: `GIMPLE_OMP_MASTER'526057 ! Node: `GIMPLE_OMP_ORDERED'526440 ! Node: `GIMPLE_OMP_PARALLEL'526840 ! Node: `GIMPLE_OMP_RETURN'529473 ! Node: `GIMPLE_OMP_SECTION'530123 ! Node: `GIMPLE_OMP_SECTIONS'530789 ! Node: `GIMPLE_OMP_SINGLE'532395 ! Node: `GIMPLE_PHI'533332 ! Node: `GIMPLE_RESX'534618 ! Node: `GIMPLE_RETURN'535337 ! Node: `GIMPLE_SWITCH'535905 ! Node: `GIMPLE_TRY'537705 ! Node: `GIMPLE_WITH_CLEANUP_EXPR'539495 ! Node: GIMPLE sequences540378 ! Node: Sequence iterators543584 ! Node: Adding a new GIMPLE statement code552040 ! Node: Statement and operand traversals553316 ! Node: Tree SSA555916 ! Node: Annotations557702 ! Node: SSA Operands558107 ! Node: SSA572187 ! Node: Alias analysis583219 ! Node: Memory model586999 ! Node: RTL588362 ! Node: RTL Objects590550 ! Node: RTL Classes594424 ! Node: Accessors599422 ! Node: Special Accessors601816 ! Node: Flags607586 ! Node: Machine Modes622348 ! Node: Constants635640 ! Node: Regs and Memory642370 ! Node: Arithmetic660271 ! Node: Comparisons670361 ! Node: Bit-Fields674653 ! Node: Vector Operations676205 ! Node: Conversions678087 ! Node: RTL Declarations682585 ! Node: Side Effects683406 ! Node: Incdec700421 ! Node: Assembler703756 ! Node: Debug Information705301 ! Node: Insns706499 ! Node: Calls732933 ! Node: Sharing735526 ! Node: Reading RTL738636 ! Node: Control Flow739628 ! Node: Basic Blocks741396 ! Node: Edges746687 ! Node: Profile information755319 ! Node: Maintaining the CFG760003 ! Node: Liveness information765865 ! Node: Loop Analysis and Representation767991 ! Node: Loop representation769101 ! Node: Loop querying776666 ! Node: Loop manipulation779499 ! Node: LCSSA781867 ! Node: Scalar evolutions783939 ! Node: loop-iv787183 ! Node: Number of iterations789109 ! Node: Dependency analysis791918 ! Node: Omega798285 ! Node: Machine Desc799861 ! Node: Overview802424 ! Node: Patterns804465 ! Node: Example807903 ! Node: RTL Template809338 ! Node: Output Template819993 ! Node: Output Statement823958 ! Node: Predicates828297 ! Node: Machine-Independent Predicates831215 ! Node: Defining Predicates836160 ! Node: Constraints842125 ! Node: Simple Constraints843607 ! Node: Multi-Alternative856463 ! Node: Class Preferences859304 ! Node: Modifiers860196 ! Node: Machine Constraints864442 ! Node: Disable Insn Alternatives923109 ! Node: Define Constraints926011 ! Node: C Constraint Interface932798 ! Node: Standard Names936439 ! Ref: shift patterns959593 ! Ref: prologue instruction pattern1004378 ! Ref: window_save instruction pattern1004871 ! Ref: epilogue instruction pattern1005146 ! Node: Pattern Ordering1022717 ! Node: Dependent Patterns1023953 ! Node: Jump Patterns1025573 ! Ref: Jump Patterns-Footnote-11027717 ! Node: Looping Patterns1027763 ! Node: Insn Canonicalizations1032491 ! Node: Expander Definitions1037082 ! Node: Insn Splitting1045294 ! Node: Including Patterns1054896 ! Node: Peephole Definitions1056676 ! Node: define_peephole1057929 ! Node: define_peephole21064260 ! Node: Insn Attributes1067326 ! Node: Defining Attributes1068508 ! Ref: define_enum_attr1071996 ! Node: Expressions1073031 ! Node: Tagging Insns1079780 ! Node: Attr Example1084133 ! Node: Insn Lengths1086507 ! Node: Constant Attributes1089584 ! Node: Mnemonic Attribute1090760 ! Node: Delay Slots1092279 ! Node: Processor pipeline description1095502 ! Ref: Processor pipeline description-Footnote-11114315 ! Node: Conditional Execution1114637 ! Node: Define Subst1118117 ! Node: Define Subst Example1120151 ! Node: Define Subst Pattern Matching1123145 ! Node: Define Subst Output Template1124370 ! Node: Constant Definitions1126440 ! Ref: define_enum1130222 ! Node: Iterators1130710 ! Node: Mode Iterators1131288 ! Node: Defining Mode Iterators1132266 ! Node: Substitutions1133760 ! Node: Examples1136001 ! Node: Code Iterators1137449 ! Node: Int Iterators1139728 ! Node: Subst Iterators1142171 ! Node: Target Macros1143863 ! Node: Target Structure1146951 ! Node: Driver1149066 ! Node: Run-time Target1167876 ! Node: Per-Function Data1177574 ! Node: Storage Layout1180339 ! Node: Type Layout1206611 ! Node: Registers1221938 ! Node: Register Basics1222912 ! Node: Allocation Order1228417 ! Node: Values in Registers1230863 ! Node: Leaf Functions1238352 ! Node: Stack Registers1241210 ! Node: Register Classes1242482 ! Node: Old Constraints1273474 ! Node: Stack and Calling1280626 ! Node: Frame Layout1281160 ! Node: Exception Handling1292040 ! Node: Stack Checking1298262 ! Node: Frame Registers1303075 ! Node: Elimination1311334 ! Node: Stack Arguments1315563 ! Node: Register Arguments1322746 ! Node: Scalar Return1342838 ! Node: Aggregate Return1348924 ! Node: Caller Saves1353134 ! Node: Function Entry1354312 ! Node: Profiling1365416 ! Node: Tail Calls1367115 ! Node: Stack Smashing Protection1369018 ! Node: Varargs1370646 ! Node: Trampolines1377342 ! Node: Library Calls1383385 ! Node: Addressing Modes1388069 ! Node: Anchored Addresses1409056 ! Node: Condition Code1411705 ! Node: CC0 Condition Codes1414032 ! Node: MODE_CC Condition Codes1417278 ! Node: Costs1424098 ! Node: Scheduling1440567 ! Node: Sections1460513 ! Node: PIC1476211 ! Node: Assembler Format1478271 ! Node: File Framework1479409 ! Ref: TARGET_HAVE_SWITCHABLE_BSS_SECTIONS1486350 ! Node: Data Output1489615 ! Node: Uninitialized Data1497391 ! Node: Label Output1502402 ! Node: Initialization1525370 ! Node: Macros for Initialization1531332 ! Node: Instruction Output1538055 ! Node: Dispatch Tables1548684 ! Node: Exception Region Output1553068 ! Node: Alignment Output1559751 ! Node: Debugging Info1564329 ! Node: All Debuggers1564999 ! Node: DBX Options1567854 ! Node: DBX Hooks1573303 ! Node: File Names and DBX1574612 ! Node: SDB and DWARF1576724 ! Node: VMS Debug1582796 ! Node: Floating Point1583383 ! Node: Mode Switching1587859 ! Node: Target Attributes1591855 ! Node: Emulated TLS1600313 ! Node: MIPS Coprocessors1603703 ! Node: PCH Target1605000 ! Node: C++ ABI1606842 ! Node: Named Address Spaces1611634 ! Node: Misc1616573 ! Ref: TARGET_SHIFT_TRUNCATION_MASK1623315 ! Node: Host Config1671829 ! Node: Host Common1672897 ! Node: Filesystem1675276 ! Node: Host Misc1679391 ! Node: Fragments1681840 ! Node: Target Fragment1683035 ! Node: Host Fragment1693668 ! Node: Collect21693908 ! Node: Header Dirs1696544 ! Node: Type Information1697967 ! Node: GTY Options1701247 ! Node: Inheritance and GTY1715754 ! Ref: Inheritance and GTY-Footnote-11717317 ! Node: User GC1717585 ! Node: GGC Roots1721320 ! Node: Files1722036 ! Node: Invoking the garbage collector1724743 ! Node: Troubleshooting1726246 ! Node: Plugins1727322 ! Node: Plugins loading1728440 ! Node: Plugin API1729309 ! Node: Plugins pass1736973 ! Node: Plugins GC1738942 ! Node: Plugins description1740602 ! Node: Plugins attr1741137 ! Node: Plugins recording1743408 ! Node: Plugins gate1744258 ! Node: Plugins tracking1744849 ! Node: Plugins building1745437 ! Node: LTO1747226 ! Node: LTO Overview1748087 ! Node: LTO object file layout1753919 ! Node: IPA1758551 ! Node: WHOPR1767516 ! Node: Internal flags1772207 ! Node: Funding1773619 ! Node: GNU Project1776102 ! Node: Copying1776751 ! Node: GNU Free Documentation License1814282 ! Node: Contributors1839422 ! Node: Option Index1877297 ! Node: Concept Index1878174  End Tag Table diff -Nrcpad gcc-4.9.3/gcc/doc/gcj-dbtool.1 gcc-4.9.4/gcc/doc/gcj-dbtool.1 *** gcc-4.9.3/gcc/doc/gcj-dbtool.1 Fri Jun 26 18:37:25 2015 --- gcc-4.9.4/gcc/doc/gcj-dbtool.1 Wed Aug 3 06:01:09 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GCJ-DBTOOL 1" ! .TH GCJ-DBTOOL 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GCJ-DBTOOL 1" ! .TH GCJ-DBTOOL 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.9.3/gcc/doc/gcj.1 gcc-4.9.4/gcc/doc/gcj.1 *** gcc-4.9.3/gcc/doc/gcj.1 Fri Jun 26 18:37:24 2015 --- gcc-4.9.4/gcc/doc/gcj.1 Wed Aug 3 06:01:09 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GCJ 1" ! .TH GCJ 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GCJ 1" ! .TH GCJ 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** of the same options as gcc. This manu *** 156,162 **** options specific to \fBgcj\fR. .SH "OPTIONS" .IX Header "OPTIONS" ! .SS "Input and output files" .IX Subsection "Input and output files" A \fBgcj\fR command is like a \fBgcc\fR command, in that it consists of a number of options and file names. The following kinds --- 155,161 ---- options specific to \fBgcj\fR. .SH "OPTIONS" .IX Header "OPTIONS" ! .Sh "Input and output files" .IX Subsection "Input and output files" A \fBgcj\fR command is like a \fBgcc\fR command, in that it consists of a number of options and file names. The following kinds *************** but not when using \f(CW\*(C`\-C\*(C'\fR *** 204,210 **** (This is an extension beyond the what plain \fBgcc\fR allows.) (If more than one input file is specified, all must currently be \f(CW\*(C`.java\*(C'\fR files, though we hope to fix this.) ! .SS "Input Options" .IX Subsection "Input Options" \&\fBgcj\fR has options to control where it looks to find files it needs. For instance, \fBgcj\fR might need to load a class that is referenced --- 203,209 ---- (This is an extension beyond the what plain \fBgcc\fR allows.) (If more than one input file is specified, all must currently be \f(CW\*(C`.java\*(C'\fR files, though we hope to fix this.) ! .Sh "Input Options" .IX Subsection "Input Options" \&\fBgcj\fR has options to control where it looks to find files it needs. For instance, \fBgcj\fR might need to load a class that is referenced *************** issue an error if it isn't found. *** 278,284 **** .IX Item "-fsource=VERSION" This option is used to choose the source version accepted by \&\fBgcj\fR. The default is \fB1.5\fR. ! .SS "Encodings" .IX Subsection "Encodings" The Java programming language uses Unicode throughout. In an effort to integrate well with other locales, \fBgcj\fR allows \fI.java\fR files --- 277,283 ---- .IX Item "-fsource=VERSION" This option is used to choose the source version accepted by \&\fBgcj\fR. The default is \fB1.5\fR. ! .Sh "Encodings" .IX Subsection "Encodings" The Java programming language uses Unicode throughout. In an effort to integrate well with other locales, \fBgcj\fR allows \fI.java\fR files *************** to platform (since they are not standard *** 301,307 **** \&\fBgcj\fR implements the encoding named \fB\s-1UTF\-8\s0\fR internally, so if you choose to use this for your source files you can be assured that it will work on every host. ! .SS "Warnings" .IX Subsection "Warnings" \&\fBgcj\fR implements several warnings. As with other generic \&\fBgcc\fR warnings, if an option of the form \f(CW\*(C`\-Wfoo\*(C'\fR enables a --- 300,306 ---- \&\fBgcj\fR implements the encoding named \fB\s-1UTF\-8\s0\fR internally, so if you choose to use this for your source files you can be assured that it will work on every host. ! .Sh "Warnings" .IX Subsection "Warnings" \&\fBgcj\fR implements several warnings. As with other generic \&\fBgcc\fR warnings, if an option of the form \f(CW\*(C`\-Wfoo\*(C'\fR enables a *************** This is the same as \fBgcc\fR's \f(CW\*( *** 331,337 **** .IX Item "-Wall" This is the same as \f(CW\*(C`\-Wredundant\-modifiers \-Wextraneous\-semicolon \&\-Wunused\*(C'\fR. ! .SS "Linking" .IX Subsection "Linking" To turn a Java application into an executable program, you need to link it with the needed libraries, just as for C or \*(C+. --- 330,336 ---- .IX Item "-Wall" This is the same as \f(CW\*(C`\-Wredundant\-modifiers \-Wextraneous\-semicolon \&\-Wunused\*(C'\fR. ! .Sh "Linking" .IX Subsection "Linking" To turn a Java application into an executable program, you need to link it with the needed libraries, just as for C or \*(C+. *************** link time, it can omit the referred to c *** 392,398 **** runtime. Caution must be used when using this option. For more details see: <\fBhttp://gcc.gnu.org/wiki/Statically%20linking%20libgcj\fR> ! .SS "Code Generation" .IX Subsection "Code Generation" In addition to the many \fBgcc\fR options controlling code generation, \&\fBgcj\fR has several options specific to itself. --- 391,397 ---- runtime. Caution must be used when using this option. For more details see: <\fBhttp://gcc.gnu.org/wiki/Statically%20linking%20libgcj\fR> ! .Sh "Code Generation" .IX Subsection "Code Generation" In addition to the many \fBgcc\fR options controlling code generation, \&\fBgcj\fR has several options specific to itself. *************** It is safe to use this option if you are *** 440,448 **** .IP "\fB\-fjni\fR" 4 .IX Item "-fjni" With \fBgcj\fR there are two options for writing native methods: \s-1CNI\s0 ! and \s-1JNI. \s0 By default \fBgcj\fR assumes you are using \s-1CNI. \s0 If you are compiling a class with native methods, and these methods are implemented ! using \s-1JNI,\s0 then you must use \f(CW\*(C`\-fjni\*(C'\fR. This option causes \&\fBgcj\fR to generate stubs which will invoke the underlying \s-1JNI\s0 methods. .IP "\fB\-fno\-assert\fR" 4 --- 439,447 ---- .IP "\fB\-fjni\fR" 4 .IX Item "-fjni" With \fBgcj\fR there are two options for writing native methods: \s-1CNI\s0 ! and \s-1JNI\s0. By default \fBgcj\fR assumes you are using \s-1CNI\s0. If you are compiling a class with native methods, and these methods are implemented ! using \s-1JNI\s0, then you must use \f(CW\*(C`\-fjni\*(C'\fR. This option causes \&\fBgcj\fR to generate stubs which will invoke the underlying \s-1JNI\s0 methods. .IP "\fB\-fno\-assert\fR" 4 *************** So this flag isn't very useful yet, exce *** 479,485 **** \&\f(CW\*(C`\-\-disable\-assertions\*(C'\fR. .IP "\fB\-findirect\-dispatch\fR" 4 .IX Item "-findirect-dispatch" ! \&\fBgcj\fR has a special binary compatibility \s-1ABI,\s0 which is enabled by the \f(CW\*(C`\-findirect\-dispatch\*(C'\fR option. In this mode, the code generated by \fBgcj\fR honors the binary compatibility guarantees in the Java Language Specification, and the resulting object files do --- 478,484 ---- \&\f(CW\*(C`\-\-disable\-assertions\*(C'\fR. .IP "\fB\-findirect\-dispatch\fR" 4 .IX Item "-findirect-dispatch" ! \&\fBgcj\fR has a special binary compatibility \s-1ABI\s0, which is enabled by the \f(CW\*(C`\-findirect\-dispatch\*(C'\fR option. In this mode, the code generated by \fBgcj\fR honors the binary compatibility guarantees in the Java Language Specification, and the resulting object files do *************** interpreted and compiled code. *** 490,499 **** Note that, at present, \f(CW\*(C`\-findirect\-dispatch\*(C'\fR can only be used when compiling \fI.class\fR files. It will not work when compiling from source. \s-1CNI\s0 also does not yet work with the binary compatibility ! \&\s-1ABI. \s0 These restrictions will be lifted in some future release. .Sp ! However, if you compile \s-1CNI\s0 code with the standard \s-1ABI,\s0 you can call ! it from code built with the binary compatibility \s-1ABI.\s0 .IP "\fB\-fbootstrap\-classes\fR" 4 .IX Item "-fbootstrap-classes" This option can be use to tell \f(CW\*(C`libgcj\*(C'\fR that the compiled classes --- 489,498 ---- Note that, at present, \f(CW\*(C`\-findirect\-dispatch\*(C'\fR can only be used when compiling \fI.class\fR files. It will not work when compiling from source. \s-1CNI\s0 also does not yet work with the binary compatibility ! \&\s-1ABI\s0. These restrictions will be lifted in some future release. .Sp ! However, if you compile \s-1CNI\s0 code with the standard \s-1ABI\s0, you can call ! it from code built with the binary compatibility \s-1ABI\s0. .IP "\fB\-fbootstrap\-classes\fR" 4 .IX Item "-fbootstrap-classes" This option can be use to tell \f(CW\*(C`libgcj\*(C'\fR that the compiled classes *************** the ability to use certain reflection ca *** 512,524 **** Java runtime environment. When set all meta-data except for that which is needed to obtain correct runtime semantics is eliminated. .Sp ! For code that does not use reflection (i.e. serialization, \s-1RMI, CORBA\s0 or call methods in the \f(CW\*(C`java.lang.reflect\*(C'\fR package), \&\f(CW\*(C`\-freduced\-reflection\*(C'\fR will result in proper operation with a savings in executable code size. .Sp ! \&\s-1JNI \s0(\f(CW\*(C`\-fjni\*(C'\fR) and the binary compatibility \s-1ABI ! \&\s0(\f(CW\*(C`\-findirect\-dispatch\*(C'\fR) do not work properly without full reflection meta-data. Because of this, it is an error to use these options with \f(CW\*(C`\-freduced\-reflection\*(C'\fR. .Sp --- 511,523 ---- Java runtime environment. When set all meta-data except for that which is needed to obtain correct runtime semantics is eliminated. .Sp ! For code that does not use reflection (i.e. serialization, \s-1RMI\s0, \s-1CORBA\s0 or call methods in the \f(CW\*(C`java.lang.reflect\*(C'\fR package), \&\f(CW\*(C`\-freduced\-reflection\*(C'\fR will result in proper operation with a savings in executable code size. .Sp ! \&\s-1JNI\s0 (\f(CW\*(C`\-fjni\*(C'\fR) and the binary compatibility \s-1ABI\s0 ! (\f(CW\*(C`\-findirect\-dispatch\*(C'\fR) do not work properly without full reflection meta-data. Because of this, it is an error to use these options with \f(CW\*(C`\-freduced\-reflection\*(C'\fR. .Sp *************** with \f(CW\*(C`\-freduced\-reflection\*( *** 526,534 **** a \f(CW\*(C`SecurityManager\*(C'\fR may not work properly. Also calling \&\f(CW\*(C`Class.forName()\*(C'\fR may fail if the calling method has no reflection meta-data. ! .SS "Configure-time Options" .IX Subsection "Configure-time Options" ! Some \fBgcj\fR code generations options affect the resulting \s-1ABI,\s0 and so can only be meaningfully given when \f(CW\*(C`libgcj\*(C'\fR, the runtime package, is configured. \f(CW\*(C`libgcj\*(C'\fR puts the appropriate options from this group into a \fBspec\fR file which is read by \fBgcj\fR. These --- 525,533 ---- a \f(CW\*(C`SecurityManager\*(C'\fR may not work properly. Also calling \&\f(CW\*(C`Class.forName()\*(C'\fR may fail if the calling method has no reflection meta-data. ! .Sh "Configure-time Options" .IX Subsection "Configure-time Options" ! Some \fBgcj\fR code generations options affect the resulting \s-1ABI\s0, and so can only be meaningfully given when \f(CW\*(C`libgcj\*(C'\fR, the runtime package, is configured. \f(CW\*(C`libgcj\*(C'\fR puts the appropriate options from this group into a \fBspec\fR file which is read by \fBgcj\fR. These diff -Nrcpad gcc-4.9.3/gcc/doc/gcj.info gcc-4.9.4/gcc/doc/gcj.info *** gcc-4.9.3/gcc/doc/gcj.info Fri Jun 26 18:49:06 2015 --- gcc-4.9.4/gcc/doc/gcj.info Wed Aug 3 06:14:13 2016 *************** *** 1,4 **** ! This is gcj.info, produced by makeinfo version 5.2 from gcj.texi. Copyright (C) 2001-2014 Free Software Foundation, Inc. --- 1,5 ---- ! This is doc/gcj.info, produced by makeinfo version 4.12 from ! /space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/java/gcj.texi. Copyright (C) 2001-2014 Free Software Foundation, Inc. *************** is included in the section entitled "GNU *** 16,23 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Gcj: (gcj). Ahead-of-time compiler for the Java language --- 17,25 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * Gcj: (gcj). Ahead-of-time compiler for the Java language *************** START-INFO-DIR-ENTRY *** 43,50 **** into one system-wide database. END-INFO-DIR-ENTRY - - Copyright (C) 2001-2014 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document --- 45,50 ---- *************** is included in the section entitled "GNU *** 61,68 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: gcj.info, Node: Top, Next: Copying, Up: (dir) --- 61,68 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development.  File: gcj.info, Node: Top, Next: Copying, Up: (dir) *************** File: gcj.info, Node: Top, Next: Copyi *** 70,85 **** Introduction ************ ! This manual describes how to use 'gcj', the GNU compiler for the Java ! programming language. 'gcj' can generate both '.class' files and object ! files, and it can read both Java source code and '.class' files. * Menu: * Copying:: The GNU General Public License * GNU Free Documentation License:: How you can share and copy this manual ! * Invoking gcj:: Compiler options supported by 'gcj' * Compatibility:: Compatibility between gcj and other tools for Java * Invoking jcf-dump:: Print information about class files * Invoking gij:: Interpreting Java bytecodes --- 70,85 ---- Introduction ************ ! This manual describes how to use `gcj', the GNU compiler for the Java ! programming language. `gcj' can generate both `.class' files and ! object files, and it can read both Java source code and `.class' files. * Menu: * Copying:: The GNU General Public License * GNU Free Documentation License:: How you can share and copy this manual ! * Invoking gcj:: Compiler options supported by `gcj' * Compatibility:: Compatibility between gcj and other tools for Java * Invoking jcf-dump:: Print information about class files * Invoking gij:: Interpreting Java bytecodes *************** GNU General Public License *** 103,109 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 103,109 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** want it, that you can change the softwar *** 131,139 **** free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same --- 131,139 ---- free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same *************** changed, so that their problems will not *** 152,166 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 152,167 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 197,204 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 198,205 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 212,219 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 213,220 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 221,228 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 222,229 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 233,242 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 234,243 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 244,258 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 245,259 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 269,290 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 270,291 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 301,308 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 302,309 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 372,379 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 373,380 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 383,413 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 384,415 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. + A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 415,422 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 417,424 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 447,457 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 449,459 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 481,488 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 483,490 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 492,499 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 494,502 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 512,521 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 515,525 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 531,543 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 535,547 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 549,558 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 553,562 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 566,572 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 570,576 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 580,600 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 584,604 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 614,628 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 618,632 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 652,686 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 656,691 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 691,711 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 696,717 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 717,740 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 723,746 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 742,748 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 748,754 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 751,756 **** --- 757,763 ---- connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. + END OF TERMS AND CONDITIONS =========================== *************** state the exclusion of warranty; and eac *** 781,787 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. --- 788,794 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. *************** mail. *** 790,800 **** notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 797,807 ---- notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 802,815 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gcj.info, Node: GNU Free Documentation License, Next: Invoking gcj, Prev: Copying, Up: Top --- 809,822 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gcj.info, Node: GNU Free Documentation License, Next: Invoking gcj, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 820,826 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 827,833 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 845,865 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 852,872 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 877,888 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 884,895 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 893,919 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 900,926 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 951,958 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 958,965 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 966,976 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 973,984 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 978,1016 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 986,1025 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 1040,1069 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 1049,1079 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 1076,1086 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 1086,1096 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 1089,1103 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 1099,1113 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 1107,1114 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 1117,1124 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 1135,1154 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 1145,1164 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 1193,1200 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 1203,1210 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 1206,1238 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 1216,1248 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 1262,1267 **** --- 1272,1278 ---- site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. + ADDENDUM: How to use this License for your documents ==================================================== *************** notices just after the title page: *** 1278,1284 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 1289,1295 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 1289,1297 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gcj.info, Node: Invoking gcj, Next: Compatibility, Prev: GNU Free Documentation License, Up: Top --- 1300,1308 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gcj.info, Node: Invoking gcj, Next: Compatibility, Prev: GNU Free Documentation License, Up: Top *************** File: gcj.info, Node: Invoking gcj, Ne *** 1299,1307 **** 1 Invoking gcj ************** ! As 'gcj' is just another front end to 'gcc', it supports many of the same options as gcc. *Note Option Summary: (gcc)Option Summary. This ! manual only documents the options specific to 'gcj'. * Menu: --- 1310,1318 ---- 1 Invoking gcj ************** ! As `gcj' is just another front end to `gcc', it supports many of the same options as gcc. *Note Option Summary: (gcc)Option Summary. This ! manual only documents the options specific to `gcj'. * Menu: *************** File: gcj.info, Node: Input and output *** 1319,1355 **** 1.1 Input and output files ========================== ! A 'gcj' command is like a 'gcc' command, in that it consists of a number ! of options and file names. The following kinds of input file names are ! supported: ! 'FILE.java' Java source files. ! 'FILE.class' Java bytecode files. ! 'FILE.zip' ! 'FILE.jar' ! An archive containing one or more '.class' files, all of which are compiled. The archive may be compressed. Files in an archive ! which don't end with '.class' are treated as resource files; they ! are compiled into the resulting object file as 'core:' URLs. ! '@FILE' A file containing a whitespace-separated list of input file names. ! (Currently, these must all be '.java' source files, but that may change.) Each named file is compiled, just as if it had been on the command line. - 'LIBRARY.a' - 'LIBRARY.so' - '-lLIBNAME' - Libraries to use when linking. See the 'gcc' manual. ! You can specify more than one input file on the 'gcj' command line, ! in which case they will all be compiled. If you specify a '-o FILENAME' option, all the input files will be compiled together, producing a single output file, named FILENAME. This is allowed even when using ! '-S' or '-c', but not when using '-C' or '--resource'. (This is an ! extension beyond the what plain 'gcc' allows.) (If more than one input ! file is specified, all must currently be '.java' files, though we hope to fix this.)  --- 1330,1370 ---- 1.1 Input and output files ========================== ! A `gcj' command is like a `gcc' command, in that it consists of a ! number of options and file names. The following kinds of input file ! names are supported: ! `FILE.java' Java source files. ! ! `FILE.class' Java bytecode files. ! ! `FILE.zip' ! `FILE.jar' ! An archive containing one or more `.class' files, all of which are compiled. The archive may be compressed. Files in an archive ! which don't end with `.class' are treated as resource files; they ! are compiled into the resulting object file as `core:' URLs. ! ! `@FILE' A file containing a whitespace-separated list of input file names. ! (Currently, these must all be `.java' source files, but that may change.) Each named file is compiled, just as if it had been on the command line. ! `LIBRARY.a' ! `LIBRARY.so' ! `-lLIBNAME' ! Libraries to use when linking. See the `gcc' manual. ! ! You can specify more than one input file on the `gcj' command line, ! in which case they will all be compiled. If you specify a `-o FILENAME' option, all the input files will be compiled together, producing a single output file, named FILENAME. This is allowed even when using ! `-S' or `-c', but not when using `-C' or `--resource'. (This is an ! extension beyond the what plain `gcc' allows.) (If more than one input ! file is specified, all must currently be `.java' files, though we hope to fix this.)  *************** File: gcj.info, Node: Input Options, N *** 1358,1436 **** 1.2 Input Options ================= ! 'gcj' has options to control where it looks to find files it needs. For ! instance, 'gcj' might need to load a class that is referenced by the ! file it has been asked to compile. Like other compilers for the Java ! language, 'gcj' has a notion of a "class path". There are several options and environment variables which can be used to manipulate the ! class path. When 'gcj' looks for a given class, it searches the class ! path looking for matching '.class' or '.java' file. 'gcj' comes with a ! built-in class path which points at the installed 'libgcj.jar', a file which contains all the standard classes. In the text below, a directory or path component can refer either to ! an actual directory on the filesystem, or to a '.zip' or '.jar' file, ! which 'gcj' will search as if it is a directory. ! '-IDIR' ! All directories specified by '-I' are kept in order and prepended to the class path constructed from all the other options. Unless ! compatibility with tools like 'javac' is important, we recommend ! always using '-I' instead of the other options for manipulating the class path. ! '--classpath=PATH' This sets the class path to PATH, a colon-separated list of paths (on Windows-based systems, a semicolon-separate list of paths). This does not override the builtin ("boot") search path. ! '--CLASSPATH=PATH' ! Deprecated synonym for '--classpath'. ! '--bootclasspath=PATH' Where to find the standard builtin classes, such as ! 'java.lang.String'. ! '--extdirs=PATH' For each directory in the PATH, place the contents of that directory at the end of the class path. ! 'CLASSPATH' This is an environment variable which holds a list of paths. The final class path is constructed like so: ! * First come all directories specified via '-I'. ! * If '--classpath' is specified, its value is appended. Otherwise, ! if the 'CLASSPATH' environment variable is specified, then its ! value is appended. Otherwise, the current directory ('"."') is appended. ! * If '--bootclasspath' was specified, append its value. Otherwise, ! append the built-in system directory, 'libgcj.jar'. ! * Finally, if '--extdirs' was specified, append the contents of the specified directories at the end of the class path. Otherwise, append the contents of the built-in extdirs at ! '$(prefix)/share/java/ext'. ! The classfile built by 'gcj' for the class 'java.lang.Object' (and ! placed in 'libgcj.jar') contains a special zero length attribute ! 'gnu.gcj.gcj-compiled'. The compiler looks for this attribute when ! loading 'java.lang.Object' and will report an error if it isn't found, unless it compiles to bytecode (the option ! '-fforce-classes-archive-check' can be used to override this behavior in ! this particular case.) ! '-fforce-classes-archive-check' This forces the compiler to always check for the special zero ! length attribute 'gnu.gcj.gcj-compiled' in 'java.lang.Object' and issue an error if it isn't found. ! '-fsource=VERSION' ! This option is used to choose the source version accepted by 'gcj'. ! The default is '1.5'.  File: gcj.info, Node: Encodings, Next: Warnings, Prev: Input Options, Up: Invoking gcj --- 1373,1451 ---- 1.2 Input Options ================= ! `gcj' has options to control where it looks to find files it needs. ! For instance, `gcj' might need to load a class that is referenced by ! the file it has been asked to compile. Like other compilers for the ! Java language, `gcj' has a notion of a "class path". There are several options and environment variables which can be used to manipulate the ! class path. When `gcj' looks for a given class, it searches the class ! path looking for matching `.class' or `.java' file. `gcj' comes with a ! built-in class path which points at the installed `libgcj.jar', a file which contains all the standard classes. In the text below, a directory or path component can refer either to ! an actual directory on the filesystem, or to a `.zip' or `.jar' file, ! which `gcj' will search as if it is a directory. ! `-IDIR' ! All directories specified by `-I' are kept in order and prepended to the class path constructed from all the other options. Unless ! compatibility with tools like `javac' is important, we recommend ! always using `-I' instead of the other options for manipulating the class path. ! `--classpath=PATH' This sets the class path to PATH, a colon-separated list of paths (on Windows-based systems, a semicolon-separate list of paths). This does not override the builtin ("boot") search path. ! `--CLASSPATH=PATH' ! Deprecated synonym for `--classpath'. ! `--bootclasspath=PATH' Where to find the standard builtin classes, such as ! `java.lang.String'. ! `--extdirs=PATH' For each directory in the PATH, place the contents of that directory at the end of the class path. ! `CLASSPATH' This is an environment variable which holds a list of paths. The final class path is constructed like so: ! * First come all directories specified via `-I'. ! * If `--classpath' is specified, its value is appended. Otherwise, ! if the `CLASSPATH' environment variable is specified, then its ! value is appended. Otherwise, the current directory (`"."') is appended. ! * If `--bootclasspath' was specified, append its value. Otherwise, ! append the built-in system directory, `libgcj.jar'. ! * Finally, if `--extdirs' was specified, append the contents of the specified directories at the end of the class path. Otherwise, append the contents of the built-in extdirs at ! `$(prefix)/share/java/ext'. ! The classfile built by `gcj' for the class `java.lang.Object' (and ! placed in `libgcj.jar') contains a special zero length attribute ! `gnu.gcj.gcj-compiled'. The compiler looks for this attribute when ! loading `java.lang.Object' and will report an error if it isn't found, unless it compiles to bytecode (the option ! `-fforce-classes-archive-check' can be used to override this behavior ! in this particular case.) ! `-fforce-classes-archive-check' This forces the compiler to always check for the special zero ! length attribute `gnu.gcj.gcj-compiled' in `java.lang.Object' and issue an error if it isn't found. ! `-fsource=VERSION' ! This option is used to choose the source version accepted by ! `gcj'. The default is `1.5'.  File: gcj.info, Node: Encodings, Next: Warnings, Prev: Input Options, Up: Invoking gcj *************** File: gcj.info, Node: Encodings, Next: *** 1439,1461 **** ============= The Java programming language uses Unicode throughout. In an effort to ! integrate well with other locales, 'gcj' allows '.java' files to be ! written using almost any encoding. 'gcj' knows how to convert these encodings into its internal encoding at compile time. ! You can use the '--encoding=NAME' option to specify an encoding (of a ! particular character set) to use for source files. If this is not ! specified, the default encoding comes from your current locale. If your ! host system has insufficient locale support, then 'gcj' assumes the ! default encoding to be the 'UTF-8' encoding of Unicode. ! To implement '--encoding', 'gcj' simply uses the host platform's ! 'iconv' conversion routine. This means that in practice 'gcj' is limited by the capabilities of the host platform. ! The names allowed for the argument '--encoding' vary from platform to ! platform (since they are not standardized anywhere). However, 'gcj' ! implements the encoding named 'UTF-8' internally, so if you choose to use this for your source files you can be assured that it will work on every host. --- 1454,1476 ---- ============= The Java programming language uses Unicode throughout. In an effort to ! integrate well with other locales, `gcj' allows `.java' files to be ! written using almost any encoding. `gcj' knows how to convert these encodings into its internal encoding at compile time. ! You can use the `--encoding=NAME' option to specify an encoding (of ! a particular character set) to use for source files. If this is not ! specified, the default encoding comes from your current locale. If ! your host system has insufficient locale support, then `gcj' assumes ! the default encoding to be the `UTF-8' encoding of Unicode. ! To implement `--encoding', `gcj' simply uses the host platform's ! `iconv' conversion routine. This means that in practice `gcj' is limited by the capabilities of the host platform. ! The names allowed for the argument `--encoding' vary from platform ! to platform (since they are not standardized anywhere). However, `gcj' ! implements the encoding named `UTF-8' internally, so if you choose to use this for your source files you can be assured that it will work on every host. *************** File: gcj.info, Node: Warnings, Next: *** 1465,1497 **** 1.4 Warnings ============ ! 'gcj' implements several warnings. As with other generic 'gcc' ! warnings, if an option of the form '-Wfoo' enables a warning, then ! '-Wno-foo' will disable it. Here we've chosen to document the form of the warning which will have an effect - the default being the opposite of what is listed. ! '-Wredundant-modifiers' ! With this flag, 'gcj' will warn about redundant modifiers. For ! instance, it will warn if an interface method is declared 'public'. ! '-Wextraneous-semicolon' ! This causes 'gcj' to warn about empty statements. Empty statements have been deprecated. ! '-Wno-out-of-date' ! This option will cause 'gcj' not to warn when a source file is ! newer than its matching class file. By default 'gcj' will warn about this. ! '-Wno-deprecated' Warn if a deprecated class, method, or field is referred to. ! '-Wunused' ! This is the same as 'gcc''s '-Wunused'. ! '-Wall' ! This is the same as '-Wredundant-modifiers -Wextraneous-semicolon -Wunused'.  --- 1480,1512 ---- 1.4 Warnings ============ ! `gcj' implements several warnings. As with other generic `gcc' ! warnings, if an option of the form `-Wfoo' enables a warning, then ! `-Wno-foo' will disable it. Here we've chosen to document the form of the warning which will have an effect - the default being the opposite of what is listed. ! `-Wredundant-modifiers' ! With this flag, `gcj' will warn about redundant modifiers. For ! instance, it will warn if an interface method is declared `public'. ! `-Wextraneous-semicolon' ! This causes `gcj' to warn about empty statements. Empty statements have been deprecated. ! `-Wno-out-of-date' ! This option will cause `gcj' not to warn when a source file is ! newer than its matching class file. By default `gcj' will warn about this. ! `-Wno-deprecated' Warn if a deprecated class, method, or field is referred to. ! `-Wunused' ! This is the same as `gcc''s `-Wunused'. ! `-Wall' ! This is the same as `-Wredundant-modifiers -Wextraneous-semicolon -Wunused'.  *************** File: gcj.info, Node: Linking, Next: C *** 1502,1560 **** To turn a Java application into an executable program, you need to link it with the needed libraries, just as for C or C++. The linker by ! default looks for a global function named 'main'. Since Java does not have global functions, and a collection of Java classes may have more ! than one class with a 'main' method, you need to let the linker know ! which of those 'main' methods it should invoke when starting the application. You can do that in any of these ways: ! * Specify the class containing the desired 'main' method when you ! link the application, using the '--main' flag, described below. * Link the Java package(s) into a shared library (dll) rather than an ! executable. Then invoke the application using the 'gij' program, ! making sure that 'gij' can find the libraries it needs. ! * Link the Java packages(s) with the flag '-lgij', which links in the ! 'main' routine from the 'gij' command. This allows you to select ! the class whose 'main' method you want to run when you run the ! application. You can also use other 'gij' flags, such as '-D' ! flags to set properties. Using the '-lgij' library (rather than ! the 'gij' program of the previous mechanism) has some advantages: it is compatible with static linking, and does not require configuring or installing libraries. ! These 'gij' options relate to linking an executable: ! '--main=CLASSNAME' This option is used when linking to specify the name of the class ! whose 'main' method should be invoked when the resulting executable ! is run. ! '-DNAME[=VALUE]' ! This option can only be used with '--main'. It defines a system property named NAME with value VALUE. If VALUE is not specified then it defaults to the empty string. These system properties are initialized at the program's startup and can be retrieved at ! runtime using the 'java.lang.System.getProperty' method. ! '-lgij' Create an application whose command-line processing is that of the ! 'gij' command. ! This option is an alternative to using '--main'; you cannot use both. ! '-static-libgcj' This option causes linking to be done against a static version of the libgcj runtime library. This option is only available if corresponding linker support exists. *Caution:* Static linking of libgcj may cause essential parts of libgcj to be omitted. Some parts of libgcj use reflection to load ! classes at runtime. Since the linker does not see these references ! at link time, it can omit the referred to classes. The result is ! usually (but not always) a 'ClassNotFoundException' being thrown at ! runtime. Caution must be used when using this option. For more ! details see:  File: gcj.info, Node: Code Generation, Next: Configure-time Options, Prev: Linking, Up: Invoking gcj --- 1517,1578 ---- To turn a Java application into an executable program, you need to link it with the needed libraries, just as for C or C++. The linker by ! default looks for a global function named `main'. Since Java does not have global functions, and a collection of Java classes may have more ! than one class with a `main' method, you need to let the linker know ! which of those `main' methods it should invoke when starting the application. You can do that in any of these ways: ! * Specify the class containing the desired `main' method when you ! link the application, using the `--main' flag, described below. ! * Link the Java package(s) into a shared library (dll) rather than an ! executable. Then invoke the application using the `gij' program, ! making sure that `gij' can find the libraries it needs. ! ! * Link the Java packages(s) with the flag `-lgij', which links in ! the `main' routine from the `gij' command. This allows you to ! select the class whose `main' method you want to run when you run ! the application. You can also use other `gij' flags, such as `-D' ! flags to set properties. Using the `-lgij' library (rather than ! the `gij' program of the previous mechanism) has some advantages: it is compatible with static linking, and does not require configuring or installing libraries. ! These `gij' options relate to linking an executable: ! `--main=CLASSNAME' This option is used when linking to specify the name of the class ! whose `main' method should be invoked when the resulting ! executable is run. ! `-DNAME[=VALUE]' ! This option can only be used with `--main'. It defines a system property named NAME with value VALUE. If VALUE is not specified then it defaults to the empty string. These system properties are initialized at the program's startup and can be retrieved at ! runtime using the `java.lang.System.getProperty' method. ! `-lgij' Create an application whose command-line processing is that of the ! `gij' command. ! This option is an alternative to using `--main'; you cannot use both. ! `-static-libgcj' This option causes linking to be done against a static version of the libgcj runtime library. This option is only available if corresponding linker support exists. *Caution:* Static linking of libgcj may cause essential parts of libgcj to be omitted. Some parts of libgcj use reflection to load ! classes at runtime. Since the linker does not see these ! references at link time, it can omit the referred to classes. The ! result is usually (but not always) a `ClassNotFoundException' ! being thrown at runtime. Caution must be used when using this ! option. For more details see: ! `http://gcc.gnu.org/wiki/Statically%20linking%20libgcj'  File: gcj.info, Node: Code Generation, Next: Configure-time Options, Prev: Linking, Up: Invoking gcj *************** File: gcj.info, Node: Code Generation, *** 1562,1744 **** 1.6 Code Generation =================== ! In addition to the many 'gcc' options controlling code generation, 'gcj' ! has several options specific to itself. ! '-C' ! This option is used to tell 'gcj' to generate bytecode ('.class' files) rather than object code. ! '--resource RESOURCE-NAME' ! This option is used to tell 'gcj' to compile the contents of a ! given file to object code so it may be accessed at runtime with the ! core protocol handler as 'core:/RESOURCE-NAME'. Note that RESOURCE-NAME is the name of the resource as found at runtime; for ! instance, it could be used in a call to 'ResourceBundle.getBundle'. The actual file name to be compiled this way must be specified separately. ! '-ftarget=VERSION' ! This can be used with '-C' to choose the version of bytecode ! emitted by 'gcj'. The default is '1.5'. When not generating bytecode, this option has no effect. ! '-d DIRECTORY' ! When used with '-C', this causes all generated '.class' files to be ! put in the appropriate subdirectory of DIRECTORY. By default they ! will be put in subdirectories of the current working directory. ! '-fno-bounds-check' ! By default, 'gcj' generates code which checks the bounds of all array indexing operations. With this option, these checks are omitted, which can improve performance for code that uses arrays extensively. Note that this can result in unpredictable behavior if the code in question actually does violate array bounds constraints. It is safe to use this option if you are sure that ! your code will never throw an 'ArrayIndexOutOfBoundsException'. ! '-fno-store-check' Don't generate array store checks. When storing objects into arrays, a runtime check is normally generated in order to ensure ! that the object is assignment compatible with the component type of ! the array (which may not be known at compile-time). With this ! option, these checks are omitted. This can improve performance for ! code which stores objects into arrays frequently. It is safe to ! use this option if you are sure your code will never throw an ! 'ArrayStoreException'. ! '-fjni' ! With 'gcj' there are two options for writing native methods: CNI ! and JNI. By default 'gcj' assumes you are using CNI. If you are compiling a class with native methods, and these methods are ! implemented using JNI, then you must use '-fjni'. This option ! causes 'gcj' to generate stubs which will invoke the underlying JNI methods. ! '-fno-assert' ! Don't recognize the 'assert' keyword. This is for compatibility with older versions of the language specification. ! '-fno-optimize-static-class-initialization' ! When the optimization level is greater or equal to '-O2', 'gcj' will try to optimize the way calls into the runtime are made to initialize static classes upon their first use (this optimization ! isn't carried out if '-C' was specified.) When compiling to native ! code, '-fno-optimize-static-class-initialization' will turn this optimization off, regardless of the optimization level in use. ! '--disable-assertions[=CLASS-OR-PACKAGE]' Don't include code for checking assertions in the compiled code. ! If '=CLASS-OR-PACKAGE' is missing disables assertion code generation for all classes, unless overridden by a more specific ! '--enable-assertions' flag. If CLASS-OR-PACKAGE is a class name, ! only disables generating assertion checks within the named class or ! its inner classes. If CLASS-OR-PACKAGE is a package name, disables ! generating assertion checks within the named package or a subpackage. By default, assertions are enabled when generating class files or when not optimizing, and disabled when generating optimized binaries. ! '--enable-assertions[=CLASS-OR-PACKAGE]' Generates code to check assertions. The option is perhaps misnamed, as you still need to turn on assertion checking at run-time, and we don't support any easy way to do that. So this flag isn't very useful yet, except to partially override ! '--disable-assertions'. ! '-findirect-dispatch' ! 'gcj' has a special binary compatibility ABI, which is enabled by ! the '-findirect-dispatch' option. In this mode, the code generated ! by 'gcj' honors the binary compatibility guarantees in the Java ! Language Specification, and the resulting object files do not need ! to be directly linked against their dependencies. Instead, all ! dependencies are looked up at runtime. This allows free mixing of ! interpreted and compiled code. ! Note that, at present, '-findirect-dispatch' can only be used when ! compiling '.class' files. It will not work when compiling from source. CNI also does not yet work with the binary compatibility ! ABI. These restrictions will be lifted in some future release. However, if you compile CNI code with the standard ABI, you can call it from code built with the binary compatibility ABI. ! '-fbootstrap-classes' ! This option can be use to tell 'libgcj' that the compiled classes should be loaded by the bootstrap loader, not the system class loader. By default, if you compile a class and link it into an ! executable, it will be treated as if it was loaded using the system ! class loader. This is convenient, as it means that things like ! 'Class.forName()' will search 'CLASSPATH' to find the desired class. ! '-freduced-reflection' ! This option causes the code generated by 'gcj' to contain a reduced ! amount of the class meta-data used to support runtime reflection. ! The cost of this savings is the loss of the ability to use certain ! reflection capabilities of the standard Java runtime environment. ! When set all meta-data except for that which is needed to obtain ! correct runtime semantics is eliminated. ! For code that does not use reflection (i.e. serialization, RMI, ! CORBA or call methods in the 'java.lang.reflect' package), ! '-freduced-reflection' will result in proper operation with a savings in executable code size. ! JNI ('-fjni') and the binary compatibility ABI ! ('-findirect-dispatch') do not work properly without full ! reflection meta-data. Because of this, it is an error to use these ! options with '-freduced-reflection'. *Caution:* If there is no reflection meta-data, code that uses a ! 'SecurityManager' may not work properly. Also calling ! 'Class.forName()' may fail if the calling method has no reflection meta-data.  File: gcj.info, Node: Configure-time Options, Prev: Code Generation, Up: Invoking gcj 1.7 Configure-time Options ========================== ! Some 'gcj' code generations options affect the resulting ABI, and so can ! only be meaningfully given when 'libgcj', the runtime package, is ! configured. 'libgcj' puts the appropriate options from this group into ! a 'spec' file which is read by 'gcj'. These options are listed here for ! completeness; if you are using 'libgcj' then you won't want to touch ! these options. ! '-fuse-boehm-gc' This enables the use of the Boehm GC bitmap marking code. In ! particular this causes 'gcj' to put an object marking descriptor into each vtable. ! '-fhash-synchronization' ! By default, synchronization data (the data used for 'synchronize', ! 'wait', and 'notify') is pointed to by a word in each object. With ! this option 'gcj' assumes that this information is stored in a hash ! table and not in the object itself. ! '-fuse-divide-subroutine' On some systems, a library routine is called to perform integer division. This is required to get exception handling correct when dividing by zero. ! '-fcheck-references' On some systems it's necessary to insert inline checks whenever accessing an object via a reference. On other systems you won't ! need this because null pointer accesses are caught automatically by ! the processor. ! '-fuse-atomic-builtins' On some systems, GCC can generate code for built-in atomic operations. Use this option to force gcj to use these builtins when compiling Java code. Where this capability is present it should be automatically detected, so you won't usually need to use this option.  File: gcj.info, Node: Compatibility, Next: Invoking jcf-dump, Prev: Invoking gcj, Up: Top --- 1580,1765 ---- 1.6 Code Generation =================== ! In addition to the many `gcc' options controlling code generation, ! `gcj' has several options specific to itself. ! `-C' ! This option is used to tell `gcj' to generate bytecode (`.class' files) rather than object code. ! `--resource RESOURCE-NAME' ! This option is used to tell `gcj' to compile the contents of a ! given file to object code so it may be accessed at runtime with ! the core protocol handler as `core:/RESOURCE-NAME'. Note that RESOURCE-NAME is the name of the resource as found at runtime; for ! instance, it could be used in a call to `ResourceBundle.getBundle'. The actual file name to be compiled this way must be specified separately. ! `-ftarget=VERSION' ! This can be used with `-C' to choose the version of bytecode ! emitted by `gcj'. The default is `1.5'. When not generating bytecode, this option has no effect. ! `-d DIRECTORY' ! When used with `-C', this causes all generated `.class' files to ! be put in the appropriate subdirectory of DIRECTORY. By default ! they will be put in subdirectories of the current working ! directory. ! `-fno-bounds-check' ! By default, `gcj' generates code which checks the bounds of all array indexing operations. With this option, these checks are omitted, which can improve performance for code that uses arrays extensively. Note that this can result in unpredictable behavior if the code in question actually does violate array bounds constraints. It is safe to use this option if you are sure that ! your code will never throw an `ArrayIndexOutOfBoundsException'. ! `-fno-store-check' Don't generate array store checks. When storing objects into arrays, a runtime check is normally generated in order to ensure ! that the object is assignment compatible with the component type ! of the array (which may not be known at compile-time). With this ! option, these checks are omitted. This can improve performance ! for code which stores objects into arrays frequently. It is safe ! to use this option if you are sure your code will never throw an ! `ArrayStoreException'. ! `-fjni' ! With `gcj' there are two options for writing native methods: CNI ! and JNI. By default `gcj' assumes you are using CNI. If you are compiling a class with native methods, and these methods are ! implemented using JNI, then you must use `-fjni'. This option ! causes `gcj' to generate stubs which will invoke the underlying JNI methods. ! `-fno-assert' ! Don't recognize the `assert' keyword. This is for compatibility with older versions of the language specification. ! `-fno-optimize-static-class-initialization' ! When the optimization level is greater or equal to `-O2', `gcj' will try to optimize the way calls into the runtime are made to initialize static classes upon their first use (this optimization ! isn't carried out if `-C' was specified.) When compiling to native ! code, `-fno-optimize-static-class-initialization' will turn this optimization off, regardless of the optimization level in use. ! `--disable-assertions[=CLASS-OR-PACKAGE]' Don't include code for checking assertions in the compiled code. ! If `=CLASS-OR-PACKAGE' is missing disables assertion code generation for all classes, unless overridden by a more specific ! `--enable-assertions' flag. If CLASS-OR-PACKAGE is a class name, ! only disables generating assertion checks within the named class ! or its inner classes. If CLASS-OR-PACKAGE is a package name, ! disables generating assertion checks within the named package or a subpackage. By default, assertions are enabled when generating class files or when not optimizing, and disabled when generating optimized binaries. ! `--enable-assertions[=CLASS-OR-PACKAGE]' Generates code to check assertions. The option is perhaps misnamed, as you still need to turn on assertion checking at run-time, and we don't support any easy way to do that. So this flag isn't very useful yet, except to partially override ! `--disable-assertions'. ! `-findirect-dispatch' ! `gcj' has a special binary compatibility ABI, which is enabled by ! the `-findirect-dispatch' option. In this mode, the code ! generated by `gcj' honors the binary compatibility guarantees in ! the Java Language Specification, and the resulting object files do ! not need to be directly linked against their dependencies. ! Instead, all dependencies are looked up at runtime. This allows ! free mixing of interpreted and compiled code. ! Note that, at present, `-findirect-dispatch' can only be used when ! compiling `.class' files. It will not work when compiling from source. CNI also does not yet work with the binary compatibility ! ABI. These restrictions will be lifted in some future release. However, if you compile CNI code with the standard ABI, you can call it from code built with the binary compatibility ABI. ! `-fbootstrap-classes' ! This option can be use to tell `libgcj' that the compiled classes should be loaded by the bootstrap loader, not the system class loader. By default, if you compile a class and link it into an ! executable, it will be treated as if it was loaded using the ! system class loader. This is convenient, as it means that things ! like `Class.forName()' will search `CLASSPATH' to find the desired class. ! `-freduced-reflection' ! This option causes the code generated by `gcj' to contain a ! reduced amount of the class meta-data used to support runtime ! reflection. The cost of this savings is the loss of the ability to ! use certain reflection capabilities of the standard Java runtime ! environment. When set all meta-data except for that which is ! needed to obtain correct runtime semantics is eliminated. ! For code that does not use reflection (i.e. serialization, RMI, ! CORBA or call methods in the `java.lang.reflect' package), ! `-freduced-reflection' will result in proper operation with a savings in executable code size. ! JNI (`-fjni') and the binary compatibility ABI ! (`-findirect-dispatch') do not work properly without full ! reflection meta-data. Because of this, it is an error to use ! these options with `-freduced-reflection'. *Caution:* If there is no reflection meta-data, code that uses a ! `SecurityManager' may not work properly. Also calling ! `Class.forName()' may fail if the calling method has no reflection meta-data. +  File: gcj.info, Node: Configure-time Options, Prev: Code Generation, Up: Invoking gcj 1.7 Configure-time Options ========================== ! Some `gcj' code generations options affect the resulting ABI, and so ! can only be meaningfully given when `libgcj', the runtime package, is ! configured. `libgcj' puts the appropriate options from this group into ! a `spec' file which is read by `gcj'. These options are listed here ! for completeness; if you are using `libgcj' then you won't want to ! touch these options. ! `-fuse-boehm-gc' This enables the use of the Boehm GC bitmap marking code. In ! particular this causes `gcj' to put an object marking descriptor into each vtable. ! `-fhash-synchronization' ! By default, synchronization data (the data used for `synchronize', ! `wait', and `notify') is pointed to by a word in each object. ! With this option `gcj' assumes that this information is stored in a ! hash table and not in the object itself. ! `-fuse-divide-subroutine' On some systems, a library routine is called to perform integer division. This is required to get exception handling correct when dividing by zero. ! `-fcheck-references' On some systems it's necessary to insert inline checks whenever accessing an object via a reference. On other systems you won't ! need this because null pointer accesses are caught automatically ! by the processor. ! `-fuse-atomic-builtins' On some systems, GCC can generate code for built-in atomic operations. Use this option to force gcj to use these builtins when compiling Java code. Where this capability is present it should be automatically detected, so you won't usually need to use this option. +  File: gcj.info, Node: Compatibility, Next: Invoking jcf-dump, Prev: Invoking gcj, Up: Top *************** File: gcj.info, Node: Compatibility, N *** 1746,1759 **** ************************************** As we believe it is important that the Java platform not be fragmented, ! 'gcj' and 'libgcj' try to conform to the relevant Java specifications. However, limited manpower and incomplete and unclear documentation work ! against us. So, there are caveats to using 'gcj'. * Menu: ! * Limitations:: ! * Extensions::  File: gcj.info, Node: Limitations, Next: Extensions, Up: Compatibility --- 1767,1780 ---- ************************************** As we believe it is important that the Java platform not be fragmented, ! `gcj' and `libgcj' try to conform to the relevant Java specifications. However, limited manpower and incomplete and unclear documentation work ! against us. So, there are caveats to using `gcj'. * Menu: ! * Limitations:: ! * Extensions::  File: gcj.info, Node: Limitations, Next: Extensions, Up: Compatibility *************** File: gcj.info, Node: Limitations, Nex *** 1763,1791 **** This list of compatibility issues is by no means complete. ! * 'gcj' implements the JDK 1.2 language. It supports inner classes ! and the new 1.4 'assert' keyword. It does not yet support the Java ! 2 'strictfp' keyword (it recognizes the keyword but ignores it). ! * 'libgcj' is largely compatible with the JDK 1.2 libraries. ! However, 'libgcj' is missing many packages, most notably ! 'java.awt'. There are also individual missing classes and methods. We currently do not have a list showing differences between ! 'libgcj' and the Java 2 platform. ! * Sometimes the 'libgcj' implementation of a method or class differs from the JDK implementation. This is not always a bug. Still, if ! it affects you, it probably makes sense to report it so that we can ! discuss the appropriate response. ! * 'gcj' does not currently allow for piecemeal replacement of ! components within 'libgcj'. Unfortunately, programmers often want to use newer versions of certain packages, such as those provided by the Apache Software Foundation's Jakarta project. This has ! forced us to place the 'org.w3c.dom' and 'org.xml.sax' packages ! into their own libraries, separate from 'libgcj'. If you intend to use these classes, you must link them explicitly with ! '-l-org-w3c-dom' and '-l-org-xml-sax'. Future versions of 'gcj' may not have this restriction.  --- 1784,1813 ---- This list of compatibility issues is by no means complete. ! * `gcj' implements the JDK 1.2 language. It supports inner classes ! and the new 1.4 `assert' keyword. It does not yet support the ! Java 2 `strictfp' keyword (it recognizes the keyword but ignores ! it). ! * `libgcj' is largely compatible with the JDK 1.2 libraries. ! However, `libgcj' is missing many packages, most notably ! `java.awt'. There are also individual missing classes and methods. We currently do not have a list showing differences between ! `libgcj' and the Java 2 platform. ! * Sometimes the `libgcj' implementation of a method or class differs from the JDK implementation. This is not always a bug. Still, if ! it affects you, it probably makes sense to report it so that we ! can discuss the appropriate response. ! * `gcj' does not currently allow for piecemeal replacement of ! components within `libgcj'. Unfortunately, programmers often want to use newer versions of certain packages, such as those provided by the Apache Software Foundation's Jakarta project. This has ! forced us to place the `org.w3c.dom' and `org.xml.sax' packages ! into their own libraries, separate from `libgcj'. If you intend to use these classes, you must link them explicitly with ! `-l-org-w3c-dom' and `-l-org-xml-sax'. Future versions of `gcj' may not have this restriction.  *************** File: gcj.info, Node: Extensions, Prev *** 1794,1850 **** 2.2 Extra features unique to gcj ================================ ! The main feature of 'gcj' is that it can compile programs written in the ! Java programming language to native code. Most extensions that have ! been added are to facilitate this functionality. ! * 'gcj' makes it easy and efficient to mix code written in Java and C++. *Note About CNI::, for more info on how to use this in your programs. * When you compile your classes into a shared library using ! '-findirect-dispatch' then add them to the system-wide classmap.db ! file using 'gcj-dbtool', they will be automatically loaded by the ! 'libgcj' system classloader. This is the new, preferred classname-to-library resolution mechanism. *Note Invoking gcj-dbtool::, for more information on using the classmap database. * The old classname-to-library lookup mechanism is still supported ! through the 'gnu.gcj.runtime.VMClassLoader.library_control' property, but it is deprecated and will likely be removed in some ! future release. When trying to load a class 'gnu.pkg.SomeClass' the system classloader will first try to load the shared library ! 'lib-gnu-pkg-SomeClass.so', if that fails to load the class then it ! will try to load 'lib-gnu-pkg.so' and finally when the class is ! still not loaded it will try to load 'lib-gnu.so'. Note that all ! '.'s will be transformed into '-'s and that searching for inner classes starts with their outermost outer class. If the class cannot be found this way the system classloader tries to use the ! 'libgcj' bytecode interpreter to load the class from the standard classpath. This process can be controlled to some degree via the ! 'gnu.gcj.runtime.VMClassLoader.library_control' property; *Note libgcj Runtime Properties::. ! * 'libgcj' includes a special 'gcjlib' URL type. A URL of this form ! is like a 'jar' URL, and looks like ! 'gcjlib:/path/to/shared/library.so!/path/to/resource'. An access ! to one of these URLs causes the shared library to be 'dlopen()'d, and then the resource is looked for in that library. These URLs are most useful when used in conjunction with ! 'java.net.URLClassLoader'. Note that, due to implementation limitations, currently any such URL can be accessed by only one class loader, and libraries are never unloaded. This means some ! care must be exercised to make sure that a 'gcjlib' URL is not accessed by more than one class loader at once. In a future release this limitation will be lifted, and such libraries will be mapped privately. ! * A program compiled by 'gcj' will examine the 'GCJ_PROPERTIES' environment variable and change its behavior in some ways. In ! particular 'GCJ_PROPERTIES' holds a list of assignments to global ! properties, such as would be set with the '-D' option to 'java'. ! For instance, 'java.compiler=gcj' is a valid (but currently ! meaningless) setting.  File: gcj.info, Node: Invoking jcf-dump, Next: Invoking gij, Prev: Compatibility, Up: Top --- 1816,1873 ---- 2.2 Extra features unique to gcj ================================ ! The main feature of `gcj' is that it can compile programs written in ! the Java programming language to native code. Most extensions that ! have been added are to facilitate this functionality. ! * `gcj' makes it easy and efficient to mix code written in Java and C++. *Note About CNI::, for more info on how to use this in your programs. * When you compile your classes into a shared library using ! `-findirect-dispatch' then add them to the system-wide classmap.db ! file using `gcj-dbtool', they will be automatically loaded by the ! `libgcj' system classloader. This is the new, preferred classname-to-library resolution mechanism. *Note Invoking gcj-dbtool::, for more information on using the classmap database. * The old classname-to-library lookup mechanism is still supported ! through the `gnu.gcj.runtime.VMClassLoader.library_control' property, but it is deprecated and will likely be removed in some ! future release. When trying to load a class `gnu.pkg.SomeClass' the system classloader will first try to load the shared library ! `lib-gnu-pkg-SomeClass.so', if that fails to load the class then ! it will try to load `lib-gnu-pkg.so' and finally when the class is ! still not loaded it will try to load `lib-gnu.so'. Note that all ! `.'s will be transformed into `-'s and that searching for inner classes starts with their outermost outer class. If the class cannot be found this way the system classloader tries to use the ! `libgcj' bytecode interpreter to load the class from the standard classpath. This process can be controlled to some degree via the ! `gnu.gcj.runtime.VMClassLoader.library_control' property; *Note libgcj Runtime Properties::. ! * `libgcj' includes a special `gcjlib' URL type. A URL of this form ! is like a `jar' URL, and looks like ! `gcjlib:/path/to/shared/library.so!/path/to/resource'. An access ! to one of these URLs causes the shared library to be `dlopen()'d, and then the resource is looked for in that library. These URLs are most useful when used in conjunction with ! `java.net.URLClassLoader'. Note that, due to implementation limitations, currently any such URL can be accessed by only one class loader, and libraries are never unloaded. This means some ! care must be exercised to make sure that a `gcjlib' URL is not accessed by more than one class loader at once. In a future release this limitation will be lifted, and such libraries will be mapped privately. ! * A program compiled by `gcj' will examine the `GCJ_PROPERTIES' environment variable and change its behavior in some ways. In ! particular `GCJ_PROPERTIES' holds a list of assignments to global ! properties, such as would be set with the `-D' option to `java'. ! For instance, `java.compiler=gcj' is a valid (but currently ! meaningless) setting. !  File: gcj.info, Node: Invoking jcf-dump, Next: Invoking gij, Prev: Compatibility, Up: Top *************** File: gcj.info, Node: Invoking jcf-dump *** 1852,1888 **** 3 Invoking jcf-dump ******************* ! This is a class file examiner, similar to 'javap'. It will print information about a number of classes, which are specified by class name or file name. ! '-c' Disassemble method bodies. By default method bodies are not printed. ! '--print-constants' Print the constant pool. When printing a reference to a constant also print its index in the constant pool. ! '--javap' ! Generate output in 'javap' format. The implementation of this feature is very incomplete. ! '--classpath=PATH' ! '--CLASSPATH=PATH' ! '-IDIRECTORY' ! '-o FILE' ! These options as the same as the corresponding 'gcj' options. ! '--help' Print help, then exit. ! '--version' Print version number, then exit. ! '-v, --verbose' Print extra information while running. Implies ! '--print-constants'.  File: gcj.info, Node: Invoking gij, Next: Invoking gcj-dbtool, Prev: Invoking jcf-dump, Up: Top --- 1875,1911 ---- 3 Invoking jcf-dump ******************* ! This is a class file examiner, similar to `javap'. It will print information about a number of classes, which are specified by class name or file name. ! `-c' Disassemble method bodies. By default method bodies are not printed. ! `--print-constants' Print the constant pool. When printing a reference to a constant also print its index in the constant pool. ! `--javap' ! Generate output in `javap' format. The implementation of this feature is very incomplete. ! `--classpath=PATH' ! `--CLASSPATH=PATH' ! `-IDIRECTORY' ! `-o FILE' ! These options as the same as the corresponding `gcj' options. ! `--help' Print help, then exit. ! `--version' Print version number, then exit. ! `-v, --verbose' Print extra information while running. Implies ! `--print-constants'.  File: gcj.info, Node: Invoking gij, Next: Invoking gcj-dbtool, Prev: Invoking jcf-dump, Up: Top *************** File: gcj.info, Node: Invoking gij, Ne *** 1890,1989 **** 4 Invoking gij ************** ! 'gij' is a Java bytecode interpreter included with 'libgcj'. 'gij' is not available on every platform; porting it requires a small amount of assembly programming which has not been done for all the targets ! supported by 'gcj'. ! The primary argument to 'gij' is the name of a class or, with '-jar', ! a jar file. Options before this argument are interpreted by 'gij'; ! remaining options are passed to the interpreted program. ! If a class name is specified and this class does not have a 'main' ! method with the appropriate signature (a 'static void' method with a ! 'String[]' as its sole argument), then 'gij' will print an error and exit. ! If a jar file is specified then 'gij' will use information in it to ! determine which class' 'main' method will be invoked. ! 'gij' will invoke the 'main' method with all the remaining command-line options. ! Note that 'gij' is not limited to interpreting code. Because ! 'libgcj' includes a class loader which can dynamically load shared ! objects, it is possible to give 'gij' the name of a class which has been ! compiled and put into a shared library on the class path. ! '-cp PATH' ! '-classpath PATH' Set the initial class path. The class path is used for finding class and resource files. If specified, this option overrides the ! 'CLASSPATH' environment variable. Note that this option is ignored ! if '-jar' is used. ! '-DNAME[=VALUE]' This defines a system property named NAME with value VALUE. If ! VALUE is not specified then it defaults to the empty string. These ! system properties are initialized at the program's startup and can ! be retrieved at runtime using the 'java.lang.System.getProperty' ! method. ! '-ms=NUMBER' ! Equivalent to '-Xms'. ! '-mx=NUMBER' ! Equivalent to '-Xmx'. ! '-noverify' ! Do not verify compliance of bytecode with the VM specification. In ! addition, this option disables type verification which is otherwise ! performed on BC-ABI compiled code. ! '-X' ! '-XARGUMENT' ! Supplying '-X' by itself will cause 'gij' to list all the supported ! '-X' options. Currently these options are supported: ! '-XmsSIZE' Set the initial heap size. ! '-XmxSIZE' Set the maximum heap size. ! '-XssSIZE' Set the thread stack size. ! Unrecognized '-X' options are ignored, for compatibility with other ! runtimes. ! '-jar' ! This indicates that the name passed to 'gij' should be interpreted as the name of a jar file, not a class. ! '--help' ! '-?' Print help, then exit. ! '--showversion' Print version number and continue. ! '--fullversion' Print detailed version information, then exit. ! '--version' Print version number, then exit. ! '-verbose' ! '-verbose:class' ! Each time a class is initialized, print a short message on standard ! error. ! 'gij' also recognizes and ignores the following options, for ! compatibility with existing application launch scripts: '-client', ! '-server', '-hotspot', '-jrockit', '-agentlib', '-agentpath', '-debug', ! '-d32', '-d64', '-javaagent', '-noclassgc', '-verify', and ! '-verifyremote'.  File: gcj.info, Node: Invoking gcj-dbtool, Next: Invoking jv-convert, Prev: Invoking gij, Up: Top --- 1913,2012 ---- 4 Invoking gij ************** ! `gij' is a Java bytecode interpreter included with `libgcj'. `gij' is not available on every platform; porting it requires a small amount of assembly programming which has not been done for all the targets ! supported by `gcj'. ! The primary argument to `gij' is the name of a class or, with ! `-jar', a jar file. Options before this argument are interpreted by ! `gij'; remaining options are passed to the interpreted program. ! If a class name is specified and this class does not have a `main' ! method with the appropriate signature (a `static void' method with a ! `String[]' as its sole argument), then `gij' will print an error and exit. ! If a jar file is specified then `gij' will use information in it to ! determine which class' `main' method will be invoked. ! `gij' will invoke the `main' method with all the remaining command-line options. ! Note that `gij' is not limited to interpreting code. Because ! `libgcj' includes a class loader which can dynamically load shared ! objects, it is possible to give `gij' the name of a class which has ! been compiled and put into a shared library on the class path. ! `-cp PATH' ! `-classpath PATH' Set the initial class path. The class path is used for finding class and resource files. If specified, this option overrides the ! `CLASSPATH' environment variable. Note that this option is ! ignored if `-jar' is used. ! `-DNAME[=VALUE]' This defines a system property named NAME with value VALUE. If ! VALUE is not specified then it defaults to the empty string. ! These system properties are initialized at the program's startup ! and can be retrieved at runtime using the ! `java.lang.System.getProperty' method. ! `-ms=NUMBER' ! Equivalent to `-Xms'. ! `-mx=NUMBER' ! Equivalent to `-Xmx'. ! `-noverify' ! Do not verify compliance of bytecode with the VM specification. In ! addition, this option disables type verification which is ! otherwise performed on BC-ABI compiled code. ! `-X' ! `-XARGUMENT' ! Supplying `-X' by itself will cause `gij' to list all the ! supported `-X' options. Currently these options are supported: ! `-XmsSIZE' Set the initial heap size. ! `-XmxSIZE' Set the maximum heap size. ! `-XssSIZE' Set the thread stack size. ! Unrecognized `-X' options are ignored, for compatibility with ! other runtimes. ! `-jar' ! This indicates that the name passed to `gij' should be interpreted as the name of a jar file, not a class. ! `--help' ! `-?' Print help, then exit. ! `--showversion' Print version number and continue. ! `--fullversion' Print detailed version information, then exit. ! `--version' Print version number, then exit. ! `-verbose' ! `-verbose:class' ! Each time a class is initialized, print a short message on ! standard error. ! `gij' also recognizes and ignores the following options, for ! compatibility with existing application launch scripts: `-client', ! `-server', `-hotspot', `-jrockit', `-agentlib', `-agentpath', `-debug', ! `-d32', `-d64', `-javaagent', `-noclassgc', `-verify', and ! `-verifyremote'.  File: gcj.info, Node: Invoking gcj-dbtool, Next: Invoking jv-convert, Prev: Invoking gij, Up: Top *************** File: gcj.info, Node: Invoking gcj-dbto *** 1991,2092 **** 5 Invoking gcj-dbtool. ********************** ! 'gcj-dbtool' is a tool for creating and manipulating class file mapping ! databases. 'libgcj' can use these databases to find a shared library corresponding to the bytecode representation of a class. This functionality is useful for ahead-of-time compilation of a program that ! has no knowledge of 'gcj'. ! 'gcj-dbtool' works best if all the jar files added to it are compiled ! using '-findirect-dispatch'. ! Note that 'gcj-dbtool' is currently available as "preview technology". We believe it is a reasonable way to allow application-transparent ahead-of-time compilation, but this is an unexplored area. We welcome your comments. ! '-n DBFILE [SIZE]' This creates a new database. Currently, databases cannot be resized; you can choose a larger initial size if desired. The default size is 32,749. ! '-a DBFILE JARFILE LIB' ! '-f DBFILE JARFILE LIB' This adds a jar file to the database. For each class file in the jar, a cryptographic signature of the bytecode representation of the class is recorded in the database. At runtime, a class is looked up by its signature and the compiled form of the class is ! looked for in the corresponding shared library. The '-a' option ! will verify that LIB exists before adding it to the database; '-f' skips this check. ! '[-][-0] -m DBFILE DBFILE,[DBFILE]' Merge a number of databases. The output database overwrites any existing database. To add databases into an existing database, include the destination in the list of sources. ! If '-' or '-0' are used, the list of files to read is taken from ! standard input instead of the command line. For '-0', Input filenames are terminated by a null character instead of by whitespace. Useful when arguments might contain white space. The GNU find -print0 option produces input suitable for this mode. ! '-t DBFILE' Test a database. ! '-l DBFILE' List the contents of a database. ! '-p' Print the name of the default database. If there is no default ! database, this prints a blank line. If LIBDIR is specified, use it ! instead of the default library directory component of the database ! name. ! '--help' Print a help message, then exit. ! '--version' ! '-v' Print version information, then exit.  File: gcj.info, Node: Invoking jv-convert, Next: Invoking grmic, Prev: Invoking gcj-dbtool, Up: Top 6 Invoking jv-convert ********************* ! 'jv-convert' ['OPTION'] ... [INPUTFILE [OUTPUTFILE]] ! 'jv-convert' is a utility included with 'libgcj' which converts a ! file from one encoding to another. It is similar to the Unix 'iconv' utility. ! The encodings supported by 'jv-convert' are platform-dependent. Currently there is no way to get a list of all supported encodings. ! '--encoding NAME' ! '--from NAME' Use NAME as the input encoding. The default is the current locale's encoding. ! '--to NAME' ! Use NAME as the output encoding. The default is the 'JavaSrc' ! encoding; this is ASCII with '\u' escapes for non-ASCII characters. ! '-i FILE' Read from FILE. The default is to read from standard input. ! '-o FILE' Write to FILE. The default is to write to standard output. ! '--reverse' Swap the input and output encodings. ! '--help' Print a help message, then exit. ! '--version' Print version information, then exit.  --- 2014,2116 ---- 5 Invoking gcj-dbtool. ********************** ! `gcj-dbtool' is a tool for creating and manipulating class file mapping ! databases. `libgcj' can use these databases to find a shared library corresponding to the bytecode representation of a class. This functionality is useful for ahead-of-time compilation of a program that ! has no knowledge of `gcj'. ! `gcj-dbtool' works best if all the jar files added to it are ! compiled using `-findirect-dispatch'. ! Note that `gcj-dbtool' is currently available as "preview technology". We believe it is a reasonable way to allow application-transparent ahead-of-time compilation, but this is an unexplored area. We welcome your comments. ! `-n DBFILE [SIZE]' This creates a new database. Currently, databases cannot be resized; you can choose a larger initial size if desired. The default size is 32,749. ! `-a DBFILE JARFILE LIB' ! `-f DBFILE JARFILE LIB' This adds a jar file to the database. For each class file in the jar, a cryptographic signature of the bytecode representation of the class is recorded in the database. At runtime, a class is looked up by its signature and the compiled form of the class is ! looked for in the corresponding shared library. The `-a' option ! will verify that LIB exists before adding it to the database; `-f' skips this check. ! `[`-'][`-0'] -m DBFILE DBFILE,[DBFILE]' Merge a number of databases. The output database overwrites any existing database. To add databases into an existing database, include the destination in the list of sources. ! If `-' or `-0' are used, the list of files to read is taken from ! standard input instead of the command line. For `-0', Input filenames are terminated by a null character instead of by whitespace. Useful when arguments might contain white space. The GNU find -print0 option produces input suitable for this mode. ! `-t DBFILE' Test a database. ! `-l DBFILE' List the contents of a database. ! `-p' Print the name of the default database. If there is no default ! database, this prints a blank line. If LIBDIR is specified, use ! it instead of the default library directory component of the ! database name. ! `--help' Print a help message, then exit. ! `--version' ! `-v' Print version information, then exit. +  File: gcj.info, Node: Invoking jv-convert, Next: Invoking grmic, Prev: Invoking gcj-dbtool, Up: Top 6 Invoking jv-convert ********************* ! `jv-convert' [`OPTION'] ... [INPUTFILE [OUTPUTFILE]] ! `jv-convert' is a utility included with `libgcj' which converts a ! file from one encoding to another. It is similar to the Unix `iconv' utility. ! The encodings supported by `jv-convert' are platform-dependent. Currently there is no way to get a list of all supported encodings. ! `--encoding NAME' ! `--from NAME' Use NAME as the input encoding. The default is the current locale's encoding. ! `--to NAME' ! Use NAME as the output encoding. The default is the `JavaSrc' ! encoding; this is ASCII with `\u' escapes for non-ASCII characters. ! `-i FILE' Read from FILE. The default is to read from standard input. ! `-o FILE' Write to FILE. The default is to write to standard output. ! `--reverse' Swap the input and output encodings. ! `--help' Print a help message, then exit. ! `--version' Print version information, then exit.  *************** File: gcj.info, Node: Invoking grmic, *** 2095,2143 **** 7 Invoking grmic **************** ! 'grmic' ['OPTION'] ... CLASS ... ! 'grmic' is a utility included with 'libgcj' which generates stubs for ! remote objects. Note that this program isn't yet fully compatible with the JDK ! 'grmic'. Some options, such as '-classpath', are recognized but currently ignored. We have left these options undocumented for now. ! Long options can also be given with a GNU-style leading '--'. For ! instance, '--help' is accepted. ! '-keep' ! '-keepgenerated' ! By default, 'grmic' deletes intermediate files. Either of these options causes it not to delete such files. ! '-v1.1' ! Cause 'grmic' to create stubs and skeletons for the 1.1 protocol version. ! '-vcompat' ! Cause 'grmic' to create stubs and skeletons compatible with both the 1.1 and 1.2 protocol versions. This is the default. ! '-v1.2' ! Cause 'grmic' to create stubs and skeletons for the 1.2 protocol version. ! '-nocompile' Don't compile the generated files. ! '-verbose' ! Print information about what 'grmic' is doing. ! '-d DIRECTORY' ! Put output files in DIRECTORY. By default the files are put in the ! current working directory. ! '-help' Print a help message, then exit. ! '-version' Print version information, then exit.  --- 2119,2167 ---- 7 Invoking grmic **************** ! `grmic' [`OPTION'] ... CLASS ... ! `grmic' is a utility included with `libgcj' which generates stubs ! for remote objects. Note that this program isn't yet fully compatible with the JDK ! `grmic'. Some options, such as `-classpath', are recognized but currently ignored. We have left these options undocumented for now. ! Long options can also be given with a GNU-style leading `--'. For ! instance, `--help' is accepted. ! `-keep' ! `-keepgenerated' ! By default, `grmic' deletes intermediate files. Either of these options causes it not to delete such files. ! `-v1.1' ! Cause `grmic' to create stubs and skeletons for the 1.1 protocol version. ! `-vcompat' ! Cause `grmic' to create stubs and skeletons compatible with both the 1.1 and 1.2 protocol versions. This is the default. ! `-v1.2' ! Cause `grmic' to create stubs and skeletons for the 1.2 protocol version. ! `-nocompile' Don't compile the generated files. ! `-verbose' ! Print information about what `grmic' is doing. ! `-d DIRECTORY' ! Put output files in DIRECTORY. By default the files are put in ! the current working directory. ! `-help' Print a help message, then exit. ! `-version' Print version information, then exit.  *************** File: gcj.info, Node: Invoking gc-analy *** 2146,2163 **** 8 Invoking gc-analyze ********************* ! 'gc-analyze' ['OPTION'] ... [FILE] ! 'gc-analyze' prints an analysis of a GC memory dump to standard out. The memory dumps may be created by calling ! 'gnu.gcj.util.GCInfo.enumerate(String namePrefix)' from java code. A memory dump will be created on an out of memory condition if ! 'gnu.gcj.util.GCInfo.setOOMDump(String namePrefix)' is called before the ! out of memory occurs. ! Running this program will create two files: 'TestDump001' and ! 'TestDump001.bytes'. import gnu.gcj.util.*; import java.util.*; --- 2170,2187 ---- 8 Invoking gc-analyze ********************* ! `gc-analyze' [`OPTION'] ... [FILE] ! `gc-analyze' prints an analysis of a GC memory dump to standard out. The memory dumps may be created by calling ! `gnu.gcj.util.GCInfo.enumerate(String namePrefix)' from java code. A memory dump will be created on an out of memory condition if ! `gnu.gcj.util.GCInfo.setOOMDump(String namePrefix)' is called before ! the out of memory occurs. ! Running this program will create two files: `TestDump001' and ! `TestDump001.bytes'. import gnu.gcj.util.*; import java.util.*; *************** out of memory occurs. *** 2179,2199 **** gc-analyze -v TestDump001 ! '--verbose' ! '-v' Verbose output. ! '-p TOOL-PREFIX' ! Prefix added to the names of the 'nm' and 'readelf' commands. ! '-d DIRECTORY' Directory that contains the executable and shared libraries used when the dump was generated. ! '--help' Print a help message, then exit. ! '--version' Print version information, then exit.  --- 2203,2223 ---- gc-analyze -v TestDump001 ! `--verbose' ! `-v' Verbose output. ! `-p TOOL-PREFIX' ! Prefix added to the names of the `nm' and `readelf' commands. ! `-d DIRECTORY' Directory that contains the executable and shared libraries used when the dump was generated. ! `--help' Print a help message, then exit. ! `--version' Print version information, then exit.  *************** File: gcj.info, Node: Invoking aot-comp *** 2202,2242 **** 9 Invoking aot-compile ********************** ! 'aot-compile' is a script that searches a directory for Java bytecode ! (as class files, or in jars) and uses 'gcj' to compile it to native code ! and generate the databases from it. ! '-M, --make=PATH' ! Specify the path to the 'make' executable to use. ! '-C, --gcj=PATH' ! Specify the path to the 'gcj' executable to use. ! '-D, --dbtool=PATH' ! Specify the path to the 'gcj-dbtool' executable to use. ! '-m, --makeflags=FLAGS' ! Specify flags to pass to 'make' during the build. ! '-c, --gcjflags=FLAGS' ! Specify flags to pass to 'gcj' during compilation, in addition to '-fPIC -findirect-dispatch -fjni'. ! '-l, --ldflags=FLAGS' ! Specify flags to pass to 'gcj' during linking, in addition to '-Wl,-Bsymbolic'. ! '-e, --exclude=PATH' Do not compile PATH.  File: gcj.info, Node: Invoking rebuild-gcj-db, Next: About CNI, Prev: Invoking aot-compile, Up: Top 10 Invoking rebuild-gcj-db ************************** ! 'rebuild-gcj-db' is a script that merges the per-solib databases made by ! 'aot-compile' into one system-wide database so 'gij' can find the solibs.  --- 2226,2267 ---- 9 Invoking aot-compile ********************** ! `aot-compile' is a script that searches a directory for Java bytecode ! (as class files, or in jars) and uses `gcj' to compile it to native ! code and generate the databases from it. ! `-M, --make=PATH' ! Specify the path to the `make' executable to use. ! `-C, --gcj=PATH' ! Specify the path to the `gcj' executable to use. ! `-D, --dbtool=PATH' ! Specify the path to the `gcj-dbtool' executable to use. ! `-m, --makeflags=FLAGS' ! Specify flags to pass to `make' during the build. ! `-c, --gcjflags=FLAGS' ! Specify flags to pass to `gcj' during compilation, in addition to '-fPIC -findirect-dispatch -fjni'. ! `-l, --ldflags=FLAGS' ! Specify flags to pass to `gcj' during linking, in addition to '-Wl,-Bsymbolic'. ! `-e, --exclude=PATH' Do not compile PATH. +  File: gcj.info, Node: Invoking rebuild-gcj-db, Next: About CNI, Prev: Invoking aot-compile, Up: Top 10 Invoking rebuild-gcj-db ************************** ! `rebuild-gcj-db' is a script that merges the per-solib databases made by ! `aot-compile' into one system-wide database so `gij' can find the solibs.  *************** File: gcj.info, Node: Basic concepts, *** 2279,2287 **** In terms of languages features, Java is mostly a subset of C++. Java has a few important extensions, plus a powerful standard class library, but on the whole that does not change the basic similarity. Java is a ! hybrid object-oriented language, with a few native types, in addition to ! class types. It is class-based, where a class may have static as well ! as per-object fields, and static as well as instance methods. Non-static methods may be virtual, and may be overloaded. Overloading is resolved at compile time by matching the actual argument types against the parameter types. Virtual methods are implemented using --- 2304,2312 ---- In terms of languages features, Java is mostly a subset of C++. Java has a few important extensions, plus a powerful standard class library, but on the whole that does not change the basic similarity. Java is a ! hybrid object-oriented language, with a few native types, in addition ! to class types. It is class-based, where a class may have static as ! well as per-object fields, and static as well as instance methods. Non-static methods may be virtual, and may be overloaded. Overloading is resolved at compile time by matching the actual argument types against the parameter types. Virtual methods are implemented using *************** method. Classes are organized in a pack *** 2291,2303 **** All of the listed attributes are also true of C++, though C++ has extra features (for example in C++ objects may be allocated not just on ! the heap, but also statically or in a local stack frame). Because 'gcj' ! uses the same compiler technology as G++ (the GNU C++ compiler), it is ! possible to make the intersection of the two languages use the same ABI ! (object representation and calling conventions). The key idea in CNI is ! that Java objects are C++ objects, and all Java classes are C++ classes ! (but not the other way around). So the most important task in ! integrating Java and C++ is to remove gratuitous incompatibilities. You write CNI code as a regular C++ source file. (You do have to use a Java/CNI-aware C++ compiler, specifically a recent version of G++.) --- 2316,2328 ---- All of the listed attributes are also true of C++, though C++ has extra features (for example in C++ objects may be allocated not just on ! the heap, but also statically or in a local stack frame). Because ! `gcj' uses the same compiler technology as G++ (the GNU C++ compiler), ! it is possible to make the intersection of the two languages use the ! same ABI (object representation and calling conventions). The key idea ! in CNI is that Java objects are C++ objects, and all Java classes are ! C++ classes (but not the other way around). So the most important task ! in integrating Java and C++ is to remove gratuitous incompatibilities. You write CNI code as a regular C++ source file. (You do have to use a Java/CNI-aware C++ compiler, specifically a recent version of G++.) *************** and then must include one header file fo *** 2312,2325 **** #include #include ! These header files are automatically generated by 'gcjh'. CNI provides some functions and macros to make using Java objects and primitive types from C++ easier. In general, these CNI functions and ! macros start with the 'Jv' prefix, for example the function ! 'JvNewObjectArray'. This convention is used to avoid conflicts with other libraries. Internal functions in CNI start with the prefix ! '_Jv_'. You should not call these; if you find a need to, let us know and we will try to come up with an alternate solution. 11.1.1 Limitations --- 2337,2350 ---- #include #include ! These header files are automatically generated by `gcjh'. CNI provides some functions and macros to make using Java objects and primitive types from C++ easier. In general, these CNI functions and ! macros start with the `Jv' prefix, for example the function ! `JvNewObjectArray'. This convention is used to avoid conflicts with other libraries. Internal functions in CNI start with the prefix ! `_Jv_'. You should not call these; if you find a need to, let us know and we will try to come up with an alternate solution. 11.1.1 Limitations *************** freed from the shackles of Java, a CNI C *** 2330,2336 **** rules of the Java programming language. For example: it is not possible to declare a method in a CNI class ! that will take a C string ('char*') as an argument, or to declare a member variable of some non-Java datatype.  --- 2355,2361 ---- rules of the Java programming language. For example: it is not possible to declare a method in a CNI class ! that will take a C string (`char*') as an argument, or to declare a member variable of some non-Java datatype.  *************** sub-packages. Every class belongs to ei *** 2345,2353 **** package that has a hierarchical and globally unique name. A Java package is mapped to a C++ "namespace". The Java class ! 'java.lang.String' is in the package 'java.lang', which is a sub-package ! of 'java'. The C++ equivalent is the class 'java::lang::String', which ! is in the namespace 'java::lang' which is in the namespace 'java'. Here is how you could express this: --- 2370,2379 ---- package that has a hierarchical and globally unique name. A Java package is mapped to a C++ "namespace". The Java class ! `java.lang.String' is in the package `java.lang', which is a ! sub-package of `java'. The C++ equivalent is the class ! `java::lang::String', which is in the namespace `java::lang' which is ! in the namespace `java'. Here is how you could express this: *************** Here is how you could express this: *** 2365,2371 **** ... }; ! The 'gcjh' tool automatically generates the necessary namespace declarations. 11.2.1 Leaving out package names --- 2391,2397 ---- ... }; ! The `gcjh' tool automatically generates the necessary namespace declarations. 11.2.1 Leaving out package names *************** declarations. *** 2374,2393 **** Always using the fully-qualified name of a java class can be tiresomely verbose. Using the full qualified name also ties the code to a single package making code changes necessary should the class move from one ! package to another. The Java 'package' declaration specifies that the ! following class declarations are in the named package, without having to ! explicitly name the full package qualifiers. The 'package' declaration ! can be followed by zero or more 'import' declarations, which allows ! either a single class or all the classes in a package to be named by a ! simple identifier. C++ provides something similar with the 'using' ! declaration and directive. In Java: import PACKAGE-NAME.CLASS-NAME; allows the program text to refer to CLASS-NAME as a shorthand for the ! fully qualified name: 'PACKAGE-NAME.CLASS-NAME'. To achieve the same effect C++, you have to do this: --- 2400,2419 ---- Always using the fully-qualified name of a java class can be tiresomely verbose. Using the full qualified name also ties the code to a single package making code changes necessary should the class move from one ! package to another. The Java `package' declaration specifies that the ! following class declarations are in the named package, without having ! to explicitly name the full package qualifiers. The `package' ! declaration can be followed by zero or more `import' declarations, which ! allows either a single class or all the classes in a package to be ! named by a simple identifier. C++ provides something similar with the ! `using' declaration and directive. In Java: import PACKAGE-NAME.CLASS-NAME; allows the program text to refer to CLASS-NAME as a shorthand for the ! fully qualified name: `PACKAGE-NAME.CLASS-NAME'. To achieve the same effect C++, you have to do this: *************** Java can also cause imports on demand, l *** 2397,2404 **** import PACKAGE-NAME.*; ! Doing this allows any class from the package PACKAGE-NAME to be referred ! to only by its class-name within the program text. The same effect can be achieved in C++ like this: --- 2423,2430 ---- import PACKAGE-NAME.*; ! Doing this allows any class from the package PACKAGE-NAME to be ! referred to only by its class-name within the program text. The same effect can be achieved in C++ like this: *************** example) so CNI provides a special C++ t *** 2418,2450 **** type: *Java type* *C/C++ typename* *Description* ! 'char' 'jchar' 16 bit Unicode character ! 'boolean' 'jboolean' logical (true or false) values ! 'byte' 'jbyte' 8-bit signed integer ! 'short' 'jshort' 16 bit signed integer ! 'int' 'jint' 32 bit signed integer ! 'long' 'jlong' 64 bit signed integer ! 'float' 'jfloat' 32 bit IEEE floating point number ! 'double' 'jdouble' 64 bit IEEE floating point number ! 'void' 'void' no value When referring to a Java type You should always use these C++ ! typenames (e.g.: 'jint') to avoid disappointment. 11.3.1 Reference types associated with primitive types ------------------------------------------------------ In Java each primitive type has an associated reference type, e.g.: ! 'boolean' has an associated 'java.lang.Boolean.TYPE' class. In order to ! make working with such classes easier GCJ provides the macro ! 'JvPrimClass': -- macro: JvPrimClass type ! Return a pointer to the 'Class' object corresponding to the type supplied. JvPrimClass(void) => java.lang.Void.TYPE  File: gcj.info, Node: Reference types, Next: Interfaces, Prev: Primitive types, Up: About CNI --- 2444,2477 ---- type: *Java type* *C/C++ typename* *Description* ! `char' `jchar' 16 bit Unicode character ! `boolean' `jboolean' logical (true or false) values ! `byte' `jbyte' 8-bit signed integer ! `short' `jshort' 16 bit signed integer ! `int' `jint' 32 bit signed integer ! `long' `jlong' 64 bit signed integer ! `float' `jfloat' 32 bit IEEE floating point number ! `double' `jdouble' 64 bit IEEE floating point number ! `void' `void' no value When referring to a Java type You should always use these C++ ! typenames (e.g.: `jint') to avoid disappointment. 11.3.1 Reference types associated with primitive types ------------------------------------------------------ In Java each primitive type has an associated reference type, e.g.: ! `boolean' has an associated `java.lang.Boolean.TYPE' class. In order ! to make working with such classes easier GCJ provides the macro ! `JvPrimClass': -- macro: JvPrimClass type ! Return a pointer to the `Class' object corresponding to the type supplied. JvPrimClass(void) => java.lang.Void.TYPE +  File: gcj.info, Node: Reference types, Next: Interfaces, Prev: Primitive types, Up: About CNI *************** File: gcj.info, Node: Reference types, *** 2453,2474 **** A Java reference type is treated as a class in C++. Classes and interfaces are handled this way. A Java reference is translated to a ! C++ pointer, so for instance a Java 'java.lang.String' becomes, in C++, ! 'java::lang::String *'. CNI provides a few built-in typedefs for the most common classes: *Java type* *C++ typename* *Description* ! 'java.lang.Object' 'jobject' Object type ! 'java.lang.String' 'jstring' String type ! 'java.lang.Class' 'jclass' Class type ! ! Every Java class or interface has a corresponding 'Class' instance. ! These can be accessed in CNI via the static 'class$' field of a class. ! The 'class$' field is of type 'Class' (and not 'Class *'), so you will ! typically take the address of it. ! Here is how you can refer to the class of 'String', which in Java ! would be written 'String.class': using namespace java::lang; doSomething (&String::class$); --- 2480,2501 ---- A Java reference type is treated as a class in C++. Classes and interfaces are handled this way. A Java reference is translated to a ! C++ pointer, so for instance a Java `java.lang.String' becomes, in C++, ! `java::lang::String *'. CNI provides a few built-in typedefs for the most common classes: *Java type* *C++ typename* *Description* ! `java.lang.Object' `jobject' Object type ! `java.lang.String' `jstring' String type ! `java.lang.Class' `jclass' Class type ! ! Every Java class or interface has a corresponding `Class' instance. ! These can be accessed in CNI via the static `class$' field of a class. ! The `class$' field is of type `Class' (and not `Class *'), so you will ! typically take the address of it. ! Here is how you can refer to the class of `String', which in Java ! would be written `String.class': using namespace java::lang; doSomething (&String::class$); *************** File: gcj.info, Node: Interfaces, Next *** 2482,2494 **** A Java class can "implement" zero or more "interfaces", in addition to inheriting from a single base class. ! CNI allows CNI code to implement methods of interfaces. You can also ! call methods through interface references, with some limitations. ! CNI doesn't understand interface inheritance at all yet. So, you can ! only call an interface method when the declared type of the field being ! called matches the interface which declares that method. The workaround ! is to cast the interface reference to the right superinterface. For example if you have: --- 2509,2522 ---- A Java class can "implement" zero or more "interfaces", in addition to inheriting from a single base class. ! CNI allows CNI code to implement methods of interfaces. You can ! also call methods through interface references, with some limitations. ! CNI doesn't understand interface inheritance at all yet. So, you ! can only call an interface method when the declared type of the field ! being called matches the interface which declares that method. The ! workaround is to cast the interface reference to the right ! superinterface. For example if you have: *************** is to cast the interface reference to th *** 2502,2509 **** void b(); } ! and declare a variable of type 'B' in C++, you can't call 'a()' ! unless you cast it to an 'A' first.  File: gcj.info, Node: Objects and Classes, Next: Class Initialization, Prev: Interfaces, Up: About CNI --- 2530,2537 ---- void b(); } ! and declare a variable of type `B' in C++, you can't call `a()' ! unless you cast it to an `A' first.  File: gcj.info, Node: Objects and Classes, Next: Class Initialization, Prev: Interfaces, Up: About CNI *************** File: gcj.info, Node: Objects and Class *** 2514,2526 **** 11.6.1 Classes -------------- ! All Java classes are derived from 'java.lang.Object'. C++ does not have ! a unique root class, but we use the C++ class 'java::lang::Object' as ! the C++ version of the 'java.lang.Object' Java class. All other Java ! classes are mapped into corresponding C++ classes derived from ! 'java::lang::Object'. ! Interface inheritance (the 'implements' keyword) is currently not reflected in the C++ mapping. 11.6.2 Object fields --- 2542,2554 ---- 11.6.1 Classes -------------- ! All Java classes are derived from `java.lang.Object'. C++ does not ! have a unique root class, but we use the C++ class `java::lang::Object' ! as the C++ version of the `java.lang.Object' Java class. All other ! Java classes are mapped into corresponding C++ classes derived from ! `java::lang::Object'. ! Interface inheritance (the `implements' keyword) is currently not reflected in the C++ mapping. 11.6.2 Object fields *************** reflected in the C++ mapping. *** 2528,2545 **** Each object contains an object header, followed by the instance fields of the class, in order. The object header consists of a single pointer ! to a dispatch or virtual function table. (There may be extra fields _in ! front of_ the object, for example for memory management, but this is ! invisible to the application, and the reference to the object points to ! the dispatch table pointer.) The fields are laid out in the same order, alignment, and size as in ! C++. Specifically, 8-bit and 16-bit native types ('byte', 'short', ! 'char', and 'boolean') are _not_ widened to 32 bits. Note that the Java ! VM does extend 8-bit and 16-bit types to 32 bits when on the VM stack or ! temporary registers. ! If you include the 'gcjh'-generated header for a class, you can access fields of Java classes in the _natural_ way. For example, given the following Java class: --- 2556,2573 ---- Each object contains an object header, followed by the instance fields of the class, in order. The object header consists of a single pointer ! to a dispatch or virtual function table. (There may be extra fields ! _in front of_ the object, for example for memory management, but this ! is invisible to the application, and the reference to the object points ! to the dispatch table pointer.) The fields are laid out in the same order, alignment, and size as in ! C++. Specifically, 8-bit and 16-bit native types (`byte', `short', ! `char', and `boolean') are _not_ widened to 32 bits. Note that the ! Java VM does extend 8-bit and 16-bit types to 32 bits when on the VM ! stack or temporary registers. ! If you include the `gcjh'-generated header for a class, you can access fields of Java classes in the _natural_ way. For example, given the following Java class: *************** the following Java class: *** 2567,2575 **** ------------------------ CNI does not strictly enforce the Java access specifiers, because Java ! permissions cannot be directly mapped into C++ permission. Private Java ! fields and methods are mapped to private C++ fields and methods, but ! other fields and methods are mapped to public fields and methods.  File: gcj.info, Node: Class Initialization, Next: Object allocation, Prev: Objects and Classes, Up: About CNI --- 2595,2603 ---- ------------------------ CNI does not strictly enforce the Java access specifiers, because Java ! permissions cannot be directly mapped into C++ permission. Private ! Java fields and methods are mapped to private C++ fields and methods, ! but other fields and methods are mapped to public fields and methods.  File: gcj.info, Node: Class Initialization, Next: Object allocation, Prev: Objects and Classes, Up: About CNI *************** File: gcj.info, Node: Class Initializat *** 2578,2618 **** ========================= Java requires that each class be automatically initialized at the time ! of the first active use. Initializing a class involves initializing the ! static fields, running code in class initializer methods, and initializing base classes. There may also be some implementation ! specific actions, such as allocating 'String' objects corresponding to string literals in the code. ! The GCJ compiler inserts calls to 'JvInitClass' at appropriate places ! to ensure that a class is initialized when required. The C++ compiler ! does not insert these calls automatically--it is the programmer's ! responsibility to make sure classes are initialized. However, this is ! fairly painless because of the conventions assumed by the Java system. ! First, 'libgcj' will make sure a class is initialized before an ! instance of that object is created. This is one of the responsibilities ! of the 'new' operation. This is taken care of both in Java code, and in ! C++ code. When G++ sees a 'new' of a Java class, it will call a routine ! in 'libgcj' to allocate the object, and that routine will take care of ! initializing the class. Note however that this does not happen for Java ! arrays; you must allocate those using the appropriate CNI function. It ! follows that you can access an instance field, or call an instance ! (non-static) method and be safe in the knowledge that the class and all ! of its base classes have been initialized. Invoking a static method is also safe. This is because the Java compiler adds code to the start of a static method to make sure the ! class is initialized. However, the C++ compiler does not add this extra ! code. Hence, if you write a native static method using CNI, you are ! responsible for calling 'JvInitClass' before doing anything else in the ! method (unless you are sure it is safe to leave it out). Accessing a static field also requires the class of the field to be ! initialized. The Java compiler will generate code to call 'JvInitClass' ! before getting or setting the field. However, the C++ compiler will not ! generate this extra code, so it is your responsibility to make sure the ! class is initialized before you access a static field from C++.  File: gcj.info, Node: Object allocation, Next: Memory allocation, Prev: Class Initialization, Up: About CNI --- 2606,2649 ---- ========================= Java requires that each class be automatically initialized at the time ! of the first active use. Initializing a class involves initializing ! the static fields, running code in class initializer methods, and initializing base classes. There may also be some implementation ! specific actions, such as allocating `String' objects corresponding to string literals in the code. ! The GCJ compiler inserts calls to `JvInitClass' at appropriate ! places to ensure that a class is initialized when required. The C++ ! compiler does not insert these calls automatically--it is the ! programmer's responsibility to make sure classes are initialized. ! However, this is fairly painless because of the conventions assumed by ! the Java system. ! First, `libgcj' will make sure a class is initialized before an ! instance of that object is created. This is one of the ! responsibilities of the `new' operation. This is taken care of both in ! Java code, and in C++ code. When G++ sees a `new' of a Java class, it ! will call a routine in `libgcj' to allocate the object, and that ! routine will take care of initializing the class. Note however that ! this does not happen for Java arrays; you must allocate those using the ! appropriate CNI function. It follows that you can access an instance ! field, or call an instance (non-static) method and be safe in the ! knowledge that the class and all of its base classes have been ! initialized. Invoking a static method is also safe. This is because the Java compiler adds code to the start of a static method to make sure the ! class is initialized. However, the C++ compiler does not add this ! extra code. Hence, if you write a native static method using CNI, you ! are responsible for calling `JvInitClass' before doing anything else in ! the method (unless you are sure it is safe to leave it out). Accessing a static field also requires the class of the field to be ! initialized. The Java compiler will generate code to call ! `JvInitClass' before getting or setting the field. However, the C++ ! compiler will not generate this extra code, so it is your ! responsibility to make sure the class is initialized before you access ! a static field from C++.  File: gcj.info, Node: Object allocation, Next: Memory allocation, Prev: Class Initialization, Up: About CNI *************** expression", e.g.: *** 2629,2637 **** objects have to be explicitly deleted; in Java they are automatically deleted by the garbage collector. Using CNI, you can allocate a new Java object using standard C++ syntax and the C++ compiler will allocate ! memory from the garbage collector. If you have overloaded constructors, ! the compiler will choose the correct one using standard C++ overload ! resolution rules. For example: --- 2660,2668 ---- objects have to be explicitly deleted; in Java they are automatically deleted by the garbage collector. Using CNI, you can allocate a new Java object using standard C++ syntax and the C++ compiler will allocate ! memory from the garbage collector. If you have overloaded ! constructors, the compiler will choose the correct one using standard ! C++ overload resolution rules. For example: *************** File: gcj.info, Node: Memory allocation *** 2643,2659 **** 11.9 Memory allocation ====================== ! When allocating memory in CNI methods it is best to handle out-of-memory ! conditions by throwing a Java exception. These functions are provided ! for that purpose: -- Function: void* JvMalloc (jsize SIZE) ! Calls malloc. Throws 'java.lang.OutOfMemoryError' if allocation fails. -- Function: void* JvRealloc (void* PTR, jsize SIZE) ! Calls realloc. Throws 'java.lang.OutOfMemoryError' if reallocation ! fails. -- Function: void JvFree (void* PTR) Calls free. --- 2674,2690 ---- 11.9 Memory allocation ====================== ! When allocating memory in CNI methods it is best to handle ! out-of-memory conditions by throwing a Java exception. These functions ! are provided for that purpose: -- Function: void* JvMalloc (jsize SIZE) ! Calls malloc. Throws `java.lang.OutOfMemoryError' if allocation fails. -- Function: void* JvRealloc (void* PTR, jsize SIZE) ! Calls realloc. Throws `java.lang.OutOfMemoryError' if ! reallocation fails. -- Function: void JvFree (void* PTR) Calls free. *************** While in many ways Java is similar to C *** 2668,2677 **** in its treatment of arrays. C arrays are based on the idea of pointer arithmetic, which would be incompatible with Java's security requirements. Java arrays are true objects (array types inherit from ! 'java.lang.Object'). An array-valued variable is one that contains a reference (pointer) to an array object. ! Referencing a Java array in C++ code is done using the 'JArray' template, which as defined as follows: class __JArray : public java::lang::Object --- 2699,2708 ---- in its treatment of arrays. C arrays are based on the idea of pointer arithmetic, which would be incompatible with Java's security requirements. Java arrays are true objects (array types inherit from ! `java.lang.Object'). An array-valued variable is one that contains a reference (pointer) to an array object. ! Referencing a Java array in C++ code is done using the `JArray' template, which as defined as follows: class __JArray : public java::lang::Object *************** template, which as defined as follows: *** 2688,2694 **** T& operator[](jint i) { return data[i]; } }; ! There are a number of 'typedef's which correspond to 'typedef's from the JNI. Each is the type of an array holding objects of the relevant type: --- 2719,2725 ---- T& operator[](jint i) { return data[i]; } }; ! There are a number of `typedef's which correspond to `typedef's from the JNI. Each is the type of an array holding objects of the relevant type: *************** type: *** 2704,2722 **** typedef JArray *jdoubleArray; -- Method on template: T* elements (JArray ARRAY) ! This template function can be used to get a pointer to the elements ! of the 'array'. For instance, you can fetch a pointer to the ! integers that make up an 'int[]' like so: extern jintArray foo; jint *intp = elements (foo); The name of this function may change in the future. ! -- Function: jobjectArray JvNewObjectArray (jsize LENGTH, jclass KLASS, ! jobject INIT) This creates a new array whose elements have reference type. ! 'klass' is the type of elements of the array and 'init' is the initial value put into every slot in the array. using namespace java::lang; --- 2735,2753 ---- typedef JArray *jdoubleArray; -- Method on template: T* elements (JArray ARRAY) ! This template function can be used to get a pointer to the ! elements of the `array'. For instance, you can fetch a pointer to ! the integers that make up an `int[]' like so: extern jintArray foo; jint *intp = elements (foo); The name of this function may change in the future. ! -- Function: jobjectArray JvNewObjectArray (jsize LENGTH, jclass ! KLASS, jobject INIT) This creates a new array whose elements have reference type. ! `klass' is the type of elements of the array and `init' is the initial value put into every slot in the array. using namespace java::lang; *************** File: gcj.info, Node: Methods, Next: S *** 2753,2761 **** ============= Java methods are mapped directly into C++ methods. The header files ! generated by 'gcjh' include the appropriate method definitions. ! Basically, the generated methods have the same names and _corresponding_ ! types as the Java methods, and are called in the natural manner. 11.11.1 Overloading ------------------- --- 2784,2793 ---- ============= Java methods are mapped directly into C++ methods. The header files ! generated by `gcjh' include the appropriate method definitions. ! Basically, the generated methods have the same names and ! _corresponding_ types as the Java methods, and are called in the ! natural manner. 11.11.1 Overloading ------------------- *************** Both Java and C++ provide method overloa *** 2764,2775 **** a class have the same name, and the correct one is chosen (at compile time) depending on the argument types. The rules for choosing the correct method are (as expected) more complicated in C++ than in Java, ! but given a set of overloaded methods generated by 'gcjh' the C++ compiler will choose the expected one. Common assemblers and linkers are not aware of C++ overloading, so ! the standard implementation strategy is to encode the parameter types of ! a method into its assembly-level name. This encoding is called "mangling", and the encoded name is the "mangled name". The same mechanism is used to implement Java overloading. For C++/Java interoperability, it is important that both the Java and C++ compilers --- 2796,2807 ---- a class have the same name, and the correct one is chosen (at compile time) depending on the argument types. The rules for choosing the correct method are (as expected) more complicated in C++ than in Java, ! but given a set of overloaded methods generated by `gcjh' the C++ compiler will choose the expected one. Common assemblers and linkers are not aware of C++ overloading, so ! the standard implementation strategy is to encode the parameter types ! of a method into its assembly-level name. This encoding is called "mangling", and the encoded name is the "mangled name". The same mechanism is used to implement Java overloading. For C++/Java interoperability, it is important that both the Java and C++ compilers *************** use the _same_ encoding scheme. *** 2779,2785 **** ---------------------- Static Java methods are invoked in CNI using the standard C++ syntax, ! using the '::' operator rather than the '.' operator. For example: --- 2811,2817 ---- ---------------------- Static Java methods are invoked in CNI using the standard C++ syntax, ! using the `::' operator rather than the `.' operator. For example: *************** For example: *** 2799,2813 **** --------------------------- Constructors are called implicitly as part of object allocation using ! the 'new' operator. For example: java::lang::Integer *x = new java::lang::Integer(234); Java does not allow a constructor to be a native method. This ! limitation can be coded round however because a constructor can _call_ a ! native method. 11.11.4 Instance methods ------------------------ --- 2831,2845 ---- --------------------------- Constructors are called implicitly as part of object allocation using ! the `new' operator. For example: java::lang::Integer *x = new java::lang::Integer(234); Java does not allow a constructor to be a native method. This ! limitation can be coded round however because a constructor can _call_ ! a native method. 11.11.4 Instance methods ------------------------ *************** File: gcj.info, Node: Strings, Next: M *** 2845,2879 **** ============= CNI provides a number of utility functions for working with Java Java ! 'String' objects. The names and interfaces are analogous to those of JNI. -- Function: jstring JvNewString (const jchar* CHARS, jsize LEN) ! Returns a Java 'String' object with characters from the array of Unicode characters CHARS up to the index LEN in that array. -- Function: jstring JvNewStringLatin1 (const char* BYTES, jsize LEN) ! Returns a Java 'String' made up of LEN bytes from BYTES. -- Function: jstring JvNewStringLatin1 (const char* BYTES) ! As above but the length of the 'String' is 'strlen(BYTES)'. -- Function: jstring JvNewStringUTF (const char* BYTES) ! Returns a 'String' which is made up of the UTF encoded characters present in the C string BYTES. -- Function: jchar* JvGetStringChars (jstring STR) ! Returns a pointer to an array of characters making up the 'String' STR. -- Function: int JvGetStringUTFLength (jstring STR) Returns the number of bytes required to encode the contents of the ! 'String' STR in UTF-8. -- Function: jsize JvGetStringUTFRegion (jstring STR, jsize START, jsize LEN, char* BUF) ! Puts the UTF-8 encoding of a region of the 'String' STR into the ! buffer 'buf'. The region to fetch is marked by START and LEN. Note that BUF is a buffer, not a C string. It is _not_ null terminated. --- 2877,2911 ---- ============= CNI provides a number of utility functions for working with Java Java ! `String' objects. The names and interfaces are analogous to those of JNI. -- Function: jstring JvNewString (const jchar* CHARS, jsize LEN) ! Returns a Java `String' object with characters from the array of Unicode characters CHARS up to the index LEN in that array. -- Function: jstring JvNewStringLatin1 (const char* BYTES, jsize LEN) ! Returns a Java `String' made up of LEN bytes from BYTES. -- Function: jstring JvNewStringLatin1 (const char* BYTES) ! As above but the length of the `String' is `strlen(BYTES)'. -- Function: jstring JvNewStringUTF (const char* BYTES) ! Returns a `String' which is made up of the UTF encoded characters present in the C string BYTES. -- Function: jchar* JvGetStringChars (jstring STR) ! Returns a pointer to an array of characters making up the `String' STR. -- Function: int JvGetStringUTFLength (jstring STR) Returns the number of bytes required to encode the contents of the ! `String' STR in UTF-8. -- Function: jsize JvGetStringUTFRegion (jstring STR, jsize START, jsize LEN, char* BUF) ! Puts the UTF-8 encoding of a region of the `String' STR into the ! buffer `buf'. The region to fetch is marked by START and LEN. Note that BUF is a buffer, not a C string. It is _not_ null terminated. *************** None of the following is possible with C *** 2906,2912 **** . . . ! } // 'uint' is not a valid Java type, neither is 'char*' Of course, it is ok to use C/C++ types within the scope of a method: --- 2938,2944 ---- . . . ! } // `uint' is not a valid Java type, neither is `char*' Of course, it is ok to use C/C++ types within the scope of a method: *************** Of course, it is ok to use C/C++ types w *** 2923,2930 **** --------------- The above restriction can be problematic, so CNI includes the ! 'gnu.gcj.RawData' class. The 'RawData' class is a "non-scanned ! reference" type. In other words variables declared of type 'RawData' can contain any data and are not checked by the compiler or memory manager in any way. --- 2955,2962 ---- --------------- The above restriction can be problematic, so CNI includes the ! `gnu.gcj.RawData' class. The `RawData' class is a "non-scanned ! reference" type. In other words variables declared of type `RawData' can contain any data and are not checked by the compiler or memory manager in any way. *************** Here are some examples: *** 2964,2976 **** 11.13.2 RawDataManaged ---------------------- ! 'gnu.gcj.RawDataManaged' is another type used to indicate special data ! used by native code. Unlike the 'RawData' type, fields declared as ! 'RawDataManaged' will be "marked" by the memory manager and considered for garbage collection. ! Native data which is allocated using CNI's 'JvAllocBytes()' function ! and stored in a 'RawDataManaged' will be automatically freed when the Java object it is associated with becomes unreachable. 11.13.3 Native memory allocation --- 2996,3008 ---- 11.13.2 RawDataManaged ---------------------- ! `gnu.gcj.RawDataManaged' is another type used to indicate special data ! used by native code. Unlike the `RawData' type, fields declared as ! `RawDataManaged' will be "marked" by the memory manager and considered for garbage collection. ! Native data which is allocated using CNI's `JvAllocBytes()' function ! and stored in a `RawDataManaged' will be automatically freed when the Java object it is associated with becomes unreachable. 11.13.3 Native memory allocation *************** Java object it is associated with become *** 2982,3003 **** but will be freed if no references to it are discovered. This function can be useful if you need to associate some native ! data with a Java object. Using a CNI's special 'RawDataManaged' ! type, native data allocated with 'JvAllocBytes' will be automatically freed when the Java object itself becomes unreachable. 11.13.4 Posix signals --------------------- ! On Posix based systems the 'libgcj' library uses several signals internally. CNI code should not attempt to use the same signals as ! doing so may cause 'libgcj' and/or the CNI code to fail. ! SIGSEGV is used on many systems to generate 'NullPointerExceptions'. ! SIGCHLD is used internally by 'Runtime.exec()'. Several other signals (that vary from platform to platform) can be used by the memory manager ! and by 'Thread.interrupt()'.  File: gcj.info, Node: Exception Handling, Next: Synchronization, Prev: Mixing with C++, Up: About CNI --- 3014,3035 ---- but will be freed if no references to it are discovered. This function can be useful if you need to associate some native ! data with a Java object. Using a CNI's special `RawDataManaged' ! type, native data allocated with `JvAllocBytes' will be automatically freed when the Java object itself becomes unreachable. 11.13.4 Posix signals --------------------- ! On Posix based systems the `libgcj' library uses several signals internally. CNI code should not attempt to use the same signals as ! doing so may cause `libgcj' and/or the CNI code to fail. ! SIGSEGV is used on many systems to generate `NullPointerExceptions'. ! SIGCHLD is used internally by `Runtime.exec()'. Several other signals (that vary from platform to platform) can be used by the memory manager ! and by `Thread.interrupt()'.  File: gcj.info, Node: Exception Handling, Next: Synchronization, Prev: Mixing with C++, Up: About CNI *************** are not yet perfectly integrated. The m *** 3010,3028 **** type information facilities of the two languages are not integrated. Still, things work fairly well. You can throw a Java exception from ! C++ using the ordinary 'throw' construct, and this exception can be caught by Java code. Similarly, you can catch an exception thrown from ! Java using the C++ 'catch' construct. Here is an example: if (i >= count) throw new java::lang::IndexOutOfBoundsException(); ! Normally, G++ will automatically detect when you are writing C++ code ! that uses Java exceptions, and handle them appropriately. However, if ! C++ code only needs to execute destructors when Java exceptions are ! thrown through it, GCC will guess incorrectly. Sample problematic code: struct S { ~S(); }; --- 3042,3061 ---- type information facilities of the two languages are not integrated. Still, things work fairly well. You can throw a Java exception from ! C++ using the ordinary `throw' construct, and this exception can be caught by Java code. Similarly, you can catch an exception thrown from ! Java using the C++ `catch' construct. Here is an example: if (i >= count) throw new java::lang::IndexOutOfBoundsException(); ! Normally, G++ will automatically detect when you are writing C++ ! code that uses Java exceptions, and handle them appropriately. ! However, if C++ code only needs to execute destructors when Java ! exceptions are thrown through it, GCC will guess incorrectly. Sample ! problematic code: struct S { ~S(); }; *************** thrown through it, GCC will guess incorr *** 3034,3045 **** bar(); } ! The usual effect of an incorrect guess is a link failure, complaining ! of a missing routine called '__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! '#pragma GCC java_exceptions' at the head of the file. This '#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. --- 3067,3078 ---- bar(); } ! The usual effect of an incorrect guess is a link failure, ! complaining of a missing routine called `__gxx_personality_v0'. You can inform the compiler that Java exceptions are to be used in a translation unit, irrespective of what it might think, by writing ! `#pragma GCC java_exceptions' at the head of the file. This `#pragma' must appear before any functions that throw or catch exceptions, or run destructors when exceptions are thrown through them. *************** File: gcj.info, Node: Synchronization, *** 3050,3067 **** ===================== Each Java object has an implicit monitor. The Java VM uses the ! instruction 'monitorenter' to acquire and lock a monitor, and ! 'monitorexit' to release it. ! The corresponding CNI macros are 'JvMonitorEnter' and 'JvMonitorExit' ! (JNI has similar methods 'MonitorEnter' and 'MonitorExit'). The Java source language does not provide direct access to these ! primitives. Instead, there is a 'synchronized' statement that does an ! implicit 'monitorenter' before entry to the block, and does a ! 'monitorexit' on exit from the block. Note that the lock has to be released even when the block is abnormally terminated by an exception, ! which means there is an implicit 'try finally' surrounding synchronization locks. From C++, it makes sense to use a destructor to release a lock. CNI --- 3083,3101 ---- ===================== Each Java object has an implicit monitor. The Java VM uses the ! instruction `monitorenter' to acquire and lock a monitor, and ! `monitorexit' to release it. ! The corresponding CNI macros are `JvMonitorEnter' and ! `JvMonitorExit' (JNI has similar methods `MonitorEnter' and ! `MonitorExit'). The Java source language does not provide direct access to these ! primitives. Instead, there is a `synchronized' statement that does an ! implicit `monitorenter' before entry to the block, and does a ! `monitorexit' on exit from the block. Note that the lock has to be released even when the block is abnormally terminated by an exception, ! which means there is an implicit `try finally' surrounding synchronization locks. From C++, it makes sense to use a destructor to release a lock. CNI *************** might become this C++ code: *** 3087,3102 **** CODE; } ! Java also has methods with the 'synchronized' attribute. This is ! equivalent to wrapping the entire method body in a 'synchronized' statement. (Alternatively, an implementation could require the caller to do the synchronization. This is not practical for a compiler, because each virtual method call would have to test at run-time if ! synchronization is needed.) Since in 'gcj' the 'synchronized' attribute ! is handled by the method implementation, it is up to the programmer of a ! synchronized native method to handle the synchronization (in the C++ ! implementation of the method). In other words, you need to manually add ! 'JvSynchronize' in a 'native synchronized' method.  File: gcj.info, Node: Invocation, Next: Reflection, Prev: Synchronization, Up: About CNI --- 3121,3136 ---- CODE; } ! Java also has methods with the `synchronized' attribute. This is ! equivalent to wrapping the entire method body in a `synchronized' statement. (Alternatively, an implementation could require the caller to do the synchronization. This is not practical for a compiler, because each virtual method call would have to test at run-time if ! synchronization is needed.) Since in `gcj' the `synchronized' ! attribute is handled by the method implementation, it is up to the ! programmer of a synchronized native method to handle the synchronization ! (in the C++ implementation of the method). In other words, you need to ! manually add `JvSynchronize' in a `native synchronized' method.  File: gcj.info, Node: Invocation, Next: Reflection, Prev: Synchronization, Up: About CNI *************** File: gcj.info, Node: Invocation, Next *** 3105,3127 **** ================ CNI permits C++ applications to make calls into Java classes, in ! addition to allowing Java code to call into C++. Several functions, known as the "invocation API", are provided to support this. -- Function: jint JvCreateJavaVM (JvVMInitArgs* VM_ARGS) ! ! Initializes the Java runtime. This function performs essential initialization of the threads interface, garbage collector, ! exception handling and other key aspects of the runtime. It must ! be called once by an application with a non-Java 'main()' function, ! before any other Java or CNI calls are made. It is safe, but not ! recommended, to call 'JvCreateJavaVM()' more than once provided it ! is only called from a single thread. The VMARGS parameter can be ! used to specify initialization parameters for the Java runtime. It ! may be 'NULL'. JvVMInitArgs represents a list of virtual machine initialization ! arguments. 'JvCreateJavaVM()' ignores the version field. typedef struct JvVMOption { --- 3139,3160 ---- ================ CNI permits C++ applications to make calls into Java classes, in ! addition to allowing Java code to call into C++. Several functions, known as the "invocation API", are provided to support this. -- Function: jint JvCreateJavaVM (JvVMInitArgs* VM_ARGS) ! Initializes the Java runtime. This function performs essential initialization of the threads interface, garbage collector, ! exception handling and other key aspects of the runtime. It must ! be called once by an application with a non-Java `main()' ! function, before any other Java or CNI calls are made. It is ! safe, but not recommended, to call `JvCreateJavaVM()' more than ! once provided it is only called from a single thread. The VMARGS ! parameter can be used to specify initialization parameters for the ! Java runtime. It may be `NULL'. JvVMInitArgs represents a list of virtual machine initialization ! arguments. `JvCreateJavaVM()' ignores the version field. typedef struct JvVMOption { *************** known as the "invocation API", are provi *** 3146,3185 **** jboolean ignoreUnrecognized; } JvVMInitArgs; ! 'JvCreateJavaVM()' returns '0' upon success, or '-1' if the runtime ! is already initialized. ! _Note:_ In GCJ 3.1, the 'vm_args' parameter is ignored. It is recognized and used as of release 4.0. -- Function: java::lang::Thread* JvAttachCurrentThread (jstring NAME, java::lang::ThreadGroup* GROUP) Registers an existing thread with the Java runtime. This must be called once from each thread, before that thread makes any other ! Java or CNI calls. It must be called after 'JvCreateJavaVM'. NAME ! specifies a name for the thread. It may be 'NULL', in which case a name will be generated. GROUP is the ThreadGroup in which this ! thread will be a member. If it is 'NULL', the thread will be a member of the main thread group. The return value is the Java ! 'Thread' object that represents the thread. It is safe to call ! 'JvAttachCurrentThread()' more than once from the same thread. If the thread is already attached, the call is ignored and the current thread object is returned. -- Function: jint JvDetachCurrentThread () ! Unregisters a thread from the Java runtime. This should be called ! by threads that were attached using 'JvAttachCurrentThread()', ! after they have finished making calls to Java code. This ensures that any resources associated with the thread become eligible for ! garbage collection. This function returns '0' upon success, or ! '-1' if the current thread is not attached. 11.16.1 Handling uncaught exceptions ------------------------------------ If an exception is thrown from Java code called using the invocation API, and no handler for the exception can be found, the runtime will ! abort the application. In order to make the application more robust, it is recommended that code which uses the invocation API be wrapped by a top-level try/catch block that catches all Java exceptions. --- 3179,3218 ---- jboolean ignoreUnrecognized; } JvVMInitArgs; ! `JvCreateJavaVM()' returns `0' upon success, or `-1' if the ! runtime is already initialized. ! _Note:_ In GCJ 3.1, the `vm_args' parameter is ignored. It is recognized and used as of release 4.0. -- Function: java::lang::Thread* JvAttachCurrentThread (jstring NAME, java::lang::ThreadGroup* GROUP) Registers an existing thread with the Java runtime. This must be called once from each thread, before that thread makes any other ! Java or CNI calls. It must be called after `JvCreateJavaVM'. NAME ! specifies a name for the thread. It may be `NULL', in which case a name will be generated. GROUP is the ThreadGroup in which this ! thread will be a member. If it is `NULL', the thread will be a member of the main thread group. The return value is the Java ! `Thread' object that represents the thread. It is safe to call ! `JvAttachCurrentThread()' more than once from the same thread. If the thread is already attached, the call is ignored and the current thread object is returned. -- Function: jint JvDetachCurrentThread () ! Unregisters a thread from the Java runtime. This should be called ! by threads that were attached using `JvAttachCurrentThread()', ! after they have finished making calls to Java code. This ensures that any resources associated with the thread become eligible for ! garbage collection. This function returns `0' upon success, or ! `-1' if the current thread is not attached. 11.16.1 Handling uncaught exceptions ------------------------------------ If an exception is thrown from Java code called using the invocation API, and no handler for the exception can be found, the runtime will ! abort the application. In order to make the application more robust, it is recommended that code which uses the invocation API be wrapped by a top-level try/catch block that catches all Java exceptions. *************** top-level try/catch block that catches a *** 3188,3200 **** The following code demonstrates the use of the invocation API. In this example, the C++ application initializes the Java runtime and attaches ! itself. The 'java.lang.System' class is initialized in order to access ! its 'out' field, and a Java string is printed. Finally, the thread is detached from the runtime once it has finished making Java calls. Everything is wrapped with a try/catch block to provide a default handler for any uncaught exceptions. ! The example can be compiled with 'c++ -c test.cc; gcj test.o'. // test.cc #include --- 3221,3233 ---- The following code demonstrates the use of the invocation API. In this example, the C++ application initializes the Java runtime and attaches ! itself. The `java.lang.System' class is initialized in order to access ! its `out' field, and a Java string is printed. Finally, the thread is detached from the runtime once it has finished making Java calls. Everything is wrapped with a try/catch block to provide a default handler for any uncaught exceptions. ! The example can be compiled with `c++ -c test.cc; gcj test.o'. // test.cc #include *************** File: gcj.info, Node: Reflection, Prev *** 3233,3246 **** Reflection is possible with CNI code, it functions similarly to how it functions with JNI. ! The types 'jfieldID' and 'jmethodID' are as in JNI. The functions: ! * 'JvFromReflectedField', ! * 'JvFromReflectedMethod', ! * 'JvToReflectedField' ! * 'JvToFromReflectedMethod' will be added shortly, as will other functions corresponding to JNI. --- 3266,3282 ---- Reflection is possible with CNI code, it functions similarly to how it functions with JNI. ! The types `jfieldID' and `jmethodID' are as in JNI. The functions: ! * `JvFromReflectedField', ! ! * `JvFromReflectedMethod', ! ! * `JvToReflectedField' ! ! * `JvToFromReflectedMethod' will be added shortly, as will other functions corresponding to JNI. *************** File: gcj.info, Node: System properties *** 3250,3269 **** 12 System properties ******************** ! The runtime behavior of the 'libgcj' library can be modified by setting certain system properties. These properties can be compiled into the ! program using the '-DNAME[=VALUE]' option to 'gcj' or by setting them explicitly in the program by calling the ! 'java.lang.System.setProperty()' method. Some system properties are only used for informational purposes (like giving a version number or a user name). A program can inspect the current value of a property by ! calling the 'java.lang.System.getProperty()' method. * Menu: ! * Standard Properties:: Standard properties supported by 'libgcj' * GNU Classpath Properties:: Properties found in Classpath based libraries ! * libgcj Runtime Properties:: Properties specific to 'libgcj'  File: gcj.info, Node: Standard Properties, Next: GNU Classpath Properties, Up: System properties --- 3286,3305 ---- 12 System properties ******************** ! The runtime behavior of the `libgcj' library can be modified by setting certain system properties. These properties can be compiled into the ! program using the `-DNAME[=VALUE]' option to `gcj' or by setting them explicitly in the program by calling the ! `java.lang.System.setProperty()' method. Some system properties are only used for informational purposes (like giving a version number or a user name). A program can inspect the current value of a property by ! calling the `java.lang.System.getProperty()' method. * Menu: ! * Standard Properties:: Standard properties supported by `libgcj' * GNU Classpath Properties:: Properties found in Classpath based libraries ! * libgcj Runtime Properties:: Properties specific to `libgcj'  File: gcj.info, Node: Standard Properties, Next: GNU Classpath Properties, Up: System properties *************** File: gcj.info, Node: Standard Properti *** 3274,3449 **** The following properties are normally found in all implementations of the core libraries for the Java language. ! 'java.version' ! The 'libgcj' version number. ! 'java.vendor' ! Set to 'The Free Software Foundation, Inc.' ! 'java.vendor.url' ! Set to . ! 'java.home' ! The directory where 'gcj' was installed. Taken from the '--prefix' ! option given to 'configure'. ! 'java.class.version' The class format version number supported by the libgcj byte code ! interpreter. (Currently '46.0') ! 'java.vm.specification.version' ! The Virtual Machine Specification version implemented by 'libgcj'. ! (Currently '1.0') ! 'java.vm.specification.vendor' The name of the Virtual Machine specification designer. ! 'java.vm.specification.name' ! The name of the Virtual Machine specification (Set to 'Java Virtual ! Machine Specification'). ! 'java.vm.version' ! The 'gcj' version number. ! 'java.vm.vendor' ! Set to 'The Free Software Foundation, Inc.' ! 'java.vm.name' ! Set to 'GNU libgcj'. ! 'java.specification.version' The Runtime Environment specification version implemented by ! 'libgcj'. (Currently set to '1.3') ! 'java.specification.vendor' The Runtime Environment specification designer. ! 'java.specification.name' ! The name of the Runtime Environment specification (Set to 'Java Platform API Specification'). ! 'java.class.path' The paths (jar files, zip files and directories) used for finding class files. ! 'java.library.path' Directory path used for finding native libraries. ! 'java.io.tmpdir' The directory used to put temporary files in. ! 'java.compiler' Name of the Just In Time compiler to use by the byte code ! interpreter. Currently not used in 'libgcj'. ! 'java.ext.dirs' Directories containing jar files with extra libraries. Will be used when resolving classes. ! 'java.protocol.handler.pkgs' ! A '|' separated list of package names that is used to find classes ! that implement handlers for 'java.net.URL'. ! 'java.rmi.server.codebase' ! A list of URLs that is used by the 'java.rmi.server.RMIClassLoader' to load classes from. ! 'jdbc.drivers' A list of class names that will be loaded by the ! 'java.sql.DriverManager' when it starts up. ! 'file.separator' The separator used in when directories are included in a filename ! (normally '/' or '\' ). ! 'file.encoding' ! The default character encoding used when converting platform native ! files to Unicode (usually set to '8859_1'). ! 'path.separator' The standard separator used when a string contains multiple paths ! (normally ':' or ';'), the string is usually not a valid character to use in normal directory names.) ! 'line.separator' ! The default line separator used on the platform (normally '\n', ! '\r' or a combination of those two characters). ! 'policy.provider' The class name used for the default policy provider returned by ! 'java.security.Policy.getPolicy'. ! 'user.name' The name of the user running the program. Can be the full name, the login name or empty if unknown. ! 'user.home' The default directory to put user specific files in. ! 'user.dir' The current working directory from which the program was started. ! 'user.language' ! The default language as used by the 'java.util.Locale' class. ! 'user.region' ! The default region as used by the 'java.util.Local' class. ! 'user.variant' The default variant of the language and region local used. ! 'user.timezone' ! The default timezone as used by the 'java.util.TimeZone' class. ! 'os.name' The operating system/kernel name that the program runs on. ! 'os.arch' The hardware that we are running on. ! 'os.version' The version number of the operating system/kernel. ! 'awt.appletWarning' The string to display when an untrusted applet is displayed. ! Returned by 'java.awt.Window.getWarningString()' when the window is "insecure". ! 'awt.toolkit' The class name used for initializing the default ! 'java.awt.Toolkit'. Defaults to 'gnu.awt.gtk.GtkToolkit'. ! 'http.proxyHost' Name of proxy host for http connections. ! 'http.proxyPort' Port number to use when a proxy host is in use.  File: gcj.info, Node: GNU Classpath Properties, Next: libgcj Runtime Properties, Prev: Standard Properties, Up: System properties 12.2 GNU Classpath Properties ============================= ! 'libgcj' is based on the GNU Classpath (Essential Libraries for Java) a GNU project to create free core class libraries for use with virtual machines and compilers for the Java language. The following properties are common to libraries based on GNU Classpath. ! 'gcj.dumpobject' Enables printing serialization debugging by the ! 'java.io.ObjectInput' and 'java.io.ObjectOutput' classes when set to something else then the empty string. Only used when running a debug build of the library. ! 'gnu.classpath.vm.shortname' ! This is a succinct name of the virtual machine. For 'libgcj', this ! will always be 'libgcj'. ! 'gnu.classpath.home.url' A base URL used for finding system property files (e.g., ! 'classpath.security'). By default this is a 'file:' URL pointing ! to the 'lib' directory under 'java.home'.  File: gcj.info, Node: libgcj Runtime Properties, Prev: GNU Classpath Properties, Up: System properties --- 3310,3487 ---- The following properties are normally found in all implementations of the core libraries for the Java language. ! `java.version' ! The `libgcj' version number. ! `java.vendor' ! Set to `The Free Software Foundation, Inc.' ! `java.vendor.url' ! Set to `http://gcc.gnu.org/java/'. ! `java.home' ! The directory where `gcj' was installed. Taken from the `--prefix' ! option given to `configure'. ! `java.class.version' The class format version number supported by the libgcj byte code ! interpreter. (Currently `46.0') ! `java.vm.specification.version' ! The Virtual Machine Specification version implemented by `libgcj'. ! (Currently `1.0') ! `java.vm.specification.vendor' The name of the Virtual Machine specification designer. ! `java.vm.specification.name' ! The name of the Virtual Machine specification (Set to `Java ! Virtual Machine Specification'). ! `java.vm.version' ! The `gcj' version number. ! `java.vm.vendor' ! Set to `The Free Software Foundation, Inc.' ! `java.vm.name' ! Set to `GNU libgcj'. ! `java.specification.version' The Runtime Environment specification version implemented by ! `libgcj'. (Currently set to `1.3') ! `java.specification.vendor' The Runtime Environment specification designer. ! `java.specification.name' ! The name of the Runtime Environment specification (Set to `Java Platform API Specification'). ! `java.class.path' The paths (jar files, zip files and directories) used for finding class files. ! `java.library.path' Directory path used for finding native libraries. ! `java.io.tmpdir' The directory used to put temporary files in. ! `java.compiler' Name of the Just In Time compiler to use by the byte code ! interpreter. Currently not used in `libgcj'. ! `java.ext.dirs' Directories containing jar files with extra libraries. Will be used when resolving classes. ! `java.protocol.handler.pkgs' ! A `|' separated list of package names that is used to find classes ! that implement handlers for `java.net.URL'. ! `java.rmi.server.codebase' ! A list of URLs that is used by the `java.rmi.server.RMIClassLoader' to load classes from. ! `jdbc.drivers' A list of class names that will be loaded by the ! `java.sql.DriverManager' when it starts up. ! `file.separator' The separator used in when directories are included in a filename ! (normally `/' or `\' ). ! `file.encoding' ! The default character encoding used when converting platform ! native files to Unicode (usually set to `8859_1'). ! `path.separator' The standard separator used when a string contains multiple paths ! (normally `:' or `;'), the string is usually not a valid character to use in normal directory names.) ! `line.separator' ! The default line separator used on the platform (normally `\n', ! `\r' or a combination of those two characters). ! `policy.provider' The class name used for the default policy provider returned by ! `java.security.Policy.getPolicy'. ! `user.name' The name of the user running the program. Can be the full name, the login name or empty if unknown. ! `user.home' The default directory to put user specific files in. ! `user.dir' The current working directory from which the program was started. ! `user.language' ! The default language as used by the `java.util.Locale' class. ! `user.region' ! The default region as used by the `java.util.Local' class. ! `user.variant' The default variant of the language and region local used. ! `user.timezone' ! The default timezone as used by the `java.util.TimeZone' class. ! `os.name' The operating system/kernel name that the program runs on. ! `os.arch' The hardware that we are running on. ! `os.version' The version number of the operating system/kernel. ! `awt.appletWarning' The string to display when an untrusted applet is displayed. ! Returned by `java.awt.Window.getWarningString()' when the window is "insecure". ! `awt.toolkit' The class name used for initializing the default ! `java.awt.Toolkit'. Defaults to `gnu.awt.gtk.GtkToolkit'. ! `http.proxyHost' Name of proxy host for http connections. ! `http.proxyPort' Port number to use when a proxy host is in use. +  File: gcj.info, Node: GNU Classpath Properties, Next: libgcj Runtime Properties, Prev: Standard Properties, Up: System properties 12.2 GNU Classpath Properties ============================= ! `libgcj' is based on the GNU Classpath (Essential Libraries for Java) a GNU project to create free core class libraries for use with virtual machines and compilers for the Java language. The following properties are common to libraries based on GNU Classpath. ! `gcj.dumpobject' Enables printing serialization debugging by the ! `java.io.ObjectInput' and `java.io.ObjectOutput' classes when set to something else then the empty string. Only used when running a debug build of the library. ! `gnu.classpath.vm.shortname' ! This is a succinct name of the virtual machine. For `libgcj', ! this will always be `libgcj'. ! `gnu.classpath.home.url' A base URL used for finding system property files (e.g., ! `classpath.security'). By default this is a `file:' URL pointing ! to the `lib' directory under `java.home'. !  File: gcj.info, Node: libgcj Runtime Properties, Prev: GNU Classpath Properties, Up: System properties *************** File: gcj.info, Node: libgcj Runtime Pr *** 3451,3546 **** 12.3 libgcj Runtime Properties ============================== ! The following properties are specific to the 'libgcj' runtime and will normally not be found in other core libraries for the java language. ! 'java.fullversion' ! The combination of 'java.vm.name' and 'java.vm.version'. ! 'java.vm.info' ! Same as 'java.fullversion'. ! 'impl.prefix' ! Used by the 'java.net.DatagramSocket' class when set to something else then the empty string. When set all newly created ! 'DatagramSocket's will try to load a class ! 'java.net.[impl.prefix]DatagramSocketImpl' instead of the normal ! 'java.net.PlainDatagramSocketImpl'. ! 'gnu.gcj.progname' ! The class or binary name that was used to invoke the program. This ! will be the name of the "main" class in the case where the 'gij' front end is used, or the program binary name in the case where an application is compiled to a native binary. ! 'gnu.gcj.user.realname' The real name of the user, as taken from the password file. This may not always hold only the user's name (as some sites put extra information in this field). Also, this property is not available on all platforms. ! 'gnu.gcj.runtime.NameFinder.use_addr2line' ! Whether an external process, 'addr2line', should be used to ! determine line number information when tracing the stack. Setting ! this to 'false' may suppress line numbers when printing stack traces and when using the java.util.logging infrastructure. However, performance may improve significantly for applications that print stack traces or make logging calls frequently. ! 'gnu.gcj.runtime.NameFinder.show_raw' Whether the address of a stack frame should be printed when the ! line number is unavailable. Setting this to 'true' will cause the name of the object and the offset within that object to be printed when no line number is available. This allows for off-line decoding of stack traces if necessary debug information is ! available. The default is 'false', no raw addresses are printed. ! 'gnu.gcj.runtime.NameFinder.remove_unknown' Whether stack frames for non-java code should be included in a ! stack trace. The default value is 'true', stack frames for ! non-java code are suppressed. Setting this to 'false' will cause any non-java stack frames to be printed in addition to frames for the java code. ! 'gnu.gcj.runtime.VMClassLoader.library_control' This controls how shared libraries are automatically loaded by the ! built-in class loader. If this property is set to 'full', a full search is done for each requested class. If this property is set ! to 'cache', then any failed lookups are cached and not tried again. ! If this property is set to 'never' (the default), then lookups are never done. For more information, *Note Extensions::. ! 'gnu.gcj.runtime.endorsed.dirs' ! This is like the standard 'java.endorsed.dirs', property, but specifies some extra directories which are searched after the standard endorsed directories. This is primarily useful for ! telling 'libgcj' about additional libraries which are ordinarily incorporated into the JDK, and which should be loaded by the ! bootstrap class loader, but which are not yet part of 'libgcj' itself for some reason. ! 'gnu.gcj.jit.compiler' ! This is the full path to 'gcj' executable which should be used to ! compile classes just-in-time when 'ClassLoader.defineClass' is ! called. If not set, 'gcj' will not be invoked by the runtime; this ! can also be controlled via 'Compiler.disable'. ! 'gnu.gcj.jit.options' This is a space-separated string of options which should be passed ! to 'gcj' when in JIT mode. If not set, a sensible default is chosen. ! 'gnu.gcj.jit.cachedir' ! This is the directory where cached shared library files are stored. ! If not set, JIT compilation is disabled. This should never be set ! to a directory that is writable by any other user. ! 'gnu.gcj.precompiled.db.path' This is a sequence of file names, each referring to a file created ! by 'gcj-dbtool'. These files will be used by 'libgcj' to find shared libraries corresponding to classes that are loaded from ! bytecode. 'libgcj' often has a built-in default database; it can ! be queried using 'gcj-dbtool -p'.  File: gcj.info, Node: Resources, Next: Index, Prev: System properties, Up: Top --- 3489,3585 ---- 12.3 libgcj Runtime Properties ============================== ! The following properties are specific to the `libgcj' runtime and will normally not be found in other core libraries for the java language. ! `java.fullversion' ! The combination of `java.vm.name' and `java.vm.version'. ! `java.vm.info' ! Same as `java.fullversion'. ! `impl.prefix' ! Used by the `java.net.DatagramSocket' class when set to something else then the empty string. When set all newly created ! `DatagramSocket's will try to load a class ! `java.net.[impl.prefix]DatagramSocketImpl' instead of the normal ! `java.net.PlainDatagramSocketImpl'. ! `gnu.gcj.progname' ! The class or binary name that was used to invoke the program. This ! will be the name of the "main" class in the case where the `gij' front end is used, or the program binary name in the case where an application is compiled to a native binary. ! `gnu.gcj.user.realname' The real name of the user, as taken from the password file. This may not always hold only the user's name (as some sites put extra information in this field). Also, this property is not available on all platforms. ! `gnu.gcj.runtime.NameFinder.use_addr2line' ! Whether an external process, `addr2line', should be used to ! determine line number information when tracing the stack. Setting ! this to `false' may suppress line numbers when printing stack traces and when using the java.util.logging infrastructure. However, performance may improve significantly for applications that print stack traces or make logging calls frequently. ! `gnu.gcj.runtime.NameFinder.show_raw' Whether the address of a stack frame should be printed when the ! line number is unavailable. Setting this to `true' will cause the name of the object and the offset within that object to be printed when no line number is available. This allows for off-line decoding of stack traces if necessary debug information is ! available. The default is `false', no raw addresses are printed. ! `gnu.gcj.runtime.NameFinder.remove_unknown' Whether stack frames for non-java code should be included in a ! stack trace. The default value is `true', stack frames for ! non-java code are suppressed. Setting this to `false' will cause any non-java stack frames to be printed in addition to frames for the java code. ! `gnu.gcj.runtime.VMClassLoader.library_control' This controls how shared libraries are automatically loaded by the ! built-in class loader. If this property is set to `full', a full search is done for each requested class. If this property is set ! to `cache', then any failed lookups are cached and not tried again. ! If this property is set to `never' (the default), then lookups are never done. For more information, *Note Extensions::. ! `gnu.gcj.runtime.endorsed.dirs' ! This is like the standard `java.endorsed.dirs', property, but specifies some extra directories which are searched after the standard endorsed directories. This is primarily useful for ! telling `libgcj' about additional libraries which are ordinarily incorporated into the JDK, and which should be loaded by the ! bootstrap class loader, but which are not yet part of `libgcj' itself for some reason. ! `gnu.gcj.jit.compiler' ! This is the full path to `gcj' executable which should be used to ! compile classes just-in-time when `ClassLoader.defineClass' is ! called. If not set, `gcj' will not be invoked by the runtime; ! this can also be controlled via `Compiler.disable'. ! `gnu.gcj.jit.options' This is a space-separated string of options which should be passed ! to `gcj' when in JIT mode. If not set, a sensible default is chosen. ! `gnu.gcj.jit.cachedir' ! This is the directory where cached shared library files are ! stored. If not set, JIT compilation is disabled. This should ! never be set to a directory that is writable by any other user. ! `gnu.gcj.precompiled.db.path' This is a sequence of file names, each referring to a file created ! by `gcj-dbtool'. These files will be used by `libgcj' to find shared libraries corresponding to classes that are loaded from ! bytecode. `libgcj' often has a built-in default database; it can ! be queried using `gcj-dbtool -p'. !  File: gcj.info, Node: Resources, Next: Index, Prev: System properties, Up: Top *************** File: gcj.info, Node: Resources, Next: *** 3548,3567 **** 13 Resources ************ ! While writing 'gcj' and 'libgcj' we have, of course, relied heavily on documentation from Sun Microsystems. In particular we have used The Java Language Specification (both first and second editions), the Java Class Libraries (volumes one and two), and the Java Virtual Machine Specification. In addition we've used Sun's online documentation. ! The current 'gcj' home page is . ! For more information on GCC, see . ! Some 'libgcj' testing is done using the Mauve test suite. This is a free software Java class library test suite which is being written ! because the JCK is not free. See for ! more information.  File: gcj.info, Node: Index, Prev: Resources, Up: Top --- 3587,3606 ---- 13 Resources ************ ! While writing `gcj' and `libgcj' we have, of course, relied heavily on documentation from Sun Microsystems. In particular we have used The Java Language Specification (both first and second editions), the Java Class Libraries (volumes one and two), and the Java Virtual Machine Specification. In addition we've used Sun's online documentation. ! The current `gcj' home page is `http://gcc.gnu.org/java/'. ! For more information on GCC, see `http://gcc.gnu.org/'. ! Some `libgcj' testing is done using the Mauve test suite. This is a free software Java class library test suite which is being written ! because the JCK is not free. See `http://www.sourceware.org/mauve/' ! for more information.  File: gcj.info, Node: Index, Prev: Resources, Up: Top *************** Index *** 3574,3654 **** * class path: Input Options. (line 6) * class$: Reference types. (line 20) ! * elements on template: Arrays. (line 45) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * GCJ_PROPERTIES: Extensions. (line 56) - * GCJ_PROPERTIES <1>: Extensions. (line 56) * jclass: Reference types. (line 16) * jobject: Reference types. (line 16) * jstring: Reference types. (line 16) ! * JvAllocBytes: Mixing with C++. (line 98) ! * JvAttachCurrentThread: Invocation. (line 54) ! * JvCreateJavaVM: Invocation. (line 10) * JvDetachCurrentThread: Invocation. (line 68) ! * JvFree: Memory allocation. (line 18) ! * JvGetArrayLength: Arrays. (line 85) ! * JvGetStringChars: Strings. (line 24) ! * JvGetStringUTFLength: Strings. (line 28) ! * JvGetStringUTFRegion: Strings. (line 32) ! * JvMalloc: Memory allocation. (line 10) ! * JvNewBooleanArray: Arrays. (line 82) ! * JvNewObjectArray: Arrays. (line 55) ! * JvNewString: Strings. (line 10) ! * JvNewStringLatin1: Strings. (line 14) ! * JvNewStringLatin1 <1>: Strings. (line 17) ! * JvNewStringUTF: Strings. (line 20) ! * JvPrimClass: Primitive types. (line 35) ! * JvRealloc: Memory allocation. (line 14)  Tag Table: ! Node: Top2679 ! Node: Copying4098 ! Node: GNU Free Documentation License41630 ! Node: Invoking gcj66754 ! Node: Input and output files67517 ! Node: Input Options69039 ! Node: Encodings72314 ! Node: Warnings73520 ! Node: Linking74633 ! Node: Code Generation77566 ! Node: Configure-time Options84342 ! Node: Compatibility86082 ! Node: Limitations86601 ! Node: Extensions88179 ! Node: Invoking jcf-dump91270 ! Node: Invoking gij92215 ! Node: Invoking gcj-dbtool95471 ! Node: Invoking jv-convert97932 ! Node: Invoking grmic99011 ! Node: Invoking gc-analyze100397 ! Node: Invoking aot-compile101838 ! Node: Invoking rebuild-gcj-db102786 ! Node: About CNI103096 ! Node: Basic concepts104555 ! Node: Packages107451 ! Node: Primitive types109779 ! Node: Reference types111456 ! Node: Interfaces112540 ! Node: Objects and Classes113451 ! Node: Class Initialization115646 ! Node: Object allocation117989 ! Node: Memory allocation118779 ! Node: Arrays119411 ! Node: Methods122221 ! Node: Strings125042 ! Node: Mixing with C++126546 ! Node: Exception Handling130019 ! Node: Synchronization131654 ! Node: Invocation133643 ! Node: Reflection138595 ! Node: System properties139053 ! Node: Standard Properties139930 ! Node: GNU Classpath Properties144361 ! Node: libgcj Runtime Properties145407 ! Node: Resources149910 ! Node: Index150724  End Tag Table --- 3613,3691 ---- * class path: Input Options. (line 6) * class$: Reference types. (line 20) ! * elements on template: Arrays. (line 46) * FDL, GNU Free Documentation License: GNU Free Documentation License. (line 6) * GCJ_PROPERTIES: Extensions. (line 56) * jclass: Reference types. (line 16) * jobject: Reference types. (line 16) * jstring: Reference types. (line 16) ! * JvAllocBytes: Mixing with C++. (line 99) ! * JvAttachCurrentThread: Invocation. (line 55) ! * JvCreateJavaVM: Invocation. (line 11) * JvDetachCurrentThread: Invocation. (line 68) ! * JvFree: Memory allocation. (line 19) ! * JvGetArrayLength: Arrays. (line 86) ! * JvGetStringChars: Strings. (line 25) ! * JvGetStringUTFLength: Strings. (line 29) ! * JvGetStringUTFRegion: Strings. (line 34) ! * JvMalloc: Memory allocation. (line 11) ! * JvNewBooleanArray: Arrays. (line 83) ! * JvNewObjectArray: Arrays. (line 57) ! * JvNewString: Strings. (line 11) ! * JvNewStringLatin1: Strings. (line 15) ! * JvNewStringUTF: Strings. (line 21) ! * JvPrimClass: Primitive types. (line 36) ! * JvRealloc: Memory allocation. (line 15)  Tag Table: ! Node: Top2729 ! Node: Copying4148 ! Node: GNU Free Documentation License41698 ! Node: Invoking gcj66841 ! Node: Input and output files67604 ! Node: Input Options69130 ! Node: Encodings72404 ! Node: Warnings73610 ! Node: Linking74723 ! Node: Code Generation77662 ! Node: Configure-time Options84442 ! Node: Compatibility86182 ! Node: Limitations86666 ! Node: Extensions88248 ! Node: Invoking jcf-dump91342 ! Node: Invoking gij92287 ! Node: Invoking gcj-dbtool95538 ! Node: Invoking jv-convert98004 ! Node: Invoking grmic99083 ! Node: Invoking gc-analyze100469 ! Node: Invoking aot-compile101910 ! Node: Invoking rebuild-gcj-db102859 ! Node: About CNI103169 ! Node: Basic concepts104628 ! Node: Packages107524 ! Node: Primitive types109852 ! Node: Reference types111530 ! Node: Interfaces112619 ! Node: Objects and Classes113530 ! Node: Class Initialization115725 ! Node: Object allocation118067 ! Node: Memory allocation118857 ! Node: Arrays119489 ! Node: Methods122299 ! Node: Strings125120 ! Node: Mixing with C++126624 ! Node: Exception Handling130095 ! Node: Synchronization131729 ! Node: Invocation133719 ! Node: Reflection138655 ! Node: System properties139116 ! Node: Standard Properties139993 ! Node: GNU Classpath Properties144425 ! Node: libgcj Runtime Properties145472 ! Node: Resources149974 ! Node: Index150788  End Tag Table diff -Nrcpad gcc-4.9.3/gcc/doc/gcov.1 gcc-4.9.4/gcc/doc/gcov.1 *** gcc-4.9.3/gcc/doc/gcov.1 Fri Jun 26 18:05:19 2015 --- gcc-4.9.4/gcc/doc/gcov.1 Wed Aug 3 05:16:30 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GCOV 1" ! .TH GCOV 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GCOV 1" ! .TH GCOV 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** in fine-tuning the performance of your p *** 210,216 **** timing information you can use along with the information you get from \&\fBgcov\fR. .PP ! \&\fBgcov\fR works only on code compiled with \s-1GCC. \s0 It is not compatible with any other profiling or test coverage mechanism. .SH "OPTIONS" .IX Header "OPTIONS" --- 209,215 ---- timing information you can use along with the information you get from \&\fBgcov\fR. .PP ! \&\fBgcov\fR works only on code compiled with \s-1GCC\s0. It is not compatible with any other profiling or test coverage mechanism. .SH "OPTIONS" .IX Header "OPTIONS" *************** profiling code first attempts to read in *** 640,646 **** the file doesn't match the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in the new execution counts and finally writes the data to the file. ! .SS "Using \fBgcov\fP with \s-1GCC\s0 Optimization" .IX Subsection "Using gcov with GCC Optimization" If you plan to use \fBgcov\fR to help optimize your code, you must first compile your program with two special \s-1GCC\s0 options: --- 639,645 ---- the file doesn't match the executable (differing number of basic block counts) it will ignore the contents of the file. It then adds in the new execution counts and finally writes the data to the file. ! .Sh "Using \fBgcov\fP with \s-1GCC\s0 Optimization" .IX Subsection "Using gcov with GCC Optimization" If you plan to use \fBgcov\fR to help optimize your code, you must first compile your program with two special \s-1GCC\s0 options: diff -Nrcpad gcc-4.9.3/gcc/doc/gfdl.7 gcc-4.9.4/gcc/doc/gfdl.7 *** gcc-4.9.3/gcc/doc/gfdl.7 Fri Jun 26 18:05:21 2015 --- gcc-4.9.4/gcc/doc/gfdl.7 Wed Aug 3 05:16:32 2016 *************** *** 1 **** ! timestamp --- 1,645 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) ! .\" ! .\" Standard preamble: ! .\" ======================================================================== ! .de Sh \" Subsection heading ! .br ! .if t .Sp ! .ne 5 ! .PP ! \fB\\$1\fR ! .PP ! .. ! .de Sp \" Vertical space (when we can't use .PP) ! .if t .sp .5v ! .if n .sp ! .. ! .de Vb \" Begin verbatim text ! .ft CW ! .nf ! .ne \\$1 ! .. ! .de Ve \" End verbatim text ! .ft R ! .fi ! .. ! .\" Set up some character translations and predefined strings. \*(-- will ! .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left ! .\" double quote, and \*(R" will give a right double quote. \*(C+ will ! .\" give a nicer C++. Capital omega is used to do unbreakable dashes and ! .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff, ! .\" nothing in troff, for use with C<>. ! .tr \(*W- ! .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p' ! .ie n \{\ ! . ds -- \(*W- ! . ds PI pi ! . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch ! . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch ! . ds L" "" ! . ds R" "" ! . ds C` "" ! . ds C' "" ! 'br\} ! .el\{\ ! . ds -- \|\(em\| ! . ds PI \(*p ! . ds L" `` ! . ds R" '' ! 'br\} ! .\" ! .\" Escape single quotes in literal strings from groff's Unicode transform. ! .ie \n(.g .ds Aq \(aq ! .el .ds Aq ' ! .\" ! .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index ! .\" entries marked with X<> in POD. Of course, you'll have to process the ! .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" ! .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX ! .. ! .\} ! .\" ! .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). ! .\" Fear. Run. Save yourself. No user-serviceable parts. ! . \" fudge factors for nroff and troff ! .if n \{\ ! . ds #H 0 ! . ds #V .8m ! . ds #F .3m ! . ds #[ \f1 ! . ds #] \fP ! .\} ! .if t \{\ ! . ds #H ((1u-(\\\\n(.fu%2u))*.13m) ! . ds #V .6m ! . ds #F 0 ! . ds #[ \& ! . ds #] \& ! .\} ! . \" simple accents for nroff and troff ! .if n \{\ ! . ds ' \& ! . ds ` \& ! . ds ^ \& ! . ds , \& ! . ds ~ ~ ! . ds / ! .\} ! .if t \{\ ! . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u" ! . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u' ! . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u' ! . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u' ! . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u' ! . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u' ! .\} ! . \" troff and (daisy-wheel) nroff accents ! .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V' ! .ds 8 \h'\*(#H'\(*b\h'-\*(#H' ! .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#] ! .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H' ! .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u' ! .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#] ! .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#] ! .ds ae a\h'-(\w'a'u*4/10)'e ! .ds Ae A\h'-(\w'A'u*4/10)'E ! . \" corrections for vroff ! .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u' ! .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u' ! . \" for low resolution devices (crt and lpr) ! .if \n(.H>23 .if \n(.V>19 \ ! \{\ ! . ds : e ! . ds 8 ss ! . ds o a ! . ds d- d\h'-1'\(ga ! . ds D- D\h'-1'\(hy ! . ds th \o'bp' ! . ds Th \o'LP' ! . ds ae ae ! . ds Ae AE ! .\} ! .rm #[ #] #H #V #F C ! .\" ======================================================================== ! .\" ! .IX Title "GFDL 7" ! .TH GFDL 7 "2016-07-26" "gcc-4.9.4" "GNU" ! .\" For nroff, turn off justification. Always turn off hyphenation; it makes ! .\" way too many mistakes in technical documents. ! .if n .ad l ! .nh ! .SH "NAME" ! gfdl \- GNU Free Documentation License ! .SH "DESCRIPTION" ! .IX Header "DESCRIPTION" ! .Sh "\s-1GNU\s0 Free Documentation License" ! .IX Subsection "GNU Free Documentation License" ! .Sh "Version 1.3, 3 November 2008" ! .IX Subsection "Version 1.3, 3 November 2008" ! .Vb 2 ! \& Copyright (c) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! \& EBE ! \& ! \& Everyone is permitted to copy and distribute verbatim copies ! \& of this license document, but changing it is not allowed. ! .Ve ! .IP "0." 4 ! .IX Item "0." ! \&\s-1PREAMBLE\s0 ! .Sp ! The purpose of this License is to make a manual, textbook, or other ! functional and useful document \fIfree\fR in the sense of freedom: to ! assure everyone the effective freedom to copy and redistribute it, ! with or without modifying it, either commercially or noncommercially. ! Secondarily, this License preserves for the author and publisher a way ! to get credit for their work, while not being considered responsible ! for modifications made by others. ! .Sp ! This License is a kind of \*(L"copyleft\*(R", which means that derivative ! works of the document must themselves be free in the same sense. It ! complements the \s-1GNU\s0 General Public License, which is a copyleft ! license designed for free software. ! .Sp ! We have designed this License in order to use it for manuals for free ! software, because free software needs free documentation: a free ! program should come with manuals providing the same freedoms that the ! software does. But this License is not limited to software manuals; ! it can be used for any textual work, regardless of subject matter or ! whether it is published as a printed book. We recommend this License ! principally for works whose purpose is instruction or reference. ! .IP "1." 4 ! .IX Item "1." ! \&\s-1APPLICABILITY\s0 \s-1AND\s0 \s-1DEFINITIONS\s0 ! .Sp ! This License applies to any manual or other work, in any medium, that ! contains a notice placed by the copyright holder saying it can be ! distributed under the terms of this License. Such a notice grants a ! world-wide, royalty-free license, unlimited in duration, to use that ! work under the conditions stated herein. The \*(L"Document\*(R", below, ! refers to any such manual or work. Any member of the public is a ! licensee, and is addressed as \*(L"you\*(R". You accept the license if you ! copy, modify or distribute the work in a way requiring permission ! under copyright law. ! .Sp ! A \*(L"Modified Version\*(R" of the Document means any work containing the ! Document or a portion of it, either copied verbatim, or with ! modifications and/or translated into another language. ! .Sp ! A \*(L"Secondary Section\*(R" is a named appendix or a front-matter section ! of the Document that deals exclusively with the relationship of the ! publishers or authors of the Document to the Document's overall ! subject (or to related matters) and contains nothing that could fall ! directly within that overall subject. (Thus, if the Document is in ! part a textbook of mathematics, a Secondary Section may not explain ! any mathematics.) The relationship could be a matter of historical ! connection with the subject or with related matters, or of legal, ! commercial, philosophical, ethical or political position regarding ! them. ! .Sp ! The \*(L"Invariant Sections\*(R" are certain Secondary Sections whose titles ! are designated, as being those of Invariant Sections, in the notice ! that says that the Document is released under this License. If a ! section does not fit the above definition of Secondary then it is not ! allowed to be designated as Invariant. The Document may contain zero ! Invariant Sections. If the Document does not identify any Invariant ! Sections then there are none. ! .Sp ! The \*(L"Cover Texts\*(R" are certain short passages of text that are listed, ! as Front-Cover Texts or Back-Cover Texts, in the notice that says that ! the Document is released under this License. A Front-Cover Text may ! be at most 5 words, and a Back-Cover Text may be at most 25 words. ! .Sp ! A \*(L"Transparent\*(R" copy of the Document means a machine-readable copy, ! represented in a format whose specification is available to the ! general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed of ! pixels) generic paint programs or (for drawings) some widely available ! drawing editor, and that is suitable for input to text formatters or ! for automatic translation to a variety of formats suitable for input ! to text formatters. A copy made in an otherwise Transparent file ! format whose markup, or absence of markup, has been arranged to thwart ! or discourage subsequent modification by readers is not Transparent. ! An image format is not Transparent if used for any substantial amount ! of text. A copy that is not \*(L"Transparent\*(R" is called \*(L"Opaque\*(R". ! .Sp ! Examples of suitable formats for Transparent copies include plain ! \&\s-1ASCII\s0 without markup, Texinfo input format, LaTeX input ! format, \s-1SGML\s0 or \s-1XML\s0 using a publicly available ! \&\s-1DTD\s0, and standard-conforming simple \s-1HTML\s0, ! PostScript or \s-1PDF\s0 designed for human modification. Examples ! of transparent image formats include \s-1PNG\s0, \s-1XCF\s0 and ! \&\s-1JPG\s0. Opaque formats include proprietary formats that can be ! read and edited only by proprietary word processors, \s-1SGML\s0 or ! \&\s-1XML\s0 for which the \s-1DTD\s0 and/or processing tools are ! not generally available, and the machine-generated \s-1HTML\s0, ! PostScript or \s-1PDF\s0 produced by some word processors for ! output purposes only. ! .Sp ! The \*(L"Title Page\*(R" means, for a printed book, the title page itself, ! plus such following pages as are needed to hold, legibly, the material ! this License requires to appear in the title page. For works in ! formats which do not have any title page as such, \*(L"Title Page\*(R" means ! the text near the most prominent appearance of the work's title, ! preceding the beginning of the body of the text. ! .Sp ! The \*(L"publisher\*(R" means any person or entity that distributes copies ! of the Document to the public. ! .Sp ! A section \*(L"Entitled \s-1XYZ\s0\*(R" means a named subunit of the Document whose ! title either is precisely \s-1XYZ\s0 or contains \s-1XYZ\s0 in parentheses following ! text that translates \s-1XYZ\s0 in another language. (Here \s-1XYZ\s0 stands for a ! specific section name mentioned below, such as \*(L"Acknowledgements\*(R", ! \&\*(L"Dedications\*(R", \*(L"Endorsements\*(R", or \*(L"History\*(R".) To \*(L"Preserve the Title\*(R" ! of such a section when you modify the Document means that it remains a ! section \*(L"Entitled \s-1XYZ\s0\*(R" according to this definition. ! .Sp ! The Document may include Warranty Disclaimers next to the notice which ! states that this License applies to the Document. These Warranty ! Disclaimers are considered to be included by reference in this ! License, but only as regards disclaiming warranties: any other ! implication that these Warranty Disclaimers may have is void and has ! no effect on the meaning of this License. ! .IP "2." 4 ! .IX Item "2." ! \&\s-1VERBATIM\s0 \s-1COPYING\s0 ! .Sp ! You may copy and distribute the Document in any medium, either ! commercially or noncommercially, provided that this License, the ! copyright notices, and the license notice saying this License applies ! to the Document are reproduced in all copies, and that you add no other ! conditions whatsoever to those of this License. You may not use ! technical measures to obstruct or control the reading or further ! copying of the copies you make or distribute. However, you may accept ! compensation in exchange for copies. If you distribute a large enough ! number of copies you must also follow the conditions in section 3. ! .Sp ! You may also lend copies, under the same conditions stated above, and ! you may publicly display copies. ! .IP "3." 4 ! .IX Item "3." ! \&\s-1COPYING\s0 \s-1IN\s0 \s-1QUANTITY\s0 ! .Sp ! If you publish printed copies (or copies in media that commonly have ! printed covers) of the Document, numbering more than 100, and the ! Document's license notice requires Cover Texts, you must enclose the ! copies in covers that carry, clearly and legibly, all these Cover ! Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on ! the back cover. Both covers must also clearly and legibly identify ! you as the publisher of these copies. The front cover must present ! the full title with all words of the title equally prominent and ! visible. You may add other material on the covers in addition. ! Copying with changes limited to the covers, as long as they preserve ! the title of the Document and satisfy these conditions, can be treated ! as verbatim copying in other respects. ! .Sp ! If the required texts for either cover are too voluminous to fit ! legibly, you should put the first ones listed (as many as fit ! reasonably) on the actual cover, and continue the rest onto adjacent ! pages. ! .Sp ! If you publish or distribute Opaque copies of the Document numbering ! more than 100, you must either include a machine-readable Transparent ! copy along with each Opaque copy, or state in or with each Opaque copy ! a computer-network location from which the general network-using ! public has access to download using public-standard network protocols ! a complete Transparent copy of the Document, free of added material. ! If you use the latter option, you must take reasonably prudent steps, ! when you begin distribution of Opaque copies in quantity, to ensure ! that this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you distribute an ! Opaque copy (directly or through your agents or retailers) of that ! edition to the public. ! .Sp ! It is requested, but not required, that you contact the authors of the ! Document well before redistributing any large number of copies, to give ! them a chance to provide you with an updated version of the Document. ! .IP "4." 4 ! .IX Item "4." ! \&\s-1MODIFICATIONS\s0 ! .Sp ! You may copy and distribute a Modified Version of the Document under ! the conditions of sections 2 and 3 above, provided that you release ! the Modified Version under precisely this License, with the Modified ! Version filling the role of the Document, thus licensing distribution ! and modification of the Modified Version to whoever possesses a copy ! of it. In addition, you must do these things in the Modified Version: ! .RS 4 ! .IP "A." 4 ! .IX Item "A." ! Use in the Title Page (and on the covers, if any) a title distinct ! from that of the Document, and from those of previous versions ! (which should, if there were any, be listed in the History section ! of the Document). You may use the same title as a previous version ! if the original publisher of that version gives permission. ! .IP "B." 4 ! .IX Item "B." ! List on the Title Page, as authors, one or more persons or entities ! responsible for authorship of the modifications in the Modified ! Version, together with at least five of the principal authors of the ! Document (all of its principal authors, if it has fewer than five), ! unless they release you from this requirement. ! .IP "C." 4 ! .IX Item "C." ! State on the Title page the name of the publisher of the ! Modified Version, as the publisher. ! .IP "D." 4 ! .IX Item "D." ! Preserve all the copyright notices of the Document. ! .IP "E." 4 ! .IX Item "E." ! Add an appropriate copyright notice for your modifications ! adjacent to the other copyright notices. ! .IP "F." 4 ! .IX Item "F." ! Include, immediately after the copyright notices, a license notice ! giving the public permission to use the Modified Version under the ! terms of this License, in the form shown in the Addendum below. ! .IP "G." 4 ! .IX Item "G." ! Preserve in that license notice the full lists of Invariant Sections ! and required Cover Texts given in the Document's license notice. ! .IP "H." 4 ! .IX Item "H." ! Include an unaltered copy of this License. ! .IP "I." 4 ! .IX Item "I." ! Preserve the section Entitled \*(L"History\*(R", Preserve its Title, and add ! to it an item stating at least the title, year, new authors, and ! publisher of the Modified Version as given on the Title Page. If ! there is no section Entitled \*(L"History\*(R" in the Document, create one ! stating the title, year, authors, and publisher of the Document as ! given on its Title Page, then add an item describing the Modified ! Version as stated in the previous sentence. ! .IP "J." 4 ! .IX Item "J." ! Preserve the network location, if any, given in the Document for ! public access to a Transparent copy of the Document, and likewise ! the network locations given in the Document for previous versions ! it was based on. These may be placed in the \*(L"History\*(R" section. ! You may omit a network location for a work that was published at ! least four years before the Document itself, or if the original ! publisher of the version it refers to gives permission. ! .IP "K." 4 ! .IX Item "K." ! For any section Entitled \*(L"Acknowledgements\*(R" or \*(L"Dedications\*(R", Preserve ! the Title of the section, and preserve in the section all the ! substance and tone of each of the contributor acknowledgements and/or ! dedications given therein. ! .IP "L." 4 ! .IX Item "L." ! Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section titles. ! .IP "M." 4 ! .IX Item "M." ! Delete any section Entitled \*(L"Endorsements\*(R". Such a section ! may not be included in the Modified Version. ! .IP "N." 4 ! .IX Item "N." ! Do not retitle any existing section to be Entitled \*(L"Endorsements\*(R" or ! to conflict in title with any Invariant Section. ! .IP "O." 4 ! .IX Item "O." ! Preserve any Warranty Disclaimers. ! .RE ! .RS 4 ! .Sp ! If the Modified Version includes new front-matter sections or ! appendices that qualify as Secondary Sections and contain no material ! copied from the Document, you may at your option designate some or all ! of these sections as invariant. To do this, add their titles to the ! list of Invariant Sections in the Modified Version's license notice. ! These titles must be distinct from any other section titles. ! .Sp ! You may add a section Entitled \*(L"Endorsements\*(R", provided it contains ! nothing but endorsements of your Modified Version by various ! parties\-\-\-for example, statements of peer review or that the text has ! been approved by an organization as the authoritative definition of a ! standard. ! .Sp ! You may add a passage of up to five words as a Front-Cover Text, and a ! passage of up to 25 words as a Back-Cover Text, to the end of the list ! of Cover Texts in the Modified Version. Only one passage of ! Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document already ! includes a cover text for the same cover, previously added by you or ! by arrangement made by the same entity you are acting on behalf of, ! you may not add another; but you may replace the old one, on explicit ! permission from the previous publisher that added the old one. ! .Sp ! The author(s) and publisher(s) of the Document do not by this License ! give permission to use their names for publicity for or to assert or ! imply endorsement of any Modified Version. ! .RE ! .IP "5." 4 ! .IX Item "5." ! \&\s-1COMBINING\s0 \s-1DOCUMENTS\s0 ! .Sp ! You may combine the Document with other documents released under this ! License, under the terms defined in section 4 above for modified ! versions, provided that you include in the combination all of the ! Invariant Sections of all of the original documents, unmodified, and ! list them all as Invariant Sections of your combined work in its ! license notice, and that you preserve all their Warranty Disclaimers. ! .Sp ! The combined work need only contain one copy of this License, and ! multiple identical Invariant Sections may be replaced with a single ! copy. If there are multiple Invariant Sections with the same name but ! different contents, make the title of each such section unique by ! adding at the end of it, in parentheses, the name of the original ! author or publisher of that section if known, or else a unique number. ! Make the same adjustment to the section titles in the list of ! Invariant Sections in the license notice of the combined work. ! .Sp ! In the combination, you must combine any sections Entitled \*(L"History\*(R" ! in the various original documents, forming one section Entitled ! \&\*(L"History\*(R"; likewise combine any sections Entitled \*(L"Acknowledgements\*(R", ! and any sections Entitled \*(L"Dedications\*(R". You must delete all ! sections Entitled \*(L"Endorsements.\*(R" ! .IP "6." 4 ! .IX Item "6." ! \&\s-1COLLECTIONS\s0 \s-1OF\s0 \s-1DOCUMENTS\s0 ! .Sp ! You may make a collection consisting of the Document and other documents ! released under this License, and replace the individual copies of this ! License in the various documents with a single copy that is included in ! the collection, provided that you follow the rules of this License for ! verbatim copying of each of the documents in all other respects. ! .Sp ! You may extract a single document from such a collection, and distribute ! it individually under this License, provided you insert a copy of this ! License into the extracted document, and follow this License in all ! other respects regarding verbatim copying of that document. ! .IP "7." 4 ! .IX Item "7." ! \&\s-1AGGREGATION\s0 \s-1WITH\s0 \s-1INDEPENDENT\s0 \s-1WORKS\s0 ! .Sp ! A compilation of the Document or its derivatives with other separate ! and independent documents or works, in or on a volume of a storage or ! distribution medium, is called an \*(L"aggregate\*(R" if the copyright ! resulting from the compilation is not used to limit the legal rights ! of the compilation's users beyond what the individual works permit. ! When the Document is included in an aggregate, this License does not ! apply to the other works in the aggregate which are not themselves ! derivative works of the Document. ! .Sp ! If the Cover Text requirement of section 3 is applicable to these ! copies of the Document, then if the Document is less than one half of ! the entire aggregate, the Document's Cover Texts may be placed on ! covers that bracket the Document within the aggregate, or the ! electronic equivalent of covers if the Document is in electronic form. ! Otherwise they must appear on printed covers that bracket the whole ! aggregate. ! .IP "8." 4 ! .IX Item "8." ! \&\s-1TRANSLATION\s0 ! .Sp ! Translation is considered a kind of modification, so you may ! distribute translations of the Document under the terms of section 4. ! Replacing Invariant Sections with translations requires special ! permission from their copyright holders, but you may include ! translations of some or all Invariant Sections in addition to the ! original versions of these Invariant Sections. You may include a ! translation of this License, and all the license notices in the ! Document, and any Warranty Disclaimers, provided that you also include ! the original English version of this License and the original versions ! of those notices and disclaimers. In case of a disagreement between ! the translation and the original version of this License or a notice ! or disclaimer, the original version will prevail. ! .Sp ! If a section in the Document is Entitled \*(L"Acknowledgements\*(R", ! \&\*(L"Dedications\*(R", or \*(L"History\*(R", the requirement (section 4) to Preserve ! its Title (section 1) will typically require changing the actual ! title. ! .IP "9." 4 ! .IX Item "9." ! \&\s-1TERMINATION\s0 ! .Sp ! You may not copy, modify, sublicense, or distribute the Document ! except as expressly provided under this License. Any attempt ! otherwise to copy, modify, sublicense, or distribute it is void, and ! will automatically terminate your rights under this License. ! .Sp ! However, if you cease all violation of this License, then your license ! from a particular copyright holder is reinstated (a) provisionally, ! unless and until the copyright holder explicitly and finally ! terminates your license, and (b) permanently, if the copyright holder ! fails to notify you of the violation by some reasonable means prior to ! 60 days after the cessation. ! .Sp ! Moreover, your license from a particular copyright holder is ! reinstated permanently if the copyright holder notifies you of the ! violation by some reasonable means, this is the first time you have ! received notice of violation of this License (for any work) from that ! copyright holder, and you cure the violation prior to 30 days after ! your receipt of the notice. ! .Sp ! Termination of your rights under this section does not terminate the ! licenses of parties who have received copies or rights from you under ! this License. If your rights have been terminated and not permanently ! reinstated, receipt of a copy of some or all of the same material does ! not give you any rights to use it. ! .IP "10." 4 ! .IX Item "10." ! \&\s-1FUTURE\s0 \s-1REVISIONS\s0 \s-1OF\s0 \s-1THIS\s0 \s-1LICENSE\s0 ! .Sp ! The Free Software Foundation may publish new, revised versions ! of the \s-1GNU\s0 Free Documentation License from time to time. Such new ! versions will be similar in spirit to the present version, but may ! differ in detail to address new problems or concerns. See ! <\fBhttp://www.gnu.org/copyleft/\fR>. ! .Sp ! Each version of the License is given a distinguishing version number. ! If the Document specifies that a particular numbered version of this ! License \*(L"or any later version\*(R" applies to it, you have the option of ! following the terms and conditions either of that specified version or ! of any later version that has been published (not as a draft) by the ! Free Software Foundation. If the Document does not specify a version ! number of this License, you may choose any version ever published (not ! as a draft) by the Free Software Foundation. If the Document ! specifies that a proxy can decide which future versions of this ! License can be used, that proxy's public statement of acceptance of a ! version permanently authorizes you to choose that version for the ! Document. ! .IP "11." 4 ! .IX Item "11." ! \&\s-1RELICENSING\s0 ! .Sp ! \&\*(L"Massive Multiauthor Collaboration Site\*(R" (or \*(L"\s-1MMC\s0 Site\*(R") means any ! World Wide Web server that publishes copyrightable works and also ! provides prominent facilities for anybody to edit those works. A ! public wiki that anybody can edit is an example of such a server. A ! \&\*(L"Massive Multiauthor Collaboration\*(R" (or \*(L"\s-1MMC\s0\*(R") contained in the ! site means any set of copyrightable works thus published on the \s-1MMC\s0 ! site. ! .Sp ! \&\*(L"CC-BY-SA\*(R" means the Creative Commons Attribution-Share Alike 3.0 ! license published by Creative Commons Corporation, a not-for-profit ! corporation with a principal place of business in San Francisco, ! California, as well as future copyleft versions of that license ! published by that same organization. ! .Sp ! \&\*(L"Incorporate\*(R" means to publish or republish a Document, in whole or ! in part, as part of another Document. ! .Sp ! An \s-1MMC\s0 is \*(L"eligible for relicensing\*(R" if it is licensed under this ! License, and if all works that were first published under this License ! somewhere other than this \s-1MMC\s0, and subsequently incorporated in whole ! or in part into the \s-1MMC\s0, (1) had no cover texts or invariant sections, ! and (2) were thus incorporated prior to November 1, 2008. ! .Sp ! The operator of an \s-1MMC\s0 Site may republish an \s-1MMC\s0 contained in the site ! under CC-BY-SA on the same site at any time before August 1, 2009, ! provided the \s-1MMC\s0 is eligible for relicensing. ! .Sh "\s-1ADDENDUM:\s0 How to use this License for your documents" ! .IX Subsection "ADDENDUM: How to use this License for your documents" ! To use this License in a document you have written, include a copy of ! the License in the document and put the following copyright and ! license notices just after the title page: ! .PP ! .Vb 7 ! \& Copyright (C) . ! \& Permission is granted to copy, distribute and/or modify this document ! \& under the terms of the GNU Free Documentation License, Version 1.3 ! \& or any later version published by the Free Software Foundation; ! \& with no Invariant Sections, no Front\-Cover Texts, and no Back\-Cover ! \& Texts. A copy of the license is included in the section entitled "GNU ! \& Free Documentation License". ! .Ve ! .PP ! If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, ! replace the \*(L"with...Texts.\*(R" line with this: ! .PP ! .Vb 3 ! \& with the Invariant Sections being , with ! \& the Front\-Cover Texts being , and with the Back\-Cover Texts ! \& being . ! .Ve ! .PP ! If you have Invariant Sections without Cover Texts, or some other ! combination of the three, merge those two alternatives to suit the ! situation. ! .PP ! If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the \s-1GNU\s0 General Public License, ! to permit their use in free software. ! .SH "SEE ALSO" ! .IX Header "SEE ALSO" ! \&\fIgpl\fR\|(7), \fIfsf\-funding\fR\|(7). ! .SH "COPYRIGHT" ! .IX Header "COPYRIGHT" ! Copyright (c) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! <\fBhttp://fsf.org/\fR> ! .PP ! Everyone is permitted to copy and distribute verbatim copies ! of this license document, but changing it is not allowed. diff -Nrcpad gcc-4.9.3/gcc/doc/gfortran.1 gcc-4.9.4/gcc/doc/gfortran.1 *** gcc-4.9.3/gcc/doc/gfortran.1 Fri Jun 26 18:49:08 2015 --- gcc-4.9.4/gcc/doc/gfortran.1 Wed Aug 3 06:14:16 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GFORTRAN 1" ! .TH GFORTRAN 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GFORTRAN 1" ! .TH GFORTRAN 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** by type. Explanations are in the follow *** 233,239 **** \&\-fno\-automatic \-fno\-protect\-parens \-fno\-underscoring \&\-fsecond\-underscore \-fpack\-derived \-frealloc\-lhs \-frecursive \&\-frepack\-arrays \-fshort\-enums \-fstack\-arrays\fR ! .SS "Options controlling Fortran dialect" .IX Subsection "Options controlling Fortran dialect" The following options control the details of the Fortran dialect accepted by the compiler: --- 232,238 ---- \&\-fno\-automatic \-fno\-protect\-parens \-fno\-underscoring \&\-fsecond\-underscore \-fpack\-derived \-frealloc\-lhs \-frecursive \&\-frepack\-arrays \-fshort\-enums \-fstack\-arrays\fR ! .Sh "Options controlling Fortran dialect" .IX Subsection "Options controlling Fortran dialect" The following options control the details of the Fortran dialect accepted by the compiler: *************** backslash character to \*(L"C\-style\*(R *** 279,285 **** combinations are expanded \f(CW\*(C`\ea\*(C'\fR, \f(CW\*(C`\eb\*(C'\fR, \f(CW\*(C`\ef\*(C'\fR, \f(CW\*(C`\en\*(C'\fR, \&\f(CW\*(C`\er\*(C'\fR, \f(CW\*(C`\et\*(C'\fR, \f(CW\*(C`\ev\*(C'\fR, \f(CW\*(C`\e\e\*(C'\fR, and \f(CW\*(C`\e0\*(C'\fR to the \s-1ASCII\s0 characters alert, backspace, form feed, newline, carriage return, ! horizontal tab, vertical tab, backslash, and \s-1NUL,\s0 respectively. Additionally, \f(CW\*(C`\ex\*(C'\fR\fInn\fR, \f(CW\*(C`\eu\*(C'\fR\fInnnn\fR and \&\f(CW\*(C`\eU\*(C'\fR\fInnnnnnnn\fR (where each \fIn\fR is a hexadecimal digit) are translated into the Unicode characters corresponding to the specified code --- 278,284 ---- combinations are expanded \f(CW\*(C`\ea\*(C'\fR, \f(CW\*(C`\eb\*(C'\fR, \f(CW\*(C`\ef\*(C'\fR, \f(CW\*(C`\en\*(C'\fR, \&\f(CW\*(C`\er\*(C'\fR, \f(CW\*(C`\et\*(C'\fR, \f(CW\*(C`\ev\*(C'\fR, \f(CW\*(C`\e\e\*(C'\fR, and \f(CW\*(C`\e0\*(C'\fR to the \s-1ASCII\s0 characters alert, backspace, form feed, newline, carriage return, ! horizontal tab, vertical tab, backslash, and \s-1NUL\s0, respectively. Additionally, \f(CW\*(C`\ex\*(C'\fR\fInn\fR, \f(CW\*(C`\eu\*(C'\fR\fInnnn\fR and \&\f(CW\*(C`\eU\*(C'\fR\fInnnnnnnn\fR (where each \fIn\fR is a hexadecimal digit) are translated into the Unicode characters corresponding to the specified code *************** that are permitted but obsolescent in la *** 418,424 **** allows the Fortran 2008 standard including the additions of the Technical Specification (\s-1TS\s0) 29113 on Further Interoperability of Fortran with C. ! .SS "Enable and customize preprocessing" .IX Subsection "Enable and customize preprocessing" Preprocessor related options. See section \&\fBPreprocessing and conditional compilation\fR for more detailed --- 417,423 ---- allows the Fortran 2008 standard including the additions of the Technical Specification (\s-1TS\s0) 29113 on Further Interoperability of Fortran with C. ! .Sh "Enable and customize preprocessing" .IX Subsection "Enable and customize preprocessing" Preprocessor related options. See section \&\fBPreprocessing and conditional compilation\fR for more detailed *************** by the linemarkers. *** 606,612 **** .IX Item "-Uname" Cancel any previous definition of \fIname\fR, either built in or provided with a \fB\-D\fR option. ! .SS "Options to request or suppress errors and warnings" .IX Subsection "Options to request or suppress errors and warnings" Errors are diagnostic messages that report that the \s-1GNU\s0 Fortran compiler cannot compile the relevant piece of source code. The compiler will --- 605,611 ---- .IX Item "-Uname" Cancel any previous definition of \fIname\fR, either built in or provided with a \fB\-D\fR option. ! .Sh "Options to request or suppress errors and warnings" .IX Subsection "Options to request or suppress errors and warnings" Errors are diagnostic messages that report that the \s-1GNU\s0 Fortran compiler cannot compile the relevant piece of source code. The compiler will *************** While technically legal these usually in *** 758,767 **** This currently produces a warning under the following circumstances: .RS 4 .IP "\(bu" 4 ! An \s-1INTEGER SELECT\s0 construct has a \s-1CASE\s0 that can never be matched as its lower value is greater than its upper value. .IP "\(bu" 4 ! A \s-1LOGICAL SELECT\s0 construct has three \s-1CASE\s0 statements. .IP "\(bu" 4 A \s-1TRANSFER\s0 specifies a source that is shorter than the destination. .IP "\(bu" 4 --- 757,766 ---- This currently produces a warning under the following circumstances: .RS 4 .IP "\(bu" 4 ! An \s-1INTEGER\s0 \s-1SELECT\s0 construct has a \s-1CASE\s0 that can never be matched as its lower value is greater than its upper value. .IP "\(bu" 4 ! A \s-1LOGICAL\s0 \s-1SELECT\s0 construct has three \s-1CASE\s0 statements. .IP "\(bu" 4 A \s-1TRANSFER\s0 specifies a source that is shorter than the destination. .IP "\(bu" 4 *************** time. This option is implied by \fB\-Wa *** 841,847 **** Turns all warnings into errors. .PP Some of these have no effect when compiling programs written in Fortran. ! .SS "Options for debugging your program or \s-1GNU\s0 Fortran" .IX Subsection "Options for debugging your program or GNU Fortran" \&\s-1GNU\s0 Fortran has various special options that are used for debugging either your program or the \s-1GNU\s0 Fortran compiler. --- 840,846 ---- Turns all warnings into errors. .PP Some of these have no effect when compiling programs written in Fortran. ! .Sh "Options for debugging your program or \s-1GNU\s0 Fortran" .IX Subsection "Options for debugging your program or GNU Fortran" \&\s-1GNU\s0 Fortran has various special options that are used for debugging either your program or the \s-1GNU\s0 Fortran compiler. *************** exceptions: \fBinvalid\fR (invalid float *** 873,880 **** in a floating point operation), \fBinexact\fR (loss of precision during operation), and \fBdenormal\fR (operation performed on a denormal value). The first five exceptions correspond to the five ! \&\s-1IEEE 754\s0 exceptions, whereas the last one (\fBdenormal\fR) is not ! part of the \s-1IEEE 754\s0 standard but is available on some common architectures such as x86. .Sp The first three exceptions (\fBinvalid\fR, \fBzero\fR, and --- 872,879 ---- in a floating point operation), \fBinexact\fR (loss of precision during operation), and \fBdenormal\fR (operation performed on a denormal value). The first five exceptions correspond to the five ! \&\s-1IEEE\s0 754 exceptions, whereas the last one (\fBdenormal\fR) is not ! part of the \s-1IEEE\s0 754 standard but is available on some common architectures such as x86. .Sp The first three exceptions (\fBinvalid\fR, \fBzero\fR, and *************** action \fBcore\fR), the Fortran runtime *** 906,912 **** backtrace of the error. \f(CW\*(C`\-fno\-backtrace\*(C'\fR disables the backtrace generation. This option only has influence for compilation of the Fortran main program. ! .SS "Options for directory search" .IX Subsection "Options for directory search" These options affect how \s-1GNU\s0 Fortran searches for files specified by the \f(CW\*(C`INCLUDE\*(C'\fR directive and where it searches --- 905,911 ---- backtrace of the error. \f(CW\*(C`\-fno\-backtrace\*(C'\fR disables the backtrace generation. This option only has influence for compilation of the Fortran main program. ! .Sh "Options for directory search" .IX Subsection "Options for directory search" These options affect how \s-1GNU\s0 Fortran searches for files specified by the \f(CW\*(C`INCLUDE\*(C'\fR directive and where it searches *************** The default is the current directory. *** 938,944 **** .IX Item "-fintrinsic-modules-path dir" This option specifies the location of pre-compiled intrinsic modules, if they are not in the default location expected by the compiler. ! .SS "Influencing the linking step" .IX Subsection "Influencing the linking step" These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is not doing --- 937,943 ---- .IX Item "-fintrinsic-modules-path dir" This option specifies the location of pre-compiled intrinsic modules, if they are not in the default location expected by the compiler. ! .Sh "Influencing the linking step" .IX Subsection "Influencing the linking step" These options come into play when the compiler links object files into an executable output file. They are meaningless if the compiler is not doing *************** On systems that provide \fIlibgfortran\f *** 949,955 **** library, this option forces the use of the static version. If no shared version of \fIlibgfortran\fR was built when the compiler was configured, this option has no effect. ! .SS "Influencing runtime behavior" .IX Subsection "Influencing runtime behavior" These options affect the runtime behavior of programs compiled with \s-1GNU\s0 Fortran. .IP "\fB\-fconvert=\fR\fIconversion\fR" 4 --- 948,954 ---- library, this option forces the use of the static version. If no shared version of \fIlibgfortran\fR was built when the compiler was configured, this option has no effect. ! .Sh "Influencing runtime behavior" .IX Subsection "Influencing runtime behavior" These options affect the runtime behavior of programs compiled with \s-1GNU\s0 Fortran. .IP "\fB\-fconvert=\fR\fIconversion\fR" 4 *************** negative in the \f(CW\*(C`SIGN\*(C'\fR i *** 984,990 **** print the negative sign of zero values (or values rounded to zero for I/O) and regards zero as positive number in the \f(CW\*(C`SIGN\*(C'\fR intrinsic for compatibility with Fortran 77. The default is \fB\-fsign\-zero\fR. ! .SS "Options for code generation conventions" .IX Subsection "Options for code generation conventions" These machine-independent options control the interface conventions used in code generation. --- 983,989 ---- print the negative sign of zero values (or values rounded to zero for I/O) and regards zero as positive number in the \f(CW\*(C`SIGN\*(C'\fR intrinsic for compatibility with Fortran 77. The default is \fB\-fsign\-zero\fR. ! .Sh "Options for code generation conventions" .IX Subsection "Options for code generation conventions" These machine-independent options control the interface conventions used in code generation. *************** extra argument in the calling sequence t *** 1016,1022 **** store the return value. Under the default \s-1GNU\s0 calling conventions, such functions simply return their results as they would in \s-1GNU\s0 C\-\-\-default \f(CW\*(C`REAL\*(C'\fR functions return the C type \f(CW\*(C`float\*(C'\fR, and ! \&\f(CW\*(C`COMPLEX\*(C'\fR functions return the \s-1GNU C\s0 type \f(CW\*(C`complex\*(C'\fR. Additionally, this option implies the \fB\-fsecond\-underscore\fR option, unless \fB\-fno\-second\-underscore\fR is explicitly requested. .Sp --- 1015,1021 ---- store the return value. Under the default \s-1GNU\s0 calling conventions, such functions simply return their results as they would in \s-1GNU\s0 C\-\-\-default \f(CW\*(C`REAL\*(C'\fR functions return the C type \f(CW\*(C`float\*(C'\fR, and ! \&\f(CW\*(C`COMPLEX\*(C'\fR functions return the \s-1GNU\s0 C type \f(CW\*(C`complex\*(C'\fR. Additionally, this option implies the \fB\-fsecond\-underscore\fR option, unless \fB\-fno\-second\-underscore\fR is explicitly requested. .Sp diff -Nrcpad gcc-4.9.3/gcc/doc/gij.1 gcc-4.9.4/gcc/doc/gij.1 *** gcc-4.9.3/gcc/doc/gij.1 Fri Jun 26 18:37:25 2015 --- gcc-4.9.4/gcc/doc/gij.1 Wed Aug 3 06:01:09 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GIJ 1" ! .TH GIJ 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GIJ 1" ! .TH GIJ 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.9.3/gcc/doc/gpl.7 gcc-4.9.4/gcc/doc/gpl.7 *** gcc-4.9.3/gcc/doc/gpl.7 Fri Jun 26 18:49:08 2015 --- gcc-4.9.4/gcc/doc/gpl.7 Wed Aug 3 06:14:16 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GPL 7" ! .TH GPL 7 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GPL 7" ! .TH GPL 7 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** *** 142,150 **** gpl \- GNU General Public License .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! .SS "\s-1GNU\s0 General Public License" .IX Subsection "GNU General Public License" ! .SS "Version 3, 29 June 2007" .IX Subsection "Version 3, 29 June 2007" .Vb 1 \& Copyright (c) 2007 Free Software Foundation, Inc. --- 141,149 ---- gpl \- GNU General Public License .SH "DESCRIPTION" .IX Header "DESCRIPTION" ! .Sh "\s-1GNU\s0 General Public License" .IX Subsection "GNU General Public License" ! .Sh "Version 3, 29 June 2007" .IX Subsection "Version 3, 29 June 2007" .Vb 1 \& Copyright (c) 2007 Free Software Foundation, Inc. *************** gpl \- GNU General Public License *** 152,158 **** \& Everyone is permitted to copy and distribute verbatim copies of this \& license document, but changing it is not allowed. .Ve ! .SS "Preamble" .IX Subsection "Preamble" The \s-1GNU\s0 General Public License is a free, copyleft license for software and other kinds of works. --- 151,157 ---- \& Everyone is permitted to copy and distribute verbatim copies of this \& license document, but changing it is not allowed. .Ve ! .Sh "Preamble" .IX Subsection "Preamble" The \s-1GNU\s0 General Public License is a free, copyleft license for software and other kinds of works. *************** freedoms that you received. You must ma *** 185,191 **** receive or can get the source code. And you must show them these terms so they know their rights. .PP ! Developers that use the \s-1GNU GPL\s0 protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. .PP --- 184,190 ---- receive or can get the source code. And you must show them these terms so they know their rights. .PP ! Developers that use the \s-1GNU\s0 \s-1GPL\s0 protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. .PP *************** individuals to use, which is precisely w *** 204,210 **** Therefore, we have designed this version of the \s-1GPL\s0 to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those ! domains in future versions of the \s-1GPL,\s0 as needed to protect the freedom of users. .PP Finally, every program is threatened constantly by software patents. --- 203,209 ---- Therefore, we have designed this version of the \s-1GPL\s0 to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those ! domains in future versions of the \s-1GPL\s0, as needed to protect the freedom of users. .PP Finally, every program is threatened constantly by software patents. *************** assures that patents cannot be used to r *** 216,222 **** .PP The precise terms and conditions for copying, distribution and modification follow. ! .SS "\s-1TERMS AND CONDITIONS\s0" .IX Subsection "TERMS AND CONDITIONS" .IP "0. Definitions." 4 .IX Item "0. Definitions." --- 215,221 ---- .PP The precise terms and conditions for copying, distribution and modification follow. ! .Sh "\s-1TERMS\s0 \s-1AND\s0 \s-1CONDITIONS\s0" .IX Subsection "TERMS AND CONDITIONS" .IP "0. Definitions." 4 .IX Item "0. Definitions." *************** author or copyright holder as a result o *** 751,776 **** later version. .IP "15. Disclaimer of Warranty." 4 .IX Item "15. Disclaimer of Warranty." ! \&\s-1THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT ! HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM \*(L"AS IS\*(R" WITHOUT ! WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ! A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND ! PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE ! DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR ! CORRECTION.\s0 .IP "16. Limitation of Liability." 4 .IX Item "16. Limitation of Liability." ! \&\s-1IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING ! WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR ! CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, ! INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ! ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM \s0(\s-1INCLUDING BUT ! NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR ! LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM ! TO OPERATE WITH ANY OTHER PROGRAMS\s0), \s-1EVEN IF SUCH HOLDER OR OTHER ! PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.\s0 .IP "17. Interpretation of Sections 15 and 16." 4 .IX Item "17. Interpretation of Sections 15 and 16." If the disclaimer of warranty and limitation of liability provided --- 750,775 ---- later version. .IP "15. Disclaimer of Warranty." 4 .IX Item "15. Disclaimer of Warranty." ! \&\s-1THERE\s0 \s-1IS\s0 \s-1NO\s0 \s-1WARRANTY\s0 \s-1FOR\s0 \s-1THE\s0 \s-1PROGRAM\s0, \s-1TO\s0 \s-1THE\s0 \s-1EXTENT\s0 \s-1PERMITTED\s0 \s-1BY\s0 ! \&\s-1APPLICABLE\s0 \s-1LAW\s0. \s-1EXCEPT\s0 \s-1WHEN\s0 \s-1OTHERWISE\s0 \s-1STATED\s0 \s-1IN\s0 \s-1WRITING\s0 \s-1THE\s0 \s-1COPYRIGHT\s0 ! \&\s-1HOLDERS\s0 \s-1AND/OR\s0 \s-1OTHER\s0 \s-1PARTIES\s0 \s-1PROVIDE\s0 \s-1THE\s0 \s-1PROGRAM\s0 \*(L"\s-1AS\s0 \s-1IS\s0\*(R" \s-1WITHOUT\s0 ! \&\s-1WARRANTY\s0 \s-1OF\s0 \s-1ANY\s0 \s-1KIND\s0, \s-1EITHER\s0 \s-1EXPRESSED\s0 \s-1OR\s0 \s-1IMPLIED\s0, \s-1INCLUDING\s0, \s-1BUT\s0 \s-1NOT\s0 ! \&\s-1LIMITED\s0 \s-1TO\s0, \s-1THE\s0 \s-1IMPLIED\s0 \s-1WARRANTIES\s0 \s-1OF\s0 \s-1MERCHANTABILITY\s0 \s-1AND\s0 \s-1FITNESS\s0 \s-1FOR\s0 ! A \s-1PARTICULAR\s0 \s-1PURPOSE\s0. \s-1THE\s0 \s-1ENTIRE\s0 \s-1RISK\s0 \s-1AS\s0 \s-1TO\s0 \s-1THE\s0 \s-1QUALITY\s0 \s-1AND\s0 ! \&\s-1PERFORMANCE\s0 \s-1OF\s0 \s-1THE\s0 \s-1PROGRAM\s0 \s-1IS\s0 \s-1WITH\s0 \s-1YOU\s0. \s-1SHOULD\s0 \s-1THE\s0 \s-1PROGRAM\s0 \s-1PROVE\s0 ! \&\s-1DEFECTIVE\s0, \s-1YOU\s0 \s-1ASSUME\s0 \s-1THE\s0 \s-1COST\s0 \s-1OF\s0 \s-1ALL\s0 \s-1NECESSARY\s0 \s-1SERVICING\s0, \s-1REPAIR\s0 \s-1OR\s0 ! \&\s-1CORRECTION\s0. .IP "16. Limitation of Liability." 4 .IX Item "16. Limitation of Liability." ! \&\s-1IN\s0 \s-1NO\s0 \s-1EVENT\s0 \s-1UNLESS\s0 \s-1REQUIRED\s0 \s-1BY\s0 \s-1APPLICABLE\s0 \s-1LAW\s0 \s-1OR\s0 \s-1AGREED\s0 \s-1TO\s0 \s-1IN\s0 \s-1WRITING\s0 ! \&\s-1WILL\s0 \s-1ANY\s0 \s-1COPYRIGHT\s0 \s-1HOLDER\s0, \s-1OR\s0 \s-1ANY\s0 \s-1OTHER\s0 \s-1PARTY\s0 \s-1WHO\s0 \s-1MODIFIES\s0 \s-1AND/OR\s0 ! \&\s-1CONVEYS\s0 \s-1THE\s0 \s-1PROGRAM\s0 \s-1AS\s0 \s-1PERMITTED\s0 \s-1ABOVE\s0, \s-1BE\s0 \s-1LIABLE\s0 \s-1TO\s0 \s-1YOU\s0 \s-1FOR\s0 \s-1DAMAGES\s0, ! \&\s-1INCLUDING\s0 \s-1ANY\s0 \s-1GENERAL\s0, \s-1SPECIAL\s0, \s-1INCIDENTAL\s0 \s-1OR\s0 \s-1CONSEQUENTIAL\s0 \s-1DAMAGES\s0 ! \&\s-1ARISING\s0 \s-1OUT\s0 \s-1OF\s0 \s-1THE\s0 \s-1USE\s0 \s-1OR\s0 \s-1INABILITY\s0 \s-1TO\s0 \s-1USE\s0 \s-1THE\s0 \s-1PROGRAM\s0 (\s-1INCLUDING\s0 \s-1BUT\s0 ! \&\s-1NOT\s0 \s-1LIMITED\s0 \s-1TO\s0 \s-1LOSS\s0 \s-1OF\s0 \s-1DATA\s0 \s-1OR\s0 \s-1DATA\s0 \s-1BEING\s0 \s-1RENDERED\s0 \s-1INACCURATE\s0 \s-1OR\s0 ! \&\s-1LOSSES\s0 \s-1SUSTAINED\s0 \s-1BY\s0 \s-1YOU\s0 \s-1OR\s0 \s-1THIRD\s0 \s-1PARTIES\s0 \s-1OR\s0 A \s-1FAILURE\s0 \s-1OF\s0 \s-1THE\s0 \s-1PROGRAM\s0 ! \&\s-1TO\s0 \s-1OPERATE\s0 \s-1WITH\s0 \s-1ANY\s0 \s-1OTHER\s0 \s-1PROGRAMS\s0), \s-1EVEN\s0 \s-1IF\s0 \s-1SUCH\s0 \s-1HOLDER\s0 \s-1OR\s0 \s-1OTHER\s0 ! \&\s-1PARTY\s0 \s-1HAS\s0 \s-1BEEN\s0 \s-1ADVISED\s0 \s-1OF\s0 \s-1THE\s0 \s-1POSSIBILITY\s0 \s-1OF\s0 \s-1SUCH\s0 \s-1DAMAGES\s0. .IP "17. Interpretation of Sections 15 and 16." 4 .IX Item "17. Interpretation of Sections 15 and 16." If the disclaimer of warranty and limitation of liability provided *************** reviewing courts shall apply local law t *** 779,787 **** an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. ! .SS "\s-1END OF TERMS AND CONDITIONS\s0" .IX Subsection "END OF TERMS AND CONDITIONS" ! .SS "How to Apply These Terms to Your New Programs" .IX Subsection "How to Apply These Terms to Your New Programs" If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it --- 778,786 ---- an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. ! .Sh "\s-1END\s0 \s-1OF\s0 \s-1TERMS\s0 \s-1AND\s0 \s-1CONDITIONS\s0" .IX Subsection "END OF TERMS AND CONDITIONS" ! .Sh "How to Apply These Terms to Your New Programs" .IX Subsection "How to Apply These Terms to Your New Programs" If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it *************** use an \*(L"about box\*(R". *** 830,836 **** .PP You should also get your employer (if you work as a programmer) or school, if any, to sign a \*(L"copyright disclaimer\*(R" for the program, if necessary. ! For more information on this, and how to apply and follow the \s-1GNU GPL,\s0 see <\fBhttp://www.gnu.org/licenses/\fR>. .PP The \s-1GNU\s0 General Public License does not permit incorporating your --- 829,835 ---- .PP You should also get your employer (if you work as a programmer) or school, if any, to sign a \*(L"copyright disclaimer\*(R" for the program, if necessary. ! For more information on this, and how to apply and follow the \s-1GNU\s0 \s-1GPL\s0, see <\fBhttp://www.gnu.org/licenses/\fR>. .PP The \s-1GNU\s0 General Public License does not permit incorporating your diff -Nrcpad gcc-4.9.3/gcc/doc/grmic.1 gcc-4.9.4/gcc/doc/grmic.1 *** gcc-4.9.3/gcc/doc/grmic.1 Fri Jun 26 18:37:25 2015 --- gcc-4.9.4/gcc/doc/grmic.1 Wed Aug 3 06:01:09 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "GRMIC 1" ! .TH GRMIC 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "GRMIC 1" ! .TH GRMIC 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l *************** grmic \- Generate stubs for Remote Metho *** 148,155 **** \&\fBgrmic\fR is a utility included with \f(CW\*(C`libgcj\*(C'\fR which generates stubs for remote objects. .PP ! Note that this program isn't yet fully compatible with the \s-1JDK ! \&\s0\fBgrmic\fR. Some options, such as \fB\-classpath\fR, are recognized but currently ignored. We have left these options undocumented for now. .PP --- 147,154 ---- \&\fBgrmic\fR is a utility included with \f(CW\*(C`libgcj\*(C'\fR which generates stubs for remote objects. .PP ! Note that this program isn't yet fully compatible with the \s-1JDK\s0 ! \&\fBgrmic\fR. Some options, such as \fB\-classpath\fR, are recognized but currently ignored. We have left these options undocumented for now. .PP diff -Nrcpad gcc-4.9.3/gcc/doc/invoke.texi gcc-4.9.4/gcc/doc/invoke.texi *** gcc-4.9.3/gcc/doc/invoke.texi Fri Jun 26 17:47:23 2015 --- gcc-4.9.4/gcc/doc/invoke.texi Tue Jun 7 21:49:58 2016 *************** See RS/6000 and PowerPC Options. *** 921,927 **** -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol -msave-toc-indirect -mno-save-toc-indirect @gol -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol ! -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol -mquad-memory -mno-quad-memory @gol -mquad-memory-atomic -mno-quad-memory-atomic @gol -mcompat-align-parm -mno-compat-align-parm} --- 921,927 ---- -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol -msave-toc-indirect -mno-save-toc-indirect @gol -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol ! -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol -mquad-memory -mno-quad-memory @gol -mquad-memory-atomic -mno-quad-memory-atomic @gol -mcompat-align-parm -mno-compat-align-parm} *************** many times it is given. This is mainly *** 5281,5305 **** Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. ! See @uref{http://code.google.com/p/address-sanitizer/} for more details. The run-time behavior can be influenced using the ! @env{ASAN_OPTIONS} environment variable; see ! @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for ! a list of supported options. @item -fsanitize=kernel-address @opindex fsanitize=kernel-address Enable AddressSanitizer for Linux kernel. ! See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details. @item -fsanitize=thread @opindex fsanitize=thread Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect ! data race bugs. See @uref{http://code.google.com/p/thread-sanitizer/} for more details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS} environment variable; see ! @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of supported options. @item -fsanitize=leak --- 5281,5306 ---- Enable AddressSanitizer, a fast memory error detector. Memory access instructions will be instrumented to detect out-of-bounds and use-after-free bugs. ! See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for more details. The run-time behavior can be influenced using the ! @env{ASAN_OPTIONS} environment variable. When set to @code{help=1}, ! the available options are shown at startup of the instrumended program. See ! @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags} ! for a list of supported options. @item -fsanitize=kernel-address @opindex fsanitize=kernel-address Enable AddressSanitizer for Linux kernel. ! See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more details. @item -fsanitize=thread @opindex fsanitize=thread Enable ThreadSanitizer, a fast data race detector. Memory access instructions will be instrumented to detect ! data race bugs. See @uref{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for more details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS} environment variable; see ! @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of supported options. @item -fsanitize=leak *************** This option only matters for linking of *** 5309,5315 **** @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that case it will link the executable against a library that overrides @code{malloc} and other allocator functions. See ! @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more details. The run-time behavior can be influenced using the @env{LSAN_OPTIONS} environment variable. --- 5310,5316 ---- @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that case it will link the executable against a library that overrides @code{malloc} and other allocator functions. See ! @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more details. The run-time behavior can be influenced using the @env{LSAN_OPTIONS} environment variable. *************** following options: *** 18989,18995 **** -mpopcntb -mpopcntd -mpowerpc64 @gol -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol ! -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol -mquad-memory -mquad-memory-atomic} The particular options set for any particular CPU varies between --- 18990,18996 ---- -mpopcntb -mpopcntd -mpowerpc64 @gol -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol ! -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol -mquad-memory -mquad-memory-atomic} The particular options set for any particular CPU varies between *************** Generate code that uses (does not use) t *** 19156,19161 **** --- 19157,19170 ---- between the general purpose registers and the vector/scalar (VSX) registers that were added in version 2.07 of the PowerPC ISA. + @item -mhtm + @itemx -mno-htm + @opindex mhtm + @opindex mno-htm + Enable (disable) the use of the built-in functions that allow direct + access to the Hardware Transactional Memory (HTM) instructions that + were added in version 2.07 of the PowerPC ISA. + @item -mpower8-fusion @itemx -mno-power8-fusion @opindex mpower8-fusion *************** in a performance loss, especially for fl *** 21098,21105 **** @opindex muser-mode @opindex mno-user-mode Do not generate code that can only run in supervisor mode. This is relevant ! only for the @code{casa} instruction emitted for the LEON3 processor. The ! default is @option{-mno-user-mode}. @item -mno-faster-structs @itemx -mfaster-structs --- 21107,21114 ---- @opindex muser-mode @opindex mno-user-mode Do not generate code that can only run in supervisor mode. This is relevant ! only for the @code{casa} instruction emitted for the LEON3 processor. This ! is the default. @item -mno-faster-structs @itemx -mfaster-structs diff -Nrcpad gcc-4.9.3/gcc/doc/jcf-dump.1 gcc-4.9.4/gcc/doc/jcf-dump.1 *** gcc-4.9.3/gcc/doc/jcf-dump.1 Fri Jun 26 18:37:25 2015 --- gcc-4.9.4/gcc/doc/jcf-dump.1 Wed Aug 3 06:01:09 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "JCF-DUMP 1" ! .TH JCF-DUMP 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "JCF-DUMP 1" ! .TH JCF-DUMP 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.9.3/gcc/doc/jv-convert.1 gcc-4.9.4/gcc/doc/jv-convert.1 *** gcc-4.9.3/gcc/doc/jv-convert.1 Fri Jun 26 18:37:25 2015 --- gcc-4.9.4/gcc/doc/jv-convert.1 Wed Aug 3 06:01:09 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "JV-CONVERT 1" ! .TH JV-CONVERT 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "JV-CONVERT 1" ! .TH JV-CONVERT 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.9.3/gcc/doc/md.texi gcc-4.9.4/gcc/doc/md.texi *** gcc-4.9.3/gcc/doc/md.texi Wed Jun 10 17:16:58 2015 --- gcc-4.9.4/gcc/doc/md.texi Fri Jan 29 18:25:13 2016 *************** Integer constant in the range 0 @dots{} *** 2444,2450 **** Standard 80387 floating point constant. @item C ! Standard SSE floating point constant. @item e 32-bit signed integer constant, or a symbolic reference known --- 2444,2450 ---- Standard 80387 floating point constant. @item C ! SSE constant zero operand. @item e 32-bit signed integer constant, or a symbolic reference known diff -Nrcpad gcc-4.9.3/gcc/doc/rebuild-gcj-db.1 gcc-4.9.4/gcc/doc/rebuild-gcj-db.1 *** gcc-4.9.3/gcc/doc/rebuild-gcj-db.1 Fri Jun 26 18:49:08 2015 --- gcc-4.9.4/gcc/doc/rebuild-gcj-db.1 Wed Aug 3 06:14:17 2016 *************** *** 1,7 **** ! .\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29) .\" .\" Standard preamble: .\" ======================================================================== .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp --- 1,15 ---- ! .\" Automatically generated by Pod::Man 2.16 (Pod::Simple 3.05) .\" .\" Standard preamble: .\" ======================================================================== + .de Sh \" Subsection heading + .br + .if t .Sp + .ne 5 + .PP + \fB\\$1\fR + .PP + .. .de Sp \" Vertical space (when we can't use .PP) .if t .sp .5v .if n .sp *************** *** 38,45 **** . ds PI \(*p . ds L" `` . ds R" '' - . ds C` - . ds C' 'br\} .\" .\" Escape single quotes in literal strings from groff's Unicode transform. --- 46,51 ---- *************** *** 47,73 **** .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .\" ! .\" Avoid warning from groff about undefined register 'F'. ! .de IX .. ! .nr rF 0 ! .if \n(.g .if rF .nr rF 1 ! .if (\n(rF:(\n(.g==0)) \{ ! . if \nF \{ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. - . if !\nF==2 \{ - . nr % 0 - . nr F 2 - . \} - . \} .\} - .rr rF .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. --- 53,72 ---- .el .ds Aq ' .\" .\" If the F register is turned on, we'll generate index entries on stderr for ! .\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index .\" entries marked with X<> in POD. Of course, you'll have to process the .\" output yourself in some meaningful fashion. ! .ie \nF \{\ ! . de IX ! . tm Index:\\$1\t\\n%\t"\\$2" .. ! . nr % 0 ! . rr F ! .\} ! .el \{\ ! . de IX .. .\} .\" .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2). .\" Fear. Run. Save yourself. No user-serviceable parts. *************** *** 133,139 **** .\" ======================================================================== .\" .IX Title "REBUILD-GCJ-DB 1" ! .TH REBUILD-GCJ-DB 1 "2015-06-26" "gcc-4.9.3" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l --- 132,138 ---- .\" ======================================================================== .\" .IX Title "REBUILD-GCJ-DB 1" ! .TH REBUILD-GCJ-DB 1 "2016-07-26" "gcc-4.9.4" "GNU" .\" For nroff, turn off justification. Always turn off hyphenation; it makes .\" way too many mistakes in technical documents. .if n .ad l diff -Nrcpad gcc-4.9.3/gcc/doc/sourcebuild.texi gcc-4.9.4/gcc/doc/sourcebuild.texi *** gcc-4.9.3/gcc/doc/sourcebuild.texi Fri Jun 13 21:56:16 2014 --- gcc-4.9.4/gcc/doc/sourcebuild.texi Sun May 22 08:53:32 2016 *************** time) should be run on this target. Thi *** 1782,1787 **** --- 1782,1790 ---- Test system runs executables on a simulator (i.e. slowly) rather than hardware (i.e. fast). + @item stabs + Target supports the stabs debugging format. + @item stdint_types Target has the basic signed and unsigned C types in @code{stdint.h}. This will be obsolete when GCC ensures a working @code{stdint.h} for diff -Nrcpad gcc-4.9.3/gcc/dojump.c gcc-4.9.4/gcc/dojump.c *** gcc-4.9.3/gcc/dojump.c Thu Mar 27 00:41:10 2014 --- gcc-4.9.4/gcc/dojump.c Sun Oct 25 15:45:33 2015 *************** do_compare_and_jump (tree treeop0, tree *** 1193,1204 **** If one side isn't, we want a noncanonicalized comparison. See PR middle-end/17564. */ if (HAVE_canonicalize_funcptr_for_compare ! && TREE_CODE (TREE_TYPE (treeop0)) == POINTER_TYPE ! && TREE_CODE (TREE_TYPE (TREE_TYPE (treeop0))) ! == FUNCTION_TYPE ! && TREE_CODE (TREE_TYPE (treeop1)) == POINTER_TYPE ! && TREE_CODE (TREE_TYPE (TREE_TYPE (treeop1))) ! == FUNCTION_TYPE) { rtx new_op0 = gen_reg_rtx (mode); rtx new_op1 = gen_reg_rtx (mode); --- 1193,1204 ---- If one side isn't, we want a noncanonicalized comparison. See PR middle-end/17564. */ if (HAVE_canonicalize_funcptr_for_compare ! && POINTER_TYPE_P (TREE_TYPE (treeop0)) ! && POINTER_TYPE_P (TREE_TYPE (treeop1)) ! && (TREE_CODE (TREE_TYPE (TREE_TYPE (treeop0))) == FUNCTION_TYPE ! || TREE_CODE (TREE_TYPE (TREE_TYPE (treeop0))) == METHOD_TYPE) ! && (TREE_CODE (TREE_TYPE (TREE_TYPE (treeop1))) == FUNCTION_TYPE ! || TREE_CODE (TREE_TYPE (TREE_TYPE (treeop1))) == METHOD_TYPE)) { rtx new_op0 = gen_reg_rtx (mode); rtx new_op1 = gen_reg_rtx (mode); diff -Nrcpad gcc-4.9.3/gcc/dse.c gcc-4.9.4/gcc/dse.c *** gcc-4.9.3/gcc/dse.c Fri Jan 23 17:55:32 2015 --- gcc-4.9.4/gcc/dse.c Thu Jul 7 21:47:40 2016 *************** record_store (rtx body, bb_info_t bb_inf *** 1545,1558 **** mem_addr = base->val_rtx; else { ! group_info_t group ! = rtx_group_vec[group_id]; mem_addr = group->canon_base_addr; } - /* get_addr can only handle VALUE but cannot handle expr like: - VALUE + OFFSET, so call get_addr to get original addr for - mem_addr before plus_constant. */ - mem_addr = get_addr (mem_addr); if (offset) mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); } --- 1545,1553 ---- mem_addr = base->val_rtx; else { ! group_info_t group = rtx_group_vec[group_id]; mem_addr = group->canon_base_addr; } if (offset) mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); } *************** record_store (rtx body, bb_info_t bb_inf *** 1644,1653 **** the value of store_info. If it is, set the rhs to NULL to keep it from being used to remove a load. */ { ! if (canon_true_dependence (s_info->mem, ! GET_MODE (s_info->mem), ! s_info->mem_addr, ! mem, mem_addr)) { s_info->rhs = NULL; s_info->const_rhs = NULL; --- 1639,1647 ---- the value of store_info. If it is, set the rhs to NULL to keep it from being used to remove a load. */ { ! if (canon_output_dependence (s_info->mem, true, ! mem, GET_MODE (mem), ! mem_addr)) { s_info->rhs = NULL; s_info->const_rhs = NULL; *************** check_mem_read_rtx (rtx *loc, void *data *** 2166,2179 **** mem_addr = base->val_rtx; else { ! group_info_t group ! = rtx_group_vec[group_id]; mem_addr = group->canon_base_addr; } - /* get_addr can only handle VALUE but cannot handle expr like: - VALUE + OFFSET, so call get_addr to get original addr for - mem_addr before plus_constant. */ - mem_addr = get_addr (mem_addr); if (offset) mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); } --- 2160,2168 ---- mem_addr = base->val_rtx; else { ! group_info_t group = rtx_group_vec[group_id]; mem_addr = group->canon_base_addr; } if (offset) mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset); } *************** scan_insn (bb_info_t bb_info, rtx insn) *** 2593,2598 **** --- 2582,2589 ---- active_local_stores = insn_info; } } + else + clear_rhs_from_active_local_stores (); } } diff -Nrcpad gcc-4.9.3/gcc/dwarf2out.c gcc-4.9.4/gcc/dwarf2out.c *** gcc-4.9.3/gcc/dwarf2out.c Thu Jun 11 12:44:56 2015 --- gcc-4.9.4/gcc/dwarf2out.c Thu Jul 7 11:46:08 2016 *************** native_encode_initializer (tree init, un *** 15817,15823 **** fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field)); pos = int_byte_position (field); gcc_assert (pos + fieldsize <= size); ! if (val && !native_encode_initializer (val, array + pos, fieldsize)) return false; } --- 15817,15823 ---- fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field)); pos = int_byte_position (field); gcc_assert (pos + fieldsize <= size); ! if (val && fieldsize != 0 && !native_encode_initializer (val, array + pos, fieldsize)) return false; } diff -Nrcpad gcc-4.9.3/gcc/except.c gcc-4.9.4/gcc/except.c *** gcc-4.9.3/gcc/except.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/except.c Mon Sep 21 19:08:38 2015 *************** expand_builtin_eh_return (tree stackadj_ *** 2223,2229 **** VOIDmode, EXPAND_NORMAL); tmp = convert_memory_address (Pmode, tmp); if (!crtl->eh.ehr_stackadj) ! crtl->eh.ehr_stackadj = copy_to_reg (tmp); else if (tmp != crtl->eh.ehr_stackadj) emit_move_insn (crtl->eh.ehr_stackadj, tmp); #endif --- 2223,2229 ---- VOIDmode, EXPAND_NORMAL); tmp = convert_memory_address (Pmode, tmp); if (!crtl->eh.ehr_stackadj) ! crtl->eh.ehr_stackadj = copy_addr_to_reg (tmp); else if (tmp != crtl->eh.ehr_stackadj) emit_move_insn (crtl->eh.ehr_stackadj, tmp); #endif *************** expand_builtin_eh_return (tree stackadj_ *** 2232,2238 **** VOIDmode, EXPAND_NORMAL); tmp = convert_memory_address (Pmode, tmp); if (!crtl->eh.ehr_handler) ! crtl->eh.ehr_handler = copy_to_reg (tmp); else if (tmp != crtl->eh.ehr_handler) emit_move_insn (crtl->eh.ehr_handler, tmp); --- 2232,2238 ---- VOIDmode, EXPAND_NORMAL); tmp = convert_memory_address (Pmode, tmp); if (!crtl->eh.ehr_handler) ! crtl->eh.ehr_handler = copy_addr_to_reg (tmp); else if (tmp != crtl->eh.ehr_handler) emit_move_insn (crtl->eh.ehr_handler, tmp); diff -Nrcpad gcc-4.9.3/gcc/fold-const.c gcc-4.9.4/gcc/fold-const.c *** gcc-4.9.3/gcc/fold-const.c Thu Jun 18 14:03:50 2015 --- gcc-4.9.4/gcc/fold-const.c Fri Jul 8 20:22:22 2016 *************** fold_convertible_p (const_tree type, con *** 1933,1939 **** case REAL_TYPE: case FIXED_POINT_TYPE: - case COMPLEX_TYPE: case VECTOR_TYPE: case VOID_TYPE: return TREE_CODE (type) == TREE_CODE (orig); --- 1933,1938 ---- *************** fold_binary_loc (location_t loc, *** 12746,12756 **** || TREE_CODE (arg0) == BIT_IOR_EXPR || TREE_CODE (arg0) == BIT_XOR_EXPR) && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) ! return fold_build2_loc (loc, TREE_CODE (arg0), type, ! fold_build2_loc (loc, code, type, ! TREE_OPERAND (arg0, 0), arg1), ! fold_build2_loc (loc, code, type, ! TREE_OPERAND (arg0, 1), arg1)); /* Two consecutive rotates adding up to the precision of the type can be ignored. */ --- 12745,12759 ---- || TREE_CODE (arg0) == BIT_IOR_EXPR || TREE_CODE (arg0) == BIT_XOR_EXPR) && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) ! { ! tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); ! tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); ! return fold_build2_loc (loc, TREE_CODE (arg0), type, ! fold_build2_loc (loc, code, type, ! arg00, arg1), ! fold_build2_loc (loc, code, type, ! arg01, arg1)); ! } /* Two consecutive rotates adding up to the precision of the type can be ignored. */ *************** fold_binary_loc (location_t loc, *** 12762,12768 **** && ((TREE_INT_CST_LOW (arg1) + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))) == prec)) ! return TREE_OPERAND (arg0, 0); /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1) (X & C2) >> C1 into (X >> C1) & (C2 >> C1) --- 12765,12771 ---- && ((TREE_INT_CST_LOW (arg1) + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))) == prec)) ! return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1) (X & C2) >> C1 into (X >> C1) & (C2 >> C1) *************** fold_indirect_ref_1 (location_t loc, tre *** 16738,16754 **** if (TREE_CODE (op00type) == VECTOR_TYPE && type == TREE_TYPE (op00type)) { - HOST_WIDE_INT offset = tree_to_shwi (op01); tree part_width = TYPE_SIZE (type); ! unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width)/BITS_PER_UNIT; ! unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT; ! tree index = bitsize_int (indexi); ! ! if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (op00type)) ! return fold_build3_loc (loc, ! BIT_FIELD_REF, type, op00, ! part_width, index); ! } /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */ else if (TREE_CODE (op00type) == COMPLEX_TYPE --- 16741,16760 ---- if (TREE_CODE (op00type) == VECTOR_TYPE && type == TREE_TYPE (op00type)) { tree part_width = TYPE_SIZE (type); ! unsigned HOST_WIDE_INT max_offset ! = (tree_to_uhwi (part_width) / BITS_PER_UNIT ! * TYPE_VECTOR_SUBPARTS (op00type)); ! if (tree_int_cst_sign_bit (op01) == 0 ! && compare_tree_int (op01, max_offset) == -1) ! { ! unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01); ! unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT; ! tree index = bitsize_int (indexi); ! return fold_build3_loc (loc, ! BIT_FIELD_REF, type, op00, ! part_width, index); ! } } /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */ else if (TREE_CODE (op00type) == COMPLEX_TYPE diff -Nrcpad gcc-4.9.3/gcc/fortran/ChangeLog gcc-4.9.4/gcc/fortran/ChangeLog *** gcc-4.9.3/gcc/fortran/ChangeLog Fri Jun 26 17:56:40 2015 --- gcc-4.9.4/gcc/fortran/ChangeLog Wed Aug 3 05:07:14 2016 *************** *** 1,3 **** --- 1,118 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2016-07-15 Jerry DeLisle + + Backport from trunk: + PR fortran/71764 + * trans-expr.c (gfc_trans_structure_assign): Remove assert. + + 2016-07-07 Jakub Jelinek + + Backported from mainline + 2016-07-01 Jakub Jelinek + + PR fortran/71717 + * trans-openmp.c (gfc_omp_privatize_by_reference): Return false + for GFC_DECL_ASSOCIATE_VAR_P with POINTER_TYPE. + + 2016-06-30 Jakub Jelinek + + PR fortran/71704 + * parse.c (matchs, matcho): If spec_only, only gfc_match the keyword + and if successful, goto do_spec_only. + (matchds, matchdo): Define. + (decode_omp_directive): Add spec_only local var and set it. + Use matchds or matchdo macros instead of matchs or matcho + for declare target, declare simd, declare reduction and threadprivate + directives. Return ST_GET_FCN_CHARACTERISTICS if a non-declarative + directive could be matched. + (next_statement): For ST_GET_FCN_CHARACTERISTICS restore + gfc_current_locus from old_locus even if there is no label. + + PR fortran/71705 + * trans-openmp.c (gfc_trans_omp_clauses): Set TREE_ADDRESSABLE on + decls in to/from clauses. + + 2016-05-26 Jerry DeLisle + + Backport from trunk. + PR fortran/66461 + * scanner.c (gfc_next_char_literal): Clear end_flag when adjusting + current locus back to old_locus. + + 2016-02-28 Jerry DeLisle + + Backported from mainline + PR fortran/61156 + * scanner.c (add_path_to_list): If include path is not a directory, + issue a fatal error. + + 2016-02-11 Jakub Jelinek + + Backported from mainline + 2016-01-08 Jakub Jelinek + + PR fortran/69128 + * trans.h (OMPWS_SCALARIZER_BODY): Define. + (OMPWS_NOWAIT): Renumber. + * trans-stmt.c (gfc_trans_where_3): Only set OMPWS_SCALARIZER_WS + if OMPWS_SCALARIZER_BODY is not set already, and set also + OMPWS_SCALARIZER_BODY until the final loop creation. + * trans-expr.c (gfc_trans_assignment_1): Likewise. + * trans-openmp.c (gfc_trans_omp_workshare): Also clear + OMPWS_SCALARIZER_BODY. + * trans-array.c (gfc_trans_scalarized_loop_end): Don't create + OMP_FOR if OMPWS_SCALARIZER_BODY is set. + + 2015-11-27 Andre Vehreschild + + PR fortran/68218 + * trans-array.c (gfc_array_init_size): Add gfc_evaluate_now() when + array spec in allocate is a function call. + + 2015-11-25 Paul Thomas + + Backport from trunk. + PR fortran/68196 + * class.c (has_finalizer_component): Prevent infinite recursion + through this function if the derived type and that of its + component are the same. + * trans-types.c (gfc_get_derived_type): Do the same for proc + pointers by ignoring the explicit interface for the component. + + PR fortran/66465 + * check.c (same_type_check): If either of the expressions is + BT_PROCEDURE, use the typespec from the symbol, rather than the + expression. + + 2013-10-19 Paul Thomas + + Backport from trunk + PR fortran/56852 + * primary.c (gfc_variable_attr): Avoid ICE on AR_UNKNOWN if any + of the index variables are untyped and errors are present. + + 2015-10-18 Thomas Koenig + + Backport from trunk + PR fortran/66385 + * frontend-passes.c (combine_array_constructor): Return early if + inside a FORALL loop. + + 2015-08-07 Mikael Morin + + PR fortran/66929 + * trans-array.c (gfc_get_proc_ifc_for_expr): Use esym as procedure + symbol if available. + + 2015-08-05 Mikael Morin + + PR fortran/64921 + * class.c (generate_finalization_wrapper): Set finalization + procedure symbol's always_explicit attribute. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/fortran/check.c gcc-4.9.4/gcc/fortran/check.c *** gcc-4.9.3/gcc/fortran/check.c Fri Apr 4 22:16:16 2014 --- gcc-4.9.4/gcc/fortran/check.c Wed Nov 25 05:28:10 2015 *************** less_than_bitsize2 (const char *arg1, gf *** 399,405 **** static bool same_type_check (gfc_expr *e, int n, gfc_expr *f, int m) { ! if (gfc_compare_types (&e->ts, &f->ts)) return true; gfc_error ("'%s' argument of '%s' intrinsic at %L must be the same type " --- 399,413 ---- static bool same_type_check (gfc_expr *e, int n, gfc_expr *f, int m) { ! gfc_typespec *ets = &e->ts; ! gfc_typespec *fts = &f->ts; ! ! if (e->ts.type == BT_PROCEDURE && e->symtree->n.sym) ! ets = &e->symtree->n.sym->ts; ! if (f->ts.type == BT_PROCEDURE && f->symtree->n.sym) ! fts = &f->symtree->n.sym->ts; ! ! if (gfc_compare_types (ets, fts)) return true; gfc_error ("'%s' argument of '%s' intrinsic at %L must be the same type " diff -Nrcpad gcc-4.9.3/gcc/fortran/class.c gcc-4.9.4/gcc/fortran/class.c *** gcc-4.9.3/gcc/fortran/class.c Mon Mar 23 11:58:49 2015 --- gcc-4.9.4/gcc/fortran/class.c Wed Nov 25 05:28:10 2015 *************** has_finalizer_component (gfc_symbol *der *** 840,846 **** --- 840,850 ---- && c->ts.u.derived->f2k_derived->finalizers) return true; + /* Stop infinite recursion through this function by inhibiting + calls when the derived type and that of the component are + the same. */ if (c->ts.type == BT_DERIVED + && !gfc_compare_derived_types (derived, c->ts.u.derived) && !c->attr.pointer && !c->attr.allocatable && has_finalizer_component (c->ts.u.derived)) return true; *************** generate_finalization_wrapper (gfc_symbo *** 1596,1601 **** --- 1600,1606 ---- final->ts.type = BT_INTEGER; final->ts.kind = 4; final->attr.artificial = 1; + final->attr.always_explicit = 1; final->attr.if_source = expr_null_wrapper ? IFSRC_IFBODY : IFSRC_DECL; if (ns->proc_name->attr.flavor == FL_MODULE) final->module = ns->proc_name->name; diff -Nrcpad gcc-4.9.3/gcc/fortran/frontend-passes.c gcc-4.9.4/gcc/fortran/frontend-passes.c *** gcc-4.9.3/gcc/fortran/frontend-passes.c Thu Aug 21 19:34:39 2014 --- gcc-4.9.4/gcc/fortran/frontend-passes.c Sun Oct 18 11:29:37 2015 *************** combine_array_constructor (gfc_expr *e) *** 1088,1093 **** --- 1088,1097 ---- if (in_assoc_list) return false; + /* With FORALL, the BLOCKS created by create_var will cause an ICE. */ + if (forall_level > 0) + return false; + op1 = e->value.op.op1; op2 = e->value.op.op2; diff -Nrcpad gcc-4.9.3/gcc/fortran/gfortran.info gcc-4.9.4/gcc/fortran/gfortran.info *** gcc-4.9.3/gcc/fortran/gfortran.info Fri Jun 26 18:49:05 2015 --- gcc-4.9.4/gcc/fortran/gfortran.info Wed Aug 3 06:14:13 2016 *************** *** 1,5 **** ! This is gfortran.info, produced by makeinfo version 5.2 from ! gfortran.texi. Copyright (C) 1999-2014 Free Software Foundation, Inc. --- 1,5 ---- ! This is doc/gfortran.info, produced by makeinfo version 4.12 from ! /space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/fortran/gfortran.texi. Copyright (C) 1999-2014 Free Software Foundation, Inc. *************** Free Documentation License". *** 18,32 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development. INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gfortran: (gfortran). The GNU Fortran Compiler. END-INFO-DIR-ENTRY - This file documents the use and the internals of the GNU Fortran ! compiler, ('gfortran'). Published by the Free Software Foundation 51 Franklin Street, Fifth Floor Boston, MA 02110-1301 USA --- 18,32 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development. ! INFO-DIR-SECTION Software development START-INFO-DIR-ENTRY * gfortran: (gfortran). The GNU Fortran Compiler. END-INFO-DIR-ENTRY This file documents the use and the internals of the GNU Fortran ! compiler, (`gfortran'). Published by the Free Software Foundation 51 Franklin Street, Fifth Floor Boston, MA 02110-1301 USA *************** Free Documentation License". *** 48,55 **** (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise funds ! for GNU development.  File: gfortran.info, Node: Top, Next: Introduction, Up: (dir) --- 48,55 ---- (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU ! software. Copies published by the Free Software Foundation raise ! funds for GNU development.  File: gfortran.info, Node: Top, Next: Introduction, Up: (dir) *************** File: gfortran.info, Node: Top, Next: *** 57,64 **** Introduction ************ ! This manual documents the use of 'gfortran', the GNU Fortran compiler. ! You can find in this manual how to invoke 'gfortran', as well as its features and incompatibilities. * Menu: --- 57,64 ---- Introduction ************ ! This manual documents the use of `gfortran', the GNU Fortran compiler. ! You can find in this manual how to invoke `gfortran', as well as its features and incompatibilities. * Menu: *************** features and incompatibilities. *** 66,72 **** * Introduction:: Part I: Invoking GNU Fortran ! * Invoking GNU Fortran:: Command options supported by 'gfortran'. * Runtime:: Influencing runtime behavior with environment variables. Part II: Language Reference --- 66,72 ---- * Introduction:: Part I: Invoking GNU Fortran ! * Invoking GNU Fortran:: Command options supported by `gfortran'. * Runtime:: Influencing runtime behavior with environment variables. Part II: Language Reference *************** File: gfortran.info, Node: Introduction *** 93,99 **** ************** The GNU Fortran compiler front end was designed initially as a free ! replacement for, or alternative to, the Unix 'f95' command; 'gfortran' is the command you will use to invoke the compiler. * Menu: --- 93,99 ---- ************** The GNU Fortran compiler front end was designed initially as a free ! replacement for, or alternative to, the Unix `f95' command; `gfortran' is the command you will use to invoke the compiler. * Menu: *************** completely, parts of the Fortran 2003 an *** 116,189 **** several vendor extensions. The development goal is to provide the following features: ! * Read a user's program, stored in a file and containing instructions ! written in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or ! Fortran 2008. This file contains "source code". ! * Translate the user's program into instructions a computer can carry ! out more quickly than it takes to translate the instructions in the ! first place. The result after compilation of a program is "machine ! code", code designed to be efficiently translated and processed by ! a machine such as your computer. Humans usually are not as good ! writing machine code as they are at writing Fortran (or C++, Ada, ! or Java), because it is easy to make tiny mistakes writing machine ! code. * Provide the user with information about the reasons why the compiler is unable to create a binary from the source code. Usually this will be the case if the source code is flawed. The Fortran 90 standard requires that the compiler can point out ! mistakes to the user. An incorrect usage of the language causes an ! "error message". The compiler will also attempt to diagnose cases where the user's ! program contains a correct usage of the language, but instructs the ! computer to do something questionable. This kind of diagnostics ! message is called a "warning message". * Provide optional information about the translation passes from the source code to machine code. This can help a user of the compiler to find the cause of certain bugs which may not be obvious in the ! source code, but may be more easily found at a lower level compiler ! output. It also helps developers to find bugs in the compiler ! itself. * Provide information in the generated machine code that can make it easier to find bugs in the program (using a debugging tool, called ! a "debugger", such as the GNU Debugger 'gdb'). ! * Locate and gather machine code already generated to perform actions ! requested by statements in the user's program. This machine code ! is organized into "modules" and is located and "linked" to the user ! program. The GNU Fortran compiler consists of several components: ! * A version of the 'gcc' command (which also might be installed as ! the system's 'cc' command) that also understands and accepts ! Fortran source code. The 'gcc' command is the "driver" program for ! all the languages in the GNU Compiler Collection (GCC); With 'gcc', you can compile the source code of any language for which a front end is available in GCC. ! * The 'gfortran' command itself, which also might be installed as the ! system's 'f95' command. 'gfortran' is just another driver program, but specifically for the Fortran compiler only. The difference ! with 'gcc' is that 'gfortran' will automatically link the correct libraries to your program. * A collection of run-time libraries. These libraries contain the ! machine code needed to support capabilities of the Fortran language ! that are not directly provided by the machine code generated by the ! 'gfortran' compilation phase, such as intrinsic functions and ! subroutines, and routines for interaction with files and the ! operating system. ! * The Fortran compiler itself, ('f951'). This is the GNU Fortran parser and code generator, linked to and interfaced with the GCC ! backend library. 'f951' "translates" the source code to assembler code. You would typically not use this program directly; instead, ! the 'gcc' or 'gfortran' driver programs will call it for you.  File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction --- 116,189 ---- several vendor extensions. The development goal is to provide the following features: ! * Read a user's program, stored in a file and containing ! instructions written in Fortran 77, Fortran 90, Fortran 95, ! Fortran 2003 or Fortran 2008. This file contains "source code". ! * Translate the user's program into instructions a computer can ! carry out more quickly than it takes to translate the instructions ! in the first place. The result after compilation of a program is ! "machine code", code designed to be efficiently translated and ! processed by a machine such as your computer. Humans usually are ! not as good writing machine code as they are at writing Fortran ! (or C++, Ada, or Java), because it is easy to make tiny mistakes ! writing machine code. * Provide the user with information about the reasons why the compiler is unable to create a binary from the source code. Usually this will be the case if the source code is flawed. The Fortran 90 standard requires that the compiler can point out ! mistakes to the user. An incorrect usage of the language causes ! an "error message". The compiler will also attempt to diagnose cases where the user's ! program contains a correct usage of the language, but instructs ! the computer to do something questionable. This kind of ! diagnostics message is called a "warning message". * Provide optional information about the translation passes from the source code to machine code. This can help a user of the compiler to find the cause of certain bugs which may not be obvious in the ! source code, but may be more easily found at a lower level ! compiler output. It also helps developers to find bugs in the ! compiler itself. * Provide information in the generated machine code that can make it easier to find bugs in the program (using a debugging tool, called ! a "debugger", such as the GNU Debugger `gdb'). ! * Locate and gather machine code already generated to perform ! actions requested by statements in the user's program. This ! machine code is organized into "modules" and is located and ! "linked" to the user program. The GNU Fortran compiler consists of several components: ! * A version of the `gcc' command (which also might be installed as ! the system's `cc' command) that also understands and accepts ! Fortran source code. The `gcc' command is the "driver" program for ! all the languages in the GNU Compiler Collection (GCC); With `gcc', you can compile the source code of any language for which a front end is available in GCC. ! * The `gfortran' command itself, which also might be installed as the ! system's `f95' command. `gfortran' is just another driver program, but specifically for the Fortran compiler only. The difference ! with `gcc' is that `gfortran' will automatically link the correct libraries to your program. * A collection of run-time libraries. These libraries contain the ! machine code needed to support capabilities of the Fortran ! language that are not directly provided by the machine code ! generated by the `gfortran' compilation phase, such as intrinsic ! functions and subroutines, and routines for interaction with files ! and the operating system. ! * The Fortran compiler itself, (`f951'). This is the GNU Fortran parser and code generator, linked to and interfaced with the GCC ! backend library. `f951' "translates" the source code to assembler code. You would typically not use this program directly; instead, ! the `gcc' or `gfortran' driver programs will call it for you.  File: gfortran.info, Node: GNU Fortran and GCC, Next: Preprocessing and conditional compilation, Prev: About GNU Fortran, Up: Introduction *************** File: gfortran.info, Node: GNU Fortran *** 194,229 **** GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC consists of a collection of front ends for various languages, which translate the source code into a language-independent form called ! "GENERIC". This is then processed by a common middle end which provides ! optimization, and then passed to one of a collection of back ends which ! generate code for different computer architectures and operating ! systems. ! Functionally, this is implemented with a driver program ('gcc') which ! provides the command-line interface for the compiler. It calls the ! relevant compiler front-end program (e.g., 'f951' for Fortran) for each ! file in the source code, and then calls the assembler and linker as ! appropriate to produce the compiled output. In a copy of GCC which has ! been compiled with Fortran language support enabled, 'gcc' will ! recognize files with '.f', '.for', '.ftn', '.f90', '.f95', '.f03' and ! '.f08' extensions as Fortran source code, and compile it accordingly. A ! 'gfortran' driver program is also provided, which is identical to 'gcc' ! except that it automatically links the Fortran runtime libraries into ! the compiled program. ! Source files with '.f', '.for', '.fpp', '.ftn', '.F', '.FOR', '.FPP', ! and '.FTN' extensions are treated as fixed form. Source files with ! '.f90', '.f95', '.f03', '.f08', '.F90', '.F95', '.F03' and '.F08' ! extensions are treated as free form. The capitalized versions of either ! form are run through preprocessing. Source files with the lower case ! '.fpp' extension are also run through preprocessing. This manual specifically documents the Fortran front end, which ! handles the programming language's syntax and semantics. The aspects of ! GCC which relate to the optimization passes and the back-end code generation are documented in the GCC manual; see *note Introduction: ! (gcc)Top. The two manuals together provide a complete reference for the ! GNU Fortran compiler.  File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction --- 194,229 ---- GNU Fortran is a part of GCC, the "GNU Compiler Collection". GCC consists of a collection of front ends for various languages, which translate the source code into a language-independent form called ! "GENERIC". This is then processed by a common middle end which ! provides optimization, and then passed to one of a collection of back ! ends which generate code for different computer architectures and ! operating systems. ! Functionally, this is implemented with a driver program (`gcc') ! which provides the command-line interface for the compiler. It calls ! the relevant compiler front-end program (e.g., `f951' for Fortran) for ! each file in the source code, and then calls the assembler and linker ! as appropriate to produce the compiled output. In a copy of GCC which ! has been compiled with Fortran language support enabled, `gcc' will ! recognize files with `.f', `.for', `.ftn', `.f90', `.f95', `.f03' and ! `.f08' extensions as Fortran source code, and compile it accordingly. ! A `gfortran' driver program is also provided, which is identical to ! `gcc' except that it automatically links the Fortran runtime libraries ! into the compiled program. ! Source files with `.f', `.for', `.fpp', `.ftn', `.F', `.FOR', ! `.FPP', and `.FTN' extensions are treated as fixed form. Source files ! with `.f90', `.f95', `.f03', `.f08', `.F90', `.F95', `.F03' and `.F08' ! extensions are treated as free form. The capitalized versions of ! either form are run through preprocessing. Source files with the lower ! case `.fpp' extension are also run through preprocessing. This manual specifically documents the Fortran front end, which ! handles the programming language's syntax and semantics. The aspects ! of GCC which relate to the optimization passes and the back-end code generation are documented in the GCC manual; see *note Introduction: ! (gcc)Top. The two manuals together provide a complete reference for ! the GNU Fortran compiler.  File: gfortran.info, Node: Preprocessing and conditional compilation, Next: GNU Fortran and G77, Prev: GNU Fortran and GCC, Up: Introduction *************** File: gfortran.info, Node: Preprocessin *** 233,261 **** Many Fortran compilers including GNU Fortran allow passing the source code through a C preprocessor (CPP; sometimes also called the Fortran ! preprocessor, FPP) to allow for conditional compilation. In the case of ! GNU Fortran, this is the GNU C Preprocessor in the traditional mode. On ! systems with case-preserving file names, the preprocessor is ! automatically invoked if the filename extension is '.F', '.FOR', '.FTN', ! '.fpp', '.FPP', '.F90', '.F95', '.F03' or '.F08'. To manually invoke ! the preprocessor on any file, use '-cpp', to disable preprocessing on ! files where the preprocessor is run automatically, use '-nocpp'. If a preprocessed file includes another file with the Fortran ! 'INCLUDE' statement, the included file is not preprocessed. To preprocess included files, use the equivalent preprocessor statement ! '#include'. ! If GNU Fortran invokes the preprocessor, '__GFORTRAN__' is defined ! and '__GNUC__', '__GNUC_MINOR__' and '__GNUC_PATCHLEVEL__' can be used ! to determine the version of the compiler. See *note Overview: (cpp)Top. ! for details. While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely used and not directly supported by the GNU Fortran compiler. You can use the program coco to ! preprocess such files ().  File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction --- 233,262 ---- Many Fortran compilers including GNU Fortran allow passing the source code through a C preprocessor (CPP; sometimes also called the Fortran ! preprocessor, FPP) to allow for conditional compilation. In the case ! of GNU Fortran, this is the GNU C Preprocessor in the traditional mode. ! On systems with case-preserving file names, the preprocessor is ! automatically invoked if the filename extension is `.F', `.FOR', ! `.FTN', `.fpp', `.FPP', `.F90', `.F95', `.F03' or `.F08'. To manually ! invoke the preprocessor on any file, use `-cpp', to disable ! preprocessing on files where the preprocessor is run automatically, use ! `-nocpp'. If a preprocessed file includes another file with the Fortran ! `INCLUDE' statement, the included file is not preprocessed. To preprocess included files, use the equivalent preprocessor statement ! `#include'. ! If GNU Fortran invokes the preprocessor, `__GFORTRAN__' is defined ! and `__GNUC__', `__GNUC_MINOR__' and `__GNUC_PATCHLEVEL__' can be used ! to determine the version of the compiler. See *note Overview: ! (cpp)Top. for details. While CPP is the de-facto standard for preprocessing Fortran code, Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines Conditional Compilation, which is not widely used and not directly supported by the GNU Fortran compiler. You can use the program coco to ! preprocess such files (`http://www.daniellnagle.com/coco.html').  File: gfortran.info, Node: GNU Fortran and G77, Next: Project Status, Prev: Preprocessing and conditional compilation, Up: Introduction *************** File: gfortran.info, Node: GNU Fortran *** 263,274 **** 1.4 GNU Fortran and G77 ======================= ! The GNU Fortran compiler is the successor to 'g77', the Fortran 77 front ! end included in GCC prior to version 4. It is an entirely new program ! that has been designed to provide Fortran 95 support and extensibility ! for future Fortran language standards, as well as providing backwards ! compatibility for Fortran 77 and nearly all of the GNU language ! extensions supported by 'g77'.  File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction --- 264,275 ---- 1.4 GNU Fortran and G77 ======================= ! The GNU Fortran compiler is the successor to `g77', the Fortran 77 ! front end included in GCC prior to version 4. It is an entirely new ! program that has been designed to provide Fortran 95 support and ! extensibility for future Fortran language standards, as well as ! providing backwards compatibility for Fortran 77 and nearly all of the ! GNU language extensions supported by `g77'.  File: gfortran.info, Node: Project Status, Next: Standards, Prev: GNU Fortran and G77, Up: Introduction *************** File: gfortran.info, Node: Project Stat *** 276,291 **** 1.5 Project Status ================== ! As soon as 'gfortran' can parse all of the statements correctly, it ! will be in the "larva" state. When we generate code, the "puppa" ! state. When 'gfortran' is done, we'll see if it will be a beautiful butterfly, or just a big bug.... -Andy Vaught, April 2000 The start of the GNU Fortran 95 project was announced on the GCC ! homepage in March 18, 2000 (even though Andy had already been working on ! it for a while, of course). The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs, --- 277,292 ---- 1.5 Project Status ================== ! As soon as `gfortran' can parse all of the statements correctly, ! it will be in the "larva" state. When we generate code, the ! "puppa" state. When `gfortran' is done, we'll see if it will be a beautiful butterfly, or just a big bug.... -Andy Vaught, April 2000 The start of the GNU Fortran 95 project was announced on the GCC ! homepage in March 18, 2000 (even though Andy had already been working ! on it for a while, of course). The GNU Fortran compiler is able to compile nearly all standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs, *************** produces acceptable results on the LAPAC *** 301,317 **** (http://www.netlib.org/lapack/faq.html#1.21). It also provides respectable performance on the Polyhedron Fortran compiler benchmarks (http://www.polyhedron.com/pb05.html) and the Livermore Fortran Kernels ! test (http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html). ! It has been used to compile a number of large real-world programs, including the HIRLAM weather-forecasting code (http://mysite.verizon.net/serveall/moene.pdf) and the Tonto quantum chemistry package (http://www.theochem.uwa.edu.au/tonto/); see ! for an extended list. Among other things, the GNU Fortran compiler is intended as a replacement for G77. At this point, nearly all programs that could be ! compiled with G77 can be compiled with GNU Fortran, although there are a ! few minor known regressions. The primary work remaining to be done on GNU Fortran falls into three categories: bug fixing (primarily regarding the treatment of invalid --- 302,319 ---- (http://www.netlib.org/lapack/faq.html#1.21). It also provides respectable performance on the Polyhedron Fortran compiler benchmarks (http://www.polyhedron.com/pb05.html) and the Livermore Fortran Kernels ! test ! (http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html). It ! has been used to compile a number of large real-world programs, including the HIRLAM weather-forecasting code (http://mysite.verizon.net/serveall/moene.pdf) and the Tonto quantum chemistry package (http://www.theochem.uwa.edu.au/tonto/); see ! `http://gcc.gnu.org/wiki/GfortranApps' for an extended list. Among other things, the GNU Fortran compiler is intended as a replacement for G77. At this point, nearly all programs that could be ! compiled with G77 can be compiled with GNU Fortran, although there are ! a few minor known regressions. The primary work remaining to be done on GNU Fortran falls into three categories: bug fixing (primarily regarding the treatment of invalid *************** File: gfortran.info, Node: Standards, *** 330,351 **** * Varying Length Character Strings:: ! The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). As ! such, it can also compile essentially all standard-compliant Fortran 90 ! and Fortran 77 programs. It also supports the ISO/IEC TR-15581 enhancements to allocatable arrays. GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical ! Specification 'Further Interoperability of Fortran with C' (ISO/IEC TS 29113:2012). Full support of those standards and future Fortran ! standards is planned. The current status of the support is can be found ! in the *note Fortran 2003 status::, *note Fortran 2008 status:: and ! *note TS 29113 status:: sections of the documentation. Additionally, the GNU Fortran compilers supports the OpenMP specification (version 4.0, ! ).  File: gfortran.info, Node: Varying Length Character Strings, Up: Standards --- 332,353 ---- * Varying Length Character Strings:: ! The GNU Fortran compiler implements ISO/IEC 1539:1997 (Fortran 95). ! As such, it can also compile essentially all standard-compliant Fortran ! 90 and Fortran 77 programs. It also supports the ISO/IEC TR-15581 enhancements to allocatable arrays. GNU Fortran also have a partial support for ISO/IEC 1539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical ! Specification `Further Interoperability of Fortran with C' (ISO/IEC TS 29113:2012). Full support of those standards and future Fortran ! standards is planned. The current status of the support is can be ! found in the *note Fortran 2003 status::, *note Fortran 2008 status:: ! and *note TS 29113 status:: sections of the documentation. Additionally, the GNU Fortran compilers supports the OpenMP specification (version 4.0, ! `http://openmp.org/wp/openmp-specifications/').  File: gfortran.info, Node: Varying Length Character Strings, Up: Standards *************** The Fortran 95 standard specifies in Par *** 357,369 **** varying length character strings. While GNU Fortran currently does not support such strings directly, there exist two Fortran implementations for them, which work with GNU Fortran. They can be found at ! and at ! . Deferred-length character strings of Fortran 2003 supports part of ! the features of 'ISO_VARYING_STRING' and should be considered as ! replacement. (Namely, allocatable or pointers of the type ! 'character(len=:)'.)  File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top --- 359,371 ---- varying length character strings. While GNU Fortran currently does not support such strings directly, there exist two Fortran implementations for them, which work with GNU Fortran. They can be found at ! `http://www.fortran.com/iso_varying_string.f95' and at ! `ftp://ftp.nag.co.uk/sc22wg5/ISO_VARYING_STRING/'. Deferred-length character strings of Fortran 2003 supports part of ! the features of `ISO_VARYING_STRING' and should be considered as ! replacement. (Namely, allocatable or pointers of the type ! `character(len=:)'.)  File: gfortran.info, Node: Invoking GNU Fortran, Next: Runtime, Prev: Introduction, Up: Top *************** File: gfortran.info, Node: Invoking GNU *** 371,395 **** 2 GNU Fortran Command Options ***************************** ! The 'gfortran' command supports all the options supported by the 'gcc' command. Only options specific to GNU Fortran are documented here. *Note GCC Command Options: (gcc)Invoking GCC, for information on the ! non-Fortran-specific aspects of the 'gcc' command (and, therefore, the ! 'gfortran' command). ! All GCC and GNU Fortran options are accepted both by 'gfortran' and ! by 'gcc' (as well as any other drivers built at the same time, such as ! 'g++'), since adding GNU Fortran to the GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers. ! In some cases, options have positive and negative forms; the negative ! form of '-ffoo' would be '-fno-foo'. This manual documents only one of ! these two forms, whichever one is not the default. * Menu: ! * Option Summary:: Brief list of all 'gfortran' options, without explanations. * Fortran Dialect Options:: Controlling the variant of Fortran language compiled. --- 373,397 ---- 2 GNU Fortran Command Options ***************************** ! The `gfortran' command supports all the options supported by the `gcc' command. Only options specific to GNU Fortran are documented here. *Note GCC Command Options: (gcc)Invoking GCC, for information on the ! non-Fortran-specific aspects of the `gcc' command (and, therefore, the ! `gfortran' command). ! All GCC and GNU Fortran options are accepted both by `gfortran' and ! by `gcc' (as well as any other drivers built at the same time, such as ! `g++'), since adding GNU Fortran to the GCC distribution enables acceptance of GNU Fortran options by all of the relevant drivers. ! In some cases, options have positive and negative forms; the ! negative form of `-ffoo' would be `-fno-foo'. This manual documents ! only one of these two forms, whichever one is not the default. * Menu: ! * Option Summary:: Brief list of all `gfortran' options, without explanations. * Fortran Dialect Options:: Controlling the variant of Fortran language compiled. *************** these two forms, whichever one is not th *** 401,407 **** * Runtime Options:: Influencing runtime behavior * Code Gen Options:: Specifying conventions for function calls, data layout and register usage. ! * Environment Variables:: Environment variables that affect 'gfortran'.  File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran --- 403,409 ---- * Runtime Options:: Influencing runtime behavior * Code Gen Options:: Specifying conventions for function calls, data layout and register usage. ! * Environment Variables:: Environment variables that affect `gfortran'.  File: gfortran.info, Node: Option Summary, Next: Fortran Dialect Options, Up: Invoking GNU Fortran *************** File: gfortran.info, Node: Option Summa *** 409,416 **** 2.1 Option summary ================== ! Here is a summary of all the options specific to GNU Fortran, grouped by ! type. Explanations are in the following sections. _Fortran Language Options_ *Note Options controlling Fortran dialect: Fortran Dialect Options. --- 411,418 ---- 2.1 Option summary ================== ! Here is a summary of all the options specific to GNU Fortran, grouped ! by type. Explanations are in the following sections. _Fortran Language Options_ *Note Options controlling Fortran dialect: Fortran Dialect Options. *************** _Fortran Language Options_ *** 423,429 **** -fopenmp -freal-4-real-10 -freal-4-real-16 -freal-4-real-8 -freal-8-real-10 -freal-8-real-16 -freal-8-real-4 -std=STD - _Preprocessing Options_ *Note Enable and customize preprocessing: Preprocessing Options. -A-QUESTION[=ANSWER] --- 425,430 ---- *************** _Preprocessing Options_ *** 435,444 **** -nostdinc -undef - _Error and Warning Options_ ! *Note Options to request or suppress errors and warnings: Error and ! Warning Options. -Waliasing -Wall -Wampersand -Warray-bounds -Wc-binding-type -Wcharacter-truncation -Wconversion -Wfunction-elimination -Wimplicit-interface --- 436,444 ---- -nostdinc -undef _Error and Warning Options_ ! *Note Options to request or suppress errors and warnings: Error ! and Warning Options. -Waliasing -Wall -Wampersand -Warray-bounds -Wc-binding-type -Wcharacter-truncation -Wconversion -Wfunction-elimination -Wimplicit-interface *************** _Error and Warning Options_ *** 447,460 **** -Wsurprising -Wunderflow -Wunused-parameter -Wrealloc-lhs -Wrealloc-lhs-all -Wtarget-lifetime -fmax-errors=N -fsyntax-only -pedantic -pedantic-errors - _Debugging Options_ *Note Options for debugging your program or GNU Fortran: Debugging Options. -fbacktrace -fdump-fortran-optimized -fdump-fortran-original -fdump-parse-tree -ffpe-trap=LIST -ffpe-summary=LIST - _Directory Options_ *Note Options for directory search: Directory Options. -IDIR -JDIR -fintrinsic-modules-path DIR --- 447,458 ---- *************** _Runtime Options_ *** 468,474 **** -fconvert=CONVERSION -fmax-subrecord-length=LENGTH -frecord-marker=LENGTH -fsign-zero - _Code Generation Options_ *Note Options for code generation conventions: Code Gen Options. -faggressive-function-elimination -fblas-matmul-limit=N --- 466,471 ---- *************** File: gfortran.info, Node: Fortran Dial *** 495,666 **** The following options control the details of the Fortran dialect accepted by the compiler: ! '-ffree-form' ! '-ffixed-form' Specify the layout used by the source file. The free form layout was introduced in Fortran 90. Fixed form was traditionally used in older Fortran programs. When neither option is specified, the source form is determined by the file extension. ! '-fall-intrinsics' This option causes all intrinsic procedures (including the GNU-specific extensions) to be accepted. This can be useful with ! '-std=f95' to force standard-compliance but get access to the full ! range of intrinsics available with 'gfortran'. As a consequence, ! '-Wintrinsics-std' will be ignored and no user-defined procedure with the same name as any intrinsic will be called except when it ! is explicitly declared 'EXTERNAL'. ! '-fd-lines-as-code' ! '-fd-lines-as-comments' ! Enable special treatment for lines beginning with 'd' or 'D' in ! fixed form sources. If the '-fd-lines-as-code' option is given they are treated as if the first column contained a blank. If the ! '-fd-lines-as-comments' option is given, they are treated as comment lines. ! '-fdollar-ok' ! Allow '$' as a valid non-first character in a symbol name. Symbols ! that start with '$' are rejected since it is unclear which rules to apply to implicit typing as different vendors implement different ! rules. Using '$' in 'IMPLICIT' statements is also rejected. ! '-fbackslash' Change the interpretation of backslashes in string literals from a ! single backslash character to "C-style" escape characters. The ! following combinations are expanded '\a', '\b', '\f', '\n', '\r', ! '\t', '\v', '\\', and '\0' to the ASCII characters alert, backspace, form feed, newline, carriage return, horizontal tab, vertical tab, backslash, and NUL, respectively. Additionally, ! '\x'NN, '\u'NNNN and '\U'NNNNNNNN (where each N is a hexadecimal digit) are translated into the Unicode characters corresponding to ! the specified code points. All other combinations of a character preceded by \ are unexpanded. ! '-fmodule-private' ! Set the default accessibility of module entities to 'PRIVATE'. Use-associated entities will not be accessible unless they are ! explicitly declared as 'PUBLIC'. ! '-ffixed-line-length-N' Set column after which characters are ignored in typical fixed-form lines in the source file, and through which spaces are assumed (as if padded to that length) after the ends of short fixed-form lines. Popular values for N include 72 (the standard and the default), 80 (card image), and 132 (corresponding to "extended-source" options ! in some popular compilers). N may also be 'none', meaning that the ! entire line is meaningful and that continued character constants ! never have implicit spaces appended to them to fill out the line. ! '-ffixed-line-length-0' means the same thing as ! '-ffixed-line-length-none'. ! '-ffree-line-length-N' Set column after which characters are ignored in typical free-form ! lines in the source file. The default value is 132. N may be ! 'none', meaning that the entire line is meaningful. ! '-ffree-line-length-0' means the same thing as ! '-ffree-line-length-none'. ! '-fmax-identifier-length=N' ! Specify the maximum allowed identifier length. Typical values are 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008). ! '-fimplicit-none' Specify that no implicit typing is allowed, unless overridden by ! explicit 'IMPLICIT' statements. This is the equivalent of adding ! 'implicit none' to the start of every procedure. ! '-fcray-pointer' Enable the Cray pointer extension, which provides C-like pointer functionality. ! '-fopenmp' ! Enable the OpenMP extensions. This includes OpenMP '!$omp' ! directives in free form and 'c$omp', '*$omp' and '!$omp' directives ! in fixed form, '!$' conditional compilation sentinels in free form ! and 'c$', '*$' and '!$' sentinels in fixed form, and when linking ! arranges for the OpenMP runtime library to be linked in. The ! option '-fopenmp' implies '-frecursive'. ! '-fno-range-check' Disable range checking on results of simplification of constant expressions during compilation. For example, GNU Fortran will give ! an error at compile time when simplifying 'a = 1. / 0'. With this ! option, no error will be given and 'a' will be assigned the value ! '+Infinity'. If an expression evaluates to a value outside of the ! relevant range of ['-HUGE()':'HUGE()'], then the expression will be ! replaced by '-Inf' or '+Inf' as appropriate. Similarly, 'DATA ! i/Z'FFFFFFFF'/' will result in an integer overflow on most systems, ! but with '-fno-range-check' the value will "wrap around" and 'i' ! will be initialized to -1 instead. ! '-fdefault-integer-8' Set the default integer and logical types to an 8 byte wide type. ! This option also affects the kind of integer constants like '42'. ! Unlike '-finteger-4-integer-8', it does not promote variables with explicit kind declaration. ! '-fdefault-real-8' ! Set the default real type to an 8 byte wide type. This option also ! affects the kind of non-double real constants like '1.0', and does ! promote the default width of 'DOUBLE PRECISION' to 16 bytes if ! possible, unless '-fdefault-double-8' is given, too. Unlike ! '-freal-4-real-8', it does not promote variables with explicit kind ! declaration. ! '-fdefault-double-8' ! Set the 'DOUBLE PRECISION' type to an 8 byte wide type. Do nothing ! if this is already the default. If '-fdefault-real-8' is given, ! 'DOUBLE PRECISION' would instead be promoted to 16 bytes if ! possible, and '-fdefault-double-8' can be used to prevent this. ! The kind of real constants like '1.d0' will not be changed by ! '-fdefault-real-8' though, so also '-fdefault-double-8' does not affect it. ! '-finteger-4-integer-8' ! Promote all 'INTEGER(KIND=4)' entities to an 'INTEGER(KIND=8)' ! entities. If 'KIND=8' is unavailable, then an error will be issued. This option should be used with care and may not be suitable for your codes. Areas of possible concern include calls ! to external procedures, alignment in 'EQUIVALENCE' and/or 'COMMON', ! generic interfaces, BOZ literal constant conversion, and I/O. ! Inspection of the intermediate representation of the translated ! Fortran code, produced by '-fdump-tree-original', is suggested. ! '-freal-4-real-8' ! '-freal-4-real-10' ! '-freal-4-real-16' ! '-freal-8-real-4' ! '-freal-8-real-10' ! '-freal-8-real-16' ! Promote all 'REAL(KIND=M)' entities to 'REAL(KIND=N)' entities. If ! 'REAL(KIND=N)' is unavailable, then an error will be issued. All ! other real kind types are unaffected by this option. These options ! should be used with care and may not be suitable for your codes. ! Areas of possible concern include calls to external procedures, ! alignment in 'EQUIVALENCE' and/or 'COMMON', generic interfaces, BOZ ! literal constant conversion, and I/O. Inspection of the ! intermediate representation of the translated Fortran code, ! produced by '-fdump-tree-original', is suggested. ! '-std=STD' Specify the standard to which the program is expected to conform, ! which may be one of 'f95', 'f2003', 'f2008', 'gnu', or 'legacy'. ! The default value for STD is 'gnu', which specifies a superset of the Fortran 95 standard that includes all of the extensions supported by GNU Fortran, although warnings will be given for obsolete extensions not recommended for use in new code. The ! 'legacy' value is equivalent but without the warnings for obsolete extensions, and may be useful for old non-standard programs. The ! 'f95', 'f2003' and 'f2008' values specify strict conformance to the ! Fortran 95, Fortran 2003 and Fortran 2008 standards, respectively; ! errors are given for all extensions beyond the relevant language ! standard, and warnings are given for the Fortran 77 features that ! are permitted but obsolescent in later standards. '-std=f2008ts' ! allows the Fortran 2008 standard including the additions of the ! Technical Specification (TS) 29113 on Further Interoperability of ! Fortran with C.  File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran --- 492,665 ---- The following options control the details of the Fortran dialect accepted by the compiler: ! `-ffree-form' ! `-ffixed-form' Specify the layout used by the source file. The free form layout was introduced in Fortran 90. Fixed form was traditionally used in older Fortran programs. When neither option is specified, the source form is determined by the file extension. ! `-fall-intrinsics' This option causes all intrinsic procedures (including the GNU-specific extensions) to be accepted. This can be useful with ! `-std=f95' to force standard-compliance but get access to the full ! range of intrinsics available with `gfortran'. As a consequence, ! `-Wintrinsics-std' will be ignored and no user-defined procedure with the same name as any intrinsic will be called except when it ! is explicitly declared `EXTERNAL'. ! `-fd-lines-as-code' ! `-fd-lines-as-comments' ! Enable special treatment for lines beginning with `d' or `D' in ! fixed form sources. If the `-fd-lines-as-code' option is given they are treated as if the first column contained a blank. If the ! `-fd-lines-as-comments' option is given, they are treated as comment lines. ! `-fdollar-ok' ! Allow `$' as a valid non-first character in a symbol name. Symbols ! that start with `$' are rejected since it is unclear which rules to apply to implicit typing as different vendors implement different ! rules. Using `$' in `IMPLICIT' statements is also rejected. ! `-fbackslash' Change the interpretation of backslashes in string literals from a ! single backslash character to "C-style" escape characters. The ! following combinations are expanded `\a', `\b', `\f', `\n', `\r', ! `\t', `\v', `\\', and `\0' to the ASCII characters alert, backspace, form feed, newline, carriage return, horizontal tab, vertical tab, backslash, and NUL, respectively. Additionally, ! `\x'NN, `\u'NNNN and `\U'NNNNNNNN (where each N is a hexadecimal digit) are translated into the Unicode characters corresponding to ! the specified code points. All other combinations of a character preceded by \ are unexpanded. ! `-fmodule-private' ! Set the default accessibility of module entities to `PRIVATE'. Use-associated entities will not be accessible unless they are ! explicitly declared as `PUBLIC'. ! `-ffixed-line-length-N' Set column after which characters are ignored in typical fixed-form lines in the source file, and through which spaces are assumed (as if padded to that length) after the ends of short fixed-form lines. Popular values for N include 72 (the standard and the default), 80 (card image), and 132 (corresponding to "extended-source" options ! in some popular compilers). N may also be `none', meaning that ! the entire line is meaningful and that continued character ! constants never have implicit spaces appended to them to fill out ! the line. `-ffixed-line-length-0' means the same thing as ! `-ffixed-line-length-none'. ! `-ffree-line-length-N' Set column after which characters are ignored in typical free-form ! lines in the source file. The default value is 132. N may be ! `none', meaning that the entire line is meaningful. ! `-ffree-line-length-0' means the same thing as ! `-ffree-line-length-none'. ! `-fmax-identifier-length=N' ! Specify the maximum allowed identifier length. Typical values are 31 (Fortran 95) and 63 (Fortran 2003 and Fortran 2008). ! `-fimplicit-none' Specify that no implicit typing is allowed, unless overridden by ! explicit `IMPLICIT' statements. This is the equivalent of adding ! `implicit none' to the start of every procedure. ! `-fcray-pointer' Enable the Cray pointer extension, which provides C-like pointer functionality. ! `-fopenmp' ! Enable the OpenMP extensions. This includes OpenMP `!$omp' ! directives in free form and `c$omp', `*$omp' and `!$omp' ! directives in fixed form, `!$' conditional compilation sentinels ! in free form and `c$', `*$' and `!$' sentinels in fixed form, and ! when linking arranges for the OpenMP runtime library to be linked ! in. The option `-fopenmp' implies `-frecursive'. ! `-fno-range-check' Disable range checking on results of simplification of constant expressions during compilation. For example, GNU Fortran will give ! an error at compile time when simplifying `a = 1. / 0'. With this ! option, no error will be given and `a' will be assigned the value ! `+Infinity'. If an expression evaluates to a value outside of the ! relevant range of [`-HUGE()':`HUGE()'], then the expression will ! be replaced by `-Inf' or `+Inf' as appropriate. Similarly, `DATA ! i/Z'FFFFFFFF'/' will result in an integer overflow on most ! systems, but with `-fno-range-check' the value will "wrap around" ! and `i' will be initialized to -1 instead. ! `-fdefault-integer-8' Set the default integer and logical types to an 8 byte wide type. ! This option also affects the kind of integer constants like `42'. ! Unlike `-finteger-4-integer-8', it does not promote variables with explicit kind declaration. ! `-fdefault-real-8' ! Set the default real type to an 8 byte wide type. This option also ! affects the kind of non-double real constants like `1.0', and does ! promote the default width of `DOUBLE PRECISION' to 16 bytes if ! possible, unless `-fdefault-double-8' is given, too. Unlike ! `-freal-4-real-8', it does not promote variables with explicit ! kind declaration. ! `-fdefault-double-8' ! Set the `DOUBLE PRECISION' type to an 8 byte wide type. Do ! nothing if this is already the default. If `-fdefault-real-8' is ! given, `DOUBLE PRECISION' would instead be promoted to 16 bytes if ! possible, and `-fdefault-double-8' can be used to prevent this. ! The kind of real constants like `1.d0' will not be changed by ! `-fdefault-real-8' though, so also `-fdefault-double-8' does not affect it. ! `-finteger-4-integer-8' ! Promote all `INTEGER(KIND=4)' entities to an `INTEGER(KIND=8)' ! entities. If `KIND=8' is unavailable, then an error will be issued. This option should be used with care and may not be suitable for your codes. Areas of possible concern include calls ! to external procedures, alignment in `EQUIVALENCE' and/or ! `COMMON', generic interfaces, BOZ literal constant conversion, and ! I/O. Inspection of the intermediate representation of the ! translated Fortran code, produced by `-fdump-tree-original', is ! suggested. ! `-freal-4-real-8' ! `-freal-4-real-10' ! `-freal-4-real-16' ! `-freal-8-real-4' ! `-freal-8-real-10' ! `-freal-8-real-16' ! Promote all `REAL(KIND=M)' entities to `REAL(KIND=N)' entities. ! If `REAL(KIND=N)' is unavailable, then an error will be issued. ! All other real kind types are unaffected by this option. These ! options should be used with care and may not be suitable for your ! codes. Areas of possible concern include calls to external ! procedures, alignment in `EQUIVALENCE' and/or `COMMON', generic ! interfaces, BOZ literal constant conversion, and I/O. Inspection ! of the intermediate representation of the translated Fortran code, ! produced by `-fdump-tree-original', is suggested. ! `-std=STD' Specify the standard to which the program is expected to conform, ! which may be one of `f95', `f2003', `f2008', `gnu', or `legacy'. ! The default value for STD is `gnu', which specifies a superset of the Fortran 95 standard that includes all of the extensions supported by GNU Fortran, although warnings will be given for obsolete extensions not recommended for use in new code. The ! `legacy' value is equivalent but without the warnings for obsolete extensions, and may be useful for old non-standard programs. The ! `f95', `f2003' and `f2008' values specify strict conformance to ! the Fortran 95, Fortran 2003 and Fortran 2008 standards, ! respectively; errors are given for all extensions beyond the ! relevant language standard, and warnings are given for the Fortran ! 77 features that are permitted but obsolescent in later standards. ! `-std=f2008ts' allows the Fortran 2008 standard including the ! additions of the Technical Specification (TS) 29113 on Further ! Interoperability of Fortran with C. !  File: gfortran.info, Node: Preprocessing Options, Next: Error and Warning Options, Prev: Fortran Dialect Options, Up: Invoking GNU Fortran *************** File: gfortran.info, Node: Preprocessin *** 668,823 **** 2.3 Enable and customize preprocessing ====================================== ! Preprocessor related options. See section *note Preprocessing and ! conditional compilation:: for more detailed information on preprocessing ! in 'gfortran'. ! '-cpp' ! '-nocpp' ! Enable preprocessing. The preprocessor is automatically invoked if ! the file extension is '.fpp', '.FPP', '.F', '.FOR', '.FTN', '.F90', ! '.F95', '.F03' or '.F08'. Use this option to manually enable ! preprocessing of any kind of Fortran file. To disable preprocessing of files with any of the above listed ! extensions, use the negative form: '-nocpp'. ! The preprocessor is run in traditional mode. Any restrictions of the file-format, especially the limits on line length, apply for preprocessed output as well, so it might be advisable to use the ! '-ffree-line-length-none' or '-ffixed-line-length-none' options. ! '-dM' ! Instead of the normal output, generate a list of ''#define'' directives for all the macros defined during the execution of the ! preprocessor, including predefined macros. This gives you a way of finding out what is predefined in your version of the preprocessor. ! Assuming you have no file 'foo.f90', the command touch foo.f90; gfortran -cpp -E -dM foo.f90 will show all the predefined macros. ! '-dD' ! Like '-dM' except in two respects: it does not include the ! predefined macros, and it outputs both the '#define' directives and ! the result of preprocessing. Both kinds of output go to the standard output file. ! '-dN' ! Like '-dD', but emit only the macro names, not their expansions. ! '-dU' ! Like 'dD' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! ''#undef'' directives are also output for macros tested but undefined at the time. ! '-dI' ! Output ''#include'' directives in addition to the result of preprocessing. ! '-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the ! time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two ! slashes. GCC will use this directory, when it is present in the ! preprocessed input, as the directory emitted as the current working ! directory in some debugging information formats. This option is ! implicitly enabled if debugging information is enabled, but this ! can be inhibited with the negated form '-fno-working-directory'. ! If the '-P' flag is present in the command line, this option has no ! effect, since no '#line' directives are emitted whatsoever. ! '-idirafter DIR' Search DIR for include files, but do it after all directories ! specified with '-I' and the standard system directories have been ! exhausted. DIR is treated as a system include directory. If dir ! begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! '-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent '-iwithprefix' options. ! If the PREFIX represents a directory, you should include the final ! ''/''. ! '-isysroot DIR' ! This option is like the '--sysroot' option, but applies only to ! header files. See the '--sysroot' option for more information. ! '-iquote DIR' ! Search DIR only for header files requested with '#include "file"'; ! they are not searched for '#include ', before all directories ! specified by '-I' and before the standard system directories. If ! DIR begins with '=', then the '=' will be replaced by the sysroot ! prefix; see '--sysroot' and '-isysroot'. ! '-isystem DIR' Search DIR for header files, after all directories specified by ! '-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is ! applied to the standard system directories. If DIR begins with ! '=', then the '=' will be replaced by the sysroot prefix; see ! '--sysroot' and '-isysroot'. ! '-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with '-I' options (and the directory of the current file, if appropriate) are searched. ! '-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! '-APREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. This form is preferred to the older form -A predicate(answer), which is still supported, because it does not use shell special characters. ! '-A-PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! '-C' ! Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which are ! deleted along with the directive. ! You should be prepared for side effects when using '-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a ''#''. ! Warning: this currently handles C-Style comments only. The preprocessor does not yet recognize Fortran-style comments. ! '-CC' ! Do not discard comments, including during macro expansion. This is ! like '-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the '-C' option, the '-CC' ! option causes all C++-style comments inside a macro to be converted ! to C-style comments. This is to prevent later use of that macro ! from inadvertently commenting out the remainder of the source line. ! The '-CC' option is generally used to support lint comments. ! Warning: this currently handles C- and C++-Style comments only. ! The preprocessor does not yet recognize Fortran-style comments. ! '-DNAME' ! Predefine name as a macro, with definition '1'. ! '-DNAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a ''#define'' directive. In particular, the definition will be truncated by embedded newline characters. --- 667,824 ---- 2.3 Enable and customize preprocessing ====================================== ! Preprocessor related options. See section *note Preprocessing and ! conditional compilation:: for more detailed information on ! preprocessing in `gfortran'. ! `-cpp' ! `-nocpp' ! Enable preprocessing. The preprocessor is automatically invoked if ! the file extension is `.fpp', `.FPP', `.F', `.FOR', `.FTN', ! `.F90', `.F95', `.F03' or `.F08'. Use this option to manually ! enable preprocessing of any kind of Fortran file. To disable preprocessing of files with any of the above listed ! extensions, use the negative form: `-nocpp'. ! The preprocessor is run in traditional mode. Any restrictions of the file-format, especially the limits on line length, apply for preprocessed output as well, so it might be advisable to use the ! `-ffree-line-length-none' or `-ffixed-line-length-none' options. ! `-dM' ! Instead of the normal output, generate a list of `'#define'' directives for all the macros defined during the execution of the ! preprocessor, including predefined macros. This gives you a way of finding out what is predefined in your version of the preprocessor. ! Assuming you have no file `foo.f90', the command touch foo.f90; gfortran -cpp -E -dM foo.f90 will show all the predefined macros. ! `-dD' ! Like `-dM' except in two respects: it does not include the ! predefined macros, and it outputs both the `#define' directives ! and the result of preprocessing. Both kinds of output go to the standard output file. ! `-dN' ! Like `-dD', but emit only the macro names, not their expansions. ! `-dU' ! Like `dD' except that only macros that are expanded, or whose definedness is tested in preprocessor directives, are output; the output is delayed until the use or test of the macro; and ! `'#undef'' directives are also output for macros tested but undefined at the time. ! `-dI' ! Output `'#include'' directives in addition to the result of preprocessing. ! `-fworking-directory' Enable generation of linemarkers in the preprocessor output that will let the compiler know the current working directory at the ! time of preprocessing. When this option is enabled, the preprocessor will emit, after the initial linemarker, a second linemarker with the current working directory followed by two ! slashes. GCC will use this directory, when it is present in the ! preprocessed input, as the directory emitted as the current ! working directory in some debugging information formats. This ! option is implicitly enabled if debugging information is enabled, ! but this can be inhibited with the negated form ! `-fno-working-directory'. If the `-P' flag is present in the ! command line, this option has no effect, since no `#line' ! directives are emitted whatsoever. ! `-idirafter DIR' Search DIR for include files, but do it after all directories ! specified with `-I' and the standard system directories have been ! exhausted. DIR is treated as a system include directory. If dir ! begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-imultilib DIR' Use DIR as a subdirectory of the directory containing target-specific C++ headers. ! `-iprefix PREFIX' ! Specify PREFIX as the prefix for subsequent `-iwithprefix' ! options. If the PREFIX represents a directory, you should include ! the final `'/''. ! `-isysroot DIR' ! This option is like the `--sysroot' option, but applies only to ! header files. See the `--sysroot' option for more information. ! `-iquote DIR' ! Search DIR only for header files requested with `#include "file"'; ! they are not searched for `#include ', before all directories ! specified by `-I' and before the standard system directories. If ! DIR begins with `=', then the `=' will be replaced by the sysroot ! prefix; see `--sysroot' and `-isysroot'. ! `-isystem DIR' Search DIR for header files, after all directories specified by ! `-I' but before the standard system directories. Mark it as a system directory, so that it gets the same special treatment as is ! applied to the standard system directories. If DIR begins with ! `=', then the `=' will be replaced by the sysroot prefix; see ! `--sysroot' and `-isysroot'. ! `-nostdinc' Do not search the standard system directories for header files. ! Only the directories you have specified with `-I' options (and the directory of the current file, if appropriate) are searched. ! `-undef' Do not predefine any system-specific or GCC-specific macros. The standard predefined macros remain defined. ! `-APREDICATE=ANSWER' Make an assertion with the predicate PREDICATE and answer ANSWER. This form is preferred to the older form -A predicate(answer), which is still supported, because it does not use shell special characters. ! `-A-PREDICATE=ANSWER' Cancel an assertion with the predicate PREDICATE and answer ANSWER. ! `-C' ! Do not discard comments. All comments are passed through to the ! output file, except for comments in processed directives, which ! are deleted along with the directive. ! You should be prepared for side effects when using `-C'; it causes the preprocessor to treat comments as tokens in their own right. For example, comments appearing at the start of what would be a directive line have the effect of turning that line into an ordinary source line, since the first token on the line is no ! longer a `'#''. ! Warning: this currently handles C-Style comments only. The preprocessor does not yet recognize Fortran-style comments. ! `-CC' ! Do not discard comments, including during macro expansion. This is ! like `-C', except that comments contained within macros are also passed through to the output file where the macro is expanded. ! In addition to the side-effects of the `-C' option, the `-CC' ! option causes all C++-style comments inside a macro to be ! converted to C-style comments. This is to prevent later use of ! that macro from inadvertently commenting out the remainder of the ! source line. The `-CC' option is generally used to support lint ! comments. ! Warning: this currently handles C- and C++-Style comments only. The ! preprocessor does not yet recognize Fortran-style comments. ! `-DNAME' ! Predefine name as a macro, with definition `1'. ! `-DNAME=DEFINITION' The contents of DEFINITION are tokenized and processed as if they ! appeared during translation phase three in a `'#define'' directive. In particular, the definition will be truncated by embedded newline characters. *************** in 'gfortran'. *** 827,854 **** If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the ! equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With sh and csh, ! '-D'name(args...)=definition'' works. ! '-D' and '-U' options are processed in the order they are given on ! the command line. All -imacros file and -include file options are processed after all -D and -U options. ! '-H' Print the name of each header file used, in addition to other ! normal activities. Each name is indented to show how deep in the ! ''#include'' stack it is. ! '-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! '-UNAME' Cancel any previous definition of NAME, either built in or provided ! with a '-D' option.  File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran --- 828,855 ---- If you wish to define a function-like macro on the command line, write its argument list with surrounding parentheses before the ! equals sign (if any). Parentheses are meaningful to most shells, ! so you will need to quote the option. With sh and csh, ! `-D'name(args...)=definition'' works. ! `-D' and `-U' options are processed in the order they are given on ! the command line. All -imacros file and -include file options are processed after all -D and -U options. ! `-H' Print the name of each header file used, in addition to other ! normal activities. Each name is indented to show how deep in the ! `'#include'' stack it is. ! `-P' Inhibit generation of linemarkers in the output from the preprocessor. This might be useful when running the preprocessor on something that is not C code, and will be sent to a program which might be confused by the linemarkers. ! `-UNAME' Cancel any previous definition of NAME, either built in or provided ! with a `-D' option.  File: gfortran.info, Node: Error and Warning Options, Next: Debugging Options, Prev: Preprocessing Options, Up: Invoking GNU Fortran *************** to aid in debugging, but will not produc *** 863,927 **** Warnings are diagnostic messages that report constructions which are not inherently erroneous but which are risky or suggest there is likely ! to be a bug in the program. Unless '-Werror' is specified, they do not prevent compilation of the program. ! You can request many specific warnings with options beginning '-W', ! for example '-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a negative form ! beginning '-Wno-' to turn off warnings; for example, '-Wno-implicit'. This manual lists only one of the two forms, whichever is not the default. These options control the amount and kinds of errors and warnings produced by GNU Fortran: ! '-fmax-errors=N' Limits the maximum number of error messages to N, at which point ! GNU Fortran bails out rather than attempting to continue processing ! the source code. If N is 0, there is no limit on the number of ! error messages produced. ! '-fsyntax-only' Check the code for syntax errors, but do not actually compile it. This will generate module files for each module present in the code, but no other output file. ! '-pedantic' ! Issue warnings for uses of extensions to Fortran 95. '-pedantic' also applies to C-language constructs where they occur in GNU ! Fortran source files, such as use of '\e' in a character constant ! within a directive like '#include'. Valid Fortran 95 programs should compile properly with or without this option. However, without this option, certain GNU extensions and traditional Fortran features are supported as well. With this option, many of them are rejected. ! Some users try to use '-pedantic' to check programs for conformance. They soon find that it does not do quite what they want--it finds some nonstandard practices, but not all. However, improvements to GNU Fortran in this area are welcome. ! This should be used in conjunction with '-std=f95', '-std=f2003' or ! '-std=f2008'. ! '-pedantic-errors' ! Like '-pedantic', except that errors are produced rather than warnings. ! '-Wall' Enables commonly used warning options pertaining to usage that we recommend avoiding and that we believe are easy to avoid. This ! currently includes '-Waliasing', '-Wampersand', '-Wconversion', ! '-Wsurprising', '-Wc-binding-type', '-Wintrinsics-std', ! '-Wno-tabs', '-Wintrinsic-shadow', '-Wline-truncation', ! '-Wtarget-lifetime', '-Wreal-q-constant' and '-Wunused'. ! '-Waliasing' ! Warn about possible aliasing of dummy arguments. Specifically, it warns if the same actual argument is associated with a dummy ! argument with 'INTENT(IN)' and a dummy argument with 'INTENT(OUT)' in a call with an explicit interface. The following example will trigger the warning. --- 864,928 ---- Warnings are diagnostic messages that report constructions which are not inherently erroneous but which are risky or suggest there is likely ! to be a bug in the program. Unless `-Werror' is specified, they do not prevent compilation of the program. ! You can request many specific warnings with options beginning `-W', ! for example `-Wimplicit' to request warnings on implicit declarations. Each of these specific warning options also has a negative form ! beginning `-Wno-' to turn off warnings; for example, `-Wno-implicit'. This manual lists only one of the two forms, whichever is not the default. These options control the amount and kinds of errors and warnings produced by GNU Fortran: ! `-fmax-errors=N' Limits the maximum number of error messages to N, at which point ! GNU Fortran bails out rather than attempting to continue ! processing the source code. If N is 0, there is no limit on the ! number of error messages produced. ! `-fsyntax-only' Check the code for syntax errors, but do not actually compile it. This will generate module files for each module present in the code, but no other output file. ! `-pedantic' ! Issue warnings for uses of extensions to Fortran 95. `-pedantic' also applies to C-language constructs where they occur in GNU ! Fortran source files, such as use of `\e' in a character constant ! within a directive like `#include'. Valid Fortran 95 programs should compile properly with or without this option. However, without this option, certain GNU extensions and traditional Fortran features are supported as well. With this option, many of them are rejected. ! Some users try to use `-pedantic' to check programs for conformance. They soon find that it does not do quite what they want--it finds some nonstandard practices, but not all. However, improvements to GNU Fortran in this area are welcome. ! This should be used in conjunction with `-std=f95', `-std=f2003' ! or `-std=f2008'. ! `-pedantic-errors' ! Like `-pedantic', except that errors are produced rather than warnings. ! `-Wall' Enables commonly used warning options pertaining to usage that we recommend avoiding and that we believe are easy to avoid. This ! currently includes `-Waliasing', `-Wampersand', `-Wconversion', ! `-Wsurprising', `-Wc-binding-type', `-Wintrinsics-std', ! `-Wno-tabs', `-Wintrinsic-shadow', `-Wline-truncation', ! `-Wtarget-lifetime', `-Wreal-q-constant' and `-Wunused'. ! `-Waliasing' ! Warn about possible aliasing of dummy arguments. Specifically, it warns if the same actual argument is associated with a dummy ! argument with `INTENT(IN)' and a dummy argument with `INTENT(OUT)' in a call with an explicit interface. The following example will trigger the warning. *************** produced by GNU Fortran: *** 935,1001 **** call bar(a,a) ! '-Wampersand' ! Warn about missing ampersand in continued character constants. The ! warning is given with '-Wampersand', '-pedantic', '-std=f95', ! '-std=f2003' and '-std=f2008'. Note: With no ampersand given in a continued character constant, GNU Fortran assumes continuation at the first non-comment, non-whitespace character after the ampersand that initiated the continuation. ! '-Warray-temporaries' Warn about array temporaries generated by the compiler. The information generated by this warning is sometimes useful in optimization, in order to avoid such temporaries. ! '-Wc-binding-type' Warn if the a variable might not be C interoperable. In particular, warn if the variable has been declared using an intrinsic type with default kind instead of using a kind parameter ! defined for C interoperability in the intrinsic 'ISO_C_Binding' ! module. This option is implied by '-Wall'. ! '-Wcharacter-truncation' Warn when a character assignment will truncate the assigned string. ! '-Wline-truncation' Warn when a source code line will be truncated. This option is ! implied by '-Wall'. ! '-Wconversion' ! Warn about implicit conversions that are likely to change the value ! of the expression after conversion. Implied by '-Wall'. ! '-Wconversion-extra' Warn about implicit conversions between different types and kinds. ! '-Wextra' Enables some warning options for usages of language features which ! may be problematic. This currently includes '-Wcompare-reals' and ! '-Wunused-parameter'. ! '-Wimplicit-interface' Warn if a procedure is called without an explicit interface. Note this only checks that an explicit interface is present. It does not check that the declared interfaces are consistent across program units. ! '-Wimplicit-procedure' Warn if a procedure is called that has neither an explicit ! interface nor has been declared as 'EXTERNAL'. ! '-Wintrinsics-std' ! Warn if 'gfortran' finds a procedure named like an intrinsic not ! available in the currently selected standard (with '-std') and ! treats it as 'EXTERNAL' procedure because of this. ! '-fall-intrinsics' can be used to never trigger this behavior and always link to the intrinsic regardless of the selected standard. ! '-Wreal-q-constant' ! Produce a warning if a real-literal-constant contains a 'q' exponent-letter. ! '-Wsurprising' Produce a warning when "suspicious" code constructs are encountered. While technically legal these usually indicate that an error has been made. --- 936,1002 ---- call bar(a,a) ! `-Wampersand' ! Warn about missing ampersand in continued character constants. The ! warning is given with `-Wampersand', `-pedantic', `-std=f95', ! `-std=f2003' and `-std=f2008'. Note: With no ampersand given in a continued character constant, GNU Fortran assumes continuation at the first non-comment, non-whitespace character after the ampersand that initiated the continuation. ! `-Warray-temporaries' Warn about array temporaries generated by the compiler. The information generated by this warning is sometimes useful in optimization, in order to avoid such temporaries. ! `-Wc-binding-type' Warn if the a variable might not be C interoperable. In particular, warn if the variable has been declared using an intrinsic type with default kind instead of using a kind parameter ! defined for C interoperability in the intrinsic `ISO_C_Binding' ! module. This option is implied by `-Wall'. ! `-Wcharacter-truncation' Warn when a character assignment will truncate the assigned string. ! `-Wline-truncation' Warn when a source code line will be truncated. This option is ! implied by `-Wall'. ! `-Wconversion' ! Warn about implicit conversions that are likely to change the ! value of the expression after conversion. Implied by `-Wall'. ! `-Wconversion-extra' Warn about implicit conversions between different types and kinds. ! `-Wextra' Enables some warning options for usages of language features which ! may be problematic. This currently includes `-Wcompare-reals' and ! `-Wunused-parameter'. ! `-Wimplicit-interface' Warn if a procedure is called without an explicit interface. Note this only checks that an explicit interface is present. It does not check that the declared interfaces are consistent across program units. ! `-Wimplicit-procedure' Warn if a procedure is called that has neither an explicit ! interface nor has been declared as `EXTERNAL'. ! `-Wintrinsics-std' ! Warn if `gfortran' finds a procedure named like an intrinsic not ! available in the currently selected standard (with `-std') and ! treats it as `EXTERNAL' procedure because of this. ! `-fall-intrinsics' can be used to never trigger this behavior and always link to the intrinsic regardless of the selected standard. ! `-Wreal-q-constant' ! Produce a warning if a real-literal-constant contains a `q' exponent-letter. ! `-Wsurprising' Produce a warning when "suspicious" code constructs are encountered. While technically legal these usually indicate that an error has been made. *************** produced by GNU Fortran: *** 1012,1097 **** destination. * The type of a function result is declared more than once with ! the same type. If '-pedantic' or standard-conforming mode is enabled, this is an error. ! * A 'CHARACTER' variable is declared with negative length. ! '-Wtabs' By default, tabs are accepted as whitespace, but tabs are not members of the Fortran Character Set. For continuation lines, a ! tab followed by a digit between 1 and 9 is supported. '-Wno-tabs' ! will cause a warning to be issued if a tab is encountered. Note, ! '-Wno-tabs' is active for '-pedantic', '-std=f95', '-std=f2003', ! '-std=f2008' and '-Wall'. ! '-Wunderflow' Produce a warning when numerical constant expressions are encountered, which yield an UNDERFLOW during compilation. ! '-Wintrinsic-shadow' Warn if a user-defined procedure or module procedure has the same name as an intrinsic; in this case, an explicit interface or ! 'EXTERNAL' or 'INTRINSIC' declaration might be needed to get calls later resolved to the desired intrinsic/procedure. This option is ! implied by '-Wall'. ! '-Wunused-dummy-argument' ! Warn about unused dummy arguments. This option is implied by ! '-Wall'. ! '-Wunused-parameter' ! Contrary to 'gcc''s meaning of '-Wunused-parameter', 'gfortran''s implementation of this option does not warn about unused dummy ! arguments (see '-Wunused-dummy-argument'), but about unused ! 'PARAMETER' values. '-Wunused-parameter' is not included in ! '-Wall' but is implied by '-Wall -Wextra'. ! '-Walign-commons' ! By default, 'gfortran' warns about any occasion of variables being ! padded for proper alignment inside a 'COMMON' block. This warning ! can be turned off via '-Wno-align-commons'. See also ! '-falign-commons'. ! '-Wfunction-elimination' Warn if any calls to functions are eliminated by the optimizations ! enabled by the '-ffrontend-optimize' option. ! '-Wrealloc-lhs' Warn when the compiler might insert code to for allocation or reallocation of an allocatable array variable of intrinsic type in ! intrinsic assignments. In hot loops, the Fortran 2003 reallocation ! feature may reduce the performance. If the array is already ! allocated with the correct shape, consider using a whole-array ! array-spec (e.g. '(:,:,:)') for the variable on the left-hand side ! to prevent the reallocation check. Note that in some cases the ! warning is shown, even if the compiler will optimize reallocation ! checks away. For instance, when the right-hand side contains the ! same variable multiplied by a scalar. See also '-frealloc-lhs'. ! '-Wrealloc-lhs-all' Warn when the compiler inserts code to for allocation or reallocation of an allocatable variable; this includes scalars and derived types. ! '-Wcompare-reals' Warn when comparing real or complex types for equality or ! inequality. This option is implied by '-Wextra'. ! '-Wtarget-lifetime' Warn if the pointer in a pointer assignment might be longer than ! the its target. This option is implied by '-Wall'. ! '-Wzerotrip' ! Warn if a 'DO' loop is known to execute zero times at compile time. ! This option is implied by '-Wall'. ! '-Werror' Turns all warnings into errors. *Note Options to Request or Suppress Errors and Warnings: ! (gcc)Warning Options, for information on more options offered by the GBE ! shared by 'gfortran', 'gcc' and other GNU compilers. Some of these have no effect when compiling programs written in Fortran. --- 1013,1099 ---- destination. * The type of a function result is declared more than once with ! the same type. If `-pedantic' or standard-conforming mode is enabled, this is an error. ! * A `CHARACTER' variable is declared with negative length. ! `-Wtabs' By default, tabs are accepted as whitespace, but tabs are not members of the Fortran Character Set. For continuation lines, a ! tab followed by a digit between 1 and 9 is supported. `-Wno-tabs' ! will cause a warning to be issued if a tab is encountered. Note, ! `-Wno-tabs' is active for `-pedantic', `-std=f95', `-std=f2003', ! `-std=f2008' and `-Wall'. ! `-Wunderflow' Produce a warning when numerical constant expressions are encountered, which yield an UNDERFLOW during compilation. ! `-Wintrinsic-shadow' Warn if a user-defined procedure or module procedure has the same name as an intrinsic; in this case, an explicit interface or ! `EXTERNAL' or `INTRINSIC' declaration might be needed to get calls later resolved to the desired intrinsic/procedure. This option is ! implied by `-Wall'. ! `-Wunused-dummy-argument' ! Warn about unused dummy arguments. This option is implied by ! `-Wall'. ! `-Wunused-parameter' ! Contrary to `gcc''s meaning of `-Wunused-parameter', `gfortran''s implementation of this option does not warn about unused dummy ! arguments (see `-Wunused-dummy-argument'), but about unused ! `PARAMETER' values. `-Wunused-parameter' is not included in ! `-Wall' but is implied by `-Wall -Wextra'. ! `-Walign-commons' ! By default, `gfortran' warns about any occasion of variables being ! padded for proper alignment inside a `COMMON' block. This warning ! can be turned off via `-Wno-align-commons'. See also ! `-falign-commons'. ! `-Wfunction-elimination' Warn if any calls to functions are eliminated by the optimizations ! enabled by the `-ffrontend-optimize' option. ! `-Wrealloc-lhs' Warn when the compiler might insert code to for allocation or reallocation of an allocatable array variable of intrinsic type in ! intrinsic assignments. In hot loops, the Fortran 2003 ! reallocation feature may reduce the performance. If the array is ! already allocated with the correct shape, consider using a ! whole-array array-spec (e.g. `(:,:,:)') for the variable on the ! left-hand side to prevent the reallocation check. Note that in ! some cases the warning is shown, even if the compiler will ! optimize reallocation checks away. For instance, when the ! right-hand side contains the same variable multiplied by a scalar. ! See also `-frealloc-lhs'. ! `-Wrealloc-lhs-all' Warn when the compiler inserts code to for allocation or reallocation of an allocatable variable; this includes scalars and derived types. ! `-Wcompare-reals' Warn when comparing real or complex types for equality or ! inequality. This option is implied by `-Wextra'. ! `-Wtarget-lifetime' Warn if the pointer in a pointer assignment might be longer than ! the its target. This option is implied by `-Wall'. ! `-Wzerotrip' ! Warn if a `DO' loop is known to execute zero times at compile ! time. This option is implied by `-Wall'. ! `-Werror' Turns all warnings into errors. *Note Options to Request or Suppress Errors and Warnings: ! (gcc)Warning Options, for information on more options offered by the ! GBE shared by `gfortran', `gcc' and other GNU compilers. Some of these have no effect when compiling programs written in Fortran. *************** File: gfortran.info, Node: Debugging Op *** 1105,1170 **** GNU Fortran has various special options that are used for debugging either your program or the GNU Fortran compiler. ! '-fdump-fortran-original' Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. ! '-fdump-fortran-optimized' Output the parse tree after front-end optimization. Only really useful for debugging the GNU Fortran compiler itself. ! '-fdump-parse-tree' Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. This option is deprecated; use ! '-fdump-fortran-original' instead. ! '-ffpe-trap=LIST' Specify a list of floating point exception traps to enable. On ! most systems, if a floating point exception occurs and the trap for ! that exception is enabled, a SIGFPE signal will be sent and the ! program being aborted, producing a core file useful for debugging. ! LIST is a (possibly empty) comma-separated list of the following ! exceptions: 'invalid' (invalid floating point operation, such as ! 'SQRT(-1.0)'), 'zero' (division by zero), 'overflow' (overflow in a ! floating point operation), 'underflow' (underflow in a floating ! point operation), 'inexact' (loss of precision during operation), ! and 'denormal' (operation performed on a denormal value). The ! first five exceptions correspond to the five IEEE 754 exceptions, ! whereas the last one ('denormal') is not part of the IEEE 754 ! standard but is available on some common architectures such as x86. ! The first three exceptions ('invalid', 'zero', and 'overflow') often indicate serious errors, and unless the program has provisions for dealing with these exceptions, enabling traps for these three exceptions is probably a good idea. Many, if not most, floating point operations incur loss of ! precision due to rounding, and hence the 'ffpe-trap=inexact' is likely to be uninteresting in practice. By default no exception traps are enabled. ! '-ffpe-summary=LIST' Specify a list of floating-point exceptions, whose flag status is ! printed to 'ERROR_UNIT' when invoking 'STOP' and 'ERROR STOP'. ! LIST can be either 'none', 'all' or a comma-separated list of the ! following exceptions: 'invalid', 'zero', 'overflow', 'underflow', ! 'inexact' and 'denormal'. (See '-ffpe-trap' for a description of the exceptions.) ! By default, a summary for all exceptions but 'inexact' is shown. ! '-fno-backtrace' When a serious runtime error is encountered or a deadly signal is emitted (segmentation fault, illegal instruction, bus error, floating-point exception, and the other POSIX signals that have the ! action 'core'), the Fortran runtime library tries to output a ! backtrace of the error. '-fno-backtrace' disables the backtrace ! generation. This option only has influence for compilation of the Fortran main program. *Note Options for Debugging Your Program or GCC: (gcc)Debugging Options, for more information on debugging options. --- 1107,1174 ---- GNU Fortran has various special options that are used for debugging either your program or the GNU Fortran compiler. ! `-fdump-fortran-original' Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. ! `-fdump-fortran-optimized' Output the parse tree after front-end optimization. Only really useful for debugging the GNU Fortran compiler itself. ! `-fdump-parse-tree' Output the internal parse tree after translating the source program into internal representation. Only really useful for debugging the GNU Fortran compiler itself. This option is deprecated; use ! `-fdump-fortran-original' instead. ! `-ffpe-trap=LIST' Specify a list of floating point exception traps to enable. On ! most systems, if a floating point exception occurs and the trap ! for that exception is enabled, a SIGFPE signal will be sent and ! the program being aborted, producing a core file useful for ! debugging. LIST is a (possibly empty) comma-separated list of the ! following exceptions: `invalid' (invalid floating point operation, ! such as `SQRT(-1.0)'), `zero' (division by zero), `overflow' ! (overflow in a floating point operation), `underflow' (underflow ! in a floating point operation), `inexact' (loss of precision ! during operation), and `denormal' (operation performed on a ! denormal value). The first five exceptions correspond to the five ! IEEE 754 exceptions, whereas the last one (`denormal') is not part ! of the IEEE 754 standard but is available on some common ! architectures such as x86. ! The first three exceptions (`invalid', `zero', and `overflow') often indicate serious errors, and unless the program has provisions for dealing with these exceptions, enabling traps for these three exceptions is probably a good idea. Many, if not most, floating point operations incur loss of ! precision due to rounding, and hence the `ffpe-trap=inexact' is likely to be uninteresting in practice. By default no exception traps are enabled. ! `-ffpe-summary=LIST' Specify a list of floating-point exceptions, whose flag status is ! printed to `ERROR_UNIT' when invoking `STOP' and `ERROR STOP'. ! LIST can be either `none', `all' or a comma-separated list of the ! following exceptions: `invalid', `zero', `overflow', `underflow', ! `inexact' and `denormal'. (See `-ffpe-trap' for a description of the exceptions.) ! By default, a summary for all exceptions but `inexact' is shown. ! `-fno-backtrace' When a serious runtime error is encountered or a deadly signal is emitted (segmentation fault, illegal instruction, bus error, floating-point exception, and the other POSIX signals that have the ! action `core'), the Fortran runtime library tries to output a ! backtrace of the error. `-fno-backtrace' disables the backtrace ! generation. This option only has influence for compilation of the Fortran main program. + *Note Options for Debugging Your Program or GCC: (gcc)Debugging Options, for more information on debugging options. *************** File: gfortran.info, Node: Directory Op *** 1174,1209 **** 2.6 Options for directory search ================================ ! These options affect how GNU Fortran searches for files specified by the ! 'INCLUDE' directive and where it searches for previously compiled modules. ! It also affects the search paths used by 'cpp' when used to preprocess Fortran source. ! '-IDIR' ! These affect interpretation of the 'INCLUDE' directive (as well as ! of the '#include' directive of the 'cpp' preprocessor). ! Also note that the general behavior of '-I' and 'INCLUDE' is pretty ! much the same as of '-I' with '#include' in the 'cpp' preprocessor, ! with regard to looking for 'header.gcc' files and other such ! things. ! This path is also used to search for '.mod' files when previously ! compiled modules are required by a 'USE' statement. *Note Options for Directory Search: (gcc)Directory Options, for ! information on the '-I' option. ! '-JDIR' ! This option specifies where to put '.mod' files for compiled modules. It is also added to the list of directories to searched ! by an 'USE' statement. The default is the current directory. ! '-fintrinsic-modules-path DIR' This option specifies the location of pre-compiled intrinsic modules, if they are not in the default location expected by the compiler. --- 1178,1213 ---- 2.6 Options for directory search ================================ ! These options affect how GNU Fortran searches for files specified by ! the `INCLUDE' directive and where it searches for previously compiled modules. ! It also affects the search paths used by `cpp' when used to preprocess Fortran source. ! `-IDIR' ! These affect interpretation of the `INCLUDE' directive (as well as ! of the `#include' directive of the `cpp' preprocessor). ! Also note that the general behavior of `-I' and `INCLUDE' is ! pretty much the same as of `-I' with `#include' in the `cpp' ! preprocessor, with regard to looking for `header.gcc' files and ! other such things. ! This path is also used to search for `.mod' files when previously ! compiled modules are required by a `USE' statement. *Note Options for Directory Search: (gcc)Directory Options, for ! information on the `-I' option. ! `-JDIR' ! This option specifies where to put `.mod' files for compiled modules. It is also added to the list of directories to searched ! by an `USE' statement. The default is the current directory. ! `-fintrinsic-modules-path DIR' This option specifies the location of pre-compiled intrinsic modules, if they are not in the default location expected by the compiler. *************** File: gfortran.info, Node: Link Options *** 1215,1227 **** ================================ These options come into play when the compiler links object files into ! an executable output file. They are meaningless if the compiler is not doing a link step. ! '-static-libgfortran' ! On systems that provide 'libgfortran' as a shared and a static ! library, this option forces the use of the static version. If no ! shared version of 'libgfortran' was built when the compiler was configured, this option has no effect.  --- 1219,1231 ---- ================================ These options come into play when the compiler links object files into ! an executable output file. They are meaningless if the compiler is not doing a link step. ! `-static-libgfortran' ! On systems that provide `libgfortran' as a shared and a static ! library, this option forces the use of the static version. If no ! shared version of `libgfortran' was built when the compiler was configured, this option has no effect.  *************** File: gfortran.info, Node: Runtime Opti *** 1233,1270 **** These options affect the runtime behavior of programs compiled with GNU Fortran. ! '-fconvert=CONVERSION' Specify the representation of data for unformatted files. Valid ! values for conversion are: 'native', the default; 'swap', swap ! between big- and little-endian; 'big-endian', use big-endian ! representation for unformatted files; 'little-endian', use little-endian representation for unformatted files. ! _This option has an effect only when used in the main program. The ! 'CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment ! variable override the default specified by '-fconvert'._ ! '-frecord-marker=LENGTH' Specify the length of record markers for unformatted files. Valid values for LENGTH are 4 and 8. Default is 4. _This is different ! from previous versions of 'gfortran'_, which specified a default record marker length of 8 on most systems. If you want to read or ! write files compatible with earlier versions of 'gfortran', use ! '-frecord-marker=8'. ! '-fmax-subrecord-length=LENGTH' Specify the maximum length for a subrecord. The maximum permitted value for length is 2147483639, which is also the default. Only really useful for use by the gfortran testsuite. ! '-fsign-zero' When enabled, floating point numbers of value zero with the sign bit set are written as negative number in formatted output and ! treated as negative in the 'SIGN' intrinsic. '-fno-sign-zero' does ! not print the negative sign of zero values (or values rounded to ! zero for I/O) and regards zero as positive number in the 'SIGN' ! intrinsic for compatibility with Fortran 77. The default is ! '-fsign-zero'.  File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran --- 1237,1274 ---- These options affect the runtime behavior of programs compiled with GNU Fortran. ! `-fconvert=CONVERSION' Specify the representation of data for unformatted files. Valid ! values for conversion are: `native', the default; `swap', swap ! between big- and little-endian; `big-endian', use big-endian ! representation for unformatted files; `little-endian', use little-endian representation for unformatted files. ! _This option has an effect only when used in the main program. ! The `CONVERT' specifier and the GFORTRAN_CONVERT_UNIT environment ! variable override the default specified by `-fconvert'._ ! `-frecord-marker=LENGTH' Specify the length of record markers for unformatted files. Valid values for LENGTH are 4 and 8. Default is 4. _This is different ! from previous versions of `gfortran'_, which specified a default record marker length of 8 on most systems. If you want to read or ! write files compatible with earlier versions of `gfortran', use ! `-frecord-marker=8'. ! `-fmax-subrecord-length=LENGTH' Specify the maximum length for a subrecord. The maximum permitted value for length is 2147483639, which is also the default. Only really useful for use by the gfortran testsuite. ! `-fsign-zero' When enabled, floating point numbers of value zero with the sign bit set are written as negative number in formatted output and ! treated as negative in the `SIGN' intrinsic. `-fno-sign-zero' ! does not print the negative sign of zero values (or values rounded ! to zero for I/O) and regards zero as positive number in the `SIGN' ! intrinsic for compatibility with Fortran 77. The default is ! `-fsign-zero'.  File: gfortran.info, Node: Code Gen Options, Next: Environment Variables, Prev: Runtime Options, Up: Invoking GNU Fortran *************** File: gfortran.info, Node: Code Gen Opt *** 1272,1355 **** 2.9 Options for code generation conventions =========================================== ! These machine-independent options control the interface conventions used ! in code generation. Most of them have both positive and negative forms; the negative form ! of '-ffoo' would be '-fno-foo'. In the table below, only one of the forms is listed--the one which is not the default. You can figure out ! the other form by either removing 'no-' or adding it. ! '-fno-automatic' Treat each program unit (except those marked as RECURSIVE) as if ! the 'SAVE' statement were specified for every local variable and ! array referenced in it. Does not affect common blocks. (Some ! Fortran compilers provide this option under the name '-static' or ! '-save'.) The default, which is '-fautomatic', uses the stack for local variables smaller than the value given by ! '-fmax-stack-var-size'. Use the option '-frecursive' to use no static memory. ! '-ff2c' Generate code designed to be compatible with code generated by ! 'g77' and 'f2c'. ! The calling conventions used by 'g77' (originally implemented in ! 'f2c') require functions that return type default 'REAL' to ! actually return the C type 'double', and functions that return type ! 'COMPLEX' to return the values via an extra argument in the calling ! sequence that points to where to store the return value. Under the ! default GNU calling conventions, such functions simply return their ! results as they would in GNU C--default 'REAL' functions return the ! C type 'float', and 'COMPLEX' functions return the GNU C type ! 'complex'. Additionally, this option implies the ! '-fsecond-underscore' option, unless '-fno-second-underscore' is ! explicitly requested. This does not affect the generation of code that interfaces with ! the 'libgfortran' library. _Caution:_ It is not a good idea to mix Fortran code compiled with ! '-ff2c' with code compiled with the default '-fno-f2c' calling ! conventions as, calling 'COMPLEX' or default 'REAL' functions between program parts which were compiled with different calling conventions will break at execution time. ! _Caution:_ This will break code which passes intrinsic functions of ! type default 'REAL' or 'COMPLEX' as actual arguments, as the ! library implementations use the '-fno-f2c' calling conventions. ! '-fno-underscoring' Do not transform names of entities specified in the Fortran source file by appending underscores to them. ! With '-funderscoring' in effect, GNU Fortran appends one underscore ! to external names with no underscores. This is done to ensure ! compatibility with code produced by many UNIX Fortran compilers. ! _Caution_: The default behavior of GNU Fortran is incompatible with ! 'f2c' and 'g77', please use the '-ff2c' option if you want object ! files compiled with GNU Fortran to be compatible with object code ! created with these tools. ! Use of '-fno-underscoring' is not recommended unless you are experimenting with issues such as integration of GNU Fortran into existing system environments (vis-a`-vis existing libraries, tools, and so on). ! For example, with '-funderscoring', and assuming other defaults ! like '-fcase-lower' and that 'j()' and 'max_count()' are external ! functions while 'my_var' and 'lvar' are local variables, a statement like I = J() + MAX_COUNT (MY_VAR, LVAR) is implemented as something akin to: i = j_() + max_count__(&my_var__, &lvar); ! With '-fno-underscoring', the same statement is implemented as: i = j() + max_count(&my_var, &lvar); ! Use of '-fno-underscoring' allows direct specification of user-defined names while debugging and when interfacing GNU Fortran code with other languages. --- 1276,1360 ---- 2.9 Options for code generation conventions =========================================== ! These machine-independent options control the interface conventions ! used in code generation. Most of them have both positive and negative forms; the negative form ! of `-ffoo' would be `-fno-foo'. In the table below, only one of the forms is listed--the one which is not the default. You can figure out ! the other form by either removing `no-' or adding it. ! `-fno-automatic' Treat each program unit (except those marked as RECURSIVE) as if ! the `SAVE' statement were specified for every local variable and ! array referenced in it. Does not affect common blocks. (Some ! Fortran compilers provide this option under the name `-static' or ! `-save'.) The default, which is `-fautomatic', uses the stack for local variables smaller than the value given by ! `-fmax-stack-var-size'. Use the option `-frecursive' to use no static memory. ! `-ff2c' Generate code designed to be compatible with code generated by ! `g77' and `f2c'. ! The calling conventions used by `g77' (originally implemented in ! `f2c') require functions that return type default `REAL' to ! actually return the C type `double', and functions that return ! type `COMPLEX' to return the values via an extra argument in the ! calling sequence that points to where to store the return value. ! Under the default GNU calling conventions, such functions simply ! return their results as they would in GNU C--default `REAL' ! functions return the C type `float', and `COMPLEX' functions ! return the GNU C type `complex'. Additionally, this option ! implies the `-fsecond-underscore' option, unless ! `-fno-second-underscore' is explicitly requested. This does not affect the generation of code that interfaces with ! the `libgfortran' library. _Caution:_ It is not a good idea to mix Fortran code compiled with ! `-ff2c' with code compiled with the default `-fno-f2c' calling ! conventions as, calling `COMPLEX' or default `REAL' functions between program parts which were compiled with different calling conventions will break at execution time. ! _Caution:_ This will break code which passes intrinsic functions ! of type default `REAL' or `COMPLEX' as actual arguments, as the ! library implementations use the `-fno-f2c' calling conventions. ! `-fno-underscoring' Do not transform names of entities specified in the Fortran source file by appending underscores to them. ! With `-funderscoring' in effect, GNU Fortran appends one ! underscore to external names with no underscores. This is done to ! ensure compatibility with code produced by many UNIX Fortran ! compilers. ! _Caution_: The default behavior of GNU Fortran is incompatible ! with `f2c' and `g77', please use the `-ff2c' option if you want ! object files compiled with GNU Fortran to be compatible with ! object code created with these tools. ! Use of `-fno-underscoring' is not recommended unless you are experimenting with issues such as integration of GNU Fortran into existing system environments (vis-a`-vis existing libraries, tools, and so on). ! For example, with `-funderscoring', and assuming other defaults ! like `-fcase-lower' and that `j()' and `max_count()' are external ! functions while `my_var' and `lvar' are local variables, a statement like I = J() + MAX_COUNT (MY_VAR, LVAR) is implemented as something akin to: i = j_() + max_count__(&my_var__, &lvar); ! With `-fno-underscoring', the same statement is implemented as: i = j() + max_count(&my_var, &lvar); ! Use of `-fno-underscoring' allows direct specification of user-defined names while debugging and when interfacing GNU Fortran code with other languages. *************** the other form by either removing 'no-' *** 1357,1369 **** interface implemented by GNU Fortran for an external name matches the interface implemented by some other language for that same name. That is, getting code produced by GNU Fortran to link to ! code produced by some other compiler using this or any other method ! can be only a small part of the overall solution--getting the code ! generated by both compilers to agree on issues other than naming ! can require significant effort, and, unlike naming disagreements, ! linkers normally cannot detect disagreements in these other areas. ! Also, note that with '-fno-underscoring', the lack of appended underscores introduces the very real possibility that a user-defined external name will conflict with a name in a system library, which could make finding unresolved-reference bugs quite --- 1362,1375 ---- interface implemented by GNU Fortran for an external name matches the interface implemented by some other language for that same name. That is, getting code produced by GNU Fortran to link to ! code produced by some other compiler using this or any other ! method can be only a small part of the overall solution--getting ! the code generated by both compilers to agree on issues other than ! naming can require significant effort, and, unlike naming ! disagreements, linkers normally cannot detect disagreements in ! these other areas. ! Also, note that with `-fno-underscoring', the lack of appended underscores introduces the very real possibility that a user-defined external name will conflict with a name in a system library, which could make finding unresolved-reference bugs quite *************** the other form by either removing 'no-' *** 1371,1429 **** show up only as buggy behavior at run time. In future versions of GNU Fortran we hope to improve naming and ! linking issues so that debugging always involves using the names as ! they appear in the source, even if the names as seen by the linker ! are mangled to prevent accidental linking between procedures with ! incompatible interfaces. ! '-fsecond-underscore' By default, GNU Fortran appends an underscore to external names. ! If this option is used GNU Fortran appends two underscores to names ! with underscores and one underscore to external names with no ! underscores. GNU Fortran also appends two underscores to internal ! names with underscores to avoid naming collisions with external ! names. ! This option has no effect if '-fno-underscoring' is in effect. It ! is implied by the '-ff2c' option. ! Otherwise, with this option, an external name such as 'MAX_COUNT' is implemented as a reference to the link-time external symbol ! 'max_count__', instead of 'max_count_'. This is required for ! compatibility with 'g77' and 'f2c', and is implied by use of the ! '-ff2c' option. ! '-fcoarray=' ! 'none' Disable coarray support; using coarray declarations and image-control statements will produce a compile-time error. (Default) ! 'single' ! Single-image mode, i.e. 'num_images()' is always one. ! 'lib' Library-based coarray parallelization; a suitable GNU Fortran coarray library needs to be linked. ! '-fcheck=' ! Enable the generation of run-time checks; the argument shall be a comma-delimited list of the following keywords. ! 'all' ! Enable all run-time test of '-fcheck'. ! 'array-temps' Warns at run time when for passing an actual argument a ! temporary array had to be generated. The information ! generated by this warning is sometimes useful in optimization, ! in order to avoid such temporaries. Note: The warning is only printed once per location. ! 'bounds' Enable generation of run-time checks for array subscripts and against the declared minimum and maximum values. It also checks array indices for assumed and deferred shape arrays --- 1377,1434 ---- show up only as buggy behavior at run time. In future versions of GNU Fortran we hope to improve naming and ! linking issues so that debugging always involves using the names ! as they appear in the source, even if the names as seen by the ! linker are mangled to prevent accidental linking between ! procedures with incompatible interfaces. ! `-fsecond-underscore' By default, GNU Fortran appends an underscore to external names. ! If this option is used GNU Fortran appends two underscores to ! names with underscores and one underscore to external names with ! no underscores. GNU Fortran also appends two underscores to ! internal names with underscores to avoid naming collisions with ! external names. ! This option has no effect if `-fno-underscoring' is in effect. It ! is implied by the `-ff2c' option. ! Otherwise, with this option, an external name such as `MAX_COUNT' is implemented as a reference to the link-time external symbol ! `max_count__', instead of `max_count_'. This is required for ! compatibility with `g77' and `f2c', and is implied by use of the ! `-ff2c' option. ! `-fcoarray=' ! `none' Disable coarray support; using coarray declarations and image-control statements will produce a compile-time error. (Default) ! `single' ! Single-image mode, i.e. `num_images()' is always one. ! `lib' Library-based coarray parallelization; a suitable GNU Fortran coarray library needs to be linked. ! `-fcheck=' Enable the generation of run-time checks; the argument shall be a comma-delimited list of the following keywords. ! `all' ! Enable all run-time test of `-fcheck'. ! `array-temps' Warns at run time when for passing an actual argument a ! temporary array had to be generated. The information ! generated by this warning is sometimes useful in ! optimization, in order to avoid such temporaries. Note: The warning is only printed once per location. ! `bounds' Enable generation of run-time checks for array subscripts and against the declared minimum and maximum values. It also checks array indices for assumed and deferred shape arrays *************** the other form by either removing 'no-' *** 1431,1469 **** string lengths are equal for character array constructors without an explicit typespec. ! Some checks require that '-fcheck=bounds' is set for the compilation of the main program. Note: In the future this may also include other forms of checking, e.g., checking substring references. ! 'do' Enable generation of run-time checks for invalid modification of loop iteration variables. ! 'mem' Enable generation of run-time checks for memory allocation. Note: This option does not affect explicit allocations using ! the 'ALLOCATE' statement, which will be always checked. ! 'pointer' Enable generation of run-time checks for pointers and allocatables. ! 'recursion' Enable generation of run-time checks for recursively called subroutines and functions which are not marked as recursive. ! See also '-frecursive'. Note: This check does not work for OpenMP programs and is disabled if used together with ! '-frecursive' and '-fopenmp'. ! '-fbounds-check' ! Deprecated alias for '-fcheck=bounds'. ! '-fcheck-array-temporaries' ! Deprecated alias for '-fcheck=array-temps'. ! '-fmax-array-constructor=N' This option can be used to increase the upper limit permitted in array constructors. The code below requires this option to expand the array at compile time. --- 1436,1474 ---- string lengths are equal for character array constructors without an explicit typespec. ! Some checks require that `-fcheck=bounds' is set for the compilation of the main program. Note: In the future this may also include other forms of checking, e.g., checking substring references. ! `do' Enable generation of run-time checks for invalid modification of loop iteration variables. ! `mem' Enable generation of run-time checks for memory allocation. Note: This option does not affect explicit allocations using ! the `ALLOCATE' statement, which will be always checked. ! `pointer' Enable generation of run-time checks for pointers and allocatables. ! `recursion' Enable generation of run-time checks for recursively called subroutines and functions which are not marked as recursive. ! See also `-frecursive'. Note: This check does not work for OpenMP programs and is disabled if used together with ! `-frecursive' and `-fopenmp'. ! `-fbounds-check' ! Deprecated alias for `-fcheck=bounds'. ! `-fcheck-array-temporaries' ! Deprecated alias for `-fcheck=array-temps'. ! `-fmax-array-constructor=N' This option can be used to increase the upper limit permitted in array constructors. The code below requires this option to expand the array at compile time. *************** the other form by either removing 'no-' *** 1476,1493 **** print '(10(I0,1X))', i end program test ! _Caution: This option can lead to long compile times and excessively large object files._ The default value for N is 65535. ! '-fmax-stack-var-size=N' This option specifies the size in bytes of the largest array that will be put on the stack; if the size is exceeded static memory is used (except in procedures marked as RECURSIVE). Use the option ! '-frecursive' to allow for recursive procedures which do not have a ! RECURSIVE attribute or for parallel programs. Use '-fno-automatic' ! to never use the stack. This option currently only affects local arrays declared with constant bounds, and may not apply to all character variables. --- 1481,1498 ---- print '(10(I0,1X))', i end program test ! _Caution: This option can lead to long compile times and excessively large object files._ The default value for N is 65535. ! `-fmax-stack-var-size=N' This option specifies the size in bytes of the largest array that will be put on the stack; if the size is exceeded static memory is used (except in procedures marked as RECURSIVE). Use the option ! `-frecursive' to allow for recursive procedures which do not have ! a RECURSIVE attribute or for parallel programs. Use ! `-fno-automatic' to never use the stack. This option currently only affects local arrays declared with constant bounds, and may not apply to all character variables. *************** the other form by either removing 'no-' *** 1495,1640 **** The default value for N is 32768. ! '-fstack-arrays' Adding this option will make the Fortran compiler put all local arrays, even those of unknown size onto stack memory. If your program uses very large local arrays it is possible that you will have to extend your runtime limits for stack memory on some ! operating systems. This flag is enabled by default at optimization ! level '-Ofast'. ! '-fpack-derived' This option tells GNU Fortran to pack derived type members as closely as possible. Code compiled with this option is likely to be incompatible with code compiled without this option, and may execute slower. ! '-frepack-arrays' In some circumstances GNU Fortran may pass assumed shape array sections via a descriptor describing a noncontiguous area of memory. This option adds code to the function prologue to repack the data into a contiguous block at runtime. ! This should result in faster accesses to the array. However it can ! introduce significant overhead to the function call, especially ! when the passed data is noncontiguous. ! '-fshort-enums' This option is provided for interoperability with C code that was ! compiled with the '-fshort-enums' option. It will make GNU Fortran ! choose the smallest 'INTEGER' kind a given enumerator set will fit ! in, and give all its enumerators this kind. ! '-fexternal-blas' ! This option will make 'gfortran' generate calls to BLAS functions ! for some matrix operations like 'MATMUL', instead of using our own algorithms, if the size of the matrices involved is larger than a ! given limit (see '-fblas-matmul-limit'). This may be profitable if ! an optimized vendor BLAS library is available. The BLAS library ! will have to be specified at link time. ! '-fblas-matmul-limit=N' ! Only significant when '-fexternal-blas' is in effect. Matrix multiplication of matrices with size larger than (or equal to) N will be performed by calls to BLAS functions, while others will be ! handled by 'gfortran' internal algorithms. If the matrices involved are not square, the size comparison is performed using the geometric mean of the dimensions of the argument and result matrices. The default value for N is 30. ! '-frecursive' Allow indirect recursion by forcing all local arrays to be ! allocated on the stack. This flag cannot be used together with ! '-fmax-stack-var-size=' or '-fno-automatic'. ! '-finit-local-zero' ! '-finit-integer=N' ! '-finit-real=' ! '-finit-logical=' ! '-finit-character=N' ! The '-finit-local-zero' option instructs the compiler to initialize ! local 'INTEGER', 'REAL', and 'COMPLEX' variables to zero, 'LOGICAL' ! variables to false, and 'CHARACTER' variables to a string of null ! bytes. Finer-grained initialization options are provided by the ! '-finit-integer=N', '-finit-real=' (which ! also initializes the real and imaginary parts of local 'COMPLEX' ! variables), '-finit-logical=', and '-finit-character=N' ! (where N is an ASCII character value) options. These options do ! not initialize * allocatable arrays * components of derived type variables ! * variables that appear in an 'EQUIVALENCE' statement. (These limitations may be removed in future releases). ! Note that the '-finit-real=nan' option initializes 'REAL' and ! 'COMPLEX' variables with a quiet NaN. For a signalling NaN use ! '-finit-real=snan'; note, however, that compile-time optimizations may convert them into quiet NaN and that trapping needs to be ! enabled (e.g. via '-ffpe-trap'). ! Finally, note that enabling any of the '-finit-*' options will ! silence warnings that would have been emitted by '-Wuninitialized' for the affected local variables. ! '-falign-commons' ! By default, 'gfortran' enforces proper alignment of all variables ! in a 'COMMON' block by padding them as needed. On certain platforms this is mandatory, on others it increases performance. ! If a 'COMMON' block is not declared with consistent data types everywhere, this padding can cause trouble, and ! '-fno-align-commons' can be used to disable automatic alignment. The same form of this option should be used for all files that ! share a 'COMMON' block. To avoid potential alignment issues in ! 'COMMON' blocks, it is recommended to order objects from largest to ! smallest. ! '-fno-protect-parens' By default the parentheses in expression are honored for all optimization levels such that the compiler does not do any ! re-association. Using '-fno-protect-parens' allows the compiler to ! reorder 'REAL' and 'COMPLEX' expressions to produce faster code. ! Note that for the re-association optimization '-fno-signed-zeros' ! and '-fno-trapping-math' need to be in effect. The parentheses ! protection is enabled by default, unless '-Ofast' is given. ! '-frealloc-lhs' An allocatable left-hand side of an intrinsic assignment is automatically (re)allocated if it is either unallocated or has a ! different shape. The option is enabled by default except when ! '-std=f95' is given. See also '-Wrealloc-lhs'. ! '-faggressive-function-elimination' Functions with identical argument lists are eliminated within ! statements, regardless of whether these functions are marked 'PURE' ! or not. For example, in a = f(b,c) + f(b,c) ! there will only be a single call to 'f'. This option only works if ! '-ffrontend-optimize' is in effect. ! '-ffrontend-optimize' This option performs front-end optimization, based on manipulating ! parts the Fortran parse tree. Enabled by default by any '-O' option. Optimizations enabled by this option include elimination of identical function calls within expressions, removing ! unnecessary calls to 'TRIM' in comparisons and assignments and ! replacing 'TRIM(a)' with 'a(1:LEN_TRIM(a))'. It can be deselected ! by specifying '-fno-frontend-optimize'. ! *Note Options for Code Generation Conventions: (gcc)Code Gen Options, ! for information on more options offered by the GBE shared by 'gfortran', ! 'gcc', and other GNU compilers.  File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran ! 2.10 Environment variables affecting 'gfortran' =============================================== ! The 'gfortran' compiler currently does not make use of any environment variables to control its operation above and beyond those that affect ! the operation of 'gcc'. *Note Environment Variables Affecting GCC: (gcc)Environment Variables, for information on environment variables. --- 1500,1648 ---- The default value for N is 32768. ! `-fstack-arrays' Adding this option will make the Fortran compiler put all local arrays, even those of unknown size onto stack memory. If your program uses very large local arrays it is possible that you will have to extend your runtime limits for stack memory on some ! operating systems. This flag is enabled by default at optimization ! level `-Ofast'. ! `-fpack-derived' This option tells GNU Fortran to pack derived type members as closely as possible. Code compiled with this option is likely to be incompatible with code compiled without this option, and may execute slower. ! `-frepack-arrays' In some circumstances GNU Fortran may pass assumed shape array sections via a descriptor describing a noncontiguous area of memory. This option adds code to the function prologue to repack the data into a contiguous block at runtime. ! This should result in faster accesses to the array. However it ! can introduce significant overhead to the function call, ! especially when the passed data is noncontiguous. ! `-fshort-enums' This option is provided for interoperability with C code that was ! compiled with the `-fshort-enums' option. It will make GNU ! Fortran choose the smallest `INTEGER' kind a given enumerator set ! will fit in, and give all its enumerators this kind. ! `-fexternal-blas' ! This option will make `gfortran' generate calls to BLAS functions ! for some matrix operations like `MATMUL', instead of using our own algorithms, if the size of the matrices involved is larger than a ! given limit (see `-fblas-matmul-limit'). This may be profitable ! if an optimized vendor BLAS library is available. The BLAS ! library will have to be specified at link time. ! `-fblas-matmul-limit=N' ! Only significant when `-fexternal-blas' is in effect. Matrix multiplication of matrices with size larger than (or equal to) N will be performed by calls to BLAS functions, while others will be ! handled by `gfortran' internal algorithms. If the matrices involved are not square, the size comparison is performed using the geometric mean of the dimensions of the argument and result matrices. The default value for N is 30. ! `-frecursive' Allow indirect recursion by forcing all local arrays to be ! allocated on the stack. This flag cannot be used together with ! `-fmax-stack-var-size=' or `-fno-automatic'. ! `-finit-local-zero' ! `-finit-integer=N' ! `-finit-real=' ! `-finit-logical=' ! `-finit-character=N' ! The `-finit-local-zero' option instructs the compiler to ! initialize local `INTEGER', `REAL', and `COMPLEX' variables to ! zero, `LOGICAL' variables to false, and `CHARACTER' variables to a ! string of null bytes. Finer-grained initialization options are ! provided by the `-finit-integer=N', ! `-finit-real=' (which also initializes the ! real and imaginary parts of local `COMPLEX' variables), ! `-finit-logical=', and `-finit-character=N' (where N ! is an ASCII character value) options. These options do not ! initialize * allocatable arrays + * components of derived type variables ! ! * variables that appear in an `EQUIVALENCE' statement. (These limitations may be removed in future releases). ! Note that the `-finit-real=nan' option initializes `REAL' and ! `COMPLEX' variables with a quiet NaN. For a signalling NaN use ! `-finit-real=snan'; note, however, that compile-time optimizations may convert them into quiet NaN and that trapping needs to be ! enabled (e.g. via `-ffpe-trap'). ! Finally, note that enabling any of the `-finit-*' options will ! silence warnings that would have been emitted by `-Wuninitialized' for the affected local variables. ! `-falign-commons' ! By default, `gfortran' enforces proper alignment of all variables ! in a `COMMON' block by padding them as needed. On certain platforms this is mandatory, on others it increases performance. ! If a `COMMON' block is not declared with consistent data types everywhere, this padding can cause trouble, and ! `-fno-align-commons' can be used to disable automatic alignment. The same form of this option should be used for all files that ! share a `COMMON' block. To avoid potential alignment issues in ! `COMMON' blocks, it is recommended to order objects from largest ! to smallest. ! `-fno-protect-parens' By default the parentheses in expression are honored for all optimization levels such that the compiler does not do any ! re-association. Using `-fno-protect-parens' allows the compiler to ! reorder `REAL' and `COMPLEX' expressions to produce faster code. ! Note that for the re-association optimization `-fno-signed-zeros' ! and `-fno-trapping-math' need to be in effect. The parentheses ! protection is enabled by default, unless `-Ofast' is given. ! `-frealloc-lhs' An allocatable left-hand side of an intrinsic assignment is automatically (re)allocated if it is either unallocated or has a ! different shape. The option is enabled by default except when ! `-std=f95' is given. See also `-Wrealloc-lhs'. ! `-faggressive-function-elimination' Functions with identical argument lists are eliminated within ! statements, regardless of whether these functions are marked ! `PURE' or not. For example, in a = f(b,c) + f(b,c) ! there will only be a single call to `f'. This option only works ! if `-ffrontend-optimize' is in effect. ! `-ffrontend-optimize' This option performs front-end optimization, based on manipulating ! parts the Fortran parse tree. Enabled by default by any `-O' option. Optimizations enabled by this option include elimination of identical function calls within expressions, removing ! unnecessary calls to `TRIM' in comparisons and assignments and ! replacing `TRIM(a)' with `a(1:LEN_TRIM(a))'. It can be deselected ! by specifying `-fno-frontend-optimize'. ! *Note Options for Code Generation Conventions: (gcc)Code Gen ! Options, for information on more options offered by the GBE shared by ! `gfortran', `gcc', and other GNU compilers.  File: gfortran.info, Node: Environment Variables, Prev: Code Gen Options, Up: Invoking GNU Fortran ! 2.10 Environment variables affecting `gfortran' =============================================== ! The `gfortran' compiler currently does not make use of any environment variables to control its operation above and beyond those that affect ! the operation of `gcc'. *Note Environment Variables Affecting GCC: (gcc)Environment Variables, for information on environment variables. *************** behavior of programs compiled with GNU F *** 1645,1654 ****  File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top ! 3 Runtime: Influencing runtime behavior with environment variables ! ****************************************************************** ! The behavior of the 'gfortran' can be influenced by environment variables. Malformed environment variables are silently ignored. --- 1653,1662 ----  File: gfortran.info, Node: Runtime, Next: Fortran 2003 and 2008 status, Prev: Invoking GNU Fortran, Up: Top ! 3 Runtime: Influencing runtime behavior with environment variables ! ******************************************************************* ! The behavior of the `gfortran' can be influenced by environment variables. Malformed environment variables are silently ignored. *************** variables. *** 1671,1696 ****  File: gfortran.info, Node: TMPDIR, Next: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.1 'TMPDIR'--Directory for scratch files ========================================= ! When opening a file with 'STATUS='SCRATCH'', GNU Fortran tries to create ! the file in one of the potential directories by testing each directory ! in the order below. ! 1. The environment variable 'TMPDIR', if it exists. ! 2. On the MinGW target, the directory returned by the 'GetTempPath' ! function. Alternatively, on the Cygwin target, the 'TMP' and ! 'TEMP' environment variables, if they exist, in that order. ! 3. The 'P_tmpdir' macro if it is defined, otherwise the directory ! '/tmp'.  File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Prev: TMPDIR, Up: Runtime ! 3.2 'GFORTRAN_STDIN_UNIT'--Unit number for standard input ========================================================= This environment variable can be used to select the unit number --- 1679,1704 ----  File: gfortran.info, Node: TMPDIR, Next: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.1 `TMPDIR'--Directory for scratch files ========================================= ! When opening a file with `STATUS='SCRATCH'', GNU Fortran tries to ! create the file in one of the potential directories by testing each ! directory in the order below. ! 1. The environment variable `TMPDIR', if it exists. ! 2. On the MinGW target, the directory returned by the `GetTempPath' ! function. Alternatively, on the Cygwin target, the `TMP' and ! `TEMP' environment variables, if they exist, in that order. ! 3. The `P_tmpdir' macro if it is defined, otherwise the directory ! `/tmp'.  File: gfortran.info, Node: GFORTRAN_STDIN_UNIT, Next: GFORTRAN_STDOUT_UNIT, Prev: TMPDIR, Up: Runtime ! 3.2 `GFORTRAN_STDIN_UNIT'--Unit number for standard input ========================================================= This environment variable can be used to select the unit number *************** default value is 5. *** 1700,1706 ****  File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.3 'GFORTRAN_STDOUT_UNIT'--Unit number for standard output =========================================================== This environment variable can be used to select the unit number --- 1708,1714 ----  File: gfortran.info, Node: GFORTRAN_STDOUT_UNIT, Next: GFORTRAN_STDERR_UNIT, Prev: GFORTRAN_STDIN_UNIT, Up: Runtime ! 3.3 `GFORTRAN_STDOUT_UNIT'--Unit number for standard output =========================================================== This environment variable can be used to select the unit number *************** default value is 6. *** 1710,1716 ****  File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime ! 3.4 'GFORTRAN_STDERR_UNIT'--Unit number for standard error ========================================================== This environment variable can be used to select the unit number --- 1718,1724 ----  File: gfortran.info, Node: GFORTRAN_STDERR_UNIT, Next: GFORTRAN_UNBUFFERED_ALL, Prev: GFORTRAN_STDOUT_UNIT, Up: Runtime ! 3.4 `GFORTRAN_STDERR_UNIT'--Unit number for standard error ========================================================== This environment variable can be used to select the unit number *************** default value is 0. *** 1720,1782 ****  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime ! 3.5 'GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units ============================================================= This environment variable controls whether all I/O is unbuffered. If ! the first letter is 'y', 'Y' or '1', all I/O is unbuffered. This will slow down small sequential reads and writes. If the first letter is ! 'n', 'N' or '0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime ! 3.6 'GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units =============================================================================== ! The environment variable named 'GFORTRAN_UNBUFFERED_PRECONNECTED' controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is ! unbuffered. If the first letter is 'y', 'Y' or '1', I/O is unbuffered. This will slow down small sequential reads and writes. If the first ! letter is 'n', 'N' or '0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime ! 3.7 'GFORTRAN_SHOW_LOCUS'--Show location for runtime errors =========================================================== ! If the first letter is 'y', 'Y' or '1', filename and line numbers for ! runtime errors are printed. If the first letter is 'n', 'N' or '0', do not print filename and line numbers for runtime errors. The default is to print the location.  File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime ! 3.8 'GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted ============================================================= ! If the first letter is 'y', 'Y' or '1', a plus sign is printed where ! permitted by the Fortran standard. If the first letter is 'n', 'N' or ! '0', a plus sign is not printed in most cases. Default is not to print plus signs.  File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime ! 3.9 'GFORTRAN_DEFAULT_RECL'--Default record length for new files ================================================================ ! This environment variable specifies the default record length, in bytes, ! for files which are opened without a 'RECL' tag in the 'OPEN' statement. ! This must be a positive integer. The default value is 1073741824 bytes ! (1 GB).  File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime ! 3.10 'GFORTRAN_LIST_SEPARATOR'--Separator for list output ========================================================= This environment variable specifies the separator when writing --- 1728,1790 ----  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_ALL, Next: GFORTRAN_UNBUFFERED_PRECONNECTED, Prev: GFORTRAN_STDERR_UNIT, Up: Runtime ! 3.5 `GFORTRAN_UNBUFFERED_ALL'--Do not buffer I/O on all units ============================================================= This environment variable controls whether all I/O is unbuffered. If ! the first letter is `y', `Y' or `1', all I/O is unbuffered. This will slow down small sequential reads and writes. If the first letter is ! `n', `N' or `0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_UNBUFFERED_PRECONNECTED, Next: GFORTRAN_SHOW_LOCUS, Prev: GFORTRAN_UNBUFFERED_ALL, Up: Runtime ! 3.6 `GFORTRAN_UNBUFFERED_PRECONNECTED'--Do not buffer I/O on preconnected units =============================================================================== ! The environment variable named `GFORTRAN_UNBUFFERED_PRECONNECTED' controls whether I/O on a preconnected unit (i.e. STDOUT or STDERR) is ! unbuffered. If the first letter is `y', `Y' or `1', I/O is unbuffered. This will slow down small sequential reads and writes. If the first ! letter is `n', `N' or `0', I/O is buffered. This is the default.  File: gfortran.info, Node: GFORTRAN_SHOW_LOCUS, Next: GFORTRAN_OPTIONAL_PLUS, Prev: GFORTRAN_UNBUFFERED_PRECONNECTED, Up: Runtime ! 3.7 `GFORTRAN_SHOW_LOCUS'--Show location for runtime errors =========================================================== ! If the first letter is `y', `Y' or `1', filename and line numbers for ! runtime errors are printed. If the first letter is `n', `N' or `0', do not print filename and line numbers for runtime errors. The default is to print the location.  File: gfortran.info, Node: GFORTRAN_OPTIONAL_PLUS, Next: GFORTRAN_DEFAULT_RECL, Prev: GFORTRAN_SHOW_LOCUS, Up: Runtime ! 3.8 `GFORTRAN_OPTIONAL_PLUS'--Print leading + where permitted ============================================================= ! If the first letter is `y', `Y' or `1', a plus sign is printed where ! permitted by the Fortran standard. If the first letter is `n', `N' or ! `0', a plus sign is not printed in most cases. Default is not to print plus signs.  File: gfortran.info, Node: GFORTRAN_DEFAULT_RECL, Next: GFORTRAN_LIST_SEPARATOR, Prev: GFORTRAN_OPTIONAL_PLUS, Up: Runtime ! 3.9 `GFORTRAN_DEFAULT_RECL'--Default record length for new files ================================================================ ! This environment variable specifies the default record length, in ! bytes, for files which are opened without a `RECL' tag in the `OPEN' ! statement. This must be a positive integer. The default value is ! 1073741824 bytes (1 GB).  File: gfortran.info, Node: GFORTRAN_LIST_SEPARATOR, Next: GFORTRAN_CONVERT_UNIT, Prev: GFORTRAN_DEFAULT_RECL, Up: Runtime ! 3.10 `GFORTRAN_LIST_SEPARATOR'--Separator for list output ========================================================= This environment variable specifies the separator when writing *************** list-directed output. It may contain an *** 1784,1833 **** one comma. If you specify this on the command line, be sure to quote spaces, as in $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out ! when 'a.out' is the compiled Fortran program that you want to run. Default is a single space.  File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime ! 3.11 'GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O ================================================================ ! By setting the 'GFORTRAN_CONVERT_UNIT' variable, it is possible to ! change the representation of data for unformatted files. The syntax for ! the 'GFORTRAN_CONVERT_UNIT' variable is: GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ; mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ; exception: mode ':' unit_list | unit_list ; unit_list: unit_spec | unit_list unit_spec ; unit_spec: INTEGER | INTEGER '-' INTEGER ; ! The variable consists of an optional default mode, followed by a list ! of optional exceptions, which are separated by semicolons from the preceding default and each other. Each exception consists of a format ! and a comma-separated list of units. Valid values for the modes are the ! same as for the 'CONVERT' specifier: ! 'NATIVE' Use the native format. This is the default. ! 'SWAP' Swap between little- and big-endian. ! 'LITTLE_ENDIAN' Use the little-endian format for unformatted files. ! 'BIG_ENDIAN' Use the big-endian format for unformatted files. ! A missing mode for an exception is taken to mean 'BIG_ENDIAN'. ! Examples of values for 'GFORTRAN_CONVERT_UNIT' are: ! ''big_endian'' Do all unformatted I/O in big_endian mode. ! ''little_endian;native:10-20,25'' Do all unformatted I/O in little_endian mode, except for units 10 to 20 and 25, which are in native format. ! ''10-20'' Units 10 to 20 are big-endian, the rest is native. Setting the environment variables should be done on the command line ! or via the 'export' command for 'sh'-compatible shells and via 'setenv' ! for 'csh'-compatible shells. ! Example for 'sh': $ gfortran foo.f90 $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out ! Example code for 'csh': % gfortran foo.f90 % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20' % ./a.out --- 1792,1846 ---- one comma. If you specify this on the command line, be sure to quote spaces, as in $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out ! when `a.out' is the compiled Fortran program that you want to run. Default is a single space.  File: gfortran.info, Node: GFORTRAN_CONVERT_UNIT, Next: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_LIST_SEPARATOR, Up: Runtime ! 3.11 `GFORTRAN_CONVERT_UNIT'--Set endianness for unformatted I/O ================================================================ ! By setting the `GFORTRAN_CONVERT_UNIT' variable, it is possible to ! change the representation of data for unformatted files. The syntax ! for the `GFORTRAN_CONVERT_UNIT' variable is: GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ; mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ; exception: mode ':' unit_list | unit_list ; unit_list: unit_spec | unit_list unit_spec ; unit_spec: INTEGER | INTEGER '-' INTEGER ; ! The variable consists of an optional default mode, followed by a ! list of optional exceptions, which are separated by semicolons from the preceding default and each other. Each exception consists of a format ! and a comma-separated list of units. Valid values for the modes are ! the same as for the `CONVERT' specifier: ! `NATIVE' Use the native format. This is the default. ! ! `SWAP' Swap between little- and big-endian. ! ! `LITTLE_ENDIAN' Use the little-endian format for unformatted files. ! ! `BIG_ENDIAN' Use the big-endian format for unformatted files. ! A missing mode for an exception is taken to mean `BIG_ENDIAN'. ! Examples of values for `GFORTRAN_CONVERT_UNIT' are: ! `'big_endian'' Do all unformatted I/O in big_endian mode. ! ! `'little_endian;native:10-20,25'' Do all unformatted I/O in little_endian mode, except for units 10 to 20 and 25, which are in native format. ! ! `'10-20'' Units 10 to 20 are big-endian, the rest is native. Setting the environment variables should be done on the command line ! or via the `export' command for `sh'-compatible shells and via `setenv' ! for `csh'-compatible shells. ! Example for `sh': $ gfortran foo.f90 $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out ! Example code for `csh': % gfortran foo.f90 % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20' % ./a.out *************** for 'csh'-compatible shells. *** 1836,1845 **** carries a significant speed overhead. If speed in this area matters to you, it is best if you use this only for data that needs to be portable. ! *Note CONVERT specifier::, for an alternative way to specify the data ! representation for unformatted files. *Note Runtime Options::, for setting a default data representation for the whole program. The ! 'CONVERT' specifier overrides the '-fconvert' compile options. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open --- 1849,1858 ---- carries a significant speed overhead. If speed in this area matters to you, it is best if you use this only for data that needs to be portable. ! *Note CONVERT specifier::, for an alternative way to specify the ! data representation for unformatted files. *Note Runtime Options::, for setting a default data representation for the whole program. The ! `CONVERT' specifier overrides the `-fconvert' compile options. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open *************** not have the source code of their progra *** 1849,1862 ****  File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime ! 3.12 'GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors ================================================================== ! If the 'GFORTRAN_ERROR_BACKTRACE' variable is set to 'y', 'Y' or '1' (only the first letter is relevant) then a backtrace is printed when a serious run-time error occurs. To disable the backtracing, set the ! variable to 'n', 'N', '0'. Default is to print a backtrace unless the ! '-fno-backtrace' compile option was used.  File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top --- 1862,1875 ----  File: gfortran.info, Node: GFORTRAN_ERROR_BACKTRACE, Prev: GFORTRAN_CONVERT_UNIT, Up: Runtime ! 3.12 `GFORTRAN_ERROR_BACKTRACE'--Show backtrace on run-time errors ================================================================== ! If the `GFORTRAN_ERROR_BACKTRACE' variable is set to `y', `Y' or `1' (only the first letter is relevant) then a backtrace is printed when a serious run-time error occurs. To disable the backtracing, set the ! variable to `n', `N', `0'. Default is to print a backtrace unless the ! `-fno-backtrace' compile option was used.  File: gfortran.info, Node: Fortran 2003 and 2008 status, Next: Compiler Characteristics, Prev: Runtime, Up: Top *************** can be found below. See also the wiki p *** 1881,2008 **** (http://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003. * Procedure pointers including procedure-pointer components with ! 'PASS' attribute. * Procedures which are bound to a derived type (type-bound ! procedures) including 'PASS', 'PROCEDURE' and 'GENERIC', and operators bound to a type. * Abstract interfaces and type extension with the possibility to override type-bound procedures or to have deferred binding. ! * Polymorphic entities ("'CLASS'") for derived types and unlimited ! polymorphism ("'CLASS(*)'") - including 'SAME_TYPE_AS', ! 'EXTENDS_TYPE_OF' and 'SELECT TYPE' for scalars and arrays and finalization. * Generic interface names, which have the same name as derived types, ! are now supported. This allows one to write constructor functions. Note that Fortran does not support static constructor functions. For static variables, only default initialization or structure-constructor initialization are available. ! * The 'ASSOCIATE' construct. * Interoperability with C including enumerations, * In structure constructors the components with default values may be omitted. ! * Extensions to the 'ALLOCATE' statement, allowing for a type-specification with type parameter and for allocation and ! initialization from a 'SOURCE=' expression; 'ALLOCATE' and ! 'DEALLOCATE' optionally return an error message string via ! 'ERRMSG='. * Reallocation on assignment: If an intrinsic assignment is used, an allocatable variable on the left-hand side is automatically allocated (if unallocated) or reallocated (if the shape is ! different). Currently, scalar deferred character length left-hand sides are correctly handled but arrays are not yet fully implemented. * Deferred-length character variables and scalar deferred-length ! character components of derived types are supported. (Note that array-valued compoents are not yet implemented.) ! * Transferring of allocations via 'MOVE_ALLOC'. ! * The 'PRIVATE' and 'PUBLIC' attributes may be given individually to derived-type components. * In pointer assignments, the lower bound may be specified and the remapping of elements is supported. ! * For pointers an 'INTENT' may be specified which affect the association status not the value of the pointer target. ! * Intrinsics 'command_argument_count', 'get_command', ! 'get_command_argument', and 'get_environment_variable'. ! * Support for Unicode characters (ISO 10646) and UTF-8, including the ! 'SELECTED_CHAR_KIND' and 'NEW_LINE' intrinsic functions. * Support for binary, octal and hexadecimal (BOZ) constants in the ! intrinsic functions 'INT', 'REAL', 'CMPLX' and 'DBLE'. * Support for namelist variables with allocatable and pointer attribute and nonconstant length type parameter. ! * Array constructors using square brackets. That is, '[...]' rather ! than '(/.../)'. Type-specification for array constructors like '(/ ! some-type :: ... /)'. * Extensions to the specification and initialization expressions, including the support for intrinsics with real and complex arguments. ! * Support for the asynchronous input/output syntax; however, the data ! transfer is currently always synchronously performed. ! * 'FLUSH' statement. ! * 'IOMSG=' specifier for I/O statements. ! * Support for the declaration of enumeration constants via the 'ENUM' ! and 'ENUMERATOR' statements. Interoperability with 'gcc' is ! guaranteed also for the case where the '-fshort-enums' command line ! option is given. * TR 15581: ! * 'ALLOCATABLE' dummy arguments. ! * 'ALLOCATABLE' function results ! * 'ALLOCATABLE' components of derived types ! * The 'OPEN' statement supports the 'ACCESS='STREAM'' specifier, allowing I/O without any record structure. * Namelist input/output for internal files. * Minor I/O features: Rounding during formatted output, using of a decimal comma instead of a decimal point, setting whether a plus ! sign should appear for positive numbers. On system where 'strtod' honours the rounding mode, the rounding mode is also supported for input. ! * The 'PROTECTED' statement and attribute. ! * The 'VALUE' statement and attribute. ! * The 'VOLATILE' statement and attribute. ! * The 'IMPORT' statement, allowing to import host-associated derived types. ! * The intrinsic modules 'ISO_FORTRAN_ENVIRONMENT' is supported, which ! contains parameters of the I/O units, storage sizes. Additionally, ! procedures for C interoperability are available in the ! 'ISO_C_BINDING' module. ! * 'USE' statement with 'INTRINSIC' and 'NON_INTRINSIC' attribute; ! supported intrinsic modules: 'ISO_FORTRAN_ENV', 'ISO_C_BINDING', ! 'OMP_LIB' and 'OMP_LIB_KINDS'. - * Renaming of operators in the 'USE' statement.  File: gfortran.info, Node: Fortran 2008 status, Next: TS 29113 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status --- 1894,2024 ---- (http://gcc.gnu.org/wiki/Fortran2003) about Fortran 2003. * Procedure pointers including procedure-pointer components with ! `PASS' attribute. * Procedures which are bound to a derived type (type-bound ! procedures) including `PASS', `PROCEDURE' and `GENERIC', and operators bound to a type. * Abstract interfaces and type extension with the possibility to override type-bound procedures or to have deferred binding. ! * Polymorphic entities ("`CLASS'") for derived types and unlimited ! polymorphism ("`CLASS(*)'") - including `SAME_TYPE_AS', ! `EXTENDS_TYPE_OF' and `SELECT TYPE' for scalars and arrays and finalization. * Generic interface names, which have the same name as derived types, ! are now supported. This allows one to write constructor functions. Note that Fortran does not support static constructor functions. For static variables, only default initialization or structure-constructor initialization are available. ! * The `ASSOCIATE' construct. * Interoperability with C including enumerations, * In structure constructors the components with default values may be omitted. ! * Extensions to the `ALLOCATE' statement, allowing for a type-specification with type parameter and for allocation and ! initialization from a `SOURCE=' expression; `ALLOCATE' and ! `DEALLOCATE' optionally return an error message string via ! `ERRMSG='. * Reallocation on assignment: If an intrinsic assignment is used, an allocatable variable on the left-hand side is automatically allocated (if unallocated) or reallocated (if the shape is ! different). Currently, scalar deferred character length left-hand sides are correctly handled but arrays are not yet fully implemented. * Deferred-length character variables and scalar deferred-length ! character components of derived types are supported. (Note that array-valued compoents are not yet implemented.) ! * Transferring of allocations via `MOVE_ALLOC'. ! * The `PRIVATE' and `PUBLIC' attributes may be given individually to derived-type components. * In pointer assignments, the lower bound may be specified and the remapping of elements is supported. ! * For pointers an `INTENT' may be specified which affect the association status not the value of the pointer target. ! * Intrinsics `command_argument_count', `get_command', ! `get_command_argument', and `get_environment_variable'. ! * Support for Unicode characters (ISO 10646) and UTF-8, including ! the `SELECTED_CHAR_KIND' and `NEW_LINE' intrinsic functions. * Support for binary, octal and hexadecimal (BOZ) constants in the ! intrinsic functions `INT', `REAL', `CMPLX' and `DBLE'. * Support for namelist variables with allocatable and pointer attribute and nonconstant length type parameter. ! * Array constructors using square brackets. That is, `[...]' rather ! than `(/.../)'. Type-specification for array constructors like ! `(/ some-type :: ... /)'. * Extensions to the specification and initialization expressions, including the support for intrinsics with real and complex arguments. ! * Support for the asynchronous input/output syntax; however, the ! data transfer is currently always synchronously performed. ! * `FLUSH' statement. ! * `IOMSG=' specifier for I/O statements. ! * Support for the declaration of enumeration constants via the ! `ENUM' and `ENUMERATOR' statements. Interoperability with `gcc' ! is guaranteed also for the case where the `-fshort-enums' command ! line option is given. * TR 15581: ! * `ALLOCATABLE' dummy arguments. ! * `ALLOCATABLE' function results ! ! * `ALLOCATABLE' components of derived types ! ! * The `OPEN' statement supports the `ACCESS='STREAM'' specifier, allowing I/O without any record structure. * Namelist input/output for internal files. * Minor I/O features: Rounding during formatted output, using of a decimal comma instead of a decimal point, setting whether a plus ! sign should appear for positive numbers. On system where `strtod' honours the rounding mode, the rounding mode is also supported for input. ! * The `PROTECTED' statement and attribute. ! * The `VALUE' statement and attribute. ! * The `VOLATILE' statement and attribute. ! * The `IMPORT' statement, allowing to import host-associated derived types. ! * The intrinsic modules `ISO_FORTRAN_ENVIRONMENT' is supported, ! which contains parameters of the I/O units, storage sizes. ! Additionally, procedures for C interoperability are available in ! the `ISO_C_BINDING' module. ! * `USE' statement with `INTRINSIC' and `NON_INTRINSIC' attribute; ! supported intrinsic modules: `ISO_FORTRAN_ENV', `ISO_C_BINDING', ! `OMP_LIB' and `OMP_LIB_KINDS'. ! ! * Renaming of operators in the `USE' statement.  File: gfortran.info, Node: Fortran 2008 status, Next: TS 29113 status, Prev: Fortran 2003 status, Up: Fortran 2003 and 2008 status *************** informally known as Fortran 2008. The o *** 2015,2024 **** from International Organization for Standardization (ISO) or its national member organizations. The the final draft (FDIS) can be downloaded free of charge from ! . Fortran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the International Organization for Standardization and the ! International Electrotechnical Commission (IEC). This group is known as WG5 (http://www.nag.co.uk/sc22wg5/). The GNU Fortran compiler supports several of the new features of --- 2031,2040 ---- from International Organization for Standardization (ISO) or its national member organizations. The the final draft (FDIS) can be downloaded free of charge from ! `http://www.nag.co.uk/sc22wg5/links.html'. Fortran is developed by the Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the International Organization for Standardization and the ! International Electrotechnical Commission (IEC). This group is known as WG5 (http://www.nag.co.uk/sc22wg5/). The GNU Fortran compiler supports several of the new features of *************** Fortran 2008; the wiki (http://gcc.gnu.o *** 2026,2118 **** some information about the current Fortran 2008 implementation status. In particular, the following is implemented. ! * The '-std=f2008' option and support for the file extensions '.f08' ! and '.F08'. ! * The 'OPEN' statement now supports the 'NEWUNIT=' option, which returns a unique file unit, thus preventing inadvertent use of the same unit in different parts of the program. ! * The 'g0' format descriptor and unlimited format items. ! * The mathematical intrinsics 'ASINH', 'ACOSH', 'ATANH', 'ERF', ! 'ERFC', 'GAMMA', 'LOG_GAMMA', 'BESSEL_J0', 'BESSEL_J1', ! 'BESSEL_JN', 'BESSEL_Y0', 'BESSEL_Y1', 'BESSEL_YN', 'HYPOT', ! 'NORM2', and 'ERFC_SCALED'. ! * Using complex arguments with 'TAN', 'SINH', 'COSH', 'TANH', 'ASIN', ! 'ACOS', and 'ATAN' is now possible; 'ATAN'(Y,X) is now an alias for ! 'ATAN2'(Y,X). ! * Support of the 'PARITY' intrinsic functions. ! * The following bit intrinsics: 'LEADZ' and 'TRAILZ' for counting the ! number of leading and trailing zero bits, 'POPCNT' and 'POPPAR' for ! counting the number of one bits and returning the parity; 'BGE', ! 'BGT', 'BLE', and 'BLT' for bitwise comparisons; 'DSHIFTL' and ! 'DSHIFTR' for combined left and right shifts, 'MASKL' and 'MASKR' ! for simple left and right justified masks, 'MERGE_BITS' for a ! bitwise merge using a mask, 'SHIFTA', 'SHIFTL' and 'SHIFTR' for ! shift operations, and the transformational bit intrinsics 'IALL', ! 'IANY' and 'IPARITY'. ! * Support of the 'EXECUTE_COMMAND_LINE' intrinsic subroutine. ! * Support for the 'STORAGE_SIZE' intrinsic inquiry function. ! * The 'INT{8,16,32}' and 'REAL{32,64,128}' kind type parameters and ! the array-valued named constants 'INTEGER_KINDS', 'LOGICAL_KINDS', ! 'REAL_KINDS' and 'CHARACTER_KINDS' of the intrinsic module ! 'ISO_FORTRAN_ENV'. ! * The module procedures 'C_SIZEOF' of the intrinsic module ! 'ISO_C_BINDINGS' and 'COMPILER_VERSION' and 'COMPILER_OPTIONS' of ! 'ISO_FORTRAN_ENV'. ! * Coarray support for serial programs with '-fcoarray=single' flag and experimental support for multiple images with the ! '-fcoarray=lib' flag. ! * The 'DO CONCURRENT' construct is supported. ! * The 'BLOCK' construct is supported. ! * The 'STOP' and the new 'ERROR STOP' statements now support all ! constant expressions. Both show the signals which were signaling at termination. ! * Support for the 'CONTIGUOUS' attribute. ! * Support for 'ALLOCATE' with 'MOLD'. ! * Support for the 'IMPURE' attribute for procedures, which allows for ! 'ELEMENTAL' procedures without the restrictions of 'PURE'. ! * Null pointers (including 'NULL()') and not-allocated variables can be used as actual argument to optional non-pointer, non-allocatable dummy arguments, denoting an absent argument. ! * Non-pointer variables with 'TARGET' attribute can be used as actual ! argument to 'POINTER' dummies with 'INTENT(IN)'. * Pointers including procedure pointers and those in a derived type (pointer components) can now be initialized by a target instead of ! only by 'NULL'. ! * The 'EXIT' statement (with construct-name) can be now be used to ! leave not only the 'DO' but also the 'ASSOCIATE', 'BLOCK', 'IF', ! 'SELECT CASE' and 'SELECT TYPE' constructs. * Internal procedures can now be used as actual argument. ! * Minor features: obsolesce diagnostics for 'ENTRY' with ! '-std=f2008'; a line may start with a semicolon; for internal and ! module procedures 'END' can be used instead of 'END SUBROUTINE' and ! 'END FUNCTION'; 'SELECTED_REAL_KIND' now also takes a 'RADIX' argument; intrinsic types are supported for ! 'TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be ! declared in a single 'PROCEDURE' statement; implied-shape arrays ! are supported for named constants ('PARAMETER').  File: gfortran.info, Node: TS 29113 status, Prev: Fortran 2008 status, Up: Fortran 2003 and 2008 status --- 2042,2134 ---- some information about the current Fortran 2008 implementation status. In particular, the following is implemented. ! * The `-std=f2008' option and support for the file extensions `.f08' ! and `.F08'. ! * The `OPEN' statement now supports the `NEWUNIT=' option, which returns a unique file unit, thus preventing inadvertent use of the same unit in different parts of the program. ! * The `g0' format descriptor and unlimited format items. ! * The mathematical intrinsics `ASINH', `ACOSH', `ATANH', `ERF', ! `ERFC', `GAMMA', `LOG_GAMMA', `BESSEL_J0', `BESSEL_J1', ! `BESSEL_JN', `BESSEL_Y0', `BESSEL_Y1', `BESSEL_YN', `HYPOT', ! `NORM2', and `ERFC_SCALED'. ! * Using complex arguments with `TAN', `SINH', `COSH', `TANH', ! `ASIN', `ACOS', and `ATAN' is now possible; `ATAN'(Y,X) is now an ! alias for `ATAN2'(Y,X). ! * Support of the `PARITY' intrinsic functions. ! * The following bit intrinsics: `LEADZ' and `TRAILZ' for counting ! the number of leading and trailing zero bits, `POPCNT' and ! `POPPAR' for counting the number of one bits and returning the ! parity; `BGE', `BGT', `BLE', and `BLT' for bitwise comparisons; ! `DSHIFTL' and `DSHIFTR' for combined left and right shifts, ! `MASKL' and `MASKR' for simple left and right justified masks, ! `MERGE_BITS' for a bitwise merge using a mask, `SHIFTA', `SHIFTL' ! and `SHIFTR' for shift operations, and the transformational bit ! intrinsics `IALL', `IANY' and `IPARITY'. ! * Support of the `EXECUTE_COMMAND_LINE' intrinsic subroutine. ! * Support for the `STORAGE_SIZE' intrinsic inquiry function. ! * The `INT{8,16,32}' and `REAL{32,64,128}' kind type parameters and ! the array-valued named constants `INTEGER_KINDS', `LOGICAL_KINDS', ! `REAL_KINDS' and `CHARACTER_KINDS' of the intrinsic module ! `ISO_FORTRAN_ENV'. ! * The module procedures `C_SIZEOF' of the intrinsic module ! `ISO_C_BINDINGS' and `COMPILER_VERSION' and `COMPILER_OPTIONS' of ! `ISO_FORTRAN_ENV'. ! * Coarray support for serial programs with `-fcoarray=single' flag and experimental support for multiple images with the ! `-fcoarray=lib' flag. ! * The `DO CONCURRENT' construct is supported. ! * The `BLOCK' construct is supported. ! * The `STOP' and the new `ERROR STOP' statements now support all ! constant expressions. Both show the signals which were signaling at termination. ! * Support for the `CONTIGUOUS' attribute. ! * Support for `ALLOCATE' with `MOLD'. ! * Support for the `IMPURE' attribute for procedures, which allows ! for `ELEMENTAL' procedures without the restrictions of `PURE'. ! * Null pointers (including `NULL()') and not-allocated variables can be used as actual argument to optional non-pointer, non-allocatable dummy arguments, denoting an absent argument. ! * Non-pointer variables with `TARGET' attribute can be used as ! actual argument to `POINTER' dummies with `INTENT(IN)'. * Pointers including procedure pointers and those in a derived type (pointer components) can now be initialized by a target instead of ! only by `NULL'. ! * The `EXIT' statement (with construct-name) can be now be used to ! leave not only the `DO' but also the `ASSOCIATE', `BLOCK', `IF', ! `SELECT CASE' and `SELECT TYPE' constructs. * Internal procedures can now be used as actual argument. ! * Minor features: obsolesce diagnostics for `ENTRY' with ! `-std=f2008'; a line may start with a semicolon; for internal and ! module procedures `END' can be used instead of `END SUBROUTINE' ! and `END FUNCTION'; `SELECTED_REAL_KIND' now also takes a `RADIX' argument; intrinsic types are supported for ! `TYPE'(INTRINSIC-TYPE-SPEC); multiple type-bound procedures can be ! declared in a single `PROCEDURE' statement; implied-shape arrays ! are supported for named constants (`PARAMETER').  File: gfortran.info, Node: TS 29113 status, Prev: Fortran 2008 status, Up: Fortran 2003 and 2008 status *************** following is implemented. *** 2128,2146 **** See also *note Further Interoperability of Fortran with C::. ! * The '-std=f2008ts' option. ! * The 'OPTIONAL' attribute is allowed for dummy arguments of 'BIND(C) ! procedures.' ! * The 'RANK' intrinsic is supported. ! * GNU Fortran's implementation for variables with 'ASYNCHRONOUS' attribute is compatible with TS 29113. ! * Assumed types ('TYPE(*)'. ! * Assumed-rank ('DIMENSION(..)'). However, the array descriptor of the TS is not yet supported.  --- 2144,2162 ---- See also *note Further Interoperability of Fortran with C::. ! * The `-std=f2008ts' option. ! * The `OPTIONAL' attribute is allowed for dummy arguments of ! `BIND(C) procedures.' ! * The `RANK' intrinsic is supported. ! * GNU Fortran's implementation for variables with `ASYNCHRONOUS' attribute is compatible with TS 29113. ! * Assumed types (`TYPE(*)'. ! * Assumed-rank (`DIMENSION(..)'). However, the array descriptor of the TS is not yet supported.  *************** File: gfortran.info, Node: KIND Type Pa *** 2166,2206 **** 5.1 KIND Type Parameters ======================== ! The 'KIND' type parameters supported by GNU Fortran for the primitive data types are: ! 'INTEGER' 1, 2, 4, 8*, 16*, default: 4** ! 'LOGICAL' 1, 2, 4, 8*, 16*, default: 4** ! 'REAL' 4, 8, 10*, 16*, default: 4*** ! 'COMPLEX' 4, 8, 10*, 16*, default: 4*** ! 'DOUBLE PRECISION' 4, 8, 10*, 16*, default: 8*** ! 'CHARACTER' 1, 4, default: 1 * not available on all systems ! ** unless '-fdefault-integer-8' is used ! *** unless '-fdefault-real-8' is used (see *note Fortran Dialect Options::) ! The 'KIND' value matches the storage size in bytes, except for 'COMPLEX' ! where the storage size is twice as much (or both real and imaginary part ! are a real value of the given size). It is recommended to use the *note ! SELECTED_CHAR_KIND::, *note SELECTED_INT_KIND:: and *note ! SELECTED_REAL_KIND:: intrinsics or the 'INT8', 'INT16', 'INT32', ! 'INT64', 'REAL32', 'REAL64', and 'REAL128' parameters of the ! 'ISO_FORTRAN_ENV' module instead of the concrete values. The available ! kind parameters can be found in the constant arrays 'CHARACTER_KINDS', ! 'INTEGER_KINDS', 'LOGICAL_KINDS' and 'REAL_KINDS' in the *note ISO_FORTRAN_ENV:: module. For C interoperability, the kind parameters of the *note ISO_C_BINDING:: module should be used. --- 2182,2223 ---- 5.1 KIND Type Parameters ======================== ! The `KIND' type parameters supported by GNU Fortran for the primitive data types are: ! `INTEGER' 1, 2, 4, 8*, 16*, default: 4** ! `LOGICAL' 1, 2, 4, 8*, 16*, default: 4** ! `REAL' 4, 8, 10*, 16*, default: 4*** ! `COMPLEX' 4, 8, 10*, 16*, default: 4*** ! `DOUBLE PRECISION' 4, 8, 10*, 16*, default: 8*** ! `CHARACTER' 1, 4, default: 1 + * not available on all systems ! ** unless `-fdefault-integer-8' is used ! *** unless `-fdefault-real-8' is used (see *note Fortran Dialect Options::) ! The `KIND' value matches the storage size in bytes, except for ! `COMPLEX' where the storage size is twice as much (or both real and ! imaginary part are a real value of the given size). It is recommended ! to use the *note SELECTED_CHAR_KIND::, *note SELECTED_INT_KIND:: and ! *note SELECTED_REAL_KIND:: intrinsics or the `INT8', `INT16', `INT32', ! `INT64', `REAL32', `REAL64', and `REAL128' parameters of the ! `ISO_FORTRAN_ENV' module instead of the concrete values. The available ! kind parameters can be found in the constant arrays `CHARACTER_KINDS', ! `INTEGER_KINDS', `LOGICAL_KINDS' and `REAL_KINDS' in the *note ISO_FORTRAN_ENV:: module. For C interoperability, the kind parameters of the *note ISO_C_BINDING:: module should be used. *************** File: gfortran.info, Node: Internal rep *** 2210,2223 **** 5.2 Internal representation of LOGICAL variables ================================================ ! The Fortran standard does not specify how variables of 'LOGICAL' type ! are represented, beyond requiring that 'LOGICAL' variables of default ! kind have the same storage size as default 'INTEGER' and 'REAL' variables. The GNU Fortran internal representation is as follows. ! A 'LOGICAL(KIND=N)' variable is represented as an 'INTEGER(KIND=N)' ! variable, however, with only two permissible values: '1' for '.TRUE.' ! and '0' for '.FALSE.'. Any other integer value results in undefined behavior. See also *note Argument passing conventions:: and *note --- 2227,2240 ---- 5.2 Internal representation of LOGICAL variables ================================================ ! The Fortran standard does not specify how variables of `LOGICAL' type ! are represented, beyond requiring that `LOGICAL' variables of default ! kind have the same storage size as default `INTEGER' and `REAL' variables. The GNU Fortran internal representation is as follows. ! A `LOGICAL(KIND=N)' variable is represented as an `INTEGER(KIND=N)' ! variable, however, with only two permissible values: `1' for `.TRUE.' ! and `0' for `.FALSE.'. Any other integer value results in undefined behavior. See also *note Argument passing conventions:: and *note *************** File: gfortran.info, Node: Thread-safet *** 2229,2251 **** 5.3 Thread-safety of the runtime library ======================================== ! GNU Fortran can be used in programs with multiple threads, e.g. by using ! OpenMP, by calling OS thread handling functions via the 'ISO_C_BINDING' ! facility, or by GNU Fortran compiled library code being called from a ! multi-threaded program. ! The GNU Fortran runtime library, ('libgfortran'), supports being called concurrently from multiple threads with the following exceptions. ! During library initialization, the C 'getenv' function is used, which ! need not be thread-safe. Similarly, the 'getenv' function is used to ! implement the 'GET_ENVIRONMENT_VARIABLE' and 'GETENV' intrinsics. It is ! the responsibility of the user to ensure that the environment is not ! being updated concurrently when any of these actions are taking place. ! The 'EXECUTE_COMMAND_LINE' and 'SYSTEM' intrinsics are implemented ! with the 'system' function, which need not be thread-safe. It is the ! responsibility of the user to ensure that 'system' is not called concurrently. Finally, for platforms not supporting thread-safe POSIX functions, --- 2246,2269 ---- 5.3 Thread-safety of the runtime library ======================================== ! GNU Fortran can be used in programs with multiple threads, e.g. by ! using OpenMP, by calling OS thread handling functions via the ! `ISO_C_BINDING' facility, or by GNU Fortran compiled library code being ! called from a multi-threaded program. ! The GNU Fortran runtime library, (`libgfortran'), supports being called concurrently from multiple threads with the following exceptions. ! During library initialization, the C `getenv' function is used, ! which need not be thread-safe. Similarly, the `getenv' function is ! used to implement the `GET_ENVIRONMENT_VARIABLE' and `GETENV' ! intrinsics. It is the responsibility of the user to ensure that the ! environment is not being updated concurrently when any of these actions ! are taking place. ! The `EXECUTE_COMMAND_LINE' and `SYSTEM' intrinsics are implemented ! with the `system' function, which need not be thread-safe. It is the ! responsibility of the user to ensure that `system' is not called concurrently. Finally, for platforms not supporting thread-safe POSIX functions, *************** This section contains a brief overview o *** 2262,2273 **** and durability issues when doing I/O. With respect to durability, GNU Fortran makes no effort to ensure ! that data is committed to stable storage. If this is required, the GNU ! Fortran programmer can use the intrinsic 'FNUM' to retrieve the low ! level file descriptor corresponding to an open Fortran unit. Then, ! using e.g. the 'ISO_C_BINDING' feature, one can call the underlying ! system call to flush dirty data to stable storage, such as 'fsync' on ! POSIX, '_commit' on MingW, or 'fcntl(fd, F_FULLSYNC, 0)' on Mac OS X. The following example shows how to call fsync: ! Declare the interface for POSIX fsync function --- 2280,2291 ---- and durability issues when doing I/O. With respect to durability, GNU Fortran makes no effort to ensure ! that data is committed to stable storage. If this is required, the GNU ! Fortran programmer can use the intrinsic `FNUM' to retrieve the low ! level file descriptor corresponding to an open Fortran unit. Then, ! using e.g. the `ISO_C_BINDING' feature, one can call the underlying ! system call to flush dirty data to stable storage, such as `fsync' on ! POSIX, `_commit' on MingW, or `fcntl(fd, F_FULLSYNC, 0)' on Mac OS X. The following example shows how to call fsync: ! Declare the interface for POSIX fsync function *************** The following example shows how to call *** 2297,2325 **** if (ret /= 0) stop "Error calling FSYNC" With respect to consistency, for regular files GNU Fortran uses ! buffered I/O in order to improve performance. This buffer is flushed ! automatically when full and in some other situations, e.g. when closing ! a unit. It can also be explicitly flushed with the 'FLUSH' statement. ! Also, the buffering can be turned off with the 'GFORTRAN_UNBUFFERED_ALL' ! and 'GFORTRAN_UNBUFFERED_PRECONNECTED' environment variables. Special ! files, such as terminals and pipes, are always unbuffered. Sometimes, ! however, further things may need to be done in order to allow other ! processes to see data that GNU Fortran has written, as follows. The Windows platform supports a relaxed metadata consistency model, ! where file metadata is written to the directory lazily. This means ! that, for instance, the 'dir' command can show a stale size for a file. One can force a directory metadata update by closing the unit, or by ! calling '_commit' on the file descriptor. Note, though, that '_commit' will force all dirty data to stable storage, which is often a very slow operation. The Network File System (NFS) implements a relaxed consistency model ! called open-to-close consistency. Closing a file forces dirty data and metadata to be flushed to the server, and opening a file forces the client to contact the server in order to revalidate cached data. ! 'fsync' will also force a flush of dirty data and metadata to the ! server. Similar to 'open' and 'close', acquiring and releasing 'fcntl' file locks, if the server supports them, will also force cache validation and flushing dirty data and metadata. --- 2315,2344 ---- if (ret /= 0) stop "Error calling FSYNC" With respect to consistency, for regular files GNU Fortran uses ! buffered I/O in order to improve performance. This buffer is flushed ! automatically when full and in some other situations, e.g. when closing ! a unit. It can also be explicitly flushed with the `FLUSH' statement. ! Also, the buffering can be turned off with the ! `GFORTRAN_UNBUFFERED_ALL' and `GFORTRAN_UNBUFFERED_PRECONNECTED' ! environment variables. Special files, such as terminals and pipes, are ! always unbuffered. Sometimes, however, further things may need to be ! done in order to allow other processes to see data that GNU Fortran has ! written, as follows. The Windows platform supports a relaxed metadata consistency model, ! where file metadata is written to the directory lazily. This means ! that, for instance, the `dir' command can show a stale size for a file. One can force a directory metadata update by closing the unit, or by ! calling `_commit' on the file descriptor. Note, though, that `_commit' will force all dirty data to stable storage, which is often a very slow operation. The Network File System (NFS) implements a relaxed consistency model ! called open-to-close consistency. Closing a file forces dirty data and metadata to be flushed to the server, and opening a file forces the client to contact the server in order to revalidate cached data. ! `fsync' will also force a flush of dirty data and metadata to the ! server. Similar to `open' and `close', acquiring and releasing `fcntl' file locks, if the server supports them, will also force cache validation and flushing dirty data and metadata. *************** GNU Fortran implements a number of exten *** 2351,2361 **** This chapter contains information on their syntax and meaning. There are currently two categories of GNU Fortran extensions, those that provide functionality beyond that provided by any standard, and those ! that are supported by GNU Fortran purely for backward compatibility with ! legacy compilers. By default, '-std=gnu' allows the compiler to accept ! both types of extensions, but to warn about the use of the latter. ! Specifying either '-std=f95', '-std=f2003' or '-std=f2008' disables both ! types of extensions, and '-std=legacy' allows both without warning. * Menu: --- 2370,2381 ---- This chapter contains information on their syntax and meaning. There are currently two categories of GNU Fortran extensions, those that provide functionality beyond that provided by any standard, and those ! that are supported by GNU Fortran purely for backward compatibility ! with legacy compilers. By default, `-std=gnu' allows the compiler to ! accept both types of extensions, but to warn about the use of the ! latter. Specifying either `-std=f95', `-std=f2003' or `-std=f2008' ! disables both types of extensions, and `-std=legacy' allows both ! without warning. * Menu: *************** types of extensions, and '-std=legacy' a *** 2366,2372 **** * Commas in FORMAT specifications:: * Missing period in FORMAT specifications:: * I/O item lists:: ! * 'Q' exponent-letter:: * BOZ literal constants:: * Real array indices:: * Unary operators:: --- 2386,2392 ---- * Commas in FORMAT specifications:: * Missing period in FORMAT specifications:: * I/O item lists:: ! * `Q' exponent-letter:: * BOZ literal constants:: * Real array indices:: * Unary operators:: *************** File: gfortran.info, Node: Old-style ki *** 2386,2402 **** GNU Fortran allows old-style kind specifications in declarations. These look like: TYPESPEC*size x,y,z ! where 'TYPESPEC' is a basic type ('INTEGER', 'REAL', etc.), and where ! 'size' is a byte count corresponding to the storage size of a valid kind ! for that type. (For 'COMPLEX' variables, 'size' is the total size of ! the real and imaginary parts.) The statement then declares 'x', 'y' and ! 'z' to be of type 'TYPESPEC' with the appropriate kind. This is ! equivalent to the standard-conforming declaration TYPESPEC(k) x,y,z ! where 'k' is the kind parameter suitable for the intended precision. As ! kind parameters are implementation-dependent, use the 'KIND', ! 'SELECTED_INT_KIND' and 'SELECTED_REAL_KIND' intrinsics to retrieve the ! correct value, for instance 'REAL*8 x' can be replaced by: INTEGER, PARAMETER :: dbl = KIND(1.0d0) REAL(KIND=dbl) :: x --- 2406,2422 ---- GNU Fortran allows old-style kind specifications in declarations. These look like: TYPESPEC*size x,y,z ! where `TYPESPEC' is a basic type (`INTEGER', `REAL', etc.), and ! where `size' is a byte count corresponding to the storage size of a ! valid kind for that type. (For `COMPLEX' variables, `size' is the ! total size of the real and imaginary parts.) The statement then ! declares `x', `y' and `z' to be of type `TYPESPEC' with the appropriate ! kind. This is equivalent to the standard-conforming declaration TYPESPEC(k) x,y,z ! where `k' is the kind parameter suitable for the intended precision. ! As kind parameters are implementation-dependent, use the `KIND', ! `SELECTED_INT_KIND' and `SELECTED_REAL_KIND' intrinsics to retrieve the ! correct value, for instance `REAL*8 x' can be replaced by: INTEGER, PARAMETER :: dbl = KIND(1.0d0) REAL(KIND=dbl) :: x *************** File: gfortran.info, Node: Old-style va *** 2409,2420 **** GNU Fortran allows old-style initialization of variables of the form: INTEGER i/1/,j/2/ REAL x(2,2) /3*0.,1./ ! The syntax for the initializers is as for the 'DATA' statement, but ! unlike in a 'DATA' statement, an initializer only applies to the variable immediately preceding the initialization. In other words, ! something like 'INTEGER I,J/2,3/' is not valid. This style of initialization is only allowed in declarations without double colons ! ('::'); the double colons were introduced in Fortran 90, which also introduced a standard syntax for initializing variables in type declarations. --- 2429,2440 ---- GNU Fortran allows old-style initialization of variables of the form: INTEGER i/1/,j/2/ REAL x(2,2) /3*0.,1./ ! The syntax for the initializers is as for the `DATA' statement, but ! unlike in a `DATA' statement, an initializer only applies to the variable immediately preceding the initialization. In other words, ! something like `INTEGER I,J/2,3/' is not valid. This style of initialization is only allowed in declarations without double colons ! (`::'); the double colons were introduced in Fortran 90, which also introduced a standard syntax for initializing variables in type declarations. *************** are: *** 2429,2435 **** DATA i/1/, j/2/, x/3*0.,1./ Note that variables which are explicitly initialized in declarations ! or in 'DATA' statements automatically acquire the 'SAVE' attribute.  File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran --- 2449,2455 ---- DATA i/1/, j/2/, x/3*0.,1./ Note that variables which are explicitly initialized in declarations ! or in `DATA' statements automatically acquire the `SAVE' attribute.  File: gfortran.info, Node: Extensions to namelist, Next: X format descriptor without count field, Prev: Old-style variable initialization, Up: Extensions implemented in GNU Fortran *************** types. The output from a namelist write *** 2443,2459 **** read. The output has all names in upper case and indentation to column 1 after the namelist name. Two extensions are permitted: ! Old-style use of '$' instead of '&' $MYNML X(:)%Y(2) = 1.0 2.0 3.0 CH(1:4) = "abcd" $END ! It should be noted that the default terminator is '/' rather than ! '&END'. Querying of the namelist when inputting from stdin. After at least ! one space, entering '?' sends to stdout the namelist name and the names of the variables in the namelist: ? --- 2463,2479 ---- read. The output has all names in upper case and indentation to column 1 after the namelist name. Two extensions are permitted: ! Old-style use of `$' instead of `&' $MYNML X(:)%Y(2) = 1.0 2.0 3.0 CH(1:4) = "abcd" $END ! It should be noted that the default terminator is `/' rather than ! `&END'. Querying of the namelist when inputting from stdin. After at least ! one space, entering `?' sends to stdout the namelist name and the names of the variables in the namelist: ? *************** of the variables in the namelist: *** 2463,2469 **** ch &end ! Entering '=?' outputs the namelist to stdout, as if 'WRITE(*,NML = mynml)' had been called: =? --- 2483,2489 ---- ch &end ! Entering `=?' outputs the namelist to stdout, as if `WRITE(*,NML = mynml)' had been called: =? *************** mynml)' had been called: *** 2474,2483 **** CH=abcd, / To aid this dialog, when input is from stdin, errors send their ! messages to stderr and execution continues, even if 'IOSTAT' is set. ! 'PRINT' namelist is permitted. This causes an error if '-std=f95' is ! used. PROGRAM test_print REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/) NAMELIST /mynml/ x --- 2494,2503 ---- CH=abcd, / To aid this dialog, when input is from stdin, errors send their ! messages to stderr and execution continues, even if `IOSTAT' is set. ! `PRINT' namelist is permitted. This causes an error if `-std=f95' ! is used. PROGRAM test_print REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/) NAMELIST /mynml/ x *************** used. *** 2485,2499 **** END PROGRAM test_print Expanded namelist reads are permitted. This causes an error if ! '-std=f95' is used. In the following example, the first element of the array will be given the value 0.00 and the two succeeding elements will be given the values 1.00 and 2.00. &MYNML X(1,1) = 0.00 , 1.00 , 2.00 / ! When writing a namelist, if no 'DELIM=' is specified, by default a ! double quote is used to delimit character strings. If -std=F95, F2003, or F2008, etc, the delim status is set to 'none'. Defaulting to quotes ensures that namelists with character strings can be subsequently read back in accurately. --- 2505,2519 ---- END PROGRAM test_print Expanded namelist reads are permitted. This causes an error if ! `-std=f95' is used. In the following example, the first element of the array will be given the value 0.00 and the two succeeding elements will be given the values 1.00 and 2.00. &MYNML X(1,1) = 0.00 , 1.00 , 2.00 / ! When writing a namelist, if no `DELIM=' is specified, by default a ! double quote is used to delimit character strings. If -std=F95, F2003, or F2008, etc, the delim status is set to 'none'. Defaulting to quotes ensures that namelists with character strings can be subsequently read back in accurately. *************** back in accurately. *** 2501,2512 ****  File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran ! 6.1.4 'X' format descriptor without count field ----------------------------------------------- ! To support legacy codes, GNU Fortran permits the count field of the 'X' ! edit descriptor in 'FORMAT' statements to be omitted. When omitted, the ! count is implicitly assumed to be one. PRINT 10, 2, 3 10 FORMAT (I1, X, I1) --- 2521,2532 ----  File: gfortran.info, Node: X format descriptor without count field, Next: Commas in FORMAT specifications, Prev: Extensions to namelist, Up: Extensions implemented in GNU Fortran ! 6.1.4 `X' format descriptor without count field ----------------------------------------------- ! To support legacy codes, GNU Fortran permits the count field of the `X' ! edit descriptor in `FORMAT' statements to be omitted. When omitted, ! the count is implicitly assumed to be one. PRINT 10, 2, 3 10 FORMAT (I1, X, I1) *************** count is implicitly assumed to be one. *** 2514,2525 ****  File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran ! 6.1.5 Commas in 'FORMAT' specifications --------------------------------------- To support legacy codes, GNU Fortran allows the comma separator to be omitted immediately before and after character string edit descriptors ! in 'FORMAT' statements. PRINT 10, 2, 3 10 FORMAT ('FOO='I1' BAR='I2) --- 2534,2545 ----  File: gfortran.info, Node: Commas in FORMAT specifications, Next: Missing period in FORMAT specifications, Prev: X format descriptor without count field, Up: Extensions implemented in GNU Fortran ! 6.1.5 Commas in `FORMAT' specifications --------------------------------------- To support legacy codes, GNU Fortran allows the comma separator to be omitted immediately before and after character string edit descriptors ! in `FORMAT' statements. PRINT 10, 2, 3 10 FORMAT ('FOO='I1' BAR='I2) *************** in 'FORMAT' statements. *** 2527,2537 ****  File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran ! 6.1.6 Missing period in 'FORMAT' specifications ----------------------------------------------- To support legacy codes, GNU Fortran allows missing periods in format ! specifications if and only if '-std=legacy' is given on the command line. This is considered non-conforming code and is discouraged. REAL :: value --- 2547,2557 ----  File: gfortran.info, Node: Missing period in FORMAT specifications, Next: I/O item lists, Prev: Commas in FORMAT specifications, Up: Extensions implemented in GNU Fortran ! 6.1.6 Missing period in `FORMAT' specifications ----------------------------------------------- To support legacy codes, GNU Fortran allows missing periods in format ! specifications if and only if `-std=legacy' is given on the command line. This is considered non-conforming code and is discouraged. REAL :: value *************** line. This is considered non-conforming *** 2539,2611 **** 10 FORMAT ('F4')  ! File: gfortran.info, Node: I/O item lists, Next: 'Q' exponent-letter, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran 6.1.7 I/O item lists -------------------- To support legacy codes, GNU Fortran allows the input item list of the ! 'READ' statement, and the output item lists of the 'WRITE' and 'PRINT' statements, to start with a comma.  ! File: gfortran.info, Node: 'Q' exponent-letter, Next: BOZ literal constants, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran ! 6.1.8 'Q' exponent-letter ------------------------- GNU Fortran accepts real literal constants with an exponent-letter of ! 'Q', for example, '1.23Q45'. The constant is interpreted as a ! 'REAL(16)' entity on targets that support this type. If the target does ! not support 'REAL(16)' but has a 'REAL(10)' type, then the ! real-literal-constant will be interpreted as a 'REAL(10)' entity. In ! the absence of 'REAL(16)' and 'REAL(10)', an error will occur.  ! File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: 'Q' exponent-letter, Up: Extensions implemented in GNU Fortran 6.1.9 BOZ literal constants --------------------------- ! Besides decimal constants, Fortran also supports binary ('b'), octal ! ('o') and hexadecimal ('z') integer constants. The syntax is: 'prefix ! quote digits quote', were the prefix is either 'b', 'o' or 'z', quote is ! either ''' or '"' and the digits are for binary '0' or '1', for octal ! between '0' and '7', and for hexadecimal between '0' and 'F'. (Example: ! 'b'01011101''.) Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA statements. Since Fortran 2003 BOZ literals ! are also allowed as argument of 'REAL', 'DBLE', 'INT' and 'CMPLX'; the result is the same as if the integer BOZ literal had been converted by ! 'TRANSFER' to, respectively, 'real', 'double precision', 'integer' or ! 'complex'. As GNU Fortran extension the intrinsic procedures 'FLOAT', ! 'DFLOAT', 'COMPLEX' and 'DCMPLX' are treated alike. ! As an extension, GNU Fortran allows hexadecimal BOZ literal constants ! to be specified using the 'X' prefix, in addition to the standard 'Z' ! prefix. The BOZ literal can also be specified by adding a suffix to the ! string, for example, 'Z'ABC'' and ''ABC'Z' are equivalent. Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct assignments, where the right-hand side only contains a BOZ literal constant, and for old-style ! initializers of the form 'integer i /o'0173'/', the constant is ! transferred as if 'TRANSFER' had been used; for 'COMPLEX' numbers, only ! the real part is initialized unless 'CMPLX' is used. In all other ! cases, the BOZ literal constant is converted to an 'INTEGER' value with the largest decimal representation. This value is then converted numerically to the type and kind of the variable in question. (For ! instance, 'real :: r = b'0000001' + 1' initializes 'r' with '2.0'.) As different compilers implement the extension differently, one should be careful when doing bitwise initialization of non-integer variables. ! Note that initializing an 'INTEGER' variable with a statement such as ! 'DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather than ! the desired result of -1 when 'i' is a 32-bit integer on a system that ! supports 64-bit integers. The '-fno-range-check' option can be used as ! a workaround for legacy code that initializes integers in this manner.  File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran --- 2559,2632 ---- 10 FORMAT ('F4')  ! File: gfortran.info, Node: I/O item lists, Next: `Q' exponent-letter, Prev: Missing period in FORMAT specifications, Up: Extensions implemented in GNU Fortran 6.1.7 I/O item lists -------------------- To support legacy codes, GNU Fortran allows the input item list of the ! `READ' statement, and the output item lists of the `WRITE' and `PRINT' statements, to start with a comma.  ! File: gfortran.info, Node: `Q' exponent-letter, Next: BOZ literal constants, Prev: I/O item lists, Up: Extensions implemented in GNU Fortran ! 6.1.8 `Q' exponent-letter ------------------------- GNU Fortran accepts real literal constants with an exponent-letter of ! `Q', for example, `1.23Q45'. The constant is interpreted as a ! `REAL(16)' entity on targets that support this type. If the target ! does not support `REAL(16)' but has a `REAL(10)' type, then the ! real-literal-constant will be interpreted as a `REAL(10)' entity. In ! the absence of `REAL(16)' and `REAL(10)', an error will occur.  ! File: gfortran.info, Node: BOZ literal constants, Next: Real array indices, Prev: `Q' exponent-letter, Up: Extensions implemented in GNU Fortran 6.1.9 BOZ literal constants --------------------------- ! Besides decimal constants, Fortran also supports binary (`b'), octal ! (`o') and hexadecimal (`z') integer constants. The syntax is: `prefix ! quote digits quote', were the prefix is either `b', `o' or `z', quote ! is either `'' or `"' and the digits are for binary `0' or `1', for ! octal between `0' and `7', and for hexadecimal between `0' and `F'. ! (Example: `b'01011101''.) Up to Fortran 95, BOZ literals were only allowed to initialize integer variables in DATA statements. Since Fortran 2003 BOZ literals ! are also allowed as argument of `REAL', `DBLE', `INT' and `CMPLX'; the result is the same as if the integer BOZ literal had been converted by ! `TRANSFER' to, respectively, `real', `double precision', `integer' or ! `complex'. As GNU Fortran extension the intrinsic procedures `FLOAT', ! `DFLOAT', `COMPLEX' and `DCMPLX' are treated alike. ! As an extension, GNU Fortran allows hexadecimal BOZ literal ! constants to be specified using the `X' prefix, in addition to the ! standard `Z' prefix. The BOZ literal can also be specified by adding a ! suffix to the string, for example, `Z'ABC'' and `'ABC'Z' are equivalent. Furthermore, GNU Fortran allows using BOZ literal constants outside DATA statements and the four intrinsic functions allowed by Fortran 2003. In DATA statements, in direct assignments, where the right-hand side only contains a BOZ literal constant, and for old-style ! initializers of the form `integer i /o'0173'/', the constant is ! transferred as if `TRANSFER' had been used; for `COMPLEX' numbers, only ! the real part is initialized unless `CMPLX' is used. In all other ! cases, the BOZ literal constant is converted to an `INTEGER' value with the largest decimal representation. This value is then converted numerically to the type and kind of the variable in question. (For ! instance, `real :: r = b'0000001' + 1' initializes `r' with `2.0'.) As different compilers implement the extension differently, one should be careful when doing bitwise initialization of non-integer variables. ! Note that initializing an `INTEGER' variable with a statement such ! as `DATA i/Z'FFFFFFFF'/' will give an integer overflow error rather ! than the desired result of -1 when `i' is a 32-bit integer on a system ! that supports 64-bit integers. The `-fno-range-check' option can be ! used as a workaround for legacy code that initializes integers in this ! manner.  File: gfortran.info, Node: Real array indices, Next: Unary operators, Prev: BOZ literal constants, Up: Extensions implemented in GNU Fortran *************** File: gfortran.info, Node: Real array i *** 2613,2619 **** 6.1.10 Real array indices ------------------------- ! As an extension, GNU Fortran allows the use of 'REAL' expressions or variables as array indices.  --- 2634,2640 ---- 6.1.10 Real array indices ------------------------- ! As an extension, GNU Fortran allows the use of `REAL' expressions or variables as array indices.  *************** the need for parenthesis. *** 2631,2654 ****  File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran ! 6.1.12 Implicitly convert 'LOGICAL' and 'INTEGER' values -------------------------------------------------------- As an extension for backwards compatibility with other compilers, GNU ! Fortran allows the implicit conversion of 'LOGICAL' values to 'INTEGER' ! values and vice versa. When converting from a 'LOGICAL' to an ! 'INTEGER', '.FALSE.' is interpreted as zero, and '.TRUE.' is interpreted ! as one. When converting from 'INTEGER' to 'LOGICAL', the value zero is ! interpreted as '.FALSE.' and any nonzero value is interpreted as ! '.TRUE.'. LOGICAL :: l l = 1 INTEGER :: i i = .TRUE. ! However, there is no implicit conversion of 'INTEGER' values in ! 'if'-statements, nor of 'LOGICAL' or 'INTEGER' values in I/O operations.  File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran --- 2652,2676 ----  File: gfortran.info, Node: Implicitly convert LOGICAL and INTEGER values, Next: Hollerith constants support, Prev: Unary operators, Up: Extensions implemented in GNU Fortran ! 6.1.12 Implicitly convert `LOGICAL' and `INTEGER' values -------------------------------------------------------- As an extension for backwards compatibility with other compilers, GNU ! Fortran allows the implicit conversion of `LOGICAL' values to `INTEGER' ! values and vice versa. When converting from a `LOGICAL' to an ! `INTEGER', `.FALSE.' is interpreted as zero, and `.TRUE.' is ! interpreted as one. When converting from `INTEGER' to `LOGICAL', the ! value zero is interpreted as `.FALSE.' and any nonzero value is ! interpreted as `.TRUE.'. LOGICAL :: l l = 1 + INTEGER :: i i = .TRUE. ! However, there is no implicit conversion of `INTEGER' values in ! `if'-statements, nor of `LOGICAL' or `INTEGER' values in I/O operations.  File: gfortran.info, Node: Hollerith constants support, Next: Cray pointers, Prev: Implicitly convert LOGICAL and INTEGER values, Up: Extensions implemented in GNU Fortran *************** File: gfortran.info, Node: Hollerith co *** 2657,2668 **** ---------------------------------- GNU Fortran supports Hollerith constants in assignments, function ! arguments, and 'DATA' and 'ASSIGN' statements. A Hollerith constant is written as a string of characters preceded by an integer constant ! indicating the character count, and the letter 'H' or 'h', and stored in ! bytewise fashion in a numeric ('INTEGER', 'REAL', or 'complex') or ! 'LOGICAL' variable. The constant will be padded or truncated to fit the ! size of the variable in which it is stored. Examples of valid uses of Hollerith constants: complex*16 x(2) --- 2679,2690 ---- ---------------------------------- GNU Fortran supports Hollerith constants in assignments, function ! arguments, and `DATA' and `ASSIGN' statements. A Hollerith constant is written as a string of characters preceded by an integer constant ! indicating the character count, and the letter `H' or `h', and stored ! in bytewise fashion in a numeric (`INTEGER', `REAL', or `complex') or ! `LOGICAL' variable. The constant will be padded or truncated to fit ! the size of the variable in which it is stored. Examples of valid uses of Hollerith constants: complex*16 x(2) *************** size of the variable in which it is stor *** 2677,2688 **** In general, Hollerith constants were used to provide a rudimentary facility for handling character strings in early Fortran compilers, ! prior to the introduction of 'CHARACTER' variables in Fortran 77; in ! those cases, the standard-compliant equivalent is to convert the program ! to use proper character strings. On occasion, there may be a case where ! the intent is specifically to initialize a numeric variable with a given ! byte sequence. In these cases, the same result can be obtained by using ! the 'TRANSFER' statement, as in this example. INTEGER(KIND=4) :: a a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd --- 2699,2710 ---- In general, Hollerith constants were used to provide a rudimentary facility for handling character strings in early Fortran compilers, ! prior to the introduction of `CHARACTER' variables in Fortran 77; in ! those cases, the standard-compliant equivalent is to convert the ! program to use proper character strings. On occasion, there may be a ! case where the intent is specifically to initialize a numeric variable ! with a given byte sequence. In these cases, the same result can be ! obtained by using the `TRANSFER' statement, as in this example. INTEGER(KIND=4) :: a a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd *************** variables: an integer "pointer" that hol *** 2702,2718 **** or, pointer ( , ), ( , ), ... The pointer is an integer that is intended to hold a memory address. ! The pointee may be an array or scalar. A pointee can be an assumed size ! array--that is, the last dimension may be left unspecified by using a ! '*' in place of a value--but a pointee cannot be an assumed shape array. ! No space is allocated for the pointee. The pointee may have its type declared before or after the pointer statement, and its array specification (if any) may be declared before, during, or after the pointer statement. The pointer may be declared as an integer prior to the pointer statement. However, some machines have ! default integer sizes that are different than the size of a pointer, and ! so the following code is not portable: integer ipt pointer (ipt, iarr) If a pointer is declared with a kind that is too small, the compiler --- 2724,2740 ---- or, pointer ( , ), ( , ), ... The pointer is an integer that is intended to hold a memory address. ! The pointee may be an array or scalar. A pointee can be an assumed ! size array--that is, the last dimension may be left unspecified by ! using a `*' in place of a value--but a pointee cannot be an assumed ! shape array. No space is allocated for the pointee. The pointee may have its type declared before or after the pointer statement, and its array specification (if any) may be declared before, during, or after the pointer statement. The pointer may be declared as an integer prior to the pointer statement. However, some machines have ! default integer sizes that are different than the size of a pointer, ! and so the following code is not portable: integer ipt pointer (ipt, iarr) If a pointer is declared with a kind that is too small, the compiler *************** explicit declaration of ipt's type is om *** 2723,2752 **** ensure that ipt is an integer variable large enough to hold a pointer. Pointer arithmetic is valid with Cray pointers, but it is not the ! same as C pointer arithmetic. Cray pointers are just ordinary integers, ! so the user is responsible for determining how many bytes to add to a ! pointer in order to increment it. Consider the following example: real target(10) real pointee(10) pointer (ipt, pointee) ipt = loc (target) ipt = ipt + 1 ! The last statement does not set 'ipt' to the address of 'target(1)', ! as it would in C pointer arithmetic. Adding '1' to 'ipt' just adds one ! byte to the address stored in 'ipt'. Any expression involving the pointee will be translated to use the value stored in the pointer as the base address. To get the address of elements, this extension provides an intrinsic ! function 'LOC()'. The 'LOC()' function is equivalent to the '&' operator in C, except the address is cast to an integer type: real ar(10) pointer(ipt, arpte(10)) real arpte ipt = loc(ar) ! Makes arpte is an alias for ar arpte(1) = 1.0 ! Sets ar(1) to 1.0 ! The pointer can also be set by a call to the 'MALLOC' intrinsic (see *note MALLOC::). Cray pointees often are used to alias an existing variable. For --- 2745,2775 ---- ensure that ipt is an integer variable large enough to hold a pointer. Pointer arithmetic is valid with Cray pointers, but it is not the ! same as C pointer arithmetic. Cray pointers are just ordinary ! integers, so the user is responsible for determining how many bytes to ! add to a pointer in order to increment it. Consider the following ! example: real target(10) real pointee(10) pointer (ipt, pointee) ipt = loc (target) ipt = ipt + 1 ! The last statement does not set `ipt' to the address of `target(1)', ! as it would in C pointer arithmetic. Adding `1' to `ipt' just adds one ! byte to the address stored in `ipt'. Any expression involving the pointee will be translated to use the value stored in the pointer as the base address. To get the address of elements, this extension provides an intrinsic ! function `LOC()'. The `LOC()' function is equivalent to the `&' operator in C, except the address is cast to an integer type: real ar(10) pointer(ipt, arpte(10)) real arpte ipt = loc(ar) ! Makes arpte is an alias for ar arpte(1) = 1.0 ! Sets ar(1) to 1.0 ! The pointer can also be set by a call to the `MALLOC' intrinsic (see *note MALLOC::). Cray pointees often are used to alias an existing variable. For *************** example: *** 2755,2784 **** integer iarr(10) pointer (ipt, iarr) ipt = loc(target) ! As long as 'ipt' remains unchanged, 'iarr' is now an alias for ! 'target'. The optimizer, however, will not detect this aliasing, so it ! is unsafe to use 'iarr' and 'target' simultaneously. Using a pointee in ! any way that violates the Fortran aliasing rules or assumptions is illegal. It is the user's responsibility to avoid doing this; the compiler works under the assumption that no such aliasing occurs. Cray pointers will work correctly when there is no aliasing (i.e., when they are used to access a dynamically allocated block of memory), and also in any routine where a pointee is used, but any variable with ! which it shares storage is not used. Code that violates these rules may ! not run as the user intends. This is not a bug in the optimizer; any ! code that violates the aliasing rules is illegal. (Note that this is ! not unique to GNU Fortran; any Fortran compiler that supports Cray pointers will "incorrectly" optimize code with illegal aliasing.) There are a number of restrictions on the attributes that can be applied to Cray pointers and pointees. Pointees may not have the ! 'ALLOCATABLE', 'INTENT', 'OPTIONAL', 'DUMMY', 'TARGET', 'INTRINSIC', or ! 'POINTER' attributes. Pointers may not have the 'DIMENSION', 'POINTER', ! 'TARGET', 'ALLOCATABLE', 'EXTERNAL', or 'INTRINSIC' attributes, nor may ! they be function results. Pointees may not occur in more than one ! pointer statement. A pointee cannot be a pointer. Pointees cannot ! occur in equivalence, common, or data statements. A Cray pointer may also point to a function or a subroutine. For example, the following excerpt is valid: --- 2778,2807 ---- integer iarr(10) pointer (ipt, iarr) ipt = loc(target) ! As long as `ipt' remains unchanged, `iarr' is now an alias for ! `target'. The optimizer, however, will not detect this aliasing, so it ! is unsafe to use `iarr' and `target' simultaneously. Using a pointee ! in any way that violates the Fortran aliasing rules or assumptions is illegal. It is the user's responsibility to avoid doing this; the compiler works under the assumption that no such aliasing occurs. Cray pointers will work correctly when there is no aliasing (i.e., when they are used to access a dynamically allocated block of memory), and also in any routine where a pointee is used, but any variable with ! which it shares storage is not used. Code that violates these rules ! may not run as the user intends. This is not a bug in the optimizer; ! any code that violates the aliasing rules is illegal. (Note that this ! is not unique to GNU Fortran; any Fortran compiler that supports Cray pointers will "incorrectly" optimize code with illegal aliasing.) There are a number of restrictions on the attributes that can be applied to Cray pointers and pointees. Pointees may not have the ! `ALLOCATABLE', `INTENT', `OPTIONAL', `DUMMY', `TARGET', `INTRINSIC', or ! `POINTER' attributes. Pointers may not have the `DIMENSION', ! `POINTER', `TARGET', `ALLOCATABLE', `EXTERNAL', or `INTRINSIC' ! attributes, nor may they be function results. Pointees may not occur ! in more than one pointer statement. A pointee cannot be a pointer. ! Pointees cannot occur in equivalence, common, or data statements. A Cray pointer may also point to a function or a subroutine. For example, the following excerpt is valid: *************** example, the following excerpt is valid: *** 2795,2823 **** A pointer may be modified during the course of a program, and this will change the location to which the pointee refers. However, when ! pointees are passed as arguments, they are treated as ordinary variables ! in the invoked function. Subsequent changes to the pointer will not ! change the base address of the array that was passed.  File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran ! 6.1.15 'CONVERT' specifier -------------------------- GNU Fortran allows the conversion of unformatted data between little- and big-endian representation to facilitate moving of data between ! different systems. The conversion can be indicated with the 'CONVERT' ! specifier on the 'OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for an alternative way of specifying the data format via an environment variable. ! Valid values for 'CONVERT' are: ! 'CONVERT='NATIVE'' Use the native format. This is the default. ! 'CONVERT='SWAP'' Swap between little- and big-endian. ! 'CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for unformatted files. ! 'CONVERT='BIG_ENDIAN'' Use the big-endian representation for unformatted files. Using the option could look like this: --- 2818,2849 ---- A pointer may be modified during the course of a program, and this will change the location to which the pointee refers. However, when ! pointees are passed as arguments, they are treated as ordinary ! variables in the invoked function. Subsequent changes to the pointer ! will not change the base address of the array that was passed.  File: gfortran.info, Node: CONVERT specifier, Next: OpenMP, Prev: Cray pointers, Up: Extensions implemented in GNU Fortran ! 6.1.15 `CONVERT' specifier -------------------------- GNU Fortran allows the conversion of unformatted data between little- and big-endian representation to facilitate moving of data between ! different systems. The conversion can be indicated with the `CONVERT' ! specifier on the `OPEN' statement. *Note GFORTRAN_CONVERT_UNIT::, for an alternative way of specifying the data format via an environment variable. ! Valid values for `CONVERT' are: ! `CONVERT='NATIVE'' Use the native format. This is the default. ! ! `CONVERT='SWAP'' Swap between little- and big-endian. ! ! `CONVERT='LITTLE_ENDIAN'' Use the little-endian representation for unformatted files. ! ! `CONVERT='BIG_ENDIAN'' Use the big-endian representation for unformatted files. Using the option could look like this: *************** variable. *** 2825,2838 **** convert='big_endian') The value of the conversion can be queried by using ! 'INQUIRE(CONVERT=ch)'. The values returned are ''BIG_ENDIAN'' and ! ''LITTLE_ENDIAN''. ! 'CONVERT' works between big- and little-endian for 'INTEGER' values ! of all supported kinds and for 'REAL' on IEEE systems of kinds 4 and 8. Conversion between different "extended double" types on different architectures such as m68k and x86_64, which GNU Fortran supports as ! 'REAL(KIND=10)' and 'REAL(KIND=16)', will probably not work. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open --- 2851,2864 ---- convert='big_endian') The value of the conversion can be queried by using ! `INQUIRE(CONVERT=ch)'. The values returned are `'BIG_ENDIAN'' and ! `'LITTLE_ENDIAN''. ! `CONVERT' works between big- and little-endian for `INTEGER' values ! of all supported kinds and for `REAL' on IEEE systems of kinds 4 and 8. Conversion between different "extended double" types on different architectures such as m68k and x86_64, which GNU Fortran supports as ! `REAL(KIND=10)' and `REAL(KIND=16)', will probably not work. _Note that the values specified via the GFORTRAN_CONVERT_UNIT environment variable will override the CONVERT specifier in the open *************** run-time behavior. *** 2859,2874 **** GNU Fortran strives to be compatible to the OpenMP Application Program Interface v4.0 (http://openmp.org/wp/openmp-specifications/). ! To enable the processing of the OpenMP directive '!$omp' in free-form ! source code; the 'c$omp', '*$omp' and '!$omp' directives in fixed form; ! the '!$' conditional compilation sentinels in free form; and the 'c$', ! '*$' and '!$' sentinels in fixed form, 'gfortran' needs to be invoked ! with the '-fopenmp'. This also arranges for automatic linking of the ! GNU OpenMP runtime library *note libgomp: (libgomp)Top. The OpenMP Fortran runtime library routines are provided both in a ! form of a Fortran 90 module named 'omp_lib' and in a form of a Fortran ! 'include' file named 'omp_lib.h'. An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application Program Interface v2.5: --- 2885,2900 ---- GNU Fortran strives to be compatible to the OpenMP Application Program Interface v4.0 (http://openmp.org/wp/openmp-specifications/). ! To enable the processing of the OpenMP directive `!$omp' in ! free-form source code; the `c$omp', `*$omp' and `!$omp' directives in ! fixed form; the `!$' conditional compilation sentinels in free form; ! and the `c$', `*$' and `!$' sentinels in fixed form, `gfortran' needs ! to be invoked with the `-fopenmp'. This also arranges for automatic ! linking of the GNU OpenMP runtime library *note libgomp: (libgomp)Top. The OpenMP Fortran runtime library routines are provided both in a ! form of a Fortran 90 module named `omp_lib' and in a form of a Fortran ! `include' file named `omp_lib.h'. An example of a parallelized loop taken from Appendix A.1 of the OpenMP Application Program Interface v2.5: *************** OpenMP Application Program Interface v2. *** 2883,2921 **** END SUBROUTINE A1 Please note: ! * '-fopenmp' implies '-frecursive', i.e., all local arrays will be ! allocated on the stack. When porting existing code to OpenMP, this ! may lead to surprising results, especially to segmentation faults ! if the stacksize is limited. * On glibc-based systems, OpenMP enabled applications cannot be statically linked due to limitations of the underlying pthreads-implementation. It might be possible to get a working ! solution if '-Wl,--whole-archive -lpthread -Wl,--no-whole-archive' is added to the command line. However, this is not supported by ! 'gcc' and thus not recommended.  File: gfortran.info, Node: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran ! 6.1.17 Argument list functions '%VAL', '%REF' and '%LOC' -------------------------------------------------------- ! GNU Fortran supports argument list functions '%VAL', '%REF' and '%LOC' ! statements, for backward compatibility with g77. It is recommended that ! these should be used only for code that is accessing facilities outside ! of GNU Fortran, such as operating system or windowing facilities. It is ! best to constrain such uses to isolated portions of a program-portions ! that deal specifically and exclusively with low-level, system-dependent ! facilities. Such portions might well provide a portable interface for ! use by the program as a whole, but are themselves not portable, and ! should be thoroughly tested each time they are rebuilt using a new ! compiler or version of a compiler. ! '%VAL' passes a scalar argument by value, '%REF' passes it by ! reference and '%LOC' passes its memory location. Since gfortran already ! passes scalar arguments by reference, '%REF' is in effect a do-nothing. ! '%LOC' has the same effect as a Fortran pointer. An example of passing an argument by value to a C subroutine foo.: C --- 2909,2947 ---- END SUBROUTINE A1 Please note: ! * `-fopenmp' implies `-frecursive', i.e., all local arrays will be ! allocated on the stack. When porting existing code to OpenMP, ! this may lead to surprising results, especially to segmentation ! faults if the stacksize is limited. * On glibc-based systems, OpenMP enabled applications cannot be statically linked due to limitations of the underlying pthreads-implementation. It might be possible to get a working ! solution if `-Wl,--whole-archive -lpthread -Wl,--no-whole-archive' is added to the command line. However, this is not supported by ! `gcc' and thus not recommended.  File: gfortran.info, Node: Argument list functions, Prev: OpenMP, Up: Extensions implemented in GNU Fortran ! 6.1.17 Argument list functions `%VAL', `%REF' and `%LOC' -------------------------------------------------------- ! GNU Fortran supports argument list functions `%VAL', `%REF' and `%LOC' ! statements, for backward compatibility with g77. It is recommended ! that these should be used only for code that is accessing facilities ! outside of GNU Fortran, such as operating system or windowing ! facilities. It is best to constrain such uses to isolated portions of ! a program-portions that deal specifically and exclusively with ! low-level, system-dependent facilities. Such portions might well ! provide a portable interface for use by the program as a whole, but are ! themselves not portable, and should be thoroughly tested each time they ! are rebuilt using a new compiler or version of a compiler. ! `%VAL' passes a scalar argument by value, `%REF' passes it by ! reference and `%LOC' passes its memory location. Since gfortran ! already passes scalar arguments by reference, `%REF' is in effect a ! do-nothing. `%LOC' has the same effect as a Fortran pointer. An example of passing an argument by value to a C subroutine foo.: C *************** passes scalar arguments by reference, '% *** 2928,2936 **** end For details refer to the g77 manual ! . ! Also, 'c_by_val.f' and its partner 'c_by_val.c' of the GNU Fortran testsuite are worth a look.  --- 2954,2962 ---- end For details refer to the g77 manual ! `http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/index.html#Top'. ! Also, `c_by_val.f' and its partner `c_by_val.c' of the GNU Fortran testsuite are worth a look.  *************** some features crucial to users in the fi *** 2945,2952 **** existence of a number of important extensions to the language. While some of the most useful or popular extensions are supported by the GNU Fortran compiler, not all existing extensions are supported. This ! section aims at listing these extensions and offering advice on how best ! make code that uses them running with the GNU Fortran compiler. * Menu: --- 2971,2978 ---- existence of a number of important extensions to the language. While some of the most useful or popular extensions are supported by the GNU Fortran compiler, not all existing extensions are supported. This ! section aims at listing these extensions and offering advice on how ! best make code that uses them running with the GNU Fortran compiler. * Menu: *************** make code that uses them running with th *** 2959,2965 ****  File: gfortran.info, Node: STRUCTURE and RECORD, Next: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.1 'STRUCTURE' and 'RECORD' ------------------------------ Record structures are a pre-Fortran-90 vendor extension to create --- 2985,2991 ----  File: gfortran.info, Node: STRUCTURE and RECORD, Next: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.1 `STRUCTURE' and `RECORD' ------------------------------ Record structures are a pre-Fortran-90 vendor extension to create *************** structures, only Fortran 90's "derived t *** 2968,2977 **** syntax. In many cases, record structures can easily be converted to derived ! types. To convert, replace 'STRUCTURE /'STRUCTURE-NAME'/' by 'TYPE' ! TYPE-NAME. Additionally, replace 'RECORD /'STRUCTURE-NAME'/' by ! 'TYPE('TYPE-NAME')'. Finally, in the component access, replace the ! period ('.') by the percent sign ('%'). Here is an example of code using the non portable record structure syntax: --- 2994,3003 ---- syntax. In many cases, record structures can easily be converted to derived ! types. To convert, replace `STRUCTURE /'STRUCTURE-NAME`/' by `TYPE' ! TYPE-NAME. Additionally, replace `RECORD /'STRUCTURE-NAME`/' by ! `TYPE('TYPE-NAME`)'. Finally, in the component access, replace the ! period (`.') by the percent sign (`%'). Here is an example of code using the non portable record structure syntax: *************** This code can easily be rewritten in the *** 3029,3040 ****  File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Prev: STRUCTURE and RECORD, Up: Extensions not implemented in GNU Fortran ! 6.2.2 'ENCODE' and 'DECODE' statements -------------------------------------- ! GNU Fortran does not support the 'ENCODE' and 'DECODE' statements. ! These statements are best replaced by 'READ' and 'WRITE' statements ! involving internal files ('CHARACTER' variables and arrays), which have been part of the Fortran standard since Fortran 77. For example, replace a code fragment like --- 3055,3066 ----  File: gfortran.info, Node: ENCODE and DECODE statements, Next: Variable FORMAT expressions, Prev: STRUCTURE and RECORD, Up: Extensions not implemented in GNU Fortran ! 6.2.2 `ENCODE' and `DECODE' statements -------------------------------------- ! GNU Fortran does not support the `ENCODE' and `DECODE' statements. ! These statements are best replaced by `READ' and `WRITE' statements ! involving internal files (`CHARACTER' variables and arrays), which have been part of the Fortran standard since Fortran 77. For example, replace a code fragment like *************** with the following: *** 3071,3085 ****  File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.3 Variable 'FORMAT' expressions ----------------------------------- ! A variable 'FORMAT' expression is format statement which includes angle ! brackets enclosing a Fortran expression: 'FORMAT(I)'. GNU Fortran does not support this legacy extension. The effect of variable format expressions can be reproduced by using the more powerful (and standard) ! combination of internal output and string formats. For example, replace ! a code fragment like this: WRITE(6,20) INT1 20 FORMAT(I) --- 3097,3111 ----  File: gfortran.info, Node: Variable FORMAT expressions, Next: Alternate complex function syntax, Prev: ENCODE and DECODE statements, Up: Extensions not implemented in GNU Fortran ! 6.2.3 Variable `FORMAT' expressions ----------------------------------- ! A variable `FORMAT' expression is format statement which includes angle ! brackets enclosing a Fortran expression: `FORMAT(I)'. GNU Fortran does not support this legacy extension. The effect of variable format expressions can be reproduced by using the more powerful (and standard) ! combination of internal output and string formats. For example, ! replace a code fragment like this: WRITE(6,20) INT1 20 FORMAT(I) *************** File: gfortran.info, Node: Alternate co *** 3110,3131 **** 6.2.4 Alternate complex function syntax --------------------------------------- ! Some Fortran compilers, including 'g77', let the user declare complex ! functions with the syntax 'COMPLEX FUNCTION name*16()', as well as ! 'COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy extensions. ! 'gfortran' accepts the latter form, which is more common, but not the ! former.  File: gfortran.info, Node: Volatile COMMON blocks, Prev: Alternate complex function syntax, Up: Extensions not implemented in GNU Fortran ! 6.2.5 Volatile 'COMMON' blocks ------------------------------ ! Some Fortran compilers, including 'g77', let the user declare 'COMMON' ! with the 'VOLATILE' attribute. This is invalid standard Fortran syntax ! and is not supported by 'gfortran'. Note that 'gfortran' accepts ! 'VOLATILE' variables in 'COMMON' blocks since revision 4.3.  File: gfortran.info, Node: Mixed-Language Programming, Next: Intrinsic Procedures, Prev: Extensions, Up: Top --- 3136,3157 ---- 6.2.4 Alternate complex function syntax --------------------------------------- ! Some Fortran compilers, including `g77', let the user declare complex ! functions with the syntax `COMPLEX FUNCTION name*16()', as well as ! `COMPLEX*16 FUNCTION name()'. Both are non-standard, legacy ! extensions. `gfortran' accepts the latter form, which is more common, ! but not the former.  File: gfortran.info, Node: Volatile COMMON blocks, Prev: Alternate complex function syntax, Up: Extensions not implemented in GNU Fortran ! 6.2.5 Volatile `COMMON' blocks ------------------------------ ! Some Fortran compilers, including `g77', let the user declare `COMMON' ! with the `VOLATILE' attribute. This is invalid standard Fortran syntax ! and is not supported by `gfortran'. Note that `gfortran' accepts ! `VOLATILE' variables in `COMMON' blocks since revision 4.3.  File: gfortran.info, Node: Mixed-Language Programming, Next: Intrinsic Procedures, Prev: Extensions, Up: Top *************** File: gfortran.info, Node: Mixed-Langua *** 3140,3149 **** * Non-Fortran Main Program:: * Naming and argument-passing conventions:: ! This chapter is about mixed-language interoperability, but also applies ! if one links Fortran code compiled by different compilers. In most ! cases, use of the C Binding features of the Fortran 2003 standard is ! sufficient, and their use is highly recommended.  File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming --- 3166,3175 ---- * Non-Fortran Main Program:: * Naming and argument-passing conventions:: ! This chapter is about mixed-language interoperability, but also ! applies if one links Fortran code compiled by different compilers. In ! most cases, use of the C Binding features of the Fortran 2003 standard ! is sufficient, and their use is highly recommended.  File: gfortran.info, Node: Interoperability with C, Next: GNU Fortran Compiler Directives, Up: Mixed-Language Programming *************** File: gfortran.info, Node: Interoperabi *** 3160,3180 **** * Working with Pointers:: * Further Interoperability of Fortran with C:: ! Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized way ! to generate procedure and derived-type declarations and global variables ! which are interoperable with C (ISO/IEC 9899:1999). The 'bind(C)' ! attribute has been added to inform the compiler that a symbol shall be ! interoperable with C; also, some constraints are added. Note, however, ! that not all C features have a Fortran equivalent or vice versa. For ! instance, neither C's unsigned integers nor C's functions with variable ! number of arguments have an equivalent in Fortran. ! Note that array dimensions are reversely ordered in C and that arrays ! in C always start with index 0 while in Fortran they start by default ! with 1. Thus, an array declaration 'A(n,m)' in Fortran matches ! 'A[m][n]' in C and accessing the element 'A(i,j)' matches 'A[j-1][i-1]'. ! The element following 'A(i,j)' (C: 'A[j-1][i-1]'; assuming i < n) in ! memory is 'A(i+1,j)' (C: 'A[j-1][i]').  File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C --- 3186,3206 ---- * Working with Pointers:: * Further Interoperability of Fortran with C:: ! Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a standardized ! way to generate procedure and derived-type declarations and global ! variables which are interoperable with C (ISO/IEC 9899:1999). The ! `bind(C)' attribute has been added to inform the compiler that a symbol ! shall be interoperable with C; also, some constraints are added. Note, ! however, that not all C features have a Fortran equivalent or vice ! versa. For instance, neither C's unsigned integers nor C's functions ! with variable number of arguments have an equivalent in Fortran. ! Note that array dimensions are reversely ordered in C and that ! arrays in C always start with index 0 while in Fortran they start by ! default with 1. Thus, an array declaration `A(n,m)' in Fortran matches ! `A[m][n]' in C and accessing the element `A(i,j)' matches ! `A[j-1][i-1]'. The element following `A(i,j)' (C: `A[j-1][i-1]'; ! assuming i < n) in memory is `A(i+1,j)' (C: `A[j-1][i]').  File: gfortran.info, Node: Intrinsic Types, Next: Derived Types and struct, Up: Interoperability with C *************** File: gfortran.info, Node: Intrinsic Ty *** 3183,3201 **** --------------------- In order to ensure that exactly the same variable type and kind is used ! in C and Fortran, the named constants shall be used which are defined in ! the 'ISO_C_BINDING' intrinsic module. That module contains named constants for kind parameters and character named constants for the ! escape sequences in C. For a list of the constants, see *note ISO_C_BINDING::. For logical types, please note that the Fortran standard only ! guarantees interoperability between C99's '_Bool' and Fortran's ! 'C_Bool'-kind logicals and C99 defines that 'true' has the value 1 and ! 'false' the value 0. Using any other integer value with GNU Fortran's ! 'LOGICAL' (with any kind parameter) gives an undefined result. (Passing ! other integer values than 0 and 1 to GCC's '_Bool' is also undefined, ! unless the integer is explicitly or implicitly casted to '_Bool'.)  File: gfortran.info, Node: Derived Types and struct, Next: Interoperable Global Variables, Prev: Intrinsic Types, Up: Interoperability with C --- 3209,3228 ---- --------------------- In order to ensure that exactly the same variable type and kind is used ! in C and Fortran, the named constants shall be used which are defined ! in the `ISO_C_BINDING' intrinsic module. That module contains named constants for kind parameters and character named constants for the ! escape sequences in C. For a list of the constants, see *note ISO_C_BINDING::. For logical types, please note that the Fortran standard only ! guarantees interoperability between C99's `_Bool' and Fortran's ! `C_Bool'-kind logicals and C99 defines that `true' has the value 1 and ! `false' the value 0. Using any other integer value with GNU Fortran's ! `LOGICAL' (with any kind parameter) gives an undefined result. ! (Passing other integer values than 0 and 1 to GCC's `_Bool' is also ! undefined, unless the integer is explicitly or implicitly casted to ! `_Bool'.)  File: gfortran.info, Node: Derived Types and struct, Next: Interoperable Global Variables, Prev: Intrinsic Types, Up: Interoperability with C *************** File: gfortran.info, Node: Derived Type *** 3203,3210 **** 7.1.2 Derived Types and struct ------------------------------ ! For compatibility of derived types with 'struct', one needs to use the ! 'BIND(C)' attribute in the type declaration. For instance, the following type declaration USE ISO_C_BINDING --- 3230,3237 ---- 7.1.2 Derived Types and struct ------------------------------ ! For compatibility of derived types with `struct', one needs to use the ! `BIND(C)' attribute in the type declaration. For instance, the following type declaration USE ISO_C_BINDING *************** following type declaration *** 3216,3222 **** CHARACTER(KIND=C_CHAR) :: str(5) END TYPE ! matches the following 'struct' declaration in C struct { int i1, i2; --- 3243,3249 ---- CHARACTER(KIND=C_CHAR) :: str(5) END TYPE ! matches the following `struct' declaration in C struct { int i1, i2; *************** following type declaration *** 3228,3237 **** } myType; Derived types with the C binding attribute shall not have the ! 'sequence' attribute, type parameters, the 'extends' attribute, nor type-bound procedures. Every component must be of interoperable type ! and kind and may not have the 'pointer' or 'allocatable' attribute. The ! names of the components are irrelevant for interoperability. As there exist no direct Fortran equivalents, neither unions nor structs with bit field or variable-length array members are --- 3255,3264 ---- } myType; Derived types with the C binding attribute shall not have the ! `sequence' attribute, type parameters, the `extends' attribute, nor type-bound procedures. Every component must be of interoperable type ! and kind and may not have the `pointer' or `allocatable' attribute. ! The names of the components are irrelevant for interoperability. As there exist no direct Fortran equivalents, neither unions nor structs with bit field or variable-length array members are *************** File: gfortran.info, Node: Interoperabl *** 3245,3253 **** Variables can be made accessible from C using the C binding attribute, optionally together with specifying a binding name. Those variables ! have to be declared in the declaration part of a 'MODULE', be of ! interoperable type, and have neither the 'pointer' nor the 'allocatable' ! attribute. MODULE m USE myType_module --- 3272,3280 ---- Variables can be made accessible from C using the C binding attribute, optionally together with specifying a binding name. Those variables ! have to be declared in the declaration part of a `MODULE', be of ! interoperable type, and have neither the `pointer' nor the ! `allocatable' attribute. MODULE m USE myType_module *************** attribute. *** 3256,3269 **** type(myType), bind(C) :: tp END MODULE ! Here, '_MyProject_flags' is the case-sensitive name of the variable ! as seen from C programs while 'global_flag' is the case-insensitive name ! as seen from Fortran. If no binding name is specified, as for TP, the C ! binding name is the (lowercase) Fortran binding name. If a binding name ! is specified, only a single variable may be after the double colon. ! Note of warning: You cannot use a global variable to access ERRNO of the ! C library as the C standard allows it to be a macro. Use the 'IERRNO' ! intrinsic (GNU extension) instead.  File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C --- 3283,3296 ---- type(myType), bind(C) :: tp END MODULE ! Here, `_MyProject_flags' is the case-sensitive name of the variable ! as seen from C programs while `global_flag' is the case-insensitive ! name as seen from Fortran. If no binding name is specified, as for TP, ! the C binding name is the (lowercase) Fortran binding name. If a ! binding name is specified, only a single variable may be after the ! double colon. Note of warning: You cannot use a global variable to ! access ERRNO of the C library as the C standard allows it to be a ! macro. Use the `IERRNO' intrinsic (GNU extension) instead.  File: gfortran.info, Node: Interoperable Subroutines and Functions, Next: Working with Pointers, Prev: Interoperable Global Variables, Up: Interoperability with C *************** File: gfortran.info, Node: Interoperabl *** 3271,3291 **** 7.1.4 Interoperable Subroutines and Functions --------------------------------------------- ! Subroutines and functions have to have the 'BIND(C)' attribute to be ! compatible with C. The dummy argument declaration is relatively straightforward. However, one needs to be careful because C uses call-by-value by default while Fortran behaves usually similar to call-by-reference. Furthermore, strings and pointers are handled differently. Note that in Fortran 2003 and 2008 only explicit size and assumed-size arrays are supported but not assumed-shape or ! deferred-shape (i.e. allocatable or pointer) arrays. However, those are allowed since the Technical Specification 29113, see *note Further Interoperability of Fortran with C:: ! To pass a variable by value, use the 'VALUE' attribute. Thus, the following C prototype ! int func(int i, int *j) matches the Fortran declaration --- 3298,3318 ---- 7.1.4 Interoperable Subroutines and Functions --------------------------------------------- ! Subroutines and functions have to have the `BIND(C)' attribute to be ! compatible with C. The dummy argument declaration is relatively straightforward. However, one needs to be careful because C uses call-by-value by default while Fortran behaves usually similar to call-by-reference. Furthermore, strings and pointers are handled differently. Note that in Fortran 2003 and 2008 only explicit size and assumed-size arrays are supported but not assumed-shape or ! deferred-shape (i.e. allocatable or pointer) arrays. However, those are allowed since the Technical Specification 29113, see *note Further Interoperability of Fortran with C:: ! To pass a variable by value, use the `VALUE' attribute. Thus, the following C prototype ! `int func(int i, int *j)' matches the Fortran declaration *************** following C prototype *** 3294,3306 **** integer(c_int), VALUE :: i integer(c_int) :: j ! Note that pointer arguments also frequently need the 'VALUE' attribute, see *note Working with Pointers::. Strings are handled quite differently in C and Fortran. In C a ! string is a 'NUL'-terminated array of characters while in Fortran each string has a length associated with it and is thus not terminated (by ! e.g. 'NUL'). For example, if one wants to use the following C function, #include --- 3321,3333 ---- integer(c_int), VALUE :: i integer(c_int) :: j ! Note that pointer arguments also frequently need the `VALUE' attribute, see *note Working with Pointers::. Strings are handled quite differently in C and Fortran. In C a ! string is a `NUL'-terminated array of characters while in Fortran each string has a length associated with it and is thus not terminated (by ! e.g. `NUL'). For example, if one wants to use the following C function, #include *************** function, *** 3320,3339 **** end interface call print_c(C_CHAR_"Hello World"//C_NULL_CHAR) ! As the example shows, one needs to ensure that the string is 'NUL' ! terminated. Additionally, the dummy argument STRING of 'print_C' is a ! length-one assumed-size array; using 'character(len=*)' is not allowed. ! The example above uses 'c_char_"Hello World"' to ensure the string literal has the right type; typically the default character kind and ! 'c_char' are the same and thus '"Hello World"' is equivalent. However, the standard does not guarantee this. The use of strings is now further illustrated using the C library ! function 'strncpy', whose prototype is char *strncpy(char *restrict s1, const char *restrict s2, size_t n); ! The function 'strncpy' copies at most N characters from string S2 to S1 and returns S1. In the following example, we ignore the return value: --- 3347,3366 ---- end interface call print_c(C_CHAR_"Hello World"//C_NULL_CHAR) ! As the example shows, one needs to ensure that the string is `NUL' ! terminated. Additionally, the dummy argument STRING of `print_C' is a ! length-one assumed-size array; using `character(len=*)' is not allowed. ! The example above uses `c_char_"Hello World"' to ensure the string literal has the right type; typically the default character kind and ! `c_char' are the same and thus `"Hello World"' is equivalent. However, the standard does not guarantee this. The use of strings is now further illustrated using the C library ! function `strncpy', whose prototype is char *strncpy(char *restrict s1, const char *restrict s2, size_t n); ! The function `strncpy' copies at most N characters from string S2 to S1 and returns S1. In the following example, we ignore the return value: *************** File: gfortran.info, Node: Working with *** 3366,3375 **** --------------------------- C pointers are represented in Fortran via the special opaque derived ! type 'type(c_ptr)' (with private components). Thus one needs to use intrinsic conversion procedures to convert from or to C pointers. ! For some applications, using an assumed type ('TYPE(*)') can be an alternative to a C pointer; see *note Further Interoperability of Fortran with C::. --- 3393,3402 ---- --------------------------- C pointers are represented in Fortran via the special opaque derived ! type `type(c_ptr)' (with private components). Thus one needs to use intrinsic conversion procedures to convert from or to C pointers. ! For some applications, using an assumed type (`TYPE(*)') can be an alternative to a C pointer; see *note Further Interoperability of Fortran with C::. *************** Fortran with C::. *** 3386,3406 **** call c_f_pointer(cptr2, ps) call c_f_pointer(cptr2, pa, shape=[7]) ! When converting C to Fortran arrays, the one-dimensional 'SHAPE' argument has to be passed. If a pointer is a dummy-argument of an interoperable procedure, it ! usually has to be declared using the 'VALUE' attribute. 'void*' matches ! 'TYPE(C_PTR), VALUE', while 'TYPE(C_PTR)' alone matches 'void**'. Procedure pointers are handled analogously to pointers; the C type is ! 'TYPE(C_FUNPTR)' and the intrinsic conversion procedures are ! 'C_F_PROCPOINTER' and 'C_FUNLOC'. Let us consider two examples of actually passing a procedure pointer from C to Fortran and vice versa. Note that these examples are also ! very similar to passing ordinary pointers between both languages. ! First, consider this code in C: /* Procedure implemented in Fortran. */ void get_values (void (*)(double)); --- 3413,3434 ---- call c_f_pointer(cptr2, ps) call c_f_pointer(cptr2, pa, shape=[7]) ! When converting C to Fortran arrays, the one-dimensional `SHAPE' argument has to be passed. If a pointer is a dummy-argument of an interoperable procedure, it ! usually has to be declared using the `VALUE' attribute. `void*' ! matches `TYPE(C_PTR), VALUE', while `TYPE(C_PTR)' alone matches ! `void**'. Procedure pointers are handled analogously to pointers; the C type is ! `TYPE(C_FUNPTR)' and the intrinsic conversion procedures are ! `C_F_PROCPOINTER' and `C_FUNLOC'. Let us consider two examples of actually passing a procedure pointer from C to Fortran and vice versa. Note that these examples are also ! very similar to passing ordinary pointers between both languages. First, ! consider this code in C: /* Procedure implemented in Fortran. */ void get_values (void (*)(double)); *************** First, consider this code in C: *** 3419,3427 **** get_values (&print_it); } ! A matching implementation for 'get_values' in Fortran, that correctly receives the procedure pointer from C and is able to call it, is given ! in the following 'MODULE': MODULE m IMPLICIT NONE --- 3447,3455 ---- get_values (&print_it); } ! A matching implementation for `get_values' in Fortran, that correctly receives the procedure pointer from C and is able to call it, is given ! in the following `MODULE': MODULE m IMPLICIT NONE *************** File: gfortran.info, Node: Further Inte *** 3512,3577 **** The Technical Specification ISO/IEC TS 29113:2012 on further interoperability of Fortran with C extends the interoperability support ! of Fortran 2003 and Fortran 2008. Besides removing some restrictions ! and constraints, it adds assumed-type ('TYPE(*)') and assumed-rank ! ('dimension') variables and allows for interoperability of assumed-shape, assumed-rank and deferred-shape arrays, including allocatables and pointers. Note: Currently, GNU Fortran does not support the array descriptor (dope vector) as specified in the Technical Specification, but uses an ! array descriptor with different fields. The Chasm Language ! Interoperability Tools, , provide ! an interface to GNU Fortran's array descriptor. The Technical Specification adds the following new features, which are supported by GNU Fortran: ! * The 'ASYNCHRONOUS' attribute has been clarified and extended to allow its use with asynchronous communication in user-provided libraries such as in implementations of the Message Passing Interface specification. ! * Many constraints have been relaxed, in particular for the 'C_LOC' ! and 'C_F_POINTER' intrinsics. ! * The 'OPTIONAL' attribute is now allowed for dummy arguments; an ! absent argument matches a 'NULL' pointer. ! * Assumed types ('TYPE(*)') have been added, which may only be used for dummy arguments. They are unlimited polymorphic but contrary ! to 'CLASS(*)' they do not contain any type information, similar to ! C's 'void *' pointers. Expressions of any type and kind can be ! passed; thus, it can be used as replacement for 'TYPE(C_PTR)', ! avoiding the use of 'C_LOC' in the caller. ! Note, however, that 'TYPE(*)' only accepts scalar arguments, unless ! the 'DIMENSION' is explicitly specified. As 'DIMENSION(*)' only ! supports array (including array elements) but no scalars, it is not ! a full replacement for 'C_LOC'. On the other hand, assumed-type ! assumed-rank dummy arguments ('TYPE(*), DIMENSION(..)') allow for ! both scalars and arrays, but require special code on the callee ! side to handle the array descriptor. ! * Assumed-rank arrays ('DIMENSION(..)') as dummy argument allow that scalars and arrays of any rank can be passed as actual argument. ! As the Technical Specification does not provide for direct means to ! operate with them, they have to be used either from the C side or ! be converted using 'C_LOC' and 'C_F_POINTER' to scalars or arrays ! of a specific rank. The rank can be determined using the 'RANK' ! intrinisic. Currently unimplemented: * GNU Fortran always uses an array descriptor, which does not match ! the one of the Technical Specification. The ! 'ISO_Fortran_binding.h' header file and the C functions it specifies are not available. * Using assumed-shape, assumed-rank and deferred-shape arrays in ! 'BIND(C)' procedures is not fully supported. In particular, C ! interoperable strings of other length than one are not supported as ! this requires the new array descriptor.  File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming --- 3540,3605 ---- The Technical Specification ISO/IEC TS 29113:2012 on further interoperability of Fortran with C extends the interoperability support ! of Fortran 2003 and Fortran 2008. Besides removing some restrictions ! and constraints, it adds assumed-type (`TYPE(*)') and assumed-rank ! (`dimension') variables and allows for interoperability of assumed-shape, assumed-rank and deferred-shape arrays, including allocatables and pointers. Note: Currently, GNU Fortran does not support the array descriptor (dope vector) as specified in the Technical Specification, but uses an ! array descriptor with different fields. The Chasm Language ! Interoperability Tools, `http://chasm-interop.sourceforge.net/', ! provide an interface to GNU Fortran's array descriptor. The Technical Specification adds the following new features, which are supported by GNU Fortran: ! * The `ASYNCHRONOUS' attribute has been clarified and extended to allow its use with asynchronous communication in user-provided libraries such as in implementations of the Message Passing Interface specification. ! * Many constraints have been relaxed, in particular for the `C_LOC' ! and `C_F_POINTER' intrinsics. ! * The `OPTIONAL' attribute is now allowed for dummy arguments; an ! absent argument matches a `NULL' pointer. ! * Assumed types (`TYPE(*)') have been added, which may only be used for dummy arguments. They are unlimited polymorphic but contrary ! to `CLASS(*)' they do not contain any type information, similar to ! C's `void *' pointers. Expressions of any type and kind can be ! passed; thus, it can be used as replacement for `TYPE(C_PTR)', ! avoiding the use of `C_LOC' in the caller. ! Note, however, that `TYPE(*)' only accepts scalar arguments, ! unless the `DIMENSION' is explicitly specified. As `DIMENSION(*)' ! only supports array (including array elements) but no scalars, it ! is not a full replacement for `C_LOC'. On the other hand, ! assumed-type assumed-rank dummy arguments (`TYPE(*), ! DIMENSION(..)') allow for both scalars and arrays, but require ! special code on the callee side to handle the array descriptor. ! * Assumed-rank arrays (`DIMENSION(..)') as dummy argument allow that scalars and arrays of any rank can be passed as actual argument. ! As the Technical Specification does not provide for direct means ! to operate with them, they have to be used either from the C side ! or be converted using `C_LOC' and `C_F_POINTER' to scalars or ! arrays of a specific rank. The rank can be determined using the ! `RANK' intrinisic. Currently unimplemented: * GNU Fortran always uses an array descriptor, which does not match ! the one of the Technical Specification. The ! `ISO_Fortran_binding.h' header file and the C functions it specifies are not available. * Using assumed-shape, assumed-rank and deferred-shape arrays in ! `BIND(C)' procedures is not fully supported. In particular, C ! interoperable strings of other length than one are not supported ! as this requires the new array descriptor.  File: gfortran.info, Node: GNU Fortran Compiler Directives, Next: Non-Fortran Main Program, Prev: Interoperability with C, Up: Mixed-Language Programming *************** allow the user to choose specific implem *** 3585,3599 **** directives can be used to set attributes of variables and procedures which are not part of the standard. Whether a given attribute is supported and its exact effects depend on both the operating system and ! on the processor; see *note C Extensions: (gcc)Top. for details. For procedures and procedure pointers, the following attributes can be used to change the calling convention: ! * 'CDECL' - standard C calling convention ! * 'STDCALL' - convention where the called procedure pops the stack ! * 'FASTCALL' - part of the arguments are passed via registers instead ! using the stack Besides changing the calling convention, the attributes also influence the decoration of the symbol name, e.g., by a leading --- 3613,3629 ---- directives can be used to set attributes of variables and procedures which are not part of the standard. Whether a given attribute is supported and its exact effects depend on both the operating system and ! on the processor; see *note C Extensions: (gcc)Top. for details. For procedures and procedure pointers, the following attributes can be used to change the calling convention: ! * `CDECL' - standard C calling convention ! ! * `STDCALL' - convention where the called procedure pops the stack ! ! * `FASTCALL' - part of the arguments are passed via registers ! instead using the stack Besides changing the calling convention, the attributes also influence the decoration of the symbol name, e.g., by a leading *************** the stack. When assigning a procedure t *** 3602,3639 **** should use the same calling convention. On some systems, procedures and global variables (module variables ! and 'COMMON' blocks) need special handling to be accessible when they are in a shared library. The following attributes are available: ! * 'DLLEXPORT' - provide a global pointer to a pointer in the DLL ! * 'DLLIMPORT' - reference the function or variable using a global pointer ! For dummy arguments, the 'NO_ARG_CHECK' attribute can be used; in ! other compilers, it is also known as 'IGNORE_TKR'. For dummy arguments with this attribute actual arguments of any type and kind (similar to ! 'TYPE(*)'), scalars and arrays of any rank (no equivalent in Fortran ! standard) are accepted. As with 'TYPE(*)', the argument is unlimited polymorphic and no type information is available. Additionally, the ! argument may only be passed to dummy arguments with the 'NO_ARG_CHECK' ! attribute and as argument to the 'PRESENT' intrinsic function and to ! 'C_LOC' of the 'ISO_C_BINDING' module. ! Variables with 'NO_ARG_CHECK' attribute shall be of assumed-type ! ('TYPE(*)'; recommended) or of type 'INTEGER', 'LOGICAL', 'REAL' or ! 'COMPLEX'. They shall not have the 'ALLOCATE', 'CODIMENSION', ! 'INTENT(OUT)', 'POINTER' or 'VALUE' attribute; furthermore, they shall ! be either scalar or of assumed-size ('dimension(*)'). As 'TYPE(*)', the ! 'NO_ARG_CHECK' attribute requires an explicit interface. ! * 'NO_ARG_CHECK' - disable the type, kind and rank checking The attributes are specified using the syntax ! '!GCC$ ATTRIBUTES' ATTRIBUTE-LIST '::' VARIABLE-LIST where in free-form source code only whitespace is allowed before ! '!GCC$' and in fixed-form source code '!GCC$', 'cGCC$' or '*GCC$' shall start in the first column. For procedures, the compiler directives shall be placed into the body --- 3632,3670 ---- should use the same calling convention. On some systems, procedures and global variables (module variables ! and `COMMON' blocks) need special handling to be accessible when they are in a shared library. The following attributes are available: ! * `DLLEXPORT' - provide a global pointer to a pointer in the DLL ! ! * `DLLIMPORT' - reference the function or variable using a global pointer ! For dummy arguments, the `NO_ARG_CHECK' attribute can be used; in ! other compilers, it is also known as `IGNORE_TKR'. For dummy arguments with this attribute actual arguments of any type and kind (similar to ! `TYPE(*)'), scalars and arrays of any rank (no equivalent in Fortran ! standard) are accepted. As with `TYPE(*)', the argument is unlimited polymorphic and no type information is available. Additionally, the ! argument may only be passed to dummy arguments with the `NO_ARG_CHECK' ! attribute and as argument to the `PRESENT' intrinsic function and to ! `C_LOC' of the `ISO_C_BINDING' module. ! Variables with `NO_ARG_CHECK' attribute shall be of assumed-type ! (`TYPE(*)'; recommended) or of type `INTEGER', `LOGICAL', `REAL' or ! `COMPLEX'. They shall not have the `ALLOCATE', `CODIMENSION', ! `INTENT(OUT)', `POINTER' or `VALUE' attribute; furthermore, they shall ! be either scalar or of assumed-size (`dimension(*)'). As `TYPE(*)', the ! `NO_ARG_CHECK' attribute requires an explicit interface. ! * `NO_ARG_CHECK' - disable the type, kind and rank checking The attributes are specified using the syntax ! `!GCC$ ATTRIBUTES' ATTRIBUTE-LIST `::' VARIABLE-LIST where in free-form source code only whitespace is allowed before ! `!GCC$' and in fixed-form source code `!GCC$', `cGCC$' or `*GCC$' shall start in the first column. For procedures, the compiler directives shall be placed into the body *************** File: gfortran.info, Node: Non-Fortran *** 3655,3685 **** * _gfortran_set_fpe:: Set when a Floating Point Exception should be raised * _gfortran_set_max_subrecord_length:: Set subrecord length ! Even if you are doing mixed-language programming, it is very likely that ! you do not need to know or use the information in this section. Since ! it is about the internal structure of GNU Fortran, it may also change in ! GCC minor releases. ! When you compile a 'PROGRAM' with GNU Fortran, a function with the ! name 'main' (in the symbol table of the object file) is generated, which ! initializes the libgfortran library and then calls the actual program ! which uses the name 'MAIN__', for historic reasons. If you link GNU ! Fortran compiled procedures to, e.g., a C or C++ program or to a Fortran ! program compiled by a different compiler, the libgfortran library is not ! initialized and thus a few intrinsic procedures do not work properly, ! e.g. those for obtaining the command-line arguments. ! Therefore, if your 'PROGRAM' is not compiled with GNU Fortran and the ! GNU Fortran compiled procedures require intrinsics relying on the library initialization, you need to initialize the library yourself. ! Using the default options, gfortran calls '_gfortran_set_args' and ! '_gfortran_set_options'. The initialization of the former is needed if ! the called procedures access the command line (and for backtracing); the ! latter sets some flags based on the standard chosen or to enable backtracing. In typical programs, it is not necessary to call any initialization function. ! If your 'PROGRAM' is compiled with GNU Fortran, you shall not call any of the following functions. The libgfortran initialization functions are shown in C syntax but using C bindings they are also accessible from Fortran. --- 3686,3716 ---- * _gfortran_set_fpe:: Set when a Floating Point Exception should be raised * _gfortran_set_max_subrecord_length:: Set subrecord length ! Even if you are doing mixed-language programming, it is very likely ! that you do not need to know or use the information in this section. ! Since it is about the internal structure of GNU Fortran, it may also ! change in GCC minor releases. ! When you compile a `PROGRAM' with GNU Fortran, a function with the ! name `main' (in the symbol table of the object file) is generated, ! which initializes the libgfortran library and then calls the actual ! program which uses the name `MAIN__', for historic reasons. If you ! link GNU Fortran compiled procedures to, e.g., a C or C++ program or to ! a Fortran program compiled by a different compiler, the libgfortran ! library is not initialized and thus a few intrinsic procedures do not ! work properly, e.g. those for obtaining the command-line arguments. ! Therefore, if your `PROGRAM' is not compiled with GNU Fortran and ! the GNU Fortran compiled procedures require intrinsics relying on the library initialization, you need to initialize the library yourself. ! Using the default options, gfortran calls `_gfortran_set_args' and ! `_gfortran_set_options'. The initialization of the former is needed if ! the called procedures access the command line (and for backtracing); ! the latter sets some flags based on the standard chosen or to enable backtracing. In typical programs, it is not necessary to call any initialization function. ! If your `PROGRAM' is compiled with GNU Fortran, you shall not call any of the following functions. The libgfortran initialization functions are shown in C syntax but using C bindings they are also accessible from Fortran. *************** accessible from Fortran. *** 3687,3708 ****  File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.1 '_gfortran_set_args' -- Save command-line arguments --------------------------------------------------------- _Description_: ! '_gfortran_set_args' saves the command-line arguments; this ! initialization is required if any of the command-line intrinsics is ! called. Additionally, it shall be called if backtracing is enabled ! (see '_gfortran_set_options'). _Syntax_: ! 'void _gfortran_set_args (int argc, char *argv[])' _Arguments_: ! ARGC number of command line argument strings ! ARGV the command-line argument strings; argv[0] is ! the pathname of the executable itself. _Example_: int main (int argc, char *argv[]) --- 3718,3739 ----  File: gfortran.info, Node: _gfortran_set_args, Next: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.1 `_gfortran_set_args' -- Save command-line arguments --------------------------------------------------------- _Description_: ! `_gfortran_set_args' saves the command-line arguments; this ! initialization is required if any of the command-line intrinsics ! is called. Additionally, it shall be called if backtracing is ! enabled (see `_gfortran_set_options'). _Syntax_: ! `void _gfortran_set_args (int argc, char *argv[])' _Arguments_: ! ARGC number of command line argument strings ! ARGV the command-line argument strings; argv[0] is ! the pathname of the executable itself. _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3715,3782 ****  File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program ! 7.3.2 '_gfortran_set_options' -- Set library option flags --------------------------------------------------------- _Description_: ! '_gfortran_set_options' sets several flags related to the Fortran standard to be used, whether backtracing should be enabled and whether range checks should be performed. The syntax allows for ! upward compatibility since the number of passed flags is specified; ! for non-passed flags, the default value is used. See also *note ! Code Gen Options::. Please note that not all flags are actually ! used. _Syntax_: ! 'void _gfortran_set_options (int num, int options[])' _Arguments_: ! NUM number of options passed ! ARGV The list of flag values _option flag list_: ! OPTION[0] Allowed standard; can give run-time errors if ! e.g. an input-output edit descriptor is invalid ! in a given standard. Possible values are ! (bitwise or-ed) 'GFC_STD_F77' (1), ! 'GFC_STD_F95_OBS' (2), 'GFC_STD_F95_DEL' (4), ! 'GFC_STD_F95' (8), 'GFC_STD_F2003' (16), ! 'GFC_STD_GNU' (32), 'GFC_STD_LEGACY' (64), ! 'GFC_STD_F2008' (128), 'GFC_STD_F2008_OBS' (256) ! and GFC_STD_F2008_TS (512). Default: ! 'GFC_STD_F95_OBS | GFC_STD_F95_DEL | GFC_STD_F95 ! | GFC_STD_F2003 | GFC_STD_F2008 | ! GFC_STD_F2008_TS | GFC_STD_F2008_OBS | ! GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY'. ! OPTION[1] Standard-warning flag; prints a warning to ! standard error. Default: 'GFC_STD_F95_DEL | ! GFC_STD_LEGACY'. ! OPTION[2] If non zero, enable pedantic checking. Default: ! off. ! OPTION[3] Unused. ! OPTION[4] If non zero, enable backtracing on run-time ! errors. Default: off. (Default in the ! compiler: on.) Note: Installs a signal handler ! and requires command-line initialization using ! '_gfortran_set_args'. ! OPTION[5] If non zero, supports signed zeros. Default: ! enabled. ! OPTION[6] Enables run-time checking. Possible values are ! (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), ! GFC_RTCHECK_ARRAY_TEMPS (2), ! GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16), ! GFC_RTCHECK_POINTER (32). Default: disabled. ! OPTION[7] Unused. ! OPTION[8] Show a warning when invoking 'STOP' and 'ERROR ! STOP' if a floating-point exception occurred. ! Possible values are (bitwise or-ed) ! 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2), ! 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8), ! 'GFC_FPE_UNDERFLOW' (16), 'GFC_FPE_INEXACT' ! (32). Default: None (0). (Default in the ! compiler: 'GFC_FPE_INVALID | GFC_FPE_DENORMAL | ! GFC_FPE_ZERO | GFC_FPE_OVERFLOW | ! GFC_FPE_UNDERFLOW'.) _Example_: /* Use gfortran 4.9 default options. */ --- 3746,3814 ----  File: gfortran.info, Node: _gfortran_set_options, Next: _gfortran_set_convert, Prev: _gfortran_set_args, Up: Non-Fortran Main Program ! 7.3.2 `_gfortran_set_options' -- Set library option flags --------------------------------------------------------- _Description_: ! `_gfortran_set_options' sets several flags related to the Fortran standard to be used, whether backtracing should be enabled and whether range checks should be performed. The syntax allows for ! upward compatibility since the number of passed flags is ! specified; for non-passed flags, the default value is used. See ! also *note Code Gen Options::. Please note that not all flags are ! actually used. _Syntax_: ! `void _gfortran_set_options (int num, int options[])' _Arguments_: ! NUM number of options passed ! ARGV The list of flag values _option flag list_: ! OPTION[0] Allowed standard; can give run-time errors if ! e.g. an input-output edit descriptor is ! invalid in a given standard. Possible values ! are (bitwise or-ed) `GFC_STD_F77' (1), ! `GFC_STD_F95_OBS' (2), `GFC_STD_F95_DEL' (4), ! `GFC_STD_F95' (8), `GFC_STD_F2003' (16), ! `GFC_STD_GNU' (32), `GFC_STD_LEGACY' (64), ! `GFC_STD_F2008' (128), `GFC_STD_F2008_OBS' ! (256) and GFC_STD_F2008_TS (512). Default: ! `GFC_STD_F95_OBS | GFC_STD_F95_DEL | ! GFC_STD_F95 | GFC_STD_F2003 | GFC_STD_F2008 | ! GFC_STD_F2008_TS | GFC_STD_F2008_OBS | ! GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY'. ! OPTION[1] Standard-warning flag; prints a warning to ! standard error. Default: `GFC_STD_F95_DEL | ! GFC_STD_LEGACY'. ! OPTION[2] If non zero, enable pedantic checking. ! Default: off. ! OPTION[3] Unused. ! OPTION[4] If non zero, enable backtracing on run-time ! errors. Default: off. (Default in the ! compiler: on.) Note: Installs a signal ! handler and requires command-line ! initialization using `_gfortran_set_args'. ! OPTION[5] If non zero, supports signed zeros. Default: ! enabled. ! OPTION[6] Enables run-time checking. Possible values ! are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), ! GFC_RTCHECK_ARRAY_TEMPS (2), ! GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO ! (16), GFC_RTCHECK_POINTER (32). Default: ! disabled. ! OPTION[7] Unused. ! OPTION[8] Show a warning when invoking `STOP' and `ERROR ! STOP' if a floating-point exception occurred. ! Possible values are (bitwise or-ed) ! `GFC_FPE_INVALID' (1), `GFC_FPE_DENORMAL' (2), ! `GFC_FPE_ZERO' (4), `GFC_FPE_OVERFLOW' (8), ! `GFC_FPE_UNDERFLOW' (16), `GFC_FPE_INEXACT' ! (32). Default: None (0). (Default in the ! compiler: `GFC_FPE_INVALID | GFC_FPE_DENORMAL | ! GFC_FPE_ZERO | GFC_FPE_OVERFLOW | ! GFC_FPE_UNDERFLOW'.) _Example_: /* Use gfortran 4.9 default options. */ *************** _Example_: *** 3786,3806 ****  File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.3 '_gfortran_set_convert' -- Set endian conversion ------------------------------------------------------ _Description_: ! '_gfortran_set_convert' set the representation of data for unformatted files. _Syntax_: ! 'void _gfortran_set_convert (int conv)' _Arguments_: ! CONV Endian conversion, possible values: ! GFC_CONVERT_NATIVE (0, default), ! GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2), ! GFC_CONVERT_LITTLE (3). _Example_: int main (int argc, char *argv[]) --- 3818,3838 ----  File: gfortran.info, Node: _gfortran_set_convert, Next: _gfortran_set_record_marker, Prev: _gfortran_set_options, Up: Non-Fortran Main Program ! 7.3.3 `_gfortran_set_convert' -- Set endian conversion ------------------------------------------------------ _Description_: ! `_gfortran_set_convert' set the representation of data for unformatted files. _Syntax_: ! `void _gfortran_set_convert (int conv)' _Arguments_: ! CONV Endian conversion, possible values: ! GFC_CONVERT_NATIVE (0, default), ! GFC_CONVERT_SWAP (1), GFC_CONVERT_BIG (2), ! GFC_CONVERT_LITTLE (3). _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3814,3832 ****  File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_fpe, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program ! 7.3.4 '_gfortran_set_record_marker' -- Set length of record markers ------------------------------------------------------------------- _Description_: ! '_gfortran_set_record_marker' sets the length of record markers for ! unformatted files. _Syntax_: ! 'void _gfortran_set_record_marker (int val)' _Arguments_: ! VAL Length of the record marker; valid values are 4 ! and 8. Default is 4. _Example_: int main (int argc, char *argv[]) --- 3846,3864 ----  File: gfortran.info, Node: _gfortran_set_record_marker, Next: _gfortran_set_fpe, Prev: _gfortran_set_convert, Up: Non-Fortran Main Program ! 7.3.4 `_gfortran_set_record_marker' -- Set length of record markers ------------------------------------------------------------------- _Description_: ! `_gfortran_set_record_marker' sets the length of record markers ! for unformatted files. _Syntax_: ! `void _gfortran_set_record_marker (int val)' _Arguments_: ! VAL Length of the record marker; valid values are ! 4 and 8. Default is 4. _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3840,3863 ****  File: gfortran.info, Node: _gfortran_set_fpe, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program ! 7.3.5 '_gfortran_set_fpe' -- Enable floating point exception traps ------------------------------------------------------------------ _Description_: ! '_gfortran_set_fpe' enables floating point exception traps for the specified exceptions. On most systems, this will result in a SIGFPE signal being sent and the program being aborted. _Syntax_: ! 'void _gfortran_set_fpe (int val)' _Arguments_: ! OPTION[0] IEEE exceptions. Possible values are (bitwise ! or-ed) zero (0, default) no trapping, ! 'GFC_FPE_INVALID' (1), 'GFC_FPE_DENORMAL' (2), ! 'GFC_FPE_ZERO' (4), 'GFC_FPE_OVERFLOW' (8), ! 'GFC_FPE_UNDERFLOW' (16), and 'GFC_FPE_INEXACT' ! (32). _Example_: int main (int argc, char *argv[]) --- 3872,3895 ----  File: gfortran.info, Node: _gfortran_set_fpe, Next: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_record_marker, Up: Non-Fortran Main Program ! 7.3.5 `_gfortran_set_fpe' -- Enable floating point exception traps ------------------------------------------------------------------ _Description_: ! `_gfortran_set_fpe' enables floating point exception traps for the specified exceptions. On most systems, this will result in a SIGFPE signal being sent and the program being aborted. _Syntax_: ! `void _gfortran_set_fpe (int val)' _Arguments_: ! OPTION[0] IEEE exceptions. Possible values are (bitwise ! or-ed) zero (0, default) no trapping, ! `GFC_FPE_INVALID' (1), `GFC_FPE_DENORMAL' (2), ! `GFC_FPE_ZERO' (4), `GFC_FPE_OVERFLOW' (8), ! `GFC_FPE_UNDERFLOW' (16), and ! `GFC_FPE_INEXACT' (32). _Example_: int main (int argc, char *argv[]) *************** _Example_: *** 3872,3892 ****  File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_fpe, Up: Non-Fortran Main Program ! 7.3.6 '_gfortran_set_max_subrecord_length' -- Set subrecord length ------------------------------------------------------------------ _Description_: ! '_gfortran_set_max_subrecord_length' set the maximum length for a subrecord. This option only makes sense for testing and debugging of unformatted I/O. _Syntax_: ! 'void _gfortran_set_max_subrecord_length (int val)' _Arguments_: ! VAL the maximum length for a subrecord; the maximum ! permitted value is 2147483639, which is also the ! default. _Example_: int main (int argc, char *argv[]) --- 3904,3924 ----  File: gfortran.info, Node: _gfortran_set_max_subrecord_length, Prev: _gfortran_set_fpe, Up: Non-Fortran Main Program ! 7.3.6 `_gfortran_set_max_subrecord_length' -- Set subrecord length ------------------------------------------------------------------ _Description_: ! `_gfortran_set_max_subrecord_length' set the maximum length for a subrecord. This option only makes sense for testing and debugging of unformatted I/O. _Syntax_: ! `void _gfortran_set_max_subrecord_length (int val)' _Arguments_: ! VAL the maximum length for a subrecord; the ! maximum permitted value is 2147483639, which ! is also the default. _Example_: int main (int argc, char *argv[]) *************** File: gfortran.info, Node: Naming conve *** 3922,3948 **** ------------------------ According the Fortran standard, valid Fortran names consist of a letter ! between 'A' to 'Z', 'a' to 'z', digits '0', '1' to '9' and underscores ! ('_') with the restriction that names may only start with a letter. As ! vendor extension, the dollar sign ('$') is additionally permitted with ! the option '-fdollar-ok', but not as first character and only if the target system supports it. By default, the procedure name is the lower-cased Fortran name with ! an appended underscore ('_'); using '-fno-underscoring' no underscore is ! appended while '-fsecond-underscore' appends two underscores. Depending ! on the target system and the calling convention, the procedure might be ! additionally dressed; for instance, on 32bit Windows with 'stdcall', an ! at-sign '@' followed by an integer number is appended. For the changing ! the calling convention, see *note GNU Fortran Compiler Directives::. ! For common blocks, the same convention is used, i.e. by default an underscore is appended to the lower-cased Fortran name. Blank commons ! have the name '__BLNK__'. For procedures and variables declared in the specification space of a ! module, the name is formed by '__', followed by the lower-cased module ! name, '_MOD_', and the lower-cased Fortran name. Note that no underscore is appended.  --- 3954,3981 ---- ------------------------ According the Fortran standard, valid Fortran names consist of a letter ! between `A' to `Z', `a' to `z', digits `0', `1' to `9' and underscores ! (`_') with the restriction that names may only start with a letter. As ! vendor extension, the dollar sign (`$') is additionally permitted with ! the option `-fdollar-ok', but not as first character and only if the target system supports it. By default, the procedure name is the lower-cased Fortran name with ! an appended underscore (`_'); using `-fno-underscoring' no underscore ! is appended while `-fsecond-underscore' appends two underscores. ! Depending on the target system and the calling convention, the ! procedure might be additionally dressed; for instance, on 32bit Windows ! with `stdcall', an at-sign `@' followed by an integer number is ! appended. For the changing the calling convention, see *note GNU ! Fortran Compiler Directives::. ! For common blocks, the same convention is used, i.e. by default an underscore is appended to the lower-cased Fortran name. Blank commons ! have the name `__BLNK__'. For procedures and variables declared in the specification space of a ! module, the name is formed by `__', followed by the lower-cased module ! name, `_MOD_', and the lower-cased Fortran name. Note that no underscore is appended.  *************** File: gfortran.info, Node: Argument pas *** 3951,4031 **** 7.4.2 Argument passing conventions ---------------------------------- ! Subroutines do not return a value (matching C99's 'void') while functions either return a value as specified in the platform ABI or the result variable is passed as hidden argument to the function and no result is returned. A hidden result variable is used when the result ! variable is an array or of type 'CHARACTER'. Arguments are passed according to the platform ABI. In particular, complex arguments might not be compatible to a struct with two real ! components for the real and imaginary part. The argument passing ! matches the one of C99's '_Complex'. Functions with scalar complex result variables return their value and do not use a by-reference ! argument. Note that with the '-ff2c' option, the argument passing is ! modified and no longer completely matches the platform ABI. Some other ! Fortran compilers use 'f2c' semantic by default; this might cause problems with interoperablility. ! GNU Fortran passes most arguments by reference, i.e. by passing a pointer to the data. Note that the compiler might use a temporary variable into which the actual argument has been copied, if required semantically (copy-in/copy-out). ! For arguments with 'ALLOCATABLE' and 'POINTER' attribute (including procedure pointers), a pointer to the pointer is passed such that the pointer address can be modified in the procedure. ! For dummy arguments with the 'VALUE' attribute: Scalar arguments of ! the type 'INTEGER', 'LOGICAL', 'REAL' and 'COMPLEX' are passed by value ! according to the platform ABI. (As vendor extension and not recommended, ! using '%VAL()' in the call to a procedure has the same effect.) For ! 'TYPE(C_PTR)' and procedure pointers, the pointer itself is passed such ! that it can be modified without affecting the caller. ! For Boolean ('LOGICAL') arguments, please note that GCC expects only ! the integer value 0 and 1. If a GNU Fortran 'LOGICAL' variable contains ! another integer value, the result is undefined. As some other Fortran ! compilers use -1 for '.TRUE.', extra care has to be taken - such as ! passing the value as 'INTEGER'. (The same value restriction also ! applies to other front ends of GCC, e.g. to GCC's C99 compiler for ! '_Bool' or GCC's Ada compiler for 'Boolean'.) ! For arguments of 'CHARACTER' type, the character length is passed as hidden argument. For deferred-length strings, the value is passed by reference, otherwise by value. The character length has the type ! 'INTEGER(kind=4)'. Note with C binding, 'CHARACTER(len=1)' result variables are returned according to the platform ABI and no hidden ! length argument is used for dummy arguments; with 'VALUE', those variables are passed by value. ! For 'OPTIONAL' dummy arguments, an absent argument is denoted by a ! NULL pointer, except for scalar dummy arguments of type 'INTEGER', ! 'LOGICAL', 'REAL' and 'COMPLEX' which have the 'VALUE' attribute. For ! those, a hidden Boolean argument ('logical(kind=C_bool),value') is used to indicate whether the argument is present. Arguments which are assumed-shape, assumed-rank or deferred-rank ! arrays or, with '-fcoarray=lib', allocatable scalar coarrays use an array descriptor. All other arrays pass the address of the first ! element of the array. With '-fcoarray=lib', the token and the offset belonging to nonallocatable coarrays dummy arguments are passed as hidden argument along the character length hidden arguments. The token is an oparque pointer identifying the coarray and the offset is a ! passed-by-value integer of kind 'C_PTRDIFF_T', denoting the byte offset between the base address of the coarray and the passed scalar or first element of the passed array. The arguments are passed in the following order * Result variable, when the function result is passed by reference * Character length of the function result, if it is a of type ! 'CHARACTER' and no C binding is used * The arguments in the order in which they appear in the Fortran declaration * The the present status for optional arguments with value attribute, which are internally passed by value * The character length and/or coarray token and offset for the first ! argument which is a 'CHARACTER' or a nonallocatable coarray dummy argument, followed by the hidden arguments of the next dummy argument of such a type --- 3984,4068 ---- 7.4.2 Argument passing conventions ---------------------------------- ! Subroutines do not return a value (matching C99's `void') while functions either return a value as specified in the platform ABI or the result variable is passed as hidden argument to the function and no result is returned. A hidden result variable is used when the result ! variable is an array or of type `CHARACTER'. Arguments are passed according to the platform ABI. In particular, complex arguments might not be compatible to a struct with two real ! components for the real and imaginary part. The argument passing ! matches the one of C99's `_Complex'. Functions with scalar complex result variables return their value and do not use a by-reference ! argument. Note that with the `-ff2c' option, the argument passing is ! modified and no longer completely matches the platform ABI. Some other ! Fortran compilers use `f2c' semantic by default; this might cause problems with interoperablility. ! GNU Fortran passes most arguments by reference, i.e. by passing a pointer to the data. Note that the compiler might use a temporary variable into which the actual argument has been copied, if required semantically (copy-in/copy-out). ! For arguments with `ALLOCATABLE' and `POINTER' attribute (including procedure pointers), a pointer to the pointer is passed such that the pointer address can be modified in the procedure. ! For dummy arguments with the `VALUE' attribute: Scalar arguments of ! the type `INTEGER', `LOGICAL', `REAL' and `COMPLEX' are passed by value ! according to the platform ABI. (As vendor extension and not ! recommended, using `%VAL()' in the call to a procedure has the same ! effect.) For `TYPE(C_PTR)' and procedure pointers, the pointer itself ! is passed such that it can be modified without affecting the caller. ! For Boolean (`LOGICAL') arguments, please note that GCC expects only ! the integer value 0 and 1. If a GNU Fortran `LOGICAL' variable ! contains another integer value, the result is undefined. As some other ! Fortran compilers use -1 for `.TRUE.', extra care has to be taken - ! such as passing the value as `INTEGER'. (The same value restriction ! also applies to other front ends of GCC, e.g. to GCC's C99 compiler for ! `_Bool' or GCC's Ada compiler for `Boolean'.) ! For arguments of `CHARACTER' type, the character length is passed as hidden argument. For deferred-length strings, the value is passed by reference, otherwise by value. The character length has the type ! `INTEGER(kind=4)'. Note with C binding, `CHARACTER(len=1)' result variables are returned according to the platform ABI and no hidden ! length argument is used for dummy arguments; with `VALUE', those variables are passed by value. ! For `OPTIONAL' dummy arguments, an absent argument is denoted by a ! NULL pointer, except for scalar dummy arguments of type `INTEGER', ! `LOGICAL', `REAL' and `COMPLEX' which have the `VALUE' attribute. For ! those, a hidden Boolean argument (`logical(kind=C_bool),value') is used to indicate whether the argument is present. Arguments which are assumed-shape, assumed-rank or deferred-rank ! arrays or, with `-fcoarray=lib', allocatable scalar coarrays use an array descriptor. All other arrays pass the address of the first ! element of the array. With `-fcoarray=lib', the token and the offset belonging to nonallocatable coarrays dummy arguments are passed as hidden argument along the character length hidden arguments. The token is an oparque pointer identifying the coarray and the offset is a ! passed-by-value integer of kind `C_PTRDIFF_T', denoting the byte offset between the base address of the coarray and the passed scalar or first element of the passed array. The arguments are passed in the following order * Result variable, when the function result is passed by reference + * Character length of the function result, if it is a of type ! `CHARACTER' and no C binding is used ! * The arguments in the order in which they appear in the Fortran declaration + * The the present status for optional arguments with value attribute, which are internally passed by value + * The character length and/or coarray token and offset for the first ! argument which is a `CHARACTER' or a nonallocatable coarray dummy argument, followed by the hidden arguments of the next dummy argument of such a type *************** File: gfortran.info, Node: Intrinsic Pr *** 4038,4299 **** * Menu: * Introduction: Introduction to Intrinsics ! * 'ABORT': ABORT, Abort the program ! * 'ABS': ABS, Absolute value ! * 'ACCESS': ACCESS, Checks file access modes ! * 'ACHAR': ACHAR, Character in ASCII collating sequence ! * 'ACOS': ACOS, Arccosine function ! * 'ACOSH': ACOSH, Inverse hyperbolic cosine function ! * 'ADJUSTL': ADJUSTL, Left adjust a string ! * 'ADJUSTR': ADJUSTR, Right adjust a string ! * 'AIMAG': AIMAG, Imaginary part of complex number ! * 'AINT': AINT, Truncate to a whole number ! * 'ALARM': ALARM, Set an alarm clock ! * 'ALL': ALL, Determine if all values are true ! * 'ALLOCATED': ALLOCATED, Status of allocatable entity ! * 'AND': AND, Bitwise logical AND ! * 'ANINT': ANINT, Nearest whole number ! * 'ANY': ANY, Determine if any values are true ! * 'ASIN': ASIN, Arcsine function ! * 'ASINH': ASINH, Inverse hyperbolic sine function ! * 'ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair ! * 'ATAN': ATAN, Arctangent function ! * 'ATAN2': ATAN2, Arctangent function ! * 'ATANH': ATANH, Inverse hyperbolic tangent function ! * 'ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically ! * 'ATOMIC_REF': ATOMIC_REF, Obtaining the value of a variable atomically ! * 'BACKTRACE': BACKTRACE, Show a backtrace ! * 'BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0 ! * 'BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1 ! * 'BESSEL_JN': BESSEL_JN, Bessel function of the first kind ! * 'BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0 ! * 'BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1 ! * 'BESSEL_YN': BESSEL_YN, Bessel function of the second kind ! * 'BGE': BGE, Bitwise greater than or equal to ! * 'BGT': BGT, Bitwise greater than ! * 'BIT_SIZE': BIT_SIZE, Bit size inquiry function ! * 'BLE': BLE, Bitwise less than or equal to ! * 'BLT': BLT, Bitwise less than ! * 'BTEST': BTEST, Bit test function ! * 'C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer ! * 'C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer ! * 'C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer ! * 'C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure ! * 'C_LOC': C_LOC, Obtain the C address of an object ! * 'C_SIZEOF': C_SIZEOF, Size in bytes of an expression ! * 'CEILING': CEILING, Integer ceiling function ! * 'CHAR': CHAR, Integer-to-character conversion function ! * 'CHDIR': CHDIR, Change working directory ! * 'CHMOD': CHMOD, Change access permissions of files ! * 'CMPLX': CMPLX, Complex conversion function ! * 'COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments ! * 'COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler ! * 'COMPILER_VERSION': COMPILER_VERSION, Compiler version string ! * 'COMPLEX': COMPLEX, Complex conversion function ! * 'CONJG': CONJG, Complex conjugate function ! * 'COS': COS, Cosine function ! * 'COSH': COSH, Hyperbolic cosine function ! * 'COUNT': COUNT, Count occurrences of TRUE in an array ! * 'CPU_TIME': CPU_TIME, CPU time subroutine ! * 'CSHIFT': CSHIFT, Circular shift elements of an array ! * 'CTIME': CTIME, Subroutine (or function) to convert a time into a string ! * 'DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine ! * 'DBLE': DBLE, Double precision conversion function ! * 'DCMPLX': DCMPLX, Double complex conversion function ! * 'DIGITS': DIGITS, Significant digits function ! * 'DIM': DIM, Positive difference ! * 'DOT_PRODUCT': DOT_PRODUCT, Dot product function ! * 'DPROD': DPROD, Double product function ! * 'DREAL': DREAL, Double real part function ! * 'DSHIFTL': DSHIFTL, Combined left shift ! * 'DSHIFTR': DSHIFTR, Combined right shift ! * 'DTIME': DTIME, Execution time subroutine (or function) ! * 'EOSHIFT': EOSHIFT, End-off shift elements of an array ! * 'EPSILON': EPSILON, Epsilon function ! * 'ERF': ERF, Error function ! * 'ERFC': ERFC, Complementary error function ! * 'ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function ! * 'ETIME': ETIME, Execution time subroutine (or function) ! * 'EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command ! * 'EXIT': EXIT, Exit the program with status. ! * 'EXP': EXP, Exponential function ! * 'EXPONENT': EXPONENT, Exponent function ! * 'EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension ! * 'FDATE': FDATE, Subroutine (or function) to get the current time as a string ! * 'FGET': FGET, Read a single character in stream mode from stdin ! * 'FGETC': FGETC, Read a single character in stream mode ! * 'FLOOR': FLOOR, Integer floor function ! * 'FLUSH': FLUSH, Flush I/O unit(s) ! * 'FNUM': FNUM, File number function ! * 'FPUT': FPUT, Write a single character in stream mode to stdout ! * 'FPUTC': FPUTC, Write a single character in stream mode ! * 'FRACTION': FRACTION, Fractional part of the model representation ! * 'FREE': FREE, Memory de-allocation subroutine ! * 'FSEEK': FSEEK, Low level file positioning subroutine ! * 'FSTAT': FSTAT, Get file status ! * 'FTELL': FTELL, Current stream position ! * 'GAMMA': GAMMA, Gamma function ! * 'GERROR': GERROR, Get last system error message ! * 'GETARG': GETARG, Get command line arguments ! * 'GET_COMMAND': GET_COMMAND, Get the entire command line ! * 'GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments ! * 'GETCWD': GETCWD, Get current working directory ! * 'GETENV': GETENV, Get an environmental variable ! * 'GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable ! * 'GETGID': GETGID, Group ID function ! * 'GETLOG': GETLOG, Get login name ! * 'GETPID': GETPID, Process ID function ! * 'GETUID': GETUID, User ID function ! * 'GMTIME': GMTIME, Convert time to GMT info ! * 'HOSTNM': HOSTNM, Get system host name ! * 'HUGE': HUGE, Largest number of a kind ! * 'HYPOT': HYPOT, Euclidean distance function ! * 'IACHAR': IACHAR, Code in ASCII collating sequence ! * 'IALL': IALL, Bitwise AND of array elements ! * 'IAND': IAND, Bitwise logical and ! * 'IANY': IANY, Bitwise OR of array elements ! * 'IARGC': IARGC, Get the number of command line arguments ! * 'IBCLR': IBCLR, Clear bit ! * 'IBITS': IBITS, Bit extraction ! * 'IBSET': IBSET, Set bit ! * 'ICHAR': ICHAR, Character-to-integer conversion function ! * 'IDATE': IDATE, Current local time (day/month/year) ! * 'IEOR': IEOR, Bitwise logical exclusive or ! * 'IERRNO': IERRNO, Function to get the last system error number ! * 'IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion ! * 'INDEX': INDEX intrinsic, Position of a substring within a string ! * 'INT': INT, Convert to integer type ! * 'INT2': INT2, Convert to 16-bit integer type ! * 'INT8': INT8, Convert to 64-bit integer type ! * 'IOR': IOR, Bitwise logical or ! * 'IPARITY': IPARITY, Bitwise XOR of array elements ! * 'IRAND': IRAND, Integer pseudo-random number ! * 'IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value ! * 'IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value ! * 'ISATTY': ISATTY, Whether a unit is a terminal device ! * 'ISHFT': ISHFT, Shift bits ! * 'ISHFTC': ISHFTC, Shift bits circularly ! * 'ISNAN': ISNAN, Tests for a NaN ! * 'ITIME': ITIME, Current local time (hour/minutes/seconds) ! * 'KILL': KILL, Send a signal to a process ! * 'KIND': KIND, Kind of an entity ! * 'LBOUND': LBOUND, Lower dimension bounds of an array ! * 'LCOBOUND': LCOBOUND, Lower codimension bounds of an array ! * 'LEADZ': LEADZ, Number of leading zero bits of an integer ! * 'LEN': LEN, Length of a character entity ! * 'LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters ! * 'LGE': LGE, Lexical greater than or equal ! * 'LGT': LGT, Lexical greater than ! * 'LINK': LINK, Create a hard link ! * 'LLE': LLE, Lexical less than or equal ! * 'LLT': LLT, Lexical less than ! * 'LNBLNK': LNBLNK, Index of the last non-blank character in a string ! * 'LOC': LOC, Returns the address of a variable ! * 'LOG': LOG, Logarithm function ! * 'LOG10': LOG10, Base 10 logarithm function ! * 'LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function ! * 'LOGICAL': LOGICAL, Convert to logical type ! * 'LONG': LONG, Convert to integer type ! * 'LSHIFT': LSHIFT, Left shift bits ! * 'LSTAT': LSTAT, Get file status ! * 'LTIME': LTIME, Convert time to local time info ! * 'MALLOC': MALLOC, Dynamic memory allocation function ! * 'MASKL': MASKL, Left justified mask ! * 'MASKR': MASKR, Right justified mask ! * 'MATMUL': MATMUL, matrix multiplication ! * 'MAX': MAX, Maximum value of an argument list ! * 'MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind ! * 'MAXLOC': MAXLOC, Location of the maximum value within an array ! * 'MAXVAL': MAXVAL, Maximum value of an array ! * 'MCLOCK': MCLOCK, Time function ! * 'MCLOCK8': MCLOCK8, Time function (64-bit) ! * 'MERGE': MERGE, Merge arrays ! * 'MERGE_BITS': MERGE_BITS, Merge of bits under mask ! * 'MIN': MIN, Minimum value of an argument list ! * 'MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind ! * 'MINLOC': MINLOC, Location of the minimum value within an array ! * 'MINVAL': MINVAL, Minimum value of an array ! * 'MOD': MOD, Remainder function ! * 'MODULO': MODULO, Modulo function ! * 'MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another ! * 'MVBITS': MVBITS, Move bits from one integer to another ! * 'NEAREST': NEAREST, Nearest representable number ! * 'NEW_LINE': NEW_LINE, New line character ! * 'NINT': NINT, Nearest whole number ! * 'NORM2': NORM2, Euclidean vector norm ! * 'NOT': NOT, Logical negation ! * 'NULL': NULL, Function that returns an disassociated pointer ! * 'NUM_IMAGES': NUM_IMAGES, Number of images ! * 'OR': OR, Bitwise logical OR ! * 'PACK': PACK, Pack an array into an array of rank one ! * 'PARITY': PARITY, Reduction with exclusive OR ! * 'PERROR': PERROR, Print system error message ! * 'POPCNT': POPCNT, Number of bits set ! * 'POPPAR': POPPAR, Parity of the number of bits set ! * 'PRECISION': PRECISION, Decimal precision of a real kind ! * 'PRESENT': PRESENT, Determine whether an optional dummy argument is specified ! * 'PRODUCT': PRODUCT, Product of array elements ! * 'RADIX': RADIX, Base of a data model ! * 'RAN': RAN, Real pseudo-random number ! * 'RAND': RAND, Real pseudo-random number ! * 'RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number ! * 'RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence ! * 'RANGE': RANGE, Decimal exponent range ! * 'RANK' : RANK, Rank of a data object ! * 'REAL': REAL, Convert to real type ! * 'RENAME': RENAME, Rename a file ! * 'REPEAT': REPEAT, Repeated string concatenation ! * 'RESHAPE': RESHAPE, Function to reshape an array ! * 'RRSPACING': RRSPACING, Reciprocal of the relative spacing ! * 'RSHIFT': RSHIFT, Right shift bits ! * 'SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality ! * 'SCALE': SCALE, Scale a real value ! * 'SCAN': SCAN, Scan a string for the presence of a set of characters ! * 'SECNDS': SECNDS, Time function ! * 'SECOND': SECOND, CPU time function ! * 'SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind ! * 'SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind ! * 'SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind ! * 'SET_EXPONENT': SET_EXPONENT, Set the exponent of the model ! * 'SHAPE': SHAPE, Determine the shape of an array ! * 'SHIFTA': SHIFTA, Right shift with fill ! * 'SHIFTL': SHIFTL, Left shift ! * 'SHIFTR': SHIFTR, Right shift ! * 'SIGN': SIGN, Sign copying function ! * 'SIGNAL': SIGNAL, Signal handling subroutine (or function) ! * 'SIN': SIN, Sine function ! * 'SINH': SINH, Hyperbolic sine function ! * 'SIZE': SIZE, Function to determine the size of an array ! * 'SIZEOF': SIZEOF, Determine the size in bytes of an expression ! * 'SLEEP': SLEEP, Sleep for the specified number of seconds ! * 'SPACING': SPACING, Smallest distance between two numbers of a given type ! * 'SPREAD': SPREAD, Add a dimension to an array ! * 'SQRT': SQRT, Square-root function ! * 'SRAND': SRAND, Reinitialize the random number generator ! * 'STAT': STAT, Get file status ! * 'STORAGE_SIZE': STORAGE_SIZE, Storage size in bits ! * 'SUM': SUM, Sum of array elements ! * 'SYMLNK': SYMLNK, Create a symbolic link ! * 'SYSTEM': SYSTEM, Execute a shell command ! * 'SYSTEM_CLOCK': SYSTEM_CLOCK, Time function ! * 'TAN': TAN, Tangent function ! * 'TANH': TANH, Hyperbolic tangent function ! * 'THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image ! * 'TIME': TIME, Time function ! * 'TIME8': TIME8, Time function (64-bit) ! * 'TINY': TINY, Smallest positive number of a real kind ! * 'TRAILZ': TRAILZ, Number of trailing zero bits of an integer ! * 'TRANSFER': TRANSFER, Transfer bit patterns ! * 'TRANSPOSE': TRANSPOSE, Transpose an array of rank two ! * 'TRIM': TRIM, Remove trailing blank characters of a string ! * 'TTYNAM': TTYNAM, Get the name of a terminal device. ! * 'UBOUND': UBOUND, Upper dimension bounds of an array ! * 'UCOBOUND': UCOBOUND, Upper codimension bounds of an array ! * 'UMASK': UMASK, Set the file creation mask ! * 'UNLINK': UNLINK, Remove a file from the file system ! * 'UNPACK': UNPACK, Unpack an array of rank one into an array ! * 'VERIFY': VERIFY, Scan a string for the absence of a set of characters ! * 'XOR': XOR, Bitwise logical exclusive or  File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures --- 4075,4336 ---- * Menu: * Introduction: Introduction to Intrinsics ! * `ABORT': ABORT, Abort the program ! * `ABS': ABS, Absolute value ! * `ACCESS': ACCESS, Checks file access modes ! * `ACHAR': ACHAR, Character in ASCII collating sequence ! * `ACOS': ACOS, Arccosine function ! * `ACOSH': ACOSH, Inverse hyperbolic cosine function ! * `ADJUSTL': ADJUSTL, Left adjust a string ! * `ADJUSTR': ADJUSTR, Right adjust a string ! * `AIMAG': AIMAG, Imaginary part of complex number ! * `AINT': AINT, Truncate to a whole number ! * `ALARM': ALARM, Set an alarm clock ! * `ALL': ALL, Determine if all values are true ! * `ALLOCATED': ALLOCATED, Status of allocatable entity ! * `AND': AND, Bitwise logical AND ! * `ANINT': ANINT, Nearest whole number ! * `ANY': ANY, Determine if any values are true ! * `ASIN': ASIN, Arcsine function ! * `ASINH': ASINH, Inverse hyperbolic sine function ! * `ASSOCIATED': ASSOCIATED, Status of a pointer or pointer/target pair ! * `ATAN': ATAN, Arctangent function ! * `ATAN2': ATAN2, Arctangent function ! * `ATANH': ATANH, Inverse hyperbolic tangent function ! * `ATOMIC_DEFINE': ATOMIC_DEFINE, Setting a variable atomically ! * `ATOMIC_REF': ATOMIC_REF, Obtaining the value of a variable atomically ! * `BACKTRACE': BACKTRACE, Show a backtrace ! * `BESSEL_J0': BESSEL_J0, Bessel function of the first kind of order 0 ! * `BESSEL_J1': BESSEL_J1, Bessel function of the first kind of order 1 ! * `BESSEL_JN': BESSEL_JN, Bessel function of the first kind ! * `BESSEL_Y0': BESSEL_Y0, Bessel function of the second kind of order 0 ! * `BESSEL_Y1': BESSEL_Y1, Bessel function of the second kind of order 1 ! * `BESSEL_YN': BESSEL_YN, Bessel function of the second kind ! * `BGE': BGE, Bitwise greater than or equal to ! * `BGT': BGT, Bitwise greater than ! * `BIT_SIZE': BIT_SIZE, Bit size inquiry function ! * `BLE': BLE, Bitwise less than or equal to ! * `BLT': BLT, Bitwise less than ! * `BTEST': BTEST, Bit test function ! * `C_ASSOCIATED': C_ASSOCIATED, Status of a C pointer ! * `C_F_POINTER': C_F_POINTER, Convert C into Fortran pointer ! * `C_F_PROCPOINTER': C_F_PROCPOINTER, Convert C into Fortran procedure pointer ! * `C_FUNLOC': C_FUNLOC, Obtain the C address of a procedure ! * `C_LOC': C_LOC, Obtain the C address of an object ! * `C_SIZEOF': C_SIZEOF, Size in bytes of an expression ! * `CEILING': CEILING, Integer ceiling function ! * `CHAR': CHAR, Integer-to-character conversion function ! * `CHDIR': CHDIR, Change working directory ! * `CHMOD': CHMOD, Change access permissions of files ! * `CMPLX': CMPLX, Complex conversion function ! * `COMMAND_ARGUMENT_COUNT': COMMAND_ARGUMENT_COUNT, Get number of command line arguments ! * `COMPILER_OPTIONS': COMPILER_OPTIONS, Options passed to the compiler ! * `COMPILER_VERSION': COMPILER_VERSION, Compiler version string ! * `COMPLEX': COMPLEX, Complex conversion function ! * `CONJG': CONJG, Complex conjugate function ! * `COS': COS, Cosine function ! * `COSH': COSH, Hyperbolic cosine function ! * `COUNT': COUNT, Count occurrences of TRUE in an array ! * `CPU_TIME': CPU_TIME, CPU time subroutine ! * `CSHIFT': CSHIFT, Circular shift elements of an array ! * `CTIME': CTIME, Subroutine (or function) to convert a time into a string ! * `DATE_AND_TIME': DATE_AND_TIME, Date and time subroutine ! * `DBLE': DBLE, Double precision conversion function ! * `DCMPLX': DCMPLX, Double complex conversion function ! * `DIGITS': DIGITS, Significant digits function ! * `DIM': DIM, Positive difference ! * `DOT_PRODUCT': DOT_PRODUCT, Dot product function ! * `DPROD': DPROD, Double product function ! * `DREAL': DREAL, Double real part function ! * `DSHIFTL': DSHIFTL, Combined left shift ! * `DSHIFTR': DSHIFTR, Combined right shift ! * `DTIME': DTIME, Execution time subroutine (or function) ! * `EOSHIFT': EOSHIFT, End-off shift elements of an array ! * `EPSILON': EPSILON, Epsilon function ! * `ERF': ERF, Error function ! * `ERFC': ERFC, Complementary error function ! * `ERFC_SCALED': ERFC_SCALED, Exponentially-scaled complementary error function ! * `ETIME': ETIME, Execution time subroutine (or function) ! * `EXECUTE_COMMAND_LINE': EXECUTE_COMMAND_LINE, Execute a shell command ! * `EXIT': EXIT, Exit the program with status. ! * `EXP': EXP, Exponential function ! * `EXPONENT': EXPONENT, Exponent function ! * `EXTENDS_TYPE_OF': EXTENDS_TYPE_OF, Query dynamic type for extension ! * `FDATE': FDATE, Subroutine (or function) to get the current time as a string ! * `FGET': FGET, Read a single character in stream mode from stdin ! * `FGETC': FGETC, Read a single character in stream mode ! * `FLOOR': FLOOR, Integer floor function ! * `FLUSH': FLUSH, Flush I/O unit(s) ! * `FNUM': FNUM, File number function ! * `FPUT': FPUT, Write a single character in stream mode to stdout ! * `FPUTC': FPUTC, Write a single character in stream mode ! * `FRACTION': FRACTION, Fractional part of the model representation ! * `FREE': FREE, Memory de-allocation subroutine ! * `FSEEK': FSEEK, Low level file positioning subroutine ! * `FSTAT': FSTAT, Get file status ! * `FTELL': FTELL, Current stream position ! * `GAMMA': GAMMA, Gamma function ! * `GERROR': GERROR, Get last system error message ! * `GETARG': GETARG, Get command line arguments ! * `GET_COMMAND': GET_COMMAND, Get the entire command line ! * `GET_COMMAND_ARGUMENT': GET_COMMAND_ARGUMENT, Get command line arguments ! * `GETCWD': GETCWD, Get current working directory ! * `GETENV': GETENV, Get an environmental variable ! * `GET_ENVIRONMENT_VARIABLE': GET_ENVIRONMENT_VARIABLE, Get an environmental variable ! * `GETGID': GETGID, Group ID function ! * `GETLOG': GETLOG, Get login name ! * `GETPID': GETPID, Process ID function ! * `GETUID': GETUID, User ID function ! * `GMTIME': GMTIME, Convert time to GMT info ! * `HOSTNM': HOSTNM, Get system host name ! * `HUGE': HUGE, Largest number of a kind ! * `HYPOT': HYPOT, Euclidean distance function ! * `IACHAR': IACHAR, Code in ASCII collating sequence ! * `IALL': IALL, Bitwise AND of array elements ! * `IAND': IAND, Bitwise logical and ! * `IANY': IANY, Bitwise OR of array elements ! * `IARGC': IARGC, Get the number of command line arguments ! * `IBCLR': IBCLR, Clear bit ! * `IBITS': IBITS, Bit extraction ! * `IBSET': IBSET, Set bit ! * `ICHAR': ICHAR, Character-to-integer conversion function ! * `IDATE': IDATE, Current local time (day/month/year) ! * `IEOR': IEOR, Bitwise logical exclusive or ! * `IERRNO': IERRNO, Function to get the last system error number ! * `IMAGE_INDEX': IMAGE_INDEX, Cosubscript to image index conversion ! * `INDEX': INDEX intrinsic, Position of a substring within a string ! * `INT': INT, Convert to integer type ! * `INT2': INT2, Convert to 16-bit integer type ! * `INT8': INT8, Convert to 64-bit integer type ! * `IOR': IOR, Bitwise logical or ! * `IPARITY': IPARITY, Bitwise XOR of array elements ! * `IRAND': IRAND, Integer pseudo-random number ! * `IS_IOSTAT_END': IS_IOSTAT_END, Test for end-of-file value ! * `IS_IOSTAT_EOR': IS_IOSTAT_EOR, Test for end-of-record value ! * `ISATTY': ISATTY, Whether a unit is a terminal device ! * `ISHFT': ISHFT, Shift bits ! * `ISHFTC': ISHFTC, Shift bits circularly ! * `ISNAN': ISNAN, Tests for a NaN ! * `ITIME': ITIME, Current local time (hour/minutes/seconds) ! * `KILL': KILL, Send a signal to a process ! * `KIND': KIND, Kind of an entity ! * `LBOUND': LBOUND, Lower dimension bounds of an array ! * `LCOBOUND': LCOBOUND, Lower codimension bounds of an array ! * `LEADZ': LEADZ, Number of leading zero bits of an integer ! * `LEN': LEN, Length of a character entity ! * `LEN_TRIM': LEN_TRIM, Length of a character entity without trailing blank characters ! * `LGE': LGE, Lexical greater than or equal ! * `LGT': LGT, Lexical greater than ! * `LINK': LINK, Create a hard link ! * `LLE': LLE, Lexical less than or equal ! * `LLT': LLT, Lexical less than ! * `LNBLNK': LNBLNK, Index of the last non-blank character in a string ! * `LOC': LOC, Returns the address of a variable ! * `LOG': LOG, Logarithm function ! * `LOG10': LOG10, Base 10 logarithm function ! * `LOG_GAMMA': LOG_GAMMA, Logarithm of the Gamma function ! * `LOGICAL': LOGICAL, Convert to logical type ! * `LONG': LONG, Convert to integer type ! * `LSHIFT': LSHIFT, Left shift bits ! * `LSTAT': LSTAT, Get file status ! * `LTIME': LTIME, Convert time to local time info ! * `MALLOC': MALLOC, Dynamic memory allocation function ! * `MASKL': MASKL, Left justified mask ! * `MASKR': MASKR, Right justified mask ! * `MATMUL': MATMUL, matrix multiplication ! * `MAX': MAX, Maximum value of an argument list ! * `MAXEXPONENT': MAXEXPONENT, Maximum exponent of a real kind ! * `MAXLOC': MAXLOC, Location of the maximum value within an array ! * `MAXVAL': MAXVAL, Maximum value of an array ! * `MCLOCK': MCLOCK, Time function ! * `MCLOCK8': MCLOCK8, Time function (64-bit) ! * `MERGE': MERGE, Merge arrays ! * `MERGE_BITS': MERGE_BITS, Merge of bits under mask ! * `MIN': MIN, Minimum value of an argument list ! * `MINEXPONENT': MINEXPONENT, Minimum exponent of a real kind ! * `MINLOC': MINLOC, Location of the minimum value within an array ! * `MINVAL': MINVAL, Minimum value of an array ! * `MOD': MOD, Remainder function ! * `MODULO': MODULO, Modulo function ! * `MOVE_ALLOC': MOVE_ALLOC, Move allocation from one object to another ! * `MVBITS': MVBITS, Move bits from one integer to another ! * `NEAREST': NEAREST, Nearest representable number ! * `NEW_LINE': NEW_LINE, New line character ! * `NINT': NINT, Nearest whole number ! * `NORM2': NORM2, Euclidean vector norm ! * `NOT': NOT, Logical negation ! * `NULL': NULL, Function that returns an disassociated pointer ! * `NUM_IMAGES': NUM_IMAGES, Number of images ! * `OR': OR, Bitwise logical OR ! * `PACK': PACK, Pack an array into an array of rank one ! * `PARITY': PARITY, Reduction with exclusive OR ! * `PERROR': PERROR, Print system error message ! * `POPCNT': POPCNT, Number of bits set ! * `POPPAR': POPPAR, Parity of the number of bits set ! * `PRECISION': PRECISION, Decimal precision of a real kind ! * `PRESENT': PRESENT, Determine whether an optional dummy argument is specified ! * `PRODUCT': PRODUCT, Product of array elements ! * `RADIX': RADIX, Base of a data model ! * `RAN': RAN, Real pseudo-random number ! * `RAND': RAND, Real pseudo-random number ! * `RANDOM_NUMBER': RANDOM_NUMBER, Pseudo-random number ! * `RANDOM_SEED': RANDOM_SEED, Initialize a pseudo-random number sequence ! * `RANGE': RANGE, Decimal exponent range ! * `RANK' : RANK, Rank of a data object ! * `REAL': REAL, Convert to real type ! * `RENAME': RENAME, Rename a file ! * `REPEAT': REPEAT, Repeated string concatenation ! * `RESHAPE': RESHAPE, Function to reshape an array ! * `RRSPACING': RRSPACING, Reciprocal of the relative spacing ! * `RSHIFT': RSHIFT, Right shift bits ! * `SAME_TYPE_AS': SAME_TYPE_AS, Query dynamic types for equality ! * `SCALE': SCALE, Scale a real value ! * `SCAN': SCAN, Scan a string for the presence of a set of characters ! * `SECNDS': SECNDS, Time function ! * `SECOND': SECOND, CPU time function ! * `SELECTED_CHAR_KIND': SELECTED_CHAR_KIND, Choose character kind ! * `SELECTED_INT_KIND': SELECTED_INT_KIND, Choose integer kind ! * `SELECTED_REAL_KIND': SELECTED_REAL_KIND, Choose real kind ! * `SET_EXPONENT': SET_EXPONENT, Set the exponent of the model ! * `SHAPE': SHAPE, Determine the shape of an array ! * `SHIFTA': SHIFTA, Right shift with fill ! * `SHIFTL': SHIFTL, Left shift ! * `SHIFTR': SHIFTR, Right shift ! * `SIGN': SIGN, Sign copying function ! * `SIGNAL': SIGNAL, Signal handling subroutine (or function) ! * `SIN': SIN, Sine function ! * `SINH': SINH, Hyperbolic sine function ! * `SIZE': SIZE, Function to determine the size of an array ! * `SIZEOF': SIZEOF, Determine the size in bytes of an expression ! * `SLEEP': SLEEP, Sleep for the specified number of seconds ! * `SPACING': SPACING, Smallest distance between two numbers of a given type ! * `SPREAD': SPREAD, Add a dimension to an array ! * `SQRT': SQRT, Square-root function ! * `SRAND': SRAND, Reinitialize the random number generator ! * `STAT': STAT, Get file status ! * `STORAGE_SIZE': STORAGE_SIZE, Storage size in bits ! * `SUM': SUM, Sum of array elements ! * `SYMLNK': SYMLNK, Create a symbolic link ! * `SYSTEM': SYSTEM, Execute a shell command ! * `SYSTEM_CLOCK': SYSTEM_CLOCK, Time function ! * `TAN': TAN, Tangent function ! * `TANH': TANH, Hyperbolic tangent function ! * `THIS_IMAGE': THIS_IMAGE, Cosubscript index of this image ! * `TIME': TIME, Time function ! * `TIME8': TIME8, Time function (64-bit) ! * `TINY': TINY, Smallest positive number of a real kind ! * `TRAILZ': TRAILZ, Number of trailing zero bits of an integer ! * `TRANSFER': TRANSFER, Transfer bit patterns ! * `TRANSPOSE': TRANSPOSE, Transpose an array of rank two ! * `TRIM': TRIM, Remove trailing blank characters of a string ! * `TTYNAM': TTYNAM, Get the name of a terminal device. ! * `UBOUND': UBOUND, Upper dimension bounds of an array ! * `UCOBOUND': UCOBOUND, Upper codimension bounds of an array ! * `UMASK': UMASK, Set the file creation mask ! * `UNLINK': UNLINK, Remove a file from the file system ! * `UNPACK': UNPACK, Unpack an array of rank one into an array ! * `VERIFY': VERIFY, Scan a string for the absence of a set of characters ! * `XOR': XOR, Bitwise logical exclusive or  File: gfortran.info, Node: Introduction to Intrinsics, Next: ABORT, Up: Intrinsic Procedures *************** either the Fortran 95 standard, the Fort *** 4310,4353 **** 2008 standard is unintentional, and the standard(s) should be considered authoritative. ! The enumeration of the 'KIND' type parameter is processor defined in the Fortran 95 standard. GNU Fortran defines the default integer type ! and default real type by 'INTEGER(KIND=4)' and 'REAL(KIND=4)', respectively. The standard mandates that both data types shall have another kind, which have more precision. On typical target ! architectures supported by 'gfortran', this kind type parameter is ! 'KIND=8'. Hence, 'REAL(KIND=8)' and 'DOUBLE PRECISION' are equivalent. In the description of generic intrinsic procedures, the kind type ! parameter will be specified by 'KIND=*', and in the description of specific names for an intrinsic procedure the kind type parameter will ! be explicitly given (e.g., 'REAL(KIND=4)' or 'REAL(KIND=8)'). Finally, ! for brevity the optional 'KIND=' syntax will be omitted. Many of the intrinsic procedures take one or more optional arguments. This document follows the convention used in the Fortran 95 standard, and denotes such arguments by square brackets. ! GNU Fortran offers the '-std=f95' and '-std=gnu' options, which can ! be used to restrict the set of intrinsic procedures to a given standard. ! By default, 'gfortran' sets the '-std=gnu' option, and so all intrinsic ! procedures described here are accepted. There is one caveat. For a ! select group of intrinsic procedures, 'g77' implemented both a function ! and a subroutine. Both classes have been implemented in 'gfortran' for ! backwards compatibility with 'g77'. It is noted here that these ! functions and subroutines cannot be intermixed in a given subprogram. ! In the descriptions that follow, the applicable standard for each ! intrinsic procedure is noted.  File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures ! 8.2 'ABORT' -- Abort the program ================================ _Description_: ! 'ABORT' causes immediate termination of the program. On operating ! systems that support a core dump, 'ABORT' will produce a core dump. ! It will also print a backtrace, unless '-fno-backtrace' is given. _Standard_: GNU extension --- 4347,4390 ---- 2008 standard is unintentional, and the standard(s) should be considered authoritative. ! The enumeration of the `KIND' type parameter is processor defined in the Fortran 95 standard. GNU Fortran defines the default integer type ! and default real type by `INTEGER(KIND=4)' and `REAL(KIND=4)', respectively. The standard mandates that both data types shall have another kind, which have more precision. On typical target ! architectures supported by `gfortran', this kind type parameter is ! `KIND=8'. Hence, `REAL(KIND=8)' and `DOUBLE PRECISION' are equivalent. In the description of generic intrinsic procedures, the kind type ! parameter will be specified by `KIND=*', and in the description of specific names for an intrinsic procedure the kind type parameter will ! be explicitly given (e.g., `REAL(KIND=4)' or `REAL(KIND=8)'). Finally, ! for brevity the optional `KIND=' syntax will be omitted. Many of the intrinsic procedures take one or more optional arguments. This document follows the convention used in the Fortran 95 standard, and denotes such arguments by square brackets. ! GNU Fortran offers the `-std=f95' and `-std=gnu' options, which can ! be used to restrict the set of intrinsic procedures to a given ! standard. By default, `gfortran' sets the `-std=gnu' option, and so ! all intrinsic procedures described here are accepted. There is one ! caveat. For a select group of intrinsic procedures, `g77' implemented ! both a function and a subroutine. Both classes have been implemented ! in `gfortran' for backwards compatibility with `g77'. It is noted here ! that these functions and subroutines cannot be intermixed in a given ! subprogram. In the descriptions that follow, the applicable standard ! for each intrinsic procedure is noted.  File: gfortran.info, Node: ABORT, Next: ABS, Prev: Introduction to Intrinsics, Up: Intrinsic Procedures ! 8.2 `ABORT' -- Abort the program ================================ _Description_: ! `ABORT' causes immediate termination of the program. On operating ! systems that support a core dump, `ABORT' will produce a core dump. ! It will also print a backtrace, unless `-fno-backtrace' is given. _Standard_: GNU extension *************** _Class_: *** 4356,4362 **** Subroutine _Syntax_: ! 'CALL ABORT' _Return value_: Does not return. --- 4393,4399 ---- Subroutine _Syntax_: ! `CALL ABORT' _Return value_: Does not return. *************** _Example_: *** 4370,4383 **** _See also_: *note EXIT::, *note KILL::, *note BACKTRACE::  File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures ! 8.3 'ABS' -- Absolute value =========================== _Description_: ! 'ABS(A)' computes the absolute value of 'A'. _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 4407,4421 ---- _See also_: *note EXIT::, *note KILL::, *note BACKTRACE:: +  File: gfortran.info, Node: ABS, Next: ACCESS, Prev: ABORT, Up: Intrinsic Procedures ! 8.3 `ABS' -- Absolute value =========================== _Description_: ! `ABS(A)' computes the absolute value of `A'. _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 4386,4400 **** Elemental function _Syntax_: ! 'RESULT = ABS(A)' _Arguments_: ! A The type of the argument shall be an 'INTEGER', ! 'REAL', or 'COMPLEX'. _Return value_: The return value is of the same type and kind as the argument ! except the return value is 'REAL' for a 'COMPLEX' argument. _Example_: program test_abs --- 4424,4438 ---- Elemental function _Syntax_: ! `RESULT = ABS(A)' _Arguments_: ! A The type of the argument shall be an `INTEGER', ! `REAL', or `COMPLEX'. _Return value_: The return value is of the same type and kind as the argument ! except the return value is `REAL' for a `COMPLEX' argument. _Example_: program test_abs *************** _Example_: *** 4407,4436 **** end program test_abs _Specific names_: ! Name Argument Return type Standard ! 'ABS(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and ! later ! 'CABS(A)' 'COMPLEX(4) 'REAL(4)' Fortran 77 and ! A' later ! 'DABS(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and ! later ! 'IABS(A)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! A' later ! 'ZABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! A' ! 'CDABS(A)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! A'  File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures ! 8.4 'ACCESS' -- Checks file access modes ======================================== _Description_: ! 'ACCESS(NAME, MODE)' checks whether the file NAME exists, is ! readable, writable or executable. Except for the executable check, ! 'ACCESS' can be replaced by Fortran 95's 'INQUIRE'. _Standard_: GNU extension --- 4445,4474 ---- end program test_abs _Specific names_: ! Name Argument Return type Standard ! `ABS(A)' `REAL(4) A' `REAL(4)' Fortran 77 and ! later ! `CABS(A)' `COMPLEX(4) `REAL(4)' Fortran 77 and ! A' later ! `DABS(A)' `REAL(8) A' `REAL(8)' Fortran 77 and ! later ! `IABS(A)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! A' later ! `ZABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! A' ! `CDABS(A)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! A'  File: gfortran.info, Node: ACCESS, Next: ACHAR, Prev: ABS, Up: Intrinsic Procedures ! 8.4 `ACCESS' -- Checks file access modes ======================================== _Description_: ! `ACCESS(NAME, MODE)' checks whether the file NAME exists, is ! readable, writable or executable. Except for the executable check, ! `ACCESS' can be replaced by Fortran 95's `INQUIRE'. _Standard_: GNU extension *************** _Class_: *** 4439,4461 **** Inquiry function _Syntax_: ! 'RESULT = ACCESS(NAME, MODE)' _Arguments_: ! NAME Scalar 'CHARACTER' of default kind with the file ! name. Tailing blank are ignored unless the ! character 'achar(0)' is present, then all ! characters up to and excluding 'achar(0)' are ! used as file name. ! MODE Scalar 'CHARACTER' of default kind with the file ! access mode, may be any concatenation of '"r"' ! (readable), '"w"' (writable) and '"x"' ! (executable), or '" "' to check for existence. _Return value_: ! Returns a scalar 'INTEGER', which is '0' if the file is accessible in the given mode; otherwise or if an invalid argument has been ! given for 'MODE' the value '1' is returned. _Example_: program access_test --- 4477,4499 ---- Inquiry function _Syntax_: ! `RESULT = ACCESS(NAME, MODE)' _Arguments_: ! NAME Scalar `CHARACTER' of default kind with the ! file name. Tailing blank are ignored unless ! the character `achar(0)' is present, then all ! characters up to and excluding `achar(0)' are ! used as file name. ! MODE Scalar `CHARACTER' of default kind with the ! file access mode, may be any concatenation of ! `"r"' (readable), `"w"' (writable) and `"x"' ! (executable), or `" "' to check for existence. _Return value_: ! Returns a scalar `INTEGER', which is `0' if the file is accessible in the given mode; otherwise or if an invalid argument has been ! given for `MODE' the value `1' is returned. _Example_: program access_test *************** _Example_: *** 4469,4485 **** if(access(file2,'rwx') == 0) & print *, trim(file2),' is readable, writable and executable' end program access_test _Specific names_: _See also_:  File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures ! 8.5 'ACHAR' -- Character in ASCII collating sequence ==================================================== _Description_: ! 'ACHAR(I)' returns the character located at position 'I' in the ASCII collating sequence. _Standard_: --- 4507,4525 ---- if(access(file2,'rwx') == 0) & print *, trim(file2),' is readable, writable and executable' end program access_test + _Specific names_: + _See also_:  File: gfortran.info, Node: ACHAR, Next: ACOS, Prev: ACCESS, Up: Intrinsic Procedures ! 8.5 `ACHAR' -- Character in ASCII collating sequence ==================================================== _Description_: ! `ACHAR(I)' returns the character located at position `I' in the ASCII collating sequence. _Standard_: *************** _Class_: *** 4489,4504 **** Elemental function _Syntax_: ! 'RESULT = ACHAR(I [, KIND])' _Arguments_: ! I The type shall be 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'CHARACTER' with a length of one. If the KIND argument is present, the return value is of the specified kind and of the default kind otherwise. --- 4529,4544 ---- Elemental function _Syntax_: ! `RESULT = ACHAR(I [, KIND])' _Arguments_: ! I The type shall be `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `CHARACTER' with a length of one. If the KIND argument is present, the return value is of the specified kind and of the default kind otherwise. *************** _Note_: *** 4515,4528 **** _See also_: *note CHAR::, *note IACHAR::, *note ICHAR::  File: gfortran.info, Node: ACOS, Next: ACOSH, Prev: ACHAR, Up: Intrinsic Procedures ! 8.6 'ACOS' -- Arccosine function ================================ _Description_: ! 'ACOS(X)' computes the arccosine of X (inverse of 'COS(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 4555,4569 ---- _See also_: *note CHAR::, *note IACHAR::, *note ICHAR:: +  File: gfortran.info, Node: ACOS, Next: ACOSH, Prev: ACHAR, Up: Intrinsic Procedures ! 8.6 `ACOS' -- Arccosine function ================================ _Description_: ! `ACOS(X)' computes the arccosine of X (inverse of `COS(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 4531,4542 **** Elemental function _Syntax_: ! 'RESULT = ACOS(X)' _Arguments_: ! X The type shall either be 'REAL' with a magnitude ! that is less than or equal to one - or the type ! shall be 'COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part --- 4572,4583 ---- Elemental function _Syntax_: ! `RESULT = ACOS(X)' _Arguments_: ! X The type shall either be `REAL' with a ! magnitude that is less than or equal to one - ! or the type shall be `COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part *************** _Example_: *** 4550,4572 **** end program test_acos _Specific names_: ! Name Argument Return type Standard ! 'ACOS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DACOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note COS::  File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOS, Up: Intrinsic Procedures ! 8.7 'ACOSH' -- Inverse hyperbolic cosine function ================================================= _Description_: ! 'ACOSH(X)' computes the inverse hyperbolic cosine of X. _Standard_: Fortran 2008 and later --- 4591,4614 ---- end program test_acos _Specific names_: ! Name Argument Return type Standard ! `ACOS(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DACOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note COS:: +  File: gfortran.info, Node: ACOSH, Next: ADJUSTL, Prev: ACOS, Up: Intrinsic Procedures ! 8.7 `ACOSH' -- Inverse hyperbolic cosine function ================================================= _Description_: ! `ACOSH(X)' computes the inverse hyperbolic cosine of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 4575,4588 **** Elemental function _Syntax_: ! 'RESULT = ACOSH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has the same type and kind as X. If X is complex, ! the imaginary part of the result is in radians and lies between 0 \leq \Im \acosh(x) \leq \pi. _Example_: --- 4617,4630 ---- Elemental function _Syntax_: ! `RESULT = ACOSH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has the same type and kind as X. If X is complex, ! the imaginary part of the result is in radians and lies between 0 \leq \Im \acosh(x) \leq \pi. _Example_: *************** _Example_: *** 4592,4599 **** END PROGRAM _Specific names_: ! Name Argument Return type Standard ! 'DACOSH(X)' 'REAL(8) X' 'REAL(8)' GNU extension _See also_: Inverse function: *note COSH:: --- 4634,4641 ---- END PROGRAM _Specific names_: ! Name Argument Return type Standard ! `DACOSH(X)' `REAL(8) X' `REAL(8)' GNU extension _See also_: Inverse function: *note COSH:: *************** _See also_: *** 4601,4611 ****  File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures ! 8.8 'ADJUSTL' -- Left adjust a string ===================================== _Description_: ! 'ADJUSTL(STRING)' will left adjust a string by removing leading spaces. Spaces are inserted at the end of the string as needed. _Standard_: --- 4643,4653 ----  File: gfortran.info, Node: ADJUSTL, Next: ADJUSTR, Prev: ACOSH, Up: Intrinsic Procedures ! 8.8 `ADJUSTL' -- Left adjust a string ===================================== _Description_: ! `ADJUSTL(STRING)' will left adjust a string by removing leading spaces. Spaces are inserted at the end of the string as needed. _Standard_: *************** _Class_: *** 4615,4627 **** Elemental function _Syntax_: ! 'RESULT = ADJUSTL(STRING)' _Arguments_: ! STRING The type shall be 'CHARACTER'. _Return value_: ! The return value is of type 'CHARACTER' and of the same kind as STRING where leading spaces are removed and the same number of spaces are inserted on the end of STRING. --- 4657,4669 ---- Elemental function _Syntax_: ! `RESULT = ADJUSTL(STRING)' _Arguments_: ! STRING The type shall be `CHARACTER'. _Return value_: ! The return value is of type `CHARACTER' and of the same kind as STRING where leading spaces are removed and the same number of spaces are inserted on the end of STRING. *************** _See also_: *** 4638,4648 ****  File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures ! 8.9 'ADJUSTR' -- Right adjust a string ====================================== _Description_: ! 'ADJUSTR(STRING)' will right adjust a string by removing trailing spaces. Spaces are inserted at the start of the string as needed. _Standard_: --- 4680,4690 ----  File: gfortran.info, Node: ADJUSTR, Next: AIMAG, Prev: ADJUSTL, Up: Intrinsic Procedures ! 8.9 `ADJUSTR' -- Right adjust a string ====================================== _Description_: ! `ADJUSTR(STRING)' will right adjust a string by removing trailing spaces. Spaces are inserted at the start of the string as needed. _Standard_: *************** _Class_: *** 4652,4664 **** Elemental function _Syntax_: ! 'RESULT = ADJUSTR(STRING)' _Arguments_: ! STR The type shall be 'CHARACTER'. _Return value_: ! The return value is of type 'CHARACTER' and of the same kind as STRING where trailing spaces are removed and the same number of spaces are inserted at the start of STRING. --- 4694,4706 ---- Elemental function _Syntax_: ! `RESULT = ADJUSTR(STRING)' _Arguments_: ! STR The type shall be `CHARACTER'. _Return value_: ! The return value is of type `CHARACTER' and of the same kind as STRING where trailing spaces are removed and the same number of spaces are inserted at the start of STRING. *************** _See also_: *** 4675,4687 ****  File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures ! 8.10 'AIMAG' -- Imaginary part of complex number ================================================ _Description_: ! 'AIMAG(Z)' yields the imaginary part of complex argument 'Z'. The ! 'IMAG(Z)' and 'IMAGPART(Z)' intrinsic functions are provided for ! compatibility with 'g77', and their use in new code is strongly discouraged. _Standard_: --- 4717,4729 ----  File: gfortran.info, Node: AIMAG, Next: AINT, Prev: ADJUSTR, Up: Intrinsic Procedures ! 8.10 `AIMAG' -- Imaginary part of complex number ================================================ _Description_: ! `AIMAG(Z)' yields the imaginary part of complex argument `Z'. The ! `IMAG(Z)' and `IMAGPART(Z)' intrinsic functions are provided for ! compatibility with `g77', and their use in new code is strongly discouraged. _Standard_: *************** _Class_: *** 4691,4703 **** Elemental function _Syntax_: ! 'RESULT = AIMAG(Z)' _Arguments_: ! Z The type of the argument shall be 'COMPLEX'. _Return value_: ! The return value is of type 'REAL' with the kind type parameter of the argument. _Example_: --- 4733,4745 ---- Elemental function _Syntax_: ! `RESULT = AIMAG(Z)' _Arguments_: ! Z The type of the argument shall be `COMPLEX'. _Return value_: ! The return value is of type `REAL' with the kind type parameter of the argument. _Example_: *************** _Example_: *** 4710,4730 **** end program test_aimag _Specific names_: ! Name Argument Return type Standard ! 'AIMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension ! 'DIMAG(Z)' 'COMPLEX(8) 'REAL(8)' GNU extension ! Z' ! 'IMAG(Z)' 'COMPLEX Z' 'REAL' GNU extension ! 'IMAGPART(Z)' 'COMPLEX Z' 'REAL' GNU extension  File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures ! 8.11 'AINT' -- Truncate to a whole number ========================================= _Description_: ! 'AINT(A [, KIND])' truncates its argument to a whole number. _Standard_: Fortran 77 and later --- 4752,4772 ---- end program test_aimag _Specific names_: ! Name Argument Return type Standard ! `AIMAG(Z)' `COMPLEX Z' `REAL' GNU extension ! `DIMAG(Z)' `COMPLEX(8) `REAL(8)' GNU extension ! Z' ! `IMAG(Z)' `COMPLEX Z' `REAL' GNU extension ! `IMAGPART(Z)' `COMPLEX Z' `REAL' GNU extension  File: gfortran.info, Node: AINT, Next: ALARM, Prev: AIMAG, Up: Intrinsic Procedures ! 8.11 `AINT' -- Truncate to a whole number ========================================= _Description_: ! `AINT(A [, KIND])' truncates its argument to a whole number. _Standard_: Fortran 77 and later *************** _Class_: *** 4733,4751 **** Elemental function _Syntax_: ! 'RESULT = AINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'REAL' with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If the magnitude of X is ! less than one, 'AINT(X)' returns zero. If the magnitude is equal to or greater than one then it returns the largest whole number that does not exceed its magnitude. The sign is the same as the sign of X. --- 4775,4793 ---- Elemental function _Syntax_: ! `RESULT = AINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `REAL' with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If the magnitude of X is ! less than one, `AINT(X)' returns zero. If the magnitude is equal to or greater than one then it returns the largest whole number that does not exceed its magnitude. The sign is the same as the sign of X. *************** _Example_: *** 4761,4785 **** end program test_aint _Specific names_: ! Name Argument Return type Standard ! 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and ! later ! 'DINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures ! 8.12 'ALARM' -- Execute a routine after a given delay ===================================================== _Description_: ! 'ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine ! HANDLER to be executed after a delay of SECONDS by using 'alarm(2)' ! to set up a signal and 'signal(2)' to catch it. If STATUS is ! supplied, it will be returned with the number of seconds remaining ! until any previously scheduled alarm was due to be delivered, or ! zero if there was no previously scheduled alarm. _Standard_: GNU extension --- 4803,4827 ---- end program test_aint _Specific names_: ! Name Argument Return type Standard ! `AINT(A)' `REAL(4) A' `REAL(4)' Fortran 77 and ! later ! `DINT(A)' `REAL(8) A' `REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ALARM, Next: ALL, Prev: AINT, Up: Intrinsic Procedures ! 8.12 `ALARM' -- Execute a routine after a given delay ===================================================== _Description_: ! `ALARM(SECONDS, HANDLER [, STATUS])' causes external subroutine ! HANDLER to be executed after a delay of SECONDS by using ! `alarm(2)' to set up a signal and `signal(2)' to catch it. If ! STATUS is supplied, it will be returned with the number of seconds ! remaining until any previously scheduled alarm was due to be ! delivered, or zero if there was no previously scheduled alarm. _Standard_: GNU extension *************** _Class_: *** 4788,4806 **** Subroutine _Syntax_: ! 'CALL ALARM(SECONDS, HANDLER [, STATUS])' _Arguments_: ! SECONDS The type of the argument shall be a scalar ! 'INTEGER'. It is 'INTENT(IN)'. ! HANDLER Signal handler ('INTEGER FUNCTION' or ! 'SUBROUTINE') or dummy/global 'INTEGER' scalar. ! The scalar values may be either 'SIG_IGN=1' to ! ignore the alarm generated or 'SIG_DFL=0' to set ! the default action. It is 'INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar variable of ! the default 'INTEGER' kind. It is ! 'INTENT(OUT)'. _Example_: program test_alarm --- 4830,4849 ---- Subroutine _Syntax_: ! `CALL ALARM(SECONDS, HANDLER [, STATUS])' _Arguments_: ! SECONDS The type of the argument shall be a scalar ! `INTEGER'. It is `INTENT(IN)'. ! HANDLER Signal handler (`INTEGER FUNCTION' or ! `SUBROUTINE') or dummy/global `INTEGER' ! scalar. The scalar values may be either ! `SIG_IGN=1' to ignore the alarm generated or ! `SIG_DFL=0' to set the default action. It is ! `INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar variable ! of the default `INTEGER' kind. It is ! `INTENT(OUT)'. _Example_: program test_alarm *************** _Example_: *** 4816,4826 ****  File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures ! 8.13 'ALL' -- All values in MASK along DIM are true =================================================== _Description_: ! 'ALL(MASK [, DIM])' determines if all the values are true in MASK in the array along dimension DIM. _Standard_: --- 4859,4869 ----  File: gfortran.info, Node: ALL, Next: ALLOCATED, Prev: ALARM, Up: Intrinsic Procedures ! 8.13 `ALL' -- All values in MASK along DIM are true =================================================== _Description_: ! `ALL(MASK [, DIM])' determines if all the values are true in MASK in the array along dimension DIM. _Standard_: *************** _Class_: *** 4830,4858 **** Transformational function _Syntax_: ! 'RESULT = ALL(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be 'LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with a ! value that lies between one and the rank of ! MASK. _Return value_: ! 'ALL(MASK)' returns a scalar value of type 'LOGICAL' where the kind ! type parameter is the same as the kind type parameter of MASK. If ! DIM is present, then 'ALL(MASK, DIM)' returns an array with the ! rank of MASK minus 1. The shape is determined from the shape of ! MASK where the DIM dimension is elided. ! (A) ! 'ALL(MASK)' is true if all elements of MASK are true. It also ! is true if MASK has zero size; otherwise, it is false. ! (B) ! If the rank of MASK is one, then 'ALL(MASK,DIM)' is equivalent ! to 'ALL(MASK)'. If the rank is greater than one, then ! 'ALL(MASK,DIM)' is determined by applying 'ALL' to the array sections. _Example_: --- 4873,4902 ---- Transformational function _Syntax_: ! `RESULT = ALL(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be `LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with ! a value that lies between one and the rank of ! MASK. _Return value_: ! `ALL(MASK)' returns a scalar value of type `LOGICAL' where the ! kind type parameter is the same as the kind type parameter of ! MASK. If DIM is present, then `ALL(MASK, DIM)' returns an array ! with the rank of MASK minus 1. The shape is determined from the ! shape of MASK where the DIM dimension is elided. ! (A) ! `ALL(MASK)' is true if all elements of MASK are true. It ! also is true if MASK has zero size; otherwise, it is false. ! ! (B) ! If the rank of MASK is one, then `ALL(MASK,DIM)' is equivalent ! to `ALL(MASK)'. If the rank is greater than one, then ! `ALL(MASK,DIM)' is determined by applying `ALL' to the array sections. _Example_: *************** _Example_: *** 4875,4906 ****  File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures ! 8.14 'ALLOCATED' -- Status of an allocatable entity =================================================== _Description_: ! 'ALLOCATED(ARRAY)' and 'ALLOCATED(SCALAR)' check the allocation status of ARRAY and SCALAR, respectively. _Standard_: ! Fortran 95 and later. Note, the 'SCALAR=' keyword and allocatable scalar entities are available in Fortran 2003 and later. _Class_: Inquiry function _Syntax_: ! 'RESULT = ALLOCATED(ARRAY)' ! 'RESULT = ALLOCATED(SCALAR)' _Arguments_: ! ARRAY The argument shall be an 'ALLOCATABLE' array. ! SCALAR The argument shall be an 'ALLOCATABLE' scalar. _Return value_: ! The return value is a scalar 'LOGICAL' with the default logical ! kind type parameter. If the argument is allocated, then the result ! is '.TRUE.'; otherwise, it returns '.FALSE.' _Example_: program test_allocated --- 4919,4950 ----  File: gfortran.info, Node: ALLOCATED, Next: AND, Prev: ALL, Up: Intrinsic Procedures ! 8.14 `ALLOCATED' -- Status of an allocatable entity =================================================== _Description_: ! `ALLOCATED(ARRAY)' and `ALLOCATED(SCALAR)' check the allocation status of ARRAY and SCALAR, respectively. _Standard_: ! Fortran 95 and later. Note, the `SCALAR=' keyword and allocatable scalar entities are available in Fortran 2003 and later. _Class_: Inquiry function _Syntax_: ! `RESULT = ALLOCATED(ARRAY)' ! `RESULT = ALLOCATED(SCALAR)' _Arguments_: ! ARRAY The argument shall be an `ALLOCATABLE' array. ! SCALAR The argument shall be an `ALLOCATABLE' scalar. _Return value_: ! The return value is a scalar `LOGICAL' with the default logical ! kind type parameter. If the argument is allocated, then the ! result is `.TRUE.'; otherwise, it returns `.FALSE.' _Example_: program test_allocated *************** _Example_: *** 4912,4922 ****  File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures ! 8.15 'AND' -- Bitwise logical AND ================================= _Description_: ! Bitwise logical 'AND'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider --- 4956,4966 ----  File: gfortran.info, Node: AND, Next: ANINT, Prev: ALLOCATED, Up: Intrinsic Procedures ! 8.15 `AND' -- Bitwise logical AND ================================= _Description_: ! Bitwise logical `AND'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider *************** _Class_: *** 4930,4947 **** Function _Syntax_: ! 'RESULT = AND(I, J)' _Arguments_: ! I The type shall be either a scalar 'INTEGER' type ! or a scalar 'LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'. ! If the kind type parameters differ, then the smaller kind type is ! implicitly converted to larger kind, and the return has the larger ! kind. _Example_: PROGRAM test_and --- 4974,4991 ---- Function _Syntax_: ! `RESULT = AND(I, J)' _Arguments_: ! I The type shall be either a scalar `INTEGER' ! type or a scalar `LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar `INTEGER' or a scalar ! `LOGICAL'. If the kind type parameters differ, then the smaller ! kind type is implicitly converted to larger kind, and the return ! has the larger kind. _Example_: PROGRAM test_and *************** _See also_: *** 4959,4969 ****  File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures ! 8.16 'ANINT' -- Nearest whole number ==================================== _Description_: ! 'ANINT(A [, KIND])' rounds its argument to the nearest whole number. _Standard_: --- 5003,5013 ----  File: gfortran.info, Node: ANINT, Next: ANY, Prev: AND, Up: Intrinsic Procedures ! 8.16 `ANINT' -- Nearest whole number ==================================== _Description_: ! `ANINT(A [, KIND])' rounds its argument to the nearest whole number. _Standard_: *************** _Class_: *** 4973,4992 **** Elemental function _Syntax_: ! 'RESULT = ANINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: The return value is of type real with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If A is greater than zero, ! 'ANINT(A)' returns 'AINT(X+0.5)'. If A is less than or equal to ! zero then it returns 'AINT(X-0.5)'. _Example_: program test_anint --- 5017,5036 ---- Elemental function _Syntax_: ! `RESULT = ANINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: The return value is of type real with the kind type parameter of the argument if the optional KIND is absent; otherwise, the kind type parameter will be given by KIND. If A is greater than zero, ! `ANINT(A)' returns `AINT(X+0.5)'. If A is less than or equal to ! zero then it returns `AINT(X-0.5)'. _Example_: program test_anint *************** _Example_: *** 4999,5019 **** end program test_anint _Specific names_: ! Name Argument Return type Standard ! 'AINT(A)' 'REAL(4) A' 'REAL(4)' Fortran 77 and ! later ! 'DNINT(A)' 'REAL(8) A' 'REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures ! 8.17 'ANY' -- Any value in MASK along DIM is true ================================================= _Description_: ! 'ANY(MASK [, DIM])' determines if any of the values in the logical ! array MASK along dimension DIM are '.TRUE.'. _Standard_: Fortran 95 and later --- 5043,5063 ---- end program test_anint _Specific names_: ! Name Argument Return type Standard ! `AINT(A)' `REAL(4) A' `REAL(4)' Fortran 77 and ! later ! `DNINT(A)' `REAL(8) A' `REAL(8)' Fortran 77 and ! later  File: gfortran.info, Node: ANY, Next: ASIN, Prev: ANINT, Up: Intrinsic Procedures ! 8.17 `ANY' -- Any value in MASK along DIM is true ================================================= _Description_: ! `ANY(MASK [, DIM])' determines if any of the values in the logical ! array MASK along dimension DIM are `.TRUE.'. _Standard_: Fortran 95 and later *************** _Class_: *** 5022,5050 **** Transformational function _Syntax_: ! 'RESULT = ANY(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be 'LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with a ! value that lies between one and the rank of ! MASK. _Return value_: ! 'ANY(MASK)' returns a scalar value of type 'LOGICAL' where the kind ! type parameter is the same as the kind type parameter of MASK. If ! DIM is present, then 'ANY(MASK, DIM)' returns an array with the ! rank of MASK minus 1. The shape is determined from the shape of ! MASK where the DIM dimension is elided. ! (A) ! 'ANY(MASK)' is true if any element of MASK is true; otherwise, ! it is false. It also is false if MASK has zero size. ! (B) ! If the rank of MASK is one, then 'ANY(MASK,DIM)' is equivalent ! to 'ANY(MASK)'. If the rank is greater than one, then ! 'ANY(MASK,DIM)' is determined by applying 'ANY' to the array sections. _Example_: --- 5066,5096 ---- Transformational function _Syntax_: ! `RESULT = ANY(MASK [, DIM])' _Arguments_: ! MASK The type of the argument shall be `LOGICAL' and ! it shall not be scalar. ! DIM (Optional) DIM shall be a scalar integer with ! a value that lies between one and the rank of ! MASK. _Return value_: ! `ANY(MASK)' returns a scalar value of type `LOGICAL' where the ! kind type parameter is the same as the kind type parameter of ! MASK. If DIM is present, then `ANY(MASK, DIM)' returns an array ! with the rank of MASK minus 1. The shape is determined from the ! shape of MASK where the DIM dimension is elided. ! (A) ! `ANY(MASK)' is true if any element of MASK is true; ! otherwise, it is false. It also is false if MASK has zero ! size. ! ! (B) ! If the rank of MASK is one, then `ANY(MASK,DIM)' is equivalent ! to `ANY(MASK)'. If the rank is greater than one, then ! `ANY(MASK,DIM)' is determined by applying `ANY' to the array sections. _Example_: *************** _Example_: *** 5067,5077 ****  File: gfortran.info, Node: ASIN, Next: ASINH, Prev: ANY, Up: Intrinsic Procedures ! 8.18 'ASIN' -- Arcsine function =============================== _Description_: ! 'ASIN(X)' computes the arcsine of its X (inverse of 'SIN(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 5113,5123 ----  File: gfortran.info, Node: ASIN, Next: ASINH, Prev: ANY, Up: Intrinsic Procedures ! 8.18 `ASIN' -- Arcsine function =============================== _Description_: ! `ASIN(X)' computes the arcsine of its X (inverse of `SIN(X)'). _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 5080,5091 **** Elemental function _Syntax_: ! 'RESULT = ASIN(X)' _Arguments_: ! X The type shall be either 'REAL' and a magnitude ! that is less than or equal to one - or be ! 'COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part --- 5126,5137 ---- Elemental function _Syntax_: ! `RESULT = ASIN(X)' _Arguments_: ! X The type shall be either `REAL' and a ! magnitude that is less than or equal to one - ! or be `COMPLEX'. _Return value_: The return value is of the same type and kind as X. The real part *************** _Example_: *** 5099,5121 **** end program test_asin _Specific names_: ! Name Argument Return type Standard ! 'ASIN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DASIN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note SIN::  File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIN, Up: Intrinsic Procedures ! 8.19 'ASINH' -- Inverse hyperbolic sine function ================================================ _Description_: ! 'ASINH(X)' computes the inverse hyperbolic sine of X. _Standard_: Fortran 2008 and later --- 5145,5168 ---- end program test_asin _Specific names_: ! Name Argument Return type Standard ! `ASIN(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DASIN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note SIN:: +  File: gfortran.info, Node: ASINH, Next: ASSOCIATED, Prev: ASIN, Up: Intrinsic Procedures ! 8.19 `ASINH' -- Inverse hyperbolic sine function ================================================ _Description_: ! `ASINH(X)' computes the inverse hyperbolic sine of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 5124,5136 **** Elemental function _Syntax_: ! 'RESULT = ASINH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \asinh(x) \leq \pi/2. --- 5171,5183 ---- Elemental function _Syntax_: ! `RESULT = ASINH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \asinh(x) \leq \pi/2. *************** _Example_: *** 5141,5148 **** END PROGRAM _Specific names_: ! Name Argument Return type Standard ! 'DASINH(X)' 'REAL(8) X' 'REAL(8)' GNU extension. _See also_: Inverse function: *note SINH:: --- 5188,5195 ---- END PROGRAM _Specific names_: ! Name Argument Return type Standard ! `DASINH(X)' `REAL(8) X' `REAL(8)' GNU extension. _See also_: Inverse function: *note SINH:: *************** _See also_: *** 5150,5160 ****  File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures ! 8.20 'ASSOCIATED' -- Status of a pointer or pointer/target pair =============================================================== _Description_: ! 'ASSOCIATED(POINTER [, TARGET])' determines the status of the pointer POINTER or if POINTER is associated with the target TARGET. _Standard_: --- 5197,5207 ----  File: gfortran.info, Node: ASSOCIATED, Next: ATAN, Prev: ASINH, Up: Intrinsic Procedures ! 8.20 `ASSOCIATED' -- Status of a pointer or pointer/target pair =============================================================== _Description_: ! `ASSOCIATED(POINTER [, TARGET])' determines the status of the pointer POINTER or if POINTER is associated with the target TARGET. _Standard_: *************** _Class_: *** 5164,5202 **** Inquiry function _Syntax_: ! 'RESULT = ASSOCIATED(POINTER [, TARGET])' _Arguments_: ! POINTER POINTER shall have the 'POINTER' attribute and ! it can be of any type. ! TARGET (Optional) TARGET shall be a pointer or a ! target. It must have the same type, kind type ! parameter, and array rank as POINTER. The association status of neither POINTER nor TARGET shall be undefined. _Return value_: ! 'ASSOCIATED(POINTER)' returns a scalar value of type 'LOGICAL(4)'. There are several cases: ! (A) When the optional TARGET is not present then ! 'ASSOCIATED(POINTER)' is true if POINTER is associated with a target; otherwise, it returns false. ! (B) If TARGET is present and a scalar target, the result is true if TARGET is not a zero-sized storage sequence and the target associated with POINTER occupies the same storage units. If POINTER is disassociated, the result is false. ! (C) If TARGET is present and an array target, the result is true if TARGET and POINTER have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, and TARGET and POINTER occupy the same storage units in array element order. As in case(B), the result is false, if POINTER is disassociated. ! (D) If TARGET is present and an scalar pointer, the result is true if TARGET is associated with POINTER, the target associated with TARGET are not zero-sized storage sequences and occupy ! the same storage units. The result is false, if either TARGET ! or POINTER is disassociated. ! (E) If TARGET is present and an array pointer, the result is true if target associated with POINTER and the target associated with TARGET have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, --- 5211,5253 ---- Inquiry function _Syntax_: ! `RESULT = ASSOCIATED(POINTER [, TARGET])' _Arguments_: ! POINTER POINTER shall have the `POINTER' attribute and ! it can be of any type. ! TARGET (Optional) TARGET shall be a pointer or a ! target. It must have the same type, kind type ! parameter, and array rank as POINTER. The association status of neither POINTER nor TARGET shall be undefined. _Return value_: ! `ASSOCIATED(POINTER)' returns a scalar value of type `LOGICAL(4)'. There are several cases: ! (A) When the optional TARGET is not present then ! `ASSOCIATED(POINTER)' is true if POINTER is associated with a target; otherwise, it returns false. ! ! (B) If TARGET is present and a scalar target, the result is true if TARGET is not a zero-sized storage sequence and the target associated with POINTER occupies the same storage units. If POINTER is disassociated, the result is false. ! ! (C) If TARGET is present and an array target, the result is true if TARGET and POINTER have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, and TARGET and POINTER occupy the same storage units in array element order. As in case(B), the result is false, if POINTER is disassociated. ! ! (D) If TARGET is present and an scalar pointer, the result is true if TARGET is associated with POINTER, the target associated with TARGET are not zero-sized storage sequences and occupy ! the same storage units. The result is false, if either ! TARGET or POINTER is disassociated. ! ! (E) If TARGET is present and an array pointer, the result is true if target associated with POINTER and the target associated with TARGET have the same shape, are not zero-sized arrays, are arrays whose elements are not zero-sized storage sequences, *************** _See also_: *** 5220,5230 ****  File: gfortran.info, Node: ATAN, Next: ATAN2, Prev: ASSOCIATED, Up: Intrinsic Procedures ! 8.21 'ATAN' -- Arctangent function ================================== _Description_: ! 'ATAN(X)' computes the arctangent of X. _Standard_: Fortran 77 and later, for a complex argument and for two arguments --- 5271,5281 ----  File: gfortran.info, Node: ATAN, Next: ATAN2, Prev: ASSOCIATED, Up: Intrinsic Procedures ! 8.21 `ATAN' -- Arctangent function ================================== _Description_: ! `ATAN(X)' computes the arctangent of X. _Standard_: Fortran 77 and later, for a complex argument and for two arguments *************** _Class_: *** 5234,5254 **** Elemental function _Syntax_: ! 'RESULT = ATAN(X)' ! 'RESULT = ATAN(Y, X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'; if Y is ! present, X shall be REAL. ! Y shall ! be of the ! same type ! and kind ! as X. _Return value_: The return value is of the same type and kind as X. If Y is ! present, the result is identical to 'ATAN2(Y,X)'. Otherwise, it the arcus tangent of X, where the real part of the result is in radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2. --- 5285,5305 ---- Elemental function _Syntax_: ! `RESULT = ATAN(X)' ! `RESULT = ATAN(Y, X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'; if Y is ! present, X shall be REAL. ! Y shall ! be of the ! same type ! and kind ! as X. _Return value_: The return value is of the same type and kind as X. If Y is ! present, the result is identical to `ATAN2(Y,X)'. Otherwise, it the arcus tangent of X, where the real part of the result is in radians and lies in the range -\pi/2 \leq \Re \atan(x) \leq \pi/2. *************** _Example_: *** 5259,5283 **** end program test_atan _Specific names_: ! Name Argument Return type Standard ! 'ATAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DATAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note TAN::  File: gfortran.info, Node: ATAN2, Next: ATANH, Prev: ATAN, Up: Intrinsic Procedures ! 8.22 'ATAN2' -- Arctangent function =================================== _Description_: ! 'ATAN2(Y, X)' computes the principal value of the argument function ! of the complex number X + i Y. This function can be used to ! transform from Cartesian into polar coordinates and allows to determine the angle in the correct quadrant. _Standard_: --- 5310,5335 ---- end program test_atan _Specific names_: ! Name Argument Return type Standard ! `ATAN(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DATAN(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note TAN:: +  File: gfortran.info, Node: ATAN2, Next: ATANH, Prev: ATAN, Up: Intrinsic Procedures ! 8.22 `ATAN2' -- Arctangent function =================================== _Description_: ! `ATAN2(Y, X)' computes the principal value of the argument ! function of the complex number X + i Y. This function can be used ! to transform from Cartesian into polar coordinates and allows to determine the angle in the correct quadrant. _Standard_: *************** _Class_: *** 5287,5303 **** Elemental function _Syntax_: ! 'RESULT = ATAN2(Y, X)' _Arguments_: ! Y The type shall be 'REAL'. ! X The type and kind type parameter shall be the ! same as Y. If Y is zero, then X must be ! nonzero. _Return value_: ! The return value has the same type and kind type parameter as Y. ! It is the principal value of the complex number X + i Y. If X is nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi. The sign is positive if Y is positive. If Y is zero, then the return value is zero if X is strictly positive, \pi if X is --- 5339,5355 ---- Elemental function _Syntax_: ! `RESULT = ATAN2(Y, X)' _Arguments_: ! Y The type shall be `REAL'. ! X The type and kind type parameter shall be the ! same as Y. If Y is zero, then X must be ! nonzero. _Return value_: ! The return value has the same type and kind type parameter as Y. It ! is the principal value of the complex number X + i Y. If X is nonzero, then it lies in the range -\pi \le \atan (x) \leq \pi. The sign is positive if Y is positive. If Y is zero, then the return value is zero if X is strictly positive, \pi if X is *************** _Example_: *** 5312,5331 **** end program test_atan2 _Specific names_: ! Name Argument Return type Standard ! 'ATAN2(X, 'REAL(4) X, 'REAL(4)' Fortran 77 and ! Y)' Y' later ! 'DATAN2(X, 'REAL(8) X, 'REAL(8)' Fortran 77 and ! Y)' Y' later  File: gfortran.info, Node: ATANH, Next: ATOMIC_DEFINE, Prev: ATAN2, Up: Intrinsic Procedures ! 8.23 'ATANH' -- Inverse hyperbolic tangent function =================================================== _Description_: ! 'ATANH(X)' computes the inverse hyperbolic tangent of X. _Standard_: Fortran 2008 and later --- 5364,5383 ---- end program test_atan2 _Specific names_: ! Name Argument Return type Standard ! `ATAN2(X, `REAL(4) X, `REAL(4)' Fortran 77 and ! Y)' Y' later ! `DATAN2(X, `REAL(8) X, `REAL(8)' Fortran 77 and ! Y)' Y' later  File: gfortran.info, Node: ATANH, Next: ATOMIC_DEFINE, Prev: ATAN2, Up: Intrinsic Procedures ! 8.23 `ATANH' -- Inverse hyperbolic tangent function =================================================== _Description_: ! `ATANH(X)' computes the inverse hyperbolic tangent of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 5334,5346 **** Elemental function _Syntax_: ! 'RESULT = ATANH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \atanh(x) \leq \pi/2. --- 5386,5398 ---- Elemental function _Syntax_: ! `RESULT = ATANH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the imaginary part of the result is in radians and lies between -\pi/2 \leq \Im \atanh(x) \leq \pi/2. *************** _Example_: *** 5351,5358 **** END PROGRAM _Specific names_: ! Name Argument Return type Standard ! 'DATANH(X)' 'REAL(8) X' 'REAL(8)' GNU extension _See also_: Inverse function: *note TANH:: --- 5403,5410 ---- END PROGRAM _Specific names_: ! Name Argument Return type Standard ! `DATANH(X)' `REAL(8) X' `REAL(8)' GNU extension _See also_: Inverse function: *note TANH:: *************** _See also_: *** 5360,5370 ****  File: gfortran.info, Node: ATOMIC_DEFINE, Next: ATOMIC_REF, Prev: ATANH, Up: Intrinsic Procedures ! 8.24 'ATOMIC_DEFINE' -- Setting a variable atomically ===================================================== _Description_: ! 'ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the value VALUE atomically. _Standard_: --- 5412,5422 ----  File: gfortran.info, Node: ATOMIC_DEFINE, Next: ATOMIC_REF, Prev: ATANH, Up: Intrinsic Procedures ! 8.24 `ATOMIC_DEFINE' -- Setting a variable atomically ===================================================== _Description_: ! `ATOMIC_DEFINE(ATOM, VALUE)' defines the variable ATOM with the value VALUE atomically. _Standard_: *************** _Class_: *** 5374,5388 **** Atomic subroutine _Syntax_: ! 'CALL ATOMIC_DEFINE(ATOM, VALUE)' _Arguments_: ! ATOM Scalar coarray or coindexed variable of either ! integer type with 'ATOMIC_INT_KIND' kind or ! logical type with 'ATOMIC_LOGICAL_KIND' kind. ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the value is converted to the ! kind of ATOM. _Example_: program atomic --- 5426,5442 ---- Atomic subroutine _Syntax_: ! `CALL ATOMIC_DEFINE(ATOM, VALUE)' _Arguments_: ! ATOM Scalar coarray or coindexed variable of either ! integer type with ! `ATOMIC_INT_KIND' kind or logical type ! with `ATOMIC_LOGICAL_KIND' kind. ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the ! value is converted to the kind of ! ATOM. _Example_: program atomic *************** _See also_: *** 5397,5407 ****  File: gfortran.info, Node: ATOMIC_REF, Next: BACKTRACE, Prev: ATOMIC_DEFINE, Up: Intrinsic Procedures ! 8.25 'ATOMIC_REF' -- Obtaining the value of a variable atomically ================================================================= _Description_: ! 'ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the variable ATOM to VALUE. _Standard_: --- 5451,5461 ----  File: gfortran.info, Node: ATOMIC_REF, Next: BACKTRACE, Prev: ATOMIC_DEFINE, Up: Intrinsic Procedures ! 8.25 `ATOMIC_REF' -- Obtaining the value of a variable atomically ================================================================= _Description_: ! `ATOMIC_DEFINE(ATOM, VALUE)' atomically assigns the value of the variable ATOM to VALUE. _Standard_: *************** _Class_: *** 5411,5425 **** Atomic subroutine _Syntax_: ! 'CALL ATOMIC_REF(VALUE, ATOM)' _Arguments_: ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the value is converted to the ! kind of ATOM. ! ATOM Scalar coarray or coindexed variable of either ! integer type with 'ATOMIC_INT_KIND' kind or ! logical type with 'ATOMIC_LOGICAL_KIND' kind. _Example_: program atomic --- 5465,5481 ---- Atomic subroutine _Syntax_: ! `CALL ATOMIC_REF(VALUE, ATOM)' _Arguments_: ! VALURE Scalar and of the same type as ATOM. If the ! kind is different, the ! value is converted to the kind of ! ATOM. ! ATOM Scalar coarray or coindexed variable of either ! integer type with ! `ATOMIC_INT_KIND' kind or logical type ! with `ATOMIC_LOGICAL_KIND' kind. _Example_: program atomic *************** _See also_: *** 5440,5453 ****  File: gfortran.info, Node: BACKTRACE, Next: BESSEL_J0, Prev: ATOMIC_REF, Up: Intrinsic Procedures ! 8.26 'BACKTRACE' -- Show a backtrace ==================================== _Description_: ! 'BACKTRACE' shows a backtrace at an arbitrary place in user code. ! Program execution continues normally afterwards. The backtrace ! information is printed to the unit corresponding to 'ERROR_UNIT' in ! 'ISO_FORTRAN_ENV'. _Standard_: GNU Extension --- 5496,5509 ----  File: gfortran.info, Node: BACKTRACE, Next: BESSEL_J0, Prev: ATOMIC_REF, Up: Intrinsic Procedures ! 8.26 `BACKTRACE' -- Show a backtrace ==================================== _Description_: ! `BACKTRACE' shows a backtrace at an arbitrary place in user code. ! Program execution continues normally afterwards. The backtrace ! information is printed to the unit corresponding to `ERROR_UNIT' ! in `ISO_FORTRAN_ENV'. _Standard_: GNU Extension *************** _Class_: *** 5456,5462 **** Subroutine _Syntax_: ! 'CALL BACKTRACE' _Arguments_: None --- 5512,5518 ---- Subroutine _Syntax_: ! `CALL BACKTRACE' _Arguments_: None *************** _See also_: *** 5467,5478 ****  File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: BACKTRACE, Up: Intrinsic Procedures ! 8.27 'BESSEL_J0' -- Bessel function of the first kind of order 0 ================================================================ _Description_: ! 'BESSEL_J0(X)' computes the Bessel function of the first kind of ! order 0 of X. This function is available under the name 'BESJ0' as a GNU extension. _Standard_: --- 5523,5534 ----  File: gfortran.info, Node: BESSEL_J0, Next: BESSEL_J1, Prev: BACKTRACE, Up: Intrinsic Procedures ! 8.27 `BESSEL_J0' -- Bessel function of the first kind of order 0 ================================================================ _Description_: ! `BESSEL_J0(X)' computes the Bessel function of the first kind of ! order 0 of X. This function is available under the name `BESJ0' as a GNU extension. _Standard_: *************** _Class_: *** 5482,5496 **** Elemental function _Syntax_: ! 'RESULT = BESSEL_J0(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is of type 'REAL' and lies in the range - ! 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X. _Example_: program test_besj0 --- 5538,5552 ---- Elemental function _Syntax_: ! `RESULT = BESSEL_J0(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is of type `REAL' and lies in the range - ! 0.4027... \leq Bessel (0,x) \leq 1. It has the same kind as X. _Example_: program test_besj0 *************** _Example_: *** 5499,5516 **** end program test_besj0 _Specific names_: ! Name Argument Return type Standard ! 'DBESJ0(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures ! 8.28 'BESSEL_J1' -- Bessel function of the first kind of order 1 ================================================================ _Description_: ! 'BESSEL_J1(X)' computes the Bessel function of the first kind of ! order 1 of X. This function is available under the name 'BESJ1' as a GNU extension. _Standard_: --- 5555,5572 ---- end program test_besj0 _Specific names_: ! Name Argument Return type Standard ! `DBESJ0(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_J1, Next: BESSEL_JN, Prev: BESSEL_J0, Up: Intrinsic Procedures ! 8.28 `BESSEL_J1' -- Bessel function of the first kind of order 1 ================================================================ _Description_: ! `BESSEL_J1(X)' computes the Bessel function of the first kind of ! order 1 of X. This function is available under the name `BESJ1' as a GNU extension. _Standard_: *************** _Class_: *** 5520,5534 **** Elemental function _Syntax_: ! 'RESULT = BESSEL_J1(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is of type 'REAL' and it lies in the range - ! 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as X. _Example_: --- 5576,5590 ---- Elemental function _Syntax_: ! `RESULT = BESSEL_J1(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is of type `REAL' and it lies in the range - ! 0.5818... \leq Bessel (0,x) \leq 0.5818 . It has the same kind as X. _Example_: *************** _Example_: *** 5538,5559 **** end program test_besj1 _Specific names_: ! Name Argument Return type Standard ! 'DBESJ1(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures ! 8.29 'BESSEL_JN' -- Bessel function of the first kind ===================================================== _Description_: ! 'BESSEL_JN(N, X)' computes the Bessel function of the first kind of ! order N of X. This function is available under the name 'BESJN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! 'BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: --- 5594,5615 ---- end program test_besj1 _Specific names_: ! Name Argument Return type Standard ! `DBESJ1(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_JN, Next: BESSEL_Y0, Prev: BESSEL_J1, Up: Intrinsic Procedures ! 8.29 `BESSEL_JN' -- Bessel function of the first kind ===================================================== _Description_: ! `BESSEL_JN(N, X)' computes the Bessel function of the first kind of ! order N of X. This function is available under the name `BESJN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! `BESSEL_JN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: *************** _Standard_: *** 5561,5583 **** _Class_: Elemental function, except for the transformational function ! 'BESSEL_JN(N1, N2, X)' _Syntax_: ! 'RESULT = BESSEL_JN(N, X)' ! 'RESULT = BESSEL_JN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type 'INTEGER'. ! N1 Shall be a non-negative scalar of type ! 'INTEGER'. ! N2 Shall be a non-negative scalar of type ! 'INTEGER'. ! X Shall be a scalar or an array of type 'REAL'; ! for 'BESSEL_JN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Note_: --- 5617,5640 ---- _Class_: Elemental function, except for the transformational function ! `BESSEL_JN(N1, N2, X)' _Syntax_: ! `RESULT = BESSEL_JN(N, X)' ! `RESULT = BESSEL_JN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type ! `INTEGER'. ! N1 Shall be a non-negative scalar of type ! `INTEGER'. ! N2 Shall be a non-negative scalar of type ! `INTEGER'. ! X Shall be a scalar or an array of type `REAL'; ! for `BESSEL_JN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Note_: *************** _Example_: *** 5592,5611 **** end program test_besjn _Specific names_: ! Name Argument Return type Standard ! 'DBESJN(N, 'INTEGER N' 'REAL(8)' GNU extension ! X)' ! 'REAL(8) X'  File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures ! 8.30 'BESSEL_Y0' -- Bessel function of the second kind of order 0 ================================================================= _Description_: ! 'BESSEL_Y0(X)' computes the Bessel function of the second kind of ! order 0 of X. This function is available under the name 'BESY0' as a GNU extension. _Standard_: --- 5649,5668 ---- end program test_besjn _Specific names_: ! Name Argument Return type Standard ! `DBESJN(N, `INTEGER N' `REAL(8)' GNU extension ! X)' ! `REAL(8) X'  File: gfortran.info, Node: BESSEL_Y0, Next: BESSEL_Y1, Prev: BESSEL_JN, Up: Intrinsic Procedures ! 8.30 `BESSEL_Y0' -- Bessel function of the second kind of order 0 ================================================================= _Description_: ! `BESSEL_Y0(X)' computes the Bessel function of the second kind of ! order 0 of X. This function is available under the name `BESY0' as a GNU extension. _Standard_: *************** _Class_: *** 5615,5628 **** Elemental function _Syntax_: ! 'RESULT = BESSEL_Y0(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Example_: --- 5672,5685 ---- Elemental function _Syntax_: ! `RESULT = BESSEL_Y0(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Example_: *************** _Example_: *** 5632,5649 **** end program test_besy0 _Specific names_: ! Name Argument Return type Standard ! 'DBESY0(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures ! 8.31 'BESSEL_Y1' -- Bessel function of the second kind of order 1 ================================================================= _Description_: ! 'BESSEL_Y1(X)' computes the Bessel function of the second kind of ! order 1 of X. This function is available under the name 'BESY1' as a GNU extension. _Standard_: --- 5689,5706 ---- end program test_besy0 _Specific names_: ! Name Argument Return type Standard ! `DBESY0(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_Y1, Next: BESSEL_YN, Prev: BESSEL_Y0, Up: Intrinsic Procedures ! 8.31 `BESSEL_Y1' -- Bessel function of the second kind of order 1 ================================================================= _Description_: ! `BESSEL_Y1(X)' computes the Bessel function of the second kind of ! order 1 of X. This function is available under the name `BESY1' as a GNU extension. _Standard_: *************** _Class_: *** 5653,5666 **** Elemental function _Syntax_: ! 'RESULT = BESSEL_Y1(X)' _Arguments_: ! X The type shall be 'REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Example_: --- 5710,5723 ---- Elemental function _Syntax_: ! `RESULT = BESSEL_Y1(X)' _Arguments_: ! X The type shall be `REAL', and it shall be ! scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Example_: *************** _Example_: *** 5670,5691 **** end program test_besy1 _Specific names_: ! Name Argument Return type Standard ! 'DBESY1(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures ! 8.32 'BESSEL_YN' -- Bessel function of the second kind ====================================================== _Description_: ! 'BESSEL_YN(N, X)' computes the Bessel function of the second kind ! of order N of X. This function is available under the name 'BESYN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! 'BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: --- 5727,5748 ---- end program test_besy1 _Specific names_: ! Name Argument Return type Standard ! `DBESY1(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: BESSEL_YN, Next: BGE, Prev: BESSEL_Y1, Up: Intrinsic Procedures ! 8.32 `BESSEL_YN' -- Bessel function of the second kind ====================================================== _Description_: ! `BESSEL_YN(N, X)' computes the Bessel function of the second kind ! of order N of X. This function is available under the name `BESYN' as a GNU extension. If N and X are arrays, their ranks and shapes shall conform. ! `BESSEL_YN(N1, N2, X)' returns an array with the Bessel functions of the first kind of the orders N1 to N2. _Standard_: *************** _Standard_: *** 5693,5716 **** _Class_: Elemental function, except for the transformational function ! 'BESSEL_YN(N1, N2, X)' _Syntax_: ! 'RESULT = BESSEL_YN(N, X)' ! 'RESULT = BESSEL_YN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type 'INTEGER' ! . ! N1 Shall be a non-negative scalar of type ! 'INTEGER'. ! N2 Shall be a non-negative scalar of type ! 'INTEGER'. ! X Shall be a scalar or an array of type 'REAL'; ! for 'BESSEL_YN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type 'REAL'. It has the same kind as X. _Note_: --- 5750,5773 ---- _Class_: Elemental function, except for the transformational function ! `BESSEL_YN(N1, N2, X)' _Syntax_: ! `RESULT = BESSEL_YN(N, X)' ! `RESULT = BESSEL_YN(N1, N2, X)' _Arguments_: ! N Shall be a scalar or an array of type ! `INTEGER' . ! N1 Shall be a non-negative scalar of type ! `INTEGER'. ! N2 Shall be a non-negative scalar of type ! `INTEGER'. ! X Shall be a scalar or an array of type `REAL'; ! for `BESSEL_YN(N1, N2, X)' it shall be scalar. _Return value_: ! The return value is a scalar of type `REAL'. It has the same kind as X. _Note_: *************** _Example_: *** 5725,5738 **** end program test_besyn _Specific names_: ! Name Argument Return type Standard ! 'DBESYN(N,X)' 'INTEGER N' 'REAL(8)' GNU extension ! 'REAL(8) X'  File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures ! 8.33 'BGE' -- Bitwise greater than or equal to ============================================== _Description_: --- 5782,5795 ---- end program test_besyn _Specific names_: ! Name Argument Return type Standard ! `DBESYN(N,X)' `INTEGER N' `REAL(8)' GNU extension ! `REAL(8) X'  File: gfortran.info, Node: BGE, Next: BGT, Prev: BESSEL_YN, Up: Intrinsic Procedures ! 8.33 `BGE' -- Bitwise greater than or equal to ============================================== _Description_: *************** _Class_: *** 5746,5760 **** Elemental function _Syntax_: ! 'RESULT = BGE(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGT::, *note BLE::, *note BLT:: --- 5803,5817 ---- Elemental function _Syntax_: ! `RESULT = BGE(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGT::, *note BLE::, *note BLT:: *************** _See also_: *** 5762,5768 ****  File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures ! 8.34 'BGT' -- Bitwise greater than ================================== _Description_: --- 5819,5825 ----  File: gfortran.info, Node: BGT, Next: BIT_SIZE, Prev: BGE, Up: Intrinsic Procedures ! 8.34 `BGT' -- Bitwise greater than ================================== _Description_: *************** _Class_: *** 5775,5789 **** Elemental function _Syntax_: ! 'RESULT = BGT(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGE::, *note BLE::, *note BLT:: --- 5832,5846 ---- Elemental function _Syntax_: ! `RESULT = BGT(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGE::, *note BLE::, *note BLT:: *************** _See also_: *** 5791,5803 ****  File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures ! 8.35 'BIT_SIZE' -- Bit size inquiry function ============================================ _Description_: ! 'BIT_SIZE(I)' returns the number of bits (integer precision plus sign bit) represented by the type of I. The result of ! 'BIT_SIZE(I)' is independent of the actual value of I. _Standard_: Fortran 95 and later --- 5848,5860 ----  File: gfortran.info, Node: BIT_SIZE, Next: BLE, Prev: BGT, Up: Intrinsic Procedures ! 8.35 `BIT_SIZE' -- Bit size inquiry function ============================================ _Description_: ! `BIT_SIZE(I)' returns the number of bits (integer precision plus sign bit) represented by the type of I. The result of ! `BIT_SIZE(I)' is independent of the actual value of I. _Standard_: Fortran 95 and later *************** _Class_: *** 5806,5818 **** Inquiry function _Syntax_: ! 'RESULT = BIT_SIZE(I)' _Arguments_: ! I The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' _Example_: program test_bit_size --- 5863,5875 ---- Inquiry function _Syntax_: ! `RESULT = BIT_SIZE(I)' _Arguments_: ! I The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' _Example_: program test_bit_size *************** _Example_: *** 5825,5831 ****  File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures ! 8.36 'BLE' -- Bitwise less than or equal to =========================================== _Description_: --- 5882,5888 ----  File: gfortran.info, Node: BLE, Next: BLT, Prev: BIT_SIZE, Up: Intrinsic Procedures ! 8.36 `BLE' -- Bitwise less than or equal to =========================================== _Description_: *************** _Class_: *** 5839,5853 **** Elemental function _Syntax_: ! 'RESULT = BLE(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGT::, *note BGE::, *note BLT:: --- 5896,5910 ---- Elemental function _Syntax_: ! `RESULT = BLE(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGT::, *note BGE::, *note BLT:: *************** _See also_: *** 5855,5861 ****  File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures ! 8.37 'BLT' -- Bitwise less than =============================== _Description_: --- 5912,5918 ----  File: gfortran.info, Node: BLT, Next: BTEST, Prev: BLE, Up: Intrinsic Procedures ! 8.37 `BLT' -- Bitwise less than =============================== _Description_: *************** _Class_: *** 5868,5882 **** Elemental function _Syntax_: ! 'RESULT = BLT(I, J)' _Arguments_: ! I Shall be of 'INTEGER' type. ! J Shall be of 'INTEGER' type, and of the same kind ! as I. _Return value_: ! The return value is of type 'LOGICAL' and of the default kind. _See also_: *note BGE::, *note BGT::, *note BLE:: --- 5925,5939 ---- Elemental function _Syntax_: ! `RESULT = BLT(I, J)' _Arguments_: ! I Shall be of `INTEGER' type. ! J Shall be of `INTEGER' type, and of the same ! kind as I. _Return value_: ! The return value is of type `LOGICAL' and of the default kind. _See also_: *note BGE::, *note BGT::, *note BLE:: *************** _See also_: *** 5884,5894 ****  File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures ! 8.38 'BTEST' -- Bit test function ================================= _Description_: ! 'BTEST(I,POS)' returns logical '.TRUE.' if the bit at POS in I is set. The counting of the bits starts at 0. _Standard_: --- 5941,5951 ----  File: gfortran.info, Node: BTEST, Next: C_ASSOCIATED, Prev: BLT, Up: Intrinsic Procedures ! 8.38 `BTEST' -- Bit test function ================================= _Description_: ! `BTEST(I,POS)' returns logical `.TRUE.' if the bit at POS in I is set. The counting of the bits starts at 0. _Standard_: *************** _Class_: *** 5898,5911 **** Elemental function _Syntax_: ! 'RESULT = BTEST(I, POS)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'LOGICAL' _Example_: program test_btest --- 5955,5968 ---- Elemental function _Syntax_: ! `RESULT = BTEST(I, POS)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. _Return value_: ! The return value is of type `LOGICAL' _Example_: program test_btest *************** _Example_: *** 5921,5931 ****  File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures ! 8.39 'C_ASSOCIATED' -- Status of a C pointer ============================================ _Description_: ! 'C_ASSOCIATED(c_ptr_1[, c_ptr_2])' determines the status of the C pointer C_PTR_1 or if C_PTR_1 is associated with the target C_PTR_2. --- 5978,5988 ----  File: gfortran.info, Node: C_ASSOCIATED, Next: C_F_POINTER, Prev: BTEST, Up: Intrinsic Procedures ! 8.39 `C_ASSOCIATED' -- Status of a C pointer ============================================ _Description_: ! `C_ASSOCIATED(c_ptr_1[, c_ptr_2])' determines the status of the C pointer C_PTR_1 or if C_PTR_1 is associated with the target C_PTR_2. *************** _Class_: *** 5936,5949 **** Inquiry function _Syntax_: ! 'RESULT = C_ASSOCIATED(c_ptr_1[, c_ptr_2])' _Arguments_: ! C_PTR_1 Scalar of the type 'C_PTR' or 'C_FUNPTR'. ! C_PTR_2 (Optional) Scalar of the same type as C_PTR_1. _Return value_: ! The return value is of type 'LOGICAL'; it is '.false.' if either C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to different addresses. --- 5993,6006 ---- Inquiry function _Syntax_: ! `RESULT = C_ASSOCIATED(c_ptr_1[, c_ptr_2])' _Arguments_: ! C_PTR_1 Scalar of the type `C_PTR' or `C_FUNPTR'. ! C_PTR_2 (Optional) Scalar of the same type as C_PTR_1. _Return value_: ! The return value is of type `LOGICAL'; it is `.false.' if either C_PTR_1 is a C NULL pointer or if C_PTR1 and C_PTR_2 point to different addresses. *************** _See also_: *** 5963,5973 ****  File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures ! 8.40 'C_F_POINTER' -- Convert C into Fortran pointer ==================================================== _Description_: ! 'C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C pointer CPTR to the Fortran pointer FPTR and specifies its shape. _Standard_: --- 6020,6030 ----  File: gfortran.info, Node: C_F_POINTER, Next: C_F_PROCPOINTER, Prev: C_ASSOCIATED, Up: Intrinsic Procedures ! 8.40 `C_F_POINTER' -- Convert C into Fortran pointer ==================================================== _Description_: ! `C_F_POINTER(CPTR, FPTR[, SHAPE])' assigns the target of the C pointer CPTR to the Fortran pointer FPTR and specifies its shape. _Standard_: *************** _Class_: *** 5977,5992 **** Subroutine _Syntax_: ! 'CALL C_F_POINTER(CPTR, FPTR[, SHAPE])' _Arguments_: ! CPTR scalar of the type 'C_PTR'. It is 'INTENT(IN)'. ! FPTR pointer interoperable with CPTR. It is ! 'INTENT(OUT)'. ! SHAPE (Optional) Rank-one array of type 'INTEGER' with ! 'INTENT(IN)'. It shall be present if and only ! if FPTR is an array. The size must be equal to ! the rank of FPTR. _Example_: program main --- 6034,6049 ---- Subroutine _Syntax_: ! `CALL C_F_POINTER(CPTR, FPTR[, SHAPE])' _Arguments_: ! CPTR scalar of the type `C_PTR'. It is `INTENT(IN)'. ! FPTR pointer interoperable with CPTR. It is ! `INTENT(OUT)'. ! SHAPE (Optional) Rank-one array of type `INTEGER' ! with `INTENT(IN)'. It shall be present if and ! only if FPTR is an array. The size must be ! equal to the rank of FPTR. _Example_: program main *************** _See also_: *** 6010,6020 ****  File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures ! 8.41 'C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer ================================================================== _Description_: ! 'C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function pointer CPTR to the Fortran procedure pointer FPTR. _Standard_: --- 6067,6077 ----  File: gfortran.info, Node: C_F_PROCPOINTER, Next: C_FUNLOC, Prev: C_F_POINTER, Up: Intrinsic Procedures ! 8.41 `C_F_PROCPOINTER' -- Convert C into Fortran procedure pointer ================================================================== _Description_: ! `C_F_PROCPOINTER(CPTR, FPTR)' Assign the target of the C function pointer CPTR to the Fortran procedure pointer FPTR. _Standard_: *************** _Class_: *** 6024,6036 **** Subroutine _Syntax_: ! 'CALL C_F_PROCPOINTER(cptr, fptr)' _Arguments_: ! CPTR scalar of the type 'C_FUNPTR'. It is ! 'INTENT(IN)'. ! FPTR procedure pointer interoperable with CPTR. It ! is 'INTENT(OUT)'. _Example_: program main --- 6081,6093 ---- Subroutine _Syntax_: ! `CALL C_F_PROCPOINTER(cptr, fptr)' _Arguments_: ! CPTR scalar of the type `C_FUNPTR'. It is ! `INTENT(IN)'. ! FPTR procedure pointer interoperable with CPTR. It ! is `INTENT(OUT)'. _Example_: program main *************** _See also_: *** 6061,6071 ****  File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures ! 8.42 'C_FUNLOC' -- Obtain the C address of a procedure ====================================================== _Description_: ! 'C_FUNLOC(x)' determines the C address of the argument. _Standard_: Fortran 2003 and later --- 6118,6128 ----  File: gfortran.info, Node: C_FUNLOC, Next: C_LOC, Prev: C_F_PROCPOINTER, Up: Intrinsic Procedures ! 8.42 `C_FUNLOC' -- Obtain the C address of a procedure ====================================================== _Description_: ! `C_FUNLOC(x)' determines the C address of the argument. _Standard_: Fortran 2003 and later *************** _Class_: *** 6074,6087 **** Inquiry function _Syntax_: ! 'RESULT = C_FUNLOC(x)' _Arguments_: ! X Interoperable function or pointer to such ! function. _Return value_: ! The return value is of type 'C_FUNPTR' and contains the C address of the argument. _Example_: --- 6131,6144 ---- Inquiry function _Syntax_: ! `RESULT = C_FUNLOC(x)' _Arguments_: ! X Interoperable function or pointer to such ! function. _Return value_: ! The return value is of type `C_FUNPTR' and contains the C address of the argument. _Example_: *************** _See also_: *** 6114,6124 ****  File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures ! 8.43 'C_LOC' -- Obtain the C address of an object ================================================= _Description_: ! 'C_LOC(X)' determines the C address of the argument. _Standard_: Fortran 2003 and later --- 6171,6181 ----  File: gfortran.info, Node: C_LOC, Next: C_SIZEOF, Prev: C_FUNLOC, Up: Intrinsic Procedures ! 8.43 `C_LOC' -- Obtain the C address of an object ================================================= _Description_: ! `C_LOC(X)' determines the C address of the argument. _Standard_: Fortran 2003 and later *************** _Class_: *** 6127,6144 **** Inquiry function _Syntax_: ! 'RESULT = C_LOC(X)' _Arguments_: ! X Shall have either the POINTER or TARGET attribute. ! It shall not be a coindexed object. It shall either ! be a variable with interoperable type and kind type ! parameters, or be a scalar, nonpolymorphic variable ! with no length type parameters. ! _Return value_: ! The return value is of type 'C_PTR' and contains the C address of the argument. _Example_: --- 6184,6201 ---- Inquiry function _Syntax_: ! `RESULT = C_LOC(X)' _Arguments_: ! X Shall have either the POINTER or TARGET ! attribute. It shall not be a coindexed object. It ! shall either be a variable with interoperable ! type and kind type parameters, or be a scalar, ! nonpolymorphic variable with no length type ! parameters. _Return value_: ! The return value is of type `C_PTR' and contains the C address of the argument. _Example_: *************** _See also_: *** 6158,6190 ****  File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures ! 8.44 'C_SIZEOF' -- Size in bytes of an expression ================================================= _Description_: ! 'C_SIZEOF(X)' calculates the number of bytes of storage the ! expression 'X' occupies. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module 'ISO_C_BINDING' _Syntax_: ! 'N = C_SIZEOF(X)' _Arguments_: ! X The argument shall be an interoperable data ! entity. _Return value_: The return value is of type integer and of the system-dependent ! kind 'C_SIZE_T' (from the 'ISO_C_BINDING' module). Its value is ! the number of bytes occupied by the argument. If the argument has ! the 'POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! 'POINTER' or 'ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. _Example_: --- 6215,6247 ----  File: gfortran.info, Node: C_SIZEOF, Next: CEILING, Prev: C_LOC, Up: Intrinsic Procedures ! 8.44 `C_SIZEOF' -- Size in bytes of an expression ================================================= _Description_: ! `C_SIZEOF(X)' calculates the number of bytes of storage the ! expression `X' occupies. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module `ISO_C_BINDING' _Syntax_: ! `N = C_SIZEOF(X)' _Arguments_: ! X The argument shall be an interoperable data ! entity. _Return value_: The return value is of type integer and of the system-dependent ! kind `C_SIZE_T' (from the `ISO_C_BINDING' module). Its value is the ! number of bytes occupied by the argument. If the argument has the ! `POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! `POINTER' or `ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. _Example_: *************** _Example_: *** 6193,6200 **** real(c_float) :: r, s(5) print *, (c_sizeof(s)/c_sizeof(r) == 5) end ! The example will print '.TRUE.' unless you are using a platform ! where default 'REAL' variables are unusually padded. _See also_: *note SIZEOF::, *note STORAGE_SIZE:: --- 6250,6257 ---- real(c_float) :: r, s(5) print *, (c_sizeof(s)/c_sizeof(r) == 5) end ! The example will print `.TRUE.' unless you are using a platform ! where default `REAL' variables are unusually padded. _See also_: *note SIZEOF::, *note STORAGE_SIZE:: *************** _See also_: *** 6202,6212 ****  File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures ! 8.45 'CEILING' -- Integer ceiling function ========================================== _Description_: ! 'CEILING(A)' returns the least integer greater than or equal to A. _Standard_: Fortran 95 and later --- 6259,6269 ----  File: gfortran.info, Node: CEILING, Next: CHAR, Prev: C_SIZEOF, Up: Intrinsic Procedures ! 8.45 `CEILING' -- Integer ceiling function ========================================== _Description_: ! `CEILING(A)' returns the least integer greater than or equal to A. _Standard_: Fortran 95 and later *************** _Class_: *** 6215,6231 **** Elemental function _Syntax_: ! 'RESULT = CEILING(A [, KIND])' _Arguments_: ! A The type shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER(KIND)' if KIND is present and ! a default-kind 'INTEGER' otherwise. _Example_: program test_ceiling --- 6272,6288 ---- Elemental function _Syntax_: ! `RESULT = CEILING(A [, KIND])' _Arguments_: ! A The type shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER(KIND)' if KIND is present and ! a default-kind `INTEGER' otherwise. _Example_: program test_ceiling *************** _Example_: *** 6238,6252 **** _See also_: *note FLOOR::, *note NINT::  File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures ! 8.46 'CHAR' -- Character conversion function ============================================ _Description_: ! 'CHAR(I [, KIND])' returns the character represented by the integer ! I. _Standard_: Fortran 77 and later --- 6295,6310 ---- _See also_: *note FLOOR::, *note NINT:: +  File: gfortran.info, Node: CHAR, Next: CHDIR, Prev: CEILING, Up: Intrinsic Procedures ! 8.46 `CHAR' -- Character conversion function ============================================ _Description_: ! `CHAR(I [, KIND])' returns the character represented by the ! integer I. _Standard_: Fortran 77 and later *************** _Class_: *** 6255,6270 **** Elemental function _Syntax_: ! 'RESULT = CHAR(I [, KIND])' _Arguments_: ! I The type shall be 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'CHARACTER(1)' _Example_: program test_char --- 6313,6328 ---- Elemental function _Syntax_: ! `RESULT = CHAR(I [, KIND])' _Arguments_: ! I The type shall be `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `CHARACTER(1)' _Example_: program test_char *************** _Example_: *** 6275,6282 **** end program test_char _Specific names_: ! Name Argument Return type Standard ! 'CHAR(I)' 'INTEGER I' 'CHARACTER(LEN=1)'F77 and later _Note_: See *note ICHAR:: for a discussion of converting between numerical --- 6333,6340 ---- end program test_char _Specific names_: ! Name Argument Return type Standard ! `CHAR(I)' `INTEGER I' `CHARACTER(LEN=1)'F77 and later _Note_: See *note ICHAR:: for a discussion of converting between numerical *************** _Note_: *** 6285,6294 **** _See also_: *note ACHAR::, *note IACHAR::, *note ICHAR::  File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures ! 8.47 'CHDIR' -- Change working directory ======================================== _Description_: --- 6343,6353 ---- _See also_: *note ACHAR::, *note IACHAR::, *note ICHAR:: +  File: gfortran.info, Node: CHDIR, Next: CHMOD, Prev: CHAR, Up: Intrinsic Procedures ! 8.47 `CHDIR' -- Change working directory ======================================== _Description_: *************** _Class_: *** 6304,6319 **** Subroutine, function _Syntax_: ! 'CALL CHDIR(NAME [, STATUS])' ! 'STATUS = CHDIR(NAME)' _Arguments_: ! NAME The type shall be 'CHARACTER' of default kind ! and shall specify a valid path within the file ! system. ! STATUS (Optional) 'INTEGER' status flag of the default ! kind. Returns 0 on success, and a system ! specific and nonzero error code otherwise. _Example_: PROGRAM test_chdir --- 6363,6378 ---- Subroutine, function _Syntax_: ! `CALL CHDIR(NAME [, STATUS])' ! `STATUS = CHDIR(NAME)' _Arguments_: ! NAME The type shall be `CHARACTER' of default kind ! and shall specify a valid path within the file ! system. ! STATUS (Optional) `INTEGER' status flag of the default ! kind. Returns 0 on success, and a system ! specific and nonzero error code otherwise. _Example_: PROGRAM test_chdir *************** _See also_: *** 6331,6341 ****  File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures ! 8.48 'CHMOD' -- Change access permissions of files ================================================== _Description_: ! 'CHMOD' changes the permissions of a file. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 6390,6400 ----  File: gfortran.info, Node: CHMOD, Next: CMPLX, Prev: CHDIR, Up: Intrinsic Procedures ! 8.48 `CHMOD' -- Change access permissions of files ================================================== _Description_: ! `CHMOD' changes the permissions of a file. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 6347,6386 **** Subroutine, function _Syntax_: ! 'CALL CHMOD(NAME, MODE[, STATUS])' ! 'STATUS = CHMOD(NAME, MODE)' _Arguments_: ! ! NAME Scalar 'CHARACTER' of default kind with the file ! name. Trailing blanks are ignored unless the ! character 'achar(0)' is present, then all ! characters up to and excluding 'achar(0)' are ! used as the file name. ! ! MODE Scalar 'CHARACTER' of default kind giving the ! file permission. MODE uses the same syntax as ! the 'chmod' utility as defined by the POSIX ! standard. The argument shall either be a string ! of a nonnegative octal number or a symbolic ! mode. ! ! STATUS (optional) scalar 'INTEGER', which is '0' on ! success and nonzero otherwise. _Return value_: ! In either syntax, STATUS is set to '0' on success and nonzero otherwise. _Example_: ! 'CHMOD' as subroutine program chmod_test implicit none integer :: status call chmod('test.dat','u+x',status) print *, 'Status: ', status end program chmod_test ! 'CHMOD' as function: program chmod_test implicit none integer :: status --- 6406,6442 ---- Subroutine, function _Syntax_: ! `CALL CHMOD(NAME, MODE[, STATUS])' ! `STATUS = CHMOD(NAME, MODE)' _Arguments_: ! NAME Scalar `CHARACTER' of default kind with the ! file name. Trailing blanks are ignored unless ! the character `achar(0)' is present, then all ! characters up to and excluding `achar(0)' are ! used as the file name. ! MODE Scalar `CHARACTER' of default kind giving the ! file permission. MODE uses the same syntax as ! the `chmod' utility as defined by the POSIX ! standard. The argument shall either be a ! string of a nonnegative octal number or a ! symbolic mode. ! STATUS (optional) scalar `INTEGER', which is `0' on ! success and nonzero otherwise. _Return value_: ! In either syntax, STATUS is set to `0' on success and nonzero otherwise. _Example_: ! `CHMOD' as subroutine program chmod_test implicit none integer :: status call chmod('test.dat','u+x',status) print *, 'Status: ', status end program chmod_test ! `CHMOD' as function: program chmod_test implicit none integer :: status *************** _Example_: *** 6388,6405 **** print *, 'Status: ', status end program chmod_test  File: gfortran.info, Node: CMPLX, Next: COMMAND_ARGUMENT_COUNT, Prev: CHMOD, Up: Intrinsic Procedures ! 8.49 'CMPLX' -- Complex conversion function =========================================== _Description_: ! 'CMPLX(X [, Y [, KIND]])' returns a complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the imaginary ! component is set to 0.0. If X is complex then Y must not be ! present. _Standard_: Fortran 77 and later --- 6444,6462 ---- print *, 'Status: ', status end program chmod_test +  File: gfortran.info, Node: CMPLX, Next: COMMAND_ARGUMENT_COUNT, Prev: CHMOD, Up: Intrinsic Procedures ! 8.49 `CMPLX' -- Complex conversion function =========================================== _Description_: ! `CMPLX(X [, Y [, KIND]])' returns a complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the ! imaginary component is set to 0.0. If X is complex then Y must ! not be present. _Standard_: Fortran 77 and later *************** _Class_: *** 6408,6427 **** Elemental function _Syntax_: ! 'RESULT = CMPLX(X [, Y [, KIND]])' _Arguments_: ! X The type may be 'INTEGER', 'REAL', or 'COMPLEX'. ! Y (Optional; only allowed if X is not 'COMPLEX'.) ! May be 'INTEGER' or 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of 'COMPLEX' type, with a kind equal to KIND if ! it is specified. If KIND is not specified, the result is of the ! default 'COMPLEX' kind, regardless of the kinds of X and Y. _Example_: program test_cmplx --- 6465,6485 ---- Elemental function _Syntax_: ! `RESULT = CMPLX(X [, Y [, KIND]])' _Arguments_: ! X The type may be `INTEGER', `REAL', or ! `COMPLEX'. ! Y (Optional; only allowed if X is not ! `COMPLEX'.) May be `INTEGER' or `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of `COMPLEX' type, with a kind equal to KIND ! if it is specified. If KIND is not specified, the result is of ! the default `COMPLEX' kind, regardless of the kinds of X and Y. _Example_: program test_cmplx *************** _See also_: *** 6438,6448 ****  File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPILER_OPTIONS, Prev: CMPLX, Up: Intrinsic Procedures ! 8.50 'COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments ===================================================================== _Description_: ! 'COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on the command line when the containing program was invoked. _Standard_: --- 6496,6506 ----  File: gfortran.info, Node: COMMAND_ARGUMENT_COUNT, Next: COMPILER_OPTIONS, Prev: CMPLX, Up: Intrinsic Procedures ! 8.50 `COMMAND_ARGUMENT_COUNT' -- Get number of command line arguments ===================================================================== _Description_: ! `COMMAND_ARGUMENT_COUNT' returns the number of arguments passed on the command line when the containing program was invoked. _Standard_: *************** _Class_: *** 6452,6464 **** Inquiry function _Syntax_: ! 'RESULT = COMMAND_ARGUMENT_COUNT()' _Arguments_: ! None _Return value_: ! The return value is an 'INTEGER' of default kind. _Example_: program test_command_argument_count --- 6510,6522 ---- Inquiry function _Syntax_: ! `RESULT = COMMAND_ARGUMENT_COUNT()' _Arguments_: ! None _Return value_: ! The return value is an `INTEGER' of default kind. _Example_: program test_command_argument_count *************** _See also_: *** 6473,6493 ****  File: gfortran.info, Node: COMPILER_OPTIONS, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures ! 8.51 'COMPILER_OPTIONS' -- Options passed to the compiler ========================================================= _Description_: ! 'COMPILER_OPTIONS' returns a string with the options used for compiling. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module 'ISO_FORTRAN_ENV' _Syntax_: ! 'STR = COMPILER_OPTIONS()' _Arguments_: None. --- 6531,6551 ----  File: gfortran.info, Node: COMPILER_OPTIONS, Next: COMPILER_VERSION, Prev: COMMAND_ARGUMENT_COUNT, Up: Intrinsic Procedures ! 8.51 `COMPILER_OPTIONS' -- Options passed to the compiler ========================================================= _Description_: ! `COMPILER_OPTIONS' returns a string with the options used for compiling. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module `ISO_FORTRAN_ENV' _Syntax_: ! `STR = COMPILER_OPTIONS()' _Arguments_: None. *************** _Arguments_: *** 6495,6501 **** _Return value_: The return value is a default-kind string with system-dependent length. It contains the compiler flags used to compile the file, ! which called the 'COMPILER_OPTIONS' intrinsic. _Example_: use iso_fortran_env --- 6553,6559 ---- _Return value_: The return value is a default-kind string with system-dependent length. It contains the compiler flags used to compile the file, ! which called the `COMPILER_OPTIONS' intrinsic. _Example_: use iso_fortran_env *************** _See also_: *** 6510,6530 ****  File: gfortran.info, Node: COMPILER_VERSION, Next: COMPLEX, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures ! 8.52 'COMPILER_VERSION' -- Compiler version string ================================================== _Description_: ! 'COMPILER_VERSION' returns a string with the name and the version of the compiler. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module 'ISO_FORTRAN_ENV' _Syntax_: ! 'STR = COMPILER_VERSION()' _Arguments_: None. --- 6568,6588 ----  File: gfortran.info, Node: COMPILER_VERSION, Next: COMPLEX, Prev: COMPILER_OPTIONS, Up: Intrinsic Procedures ! 8.52 `COMPILER_VERSION' -- Compiler version string ================================================== _Description_: ! `COMPILER_VERSION' returns a string with the name and the version of the compiler. _Standard_: Fortran 2008 _Class_: ! Inquiry function of the module `ISO_FORTRAN_ENV' _Syntax_: ! `STR = COMPILER_VERSION()' _Arguments_: None. *************** _See also_: *** 6547,6557 ****  File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures ! 8.53 'COMPLEX' -- Complex conversion function ============================================= _Description_: ! 'COMPLEX(X, Y)' returns a complex number where X is converted to the real component and Y is converted to the imaginary component. _Standard_: --- 6605,6615 ----  File: gfortran.info, Node: COMPLEX, Next: CONJG, Prev: COMPILER_VERSION, Up: Intrinsic Procedures ! 8.53 `COMPLEX' -- Complex conversion function ============================================= _Description_: ! `COMPLEX(X, Y)' returns a complex number where X is converted to the real component and Y is converted to the imaginary component. _Standard_: *************** _Class_: *** 6561,6579 **** Elemental function _Syntax_: ! 'RESULT = COMPLEX(X, Y)' _Arguments_: ! X The type may be 'INTEGER' or 'REAL'. ! Y The type may be 'INTEGER' or 'REAL'. _Return value_: ! If X and Y are both of 'INTEGER' type, then the return value is of ! default 'COMPLEX' type. ! If X and Y are of 'REAL' type, or one is of 'REAL' type and one is ! of 'INTEGER' type, then the return value is of 'COMPLEX' type with ! a kind equal to that of the 'REAL' argument with the highest precision. _Example_: --- 6619,6637 ---- Elemental function _Syntax_: ! `RESULT = COMPLEX(X, Y)' _Arguments_: ! X The type may be `INTEGER' or `REAL'. ! Y The type may be `INTEGER' or `REAL'. _Return value_: ! If X and Y are both of `INTEGER' type, then the return value is of ! default `COMPLEX' type. ! If X and Y are of `REAL' type, or one is of `REAL' type and one is ! of `INTEGER' type, then the return value is of `COMPLEX' type with ! a kind equal to that of the `REAL' argument with the highest precision. _Example_: *************** _See also_: *** 6589,6600 ****  File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures ! 8.54 'CONJG' -- Complex conjugate function ========================================== _Description_: ! 'CONJG(Z)' returns the conjugate of Z. If Z is '(x, y)' then the ! result is '(x, -y)' _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 6647,6658 ----  File: gfortran.info, Node: CONJG, Next: COS, Prev: COMPLEX, Up: Intrinsic Procedures ! 8.54 `CONJG' -- Complex conjugate function ========================================== _Description_: ! `CONJG(Z)' returns the conjugate of Z. If Z is `(x, y)' then the ! result is `(x, -y)' _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 6603,6615 **** Elemental function _Syntax_: ! 'Z = CONJG(Z)' _Arguments_: ! Z The type shall be 'COMPLEX'. _Return value_: ! The return value is of type 'COMPLEX'. _Example_: program test_conjg --- 6661,6673 ---- Elemental function _Syntax_: ! `Z = CONJG(Z)' _Arguments_: ! Z The type shall be `COMPLEX'. _Return value_: ! The return value is of type `COMPLEX'. _Example_: program test_conjg *************** _Example_: *** 6622,6640 **** end program test_conjg _Specific names_: ! Name Argument Return type Standard ! 'CONJG(Z)' 'COMPLEX Z' 'COMPLEX' GNU extension ! 'DCONJG(Z)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! Z'  File: gfortran.info, Node: COS, Next: COSH, Prev: CONJG, Up: Intrinsic Procedures ! 8.55 'COS' -- Cosine function ============================= _Description_: ! 'COS(X)' computes the cosine of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 6680,6698 ---- end program test_conjg _Specific names_: ! Name Argument Return type Standard ! `CONJG(Z)' `COMPLEX Z' `COMPLEX' GNU extension ! `DCONJG(Z)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! Z'  File: gfortran.info, Node: COS, Next: COSH, Prev: CONJG, Up: Intrinsic Procedures ! 8.55 `COS' -- Cosine function ============================= _Description_: ! `COS(X)' computes the cosine of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 6643,6657 **** Elemental function _Syntax_: ! 'RESULT = COS(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. The real part ! of the result is in radians. If X is of the type 'REAL', the ! return value lies in the range -1 \leq \cos (x) \leq 1. _Example_: program test_cos --- 6701,6715 ---- Elemental function _Syntax_: ! `RESULT = COS(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of the same type and kind as X. The real part ! of the result is in radians. If X is of the type `REAL', the ! return value lies in the range -1 \leq \cos (x) \leq 1. _Example_: program test_cos *************** _Example_: *** 6660,6688 **** end program test_cos _Specific names_: ! Name Argument Return type Standard ! 'COS(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DCOS(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later ! 'CCOS(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and ! X' later ! 'ZCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' ! 'CDCOS(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' _See also_: Inverse function: *note ACOS::  File: gfortran.info, Node: COSH, Next: COUNT, Prev: COS, Up: Intrinsic Procedures ! 8.56 'COSH' -- Hyperbolic cosine function ========================================= _Description_: ! 'COSH(X)' computes the hyperbolic cosine of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 6718,6747 ---- end program test_cos _Specific names_: ! Name Argument Return type Standard ! `COS(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DCOS(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later ! `CCOS(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and ! X' later ! `ZCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' ! `CDCOS(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' _See also_: Inverse function: *note ACOS:: +  File: gfortran.info, Node: COSH, Next: COUNT, Prev: COS, Up: Intrinsic Procedures ! 8.56 `COSH' -- Hyperbolic cosine function ========================================= _Description_: ! `COSH(X)' computes the hyperbolic cosine of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 6691,6704 **** Elemental function _Syntax_: ! 'X = COSH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is 'REAL', the return value has a lower bound of one, \cosh (x) \geq 1. _Example_: --- 6750,6763 ---- Elemental function _Syntax_: ! `X = COSH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is `REAL', the return value has a lower bound of one, \cosh (x) \geq 1. _Example_: *************** _Example_: *** 6708,6735 **** end program test_cosh _Specific names_: ! Name Argument Return type Standard ! 'COSH(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DCOSH(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note ACOSH::  File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COSH, Up: Intrinsic Procedures ! 8.57 'COUNT' -- Count function ============================== _Description_: ! ! Counts the number of '.TRUE.' elements in a logical MASK, or, if the DIM argument is supplied, counts the number of elements along each row of the array in the DIM direction. If the array has zero ! size, or all of the elements of MASK are '.FALSE.', then the result ! is '0'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 6767,6794 ---- end program test_cosh _Specific names_: ! Name Argument Return type Standard ! `COSH(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DCOSH(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later _See also_: Inverse function: *note ACOSH:: +  File: gfortran.info, Node: COUNT, Next: CPU_TIME, Prev: COSH, Up: Intrinsic Procedures ! 8.57 `COUNT' -- Count function ============================== _Description_: ! Counts the number of `.TRUE.' elements in a logical MASK, or, if the DIM argument is supplied, counts the number of elements along each row of the array in the DIM direction. If the array has zero ! size, or all of the elements of MASK are `.FALSE.', then the ! result is `0'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 6738,6754 **** Transformational function _Syntax_: ! 'RESULT = COUNT(MASK [, DIM, KIND])' _Arguments_: ! MASK The type shall be 'LOGICAL'. ! DIM (Optional) The type shall be 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is present, the result is an array with a rank one less than the rank of ARRAY, and a size corresponding to the shape of ARRAY with the --- 6797,6813 ---- Transformational function _Syntax_: ! `RESULT = COUNT(MASK [, DIM, KIND])' _Arguments_: ! MASK The type shall be `LOGICAL'. ! DIM (Optional) The type shall be `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is present, the result is an array with a rank one less than the rank of ARRAY, and a size corresponding to the shape of ARRAY with the *************** _Example_: *** 6780,6799 ****  File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures ! 8.58 'CPU_TIME' -- CPU elapsed time in seconds ============================================== _Description_: ! Returns a 'REAL' value representing the elapsed CPU time in seconds. This is useful for testing segments of code to determine execution time. If a time source is available, time will be reported with ! microsecond resolution. If no time source is available, TIME is ! set to '-1.0'. Note that TIME may contain a, system dependent, arbitrary offset ! and may not start with '0.0'. For 'CPU_TIME', the absolute value is meaningless, only differences between subsequent calls to this subroutine, as shown in the example below, should be used. --- 6839,6858 ----  File: gfortran.info, Node: CPU_TIME, Next: CSHIFT, Prev: COUNT, Up: Intrinsic Procedures ! 8.58 `CPU_TIME' -- CPU elapsed time in seconds ============================================== _Description_: ! Returns a `REAL' value representing the elapsed CPU time in seconds. This is useful for testing segments of code to determine execution time. If a time source is available, time will be reported with ! microsecond resolution. If no time source is available, TIME is ! set to `-1.0'. Note that TIME may contain a, system dependent, arbitrary offset ! and may not start with `0.0'. For `CPU_TIME', the absolute value is meaningless, only differences between subsequent calls to this subroutine, as shown in the example below, should be used. *************** _Class_: *** 6804,6813 **** Subroutine _Syntax_: ! 'CALL CPU_TIME(TIME)' _Arguments_: ! TIME The type shall be 'REAL' with 'INTENT(OUT)'. _Return value_: None --- 6863,6872 ---- Subroutine _Syntax_: ! `CALL CPU_TIME(TIME)' _Arguments_: ! TIME The type shall be `REAL' with `INTENT(OUT)'. _Return value_: None *************** _See also_: *** 6827,6845 ****  File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures ! 8.59 'CSHIFT' -- Circular shift elements of an array ==================================================== _Description_: ! 'CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on ! elements of ARRAY along the dimension of DIM. If DIM is omitted it ! is taken to be '1'. DIM is a scalar of type 'INTEGER' in the range ! of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the rank of ! ARRAY is one, then all elements of ARRAY are shifted by SHIFT ! places. If rank is greater than one, then all complete rank one ! sections of ARRAY along the given dimension are shifted. Elements ! shifted out one end of each rank one section are shifted back in ! the other end. _Standard_: Fortran 95 and later --- 6886,6904 ----  File: gfortran.info, Node: CSHIFT, Next: CTIME, Prev: CPU_TIME, Up: Intrinsic Procedures ! 8.59 `CSHIFT' -- Circular shift elements of an array ==================================================== _Description_: ! `CSHIFT(ARRAY, SHIFT [, DIM])' performs a circular shift on ! elements of ARRAY along the dimension of DIM. If DIM is omitted ! it is taken to be `1'. DIM is a scalar of type `INTEGER' in the ! range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the ! rank of ARRAY is one, then all elements of ARRAY are shifted by ! SHIFT places. If rank is greater than one, then all complete rank ! one sections of ARRAY along the given dimension are shifted. ! Elements shifted out one end of each rank one section are shifted ! back in the other end. _Standard_: Fortran 95 and later *************** _Class_: *** 6848,6859 **** Transformational function _Syntax_: ! 'RESULT = CSHIFT(ARRAY, SHIFT [, DIM])' _Arguments_: ! ARRAY Shall be an array of any type. ! SHIFT The type shall be 'INTEGER'. ! DIM The type shall be 'INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. --- 6907,6918 ---- Transformational function _Syntax_: ! `RESULT = CSHIFT(ARRAY, SHIFT [, DIM])' _Arguments_: ! ARRAY Shall be an array of any type. ! SHIFT The type shall be `INTEGER'. ! DIM The type shall be `INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. *************** _Example_: *** 6875,6886 ****  File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures ! 8.60 'CTIME' -- Convert a time into a string ============================================ _Description_: ! 'CTIME' converts a system time value, such as returned by 'TIME8', ! to a string. The output will be of the form 'Sat Aug 19 18:13:14 1995'. This intrinsic is provided in both subroutine and function forms; --- 6934,6945 ----  File: gfortran.info, Node: CTIME, Next: DATE_AND_TIME, Prev: CSHIFT, Up: Intrinsic Procedures ! 8.60 `CTIME' -- Convert a time into a string ============================================ _Description_: ! `CTIME' converts a system time value, such as returned by `TIME8', ! to a string. The output will be of the form `Sat Aug 19 18:13:14 1995'. This intrinsic is provided in both subroutine and function forms; *************** _Class_: *** 6893,6908 **** Subroutine, function _Syntax_: ! 'CALL CTIME(TIME, RESULT)'. ! 'RESULT = CTIME(TIME)'. _Arguments_: ! TIME The type shall be of type 'INTEGER'. ! RESULT The type shall be of type 'CHARACTER' and of ! default kind. It is an 'INTENT(OUT)' argument. ! If the length of this variable is too short for ! the time and date string to fit completely, it ! will be blank on procedure return. _Return value_: The converted date and time as a string. --- 6952,6968 ---- Subroutine, function _Syntax_: ! `CALL CTIME(TIME, RESULT)'. ! `RESULT = CTIME(TIME)'. _Arguments_: ! TIME The type shall be of type `INTEGER'. ! RESULT The type shall be of type `CHARACTER' and of ! default kind. It is an `INTENT(OUT)' argument. ! If the length of this variable is too short ! for the time and date string to fit ! completely, it will be blank on procedure ! return. _Return value_: The converted date and time as a string. *************** _Example_: *** 6920,6954 **** end program test_ctime _See Also_: ! *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note TIME::, ! *note TIME8::  File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures ! 8.61 'DATE_AND_TIME' -- Date and time subroutine ================================================ _Description_: ! 'DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding date and time information from the real-time system clock. DATE is ! 'INTENT(OUT)' and has form ccyymmdd. TIME is 'INTENT(OUT)' and has ! form hhmmss.sss. ZONE is 'INTENT(OUT)' and has form (+-)hhmm, representing the difference with respect to Coordinated Universal ! Time (UTC). Unavailable time and date parameters return blanks. ! VALUES is 'INTENT(OUT)' and provides the following: ! 'VALUE(1)': The year ! 'VALUE(2)': The month ! 'VALUE(3)': The day of the month ! 'VALUE(4)': Time difference with UTC in ! minutes ! 'VALUE(5)': The hour of the day ! 'VALUE(6)': The minutes of the hour ! 'VALUE(7)': The seconds of the minute ! 'VALUE(8)': The milliseconds of the ! second _Standard_: Fortran 95 and later --- 6980,7014 ---- end program test_ctime _See Also_: ! *note DATE_AND_TIME::, *note GMTIME::, *note LTIME::, *note ! TIME::, *note TIME8::  File: gfortran.info, Node: DATE_AND_TIME, Next: DBLE, Prev: CTIME, Up: Intrinsic Procedures ! 8.61 `DATE_AND_TIME' -- Date and time subroutine ================================================ _Description_: ! `DATE_AND_TIME(DATE, TIME, ZONE, VALUES)' gets the corresponding date and time information from the real-time system clock. DATE is ! `INTENT(OUT)' and has form ccyymmdd. TIME is `INTENT(OUT)' and ! has form hhmmss.sss. ZONE is `INTENT(OUT)' and has form (+-)hhmm, representing the difference with respect to Coordinated Universal ! Time (UTC). Unavailable time and date parameters return blanks. ! VALUES is `INTENT(OUT)' and provides the following: ! `VALUE(1)': The year ! `VALUE(2)': The month ! `VALUE(3)': The day of the month ! `VALUE(4)': Time difference with UTC ! in minutes ! `VALUE(5)': The hour of the day ! `VALUE(6)': The minutes of the hour ! `VALUE(7)': The seconds of the minute ! `VALUE(8)': The milliseconds of the ! second _Standard_: Fortran 95 and later *************** _Class_: *** 6957,6972 **** Subroutine _Syntax_: ! 'CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])' _Arguments_: ! DATE (Optional) The type shall be 'CHARACTER(LEN=8)' ! or larger, and of default kind. ! TIME (Optional) The type shall be 'CHARACTER(LEN=10)' ! or larger, and of default kind. ! ZONE (Optional) The type shall be 'CHARACTER(LEN=5)' ! or larger, and of default kind. ! VALUES (Optional) The type shall be 'INTEGER(8)'. _Return value_: None --- 7017,7033 ---- Subroutine _Syntax_: ! `CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])' _Arguments_: ! DATE (Optional) The type shall be `CHARACTER(LEN=8)' ! or larger, and of default kind. ! TIME (Optional) The type shall be ! `CHARACTER(LEN=10)' or larger, and of default ! kind. ! ZONE (Optional) The type shall be `CHARACTER(LEN=5)' ! or larger, and of default kind. ! VALUES (Optional) The type shall be `INTEGER(8)'. _Return value_: None *************** _See also_: *** 6992,7002 ****  File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures ! 8.62 'DBLE' -- Double conversion function ========================================= _Description_: ! 'DBLE(A)' Converts A to double precision real type. _Standard_: Fortran 77 and later --- 7053,7063 ----  File: gfortran.info, Node: DBLE, Next: DCMPLX, Prev: DATE_AND_TIME, Up: Intrinsic Procedures ! 8.62 `DBLE' -- Double conversion function ========================================= _Description_: ! `DBLE(A)' Converts A to double precision real type. _Standard_: Fortran 77 and later *************** _Class_: *** 7005,7015 **** Elemental function _Syntax_: ! 'RESULT = DBLE(A)' _Arguments_: ! A The type shall be 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: The return value is of type double precision real. --- 7066,7076 ---- Elemental function _Syntax_: ! `RESULT = DBLE(A)' _Arguments_: ! A The type shall be `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: The return value is of type double precision real. *************** _See also_: *** 7028,7042 ****  File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures ! 8.63 'DCMPLX' -- Double complex conversion function =================================================== _Description_: ! 'DCMPLX(X [,Y])' returns a double complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the imaginary ! component is set to 0.0. If X is complex then Y must not be ! present. _Standard_: GNU extension --- 7089,7103 ----  File: gfortran.info, Node: DCMPLX, Next: DIGITS, Prev: DBLE, Up: Intrinsic Procedures ! 8.63 `DCMPLX' -- Double complex conversion function =================================================== _Description_: ! `DCMPLX(X [,Y])' returns a double complex number where X is converted to the real component. If Y is present it is converted ! to the imaginary component. If Y is not present then the ! imaginary component is set to 0.0. If X is complex then Y must ! not be present. _Standard_: GNU extension *************** _Class_: *** 7045,7059 **** Elemental function _Syntax_: ! 'RESULT = DCMPLX(X [, Y])' _Arguments_: ! X The type may be 'INTEGER', 'REAL', or 'COMPLEX'. ! Y (Optional if X is not 'COMPLEX'.) May be ! 'INTEGER' or 'REAL'. _Return value_: ! The return value is of type 'COMPLEX(8)' _Example_: program test_dcmplx --- 7106,7121 ---- Elemental function _Syntax_: ! `RESULT = DCMPLX(X [, Y])' _Arguments_: ! X The type may be `INTEGER', `REAL', or ! `COMPLEX'. ! Y (Optional if X is not `COMPLEX'.) May be ! `INTEGER' or `REAL'. _Return value_: ! The return value is of type `COMPLEX(8)' _Example_: program test_dcmplx *************** _Example_: *** 7070,7083 ****  File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures ! 8.64 'DIGITS' -- Significant binary digits function =================================================== _Description_: ! 'DIGITS(X)' returns the number of significant binary digits of the ! internal model representation of X. For example, on a system using ! a 32-bit floating point representation, a default real number would ! likely return 24. _Standard_: Fortran 95 and later --- 7132,7145 ----  File: gfortran.info, Node: DIGITS, Next: DIM, Prev: DCMPLX, Up: Intrinsic Procedures ! 8.64 `DIGITS' -- Significant binary digits function =================================================== _Description_: ! `DIGITS(X)' returns the number of significant binary digits of the ! internal model representation of X. For example, on a system ! using a 32-bit floating point representation, a default real ! number would likely return 24. _Standard_: Fortran 95 and later *************** _Class_: *** 7086,7098 **** Inquiry function _Syntax_: ! 'RESULT = DIGITS(X)' _Arguments_: ! X The type may be 'INTEGER' or 'REAL'. _Return value_: ! The return value is of type 'INTEGER'. _Example_: program test_digits --- 7148,7160 ---- Inquiry function _Syntax_: ! `RESULT = DIGITS(X)' _Arguments_: ! X The type may be `INTEGER' or `REAL'. _Return value_: ! The return value is of type `INTEGER'. _Example_: program test_digits *************** _Example_: *** 7107,7117 ****  File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures ! 8.65 'DIM' -- Positive difference ================================= _Description_: ! 'DIM(X,Y)' returns the difference 'X-Y' if the result is positive; otherwise returns zero. _Standard_: --- 7169,7179 ----  File: gfortran.info, Node: DIM, Next: DOT_PRODUCT, Prev: DIGITS, Up: Intrinsic Procedures ! 8.65 `DIM' -- Positive difference ================================= _Description_: ! `DIM(X,Y)' returns the difference `X-Y' if the result is positive; otherwise returns zero. _Standard_: *************** _Class_: *** 7121,7134 **** Elemental function _Syntax_: ! 'RESULT = DIM(X, Y)' _Arguments_: ! X The type shall be 'INTEGER' or 'REAL' ! Y The type shall be the same type and kind as X. _Return value_: ! The return value is of type 'INTEGER' or 'REAL'. _Example_: program test_dim --- 7183,7196 ---- Elemental function _Syntax_: ! `RESULT = DIM(X, Y)' _Arguments_: ! X The type shall be `INTEGER' or `REAL' ! Y The type shall be the same type and kind as X. _Return value_: ! The return value is of type `INTEGER' or `REAL'. _Example_: program test_dim *************** _Example_: *** 7141,7168 **** end program test_dim _Specific names_: ! Name Argument Return type Standard ! 'DIM(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and ! Y' later ! 'IDIM(X,Y)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! X, Y' later ! 'DDIM(X,Y)' 'REAL(8) X, 'REAL(8)' Fortran 77 and ! Y' later  File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures ! 8.66 'DOT_PRODUCT' -- Dot product function ========================================== _Description_: ! 'DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product multiplication of two vectors VECTOR_A and VECTOR_B. The two ! vectors may be either numeric or logical and must be arrays of rank ! one and of equal size. If the vectors are 'INTEGER' or 'REAL', the ! result is 'SUM(VECTOR_A*VECTOR_B)'. If the vectors are 'COMPLEX', ! the result is 'SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the vectors are ! 'LOGICAL', the result is 'ANY(VECTOR_A .AND. VECTOR_B)'. _Standard_: Fortran 95 and later --- 7203,7231 ---- end program test_dim _Specific names_: ! Name Argument Return type Standard ! `DIM(X,Y)' `REAL(4) X, `REAL(4)' Fortran 77 and ! Y' later ! `IDIM(X,Y)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! X, Y' later ! `DDIM(X,Y)' `REAL(8) X, `REAL(8)' Fortran 77 and ! Y' later  File: gfortran.info, Node: DOT_PRODUCT, Next: DPROD, Prev: DIM, Up: Intrinsic Procedures ! 8.66 `DOT_PRODUCT' -- Dot product function ========================================== _Description_: ! `DOT_PRODUCT(VECTOR_A, VECTOR_B)' computes the dot product multiplication of two vectors VECTOR_A and VECTOR_B. The two ! vectors may be either numeric or logical and must be arrays of ! rank one and of equal size. If the vectors are `INTEGER' or ! `REAL', the result is `SUM(VECTOR_A*VECTOR_B)'. If the vectors are ! `COMPLEX', the result is `SUM(CONJG(VECTOR_A)*VECTOR_B)'. If the ! vectors are `LOGICAL', the result is `ANY(VECTOR_A .AND. ! VECTOR_B)'. _Standard_: Fortran 95 and later *************** _Class_: *** 7171,7188 **** Transformational function _Syntax_: ! 'RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)' _Arguments_: ! VECTOR_A The type shall be numeric or 'LOGICAL', rank 1. ! VECTOR_B The type shall be numeric if VECTOR_A is of ! numeric type or 'LOGICAL' if VECTOR_A is of type ! 'LOGICAL'. VECTOR_B shall be a rank-one array. _Return value_: If the arguments are numeric, the return value is a scalar of ! numeric type, 'INTEGER', 'REAL', or 'COMPLEX'. If the arguments ! are 'LOGICAL', the return value is '.TRUE.' or '.FALSE.'. _Example_: program test_dot_prod --- 7234,7252 ---- Transformational function _Syntax_: ! `RESULT = DOT_PRODUCT(VECTOR_A, VECTOR_B)' _Arguments_: ! VECTOR_A The type shall be numeric or `LOGICAL', rank 1. ! VECTOR_B The type shall be numeric if VECTOR_A is of ! numeric type or `LOGICAL' if VECTOR_A is of ! type `LOGICAL'. VECTOR_B shall be a rank-one ! array. _Return value_: If the arguments are numeric, the return value is a scalar of ! numeric type, `INTEGER', `REAL', or `COMPLEX'. If the arguments ! are `LOGICAL', the return value is `.TRUE.' or `.FALSE.'. _Example_: program test_dot_prod *************** _Example_: *** 7199,7209 ****  File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures ! 8.67 'DPROD' -- Double product function ======================================= _Description_: ! 'DPROD(X,Y)' returns the product 'X*Y'. _Standard_: Fortran 77 and later --- 7263,7273 ----  File: gfortran.info, Node: DPROD, Next: DREAL, Prev: DOT_PRODUCT, Up: Intrinsic Procedures ! 8.67 `DPROD' -- Double product function ======================================= _Description_: ! `DPROD(X,Y)' returns the product `X*Y'. _Standard_: Fortran 77 and later *************** _Class_: *** 7212,7225 **** Elemental function _Syntax_: ! 'RESULT = DPROD(X, Y)' _Arguments_: ! X The type shall be 'REAL'. ! Y The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL(8)'. _Example_: program test_dprod --- 7276,7289 ---- Elemental function _Syntax_: ! `RESULT = DPROD(X, Y)' _Arguments_: ! X The type shall be `REAL'. ! Y The type shall be `REAL'. _Return value_: ! The return value is of type `REAL(8)'. _Example_: program test_dprod *************** _Example_: *** 7231,7248 **** end program test_dprod _Specific names_: ! Name Argument Return type Standard ! 'DPROD(X,Y)' 'REAL(4) X, 'REAL(4)' Fortran 77 and ! Y' later  File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures ! 8.68 'DREAL' -- Double real part function ========================================= _Description_: ! 'DREAL(Z)' returns the real part of complex variable Z. _Standard_: GNU extension --- 7295,7313 ---- end program test_dprod _Specific names_: ! Name Argument Return type Standard ! `DPROD(X,Y)' `REAL(4) X, `REAL(4)' Fortran 77 and ! Y' later !  File: gfortran.info, Node: DREAL, Next: DSHIFTL, Prev: DPROD, Up: Intrinsic Procedures ! 8.68 `DREAL' -- Double real part function ========================================= _Description_: ! `DREAL(Z)' returns the real part of complex variable Z. _Standard_: GNU extension *************** _Class_: *** 7251,7263 **** Elemental function _Syntax_: ! 'RESULT = DREAL(A)' _Arguments_: ! A The type shall be 'COMPLEX(8)'. _Return value_: ! The return value is of type 'REAL(8)'. _Example_: program test_dreal --- 7316,7328 ---- Elemental function _Syntax_: ! `RESULT = DREAL(A)' _Arguments_: ! A The type shall be `COMPLEX(8)'. _Return value_: ! The return value is of type `REAL(8)'. _Example_: program test_dreal *************** _Example_: *** 7268,7281 **** _See also_: *note AIMAG::  File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures ! 8.69 'DSHIFTL' -- Combined left shift ===================================== _Description_: ! 'DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost SHIFT bits of the result are the leftmost SHIFT bits of J, and the remaining bits are the rightmost bits of I. --- 7333,7347 ---- _See also_: *note AIMAG:: +  File: gfortran.info, Node: DSHIFTL, Next: DSHIFTR, Prev: DREAL, Up: Intrinsic Procedures ! 8.69 `DSHIFTL' -- Combined left shift ===================================== _Description_: ! `DSHIFTL(I, J, SHIFT)' combines bits of I and J. The rightmost SHIFT bits of the result are the leftmost SHIFT bits of J, and the remaining bits are the rightmost bits of I. *************** _Class_: *** 7286,7308 **** Elemental function _Syntax_: ! 'RESULT = DSHIFTL(I, J, SHIFT)' _Arguments_: ! I Shall be of type 'INTEGER' or a BOZ constant. ! J Shall be of type 'INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type 'INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! 'BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to 'BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function 'INT' to an integer type with the kind type parameter of the other. _See also_: --- 7352,7374 ---- Elemental function _Syntax_: ! `RESULT = DSHIFTL(I, J, SHIFT)' _Arguments_: ! I Shall be of type `INTEGER' or a BOZ constant. ! J Shall be of type `INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type `INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! `BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to `BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function `INT' to an integer type with the kind type parameter of the other. _See also_: *************** _See also_: *** 7311,7323 ****  File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures ! 8.70 'DSHIFTR' -- Combined right shift ====================================== _Description_: ! 'DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost ! SHIFT bits of the result are the rightmost SHIFT bits of I, and the ! remaining bits are the leftmost bits of J. _Standard_: Fortran 2008 and later --- 7377,7389 ----  File: gfortran.info, Node: DSHIFTR, Next: DTIME, Prev: DSHIFTL, Up: Intrinsic Procedures ! 8.70 `DSHIFTR' -- Combined right shift ====================================== _Description_: ! `DSHIFTR(I, J, SHIFT)' combines bits of I and J. The leftmost ! SHIFT bits of the result are the rightmost SHIFT bits of I, and ! the remaining bits are the leftmost bits of J. _Standard_: Fortran 2008 and later *************** _Class_: *** 7326,7348 **** Elemental function _Syntax_: ! 'RESULT = DSHIFTR(I, J, SHIFT)' _Arguments_: ! I Shall be of type 'INTEGER' or a BOZ constant. ! J Shall be of type 'INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type 'INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! 'BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to 'BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function 'INT' to an integer type with the kind type parameter of the other. _See also_: --- 7392,7414 ---- Elemental function _Syntax_: ! `RESULT = DSHIFTR(I, J, SHIFT)' _Arguments_: ! I Shall be of type `INTEGER' or a BOZ constant. ! J Shall be of type `INTEGER' or a BOZ constant. ! If both I and J have integer type, then they ! shall have the same kind type parameter. I and ! J shall not both be BOZ constants. ! SHIFT Shall be of type `INTEGER'. It shall be ! nonnegative. If I is not a BOZ constant, then ! SHIFT shall be less than or equal to ! `BIT_SIZE(I)'; otherwise, SHIFT shall be less ! than or equal to `BIT_SIZE(J)'. _Return value_: If either I or J is a BOZ constant, it is first converted as if by ! the intrinsic function `INT' to an integer type with the kind type parameter of the other. _See also_: *************** _See also_: *** 7351,7391 ****  File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures ! 8.71 'DTIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! 'DTIME(VALUES, TIME)' initially returns the number of seconds of runtime since the start of the process's execution in TIME. VALUES ! returns the user and system components of this time in 'VALUES(1)' ! and 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) + VALUES(2)'. ! Subsequent invocations of 'DTIME' return values accumulated since the previous invocation. ! On some systems, the underlying timings are represented using types ! with sufficiently small limits that overflows (wrap around) are ! possible, such as 32-bit types. Therefore, the values returned by ! this intrinsic might be, or become, negative, or numerically less ! than previous values, during a single run of the compiled program. ! Please note, that this implementation is thread safe if used within ! OpenMP directives, i.e., its state will be consistent while called ! from multiple threads. However, if 'DTIME' is called from multiple ! threads, the result is still the time since the last invocation. ! This may not give the intended results. If possible, use ! 'CPU_TIME' instead. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are 'INTENT(OUT)' and provide the following: ! 'VALUES(1)': User time in seconds. ! 'VALUES(2)': System time in seconds. ! 'TIME': Run time since start in ! seconds. _Standard_: GNU extension --- 7417,7458 ----  File: gfortran.info, Node: DTIME, Next: EOSHIFT, Prev: DSHIFTR, Up: Intrinsic Procedures ! 8.71 `DTIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! `DTIME(VALUES, TIME)' initially returns the number of seconds of runtime since the start of the process's execution in TIME. VALUES ! returns the user and system components of this time in `VALUES(1)' ! and `VALUES(2)' respectively. TIME is equal to `VALUES(1) + VALUES(2)'. ! Subsequent invocations of `DTIME' return values accumulated since the previous invocation. ! On some systems, the underlying timings are represented using ! types with sufficiently small limits that overflows (wrap around) ! are possible, such as 32-bit types. Therefore, the values returned ! by this intrinsic might be, or become, negative, or numerically ! less than previous values, during a single run of the compiled ! program. ! Please note, that this implementation is thread safe if used ! within OpenMP directives, i.e., its state will be consistent while ! called from multiple threads. However, if `DTIME' is called from ! multiple threads, the result is still the time since the last ! invocation. This may not give the intended results. If possible, ! use `CPU_TIME' instead. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are `INTENT(OUT)' and provide the following: ! `VALUES(1)': User time in seconds. ! `VALUES(2)': System time in seconds. ! `TIME': Run time since start in ! seconds. _Standard_: GNU extension *************** _Class_: *** 7394,7405 **** Subroutine, function _Syntax_: ! 'CALL DTIME(VALUES, TIME)'. ! 'TIME = DTIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be 'REAL(4), DIMENSION(2)'. ! TIME The type shall be 'REAL(4)'. _Return value_: Elapsed time in seconds since the last invocation or since the --- 7461,7472 ---- Subroutine, function _Syntax_: ! `CALL DTIME(VALUES, TIME)'. ! `TIME = DTIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be `REAL(4), DIMENSION(2)'. ! TIME The type shall be `REAL(4)'. _Return value_: Elapsed time in seconds since the last invocation or since the *************** _Example_: *** 7426,7455 **** _See also_: *note CPU_TIME::  File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures ! 8.72 'EOSHIFT' -- End-off shift elements of an array ==================================================== _Description_: ! 'EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift ! on elements of ARRAY along the dimension of DIM. If DIM is omitted ! it is taken to be '1'. DIM is a scalar of type 'INTEGER' in the ! range of 1 \leq DIM \leq n) where n is the rank of ARRAY. If the ! rank of ARRAY is one, then all elements of ARRAY are shifted by ! SHIFT places. If rank is greater than one, then all complete rank ! one sections of ARRAY along the given dimension are shifted. ! Elements shifted out one end of each rank one section are dropped. ! If BOUNDARY is present then the corresponding value of from ! BOUNDARY is copied back in the other end. If BOUNDARY is not ! present then the following are copied in depending on the type of ! ARRAY. ! _Array _Boundary Value_ ! Type_ ! Numeric 0 of the type and kind of ARRAY. ! Logical '.FALSE.'. Character(LEN)LEN blanks. _Standard_: --- 7493,7523 ---- _See also_: *note CPU_TIME:: +  File: gfortran.info, Node: EOSHIFT, Next: EPSILON, Prev: DTIME, Up: Intrinsic Procedures ! 8.72 `EOSHIFT' -- End-off shift elements of an array ==================================================== _Description_: ! `EOSHIFT(ARRAY, SHIFT[, BOUNDARY, DIM])' performs an end-off shift ! on elements of ARRAY along the dimension of DIM. If DIM is ! omitted it is taken to be `1'. DIM is a scalar of type `INTEGER' ! in the range of 1 \leq DIM \leq n) where n is the rank of ARRAY. ! If the rank of ARRAY is one, then all elements of ARRAY are ! shifted by SHIFT places. If rank is greater than one, then all ! complete rank one sections of ARRAY along the given dimension are ! shifted. Elements shifted out one end of each rank one section ! are dropped. If BOUNDARY is present then the corresponding value ! of from BOUNDARY is copied back in the other end. If BOUNDARY is ! not present then the following are copied in depending on the type ! of ARRAY. ! _Array _Boundary Value_ ! Type_ ! Numeric 0 of the type and kind of ARRAY. ! Logical `.FALSE.'. Character(LEN)LEN blanks. _Standard_: *************** _Class_: *** 7459,7471 **** Transformational function _Syntax_: ! 'RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])' _Arguments_: ! ARRAY May be any type, not scalar. ! SHIFT The type shall be 'INTEGER'. ! BOUNDARY Same type as ARRAY. ! DIM The type shall be 'INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. --- 7527,7539 ---- Transformational function _Syntax_: ! `RESULT = EOSHIFT(ARRAY, SHIFT [, BOUNDARY, DIM])' _Arguments_: ! ARRAY May be any type, not scalar. ! SHIFT The type shall be `INTEGER'. ! BOUNDARY Same type as ARRAY. ! DIM The type shall be `INTEGER'. _Return value_: Returns an array of same type and rank as the ARRAY argument. *************** _Example_: *** 7487,7497 ****  File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures ! 8.73 'EPSILON' -- Epsilon function ================================== _Description_: ! 'EPSILON(X)' returns the smallest number E of the same kind as X such that 1 + E > 1. _Standard_: --- 7555,7565 ----  File: gfortran.info, Node: EPSILON, Next: ERF, Prev: EOSHIFT, Up: Intrinsic Procedures ! 8.73 `EPSILON' -- Epsilon function ================================== _Description_: ! `EPSILON(X)' returns the smallest number E of the same kind as X such that 1 + E > 1. _Standard_: *************** _Class_: *** 7501,7510 **** Inquiry function _Syntax_: ! 'RESULT = EPSILON(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: The return value is of same type as the argument. --- 7569,7578 ---- Inquiry function _Syntax_: ! `RESULT = EPSILON(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: The return value is of same type as the argument. *************** _Example_: *** 7520,7530 ****  File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures ! 8.74 'ERF' -- Error function ============================ _Description_: ! 'ERF(X)' computes the error function of X. _Standard_: Fortran 2008 and later --- 7588,7598 ----  File: gfortran.info, Node: ERF, Next: ERFC, Prev: EPSILON, Up: Intrinsic Procedures ! 8.74 `ERF' -- Error function ============================ _Description_: ! `ERF(X)' computes the error function of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 7533,7545 **** Elemental function _Syntax_: ! 'RESULT = ERF(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL', of the same kind as X and lies in the range -1 \leq erf (x) \leq 1 . _Example_: --- 7601,7613 ---- Elemental function _Syntax_: ! `RESULT = ERF(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL', of the same kind as X and lies in the range -1 \leq erf (x) \leq 1 . _Example_: *************** _Example_: *** 7549,7565 **** end program test_erf _Specific names_: ! Name Argument Return type Standard ! 'DERF(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures ! 8.75 'ERFC' -- Error function ============================= _Description_: ! 'ERFC(X)' computes the complementary error function of X. _Standard_: Fortran 2008 and later --- 7617,7633 ---- end program test_erf _Specific names_: ! Name Argument Return type Standard ! `DERF(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: ERFC, Next: ERFC_SCALED, Prev: ERF, Up: Intrinsic Procedures ! 8.75 `ERFC' -- Error function ============================= _Description_: ! `ERFC(X)' computes the complementary error function of X. _Standard_: Fortran 2008 and later *************** _Class_: *** 7568,7581 **** Elemental function _Syntax_: ! 'RESULT = ERFC(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL' and of the same kind as X. It ! lies in the range 0 \leq erfc (x) \leq 2 . _Example_: program test_erfc --- 7636,7649 ---- Elemental function _Syntax_: ! `RESULT = ERFC(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL' and of the same kind as X. It ! lies in the range 0 \leq erfc (x) \leq 2 . _Example_: program test_erfc *************** _Example_: *** 7584,7600 **** end program test_erfc _Specific names_: ! Name Argument Return type Standard ! 'DERFC(X)' 'REAL(8) X' 'REAL(8)' GNU extension  File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures ! 8.76 'ERFC_SCALED' -- Error function ==================================== _Description_: ! 'ERFC_SCALED(X)' computes the exponentially-scaled complementary error function of X. _Standard_: --- 7652,7668 ---- end program test_erfc _Specific names_: ! Name Argument Return type Standard ! `DERFC(X)' `REAL(8) X' `REAL(8)' GNU extension  File: gfortran.info, Node: ERFC_SCALED, Next: ETIME, Prev: ERFC, Up: Intrinsic Procedures ! 8.76 `ERFC_SCALED' -- Error function ==================================== _Description_: ! `ERFC_SCALED(X)' computes the exponentially-scaled complementary error function of X. _Standard_: *************** _Class_: *** 7604,7616 **** Elemental function _Syntax_: ! 'RESULT = ERFC_SCALED(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL' and of the same kind as X. _Example_: program test_erfc_scaled --- 7672,7684 ---- Elemental function _Syntax_: ! `RESULT = ERFC_SCALED(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL' and of the same kind as X. _Example_: program test_erfc_scaled *************** _Example_: *** 7621,7650 ****  File: gfortran.info, Node: ETIME, Next: EXECUTE_COMMAND_LINE, Prev: ERFC_SCALED, Up: Intrinsic Procedures ! 8.77 'ETIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! 'ETIME(VALUES, TIME)' returns the number of seconds of runtime ! since the start of the process's execution in TIME. VALUES returns ! the user and system components of this time in 'VALUES(1)' and ! 'VALUES(2)' respectively. TIME is equal to 'VALUES(1) + VALUES(2)'. ! On some systems, the underlying timings are represented using types ! with sufficiently small limits that overflows (wrap around) are ! possible, such as 32-bit types. Therefore, the values returned by ! this intrinsic might be, or become, negative, or numerically less ! than previous values, during a single run of the compiled program. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are 'INTENT(OUT)' and provide the following: ! 'VALUES(1)': User time in seconds. ! 'VALUES(2)': System time in seconds. ! 'TIME': Run time since start in seconds. _Standard_: GNU extension --- 7689,7719 ----  File: gfortran.info, Node: ETIME, Next: EXECUTE_COMMAND_LINE, Prev: ERFC_SCALED, Up: Intrinsic Procedures ! 8.77 `ETIME' -- Execution time subroutine (or function) ======================================================= _Description_: ! `ETIME(VALUES, TIME)' returns the number of seconds of runtime ! since the start of the process's execution in TIME. VALUES ! returns the user and system components of this time in `VALUES(1)' ! and `VALUES(2)' respectively. TIME is equal to `VALUES(1) + VALUES(2)'. ! On some systems, the underlying timings are represented using ! types with sufficiently small limits that overflows (wrap around) ! are possible, such as 32-bit types. Therefore, the values returned ! by this intrinsic might be, or become, negative, or numerically ! less than previous values, during a single run of the compiled ! program. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! VALUES and TIME are `INTENT(OUT)' and provide the following: ! `VALUES(1)': User time in seconds. ! `VALUES(2)': System time in seconds. ! `TIME': Run time since start in seconds. _Standard_: GNU extension *************** _Class_: *** 7653,7664 **** Subroutine, function _Syntax_: ! 'CALL ETIME(VALUES, TIME)'. ! 'TIME = ETIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be 'REAL(4), DIMENSION(2)'. ! TIME The type shall be 'REAL(4)'. _Return value_: Elapsed time in seconds since the start of program execution. --- 7722,7733 ---- Subroutine, function _Syntax_: ! `CALL ETIME(VALUES, TIME)'. ! `TIME = ETIME(VALUES)', (not recommended). _Arguments_: ! VALUES The type shall be `REAL(4), DIMENSION(2)'. ! TIME The type shall be `REAL(4)'. _Return value_: Elapsed time in seconds since the start of program execution. *************** _Example_: *** 7684,7714 **** _See also_: *note CPU_TIME::  File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: ETIME, Up: Intrinsic Procedures ! 8.78 'EXECUTE_COMMAND_LINE' -- Execute a shell command ====================================================== _Description_: ! 'EXECUTE_COMMAND_LINE' runs a shell command, synchronously or asynchronously. ! The 'COMMAND' argument is passed to the shell and executed, using ! the C library's 'system' call. (The shell is 'sh' on Unix systems, ! and 'cmd.exe' on Windows.) If 'WAIT' is present and has the value ! false, the execution of the command is asynchronous if the system ! supports it; otherwise, the command is executed synchronously. The three last arguments allow the user to get status information. ! After synchronous execution, 'EXITSTAT' contains the integer exit ! code of the command, as returned by 'system'. 'CMDSTAT' is set to zero if the command line was executed (whatever its exit status ! was). 'CMDMSG' is assigned an error message if an error has occurred. ! Note that the 'system' function need not be thread-safe. It is the ! responsibility of the user to ensure that 'system' is not called concurrently. _Standard_: --- 7753,7785 ---- _See also_: *note CPU_TIME:: +  File: gfortran.info, Node: EXECUTE_COMMAND_LINE, Next: EXIT, Prev: ETIME, Up: Intrinsic Procedures ! 8.78 `EXECUTE_COMMAND_LINE' -- Execute a shell command ====================================================== _Description_: ! `EXECUTE_COMMAND_LINE' runs a shell command, synchronously or asynchronously. ! The `COMMAND' argument is passed to the shell and executed, using ! the C library's `system' call. (The shell is `sh' on Unix ! systems, and `cmd.exe' on Windows.) If `WAIT' is present and has ! the value false, the execution of the command is asynchronous if ! the system supports it; otherwise, the command is executed ! synchronously. The three last arguments allow the user to get status information. ! After synchronous execution, `EXITSTAT' contains the integer exit ! code of the command, as returned by `system'. `CMDSTAT' is set to zero if the command line was executed (whatever its exit status ! was). `CMDMSG' is assigned an error message if an error has occurred. ! Note that the `system' function need not be thread-safe. It is the ! responsibility of the user to ensure that `system' is not called concurrently. _Standard_: *************** _Class_: *** 7718,7735 **** Subroutine _Syntax_: ! 'CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])' _Arguments_: ! COMMAND Shall be a default 'CHARACTER' scalar. ! WAIT (Optional) Shall be a default 'LOGICAL' scalar. ! EXITSTAT (Optional) Shall be an 'INTEGER' of the default ! kind. ! CMDSTAT (Optional) Shall be an 'INTEGER' of the default ! kind. ! CMDMSG (Optional) Shall be an 'CHARACTER' scalar of the ! default kind. _Example_: program test_exec --- 7789,7806 ---- Subroutine _Syntax_: ! `CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])' _Arguments_: ! COMMAND Shall be a default `CHARACTER' scalar. ! WAIT (Optional) Shall be a default `LOGICAL' scalar. ! EXITSTAT (Optional) Shall be an `INTEGER' of the ! default kind. ! CMDSTAT (Optional) Shall be an `INTEGER' of the ! default kind. ! CMDMSG (Optional) Shall be an `CHARACTER' scalar of ! the default kind. _Example_: program test_exec *************** _Example_: *** 7744,7755 **** end program test_exec _Note_: ! ! Because this intrinsic is implemented in terms of the 'system' function call, its behavior with respect to signaling is processor ! dependent. In particular, on POSIX-compliant systems, the SIGINT and SIGQUIT signals will be ignored, and the SIGCHLD will be ! blocked. As such, if the parent process is terminated, the child process might not be terminated alongside. _See also_: --- 7815,7825 ---- end program test_exec _Note_: ! Because this intrinsic is implemented in terms of the `system' function call, its behavior with respect to signaling is processor ! dependent. In particular, on POSIX-compliant systems, the SIGINT and SIGQUIT signals will be ignored, and the SIGCHLD will be ! blocked. As such, if the parent process is terminated, the child process might not be terminated alongside. _See also_: *************** _See also_: *** 7758,7769 ****  File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures ! 8.79 'EXIT' -- Exit the program with status. ============================================ _Description_: ! 'EXIT' causes immediate termination of the program with status. If ! status is omitted it returns the canonical _success_ for the system. All Fortran I/O units are closed. _Standard_: --- 7828,7839 ----  File: gfortran.info, Node: EXIT, Next: EXP, Prev: EXECUTE_COMMAND_LINE, Up: Intrinsic Procedures ! 8.79 `EXIT' -- Exit the program with status. ============================================ _Description_: ! `EXIT' causes immediate termination of the program with status. ! If status is omitted it returns the canonical _success_ for the system. All Fortran I/O units are closed. _Standard_: *************** _Class_: *** 7773,7785 **** Subroutine _Syntax_: ! 'CALL EXIT([STATUS])' _Arguments_: ! STATUS Shall be an 'INTEGER' of the default kind. _Return value_: ! 'STATUS' is passed to the parent process on exit. _Example_: program test_exit --- 7843,7855 ---- Subroutine _Syntax_: ! `CALL EXIT([STATUS])' _Arguments_: ! STATUS Shall be an `INTEGER' of the default kind. _Return value_: ! `STATUS' is passed to the parent process on exit. _Example_: program test_exit *************** _See also_: *** 7794,7804 ****  File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures ! 8.80 'EXP' -- Exponential function ================================== _Description_: ! 'EXP(X)' computes the base e exponential of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions --- 7864,7874 ----  File: gfortran.info, Node: EXP, Next: EXPONENT, Prev: EXIT, Up: Intrinsic Procedures ! 8.80 `EXP' -- Exponential function ================================== _Description_: ! `EXP(X)' computes the base e exponential of X. _Standard_: Fortran 77 and later, has overloads that are GNU extensions *************** _Class_: *** 7807,7816 **** Elemental function _Syntax_: ! 'RESULT = EXP(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. --- 7877,7886 ---- Elemental function _Syntax_: ! `RESULT = EXP(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 7822,7847 **** end program test_exp _Specific names_: ! Name Argument Return type Standard ! 'EXP(X)' 'REAL(4) X' 'REAL(4)' Fortran 77 and ! later ! 'DEXP(X)' 'REAL(8) X' 'REAL(8)' Fortran 77 and ! later ! 'CEXP(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 77 and ! X' later ! 'ZEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' ! 'CDEXP(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures ! 8.81 'EXPONENT' -- Exponent function ==================================== _Description_: ! 'EXPONENT(X)' returns the value of the exponent part of X. If X is zero the value returned is zero. _Standard_: --- 7892,7917 ---- end program test_exp _Specific names_: ! Name Argument Return type Standard ! `EXP(X)' `REAL(4) X' `REAL(4)' Fortran 77 and ! later ! `DEXP(X)' `REAL(8) X' `REAL(8)' Fortran 77 and ! later ! `CEXP(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 77 and ! X' later ! `ZEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' ! `CDEXP(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: EXPONENT, Next: EXTENDS_TYPE_OF, Prev: EXP, Up: Intrinsic Procedures ! 8.81 `EXPONENT' -- Exponent function ==================================== _Description_: ! `EXPONENT(X)' returns the value of the exponent part of X. If X is zero the value returned is zero. _Standard_: *************** _Class_: *** 7851,7863 **** Elemental function _Syntax_: ! 'RESULT = EXPONENT(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type default 'INTEGER'. _Example_: program test_exponent --- 7921,7933 ---- Elemental function _Syntax_: ! `RESULT = EXPONENT(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type default `INTEGER'. _Example_: program test_exponent *************** _Example_: *** 7871,7878 ****  File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures ! 8.82 'EXTENDS_TYPE_OF' -- Query dynamic type for extension ! ========================================================== _Description_: Query dynamic type for extension. --- 7941,7948 ----  File: gfortran.info, Node: EXTENDS_TYPE_OF, Next: FDATE, Prev: EXPONENT, Up: Intrinsic Procedures ! 8.82 `EXTENDS_TYPE_OF' -- Query dynamic type for extension ! =========================================================== _Description_: Query dynamic type for extension. *************** _Class_: *** 7884,7899 **** Inquiry function _Syntax_: ! 'RESULT = EXTENDS_TYPE_OF(A, MOLD)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! MOLD Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is an extension type of the dynamic type of MOLD. --- 7954,7969 ---- Inquiry function _Syntax_: ! `RESULT = EXTENDS_TYPE_OF(A, MOLD)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! MOLD Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is an extension type of the dynamic type of MOLD. *************** _See also_: *** 7903,7914 ****  File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures ! 8.83 'FDATE' -- Get the current time as a string ================================================ _Description_: ! 'FDATE(DATE)' returns the current date (using the same format as ! 'CTIME') in DATE. It is equivalent to 'CALL CTIME(DATE, TIME())'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 7973,7984 ----  File: gfortran.info, Node: FDATE, Next: FGET, Prev: EXTENDS_TYPE_OF, Up: Intrinsic Procedures ! 8.83 `FDATE' -- Get the current time as a string ================================================ _Description_: ! `FDATE(DATE)' returns the current date (using the same format as ! `CTIME') in DATE. It is equivalent to `CALL CTIME(DATE, TIME())'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 7920,7934 **** Subroutine, function _Syntax_: ! 'CALL FDATE(DATE)'. ! 'DATE = FDATE()'. _Arguments_: ! DATE The type shall be of type 'CHARACTER' of the ! default kind. It is an 'INTENT(OUT)' argument. ! If the length of this variable is too short for ! the date and time string to fit completely, it ! will be blank on procedure return. _Return value_: The current date and time as a string. --- 7990,8005 ---- Subroutine, function _Syntax_: ! `CALL FDATE(DATE)'. ! `DATE = FDATE()'. _Arguments_: ! DATE The type shall be of type `CHARACTER' of the ! default kind. It is an `INTENT(OUT)' argument. ! If the length of this variable is too short ! for the date and time string to fit ! completely, it will be blank on procedure ! return. _Return value_: The current date and time as a string. *************** _See also_: *** 7952,7974 ****  File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures ! 8.84 'FGET' -- Read a single character in stream mode from stdin ================================================================ _Description_: Read a single character in stream mode from stdin by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension --- 8023,8045 ----  File: gfortran.info, Node: FGET, Next: FGETC, Prev: FDATE, Up: Intrinsic Procedures ! 8.84 `FGET' -- Read a single character in stream mode from stdin ================================================================ _Description_: Read a single character in stream mode from stdin by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 7977,7991 **** Subroutine, function _Syntax_: ! 'CALL FGET(C [, STATUS])' ! 'STATUS = FGET(C)' _Arguments_: ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file, and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fget --- 8048,8062 ---- Subroutine, function _Syntax_: ! `CALL FGET(C [, STATUS])' ! `STATUS = FGET(C)' _Arguments_: ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file, and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fget *************** _See also_: *** 8008,8014 ****  File: gfortran.info, Node: FGETC, Next: FLOOR, Prev: FGET, Up: Intrinsic Procedures ! 8.85 'FGETC' -- Read a single character in stream mode ====================================================== _Description_: --- 8079,8085 ----  File: gfortran.info, Node: FGETC, Next: FLOOR, Prev: FGET, Up: Intrinsic Procedures ! 8.85 `FGETC' -- Read a single character in stream mode ====================================================== _Description_: *************** _Description_: *** 8020,8030 **** This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension --- 8091,8101 ---- This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 8033,8048 **** Subroutine, function _Syntax_: ! 'CALL FGETC(UNIT, C [, STATUS])' ! 'STATUS = FGETC(UNIT, C)' _Arguments_: ! UNIT The type shall be 'INTEGER'. ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fgetc --- 8104,8119 ---- Subroutine, function _Syntax_: ! `CALL FGETC(UNIT, C [, STATUS])' ! `STATUS = FGETC(UNIT, C)' _Arguments_: ! UNIT The type shall be `INTEGER'. ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fgetc *************** _See also_: *** 8064,8074 ****  File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FGETC, Up: Intrinsic Procedures ! 8.86 'FLOOR' -- Integer floor function ====================================== _Description_: ! 'FLOOR(A)' returns the greatest integer less than or equal to X. _Standard_: Fortran 95 and later --- 8135,8145 ----  File: gfortran.info, Node: FLOOR, Next: FLUSH, Prev: FGETC, Up: Intrinsic Procedures ! 8.86 `FLOOR' -- Integer floor function ====================================== _Description_: ! `FLOOR(A)' returns the greatest integer less than or equal to X. _Standard_: Fortran 95 and later *************** _Class_: *** 8077,8093 **** Elemental function _Syntax_: ! 'RESULT = FLOOR(A [, KIND])' _Arguments_: ! A The type shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER(KIND)' if KIND is present and ! of default-kind 'INTEGER' otherwise. _Example_: program test_floor --- 8148,8164 ---- Elemental function _Syntax_: ! `RESULT = FLOOR(A [, KIND])' _Arguments_: ! A The type shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER(KIND)' if KIND is present and ! of default-kind `INTEGER' otherwise. _Example_: program test_floor *************** _Example_: *** 8100,8113 **** _See also_: *note CEILING::, *note NINT::  File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures ! 8.87 'FLUSH' -- Flush I/O unit(s) ================================= _Description_: ! Flushes Fortran unit(s) currently open for output. Without the optional argument, all units are flushed, otherwise just the unit specified. --- 8171,8185 ---- _See also_: *note CEILING::, *note NINT:: +  File: gfortran.info, Node: FLUSH, Next: FNUM, Prev: FLOOR, Up: Intrinsic Procedures ! 8.87 `FLUSH' -- Flush I/O unit(s) ================================= _Description_: ! Flushes Fortran unit(s) currently open for output. Without the optional argument, all units are flushed, otherwise just the unit specified. *************** _Class_: *** 8118,8141 **** Subroutine _Syntax_: ! 'CALL FLUSH(UNIT)' _Arguments_: ! UNIT (Optional) The type shall be 'INTEGER'. _Note_: ! Beginning with the Fortran 2003 standard, there is a 'FLUSH' ! statement that should be preferred over the 'FLUSH' intrinsic. ! The 'FLUSH' intrinsic and the Fortran 2003 'FLUSH' statement have identical effect: they flush the runtime library's I/O buffer so ! that the data becomes visible to other processes. This does not guarantee that the data is committed to disk. ! On POSIX systems, you can request that all data is transferred to ! the storage device by calling the 'fsync' function, with the POSIX file descriptor of the I/O unit as argument (retrieved with GNU ! intrinsic 'FNUM'). The following example shows how: ! Declare the interface for POSIX fsync function interface --- 8190,8213 ---- Subroutine _Syntax_: ! `CALL FLUSH(UNIT)' _Arguments_: ! UNIT (Optional) The type shall be `INTEGER'. _Note_: ! Beginning with the Fortran 2003 standard, there is a `FLUSH' ! statement that should be preferred over the `FLUSH' intrinsic. ! The `FLUSH' intrinsic and the Fortran 2003 `FLUSH' statement have identical effect: they flush the runtime library's I/O buffer so ! that the data becomes visible to other processes. This does not guarantee that the data is committed to disk. ! On POSIX systems, you can request that all data is transferred to ! the storage device by calling the `fsync' function, with the POSIX file descriptor of the I/O unit as argument (retrieved with GNU ! intrinsic `FNUM'). The following example shows how: ! Declare the interface for POSIX fsync function interface *************** _Note_: *** 8163,8177 **** ! Handle possible error if (ret /= 0) stop "Error calling FSYNC"  File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures ! 8.88 'FNUM' -- File number function =================================== _Description_: ! 'FNUM(UNIT)' returns the POSIX file descriptor number corresponding ! to the open Fortran I/O unit 'UNIT'. _Standard_: GNU extension --- 8235,8250 ---- ! Handle possible error if (ret /= 0) stop "Error calling FSYNC" +  File: gfortran.info, Node: FNUM, Next: FPUT, Prev: FLUSH, Up: Intrinsic Procedures ! 8.88 `FNUM' -- File number function =================================== _Description_: ! `FNUM(UNIT)' returns the POSIX file descriptor number ! corresponding to the open Fortran I/O unit `UNIT'. _Standard_: GNU extension *************** _Class_: *** 8180,8192 **** Function _Syntax_: ! 'RESULT = FNUM(UNIT)' _Arguments_: ! UNIT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' _Example_: program test_fnum --- 8253,8265 ---- Function _Syntax_: ! `RESULT = FNUM(UNIT)' _Arguments_: ! UNIT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' _Example_: program test_fnum *************** _Example_: *** 8200,8222 ****  File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures ! 8.89 'FPUT' -- Write a single character in stream mode to stdout ================================================================ _Description_: Write a single character in stream mode to stdout by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension --- 8273,8295 ----  File: gfortran.info, Node: FPUT, Next: FPUTC, Prev: FNUM, Up: Intrinsic Procedures ! 8.89 `FPUT' -- Write a single character in stream mode to stdout ================================================================ _Description_: Write a single character in stream mode to stdout by bypassing ! normal formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 8225,8239 **** Subroutine, function _Syntax_: ! 'CALL FPUT(C [, STATUS])' ! 'STATUS = FPUT(C)' _Arguments_: ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fput --- 8298,8312 ---- Subroutine, function _Syntax_: ! `CALL FPUT(C [, STATUS])' ! `STATUS = FPUT(C)' _Arguments_: ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fput *************** _See also_: *** 8250,8272 ****  File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures ! 8.90 'FPUTC' -- Write a single character in stream mode ======================================================= _Description_: Write a single character in stream mode by bypassing normal ! formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'FGET' intrinsic is provided for backwards ! compatibility with 'g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new stream ! IO feature in new code for future portability. See also *note ! Fortran 2003 status::. _Standard_: GNU extension --- 8323,8345 ----  File: gfortran.info, Node: FPUTC, Next: FRACTION, Prev: FPUT, Up: Intrinsic Procedures ! 8.90 `FPUTC' -- Write a single character in stream mode ======================================================= _Description_: Write a single character in stream mode by bypassing normal ! formatted output. Stream I/O should not be mixed with normal record-oriented (formatted or unformatted) I/O on the same unit; the results are unpredictable. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `FGET' intrinsic is provided for backwards ! compatibility with `g77'. GNU Fortran provides the Fortran 2003 ! Stream facility. Programmers should consider the use of new ! stream IO feature in new code for future portability. See also ! *note Fortran 2003 status::. _Standard_: GNU extension *************** _Class_: *** 8275,8290 **** Subroutine, function _Syntax_: ! 'CALL FPUTC(UNIT, C [, STATUS])' ! 'STATUS = FPUTC(UNIT, C)' _Arguments_: ! UNIT The type shall be 'INTEGER'. ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fputc --- 8348,8363 ---- Subroutine, function _Syntax_: ! `CALL FPUTC(UNIT, C [, STATUS])' ! `STATUS = FPUTC(UNIT, C)' _Arguments_: ! UNIT The type shall be `INTEGER'. ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, -1 on end-of-file and a ! system specific positive error code otherwise. _Example_: PROGRAM test_fputc *************** _See also_: *** 8304,8315 ****  File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures ! 8.91 'FRACTION' -- Fractional part of the model representation ============================================================== _Description_: ! 'FRACTION(X)' returns the fractional part of the model ! representation of 'X'. _Standard_: Fortran 95 and later --- 8377,8388 ----  File: gfortran.info, Node: FRACTION, Next: FREE, Prev: FPUTC, Up: Intrinsic Procedures ! 8.91 `FRACTION' -- Fractional part of the model representation ============================================================== _Description_: ! `FRACTION(X)' returns the fractional part of the model ! representation of `X'. _Standard_: Fortran 95 and later *************** _Class_: *** 8318,8332 **** Elemental function _Syntax_: ! 'Y = FRACTION(X)' _Arguments_: ! X The type of the argument shall be a 'REAL'. _Return value_: ! The return value is of the same type and kind as the argument. The ! fractional part of the model representation of 'X' is returned; it ! is 'X * RADIX(X)**(-EXPONENT(X))'. _Example_: program test_fraction --- 8391,8405 ---- Elemental function _Syntax_: ! `Y = FRACTION(X)' _Arguments_: ! X The type of the argument shall be a `REAL'. _Return value_: ! The return value is of the same type and kind as the argument. ! The fractional part of the model representation of `X' is returned; ! it is `X * RADIX(X)**(-EXPONENT(X))'. _Example_: program test_fraction *************** _Example_: *** 8335,8352 **** print *, fraction(x), x * radix(x)**(-exponent(x)) end program test_fraction  File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures ! 8.92 'FREE' -- Frees memory =========================== _Description_: ! Frees memory previously allocated by 'MALLOC'. The 'FREE' intrinsic is an extension intended to be used with Cray pointers, and is provided in GNU Fortran to allow user to compile legacy ! code. For new code using Fortran 95 pointers, the memory ! de-allocation intrinsic is 'DEALLOCATE'. _Standard_: GNU extension --- 8408,8426 ---- print *, fraction(x), x * radix(x)**(-exponent(x)) end program test_fraction +  File: gfortran.info, Node: FREE, Next: FSEEK, Prev: FRACTION, Up: Intrinsic Procedures ! 8.92 `FREE' -- Frees memory =========================== _Description_: ! Frees memory previously allocated by `MALLOC'. The `FREE' intrinsic is an extension intended to be used with Cray pointers, and is provided in GNU Fortran to allow user to compile legacy ! code. For new code using Fortran 95 pointers, the memory ! de-allocation intrinsic is `DEALLOCATE'. _Standard_: GNU extension *************** _Class_: *** 8355,8372 **** Subroutine _Syntax_: ! 'CALL FREE(PTR)' _Arguments_: ! PTR The type shall be 'INTEGER'. It represents the ! location of the memory that should be ! de-allocated. _Return value_: None _Example_: ! See 'MALLOC' for an example. _See also_: *note MALLOC:: --- 8429,8446 ---- Subroutine _Syntax_: ! `CALL FREE(PTR)' _Arguments_: ! PTR The type shall be `INTEGER'. It represents the ! location of the memory that should be ! de-allocated. _Return value_: None _Example_: ! See `MALLOC' for an example. _See also_: *note MALLOC:: *************** _See also_: *** 8374,8393 ****  File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures ! 8.93 'FSEEK' -- Low level file positioning subroutine ===================================================== _Description_: ! Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the ! OFFSET is taken as an absolute value 'SEEK_SET', if set to 1, ! OFFSET is taken to be relative to the current position 'SEEK_CUR', ! and if set to 2 relative to the end of the file 'SEEK_END'. On ! error, STATUS is set to a nonzero value. If STATUS the seek fails silently. This intrinsic routine is not fully backwards compatible with ! 'g77'. In 'g77', the 'FSEEK' takes a statement label instead of a ! STATUS variable. If FSEEK is used in old code, change CALL FSEEK(UNIT, OFFSET, WHENCE, *label) to INTEGER :: status --- 8448,8467 ----  File: gfortran.info, Node: FSEEK, Next: FSTAT, Prev: FREE, Up: Intrinsic Procedures ! 8.93 `FSEEK' -- Low level file positioning subroutine ===================================================== _Description_: ! Moves UNIT to the specified OFFSET. If WHENCE is set to 0, the ! OFFSET is taken as an absolute value `SEEK_SET', if set to 1, ! OFFSET is taken to be relative to the current position `SEEK_CUR', ! and if set to 2 relative to the end of the file `SEEK_END'. On ! error, STATUS is set to a nonzero value. If STATUS the seek fails silently. This intrinsic routine is not fully backwards compatible with ! `g77'. In `g77', the `FSEEK' takes a statement label instead of a ! STATUS variable. If FSEEK is used in old code, change CALL FSEEK(UNIT, OFFSET, WHENCE, *label) to INTEGER :: status *************** _Description_: *** 8396,8402 **** Please note that GNU Fortran provides the Fortran 2003 Stream facility. Programmers should consider the use of new stream IO ! feature in new code for future portability. See also *note Fortran 2003 status::. _Standard_: --- 8470,8476 ---- Please note that GNU Fortran provides the Fortran 2003 Stream facility. Programmers should consider the use of new stream IO ! feature in new code for future portability. See also *note Fortran 2003 status::. _Standard_: *************** _Class_: *** 8406,8420 **** Subroutine _Syntax_: ! 'CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])' _Arguments_: ! UNIT Shall be a scalar of type 'INTEGER'. ! OFFSET Shall be a scalar of type 'INTEGER'. ! WHENCE Shall be a scalar of type 'INTEGER'. Its value ! shall be either 0, 1 or 2. ! STATUS (Optional) shall be a scalar of type ! 'INTEGER(4)'. _Example_: PROGRAM test_fseek --- 8480,8494 ---- Subroutine _Syntax_: ! `CALL FSEEK(UNIT, OFFSET, WHENCE[, STATUS])' _Arguments_: ! UNIT Shall be a scalar of type `INTEGER'. ! OFFSET Shall be a scalar of type `INTEGER'. ! WHENCE Shall be a scalar of type `INTEGER'. Its ! value shall be either 0, 1 or 2. ! STATUS (Optional) shall be a scalar of type ! `INTEGER(4)'. _Example_: PROGRAM test_fseek *************** _See also_: *** 8444,8457 ****  File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures ! 8.94 'FSTAT' -- Get file status =============================== _Description_: ! 'FSTAT' is identical to *note STAT::, except that information about ! an already opened file is obtained. ! The elements in 'VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 8518,8531 ----  File: gfortran.info, Node: FSTAT, Next: FTELL, Prev: FSEEK, Up: Intrinsic Procedures ! 8.94 `FSTAT' -- Get file status =============================== _Description_: ! `FSTAT' is identical to *note STAT::, except that information ! about an already opened file is obtained. ! The elements in `VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 8463,8477 **** Subroutine, function _Syntax_: ! 'CALL FSTAT(UNIT, VALUES [, STATUS])' ! 'STATUS = FSTAT(UNIT, VALUES)' _Arguments_: ! UNIT An open I/O unit number of type 'INTEGER'. ! VALUES The type shall be 'INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type 'INTEGER(4)'. ! Returns 0 on success and a system specific error ! code otherwise. _Example_: See *note STAT:: for an example. --- 8537,8551 ---- Subroutine, function _Syntax_: ! `CALL FSTAT(UNIT, VALUES [, STATUS])' ! `STATUS = FSTAT(UNIT, VALUES)' _Arguments_: ! UNIT An open I/O unit number of type `INTEGER'. ! VALUES The type shall be `INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type `INTEGER(4)'. ! Returns 0 on success and a system specific ! error code otherwise. _Example_: See *note STAT:: for an example. *************** _See also_: *** 8482,8488 ****  File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures ! 8.95 'FTELL' -- Current stream position ======================================= _Description_: --- 8556,8562 ----  File: gfortran.info, Node: FTELL, Next: GAMMA, Prev: FSTAT, Up: Intrinsic Procedures ! 8.95 `FTELL' -- Current stream position ======================================= _Description_: *************** _Class_: *** 8498,8509 **** Subroutine, function _Syntax_: ! 'CALL FTELL(UNIT, OFFSET)' ! 'OFFSET = FTELL(UNIT)' _Arguments_: ! OFFSET Shall of type 'INTEGER'. ! UNIT Shall of type 'INTEGER'. _Return value_: In either syntax, OFFSET is set to the current offset of unit --- 8572,8583 ---- Subroutine, function _Syntax_: ! `CALL FTELL(UNIT, OFFSET)' ! `OFFSET = FTELL(UNIT)' _Arguments_: ! OFFSET Shall of type `INTEGER'. ! UNIT Shall of type `INTEGER'. _Return value_: In either syntax, OFFSET is set to the current offset of unit *************** _See also_: *** 8523,8535 ****  File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures ! 8.96 'GAMMA' -- Gamma function ============================== _Description_: ! 'GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer ! values of X the Gamma function simplifies to the factorial function ! \Gamma(x)=(x-1)!. _Standard_: Fortran 2008 and later --- 8597,8609 ----  File: gfortran.info, Node: GAMMA, Next: GERROR, Prev: FTELL, Up: Intrinsic Procedures ! 8.96 `GAMMA' -- Gamma function ============================== _Description_: ! `GAMMA(X)' computes Gamma (\Gamma) of X. For positive, integer ! values of X the Gamma function simplifies to the factorial ! function \Gamma(x)=(x-1)!. _Standard_: Fortran 2008 and later *************** _Class_: *** 8538,8551 **** Elemental function _Syntax_: ! 'X = GAMMA(X)' _Arguments_: ! X Shall be of type 'REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type 'REAL' of the same kind as X. _Example_: program test_gamma --- 8612,8625 ---- Elemental function _Syntax_: ! `X = GAMMA(X)' _Arguments_: ! X Shall be of type `REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type `REAL' of the same kind as X. _Example_: program test_gamma *************** _Example_: *** 8554,8575 **** end program test_gamma _Specific names_: ! Name Argument Return type Standard ! 'GAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension ! 'DGAMMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension _See also_: Logarithm of the Gamma function: *note LOG_GAMMA::  File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures ! 8.97 'GERROR' -- Get last system error message ============================================== _Description_: Returns the system error message corresponding to the last system ! error. This resembles the functionality of 'strerror(3)' in C. _Standard_: GNU extension --- 8628,8650 ---- end program test_gamma _Specific names_: ! Name Argument Return type Standard ! `GAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension ! `DGAMMA(X)' `REAL(8) X' `REAL(8)' GNU Extension _See also_: Logarithm of the Gamma function: *note LOG_GAMMA:: +  File: gfortran.info, Node: GERROR, Next: GETARG, Prev: GAMMA, Up: Intrinsic Procedures ! 8.97 `GERROR' -- Get last system error message ============================================== _Description_: Returns the system error message corresponding to the last system ! error. This resembles the functionality of `strerror(3)' in C. _Standard_: GNU extension *************** _Class_: *** 8578,8587 **** Subroutine _Syntax_: ! 'CALL GERROR(RESULT)' _Arguments_: ! RESULT Shall of type 'CHARACTER' and of default _Example_: PROGRAM test_gerror --- 8653,8662 ---- Subroutine _Syntax_: ! `CALL GERROR(RESULT)' _Arguments_: ! RESULT Shall of type `CHARACTER' and of default _Example_: PROGRAM test_gerror *************** _See also_: *** 8596,8602 ****  File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures ! 8.98 'GETARG' -- Get command line arguments =========================================== _Description_: --- 8671,8677 ----  File: gfortran.info, Node: GETARG, Next: GET_COMMAND, Prev: GERROR, Up: Intrinsic Procedures ! 8.98 `GETARG' -- Get command line arguments =========================================== _Description_: *************** _Class_: *** 8615,8633 **** Subroutine _Syntax_: ! 'CALL GETARG(POS, VALUE)' _Arguments_: ! POS Shall be of type 'INTEGER' and not wider than ! the default integer kind; POS \geq 0 ! VALUE Shall be of type 'CHARACTER' and of default ! kind. ! VALUE Shall be of type 'CHARACTER'. _Return value_: ! After 'GETARG' returns, the VALUE argument holds the POSth command ! line argument. If VALUE can not hold the argument, it is truncated ! to fit the length of VALUE. If there are less than POS arguments specified at the command line, VALUE will be filled with blanks. If POS = 0, VALUE is set to the name of the program (on systems that support this feature). --- 8690,8708 ---- Subroutine _Syntax_: ! `CALL GETARG(POS, VALUE)' _Arguments_: ! POS Shall be of type `INTEGER' and not wider than ! the default integer kind; POS \geq 0 ! VALUE Shall be of type `CHARACTER' and of default ! kind. ! VALUE Shall be of type `CHARACTER'. _Return value_: ! After `GETARG' returns, the VALUE argument holds the POSth command ! line argument. If VALUE can not hold the argument, it is truncated ! to fit the length of VALUE. If there are less than POS arguments specified at the command line, VALUE will be filled with blanks. If POS = 0, VALUE is set to the name of the program (on systems that support this feature). *************** _See also_: *** 8652,8658 ****  File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures ! 8.99 'GET_COMMAND' -- Get the entire command line ================================================= _Description_: --- 8727,8733 ----  File: gfortran.info, Node: GET_COMMAND, Next: GET_COMMAND_ARGUMENT, Prev: GETARG, Up: Intrinsic Procedures ! 8.99 `GET_COMMAND' -- Get the entire command line ================================================= _Description_: *************** _Class_: *** 8666,8685 **** Subroutine _Syntax_: ! 'CALL GET_COMMAND([COMMAND, LENGTH, STATUS])' _Arguments_: ! COMMAND (Optional) shall be of type 'CHARACTER' and of ! default kind. ! LENGTH (Optional) Shall be of type 'INTEGER' and of ! default kind. ! STATUS (Optional) Shall be of type 'INTEGER' and of ! default kind. _Return value_: If COMMAND is present, stores the entire command line that was used ! to invoke the program in COMMAND. If LENGTH is present, it is ! assigned the length of the command line. If STATUS is present, it is assigned 0 upon success of the command, -1 if COMMAND is too short to store the command line, or a positive value in case of an error. --- 8741,8760 ---- Subroutine _Syntax_: ! `CALL GET_COMMAND([COMMAND, LENGTH, STATUS])' _Arguments_: ! COMMAND (Optional) shall be of type `CHARACTER' and of ! default kind. ! LENGTH (Optional) Shall be of type `INTEGER' and of ! default kind. ! STATUS (Optional) Shall be of type `INTEGER' and of ! default kind. _Return value_: If COMMAND is present, stores the entire command line that was used ! to invoke the program in COMMAND. If LENGTH is present, it is ! assigned the length of the command line. If STATUS is present, it is assigned 0 upon success of the command, -1 if COMMAND is too short to store the command line, or a positive value in case of an error. *************** _See also_: *** 8697,8708 ****  File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures ! 8.100 'GET_COMMAND_ARGUMENT' -- Get command line arguments ========================================================== _Description_: ! Retrieve the NUMBER-th argument that was passed on the command line ! when the containing program was invoked. _Standard_: Fortran 2003 and later --- 8772,8783 ----  File: gfortran.info, Node: GET_COMMAND_ARGUMENT, Next: GETCWD, Prev: GET_COMMAND, Up: Intrinsic Procedures ! 8.100 `GET_COMMAND_ARGUMENT' -- Get command line arguments ========================================================== _Description_: ! Retrieve the NUMBER-th argument that was passed on the command ! line when the containing program was invoked. _Standard_: Fortran 2003 and later *************** _Class_: *** 8711,8739 **** Subroutine _Syntax_: ! 'CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])' _Arguments_: ! NUMBER Shall be a scalar of type 'INTEGER' and of ! default kind, NUMBER \geq 0 ! VALUE (Optional) Shall be a scalar of type 'CHARACTER' ! and of default kind. ! LENGTH (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. _Return value_: ! After 'GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the ! NUMBER-th command line argument. If VALUE can not hold the ! argument, it is truncated to fit the length of VALUE. If there are less than NUMBER arguments specified at the command line, VALUE will be filled with blanks. If NUMBER = 0, VALUE is set to the ! name of the program (on systems that support this feature). The LENGTH argument contains the length of the NUMBER-th command line ! argument. If the argument retrieval fails, STATUS is a positive ! number; if VALUE contains a truncated command line argument, STATUS ! is -1; and otherwise the STATUS is zero. _Example_: PROGRAM test_get_command_argument --- 8786,8814 ---- Subroutine _Syntax_: ! `CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS])' _Arguments_: ! NUMBER Shall be a scalar of type `INTEGER' and of ! default kind, NUMBER \geq 0 ! VALUE (Optional) Shall be a scalar of type ! `CHARACTER' and of default kind. ! LENGTH (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. _Return value_: ! After `GET_COMMAND_ARGUMENT' returns, the VALUE argument holds the ! NUMBER-th command line argument. If VALUE can not hold the ! argument, it is truncated to fit the length of VALUE. If there are less than NUMBER arguments specified at the command line, VALUE will be filled with blanks. If NUMBER = 0, VALUE is set to the ! name of the program (on systems that support this feature). The LENGTH argument contains the length of the NUMBER-th command line ! argument. If the argument retrieval fails, STATUS is a positive ! number; if VALUE contains a truncated command line argument, ! STATUS is -1; and otherwise the STATUS is zero. _Example_: PROGRAM test_get_command_argument *************** _See also_: *** 8756,8762 ****  File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures ! 8.101 'GETCWD' -- Get current working directory =============================================== _Description_: --- 8831,8837 ----  File: gfortran.info, Node: GETCWD, Next: GETENV, Prev: GET_COMMAND_ARGUMENT, Up: Intrinsic Procedures ! 8.101 `GETCWD' -- Get current working directory =============================================== _Description_: *************** _Class_: *** 8772,8786 **** Subroutine, function _Syntax_: ! 'CALL GETCWD(C [, STATUS])' ! 'STATUS = GETCWD(C)' _Arguments_: ! C The type shall be 'CHARACTER' and of default ! kind. ! STATUS (Optional) status flag. Returns 0 on success, a ! system specific and nonzero error code ! otherwise. _Example_: PROGRAM test_getcwd --- 8847,8861 ---- Subroutine, function _Syntax_: ! `CALL GETCWD(C [, STATUS])' ! `STATUS = GETCWD(C)' _Arguments_: ! C The type shall be `CHARACTER' and of default ! kind. ! STATUS (Optional) status flag. Returns 0 on success, ! a system specific and nonzero error code ! otherwise. _Example_: PROGRAM test_getcwd *************** _See also_: *** 8795,8801 ****  File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures ! 8.102 'GETENV' -- Get an environmental variable =============================================== _Description_: --- 8870,8876 ----  File: gfortran.info, Node: GETENV, Next: GET_ENVIRONMENT_VARIABLE, Prev: GETCWD, Up: Intrinsic Procedures ! 8.102 `GETENV' -- Get an environmental variable =============================================== _Description_: *************** _Description_: *** 8806,8814 **** of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the Fortran 2003 standard. ! Note that 'GETENV' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not ! being updated concurrently with a call to the 'GETENV' intrinsic. _Standard_: GNU extension --- 8881,8889 ---- of the *note GET_ENVIRONMENT_VARIABLE:: intrinsic defined by the Fortran 2003 standard. ! Note that `GETENV' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not ! being updated concurrently with a call to the `GETENV' intrinsic. _Standard_: GNU extension *************** _Class_: *** 8817,8833 **** Subroutine _Syntax_: ! 'CALL GETENV(NAME, VALUE)' _Arguments_: ! NAME Shall be of type 'CHARACTER' and of default ! kind. ! VALUE Shall be of type 'CHARACTER' and of default ! kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be filled with blanks. _Example_: --- 8892,8908 ---- Subroutine _Syntax_: ! `CALL GETENV(NAME, VALUE)' _Arguments_: ! NAME Shall be of type `CHARACTER' and of default ! kind. ! VALUE Shall be of type `CHARACTER' and of default ! kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be filled with blanks. _Example_: *************** _See also_: *** 8843,8858 ****  File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures ! 8.103 'GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable ================================================================= _Description_: Get the VALUE of the environmental variable NAME. ! Note that 'GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not being updated concurrently with a call to the ! 'GET_ENVIRONMENT_VARIABLE' intrinsic. _Standard_: Fortran 2003 and later --- 8918,8933 ----  File: gfortran.info, Node: GET_ENVIRONMENT_VARIABLE, Next: GETGID, Prev: GETENV, Up: Intrinsic Procedures ! 8.103 `GET_ENVIRONMENT_VARIABLE' -- Get an environmental variable ================================================================= _Description_: Get the VALUE of the environmental variable NAME. ! Note that `GET_ENVIRONMENT_VARIABLE' need not be thread-safe. It is the responsibility of the user to ensure that the environment is not being updated concurrently with a call to the ! `GET_ENVIRONMENT_VARIABLE' intrinsic. _Standard_: Fortran 2003 and later *************** _Class_: *** 8861,8892 **** Subroutine _Syntax_: ! 'CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS, TRIM_NAME)' _Arguments_: ! NAME Shall be a scalar of type 'CHARACTER' and of ! default kind. ! VALUE (Optional) Shall be a scalar of type 'CHARACTER' ! and of default kind. ! LENGTH (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type 'INTEGER' ! and of default kind. ! TRIM_NAME (Optional) Shall be a scalar of type 'LOGICAL' ! and of default kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be ! filled with blanks. Argument LENGTH contains the length needed for ! storing the environment variable NAME or zero if it is not present. ! STATUS is -1 if VALUE is present but too short for the environment ! variable; it is 1 if the environment variable does not exist and 2 ! if the processor does not support environment variables; in all ! other cases STATUS is zero. If TRIM_NAME is present with the value ! '.FALSE.', the trailing blanks in NAME are significant; otherwise ! they are not part of the environment variable name. _Example_: PROGRAM test_getenv --- 8936,8968 ---- Subroutine _Syntax_: ! `CALL GET_ENVIRONMENT_VARIABLE(NAME[, VALUE, LENGTH, STATUS, TRIM_NAME)' _Arguments_: ! NAME Shall be a scalar of type `CHARACTER' and of ! default kind. ! VALUE (Optional) Shall be a scalar of type ! `CHARACTER' and of default kind. ! LENGTH (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. ! STATUS (Optional) Shall be a scalar of type `INTEGER' ! and of default kind. ! TRIM_NAME (Optional) Shall be a scalar of type `LOGICAL' ! and of default kind. _Return value_: ! Stores the value of NAME in VALUE. If VALUE is not large enough to ! hold the data, it is truncated. If NAME is not set, VALUE will be ! filled with blanks. Argument LENGTH contains the length needed for ! storing the environment variable NAME or zero if it is not ! present. STATUS is -1 if VALUE is present but too short for the ! environment variable; it is 1 if the environment variable does not ! exist and 2 if the processor does not support environment ! variables; in all other cases STATUS is zero. If TRIM_NAME is ! present with the value `.FALSE.', the trailing blanks in NAME are ! significant; otherwise they are not part of the environment ! variable name. _Example_: PROGRAM test_getenv *************** _Example_: *** 8898,8904 ****  File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures ! 8.104 'GETGID' -- Group ID function =================================== _Description_: --- 8974,8980 ----  File: gfortran.info, Node: GETGID, Next: GETLOG, Prev: GET_ENVIRONMENT_VARIABLE, Up: Intrinsic Procedures ! 8.104 `GETGID' -- Group ID function =================================== _Description_: *************** _Class_: *** 8911,8923 **** Function _Syntax_: ! 'RESULT = GETGID()' _Return value_: ! The return value of 'GETGID' is an 'INTEGER' of the default kind. _Example_: ! See 'GETPID' for an example. _See also_: *note GETPID::, *note GETUID:: --- 8987,8999 ---- Function _Syntax_: ! `RESULT = GETGID()' _Return value_: ! The return value of `GETGID' is an `INTEGER' of the default kind. _Example_: ! See `GETPID' for an example. _See also_: *note GETPID::, *note GETUID:: *************** _See also_: *** 8925,8931 ****  File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures ! 8.105 'GETLOG' -- Get login name ================================ _Description_: --- 9001,9007 ----  File: gfortran.info, Node: GETLOG, Next: GETPID, Prev: GETGID, Up: Intrinsic Procedures ! 8.105 `GETLOG' -- Get login name ================================ _Description_: *************** _Class_: *** 8938,8953 **** Subroutine _Syntax_: ! 'CALL GETLOG(C)' _Arguments_: ! C Shall be of type 'CHARACTER' and of default ! kind. _Return value_: Stores the current user name in LOGIN. (On systems where POSIX ! functions 'geteuid' and 'getpwuid' are not available, and the ! 'getlogin' function is not implemented either, this will return a blank string.) _Example_: --- 9014,9029 ---- Subroutine _Syntax_: ! `CALL GETLOG(C)' _Arguments_: ! C Shall be of type `CHARACTER' and of default ! kind. _Return value_: Stores the current user name in LOGIN. (On systems where POSIX ! functions `geteuid' and `getpwuid' are not available, and the ! `getlogin' function is not implemented either, this will return a blank string.) _Example_: *************** _See also_: *** 8963,8969 ****  File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures ! 8.106 'GETPID' -- Process ID function ===================================== _Description_: --- 9039,9045 ----  File: gfortran.info, Node: GETPID, Next: GETUID, Prev: GETLOG, Up: Intrinsic Procedures ! 8.106 `GETPID' -- Process ID function ===================================== _Description_: *************** _Class_: *** 8976,8985 **** Function _Syntax_: ! 'RESULT = GETPID()' _Return value_: ! The return value of 'GETPID' is an 'INTEGER' of the default kind. _Example_: program info --- 9052,9061 ---- Function _Syntax_: ! `RESULT = GETPID()' _Return value_: ! The return value of `GETPID' is an `INTEGER' of the default kind. _Example_: program info *************** _See also_: *** 8994,9000 ****  File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures ! 8.107 'GETUID' -- User ID function ================================== _Description_: --- 9070,9076 ----  File: gfortran.info, Node: GETUID, Next: GMTIME, Prev: GETPID, Up: Intrinsic Procedures ! 8.107 `GETUID' -- User ID function ================================== _Description_: *************** _Class_: *** 9007,9019 **** Function _Syntax_: ! 'RESULT = GETUID()' _Return value_: ! The return value of 'GETUID' is an 'INTEGER' of the default kind. _Example_: ! See 'GETPID' for an example. _See also_: *note GETPID::, *note GETLOG:: --- 9083,9095 ---- Function _Syntax_: ! `RESULT = GETUID()' _Return value_: ! The return value of `GETUID' is an `INTEGER' of the default kind. _Example_: ! See `GETPID' for an example. _See also_: *note GETPID::, *note GETLOG:: *************** _See also_: *** 9021,9034 ****  File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures ! 8.108 'GMTIME' -- Convert time to GMT info ========================================== _Description_: ! Given a system time value TIME (as provided by the 'TIME8' intrinsic), fills VALUES with values extracted from it appropriate to the UTC time zone (Universal Coordinated Time, also known in ! some countries as GMT, Greenwich Mean Time), using 'gmtime(3)'. _Standard_: GNU extension --- 9097,9110 ----  File: gfortran.info, Node: GMTIME, Next: HOSTNM, Prev: GETUID, Up: Intrinsic Procedures ! 8.108 `GMTIME' -- Convert time to GMT info ========================================== _Description_: ! Given a system time value TIME (as provided by the `TIME8' intrinsic), fills VALUES with values extracted from it appropriate to the UTC time zone (Universal Coordinated Time, also known in ! some countries as GMT, Greenwich Mean Time), using `gmtime(3)'. _Standard_: GNU extension *************** _Class_: *** 9037,9061 **** Subroutine _Syntax_: ! 'CALL GMTIME(TIME, VALUES)' _Arguments_: ! TIME An 'INTEGER' scalar expression corresponding to ! a system time, with 'INTENT(IN)'. ! VALUES A default 'INTEGER' array with 9 elements, with ! 'INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds 2. Minutes after the hour, range 0-59 3. Hours past midnight, range 0-23 4. Day of month, range 0-31 5. Number of months since January, range 0-12 6. Years since 1900 7. Number of days since Sunday, range 0-6 8. Days since January 1 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. --- 9113,9145 ---- Subroutine _Syntax_: ! `CALL GMTIME(TIME, VALUES)' _Arguments_: ! TIME An `INTEGER' scalar expression corresponding ! to a system time, with `INTENT(IN)'. ! VALUES A default `INTEGER' array with 9 elements, ! with `INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds + 2. Minutes after the hour, range 0-59 + 3. Hours past midnight, range 0-23 + 4. Day of month, range 0-31 + 5. Number of months since January, range 0-12 + 6. Years since 1900 + 7. Number of days since Sunday, range 0-6 + 8. Days since January 1 + 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. *************** _Return value_: *** 9063,9072 **** _See also_: *note CTIME::, *note LTIME::, *note TIME::, *note TIME8::  File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures ! 8.109 'HOSTNM' -- Get system host name ====================================== _Description_: --- 9147,9157 ---- _See also_: *note CTIME::, *note LTIME::, *note TIME::, *note TIME8:: +  File: gfortran.info, Node: HOSTNM, Next: HUGE, Prev: GMTIME, Up: Intrinsic Procedures ! 8.109 `HOSTNM' -- Get system host name ====================================== _Description_: *************** _Class_: *** 9083,9110 **** Subroutine, function _Syntax_: ! 'CALL HOSTNM(C [, STATUS])' ! 'STATUS = HOSTNM(NAME)' _Arguments_: ! C Shall of type 'CHARACTER' and of default kind. ! STATUS (Optional) status flag of type 'INTEGER'. ! Returns 0 on success, or a system specific error ! code otherwise. _Return value_: In either syntax, NAME is set to the current hostname if it can be obtained, or to a blank string otherwise.  File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures ! 8.110 'HUGE' -- Largest number of a kind ======================================== _Description_: ! 'HUGE(X)' returns the largest number that is not an infinity in the ! model of the type of 'X'. _Standard_: Fortran 95 and later --- 9168,9196 ---- Subroutine, function _Syntax_: ! `CALL HOSTNM(C [, STATUS])' ! `STATUS = HOSTNM(NAME)' _Arguments_: ! C Shall of type `CHARACTER' and of default kind. ! STATUS (Optional) status flag of type `INTEGER'. ! Returns 0 on success, or a system specific ! error code otherwise. _Return value_: In either syntax, NAME is set to the current hostname if it can be obtained, or to a blank string otherwise. +  File: gfortran.info, Node: HUGE, Next: HYPOT, Prev: HOSTNM, Up: Intrinsic Procedures ! 8.110 `HUGE' -- Largest number of a kind ======================================== _Description_: ! `HUGE(X)' returns the largest number that is not an infinity in ! the model of the type of `X'. _Standard_: Fortran 95 and later *************** _Class_: *** 9113,9122 **** Inquiry function _Syntax_: ! 'RESULT = HUGE(X)' _Arguments_: ! X Shall be of type 'REAL' or 'INTEGER'. _Return value_: The return value is of the same type and kind as X --- 9199,9208 ---- Inquiry function _Syntax_: ! `RESULT = HUGE(X)' _Arguments_: ! X Shall be of type `REAL' or `INTEGER'. _Return value_: The return value is of the same type and kind as X *************** _Example_: *** 9130,9141 ****  File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures ! 8.111 'HYPOT' -- Euclidean distance function ============================================ _Description_: ! 'HYPOT(X,Y)' is the Euclidean distance function. It is equal to ! \sqrt{X^2 + Y^2}, without undue underflow or overflow. _Standard_: Fortran 2008 and later --- 9216,9227 ----  File: gfortran.info, Node: HYPOT, Next: IACHAR, Prev: HUGE, Up: Intrinsic Procedures ! 8.111 `HYPOT' -- Euclidean distance function ============================================ _Description_: ! `HYPOT(X,Y)' is the Euclidean distance function. It is equal to ! \sqrtX^2 + Y^2, without undue underflow or overflow. _Standard_: Fortran 2008 and later *************** _Class_: *** 9144,9155 **** Elemental function _Syntax_: ! 'RESULT = HYPOT(X, Y)' _Arguments_: ! X The type shall be 'REAL'. ! Y The type and kind type parameter shall be the ! same as X. _Return value_: The return value has the same type and kind type parameter as X. --- 9230,9241 ---- Elemental function _Syntax_: ! `RESULT = HYPOT(X, Y)' _Arguments_: ! X The type shall be `REAL'. ! Y The type and kind type parameter shall be the ! same as X. _Return value_: The return value has the same type and kind type parameter as X. *************** _Example_: *** 9163,9174 ****  File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures ! 8.112 'IACHAR' -- Code in ASCII collating sequence ================================================== _Description_: ! 'IACHAR(C)' returns the code for the ASCII character in the first ! character position of 'C'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 9249,9260 ----  File: gfortran.info, Node: IACHAR, Next: IALL, Prev: HYPOT, Up: Intrinsic Procedures ! 8.112 `IACHAR' -- Code in ASCII collating sequence ================================================== _Description_: ! `IACHAR(C)' returns the code for the ASCII character in the first ! character position of `C'. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 9177,9192 **** Elemental function _Syntax_: ! 'RESULT = IACHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 9263,9279 ---- Elemental function _Syntax_: ! `RESULT = IACHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _Note_: *** 9202,9216 **** _See also_: *note ACHAR::, *note CHAR::, *note ICHAR::  File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures ! 8.113 'IALL' -- Bitwise AND of array elements ============================================= _Description_: Reduces with bitwise AND the elements of ARRAY along dimension DIM ! if the corresponding element in MASK is 'TRUE'. _Standard_: Fortran 2008 and later --- 9289,9304 ---- _See also_: *note ACHAR::, *note CHAR::, *note ICHAR:: +  File: gfortran.info, Node: IALL, Next: IAND, Prev: IACHAR, Up: Intrinsic Procedures ! 8.113 `IALL' -- Bitwise AND of array elements ============================================= _Description_: Reduces with bitwise AND the elements of ARRAY along dimension DIM ! if the corresponding element in MASK is `TRUE'. _Standard_: Fortran 2008 and later *************** _Class_: *** 9219,9241 **** Transformational function _Syntax_: ! 'RESULT = IALL(ARRAY[, MASK])' ! 'RESULT = IALL(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise ALL of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 9307,9329 ---- Transformational function _Syntax_: ! `RESULT = IALL(ARRAY[, MASK])' ! `RESULT = IALL(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise ALL of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 9256,9266 ****  File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures ! 8.114 'IAND' -- Bitwise logical and =================================== _Description_: ! Bitwise logical 'AND'. _Standard_: Fortran 95 and later --- 9344,9354 ----  File: gfortran.info, Node: IAND, Next: IANY, Prev: IALL, Up: Intrinsic Procedures ! 8.114 `IAND' -- Bitwise logical and =================================== _Description_: ! Bitwise logical `AND'. _Standard_: Fortran 95 and later *************** _Class_: *** 9269,9286 **** Elemental function _Syntax_: ! 'RESULT = IAND(I, J)' _Arguments_: ! I The type shall be 'INTEGER'. ! J The type shall be 'INTEGER', of the same kind as ! I. (As a GNU extension, different kinds are ! also permitted.) _Return value_: ! The return type is 'INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the larger ! argument.) _Example_: PROGRAM test_iand --- 9357,9374 ---- Elemental function _Syntax_: ! `RESULT = IAND(I, J)' _Arguments_: ! I The type shall be `INTEGER'. ! J The type shall be `INTEGER', of the same kind ! as I. (As a GNU extension, different kinds ! are also permitted.) _Return value_: ! The return type is `INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the ! larger argument.) _Example_: PROGRAM test_iand *************** _See also_: *** 9293,9307 **** *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note IBCLR::, *note NOT::  File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures ! 8.115 'IANY' -- Bitwise OR of array elements ============================================ _Description_: Reduces with bitwise OR (inclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is 'TRUE'. _Standard_: Fortran 2008 and later --- 9381,9396 ---- *note IOR::, *note IEOR::, *note IBITS::, *note IBSET::, *note IBCLR::, *note NOT:: +  File: gfortran.info, Node: IANY, Next: IARGC, Prev: IAND, Up: Intrinsic Procedures ! 8.115 `IANY' -- Bitwise OR of array elements ============================================ _Description_: Reduces with bitwise OR (inclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is `TRUE'. _Standard_: Fortran 2008 and later *************** _Class_: *** 9310,9332 **** Transformational function _Syntax_: ! 'RESULT = IANY(ARRAY[, MASK])' ! 'RESULT = IANY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise OR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 9399,9421 ---- Transformational function _Syntax_: ! `RESULT = IANY(ARRAY[, MASK])' ! `RESULT = IANY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise OR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 9347,9357 ****  File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures ! 8.116 'IARGC' -- Get the number of command line arguments ========================================================= _Description_: ! 'IARGC' returns the number of arguments passed on the command line when the containing program was invoked. This intrinsic routine is provided for backwards compatibility with --- 9436,9446 ----  File: gfortran.info, Node: IARGC, Next: IBCLR, Prev: IANY, Up: Intrinsic Procedures ! 8.116 `IARGC' -- Get the number of command line arguments ========================================================= _Description_: ! `IARGC' returns the number of arguments passed on the command line when the containing program was invoked. This intrinsic routine is provided for backwards compatibility with *************** _Class_: *** 9366,9378 **** Function _Syntax_: ! 'RESULT = IARGC()' _Arguments_: None. _Return value_: ! The number of command line arguments, type 'INTEGER(4)'. _Example_: See *note GETARG:: --- 9455,9467 ---- Function _Syntax_: ! `RESULT = IARGC()' _Arguments_: None. _Return value_: ! The number of command line arguments, type `INTEGER(4)'. _Example_: See *note GETARG:: *************** _See also_: *** 9386,9396 ****  File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures ! 8.117 'IBCLR' -- Clear bit ========================== _Description_: ! 'IBCLR' returns the value of I with the bit at position POS set to zero. _Standard_: --- 9475,9485 ----  File: gfortran.info, Node: IBCLR, Next: IBITS, Prev: IARGC, Up: Intrinsic Procedures ! 8.117 `IBCLR' -- Clear bit ========================== _Description_: ! `IBCLR' returns the value of I with the bit at position POS set to zero. _Standard_: *************** _Class_: *** 9400,9429 **** Elemental function _Syntax_: ! 'RESULT = IBCLR(I, POS)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS::  File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures ! 8.118 'IBITS' -- Bit extraction =============================== _Description_: ! 'IBITS' extracts a field of length LEN from I, starting from bit position POS and extending left for LEN bits. The result is right-justified and the remaining bits are zeroed. The value of ! 'POS+LEN' must be less than or equal to the value 'BIT_SIZE(I)'. _Standard_: Fortran 95 and later --- 9489,9519 ---- Elemental function _Syntax_: ! `RESULT = IBCLR(I, POS)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note IBITS::, *note IBSET::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS:: +  File: gfortran.info, Node: IBITS, Next: IBSET, Prev: IBCLR, Up: Intrinsic Procedures ! 8.118 `IBITS' -- Bit extraction =============================== _Description_: ! `IBITS' extracts a field of length LEN from I, starting from bit position POS and extending left for LEN bits. The result is right-justified and the remaining bits are zeroed. The value of ! `POS+LEN' must be less than or equal to the value `BIT_SIZE(I)'. _Standard_: Fortran 95 and later *************** _Class_: *** 9432,9459 **** Elemental function _Syntax_: ! 'RESULT = IBITS(I, POS, LEN)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. ! LEN The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: ! *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, *note ! IOR::, *note IEOR::  File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures ! 8.119 'IBSET' -- Set bit ======================== _Description_: ! 'IBSET' returns the value of I with the bit at position POS set to one. _Standard_: --- 9522,9549 ---- Elemental function _Syntax_: ! `RESULT = IBITS(I, POS, LEN)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. ! LEN The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: ! *note BIT_SIZE::, *note IBCLR::, *note IBSET::, *note IAND::, ! *note IOR::, *note IEOR::  File: gfortran.info, Node: IBSET, Next: ICHAR, Prev: IBITS, Up: Intrinsic Procedures ! 8.119 `IBSET' -- Set bit ======================== _Description_: ! `IBSET' returns the value of I with the bit at position POS set to one. _Standard_: *************** _Class_: *** 9463,9490 **** Elemental function _Syntax_: ! 'RESULT = IBSET(I, POS)' _Arguments_: ! I The type shall be 'INTEGER'. ! POS The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS::  File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures ! 8.120 'ICHAR' -- Character-to-integer conversion function ========================================================= _Description_: ! 'ICHAR(C)' returns the code for the character in the first ! character position of 'C' in the system's native character set. The correspondence between characters and their codes is not necessarily the same across different GNU Fortran implementations. --- 9553,9581 ---- Elemental function _Syntax_: ! `RESULT = IBSET(I, POS)' _Arguments_: ! I The type shall be `INTEGER'. ! POS The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note IBCLR::, *note IBITS::, *note IAND::, *note IOR::, *note IEOR::, *note MVBITS:: +  File: gfortran.info, Node: ICHAR, Next: IDATE, Prev: IBSET, Up: Intrinsic Procedures ! 8.120 `ICHAR' -- Character-to-integer conversion function ========================================================= _Description_: ! `ICHAR(C)' returns the code for the character in the first ! character position of `C' in the system's native character set. The correspondence between characters and their codes is not necessarily the same across different GNU Fortran implementations. *************** _Class_: *** 9495,9510 **** Elemental function _Syntax_: ! 'RESULT = ICHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 9586,9602 ---- Elemental function _Syntax_: ! `RESULT = ICHAR(C [, KIND])' _Arguments_: ! C Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _Example_: *** 9514,9528 **** end program test_ichar _Specific names_: ! Name Argument Return type Standard ! 'ICHAR(C)' 'CHARACTER 'INTEGER(4)' Fortran 77 and ! C' later _Note_: No intrinsic exists to convert between a numeric value and a formatted character string representation - for instance, given the ! 'CHARACTER' value ''154'', obtaining an 'INTEGER' or 'REAL' value ! with the value 154, or vice versa. Instead, this functionality is provided by internal-file I/O, as in the following example: program read_val integer value --- 9606,9620 ---- end program test_ichar _Specific names_: ! Name Argument Return type Standard ! `ICHAR(C)' `CHARACTER `INTEGER(4)' Fortran 77 and ! C' later _Note_: No intrinsic exists to convert between a numeric value and a formatted character string representation - for instance, given the ! `CHARACTER' value `'154'', obtaining an `INTEGER' or `REAL' value ! with the value 154, or vice versa. Instead, this functionality is provided by internal-file I/O, as in the following example: program read_val integer value *************** _Note_: *** 9541,9555 **** _See also_: *note ACHAR::, *note CHAR::, *note IACHAR::  File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures ! 8.121 'IDATE' -- Get current local time subroutine (day/month/year) =================================================================== _Description_: ! 'IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The day (in the range 1-31), month (in the range 1-12), and year appear in elements 1, 2, and 3 of VALUES, respectively. The year has four significant digits. --- 9633,9648 ---- _See also_: *note ACHAR::, *note CHAR::, *note IACHAR:: +  File: gfortran.info, Node: IDATE, Next: IEOR, Prev: ICHAR, Up: Intrinsic Procedures ! 8.121 `IDATE' -- Get current local time subroutine (day/month/year) =================================================================== _Description_: ! `IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The day (in the range 1-31), month (in the range 1-12), and year appear in elements 1, 2, and 3 of VALUES, respectively. The year has four significant digits. *************** _Class_: *** 9560,9570 **** Subroutine _Syntax_: ! 'CALL IDATE(VALUES)' _Arguments_: ! VALUES The type shall be 'INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. --- 9653,9663 ---- Subroutine _Syntax_: ! `CALL IDATE(VALUES)' _Arguments_: ! VALUES The type shall be `INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. *************** _Example_: *** 9581,9591 ****  File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures ! 8.122 'IEOR' -- Bitwise logical exclusive or ============================================ _Description_: ! 'IEOR' returns the bitwise Boolean exclusive-OR of I and J. _Standard_: Fortran 95 and later --- 9674,9684 ----  File: gfortran.info, Node: IEOR, Next: IERRNO, Prev: IDATE, Up: Intrinsic Procedures ! 8.122 `IEOR' -- Bitwise logical exclusive or ============================================ _Description_: ! `IEOR' returns the bitwise Boolean exclusive-OR of I and J. _Standard_: Fortran 95 and later *************** _Class_: *** 9594,9611 **** Elemental function _Syntax_: ! 'RESULT = IEOR(I, J)' _Arguments_: ! I The type shall be 'INTEGER'. ! J The type shall be 'INTEGER', of the same kind as ! I. (As a GNU extension, different kinds are ! also permitted.) _Return value_: ! The return type is 'INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the larger ! argument.) _See also_: *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note --- 9687,9704 ---- Elemental function _Syntax_: ! `RESULT = IEOR(I, J)' _Arguments_: ! I The type shall be `INTEGER'. ! J The type shall be `INTEGER', of the same kind ! as I. (As a GNU extension, different kinds ! are also permitted.) _Return value_: ! The return type is `INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the ! larger argument.) _See also_: *note IOR::, *note IAND::, *note IBITS::, *note IBSET::, *note *************** _See also_: *** 9614,9624 ****  File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures ! 8.123 'IERRNO' -- Get the last system error number ================================================== _Description_: ! Returns the last system error number, as given by the C 'errno' variable. _Standard_: --- 9707,9717 ----  File: gfortran.info, Node: IERRNO, Next: IMAGE_INDEX, Prev: IEOR, Up: Intrinsic Procedures ! 8.123 `IERRNO' -- Get the last system error number ================================================== _Description_: ! Returns the last system error number, as given by the C `errno' variable. _Standard_: *************** _Class_: *** 9628,9640 **** Function _Syntax_: ! 'RESULT = IERRNO()' _Arguments_: None. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: --- 9721,9733 ---- Function _Syntax_: ! `RESULT = IERRNO()' _Arguments_: None. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: *************** _See also_: *** 9643,9649 ****  File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures ! 8.124 'IMAGE_INDEX' -- Function that converts a cosubscript to an image index ============================================================================= _Description_: --- 9736,9742 ----  File: gfortran.info, Node: IMAGE_INDEX, Next: INDEX intrinsic, Prev: IERRNO, Up: Intrinsic Procedures ! 8.124 `IMAGE_INDEX' -- Function that converts a cosubscript to an image index ============================================================================= _Description_: *************** _Class_: *** 9656,9671 **** Inquiry function. _Syntax_: ! 'RESULT = IMAGE_INDEX(COARRAY, SUB)' _Arguments_: None. ! COARRAY Coarray of any type. ! SUB default integer rank-1 array of a size equal to ! the corank of COARRAY. _Return value_: Scalar default integer with the value of the image index which ! corresponds to the cosubscripts. For invalid cosubscripts the result is zero. _Example_: --- 9749,9764 ---- Inquiry function. _Syntax_: ! `RESULT = IMAGE_INDEX(COARRAY, SUB)' _Arguments_: None. ! COARRAY Coarray of any type. ! SUB default integer rank-1 array of a size equal to ! the corank of COARRAY. _Return value_: Scalar default integer with the value of the image index which ! corresponds to the cosubscripts. For invalid cosubscripts the result is zero. _Example_: *************** _See also_: *** 9679,9685 ****  File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures ! 8.125 'INDEX' -- Position of a substring within a string ======================================================== _Description_: --- 9772,9778 ----  File: gfortran.info, Node: INDEX intrinsic, Next: INT, Prev: IMAGE_INDEX, Up: Intrinsic Procedures ! 8.125 `INDEX' -- Position of a substring within a string ======================================================== _Description_: *************** _Class_: *** 9696,9720 **** Elemental function _Syntax_: ! 'RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])' _Arguments_: ! STRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! SUBSTRING Shall be a scalar 'CHARACTER', with 'INTENT(IN)' ! BACK (Optional) Shall be a scalar 'LOGICAL', with ! 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! 'INDEX(STRING, 'CHARACTER' 'INTEGER(4)' Fortran 77 and ! SUBSTRING)' later _See also_: *note SCAN::, *note VERIFY:: --- 9789,9815 ---- Elemental function _Syntax_: ! `RESULT = INDEX(STRING, SUBSTRING [, BACK [, KIND]])' _Arguments_: ! STRING Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! SUBSTRING Shall be a scalar `CHARACTER', with ! `INTENT(IN)' ! BACK (Optional) Shall be a scalar `LOGICAL', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! `INDEX(STRING,`CHARACTER' `INTEGER(4)' Fortran 77 and ! SUBSTRING)' later _See also_: *note SCAN::, *note VERIFY:: *************** _See also_: *** 9722,9728 ****  File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures ! 8.126 'INT' -- Convert to integer type ====================================== _Description_: --- 9817,9823 ----  File: gfortran.info, Node: INT, Next: INT2, Prev: INDEX intrinsic, Up: Intrinsic Procedures ! 8.126 `INT' -- Convert to integer type ====================================== _Description_: *************** _Class_: *** 9735,9762 **** Elemental function _Syntax_: ! 'RESULT = INT(A [, KIND))' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! These functions return a 'INTEGER' variable or array under the following rules: ! (A) ! If A is of type 'INTEGER', 'INT(A) = A' ! (B) ! If A is of type 'REAL' and |A| < 1, 'INT(A)' equals '0'. If ! |A| \geq 1, then 'INT(A)' equals the largest integer that does ! not exceed the range of A and whose sign is the same as the ! sign of A. ! (C) ! If A is of type 'COMPLEX', rule B is applied to the real part of A. _Example_: --- 9830,9859 ---- Elemental function _Syntax_: ! `RESULT = INT(A [, KIND))' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! These functions return a `INTEGER' variable or array under the following rules: ! (A) ! If A is of type `INTEGER', `INT(A) = A' ! ! (B) ! If A is of type `REAL' and |A| < 1, `INT(A)' equals `0'. If ! |A| \geq 1, then `INT(A)' equals the largest integer that ! does not exceed the range of A and whose sign is the same as ! the sign of A. ! ! (C) ! If A is of type `COMPLEX', rule B is applied to the real part of A. _Example_: *************** _Example_: *** 9768,9793 **** end program _Specific names_: ! Name Argument Return type Standard ! 'INT(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and ! later ! 'IFIX(A)' 'REAL(4) A' 'INTEGER' Fortran 77 and ! later ! 'IDINT(A)' 'REAL(8) A' 'INTEGER' Fortran 77 and ! later  File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures ! 8.127 'INT2' -- Convert to 16-bit integer type ============================================== _Description_: ! Convert to a 'KIND=2' integer type. This is equivalent to the ! standard 'INT' intrinsic with an optional argument of 'KIND=2', and ! is only included for backwards compatibility. ! The 'SHORT' intrinsic is equivalent to 'INT2'. _Standard_: GNU extension --- 9865,9891 ---- end program _Specific names_: ! Name Argument Return type Standard ! `INT(A)' `REAL(4) A' `INTEGER' Fortran 77 and ! later ! `IFIX(A)' `REAL(4) A' `INTEGER' Fortran 77 and ! later ! `IDINT(A)' `REAL(8) A' `INTEGER' Fortran 77 and ! later !  File: gfortran.info, Node: INT2, Next: INT8, Prev: INT, Up: Intrinsic Procedures ! 8.127 `INT2' -- Convert to 16-bit integer type ============================================== _Description_: ! Convert to a `KIND=2' integer type. This is equivalent to the ! standard `INT' intrinsic with an optional argument of `KIND=2', ! and is only included for backwards compatibility. ! The `SHORT' intrinsic is equivalent to `INT2'. _Standard_: GNU extension *************** _Class_: *** 9796,9809 **** Elemental function _Syntax_: ! 'RESULT = INT2(A)' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: ! The return value is a 'INTEGER(2)' variable. _See also_: *note INT::, *note INT8::, *note LONG:: --- 9894,9907 ---- Elemental function _Syntax_: ! `RESULT = INT2(A)' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: ! The return value is a `INTEGER(2)' variable. _See also_: *note INT::, *note INT8::, *note LONG:: *************** _See also_: *** 9811,9823 ****  File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures ! 8.128 'INT8' -- Convert to 64-bit integer type ============================================== _Description_: ! Convert to a 'KIND=8' integer type. This is equivalent to the ! standard 'INT' intrinsic with an optional argument of 'KIND=8', and ! is only included for backwards compatibility. _Standard_: GNU extension --- 9909,9921 ----  File: gfortran.info, Node: INT8, Next: IOR, Prev: INT2, Up: Intrinsic Procedures ! 8.128 `INT8' -- Convert to 64-bit integer type ============================================== _Description_: ! Convert to a `KIND=8' integer type. This is equivalent to the ! standard `INT' intrinsic with an optional argument of `KIND=8', ! and is only included for backwards compatibility. _Standard_: GNU extension *************** _Class_: *** 9826,9839 **** Elemental function _Syntax_: ! 'RESULT = INT8(A)' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: ! The return value is a 'INTEGER(8)' variable. _See also_: *note INT::, *note INT2::, *note LONG:: --- 9924,9937 ---- Elemental function _Syntax_: ! `RESULT = INT8(A)' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: ! The return value is a `INTEGER(8)' variable. _See also_: *note INT::, *note INT2::, *note LONG:: *************** _See also_: *** 9841,9851 ****  File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures ! 8.129 'IOR' -- Bitwise logical or ================================= _Description_: ! 'IOR' returns the bitwise Boolean inclusive-OR of I and J. _Standard_: Fortran 95 and later --- 9939,9949 ----  File: gfortran.info, Node: IOR, Next: IPARITY, Prev: INT8, Up: Intrinsic Procedures ! 8.129 `IOR' -- Bitwise logical or ================================= _Description_: ! `IOR' returns the bitwise Boolean inclusive-OR of I and J. _Standard_: Fortran 95 and later *************** _Class_: *** 9854,9871 **** Elemental function _Syntax_: ! 'RESULT = IOR(I, J)' _Arguments_: ! I The type shall be 'INTEGER'. ! J The type shall be 'INTEGER', of the same kind as ! I. (As a GNU extension, different kinds are ! also permitted.) _Return value_: ! The return type is 'INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the larger ! argument.) _See also_: *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note --- 9952,9969 ---- Elemental function _Syntax_: ! `RESULT = IOR(I, J)' _Arguments_: ! I The type shall be `INTEGER'. ! J The type shall be `INTEGER', of the same kind ! as I. (As a GNU extension, different kinds ! are also permitted.) _Return value_: ! The return type is `INTEGER', of the same kind as the arguments. ! (If the argument kinds differ, it is of the same kind as the ! larger argument.) _See also_: *note IEOR::, *note IAND::, *note IBITS::, *note IBSET::, *note *************** _See also_: *** 9874,9885 ****  File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures ! 8.130 'IPARITY' -- Bitwise XOR of array elements ================================================ _Description_: Reduces with bitwise XOR (exclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is 'TRUE'. _Standard_: Fortran 2008 and later --- 9972,9983 ----  File: gfortran.info, Node: IPARITY, Next: IRAND, Prev: IOR, Up: Intrinsic Procedures ! 8.130 `IPARITY' -- Bitwise XOR of array elements ================================================ _Description_: Reduces with bitwise XOR (exclusive or) the elements of ARRAY along ! dimension DIM if the corresponding element in MASK is `TRUE'. _Standard_: Fortran 2008 and later *************** _Class_: *** 9888,9910 **** Transformational function _Syntax_: ! 'RESULT = IPARITY(ARRAY[, MASK])' ! 'RESULT = IPARITY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise XOR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 9986,10008 ---- Transformational function _Syntax_: ! `RESULT = IPARITY(ARRAY[, MASK])' ! `RESULT = IPARITY(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the bitwise XOR of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 9925,9945 ****  File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IPARITY, Up: Intrinsic Procedures ! 8.131 'IRAND' -- Integer pseudo-random number ============================================= _Description_: ! 'IRAND(FLAG)' returns a pseudo-random number from a uniform distribution between 0 and a system-dependent limit (which is in ! most cases 2147483647). If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with 'SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as ! provided by 'g77'. For new code, one should consider the use of ! *note RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension --- 10023,10043 ----  File: gfortran.info, Node: IRAND, Next: IS_IOSTAT_END, Prev: IPARITY, Up: Intrinsic Procedures ! 8.131 `IRAND' -- Integer pseudo-random number ============================================= _Description_: ! `IRAND(FLAG)' returns a pseudo-random number from a uniform distribution between 0 and a system-dependent limit (which is in ! most cases 2147483647). If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by `CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with `SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as provided ! by `g77'. For new code, one should consider the use of *note ! RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension *************** _Class_: *** 9948,9960 **** Function _Syntax_: ! 'RESULT = IRAND(I)' _Arguments_: ! I Shall be a scalar 'INTEGER' of kind 4. _Return value_: ! The return value is of 'INTEGER(kind=4)' type. _Example_: program test_irand --- 10046,10058 ---- Function _Syntax_: ! `RESULT = IRAND(I)' _Arguments_: ! I Shall be a scalar `INTEGER' of kind 4. _Return value_: ! The return value is of `INTEGER(kind=4)' type. _Example_: program test_irand *************** _Example_: *** 9965,9981 **** print *, irand(seed), irand(), irand(), irand() end program test_irand  File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures ! 8.132 'IS_IOSTAT_END' -- Test for end-of-file value =================================================== _Description_: ! 'IS_IOSTAT_END' tests whether an variable has the value of the I/O ! status "end of file". The function is equivalent to comparing the ! variable with the 'IOSTAT_END' parameter of the intrinsic module ! 'ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later --- 10063,10080 ---- print *, irand(seed), irand(), irand(), irand() end program test_irand +  File: gfortran.info, Node: IS_IOSTAT_END, Next: IS_IOSTAT_EOR, Prev: IRAND, Up: Intrinsic Procedures ! 8.132 `IS_IOSTAT_END' -- Test for end-of-file value =================================================== _Description_: ! `IS_IOSTAT_END' tests whether an variable has the value of the I/O ! status "end of file". The function is equivalent to comparing the ! variable with the `IOSTAT_END' parameter of the intrinsic module ! `ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later *************** _Class_: *** 9984,9998 **** Elemental function _Syntax_: ! 'RESULT = IS_IOSTAT_END(I)' _Arguments_: ! I Shall be of the type 'INTEGER'. _Return value_: ! Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has ! the value which indicates an end of file condition for 'IOSTAT=' ! specifiers, and is '.FALSE.' otherwise. _Example_: PROGRAM iostat --- 10083,10097 ---- Elemental function _Syntax_: ! `RESULT = IS_IOSTAT_END(I)' _Arguments_: ! I Shall be of the type `INTEGER'. _Return value_: ! Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has ! the value which indicates an end of file condition for `IOSTAT=' ! specifiers, and is `.FALSE.' otherwise. _Example_: PROGRAM iostat *************** _Example_: *** 10006,10019 ****  File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures ! 8.133 'IS_IOSTAT_EOR' -- Test for end-of-record value ===================================================== _Description_: ! 'IS_IOSTAT_EOR' tests whether an variable has the value of the I/O ! status "end of record". The function is equivalent to comparing ! the variable with the 'IOSTAT_EOR' parameter of the intrinsic ! module 'ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later --- 10105,10118 ----  File: gfortran.info, Node: IS_IOSTAT_EOR, Next: ISATTY, Prev: IS_IOSTAT_END, Up: Intrinsic Procedures ! 8.133 `IS_IOSTAT_EOR' -- Test for end-of-record value ===================================================== _Description_: ! `IS_IOSTAT_EOR' tests whether an variable has the value of the I/O ! status "end of record". The function is equivalent to comparing the ! variable with the `IOSTAT_EOR' parameter of the intrinsic module ! `ISO_FORTRAN_ENV'. _Standard_: Fortran 2003 and later *************** _Class_: *** 10022,10036 **** Elemental function _Syntax_: ! 'RESULT = IS_IOSTAT_EOR(I)' _Arguments_: ! I Shall be of the type 'INTEGER'. _Return value_: ! Returns a 'LOGICAL' of the default kind, which '.TRUE.' if I has ! the value which indicates an end of file condition for 'IOSTAT=' ! specifiers, and is '.FALSE.' otherwise. _Example_: PROGRAM iostat --- 10121,10135 ---- Elemental function _Syntax_: ! `RESULT = IS_IOSTAT_EOR(I)' _Arguments_: ! I Shall be of the type `INTEGER'. _Return value_: ! Returns a `LOGICAL' of the default kind, which `.TRUE.' if I has ! the value which indicates an end of file condition for `IOSTAT=' ! specifiers, and is `.FALSE.' otherwise. _Example_: PROGRAM iostat *************** _Example_: *** 10044,10050 ****  File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures ! 8.134 'ISATTY' -- Whether a unit is a terminal device. ====================================================== _Description_: --- 10143,10149 ----  File: gfortran.info, Node: ISATTY, Next: ISHFT, Prev: IS_IOSTAT_EOR, Up: Intrinsic Procedures ! 8.134 `ISATTY' -- Whether a unit is a terminal device. ====================================================== _Description_: *************** _Class_: *** 10057,10070 **** Function _Syntax_: ! 'RESULT = ISATTY(UNIT)' _Arguments_: ! UNIT Shall be a scalar 'INTEGER'. _Return value_: ! Returns '.TRUE.' if the UNIT is connected to a terminal device, ! '.FALSE.' otherwise. _Example_: PROGRAM test_isatty --- 10156,10169 ---- Function _Syntax_: ! `RESULT = ISATTY(UNIT)' _Arguments_: ! UNIT Shall be a scalar `INTEGER'. _Return value_: ! Returns `.TRUE.' if the UNIT is connected to a terminal device, ! `.FALSE.' otherwise. _Example_: PROGRAM test_isatty *************** _Example_: *** 10073,10093 **** write(*,*) isatty(unit=unit) END DO END PROGRAM _See also_: *note TTYNAM::  File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures ! 8.135 'ISHFT' -- Shift bits =========================== _Description_: ! 'ISHFT' returns a value corresponding to I with all of the bits shifted SHIFT places. A value of SHIFT greater than zero corresponds to a left shift, a value of zero corresponds to no ! shift, and a value less than zero corresponds to a right shift. If ! the absolute value of SHIFT is greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end or right end are lost; zeros are shifted in from the opposite end. --- 10172,10193 ---- write(*,*) isatty(unit=unit) END DO END PROGRAM + _See also_: *note TTYNAM::  File: gfortran.info, Node: ISHFT, Next: ISHFTC, Prev: ISATTY, Up: Intrinsic Procedures ! 8.135 `ISHFT' -- Shift bits =========================== _Description_: ! `ISHFT' returns a value corresponding to I with all of the bits shifted SHIFT places. A value of SHIFT greater than zero corresponds to a left shift, a value of zero corresponds to no ! shift, and a value less than zero corresponds to a right shift. ! If the absolute value of SHIFT is greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end or right end are lost; zeros are shifted in from the opposite end. *************** _Class_: *** 10098,10111 **** Elemental function _Syntax_: ! 'RESULT = ISHFT(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFTC:: --- 10198,10211 ---- Elemental function _Syntax_: ! `RESULT = ISHFT(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFTC:: *************** _See also_: *** 10113,10130 ****  File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures ! 8.136 'ISHFTC' -- Shift bits circularly ======================================= _Description_: ! 'ISHFTC' returns a value corresponding to I with the rightmost SIZE ! bits shifted circularly SHIFT places; that is, bits shifted out one ! end are shifted into the opposite end. A value of SHIFT greater ! than zero corresponds to a left shift, a value of zero corresponds ! to no shift, and a value less than zero corresponds to a right ! shift. The absolute value of SHIFT must be less than SIZE. If the ! SIZE argument is omitted, it is taken to be equivalent to ! 'BIT_SIZE(I)'. _Standard_: Fortran 95 and later --- 10213,10230 ----  File: gfortran.info, Node: ISHFTC, Next: ISNAN, Prev: ISHFT, Up: Intrinsic Procedures ! 8.136 `ISHFTC' -- Shift bits circularly ======================================= _Description_: ! `ISHFTC' returns a value corresponding to I with the rightmost ! SIZE bits shifted circularly SHIFT places; that is, bits shifted ! out one end are shifted into the opposite end. A value of SHIFT ! greater than zero corresponds to a left shift, a value of zero ! corresponds to no shift, and a value less than zero corresponds to ! a right shift. The absolute value of SHIFT must be less than ! SIZE. If the SIZE argument is omitted, it is taken to be ! equivalent to `BIT_SIZE(I)'. _Standard_: Fortran 95 and later *************** _Class_: *** 10133,10149 **** Elemental function _Syntax_: ! 'RESULT = ISHFTC(I, SHIFT [, SIZE])' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. ! SIZE (Optional) The type shall be 'INTEGER'; the ! value must be greater than zero and less than or ! equal to 'BIT_SIZE(I)'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFT:: --- 10233,10249 ---- Elemental function _Syntax_: ! `RESULT = ISHFTC(I, SHIFT [, SIZE])' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. ! SIZE (Optional) The type shall be `INTEGER'; the ! value must be greater than zero and less than ! or equal to `BIT_SIZE(I)'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFT:: *************** _See also_: *** 10151,10162 ****  File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures ! 8.137 'ISNAN' -- Test for a NaN =============================== _Description_: ! 'ISNAN' tests whether a floating-point value is an IEEE Not-a-Number (NaN). _Standard_: GNU extension --- 10251,10263 ----  File: gfortran.info, Node: ISNAN, Next: ITIME, Prev: ISHFTC, Up: Intrinsic Procedures ! 8.137 `ISNAN' -- Test for a NaN =============================== _Description_: ! `ISNAN' tests whether a floating-point value is an IEEE Not-a-Number (NaN). + _Standard_: GNU extension *************** _Class_: *** 10164,10178 **** Elemental function _Syntax_: ! 'ISNAN(X)' _Arguments_: ! X Variable of the type 'REAL'. ! _Return value_: ! Returns a default-kind 'LOGICAL'. The returned value is 'TRUE' if ! X is a NaN and 'FALSE' otherwise. _Example_: program test_nan --- 10265,10278 ---- Elemental function _Syntax_: ! `ISNAN(X)' _Arguments_: ! X Variable of the type `REAL'. _Return value_: ! Returns a default-kind `LOGICAL'. The returned value is `TRUE' if ! X is a NaN and `FALSE' otherwise. _Example_: program test_nan *************** _Example_: *** 10186,10197 ****  File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures ! 8.138 'ITIME' -- Get current local time subroutine (hour/minutes/seconds) ========================================================================= _Description_: ! 'IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The hour (in the range 1-24), minute (in the range 1-60), and seconds (in the range 1-60) appear in elements 1, 2, and 3 of VALUES, respectively. --- 10286,10297 ----  File: gfortran.info, Node: ITIME, Next: KILL, Prev: ISNAN, Up: Intrinsic Procedures ! 8.138 `ITIME' -- Get current local time subroutine (hour/minutes/seconds) ========================================================================= _Description_: ! `IDATE(VALUES)' Fills VALUES with the numerical values at the ! current local time. The hour (in the range 1-24), minute (in the range 1-60), and seconds (in the range 1-60) appear in elements 1, 2, and 3 of VALUES, respectively. *************** _Class_: *** 10202,10212 **** Subroutine _Syntax_: ! 'CALL ITIME(VALUES)' _Arguments_: ! VALUES The type shall be 'INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. --- 10302,10312 ---- Subroutine _Syntax_: ! `CALL ITIME(VALUES)' _Arguments_: ! VALUES The type shall be `INTEGER, DIMENSION(3)' and ! the kind shall be the default integer kind. _Return value_: Does not return anything. *************** _Example_: *** 10223,10235 ****  File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures ! 8.139 'KILL' -- Send a signal to a process ========================================== _Description_: _Standard_: Sends the signal specified by SIGNAL to the process PID. See ! 'kill(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 10323,10336 ----  File: gfortran.info, Node: KILL, Next: KIND, Prev: ITIME, Up: Intrinsic Procedures ! 8.139 `KILL' -- Send a signal to a process ========================================== _Description_: + _Standard_: Sends the signal specified by SIGNAL to the process PID. See ! `kill(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 10238,10252 **** Subroutine, function _Syntax_: ! 'CALL KILL(C, VALUE [, STATUS])' ! 'STATUS = KILL(C, VALUE)' _Arguments_: ! C Shall be a scalar 'INTEGER', with 'INTENT(IN)' ! VALUE Shall be a scalar 'INTEGER', with 'INTENT(IN)' ! STATUS (Optional) status flag of type 'INTEGER(4)' or ! 'INTEGER(8)'. Returns 0 on success, or a ! system-specific error code otherwise. _See also_: *note ABORT::, *note EXIT:: --- 10339,10353 ---- Subroutine, function _Syntax_: ! `CALL KILL(C, VALUE [, STATUS])' ! `STATUS = KILL(C, VALUE)' _Arguments_: ! C Shall be a scalar `INTEGER', with `INTENT(IN)' ! VALUE Shall be a scalar `INTEGER', with `INTENT(IN)' ! STATUS (Optional) status flag of type `INTEGER(4)' or ! `INTEGER(8)'. Returns 0 on success, or a ! system-specific error code otherwise. _See also_: *note ABORT::, *note EXIT:: *************** _See also_: *** 10254,10264 ****  File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures ! 8.140 'KIND' -- Kind of an entity ================================= _Description_: ! 'KIND(X)' returns the kind value of the entity X. _Standard_: Fortran 95 and later --- 10355,10365 ----  File: gfortran.info, Node: KIND, Next: LBOUND, Prev: KILL, Up: Intrinsic Procedures ! 8.140 `KIND' -- Kind of an entity ================================= _Description_: ! `KIND(X)' returns the kind value of the entity X. _Standard_: Fortran 95 and later *************** _Class_: *** 10267,10280 **** Inquiry function _Syntax_: ! 'K = KIND(X)' _Arguments_: ! X Shall be of type 'LOGICAL', 'INTEGER', 'REAL', ! 'COMPLEX' or 'CHARACTER'. _Return value_: ! The return value is a scalar of type 'INTEGER' and of the default integer kind. _Example_: --- 10368,10381 ---- Inquiry function _Syntax_: ! `K = KIND(X)' _Arguments_: ! X Shall be of type `LOGICAL', `INTEGER', `REAL', ! `COMPLEX' or `CHARACTER'. _Return value_: ! The return value is a scalar of type `INTEGER' and of the default integer kind. _Example_: *************** _Example_: *** 10286,10300 **** print *, "The default logical kind is ", kl end program test_kind  File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures ! 8.141 'LBOUND' -- Lower dimension bounds of an array ==================================================== _Description_: ! Returns the lower bounds of an array, or a single lower bound along ! the DIM dimension. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 10387,10403 ---- print *, "The default logical kind is ", kl end program test_kind +  File: gfortran.info, Node: LBOUND, Next: LCOBOUND, Prev: KIND, Up: Intrinsic Procedures ! 8.141 `LBOUND' -- Lower dimension bounds of an array ==================================================== _Description_: ! Returns the lower bounds of an array, or a single lower bound ! along the DIM dimension. ! _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 10302,10325 **** Inquiry function _Syntax_: ! 'RESULT = LBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the lower ! bound of the array along that dimension. If ARRAY is an expression ! rather than a whole array or array structure component, or if it ! has a zero extent along the relevant dimension, the lower bound is ! taken to be 1. _See also_: *note UBOUND::, *note LCOBOUND:: --- 10405,10428 ---- Inquiry function _Syntax_: ! `RESULT = LBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the lower ! bound of the array along that dimension. If ARRAY is an ! expression rather than a whole array or array structure component, ! or if it has a zero extent along the relevant dimension, the lower ! bound is taken to be 1. _See also_: *note UBOUND::, *note LCOBOUND:: *************** _See also_: *** 10327,10338 ****  File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures ! 8.142 'LCOBOUND' -- Lower codimension bounds of an array ======================================================== _Description_: Returns the lower bounds of a coarray, or a single lower cobound along the DIM codimension. _Standard_: Fortran 2008 and later --- 10430,10442 ----  File: gfortran.info, Node: LCOBOUND, Next: LEADZ, Prev: LBOUND, Up: Intrinsic Procedures ! 8.142 `LCOBOUND' -- Lower codimension bounds of an array ======================================================== _Description_: Returns the lower bounds of a coarray, or a single lower cobound along the DIM codimension. + _Standard_: Fortran 2008 and later *************** _Class_: *** 10340,10356 **** Inquiry function _Syntax_: ! 'RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the --- 10444,10460 ---- Inquiry function _Syntax_: ! `RESULT = LCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the *************** _See also_: *** 10362,10372 ****  File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures ! 8.143 'LEADZ' -- Number of leading zero bits of an integer ========================================================== _Description_: ! 'LEADZ' returns the number of leading zero bits of an integer. _Standard_: Fortran 2008 and later --- 10466,10476 ----  File: gfortran.info, Node: LEADZ, Next: LEN, Prev: LCOBOUND, Up: Intrinsic Procedures ! 8.143 `LEADZ' -- Number of leading zero bits of an integer ========================================================== _Description_: ! `LEADZ' returns the number of leading zero bits of an integer. _Standard_: Fortran 2008 and later *************** _Class_: *** 10375,10388 **** Elemental function _Syntax_: ! 'RESULT = LEADZ(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The type of the return value is the default 'INTEGER'. If all the ! bits of 'I' are zero, the result value is 'BIT_SIZE(I)'. _Example_: PROGRAM test_leadz --- 10479,10492 ---- Elemental function _Syntax_: ! `RESULT = LEADZ(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The type of the return value is the default `INTEGER'. If all the ! bits of `I' are zero, the result value is `BIT_SIZE(I)'. _Example_: PROGRAM test_leadz *************** _See also_: *** 10396,10402 ****  File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures ! 8.144 'LEN' -- Length of a character entity =========================================== _Description_: --- 10500,10506 ----  File: gfortran.info, Node: LEN, Next: LEN_TRIM, Prev: LEADZ, Up: Intrinsic Procedures ! 8.144 `LEN' -- Length of a character entity =========================================== _Description_: *************** _Class_: *** 10412,10434 **** Inquiry function _Syntax_: ! 'L = LEN(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar or array of type 'CHARACTER', ! with 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! 'LEN(STRING)' 'CHARACTER' 'INTEGER' Fortran 77 and ! later _See also_: *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR:: --- 10516,10538 ---- Inquiry function _Syntax_: ! `L = LEN(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar or array of type ! `CHARACTER', with `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Specific names_: ! Name Argument Return type Standard ! `LEN(STRING)' `CHARACTER' `INTEGER' Fortran 77 and ! later _See also_: *note LEN_TRIM::, *note ADJUSTL::, *note ADJUSTR:: *************** _See also_: *** 10436,10442 ****  File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures ! 8.145 'LEN_TRIM' -- Length of a character entity without trailing blank characters ================================================================================== _Description_: --- 10540,10546 ----  File: gfortran.info, Node: LEN_TRIM, Next: LGE, Prev: LEN, Up: Intrinsic Procedures ! 8.145 `LEN_TRIM' -- Length of a character entity without trailing blank characters ================================================================================== _Description_: *************** _Class_: *** 10450,10466 **** Elemental function _Syntax_: ! 'RESULT = LEN_TRIM(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar of type 'CHARACTER', with ! 'INTENT(IN)' ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _See also_: --- 10554,10570 ---- Elemental function _Syntax_: ! `RESULT = LEN_TRIM(STRING [, KIND])' _Arguments_: ! STRING Shall be a scalar of type `CHARACTER', with ! `INTENT(IN)' ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _See also_: *************** _See also_: *** 10469,10475 ****  File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures ! 8.146 'LGE' -- Lexical greater than or equal ============================================ _Description_: --- 10573,10579 ----  File: gfortran.info, Node: LGE, Next: LGT, Prev: LEN_TRIM, Up: Intrinsic Procedures ! 8.146 `LGE' -- Lexical greater than or equal ============================================ _Description_: *************** _Description_: *** 10479,10489 **** same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10583,10593 ---- same length, the shorter is compared as if spaces were appended to it to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10492,10511 **** Elemental function _Syntax_: ! 'RESULT = LGE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A >= STRING_B', and '.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LGE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGT::, *note LLE::, *note LLT:: --- 10596,10615 ---- Elemental function _Syntax_: ! `RESULT = LGE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A >= STRING_B', and `.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LGE(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGT::, *note LLE::, *note LLT:: *************** _See also_: *** 10513,10533 ****  File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures ! 8.147 'LGT' -- Lexical greater than =================================== _Description_: Determines whether one string is lexically greater than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it to ! form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10617,10637 ----  File: gfortran.info, Node: LGT, Next: LINK, Prev: LGE, Up: Intrinsic Procedures ! 8.147 `LGT' -- Lexical greater than =================================== _Description_: Determines whether one string is lexically greater than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it ! to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10536,10555 **** Elemental function _Syntax_: ! 'RESULT = LGT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A > STRING_B', and '.FALSE.' otherwise, ! based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LGT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LLE::, *note LLT:: --- 10640,10659 ---- Elemental function _Syntax_: ! `RESULT = LGT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A > STRING_B', and `.FALSE.' ! otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LGT(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LLE::, *note LLT:: *************** _See also_: *** 10557,10571 ****  File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures ! 8.148 'LINK' -- Create a hard link ================================== _Description_: ! Makes a (hard) link from file PATH1 to PATH2. A null character ! ('CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see 'link(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 10661,10675 ----  File: gfortran.info, Node: LINK, Next: LLE, Prev: LGT, Up: Intrinsic Procedures ! 8.148 `LINK' -- Create a hard link ================================== _Description_: ! Makes a (hard) link from file PATH1 to PATH2. A null character ! (`CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see `link(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 10577,10589 **** Subroutine, function _Syntax_: ! 'CALL LINK(PATH1, PATH2 [, STATUS])' ! 'STATUS = LINK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default 'CHARACTER' type. ! PATH2 Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note SYMLNK::, *note UNLINK:: --- 10681,10693 ---- Subroutine, function _Syntax_: ! `CALL LINK(PATH1, PATH2 [, STATUS])' ! `STATUS = LINK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default `CHARACTER' type. ! PATH2 Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note SYMLNK::, *note UNLINK:: *************** _See also_: *** 10591,10611 ****  File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures ! 8.149 'LLE' -- Lexical less than or equal ========================================= _Description_: Determines whether one string is lexically less than or equal to ! another string, where the two strings are interpreted as containing ! ASCII character codes. If the String A and String B are not the ! same length, the shorter is compared as if spaces were appended to ! it to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10695,10716 ----  File: gfortran.info, Node: LLE, Next: LLT, Prev: LINK, Up: Intrinsic Procedures ! 8.149 `LLE' -- Lexical less than or equal ========================================= _Description_: Determines whether one string is lexically less than or equal to ! another string, where the two strings are interpreted as ! containing ASCII character codes. If the String A and String B ! are not the same length, the shorter is compared as if spaces were ! appended to it to form a value that has the same length as the ! longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10614,10633 **** Elemental function _Syntax_: ! 'RESULT = LLE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A <= STRING_B', and '.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LLE(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLT:: --- 10719,10738 ---- Elemental function _Syntax_: ! `RESULT = LLE(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A <= STRING_B', and `.FALSE.' otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LLE(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLT:: *************** _See also_: *** 10635,10655 ****  File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures ! 8.150 'LLT' -- Lexical less than ================================ _Description_: Determines whether one string is lexically less than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it to ! form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics 'LGE', 'LGT', 'LLE', ! and 'LLT' differ from the corresponding intrinsic operators '.GE.', ! '.GT.', '.LE.', and '.LT.', in that the latter use the processor's ! character ordering (which is not ASCII on some targets), whereas ! the former always use the ASCII ordering. _Standard_: Fortran 77 and later --- 10740,10760 ----  File: gfortran.info, Node: LLT, Next: LNBLNK, Prev: LLE, Up: Intrinsic Procedures ! 8.150 `LLT' -- Lexical less than ================================ _Description_: Determines whether one string is lexically less than another string, where the two strings are interpreted as containing ASCII character codes. If the String A and String B are not the same ! length, the shorter is compared as if spaces were appended to it ! to form a value that has the same length as the longer. ! In general, the lexical comparison intrinsics `LGE', `LGT', `LLE', ! and `LLT' differ from the corresponding intrinsic operators ! `.GE.', `.GT.', `.LE.', and `.LT.', in that the latter use the ! processor's character ordering (which is not ASCII on some ! targets), whereas the former always use the ASCII ordering. _Standard_: Fortran 77 and later *************** _Class_: *** 10658,10677 **** Elemental function _Syntax_: ! 'RESULT = LLT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default 'CHARACTER' type. ! STRING_B Shall be of default 'CHARACTER' type. _Return value_: ! Returns '.TRUE.' if 'STRING_A < STRING_B', and '.FALSE.' otherwise, ! based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! 'LLT(STRING_A, 'CHARACTER' 'LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLE:: --- 10763,10782 ---- Elemental function _Syntax_: ! `RESULT = LLT(STRING_A, STRING_B)' _Arguments_: ! STRING_A Shall be of default `CHARACTER' type. ! STRING_B Shall be of default `CHARACTER' type. _Return value_: ! Returns `.TRUE.' if `STRING_A < STRING_B', and `.FALSE.' ! otherwise, based on the ASCII ordering. _Specific names_: ! Name Argument Return type Standard ! `LLT(STRING_A,`CHARACTER' `LOGICAL' Fortran 77 and ! STRING_B)' later _See also_: *note LGE::, *note LGT::, *note LLE:: *************** _See also_: *** 10679,10690 ****  File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures ! 8.151 'LNBLNK' -- Index of the last non-blank character in a string =================================================================== _Description_: Returns the length of a character string, ignoring any trailing ! blanks. This is identical to the standard 'LEN_TRIM' intrinsic, and is only included for backwards compatibility. _Standard_: --- 10784,10795 ----  File: gfortran.info, Node: LNBLNK, Next: LOC, Prev: LLT, Up: Intrinsic Procedures ! 8.151 `LNBLNK' -- Index of the last non-blank character in a string =================================================================== _Description_: Returns the length of a character string, ignoring any trailing ! blanks. This is identical to the standard `LEN_TRIM' intrinsic, and is only included for backwards compatibility. _Standard_: *************** _Class_: *** 10694,10707 **** Elemental function _Syntax_: ! 'RESULT = LNBLNK(STRING)' _Arguments_: ! STRING Shall be a scalar of type 'CHARACTER', with ! 'INTENT(IN)' _Return value_: ! The return value is of 'INTEGER(kind=4)' type. _See also_: *note INDEX intrinsic::, *note LEN_TRIM:: --- 10799,10812 ---- Elemental function _Syntax_: ! `RESULT = LNBLNK(STRING)' _Arguments_: ! STRING Shall be a scalar of type `CHARACTER', with ! `INTENT(IN)' _Return value_: ! The return value is of `INTEGER(kind=4)' type. _See also_: *note INDEX intrinsic::, *note LEN_TRIM:: *************** _See also_: *** 10709,10719 ****  File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures ! 8.152 'LOC' -- Returns the address of a variable ================================================ _Description_: ! 'LOC(X)' returns the address of X as an integer. _Standard_: GNU extension --- 10814,10824 ----  File: gfortran.info, Node: LOC, Next: LOG, Prev: LNBLNK, Up: Intrinsic Procedures ! 8.152 `LOC' -- Returns the address of a variable ================================================ _Description_: ! `LOC(X)' returns the address of X as an integer. _Standard_: GNU extension *************** _Class_: *** 10722,10734 **** Inquiry function _Syntax_: ! 'RESULT = LOC(X)' _Arguments_: ! X Variable of any type. _Return value_: ! The return value is of type 'INTEGER', with a 'KIND' corresponding to the size (in bytes) of a memory address on the target machine. _Example_: --- 10827,10839 ---- Inquiry function _Syntax_: ! `RESULT = LOC(X)' _Arguments_: ! X Variable of any type. _Return value_: ! The return value is of type `INTEGER', with a `KIND' corresponding to the size (in bytes) of a memory address on the target machine. _Example_: *************** _Example_: *** 10742,10752 ****  File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures ! 8.153 'LOG' -- Natural logarithm function ========================================= _Description_: ! 'LOG(X)' computes the natural logarithm of X, i.e. the logarithm to the base e. _Standard_: --- 10847,10857 ----  File: gfortran.info, Node: LOG, Next: LOG10, Prev: LOC, Up: Intrinsic Procedures ! 8.153 `LOG' -- Natural logarithm function ========================================= _Description_: ! `LOG(X)' computes the natural logarithm of X, i.e. the logarithm to the base e. _Standard_: *************** _Class_: *** 10756,10769 **** Elemental function _Syntax_: ! 'RESULT = LOG(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'REAL' or 'COMPLEX'. The kind type ! parameter is the same as X. If X is 'COMPLEX', the imaginary part \omega is in the range -\pi \leq \omega \leq \pi. _Example_: --- 10861,10874 ---- Elemental function _Syntax_: ! `RESULT = LOG(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of type `REAL' or `COMPLEX'. The kind type ! parameter is the same as X. If X is `COMPLEX', the imaginary part \omega is in the range -\pi \leq \omega \leq \pi. _Example_: *************** _Example_: *** 10775,10798 **** end program test_log _Specific names_: ! Name Argument Return type Standard ! 'ALOG(X)' 'REAL(4) X' 'REAL(4)' f95, gnu ! 'DLOG(X)' 'REAL(8) X' 'REAL(8)' f95, gnu ! 'CLOG(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu ! X' ! 'ZLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X' ! 'CDLOG(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X'  File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures ! 8.154 'LOG10' -- Base 10 logarithm function =========================================== _Description_: ! 'LOG10(X)' computes the base 10 logarithm of X. _Standard_: Fortran 77 and later --- 10880,10903 ---- end program test_log _Specific names_: ! Name Argument Return type Standard ! `ALOG(X)' `REAL(4) X' `REAL(4)' f95, gnu ! `DLOG(X)' `REAL(8) X' `REAL(8)' f95, gnu ! `CLOG(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu ! X' ! `ZLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X' ! `CDLOG(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X'  File: gfortran.info, Node: LOG10, Next: LOG_GAMMA, Prev: LOG, Up: Intrinsic Procedures ! 8.154 `LOG10' -- Base 10 logarithm function =========================================== _Description_: ! `LOG10(X)' computes the base 10 logarithm of X. _Standard_: Fortran 77 and later *************** _Class_: *** 10801,10813 **** Elemental function _Syntax_: ! 'RESULT = LOG10(X)' _Arguments_: ! X The type shall be 'REAL'. _Return value_: ! The return value is of type 'REAL' or 'COMPLEX'. The kind type parameter is the same as X. _Example_: --- 10906,10918 ---- Elemental function _Syntax_: ! `RESULT = LOG10(X)' _Arguments_: ! X The type shall be `REAL'. _Return value_: ! The return value is of type `REAL' or `COMPLEX'. The kind type parameter is the same as X. _Example_: *************** _Example_: *** 10817,10836 **** end program test_log10 _Specific names_: ! Name Argument Return type Standard ! 'ALOG10(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DLOG10(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later  File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures ! 8.155 'LOG_GAMMA' -- Logarithm of the Gamma function ==================================================== _Description_: ! 'LOG_GAMMA(X)' computes the natural logarithm of the absolute value of the Gamma (\Gamma) function. _Standard_: --- 10922,10941 ---- end program test_log10 _Specific names_: ! Name Argument Return type Standard ! `ALOG10(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DLOG10(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later  File: gfortran.info, Node: LOG_GAMMA, Next: LOGICAL, Prev: LOG10, Up: Intrinsic Procedures ! 8.155 `LOG_GAMMA' -- Logarithm of the Gamma function ==================================================== _Description_: ! `LOG_GAMMA(X)' computes the natural logarithm of the absolute value of the Gamma (\Gamma) function. _Standard_: *************** _Class_: *** 10840,10853 **** Elemental function _Syntax_: ! 'X = LOG_GAMMA(X)' _Arguments_: ! X Shall be of type 'REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type 'REAL' of the same kind as X. _Example_: program test_log_gamma --- 10945,10958 ---- Elemental function _Syntax_: ! `X = LOG_GAMMA(X)' _Arguments_: ! X Shall be of type `REAL' and neither zero nor a ! negative integer. _Return value_: ! The return value is of type `REAL' of the same kind as X. _Example_: program test_log_gamma *************** _Example_: *** 10856,10877 **** end program test_log_gamma _Specific names_: ! Name Argument Return type Standard ! 'LGAMMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension ! 'ALGAMA(X)' 'REAL(4) X' 'REAL(4)' GNU Extension ! 'DLGAMA(X)' 'REAL(8) X' 'REAL(8)' GNU Extension _See also_: Gamma function: *note GAMMA::  File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures ! 8.156 'LOGICAL' -- Convert to logical type ========================================== _Description_: ! Converts one kind of 'LOGICAL' variable to another. _Standard_: Fortran 95 and later --- 10961,10983 ---- end program test_log_gamma _Specific names_: ! Name Argument Return type Standard ! `LGAMMA(X)' `REAL(4) X' `REAL(4)' GNU Extension ! `ALGAMA(X)' `REAL(4) X' `REAL(4)' GNU Extension ! `DLGAMA(X)' `REAL(8) X' `REAL(8)' GNU Extension _See also_: Gamma function: *note GAMMA:: +  File: gfortran.info, Node: LOGICAL, Next: LONG, Prev: LOG_GAMMA, Up: Intrinsic Procedures ! 8.156 `LOGICAL' -- Convert to logical type ========================================== _Description_: ! Converts one kind of `LOGICAL' variable to another. _Standard_: Fortran 95 and later *************** _Class_: *** 10880,10895 **** Elemental function _Syntax_: ! 'RESULT = LOGICAL(L [, KIND])' _Arguments_: ! L The type shall be 'LOGICAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is a 'LOGICAL' value equal to L, with a kind corresponding to KIND, or of the default logical kind if KIND is not given. --- 10986,11001 ---- Elemental function _Syntax_: ! `RESULT = LOGICAL(L [, KIND])' _Arguments_: ! L The type shall be `LOGICAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is a `LOGICAL' value equal to L, with a kind corresponding to KIND, or of the default logical kind if KIND is not given. *************** _See also_: *** 10899,10912 ****  File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures ! 8.157 'LONG' -- Convert to integer type ======================================= _Description_: ! Convert to a 'KIND=4' integer type, which is the same size as a C ! 'long' integer. This is equivalent to the standard 'INT' intrinsic ! with an optional argument of 'KIND=4', and is only included for ! backwards compatibility. _Standard_: GNU extension --- 11005,11018 ----  File: gfortran.info, Node: LONG, Next: LSHIFT, Prev: LOGICAL, Up: Intrinsic Procedures ! 8.157 `LONG' -- Convert to integer type ======================================= _Description_: ! Convert to a `KIND=4' integer type, which is the same size as a C ! `long' integer. This is equivalent to the standard `INT' ! intrinsic with an optional argument of `KIND=4', and is only ! included for backwards compatibility. _Standard_: GNU extension *************** _Class_: *** 10915,10928 **** Elemental function _Syntax_: ! 'RESULT = LONG(A)' _Arguments_: ! A Shall be of type 'INTEGER', 'REAL', or ! 'COMPLEX'. _Return value_: ! The return value is a 'INTEGER(4)' variable. _See also_: *note INT::, *note INT2::, *note INT8:: --- 11021,11034 ---- Elemental function _Syntax_: ! `RESULT = LONG(A)' _Arguments_: ! A Shall be of type `INTEGER', `REAL', or ! `COMPLEX'. _Return value_: ! The return value is a `INTEGER(4)' variable. _See also_: *note INT::, *note INT2::, *note INT8:: *************** _See also_: *** 10930,10947 ****  File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures ! 8.158 'LSHIFT' -- Left shift bits ================================= _Description_: ! 'LSHIFT' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost; zeros are shifted in from the opposite end. ! This function has been superseded by the 'ISHFT' intrinsic, which ! is standard in Fortran 95 and later, and the 'SHIFTL' intrinsic, which is standard in Fortran 2008 and later. _Standard_: --- 11036,11053 ----  File: gfortran.info, Node: LSHIFT, Next: LSTAT, Prev: LONG, Up: Intrinsic Procedures ! 8.158 `LSHIFT' -- Left shift bits ================================= _Description_: ! `LSHIFT' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost; zeros are shifted in from the opposite end. ! This function has been superseded by the `ISHFT' intrinsic, which ! is standard in Fortran 95 and later, and the `SHIFTL' intrinsic, which is standard in Fortran 2008 and later. _Standard_: *************** _Class_: *** 10951,10981 **** Elemental function _Syntax_: ! 'RESULT = LSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::, *note SHIFTL::, *note SHIFTR::  File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures ! 8.159 'LSTAT' -- Get file status ================================ _Description_: ! 'LSTAT' is identical to *note STAT::, except that if path is a symbolic link, then the link itself is statted, not the file that it refers to. ! The elements in 'VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 11057,11088 ---- Elemental function _Syntax_: ! `RESULT = LSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note RSHIFT::, *note SHIFTA::, *note SHIFTL::, *note SHIFTR:: +  File: gfortran.info, Node: LSTAT, Next: LTIME, Prev: LSHIFT, Up: Intrinsic Procedures ! 8.159 `LSTAT' -- Get file status ================================ _Description_: ! `LSTAT' is identical to *note STAT::, except that if path is a symbolic link, then the link itself is statted, not the file that it refers to. ! The elements in `VALUES' are the same as described by *note STAT::. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 10987,11002 **** Subroutine, function _Syntax_: ! 'CALL LSTAT(NAME, VALUES [, STATUS])' ! 'STATUS = LSTAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be 'CHARACTER' of the default ! kind, a valid path within the file system. ! VALUES The type shall be 'INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type 'INTEGER(4)'. ! Returns 0 on success and a system specific error ! code otherwise. _Example_: See *note STAT:: for an example. --- 11094,11109 ---- Subroutine, function _Syntax_: ! `CALL LSTAT(NAME, VALUES [, STATUS])' ! `STATUS = LSTAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be `CHARACTER' of the default ! kind, a valid path within the file system. ! VALUES The type shall be `INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type `INTEGER(4)'. ! Returns 0 on success and a system specific ! error code otherwise. _Example_: See *note STAT:: for an example. *************** _See also_: *** 11007,11019 ****  File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures ! 8.160 'LTIME' -- Convert time to local time info ================================================ _Description_: ! Given a system time value TIME (as provided by the 'TIME8' intrinsic), fills VALUES with values extracted from it appropriate ! to the local time zone using 'localtime(3)'. _Standard_: GNU extension --- 11114,11126 ----  File: gfortran.info, Node: LTIME, Next: MALLOC, Prev: LSTAT, Up: Intrinsic Procedures ! 8.160 `LTIME' -- Convert time to local time info ================================================ _Description_: ! Given a system time value TIME (as provided by the `TIME8' intrinsic), fills VALUES with values extracted from it appropriate ! to the local time zone using `localtime(3)'. _Standard_: GNU extension *************** _Class_: *** 11022,11046 **** Subroutine _Syntax_: ! 'CALL LTIME(TIME, VALUES)' _Arguments_: ! TIME An 'INTEGER' scalar expression corresponding to ! a system time, with 'INTENT(IN)'. ! VALUES A default 'INTEGER' array with 9 elements, with ! 'INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds 2. Minutes after the hour, range 0-59 3. Hours past midnight, range 0-23 4. Day of month, range 0-31 5. Number of months since January, range 0-12 6. Years since 1900 7. Number of days since Sunday, range 0-6 8. Days since January 1 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. --- 11129,11161 ---- Subroutine _Syntax_: ! `CALL LTIME(TIME, VALUES)' _Arguments_: ! TIME An `INTEGER' scalar expression corresponding ! to a system time, with `INTENT(IN)'. ! VALUES A default `INTEGER' array with 9 elements, ! with `INTENT(OUT)'. _Return value_: The elements of VALUES are assigned as follows: 1. Seconds after the minute, range 0-59 or 0-61 to allow for leap seconds + 2. Minutes after the hour, range 0-59 + 3. Hours past midnight, range 0-23 + 4. Day of month, range 0-31 + 5. Number of months since January, range 0-12 + 6. Years since 1900 + 7. Number of days since Sunday, range 0-6 + 8. Days since January 1 + 9. Daylight savings indicator: positive if daylight savings is in effect, zero if not, and negative if the information is not available. *************** _Return value_: *** 11048,11066 **** _See also_: *note CTIME::, *note GMTIME::, *note TIME::, *note TIME8::  File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures ! 8.161 'MALLOC' -- Allocate dynamic memory ========================================= _Description_: ! 'MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns ! the address of the allocated memory. The 'MALLOC' intrinsic is an extension intended to be used with Cray pointers, and is provided ! in GNU Fortran to allow the user to compile legacy code. For new code using Fortran 95 pointers, the memory allocation intrinsic is ! 'ALLOCATE'. _Standard_: GNU extension --- 11163,11182 ---- _See also_: *note CTIME::, *note GMTIME::, *note TIME::, *note TIME8:: +  File: gfortran.info, Node: MALLOC, Next: MASKL, Prev: LTIME, Up: Intrinsic Procedures ! 8.161 `MALLOC' -- Allocate dynamic memory ========================================= _Description_: ! `MALLOC(SIZE)' allocates SIZE bytes of dynamic memory and returns ! the address of the allocated memory. The `MALLOC' intrinsic is an extension intended to be used with Cray pointers, and is provided ! in GNU Fortran to allow the user to compile legacy code. For new code using Fortran 95 pointers, the memory allocation intrinsic is ! `ALLOCATE'. _Standard_: GNU extension *************** _Class_: *** 11069,11086 **** Function _Syntax_: ! 'PTR = MALLOC(SIZE)' _Arguments_: ! SIZE The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER(K)', with K such that ! variables of type 'INTEGER(K)' have the same size as C pointers ! ('sizeof(void *)'). _Example_: ! The following example demonstrates the use of 'MALLOC' and 'FREE' with Cray pointers. program test_malloc --- 11185,11202 ---- Function _Syntax_: ! `PTR = MALLOC(SIZE)' _Arguments_: ! SIZE The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER(K)', with K such that ! variables of type `INTEGER(K)' have the same size as C pointers ! (`sizeof(void *)'). _Example_: ! The following example demonstrates the use of `MALLOC' and `FREE' with Cray pointers. program test_malloc *************** _See also_: *** 11107,11117 ****  File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures ! 8.162 'MASKL' -- Left justified mask ==================================== _Description_: ! 'MASKL(I[, KIND])' has its leftmost I bits set to 1, and the remaining bits set to 0. _Standard_: --- 11223,11233 ----  File: gfortran.info, Node: MASKL, Next: MASKR, Prev: MALLOC, Up: Intrinsic Procedures ! 8.162 `MASKL' -- Left justified mask ==================================== _Description_: ! `MASKL(I[, KIND])' has its leftmost I bits set to 1, and the remaining bits set to 0. _Standard_: *************** _Class_: *** 11121,11135 **** Elemental function _Syntax_: ! 'RESULT = MASKL(I[, KIND])' _Arguments_: ! I Shall be of type 'INTEGER'. ! KIND Shall be a scalar constant expression of type ! 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. --- 11237,11251 ---- Elemental function _Syntax_: ! `RESULT = MASKL(I[, KIND])' _Arguments_: ! I Shall be of type `INTEGER'. ! KIND Shall be a scalar constant expression of type ! `INTEGER'. _Return value_: ! The return value is of type `INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. *************** _See also_: *** 11139,11149 ****  File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures ! 8.163 'MASKR' -- Right justified mask ===================================== _Description_: ! 'MASKL(I[, KIND])' has its rightmost I bits set to 1, and the remaining bits set to 0. _Standard_: --- 11255,11265 ----  File: gfortran.info, Node: MASKR, Next: MATMUL, Prev: MASKL, Up: Intrinsic Procedures ! 8.163 `MASKR' -- Right justified mask ===================================== _Description_: ! `MASKL(I[, KIND])' has its rightmost I bits set to 1, and the remaining bits set to 0. _Standard_: *************** _Class_: *** 11153,11167 **** Elemental function _Syntax_: ! 'RESULT = MASKR(I[, KIND])' _Arguments_: ! I Shall be of type 'INTEGER'. ! KIND Shall be a scalar constant expression of type ! 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. --- 11269,11283 ---- Elemental function _Syntax_: ! `RESULT = MASKR(I[, KIND])' _Arguments_: ! I Shall be of type `INTEGER'. ! KIND Shall be a scalar constant expression of type ! `INTEGER'. _Return value_: ! The return value is of type `INTEGER'. If KIND is present, it specifies the kind value of the return type; otherwise, it is of the default integer kind. *************** _See also_: *** 11171,11177 ****  File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures ! 8.164 'MATMUL' -- matrix multiplication ======================================= _Description_: --- 11287,11293 ----  File: gfortran.info, Node: MATMUL, Next: MAX, Prev: MASKR, Up: Intrinsic Procedures ! 8.164 `MATMUL' -- matrix multiplication ======================================= _Description_: *************** _Class_: *** 11184,11212 **** Transformational function _Syntax_: ! 'RESULT = MATMUL(MATRIX_A, MATRIX_B)' _Arguments_: ! MATRIX_A An array of 'INTEGER', 'REAL', 'COMPLEX', or ! 'LOGICAL' type, with a rank of one or two. ! MATRIX_B An array of 'INTEGER', 'REAL', or 'COMPLEX' type ! if MATRIX_A is of a numeric type; otherwise, an ! array of 'LOGICAL' type. The rank shall be one ! or two, and the first (or only) dimension of ! MATRIX_B shall be equal to the last (or only) ! dimension of MATRIX_A. _Return value_: The matrix product of MATRIX_A and MATRIX_B. The type and kind of the result follow the usual type and kind promotion rules, as for ! the '*' or '.AND.' operators. _See also_:  File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures ! 8.165 'MAX' -- Maximum value of an argument list ================================================ _Description_: --- 11300,11328 ---- Transformational function _Syntax_: ! `RESULT = MATMUL(MATRIX_A, MATRIX_B)' _Arguments_: ! MATRIX_A An array of `INTEGER', `REAL', `COMPLEX', or ! `LOGICAL' type, with a rank of one or two. ! MATRIX_B An array of `INTEGER', `REAL', or `COMPLEX' ! type if MATRIX_A is of a numeric type; ! otherwise, an array of `LOGICAL' type. The ! rank shall be one or two, and the first (or ! only) dimension of MATRIX_B shall be equal to ! the last (or only) dimension of MATRIX_A. _Return value_: The matrix product of MATRIX_A and MATRIX_B. The type and kind of the result follow the usual type and kind promotion rules, as for ! the `*' or `.AND.' operators. _See also_:  File: gfortran.info, Node: MAX, Next: MAXEXPONENT, Prev: MATMUL, Up: Intrinsic Procedures ! 8.165 `MAX' -- Maximum value of an argument list ================================================ _Description_: *************** _Class_: *** 11219,11261 **** Elemental function _Syntax_: ! 'RESULT = MAX(A1, A2 [, A3 [, ...]])' _Arguments_: ! A1 The type shall be 'INTEGER' or 'REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! 'MAX0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! A1' later ! 'AMAX0(A1)' 'INTEGER(4) 'REAL(MAX(X))' Fortran 77 and ! A1' later ! 'MAX1(A1)' 'REAL A1' 'INT(MAX(X))' Fortran 77 and ! later ! 'AMAX1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and ! later ! 'DMAX1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and ! later _See also_: *note MAXLOC:: *note MAXVAL::, *note MIN::  File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures ! 8.166 'MAXEXPONENT' -- Maximum exponent of a real kind ====================================================== _Description_: ! 'MAXEXPONENT(X)' returns the maximum exponent in the model of the ! type of 'X'. _Standard_: Fortran 95 and later --- 11335,11378 ---- Elemental function _Syntax_: ! `RESULT = MAX(A1, A2 [, A3 [, ...]])' _Arguments_: ! A1 The type shall be `INTEGER' or `REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! `MAX0(A1)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! A1' later ! `AMAX0(A1)' `INTEGER(4) `REAL(MAX(X))'Fortran 77 and ! A1' later ! `MAX1(A1)' `REAL A1' `INT(MAX(X))' Fortran 77 and ! later ! `AMAX1(A1)' `REAL(4) A1' `REAL(4)' Fortran 77 and ! later ! `DMAX1(A1)' `REAL(8) A1' `REAL(8)' Fortran 77 and ! later _See also_: *note MAXLOC:: *note MAXVAL::, *note MIN:: +  File: gfortran.info, Node: MAXEXPONENT, Next: MAXLOC, Prev: MAX, Up: Intrinsic Procedures ! 8.166 `MAXEXPONENT' -- Maximum exponent of a real kind ====================================================== _Description_: ! `MAXEXPONENT(X)' returns the maximum exponent in the model of the ! type of `X'. _Standard_: Fortran 95 and later *************** _Class_: *** 11264,11276 **** Inquiry function _Syntax_: ! 'RESULT = MAXEXPONENT(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _Example_: --- 11381,11393 ---- Inquiry function _Syntax_: ! `RESULT = MAXEXPONENT(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _Example_: *************** _Example_: *** 11285,11291 ****  File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures ! 8.167 'MAXLOC' -- Location of the maximum value within an array =============================================================== _Description_: --- 11402,11408 ----  File: gfortran.info, Node: MAXLOC, Next: MAXVAL, Prev: MAXEXPONENT, Up: Intrinsic Procedures ! 8.167 `MAXLOC' -- Location of the maximum value within an array =============================================================== _Description_: *************** _Description_: *** 11293,11305 **** maximum value, or, if the DIM argument is supplied, determines the locations of the maximum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is '.TRUE.' are considered. If more than one element in the array has the maximum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are '.FALSE.', then the result ! is an array of zeroes. Similarly, if DIM is supplied and all of ! the elements of MASK along a given row are zero, the result value ! for that row is zero. _Standard_: Fortran 95 and later --- 11410,11422 ---- maximum value, or, if the DIM argument is supplied, determines the locations of the maximum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is `.TRUE.' are considered. If more than one element in the array has the maximum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are `.FALSE.', then the ! result is an array of zeroes. Similarly, if DIM is supplied and ! all of the elements of MASK along a given row are zero, the result ! value for that row is zero. _Standard_: Fortran 95 and later *************** _Class_: *** 11308,11324 **** Transformational function _Syntax_: ! 'RESULT = MAXLOC(ARRAY, DIM [, MASK])' ! 'RESULT = MAXLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length --- 11425,11441 ---- Transformational function _Syntax_: ! `RESULT = MAXLOC(ARRAY, DIM [, MASK])' ! `RESULT = MAXLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length *************** _Return value_: *** 11326,11350 **** array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default 'INTEGER' type. _See also_: *note MAX::, *note MAXVAL::  File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures ! 8.168 'MAXVAL' -- Maximum value of an array =========================================== _Description_: ! Determines the maximum value of the elements in an array value, or, ! if the DIM argument is supplied, determines the maximum value along ! each row of the array in the DIM direction. If MASK is present, ! only the elements for which MASK is '.TRUE.' are considered. If ! the array has zero size, or all of the elements of MASK are ! '.FALSE.', then the result is '-HUGE(ARRAY)' if ARRAY is numeric, ! or a string of nulls if ARRAY is of character type. _Standard_: Fortran 95 and later --- 11443,11468 ---- array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default `INTEGER' type. _See also_: *note MAX::, *note MAXVAL:: +  File: gfortran.info, Node: MAXVAL, Next: MCLOCK, Prev: MAXLOC, Up: Intrinsic Procedures ! 8.168 `MAXVAL' -- Maximum value of an array =========================================== _Description_: ! Determines the maximum value of the elements in an array value, ! or, if the DIM argument is supplied, determines the maximum value ! along each row of the array in the DIM direction. If MASK is ! present, only the elements for which MASK is `.TRUE.' are ! considered. If the array has zero size, or all of the elements of ! MASK are `.FALSE.', then the result is `-HUGE(ARRAY)' if ARRAY is ! numeric, or a string of nulls if ARRAY is of character type. _Standard_: Fortran 95 and later *************** _Class_: *** 11353,11369 **** Transformational function _Syntax_: ! 'RESULT = MAXVAL(ARRAY, DIM [, MASK])' ! 'RESULT = MAXVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a --- 11471,11487 ---- Transformational function _Syntax_: ! `RESULT = MAXVAL(ARRAY, DIM [, MASK])' ! `RESULT = MAXVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a *************** _See also_: *** 11378,11392 ****  File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures ! 8.169 'MCLOCK' -- Time function =============================== _Description_: Returns the number of clock ticks since the start of the process, ! based on the function 'clock(3)' in the C standard library. This intrinsic is not fully portable, such as to systems with ! 32-bit 'INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. --- 11496,11510 ----  File: gfortran.info, Node: MCLOCK, Next: MCLOCK8, Prev: MAXVAL, Up: Intrinsic Procedures ! 8.169 `MCLOCK' -- Time function =============================== _Description_: Returns the number of clock ticks since the start of the process, ! based on the function `clock(3)' in the C standard library. This intrinsic is not fully portable, such as to systems with ! 32-bit `INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. *************** _Class_: *** 11398,11431 **** Function _Syntax_: ! 'RESULT = MCLOCK()' _Return value_: ! The return value is a scalar of type 'INTEGER(4)', equal to the ! number of clock ticks since the start of the process, or '-1' if ! the system does not support 'clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note ! TIME::  File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures ! 8.170 'MCLOCK8' -- Time function (64-bit) ========================================= _Description_: Returns the number of clock ticks since the start of the process, ! based on the function 'clock(3)' in the C standard library. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by 'clock(3)'. On a system with a 32-bit ! 'clock(3)', 'MCLOCK8' will return a 32-bit value, even though it is ! converted to a 64-bit 'INTEGER(8)' value. That means overflows of ! the 32-bit value can still occur. Therefore, the values returned ! by this intrinsic might be or become negative or numerically less ! than previous values during a single run of the compiled program. _Standard_: GNU extension --- 11516,11551 ---- Function _Syntax_: ! `RESULT = MCLOCK()' _Return value_: ! The return value is a scalar of type `INTEGER(4)', equal to the ! number of clock ticks since the start of the process, or `-1' if ! the system does not support `clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, ! *note TIME:: !  File: gfortran.info, Node: MCLOCK8, Next: MERGE, Prev: MCLOCK, Up: Intrinsic Procedures ! 8.170 `MCLOCK8' -- Time function (64-bit) ========================================= _Description_: Returns the number of clock ticks since the start of the process, ! based on the function `clock(3)' in the C standard library. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by `clock(3)'. On a system with a 32-bit ! `clock(3)', `MCLOCK8' will return a 32-bit value, even though it ! is converted to a 64-bit `INTEGER(8)' value. That means overflows ! of the 32-bit value can still occur. Therefore, the values ! returned by this intrinsic might be or become negative or ! numerically less than previous values during a single run of the ! compiled program. _Standard_: GNU extension *************** _Class_: *** 11434,11460 **** Function _Syntax_: ! 'RESULT = MCLOCK8()' _Return value_: ! The return value is a scalar of type 'INTEGER(8)', equal to the ! number of clock ticks since the start of the process, or '-1' if ! the system does not support 'clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note ! TIME8::  File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures ! 8.171 'MERGE' -- Merge variables ================================ _Description_: Select values from two arrays according to a logical mask. The ! result is equal to TSOURCE if MASK is '.TRUE.', or equal to FSOURCE ! if it is '.FALSE.'. _Standard_: Fortran 95 and later --- 11554,11581 ---- Function _Syntax_: ! `RESULT = MCLOCK8()' _Return value_: ! The return value is a scalar of type `INTEGER(8)', equal to the ! number of clock ticks since the start of the process, or `-1' if ! the system does not support `clock(3)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, ! *note TIME8:: !  File: gfortran.info, Node: MERGE, Next: MERGE_BITS, Prev: MCLOCK8, Up: Intrinsic Procedures ! 8.171 `MERGE' -- Merge variables ================================ _Description_: Select values from two arrays according to a logical mask. The ! result is equal to TSOURCE if MASK is `.TRUE.', or equal to ! FSOURCE if it is `.FALSE.'. _Standard_: Fortran 95 and later *************** _Class_: *** 11463,11490 **** Elemental function _Syntax_: ! 'RESULT = MERGE(TSOURCE, FSOURCE, MASK)' _Arguments_: ! TSOURCE May be of any type. ! FSOURCE Shall be of the same type and type parameters as ! TSOURCE. ! MASK Shall be of type 'LOGICAL'. _Return value_: The result is of the same type and type parameters as TSOURCE.  File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures ! 8.172 'MERGE_BITS' -- Merge of bits under mask ============================================== _Description_: ! 'MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined by the mask. The i-th bit of the result is equal to the i-th bit ! of I if the i-th bit of MASK is 1; it is equal to the i-th bit of J ! otherwise. _Standard_: Fortran 2008 and later --- 11584,11612 ---- Elemental function _Syntax_: ! `RESULT = MERGE(TSOURCE, FSOURCE, MASK)' _Arguments_: ! TSOURCE May be of any type. ! FSOURCE Shall be of the same type and type parameters ! as TSOURCE. ! MASK Shall be of type `LOGICAL'. _Return value_: The result is of the same type and type parameters as TSOURCE. +  File: gfortran.info, Node: MERGE_BITS, Next: MIN, Prev: MERGE, Up: Intrinsic Procedures ! 8.172 `MERGE_BITS' -- Merge of bits under mask ============================================== _Description_: ! `MERGE_BITS(I, J, MASK)' merges the bits of I and J as determined by the mask. The i-th bit of the result is equal to the i-th bit ! of I if the i-th bit of MASK is 1; it is equal to the i-th bit of ! J otherwise. _Standard_: Fortran 2008 and later *************** _Class_: *** 11493,11514 **** Elemental function _Syntax_: ! 'RESULT = MERGE_BITS(I, J, MASK)' _Arguments_: ! I Shall be of type 'INTEGER'. ! J Shall be of type 'INTEGER' and of the same kind ! as I. ! MASK Shall be of type 'INTEGER' and of the same kind ! as I. _Return value_: The result is of the same type and kind as I.  File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures ! 8.173 'MIN' -- Minimum value of an argument list ================================================ _Description_: --- 11615,11637 ---- Elemental function _Syntax_: ! `RESULT = MERGE_BITS(I, J, MASK)' _Arguments_: ! I Shall be of type `INTEGER'. ! J Shall be of type `INTEGER' and of the same ! kind as I. ! MASK Shall be of type `INTEGER' and of the same ! kind as I. _Return value_: The result is of the same type and kind as I. +  File: gfortran.info, Node: MIN, Next: MINEXPONENT, Prev: MERGE_BITS, Up: Intrinsic Procedures ! 8.173 `MIN' -- Minimum value of an argument list ================================================ _Description_: *************** _Class_: *** 11521,11550 **** Elemental function _Syntax_: ! 'RESULT = MIN(A1, A2 [, A3, ...])' _Arguments_: ! A1 The type shall be 'INTEGER' or 'REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! 'MIN0(A1)' 'INTEGER(4) 'INTEGER(4)' Fortran 77 and ! A1' later ! 'AMIN0(A1)' 'INTEGER(4) 'REAL(4)' Fortran 77 and ! A1' later ! 'MIN1(A1)' 'REAL A1' 'INTEGER(4)' Fortran 77 and ! later ! 'AMIN1(A1)' 'REAL(4) A1' 'REAL(4)' Fortran 77 and ! later ! 'DMIN1(A1)' 'REAL(8) A1' 'REAL(8)' Fortran 77 and ! later _See also_: *note MAX::, *note MINLOC::, *note MINVAL:: --- 11644,11673 ---- Elemental function _Syntax_: ! `RESULT = MIN(A1, A2 [, A3, ...])' _Arguments_: ! A1 The type shall be `INTEGER' or `REAL'. ! A2, A3, An expression of the same type and kind as A1. ! ... (As a GNU extension, arguments of different ! kinds are permitted.) _Return value_: The return value corresponds to the maximum value among the arguments, and has the same type and kind as the first argument. _Specific names_: ! Name Argument Return type Standard ! `MIN0(A1)' `INTEGER(4) `INTEGER(4)' Fortran 77 and ! A1' later ! `AMIN0(A1)' `INTEGER(4) `REAL(4)' Fortran 77 and ! A1' later ! `MIN1(A1)' `REAL A1' `INTEGER(4)' Fortran 77 and ! later ! `AMIN1(A1)' `REAL(4) A1' `REAL(4)' Fortran 77 and ! later ! `DMIN1(A1)' `REAL(8) A1' `REAL(8)' Fortran 77 and ! later _See also_: *note MAX::, *note MINLOC::, *note MINVAL:: *************** _See also_: *** 11552,11563 ****  File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures ! 8.174 'MINEXPONENT' -- Minimum exponent of a real kind ====================================================== _Description_: ! 'MINEXPONENT(X)' returns the minimum exponent in the model of the ! type of 'X'. _Standard_: Fortran 95 and later --- 11675,11686 ----  File: gfortran.info, Node: MINEXPONENT, Next: MINLOC, Prev: MIN, Up: Intrinsic Procedures ! 8.174 `MINEXPONENT' -- Minimum exponent of a real kind ====================================================== _Description_: ! `MINEXPONENT(X)' returns the minimum exponent in the model of the ! type of `X'. _Standard_: Fortran 95 and later *************** _Class_: *** 11566,11587 **** Inquiry function _Syntax_: ! 'RESULT = MINEXPONENT(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _Example_: ! See 'MAXEXPONENT' for an example.  File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures ! 8.175 'MINLOC' -- Location of the minimum value within an array =============================================================== _Description_: --- 11689,11710 ---- Inquiry function _Syntax_: ! `RESULT = MINEXPONENT(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _Example_: ! See `MAXEXPONENT' for an example.  File: gfortran.info, Node: MINLOC, Next: MINVAL, Prev: MINEXPONENT, Up: Intrinsic Procedures ! 8.175 `MINLOC' -- Location of the minimum value within an array =============================================================== _Description_: *************** _Description_: *** 11589,11601 **** minimum value, or, if the DIM argument is supplied, determines the locations of the minimum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is '.TRUE.' are considered. If more than one element in the array has the minimum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are '.FALSE.', then the result ! is an array of zeroes. Similarly, if DIM is supplied and all of ! the elements of MASK along a given row are zero, the result value ! for that row is zero. _Standard_: Fortran 95 and later --- 11712,11724 ---- minimum value, or, if the DIM argument is supplied, determines the locations of the minimum element along each row of the array in the DIM direction. If MASK is present, only the elements for which ! MASK is `.TRUE.' are considered. If more than one element in the array has the minimum value, the location returned is that of the first such element in array element order. If the array has zero ! size, or all of the elements of MASK are `.FALSE.', then the ! result is an array of zeroes. Similarly, if DIM is supplied and ! all of the elements of MASK along a given row are zero, the result ! value for that row is zero. _Standard_: Fortran 95 and later *************** _Class_: *** 11604,11620 **** Transformational function _Syntax_: ! 'RESULT = MINLOC(ARRAY, DIM [, MASK])' ! 'RESULT = MINLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length --- 11727,11743 ---- Transformational function _Syntax_: ! `RESULT = MINLOC(ARRAY, DIM [, MASK])' ! `RESULT = MINLOC(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, the result is a rank-one array with a length *************** _Return value_: *** 11622,11646 **** array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default 'INTEGER' type. _See also_: *note MIN::, *note MINVAL::  File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures ! 8.176 'MINVAL' -- Minimum value of an array =========================================== _Description_: ! Determines the minimum value of the elements in an array value, or, ! if the DIM argument is supplied, determines the minimum value along ! each row of the array in the DIM direction. If MASK is present, ! only the elements for which MASK is '.TRUE.' are considered. If ! the array has zero size, or all of the elements of MASK are ! '.FALSE.', then the result is 'HUGE(ARRAY)' if ARRAY is numeric, or ! a string of 'CHAR(255)' characters if ARRAY is of character type. _Standard_: Fortran 95 and later --- 11745,11771 ---- array with a rank one less than the rank of ARRAY, and a size corresponding to the size of ARRAY with the DIM dimension removed. If DIM is present and ARRAY has a rank of one, the result is a ! scalar. In all cases, the result is of default `INTEGER' type. _See also_: *note MIN::, *note MINVAL:: +  File: gfortran.info, Node: MINVAL, Next: MOD, Prev: MINLOC, Up: Intrinsic Procedures ! 8.176 `MINVAL' -- Minimum value of an array =========================================== _Description_: ! Determines the minimum value of the elements in an array value, ! or, if the DIM argument is supplied, determines the minimum value ! along each row of the array in the DIM direction. If MASK is ! present, only the elements for which MASK is `.TRUE.' are ! considered. If the array has zero size, or all of the elements of ! MASK are `.FALSE.', then the result is `HUGE(ARRAY)' if ARRAY is ! numeric, or a string of `CHAR(255)' characters if ARRAY is of ! character type. _Standard_: Fortran 95 and later *************** _Class_: *** 11649,11665 **** Transformational function _Syntax_: ! 'RESULT = MINVAL(ARRAY, DIM [, MASK])' ! 'RESULT = MINVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER' or 'REAL'. ! DIM (Optional) Shall be a scalar of type 'INTEGER', ! with a value between one and the rank of ARRAY, ! inclusive. It may not be an optional dummy ! argument. ! MASK Shall be an array of type 'LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a --- 11774,11790 ---- Transformational function _Syntax_: ! `RESULT = MINVAL(ARRAY, DIM [, MASK])' ! `RESULT = MINVAL(ARRAY [, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER' or `REAL'. ! DIM (Optional) Shall be a scalar of type ! `INTEGER', with a value between one and the ! rank of ARRAY, inclusive. It may not be an ! optional dummy argument. ! MASK Shall be an array of type `LOGICAL', and ! conformable with ARRAY. _Return value_: If DIM is absent, or if ARRAY has a rank of one, the result is a *************** _Return value_: *** 11671,11684 **** _See also_: *note MIN::, *note MINLOC::  File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures ! 8.177 'MOD' -- Remainder function ================================= _Description_: ! 'MOD(A,P)' computes the remainder of the division of A by P. _Standard_: Fortran 77 and later --- 11796,11810 ---- _See also_: *note MIN::, *note MINLOC:: +  File: gfortran.info, Node: MOD, Next: MODULO, Prev: MINVAL, Up: Intrinsic Procedures ! 8.177 `MOD' -- Remainder function ================================= _Description_: ! `MOD(A,P)' computes the remainder of the division of A by P. _Standard_: Fortran 77 and later *************** _Class_: *** 11687,11704 **** Elemental function _Syntax_: ! 'RESULT = MOD(A, P)' _Arguments_: ! A Shall be a scalar of type 'INTEGER' or 'REAL'. ! P Shall be a scalar of the same type and kind as A ! and not equal to zero. _Return value_: ! The return value is the result of 'A - (INT(A/P) * P)'. The type and kind of the return value is the same as that of the arguments. ! The returned value has the same sign as A and a magnitude less than ! the magnitude of P. _Example_: program test_mod --- 11813,11830 ---- Elemental function _Syntax_: ! `RESULT = MOD(A, P)' _Arguments_: ! A Shall be a scalar of type `INTEGER' or `REAL'. ! P Shall be a scalar of the same type and kind as ! A and not equal to zero. _Return value_: ! The return value is the result of `A - (INT(A/P) * P)'. The type and kind of the return value is the same as that of the arguments. ! The returned value has the same sign as A and a magnitude less ! than the magnitude of P. _Example_: program test_mod *************** _Example_: *** 11719,11743 **** end program test_mod _Specific names_: ! Name Arguments Return type Standard ! 'MOD(A,P)' 'INTEGER 'INTEGER' Fortran 95 and ! A,P' later ! 'AMOD(A,P)' 'REAL(4) 'REAL(4)' Fortran 95 and ! A,P' later ! 'DMOD(A,P)' 'REAL(8) 'REAL(8)' Fortran 95 and ! A,P' later _See also_: *note MODULO::  File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures ! 8.178 'MODULO' -- Modulo function ================================= _Description_: ! 'MODULO(A,P)' computes the A modulo P. _Standard_: Fortran 95 and later --- 11845,11870 ---- end program test_mod _Specific names_: ! Name Arguments Return type Standard ! `MOD(A,P)' `INTEGER `INTEGER' Fortran 95 and ! A,P' later ! `AMOD(A,P)' `REAL(4) `REAL(4)' Fortran 95 and ! A,P' later ! `DMOD(A,P)' `REAL(8) `REAL(8)' Fortran 95 and ! A,P' later _See also_: *note MODULO:: +  File: gfortran.info, Node: MODULO, Next: MOVE_ALLOC, Prev: MOD, Up: Intrinsic Procedures ! 8.178 `MODULO' -- Modulo function ================================= _Description_: ! `MODULO(A,P)' computes the A modulo P. _Standard_: Fortran 95 and later *************** _Class_: *** 11746,11765 **** Elemental function _Syntax_: ! 'RESULT = MODULO(A, P)' _Arguments_: ! A Shall be a scalar of type 'INTEGER' or 'REAL'. ! P Shall be a scalar of the same type and kind as ! A. It shall not be zero. _Return value_: The type and kind of the result are those of the arguments. ! If A and P are of type 'INTEGER': ! 'MODULO(A,P)' has the value R such that 'A=Q*P+R', where Q is an integer and R is between 0 (inclusive) and P (exclusive). ! If A and P are of type 'REAL': ! 'MODULO(A,P)' has the value of 'A - FLOOR (A / P) * P'. The returned value has the same sign as P and a magnitude less than the magnitude of P. --- 11873,11893 ---- Elemental function _Syntax_: ! `RESULT = MODULO(A, P)' _Arguments_: ! A Shall be a scalar of type `INTEGER' or `REAL'. ! P Shall be a scalar of the same type and kind as ! A. It shall not be zero. _Return value_: The type and kind of the result are those of the arguments. ! If A and P are of type `INTEGER': ! `MODULO(A,P)' has the value R such that `A=Q*P+R', where Q is an integer and R is between 0 (inclusive) and P (exclusive). ! ! If A and P are of type `REAL': ! `MODULO(A,P)' has the value of `A - FLOOR (A / P) * P'. The returned value has the same sign as P and a magnitude less than the magnitude of P. *************** _Example_: *** 11778,11791 **** _See also_: *note MOD::  File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures ! 8.179 'MOVE_ALLOC' -- Move allocation from one object to another ================================================================ _Description_: ! 'MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM will become deallocated in the process. _Standard_: --- 11906,11920 ---- _See also_: *note MOD:: +  File: gfortran.info, Node: MOVE_ALLOC, Next: MVBITS, Prev: MODULO, Up: Intrinsic Procedures ! 8.179 `MOVE_ALLOC' -- Move allocation from one object to another ================================================================ _Description_: ! `MOVE_ALLOC(FROM, TO)' moves the allocation from FROM to TO. FROM will become deallocated in the process. _Standard_: *************** _Class_: *** 11795,11807 **** Pure subroutine _Syntax_: ! 'CALL MOVE_ALLOC(FROM, TO)' _Arguments_: ! FROM 'ALLOCATABLE', 'INTENT(INOUT)', may be of any ! type and kind. ! TO 'ALLOCATABLE', 'INTENT(OUT)', shall be of the ! same type, kind and rank as FROM. _Return value_: None --- 11924,11936 ---- Pure subroutine _Syntax_: ! `CALL MOVE_ALLOC(FROM, TO)' _Arguments_: ! FROM `ALLOCATABLE', `INTENT(INOUT)', may be of any ! type and kind. ! TO `ALLOCATABLE', `INTENT(OUT)', shall be of the ! same type, kind and rank as FROM. _Return value_: None *************** _Example_: *** 11820,11834 ****  File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures ! 8.180 'MVBITS' -- Move bits from one integer to another ======================================================= _Description_: ! Moves LEN bits from positions FROMPOS through 'FROMPOS+LEN-1' of ! FROM to positions TOPOS through 'TOPOS+LEN-1' of TO. The portion of argument TO not affected by the movement of bits is unchanged. ! The values of 'FROMPOS+LEN-1' and 'TOPOS+LEN-1' must be less than ! 'BIT_SIZE(FROM)'. _Standard_: Fortran 95 and later --- 11949,11963 ----  File: gfortran.info, Node: MVBITS, Next: NEAREST, Prev: MOVE_ALLOC, Up: Intrinsic Procedures ! 8.180 `MVBITS' -- Move bits from one integer to another ======================================================= _Description_: ! Moves LEN bits from positions FROMPOS through `FROMPOS+LEN-1' of ! FROM to positions TOPOS through `TOPOS+LEN-1' of TO. The portion of argument TO not affected by the movement of bits is unchanged. ! The values of `FROMPOS+LEN-1' and `TOPOS+LEN-1' must be less than ! `BIT_SIZE(FROM)'. _Standard_: Fortran 95 and later *************** _Class_: *** 11837,11851 **** Elemental subroutine _Syntax_: ! 'CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)' _Arguments_: ! FROM The type shall be 'INTEGER'. ! FROMPOS The type shall be 'INTEGER'. ! LEN The type shall be 'INTEGER'. ! TO The type shall be 'INTEGER', of the same kind as ! FROM. ! TOPOS The type shall be 'INTEGER'. _See also_: *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note --- 11966,11980 ---- Elemental subroutine _Syntax_: ! `CALL MVBITS(FROM, FROMPOS, LEN, TO, TOPOS)' _Arguments_: ! FROM The type shall be `INTEGER'. ! FROMPOS The type shall be `INTEGER'. ! LEN The type shall be `INTEGER'. ! TO The type shall be `INTEGER', of the same kind ! as FROM. ! TOPOS The type shall be `INTEGER'. _See also_: *note IBCLR::, *note IBSET::, *note IBITS::, *note IAND::, *note *************** _See also_: *** 11854,11865 ****  File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures ! 8.181 'NEAREST' -- Nearest representable number =============================================== _Description_: ! 'NEAREST(X, S)' returns the processor-representable number nearest ! to 'X' in the direction indicated by the sign of 'S'. _Standard_: Fortran 95 and later --- 11983,11994 ----  File: gfortran.info, Node: NEAREST, Next: NEW_LINE, Prev: MVBITS, Up: Intrinsic Procedures ! 8.181 `NEAREST' -- Nearest representable number =============================================== _Description_: ! `NEAREST(X, S)' returns the processor-representable number nearest ! to `X' in the direction indicated by the sign of `S'. _Standard_: Fortran 95 and later *************** _Class_: *** 11868,11884 **** Elemental function _Syntax_: ! 'RESULT = NEAREST(X, S)' _Arguments_: ! X Shall be of type 'REAL'. ! S Shall be of type 'REAL' and not equal to zero. _Return value_: ! The return value is of the same type as 'X'. If 'S' is positive, ! 'NEAREST' returns the processor-representable number greater than ! 'X' and nearest to it. If 'S' is negative, 'NEAREST' returns the ! processor-representable number smaller than 'X' and nearest to it. _Example_: program test_nearest --- 11997,12013 ---- Elemental function _Syntax_: ! `RESULT = NEAREST(X, S)' _Arguments_: ! X Shall be of type `REAL'. ! S Shall be of type `REAL' and not equal to zero. _Return value_: ! The return value is of the same type as `X'. If `S' is positive, ! `NEAREST' returns the processor-representable number greater than ! `X' and nearest to it. If `S' is negative, `NEAREST' returns the ! processor-representable number smaller than `X' and nearest to it. _Example_: program test_nearest *************** _Example_: *** 11891,11901 ****  File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures ! 8.182 'NEW_LINE' -- New line character ====================================== _Description_: ! 'NEW_LINE(C)' returns the new-line character. _Standard_: Fortran 2003 and later --- 12020,12030 ----  File: gfortran.info, Node: NEW_LINE, Next: NINT, Prev: NEAREST, Up: Intrinsic Procedures ! 8.182 `NEW_LINE' -- New line character ====================================== _Description_: ! `NEW_LINE(C)' returns the new-line character. _Standard_: Fortran 2003 and later *************** _Class_: *** 11904,11914 **** Inquiry function _Syntax_: ! 'RESULT = NEW_LINE(C)' _Arguments_: ! C The argument shall be a scalar or array of the ! type 'CHARACTER'. _Return value_: Returns a CHARACTER scalar of length one with the new-line --- 12033,12043 ---- Inquiry function _Syntax_: ! `RESULT = NEW_LINE(C)' _Arguments_: ! C The argument shall be a scalar or array of the ! type `CHARACTER'. _Return value_: Returns a CHARACTER scalar of length one with the new-line *************** _Example_: *** 11923,11933 ****  File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures ! 8.183 'NINT' -- Nearest whole number ==================================== _Description_: ! 'NINT(A)' rounds its argument to the nearest whole number. _Standard_: Fortran 77 and later, with KIND argument Fortran 90 and later --- 12052,12062 ----  File: gfortran.info, Node: NINT, Next: NORM2, Prev: NEW_LINE, Up: Intrinsic Procedures ! 8.183 `NINT' -- Nearest whole number ==================================== _Description_: ! `NINT(A)' rounds its argument to the nearest whole number. _Standard_: Fortran 77 and later, with KIND argument Fortran 90 and later *************** _Class_: *** 11936,11953 **** Elemental function _Syntax_: ! 'RESULT = NINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be 'REAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: Returns A with the fractional portion of its magnitude eliminated by rounding to the nearest whole number and with its sign ! preserved, converted to an 'INTEGER' of the default kind. _Example_: program test_nint --- 12065,12082 ---- Elemental function _Syntax_: ! `RESULT = NINT(A [, KIND])' _Arguments_: ! A The type of the argument shall be `REAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: Returns A with the fractional portion of its magnitude eliminated by rounding to the nearest whole number and with its sign ! preserved, converted to an `INTEGER' of the default kind. _Example_: program test_nint *************** _Example_: *** 11959,11977 **** end program test_nint _Specific names_: ! Name Argument Return Type Standard ! 'NINT(A)' 'REAL(4) A' 'INTEGER' Fortran 95 and ! later ! 'IDNINT(A)' 'REAL(8) A' 'INTEGER' Fortran 95 and ! later _See also_: *note CEILING::, *note FLOOR::  File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures ! 8.184 'NORM2' -- Euclidean vector norms ======================================= _Description_: --- 12088,12107 ---- end program test_nint _Specific names_: ! Name Argument Return Type Standard ! `NINT(A)' `REAL(4) A' `INTEGER' Fortran 95 and ! later ! `IDNINT(A)' `REAL(8) A' `INTEGER' Fortran 95 and ! later _See also_: *note CEILING::, *note FLOOR:: +  File: gfortran.info, Node: NORM2, Next: NOT, Prev: NINT, Up: Intrinsic Procedures ! 8.184 `NORM2' -- Euclidean vector norms ======================================= _Description_: *************** _Class_: *** 11985,12005 **** Transformational function _Syntax_: ! 'RESULT = NORM2(ARRAY[, DIM])' _Arguments_: ! ARRAY Shall be an array of type 'REAL' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the square root of the sum of all ! elements in ARRAY squared is returned. Otherwise, an array of rank ! n-1, where n equals the rank of ARRAY, and a shape similar to that ! of ARRAY with dimension DIM dropped is returned. _Example_: PROGRAM test_sum --- 12115,12135 ---- Transformational function _Syntax_: ! `RESULT = NORM2(ARRAY[, DIM])' _Arguments_: ! ARRAY Shall be an array of type `REAL' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the square root of the sum of all ! elements in ARRAY squared is returned. Otherwise, an array of ! rank n-1, where n equals the rank of ARRAY, and a shape similar to ! that of ARRAY with dimension DIM dropped is returned. _Example_: PROGRAM test_sum *************** _Example_: *** 12010,12020 ****  File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures ! 8.185 'NOT' -- Logical negation =============================== _Description_: ! 'NOT' returns the bitwise Boolean inverse of I. _Standard_: Fortran 95 and later --- 12140,12150 ----  File: gfortran.info, Node: NOT, Next: NULL, Prev: NORM2, Up: Intrinsic Procedures ! 8.185 `NOT' -- Logical negation =============================== _Description_: ! `NOT' returns the bitwise Boolean inverse of I. _Standard_: Fortran 95 and later *************** _Class_: *** 12023,12044 **** Elemental function _Syntax_: ! 'RESULT = NOT(I)' _Arguments_: ! I The type shall be 'INTEGER'. _Return value_: ! The return type is 'INTEGER', of the same kind as the argument. _See also_: *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note IBSET::, *note IBCLR::  File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures ! 8.186 'NULL' -- Function that returns an disassociated pointer ============================================================== _Description_: --- 12153,12175 ---- Elemental function _Syntax_: ! `RESULT = NOT(I)' _Arguments_: ! I The type shall be `INTEGER'. _Return value_: ! The return type is `INTEGER', of the same kind as the argument. _See also_: *note IAND::, *note IEOR::, *note IOR::, *note IBITS::, *note IBSET::, *note IBCLR:: +  File: gfortran.info, Node: NULL, Next: NUM_IMAGES, Prev: NOT, Up: Intrinsic Procedures ! 8.186 `NULL' -- Function that returns an disassociated pointer ============================================================== _Description_: *************** _Description_: *** 12047,12053 **** If MOLD is present, a disassociated pointer of the same type is returned, otherwise the type is determined by context. ! In Fortran 95, MOLD is optional. Please note that Fortran 2003 includes cases where it is required. _Standard_: --- 12178,12184 ---- If MOLD is present, a disassociated pointer of the same type is returned, otherwise the type is determined by context. ! In Fortran 95, MOLD is optional. Please note that Fortran 2003 includes cases where it is required. _Standard_: *************** _Class_: *** 12057,12067 **** Transformational function _Syntax_: ! 'PTR => NULL([MOLD])' _Arguments_: ! MOLD (Optional) shall be a pointer of any association ! status and of any type. _Return value_: A disassociated pointer. --- 12188,12198 ---- Transformational function _Syntax_: ! `PTR => NULL([MOLD])' _Arguments_: ! MOLD (Optional) shall be a pointer of any ! association status and of any type. _Return value_: A disassociated pointer. *************** _See also_: *** 12075,12081 ****  File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures ! 8.187 'NUM_IMAGES' -- Function that returns the number of images ================================================================ _Description_: --- 12206,12212 ----  File: gfortran.info, Node: NUM_IMAGES, Next: OR, Prev: NULL, Up: Intrinsic Procedures ! 8.187 `NUM_IMAGES' -- Function that returns the number of images ================================================================ _Description_: *************** _Class_: *** 12088,12094 **** Transformational function _Syntax_: ! 'RESULT = NUM_IMAGES()' _Arguments_: None. --- 12219,12225 ---- Transformational function _Syntax_: ! `RESULT = NUM_IMAGES()' _Arguments_: None. *************** _See also_: *** 12112,12122 ****  File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures ! 8.188 'OR' -- Bitwise logical OR ================================ _Description_: ! Bitwise logical 'OR'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider --- 12243,12253 ----  File: gfortran.info, Node: OR, Next: PACK, Prev: NUM_IMAGES, Up: Intrinsic Procedures ! 8.188 `OR' -- Bitwise logical OR ================================ _Description_: ! Bitwise logical `OR'. This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider *************** _Class_: *** 12130,12147 **** Function _Syntax_: ! 'RESULT = OR(I, J)' _Arguments_: ! I The type shall be either a scalar 'INTEGER' type ! or a scalar 'LOGICAL' type. ! J The type shall be the same as the type of J. _Return value_: ! The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'. ! If the kind type parameters differ, then the smaller kind type is ! implicitly converted to larger kind, and the return has the larger ! kind. _Example_: PROGRAM test_or --- 12261,12278 ---- Function _Syntax_: ! `RESULT = OR(I, J)' _Arguments_: ! I The type shall be either a scalar `INTEGER' ! type or a scalar `LOGICAL' type. ! J The type shall be the same as the type of J. _Return value_: ! The return type is either a scalar `INTEGER' or a scalar ! `LOGICAL'. If the kind type parameters differ, then the smaller ! kind type is implicitly converted to larger kind, and the return ! has the larger kind. _Example_: PROGRAM test_or *************** _See also_: *** 12159,12172 ****  File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures ! 8.189 'PACK' -- Pack an array into an array of rank one ======================================================= _Description_: Stores the elements of ARRAY in an array of rank one. The beginning of the resulting array is made up of elements whose ! MASK equals 'TRUE'. Afterwards, positions are filled with elements taken from VECTOR. _Standard_: --- 12290,12303 ----  File: gfortran.info, Node: PACK, Next: PARITY, Prev: OR, Up: Intrinsic Procedures ! 8.189 `PACK' -- Pack an array into an array of rank one ======================================================= _Description_: Stores the elements of ARRAY in an array of rank one. The beginning of the resulting array is made up of elements whose ! MASK equals `TRUE'. Afterwards, positions are filled with elements taken from VECTOR. _Standard_: *************** _Class_: *** 12176,12200 **** Transformational function _Syntax_: ! 'RESULT = PACK(ARRAY, MASK[,VECTOR])' _Arguments_: ! ARRAY Shall be an array of any type. ! MASK Shall be an array of type 'LOGICAL' and of the ! same size as ARRAY. Alternatively, it may be a ! 'LOGICAL' scalar. ! VECTOR (Optional) shall be an array of the same type as ! ARRAY and of rank one. If present, the number ! of elements in VECTOR shall be equal to or ! greater than the number of true elements in ! MASK. If MASK is scalar, the number of elements ! in VECTOR shall be equal to or greater than the ! number of elements in ARRAY. _Return value_: The result is an array of rank one and the same type as that of ARRAY. If VECTOR is present, the result size is that of VECTOR, ! the number of 'TRUE' values in MASK otherwise. _Example_: Gathering nonzero elements from an array: --- 12307,12331 ---- Transformational function _Syntax_: ! `RESULT = PACK(ARRAY, MASK[,VECTOR])' _Arguments_: ! ARRAY Shall be an array of any type. ! MASK Shall be an array of type `LOGICAL' and of the ! same size as ARRAY. Alternatively, it may be a ! `LOGICAL' scalar. ! VECTOR (Optional) shall be an array of the same type ! as ARRAY and of rank one. If present, the ! number of elements in VECTOR shall be equal to ! or greater than the number of true elements in ! MASK. If MASK is scalar, the number of ! elements in VECTOR shall be equal to or ! greater than the number of elements in ARRAY. _Return value_: The result is an array of rank one and the same type as that of ARRAY. If VECTOR is present, the result size is that of VECTOR, ! the number of `TRUE' values in MASK otherwise. _Example_: Gathering nonzero elements from an array: *************** _See also_: *** 12218,12228 ****  File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures ! 8.190 'PARITY' -- Reduction with exclusive OR ============================================= _Description_: ! Calculates the parity, i.e. the reduction using '.XOR.', of MASK along dimension DIM. _Standard_: --- 12349,12359 ----  File: gfortran.info, Node: PARITY, Next: PERROR, Prev: PACK, Up: Intrinsic Procedures ! 8.190 `PARITY' -- Reduction with exclusive OR ============================================= _Description_: ! Calculates the parity, i.e. the reduction using `.XOR.', of MASK along dimension DIM. _Standard_: *************** _Class_: *** 12232,12250 **** Transformational function _Syntax_: ! 'RESULT = PARITY(MASK[, DIM])' _Arguments_: ! LOGICAL Shall be an array of type 'LOGICAL' ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of MASK. _Return value_: The result is of the same type as MASK. If DIM is absent, a scalar with the parity of all elements in MASK ! is returned, i.e. true if an odd number of elements is '.true.' and false otherwise. If DIM is present, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of MASK with dimension DIM dropped is returned. --- 12363,12381 ---- Transformational function _Syntax_: ! `RESULT = PARITY(MASK[, DIM])' _Arguments_: ! LOGICAL Shall be an array of type `LOGICAL' ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of MASK. _Return value_: The result is of the same type as MASK. If DIM is absent, a scalar with the parity of all elements in MASK ! is returned, i.e. true if an odd number of elements is `.true.' and false otherwise. If DIM is present, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of MASK with dimension DIM dropped is returned. *************** _Example_: *** 12258,12270 ****  File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures ! 8.191 'PERROR' -- Print system error message ============================================ _Description_: ! Prints (on the C 'stderr' stream) a newline-terminated error ! message corresponding to the last system error. This is prefixed ! by STRING, a colon and a space. See 'perror(3)'. _Standard_: GNU extension --- 12389,12401 ----  File: gfortran.info, Node: PERROR, Next: POPCNT, Prev: PARITY, Up: Intrinsic Procedures ! 8.191 `PERROR' -- Print system error message ============================================ _Description_: ! Prints (on the C `stderr' stream) a newline-terminated error ! message corresponding to the last system error. This is prefixed by ! STRING, a colon and a space. See `perror(3)'. _Standard_: GNU extension *************** _Class_: *** 12273,12283 **** Subroutine _Syntax_: ! 'CALL PERROR(STRING)' _Arguments_: ! STRING A scalar of type 'CHARACTER' and of the default ! kind. _See also_: *note IERRNO:: --- 12404,12414 ---- Subroutine _Syntax_: ! `CALL PERROR(STRING)' _Arguments_: ! STRING A scalar of type `CHARACTER' and of the ! default kind. _See also_: *note IERRNO:: *************** _See also_: *** 12285,12296 ****  File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures ! 8.192 'POPCNT' -- Number of bits set ==================================== _Description_: ! 'POPCNT(I)' returns the number of bits set ('1' bits) in the binary ! representation of 'I'. _Standard_: Fortran 2008 and later --- 12416,12427 ----  File: gfortran.info, Node: POPCNT, Next: POPPAR, Prev: PERROR, Up: Intrinsic Procedures ! 8.192 `POPCNT' -- Number of bits set ==================================== _Description_: ! `POPCNT(I)' returns the number of bits set ('1' bits) in the binary ! representation of `I'. _Standard_: Fortran 2008 and later *************** _Class_: *** 12299,12311 **** Elemental function _Syntax_: ! 'RESULT = POPCNT(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: --- 12430,12442 ---- Elemental function _Syntax_: ! `RESULT = POPCNT(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12321,12333 ****  File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures ! 8.193 'POPPAR' -- Parity of the number of bits set ================================================== _Description_: ! 'POPPAR(I)' returns parity of the integer 'I', i.e. the parity of the number of bits set ('1' bits) in the binary representation of ! 'I'. It is equal to 0 if 'I' has an even number of bits set, and 1 for an odd number of '1' bits. _Standard_: --- 12452,12464 ----  File: gfortran.info, Node: POPPAR, Next: PRECISION, Prev: POPCNT, Up: Intrinsic Procedures ! 8.193 `POPPAR' -- Parity of the number of bits set ================================================== _Description_: ! `POPPAR(I)' returns parity of the integer `I', i.e. the parity of the number of bits set ('1' bits) in the binary representation of ! `I'. It is equal to 0 if `I' has an even number of bits set, and 1 for an odd number of '1' bits. _Standard_: *************** _Class_: *** 12337,12349 **** Elemental function _Syntax_: ! 'RESULT = POPPAR(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: --- 12468,12480 ---- Elemental function _Syntax_: ! `RESULT = POPPAR(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12359,12370 ****  File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures ! 8.194 'PRECISION' -- Decimal precision of a real kind ===================================================== _Description_: ! 'PRECISION(X)' returns the decimal precision in the model of the ! type of 'X'. _Standard_: Fortran 95 and later --- 12490,12501 ----  File: gfortran.info, Node: PRECISION, Next: PRESENT, Prev: POPPAR, Up: Intrinsic Procedures ! 8.194 `PRECISION' -- Decimal precision of a real kind ===================================================== _Description_: ! `PRECISION(X)' returns the decimal precision in the model of the ! type of `X'. _Standard_: Fortran 95 and later *************** _Class_: *** 12373,12385 **** Inquiry function _Syntax_: ! 'RESULT = PRECISION(X)' _Arguments_: ! X Shall be of type 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: --- 12504,12516 ---- Inquiry function _Syntax_: ! `RESULT = PRECISION(X)' _Arguments_: ! X Shall be of type `REAL' or `COMPLEX'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12397,12403 ****  File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures ! 8.195 'PRESENT' -- Determine whether an optional dummy argument is specified ============================================================================ _Description_: --- 12528,12534 ----  File: gfortran.info, Node: PRESENT, Next: PRODUCT, Prev: PRECISION, Up: Intrinsic Procedures ! 8.195 `PRESENT' -- Determine whether an optional dummy argument is specified ============================================================================ _Description_: *************** _Class_: *** 12410,12427 **** Inquiry function _Syntax_: ! 'RESULT = PRESENT(A)' _Arguments_: ! A May be of any type and may be a pointer, scalar ! or array value, or a dummy procedure. It shall ! be the name of an optional dummy argument ! accessible within the current subroutine or ! function. _Return value_: ! Returns either 'TRUE' if the optional argument A is present, or ! 'FALSE' otherwise. _Example_: PROGRAM test_present --- 12541,12558 ---- Inquiry function _Syntax_: ! `RESULT = PRESENT(A)' _Arguments_: ! A May be of any type and may be a pointer, ! scalar or array value, or a dummy procedure. ! It shall be the name of an optional dummy ! argument accessible within the current ! subroutine or function. _Return value_: ! Returns either `TRUE' if the optional argument A is present, or ! `FALSE' otherwise. _Example_: PROGRAM test_present *************** _Example_: *** 12436,12447 ****  File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures ! 8.196 'PRODUCT' -- Product of array elements ============================================ _Description_: Multiplies the elements of ARRAY along dimension DIM if the ! corresponding element in MASK is 'TRUE'. _Standard_: Fortran 95 and later --- 12567,12578 ----  File: gfortran.info, Node: PRODUCT, Next: RADIX, Prev: PRESENT, Up: Intrinsic Procedures ! 8.196 `PRODUCT' -- Product of array elements ============================================ _Description_: Multiplies the elements of ARRAY along dimension DIM if the ! corresponding element in MASK is `TRUE'. _Standard_: Fortran 95 and later *************** _Class_: *** 12450,12473 **** Transformational function _Syntax_: ! 'RESULT = PRODUCT(ARRAY[, MASK])' ! 'RESULT = PRODUCT(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER', 'REAL' or ! 'COMPLEX'. ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the product of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. --- 12581,12604 ---- Transformational function _Syntax_: ! `RESULT = PRODUCT(ARRAY[, MASK])' ! `RESULT = PRODUCT(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER', `REAL' or ! `COMPLEX'. ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. If DIM is absent, a scalar with the product of all elements in ! ARRAY is returned. Otherwise, an array of rank n-1, where n equals the rank of ARRAY, and a shape similar to that of ARRAY with dimension DIM dropped is returned. *************** _See also_: *** 12484,12494 ****  File: gfortran.info, Node: RADIX, Next: RAN, Prev: PRODUCT, Up: Intrinsic Procedures ! 8.197 'RADIX' -- Base of a model number ======================================= _Description_: ! 'RADIX(X)' returns the base of the model representing the entity X. _Standard_: Fortran 95 and later --- 12615,12625 ----  File: gfortran.info, Node: RADIX, Next: RAN, Prev: PRODUCT, Up: Intrinsic Procedures ! 8.197 `RADIX' -- Base of a model number ======================================= _Description_: ! `RADIX(X)' returns the base of the model representing the entity X. _Standard_: Fortran 95 and later *************** _Class_: *** 12497,12509 **** Inquiry function _Syntax_: ! 'RESULT = RADIX(X)' _Arguments_: ! X Shall be of type 'INTEGER' or 'REAL' _Return value_: ! The return value is a scalar of type 'INTEGER' and of the default integer kind. _See also_: --- 12628,12640 ---- Inquiry function _Syntax_: ! `RESULT = RADIX(X)' _Arguments_: ! X Shall be of type `INTEGER' or `REAL' _Return value_: ! The return value is a scalar of type `INTEGER' and of the default integer kind. _See also_: *************** _Example_: *** 12515,12529 **** print *, "The radix for the default real kind is", radix(0.0) end program test_radix  File: gfortran.info, Node: RAN, Next: RAND, Prev: RADIX, Up: Intrinsic Procedures ! 8.198 'RAN' -- Real pseudo-random number ======================================== _Description_: ! For compatibility with HP FORTRAN 77/iX, the 'RAN' intrinsic is ! provided as an alias for 'RAND'. See *note RAND:: for complete documentation. _Standard_: --- 12646,12661 ---- print *, "The radix for the default real kind is", radix(0.0) end program test_radix +  File: gfortran.info, Node: RAN, Next: RAND, Prev: RADIX, Up: Intrinsic Procedures ! 8.198 `RAN' -- Real pseudo-random number ======================================== _Description_: ! For compatibility with HP FORTRAN 77/iX, the `RAN' intrinsic is ! provided as an alias for `RAND'. See *note RAND:: for complete documentation. _Standard_: *************** _See also_: *** 12538,12557 ****  File: gfortran.info, Node: RAND, Next: RANDOM_NUMBER, Prev: RAN, Up: Intrinsic Procedures ! 8.199 'RAND' -- Real pseudo-random number ========================================= _Description_: ! 'RAND(FLAG)' returns a pseudo-random number from a uniform ! distribution between 0 and 1. If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by 'CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with 'SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as ! provided by 'g77'. For new code, one should consider the use of ! *note RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension --- 12670,12689 ----  File: gfortran.info, Node: RAND, Next: RANDOM_NUMBER, Prev: RAN, Up: Intrinsic Procedures ! 8.199 `RAND' -- Real pseudo-random number ========================================= _Description_: ! `RAND(FLAG)' returns a pseudo-random number from a uniform ! distribution between 0 and 1. If FLAG is 0, the next number in the current sequence is returned; if FLAG is 1, the generator is ! restarted by `CALL SRAND(0)'; if FLAG has any other value, it is ! used as a new seed with `SRAND'. This intrinsic routine is provided for backwards compatibility with ! GNU Fortran 77. It implements a simple modulo generator as provided ! by `g77'. For new code, one should consider the use of *note ! RANDOM_NUMBER:: as it implements a superior algorithm. _Standard_: GNU extension *************** _Class_: *** 12560,12572 **** Function _Syntax_: ! 'RESULT = RAND(I)' _Arguments_: ! I Shall be a scalar 'INTEGER' of kind 4. _Return value_: ! The return value is of 'REAL' type and the default kind. _Example_: program test_rand --- 12692,12704 ---- Function _Syntax_: ! `RESULT = RAND(I)' _Arguments_: ! I Shall be a scalar `INTEGER' of kind 4. _Return value_: ! The return value is of `REAL' type and the default kind. _Example_: program test_rand *************** _Example_: *** 12580,12612 **** _See also_: *note SRAND::, *note RANDOM_NUMBER::  File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RAND, Up: Intrinsic Procedures ! 8.200 'RANDOM_NUMBER' -- Pseudo-random number ============================================= _Description_: Returns a single pseudorandom number or an array of pseudorandom ! numbers from the uniform distribution over the range 0 \leq x < 1. The runtime-library implements George Marsaglia's KISS (Keep It Simple Stupid) random number generator (RNG). This RNG combines: 1. The congruential generator x(n) = 69069 \cdot x(n-1) + ! 1327217885 with a period of 2^{32}, ! 2. A 3-shift shift-register generator with a period of 2^{32} - ! 1, 3. Two 16-bit multiply-with-carry generators with a period of ! 597273182964842497 > 2^{59}. ! The overall period exceeds 2^{123}. Please note, this RNG is thread safe if used within OpenMP directives, i.e., its state will be consistent while called from multiple threads. However, the KISS generator does not create random numbers in parallel from multiple sources, but in sequence ! from a single source. If an OpenMP-enabled application heavily ! relies on random numbers, one should consider employing a dedicated ! parallel random number generator instead. _Standard_: Fortran 95 and later --- 12712,12746 ---- _See also_: *note SRAND::, *note RANDOM_NUMBER:: +  File: gfortran.info, Node: RANDOM_NUMBER, Next: RANDOM_SEED, Prev: RAND, Up: Intrinsic Procedures ! 8.200 `RANDOM_NUMBER' -- Pseudo-random number ============================================= _Description_: Returns a single pseudorandom number or an array of pseudorandom ! numbers from the uniform distribution over the range 0 \leq x < 1. The runtime-library implements George Marsaglia's KISS (Keep It Simple Stupid) random number generator (RNG). This RNG combines: 1. The congruential generator x(n) = 69069 \cdot x(n-1) + ! 1327217885 with a period of 2^32, ! ! 2. A 3-shift shift-register generator with a period of 2^32 - 1, ! 3. Two 16-bit multiply-with-carry generators with a period of ! 597273182964842497 > 2^59. ! The overall period exceeds 2^123. Please note, this RNG is thread safe if used within OpenMP directives, i.e., its state will be consistent while called from multiple threads. However, the KISS generator does not create random numbers in parallel from multiple sources, but in sequence ! from a single source. If an OpenMP-enabled application heavily ! relies on random numbers, one should consider employing a ! dedicated parallel random number generator instead. _Standard_: Fortran 95 and later *************** _Class_: *** 12615,12624 **** Subroutine _Syntax_: ! 'RANDOM_NUMBER(HARVEST)' _Arguments_: ! HARVEST Shall be a scalar or an array of type 'REAL'. _Example_: program test_random_number --- 12749,12758 ---- Subroutine _Syntax_: ! `RANDOM_NUMBER(HARVEST)' _Arguments_: ! HARVEST Shall be a scalar or an array of type `REAL'. _Example_: program test_random_number *************** _See also_: *** 12633,12651 ****  File: gfortran.info, Node: RANDOM_SEED, Next: RANGE, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures ! 8.201 'RANDOM_SEED' -- Initialize a pseudo-random number sequence ================================================================= _Description_: Restarts or queries the state of the pseudorandom number generator ! used by 'RANDOM_NUMBER'. ! If 'RANDOM_SEED' is called without arguments, it is initialized to ! a default state. The example below shows how to initialize the random seed with a varying seed in order to ensure a different ! random number sequence for each invocation of the program. Note ! that setting any of the seed values to zero should be avoided as it ! can result in poor quality random numbers being generated. _Standard_: Fortran 95 and later --- 12767,12785 ----  File: gfortran.info, Node: RANDOM_SEED, Next: RANGE, Prev: RANDOM_NUMBER, Up: Intrinsic Procedures ! 8.201 `RANDOM_SEED' -- Initialize a pseudo-random number sequence ================================================================= _Description_: Restarts or queries the state of the pseudorandom number generator ! used by `RANDOM_NUMBER'. ! If `RANDOM_SEED' is called without arguments, it is initialized to ! a default state. The example below shows how to initialize the random seed with a varying seed in order to ensure a different ! random number sequence for each invocation of the program. Note ! that setting any of the seed values to zero should be avoided as ! it can result in poor quality random numbers being generated. _Standard_: Fortran 95 and later *************** _Class_: *** 12654,12676 **** Subroutine _Syntax_: ! 'CALL RANDOM_SEED([SIZE, PUT, GET])' _Arguments_: ! SIZE (Optional) Shall be a scalar and of type default ! 'INTEGER', with 'INTENT(OUT)'. It specifies the ! minimum size of the arrays used with the PUT and ! GET arguments. ! PUT (Optional) Shall be an array of type default ! 'INTEGER' and rank one. It is 'INTENT(IN)' and ! the size of the array must be larger than or ! equal to the number returned by the SIZE ! argument. ! GET (Optional) Shall be an array of type default ! 'INTEGER' and rank one. It is 'INTENT(OUT)' and ! the size of the array must be larger than or ! equal to the number returned by the SIZE ! argument. _Example_: subroutine init_random_seed() --- 12788,12810 ---- Subroutine _Syntax_: ! `CALL RANDOM_SEED([SIZE, PUT, GET])' _Arguments_: ! SIZE (Optional) Shall be a scalar and of type ! default `INTEGER', with `INTENT(OUT)'. It ! specifies the minimum size of the arrays used ! with the PUT and GET arguments. ! PUT (Optional) Shall be an array of type default ! `INTEGER' and rank one. It is `INTENT(IN)' and ! the size of the array must be larger than or ! equal to the number returned by the SIZE ! argument. ! GET (Optional) Shall be an array of type default ! `INTEGER' and rank one. It is `INTENT(OUT)' ! and the size of the array must be larger than ! or equal to the number returned by the SIZE ! argument. _Example_: subroutine init_random_seed() *************** _See also_: *** 12731,12742 ****  File: gfortran.info, Node: RANGE, Next: RANK, Prev: RANDOM_SEED, Up: Intrinsic Procedures ! 8.202 'RANGE' -- Decimal exponent range ======================================= _Description_: ! 'RANGE(X)' returns the decimal exponent range in the model of the ! type of 'X'. _Standard_: Fortran 95 and later --- 12865,12876 ----  File: gfortran.info, Node: RANGE, Next: RANK, Prev: RANDOM_SEED, Up: Intrinsic Procedures ! 8.202 `RANGE' -- Decimal exponent range ======================================= _Description_: ! `RANGE(X)' returns the decimal exponent range in the model of the ! type of `X'. _Standard_: Fortran 95 and later *************** _Class_: *** 12745,12773 **** Inquiry function _Syntax_: ! 'RESULT = RANGE(X)' _Arguments_: ! X Shall be of type 'INTEGER', 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'INTEGER' and of the default integer kind. _See also_: *note SELECTED_REAL_KIND::, *note PRECISION:: _Example_: ! See 'PRECISION' for an example.  File: gfortran.info, Node: RANK, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures ! 8.203 'RANK' -- Rank of a data object ===================================== _Description_: ! 'RANK(A)' returns the rank of a scalar or array data object. _Standard_: Technical Specification (TS) 29113 --- 12879,12908 ---- Inquiry function _Syntax_: ! `RESULT = RANGE(X)' _Arguments_: ! X Shall be of type `INTEGER', `REAL' or ! `COMPLEX'. _Return value_: ! The return value is of type `INTEGER' and of the default integer kind. _See also_: *note SELECTED_REAL_KIND::, *note PRECISION:: _Example_: ! See `PRECISION' for an example.  File: gfortran.info, Node: RANK, Next: REAL, Prev: RANGE, Up: Intrinsic Procedures ! 8.203 `RANK' -- Rank of a data object ===================================== _Description_: ! `RANK(A)' returns the rank of a scalar or array data object. _Standard_: Technical Specification (TS) 29113 *************** _Class_: *** 12776,12789 **** Inquiry function _Syntax_: ! 'RESULT = RANK(A)' _Arguments_: ! A can be of any type _Return value_: ! The return value is of type 'INTEGER' and of the default integer ! kind. For arrays, their rank is returned; for scalars zero is returned. _Example_: --- 12911,12924 ---- Inquiry function _Syntax_: ! `RESULT = RANK(A)' _Arguments_: ! A can be of any type _Return value_: ! The return value is of type `INTEGER' and of the default integer ! kind. For arrays, their rank is returned; for scalars zero is returned. _Example_: *************** _Example_: *** 12794,12808 **** print *, rank(a), rank(b) ! Prints: 0 2 end program test_rank  File: gfortran.info, Node: REAL, Next: RENAME, Prev: RANK, Up: Intrinsic Procedures ! 8.204 'REAL' -- Convert to real type ==================================== _Description_: ! 'REAL(A [, KIND])' converts its argument A to a real type. The ! 'REALPART' function is provided for compatibility with 'g77', and its use is strongly discouraged. _Standard_: --- 12929,12944 ---- print *, rank(a), rank(b) ! Prints: 0 2 end program test_rank +  File: gfortran.info, Node: REAL, Next: RENAME, Prev: RANK, Up: Intrinsic Procedures ! 8.204 `REAL' -- Convert to real type ==================================== _Description_: ! `REAL(A [, KIND])' converts its argument A to a real type. The ! `REALPART' function is provided for compatibility with `g77', and its use is strongly discouraged. _Standard_: *************** _Class_: *** 12812,12838 **** Elemental function _Syntax_: ! 'RESULT = REAL(A [, KIND])' ! 'RESULT = REALPART(Z)' _Arguments_: ! A Shall be 'INTEGER', 'REAL', or 'COMPLEX'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! These functions return a 'REAL' variable or array under the following rules: ! (A) ! 'REAL(A)' is converted to a default real type if A is an integer or real variable. ! (B) ! 'REAL(A)' is converted to a real type with the kind type parameter of A if A is a complex variable. ! (C) ! 'REAL(A, KIND)' is converted to a real type with kind type parameter KIND if A is a complex, integer, or real variable. _Example_: --- 12948,12976 ---- Elemental function _Syntax_: ! `RESULT = REAL(A [, KIND])' ! `RESULT = REALPART(Z)' _Arguments_: ! A Shall be `INTEGER', `REAL', or `COMPLEX'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! These functions return a `REAL' variable or array under the following rules: ! (A) ! `REAL(A)' is converted to a default real type if A is an integer or real variable. ! ! (B) ! `REAL(A)' is converted to a real type with the kind type parameter of A if A is a complex variable. ! ! (C) ! `REAL(A, KIND)' is converted to a real type with kind type parameter KIND if A is a complex, integer, or real variable. _Example_: *************** _Example_: *** 12842,12869 **** end program test_real _Specific names_: ! Name Argument Return type Standard ! 'FLOAT(A)' 'INTEGER(4)' 'REAL(4)' Fortran 77 and ! later ! 'DFLOAT(A)' 'INTEGER(4)' 'REAL(8)' GNU extension ! 'SNGL(A)' 'INTEGER(8)' 'REAL(4)' Fortran 77 and ! later _See also_: *note DBLE::  File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures ! 8.205 'RENAME' -- Rename a file =============================== _Description_: ! Renames a file from file PATH1 to PATH2. A null character ! ('CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see 'rename(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 12980,13008 ---- end program test_real _Specific names_: ! Name Argument Return type Standard ! `FLOAT(A)' `INTEGER(4)' `REAL(4)' Fortran 77 and ! later ! `DFLOAT(A)' `INTEGER(4)' `REAL(8)' GNU extension ! `SNGL(A)' `INTEGER(8)' `REAL(4)' Fortran 77 and ! later _See also_: *note DBLE:: +  File: gfortran.info, Node: RENAME, Next: REPEAT, Prev: REAL, Up: Intrinsic Procedures ! 8.205 `RENAME' -- Rename a file =============================== _Description_: ! Renames a file from file PATH1 to PATH2. A null character ! (`CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see `rename(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 12875,12895 **** Subroutine, function _Syntax_: ! 'CALL RENAME(PATH1, PATH2 [, STATUS])' ! 'STATUS = RENAME(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default 'CHARACTER' type. ! PATH2 Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note LINK::  File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures ! 8.206 'REPEAT' -- Repeated string concatenation =============================================== _Description_: --- 13014,13035 ---- Subroutine, function _Syntax_: ! `CALL RENAME(PATH1, PATH2 [, STATUS])' ! `STATUS = RENAME(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default `CHARACTER' type. ! PATH2 Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note LINK:: +  File: gfortran.info, Node: REPEAT, Next: RESHAPE, Prev: RENAME, Up: Intrinsic Procedures ! 8.206 `REPEAT' -- Repeated string concatenation =============================================== _Description_: *************** _Class_: *** 12902,12915 **** Transformational function _Syntax_: ! 'RESULT = REPEAT(STRING, NCOPIES)' _Arguments_: ! STRING Shall be scalar and of type 'CHARACTER'. ! NCOPIES Shall be scalar and of type 'INTEGER'. _Return value_: ! A new scalar of type 'CHARACTER' built up from NCOPIES copies of STRING. _Example_: --- 13042,13055 ---- Transformational function _Syntax_: ! `RESULT = REPEAT(STRING, NCOPIES)' _Arguments_: ! STRING Shall be scalar and of type `CHARACTER'. ! NCOPIES Shall be scalar and of type `INTEGER'. _Return value_: ! A new scalar of type `CHARACTER' built up from NCOPIES copies of STRING. _Example_: *************** _Example_: *** 12920,12930 ****  File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures ! 8.207 'RESHAPE' -- Function to reshape an array =============================================== _Description_: ! Reshapes SOURCE to correspond to SHAPE. If necessary, the new array may be padded with elements from PAD or permuted as defined by ORDER. --- 13060,13070 ----  File: gfortran.info, Node: RESHAPE, Next: RRSPACING, Prev: REPEAT, Up: Intrinsic Procedures ! 8.207 `RESHAPE' -- Function to reshape an array =============================================== _Description_: ! Reshapes SOURCE to correspond to SHAPE. If necessary, the new array may be padded with elements from PAD or permuted as defined by ORDER. *************** _Class_: *** 12935,12953 **** Transformational function _Syntax_: ! 'RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])' _Arguments_: ! SOURCE Shall be an array of any type. ! SHAPE Shall be of type 'INTEGER' and an array of rank ! one. Its values must be positive or zero. ! PAD (Optional) shall be an array of the same type as ! SOURCE. ! ORDER (Optional) shall be of type 'INTEGER' and an ! array of the same shape as SHAPE. Its values ! shall be a permutation of the numbers from 1 to ! n, where n is the size of SHAPE. If ORDER is ! absent, the natural ordering shall be assumed. _Return value_: The result is an array of shape SHAPE with the same type as SOURCE. --- 13075,13094 ---- Transformational function _Syntax_: ! `RESULT = RESHAPE(SOURCE, SHAPE[, PAD, ORDER])' _Arguments_: ! SOURCE Shall be an array of any type. ! SHAPE Shall be of type `INTEGER' and an array of ! rank one. Its values must be positive or zero. ! PAD (Optional) shall be an array of the same type ! as SOURCE. ! ORDER (Optional) shall be of type `INTEGER' and an ! array of the same shape as SHAPE. Its values ! shall be a permutation of the numbers from 1 ! to n, where n is the size of SHAPE. If ORDER ! is absent, the natural ordering shall be ! assumed. _Return value_: The result is an array of shape SHAPE with the same type as SOURCE. *************** _See also_: *** 12965,12975 ****  File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures ! 8.208 'RRSPACING' -- Reciprocal of the relative spacing ======================================================= _Description_: ! 'RRSPACING(X)' returns the reciprocal of the relative spacing of model numbers near X. _Standard_: --- 13106,13116 ----  File: gfortran.info, Node: RRSPACING, Next: RSHIFT, Prev: RESHAPE, Up: Intrinsic Procedures ! 8.208 `RRSPACING' -- Reciprocal of the relative spacing ======================================================= _Description_: ! `RRSPACING(X)' returns the reciprocal of the relative spacing of model numbers near X. _Standard_: *************** _Class_: *** 12979,12992 **** Elemental function _Syntax_: ! 'RESULT = RRSPACING(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: The return value is of the same type and kind as X. The value ! returned is equal to 'ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)'. _See also_: --- 13120,13133 ---- Elemental function _Syntax_: ! `RESULT = RRSPACING(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: The return value is of the same type and kind as X. The value ! returned is equal to `ABS(FRACTION(X)) * FLOAT(RADIX(X))**DIGITS(X)'. _See also_: *************** _See also_: *** 12995,13012 ****  File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures ! 8.209 'RSHIFT' -- Right shift bits ================================== _Description_: ! 'RSHIFT' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. ! This function has been superseded by the 'SHIFTA' intrinsic, which is standard in Fortran 2008 and later. _Standard_: --- 13136,13153 ----  File: gfortran.info, Node: RSHIFT, Next: SAME_TYPE_AS, Prev: RRSPACING, Up: Intrinsic Procedures ! 8.209 `RSHIFT' -- Right shift bits ================================== _Description_: ! `RSHIFT' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. ! This function has been superseded by the `SHIFTA' intrinsic, which is standard in Fortran 2008 and later. _Standard_: *************** _Class_: *** 13016,13039 **** Elemental function _Syntax_: ! 'RESULT = RSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::, *note SHIFTR::, *note SHIFTL::  File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures ! 8.210 'SAME_TYPE_AS' -- Query dynamic types for equality ! ======================================================== _Description_: Query dynamic types for equality. --- 13157,13181 ---- Elemental function _Syntax_: ! `RESULT = RSHIFT(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note ISHFT::, *note ISHFTC::, *note LSHIFT::, *note SHIFTA::, *note SHIFTR::, *note SHIFTL:: +  File: gfortran.info, Node: SAME_TYPE_AS, Next: SCALE, Prev: RSHIFT, Up: Intrinsic Procedures ! 8.210 `SAME_TYPE_AS' -- Query dynamic types for equality ! ========================================================= _Description_: Query dynamic types for equality. *************** _Class_: *** 13045,13074 **** Inquiry function _Syntax_: ! 'RESULT = SAME_TYPE_AS(A, B)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! B Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is the same as the dynamic type of B. _See also_: *note EXTENDS_TYPE_OF::  File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures ! 8.211 'SCALE' -- Scale a real value =================================== _Description_: ! 'SCALE(X,I)' returns 'X * RADIX(X)**I'. _Standard_: Fortran 95 and later --- 13187,13217 ---- Inquiry function _Syntax_: ! `RESULT = SAME_TYPE_AS(A, B)' _Arguments_: ! A Shall be an object of extensible declared type ! or unlimited polymorphic. ! B Shall be an object of extensible declared type ! or unlimited polymorphic. _Return value_: ! The return value is a scalar of type default logical. It is true if and only if the dynamic type of A is the same as the dynamic type of B. _See also_: *note EXTENDS_TYPE_OF:: +  File: gfortran.info, Node: SCALE, Next: SCAN, Prev: SAME_TYPE_AS, Up: Intrinsic Procedures ! 8.211 `SCALE' -- Scale a real value =================================== _Description_: ! `SCALE(X,I)' returns `X * RADIX(X)**I'. _Standard_: Fortran 95 and later *************** _Class_: *** 13077,13091 **** Elemental function _Syntax_: ! 'RESULT = SCALE(X, I)' _Arguments_: ! X The type of the argument shall be a 'REAL'. ! I The type of the argument shall be a 'INTEGER'. _Return value_: The return value is of the same type and kind as X. Its value is ! 'X * RADIX(X)**I'. _Example_: program test_scale --- 13220,13234 ---- Elemental function _Syntax_: ! `RESULT = SCALE(X, I)' _Arguments_: ! X The type of the argument shall be a `REAL'. ! I The type of the argument shall be a `INTEGER'. _Return value_: The return value is of the same type and kind as X. Its value is ! `X * RADIX(X)**I'. _Example_: program test_scale *************** _Example_: *** 13094,13111 **** print *, scale(x,i), x*radix(x)**i end program test_scale  File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures ! 8.212 'SCAN' -- Scan a string for the presence of a set of characters ===================================================================== _Description_: Scans a STRING for any of the characters in a SET of characters. ! If BACK is either absent or equals 'FALSE', this function returns the position of the leftmost character of STRING that is in SET. ! If BACK equals 'TRUE', the rightmost position is returned. If no character of SET is found in STRING, the result is zero. _Standard_: --- 13237,13255 ---- print *, scale(x,i), x*radix(x)**i end program test_scale +  File: gfortran.info, Node: SCAN, Next: SECNDS, Prev: SCALE, Up: Intrinsic Procedures ! 8.212 `SCAN' -- Scan a string for the presence of a set of characters ===================================================================== _Description_: Scans a STRING for any of the characters in a SET of characters. ! If BACK is either absent or equals `FALSE', this function returns the position of the leftmost character of STRING that is in SET. ! If BACK equals `TRUE', the rightmost position is returned. If no character of SET is found in STRING, the result is zero. _Standard_: *************** _Class_: *** 13115,13132 **** Elemental function _Syntax_: ! 'RESULT = SCAN(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type 'CHARACTER'. ! SET Shall be of type 'CHARACTER'. ! BACK (Optional) shall be of type 'LOGICAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 13259,13276 ---- Elemental function _Syntax_: ! `RESULT = SCAN(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type `CHARACTER'. ! SET Shall be of type `CHARACTER'. ! BACK (Optional) shall be of type `LOGICAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _See also_: *** 13142,13154 ****  File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures ! 8.213 'SECNDS' -- Time function =============================== _Description_: ! 'SECNDS(X)' gets the time in seconds from the real-time system ! clock. X is a reference time, also in seconds. If this is zero, ! the time in seconds from midnight is returned. This function is non-standard and its use is discouraged. _Standard_: --- 13286,13298 ----  File: gfortran.info, Node: SECNDS, Next: SECOND, Prev: SCAN, Up: Intrinsic Procedures ! 8.213 `SECNDS' -- Time function =============================== _Description_: ! `SECNDS(X)' gets the time in seconds from the real-time system ! clock. X is a reference time, also in seconds. If this is zero, ! the time in seconds from midnight is returned. This function is non-standard and its use is discouraged. _Standard_: *************** _Class_: *** 13158,13168 **** Function _Syntax_: ! 'RESULT = SECNDS (X)' _Arguments_: ! T Shall be of type 'REAL(4)'. ! X Shall be of type 'REAL(4)'. _Return value_: None --- 13302,13312 ---- Function _Syntax_: ! `RESULT = SECNDS (X)' _Arguments_: ! T Shall be of type `REAL(4)'. ! X Shall be of type `REAL(4)'. _Return value_: None *************** _Example_: *** 13182,13194 ****  File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures ! 8.214 'SECOND' -- CPU time function =================================== _Description_: ! Returns a 'REAL(4)' value representing the elapsed CPU time in seconds. This provides the same functionality as the standard ! 'CPU_TIME' intrinsic, and is only included for backwards compatibility. This intrinsic is provided in both subroutine and function forms; --- 13326,13338 ----  File: gfortran.info, Node: SECOND, Next: SELECTED_CHAR_KIND, Prev: SECNDS, Up: Intrinsic Procedures ! 8.214 `SECOND' -- CPU time function =================================== _Description_: ! Returns a `REAL(4)' value representing the elapsed CPU time in seconds. This provides the same functionality as the standard ! `CPU_TIME' intrinsic, and is only included for backwards compatibility. This intrinsic is provided in both subroutine and function forms; *************** _Class_: *** 13201,13211 **** Subroutine, function _Syntax_: ! 'CALL SECOND(TIME)' ! 'TIME = SECOND()' _Arguments_: ! TIME Shall be of type 'REAL(4)'. _Return value_: In either syntax, TIME is set to the process's current runtime in --- 13345,13355 ---- Subroutine, function _Syntax_: ! `CALL SECOND(TIME)' ! `TIME = SECOND()' _Arguments_: ! TIME Shall be of type `REAL(4)'. _Return value_: In either syntax, TIME is set to the process's current runtime in *************** _Return value_: *** 13214,13230 **** _See also_: *note CPU_TIME::  File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures ! 8.215 'SELECTED_CHAR_KIND' -- Choose character kind =================================================== _Description_: ! ! 'SELECTED_CHAR_KIND(NAME)' returns the kind value for the character set named NAME, if a character set with such a name is supported, ! or -1 otherwise. Currently, supported character sets include "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646" (Universal Character Set, UCS-4) which is commonly known as Unicode. --- 13358,13374 ---- _See also_: *note CPU_TIME:: +  File: gfortran.info, Node: SELECTED_CHAR_KIND, Next: SELECTED_INT_KIND, Prev: SECOND, Up: Intrinsic Procedures ! 8.215 `SELECTED_CHAR_KIND' -- Choose character kind =================================================== _Description_: ! `SELECTED_CHAR_KIND(NAME)' returns the kind value for the character set named NAME, if a character set with such a name is supported, ! or -1 otherwise. Currently, supported character sets include "ASCII" and "DEFAULT", which are equivalent, and "ISO_10646" (Universal Character Set, UCS-4) which is commonly known as Unicode. *************** _Class_: *** 13236,13246 **** Transformational function _Syntax_: ! 'RESULT = SELECTED_CHAR_KIND(NAME)' _Arguments_: ! NAME Shall be a scalar and of the default character ! type. _Example_: program character_kind --- 13380,13390 ---- Transformational function _Syntax_: ! `RESULT = SELECTED_CHAR_KIND(NAME)' _Arguments_: ! NAME Shall be a scalar and of the default character ! type. _Example_: program character_kind *************** _Example_: *** 13266,13279 ****  File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures ! 8.216 'SELECTED_INT_KIND' -- Choose integer kind ================================================ _Description_: ! 'SELECTED_INT_KIND(R)' return the kind value of the smallest integer type that can represent all values ranging from -10^R ! (exclusive) to 10^R (exclusive). If there is no integer kind that ! accommodates this range, 'SELECTED_INT_KIND' returns -1. _Standard_: Fortran 95 and later --- 13410,13423 ----  File: gfortran.info, Node: SELECTED_INT_KIND, Next: SELECTED_REAL_KIND, Prev: SELECTED_CHAR_KIND, Up: Intrinsic Procedures ! 8.216 `SELECTED_INT_KIND' -- Choose integer kind ================================================ _Description_: ! `SELECTED_INT_KIND(R)' return the kind value of the smallest integer type that can represent all values ranging from -10^R ! (exclusive) to 10^R (exclusive). If there is no integer kind that ! accommodates this range, `SELECTED_INT_KIND' returns -1. _Standard_: Fortran 95 and later *************** _Class_: *** 13282,13291 **** Transformational function _Syntax_: ! 'RESULT = SELECTED_INT_KIND(R)' _Arguments_: ! R Shall be a scalar and of type 'INTEGER'. _Example_: program large_integers --- 13426,13435 ---- Transformational function _Syntax_: ! `RESULT = SELECTED_INT_KIND(R)' _Arguments_: ! R Shall be a scalar and of type `INTEGER'. _Example_: program large_integers *************** _Example_: *** 13304,13357 ****  File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures ! 8.217 'SELECTED_REAL_KIND' -- Choose real kind ============================================== _Description_: ! 'SELECTED_REAL_KIND(P,R)' returns the kind value of a real data ! type with decimal precision of at least 'P' digits, exponent range ! of at least 'R', and with a radix of 'RADIX'. _Standard_: ! Fortran 95 and later, with 'RADIX' Fortran 2008 or later _Class_: Transformational function _Syntax_: ! 'RESULT = SELECTED_REAL_KIND([P, R, RADIX])' _Arguments_: ! P (Optional) shall be a scalar and of type ! 'INTEGER'. ! R (Optional) shall be a scalar and of type ! 'INTEGER'. ! RADIX (Optional) shall be a scalar and of type ! 'INTEGER'. Before Fortran 2008, at least one of the arguments R or P shall be present; since Fortran 2008, they are assumed to be zero if absent. _Return value_: ! ! 'SELECTED_REAL_KIND' returns the value of the kind type parameter ! of a real data type with decimal precision of at least 'P' digits, ! a decimal exponent range of at least 'R', and with the requested ! 'RADIX'. If the 'RADIX' parameter is absent, real kinds with any ! radix can be returned. If more than one real data type meet the criteria, the kind of the data type with the smallest decimal ! precision is returned. If no real data type matches the criteria, the result is ! -1 if the processor does not support a real data type with a ! precision greater than or equal to 'P', but the 'R' and ! 'RADIX' requirements can be fulfilled ! -2 if the processor does not support a real type with an exponent ! range greater than or equal to 'R', but 'P' and 'RADIX' are fulfillable ! -3 if 'RADIX' but not 'P' and 'R' requirements are fulfillable ! -4 if 'RADIX' and either 'P' or 'R' requirements are fulfillable ! -5 if there is no real type with the given 'RADIX' _See also_: *note PRECISION::, *note RANGE::, *note RADIX:: --- 13448,13504 ----  File: gfortran.info, Node: SELECTED_REAL_KIND, Next: SET_EXPONENT, Prev: SELECTED_INT_KIND, Up: Intrinsic Procedures ! 8.217 `SELECTED_REAL_KIND' -- Choose real kind ============================================== _Description_: ! `SELECTED_REAL_KIND(P,R)' returns the kind value of a real data ! type with decimal precision of at least `P' digits, exponent range ! of at least `R', and with a radix of `RADIX'. _Standard_: ! Fortran 95 and later, with `RADIX' Fortran 2008 or later _Class_: Transformational function _Syntax_: ! `RESULT = SELECTED_REAL_KIND([P, R, RADIX])' _Arguments_: ! P (Optional) shall be a scalar and of type ! `INTEGER'. ! R (Optional) shall be a scalar and of type ! `INTEGER'. ! RADIX (Optional) shall be a scalar and of type ! `INTEGER'. Before Fortran 2008, at least one of the arguments R or P shall be present; since Fortran 2008, they are assumed to be zero if absent. _Return value_: ! `SELECTED_REAL_KIND' returns the value of the kind type parameter ! of a real data type with decimal precision of at least `P' digits, ! a decimal exponent range of at least `R', and with the requested ! `RADIX'. If the `RADIX' parameter is absent, real kinds with any ! radix can be returned. If more than one real data type meet the criteria, the kind of the data type with the smallest decimal ! precision is returned. If no real data type matches the criteria, the result is ! -1 if the processor does not support a real data type with a ! precision greater than or equal to `P', but the `R' and ! `RADIX' requirements can be fulfilled ! ! -2 if the processor does not support a real type with an exponent ! range greater than or equal to `R', but `P' and `RADIX' are fulfillable ! ! -3 if `RADIX' but not `P' and `R' requirements are fulfillable ! ! -4 if `RADIX' and either `P' or `R' requirements are fulfillable ! ! -5 if there is no real type with the given `RADIX' _See also_: *note PRECISION::, *note RANGE::, *note RADIX:: *************** _Example_: *** 13373,13383 ****  File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures ! 8.218 'SET_EXPONENT' -- Set the exponent of the model ===================================================== _Description_: ! 'SET_EXPONENT(X, I)' returns the real number whose fractional part is that that of X and whose exponent part is I. _Standard_: --- 13520,13530 ----  File: gfortran.info, Node: SET_EXPONENT, Next: SHAPE, Prev: SELECTED_REAL_KIND, Up: Intrinsic Procedures ! 8.218 `SET_EXPONENT' -- Set the exponent of the model ===================================================== _Description_: ! `SET_EXPONENT(X, I)' returns the real number whose fractional part is that that of X and whose exponent part is I. _Standard_: *************** _Class_: *** 13387,13402 **** Elemental function _Syntax_: ! 'RESULT = SET_EXPONENT(X, I)' _Arguments_: ! X Shall be of type 'REAL'. ! I Shall be of type 'INTEGER'. _Return value_: The return value is of the same type and kind as X. The real number whose fractional part is that that of X and whose exponent ! part if I is returned; it is 'FRACTION(X) * RADIX(X)**I'. _Example_: PROGRAM test_setexp --- 13534,13549 ---- Elemental function _Syntax_: ! `RESULT = SET_EXPONENT(X, I)' _Arguments_: ! X Shall be of type `REAL'. ! I Shall be of type `INTEGER'. _Return value_: The return value is of the same type and kind as X. The real number whose fractional part is that that of X and whose exponent ! part if I is returned; it is `FRACTION(X) * RADIX(X)**I'. _Example_: PROGRAM test_setexp *************** _Example_: *** 13405,13414 **** PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i END PROGRAM  File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures ! 8.219 'SHAPE' -- Determine the shape of an array ================================================ _Description_: --- 13552,13562 ---- PRINT *, SET_EXPONENT(x, i), FRACTION(x) * RADIX(x)**i END PROGRAM +  File: gfortran.info, Node: SHAPE, Next: SHIFTA, Prev: SET_EXPONENT, Up: Intrinsic Procedures ! 8.219 `SHAPE' -- Determine the shape of an array ================================================ _Description_: *************** _Class_: *** 13421,13443 **** Inquiry function _Syntax_: ! 'RESULT = SHAPE(SOURCE [, KIND])' _Arguments_: ! SOURCE Shall be an array or scalar of any type. If ! SOURCE is a pointer it must be associated and ! allocatable arrays must be allocated. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! An 'INTEGER' array of rank one with as many elements as SOURCE has ! dimensions. The elements of the resulting array correspond to the ! extend of SOURCE along the respective dimensions. If SOURCE is a ! scalar, the result is the rank one array of size zero. If KIND is ! absent, the return value has the default integer kind otherwise the ! specified kind. _Example_: PROGRAM test_shape --- 13569,13591 ---- Inquiry function _Syntax_: ! `RESULT = SHAPE(SOURCE [, KIND])' _Arguments_: ! SOURCE Shall be an array or scalar of any type. If ! SOURCE is a pointer it must be associated and ! allocatable arrays must be allocated. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! An `INTEGER' array of rank one with as many elements as SOURCE has ! dimensions. The elements of the resulting array correspond to the ! extend of SOURCE along the respective dimensions. If SOURCE is a ! scalar, the result is the rank one array of size zero. If KIND is ! absent, the return value has the default integer kind otherwise ! the specified kind. _Example_: PROGRAM test_shape *************** _See also_: *** 13452,13465 ****  File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures ! 8.220 'SHIFTA' -- Right shift with fill ======================================= _Description_: ! 'SHIFTA' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. --- 13600,13613 ----  File: gfortran.info, Node: SHIFTA, Next: SHIFTL, Prev: SHAPE, Up: Intrinsic Procedures ! 8.220 `SHIFTA' -- Right shift with fill ======================================= _Description_: ! `SHIFTA' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted ! out from the right end are lost. The fill is arithmetic: the bits shifted in from the left end are equal to the leftmost bit, which in two's complement representation is the sign bit. *************** _Class_: *** 13470,13483 **** Elemental function _Syntax_: ! 'RESULT = SHIFTA(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note SHIFTL::, *note SHIFTR:: --- 13618,13631 ---- Elemental function _Syntax_: ! `RESULT = SHIFTA(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note SHIFTL::, *note SHIFTR:: *************** _See also_: *** 13485,13497 ****  File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures ! 8.221 'SHIFTL' -- Left shift ============================ _Description_: ! 'SHIFTL' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost, and bits shifted in from the right end are set to 0. --- 13633,13645 ----  File: gfortran.info, Node: SHIFTL, Next: SHIFTR, Prev: SHIFTA, Up: Intrinsic Procedures ! 8.221 `SHIFTL' -- Left shift ============================ _Description_: ! `SHIFTL' returns a value corresponding to I with all of the bits shifted left by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the left end are lost, and bits shifted in from the right end are set to 0. *************** _Class_: *** 13502,13515 **** Elemental function _Syntax_: ! 'RESULT = SHIFTL(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTR:: --- 13650,13663 ---- Elemental function _Syntax_: ! `RESULT = SHIFTL(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTR:: *************** _See also_: *** 13517,13529 ****  File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures ! 8.222 'SHIFTR' -- Right shift ============================= _Description_: ! 'SHIFTR' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than 'BIT_SIZE(I)', the value is undefined. Bits shifted out from the right end are lost, and bits shifted in from the left end are set to 0. --- 13665,13677 ----  File: gfortran.info, Node: SHIFTR, Next: SIGN, Prev: SHIFTL, Up: Intrinsic Procedures ! 8.222 `SHIFTR' -- Right shift ============================= _Description_: ! `SHIFTR' returns a value corresponding to I with all of the bits shifted right by SHIFT places. If the absolute value of SHIFT is ! greater than `BIT_SIZE(I)', the value is undefined. Bits shifted out from the right end are lost, and bits shifted in from the left end are set to 0. *************** _Class_: *** 13534,13547 **** Elemental function _Syntax_: ! 'RESULT = SHIFTR(I, SHIFT)' _Arguments_: ! I The type shall be 'INTEGER'. ! SHIFT The type shall be 'INTEGER'. _Return value_: ! The return value is of type 'INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTL:: --- 13682,13695 ---- Elemental function _Syntax_: ! `RESULT = SHIFTR(I, SHIFT)' _Arguments_: ! I The type shall be `INTEGER'. ! SHIFT The type shall be `INTEGER'. _Return value_: ! The return value is of type `INTEGER' and of the same kind as I. _See also_: *note SHIFTA::, *note SHIFTL:: *************** _See also_: *** 13549,13559 ****  File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures ! 8.223 'SIGN' -- Sign copying function ===================================== _Description_: ! 'SIGN(A,B)' returns the value of A with the sign of B. _Standard_: Fortran 77 and later --- 13697,13707 ----  File: gfortran.info, Node: SIGN, Next: SIGNAL, Prev: SHIFTR, Up: Intrinsic Procedures ! 8.223 `SIGN' -- Sign copying function ===================================== _Description_: ! `SIGN(A,B)' returns the value of A with the sign of B. _Standard_: Fortran 77 and later *************** _Class_: *** 13562,13576 **** Elemental function _Syntax_: ! 'RESULT = SIGN(A, B)' _Arguments_: ! A Shall be of type 'INTEGER' or 'REAL' ! B Shall be of the same type and kind as A _Return value_: The kind of the return value is that of A and B. If B\ge 0 then ! the result is 'ABS(A)', else it is '-ABS(A)'. _Example_: program test_sign --- 13710,13724 ---- Elemental function _Syntax_: ! `RESULT = SIGN(A, B)' _Arguments_: ! A Shall be of type `INTEGER' or `REAL' ! B Shall be of the same type and kind as A _Return value_: The kind of the return value is that of A and B. If B\ge 0 then ! the result is `ABS(A)', else it is `-ABS(A)'. _Example_: program test_sign *************** _Example_: *** 13584,13612 **** end program test_sign _Specific names_: ! Name Arguments Return type Standard ! 'SIGN(A,B)' 'REAL(4) A, 'REAL(4)' f77, gnu ! B' ! 'ISIGN(A,B)' 'INTEGER(4) 'INTEGER(4)' f77, gnu ! A, B' ! 'DSIGN(A,B)' 'REAL(8) A, 'REAL(8)' f77, gnu ! B'  File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures ! 8.224 'SIGNAL' -- Signal handling subroutine (or function) ========================================================== _Description_: ! 'SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine HANDLER to be executed with a single integer argument when signal NUMBER occurs. If HANDLER is an integer, it can be used to turn ! off handling of signal NUMBER or revert to its default action. See ! 'signal(2)'. ! If 'SIGNAL' is called as a subroutine and the STATUS argument is ! supplied, it is set to the value returned by 'signal(2)'. _Standard_: GNU extension --- 13732,13760 ---- end program test_sign _Specific names_: ! Name Arguments Return type Standard ! `SIGN(A,B)' `REAL(4) A, `REAL(4)' f77, gnu ! B' ! `ISIGN(A,B)' `INTEGER(4) `INTEGER(4)' f77, gnu ! A, B' ! `DSIGN(A,B)' `REAL(8) A, `REAL(8)' f77, gnu ! B'  File: gfortran.info, Node: SIGNAL, Next: SIN, Prev: SIGN, Up: Intrinsic Procedures ! 8.224 `SIGNAL' -- Signal handling subroutine (or function) ========================================================== _Description_: ! `SIGNAL(NUMBER, HANDLER [, STATUS])' causes external subroutine HANDLER to be executed with a single integer argument when signal NUMBER occurs. If HANDLER is an integer, it can be used to turn ! off handling of signal NUMBER or revert to its default action. ! See `signal(2)'. ! If `SIGNAL' is called as a subroutine and the STATUS argument is ! supplied, it is set to the value returned by `signal(2)'. _Standard_: GNU extension *************** _Class_: *** 13615,13633 **** Subroutine, function _Syntax_: ! 'CALL SIGNAL(NUMBER, HANDLER [, STATUS])' ! 'STATUS = SIGNAL(NUMBER, HANDLER)' _Arguments_: ! NUMBER Shall be a scalar integer, with 'INTENT(IN)' ! HANDLER Signal handler ('INTEGER FUNCTION' or ! 'SUBROUTINE') or dummy/global 'INTEGER' scalar. ! 'INTEGER'. It is 'INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar integer. It ! has 'INTENT(OUT)'. _Return value_: ! The 'SIGNAL' function returns the value returned by 'signal(2)'. _Example_: program test_signal --- 13763,13781 ---- Subroutine, function _Syntax_: ! `CALL SIGNAL(NUMBER, HANDLER [, STATUS])' ! `STATUS = SIGNAL(NUMBER, HANDLER)' _Arguments_: ! NUMBER Shall be a scalar integer, with `INTENT(IN)' ! HANDLER Signal handler (`INTEGER FUNCTION' or ! `SUBROUTINE') or dummy/global `INTEGER' scalar. ! `INTEGER'. It is `INTENT(IN)'. ! STATUS (Optional) STATUS shall be a scalar integer. ! It has `INTENT(OUT)'. _Return value_: ! The `SIGNAL' function returns the value returned by `signal(2)'. _Example_: program test_signal *************** _Example_: *** 13643,13653 ****  File: gfortran.info, Node: SIN, Next: SINH, Prev: SIGNAL, Up: Intrinsic Procedures ! 8.225 'SIN' -- Sine function ============================ _Description_: ! 'SIN(X)' computes the sine of X. _Standard_: Fortran 77 and later --- 13791,13801 ----  File: gfortran.info, Node: SIN, Next: SINH, Prev: SIGNAL, Up: Intrinsic Procedures ! 8.225 `SIN' -- Sine function ============================ _Description_: ! `SIN(X)' computes the sine of X. _Standard_: Fortran 77 and later *************** _Class_: *** 13656,13665 **** Elemental function _Syntax_: ! 'RESULT = SIN(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. --- 13804,13813 ---- Elemental function _Syntax_: ! `RESULT = SIN(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 13671,13685 **** end program test_sin _Specific names_: ! Name Argument Return type Standard ! 'SIN(X)' 'REAL(4) X' 'REAL(4)' f77, gnu ! 'DSIN(X)' 'REAL(8) X' 'REAL(8)' f95, gnu ! 'CSIN(X)' 'COMPLEX(4) 'COMPLEX(4)' f95, gnu ! X' ! 'ZSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X' ! 'CDSIN(X)' 'COMPLEX(8) 'COMPLEX(8)' f95, gnu ! X' _See also_: *note ASIN:: --- 13819,13833 ---- end program test_sin _Specific names_: ! Name Argument Return type Standard ! `SIN(X)' `REAL(4) X' `REAL(4)' f77, gnu ! `DSIN(X)' `REAL(8) X' `REAL(8)' f95, gnu ! `CSIN(X)' `COMPLEX(4) `COMPLEX(4)' f95, gnu ! X' ! `ZSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X' ! `CDSIN(X)' `COMPLEX(8) `COMPLEX(8)' f95, gnu ! X' _See also_: *note ASIN:: *************** _See also_: *** 13687,13697 ****  File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIN, Up: Intrinsic Procedures ! 8.226 'SINH' -- Hyperbolic sine function ======================================== _Description_: ! 'SINH(X)' computes the hyperbolic sine of X. _Standard_: Fortran 95 and later, for a complex argument Fortran 2008 or later --- 13835,13845 ----  File: gfortran.info, Node: SINH, Next: SIZE, Prev: SIN, Up: Intrinsic Procedures ! 8.226 `SINH' -- Hyperbolic sine function ======================================== _Description_: ! `SINH(X)' computes the hyperbolic sine of X. _Standard_: Fortran 95 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 13700,13709 **** Elemental function _Syntax_: ! 'RESULT = SINH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. --- 13848,13857 ---- Elemental function _Syntax_: ! `RESULT = SINH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 13715,13725 **** end program test_sinh _Specific names_: ! Name Argument Return type Standard ! 'SINH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DSINH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later _See also_: *note ASINH:: --- 13863,13873 ---- end program test_sinh _Specific names_: ! Name Argument Return type Standard ! `SINH(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DSINH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later _See also_: *note ASINH:: *************** _See also_: *** 13727,13733 ****  File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures ! 8.227 'SIZE' -- Determine the size of an array ============================================== _Description_: --- 13875,13881 ----  File: gfortran.info, Node: SIZE, Next: SIZEOF, Prev: SINH, Up: Intrinsic Procedures ! 8.227 `SIZE' -- Determine the size of an array ============================================== _Description_: *************** _Class_: *** 13741,13761 **** Inquiry function _Syntax_: ! 'RESULT = SIZE(ARRAY[, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array of any type. If ARRAY is a ! pointer it must be associated and allocatable ! arrays must be allocated. ! DIM (Optional) shall be a scalar of type 'INTEGER' ! and its value shall be in the range from 1 to n, ! where n equals the rank of ARRAY. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 13889,13909 ---- Inquiry function _Syntax_: ! `RESULT = SIZE(ARRAY[, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array of any type. If ARRAY is a ! pointer it must be associated and allocatable ! arrays must be allocated. ! DIM (Optional) shall be a scalar of type `INTEGER' ! and its value shall be in the range from 1 to ! n, where n equals the rank of ARRAY. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _See also_: *** 13769,13780 ****  File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures ! 8.228 'SIZEOF' -- Size in bytes of an expression ================================================ _Description_: ! 'SIZEOF(X)' calculates the number of bytes of storage the ! expression 'X' occupies. _Standard_: GNU extension --- 13917,13928 ----  File: gfortran.info, Node: SIZEOF, Next: SLEEP, Prev: SIZE, Up: Intrinsic Procedures ! 8.228 `SIZEOF' -- Size in bytes of an expression ================================================ _Description_: ! `SIZEOF(X)' calculates the number of bytes of storage the ! expression `X' occupies. _Standard_: GNU extension *************** _Class_: *** 13783,13804 **** Inquiry function _Syntax_: ! 'N = SIZEOF(X)' _Arguments_: ! X The argument shall be of any type, rank or ! shape. _Return value_: The return value is of type integer and of the system-dependent ! kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the number of bytes occupied by the argument. If the argument has the ! 'POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! 'POINTER' or 'ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. If the argument is polymorphic, the size according to the declared ! type is returned. The argument may not be a procedure or procedure pointer. _Example_: --- 13931,13952 ---- Inquiry function _Syntax_: ! `N = SIZEOF(X)' _Arguments_: ! X The argument shall be of any type, rank or ! shape. _Return value_: The return value is of type integer and of the system-dependent ! kind C_SIZE_T (from the ISO_C_BINDING module). Its value is the number of bytes occupied by the argument. If the argument has the ! `POINTER' attribute, the number of bytes of the storage area pointed to is returned. If the argument is of a derived type with ! `POINTER' or `ALLOCATABLE' components, the return value does not account for the sizes of the data pointed to by these components. If the argument is polymorphic, the size according to the declared ! type is returned. The argument may not be a procedure or procedure pointer. _Example_: *************** _Example_: *** 13806,13813 **** real :: r, s(5) print *, (sizeof(s)/sizeof(r) == 5) end ! The example will print '.TRUE.' unless you are using a platform ! where default 'REAL' variables are unusually padded. _See also_: *note C_SIZEOF::, *note STORAGE_SIZE:: --- 13954,13961 ---- real :: r, s(5) print *, (sizeof(s)/sizeof(r) == 5) end ! The example will print `.TRUE.' unless you are using a platform ! where default `REAL' variables are unusually padded. _See also_: *note C_SIZEOF::, *note STORAGE_SIZE:: *************** _See also_: *** 13815,13821 ****  File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures ! 8.229 'SLEEP' -- Sleep for the specified number of seconds ========================================================== _Description_: --- 13963,13969 ----  File: gfortran.info, Node: SLEEP, Next: SPACING, Prev: SIZEOF, Up: Intrinsic Procedures ! 8.229 `SLEEP' -- Sleep for the specified number of seconds ========================================================== _Description_: *************** _Class_: *** 13829,13838 **** Subroutine _Syntax_: ! 'CALL SLEEP(SECONDS)' _Arguments_: ! SECONDS The type shall be of default 'INTEGER'. _Example_: program test_sleep --- 13977,13986 ---- Subroutine _Syntax_: ! `CALL SLEEP(SECONDS)' _Arguments_: ! SECONDS The type shall be of default `INTEGER'. _Example_: program test_sleep *************** _Example_: *** 13842,13848 ****  File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures ! 8.230 'SPACING' -- Smallest distance between two numbers of a given type ======================================================================== _Description_: --- 13990,13996 ----  File: gfortran.info, Node: SPACING, Next: SPREAD, Prev: SLEEP, Up: Intrinsic Procedures ! 8.230 `SPACING' -- Smallest distance between two numbers of a given type ======================================================================== _Description_: *************** _Class_: *** 13856,13865 **** Elemental function _Syntax_: ! 'RESULT = SPACING(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: The result is of the same type as the input argument X. --- 14004,14013 ---- Elemental function _Syntax_: ! `RESULT = SPACING(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: The result is of the same type as the input argument X. *************** _See also_: *** 13879,13890 ****  File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures ! 8.231 'SPREAD' -- Add a dimension to an array ============================================= _Description_: ! Replicates a SOURCE array NCOPIES times along a specified dimension ! DIM. _Standard_: Fortran 95 and later --- 14027,14038 ----  File: gfortran.info, Node: SPREAD, Next: SQRT, Prev: SPACING, Up: Intrinsic Procedures ! 8.231 `SPREAD' -- Add a dimension to an array ============================================= _Description_: ! Replicates a SOURCE array NCOPIES times along a specified ! dimension DIM. _Standard_: Fortran 95 and later *************** _Class_: *** 13893,13907 **** Transformational function _Syntax_: ! 'RESULT = SPREAD(SOURCE, DIM, NCOPIES)' _Arguments_: ! SOURCE Shall be a scalar or an array of any type and a ! rank less than seven. ! DIM Shall be a scalar of type 'INTEGER' with a value ! in the range from 1 to n+1, where n equals the ! rank of SOURCE. ! NCOPIES Shall be a scalar of type 'INTEGER'. _Return value_: The result is an array of the same type as SOURCE and has rank n+1 --- 14041,14055 ---- Transformational function _Syntax_: ! `RESULT = SPREAD(SOURCE, DIM, NCOPIES)' _Arguments_: ! SOURCE Shall be a scalar or an array of any type and ! a rank less than seven. ! DIM Shall be a scalar of type `INTEGER' with a ! value in the range from 1 to n+1, where n ! equals the rank of SOURCE. ! NCOPIES Shall be a scalar of type `INTEGER'. _Return value_: The result is an array of the same type as SOURCE and has rank n+1 *************** _See also_: *** 13920,13930 ****  File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures ! 8.232 'SQRT' -- Square-root function ==================================== _Description_: ! 'SQRT(X)' computes the square root of X. _Standard_: Fortran 77 and later --- 14068,14078 ----  File: gfortran.info, Node: SQRT, Next: SRAND, Prev: SPREAD, Up: Intrinsic Procedures ! 8.232 `SQRT' -- Square-root function ==================================== _Description_: ! `SQRT(X)' computes the square root of X. _Standard_: Fortran 77 and later *************** _Class_: *** 13933,13945 **** Elemental function _Syntax_: ! 'RESULT = SQRT(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value is of type 'REAL' or 'COMPLEX'. The kind type parameter is the same as X. _Example_: --- 14081,14093 ---- Elemental function _Syntax_: ! `RESULT = SQRT(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value is of type `REAL' or `COMPLEX'. The kind type parameter is the same as X. _Example_: *************** _Example_: *** 13951,13977 **** end program test_sqrt _Specific names_: ! Name Argument Return type Standard ! 'SQRT(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DSQRT(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later ! 'CSQRT(X)' 'COMPLEX(4) 'COMPLEX(4)' Fortran 95 and ! X' later ! 'ZSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X' ! 'CDSQRT(X)' 'COMPLEX(8) 'COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures ! 8.233 'SRAND' -- Reinitialize the random number generator ========================================================= _Description_: ! 'SRAND' reinitializes the pseudo-random number generator called by ! 'RAND' and 'IRAND'. The new seed used by the generator is specified by the required argument SEED. _Standard_: --- 14099,14125 ---- end program test_sqrt _Specific names_: ! Name Argument Return type Standard ! `SQRT(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DSQRT(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later ! `CSQRT(X)' `COMPLEX(4) `COMPLEX(4)' Fortran 95 and ! X' later ! `ZSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X' ! `CDSQRT(X)' `COMPLEX(8) `COMPLEX(8)' GNU extension ! X'  File: gfortran.info, Node: SRAND, Next: STAT, Prev: SQRT, Up: Intrinsic Procedures ! 8.233 `SRAND' -- Reinitialize the random number generator ========================================================= _Description_: ! `SRAND' reinitializes the pseudo-random number generator called by ! `RAND' and `IRAND'. The new seed used by the generator is specified by the required argument SEED. _Standard_: *************** _Class_: *** 13981,14034 **** Subroutine _Syntax_: ! 'CALL SRAND(SEED)' _Arguments_: ! SEED Shall be a scalar 'INTEGER(kind=4)'. _Return value_: Does not return anything. _Example_: ! See 'RAND' and 'IRAND' for examples. _Notes_: ! The Fortran 2003 standard specifies the intrinsic 'RANDOM_SEED' to ! initialize the pseudo-random numbers generator and 'RANDOM_NUMBER' ! to generate pseudo-random numbers. Please note that in GNU ! Fortran, these two sets of intrinsics ('RAND', 'IRAND' and 'SRAND' ! on the one hand, 'RANDOM_NUMBER' and 'RANDOM_SEED' on the other hand) access two independent pseudo-random number generators. _See also_: *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER::  File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures ! 8.234 'STAT' -- Get file status =============================== _Description_: ! This function returns information about a file. No permissions are required on the file itself, but execute (search) permission is required on all of the directories in path that lead to the file. ! The elements that are obtained and stored in the array 'VALUES': ! 'VALUES(1)' Device ID ! 'VALUES(2)' Inode number ! 'VALUES(3)' File mode ! 'VALUES(4)' Number of links ! 'VALUES(5)' Owner's uid ! 'VALUES(6)' Owner's gid ! 'VALUES(7)' ID of device containing directory entry for file ! (0 if not available) ! 'VALUES(8)' File size (bytes) ! 'VALUES(9)' Last access time ! 'VALUES(10)'Last modification time ! 'VALUES(11)'Last file status change time ! 'VALUES(12)'Preferred I/O block size (-1 if not available) ! 'VALUES(13)'Number of blocks allocated (-1 if not available) Not all these elements are relevant on all systems. If an element is not relevant, it is returned as 0. --- 14129,14184 ---- Subroutine _Syntax_: ! `CALL SRAND(SEED)' _Arguments_: ! SEED Shall be a scalar `INTEGER(kind=4)'. _Return value_: Does not return anything. _Example_: ! See `RAND' and `IRAND' for examples. _Notes_: ! The Fortran 2003 standard specifies the intrinsic `RANDOM_SEED' to ! initialize the pseudo-random numbers generator and `RANDOM_NUMBER' ! to generate pseudo-random numbers. Please note that in GNU ! Fortran, these two sets of intrinsics (`RAND', `IRAND' and `SRAND' ! on the one hand, `RANDOM_NUMBER' and `RANDOM_SEED' on the other hand) access two independent pseudo-random number generators. _See also_: *note RAND::, *note RANDOM_SEED::, *note RANDOM_NUMBER:: +  File: gfortran.info, Node: STAT, Next: STORAGE_SIZE, Prev: SRAND, Up: Intrinsic Procedures ! 8.234 `STAT' -- Get file status =============================== _Description_: ! This function returns information about a file. No permissions are required on the file itself, but execute (search) permission is required on all of the directories in path that lead to the file. ! The elements that are obtained and stored in the array `VALUES': ! `VALUES(1)'Device ID ! `VALUES(2)'Inode number ! `VALUES(3)'File mode ! `VALUES(4)'Number of links ! `VALUES(5)'Owner's uid ! `VALUES(6)'Owner's gid ! `VALUES(7)'ID of device containing directory entry for ! file (0 if not available) ! `VALUES(8)'File size (bytes) ! `VALUES(9)'Last access time ! `VALUES(10)'Last modification time ! `VALUES(11)'Last file status change time ! `VALUES(12)'Preferred I/O block size (-1 if not available) ! `VALUES(13)'Number of blocks allocated (-1 if not ! available) Not all these elements are relevant on all systems. If an element is not relevant, it is returned as 0. *************** _Class_: *** 14043,14058 **** Subroutine, function _Syntax_: ! 'CALL STAT(NAME, VALUES [, STATUS])' ! 'STATUS = STAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be 'CHARACTER', of the default ! kind and a valid path within the file system. ! VALUES The type shall be 'INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type 'INTEGER(4)'. ! Returns 0 on success and a system specific error ! code otherwise. _Example_: PROGRAM test_stat --- 14193,14208 ---- Subroutine, function _Syntax_: ! `CALL STAT(NAME, VALUES [, STATUS])' ! `STATUS = STAT(NAME, VALUES)' _Arguments_: ! NAME The type shall be `CHARACTER', of the default ! kind and a valid path within the file system. ! VALUES The type shall be `INTEGER(4), DIMENSION(13)'. ! STATUS (Optional) status flag of type `INTEGER(4)'. ! Returns 0 on success and a system specific ! error code otherwise. _Example_: PROGRAM test_stat *************** _See also_: *** 14084,14111 ****  File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures ! 8.235 'STORAGE_SIZE' -- Storage size in bits ============================================ _Description_: Returns the storage size of argument A in bits. _Standard_: Fortran 2008 and later _Class_: Inquiry function _Syntax_: ! 'RESULT = STORAGE_SIZE(A [, KIND])' _Arguments_: ! A Shall be a scalar or array of any type. ! KIND (Optional) shall be a scalar integer constant ! expression. _Return Value_: The result is a scalar integer with the kind type parameter specified by KIND (or default integer type if KIND is missing). ! The result value is the size expressed in bits for an element of an ! array that has the dynamic type and type parameters of A. _See also_: *note C_SIZEOF::, *note SIZEOF:: --- 14234,14264 ----  File: gfortran.info, Node: STORAGE_SIZE, Next: SUM, Prev: STAT, Up: Intrinsic Procedures ! 8.235 `STORAGE_SIZE' -- Storage size in bits ============================================ _Description_: Returns the storage size of argument A in bits. + _Standard_: Fortran 2008 and later + _Class_: Inquiry function + _Syntax_: ! `RESULT = STORAGE_SIZE(A [, KIND])' _Arguments_: ! A Shall be a scalar or array of any type. ! KIND (Optional) shall be a scalar integer constant ! expression. _Return Value_: The result is a scalar integer with the kind type parameter specified by KIND (or default integer type if KIND is missing). ! The result value is the size expressed in bits for an element of ! an array that has the dynamic type and type parameters of A. _See also_: *note C_SIZEOF::, *note SIZEOF:: *************** _See also_: *** 14113,14124 ****  File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures ! 8.236 'SUM' -- Sum of array elements ==================================== _Description_: ! Adds the elements of ARRAY along dimension DIM if the corresponding ! element in MASK is 'TRUE'. _Standard_: Fortran 95 and later --- 14266,14277 ----  File: gfortran.info, Node: SUM, Next: SYMLNK, Prev: STORAGE_SIZE, Up: Intrinsic Procedures ! 8.236 `SUM' -- Sum of array elements ==================================== _Description_: ! Adds the elements of ARRAY along dimension DIM if the ! corresponding element in MASK is `TRUE'. _Standard_: Fortran 95 and later *************** _Class_: *** 14127,14152 **** Transformational function _Syntax_: ! 'RESULT = SUM(ARRAY[, MASK])' ! 'RESULT = SUM(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type 'INTEGER', 'REAL' or ! 'COMPLEX'. ! DIM (Optional) shall be a scalar of type 'INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type 'LOGICAL' and either ! be a scalar or an array of the same shape as ! ARRAY. _Return value_: The result is of the same type as ARRAY. ! If DIM is absent, a scalar with the sum of all elements in ARRAY is ! returned. Otherwise, an array of rank n-1, where n equals the rank ! of ARRAY, and a shape similar to that of ARRAY with dimension DIM ! dropped is returned. _Example_: PROGRAM test_sum --- 14280,14305 ---- Transformational function _Syntax_: ! `RESULT = SUM(ARRAY[, MASK])' ! `RESULT = SUM(ARRAY, DIM[, MASK])' _Arguments_: ! ARRAY Shall be an array of type `INTEGER', `REAL' or ! `COMPLEX'. ! DIM (Optional) shall be a scalar of type `INTEGER' ! with a value in the range from 1 to n, where n ! equals the rank of ARRAY. ! MASK (Optional) shall be of type `LOGICAL' and ! either be a scalar or an array of the same ! shape as ARRAY. _Return value_: The result is of the same type as ARRAY. ! If DIM is absent, a scalar with the sum of all elements in ARRAY ! is returned. Otherwise, an array of rank n-1, where n equals the ! rank of ARRAY, and a shape similar to that of ARRAY with dimension ! DIM dropped is returned. _Example_: PROGRAM test_sum *************** _See also_: *** 14161,14176 ****  File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures ! 8.237 'SYMLNK' -- Create a symbolic link ======================================== _Description_: ! Makes a symbolic link from file PATH1 to PATH2. A null character ! ('CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see 'symlink(2)'. If the system ! does not supply 'symlink(2)', 'ENOSYS' is returned. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 14314,14329 ----  File: gfortran.info, Node: SYMLNK, Next: SYSTEM, Prev: SUM, Up: Intrinsic Procedures ! 8.237 `SYMLNK' -- Create a symbolic link ======================================== _Description_: ! Makes a symbolic link from file PATH1 to PATH2. A null character ! (`CHAR(0)') can be used to mark the end of the names in PATH1 and PATH2; otherwise, trailing blanks in the file names are ignored. If the STATUS argument is supplied, it contains 0 on success or a ! nonzero error code upon return; see `symlink(2)'. If the system ! does not supply `symlink(2)', `ENOSYS' is returned. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 14182,14216 **** Subroutine, function _Syntax_: ! 'CALL SYMLNK(PATH1, PATH2 [, STATUS])' ! 'STATUS = SYMLNK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default 'CHARACTER' type. ! PATH2 Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note LINK::, *note UNLINK::  File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures ! 8.238 'SYSTEM' -- Execute a shell command ========================================= _Description_: ! Passes the command COMMAND to a shell (see 'system(3)'). If argument STATUS is present, it contains the value returned by ! 'system(3)', which is presumably 0 if the shell command succeeded. Note that which shell is used to invoke the command is system-dependent and environment-dependent. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the 'system' function need not be thread-safe. It is the ! responsibility of the user to ensure that 'system' is not called concurrently. _Standard_: --- 14335,14370 ---- Subroutine, function _Syntax_: ! `CALL SYMLNK(PATH1, PATH2 [, STATUS])' ! `STATUS = SYMLNK(PATH1, PATH2)' _Arguments_: ! PATH1 Shall be of default `CHARACTER' type. ! PATH2 Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note LINK::, *note UNLINK:: +  File: gfortran.info, Node: SYSTEM, Next: SYSTEM_CLOCK, Prev: SYMLNK, Up: Intrinsic Procedures ! 8.238 `SYSTEM' -- Execute a shell command ========================================= _Description_: ! Passes the command COMMAND to a shell (see `system(3)'). If argument STATUS is present, it contains the value returned by ! `system(3)', which is presumably 0 if the shell command succeeded. Note that which shell is used to invoke the command is system-dependent and environment-dependent. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. ! Note that the `system' function need not be thread-safe. It is the ! responsibility of the user to ensure that `system' is not called concurrently. _Standard_: *************** _Class_: *** 14220,14231 **** Subroutine, function _Syntax_: ! 'CALL SYSTEM(COMMAND [, STATUS])' ! 'STATUS = SYSTEM(COMMAND)' _Arguments_: ! COMMAND Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008 --- 14374,14385 ---- Subroutine, function _Syntax_: ! `CALL SYSTEM(COMMAND [, STATUS])' ! `STATUS = SYSTEM(COMMAND)' _Arguments_: ! COMMAND Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note EXECUTE_COMMAND_LINE::, which is part of the Fortran 2008 *************** _See also_: *** 14234,14273 ****  File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures ! 8.239 'SYSTEM_CLOCK' -- Time function ===================================== _Description_: ! Determines the COUNT of a processor clock since an unspecified time ! in the past modulo COUNT_MAX, COUNT_RATE determines the number of ! clock ticks per second. If the platform supports a monotonic ! clock, that clock is used and can, depending on the platform clock ! implementation, provide up to nanosecond resolution. If a ! monotonic clock is not available, the implementation falls back to ! a realtime clock. COUNT_RATE is system dependent and can vary depending on the kind ! of the arguments. For KIND=4 arguments, COUNT represents milliseconds, while for KIND=8 arguments, COUNT typically represents micro- or nanoseconds depending on resolution of the ! underlying platform clock. COUNT_MAX usually equals ! 'HUGE(COUNT_MAX)'. Note that the millisecond resolution of the KIND=4 version implies that the COUNT will wrap around in roughly ! 25 days. In order to avoid issues with the wrap around and for more precise timing, please use the KIND=8 version. If there is no clock, or querying the clock fails, COUNT is set to ! '-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero. When running on a platform using the GNU C library (glibc) version 2.16 or older, or a derivative thereof, the high resolution ! monotonic clock is available only when linking with the RT library. ! This can be done explicitly by adding the '-lrt' flag when linking ! the application, but is also done implicitly when using OpenMP. ! On the Windows platform, the version with KIND=4 arguments uses the ! 'GetTickCount' function, whereas the KIND=8 version uses ! 'QueryPerformanceCounter' and 'QueryPerformanceCounterFrequency'. For more information, and potential caveats, please see the platform documentation. --- 14388,14428 ----  File: gfortran.info, Node: SYSTEM_CLOCK, Next: TAN, Prev: SYSTEM, Up: Intrinsic Procedures ! 8.239 `SYSTEM_CLOCK' -- Time function ===================================== _Description_: ! Determines the COUNT of a processor clock since an unspecified ! time in the past modulo COUNT_MAX, COUNT_RATE determines the ! number of clock ticks per second. If the platform supports a ! monotonic clock, that clock is used and can, depending on the ! platform clock implementation, provide up to nanosecond ! resolution. If a monotonic clock is not available, the ! implementation falls back to a realtime clock. COUNT_RATE is system dependent and can vary depending on the kind ! of the arguments. For KIND=4 arguments, COUNT represents milliseconds, while for KIND=8 arguments, COUNT typically represents micro- or nanoseconds depending on resolution of the ! underlying platform clock. COUNT_MAX usually equals ! `HUGE(COUNT_MAX)'. Note that the millisecond resolution of the KIND=4 version implies that the COUNT will wrap around in roughly ! 25 days. In order to avoid issues with the wrap around and for more precise timing, please use the KIND=8 version. If there is no clock, or querying the clock fails, COUNT is set to ! `-HUGE(COUNT)', and COUNT_RATE and COUNT_MAX are set to zero. When running on a platform using the GNU C library (glibc) version 2.16 or older, or a derivative thereof, the high resolution ! monotonic clock is available only when linking with the RT ! library. This can be done explicitly by adding the `-lrt' flag ! when linking the application, but is also done implicitly when ! using OpenMP. ! On the Windows platform, the version with KIND=4 arguments uses ! the `GetTickCount' function, whereas the KIND=8 version uses ! `QueryPerformanceCounter' and `QueryPerformanceCounterFrequency'. For more information, and potential caveats, please see the platform documentation. *************** _Class_: *** 14278,14292 **** Subroutine _Syntax_: ! 'CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])' _Arguments_: ! COUNT (Optional) shall be a scalar of type 'INTEGER' ! with 'INTENT(OUT)'. ! COUNT_RATE (Optional) shall be a scalar of type 'INTEGER' ! with 'INTENT(OUT)'. ! COUNT_MAX (Optional) shall be a scalar of type 'INTEGER' ! with 'INTENT(OUT)'. _Example_: PROGRAM test_system_clock --- 14433,14447 ---- Subroutine _Syntax_: ! `CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])' _Arguments_: ! COUNT (Optional) shall be a scalar of type `INTEGER' ! with `INTENT(OUT)'. ! COUNT_RATE (Optional) shall be a scalar of type `INTEGER' ! with `INTENT(OUT)'. ! COUNT_MAX (Optional) shall be a scalar of type `INTEGER' ! with `INTENT(OUT)'. _Example_: PROGRAM test_system_clock *************** _See also_: *** 14301,14311 ****  File: gfortran.info, Node: TAN, Next: TANH, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures ! 8.240 'TAN' -- Tangent function =============================== _Description_: ! 'TAN(X)' computes the tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 14456,14466 ----  File: gfortran.info, Node: TAN, Next: TANH, Prev: SYSTEM_CLOCK, Up: Intrinsic Procedures ! 8.240 `TAN' -- Tangent function =============================== _Description_: ! `TAN(X)' computes the tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 14314,14323 **** Elemental function _Syntax_: ! 'RESULT = TAN(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: The return value has same type and kind as X. --- 14469,14478 ---- Elemental function _Syntax_: ! `RESULT = TAN(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: The return value has same type and kind as X. *************** _Example_: *** 14329,14339 **** end program test_tan _Specific names_: ! Name Argument Return type Standard ! 'TAN(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DTAN(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later _See also_: *note ATAN:: --- 14484,14494 ---- end program test_tan _Specific names_: ! Name Argument Return type Standard ! `TAN(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DTAN(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later _See also_: *note ATAN:: *************** _See also_: *** 14341,14351 ****  File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAN, Up: Intrinsic Procedures ! 8.241 'TANH' -- Hyperbolic tangent function =========================================== _Description_: ! 'TANH(X)' computes the hyperbolic tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later --- 14496,14506 ----  File: gfortran.info, Node: TANH, Next: THIS_IMAGE, Prev: TAN, Up: Intrinsic Procedures ! 8.241 `TANH' -- Hyperbolic tangent function =========================================== _Description_: ! `TANH(X)' computes the hyperbolic tangent of X. _Standard_: Fortran 77 and later, for a complex argument Fortran 2008 or later *************** _Class_: *** 14354,14368 **** Elemental function _Syntax_: ! 'X = TANH(X)' _Arguments_: ! X The type shall be 'REAL' or 'COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is 'REAL', the ! return value lies in the range - 1 \leq tanh(x) \leq 1 . _Example_: program test_tanh --- 14509,14523 ---- Elemental function _Syntax_: ! `X = TANH(X)' _Arguments_: ! X The type shall be `REAL' or `COMPLEX'. _Return value_: ! The return value has same type and kind as X. If X is complex, the ! imaginary part of the result is in radians. If X is `REAL', the ! return value lies in the range - 1 \leq tanh(x) \leq 1 . _Example_: program test_tanh *************** _Example_: *** 14371,14381 **** end program test_tanh _Specific names_: ! Name Argument Return type Standard ! 'TANH(X)' 'REAL(4) X' 'REAL(4)' Fortran 95 and ! later ! 'DTANH(X)' 'REAL(8) X' 'REAL(8)' Fortran 95 and ! later _See also_: *note ATANH:: --- 14526,14536 ---- end program test_tanh _Specific names_: ! Name Argument Return type Standard ! `TANH(X)' `REAL(4) X' `REAL(4)' Fortran 95 and ! later ! `DTANH(X)' `REAL(8) X' `REAL(8)' Fortran 95 and ! later _See also_: *note ATANH:: *************** _See also_: *** 14383,14389 ****  File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures ! 8.242 'THIS_IMAGE' -- Function that returns the cosubscript index of this image =============================================================================== _Description_: --- 14538,14544 ----  File: gfortran.info, Node: THIS_IMAGE, Next: TIME, Prev: TANH, Up: Intrinsic Procedures ! 8.242 `THIS_IMAGE' -- Function that returns the cosubscript index of this image =============================================================================== _Description_: *************** _Class_: *** 14396,14418 **** Transformational function _Syntax_: ! 'RESULT = THIS_IMAGE()' ! 'RESULT = THIS_IMAGE(COARRAY [, DIM])' _Arguments_: ! COARRAY Coarray of any type (optional; if DIM present, ! required). ! DIM default integer scalar (optional). If present, ! DIM shall be between one and the corank of ! COARRAY. _Return value_: ! Default integer. If COARRAY is not present, it is scalar and its ! value is the index of the invoking image. Otherwise, if DIM is not present, a rank-1 array with corank elements is returned, containing the cosubscripts for COARRAY specifying the invoking ! image. If DIM is present, a scalar is returned, with the value of ! the DIM element of 'THIS_IMAGE(COARRAY)'. _Example_: INTEGER :: value[*] --- 14551,14573 ---- Transformational function _Syntax_: ! `RESULT = THIS_IMAGE()' ! `RESULT = THIS_IMAGE(COARRAY [, DIM])' _Arguments_: ! COARRAY Coarray of any type (optional; if DIM ! present, required). ! DIM default integer scalar (optional). If present, ! DIM shall be between one and the corank of ! COARRAY. _Return value_: ! Default integer. If COARRAY is not present, it is scalar and its ! value is the index of the invoking image. Otherwise, if DIM is not present, a rank-1 array with corank elements is returned, containing the cosubscripts for COARRAY specifying the invoking ! image. If DIM is present, a scalar is returned, with the value of ! the DIM element of `THIS_IMAGE(COARRAY)'. _Example_: INTEGER :: value[*] *************** _See also_: *** 14431,14446 ****  File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures ! 8.243 'TIME' -- Time function ============================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function 'time(3)' in the C standard library). This value is ! suitable for passing to 'CTIME', 'GMTIME', and 'LTIME'. This intrinsic is not fully portable, such as to systems with ! 32-bit 'INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. --- 14586,14601 ----  File: gfortran.info, Node: TIME, Next: TIME8, Prev: THIS_IMAGE, Up: Intrinsic Procedures ! 8.243 `TIME' -- Time function ============================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function `time(3)' in the C standard library). This value is ! suitable for passing to `CTIME', `GMTIME', and `LTIME'. This intrinsic is not fully portable, such as to systems with ! 32-bit `INTEGER' types but supporting times wider than 32 bits. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program. *************** _Class_: *** 14456,14486 **** Function _Syntax_: ! 'RESULT = TIME()' _Return value_: ! The return value is a scalar of type 'INTEGER(4)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, *note ! TIME8::  File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures ! 8.244 'TIME8' -- Time function (64-bit) ======================================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function 'time(3)' in the C standard library). This value is ! suitable for passing to 'CTIME', 'GMTIME', and 'LTIME'. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by 'time(3)'. On a system with a 32-bit ! 'time(3)', 'TIME8' will return a 32-bit value, even though it is ! converted to a 64-bit 'INTEGER(8)' value. That means overflows of ! the 32-bit value can still occur. Therefore, the values returned by this intrinsic might be or become negative or numerically less than previous values during a single run of the compiled program. --- 14611,14642 ---- Function _Syntax_: ! `RESULT = TIME()' _Return value_: ! The return value is a scalar of type `INTEGER(4)'. _See also_: ! *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK::, ! *note TIME8:: !  File: gfortran.info, Node: TIME8, Next: TINY, Prev: TIME, Up: Intrinsic Procedures ! 8.244 `TIME8' -- Time function (64-bit) ======================================= _Description_: Returns the current time encoded as an integer (in the manner of ! the function `time(3)' in the C standard library). This value is ! suitable for passing to `CTIME', `GMTIME', and `LTIME'. _Warning:_ this intrinsic does not increase the range of the timing ! values over that returned by `time(3)'. On a system with a 32-bit ! `time(3)', `TIME8' will return a 32-bit value, even though it is ! converted to a 64-bit `INTEGER(8)' value. That means overflows of ! the 32-bit value can still occur. Therefore, the values returned by this intrinsic might be or become negative or numerically less than previous values during a single run of the compiled program. *************** _Class_: *** 14491,14514 **** Function _Syntax_: ! 'RESULT = TIME8()' _Return value_: ! The return value is a scalar of type 'INTEGER(8)'. _See also_: *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK8::, *note TIME::  File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures ! 8.245 'TINY' -- Smallest positive number of a real kind ======================================================= _Description_: ! 'TINY(X)' returns the smallest positive (non zero) number in the ! model of the type of 'X'. _Standard_: Fortran 95 and later --- 14647,14671 ---- Function _Syntax_: ! `RESULT = TIME8()' _Return value_: ! The return value is a scalar of type `INTEGER(8)'. _See also_: *note CTIME::, *note GMTIME::, *note LTIME::, *note MCLOCK8::, *note TIME:: +  File: gfortran.info, Node: TINY, Next: TRAILZ, Prev: TIME8, Up: Intrinsic Procedures ! 8.245 `TINY' -- Smallest positive number of a real kind ======================================================= _Description_: ! `TINY(X)' returns the smallest positive (non zero) number in the ! model of the type of `X'. _Standard_: Fortran 95 and later *************** _Class_: *** 14517,14541 **** Inquiry function _Syntax_: ! 'RESULT = TINY(X)' _Arguments_: ! X Shall be of type 'REAL'. _Return value_: The return value is of the same type and kind as X _Example_: ! See 'HUGE' for an example.  File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures ! 8.246 'TRAILZ' -- Number of trailing zero bits of an integer ============================================================ _Description_: ! 'TRAILZ' returns the number of trailing zero bits of an integer. _Standard_: Fortran 2008 and later --- 14674,14698 ---- Inquiry function _Syntax_: ! `RESULT = TINY(X)' _Arguments_: ! X Shall be of type `REAL'. _Return value_: The return value is of the same type and kind as X _Example_: ! See `HUGE' for an example.  File: gfortran.info, Node: TRAILZ, Next: TRANSFER, Prev: TINY, Up: Intrinsic Procedures ! 8.246 `TRAILZ' -- Number of trailing zero bits of an integer ============================================================ _Description_: ! `TRAILZ' returns the number of trailing zero bits of an integer. _Standard_: Fortran 2008 and later *************** _Class_: *** 14544,14557 **** Elemental function _Syntax_: ! 'RESULT = TRAILZ(I)' _Arguments_: ! I Shall be of type 'INTEGER'. _Return value_: ! The type of the return value is the default 'INTEGER'. If all the ! bits of 'I' are zero, the result value is 'BIT_SIZE(I)'. _Example_: PROGRAM test_trailz --- 14701,14714 ---- Elemental function _Syntax_: ! `RESULT = TRAILZ(I)' _Arguments_: ! I Shall be of type `INTEGER'. _Return value_: ! The type of the return value is the default `INTEGER'. If all the ! bits of `I' are zero, the result value is `BIT_SIZE(I)'. _Example_: PROGRAM test_trailz *************** _See also_: *** 14564,14570 ****  File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures ! 8.247 'TRANSFER' -- Transfer bit patterns ========================================= _Description_: --- 14721,14727 ----  File: gfortran.info, Node: TRANSFER, Next: TRANSPOSE, Prev: TRAILZ, Up: Intrinsic Procedures ! 8.247 `TRANSFER' -- Transfer bit patterns ========================================= _Description_: *************** _Class_: *** 14582,14593 **** Transformational function _Syntax_: ! 'RESULT = TRANSFER(SOURCE, MOLD[, SIZE])' _Arguments_: ! SOURCE Shall be a scalar or an array of any type. ! MOLD Shall be a scalar or an array of any type. ! SIZE (Optional) shall be a scalar of type 'INTEGER'. _Return value_: The result has the same type as MOLD, with the bit level --- 14739,14750 ---- Transformational function _Syntax_: ! `RESULT = TRANSFER(SOURCE, MOLD[, SIZE])' _Arguments_: ! SOURCE Shall be a scalar or an array of any type. ! MOLD Shall be a scalar or an array of any type. ! SIZE (Optional) shall be a scalar of type `INTEGER'. _Return value_: The result has the same type as MOLD, with the bit level *************** _Return value_: *** 14595,14601 **** one-dimensional array of length SIZE. If SIZE is absent but MOLD is an array (of any size or shape), the result is a one- dimensional array of the minimum length needed to contain the ! entirety of the bitwise representation of SOURCE. If SIZE is absent and MOLD is a scalar, the result is a scalar. If the bitwise representation of the result is longer than that of --- 14752,14758 ---- one-dimensional array of length SIZE. If SIZE is absent but MOLD is an array (of any size or shape), the result is a one- dimensional array of the minimum length needed to contain the ! entirety of the bitwise representation of SOURCE. If SIZE is absent and MOLD is a scalar, the result is a scalar. If the bitwise representation of the result is longer than that of *************** _Return value_: *** 14605,14613 **** When the resulting bit representation does not correspond to a valid representation of a variable of the same type as MOLD, the results are undefined, and subsequent operations on the result ! cannot be guaranteed to produce sensible behavior. For example, it ! is possible to create 'LOGICAL' variables for which 'VAR' and ! '.NOT.VAR' both appear to be true. _Example_: PROGRAM test_transfer --- 14762,14770 ---- When the resulting bit representation does not correspond to a valid representation of a variable of the same type as MOLD, the results are undefined, and subsequent operations on the result ! cannot be guaranteed to produce sensible behavior. For example, ! it is possible to create `LOGICAL' variables for which `VAR' and ! `.NOT.VAR' both appear to be true. _Example_: PROGRAM test_transfer *************** _Example_: *** 14618,14629 ****  File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures ! 8.248 'TRANSPOSE' -- Transpose an array of rank two =================================================== _Description_: ! Transpose an array of rank two. Element (i, j) of the result has ! the value 'MATRIX(j, i)', for all i, j. _Standard_: Fortran 95 and later --- 14775,14786 ----  File: gfortran.info, Node: TRANSPOSE, Next: TRIM, Prev: TRANSFER, Up: Intrinsic Procedures ! 8.248 `TRANSPOSE' -- Transpose an array of rank two =================================================== _Description_: ! Transpose an array of rank two. Element (i, j) of the result has ! the value `MATRIX(j, i)', for all i, j. _Standard_: Fortran 95 and later *************** _Class_: *** 14632,14651 **** Transformational function _Syntax_: ! 'RESULT = TRANSPOSE(MATRIX)' _Arguments_: ! MATRIX Shall be an array of any type and have a rank of ! two. _Return value_: ! The result has the same type as MATRIX, and has shape '(/ m, n /)' ! if MATRIX has shape '(/ n, m /)'.  File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures ! 8.249 'TRIM' -- Remove trailing blank characters of a string ============================================================ _Description_: --- 14789,14808 ---- Transformational function _Syntax_: ! `RESULT = TRANSPOSE(MATRIX)' _Arguments_: ! MATRIX Shall be an array of any type and have a rank ! of two. _Return value_: ! The result has the same type as MATRIX, and has shape `(/ m, n /)' ! if MATRIX has shape `(/ n, m /)'.  File: gfortran.info, Node: TRIM, Next: TTYNAM, Prev: TRANSPOSE, Up: Intrinsic Procedures ! 8.249 `TRIM' -- Remove trailing blank characters of a string ============================================================ _Description_: *************** _Class_: *** 14658,14670 **** Transformational function _Syntax_: ! 'RESULT = TRIM(STRING)' _Arguments_: ! STRING Shall be a scalar of type 'CHARACTER'. _Return value_: ! A scalar of type 'CHARACTER' which length is that of STRING less the number of trailing blanks. _Example_: --- 14815,14827 ---- Transformational function _Syntax_: ! `RESULT = TRIM(STRING)' _Arguments_: ! STRING Shall be a scalar of type `CHARACTER'. _Return value_: ! A scalar of type `CHARACTER' which length is that of STRING less the number of trailing blanks. _Example_: *************** _See also_: *** 14679,14690 ****  File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures ! 8.250 'TTYNAM' -- Get the name of a terminal device. ==================================================== _Description_: ! Get the name of a terminal device. For more information, see ! 'ttyname(3)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 14836,14847 ----  File: gfortran.info, Node: TTYNAM, Next: UBOUND, Prev: TRIM, Up: Intrinsic Procedures ! 8.250 `TTYNAM' -- Get the name of a terminal device. ==================================================== _Description_: ! Get the name of a terminal device. For more information, see ! `ttyname(3)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 14696,14707 **** Subroutine, function _Syntax_: ! 'CALL TTYNAM(UNIT, NAME)' ! 'NAME = TTYNAM(UNIT)' _Arguments_: ! UNIT Shall be a scalar 'INTEGER'. ! NAME Shall be of type 'CHARACTER'. _Example_: PROGRAM test_ttynam --- 14853,14864 ---- Subroutine, function _Syntax_: ! `CALL TTYNAM(UNIT, NAME)' ! `NAME = TTYNAM(UNIT)' _Arguments_: ! UNIT Shall be a scalar `INTEGER'. ! NAME Shall be of type `CHARACTER'. _Example_: PROGRAM test_ttynam *************** _See also_: *** 14717,14728 ****  File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures ! 8.251 'UBOUND' -- Upper dimension bounds of an array ==================================================== _Description_: ! Returns the upper bounds of an array, or a single upper bound along ! the DIM dimension. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 14874,14886 ----  File: gfortran.info, Node: UBOUND, Next: UCOBOUND, Prev: TTYNAM, Up: Intrinsic Procedures ! 8.251 `UBOUND' -- Upper dimension bounds of an array ==================================================== _Description_: ! Returns the upper bounds of an array, or a single upper bound ! along the DIM dimension. ! _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 14730,14753 **** Inquiry function _Syntax_: ! 'RESULT = UBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the upper bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the upper ! bound of the array along that dimension. If ARRAY is an expression ! rather than a whole array or array structure component, or if it ! has a zero extent along the relevant dimension, the upper bound is ! taken to be the number of elements along the relevant dimension. _See also_: *note LBOUND::, *note LCOBOUND:: --- 14888,14912 ---- Inquiry function _Syntax_: ! `RESULT = UBOUND(ARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an array, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the upper bounds of ARRAY. If DIM is present, the result is a scalar corresponding to the upper ! bound of the array along that dimension. If ARRAY is an ! expression rather than a whole array or array structure component, ! or if it has a zero extent along the relevant dimension, the upper ! bound is taken to be the number of elements along the relevant ! dimension. _See also_: *note LBOUND::, *note LCOBOUND:: *************** _See also_: *** 14755,14766 ****  File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures ! 8.252 'UCOBOUND' -- Upper codimension bounds of an array ======================================================== _Description_: Returns the upper cobounds of a coarray, or a single upper cobound along the DIM codimension. _Standard_: Fortran 2008 and later --- 14914,14926 ----  File: gfortran.info, Node: UCOBOUND, Next: UMASK, Prev: UBOUND, Up: Intrinsic Procedures ! 8.252 `UCOBOUND' -- Upper codimension bounds of an array ======================================================== _Description_: Returns the upper cobounds of a coarray, or a single upper cobound along the DIM codimension. + _Standard_: Fortran 2008 and later *************** _Class_: *** 14768,14784 **** Inquiry function _Syntax_: ! 'RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar 'INTEGER'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the --- 14928,14944 ---- Inquiry function _Syntax_: ! `RESULT = UCOBOUND(COARRAY [, DIM [, KIND]])' _Arguments_: ! ARRAY Shall be an coarray, of any type. ! DIM (Optional) Shall be a scalar `INTEGER'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. If DIM is absent, the result is an array of the lower cobounds of COARRAY. If DIM is present, the result is a scalar corresponding to the *************** _See also_: *** 14790,14802 ****  File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures ! 8.253 'UMASK' -- Set the file creation mask =========================================== _Description_: ! Sets the file creation mask to MASK. If called as a function, it ! returns the old value. If called as a subroutine and argument OLD ! if it is supplied, it is set to the old value. See 'umask(2)'. _Standard_: GNU extension --- 14950,14962 ----  File: gfortran.info, Node: UMASK, Next: UNLINK, Prev: UCOBOUND, Up: Intrinsic Procedures ! 8.253 `UMASK' -- Set the file creation mask =========================================== _Description_: ! Sets the file creation mask to MASK. If called as a function, it ! returns the old value. If called as a subroutine and argument OLD ! if it is supplied, it is set to the old value. See `umask(2)'. _Standard_: GNU extension *************** _Class_: *** 14805,14829 **** Subroutine, function _Syntax_: ! 'CALL UMASK(MASK [, OLD])' ! 'OLD = UMASK(MASK)' _Arguments_: ! MASK Shall be a scalar of type 'INTEGER'. ! OLD (Optional) Shall be a scalar of type 'INTEGER'.  File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures ! 8.254 'UNLINK' -- Remove a file from the file system ==================================================== _Description_: ! Unlinks the file PATH. A null character ('CHAR(0)') can be used to ! mark the end of the name in PATH; otherwise, trailing blanks in the ! file name are ignored. If the STATUS argument is supplied, it contains 0 on success or a nonzero error code upon return; see ! 'unlink(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. --- 14965,14990 ---- Subroutine, function _Syntax_: ! `CALL UMASK(MASK [, OLD])' ! `OLD = UMASK(MASK)' _Arguments_: ! MASK Shall be a scalar of type `INTEGER'. ! OLD (Optional) Shall be a scalar of type `INTEGER'. !  File: gfortran.info, Node: UNLINK, Next: UNPACK, Prev: UMASK, Up: Intrinsic Procedures ! 8.254 `UNLINK' -- Remove a file from the file system ==================================================== _Description_: ! Unlinks the file PATH. A null character (`CHAR(0)') can be used to ! mark the end of the name in PATH; otherwise, trailing blanks in ! the file name are ignored. If the STATUS argument is supplied, it contains 0 on success or a nonzero error code upon return; see ! `unlink(2)'. This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit. *************** _Class_: *** 14835,14846 **** Subroutine, function _Syntax_: ! 'CALL UNLINK(PATH [, STATUS])' ! 'STATUS = UNLINK(PATH)' _Arguments_: ! PATH Shall be of default 'CHARACTER' type. ! STATUS (Optional) Shall be of default 'INTEGER' type. _See also_: *note LINK::, *note SYMLNK:: --- 14996,15007 ---- Subroutine, function _Syntax_: ! `CALL UNLINK(PATH [, STATUS])' ! `STATUS = UNLINK(PATH)' _Arguments_: ! PATH Shall be of default `CHARACTER' type. ! STATUS (Optional) Shall be of default `INTEGER' type. _See also_: *note LINK::, *note SYMLNK:: *************** _See also_: *** 14848,14854 ****  File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures ! 8.255 'UNPACK' -- Unpack an array of rank one into an array =========================================================== _Description_: --- 15009,15015 ----  File: gfortran.info, Node: UNPACK, Next: VERIFY, Prev: UNLINK, Up: Intrinsic Procedures ! 8.255 `UNPACK' -- Unpack an array of rank one into an array =========================================================== _Description_: *************** _Class_: *** 14861,14878 **** Transformational function _Syntax_: ! 'RESULT = UNPACK(VECTOR, MASK, FIELD)' _Arguments_: ! VECTOR Shall be an array of any type and rank one. It ! shall have at least as many elements as MASK has ! 'TRUE' values. ! MASK Shall be an array of type 'LOGICAL'. ! FIELD Shall be of the same type as VECTOR and have the ! same shape as MASK. _Return value_: ! The resulting array corresponds to FIELD with 'TRUE' elements of MASK replaced by values from VECTOR in array element order. _Example_: --- 15022,15039 ---- Transformational function _Syntax_: ! `RESULT = UNPACK(VECTOR, MASK, FIELD)' _Arguments_: ! VECTOR Shall be an array of any type and rank one. It ! shall have at least as many elements as MASK ! has `TRUE' values. ! MASK Shall be an array of type `LOGICAL'. ! FIELD Shall be of the same type as VECTOR and have ! the same shape as MASK. _Return value_: ! The resulting array corresponds to FIELD with `TRUE' elements of MASK replaced by values from VECTOR in array element order. _Example_: *************** _See also_: *** 14891,14907 ****  File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures ! 8.256 'VERIFY' -- Scan a string for characters not a given set ============================================================== _Description_: Verifies that all the characters in STRING belong to the set of characters in SET. ! If BACK is either absent or equals 'FALSE', this function returns the position of the leftmost character of STRING that is not in ! SET. If BACK equals 'TRUE', the rightmost position is returned. ! If all characters of STRING are found in SET, the result is zero. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later --- 15052,15068 ----  File: gfortran.info, Node: VERIFY, Next: XOR, Prev: UNPACK, Up: Intrinsic Procedures ! 8.256 `VERIFY' -- Scan a string for characters not a given set ============================================================== _Description_: Verifies that all the characters in STRING belong to the set of characters in SET. ! If BACK is either absent or equals `FALSE', this function returns the position of the leftmost character of STRING that is not in ! SET. If BACK equals `TRUE', the rightmost position is returned. If ! all characters of STRING are found in SET, the result is zero. _Standard_: Fortran 95 and later, with KIND argument Fortran 2003 and later *************** _Class_: *** 14910,14927 **** Elemental function _Syntax_: ! 'RESULT = VERIFY(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type 'CHARACTER'. ! SET Shall be of type 'CHARACTER'. ! BACK (Optional) shall be of type 'LOGICAL'. ! KIND (Optional) An 'INTEGER' initialization ! expression indicating the kind parameter of the ! result. _Return value_: ! The return value is of type 'INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: --- 15071,15088 ---- Elemental function _Syntax_: ! `RESULT = VERIFY(STRING, SET[, BACK [, KIND]])' _Arguments_: ! STRING Shall be of type `CHARACTER'. ! SET Shall be of type `CHARACTER'. ! BACK (Optional) shall be of type `LOGICAL'. ! KIND (Optional) An `INTEGER' initialization ! expression indicating the kind parameter of ! the result. _Return value_: ! The return value is of type `INTEGER' and of kind KIND. If KIND is absent, the return value is of default integer kind. _Example_: *************** _See also_: *** 14939,14945 ****  File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures ! 8.257 'XOR' -- Bitwise logical exclusive OR =========================================== _Description_: --- 15100,15106 ----  File: gfortran.info, Node: XOR, Prev: VERIFY, Up: Intrinsic Procedures ! 8.257 `XOR' -- Bitwise logical exclusive OR =========================================== _Description_: *************** _Description_: *** 14948,14954 **** This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider the use of the *note IEOR:: intrinsic and for logical arguments the ! '.NEQV.' operator, which are both defined by the Fortran standard. _Standard_: GNU extension --- 15109,15115 ---- This intrinsic routine is provided for backwards compatibility with GNU Fortran 77. For integer arguments, programmers should consider the use of the *note IEOR:: intrinsic and for logical arguments the ! `.NEQV.' operator, which are both defined by the Fortran standard. _Standard_: GNU extension *************** _Class_: *** 14957,14974 **** Function _Syntax_: ! 'RESULT = XOR(I, J)' _Arguments_: ! I The type shall be either a scalar 'INTEGER' type ! or a scalar 'LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar 'INTEGER' or a scalar 'LOGICAL'. ! If the kind type parameters differ, then the smaller kind type is ! implicitly converted to larger kind, and the return has the larger ! kind. _Example_: PROGRAM test_xor --- 15118,15135 ---- Function _Syntax_: ! `RESULT = XOR(I, J)' _Arguments_: ! I The type shall be either a scalar `INTEGER' ! type or a scalar `LOGICAL' type. ! J The type shall be the same as the type of I. _Return value_: ! The return type is either a scalar `INTEGER' or a scalar ! `LOGICAL'. If the kind type parameters differ, then the smaller ! kind type is implicitly converted to larger kind, and the return ! has the larger kind. _Example_: PROGRAM test_xor *************** File: gfortran.info, Node: Intrinsic Mo *** 14998,15113 ****  File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules ! 9.1 'ISO_FORTRAN_ENV' ===================== _Standard_: Fortran 2003 and later, except when otherwise noted ! The 'ISO_FORTRAN_ENV' module provides the following scalar default-integer named constants: ! 'ATOMIC_INT_KIND': Default-kind integer constant to be used as kind parameter when ! defining integer variables used in atomic operations. (Fortran 2008 or later.) ! 'ATOMIC_LOGICAL_KIND': Default-kind integer constant to be used as kind parameter when ! defining logical variables used in atomic operations. (Fortran 2008 or later.) ! 'CHARACTER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'CHARACTER' type. (Fortran 2008 or later.) ! 'CHARACTER_STORAGE_SIZE': Size in bits of the character storage unit. ! 'ERROR_UNIT': Identifies the preconnected unit used for error reporting. ! 'FILE_STORAGE_SIZE': Size in bits of the file-storage unit. ! 'INPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk ('*') ! in 'READ' statement. ! 'INT8', 'INT16', 'INT32', 'INT64': ! Kind type parameters to specify an INTEGER type with a storage size ! of 16, 32, and 64 bits. It is negative if a target platform does ! not support the particular kind. (Fortran 2008 or later.) ! 'INTEGER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'INTEGER' type. (Fortran 2008 or later.) ! 'IOSTAT_END': ! The value assigned to the variable passed to the 'IOSTAT=' specifier of an input/output statement if an end-of-file condition occurred. ! 'IOSTAT_EOR': ! The value assigned to the variable passed to the 'IOSTAT=' specifier of an input/output statement if an end-of-record condition occurred. ! 'IOSTAT_INQUIRE_INTERNAL_UNIT': ! Scalar default-integer constant, used by 'INQUIRE' for the ! 'IOSTAT=' specifier to denote an that a unit number identifies an ! internal unit. (Fortran 2008 or later.) ! 'NUMERIC_STORAGE_SIZE': The size in bits of the numeric storage unit. ! 'LOGICAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'LOGICAL' type. (Fortran 2008 or later.) ! 'OUTPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk ('*') ! in 'WRITE' statement. ! 'REAL32', 'REAL64', 'REAL128': Kind type parameters to specify a REAL type with a storage size of ! 32, 64, and 128 bits. It is negative if a target platform does not ! support the particular kind. (Fortran 2008 or later.) ! 'REAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the 'REAL' type. (Fortran 2008 or later.) ! 'STAT_LOCKED': Scalar default-integer constant used as STAT= return value by ! 'LOCK' to denote that the lock variable is locked by the executing ! image. (Fortran 2008 or later.) ! 'STAT_LOCKED_OTHER_IMAGE': Scalar default-integer constant used as STAT= return value by ! 'UNLOCK' to denote that the lock variable is locked by another ! image. (Fortran 2008 or later.) ! 'STAT_STOPPED_IMAGE': Positive, scalar default-integer constant used as STAT= return value if the argument in the statement requires synchronisation with an image, which has initiated the termination of the ! execution. (Fortran 2008 or later.) ! 'STAT_UNLOCKED': Scalar default-integer constant used as STAT= return value by ! 'UNLOCK' to denote that the lock variable is unlocked. (Fortran 2008 or later.) The module provides the following derived type: ! 'LOCK_TYPE': ! Derived type with private components to be use with the 'LOCK' and ! 'UNLOCK' statement. A variable of its type has to be always declared as coarray and may not appear in a variable-definition context. (Fortran 2008 or later.) --- 15159,15274 ----  File: gfortran.info, Node: ISO_FORTRAN_ENV, Next: ISO_C_BINDING, Up: Intrinsic Modules ! 9.1 `ISO_FORTRAN_ENV' ===================== _Standard_: Fortran 2003 and later, except when otherwise noted ! The `ISO_FORTRAN_ENV' module provides the following scalar default-integer named constants: ! `ATOMIC_INT_KIND': Default-kind integer constant to be used as kind parameter when ! defining integer variables used in atomic operations. (Fortran 2008 or later.) ! `ATOMIC_LOGICAL_KIND': Default-kind integer constant to be used as kind parameter when ! defining logical variables used in atomic operations. (Fortran 2008 or later.) ! `CHARACTER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `CHARACTER' type. (Fortran 2008 or later.) ! `CHARACTER_STORAGE_SIZE': Size in bits of the character storage unit. ! `ERROR_UNIT': Identifies the preconnected unit used for error reporting. ! `FILE_STORAGE_SIZE': Size in bits of the file-storage unit. ! `INPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk (`*') ! in `READ' statement. ! `INT8', `INT16', `INT32', `INT64': ! Kind type parameters to specify an INTEGER type with a storage ! size of 16, 32, and 64 bits. It is negative if a target platform ! does not support the particular kind. (Fortran 2008 or later.) ! `INTEGER_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `INTEGER' type. (Fortran 2008 or later.) ! `IOSTAT_END': ! The value assigned to the variable passed to the `IOSTAT=' specifier of an input/output statement if an end-of-file condition occurred. ! `IOSTAT_EOR': ! The value assigned to the variable passed to the `IOSTAT=' specifier of an input/output statement if an end-of-record condition occurred. ! `IOSTAT_INQUIRE_INTERNAL_UNIT': ! Scalar default-integer constant, used by `INQUIRE' for the ! `IOSTAT=' specifier to denote an that a unit number identifies an ! internal unit. (Fortran 2008 or later.) ! `NUMERIC_STORAGE_SIZE': The size in bits of the numeric storage unit. ! `LOGICAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `LOGICAL' type. (Fortran 2008 or later.) ! `OUTPUT_UNIT': ! Identifies the preconnected unit identified by the asterisk (`*') ! in `WRITE' statement. ! `REAL32', `REAL64', `REAL128': Kind type parameters to specify a REAL type with a storage size of ! 32, 64, and 128 bits. It is negative if a target platform does not ! support the particular kind. (Fortran 2008 or later.) ! `REAL_KINDS': Default-kind integer constant array of rank one containing the ! supported kind parameters of the `REAL' type. (Fortran 2008 or later.) ! `STAT_LOCKED': Scalar default-integer constant used as STAT= return value by ! `LOCK' to denote that the lock variable is locked by the executing ! image. (Fortran 2008 or later.) ! `STAT_LOCKED_OTHER_IMAGE': Scalar default-integer constant used as STAT= return value by ! `UNLOCK' to denote that the lock variable is locked by another ! image. (Fortran 2008 or later.) ! `STAT_STOPPED_IMAGE': Positive, scalar default-integer constant used as STAT= return value if the argument in the statement requires synchronisation with an image, which has initiated the termination of the ! execution. (Fortran 2008 or later.) ! `STAT_UNLOCKED': Scalar default-integer constant used as STAT= return value by ! `UNLOCK' to denote that the lock variable is unlocked. (Fortran 2008 or later.) The module provides the following derived type: ! `LOCK_TYPE': ! Derived type with private components to be use with the `LOCK' and ! `UNLOCK' statement. A variable of its type has to be always declared as coarray and may not appear in a variable-definition context. (Fortran 2008 or later.) *************** COMPILER_OPTIONS:: and *note COMPILER_VE *** 15117,15123 ****  File: gfortran.info, Node: ISO_C_BINDING, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules ! 9.2 'ISO_C_BINDING' =================== _Standard_: --- 15278,15284 ----  File: gfortran.info, Node: ISO_C_BINDING, Next: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_FORTRAN_ENV, Up: Intrinsic Modules ! 9.2 `ISO_C_BINDING' =================== _Standard_: *************** _Standard_: *** 15127,15256 **** definition can be found in the section Intrinsic Procedures of this manual. ! 'C_ASSOCIATED' ! 'C_F_POINTER' ! 'C_F_PROCPOINTER' ! 'C_FUNLOC' ! 'C_LOC' ! 'C_SIZEOF' ! The 'ISO_C_BINDING' module provides the following named constants of type default integer, which can be used as KIND type parameters. In addition to the integer named constants required by the Fortran ! 2003 standard and 'C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an extension named constants for the 128-bit integer types supported by the ! C compiler: 'C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'. ! Furthermore, if '__float128' is supported in C, the named constants ! 'C_FLOAT128, C_FLOAT128_COMPLEX' are defined. Fortran Named constant C type Extension ! Type ! 'INTEGER' 'C_INT' 'int' ! 'INTEGER' 'C_SHORT' 'short int' ! 'INTEGER' 'C_LONG' 'long int' ! 'INTEGER' 'C_LONG_LONG' 'long long int' ! 'INTEGER' 'C_SIGNED_CHAR' 'signed char'/'unsigned ! char' ! 'INTEGER' 'C_SIZE_T' 'size_t' ! 'INTEGER' 'C_INT8_T' 'int8_t' ! 'INTEGER' 'C_INT16_T' 'int16_t' ! 'INTEGER' 'C_INT32_T' 'int32_t' ! 'INTEGER' 'C_INT64_T' 'int64_t' ! 'INTEGER' 'C_INT128_T' 'int128_t' Ext. ! 'INTEGER' 'C_INT_LEAST8_T' 'int_least8_t' ! 'INTEGER' 'C_INT_LEAST16_T' 'int_least16_t' ! 'INTEGER' 'C_INT_LEAST32_T' 'int_least32_t' ! 'INTEGER' 'C_INT_LEAST64_T' 'int_least64_t' ! 'INTEGER' 'C_INT_LEAST128_T' 'int_least128_t' Ext. ! 'INTEGER' 'C_INT_FAST8_T' 'int_fast8_t' ! 'INTEGER' 'C_INT_FAST16_T' 'int_fast16_t' ! 'INTEGER' 'C_INT_FAST32_T' 'int_fast32_t' ! 'INTEGER' 'C_INT_FAST64_T' 'int_fast64_t' ! 'INTEGER' 'C_INT_FAST128_T' 'int_fast128_t' Ext. ! 'INTEGER' 'C_INTMAX_T' 'intmax_t' ! 'INTEGER' 'C_INTPTR_T' 'intptr_t' ! 'INTEGER' 'C_PTRDIFF_T' 'intptr_t' TS 29113 ! 'REAL' 'C_FLOAT' 'float' ! 'REAL' 'C_DOUBLE' 'double' ! 'REAL' 'C_LONG_DOUBLE' 'long double' ! 'REAL' 'C_FLOAT128' '__float128' Ext. ! 'COMPLEX' 'C_FLOAT_COMPLEX' 'float _Complex' ! 'COMPLEX' 'C_DOUBLE_COMPLEX' 'double _Complex' ! 'COMPLEX' 'C_LONG_DOUBLE_COMPLEX' 'long double _Complex' ! 'REAL' 'C_FLOAT128_COMPLEX' '__float128 _Complex' Ext. ! 'LOGICAL' 'C_BOOL' '_Bool' ! 'CHARACTER' 'C_CHAR' 'char' Additionally, the following parameters of type ! 'CHARACTER(KIND=C_CHAR)' are defined. Name C definition Value ! 'C_NULL_CHAR' null character ''\0'' ! 'C_ALERT' alert ''\a'' ! 'C_BACKSPACE' backspace ''\b'' ! 'C_FORM_FEED' form feed ''\f'' ! 'C_NEW_LINE' new line ''\n'' ! 'C_CARRIAGE_RETURN'carriage return ''\r'' ! 'C_HORIZONTAL_TAB'horizontal tab ''\t'' ! 'C_VERTICAL_TAB'vertical tab ''\v'' Moreover, the following two named constants are defined: Name Type ! 'C_NULL_PTR' 'C_PTR' ! 'C_NULL_FUNPTR''C_FUNPTR' ! Both are equivalent to the value 'NULL' in C.  File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules ! 9.3 OpenMP Modules 'OMP_LIB' and 'OMP_LIB_KINDS' ================================================ _Standard_: OpenMP Application Program Interface v4.0 The OpenMP Fortran runtime library routines are provided both in a ! form of two Fortran 90 modules, named 'OMP_LIB' and 'OMP_LIB_KINDS', and ! in a form of a Fortran 'include' file named 'omp_lib.h'. The procedures ! provided by 'OMP_LIB' can be found in the *note Introduction: ! (libgomp)Top. manual, the named constants defined in the modules are ! listed below. For details refer to the actual OpenMP Application Program Interface v4.0 (http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf). ! 'OMP_LIB_KINDS' provides the following scalar default-integer named constants: ! 'omp_lock_kind' ! 'omp_nest_lock_kind' ! 'omp_proc_bind_kind' ! 'omp_sched_kind' ! 'OMP_LIB' provides the scalar default-integer named constant ! 'openmp_version' with a value of the form YYYYMM, where 'yyyy' is the year and MM the month of the OpenMP version; for OpenMP v4.0 the value ! is '201307'. The following scalar integer named constants of the kind ! 'omp_sched_kind': ! 'omp_sched_static' ! 'omp_sched_dynamic' ! 'omp_sched_guided' ! 'omp_sched_auto' And the following scalar integer named constants of the kind ! 'omp_proc_bind_kind': ! 'omp_proc_bind_false' ! 'omp_proc_bind_true' ! 'omp_proc_bind_master' ! 'omp_proc_bind_close' ! 'omp_proc_bind_spread'  File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top --- 15288,15432 ---- definition can be found in the section Intrinsic Procedures of this manual. ! `C_ASSOCIATED' ! `C_F_POINTER' ! ! `C_F_PROCPOINTER' ! ! `C_FUNLOC' ! ! `C_LOC' ! ! `C_SIZEOF' ! ! The `ISO_C_BINDING' module provides the following named constants of type default integer, which can be used as KIND type parameters. In addition to the integer named constants required by the Fortran ! 2003 standard and `C_PTRDIFF_T' of TS 29113, GNU Fortran provides as an extension named constants for the 128-bit integer types supported by the ! C compiler: `C_INT128_T, C_INT_LEAST128_T, C_INT_FAST128_T'. ! Furthermore, if `__float128' is supported in C, the named constants ! `C_FLOAT128, C_FLOAT128_COMPLEX' are defined. Fortran Named constant C type Extension ! Type ! `INTEGER' `C_INT' `int' ! `INTEGER' `C_SHORT' `short int' ! `INTEGER' `C_LONG' `long int' ! `INTEGER' `C_LONG_LONG' `long long int' ! `INTEGER' `C_SIGNED_CHAR' `signed char'/`unsigned ! char' ! `INTEGER' `C_SIZE_T' `size_t' ! `INTEGER' `C_INT8_T' `int8_t' ! `INTEGER' `C_INT16_T' `int16_t' ! `INTEGER' `C_INT32_T' `int32_t' ! `INTEGER' `C_INT64_T' `int64_t' ! `INTEGER' `C_INT128_T' `int128_t' Ext. ! `INTEGER' `C_INT_LEAST8_T' `int_least8_t' ! `INTEGER' `C_INT_LEAST16_T' `int_least16_t' ! `INTEGER' `C_INT_LEAST32_T' `int_least32_t' ! `INTEGER' `C_INT_LEAST64_T' `int_least64_t' ! `INTEGER' `C_INT_LEAST128_T' `int_least128_t' Ext. ! `INTEGER' `C_INT_FAST8_T' `int_fast8_t' ! `INTEGER' `C_INT_FAST16_T' `int_fast16_t' ! `INTEGER' `C_INT_FAST32_T' `int_fast32_t' ! `INTEGER' `C_INT_FAST64_T' `int_fast64_t' ! `INTEGER' `C_INT_FAST128_T' `int_fast128_t' Ext. ! `INTEGER' `C_INTMAX_T' `intmax_t' ! `INTEGER' `C_INTPTR_T' `intptr_t' ! `INTEGER' `C_PTRDIFF_T' `intptr_t' TS 29113 ! `REAL' `C_FLOAT' `float' ! `REAL' `C_DOUBLE' `double' ! `REAL' `C_LONG_DOUBLE' `long double' ! `REAL' `C_FLOAT128' `__float128' Ext. ! `COMPLEX' `C_FLOAT_COMPLEX' `float _Complex' ! `COMPLEX' `C_DOUBLE_COMPLEX' `double _Complex' ! `COMPLEX' `C_LONG_DOUBLE_COMPLEX' `long double _Complex' ! `REAL' `C_FLOAT128_COMPLEX' `__float128 _Complex' Ext. ! `LOGICAL' `C_BOOL' `_Bool' ! `CHARACTER' `C_CHAR' `char' Additionally, the following parameters of type ! `CHARACTER(KIND=C_CHAR)' are defined. Name C definition Value ! `C_NULL_CHAR' null character `'\0'' ! `C_ALERT' alert `'\a'' ! `C_BACKSPACE' backspace `'\b'' ! `C_FORM_FEED' form feed `'\f'' ! `C_NEW_LINE' new line `'\n'' ! `C_CARRIAGE_RETURN'carriage return `'\r'' ! `C_HORIZONTAL_TAB'horizontal tab `'\t'' ! `C_VERTICAL_TAB'vertical tab `'\v'' Moreover, the following two named constants are defined: Name Type ! `C_NULL_PTR' `C_PTR' ! `C_NULL_FUNPTR'`C_FUNPTR' ! Both are equivalent to the value `NULL' in C.  File: gfortran.info, Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS, Prev: ISO_C_BINDING, Up: Intrinsic Modules ! 9.3 OpenMP Modules `OMP_LIB' and `OMP_LIB_KINDS' ================================================ _Standard_: OpenMP Application Program Interface v4.0 The OpenMP Fortran runtime library routines are provided both in a ! form of two Fortran 90 modules, named `OMP_LIB' and `OMP_LIB_KINDS', ! and in a form of a Fortran `include' file named `omp_lib.h'. The ! procedures provided by `OMP_LIB' can be found in the *note ! Introduction: (libgomp)Top. manual, the named constants defined in the ! modules are listed below. For details refer to the actual OpenMP Application Program Interface v4.0 (http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf). ! `OMP_LIB_KINDS' provides the following scalar default-integer named constants: ! `omp_lock_kind' ! `omp_nest_lock_kind' ! ! `omp_proc_bind_kind' ! ! `omp_sched_kind' ! ! `OMP_LIB' provides the scalar default-integer named constant ! `openmp_version' with a value of the form YYYYMM, where `yyyy' is the year and MM the month of the OpenMP version; for OpenMP v4.0 the value ! is `201307'. The following scalar integer named constants of the kind ! `omp_sched_kind': ! `omp_sched_static' ! ! `omp_sched_dynamic' ! ! `omp_sched_guided' ! ! `omp_sched_auto' And the following scalar integer named constants of the kind ! `omp_proc_bind_kind': ! `omp_proc_bind_false' ! ! `omp_proc_bind_true' ! ! `omp_proc_bind_master' ! ! `omp_proc_bind_close' ! ! `omp_proc_bind_spread'  File: gfortran.info, Node: Contributing, Next: Copying, Prev: Intrinsic Modules, Up: Top *************** File: gfortran.info, Node: Contributing *** 15258,15266 **** Contributing ************ ! Free software is only possible if people contribute to efforts to create ! it. We're always in need of more people helping out with ideas and ! comments, writing documentation and contributing code. If you want to contribute to GNU Fortran, have a look at the long lists of projects you can take on. Some of these projects are small, --- 15434,15442 ---- Contributing ************ ! Free software is only possible if people contribute to efforts to ! create it. We're always in need of more people helping out with ideas ! and comments, writing documentation and contributing code. If you want to contribute to GNU Fortran, have a look at the long lists of projects you can take on. Some of these projects are small, *************** with GCC was written by _Paul Brook_. *** 15290,15326 **** --- 15466,15534 ---- significant help to the GNU Fortran project (in alphabetical order): - Janne Blomqvist + - Steven Bosscher + - Paul Brook + - Tobias Burnus + - Franc,ois-Xavier Coudert + - Bud Davis + - Jerry DeLisle + - Erik Edelmann + - Bernhard Fischer + - Daniel Franke + - Richard Guenther + - Richard Henderson + - Katherine Holcomb + - Jakub Jelinek + - Niels Kristian Bech Jensen + - Steven Johnson + - Steven G. Kargl + - Thomas Koenig + - Asher Langton + - H. J. Lu + - Toon Moene + - Brooks Moses + - Andrew Pinski + - Tim Prince + - Christopher D. Rickett + - Richard Sandiford + - Tobias Schlu"ter + - Roger Sayle + - Paul Thomas + - Andy Vaught + - Feng Wang + - Janus Weil + - Daniel Kraft The following people have contributed bug reports, smaller or larger *************** patches, and much needed feedback and en *** 15328,15336 **** --- 15536,15548 ---- project: - Bill Clodius + - Dominique d'Humie`res + - Kate Hedstrom + - Erik Schnetter + - Joost VandeVondele Many other individuals have helped debug, test and improve the GNU *************** Projects *** 15346,15373 **** _Help build the test suite_ Solicit more code for donation to the test suite: the more ! extensive the testsuite, the smaller the risk of breaking things in ! the future! We can keep code private on request. _Bug hunting/squishing_ ! Find bugs and write more test cases! Test cases are especially ! very welcome, because it allows us to concentrate on fixing bugs instead of isolating them. Going through the bugzilla database at ! to reduce testcases posted there and add more information (for example, for which version does the ! testcase work, for which versions does it fail?) is also very helpful.  File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing Proposed Extensions =================== ! Here's a list of proposed extensions for the GNU Fortran compiler, in no ! particular order. Most of these are necessary to be fully compatible ! with existing Fortran compilers, but they are not part of the official ! J3 Fortran 95 standard. Compiler extensions: -------------------- --- 15558,15586 ---- _Help build the test suite_ Solicit more code for donation to the test suite: the more ! extensive the testsuite, the smaller the risk of breaking things ! in the future! We can keep code private on request. _Bug hunting/squishing_ ! Find bugs and write more test cases! Test cases are especially very ! welcome, because it allows us to concentrate on fixing bugs instead of isolating them. Going through the bugzilla database at ! `http://gcc.gnu.org/bugzilla/' to reduce testcases posted there and add more information (for example, for which version does the ! testcase work, for which versions does it fail?) is also very helpful. +  File: gfortran.info, Node: Proposed Extensions, Prev: Projects, Up: Contributing Proposed Extensions =================== ! Here's a list of proposed extensions for the GNU Fortran compiler, in ! no particular order. Most of these are necessary to be fully ! compatible with existing Fortran compilers, but they are not part of ! the official J3 Fortran 95 standard. Compiler extensions: -------------------- *************** Compiler extensions: *** 15376,15383 **** * Automatically extend single precision constants to double. ! * Compile code that conserves memory by dynamically allocating common ! and module storage either on stack or heap. * Compile flag to generate code for array conformance checking (suggest -CC). --- 15589,15596 ---- * Automatically extend single precision constants to double. ! * Compile code that conserves memory by dynamically allocating ! common and module storage either on stack or heap. * Compile flag to generate code for array conformance checking (suggest -CC). *************** Environment Options *** 15425,15430 **** --- 15638,15644 ---- * Environment variable forcing standard output to be line buffered (Unix). +  File: gfortran.info, Node: Copying, Next: GNU Free Documentation License, Prev: Contributing, Up: Top *************** GNU General Public License *** 15433,15439 **** Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 15647,15653 ---- Version 3, 29 June 2007 ! Copyright (C) 2007 Free Software Foundation, Inc. `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** want it, that you can change the softwar *** 15461,15469 **** free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you have ! certain responsibilities if you distribute copies of the software, or if ! you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same --- 15675,15683 ---- free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you ! these rights or asking you to surrender the rights. Therefore, you ! have certain responsibilities if you distribute copies of the software, ! or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same *************** changed, so that their problems will not *** 15482,15496 **** authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the manufacturer ! can do so. This is fundamentally incompatible with the aim of ! protecting users' freedom to change the software. The systematic ! pattern of such abuse occurs in the area of products for individuals to ! use, which is precisely where it is most unacceptable. Therefore, we ! have designed this version of the GPL to prohibit the practice for those ! products. If such problems arise substantially in other domains, we ! stand ready to extend this provision to those domains in future versions ! of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of --- 15696,15711 ---- authors of previous versions. Some devices are designed to deny users access to install or run ! modified versions of the software inside them, although the ! manufacturer can do so. This is fundamentally incompatible with the ! aim of protecting users' freedom to change the software. The ! systematic pattern of such abuse occurs in the area of products for ! individuals to use, which is precisely where it is most unacceptable. ! Therefore, we have designed this version of the GPL to prohibit the ! practice for those products. If such problems arise substantially in ! other domains, we stand ready to extend this provision to those domains ! in future versions of the GPL, as needed to protect the freedom of ! users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of *************** TERMS AND CONDITIONS *** 15527,15534 **** To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it on ! a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. --- 15742,15749 ---- To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for ! infringement under applicable copyright law, except executing it ! on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. *************** TERMS AND CONDITIONS *** 15542,15549 **** to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may convey ! the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. --- 15757,15764 ---- to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to ! the extent that warranties are provided), that licensees may ! convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. *************** TERMS AND CONDITIONS *** 15551,15558 **** 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any non-source ! form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in --- 15766,15773 ---- 1. Source Code. The "source code" for a work means the preferred form of the work ! for making modifications to it. "Object code" means any ! non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in *************** TERMS AND CONDITIONS *** 15563,15572 **** The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work with ! that Major Component, or to implement a Standard Interface for ! which an implementation is available to the public in source code ! form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code --- 15778,15787 ---- The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that ! Major Component, and (b) serves only to enable use of the work ! with that Major Component, or to implement a Standard Interface ! for which an implementation is available to the public in source ! code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code *************** TERMS AND CONDITIONS *** 15574,15588 **** The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including scripts ! to control those activities. However, it does not include the ! work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files associated ! with source files for the work, and the source code for shared ! libraries and dynamically linked subprograms that the work is ! specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. --- 15789,15803 ---- The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable ! work) run the object code and to modify the work, including ! scripts to control those activities. However, it does not include ! the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, ! Corresponding Source includes interface definition files ! associated with source files for the work, and the source code for ! shared libraries and dynamically linked subprograms that the work ! is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. *************** TERMS AND CONDITIONS *** 15599,15620 **** copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, given ! its content, constitutes a covered work. This License acknowledges ! your rights of fair use or other equivalent, as provided by ! copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for you, ! or provide you with facilities for running those works, provided ! that you comply with the terms of this License in conveying all ! material for which you do not control copyright. Those thus making ! or running the covered works for you must do so exclusively on your ! behalf, under your direction and control, on terms that prohibit ! them from making any copies of your copyrighted material outside ! their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section --- 15814,15835 ---- copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running ! a covered work is covered by this License only if the output, ! given its content, constitutes a covered work. This License ! acknowledges your rights of fair use or other equivalent, as ! provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the ! sole purpose of having them make modifications exclusively for ! you, or provide you with facilities for running those works, ! provided that you comply with the terms of this License in ! conveying all material for which you do not control copyright. ! Those thus making or running the covered works for you must do so ! exclusively on your behalf, under your direction and control, on ! terms that prohibit them from making any copies of your ! copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section *************** TERMS AND CONDITIONS *** 15631,15638 **** When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention to ! limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. --- 15846,15853 ---- When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License ! with respect to the covered work, and you disclaim any intention ! to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. *************** TERMS AND CONDITIONS *** 15702,15709 **** b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for as ! long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a --- 15917,15924 ---- b. Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a ! written offer, valid for at least three years and valid for ! as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a *************** TERMS AND CONDITIONS *** 15713,15743 **** to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of the ! written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access to ! the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated by ! you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to the ! object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long as ! needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. --- 15928,15959 ---- to copy the Corresponding Source from a network server at no charge. ! c. Convey individual copies of the object code with a copy of ! the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d. Convey the object code by offering access from a designated ! place (gratis or for a charge), and offer equivalent access ! to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the ! Corresponding Source may be on a different server (operated ! by you or a third party) that supports equivalent copying ! facilities, provided you maintain clear directions next to ! the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you ! remain obligated to ensure that it is available for as long ! as needed to satisfy these requirements. e. Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. + A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. *************** TERMS AND CONDITIONS *** 15745,15752 **** A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product is ! a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the --- 15961,15968 ---- A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for ! incorporation into a dwelling. In determining whether a product ! is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the *************** TERMS AND CONDITIONS *** 15777,15787 **** The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or installed ! by the recipient, or for the User Product in which it has been ! modified or installed. Access to a network may be denied when the ! modification itself materially and adversely affects the operation ! of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information --- 15993,16003 ---- The requirement to provide Installation Information does not include a requirement to continue to provide support service, ! warranty, or updates for a work that has been modified or ! installed by the recipient, or for the User Product in which it ! has been modified or installed. Access to a network may be denied ! when the modification itself materially and adversely affects the ! operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information *************** TERMS AND CONDITIONS *** 15811,15818 **** Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License with ! terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or --- 16027,16034 ---- Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright ! holders of that material) supplement the terms of this License ! with terms: a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or *************** TERMS AND CONDITIONS *** 15822,15829 **** Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be marked ! in reasonable ways as different from the original version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or --- 16038,16046 ---- Legal Notices displayed by works containing it; or c. Prohibiting misrepresentation of the origin of that material, ! or requiring that modified versions of such material be ! marked in reasonable ways as different from the original ! version; or d. Limiting the use for publicity purposes of names of licensors or authors of the material; or *************** TERMS AND CONDITIONS *** 15842,15851 **** you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or conveying ! under this License, you may add to a covered work material governed ! by the terms of that license document, provided that the further ! restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the --- 16059,16069 ---- you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document ! contains a further restriction but permits relicensing or ! conveying under this License, you may add to a covered work ! material governed by the terms of that license document, provided ! that the further restriction does not survive such relicensing or ! conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the *************** TERMS AND CONDITIONS *** 15861,15873 **** You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under the ! third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 16079,16091 ---- You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights ! under this License (including any patent licenses granted under ! the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** TERMS AND CONDITIONS *** 15879,15888 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, you do not qualify to receive new licenses ! for the same material under section 10. 9. Acceptance Not Required for Having Copies. --- 16097,16106 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, you do not qualify to receive new ! licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. *************** TERMS AND CONDITIONS *** 15896,15902 **** by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and --- 16114,16120 ---- by modifying or propagating a covered work, you indicate your acceptance of this License to do so. ! 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and *************** TERMS AND CONDITIONS *** 15910,15930 **** covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to possession ! of the Corresponding Source of the work from the predecessor in ! interest, if the predecessor has it or can get it with reasonable ! efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for exercise ! of rights granted under this License, and you may not initiate ! litigation (including a cross-claim or counterclaim in a lawsuit) ! alleging that any patent claim is infringed by making, using, ! selling, offering for sale, or importing the Program or any portion ! of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. --- 16128,16148 ---- covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or ! could give under the previous paragraph, plus a right to ! possession of the Corresponding Source of the work from the ! predecessor in interest, if the predecessor has it or can get it ! with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you ! may not impose a license fee, royalty, or other charge for ! exercise of rights granted under this License, and you may not ! initiate litigation (including a cross-claim or counterclaim in a ! lawsuit) alleging that any patent claim is infringed by making, ! using, selling, offering for sale, or importing the Program or any ! portion of it. ! 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. *************** TERMS AND CONDITIONS *** 15944,15958 **** Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its contributor ! version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To "grant" ! such a patent license to a party means to make such an agreement or ! commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available --- 16162,16176 ---- Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and ! otherwise run, modify and propagate the contents of its ! contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a ! patent or covenant not to sue for patent infringement). To ! "grant" such a patent license to a party means to make such an ! agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available *************** TERMS AND CONDITIONS *** 15982,16016 **** conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under which ! you make payment to the third party based on the extent of your ! activity of conveying the work, and under which the third party ! grants, to any of the parties who would receive the covered work ! from you, a discriminatory patent license (a) in connection with ! copies of the covered work conveyed by you (or copies made from ! those copies), or (b) primarily for and in connection with specific ! products or compilations that contain the covered work, unless you ! entered into that arrangement, or that patent license was granted, ! prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, agreement ! or otherwise) that contradict the conditions of this License, they ! do not excuse you from the conditions of this License. If you ! cannot convey a covered work so as to satisfy simultaneously your ! obligations under this License and any other pertinent obligations, ! then as a consequence you may not convey it at all. For example, ! if you agree to terms that obligate you to collect a royalty for ! further conveying from those to whom you convey the Program, the ! only way you could satisfy both those terms and this License would ! be to refrain entirely from conveying the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed --- 16200,16235 ---- conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third ! party that is in the business of distributing software, under ! which you make payment to the third party based on the extent of ! your activity of conveying the work, and under which the third ! party grants, to any of the parties who would receive the covered ! work from you, a discriminatory patent license (a) in connection ! with copies of the covered work conveyed by you (or copies made ! from those copies), or (b) primarily for and in connection with ! specific products or compilations that contain the covered work, ! unless you entered into that arrangement, or that patent license ! was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. ! 12. No Surrender of Others' Freedom. ! If conditions are imposed on you (whether by court order, ! agreement or otherwise) that contradict the conditions of this ! License, they do not excuse you from the conditions of this ! License. If you cannot convey a covered work so as to satisfy ! simultaneously your obligations under this License and any other ! pertinent obligations, then as a consequence you may not convey it ! at all. For example, if you agree to terms that obligate you to ! collect a royalty for further conveying from those to whom you ! convey the Program, the only way you could satisfy both those ! terms and this License would be to refrain entirely from conveying ! the Program. ! 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed *************** TERMS AND CONDITIONS *** 16021,16041 **** General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. Such ! new versions will be similar in spirit to the present version, but ! may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the Free ! Software Foundation. If the Program does not specify a version ! number of the GNU General Public License, you may choose any ! version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that --- 16240,16261 ---- General Public License, section 13, concerning interaction through a network will apply to the combination as such. ! 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new ! versions of the GNU General Public License from time to time. ! Such new versions will be similar in spirit to the present ! version, but may differ in detail to address new problems or ! concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of ! that numbered version or of any later version published by the ! Free Software Foundation. If the Program does not specify a ! version number of the GNU General Public License, you may choose ! any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that *************** TERMS AND CONDITIONS *** 16047,16070 **** author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR ! DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD --- 16267,16290 ---- author or copyright holder as a result of your choosing to follow a later version. ! 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY ! APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ! MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. ! 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES ! AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU ! FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD *************** TERMS AND CONDITIONS *** 16072,16078 **** PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, --- 16292,16298 ---- PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. ! 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, *************** TERMS AND CONDITIONS *** 16081,16086 **** --- 16301,16307 ---- connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. + END OF TERMS AND CONDITIONS =========================== *************** state the exclusion of warranty; and eac *** 16111,16117 **** General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see . Also add information on how to contact you by electronic and paper mail. --- 16332,16338 ---- General Public License for more details. You should have received a copy of the GNU General Public License ! along with this program. If not, see `http://www.gnu.org/licenses/'. Also add information on how to contact you by electronic and paper mail. *************** mail. *** 16120,16130 **** notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type 'show c' for details. ! The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". --- 16341,16351 ---- notice like this when it starts in an interactive mode: PROGRAM Copyright (C) YEAR NAME OF AUTHOR ! This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it ! under certain conditions; type `show c' for details. ! The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". *************** use an "about box". *** 16132,16145 **** You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see . The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read .  File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top --- 16353,16366 ---- You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow ! the GNU GPL, see `http://www.gnu.org/licenses/'. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, ! please read `http://www.gnu.org/philosophy/why-not-lgpl.html'.  File: gfortran.info, Node: GNU Free Documentation License, Next: Funding, Prev: Copying, Up: Top *************** GNU Free Documentation License *** 16150,16156 **** Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. --- 16371,16377 ---- Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. ! `http://fsf.org/' Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. *************** GNU Free Documentation License *** 16175,16195 **** free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. We ! recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it can ! be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You accept ! the license if you copy, modify or distribute the work in a way ! requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with --- 16396,16416 ---- free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless ! of subject matter or whether it is published as a printed book. ! We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work, in any medium, ! that contains a notice placed by the copyright holder saying it ! can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or work. Any member ! of the public is a licensee, and is addressed as "you". You ! accept the license if you copy, modify or distribute the work in a ! way requiring permission under copyright law. A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with *************** GNU Free Documentation License *** 16207,16218 **** regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in the ! notice that says that the Document is released under this License. ! If a section does not fit the above definition of Secondary then it ! is not allowed to be designated as Invariant. The Document may ! contain zero Invariant Sections. If the Document does not identify ! any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice --- 16428,16439 ---- regarding them. The "Invariant Sections" are certain Secondary Sections whose ! titles are designated, as being those of Invariant Sections, in ! the notice that says that the Document is released under this ! License. If a section does not fit the above definition of ! Secondary then it is not allowed to be designated as Invariant. ! The Document may contain zero Invariant Sections. If the Document ! does not identify any Invariant Sections then there are none. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice *************** GNU Free Documentation License *** 16223,16249 **** A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images composed ! of pixels) generic paint programs or (for drawings) some widely ! available drawing editor, and that is suitable for input to text ! formatters or for automatic translation to a variety of formats ! suitable for input to text formatters. A copy made in an otherwise ! Transparent file format whose markup, or absence of markup, has ! been arranged to thwart or discourage subsequent modification by ! readers is not Transparent. An image format is not Transparent if ! used for any substantial amount of text. A copy that is not ! "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and standard-conforming ! simple HTML, PostScript or PDF designed for human modification. ! Examples of transparent image formats include PNG, XCF and JPG. ! Opaque formats include proprietary formats that can be read and ! edited only by proprietary word processors, SGML or XML for which ! the DTD and/or processing tools are not generally available, and ! the machine-generated HTML, PostScript or PDF produced by some word ! processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the --- 16444,16470 ---- A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document ! straightforwardly with generic text editors or (for images ! composed of pixels) generic paint programs or (for drawings) some ! widely available drawing editor, and that is suitable for input to ! text formatters or for automatic translation to a variety of ! formats suitable for input to text formatters. A copy made in an ! otherwise Transparent file format whose markup, or absence of ! markup, has been arranged to thwart or discourage subsequent ! modification by readers is not Transparent. An image format is ! not Transparent if used for any substantial amount of text. A ! copy that is not "Transparent" is called "Opaque". Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, ! SGML or XML using a publicly available DTD, and ! standard-conforming simple HTML, PostScript or PDF designed for ! human modification. Examples of transparent image formats include ! PNG, XCF and JPG. Opaque formats include proprietary formats that ! can be read and edited only by proprietary word processors, SGML or ! XML for which the DTD and/or processing tools are not generally ! available, and the machine-generated HTML, PostScript or PDF ! produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the *************** GNU Free Documentation License *** 16281,16288 **** may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow the ! conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. --- 16502,16509 ---- may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you ! distribute a large enough number of copies you must also follow ! the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. *************** GNU Free Documentation License *** 16296,16306 **** these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the title ! equally prominent and visible. You may add other material on the ! covers in addition. Copying with changes limited to the covers, as ! long as they preserve the title of the Document and satisfy these ! conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit --- 16517,16528 ---- these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The ! front cover must present the full title with all words of the ! title equally prominent and visible. You may add other material ! on the covers in addition. Copying with changes limited to the ! covers, as long as they preserve the title of the Document and ! satisfy these conditions, can be treated as verbatim copying in ! other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit *************** GNU Free Documentation License *** 16308,16346 **** adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a machine-readable ! Transparent copy along with each Opaque copy, or state in or with ! each Opaque copy a computer-network location from which the general ! network-using public has access to download using public-standard ! network protocols a complete Transparent copy of the Document, free ! of added material. If you use the latter option, you must take ! reasonably prudent steps, when you begin distribution of Opaque ! copies in quantity, to ensure that this Transparent copy will ! remain thus accessible at the stated location until at least one ! year after the last time you distribute an Opaque copy (directly or ! through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of copies, ! to give them a chance to provide you with an updated version of the ! Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with the ! Modified Version filling the role of the Document, thus licensing ! distribution and modification of the Modified Version to whoever ! possesses a copy of it. In addition, you must do these things in ! the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of previous ! versions (which should, if there were any, be listed in the ! History section of the Document). You may use the same title ! as a previous version if the original publisher of that ! version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in --- 16530,16569 ---- adjacent pages. If you publish or distribute Opaque copies of the Document ! numbering more than 100, you must either include a ! machine-readable Transparent copy along with each Opaque copy, or ! state in or with each Opaque copy a computer-network location from ! which the general network-using public has access to download ! using public-standard network protocols a complete Transparent ! copy of the Document, free of added material. If you use the ! latter option, you must take reasonably prudent steps, when you ! begin distribution of Opaque copies in quantity, to ensure that ! this Transparent copy will remain thus accessible at the stated ! location until at least one year after the last time you ! distribute an Opaque copy (directly or through your agents or ! retailers) of that edition to the public. It is requested, but not required, that you contact the authors of ! the Document well before redistributing any large number of ! copies, to give them a chance to provide you with an updated ! version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you ! release the Modified Version under precisely this License, with ! the Modified Version filling the role of the Document, thus ! licensing distribution and modification of the Modified Version to ! whoever possesses a copy of it. In addition, you must do these ! things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title ! distinct from that of the Document, and from those of ! previous versions (which should, if there were any, be listed ! in the History section of the Document). You may use the ! same title as a previous version if the original publisher of ! that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in *************** GNU Free Documentation License *** 16370,16399 **** I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on the ! Title Page. If there is no section Entitled "History" in the ! Document, create one stating the title, year, authors, and ! publisher of the Document as given on its Title Page, then add ! an item describing the Modified Version as stated in the ! previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in the ! "History" section. You may omit a network location for a work ! that was published at least four years before the Document ! itself, or if the original publisher of the version it refers ! to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the section ! all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, unaltered ! in their text and in their titles. Section numbers or the ! equivalent are not considered part of the section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. --- 16593,16623 ---- I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new ! authors, and publisher of the Modified Version as given on ! the Title Page. If there is no section Entitled "History" in ! the Document, create one stating the title, year, authors, ! and publisher of the Document as given on its Title Page, ! then add an item describing the Modified Version as stated in ! the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for ! previous versions it was based on. These may be placed in ! the "History" section. You may omit a network location for a ! work that was published at least four years before the ! Document itself, or if the original publisher of the version ! it refers to gives permission. K. For any section Entitled "Acknowledgements" or "Dedications", ! Preserve the Title of the section, and preserve in the ! section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. ! L. Preserve all the Invariant Sections of the Document, ! unaltered in their text and in their titles. Section numbers ! or the equivalent are not considered part of the section ! titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified Version. *************** GNU Free Documentation License *** 16406,16416 **** If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option designate ! some or all of these sections as invariant. To do this, add their ! titles to the list of Invariant Sections in the Modified Version's ! license notice. These titles must be distinct from any other ! section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various --- 16630,16640 ---- If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no ! material copied from the Document, you may at your option ! designate some or all of these sections as invariant. To do this, ! add their titles to the list of Invariant Sections in the Modified ! Version's license notice. These titles must be distinct from any ! other section titles. You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various *************** GNU Free Documentation License *** 16419,16433 **** definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end of ! the list of Cover Texts in the Modified Version. Only one passage ! of Front-Cover Text and one of Back-Cover Text may be added by (or ! through arrangements made by) any one entity. If the Document ! already includes a cover text for the same cover, previously added ! by you or by arrangement made by the same entity you are acting on ! behalf of, you may not add another; but you may replace the old ! one, on explicit permission from the previous publisher that added ! the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to --- 16643,16657 ---- definition of a standard. You may add a passage of up to five words as a Front-Cover Text, ! and a passage of up to 25 words as a Back-Cover Text, to the end ! of the list of Cover Texts in the Modified Version. Only one ! passage of Front-Cover Text and one of Back-Cover Text may be ! added by (or through arrangements made by) any one entity. If the ! Document already includes a cover text for the same cover, ! previously added by you or by arrangement made by the same entity ! you are acting on behalf of, you may not add another; but you may ! replace the old one, on explicit permission from the previous ! publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to *************** GNU Free Documentation License *** 16437,16444 **** You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination all ! of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. --- 16661,16668 ---- You may combine the Document with other documents released under this License, under the terms defined in section 4 above for ! modified versions, provided that you include in the combination ! all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers. *************** GNU Free Documentation License *** 16465,16484 **** documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the documents ! in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow this ! License in all other respects regarding verbatim copying of that ! document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of a ! storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this --- 16689,16708 ---- documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the ! rules of this License for verbatim copying of each of the ! documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert ! a copy of this License into the extracted document, and follow ! this License in all other respects regarding verbatim copying of ! that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other ! separate and independent documents or works, in or on a volume of ! a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is included in an aggregate, this *************** GNU Free Documentation License *** 16523,16530 **** However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly and ! finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. --- 16747,16754 ---- However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) ! provisionally, unless and until the copyright holder explicitly ! and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. *************** GNU Free Documentation License *** 16536,16568 **** after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from you ! under this License. If your rights have been terminated and not ! permanently reinstated, receipt of a copy of some or all of the ! same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! . Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If the ! Document does not specify a version number of this License, you may ! choose any version ever published (not as a draft) by the Free ! Software Foundation. If the Document specifies that a proxy can ! decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also --- 16760,16792 ---- after your receipt of the notice. Termination of your rights under this section does not terminate ! the licenses of parties who have received copies or rights from ! you under this License. If your rights have been terminated and ! not permanently reinstated, receipt of a copy of some or all of ! the same material does not give you any rights to use it. ! 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See ! `http://www.gnu.org/copyleft/'. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been ! published (not as a draft) by the Free Software Foundation. If ! the Document does not specify a version number of this License, ! you may choose any version ever published (not as a draft) by the ! Free Software Foundation. If the Document specifies that a proxy ! can decide which future versions of this License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Document. ! 11. RELICENSING "Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes copyrightable works and also *************** GNU Free Documentation License *** 16592,16597 **** --- 16816,16822 ---- site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing. + ADDENDUM: How to use this License for your documents ==================================================== *************** notices just after the title page: *** 16608,16614 **** Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts --- 16833,16839 ---- Free Documentation License''. If you have Invariant Sections, Front-Cover Texts and Back-Cover ! Texts, replace the "with...Texts." line with this: with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts *************** combination of the three, merge those tw *** 16619,16627 **** situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of free ! software license, such as the GNU General Public License, to permit ! their use in free software.  File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top --- 16844,16852 ---- situation. If your document contains nontrivial examples of program code, we ! recommend releasing these examples in parallel under your choice of ! free software license, such as the GNU General Public License, to ! permit their use in free software.  File: gfortran.info, Node: Funding, Next: Option Index, Prev: GNU Free Documentation License, Up: Top *************** for comparison. *** 16651,16658 **** Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. If ! the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful --- 16876,16883 ---- Even a precise fraction "of the profits from this disk" is not very meaningful, since creative accounting and unrelated business decisions ! can greatly alter what fraction of the sales price counts as profit. ! If the price you pay is $50, ten percent of the profit is probably less than a dollar; it might be a few cents, or nothing at all. Some redistributors do development work themselves. This is useful *************** difference than others. For example, ma *** 16662,16669 **** a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection contribute ! more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can --- 16887,16894 ---- a program contributes very little; maintaining the standard version of a program for the whole community contributes much. Easy new ports contribute little, since someone else would surely do them; difficult ! ports such as adding a new CPU to the GNU Compiler Collection ! contribute more; major new features or packages contribute the most. By establishing the idea that supporting further development is "the proper thing to do" when distributing free software for a fee, we can *************** File: gfortran.info, Node: Option Index *** 16679,16902 **** Option Index ************ ! 'gfortran''s command line options are indexed here without any initial ! '-' or '--'. Where an option has both positive and negative forms (such ! as -foption and -fno-option), relevant entries in the manual are indexed ! under the most appropriate form; it may sometimes be useful to look up ! both forms. [index] * Menu: ! * 'A-PREDICATE=ANSWER': Preprocessing Options. ! (line 119) ! * 'APREDICATE=ANSWER': Preprocessing Options. ! (line 113) ! * 'backslash': Fortran Dialect Options. (line 40) ! * 'C': Preprocessing Options. ! (line 122) ! * 'CC': Preprocessing Options. ! (line 137) ! * 'cpp': Preprocessing Options. (line 12) ! * 'dD': Preprocessing Options. (line 35) ! * 'dI': Preprocessing Options. (line 51) ! * 'dM': Preprocessing Options. (line 26) ! * 'dN': Preprocessing Options. (line 41) ! * 'DNAME': Preprocessing Options. ! (line 151) ! * 'DNAME=DEFINITION': Preprocessing Options. ! (line 154) ! * 'dU': Preprocessing Options. (line 44) ! * 'faggressive-function-elimination': Code Gen Options. (line 340) ! * 'falign-commons': Code Gen Options. (line 313) ! * 'fall-intrinsics': Fortran Dialect Options. (line 17) ! * 'fblas-matmul-limit': Code Gen Options. (line 268) ! * 'fbounds-check': Code Gen Options. (line 192) ! * 'fcheck': Code Gen Options. (line 142) ! * 'fcheck-array-temporaries': Code Gen Options. (line 195) ! * 'fcoarray': Code Gen Options. (line 128) ! * 'fconvert='CONVERSION: Runtime Options. (line 10) ! * 'fcray-pointer': Fortran Dialect Options. (line 86) ! * 'fd-lines-as-code': Fortran Dialect Options. (line 27) ! * 'fd-lines-as-comments': Fortran Dialect Options. (line 27) ! * 'fdefault-double-8': Fortran Dialect Options. (line 124) ! * 'fdefault-integer-8': Fortran Dialect Options. (line 110) ! * 'fdefault-real-8': Fortran Dialect Options. (line 116) ! * 'fdollar-ok': Fortran Dialect Options. (line 34) ! * 'fdump-fortran-optimized': Debugging Options. (line 15) ! * 'fdump-fortran-original': Debugging Options. (line 10) ! * 'fdump-parse-tree': Debugging Options. (line 19) ! * 'fexternal-blas': Code Gen Options. (line 260) * ff2c: Code Gen Options. (line 25) ! * 'ffixed-line-length-'N: Fortran Dialect Options. (line 57) ! * 'ffpe-summary='LIST: Debugging Options. (line 51) ! * 'ffpe-trap='LIST: Debugging Options. (line 25) ! * 'ffree-form': Fortran Dialect Options. (line 11) ! * 'ffree-line-length-'N: Fortran Dialect Options. (line 70) ! * 'fimplicit-none': Fortran Dialect Options. (line 81) ! * 'finit-character': Code Gen Options. (line 288) ! * 'finit-integer': Code Gen Options. (line 288) ! * 'finit-local-zero': Code Gen Options. (line 288) ! * 'finit-logical': Code Gen Options. (line 288) ! * 'finit-real': Code Gen Options. (line 288) ! * 'finteger-4-integer-8': Fortran Dialect Options. (line 133) ! * 'fintrinsic-modules-path' DIR: Directory Options. (line 36) ! * 'fmax-array-constructor': Code Gen Options. (line 198) ! * 'fmax-errors='N: Error and Warning Options. (line 27) ! * 'fmax-identifier-length='N: Fortran Dialect Options. (line 77) ! * 'fmax-stack-var-size': Code Gen Options. (line 216) ! * 'fmax-subrecord-length='LENGTH: Runtime Options. (line 29) ! * 'fmodule-private': Fortran Dialect Options. (line 52) ! * 'fno-automatic': Code Gen Options. (line 15) ! * 'fno-backtrace': Debugging Options. (line 61) ! * 'fno-fixed-form': Fortran Dialect Options. (line 11) ! * 'fno-protect-parens': Code Gen Options. (line 325) ! * 'fno-underscoring': Code Gen Options. (line 54) ! * 'fopenmp': Fortran Dialect Options. (line 90) ! * 'fpack-derived': Code Gen Options. (line 238) ! * 'fpp': Preprocessing Options. (line 12) ! * 'frange-check': Fortran Dialect Options. (line 98) ! * 'freal-4-real-10': Fortran Dialect Options. ! (line 148) ! * 'freal-4-real-16': Fortran Dialect Options. ! (line 148) ! * 'freal-4-real-8': Fortran Dialect Options. ! (line 148) ! * 'freal-8-real-10': Fortran Dialect Options. ! (line 148) ! * 'freal-8-real-16': Fortran Dialect Options. ! (line 148) ! * 'freal-8-real-4': Fortran Dialect Options. ! (line 148) ! * 'frealloc-lhs': Code Gen Options. (line 334) ! * 'frecord-marker='LENGTH: Runtime Options. (line 21) ! * 'frecursive': Code Gen Options. (line 279) ! * 'frepack-arrays': Code Gen Options. (line 244) ! * 'frontend-optimize': Code Gen Options. (line 348) ! * 'fsecond-underscore': Code Gen Options. (line 111) ! * 'fshort-enums': Code Gen Options. (line 254) ! * 'fshort-enums' <1>: Fortran 2003 status. (line 93) ! * 'fsign-zero': Runtime Options. (line 34) ! * 'fstack-arrays': Code Gen Options. (line 230) ! * 'fsyntax-only': Error and Warning Options. (line 33) ! * 'fworking-directory': Preprocessing Options. (line 55) ! * 'H': Preprocessing Options. ! (line 174) ! * 'I'DIR: Directory Options. (line 14) ! * 'idirafter DIR': Preprocessing Options. ! (line 69) ! * 'imultilib DIR': Preprocessing Options. ! (line 76) ! * 'iprefix PREFIX': Preprocessing Options. ! (line 80) ! * 'iquote DIR': Preprocessing Options. ! (line 89) ! * 'isysroot DIR': Preprocessing Options. ! (line 85) ! * 'isystem DIR': Preprocessing Options. ! (line 96) ! * 'J'DIR: Directory Options. (line 29) ! * 'M'DIR: Directory Options. (line 29) ! * 'nostdinc': Preprocessing Options. ! (line 104) ! * 'P': Preprocessing Options. ! (line 179) ! * 'pedantic': Error and Warning Options. (line 38) ! * 'pedantic-errors': Error and Warning Options. (line 57) ! * 'static-libgfortran': Link Options. (line 11) ! * 'std='STD option: Fortran Dialect Options. ! (line 159) ! * 'UNAME': Preprocessing Options. ! (line 185) ! * 'undef': Preprocessing Options. ! (line 109) ! * 'Waliasing': Error and Warning Options. (line 69) ! * 'Walign-commons': Error and Warning Options. (line 198) ! * 'Wall': Error and Warning Options. (line 61) ! * 'Wampersand': Error and Warning Options. (line 86) ! * 'Warray-temporaries': Error and Warning Options. (line 94) ! * 'Wc-binding-type': Error and Warning Options. (line 99) ! * 'Wcharacter-truncation': Error and Warning Options. (line 106) ! * 'Wcompare-reals': Error and Warning Options. ! (line 225) ! * 'Wconversion': Error and Warning Options. (line 113) ! * 'Wconversion-extra': Error and Warning Options. (line 117) ! * 'Werror': Error and Warning Options. ! (line 237) ! * 'Wextra': Error and Warning Options. (line 120) ! * 'Wfunction-elimination': Error and Warning Options. (line 204) ! * 'Wimplicit-interface': Error and Warning Options. (line 125) ! * 'Wimplicit-procedure': Error and Warning Options. (line 131) ! * 'Wintrinsic-shadow': Error and Warning Options. (line 180) ! * 'Wintrinsics-std': Error and Warning Options. (line 135) ! * 'Wline-truncation': Error and Warning Options. (line 109) ! * 'Wreal-q-constant': Error and Warning Options. (line 142) ! * 'Wrealloc-lhs': Error and Warning Options. (line 208) ! * 'Wrealloc-lhs-all': Error and Warning Options. ! (line 220) ! * 'Wsurprising': Error and Warning Options. (line 146) ! * 'Wtabs': Error and Warning Options. (line 168) ! * 'Wtargt-lifetime': Error and Warning Options. ! (line 229) ! * 'Wunderflow': Error and Warning Options. (line 176) ! * 'Wunused-dummy-argument': Error and Warning Options. (line 187) ! * 'Wunused-parameter': Error and Warning Options. (line 191) ! * 'Wzerotrip': Error and Warning Options. ! (line 233)  File: gfortran.info, Node: Keyword Index, Prev: Option Index, Up: Top --- 16904,17127 ---- Option Index ************ ! `gfortran''s command line options are indexed here without any initial ! `-' or `--'. Where an option has both positive and negative forms ! (such as -foption and -fno-option), relevant entries in the manual are ! indexed under the most appropriate form; it may sometimes be useful to ! look up both forms. [index] * Menu: ! * A-PREDICATE=ANSWER: Preprocessing Options. ! (line 120) ! * APREDICATE=ANSWER: Preprocessing Options. ! (line 114) ! * backslash: Fortran Dialect Options. (line 40) ! * C: Preprocessing Options. ! (line 123) ! * CC: Preprocessing Options. ! (line 138) ! * cpp: Preprocessing Options. (line 12) ! * dD: Preprocessing Options. (line 35) ! * dI: Preprocessing Options. (line 51) ! * dM: Preprocessing Options. (line 26) ! * dN: Preprocessing Options. (line 41) ! * DNAME: Preprocessing Options. ! (line 153) ! * DNAME=DEFINITION: Preprocessing Options. ! (line 156) ! * dU: Preprocessing Options. (line 44) ! * faggressive-function-elimination: Code Gen Options. (line 344) ! * falign-commons: Code Gen Options. (line 317) ! * fall-intrinsics: Fortran Dialect Options. (line 17) ! * fblas-matmul-limit: Code Gen Options. (line 269) ! * fbounds-check: Code Gen Options. (line 193) ! * fcheck: Code Gen Options. (line 144) ! * fcheck-array-temporaries: Code Gen Options. (line 196) ! * fcoarray: Code Gen Options. (line 130) ! * fconvert=CONVERSION: Runtime Options. (line 10) ! * fcray-pointer: Fortran Dialect Options. (line 86) ! * fd-lines-as-code: Fortran Dialect Options. (line 27) ! * fd-lines-as-comments: Fortran Dialect Options. (line 27) ! * fdefault-double-8: Fortran Dialect Options. (line 124) ! * fdefault-integer-8: Fortran Dialect Options. (line 110) ! * fdefault-real-8: Fortran Dialect Options. (line 116) ! * fdollar-ok: Fortran Dialect Options. (line 34) ! * fdump-fortran-optimized: Debugging Options. (line 15) ! * fdump-fortran-original: Debugging Options. (line 10) ! * fdump-parse-tree: Debugging Options. (line 19) ! * fexternal-blas: Code Gen Options. (line 261) * ff2c: Code Gen Options. (line 25) ! * ffixed-line-length-N: Fortran Dialect Options. (line 57) ! * ffpe-summary=LIST: Debugging Options. (line 52) ! * ffpe-trap=LIST: Debugging Options. (line 25) ! * ffree-form: Fortran Dialect Options. (line 11) ! * ffree-line-length-N: Fortran Dialect Options. (line 70) ! * fimplicit-none: Fortran Dialect Options. (line 81) ! * finit-character: Code Gen Options. (line 289) ! * finit-integer: Code Gen Options. (line 289) ! * finit-local-zero: Code Gen Options. (line 289) ! * finit-logical: Code Gen Options. (line 289) ! * finit-real: Code Gen Options. (line 289) ! * finteger-4-integer-8: Fortran Dialect Options. (line 133) ! * fintrinsic-modules-path DIR: Directory Options. (line 36) ! * fmax-array-constructor: Code Gen Options. (line 199) ! * fmax-errors=N: Error and Warning Options. (line 27) ! * fmax-identifier-length=N: Fortran Dialect Options. (line 77) ! * fmax-stack-var-size: Code Gen Options. (line 217) ! * fmax-subrecord-length=LENGTH: Runtime Options. (line 29) ! * fmodule-private: Fortran Dialect Options. (line 52) ! * fno-automatic: Code Gen Options. (line 15) ! * fno-backtrace: Debugging Options. (line 62) ! * fno-fixed-form: Fortran Dialect Options. (line 11) ! * fno-protect-parens: Code Gen Options. (line 329) ! * fno-underscoring: Code Gen Options. (line 54) ! * fopenmp: Fortran Dialect Options. (line 90) ! * fpack-derived: Code Gen Options. (line 239) ! * fpp: Preprocessing Options. (line 12) ! * frange-check: Fortran Dialect Options. (line 98) ! * freal-4-real-10: Fortran Dialect Options. ! (line 149) ! * freal-4-real-16: Fortran Dialect Options. ! (line 149) ! * freal-4-real-8: Fortran Dialect Options. ! (line 149) ! * freal-8-real-10: Fortran Dialect Options. ! (line 149) ! * freal-8-real-16: Fortran Dialect Options. ! (line 149) ! * freal-8-real-4: Fortran Dialect Options. ! (line 149) ! * frealloc-lhs: Code Gen Options. (line 338) ! * frecord-marker=LENGTH: Runtime Options. (line 21) ! * frecursive: Code Gen Options. (line 280) ! * frepack-arrays: Code Gen Options. (line 245) ! * frontend-optimize: Code Gen Options. (line 352) ! * fsecond-underscore: Code Gen Options. (line 113) ! * fshort-enums <1>: Fortran 2003 status. (line 93) ! * fshort-enums: Code Gen Options. (line 255) ! * fsign-zero: Runtime Options. (line 34) ! * fstack-arrays: Code Gen Options. (line 231) ! * fsyntax-only: Error and Warning Options. (line 33) ! * fworking-directory: Preprocessing Options. (line 55) ! * H: Preprocessing Options. ! (line 176) ! * IDIR: Directory Options. (line 14) ! * idirafter DIR: Preprocessing Options. ! (line 70) ! * imultilib DIR: Preprocessing Options. ! (line 77) ! * iprefix PREFIX: Preprocessing Options. ! (line 81) ! * iquote DIR: Preprocessing Options. ! (line 90) ! * isysroot DIR: Preprocessing Options. ! (line 86) ! * isystem DIR: Preprocessing Options. ! (line 97) ! * JDIR: Directory Options. (line 29) ! * MDIR: Directory Options. (line 29) ! * nostdinc: Preprocessing Options. ! (line 105) ! * P: Preprocessing Options. ! (line 181) ! * pedantic: Error and Warning Options. (line 38) ! * pedantic-errors: Error and Warning Options. (line 57) ! * static-libgfortran: Link Options. (line 11) ! * std=STD option: Fortran Dialect Options. ! (line 160) ! * UNAME: Preprocessing Options. ! (line 187) ! * undef: Preprocessing Options. ! (line 110) ! * Waliasing: Error and Warning Options. (line 69) ! * Walign-commons: Error and Warning Options. (line 198) ! * Wall: Error and Warning Options. (line 61) ! * Wampersand: Error and Warning Options. (line 86) ! * Warray-temporaries: Error and Warning Options. (line 94) ! * Wc-binding-type: Error and Warning Options. (line 99) ! * Wcharacter-truncation: Error and Warning Options. (line 106) ! * Wcompare-reals: Error and Warning Options. ! (line 226) ! * Wconversion: Error and Warning Options. (line 113) ! * Wconversion-extra: Error and Warning Options. (line 117) ! * Werror: Error and Warning Options. ! (line 238) ! * Wextra: Error and Warning Options. (line 120) ! * Wfunction-elimination: Error and Warning Options. (line 204) ! * Wimplicit-interface: Error and Warning Options. (line 125) ! * Wimplicit-procedure: Error and Warning Options. (line 131) ! * Wintrinsic-shadow: Error and Warning Options. (line 180) ! * Wintrinsics-std: Error and Warning Options. (line 135) ! * Wline-truncation: Error and Warning Options. (line 109) ! * Wreal-q-constant: Error and Warning Options. (line 142) ! * Wrealloc-lhs: Error and Warning Options. (line 208) ! * Wrealloc-lhs-all: Error and Warning Options. ! (line 221) ! * Wsurprising: Error and Warning Options. (line 146) ! * Wtabs: Error and Warning Options. (line 168) ! * Wtargt-lifetime: Error and Warning Options. ! (line 230) ! * Wunderflow: Error and Warning Options. (line 176) ! * Wunused-dummy-argument: Error and Warning Options. (line 187) ! * Wunused-parameter: Error and Warning Options. (line 191) ! * Wzerotrip: Error and Warning Options. ! (line 234)  File: gfortran.info, Node: Keyword Index, Prev: Option Index, Up: Top *************** Keyword Index *** 16907,16923 **** [index] * Menu: ! * '$': Fortran Dialect Options. (line 34) ! * '%LOC': Argument list functions. (line 6) ! * '%REF': Argument list functions. (line 6) ! * '%VAL': Argument list functions. (line 6) ! * '&': Error and Warning Options. (line 86) ! * '[...]': Fortran 2003 status. (line 78) * _gfortran_set_args: _gfortran_set_args. (line 6) * _gfortran_set_convert: _gfortran_set_convert. (line 6) --- 17132,17148 ---- [index] * Menu: ! * $: Fortran Dialect Options. (line 34) ! * %LOC: Argument list functions. (line 6) ! * %REF: Argument list functions. (line 6) ! * %VAL: Argument list functions. (line 6) ! * &: Error and Warning Options. (line 86) ! * [...]: Fortran 2003 status. (line 78) * _gfortran_set_args: _gfortran_set_args. (line 6) * _gfortran_set_convert: _gfortran_set_convert. (line 6) *************** Keyword Index *** 16932,16943 **** * ABS: ABS. (line 6) * absolute value: ABS. (line 6) * ACCESS: ACCESS. (line 6) ! * 'ACCESS='STREAM'' I/O: Fortran 2003 status. (line 103) * ACHAR: ACHAR. (line 6) * ACOS: ACOS. (line 6) * ACOSH: ACOSH. (line 6) - * adjust string: ADJUSTL. (line 6) * adjust string <1>: ADJUSTR. (line 6) * ADJUSTL: ADJUSTL. (line 6) * ADJUSTR: ADJUSTR. (line 6) * AIMAG: AIMAG. (line 6) --- 17157,17168 ---- * ABS: ABS. (line 6) * absolute value: ABS. (line 6) * ACCESS: ACCESS. (line 6) ! * ACCESS='STREAM' I/O: Fortran 2003 status. (line 105) * ACHAR: ACHAR. (line 6) * ACOS: ACOS. (line 6) * ACOSH: ACOSH. (line 6) * adjust string <1>: ADJUSTR. (line 6) + * adjust string: ADJUSTL. (line 6) * ADJUSTL: ADJUSTL. (line 6) * ADJUSTR: ADJUSTR. (line 6) * AIMAG: AIMAG. (line 6) *************** Keyword Index *** 16946,16961 **** * ALGAMA: LOG_GAMMA. (line 6) * aliasing: Error and Warning Options. (line 69) ! * alignment of 'COMMON' blocks: Error and Warning Options. (line 198) - * alignment of 'COMMON' blocks <1>: Code Gen Options. (line 313) * ALL: ALL. (line 6) * all warnings: Error and Warning Options. (line 61) ! * 'ALLOCATABLE' components of derived types: Fortran 2003 status. ! (line 101) ! * 'ALLOCATABLE' dummy arguments: Fortran 2003 status. (line 99) ! * 'ALLOCATABLE' function results: Fortran 2003 status. (line 100) * ALLOCATED: ALLOCATED. (line 6) * allocation, moving: MOVE_ALLOC. (line 6) * allocation, status: ALLOCATED. (line 6) --- 17171,17186 ---- * ALGAMA: LOG_GAMMA. (line 6) * aliasing: Error and Warning Options. (line 69) ! * alignment of COMMON blocks <1>: Code Gen Options. (line 317) ! * alignment of COMMON blocks: Error and Warning Options. (line 198) * ALL: ALL. (line 6) * all warnings: Error and Warning Options. (line 61) ! * ALLOCATABLE components of derived types: Fortran 2003 status. ! (line 103) ! * ALLOCATABLE dummy arguments: Fortran 2003 status. (line 99) ! * ALLOCATABLE function results: Fortran 2003 status. (line 101) * ALLOCATED: ALLOCATED. (line 6) * allocation, moving: MOVE_ALLOC. (line 6) * allocation, status: ALLOCATED. (line 6) *************** Keyword Index *** 16974,16995 **** * area hyperbolic tangent: ATANH. (line 6) * argument list functions: Argument list functions. (line 6) ! * arguments, to program: COMMAND_ARGUMENT_COUNT. (line 6) ! * arguments, to program <1>: GETARG. (line 6) ! * arguments, to program <2>: GET_COMMAND. (line 6) ! * arguments, to program <3>: GET_COMMAND_ARGUMENT. (line 6) - * arguments, to program <4>: IARGC. (line 6) * array, add elements: SUM. (line 6) * array, AND: IALL. (line 6) - * array, apply condition: ALL. (line 6) * array, apply condition <1>: ANY. (line 6) ! * array, bounds checking: Code Gen Options. (line 142) * array, change dimensions: RESHAPE. (line 6) * array, combine arrays: MERGE. (line 6) - * array, condition testing: ALL. (line 6) * array, condition testing <1>: ANY. (line 6) * array, conditionally add elements: SUM. (line 6) * array, conditionally count elements: COUNT. (line 6) * array, conditionally multiply elements: PRODUCT. (line 6) --- 17199,17220 ---- * area hyperbolic tangent: ATANH. (line 6) * argument list functions: Argument list functions. (line 6) ! * arguments, to program <1>: IARGC. (line 6) ! * arguments, to program <2>: GET_COMMAND_ARGUMENT. (line 6) ! * arguments, to program <3>: GET_COMMAND. (line 6) ! * arguments, to program <4>: GETARG. (line 6) ! * arguments, to program: COMMAND_ARGUMENT_COUNT. (line 6) * array, add elements: SUM. (line 6) * array, AND: IALL. (line 6) * array, apply condition <1>: ANY. (line 6) ! * array, apply condition: ALL. (line 6) ! * array, bounds checking: Code Gen Options. (line 144) * array, change dimensions: RESHAPE. (line 6) * array, combine arrays: MERGE. (line 6) * array, condition testing <1>: ANY. (line 6) + * array, condition testing: ALL. (line 6) * array, conditionally add elements: SUM. (line 6) * array, conditionally count elements: COUNT. (line 6) * array, conditionally multiply elements: PRODUCT. (line 6) *************** Keyword Index *** 16999,17006 **** * array, duplicate elements: SPREAD. (line 6) * array, element counting: COUNT. (line 6) * array, gather elements: PACK. (line 6) - * array, increase dimension: SPREAD. (line 6) * array, increase dimension <1>: UNPACK. (line 6) * array, indices of type real: Real array indices. (line 6) * array, location of maximum element: MAXLOC. (line 6) * array, location of minimum element: MINLOC. (line 6) --- 17224,17231 ---- * array, duplicate elements: SPREAD. (line 6) * array, element counting: COUNT. (line 6) * array, gather elements: PACK. (line 6) * array, increase dimension <1>: UNPACK. (line 6) + * array, increase dimension: SPREAD. (line 6) * array, indices of type real: Real array indices. (line 6) * array, location of maximum element: MAXLOC. (line 6) * array, location of minimum element: MINLOC. (line 6) *************** Keyword Index *** 17009,17016 **** * array, merge arrays: MERGE. (line 6) * array, minimum value: MINVAL. (line 6) * array, multiply elements: PRODUCT. (line 6) - * array, number of elements: COUNT. (line 6) * array, number of elements <1>: SIZE. (line 6) * array, OR: IANY. (line 6) * array, packing: PACK. (line 6) * array, parity: IPARITY. (line 6) --- 17234,17241 ---- * array, merge arrays: MERGE. (line 6) * array, minimum value: MINVAL. (line 6) * array, multiply elements: PRODUCT. (line 6) * array, number of elements <1>: SIZE. (line 6) + * array, number of elements: COUNT. (line 6) * array, OR: IANY. (line 6) * array, packing: PACK. (line 6) * array, parity: IPARITY. (line 6) *************** Keyword Index *** 17029,17036 **** * array, unpacking: UNPACK. (line 6) * array, upper bound: UBOUND. (line 6) * array, XOR: IPARITY. (line 6) - * ASCII collating sequence: ACHAR. (line 6) * ASCII collating sequence <1>: IACHAR. (line 6) * ASIN: ASIN. (line 6) * ASINH: ASINH. (line 6) * ASSOCIATED: ASSOCIATED. (line 6) --- 17254,17261 ---- * array, unpacking: UNPACK. (line 6) * array, upper bound: UBOUND. (line 6) * array, XOR: IPARITY. (line 6) * ASCII collating sequence <1>: IACHAR. (line 6) + * ASCII collating sequence: ACHAR. (line 6) * ASIN: ASIN. (line 6) * ASINH: ASINH. (line 6) * ASSOCIATED: ASSOCIATED. (line 6) *************** Keyword Index *** 17046,17064 **** * Authors: Contributors. (line 6) * backslash: Fortran Dialect Options. (line 40) * BACKTRACE: BACKTRACE. (line 6) ! * backtrace: Debugging Options. (line 61) ! * backtrace <1>: BACKTRACE. (line 6) * base 10 logarithm function: LOG10. (line 6) * BESJ0: BESSEL_J0. (line 6) * BESJ1: BESSEL_J1. (line 6) * BESJN: BESSEL_JN. (line 6) * Bessel function, first kind: BESSEL_J0. (line 6) ! * Bessel function, first kind <1>: BESSEL_J1. (line 6) ! * Bessel function, first kind <2>: BESSEL_JN. (line 6) * Bessel function, second kind: BESSEL_Y0. (line 6) - * Bessel function, second kind <1>: BESSEL_Y1. (line 6) - * Bessel function, second kind <2>: BESSEL_YN. (line 6) * BESSEL_J0: BESSEL_J0. (line 6) * BESSEL_J1: BESSEL_J1. (line 6) * BESSEL_JN: BESSEL_JN. (line 6) --- 17271,17289 ---- * Authors: Contributors. (line 6) * backslash: Fortran Dialect Options. (line 40) + * backtrace: BACKTRACE. (line 6) * BACKTRACE: BACKTRACE. (line 6) ! * backtrace: Debugging Options. (line 62) * base 10 logarithm function: LOG10. (line 6) * BESJ0: BESSEL_J0. (line 6) * BESJ1: BESSEL_J1. (line 6) * BESJN: BESSEL_JN. (line 6) + * Bessel function, first kind <1>: BESSEL_JN. (line 6) + * Bessel function, first kind <2>: BESSEL_J1. (line 6) * Bessel function, first kind: BESSEL_J0. (line 6) ! * Bessel function, second kind <1>: BESSEL_YN. (line 6) ! * Bessel function, second kind <2>: BESSEL_Y1. (line 6) * Bessel function, second kind: BESSEL_Y0. (line 6) * BESSEL_J0: BESSEL_J0. (line 6) * BESSEL_J1: BESSEL_J1. (line 6) * BESSEL_JN: BESSEL_JN. (line 6) *************** Keyword Index *** 17070,17117 **** * BESYN: BESSEL_YN. (line 6) * BGE: BGE. (line 6) * BGT: BGT. (line 6) - * binary representation: POPCNT. (line 6) * binary representation <1>: POPPAR. (line 6) * bits set: POPCNT. (line 6) * bits, AND of array elements: IALL. (line 6) * bits, clear: IBCLR. (line 6) * bits, extract: IBITS. (line 6) * bits, get: IBITS. (line 6) * bits, merge: MERGE_BITS. (line 6) - * bits, move: MVBITS. (line 6) * bits, move <1>: TRANSFER. (line 6) * bits, negate: NOT. (line 6) * bits, number of: BIT_SIZE. (line 6) * bits, OR of array elements: IANY. (line 6) * bits, set: IBSET. (line 6) * bits, shift: ISHFT. (line 6) * bits, shift circular: ISHFTC. (line 6) - * bits, shift left: LSHIFT. (line 6) * bits, shift left <1>: SHIFTL. (line 6) * bits, shift right: RSHIFT. (line 6) - * bits, shift right <1>: SHIFTA. (line 6) - * bits, shift right <2>: SHIFTR. (line 6) * bits, testing: BTEST. (line 6) * bits, unset: IBCLR. (line 6) * bits, XOR of array elements: IPARITY. (line 6) ! * bitwise comparison: BGE. (line 6) ! * bitwise comparison <1>: BGT. (line 6) * bitwise comparison <2>: BLE. (line 6) ! * bitwise comparison <3>: BLT. (line 6) ! * bitwise logical and: AND. (line 6) * bitwise logical and <1>: IAND. (line 6) ! * bitwise logical exclusive or: IEOR. (line 6) * bitwise logical exclusive or <1>: XOR. (line 6) * bitwise logical not: NOT. (line 6) - * bitwise logical or: IOR. (line 6) * bitwise logical or <1>: OR. (line 6) ! * BIT_SIZE: BIT_SIZE. (line 6) * BLE: BLE. (line 6) * BLT: BLT. (line 6) ! * bounds checking: Code Gen Options. (line 142) * BOZ literal constants: BOZ literal constants. (line 6) * BTEST: BTEST. (line 6) * CABS: ABS. (line 6) * calling convention: Code Gen Options. (line 25) * CCOS: COS. (line 6) --- 17295,17348 ---- * BESYN: BESSEL_YN. (line 6) * BGE: BGE. (line 6) * BGT: BGT. (line 6) * binary representation <1>: POPPAR. (line 6) + * binary representation: POPCNT. (line 6) + * BIT_SIZE: BIT_SIZE. (line 6) * bits set: POPCNT. (line 6) * bits, AND of array elements: IALL. (line 6) * bits, clear: IBCLR. (line 6) * bits, extract: IBITS. (line 6) * bits, get: IBITS. (line 6) * bits, merge: MERGE_BITS. (line 6) * bits, move <1>: TRANSFER. (line 6) + * bits, move: MVBITS. (line 6) * bits, negate: NOT. (line 6) * bits, number of: BIT_SIZE. (line 6) * bits, OR of array elements: IANY. (line 6) * bits, set: IBSET. (line 6) * bits, shift: ISHFT. (line 6) * bits, shift circular: ISHFTC. (line 6) * bits, shift left <1>: SHIFTL. (line 6) + * bits, shift left: LSHIFT. (line 6) + * bits, shift right <1>: SHIFTR. (line 6) + * bits, shift right <2>: SHIFTA. (line 6) * bits, shift right: RSHIFT. (line 6) * bits, testing: BTEST. (line 6) * bits, unset: IBCLR. (line 6) * bits, XOR of array elements: IPARITY. (line 6) ! * bitwise comparison <1>: BLT. (line 6) * bitwise comparison <2>: BLE. (line 6) ! * bitwise comparison <3>: BGT. (line 6) ! * bitwise comparison: BGE. (line 6) * bitwise logical and <1>: IAND. (line 6) ! * bitwise logical and: AND. (line 6) * bitwise logical exclusive or <1>: XOR. (line 6) + * bitwise logical exclusive or: IEOR. (line 6) * bitwise logical not: NOT. (line 6) * bitwise logical or <1>: OR. (line 6) ! * bitwise logical or: IOR. (line 6) * BLE: BLE. (line 6) * BLT: BLT. (line 6) ! * bounds checking: Code Gen Options. (line 144) * BOZ literal constants: BOZ literal constants. (line 6) * BTEST: BTEST. (line 6) + * C_ASSOCIATED: C_ASSOCIATED. (line 6) + * C_F_POINTER: C_F_POINTER. (line 6) + * C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6) + * C_FUNLOC: C_FUNLOC. (line 6) + * C_LOC: C_LOC. (line 6) + * C_SIZEOF: C_SIZEOF. (line 6) * CABS: ABS. (line 6) * calling convention: Code Gen Options. (line 25) * CCOS: COS. (line 6) *************** Keyword Index *** 17121,17169 **** * CDLOG: LOG. (line 6) * CDSIN: SIN. (line 6) * CDSQRT: SQRT. (line 6) * CEILING: CEILING. (line 6) * ceiling: ANINT. (line 6) - * ceiling <1>: CEILING. (line 6) * CEXP: EXP. (line 6) * CHAR: CHAR. (line 6) * character kind: SELECTED_CHAR_KIND. (line 6) * character set: Fortran Dialect Options. (line 34) * CHDIR: CHDIR. (line 6) ! * checking array temporaries: Code Gen Options. (line 142) ! * checking subscripts: Code Gen Options. (line 142) * CHMOD: CHMOD. (line 6) * clock ticks: MCLOCK. (line 6) - * clock ticks <1>: MCLOCK8. (line 6) - * clock ticks <2>: SYSTEM_CLOCK. (line 6) * CLOG: LOG. (line 6) * CMPLX: CMPLX. (line 6) ! * coarray, 'IMAGE_INDEX': IMAGE_INDEX. (line 6) * coarray, lower bound: LCOBOUND. (line 6) ! * coarray, 'NUM_IMAGES': NUM_IMAGES. (line 6) ! * coarray, 'THIS_IMAGE': THIS_IMAGE. (line 6) * coarray, upper bound: UCOBOUND. (line 6) ! * coarrays: Code Gen Options. (line 128) * code generation, conventions: Code Gen Options. (line 6) - * collating sequence, ASCII: ACHAR. (line 6) * collating sequence, ASCII <1>: IACHAR. (line 6) * command line: EXECUTE_COMMAND_LINE. (line 6) * command options: Invoking GNU Fortran. (line 6) ! * command-line arguments: COMMAND_ARGUMENT_COUNT. (line 6) ! * command-line arguments <1>: GETARG. (line 6) ! * command-line arguments <2>: GET_COMMAND. (line 6) ! * command-line arguments <3>: GET_COMMAND_ARGUMENT. (line 6) ! * command-line arguments <4>: IARGC. (line 6) * command-line arguments, number of: COMMAND_ARGUMENT_COUNT. (line 6) - * command-line arguments, number of <1>: IARGC. (line 6) * COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT. (line 6) ! * 'COMMON': Volatile COMMON blocks. (line 6) * compiler flags inquiry function: COMPILER_OPTIONS. (line 6) * compiler, name and version: COMPILER_VERSION. (line 6) --- 17352,17400 ---- * CDLOG: LOG. (line 6) * CDSIN: SIN. (line 6) * CDSQRT: SQRT. (line 6) + * ceiling: CEILING. (line 6) * CEILING: CEILING. (line 6) * ceiling: ANINT. (line 6) * CEXP: EXP. (line 6) * CHAR: CHAR. (line 6) * character kind: SELECTED_CHAR_KIND. (line 6) * character set: Fortran Dialect Options. (line 34) * CHDIR: CHDIR. (line 6) ! * checking array temporaries: Code Gen Options. (line 144) ! * checking subscripts: Code Gen Options. (line 144) * CHMOD: CHMOD. (line 6) + * clock ticks <1>: SYSTEM_CLOCK. (line 6) + * clock ticks <2>: MCLOCK8. (line 6) * clock ticks: MCLOCK. (line 6) * CLOG: LOG. (line 6) * CMPLX: CMPLX. (line 6) ! * coarray, IMAGE_INDEX: IMAGE_INDEX. (line 6) * coarray, lower bound: LCOBOUND. (line 6) ! * coarray, NUM_IMAGES: NUM_IMAGES. (line 6) ! * coarray, THIS_IMAGE: THIS_IMAGE. (line 6) * coarray, upper bound: UCOBOUND. (line 6) ! * coarrays: Code Gen Options. (line 130) * code generation, conventions: Code Gen Options. (line 6) * collating sequence, ASCII <1>: IACHAR. (line 6) + * collating sequence, ASCII: ACHAR. (line 6) * command line: EXECUTE_COMMAND_LINE. (line 6) * command options: Invoking GNU Fortran. (line 6) ! * command-line arguments <1>: IARGC. (line 6) ! * command-line arguments <2>: GET_COMMAND_ARGUMENT. (line 6) ! * command-line arguments <3>: GET_COMMAND. (line 6) ! * command-line arguments <4>: GETARG. (line 6) ! * command-line arguments: COMMAND_ARGUMENT_COUNT. (line 6) ! * command-line arguments, number of <1>: IARGC. (line 6) * command-line arguments, number of: COMMAND_ARGUMENT_COUNT. (line 6) * COMMAND_ARGUMENT_COUNT: COMMAND_ARGUMENT_COUNT. (line 6) ! * COMMON: Volatile COMMON blocks. (line 6) * compiler flags inquiry function: COMPILER_OPTIONS. (line 6) * compiler, name and version: COMPILER_VERSION. (line 6) *************** Keyword Index *** 17173,17184 **** * complex conjugate: CONJG. (line 6) * Complex function: Alternate complex function syntax. (line 6) * complex numbers, conversion to: CMPLX. (line 6) - * complex numbers, conversion to <1>: COMPLEX. (line 6) - * complex numbers, conversion to <2>: DCMPLX. (line 6) * complex numbers, imaginary part: AIMAG. (line 6) - * complex numbers, real part: DREAL. (line 6) * complex numbers, real part <1>: REAL. (line 6) * Conditional compilation: Preprocessing and conditional compilation. (line 6) * CONJG: CONJG. (line 6) --- 17404,17415 ---- * complex conjugate: CONJG. (line 6) * Complex function: Alternate complex function syntax. (line 6) + * complex numbers, conversion to <1>: DCMPLX. (line 6) + * complex numbers, conversion to <2>: COMPLEX. (line 6) * complex numbers, conversion to: CMPLX. (line 6) * complex numbers, imaginary part: AIMAG. (line 6) * complex numbers, real part <1>: REAL. (line 6) + * complex numbers, real part: DREAL. (line 6) * Conditional compilation: Preprocessing and conditional compilation. (line 6) * CONJG: CONJG. (line 6) *************** Keyword Index *** 17188,17214 **** * Contributors: Contributors. (line 6) * conversion: Error and Warning Options. (line 113) - * conversion <1>: Error and Warning Options. - (line 117) * conversion, to character: CHAR. (line 6) * conversion, to complex: CMPLX. (line 6) ! * conversion, to complex <1>: COMPLEX. (line 6) ! * conversion, to complex <2>: DCMPLX. (line 6) * conversion, to integer: Implicitly convert LOGICAL and INTEGER values. (line 6) ! * conversion, to integer <1>: IACHAR. (line 6) ! * conversion, to integer <2>: ICHAR. (line 6) ! * conversion, to integer <3>: INT. (line 6) ! * conversion, to integer <4>: INT2. (line 6) ! * conversion, to integer <5>: INT8. (line 6) ! * conversion, to integer <6>: LONG. (line 6) * conversion, to logical: Implicitly convert LOGICAL and INTEGER values. (line 6) - * conversion, to logical <1>: LOGICAL. (line 6) - * conversion, to real: DBLE. (line 6) * conversion, to real <1>: REAL. (line 6) * conversion, to string: CTIME. (line 6) ! * 'CONVERT' specifier: CONVERT specifier. (line 6) * core, dump: ABORT. (line 6) * COS: COS. (line 6) * COSH: COSH. (line 6) --- 17419,17443 ---- * Contributors: Contributors. (line 6) * conversion: Error and Warning Options. (line 113) * conversion, to character: CHAR. (line 6) + * conversion, to complex <1>: DCMPLX. (line 6) + * conversion, to complex <2>: COMPLEX. (line 6) * conversion, to complex: CMPLX. (line 6) ! * conversion, to integer <1>: LONG. (line 6) ! * conversion, to integer <2>: INT8. (line 6) ! * conversion, to integer <3>: INT2. (line 6) ! * conversion, to integer <4>: INT. (line 6) ! * conversion, to integer <5>: ICHAR. (line 6) ! * conversion, to integer <6>: IACHAR. (line 6) * conversion, to integer: Implicitly convert LOGICAL and INTEGER values. (line 6) ! * conversion, to logical <1>: LOGICAL. (line 6) * conversion, to logical: Implicitly convert LOGICAL and INTEGER values. (line 6) * conversion, to real <1>: REAL. (line 6) + * conversion, to real: DBLE. (line 6) * conversion, to string: CTIME. (line 6) ! * CONVERT specifier: CONVERT specifier. (line 6) * core, dump: ABORT. (line 6) * COS: COS. (line 6) * COSH: COSH. (line 6) *************** Keyword Index *** 17217,17246 **** * cosine, hyperbolic, inverse: ACOSH. (line 6) * cosine, inverse: ACOS. (line 6) * COUNT: COUNT. (line 6) - * CPP: Preprocessing and conditional compilation. - (line 6) * CPP <1>: Preprocessing Options. (line 6) * CPU_TIME: CPU_TIME. (line 6) * Credits: Contributors. (line 6) * CSHIFT: CSHIFT. (line 6) * CSIN: SIN. (line 6) * CSQRT: SQRT. (line 6) * CTIME: CTIME. (line 6) * current date: DATE_AND_TIME. (line 6) ! * current date <1>: FDATE. (line 6) ! * current date <2>: IDATE. (line 6) * current time: DATE_AND_TIME. (line 6) - * current time <1>: FDATE. (line 6) - * current time <2>: ITIME. (line 6) - * current time <3>: TIME. (line 6) - * current time <4>: TIME8. (line 6) - * C_ASSOCIATED: C_ASSOCIATED. (line 6) - * C_FUNLOC: C_FUNLOC. (line 6) - * C_F_POINTER: C_F_POINTER. (line 6) - * C_F_PROCPOINTER: C_F_PROCPOINTER. (line 6) - * C_LOC: C_LOC. (line 6) - * C_SIZEOF: C_SIZEOF. (line 6) * DABS: ABS. (line 6) * DACOS: ACOS. (line 6) * DACOSH: ACOSH. (line 6) --- 17446,17469 ---- * cosine, hyperbolic, inverse: ACOSH. (line 6) * cosine, inverse: ACOS. (line 6) * COUNT: COUNT. (line 6) * CPP <1>: Preprocessing Options. (line 6) + * CPP: Preprocessing and conditional compilation. + (line 6) * CPU_TIME: CPU_TIME. (line 6) * Credits: Contributors. (line 6) * CSHIFT: CSHIFT. (line 6) * CSIN: SIN. (line 6) * CSQRT: SQRT. (line 6) * CTIME: CTIME. (line 6) + * current date <1>: IDATE. (line 6) + * current date <2>: FDATE. (line 6) * current date: DATE_AND_TIME. (line 6) ! * current time <1>: TIME8. (line 6) ! * current time <2>: TIME. (line 6) ! * current time <3>: ITIME. (line 6) ! * current time <4>: FDATE. (line 6) * current time: DATE_AND_TIME. (line 6) * DABS: ABS. (line 6) * DACOS: ACOS. (line 6) * DACOSH: ACOSH. (line 6) *************** Keyword Index *** 17249,17257 **** * DATAN: ATAN. (line 6) * DATAN2: ATAN2. (line 6) * DATANH: ATANH. (line 6) * date, current: DATE_AND_TIME. (line 6) - * date, current <1>: FDATE. (line 6) - * date, current <2>: IDATE. (line 6) * DATE_AND_TIME: DATE_AND_TIME. (line 6) * DBESJ0: BESSEL_J0. (line 6) * DBESJ1: BESSEL_J1. (line 6) --- 17472,17480 ---- * DATAN: ATAN. (line 6) * DATAN2: ATAN2. (line 6) * DATANH: ATANH. (line 6) + * date, current <1>: IDATE. (line 6) + * date, current <2>: FDATE. (line 6) * date, current: DATE_AND_TIME. (line 6) * DATE_AND_TIME: DATE_AND_TIME. (line 6) * DBESJ0: BESSEL_J0. (line 6) * DBESJ1: BESSEL_J1. (line 6) *************** Keyword Index *** 17268,17285 **** * debugging information options: Debugging Options. (line 6) * debugging, preprocessor: Preprocessing Options. (line 26) ! * debugging, preprocessor <1>: Preprocessing Options. ! (line 35) ! * debugging, preprocessor <2>: Preprocessing Options. ! (line 41) ! * debugging, preprocessor <3>: Preprocessing Options. ! (line 44) ! * debugging, preprocessor <4>: Preprocessing Options. ! (line 51) ! * 'DECODE': ENCODE and DECODE statements. (line 6) - * delayed execution: ALARM. (line 6) * delayed execution <1>: SLEEP. (line 6) * DEXP: EXP. (line 6) * DFLOAT: REAL. (line 6) * DGAMMA: GAMMA. (line 6) --- 17491,17500 ---- * debugging information options: Debugging Options. (line 6) * debugging, preprocessor: Preprocessing Options. (line 26) ! * DECODE: ENCODE and DECODE statements. (line 6) * delayed execution <1>: SLEEP. (line 6) + * delayed execution: ALARM. (line 6) * DEXP: EXP. (line 6) * DFLOAT: REAL. (line 6) * DGAMMA: GAMMA. (line 6) *************** Keyword Index *** 17289,17295 **** * DIM: DIM. (line 6) * DIMAG: AIMAG. (line 6) * DINT: AINT. (line 6) ! * directive, 'INCLUDE': Directory Options. (line 6) * directory, options: Directory Options. (line 6) * directory, search paths for inclusion: Directory Options. (line 14) * division, modulo: MODULO. (line 6) --- 17504,17510 ---- * DIM: DIM. (line 6) * DIMAG: AIMAG. (line 6) * DINT: AINT. (line 6) ! * directive, INCLUDE: Directory Options. (line 6) * directory, options: Directory Options. (line 6) * directory, search paths for inclusion: Directory Options. (line 14) * division, modulo: MODULO. (line 6) *************** Keyword Index *** 17316,17335 **** * DTIME: DTIME. (line 6) * dummy argument, unused: Error and Warning Options. (line 187) * elapsed time: DTIME. (line 6) - * elapsed time <1>: SECNDS. (line 6) - * elapsed time <2>: SECOND. (line 6) * Elimination of functions with identical argument lists: Code Gen Options. ! (line 340) ! * 'ENCODE': ENCODE and DECODE statements. (line 6) ! * 'ENUM' statement: Fortran 2003 status. (line 93) ! * 'ENUMERATOR' statement: Fortran 2003 status. (line 93) ! * environment variable: Environment Variables. (line 6) - * environment variable <1>: Runtime. (line 6) * environment variable <2>: GETENV. (line 6) ! * environment variable <3>: GET_ENVIRONMENT_VARIABLE. (line 6) * EOSHIFT: EOSHIFT. (line 6) * EPSILON: EPSILON. (line 6) --- 17531,17550 ---- * DTIME: DTIME. (line 6) * dummy argument, unused: Error and Warning Options. (line 187) + * elapsed time <1>: SECOND. (line 6) + * elapsed time <2>: SECNDS. (line 6) * elapsed time: DTIME. (line 6) * Elimination of functions with identical argument lists: Code Gen Options. ! (line 344) ! * ENCODE: ENCODE and DECODE statements. (line 6) ! * ENUM statement: Fortran 2003 status. (line 93) ! * ENUMERATOR statement: Fortran 2003 status. (line 93) ! * environment variable <1>: GET_ENVIRONMENT_VARIABLE. (line 6) * environment variable <2>: GETENV. (line 6) ! * environment variable <3>: Runtime. (line 6) ! * environment variable: Environment Variables. (line 6) * EOSHIFT: EOSHIFT. (line 6) * EPSILON: EPSILON. (line 6) *************** Keyword Index *** 17353,17362 **** * EXP: EXP. (line 6) * EXPONENT: EXPONENT. (line 6) * exponential function: EXP. (line 6) - * exponential function, inverse: LOG. (line 6) * exponential function, inverse <1>: LOG10. (line 6) ! * expression size: C_SIZEOF. (line 6) * expression size <1>: SIZEOF. (line 6) * EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6) * extensions: Extensions. (line 6) * extensions, implemented: Extensions implemented in GNU Fortran. --- 17568,17577 ---- * EXP: EXP. (line 6) * EXPONENT: EXPONENT. (line 6) * exponential function: EXP. (line 6) * exponential function, inverse <1>: LOG10. (line 6) ! * exponential function, inverse: LOG. (line 6) * expression size <1>: SIZEOF. (line 6) + * expression size: C_SIZEOF. (line 6) * EXTENDS_TYPE_OF: EXTENDS_TYPE_OF. (line 6) * extensions: Extensions. (line 6) * extensions, implemented: Extensions implemented in GNU Fortran. *************** Keyword Index *** 17365,17372 **** (line 6) * extra warnings: Error and Warning Options. (line 120) ! * 'f2c' calling convention: Code Gen Options. (line 25) ! * 'f2c' calling convention <1>: Code Gen Options. (line 111) * Factorial function: GAMMA. (line 6) * FDATE: FDATE. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. --- 17580,17586 ---- (line 6) * extra warnings: Error and Warning Options. (line 120) ! * f2c calling convention: Code Gen Options. (line 25) * Factorial function: GAMMA. (line 6) * FDATE: FDATE. (line 6) * FDL, GNU Free Documentation License: GNU Free Documentation License. *************** Keyword Index *** 17375,17403 **** * FGETC: FGETC. (line 6) * file format, fixed: Fortran Dialect Options. (line 11) - * file format, fixed <1>: Fortran Dialect Options. - (line 57) * file format, free: Fortran Dialect Options. (line 11) - * file format, free <1>: Fortran Dialect Options. - (line 70) * file operation, file number: FNUM. (line 6) * file operation, flush: FLUSH. (line 6) - * file operation, position: FSEEK. (line 6) * file operation, position <1>: FTELL. (line 6) ! * file operation, read character: FGET. (line 6) * file operation, read character <1>: FGETC. (line 6) * file operation, seek: FSEEK. (line 6) - * file operation, write character: FPUT. (line 6) * file operation, write character <1>: FPUTC. (line 6) * file system, access mode: ACCESS. (line 6) * file system, change access mode: CHMOD. (line 6) - * file system, create link: LINK. (line 6) * file system, create link <1>: SYMLNK. (line 6) * file system, file creation mask: UMASK. (line 6) * file system, file status: FSTAT. (line 6) - * file system, file status <1>: LSTAT. (line 6) - * file system, file status <2>: STAT. (line 6) * file system, hard link: LINK. (line 6) * file system, remove file: UNLINK. (line 6) * file system, rename file: RENAME. (line 6) --- 17589,17613 ---- * FGETC: FGETC. (line 6) * file format, fixed: Fortran Dialect Options. (line 11) * file format, free: Fortran Dialect Options. (line 11) * file operation, file number: FNUM. (line 6) * file operation, flush: FLUSH. (line 6) * file operation, position <1>: FTELL. (line 6) ! * file operation, position: FSEEK. (line 6) * file operation, read character <1>: FGETC. (line 6) + * file operation, read character: FGET. (line 6) * file operation, seek: FSEEK. (line 6) * file operation, write character <1>: FPUTC. (line 6) + * file operation, write character: FPUT. (line 6) * file system, access mode: ACCESS. (line 6) * file system, change access mode: CHMOD. (line 6) * file system, create link <1>: SYMLNK. (line 6) + * file system, create link: LINK. (line 6) * file system, file creation mask: UMASK. (line 6) + * file system, file status <1>: STAT. (line 6) + * file system, file status <2>: LSTAT. (line 6) * file system, file status: FSTAT. (line 6) * file system, hard link: LINK. (line 6) * file system, remove file: UNLINK. (line 6) * file system, rename file: RENAME. (line 6) *************** Keyword Index *** 17407,17423 **** * floating point, exponent: EXPONENT. (line 6) * floating point, fraction: FRACTION. (line 6) * floating point, nearest different: NEAREST. (line 6) - * floating point, relative spacing: RRSPACING. (line 6) * floating point, relative spacing <1>: SPACING. (line 6) * floating point, scale: SCALE. (line 6) * floating point, set exponent: SET_EXPONENT. (line 6) * FLOOR: FLOOR. (line 6) * floor: AINT. (line 6) - * floor <1>: FLOOR. (line 6) * FLUSH: FLUSH. (line 6) ! * 'FLUSH' statement: Fortran 2003 status. (line 89) * FNUM: FNUM. (line 6) ! * 'FORMAT': Variable FORMAT expressions. (line 6) * Fortran 77: GNU Fortran and G77. (line 6) * FPP: Preprocessing and conditional compilation. --- 17617,17633 ---- * floating point, exponent: EXPONENT. (line 6) * floating point, fraction: FRACTION. (line 6) * floating point, nearest different: NEAREST. (line 6) * floating point, relative spacing <1>: SPACING. (line 6) + * floating point, relative spacing: RRSPACING. (line 6) * floating point, scale: SCALE. (line 6) * floating point, set exponent: SET_EXPONENT. (line 6) + * floor: FLOOR. (line 6) * FLOOR: FLOOR. (line 6) * floor: AINT. (line 6) * FLUSH: FLUSH. (line 6) ! * FLUSH statement: Fortran 2003 status. (line 89) * FNUM: FNUM. (line 6) ! * FORMAT: Variable FORMAT expressions. (line 6) * Fortran 77: GNU Fortran and G77. (line 6) * FPP: Preprocessing and conditional compilation. *************** Keyword Index *** 17426,17445 **** * FPUTC: FPUTC. (line 6) * FRACTION: FRACTION. (line 6) * FREE: FREE. (line 6) ! * Front-end optimization: Code Gen Options. (line 348) * FSEEK: FSEEK. (line 6) * FSTAT: FSTAT. (line 6) * FTELL: FTELL. (line 6) * function elimination: Error and Warning Options. (line 204) ! * 'g77': GNU Fortran and G77. (line 6) ! * 'g77' calling convention: Code Gen Options. (line 25) ! * 'g77' calling convention <1>: Code Gen Options. (line 111) * GAMMA: GAMMA. (line 6) * Gamma function: GAMMA. (line 6) * Gamma function, logarithm of: LOG_GAMMA. (line 6) * GCC: GNU Fortran and GCC. (line 6) * GERROR: GERROR. (line 6) * GETARG: GETARG. (line 6) * GETCWD: GETCWD. (line 6) * GETENV: GETENV. (line 6) --- 17636,17659 ---- * FPUTC: FPUTC. (line 6) * FRACTION: FRACTION. (line 6) * FREE: FREE. (line 6) ! * Front-end optimization: Code Gen Options. (line 352) * FSEEK: FSEEK. (line 6) * FSTAT: FSTAT. (line 6) * FTELL: FTELL. (line 6) * function elimination: Error and Warning Options. (line 204) ! * g77: GNU Fortran and G77. (line 6) ! * g77 calling convention: Code Gen Options. (line 25) * GAMMA: GAMMA. (line 6) * Gamma function: GAMMA. (line 6) * Gamma function, logarithm of: LOG_GAMMA. (line 6) * GCC: GNU Fortran and GCC. (line 6) * GERROR: GERROR. (line 6) + * GET_COMMAND: GET_COMMAND. (line 6) + * GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT. + (line 6) + * GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE. + (line 6) * GETARG: GETARG. (line 6) * GETCWD: GETCWD. (line 6) * GETENV: GETENV. (line 6) *************** Keyword Index *** 17447,17457 **** * GETLOG: GETLOG. (line 6) * GETPID: GETPID. (line 6) * GETUID: GETUID. (line 6) - * GET_COMMAND: GET_COMMAND. (line 6) - * GET_COMMAND_ARGUMENT: GET_COMMAND_ARGUMENT. - (line 6) - * GET_ENVIRONMENT_VARIABLE: GET_ENVIRONMENT_VARIABLE. - (line 6) * GMTIME: GMTIME. (line 6) * GNU Compiler Collection: GNU Fortran and GCC. (line 6) * GNU Fortran command options: Invoking GNU Fortran. --- 17661,17666 ---- *************** Keyword Index *** 17490,17502 **** * IERRNO: IERRNO. (line 6) * IFIX: INT. (line 6) * IMAG: AIMAG. (line 6) * images, cosubscript to image index conversion: IMAGE_INDEX. (line 6) * images, index of this image: THIS_IMAGE. (line 6) * images, number of: NUM_IMAGES. (line 6) - * IMAGE_INDEX: IMAGE_INDEX. (line 6) * IMAGPART: AIMAG. (line 6) ! * 'IMPORT' statement: Fortran 2003 status. (line 120) ! * 'INCLUDE' directive: Directory Options. (line 6) * inclusion, directory search paths for: Directory Options. (line 14) * INDEX: INDEX intrinsic. (line 6) * INT: INT. (line 6) --- 17699,17711 ---- * IERRNO: IERRNO. (line 6) * IFIX: INT. (line 6) * IMAG: AIMAG. (line 6) + * IMAGE_INDEX: IMAGE_INDEX. (line 6) * images, cosubscript to image index conversion: IMAGE_INDEX. (line 6) * images, index of this image: THIS_IMAGE. (line 6) * images, number of: NUM_IMAGES. (line 6) * IMAGPART: AIMAG. (line 6) ! * IMPORT statement: Fortran 2003 status. (line 122) ! * INCLUDE directive: Directory Options. (line 6) * inclusion, directory search paths for: Directory Options. (line 14) * INDEX: INDEX intrinsic. (line 6) * INT: INT. (line 6) *************** Keyword Index *** 17514,17539 **** * inverse hyperbolic cosine: ACOSH. (line 6) * inverse hyperbolic sine: ASINH. (line 6) * inverse hyperbolic tangent: ATANH. (line 6) ! * 'IOMSG=' specifier: Fortran 2003 status. (line 91) * IOR: IOR. (line 6) ! * 'IOSTAT', end of file: IS_IOSTAT_END. (line 6) ! * 'IOSTAT', end of record: IS_IOSTAT_EOR. (line 6) * IPARITY: IPARITY. (line 6) * IRAND: IRAND. (line 6) * ISATTY: ISATTY. (line 6) * ISHFT: ISHFT. (line 6) * ISHFTC: ISHFTC. (line 6) * ISIGN: SIGN. (line 6) * ISNAN: ISNAN. (line 6) ! * 'ISO_FORTRAN_ENV' statement: Fortran 2003 status. (line 128) ! * IS_IOSTAT_END: IS_IOSTAT_END. (line 6) ! * IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6) * ITIME: ITIME. (line 6) * KILL: KILL. (line 6) * KIND: KIND. (line 6) * kind: KIND Type Parameters. (line 6) - * kind <1>: KIND. (line 6) * kind, character: SELECTED_CHAR_KIND. (line 6) * kind, integer: SELECTED_INT_KIND. (line 6) * kind, old-style: Old-style kind specifications. --- 17723,17748 ---- * inverse hyperbolic cosine: ACOSH. (line 6) * inverse hyperbolic sine: ASINH. (line 6) * inverse hyperbolic tangent: ATANH. (line 6) ! * IOMSG= specifier: Fortran 2003 status. (line 91) * IOR: IOR. (line 6) ! * IOSTAT, end of file: IS_IOSTAT_END. (line 6) ! * IOSTAT, end of record: IS_IOSTAT_EOR. (line 6) * IPARITY: IPARITY. (line 6) * IRAND: IRAND. (line 6) + * IS_IOSTAT_END: IS_IOSTAT_END. (line 6) + * IS_IOSTAT_EOR: IS_IOSTAT_EOR. (line 6) * ISATTY: ISATTY. (line 6) * ISHFT: ISHFT. (line 6) * ISHFTC: ISHFTC. (line 6) * ISIGN: SIGN. (line 6) * ISNAN: ISNAN. (line 6) ! * ISO_FORTRAN_ENV statement: Fortran 2003 status. (line 130) * ITIME: ITIME. (line 6) * KILL: KILL. (line 6) + * kind: KIND. (line 6) * KIND: KIND. (line 6) * kind: KIND Type Parameters. (line 6) * kind, character: SELECTED_CHAR_KIND. (line 6) * kind, integer: SELECTED_INT_KIND. (line 6) * kind, old-style: Old-style kind specifications. *************** Keyword Index *** 17548,17562 **** * left shift, combined: DSHIFTL. (line 6) * LEN: LEN. (line 6) * LEN_TRIM: LEN_TRIM. (line 6) ! * lexical comparison of strings: LGE. (line 6) ! * lexical comparison of strings <1>: LGT. (line 6) * lexical comparison of strings <2>: LLE. (line 6) ! * lexical comparison of strings <3>: LLT. (line 6) * LGAMMA: LOG_GAMMA. (line 6) * LGE: LGE. (line 6) * LGT: LGT. (line 6) * libf2c calling convention: Code Gen Options. (line 25) - * libf2c calling convention <1>: Code Gen Options. (line 111) * libgfortran initialization, set_args: _gfortran_set_args. (line 6) * libgfortran initialization, set_convert: _gfortran_set_convert. (line 6) --- 17757,17770 ---- * left shift, combined: DSHIFTL. (line 6) * LEN: LEN. (line 6) * LEN_TRIM: LEN_TRIM. (line 6) ! * lexical comparison of strings <1>: LLT. (line 6) * lexical comparison of strings <2>: LLE. (line 6) ! * lexical comparison of strings <3>: LGT. (line 6) ! * lexical comparison of strings: LGE. (line 6) * LGAMMA: LOG_GAMMA. (line 6) * LGE: LGE. (line 6) * LGT: LGT. (line 6) * libf2c calling convention: Code Gen Options. (line 25) * libgfortran initialization, set_args: _gfortran_set_args. (line 6) * libgfortran initialization, set_convert: _gfortran_set_convert. (line 6) *************** Keyword Index *** 17578,17598 **** * location of a variable in memory: LOC. (line 6) * LOG: LOG. (line 6) * LOG10: LOG10. (line 6) * logarithm function: LOG. (line 6) * logarithm function with base 10: LOG10. (line 6) * logarithm function, inverse: EXP. (line 6) * LOGICAL: LOGICAL. (line 6) - * logical and, bitwise: AND. (line 6) * logical and, bitwise <1>: IAND. (line 6) ! * logical exclusive or, bitwise: IEOR. (line 6) * logical exclusive or, bitwise <1>: XOR. (line 6) * logical not, bitwise: NOT. (line 6) - * logical or, bitwise: IOR. (line 6) * logical or, bitwise <1>: OR. (line 6) * logical, variable representation: Internal representation of LOGICAL variables. (line 6) * login name: GETLOG. (line 6) - * LOG_GAMMA: LOG_GAMMA. (line 6) * LONG: LONG. (line 6) * LSHIFT: LSHIFT. (line 6) * LSTAT: LSTAT. (line 6) --- 17786,17806 ---- * location of a variable in memory: LOC. (line 6) * LOG: LOG. (line 6) * LOG10: LOG10. (line 6) + * LOG_GAMMA: LOG_GAMMA. (line 6) * logarithm function: LOG. (line 6) * logarithm function with base 10: LOG10. (line 6) * logarithm function, inverse: EXP. (line 6) * LOGICAL: LOGICAL. (line 6) * logical and, bitwise <1>: IAND. (line 6) ! * logical and, bitwise: AND. (line 6) * logical exclusive or, bitwise <1>: XOR. (line 6) + * logical exclusive or, bitwise: IEOR. (line 6) * logical not, bitwise: NOT. (line 6) * logical or, bitwise <1>: OR. (line 6) + * logical or, bitwise: IOR. (line 6) * logical, variable representation: Internal representation of LOGICAL variables. (line 6) * login name: GETLOG. (line 6) * LONG: LONG. (line 6) * LSHIFT: LSHIFT. (line 6) * LSTAT: LSTAT. (line 6) *************** Keyword Index *** 17609,17621 **** * MAX0: MAX. (line 6) * MAX1: MAX. (line 6) * MAXEXPONENT: MAXEXPONENT. (line 6) - * maximum value: MAX. (line 6) * maximum value <1>: MAXVAL. (line 6) * MAXLOC: MAXLOC. (line 6) * MAXVAL: MAXVAL. (line 6) * MCLOCK: MCLOCK. (line 6) * MCLOCK8: MCLOCK8. (line 6) ! * memory checking: Code Gen Options. (line 142) * MERGE: MERGE. (line 6) * MERGE_BITS: MERGE_BITS. (line 6) * messages, error: Error and Warning Options. --- 17817,17829 ---- * MAX0: MAX. (line 6) * MAX1: MAX. (line 6) * MAXEXPONENT: MAXEXPONENT. (line 6) * maximum value <1>: MAXVAL. (line 6) + * maximum value: MAX. (line 6) * MAXLOC: MAXLOC. (line 6) * MAXVAL: MAXVAL. (line 6) * MCLOCK: MCLOCK. (line 6) * MCLOCK8: MCLOCK8. (line 6) ! * memory checking: Code Gen Options. (line 144) * MERGE: MERGE. (line 6) * MERGE_BITS: MERGE_BITS. (line 6) * messages, error: Error and Warning Options. *************** Keyword Index *** 17626,17633 **** * MIN0: MIN. (line 6) * MIN1: MIN. (line 6) * MINEXPONENT: MINEXPONENT. (line 6) - * minimum value: MIN. (line 6) * minimum value <1>: MINVAL. (line 6) * MINLOC: MINLOC. (line 6) * MINVAL: MINVAL. (line 6) * Mixed-language programming: Mixed-Language Programming. --- 17834,17841 ---- * MIN0: MIN. (line 6) * MIN1: MIN. (line 6) * MINEXPONENT: MINEXPONENT. (line 6) * minimum value <1>: MINVAL. (line 6) + * minimum value: MIN. (line 6) * MINLOC: MINLOC. (line 6) * MINVAL: MINVAL. (line 6) * Mixed-language programming: Mixed-Language Programming. *************** Keyword Index *** 17646,17655 **** * module entities: Fortran Dialect Options. (line 52) * module search path: Directory Options. (line 14) - * module search path <1>: Directory Options. (line 29) - * module search path <2>: Directory Options. (line 36) - * MODULO: MODULO. (line 6) * modulo: MODULO. (line 6) * MOVE_ALLOC: MOVE_ALLOC. (line 6) * moving allocation: MOVE_ALLOC. (line 6) * multiply array elements: PRODUCT. (line 6) --- 17854,17861 ---- * module entities: Fortran Dialect Options. (line 52) * module search path: Directory Options. (line 14) * modulo: MODULO. (line 6) + * MODULO: MODULO. (line 6) * MOVE_ALLOC: MOVE_ALLOC. (line 6) * moving allocation: MOVE_ALLOC. (line 6) * multiply array elements: PRODUCT. (line 6) *************** Keyword Index *** 17658,17674 **** (line 6) * natural logarithm function: LOG. (line 6) * NEAREST: NEAREST. (line 6) - * newline: NEW_LINE. (line 6) * NEW_LINE: NEW_LINE. (line 6) * NINT: NINT. (line 6) * norm, Euclidean: NORM2. (line 6) * NORM2: NORM2. (line 6) * NOT: NOT. (line 6) * NULL: NULL. (line 6) * NUM_IMAGES: NUM_IMAGES. (line 6) * OpenMP: Fortran Dialect Options. (line 90) - * OpenMP <1>: OpenMP. (line 6) * operators, unary: Unary operators. (line 6) * options inquiry function: COMPILER_OPTIONS. (line 6) * options, code generation: Code Gen Options. (line 6) --- 17864,17880 ---- (line 6) * natural logarithm function: LOG. (line 6) * NEAREST: NEAREST. (line 6) * NEW_LINE: NEW_LINE. (line 6) + * newline: NEW_LINE. (line 6) * NINT: NINT. (line 6) * norm, Euclidean: NORM2. (line 6) * NORM2: NORM2. (line 6) * NOT: NOT. (line 6) * NULL: NULL. (line 6) * NUM_IMAGES: NUM_IMAGES. (line 6) + * OpenMP <1>: OpenMP. (line 6) * OpenMP: Fortran Dialect Options. (line 90) * operators, unary: Unary operators. (line 6) * options inquiry function: COMPILER_OPTIONS. (line 6) * options, code generation: Code Gen Options. (line 6) *************** Keyword Index *** 17680,17686 **** (line 6) * options, Fortran dialect: Fortran Dialect Options. (line 11) ! * options, 'gfortran' command: Invoking GNU Fortran. (line 6) * options, linking: Link Options. (line 6) * options, negative forms: Invoking GNU Fortran. --- 17886,17892 ---- (line 6) * options, Fortran dialect: Fortran Dialect Options. (line 11) ! * options, gfortran command: Invoking GNU Fortran. (line 6) * options, linking: Link Options. (line 6) * options, negative forms: Invoking GNU Fortran. *************** Keyword Index *** 17688,17694 **** * options, preprocessor: Preprocessing Options. (line 6) * options, real kind type promotion: Fortran Dialect Options. ! (line 148) * options, run-time: Code Gen Options. (line 6) * options, runtime: Runtime Options. (line 6) * options, warnings: Error and Warning Options. --- 17894,17900 ---- * options, preprocessor: Preprocessing Options. (line 6) * options, real kind type promotion: Fortran Dialect Options. ! (line 149) * options, run-time: Code Gen Options. (line 6) * options, runtime: Runtime Options. (line 6) * options, warnings: Error and Warning Options. *************** Keyword Index *** 17696,17719 **** * OR: OR. (line 6) * output, newline: NEW_LINE. (line 6) * PACK: PACK. (line 6) - * PARITY: PARITY. (line 6) - * Parity: PARITY. (line 6) * parity: POPPAR. (line 6) * paths, search: Directory Options. (line 14) - * paths, search <1>: Directory Options. (line 29) - * paths, search <2>: Directory Options. (line 36) * PERROR: PERROR. (line 6) ! * pointer checking: Code Gen Options. (line 142) * pointer, C address of pointers: C_F_PROCPOINTER. (line 6) * pointer, C address of procedures: C_FUNLOC. (line 6) * pointer, C association status: C_ASSOCIATED. (line 6) * pointer, convert C to Fortran: C_F_POINTER. (line 6) - * pointer, Cray: Cray pointers. (line 6) - * pointer, cray: FREE. (line 6) * pointer, cray <1>: MALLOC. (line 6) * pointer, disassociated: NULL. (line 6) - * pointer, status: ASSOCIATED. (line 6) * pointer, status <1>: NULL. (line 6) * POPCNT: POPCNT. (line 6) * POPPAR: POPPAR. (line 6) * positive difference: DIM. (line 6) --- 17902,17923 ---- * OR: OR. (line 6) * output, newline: NEW_LINE. (line 6) * PACK: PACK. (line 6) * parity: POPPAR. (line 6) + * Parity: PARITY. (line 6) + * PARITY: PARITY. (line 6) * paths, search: Directory Options. (line 14) * PERROR: PERROR. (line 6) ! * pointer checking: Code Gen Options. (line 144) * pointer, C address of pointers: C_F_PROCPOINTER. (line 6) * pointer, C address of procedures: C_FUNLOC. (line 6) * pointer, C association status: C_ASSOCIATED. (line 6) * pointer, convert C to Fortran: C_F_POINTER. (line 6) * pointer, cray <1>: MALLOC. (line 6) + * pointer, cray: FREE. (line 6) + * pointer, Cray: Cray pointers. (line 6) * pointer, disassociated: NULL. (line 6) * pointer, status <1>: NULL. (line 6) + * pointer, status: ASSOCIATED. (line 6) * POPCNT: POPCNT. (line 6) * POPPAR: POPPAR. (line 6) * positive difference: DIM. (line 6) *************** Keyword Index *** 17721,17765 **** * Preprocessing: Preprocessing and conditional compilation. (line 6) * preprocessing, assertion: Preprocessing Options. ! (line 113) ! * preprocessing, assertion <1>: Preprocessing Options. ! (line 119) * preprocessing, define macros: Preprocessing Options. ! (line 151) ! * preprocessing, define macros <1>: Preprocessing Options. ! (line 154) * preprocessing, include path: Preprocessing Options. ! (line 69) ! * preprocessing, include path <1>: Preprocessing Options. ! (line 76) ! * preprocessing, include path <2>: Preprocessing Options. ! (line 80) ! * preprocessing, include path <3>: Preprocessing Options. ! (line 85) ! * preprocessing, include path <4>: Preprocessing Options. ! (line 89) ! * preprocessing, include path <5>: Preprocessing Options. ! (line 96) * preprocessing, keep comments: Preprocessing Options. ! (line 122) ! * preprocessing, keep comments <1>: Preprocessing Options. ! (line 137) * preprocessing, no linemarkers: Preprocessing Options. ! (line 179) * preprocessing, undefine macros: Preprocessing Options. ! (line 185) * preprocessor: Preprocessing Options. (line 6) * preprocessor, debugging: Preprocessing Options. (line 26) - * preprocessor, debugging <1>: Preprocessing Options. - (line 35) - * preprocessor, debugging <2>: Preprocessing Options. - (line 41) - * preprocessor, debugging <3>: Preprocessing Options. - (line 44) - * preprocessor, debugging <4>: Preprocessing Options. - (line 51) * preprocessor, disable: Preprocessing Options. (line 12) * preprocessor, enable: Preprocessing Options. --- 17925,17945 ---- * Preprocessing: Preprocessing and conditional compilation. (line 6) * preprocessing, assertion: Preprocessing Options. ! (line 114) * preprocessing, define macros: Preprocessing Options. ! (line 153) * preprocessing, include path: Preprocessing Options. ! (line 70) * preprocessing, keep comments: Preprocessing Options. ! (line 123) * preprocessing, no linemarkers: Preprocessing Options. ! (line 181) * preprocessing, undefine macros: Preprocessing Options. ! (line 187) * preprocessor: Preprocessing Options. (line 6) * preprocessor, debugging: Preprocessing Options. (line 26) * preprocessor, disable: Preprocessing Options. (line 12) * preprocessor, enable: Preprocessing Options. *************** Keyword Index *** 17779,17856 **** * product, vector: DOT_PRODUCT. (line 6) * program termination: EXIT. (line 6) * program termination, with core dump: ABORT. (line 6) ! * 'PROTECTED' statement: Fortran 2003 status. (line 114) ! * 'Q' exponent-letter: 'Q' exponent-letter. (line 6) * RADIX: RADIX. (line 6) * radix, real: SELECTED_REAL_KIND. (line 6) * RAN: RAN. (line 6) * RAND: RAND. (line 6) ! * random number generation: IRAND. (line 6) ! * random number generation <1>: RAN. (line 6) * random number generation <2>: RAND. (line 6) ! * random number generation <3>: RANDOM_NUMBER. (line 6) ! * random number generation, seeding: RANDOM_SEED. (line 6) * random number generation, seeding <1>: SRAND. (line 6) * RANDOM_NUMBER: RANDOM_NUMBER. (line 6) * RANDOM_SEED: RANDOM_SEED. (line 6) * RANGE: RANGE. (line 6) ! * range checking: Code Gen Options. (line 142) ! * RANK: RANK. (line 6) * rank: RANK. (line 6) * re-association of parenthesized expressions: Code Gen Options. ! (line 325) ! * read character, stream mode: FGET. (line 6) * read character, stream mode <1>: FGETC. (line 6) * REAL: REAL. (line 6) * real kind: SELECTED_REAL_KIND. (line 6) * real number, exponent: EXPONENT. (line 6) * real number, fraction: FRACTION. (line 6) * real number, nearest different: NEAREST. (line 6) - * real number, relative spacing: RRSPACING. (line 6) * real number, relative spacing <1>: SPACING. (line 6) * real number, scale: SCALE. (line 6) * real number, set exponent: SET_EXPONENT. (line 6) ! * Reallocate the LHS in assignments: Code Gen Options. (line 334) * Reallocate the LHS in assignments, notification: Error and Warning Options. (line 208) * REALPART: REAL. (line 6) ! * 'RECORD': STRUCTURE and RECORD. (line 6) * Reduction, XOR: PARITY. (line 6) * remainder: MOD. (line 6) * RENAME: RENAME. (line 6) ! * repacking arrays: Code Gen Options. (line 244) * REPEAT: REPEAT. (line 6) * RESHAPE: RESHAPE. (line 6) * right shift, combined: DSHIFTR. (line 6) * root: SQRT. (line 6) - * rounding, ceiling: ANINT. (line 6) * rounding, ceiling <1>: CEILING. (line 6) ! * rounding, floor: AINT. (line 6) * rounding, floor <1>: FLOOR. (line 6) * rounding, nearest whole number: NINT. (line 6) * RRSPACING: RRSPACING. (line 6) * RSHIFT: RSHIFT. (line 6) ! * run-time checking: Code Gen Options. (line 142) * SAME_TYPE_AS: SAME_TYPE_AS. (line 6) ! * 'SAVE' statement: Code Gen Options. (line 15) * SCALE: SCALE. (line 6) * SCAN: SCAN. (line 6) * search path: Directory Options. (line 6) * search paths, for included files: Directory Options. (line 14) * SECNDS: SECNDS. (line 6) * SECOND: SECOND. (line 6) - * seeding a random number generator: RANDOM_SEED. (line 6) * seeding a random number generator <1>: SRAND. (line 6) * SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6) * SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6) * SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6) * SET_EXPONENT: SET_EXPONENT. (line 6) * SHAPE: SHAPE. (line 6) - * shift, left: DSHIFTL. (line 6) * shift, left <1>: SHIFTL. (line 6) ! * shift, right: DSHIFTR. (line 6) * shift, right <1>: SHIFTR. (line 6) * shift, right with fill: SHIFTA. (line 6) * SHIFTA: SHIFTA. (line 6) * SHIFTL: SHIFTL. (line 6) --- 17959,18036 ---- * product, vector: DOT_PRODUCT. (line 6) * program termination: EXIT. (line 6) * program termination, with core dump: ABORT. (line 6) ! * PROTECTED statement: Fortran 2003 status. (line 116) ! * Q exponent-letter: Q exponent-letter. (line 6) * RADIX: RADIX. (line 6) * radix, real: SELECTED_REAL_KIND. (line 6) * RAN: RAN. (line 6) * RAND: RAND. (line 6) ! * random number generation <1>: RANDOM_NUMBER. (line 6) * random number generation <2>: RAND. (line 6) ! * random number generation <3>: RAN. (line 6) ! * random number generation: IRAND. (line 6) * random number generation, seeding <1>: SRAND. (line 6) + * random number generation, seeding: RANDOM_SEED. (line 6) * RANDOM_NUMBER: RANDOM_NUMBER. (line 6) * RANDOM_SEED: RANDOM_SEED. (line 6) * RANGE: RANGE. (line 6) ! * range checking: Code Gen Options. (line 144) * rank: RANK. (line 6) + * RANK: RANK. (line 6) * re-association of parenthesized expressions: Code Gen Options. ! (line 329) * read character, stream mode <1>: FGETC. (line 6) + * read character, stream mode: FGET. (line 6) * REAL: REAL. (line 6) * real kind: SELECTED_REAL_KIND. (line 6) * real number, exponent: EXPONENT. (line 6) * real number, fraction: FRACTION. (line 6) * real number, nearest different: NEAREST. (line 6) * real number, relative spacing <1>: SPACING. (line 6) + * real number, relative spacing: RRSPACING. (line 6) * real number, scale: SCALE. (line 6) * real number, set exponent: SET_EXPONENT. (line 6) ! * Reallocate the LHS in assignments: Code Gen Options. (line 338) * Reallocate the LHS in assignments, notification: Error and Warning Options. (line 208) * REALPART: REAL. (line 6) ! * RECORD: STRUCTURE and RECORD. (line 6) * Reduction, XOR: PARITY. (line 6) * remainder: MOD. (line 6) * RENAME: RENAME. (line 6) ! * repacking arrays: Code Gen Options. (line 245) * REPEAT: REPEAT. (line 6) * RESHAPE: RESHAPE. (line 6) * right shift, combined: DSHIFTR. (line 6) * root: SQRT. (line 6) * rounding, ceiling <1>: CEILING. (line 6) ! * rounding, ceiling: ANINT. (line 6) * rounding, floor <1>: FLOOR. (line 6) + * rounding, floor: AINT. (line 6) * rounding, nearest whole number: NINT. (line 6) * RRSPACING: RRSPACING. (line 6) * RSHIFT: RSHIFT. (line 6) ! * run-time checking: Code Gen Options. (line 144) * SAME_TYPE_AS: SAME_TYPE_AS. (line 6) ! * SAVE statement: Code Gen Options. (line 15) * SCALE: SCALE. (line 6) * SCAN: SCAN. (line 6) * search path: Directory Options. (line 6) * search paths, for included files: Directory Options. (line 14) * SECNDS: SECNDS. (line 6) * SECOND: SECOND. (line 6) * seeding a random number generator <1>: SRAND. (line 6) + * seeding a random number generator: RANDOM_SEED. (line 6) * SELECTED_CHAR_KIND: SELECTED_CHAR_KIND. (line 6) * SELECTED_INT_KIND: SELECTED_INT_KIND. (line 6) * SELECTED_REAL_KIND: SELECTED_REAL_KIND. (line 6) * SET_EXPONENT: SET_EXPONENT. (line 6) * SHAPE: SHAPE. (line 6) * shift, left <1>: SHIFTL. (line 6) ! * shift, left: DSHIFTL. (line 6) * shift, right <1>: SHIFTR. (line 6) + * shift, right: DSHIFTR. (line 6) * shift, right with fill: SHIFTA. (line 6) * SHIFTA: SHIFTA. (line 6) * SHIFTL: SHIFTL. (line 6) *************** Keyword Index *** 17867,17874 **** * SINH: SINH. (line 6) * SIZE: SIZE. (line 6) * size of a variable, in bits: BIT_SIZE. (line 6) - * size of an expression: C_SIZEOF. (line 6) * size of an expression <1>: SIZEOF. (line 6) * SIZEOF: SIZEOF. (line 6) * SLEEP: SLEEP. (line 6) * SNGL: REAL. (line 6) --- 18047,18054 ---- * SINH: SINH. (line 6) * SIZE: SIZE. (line 6) * size of a variable, in bits: BIT_SIZE. (line 6) * size of an expression <1>: SIZEOF. (line 6) + * size of an expression: C_SIZEOF. (line 6) * SIZEOF: SIZEOF. (line 6) * SLEEP: SLEEP. (line 6) * SNGL: REAL. (line 6) *************** Keyword Index *** 17879,17907 **** * SRAND: SRAND. (line 6) * Standards: Standards. (line 6) * STAT: STAT. (line 6) ! * statement, 'ENUM': Fortran 2003 status. (line 93) ! * statement, 'ENUMERATOR': Fortran 2003 status. (line 93) ! * statement, 'FLUSH': Fortran 2003 status. (line 89) ! * statement, 'IMPORT': Fortran 2003 status. (line 120) ! * statement, 'ISO_FORTRAN_ENV': Fortran 2003 status. (line 128) ! * statement, 'PROTECTED': Fortran 2003 status. (line 114) ! * statement, 'SAVE': Code Gen Options. (line 15) ! * statement, 'USE, INTRINSIC': Fortran 2003 status. (line 128) ! * statement, 'VALUE': Fortran 2003 status. (line 116) ! * statement, 'VOLATILE': Fortran 2003 status. (line 118) * storage size: STORAGE_SIZE. (line 6) * STORAGE_SIZE: STORAGE_SIZE. (line 6) ! * 'STREAM' I/O: Fortran 2003 status. (line 103) ! * stream mode, read character: FGET. (line 6) * stream mode, read character <1>: FGETC. (line 6) ! * stream mode, write character: FPUT. (line 6) * stream mode, write character <1>: FPUTC. (line 6) * string, adjust left: ADJUSTL. (line 6) * string, adjust right: ADJUSTR. (line 6) ! * string, comparison: LGE. (line 6) ! * string, comparison <1>: LGT. (line 6) * string, comparison <2>: LLE. (line 6) ! * string, comparison <3>: LLT. (line 6) * string, concatenate: REPEAT. (line 6) * string, find missing set: VERIFY. (line 6) * string, find non-blank character: LNBLNK. (line 6) --- 18059,18087 ---- * SRAND: SRAND. (line 6) * Standards: Standards. (line 6) * STAT: STAT. (line 6) ! * statement, ENUM: Fortran 2003 status. (line 93) ! * statement, ENUMERATOR: Fortran 2003 status. (line 93) ! * statement, FLUSH: Fortran 2003 status. (line 89) ! * statement, IMPORT: Fortran 2003 status. (line 122) ! * statement, ISO_FORTRAN_ENV: Fortran 2003 status. (line 130) ! * statement, PROTECTED: Fortran 2003 status. (line 116) ! * statement, SAVE: Code Gen Options. (line 15) ! * statement, USE, INTRINSIC: Fortran 2003 status. (line 130) ! * statement, VALUE: Fortran 2003 status. (line 118) ! * statement, VOLATILE: Fortran 2003 status. (line 120) * storage size: STORAGE_SIZE. (line 6) * STORAGE_SIZE: STORAGE_SIZE. (line 6) ! * STREAM I/O: Fortran 2003 status. (line 105) * stream mode, read character <1>: FGETC. (line 6) ! * stream mode, read character: FGET. (line 6) * stream mode, write character <1>: FPUTC. (line 6) + * stream mode, write character: FPUT. (line 6) * string, adjust left: ADJUSTL. (line 6) * string, adjust right: ADJUSTR. (line 6) ! * string, comparison <1>: LLT. (line 6) * string, comparison <2>: LLE. (line 6) ! * string, comparison <3>: LGT. (line 6) ! * string, comparison: LGE. (line 6) * string, concatenate: REPEAT. (line 6) * string, find missing set: VERIFY. (line 6) * string, find non-blank character: LNBLNK. (line 6) *************** Keyword Index *** 17913,17922 **** * string, repeat: REPEAT. (line 6) * strings, varying length: Varying Length Character Strings. (line 6) ! * 'STRUCTURE': STRUCTURE and RECORD. (line 6) ! * structure packing: Code Gen Options. (line 238) ! * subscript checking: Code Gen Options. (line 142) * substring position: INDEX intrinsic. (line 6) * SUM: SUM. (line 6) * sum array elements: SUM. (line 6) --- 18093,18102 ---- * string, repeat: REPEAT. (line 6) * strings, varying length: Varying Length Character Strings. (line 6) ! * STRUCTURE: STRUCTURE and RECORD. (line 6) ! * structure packing: Code Gen Options. (line 239) ! * subscript checking: Code Gen Options. (line 144) * substring position: INDEX intrinsic. (line 6) * SUM: SUM. (line 6) * sum array elements: SUM. (line 6) *************** Keyword Index *** 17925,17953 **** * symbol names: Fortran Dialect Options. (line 34) * symbol names, transforming: Code Gen Options. (line 54) - * symbol names, transforming <1>: Code Gen Options. (line 111) * symbol names, underscores: Code Gen Options. (line 54) - * symbol names, underscores <1>: Code Gen Options. (line 111) * SYMLNK: SYMLNK. (line 6) * syntax checking: Error and Warning Options. (line 33) * SYSTEM: SYSTEM. (line 6) * system, error handling: GERROR. (line 6) - * system, error handling <1>: IERRNO. (line 6) - * system, error handling <2>: PERROR. (line 6) * system, group ID: GETGID. (line 6) * system, host name: HOSTNM. (line 6) * system, login name: GETLOG. (line 6) * system, process ID: GETPID. (line 6) * system, signal handling: SIGNAL. (line 6) * system, system call: EXECUTE_COMMAND_LINE. (line 6) - * system, system call <1>: SYSTEM. (line 6) - * system, terminal: ISATTY. (line 6) * system, terminal <1>: TTYNAM. (line 6) * system, user ID: GETUID. (line 6) - * system, working directory: CHDIR. (line 6) * system, working directory <1>: GETCWD. (line 6) * SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6) * tabulators: Error and Warning Options. (line 168) --- 18105,18131 ---- * symbol names: Fortran Dialect Options. (line 34) * symbol names, transforming: Code Gen Options. (line 54) * symbol names, underscores: Code Gen Options. (line 54) * SYMLNK: SYMLNK. (line 6) * syntax checking: Error and Warning Options. (line 33) * SYSTEM: SYSTEM. (line 6) + * system, error handling <1>: PERROR. (line 6) + * system, error handling <2>: IERRNO. (line 6) * system, error handling: GERROR. (line 6) * system, group ID: GETGID. (line 6) * system, host name: HOSTNM. (line 6) * system, login name: GETLOG. (line 6) * system, process ID: GETPID. (line 6) * system, signal handling: SIGNAL. (line 6) + * system, system call <1>: SYSTEM. (line 6) * system, system call: EXECUTE_COMMAND_LINE. (line 6) * system, terminal <1>: TTYNAM. (line 6) + * system, terminal: ISATTY. (line 6) * system, user ID: GETUID. (line 6) * system, working directory <1>: GETCWD. (line 6) + * system, working directory: CHDIR. (line 6) * SYSTEM_CLOCK: SYSTEM_CLOCK. (line 6) * tabulators: Error and Warning Options. (line 168) *************** Keyword Index *** 17955,17962 **** * tangent: TAN. (line 6) * tangent, hyperbolic: TANH. (line 6) * tangent, hyperbolic, inverse: ATANH. (line 6) - * tangent, inverse: ATAN. (line 6) * tangent, inverse <1>: ATAN2. (line 6) * TANH: TANH. (line 6) * terminate program: EXIT. (line 6) * terminate program, with core dump: ABORT. (line 6) --- 18133,18140 ---- * tangent: TAN. (line 6) * tangent, hyperbolic: TANH. (line 6) * tangent, hyperbolic, inverse: ATANH. (line 6) * tangent, inverse <1>: ATAN2. (line 6) + * tangent, inverse: ATAN. (line 6) * TANH: TANH. (line 6) * terminate program: EXIT. (line 6) * terminate program, with core dump: ABORT. (line 6) *************** Keyword Index *** 17964,18002 **** * thread-safety, threads: Thread-safety of the runtime library. (line 6) * TIME: TIME. (line 6) * time, clock ticks: MCLOCK. (line 6) - * time, clock ticks <1>: MCLOCK8. (line 6) - * time, clock ticks <2>: SYSTEM_CLOCK. (line 6) * time, conversion to GMT info: GMTIME. (line 6) * time, conversion to local time info: LTIME. (line 6) * time, conversion to string: CTIME. (line 6) * time, current: DATE_AND_TIME. (line 6) ! * time, current <1>: FDATE. (line 6) ! * time, current <2>: ITIME. (line 6) ! * time, current <3>: TIME. (line 6) ! * time, current <4>: TIME8. (line 6) * time, elapsed: CPU_TIME. (line 6) - * time, elapsed <1>: DTIME. (line 6) - * time, elapsed <2>: ETIME. (line 6) - * time, elapsed <3>: SECNDS. (line 6) - * time, elapsed <4>: SECOND. (line 6) * TIME8: TIME8. (line 6) * TINY: TINY. (line 6) * TR 15581: Fortran 2003 status. (line 98) ! * trace: Debugging Options. (line 61) * TRAILZ: TRAILZ. (line 6) * TRANSFER: TRANSFER. (line 6) * transforming symbol names: Code Gen Options. (line 54) - * transforming symbol names <1>: Code Gen Options. (line 111) - * TRANSPOSE: TRANSPOSE. (line 6) * transpose: TRANSPOSE. (line 6) * trigonometric function, cosine: COS. (line 6) * trigonometric function, cosine, inverse: ACOS. (line 6) * trigonometric function, sine: SIN. (line 6) * trigonometric function, sine, inverse: ASIN. (line 6) * trigonometric function, tangent: TAN. (line 6) - * trigonometric function, tangent, inverse: ATAN. (line 6) * trigonometric function, tangent, inverse <1>: ATAN2. (line 6) * TRIM: TRIM. (line 6) * TTYNAM: TTYNAM. (line 6) * type cast: TRANSFER. (line 6) --- 18142,18179 ---- * thread-safety, threads: Thread-safety of the runtime library. (line 6) * TIME: TIME. (line 6) + * time, clock ticks <1>: SYSTEM_CLOCK. (line 6) + * time, clock ticks <2>: MCLOCK8. (line 6) * time, clock ticks: MCLOCK. (line 6) * time, conversion to GMT info: GMTIME. (line 6) * time, conversion to local time info: LTIME. (line 6) * time, conversion to string: CTIME. (line 6) + * time, current <1>: TIME8. (line 6) + * time, current <2>: TIME. (line 6) + * time, current <3>: ITIME. (line 6) + * time, current <4>: FDATE. (line 6) * time, current: DATE_AND_TIME. (line 6) ! * time, elapsed <1>: SECOND. (line 6) ! * time, elapsed <2>: SECNDS. (line 6) ! * time, elapsed <3>: ETIME. (line 6) ! * time, elapsed <4>: DTIME. (line 6) * time, elapsed: CPU_TIME. (line 6) * TIME8: TIME8. (line 6) * TINY: TINY. (line 6) * TR 15581: Fortran 2003 status. (line 98) ! * trace: Debugging Options. (line 62) * TRAILZ: TRAILZ. (line 6) * TRANSFER: TRANSFER. (line 6) * transforming symbol names: Code Gen Options. (line 54) * transpose: TRANSPOSE. (line 6) + * TRANSPOSE: TRANSPOSE. (line 6) * trigonometric function, cosine: COS. (line 6) * trigonometric function, cosine, inverse: ACOS. (line 6) * trigonometric function, sine: SIN. (line 6) * trigonometric function, sine, inverse: ASIN. (line 6) * trigonometric function, tangent: TAN. (line 6) * trigonometric function, tangent, inverse <1>: ATAN2. (line 6) + * trigonometric function, tangent, inverse: ATAN. (line 6) * TRIM: TRIM. (line 6) * TTYNAM: TTYNAM. (line 6) * type cast: TRANSFER. (line 6) *************** Keyword Index *** 18006,18021 **** * underflow: Error and Warning Options. (line 176) * underscore: Code Gen Options. (line 54) - * underscore <1>: Code Gen Options. (line 111) * UNLINK: UNLINK. (line 6) * UNPACK: UNPACK. (line 6) * unused dummy argument: Error and Warning Options. (line 187) * unused parameter: Error and Warning Options. (line 191) ! * 'USE, INTRINSIC' statement: Fortran 2003 status. (line 128) * user id: GETUID. (line 6) ! * 'VALUE' statement: Fortran 2003 status. (line 116) * Varying length character strings: Varying Length Character Strings. (line 6) * Varying length strings: Varying Length Character Strings. --- 18183,18197 ---- * underflow: Error and Warning Options. (line 176) * underscore: Code Gen Options. (line 54) * UNLINK: UNLINK. (line 6) * UNPACK: UNPACK. (line 6) * unused dummy argument: Error and Warning Options. (line 187) * unused parameter: Error and Warning Options. (line 191) ! * USE, INTRINSIC statement: Fortran 2003 status. (line 130) * user id: GETUID. (line 6) ! * VALUE statement: Fortran 2003 status. (line 118) * Varying length character strings: Varying Length Character Strings. (line 6) * Varying length strings: Varying Length Character Strings. *************** Keyword Index *** 18023,18036 **** * vector product: DOT_PRODUCT. (line 6) * VERIFY: VERIFY. (line 6) * version of the compiler: COMPILER_VERSION. (line 6) ! * 'VOLATILE': Volatile COMMON blocks. (line 6) ! * 'VOLATILE' statement: Fortran 2003 status. (line 118) * warning, C binding type: Error and Warning Options. (line 99) * warnings, aliasing: Error and Warning Options. (line 69) ! * warnings, alignment of 'COMMON' blocks: Error and Warning Options. (line 198) * warnings, all: Error and Warning Options. (line 61) --- 18199,18212 ---- * vector product: DOT_PRODUCT. (line 6) * VERIFY: VERIFY. (line 6) * version of the compiler: COMPILER_VERSION. (line 6) ! * VOLATILE: Volatile COMMON blocks. (line 6) ! * VOLATILE statement: Fortran 2003 status. (line 120) * warning, C binding type: Error and Warning Options. (line 99) * warnings, aliasing: Error and Warning Options. (line 69) ! * warnings, alignment of COMMON blocks: Error and Warning Options. (line 198) * warnings, all: Error and Warning Options. (line 61) *************** Keyword Index *** 18042,18049 **** (line 106) * warnings, conversion: Error and Warning Options. (line 113) - * warnings, conversion <1>: Error and Warning Options. - (line 117) * warnings, extra: Error and Warning Options. (line 120) * warnings, function elimination: Error and Warning Options. --- 18218,18223 ---- *************** Keyword Index *** 18060,18066 **** (line 109) * warnings, non-standard intrinsics: Error and Warning Options. (line 135) ! * warnings, 'q' exponent-letter: Error and Warning Options. (line 142) * warnings, suppressing: Error and Warning Options. (line 6) --- 18234,18240 ---- (line 109) * warnings, non-standard intrinsics: Error and Warning Options. (line 135) ! * warnings, q exponent-letter: Error and Warning Options. (line 142) * warnings, suppressing: Error and Warning Options. (line 6) *************** Keyword Index *** 18069,18089 **** * warnings, tabs: Error and Warning Options. (line 168) * warnings, to errors: Error and Warning Options. ! (line 237) * warnings, underflow: Error and Warning Options. (line 176) * warnings, unused dummy argument: Error and Warning Options. (line 187) * warnings, unused parameter: Error and Warning Options. (line 191) - * write character, stream mode: FPUT. (line 6) * write character, stream mode <1>: FPUTC. (line 6) * XOR: XOR. (line 6) * XOR reduction: PARITY. (line 6) * ZABS: ABS. (line 6) * ZCOS: COS. (line 6) - * zero bits: LEADZ. (line 6) * zero bits <1>: TRAILZ. (line 6) * ZEXP: EXP. (line 6) * ZLOG: LOG. (line 6) * ZSIN: SIN. (line 6) --- 18243,18263 ---- * warnings, tabs: Error and Warning Options. (line 168) * warnings, to errors: Error and Warning Options. ! (line 238) * warnings, underflow: Error and Warning Options. (line 176) * warnings, unused dummy argument: Error and Warning Options. (line 187) * warnings, unused parameter: Error and Warning Options. (line 191) * write character, stream mode <1>: FPUTC. (line 6) + * write character, stream mode: FPUT. (line 6) * XOR: XOR. (line 6) * XOR reduction: PARITY. (line 6) * ZABS: ABS. (line 6) * ZCOS: COS. (line 6) * zero bits <1>: TRAILZ. (line 6) + * zero bits: LEADZ. (line 6) * ZEXP: EXP. (line 6) * ZLOG: LOG. (line 6) * ZSIN: SIN. (line 6) *************** Keyword Index *** 18092,18453 ****  Tag Table: ! Node: Top1950 ! Node: Introduction3337 ! Node: About GNU Fortran4086 ! Node: GNU Fortran and GCC8075 ! Node: Preprocessing and conditional compilation10189 ! Node: GNU Fortran and G7711834 ! Node: Project Status12407 ! Node: Standards14853 ! Node: Varying Length Character Strings15863 ! Node: Invoking GNU Fortran16615 ! Node: Option Summary18338 ! Node: Fortran Dialect Options21750 ! Node: Preprocessing Options30416 ! Node: Error and Warning Options38657 ! Node: Debugging Options48854 ! Node: Directory Options52322 ! Node: Link Options53757 ! Node: Runtime Options54383 ! Node: Code Gen Options56290 ! Node: Environment Variables72497 ! Node: Runtime73102 ! Node: TMPDIR74202 ! Node: GFORTRAN_STDIN_UNIT74872 ! Node: GFORTRAN_STDOUT_UNIT75254 ! Node: GFORTRAN_STDERR_UNIT75655 ! Node: GFORTRAN_UNBUFFERED_ALL76057 ! Node: GFORTRAN_UNBUFFERED_PRECONNECTED76588 ! Node: GFORTRAN_SHOW_LOCUS77232 ! Node: GFORTRAN_OPTIONAL_PLUS77728 ! Node: GFORTRAN_DEFAULT_RECL78204 ! Node: GFORTRAN_LIST_SEPARATOR78692 ! Node: GFORTRAN_CONVERT_UNIT79301 ! Node: GFORTRAN_ERROR_BACKTRACE82156 ! Node: Fortran 2003 and 2008 status82713 ! Node: Fortran 2003 status82973 ! Node: Fortran 2008 status88199 ! Node: TS 29113 status93048 ! Node: Compiler Characteristics94025 ! Node: KIND Type Parameters94561 ! Node: Internal representation of LOGICAL variables95989 ! Node: Thread-safety of the runtime library96849 ! Node: Data consistency and durability98276 ! Node: Extensions101330 ! Node: Extensions implemented in GNU Fortran101935 ! Node: Old-style kind specifications103292 ! Node: Old-style variable initialization104394 ! Node: Extensions to namelist105706 ! Node: X format descriptor without count field108009 ! Node: Commas in FORMAT specifications108536 ! Node: Missing period in FORMAT specifications109053 ! Node: I/O item lists109615 ! Node: 'Q' exponent-letter110002 ! Node: BOZ literal constants110602 ! Node: Real array indices113183 ! Node: Unary operators113482 ! Node: Implicitly convert LOGICAL and INTEGER values113896 ! Node: Hollerith constants support114855 ! Node: Cray pointers116627 ! Node: CONVERT specifier122074 ! Node: OpenMP124069 ! Node: Argument list functions126318 ! Node: Extensions not implemented in GNU Fortran127923 ! Node: STRUCTURE and RECORD128872 ! Node: ENCODE and DECODE statements131309 ! Node: Variable FORMAT expressions132669 ! Node: Alternate complex function syntax133774 ! Node: Volatile COMMON blocks134324 ! Node: Mixed-Language Programming134801 ! Node: Interoperability with C135382 ! Node: Intrinsic Types136716 ! Node: Derived Types and struct137712 ! Node: Interoperable Global Variables139070 ! Node: Interoperable Subroutines and Functions140345 ! Node: Working with Pointers144139 ! Node: Further Interoperability of Fortran with C148615 ! Node: GNU Fortran Compiler Directives151969 ! Node: Non-Fortran Main Program155221 ! Node: _gfortran_set_args157409 ! Node: _gfortran_set_options158347 Node: _gfortran_set_convert161747 ! Node: _gfortran_set_record_marker162615 ! Node: _gfortran_set_fpe163425 ! Node: _gfortran_set_max_subrecord_length164623 ! Node: Naming and argument-passing conventions165546 ! Node: Naming conventions166265 ! Node: Argument passing conventions167737 ! Node: Intrinsic Procedures172231 ! Node: Introduction to Intrinsics187717 ! Node: ABORT190067 ! Node: ABS190812 ! Node: ACCESS192414 ! Node: ACHAR194344 ! Node: ACOS195548 ! Node: ACOSH196802 ! Node: ADJUSTL197797 ! Node: ADJUSTR198739 ! Node: AIMAG199687 ! Node: AINT201059 ! Node: ALARM202665 ! Node: ALL204297 ! Node: ALLOCATED206221 ! Node: AND207360 ! Node: ANINT208659 ! Node: ANY210156 ! Node: ASIN212082 ! Node: ASINH213325 ! Node: ASSOCIATED214330 ! Node: ATAN217341 ! Node: ATAN2218759 ! Node: ATANH220551 ! Node: ATOMIC_DEFINE221559 ! Node: ATOMIC_REF222635 ! Node: BACKTRACE223897 ! Node: BESSEL_J0224477 ! Node: BESSEL_J1225534 ! Node: BESSEL_JN226595 ! Node: BESSEL_Y0228420 ! Node: BESSEL_Y1229430 ! Node: BESSEL_YN230440 ! Node: BGE232271 ! Node: BGT232963 ! Node: BIT_SIZE233613 ! Node: BLE234435 ! Node: BLT235117 ! Node: BTEST235755 ! Node: C_ASSOCIATED236640 ! Node: C_F_POINTER237851 ! Node: C_F_PROCPOINTER239286 ! Node: C_FUNLOC240793 ! Node: C_LOC242164 ! Node: C_SIZEOF243443 ! Node: CEILING244856 ! Node: CHAR245864 ! Node: CHDIR247076 ! Node: CHMOD248250 ! Node: CMPLX250165 ! Node: COMMAND_ARGUMENT_COUNT251618 ! Node: COMPILER_OPTIONS252534 ! Node: COMPILER_VERSION253560 ! Node: COMPLEX254524 ! Node: CONJG255663 ! Node: COS256719 ! Node: COSH258143 ! Node: COUNT259325 ! Node: CPU_TIME261348 ! Node: CSHIFT262705 ! Node: CTIME264365 ! Node: DATE_AND_TIME265867 ! Node: DBLE268347 ! Node: DCMPLX269142 Node: DIGITS270324 ! Node: DIM271291 ! Node: DOT_PRODUCT272572 ! Node: DPROD274215 ! Node: DREAL275142 ! Node: DSHIFTL275808 ! Node: DSHIFTR277141 ! Node: DTIME278475 ! Node: EOSHIFT281290 ! Node: EPSILON283363 ! Node: ERF284090 ! Node: ERFC284871 ! Node: ERFC_SCALED285681 ! Node: ETIME286374 ! Node: EXECUTE_COMMAND_LINE288622 ! Node: EXIT291209 ! Node: EXP292085 ! Node: EXPONENT293336 ! Node: EXTENDS_TYPE_OF294098 ! Node: FDATE294954 ! Node: FGET296427 ! Node: FGETC298252 ! Node: FLOOR300058 ! Node: FLUSH301045 ! Node: FNUM302922 ! Node: FPUT303645 ! Node: FPUTC305277 ! Node: FRACTION307056 ! Node: FREE307958 ! Node: FSEEK308799 ! Node: FSTAT311103 ! Node: FTELL312188 ! Node: GAMMA313168 ! Node: GERROR314220 ! Node: GETARG314940 ! Node: GET_COMMAND316711 ! Node: GET_COMMAND_ARGUMENT318083 ! Node: GETCWD320131 ! Node: GETENV321111 ! Node: GET_ENVIRONMENT_VARIABLE322543 ! Node: GETGID324706 ! Node: GETLOG325243 ! Node: GETPID326105 ! Node: GETUID326835 ! Node: GMTIME327351 ! Node: HOSTNM328835 ! Node: HUGE329756 ! Node: HYPOT330478 ! Node: IACHAR331304 ! Node: IALL332472 ! Node: IAND333957 ! Node: IANY334944 ! Node: IARGC336438 ! Node: IBCLR337459 ! Node: IBITS338121 ! Node: IBSET339039 ! Node: ICHAR339696 ! Node: IDATE341866 ! Node: IEOR342896 ! Node: IERRNO343776 ! Node: IMAGE_INDEX344325 ! Node: INDEX intrinsic345353 ! Node: INT346879 ! Node: INT2348607 ! Node: INT8349375 ! Node: IOR350090 ! Node: IPARITY350946 ! Node: IRAND352478 ! Node: IS_IOSTAT_END353837 ! Node: IS_IOSTAT_EOR354936 ! Node: ISATTY356065 ! Node: ISHFT356848 ! Node: ISHFTC357831 ! Node: ISNAN359052 ! Node: ITIME359819 ! Node: KILL360847 ! Node: KIND361756 ! Node: LBOUND362602 ! Node: LCOBOUND363940 ! Node: LEADZ365075 ! Node: LEN365936 ! Node: LEN_TRIM367232 ! Node: LGE368220 ! Node: LGT369733 ! Node: LINK371211 ! Node: LLE372250 ! Node: LLT373750 ! Node: LNBLNK375221 ! Node: LOC375999 ! Node: LOG376731 ! Node: LOG10378079 ! Node: LOG_GAMMA379069 ! Node: LOGICAL380171 ! Node: LONG380983 ! Node: LSHIFT381741 ! Node: LSTAT382827 ! Node: LTIME384027 ! Node: MALLOC385433 ! Node: MASKL386895 ! Node: MASKR387662 ! Node: MATMUL388432 ! Node: MAX389530 ! Node: MAXEXPONENT391065 ! Node: MAXLOC391882 ! Node: MAXVAL393907 ! Node: MCLOCK395547 ! Node: MCLOCK8396570 ! Node: MERGE397800 ! Node: MERGE_BITS398552 ! Node: MIN399417 ! Node: MINEXPONENT400955 ! Node: MINLOC401586 ! Node: MINVAL403611 ! Node: MOD405264 ! Node: MODULO407033 ! Node: MOVE_ALLOC408336 ! Node: MVBITS409369 ! Node: NEAREST410435 ! Node: NEW_LINE411535 ! Node: NINT412308 ! Node: NORM2413729 ! Node: NOT414871 ! Node: NULL415455 ! Node: NUM_IMAGES416363 ! Node: OR417179 ! Node: PACK418465 ! Node: PARITY420473 ! Node: PERROR421694 ! Node: POPCNT422319 ! Node: POPPAR423191 ! Node: PRECISION424245 ! Node: PRESENT425132 ! Node: PRODUCT426244 ! Node: RADIX427778 ! Node: RAN428590 ! Node: RAND429046 ! Node: RANDOM_NUMBER430381 ! Node: RANDOM_SEED432110 ! Node: RANGE435941 ! Node: RANK436622 ! Node: REAL437403 ! Node: RENAME439200 ! Node: REPEAT440222 ! Node: RESHAPE440950 ! Node: RRSPACING442417 ! Node: RSHIFT443110 ! Node: SAME_TYPE_AS444250 ! Node: SCALE445082 ! Node: SCAN445863 ! Node: SECNDS447421 ! Node: SECOND448513 ! Node: SELECTED_CHAR_KIND449389 ! Node: SELECTED_INT_KIND450984 ! Node: SELECTED_REAL_KIND452161 ! Node: SET_EXPONENT454838 ! Node: SHAPE455835 ! Node: SHIFTA457259 ! Node: SHIFTL458223 ! Node: SHIFTR459060 ! Node: SIGN459898 ! Node: SIGNAL461124 ! Node: SIN462630 ! Node: SINH463672 ! Node: SIZE464684 ! Node: SIZEOF466003 ! Node: SLEEP467480 ! Node: SPACING468041 ! Node: SPREAD469055 ! Node: SQRT470206 ! Node: SRAND471538 ! Node: STAT472708 ! Node: STORAGE_SIZE475876 ! Node: SUM476755 ! Node: SYMLNK478247 ! Node: SYSTEM479382 ! Node: SYSTEM_CLOCK480637 ! Node: TAN483396 ! Node: TANH484384 ! Node: THIS_IMAGE485558 ! Node: TIME487058 ! Node: TIME8488183 ! Node: TINY489336 ! Node: TRAILZ489937 ! Node: TRANSFER490755 ! Node: TRANSPOSE492791 ! Node: TRIM493481 ! Node: TTYNAM494339 ! Node: UBOUND495257 ! Node: UCOBOUND496647 ! Node: UMASK497784 ! Node: UNLINK498466 ! Node: UNPACK499446 ! Node: VERIFY500741 ! Node: XOR502470 ! Node: Intrinsic Modules503843 ! Node: ISO_FORTRAN_ENV504086 ! Node: ISO_C_BINDING508254 ! Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS511986 ! Node: Contributing513489 ! Node: Contributors514343 ! Node: Projects515974 ! Node: Proposed Extensions516780 ! Node: Copying518790 ! Node: GNU Free Documentation License556336 ! Node: Funding581460 ! Node: Option Index583986 ! Node: Keyword Index599118  End Tag Table --- 18266,18627 ----  Tag Table: ! Node: Top2004 ! Node: Introduction3391 ! Node: About GNU Fortran4140 ! Node: GNU Fortran and GCC8129 ! Node: Preprocessing and conditional compilation10243 ! Node: GNU Fortran and G7711887 ! Node: Project Status12460 ! Node: Standards14907 ! Node: Varying Length Character Strings15920 ! Node: Invoking GNU Fortran16671 ! Node: Option Summary18394 ! Node: Fortran Dialect Options21801 ! Node: Preprocessing Options30467 ! Node: Error and Warning Options38698 ! Node: Debugging Options48887 ! Node: Directory Options52359 ! Node: Link Options53794 ! Node: Runtime Options54418 ! Node: Code Gen Options56323 ! Node: Environment Variables72522 ! Node: Runtime73127 ! Node: TMPDIR74229 ! Node: GFORTRAN_STDIN_UNIT74898 ! Node: GFORTRAN_STDOUT_UNIT75280 ! Node: GFORTRAN_STDERR_UNIT75681 ! Node: GFORTRAN_UNBUFFERED_ALL76083 ! Node: GFORTRAN_UNBUFFERED_PRECONNECTED76614 ! Node: GFORTRAN_SHOW_LOCUS77258 ! Node: GFORTRAN_OPTIONAL_PLUS77754 ! Node: GFORTRAN_DEFAULT_RECL78230 ! Node: GFORTRAN_LIST_SEPARATOR78719 ! Node: GFORTRAN_CONVERT_UNIT79328 ! Node: GFORTRAN_ERROR_BACKTRACE82191 ! Node: Fortran 2003 and 2008 status82748 ! Node: Fortran 2003 status83008 ! Node: Fortran 2008 status88232 ! Node: TS 29113 status93081 ! Node: Compiler Characteristics94057 ! Node: KIND Type Parameters94593 ! Node: Internal representation of LOGICAL variables96022 ! Node: Thread-safety of the runtime library96882 ! Node: Data consistency and durability98309 ! Node: Extensions101351 ! Node: Extensions implemented in GNU Fortran101956 ! Node: Old-style kind specifications103314 ! Node: Old-style variable initialization104421 ! Node: Extensions to namelist105733 ! Node: X format descriptor without count field108035 ! Node: Commas in FORMAT specifications108562 ! Node: Missing period in FORMAT specifications109079 ! Node: I/O item lists109641 ! Node: `Q' exponent-letter110028 ! Node: BOZ literal constants110628 ! Node: Real array indices113207 ! Node: Unary operators113506 ! Node: Implicitly convert LOGICAL and INTEGER values113920 ! Node: Hollerith constants support114880 ! Node: Cray pointers116652 ! Node: CONVERT specifier122099 ! Node: OpenMP124097 ! Node: Argument list functions126346 ! Node: Extensions not implemented in GNU Fortran127952 ! Node: STRUCTURE and RECORD128901 ! Node: ENCODE and DECODE statements131337 ! Node: Variable FORMAT expressions132697 ! Node: Alternate complex function syntax133802 ! Node: Volatile COMMON blocks134353 ! Node: Mixed-Language Programming134829 ! Node: Interoperability with C135413 ! Node: Intrinsic Types136751 ! Node: Derived Types and struct137747 ! Node: Interoperable Global Variables139104 ! Node: Interoperable Subroutines and Functions140380 ! Node: Working with Pointers144176 ! Node: Further Interoperability of Fortran with C148652 ! Node: GNU Fortran Compiler Directives152001 ! Node: Non-Fortran Main Program155255 ! Node: _gfortran_set_args157445 ! Node: _gfortran_set_options158380 Node: _gfortran_set_convert161747 ! Node: _gfortran_set_record_marker162611 ! Node: _gfortran_set_fpe163419 ! Node: _gfortran_set_max_subrecord_length164611 ! Node: Naming and argument-passing conventions165531 ! Node: Naming conventions166250 ! Node: Argument passing conventions167720 ! Node: Intrinsic Procedures172216 ! Node: Introduction to Intrinsics187702 ! Node: ABORT190054 ! Node: ABS190800 ! Node: ACCESS192417 ! Node: ACHAR194338 ! Node: ACOS195539 ! Node: ACOSH196776 ! Node: ADJUSTL197764 ! Node: ADJUSTR198705 ! Node: AIMAG199652 ! Node: AINT201033 ! Node: ALARM202620 ! Node: ALL204254 ! Node: ALLOCATED206172 ! Node: AND207309 ! Node: ANINT208606 ! Node: ANY210084 ! Node: ASIN212014 ! Node: ASINH213240 ! Node: ASSOCIATED214238 ! Node: ATAN217243 ! Node: ATAN2218662 ! Node: ATANH220434 ! Node: ATOMIC_DEFINE221434 ! Node: ATOMIC_REF222608 ! Node: BACKTRACE223968 ! Node: BESSEL_J0224547 ! Node: BESSEL_J1225595 ! Node: BESSEL_JN226647 ! Node: BESSEL_Y0228529 ! Node: BESSEL_Y1229529 ! Node: BESSEL_YN230529 ! Node: BGE232361 ! Node: BGT233050 ! Node: BIT_SIZE233697 ! Node: BLE234518 ! Node: BLT235197 ! Node: BTEST235832 ! Node: C_ASSOCIATED236715 ! Node: C_F_POINTER237924 ! Node: C_F_PROCPOINTER239348 ! Node: C_FUNLOC240849 ! Node: C_LOC242218 ! Node: C_SIZEOF243495 ! Node: CEILING244905 ! Node: CHAR245910 ! Node: CHDIR247114 ! Node: CHMOD248282 ! Node: CMPLX250145 ! Node: COMMAND_ARGUMENT_COUNT251609 ! Node: COMPILER_OPTIONS252532 ! Node: COMPILER_VERSION253558 ! Node: COMPLEX254522 ! Node: CONJG255659 ! Node: COS256730 ! Node: COSH258176 ! Node: COUNT259341 ! Node: CPU_TIME261357 ! Node: CSHIFT262711 ! Node: CTIME264367 ! Node: DATE_AND_TIME265877 ! Node: DBLE268337 ! Node: DCMPLX269130 Node: DIGITS270324 ! Node: DIM271290 ! Node: DOT_PRODUCT272548 ! Node: DPROD274204 ! Node: DREAL275121 ! Node: DSHIFTL275787 ! Node: DSHIFTR277107 ! Node: DTIME278428 ! Node: EOSHIFT281231 ! Node: EPSILON283304 ! Node: ERF284030 ! Node: ERFC284804 ! Node: ERFC_SCALED285608 ! Node: ETIME286300 ! Node: EXECUTE_COMMAND_LINE288541 ! Node: EXIT291121 ! Node: EXP291995 ! Node: EXPONENT293268 ! Node: EXTENDS_TYPE_OF294028 ! Node: FDATE294881 ! Node: FGET296363 ! Node: FGETC298181 ! Node: FLOOR299980 ! Node: FLUSH300964 ! Node: FNUM302839 ! Node: FPUT303561 ! Node: FPUTC305186 ! Node: FRACTION306957 ! Node: FREE307858 ! Node: FSEEK308693 ! Node: FSTAT310987 ! Node: FTELL312067 ! Node: GAMMA313045 ! Node: GERROR314086 ! Node: GETARG314805 ! Node: GET_COMMAND316569 ! Node: GET_COMMAND_ARGUMENT317933 ! Node: GETCWD319969 ! Node: GETENV320943 ! Node: GET_ENVIRONMENT_VARIABLE322368 ! Node: GETGID324521 ! Node: GETLOG325058 ! Node: GETPID325918 ! Node: GETUID326648 ! Node: GMTIME327164 ! Node: HOSTNM328653 ! Node: HUGE329571 ! Node: HYPOT330292 ! Node: IACHAR331112 ! Node: IALL332292 ! Node: IAND333769 ! Node: IANY334753 ! Node: IARGC336239 ! Node: IBCLR337260 ! Node: IBITS337921 ! Node: IBSET338836 ! Node: ICHAR339492 ! Node: IDATE341664 ! Node: IEOR342691 ! Node: IERRNO343567 ! Node: IMAGE_INDEX344116 ! Node: INDEX intrinsic345140 ! Node: INT346681 ! Node: INT2348383 ! Node: INT8349148 ! Node: IOR349860 ! Node: IPARITY350712 ! Node: IRAND352236 ! Node: IS_IOSTAT_END353592 ! Node: IS_IOSTAT_EOR354689 ! Node: ISATTY355816 ! Node: ISHFT356599 ! Node: ISHFTC357579 ! Node: ISNAN358795 ! Node: ITIME359543 ! Node: KILL360568 ! Node: KIND361472 ! Node: LBOUND362317 ! Node: LCOBOUND363650 ! Node: LEADZ364780 ! Node: LEN365640 ! Node: LEN_TRIM366921 ! Node: LGE367903 ! Node: LGT369405 ! Node: LINK370872 ! Node: LLE371907 ! Node: LLT373401 ! Node: LNBLNK374861 ! Node: LOC375637 ! Node: LOG376368 ! Node: LOG10377771 ! Node: LOG_GAMMA378745 ! Node: LOGICAL379834 ! Node: LONG380642 ! Node: LSHIFT381398 ! Node: LSTAT382483 ! Node: LTIME383677 ! Node: MALLOC385088 ! Node: MASKL386547 ! Node: MASKR387310 ! Node: MATMUL388076 ! Node: MAX389165 ! Node: MAXEXPONENT390664 ! Node: MAXLOC391480 ! Node: MAXVAL393499 ! Node: MCLOCK395132 ! Node: MCLOCK8396156 ! Node: MERGE397389 ! Node: MERGE_BITS398138 ! Node: MIN398999 ! Node: MINEXPONENT400500 ! Node: MINLOC401130 ! Node: MINVAL403149 ! Node: MOD404801 ! Node: MODULO406546 ! Node: MOVE_ALLOC407846 ! Node: MVBITS408875 ! Node: NEAREST409934 ! Node: NEW_LINE411030 ! Node: NINT411801 ! Node: NORM2413204 ! Node: NOT414342 ! Node: NULL414926 ! Node: NUM_IMAGES415831 ! Node: OR416647 ! Node: PACK417931 ! Node: PARITY419924 ! Node: PERROR421139 ! Node: POPCNT421760 ! Node: POPPAR422631 ! Node: PRECISION423682 ! Node: PRESENT424568 ! Node: PRODUCT425674 ! Node: RADIX427199 ! Node: RAN428011 ! Node: RAND428467 ! Node: RANDOM_NUMBER429799 ! Node: RANDOM_SEED431516 ! Node: RANGE435328 ! Node: RANK436024 ! Node: REAL436804 ! Node: RENAME438579 ! Node: REPEAT439598 ! Node: RESHAPE440324 ! Node: RRSPACING441793 ! Node: RSHIFT442486 ! Node: SAME_TYPE_AS443624 ! Node: SCALE444454 ! Node: SCAN445234 ! Node: SECNDS446784 ! Node: SECOND447872 ! Node: SELECTED_CHAR_KIND448748 ! Node: SELECTED_INT_KIND450339 ! Node: SELECTED_REAL_KIND451514 ! Node: SET_EXPONENT454180 ! Node: SHAPE455176 ! Node: SHIFTA456591 ! Node: SHIFTL457552 ! Node: SHIFTR458387 ! Node: SIGN459223 ! Node: SIGNAL460507 ! Node: SIN462004 ! Node: SINH463102 ! Node: SIZE464098 ! Node: SIZEOF465406 ! Node: SLEEP466879 ! Node: SPACING467439 ! Node: SPREAD468452 ! Node: SQRT469597 ! Node: SRAND470951 ! Node: STAT472119 ! Node: STORAGE_SIZE475286 ! Node: SUM476165 ! Node: SYMLNK477648 ! Node: SYSTEM478780 ! Node: SYSTEM_CLOCK480031 ! Node: TAN482786 ! Node: TANH483758 ! Node: THIS_IMAGE484915 ! Node: TIME486407 ! Node: TIME8487532 ! Node: TINY488682 ! Node: TRAILZ489282 ! Node: TRANSFER490099 ! Node: TRANSPOSE492133 ! Node: TRIM492820 ! Node: TTYNAM493677 ! Node: UBOUND494592 ! Node: UCOBOUND495982 ! Node: UMASK497114 ! Node: UNLINK497792 ! Node: UNPACK498769 ! Node: VERIFY500057 ! Node: XOR501778 ! Node: Intrinsic Modules503150 ! Node: ISO_FORTRAN_ENV503393 ! Node: ISO_C_BINDING507545 ! Node: OpenMP Modules OMP_LIB and OMP_LIB_KINDS511762 ! Node: Contributing513274 ! Node: Contributors514128 ! Node: Projects515795 ! Node: Proposed Extensions516599 ! Node: Copying518610 ! Node: GNU Free Documentation License556174 ! Node: Funding581317 ! Node: Option Index583842 ! Node: Keyword Index598974  End Tag Table diff -Nrcpad gcc-4.9.3/gcc/fortran/parse.c gcc-4.9.4/gcc/fortran/parse.c *** gcc-4.9.3/gcc/fortran/parse.c Mon Jun 30 16:35:48 2014 --- gcc-4.9.4/gcc/fortran/parse.c Thu Jul 7 21:54:34 2016 *************** decode_statement (void) *** 559,567 **** return ST_NONE; } ! /* Like match, but set a flag simd_matched if keyword matched. */ #define matchs(keyword, subr, st) \ do { \ if (match_word_omp_simd (keyword, subr, &old_locus, \ &simd_matched) == MATCH_YES) \ return st; \ --- 559,570 ---- return ST_NONE; } ! /* Like match, but set a flag simd_matched if keyword matched ! and if spec_only, goto do_spec_only without actually matching. */ #define matchs(keyword, subr, st) \ do { \ + if (spec_only && gfc_match (keyword) == MATCH_YES) \ + goto do_spec_only; \ if (match_word_omp_simd (keyword, subr, &old_locus, \ &simd_matched) == MATCH_YES) \ return st; \ *************** decode_statement (void) *** 569,579 **** undo_new_statement (); \ } while (0); ! /* Like match, but don't match anything if not -fopenmp. */ #define matcho(keyword, subr, st) \ do { \ if (!gfc_option.gfc_flag_openmp) \ ; \ else if (match_word (keyword, subr, &old_locus) \ == MATCH_YES) \ return st; \ --- 572,607 ---- undo_new_statement (); \ } while (0); ! /* Like match, but don't match anything if not -fopenmp ! and if spec_only, goto do_spec_only without actually matching. */ #define matcho(keyword, subr, st) \ do { \ if (!gfc_option.gfc_flag_openmp) \ ; \ + else if (spec_only && gfc_match (keyword) == MATCH_YES) \ + goto do_spec_only; \ + else if (match_word (keyword, subr, &old_locus) \ + == MATCH_YES) \ + return st; \ + else \ + undo_new_statement (); \ + } while (0); + + /* Like match, but set a flag simd_matched if keyword matched. */ + #define matchds(keyword, subr, st) \ + do { \ + if (match_word_omp_simd (keyword, subr, &old_locus, \ + &simd_matched) == MATCH_YES) \ + return st; \ + else \ + undo_new_statement (); \ + } while (0); + + /* Like match, but don't match anything if not -fopenmp. */ + #define matchdo(keyword, subr, st) \ + do { \ + if (!gfc_option.gfc_flag_openmp) \ + ; \ else if (match_word (keyword, subr, &old_locus) \ == MATCH_YES) \ return st; \ *************** decode_omp_directive (void) *** 587,592 **** --- 615,621 ---- locus old_locus; char c; bool simd_matched = false; + bool spec_only = false; gfc_enforce_clean_symbol_state (); *************** decode_omp_directive (void) *** 601,606 **** --- 630,639 ---- return ST_NONE; } + if (gfc_current_state () == COMP_FUNCTION + && gfc_current_block ()->result->ts.kind == -1) + spec_only = true; + gfc_unset_implicit_pure (NULL); old_locus = gfc_current_locus; *************** decode_omp_directive (void) *** 629,640 **** matcho ("critical", gfc_match_omp_critical, ST_OMP_CRITICAL); break; case 'd': ! matchs ("declare reduction", gfc_match_omp_declare_reduction, ! ST_OMP_DECLARE_REDUCTION); ! matchs ("declare simd", gfc_match_omp_declare_simd, ! ST_OMP_DECLARE_SIMD); ! matcho ("declare target", gfc_match_omp_declare_target, ! ST_OMP_DECLARE_TARGET); matchs ("distribute parallel do simd", gfc_match_omp_distribute_parallel_do_simd, ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD); --- 662,673 ---- matcho ("critical", gfc_match_omp_critical, ST_OMP_CRITICAL); break; case 'd': ! matchds ("declare reduction", gfc_match_omp_declare_reduction, ! ST_OMP_DECLARE_REDUCTION); ! matchds ("declare simd", gfc_match_omp_declare_simd, ! ST_OMP_DECLARE_SIMD); ! matchdo ("declare target", gfc_match_omp_declare_target, ! ST_OMP_DECLARE_TARGET); matchs ("distribute parallel do simd", gfc_match_omp_distribute_parallel_do_simd, ST_OMP_DISTRIBUTE_PARALLEL_DO_SIMD); *************** decode_omp_directive (void) *** 754,761 **** matcho ("teams distribute", gfc_match_omp_teams_distribute, ST_OMP_TEAMS_DISTRIBUTE); matcho ("teams", gfc_match_omp_teams, ST_OMP_TEAMS); ! matcho ("threadprivate", gfc_match_omp_threadprivate, ! ST_OMP_THREADPRIVATE); break; case 'w': matcho ("workshare", gfc_match_omp_workshare, ST_OMP_WORKSHARE); --- 787,794 ---- matcho ("teams distribute", gfc_match_omp_teams_distribute, ST_OMP_TEAMS_DISTRIBUTE); matcho ("teams", gfc_match_omp_teams, ST_OMP_TEAMS); ! matchdo ("threadprivate", gfc_match_omp_threadprivate, ! ST_OMP_THREADPRIVATE); break; case 'w': matcho ("workshare", gfc_match_omp_workshare, ST_OMP_WORKSHARE); *************** decode_omp_directive (void) *** 778,783 **** --- 811,823 ---- gfc_error_recovery (); return ST_NONE; + + do_spec_only: + reject_statement (); + gfc_clear_error (); + gfc_buffer_error (false); + gfc_current_locus = old_locus; + return ST_GET_FCN_CHARACTERISTICS; } static gfc_statement *************** next_statement (void) *** 1126,1135 **** gfc_buffer_error (0); ! if (st == ST_GET_FCN_CHARACTERISTICS && gfc_statement_label != NULL) { ! gfc_free_st_label (gfc_statement_label); ! gfc_statement_label = NULL; gfc_current_locus = old_locus; } --- 1166,1178 ---- gfc_buffer_error (0); ! if (st == ST_GET_FCN_CHARACTERISTICS) { ! if (gfc_statement_label != NULL) ! { ! gfc_free_st_label (gfc_statement_label); ! gfc_statement_label = NULL; ! } gfc_current_locus = old_locus; } diff -Nrcpad gcc-4.9.3/gcc/fortran/primary.c gcc-4.9.4/gcc/fortran/primary.c *** gcc-4.9.3/gcc/fortran/primary.c Thu Mar 6 21:45:31 2014 --- gcc-4.9.4/gcc/fortran/primary.c Mon Oct 19 19:32:52 2015 *************** check_substring: *** 2133,2139 **** symbol_attribute gfc_variable_attr (gfc_expr *expr, gfc_typespec *ts) { ! int dimension, codimension, pointer, allocatable, target; symbol_attribute attr; gfc_ref *ref; gfc_symbol *sym; --- 2133,2139 ---- symbol_attribute gfc_variable_attr (gfc_expr *expr, gfc_typespec *ts) { ! int dimension, codimension, pointer, allocatable, target, n; symbol_attribute attr; gfc_ref *ref; gfc_symbol *sym; *************** gfc_variable_attr (gfc_expr *expr, gfc_t *** 2190,2196 **** break; case AR_UNKNOWN: ! gfc_internal_error ("gfc_variable_attr(): Bad array reference"); } break; --- 2190,2214 ---- break; case AR_UNKNOWN: ! /* If any of start, end or stride is not integer, there will ! already have been an error issued. */ ! for (n = 0; n < ref->u.ar.as->rank; n++) ! { ! int errors; ! gfc_get_errors (NULL, &errors); ! if (((ref->u.ar.start[n] ! && ref->u.ar.start[n]->ts.type == BT_UNKNOWN) ! || ! (ref->u.ar.end[n] ! && ref->u.ar.end[n]->ts.type == BT_UNKNOWN) ! || ! (ref->u.ar.stride[n] ! && ref->u.ar.stride[n]->ts.type == BT_UNKNOWN)) ! && errors > 0) ! break; ! } ! if (n == ref->u.ar.as->rank) ! gfc_internal_error ("gfc_variable_attr(): Bad array reference"); } break; *************** gfc_match_rvalue (gfc_expr **result) *** 3138,3144 **** break; default: ! gfc_error ("Symbol at %C is not appropriate for an expression"); return MATCH_ERROR; } --- 3156,3163 ---- break; default: ! gfc_error ("Symbol '%s' at %C is not appropriate for an expression", ! sym->name); return MATCH_ERROR; } diff -Nrcpad gcc-4.9.3/gcc/fortran/scanner.c gcc-4.9.4/gcc/fortran/scanner.c *** gcc-4.9.3/gcc/fortran/scanner.c Mon Jun 30 16:35:48 2014 --- gcc-4.9.4/gcc/fortran/scanner.c Fri May 27 04:47:11 2016 *************** add_path_to_list (gfc_directorylist **li *** 336,342 **** } else if (!S_ISDIR (st.st_mode)) { ! gfc_warning_now ("\"%s\" is not a directory", path); return; } --- 336,342 ---- } else if (!S_ISDIR (st.st_mode)) { ! gfc_fatal_error ("\"%s\" is not a directory", path); return; } *************** restart: *** 1259,1264 **** --- 1259,1265 ---- not_continuation: c = '\n'; gfc_current_locus = old_loc; + end_flag = 0; done: if (c == '\n') diff -Nrcpad gcc-4.9.3/gcc/fortran/simplify.c gcc-4.9.4/gcc/fortran/simplify.c *** gcc-4.9.3/gcc/fortran/simplify.c Mon Mar 23 11:58:49 2015 --- gcc-4.9.4/gcc/fortran/simplify.c Fri Jul 22 15:01:48 2016 *************** gfc_simplify_len (gfc_expr *e, gfc_expr *** 3692,3699 **** } else if (e->expr_type == EXPR_VARIABLE && e->ts.type == BT_CHARACTER && e->symtree->n.sym && e->symtree->n.sym->assoc && e->symtree->n.sym->assoc->target ! && e->symtree->n.sym->assoc->target->ts.type == BT_DERIVED) /* The expression in assoc->target points to a ref to the _data component of the unlimited polymorphic entity. To get the _len component the last _data ref needs to be stripped and a ref to the _len component added. */ --- 3692,3703 ---- } else if (e->expr_type == EXPR_VARIABLE && e->ts.type == BT_CHARACTER && e->symtree->n.sym + && e->symtree->n.sym->ts.type != BT_DERIVED && e->symtree->n.sym->assoc && e->symtree->n.sym->assoc->target ! && e->symtree->n.sym->assoc->target->ts.type == BT_DERIVED ! && e->symtree->n.sym->assoc->target->symtree->n.sym ! && UNLIMITED_POLY (e->symtree->n.sym->assoc->target->symtree->n.sym)) ! /* The expression in assoc->target points to a ref to the _data component of the unlimited polymorphic entity. To get the _len component the last _data ref needs to be stripped and a ref to the _len component added. */ diff -Nrcpad gcc-4.9.3/gcc/fortran/trans-array.c gcc-4.9.4/gcc/fortran/trans-array.c *** gcc-4.9.3/gcc/fortran/trans-array.c Wed Jan 7 22:31:54 2015 --- gcc-4.9.4/gcc/fortran/trans-array.c Thu Feb 11 09:14:43 2016 *************** gfc_trans_scalarized_loop_end (gfc_loopi *** 3483,3489 **** tree init; tree incr; ! if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS)) == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS) && n == loop->dimen - 1) { --- 3483,3490 ---- tree init; tree incr; ! if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS ! | OMPWS_SCALARIZER_BODY)) == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS) && n == loop->dimen - 1) { *************** gfc_array_init_size (tree descriptor, in *** 4976,4981 **** --- 4977,4984 ---- gcc_assert (ubound); gfc_conv_expr_type (&se, ubound, gfc_array_index_type); gfc_add_block_to_block (pblock, &se.pre); + if (ubound->expr_type == EXPR_FUNCTION) + se.expr = gfc_evaluate_now (se.expr, pblock); gfc_conv_descriptor_ubound_set (descriptor_block, descriptor, gfc_rank_cst[n], se.expr); *************** gfc_get_proc_ifc_for_expr (gfc_expr *pro *** 8925,8931 **** return NULL; /* Normal procedure case. */ ! sym = procedure_ref->symtree->n.sym; /* Typebound procedure case. */ for (ref = procedure_ref->ref; ref; ref = ref->next) --- 8928,8938 ---- return NULL; /* Normal procedure case. */ ! if (procedure_ref->expr_type == EXPR_FUNCTION ! && procedure_ref->value.function.esym) ! sym = procedure_ref->value.function.esym; ! else ! sym = procedure_ref->symtree->n.sym; /* Typebound procedure case. */ for (ref = procedure_ref->ref; ref; ref = ref->next) diff -Nrcpad gcc-4.9.3/gcc/fortran/trans-decl.c gcc-4.9.4/gcc/fortran/trans-decl.c *** gcc-4.9.3/gcc/fortran/trans-decl.c Wed Jan 14 20:22:47 2015 --- gcc-4.9.4/gcc/fortran/trans-decl.c Tue Jul 19 15:44:56 2016 *************** gfc_generate_function_code (gfc_namespac *** 5778,5784 **** function has already called cgraph_create_node, which also created the cgraph node for this function. */ if (!has_coarray_vars || gfc_option.coarray != GFC_FCOARRAY_LIB) ! (void) cgraph_create_node (fndecl); } else cgraph_finalize_function (fndecl, true); --- 5778,5784 ---- function has already called cgraph_create_node, which also created the cgraph node for this function. */ if (!has_coarray_vars || gfc_option.coarray != GFC_FCOARRAY_LIB) ! (void) cgraph_get_create_node (fndecl); } else cgraph_finalize_function (fndecl, true); diff -Nrcpad gcc-4.9.3/gcc/fortran/trans-expr.c gcc-4.9.4/gcc/fortran/trans-expr.c *** gcc-4.9.3/gcc/fortran/trans-expr.c Mon Mar 23 11:58:49 2015 --- gcc-4.9.4/gcc/fortran/trans-expr.c Sat Jul 16 06:06:45 2016 *************** gfc_trans_structure_assign (tree dest, g *** 6184,6190 **** { gfc_se se, lse; - gcc_assert (cm->backend_decl == NULL); gfc_init_se (&se, NULL); gfc_init_se (&lse, NULL); gfc_conv_expr (&se, gfc_constructor_first (expr->value.constructor)->expr); --- 6184,6189 ---- *************** gfc_trans_assignment_1 (gfc_expr * expr1 *** 8024,8029 **** --- 8023,8029 ---- bool scalar_to_array; tree string_length; int n; + bool maybe_workshare = false; /* Assignment of the form lhs = rhs. */ gfc_start_block (&block); *************** gfc_trans_assignment_1 (gfc_expr * expr1 *** 8092,8099 **** } /* Allow the scalarizer to workshare array assignments. */ ! if ((ompws_flags & OMPWS_WORKSHARE_FLAG) && loop.temp_ss == NULL) ! ompws_flags |= OMPWS_SCALARIZER_WS; /* Start the scalarized loop body. */ gfc_start_scalarized_body (&loop, &body); --- 8092,8104 ---- } /* Allow the scalarizer to workshare array assignments. */ ! if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_BODY)) ! == OMPWS_WORKSHARE_FLAG ! && loop.temp_ss == NULL) ! { ! maybe_workshare = true; ! ompws_flags |= OMPWS_SCALARIZER_WS | OMPWS_SCALARIZER_BODY; ! } /* Start the scalarized loop body. */ gfc_start_scalarized_body (&loop, &body); *************** gfc_trans_assignment_1 (gfc_expr * expr1 *** 8208,8213 **** --- 8213,8221 ---- gfc_add_expr_to_block (&loop.code[expr1->rank - 1], tmp); } + if (maybe_workshare) + ompws_flags &= ~OMPWS_SCALARIZER_BODY; + /* Generate the copying loops. */ gfc_trans_scalarizing_loops (&loop, &body); diff -Nrcpad gcc-4.9.3/gcc/fortran/trans-openmp.c gcc-4.9.4/gcc/fortran/trans-openmp.c *** gcc-4.9.3/gcc/fortran/trans-openmp.c Wed Jun 3 15:31:46 2015 --- gcc-4.9.4/gcc/fortran/trans-openmp.c Thu Jul 7 21:55:37 2016 *************** gfc_omp_privatize_by_reference (const_tr *** 59,64 **** --- 59,65 ---- if (GFC_DECL_GET_SCALAR_POINTER (decl) || GFC_DECL_GET_SCALAR_ALLOCATABLE (decl) || GFC_DECL_CRAY_POINTEE (decl) + || GFC_DECL_ASSOCIATE_VAR_P (decl) || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (decl)))) return false; *************** gfc_trans_omp_clauses (stmtblock_t *bloc *** 2114,2119 **** --- 2115,2122 ---- tree decl = gfc_get_symbol_decl (n->sym); if (gfc_omp_privatize_by_reference (decl)) decl = build_fold_indirect_ref (decl); + else if (DECL_P (decl)) + TREE_ADDRESSABLE (decl) = 1; if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl))) { tree type = TREE_TYPE (decl); *************** gfc_trans_omp_workshare (gfc_code *code, *** 3903,3909 **** /* By default, every gfc_code is a single unit of work. */ ompws_flags |= OMPWS_CURR_SINGLEUNIT; ! ompws_flags &= ~OMPWS_SCALARIZER_WS; switch (code->op) { --- 3906,3912 ---- /* By default, every gfc_code is a single unit of work. */ ompws_flags |= OMPWS_CURR_SINGLEUNIT; ! ompws_flags &= ~(OMPWS_SCALARIZER_WS | OMPWS_SCALARIZER_BODY); switch (code->op) { diff -Nrcpad gcc-4.9.3/gcc/fortran/trans-stmt.c gcc-4.9.4/gcc/fortran/trans-stmt.c *** gcc-4.9.3/gcc/fortran/trans-stmt.c Mon Mar 23 11:58:49 2015 --- gcc-4.9.4/gcc/fortran/trans-stmt.c Thu Feb 11 09:14:43 2016 *************** gfc_trans_where_3 (gfc_code * cblock, gf *** 4693,4702 **** gfc_loopinfo loop; gfc_ss *edss = 0; gfc_ss *esss = 0; /* Allow the scalarizer to workshare simple where loops. */ ! if (ompws_flags & OMPWS_WORKSHARE_FLAG) ! ompws_flags |= OMPWS_SCALARIZER_WS; cond = cblock->expr1; tdst = cblock->next->expr1; --- 4693,4707 ---- gfc_loopinfo loop; gfc_ss *edss = 0; gfc_ss *esss = 0; + bool maybe_workshare = false; /* Allow the scalarizer to workshare simple where loops. */ ! if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_BODY)) ! == OMPWS_WORKSHARE_FLAG) ! { ! maybe_workshare = true; ! ompws_flags |= OMPWS_SCALARIZER_WS | OMPWS_SCALARIZER_BODY; ! } cond = cblock->expr1; tdst = cblock->next->expr1; *************** gfc_trans_where_3 (gfc_code * cblock, gf *** 4796,4801 **** --- 4801,4808 ---- gfc_add_expr_to_block (&body, tmp); gfc_add_block_to_block (&body, &cse.post); + if (maybe_workshare) + ompws_flags &= ~OMPWS_SCALARIZER_BODY; gfc_trans_scalarizing_loops (&loop, &body); gfc_add_block_to_block (&block, &loop.pre); gfc_add_block_to_block (&block, &loop.post); diff -Nrcpad gcc-4.9.3/gcc/fortran/trans-types.c gcc-4.9.4/gcc/fortran/trans-types.c *** gcc-4.9.3/gcc/fortran/trans-types.c Thu Mar 19 20:12:29 2015 --- gcc-4.9.4/gcc/fortran/trans-types.c Wed Nov 25 05:28:10 2015 *************** gfc_get_derived_type (gfc_symbol * deriv *** 2342,2347 **** --- 2342,2348 ---- gfc_component *c; gfc_dt_list *dt; gfc_namespace *ns; + tree tmp; if (derived->attr.unlimited_polymorphic) return ptr_type_node; *************** gfc_get_derived_type (gfc_symbol * deriv *** 2490,2497 **** node as DECL_CONTEXT of each FIELD_DECL. */ for (c = derived->components; c; c = c->next) { ! if (c->attr.proc_pointer) field_type = gfc_get_ppc_type (c); else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) field_type = c->ts.u.derived->backend_decl; else --- 2491,2509 ---- node as DECL_CONTEXT of each FIELD_DECL. */ for (c = derived->components; c; c = c->next) { ! /* Prevent infinite recursion, when the procedure pointer type is ! the same as derived, by forcing the procedure pointer component to ! be built as if the explicit interface does not exist. */ ! if (c->attr.proc_pointer ! && ((c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS) ! || (c->ts.u.derived ! && !gfc_compare_derived_types (derived, c->ts.u.derived)))) field_type = gfc_get_ppc_type (c); + else if (c->attr.proc_pointer && derived->backend_decl) + { + tmp = build_function_type_list (derived->backend_decl, NULL_TREE); + field_type = build_pointer_type (tmp); + } else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) field_type = c->ts.u.derived->backend_decl; else diff -Nrcpad gcc-4.9.3/gcc/fortran/trans.h gcc-4.9.4/gcc/fortran/trans.h *** gcc-4.9.3/gcc/fortran/trans.h Mon Mar 23 11:58:49 2015 --- gcc-4.9.4/gcc/fortran/trans.h Thu Feb 11 09:14:43 2016 *************** extern const char gfc_msg_wrong_return[] *** 982,988 **** construct is not workshared. */ #define OMPWS_SCALARIZER_WS 4 /* Set if scalarizer should attempt to create parallel loops. */ ! #define OMPWS_NOWAIT 8 /* Use NOWAIT on OMP_FOR. */ extern int ompws_flags; #endif /* GFC_TRANS_H */ --- 982,990 ---- construct is not workshared. */ #define OMPWS_SCALARIZER_WS 4 /* Set if scalarizer should attempt to create parallel loops. */ ! #define OMPWS_SCALARIZER_BODY 8 /* Set if handling body of potential ! parallel loop. */ ! #define OMPWS_NOWAIT 16 /* Use NOWAIT on OMP_FOR. */ extern int ompws_flags; #endif /* GFC_TRANS_H */ diff -Nrcpad gcc-4.9.3/gcc/gcse.c gcc-4.9.4/gcc/gcse.c *** gcc-4.9.3/gcc/gcse.c Fri Apr 4 22:25:51 2014 --- gcc-4.9.4/gcc/gcse.c Tue Mar 1 22:36:15 2016 *************** compute_ld_motion_mems (void) *** 3958,3967 **** { rtx src = SET_SRC (PATTERN (insn)); rtx dest = SET_DEST (PATTERN (insn)); - rtx note = find_reg_equal_equiv_note (insn); - rtx src_eq; ! /* Check for a simple LOAD... */ if (MEM_P (src) && simple_mem (src)) { ptr = ldst_entry (src); --- 3958,3965 ---- { rtx src = SET_SRC (PATTERN (insn)); rtx dest = SET_DEST (PATTERN (insn)); ! /* Check for a simple load. */ if (MEM_P (src) && simple_mem (src)) { ptr = ldst_entry (src); *************** compute_ld_motion_mems (void) *** 3976,3987 **** invalidate_any_buried_refs (src); } ! if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL) ! src_eq = XEXP (note, 0); ! else ! src_eq = NULL_RTX; ! ! if (src_eq != NULL_RTX && !(MEM_P (src_eq) && simple_mem (src_eq))) invalidate_any_buried_refs (src_eq); --- 3974,3984 ---- invalidate_any_buried_refs (src); } ! /* Check for a simple load through a REG_EQUAL note. */ ! rtx note = find_reg_equal_equiv_note (insn), src_eq; ! if (note ! && REG_NOTE_KIND (note) == REG_EQUAL ! && (src_eq = XEXP (note, 0)) && !(MEM_P (src_eq) && simple_mem (src_eq))) invalidate_any_buried_refs (src_eq); *************** compute_ld_motion_mems (void) *** 4004,4010 **** } } else ! invalidate_any_buried_refs (PATTERN (insn)); } } } --- 4001,4017 ---- } } else ! { ! /* Invalidate all MEMs in the pattern and... */ ! invalidate_any_buried_refs (PATTERN (insn)); ! ! /* ...in REG_EQUAL notes for PARALLELs with single SET. */ ! rtx note = find_reg_equal_equiv_note (insn), src_eq; ! if (note ! && REG_NOTE_KIND (note) == REG_EQUAL ! && (src_eq = XEXP (note, 0))) ! invalidate_any_buried_refs (src_eq); ! } } } } diff -Nrcpad gcc-4.9.3/gcc/gengtype-lex.c gcc-4.9.4/gcc/gengtype-lex.c *** gcc-4.9.3/gcc/gengtype-lex.c Fri Jun 26 18:01:27 2015 --- gcc-4.9.4/gcc/gengtype-lex.c Wed Aug 3 05:12:05 2016 *************** *** 10,16 **** #define FLEX_SCANNER #define YY_FLEX_MAJOR_VERSION 2 #define YY_FLEX_MINOR_VERSION 5 ! #define YY_FLEX_SUBMINOR_VERSION 37 #if YY_FLEX_SUBMINOR_VERSION > 0 #define FLEX_BETA #endif --- 10,16 ---- #define FLEX_SCANNER #define YY_FLEX_MAJOR_VERSION 2 #define YY_FLEX_MINOR_VERSION 5 ! #define YY_FLEX_SUBMINOR_VERSION 35 #if YY_FLEX_SUBMINOR_VERSION > 0 #define FLEX_BETA #endif *************** typedef int flex_int32_t; *** 55,60 **** --- 55,61 ---- typedef unsigned char flex_uint8_t; typedef unsigned short int flex_uint16_t; typedef unsigned int flex_uint32_t; + #endif /* ! C99 */ /* Limits of integral types. */ #ifndef INT8_MIN *************** typedef unsigned int flex_uint32_t; *** 85,92 **** #define UINT32_MAX (4294967295U) #endif - #endif /* ! C99 */ - #endif /* ! FLEXINT_H */ #ifdef __cplusplus --- 86,91 ---- *************** typedef unsigned int flex_uint32_t; *** 155,166 **** typedef struct yy_buffer_state *YY_BUFFER_STATE; #endif ! #ifndef YY_TYPEDEF_YY_SIZE_T ! #define YY_TYPEDEF_YY_SIZE_T ! typedef size_t yy_size_t; ! #endif ! ! extern yy_size_t yyleng; extern FILE *yyin, *yyout; --- 154,160 ---- typedef struct yy_buffer_state *YY_BUFFER_STATE; #endif ! extern int yyleng; extern FILE *yyin, *yyout; *************** extern FILE *yyin, *yyout; *** 186,191 **** --- 180,190 ---- #define unput(c) yyunput( c, (yytext_ptr) ) + #ifndef YY_TYPEDEF_YY_SIZE_T + #define YY_TYPEDEF_YY_SIZE_T + typedef size_t yy_size_t; + #endif + #ifndef YY_STRUCT_YY_BUFFER_STATE #define YY_STRUCT_YY_BUFFER_STATE struct yy_buffer_state *************** struct yy_buffer_state *** 203,209 **** /* Number of characters read into yy_ch_buf, not including EOB * characters. */ ! yy_size_t yy_n_chars; /* Whether we "own" the buffer - i.e., we know we created it, * and can realloc() it to grow it, and should free() it to --- 202,208 ---- /* Number of characters read into yy_ch_buf, not including EOB * characters. */ ! int yy_n_chars; /* Whether we "own" the buffer - i.e., we know we created it, * and can realloc() it to grow it, and should free() it to *************** static YY_BUFFER_STATE * yy_buffer_stack *** 273,280 **** /* yy_hold_char holds the character lost when yytext is formed. */ static char yy_hold_char; ! static yy_size_t yy_n_chars; /* number of characters read into yy_ch_buf */ ! yy_size_t yyleng; /* Points to current character in buffer. */ static char *yy_c_buf_p = (char *) 0; --- 272,279 ---- /* yy_hold_char holds the character lost when yytext is formed. */ static char yy_hold_char; ! static int yy_n_chars; /* number of characters read into yy_ch_buf */ ! int yyleng; /* Points to current character in buffer. */ static char *yy_c_buf_p = (char *) 0; *************** static void yy_init_buffer (YY_BUFFER_ST *** 302,308 **** YY_BUFFER_STATE yy_scan_buffer (char *base,yy_size_t size ); YY_BUFFER_STATE yy_scan_string (yyconst char *yy_str ); ! YY_BUFFER_STATE yy_scan_bytes (yyconst char *bytes,yy_size_t len ); void *yyalloc (yy_size_t ); void *yyrealloc (void *,yy_size_t ); --- 301,307 ---- YY_BUFFER_STATE yy_scan_buffer (char *base,yy_size_t size ); YY_BUFFER_STATE yy_scan_string (yyconst char *yy_str ); ! YY_BUFFER_STATE yy_scan_bytes (yyconst char *bytes,int len ); void *yyalloc (yy_size_t ); void *yyrealloc (void *,yy_size_t ); *************** void yyfree (void * ); *** 334,340 **** /* Begin user sect3 */ ! #define yywrap() 1 #define YY_SKIP_YYWRAP typedef unsigned char YY_CHAR; --- 333,339 ---- /* Begin user sect3 */ ! #define yywrap(n) 1 #define YY_SKIP_YYWRAP typedef unsigned char YY_CHAR; *************** int yy_flex_debug = 0; *** 1174,1180 **** #define YY_MORE_ADJ 0 #define YY_RESTORE_YY_MORE_OFFSET char *yytext; ! #line 1 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* -*- indented-text -*- */ /* Process source files and output type information. Copyright (C) 2002-2014 Free Software Foundation, Inc. --- 1173,1179 ---- #define YY_MORE_ADJ 0 #define YY_RESTORE_YY_MORE_OFFSET char *yytext; ! #line 1 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* -*- indented-text -*- */ /* Process source files and output type information. Copyright (C) 2002-2014 Free Software Foundation, Inc. *************** You should have received a copy of the G *** 1195,1201 **** along with GCC; see the file COPYING3. If not see . */ #define YY_NO_INPUT 1 ! #line 24 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" #ifdef GENERATOR_FILE #include "bconfig.h" #else --- 1194,1200 ---- along with GCC; see the file COPYING3. If not see . */ #define YY_NO_INPUT 1 ! #line 24 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" #ifdef GENERATOR_FILE #include "bconfig.h" #else *************** update_lineno (const char *l, size_t len *** 1224,1230 **** /* Include '::' in identifiers to capture C++ scope qualifiers. */ ! #line 1227 "gengtype-lex.c" #define INITIAL 0 #define in_struct 1 --- 1223,1229 ---- /* Include '::' in identifiers to capture C++ scope qualifiers. */ ! #line 1226 "gengtype-lex.c" #define INITIAL 0 #define in_struct 1 *************** FILE *yyget_out (void ); *** 1266,1272 **** void yyset_out (FILE * out_str ); ! yy_size_t yyget_leng (void ); char *yyget_text (void ); --- 1265,1271 ---- void yyset_out (FILE * out_str ); ! int yyget_leng (void ); char *yyget_text (void ); *************** static int input (void ); *** 1314,1320 **** /* This used to be an fputs(), but since the string might contain NUL's, * we now use fwrite(). */ ! #define ECHO do { if (fwrite( yytext, yyleng, 1, yyout )) {} } while (0) #endif /* Gets input and stuffs it into "buf". number of characters read, or YY_NULL, --- 1313,1319 ---- /* This used to be an fputs(), but since the string might contain NUL's, * we now use fwrite(). */ ! #define ECHO fwrite( yytext, yyleng, 1, yyout ) #endif /* Gets input and stuffs it into "buf". number of characters read, or YY_NULL, *************** static int input (void ); *** 1325,1331 **** if ( YY_CURRENT_BUFFER_LVALUE->yy_is_interactive ) \ { \ int c = '*'; \ ! size_t n; \ for ( n = 0; n < max_size && \ (c = getc( yyin )) != EOF && c != '\n'; ++n ) \ buf[n] = (char) c; \ --- 1324,1330 ---- if ( YY_CURRENT_BUFFER_LVALUE->yy_is_interactive ) \ { \ int c = '*'; \ ! int n; \ for ( n = 0; n < max_size && \ (c = getc( yyin )) != EOF && c != '\n'; ++n ) \ buf[n] = (char) c; \ *************** YY_DECL *** 1410,1416 **** register char *yy_cp, *yy_bp; register int yy_act; ! #line 65 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* Do this on entry to yylex(): */ *yylval = 0; --- 1409,1415 ---- register char *yy_cp, *yy_bp; register int yy_act; ! #line 65 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* Do this on entry to yylex(): */ *yylval = 0; *************** YY_DECL *** 1421,1427 **** } /* Things we look for in skipping mode: */ ! #line 1424 "gengtype-lex.c" if ( !(yy_init) ) { --- 1420,1426 ---- } /* Things we look for in skipping mode: */ ! #line 1423 "gengtype-lex.c" if ( !(yy_init) ) { *************** case 1: *** 1507,1513 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 76 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct); return TYPEDEF; --- 1506,1512 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 76 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct); return TYPEDEF; *************** case 2: *** 1519,1525 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 80 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; --- 1518,1524 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 80 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; *************** case 3: *** 1531,1537 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 84 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct); return UNION; --- 1530,1536 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 84 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct); return UNION; *************** case 4: *** 1543,1549 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 88 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; --- 1542,1548 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 88 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct); return STRUCT; *************** case 5: *** 1555,1561 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 92 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct); return EXTERN; --- 1554,1560 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 92 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct); return EXTERN; *************** case 6: *** 1567,1573 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 96 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct); return STATIC; --- 1566,1572 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 96 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct); return STATIC; *************** YY_RULE_SETUP *** 1578,1602 **** case 7: YY_RULE_SETUP ! #line 104 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct_comment); } YY_BREAK case 8: /* rule 8 can match eol */ YY_RULE_SETUP ! #line 105 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 9: /* rule 9 can match eol */ YY_RULE_SETUP ! #line 107 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 10: /* rule 10 can match eol */ YY_RULE_SETUP ! #line 108 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 11: --- 1577,1601 ---- case 7: YY_RULE_SETUP ! #line 104 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct_comment); } YY_BREAK case 8: /* rule 8 can match eol */ YY_RULE_SETUP ! #line 105 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 9: /* rule 9 can match eol */ YY_RULE_SETUP ! #line 107 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 10: /* rule 10 can match eol */ YY_RULE_SETUP ! #line 108 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 11: *************** case 11: *** 1605,1611 **** (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 110 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* don't care */ YY_BREAK case 12: --- 1604,1610 ---- (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 110 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* don't care */ YY_BREAK case 12: *************** case 12: *** 1613,1626 **** *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 112 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" case 13: /* rule 13 can match eol */ ! #line 113 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" case 14: /* rule 14 can match eol */ YY_RULE_SETUP ! #line 113 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng + 1); return IGNORABLE_CXX_KEYWORD; --- 1612,1625 ---- *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 112 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" case 13: /* rule 13 can match eol */ ! #line 113 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" case 14: /* rule 14 can match eol */ YY_RULE_SETUP ! #line 113 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng + 1); return IGNORABLE_CXX_KEYWORD; *************** case 15: *** 1632,1638 **** (yy_c_buf_p) = yy_cp = yy_bp + 3; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 117 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return GTY_TOKEN; } YY_BREAK case 16: --- 1631,1637 ---- (yy_c_buf_p) = yy_cp = yy_bp + 3; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 117 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return GTY_TOKEN; } YY_BREAK case 16: *************** case 16: *** 1641,1647 **** (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 118 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return UNION; } YY_BREAK case 17: --- 1640,1646 ---- (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 118 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return UNION; } YY_BREAK case 17: *************** case 17: *** 1650,1656 **** (yy_c_buf_p) = yy_cp = yy_bp + 6; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 119 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 18: --- 1649,1655 ---- (yy_c_buf_p) = yy_cp = yy_bp + 6; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 119 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 18: *************** case 18: *** 1659,1665 **** (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 120 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 19: --- 1658,1664 ---- (yy_c_buf_p) = yy_cp = yy_bp + 5; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 120 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return STRUCT; } YY_BREAK case 19: *************** case 19: *** 1668,1674 **** (yy_c_buf_p) = yy_cp = yy_bp + 7; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 121 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return TYPEDEF; } YY_BREAK case 20: --- 1667,1673 ---- (yy_c_buf_p) = yy_cp = yy_bp + 7; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 121 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return TYPEDEF; } YY_BREAK case 20: *************** case 20: *** 1677,1683 **** (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 122 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return ENUM; } YY_BREAK case 21: --- 1676,1682 ---- (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 122 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return ENUM; } YY_BREAK case 21: *************** case 21: *** 1686,1692 **** (yy_c_buf_p) = yy_cp = yy_bp + 9; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 123 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return PTR_ALIAS; } YY_BREAK case 22: --- 1685,1691 ---- (yy_c_buf_p) = yy_cp = yy_bp + 9; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 123 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return PTR_ALIAS; } YY_BREAK case 22: *************** case 22: *** 1695,1701 **** (yy_c_buf_p) = yy_cp = yy_bp + 10; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 124 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return NESTED_PTR; } YY_BREAK case 23: --- 1694,1700 ---- (yy_c_buf_p) = yy_cp = yy_bp + 10; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 124 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return NESTED_PTR; } YY_BREAK case 23: *************** case 23: *** 1704,1715 **** (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 125 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return USER_GTY; } YY_BREAK case 24: YY_RULE_SETUP ! #line 126 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return NUM; } YY_BREAK case 25: --- 1703,1714 ---- (yy_c_buf_p) = yy_cp = yy_bp + 4; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 125 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return USER_GTY; } YY_BREAK case 24: YY_RULE_SETUP ! #line 126 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return NUM; } YY_BREAK case 25: *************** case 25: *** 1718,1724 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 127 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return PARAM_IS; --- 1717,1723 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 127 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return PARAM_IS; *************** case 26: *** 1729,1739 **** *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 133 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" case 27: /* rule 27 can match eol */ YY_RULE_SETUP ! #line 133 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { size_t len; --- 1728,1738 ---- *yy_cp = (yy_hold_char); /* undo effects of setting up yytext */ (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ ! #line 133 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" case 27: /* rule 27 can match eol */ YY_RULE_SETUP ! #line 133 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { size_t len; *************** case 28: *** 1751,1757 **** (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 144 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return ID; --- 1750,1756 ---- (yy_c_buf_p) = yy_cp -= 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 144 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext, yyleng, yyleng+1); return ID; *************** YY_RULE_SETUP *** 1760,1766 **** case 29: /* rule 29 can match eol */ YY_RULE_SETUP ! #line 149 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return STRING; --- 1759,1765 ---- case 29: /* rule 29 can match eol */ YY_RULE_SETUP ! #line 149 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return STRING; *************** YY_RULE_SETUP *** 1770,1776 **** case 30: /* rule 30 can match eol */ YY_RULE_SETUP ! #line 154 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return ARRAY; --- 1769,1775 ---- case 30: /* rule 30 can match eol */ YY_RULE_SETUP ! #line 154 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng-1); return ARRAY; *************** YY_RULE_SETUP *** 1779,1785 **** case 31: /* rule 31 can match eol */ YY_RULE_SETUP ! #line 158 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng); return CHAR; --- 1778,1784 ---- case 31: /* rule 31 can match eol */ YY_RULE_SETUP ! #line 158 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { *yylval = XDUPVAR (const char, yytext+1, yyleng-2, yyleng); return CHAR; *************** YY_RULE_SETUP *** 1787,1810 **** YY_BREAK case 32: YY_RULE_SETUP ! #line 163 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return ELLIPSIS; } YY_BREAK case 33: YY_RULE_SETUP ! #line 164 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { return yytext[0]; } YY_BREAK /* ignore pp-directives */ case 34: /* rule 34 can match eol */ YY_RULE_SETUP ! #line 167 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" {lexer_line.line++;} YY_BREAK case 35: YY_RULE_SETUP ! #line 169 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unexpected character `%s'", yytext); } --- 1786,1809 ---- YY_BREAK case 32: YY_RULE_SETUP ! #line 163 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return ELLIPSIS; } YY_BREAK case 33: YY_RULE_SETUP ! #line 164 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { return yytext[0]; } YY_BREAK /* ignore pp-directives */ case 34: /* rule 34 can match eol */ YY_RULE_SETUP ! #line 167 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" {lexer_line.line++;} YY_BREAK case 35: YY_RULE_SETUP ! #line 169 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unexpected character `%s'", yytext); } *************** YY_RULE_SETUP *** 1812,1847 **** case 36: YY_RULE_SETUP ! #line 174 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_comment); } YY_BREAK case 37: /* rule 37 can match eol */ YY_RULE_SETUP ! #line 175 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 38: /* rule 38 can match eol */ YY_RULE_SETUP ! #line 176 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 39: ! #line 178 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" case 40: /* rule 40 can match eol */ ! #line 179 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" case 41: /* rule 41 can match eol */ YY_RULE_SETUP ! #line 179 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 42: /* rule 42 can match eol */ YY_RULE_SETUP ! #line 180 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 43: --- 1811,1846 ---- case 36: YY_RULE_SETUP ! #line 174 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_comment); } YY_BREAK case 37: /* rule 37 can match eol */ YY_RULE_SETUP ! #line 175 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 38: /* rule 38 can match eol */ YY_RULE_SETUP ! #line 176 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 39: ! #line 178 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" case 40: /* rule 40 can match eol */ ! #line 179 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" case 41: /* rule 41 can match eol */ YY_RULE_SETUP ! #line 179 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 42: /* rule 42 can match eol */ YY_RULE_SETUP ! #line 180 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { update_lineno (yytext, yyleng); } YY_BREAK case 43: *************** case 43: *** 1850,1870 **** (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 181 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 44: /* rule 44 can match eol */ YY_RULE_SETUP ! #line 184 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 45: ! #line 186 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" case 46: YY_RULE_SETUP ! #line 186 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 47: --- 1849,1869 ---- (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 181 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 44: /* rule 44 can match eol */ YY_RULE_SETUP ! #line 184 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { lexer_line.line++; } YY_BREAK case 45: ! #line 186 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" case 46: YY_RULE_SETUP ! #line 186 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 47: *************** case 47: *** 1873,1897 **** (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 187 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 48: YY_RULE_SETUP ! #line 190 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(INITIAL); } YY_BREAK case 49: YY_RULE_SETUP ! #line 191 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { BEGIN(in_struct); } YY_BREAK case 50: ! #line 194 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" case 51: YY_RULE_SETUP ! #line 194 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unterminated comment or string; unexpected EOF"); --- 1872,1896 ---- (yy_c_buf_p) = yy_cp = yy_bp + 1; YY_DO_BEFORE_ACTION; /* set up yytext again */ YY_RULE_SETUP ! #line 187 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 48: YY_RULE_SETUP ! #line 190 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(INITIAL); } YY_BREAK case 49: YY_RULE_SETUP ! #line 191 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { BEGIN(in_struct); } YY_BREAK case 50: ! #line 194 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" case 51: YY_RULE_SETUP ! #line 194 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" { error_at_line (&lexer_line, "unterminated comment or string; unexpected EOF"); *************** YY_RULE_SETUP *** 1900,1914 **** case 52: /* rule 52 can match eol */ YY_RULE_SETUP ! #line 199 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 53: YY_RULE_SETUP ! #line 201 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" YY_FATAL_ERROR( "flex scanner jammed" ); YY_BREAK ! #line 1911 "gengtype-lex.c" case YY_STATE_EOF(INITIAL): case YY_STATE_EOF(in_struct): case YY_STATE_EOF(in_struct_comment): --- 1899,1913 ---- case 52: /* rule 52 can match eol */ YY_RULE_SETUP ! #line 199 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" /* do nothing */ YY_BREAK case 53: YY_RULE_SETUP ! #line 201 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" YY_FATAL_ERROR( "flex scanner jammed" ); YY_BREAK ! #line 1910 "gengtype-lex.c" case YY_STATE_EOF(INITIAL): case YY_STATE_EOF(in_struct): case YY_STATE_EOF(in_struct_comment): *************** static int yy_get_next_buffer (void) *** 2098,2118 **** else { ! yy_size_t num_to_read = YY_CURRENT_BUFFER_LVALUE->yy_buf_size - number_to_move - 1; while ( num_to_read <= 0 ) { /* Not enough room in the buffer - grow it. */ /* just a shorter name for the current buffer */ ! YY_BUFFER_STATE b = YY_CURRENT_BUFFER_LVALUE; int yy_c_buf_p_offset = (int) ((yy_c_buf_p) - b->yy_ch_buf); if ( b->yy_is_our_buffer ) { ! yy_size_t new_size = b->yy_buf_size * 2; if ( new_size <= 0 ) b->yy_buf_size += b->yy_buf_size / 8; --- 2097,2117 ---- else { ! int num_to_read = YY_CURRENT_BUFFER_LVALUE->yy_buf_size - number_to_move - 1; while ( num_to_read <= 0 ) { /* Not enough room in the buffer - grow it. */ /* just a shorter name for the current buffer */ ! YY_BUFFER_STATE b = YY_CURRENT_BUFFER; int yy_c_buf_p_offset = (int) ((yy_c_buf_p) - b->yy_ch_buf); if ( b->yy_is_our_buffer ) { ! int new_size = b->yy_buf_size * 2; if ( new_size <= 0 ) b->yy_buf_size += b->yy_buf_size / 8; *************** static int yy_get_next_buffer (void) *** 2143,2149 **** /* Read in more data. */ YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]), ! (yy_n_chars), num_to_read ); YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars); } --- 2142,2148 ---- /* Read in more data. */ YY_INPUT( (&YY_CURRENT_BUFFER_LVALUE->yy_ch_buf[number_to_move]), ! (yy_n_chars), (size_t) num_to_read ); YY_CURRENT_BUFFER_LVALUE->yy_n_chars = (yy_n_chars); } *************** static int yy_get_next_buffer (void) *** 2239,2245 **** yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c]; yy_is_jam = (yy_current_state == 557); ! return yy_is_jam ? 0 : yy_current_state; } #ifndef YY_NO_INPUT --- 2238,2244 ---- yy_current_state = yy_nxt[yy_base[yy_current_state] + (unsigned int) yy_c]; yy_is_jam = (yy_current_state == 557); ! return yy_is_jam ? 0 : yy_current_state; } #ifndef YY_NO_INPUT *************** static int yy_get_next_buffer (void) *** 2266,2272 **** else { /* need more input */ ! yy_size_t offset = (yy_c_buf_p) - (yytext_ptr); ++(yy_c_buf_p); switch ( yy_get_next_buffer( ) ) --- 2265,2271 ---- else { /* need more input */ ! int offset = (yy_c_buf_p) - (yytext_ptr); ++(yy_c_buf_p); switch ( yy_get_next_buffer( ) ) *************** void yypop_buffer_state (void) *** 2540,2546 **** */ static void yyensure_buffer_stack (void) { ! yy_size_t num_to_alloc; if (!(yy_buffer_stack)) { --- 2539,2545 ---- */ static void yyensure_buffer_stack (void) { ! int num_to_alloc; if (!(yy_buffer_stack)) { *************** YY_BUFFER_STATE yy_scan_string (yyconst *** 2632,2648 **** /** Setup the input buffer state to scan the given bytes. The next call to yylex() will * scan from a @e copy of @a bytes. ! * @param yybytes the byte buffer to scan ! * @param _yybytes_len the number of bytes in the buffer pointed to by @a bytes. * * @return the newly allocated buffer state object. */ ! YY_BUFFER_STATE yy_scan_bytes (yyconst char * yybytes, yy_size_t _yybytes_len ) { YY_BUFFER_STATE b; char *buf; yy_size_t n; ! yy_size_t i; /* Get memory for full buffer, including space for trailing EOB's. */ n = _yybytes_len + 2; --- 2631,2647 ---- /** Setup the input buffer state to scan the given bytes. The next call to yylex() will * scan from a @e copy of @a bytes. ! * @param bytes the byte buffer to scan ! * @param len the number of bytes in the buffer pointed to by @a bytes. * * @return the newly allocated buffer state object. */ ! YY_BUFFER_STATE yy_scan_bytes (yyconst char * yybytes, int _yybytes_len ) { YY_BUFFER_STATE b; char *buf; yy_size_t n; ! int i; /* Get memory for full buffer, including space for trailing EOB's. */ n = _yybytes_len + 2; *************** FILE *yyget_out (void) *** 2724,2730 **** /** Get the length of the current token. * */ ! yy_size_t yyget_leng (void) { return yyleng; } --- 2723,2729 ---- /** Get the length of the current token. * */ ! int yyget_leng (void) { return yyleng; } *************** void yyfree (void * ptr ) *** 2872,2878 **** #define YYTABLES_NAME "yytables" ! #line 201 "/d/gcc-4.9.3/gcc-4.9.3/gcc/gengtype-lex.l" --- 2871,2877 ---- #define YYTABLES_NAME "yytables" ! #line 201 "/space/rguenther/gcc-4.9.4/gcc-4.9.4/gcc/gengtype-lex.l" diff -Nrcpad gcc-4.9.3/gcc/gimple-expr.c gcc-4.9.4/gcc/gimple-expr.c *** gcc-4.9.3/gcc/gimple-expr.c Fri Apr 4 11:52:35 2014 --- gcc-4.9.4/gcc/gimple-expr.c Thu Feb 11 09:13:42 2016 *************** copy_var_decl (tree var, tree name, tree *** 374,379 **** --- 374,384 ---- TREE_USED (copy) = 1; DECL_SEEN_IN_BIND_EXPR_P (copy) = 1; DECL_ATTRIBUTES (copy) = DECL_ATTRIBUTES (var); + if (DECL_USER_ALIGN (var)) + { + DECL_ALIGN (copy) = DECL_ALIGN (var); + DECL_USER_ALIGN (copy) = 1; + } return copy; } diff -Nrcpad gcc-4.9.3/gcc/gimple-ssa-isolate-paths.c gcc-4.9.4/gcc/gimple-ssa-isolate-paths.c *** gcc-4.9.3/gcc/gimple-ssa-isolate-paths.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/gimple-ssa-isolate-paths.c Thu Feb 11 13:40:31 2016 *************** gimple_ssa_isolate_erroneous_paths (void *** 404,413 **** /* We scramble the CFG and loop structures a bit, clean up appropriately. We really should incrementally update the loop structures, in theory it shouldn't be that hard. */ if (cfg_altered) { free_dominance_info (CDI_DOMINATORS); - free_dominance_info (CDI_POST_DOMINATORS); loops_state_set (LOOPS_NEED_FIXUP); return TODO_cleanup_cfg | TODO_update_ssa; } --- 404,413 ---- /* We scramble the CFG and loop structures a bit, clean up appropriately. We really should incrementally update the loop structures, in theory it shouldn't be that hard. */ + free_dominance_info (CDI_POST_DOMINATORS); if (cfg_altered) { free_dominance_info (CDI_DOMINATORS); loops_state_set (LOOPS_NEED_FIXUP); return TODO_cleanup_cfg | TODO_update_ssa; } diff -Nrcpad gcc-4.9.3/gcc/gimple-ssa-strength-reduction.c gcc-4.9.4/gcc/gimple-ssa-strength-reduction.c *** gcc-4.9.3/gcc/gimple-ssa-strength-reduction.c Fri May 2 21:49:26 2014 --- gcc-4.9.4/gcc/gimple-ssa-strength-reduction.c Mon Jan 18 03:54:48 2016 *************** create_phi_basis (slsr_cand_t c, gimple *** 2251,2257 **** slsr_cand_t basis = lookup_cand (c->basis); int nargs = gimple_phi_num_args (from_phi); basic_block phi_bb = gimple_bb (from_phi); ! slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (from_phi)); phi_args.create (nargs); /* Process each argument of the existing phi that represents --- 2251,2258 ---- slsr_cand_t basis = lookup_cand (c->basis); int nargs = gimple_phi_num_args (from_phi); basic_block phi_bb = gimple_bb (from_phi); ! slsr_cand_t phi_cand = *((slsr_cand_t *) ! pointer_map_contains (stmt_cand_map, from_phi)); phi_args.create (nargs); /* Process each argument of the existing phi that represents *************** phi_add_costs (gimple phi, slsr_cand_t c *** 2362,2368 **** { unsigned i; int cost = 0; ! slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi)); /* If we work our way back to a phi that isn't dominated by the hidden basis, this isn't a candidate for replacement. Indicate this by --- 2363,2370 ---- { unsigned i; int cost = 0; ! slsr_cand_t phi_cand = *((slsr_cand_t *) ! pointer_map_contains (stmt_cand_map, phi)); /* If we work our way back to a phi that isn't dominated by the hidden basis, this isn't a candidate for replacement. Indicate this by *************** static void *** 2573,2579 **** record_phi_increments (slsr_cand_t basis, gimple phi) { unsigned i; ! slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { --- 2575,2582 ---- record_phi_increments (slsr_cand_t basis, gimple phi) { unsigned i; ! slsr_cand_t phi_cand = *((slsr_cand_t *) ! pointer_map_contains (stmt_cand_map, phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { *************** phi_incr_cost (slsr_cand_t c, double_int *** 2644,2650 **** unsigned i; int cost = 0; slsr_cand_t basis = lookup_cand (c->basis); ! slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { --- 2647,2654 ---- unsigned i; int cost = 0; slsr_cand_t basis = lookup_cand (c->basis); ! slsr_cand_t phi_cand = *((slsr_cand_t *) ! pointer_map_contains (stmt_cand_map, phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { *************** ncd_with_phi (slsr_cand_t c, double_int *** 2988,2994 **** { unsigned i; slsr_cand_t basis = lookup_cand (c->basis); ! slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { --- 2992,2999 ---- { unsigned i; slsr_cand_t basis = lookup_cand (c->basis); ! slsr_cand_t phi_cand = *((slsr_cand_t *) ! pointer_map_contains (stmt_cand_map, phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { *************** all_phi_incrs_profitable (slsr_cand_t c, *** 3196,3202 **** { unsigned i; slsr_cand_t basis = lookup_cand (c->basis); ! slsr_cand_t phi_cand = base_cand_from_table (gimple_phi_result (phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { --- 3201,3208 ---- { unsigned i; slsr_cand_t basis = lookup_cand (c->basis); ! slsr_cand_t phi_cand = *((slsr_cand_t *) ! pointer_map_contains (stmt_cand_map, phi)); for (i = 0; i < gimple_phi_num_args (phi); i++) { diff -Nrcpad gcc-4.9.3/gcc/gimple.c gcc-4.9.4/gcc/gimple.c *** gcc-4.9.3/gcc/gimple.c Thu Oct 16 13:50:42 2014 --- gcc-4.9.4/gcc/gimple.c Thu Feb 11 13:40:31 2016 *************** gimple_could_trap_p_1 (gimple s, bool in *** 1854,1859 **** --- 1854,1864 ---- && TYPE_OVERFLOW_TRAPS (t)), div)); + case GIMPLE_COND: + t = TREE_TYPE (gimple_cond_lhs (s)); + return operation_could_trap_p (gimple_cond_code (s), + FLOAT_TYPE_P (t), false, NULL_TREE); + default: break; } diff -Nrcpad gcc-4.9.3/gcc/gimplify.c gcc-4.9.4/gcc/gimplify.c *** gcc-4.9.3/gcc/gimplify.c Fri Aug 15 07:40:37 2014 --- gcc-4.9.4/gcc/gimplify.c Thu Feb 11 09:23:58 2016 *************** gimplify_asm_expr (tree *expr_p, gimple_ *** 5062,5073 **** TREE_VALUE (link) = error_mark_node; tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p, is_gimple_lvalue, fb_lvalue | fb_mayfail); mark_addressable (TREE_VALUE (link)); if (tret == GS_ERROR) { ! if (EXPR_HAS_LOCATION (TREE_VALUE (link))) ! input_location = EXPR_LOCATION (TREE_VALUE (link)); ! error ("memory input %d is not directly addressable", i); ret = tret; } } --- 5062,5099 ---- TREE_VALUE (link) = error_mark_node; tret = gimplify_expr (&TREE_VALUE (link), pre_p, post_p, is_gimple_lvalue, fb_lvalue | fb_mayfail); + if (tret != GS_ERROR) + { + /* Unlike output operands, memory inputs are not guaranteed + to be lvalues by the FE, and while the expressions are + marked addressable there, if it is e.g. a statement + expression, temporaries in it might not end up being + addressable. They might be already used in the IL and thus + it is too late to make them addressable now though. */ + tree x = TREE_VALUE (link); + while (handled_component_p (x)) + x = TREE_OPERAND (x, 0); + if (TREE_CODE (x) == MEM_REF + && TREE_CODE (TREE_OPERAND (x, 0)) == ADDR_EXPR) + x = TREE_OPERAND (TREE_OPERAND (x, 0), 0); + if ((TREE_CODE (x) == VAR_DECL + || TREE_CODE (x) == PARM_DECL + || TREE_CODE (x) == RESULT_DECL) + && !TREE_ADDRESSABLE (x) + && is_gimple_reg (x)) + { + warning_at (EXPR_LOC_OR_LOC (TREE_VALUE (link), + input_location), 0, + "memory input %d is not directly addressable", + i); + prepare_gimple_addressable (&TREE_VALUE (link), pre_p); + } + } mark_addressable (TREE_VALUE (link)); if (tret == GS_ERROR) { ! error_at (EXPR_LOC_OR_LOC (TREE_VALUE (link), input_location), ! "memory input %d is not directly addressable", i); ret = tret; } } diff -Nrcpad gcc-4.9.3/gcc/go/ChangeLog gcc-4.9.4/gcc/go/ChangeLog *** gcc-4.9.3/gcc/go/ChangeLog Fri Jun 26 17:56:17 2015 --- gcc-4.9.4/gcc/go/ChangeLog Wed Aug 3 05:07:20 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/go/gofrontend/expressions.cc gcc-4.9.4/gcc/go/gofrontend/expressions.cc *** gcc-4.9.3/gcc/go/gofrontend/expressions.cc Fri Aug 29 03:04:59 2014 --- gcc-4.9.4/gcc/go/gofrontend/expressions.cc Sun Nov 1 20:46:37 2015 *************** Builtin_call_expression::do_export(Expor *** 9136,9141 **** --- 9136,9151 ---- int Call_expression::do_traverse(Traverse* traverse) { + // If we are calling a function in a different package that returns + // an unnamed type, this may be the only chance we get to traverse + // that type. We don't traverse this->type_ because it may be a + // Call_multiple_result_type that will just lead back here. + if (this->type_ != NULL && !this->type_->is_error_type()) + { + Function_type *fntype = this->get_function_type(); + if (fntype != NULL && Type::traverse(fntype, traverse) == TRAVERSE_EXIT) + return TRAVERSE_EXIT; + } if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT) return TRAVERSE_EXIT; if (this->args_ != NULL) diff -Nrcpad gcc-4.9.3/gcc/graphite-blocking.c gcc-4.9.4/gcc/graphite-blocking.c *** gcc-4.9.3/gcc/graphite-blocking.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/graphite-blocking.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 24,29 **** --- 24,30 ---- #include "config.h" #ifdef HAVE_cloog + #include #include #include #include diff -Nrcpad gcc-4.9.3/gcc/graphite-dependences.c gcc-4.9.4/gcc/graphite-dependences.c *** gcc-4.9.3/gcc/graphite-dependences.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/graphite-dependences.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 22,27 **** --- 22,28 ---- #include "config.h" #ifdef HAVE_cloog + #include #include #include #include *************** scop_get_transformed_schedule (scop_p sc *** 183,189 **** /* Helper function used on each MAP of a isl_union_map. Computes the maximal output dimension. */ ! static int max_number_of_out_dimensions (__isl_take isl_map *map, void *user) { int global_max = *((int *) user); --- 184,190 ---- /* Helper function used on each MAP of a isl_union_map. Computes the maximal output dimension. */ ! static isl_stat max_number_of_out_dimensions (__isl_take isl_map *map, void *user) { int global_max = *((int *) user); *************** max_number_of_out_dimensions (__isl_take *** 195,201 **** isl_map_free (map); isl_space_free (space); ! return 0; } /* Extends the output dimension of MAP to MAX dimensions. */ --- 196,202 ---- isl_map_free (map); isl_space_free (space); ! return isl_stat_ok; } /* Extends the output dimension of MAP to MAX dimensions. */ *************** struct extend_schedule_str { *** 219,230 **** /* Helper function for extend_schedule. */ ! static int extend_schedule_1 (__isl_take isl_map *map, void *user) { struct extend_schedule_str *str = (struct extend_schedule_str *) user; str->umap = isl_union_map_add_map (str->umap, extend_map (map, str->max)); ! return 0; } /* Return a relation that has uniform output dimensions. */ --- 220,231 ---- /* Helper function for extend_schedule. */ ! static isl_stat extend_schedule_1 (__isl_take isl_map *map, void *user) { struct extend_schedule_str *str = (struct extend_schedule_str *) user; str->umap = isl_union_map_add_map (str->umap, extend_map (map, str->max)); ! return isl_stat_ok; } /* Return a relation that has uniform output dimensions. */ *************** __isl_give isl_union_map * *** 233,248 **** extend_schedule (__isl_take isl_union_map *x) { int max = 0; ! int res; struct extend_schedule_str str; res = isl_union_map_foreach_map (x, max_number_of_out_dimensions, (void *) &max); ! gcc_assert (res == 0); str.max = max; str.umap = isl_union_map_empty (isl_union_map_get_space (x)); res = isl_union_map_foreach_map (x, extend_schedule_1, (void *) &str); ! gcc_assert (res == 0); isl_union_map_free (x); return str.umap; --- 234,249 ---- extend_schedule (__isl_take isl_union_map *x) { int max = 0; ! isl_stat res; struct extend_schedule_str str; res = isl_union_map_foreach_map (x, max_number_of_out_dimensions, (void *) &max); ! gcc_assert (res == isl_stat_ok); str.max = max; str.umap = isl_union_map_empty (isl_union_map_get_space (x)); res = isl_union_map_foreach_map (x, extend_schedule_1, (void *) &str); ! gcc_assert (res == isl_stat_ok); isl_union_map_free (x); return str.umap; diff -Nrcpad gcc-4.9.3/gcc/graphite-interchange.c gcc-4.9.4/gcc/graphite-interchange.c *** gcc-4.9.3/gcc/graphite-interchange.c Thu Dec 4 18:25:37 2014 --- gcc-4.9.4/gcc/graphite-interchange.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 24,29 **** --- 24,30 ---- #include "config.h" #ifdef HAVE_cloog + #include #include #include #include diff -Nrcpad gcc-4.9.3/gcc/graphite-optimize-isl.c gcc-4.9.4/gcc/graphite-optimize-isl.c *** gcc-4.9.3/gcc/graphite-optimize-isl.c Thu Dec 4 18:25:37 2014 --- gcc-4.9.4/gcc/graphite-optimize-isl.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 21,27 **** --- 21,29 ---- #include "config.h" #ifdef HAVE_cloog + #include #include + #include #include #include #include *************** getScheduleMap (isl_schedule *Schedule) *** 415,427 **** return ScheduleMap; } ! static int getSingleMap (__isl_take isl_map *map, void *user) { isl_map **singleMap = (isl_map **) user; *singleMap = map; ! return 0; } static void --- 417,429 ---- return ScheduleMap; } ! static isl_stat getSingleMap (__isl_take isl_map *map, void *user) { isl_map **singleMap = (isl_map **) user; *singleMap = map; ! return isl_stat_ok; } static void *************** optimize_isl (scop_p scop) *** 469,475 **** --- 471,481 ---- isl_options_set_schedule_max_constant_term (scop->ctx, CONSTANT_BOUND); isl_options_set_schedule_maximize_band_depth (scop->ctx, 1); + #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS + isl_options_set_schedule_serialize_sccs (scop->ctx, 1); + #else isl_options_set_schedule_fuse (scop->ctx, ISL_SCHEDULE_FUSE_MIN); + #endif isl_options_set_on_error (scop->ctx, ISL_ON_ERROR_CONTINUE); schedule = isl_union_set_compute_schedule (domain, validity, proximity); isl_options_set_on_error (scop->ctx, ISL_ON_ERROR_ABORT); diff -Nrcpad gcc-4.9.3/gcc/graphite-poly.c gcc-4.9.4/gcc/graphite-poly.c *** gcc-4.9.3/gcc/graphite-poly.c Thu Dec 4 18:25:37 2014 --- gcc-4.9.4/gcc/graphite-poly.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 22,27 **** --- 22,28 ---- #include "config.h" #ifdef HAVE_cloog + #include #include #include #include diff -Nrcpad gcc-4.9.3/gcc/graphite-poly.h gcc-4.9.4/gcc/graphite-poly.h *** gcc-4.9.3/gcc/graphite-poly.h Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/graphite-poly.h Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 22,27 **** --- 22,32 ---- #ifndef GCC_GRAPHITE_POLY_H #define GCC_GRAPHITE_POLY_H + #ifndef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS + # define isl_stat int + # define isl_stat_ok 0 + #endif + typedef struct poly_dr *poly_dr_p; typedef struct poly_bb *poly_bb_p; diff -Nrcpad gcc-4.9.3/gcc/graphite-scop-detection.c gcc-4.9.4/gcc/graphite-scop-detection.c *** gcc-4.9.3/gcc/graphite-scop-detection.c Wed May 28 12:46:39 2014 --- gcc-4.9.4/gcc/graphite-scop-detection.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 22,27 **** --- 22,28 ---- #include "config.h" #ifdef HAVE_cloog + #include #include #include #include diff -Nrcpad gcc-4.9.3/gcc/graphite-sese-to-poly.c gcc-4.9.4/gcc/graphite-sese-to-poly.c *** gcc-4.9.3/gcc/graphite-sese-to-poly.c Thu Dec 4 18:25:37 2014 --- gcc-4.9.4/gcc/graphite-sese-to-poly.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 21,26 **** --- 21,27 ---- #include "config.h" #ifdef HAVE_cloog + #include #include #include #include *************** is_reduction_operation_p (gimple stmt) *** 2613,2621 **** gcc_assert (is_gimple_assign (stmt)); code = gimple_assign_rhs_code (stmt); ! return flag_associative_math ! && commutative_tree_code (code) ! && associative_tree_code (code); } /* Returns true when PHI contains an argument ARG. */ --- 2614,2630 ---- gcc_assert (is_gimple_assign (stmt)); code = gimple_assign_rhs_code (stmt); ! if (!commutative_tree_code (code) ! || !associative_tree_code (code)) ! return false; ! ! tree type = TREE_TYPE (gimple_assign_lhs (stmt)); ! ! if (FLOAT_TYPE_P (type)) ! return flag_associative_math; ! ! return (INTEGRAL_TYPE_P (type) ! && TYPE_OVERFLOW_WRAPS (type)); } /* Returns true when PHI contains an argument ARG. */ diff -Nrcpad gcc-4.9.3/gcc/graphite.c gcc-4.9.4/gcc/graphite.c *** gcc-4.9.3/gcc/graphite.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/graphite.c Thu Nov 19 15:19:13 2015 *************** along with GCC; see the file COPYING3. *** 35,40 **** --- 35,41 ---- #include "config.h" #ifdef HAVE_cloog + #include #include #include #include diff -Nrcpad gcc-4.9.3/gcc/haifa-sched.c gcc-4.9.4/gcc/haifa-sched.c *** gcc-4.9.3/gcc/haifa-sched.c Wed Oct 1 14:42:46 2014 --- gcc-4.9.4/gcc/haifa-sched.c Wed Jan 13 22:55:31 2016 *************** prune_ready_list (state_t temp_state, bo *** 5801,5807 **** if (SCHED_GROUP_P (insn) && cost > min_cost_group) min_cost_group = cost; ready_remove (&ready, i); ! queue_insn (insn, cost, reason); if (i + 1 < n) break; } --- 5801,5815 ---- if (SCHED_GROUP_P (insn) && cost > min_cost_group) min_cost_group = cost; ready_remove (&ready, i); ! /* Normally we'd want to queue INSN for COST cycles. However, ! if SCHED_GROUP_P is set, then we must ensure that nothing ! else comes between INSN and its predecessor. If there is ! some other insn ready to fire on the next cycle, then that ! invariant would be broken. ! ! So when SCHED_GROUP_P is set, just queue this insn for a ! single cycle. */ ! queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason); if (i + 1 < n) break; } diff -Nrcpad gcc-4.9.3/gcc/hw-doloop.c gcc-4.9.4/gcc/hw-doloop.c *** gcc-4.9.3/gcc/hw-doloop.c Wed Jan 8 05:51:49 2014 --- gcc-4.9.4/gcc/hw-doloop.c Fri Jan 22 14:49:22 2016 *************** reorg_loops (bool do_reorder, struct hw_ *** 636,642 **** loops = discover_loops (&loop_stack, hooks); ! if (do_reorder) { reorder_loops (loops); free_loops (loops); --- 636,644 ---- loops = discover_loops (&loop_stack, hooks); ! /* We can't enter cfglayout mode anymore if basic block partitioning ! already happened. */ ! if (do_reorder && !flag_reorder_blocks_and_partition) { reorder_loops (loops); free_loops (loops); diff -Nrcpad gcc-4.9.3/gcc/ifcvt.c gcc-4.9.4/gcc/ifcvt.c *** gcc-4.9.3/gcc/ifcvt.c Tue Sep 30 10:33:25 2014 --- gcc-4.9.4/gcc/ifcvt.c Thu Feb 11 09:12:52 2016 *************** noce_try_abs (struct noce_if_info *if_in *** 2071,2082 **** /* Work around funny ideas get_condition has wrt canonicalization. Note that these rtx constants are known to be CONST_INT, and ! therefore imply integer comparisons. */ if (c == constm1_rtx && GET_CODE (cond) == GT) ; else if (c == const1_rtx && GET_CODE (cond) == LT) ! ; ! else if (c != CONST0_RTX (GET_MODE (b))) return FALSE; /* Determine what sort of operation this is. */ --- 2071,2096 ---- /* Work around funny ideas get_condition has wrt canonicalization. Note that these rtx constants are known to be CONST_INT, and ! therefore imply integer comparisons. ! The one_cmpl case is more complicated, as we want to handle ! only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x) ! and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x), ! but not other cases (x > -1 is equivalent of x >= 0). */ if (c == constm1_rtx && GET_CODE (cond) == GT) ; else if (c == const1_rtx && GET_CODE (cond) == LT) ! { ! if (one_cmpl) ! return FALSE; ! } ! else if (c == CONST0_RTX (GET_MODE (b))) ! { ! if (one_cmpl ! && GET_CODE (cond) != GE ! && GET_CODE (cond) != LT) ! return FALSE; ! } ! else return FALSE; /* Determine what sort of operation this is. */ *************** find_cond_trap (basic_block test_bb, edg *** 3715,3722 **** return FALSE; /* If the conditional jump is more than just a conditional jump, then ! we can not do if-conversion on this block. */ ! if (! onlyjump_p (jump)) return FALSE; /* We must be comparing objects whose modes imply the size. */ --- 3729,3739 ---- return FALSE; /* If the conditional jump is more than just a conditional jump, then ! we can not do if-conversion on this block. Give up for returnjump_p, ! changing a conditional return followed by unconditional trap for ! conditional trap followed by unconditional return is likely not ! beneficial and harder to handle. */ ! if (! onlyjump_p (jump) || returnjump_p (jump)) return FALSE; /* We must be comparing objects whose modes imply the size. */ diff -Nrcpad gcc-4.9.3/gcc/ipa-cp.c gcc-4.9.4/gcc/ipa-cp.c *** gcc-4.9.3/gcc/ipa-cp.c Wed Sep 3 16:16:28 2014 --- gcc-4.9.4/gcc/ipa-cp.c Mon Jan 11 09:59:48 2016 *************** propagate_aggs_accross_jump_function (st *** 1411,1416 **** --- 1411,1428 ---- return ret; } + /* Return true if on the way cfrom CS->caller to the final (non-alias and + non-thunk) destination, the call passes through a thunk. */ + + static bool + call_passes_through_thunk_p (struct cgraph_edge *cs) + { + struct cgraph_node *alias_or_thunk = cs->callee; + while (alias_or_thunk->alias) + alias_or_thunk = cgraph_alias_target (alias_or_thunk); + return alias_or_thunk->thunk.thunk_p; + } + /* Propagate constants from the caller to the callee of CS. INFO describes the caller. */ *************** propagate_constants_accross_call (struct *** 1419,1425 **** { struct ipa_node_params *callee_info; enum availability availability; ! struct cgraph_node *callee, *alias_or_thunk; struct ipa_edge_args *args; bool ret = false; int i, args_count, parms_count; --- 1431,1437 ---- { struct ipa_node_params *callee_info; enum availability availability; ! struct cgraph_node *callee; struct ipa_edge_args *args; bool ret = false; int i, args_count, parms_count; *************** propagate_constants_accross_call (struct *** 1439,1448 **** /* If this call goes through a thunk we must not propagate to the first (0th) parameter. However, we might need to uncover a thunk from below a series of aliases first. */ ! alias_or_thunk = cs->callee; ! while (alias_or_thunk->alias) ! alias_or_thunk = cgraph_alias_target (alias_or_thunk); ! if (alias_or_thunk->thunk.thunk_p) { ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, 0)); --- 1451,1457 ---- /* If this call goes through a thunk we must not propagate to the first (0th) parameter. However, we might need to uncover a thunk from below a series of aliases first. */ ! if (call_passes_through_thunk_p (cs)) { ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, 0)); *************** find_more_scalar_values_for_callers_subs *** 2837,2843 **** struct ipa_jump_func *jump_func; tree t; ! if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs))) { newval = NULL_TREE; break; --- 2846,2854 ---- struct ipa_jump_func *jump_func; tree t; ! if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)) ! || (i == 0 ! && call_passes_through_thunk_p (cs))) { newval = NULL_TREE; break; diff -Nrcpad gcc-4.9.3/gcc/ipa-inline-analysis.c gcc-4.9.4/gcc/ipa-inline-analysis.c *** gcc-4.9.3/gcc/ipa-inline-analysis.c Wed Dec 3 15:17:37 2014 --- gcc-4.9.4/gcc/ipa-inline-analysis.c Thu May 19 15:17:10 2016 *************** struct agg_position_info *** 233,245 **** bool by_ref; }; ! /* Add condition to condition list CONDS. AGGPOS describes whether the used ! oprand is loaded from an aggregate and where in the aggregate it is. It can ! be NULL, which means this not a load from an aggregate. */ static struct predicate add_condition (struct inline_summary *summary, int operand_num, ! struct agg_position_info *aggpos, enum tree_code code, tree val) { int i; --- 233,246 ---- bool by_ref; }; ! /* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL ! correspond to fields of condition structure. AGGPOS describes whether the ! used operand is loaded from an aggregate and where in the aggregate it is. ! It can be NULL, which means this not a load from an aggregate. */ static struct predicate add_condition (struct inline_summary *summary, int operand_num, ! HOST_WIDE_INT size, struct agg_position_info *aggpos, enum tree_code code, tree val) { int i; *************** add_condition (struct inline_summary *su *** 265,270 **** --- 266,272 ---- for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++) { if (c->operand_num == operand_num + && c->size == size && c->code == code && c->val == val && c->agg_contents == agg_contents *************** add_condition (struct inline_summary *su *** 281,286 **** --- 283,289 ---- new_cond.agg_contents = agg_contents; new_cond.by_ref = by_ref; new_cond.offset = offset; + new_cond.size = size; vec_safe_push (summary->conds, new_cond); return single_cond_predicate (i + predicate_first_dynamic_condition); } *************** evaluate_conditions_for_known_args (stru *** 859,879 **** clause |= 1 << (i + predicate_first_dynamic_condition); continue; } ! if (c->code == IS_NOT_CONSTANT || c->code == CHANGED) continue; ! if (operand_equal_p (TYPE_SIZE (TREE_TYPE (c->val)), ! TYPE_SIZE (TREE_TYPE (val)), 0)) { ! val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val); ! res = val ! ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val) ! : NULL; - if (res && integer_zerop (res)) - continue; - } clause |= 1 << (i + predicate_first_dynamic_condition); } return clause; --- 862,886 ---- clause |= 1 << (i + predicate_first_dynamic_condition); continue; } ! if (c->code == CHANGED) continue; ! if (tree_to_shwi (TYPE_SIZE (TREE_TYPE (val))) != c->size) { ! clause |= 1 << (i + predicate_first_dynamic_condition); ! continue; ! } ! if (c->code == IS_NOT_CONSTANT) ! continue; ! val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val); ! res = val ! ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val) ! : NULL; ! ! if (res && integer_zerop (res)) ! continue; clause |= 1 << (i + predicate_first_dynamic_condition); } return clause; *************** mark_modified (ao_ref *ao ATTRIBUTE_UNUS *** 1495,1510 **** } /* If OP refers to value of function parameter, return the corresponding ! parameter. */ static tree ! unmodified_parm_1 (gimple stmt, tree op) { /* SSA_NAME referring to parm default def? */ if (TREE_CODE (op) == SSA_NAME && SSA_NAME_IS_DEFAULT_DEF (op) && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL) ! return SSA_NAME_VAR (op); /* Non-SSA parm reference? */ if (TREE_CODE (op) == PARM_DECL) { --- 1502,1522 ---- } /* If OP refers to value of function parameter, return the corresponding ! parameter. If non-NULL, the size of the memory load (or the SSA_NAME of the ! PARM_DECL) will be stored to *SIZE_P in that case too. */ static tree ! unmodified_parm_1 (gimple stmt, tree op, HOST_WIDE_INT *size_p) { /* SSA_NAME referring to parm default def? */ if (TREE_CODE (op) == SSA_NAME && SSA_NAME_IS_DEFAULT_DEF (op) && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL) ! { ! if (size_p) ! *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op))); ! return SSA_NAME_VAR (op); ! } /* Non-SSA parm reference? */ if (TREE_CODE (op) == PARM_DECL) { *************** unmodified_parm_1 (gimple stmt, tree op) *** 1515,1532 **** walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified, NULL); if (!modified) ! return op; } return NULL_TREE; } /* If OP refers to value of function parameter, return the corresponding ! parameter. Also traverse chains of SSA register assignments. */ static tree ! unmodified_parm (gimple stmt, tree op) { ! tree res = unmodified_parm_1 (stmt, op); if (res) return res; --- 1527,1550 ---- walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified, NULL); if (!modified) ! { ! if (size_p) ! *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op))); ! return op; ! } } return NULL_TREE; } /* If OP refers to value of function parameter, return the corresponding ! parameter. Also traverse chains of SSA register assignments. If non-NULL, ! the size of the memory load (or the SSA_NAME of the PARM_DECL) will be ! stored to *SIZE_P in that case too. */ static tree ! unmodified_parm (gimple stmt, tree op, HOST_WIDE_INT *size_p) { ! tree res = unmodified_parm_1 (stmt, op, size_p); if (res) return res; *************** unmodified_parm (gimple stmt, tree op) *** 1534,1556 **** && !SSA_NAME_IS_DEFAULT_DEF (op) && gimple_assign_single_p (SSA_NAME_DEF_STMT (op))) return unmodified_parm (SSA_NAME_DEF_STMT (op), ! gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op))); return NULL_TREE; } /* If OP refers to a value of a function parameter or value loaded from an aggregate passed to a parameter (either by value or reference), return TRUE ! and store the number of the parameter to *INDEX_P and information whether ! and how it has been loaded from an aggregate into *AGGPOS. INFO describes ! the function parameters, STMT is the statement in which OP is used or ! loaded. */ static bool unmodified_parm_or_parm_agg_item (struct ipa_node_params *info, gimple stmt, tree op, int *index_p, struct agg_position_info *aggpos) { ! tree res = unmodified_parm_1 (stmt, op); gcc_checking_assert (aggpos); if (res) --- 1552,1576 ---- && !SSA_NAME_IS_DEFAULT_DEF (op) && gimple_assign_single_p (SSA_NAME_DEF_STMT (op))) return unmodified_parm (SSA_NAME_DEF_STMT (op), ! gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)), ! size_p); return NULL_TREE; } /* If OP refers to a value of a function parameter or value loaded from an aggregate passed to a parameter (either by value or reference), return TRUE ! and store the number of the parameter to *INDEX_P, the access size into ! *SIZE_P, and information whether and how it has been loaded from an ! aggregate into *AGGPOS. INFO describes the function parameters, STMT is the ! statement in which OP is used or loaded. */ static bool unmodified_parm_or_parm_agg_item (struct ipa_node_params *info, gimple stmt, tree op, int *index_p, + HOST_WIDE_INT *size_p, struct agg_position_info *aggpos) { ! tree res = unmodified_parm_1 (stmt, op, size_p); gcc_checking_assert (aggpos); if (res) *************** unmodified_parm_or_parm_agg_item (struct *** 1572,1583 **** op = gimple_assign_rhs1 (stmt); if (!REFERENCE_CLASS_P (op)) return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p, ! aggpos); } aggpos->agg_contents = true; return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset, ! &aggpos->by_ref); } /* See if statement might disappear after inlining. --- 1592,1603 ---- op = gimple_assign_rhs1 (stmt); if (!REFERENCE_CLASS_P (op)) return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p, ! size_p, aggpos); } aggpos->agg_contents = true; return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset, ! size_p, &aggpos->by_ref); } /* See if statement might disappear after inlining. *************** eliminated_by_inlining_prob (gimple stmt *** 1629,1635 **** inner_lhs = lhs; /* Reads of parameter are expected to be free. */ ! if (unmodified_parm (stmt, inner_rhs)) rhs_free = true; /* Match expressions of form &this->field. Those will most likely combine with something upstream after inlining. */ --- 1649,1655 ---- inner_lhs = lhs; /* Reads of parameter are expected to be free. */ ! if (unmodified_parm (stmt, inner_rhs, NULL)) rhs_free = true; /* Match expressions of form &this->field. Those will most likely combine with something upstream after inlining. */ *************** eliminated_by_inlining_prob (gimple stmt *** 1639,1645 **** if (TREE_CODE (op) == PARM_DECL) rhs_free = true; else if (TREE_CODE (op) == MEM_REF ! && unmodified_parm (stmt, TREE_OPERAND (op, 0))) rhs_free = true; } --- 1659,1665 ---- if (TREE_CODE (op) == PARM_DECL) rhs_free = true; else if (TREE_CODE (op) == MEM_REF ! && unmodified_parm (stmt, TREE_OPERAND (op, 0), NULL)) rhs_free = true; } *************** eliminated_by_inlining_prob (gimple stmt *** 1652,1658 **** /* Reads of parameters passed by reference expected to be free (i.e. optimized out after inlining). */ if (TREE_CODE (inner_rhs) == MEM_REF ! && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0))) rhs_free = true; /* Copying parameter passed by reference into gimple register is --- 1672,1678 ---- /* Reads of parameters passed by reference expected to be free (i.e. optimized out after inlining). */ if (TREE_CODE (inner_rhs) == MEM_REF ! && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0), NULL)) rhs_free = true; /* Copying parameter passed by reference into gimple register is *************** eliminated_by_inlining_prob (gimple stmt *** 1693,1699 **** if (TREE_CODE (inner_lhs) == PARM_DECL || TREE_CODE (inner_lhs) == RESULT_DECL || (TREE_CODE (inner_lhs) == MEM_REF ! && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0)) || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0)) && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND --- 1713,1719 ---- if (TREE_CODE (inner_lhs) == PARM_DECL || TREE_CODE (inner_lhs) == RESULT_DECL || (TREE_CODE (inner_lhs) == MEM_REF ! && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0), NULL) || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0)) && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND *************** set_cond_stmt_execution_predicate (struc *** 1723,1728 **** --- 1743,1749 ---- { gimple last; tree op; + HOST_WIDE_INT size; int index; struct agg_position_info aggpos; enum tree_code code, inverted_code; *************** set_cond_stmt_execution_predicate (struc *** 1740,1746 **** /* TODO: handle conditionals like var = op0 < 4; if (var != 0). */ ! if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos)) { code = gimple_cond_code (last); inverted_code --- 1761,1767 ---- /* TODO: handle conditionals like var = op0 < 4; if (var != 0). */ ! if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &size, &aggpos)) { code = gimple_cond_code (last); inverted_code *************** set_cond_stmt_execution_predicate (struc *** 1756,1762 **** unordered one. Be sure it is not confused with NON_CONSTANT. */ if (this_code != ERROR_MARK) { ! struct predicate p = add_condition (summary, index, &aggpos, this_code, gimple_cond_rhs (last)); e->aux = pool_alloc (edge_predicate_pool); --- 1777,1783 ---- unordered one. Be sure it is not confused with NON_CONSTANT. */ if (this_code != ERROR_MARK) { ! struct predicate p = add_condition (summary, index, size, &aggpos, this_code, gimple_cond_rhs (last)); e->aux = pool_alloc (edge_predicate_pool); *************** set_cond_stmt_execution_predicate (struc *** 1786,1796 **** return; op2 = gimple_call_arg (set_stmt, 0); if (!unmodified_parm_or_parm_agg_item ! (info, set_stmt, op2, &index, &aggpos)) return; FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE) { ! struct predicate p = add_condition (summary, index, &aggpos, IS_NOT_CONSTANT, NULL_TREE); e->aux = pool_alloc (edge_predicate_pool); *(struct predicate *) e->aux = p; --- 1807,1817 ---- return; op2 = gimple_call_arg (set_stmt, 0); if (!unmodified_parm_or_parm_agg_item ! (info, set_stmt, op2, &index, &size, &aggpos)) return; FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE) { ! struct predicate p = add_condition (summary, index, size, &aggpos, IS_NOT_CONSTANT, NULL_TREE); e->aux = pool_alloc (edge_predicate_pool); *(struct predicate *) e->aux = p; *************** set_switch_stmt_execution_predicate (str *** 1809,1814 **** --- 1830,1836 ---- gimple last; tree op; int index; + HOST_WIDE_INT size; struct agg_position_info aggpos; edge e; edge_iterator ei; *************** set_switch_stmt_execution_predicate (str *** 1819,1825 **** if (!last || gimple_code (last) != GIMPLE_SWITCH) return; op = gimple_switch_index (last); ! if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos)) return; FOR_EACH_EDGE (e, ei, bb->succs) --- 1841,1847 ---- if (!last || gimple_code (last) != GIMPLE_SWITCH) return; op = gimple_switch_index (last); ! if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &size, &aggpos)) return; FOR_EACH_EDGE (e, ei, bb->succs) *************** set_switch_stmt_execution_predicate (str *** 1844,1855 **** if (!min && !max) p = true_predicate (); else if (!max) ! p = add_condition (summary, index, &aggpos, EQ_EXPR, min); else { struct predicate p1, p2; ! p1 = add_condition (summary, index, &aggpos, GE_EXPR, min); ! p2 = add_condition (summary, index, &aggpos, LE_EXPR, max); p = and_predicates (summary->conds, &p1, &p2); } *(struct predicate *) e->aux --- 1866,1877 ---- if (!min && !max) p = true_predicate (); else if (!max) ! p = add_condition (summary, index, size, &aggpos, EQ_EXPR, min); else { struct predicate p1, p2; ! p1 = add_condition (summary, index, size, &aggpos, GE_EXPR, min); ! p2 = add_condition (summary, index, size, &aggpos, LE_EXPR, max); p = and_predicates (summary->conds, &p1, &p2); } *(struct predicate *) e->aux *************** will_be_nonconstant_expr_predicate (stru *** 1949,1961 **** { tree parm; int index; while (UNARY_CLASS_P (expr)) expr = TREE_OPERAND (expr, 0); ! parm = unmodified_parm (NULL, expr); if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0) ! return add_condition (summary, index, NULL, CHANGED, NULL_TREE); if (is_gimple_min_invariant (expr)) return false_predicate (); if (TREE_CODE (expr) == SSA_NAME) --- 1971,1984 ---- { tree parm; int index; + HOST_WIDE_INT size; while (UNARY_CLASS_P (expr)) expr = TREE_OPERAND (expr, 0); ! parm = unmodified_parm (NULL, expr, &size); if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0) ! return add_condition (summary, index, size, NULL, CHANGED, NULL_TREE); if (is_gimple_min_invariant (expr)) return false_predicate (); if (TREE_CODE (expr) == SSA_NAME) *************** will_be_nonconstant_predicate (struct ip *** 2016,2021 **** --- 2039,2045 ---- struct predicate op_non_const; bool is_load; int base_index; + HOST_WIDE_INT size; struct agg_position_info aggpos; /* What statments might be optimized away *************** will_be_nonconstant_predicate (struct ip *** 2039,2045 **** tree op; gcc_assert (gimple_assign_single_p (stmt)); op = gimple_assign_rhs1 (stmt); ! if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index, &aggpos)) return p; } --- 2063,2069 ---- tree op; gcc_assert (gimple_assign_single_p (stmt)); op = gimple_assign_rhs1 (stmt); ! if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index, &size, &aggpos)) return p; } *************** will_be_nonconstant_predicate (struct ip *** 2050,2056 **** adding conditionals. */ FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) { ! tree parm = unmodified_parm (stmt, use); /* For arguments we can build a condition. */ if (parm && ipa_get_param_decl_index (info, parm) >= 0) continue; --- 2074,2080 ---- adding conditionals. */ FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) { ! tree parm = unmodified_parm (stmt, use, NULL); /* For arguments we can build a condition. */ if (parm && ipa_get_param_decl_index (info, parm) >= 0) continue; *************** will_be_nonconstant_predicate (struct ip *** 2065,2082 **** if (is_load) op_non_const = ! add_condition (summary, base_index, &aggpos, CHANGED, NULL); else op_non_const = false_predicate (); FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) { ! tree parm = unmodified_parm (stmt, use); int index; if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0) { if (index != base_index) ! p = add_condition (summary, index, NULL, CHANGED, NULL_TREE); else continue; } --- 2089,2106 ---- if (is_load) op_non_const = ! add_condition (summary, base_index, size, &aggpos, CHANGED, NULL); else op_non_const = false_predicate (); FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) { ! tree parm = unmodified_parm (stmt, use, &size); int index; if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0) { if (index != base_index) ! p = add_condition (summary, index, size, NULL, CHANGED, NULL_TREE); else continue; } *************** remap_predicate (struct inline_summary * *** 3300,3306 **** ap.by_ref = c->by_ref; cond_predicate = add_condition (info, operand_map[c->operand_num], ! &ap, c->code, c->val); } } /* Fixed conditions remains same, construct single --- 3324,3331 ---- ap.by_ref = c->by_ref; cond_predicate = add_condition (info, operand_map[c->operand_num], ! c->size, &ap, c->code, ! c->val); } } /* Fixed conditions remains same, construct single *************** inline_read_section (struct lto_file_dec *** 4119,4124 **** --- 4144,4150 ---- { struct condition c; c.operand_num = streamer_read_uhwi (&ib); + c.size = streamer_read_uhwi (&ib); c.code = (enum tree_code) streamer_read_uhwi (&ib); c.val = stream_read_tree (&ib, data_in); bp = streamer_read_bitpack (&ib); *************** inline_write_summary (void) *** 4280,4285 **** --- 4306,4312 ---- for (i = 0; vec_safe_iterate (info->conds, i, &c); i++) { streamer_write_uhwi (ob, c->operand_num); + streamer_write_uhwi (ob, c->size); streamer_write_uhwi (ob, c->code); stream_write_tree (ob, c->val, true); bp = bitpack_create (ob->main_stream); diff -Nrcpad gcc-4.9.3/gcc/ipa-inline.h gcc-4.9.4/gcc/ipa-inline.h *** gcc-4.9.3/gcc/ipa-inline.h Wed May 21 05:40:09 2014 --- gcc-4.9.4/gcc/ipa-inline.h Thu May 19 15:17:10 2016 *************** struct GTY(()) condition *** 32,37 **** --- 32,39 ---- /* If agg_contents is set, this is the offset from which the used data was loaded. */ HOST_WIDE_INT offset; + /* Size of the access reading the data (or the PARM_DECL SSA_NAME). */ + HOST_WIDE_INT size; tree val; int operand_num; ENUM_BITFIELD(tree_code) code : 16; diff -Nrcpad gcc-4.9.3/gcc/ipa-prop.c gcc-4.9.4/gcc/ipa-prop.c *** gcc-4.9.3/gcc/ipa-prop.c Thu Jun 26 14:33:06 2014 --- gcc-4.9.4/gcc/ipa-prop.c Thu May 19 15:19:59 2016 *************** ipa_load_from_parm_agg_1 (vecdescriptors, NULL, stmt, op, index_p, ! offset_p, NULL, by_ref_p); } /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result --- 971,980 ---- bool ipa_load_from_parm_agg (struct ipa_node_params *info, gimple stmt, tree op, int *index_p, HOST_WIDE_INT *offset_p, ! HOST_WIDE_INT *size_p, bool *by_ref_p) { return ipa_load_from_parm_agg_1 (info->descriptors, NULL, stmt, op, index_p, ! offset_p, size_p, by_ref_p); } /* Given that an actual argument is an SSA_NAME (given in NAME) and is a result *************** determine_known_aggregate_parts (gimple *** 1374,1379 **** --- 1374,1382 ---- bool check_ref, by_ref; ao_ref r; + if (PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS) == 0) + return; + /* The function operates in three stages. First, we prepare check_ref, r, arg_base and arg_offset based on what is actually passed as an actual argument. */ diff -Nrcpad gcc-4.9.3/gcc/ipa-prop.h gcc-4.9.4/gcc/ipa-prop.h *** gcc-4.9.3/gcc/ipa-prop.h Thu Jun 26 14:33:06 2014 --- gcc-4.9.4/gcc/ipa-prop.h Thu May 19 15:17:10 2016 *************** void ipa_analyze_node (struct cgraph_nod *** 594,600 **** tree ipa_find_agg_cst_for_param (struct ipa_agg_jump_function *, HOST_WIDE_INT, bool); bool ipa_load_from_parm_agg (struct ipa_node_params *, gimple, tree, int *, ! HOST_WIDE_INT *, bool *); /* Debugging interface. */ void ipa_print_node_params (FILE *, struct cgraph_node *node); --- 594,600 ---- tree ipa_find_agg_cst_for_param (struct ipa_agg_jump_function *, HOST_WIDE_INT, bool); bool ipa_load_from_parm_agg (struct ipa_node_params *, gimple, tree, int *, ! HOST_WIDE_INT *, HOST_WIDE_INT *, bool *); /* Debugging interface. */ void ipa_print_node_params (FILE *, struct cgraph_node *node); diff -Nrcpad gcc-4.9.3/gcc/ira-build.c gcc-4.9.4/gcc/ira-build.c *** gcc-4.9.3/gcc/ira-build.c Fri Jun 19 14:41:32 2015 --- gcc-4.9.4/gcc/ira-build.c Mon Jul 18 12:57:25 2016 *************** mark_loops_for_removal (void) *** 2277,2283 **** ); } qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func); ! for (i = 0; n - i + 1 > IRA_MAX_LOOPS_NUM; i++) { sorted_loops[i]->to_remove_p = true; if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) --- 2277,2283 ---- ); } qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func); ! for (i = 0; i < n - IRA_MAX_LOOPS_NUM; i++) { sorted_loops[i]->to_remove_p = true; if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL) diff -Nrcpad gcc-4.9.3/gcc/ira.c gcc-4.9.4/gcc/ira.c *** gcc-4.9.3/gcc/ira.c Fri Jun 12 11:54:43 2015 --- gcc-4.9.4/gcc/ira.c Thu Mar 31 13:21:43 2016 *************** ira_setup_eliminable_regset (void) *** 2398,2406 **** frame_pointer_needed = (! flag_omit_frame_pointer || (cfun->calls_alloca && EXIT_IGNORE_STACK) ! /* We need the frame pointer to catch stack overflow exceptions ! if the stack pointer is moving. */ ! || (flag_stack_check && STACK_CHECK_MOVING_SP) || crtl->accesses_prior_frames || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed) /* We need a frame pointer for all Cilk Plus functions that use --- 2398,2409 ---- frame_pointer_needed = (! flag_omit_frame_pointer || (cfun->calls_alloca && EXIT_IGNORE_STACK) ! /* We need the frame pointer to catch stack overflow exceptions if ! the stack pointer is moving (as for the alloca case just above). */ ! || (STACK_CHECK_MOVING_SP ! && flag_stack_check ! && flag_exceptions ! && cfun->can_throw_non_call_exceptions) || crtl->accesses_prior_frames || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed) /* We need a frame pointer for all Cilk Plus functions that use *************** adjust_cleared_regs (rtx loc, const_rtx *** 3434,3442 **** return NULL_RTX; } - /* Nonzero if we recorded an equivalence for a LABEL_REF. */ - static int recorded_label_ref; - /* Find registers that are equivalent to a single value throughout the compilation (either because they can be referenced in memory or are set once from a single constant). Lower their priority for a --- 3437,3442 ---- *************** static int recorded_label_ref; *** 3446,3455 **** value into the using insn. If it succeeds, we can eliminate the register completely. ! Initialize init_insns in ira_reg_equiv array. ! ! Return non-zero if jump label rebuilding should be done. */ ! static int update_equiv_regs (void) { rtx insn; --- 3446,3453 ---- value into the using insn. If it succeeds, we can eliminate the register completely. ! Initialize init_insns in ira_reg_equiv array. */ ! static void update_equiv_regs (void) { rtx insn; *************** update_equiv_regs (void) *** 3458,3467 **** bitmap cleared_regs; bool *pdx_subregs; - /* We need to keep track of whether or not we recorded a LABEL_REF so - that we know if the jump optimizer needs to be rerun. */ - recorded_label_ref = 0; - /* Use pdx_subregs to show whether a reg is used in a paradoxical subreg. */ pdx_subregs = XCNEWVEC (bool, max_regno); --- 3456,3461 ---- *************** update_equiv_regs (void) *** 3507,3513 **** /* If this insn contains more (or less) than a single SET, only mark all destinations as having no known equivalence. */ ! if (set == 0) { note_stores (PATTERN (insn), no_equiv, NULL); continue; --- 3501,3508 ---- /* If this insn contains more (or less) than a single SET, only mark all destinations as having no known equivalence. */ ! if (set == 0 ! || side_effects_p (SET_SRC (set))) { note_stores (PATTERN (insn), no_equiv, NULL); continue; *************** update_equiv_regs (void) *** 3659,3675 **** = gen_rtx_INSN_LIST (VOIDmode, insn, ira_reg_equiv[regno].init_insns); - /* Record whether or not we created a REG_EQUIV note for a LABEL_REF. - We might end up substituting the LABEL_REF for uses of the - pseudo here or later. That kind of transformation may turn an - indirect jump into a direct jump, in which case we must rerun the - jump optimizer to ensure that the JUMP_LABEL fields are valid. */ - if (GET_CODE (x) == LABEL_REF - || (GET_CODE (x) == CONST - && GET_CODE (XEXP (x, 0)) == PLUS - && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))) - recorded_label_ref = 1; - reg_equiv[regno].replacement = x; reg_equiv[regno].src_p = &SET_SRC (set); reg_equiv[regno].loop_depth = loop_depth; --- 3654,3659 ---- *************** update_equiv_regs (void) *** 3786,3794 **** if (! INSN_P (insn)) continue; ! /* Don't substitute into a non-local goto, this confuses CFG. */ ! if (JUMP_P (insn) ! && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) continue; for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) --- 3770,3778 ---- if (! INSN_P (insn)) continue; ! /* Don't substitute into jumps. indirect_jump_optimize does ! this for anything we are prepared to handle. */ ! if (JUMP_P (insn)) continue; for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) *************** update_equiv_regs (void) *** 3940,3950 **** end_alias_analysis (); free (reg_equiv); free (pdx_subregs); - return recorded_label_ref; } ! /* Set up fields memory, constant, and invariant from init_insns in the structures of array ira_reg_equiv. */ static void --- 3924,3983 ---- end_alias_analysis (); free (reg_equiv); free (pdx_subregs); } ! /* A pass over indirect jumps, converting simple cases to direct jumps. ! Combine does this optimization too, but only within a basic block. */ ! static void ! indirect_jump_optimize (void) ! { ! basic_block bb; ! bool rebuild_p = false; ! ! FOR_EACH_BB_REVERSE_FN (bb, cfun) ! { ! rtx insn = BB_END (bb); ! if (!JUMP_P (insn) ! || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX)) ! continue; ! ! rtx x = pc_set (insn); ! if (!x || !REG_P (SET_SRC (x))) ! continue; + int regno = REGNO (SET_SRC (x)); + if (DF_REG_DEF_COUNT (regno) == 1) + { + df_ref def = DF_REG_DEF_CHAIN (regno); + if (!DF_REF_IS_ARTIFICIAL (def)) + { + rtx def_insn = DF_REF_INSN (def); + rtx lab = NULL_RTX; + rtx set = single_set (def_insn); + if (set && GET_CODE (SET_SRC (set)) == LABEL_REF) + lab = SET_SRC (set); + else + { + rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX); + if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF) + lab = XEXP (eqnote, 0); + } + if (lab && validate_replace_rtx (SET_SRC (x), lab, insn)) + rebuild_p = true; + } + } + } + + if (rebuild_p) + { + timevar_push (TV_JUMP); + rebuild_jump_labels (get_insns ()); + if (purge_all_dead_edges ()) + delete_unreachable_blocks (); + timevar_pop (TV_JUMP); + } + } + /* Set up fields memory, constant, and invariant from init_insns in the structures of array ira_reg_equiv. */ static void *************** ira (FILE *f) *** 5187,5193 **** { bool loops_p; int ira_max_point_before_emit; - int rebuild_p; bool saved_flag_caller_saves = flag_caller_saves; enum ira_region saved_flag_ira_region = flag_ira_region; --- 5220,5225 ---- *************** ira (FILE *f) *** 5260,5265 **** --- 5292,5301 ---- df_clear_flags (DF_NO_INSN_RESCAN); + indirect_jump_optimize (); + if (delete_trivially_dead_insns (get_insns (), max_reg_num ())) + df_analyze (); + regstat_init_n_sets_and_refs (); regstat_compute_ri (); *************** ira (FILE *f) *** 5277,5300 **** if (resize_reg_info () && flag_ira_loop_pressure) ira_set_pseudo_classes (true, ira_dump_file); ! rebuild_p = update_equiv_regs (); setup_reg_equiv (); setup_reg_equiv_init (); - if (optimize && rebuild_p) - { - timevar_push (TV_JUMP); - rebuild_jump_labels (get_insns ()); - if (purge_all_dead_edges ()) - delete_unreachable_blocks (); - timevar_pop (TV_JUMP); - } - allocated_reg_info_size = max_reg_num (); - if (delete_trivially_dead_insns (get_insns (), max_reg_num ())) - df_analyze (); - /* It is not worth to do such improvement when we use a simple allocation because of -O0 usage or because the function is too big. */ --- 5313,5324 ---- if (resize_reg_info () && flag_ira_loop_pressure) ira_set_pseudo_classes (true, ira_dump_file); ! update_equiv_regs (); setup_reg_equiv (); setup_reg_equiv_init (); allocated_reg_info_size = max_reg_num (); /* It is not worth to do such improvement when we use a simple allocation because of -O0 usage or because the function is too big. */ diff -Nrcpad gcc-4.9.3/gcc/java/ChangeLog gcc-4.9.4/gcc/java/ChangeLog *** gcc-4.9.3/gcc/java/ChangeLog Fri Jun 26 17:56:28 2015 --- gcc-4.9.4/gcc/java/ChangeLog Wed Aug 3 05:06:44 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/lra-constraints.c gcc-4.9.4/gcc/lra-constraints.c *** gcc-4.9.3/gcc/lra-constraints.c Fri Mar 27 19:23:15 2015 --- gcc-4.9.4/gcc/lra-constraints.c Thu Nov 26 22:13:36 2015 *************** curr_insn_transform (void) *** 3635,3641 **** assigment pass and the scratch pseudo will be spilled. Spilled scratch pseudos are transformed back to scratches at the LRA end. */ ! && lra_former_scratch_operand_p (curr_insn, i)) { int regno = REGNO (op); lra_change_class (regno, NO_REGS, " Change to", true); --- 3635,3642 ---- assigment pass and the scratch pseudo will be spilled. Spilled scratch pseudos are transformed back to scratches at the LRA end. */ ! && lra_former_scratch_operand_p (curr_insn, i) ! && lra_former_scratch_p (REGNO (op))) { int regno = REGNO (op); lra_change_class (regno, NO_REGS, " Change to", true); *************** curr_insn_transform (void) *** 3644,3649 **** --- 3645,3652 ---- spilled pseudo as there is only one such insn, the current one. */ reg_renumber[regno] = -1; + lra_assert (bitmap_single_bit_set_p + (&lra_reg_info[REGNO (op)].insn_bitmap)); } /* We can do an optional reload. If the pseudo got a hard reg, we might improve the code through inheritance. If diff -Nrcpad gcc-4.9.3/gcc/lto/ChangeLog gcc-4.9.4/gcc/lto/ChangeLog *** gcc-4.9.3/gcc/lto/ChangeLog Fri Jun 26 17:56:44 2015 --- gcc-4.9.4/gcc/lto/ChangeLog Wed Aug 3 05:07:08 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/lto-streamer.h gcc-4.9.4/gcc/lto-streamer.h *** gcc-4.9.3/gcc/lto-streamer.h Wed Feb 5 17:22:08 2014 --- gcc-4.9.4/gcc/lto-streamer.h Thu May 19 15:17:10 2016 *************** along with GCC; see the file COPYING3. *** 141,147 **** #define LTO_SECTION_NAME_PREFIX ".gnu.lto_" #define LTO_major_version 3 ! #define LTO_minor_version 0 typedef unsigned char lto_decl_flags_t; --- 141,147 ---- #define LTO_SECTION_NAME_PREFIX ".gnu.lto_" #define LTO_major_version 3 ! #define LTO_minor_version 1 typedef unsigned char lto_decl_flags_t; diff -Nrcpad gcc-4.9.3/gcc/objc/ChangeLog gcc-4.9.4/gcc/objc/ChangeLog *** gcc-4.9.3/gcc/objc/ChangeLog Fri Jun 26 17:56:24 2015 --- gcc-4.9.4/gcc/objc/ChangeLog Wed Aug 3 05:07:24 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/objcp/ChangeLog gcc-4.9.4/gcc/objcp/ChangeLog *** gcc-4.9.3/gcc/objcp/ChangeLog Fri Jun 26 17:56:36 2015 --- gcc-4.9.4/gcc/objcp/ChangeLog Wed Aug 3 05:07:34 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/omp-low.c gcc-4.9.4/gcc/omp-low.c *** gcc-4.9.3/gcc/omp-low.c Wed Jun 3 15:35:03 2015 --- gcc-4.9.4/gcc/omp-low.c Tue Jul 19 09:14:03 2016 *************** expand_omp_target (struct omp_region *re *** 8234,8242 **** make_edge (else_bb, new_bb, EDGE_FALLTHRU); device = tmp_var; } - gsi = gsi_last_bb (new_bb); t = gimple_omp_target_data_arg (entry_stmt); if (t == NULL) { --- 8234,8248 ---- make_edge (else_bb, new_bb, EDGE_FALLTHRU); device = tmp_var; + gsi = gsi_last_bb (new_bb); + } + else + { + gsi = gsi_last_bb (new_bb); + device = force_gimple_operand_gsi (&gsi, device, true, NULL_TREE, + true, GSI_SAME_STMT); } t = gimple_omp_target_data_arg (entry_stmt); if (t == NULL) { *************** simd_clone_create (struct cgraph_node *o *** 11192,11198 **** DECL_STATIC_DESTRUCTOR (new_decl) = 0; new_node = cgraph_copy_node_for_versioning (old_node, new_decl, vNULL, NULL); ! cgraph_call_function_insertion_hooks (new_node); } if (new_node == NULL) return new_node; --- 11198,11205 ---- DECL_STATIC_DESTRUCTOR (new_decl) = 0; new_node = cgraph_copy_node_for_versioning (old_node, new_decl, vNULL, NULL); ! if (old_node->in_other_partition) ! new_node->in_other_partition = 1; } if (new_node == NULL) return new_node; diff -Nrcpad gcc-4.9.3/gcc/optabs.c gcc-4.9.4/gcc/optabs.c *** gcc-4.9.3/gcc/optabs.c Thu Aug 14 09:32:17 2014 --- gcc-4.9.4/gcc/optabs.c Tue Oct 27 14:07:04 2015 *************** expand_atomic_exchange (rtx target, rtx *** 7374,7382 **** *PTARGET_BOOL is an optional place to store the boolean success/failure. *PTARGET_OVAL is an optional place to store the old value from memory. ! Both target parameters may be NULL to indicate that we do not care about ! that return value. Both target parameters are updated on success to ! the actual location of the corresponding result. MEMMODEL is the memory model variant to use. --- 7374,7382 ---- *PTARGET_BOOL is an optional place to store the boolean success/failure. *PTARGET_OVAL is an optional place to store the old value from memory. ! Both target parameters may be NULL or const0_rtx to indicate that we do ! not care about that return value. Both target parameters are updated on ! success to the actual location of the corresponding result. MEMMODEL is the memory model variant to use. *************** expand_atomic_compare_and_swap (rtx *pta *** 7401,7406 **** --- 7401,7409 ---- /* Make sure we always have some place to put the return oldval. Further, make sure that place is distinct from the input expected, just in case we need that path down below. */ + if (ptarget_oval && *ptarget_oval == const0_rtx) + ptarget_oval = NULL; + if (ptarget_oval == NULL || (target_oval = *ptarget_oval) == NULL || reg_overlap_mentioned_p (expected, target_oval)) *************** expand_atomic_compare_and_swap (rtx *pta *** 7411,7416 **** --- 7414,7422 ---- { enum machine_mode bool_mode = insn_data[icode].operand[0].mode; + if (ptarget_bool && *ptarget_bool == const0_rtx) + ptarget_bool = NULL; + /* Make sure we always have a place for the bool operand. */ if (ptarget_bool == NULL || (target_bool = *ptarget_bool) == NULL *************** expand_atomic_compare_and_swap (rtx *pta *** 7474,7482 **** if (libfunc != NULL) { rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0)); ! target_oval = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL, ! mode, 3, addr, ptr_mode, ! expected, mode, desired, mode); /* Compute the boolean return value only if requested. */ if (ptarget_bool) --- 7480,7489 ---- if (libfunc != NULL) { rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0)); ! rtx target = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL, ! mode, 3, addr, ptr_mode, ! expected, mode, desired, mode); ! emit_move_insn (target_oval, target); /* Compute the boolean return value only if requested. */ if (ptarget_bool) diff -Nrcpad gcc-4.9.3/gcc/passes.c gcc-4.9.4/gcc/passes.c *** gcc-4.9.3/gcc/passes.c Fri Apr 25 07:48:06 2014 --- gcc-4.9.4/gcc/passes.c Mon Mar 21 17:17:16 2016 *************** execute_one_ipa_transform_pass (struct c *** 2079,2085 **** check_profile_consistency (pass->static_pass_number, 1, true); if (dump_file) ! do_per_function (execute_function_dump, NULL); pass_fini_dump_file (pass); current_pass = NULL; --- 2079,2085 ---- check_profile_consistency (pass->static_pass_number, 1, true); if (dump_file) ! do_per_function (execute_function_dump, pass); pass_fini_dump_file (pass); current_pass = NULL; diff -Nrcpad gcc-4.9.3/gcc/po/ChangeLog gcc-4.9.4/gcc/po/ChangeLog *** gcc-4.9.3/gcc/po/ChangeLog Fri Jun 26 17:56:01 2015 --- gcc-4.9.4/gcc/po/ChangeLog Wed Aug 3 05:06:48 2016 *************** *** 1,3 **** --- 1,7 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/postreload.c gcc-4.9.4/gcc/postreload.c *** gcc-4.9.3/gcc/postreload.c Thu Jan 2 22:23:26 2014 --- gcc-4.9.4/gcc/postreload.c Tue Mar 15 03:10:31 2016 *************** static bool *** 1094,1100 **** reload_combine_recognize_pattern (rtx insn) { rtx set, reg, src; - unsigned int regno; set = single_set (insn); if (set == NULL_RTX) --- 1094,1099 ---- *************** reload_combine_recognize_pattern (rtx in *** 1106,1112 **** || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1) return false; ! regno = REGNO (reg); /* Look for (set (REGX) (CONST_INT)) (set (REGX) (PLUS (REGX) (REGY))) --- 1105,1124 ---- || hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] != 1) return false; ! unsigned int regno = REGNO (reg); ! machine_mode mode = GET_MODE (reg); ! ! if (reg_state[regno].use_index < 0 ! || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES) ! return false; ! ! for (int i = reg_state[regno].use_index; ! i < RELOAD_COMBINE_MAX_USES; i++) ! { ! struct reg_use *use = reg_state[regno].reg_use + i; ! if (GET_MODE (*use->usep) != mode) ! return false; ! } /* Look for (set (REGX) (CONST_INT)) (set (REGX) (PLUS (REGX) (REGY))) *************** reload_combine_recognize_pattern (rtx in *** 1128,1135 **** && REG_P (XEXP (src, 1)) && rtx_equal_p (XEXP (src, 0), reg) && !rtx_equal_p (XEXP (src, 1), reg) - && reg_state[regno].use_index >= 0 - && reg_state[regno].use_index < RELOAD_COMBINE_MAX_USES && last_label_ruid < reg_state[regno].use_ruid) { rtx base = XEXP (src, 1); --- 1140,1145 ---- diff -Nrcpad gcc-4.9.3/gcc/ree.c gcc-4.9.4/gcc/ree.c *** gcc-4.9.3/gcc/ree.c Wed Jan 14 20:24:05 2015 --- gcc-4.9.4/gcc/ree.c Tue Nov 24 14:27:51 2015 *************** combine_reaching_defs (ext_cand *cand, c *** 783,788 **** --- 783,794 ---- if (state->defs_list.length () != 1) return false; + /* We don't have the structure described above if there are + conditional moves in between the def and the candidate, + and we will not handle them correctly. See PR68194. */ + if (state->copies_list.length () > 0) + return false; + /* We require the candidate not already be modified. It may, for example have been changed from a (sign_extend (reg)) into (zero_extend (sign_extend (reg))). *************** combine_reaching_defs (ext_cand *cand, c *** 793,798 **** --- 799,812 ---- if (state->modified[INSN_UID (cand->insn)].kind != EXT_MODIFIED_NONE) return false; + enum machine_mode dst_mode = GET_MODE (SET_DEST (PATTERN (cand->insn))); + rtx src_reg = get_extended_src_reg (SET_SRC (PATTERN (cand->insn))); + + /* Ensure the number of hard registers of the copy match. */ + if (HARD_REGNO_NREGS (REGNO (src_reg), dst_mode) + != HARD_REGNO_NREGS (REGNO (src_reg), GET_MODE (src_reg))) + return false; + /* There's only one reaching def. */ rtx def_insn = state->defs_list[0]; *************** combine_reaching_defs (ext_cand *cand, c *** 842,848 **** start_sequence (); rtx pat = PATTERN (cand->insn); rtx new_dst = gen_rtx_REG (GET_MODE (SET_DEST (pat)), ! REGNO (XEXP (SET_SRC (pat), 0))); rtx new_src = gen_rtx_REG (GET_MODE (SET_DEST (pat)), REGNO (SET_DEST (pat))); emit_move_insn (new_dst, new_src); --- 856,862 ---- start_sequence (); rtx pat = PATTERN (cand->insn); rtx new_dst = gen_rtx_REG (GET_MODE (SET_DEST (pat)), ! REGNO (get_extended_src_reg (SET_SRC (pat)))); rtx new_src = gen_rtx_REG (GET_MODE (SET_DEST (pat)), REGNO (SET_DEST (pat))); emit_move_insn (new_dst, new_src); diff -Nrcpad gcc-4.9.3/gcc/rtl.h gcc-4.9.4/gcc/rtl.h *** gcc-4.9.3/gcc/rtl.h Thu Jan 23 08:24:38 2014 --- gcc-4.9.4/gcc/rtl.h Thu Jul 7 11:46:08 2016 *************** extern int anti_dependence (const_rtx, c *** 2712,2717 **** --- 2712,2719 ---- extern int canon_anti_dependence (const_rtx, bool, const_rtx, enum machine_mode, rtx); extern int output_dependence (const_rtx, const_rtx); + extern int canon_output_dependence (const_rtx, bool, + const_rtx, machine_mode, rtx); extern int may_alias_p (const_rtx, const_rtx); extern void init_alias_target (void); extern void init_alias_analysis (void); diff -Nrcpad gcc-4.9.3/gcc/sched-deps.c gcc-4.9.4/gcc/sched-deps.c *** gcc-4.9.3/gcc/sched-deps.c Mon Sep 1 11:49:36 2014 --- gcc-4.9.4/gcc/sched-deps.c Fri May 20 15:42:18 2016 *************** sched_analyze_2 (struct deps_desc *deps, *** 2714,2722 **** return; } ! /* Force pending stores to memory in case a trap handler needs them. */ case TRAP_IF: ! flush_pending_lists (deps, insn, true, false); break; case PREFETCH: --- 2714,2725 ---- return; } ! /* Force pending stores to memory in case a trap handler needs them. ! Also force pending loads from memory; loads and stores can segfault ! and the signal handler won't be triggered if the trap insn was moved ! above load or store insn. */ case TRAP_IF: ! flush_pending_lists (deps, insn, true, true); break; case PREFETCH: diff -Nrcpad gcc-4.9.3/gcc/testsuite/ChangeLog gcc-4.9.4/gcc/testsuite/ChangeLog *** gcc-4.9.3/gcc/testsuite/ChangeLog Fri Jun 26 17:56:09 2015 --- gcc-4.9.4/gcc/testsuite/ChangeLog Wed Aug 3 05:07:03 2016 *************** *** 1,3 **** --- 1,1040 ---- + 2016-08-03 Release Manager + + * GCC 4.9.4 released. + + 2016-07-22 Andre Vehreschild + + Backport from trunk: + PR fortran/70842 + * gfortran.dg/select_type_35.f03: New test. + + 2016-07-20 Jakub Jelinek + + PR c++/71909 + * g++.dg/parse/pr71909.C: New test. + * g++.dg/tm/pr71909.C: New test. + + 2016-07-19 Jakub Jelinek + + PR middle-end/71874 + * g++.dg/torture/pr71874.C: New test. + + 2016-07-19 Martin Jambor + + PR fortran/71688 + * gfortran.dg/pr71688.f90: New test. + + 2016-07-19 Jakub Jelinek + + Backported from mainline + 2016-07-18 Jakub Jelinek + + PR c++/71871 + * g++.dg/ext/vector31.C: New test. + + 2016-07-11 Jakub Jelinek + + PR middle-end/71758 + * c-c++-common/gomp/pr71758.c: New test. + * gfortran.dg/gomp/pr71758.f90: New test. + + 2016-07-15 Jerry DeLisle + + Backport from trunk: + PR fortran/71764 + * gfortran.dg/pr71764.f90: New test. + + 2016-07-08 Martin Liska + + Backported from mainline + 2016-07-08 Martin Liska + + * gcc.dg/torture/pr71606.c: New test. + + 2016-07-07 Jakub Jelinek + + Backported from mainline + 2016-06-30 Jakub Jelinek + + PR fortran/71704 + * gfortran.dg/gomp/pr71704.f90: New test. + + PR fortran/71705 + * gfortran.dg/gomp/pr71705.f90: New test. + + 2016-06-28 Jakub Jelinek + + PR middle-end/71626 + * gcc.c-torture/execute/pr71626-1.c: New test. + * gcc.c-torture/execute/pr71626-2.c: New test. + + 2016-06-21 Jakub Jelinek + + PR tree-optimization/71588 + * gcc.dg/pr71558.c: New test. + + 2016-06-10 Jakub Jelinek + + PR middle-end/71494 + * gcc.c-torture/execute/pr71494.c: New test. + + 2016-03-29 Jakub Jelinek + + PR rtl-optimization/70429 + * gcc.c-torture/execute/pr70429.c: New test. + + 2016-03-15 Jakub Jelinek + + PR rtl-optimization/70222 + * gcc.c-torture/execute/pr70222-1.c: New test. + * gcc.c-torture/execute/pr70222-2.c: New test. + + 2016-03-11 Jakub Jelinek + + PR tree-optimization/70169 + * gcc.dg/pr70169.c: New test. + + 2016-03-09 Jakub Jelinek + + PR tree-optimization/70152 + * gcc.dg/pr70152.c: New test. + + 2016-02-26 Jakub Jelinek + Eric Botcazou + + PR rtl-optimization/69891 + * gcc.target/i386/pr69891.c: New test. + + 2016-02-19 Jakub Jelinek + + PR c++/67767 + * g++.dg/cpp0x/pr67767.C: New test. + + 2016-02-16 Jakub Jelinek + + PR tree-optimization/69802 + * gcc.dg/pr69802.c: New test. + + 2016-02-15 Jakub Jelinek + + PR c++/69797 + * c-c++-common/pr69797.c: New test. + + 2016-03-02 Jakub Jelinek + + PR middle-end/70022 + * gcc.dg/pr70022.c: Add -w -Wno-psabi to dg-options. + + 2014-12-12 Richard Biener + + PR middle-end/64280 + * g++.dg/torture/pr64280.C: New testcase. + + 2016-07-07 Richard Biener + + Backport from mainline + 2016-04-04 Richard Biener + + PR rtl-optimization/70484 + * gcc.dg/torture/pr70484.c: New testcase. + + 2016-06-08 Richard Biener + + PR tree-optimization/71452 + * gcc.dg/torture/pr71452.c: New testcase. + + 2016-05-06 Richard Biener + + PR middle-end/70931 + * gfortran.dg/pr70931.f90: New testcase. + + 2016-03-01 Richard Biener + + PR middle-end/70022 + * gcc.dg/pr70022.c: New testcase. + + 2016-06-30 Jakub Jelinek + + PR middle-end/71693 + * gcc.c-torture/compile/pr71693.c: New test. + + 2016-06-20 Georg-Johann Lay + Pitchumani Sivanupandi + + Backport from 2016-06-20 trunk r237589, r236558. + + PR target/71103 + * gcc.target/avr/pr71103.c: New test. + * gcc.target/avr/torture/pr71103-2.c: New test. + + 2016-06-07 Uros Bizjak + + PR target/71389 + * g++.dg/pr71389.C: New test. + + 2016-05-26 Jerry DeLisle + + Backport from trunk. + PR fortran/66461 + * gfortran.dg/unexpected_eof.f: New test + + 2016-05-22 Iain Sandoe + Dominique d'Humieres + + Backport from mainline + 2015-12-17 Rainer Orth + + PR target/67973 + + * lib/target-supports.exp (check_effective_target_stabs): New proc. + * g++.dg/cpp0x/alias-decl-debug-0.C: Restrict to stabs targets. + * g++.dg/other/PR23205.C: Likewise. + * g++.dg/other/pr23205-2.C: Likewise. + * gcc.dg/20040813-1.c: Likewise. + * gcc.dg/darwin-20040809-2.c: Likewise. + * objc.dg/stabs-1.m: Likewise. + + 2016-05-20 Kyrylo Tkachov + + Backport from mainline + 2016-05-17 Kyrylo Tkachov + + PR target/70809 + * gcc.target/aarch64/pr70809_1.c: New test. + + 2016-05-19 Martin Jambor + + PR ipa/70646 + * gcc.dg/ipa/pr70646.c: New test. + + 2016-05-15 Bill Schmidt + + Backport from mainline + 2016-05-11 Bill Schmidt + + * gcc.target/powerpc/pr70963.c: Require at least power8 at both + compile and run time. + + 2016-05-10 Bill Schmidt + + Backport from mainline + 2016-05-10 Bill Schmidt + + PR target/70963 + * gcc.target/powerpc/pr70963.c: New. + + 2016-05-05 Jerry DeLisle + + Backport from trunk. + PR libgfortran/70684 + * gfortran.dg/list_read_14.f90: New test. + + 2016-04-28 Jakub Jelinek + + PR target/70858 + * gcc.target/i386/pr70858.c: New test. + + 2016-04-25 Bill Schmidt + + Backport from mainline + 2016-03-14 Segher Boessenkool + + PR target/70098 + * lib/target-supports.exp (check_effective_target_powerpc64_no_dm): + New function. + * g++.dg/pr70098.C: New testcase. + + 2016-04-21 Andreas Krebbel + + Backport from mainline + 2016-04-20 Andreas Krebbel + + PR target/70674 + * gcc.target/s390/pr70674.c: New test. + + 2016-04-13 Kyrylo Tkachov + + Backport from mainline + 2016-04-08 Kyrylo Tkachov + + PR target/70566 + * gcc.c-torture/execute/pr70566.c: New test. + + 2016-04-13 Alan Modra + + Backport from mainline + 2016-03-31 Rainer Orth + * g++.dg/template/ptrmem30.C (read): Rename to data_read. + (Holder::foo): Reflect this. + + 2016-03-22 Patrick Palka + PR c++/70096 + * g++.dg/template/ptrmem30.C: New test. + + 2016-04-11 Alan Modra + + * gcc.target/powerpc/pr70117.c: New. + + 2016-04-05 Dominique d'Humieres + Jerry DeLisle + + * gfortran.dg/fmt_pf.f90: New test. + + 2016-04-04 Bill Schmidt + Jakub Jelinek + + PR middle-end/70457 + * gcc.dg/torture/pr70457.c: New. + + 2016-03-31 Kyrylo Tkachov + + * gcc.target/arm/atomic_loaddi_relaxed_cond.c: New test. + + 2016-03-31 Jakub Jelinek + + PR rtl-optimization/70460 + * gcc.c-torture/execute/pr70460.c: New test. + + 2016-02-29 Kyrylo Tkachov + + PR target/69875 + * gcc.target/arm/atomic_loaddi_acquire.x: New file. + * gcc.target/arm/atomic_loaddi_relaxed.x: Likewise. + * gcc.target/arm/atomic_loaddi_seq_cst.x: Likewise. + * gcc.target/arm/atomic_loaddi_1.c: New test. + * gcc.target/arm/atomic_loaddi_2.c: Likewise. + * gcc.target/arm/atomic_loaddi_3.c: Likewise. + * gcc.target/arm/atomic_loaddi_4.c: Likewise. + * gcc.target/arm/atomic_loaddi_5.c: Likewise. + * gcc.target/arm/atomic_loaddi_6.c: Likewise. + * gcc.target/arm/atomic_loaddi_7.c: Likewise. + * gcc.target/arm/atomic_loaddi_8.c: Likewise. + * gcc.target/arm/atomic_loaddi_9.c: Likewise. + + 2016-03-29 Kyrylo Tkachov + + Backport from mainline + 2016-03-23 Kyrylo Tkachov + + * lib/target-supports.exp: Remove v7ve entry from loop + creating effective target checks. + (check_effective_target_arm_arch_v7ve_ok): New procedure. + (add_options_for_arm_arch_v7ve): Likewise. + + 2016-03-21 Uros Bizjak + + PR target/70327 + * gcc.target/i386/pr70327.c: New test. + + 2016-03-21 Tom de Vries + + backport from trunk: + 2016-03-18 Tom de Vries + + * gcc.dg/pr70161-2.c: New test. + * gcc.dg/pr70161.c: New test. + + 2016-03-18 Jonathan Wakely + + Backported from mainline + 2014-12-19 Kai Tietz + Paolo Carlini + + PR c++/61198 + * g++.dg/cpp0x/alias-decl-45.C: New file. + + 2016-03-15 Bernd Schmidt + + Backport from mainline + 2016-03-04 Bernd Schmidt + + PR rtl-optimization/69941 + * gcc.dg/torture/pr69941.c: New test. + + 2016-03-14 Dominique d'Humieres + + PR fortran/45076 + gfortran.dg/prof/prof.exp: New script. + gfortran.dg/prof/dynamic_dispatch_6.f03: New test. + + 2016-03-10 Alan Modra + + * gcc.dg/pr69195.c: New. + * gcc.dg/pr69238.c: New. + + 2016-03-04 Jakub Jelinek + + PR target/70059 + * gcc.target/i386/avx512f-pr70059.c: New test. + + 2016-03-03 Rainer Orth + + * lib/gcc-gdb-test.exp (gdb-test): Make log message match command. + Invoke gdb with -batch. + * lib/gcc-simulate-thread.exp (simulate-thread): Likewise. + + 2016-03-01 Eric Botcazou + + * gcc.target/i386/pr70007.c: New test. + + 2016-02-29 Harald Anlauf + + PR fortran/60126 + * gfortran.dg/pr60126.f90: New test. + + 2016-02-28 Jerry DeLisle + + Backport from mainline + PR fortran/61156 + * gfortran.dg/include_6.f90: Update test. + + 2016-02-18 Jerry DeLisle + + Backport from gcc-5-branch. + PR libgfortran/69668 + * gfortran.dg/namelist_38.f90: Update test. + * gfortran.dg/namelist_84.f90: Update test. + + 2016-02-18 Marek Polacek + + 2016-02-12 Marek Polacek + Backport from mainline + + * gcc.dg/pr69522.c: Add empty dg-options. + + 2016-02-17 Bill Schmidt + + Backport from mainline + 2012-02-17 Bill Schmidt + + * gcc.target/powerpc/vec-cg.c: New test. + + 2016-02-17 Bernd Schmidt + + Backport from mainline + 2016-02-12 Bernd Schmidt + + PR c/69522 + * gcc.dg/pr69522.c: New test. + + 2016-02-16 Tom de Vries + + backport from trunk: + 2015-10-21 Ilya Enkovich + + * gcc.dg/lto/simd-function_0.c: New test. + + 2016-02-13 Oleg Endo + + Backport from mainline + 2016-02-13 Oleg Endo + + PR target/67260 + * gcc.target/sh/torture/pr67260.c: New. + + 2016-02-12 Richard Biener + + Backport from mainline + 2016-02-09 Richard Biener + + PR tree-optimization/69715 + * gcc.dg/torture/pr69715.c: New testcase. + + 2016-02-01 Richard Biener + + PR tree-optimization/69579 + * gcc.dg/setjmp-6.c: New testcase. + + 2016-02-01 Richard Biener + + PR tree-optimization/69574 + * gcc.dg/torture/pr69574.c: New testcase. + + 2016-02-11 Richard Biener + + Backport from mainline + 2015-02-18 Richard Biener + + PR tree-optimization/62217 + * gcc.dg/tree-ssa/cunroll-11.c: New testcase. + + 2015-06-18 Richard Biener + + Backport from mainline + 2015-06-03 Richard Biener + + PR tree-optimization/66375 + * gcc.dg/torture/pr66375.c: New testcase. + + 2015-06-23 Richard Biener + + Backport from mainline + 2015-06-09 Richard Biener + + PR middle-end/66413 + * gcc.dg/torture/pr66413.c: New testcase. + + 2015-07-08 Richard Biener + + PR tree-optimization/66794 + * gcc.dg/torture/pr66794.c: New testcase. + + 2016-02-11 Jakub Jelinek + + Backported from mainline + 2016-02-08 Jakub Jelinek + + PR c++/59627 + * g++.dg/gomp/pr59627.C: New test. + + 2016-01-22 Jakub Jelinek + + PR target/69432 + * g++.dg/opt/pr69432.C: New test. + + 2016-01-21 Jakub Jelinek + + PR middle-end/67653 + * c-c++-common/pr67653.c: New test. + * gcc.dg/torture/pr29119.c: Add dg-warning. + + 2016-01-19 Jakub Jelinek + + PR rtl-optimization/68955 + PR rtl-optimization/64557 + * gcc.dg/torture/pr68955.c: New test. + + 2016-01-11 Jakub Jelinek + + PR tree-optimization/69214 + * gcc.c-torture/compile/pr69214.c: New test. + + 2016-01-08 Jakub Jelinek + + PR fortran/69128 + * gfortran.dg/gomp/pr69128.f90: New test. + + 2016-01-01 Jakub Jelinek + + PR target/69015 + * gcc.dg/pr69015.c: New test. + + 2015-12-10 Jakub Jelinek + + PR rtl-optimization/68376 + PR rtl-optimization/68670 + * gcc.c-torture/execute/pr68376-2.c (f5, f6, f7, f8): New + tests. + (main): Call them. + * gcc.dg/pr68670-1.c: New test. + * gcc.dg/pr68670-2.c: New test. + + PR rtl-optimization/68376 + * gcc.c-torture/execute/pr68376-1.c: New test. + * gcc.c-torture/execute/pr68376-2.c: New test. + + 2015-12-04 Jakub Jelinek + + PR tree-optimization/68680 + * gcc.target/i386/pr68680.c: New test. + + 2015-12-03 Jakub Jelinek + + PR preprocessor/57580 + * c-c++-common/cpp/pr57580.c: New test. + * c-c++-common/gomp/pr57580.c: New test. + + 2015-11-21 Jakub Jelinek + + PR debug/66432 + * gcc.dg/debug/pr66432.c: New test. + + 2015-11-19 Jakub Jelinek + + PR target/67770 + * gcc.target/i386/pr67770.c: New test. + + 2016-02-04 Jakub Jelinek + + Backported from mainline + 2016-02-03 Jakub Jelinek + + PR target/69644 + * gcc.dg/pr69644.c: New test. + + 2016-02-02 Alan Modra + + PR target/69548 + * gcc.target/powerpc/pr69548.c: New test. + + 2016-01-29 Martin Jambor + + PR tree-optimization/69355 + * gcc.dg/tree-ssa/pr69355.c: New test. + + 2016-01-29 Uros Bizjak + + Backport from mainline + 2016-01-29 Jakub Jelinek + + PR target/69551 + * gcc.target/i386/pr69551.c: New test. + + 2016-01-29 Uros Bizjak + + PR target/69459 + * gcc.target/i386/pr69459.c: New test. + + 2016-01-27 Bill Schmidt + + * gcc.dg/and-1.c: Remove nand test for powerpc*-*-*. + + 2016-01-27 Tom de Vries + + * gcc.dg/autopar/pr69110.c: Fix pass number. + + 2016-01-26 Tom de Vries + + PR tree-optimization/69110 + * gcc.dg/autopar/pr69110.c: New test. + + 2016-01-25 Tom de Vries + + backport from trunk: + PR tree-optimization/PR64091 + 2014-11-27 Richard Biener + + * gcc.dg/torture/pr64091.c: New testcase. + + 2016-01-22 Kyrylo Tkachov + + Backport from mainline + 2016-01-22 Kyrylo Tkachov + + PR target/69403 + * gcc.c-torture/execute/pr69403.c: New test. + + 2016-01-21 Andreas Krebbel + + Backported from mainline + 2015-07-24 Andreas Krebbel + + * gcc.target/s390/gpr2fprsavecfi.c: New test. + + 2016-01-20 Kyrylo Tkachov + + Backport from mainline + 2015-09-10 Kyrylo Tkachov + + PR target/67439 + * gcc.target/arm/pr67439_1.c: New test. + + 2016-01-19 Sergei Trofimovich + + Backport from mainline + PR other/60465 + * gcc.target/ia64/pr60465-gprel64.c: New test. + * gcc.target/ia64/pr60465-gprel64-c37.c: New test. + + 2016-01-19 Uros Bizjak + + PR testsuite/68820 + * gcc.c-torture/execute/builtins/memops-asm.x: New file. + * gcc.c-torture/execute/builtins/strstr-asm.x: Ditto. + * gcc.c-torture/execute/builtins/strstr-asm.c: Remove dg-options. + + 2016-01-14 Kyrylo Tkachov + + PR target/68648 + * gcc.dg/torture/pr68648.c: New test. + + 2016-01-12 Jeff Law + + PR target/63347 + * gcc.target/m68k/pr63347.c: New test. + + 2016-01-12 James Greenhalgh + + Backport from mainline. + 2015-12-09 James Greenhalgh + + PR rtl-optimization/67609 + * gcc.dg/torture/pr67609.c: New. + + 2016-01-11 Martin Jambor + + PR ipa/66616 + * g++.dg/ipa/pr66616.C: New test. + + 2016-01-08 Martin Jambor + + Backport from mainline + 2015-12-15 Martin Jambor + + PR ipa/68851 + * g++.dg/ipa/pr68851.C: New test. + + 2015-12-22 Peter Bergner + + Backport from mainline + PR target/68872 + * gcc.target/powerpc/pr68872.c: New test. + + 2015-12-10 Uros Bizjak + + Backport from mainline + 2015-12-08 Uros Bizjak + + PR target/68701 + * gcc.target/i386/pr68701-1.c: New test. + * gcc.target/i386/pr68701-2.c: Ditto. + + 2015-12-09 Uros Bizjak + + * gcc.target/i386/sse4_1-roundps-1.c: Remove ASM_SUFFIX define. + * gcc.target/i386/sse4_1-roundps-2.c: Ditto. + * gcc.target/i386/sse4_1-roundps-3.c: Ditto. + * gcc.target/i386/sse4_1-roundsd-1.c: Ditto. + * gcc.target/i386/sse4_1-roundsd-2.c: Ditto. + * gcc.target/i386/sse4_1-roundsd-3.c: Ditto. + * gcc.target/i386/sse4_1-roundss-1.c: Ditto. + * gcc.target/i386/sse4_1-roundss-2.c: Ditto. + * gcc.target/i386/sse4_1-roundss-3.c: Ditto. + + 2015-12-09 Uros Bizjak + + * gcc.target/i386/sse4_1-round.h (do_round): Fix inline asm statements. + * gcc.target/i386/sse4_1-roundsd-4.c (do_round): Ditto. + * gcc.target/i386/sse4_1-roundss-4.c (do_round): Ditto. + + 2015-12-08 Maxim Ostapenko + + Backport from mainline. + 2015-03-16 Max Ostapenko + + PR sanitizer/64820 + * c-c++-common/asan/pr64820.c: New test. + + 2015-11-27 Andre Vehreschild + + PR fortran/68218 + * gfortran.dg/allocate_with_arrayspec_1.f90: New test. + + 2015-11-26 Kyrylo Tkachov + + Backport from mainline + 2015-11-26 Kyrylo Tkachov + + PR rtl-optimization/67226 + * gcc.c-torture/execute/pr67226.c: New test. + + 2015-11-25 Paul Thomas + + Backport from trunk. + PR fortran/68196 + * gfortran.dg/proc_ptr_47.f90: New test. + + Backport from trunk. + PR fortran/66465 + * gfortran.dg/pr66465.f90: New test. + + 2015-11-24 Kyrylo Tkachov + + Backport from mainline + 2015-11-24 Kyrylo Tkachov + + PR rtl-optimization/68194 + PR rtl-optimization/68328 + PR rtl-optimization/68185 + * gcc.c-torture/execute/pr68185.c: New test. + * gcc.c-torture/execute/pr68328.c: Likewise. + + 2015-11-23 Kyrylo Tkachov + + Backport from mainline + 2015-11-23 Kyrylo Tkachov + + PR target/68363 + * gcc.target/aarch64/pr68363_1.c: New test. + + 2015-11-12 Eric Botcazou + + * gcc.target/i386/pr67265-2.c: New test. + + 2015-11-11 Eric Botcazou + + * gcc.target/i386/pr67265.c: New test. + + 2015-11-09 Eric Botcazou + + * gcc.target/sparc/sparc-ret.c: Rename to... + * gcc.target/sparc/sparc-ret-1.c: ...this. + * gcc.target/sparc/sparc-ret-2.c: New test. + + 2015-11-02 Martin Jambor + + Backport from mainline + 2015-10-09 Martin Jambor + + * gcc.dg/ipa/ipa-sra-10.c: New test. + * gcc.dg/torture/pr67794.c: Likewise. + + 2015-10-22 Paul Thomas + + PR fortran/58754 + * gfortran.dg/pr58754.f90: New test + + 2015-11-01 Kyrylo Tkachov + + PR target/67929 + * gcc.target/arm/pr67929_1.c: Move to... + * gcc.c-torture/execute/pr67929_1.c: ... Here. + Remove arm-specific directives. Add noclone, noinline + attributes. + + 2015-10-27 Kyrylo Tkachov + + Backport from mainline + 2015-10-26 Kyrylo Tkachov + + PR middle-end/67989 + * g++.dg/pr67989.C: New test. + + 2015-10-27 Kyrylo Tkachov + + PR target/67929 + * gcc.target/arm/pr67929_1.c: New test. + + 2013-10-19 Paul Thomas + + Backport from trunk + PR fortran/56852 + * gfortran.dg/pr56852.f90 : New test + + 2015-10-18 Thomas Koenig + + Backport from trunk + PR fortran/66385 + * gfortran.dg/forall_17.f90: New test. + + 2015-10-01 Uros Bizjak + + * gcc.dg/lto/pr55113_0.c: Skip on all x86 targets. + + 2015-10-01 Kyrylo Tkachov + + Backport from mainline + 2015-06-09 Shiva Chen + + * gcc.target/arm/stl-cond.c: New test. + + 2015-09-21 Uros Bizjak + + PR middle-end/67619 + * gcc.dg/torture/pr67619.c: New test. + * lib/target-supports.exp (check_effective_target_builtin_eh_return): + New procedure. + + 2015-08-27 Pat Haugen + + Backport from mainline: + 2015-08-27 Pat Haugen + + * gcc.target/powerpc/vec-shr.c: New. + + 2015-08-24 Michael Meissner + + Backport from mainline: + 2015-08-24 Michael Meissner + + PR target/67211 + * g++.dg/pr67211.C: New test. + + 2015-08-18 Segher Boessenkool + + Backport from mainline: + 2015-08-08 Segher Boessenkool + + PR rtl-optimization/67028 + * gcc.dg/pr67028.c: New testcase. + + 2015-08-16 Uros Bizjak + + Backport from mainline: + 2015-07-25 Uros Bizjak + + PR target/66648 + * gcc.target/i386/pr66648.c: New test. + + 2015-08-07 Mikael Morin + + PR fortran/66929 + * gfortran.dg/generic_30.f90: New. + * gfortran.dg/generic_31.f90: New. + + 2015-08-05 Mikael Morin + + PR fortran/64921 + * gfortran.dg/class_allocate_20.f90: New. + + 2015-08-04 Szabolcs Nagy + + Backport from mainline r225450: + 2015-07-06 Szabolcs Nagy + + PR target/66731 + * gcc.target/aarch64/fnmul-1.c: New. + * gcc.target/aarch64/fnmul-2.c: New. + * gcc.target/aarch64/fnmul-3.c: New. + * gcc.target/aarch64/fnmul-4.c: New. + + 2015-08-03 Peter Bergner + + Backport from mainline: + 2015-08-03 Peter Bergner + + * gcc.target/powerpc/htm-tabort-no-r0.c: New test. + + 2015-08-03 Szabolcs Nagy + + Backport form mainline r226496. + 2015-08-03 Szabolcs Nagy + + PR target/66731 + * gcc.target/arm/vnmul-1.c: New. + * gcc.target/arm/vnmul-2.c: New. + * gcc.target/arm/vnmul-3.c: New. + * gcc.target/arm/vnmul-4.c: New. + + 2015-07-30 Uros Bizjak + + Backport from mainline: + 2015-07-17 Uros Bizjak + + PR target/66891 + * gcc.target/i386/pr66891.c: New test. + + 2014-05-18 Wei Mi + + PR target/58066 + * gcc.target/i386/pr58066.c: Replace pattern matching of .cfi + directive with rtl insns. Add effective-target fpic and + tls_native. + + 2014-05-08 Wei Mi + + PR target/58066 + * gcc.target/i386/pr58066.c: New test. + + 2015-07-25 Tom de Vries + + backport from trunk: + 2015-07-25 Tom de Vries + + * gcc.dg/graphite/graphite.exp: Include uns-*.c files in + interchange_files and block_files variables. + * gcc.dg/graphite/uns-block-1.c (main): Change signed into unsigned + arithmetic. + * gcc.dg/graphite/uns-interchange-12.c: Same. + * gcc.dg/graphite/uns-interchange-14.c: Same. + * gcc.dg/graphite/uns-interchange-15.c: Same. + * gcc.dg/graphite/uns-interchange-9.c (foo): Same. + * gcc.dg/graphite/uns-interchange-mvt.c: Same. + + 2015-07-24 Tom de Vries + + * gcc.dg/graphite/block-1.c: Xfail scan. + * gcc.dg/graphite/interchange-12.c: Same. + * gcc.dg/graphite/interchange-14.c: Same. + * gcc.dg/graphite/interchange-15.c: Same. + * gcc.dg/graphite/interchange-9.c: Same. + * gcc.dg/graphite/interchange-mvt.c: Same. + * gcc.dg/graphite/uns-block-1.c: New test. + * gcc.dg/graphite/uns-interchange-12.c: New test. + * gcc.dg/graphite/uns-interchange-14.c: New test. + * gcc.dg/graphite/uns-interchange-15.c: New test. + * gcc.dg/graphite/uns-interchange-9.c: New test. + * gcc.dg/graphite/uns-interchange-mvt.c: New test. + + 2015-07-21 Mantas Mikaitis + + * gcc.target/arm/macro_defs0.c: Add directive to skip + test if -marm is present. + * gcc.target/arm/macro_defs1.c: Likewise. + + 2015-07-18 Uros Bizjak + + PR target/66922 + * gcc.target/i386/pr66922.c: New test. + + 2015-07-17 Uros Bizjak + + PR target/66866 + * g++.dg/pr66866.C: New test. + + 2015-07-17 Uros Bizjak + + Backport from mainline: + 2015-07-10 Uros Bizjak + + PR target/66703 + * gcc.target/i386/readeflags-1.c (readeflags_test): Declare with + __attribute__((noinline, noclone)). Change "x" to "volatile char" + type to prevent possible flag-clobbering zero-extensions. + * gcc.target/i386/pr66703.c: New test. + + 2015-07-17 Uros Bizjak + + Backport from mainline: + 2015-07-09 Uros Bizjak + + PR target/66814 + * gcc.target/i386/pr66814.c: New test. + + 2015-07-16 Marek Polacek + + 2015-07-08 Marek Polacek + Backported from mainline + + PR c++/66748 + * g++.dg/abi/abi-tag15.C: New test. + + 2015-07-10 Mantas Mikaitis + + * gcc.target/arm/macro_defs0.c: New test. + * gcc.target/arm/macro_defs1.c: New test. + * gcc.target/arm/macro_defs2.c: New test. + + 2015-07-08 Martin Jambor + + PR ipa/61820 + Backport from mainline r212915 + 2014-07-22 Martin Jambor + + PR ipa/61160 + * g++.dg/ipa/pr61160-3.C (main): Return zero. + + 2015-07-05 Bill Schmidt + + Backport from mainline r224725 + 2015-06-22 Bill Schmidt + + PR target/65914 + * g++.dg/torture/pr65914.C: New. + + 2015-07-01 Ramana Radhakrishnan + + Backport from mainline + 2015-06-24 Ramana Radhakrishnan + + PR target/63408 + * gcc.target/arm/pr63408.c: New test. + + 2015-06-27 Uros Bizjak + + PR target/66412 + * gcc.target/i386/pr66412.c: New test. + 2015-06-26 Release Manager * GCC 4.9.3 released. diff -Nrcpad gcc-4.9.3/gcc/testsuite/c-c++-common/asan/pr64820.c gcc-4.9.4/gcc/testsuite/c-c++-common/asan/pr64820.c *** gcc-4.9.3/gcc/testsuite/c-c++-common/asan/pr64820.c Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/c-c++-common/asan/pr64820.c Tue Dec 8 11:34:28 2015 *************** *** 0 **** --- 1,31 ---- + /* { dg-do run } */ + /* { dg-require-effective-target fstack_protector } */ + /* { dg-options "-fstack-protector-strong" } */ + /* { dg-set-target-env-var ASAN_OPTIONS "detect_stack_use_after_return=1" } */ + /* { dg-shouldfail "asan" } */ + + __attribute__((noinline)) + char *Ident(char *x) { + return x; + } + + __attribute__((noinline)) + char *Func1() { + char local[1 << 12]; + return Ident(local); + } + + __attribute__((noinline)) + void Func2(char *x) { + *x = 1; + } + int main(int argc, char **argv) { + Func2(Func1()); + return 0; + } + + /* { dg-output "AddressSanitizer: stack-use-after-return on address 0x\[0-9a-f\]+\[^\n\r]*(\n|\r\n|\r)" } */ + /* { dg-output "WRITE of size 1 at .* thread T0.*" } */ + /* { dg-output " #0.*(Func2)?.*pr64820.(c:21)?.*" } */ + /* { dg-output "is located in stack of thread T0 at offset.*" } */ + /* { dg-output "\'local\' <== Memory access at offset 32 is inside this variable" } */ diff -Nrcpad gcc-4.9.3/gcc/testsuite/c-c++-common/cpp/pr57580.c gcc-4.9.4/gcc/testsuite/c-c++-common/cpp/pr57580.c *** gcc-4.9.3/gcc/testsuite/c-c++-common/cpp/pr57580.c Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/c-c++-common/cpp/pr57580.c Thu Feb 11 09:09:00 2016 *************** *** 0 **** --- 1,9 ---- + /* PR preprocessor/57580 */ + /* { dg-do compile } */ + /* { dg-options "-save-temps" } */ + + #define MSG \ + _Pragma("message(\"message0\")") \ + _Pragma("message(\"message1\")") + MSG /* { dg-message "message0" } */ + /* { dg-message "message1" "" { target *-*-* } 8 } */ diff -Nrcpad gcc-4.9.3/gcc/testsuite/c-c++-common/gomp/pr57580.c gcc-4.9.4/gcc/testsuite/c-c++-common/gomp/pr57580.c *** gcc-4.9.3/gcc/testsuite/c-c++-common/gomp/pr57580.c Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/c-c++-common/gomp/pr57580.c Thu Feb 11 09:09:00 2016 *************** *** 0 **** --- 1,36 ---- + /* PR preprocessor/57580 */ + /* { dg-do compile } */ + /* { dg-options "-fopenmp -save-temps -fdump-tree-gimple" } */ + + #define PS \ + _Pragma("omp parallel num_threads(2)") \ + { \ + _Pragma("omp single") \ + { \ + ret = 0; \ + } \ + } + + int + main () + { + int ret; + _Pragma("omp parallel num_threads(3)") + { + _Pragma("omp single") + { + ret = 0; + } + } + _Pragma("omp parallel num_threads(4)") { _Pragma("omp single") { ret = 0; } } + { _Pragma("omp parallel num_threads(5)") { _Pragma("omp single") { ret = 0; } } } + PS + PS + return ret; + } + + /* { dg-final { scan-tree-dump-times "#pragma omp parallel\[^\n\r]*num_threads\\(2\\)" 2 "gimple" } } */ + /* { dg-final { scan-tree-dump-times "#pragma omp parallel\[^\n\r]*num_threads\\(3\\)" 1 "gimple" } } */ + /* { dg-final { scan-tree-dump-times "#pragma omp parallel\[^\n\r]*num_threads\\(4\\)" 1 "gimple" } } */ + /* { dg-final { scan-tree-dump-times "#pragma omp parallel\[^\n\r]*num_threads\\(5\\)" 1 "gimple" } } */ + /* { dg-final { scan-tree-dump-times "#pragma omp single" 5 "gimple" } } */ diff -Nrcpad gcc-4.9.3/gcc/testsuite/c-c++-common/gomp/pr71758.c gcc-4.9.4/gcc/testsuite/c-c++-common/gomp/pr71758.c *** gcc-4.9.3/gcc/testsuite/c-c++-common/gomp/pr71758.c Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/c-c++-common/gomp/pr71758.c Tue Jul 19 09:14:03 2016 *************** *** 0 **** --- 1,10 ---- + /* PR middle-end/71758 */ + + void + foo (int *p) + { + long long i = 0; + #pragma omp target device (i) + ; + #pragma omp target update device (i) to (p[0]) + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/c-c++-common/pr67653.c gcc-4.9.4/gcc/testsuite/c-c++-common/pr67653.c *** gcc-4.9.3/gcc/testsuite/c-c++-common/pr67653.c Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/c-c++-common/pr67653.c Thu Feb 11 09:23:58 2016 *************** *** 0 **** --- 1,8 ---- + /* PR middle-end/67653 */ + /* { dg-do compile } */ + + void + foo (void) + { + __asm__ ("" : : "m" (({ static int a; a; }))); /* { dg-warning "memory input 0 is not directly addressable" } */ + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/c-c++-common/pr69797.c gcc-4.9.4/gcc/testsuite/c-c++-common/pr69797.c *** gcc-4.9.3/gcc/testsuite/c-c++-common/pr69797.c Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/c-c++-common/pr69797.c Thu Jul 7 21:45:11 2016 *************** *** 0 **** --- 1,8 ---- + /* PR c++/69797 */ + /* { dg-do compile } */ + + void + foo () + { + __atomic_fetch_add (); /* { dg-error "too few arguments to function" } */ + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/abi/abi-tag15.C gcc-4.9.4/gcc/testsuite/g++.dg/abi/abi-tag15.C *** gcc-4.9.3/gcc/testsuite/g++.dg/abi/abi-tag15.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/abi/abi-tag15.C Thu Jul 16 13:33:12 2015 *************** *** 0 **** --- 1,3 ---- + // PR c++/66748 + + enum __attribute__((abi_tag("foo"))) E {}; // { dg-error "redeclaration of" } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/conversion/access1.C gcc-4.9.4/gcc/testsuite/g++.dg/conversion/access1.C *** gcc-4.9.3/gcc/testsuite/g++.dg/conversion/access1.C Fri Jan 16 18:35:28 2009 --- gcc-4.9.4/gcc/testsuite/g++.dg/conversion/access1.C Tue Aug 18 14:43:44 2015 *************** struct B : protected P *** 15,21 **** struct C : public P { // C can access P's copy ctor, but can't convert b to const P&. ! C(const B& b) : P(b) {} // { dg-error "inaccessible base" } }; void foo() --- 15,21 ---- struct C : public P { // C can access P's copy ctor, but can't convert b to const P&. ! C(const B& b) : P(b) {} // { dg-error "inaccessible base" "" { xfail *-*-* } } }; void foo() diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/alias-decl-45.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/alias-decl-45.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/alias-decl-45.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/alias-decl-45.C Fri Mar 18 15:57:58 2016 *************** *** 0 **** --- 1,24 ---- + // PR c++/61198 + // { dg-do compile { target c++11 } } + + template + struct broken + { + template + using rebind = broken; + }; + + template + struct broken<2, derp_t> + { + template + using rebind = broken<2, target_t>; + }; + + int main(int argc, char **argv) + { + broken<2, float>::rebind u; + + return 0; + } + diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/alias-decl-debug-0.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/alias-decl-debug-0.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/alias-decl-debug-0.C Sun Mar 9 07:52:48 2014 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/alias-decl-debug-0.C Sun May 22 08:53:32 2016 *************** *** 1,6 **** // Origin: PR c++/51032 ! // { dg-do compile { target c++11 } } ! // { dg-skip-if "No stabs" { aarch64*-*-* mmix-*-* *-*-aix* alpha*-*-* hppa*64*-*-* ia64-*-* *-*-vxworks* nios2-*-* } { "*" } { "" } } // { dg-options "-gstabs+" } template --- 1,5 ---- // Origin: PR c++/51032 ! // { dg-do compile { target { c++11 && stabs } } } // { dg-options "-gstabs+" } template diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/constexpr-array14.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/constexpr-array14.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/constexpr-array14.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/constexpr-array14.C Fri Jan 8 16:02:04 2016 *************** *** 0 **** --- 1,9 ---- + // PR c++/66921 + // { dg-do compile { target c++11 } } + + template + struct Holder { + constexpr static const int array[] = { 1, 2, 3 }; + enum {F = array[0]}; + }; + class HI: public Holder {}; diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/constexpr-template10.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/constexpr-template10.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/constexpr-template10.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/constexpr-template10.C Wed May 18 17:40:49 2016 *************** *** 0 **** --- 1,17 ---- + // PR c++/70505 + // { dg-do compile { target c++11 } } + + template + struct s + { + template + static constexpr T f1(const T x) {return x;} + template (sizeof(T))> + static constexpr T f2(const T x) {return x;} + static void f() {s::f2(42);} + }; + + int main() + { + s::f(); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce3.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce3.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce3.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/lambda/lambda-deduce3.C Fri Jul 22 03:57:43 2016 *************** *** 0 **** --- 1,15 ---- + // PR c++/69223 + // { dg-do compile { target c++11 } } + + template struct A + { + T x[20]; + }; + + int main() + { + auto l = [](const A& i){ return i; }; + A a; + + l(a); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/pr67767.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/pr67767.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/pr67767.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/pr67767.C Thu Jul 7 21:46:54 2016 *************** *** 0 **** --- 1,10 ---- + // PR c++/67767 + // { dg-do compile { target c++11 } } + // { dg-options "-Wsuggest-attribute=noreturn" } + + void foo [[gnu::cold, gnu::noreturn]] (); + + void foo () // { dg-bogus "function might be candidate for attribute" } + { + throw 1; + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/sfinae56.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/sfinae56.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp0x/sfinae56.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp0x/sfinae56.C Wed Feb 10 19:35:35 2016 *************** *** 0 **** --- 1,26 ---- + // PR c++/68926 + // { dg-do compile { target c++11 } } + + struct true_type { static constexpr bool value = true; }; + struct false_type { static constexpr bool value = false; }; + + template struct enable_if { using type = void; }; + template<> struct enable_if { }; + + template struct is_same : false_type { }; + template struct is_same : true_type { }; + + template + typename enable_if::value>::type + func(); + + template)> + true_type test(T); + + false_type test(...); + + int main() + { + decltype(test(0))::value; // ok + decltype(test(0.f))::value; // error + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp1y/feat-cxx11.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp1y/feat-cxx11.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp1y/feat-cxx11.C Wed Oct 8 11:05:43 2014 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp1y/feat-cxx11.C Tue Jul 5 18:01:47 2016 *************** *** 55,64 **** # error "__cpp_attributes != 200809" #endif ! #ifndef __cpp_rvalue_reference ! # error "__cpp_rvalue_reference" ! #elif __cpp_rvalue_reference != 200610 ! # error "__cpp_rvalue_reference != 200610" #endif #ifndef __cpp_variadic_templates --- 55,64 ---- # error "__cpp_attributes != 200809" #endif ! #ifndef __cpp_rvalue_references ! # error "__cpp_rvalue_references" ! #elif __cpp_rvalue_references != 200610 ! # error "__cpp_rvalue_references != 200610" #endif #ifndef __cpp_variadic_templates diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp1y/feat-cxx14.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp1y/feat-cxx14.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp1y/feat-cxx14.C Fri Oct 10 09:39:01 2014 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp1y/feat-cxx14.C Tue Jul 5 18:01:47 2016 *************** *** 57,66 **** # error "__cpp_attributes != 200809" #endif ! #ifndef __cpp_rvalue_reference ! # error "__cpp_rvalue_reference" ! #elif __cpp_rvalue_reference != 200610 ! # error "__cpp_rvalue_reference != 200610" #endif #ifndef __cpp_variadic_templates --- 57,66 ---- # error "__cpp_attributes != 200809" #endif ! #ifndef __cpp_rvalue_references ! # error "__cpp_rvalue_references" ! #elif __cpp_rvalue_references != 200610 ! # error "__cpp_rvalue_references != 200610" #endif #ifndef __cpp_variadic_templates diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/cpp1y/feat-cxx98-neg.C gcc-4.9.4/gcc/testsuite/g++.dg/cpp1y/feat-cxx98-neg.C *** gcc-4.9.3/gcc/testsuite/g++.dg/cpp1y/feat-cxx98-neg.C Wed Oct 8 11:05:43 2014 --- gcc-4.9.4/gcc/testsuite/g++.dg/cpp1y/feat-cxx98-neg.C Tue Jul 5 18:01:47 2016 *************** *** 41,48 **** # error "__cpp_attributes" // { dg-error "error" } #endif ! #ifndef __cpp_rvalue_reference ! # error "__cpp_rvalue_reference" // { dg-error "error" } #endif #ifndef __cpp_variadic_templates --- 41,48 ---- # error "__cpp_attributes" // { dg-error "error" } #endif ! #ifndef __cpp_rvalue_references ! # error "__cpp_rvalue_references" // { dg-error "error" } #endif #ifndef __cpp_variadic_templates diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/ext/vector31.C gcc-4.9.4/gcc/testsuite/g++.dg/ext/vector31.C *** gcc-4.9.3/gcc/testsuite/g++.dg/ext/vector31.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/ext/vector31.C Tue Jul 19 09:26:30 2016 *************** *** 0 **** --- 1,29 ---- + // PR c++/71871 + // { dg-do compile } + + typedef unsigned int V __attribute__ ((__vector_size__ (32))); + + template + void + foo (V *x) + { + V a = *x; + a = a ? a : -1; + *x = a; + } + + template + void + bar (T *x) + { + T a = *x; + a = a ? a : -1; + *x = a; + } + + void + test (V *x, V *y) + { + foo<0> (x); + bar (y); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/gomp/pr59627.C gcc-4.9.4/gcc/testsuite/g++.dg/gomp/pr59627.C *** gcc-4.9.3/gcc/testsuite/g++.dg/gomp/pr59627.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/gomp/pr59627.C Thu Feb 11 09:28:23 2016 *************** *** 0 **** --- 1,14 ---- + // PR c++/59627 + // { dg-do compile { target lto } } + // { dg-options "-fopenmp -flto" } + + struct A { A () : i (0) {} int i; }; + + void + foo () + { + A a; + #pragma omp declare reduction (+: A: omp_out.i += omp_in.i) + #pragma omp parallel reduction (+: a) + ; + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/inherit/access9.C gcc-4.9.4/gcc/testsuite/g++.dg/inherit/access9.C *** gcc-4.9.3/gcc/testsuite/g++.dg/inherit/access9.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/inherit/access9.C Tue Aug 18 14:43:44 2015 *************** *** 0 **** --- 1,14 ---- + // PR c++/66957 + + class BaseClass { + protected: + static int x; + }; + + struct DerivedA : BaseClass { }; + + struct DerivedB : BaseClass { + DerivedB() { + (void) DerivedA::x; + } + }; diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/inherit/using8.C gcc-4.9.4/gcc/testsuite/g++.dg/inherit/using8.C *** gcc-4.9.3/gcc/testsuite/g++.dg/inherit/using8.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/inherit/using8.C Thu Mar 3 18:43:01 2016 *************** *** 0 **** --- 1,15 ---- + // PR c++/65061 + + struct B + { + template + struct S {}; + }; + + struct D : B + { + using B::S; + + template + void doIt(/*struct*/ S&); + }; diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/init/elide3.C gcc-4.9.4/gcc/testsuite/g++.dg/init/elide3.C *** gcc-4.9.3/gcc/testsuite/g++.dg/init/elide3.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/init/elide3.C Thu Dec 17 16:52:19 2015 *************** *** 0 **** --- 1,50 ---- + // PR c++/67557 + // { dg-do run } + + namespace std + { + struct string + { + typedef unsigned long size_type; + const char* _M_p; + char _M_local_buf[1]; + + string(const char* s) : _M_p(_M_local_buf) + { + __builtin_printf("%p constructed\n", this); + } + + string(const string& s) : _M_p(_M_local_buf) + { + __builtin_printf("%p copied from %p\n", this, &s); + } + + ~string() + { + __builtin_printf("%p destroyed\n", this); + if (_M_p != _M_local_buf) + __builtin_abort(); + } + }; + } + + struct StartTag + { + explicit StartTag(std::string const & tag) : tag_(tag), keepempty_(false) {} + std::string tag_; + bool keepempty_; + }; + + StartTag fontToStartTag() { return StartTag(""); } + + struct FontTag : public StartTag + { + FontTag() : StartTag(fontToStartTag()) {} + }; + + int main() + { + FontTag x; + __builtin_printf("%p x.tag_ in main()\n", &x.tag_); + return 0; + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/init/elide4.C gcc-4.9.4/gcc/testsuite/g++.dg/init/elide4.C *** gcc-4.9.3/gcc/testsuite/g++.dg/init/elide4.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/init/elide4.C Fri Jan 8 16:02:10 2016 *************** *** 0 **** --- 1,13 ---- + // PR c++/67557 + + class A { + public: + A m_fn1(); + A(A const &); + int *L; + int ref; + }; + struct B : A { + B(); + }; + B::B() : A((0, m_fn1())) {} diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/init/elide5.C gcc-4.9.4/gcc/testsuite/g++.dg/init/elide5.C *** gcc-4.9.3/gcc/testsuite/g++.dg/init/elide5.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/init/elide5.C Fri Jul 22 03:41:44 2016 *************** *** 0 **** --- 1,27 ---- + // PR c++/71913 + // { dg-do link { target c++11 } } + + void* operator new(unsigned long, void* p) { return p; } + + struct IndirectReturn { + IndirectReturn() {} + // Undefined so we get a link error if the indirect return value is copied + IndirectReturn(const IndirectReturn&); + IndirectReturn& operator=(const IndirectReturn&) = delete; + ~IndirectReturn() {} + }; + + IndirectReturn foo() { return IndirectReturn(); } + + void bar(void* ptr) { + new (ptr) IndirectReturn(foo()); + } + + alignas (alignof (IndirectReturn)) + unsigned char c[sizeof(IndirectReturn)]; + + int main() + { + bar(c); + } + diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/ipa/pr61160-3.C gcc-4.9.4/gcc/testsuite/g++.dg/ipa/pr61160-3.C *** gcc-4.9.3/gcc/testsuite/g++.dg/ipa/pr61160-3.C Fri Jun 27 11:32:00 2014 --- gcc-4.9.4/gcc/testsuite/g++.dg/ipa/pr61160-3.C Wed Jul 8 11:24:38 2015 *************** void *test (MMixin & anExample) *** 33,37 **** int main () { CExample c; ! return (test (c) != &c); } --- 33,38 ---- int main () { CExample c; ! test (c); ! return 0; } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/ipa/pr66616.C gcc-4.9.4/gcc/testsuite/g++.dg/ipa/pr66616.C *** gcc-4.9.3/gcc/testsuite/g++.dg/ipa/pr66616.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/ipa/pr66616.C Mon Jan 11 09:59:48 2016 *************** *** 0 **** --- 1,54 ---- + // { dg-do run } + // { dg-options "-O2 -fipa-cp-clone" } + + struct Distraction + { + char fc[8]; + virtual Distraction * return_self () + { return this; } + }; + + static int go; + + struct A; + + struct A + { + int fi; + + A () : fi(0) {} + A (int pi) : fi (pi) {} + virtual void foo (int p) = 0; + }; + + struct B; + + struct B : public Distraction, A + { + B () : Distraction(), A() { } + B (int pi) : Distraction (), A (pi) {} + virtual void foo (int p) + { + int o = fi; + for (int i = 0; i < p; i++) + o += i + i * i; + go = o; + } + }; + + struct B gb2 (2); + + extern "C" void abort (void); + + int + main (void) + { + for (int i = 0; i < 2; i++) + { + struct A *p = &gb2; + p->foo (0); + if (go != 2) + abort (); + } + return 0; + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/ipa/pr68851.C gcc-4.9.4/gcc/testsuite/g++.dg/ipa/pr68851.C *** gcc-4.9.3/gcc/testsuite/g++.dg/ipa/pr68851.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/ipa/pr68851.C Fri Jan 8 12:34:34 2016 *************** *** 0 **** --- 1,29 ---- + // { dg-do compile } + // { dg-options "-O3" } + + class A; + class B { + public: + operator A *() const; + }; + class A { + public: + virtual bool isFormControlElement() const {} + }; + class C { + struct D { + B element; + }; + bool checkPseudoClass(const D &, int &) const; + }; + class F { + virtual bool isFormControlElement() const; + }; + class G : A, F { + bool isFormControlElement() const {} + }; + bool C::checkPseudoClass(const D &p1, int &) const { + A &a = *p1.element; + a.isFormControlElement(); + a.isFormControlElement() || a.isFormControlElement(); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/opt/pr69432.C gcc-4.9.4/gcc/testsuite/g++.dg/opt/pr69432.C *** gcc-4.9.3/gcc/testsuite/g++.dg/opt/pr69432.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/opt/pr69432.C Thu Feb 11 09:26:31 2016 *************** *** 0 **** --- 1,62 ---- + // PR target/69432 + // { dg-do compile } + // { dg-options "-O3" } + // { dg-additional-options "-minline-stringops-dynamically" { target i?86-*-* x86_64-*-* } } + + template + void + f1 (S x, T y, U z) + { + for (; y; --y, ++x) + *x = z; + } + + template + void f2 (S x, T y, U z) + { + f1 (x, y, z); + } + + struct A {}; + struct B { static char f3 (A, unsigned); }; + + template + void f4 (S, U); + + struct C + { + template + static S f5 (S x, T y, U z) { f2 (x, y, z); } + }; + + template + void f6 (S x, T y, U z) { C::f5 (x, y, z); } + + template + void f7 (S x, T y, U z, V) { f6 (x, y, z); } + + struct E + { + struct D : A { char e; D (A); }; + A f; + E (int x) : g(f) { f8 (x); } + ~E (); + D g; + void f9 (int x) { x ? B::f3 (g, x) : char (); } + void f8 (int x) { f9 (x); } + }; + + struct F : E + { + F (int x) : E(x) { f10 (x); f4 (this, 0); } + char h; + void f10 (int x) { f7 (&g.e, x, h, 0); } + }; + + long a; + + void + test () + { + F b(a); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/other/PR23205.C gcc-4.9.4/gcc/testsuite/g++.dg/other/PR23205.C *** gcc-4.9.3/gcc/testsuite/g++.dg/other/PR23205.C Tue Dec 31 07:05:35 2013 --- gcc-4.9.4/gcc/testsuite/g++.dg/other/PR23205.C Sun May 22 08:53:32 2016 *************** *** 1,5 **** ! /* { dg-do compile } */ ! /* { dg-skip-if "No stabs" { aarch64*-*-* mmix-*-* *-*-aix* alpha*-*-* hppa*64*-*-* ia64-*-* nios2-*-* tile*-*-* *-*-vxworks } { "*" } { "" } } */ /* { dg-options "-gstabs+ -fno-eliminate-unused-debug-types" } */ const int foobar = 4; --- 1,4 ---- ! /* { dg-do compile { target stabs } } */ /* { dg-options "-gstabs+ -fno-eliminate-unused-debug-types" } */ const int foobar = 4; diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/other/pr23205-2.C gcc-4.9.4/gcc/testsuite/g++.dg/other/pr23205-2.C *** gcc-4.9.3/gcc/testsuite/g++.dg/other/pr23205-2.C Tue Dec 31 07:05:35 2013 --- gcc-4.9.4/gcc/testsuite/g++.dg/other/pr23205-2.C Sun May 22 08:53:32 2016 *************** *** 1,5 **** ! /* { dg-do compile } */ ! /* { dg-skip-if "No stabs" { aarch64*-*-* mmix-*-* *-*-aix* alpha*-*-* hppa*64*-*-* ia64-*-* tile*-*-* nios2-*-* } { "*" } { "" } } */ /* { dg-options "-gstabs+ -fno-eliminate-unused-debug-types -ftoplevel-reorder" } */ const int foobar = 4; --- 1,4 ---- ! /* { dg-do compile { target stabs } } */ /* { dg-options "-gstabs+ -fno-eliminate-unused-debug-types -ftoplevel-reorder" } */ const int foobar = 4; diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/overload/defarg10.C gcc-4.9.4/gcc/testsuite/g++.dg/overload/defarg10.C *** gcc-4.9.3/gcc/testsuite/g++.dg/overload/defarg10.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/overload/defarg10.C Tue Aug 18 14:43:38 2015 *************** *** 0 **** --- 1,28 ---- + // PR c++/58063 + // { dg-do run } + + struct basic_ios + { + bool operator!() const { return false; } + }; + + struct ostream : virtual basic_ios + { + }; + + int i; + + ostream& operator<<(ostream& os, const char* s) { + ++i; + return os; + } + + ostream cout; + + void f(bool x = !(cout << "hi!\n")) { } + + int main() { + f(); + if (i != 1) + __builtin_abort(); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/parse/pr71909.C gcc-4.9.4/gcc/testsuite/g++.dg/parse/pr71909.C *** gcc-4.9.3/gcc/testsuite/g++.dg/parse/pr71909.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/parse/pr71909.C Wed Jul 20 14:32:46 2016 *************** *** 0 **** --- 1,22 ---- + // PR c++/71909 + // { dg-do compile } + + struct S + { + S () try : m (0) {} + catch (...) {} + void foo () try {} + catch (int) {} + catch (...) {} + int m; + }; + + struct T + { + T () : m (0) {} + catch (...) {} // { dg-error "expected unqualified-id before" } + void foo () {} + catch (int) {} // { dg-error "expected unqualified-id before" } + catch (...) {} // { dg-error "expected unqualified-id before" } + int m; + }; diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/pr66866.C gcc-4.9.4/gcc/testsuite/g++.dg/pr66866.C *** gcc-4.9.3/gcc/testsuite/g++.dg/pr66866.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/pr66866.C Fri Jul 17 21:39:27 2015 *************** *** 0 **** --- 1,29 ---- + // { dg-do run { target i?86-*-* x86_64-*-* } } + // { dg-require-effective-target sse2_runtime } + // { dg-options "-O -msse2" } + + extern "C" void abort (void); + + typedef long long __m128i __attribute__ ((__vector_size__ (16), __may_alias__)); + typedef short A __attribute__((__may_alias__)); + + __m128i __attribute__((noinline)) + shuf(const __m128i v) + { + __m128i r; + + reinterpret_cast(&r)[5] = reinterpret_cast(&v)[4]; + return r; + } + + int main() + { + __attribute__((aligned(16))) short mem[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; + + *reinterpret_cast<__m128i *>(mem) = shuf (*reinterpret_cast<__m128i *>(mem)); + + if (mem[5] != 4) + abort (); + + return 0; + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/pr67211.C gcc-4.9.4/gcc/testsuite/g++.dg/pr67211.C *** gcc-4.9.3/gcc/testsuite/g++.dg/pr67211.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/pr67211.C Mon Aug 24 20:36:35 2015 *************** *** 0 **** --- 1,50 ---- + /* { dg-do compile { target { powerpc*-*-* && lp64 } } } */ + /* { dg-skip-if "" { powerpc*-*-darwin* } { "*" } { "" } } */ + /* { dg-require-effective-target powerpc_p8vector_ok } */ + /* { dg-skip-if "do not override -mcpu" { powerpc*-*-* } { "-mcpu=*" } { "-mcpu=power7" } } */ + /* { dg-options "-mcpu=power7 -mtune=power8 -O3 -w" } */ + + /* target/67211, compiler got a 'insn does not satisfy its constraints' error. */ + + template + void find_first_of(_InputIterator, _InputIterator, _ForwardIterator p3, + _ForwardIterator p4) { + for (; p3 != p4; ++p3) + ; + } + + template struct A { + int _S_buffer_size; + int *_M_cur; + int *_M_first; + int *_M_last; + int **_M_node; + void operator++() { + if (_M_cur == _M_last) + m_fn1(_M_node + 1); + } + void m_fn1(int **p1) { + _M_node = p1; + _M_first = *p1; + _M_last = _M_first + _S_buffer_size; + } + }; + + template + bool operator==(A<_Tp, _Ref, _Ptr>, A<_Tp, _Ref, _Ptr>); + template + bool operator!=(A<_Tp, _Ref, _Ptr> p1, A<_Tp, _Ref, _Ptr> p2) { + return p1 == p2; + } + + class B { + public: + A m_fn2(); + }; + struct { + B j; + } a; + void Linked() { + A b, c, d; + find_first_of(d, c, b, a.j.m_fn2()); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/pr67989.C gcc-4.9.4/gcc/testsuite/g++.dg/pr67989.C *** gcc-4.9.3/gcc/testsuite/g++.dg/pr67989.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/pr67989.C Tue Oct 27 14:07:04 2015 *************** *** 0 **** --- 1,75 ---- + /* { dg-do compile } */ + /* { dg-options "-std=c++11 -O2" } */ + /* { dg-additional-options "-marm -march=armv4t" { target arm*-*-* } } */ + + __extension__ typedef unsigned long long int uint64_t; + namespace std __attribute__ ((__visibility__ ("default"))) + { + typedef enum memory_order + { + memory_order_seq_cst + } memory_order; + } + + namespace std __attribute__ ((__visibility__ ("default"))) + { + template < typename _Tp > struct atomic + { + static constexpr int _S_min_alignment + = (sizeof (_Tp) & (sizeof (_Tp) - 1)) || sizeof (_Tp) > 16 + ? 0 : sizeof (_Tp); + static constexpr int _S_alignment + = _S_min_alignment > alignof (_Tp) ? _S_min_alignment : alignof (_Tp); + alignas (_S_alignment) _Tp _M_i; + operator _Tp () const noexcept + { + return load (); + } + _Tp load (memory_order __m = memory_order_seq_cst) const noexcept + { + _Tp tmp; + __atomic_load (&_M_i, &tmp, __m); + } + }; + } + + namespace lldb_private + { + namespace imp + { + } + class Address; + } + namespace lldb + { + typedef uint64_t addr_t; + class SBSection + { + }; + class SBAddress + { + void SetAddress (lldb::SBSection section, lldb::addr_t offset); + lldb_private::Address & ref (); + }; + } + namespace lldb_private + { + class Address + { + public: + const Address & SetOffset (lldb::addr_t offset) + { + bool changed = m_offset != offset; + } + std::atomic < lldb::addr_t > m_offset; + }; + } + + using namespace lldb; + using namespace lldb_private; + void + SBAddress::SetAddress (lldb::SBSection section, lldb::addr_t offset) + { + Address & addr = ref (); + addr.SetOffset (offset); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/pr70098.C gcc-4.9.4/gcc/testsuite/g++.dg/pr70098.C *** gcc-4.9.3/gcc/testsuite/g++.dg/pr70098.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/pr70098.C Mon Apr 25 22:29:49 2016 *************** *** 0 **** --- 1,91 ---- + // PR target/70098 + // { dg-do compile } + // { dg-options -O2 } + // { dg-require-effective-target c++11 } + // { dg-xfail-if "PR70098" { lp64 && powerpc64_no_dm } } + // { dg-prune-output ".*internal compiler error.*" } + + template < typename > struct traits; + template < typename, int _Rows, int _Cols, int = 0, int = _Rows, + int = _Cols > class Matrix; + template < typename > class G; + template < typename Derived > struct A { + typedef G < Derived > type; + }; + + template < typename Derived > class C { + public: + enum { RowsAtCompileTime = + traits < Derived >::RowsAtCompileTime } static Zero; + }; + + template < typename Derived > class G:public C < Derived > { + }; + + template < int _Rows > class D { + public: + long rows() { + return _Rows; + } + }; + + template < typename Derived > class PlainObjectBase:public A < Derived >::type { + typedef typename A < Derived >::type Base; + D < Base::RowsAtCompileTime > m_storage; + + public: + long rows() { + return m_storage.rows(); + } + }; + + int fn1(); + + struct B { + static long run(long x, long) { + int offset(fn1()); + return x + offset; + }}; + + long fn2(int x) + { + return B::run(x, 0); + } + + template < typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, + int _MaxCols > + struct traits > { + enum { RowsAtCompileTime = _Rows }; + }; + + template < typename, int, int, int, int _MaxRows, int _MaxCols > + class Matrix:public PlainObjectBase < Matrix < double, _MaxRows, + _MaxCols >> { + public: + template < typename OtherDerived > Matrix(OtherDerived); + }; + + struct F { + static Matrix < double, 2, 2 > run(long size) { + Matrix < double, 2, 2 > diag = Matrix < double, 2, 2 >::Zero; + long i = 0; + while (i < size) { + long randomInt = fn2(-1); + if (randomInt == 0) + ++i; + else { + double alpha(randomInt); + diag = alpha; + i = 2; + } + } + + return diag; + } + }; + + void fn3(Matrix < double, 2, 2 > m) + { + long size = m.rows(); + F::run(size); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/pr71389.C gcc-4.9.4/gcc/testsuite/g++.dg/pr71389.C *** gcc-4.9.3/gcc/testsuite/g++.dg/pr71389.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/pr71389.C Tue Jun 7 16:01:50 2016 *************** *** 0 **** --- 1,23 ---- + // { dg-do compile { target i?86-*-* x86_64-*-* } } + // { dg-options "-std=c++11 -O3 -march=ivybridge" } + + #include + + extern int le_s6, le_s9, le_s11; + long foo_v14[16][16]; + + void fn1() { + std::array, 16> v13; + for (; le_s6;) + for (int k1 = 2; k1 < 4; k1 = k1 + 1) { + for (int n1 = 0; n1 < le_s9; n1 = 8) { + *foo_v14[6] = 20923310; + for (int i2 = n1; i2 < n1 + 8; i2 = i2 + 1) + v13.at(5).at(i2 + 6 - n1) = 306146921; + } + + for (int l2 = 0; l2 < le_s11; l2 = l2 + 1) + *(l2 + v13.at(5).begin()) = 306146921; + } + v13.at(le_s6 - 4); + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/rtti/typeid11.C gcc-4.9.4/gcc/testsuite/g++.dg/rtti/typeid11.C *** gcc-4.9.3/gcc/testsuite/g++.dg/rtti/typeid11.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/rtti/typeid11.C Thu Dec 17 16:52:25 2015 *************** *** 0 **** --- 1,16 ---- + // { dg-do run } + + #include + + struct Base { virtual void foo() {} }; // polymorphic + + int main() + { + Base b; + Base *ary[] = { &b, &b, &b}; + + int iter = 0; + typeid(*ary[iter++]); + if (iter != 1) // should be 1 + __builtin_abort(); // but 2 + } diff -Nrcpad gcc-4.9.3/gcc/testsuite/g++.dg/template/pr67337.C gcc-4.9.4/gcc/testsuite/g++.dg/template/pr67337.C *** gcc-4.9.3/gcc/testsuite/g++.dg/template/pr67337.C Thu Jan 1 00:00:00 1970 --- gcc-4.9.4/gcc/testsuite/g++.dg/template/pr67337.C Fri Dec 4 11:46:39 2015 *************** *** 0 **** --- 1,25 ---- + template class A + { + void m_fn1 (int *, int); + }; + + template class B + { + public: + typedef int Type; + }; + + template class C + { + public: + C (int); + template